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Summary  

Enhancer elements comprise of regions of DNA that are distal to gene promoters with a 

characteristic capacity to affect and regulate gene transcription. Enhancers are enriched in a 

highly context-specific manner allowing for intricate control of gene expression. Current studies 

endeavor to elucidate the mechanisms underlying enhancer activation and function to ultimately 

exploit their specificity in targeted therapeutics. Due to the reported addiction of cancer to 

aberrant gene transcription, targeting enhancer elements is a promising therapeutic target in 

various malignancies. In this project, we conduct a series of studies with the general aim of 

extending the knowledge about the molecular mechanisms by which enhancers drive aberrant 

transcription in cancer. We focus on epigenetic modulation to exploit enhancer elements as 

therapeutic or prognostic targets. 

In the first study included in our project, we evaluated the importance of the super enhancer 

subcategory of distal regulatory elements in a breast cancer cell line where estrogen plays an 

important role in driving gene expression through enhancers. Super enhancers are claimed to 

be a highly active subgroup of distal regulatory elements that is abundantly enriched with 

transcription factors, span long stretches of DNA, and exhibit preferential efficacy in driving 

major transcriptional programs in cancer. We identified super enhancers related to estrogen in 

this system using the standard algorithm and failed to observe a distinct high efficacy of super 

enhancers compared to typical enhancers. By varying the settings of this algorithm, we also 

uncovered biases in enhancer identification that extensively influence the results. On the other 

hand, we observed that major targets of estrogen activation showed a preference for 

association with super enhancers and concluded that they may indeed tend to regulate the 

transcription of master regulators. Accordingly, we concluded that the focused attention given to 
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super enhancers should not lead to disregarding typical enhancers which also play a significant 

and important role in gene transcription regulation.  

Consequently, in the second study we reviewed the role of enhancers in pancreatic cancer, a 

malignancy with exceptionally low survival rates. We focused on the application of epigenetic 

modulators, such as bromodomain and extraterminal proteins inhibitors and histone deactylase 

inhibitors, in targeting enhancer elements and speculated about mechanisms underlying the 

reported synergy between these two inhibitors. Interestingly, we used publicly available data to 

further study the context-specificity of enhancers. Notably, we observed a tendency where the 

same oncogenic target gene is activated by different enhancers in various systems due to 

differential expression of transcription factors. 

Accordingly, we expanded our studies in pancreatic cancer and uncovered a group of subtype-

specific super enhancers that drive the cells into a squamous phenotype which correlates with a 

particularly poor prognosis. Studying the general activation epigenetic profiles of different 

pancreatic cancer cell lines identified deltaNp63 as a major driver of the squamous molecular 

identity in cells and patient-derived xenografts. Moreover, extensive analysis of the role of 

deltaNp63 in driving a more aggressive phenotype uncovered the implication of super 

enhancers which are supported by a network of interconnected and differentially expressed 

transcription factors. This pattern resembles the reports of transcription factor regulatory 

circuitry driving the pluripotent molecular identity of embryonic stem cells.  Identification of the 

same pattern governing differentiation into specific molecular subtypes in pancreatic cancer 

opens the door to precision-based medicine approaches targeting this circuitry in this particular 

subtype. 
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Finally, we further investigated the role of enhancer elements in the context of 

chemotherapeutic resistance in pancreatic cancer. Interestingly, we observed that pro-

inflammatory and migratory programs are activated in paclitaxel-resistant cells via activation of 

BET-dependent enhancers. Furthermore, we observed that BET inhibition sensitizes resistant 

and sensitive cells to paclitaxel. Notably, super enhancers that we observed to be enriched in 

resistant cells were associated with genes that correlate with poor prognosis. This study 

confirmed the patterns we uncovered in the other studies where enhancers and super 

enhancers drive aberrant transcription activation in cancer and present a promising target for 

patient treatment.  

Altogether, this project resulted in 2 peer-reviewed publications in the journals of Transcription 

and Epigenomes, one manuscript that has been peer-reviewed and is currently under revision in 

Proceedings of the National Academy of Sciences of the United States of America (PNAS), and 

another manuscript in preparation for submission. These publications/manuscripts join the 

growing body of literature investigating the role of enhancers in malignancy and aim to guide 

new approaches for precision-based medicine.  
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CHAPTER 1 

General Introduction 

 

 

 

 

This chapter provides a general overview extending the background information 

provided in each publication/manuscript and outlining the general aim of all the studies 

included in this project.   

No published data is included in this chapter. 
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1. General Introduction 

1.1. Epigenetic regulation of gene transcription 

Tightly regulated gene transcription is crucial for homeostasis and disease-free survival. 

Therefore, cells require systems to ensure the proper expression of genes in a spatial and 

temporal manner. Epigenetic regulation enables cells to control gene transcription via 

sequence-independent mechanisms including modification of histones, DNA methylation, 

nucleosome remodeling, and non-coding RNAs (ncRNAs) (Figure 1) [1]. DNA methylation, 

especially 5-methyl cytosine, was first reported in 1963 and shortly after was linked to 

repression of gene transcription [2-4]. DNA inside the nucleus is compacted by forming 

nucleosomal subunits including approximately 147 base pairs wrapped around a histone 

octamer composed of pairs of Histone 2A (H2A), Histone 2B (H2B), Histone 3 (H3), and Histone 

4 (H4) [5]. This protein-DNA complex is known as chromatin. As many modifications of these 

histones have been identified, they were soon found to faithfully correspond to the states of 

gene transcriptional activation [6-9]. Additionally, the compaction of DNA via nucleosomes was 

observed to play a role in controlling gene transcription and the modulation of its structure by 

chromatin remodelers has been implicated in gene transcription regulation [10-13]. While the 

mechanism of action of ncRNAs is still not fully clear, they were reported to mediate epigenetic 

regulation of gene transcription via recruitment of epigenetic modulators to their target genes 

[14-17]. Altogether, these various tools work intricately and cooperatively to orchestrate gene 

expression regulation. The most broadly studied aspect of these mechanisms is post-

translational histone modifications as they create a versatile code which plays a significant role 

in gene transcription activation and repression.   
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1.2 The histone code 

1.2.1 Active histone marks 

Numerous post-translational histone modifications are associated with active transcription. The 

most common of these modifications are acetylation of the lysine residues of H3 and H4 [18]. 

Figure 1: Mechanisms of Epigenetic Gene Regulation. Epigenetic regulation of gene 
transcription is mediated by various mechanism shown above as simplified diagrams including 
DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. (A) 
Methylated cytosine is shown as part of the DNA helix as an example for DNA methylation. (B) A 
graphic representation for the nucleosome including an octamer of H2A, H2B, H3, and H4. An 
example of histone modifications is shown for Lysine 27 on the tail of H3 which is acetylated. (C) A 
chromatin remodeler such as the SWI/SNF complex changes the structure of the chromatin 
affecting the accessibility of a certain stretch of DNA. (D) Non-coding RNA recruiting an epigenetic 
modulator leading to the repression of gene transcription.     

C

B 

D

B 

A

B 

B

B 
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Histone acetylation was first reported in 1964 and was initially considered to affect transcription 

by neutralizing the positive charge of histones leading to a more relaxed and transcription-

permissive chromatin structure [19-21]. However, as acetylation was found to have a minimal 

effect on chromatin structure [22], more complex mechanisms were proposed to explain the 

correlation of active transcription with histone acetylation. Protacio et al. [23] observed an 

increased rate of transcription for DNA upon acetylation of histones in a manner similar to total 

absence of the histone tails. Additionally, Wang et al. [24] showed that acetylation alters the 

alpha-helical content of histone tails. Most importantly, it was later uncovered that these marks 

create new binding motifs and form a “code” that can be recognized by transcription activators 

[25, 26]. While many lysine residues are acetylated, the most known and studied is acetylation 

of Histone 3 Lysine 27 (H3K27ac) which shows the highest correlation to active gene 

transcription [27]. In addition, acetylation of Histone 4 Lysine 16 (H4K16ac) was found to be 

associated with decreased compaction of chromatin and acetylation of Histone 4 Lysine 5 and 

Lysine 8 (H4K5ac and H4K8ac) [28]. Furthermore, acetylation of Histone 3 Lysine 9, 14, 18, and 

23 (H3K9ac, H3K14ac, H3K18ac, and H3K23ac) were found to correlate with active gene 

transcription [21].  

Acetylation of lysine residues is not the only histone mark that is associated with gene 

activation. Methylation of lysine can also occur on the hydrogen of its primary amine which can 

be mono-, di-, or tri- methylated [29]. Mono-methylation and tri-methylation of Histone 3 Lysine 4 

(H3K4me1 and H3K4me3) are known marks for gene activation [1, 30]. Furthermore, tri-

methylation of Histone 3 Lysine 36 is enriched at the 3’-end of transcriptionally active genes 

[31]. Mono-ubiquitination of Histone H2B Lysine 120 (H2Bub1) has also been found to correlate 

with highly expressive genes [32]. Altogether, these marks provide the opportunity to interpret 

gene activation profiles in different systems with high accuracy and precision (main active 

histone marks shown in Figure 2A).  
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1.2.2 Repressive histone marks 

Most common repressive histone modifications include methylation [33]. Histone methylation 

was first reported along with acetylation by Allfrey et al [19]. Methylation can occur either on 

histone lysine or arginine residues and is usually observed at the same histone lysine side 

chains that can be acetylated in the case of transcription activation [21, 33, 34]. Thus, 

acetylation and methylation are usually mutually exclusive at these residues and clearly indicate 

the state of transcription activation [35]. As previously mentioned, H3K27ac is a mark which 

highly correlates with the activation state while its counterpart, tri-methylation of Histone 3 

Lysine 27 (H3K27me3), is equally predictive of gene inactivation [36, 37]. Furthermore, tri-

methylation of Histone 3 Lysine 64 (H3K64me3) was found at compacted chromatin regions 

known as heterochromatin [38]. Moreover, methylation of Histone 3 Lysine 9 is one of the most 

studied repressive histone marks of gene inactivation [39-41]. Acetylation can also act as a 

repressive mark as shown by acetylation of Histone 4 Lysine 20 (H4K20ac) which usually does 

not overlap with H3K27ac and is localized at genes that are minimally expressed [42]. 

Furthermore, mono-ubiquitination of Histone H2A Lysine 119 (H2Aub1) is a known repressive 

mark as the big ubiquitin moiety perturbs the dynamics of the nucleosomal architecture [43]. 

H2Aub1 was found to inhibit transcription elongation machinery and attenuate the recruitment of 

factors increasing the permissiveness of chromatin [44]. In order to render these histone marks 

functional (main repressive histone marks shown in Figure 2B), a group of tightly regulated 

enzymes should be involved to mediate the addition and elimination of these chemical moieties. 

Furthermore, a group of factors that can recognize these marks and mediate downstream 

effects is highly crucial for functional epigenetic regulation. These factors are called “writers”, 

“erasers”, and “readers”, respectively. 



General Introduction | Feda Hamdan 

9 

Figure 2 : The main histone modifications acting as active and repressive marks. A representative 
diagram of a nucleosome showing the most studied histone tail modifications with the active histone marks 
shown in panel (A) and repressive marks shown in (B). me3: tri-methylation; me: methylation; ac: 
acetylation; ub: ubiquitination; K: Lysine.    

 

 

 

1.2.3 The epigenetic machinery regulating the histone code   

As histone modifications serve as a major regulator of gene transcription, meticulously 

controlled processes are involved in their maintenance. First of all, writers act by selectively 

adding these chemical moieties to a specific histone residue. Histone acetyltransferases 

(HATs), such as p300 and CREB-binding protein (CBP) , transfer an acetyl group from acetyl-

CoA to histone tails [21]. Protein arginine methyltransferases (PRMTs) catalyze the methylation 

of arginine moieties on histones [45, 46]. Additionally, histone methyltransferases (HMTs) 

mediate the methylation of lysine moieties and include suppressor of variegation 3-9 homolog 1 

(SUV39H1) which methylates Histone 3 Lysine 9 and mixed-lineage leukemia 3/4 (MLL3/MLL4) 

which methylate Histone 3 Lysine 4 [1, 47, 48]. Furthermore, the polycomb repressive complex 

A B 
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1 (PRC1) and 2 (PRC2) are extensively studied complexes which mediate H2Bub1 and tri-

methylation of Histone 3 Lysine 27, respectively [49]. Additionally, ubiquitination of H2B is 

mediated by an E3-ligase which comprises two RING finger proteins, namely Ring Finger 

Protein 20/40 (RNF20/RNF40) [50].  

The epigenetic machinery also includes enzymes that remove histone marks called erasers 

[51]. They include histone deactylases (HDACs) which mediate the removal of lysine acetylation 

and consist of multiple classes that can also mediate de-acetylation of non-histone proteins [52]. 

While methylation was previously considered to be an irreversible modification, lysine-specific 

histone demethylase 1A (LSD1) was identified in 2002 as a selective mediator of the de-

methylation of Histone 3 Lysine 4 [33, 53]. Another class of de-methylases has since been 

reported, namely Jumonji C domain-containing demethylases which can reverse mono-, di-, and 

tri-methylation [54].   

Eminent factors in the epigenetic machinery include readers that recognize histone marks and 

recruit various effectors [55]. An extensively studied example is the Bromodomain and 

Extraterminal (BET) family which comprise of two bromodomains including a hydrophobic 

pocket that can interact with acetylated lysine and endows the BET family with the ability to read 

acetyl marks on chromatin [26]. Methylated lysine is recognized by the Royal superfamily 

members like Tudor- and chromo-domain proteins as well as PHD fingers [56, 57]. Altogether, 

epigenetic writers, erasers, and readers cooperatively mediate epigenetic regulation via histone 

modifications and serve as a lucrative target to manipulate gene expression in various systems 

(Figure 3). 
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1.2.4 Histone marks signify distinct elements throughout the genome  

Histone marks do not act independently from each other but rather co-exist and co-operate to 

control gene transcription in what is known as “histone crosstalk” [58]. In addition to being an 

accurate predictor of gene activation status, many histone marks show preferences to certain 

elements in the genome. For example, H3K4me3 was reported to be highly enriched at gene 

promoters, stretches of DNA where gene transcription initiation originates [59, 60]. On the other 

hand, H3K4me1 usually marks active distal regulatory elements (enhancers), which are 

stretches of DNA that can distally enhance gene transcription [60, 61]. High levels of acetylation 

of H3 and H4 are usually observed in regions occupied by H3K4me3 [18, 62]. H3K27ac is 

enriched on active enhancers and promoters and usually overlaps with H3K4me1 and 

H3K4me3, respectively [60]. In case of an overlap between the active marks of H3K4me3 or 

H3K4me1 with the repressive histone mark H3K27me3, a promoter or enhancer is said to be in 

a bivalent state [63, 64]. Bivalent genes have poised promoters or enhancers that are primed to 

Figure 3 : Epigenetic writers, erasers, and readers. Factors forming the epigenetic machinery by which 
histone modifications regulate gene transcription. Writers add a chemical moiety to histone leading to the 
activation or inactivation of the gene. Erasers reverses this effect via removal of the histone mark and a 
reader recognizes the mark recruiting further effectors leading to the observed effects of histone 
modification. Examples of each class is mentioned below scheme. 
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Figure 4 : Defining histone marks of active, inactive, and poised promoters and enhancers. A 
diagram depicting the distribution of histone marks that define the activation status of a promoter or 
enhancer. H3K27me3 is enriched at repressed elements while H3K27ac overlap with H3K4me1 on 
active enhancers and H3K4me3 on active promoters. Poised elements are enriched for H3K27me3 along 
with H3K4me1/3. 

be quickly activated if a temporal or spatial need for gene activation arises [65]. Understanding 

the trends and correlations of various histone marks has helped in the study of various elements 

in the genome. A graphical representation of histone marks on promoters and their states is 

depicted in Figure 4. 

 

 

 

 

 

 

 

In addition to promoters and enhancers, insulators are important elements of the genome as 

they contribute to the 3D compartmentalization of chromatin which enables enhancers to 

interact with and affect their target genes [66, 67]. These insulators are usually hyper-acetylated 

and are known to stop the expansion of H3K27me3 into active regions [68, 69]. Studying these 

elements via histone marks and chromatin accessibility in 5 different cell lines of different origins 

and characteristics has uncovered that only enhancers show a cell-specific pattern of 

enrichment compared to promoters and insulators which showed modest variability and high 

consistency among different cell lines [60].   
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1.3 Enhancers and gene transcription 

1.3.1. Gene transcription 

The assembly of the pre-initiation complex (PIC) at the promoter site marks the initiation of 

transcription and is followed by the phosphorylation of RNA polymerase II (RNA Pol II) at serine 

5 of its C-terminal domain and the capping of nascent RNA [70, 71]. Within the first 100 

nucleotides following the transcription start site (TSS), Pol II is temporarily paused by the 

negative elongation factor (NELF) and DRB-sensitivity inducing factor (DSIF) [70, 72, 73]. 

Thereby, promoter proximal pausing acts as a crucial rate-limiting step for gene transcription in 

metazoans [74]. To resume transcription, Pol II is phosphorylated at the serine 2 of its C- 

terminal domain by the positive elongation factor-b (P-TEFb) while NELF and DSIF are released 

upon phosphorylation [75, 76]. This leads to the release of the promoter proximal pausing and 

transcription elongation proceeds until termination sequences are met and termination proteins 

lead to the cleavage of RNA followed by adenine capping [77]. 

An earlier rate limiting step in transcription regulation involves the assembly of the PIC at 

specific genes which is initiated by the binding of transcription factors (TFs) to specific genomic 

sequences [78]. PIC comprises mainly of TATA-Box Binding Protein (TBP), TFIIA, TFIIB, TFIIF, 

TFIIE, TFIIH, and RNA pol II [79]. These general transcription factors along with RNA Pol II 

interact with mediator which stabilizes the pre-initiation complex and is usually reported as one 

of its members [80, 81]. Mediator is a very big complex comprising of multiple subunits and it 

plays a crucial role in the assembly and activation of PIC through forming a bridge between 

various sequence-specific TFs and the members of the PIC [78]. In addition to its important role 

at gene promoters, mediator is reported to connect initiating promoters with active distal 

enhancers through chromatin loop formation [82]. The first evidence of chromatin loop formation 

where a distal region can affect the transcription of a gene promoter was first reported in 1984 
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by Dunn et al. [83] in bacteria. Approximately 20 years later, Cohesin, which was known to play 

a role in sister-chromatid adhesion, was revealed to orchestrate the formation of DNA loops with 

the help of the insulator, CCTC-Binding Factor (CTCF) and the cohesion loader, Nipped-B-Like 

(NIPBL) [84-86]. Mediator was found to bind Cohesin and NIPBL to bring active enhancers and 

promoters into near proximity [82]. As mediator is composed of approximately 30 subunits, it 

can have different conformations [87]. A conformation which includes the kinase module 

comprising of cyclin dependent kinase 8 (CDK8) and does not interact with RNA Pol II was 

shown to have more preference to active enhancers [88]. In general, regulation of gene 

transcription is not restricted to gene promoters but also extends to the distal regulatory 

elements like enhancers and insulators. A scheme showing the activation of gene transcription 

at promoters and enhancers is illustrated in Figure 5.  

 

    

   

 

 

  

Figure 5 :  A schematic diagram depicting the pre-initiation complex at the promoter site. Mediator 
is shown in the diagram linking enhancers and promoters, helping the DNA loop formation by binding to 
cohesion, stabilizing the pre-initiation complex, and acting as a bridge between transcription factors and 
PIC. 
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1.3.2 Distal regulatory elements (Enhancers) 

Enhancers are small genetic elements which are highly enriched in DNA sequences that can be 

bound by TFs and can augment the transcription of their target genes in a distal and 

autonomous manner [89]. The first enhancer element was reported in Xenopus oocytes and 

activated the H2A gene while localized at a distal upstream region [90]. This was followed by 

the identification of enhancer distal regulatory elements in different systems [91-93]. Soon after 

their discovery, enhancers were reported to drive differential transcriptional regulation in a more 

diverse and versatile manner than transcriptional regulation at promoters [94]. As enhancers are 

activated via binding of sequence-specific TFs and are not restricted to a certain promoter 

region, they provide a flexible platform for gene activation [95]. TFs use their adaptor 

characteristics of scanning and binding to specific regulatory sequences throughout the genome 

to activate transcription via recruitment of chromatin remodelers in addition to various activators 

[96, 97]. Certain TFs are reported to be lineage-specific and drive the differentiation of certain 

states in the cell through activation of different constellations of enhancers [98, 99]. Moreover, it 

was reported that certain TFs have a preference to enhancers over promoters and vice versa 

[100]. Additionally, the pattern by which those TFs bind to their target sequence, whether 

towards the middle or the periphery correlates with certain patterns of recruitment for effectors 

and co-activators [101]. Furthermore, a subgroup of TFs called pioneer transcription factors 

have the ability to bind DNA in its compacted state, adding a level of regulation that is 

independent of histone marks and chromatin remodelers [102]. Examples of pioneer TFs 

include Forkhead Box A1 (FOXA1) and GATA Binding Protein 4 (GATA4) [97]. In conclusion, it 

is the combination of differentially expressed TFs and variously activated enhancers that 

enables the cell to tightly regulate gene expression (Figure 6). 
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Figure 6 : Transcription factors and enhancers cooperate in differential gene activation. A 
simplified diagram showing the ability of different transcription factors to activate various sets of 
enhancers leading to the activation of different combinations genes.  

Although enhancer sequences do not contain genes, they were found to be transcribed in 

contradiction to the general trends of energy conservation inside the cell [103]. The functions 

and mechanisms of the resulting products, named enhancer ribonucleic acids (eRNAs), are still 

not fully elucidated [104] . In general, eRNAs were reported to augment gene transcription as 

their knockdown led to decreased target gene transcription [105, 106]. Additionally, eRNAs were 

found to interact with NELF and facilitate promoter proximal pausing release [104]. Furthermore, 

chromatin loop formation and eRNAs production were reported to be preceding events before 

the activation of gene transcription [107]. Interestingly, the known tumor suppressor, tumor 

protein P53 (p53), was reported to exert its effects on certain enhancers that are not bound by it 

via p53-dependent eRNAs [108]. Studying the mechanisms of eRNA functions is expanding as 

techniques that can detect these highly unstable RNAs make use of labeling newly synthesized 

products to detect nascent RNA. These techniques include global run-on sequencing (GRO-

seq) [109], transient transcriptome sequencing (TT-seq) [110], precision nuclear run-on 

sequencing (PRO-seq) [111], and  chromatin run-on and sequencing (ChRO-seq) [112].  



General Introduction | Feda Hamdan 

17 

A crucial hurdle facing the investigation of the role of enhancers in transcription activation is the 

complexity of defining the target genes of each enhancer. In Figure 6, each target gene is given 

the same number as its enhancer for simplification purposes. In the cell, targets of enhancers 

are not necessarily in near proximity and can be separated by many unaffected genes [113]. 

Interactions between enhancers and their target genes are variable in different systems and 

show more tissue-specificity than differential activation of enhancers themselves [114]. 

Chromatin conformation capture assays to detect interactions between cis-regulatory elements 

were first established in 2002 and have been followed by many techniques that extended our 

knowledge about the interactions between enhancers and their target promoters [115-118]. 

Most importantly, these techniques identified specific compartments in the genome called 

topologically associating domains (TADs) that cultivate interactions inside them and isolate their 

constituents from the other compartments, thereby regulating the interactions between distal 

regulatory elements and their targets [119]. These TADs are flanked by insulators like CTCF 

and are highly conserved through different cells and comprise of regions that are characterized 

by a high rate of interaction [120-122].  

Given their tissue- and system- specificity, enhancers have garnered attention as major players 

in gene transcription activation and drivers of certain programs and differentiation states. This 

led to the identification of further subgroups of enhancers such as shadow enhancers and super 

enhancers. 

1.3.3 Super enhancers 

Super enhancers (SEs) were first identified as major drivers of gene expression that are highly 

enriched by transcription factors binding sites and include clusters of highly active distal 

regulatory elements [123, 124]. Target genes that are controlled by more than one enhancer 

were reported to exhibit higher tissue-specificity [114]. In accordance with this, super enhancers 
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were observed to drive lineage-specific programs in various systems such as epithelial 

differentiation, mesenchymal pluripotency, and estrogen-dependent mammary gland 

malignancy [125-127]. Interestingly, SEs were not only observed in mammalian systems such 

as murine and human cells, but were also enriched in Zebrafish where approximately half of the 

observed SEs were proximal to their counterparts in mammals [128]. Super enhancers were 

reported to form a phase that is liquid-condensate-like where high rates of transcription occur 

[129]. These reports all confirm the important, though not fully elucidated role, of super 

enhancers in gene transcription regulation.  

The Ranking of Super Enhancer (ROSE) algorithm is usually used to identify this subcategory of 

enhancers. The limitations and different settings of this algorithm are thoroughly discussed in 

chapter 2. Briefly, H3K27ac regions are stitched if the distances between them are less than the 

default 12.5 kilo base (kb). Afterwards, a density coverage file for a highly enhancer-enriched 

factor like mediator (MED1) or the BET family member, Bromodomain Containing 4 (BRD4), is 

used to calculate the density on these stitched regions. Enhancers with high density of these 

factors are deemed super enhancers (The ROSE algorithm approach is summarized in Figure 

7A). Limitations of the algorithm include the stitching distance which is set on an arbitrary 

number that can be changed and lead to extreme changes of results (Figure 7B). Moreover, 

TSS inclusion is not accurate in the case of two H3K27ac peaks flanking a TSS leading to the 

inclusion of promoters in the midst of enhancers (Figure 7C). 
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Figure 7 : ROSE Algorithm in defining super enhnacers. (A) Regions of H3K27ac are fed into the 
algorithm and regions that are less than 12.5 kb apart are stitched and the density of highly active factor 
on enhancers such as MED1 and BRD4 is used to rank enhancers with the ones having a higher density 
identified as super enhancers. (B) A diagram depicting the effects of changing the arbitrary cut-off point 
leading to identification of different enhancers. (C) The inclusion of TSS in the ROSE algorithm where 
even if regions around TSS are ignored, enhnacers including TSS are counted. This happens in case a 
TSS is present between two stitched peaks or if two TSS regions are included in one peak. 

 

 

 

 

 

 

 

 

 

To solve the arbitrary selection of a stitching distance, a new algorithm was developed called 

Clustering of genomic REgions Analysis Method (CREAM) [130]. This algorithm uses a 

machine learning approach to define the stitching region for each constellation of enhancers as 

it stitches all possible peaks in near proximity and calculates the stitching region from the point 

where the difference to the maximum window size included in the combination is equal to zero. 

This ensures the implementation of variable stitching regions for each combination depending 

on the various window sizes flanked by it. CREAM identifies clusters of cis-Regulatory Elements 

(COREs) which overlap to a good degree with the identified SEs using ROSE. As SEs were 

found to associate with various diseases and anomalies, better algorithms to define those 

enhancers will be highly beneficial.  

A 

B C 
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1.3.4 Enhancers and super enhancers in disease  

As enhancers and super enhancers play a crucial role in gene transcription activation, 

deregulation of these transcriptional hubs were naturally linked to imbalances and diseases. In 

fact, many single nucleotide polymorphisms (SNPs) linked to various diseases, such as cancer, 

Rheumatoid arthritis, Diabetes Mellitus type 2, and Alzheimer’s disease, were reported to occur 

in super enhancer regions [131-133]. Interestingly, a clear preference of SNPs to enhancers 

compared to promoters and other elements was observed in Crohn’s disease, systemic lupus 

erythymatosus, and breast and prostate cancer [134]. The eminent implication of enhancers in 

numerous diseases led to the development of the term “enhanceropathies” [135].   

A chromosomal rearrangement in acute myeloid leukemia (AML) was found to bring an 

enhancer in the near proximity to the oncogenic MDS1 and EVI1 complex locus (MECOM), 

precipitating the malignancy [136]. Another example includes the implication of enhancers in 

therapy resistance in leukemia [137]. Additionally, DNA methylation at super enhancers was 

reported to be aberrantly changed in malignancies [138]. Amplification of enhancers has also 

been found to play a role in the pathophysiology of prostate cancer and neuroblastoma [139, 

140]. Moreover, reprogramming of the enhancer landscape in pancreatic cancer was reported to 

play a significant role in promoting metastasis [141]. Due to the fact that cancer is a disease of 

aberrant transcription, the study of enhancer biology has become a focal point of study when 

investigating various malignancies [142]. Interestingly, few malignancies where a major driver 

mediates aberrant transcription are well-defined and provide a chance to study the mechanisms 

of enhancer implication and identify patterns that can be applicable in other types of cancers. 

The most known of these systems include hormonal regulation such as androgen receptors 

(AR) in prostate cancer and estrogen receptors (ER) in ER-positive breast cancers.  
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1.3.5 Enhancers in ER-positive breast cancer 

Breast cancer is the most common diagnosed malignancy and one of the most eminent causes 

of cancer-related mortality in women around the world [143, 144]. Therapeutic management of 

breast cancer has been significantly optimized by the identification of subgroups that respond 

differently to therapies based on their hormonal status [145]. Estrogen receptor positive (ER+) 

breast cancer subtype represents 70% of breast cancer patients and is highly responsive to 

endocrine therapy [146]. ERα is a master transcription factor in breast cancer which can be 

activated by estradiol. This leads to conformational changes in the receptor, mediating its 

dimerization and subsequent binding to specific targets in the genome called estrogen response 

elements (EREs) [147]. ERα can also exert some effects that are independent of its gene 

expression effects and include activation of protein-kinase cascades and signaling pathways 

mediated through membrane-associated receptors [148].  

