
 

 

 

 

 

Top-down attention: neural pathways in  

the human and non-human primate  

examined by  

electrophysiology, optogenetics and psychophysics 

 
 

Dissertation 

 

for the award of the degree 

 “Doctor rerum naturalium” 

of the Georg-August-Universität Göttingen 

 

within the doctoral program Systems Neuroscience 

appendant to the Göttingen Graduate School for Neurosciences,  

Biophysics, and Molecular Biosciences (GGNB)  

of the Georg-August University School of Science (GAUSS) 

 

submitted by 

 

Janina Hüer 

born in Lingen (Ems), Germany 

 

 

 

Göttingen 2017 

 

 



 

Thesis Committee 

 

Prof. Dr. Stefan Treue 

Cognitive Neuroscience Laboratory, German Primate Center, Göttingen, Germany  

 

Prof. Dr. Hansjörg Scherberger, 

Neurobiology Laboratory, German Primate Center, Göttingen, Germany 

 

Prof. Dr. Jochen Staiger 

Department of Neuroanatomy, Georg-August University, Göttingen, Germany 

 

 

M embers of the Examination Board 

 

Referee: Prof. Dr. Stefan Treue 

Cognitive Neuroscience Laboratory, German Primate Center, Göttingen, Germany  

 

2nd Referee: Prof. Dr. Hansjörg Scherberger 

Neurobiology Laboratory, German Primate Center, Göttingen, Germany 

 

 

Further members of the Examination Board 

 

Prof. Dr. Andrea Antal 

Department of Clinical Neurophysiology, University Medical Centre (UMG), 

Göttingen, Germany 

 

Prof. Dr. Siegfried Löwel 

Systems Neuroscience Group, Johann-Friedrich-Blumenbach Institute for Zoology 

and Anthropology, Göttingen, Germany 

 

Prof. Dr. Jochen Staiger 

Department of Neuroanatomy, Georg-August University, Göttingen, Germany 

 

Prof. Dr. Andreas Stumpner 

Department of Cellular Neurobiology, Schwann-Schleiden Research Centre, 

Göttingen, Germany 

 

 

 

Date of oral examination: February 8th, 2018 

 



 

 

 

 

 

 

 

 

 

 

 

Herewith I declare that I have written this thesis independently and with 

no other aids and sources than quoted.   

 

 

_____________________ 

Janina Hüer 





Acknowledgements

The work presented in this thesis would not have been possible without the

support of other people. First of all, I would like to thank Stefan Treue for

supervising me during my thesis, for giving me the opportunity to work in

his group and on the projects contained in this thesis. I would like to thank

him for all the scientific, but also mental support, and the trust to work on a

‘high-risk project‘.

I also would like to thank my thesis committee members Hansjörg Scherberger

and Jochen Staiger for very helpful discussions and support during the thesis

committee meetings, but also beyond that.

I was glad to be part of the optogenetics group of the German Primate Center,

which contributed to my projects with very helpful discussions and planning

and execution of the surgeries. I would like to say thank you especially to

Jens Gruber and Lara Timantra Schiller without whose expertise in virology

the implementation and execution of the optogenetics projects would have

been much more difficult. I would like to thank Michal Fortuna for support

with the neuroanatomy, and, furthermore, Alexander Gail and Igor Kagan for

very helpful discussions and suggestions during project presentations. I would

like to thank Sonia Baloni for the collaboration in one of the psychophysics

projects and Philipp Schwedhelm for fruitful scientific discussions. I would

like to say thank you to Lauren Cassidy, Vahid Mehrpour and Benedict Wild

for helpful comments on parts of this thesis.

The projects in this thesis required a lot of technical assistance. I am grateful
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like to thank Dirk Prüße further for his reliable expertise in surgery-related



issues and the anesthesia. I am glad that I had support from Ralf Brock-

hausen in IT-related problems, from Klaus Heisig in the construction of all

set-up-related parts and from Beatrix Glaser in administration-related issues.

I would further like to thank Luisa Klotz, Janine Kuntze, Ira Panolias, Daniela

Trinca Bertazzi Lazzarini, Natalie Bobb and Patricia Sprysch for technical as-

sistance during my projects, and Artur Kaul and Gerhard Hoch for helpful

discussions about biosafety and laser safety during the implementation phase

of the optogenetics projects. I would like to thank all the animal caretakers

for taking care of the animals with a lot of dedication and creativity.

I am glad to have had the best office mates Dana, Lauren and Amr during

the time of my thesis.

Last but not least, I would like to thank the most important basis for con-

ducting this work: my family and friends, especially Vicky, who were always

there in the good and bad phases with a lot of support and patience.



Contents

1 Introduction 1

1.1 Part I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Visual processing pathways . . . . . . . . . . . . . . . 5

1.1.2 The medial temporal area . . . . . . . . . . . . . . . . 6

1.1.3 Attentional modulation in area MT . . . . . . . . . . . 9

1.1.4 The premotor theory of attention . . . . . . . . . . . . 12

1.1.5 Anatomical and physiological classification of the FEF 14

1.1.6 Attentional modulation in the FEF . . . . . . . . . . . 16

1.1.7 Evidence for the guidance role of the FEF in attention 17

1.1.8 Anatomical connections between the FEF and area MT 19

1.1.9 Optogenetic targeting of the projection from FEF to

area MT . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.2 Part II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.1 The attentional blink . . . . . . . . . . . . . . . . . . . 23

1.2.2 The locus coeruleus . . . . . . . . . . . . . . . . . . . . 25

1.2.3 The effect of attention on pupil size . . . . . . . . . . . 25

2 Project manuscripts 29

2.1 An anatomical viability evaluation of using optogenetics to

examine the fronto-visual and fronto-parietal network in the

macaque . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Optogenetic inhibition of FEF input to area MT reduces atten-

tional modulation of neuronal responses . . . . . . . . . . . . 47

2.3 An attentional blink with motion stimuli and in a task combin-

ing motion and letter stimuli . . . . . . . . . . . . . . . . . . . 69



2.4 Pupil size suggests that the locus coeruleus is involved during

attentional blink tasks without a direct perceptual consequence 83

3 Summary and outlook 99

Bibliography 103

Supplementary material 131



“A pure sensation is an abstraction; [. . . ]“

“Pure sensations can only be realized in the earliest days of life.

They are all but impossible

to adults with memories and stores of associations acquired.“

(William James, 1980)





Chapter 1

Introduction

We are constantly exposed to an abundance of sensory information in our

environment. Our brain has to deal with this information. It has to filter

out the most relevant information and process it to guide our behavioral ac-

tions. We are not automatically driven and guided by the most salient input

in our environment. Instead, we are able to voluntarily attend to selected in-

formation. Top-down mechanisms of selective attention help us to guide our

behavior despite continuous bottom-up sensory input.

The term ‘selective attention‘ describes the process of attending to selected

information, and can be contrasted, for example, to arousal, which describes

the overall attentiveness of an individual. Attention is classically divided into

exogenous attention (or automatic or bottom-up attention), in which highly

salient information captures our processing resources in a reflexive way, and

endogenous attention (or voluntary or top-down attention) that can be delib-

erately deployed to selected information. The proper balance between these

two forms of attention is crucial to our ability to behave in a goal-directed

manner, yet still remain flexible and responsive to unexpected but important

events in our environment.

There are several circumstances in which the control of our attentional system

is unbalanced. The so called attention-deficit/hyperactivity disorder (ADHD)

is a complex, heterogenous condition, in which individuals show impairments

in cognitive and attentional everyday tasks (criteria are defined, e.g., by the

American Psychiatric Association). ADHD affects around 5% of humans

worldwide (Polanczyk et al., 2007). Current treatments include the adminis-

tration of drugs like amphetamine, methylyphenidate, or atomoxetine (Briars
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and Todd, 2016; Mueller et al., 2017) – drugs that directly change dopamine

and noradrenaline signaling in the brain. The neurotransmitters dopamine

and noradrenaline naturally arise in subcortical structures of the brain, from

where dopaminergic and noradrenergic neurons innervate a majority of brain

structures via widespread axonal projections (e.g., Levitt et al., 1984; Morri-

son et al., 1982).

One of the processes that can be impaired in ADHD patients is selective atten-

tion (Mueller et al., 2017). Neural networks implicated in selective attention,

e.g., the frontoparietal network, have been suggested to show altered or dys-

regulated activity in ADHD patients (for a review see Bush, 2010; Castellanos

and Proal, 2012). Dopamine and noradrenaline can directly affect these neu-

ral networks (for a review see Clark and Noudoost, 2014). For example, it

has been shown that injection of a synthetic dopamine antagonist into the

prefrontal cortex of macaques influences the top-down signals that this area

sends to extrastriate visual cortex (Noudoost and Moore, 2011a).

However, we have only begun to understand how the networks underlying

selective attention function under normal conditions. This understanding is

crucial for identifying how network interactions differ in ADHD. The neural

mechanisms cannot be fully investigated in human patients as their brains are

only limitedly accessible. Therefore, non-human primates are an important

animal model to identify the neural circuits and processes controlling selec-

tive attention. Only with a profound understanding, proper treatment for the

variety of ADHD symptoms can be developed.

This thesis deals with the processes underlying selective endogenous attention

in the visual system of the human and non-human primate. Within endoge-

nous attention there is a classical differentiation between overt and covert

attention. Overt attention is the most intuitive form of attention as it de-

scribes attention to visual information at the center of gaze. But attention

can also be deployed covertly1 (James, 1890; Sperling and Melchner, 1978;

Posner, 1980).

