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Abstract

Large macromolecular protein complexes play an important role in the quest of un-
derstanding life at a molecular level. For this endeavor, the highly-resolved 3D
structure of a large complex and its changes, which are called conformational dy-
namics, are of high interest due to their close relation to biological function. A pop-
ular method to gain access to this information is cryo-electron microscopy.

Here, biological samples are vitrified in their native buffer conditions and then im-
aged in a transmission electron microscope. The large amount of recorded noisy
images, called micrographs, are then subjected to a series of sophisticated, compu-
tationally expensive algorithmic steps that include particle extraction, averaging of
similar particle images, angular assignment and 3D reconstruction. While a growing
amount of 3D structures determined by cryo EM reach resolutions that allow atomic
model building, a large share of structures never reach that level of possible biolog-
ical detail.

In this thesis, improvements to two of the problems that can limit the resolution
of structures are presented: Sample quality and elimination of suboptimal micro-
graphs. First, a new software for simulation of density gradient centrifugation ex-
periments, which is a popular method for sample purification, is presented that
can aid users in finding the right conditions to optimize their purification proto-
cols through new algorithmic approaches. This can lead to purer and more stable
samples that improve the recorded images.

Then, a new software for live processing and machine learning based classification
of TEM images whose quality is judged live by a user is introduced. This software,
called the Micrograph Quality Checker, is part of the COW, which is a novel single
particle cryo EM image processing framework that covers the whole data analysis
workflow. Elimination of unwanted data and collection of metadata in parallel to
image acquisition can reduce the data overhead, improve computational speed and
can also lead to higher resolution in the obtained structures due to the self-referential
image processing.

Keywords: cryo-electron microscopy, single particle imaging framework, machine
learning, density gradient centrifugation, micrograph quality criteria, software
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Chapter 1

Introduction

1.1 High-resolution 3D Structure Determination of Macro-
molecular Machines

The central dogma of molecular biology [39] states that sequential genetic informa-
tion is transcribed to mRNA, which is then transported out of a cell’s nucleus to be
translated by the ribosome to a peptide chain consisting of a combination of 21 pos-
sible amino acids in the order that is specified by the codons of the mRNA. Based
on the free energy determined by the amino acid sequence[8], these chains then fold
into a three dimensional structure, unassisted or assisted by chaperones[45], with
four different organizational levels:

1. Primary structure: The linear amino acid sequence that defines a protein, first
described in 1951 [155].

2. Secondary structure: Local structures based on stabilization by hydrogen bonds,
e.g. α-helices, β-sheets[126].

3. Tertiary structure: The global 3D shape of a protein that is commonly stabi-
lized by a multitude of chemical processes, e.g. separation of hydrophobic and
hydrophilic domains, Cystein-Cystein disulfide bonds and salt bridges [111].

4. Quaternary structure: The formation of complexes by either multiple identi-
cal peptides or different ones. Also included may be cofactors, nucleid acids,
metal ions and such[111].

For architecture, Louis Sullivan coined the phrase "Form follows function"[181] in
1896. For proteins, usually the reverse is claimed[169]. Undisputedly, understand-
ing protein structure is essential to reaching a better understanding of nature’s inner
workings on a molecular level. The findings of structural biology have impactful im-
plications for biotechnology, drug discovery, disease mechanism research and much
more.

While it has been known for a long time that proteins were able to adopt different
conformations, for a long time these structural changes were explained by the lock-
and-key model[51], according to which only changes in the chemical environment
would lead to transitions between different substates. Later, it became apparent
that all possible conformations are in an equilibrium with one another based on the
free energy landscape[61]. Conformational dynamics were shown to have important
implications, including for enzyme catalysis[60] and allostery in cell signaling[25].
Elucidating the 3D structures and the dynamic nature of proteins and protein com-
plexes can be realized with different biophysical methods that are introduced in the
following.
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1.1.1 Methods for Conformational Dynamics Analysis

Spectroscopical approaches such as Circular Dichroism (secondary structures), In-
frared (atomic vibrational movement) and UV-Vis Spectroscopy (light-absorbing re-
gions) rely on interaction of light with molecules to gain information about specific
aspects of protein structure. However, the clear limitation is the signal integration
over a large number of non-synchronized molecules which leads to averaging ef-
fects, thus resulting in only approximations of the overall dynamics. In some cases,
synchronization effects can be introduced through temperature and substrate bind-
ing.

Single molecule Förster Resonance Energy Transfer (FRET) spectroscopy enables
live measurements of changes in distance between a donor and an acceptor fluo-
rophore attached to suitable amino acid residues in a protein molecule[78]. Through
this, movement of protein domains can be monitored[88]. Suitable positions for
probe attachment rely on preexisting structures in different conformations. Accessi-
ble through this method are therefore conformational rates.

A computational method to gain access to conformational information on very small
timescales are Molecular Dynamics (MD) simulations[4]. Based on a preexisting
structure, atomic movements are simulated through numerical solution of Newto-
nian mechanics equations for the atoms, utilizing for example force fields to calculate
potential energies between them. The method was originally established in the bio-
logical sciences for simulations of protein folding[114], but is now routinely used for
conformational dynamics. The drawback of this method is that specially for larger
protein complexes, larger timescales are computationally expensive to simulate.

1.1.2 Structural Methods

The methods mentioned in the previous section either rely on extensive averaging
or preexisting structural models to get information about a protein’s conformational
landscape with a good temporal resolution. Structural methods on the other hand
offer a high spatial and usually a low time resolution.

1.1.2.1 NMR

In Nuclear Magnetic Resonance (NMR) spectroscopy, a sample solution is intro-
duced to a strong magnetic field of several Tesla. The spins of isotopes with a mag-
netic moment resulting from an odd number of protons are then aligned with the
field’s direction. Application of pulsed radio waves results in a spin oscillation with
a specific Larmor frequency that is dependent on a nuclei’s chemical environment.
A relaxation back to the aligned state and emission of the previously absorbed en-
ergy enables detection of an electric current and extraction of the Larmor frequen-
cies to create a spectrum[103]. This, in addition to measured relaxation times, can
be utilized to calculate the distance between atoms, thus accessing structural and
conformational information on low time scales and high resolution[102].

Due to the combinatorial nature of spectrum interpretation, the method is mostly
limited to small proteins where peak broadening and overlapping signals are lim-
ited. Usually, the upper molecular weight (MW) limit is listed at around 100 kilo
Dalton (kDa). In the Protein Data Bank (PDB), 10946 atomic models determined by
NMR spectroscopy were deposited as of April 2018.
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1.1.2.2 X-ray Crystallography

The oldest of the structural methods, X-ray crystallography is based on protein crys-
tals, regular crystal lattices of protein molecules, which also represents a bottleneck
in the method due to the need to empirically optimize a multitude of individual crys-
tallization parameters. A crystal is introduced into an X-ray beam that is diffracted
by the outer shell electrons of the protein’s atoms[46]. Structural information is then
available through the characteristic diffraction patterns, which however contain no
phase information. This information has to be determined separately through ap-
proaches such as molecular replacement, heavy atom substitution or usage of exter-
nal phase information, for example from homologous structures.

X-ray crystallography can yield atomic resolution of small proteins, with larger pro-
tein complexes being more of a challenge, resulting in usual resolutions of 2-3Å.
Different conformations can sometimes be crystallized. Time-resolved crystallogra-
phy is available in case of still functional proteins in the crystal. Through crystal
packing effects, differences to solution structures can occur.

As of April 2018, 122988 atomic models determined by X-ray crystallography were
deposited in the PDB, by far the most out of all structural methods.

1.1.2.3 Cryo-Electron Microscopy

Electron microscopy(EM) of biological macromolecules is the youngest structural
method and involves recording 2D projections of individual molecules, usually em-
bedded in ice, which are ultimately inverse projected to yield a reconstruction of the
underlying 3D structure.

Single particle cryo-EM has gained a lot of traction in recent years [10], including the
Nobel Prize in Chemistry being awarded to Richard Henderson, Jacques Dubouchet
and Joachim Frank for their contributions to the method[149], due to being able to
reach near atomic resolution for large macromolecular complexes and has become
the method of choice for a large portion of structural biologists. 2164 atomic models
determined by EM have been deposited in the PDB by April 2018, with more maps
being available in the Electron Microscopy Database(EMDB). Figure 1.1 shows the
growing number of annually deposited maps in the EMDB over the past 18 years.
An advantage over the other structural methods is the usually 1000-fold smaller
sample amount requirement and the native buffer environment during imaging.

Due to the vitrification requirement to withstand radiation damage, time resolution
of cryo-EM is usually not existent. A retrospective approach to conformational dy-
namics is made possible, though, through sorting the recorded particles into their
respective structural state.

1.2 Basics of Single particle Cryo-EM

1.2.1 Overview

Single particle cryo-electron microscopy derives its name from the technique of vitri-
fying samples of protein complexes in low concentration in native buffer conditions
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FIGURE 1.1: Maps deposited in the EMDB by year since 2000. The
growing number of released structures shows the increased popular-
ity of the method. Denoted with 2018* is the linearly interpolated
value for 2018 based on the amount of maps deposited until April

2018.

to then expose them to an electron beam in an electron microscope. Ethane vitri-
fication is essential to reduce radiation damage to the sample, but also introduces
additional noise during the imaging process. Combined with the low dose elec-
tron beam, this results in digital images with a very low signal-to-noise ratio (SNR).
As the image processing is based on several steps of averaging similar images, the
amount of data needed is immense, resulting in a high computational cost. An alter-
native to vitrification is negative stain treatment of samples, which enhances contrast
and therefore reduces the data demand, but limits the achievable resolution and is
therefore mostly used for screening purposes only.

Figure 1.2 gives an overview about the simplified workflow of the technique. In a
nutshell, 2D projections of the underlying 3D structures are recorded in the imag-
ing process. Due to beam-induced charging effects[24] that result in slight sample
movements, multiple frames with low SNR each are recorded and aligned to pro-
duce a micrograph, containing up to hundreds of particles, whose contrast transfer
function (CTF) parameters are then determined. Afterwards, the areas containing
particles are extracted and, after iterative averaging steps of projections with simi-
lar angles, a 3D structure is calculated through real space backprojection or Fourier
reconstruction. This happens in a self-referential process that is usually repeated
several times, producing structures with better resolution in each iteration whose
projections can then be used as references to sort the dataset images to their closest
projection angles. The higher the resolution is, the bigger the amount of different
projections. After convergence of the structure(s), the resolution can be determined
and if high enough resolution was reached, atomic models can then be constructed
to enable interpretation of biological questions. In the following sections, the men-
tioned experimental and computational procedures are described in further detail.

1.2.2 Instrumentation

The concept of resolution d is the most important parameter when discussing struc-
tural biology techniques. It is defined as the smallest distance where structural fea-
tures can be distinguished from one another. In the 19th century, visible light was
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FIGURE 1.2: Simplified Cryo-EM workflow

first used to magnify biological structures. Ernst Abbe then discovered the diffrac-
tion limit that holds true for microscopes in general[1]:

d =
λ

2 nsin(α)
, (1.1)

where λ is the wavelength of the particle that is used for imaging, n is the refractive
index of the surrounding medium and α is the microscope objective’s opening an-
gle. This diffraction limit puts the maximum achievable resolution at λ

2 . For visible
light with wavelengths from 200-800 nm, the limit is therefore between 100-400nm,
enabling imaging of a cell’s inner workings up to the organelle level. In the late
20th century, the STED method[85] found a way to circumvent the diffraction limit,
reaching resolutions of around 20 Å with visible light.

In the advent of quantum mechanics and the discovery of the wave-particle duality,
Louis De Broglie’s research in 1924 found that a wavelength can be assigned to every
particle[43]:

λ =
h̄

mv
, (1.2)

where h̄ is the Planck Constant, m the mass and v the velocity. This implicated that
a higher resolution could be achieved in a microscope utilizing heavy particles with
high velocity that would therefore have a very small wavelength. A prime candidate
for this was the electron.
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Shortly after an electromagnetic lens capable of focussing electrons was invented by
Max Knoll, Ernst Ruska and him built the first electron microscope in 1931. First
only showcasing a magnification factor of 31, the improved prototype two years
later already surpassed the resolution limit of visible light. While a lot of technical
advances have since been made, the main architecture of a transmission electron mi-
croscope is still comprised of an electron source, condensor lenses, a sample holder,
an objective lens, projector lenses and a camera that records an image. Figure 1.3
shows the architecture of a modern TEM as used in the Department of Structural
Dynamics.

The electron source used in high-end electron microscopes is a Schottky field emis-
sion gun (FEG) that produces a very coherent beam. In it, a tungsten crystal coated
with zirconium dioxide is heated to 3000 ◦C , thus emitting electrons. Using an ac-
celeration voltage of usually 300kV, the electrons are accelerated in an electrostatic
field and are then emitted into the vacuum. Taking into account relativistic effects,
the resulting wavelength of the electrons can be approximated as[12]

λ =
12.3√

φ + 9.78 · 10−7φ2
, (1.3)

where φ is the applied electric field. For 300 kV, the electron wavelength is thus de-
termined as 1.96 pm. The maximum reachable resolution in modern microscopes
could thus theoretically be below the 1 Å level, which leads to the conclusion that
the technique is not diffraction limited.

The electron beam then passes through a system of lenses. These are matterless
magnetic fields, which limits the achievable shapes and the achievable resolution
due to various different aberrations that result in image blurring:

1. 2-fold Astigmatism occurs when perpendicular propagating waves hitting a
lens have different focal lengths.

2. Spherical aberration, also called Cs, occurs in spherical lenses that focus waves
arriving closer to the optical axis differently than waves with more distance to
the optical axis.

3. Comatic aberration, also called coma, describes a resulting cone of rays in
the image plane that passed through an off-axis specimen point[144]. Off-axis
alignments of the electron beam increase the comatic abberation further.

There are several ways to minimize these aberrations. Astigmatism and coma can
be minimized through coma-free alignment [206]. In two of the four available mi-
croscopes in the department, a Cs corrector is used[62], which all but eliminates
spherical aberration through introduction of a symmetric hexapole doublet into the
electron optics.

The first lens system in a TEM are the condenser lenses, consisting of a variable
amount of lenses and apertures. Here, the illumination of the specimen is controlled
through adjustment of beam size and therefore the exposure electron dosage.

The specimen, on a carbon grid as described in the previous section, is positioned in
a holder, called the compustage, which is inserted between the two objective lenses.
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FIGURE 1.3: Simplified architecture of a modern electron Microscope.
Shown in yellow is the electron beam. The number of condenser and
intermediate lenses can vary between microscopes, also an additional

condenser aperture and other optional parts can be used.

Through the compustage, the grid can be moved and tilted to illuminate specific ar-
eas. The incoming electrons interact with the specimen in different ways, which is
described in detail in the following section.

After passing through the sample as a parallel beam, the electrons are refocussed in
the intermediate lens system. The projector lens then magnifies the image.

On the removable fluorescent screen, the images can be viewed in real time. When a
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digital image is to be recorded, the screen is removed and the electrons are recorded
on a camera. In the past, charge coupled device (CCD) cameras that are based on the
inner photo effect were the instrument of choice. In recent years, the development of
direct electron detectors with vastly improved detective quantum efficiency (DQE)
and modulation transfer function (MTF) [150] such as the Gatan K2 and the FEI
Falcon II + Falcon III improved the obtainable image quality majorly. Each of those
detectors is based on backthinned CMOS sensors, but shows different DQE values
at different spatial frequencies compared to one another[120].

1.2.3 Image Formation

FIGURE 1.4: Possible electron interactions with a thin specimen.

Image formation in TEM is based on the elastic interaction of electrons with the nu-
cleus of the specimen. All possible interactions [144] are shown in figure 1.4.

An electron penetrating an atom interacts with the positively charged nucleus through
the Coulomb Force:

F =
1

4πε0

e2
0 · Z
r2 , (1.4)

where ε0 = 8.854 · 10−12 F
m is the vacuum permittivity, e = 1.602 · 10−19C is the el-

ementary charge constant, r is the distance between electron and nucleus and Z is
the number of protons in the nucleus. The higher the Couloumb force, the higher
the deflection. This leads to negative contrast in the image. Due to the big mass
difference between nucleus and an incident electron, no energy is transferred. This
phenomenon is called elastic scattering. Heavy atoms containing more protons re-
sult in more amplitude contrast, but as biological samples mostly consist of light
elements, these strong scatter effects occur very rarely. More likely, the electron is
only lightly scattered by the Coulomb Force.

Inelastic scattering on the other hand occurs through interaction of an incident elec-
tron with a shell electron of the sample. Here, energy is deposited in the specimen,
leading to radiation damage involving electron displacement, bond damage, ion-
ization and other effects all contributing to noise in the image. Inelastic scattering
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effects are the reason for the necessary low electron dosage. Energy filters and objec-
tive apertures can filter out the high angle inelastic scattering, but due to occurring
up to three times more frequently than elastic scattering[86] and providing low res-
olution information about the sample, these electrons are usually tolerated and give
rise to amplitude contrast in the image, although this only contributes around 10-
15% to the overall image contrast.

The aforementioned elastic scattering can be used to create phase contrast. The in-
coming electron wave traveling in z direction before scattering is defined as

ψ0 = eikz . (1.5)

A phase shift φ(p) is induced through interactions with the sample:

φ(p) =
∫

C(p, z)dz . (1.6)

Here, p is a 2D column vector describing interaction positions and C(p, z) is the 3D
Coulomb potential distribution of the specimen with thickness z [59]. The outgoing
wave is therefore

ψp = ψ0 · eiφ(p) . (1.7)

Equation 1.7 can be rewritten through use of the Taylor series ex = ∑∞
n=0

xn

n! into

ψp = ψ0 ·
∞

∑
n=0

i · φ(p)n

n!
, (1.8)

ψp = ψ0 ·
(

1 + i · φ(p)− 1
2

φ(p)2 +
1
6

i · φ(p)3 − ...
)

.

For thin biological samples, the weak-phase approximation φ(p) << 1 is assumed
to hold true, enabling cutting off the expansion after the second term. It should be
noted that in this form, the resulting wave is the sum of the scattered and the un-
scattered wave, with the scattered wave being π

2 out of phase with the incoming one
[59]. Then, the intensity distribution Ip of the outgoing wave can be approximated
as

Ip = ψp · ψ∗p ≈ 1 + φ(p)2 , (1.9)

where ψ∗p is the complex conjugate of the outgoing wave. Using the weak phase ap-
proximation again, it can be deduced that the amplitude change through the phase
shift is negligible and no image contrast is generated. Thus, an additional phase shift
of π

2 needs to be introduced, resulting in a linear dependence of the intensity on the
phase shift:

ψp ≈ ψ0 · (1− φ(p)) , (1.10)
Ip = ψp · ψ∗p ≈ 1− 2φ(p) .

While there has been a lot of research concerning phase plates for TEM, e.g. the
Volta phase plate [42] with some recent success for small proteins [106], their han-
dling currently requires a lot of manual input and cannot be automated apart from
the small amount of structures determined by it, so it remains to be seen whether
phase plates can be applied to normal cryo-EM workflows. Therefore, commonly
the more traditional method of generating the additional phase shift through an ap-
plied underfocus is used.
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Through the previously described imaging imperfections, the actually observed wave
ψo is generated through a convolution (see 2.1.3.2) of ψp with a point spread function
(PSF), resulting in a smearing out of a scattering point source:

ψo = ψp ∗ PSF . (1.11)

Taking advantage of convolutions being multiplications of Fourier Transforms (see
2.1.3.2), this can be written as

F(ψo) = F(ψp) · PhCTF · E , (1.12)

where the transfer function PhCTF is defined as the Fourier transform of the PSF
that is dependent on spatial frequency and E is an envelope decay function to ac-
count for signal loss at high frequencies[50].

For approximating the PhCTF, the Scherzer formula for wave aberrations W(	) can
be used:

W(	) = π

2λ

(
Cs 	4 −24d(	)λ	2

)
, (1.13)

where 	 is the scattering angle, Cs is the spherical aberration constant , λ the elec-
tron wavelength and 4d(	) the defocus in the direction of the varying scattering
angle 	. The effect of amplitude contrast needs to be taken into account, which is
expressed as the amplitude contrast ratio A that is commonly assumed to be 0.07.
The CTF at a spatial frequency~s is defined as[12]:

CTF(~s) = −
√

1− A2 · sin(γ(~s))− A · cos(~s) , (1.14)

where the phase difference γ(~s) is given by

γ(~s) = γ(s,	) = π

2λ

(
Csλ

2 	4 −24d(	)λ	2
)

, (1.15)

where s is the modulus |~s|. The defocus4d(	) can be calculated through[208]:

4d(	) = 4ducos2(	−	ast) +4dvsin2(	−	ast) . (1.16)

Here, 4du and 4dv represent the maximum and minimum defocus and 	ast is the
fixed anti-clockwise angle from the x-axis to4du. Examples for 1D CTF functions at
different defoci are shown in figure 1.5.

The envelope function E accounts for less signal at high spatial frequencies due to
beam incoherence, MTF of the imaging system, optical abberrations of the micro-
scope and other contributions [50]. It is commonly expressed as

E(	) = e−2B	2
, (1.17)

where B is an experimental factor to account for the specific decay.
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FIGURE 1.5: 1D CTF functions at different defoci. Shown are two sim-
ulated CTF curves at two different underfocus values plotted against
spatial frequency. The simulations used an acceleration voltage of
300kV, a spherical abberation of 0.01 and a pixel size of 1.16. Damp-

ening and possible astigmatism were neglected in the simulation.

1.2.4 Sample Preparation

As the imaging process is performed in vacuum conditions, specimen preparation
methods are tasked with stabilizing the samples that are initially in a buffer solu-
tion and allow imaging despite the hefty radiation damage a biological sample ex-
periences. For this, several approaches were developed over the years. Negative
staining increases the amplitude contrast but only allows access to low resolution
information, while cryo preparation relies on phase contrast information. Figure 1.6
shows the contrast differences of these preparation methods.

The preparative methods assume the sample of interest to be highly pure and to
consist of stable complexes in a suitable concentration. Methods to reach these pre-
requisites are detailed in section 1.3. Both methods use a mostly copper carrier grid
with a diameter of 3 mm and a mesh size of 200-300 µm.

1.2.4.1 Negative Staining Preparation

Negative staining was introduced in 1959 and has since been used to produce high
contrast images. First, a continuous carbon film is applied on to the carrier grid.
The liquid sample solution is then added to the grid, mixed with a 1-2% uranyl for-
mate (or other heavy metal salt) suspension. The sample adheres to the grid through
electrostatic interactions. Blotting then removes excess liquid and the grid can be in-
serted into the microscope[59].

The stain adheres to the outside of the protein complexes, rarely entering crevices.
The heavy atoms from the stain interact with electrons more than the protein com-
plexes do. Therefore the amplitude contrast is increased, leading to information
about the outer shape of the molecules, e.g. low resolution information. This can be
used to generate starting structures and to screen samples for biochemical quality,
concentration and further parameters.
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FIGURE 1.6: Difference between negative stain and cryo preparation.
On the left a micrograph after cryo preparation and on the right a
micrograph after negative stain preparation is shown. By convention,
cryo micrographs as shown in this picture are contrast inverted before
further processing, resulting in particles as seen on the right. The

protein complex in both pictures is the 20S Proteasome.

There are important drawbacks to consider, though. Large complexes being incom-
pletely stained in addition to stain thickness leads to high particle appearance vari-
ability and only parts of the shape correctly contributing to the imaged projection.
This can partially be overcome with a double-carbon layer approach [59], which has
the disadvantage of potentially increasing the shape distortion and flattening[58]
that is introduced by the air drying and staining in general[104], leading to varia-
tions in the diameter of reconstructed structures.

Different staining agents and methods have been tested out[72] and recently, cryo-
negative staining[2] has gained some popularity, but is hindered by the resolution
limitation of around 10 Å.

1.2.4.2 Cryo Preparation

Non-staining sample preparation does not introduce any contrast enhancements.
Multiple methods were developed for the purpose of keeping the sample in a state
close to its native aqueous environment and reducing radiation damage, i.e. embed-
ment in tannic acid[3], glucose[186] or vitrous ice[183]. The latter was found to be
the preferable method due to quality of the reconstructed structures.

On a carrier grid, a very thin carbon film with µm-sized holes is added. The sample
solution is applied onto the grid as a thin film and vitrified by plunging the grid into
liquid ethane. The vitrification results in amorphous ice due to the suppression of
ice crystal growth through the speed of the freezing process. Nevertheless, the ice
layer is not guaranteed to be of uniform thickness.

This preparation method has the big advantage of reduced specimen damage at low
temperatures[36], apart from not relying on external contrast agents. Thus, despite
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the low contrast of cryo images and noise introduced through the amorphous ice
layer, resolutions at atomic detail can be achieved.

1.2.5 TEM Images

A grid contains foil holes from which an amount of images, depending on the ap-
plied magnification, can be taken. These images recorded on a modern electron
microscope are very large. The most commonly used cameras, Falcon (II/III) and
Gatan K2, differ in the resulting image size. The Falcon II writes out 4096 pixel x
4096 pixel images. The K2 camera can be operated in two different modes, counting
mode resulting in 3838 pixel x 3710 pixel images, and the integration mode writing
out 7676 pixel x 7420 pixel images. These modes are available in the Falcon III cam-
era as well, but in this case do not change the image size. These images with overall
pixel counts of over 16 million each contain gray scale values in the floating point
range after gain correction. Every detector has a pixel size sp, which is defined as the
physical distance information that is contained in one pixel, commonly expressed in

Å
pixel .

1.2.5.1 Pixel Defects

In most cameras, hot and cold pixels exist. These are pixels where either an un-
realistic high or low intensity is found and that represent outliers that can disturb
statistical approaches to working with the image. For invariable defective pixel po-
sitions, trivial corrections can be applied. As described in the literature [210], in
modern cameras pixel defects can result in a cluster of pixels with distorted intensity
distributions and not only vary in location, but also grow in numbers with longer
exposure times. These pixel defects can be detected and corrected through statistical
approaches [210].

1.2.5.2 Image Contaminations and Defects

Apart from defective pixels, images can have several defects that make them unde-
sired for image processing. These can be described as several classes of defects based
on their origin:

1. Contrast deficiencies: Here, an image doesn’t have enough contrast to yield
high-resolution information about the sample. This can commonly be detected
in real space as well as in the power spectrum and can have various reasons,
including imaging problems or a suboptimal vitrous ice layer.

2. Sample defects: When the sample is unstable, the complex can visibly fall
apart. On the other end of the spectrum, sample aggregations also render the
image unwanted.

3. Foil and grid defects: When either the foil has creases or parts of the foil hole
perimeter are imaged, edges can be seen in the image. Also a defect called
leopard skin has unclear origins, but is assumed to be due to foil defects.

4. Vitrous ice defects: When the ice layer is too thin, so called dry spots can be
seen on the micrograph. Also, ice crystals can be encountered that result in
characteristic signals in Fourier space.
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5. Artefacts: In negative stain preparation, artefacts are usually due to the stain
itself. In cryo micrographs, artefacts can be due to foil defects or the vitrous ice
layer.

6. Astigmatism: In case of strong astigmatism as described by the defocus values
4du, 4dv and the astigmatism angle 	ast in a micrograph’s power spectrum,
resulting phase errors can turn a micrograph unusable.

Figure 1.7 shows examples of some of the described contaminations of recorded im-
ages.