The first characteristic observed when investigating estrogen localization throughout the 

genome was that it binds minimally to promoters and show an extreme preference to enhancer 

regions [149]. Silencing of estrogen-bound enhancers revealed different levels of enhancer 

hierarchy where estrogen binding sites are crucial for gene activation (predominant) or merely 

augmenting activation (supportive) [150]. Additionally, ER were linked to super enhancers 

activated upon ER activation as these generally included highly specific EREs [126]. It was also 

implied that ERα can bind to “canonical” EREs even in the absence of activation and is usually 

acting along with MED1 and BRD4 to activate enhancers [126, 151]. Indeed, ER binding was 

shown to recruit BRD4 to enhancer regions which enhanced eRNA production [152].  As 

estrogen positive systems largely mediate their effects via enhancers and the binding of specific 

domains, they provide an easily-defined system to study the role of enhancers. This knowledge 

can be used to test if the patterns discerned in this system apply to other less-defined systems. 
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In the remainder of this chapter, focus will be directed at a challenging system where molecular 

mechanisms and subtypes are still under investigation.  

1.4. Pancreatic Cancer 

1.4.1 Pathophysiology of pancreatic cancer 

Pancreatic cancer is well-known for its association with dismal survival rates and current studies 

are investigating various methods to optimize its therapy [153]. Recent findings implied that 

pancreatic cancer is highly related to enhancers [154]. Accordingly, studying the enhancer 

biology in pancreatic cancer is of great interest and benefit to patients. The pancreas has dual 

functions in the body where it regulates the levels of blood sugar on the endocrine level and 

mediates digestion via excretion of digestive enzymes on the exocrine level [155]. Interestingly, 

pancreatic cancer occurs with much higher incidence in the exocrinic pancreas, representing 

about 90% of pancreatic cancer patients in what is known as pancreatic ductal adenocarcinoma 

(PDAC) [156]. PDAC is most commonly preceded by the development of histologically distinct 

atypical legions called pancreatic intraepithelial neoplasms (PanINs) [157, 158]. A progression 

model for pancreatic cancer has been proposed where a series of sequential genomic 

mutations in KRAS proto-oncogene (KRAS), cyclin dependent kinase inhibitor 2A (CDKN2A) 

and p53 lead to the progression from normal pancreata to PanINs to PDAC [159]. KRAS 

mutations lead to the constitutive activation of KRAS signaling and its downstream pathways 

leading to increased proliferation and altered differentiation and migratory potential [160, 161]. 

Both CDKN2A and p53 are tumor suppressors which in the case of mutation lead to unchecked 

growth and disabled protective responses to anomalies [162-164]. 
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Figure 8 : Progression model for pancreatic cancer. Schematic representation of pancreatic cancer 
development from normal pancreata to PanINs to PDAC which is accompanied by mutations of KRAS, 
CDKN2A, and p53. Epigenetic factors playing a role in pancreatic cancer progression asre also depicted 
including KLF4 acting as a pioneer transcription factor, and SMARCA4 deletion leading to PDAC 
formation.  

Epigenetic pathways also play a significant part in the initiation and progression of pancreatic 

cancer. For example CDKN2A can be hindered either by a genomic mutation or 

hypermethylation of its promoter sequence [165]. Furthermore, it was reported that krüppel like 

factor 4 (KLF4) acts as pioneer transcription factor that re-programs the gene transcriptional 

profile in the pancreas and leads to the development of PanIN legions in mice [166, 167].  

SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily A, 

member 4 (SMARCA4) is a subunit of the SWI/SNF chromatin remodeler complex and its 

deletion , similar to other known gene mutations, lead to the development of PDAC [168]. 

Altogether, aberrant epigenetic pathways are major players in PDAC and its implications are 

thoroughly discussed in chapter 3. A general scheme of the progression model with main 

genetic and epigenetic precipitants is depicted in Figure 8 (based on model suggested by 

Hruban et al. [159]). 
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 1.4.2 Therapeutic management of pancreatic cancer 

Incidence and mortality rates for pancreatic cancer are almost equal due to the low survival 

rates of this aggressive malignancy [153, 169]. This is due to the fact that most patients present 

symptoms when the cancer is at later stages and has already metastasized to other regions 

[170]. Risk factors include familial history, smoking, excessive alcohol consumption and obesity 

[171]. Management strategies of pancreatic cancer include surgical resection for eligible 

patients and chemotherapy [172].  First-line chemotherapeutic options in pancreatic cancer 

patients include gemcitabine, Fluorouracil, nab-paclitaxel, or combinations including these 

agents [173].  

Fluorouracil used to be the standard of care for pancreatic cancer patients in spite of its low 

efficacy [174]. Fluorouracil exerts its effects by inhibiting thymidylate synthase in addition to the 

interference with functions of DNA and RNA where its metabolites get incorporated in [175]. 

Fluorouracil has been brought back to first-line therapy as combination with other agents proved 

to increased its beneficial effects [176]. Gemcitabine affects replication and DNA synthesis by 

the virtue of being a nucleoside analog which gets incorporated into DNA hindering its 

synthesis. It also inhibits ribonucleotide reductase, the enzyme mediating the synthesis of 

deoxyribonucleotides [177]. Gemcitabine is considered one of the first-line available 

chemotherapeutic agents affecting, though modestly, the survival-rate of patients and improving 

symptoms [178]. Interestingly, combination of gemcitabine with other agents has proved to be 

more beneficial to patients [179]. A particularly interesting combination for gemcitabine is with 

nab-paclitaxel which showed higher efficacy in increasing survival of patients [180, 181]. 

Paclitaxel stabilizes microtubules forming the mitotic spindle and prevents their 

depolymerization, thereby pushing the cells into an arrested cell cycle state and apoptosis [182]. 

Notably, most pancreatic cancer patients show low responsiveness rates to chemotherapeutic 
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agents whether alone or in combination due to resistance [183]. This forms one of the big 

hurdles in the management of pancreatic cancer and current research is trying to promptly 

address the problem. 

Resistance to chemotherapy can be inherent to the tumor or develop upon treatment [184]. 

Pancreatic cancer resistance to chemotherapy can stem from extrinsic mechanisms such as 

undetected micro-metastases and microenvironment-related conditions like hypoxia [185]. It can 

also be due to intrinsic mechanisms where genetic mutations and epigenetic pathways play a 

role in evading the toxic effects of chemotherapy. In spite of its positive effects on survival rates, 

most pancreatic cancer patients acquire resistance to gemcitabine [186]. One of the 

mechanisms associated with gemcitabine is the stabilization of mutant p53 which helps the cell 

to evade apoptosis [187]. Another mechanism is the deregulation of enzymes that metabolize 

gemcitabine [188]. Interestingly, paclitaxel was shown to decrease the levels of the gemcitabine 

de-activating enzyme, cytidine deaminase, thereby potentiating its effects [189]. Moreover, 

resistance to gemcitabine did not show cross-reactivity and resistant cells retain their sensitivity 

to paclitaxel [190]. On the other hand, resistance to paclitaxel itself can also occur due to 

increased expulsion from the cell by multidrug transporter P-glycoprotein, change in 

metabolism, and modulation of the target microtubule [184]. In conclusion, the current 

chemotherapeutic agents used in pancreatic cancer minimally but significantly affect the overall 

survival of patients and this effect is further attenuated by resistance. Accordingly, investigation 

of unconventional therapies is currently underway in order to optimize management and find 

alternative more effective therapies for pancreatic cancer. 

1.5 Optimization of pancreatic cancer therapy 

Many therapeutic targets have recently been identified in pancreatic cancer leading to the 

initiation of many clinical phase trials to validate the efficacy of their targeting. These therapies 
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include anti-inflammatory drugs inhibiting interleukin-1 [191], inhibitors targeting the usually 

overexpressed epidermal growth factor receptor (EGFR) signaling [192], and targeting 

modulated DNA damage response by the use of poly-ADP ribose polymerase (PARP) inhibitors 

[193]. Inhibitors of epigenetic targets are also extensively studied and include HDAC and BET 

inhibitors [194-196]. Applications of these two classes of epigenetic inhibitors especially in the 

scope of enhancers are extensively discussed in Chapter 3. In the following section, the 

mechanism of action and role of BET inhibitors in pancreatic cancer is slightly extended. 

1.5.1 BET inhibitors in pancreatic cancer 

Recent findings showed that inhibition of BET family proteins is effective, both alone and in 

combination with conventional chemotherapy, in decreasing pancreatic tumor growth in patient-

derived xenografts [197, 198]. The BET family consists of BRD2, BRD3, BRD4, and the testis-

specific BRDT [123]. All BET family members contain two conserved bromodomains, which 

enable them to recognize acetylation marks on the chromatin, and an extraterminal domain that 

interacts with other proteins [26, 199]. The bromodomain comprises of a hydrophobic pocket 

that can interact with acetylated lysines and enables the BET family to read acetyl marks on 

chromatin [26]. It was previously mentioned that P-TEFb is recruited to regions of promoter 

proximal pausing leading to its release and activation of transcription elongation. BRD4, the 

most studied of the BET family, is reported to recruit P-TEFb upon recognition of chromatin 

acetylation which leads to the phosphorylation of the Serine 2 of the RNA Pol II tails [26, 200, 

201]. The Serine 2 phosphorylated RNA Pol II interacts with the WAC complex (WW domain-

containing adaptor with coiled-coil) which then recruits RNF40 and RNF20 complex [202]. This 

E3 ubiquitin ligase complex is responsible for the monoubiquitination of histone H2B lysine 120 

tail which further promotes active transcription [203, 204]. (Figure 9) 
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JQ1 is a thienodiazepine that displaces BRD4 from acetylated lysines by forming hydrogen 

bonds with a conserved asparagine residue that is situated in the hydrophobic pocket of BRD4 

[205] (Figure 10). Many other BET inhibitors have also been developed, with some new agents 

having different specificity ratios toward BD1 or BD2 like I-BET151, I-BET762, and OTX-015 

[205-207]. 

Figure 9 : The role of BRD4 in transcription elongation. Acetylated histone marks are recognized by BRD4 which 

recruits CDK9 that phosphorylates RNA polymerase II C- terminal residues at the Ser2 position leading to promoter clearance. RNA 
Pol II Ser2-P interacts with WAC complex which recruits RNF20/40 complex. The E3 ligase RNF20/40 complex ubiquitinates H2B at 
lysine 120 (H2Bub1) and promotes transcription. 
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Figure 10 : The small molecule Bromodomain inhibitor JQ1. JQ1 competitively binds to BRD4 and 
inhibits the binding of BRD4 to acetyl lysine moieties on histone. This leads to the decrease of 
transcription of specific genes. 

 

 

 

 

BET inhibitors have shown promising effects in sensitizing cells to other conventional therapies 

and are currently under investigation to be used as adjuvant therapies in pancreatic cancer 

[208-211]. However, it was reported that various pancreatic cancer cells respond differently to 

BET inhibition depending on their molecular subtype [212]. Accordingly, investigation of certain 

therapies would be more precise if conducted in light of different subtypes rather than in 

pancreatic cancer patients in general. In case if one therapy is particularly active in a particular 

subpopulation, these effects can be masked by less than optimal effects in the other 

populations. Thus, subtyping cancer patients into subgroups who share certain attributes and 

may respond similarly to certain therapies in patients is highly beneficial. Unlike other cancer 

types like breast and colorectal cancer, molecular subtyping in pancreatic cancer is still novel 

with many overlaps and inconsistencies.  

1.5.2 Molecular subtypes of pancreatic cancer  

Molecular subtyping of pancreatic cancer was first conceived by Collisson et al. [213] in 2011. 

The goal of such subtyping was to reproduce the success in optimizing treatment achieved in 

breast and lung cancer by identifying different subpopulations. By studying gene expression 

profiles in various datasets of microdissected tumor material, Collisson et al. identified a gene 
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signature made up of 62 genes that clustered the tumors into Classical, Quasi-mesenchymal 

(QM), and Exocrine-like subtypes. Several pancreatic human and mouse pancreatic cancer 

cells were found to represent the classical and QM subtypes while the exocrine-like subtype 

was missing. In spite of microdissection-mediated enrichment of tumor cells, this led the authors 

to speculate that this subtype is the product of an artifact. Exocrine-like subtypes were so called 

due to their enrichment with digestive enzymes, QM due their mesenchymal characteristics, and 

classical were more epithelial-like. GATA binding protein 6 (GATA6) was reported to be 

enriched in the classical subtype and its knockdown showed a specific dependence of the 

classical but not the QM subtype on anchorage-independent growth. Additionally, the classical 

subtype has shown more overexpression of KRAS compared to the QM subtype. 

Four years later, this study was followed by a new subtyping approach using virtual 

microdissection by Moffitt et al. [214] who took into consideration the crucial role played by the 

stroma. Interestingly, the authors used microarray data for gene expression from normal 

samples in addition to PDAC tumor samples and metastases. They detected that the stroma 

usually constitutes half of the tumor sample and that their gene expression profile is clearly 

distinct from normal tissue. Notably, Moffitt et al. identified two types of stroma, normal which 

correlates with better prognosis and activated which shows an inflammatory signature and 

corresponds with worse prognosis. Remarkably, gene expression profiles in tumor cells 

compared to stroma showed enrichment for mitotic checkpoints and DNA replication. Subtyping 

of tumor cells uncovered two molecular subtypes called classical, correlating to a better survival 

rate, and basal-like subtype similar to the basal subtype in breast and bladder cancer. 

Consistently, gene signatures identifying the basal-like subtype in pancreatic cancer were able 

to cluster the basal subtype in breast and bladder cancer with a high success rate. Notably, 

most of the metastatic samples exhibited a basal-like phenotype with an enrichment of keratins. 

Compared to the Collisson subtypes, the Moffitt clustering was reported to be of higher 
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prognostic value strengthened due to the addition of the prognostic tendencies of the normal 

and activated stroma. The exocrine-like subtype recapitulated the gene signature of samples 

from adjacent normal tissue while the classical was highly reproduced in the classical subtype 

reported in Moffitt. Most interestingly, the QM subtype represented a mix of signatures from the 

basal-like cells and the stroma. Studies in patient-derived xenografts (PDX) confirmed the 

aggressiveness of the basal-like subtype which showed a higher tumor growth rate. No 

exocrine-like signatures were detected in the PDX samples and the QM subtypes were detected 

in mice and human further confirming the contamination of this subtype with stromal cells. 

Interestingly, the basal-like subtype showed a better response to chemotherapy compared to 

the classical subtype.  

In 2016, Bailey et al. [215] extended the available classification and used 96 bulk pancreatic 

tumors characterized by having at least 40% of comprising epithelial cells and studied 

differential gene expression to identify four different molecular subtypes. Based on similarities to 

histological phenotypes the four subtypes were called squamous, pancreatic progenitor, 

immunogenic, and aberrantly differentiated endocrine exocrine (ADEX). These subtypes were 

validated in an extended set of tumors with different epithelial cellular content. The squamous 

subtype was characterized by the expression of transcriptional programs related to hypoxia, 

metabolic reprogramming, and inflammation. Interestingly, the squamous subtype correlated 

with worse prognosis and expressed high levels of the deltaN isoform of tumor protein p63 

(deltaNp63) as a hallmark. The progenitor subtype expressed programs that are characteristic 

of endoderm fate determination. The immunogenic subtype expressed similar programs in 

addition to immunogenic programs such as antigen presentation and B cell signaling. While the 

ADEX subtype also showed enrichment of TFs related to differentiation and development, it 

exhibited exocrinic and endocrinic features at the same time which is atypical in normal cells. 

The Bailey classification overlapped with the Collisson classification except for the immunogenic 



General Introduction | Feda Hamdan 

31 

subtype which was only defined in Bailey with QM recapitulating squamous, classical showing 

features of pancreatic progenitor, and the exocrine-like reproducing the ADEX subtype. Such 

overlap was not discerned upon comparison of the Bailey classification with that of Moffitt but 

half of the squamous samples were basal-like as well.  

The most recent classification was performed in 2017 by the Cancer Genome Atlas Research 

Network (TCGA) and published in Raphael et al. [216] who took into consideration samples of 

high and low cellular purity. The authors reported that the basal-like and classical subtypes were 

recapitulated in high purity samples while the exocrine-like, immunogenic, and ADEX subtypes 

were exclusively observed in low purity samples implying that these subtypes are observed due 

to tumor impurities. Raphael et al. used other means for clustering their samples including DNA 

methylation and long non-coding RNA (lncRNA). Clustering was in concordance with the two 

subtype classification of classical and basal-like resulting from transcriptional profiling. lncRNA 

clustering uncovered an enrichment of lncRNA enhancing the transcription of Forkhead Box A2 

(FOXA2) and GATA6 in the classical subtype.   

These four classifications, though not completely overlapping, currently form the standard of 

molecular subtyping in pancreatic cancer. These subtypes provide an opportunity for 

implementation of precision-based medicine for therapeutic management of pancreatic cancer 

patients [217, 218]. Studies in organoids, PDX, primary human cell lines and biopsies were able 

to reproduce the molecular subtyping described in the four standard studies (Collision, Moffitt, 

Bailey, and Raphael) [219-223]. Screening of various inhibitors in different lines representing 

various subtypes uncovered that distinct subtypes show different dependencies and 

vulnerabilities [224, 225]. Additionally, studies in pancreatic cancer patients revealed that 

molecular subtype can correlate not only with prognosis but also with response to 

chemotherapy [226]. Accordingly, molecular subtyping of pancreatic cancer presents a highly 

important milestone in the optimization of therapy for pancreatic cancer patients. 
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Given the worse prognosis of the squamous/basal-like subtype, understanding the molecular 

mechanisms taking part in this particular subtype is of the utmost importance. We previously 

mentioned that high expression of deltaNp63 is a feature of the squamous phenotype. Its role 

and its functions are discussed in the following section. 

1.6 DeltaNp63 in cancer 

p63 along with the known tumor suppressor p53 and tumor protein P73 (p73) are transcription 

factors comprising the p53 family [227]. At the time of its discovery, p63 was presumed to play a 

comparable role to p53 due to their structural similarity [228]. One of the most known roles of 

p53 is stress-induced initiation of apoptosis [229]. p63 has two major isoforms, the first isoform 

is the transactivation domain-containing p63 isoform (TAp63) and the second isoform is called 

the transactivation domain-lacking p63 isoform (DeltaNp63/ΔNp63) [228]. Each of these has 3 

minor isoforms that differ at the C-terminal domain named α, β, γ, respectively. The structure of 

p63 isoforms compared to p53 and p73 is depicted in Figure 11 (modified from the first paper to 

clone and identify p63 in 1998, Yang et al. [228]). 

 

 

 

 

 

Figure 11 : Schematic structure of the isoforms of p63 compared to p53. (modified from Yang et al.) 
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Due to the lack of the transactivation domain in deltaNp63 and its inability to activate p53 target 

genes in contrast to TAp63 in a reporter assay conducted in osteosarcoma cells, Yang et al. 

concluded that deltaNp3 is the dominant negative form and reported that it is usually expressed 

in 200 basal and squamous cells. Consistently, knocking out p63 in mice resulted in deformed 

or missing limbs and global effects on epithelial tissues [230, 231]. In addition, deltaNp63 was 

reported to be highly expressed in cancers and molecular subtypes of cancer that are 

squamous or basal in their nature such as breast, head and neck, lung, and esophageal 

carcinoma [232-235]. Interestingly, deltaNp63 expression was found to correlate with 

aggressiveness in salivary glands tumors and with clinical stage and metastasis in oral 

squamous cell carcinoma [236-238]. Knockdown of deltaNp63 led to increased sensitivity to 

chemotherapy in head and neck and lung squamous carcinomas [232]. A report in 2005 

observed the upregulation of deltaNp63 in pancreatic cancer [239]. DeltaNp63 garnered more 

attention in the pancreas when Bailey et al. revealed its high implication in the squamous 

phenotype [215]. 

Recently, p63 was identified to drive expression of the lncRNA LINC01503 through a super 

enhancer region [240]. LINC01503 was found to enhance proliferation and invasiveness of 

esophageal carcinoma cells through activating the mitogen activated protein kinase (MAPK) and 

phosphatidylinositol 3-kinase and Protein Kinase B (PI3K/AKT) pathways. Interestingly, 

knockdown of this lncRNA not only decreased proliferation and anchorage-independent growth, 

but also sensitized cells to inhibitors targeting the pathways it activates. p63 was also reported 

to drive keratinocyte differentiation with the help of the histone methylase MLL4 through distal 

enhancers [241].  So far, the mechanisms by which deltaNp63 drives its effects and promotes 

malignancy are not well-defined. Future studies will extend our knowledge about this important 

TF and might provide a new therapeutic target in subtypes of cancer that are associated with 

worse prognosis. 
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1.7 Aims and scope of this project 

This project focuses on investigating the role of distal regulatory elements in driving aberrant 

gene transcriptional regulation in malignancy-related contexts. In particular, emphasis is given 

on elucidating the role of super enhancers, validating their importance, and defining major 

drivers in this subcategory of distal regulatory elements. This is done with the goal of not only 

shedding light on molecular mechanisms underlying development and progression of malignant 

disease, but also uncovering new targets for therapies and biomarkers for prognosis and 

therapeutic effectiveness.  

This project includes a series of four studies presented in this thesis as two publications in 

addition to two manuscripts. The first publication (Chapter 2) aims to validate the importance 

and alleged high efficacy of super enhancers. This is tested in a clearly-defined system where 

enhancers and their drivers are clearly elucidated. Accordingly, a pattern for gene transcriptional 

regulation control via enhancers and/or super enhancers can be concluded from this system 

(estrogen and BRD4 in breast cancer). Such patterns can be tested in other contexts which 

could lead to its validation in various systems or the finding of new system-specific patterns. 

These models can then be manipulated and leveraged in reversing aberrant transcription in 

malignant diseases. 

As a clear superiority of super enhancers in breast cancer was not observed, we extended our 

study to include the particularly aggressive pancreatic cancer. In the second publication 

(Chapter 3), our main objective is to evaluate the role of targeting enhancers and super 

enhancers in pancreatic cancer via the epigenetic modulators, BET and HDAC inhibitors. 

Additionally, we use publicly available data for transcription factor localization throughout the 

genome to identify context-dependent enhancers in different malignancies. Moreover, we aim to 
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find the mechanism by which BET and HDAC inhibitors work synergistically in pancreatic 

cancer. 

Subsequently, we endeavored to focus on the role of super enhancers in pancreatic cancer. 

Thereby, we uncovered the transcription factor deltaNp63 as a major driver. Accordingly, in the 

first manuscript (Chapter 4), our purpose is to understand the molecular mechanisms by which 

deltaNp63 drives a distinct molecular subtype via super enhancers. We also intend to uncover 

transcription factors that co-operate with deltaNp63 in molecular subtype development. 

Additionally, we aim to better characterize the currently defined molecular subtypes of 

pancreatic cancer and validate the implication of deltaNp63-driven super enhancers using 

various systems. 

Finally, we aim to extensively study the role of enhancers in the development of resistance to 

chemotherapy in pancreatic cancer. Thus, we aim to identify changes in the pattern of gene 

transcriptional regulation by enhancers in the second manuscript (Chapter 5). Accordingly, we 

identified BET inhibitors as a potential sensitizer for chemo-resistant pancreatic cancer. 
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2.1 Abstract  

Significant attention has recently been given to a class of enhancers termed “super enhancers”, 

while implying that “typical enhancers” are less important. In this report, we examine criteria for 

identification of super enhancers and address the need to evaluate the differences between 

BRD4-occupied “typical” and “super” enhancers. 

2.2 Introduction 

Bromo- and extra-terminal (BET) domain proteins, most notably BRD4, represent an important 

class of epigenetic regulators with a particularly strong relevance for various human diseases 

including cancer, fibrosis, heart failure, etc [242]. BET proteins function as “epigenetic readers” 

which recognize acetylated lysine residues on both histone and non-histone proteins and serve 

to promote target gene transcription [26, 243]. A number of recent studies from our group and 

others have revealed a particular importance of BET proteins in the control of gene expression 

via distal enhancer regions. Notably, the discovery of small molecule inhibitors (BETi) which 

block the binding of BET proteins to chromatin [244, 245] have led to an explosion of research 

into the biology of these proteins and ultimately to numerous early phase clinical trials to test 

their efficacy in the treatment of various malignancies [246]. However, a major hurdle that 

remains is the ability to accurately predict the biological and transcriptional effects of BETi 

based on transcriptional and/or genome-wide occupancy profiles. We have recently shown that 

BRD4 plays a significant role in the transcription of lineage-specific genes in human fetal 

osteoblasts, mainly through localization with different transcription factors at enhancer regions 

[99]. Similarly, we showed that the majority of BRD4-enriched regions in mammary epithelial 

cells were associated with putative enhancers [247]. Remarkably, more than one-third of 

epithelial-to-mesenchymal transition-related genes showed an enrichment of BRD4 at an 
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adjacent distal region. Overall, enhancers emerge as a common and decisive mechanism in 

BRD4-mediated regulation of gene transcription. 

Since the term “super enhancer” (SE) was coined [123, 124] a significant emphasis has been 

placed on this class of enhancers while implying that other “typical enhancers” (TEs) are of less 

importance. However, the exact characteristics that render an enhancer “super” and not “typical” 

are still poorly defined and fairly arbitrary. In our previous work [99, 247], we identified potential 

enhancers important for mediating tissue-specific BRD4 activity using a differential occupancy 

approach, independent of “super” classification. This work resulted in important insights into 

BRD4 function at putative distal enhancer regions, which could be functionally verified in both 

systems. In this report, we sought to examine the potential relevance of “super enhancers” by 

following different approaches to identify BRD4-dependent “super enhancers” with the goal of 

testing if they indeed represent a special class of regulatory elements with a particularly strong 

influence on gene regulation. Furthermore, we examined if we can more meticulously identify 

these presumed highly efficient regulatory units that can be optimally harvested to effectively 

predict the effects of their pharmacological perturbation on gene transcription.  

2.3 Results and Discussion 

2.3.1 Super vs. Typical Enhancers: What is so bad about being typical? 

In general, SEs are considered to be large clusters of regulatory elements that are highly 

occupied by transcription factors and have high potential to activate transcription of their target 

genes [248, 249]. It was recently found that single nucleotide polymorphisms (SNPs) within 

BRD4-enriched SEs increase the chances of the development of breast and prostate cancers 

[250]. BRD4 was also reported to occupy the Colon Cancer Associated Transcript 1 (CCAT1) 
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super enhancer, thereby enhancing the expression of the nearby MYC oncogene and 

accounting for the anti-proliferative effects of BET inhibition in colorectal cancer [251]. Cell lines 

that do not include a super enhancer driving MYC expression have been reported to be largely 

unresponsive to BET inhibition. Deleting the upstream super enhancer region of Myc in mice 

specifically affected its expression in tissues like the colon and prostate and led to a partial loss 

of the mammary tumorigenic phenotype in these mice [252]. While these and other studies 

validate the increased interest in SEs, this might inadvertently lead to the disregard of important 

“typical” enhancers that can significantly mediate the effects of BRD4 and may efficiently be 

exploited in its perturbation. 

In order to evaluate the individual contributions and importance of SEs and TEs, we used our 

previously published dataset (GSE55921/2) in which we examined the importance of BRD4 in 

controlling ERα-activated gene transcription in ER-positive MCF7 breast cancer cells [152]. We 

specifically chose this system as it ideally suits our analyses due to the rapid and direct effect of 

ligand (estrogen) binding to the estrogen receptor-alpha (ERα) and the robust effects on 

transcriptional activation. Additionally, ERα activity in this system is highly dependent on BRD4 

demonstrated by the observation that 83% (126 out of 152) of the genes that are significantly 

upregulated by estradiol (E2) treatment (>2 folds, q-value<0.05) are significantly downregulated 

upon knockdown of BRD4 (<1.4 folds, q-value<0.05 ). We hypothesized that if SEs play a more 

prominent role in mediating BRD4 effects than TEs, the 126 genes downregulated upon 

knockdown of BRD4 will show a higher correlation with BRD4-driven “super” than “typical” 

enhancers.  
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In order to identify putative enhancers, we used genome-wide occupancy data for histone 3 

acetylated on lysine 27 (H3K27ac) in E2-treated MCF7 (GSE40129) [253] and identified SEs 

based on their BRD4 signal intensity using the Ranking of Super Enhancers (ROSE) algorithm 

[123, 124], the most commonly utilized approach to identify SEs. In this way, we were able to 

identify 324 super enhancer regions [Figure 12A] and 24,427 TEs. To selectively narrow 

enhancers to those related to ERα function, we intersected them with ERα peaks followed by 

intersection with BRD4 peaks to select only for TEs that are occupied by both ERα and BRD4 

and eliminate any regions where a direct effect of estrogen and BRD4 could not be established. 