1It should be mentioned at this point that recent psychophysical results indicate that
covert attentional mechanisms also act at the very center of gaze, that is, not to the center
of gaze but to the periphery of the visual field (Poletti et al., 2017), and therefore the
classical differentiation might need a reconsideration.
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In addition, top-down attention can be directed to a position in space (spatial

attention), a specific stimulus feature, e.g., color or motion direction, (feature-

based attention) or whole objects (object-based attention). These three forms

of attention interact with each other and often cannot be fully disentangled.

In the scope of this thesis, the processes underlying top-down attention have

been examined in the dorsal visual processing stream by using different meth-

ods. The first part of this work explores the role of the frontal eye field (FEF),

a part of the prefrontal cortex, in mediating top-down spatial attention effects

in the visual medial temporal area (area MT). We used optogenetics in the

rhesus macaque and conducted two experiments. One of the objectives of the

first experiment was to deliver histological evidence that the direct anatomical

connection from the FEF to area MT can be targeted with optogenetics. In

the second experiment, we optogenetically inhibited this connection while a

monkey was performing a spatial attention task. Results of previous studies,

e.g., Gregoriou et al. (2014), have indicated that the connection from the FEF

to extrastriate visual areas is relevant during the deployment of top-down at-

tention. However, our experiment delivers the first evidence that the FEF

sends information via this direct anatomical connection to an extrastriate vi-

sual area during top-down attention. In addition, ours is the first study that

probes the role of the FEF in mediating attentional effects in area MT, since

previous studies mainly targeted visual area V4.

In the second part of this thesis, we explored the limitations of our top-down

attentional system, apparent during a phenomenon known as the attentional

blink. Here, we first conducted a series of experiments in human subjects to

prove that an attentional blink occurs for moving stimuli, which are processed

by the dorsal visual pathway. Previous studies mainly used stationary visual

stimuli, which are processed by the ventral visual pathway. In a second ex-

periment, we measured pupil size in addition to psychophysical performance

during a similar behavioral task. We reconstructed a sequence of attentional

input that potentially underlies the changes in the pupil size by using a pre-

viously developed model (Hoeks and Levelt, 1993; Wierda et al., 2012) and

related it to the behavioral conditions. Pupil size and attentional traces can

be linked to the activity of a subcortical structure in the brain stem, the locus
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coeruleus (LC), which provides the main noradrenaline input to the cortex

(Berridge and Waterhouse, 2003). The LC has been hypothesized to play a

role during the attentional blink (Nieuwenhuis et al., 2005), and our study

delivers evidence that this might indeed be the case.

Due to the higher scientifc impact of the first two projects, the first part of

this thesis is elaborated in more detail.
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1.1 Part I

1.1.1 Visual processing pathways

In a very simplified depiction, visual information received by the retina is

transmitted to the lateral geniculate nucleus of the thalamus and from there

to the first visual cortical area V1. Along this processing stream up to V1,

basic qualities of visual information, for example, color, motion, and contrast,

are processed seperately (reviewed in e.g., Livingstone and Hubel, 1988; Nassi

and Callaway, 2009).

In V1, two main visual processing streams emerge – a dorsal and a ventral

pathway. The idea of the existence of two different processing streams stems

from anatomical, physiological, and lesion studies. Two of the earliest studies

suggesting that different features of visual information are processed sepa-

rately in the cortex were conducted by Newcombe and Russell (1969) and

Pohl (1973) on human subjects with lesions in distinct brain regions. Both

studies showed that lesions in parietal areas cause deficits in spatial local-

ization experiments, while lesions in the temporal lobe are associated with

an impairment in visual-perceptual tasks. These among several other studies

inspired Ungerleider and Mishkin (1982) to formulate the hypothesis that a

ventral visual stream is responsible for object perception (‘what‘), while a

dorsal visual stream is analyzing spatial information (‘where‘).

Within this framework, sensory input is processed in the visual system via a

hierarchical order of visual areas (e.g., Felleman and Van Essen, 1991; Nassi

and Callaway, 2009). Processing along the dorsal visual pathway starts in V1,

includes V2 and V3, and continues in area MT. Area MT sends information to

higher areas like MST, FST, VIP, LIP and 7a. Processing along the ventral

visual pathway starts in V1, includes V2, V3, and continues to V4. From

there information is transferred, i.a., to the subdivisions PIT, CIT and AIT

of the inferotemporal cortex. Both processing streams converge again in the

FEF (Bullier et al., 1996).

The two stream hypothesis has been reviewed by Goodale and Milner (1992),

who suggested that it is more plausible not to describe the pathways by means

of the type of information that is processed, but rather by the aim the informa-
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tion is processed for. According to this hypothesis, the ventral visual stream is

responsible for object perception and identification (‘what‘), while the dorsal

visual pathway is conducting processing that is necessary for visually guided

actions on those objects (‘how‘). This reconsideration did not affect the at-

tribution of the brain areas to the two pathways.

The distinction between two processing streams is by no means rigid and ex-

clusive. There is interaction between the areas assigned to the two pathways

(for review see Cloutman, 2013), and a recent study suggests that there are

even three pathways in the human (Haak and Beckmann, 2017). The gen-

eral idea of two main visual pathways, however, has been proven as a feasible

simplification of visual processing until now.

1.1.2 The medial temporal area

Area MT lies in the posterior bank of the superior temporal sulcus. First

anatomical descriptions in the rhesus macaque stem from Zeki (1969) and

Cragg (1969), who showed that this area of the cortex receives afferents from

area V1. Allman and Kaas (1971) coined the name ‘medial temporal area‘

when they described the area in the owl monkey. Area MT can be anatom-

ically differentiated from its neighboring areas since it contains an area of

heavy myelination of mainly layers IV, V and VI, and by its direct input from

V1 (Zeki, 1974; Van Essen et al., 1981; Albright and Desimone, 1987). Its sur-

face was estimated to be between 33mm2 (Van Essen et al., 1981) and 80mm2

(Albright and Desimone, 1987; Gattass and Gross, 1981), and therefore its

size is around 5% the size of V1 (Felleman and Van Essen, 1991).

Area MT contains neurons that respond selectively to visual motion (Dubner

and Zeki, 1971; Zeki, 1974; Van Essen et al., 1981; Maunsell and Van Essen,

1983; Albright, 1984; Albright et al., 1984). As an example, Desimone and

Ungerleider (1986) found 89% of neurons in MT to be direction-selective (that

means the neurons’ firing rate differed reliably between the presentation of two

opposing motion directions). Therefore, the lateral border of MT can be eas-

ily determined physiologically, as the lateral neighboring cortex (i.e., V4 and

V4t) is not rich in direction-selective cells (Van Essen et al., 1981; Desimone

and Ungerleider, 1986). Desimone and Ungerleider estimated the percentage

of direction-selective cells to be 25% in V4t and 15% in V4. Neurons at the
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medial side (i.e., area MST) show direction selectivity, but have bigger re-

ceptive fields (Van Essen et al., 1981). Receptive fields of MT neurons can

have a diameter of up to 50 degrees of visual angle (dva) (Felleman and Kaas,

1984; Gattass and Gross, 1981). They are usually much smaller closer to the

fovea and increase with eccentricity. MT receptive field sizes are a factor of

10 bigger than receptive fields in V1 (Albright and Desimone, 1987).

Presentation of a moving stimulus within their receptive field increases the

firing rate of MT neurons dependent on the shown movement direction. Neu-

rons typically have a preferred direction and respond less to other movement

directions. Maunsell and van Essen (1983) calculated the ratio between re-

sponse to the preferred direction and response to the non-preferred (opposite)

direction to be around 11. The firing rate dependence on movement direction

can be fitted with a gaussian tuning curve (Albright, 1984) and typically ex-

hibits on average a bandwidth of around 90◦ (Albright, 1984).

The spatial extent of receptive fields of MT neurons is not perfectly circular

or gaussian and homogenous concerning their preferred direction. Instead,

fine-scaled analysis have shown that many neurons in area MT have multiple-

peaked receptive fields or varying preferred directions across their receptive

field (Richert et al., 2013). In addition, facilitatory and suppressive interac-

tions have been found to act within the receptive field (Livingstone et al.,

2001). Many neurons in MT show a center-surround structure (Xiao et al.,

1997), whose strength can be contrast-dependent (Tsui and Pack, 2011), and

which is not necessarily circular and symmetric (Xiao et al., 1997).

Besides movement direction, neurons in MT respond selectively to movement

speed (Maunsell and Van Essen, 1983; Rodman and Albright, 1987; Lagae

et al., 1993; Perrone and Thiele, 2001) and disparity (Maunsell and Van Es-

sen, 1983; Bradley et al., 1995; DeAngelis and Newsome, 1999). Furthermore,

many neurons show orientation selectivity (Maunsell and Van Essen, 1983;

Albright, 1984); responses are often best to a stimulus orientation perpen-

dicular to the preferred direction (Maunsell and Van Essen, 1983; Albright,

1984). Neurons in MT are usually not selective for color (Thiele et al., 1999)

or stimulus form (Albright, 1984).

As in many visual areas, MT neurons are retinotopically organized (Zeki,
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1974; Van Essen et al., 1981; Albright and Desimone, 1987), although the or-

der can vary from individual to individual (Van Essen et al., 1981; Desimone

and Ungerleider, 1986). The central 15dva can occupy around half of the area

of MT (Van Essen et al., 1981). In addition, MT neurons show a columnar

organization concerning their direction selectivity: neighboring neurons have

similar preferred movement directions (Dubner and Zeki, 1971; Van Essen

et al., 1981; Maunsell and Van Essen, 1983; Albright et al., 1984). Albright

and colleagues showed that 180◦ of axis of motion are represented in around

500µm of cortex (Albright et al., 1984). Within this organization, jumps of

180◦ changes of preferred movement direction have been reported (Maunsell

and Van Essen, 1983; Albright et al., 1984).