FIGURE 1.7: Classes of micrograph contaminations and defects.
Shown are micrographs containing a Spliceosomal complex each
showcasing one or more of the commonly encountered image defi-
ciencies. For crystalline ice, the micrograph’s power spectrum is also
shown due to the strong ice ring resulting from crystalline ice in the

micrograph.

1.2.6 Computational Image Processing

In image processing, the low SNR of every extracted particle from a preprocessed
micrograph is slowly combined with similar images to increase the signal and to ul-
timately be able to reconstruct 3D information of the particle of interest. This process
is performed in an iterative and self-referential manner. For the purpose of illustrat-
ing the processing steps, a dataset of the 20S Proteasome that was recorded on Titan
Krios with a Gatan K2 camera is used that was kindly provided to the author by Karl
Bertram.

1.2.6.1 Frame Alignment

Despite vitrification of the samples, the electron beam of a TEM induces changes
in the sample that cause the molecules to slightly change their position on the grid
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due to charging effects[24], which limits the achievable resolution. Also, the applied
electron dose influences the SNR in a spatial frequency dependent manner, which
can be taken into account through dose weighting[11, 68].

Modern direct electron detector cameras can detect up to 400 frames per second.
To counteract the blurring caused by the induced motions, these frames are then
aligned on one another[28] to produce a frame sum that can be used for the sub-
sequent CTF correction. For particle picking and beyond, a dose-weighted sum is
calculated.

A popular software for frame alignment is MotionCorr2[210]. In the underlying al-
gorithm, systematic motions that concern the whole frame are first corrected through
Fourier space alignment of the whole frames. Afterwards, localized particle motions
are corrected. This is done through a model of the local motions as projections of 3D
motions that can be described with time-dependent 2D polynomial functions. For
this, the frame stack is divided into a set of patches that are aligned on the patch
sum, the determined shifts are fitted as part of a 3D motion and every pixel is sub-
sequently interpolated based on the fit results.

1.2.6.2 CTF Correction

The sinusoid shape of the CTF with oscillating phase contrast between positive and
negative results in no phase information being transferred at frequencies where zero
crossings take place. This information is not accessible unless multiple defocus val-
ues with shifted zero crossings are used to record a dataset to later average the im-
ages. Therefore , the CTF parameters need to be determined for every micrograph to
be able to flip the negative phase information later on. This is usually done through
comparing the power spectra of the micrographs to ones simulated with known pa-
rameters. Due to foil defects, the CTF parameters on different areas of a micrograph
are not necessarily equal within certain limits. The resulting parameter inaccuracy
can be prevented by performing CTF parameter determination at a later stage in im-
age processing by classifying and fitting the power spectra of particles to increase
the SNR for accurate results[152].

For micrograph 2D CTF fitting, several algorithms and softwares exist that show-
case different qualities in terms of accuracy and speed, as recently studied in the
CTF challenge[118]. Two of the most widely used softwares are CTFFIND4[147] and
GCTF[208], the latter employing a new approach called equiphase averaging(EPA)
which takes astigmatism into account for rotational averaging. GCTF also calculates
a resolution limit parameter that specifies until which spatial frequency CTF signal
could be detected. This can be used to judge a micrographs usability.

1.2.6.3 Particle Picking

After having obtained an aligned frame sum and having determined the CTF pa-
rameters, the transition from working with micrographs to working with particle
stacks can be performed. The goal of this step is to extract as many good particles as
possible that represent all projection angles found in the dataset. Furthermore, the
extracted particles should be centered fairly well, as this decreases the computational
complexity of successive processing steps. For many years, this task was performed
manually by some scientists. Due to the ever increasing need for bigger datasets
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that lead to higher resolution structures, manual particle picking has become an
overbearing task. Therefore, softwares that operate in a semi-automatic or fully au-
tomatic manner are commonly employed, using template matching algorithms[207,
209] based on supplying a reference structure of the particles to be picked, machine
learning[197, 203] or image statistics approaches as the CowPicker[26] (see 2.6.3) that
was developed in the Department of Structural Dynamics.

Every approach has its advantages and disadvantages concerning computational
speed, false negative and false positive picking, usability considerations, robustness
to image quality variations and bias. Figure 1.8 shows a sample micrograph with
exemplary particle locations.

FIGURE 1.8: Example of particle picking. A non-inverted cryo micro-
graph containing 20S Proteasomes is shown with circled exemplary

particle locations and their centers.

1.2.6.4 Preprocessing

After obtaining the particle stack, the first step is usually to normalize the images
(see 2.1.1) and to apply a wide circular mask on them to simplify rotational opera-
tions during later processing steps like alignment. Furthermore, a band pass filter
(see 2.1.5.3) is used to increase the SNR by removing low frequency gradients and
high-frequency noise. The effects of the preprocessing steps are shown in figure 1.9.

1.2.6.5 Alignment

As described previously, the 3D Volume is imaged on a TEM as 2D projections that
are based on the random orientation of the sample molecules on the grid. A math-
ematical description of this orientation consists of two components, translation and
rotation. The former has three free parameters- the x, y, z components. Assuming the
samples to be thin and monolayered, the z component, the defocus applied during
recording, is commonly neglected as a free parameter for the alignment step. The
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FIGURE 1.9: Effect of preprocessing on extracted particles. The par-
ticles were normalized, masked using a relative circle radius of 0.99
and then band pass filtered with an upper value of 0.7 and a lower

value of 0.05

orientation can be described with three free parameters, the Euler Angles[91] α, β, γ.
During alignment, only the in-plane rotation α is considered a free parameter.

2D alignment aims to identify similar projections of the input image set S by com-
parison operations. Due do the low SNR of the images and computational cost
that would be involved, comparing all images to one another would be subopti-
mal. Therefore, all images from S are compared to a smaller set of images R with a
higher SNR, called the references, and the described free parameters are optimized.
For this, the transformation matrix M is used:

cos(α) −sin(α) x
sin(α) cos(α) y

0 0 1


The goal, if using the Euclidean distance as the distance metric, is to find the refer-
ence ri for the imagesj that satisfies the minimization problem

ri = minr∈R ∑
p∈sj

|sj(T(p))− r(p)| , (1.18)

where p are the pixel values of the input image sj and the reference r is it compared
to. Both images need to have the same dimensions. Alternatively, the Cross Corre-
lation Coefficient (CCC) can be used (see 2.1.3.3) as the distance metric.

Computationally, this is a costly operation. Therefore, apart from algorithms em-
ploying iterative exhaustive search in real space or after transformation to polar co-
ordinates[100], techniques to reduce the search space [153] were developed that em-
ploy invariant transformations or separate free parameter optimization. Recently,
a maximum likelihood approach became popular where an image is aligned based
on a weighted average of its determined orientation probabilities[167]. Figure 1.10
illustrates the general alignment procedure.
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FIGURE 1.10: Illustration of image alignment. The input images are
compared to the provided references, matched to the best one and
have their free parameters in-plane rotation and 2D shifts optimized

and applied

A big challenge for alignment is to find a suitable set of references. As demonstrated
in the literature, model bias is an effect that cannot be understated due to the preva-
lent noise signal that is readily aligned given the degrees of freedom. If a previously
determined structural model is available, its projections are commonly used as ref-
erences. Apart from the orientation effect, alignment on multiple references could
also be used for a first sorting of the input images, although the effect of model bias
reduces the interpretability of the sorting results, as no unknown shared information
can be contained in images matched to references.

In the beginning of image processing, so called reference-free alignment can be used,
where all images from S are summed up and then rotationally averaged in one de-
gree steps. Aligning to this reference has the effect of centering the input images,
pre-optimizing x and y. This is illustrated in figure 1.11.
Afterwards, the centered images can be classified as described in the next section to
extract similar views with a higher SNR to use as references for alignment. Through
this procedure, the references in figure 1.10 were created.
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FIGURE 1.11: Illustration of reference-free alignment. Shown are the
input images and the rotational average of the image’s sum created
from 10000 images from the dataset that is used as a reference for
centering the images correctly. Due to the similarity of the top view
of the 20S Proteasome to the rotational average, the centering works

better for these views than for the side views.

1.2.6.6 Classification

Classification procedures aim to separate the input image set into a usually prede-
fined number of classes that in an ideal case represent different projection angles
of the underlying 3D structure. Afterwards, the images belonging to a class are
summed up to create class sums with a higher SNR. In this step, external input like
in alignment that leads to bias is avoided in favor of an approach called Multivariate
Statistical Analysis(MSA) , using the image pixel information as its basis[22]. Due to
the large amount of images and the large amount of pixels contained, a dimension
reduction is employed due to the otherwise very high computational costs. As the
best solution for this, the so-called Principal Component Analysis (PCA) was estab-
lished in the field[128].

In the PCA, a set of linearly uncorrelated variables, called the principal components,
is determined from a set of possibly correlated variables through an orthogonal
transformation[127]. The transformation is defined as finding a new coordinate axis
in the n-dimensional space for every principal component that describes the biggest
variance in the dataset with the restriction that every principal component’s axis
(apart from the first ones) is required to be orthogonal to the previous ones. The
data can then be described through a linear combination of those principal compo-
nents that together account for the data variability.

Mathematically, an input image of dimensions n x n is treated as n2-dimensional
vectors in hyperspace that contain the image’s pixel values. The data set of N input
images each containing n x n = M pixels can be described with a matrix X where
every row represents the pixel values of an image:
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FIGURE 1.12: Example of Eigenimages. Shown are the first 24 Eigen-
images calculated from the sample data set.



x11 x11 ... x1M
x21 x22 ... x2M

. . .

. . .

. . .
xN1 xN2 ... xNM


The covariance matrix D of X can then be computed as

D = (X− X)T(X− X) , (1.19)

where X is the matrix consisting of the average of the input images N in each row.
The PCA can be formulated as the Eigenvector-Eigenvalue problem

D~u = λ~u , (1.20)

where ~u are the eigenvectors that are the principal components and λ is an Eigen-
value. Solutions to this equation can be found by diagonalizing D, leading to at most
p = min(N, M) solutions ~u1,~u2, ...,~up. These basis vectors that form the Eigenspace
have an associated set of λ values. Thus, every image from the dataset can be de-
scribed as

xi = ai1~u1 + ai2~u2 + ... + aip~up , (1.21)

where a1, a2, ..., ap are the scalar linear factors. Due to the lower order Eigenvec-
tors describing the biggest variances in the dataset, not all mathematically possible
Eigenvectors are used, as only the undesired noise information is described through
the higher order Eigenvectors.

Eigenvectors hold the same amount of pixels as the input images and can thus be
visualized in 2D, called Eigenimages, as shown in figure 1.12. Visual examination
is commonly used to select the first k Eigenvectors that contain useful information.
Thus, the PCA results in a massive data reduction of the dataset to k Eigenimages
and k · N scalar Eigenvalues. The compressed data can then be classified.
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The classification problem consists of splitting the input images into subsets of simi-
lar images in such a way that the inter-class similarities are minimal while the intra-
class similarities are maximal. This problem is NP-complete, so no algorithm that
can find a global solution to the requirements in polynomial time exists. Thus, fast
and approximative algorithms are commonly used that usually find passable solu-
tions, i.e. k-means clustering[44], hierarchical clustering and hybrid methods[188].

K-means is a non-deterministic clustering algorithm that is based on random selec-
tion of k images that serve as class centers. The value k is chosen by the user. Then,
based on a distance criterion that is usually the euclidean distance, all other images
are assigned to their closest seed. The center of these classes is then calculated from
the images that were assigned to it. Afterwards, the assignment is repeated with the
new centers. The last two steps are iterated until the class center position converges.

Hierarchical clustering is a deterministic algorithm that splits the input data set into
a user defined amount of classes, starting from either one class that contains all im-
ages or from each image representing a single class. In the latter case, in every it-
eration until the desired class amount is reached, the two classes with the smallest
distance are merged while minimizing the intra-class variance[198]. Here, the ad-
vantage lies in being able to isolate outlier images. In the other approach, the big
class is successively split up through the same criteria until the desired number of
classes is reached. This results in a more even class size distribution. Another option
for classification is the computationally expensive maximum likelihood classifica-
tion[161] that doesn’t involve data reduction but yields good results.

The obtained class sums, the averages of all images that were grouped together, have
a higher SNR than the input images and can be used as references for an alignment.
Figure 1.13 shows an example of calculated class sums. These steps are usually iter-
ated with less and less images per class until a stable solution is reached. Usually, not
all class averages will represent unique views of the 3D structure, so a user selection
is performed where undesired classes are discarded. When the results converge, the
projection angles of the selected class averages can be determined.

1.2.6.7 Angular Assignment

In order to reconstruct a 3D volume, the projection angles of every class sum need
to be determined. The in-plane rotation α is fixed through the alignment process,
therefore only the two remaining angles β and γ need to be assigned.

If no 3D information in form of a previously determined structure is available, a
method called angular reconstitution[189] can be used. Using the Fourier Slice The-
orem[63], the common lines method[41] is based on the assumption that 2D projec-
tions of a 3D volume share at least one common section in Fourier space (see 2.1.3).
With at least 3 projections, angular relationships can be determined. As the com-
mon line in Fourier space represents a 1D projection of the original 2D projection
after being inverse Fourier transformed, this property can be used to determine the
2D projection angles in real space. In the common lines approach, this is realized
through Radon transforms, or sinograms, where the input image is rotated in one
degree steps and summed up along one axis until a full rotation is reached, generat-
ing an image with the x dimension of the original image and a height of 360 pixel. All
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FIGURE 1.13: Classification and class sums. On the left, the class
sums resulting from the images on the right are shown. The class
member images were coarsed for better visibility, the actual dimen-

sions of class members and class sums were the same.

sinograms can then be cross-correlated (see 2.1.3.3) and the angles towards one an-
other can be assigned based on the correlation peaks. Initially limited to symmetric
complexes[47] due to the larger amount of correlation peaks overcoming the noise
limitations, further algorithmic improvements allowed the method to routinely be
used for asymmetric structures[174, 173]. Recently, further improvements were sug-
gested that include a consistency check of found common lines[168].

If a validated 3D volume is available, less effort has to be put into angular assign-
ment. Generated equidistant projections of the volume can be used as references for
an alignment. Thus, every image gets then assigned to a reference of known Euler
angles. This method is usually employed in later stages of image processing in iter-
ative steps. In this step, a good angular coverage is desired. An example of such a
coverage is shown in figure 1.14.

1.2.6.8 3D Reconstruction

The general concept behind reconstructing a 3D volume from its 2D projections is
Radon’s theorem[142, 141] which states that in an n-dimensional Euclidean space,
it is possible to express a real function from that space by the integrals over all hy-
perplanes with (n− 1) dimensions. Therefore, given sufficient 2D projections with
known Euler angles, the original 3D volume can be retrieved unambiguously. The
available algorithms for this step can be divided into two categories - backprojection
methods and algebraic methods[129].

Backprojection consists of smearing out every projection into 3D space along its nor-
mal vector. In real space, every voxel’s (the 3D equivalent of a pixel) gray value is



1.2. Basics of Single particle Cryo-EM 23

FIGURE 1.14: Optimal Euler angle distribution. Shown are possi-
ble class sums after angular reconstitution at the determined Euler
angles. This example shows an evenly distributed angular coverage

which represents the optimum result.

the average of all the projection’s pixel values whose normal vector intersect with
the voxel. This procedure involves interpolation and introduces blurriness to the
volume. Thus, a filter is applied afterwards that smoothes the result. Commonly a
ramp filter is used, but effects i.e. noise level, angular coverage, volume size should
be taken into account when deciding on a filter[188].

This approach can also be used in Fourier space, again making use of the Fourier
slice theorem[63]. Here, the 3D Fourier transform is resampled from the Fourier
transforms of the projection images, with the real space structure being obtained af-
ter an inverse Fourier transform. This involves non-trivial interpolation of complex
numbers[134].

While backprojection methods are very fast to calculate, algebraic reconstruction
approaches are much slower. Due to their sophisticated approaches that include
weighting, constraints and statistical considerations[129], their results can exceed
backprojection techniques’, though. For M available projections with N x N pixels
each, the 3D volume to be reconstructed consists of N x N x N unknown voxels.
For every pixel of every projection, a linear equation can then be constructed that
expresses the weighted sum of every voxel that intersects with the normal vector of
the pixel. This leads to M x N x N equations that need to be solved in dependency of
one another, which is at this point computationally impossible to solve sufficiently
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fast. Additionally, the presence of noise complicates the posed problem. Therefore,
several algorithms for iterative approximation have been developed: The algebraic
reconstruction technique(ART)[67], the simultaneous iterative reconstruction tech-
nique(SIRT)[65] and the extension of ART, the simultaneous algebraic reconstruction
technique(SART)[6]. These algorithms all iteratively minimize the error between in-
put projections and projections from the calculated 3D volume, omitting direct solv-
ing of the equation system.

1.2.6.9 3D Refinement

The first 3D volume obtained through the processing steps described in the previ-
ous sections yields a starting structure with comparably low resolution that serves
as a rough estimate of the free parameters. Through 3D refinement, the images of
the dataset are iteratively aligned to projections with smaller angular spacing in
a projection matching approach (see 1.2.6.5). In every iteration, projections from
the current structure are generated, the images are aligned to these projections and
summed up according to their assignment, with a new structure being reconstructed
afterwards. Mostly, the RELION algorithm[157] is used that is based on maximum-
likelihood considerations together with a Bayesian approach where the input images
are weighted according to the probabilities assigned to their orientation parameters.

1.2.6.10 Resolution Determination

To be able to interpret the structure(s) at the end of image processing, the resolution
of the 3D volume needs to be determined. Figure 1.16 shows the difference in deter-
mined maps at different resolutions. As different levels of structural details are only
visible at specific resolutions as shown in figure 1.15, one could approximate the res-
olution through this visibility, but this approach only works for resolutions surpass-
ing 10 Å and is too inexact to be used in practice. Also, the resolution could be de-
termined in a comparative manner through known structures determined through
other methods, but apart from the introduced bias, this would rely too much on the
structure availability.

A bias-free mathematical solution to resolution assessment that uses the SNR influ-
ence on resolution is the Fourier shell correlation(FSC)[71], which is the 3D equiva-
lent of the Fourier ring correlation(FRC)[80]. Here, the dataset is split in half and the
normalized cross-correlation of the Fourier shells of the two independently refined
3D reconstructions is calculated. Fourier shells contain the signal at a specific ra-
dius corresponding to a spatial frequency, which is the independent variable of the
equation:

FSC(r) =
∑ri∈r F1(ri) · F∗2 (ri)√

∑ri∈r |F1(ri)|2 ·∑ri∈r |F2(ri)|2
. (1.22)

Here, F1(ri) is the 3D Fourier Transform of the first volume and F∗2 (ri) the complex
conjugate of the second volume at the radius ri. Due to the abundance of low fre-
quency signal in a structure, the correlation is very high at low spatial frequencies
and drops off when going towards higher resolution. Through the FSC, the spectral
SNR can be determined[131] :

SSNR(ri) =
FSC(ri)

1− FSC(ri)
. (1.23)



1.2. Basics of Single particle Cryo-EM 25

FIGURE 1.15: Comparison of a structure at different resolutions.
Shown in A is a refined structure of the T20S Proteasome at 2.5Å.
Structures in B, C and D were lowpass filtered to the specified resolu-

tions. Clearly visible is the difference in recognizable detail.

The so called gold standard refinement[87] requires the dataset to be split in half at
the very beginning of data processing, as otherwise no independence of the struc-
tures can be assumed and overfitting of noise would lead to falsification of results[159].

To judge the resolution of a structure from the FSC curve fall off, a threshold needs
to be defined that signifies the last spatial frequency that still contains measurable
signal above the noise level. The FSC threshold selection has sparked lively debate
in the community[83, 171], with multiple values being used. 0.5 for example was
chosen due to the SSNR dipping below 1 after this point[130]. The commonly used
0.143 threshold was developed in similarity to the figure-of-merit in crystallography
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FIGURE 1.16: Detail comparison of a structure at different resolu-
tions. Shown in A is a refined structure of the T20S Proteasome at
2.5Å. Structures in B, C and D were low pass filtered to the speci-
fied resolutions. Examples of recognizable secondary structures are
circled. Clearly visible is the difference in recognizable details. At
30Å, only the general shape of the Proteasome can be seen, at 10 Å
finer details emerge, at 6Å the first α-helices are visible and at 2.5Å

α-helices, β-sheets and amino acid side chains can be seen.

and signifies the correlation between a perfect reference and an experimentally de-
termined map[148].

The global FSC is based on the assumption of a homogeneous structure. In most
cases, this doesn’t hold true, with the dynamic regions showcasing lower resolution.
Therefore, the validity of describing a 3D volume with a singular resolution parame-
ter can be challenged. To get around this problem, a local FSC approach can be used.
Here, the FSC is calculated by a moving kernel of a user specified size, with the
central voxel of the kernel being assigned the calculated resolution value[90]. Prob-
lematic about this approach are the anticorrelated effects of averaging and sample
size that are both tied to the kernel size, which influences results majorly. Recently,
an alternative was proposed[109] where a local resolution map is calculated without
data set splitting by fitting sinusoid functions of different wavelength to points in
the structure and including corrections for false discovery rates. A comparison of
global and local FSC is shown in figure 1.17.
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FIGURE 1.17: Global FSC curve and local resolution map. On the left,
the gold standard FSC curve is shown with the 0.143 cutoff which
yields a 2.5 Å resolution for the structure. On the right, a local reso-
lution map determined with a kernel size of 13 is shown, with a lower

resolution cutoff at 2 Å.

Limited by the Nyquist frequency fN = 1
2sp

, where sp is the pixel size, the maximum

achievable resolution for any part of the structure is d = 1
fN

. Also, the angular
distance 4	 between n evenly angularly spaced class sums with diameter D used
for reconstruction limits the maximum resolution d [81]:

d = D sin2
(
4	

2

)
=

2D
n

. (1.24)

1.2.6.11 Accessing Conformational Information

While structural heterogeneity increases the difficulty of determining high resolu-
tion structures, it also holds essential information about the relationship between
structure and function of the macromolecular machine of interest. Accurately de-
termining structures in different conformational states is a subject of great research
interest.

If the heterogeneity is localized to specific regions of the protein complex, a local
resolution map as described in 1.2.6.10 can help identify those. A developed boot-
strapping approach [132, 133] where random subsets of the dataset are reconstructed
independently can additionally assist by enabling creation of a variance map of the
structure.

In case of non-localized heterogeneity, the image processing may fail to generate
even a stable starting structure. Here, random conical tilt (RCT) approaches com-
bined with 3D classification [154] can be employed. Alternatively, approaches based
on common line sorting[89] or probabilistic model building[49] can be used.

If a starting model can be generated, there are several approaches to generate refer-
ences based on it to split the dataset into different structures. Normal mode analysis
(NMA) can generate theoretical conformations on which the dataset can then be
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aligned. Also, maximum-likelihood approaches once again yield good results com-
bined with a supervised classification[160].

On the 2D level, there has been some success with sorting on the PCA level[48]. Re-
cently, a project from the Department of Structural Dynamics showed that a 3D PCA
analysis can be utilized to analyze the conformational landscape and its changes
upon inhibitor binding, as shown on the 26S Proteasome[74]. A comprehensive dis-
cussion of conformational analysis procedures can be found in [73].

1.2.6.12 Postprocessing

As mentioned in 1.2.3, the imaging process introduces a contrast fall-off, specially at
higher resolutions that can be approximated with an exponential decay. The image
processing results in another contrast loss through inaccurate determination of the
orientation parameters, which results in blurring out of finer details. These effects
can be combined into a global B factor that describes the contrast loss and reduces
the visible quality of the structure. The global B factor can be interpolated from mea-
sured low resolution structure factors that should not be majorly influenced by the
contrast loss. Applying a negative B factor to the spherically averaged structure fac-
tors can restore the contrast[79]. This factor can be determined through comparisons
of the experimental B-factor to the B-factor of perfect scattering curves acquired from
small angle X-ray scattering or from atomic maps determined through X-ray crys-
tallography[148]. Both of these should obviously be determined for the same pro-
tein complex. An example for the effects of this so-called sharpening procedure are
shown in figure 1.18. Alternatively, heuristic multiples of the measured experimen-
tal B-Factor can be used for restoration. As the background noise is also amplified,
the resulting structure is commonly low pass filtered to remove the unwanted signal.

The availability of reliable theoretical scattering curves and the spherical averaging
in this procedure limits its applicability in some use cases. With structural homo-
geneity in play, applying a singular B-factor is debatable. Recently, an approach
was developed that, while still relying on an available model, introduces windowed
contrast restoration that better accounts for local differences in the structure[97].

1.3 Sample Optimization in Structural Biology

As mentioned in section 1.2.4, a stable and pure sample is necessary to be able to
acquire high quality structural information, whether through X-ray crystallogra-
phy or cryo-EM. The first step in this endeavor is the cloning and expression sys-
tem. Through technical advances, large-scale expression and subsequent purifi-
cation of many recombinant multiproteins is now routinely possible[146], also in
a high-throughput manner[196]. Nevertheless, new and largely unknown protein
complexes are challenging to control biochemically due to conformational and com-
positional instability, aggregation and buffer incompatibility. To tackle this problem,
an automated approach based on differential scanning fluorimetry(DSF) to optimize
buffer conditions to increase stability called ProteoPlex[33] has recently been devel-
oped in the Department.

Recent successes with chromatography-free purification approaches[163, 74] indi-
cate improved protein yield and complex stability when avoiding tag-based purifi-
cations. Involved methods in these approaches include polyethylene glycol (PEG)
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FIGURE 1.18: Effects of sharpening on a refined structure. Shown is
an exemplary region of the refined T20S Structure in A and the the
same region after sharpening with a B-Factor of 60 in B. C shows an
overlay of both maps. In B and C, the visual improvement of high res-
olution information can be seen through better recognizable protein

backbones.

precipitations and density gradient centrifugation, which has also found use in prepa-
ration of membrane proteins in a method called GraDeR[77]. The most prominent
use of density gradient centrifugation is through the GraFix protocol[101, 172]. It
consists of zonal ultracentrifugation with a cross-linking reagent that leads to in-
tramolecular crosslinks and promotes complex stability.

1.3.1 Basics of Density Gradient Centrifugation

This technique, invented by Brakke in 1951[23], is based on the different sedimenta-
tion speeds of particles through a tube containing a gradient of an osmolyte under
application of a high centrifugal force in ultracentrifuges.

The technique can be divided into two main approaches. In isopycnic centrifuga-
tion, particles are separated based on their density and sediment to the position in
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a tube with the same density. Here, particle size affects the time until the equilib-
rium is reached. All the previously mentioned biochemical techniques in structural
biology use rate-zonal centrifugation, though. In it, a sample is loaded onto a pre-
formed, continuous gradient as a narrow zone with the particles sedimenting pri-
marily based on their mass and size. If centrifuged long enough, the particles will
eventually pellet.

As osmolytes for rate-zonal centrifugation in protein complex purification, com-
monly used chemicals are sucrose, glycerol and to a lesser extent trehalose, ara-
binose and CsCl. A continous gradient can be formed through different manual
approaches, some even involving Play-Doh[15], but commercially available solu-
tions are usually preferable due to reproducibility and speed considerations. In the
Department of Structural Dynamics, the Gradient Maker from Biocomp is used to
generate gradients, with a list of predefined density combinations at the bottom and
top of the tube being available for combinations of tube and osmolyte (see A.1,A.2).