Subsequently, we extracted the nearest genes in a window of 500 kb using the BETA-minus 

version 1.0.0 on the Galaxy platform and utilized CTCF boundaries to filter the genes.  

Interestingly, there were twice as many genes associated with TEs compared to SEs which 

were downregulated in response to BRD4-depletion (Figure 12A, Venn diagram). This indicates 

that TEs likely play a highly significant role in BRD4-mediated gene transcription regulation and 

should not be overlooked. On the other hand, SE-associated genes included major players in 

estrogen response, including GREB1, TFF1, XPB1, in addition to the widely known BRD4 

target, MYC. This may imply that master regulatory genes show a tendency to be more related 

to SE-mediated regulation, possibly due to more efficient control by a cluster of enhancers 

rather than by individual ones. In general, we failed to find significant differences between SE- 

and TE-associated genes in their tendencies for downregulation upon BRD4 knockdown (Figure 

12A, box plot). 



Publication I | Feda Hamdan 

 

41 

 

Figure 12 : Different approaches followed to identify super enhancers using the ROSE algorithm. 
(A-D) Feeding ROSE with H3K27ac peaks and ranking regions based on BRD4 signal (A), only H3K27ac 
peaks that co-localize with or are adjacent to ERα (B), H3K27ac peaks that only co-localize with ERα (C) 
or H3K27ac peaks and ranking regions based on GRO-seq signal (D). In each panel, the specific 
workflow of the SE and TE identification is shown, followed by the ROSE output showing GREB1 and 
ESR1 approximate ranks as examples. Venn diagrams show the overlap of SE- and TE-associated 
genes with BRD4-dependent genes (126 genes that are upregulated by E2 treatment and significantly 
downregulated by BRD4 treatment). At the bottom of each panel, a box plot shows the general tendency 
of regulation of SE- or TE-associated genes upon knockdown of BRD4. 
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2.3.2 Picking the petals of ROSE: an enhancer is super, an enhancer is not 

super… 

The ROSE algorithm is currently the gold standard for the identification of super enhancers in 

addition to other scripts which follow the same rationale. Certain regions are used as an input 

for ROSE and stitched together if they are less than the default 12.5 kb apart. Subsequently, 

stitched regions are ranked according to the intensity of the signal of a chosen transcription 

factor or cofactor (e.g., Mediator, BRD4, etc.). Super enhancers are identified as those for which 

the signal is particularly high and surpasses a specific cut-off point. The regions that are close to 

the transcriptional start site can also be disregarded with a default threshold of 2500 bp. Thus, 

the process of the identification of super enhancers can be affected by different variables. 

A deciding factor for the identification of super enhancers is the input regions that are inserted 

into ROSE. They form the general population among which SEs are selected. Naturally, the 

higher the number of the regions, the more “difficult” it is for a certain region to rise above the 

specific cut-off point and be classified as a SE. Super enhancers comprise a luring target not 

only due to their high activation potential but more importantly due to their specific and 

dependent mediation of gene regulation. As we were specifically interested in the potential role 

of BRD4-occupied super enhancers in the context of ERα function, we intersected our enhancer 

regions with ERα peaks after the identification of SEs by ROSE. To check the effect of limiting 

the regions before running ROSE, we used H3K27ac peaks that are co-localized or adjacent to 

ERα peaks as input for the algorithm. As expected, this approach reduced the number of SEs to 

95 (Figure 12B). Interestingly, as the processed region numbers were less than 20% of those 

used in the standard way, the cut-off point increased and ranks of estrogen-regulated genes 

improved, which could be expected since only estrogen-related regions were taken into 

account. Conversely, the number of SE-associated genes that are dependent on BRD4 
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decreased, while still including the same key ERα target genes defined previously (Figure 12B, 

Venn diagram). Remarkably, this approach started to reveal a more significant dependence of 

SE-associated genes on BRD4 compared to TE-associated genes.  

Overall, by inserting a simple focused “tuning” to ROSE, we were able to more precisely select 

for a predictive subgroup of enhancers. Ultimately, our goal is to identify subgroups of 

enhancers within a larger population of regions, which may more precisely predict the effects of 

BETi treatment. Altogether, the ranking of enhancers by ROSE is highly dependent on the 

number and nature of the regions which are inserted as input into the algorithm in addition to the 

stitching threshold. As such, the ranking should be used as a tool rather than a goal in 

identifying highly functional transcriptional regulatory subunits. This can support the rationale to 

limit the tested regions in the hope of identifying meaningful mediators regardless of the fact if 

their “super” rank is ultimate (from all possible regions) or regional (from specifically picked 

regions). 

2.3.3 Super enhancer subcomponents: one for all or all for one? 

While super enhancers are generally considered to comprise very broad H3K27ac peaks, 

chromatin accessibility can frequently provide an opportunity to narrow down the regions in 

order to decipher individual components of SEs. Usually, these enhancers include multiple 

peaks of chromatin accessibility (e.g. from DNase or ATAC-seq), where chromatin is accessible 

to transcription factors. This raised the question if these clusters work in an additive or 

synergistic manner [248]. Recent developments in ground-breaking genome editing techniques 

have enabled scientists to investigate the contribution of individual subcomponents of certain 

SEs. Mosaic-seq uses CRISPR-mediated deletion of certain clusters of a super enhancer in 

order to evaluate their role in gene activation. This revolutionary method has revealed that in the 
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case of the β-globin locus control region (LCR), one cluster within this super enhancer region is 

largely responsible for the activation of its target gene, HBG2 [254]. Conversely, deletion of 

individual regulatory elements of the α-globin SE in mice showed no significant preference of 

any of the SE subcomponents [255]. Concordantly, the high activation potential of the SE 

associated with the mammary-specific Wap locus was partially dependent on each of the 

singular components [256]. 

Accordingly, an important question arises of whether SEs comprising multiple components 

solely related to ERα can have greater effects on gene regulation than other SEs which include 

ERα in only one or a few of its components. For this purpose, we performed a highly biased 

analysis by using only H3K27ac peaks that intersect with ERα peaks as input for ROSE (Figure 

12C). This approach significantly decreased the cut-off point of SE identification to half of that 

compared to our previous approach when we allowed for all components independent of co-

localization with ERα. Surprisingly, this increased the numbers of SEs to 117, but did not 

increase the number of BRD4-dependent SE-associated genes. SE-associated genes in this 

case also showed more significant downregulation by BRD4 knockdown (Figure 12C, box plot).  

To identify whether SEs affect more prominent regulators than TEs, we used the GREAT 

analysis tool and performed gene ontology analyses on the two nearest genes in a 500 kb 

window to SEs and TEs [257]. To correct for the large difference in numbers between the SE- 

and TE-associated genes, which may lead to a profound bias when calculating significance, we 

intersected the TE- and SE-associated peaks with DNase-seq from E2-treated MCF7 

(GSE33216) [258]. Only SE regions defined in the most biased approach (Figure 12C), where 

we intersected the H3K27ac peaks with ERα peaks, showed significant association with 

ontology terms related to estradiol, hormone, and estrogen response, while TE regions did not 

comprise any significant ontology terms related to estrogen or hormones. Both SE and TE 
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regions failed to show meaningful gene associations using the other previous approaches (data 

not shown).  

Overall, our observations imply that SEs can include subcategories depending on the 

transcription factors and niche of each subcomponent. Overall, not all SEs will necessarily 

follow the same rule. As we learn more about SEs, we will be able to better understand the 

impact of their various individual components and identify which are additive and which are 

synergistic. Currently, it is of high interest to test if the activation of any element of a specific SE 

will be sufficient to activate a gene that is otherwise not active. To do so, a driving transcriptional 

cofactor such as BRD4 or p300 can be tethered to specific regions using nuclease-deficient 

Cas9 (dCas9) in a system where the SE is not active [model in Figure 13]. This approach has 

been successfully used to ectopically induce DNA methylation [259] and induce acetylation of 

enhancer regions.[260] Thus, using this approach will enable us to test the effects of targeting 

different transcriptional regulatory proteins to specific loci (e.g. in TE or SE) in order to derive 

conclusive data that will help in identifying the dependencies of enhancers and further validate 

their effects. 

2.3.4 Enhancer RNAs: whether bystanders or effectors, they are anyways a great 

help 

Enhancers were recently shown to frequently produce bi-directional non-coding, generally short-

lived transcripts referred to as enhancer RNAs (eRNA), which appear to be involved in inducing 

nearby target genes [103]. It was reported that eRNAs near E2 activated genes are upregulated 

upon E2 treatment and function as stabilizers for the looping of enhancers with the promoters of 

ERα target genes [261]. Conversely, a recent study has found that eRNAs rarely co-localize 

with an enhancer-promoter-loop associated with active transcription [262]. Hah et al. showed 



Publication I | Feda Hamdan 

 

46 

that the majority of macrophage SEs in mice produced eRNAs in contrast to only one third of 

TEs [263]. To date, it still remains unclear whether eRNAs are a mere by-product given their 

presence in the midst of transcriptional factories or actual effectors that are important central 

regulators of gene transcription. 

In order to examine this further, we used publically available Global run-on (GRO-seq) 

(GSE43836) [264] data for E2-treated MCF7 cells to test whether using this information to 

predict super enhancers results in similar findings to BRD4 ChIP-seq data. Remarkably, we 

were able to identify a similar number of SEs by ranking them based on GRO-seq, rather than 

BRD4 (Figure 12D). Out of the 177 SEs that co-localize with ERα and BRD4, 106 enhancers 

were contained within the 218 genes identified using the BRD4 signal, suggesting there is a 

substantial, but only partial overlap in the results obtained using the two approaches. Notably, 

using GRO-seq to classify SEs increased the number of BRD4-dependent genes that are 

related to SEs and included other estrogen responsive genes like HSP80 and RAB31. However, 

it did not affect the tendency of downregulation following BRD4 depletion between SE- and TE-

associated genes, which stayed insignificant when using all the H3K27ac regions (Figure 12D, 

box plot). Whether eRNAs are bystanders or effectors, in any case, they can be highly effective 

predictors of enhancers and may possibly be used in place of the most commonly-used 

transcription factors like MED1 or BRD4 when identifying and analyzing enhancer regions. 
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Figure 13 : Tethering of BRD4 to enhancer regions via nuclease-deficient Cas9 (dCas9) can 
provide causative information about the contribution of individual components of (super) 
enhancers. (A) An inactive enhancer region is shown which displays no significant transcriptional activity. 
(B) In the case of an active super enhancer, different or identical transcription factors can lead to the 
recruitment of other activators, in this model p300-mediated acetylation of histones serves to promote 
recruitment of BRD4. This then leads to increased transcription of the target gene. (C) Tethering of BRD4 
in an acetylation-independent manner to subcomponents of a super enhancer can validate the 
contribution of each element to the enhancer. By tethering BRD4 to one region, we can verify if one of the 
elements are sufficient to account for the high activation potential of the super enhancer (1+0+0=10). We 
can also evaluate the loss of the one component (0+1+1=5) and thus verify if this certain super enhancer 
works synergistically (1+1+1=10) or in an additive manner (1+1+1=3). Finally, tethering can also provide 
causative data to identify target genes of specific enhancers and determine the complex interactions 
between these enhancers and their target gene(s). 
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2.4 Conclusions 

In this report, we sought to challenge the current approach for identifying functionally important 

distal enhancer regions and make a simple comparison between SEs and TEs. We aimed to 

shed light on the distinctive roles of TEs and SEs since many researchers remain skeptical 

about this classification, at least in part due to the lack of a clear definition. Irrespective of 

categories, increasing our understanding of enhancer mechanisms of action and dependencies 

will not only provide us with novel approaches to predict the effects of epigenetic manipulation 

of enhancer function (e.g., through BETi), but will also endow us with unprecedented potential to 

identify and develop new strategies to specifically manipulate gene expression in different 

contexts and diseases. We observed that, irrespective of the approach for SE identification, a 

high number of genes showed regulation by TEs, which underscores the importance of studying 

the role of all enhancers rather than focusing only on the SE subcategory. While the frequent 

association of SE with master regulators may justify the recent interest in their characterization, 

SEs may simply be the “low hanging fruit” of enhancers that can prejudice our investigations 

and prevent us from identifying other important regulatory elements that can have significant 

impacts and effects. Instead, a differential occupancy approach as we recently described [99, 

247], may provide a more effective approach to identify functionally important enhancers and 

their underlying transcription factor networks. 

2.5 Methods: Analysis 

Fastq files were mapped to the hg19 genome using BOWTIE2/2.2.6 with very sensitive end-to-

end options. Peaks were called using MACS2/2.1.0 without building the shifting model and with 

input peaks as background. Narrow peaks were called for ERα and broad peaks with a cut-off of 

0.05 were called for BRD4 and H3K27ac. RNA-seq data were mapped by TOPHAT/2.1.0 to the 

hg19 genome and differential analysis was performed using CUFFLINKS/2.2.1. GRO-seq 
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(SRR653425/6) was mapped using BOWTIE2/2.2.6 and bigwig files were generated using 

DEEPTOOLS/2.4.0 with ignoring the duplicates and extending for 200bp. Box plots were 

generated using GraphPad Prism 5 with significance calculated using the Mann-Whitney test.  
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3.1 Abstract 

While the mortality rates of cancer are generally declining, pancreatic cancer persists to be an 

exception with a 5-year-survival rate of less than 7%. Late diagnosis and resistance to 

conventional therapies contribute to high mortality rates in spite of the remarkable recent 

advances in cancer management and research. Consequently, there is an urgent need to find 

new and unconventional therapeutic targets to improve prognosis and survival of pancreatic 

cancer patients. In this review, we discuss the transcriptional effects of the most widely used 

epigenetic inhibitors in pancreatic cancer focusing on Bromodomain and Extraterminal domain 

(BET) and Histone Deacetylase (HDAC) inhibitors, which are currently highly promising 

therapeutic options. We suggest that these inhibitors can be better utilized at lower doses which 

exploit their transcriptional modulatory effects on pancreatic cancer transcriptional programs 

directed by specific factors such as MYC and Forkhead Box A1 (FOXA1), rather than simply 

based on their anti-proliferative effects. This approach can potentially help avoid the intolerable 

adverse events frequently elicited by the use of these treatments at higher doses. In particular, 

we underscore the crucial role of distal regulatory elements in mediating the specific effects of 

these epigenetic inhibitors and propose using them in a more selective and prudent manner. 

3.2 Introduction 

While the mortality rates of cancer are generally declining, pancreatic cancer persists to be an 

exception with a 5-year-survival rate of less than 7% [153, 265]. Late diagnosis and resistance 

to conventional therapies contribute to high mortality rates in spite of the remarkable recent 

advances in cancer management and research [246]. Consequently, there is an urgent need to 

find new and unconventional therapeutic targets to improve prognosis and survival of pancreatic 

cancer patients. 
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In addition to various genomic mutations, such as KRAS and TP53, that play a role in the 

pathophysiology of pancreatic cancer, other mutations and signaling pathways play an equally 

important role by affecting transcription of entire subsets of genes, irrespective of genomic 

sequence [215, 246, 265-269]. Epigenetic pathways affect transcription either via modulation of 

histone modifications which can be activating or silencing, DNA methylation-mediated silencing, 

non-coding RNAs, and alteration of chromatin accessibility [270]. This meshwork provides the 

cells with various tools that can dramatically affect its transcriptome without the need to induce 

any irreversible changes at the level of the genome. Moreover, in contrast to the permanent and 

largely “all or nothing” effects of genomic mutations, modulation of the epigenome allows for 

more subtle, reversible changes in genome regulation. 

Epigenetics represents a promising target in pancreatic cancer for various reasons. Firstly, 

epigenetic modifications are mainly mediated by enzymes and proteins whose activity can (at 

least in principle) be targeted by small molecule inhibitors. Secondly, many epigenetic pathways 

were found to be deregulated in pancreatic cancer, suggesting a crucial role of epigenetic 

regulation in this malignancy [215, 266-268]. Additionally, pancreatic cancer, among others, was 

found to be addicted to the activation of aberrant transcriptional programs that not only drive the 

development and progression of cancer, but are also crucial for the maintenance of detrimental 

malignant characteristics such as metastasis and chemoresistance [271, 272]. Epigenetic 

pathways were found to be major drivers of the perturbations of such programs in a highly 

intricate and context-specific manner [273]. Due to its tremendous pliability, epigenetic 

modulation provides an optimal tool to be hijacked in cancer development and progression 

creating a specific dependence of cancer cells on these pathways. Accordingly, many 

epigenetic inhibitors are currently under investigation for the treatment of numerous 

malignancies, including pancreatic cancer [246, 274-276]. However, results from these studies 

so far have been unexpectedly modest and, in some cases, these inhibitors were associated 
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with intolerable toxicities. Many of these studies use epigenetic inhibitors, whether alone or in 

combination, in a method akin to other more conventional drugs with defined targets such as 

chemotherapy and monoclonal antibodies. On the other hand, epigenetic inhibitors target 

transcriptional regulation in a complex and unconventional manner and this should be taken into 

consideration when investigating these drugs.  

Numerous reviews have deeply discussed and extensively summarized the recent advances of 

targeting epigenetics in cancer, in general, as well as in pancreatic cancer in particular [246, 

270, 277-282]. In this review, we focus on the transcriptional mechanisms of the most widely 

used epigenetic inhibitors in pancreatic cancer focusing on Bromodomain and Extraterminal 

(BET) and Histone Deacetylase (HDAC) inhibitors, which represent promising therapeutic 

options. We suggest that these inhibitors can be better utilized for their transcriptional 

modulation, rather than solely on their anti-proliferative effects, which can lead to intolerable 

adverse events. Moreover, we underscore the crucial role of distal regulatory elements in 

mediating the specific effects of these epigenetic inhibitors and propose using them in a more 

selective and prudent manner. 

3.3 Bromodomain and Extraterminal Inhibitors in Pancreatic Cancer  

The BET family of proteins consists of BRD2, BRD3, BRD4, and the testis-specific BRDT [123]. 

All BET family members contain two conserved bromodomains which enable them to recognize 

acetylation marks on the chromatin, in addition to an extraterminal domain which enables 

interactions with other proteins [26, 199]. The BET family has attracted much attention due to its 

significant role in gene transcription regulation in addition to its implication in the development of 

the particularly aggressive Nuclear protein in Testis (NUT) midline carcinoma, which is 

characterized by the presence of a BRD4-NUT fusion gene and arises in the mediastinum, 

head, and neck of typically young patients [245, 283-285]. This aberrant fusion gene includes 
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the two bromo- and extraterminal domains of BRD4, in addition to a histone acetyltransferase 

(HAT) binding domain from the NUT gene. Thus, the fusion gene has the ability to aberrantly 

activate large chromatin domains [273]. The synthesis of the prototype BET inhibitor JQ1, which 

competitively binds to the acetylation-recognizing hydrophobic pockets in all BET members, has 

marked an explosion in the number of studies investigating the role of BET family members in 

gene transcription regulation due to their promising anti-proliferative effects in different cancer 

types [245, 286]. However, many aspects are still unknown about the role of these factors in 

driving transcriptional activation and the best way to leverage their context-specific effects. 

3.3.1 Role and Effects of Bromodomain and Extraterminal Inhibitors in Pancreatic 

Cancer  

Interestingly, a general screen for limiting epigenetic regulators in pancreatic cancer identified 

two members of the BET family, BRD2 and BRD3, as major drivers in pancreatic cancer growth 

and progression [287]. In pancreatic cancer cell lines, BET inhibition exerts anti-proliferative 

effects by selectively targeting inflammatory and oncogenic pathways [196]. This effect was also 

observed even in pancreatic cells with chemotherapy-resistant and highly migratory phenotypes 

[210]. Concordantly, BET inhibitors were found to decrease tumor growth in patient-derived 

xenografts by attenuating inflammatory pathways in cancer cells and their associated fibroblasts 

[209, 287, 288]. Recently, Andricovich et al. [212] showed that pancreatic cells deficient for the 

lysine demethylase, KDM6A, are more sensitive to BET inhibition due to the activation of BET-

dependent super enhancers. Moreover, the MYC proto-oncogene, perhaps the best known 

target for BET inhibition, was successfully used to subgroup 55 pancreatic cancer patient-

derived xenografts based on its expression and accurately predicted sensitivity to BET inhibition 

via apoptosis with high expression of MYC correlating with more BET dependence [289]. 
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Thus, it has become very clear that BET inhibitors have a perceptible anti-proliferative effect in 

pancreatic cancer and display a very promising potential as highly effective and selective 

therapeutic agents. These inhibitory effects may largely be due to BET members being crucial 

for driving aberrant transcriptional programs and can be heightened via specific deficiencies 

which lead to increased transcriptional dependence on BET family members. This supports the 

current efforts to identify certain subgroups of patients who may be more responsive to BET 

inhibition. However, it is important to note that the effects of BET inhibition are varied and highly 

specific for different tumor types and subgroups.  

3.3.2 Bromodomain and Extraterminal Inhibition and Metastasis in Pancreatic 

Cancer 

Metastasis is a major contributing factor to the very poor prognosis of the majority of pancreatic 

cancer patients [290]. Consequently, therapeutic agents that attenuate and/or prevent 

metastasis can be of extreme benefit to patients. Recently, it was uncovered that pancreatic 

mouse organoids from metastatic pancreatic ductal adenocarcinomas show a marked 

reprogramming in their enhancer landscape compared to organoids originated from normal 

pancreata, early neoplastic (PanIN) lesions or primary tumors [154]. The same pattern of 

reprogramming was observed in pancreatic cancer patients [291] and also in other cancer types 

including osteosarcoma, ependymoma, and rhabdomyosarcoma [292-294]. Therefore, it is clear 

that distal regulatory elements play a significant role in activating metastatic programs in 

different cancer types. This strongly suggests that targeting enhancers can be a highly efficient 

approach in managing metastatic pancreatic cancer and potentially preventing metastasis from 

primary sites. 

Interestingly, recent studies implied that BET family members play an important role in 

modulating gene transcription through regulation of the 3D chromatin structure [295-297]. This 
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structure creates specific compartmentalization which enable enhancers to interact with and 

affect specific target genes [66, 298]. Moreover, we have previously shown that BET-dependent 

genes are not necessarily highly enriched for BRD4, the most studied member of the BET family 

[99]. Instead, while the genes that were highly affected by JQ1 treatment did not have a defined 

pattern of occupancy for BRD4 at their respective transcription starting site (TSS), they did 

display a better correlation with tissue-specific BRD4-occupied enhancers. Concordantly, Cao et 

al. [299] reported that expression of genes can be predicted in part by the activity of their 

enhancers alone. While this phenomena was observed in other systems, it is highly probable 

that gene dependence follows the same specificity paradigms in various contexts [300]. Indeed, 

BET inhibitors were observed to exert marked anti-proliferative effects in metastatic melanoma 

via deactivating the super enhancer of the oncogenic Adhesion Molecule With Ig Like Domain 2 

(AMIGO2) [301]. The BET-dependent super enhancer activating Aldehyde Dehydrogenase 2 

Family (ALDH), which promotes resistance to chemotherapy and disease recurrence, was 

identified as a promising target in ovarian cancer [302]. In the highly metastatic Merkel cell 

carcinoma, BET inhibition is highly effective as it downregulates MYC by targeting its putative 

super enhancer [303]. Altogether, BET inhibitors are strong candidates for treating metastatic 

pancreatic cancer and can potentially be used as adjuvant therapies to prevent metastasis and 

disease recurrence if found safe in further clinical studies. These inhibitors in particular can play 

this unique role because, as previously discussed, reprogramming of distal regulatory elements 

is a hallmark of metastatic phenotype and these enhancers are frequently particularly sensitive 

to BET inhibition. 
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3.3.3 Effect of Bromodomain and Extraterminal Inhibition on Distal Regulatory 

Elements 

Recent efforts focusing on uncovering the mechanisms by which BET inhibitors affect the 

proliferation of cancer cells in different systems largely confirmed the implication of distal 

regulatory elements in mediating the observed effects. Interestingly, a particular subtype of 

these elements called “super enhancers” are remarkably associated with BET members and 

can be partly defined by the intensity of BRD4 occupancy at these regions [123, 131]. We have 

previously tested the validity of the super enhancer concept which suggests that enhancers 

follow the rule of the vital few (the Pareto principle) where a low percentage of regulatory 

elements are responsible for most effects on the regulation of gene transcription [304]. While we 

have failed to discern such a pattern, many studies have indeed defined certain dependencies 

of crucial enhancers, whether “super” or “typical”, on BET members. 

In diffuse large B-cell lymphoma, BRD4 was observed to be more preferentially enriched at 

enhancers. Interestingly, BET-dependent super enhancers of master regulatory transcription 

factors were correlated with the anti-proliferative effects of JQ1 observed in this system [305]. 

Metabolic changes promoting proliferation in a specific subgroup of melanoma were reported to 

occur via upregulation of the BET-dependent super enhancer for Peroxisome Proliferative 

Activated Receptor-γ (PPARG) Coactivator 1 α (PGC-1α) [306]. In castration-resistant prostate 

cancer, BRD4 was localized at the BET inhibitor-sensitive enhancer regions of the driver 

oncogene, Transmembrane Protease, Serine 2 (TMPRSS2) [307, 308]. In general, these 

studies imply that specific BET-dependent enhancers are activated in cancerous cells, 

rendering them more sensitive to BET inhibition and providing a specific therapeutic target. 

Intriguingly, recent methods that can detect nascent RNA such as thiol(SH)-linked alkylation for 

the metabolic sequencing of RNA (SLAM-seq) have shown that the effects of BET inhibition are 
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dose-dependent and that high doses of BET inhibitors can lead to universal pausing of 

transcription while low concentrations affected specific subsets of genes in leukemia cells [309]. 

These hypersensitive genes were not necessarily controlled by super enhancers and correlated 

only in sub-clusters with other transcription factors and co-activators. This underscores the 

complexity of BET-orchestrated specific gene regulation, which may be associated with specific 

clusters of enhancers, but not exclusively explained by a “super enhancer” model. 

In summary, investigating the efficacy of BET inhibitors in pancreatic cancer is highly justified 

given the promising anti-proliferative effects seen in different models. Additionally, recent data 

from pancreatic cancer and other systems identify a general pattern of BET-mediated activation 

of enhancers, or clusters thereof, that play a major role in driving detrimental aberrant 

transcriptional programs such as metastasis. However, the mechanism of action of BET 

inhibitors is still not fully understood and is likely highly complex and context-dependent. Many 

challenges exist in the investigation of the role of these inhibitors including the limitations of 

current techniques, measuring the anti-proliferative effects for BET inhibitors as a general read-

out for efficacy, disregarding the bromodomain-independent roles of BETs, and the prejudiced 

focus of research on only one member of the BET family, BRD4. While BRD2 and BRD3 share 

a high homology with BRD4, their functions and specific roles are not well-defined [211, 310]. 

BRD2 has garnered some attention due to recent reports that it frequently co-localizes with 

CCCTC-binding Factor (CTCF), an important insulator protein that demarcates transcriptional 

boundaries [297]. Both BRD2 and BRD3 affect gene transcription through different mechanisms 

than BRD4, namely by interaction with specific transcription factors such as E2F and GATA 

binding protein 1 (GATA1), respectively [311, 312]. In leukemia, the knockdown of either BRD2 

or BRD3 failed to recapitulate the effects of BET inhibition or BRD4 manipulation, implying that 

they have a lesser role in this system, in contrast to the reported role in pancreatic cancer [287, 

309]. Adding to the complexity is the proposed various roles of the different bromodomains 
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within each member, namely BD1 and BD2 [207]. New targeting techniques utilizing protein-

targeting chimeric molecules (PROTACs) can mark BET proteins for proteasomal degradation 

and will further shed light on the acetylation-independent effects of BETs [313, 314]. A deeper 

understanding of each of the BET proteins, their bromodomains, as well as extraterminal 

domains will enable us to use these agents in a safe and effective manner. Generally, BET 

inhibitors exert promising synergistic effects in pancreatic cancer with other agents, such as 

chemotherapeutic drugs such as gemcitabine [209] and epigenetic inhibitors such as HDAC 

inhibitors [315]. 

3.4 Histone Deacetylase Inhibitors in Pancreatic Cancer 

Histone modifications can be active marks such as acetylation of histone 3 at lysine 27 

(H3K27ac) and methylation of histone 3 at lysine 4 (H3K4me1), or repressing marks such as 

trimethylation of histone 3 at lysine 27 (H3K27me3) or ubiquitination of histone 2A at lysine 119 

(H2Aub) [1]. Histone acetylation is a marker associated with transcriptional activation and its 

manipulation can be beneficial in attenuating detrimental pathways in pancreatic cancer. HDAC 

inhibitors which inhibit the removal of protein lysine acetylation marks have a broader effect on 

gene expression [316] in comparison to BET inhibitors. HDAC inhibitors are classified based on 

their homology to yeast into different classes (Class I-IV) [317]. These classes differ in their 

domains, expression and effects, and their different roles are still to be clearly defined. HDAC 

inhibitors differ in their potency and selectivity but mainly show promising anti-proliferative 

effects in cancer with the main rationale of reactivating silenced tumor suppressor genes and 

reversing deregulated deacetylation of histones in cancer [318, 319]. 
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3.4.1 Role and Effects of Histone Deacetylase Inhibitors in Pancreatic Cancer 

Histone deacetylase inhibitors were observed to induce p53-mediated pro-apoptotic effects in 

pancreatic cancer cells [320]. Additionally, they selectively inhibited proliferation of pancreatic 

cancer cells by affecting their aerobic metabolism and rendering them more sensitive to 

glycolytic inhibition [321, 322]. In general, specific HDAC inhibitors that targeted certain HDAC 

classes showed variable effects with pan-HDAC inhibitors causing the most marked anti-

proliferative effects [323]. While HDAC inhibition was found to potentiate the effects of 

gemcitabine in vitro and was reported to overcome its resistance, a clinical study combining 

HDAC inhibitors with gemcitabine in pancreatic cancer patients was prematurely terminated 

because the observed benefits did not outweigh the marked adverse events [194, 324-326]. 