In the visual hierarchy, area MT is assumed to be higher than areas V1, V2

and V3. This assumption is based on the connectivity pattern of the recipro-

cal connections with these areas (Rockland and Pandya, 1979; Markov et al.,

2013; Maunsell and van Essen, 1983; Felleman and Van Essen, 1991).

Projections from MT to V1, V2 and V3 end in supra- and infragranular layers,

while projections from V1, V2 and V3 arise in supragranular layers (Maunsell

and van Essen, 1983; Ungerleider and Desimone, 1986). In the case of the

reciprocal connection of MT and V1 it has been shown that while projections

from V1 arise mainly in layer IVB and layer VI, the projections from MT to

V1 target exactly those two layers (Maunsell and van Essen, 1983). Area MT

is assumed to be on a similar hierarchical level than area V4, since projec-

tions from MT to V4 end in all cortical layers, and projections from V4 to

MT originate in supra- and infragranular layers (Ungerleider and Desimone,

1986). Areas MST, FST and VIP are higher in the visual hierarchy. Projec-

tions from area MT end in layer 4 of these areas, while projections from these

areas to MT originate in supra-and infragranular layers (Maunsell and van

Essen, 1983; Ungerleider and Desimone, 1986).

Due to the characteristics of MT neurons it is not surprising that several

studies in the non-human primate revealed a role for area MT in motion per-

ception. The first supporting evidence for this role was obtained in a study

of Newsome and colleagues, who found that small lesions in area MT affected
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motion processing (Newsome et al., 1985). Monkeys with a lesion had diffi-

culties in adapting their eye movements to the movement of a visual stimulus

shown on a screen in front of them. In contrast, responses to a stationary stim-

ulus were unaffected. Albeit this experiment established a first link between

motion processing and area MT, it did not directly measure the consequences

of an MT lesion on motion perception. Newsome and Paré measured the ef-

fects of MT lesions on psychophysical performance of monkeys (Newsome and

Paré, 1988). They found that motion thresholds were clearly elevated with a

lesion, i.e., monkeys needed a stronger motion signal to correctly discriminate

a motion direction. Hence, the perception of the stimulus motion appeared

to be directly affected by a lesion. In line with that are results of Salzman

and colleagues, who compared psychophysical performance of monkeys with

the performance of MT neurons in a direction discrimination task (Salzman

et al., 1992). Their results suggest that only a small number of MT neurons

was necessary to account for the perceptual performance of the monkeys in

their study. Furthermore, the behavioral choice of monkeys was correlated

with the trial-to-trial variability of MT responses independent of the effects

of visual stimulation in a motion discrimination task (Britten et al., 1996).

Taken together, these results provide strong evidence that neural activity in

area MT is directly contributing to motion perception.

1.1.3 Attentional modulation in area MT

Attention modulates neural activity in a multitude of areas in the visual sys-

tem of the macaque. Modulations have been observed as early as the lateral

geniculate nucleus (McAlonan et al., 2008; O’Connor et al., 2002) and have

been found in areas such as V1 (Motter, 1993; McAdams and Maunsell, 1999),

V2 (Motter, 1993; Luck et al., 1997), V4 (Moran and Desimone, 1985; Mot-

ter, 1993; Luck et al., 1997; McAdams and Maunsell, 1999), IT (Moran and

Desimone, 1985), and VIP (Cook and Maunsell, 2002).

After first studies failed to find attentional effects on MT activity (Ferrera

et al., 1994; Newsome et al., 1988), Treue and Maunsell showed that neural

responses in area MT can depend on the behavioral relevance of a motion

stimulus (Treue and Maunsell, 1996; Treue and Martinez Trujillo, 1999). In

compliance with the findings that activity of MT neurons contributes to the



10 Chapter 1 - Introduction

perception of motion, hence, higher cognitive processes adjust this activity

dependent on the current behavioral demands.

Treue and Maunsell (1996) used a design whose general logic has been used in

similar ways in other studies (e.g., Motter, 1993) and that can be described as

follows. Two monkeys were performing a spatial attention task while the au-

thors recorded single-neuron activity in area MT. The animals had to foveate

a fixation point in the center of a computer screen. Consequently, two moving

dots were shown to the animals, one in the receptive field of the recorded

neuron, the other dot outside of it. The dots always moved in the preferred

direction of the neuron. One of the dots was presented earlier to the monkeys,

and this identified the respective dot as the target stimulus. Both dots were

moving continuously and the monkeys had to respond to a speed change of

the target stimulus, while ignoring speed changes of the distractor dot. In this

way, the attentional state of the monkeys was manipulated while keeping the

sensory input identical. The authors found that firing rates of MT neurons

were on average increased by 19% when the monkeys attended to the stimulus

in the receptive field compared to when they attended to the stimulus outside

of the receptive field – an effect that can only be attributed to spatial atten-

tion. In a second experiment, Treue and Maunsell presented an additional

dot in the receptive field, moving in the opposite, non-preferred direction. In

this case, firing rates were dependent on which of the two dots within the

receptive field was attended. Responses were on average 86% higher when

the dot moving in the preferred direction was the target stimulus compared

to when the dot moving in the non-preferred direction was the target. When

attention was directed to the dot outside of the receptive field, the neurons

exhibited an intermediate response.

Taken together, these results showed that MT neurons are modulated by spa-

tial attention, and indicated that activity is also dependent on other features

(i.e., movement direction) of an attended stimulus.

Additional studies found attentional effects in area MT, which were sometimes

lower than the enhancement described above. Seidemann and Newsome, for

example, reported that spatial attention increased responses of MT neurons

by only 9% on average when monkeys attended to one of two stimuli moving

in opposite directions within the receptive field (Seidemann and Newsome,
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1999). Treue and Maunsell (1996) found an 86% increase of firing rates in

this condition. Seidemann and Newsome argued that the effects found by

Treue and Maunsell must be due to additional forms of attention besides spa-

tial attention. However, several other parameters in the task designs could

also explain the differing results; the most relevant presumably being that in

one study animals had to monitor the target stimulus continuously (Treue

and Maunsell, 1996), while in the other study animals had to discriminate the

direction of a target stimulus (Seidemann and Newsome, 1999). Discrimina-

tion does not necessitate prolonged monitoring of the stimulus, and therefore

animals might just use a limited time period of stimulus presentation or with-

draw their attention as soon as they accumulated enough information about

the motion direction of the stimulus.

Recanzone and Wurtz found that activity of MT neurons was enhanced with

attention in the receptive field by 50% in a task that demanded the animals

to conduct pursuit eye movements (Recanzone and Wurtz, 2000). Attentional

effects were time dependent. If the monkeys‘ attention was in the receptive

field and the stimuli started moving 450ms earlier, activity was enhanced.

In contrast, little modulation occurred when the stimuli started moving only

150ms earlier. A time-dependence of attentional modulation has also been

reported in other studies in area MT (Treue and Maunsell, 1999; Seidemann

and Newsome, 1999), and also V4 (McAdams and Maunsell, 1999).

The effect of spatial attention on MT neurons appeared to be a multiplica-

tive enhancement of responses to all movement directions, without changing

the tuning width of the neurons (Treue and Maunsell, 1999; Recanzone and

Wurtz, 2000). A similar effect has been reported for V4, where spatial at-

tention enhanced firing rates in a multiplicative manner, leaving the width of

the orientation tuning curve unaffected (McAdams and Maunsell, 1999). This

multiplicative effect on the tuning curve resembles the effect that an increase

of stimulus contrast has on neural responses, e.g., in area V1 of the cat (Sclar

and Freeman, 1982) and suggests that the effect of attention is similar to an

increase of stimulus intensity.

As indicated above, neuronal responses in area MT are also modulated by

feature-based attention (Treue and Maunsell, 1999). Attending to a preferred

direction outside of the receptive field increased firing rates by on average 13%
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compared to attention to the non-preferred direction. Treue and Martinez

Trujillo formulated the ‘feature-similarity gain model‘ according to which the

gain of an MT neuron is modulated depending on how the characteristics of

an attended stimulus, be it location or direction, matches the preferred char-

acteristics of a neuron. Spatial location, in this model, is just a feature like

direction or orientation.

However, results of experiments presenting two stimuli within the receptive

field contradict the assumption that attention acts by a simple gain change

of the neurons. For example, Martinez-Trujillo and Treue showed that the

attentional modulation in MT depended non-linearly on stimulus contrast of

an unattended stimulus within the receptive field: Attentional modulation

was higher for intermediate stimulus contrasts compared to low and high con-

trasts (Mart́ınez-Trujillo and Treue, 2002). These findings together with the

predictions of the feature-similarity gain model can, however, be explained

by a normalization mechanism of attention, which acts on the input converg-

ing in neurons of MT or other visual areas, rather than directly changing

the neurons firing rates (e.g., Lee and Maunsell, 2009; Reynolds and Heeger,

2009; Lee and Maunsell, 2010). The normalization can explain multiplicative

as well as non-linear effects, as it assumes that attention not only enhances

excitatory effects on the cells, but also inhibitory. Therefore, the attentional

effects depend on the exact stimulus configuration as well as the attentional

requirements.

Spatial attention can also shift receptive fields in the direction of an attended

location (Womelsdorf et al., 2006; Anton-Erxleben et al., 2009), or expand

receptive field sizes during covert attentive tracking of a stimulus (Niebergall

et al., 2011).