Rate-zonal centrifugation uses almost exclusively swing-out rotors. In these rotors,
the tubes swing out so that they are orientated in a parallel manner to the centrifugal
force. A swing-out rotor is characterized by its tube volume, its maximum speed, its
acceleration and deceleration time and the minimum and maximum radius rmin and
rmax from the center of the centrifuge at which the contents of the tube are positioned.
After centrifugation at a specific temperature (for proteins usually 4◦C due to ag-
gregation considerations) and speed for a specific amount of time, the tube contents
are fractionated. This can be done in a top-to-bottom or in the more complicated
bottom-to-top manner. The protein contents per fraction can be analyzed on a SDS-
Gel or through other protein concentration determination protocols. A summary of
the method is shown in figure 1.19.

1.3.2 Theory of Rate-Zonal Separation

Particles of volume V and density ρp layered on top of a linear gradient experience
a centrifugal force and based on the Archimedes principle a force in the opposite
direction depending on the density ρm of the medium. The net force F can then be
expressed as

F = V(ρp − ρm)rω2 , (1.25)

where ω is the angular velocity of centrifugation in radians
second . For a spherical particle

with radius R moving with velocity v, Stoke’s law indicates the frictional force in the
opposite direction to be

S = 6πRηv , (1.26)

where η is the viscosity of the medium. Under the assumption that the compara-
tively light particles reach their terminal velocities instantly, the two forces acting on
it are the same, so the sedimentation velocity can be written as

v =
V

6πR
·
(ρp − ρm)

η
· rω2 . (1.27)

This shows the proportionality of v to the centrifugal acceleration. The proportion-
ality factor s for a specific medium is therefore

s =
V

6πR
·
(ρp − ρm)

η
. (1.28)
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Assuming size and shape of the particles to be medium composition independent,
the factors s1 and s2 corresponding to two media with densities (ρ1, ρ2 and viscosities
η1, η2 can be expressed as

s2 = s1
(ρp − ρ2)

(ρp − ρ1)
· η1

η2
. (1.29)

Based on this, s, the sedimentation coefficient, can be defined for a particle under
standard temperature T, usually 20 ◦C, in a medium M, commonly water, as sT,M or
s20,w. Taking this into account, the sedimentation velocity is therefore

v = s20,w
ρp − ρT,M

ρp − ρ20,w
· η20,w

ηT,M
· rω2 . (1.30)

From these equations, an integratable expression can be formulated:

s20,w

∫ t

0
ω2dt =

ρp − ρ20,w

η20,w

∫ rmax

rmin

ηT,M

ρp − ρT,M

dr
r

. (1.31)

As s20,w is usually very small for biological particles, it is commonly multiplied by
1013 and written as S20,w or just S and called a Svedberg unit or S value. Its unit is
10−13 seconds.

Based on these considerations, it can be seen that in order for a particle to sediment
into a medium, the particle density must be higher then the medium density. A
gradient solution whose viscosity is dependent on its concentration will therefore
decrease the sedimentation velocity dependent on the position of a particle along
the tube. This effect is opposed to the increased centrifugal force that particles expe-
rience upon sedimentation away from the center of the ultracentrifuge.

1.3.3 Particle Distribution around the Peak

Apart from the sedimentation processes, diffusional processes of the osmolyte and
the sample lead to a broadening of the particle zone in the leading and trailing
end[178]. In practice, in a centrifugation with a large amount of particles sediment-
ing at the same time, more effects come into play. Diffusion, hydrodynamic insta-
bility, droplet sedimentation and, in an unknown sample, biochemical instability,
protein-protein interactions, aggregation and more can lead to broadening of the
end position distribution of particles that is hard to predict.

1.3.4 Challenges in Obtaining Run Parameters

For a successful purification of a protein complex of interest from other components
contained in the sample, the complex of interest should have a distribution peak
position at 1

2 rmax if there are known contaminants with MW in the same order of
magnitude in the sample and it should be at 2

3 rmax if a purification from unspecific
contaminations is to be performed. Both these values were empirically determined
to maximize separation. To estimate whether a set of parameters will lead to the de-
sired results, simulation of the run conditions need to be performed to avoid wasting
sample material and time.
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FIGURE 1.19: Principle of rate-zonal separation. The steps of a
rate-zonal separation experiment are illustrated with two exemplary
molecule classes. It should be noted that the number of fractions is

usually way higher than 5.

When trying to predict the sedimentation results of a gradient based on equation
1.30, the varying densities and viscosities of the used medium need to be calcu-
lated and the centrifuge run conditions, e.g. speed, run time, temperature, rmin and
rmax of the rotor need to be taken into account. Furthermore, the particles are as-
sumed to be spherical with a known sedimentation coefficient. In practice, having a
S value at hand is hardly ever the case and usually only the molecular weight of a
new complex to be purified is known approximately. Large complexes are usually
non-spherical and showcase deviations from the expected sedimentation behavior,
complicating the simulation task. Determination of S values is commonly achieved
through complicated fits of sedimentation velocity data from time-resolved analyt-
ical ultracentrifugation experiments[137, 135, 209, 136] that get even more complex
for assumed heterogeneous systems [164].

For established purification protocols of well-characterized protein complexes such
as the ribosome, empirically determined run conditions are used. For less known
samples, simulation softwares are employed, in which the run conditions are en-
tered and a prediction of the distribution of a protein complex with a chosen S value
is then displayed. Over the years, several algorithms have been developed to predict
density gradient centrifugation results[178, 92, 156].

The only available softwares for simulations are COMPASS(1987)[177], which was
available to the author, but is not on the market anymore, and its updated version,
both of which are very likely based on the theoretical method developed by one of its
developers[178]. The COMPASS software is proprietary and sold by Thermo-Fisher
Scientific. COMPASS only allows choosing from a predefined set of rotors and needs
a complete parameter set for a simulation, which is insufficient when trying to de-
termine optimal experimental conditions.
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Therefore, there is need for a new software that aids users in finding the optimal
conditions to maximize the purification success in density gradient centrifugation in
a qualitative manner assuming that very little about the protein complex of interest
is known.

1.4 Scientific Software Development

Software has become an essential part of modern science, supporting both experi-
mentation and theory[193]. A rift in philosophy between scientific computing and
software engineering has developed[195], with the software engineering commu-
nity calling for domain-independent methods and the scientific community that con-
sists of primarily self-taught professional end-user developers[165] rejecting this ap-
proach[105]. No universally accepted standards for scientific software development
have been agreed on at this point, but voluntary guidelines to follow[202, 14] exist.

In general, scientific software should enable reproduction of results but also answer-
ing of new scientific questions[99]. For end-user developers, usability concerns and
good software engineering practice tend to be lower on the priority list[166].

Traditionally, adaption of object-oriented languages employing software patterns
[20] to make software more reliable, scalable, extensible and maintainable has been
slower in the scientific community. These languages and pattern enable a separa-
tion of algorithmic and architectural code. One can argument that this makes open-
sourcing a complete software, which is recommended by many [138], unnecessary
if only the algorithmic parts can be exposed to potential contributors. In the work
of this thesis, recommended software engineering practices were adopted to also ac-
commodate inexperienced users in the field.

Apart from architectural considerations and the validity of the underlying algo-
rithms, processing speed is a big aspect that drives software development, specially
in a data-heavy field such as cryo-electron microscopy, as further explained in sec-
tion 1.5. Improving algorithms in either theory or implementation or optimizing the
workflow is one way of tackling that problem. The second one is processing data
in a parallel manner, which has become more and more relevant due to an expected
slowdown of the processing power increase.

1.4.1 Parallelization

Moore’s law about the processing power of central processing units (CPUs) doubling
every 18 months[122] held true for a long time, but the increase has slowed down
recently[38] due to physical limitations. Therefore, parallelization has become more
and more important, which involves performing calculations on multiple CPUs on a
local computer or on a connected set of computers, a computer cluster. Furthermore,
graphical processing units (GPU) with inherent parallalization-heavy design have
emerged as invaluable tools to increase processing speed[162].

1.4.1.1 Requirements for Parallelization

To be able to split a problem up into smaller parts, creation of independent pack-
ages needs to be possible, as every communication between the packages is a costly
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endeavor and introduces the risk for errors like race conditions. Therefore, a prob-
lem where a big dataset requires repetition of a calculation on every small subset of
the data is suited for this. In TEM image processing, where a lot of operations are
performed on every pixel of an image, these requirements are given.

1.4.1.2 Farming

A computation can be divided onto server nodes on a computer cluster, which
is called farming. Usually, the nodes possess the exact same hardware specifica-
tions and a master node distributes the computation through communication stan-
dards like the message passing interface[55]. In case of heterogeneous hardware, the
BOINC framework can be used [7].

1.4.1.3 GPU Parallelization Programming

On a given node that has received a part of the computational problem, further par-
allelization can be achieved through calculation division on CPU or GPU threads.
General purpose GPUs (GPGPU) became available in the early 21st century, chang-
ing the previously specialized shader computing units into unified shaders. Through
this, a huge amount of arithmetic logical units can be used to run threads in paral-
lel, speeding up computations despite the lower frequency of a GPU unit.The bottle
neck in GPU parallelization is the data transfer from CPU to GPU.

For NVIDIA graphical boards, as used in the Department for Structural Dynamics,
the company provides the CUDA framework[124] that enables a user to write code
that executes on a GPU. It is an extension of the C programming language and in-
cludes a special compiler for files that contain CUDA code, the Nvidia C-Compiler
(NVCC). Another option is OpenCL, a GPU computing framework that is hardware
independent.

1.5 Current Challenges in Cryo-EM Data Processing

While the amount of published EM structures has steadily increased over the years,
as shown in figure 1.1, a closer look reveals that the resolution distribution of the
structures has naturally shifted to higher resolutions, but still, very few structures
reach resolutions above 3 Å that enable atomic model building. This resolution
distribution is shown in 1.20. A further look reveals that most of the highly re-
solved structures are either symmetrical virus particles or well-characterized com-
plexes such as the ribosome where atomic models are available. The reasons for
the troubles in reaching atomic detail are partially found on the biochemical side
as explained in section 1.3, but also in image processing. The reasons for this are
explained in the following sections.

1.5.1 Imaging Automation and Amount of Data

Modern microscopes are able to record images in an automated fashion after mini-
mal input from the user while also being able to switch between up to 12 grids at a
time. Furthermore, DED devices routinely record up to 60 frames per micrograph.
This results in a huge amount of data being produced that needs to be stored for
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FIGURE 1.20: Maps deposited in the EMDB since 2000 and their res-
olutions. Denoted with 2018* is the linearly interpolated value for
2018 based on the amount of maps deposited until April 2018. The
data shows that a lot of structures don’t reach high enough resolution

to enable atomic detail interpretation.

further processing. For example, if recording data the whole day, a Titan Krios mi-
croscope at the Department of Structural Dynamics produces >10 TB of images.

Due to the varying image quality that is partially due to automation and partially
due to metrics that only surface during the first processing steps, a lot of the recorded
data should be discarded as early as possible, a step for which good methods are
lacking as of now.

1.5.2 Computation Speed and Live Processing

Due to the large amount of statistics that are needed to achieve high resolution struc-
tures and the inherently computationally expensive image processing steps, com-
putational speed is always a concern. Unless calculations take place on a modern
computer cluster, the bottlenecks such as alignment and refinement can take days to
even weeks on an older desktop computer. Intelligent GPU computing has reduced
the computational time, but is very hardware dependent due to the GPU architec-
ture which is in constant change. Therefore, an early reduction in amount of data
can again be beneficial.

Currently, common image processing softwares work in a static manner, with every
algorithmic step being performed one after the other. The only exception to this is
Focus[19], which includes live monitoring capabilities. As of now, the achievable
resolution and quality of a dataset can sometimes only be estimated after a 3D re-
construction or even refinement, so it would be beneficial to enable some sort of live
processing where a user can process the recorded images during acquisition so that
unsuitable micrographs, biochemical instability, faulty TEM alignment and such can
be detected without having to record a whole dataset.

1.5.3 Self-Referential Processing- the Need for Data Cleaning

One of the main strengths of single particle cryo-EM is the lack of introduced exter-
nal bias. This necessitates a carefully chosen data set, though. Empty, faulty, noise
or in other ways unsuitable images will introduce larger errors in determination of
the orientation parameters. Therefore, in addition to the implicit cleaning steps in
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2D and 3D classification where bad images are combined into visually identifiable
bad class sums that are then removed from the data set, it is important to reduce
the amount of undesired images as early as possible. As the expected outcome for
datasets can vary considerably - for example between a well characterized complex
like the E.Coli ribosome and a previously structurally uncharacterized complex- the
generalization capabilities are assumed to be limited, necessitating some sort of user
input.

1.5.4 Processing Software Landscape

With the increasing popularity of cryo-EM, the amount of available softwares has
also increased[158, 19, 82, 190, 123, 69]. Usually, an algorithmic approach is turned
into a stand-alone software that is used for that specific processing step. While some
software packages cover most of the workflow, extensibility is at most implemented
through execution of external command line softwares in scripts.

Due to the reliance on several softwares, each with varying parameter conventions,
file formats and such, data management and chaining different softwares together
for a series of isolated algorithmic steps represents a challenge, specially for novice
users of the method.

1.6 Aim of the Work

In the fast progressing field of single particle cryo-electron microscopy, more and
more biological information is made accessible through high-resolution structures
and the access to conformational sorting. For this, a large amount of high-quality
images of stable protein complexes are necessary to get the best possible results out
of the self-referential statistical image processing workflow. Also highly relevant is
the computational demand and the high amount of data storage required for rou-
tinely recorded large datasets, both of which should be reduced as much as possible.

As described in section 1.3, the important purification method density gradient cen-
trifugation needs to be supported by theoretical predictions about the end position
of a protein complex, about which little is known apart from the molecular weight,
on the gradient. Furthermore, a parameter optimization algorithm is needed to en-
able better purifications. Both of these problems are tackled in a software called
CowGraCE, which stands for Cow Gradient Centrifugation Estimation, that was
developed as part of this thesis. Apart from the algorithmic and computational con-
siderations, usability aspect were taken into account to support users in finding the
optimal conditions for their purification approaches to acquire an optimal, highly
pure sample to image on a TEM or for use in crystallization.

The second part of the work of this thesis is the COW, a software suite that covers
the whole workflow of TEM image processing from micrographs to 3D structures.
Work on the COW has been ongoing since 2008[26, 107, 84, 117]. It offers high de-
grees of automation but also a highly flexible graphical programming interface with
a large variety of algorithmic modules that can be chained together to customize the
workflow and solve problems specific to the sample of interest. The COW includes
high degrees of parallelization across CPU and GPU architecture and also offers a
server version that takes full advantage of the speed-up capabilities of modern high
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performance computer clusters.

Both COW and CowGrace follow the software development principles outlined in
section 1.4 and are multi platform compatible with a focus on user-friendliness and
stability.

Within the COW, a new front end called the Micrograph Quality Checker (MQC)
was developed that serves as the entry point to the COW ecosystem and represents
the first step towards live processing. The MQC continuously grabs newly recorded
data and presents it to the user that makes binary decisions on the quality. From this
acquired data, a machine learning model is trained to correctly classify the images.

The MQC is part of a larger philosophy of the COW project which is based on ac-
quiring and judging meta-information about the dataset. As the image processing
workflow boils down to finding the best images and optimizing their unknown ori-
entation parameters, metadata that is collected at all steps from image acquisition up
to the final refinement can prove invaluable in getting closer to true atomic resolu-
tion. Removing unwanted images at the very beginning reduces the computational
overhead and starting to collect data about the good images implements the COW
philosophy in the MQC.
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Chapter 2

Materials and Methods

“Explanations exist: they have existed for all times, for there is always an easy solution to
every problem – neat, plausible and wrong.”

H.L. Mencken

In this chapter, the theoretical and practical basis is described. For the Micrograph
Quality Checker, the methods used to process images and to extract statistical met-
rics about them are introduced as well as the machine learning framework employed
for the classification approach. For CowGraCE, the established mathematical meth-
ods that the density gradient simulation is based on are presented. Afterwards, an
overview over the used programming languages, hardware and software is given,
as well as an overview over the COW framework. As a last part, considerations in
preparation of test data are presented.

2.1 Mathematical Tools for Image Processing

For cryo-EM image processing in general and in the quality judgment framework
that is the MQC specifically, a lot of well-known mathematical operations are used
and combined. In the following section, image statistics and associated operations,
Fourier transformations and used image filters are described.

2.1.1 Image Statistics and Normalization

2.1.1.1 Mean

The first step to image statistics is localizing the image mean, which is a metric to
describe the distribution of pixel values in an image or a stack of images. For n pixel
values p1, ..., pn, the mean will be a number that lies between the minimum and max-
imum values of p. The simplest way to calculate the pixel value mean of an image is
the Arithmetic mean:

parithmetic =
1
n

n

∑
i=1

pi . (2.1)

While being a decent measure of distribution tendency, the disadvantage of the
arithmetic mean is that it’s prone to distortion by statistical outliers, therefore not
making it a robust statistic[94]. This is often dealt with by adjusting pixel value out-
liers before relying on statistical measures.

Another way of approximating the mean is the Median, which is defined as the value
from the dataset that has the property that a given pixel value is equally likely to be
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above or below it. Given p1, ..., pn to be ordered ascendingly, it is defined as

pmedian = p n+1
2

, (2.2)

for when n is odd, and is defined for an even n as

pmedian = 0.5
(

p n
2
+ p n+1

2

)
. (2.3)

2.1.1.2 Variance and Standard Deviation

While knowing the mean can give an idea about the approximate expectation value
of a sample pixel value of an image, it is equally important to look at the spread of
values. The standard deviation is a dispersion parameter that describes the average
deviation of the dataset from its mean:

σ =

√
∑n

i=1 (pi − p)2

n
. (2.4)

The variance is defined as σ2. The squaring process in the calculation is necessary to
eliminate negative values, as only the distance from the mean is relevant. Computa-
tionally it is advantageous to calculate the variance in a single iteration, which can
be achieved by using the alternative formula

σ2 =

(
∑n

i=1 p2
i

n

)
− p2 . (2.5)

Due to the large images routinely having more than 16 million pixels, variance calcu-
lation can easily reach numerical limits of floating point numbers, therefore different
computational strategies are commonly used to avoid the problem [30].

2.1.1.3 Normal Distribution

A normal - also called Gaussian - distribution is the most common continuous prob-
ability distribution. Random variables that are perturbed from the mean value by a
quantity of independent, small influences, are said to be normal distributed as long
as the number of samples is high enough. This can be said for pixel values in elec-
tron microscopy after extreme outliers caused by imaging defects are eliminated.
The normal distribution’s probability density is defined as

f (p|p, σ2) =
1√

2πσ2
e−

(p−p)2

2σ2 . (2.6)

The fractional term regularizes the function so that the area under the curve is al-
ways 1. Applied to problems that are non-probabilistic in nature, the fractional term
can also be replaced by a free parameter A to regulate the peak height. Different
normal distributions sharing the same mean are shown in figure 2.1.
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FIGURE 2.1: Gaussian distributions with a mean of 10 and different
standard deviations. The dotted lines mark the area between p − σ
and p + σ where 68.3% of values for the distribution are expected to

be found.

The so called 68.3–95.5–99.7 rule[139] describes the probability Pr of values to fall
within a certain interval around the mean:

Pr(p− 1σ ≤ p ≤ p + 1σ) ≈ 0.6827 , (2.7)
Pr(p− 2σ ≤ p ≤ p + 2σ) ≈ 0.9545 ,
Pr(p− 3σ ≤ p ≤ p + 3σ) ≈ 0.9973 .

2.1.1.4 Image Normalization

Due to differing conditions during the imaging process (for example electron dose,
ice thickness, defocus, microscope model) and also due to differences in the sample
being imaged, a recorded dataset can be vastly different from another one and also
show considerable variations in itself. This can be problematic in the self-referential
image processing workflow where images are compared and added to one another.
Therefore, image normalization is a steadfast at the beginning of data processing
and also needed during intermediate steps. Also, it is a computational requirement
to keep the pixel value range within certain intervals to prevent calculations failing
due to reaching numerical data type limits.

The normalization process involves adjusting mean as well as variance through the
following formula:

Inorm(x, y) =
σ2

new

σ2
old

(I(x, y)− pold + pnew) , (2.8)

where Inorm is the normalized image, σ2
new, σ2

old are the desired new and the calculated
old variance and pnew, pold are the desired new mean and the calculated old mean.
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Due to floating point representation of pixel values having limits in terms of accu-
rate value distance representation without information loss, heuristics are usually
used to decide on optimal normalization parameters for a newly acquired dataset.
Commonly, p = 0 and σ2

new = 10 are used.

Another possibility is to normalize to a certain pixel value range instead of selection
of p and σ2

new. Here, the normalized image is calculated in the following way:

InormRange(x, y) =
I(x, y)−minold

maxold −minold
(maxnew −minnew) + minnew , (2.9)

where minold, maxold are the calculated minimum and maximum pixel values of the
input image and minnew, maxnew are the selected new minimum and maximum pixel
values.

2.1.2 Image Contrast Enhancement

2.1.2.1 Pixel Value Histogram Equalization

Due to the set number of gray values, how pixel values are distributed between the
extreme values in a histogram of the 0-256 range affects how much contrast is visible
to the human eye: values that are close together are shown in similar colors and are
therefore hard to distinguish.

A gray scale histogram is defined as

H(g) =
ymax

∑
y=0

xmax

∑
x=0

u(x, y), (2.10)

u(x, y) =

{
1, if round(I(x, y)) = g
0, else

.

where H is the one dimensional histogram of the pixel values, g is the pixel value
bin, x, y are the image coordinates and u is the binary scoring function that rounds
pixel values to the next integer.

Based on the histogram, the cumulative distribution function sums up the member
count of all histogram bins up to the current value:

cd(g) =
g

∑
i=0

H(i) . (2.11)

Here, cd is the aforementioned cumulative distribution function at the gray scale bin
g. A perfectly evenly distributed image would have a linear cd. To increase contrast,
the distribution of pixel values can be linearized to maximize optical differences
between values[175]:

Hequal(g) = round
(

cd(g)− cdmin

n− cdmin
(M− 1)

)
. (2.12)

Here, Hequal is the equalized histogram at gray scale position g, cdmin the amount of
values in the very first bin of the cumulative distribution, n is the number of pixels
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the image has and M is the number of histogram bins used.

FIGURE 2.2: Histogram equalization effects. Shown in the left column
is the COW logo and its original pixel value histogram. Shown on the
right is the same image and its pixel value histogram after application

of the histogram equalization procedure.

Figure 2.2 shows the contrast enhancement of an image through histogram equaliza-
tion. While suitable for data processing steps where visual user input is necessary,
histogram equalization is not recommended in combination with algorithmic image
operations, as this process irreversibly manipulates the image information, render-
ing them unsuitable for several processing steps.

2.1.2.2 Coarsing

Coarsing of an image is a method that consists of compressing the pixel information
by averaging neighboring pixels in a square kernel with sidelength k and therefore
reducing the image size by k2:

Icoarsed(x, y) =
1
k

k

∑
i=0

k

∑
j=0

I(x + i, y + j) . (2.13)

This operation results in a visible noise reduction and contrast increase. As a side ef-
fect, while the highest resolution of image information is also decreased by the factor
k, calculations involving the image are sped up, which can be advantageous for com-
putationally expensive and low frequency focused operations like image alignment
and classification. Figure 2.3 illustrates the effect of coarsing.
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FIGURE 2.3: Effects of coarsing. Shown on the left is a 4 x 4 pixel
image with a simplified gray scale of 5 possible values between white
and black. The pixel values between 0 and 255 are noted for each
pixel. A sample coarsing kernel of 2x2 pixel is drawn in blue. On the
right the coarsed image is shown, including the resulting pixel from

the area inside the blue kernel.

2.1.3 Fourier Transformations

Fourier transformation (FT) is a linear decomposition operation that approximates a
function through a combination of sine waves with different amplitudes, frequencies
and phases in its reciprocal domain. In its most well known application, a 1D time
dependent function is mapped to the frequency domain. First developed in the 19th
century[56, 64], it is defined as

Fcont(k) =
∫ ∞

−∞
f (x)e−2πikxdx , (2.14)

f (x) =
∫ ∞

−∞
Fcont(k)e2πikxdk .

where f (x) is an integratable function of the independent variable x, Fcont(k) is the
continuous Fourier transform with the transform variable k in inverse units of x.

To calculate a FT of an image, the non-continuous information of the pixel values
must be considered. Therefore, 2.1.3 must be rewritten for the discrete case as

Fdis(k) =
N−1

∑
k=0

f (x)e
−2πikx

N , (2.15)

f (x) =
N−1

∑
k=0

Fdis(k)e
2πikx

N .

where Fdis(k) is the 1D discrete Fourier transform (DFT) and N is the number of x
values of the input 1D function f (x). For a 2D image, the DFT is calculated for each
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row of pixels and each column of pixels:

Fdisc,2D(k, l) =
S−1

∑
x=0

S−1

∑
y=0

f (x, y)e
−2πikx

S e
−2πily

S , (2.16)

f (x, y) =
1
S2

S−1

∑
x=0

S−1

∑
y=0

Fdisc,2D(k, l)e
2πikx

S e
2πily

S .

Here, Fdisc,2D(k, l) is the DFT of the image f (x, y) with side length S. 1
S2 is a correc-

tion term to re-normalize the pixel values that could also be applied during forward
transformation. A 2D DFT has the symmetric properties

Fdisc,2D(k, l) = ∗Fdisc,2D(−k,−l) , (2.17)

where ∗Fdisc,2D(−k,−l) is the complex conjugate of Fdisc,2D(k, l). This property re-
duces the amount of values to be calculated by the factor 2.

Naive calculation of a 2D DFT results in an algorithmic complexity of O(N2), where
N is the number of pixels in the image. The Fast Fourier Transform(FFT)[192] that is
based on factorization of the DFT matrix into sparse factors that are mostly 0 reduces
the runtime to O(N log(N)). The FFT was used in the work of this thesis.

2.1.3.1 Non-Square Images in Fourier Space

The recent popularity of the Gatan K2 camera poses challenges for Fourier transfor-
mations that operate on square images. To get around this issue, two strategies are
possible:

1. Cropping the image to square dimensions. Due to the irreversibility of the
process, the input image needs to be copied and kept in memory to prevent
data loss.

2. Padding the image to square dimensions. Here, the added pixels are either
filled with static values (usually zero) or with the image’s mean pixel value.
The latter option is preferable due to the former option introducing edges in
the Fourier space image. After transformation, the previously added pixels
can be cut off again, restoring the original image.

The second strategy was used in the work of this thesis, where applicable.

2.1.3.2 Convolution

Convolution is an important and often-used mathematical operation in image pro-
cessing, specially when filtering images. The convolution of two functions f and g,
denoted as f ∗ g, is defined as the integral of the two functions’ product after shifting
and reversing either one[170]:

( f ∗ g)(x) =
∫ ∞

−∞
f (τ)g(x− τ)dτ =

∫ ∞

−∞
f (x− τ)g(τ)dτ . (2.18)
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The convolution theorem [205] states that a convolution of two functions can be
expressed as the inverse FT of the pointwise product of the functions’ FT:

( f ∗ g)(x) = F−1 (F( f )× F(g)) . (2.19)

Application of this theorem allows efficient implementation of algorithms contain-
ing convolution operations by reducing computational complexity.