HDAC inhibitors were also reported to suppress metastasis as HDACs were described to 

mediate the repressor action of the Zinc Finger E-Box Binding Homeobox 1 (ZEB1) on the 

promoter of the known epithelial marker, calcium-dependent adhesion protein-1 (CDH1) [327-

329]. Interestingly, we have also shown that HDAC inhibition attenuates epithelial-to-

mesenchymal transition (EMT) and decreases stem-like properties in pancreatic cancer cells 

[330]. Given that both BET and HDAC inhibition show anti-proliferative and metastasis-

suppressive effects in pancreatic cancer, Mazur et al. [315] combined these two agents in vitro 

and in vivo and observed a synergistic effect mediated by upregulation of the pro-apoptotic p57 

protein. Synergy between those two agents appears at first glance to be paradoxical due to the 

fact that HDAC inhibitors stabilize a histone mark whose recognition is blocked by BET 

inhibition. However, both agents may work by attacking related transcriptional mechanisms. As 

previously mentioned, distal regulatory elements play a significant role in the mechanism of 

action of BET inhibitors. In contrast, the effects of HDAC inhibitors at these regions are less 

often reported. Recent studies have investigated the role of HDAC inhibitors on enhancer 
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activity, which might further clarify the mechanisms by which these inhibitors act and identify 

new approaches to use them safely and effectively. 

3.4.2 Histone Deacetylase Inhibition Role at Distal Regulatory Elements 

As HDAC inhibitors stabilize a histone mark associated with active transcription, it is expected 

that it will lead mainly and directly to an upregulation of dependent genes. Surprisingly, we have 

detected a significant set of genes that are downregulated upon treatment with selective 

inhibitors of class I HDACs in the highly metastatic pancreatic cell line L3.6pl [330]. We have 

observed that while promoters of these downregulated genes gain acetylation as expected, 

individual associated distal regulatory elements of these genes show a dramatic loss of 

acetylation and better correlation with gene regulation. This has also been observed in the 

colorectal cancer cell line, HCT116, where treatment with an HDAC inhibitor also leads to the 

loss of H3K27ac at certain enhancer regions in a concentration-dependent manner [331]. 

However, this decrease is not universally observed at all enhancers as an increase of H3K27ac 

by HDAC inhibition at the enhancer of the pro-apoptotic B cell lymphoma-2-like 11 (BIM) gene 

was reported in triple negative breast cancer [332]. Consistent with a particular effect on 

enhancer activity, HDAC inhibition has been shown to repress enhancer RNA (eRNA) 

expression to a higher extent than BET inhibition in breast cancer cells [333]. 

Therefore, it can be concluded that HDAC inhibitors affect distal regulatory elements in a 

manner that is distinct from promoters, probably decreasing acetylation at a subset of specific 

enhancers, thereby affecting gene transcription in a more complex and diverse manner. Such 

regulation can be partially explained by the status of activation of the enhancer itself prior to 

treatment [331]. Enhancers can either be in an active state and marked by H3K27ac and 

H3K4me1, inactive with only H3K27me3, or poised with a lower threshold to be activated via 

being marked by the H3K4me1 active mark and H3K27me3 repressive mark [64]. Sanchez et 



Publication II | Feda Hamdan 

62 

al. [331] demonstrated that enhancers which are already active are usually inactivated by HDAC 

inhibition while poised enhancers show a tendency to be activated. Another very important 

aspect that may play a central role in defining the response of an enhancer to HDAC inhibition is 

the repertoire of transcription factors expressed in the cellular system and their importance for 

cellular phenotype and tumorigenic gene expression. It was reported that HDAC inhibitors not 

only exert their effects on acetylated histones, but also on acetylated transcription factors [334, 

335]. Notably, acetylation of the pioneer transcription factor, Forkhead Box A1 (FOXA1) was 

shown to directly and negatively affect its ability to bind chromatin [336]. Remarkably, FOXA1 

was recently shown to be specifically enriched in enhancer regions that are gained in metastatic 

pancreatic organoids [154]. Accordingly, we postulate that HDAC inhibitors can be used to 

attenuate the binding of FOXA1 to these enhancers leading to their deactivation. Indeed, 

enhancer regions that we identified as being lost following HDAC inhibitor treatment were found 

to be enriched for FOXA1 occupancy in another pancreatic cancer cell line [337] (Figure 14A). 

Interestingly, genes targeted by this mechanism were unaffected by BET inhibitor treatment 

[337]. Thus, combined treatment with HDAC and BET inhibitors can potentially simultaneously 

target different sets of activated enhancers to decrease the activation of reprogrammed 

enhancers synergistically and more effectively, activating aberrant transcriptional programs 

such as metastasis. This presents a model in which these two apparently counteracting agents 

can work together forming a successful therapeutic regimen in metastatic pancreatic cancer 

(Figure 14 B). 
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Figure 14 : HDAC inhibition and FOXA1 at distal regulatory elements. (a) H3K27ac profiles in L3.6pl 
cells at SMAD6, a gene that is downregulated upon treatment with class I HDAC inhibitor (HDACi) showing 
distal regulatory regions that dramatically lose H3K27ac and co-localize with FOXA1 in the CFPAC1 
pancreatic cancer cell line; (b) A schematic model showing an enhancer region activated by FOXA1 
leading to acetylation of histones by a histone acetyltransferase (HAT), which leads to the activation of the 
gene. Upon treatment with HDACi, increased FOXA1 acetylation attenuates its binding to chromatin 
leading to downregulation of the gene. DMSO: Dimethylsulfoxide; HDAC: histone deacetylase; FOXA1: 
Forkhead Box A1. (See Appendix A for details of data analysis) 

 



Publication II | Feda Hamdan 

64 

3.5 Enhancers as an Optimal Paradigm for Therapeutic Targeting of 

Pancreatic Cancer 

Based on the evidence discussed above, it is clear that distal regulatory elements play a special 

role in the scope of the effects of BET and HDAC inhibitors. Thus, it is highly probable that 

these elements will emerge as a major target of therapy in multiple diseases in the upcoming 

years. Many positive attributes contribute to the adequacy of enhancers as a target for therapy 

and manipulation. To activate a certain gene, the transcriptional machinery has to be recruited 

by transcription factors to the promoters of these genes [338]. Diversity in transcription factor 

recruitment and abundance are thus very important in regulating gene activation in different 

contexts and systems. Distal regulatory elements provide a platform with vast variability and 

substantial magnitude for recruitment of various transcription factors, thereby enabling 

regulation of gene transcription in a temporal and spatial manner. This means that in certain 

systems, driver oncogenic pathways can be activated by different transcription factors and 

enhancers, thus creating a dependence which can be specifically targeted. For example, 

different enhancers drive the activation of MYC in various systems. In colorectal cancer, the 

long non-coding RNA, Colon Cancer Associated Transcript 1 (CCAT1) is highly active and plays 

a significant role in MYC activation [251, 339]. Consistent with the importance of the Wnt 

signaling pathway in colorectal cancer, we observed that this enhancer is highly occupied by 

Wnt-responsive β-catenin-dependent transcription factor TCF7L2 (Figure 15) [339]. This implies 

that Wnt-signaling mediated activation of MYC in colorectal cancer utilizes a specific 

mechanisms of activation which can be potentially be targeted by HDAC inhibitors, as they were 

reported to deplete TCF7L2 [340]. Interestingly, CCAT1 was also reported to be play a 

tumorigenic role in pancreatic cancer [341]. In other systems such as prostate cancer, MYC is 

activated by a different enhancer called Prostate Cancer Associated Transcript 1 (PCAT1). 

Consistent, with the androgen receptor (AR) being a primary driver of prostate cancer, we 
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observed this enhancer to be particularly occupied by AR in LNCaP prostate cancer cells [251, 

342-344]. Alternatively, the PVT1 oncogene is active in many other systems such as leukemia 

and plays a similar role as an enhancer of the MYC gene [345]. Analogous to the tumor- and 

context-specific effects shown for TCF7L2 and AR in colorectal and prostate cancers, 

respectively, we observed an enrichment of the hematopoietic transcription factor GATA-2 on 

the MYC enhancer within the PVT1 gene [339]. Together, these examples show the complexity 

by which diverse distal regulatory elements utilize specific transcription factor repertoires to 

induce common oncogenic pathways. We postulate that distinct, but similar transcription factor 

networks will also be discovered in pancreatic cancer which can be specifically targeted by 

inhibitors of BET, HDAC or other epigenetic regulators. Importantly, activation of oncogenes 

such as MYC by alternative BET-independent transcriptional pathways can lead to resistance to 

BET inhibitors in leukemia cells [346]. Thus, identifying which enhancers are specifically active 

in pancreatic cancer cells and identifying and targeting their dependencies will play an important 

role in the optimal application of BET inhibitors in the treatment of pancreatic cancer. 

Furthermore, targeting tumor-specific enhancer regions will be more likely to spare normal cells 

and may possibly lead to less long term adverse effects [347]. Development of highly specific 

BET inhibitors supports this theory by showing selective anti-proliferative effects in certain 

cancer cell lines while not affecting other systems [348]. Future studies will test the validity of 

this rationale upon successful prolongation of patient survival. 
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3.6 Targeting Transcription Factors in Pancreatic Cancer: A Code for 

Specificity 

Enhancers are known to be highly-bound by specific transcription factors that mediate 

transcriptional activation of target gene expression through the recruitment of other activators 

and transcription initiators [349]. When transcription factors co-localize with a factor of interest, 

BETs for example, these factors will naturally play a significant role in its mechanism and 

effects. Interestingly, the BET context-specific effects discerned in the vast body of literature 

available can probably be explained by the different interacting factors at specific sites where 

Figure 15 : A schematic model showing distal regulatory mechanisms controlling the 
expression of the MYC gene in different systems, namely in prostate cancer (shown in light 
purple), colorectal cancer (shown in turquoise), and leukemic cell lines (shown in red). The 
H3K27ac layered profile in these different cell lines uncover differential activation of unique 
enhancers in each system. These enhancers are specifically enriched with driver transcription 
factors (androgen receptor, AR; TCF7L2 and GATA2), which are hallmarks of these tumor types. 
TCF7L2: Transcription Factor 7-like 2; GATA2: GATA binding protein-2. (See Appendix A for details 
of data analysis) 
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BET members co-localize with other transcription factors. BET-dependent enhancers require 

BET members and certain transcription factors for their activation, while other BET-independent 

enhancers might have other factors and activation pathways which make them tolerant to the 

loss of one of many activators upon BET inhibition. Furthermore, the different expression levels 

of these transcription factors in different systems, whether absent or highly or lowly expressed, 

in addition to their pioneering potential can also play a role in enhancer dependency and 

activity. 

Paradoxically, super enhancers are by definition normally highly enriched for transcription factor 

binding, which can theoretically render them less dependent on one particular factor [248]. 

However, this is not usually the case given that, as previously discussed, BET inhibition has the 

ability to turn off certain BET-dependent super enhancers but deletion of individual components 

of “super enhancers” does not equally impair the activation of the target gene [251, 305, 306, 

350, 351]. Thus, it appears that BET proteins serve to integrate the activity of transcription 

factors at BET-dependent enhancers in a manner such that the sum of the activity of the 

transcription factor binding is greater than that of the components. Subsequently, once a better 

understanding of transcription factor function at enhancers and promoters and the dependence 

of each on BET proteins has been achieved, targeting specific transcription factors or their 

upstream signaling pathways, possibly alone or in combination with BET inhibitors, can provide 

us with a new layer of specific gene transcriptional manipulation. 

However, therapeutically targeting transcription factors can be quite challenging. One approach 

can be targeting signaling pathways that control the activity of the transcription factor of interest. 

For example, the transcription factor Endothelial PAS Domain Protein 1 (EPAS1 or HIF2A) was 

demonstrated to play a role in promoting pancreatic cancer in cells and mice [352]. A crosstalk 

with Wnt-signaling was identified in this system which uncovers a new target that can potentially 

be inhibited. Furthermore, Transforming Growth Factor-β (TGFβ) signaling was reported to 
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cooperate with mutant p53 to mediate distal metastasis in pancreatic cancer mouse models 

[353]. The activation of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), 

which also promotes EMT in pancreatic cancer, can also be inhibited by blocking its activation 

via NFKB inhibitor-α (IκBα) phosphorylation [354]. Another approach to target transcription 

factors is to attenuate their recruitment by affecting their ability to bind chromatin as previously 

mentioned for FOXA1 and its acetylation. This can also be achieved by designing specific 

inhibitors that prevent the binding of DNA to a certain transcription factor [355]; however this 

approach has proven to be very difficult for therapeutic application. Another approach can be 

targeting cooperating transcription factors.  

For example, NF-κB cooperates with E26 transformation–specific (ETS) transcription factors to 

recruit BET members to activate genes, rendering these sensitive to BET inhibition [356, 357]. 

In general, transcription factors can play specific roles in a context-dependent manner based on 

the combinatorial repertoire of transcription factors expressed, thereby enabling a given 

transcription factor to activate a different set of genes and programs, dependent upon the 

expression of other factors. Therefore, identifying important transcription factors playing a role in 

aberrant transcriptional activation may uncover specific targets that can be manipulated by 

available inhibitors. 

3.7 Conclusions: Unconventional Epigenetic Agents Should be Used in 

Unconventional Ways 

Epigenetic agents are a special subclass of drugs whose targets and effects are dependent on 

the epigenetic and transcriptional landscape of each system. In general, a major trend is seen 

where low concentrations of these agents affect hypersensitive dependent genes and higher 

concentrations frequently display a more universal effect [309] . So far, gene transcription 

modulatory agents have been used to initiate cell cycle arrest and/or apoptosis and mainly 
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administered at high levels just under their maximum tolerable dose (MTD). We speculate that 

administering these agents at these doses likely influences their specificity and probably 

promotes many of the intolerable adverse effects that might lead to premature termination of 

clinical studies. In fact, higher doses of such inhibitors, which lead to cell cycle arrest, may in 

fact impede the activity of many chemotherapeutic agents, while lower concentrations which 

elicit specific transcriptional reprogramming may have minimal effects on their own, but 

significantly synergize with other therapies. To ensure the maximum utilization of these agents, 

concentrations lower than MTD should be taken into consideration when performing 

pharmacodynamic and pharmacokinetic studies in vivo. However, these studies will face major 

challenges as markers that can be detected ex vivo to measure efficacy are still not clearly 

defined. Ideally, a marker should be easily detectable and highly sensitive, for example 

enhancer RNA of BET-dependent genes or stable messenger RNA of a highly dependent and 

hypersensitive gene. Using profoundly regulated gene levels in blood as a marker for BET 

inhibition efficacy uncovered that BET inhibitors exert their effects at lower doses than MTD in 

progressive lymphoma patients [358]. 

In this review, we summarized data pertaining to the effects of BET and HDAC inhibitors, two of 

the most promising epigenetic agents, in pancreatic cancer. We draw the conclusion that these 

agents likely mediate their specific effects through distal regulatory elements. By investigating 

the potential utility of these agents in lower concentrations, we may be able to uncover their 

potential as safe adjuvant therapies in combination with other standard of care treatments to 

manage and prevent recurrence of pancreatic cancer and various malignancies in general. 
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3.8 Methods/Appendix A: Parameters for data analysis used in figure 

generation 

Chromatin immune-precipitation profiles which are shown in Figures 1 and 2 as examples were 

downloaded from the Encyclopedia of DNA Elements (ENCODE) consortium when available 

(H3K27ac in HCT116: GSM2534277; TCF7L2 in HCT116: GSM782123; H3K27ac in K562: 

GSM733656; GATA-2 in K562: GSM935373) [339]. Other profiles were downloaded from the 

European Nucleotide Archive (H3K27ac in LNCaP: SRR2566837 [342]; AR in LNCaP: 

SRR4025870 [343]; H3K27ac in L3.6pl: SRR5042516,18-21 [330]; FOXA1 in CFPAC1: 

SRR1736462 [337]). Reads were mapped to the hg19 genome using BOWTIE/2.2.5 [359] and 

converted to bam using SAMTOOLS/1.4 [360]. DEEPTOOLS/2.4.0 [361] was used to produce 

bigwig files with ignoring the duplicates and extending the reads for 200 base pairs. Bigwig files 

were viewed using IGV 2.4 [362, 363]. 
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4.1 Abstract 

Molecular subtyping of cancer offers tremendous promise for the optimization of a precision 

oncology approach to anti-cancer therapy. Recent advances in pancreatic cancer research 

uncovered various molecular subtypes with tumors expressing a squamous/basal-like gene 

expression signature displaying a worse prognosis. Through unbiased epigenome mapping, we 

identified deltaNp63 as a major driver of a gene signature in pancreatic cancer cell lines, which 

we report to faithfully represent the highly aggressive pancreatic squamous subtype observed in 

vivo, and display the specific epigenetic marking of genes associated with decreased-survival. 

Importantly, depletion of deltaNp63 in these systems significantly decreased cell proliferation 

and gene expression patterns associated with a squamous subtype and transcriptionally 

mimicked a subtype switch. Using genomic localization data of deltaNp63 in pancreatic cancer 

cell lines coupled with epigenome mapping data from patient-derived xenografts, we uncovered 

that deltaNp63 mainly exerts its effects by activating subtype-specific super enhancers. 

Furthermore, we identified a group of 45 super enhancers that are associated with poorer 

prognosis and are highly dependent on deltaNp63. Genes associated with these enhancers 

included a network of transcription factors, including HIF1A, BHLHE40, and RXRA, which form 

a highly intertwined transcriptional regulatory network with deltaNp63 to further activate 

downstream genes associated with poor survival. 

4.2 Significance statement 

Distinct molecular subtypes of pancreatic cancer have recently been identified with the 

squamous subtype exhibiting a particularly poorer prognosis. Precision-medicine approaches 

are needed in pancreatic cancer due to its very poor prognosis. While deltaNp63 was identified 

as a hallmark of the squamous phenotype in other cancers, mechanisms by which it defines this 
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signature were largely unknown. This study uncovers deltaNp63 as a major driver of the 

squamous subtype by activating a subgroup of distal regulatory elements termed super 

enhancers. This leads to the activation of a network of transcription factors propagating the 

activation signal to numerous pathways. Importantly, an epigenetic signature identified in this 

study is capable of accurately identifying squamous subtype samples in pancreatic cancer 

patient-derived xenograft tumors. 

4.3 Introduction 

Distinct molecular subtypes in cancer are defined by different deregulated pathways, mutational 

profiles, and aberrant transcriptional programs, and may potentially be leveraged to optimize 

therapy and elucidate mechanisms in a disease that is characterized by a particularly high 

degree of heterogeneity [364]. Molecular stratification of breast and colorectal cancer, for 

example, revolutionized therapy for these malignancies and extended our knowledge about the 

pathways and mechanisms involved in disease development and progression [365-367]. 

Recently, analyses in pancreatic cancer, which has a consistently low survival rate, uncovered 

various molecular subtypes with different characteristics and prognoses [153, 213-215, 337, 

368].  

Collisson et al. used human and mouse samples in addition to pancreatic cancer cell lines to 

identify homogenous patterns of gene expression and identified three subtypes, referred to as 

classical, exocrine-like, and quasi-mesenchymal, with the latter being particularly correlated with 

poor prognosis [213]. Further optimization of molecular stratification by filtering stromal profiles 

further grouped the molecular subtypes of pancreatic cancer into classical-like and basal-like 

with the latter corresponding to the worse prognosis seen in the quasi-mesenchymal phenotype 

[214]. Extending these analyses to include mutational backgrounds of patients and DNA 
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methylation states in addition to gene expression revealed 4 subtypes including the highly 

aggressive squamous subgroup [215]. Further analysis confirmed the identification of specific 

patterns of expression with one molecular subtype, irrespective of nomenclature, representing a 

small subgroup of pancreatic cancer patients with a particularly poor prognosis [337, 368].  

While more advances are being made in the analytical aspect of subtyping pancreatic cancer, 

the molecular mechanisms underlying these gene signatures are still largely unclear. Bailey et 

al. identified deltaNp63 activity as a hallmark of the squamous subtype, which overlaps with its 

basal-like counterpart and profoundly correlates with worse prognosis [215, 368]. p63 is a 

transcription factor of the p53 family which has two major isoforms including the transactivation 

domain-containing isoform, TAp63, and the shorter isoform, deltaNp63 [227]. DeltaNp63 was 

reported to play a crucial role in keratinocyte differentiation and its expression was shown to be 

a defining feature of basal cells and squamous cell carcinomas [230, 369, 370]. Concordantly, 

deltaNp63 is expressed in many squamous-like cancers such as esophageal squamous cell 

carcinoma [233, 371], head and neck squamous carcinoma [372], and lung squamous cell 

carcinoma [373, 374]. p63 was found to drive epidermal differentiation through distal regulatory 

elements associated with its target genes [375]. However, to date a role for deltaNp63 in 

pancreatic cancer has remained largely unclear.  

An early report described an upregulation of deltaNp63 in a group of pancreatic cancer cells 

displaying a squamous-like phenotype, while normal pancreata were completely devoid of 

deltaNp63 expression [239]. Interestingly, depletion of the histone demethylase KDM6A led to 

the activation of super enhancers regulating deltaNp63 and enriched for a more squamous-like 

phenotype in pancreatic cancer cells [212]. Super enhancers are clusters of distal regulatory 

elements which are highly enriched for transcription factor binding and have a high potential to 

affect target genes [123, 124, 248]. Our previous work identified tissue-specific patterns of gene 
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expression which were particularly coupled to transcription factor and co-factor recruitment to 

distal enhancer regions rather than occupancy in the proximal promoter region [99, 330, 376].   

In this study, we performed an unbiased analysis of epigenomic gene activation profiles and 

identified deltaNp63 as a major driver of gene activation in a particularly lethal subtype of 

pancreatic cancer. We report that L3.6pl and BxPC-3 pancreatic cancer cell lines represent 

appropriate cell culture models of the squamous molecular subtype described in patients. Here, 

we uncovered a major dependence of subtype-specific super enhancers on deltaNp63. 

Furthermore, we further confirmed the analyses of our model cell lines and significantly 

expanded the relevance of the findings by comparing our results with data from patient-derived 

xenograft samples. Using this approach we identified 45 super enhancers that signify the 

squamous subgroup and are associated with genes that are highly deltaNp63-dependent and 

correlate with poor prognosis in pancreatic cancer. Among these genes, we uncovered a highly 

interactive transcriptional regulatory hub including deltaNp63, HIF1A, RXRA, and BHLHE40, 

where these factors activate one another as well as downstream genes. Altogether, our study 

elucidates underlying mechanisms by which deltaNp63 drives gene expression patterns 

associated with the squamous molecular subtype in pancreatic cancer and identify a number of 

super enhancers that may potentially be used to identify this subgroup in order to stratify 

patients with poorer prognosis in a simple and accessible manner. 
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4.4 Results 

4.4.1 DeltaNp63 is a major driver of differential gene activation in specific 

pancreatic cancer cell lines and patient-derived xenografts 

In order to elucidate the differences in the epigenomic landscape of commonly-studied 

pancreatic cell lines, we performed chromatin immunoprecipitation followed by high throughput 

sequencing (ChIP-seq) for histone acetylation at lysine 27 of histone 3 (H3K27ac) in Panc-1, 

BxPC-3 and the highly metastatic L3.6pl cell lines. As H3K27ac marks active regions, including 

promoters and enhancers, it gives a comprehensive insight into active gene transcription. 

Hierarchical clustering of H3K27ac peaks in all cell lines identified three clusters with the first 

and second having low and high signal, respectively, in all cell lines. Only the third cluster 

showed marked enrichment in BxPC-3 and L3.6pl compared to low enrichment in Panc-1 

(Figure 16A). GREAT analysis for the 15,286 regions included in cluster 3 (out of 88,773 total 

regions) showed validated targets of deltaNp63 as the most significant hit for the genes 

associated with these regions (Figure 16B). To further investigate regions that are specifically 

marked in L3.6pl and BxPC-3, we performed unbiased differential binding analysis for H3K27ac 

in the three cell lines and identified 9,348 regions that are significantly gained in BxPC-3 and 

L3.6pl and have at least a 5-fold enrichment compared to Panc-1, henceforth referred to as 

H3K27ac gained regions (Figure 16C). Consistent with initial findings based on hierarchical 

clustering, differential occupancy analyses revealed targets of deltaNp63 to be the most highly 

significant pathway enriched for genes associated with H3K27ac gained regions (Figure 16D). 

To determine the extent to which deltaNp63 may play a direct role in determining the differential 

marking of H3K27ac gained regions, we performed ChIP-seq for p63 in L3.6pl and BxPC-3 and 

found that approximately one-third of the H3K27ac gained regions are occupied by p63 (Figure 
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16E). Thus, these unbiased analyses provide evidence suggesting that p63 is a major driver of 

genes specifically activated in L3.6pl and BxPC-3 cell lines compared to Panc1 cells. 

To examine if the epigenome patterns observed in L3.6pl and BxPC-3 also occur in patient 

tumors and not exclusively in vitro, we examined H3K27ac profiles from 24 pancreatic cancer 

patient-derived xenografts [220]. Principal component analysis using the H3K27ac gained 

regions identified three of the 24 xenografts as forming a distinct cluster (Figure 16F). 

Interestingly, these three xenografts were highly marked by H3K27ac near the transcriptional 

start site (TSS) of deltaNp63 compared to the rest of the samples (with three other 

representative samples shown as an example; Figure 16G). Analysis of RNA-seq data 

confirmed the expression of p63 in these tumor samples. Isoform-specific expression was 

confirmed by H3K27ac occupancy at the TSS of deltaNp63, but not TAp63, with only one highly 

p63-expressing xenograft appearing to co-express both isoforms (Supplementary Figure S1A 

and S1B). Importantly, H3K27ac gained regions identified in L3.6pl and BxPC3 also displayed a 

clear increased enrichment of H3K27ac in PDX samples expressing deltaNp63 compared to the 

non-expressing ones (Figure 16H). Thus, these data support that deltaNp63-driven epigenetic 

patterns observed in L3.6pl and BxPC-3 can also be found in pancreatic cancer patient-derived 

xenografts (PDX).    
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Figure 16 : DeltaNp63 drives gene activation in L3.6pl and BxPC-3. (A) Heatmap showing the enrichment of H3K27ac 
at the concatenated and merged peaks for BxPC-3, L3.6pl, and Panc-1. Peaks were clustered into 3 groups based on K-
Means hierarchical clustering normalized to linear enrichment.  Cluster 3 shows more enrichment in L3.6pl and BxPC-3 
compared to Panc-1. (B) Associated genes with regions in cluster 3 defined by GREAT analysis using the default basal plus 
extension association rule and showing validated targets of deltaNp63 as the top hit. (C) Binding affinity plot for H3K27ac 
peaks in Panc-1 compared to L3.6pl and BxPC-3 showing the regions with a significant enrichment difference in pink. The 
blue box highlights the regions that are significantly enriched in L3.6l and BxPC-3 by more than 5 fold change, henceforth 
called H3K27ac gained regions (9348 regions). (D) Associated genes with the H3K27ac gained regions also showing 
validated targets of deltaNp63 as the top hit. (E) Pie chart depicting the percentage of the 9348 regions that are occupied by 
p63. (F) Principle component analysis plot for the H3K27ac profiles of 24 patient-derived xenografts named on the right 
limited to the 9348 regions in 1D. Orange box indicates three xenografts which clustered independently from the other 
samples and the green box highlights samples clustering in the opposite direction. (G) Occupancy profiles of H3K27ac at 
the TSS of deltaNp63 for the six xenografts highlighted in orange and green box in 1F, L3.6pl, BxPC-3, and Panc-1. Results 
show an enrichment for the three uniquely clustering xenografts, L3.6pl and BxPC-3, while the other samples have very low 
occupancy of H3K27ac. (H) Average binding profiles and heatmaps depicting the p63 and H3K27ac occupancy at the 
H3K27ac gained regions in L3.6pl, BxPC-3 for p63 and L3.6pl and BxPC3, Panc-1 and the six differentially clustered 
patient-derived xenografts for H3K27ac. 
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4.4.2 L3.6pl and BxPC-3 highly express deltaNp63 and are representative models 

for the squamous subtype of pancreatic cancer 

Various molecular subtypes were recently identified in pancreatic cancer based on unique gene 

expression profiles and distinct genomic and epigenomic signatures (Figure 17A). One of the 

most aggressive subgroups of pancreatic cancer identified is the squamous subtype, which is 

associated with worse prognosis and high expression of deltaNp63. Indeed, patient survival 

data from the Cancer Genome Atlas (TCGA) data confirmed that patients expressing higher p63 

had a poorer prognosis than patients with lower levels (Figure 17B). As deltaNp63 was 

identified in our analyses to be highly correlated with L3.6pl- and BxPC-3-specific cis-regulatory 

regions, we next examined whether these cell lines may, indeed, represent the squamous 

subtype and serve as model systems for studying the molecular mechanisms driving this 

particularly aggressive tumor phenotype observed in vivo. Therefore, we evaluated the 

expression of p63 in different pancreatic cancer cell lines in the Morpheus database and verified 

these findings at the protein level (Figure 17C, 17D) [377]. Notably, only BxPC-3 and L3.6pl 

displayed high expression of deltaNp63, with DanG showing a moderate expression, and MIA 

Paca-2 cells specifically expressing only the TAp63 isoform (Figure 1 D). To further examine 

whether L3.6pl and BxPC-3 faithfully represent the squamous subtype, we examined whether 

they expressed a squamous gene signature compared to Panc-1 and, indeed, this signature 

was significantly enriched in both L3.6pl and BxPC-3 cell lines compared to Panc-1 cells (Figure 

17E, 17G). Tendencies of enrichment for these genes were also observed in the three 

xenografts we identified as highly expressing of deltaNp63 (Supplementary Figure S1D). 