The reliable finding of attentional effects in extrastriate visual areas poses the

question where the attentional modulation originates.

1.1.4 The premotor theory of attention

The premotor theory of attention is probably the most influential theory to ex-

plain the neural mechanisms underlying top-down attention (Rizzolatti et al.,

1987; Craighero and Rizzolatti, 2005). It claims that the neural circuit active

during the deployment of attention is the same as the circuit active during
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the execution of eye movements. According to the theory, these two forms of

behavior differ only in the strength of network activation, but not in the com-

position of the network per se. Directing covert attention to a point in space,

therefore, is similar to the preparation of an eye movement to that point; the

difference between the two behaviors being only that during covert attention

the execution of eye movements is inhibited on a peripheral level.

A meta-analysis of imaging studies indicated that similar neuronal networks

are activated during attention and eye movements, but the analysis also sug-

gested a partial segregation of the networks (Corbetta, 1998). Therefore,

Corbetta and colleagues directly compared the two types of behavior by using

functional magnetic resonance imaging (fMRI) and surface-based representa-

tions of functional brain activity in human subjects (Corbetta et al., 1998).

They contrasted active brain areas in a task that required subjects to shift

attention either with or without eye movements. Both forms of behavior ac-

tivated a largely overlapping network composed of parietal, frontal (putative

FEF and SEF) and temporal regions, and the authors concluded that atten-

tion and eye movements indeed use the same network. These results were

subsequently confirmed by other imaging studies (e.g., Nobre et al., 2000;

Astafiev et al., 2003).

Based on these findings, a series of studies has been conducted in the non-

human primate to explore the neural mechanisms underlying attention and

eye movements (e.g., Moore and Armstrong, 2003). Moore and Armstrong,

for this purpose, targeted visual area V4, in which firing rates are modulated

by attention (e.g., Moran and Desimone, 1985), and an area involved in ocu-

lomotor processing, the FEF (e.g., Bruce and Goldberg, 1985; Corbetta et al.,

1998). The authors hypothesized that if the oculomotor system is involved in

the attentional modulation observed in visual areas, stimulation of the self-

same system should result in similar enhancements of firing rates in visual

areas as attention does. And this is indeed what the authors found: firing

rates in area V4 were enhanced by electrical microstimulation of FEF neurons

similar to the enhancement found with attention.

Several subsequent studies showed a link between the FEF and attention

and eye movements (e.g., Moore, 2004; Wardak, 2006; Noudoost and Moore,

2011a). Due to these findings, the FEF is considered to be one of the key areas
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in spatial attention and the accompanied modulation of firing rates in visual

areas. Before we come to the results of these studies, the FEF is described in

more detail in the following sections.

1.1.5 Anatomical and physiological classification of the

FEF

The FEF can be found in the human as well as the non-human primate. Un-

fortunately, the anatomical assignment of labels to the FEF and the use of

them is not consistent among researchers. The FEF lies in the part of the

prefrontal cortex that has been numbered as area 8 by Brodmann (1909). As

depicted by Walker (1940), this area does not appear to be similar in humans

and non-human primates when comparing cytoarchitectural characteristics.

It can be divided into area 8A which runs along the arcuate sulcus, and area

8B which extends into the medial direction. Area 8A has large pyramidal

cells in layer 5, whereas area 8B does not. Both areas can be characterized

by the presence of a thinner layer 4 compared to more anterior areas. Some

researchers described the FEF as spanning over area 8A and the neighboring

area 45 (e.g., Bruce and Goldberg, 1985; Schall, 2009; Rockland et al., 2013).

However, it has been argued that microstimulation of area 45, when classi-

fied with the help of human criteria, does not evoke eye movements (Petrides

et al., 2005, 2012).

What can be summarized is that the FEF lies in the rostral bank of the arcu-

ate sulcus. From the point where a posterior extension of the principal sulcus

would meet the arcuate sulcus, the FEF extends into lateral, medial and cau-

dal direction along the arcuate sulcus.

The FEF has first been described by Ferrier (1874) who showed that electri-

cal microstimulation of the frontal lobe of the brain can evoke eye movements

to the visual space contralateral to the stimulated hemisphere. Several early

studies replicated this finding (e.g., Beevor and Horsley, 1888; Russell, 1894),

and common agreement exists that the FEF can be classified physiologically

by means of eliciting eye movements with microstimulation.

Bruce and Stanton (1985) and Bruce et al. (1985) systematically investigated
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the physiological characteristics of the FEF in rhesus macaques. They defined

the FEF as the area in which microstimulation with less than 50µA evokes

eye movements. Under that classification, they found that the presence of

large pyramidal neurons in layer 5 is a reliable determinant to confine the

FEF anatomically.

The FEF has been divided into two parts based on the length of evoked sac-

cades. Shorter saccades are generated by lateral FEF and longer saccades by

medial FEF (Robinson and Fuchs, 1969; Bruce and Goldberg, 1985).

Many neurons in the FEF can be characterized as belonging to one of three

different groups: visual neurons, movement neurons and visuomovement neu-

rons (e.g., Mohler et al., 1973; Bruce and Goldberg, 1985; Schall, 1991; Sato

and Schall, 2003). This classification is based on how the neurons respond

to visual input and saccade execution, and is usually described during a sac-

cade task. Visual neurons, as the name suggests, respond mainly to visual

sensory input, for example, a saccade target, but not to saccade execution

(Bruce and Goldberg, 1985). Receptive fields have been reported to extend to

40dva of diameter, however, they were often described to cover a quarter of

the used computer screen in the studies and, therefore, reported sizes might

underestimate the actual size (e.g., Mohler et al., 1973; Kodaka et al., 1997;

Cavanaugh et al., 2012). Movements cells do not or only weakly respond to

visual stimulation, but show enhanced firing rates before or after the onset of

saccades (Mohler et al., 1973; Bruce and Goldberg, 1985). Instead of a visual

receptive field, they have a movement field, which analogously describes the

area in space to which planning or execution of a saccade evokes a response

in the neuron (Bruce and Goldberg, 1985). Visuomovement cells usually ex-

hibit characteristics in between the two types of cells, and there seems to be a

continuum from visual to movement cells (Bruce and Goldberg, 1985). In the

following, the term ‘response fields‘ is used to jointly refer to visual receptive

fields and movement fields of FEF neurons whenever a differentiation is not

adequate.

Cohen and colleagues found that the three types of neurons can also be classi-

fied by distinct biophysical characteristics: movement neurons have the widest

action potential waveforms, and visual neurons have wider spikes than visuo-
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movements neurons (Cohen et al., 2009). Due to their thin spikes, visuomove-

ment cells have been suggested to be inhibitory (Cohen et al., 2009).

In addition to these three cell-types, there are fixation neurons in the FEF

(e.g., Izawa et al., 2009; Izawa and Suzuki, 2014), which discharge during ac-

tive fixation. Also within this group of neurons, there seems to be a continuum

of cells responding to the visual input of the fixation point to cells responding

due to the active motor process of fixation (Izawa et al., 2009).

Neurons in the FEF are thought not to be feature-selective. Mohler et al.

(1973), for example, did not find movement, direction or orientation selec-

tivity. Under certain circumstances, FEF neurons can show selectivity for

stimulus features, like color (Bichot et al., 1996).

However, FEF neurons are tuned for direction and amplitude of saccades.

This is true for all types of neurons, though visual cells show the narrowest

tuning (Bruce and Goldberg, 1985). Therefore, neurons in the FEF might be

best understood in terms of representing stimuli by means of executing a po-

tential saccade movement to the stimulus instead of representing the absolute

position of stimuli.

1.1.6 Attentional modulation in the FEF

Similar to area MT, a first study failed to find changes related to covert

attention in the FEF (Goldberg and Bushnell, 1981). However, later stud-

ies consistently found attentional effects in the FEF. Kodaka and colleagues

recorded activity in the FEF during a simple spatial attention task (Kodaka

et al., 1997). Monkeys had to detect a luminance change either of a periph-

eral target stimulus within the receptive field of a recorded neuron or of the

fixation point. By comparing firing rates between these two conditions, the

authors found that 51% of visually responsive neurons (visual and visuomove-

ment cells) were modulated by attention. The modulation was not always an

increase in firing rates (often attention suppressed responses), but on average

attention enhanced firing rates by 38%.

Several subsequent studies reported that visual and visuomovement cells are

modulated by attention; the neurons usually showed an enhancement of fir-

ing rates (Thompson, 2005; Khayat et al., 2009; Gregoriou et al., 2012). In

contrast, movement cells were either inhibited or not affected by attention.
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As the result of a modeling study, Hamker (2005) suggested that movement

cells provide the best signal for driving attentional effects in visual areas.

However, the results of the experimental studies indicate that it is not the

motor neurons that cause attentional modulation of neurons in visual areas.

Instead, the results suggest that only visual and visuomovement cells play a

role during the deployment of attention.

1.1.7 Evidence for the guidance role of the FEF in at-

tention

Moore and Fallah were the first to test whether stimulation of the oculomotor

network in the FEF plays a role in attention (Moore and Fallah, 2001). They

trained monkeys to perform a spatial attention task: a luminance change in a

target stimulus had to be detected and distractor stimuli presented at other

spatial locations had to be ignored. While the animals were conducting the

task, the authors electrically stimulated the FEF. The stimulation current was

below the strength that would evoke eye movements. The authors found that

when the target stimulus was presented within the response field of the stim-

ulated FEF neurons, the performance of the animals was improved. These

results indicated that the FEF network that is involved in evoking eye move-

ments, is also involved during visual attention.