2.1.3.3 Correlation

The correlation of two functions f and g, denoted f ? g, is also a commonly used
operation, specially when comparing images to one another. Bearing some resem-
blance to convolution, it is defined as the integral of the functions’ product:

( f ? g)(x) =
∫ ∞

−∞
f (τ)g(x + τ)dτ =

∫ ∞

−∞
f (x + τ)g(τ)dτ . (2.20)

The correlation theorem [205] then states that the correlation of two functions can be
expressed as the inverse FT of the pointwise product of one function’s FT with the
other function’s complex conjugate of it’s FT:

( f ? g)(x) = F−1 (F( f )× ∗F(g)) . (2.21)

Again, this theorem allows for a reduction of computational complexity. Correlating
two same-sized images with one another results in an image of the same size where
every pixel value corresponds to the cross-correlation-coefficient (CCC) for that pixel
value. This corresponds to the similarity of the images to one another when shifted
by the coordinates of the pixel. The CCC is one of the most important metrics in cryo-
EM image processing, specifically during CTF correction, alignment and refinement.

2.1.3.4 Power Spectra

For ease of visualization and for specific operations where the phase information
isn’t needed, a DFT of an image can be transformed into a power spectrum, or power
spectral density (PSD). This operation consists of squaring every complex frequency
component:

PSD(u, v) = |F(u, v)|2 , (2.22)

where u and v are the spatial coordinates.

To increase contrast by attenuating the power differences and to reduce noise influ-
ence[187], a power spectrum is commonly normalized through logarithmation:

PSDnorm(u, v) = ln(|F(u, v)|2) . (2.23)

Due to the irreversible squaring operation, the PSD is a real space image where the
phase information is lost. Figure 2.4 shows an example power spectrum.

2.1.4 Real Space Image Filters

2.1.4.1 Boxcar Filter

A boxcar filter is a moving average filter, transversing the input image with a sliding
window in which all pixels in it are replaced by the average of the window. This
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FIGURE 2.4: Power spectrum of a sample image. Shown on the left
is the original image, shown on the right is its power spectrum, dis-

playing the symmetric nature of Fourier transforms.

results in a blurring effect where high resolution information is lost, which is useful
for noise reduction.

Mathematically, it is a convolution of an image with a mask:

I∗ = I ∗M . (2.24)

Here, I∗ is the resulting filtered image, I is the input image and M is the Boxcar mask.
At a specific point in the image, it is defined as

I∗x,y =
m

∑
i=−m

n

∑
j=−n

Mi,j Ix−i,y−j , (2.25)

with i ∈ {−m, ..., m}, j ∈ {−n, ..., n} .

where x and y are the image coordinates, i and i are the kernel coordinates and m
and n are the kernel dimensions. The effect of a boxcar filter on a sample image is
shown in figure 2.5.

2.1.4.2 Difference Of Gaussians Filter

A Difference of Gaussians filter (DoG) is commonly used for low frequency feature
enhancement. The original image is blurred by Gaussian kernels with different stan-
dard deviations, the results of which are subtracted from one another [115]. Mathe-
matically, it’s a subtraction of two convolutions:

I∗x,y = I ∗
(

1
2πσ2

1
e−(x2+y2)/(2σ2

1 ) − 1
2πσ2

2
e−(x2+y2)/(2σ2

2 )

)
. (2.26)

The effect of a DoG filter on a sample image is shown in Figure 2.5.
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FIGURE 2.5: Effects of real space filters on a sample image. a: COW
Logo, b: DoG filtered image with narrow standard deviation 1 and
wide standard deviation 6, c: Boxcar filtered image with a 20 x 20
pixel kernel. The blurring effect of both filters is visible in the filtered

images.

2.1.5 Fourier Space Image Filters

Similar to real space filters, Fourier space filters consist of convoluting an image
with a filter mask. In this case, the filter mask additionally contains an imaginary
part that only holds zeros, though, so the mask can be seen as only half-complex.
Fourier space filters can be utilized to eliminate undesired frequency information
from the input image.

Figure 2.6 illustrates the effect of the three different types of commonly used Fourier
space image filters. In general, as filter masks, either binary masks or Gaussian gra-
dients can be used. In the first case, zeros mark frequencies that are eliminated,
while ones mark frequencies to pass the filter. This harsh cut-off can result in arti-
facts, so the latter option is often used, where the a transition between passing and
non-passing frequencies are smoothed out through use of a gradient.

Filter values as used in this section are relative values between 0 and 1, with 1 denot-
ing the highest frequency information, the Nyquist frequency [125], and 0 the lowest
frequency.

2.1.5.1 Lowpass Filter

Lowpass filtering an image results in elimination of frequencies higher than the cut-
off value. High frequencies correspond to fine structural details, but also to noise,
resulting in an information tradeoff. Overall, a blurring effect is introduced to the
image, with larger details being kept intact, i.e. the shape of a protein complex.

2.1.5.2 Highpass Filter

Highpass filtering an image eliminates frequencies lower than the cut-off value.
Therefore, it is an inverse lowpass filter operation. Removing low frequencies corre-
sponding to large structural details results in a visual sharpening effect.
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2.1.5.3 Bandpass Filter

A bandpass filter combines a lowpass and a highpass filter. This is the most com-
monly used filter at the start of image processing, through which undesirable noise
and irrelevant low frequency information are eliminated from the image.

FIGURE 2.6: Illustration of binary Fourier filter masks and their ef-
fects on a sample image. In b-d, white areas indicate transmission by
the filter and black areas indicate non-transmission, in e-g, effects of
the filters on an image are shown. a: Original COW logo, b: Lowpass
filter mask, threshold 0.8, c: Highpass filter mask, threshold 0.1, d:
Band pass filter mask, highpass threshold 0.1 and lowpass threshold
0.8, e: Image from a after applying filter mask from b, f: Image from a
after applying filter mask from c, f: Image from a after applying filter

mask from d

2.2 Machine Learning: Support Vector Machines

Machine learning, first called that way in 1959[151], is a flexible collection of tech-
niques to enable a computer to perform a specific task based on provided data. The
two big categories within the field are:

1. Unsupervised learning: Here, the task of the computer is to find some sort of
structure in the input data[5]. An example for methods from this category in
cryo-EM is PCA[98, 74].

2. Supervised learning: In this case, the computer is provided with examples of
the desired outputs of a set of inputs, which changes the task to finding the
function that maps the input to the output[5]. In this thesis, only techniques
from this category are used.

From the broad range of applications, the work of this thesis only includes classifi-
cation problems, where a multidimensional input is assigned to 2 or more classes[5].
Specifically, here, users make decisions about the quality of recorded TEM images
and through a supervised learning classification of a subset of the data the rest of the
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data is predicted.

The classification method of choice for this thesis are support vector machines (SVM),
which is a binary, non-probabilistic classifier that is based on feature metric vec-
tors[37] and uses linear algebra for structure detection in the data. When working
with images, this has a lot of advantages due to reduction in computational com-
plexity through omission of working with large micrographs as input data. In the
following section, the mathematical basis of this algorithmic approach is described.

2.2.1 Pattern Classification

The given training data has the form

S = ((~x1, y1), ..., (~xm, ym)) , (2.27)

~xi = (x1, ..., xn)
t, y =

{
+1
−1

.

where S is a training set consisting of m n-dimensional vectors ~xi and labels yi that
are either 1 or -1.

The objective of the classification approach is to estimate a linear function f : <n →
−1,+1 that has the following form:

f (~x) =
n

∑
i=1

wixi + b , (2.28)

where ~w ∈ Rn and b ∈ R are the function’s free parameters that are explained in the
following section. Based on this, the decision function d(~x)is then defined as

d(~x) = sgn( f (~x)) =

{
+1 if f (~x) ≥ 0
−1 else

. (2.29)

2.2.2 Separating Hyperplanes

Hyperplanes, subspaces with one dimension less than their ambient spaces, can be
used as a method of estimating linear decision boundaries that separate classes from
one another. Figure 2.7 shows 20 data points belonging to two classes that can be
classified through a large number of hyperplanes that are defined like in the Hesse
normal form[21] as

~w ·~x− b = 0 , (2.30)

where ~w is the normal vector to the hyperplane and b defines the offset from the
origin through b

||~w||2 . The functional distance γi of a point (~xi, yi) from the training
set to a hyperplane can be calculated as

γi = yi(~w ·~xi + b) . (2.31)

γi ≥ 0 signifies a correct classification, e.g. the point is on the correct side of the
hyperplane. For the nearest points on both sides of the hyperplane, denoted ~x+ and
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FIGURE 2.7: Binary classification problem with possible hyperplanes.
A linearly separable dataset consisting of 20 points in in <2 in two
classes is shown. The colored lines are examples of the many possible

hyperplanes to correctly classify them.

~x−, the following expressions hold true [40]:

~w ·~x+ + b = 1 , (2.32)
~w ·~x− + b = −1 ,
~w · (~x+ −~x−) = 2 ,

~w
||~w||2

· (~x+ −~x−) =
2
||~w||2

.

It should be noted that through this way of approaching the problem of the opti-
mal hyperplane, only the closest points to it are relevant. Those points are denoted
the support vectors. As seen in equation 2.2.2, the margin of the data set to the
hyperplane is inversely proportional to ||~w||2. The goal of the maximum margin
classification is therefore to minimize 〈w, w〉 given the constraint

yi(~w ·~xi + b) ≥ 1 , i = 1, ..., m . (2.33)

This can be solved through a Lagrangian function[40]:

L(~w, b, a) =
1
2
〈~w, ~w〉 −∑

i
ai (yi(〈~w,~xi〉+ b)− 1) , (2.34)



52 Chapter 2. Materials and Methods

where ai > 0 is a Lagrange Multiplier[113]. Differentiation of this equation yields
the dual form based on imposing the optimal conditions:

∂L
∂~w

= ~w−∑
i

yiai~xi = 0 , (2.35)

∂L
∂b

= ∑
i

yiai = 0 .

Resubstitution into the primal form yields

L(~w, b, a) =
t

∑
i=1

ai −
1
2

t

∑
j,k=1

ajakyjyk〈~xT
j ,~xk〉 . (2.36)

This quadratic programming problem presents a global maximum with linear con-
straints and can be solved efficiently provided that a separating maximum margin
hyperplane exists. A found solution has the property

~w = ∑
i

yiai~xi , (2.37)

where the coefficients ai are zero unless these points are what was defined as sup-
port vectors. Through this sparseness, the algorithmic complexity of the problem is
reduced.

2.2.3 Soft Margin Classification

If the classes are not linearly separable, the previous approach cannot find a suitable
hyperplane. To enable finding the best possible hyperplane, a slack variable ξ is
introduced, which describes how far a wrongly classified point is away from the
hyperplane. This modifies the constraint 2.33 to

yi(~w ·~xi + b) ≥ 1− ξi , i = 1, ..., m , (2.38)

ξi ≥ 0, C ≥∑
i

ξi .

The constant C is the cost parameter and can be freely chosen. It sets an upper limit
to misclassifications. Nevertheless, the added complexity through allowed misclas-
sifications will not always lead to a fast algorithm conversion in the input feature
space. Figure 2.8 shows a soft-margin classification in <2.

The method of choice for increasing classification performance in SVMs is the so
called kernel trick [37]. Here, a non-linear mapping φ from the input vector space
<n into a feature space F is used through a kernel function k that takes advantage of
the inner product of 2.36 being data-only:

φ : <n → F , (2.39)
k(~x,~z) = φ(~x) · φ(~z) .

Through this, the relative positions of the points are calculated and the maximal mar-
gin classifier is applied in the feature space. Figure 2.9 illustrates an ideal example
of the described mapping. Ideally, the data will be linearly separable in the feature
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FIGURE 2.8: Soft margin SVM classification of a non linearly separa-
ble data set. A dataset consisting of 20 points in in <2 in two classes
is shown, together with the optimal hyperplanes and support vectors

based on the soft margin SVM classification.

space. If this isn’t the case, the approach of allowing misclassifications through ξ is
used. Examples for commonly used kernels are:

1. Gaussian : k(~x,~z) = e−γ||~x−~z||2 for γ > 0. γ is a scaling parameter that can be
chosen.

2. Homogeneous polynomial: k(~x,~z) = (~x ·~z)d . d is a freely choosable scaling
parameter that determines the degree of the polynomial.

Ultimately, the decision function 2.28 can be written as:

f (~x) =
M

∑
i=1

aiyik(~xi~x) + b . (2.40)

In a possibly higher-dimensional feature space where some sort of linear separation
is achievable, the cost parameter C regulates the amount of overfitting the input
data: A small value of C encourages as little misclassifications as possible at the
cost of a small margin to a found hyperplane while a large value will lead to more
misclassifications, but a higher margin [76]. Depending on how representative the
training data is of the underlying data space, different values for C will be preferen-
tial.

2.2.3.1 Feature Selection for SVM Classification

Despite the weighting capabilities of the SVM approach being fairly resilient to un-
informative features, feature elimination may still be beneficial to increase the com-
putational efficiency and to remove noisy information that may impair a model’s
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FIGURE 2.9: Linear separation in feature space. A dataset consisting
of 20 points in in <2 in two classes is shown that is linearly separa-
ble in feature space. The left image shows the SVM hyperplane in
data space that was determined in feature space as shown in the right

image.

performance. Specifically for a large amount of features, algorithms such as the re-
cursive feature elimination are commonly applied[201]. Extensions to this algorithm
include relevance ranking based on generalization error bounds sensitivity[143] and
correlation-based approaches to remove redundant features[204], which can also be
used as a feature selection method on its own. Here, a correlation matrix based on
the pearson correlation coefficient PCC is created, which is defined as

PCCx,y =
cov(x, y)

σx, σy
. (2.41)

where cov(x, y) is the covariance of the two variables and σx and σy are their stan-
dard deviations. Based on a given cut-off value, a feature is iteratively eliminated
in every step, first considering the absolute values of pair-wise correlation and then
considering the mean correlation to other variables until no pair-wise correlation
exceeds the cutoff value, which is commonly chosen to be either 0.5 or 0.75.

2.2.3.2 Hyperparameter Tuning and Evaluating SVM Model Performance

Any sort of model evaluation is based on splitting the data set into a training set and
a test set. Based on the predictions of the trained model on the test set, a confusion
matrix can be used to assess the performance. The confusion matrix c for two classes,
good and bad, is defined as shown in table 2.1.

From this, several quality metrics can be calculated, the most common being the
accuracy Acc:

Acc =
x++ + x−−

x++ + x+− + x−+ + x−−
. (2.42)

In case of skewed class ratios, this measure is less informative due to classification
of everything as the dominant class leading to a high accuracy. Further important
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TABLE 2.1: Confusion matrix for two classes. x−+, for example, is the
amount of predictions where the good class + was predicted while

the real class was the bad class −.

Real - Real +
Predicted - x−− x+−
Predicted + x−+ x++

metrics derived from the confusion matrix are the false positive rate FPR and the
false negative rate FNR:

FPR =
x−+

x−+ + x−−
,

FNR =
x+−

x+− + x++
. (2.43)

Also, the negative predictive value NPV and the precision or positive predictive
value PPV can be calculated that signify how often a prediction is correct:

NPV =
x−−

x+− + x−−
,

PPV =
x++

x++ + x−+
. (2.44)

In this thesis, FPR as the measure for how well negative images are recognized and
PPV as the measure for how much of the images classified as good correspond to
images labeled as good are the most relevant apart from general accuracy.

Hyperparameter tuning is commonly done via k-fold cross-validation[108, 199]. Here,
the dataset is split into k parts of the same size. k− 1 parts are used for training the
data, while 1 part is used for testing purposes. Through an exhaustive or adaptive
grid search[93], the optimal hyperparameters can be determined based on the root
mean square error (RMSE) of the results. For every instance k of the cross-validation,
the RMSE is calculated as

RMSEk =

√
∑l(xlk − x̂lk)2

Nk
, (2.45)

where Nk is the size of the prediction set and x̂lk is the prediction for xlk. The overall
RMSE for a given hyperparameter set is then given by

RMSEtotal =

√
RMSE2

1 + ... + RMSE2
k

k
. (2.46)

With a given set of hyperparameters, a model’s performance can be assessed through
the previously described metrics by training a model with the optimal hyperparam-
eters on a training set and predicting the outcome of the test set. The separation ratio
is usually chosen to be 70% training and 30% testing.

To get an idea about the model’s behavior based on input size, a learning curve
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can be calculated [185]. A typical learning curve is shown in figure 2.10. Here, the
prediction error within a training set growing in size is plotted together with the pre-
diction error for a fixed validation set. The error within the training set is expected
to grow for larger sizes in absence of overfitting while the error in the validation set
is expected to be reduced. The error percentage that both curves converge to shows
how good the applied model can be at the maximum. How soon this convergence
is reached shows how large a training set for the model needs to be. Also shown in
the figure is the human-level classification error that is underlying the labeled data.

FIGURE 2.10: Typical learning curve. Based on a static test set size,
the prediction accuracy within the training and the test set is shown
as a function of training set size. The curves are expected to converge
against each other, minimizing the variance, with growing training

set size if no overfitting is taking place.

The human-level error bar and general reliability of the user-classified data can be
assessed through use of Cohen’s kappa coefficient κ[119], which measures the agree-
ment between different human raters, but can also be used for the same rater making
a repeated judgement, as is applicable in the work of this thesis. It is defined as

κ =
p0 − pc

1− pc
, (2.47)

where p0 is the relative agreement between the repeated judgments and pc the prob-
ability that the agreement occurred by pure chance. Complete agreement would
result in κ = 1, while complete disagreement would result in κ = −1. Several
guidelines for interpretation of κ are found in the literature. Landis and Koch[112]
proposed values between 0.41-0.6 as moderate, 0.61-0.8 as substantial and 0.8-1 as
excellent agreement, while Fleiss[52] characterized values between 0.4-0.75 as fair to
good and 0.75-1 as excellent agreement.
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When the reliability of the dataset is confirmed through an acceptably high κ value,
either κ or p0 can be used to determine the human-level error.

2.3 Mathematical Tools for Density Gradient Centrifugation
Simulation

In this section, the used methods involved in simulating rate-zonal centrifugation
of a protein complex with approximately known molecular weight and unknown
physicochemical properties in a linear gradient of either sucrose or glycerol are pre-
sented, as well as methods for determining experimental intensity distributions from
SDS gels.

2.3.1 Calculation of Medium Density and Viscosity

As the sedimentation behavior of a particle depends on the medium’s physicochem-
ical properties, density and viscosity values for every fraction need to be known.
Due to the lack of a comprehensive theory for the viscosity of mixed liquids, em-
pirical data for the specific mixture is usually interpolated to yield fairly complex
expressions.

2.3.1.1 Sucrose

Calculating the needed values for a sucrose-water solution can be achieved through
polynomial expressions as proposed by Barber in 1966 [13]. Here, at a given tem-
perature T, the density of a sucrose-water mixture ρSucr,w at a sucrose concentration
cSucr (wt/wt) is calculated as

ρSucr,w = C1,ρ +
( cSucr

100
· C2,ρ + C3,ρ

)
· cSucr

100
. (2.48)

where C1,ρ , C2,ρ and C3,ρ are constants that are defined as

C1,ρ = (−5.85 · 10−6 · T + 3.97 · 10−5) · T + 1 ,

C2,ρ = (1.24 · 10−5 · T − 1.06 · 10−3) · T + 0.39 , (2.49)

C3,ρ = (−8.92 · 10−6 · T + 4.75 · 10−4) · T + 0.17 .

The viscosity ηSucr is calculated as

ηSucr = 10
C1,η+C2,η

T+C3,η , (2.50)
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where C1,η , C2,η and C3,η are calculated based on the value Y :

Y =
cSucr

cSucr + 18.99 · (100− cSucr)
, (2.51)

C1,η = ((((((4.59 · 109 ·Y− 1.1 · 109) ·Y + 1.03 · 108) ·Y− 4.69 · 106) ·Y
+1.05 · 105) ·Y− 1.14 · 103) ·Y + 9.41) ·Y− 1.5 ,

C2,eta = ((((((−5.5 · 1011 ·Y− 1.35 · 1011) ·Y + 1.3 · 1010) ·Y− 6.07 · 108) ·Y
+1.42 · 107) ·Y− 1.69 · 105) ·Y + 1.69 · 105) ·Y + 2.12 · 102 ,

C3,η = 146.07− 25.25 ·

√
1 +

(
Y

0.07

)2

.

2.3.1.2 Glycerol

In a glycerol-water mixture, the density ρGly,w and viscosity ηGly,w at a given tem-
perature T of a given concentration cGly (wt/wt) can be calculated as proposed by
Cheng in 2008 [35]. The density is approximated by

ρGly,w = ρGly · cGly + ρw(1− cGly) . (2.52)

where ρw and ρGly are computed as

ρGly = 0.705− 0.0017 · T , (2.53)

ρw = 1000(1−
(

T − 4
622

)1.7

) .

The viscosity can be calculated through a power function:

ηGly,w = ηα
w · η1−α

Gly , (2.54)

where α is a weighting factor with a value between 0 and 1. It is calculated as

α = 1− cGly +
a · b · cGly(1− cGly)

a · cGly + b(1− cGly)
. (2.55)

The two coefficients a and b are approximated by

a = 0.705− 0.0017 · T ,

b = (4.9 + 0.036 · T) · a2.5 . (2.56)

The two dynamic viscosities of the two components in the solution are interpolated
as

ηw = 1.79
−1230T−T2
36100+360T , (2.57)

ηGly = 12100
−1233T+T2

9900+70T .

2.3.2 Calculation of Sedimentation Value Distributions

Multiple approaches for simulating distributions of sedimenting particles in a den-
sity gradient centrifugation experiment exist[92, 156, 178]. In this thesis, the indirect
approach was used, where peak location and distribution are calculated separately.
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The ladder can be approximated through particle flow estimation in predefined seg-
ments of the tube[178]. As this approach was avoided in this thesis in favor of a new
method, no further elaboration is presented in the following.

Prediction of the peak position of a s20,w value is based on the integratable formula
that was previously introduced as eq. 1.31 :

s20,w

∫ t

0
ω2dt =

ρp − ρ20,w

η20,w

∫ rmax

rmin

ηT,M

ρp − ρT,M

dr
r

. (2.58)

As proposed in the literature[18, 178], the equation can be evaluated numerically.
The left integral can be solved from the known rotor values, the right integral can
be approximated for every fraction. Through this, a s20,w value can be calculated for
every fraction corresponding to a sedimented protein complex zone that has its peak
concentration at that position.

2.3.2.1 Prediction of Sedimentation Coefficients based on Molecular Weight

In order to simulate a given sample’s location in the tube after rate-zonal separa-
tion, its sedimentation coefficient needs to be known. With only knowledge of the
molecular weight MW, spred can be approximated as[145]

spred = 2.42 · 10−3 ·MW
2
3 . (2.59)

This assumes a globular protein. While no database of Svedberg values exists, com-
parisons shown in A.3 indicate that this formula slightly underestimates the sedi-
mentation speed of proteins.

2.3.3 Extracting Intensity Distributions from SDS Gels

The fractions of a density gradient centrifugation run are commonly analyzed by ap-
plying them to individual lanes on a SDS gel. After staining with Coomassie Blue,
the protein bands are visible in an image of the gel. The signal of a protein complex
is usually split up into multiple bands.

To extract information about the intensity distribution of a sample, a semi-automatic
approach can be used. Here, the image is converted to gray scale, the lane areas to be
quantified are selected, and the area of the band intensity is summed up to the over-
all area of the protein complex at the specified fraction, called I, as shown in figure
2.11. As this absolute area information is error prone due to the non-normalized im-
ages, intensities relative to the highest determined area value are used and denoted
as Inorm.

2.3.4 Fitting Intensity Distributions from SDS Gels

Under the assumption of a normal distribution, a Gaussian (see section 2.1.1.3) of
the form

f (x) = A · e−
(x−µ)2

2σ2 (2.60)

can be fitted to the determined relative intensity distribution by an iterative non-
linear least squares method[180]. While this requires initial guesses for the three
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FIGURE 2.11: Intensity distribution extraction from a SDS gel. On the
right, selected bands for quantification are shown. On the left, the 1D
distributions of the first three bands are shown, where a background
cut-off can be defined. Afterwards, the rest of the area is summed up
to determine the intensity of the sample at the lane. The image was

created from a h20S Proteasome SDS gel in ImageJ.

free parameters, knowledge about the intensity distribution can readily be used to
determine an estimate.

2.4 Programming Languages and Frameworks

In this chapter, information about the languages that found application in software
development and data analysis in the work of this thesis is given.

2.4.1 C++

C++ is an extension of the C language that is most widely known for its object orien-
tation capabilities coupled with facilities for low-level memory management [116].
Developed by Bjarne Stroustrup and first released in 1985[179], its wide library sup-
port, constant development and code execution speed made it the language of choice
for the computationally intensive demands of cryo-EM image processing and den-
sity gradient simulation.The aforementioned memory management, lack of garbage
collection and direct compilation to assembler code make it possible for C++ code to
be highly performant[53].

Initially, development of software of this thesis was started using the C++03 stan-
dard[95] and was later transferred to the C++11 version[96] that contains several
improvements and convenience features over the older implementation.

2.4.1.1 Used C++ Libraries

Several external libraries were used for C++ development that each provided spe-
cific functionality.

QT is a popular library for cross-platform GUI development that is based on a signal
and slot concept for information flow. Apart from supplying widgets and layouts,
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TABLE 2.2: Used C++ libraries

Name Version Used In Further information
Qt 5.10 CowGraCE, COW www.qt.io

Boost 1.65 CowGraCE, COW www.boost.org
Qwt 6.1 COW www.qwt.sourceforge.net

RocksDB 6.1 COW www.rocksdb.org
MKL 11.3 COW www.software.intel.com/en-us/mkl

FreeImage 3.17 COW www.freeimage.sourceforge.net/
OpenSSL 1.0.2 COW www.openssl.org

VTK 7.0 COW www.vtk.org

the library also includes a lot of IO, threading and Model-View-Controller(MVC)
functionality, all of which was used in the work of this thesis.

Boost is an extension of the C++ standard library (STL) that supplies reference im-
plementations of a wide range of functionality, a lot of which laters gets included in
new STL versions. In the presented softwares, Boost libraries were used for system
calls, time, date and threading use cases.

Qwt is an extension of the Qt Library that provides data visualization widgets which
were used to develop 1D and 2D viewers in the COW(see 2.6.4).

RocksDB is library that provides a speed optimized key-value storage database. In
the COW, it was used to generate project files(see 2.6.4.1).

MKL , the Intel Math Kernel Library, provides speed optimized implementations
for mathematical operations. In the COW, it was used for Fourier transformations
insert ref here and other arithmetic use cases.

FreeImage provides In- and Output functionality for common image formats(e.g
png, jpeg, tiff). This was used in the COW for In- and Export of such files.

OpenSSL is a toolkit for TLS and SSL protocols. In the COW, it was used to enable
secure connections to a server.

VTK, short for Visualization Toolkit, is a library for 3D Visualization. In the COW, it
was used in the 3D Viewer where calculated structures can be displayed.

Further specifications can be found in table 2.2.