Notably, we also found that genes associated with an unfavorable prognosis in cancer patients 

were specifically enriched in the L3.6pl and BxPC-3 cell lines, providing further support that 

these cell lines may serve as a model for understanding the molecular mechanisms driving the 
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aggressive characteristics of squamous-like pancreatic tumors (Figure 17F and Supplemental 

Figure S1C).  

 

Figure 17 : L3.6pl and BxPC-3 represent the squamous subtype. (A) Graphical representation of the molecular 
subtypes recently defined in pancreatic cancer. (B) Kaplan-Meier plot showing the percent survival in pancreatic cancer 
patients (TCGA database) expressing high and low levels of p63 and showing significantly worse survival rates in 
patients with high levels of p63. (C) Heatmap depicting the general expression patterns of p63 in different pancreatic 
cancer cell lines (Morpheus database). (D) Western blot analysis of the levels of p63 in various pancreatic cell lines with 
HSC70 as a loading control. (E-F) GSEA plots comparing the enrichment of the squamous gene signature (E) and genes 
associated with unfavorable outcome in pancreatic cancer (F) in L3.6pl and BxPC-3 compared to Panc-1 using the FPKM 
values of all expressed genes with the NES (normalized enrichment score) and FDR (false-discovery rate) indicated on 
the graph. (G) Box plot showing the Z-scores of FPKM values of the squamous gene signature in L3.6pl, BXPC-3, and 
Panc-1. n = 3. * P-value <= 0.05, ** P-value <=0.01, *** P-value <=0.001, **** P-value <=0.0001. (H) Box plot showing the 
Z-scores of FPKM values of the basal gene signature in L3.6pl, BXPC-3, and Panc-1. n = 3. * P-value <= 0.05, ** P-value 
<=0.01, *** P-value <=0.001, **** P-value <=0.0001. 
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Given that the squamous subgroup reported by Bailey et al. roughly corresponds to the basal 

phenotype identified by Moffitt et al., we also tested whether the basal gene signature was also 

enriched in L3.6pl and BxPC-3 and, indeed, observed a significant enrichment of the expression 

of these genes compared to Panc-1. Together, these findings confirm that L3.6pl and BxPC-3 

are representative in vitro model systems of squamous/basal-like pancreatic cancer cells. 

4.4.3 Depletion of deltaNp63 alters the molecular identity of squamous pancreatic 

cancer cells 

To investigate the role of deltaNp63 in gene activation in L3.6pl and BxPC-3, we depleted 

deltaNp63 by siRNA-mediated knockdown and validated its downregulation at the mRNA and 

protein levels (Figure 18A, 18B). Interestingly, knockdown of deltaNp63 led to a marked 

decrease in proliferation in both L3.6pl and BxPC-3 cells (Figure 18C, 18D). Moreover, sphere 

formation in both cell lines was significantly impaired upon p63 knockdown, with the few 

remaining spheres that were formed displaying a more diffuse and less defined structure, 

particularly in the case of L3.6pl (Figure 18E, 18F). This confirmed a crucial role of deltaNp63 in 

driving the more aggressive phenotype in both of these cell lines. To further understand how 

deltaNp63 drives this phenotype, we performed RNA-seq in both L3.6pl and BxPC-3 cell lines 

upon knockdown of deltaNp63. Remarkably, deltaNp63 downregulation led to the reversal of the 

enrichment of the squamous gene signature, validating a clear and central role of deltaNp63 in 

driving the activation of these genes (Figure 18G). Furthermore, GSEA enrichment analysis 

identified MYC and HIF1A as target pathways of deltaNp63 (Figure 18H, Supplementary 

Table1). Notably, deltaNp63 depletion mimicked a switch from a mesenchymal to luminal 

phenotype defined in breast cancer. Moreover, an enrichment of pathways with decreased 

tumorigenesis was observed in cells with less deltaNp63 (Figure 18I, Supplementary Table 2). 
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Figure 18 : Depletion of deltaNp63 hampers growth and reverses enrichment of gene expression profiles 
associated with the squamous subtype. (A) Gene expression analysis of deltaNp63 upon depletion of p63 after 
48 h shown as relative mRNA expression and normalized to the unregulated housekeeping gene (GAPDH). n = 3. * 
P-value <= 0.05, ** P-value <=0.01, *** P-value <=0.001, **** P-value <=0.0001. (B) Western blot analysis for p63 
in L3.6pl and BxPC-3 48 h after depletion of p63 to validate its downregulation. HSC70 is shown as loading control. 
(C-D) Crystal violet staining showing the proliferation of cells after 48 h of depletion of p63 compared to control for 
L3.6pl (C) and BxPC-3 (D) with relative area fraction shown in the bar graph. Data are represented as mean ± 
SEM. n = 2. * P-value <= 0.05, ** P-value <=0.01, *** P-value <=0.001, **** P-value <=0.0001. (E-F) Sphere 
formation assay analysis with E showing a representative change in the sphere structure upon p63 depletion and F 
showing the numbers of the spheres formed in L3.6pl and BxPC-3 after 500 cells were seeded in 96-well plate for 7 
days. Data are represented as mean ± SEM. n = 24. * P-value <= 0.05, ** P-value <=0.01, *** P-value <=0.001, **** 
P-value <=0.0001. (H-I) GSEA report for enriched genes upon downregulation of p63 in L3.6pl with pathways 
enriched in the control (E) and sip63 (F). 
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4.4.4 DeltaNp63 exerts its effects through activation of super enhancers 

To elucidate the mechanism by which deltaNp63 exerts its marked effect on cell proliferation, 

gene activation and pancreatic cancer cell fate specification, we examined the occupancy of 

deltaNp63 throughout the genome and identified numerous deltaNp63-occupied regions (20,679 

peaks). Many of these regions intersected with H3K27ac and open chromatin regions identified 

by Assay for Transposase-Accessible Chromatin (ATAC) sequencing (Figure 19A, 

Supplementary Figure S2A). Interestingly, very few of these regions were associated with 

transcriptional start sites (TSS) and GREAT analysis revealed that the majority of deltaNp63 

peaks were distal (Figure 19B, Supplementary Figure S2B, S2C). This distal pattern of 

occupancy implied that deltaNp63 mainly exerts its effects via enhancer activation. As depletion 

of deltaNp63 severely affects the transcriptional program of the cells and dramatically alters 

their molecular identity, we hypothesized that deltaNp63 may occupy and potentially nucleate 

super enhancers (SEs), as these have been reported to be major drivers of cell identity [131]. In 

concordance with the different gene activation profiles of Panc-1 compared to L3.6pl and BxPC-

3, distinct super enhancers were identified in Panc-1 compared to the other two cell lines, which 

generally showed the same patterns and tendencies (Figure 19C, Supplementary Figure S2D, 

S2E). Interestingly, the majority of super enhancers in L3.6pl contained at least one peak of 

deltaNp63, with approximately a quarter of them having more than two peaks (Figure 19E).  

Taking into consideration the potential bias in identifying super enhancers, which is dependent 

on the stitching of regions and the intensity of the factor used to rank the enhancers [304], we 

compared these results using a new algorithm to identify clusters of regulatory elements 

(COREs). COREs are determined using a machine learning approach to consider different 

windows between enhancers for stitching and does not require intensity of factors for ranking 

enhancers (https://www.biorxiv.org/content/early/2018/03/20/222562). Interestingly, we 
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observed a high overlap between COREs and SEs, with COREs also showing the same high 

degree of occupancy by deltaNp63 (Figure 19D, 19F). Notably, COREs and/or SEs containing 

more than two peaks of deltaNp63 displayed a particularly high dependence on deltaNp63 

(Figure 19G, 19I). Notably, ChEA and enrichR consensus predicted p63 to be an upstream 

activator of super enhancers and highly significant ontology terms associated with super 

enhancers included squamous cell carcinoma, confirming the role of SEs in defining the 

squamous subtype (Supplementary Figure S2G, S2H). Concordantly, deltaNp63-dependent 

genes associated with SEs and/or COREs included genes that are associated with epidermal 

differentiation like keratins and integrins (Figure 19H). To identify the super enhancer regions 

that are driven by deltaNp63, we intersected the super enhancer regions in L3.6pl with the 

gained H3K27ac regions compared to Panc-1 in the both squamous cell lines (identified in 

Figure 17C) as well as the super enhancers identified in the patient-derived xenograft samples, 

since these more accurately represent in vivo squamous-like pancreatic tumors (Figure 19J). 

Consequently, we identified 93 SEs that were common for all these regions. We further filtered 

the SEs that were specifically enriched compared to the other patient-derived xenografts which 

clustered separately from the squamous samples and did not express deltaNp63 (Figure 19I). In 

this way we identified 45 super enhancer regions that were associated with the squamous 

subtype with high confidence. Interestingly, most genes associated with these regions showed a 

significant dependence on deltaNp63. These genes included most notably FAT Atypical 

Cadherin 2 (FAT2), Nectin Cell Adhesion Molecule 1 (NECTIN1) and Hypoxia Inducible Factor 

Alpha Subunit (HIF1A). These findings are in concordance with a squamous phenotype where 

hypoxic pathways were reported to be enriched and adhesion factors play a role in the 

development of the aggressive phenotype [215].     
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4.4.5 Super enhancers in the squamous subtype are highly dependent on 

deltaNp63 

To validate that the super enhancers which we identified are dependent on deltaNp63, we 

performed chromatin immunoprecipitation followed by quantitative real-time PCR on selected 

regions in those enhancers after depletion of deltaNp63. Specifically, we examined enhancers 

associated with FAT2, NECTIN1, and HIF1A due to their high dependence on deltaNp63 and 

their high relevance to the squamous phenotype. We observed two regions that are upstream of 

FAT2 which were occupied by a peak of p63 in two separate SEs and corresponding to ATAC 

peaks in L3.6pl and H3K27ac peaks in L3.6pl, BxPC-3 and the three squamous patient-derived 

xenografts (Figure 20A). We validated the downregulation of these genes in both L3.6pl and 

BxPC-3 by qRT-PCR and the occupancy of these regions by deltaNp63, which was lost upon its 

depletion (Figure 20B, 20C).  

Figure 19 : DeltaNp63 exerts its effects through activation of super enhancers. (A) Average binding 
profiles and heatmaps depicting the p63, H3K27ac occupancy, and open chromatin defined by ATAC-
seq at the p63 regions in L3.6pl. (B) Bar graph from GREAT analysis showing the distribution of p63 
peaks of L3.6pl in relation to the TSS. (C) Enhancers in L3.6pl ranked based on BRD4 signal intensity 
using the ROSE algorithm defining 624 super enhancers. (D) Venn diagram showing the overlap 
between super enhancers defined by ROSE, clusters of regulatory elements by CREAM, and p63 peaks. 
(E-F) Bar graph showing the percentages of SEs (E) and COREs (F) that are occupied by any number of 
peaks of deltaNp63 (>=1), by at least more than 2 peaks, or 3 peaks, with grey depicting regions that are 
common between SEs and COREs. (G) Box plot showing the log2 fold change upon depletion of p63 for 
genes associated with SEs and COREs (defined based on H3K27ac or ATAC peaks) and their 
subgroups based on the number of p63 peaks they contain. (H) Venn diagram showing the overlap 
between genes associated with SEs and COREs and genes downregulated upon depletion of p63 (q-
value =< 0.05, Fold change =< -2). Associated genes were identified by GREAT analysis using the basal 
plus extension association rule using default settings. (I) Scatter plot for FPKM values in control and 
sip63 samples for genes associated with super enhancers (red), COREs (blue), and both (yellow). (J-K) 
Venn diagrams depicting the overlap between H3K27ac gained regions, super enhancers in L3.6 and the 
three squamous xenografts in J and the common regions between them with the SEs of other xenografts 
lacking deltaNp63. (L) Box plot showing the log fold change upon depletion of p63 in the 45 super 
enhancer regions identified in K with the gene name on the left for L3.6pl and right for BxPC-3. Genes in 
red are significantly downregulated (q-value < 0.05) by > 1.5 fold, orange by 1.2-1.5 fold, green are 
significantly upregulated and grey indicate insignificant changes. 



Manuscript I | Feda Hamdan 

 

87 

 



Manuscript I | Feda Hamdan 

 

88 

4.4.6 DeltaNp63 cooperates with other transcription factors to activate target 

genes associated with worse prognosis 

Given the crucial role of deltaNp63 in defining a tumor subtype characterized by poorer 

prognosis, we evaluated the association of the deltaNp63-dependent SE-associated genes with 

prognosis using data from the TCGA research network (http://cancergenome.nih.gov). 

Interestingly, increased expression of most of these deltaNp63-dependent genes displayed a 

significant correlation with poorer prognosis in pancreatic cancer patients (Figure 21A, 

Supplementary Figure 4). As transcription factors frequently function cooperatively in lineage 

specification [98], we examined the list of genes associated with our identified enhancers and 

evaluated the expression of transcription factors contained within that list using the Morpheus 

Database. Remarkably, the transcription factors HIF1A, Basic Helix-Loop-Helix Family Member 

E40 (BHLHE40), and Retinoid X Receptor Alpha (RXRA) were more highly expressed in L3.6pl 

and BxPC-3 cells compared to Panc-1 (Figure 21B). Consequently, we asked if this specific 

expression pattern may help to form a transcriptional network underlying the marked effects of 

deltaNp63 in our system. Accordingly, we utilized genome occupancy data for HIF1A, RXRA, 

and BHLHE40 from the ReMAP database and filtered out all regions that did not overlap with 

the gained H3K27ac regions in L3.6pl and BxPC-3 compared to Panc1 (Fold change > 4, FDR 

Figure 20 : Super enhancers in the squamous subtype are highly dependent on deltaNp63. (A) 
Occupancy profiles at the FAT2 gene, which was identified to be highly dependent on deltaNp63 and 
associated with subtype-specific SEs. Profiles shown are for p63 in L3.6pl and BxPC-3, ATAC-seq in 
L3.6pl, H3K27ac in L3.6pl and BxPC-3 , and six xenografts (three in orange, which express deltaNp63-
expressing tumors, and three in green as a representative sample of the opposing clustering xenografts), 
in addition to the region files for SEs in L3.6pl and BxPC-3. Enlarged snapshots of the regions highlighted 
by the red dotted lines are shown on the right with black arrows showing the regions examined for p63 
enrichment and the red arrows for H3K27ac. (B) Gene expression analysis for FAT2 following depletion of 
p63 for 48 h shown as relative mRNA expression and normalized to an unregulated housekeeping gene 
(GAPDH). n = 3. * P-value <= 0.05, ** P-value <=0.01, *** P-value <=0.001, **** P-value <=0.0001.  (C-D) 
Validation of p63 (C) and H3K27ac (D) enrichment by ChIP-qPCR at the two highlighted regions in A (-3.7 
kb from TSS of FAT2 and -46.5 kb from TSS of FAT2) in control and p63-depleted cells after 48 h. n=2-3. 
Data are represented as mean ± SEM. n = 2. * P-value <= 0.05, ** P-value <=0.01, *** P-value <=0.001, 
**** P-value <=0.0001. (E-F) Same as in (A-B) at the NECTIN1. (G-H) Same as in (C-D) at the highlighted 
regions for NECTIN1 (+31.8 kb and +36.2 kb from TSS of NECTIN1). 
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< 0.5). Then, using this information, together with our RNA-seq results, we constructed a 

regulatory network containing deltaNp63-dependent associated genes, along with the 

deltaNp63-dependent SE-associated genes, and extended the network by transcription factor-

target query function using the Cytoscape iRegulon app (Figure 21C). Notably, many of the 

target genes were affected by a combination of these transcription factors, which also showed 

reciprocal regulation patterns with many of the transcription factors binding and activating one 

another. Accordingly, we conclude that deltaNp63 drives the expression of some central target 

genes via the activation of super enhancers associated with downstream transcription factors 

such as HIF1A, BHLHE40, and RXRA. The activation of these deltaNp63-dependent genes 

enables the further indirect or cooperative activation of additional downstream target genes.     

4.5 Discussion 

Gene expression and epigenetic profiles in cancer cells can be affected by many factors that 

are intrinsic and extrinsic to the tumor. This renders the investigation of molecular subtypes in 

malignancies quite challenging as systems to study the molecular mechanisms behind these 

subtypes are scarce. In this study, we were able to discern the same patterns of molecular 

subclasses observed in patients in both cell lines and patient-derived xenografts [214, 215]. This 

confirms the high reproducibility of these stratifications and implies that these molecular 

characteristics are highly conserved and can withstand extreme changes of conditions. Most 

importantly, these systems provide an ideal opportunity to identify and target certain 

dependencies specific for the more aggressive subtypes. L3.6pl is unique as it exhibits highly 

metastatic characteristics due to the repeated cycles of spontaneous liver metastasis that it 

underwent during its establishment [378]. Thus, it is not surprising that this cell line was found to 

be one of the systems that is representative of the squamous subtype, as it is one of the most 

highly metastatic and aggressive pancreatic cell lines [379].  
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Notably, utilization of differentially active regions identified in the cell lines representative of the 

squamous/basal-like subtype (Supplementary Table S4) helped to successfully identify a 

subgroup of patient-derived xenografts which were, consistently, previously classified as 

squamous/basal by Lomberk et al. using other criteria [220]. Additionally, the samples which 

clustered the closest to the squamous triad were also identified as basal, supporting a high 

degree of similarity between the basal and squamous classifications. Molecular subtyping of 

pancreatic cancer currently requires the use of bioinformatically complicated algorithms and are 

usually not particularly robust as demonstrated by only partially overlapping results seen in 

major recent studies [213-215, 368]. One reason for the apparent discrepancies may be due to 

tumor subgroups within the larger subgroups. Indeed, our analysis implicates deltaNp63 as a 

major driver of gene activation defining a squamous subgroup contained within the larger basal 

subgroup. Thus, deltaNp63 expression may be a defining feature of a further unappreciated 

subgroup of basal-like pancreatic tumors expressing a more squamous gene expression 

signature. In this study, we report a directed approach which involves principle component 

analysis of a single epigenetic marker (H3K27ac) on a select set of enhancer regions that are 

differentially active in the squamous/basal subgroup and which successfully clustered PDX 

samples based on molecular subtypes. This serves as an example for an accessible method to 

identify regions and gene signature patterns in various samples. Future studies in the scope of 

Figure 21 : DeltaNp63 and its target transcription factors. (A) A Kaplan-Meier plot showing the percent 
survival in pancreatic cancer patients (TCGA database) expressing high and low levels of BHLHE40 and 
FAT2 with p-value indicated on graph. (B) Heatmap depicting the gene expression patterns of transcription 
factors included in 4L, namely HIF1A, BHLHE40, and RXRA in different pancreatic cancer cell lines 
(Morpheus database). (C) Network depicting the interactions of HIF1A, BHLHE40, RXRA, and p63, where 
common genes are activated by all those transcription factors, which also activate each other. TF-target 
interactions were extracted from iRegulon app of Cytoscape in addition to the genes associated with peaks 
from these transcription factors that intersect with H3K27ac gained regions (with a lower fold change threshold 
of 4). (D) A graphical presentation of the mechanism by which deltaNp63 drives gene expression programs 
associated with a poorer prognosis by activating subtype-specific super enhancers and activation of 
downstream transcription factors that, in turn, further activate additional downstream enhancers and genes. 
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molecular subtypes of pancreatic cancer will play an important role in introducing conformity and 

clarity to the currently diverse subtyping approaches based largely on gene expression patterns. 

In this study, we were able to define subtype-specific super enhancers (Supplementary Table 

S5) associated with the aggressive squamous subtype in a manner akin to lineage-specific 

enhancers defining cell fate in pluripotent cells [380]. Consistently, our findings uncover a tightly 

intertwined transcriptional network downstream of deltaNp63 which resembles what has been 

reported for transcription factors controlling pluripotency [381-383]. Accordingly, it is evident that 

programming of cell fates, molecular subtypes and phenotypes is efficiently achieved using a 

collection of transcription factors, whereby the tight regulation of whole gene expression 

programs is controlled by a distinct set of master transcription factors. The identification of 

transcription factors that are both dependent on and activate deltaNp63 in the squamous 

subtype can help in optimizing therapy and shed light on the molecular mechanisms which 

define the squamous/basal-like subtype. 

Consistent with our findings, hypoxic pathways were previously reported to be enriched in the 

squamous subtype [215], although a direct connection to deltaNp63 was not known. Given the 

major role of HIF1A in the response to hypoxia, it appears likely that it may also function in 

promoting the increased aggressiveness of the squamous subtype and promoting cellular 

plasticity under hypoxic conditions [384-386]. Less is known about the role of RXRA and 

BLHLE40 in pancreatic cancer. BHLHE40 was found to play a crucial role in promoting a 

molecular switch to pro-inflammation in T-helper cells [387]. In the brain, BHLHE40 plays a role 

in promoting synaptic plasticity [388]. These roles in other systems imply that BHLHE40 may 

also play a role in promoting plasticity and leading to a poorer outcome. RXRA forms a 

heterodimer with peroxisome proliferator-activated receptors (PPARs) which can be targeted by 

PPAR inhibitors [389]. RXRA also dimerizes with the vitamin D receptor and its mutation is 
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associated with bladder cancer and melanoma [389, 390]. Further studies will uncover if optimal 

treatment of the more aggressive subtype may include the pathways that are regulated through 

these transcription factors. 

Based on our work, the primary mode of activation of the deltaNp63-associated transcription 

factor network appears to be at distal regulatory elements whereby the factors not only promote 

the expression of common target genes but also control the expression of one another. This 

enhancer-specific effect is supported by our observation that differentially active regions in 

L3.6pl and BxPC-3 compared to Panc-1 were mainly found at putative enhancer regions and 

not at transcriptional start sites. Moreover, deltaNp63 occupancy at enhancers, but not at TSS 

regions, was more closely correlated with the effects of p63 depletion on target gene 

expression. Altogether, our findings underscore the importance of distal regulatory elements in 

driving important transcriptional programs in tumorigenesis and tumor progression, thereby 

providing a further rationale for targeting these regions and their dependencies. 

We have identified a marked dependence of a subset of super enhancers on deltaNp63 which 

may open the door for specific targeting of the squamous subtype of pancreatic cancer. 

However, our findings also confirm the tremendous plasticity of pancreatic cancer, where a 

single factor is required for the activation of a whole gene signature associated with a poorer 

outcome. Despite the fact that cancer is characterized by inter- and intra-heterogeneity, distinct 

patterns of gene activation still emerge and may imply a natural selection process where certain 

attributes, such as overexpression of deltaNp63, lead to the selective growth of these more 

aggressive and highly pliable tumor cells. It is likely that similar selective pressures will occur as 

we target the dependencies of the subtype-specific enhancers since the activation of other 

factors may likely lead to the activation of other compensatory gene expression programs. 

Future studies will be necessary to determine which factors specifically determine the gene 
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expression patterns and cellular phenotypes of other pancreatic cancer subtypes. It will then be 

possible to examine the biological and therapeutic effects of subtype switching and determine 

whether such approaches may be useful in a therapeutic setting. 

4.6 Materials and Methods 

4.6.1 Cell culture and siRNA transfections 

L3.6pl cells [378] were cultured in phenol-free minimum essential medium (MEM; Thermo 

Fischer Scientific) supplemented with 10% FBS, 1% penicillin/streptomycin, and 1% Glutamine. 

Capan-1, BxPC-3, and MIA PaCa-2 were maintained in Roswell Park Memorial Institute 

medium (RPMI 1640; Thermo Fischer Scientific) supplemented as MEM. Panc-1, PaTu 8902, 

and DanG cells were maintained in high glucose GlutaMAX Dulbecco’s Modified Eagle Medium 

(DMEM; Thermo Fischer Scientific) supplemented with 10% FBS and 1% 

penicillin/streptomycin. siGENOME SMARTpool siRNA (Dharmacon) were used to deplete p63 

(D-003330-05, D-003330-06, D-003330-07, D-003330-08; respective target sequences: 

CAUCAUGUCUGGACUAUUU, CAAACAAGAUUGAGAUUAG, GCACACAGACAAAUGAAUU, 

CGACAGUCUUGUACAAUUU). Control siRNA used was siGENOME Non-Targeting #5 (NT5; 

Target sequence: UGGUUUACAUGUCGACUAA). Transfections were performed using 

Lipofectamine® RNAiMAX (Invitrogen) according to the manufacturer’s instructions.  

4.6.2 Proliferation and sphere formation assays 

100,000 (L3.6pl) or 50,000 (BxPC-3) cells were reverse transfected in duplicates in 12- or 24-

well plates, respectively, with NT5 or p63 siRNAs. After 48 h, cells were fixed with methanol for 

10 min and stained with 1% crystal violet in 20% ethanol for 20 min and then washed and 

scanned. Relative area fraction was measured using ImageJ and plotted using GraphPad Prism 
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version 5.04 (GraphPad Software, Inc.). For sphere formation assay, cells were transfected on 

day 1 as previously mentioned and in duplicates for NT5 and p63 and then 500 cells were 

seeded in 96-well plate (n=12 for each duplicate, n=24 for each condition). Plates were scanned 

after 7 days by Celigo® S imaging cytometer (Nexcelom Bioscience LLC). 

4.6.3 Protein extraction and western blot analysis 

Protein was extracted by washing cells with PBS and suspending in RIPA buffer (1X PBS, 0.5% 

sodium deoxycholate 0.1% SDS, 1% NP-40) supplemented with 100 µM β-glycerophosphate 

disodium salt hydrate (BGP), 100 µM N-ethylmaleimide, and protease inhibitors (100 µM 

Pefabloc, 1 µM aprotonin, 1 µM leupeptin). Protein lysates were solubilized by sonication using 

a Bioruptor Pico (Diagenode) for 10 cycles (30 s on/off). Laemli buffer (375 mM Tris/HCl, 10% 

SDS, 30% glycerol, 0.02% bromophenol blue, 9.3% DTT) was added to lysates before 

separation with a 7% polyacrylamide gel for evaluation of expression of the levels of p63 in 

multiple pancreatic cell line and 12% for p63 knockdown validation. Protein was then transferred 

onto nitrocellulose membranes that were incubated with primary antibodies in 5% milk in TBS-T 

overnight and then with secondary antibodies for one hour. Protein bands were visualized using 

Bio-Rad ChemiDocTM imager. Antibodies used were: HSC70 Santa-Cruz (#sc-7298) in 

1:10,000 dilution and p63 (4A4) Santa-Cruz (#sc-8431) in 1:1000. 

4.6.4 RNA isolation and quantitative real-time PCR (qPCR) 

RNA isolation and quantitative real-time PCR was performed as previously described [330, 

391]. Briefly, triplicates for each condition were harvested 48 h after transfection by QIAzol® 

reagent (Qiagen). Reverse transcription of 1 µg RNA was performed using M-MuLV reverse 

transcriptase (NEB) and random primers and the resultant complementary DNA was quantified 

by quantitative real-time PCR (qPCR) using a CFX Connect™ Real-Time System (Bio-Rad). 
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Gene expression levels were normalized relative to an internal unregulated reference gene, 

GAPDH. Protocol for qPCR runs included 2 min denaturation at 95ºC, 40 cycles of 10 s at 95ºC 

followed by 30 s at 60 ºC. Primers (Supplementary Table S1) were designed using the NCBI 

primerblast design tool (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) and were ordered from 

Sigma-Aldrich (Germany).      