Moore and Armstrong used a similar approach of microstimulation in the FEF,

but examined the effect on neural activity in area V4 (Moore and Armstrong,

2003). Monkeys did not perform a visual attention task, but instead were

fixating a fixation point. During fixation, one oriented bar was presented on

the screen, either in the receptive field of the recorded V4 neuron or outside

of it, and either in the preferred or non-preferred orientation. Stimulation

electrodes were placed in the vicinity of FEF neurons having either overlap-

ping response fields with the V4 receptive field, or non-overlapping response

fields. FEF stimulation of overlapping response fields caused an increase in V4

neurons’ firing rates when the preferred stimulus was shown in the receptive

field, an intermediate increase when a non-preferred stimulus was shown, and

no increase when no stimulus was shown. In a second experiment, the au-

thors tested how the presence of a distractor stimulus affects the stimulation
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results. They found that stimulation effects were higher when the distractor

was shown compared to when it was absent. In addition, stimulation increased

firing rates when the stimulated FEF response fields were overlapping with the

V4 receptive field and the preferred stimulus was shown in the V4 receptive

field. In contrast, stimulation resulted in a suppression of V4 responses when

FEF neurons with non-overlapping response fields were stimulated and the

preferred stimulus was shown. The authors found an average enhancement of

firing rates of 20% comparing these two conditions, which, as they argue, is

similar to the enhancement found in spatial attention studies (e.g., McAdams

and Maunsell, 1999).

Results gained with electrical microstimulation have limitations in their in-

terpretability. Electrical microstimulation not only stimulates neuronal cell

bodies in the vicinity of the stimulation electrode. It also stimulates fibers

of passage and axons projecting to the stimulation area, and, thus, can an-

tidromically activate the corresponding neurons. Consequently, neurons of

other areas can be stimulated during electrical microstimulation (see, e.g.,

Histed et al., 2013).

This limitation has been overcome in a study of Noudoost and Moore (2011a).

The authors changed the dopamine–mediated activity in FEF by local phar-

macological injection of the dopaminergic antagonist SCH23390. This antago-

nist acts on the D1 receptors, and has been shown to increase working memory

related activity within the FEF (see Noudoost and Moore, 2011a). Monkeys

were conducting a free-choice saccade task. Injection of SCH23390 increased

the tendency of the monkeys to choose the saccade target that was presented

within the response field of the FEF neurons affected by the pharmacological

injection. The authors recorded neural activity in area V4. Activity of V4

neurons was enhanced by the injection of SCH23390 when the receptive fields

of the V4 neurons were overlapping with the response fields of the affected

FEF neurons. Even though the experiment did not show a role of dopamine

in attention, it demonstrated that the FEF can mediate changes in firing rates

in area V4 without the confound of stimulating axons from other areas.

The most direct evidence that the FEF plays a role in attention stems from a

study of Gregoriou and colleagues and shows a causal relationship of activity
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in the prefrontal cortex and attentional modulation in area V4 (Gregoriou

et al., 2014). The authors lesioned the prefrontal cortex, including the FEF,

of one hemisphere and evaluated the effect on attentional modulation of V4

neurons. Attentional modulation of firing rates was reduced by on average

40% in V4 of the lesioned hemisphere compared to V4 of the non-lesioned

hemisphere. In addition, latencies of attentional effects were longer.

Several other studies showed a link between activity in the FEF and either

firing rates in visual area V4 (Moore, 2004; Armstrong and Moore, 2007; Gre-

goriou et al., 2009, 2012; Noudoost et al., 2014; Merrikhi et al., 2017) or during

attention (Wardak, 2006; Rossi et al., 2007).

1.1.8 Anatomical connections between the FEF and area

MT

As many cortical areas do, the FEF and area MT possess reciprocal connec-

tions (e.g., Tigges et al., 1981). Stanton et al. (1995) showed that area MT

primarily receives input from the small saccade part of the FEF. Neurons

projecting to area MT are located in supra- and infragranular layers of the

FEF (60% in supragranular layers, Ninomiya et al., 2012). Two differing

results have been found concerning their projection localization in area MT.

Stanton et al. (1995) reported a columnar distribution in area MT, that is, all

layers received input from the FEF (this was different to other areas, where

projections ended mainly in layer I and V/VI). Leichnetz (1989), in contrast,

found that projections mainly end in layer V and VI of area MT.

There is more unity for the results showing the origin of MT projections to

the FEF. Leichnetz et al. (1989) found that MT neurons projecting to the

FEF are mainly localized in layer III of area MT. Similar results have been

reported by Huerta et al. (1987), who detected MT cells projecting to the

FEF mainly in supragranular layers. Schall et al. (1995) showed that MT

neurons projecting to the FEF are mainly located in layer III, but they also

found cells in infragranular layers. The projection from area MT to the FEF

appears to be topographic. The medial FEF (i.e., the large saccade part of

the FEF) receives innervations from peripheral visual fields in area MT, while

the lateral FEF (i.e., the small saccade part of the FEF) receives innervations



20 Chapter 1 - Introduction

from the central visual field of area MT (Schall et al., 1995).

The projection from the FEF to area V4 has been investigated in more detail.

Since area V4 and area MT are considered to be on a comparable hierarchical

level in the visual system, these results could be similar for the FEF projec-

tion to area MT and are therefore mentioned here. However, it should be

noted that different populations of FEF neurons project to areas MT and V4

(Ninomiya et al., 2012). Therefore, the results cannot be transferred to the

FEF projection to area MT without reservation.

Anderson and colleagues showed that FEF neurons projecting to area V4

exhibit the characteristics of excitatory pyramidal cells and project predom-

inantly to excitatory cells in area V4 (Anderson et al., 2011). A minority of

targets were inhibitory neurons (2%). FEF neurons projecting to area V4

were predominantly found in supragranular layers of the FEF (Pouget, 2009;

Barone et al., 2000), and classified as feedforwark connection (Barone et al.,

2000). In contrast, neurons projecting to the superior colliculus, an area of

the oculomotor system, were only found in layer 5, and none of the neurons

in layer 5 that projected to the superior colliculus also projected to area V4

(Pouget, 2009). Therefore, distinct populations of neurons seem to project to

area V4 and the superior colliculus. Segraves and Goldberg (1987) showed

that a majority of neurons projecting to the superior colliculus were move-

ment cells and located in layer V of the FEF. These results are interesting,

as they indicate that movement cells that are involved in the execution of eye

movements, do not project to area V4.

1.1.9 Optogenetic targeting of the projection from FEF

to area MT

The aim of the main study of this thesis was to inhibit the projection from the

FEF to area MT by using optogenetics. Optogenetics (Boyden et al., 2005)

has been proven to be a reliable method to modulate neural activity in rodents

and has sparsely also been used in non-human primates (e.g., Diester et al.,

2011; Galvan et al., 2017). Optogenetic stimulation can increase or decrease

neural activity by using excitatory or inhibitory opsins (e.g., Han et al., 2009,
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2011). It expands electrophysiological studies with tools that have not been

available before (for a review see Tye and Deisseroth, 2012).

One of the new possibilities optogenetics provides is cell-type specific activa-

tion or inactivation of neurons without affecting other cell types. In rodents,

this is a well-tried method since in addition to the use of viral vectors, trans-

genic animals have been developed for optogenetic experiments (for a review

see Zeng and Madisen, 2012; Ting and Feng, 2013). In non-human primates,

however, the situation is different due to the lack of transgenic animals. Re-

search in non-human primates is dependent on using viral vectors. These are

limited in their packaging capacity, and, therefore, only a handful of promoters

is available. However, recently an approach of combining two viral constructs,

which allowed the use of the Cre/lox system, has been successful in targeting

dopaminergic neurons in non-human primates (Stauffer et al., 2016).

A second new possibility is that optogenetics allows to specifically target

the axonal projections between two brain areas. This previously impossi-

ble method allows to do experiments in a much more controlled and precise

way, because the interaction of two areas can be directly assessed. Opsins

have been shown to be reliably integrated into the membrane of axons, and

often, viral constructs are designed in a way that enhances trafficking within

the neuron (e.g., Gradinaru et al., 2010). In rodents, targeting projections

is already a standard method. Several studies showed effects of projection

stimulation on behavior (e.g., Tye et al., 2011; Burgos-Robles et al., 2017).

However, the application of optogenetics to the non-human primate is slow,

so that only two studies stimulated projections optogenetically. Inoue and

colleagues successfully targeted the projection from the FEF to the superior

colliculus with an excitatory opsin (Inoue et al., 2015). They showed that

laser stimulation of the projection reliably evoked saccades. Galvan et al.

(2016) injected a viral vector into the motor cortex and stimulated the pro-

jections in the motor thalamus. Optogenetic excitation of the axon terminals

significantly changed activity of neurons in the motor thalamus. Although in

rodents it has been done successfully, no study in the non-human primate, so

far, inhibited the projection between two brain areas.

The FEF has been targeted in several optogenetic studies in the non-human

primate (Han et al., 2009, 2011; Gerits et al., 2012; Ohayon et al., 2013; Acker
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et al., 2016). All of these studies reported a change in neural activity induced

by optical stimulation. However, only Gerits et al. (2012) and Acker et al.

(2016) found a change in the behavioral performance of the monkeys. In the

study conducted by Gerits and colleagues, optogenetic stimulation changed

the latency of evoked saccades, but not the accuracy or end point of saccadic

eye movements. Acker and colleagues found that optogenetic inhibition of

the FEF resulted in a large increase in the error rate of the monkeys and an

increase in the scatter of saccade end-points.