2.4.2 R

R can be seen as an extended implementation of the statistical S language[29]. The R
environment, containing an integrated IDE called R Studio, is mostly used for data
manipulation, analysis, visualization and statistical inference applications[194]. Due
to the many built-in features and available packages, R was used in this thesis for
rapid prototyping of algorithms, analyzing results and creating figures.
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TABLE 2.3: Used C++ tool chains

OS IDE Compiler and Linker CUDA Compiler
macOS XCode 7.2 Apple LLVM 7.0.2, GNU Linker -

Windows Visual Studio 2017 Microsoft C++ Compiler 19.10.25017 and Linker 14.10.25017 Nvidia NVCC 9.0
CentOS 5 - Gcc 4.1, GNU Linker -

2.5 Hard- and Software

The two computers used for the work of this thesis were

1. MacBook Pro Mid 2015 (2.8 Ghz quad-core Intel Core i7 processor, 16 GB 1600
MHz DDR3 Memory and an AMD Radeon R9 M370X 2048 MB GDDR5 Mem-
ory GPU) running macOS 10.11.6

2. Dell Workstation (3.7 Ghz quad-core Intel Core i7 processor, 32 GB 1600 MHz
DDR3 Memory and Nvidia Quadro M4000 8096 MB GDDR5 Memory GPU)
running Windows 10

On the MacBook, the native IDE XCode was used to write C++ code. On Windows,
Microsoft Visual Studio was used. For Linux bundle building, a CentOS 5 docker
image was used to enable backwards compatibility through an old enough libc ver-
sion. Table 2.3 shows relevant specifications of the used development environments.
Generation of solution files was performed through use of the CMake meta language
on all operating systems.

Data analysis was mostly performed with R, using R Studio on both computers.
Microsoft Excel was also used for specific data analysis. Intensity distribution ex-
traction from SDS gels was done with ImageJ.

For version control and team development, Subversion (SVN) was initially chosen,
but was later replaced with the more flexible Git[32] in the GitLab implementation
running on a local server, for which GitKraken was the GUI of choice.

2.5.1 UML

The Unified Modeling Language(UML) is a way to visualize different properties
of object-oriented software as well as information flow of operations[57, 9]. In this
thesis, two types of diagrams in the notation of UML 2 are used, which are explained
in the following. Figure 2.12 shows the used symbols for the diagrams.

2.5.1.1 Static Class Diagrams

A static UML 2 class diagram shows the relationship and dependencies between
different components of an object-oriented software. Important parts of such a dia-
gram are the classes themselves, which can have a set of attributes that are present
in every instantiation of the class. The syntax for attributes is a minus operator at
the start, followed by the attribute name and the data type after a colon, for example
"- startIndex: Integer".

Also, every class can have a set of operations that can be performed by it. Here,
the syntax is a plus operator followed by the operation name with function param-
eters and their datatypes in brackets. The return value of the function is specified
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FIGURE 2.12: Modules of UML 2 diagrams. Shown are the used mod-
ules for static class diagrams, used to illustrate the relations between
parts of object-oriented software architectures, and activity diagrams,

used to give an overview over algorithms.

afterwards, again delimited by a colon. An example of a class operation would be
"+getValue(index: integer): float".

Relationships among classes are shown through different symbols (see figure 2.12).
Arrows indicate a directed association, while dotted arrows show dependencies.
Lines with filled diamonds denote a composition, a has-a relationship.

Static UML diagrams as used in this thesis do not claim any sort of completeness but
rather show relevant interactions between the most important components.

2.5.1.2 Activity Diagram

This kind of diagram can be used to describe information flow through a software,
but also an algorithm. The beginning of an algorithm is shown through a start node
and its finish through an end node. In between, two elements describe the opera-
tions, with directed arrows as control flow elements connecting them. An action is a
general description of any operation that takes place, while a decision element splits
up the flow into two or more paths.

2.6 The COW

2.6.1 History and Concept

The name COW is, despite that being surprising to some, not an acronym, but goes
back to a german saying that Dr. Mario Lüttich, the main developer from the Stark
Department since the project started in 2008, uttered when presented with a list of
specifications the software should fulfill: "Das ist so viel Arbeit, das passt doch auf
keine Kuhhaut". A literal translation would be "This is too much work to fit on a
cow hide". From that point on, the software was called COW.

Since then, the COW has grown to a complex toolbox for all stages of cryo-EM image
processing with an increasing amount of automatization capabilities, as described in
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the following sections. The general philosophy implemented in COW is to give ex-
perienced as well as inexperienced users capabilities to process their data in the most
optimal way with high performance without having to leave the COW’s ecosystem.
Extendability(see 2.6.4.4) and scalability (see 2.6.5) are also main features of the COW
framework.

All algorithmic and IO operations are made available through the CowLib, a dy-
namically linked library that is accessed by multiple front ends through its appli-
cation programming interface (API), the most complex one being CowEyes, where
particle stacks are processed to yield 3D structures. In the CowPicker, particles are
extracted from micrographs through algorithmic means previously developed in the
group[26].During the work of this thesis, another front end, the MicrographQuality-
Checker, was added, which is introduced in section 3.2.

2.6.2 CowLib

The CowLib takes advantage of object-oriented development by having abstract
base classes for every building block of a data processing step. Through this, method
development is facilitated due to the ease of chaining existing algorithmic blocks to-
gether in new ways within a controlled development framework.

Figure 2.13 shows an overview of the main architectural pieces of the CowLib and
their interactions. In the following sections, they are introduced in more detail.

FIGURE 2.13: Static UML2 class diagram showing the interaction of
the main components of the CowLib. Abstract base classes are col-

ored in blue.



2.6. The COW 65

2.6.2.1 Parameter Objects

cow::Parameter objects are arrays of key and value pairs. The key is always a std::string,
the value can hold objects of type std::string, standard numerical types, other cow::Parameter
objects and also lists of them, enabling tree-like structures. This flexible system en-
ables the structure to hold image metadata and pass settings to logic objects. Fur-
thermore, cow::Parameter objects are used in many internal information transfer op-
erations in the CowLib.

2.6.2.2 Data Objects

At the core of an image processing software are the objects that hold images. A
cow::Data object consists of either a CPU or a GPU image and the corresponding
metadata in form of a cow::Parameter object. Images are ultimately an array of val-
ues that can be data types ranging from the standard numerical types to complex
numbers. cow::Data objects also provide a list of operations, i.e. normalization, that
can be performed on the contained image.

2.6.2.3 Logics

cow::Logic objects are the building blocks of image processing. Upon being started,
a cow::Logic object receives a defined set of in- and outputs and needed variables as
a cow::Parameter object. Within this base structure, algorithmic operations are per-
formed on the input image set. In a cow::Logic, cow::Processor objects and cow::IO
objects can be executed and other cow::Logic objects can be called.

2.6.2.4 Processors

As opposed to cow::Logic objects that can process a whole image stack (for example,
comparing every image to all other images), a cow::Processor object can only execute
an operation on one image at once. Therefore, these kind of objects are used for
mathematical operations like Fourier transforms.

2.6.2.5 IO Objects

cow::IO objects are the data connecting entities in COW. As a first use case, files from
the host system can be imported into the COW framework or exported from it. The
most important supported file formats are:

1. MRC2014[34]

2. Imagic[190]

3. Common image formats such as png, jpg, tiff[54]

4. gnuplot[140]

5. star[70]

6. pdb[182]

7. cowIO

The cowIO format holds multiple cow::Data objects(see 2.6.2.2) and is used for inter-
nal in- and outputs. External files are read through a specialized IO that implements
the abstract IO base class (see figure 2.13) and then subsequently made available as
a cowIO.
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2.6.3 CowPicker

The CowPicker, previously titled John Henry, was developed by Dr. Boris Busche
during his thesis work[26]. Maintenance duties were subsequently passed on to the
author of this thesis. Until the Micrograph Quality Checker (see section 3.2) was
created, the CowPicker was the entry point into the COW ecosystem.

The automatic picking algorithm is based on mass centering combined with a sta-
tistical approach. Through pixel value density analysis, places of interest are first
defined on a regular grid and subsequently refined, e.g. moved around and merged,
based on user inputs like particle size and merge distance. Through statistical thresh-
olding, a subset of these assumed particles are then discarded [26]. Apart from
the fully automatic mode, manual (with local mass centering) and semi-automatic
modes are also possible. The advantage of this algorithm lies in being completely
reference bias free as opposed to projection matching softwares[207].

Figure 2.14 shows the user interface of CowPicker. Apart from the described picking
functionality, a lot of convenience functions for working with micrographs are made
available.

Picking locations are either stored in a text file format called plt or used to directly
crop out the particles and to concatenate them to an image stack that can then be
imported into CowEyes, which is described in the next section, to calculate a 3D
structure.

FIGURE 2.14: User interface of CowPicker. A: Toolbar, B: Current
micrograph and the chosen particles (in green), C: Picking settings

window. Shown is a micrograph containing ribosomal complexes.

2.6.4 CowEyes

While the data processing steps up to particle picking can be seen as a linear pipeline,
the workflow from particle stacks to 3D structure not only consists of more essential
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algorithmic steps, but also requires non-linearity and situational tools, all of which
are introduced in the following. To enable this, CowEyes provides a big amount of
cow::Logic objects to the user that can be connected to one another in a workspace,
managed in so called COW Project Files (cpf) (see 2.6.4.1). Results of a cow::Logic can
be visualized through different viewers. For more complicated workflows, i.e. when
a specific set of connected logics need to be run more than once until the results suf-
fice as indicated by a specific metadata entry, visual programming workflow tools
are provided(see 2.6.4.3). While the existing cow::Logic objects contain most com-
monly used algorithmic approaches in the cryo-EM field, the need for extendability
is still given due to non-foreseeable future developments. Therefore, the CowPlug
functionality((see 2.6.4.4) was developed, enabling external developers to program
their own cow::Logic objects and use them within the workflow of CowEyes. The
CowEyes GUI is shown in figure 2.15.

FIGURE 2.15: User interface of CowEyes. A: FlowControl tools, B:
Interactive logics, C: Logics, D: Run history display, E: Main area, F:
Parameter field, G: Log area, H: Main area tabs, I: Quick access area.

2.6.4.1 Project Management

Due to the need to save intermediate results, continue data processing from a pre-
vious point and to allow portability of processing with the COW, CowEyes works
on cow project files, which are based on the tree structure of connected cow::Logic
objects that can be compared to a filesystem. Every project consists of a RocksDB
database (see 2.4.1.1) that contains the position of the cow::Logic within the tree as a
key and a cow::Parameter object as the value that contains all needed metadata. This
is saved as a COW Project Files (.cpf), while the data that corresponds to the outputs
of logics are saved in the CIO format in a subfolder.
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2.6.4.2 Viewer

Viewers are a important tools to enable a user to judge the results of one or more pro-
cessing steps. Therefore, the COW provides multiple specialized viewers to cover
all possible visualization scenarios. Included are the following:

1. Graph viewer that can plot multiple 1D graphs

2. 2D viewer, used as the standard viewer for IOs, where images and their meta-
data can be displayed. Also included are tools for histogram display manipu-
lation and statistical values.

3. 3D Isosurface viewer that displays one or more reconstructed or imported
structures and also offers many tools for display customization.

4. Value viewer that was developed by the author of this thesis that can plot the
value distribution of two metadata metrics separately and in dependence of
one another in a pseudo heatmap

5. Surface viewer that in addition to the x- and y-information in 2D images plots
the pixel values as a third dimension

6. Euler and Halo Viewers that show the spherical distribution of Euler angles of
2D images.

The viewers are shown in figure 2.16.

FIGURE 2.16: CowEyes viewers. A: Graph viewer, B: 2D viewer, 3D
Isosurface viewer, D: Value viewer, E: Surface viewer, F: Euler viewer.

Not shown is the Halo viewer that was used to create figure 1.14.

2.6.4.3 Visual Programming

For advanced users that need additional flow functionality apart from cow::Logic
trees, a set of visual programming tools are provided. These include the classical
elements from programming languages such as for-loops, if-else conditions, vari-
ables and more. Also, convenience tools such as groups, which can hold multiple
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cow::Logic objects and tools, lists and comments are provided. Through a scripting
module that is based on the Lua language, users can further automate their desired
workflows.

2.6.4.4 CowPlug Ecosystem

To ensure extendability of the COW, a system was developed by Dr. Mario Lüttich
through which external developers can implement their own algorithms for usage in
CowEyes. Through a CMake based logic template, a custom cow::Logic with access
to the CowLib API can be compiled as a dynamic library that CowEyes can load.
This system is called CowPlug due to the plugin nature of the external cow::Logic
objects. Due to current stability issues with the dynamic library approach, in the fu-
ture, this will possibly be changed to compiling separate executables that CowEyes
can then launch.

2.6.5 CowServer

Every instance of CowEyes can connect to a CowServer instance that is installed on a
host system, where a separate project file needs to either be created or preexist. Due
to the prevalence of the OS on server systems, only a Linux version of the CowServer
is supported currently.

When a run is started, the CowServer software scans the dependencies of the con-
nected logic modules to determine which can be calculated in parallel. Through
the MPI protocol, a logic can provide splitting its calculation into smaller packages
that the CowServer can calculate on different server nodes in parallel. This is im-
plemented for the computationally most expensive algorithmic steps such as image
alignment. If no packaging is provided, a cow::Logic can be calculated on the CPUs
and GPUs of the current node.

2.7 Preparation of Test Data

Evaluation of novel algorithms depends on the careful choice of test data. Ideally,
testing is first done on simulated data where the expected outcome is known. How-
ever, this was not possible for the two softwares of this thesis, therefore, real data
was used.

2.7.1 Test Data for CowGraCE

For the rate-zonal separation, the initial test data consisted of SDS gels of fractions
of purified 20S Proteasome due to the known sedimentation coefficient of this com-
plex. Furthermore, as density gradient centrifugation is used in its purification pro-
tocol[163], correct prediction of the Proteasome’s sedimentation behavior was con-
sidered to be of high priority.

Afterwards, realistic samples from purification protocols were used to evaluate pre-
diction of more complex systems where at times only an approximated molecular
weight is known about the protein.
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TABLE 2.4: Available ultracentrifuge swing-out rotors in the Depart-
ment of Structural Dynamics

Manufacturer Model Name rmin[cm] rmax[cm] Acceleration Time[min] Deceleration Time[min] Max rpm Tube Volume [ml]
Beckman SW28 TI 7.53 16.1 5 5 28000 38.5
Beckman SW40 TI 6.67 15.88 7 6 40000 14
Beckman SW60 TI 6.31 12.03 3.5 2.5 60000 4

2.7.1.1 Considered Rotors and Gradients

Due to the need to compare theoretical predictions with empirical data, all simu-
lations exclusively used the three rotors that were available in the Department of
Structural Dynamics and therefore could be used for ultracentrifugation. Table 2.4
shows the relevant information about these rotors. The BioComp GradientMaker
that is used in the Department of Structural Dynamics can only produce predefined
gradients for the tubes of the mentioned rotors. These are listed in table A.1 and A.2.

2.7.2 Test Data for the MQC

As the goal of the MQC was to classify real data based on user input, usage of syn-
thetic test data would defeat its purpose. Therefore, different datasets of different
macromolecular complexes that are currently investigated in the department were
used to test the classification capatibilities of the machine learning approach.
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Chapter 3

Results

“The most that can be expected from any model is that it can supply a useful approximation
to reality: All models are wrong; some models are useful”

George Box, Statistics for Experimenters

This thesis introduces two new algorithmic approaches and the softwares that im-
plement them, turning theory into usable tools. Following the order in which they
can be applied to a cryo-EM workflow, results of the density gradient centrifugation
prediction software CowGraCE are described first, followed by the live processing
tool MQC. The two software’s logos are shown in figure 3.1.

FIGURE 3.1: Logos of the softwares developed in this thesis. Shown
on the left is the CowGraCE logo, kindly created by Karl Bertram, and

on the right is the MQC logo, kindly created by Dr. Wen-Ti Liu.

3.1 CowGraCE

As the linear approach of the software and its application area did not fit into the
preexisting COW framework, it was designed as a light-weight standalone software
written in C++11, using Qt5.9 for the GUI. CowGraCE was developed together with
Uma Lakshmi Dakshinamoorthy.

The goal of the CowGraCE project was to develop a software that predicts the end
results of rate-zonal separation experiments using swing-out rotors in a qualitatively
correct manner in addition to assisting users in finding the optimal run conditions
for their sample. In this section, the mean peak S value prediction algorithm and the
distribution estimation are introduced, followed by comparisons to the COMPASS
software and tests on experimental data. Afterwards, the developed optimization
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algorithm and its results are presented, closing with an overview of the software’s
inner workings and GUI.

3.1.1 Mean Svedberg Value Prediction Algorithm

This algorithm was loosely adopted from an algorithm in FORTRAN code written
by Steensgaard et al in 1978[176], which was developed for fixed-angle rotors. The
concentration dependent steps of the algorithm were changed to reflect the different
properties of swing out rotors. An overview of different steps of this algorithm is
given in figure 3.2.

FIGURE 3.2: Activity diagram for the peak Svedberg value predic-
tion algorithm. Shown are the different calculation steps that are per-

formed for every fraction radius.

3.1.1.1 User Inputs

To calculate the Svedberg values along the tube after a centrifugation run, several
parameters need to be specified by the user:

1. Temperature T

2. Particle density ρp

3. Rotor and rotor speed vrotor

4. Gradient volume Vgrad and sample volume Vsamp

5. Fraction number n f rac, either provided directly or calculated from fraction vol-
ume Vf rac

6. Osmolyte type and concentration at top and bottom of the tube, ctop and cbottom

7. Runtime trun
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3.1.1.2 Initialization

In the initialization step, multiple constant values necessary for the following steps
are calculated. First, the rotor speed ω is converted to angular velocity by the fol-
lowing relationship:

ω =
2π · vrotor

60
. (3.1)

Then, the constant R that represents the integral over the runtime from equation 2.58
can be calculated :

R = (π · vrotor)
2 · trun

15
. (3.2)

While the effective runtime could theoretically be adjusted to reflect acceleration
and deceleration time through interpolation, this was neglected due to modern cen-
trifuges offering different acceleration options, thus adding another layer of uncer-
tainty, and the negligible overall effect due to the long runtimes.

The constant D that represents the constant fraction from equation 2.58 is then cal-
culated:

D =
ρp − ρw

ηw
. (3.3)

The effective start of the gradient is calculated through determination of the length
offset lsamp introduced through the sample volume itself:

lsamp =
Vsamp

Vtube
· (rmax − rmin) . (3.4)

The mass center of the sample is then used to initialize rprev, the starting radius value:

rprev = rmin +
lsamp

2
. (3.5)

Furthermore, temperature dependent constants for osmolyte density and viscosity
are calculated. Also, the cumulative Svedberg value S20,w,sum is initialized to 0.

3.1.1.3 Calculation Loop

Starting from rprev , the calculation loop is iterated as many times as fractions are se-
lected, with each fraction covering an equal radius length and the radius rcurr being
incremented.

First, the current osmolyte concentration ccurr is calculated through the linear rela-
tionship to the radial distance:

ccurr = ctop +
(rcurr − (rmin + lsamp)) · (cbot − ctop)

rmax − (rmin + lsamp)
. (3.6)

Medium density and viscosity are then calculated as described in equations 2.52 and
2.54 for Glycerol and equations 2.48 and 2.50 for Sucrose.

The value Z for the radius dependent integral from equation 2.58 can then be deter-
mined as

Z =
rcurr − rprev

1
2 (rcurr + rprev)

· ηmedium

ρp − ρmedium
. (3.7)
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Combining all of the previous formulas, the peak sedimentation coefficient S20,w,sum
at the radius of the fraction can be calculated:

S20,w,sum = S20,w,sum + Z · R
D
· 1013 . (3.8)

3.1.2 Distribution Profile Prediction

Known methods about predicting a distribution profile of a given species are based
on extensive knowledge of the diffusion behavior of a protein complex and its charge
and shape dependent physicochemical properties such as partial-specific volume
and frictional ratio[164]. Additionally, in a complex sample consisting not only
of the protein complex of interest, but also of known and unknown contaminants
where interactions between the components can influence the diffusion profile, a
numeric evaluation of the described effects is difficult and error-prone. Therefore,
an approach independent of specific sample information was chosen. The profile
prediction of the COMPASS algorithm is unknown.

Here, based on the assumption of a normal distributed distribution profile, the con-
cept of apparent sedimentation coefficients from the van-Holde Weischet method[191]
for analyzing diffusional spreading in analytic ultracentrifugation was used. An ap-
parent sedimentation coefficient s∗ is defined as

s∗ = ln
(

rb

rmen

)
1

ω2(trun − t0)
. (3.9)

Here, rb is the radial position of the boundary fraction, which is the relative con-
centration of the sample compared to its plateau along the diffusion profile, rmen
signifies the radial starting point of the sample and t0 is the corrected start time of
the experiment based on rotor acceleration.

Based on this, a approach for the standard deviation of the normal distribution of
a sedimenting species Ssamp,20,w with its peak at radius rµ was developed, again
neglecting the acceleration and deceleration times. The boundary Svedberg value
Sboundary,20,w at a specific fraction was defined as:

Sboundary,20,w = Speak,20,w +
ln
(

rµ

rini

)
ω2 · t · 1013 . (3.10)

This value signifies which Svedberg value has its boundary at the specific fraction.
The standard deviation was then defined as

σ =
f racsample − f racboundary

3
. (3.11)

From the boundary Svedberg values at every fraction, σ can then be interpolated for
every Svedberg value of interest.

3.1.3 Interpolation

From the peak Svedberg and boundary Svedberg values for every fraction, the pre-
dicted distribution for a user-specified S value of interest can be determined through
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linear interpolation. It should be noted that while experimental fractions per defini-
tion only exist as real numbers (and also are mixed after removal from the tube), here
and in the following, fraction is used interchangeably with length/volume measure-
ments along the tube that are assigned to the fractions they will be split up into after
the run.

The interpolation for the peak location is based on determining the two adjacent
fractions f raclow and f rachigh where Slow,20,w < Ssample,20,w < Shigh,20,w. From these
values, f racsample can readily be calculated:

f racsample = f raclow +
Ssample,20,w − Slow,20,w

Shigh,20,w − Slow,20,w
. (3.12)

Obviously, this interpolation isn’t necessary if Ssample,20,w = Slow,20,w or Ssample,20,w =
Shigh,20,w.

Accordingly, the boundary location is calculated by determining the two fractions
f racb,low and f racb,high where Sb,low,20,w < Ssample,20,w < Sb,high,20,w and interpolating
f racboundary:

f racboundary = f racb,low +
(Ssample,20,w − Sb,low,20,w) · ( f racb,high − f racb,low)

Sb,high,20,w − Sb,low,20,w
. (3.13)

3.1.4 Computational Complexity of the Simulation Algorithm

Due to the numerically primitive approach and the fast implementation in Cow-
GraCE, a given simulation is calculated in the µs range. Computation speed mea-
surements were plotted against number of calculated fractions in figure 3.3. Clearly
visible is the linear dependency of the two variables, as shown through the linear
regression trendline. Thus, the simulation algorithm has a running time of O(n),
where n is the number of fractions. This fast computation speed made it possible
to develop the optimization algorithm detailed in section 3.1.7 that performs a large
number of simulations.

3.1.5 Simulation Result Comparisons

While the underlying algorithmic approach of COMPASS[177] for rate-zonal cen-
trifugation simulation is not known due to the source code not being available, it
was assumed that the authors utilized their own published methods for peak S20,w
value predictions[176], which also form the basis for the algorithm presented in the
previous section.

Therefore, a comparison between the calculated values was deemed necessary to
assess the validity of the CowGraCE algorithm. While only the old version of the
COMPASS software was available to the author, a comparison between two simu-
lations of the old and the new COMPASS software as shown in figure 3.4 led to the
conclusion that the underlying algorithm was not changed. Based on this, a com-
parison with the 1987 version was assumed to be sufficient.

Results from the COMPASS simulations were extracted manually due to the lack of
export options provided. Comparisons were performed for three rotors available in
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FIGURE 3.3: Dependence of CowGraCE calculation speed on number
of fractions. Shown are 5 measurements for every fraction amount
and the linear regression of the data points. The speed was measured

on the Dell Workstation described in 2.5.

FIGURE 3.4: Competing softwares. Shown are screenshots of the re-
sult of simulations with the same run parameters for both the old ver-
sion of COMPASS that was available to the author and the updated
version. The right image was taken from [184]. Both simulation re-

sults were identical.

the Department of Structural Dynamics, assuming a standard temperature T of 4◦C,
trun = 960 minutes (16 hours), maximum speed vrotor, ρp = 1.4, Vgrad = 0.95 · Vtube,
Vsamp = 0.05 ·Vtube and n f rac = 25 due to the lack of other options in COMPASS.

Figure 3.5 shows the comparison between simulations with the same parameters
on the SW28, SW40 and SW60 rotor with varying sucrose gradients. Surprisingly,
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considerable differences could be observed. No systematic offset could be seen, but
rather a growing discrepancy at higher fraction numbers.

FIGURE 3.5: Comparison of peak Svedberg values for three rotors at
varying gradients. Shown values were manually extracted by Uma

Lakshmi Dakshinamoorthy.

Comparison of peak S20,w values at the last fraction from the simulations in figure
3.5 , where the biggest difference could be observed, are shown in figure 3.6. Due to
the higher absolute sedimentation value resolution, SW28 results show the biggest
discrepancy. Similar result discrepancies were observed for other tested parameters
(data not shown).

3.1.6 Prediction Tests

To test the peak Svedberg value prediction accuracy and the validity of the new ap-
proach for diffusion profile modeling in CowGraCe and to compare it to COMPASS
and experimental results, rate-zonal centrifugation experiments were performed un-
der different conditions and the fractions extracted by the top-to-bottom method
were applied to individual lanes on SDS gels. The gels were then imaged and con-
verted to a contrast enhanced grey scale. The intensity distributions were extracted
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FIGURE 3.6: Difference between CowGraCE and COMPASS for peak
Svedberg values at varying gradients and rotors at the last fraction.

in ImageJ, converted to relative intensities based on the highest measured value, fit-
ted with a Gaussian distribution as described in section 2.3 and then plotted with a
custom script written in R. Then, simulations under the same conditions were run in
CowGraCE and COMPASS. COMPASS peak values were interpolated in the same
way as CowGraCe values, while the standard deviation was extracted manually
from the program’s visual output as shown in figure A.1 in the Appendix. As COM-
PASS can only calculate 25 fractions, the values were renormalized to the differing
number of experimental fractions where necessary.

The mean and distribution predicted of COMPASS and CowGraCE were indepen-
dent of absolute concentration values. Therefore, the simulated distributions and
the fits of relative intensity distribution extracted from SDS gels are displayed in the
following as Gaussians of the form

f (x) = A · e−
(x−µ)2

2σ2 , (3.14)

with A = 1. Thus, the distributions were not normalized to an area, but rather to
the peak value at A. This procedure was chosen because of the assumed unknown
absolute protein concentrations within a sample, their exact influence and the other
numerous described uncertainties. This approach did not allow for area overlap
analysis.

The error of determined COMPASS distribution parameters and of the fits of the
relative experimental intensities were hard to quantify, but were estimated to be
within 0.1 fractions, therefore all shown values were rounded to one decimal place,
which is below the experimentally significant level.

3.1.6.1 Tests on Purified Human Proteasomes

First, tests on a minimal system with no contaminations were performed. Here,
purified human 20S Proteasomes were chosen as the test sample due to their well-
characterized sedimentation behavior. For all experiments, the standard tempera-
ture of 4◦C was used. The results of the three centrifugation runs and the intensity
distributions under different conditions are shown in figure 3.7 and denoted 1A, 1B
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and 1C. The run parameters were chosen due to the different position of the simu-
lated peak locations along the tube.

FIGURE 3.7: Human 20S Proteasome density gradient centrifugation
results for three different conditions. For 1A, 1B and 1C, SDS gels
where every extracted fractions was loaded as a separate lane in 1A
and 1C are shown on the left. In 1B, only fractions 1-25 were loaded.
The fractions showing the characteristic Proteasome bands are noted.
In the middle, normalized intensities at the fractions and on the right,
the Gaussian fit of the distribution and its parameters are shown. The

experiments were performed by Uma Lakshmi Dakshinamoorthy.