4.6.5 Chromatin immunoprecipitation (ChIP)   

Chromatin immunoprecipitation was performed as described previously [99, 152]. Briefly, cells 

were crosslinked with 1% formaldehyde for 20 minutes and quenched by glycine (125mM final 

concentration). Cells were scraped and nuclear pellets were prepared in and washed with the 

nuclear preparation buffer (150 mM NaCl, 20 mM EDTA, 50 mM Tris-HCl (pH 7.5), 0.5% v/v 

NP-40, 1% v/v Triton-X-100, 20 mM NaF). Samples were then sonicated in sonication buffer 

(150mM NaCl, 20 mM EDTA, 50 mM Tris-HCl (pH 8), 1% v/v NP-40, 0.5% v/v sodium 

deoxycholate, 20 mM NaF, 0.1% SDS) for 30 cycles (in L3.6pl) or 25 cycles (in BxPC-3 and 

Panc-1) using a Bioruptor Pico (Diagenode) and a cycle setting of 30 s on/off. Consequently, 

samples were precleared by incubation with 50% slurry of Sepharose 4B (GE Healthcare), 

centrifuged and supernatants were incubated with antibody overnight. Antibodies included p63 

(1µg; clone 4A4, sc-8431, Santa-Cruz), H3K27ac (1µg; 196-050, Diagenode), BRD4 (2µg; 

C15410337, Diagenode) or control rabbit IgG (1µg; C15410206, Diagenode). Protein A- (for 

rabbit antibodies) or Protein G- (for mouse antibodies, 4A4 p63) Sepharose beads were added 

to samples and incubated for 2 h, then washed, de-crosslinked, and DNA was extracted. For 

ChIP-sequencing, samples were performed in duplicate for each condition. For ChIP-qPCR for 

validation of enrichment and loss upon depletion of p63, cells were seeded in triplicate and 

transfected with siRNA and nuclear pellets harvested after 48 h. Quantitative PCR conditions 

were the same as gene expression studies but the cycle number was increased to 46. Primers 
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were designed for regions of positive enrichment for p63 and H3K27ac and the first intron of 

OLIG2 was used as a negative site for enrichment to ensure specificity of signal (oligonucleotide 

sequences for ChIP validation can be found in Supplementary Table S1). The signal was 

normalized to input DNA and presented as percent input for duplicates or triplicates in each 

condition. 

4.6.6 Assay for transposase-accessible chromatin (ATAC) 

ATAC-seq was performed following the protocol of Buenrostro et al [392]. Briefly, 50,000 L3.6pl 

cells were trypsinized and washed twice with cold PBS. Then cells were re-suspended in lysis 

buffer (10mM Tris-HCl pH 7.5, 10mM NaCl, 3mM MgCl2, 0.1% IGEPAL CA-630), incubated for 

15 min on a rotating wheel at 4 C, followed by centrifugation and then resuspended in 50 µl of 

transposition mix composed of 2.5 µl of TDE1 (Nextera Tn5 Transposase), 25 µl TD (2x 

reaction buffer) in nuclease free water (Nextera DNA Library Prep Kit, FC-121-1030, Illumina). 

DNA extraction was immediately preformed after 30 min of incubating the transposition reaction 

at 37 C. MinElute PCR Purification kit (Qiagen) was used for DNA extraction and following the 

instructions of the manufacturer. Experiment was done in duplicates.  

4.6.7 Library preparation for RNA, ChIP, and ATAC-seq and next-generation 

sequencing 

The integrity of RNA from L3.6pl and BxPC-3 with triplicates for siControl and sip63 were 

verified by agarose gel electrophoresis. Libraries for RNA were prepared using the TruSeq RNA 

Library Prep Kit V2 (Illumina) according to the manufacturer’s instructions. Libraries for DNA 

from ChIP were made using the Microplex Library Preparation kit v2 (Diagenode) according to 

the manufacturer’s instructions. ATAC libraries were made using the Nextera DNA Library Prep 
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Kit and the libraries were amplified for 15 cycles in total of: 98 C for 10 sec, 63 C for 30 sec, and 

72 C for 60 sec. The quality of the libraries was verified using the high sensitivity DNA kit 

(Agilent) on the Agilent Bioanalyzer 2100. RNA- and ChIP-seq samples were sequenced 

(single-end 50 bp) on a HiSeq4000 (Illumina) in the Transcriptome and Genome Analysis 

Laboratory (TAL) at the University Medical Center Göttingen. ATAC-seq samples were 

sequenced (single-end 50bp) on HiSeq2000 (Illumina). Images of sequences were converted 

into bcl files (BaseCaller software, Illumina) and demultiplexed to fastq files by CASAVA v1.8.2. 

4.6.8 Bioinformatic analysis for ChIP and ATAC-sequencing 

The quality of FASTQ files for ChIP- and ATAC-seq (Accession numbers in Supplementary 

Table S2) was checked using FASTQC/0.11.4 for data generated for this study and data from 

Lomberk et al. which were downloaded from ArrayExpress [220]. Data were mapped to the 

reference genome assembly (hg19) using BOWTIE2/2.2.5 [359] and converted to bam files and 

sorted and indexed using SAMTOOLS/1.4 [360]. Subsequently, reads were normalized to 1X 

sequencing depth using the bamCoverage tool in DEEPTOOLS/2.4.0 [361], ignoring duplicates 

and extending to 200 bp (500 bp for ATAC-seq) to generate occupancy profiles that were 

viewed with the Integrative Genomics Viewer (IGV 2.4) [362, 363]. Peaks were called using 

MACS2/2.1.1.20160309 without building the shifting model and with cutoff of less than 0.05 (--

broad-cutoff 0.05 for BRD4 and H3K27ac) and input files as background [393]. Hierarchical 

clustering was performed for H3K27ac regions by seqMINER/1.3.4 using KMeans enrichment 

linear as clustering normalization [394, 395]. Differential binding analysis was performed to 

identify differentially occupied regions in L3.6pl and BxPC-3 compared to Panc-1 using the 

Bioconductor R package Diffbind run on R version 3.3.1 according to the instruction manual 

[396]. Genomic Regions Enrichment of Annotations Tool (GREAT) analysis was used to identify 

associated genes with regions identified by differential binding analysis and hierarchical 
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clustering. multiBigwigSummary BED-file and plotPCA tools in DEEPTOOLS/2.4.0 were used to 

plot the principle component analysis for the H3K27ac profiles on differentially occupied regions 

for the 24 patient-derived xenografts. Heatmaps and average profiles for occupancy were 

generated using the computeMatrix and plotHeatmap tools on the European UseGalaxy server 

and the reference point mode were selected as the peak center [397]. Super enhancers were 

identified using the ROSE algorithm by using the H3K27ac regions as input files and BRD4 

compared to input as intensity files, ignoring regions that are 2500 bp around TSS and keeping 

stitching of regions to the default 12.5 kb [123, 124]. Cluster of regulatory elements (COREs) 

were identified using the CREAM R package according to instruction manual [398]. To identify 

common super enhancers, we used the multiinter tool in BEDTOOLS/2.24 and the 

VennDiagram R package to generate the Venn diagrams [399, 400]. Upstream activators for 

super enhancer regions were identified using EnrichR web-based interface [401]. Occupancy 

regions of HIF1A, BHLHE40, RXRA were extracted from the ReMAP database v1.2 [402, 403].  

4.6.9 Bioinformatic analysis for RNA-seq 

The quality for FASTQ files was evaluated as previously mentioned for datasets generated for 

this study in addition to the ones downloaded from Lomberk et al. and Mishra et al. (Accession 

numbers in Supplementary Table S3) [220, 330]. Reads were mapped using TOPHAT/2.1.0 and 

annotation file for hg19 was downloaded from the UCSC table browser [404, 405]. Fragments 

per kilobase per million (FPKM) values were calculated and differential gene expression 

analysis was performed using CUFFLINKS/2.2.1 [406]. Unexpressed genes with very low FPKM 

values in both conditions (siControl and sip63) were disregarded to avoid bias. Hierarchical 

clustering by Euclidean distance for FPKM and Z-score was performed using cluster 3.0 [407] 

and the resulting heatmaps viewed using TreeView 3.0 [408]. Z-scores were calculated by 

subtracting the mean of FPKM values in all cells and dividing by the deviation. FPKM values for 
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expressed genes in any condition were used as input for gene set enrichment analysis (GSEA) 

which was performed using default settings (1000 permutations and for a maximum size of sets 

of 1000) [409]. For heatscatter plot for signal of p63 at TSS, the TSS with the highest signal was 

taken. The transcription factor and target gene network was visualized using Cytoscape v3.6.1 

and extended by the TF-target query of the iRegulon app [410, 411]. 

4.6.10 Statistical Analysis  

For patient survival curves, the Mantel-Cox test was used to evaluate significance. For sphere 

formation assays and FPKM values, the Mann-Whitney test was applied. For analysis of qPCR, 

a non-parametric t test was used. p-values were symbolized by **** for =< 0.0001, *** for =< 

0.001, ** for =< 0.01 and * for =< 0.05.    

4.7 Accession Numbers 

RNA-seq, ChIP-seq, and ATAC-seq profiles have been deposited at ArrayExpress 

(http://www.ebi.ac.uk/arrayexpress) and are available under the accession numbers E-MTAB-

7033, E-MATB-7034, and E-MTAB-7035. 
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4.11 Supplementary figures and tables 

4.11.1 Supplementary Figure 1 (Figure 22) 

 

 

 

  

Figure 22 : (A) Occupancy profiles of H3K27ac at TSS of TAp63 for 6 xenografts, L3.6pl, BxPC3, and Panc-1 showing 
enrichment for only one of the xenografts. (B) Bar plot showing the FPKM values of p63 (all isoforms) calculated by 
CUFFLINKS/2.2.1 in the 24 PDX samples. (C) GSEA plots comparing the enrichment of genes associated with 
favorable outcome in pancreatic cancer in BxPC-3 compared to Panc-1 using the FPKM values of all expressed genes 
with the NES (normalized enrichment score) and FDR (false-discovery rate) indicated on the graph. (D) A heatmap 
showing the Z-scores of the FPKM values for the squamous gene signature in the 6 PDX samples shown in A. 
Hierarchical clusters for samples based on the expression underscores the increased expression of the signature 
apparent in the 3 three squamous PDX-samples. 
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4.11.2 Supplementary Figure 2 (Figure 23) 
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Figure 24 : (A) Occupancy profiles at HIF1A for p63 in L3.6pl and BxPC-3, ATAC seq in L3.6pl, H3K27ac in L3.6pl and 
BxPC-3, and 6 xenografts. (B)  Gene expression analysis for HIF1A by qRT-PCR of deltaNp63 upon depletion of p63 
after 48 hours shown as relative mRNA expression and normalized to the unregulated housekeeping gene (GAPDH). n = 
3. * P-value <= 0.05, ** P-value <=0.01, *** P-value <=0.001. (C-D) ChIP-qPCR analysis validating enrichment of p63 (C) 
and H3K27ac (D) at the highlighted region in A (-62.2 kb from TSS of HIF1A) in the control and p63 depletion after 48 
hours. n=3 (one sample for p63 in p63 was disregarded because of decreased DNA amount to ensure significance in the 
decrease of the enrichment is not due to an outlier). Data are represented as mean ± SEM. n = 2. * P-value <= 0.05, ** P-
value <=0.01, *** P-value <=0.001. (E) ChIP-qPCR analysis validating lack of enrichment of p63 and H3K27ac at a 
negative region (OLIG2 H3K27me3) to ensure specific signal. 

 

4.11.3 Supplementary Figure 3 (Figure 24) 

 

 

Figure 23 : (A) Venn diagram showing the overlap between down regulated genes and genes 
associated with p63 regions occupied with H3K27ac and regions that are not marked by H3KK27ac. 
Associated genes were identified using the beta-minus method using the galaxy cistrome. A slight bias 
for p63 dependence is shown for genes that associated with p63 peaks marked with H3K27ac. (B) Heat 
scatter plot showing the relationship between occupancy of p63 at TSS and the gene regulation upon 
knockdown of p63 showing a lack of correlation between TSS occupancy and dependence. (C) Venn 
Diagram showing the overlap between p63 regions and TSS in L3.6pl. (D-E) Enhancers in BxPC-3 and 
Panc-1 ranked based on BRD4 signal intensity using the ROSE algorithm defining 624 super enhancers. 
BxPC-3 shows common high ranking super enhancers with L3.6pl while Panc-1 has distinct highly 
ranking super enhancers. (F) Bed venn diagram depicting overlap of super enhancers in L3.6pl, BxPC-3, 
and Panc-1. (G) ChEA and ENCODE consensus output for super enhancer regions in L3.6pl defined by 
erichr. (H) Directed acyclic graph for gene ontology pathways associated with genes related to super 
enhancers in L3.6pl with squamous cell carcinoma as a high significant hit.  
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Figure 25 : (A-H) Kaplan-Meier plots showing the percent survival in pancreatic cancer patients (TCGA 
database) expressing high and low levels of the gene named on the top of each graph with p-value 
indicated on graph (Mantel-Cox test). 
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4.11.4 Supplementary Figure 4 (Figure 25) 
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4.11.5 Supplementary Table S1 (Table 1) Sequences for primers used in this study 

(5’-3’) 

Name Forward Primer Reverse Primer Source Application 
GAPDH ATGGGGAAGGTGAAGGTCG GGGGTCATTGATGGCAACAATA Tian et al. 2013[412] Gene Expression 

DeltaNp63 AGAGAGAGGGACTTGAGTTCTG GCTCACTAAATTGAGTCTGGGC Scheel et al. 
2009[413] 

Gene Expression 

FAT2 CCCACAGTGTTCACAGCTTCT TCCAAGTCTGTGGCAGAAACC This Study Gene Expression 

NECTIN1 GCGAGTTTGCTACCTTCCCT ATTGGTGGGTTTGGCCATCA This Study Gene Expression 

HIF1A TGCTTACACACAGAAATGGCCT TACGTGAATGTGGCCTGTGC This Study Gene Expression 

p63_FAT2 -3.7kb GCCTCCATGTAACTCCCAGC CCTGTGTGTTGTTAGCCACCT This Study ChIP 

ac_FAT2 -3.7kb TTCTTTCCTCCTGACTGTGCTTC GTTGAACAGGTAGCAAGTGGTAGA This Study ChIP 

p63_FAT2 -46.5kb CAGACCCTGCGTTCTGTCTT TGATTCATGACCAGGGGTGC This Study ChIP 

ac_FAT2 -46.5kb AGCTGGAAACCGACAGCTTG GCAGTTCCATTGTCGCTGTG This Study ChIP 

p63_NECTIN1 31.8 kb AGGCTGGAAGGCATCTTGC CATTGTGCAGGTGACATCGC This Study ChIP 

ac_NECTIN1 31.8 kb GTGCTTCCTGCTTCCCAGAAT CCTGGTAGATAGAAGGTATTCAGCC This Study ChIP 

p63_NECTIN1 36.2 kb TGGGGTCTTTCCCATGCTTC CCCAGTGACTCCTGAAACCC This Study ChIP 

ac_NECTIN1 36.2 kb TCCCTGGGGGAGAAAGTACAA CACATGTGTTAACTGTTCTTGCCA This Study ChIP 

p63_HIF1A -62.2 kb TACTGTGGCGGTGAAATCAACT AGTATCTACCCTGCTCCTTGGT This Study ChIP 

ac_HIF1A -62.2 kb CGGCATTTCAGCTTTGGCAG CCCAGTGCCACAGAACAAAGA This Study ChIP 

OLIG2 H3K27me3 GTCACCAACGCTCCCTGAAAT CTGCACGCGGGTACCTATAAT This Study ChIP 

4.11.6 Supplementary Table S2 (Table 2) Accession numbers for next-generation 

datasets used in this study (ChIP and ATAC-seq) 

Name Data Type Database Accession Number Replicates Source 

BxPC-3_H3K27ac ChIP-seq ArrayExpress E-MTAB-7034 2 This Study 

L3.6pl_H3K27ac ChIP-seq ArrayExpress E-MTAB-7034 2 This Study 

Panc-1_H3K27ac ChIP-seq ArrayExpress E-MTAB-7034 2 This Study 

AO.IP_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

1.033_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

1.03_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

1.048_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

foei8_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

2.087_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

2.029_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

1.037_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

AM.IP_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

D.IP_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

B.Tim_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

AH.IP_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

3.076_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

2.116_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

2.099_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

2.083_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

2.058_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

2.045_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

1.119_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

1.064_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 
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1.053_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

1.052_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

1.043_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

1.042_H3K27ac ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

L3.6pl_p63 ChIP-seq ArrayExpress E-MTAB-7034 1 This study 

BxPC-3_p63 ChIP-seq ArrayExpress E-MTAB-7034 1 This study 

L3.6pl_BRD4 ChIP-seq ArrayExpress E-MTAB-7034 2 This study 

BxPC-3_BRD4 ChIP-seq ArrayExpress E-MTAB-7034 2 This study 

Panc-1_BRD4 ChIP-seq ArrayExpress E-MTAB-7034 2 This study 

L3.6pl_ATAC ATAC-seq ArrayExpress E-MTAB-7035 2 This study 

BxPC-3_input ChIP-seq ArrayExpress E-MTAB-7034 1 This study 

L3.6pl_input ChIP-seq ArrayExpress E-MTAB-7034 2 This study 

Panc-1_input ChIP-seq ArrayExpress E-MTAB-7034 1 This study 

AO.IP_input ChIP-seq ArrayExpress E-MTAB-7034 1 Lomberk et al 2018 

1.033_input ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

foei8_input ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

1.064_input ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

2.045_input ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

2.116_input ChIP-seq ArrayExpress E-MTAB-5632 1 Lomberk et al 2018 

4.11.7 Supplementary Table S3 (Table 3) Accession numbers for next-generation 

datasets used in this study (RNA-seq) 

Name Data Type Database Accession Number Replicates Source 

BxPC-3_siControl mRNA-seq ArrayExpress E-MTAB-7033 3 This Study 

BxPC-3_sip63 mRNA-seq ArrayExpress E-MTAB-7033 3 This Study 

L3.6_siControl mRNA-seq ArrayExpress E-MTAB-7033 3 This Study 

L3.6pl_sip63 mRNA-seq ArrayExpress E-MTAB-7033 3 This study 

Panc1_sicontrol mRNA-seq GEO GSE90566 3 Mishra et al. 2017 

AO.IP mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

1.033 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

1.03 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

1.048 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

foei8 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

2.087 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

2.029 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

1.037 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

AM.IP mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

D.IP mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

B.Tim mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

AH.IP mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

3.076 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

2.116 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

2.099 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

2.083 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

2.058 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

2.045 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

1.119 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

1.064 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

1.053 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

1.052 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

1.043 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 
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1.042 mRNA-seq ArrayExpress E-MTAB-5639 1 Lomberk et al 2018 

 

4.11.8 Supplementary Tables (S4-S7) provided in Excel Format (online) 

Supplementary Table S4: H3K27ac gained regions in L3.6pl and BxPC-3 

Supplementary Table S5: Squamous subtype-specific super enhancers 

Supplementary Table S6: GSEA table for enrichment of C2 pathways in siControl compared to 

sip63 in L3.6pl 

Supplementary Table S7: GSEA table for enrichment of C2 pathways in sip63 compared to 

siControl in L3.6pl
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5.1 Abstract 

Resistance to conventional chemotherapy is one of the main causes of dismal survival rates in 

pancreatic cancer patients. Recent findings showed that inhibition of the Bromodomain and 

Extraterminal (BET) protein family is effective, both alone and in combination with conventional 

chemotherapy, in decreasing pancreatic tumor growth in patient-derived xenografts. Thus, we 

aim to evaluate the potential role of BET inhibitors as an adjuvant therapeutic option in 

pancreatic cancer.  

We established L3.6pl pancreatic cells that are resistant to paclitaxel by maintaining them in 

incrementally higher concentrations for 3 months. Paclitaxel resistant cells showed a half 

maximal inhibitory concentration (IC50) which is 100 fold more than that of parental cells. 

Intriguingly, we report that low concentrations of the BET inhibitor, JQ1, not only sensitized cells 

to paclitaxel, but also induced significant re-sensitization of chemoresistant cells. In order to 

elucidate the mechanism by which BET inhibition induces chemo-sensitization, we investigated 

the differential gene expression profiles of resistant and sensitive cells. Thereby, we uncovered 

that BET inhibition reverses the regulation of transcriptionally-activated programs in resistant 

cells which are associated with inflammation and epithelial-to-mesenchymal transition. 

Interestingly, these genes showed a major tendency to gain BRD4 at putative enhancer regions. 

Furthermore, we observed that BET-dependent super enhancers that are specific to resistant 

cells are associated with genes that are correlated to poor prognosis in pancreatic cancer. 

Finally, we identified different regulation patterns for BET-dependent genes when subjected to 

low and high doses of the BET inhibitor JQ1.      

In conclusion, we provide evidence that BET inhibitors can potentially be used as adjuvant 

agents in pancreatic cancer. However, such indication is not due to their anti-proliferative effects 
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that require higher concentrations and possibly lead to intolerable adverse effects, but rather to 

their transcriptional regulatory functions that attenuate the activated programs in chemo-

resistant cancers.  

5.2 Introduction 

In spite of relatively lower incidence rates compared to more common malignancies, pancreatic 

cancer emerges as one of the leading causes of cancer-related deaths around the world [153, 

414]. In the upcoming 10 years, pancreatic cancer is predicted to exceed breast and colorectal 

cancer and become the second most common cause of cancer-related mortalities [415]. 

Resistance to conventional chemotherapy is one of the main causes of dismal survival rates in 

pancreatic cancer patients [246]. Consequently, there is an urgent need to establish and test 

new unconventional treatments that can efficiently improve the prognosis of pancreatic cancer.  

Interestingly, inhibition of the epigenetic reader family of Bromodomain and Extraterminal (BET) 

proteins was reported to be effective in decreasing pancreatic tumor growth in patient-derived 

xenografts when administered alone or in combination with conventional chemotherapies [198, 

209]. BRD4, the most thoroughly investigated member of the BET family, plays an important 

role in cell growth, cell cycle control, and gene transcription [416]. BRD4 knockout is lethal in 

mouse embryos which suggests that BRD4 has a crucial role in fundamental cellular processes 

[417]. However, upon inhibition of BRD4 with small molecular inhibitors, only a specific subset of 

genes is affected, particularly cancer-promoting genes such as the MYC proto-oncogene and 

the apoptotic regulator B Cell Lymphoma 2 (BCL2) [205, 286].  

JQ1, the most studied BET inhibitor, was reported to show efficacy in chemo-resistant 

pancreatic cancer cells in three-dimensional collagen [210]. Moreover, general drug screening 

found that JQ1 and paclitaxel have a synergistic effect in triple negative breast cancer [418]. 
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Paclitaxel, along with gemcitabine, is one of the first line conventional therapies that are 

commonly used in the management of pancreatic cancer [172].  Paclitaxel binds to microtubules 

forming the mitotic spindle and enhances its polymerization, increases its stability, and prevents 

its disassembly leading the cells into an arrested cell cycle state and apoptosis [182, 419].  

Paclitaxel treatment was reported to induce a pro-inflammatory state in patients [420]. In 

contrast to other chemotherapeutic agents like doxorubicin and vinblastine, non-steroidal anti-

inflammatory drugs (NSAIDs) did not show synergy with paclitaxel [421]. Interestingly, 

paclitaxel- resistant ovarian cancer cells showed a transcriptional activation of inflammatory 

response [422, 423] and stimulation of a pro-inflammatory environment lead to the development 

of resistance to paclitaxel [424]. Furthermore, inhibition of the Nuclear Factor kappa-light-chain-

enhancer of activated B cells (NF-κB) pro-inflammatory signaling sensitized breast cancer cells 

to paclitaxel [425]. Moreover, inhibition of NF-κB signaling activation by a tumor necrosis factor 

alpha (TNFα) inhibitor sensitized pancreatic cancer cells to paclitaxel [426].  

Notably, resistance to conventional therapy was linked to activation of program driving super-

enhancers in leukemia [427]. Super enhancers have drawn significant attention in cancer 

research due to their high dependence on targetable factors such as BRD4 and their ability to 

activate specific oncogenic programs [123, 124]. They include large stretches of activated 

regions that are bound by a plethora of transcription factors [248]. To date, the mechanism of 

dependence of these enhancers on BET inhibition has not been fully elucidated. Studies 

investigating the efficacy of BET inhibitors usually use high concentrations that are just below 

the maximum-tolerated dose (MTD) [428-431]. So far, the relation between dose and enhancer 

deactivation has not been established. However, it is usually reported that different cell lines 

have various sensitivities toward BET inhibitors [212, 315, 432]. Accordingly, further studies are 
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necessary to uncover the mechanisms of super enhancer sensitivity toward BET inhibition to 

guide pre-clinical and clinical studies to use the most effective dosage. 

In this study, we investigated the potential use of BET inhibition as sensitizers to 

chemotherapeutic agents, in particular paclitaxel, in the highly metastatic pancreatic cancer cell 

line L3.6pl. We observed that low concentrations of JQ1, which do not affect the proliferation to 

a high extent on its own, sensitize normal and highly resistant cells to paclitaxel. Moreover, we 

report that paclitaxel-resistant cells exhibit transcriptional activation of inflammatory signaling 

that is reversed by treatment with JQ1. Interestingly, we observed that the transcriptional 

changes in paclitaxel resistance indicated a change to a more migratory phenotype and a 

molecular switch that were reversed by JQ1. Additionally, we uncovered that the mechanism of 

this activation is mediated by a gain of BRD4 on putative enhancers and super enhancers which 

drive genes that correlate with worse prognosis in pancreatic cancer patients. Interestingly, we 

also report that a certain cluster of genes regulated by JQ1 can be preferentially affected by low 

or high concentrations of JQ1 in a manner related to the occupancy of BRD4 at the TSS of 

these genes. Altogether, we provide a rationale to use BET inhibitors in low concentrations 

along with paclitaxel to enhance its effects and de-activate programs that are related with poorer 

prognosis in pancreatic cancer patients.    
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5.3 Results 

5.3.1 BET inhibitors sensitize normal and resistant pancreatic cancer cells to 

Paclitaxel   

Sensitivity to paclitaxel and the BET inhibitor, JQ1, was evaluated in the highly metastatic 

pancreatic cancer cell line, L3.6pl, by proliferation assays using a series of different 

concentrations. While the half maximal inhibitory concentration (IC50) of paclitaxel was defined 

as 2 nM, 316 nM were needed from the epigenetic inhibitor, JQ1, to hinder the growth of 50% of 

the cells (Figure 26A, 26B). In order to check if JQ1 can sensitize L3.6pl cells to paclitaxel, we 

combined different concentrations with the JQ1 concentration required to inhibit 10% (IC10) and 

25% (IC25) of the cells (58 nM and 133 nM), respectively. Interestingly, cells showed increased 

sensitivity to paclitaxel even when combined with very low concentrations of JQ1 leading the 

IC50 of paclitaxel to drop to 0.81 nM and 0.39 nM with increased concentrations of JQ1 (Figure 

26C, 26D).  

To check if sensitization to paclitaxel by JQ1 can occur after resistance is already present, we 

established a paclitaxel-resistant cell line by maintaining the cells in increasing concentrations of 

paclitaxel (scheme in Figure 26E). We started with the IC50 of paclitaxel in L3.6pl and continued 

doubling the concentration till the cells were thriving in 64 nM of paclitaxel and exhibiting an 

IC50 that is 100 times of the normal cells (Figure 26F). Remarkably, the established resistant 

cells were sensitized to paclitaxel upon co-treatment with the IC25 of JQ1 (Figure 26G). 
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Figure 26 : JQ1 sensitizes L3.6pl cells to paclitaxel. Growth curves for L3.6pl upon treatment with (A) 
paclitaxel, (B) JQ1, (C) paclitaxel and IC10 of JQ1, (D) paclitaxel and IC25 of JQ1. y- axis: relative 
confluence normalized to day 1, x-axis; day of treatment. 1000 cells were seeded in 96-well plate and treated 
every two days. (E) Schematic approach for establishment of L3.6pl cells resistant to paclitaxel by 
maintaining them in incremental concentrations (F) Growth curve of resistant cells show their toleration to 
high paclitaxel concentrations (G) Crystal violet showing the ability of paclitaxel resistant cells to survive at 
much higher concentrations of paclitaxel debilitated by low concentrations of JQ1. 5000 cells were seeded in 
a 24-well plate and treated every two days up to the eighth day when cells were stained. 
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5.3.2 JQ1 reverses the regulation of transcriptionally-activated genes in resistant 

cells 

To understand the mechanisms by which JQ1 leads to paclitaxel sensitization, we studied the 

gene transcription profile changes in paclitaxel-resistant (PacR) cells compared to normal L3.6pl 

cells and upon treatment with 500 nM of JQ1.  RNA sequencing (RNA-seq) uncovered the 

activation of certain clusters of genes in PacR cells which are reversed by the treatment with 

JQ1 (Figure 27A). These genes include, for example, Apolipoprotein B mRNA Editing Enzyme 

Catalytic Subunit 3C (APOBEC3C) which plays a role in the induction of mutations and meiotic 

recombination [433, 434]. Additionally, these clusters include genes related to epithelial-to-

mesenchymal transition (EMT) programs which correlate with higher invasion and metastasis 

rates in various cancers such as Semaphorin 3C (SEMA3C), Caveolin 1 (CAV1), and Cadherin 

5 (CDH5) [435-438]. Interestingly, inflammation-related genes, for example interleukin 6 family 

cytokine (LIF) and TNF Alpha Induced Protein 3 (TNFAIP3), were also found in BET-responsive 

clusters. These patterns which were observed in gene set enrichment analysis (GSEA) were 

validated by quantitative real-time PCR (Figure 27B - 27D). Particularly, GSEA analysis 

uncovered a major activation of TNF- alpha signaling that is reversed by JQ1 treatment. 