Taken together, all these results indicate that the FEF and the axonal projec-

tion from the FEF to area MT can be targeted and inhibited by optogenetics.
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1.2 Part II

1.2.1 The attentional blink

The attentional blink is a perceptual phenomenon that depicts limitations

of top-down attention in humans, that is, attention has a limited temporal

resolution. It was originally named by Raymond et al. (1992), who tested in

several experiments how processing of a visual target stimulus (T1) affects the

processing of a subsequently shown target stimulus (T2). These two target

stimuli were presented within a stimulus stream by rapid serial visual presen-

tation. The time between the two target stimuli (target onset asynchrony,

TOA) was systematically varied, and two behavioral conditions were com-

pared: a single-task in which subjects only had to detect T2, and a dual-task

in which subjects had to identify T1 and to detect T2. Both behavioral con-

ditions did not differ in their sensory information, but in the task instructions

the subjects received. In this way, the authors compared the performance

of the subjects to detect T2 in the stimulus stream, either with or without

prior T1 identification. This comparison allowed to judge about the impact

of T1 processing on T2 processing. The authors found that when T2 was

presented within 450ms after T1, subjects showed a deficit in detection of

T2 in the dual-task, and these results indicated that T1 processing interfered

transiently with the processing of T2.

Since the initial report of the phenomenon a tremendous number of studies

have dealt with this finding and have shown that it occurs for different stimu-

lus types, such as faces (Marois et al., 2004), visual scenes (Livesey and Harris,

2011), orientation (Joseph et al., 1997), or color (Ross and Jolicoeur, 1999).

Most of the tested stimuli are processed by the ventral visual pathway.

The attentional blink exhibits some characteristics that are important to un-

derstand its underlying mechanisms. One of the prominent features is the

so-called ‘lag1-sparing‘: in around half of the attentional blink experiments,

detection of T2 is not impaired when it is presented directly after T1 (Visser

et al., 1999). In addition, several target stimuli can be detected without im-

pairment in case no intervening distractor stimulus is shown (Di Lollo et al.,

2005; Olivers et al., 2007). Masking of the two target stimuli has been shown to
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be an important factor in causing an attentional blink (Raymond et al., 1992;

Chun and Potter, 1995; Grandison et al., 1997; Visser and Ohan, 2007). These

results indicate that there is not a general inability to process several stimuli

presented in close temporal proximity, but it rather suggests the existence of

a mechanism that protects target processing from distracting information. In

addition, the processing of T2 is affected at a late stage of processing, prob-

ably comprising the consolidation into working memory or the preparation of

the task response, whereas early processing stages do not seem to be severely

influenced (Luck et al., 1996, Sergent et al., 2005).

Several studies showed that features of two visual stimuli can be falsely bound

together (as ‘illusionary conjunctions‘, Treisman and Gelade, 1980) when they

are presented in close temporal proximity (e.g., Lawrence, 1971; McLean et al.,

1983; Botella and Eriksen, 1992; Raymond et al., 1992). This type of error

could be prevented or diminished with a temporal attentional filter that only

temporarily influences the gain of neural activity whenever a target stimulus

is presented. Such kind of a filter has been proposed by Aston-Jones and

Cohen (2005) as a role for the phasic activity of the locus coeruleus (LC) in

the brain stem.

However, despite the reliable occurrence of the deficit per se, the underlying

neural circuits of the attentional blink are still not clarified. Several theoreti-

cal models have been developed trying to explain the underlying mechanisms

(for a review see Dux and Marois, 2010).

One of the models explaining the attentional blink assumes a role of the locus

coeruleus in causing the attentional blink (Nieuwenhuis et al., 2005). The LC

has been shown to be involved in visual target detection (Aston-Jones et al.,

1994). It shows periods of phasic response which are followed by a refrac-

tory period in which the activity of the LC is inhibited (Foote et al., 1980;

Aston-Jones and Bloom, 1981a). As mentioned above, the phasic activity has

been suggested to act as a temporal attentional filter (Aston-Jones and Co-

hen, 2005), and, since the time course of the LC’s refractory period is similar

to the duration of the attentional blink, the LC has been suggested to play a

role in evoking an attentional blink (Nieuwenhuis et al., 2005).
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1.2.2 The locus coeruleus

The LC is a part of the brain stem that projects to almost all areas of the brain

and provides the main source of noradrenaline (Freedman et al., 1975; Garver

and Sladek, 1975; Berridge and Waterhouse, 2003). It receives a major input

from the prefrontal cortex (Arnsten and Goldman-Rakic, 1984; Jodo et al.,

1998), but also from structures like the nucleus prepositus hypoglossus, which

is directly involved in the control of eye movements (Aston-Jones et al., 1986).

The LC plays a role in controlling the sleep-waking cycle (e.g., Aston-Jones

and Bloom, 1981b).

During the waking state, the LC operates in two modes, one is characterized

by a tonic firing of its neurons and is thought to promote non-specific aspects

of behavior like arousal and responsiveness (Usher, 1999). The other mode

is characterized by a phasic activity followed by a refractory period lasting

several hundred milliseconds, and occurs in response to salient sensory stimuli

(Foote et al., 1980; Aston-Jones and Bloom, 1981a). However, the phasic

response can also be very specific. For example, Aston-Jones et al. (1994)

recorded neural activity in the LC of monkeys while they were performing

a visual discrimination task. They found that target detection of a visual

stimulus was accompanied by a phasic response of the LC, whereas distractor

presentation did not evoke such a response. Moreover, as a subsequent study

showed, the latency of this phasic response can be dependent on task difficulty.

Therefore, rather than being a pure sensory response, the phasic activity can

reflect the behavioral relevance of a target stimulus (Rajkowski, 2004).

In addition to its role in sleep and awake states, several studies suggest that

the locus coeruleus has a direct effect on pupil size (Gilzenrat et al., 2010;

Murphy et al., 2014; Joshi et al., 2016).

1.2.3 The effect of attention on pupil size

The size of the pupil is changed dependent on the light intensity that falls

onto the retina and is adjusted to reach an optimum of sensitivity and visual

acuity (Campbell and Gregory, 1960). However, the size of the pupil is not

only driven reflexively by external light. It has been known for a long time

that higher cognitive processes have an impact on the size of the pupil (e.g.,
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Loewenstein, 1920; Hess and Polt, 1964; Beatty, 1982). In recent years, as

elucidated in the following, pupil size has more and more been used as a non-

invasive, physiological measure of top-down attentional processes.

Detection of a visual target stimulus is associated with a dilation of the pupil

(Privitera et al., 2010). In addition, pupil size can scale with the number of

attended objects (Alnaes et al., 2014; Wahn et al., 2016). It can reflect the

presentation frequency of a visual stimulus and this reflection can be modu-

lated in size by visual attention (Naber et al., 2013).

Binda et al. (2013) and Mathot et al. (2013; 2014) showed that the pupil-

lary response can reflect the focus of attention: Attending to a bright stimu-

lus evoked a different pupil response than attending to a dark stimulus, and,

hence, reflected the focus of spatial attention. In addition, the focus of feature-

based attention can be apparent in the pupil size (Binda et al., 2014).

These results are in agreement with studies showing that optical illusions and

expectations about a visual scene can influence the pupil diameter in isolumi-

nant presentations that only vary in high-level contents of visual information

(Laeng and Endestad, 2012; Naber et al., 2013). Images of the sun, for ex-

ample, evoked different changes in pupil size dependent on the orientation of

an image. Inverted images of the sun reduced the pupil constriction usually

found for upright images of the sun (Naber et al., 2013).

Hoeks and Levelt (1993) developed a method with which the measure of pupil

size over time during a behavioral task can be used to reconstruct the under-

lying attentional processes that induced changes of pupil size. This method

has been proven to be a reliable model even under high-frequency stimulus

presentation (Wierda et al., 2012). Wierda and colleagues applied the model

to the analysis of pupil size during an attentional blink task. They found that

trials in which T2 was missed in the dual-task showed a different pattern of

underlying attentional pulses than trials in which T2 was correctly reported.

The pulses evoked by T1 presentation were higher and the pulses underlying

T2 presentation were lower in amplitude in trials in which T2 was missed. In

the same year, also Zylberberg et al. (2012) measured pupil dilation in an at-

tentional blink task. They reported that during the time the attentional blink

typically occurs, pupil amplitude was smaller and pupil dilation evoked by T2
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presentation was delayed. These results indicate that pupil size can help to

interpret the results of attentional blink and other attentional experiments.

However, the underlying neural pathways that control pupil size during cog-

nitive tasks are not well understood, and, therefore, the interpretation of the

results is difficult.

The size of the pupil is regulated by an interplay of two eye muscles in the iris:

the musculus sphinter pupillae is responsible for the contraction of the pupil,

while the musculus dilatator pupillae mediates the dilation of the pupil (for a

review see Loewenfeld, 1999). These muscles are controlled by a network of

structures of the peripheral nervous system (Loewenfeld, 1999).

However, it has been shown that microstimulation of subcortical structures,

like the superior colliculus and the locus coeruleus, changes the size of the pupil

of non-human primates (Wang et al., 2012; Joshi et al., 2016). Furthermore,

a recent study found that microstimulation of a cortical structure, i.e., the

FEF, changes pupil size (Lehmann and Corneil, 2016). In accordance with the

behavioral studies mentioned above, these results indicate that subcortical and

cortical areas that control higher cognitive functions, also have a direct effect

on pupil size during cognitive tasks. However, the evidence of the underlying

neural mechanisms is still sparse as investigations just started in recent years.