TABLE 3.1: Comparison of distribution parameters for the tests on
purified h20S Proteasomes

Experiment µExp µCowGraCE µCOMPASS σExp σCowGraCE σCOMPASS
1A 8.5 8.6 11.7 1.5 0.9 0.3
1B 23.9 24.2 27.2 1.3 2.2 1.6
1C 16.4 18.3 24.6 1 1.4 0.92

It could be seen that due to the top-to-bottom fractionation, the Gaussian fit agreed
less with the data in the higher fractions of the protein distribution. Nevertheless,
the quality of the fit indicated the assumed normal distribution of the intensity to be
valid.
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For 1A, 1B and 1C, simulations were performed in CowGraCE and COMPASS with
the same parameters. A particle density ρp = 1.4 was used in both softwares.

A comparison between experimental and the two simulated distributions are shown
in figure 3.10. The underlying µ and σ values are detailed in table 3.1. In all three
experiments, CowGraCE approximated the experimental data reasonably well in
both mean and standard deviation, while COMPASS showed larger deviations from
the experiment.

3.1.6.2 Tests on Realistic Purification Scenarios

To evaluate the algorithmic performance under realistic experimental scenarios that
include large scale contaminations, sucrose gradients at different steps of the purifi-
cation protocol of the human 20S Proteasome[163] were chosen as test subjects, as
well as a gradient from purification of the Drosophila 20S Proteasome. Results from
these experiments are shown in figure 3.8, denoted as 2A, 2B, 2C and 2D. Here, mul-
tiple tubes were pooled together on the gel as indicated in the figure, resulting in an
overall higher protein concentration. For all experiments, the SW40 rotor was used
due to practical considerations. Again, the temperature was 4◦C.

Clearly visible is the amount of contaminating protein in the applied samples that is
reduced during the purification process, as can be seen by comparing 2C to 2A. As
expected, a larger smearing out of the Proteasome distribution could be observed
that could potentially be related to higher overall protein concentration. Neverthe-
less, Gaussian distributions could be fitted to the determined intensities. Here, the
effect of the top-to-bottom fractionation on the intensity values of the higher frac-
tions of the distribution is less pronounced, presumably due to the larger overall
protein concentration. The largest determined standard deviation could be observed
in the first gradient of the Proteasome purification.

Again, simulations in both softwares with a particle density ρp = 1.4 were run.
The resulting distributions compared to the experimental one are plotted in figure
3.10 and the underlying distribution parameters are listed in table 3.2. Here, the
predicted peak values by CowGraCE were very close to the experimental data and
outperformed COMPASS in three out of four runs. The larger standard deviations
were underestimated by both softwares, with CowGraCE being slightly closer.

TABLE 3.2: Comparison of distribution parameters for the tests on
purification gradients

Experiment µExp µCowGraCE µCOMPASS σExp σCowGraCE σCOMPASS
2A 22.9 21.5 23.7 4.7 2 1.1
2B 19.6 19.8 22.2 2.5 1.5 0.8
2C 20.9 20.7 23.3 2.3 1.6 0.8
2D 20.9 20.8 23.3 1.7 1.9 0.8
3A 15 15.5 17.2 3.5 1.7 1
3B 15 16.8 18.8 4.1 1.7 1.2
3C 21.9 19.8 22.4 3.1 2.0 1.3
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FIGURE 3.8: Human and Drosophila 20S Proteasome density gradi-
ent centrifugation results at different purification steps. For 2A, 2B,
2C and 2D, SDS gels where extracted fractions 8-32 of multiple cen-
trifugation runs were pooled and loaded as a separate lane are shown
on the left. The fractions showing the characteristic Proteasome bands
are noted and marked with a green box for clarity. In the middle, nor-
malized intensities at the fractions and on the right, the Gaussian fit
of the distribution and its parameters are shown.The data was kindly

provided by Fabian Henneberg.

Next, experimental data of sucrose gradients during purification of an uncharac-
terized protein complex where only an approximate molecular weight of approxi-
mately 470 kDa was known were evaluated. The predicted Svedberg value for this
complex was 15. All three experiments again used the SW40 rotor and were per-
formed at 4◦C.

The experimental results of this, denoted 3A, 3B and 3C, are shown in figure 3.9.
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Contaminations were clearly visible on the gels and the determined normal distri-
butions showed a fairly large standard deviation.

FIGURE 3.9: Unknown protein complex density gradient centrifuga-
tion results. For 3A, 3B, and 3C, SDS gels where extracted fractions
8-32 of multiple centrifugation runs were pooled and loaded as a sep-
arate lane are shown on the left. The fractions showing the charac-
teristic protein complex bands are noted and marked with a green
box for clarity. In the middle, normalized intensities at the fractions
and on the right, the Gaussian fit of the distribution and its parame-
ters are shown. The experiments were performed by Uma Lakshmi

Dakshinamoorthy.

Once again, a particle density of ρp = 1.4 was used for the simulations whose re-
sults are listed in table 3.2 while the distributions are plotted in figure 3.10. Here,
the peak fractions were predicted reasonably well by CowGraCE, with COMPASS
being closer to the experimental data in 3C. Both softwares underestimated the large
standard deviations.

3.1.6.3 Statistical Evaluation of Prediction Results

While a sample size of n = 10 with two protein complexes as test subjects can hardly
be used to confidently perform statistical analysis, general trends could be analyzed
with the available data.
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FIGURE 3.10: Comparison of simulated Gaussian distributions to the
experimental data. The shown distributions were normalized to a
peak value of 1 instead of to a constant area and show the fraction
range in which experimental data points were localized compared to

the predictions by the two simulation algorithms.

To compare the prediction performance of CowGraCE to COMPASS, several metrics
were used. First, the fraction difference for peak fractional position and standard de-
viation, 4µ and 4σ , were calculated by subtracting the simulated values from the
fitted experimental data. From this, the descriptive statistical values median x̃ and
average x were determined. Due to negative numbers being present in4µ and4σ
values, the average of the absolute values, denoted |4|, was also calculated. These
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metrics for the test data are shown in table 3.3. For peak fraction prediction, the

TABLE 3.3: Calculated prediction metric results

Experiment 4µCowGraCE 4µCOMPASS 4σCowGraCE 4σCOMPASS
1A 0.1 3.2 -0.6 -1.2
1B 0.3 3.3 0.9 -0.1
1C 1.9 8.2 0.4 -0.1
2A -1.4 0.8 -2.7 -3.6
2B 0.2 2.6 -1 -1.7
2C -0.2 2.4 -0.7 -1.5
2D -0.1 2.4 0.2 -0.9
3A 0.5 2.2 -1.8 -2.5
3B 1.8 3.8 -2.4 -2.9
3C -2.1 0.5 -1 -1.8

x 0.1, |4|= 0.86 2.94 -0.87, |4|= 1.17 -1,63,|4|=1.63
x̃ 0.15 2.51 -0.85 -1.6

CowGraCE algorithm predicted the experimental data with an accuracy of within
one fraction on average, with deviations spread into both directions equally, while
the COMPASS algorithm deviated by a larger value on average into the positive di-
rection. It should also be noted that the peak prediction quality didn’t deviate much
between the isolated Proteasome experiments and Proteasome purification samples
containing more contaminations and larger overall protein concentrations. For the
unknown complex in 3A-C, larger differences could be observed for two of the three
experiments. This can be explained by the unconfirmed Svedberg value of the sam-
ple and the unknown interactions with sample contaminations.

Prediction of a the distribution’s standard deviations with the new CowGraCE ap-
proach also outperformed COMPASS, but showed more absolute differences to the
experimental data’s standard deviations than for the peak location prediction. Also,
the predicted standard deviations by CowGraCE for isolated Proteasome experi-
ments 1A-1C were more exact than for the purification samples 2A-3C whose de-
termined standard deviations were bigger overall. Large differences could again be
observed for the unknown complex. The data trends are visualized as boxplots in
figure 3.11.

FIGURE 3.11: Boxplots of CowGraCE and COMPASS prediction per-
formance metrics
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3.1.7 Run Condition Optimization

While simulating a result from a given set of parameters is useful, what has been
missing from density gradient centrifugation softwares is the ability to help the user
find the most suitable set of parameters for their experiment. Therefore, a run con-
dition optimization algorithm was developed that is outlined in figure 3.12 and pre-
sented in the following. In a nutshell, a brute-force approach is used to find the best
possible run conditions under the given constraints through repeated simulation of
centrifugation runs with varying parameters and successive result evaluation. To
minimize computational cost, the search space was reduced through user input and
pragmatic considerations. The algorithm is introduced in the following.

FIGURE 3.12: Activity diagram of the run condition optimization al-
gorithm. Shown are the nested loops for the brute-force search of the
reduced parameter space and the evaluation of parameter combina-

tions.

3.1.7.1 Invariable User Inputs

Practical considerations dictated that a subset of the parameters needed for simula-
tion needed to be held immutable in respect to the user input:

1. T: Proper temperature is essential for ensuring protein stability during the run
and therefore needed to be invariable.
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2. Rotor, Vgrad and Vsamp : As only a limited amount of sample is available to the
experimentalist, the suitable rotor needed to be chosen beforehand.

3. ρp : Being a property of the protein at hand, the particle density is usually kept
at the standard value of 1.40g/cm3.

4. Osmolyte type: Due to biochemical considerations, the kind of osmolyte to be
used should not be varied.

Furthermore, the number of fractions or the fraction volume and a Svedberg value
of interest needs to be defined with up to four Svedberg values belonging to con-
taminants being optionally provided.

3.1.7.2 Parameters to Optimize Based on User Constraints

The remaining mutable parameters, whose search space is further reduced through
user defined thresholds, are the ones to be optimized and are listed in the following:

1. trun : Here, a lower and an upper threshold were deemed useful due to schedul-
ing considerations of the long centrifugation times of usually 16 hours.

2. ctop and cbottom : Again due to biochemical considerations, a maximum thresh-
old for both top and bottom osmolyte concentration values was introduced.

3. vrotor : While no thresholding from the user side was deemed useful, rotor
speed is inherently constrained by the rotor’s max speed.

3.1.7.3 Precalculations and Initialization

As the used rotor, sample volume and osmolyte type were invariant, the correspond-
ing constants step size, tube radius and sample length are calculated once in the be-
ginning to avoid repetitive calculations at the beginning of every simulation.

Next, the interval that defines an optimal fractional position for the S20,w value of
interest is calculated based on empirical considerations:

f racopt =

{
n f rac ∗ 1

2 if ncontaminants ≥ 1
n f rac ∗ 2

3 else
. (3.15)

The tolerance interval is then defined as[
f racopt −

n f rac

10
, f racopt +

n f rac

10

]
. (3.16)

Under the assumption that a short runtime and a low osmolyte concentration is
usually desirable, the starting value for trun and ctop are initialized to the defined
minimum, while vrotor is set to vmax.

3.1.7.4 Positional Interpolation and Pre-Check

Linear interpolation between the two adjacent fractions holding the two S20,w values
smaller and bigger than Ssample,20,w, as described in 3.1.3, yields its predicted position
on the gradient. Only simulations where the Ssample,20,w is predicted at a point within
the tolerance interval 3.16 are considered acceptable conditions and are then further
evaluated through calculation of an optimization score.
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3.1.7.5 Optimization Score Calculation

The goal of the optimization score α is to provide a metric to compare the quality of
different simulations that passed the pre-check. Its value is normalized to be within
0 and 1, with 1 being the best possible simulation. α is calculated based on the best
possible results for a given set of restraints in an isolated fashion for every simu-
lation. Compared to the alternative approach of relating every simulation to one
another, the approach used here has the advantage of signifying the general feasibil-
ity of a density gradient centrifugation experiment.

If only one S value is provided by the user, the distance from the optimal position
| f racpeak − f racopt| in relation to the distance and the calculated standard deviation
is used to calculate the optimization score:

αiso =

(
1− | f racpeak− f racopt|

(n f rac/10)

)
+
(

1− 2·σ
n f rac

)
2

. (3.17)

If two or more S values are supplied by the user, the positions of the calculated
distributions can be taken into account. Due to the unreliability of the standard
deviation prediction, the positions of the closest peaks on the left and the right of the
peak position, µle f t and µright, of the S value of interest are calculated as coefficients
of the maximum possible distance in the given direction:

ple f t = 1− (
µle f t

µsamp
) ,

pright = 1− (
µright

n f rac − µsamp
) . (3.18)

The width of the predicted standard deviation is then weighted down due to its un-
reliability and combined with the peak distance coefficients to yield the final score:

αmix =
9 · ple f t + 9 · pright + 2 ·

(
1− 2·σ

n f rac

)
20

. (3.19)

α is rounded to two decimal places in order to not overinterpret the accuracy.

3.1.7.6 Looping and Abortion Criteria

If Ssample,20,w passes the pre-check, it is added to the list of found solutions together
with its optimization score and optimization metrics. If the non-exhaustive mode is
chosen, the algorithm is aborted once the specified amount of solutions is found. If
either the abortion criteria is not reached or exhaustive mode was chosen, the four
parameters are changed one at a time in nested loops.

ctop and cbottom of the tube are incrementally tried out first. As the next level, vrotor
is decremented in steps of 500 rpm, which for the three considered rotors corre-
sponds to not more than 120 possible values. Last, trun is increased in steps of 10
minutes. Assuming that runs will reasonably last between 6 and 48 hours, the max-
imum amount of possible values is therefore 252. The increment/decrement steps
for time and rotor speed were empirically chosen in agreement with users.
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3.1.7.7 Computational Complexity

The possible simulation parameters are combinatorial, so the product of the maxi-
mum values yields the upper limit for run simulations the optimization algorithm
has to perform and check. Without any constraints, the maximum number of os-
molyte combinations would be:

nComb.,Osmolyte =
30

∑
i=2

i · (80− i) = 11426 . (3.20)

This naive calculation is based on the supported minimum (5%) and maximum
(30%) values for the top concentration and minimum (20%) and maximum (60%)
for the bottom concentration from table A.1 and A.2, only considering integer val-
ues and assuming a minimum concentration distance of 15 while ignoring outlier
values from the tables. Assuming a step size of 1 for vrotor and trun, the unreduced
search space would be

maxunreduced(nsim) = nComb.,Osmolyte ·max(vrotor) ·max(trun) ≈ 2 · 1012 . (3.21)

For a given rotor, the average amount of available gradients for the two currently
supported osmolytes is 14. Therefore for the reduced space, the maximum amount
of simulations is reduced to

max(nsim) = nComb.,Osmolyte,red. ·
max(vrotor)

500
· max(trun)

10
≈ 420000 . (3.22)

The complexity reduction is therefore already ≈ 5 · 106 on average before taking
into account thresholds supplied by the user, which makes the brute-force approach
computationally feasible.

The computational complexity is again linearly dependent on the number of frac-
tions and dependent on the number of possible conditions to be checked. This de-
pendency is shown in figure 3.13. Due to the optimization algorithm judging every
simulation result in an isolated manner, the algorithm has a linear running time of
O(n · m) , where n is the number of fractions and m is the number of conditions to
simulate. As to be expected, the runtime is increased majorly compared to a singular
simulation.

3.1.7.8 Simulation Optimization Results

Exploring the whole parameter space of the optimization was not feasible, therefore,
the previously used 20S Proteasome iand the SW40 Rotor was again chosen as the
test sample. First, it was tested how many acceptable conditions where the sam-
ple is predicted to peak within the tolerance interval defined in 3.16 could be found
depending on the number of possible conditions. Here, sucrose was chosen as os-
molyte and thresholds were set to the highest values in order to allow all possible
combinations. Starting from the mean allowed runtime of 360 + 2880−360

2 = 1620
minutes, the minimum allowed time was decreased while the maximum allowed
time was increased, both in steps of 126 minutes for every data point. The number
of found good conditions was then determined for the 20S sample as well as for 15S
and 25S samples, as plotted in figure 3.14. A quasi linear dependence of found good
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FIGURE 3.13: Runtime of the optimization algorithm depending on
input size. Shown are measurements of runtime depending on the
number of conditions allowed by the user-defined thresholds, yield-

ing a linear relationship.

FIGURE 3.14: Found good conditions for single S values depending
on number of conditions. Simulations were performed in a SW40
rotor with a sample volume of 0.1ml, ρp=1.4 and non-thresholded
sucrose concentrations while the possible runtimes were increased

equally in both directions.

conditions on the number of possible runtimes could be observed for all three S val-
ues.

Next, optimization simulations were run with a 20S sample and 15S+25S contam-
inants and again with 5S+35S contaminants. Sucrose was again chosen as the os-
molyte with no concentration thresholds. The runtime constraints were modified
for every data point as for the previous simulation. The biggest found peak distance
to both sides and the calculated optimization score for both optimization scenarios
are shown in figure 3.15.

It can be seen that in this particular scenario, the increased number of possible con-
ditions doesn’t result in overall bigger separation of the species, which here has an
upper limit based on the S value difference between the species reflected in the opti-
mization score. A bigger parameter space resulting in more conditions with the same
optimization score can still have advantages based on user preferences concerning
osmolyte concentration and runtime.
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FIGURE 3.15: Peak distance and optimization scores for two opti-
mization simulations with different number of conditions. One simu-
lation was run with a 20S sample to be separated from a 15S and a 25S
contaminant, the other with a 20S sample to be separated from a 5S
and 35S sample. Shown are the best optimization score and the maxi-
mum fractional distance for different number of conditions that were
tested. Simulations were performed in a SW40 rotor with a sample
volume of 0.1ml, ρp=1.4 and non-thresholded sucrose concentrations
while the possible runtimes were increased equally in both directions.

3.1.8 CowGrace Frontend

The CowGrace frontend was developed with a focus on convenience and usability.
CowGraCE consists of two tabs: One holds the main menu with four different func-
tionalities and the second holds the result display that is initiated the first time a
simulation is performed or loaded after the software is opened. The different parts
of the GUI are shortly explained in the following.

3.1.8.1 Rotor Management

To ensure extendability of CowGraCE, a feature to add and remove swing-out rotors
was implemented. The user interface of this is shown in fig. 3.16. The rotor data is
saved as a human readable JSON file in the "share" subfolder of the application that
can be transferred to another computer or modified by hand, if so desired. The
software is equipped with a standard list of rotors based on the available models in
the Department of Structural Dynamics.

3.1.8.2 Result Loading

Previously saved simulation or optimization results (see 3.1.8.5) can be loaded from
the corresponding option in the main menu as shown in fig. 3.16. The software
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keeps track of the last five saved result files and displays them, along with an option
to open files not shown. Once a file is selected, the software opens the result display
and the loaded parameters are entered as simulation settings.

FIGURE 3.16: CowGraCE main window. Shown in the middle is the
main menu from which the result loading widget (bottom left), the
rotor management widget (bottom right) and the simulation and op-

timization modes (top left and top right) can be started.
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3.1.8.3 Simulation Mode

The basic simulation mode requires the user to provide all needed values. These
are separated in two categories, general and centrifuge settings. General settings
are temperature, particle density, osmolyte type, osmolyte top and bottom concen-
tration and a S20,w value of interest whose predicted distribution will be displayed
in the result window, which can either be entered directly or predicted from an en-
tered molecular weight by formula 2.59. Centrifuge settings consist of temperature
and rotor related settings that include gradient volume, sample volume, centrifuge
speed, run time and number of fractions which can either be entered as a number or
as volume per fraction. Based on the rotor selected from the drop-down menu, the
input fields are restricted to valid values based on the rotor information.

Furthermore, an option to calculate rotor settings based on a rotor’s k-factor was
implemented. The k-factor is a measure of rotor efficiency which is defined as

k =
2.533 · 105 · ln( rmin

rmax
)

( rpm
1000 )

2
. (3.23)

Through the k-factor, runtimes necessary for the same sedimentation behavior in
two rotors can be calculated through the relation

t1

k1
=

t2

k2
. (3.24)

This feature is useful if scaling up a purification and switching to a bigger rotor, for
example. Here, three modes are offered:

1. Calculate Runtime from known rpm: The runtime of the current rotor is cal-
culated from the selected old rotors’ runtime and rpm and the current rotor’s
rpm.

2. Calculate rpm from known runtime: The rpm of the current rotor is calculated
from the selected old rotors’ runtime and rpm and the current rotor’s runtime.
Due to the maximum rotor speed, it is possible that no valid value can be
found, in this case, -1 is entered into the rpm field.

3. Find closest rpm and runtime from runtime preference: In this newly devel-
oped mode, there are two unknown variables that are to be found. To solve
this problem, the user can enter a preferred runtime and specify whether it’s
to be treated as the minimum, the maximum or neither. Starting at the pre-
ferred runtime, it is evaluated whether a rotor speed within the rotor’s speed
limits can be found. The simple algorithm for this is shown in fig. 3.17.

Once all values are set, clicking the corresponding button starts the simulation, cre-
ates the result window if needed and switches to it.

3.1.8.4 Optimization Mode

In optimization mode, a slightly different user input is needed. General settings now
include max top concentration and max bottom osmolyte concentration, and up to
four contaminating S20,w values in the sample that can be entered. Also, the user can
choose how many suitable conditions should be displayed later and whether the
search should be exhaustive or be aborted after the amount of conditions is found.
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FIGURE 3.17: Simple algorithm for finding the closest runtime.
Shown is the bidirectional search, for the initial runtime set to maxi-
mum or minimum a one directional search is employed. The runtime
increment/decrement was chosen to be 10 minutes. The maximum

runtime of 48 hours was an empirically chosen value.

Centrifuge settings now include min and max runtime and have no user input for
rpm.

3.1.8.5 Result Display

In the result display, predicted protein distributions along the fractions are shown
together with multiple customization options and information. Up to 5 S20,w values
can be chosen to be displayed along with their particle distribution as fraction num-
ber against relative intensity, also the optimal peak position based on equation 3.15
is shown. The fractionation direction can be set which inverts the graph. The plot
can be changed to display fraction number against peak S20,w values at the fractions.
Also, the display can be saved as an image and the data can be saved as a JSON file.
The interface of the result display for simulation with set parameters is shown in fig.
3.18.

In optimization mode, the display usually holds more than one simulation result.
The run conditions that were judged as suitable can be sorted by the user based
on their optimization score, distance from optimal position(in descending manner),
maximum top and bottom osmolyte percentage and runtime (in ascending and de-
scending manner). Also, the optimization metrics are displayed.

3.1.9 CowGraCE Backend

The backend of the cross-platform object oriented software is split into two parts:
The dynamically linked simulatorLibrary that handles all algorithmic operations
and the CowGraCE application itself that handles GUI aspects and data manage-
ment. An overview over the class relations is given in figure 3.19. The cowGraceAp-
plication namespace is shortened to CGA in the following, and the simulatorLibrary
namespace is shortened to SL.

The CGA::GraceMainWindow spawns all the other widgets and facilitates commu-
nication between them. The CGA::RotorManagementWidget utilizes a std::vector
of a rotor struct to save, load and pass the rotor data to the other widgets. The
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FIGURE 3.18: Result display for a simulation with set parameters. A:
S20,w values selection, B: Important run parameters, C: Display area
of h chosen distributions, D: Fractionation direction choice, E: Save
buttons and switch between F and C, F: Display of peak S20,w values

at the fractions.

CGA::SimulationsOptionsWidget holds different options depending on the simula-
tion mode and stores the options that are returned to the CGA::GraceMainWindow
once simulation start is requested in an SL::ArgumentContainer, which is a mod-
ified parameter object from the CowLib. The CGA::GraceMainWindow then cre-
ates a CGA::SimulationDataView object that represents the result display. Also, a
CGA::SimulationHandlerThread is spawned with the simulation options that, as the
name indicates, runs in a thread separate from the GUI thread. This has the advan-
tage that the GUI is still responsive while calculations take place, and also, a crash
in the calculation thread doesn’t result in shutdown of the whole software. In the
CGA::SimulationHandlerThread, either a SL::Simulator or a SL::ConditionOptimizer
object is spawned with the simulation options that return a vector of a specialized
struct that holds simulation results and optimization metrics which are left empty in
case of a simple simulation. This struct is then sent to the CGA::SimulationDataView.
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The SL::ConditionOptimizer and SL::Simulator implement the previously introduced
algorithms in a speed-optimized manner, relying solely on std::vector and struct ob-
jects. Based on the calculation speed, no parallelization was deemed necessary to be
implemented.

The CGA::SimulationDataView initializes a primitive data model with the results,
thus implementing the Model-View-Controller (MVC) programming concept. From
the held peak S20,w values and the estimated standard deviation values, particle dis-
tributions of the user-decided S20,w values of interest are calculated and displayed
dynamically.

FIGURE 3.19: Diagram of CowGraCE architecture in UML 2 notation.
Shown are the CowGraCE application, the dynamic simulatorLibrary

and their most important classes and relations.
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3.2 Micrograph Quality Checker

The Micrograph Quality Checker is a preprocessing tool that helps users process
their data in parallel to recording. As of now, the MQC generates training data for
a machine learning based approach for image classification through analysis of the
user’s binary decisions on the quality of a micrograph and several developed metrics
for image quality that are calculated during processing. An early prototype of the
software was previously implemented by Dr. Boris Busche. The goal of this project
apart from the live preprocessing aspects was to test the validity of the SVM classi-
fication methodology with different image metrics and to test on selected datasets
whether a general model for good and bad images can be developed or whether a
live training of a model for every dataset is necessary. For both of these cases, the
minimum amount of data necessary was also to be investigated.

The MQC acts as the new entry point for the COW ecosystem. It continuously de-
tects newly acquired data and presents real space image, the power spectrum and,
if available, CTF parameters to the user who can then make a decision whether this
micrograph should be retained for further processing or not. Due to the high com-
putational demand of working with large micrographs, the software was designed
to be run on a large computer cluster that has access to data recorded by the micro-
scope. Because of the reliance of the algorithmic approach on the user’s decisions
and the data pipeline, the backend of the software is presented first, followed by the
workflow of processing that is reliant on the software architecture. Afterwards, the
machine learning based classification method and its results on chosen datasets is
described, as well as its generalization capabilities.

The functional parts of the software are shown in figure 3.20. Currently, the SVM
based prediction of image judgments is performed externally, while the data that
comes from user decisions and from the background calculations is saved as files.

3.2.1 MQC Backend

The MQC software architecture consists of multiple objects that communicate infor-
mation between one another. A schematic class diagram is shown in figure 3.21.
The main principle is as follows: The mqc::Sniffer searches for data unknown to it,
starts calculation jobs, sends information to the mqc::GraphCleanWidget that then
displays images and metainformation about the micrograph and awaits user deci-
sions. Once a user gives the finish signal, the judged micrographs are then separated
based on their judgment.

3.2.1.1 Main Window

The mqc::mainWindow class acquires input parameters from the user, starts all in-
dependent operations and facilitates communication between the threads. The nec-
essary parameters are:

1. Source Folder: The folder where the recorded data is deposited.

2. Output Folder: The folder where temporary files and the output location of
the classified micrographs are stored.

3. File type: The type of file that the mqc::Sniffer searches for. As the files need to
be loaded into a cow::Data object, only the supported file formats be chosen.
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FIGURE 3.20: Overview of the Micrograph Quality Checker. Shown
are the different functional components and the interaction between

them.

FIGURE 3.21: UML2 class diagram of the MQC backend.
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4. Result loading: If chosen, a result file, if available in the output folder, will be
loaded.