Moreover, a molecular subtype switch and migration was equally reversed upon JQ1 treatment. 

In summary, we have observed the transcriptional activation of various programs including 

inflammation and migration in paclitaxel-resistant cells which can be reversed by BET inhibition. 
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Figure 27 : JQ1 reverses transcriptionally activated programs in resistant cells. (A) Heatmap showing 
the significantly upregulated and downregulated genes (2 folds) in paclitaxel resistant cells compared to 
sensitive cells with the corresponding regulation upon treatment with JQ1. Clusters of genes show reversed 
regulation upon JQ1 treatment. (B) Validation of genes that are upregulated in paclitaxel resistant cells and 
downregulated with JQ1 treatment. Such genes include major activators in inflammatory pathways such as 
NFκβ and TNFα. (C, D) GSEA analysis showing significantly enriched pathways in PacR compared to 
sensitive cells (C) and compared to PacR cells treated with JQ1 treatment (D). 
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5.3.3 BRD4 is gained in putative enhancer regions of transcriptionally-activated 

genes in resistant cells   

To uncover the mechanisms by which JQ1 reverses transcriptionally-activated programs in 

resistant cells, we performed chromatin immunoprecipitation followed by high throughput 

sequencing (ChIP-seq) for BRD4 in PacR and L3.6pl cells. Thereby, we identified 1165 regions 

that gained BRD4 occupancy in PacR cells using differential binding analysis (Figure 28A). 

Notably, only 4 regions significantly lost BRD4 occupancy and the majority of the BRD4 gained 

regions were localized at putative enhancers as the majority did not intersect with known 

transcription start sites (TSS) (Figure 28B). Genes associated with those regions included 

genes that we identified as sensitive to JQ1 treatment and upregulated in PacR cells using 

RNA-seq (Figure 28C).  Interestingly, we observed that BRD4 gained regions in resistant cells 

comprised open chromatin regions identified by Assay for Transposase-Accessible Chromatin 

(ATAC-seq) in normal cells (Figure 28C). Motif analysis revealed the significant enrichment for 

binding sequences for the transcription factors ETS Homologous Factor (EHF) and Forkhead 

Box A1 (FOXA1) (Figure 28D). FOXA1 was reported to play a significant role in activation of 

enhancers associated with metastasis in pancreatic cancer while EHF is part of the ETS family 

which shows high dependence on BET inhibition (Figure 28E) [154, 439]. Furthermore, pathway 

enrichment analysis from the molecular signatures database (MSigDB) identified mitotic phase 

and cell cycle as enriched signatures in genes associated with the BRD4 gained regions in 

PacR cells (Figure 28F). Additionally, Encyclopedia of DNA Elements (ENCODE) and ChIP 

Enrichment Analysis (ChEA) showed the known BRD4 target, MYC Proto-Oncogene (MYC), as 

a highly enriched transcription factor in these regions (Figure 28G). Altogether, we uncovered 

that the transcriptional activation of certain programs in resistant cells is associated with a gain 

of BRD4 at putative enhancer regions hence their sensitivity to BET inhibition. 
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Figure 28 : BRD4 is gained at putative enhancers near transcriptionally active genes in resistant 
cells. (A) Binding affinity plot showing differentially bound regions of BRD4 in PacR cells compared to 
sensitive cells. (B) Pie chart showing that around 81% of the regions are not associated with TSS. (C) Venn 
diagram showing overlap between genes associated with gained regions and downregulated genes by JQ1. 
(D) Occupancy profiles of BRD4 for gained regions in PacR cells and co-localization with already open 
regions in sensitive cells identified by ATAC-seq. (E) Enriched motifs found by HOMER in BRD4-gained 
regions. (F) GREAT analysis gained regions uncovering association with paclitaxel-related pathways 
(shown in red). (G) ChEA and ENCODE consensus output for gained regions defined by erichr. 
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5.3.4 Gained super enhancers in resistant cells drive programs leading to poorer 

prognosis 

Given the role of BRD4 at enhancers in resistant cells and the well-established implication of 

BRD4 in super enhancer dependence and activation, we investigated the differential epigenetic 

gene activation in resistant and normal cells. This was done by studying their acetylation of 

Histone 3 Lysine 27 (H3K27ac) profiles and identified super enhancers (Figure 29A). Notably, 

certain genes that were upregulated in PacR cells and showed sensitivity to BET inhibition , 

such as Semaphorin 3A (SEMA3A), SEMA3C, LIF, and EHF, were found to be associated with 

super enhancers. The change in H3K27ac and BRD4 profiles in PacR cells led to identification 

of 104 PacR-specific super enhancers (SEs) that are not identified as SEs in normal cells 

(Figure 29B). Of the genes associated with PacR-specific SEs, we uncovered 8 genes that are 

also upregulated in PacR cells and downregulated upon treatment with JQ1 (Figure 29C). 

Interestingly, high expression of these genes correlated with a poorer prognosis in pancreatic 

cancer patients as seen in data from the Cancer Genome Atlas (TCGA) with SEMA3C, and Ras 

Homolog Family Member V (RHOV) shown as example (Figure 29D, 29E). For these genes, a 

gain of BRD4 and H3K27ac marked in some cases the activation of multiple super enhancers 

near one gene as in the case of LIF (Figure 29F). These gained peaks were localized at regions 

of open chromatin in normal cells and showed mild occupancy of JQ1 at these regions observed 

by Chem-seq. In other cases, gain of BRD4 and H3K27ac peaks was observed at regions 

devoid of open regions in normal cells and showing low occupancy of JQ1 (Figure 29G). This 

indicates that some of the activated regions upon resistance were already mildly active in 

parental cells. However, another group of regions were completely inactive in parental cells and 

only activated upon resistance. 
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Figure 29 : BET dependent super enhancers are activated in resistant cells. (A) ROSE algorithm output 
showing the identified super enhancers in resistant cells with the y-axis corresponding to the intensity of BRD4 
signal and the x-axis to the rank of enhancers. Genes of interest associated with the ranked super enhancer are 
shown as examples. (B) Venn diagram showing the overlap between super enhancers identified in PacR and 
sensitive cells. (C) Venn diagram showing the genes that are associated with PacR-specific super enhancers, 
upregulated in resistant cells and sensitive to JQ1. (D, E) Kaplan-Meier plot for pancreatic cancer patients from 
the TCGA database with high and low expression of SEMA3C and RHOV. (F, G) Occupancy profiles of BRD4 
and H3K27ac at LIF and CLDN4 in PacR and sensitive cells accompanied by ATAC-seq and Chem-seq profiles. 
PacR-specific super enhancers are shown as blue boxes. 
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5.3.5 BET-dependent genes respond differentially to low and high doses of JQ1 

Given the ability of low concentrations of JQ1 to sensitize cells to paclitaxel, we investigated the 

effects of JQ1 on gene transcription upon treatment for 24 hours with 100 nM and 500 nM JQ1. 

We have already shown that 100 nM inhibits the growth of approximately 20% of cells while 500 

nM affects around 70% of cell growth (Figure 26B). Upon studying the gene transcriptional 

changes of regulated genes at the two concentrations, we identified 16 patterns of gene 

transcriptional modulation. Notably, the most significant cluster of genes included 222 genes 

which were downregulated at 100 nM and further downregulated with 500 nM. Most 

interestingly, other genes showed preference in their response to one condition where they 

were downregulated more profoundly by 100 nM and others by 500 nM (Figure 30A, 30B, 30D). 

Remarkably, a cluster comprised of 45 histone genes were shown to be upregulated in the case 

of high concentrations of JQ1 (Figure 30C). This is probably due to perturbed processing of the 

poly adenylated histone mRNAs as BET inhibition decreases the recruitment of CDK9 which 

was shown to play a significant role in 3' end processing of replication-dependent histones [201, 

440-442].  

Notably, the cluster of genes which responded more to 100 nM showed significantly lower 

occupation of BRD4 at their TSS compared to the clusters which showed no preference or were 

more affected by 500 nM JQ1 (Figure 30E). Gene ontology for genes responsive to lower 

concentrations showed that already at lower concentration, JQ1 can attenuate inflammation and 

regulation of gene cycle explaining the ability of lower concentration to sensitize cells to 

paclitaxel (Figure 30F, 30G).  
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Figure 30 : BET-dependent genes respond differentially to low and high doses of JQ1. (A-D) 
Expression plots showing different clusters of genes sharing response patterns to low and high 
concentrations of JQ1. x-axis shows concentration of JQ1 and y-axis stand for fold change compared to 
cells treated with DMSO. (E) Box-plot showing the occupancy of BRD4 at the TSS of the genes of 
different clusters. *** stands for p-value < 0.0001 for unpaired t-test. (F,G) Gene ontology plot for clusters 
of genes that are more responsive to low concentration (F) and high concentration (G). 

 

5.4 Discussion 

We report in this study the sensitization of pancreatic cancer cells to paclitaxel by low 

concentrations of the BET inhibitor JQ1. Combining JQ1 with chemotherapeutic agents has 

already been under investigation and showed promising results in various types of malignancies 

[443-447]. In particular, anti-microtubule drugs exhibited the most potent synergism with BET 

inhibitors in a screen of hundreds of agents in neuroblastoma [448]. While the anti-proliferative 

effect is usually used for JQ1 as a readout for efficiency, we showed that JQ1 sensitization can 

be exhibited in very low concentrations that have modest effects on growth. This indicates that 

sensitization can be rather due the transcriptional modulatory effects of BET inhibition. 

Although the changes accompanying and causing paclitaxel resistance in vitro are stochastic in 

nature, we observed a transcriptional activation of a pro-inflammatory program that was 

reported in other systems upon paclitaxel treatment and resistance [420, 422, 423]. BET 

inhibition was reported to attenuate inflammation in acute pancreatitis [449] , heart failure [450], 

and a subset of chronic obstructive pulmonary disease (COPD) patients [451]. It is not clear 

whether activation of inflammation is predisposing or accompanying to resistance. In any case, 

the fact that TNFα inhibition synergizes with BET inhibition in sensitizing pancreatic cancer to 

paclitaxel implies a causative role of inflammation in the development of resistance [426]. 

Additionally, the reversal of the enrichment for a migratory phenotype coupled with increased 
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expression for the mutation inducers from the APOBEC family in resistant cells further justifies 

the investigation of BET inhibitors as an adjuvant therapy. 

Interestingly, we observed a high association between BRD4 occupancy at putative enhancers 

and activation of associated genes in resistant cells. This was accompanied by the observation 

that some of the gained BRD4 regions at enhancers were associated with an open chromatin 

state in normal cells. Enhancers associated with open chromatin regions that are activated upon 

metastasis were reported in pancreatic cancer [154]. We also report here that enhancers 

associated with resistance may also be open before activation in case of resistance. This may 

imply that these regions are primed for activation and may explain why pancreatic cancer 

frequently displays innate or acquired resistance in a shorter period compared to other tumor 

types. It would be of interest to identify such regions and evaluate the potential of using their 

“openness” to predict the development of resistance and potentially the sensitization with BET 

inhibition. Moreover, enhancer RNA (eRNA) transcribed at these particular enhancers can also 

provide us with unconventional biomarkers for prognosis and therapy [103].  

Given that the gain of BRD4 has also resulted in the identification of resistance-specific super 

enhancers driving genes with poorer prognosis, other therapies that specifically target this 

special class of enhancers can be highly beneficial in resistant pancreatic cancer. For example, 

inhibition of Cyclin Dependent Kinase 7 (CDK7), a subunit of TFIIH, has been shown to 

extensively affect the activity of super enhancers in neuroblastoma and ovarian cancer [452, 

453]. Additionally, histone deactylases inhibitors (HDACs) were reported to affect super 

enhancer-driven transcription [331]. Accordingly, these and other inhibitors can potentially be 

used to manage patients with resistance to de-activate SE-driven transcriptional activation and 

improve prognosis. 



Manuscript II | Feda Hamdan 

 

126 

To evaluate the effect of low concentrations of JQ1 in sensitization, we compared the gene 

transcriptional profile of normal cells upon treatment with low and high concentrations of JQ1. 

Interestingly, various clusters of genes showed different patterns of responsiveness to the 

different concentrations. So far, dose escalation studies for BET inhibitors only takes into 

consideration the anti-proliferative and side effects of those agents and not their transcriptional 

modulatory effects. Thus, the rationale for variant sensitivity of genes to different concentrations 

of BET inhibitors is not yet known. As JQ1 targets both the BD1 and BD2 of the BET family 

members, we propose a bivalent pattern of inhibition which can be mirrored in dose-

dependence. For example, if only one of the bromodomains is bound at certain genes, they 

would respond to lower concentrations. On the other hand, if the two bromodomains are 

required to be occupied by acetylation at certain regions, higher concentrations of JQ1 may be 

needed for ejection of the BET family member from these regions (scheme in Figure 31A). This 

hypothesis can be tested by using a monovalent selective BET inhibitor for each bromodomain 

and investigating the profile of each. If this theory is true, the genes which respond to high 

concentrations would be resistant to either monovalent inhibitor but responsive to co-treatment. 

Another explanation for various dose responses can be due to the various occupancies of 

transcription factors at these regions. It can be possible that other transcription factors which are 

not BET-dependent can compensate for the absence of BET members at some regions and 

ensure the activation of the genes irrespective of the concentration of BET inhibitor (Figure 

31B). Additionally, genes that are responsive to high concentrations may be highly occupied by 

BRD4, requiring a higher concentration for an effect to take place (Figure 31C). This is further 

supported by our observation that highly responsive genes have lower occupancy of BRD4 at 

their TSS. 
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Figure 31 : Graphical representation for hypotheses explaining dose-dependent response for 
BET inhibitors. (A) Genes occupied in a bivalent manner require higher concentrations to be affected. 
(B) Other activating transcription factors can compensate for absence of BRD4. (C) Occupancy of BRD4 
can affect response with lower occupancy leading to high response.  
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In conclusion, as BET inhibitors are under investigation for their role as therapeutic 

management options for patients, insights into their mechanism of action and the optimal 

approaches to use them are currently lacking. We propose BET inhibitors as good options for 

sensitization to paclitaxel in both innate and acquired settings. These combinations however 

should be approached with the goal of leveraging the gene transcription modulating effects of 

these inhibitors rather than primarily their anti-proliferative effects in isolation. 

5.5 Materials and Methods 

5.5.1 Cell Culture 

L3.6pl pancreatic cancer cells [378] were maintained in minimum essential media (MEM; 

Thermo Fischer scientific) supplemented with 10% FBS (Thermo Fischer scientific), 1% 

Penicillin/streptomycin (Sigma-Aldrich), and 1% L-Glutamine (Sigma-Aldrich). For establishment 

of resistant cells, paclitaxel (T7191; Sigma-Aldrich) diluted in dimethyl sulfoxide (DMSO) (Roth) 

was added to the cells starting from 2 nM (the estimated IC50). Once the cells started thriving, 

the concentration of paclitaxel was doubled till the cells were able to grow in 64 nM after 4 

months from starting with the lowest concentration. Subsequently, resistant cells were 

maintained in 64 nM of paclitaxel in MEM media at all times.  

5.5.2 Proliferation assays 

For proliferation assays in 96 well plates, 1,000 cells were seeded in each well and treatment 

was performed every 48 hour in quadruplicates for each condition. Confluence was measured 

every day using Celigo Imaging Cell cytometer (Nexelecom Bioscience) and normalized on 

confluence of day 1. IC50 was extrapolated from dose-response curves using GraphPad Prism 

4. Crystal violet experiment was performed in 24-well plates where 5,000 cells were seeded and 
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treatment was performed every 48 hours. After 8 days, cells were fixed with methanol, stained 

with 1% Crystal Violet in 20% ethanol, washed with water, and dried. 

5.5.3 RNA isolation and cDNA synthesis 

Cells were treated for 24 hours before RNA isolation. QIAzol Lysis Reagent (Qiagen) was 

added to the cells in addition to 100μl of chloroform and centrifuged at full speed for 30 min. The 

aqueous phase was kept and mixed with an equal volume of chloroform and centrifuged for 20 

minutes. The aqueous phase was then kept and the RNA was allowed to precipitate in 

isopropanol at -20°C overnight. Subsequently, RNA was washed twice with 70% ethanol and re-

suspended in RNase free water. Complementary DNA (cDNA) was synthesized from 1000 ng of 

RNA by mixing with 1.875 μM of random 9mer primers (Sigma-Aldrich) and 625 μM 

deoxyribonucleotides dNTPs (Jena Bioscience) in a total volume of 16 μl and heated at 70°C. 

Then, the mix was added to 10 units of RNase inhibitor (New England Biolabs) and 25 units of 

M-MuLV Reverse transcriptase (New England Biolabs) in 1X reaction buffer and incubated at 

42°C for 1 hour. The enzyme was then inactivated by incubation at 95°C for 5 minutes. The 

resulting DNA was then diluted to a total volume of 50 μl of water. 

5.5.4 Library preparation for RNA-seq 

The integrity of RNA was validated by gel electrophoresis and 500ng were used to make the 

libraries in triplicates for each condition. Libraries were made using the TruSeq RNA Library 

Prep Kit V2 (Illumina) according to the manufacturer’s instructions. Briefly, Oligo-dT beads were 

used to capture poly-A tailed-mRNA followed by first strand cDNA synthesis by Superscript II 

reverse transcriptase (Thermo Fischer scientific). Second strand synthesis was followed by end 

repair, 3’ adenylation, adapter ligation and library amplification. Agencourt AMPure XP 

(Beckman Coulter) was used for size selection during the library synthesis. The quality of the 
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resulting DNA was measured with high sensitivity DNA kit (Agilent) on the Agilent Bioanalyzer 

2100. Samples were sequenced (single-end 50 bp) on a HiSeq4000 (Illumina) in the 

Transcriptome and Genome Analysis Laboratory (TAL) at the University Medical Center 

Göttingen. Images of sequences were converted into bcl files (BaseCaller software, Illumina) 

and demultiplexed to fastq files by CASAVA v1.8.2. 

5.5.5 Quantitative real time PCR (qPCR) 

1 μl of the cDNA reaction was mixed with 600nM primer mix, 8.5 μl of water and 14 μl of a 

home-made PCR mix (3 mM MgCl2, 800.000X Sybr Green (Eugene), 200 μM dNTPs, 0.5 unit 

Taq polymerase (Primetech), 0.25% Triton-X-100, 300 μM Trehalose, 75 mM Tris-HCl (pH 8.8), 

20 mM (NH4)2SO4, 0.01 % Tween 20) [391]. The PCR program run comprised of 2 minutes of 

initial denaturation at 95°C followed by 40 cycles of 10 seconds at 95°C and 30 seconds at 60 

°C. Gene expression changes were evaluated using the starting quantity method and plotted on   

GraphPad Prism 4. Each condition was evaluated in biological triplicates and technical 

duplicates. Primers used in this study included:   

Gene Forward sequence (5’-3’) Reverse sequence (5’-3’) 

APOBEC3C TGAATCCACAGATCAGAAACCCG ACTGAGCGGCGCTTTATACC 

CXCL5 AGAGAGCTGCGTTGCGTTT TTCTTCAGGGAGGCTACCACTT 

FST ATCCCCTGTAAAGAAACGTGTGA GCGGTAGGTTTTCCCATCCA 

LIF TCCCGGCTAAATATAGCTGTTTCTG CCGGCAGTTTTCAGAGGTTCA 

SEMA3C TCGGAACAGATCGGGGTACT AGAATGAGCTCGCCACTGAC 

TNFAIP2 TACCCTGACTTCAGCAAAGGC CTGACGTCCAAGATGCTCCG 

5.5.6 Chromatin immunoprecipitation (ChIP-seq) 

Chromatin immunoprecipitation was performed as described previously [99, 152]. Briefly, 

crosslinking was performed using 1% formaldehyde for 20 minutes and nuclear pellets were 

sonicated in sonication buffer (150mM NaCl, 20 mM EDTA, 50 mM Tris-HCl (pH 8), 1% v/v NP-

40, 0.5% v/v sodium deoxycholate, 20 mM NaF, 0.1% SDS) for 30 cycles using a Bioruptor Pico 
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(Diagenode) and a cycle setting of 30 s on/off. Samples were precleared by 50% slurry of 

Sepharose 4B (GE Healthcare) and incubated with antibody overnight. Antibodies included 

H3K27ac (1µg; 196-050, Diagenode), BRD4 (2µg; C15410337, Diagenode), and control rabbit 

IgG (1µg; C15410206, Diagenode). Protein A-sepharose beads were added to samples and 

incubated for 2 h, then washed, de-crosslinked, and DNA was extracted. Samples were 

performed in duplicate for each condition. Libraries were prepared from 0.5 ng of immuno-

precipitated DNA using the MicroPlex Library Preparation Kit v2 (Diagenode) according to 

manufacturer’s protocol.  DNA integrity was measured with high sensitivity DNA kit (Agilent) on 

the Agilent Bioanalyzer 2100. Samples were sequenced (single-end 50 bp) on a HiSeq4000 

(Illumina) in the Transcriptome and Genome Analysis Laboratory (TAL) at the University 

Medical Center Göttingen. 

5.5.7 Chem- seq for biotinylated JQ1 

Chem-seq was performed according to Anders et al with minor modifications [454]. Briefly, cells 

were crosslinked for 20 minutes with 1% formaldehyde and quenched with Tris-HCl (pH 7.5) for 

a final concentration of 300mM. Cells were washed twice with cold PBS and re-suspended in 

Chem Lysis Buffer (50 mM HEPES (pH 7.5), 140 mM NaCl, 1mM EDTA, 10% Glycerol, 0.5% 

NP-40, 0.25% Triton X-100). Samples were consequently washed with Chem washing Buffer 

(10 mM Tris-HCl (pH8), 1mM ethylenediamine tetraacetic acid (EDTA), 0.5 mM ethylene glycol 

tetraacetic acid (EGTA) 200 mM NaCl). Samples were then sonicated in Chem sonication Buffer 

(50 mM HEPES-KOH (pH 7.5), 140 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 

0.1% Sodium Dodecyl Sulfate (SDS),  0.1% sodium deoxycholate) for 30 cycles (30s on/off).  

All buffers included 100 µM β-glycerophosphate disodium salt hydrate (BGP), 100 µM N-

ethylmaleimide, 1nM iodoacetic acid, and protease inhibitors (100 µM Pefabloc, 1 µM aprotonin, 
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1 µM leupeptin). Magnetic streptavidin Dynabeads (Invitrogen) were incubated with 200 µM 

biotinylated JQ1 (Kindly provided by James Bradner) or DMSO in 0.5% bovine serum albumin 

(BSA) in PBS at a rotating wheel for 6 hours. Consequently, sonicated samples were incubated 

with the magnetic beads for 20 hours. Next, the beads were washed twice with sonication 

buffer, once with high-salt sonication buffer (with 500 mM NaCl instead of 140 mM). This was 

followed by one wash with Chem LiCl Buffer (20 mM Tris-HCl (pH 8), 1 mM EDTA, 0.5% NP-40, 

0.5% sodium deoxycholate, 0.1% SDS, and 250 mM LiCl) and one final wash with Chem TE 

Buffer (10 mM Tris-HCl (pH 7.5), 0.1 mM EDTA). Consequently, DNA was isolated with 

phenol/chloroform. 1 ng of the extracted DNA was used for library preparation using Microplex 

Library kit (Diagenode) according to manufacturer’s protocol. Quality of resulting DNA was 

checked on the Agilent bioanalyzer and samples were sequenced as mentioned previously for 

ChIP-seq samples. 

5.5.8 Bioinformatic analysis of RNA-seq 

Bam files were generated by mapping raw reads by TOPHAT/2.1.0 and the annotation file for 

hg19 which was exported from the UCSC table browser [404, 405]. Differential gene expression 

analysis was performed by CUFFLINKS/2.2.1 using cuffdiff to evaluate log fold changes 

between condition and cufflinks to calculate Fragments per kilobase per million (FPKM) values 

[406]. Euclidean distance was used to hierarchically cluster genes using cluster 3.0 [407] and 

the resulting Heatmap was viewed by Gene TreeView 3.0 [408]. Gene set enrichment analysis 

(GSEA) was performed with default settings using FPKM values of expressed genes as an input 

[409]. Gene expression patterns in response to different conditions were clustered by Short 

Time-series Expression Miner (STEM) [455] with the built-in gene ontology for the clusters used 

to generate the gene ontology plots viewed by REVIGO [456]. 
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5.5.9 Bioinformatic analysis of ChIP-seq 

Mapping of reads was performed to the reference genome assembly (hg19) by BOWTIE2/2.2.5 

[359]. The resulting sam files were converted to bam files then sorted and indexed using 

SAMTOOLS/1.4 [360]. The bamCoverage tool in DEEPTOOLS/2.4.0 was used to normalize 

reads to 1X sequencing depth [361]. Bigwig files were generated by ignoring duplicates and 

extending to 200 bp and were viewed using the Integrative Genomics Viewer (IGV 2.4) [362, 

363]. MACS2/2.1.1.20160309 was used to call the significant peaks without building the shifting 

model and with --broad-cutoff 0.05 for BRD4 and H3K27ac and input files from respective cells 

as background [393]. The Bioconductor R package Diffbind was run on R version 3.3.1 

according to the instruction manual to define regions that gained BRD4 upon paclitaxel 

resistance [396]. Associated genes with specific regions were identified using Genomic Regions 

Enrichment of Annotations Tool (GREAT) analysis with default settings. Occupancy of BRD4 

was evaluated by the computeMatrix tool on the Galaxy platform and the average profiles and 

heatmaps were generated based on computeMatrix values with the plotheatmap tool with the 

reference point selected as the peak center [397]. Boxplot were plotted using the boxplot 

function in R 3.3.1. The ROSE algorithm was used to identify super enhancers from stitched 

regions of H3K27ac regions and BRD4 signal with the default settings with ignoring regions that 

are 2500 bp around the TSS [123, 124]. Upstream activators for regions that gained BRD4 in 

resistant cells were identified using EnrichR web-based interface [401]. Motif analysis was 

performed using the findMotifs.pl command in HOMER/4.8 with the background as shuffled 

sequences prepared from the same files with scrambleFasta.pl [457]. 
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5.5.10 Statistical analysis 

The Mantel-Cox test was used to indicate significance for Kaplan-Meier plots. Significance in 

other applications were evaluated using a non-parametric t test with p-values indicated by **** 

for =< 0.0001, *** for =< 0.001, ** for =< 0.01 and * for =< 0.05.    

5.6 Data availability 

Sequencing data available upon request. 
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CHAPTER 6 

General Discussion 

 

 

 

 

 

 

 

This chapter provides a general discussion of the general themes in this project 

including the future prospects.  

No published data is included in this chapter. 
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6. General Discussion 

6.1 Enhancers as an emerging therapeutic target in malignancy 

In this project, we investigated the role of enhancers and super enhancers in different contexts 

of malignancy. Expansion of our understanding of complex processes controlling gene 

expression regulation will undoubtedly uncover numerous novel targets that can be perturbed 

and modulated in cancer. Focusing on targets involved in such processes is highly rational due 

to cancer addiction to aberrant transcriptional regulation [271]. On the other hand, such 

exponential growth in knowledge will render the task to invest in a select few of effective and 

relatively safe transcriptional targets immensely challenging.   

A hypothetical “ideal” transcriptional target in cancer therapy would necessarily exhibit certain 

attributes which can lead to a perceptible change in the quality of life, prognosis and the 

therapeutic management of patients. To do so, a target should be firstly easily modulated, 

preferably by small molecule inhibitors that can be made easily available at target site with an 

acceptable half-life.  Most importantly, such target should be highly specific sparing normal cells 

from further gene transcriptional modulation, thereby insuring the lack of induction of unwanted 

anomalies in healthy tissue and decreasing the severity and gravity of resulting adverse effects. 

Additionally, this ideal target should be indispensable to cancer cells rendering them highly 

dependent on such target. Ideally, this dependence should be shared by all or a high 

percentage of the malignant cell population.  This dependence should not necessarily cause cell 

death but could alternatively lead to a higher sensitivity to other less specific therapies such as 

radio/chemotherapy. Moreover, a compensatory mechanism circumventing the need for such 

target should be unattainable or at least targetable. Furthermore, a biomarker to predict the rate 

of success of this target prior to and succeeding its use should be available and easily tested.  
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While identification of an ideal transcriptional target may not realistically be possible, current 

available targets can be considered highly promising if they exhibit more of its aforementioned 

traits. In concordance with this, enhancers emerge as a highly promising target in malignant 

diseases.  Enhancers were shown to be easily targeted by numerous small molecular inhibitors. 

Interestingly, we have uncovered in Chapter 5 a sensitivity of enhancers gained in paclitaxel 

resistant cells to the BET-inhibitor, JQ1. Preferential dependence of enhancers on BET proteins 

has been consistently reported in various diseases such as pancreatic cancer [212], T-cells in 

auto-immune diseases [458], leukemia [459], multiple myeloma and glioblastoma [123]. Other 

modulators with reported efficacy on enhancers include CDK7 inhibitors [453], HDAC inhibitors 

[460], and MEK inhibitors [461]. Accordingly, our study in chapter 5 adds to the existent 

evidence of the targetability of enhancers with molecular inhibitors. 