Currently available evidence suggests that the locus coeruleus has the most

direct effect on pupil size (Gilzenrat et al., 2010; Murphy et al., 2014; Joshi

et al., 2016).
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Hüer1, Hansjörg Scherberger2, Lara Timantra Schiller3, Jochen

Staiger4 and Stefan Treue1

Affiliations

1 Cognitive Neuroscience Laboratory, Deutsches Primatenzentrum GmbH,

Göttingen, Germany

2 Neurobiology Laboratory, Deutsches Primatenzentrum GmbH, Göttingen,

Germany

3 Medical RNA Biology, Deutsches Primatenzentrum GmbH, Göttingen,

Germany

4 Department of Neuroanatomy, Georg-August University, Göttingen,

Germany

Author contributions:

M. G. Fortuna: Design of experiment, viral vector injection, perfusion and

extraction of brain, cutting of brain, majority of immunohistochemistry and

imaging, histological analysis, contribution to manuscript‘s method section

A. Gail: Design of experiment, viral vector injection, histological analysis

J. Gruber: Viral vector development, testing and handling, implementation

and compliance of genetic engineering safety regulations

H. Guo: Design of experiment, viral vector injection
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Introduction

Optogenetic manipulation of neural activity has been increasingly utilized in

non-human primates in recent years. One of the most promising potentials it

offers to systems neuroscience is the possibility to selectively stimulate axonal

projections between two brain areas and investigate causal interactions in a

direct way that has not been possible before.

Successful optogenetic experiments depend on choosing a combination of virus/

viral serotype, promoter and opsin that results in decent expression of opsins

in an area of interest. However, the optimal viral construct varies between

species, brain area and experimental needs. Experiments in non-human pri-

mates cannot easily be repeated and individuals are usually highly valuable,

since they are often trained for periods of months or even years. In addition,

experiments usually last weeks until months and therefore high and stable
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opsin expression would be desired, which at the same time is not causing neu-

ronal cell death.

We have evaluated the viability of using optogenetics to study the fronto-

parietal as well as fronto-visual cortical network with a specific focus on the

axonal connections within these networks. We focused our analysis on the

connections of frontal area PMv and posterior parietal area MIP (e.g., Bakola

et al., 2017), and on the connections of prefrontal area FEF and visual area

MT (Ninomiya et al., 2012; Stanton et al., 1995; Schall et al., 1995).

Several requirements should be fulfilled to successfully use optogenetics to ma-

nipulate axonal projections. Projection targeting necessitates a decent spatial

spread of transduction around the injection location to cover major parts of an

area of interest. Long-range projections can have a length of up to several cen-

timeters (Markov et al., 2013), and they can branch to target different areas

(Rockland et al., 2013). Therefore, the total surface area of the cell membrane

can be large, and the transport ways within the cell long. Hence, it can take

a while until a sufficient density of opsins is reached at the axonal ends in a

distant projection area. The density of the opsins must be high enough so

that optical stimulation causes sufficient de- or hyperpolarization of axons to

either evoke action potentials or inhibit incoming spikes. The critical point

here is to conduct the stimulation experiments during a time of sufficiently

high and stable opsin expression. Since this information is not accessible dur-

ing ongoing experiments with behaving non-human primates, any information

about the development of opsin expression over time is highly valuable.

Ideally, projection targeting necessitates a viral vector that only enters the lo-

cal somata and dendrites at the injection location. Axons in a given area stem

from a variety of brain areas, and uptake of the viral vector by the axons can

result in retrograde transport of the vector to cell bodies in distant locations

(Castle et al., 2014). Depending on the amount of retrograde transport, it can

be a confounding factor when one assumes to only stimulate projecting axons,

but instead the stimulation also affects cell bodies of retrogradely transduced

neurons.

We chose rAAV2/5 as a serotype for our experiment. In direct comparison

with other serotypes, rAAV2/5 showed reliably high transduction efficiency

(Taymans et al., 2007; Burger et al., 2004; Markakis et al., 2010; Watakabe
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et al., 2015). However, like all other AAV-serotypes except AAV2/2, ret-

rograde transport has been reported in several studies (Burger et al., 2004;

Aschauer et al., 2013). AAV2/2 might be the cleanest viral vector for projec-

tion targeting and it has been successfully used in primates for that purpose

(Inoue et al., 2015). However, it appeared to be the least effective serotype

throughout the above-mentioned comparison studies, and can show less an-

terograde transport of the opsins along the axons compared to other serotypes

(McFarland et al., 2009).

AAV5 binds to the platelet-derived growth factor alpha-receptor (PDGFRα,

Di Pasquale et al., 2003) and 2,3-linked sialic acid (Kaludov et al., 2001;

Walters et al., 2001), which both can be found in the membrane of neurons

throughout the brain (Vignais et al., 1995; Oumesmar et al., 1997; Schnaar

et al., 2014). Which part of the neuron takes up the viral vector depends on

the presence of these factors within the membrane. It is unknown, however,

how PDGFRα and 2,3-linked sialic acid are distributed within the membrane

of neurons in our areas of interest.

Long-range projections originating from cortical areas are generally assumed

to be excitatory (e.g., DeFelipe and Fariñas, 1992; Anderson et al., 2011),

but, to a small extent, there are also inhibitory long-range projections (Lee

et al., 2014; Rock et al., 2016). Optogenetics, in theory, offers the possibility

to target different cell types by using specific promoters. However, all but one

of the currently available promoters that can be used in combination with a

viral vector are relatively unspecific in their targeting. The most specific one

is the αCaMKII-promoter, which is used by excitatory cells, but not GABAer-

gic cells (Benson et al., 1991, 1992; Jones et al., 1994; Liu and Jones, 1996;

Tighilet et al., 1998; Han et al., 2009). However, not all of the excitatory

cells seem to use it (Jones et al., 1994; Liu and Jones, 1996; Tighilet et al.,

1998). Therefore, it is unclear in how far long-range projection neurons use

the αCaMKII-promoter. The αCamKII-promoter has only been used in one

study in the primate to target projections from the cortex to the thalamus

(Galvan et al., 2016). Since we were interested in targeting projections in the

most specific way, we examined whether the αCaMKII-promoter can be used

to target long-range projection neurons in our areas of interest.

We injected three different viral vectors (rAAV2/5-αCaMKII-hChR(H134R)-
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eYFP, rAAV2/5-αCaMKII-eNpHR3.0-mCherry, rAAV2/5-αCaMKII-eNpHR

3.0-eYFP) into four distinct cortical areas: area FEF, area PMd, area PMv

and V1. We analyzed expression spread in the injection area, expression in

axonal projections and the extent of retrograde transport.

Methods

Animal

All animal work and housing was conducted in accordance with all applicable

German and European regulations. The scientists in this study are aware

and are committed to the great respnsibility they have in ensuring the best

possible science with the least possible harm to any animals used in scientific

research. All animal procedures have been approved by the responsible re-

gional government office (Niedersächsisches Landesamt fur Verbraucherschutz

und Lebensmittelsicherheit [LAVES], Oldenburg, Germany) under the permit

number 3392 42502-04-13/1100. All surgical and imaging procedures were

done under appropriate anesthesia, with appropriate analgesics and in accor-

dance with German laws governing animal use.

All experiments reported herein were performed on one male rhesus macaque

(Macaca mulatta, age: 10 years, weight: 10kg). The animal was group-housed

with other macaque monkeys in a facility of the German Primate Center in

Göttingen (Germany). The animal had unrestricted access to food and water

and was provided with an enriched environment. The animal was taken care

of by the animal caretakers, technical assistants and scientists, and monitored

on a daily basis by the veterinarians of the German Primate Center.

Virus injection

Viral vectors were injected under anesthesia. We determined the stereotactic

coordinates of the injection areas with the help of a prior anatomical MRI

scan. Two craniotomies were done, one in the frontal left hemisphere pro-

viding access to areas FEF, PMv and PMd, the other in the right hemi-

sphere providing access to area V1. We opened the dura and determined

the exact injection locations based on anatomical landmarks. We injected

three different viral vectors: (a) rAAV2/5-αCaMKII-hChR2(H134R)-eYFP-
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area construct vol count depths

FEF left rAAV2/5-αCaMKII-eNpHR3.0-mCherry 7µl 1 7
PMv left rAAV2/5-αCaMKII-hChR2(H134R)-eYFP 9µl 3 3
PMd left rAAV2/5-αCaMKII-eNpHR3.0-eYFP 4.5µl 1 3
V1 right rAAV2/5-αCaMKII-eNpHR3.0-mCherry 9µl 3 3

Table 2.1: Injection parameters

A         B         C 
brain surface

-1

-7

-2

-3

-4

-5

-6

mm μl

1 1 1.5
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▪

▪

▪
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▪
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Figure 2.1: Injection sides in the left hemisphere. We injected in three different
frontal areas: (A) FEF, (B) PMv, and (C) PMd. The number of depths, penetra-
tions and the injected volume is shown for each of the three brain areas.

WPRE (titer: 8.5x1012vg/ml), (b) rAAV2/5-αCaMKII-eNpHR3.0-mCherry-

WPRE (UNC Vector Core, titer: 4.7x1012vg/ml), and (c) rAAV2/5-αCaMKII-

eNpHR3.0-eYFP-WPRE (produced in-house, titer: 7.8x108vg/ml). Construct

(a) was injected into left PMv, construct (b) into left FEF and right V1 and

construct (c) into left PMd (table 2.1).

Each viral vector solution was loaded into a gas-sterilized syringe (from Göhler

HPLC-Analysentechnik or CS-Chromatographie-Service GmbH; volume: 10µl

or 25µl, needle diameter: 32 gauge, sharp tip) under sterile conditions. The

syringe was fixed to a manual injector, which was attached via a one-axis

coarse manipulator (BE-8, Narishige) to a stereotaxic frame.