5. GCtf results loading: If chosen, GCtf results for every micrograph are loaded.

After receiving the start signal from the user, a parameter sanity check is performed
for the parameters and upon passing, the mqc::Sniffer, that handles the live process-
ing, receives the parameters and is initialized. The mqc::GraphCleanwidget is also
initialized. If a valid result file could be detected and result loading was chosen by
the user, this widget receives a signal to load the file, while the sniffer receives a
signal to not start sniffing before it is passed the list of files that were successfully
loaded by the mqc::GraphCleanWidget. The inner workings of result files are further
elaborated on in section 3.2.1.4.

3.2.1.2 Live Processing

The live processing takes place in a separate background thread in order to not block
the GUI thread. Upon initiation, the mqc::Sniffer creates the following folder struc-
ture in the output folder:

1. Good/ : The folder where the micrographs classified as good are moved to

2. Bad/ : The folder where the micrographs classified as bad are moved to

3. SmallPictures/ : The folder where the small pictures of the input data is stored.
This is elaborated on in the following.

Afterwards, the data sniffing operation is initiated. If no previous results were
loaded, an empty list of known images is created. If results were loaded, the re-
ceived file list is used as the starting point. The sniffing thread then acquires the list
of files contained in the source folder, filters for the chosen file type and compares
the files to the list of known files. If the file is not known, its name is saved.

It should be noted that for Titan Krios images that are recorded as frames which need
to be aligned, an implementation of the MotionCor2 algorithm[210] was deemed de-
sirable. This was attempted in collaboration with Dr. Boris Busche, but at the time
of writing had not been completely finished despite showing promising results with
small tweaks resulting in slightly better contrasts compared to MotionCor2. Simi-
larly, implementation and improvement of the GCtf algorithm[208] within the COW
framework could not be completed due to time constraints. Therefore these pro-
cessing steps, if desired by the user, for now can only be done through a bash script
written by Karl Bertram in parallel to the sniffing operation. To accommodate this,
the sniffer takes into account whether a log and a result file produced by GCtf is
available for a given micrograph before declaring it as known and including it in
a calculation job. Due to the result file being continuously written to, an empirical
value of 10 seconds was chosen for the difference between time of being last modi-
fied and declaring a file ready to be processed further.

After a list of files that are to be processed further is acquired, it is divided up into
calculation jobs that each hold up to 10 filenames. These jobs are passed to a thread
pool that launches the jobs in first in, first out (FIFO) order when a CPU becomes
available. After the jobs are launched, the mqc::sniffer starts its sniffing operation
again after a sniffing interval timeout that can be chosen by the user has passed.
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FIGURE 3.22: Comparison of original image to contrast enhanced im-
age. Shown on the left is a cryo micrograph with 20S Proteasomes
and on the right the resulting image that is presented to the user with
clearly increased contrast. Both images are shown in the same size for

clarity.

3.2.1.3 Calculation Jobs

A mqc::Job, each running in a separate thread, has the goal of creating a contrast-
enhanced, size-reduced image and a power spectrum for every micrograph as well
as optional CTF parameter determination.

First, the micrographs are loaded from the list of filenames. Then, depending on
whether GCtf data is to be used or not, a power spectrum is either loaded from there
or calculated from the micrograph. In the latter case, a segment-averaged power
spectrum to achieve better contrast is created. From this, a boxcar filter smoothened
power spectrum is subtracted as a form of background correction. Lastly, the power
spectrum is convoluted with a natural logarithm function to increase visibility. The
micrographs in real space are normalized, histogram equalized, outlier adjusted and
coarsed to 512 pixels x 512 pixels. In case of K2 images, the images are cropped to
square size. The results of this procedure are shown in figure 3.22.

The real space images and power spectra are then saved in the SmallPictures/ folder
in the PNG format and the filenames are sent back to the mqc::sniffer that sends
them to the mqc::GraphCleanWidget, which presents them to the user. The advan-
tage of saving coarsed images to the hard drive lies in the ability to reload them at
any given time and to avoid straining the memory demands with the original size
micrographs. Only sending file names instead of the images themselves reduces
the computational load. In case of available GCtf data, the log files are parsed to
yield determined 4du and 4dv values (see equation 1.16) that signify the present
astigmatism in the micrograph’s power spectrum and the resLimit parameter which
describes to which resolution the CTF could be fitted and therefore can be used to
approximate the realistically maximum achievable resolution for particles from the
micrographs. These parameters are then also sent to the mqc::GraphCleanWidget
via the mqc::Sniffer.

Then, several statistical image metrics are calculated from the real space micrograph
and the power spectrum that are later used for the SVM classification. These metrics
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are explained and evaluated in detail in section 3.2.3 and saved in a JSON file in the
output folder.

3.2.1.4 User Interaction

The user interaction is handled in the mqc::GraphCleanWidget, which is spawned
as soon as sniffing is initiated. The main function of this widget is to display contrast
enhanced images and power spectra to the user who can then judge them as good or
bad. Once a decision is made, the micrograph is marked according to the judgment
and the next image is displayed, bearing some resemblance to popular dating apps.
Navigating between pictures in both directions is also possible.

When starting from scratch, this widget receives data in form of filenames of pro-
cessed micrographs and their power spectra that are located in the SmallPictures/
folder as well as optional CTF parameters and stores them internally. The data is
ordered chronologically by arrival time and updated dynamically. In order to min-
imize system requirements while avoiding delays for the user, 10 pictures in each
direction of the current position in the image list are cached. Whenever the current
image position is changed, the cache’s contents are updated.

In the background, the mqc::saveGraphClean class is constantly updating a result
file that is saved as a JSON document in the output folder. This threaded saving
was deemed necessary due to the software usually running on a computer cluster
that the user connects to, which can lead to spontaneous aborts. Another layer of
data loss prevention is the usual approach of creating a backup file before writing
to the original one. After having updated the result file, the mqc::saveGraphClean
class checks the mqc::GraphCleanWidget every 30 seconds if new data to be written
is available. The result file not only saves user decisions on micrographs, but also
measures the time that the user spends on a micrograph between image display and
occurred judgment.

In case of a result file being found in the output folder during initiation and the cor-
responding loading option being selected by the user, the results can be loaded by
the widget, including previous user decisions as long as the PNG images in the cor-
responding folder are available. If so desired, the images can be sorted according to
their quality judgment as performed by the user.

When the finish signal is initiated by the user, the micrographs corresponding to the
judged images are then moved to the subfolder for either good or bad images.

3.2.2 MQC Frontend

The starting screen of the MQC is shown in figure 3.23. Here, a user can input the pa-
rameters detailed in the previous section and commence the live processing through
a start button. Furthermore, in a settings window, common options such as maxi-
mum amount of processors to use can be defined. The micrograph judgment process
can be done via keyboard with the option to configure the keys associated with the
four possible operations (Next, previous, good, bad).

As soon as live processing is initiated, the screen switches to the so called Graph-
Clean window that is also shown in figure 3.23. As the user’s decision are used
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for the supervised learning approach, unnecessary distractions were avoided in the
GUI. The user is shown a picture of a micrograph and of the power spectrum or the
power spectrum together with the fitted CTF spectrum. In the ladder case, the deter-
mined CTF parameters are also shown above the pictures, together with the current
filename. A progress bar shows the judgment progress and informs the user about
the amount of processed micrographs, while the log area displays information about
the current state of the live processing unit.

3.2.3 Image Metrics

As described in section 3.2.1.3, several statistical metrics are calculated for every im-
age during a calculation job. An overview over the metrics and the acquisition pro-
cedure is given in figure 3.24. The goal of these calculations is to accurately describe
the quality of a recorded micrograph in the metric space to understand a user’s de-
cision behavior quantitatively. As the power spectrum of a micrograph contains
information about the frequency-dependent signal of all particles on a micrograph
which is highly relevant for high-resolution structure determination, a large share of
metrics are derived from Fourier space information.

From a loaded micrograph, a segment-averaged, logarithmized power spectrum is
calculated to increase the signal. The first two used metrics are its pixel value mean
µPS and variance σ2, calculated according to formulas 2.1 and 2.4. Afterwards, the
power spectrum is transformed into cylindrical coordinates, which results in an im-
age with all values at an equal distance from the center in one line, representing
the signal at a spatial frequency. From this, other metrics are derived: The variance
for every of the nl lines is calculated and the maximum line variance max(σ2

l ) de-
termined, as well as the sum of variances sum(σ2

l ). Treating every variance as an
input value, the variance of the sum of line variances and the mean of the sum of
line variances are calculated by means of equation 2.5, denoted σ2

sum and µsum. Last,
the deviation from the mean, denoted dmean, is determined as

dmean =

abs
(

max(σ2
l )−

∑σ2
l

nl

)
√

σ2
sum

. (3.25)

In real space, the image is first subjected to a boxcar filter and then to a DoG filter.
This procedure enhances low resolution information and, as can be seen in figure
3.25 accentuates image defects and contaminations. The variance of the resulting
image is then calculated to be used as an image metric and denoted σ2

Box,DoG.

If available, the CTF parameters4du and resLimit were also considered image met-
rics and used as such. Out of the two defocus values, the defocus difference was
calculated as this metric holds information about the astigmatism of the micrograph.
As the last metric, the judgment time of the user in milliseconds was used. It should
be noted that this metric can obviously only be used to classify micrographs that
have been visually inspected by a qualified user, but through possible correlation
to other metrics could serve as an indicator of whether the employed metrics are
relevant for a given made decision.
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FIGURE 3.23: MQC GUI. Shown are the MQC main window that
servers as the starting screen in the top half and the MQC GraphClean
GUI in the bottom half. A: Start live processing button, B: Parameter
area, C: Opened settings window, D: Progress bar and accept/reject
buttons, E: Log display area, F: CTF parameter and file name display,
G: Micrograph display, H: Power spectrum display, in this case with

CTF fit included, J: Control buttons to cancel or finish

3.2.4 SVM Data Analysis

Based on data acquired through the manual judgment of complete datasets in combi-
nation with acquisition of statistical image metrics in the MQC, the machine learning
analysis of chosen datasets is presented in the following sections. First, the selected
datasets are introduced, followed by data preprocessing, model training and tuning
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FIGURE 3.24: Statistical image metric acquisition procedure. Shown
are the steps to acquire the statistical metrics for real space and
Fourier Space metrics. Calculated metrics are shown in green boxes.
The original micrograph contains a Spliceosomal complex sample

and contains crystalline ice.

methodology and results. Lastly, the investigation into the generalization capabili-
ties of the SVM approach are presented.

The data analysis was done in RStudio with custom written R scripts utilizing the
library Dplyr[200] for data cleaning and manipulation, the library Caret[110] for
correlation analysis and the library e1071[121] for SVM modeling. The latter was
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FIGURE 3.25: Effects of the Boxcar and DoG filter procedure. Shown
are 55 cryo micrographs containing Spliceosomal complexes before

and after the filter procedure.

chosen from the many SVM libraries due to presenting a R interface for the high-
performance and award-winning C++ SVM library libSVM [31] which could easily
be integrated into the COW framework at a later date.

3.2.4.1 Datasets Chosen for Modeling Analysis

Three datasets, which are summarized in table 3.4, were selected for further analysis.
Two contained well-characterized protein complexes and were recorded on a Titan
Krios microscope under usage of cryo preparation and different cameras, while the
last dataset contained a CM200 negative stain screen of a protein complex denoted
Protein X. Every dataset had a different amount of overall images and different qual-
ity judgment rates and was rated by the person working on the specific protein com-
plex, ensuring judgment reliability. The Titan Krios datasets were rated by the same
person. Exemplary micrographs that were rated good and bad for datasets A and B
are shown in figures B.1 and B.2 in the Appendix.

TABLE 3.4: Overview of datasets selected for machine learning anal-
ysis

Dataset A Dataset B Dataset C
Protein Complex Spliceosomal B Complex 20S Proteasome Protein X

Microscope + Camera Titan Krios+ Falcon III Titan Krios + Gatan K2 CM200
Magnification 120k 160k 88k

Pixelsize 1.16 0.826 2.5
Frames 20 60 -

Preparation Cryo Cryo Negative Stain
Foil Yes Yes Yes

CTF information Yes Yes No
Number of judged images 8870 2262 1000

Share of images judged as good 62.6% 74.3% 35.6%
Rater ID 1 1 2

To estimate the reliability of the training data sets, rater 1 was asked to re-rate 262
random images from dataset B, corresponding to around 12% of the dataset, which
were then compared to the previous ratings, as shown in table 3.5.

TABLE 3.5: Confusion Matrix of Intra-Rater Consistency

Bad in first Rating Good in first Rating
Bad in second Rating 52 17

Good in second Rating 6 187
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The calculated κ from table 3.5 was 0.82, which signifies excellent agreement by
both thresholds proposed in the literature. Generalizing based on this sample, the
datasets were assumed to be reliably rated. The rating accuracy of 91.3% was re-
garded as a reasonable estimate of the human error or inconsistency.

3.2.4.2 Data Preprocessing

First, the calculated statistical metrics were combined with the user decisions and
decision time, which were capped at 100 seconds.

Then, a correlation matrix (CM) was calculated from the statistical metrics, the CTF
information (if available) and the decision times. Metrics with a maximum Pear-
son Correlation Coefficient(PCC)>0.75 were iteratively removed from the dataset as
described in section 2.2.3.1. Then, the logarithm of the eliminated metrics was cal-
culated to see whether rescaling would lessen their correlation to other metrics. The
correlation matrix was then calculated again with the logarithmized metrics, again
iteratively removing metrics with PCC>0.75 from the dataset. The complete first and
second correlation matrices for all three datasets are shown in appendix B. Elimina-
tion results are shown in table 3.6. Furthermore, it was seen that when including the
position of the micrograph in the matrix, no strong correlation to any other variable
could be seen for any of the three datasets, which enabled random partition of the
labeled data in the further analysis steps.

TABLE 3.6: Removed metrics from the datasets based on correlation
values. Listed are the eliminated redundant metrics after each of the
correlation matrix determination steps and the amount of metrics left

for SVM model training.

Dataset A Dataset B Dataset C
Removed in CM1 max(σ2

l ) , sum(σ2
l ) , µsum max(σ2

l ) , sum(σ2
l ), µsum max(σ2

l ) , sum(σ2
l ) , µsum , σ2

Removed in CM2 log10(max(σ2
l )) , log10(µsum) log10(sum(σ2

l )) , log10(µsum) log10(sum(σ2
l )) , log10(µsum) , log10(σ

2)
Number of Metrics after CM2 10 10 6

For all three datasets, only the power spectrum statistical metrics correlated highly
with one another, which could be expected due to their non-independent determina-
tion. Lastly, the metrics were each normalized to a range between 0 and 1 to ensure
no weighting bias due to the SVM approach taking into account the absolute value
distance.

3.2.4.3 Hyperparameter Tuning and Performance Evaluation

For each dataset, the approach of randomly separating the dataset into 70% training
data, on which an optimized model is trained, and 30% testing data, on which the
performance of the model is evaluated, was chosen, as illustrated in figure 3.26.
This was repeated 10 times for each dataset to quantify the effects of the random
separation into the two sets. While random, each selection was checked to have
both images classified as good and images classified as good in both training and
testing data. Then, the hyperparameters were tuned on the training data with an
adaptive grid search. In this analysis, the radial Gaussian kernel function was used
in SVM modeling, for which the free parameter γ needed to be tuned in addition to
the general SVM cost parameter C.
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FIGURE 3.26: Illustration of the SVM classification workflow. After
splitting the data into training and test set, 5-fold cross-validated grid
search is performed and the resulting model’s performance is evalu-
ated on the test set. This procedure was repeated 10 times for every

dataset.

Hyperparameter tuning was done through an adaptive grid search with 5-fold cross-
validation. The grid search is necessitated through the interdependence of the pa-
rameters. For the tuning search range, C ∈ [10−1, 104] and γ ∈ [10−4, 101] were used.
Exemplary visualizations of the grid search results are shown in figure B.3 in the
Appendix. For all three datasets, different hyperparameter combinations proved to
be optimal for minimizing the RMSE, as shown in table B.7. The lowest RMSE was
observed for dataset B.

Then, the optimal hyperparameters were used for training a SVM model on the
whole training data, which was subsequently used to predict the testing data. The
confusion matrices of the average prediction results and their standard deviation on
all three datasets are shown in table 3.7. These values and all confusion matrix val-
ues in the following were rounded to integers.

It could be observed that the prediction accuracy for dataset B was the highest and



3.2. Micrograph Quality Checker 107

TABLE 3.7: Prediction performance of the hypertuned models on the
testing data of each dataset. Listed are the rounded average values

and their standard deviation, both rounded to integers.

Dataset A Label - Label +
Predicted - 505±16 115±11
Predicted + 513±19 1528±28

Dataset B Label - Label +
Predicted - 113±5 9±4
Predicted + 63±6 494±10

Dataset C Label - Label +
Predicted - 161±6 43±7
Predicted + 36±7 61±6

the prediction accuracy for dataset C was the lowest on average. The relevant per-
formance metrics, as described in section 2.2.3.2, were calculated from the confusion
matrices, rounded to two decimal places. They are listed in table 3.9 and are visual-
ized for easier comparison in figure 3.27.

TABLE 3.8: Average performance metrics of the hypertuned mod-
els of the three datasets. Listed are the average values of the rates
and their standard deviation, both rounded to two decimal places.
These values signify how accurate the predictions are overall(Acc),
how well negative and positive images are recognized(FNR, FPR)

and how accurate a positive or negative prediction is(FPR, FNR).

Dataset A Dataset B Dataset C
Acc 0.76±0.01 0.89±0.01 0.74±0.03
FPR 0.5±0.01 0.36±0.03 0.18±0.03
FNR 0.07±0.01 0.02±0.01 0.41±0.05
NPV 0.81±0.02 0.93±0.03 0.79±0.03
PPV 0.75±0.01 0.89±0.01 0.63± 0.06

FIGURE 3.27: Performance metric comparison for the SVM models
trained on the three datasets. Shown are the mean values of the accu-
racy rate Acc, the false negative rate FNR, the false positive rate FPR,
and the positive and negative predictive values, PPV and NPV, each
on a scale of 0 to 1. Also shown are the determined standard devia-

tions from the 10 independent runs as error bars.

Due to the main objective of the MQC being the elimination of bad micrographs that
negatively influence the subsequent data processing workflow, the most relevant
performance metrics are, apart from the overall accuracy Acc, the false negative rate
FNR that signifies the share of bad images not recognized as bad, where the de-
sired value would be zero, and specially the positive predictive value PPV, where
the desired value would be 1, that describes the share of true positive images in
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the images that were predicted as good. The highest Acc, PPV and NPV values on
average were observed for dataset B, while dataset C showcased the lowest FPR,
which means a larger share of bad images predicted as good, despite having by far
the highest FNR, thus predicting too many usable images as bad. Dataset A and
B both show a higher FPR than FNR. This can be explained by the larger share of
positively judged images in the datasets as opposed to dataset C, which makes a
misclassification of the minority class more likely.

Overall, all models predicted their assigned testing sets with a higher accuracy than
pure guessing would. Also, the PPV surpassed the share of good images for every
dataset, which would therefore result in an output data set with a better good to bad
image ratio than the input data. It also can be noted that the standard deviation of
every described metric was very low, which implies that with the given amount of
images from the datasets, a singular 70-30 split might be sufficient to train and tune
a model on the training set to accurately predict the test data set.

3.2.4.4 Learning Curves

Carefully interpreting the acquired SVM model performance as a success, learning
curves were recorded for the 10 hypertuned models of all three datasets to be able to
investigate how many images were needed to reach the peak prediction performance
and to analyze the amount of overfitting that occurs. For this, the same training and
test datasets from the previous section were utilized.

In steps of 5% of the training set size, a growing amount of random images were
drawn from the training set and subsequently used to train a SVM model, using
the optimal hyperparameters determined previously. With this model, the test data
and the training data itself were predicted and the relevant metrics Accuracy, PPV
and FPR for both were determined. For every amount of images, the drawing and
prediction procedure was repeated 5 times to minimize the influence of random
drawing on the results, with the average value for all three metrics being recorded.
The three metrics were then again averaged over the 10 independent runs to mini-
mize the influence of the splitting into training and test data. The averaged learning
curves for all three datasets are shown in figure 3.28.

For all three datasets, a variance convergence between testing data and training data
could be observed for all metrics. Dataset C showed the biggest variance at maxi-
mum training data size, which points towards effects of overfitting the training data.
This can be explained with the smaller number of metrics that the model is trained
on. For this dataset, the number of micrographs needed for variance convergence
was estimated to be around 600.

Dataset A showed a small variance for all three performance metrics after conver-
gence at around 2500 images, pointing to little overfitting and rather a performance
limit of the model itself. Dataset B converged to its very high accuracy and PPV
after around 750 images with very little visible overfitting effects.

3.2.4.5 Computational Complexity of the MQC Workflow

The MQC workflow as presented involves two different computational steps: Data
acquisition and SVM model training and tuning. The computational cost of these is
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FIGURE 3.28: Learning curves of the SVM models. Shown are learn-
ing curves for Accuracy, PPV and FNR, which are plotted on a scale
of 0 to 1 that were acquired for a growing training data set size with
testing being done on a fixed test set. Acquired metric values were
averaged over 5 random drawings of the amount of images from the

training set and again averaged over the 10 independent runs.

shown in figure 3.29. Image processing, including data presentation to the user, was
not found to be linear to the amount of CPU cores used, probably due to the non-
threaded operations that are performed in the Software as well as mutexed result
writing operations. The data analysis computations that were performed manually
from the acquired data were an order of magnitude less computationally expensive
than the preceding data acquisition, highlighting the performance benefits of using
a SVM approach. In a future C++ implementation, even more performance enhance-
ments are possible through efficient parallelization and GPU computing utilization.

The last part of the MQC workflow, acquisition speed of labeled training data through
user decisions, could naturally not be quantified in a testing environment as easily as
the pure computational aspects, but in the presented datasets, the average decision
time per micrograph was around 2 seconds. Overall, the efficiency of the machine
learning computations enable background live training possibilities for the software.
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FIGURE 3.29: Computational speed of the two parts of the MQC data
processing. Shown on the left is the time needed for the software to
process a dataset of 662 3878 pixel x 3710 pixel MRC images on the
Dell Workstation depending on the number of cores. Processing in-
cluded data presentation to the user and calculation of the statistical
metrics. Shown on the right is the amount of time needed for the
processing algorithm shown in figure 3.26 depending on the num-
ber of images on one CPU core, as no multicore implementation was
available in the R interface. The model was trained and tuned on 10
metrics in the same hyperparameter search space as the models in the

previous section.

3.2.4.6 Generalization Capabilities

One of the main questions for the MQC project was the generalized applicability of
models trained on a dataset, e.g. whether the SVMs trained in the previous section
can recognize good and bad images in general. To investigate this, three models,
each trained on one dataset, were used to predict the full datasets they were not
trained on. As dataset C did not have the CTF parameters that were included in
the models trained on datasets A and B, dataset C could not be predicted by the
other models. All other combinations of model and dataset were computed. The
results are shown in table 3.9. The prediction results could safely be called abysmal.
In all four combinations, almost all images were predicted as bad, with the ques-
tionable achievement of none of the few images predicted as good being true posi-
tives. Therefore, no manifold repetitions were performed and no performance met-
rics were calculated.

TABLE 3.9: Prediction performance of SVM models trained on one
dataset on the other datasets. In every table, it is denoted which

dataset was predicted by a model trained on which other dataset.

A by B Label - Label +
Predicted - 3373 5494
Predicted + 3 0

A by C Label - Label +
Predicted - 3375 5494
Predicted + 1 0

B by A Label - Label +
Predicted - 579 1681
Predicted + 2 0

B by C Label - Label +
Predicted - 565 1681
Predicted + 16 0

Next, it was investigated whether model training on dataset combinations could
improve the capability of the MQC to improve the quality of its predictions, mean-
ing as little bad images as possible being classified as good while recognizing true
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positives. Dataset C was left out due to the aforementioned lack of CTF parame-
ters. First, datasets A and B were joined in full and the full dataset preprocessing,
hyperparameter tuning and performance evaluation procedure was executed with
creation of new testing data, ensuring images from both datasets being present in
it. Again, this procedure was repeated 10 times to minimize the randomness in the
dataset splitting. Performance evaluation was done on images from the two datasets
separately with the confusion matrices being shown in table 3.10. Due to the differ-
ent size of the two datasets, dataset B was also joined with a reduced dataset A of the
same size as dataset B. Again, the full dataset preprocessing, hyperparameter tuning
and performance evaluation procedure was executed in 10 independent runs. The
prediction results of this approach are shown in table 3.11.

TABLE 3.10: Prediction performance of the models trained on joined
dataset on the test data split by dataset Origin. Listed are the average

values and their standard deviation, both rounded to integers.

Dataset A Label - Label +
Predicted - 437±23 109±20
Predicted + 574±30 1548±25

Dataset B Label - Label +
Predicted - 104±7 12±3
Predicted + 67±7 490±14

TABLE 3.11: Prediction performance of the models trained on the
equal number joined dataset on the test data split by dataset ori-
gin. Listed are the average values and their standard deviation, both

rounded to integers.

Dataset A Label - Label +
Predicted - 107±10 24±7
Predicted + 158±8 385±16

Dataset B Label - Label +
Predicted - 101±12 7±3
Predicted + 74±9 502±15

The previously used performance metrics were calculated for the two joined models
and are shown in table 3.12. To compare the joined models’ prediction capabilities to
the separately trained ones, the performance metrics on the datasets from all three
model sources are compared in figure 3.30.

TABLE 3.12: Prediction performance metrics of the hypertuned mod-
els of the joined dataset on the datasets split by origin. Listed are
the average values of the rates and their standard deviation rounded
to two decimal places. These values signify how accurate the pre-
dictions are overall(Acc), how well negative and positive images are
recognized(FNR and FPR) and how accurate a positive or negative

prediction is(FPR, FNR).

Joined Model on A Joined Equal Model on A Joined Model on B Joined Equal Model on B
Acc 0.74±0.01 0.73±0.01 0.88±0.01 0.88±0.02
FPR 0.57±0.02 0.6±0.03 0.4±0.03 0.42±0.04
FNR 0.07±0.01 0.06±0.02 0.03±0.01 0.01±0.01
NPV 0.8±0.03 0.82±0.03 0.89±0.02 0.94±0.03
PPV 0.73±0.01 0.71±0.01 0.88±0.01 0.87±0.02

For dataset A, the SVM model trained only on the dataset itself showed slightly bet-
ter or equal performance in all measured metrics, but most deviations were close
to the range of the standard deviation. While the model trained on the dataset that
was joined in equal numbers had a smaller overall size than dataset A itself, the size
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FIGURE 3.30: Performance metric comparison for the differently
trained SVM models on the two datasets. Shown are the mean values
of the accuracy rate Acc, the false negative rate FNR, the false posi-
tive rate FPR, and the positive and negative predictive values, PPV
and NPV, each on a scale of 0 to 1 for the three model sources. Also
shown are the determined standard deviations from the 10 indepen-

dent runs as error bars.

was still above the convergence number seen in figure 3.28. The model trained on
the whole joined dataset obviously had a larger sample size. In both cases, no clear
improvement in the quality of the positive classifications could be observed from a
dataset combination. The false positive rate FPR increased for the models contain-
ing images from Dataset B, which means that images that were labeled as bad were
less likely to be recognized as such, which decreases the quality of a classified output
dataset.