One of the major characteristics of a subgroup of enhancers is its context-specificity. As we 

have shown in chapter 3, enhancers of the MYC gene showed system-specificity where the 

enhancer CCAT1 is responsible for activating MYC in colorectal cancer. Alternatively, PCAT1 

enhancer is active in prostate cancer in contrast to PVT1 enhancer in leukemia. Such a system-

specific pattern of enhancer activation indicates a selectivity that can be positively harnessed in 

targeted therapy. Not only do enhancers show specificity between systems, but this extends to 

molecular subtypes in the same malignancy. In chapter 4, we showed that enhancers are 

enriched in a particular molecular subtype of pancreatic cancer and defines its molecular 

identity. This further proves the highly selective and identity determining role of enhancer 

elements in disease. Furthermore, we reported in chapter 5 the enrichment of enhancers upon 

development of resistance to paclitaxel which further implicates enhancer activation in diverse 

phenotypes, in this example resistance, in the same cell line. All our observations in the 3 

chapters are consistent with the established pattern of context-specificity of enhancers [462]. 
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Notably, many enhancers were identified as indispensable for driving oncogenic programs in 

diverse cancer types. For example, a chromosomal rearrangement in GATA2 distal enhancer 

led to the activation of stemness inducing ecotropic virus integration site-1 (EVI1) and resulted 

in the development of leukemia [136]. Additionally, the known oncogene MYC was also shown 

to be driven by a BET-dependent enhancer in colorectal and esophageal carcinomas [251, 463]. 

Furthermore, hijacked enhancers led to the activation of the oncogenic growth factor 

independent 1 family in medulloblastoma [464]. In this project, we have shown in chapter 4 that 

deltaNp63 leads to the activation of enhancers driving a squamous phenotype and associated 

with a worse prognosis. Additionally, we uncovered in chapter 5 the activation of pro-

inflammatory and migratory programs by enhancers. Altogether, our findings support that 

enhancers are a bone fide activators of aberrant transcriptional programs underlying 

malignancy. 

While targeting transcriptional enhancers is still under investigation, compensatory mechanisms 

upon inhibition of active enhancers have already been described. For example, the BET 

inhibitor, JQ1, was reported to induce resistance mediated by transcriptional activation in 

bromodomain independent pathways in castration-resistant prostate cancer [432]. Interestingly, 

this resistance uncovered an alternative dependency on CDK9-mediated activation of androgen 

receptor signaling. Additionally, acquired resistance to MEK inhibition was compensated for by 

BET-mediated activation that can be easily targeted by BET inhibition in triple-negative breast 

cancer [465]. It is probable that even after the use of BET inhibitors along with chemotherapy as 

we recommend in chapter 5, cancer cells will find a way to evade the specific transcriptional 

block brought by BET inhibition by activating other pathways. Accordingly, it is of highest 

importance to try and identify these activated pathways upon acquired resistance and 

investigate new approaches to target them. Extended experience with using inhibitors to target 
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enhancers coupled with increased knowledge about different pathways to activate transcription 

can help guide a more precision-based and most likely a multi-layered approach in patient 

therapeutic management. 

Finally, as discussed in Chapter 2, while a particular function for eRNA has not been 

conclusively identified, we were able to reasonably identify super enhancers by their eRNA 

signal. As we already indicated, this implies that eRNA can play a potential role as biomarkers 

for enhancer activity. This is of particular interest as eRNA were reported to be highly enriched 

at tissue-specific enhancers [466]. Indeed, the eRNA CCAT1 was proposed as a therapeutic 

biomarker that can predict responsiveness to BET inhibition [251]. Interestingly, the largely 

known marker of prostatic cancer, Prostate-specific antigen (PSA), was identified to be 

associated with an enhancer with the resulting eRNA having a prominent role in gene 

transcriptional regulation [467]. Additionally, Kaczkowski et al. [468] identified 90 eRNAs that 

are generally upregulated in cancer cells upon screening over 200 cell lines and approximately 

300 primary cell samples. Thus, based on our results in chapter 5, eRNAs can have a potential 

role as biomarkers for resistance and responsiveness to BET inhibition sensitization. 

In conclusion, enhancers exhibit many attributes of the “ideal” transcriptional target and are 

highly promising to be leveraged in cancer therapy and management. This is due to the fact that 

they are targetable, specific, indispensable, provide biomarkers (eRNA), and the compensatory 

mechanism in response to their modulation can be targeted as well (Figure 32). However, the 

application of inhibitors targeting enhancers will face few hurdles upon application in the clinics. 

Enhancers are usually identified using highly complex bioinformatic analysis that is not always 

accessible to clinicians or scientists alike. Additionally, targeting enhancer elements can be 

either detrimental or beneficial depending on the context. As cancer is a heterogeneous 

disease, this might inadvertently lead to unwanted effects in a select population of cells. 
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Figure 32 : Positive attributes of enhancers leading them to be good candidates for targeting in 
cancer. Grey enhancers are inactive and orange active.  

Furthermore, the long term repercussions of transcriptional modulation, even in normal cells 

which theoretically lack the dependence on these activated enhancers, are yet to be defined. 

These challenges should be considered while investigating the targeting of enhancers in cancer 

amongst other diseases. 
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6.2 Super enhancers as an important subset of enhancer elements 

Since the recent identification of super enhancers in 2013 [123, 124], approximately 300 

scientific papers discussing this subclass have been published. In this project, we endeavored 

to study the role of super enhancers as part of our general study of distal regulatory elements in 

cancer progression and disease. In chapter 2, we used publicly available data from the ER- 

positive cell line MCF7 to investigate if super enhancers have indeed higher efficacy compared 

to typical enhancers. This provided us with a system that is highly dependent on enhancers to 

mediate its effects. Our analysis failed to uncover a particular advantage of super enhancers 

over typical enhancers in the percentage of genes affected but identified major ER targets to be 

driven by adjacent super enhancers. This has also been observed in embryonic stem cells 

where deletion of various super enhancers had variable extent of effects on transcription of 

target genes [469]. However, a big limitation in our study is that we used simple gene 

associations based on proximity. A better approach would be to use newly available techniques 

that identify contact points between regions throughout the genome to ensure the accurate 

identification of target genes for super and typical enhancers [118]. As many neighboring genes 

may not be affected by an associated super enhancer, they may decrease the significant 

correlation seen when studying super enhancers and their target genes.  

On the other hand, our studies of super enhancers in pancreatic cancer in the context of 

different molecular subtypes (chapter 4) and chemo-resistance (chapter 5) have identified a 

particularly important role for this subclass in driving gene regulation while applying the same 

association rule. It can be probable that super enhancers have diverse impacts in various 

contexts and that few systems are more dependent on super enhancers for activating 

particularly important programs. Future studies in different systems will uncover if super 

enhancers have such a preference in impact in certain contexts and settings. 
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Super enhancers represent a lucrative target as they have shown particular sensitivity when 

modulated by certain inhibitors leading to perceptible effects. For example, super enhancers in 

esophageal cancer showed high dependence on the CDK7 inhibitor, THZ1 [470]. Interestingly, a 

subset of super enhancers in esophageal cancer was observed to be highly enriched with TP63 

[463]. As we have identified deltaNp63-dependent super enhancers driving the more aggressive 

squamous phenotype in pancreatic cancer, it would be of high interest to check the sensitivity of 

squamous cell lines to THZ1 in comparison to cell lines of other molecular subtypes. This can 

also be investigated in PDX from patients stratified into different subtypes and have a promising 

potential as a therapeutic agent in the squamous molecular subtype. Notably, combining of 

THZ1 and JQ1 has shown increased effects on super enhancer deactivation in osteosarcoma 

[471]. The effects of combining THZ1 and JQ1 in paclitaxel-resistant cells is also of particular 

interest given the implication of super enhancers in activating pro-inflammatory and pro-

migratory programs in resistant cells and the partial reprogramming of super enhancers in 

resistant cells. Additionally, analysis in acute myeloid leukemia uncovered a specific super 

enhancer in a subtype of patients that can be sensitive to an agonist leading to myeloid 

differentiation [472]. Accordingly, analysis should not only concentrate on super enhancers that 

can be silenced, but also on novel super enhancers that can be further activated leading to a 

better prognosis.  

One of the challenges facing the study of super enhancers is the identification of less known 

enhancer subclasses which are not well defined. For example, stretch enhancers are 

sometimes used interchangeably with super enhancers [473, 474] while other studies indicate 

that stretch enhancers meet only the requirement of spanning long stretches of DNA and are 

not necessarily rich with transcription factors or cell-specific [475]. Shadow enhancers are a 

group of “secondary” enhancers that are redundant to an active enhancer and ensure the 
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precision of gene transcriptional regulation [476]. Such a concept which was first identified in 

Drosphila has also been reported in mammals [477]. This led to the sometimes imprecise use of 

shadow enhancers to describe typical enhancers which are not necessarily supportive of other 

enhancers. A clear definition of these new classifications will significantly help in controlling the 

confusion that is usually associated with super enhancers. 

Testing and understanding the settings of the algorithms used in identifying super enhancers 

was a major focus of this project. In chapter 2, we have critically studied the various settings of 

the ROSE algorithm and questioned its biased approach for stitching enhancers at an already 

pre-defined distance. Interestingly, a new algorithm with a machine learning approach to define 

stitching distance was recently developed [130]. We have used both algorithms in identifying 

super enhancers and did not observe a big difference between them. To further optimize the 

process of identification of super enhancers, other types of data can be used. For example, 

occupancy data from more than one factor can be simultaneously incorporated to calculate the 

intensity at enhancers. By definition, super enhancers are highly enriched with transcription 

factors [248]. Thus, having high enrichment with more than one transcription or activating factor 

can uncover a highly effective subtype of super enhancers. Another optimizing possibility can be 

to include 3D genome data to account for the looping effect needed for enhancers to target their 

genes. While it is still possible that an enhancer can affect a target gene without direct 

interaction, e.g. eRNAs, it is still not studied if super enhancers particularly form a hub of 

interaction with many genes or other enhancers. The question arises if super enhancers will 

indeed have a higher interaction with many regions throughout the genome or if they exert their 

effects by simply controlling master upstream regulatory genes. Moreover, RNA-seq data from 

systems treated with inhibitors that preferentially target super enhances can be incorporated in 

the algorithms identifying super enhancers and may uncover new dependencies. Our main 
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findings throughout this project includes identifying of important ER effectors as downstream 

targets of super enhancers, uncovering of DeltaNp63-dependent super enhancers as drivers for 

a squamous molecular subtype in pancreatic cancer, in addition to detecting super enhancers 

driving genes leading to poorer prognosis in paclitaxel-resistant cell. All these observations 

underscore the importance of super enhancers in driving crucial programs in the cell and 

support the increased interest in this particularly important subset of enhancers. 

6.3 Transcription factors circuitry in context-specific gene regulation  

One of the major findings in our project was the uncovering of a transcription factor circuit 

including ΔNp63, HIF1A, BHLHE40, and RXRA that underlies the activation of the squamous 

molecular subtype by deltaNp63-dependent super enhancers in pancreatic cancer. The pattern 

of regulating major programs related to molecular identities of cells via cooperating transcription 

factors was already observed in other systems. Driving somatic cells toward a more pluripotent 

identity was reported to be mediated by a group of cooperating transcription factors namely, 

POU Class 5 Homeobox 1, SRY-Box 2, and Nanog Homeobox (POU5F1/SOX2/NANOG) [478-

480]. Muscle specific transcription factors such as myogenic differentiation 1 (MyoD) and 

myocyte enhancer factor 2A (MEF2A) cooperates in defining a muscular phenotype in the cell 

[481, 482]. Upon analysis of footprinting data from accessible chromatin assays in 41 different 

cells, networks comprising of interconnected transcription factors that are highly specific to each 

system could be easily predicted and identified [483]. Indeed, a pattern where a group of 

transcription factors are co-expressed leading to the differentiation of a cell into a certain identity 

provide a tightly-controlled gene regulation system. 

Notably, transcription factor circuits are highly important due to the possibility of their 

modulation, thereby manipulating cell identity and crucial transcriptional programs. While 
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targeting the direct interaction between transcription factors and DNA is quite challenging [484], 

transcription factor activity can be attenuated by targeting their interactions with other co-factors, 

their downstream pathways, or by decreasing their stability through increased rate of 

proteasomal degradation [485]. Perturbation of these transcriptional circuits may follow different 

patterns where targeting one transcription factor can disturb the whole circuit and largely affect 

downstream targets or only partially with the other factors compensating for the absence of one 

factor [486]. Thus, it would be of high interest to check which rule would the transcription factor 

circuit that we identified follow. This can be uncovered by knocking down the individual 

components of this circuitry and evaluating the effects on chromatin status (H3K27ac as marker 

of activation) along with the effects on target genes. It could be possible that those transcription 

factors have an additive effect or an all-or-none effect on activation of their target genes. A more 

collaborative effect meaning that the modulation of any of these transcription factors can lead to 

the shutdown of the squamous program would be highly promising for patients of this 

particularly aggressive subtype. Interestingly, few of the transcription factors which we identified 

can be chemically modulated. HIF1A can be targeted at many levels spanning its transcription, 

translation, protein stability and degradation [487]. While RXRA can also be targeted, it should 

be taken into consideration that it was the only gene that is associated with our defined subtype-

specific super enhancers that correlated with better prognosis. Accordingly, targeting RXRA 

should be approached with caution as it might not lead to favorable effects in pancreatic cancer 

patients. Altogether, our work identifies promising new targets that underlie the development of 

more aggressive phenotypes.  
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6.4 DeltaNp63 as an activator of gene transcription 

As previously mentioned, deltaNp63 was first postulated to be a dominant negative factor for 

p53 and TAp63 due to its lack of transactivation domains [228]. Indeed, deltaNp63 isoforms 

were reported to fail in the activation of p53 responsive genes in contrast to most isoforms of 

TAp63. Accordingly, deltaNp63 was speculated to play an oncogenic role in contrast to TAp63 

which was considered to play a more tumor suppressor role similar to p53 [488]. Consistently, 

knockout of deltaNp63 in cervical squamous cell carcinoma and human keratinocytes had a 

negative effect on cell growth and migration [489]. On the other hand, knockout of TAp63 in the 

pancreatic cancer cell line MIAPaCa-2 led to increased growth rate and migration.  Furthermore, 

knockout of deltaNp63 resulted in decreased growth and colony formation in lung and 

esophagus squamous cell carcinomas [490].  

Figure 33 : The transcriptional factor circuitry driven by deltaNp63-dependent super enhancers in the 
squamous molecular subtype of pancreatic cancer.  Upon knockdown of deltaNp63, the downstream 
transcription factor in the regulatory circuit decrease leading to a molecular phenotype switch. It remains to be 
tested if modulation of the other members of this circuit leads to the same effect.  
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In chapter 5, we report deltaNp63 as an activator of gene transcription. This is quite surprising 

due to the general conception that deltaNp63 is unable to activate transcription. Interestingly, 

our report is joined by other studies reporting the role of deltaNp63 as a transcription activator 

[491-496]. For example, the viral oncogene protein BamHI-A rightward frame 1 (BARF1) was 

shown to be exclusively transactivated by deltaNp63 and not p53 or TAp63 in epithelial tumors 

[492]. Moreover, NECTIN1 which we reported as a highly dependent gene in squamous 

pancreatic cancer, was also identified to be activated via two deltaNp63-dependent enhancers 

in skin [493]. The mechanism by which this activation occurs is still unclear and needs further 

investigation.  

It should be noted that in both cell lines that we identified as squamous, p53 was either mutated 

(in the case of BxPC3) or null (L3.6pl). Bailey et al. also identified mutation of p53 as one of the 

characteristics of the squamous subtype [215]. So a dominant negative effect for p53 is less 

probable in this case with deltaNp63 able to activate genes on its own. Notably, the anti-

apoptotic effects of deltaNp63 were observed even in the case of p53 mutation [497]. A rescue 

experiment after knockdown or knockout of deltaNp63 with constructs including and lacking the 

transactivation domains would confirm if TAp63 is able to activate the target genes of 

deltaNp63. Other constructs with mutant deltaNp63 at different site can identify the region 

associated with the activation of genes. Additionally, a study of the interactome of deltaNp63 

can also uncover cooperating factors that can be recruited and lead to the activation of target 

genes.  

Additionally, we observed that only a subset of pancreatic cancer cells express deltaNp63 

(L3.6pl, BxPC3, and moderately DanG) while MIAPaca-2 expresses TAp63. The mutual 

exclusivity of p63 isoform expression in pancreatic cancer cells is of high interest. Non-

overlapping patterns of expression for the different isoforms has already been reported in a 
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panel of cell lines with each isoform interacting with a distinct set of transcription factors [498]. In 

triple negative breast cancer, both deltaNp63 and TAp63 are expressed with the latter 

associated with better prognosis [234]. Investigating the occupancy profile of TAp63 in 

MIAPaca-2 and comparing it with the H3K27ac profiles in MIAPaca-2 and deltaNp63 occupancy 

in BxPC3 and L3.6pl can shed light on the role of TAp63 in pancreatic cancer. This can also be 

combined with studying the gene expression profile upon loss of TAp63 in MIAPaca-2. 

Overexpression of deltaNp63 and TAp63 followed by evaluating proliferation, aggressiveness 

and gene expression can further elucidate the different roles of these isoforms in pancreatic 

cancer. However, it should be taken into consideration that overexpression of those two 

isoforms in deficient cell systems might not give an accurate representation for the real role of 

these isoforms. This is due to the absence of supporting networks of specific transcription 

factors possibly mediating the effects of p63 in normal conditions.  

Finally, to further validate the dependence of enhancers and gene activation on deltaNp63, 

tethering of the two isoforms to the active enhancer regions that we identified can verify the 

dependence of these enhancers on deltaNp63. Tethering can be performed by utilizing guide 

RNAs to recruit dCas9 fusion proteins with deltaNp63 to these exclusive regions [499, 500]. 

This can also be extended to the tethering of TAp63 and mutated forms of deltaNp63 to further 

investigate the effects of different isoforms in gene activation. Future studies will uncover the 

mechanisms and dependencies of deltaNp63 in a broader and more precise manner.  

6.5 Epigenetic approaches in precision-based medicine 

Recent advances in molecular subtyping of pancreatic cancer patients uncovered that using 

gene expression profiles in contrast to mutational landscapes is a robust approach for 

classification of distinct subtypes. Consistently, we reported in chapter 5 that both BxPC-3 and 
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L3.6pl cells represent the squamous molecular subtype. Notably, BxPC-3 pancreatic cancer cell 

line is devoid of KRAS mutations which is highly uncommon in pancreatic cancer [501]. In spite 

of this disparity, both BxPC-3 and L3.6pl recapitulated the same molecular subtype and shared 

highly common features concerning their gene expression and epigenetic profiles. Such a 

phenomenon can support a paradigm of molecular classification of diverse malignancies that 

may be heterogeneous in mutations but share common features due to shared active regulatory 

transcriptional factors circuitry. We speculate that this may extend to cancers from various types 

which share common activators. In the near future, a new precision-based approach can 

disregard classical attributes of a certain cancer and rather try to identify specific activators for 

pre-defined gene expression profiles such as super enhancers and active transcription factors 

which can be specifically targeted and perturbed.  

On the other hand, a uniform molecular classification of pancreatic cancer can serve in the 

accelerated application of these approaches in the clinic. A new update for the classification 

without arriving to a general consensus hinders the efforts to most effectively use and apply 

those methods. Given the plethora of high throughput sequencing and general diverse 

analyses, a committee to critically appraise these classifications and translate these findings to 

the general medical and scientific community will be highly beneficial.  

In this work, we have consistently showed the high potential of epigenetic mechanisms to be 

leveraged in precision-based medicine approaches. In chapter 3, we proposed a mechanism 

underlying the synergy of BET and HDAC inhibitors that target the activation of aberrant 

transcriptional activation brought by the transcription factor FOXA1. Accordingly, cancers where 

FOXA1 plays a significant role can benefit from treatment with both of these epigenetic 

modulators. In chapter 4, we identified deltaNp63 as a major driver in the squamous subtype by 

activating super enhancers. Thus, this specific subtype of patients who characteristically show 
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poorer prognosis can potentially benefit from inhibitors that target super enhancers such as 

THZ1 or agents that affect the stability of deltaNp63 like HDAC inhibitors [452, 471, 502]. 

Additionally, we reported a sensitizing potential for BET inhibitors in pancreatic cancer cells in 

chapter 5. The eRNA for the active enhancers that we identified in paclitaxel-resistant cells have 

the potential to be used to identify subgroups of patients that might be resistant to paclitaxel and 

responsive to BET sensitization. Altogether, we showed various epigenetic approaches that 

have the potential to be successfully applied in the new era of precision-based medicine for 

cancer patients. 

4.6 BET inhibitors as eminent epigenetic modulators in cancer 

BET inhibitors role in targeting distal regulatory elements was thoroughly discussed in Chapter 

3. A main focus of this project was to study the modulation of gene expression regulation by 

inhibiting the epigenetic reader family of BET proteins. As previously mentioned, while BET 

inhibitors are heavily studied, their mechanism of action persists to be poorly understood [211]. 

In chapter 5, we propose a dose-dependent effect for the BET inhibitor, JQ1, where low 

concentrations have specific effects on BET-dependent genes and higher concentrations lead to 

cell cycle arrest and a more general effect on gene transcription. We proposed in the discussion 

part of chapter 5, various hypotheses that can underlie this dose-dependence (Figure 31). One 

of those theories included a bivalent binding pattern which can lead to sensitivity to high 

concentration when both bromodomain pockets need to bind to acetylated histones at a certain 

region. This theory can be tested by using highly selective BD1 and BD2 inhibitors which target 

only one of the bromodomains. If such a hypothesis is true, this will endow BD1 and BD2 

inhibitors with high context-specificity due to various dependencies on BD1 and BD2 in different 

systems. This can be investigated by testing specific and general BET inhibitors in different 
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systems to check their specificity. Indeed, BD2-specific inhibitors have shown efficacy by 

affecting proliferation in only few systems [348, 503].  

Till this date, targeting of BETs was limited to targeting the bromodomain- dependent effects. As 

new modulators that affect the stability of the BET family (discussed in chapter 3) showed more 

profound effects, non-bromodomain effects also seem to play an important role and can in 

theory be selectively targeted [504]. Notably, the extra-terminal domain can interact with many 

factors with similar and unique interactors for each family member [262]. Targeting these 

interactions or the pathways they activate can also be specific and effective targets. 

6.7 Concluding remarks 

In this project, we have studied different patterns of gene transcriptional activation via distal 

regulatory elements in the context of cancer. Aberrant gene transcriptional regulation is one of 

the characteristics of malignancy which can be most efficiently and specifically manipulated 

through enhancer elements. A bank of information for activated enhancers or super enhancers 

interconnected with dependencies and biomarkers may significantly play a role in optimization 

of therapy for patients suffering from cancer and other diseases alike. 
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Abbreviations 

  

ac Acetylation 

ADEX Aberrantly Differentiated Endocrine Exocrine 

ALDH Aldehyde Dehydrogenase 2 Family 

AMIGO2 Adhesion Molecule With Ig Like Domain 2 

AML Acute Myeloid Leukemia 

APOBEC3C Apolipoprotein B mRNA Editing Enzyme Catalytic Subunit 3C 

AR Androgen Receptor 

ATAC Assay for Transposase-Accessible Chromatin 

BARF1 BamHI-A Rightward Frame 1 

BCL2 apoptotic regulator B Cell Lymphoma 2 

BET Bromodomain and Extraterminal  

BETi small molecule BET inhibitors 

BGP β-glycerophosphate disodium salt hydrate 

BHLHE40 Basic Helix-Loop-Helix Family Member E40 

BIM B cell lymphoma-2-like 11 

BRD2 Bromodomain containing 2 

BRD3 Bromodomain containing 3 

BRD4 Bromodomain containing 4 

BSA Bovine Serum Albumin 

CAV1 Caveolin 1 

CBP CREB-binding protein 

CCAT1 Colon Cancer Associated Transcript 1 

CDH1 Calcium-dependent adhesion protein-1 

CDH5 Cadherin 5 

CDK7 Cyclin Dependent Kinase 7 

CDK8 Cyclin dependent kinase 8 

CDKN2A Cyclin dependent kinase inhibitor 2A 

cDNA Complementary DNA 

ChEA ChIP Enrichment Analysis 

ChIP-seq Chromatin immunoprecipitation followed by high throughput sequencing 

ChRO-seq Chromatin run-on and sequencing 

COREs Clusters Of cis-Regulatory Elements 
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CREAM Clustering of genomic Regions Analysis Method 

CTCF CCTC-Binding Factor 

deltaNp63 Transactivation domain-lacking p63 isoform 

dNTPs deoxyribonucleotides 

DSIF DRB-sensitivity inducing factor 

E2 Estradiol 

EDTA Ethylenediamine tetraacetic acid 

EGFR Epidermal growth factor receptor 

EGTA ethylene glycol tetraacetic acid 

EHF ETS Homologous Factor 

EMT Epithelial-to-mesenchymal transition 

ENCODE Encyclopedia of DNA Elements 

EPAS1, HIF2A Endothelial PAS Domain Protein 1 

ER Estrogen Receptor 

ER+ Estrogen Receptor positive 

EREs Estrogen Eesponse Elements 

eRNA Enhancer ribonucleic acids 

ERα Estrogen receptor-alpha 

ETS E26 transformation-specific 

EVI1 Ecotropic virus integration site-1 

EZH2 Enhancer of Zeste 2 

FAT2 FAT Atypical Cadherin 2 

FOXA1 Forkhead Box A1 

FOXA2 Forkhead Box A2 

FPKM Fragments per kilobase per million 

GATA1 GATA binding protein 1 

GATA4 GATA Binding Protein 4 

GATA6 GATA binding protein 6 

GREAT Genomic Regions Enrichment of Annotations Tool 

GRO-seq Global run-on sequencing 

GSEA Gene Set Enrichment Analysis 

H2A Histone 2A 

H2Aub1 Mono-ubiquitination of Histone H2A Lysine 119 

H2B Histone 2B 

H2Bub1 Mono-ubiquitination of Histone H2B  Lysine 120 

H3 Histone 3 
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III 

H3K14ac Acetylation Histone 3 Lysine 14 

H3K18ac Acetylation Histone 3 Lysine 18 

H3K23ac Acetylation Histone 3 Lysine 23 

H3K27ac Acetylation of Histone 3 Lysine 27 

H3K27me3 Tri-methylation of Histone 3 Lysine 27 

H3K36ac Acetylation Histone 3 Lysine 36 

H3K4me1 Mono-methylation of Histone 3 Lysine 4 

H3K4me3 Tri-methylation of Histone 3 Lysine 4 

H3K64me3 tri-methylation of Histone 3 Lysine 64 

H3K9ac Acetylation Histone 3 Lysine 9 

H4 Histone4 

H4K16ac Acetylation of Histone 4 Lysine 16 

H4K20ac acetylation of Histone 4 Lysine 20 

H4K5ac Acetylation of Histone 4 Lysine 5 

H4K8ac Acetylation of Histone 4 Lysine 8 

HAT Histone acetyltransferase 

HDACs Histone deactylases 

HIF1A Hypoxia Inducible Factor Alpha Subunit 

HMTs Histone methyltransferases 

IC10 Inhibitory concentration at 10% 

IC25 Inhibitory concentration at 25% 

IC50 half maximal inhibitory concentration 

IGV Integrative Genomics Viewer 

IκBα NFKB inhibitor-α 

kb Kilo base 

KLF4 Krüppel Like Factor 4 

KRAS KRAS proto-oncogene 

LCR Locus control region 

LIF Interleukin 6 family cytokine 

lncRNA Long non-coding RNA 

LSD1 Lysine-specific histone demethylase 1A 

MAPK Mitogen activated protein kinase 

me Methylation 

me3 Tri-methylation 

MECOM MDS1 and EVI1 complex locus 

MEF2A myocyte enhancer factor 2A 
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IV 

MEM minimum essential medium 

microliter μl 

micromolar µM 

MLL3 mixed-lineage leukemia 3 

MLL4 mixed-lineage leukemia 4 

MSigDB Molecular signatures database 

MTD Maximum tolerable dose 

MYC MYC Proto-Oncogene 

MyoD myogenic differentiation 1 

Nanog Homeobox NANOG 

nanomolar nM 

ncRNA non-coding RNA 

NECTIN1 Nectin Cell Adhesion Molecule 1 

NELF Negative elongation factor 

NF-κB Nuclear Factor kappa-light-chain-enhancer of activated B cells 

NIPBL Nipped-B-Like 

NSAIDs Non-steroidal anti-inflammatory drugs 

NT5 Non-Targeting #5 

NUT Nuclear protein in testis 

p63 tumor protein p63 

p73 Tumor Protein P73 

PacR Paclitaxel-resistant 

PanINs Pancreatic intraepithelial neoplasms 

PARP Poly-ADP ribose polymerase 
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