Dataset B showed similar tendencies, with the the most important measures PPV,
the accuracy of positive predictions, and FPR, the misclassification rate for images
labeled as bad, being within the error range from one another for the different model
sources. These results indicate that the generalization capabilities of the presented
SVM approach are limited, at least for the analyzed datasets, as despite the larger
sample size, no improvement in the relevant values could be observed, but rather
a trend towards worse performance, which would ultimately result in datasets con-
taining more images that were supposed to be thrown out. Also, pure pre-trained
models applied on different datasets performed way worse than even pure guess-
ing, rendering the generalization approach questionable.

These findings seem to confirm the initial hypothesis that due to the noisy micro-
graphs that have specific properties due to the contained samples, the varying imag-
ing conditions, different detectors and many more experimental factors, individual
live training for every dataset is preferable, specially taking into account the differ-
ent quality thresholds explicitly applied by raters of the datasets.



113

Chapter 4

Discussion

The cryo-EM field has experienced remarkable growth in the last years [27], with
more and more 3D structures being determined at resolutions that allow interpre-
tations in atomic detail. Nevertheless, a large share of published structures never
reach those resolutions, specially structures of protein complexes that are not well
understood and characterized or not as highly symmetrical as for example virus par-
ticles. The results of this thesis offer improvements for two of the factors that limit
obtainable resolution: Sample preparation and elimination of low quality TEM im-
ages.

Two new softwares were developed to tackle these problems that can limit resolu-
tion and biological interpretability of structures determined by cryo-EM were intro-
duced: CowGraCE, a software containing new algorithmic approaches to optimize
rate-zonal centrifugation experiments and the Micrograph Quality Checker, a pre-
processing tool that can utilize machine learning to classify micrographs in parallel
to data recording to improve dataset quality. Their results and implications are dis-
cussed in the following and put it into a broader context.

4.1 CowGraCE

In the CowGraCE project, a light-weight standalone software that aids users in op-
timizing their experimental conditions for density gradient centrifugation in swing-
out rotors was successfully implemented and tested. In the following, software ar-
chitecture, speed and simulation results are discussed.

4.1.1 Implementation and Simulation Speed

The software that can be used on MacOS, Windows and Linux was designed to be
fast, simple and convenient through a linear workflow and extendability in terms of
rotor choices. The speed of a single simulation was shown to be in the µs range(see
section 3.1.4), enabling the brute-force search in optimization mode which therefore
has a runtime in the low minutes range, even in an unrestricted parameter space.

4.1.2 Simulation Results and Optimization Capatibilities

Based on an adapted version of the indirect approach to simulation of rate-zonal
centrifugation experiments[178], the simulated results of the CowGraCE algorithm
compared to experimental data very favorably and showed a very good approxi-
mation of peak fraction values for samples with either known sedimentation coef-
ficients or only the molecular weight(see 3.1.6). In 9 out of 10 tests, the prediction
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surpassed the results from COMPASS [177], which is the only other available soft-
ware with this simulation functionality.

To estimate the particle distribution in an osmolyte gradient of known composition,
a new approach for predicting standard deviations of the assumed normal distri-
butions was developed and tested (see section 3.1.2). As opposed to previously
published approaches[178, 156], no prior information about diffusive behavior or
other properties of the protein complex of interest is needed in the new CowGraCE
method. Accurate distribution prediction in absence of specific physicochemical in-
formation about the protein sample proved to be a challenging task, as comparisons
to experimental data showed larger deviations than for the peak S values, but an
improvement compared to COMPASS results could still be observed (see section
3.1.6.3). Future improvements to the algorithm will focus on the distribution pre-
diction for complex samples, where known distribution broadening factors such as
overall protein concentration can be taken into account to estimate particle distribu-
tions more closely.

A reduced-space brute-force optimization algorithm was successfully developed that
can aid in finding centrifugation conditions that result in removal of sample con-
taminations through user-set thresholds and an optimization score that judges the
simulations based on the reliable peak value fraction positions and in small parts
through predicted peak widths(see section 3.1.7.5). Simulations found a large num-
ber of conditions that predicted a protein sample within the optimal fraction range
of the tube. Through separation optimization simulations, it was found that the op-
timal optimization score can be found even in a small parameter space and for mul-
tiple parameter combinations, which is beneficial to a user who for example wants
to minimize osmolyte concentration or runtime (see 3.1.7.8).

Chromatography-free purification through density gradient centrifugation is steadily
gaining traction, as shown by recent biological successes [163, 17, 16] and integration
into methodological developments such as GraDeR[77] and GraFix[101]. Overall,
more accurate rate-zonal centrifugation simulations by CowGraCE have the poten-
tial to reduce wasting valuable experimentation time and sample material and help
users achieve purer and more stable samples for various methods in structural biol-
ogy.

4.2 Micrograph Quality Checker and COW

The MQC that was developed for this thesis covers an aspect of the single parti-
cle cryo-EM data processing that had been neglected until now by tapping into the
potential of live processing and into the benefits of eliminating suboptimal TEM im-
ages in parallel to their acquisition. In the following, the implementation, speed,
classification results and the integration into the COW are discussed.

4.2.1 Implementation, Processing Workflow and Speed

The implementation of the Micrograph Quality Checker enables live preprocessing
of TEM images together with a proposed machine learning based image classifica-
tion and metadata acquisition that can theoretically be used in the later stages of
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image processing. The highly parallelized software, as shown in figure 3.29, pro-
cesses images reasonably fast and the proposed SVM model training and tuning can
be computed on a time scale that is an order of magnitude below the image process-
ing itself.

As soon as the implementation of frame alignment and CTF parameter determina-
tion are completed, the whole preprocessing workflow will be covered, which opens
up possibilities to improve processing speed due to better combination of the algo-
rithmic steps. For example, frame alignment, CTF parameter determination and
parts of the image metric acquisition all take place in Fourier space. Right now, mi-
crographs are transformed into Fourier Space and back multiple times, as well as
loaded into memory and written to disk. These steps can be combined to reduce the
computational cost.

4.2.2 SVM Model Performance on Chosen Datasets

Despite the low number of metrics, binary classification on the three presented datasets
was fairly successful, with prediction accuracy ranging from 74% to almost 90%, de-
spite the amount of images being on the low side of typical dataset sizes(see section
3.2.4.3). The early variance convergence showed the current limitations of the SVM
models, but shows the applicability of live training due to the fairly low amount of
images needed to reach peak model performance (see section 3.2.4.4). For the second
dataset, the prediction accuracy of nearly 90% was very close to the measured user
consistency of 91% (see section 3.2.4.1). For the other datasets, no user consistency
numbers were available, but it is likely that the current metric space does not cover
all possible reasons for accurately modeling the classification behavior of an expe-
rienced user. Despite this, all positive predictive values exceeded the input ratios
of good to bad images, therefore improving the dataset composition. The observed
standard deviations of classification performance were very low, which can be inter-
preted as little overfitting effects being present and may allow for less independent
verification repetitions.

To improve the models in the future, more image metrics are needed, presumably
real space metrics, as of now, only the variance of images after filtering with a Boxcar
and a DoG filter was used. Also, the lack of being apply to use the decision time as
a metric for classification of not-judged micrographs needs to be taken into account.
A closer analysis of falsely predicted positive images should be informative in terms
of which micrograph contaminations and defects are currently not described well
enough by the available metrics. Metrics that need to be integrated into the model
are behavior of the frames during frame alignment, for example large deviation of
image patches from one another is expected to correlate with a suboptimal image
quality. Further patch-based real-space metrics might also help identify contamina-
tions and defects in specific areas of a micrograph.

4.2.3 Generalization of Models

The generalization capabilities of the trained models proved to be virtually non-
existent. Training SVM models on datasets resulted in prediction performance sim-
ilar to the models trained on a singular dataset, but in all relevant metrics, a slight
performance decline was observed despite the larger training data sample size, which
means that the subset of the data classified as good by the joined model would be
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worse than having trained a model on a separate dataset(see 3.2.4.6). Therefore, it
can be concluded that the SVM approach of this thesis with a relatively low amount
of features does not reflect a general recognition of good and bad images. Due to
the statistical metrics employed, the noisy nature of TEM micrographs, the different
protein complexes and differences in the imaging and sample preparation process,
it remains to be seen whether such a generalization is possible at all. Further anal-
ysis should focus on datasets of the same protein complex, imaged under slightly
different conditions, i.e. different cameras, defocus conditions and investigate what
factors influence model transferability.

4.2.4 Proposed Live Training Implementation

Due to the non-generalizable model performance at this stage of the project, a SVM
model needs to be trained in parallel to data acquisition and user judgment. Also,
allowing a user to define his own expectation baselines of what constitutes a good
image from a dataset is advantageous due to enabling individualized outputs.

As the processing speed measurements showed, live training is computationally fea-
sible. Theoretically, one could obviously build a database of models, have every in-
stance of the MQC connect to it and check whether any of these pre-trained models
predict data during the acquisition process well enough, but this approach would be
problematic in terms of confidential data and is therefore neglected in favor of live
training. The proposed algorithm for this is summarized in figure 4.1.

FIGURE 4.1: Proposed Live SVM Model Training Algorithm
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Variance convergence that could be seen in the learning curves was observed at dif-
ferent amount of images in the analyze datasets- at around 600, 750 and 2500 im-
ages. Due to the testing sets having different sizes, the absolute numbers should
not be over interpreted, but no convergence could be observed at less than a third
of the dataset used as training size. Due to no information about dataset size being
available in case of live processing and different convergence speeds depending on
the dataset, heuristically a value of 500 images is proposed for the start of modeling.
400 of the 500 images are then to be set aside as test data, with the remaining images
being used as training data. All new arriving images are then continuously added to
the training data. Every 50 new Images, the complete model tuning and evaluation
algorithm previously described in figure 3.26 will then be computed and tested on
the test data. A continuously updated learning curve can then show convergence of
the modeling.

Then, two possible operation modes are proposed: An automatic mode where the
user input and live training is shut off and all further acquired images are classified
by the converged SVM model, and a semi-automatic mode. Here, the idea is to pre-
dict newly acquired data and to let the user confirm or reject the prediction. Also,
it might be beneficial to let the user re-rate false positive images in case of the need
to overturn the previous judgment. This changing of training data might lead to a
higher prediction performance of the model.

Due to the self-referential data processing in high-resolution cryo-EM, careful selec-
tion of data as early as possible can potentially open doors to a better understanding
of biological systems by improving the achievable quality of structures and sup-
porting users in diverse applications. For example, the automatic mode of the live
training can be used if the user is satisfied with the model prediction and does not
want to invest further time into manual selection. The semi-automatic mode with
continuous user input could on the other hand be used to teach the MQC to only
specifically accept the very best images, even in absence of image contaminations
or defects. For example, once the machine learning model is good enough, all mi-
crographs with a non-desired particle distribution could be rejected. Thinking even
further into the future, a distinction between conformational substates of particles
on micrographs could theoretically be made possible through accurate model train-
ing.

Comparing the amount of particles that are used for published structures over the
years, a steady increase can be seen. While only a couple of years ago, the amount of
commonly used particles was in the tens of thousands range[66], nowadays datasets
routinely consist of more than 500.000 particles[75]. Due to needing more and more
particles for high-resolution structures, it is likely that this trend continues into the
future. This also necessitates effective automated micrograph processing, and the
MQC represents a step forward towards this.

4.2.5 COW Framework and Integration of MQC

The MQC is the first part of the COW framework that is able to do live processing. It
represents the interface to data acquisition that starts the subsequent data processing
workflow. The current components of the COW and their interactions are shown in
figure 4.2. The COW is currently in the closed beta stage and will be released to the
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FIGURE 4.2: Structure of the COW. Shown are the front ends that
all connect to the CowLib and cover the whole workflow from data

recording to final 3D structure(s).

public in the near future.

While currently the MQC and the CowPicker work on normal files and the prefer-
able cow project structure only exists within CowEyes, it is planned to integrate both
of these frontends into CowEyes as interactive logics that operate on cow projects.
With this, live processing can be brought to all stages of image processing, which
enables for example calculating and continuously updating a 3D structure while
the microscope is still producing data, as long as the processing steps are computa-
tionally fast enough. Through this, feedback loops to earlier processing steps and
possibly even to the data acquisition stage will be feasible in the future.

Combined with the usage of modern computing techniques to deal with the ever-
increasing amount of data, this opens the door to potentially being able to automate
sample screening, to prevent the microscopes from recording suboptimal data over
an extended amount of time and to quickly identify the image processing bottle-
necks, for which the COW framework gives users all tools to overcome.

4.3 Outlook

The amount of atomic level biological information made available through cryo-EM
holds the potential to connect basic research to applied studies. High-resolution
structures and their energy landscapes that are changed based of the chemical envi-
ronment[74] can potentially be used to better understand the mechanism of drugs
that target large protein complexes, thereby gaining e.g. pharmacological relevance.

The results of this thesis, through more effective sample purification assisted by
CowGraCE and flexible micrograph preprocessing and classification by the MQC,
present methodological advancements in the cryo-EM field, which, combined with
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other technological improvements, can help make further steps for a better under-
standing of life’s inner workings at the lowest level of biology.
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Appendix A

Additional Data for CowGraCE

TABLE A.1: Supported sucrose gradients in the BioComp Gradient-
Maker. The columns signify the rotor, the rows the concentration at
the top of the tube and the values the supported bottom concentra-

tions.

Rotor 2% - 5% - 10% - 15% - 20% - 25% - 26% - 30% - 32% - 60% -
SW28 27% 20%,25%,30%,40%,45% 25%,30%,35%,40%,45%,50% 27%,30%,35%,40%,45% 50%,60%,70%, 40%,60% 65% - 60% 80%
SW40 - 20%,25%,29%,30%,40%,45% 25%,30%,40%,45% 30%,40%,45%,60% 50% 50 - 60% - -
SW60 - 20%,25%,30%,40%,45%,50% 25%,30%,40%,45% 30%,40%,45% - - - - - -

FIGURE A.1: Determination of mean and standard deviation from
COMPASS. Shown is the available output from the software. A shows
the simulated distribution from which the standard deviation was ex-
tracted, B shows the tabular results from which the mean position was

interpolated.

TABLE A.2: Supported Glycerol gradients in the BioComp Gradient-
Maker. The columns signify the rotor, the rows the concentration at
the top of the tube and the values the supported bottom concentra-

tions.

Rotor 5% - 10% - 15% - 30% - 45% -
SW28 +SW60 20%,30% 30%,40%,50%„60%,80% 35% 70% 80%

SW40 20%,30%,40% 30%,40%,50%,60% 40% - -
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TABLE A.3: Predicted and experimentally determined S Values

Protein Molecular Weight Experimental S Predicted S (rounded)
Proteasome 700 kDa 20 20
α-Amylase 97.6 kDa 5.2-8.6 5

Alcohol Dehydrogenase 150 kDa 6.7-8.6 7
β-Amylase 152 kDa 8.9-9.2 7

Glucoronidase 390 kDa 14-15.5 13
Apoferritin 441 kDa 16.3-17.6 15

Thyroglobulin 669 kDa 19.4-20.9 19
Ribosome 2.5 MDa 70 47
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FIGURE B.1: Exemplary Good and Bad Micrographs and their Power
Spectrum with Ctf Fit from Dataset A



124 Appendix B. Additional Data for the MQC

FIGURE B.2: Exemplary Good and Bad Micrographs and their Power
Spectrum with Ctf Fit from Dataset B

TABLE B.1: Correlation matrix 1 from dataset A. The metrics that
were eliminated are shown in bold.

boxDogVariance defocusU deviationsFromMean imageMean imageVariance maxLineVariance meanOfSumOfVariances sumOfVariances varianceOfSumOfVariances resLimit decisionTimee defocusDiff
boxDogVariance 1.00 -0.15 -0.00 -0.15 0.10 0.02 0.05 0.05 -0.02 0.08 0.00 0.00

defocusU -0.15 1.00 -0.28 0.64 0.02 0.08 0.03 0.03 0.03 -0.01 -0.01 0.04
deviationsFromMean -0.00 -0.28 1.00 -0.27 -0.13 -0.29 -0.21 -0.21 -0.06 -0.04 0.01 -0.22

imageMean -0.15 0.64 -0.27 1.00 -0.31 0.16 0.15 0.15 0.06 0.02 -0.01 0.10
imageVariance 0.10 0.02 -0.13 -0.31 1.00 0.24 0.29 0.29 0.15 0.17 -0.00 0.03

maxLineVariance 0.02 0.08 -0.29 0.16 0.24 1.00 0.97 0.97 0.90 0.24 -0.00 0.26
meanOfSumOfVariances 0.05 0.03 -0.21 0.15 0.29 0.97 1.00 1.00 0.87 0.26 -0.01 0.21

sumOfVariances 0.05 0.03 -0.21 0.15 0.29 0.97 1.00 1.00 0.87 0.26 -0.01 0.21
varianceOfSumOfVariances -0.02 0.03 -0.06 0.06 0.15 0.90 0.87 0.87 1.00 0.19 -0.00 0.15

resLimit 0.08 -0.01 -0.04 0.02 0.17 0.24 0.26 0.26 0.19 1.00 0.00 0.24
decisionTime 0.00 -0.01 0.01 -0.01 -0.00 -0.00 -0.01 -0.01 -0.00 0.00 1.00 0.00

defocusDiff 0.00 0.04 -0.22 0.10 0.03 0.26 0.21 0.21 0.15 0.24 0.00 1.00

TABLE B.2: Correlation matrix 2 from dataset A. The metrics that
were eliminated are shown in bold.

boxDogVariance defocusU deviationsFromMean imageMean imageVariance varianceOfSumOfVariances resLimit decisionTime defocusDiff logMaxLineVariance logMeanOfSumOfVariances logSumOfVariances
boxDogVariance 1.00 -0.15 -0.00 -0.15 0.10 -0.02 0.08 0.00 0.00 0.07 0.13 0.13

defocusU -0.15 1.00 -0.28 0.64 0.02 0.03 -0.01 -0.01 0.04 0.17 0.08 0.08
deviationsFromMean -0.00 -0.28 1.00 -0.27 -0.13 -0.06 -0.04 0.01 -0.22 -0.56 -0.35 -0.35

imageMean -0.15 0.64 -0.27 1.00 -0.31 0.06 0.02 -0.01 0.10 0.24 0.22 0.22
imageVariance 0.10 0.02 -0.13 -0.31 1.00 0.15 0.17 -0.00 0.03 0.33 0.42 0.42

varianceOfSumOfVariances -0.02 0.03 -0.06 0.06 0.15 1.00 0.19 -0.00 0.15 0.46 0.46 0.46
resLimit 0.08 -0.01 -0.04 0.02 0.17 0.19 1.00 0.00 0.24 0.19 0.23 0.23

decisionTime 0.00 -0.01 0.01 -0.01 -0.00 -0.00 0.00 1.00 0.00 -0.01 -0.01 -0.01
defocusDiff 0.00 0.04 -0.22 0.10 0.03 0.15 0.24 0.00 1.00 0.40 0.27 0.27

logMaxLineVariance 0.07 0.17 -0.56 0.24 0.33 0.46 0.19 -0.01 0.40 1.00 0.90 0.90
logMeanOfSumOfVariances 0.13 0.08 -0.35 0.22 0.42 0.46 0.23 -0.01 0.27 0.90 1.00 1.00

logSumOfVariances 0.13 0.08 -0.35 0.22 0.42 0.46 0.23 -0.01 0.27 0.90 1.00 1.00
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TABLE B.3: Correlation matrix 1 from dataset B. The metrics that were
eliminated are shown in bold.

boxDogVariance defocusU deviationsFromMean imageMean imageVariance maxLineVariance meanOfSumOfVariances sumOfVariances varianceOfSumOfVariances resLimit decisionTime defocusDiff
boxDogVariance 1.00 0.05 0.13 0.02 0.03 0.36 0.50 0.50 0.57 0.07 0.03 0.15

defocusU 0.05 1.00 -0.31 0.22 -0.13 0.40 0.20 0.20 0.24 0.22 -0.03 0.37
deviationsFromMean 0.13 -0.31 1.00 -0.08 0.15 -0.31 0.13 0.13 0.01 0.04 0.00 0.03

imageMean 0.02 0.22 -0.08 1.00 -0.38 -0.31 -0.31 -0.31 -0.02 0.33 -0.06 0.16
imageVariance 0.03 -0.13 0.15 -0.38 1.00 0.24 0.44 0.44 0.19 0.33 0.01 0.33

maxLineVariance 0.36 0.40 -0.31 -0.31 0.24 1.00 0.80 0.80 0.80 0.08 0.02 0.25
meanOfSumOfVariances 0.50 0.20 0.13 -0.31 0.44 0.80 1.00 1.00 0.85 0.17 0.02 0.31

sumOfVariances 0.50 0.20 0.13 -0.31 0.44 0.80 1.00 1.00 0.85 0.17 0.02 0.31
varianceOfSumOfVariances 0.57 0.24 0.01 -0.02 0.19 0.80 0.85 0.85 1.00 0.18 -0.00 0.27

resLimit 0.07 0.22 0.04 0.33 0.33 0.08 0.17 0.17 0.18 1.00 -0.07 0.57
decisionTime 0.03 -0.03 0.00 -0.06 0.01 0.02 0.02 0.02 -0.00 -0.07 1.00 -0.03

defocusDiff 0.15 0.37 0.03 0.16 0.33 0.25 0.31 0.31 0.27 0.57 -0.03 1.00

TABLE B.4: Correlation matrix 2 from dataset B. The metrics that were
eliminated are shown in bold.

boxDogVariance defocusU deviationsFromMean imageMean imageVariance varianceOfSumOfVariances resLimit decisionTime defocusDiff logMaxLineVariance logMeanOfSumOfVariances logSumOfVariances
boxDogVariance 1.00 0.05 0.13 0.02 0.03 0.57 0.07 0.03 0.15 0.20 0.26 0.26

defocusU 0.05 1.00 -0.31 0.22 -0.13 0.24 0.22 -0.03 0.37 0.25 0.08 0.08
deviationsFromMean 0.13 -0.31 1.00 -0.08 0.15 0.01 0.04 0.00 0.03 -0.34 0.09 0.09

imageMean 0.02 0.22 -0.08 1.00 -0.38 -0.02 0.33 -0.06 0.16 -0.64 -0.76 -0.76
imageVariance 0.03 -0.13 0.15 -0.38 1.00 0.19 0.33 0.01 0.33 0.29 0.48 0.48

varianceOfSumOfVariances 0.57 0.24 0.01 -0.02 0.19 1.00 0.18 -0.00 0.27 0.47 0.48 0.48
resLimit 0.07 0.22 0.04 0.33 0.33 0.18 1.00 -0.07 0.57 -0.12 -0.07 -0.07

decisionTime 0.03 -0.03 0.00 -0.06 0.01 -0.00 -0.07 1.00 -0.03 0.04 0.05 0.05
defocusDiff 0.15 0.37 0.03 0.16 0.33 0.27 0.57 -0.03 1.00 0.08 0.12 0.12

logMaxLineVariance 0.20 0.25 -0.34 -0.64 0.29 0.47 -0.12 0.04 0.08 1.00 0.89 0.89
logMeanOfSumOfVariances 0.26 0.08 0.09 -0.76 0.48 0.48 -0.07 0.05 0.12 0.89 1.00 1.00

logSumOfVariances 0.26 0.08 0.09 -0.76 0.48 0.48 -0.07 0.05 0.12 0.89 1.00 1.00

TABLE B.5: Correlation matrix 1 from dataset C. The metrics that
were eliminated are shown in bold.

boxDogVariance deviationsFromMean imageMean imageVariance maxLineVariance meanOfSumOfVariances sumOfVariances varianceOfSumOfVariances decisionTime
boxDogVariance 1.00 -0.16 -0.23 0.44 0.30 0.36 0.36 0.19 -0.01

deviationsFromMean -0.16 1.00 -0.10 -0.24 -0.58 -0.53 -0.53 -0.40 0.03
imageMean -0.23 -0.10 1.00 -0.78 -0.11 -0.18 -0.18 -0.06 0.00

imageVariance 0.44 -0.24 -0.78 1.00 0.56 0.64 0.64 0.43 -0.01
maxLineVariance 0.30 -0.58 -0.11 0.56 1.00 0.98 0.98 0.93 -0.01

meanOfSumOfVariances 0.36 -0.53 -0.18 0.64 0.98 1.00 1.00 0.89 -0.02
sumOfVariances 0.36 -0.53 -0.18 0.64 0.98 1.00 1.00 0.89 -0.02

varianceOfSumOfVariances 0.19 -0.40 -0.06 0.43 0.93 0.89 0.89 1.00 -0.01
decisionTime -0.01 0.03 0.00 -0.01 -0.01 -0.02 -0.02 -0.01 1.00

TABLE B.6: Correlation matrix 2 from dataset C. The metrics that
were eliminated are shown in bold.

boxDogVariance deviationsFromMean imageMean varianceOfSumOfVariances decisionTime logMaxLineVariance logMeanOfSumOfVariances logSumOfVariances logImageVariance
boxDogVariance 1.00 -0.16 -0.23 0.19 -0.01 0.39 0.50 0.50 -0.35

deviationsFromMean -0.16 1.00 -0.10 -0.40 0.03 -0.71 -0.56 -0.56 0.14
imageMean -0.23 -0.10 1.00 -0.06 0.00 -0.17 -0.30 -0.30 0.91

varianceOfSumOfVariances 0.19 -0.40 -0.06 1.00 -0.01 0.67 0.64 0.64 -0.36
decisionTime -0.01 0.03 0.00 -0.01 1.00 -0.03 -0.04 -0.04 0.01

logMaxLineVariance 0.39 -0.71 -0.17 0.67 -0.03 1.00 0.95 0.95 -0.51
logMeanOfSumOfVariances 0.50 -0.56 -0.30 0.64 -0.04 0.95 1.00 1.00 -0.63

logSumOfVariances 0.50 -0.56 -0.30 0.64 -0.04 0.95 1.00 1.00 -0.63
logImageVariance -0.35 0.14 0.91 -0.36 0.01 -0.51 -0.63 -0.63 1.00

TABLE B.7: Determined Optimal Hyperparameters for the Datasets
in the different independent tuning runs

Dataset A Dataset B Dataset C
Run 1 γ = 0.01, C = 10000 γ = 0.1, C = 10 γ = 1, C = 100
Run 2 γ = 0.1, C = 10 γ = 0.01, C = 1000 γ = 0.1, C = 10000
Run 3 γ = 0.1, C = 10 γ = 0.1, C = 10 γ = 1, C = 10
Run 4 γ = 0.1, C = 10 γ = 0.01, C = 1000 γ = 1, C = 10
Run 5 γ = 0.1, C = 10 γ = 0.1, C = 10 γ = 0.1, C = 1000
Run 6 γ = 0.1, C = 10 γ = 0.1, C = 100 γ = 1, C = 10
Run 7 γ = 0.1, C = 10 γ = 0.1, C = 100 γ = 0.1, C = 1000
Run 8 γ = 0.01, C = 10000 γ = 0.01, C = 10000 γ = 1, C = 100
Run 9 γ = 0.1, C = 10 γ = 11, C = 100 γ = 1, C = 100
Run 10 γ = 0.1, C = 10 γ = 0.01, C = 10000 γ = 10, C = 1
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FIGURE B.3: Exemply Results of hyperparameter tuning. Shown are
the results of a 5-fold cross-validation adaptive grid search tuning for
the two hyperparameters on the three datasets. Areas are colored
according to the determined mean RMSE for the parameter combina-

tion.
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