In each of the four brain areas, we injected at one or three locations, and at

each location, we injected at several depths (for details see table 2.1 and figure

2.1). We started at the deepest point and injected 1µl at each depth (1.5µl
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in area PMd) with a speed of 200nl/min. We waited 5 minutes after each

injected microliter and before retracting the needle by 1mm to the next depth

or before moving to the next injection location. In V1 and PMv, we injected

at three locations spanning a triangle with a side length of 1mm to 1.5mm.

In FEF and PMd, we only injected at one location.

The dura was sutured after the injections were completed. It was covered with

the previously removed bone and fixed to the surrounding skull.

The animal was left back into his group after several days of recovery.

Removal of the brain for histological analysis

After a survival period of 10 weeks, we conducted acute electrophysiological

recordings under anesthesia. The results are not part of this report. At

the end of the acute recordings, the animal was very deeply anesthesized

with pentobarbital. The animal was perfused transcardially with heparinized

PBS until the blood cleared, followed by 3l of 4% paraformaldehyde in PBS

(phosphate buffer saline, 0.1M, pH 7.6). After the perfusion, the brain was

removed from the skull and stored in the perfusion fixative at 4�.

Histology

The fixed brain was cut into blocks containing the areas of interest. The

blocks were cut into 50µm thick (semi)coronal sections on a vibrating mi-

crotome. The sections were kept in a cryoprotective solution (20% glycerol +

30% ethylene glycol in 0.05M phosphate buffer, pH 7.4) at −20� until further

processing. All histological stainings were performed on free-floating sections,

which for each procedure were washed once with PB (phosphate buffer, 0.1M,

pH 7.4), followed by three washings in TBS (0.1M, tris-buffered saline, pH

7.6). They were blocked with 10% normal serum (donkey + horse, 1:1) in

TBS with 0.2% Triton-X (TBS-T) for 1h at RT and incubated with a primary

antibody overnight in 2% normal serum (donkey + horse, 1:1) in TBS-T at

4�. Subsequently, the sections were washed three times with TBS and incu-

bated with a secondary antibody for 1-2h at RT in TBS-T with 2% serum.

After washing three times with TBS and three times with PB, the sections

were mounted on glass slides, air-dried and coverslipped with a mounting

medium (Fluoroshield Mounting Medium, Abcam). All serums were ordered
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via Dianova from Jackson ImmunoResearch Laboratories, Inc. and all used

antibodies can be found in the supplementary material (table S1, S2). Im-

ages where taken by an Axio Imager M2 microscope (Zeiss) controlled by and

outlined with Neurolucida (MBF Bioscience). Images were further processed

with ImageJ.

Results

Transduction efficiency

We wanted to compare the transduction efficiency of two different viral con-

structs. Therefore, we used the same injection parameters (volume, number

of locations, injection speed) for areas PMv and V1, but injected two different

viral constructs. Our aim was to compare the spatial spread of opsin expres-

sion in these two brain areas as one measure for transduction efficiency. In

the scope of this thesis, the transduction efficiency was only analyzed for area

PMv. In addition, we analyzed the percentage of neurons expressing the opsin

in area FEF.

Figure 2.2 shows the expression spread around two of the three injection tracks

in area PMv. The spread of neurons expressing the opsin was estimated to be

5.1mm and 5.7mm in the longitudinal direction of the two tracks. The lateral

spread was around 3.5mm. We estimated the area of opsin expression with

the help of ImageJ as 14.4mm2. Dividing the area by the number of injection

locations along the two tracks (i.e. 6), and considering a circular distribution,

results in an expression radius of 0.88mm around each injection location.

In area FEF, we stained some of the brain sections for mCherry and NeuN

(figure 2.3), and determinend the percentage of neurons that expressed the

opsin eNpHR3.0. We estimated that around 47% of neurons in the vicinity of

the injection trask expressed the opsin (table 2.2).

As mentioned above, we did not yet analyze the injection in area V1. In ad-

dition, we were not able to retrieve the injection side in area PMd. Therefore,

we assume that the viral construct injected in area PMd was not working as

expected.
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Figure 2.2: Injection tracks in area PMv. We estimated the longitudinal and lateral
spread of eYFP-positive neurons (green) along the injection tracks.
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mCherry-pos NeuN ratio

Total 519 1105 0.47

Table 2.2: Cell counts of mCherry-positive neurons in area FEF. We counted
the percentage of cells around the injection track based on section 173.

Figure 2.3: Injection track in area FEF. Neurons stained for NeuN are shown in
blue, mCherry-positive neurons in red.

Opsin expression in axons

We wanted to examine whether the αCaMKII-promoter can be used to target

axonal projections in our networks of interest. In addition, we were interested

in whether a period of 10 weeks is sufficient to observe a decent opsin expres-

sion within the axon terminals in areas distant from the injection region.

We observed substantial opsin expression in all parts of the neurons. Figures

2.4 and 2.5 show that opsins could be found in the cell bodies as well as den-

drites and axons of transduced neurons. We found high opsin expression in

axons in the injection locations (figure 2.4 A), axons leaving the injection area

(figure 2.5) and neighboring areas (figure 2.4 B).

Moreover, we found axons positive for mCherry or eYFP in brain areas dis-

tant from the injection locations. Figure 2.6 shows long-range projections

from area FEF in area MT. Axons expressing the opsin were mainly found

in infragranular layers and layer I in area MT. A similar pattern was found

in the parietal area MIP (figure 2.7). Projecting axons from are PMv were

mainly located in infragranular layers, and to a lesser extent in layer I.
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Figure 2.4: (A) Opsin expression in area PMv, (B) opsin expression in axons in
area FEF.

Figure 2.5: Opsin expression in axons leaving the injection area FEF (mCherry-
positive axons are shown in white).
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Figure 2.6: Opsin expression in FEF axons projecting to area MT. Red arrows
show retrogradely labeled cells, red asterisks mark mCherry-positive FEF axons
(white). Projections from FEF were mainly found in infragranular layers and layer
1 of area MT.
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Figure 2.7: Opsin expression in PMv axons projecting to area MIP. White arrows
show retrogradely transduced cells. The white asterisk marks eYFP-positive PMv
axons (green), which were mainly located in infragranular layers of area MIP.
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Retrogradely transduced neurons

We examined the amount of retrograde transport of the viral vectors in our

areas of interest. We found a small number of retrogradely transduced cells

in several brain areas distant from the injection area. Figure 2.6 shows ret-

rogradely transduced cells in visual area MT. They were stained for mCherry

and must have taken up the viral vector in area FEF. These neurons were

mainly located in supragranular layers in area MT.

We found retrogradely labeled cells also for the viral vector that has been

injected in area PMv. Figure 2.7 shows at least two retrogradely labeled cells

(marked by the bold arrows; a third potentially transduced cell is marked by

the dashed arrow) in supragranular layers of parietal area MIP.

Discussion

We explored histologically if the fronto-visual and fronto-parietal network and

its long-rang projections can be targeted with optogenetics in the non-human

primate. In the scope of this thesis, we analyzed the results of injecting one

viral vector into the FEF and a different viral vector into PMv of the left

hemisphere of one monkey.

We found that injection in both areas resulted in decent opsin expression

around the injection tracks. In area PMv, injection of 1µl of viral vector solu-

tion transduced neurons within a radius of approximately 0.9mm around an

injection point. This radius is similar to what other studies reported. Han

and colleagues, for example, found that after injection of 1µl of viral vector

neurons were transduced within a radius of 0.7mm around the injection loca-

tion (Han et al., 2009).

In area FEF, we found that around 47% of neurons expressed the opsin along

part of the injection track. This value is in the same range as values reported

by previous studies in the non-human primate. For example, Diester et al.

found that up to 44% of neurons expressed opsins after injection of viral vec-

tors and using pan-neuronal promoters (Diester et al., 2011).

Our results show that the αCamKII-promoter is used by projection neurons in

areas FEF and PMv. Even though it is known that the αCamKII-promoter is

used by excitatory neurons (e.g., Benson et al., 1991, 1992; Jones et al., 1994)
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and that most projection neurons are excitatory (DeFelipe and Fariñas, 1992;

Anderson et al., 2011), to our knowledge it has not been systematically in-

vestigated whether projection neurons use the αCamKII-promoter. We found

high opsin expression in all parts of the neurons, that is, in local neurons in

the injection area, in axons in the white matter, and in axons in distant pro-

jection areas. FEF and PMv neurons projecting to areas MT and MIP showed

high opsin presence in the axonal terminals in those target areas. This find-

ing confirms that opsins are incorporated in the membrane of long-distance

projections in our areas of interest, and, consequently, those projections can

be stimulated optogenetically.

It further indicates that opsin expression is already high in all parts of the neu-

rons after a waiting period of 10 weeks after virus injection, and stimulation

experiments could be conducted. However, we cannot draw any conclusion

about the stability of the expression. Since the density of the opsins can in-

fluence the results of stimulation, a change of expression over time can also

change the results of stimulation over time. This is an important factor and

should be examined in future studies, especially because non-human primates

in neurophysiology often participate in a number of consecutive experiments.

We found cells that must have taken up the viral construct retrogradely. Pre-

vious studies reported to only find a very small number of retrogradely labeled

cells. The number of cells in our study is higher than what has previously been

reported (e.g., Diester et al., 2011). However, we do not consider it as a major

factor impeding optogenetic stimulations, though, it should be kept in mind

for any stimulation experiment.

In addition to evaluating the viability of using optogenetics to target the

fronto-visual and fronto-parietal network, we can confirm some of the previous

reports about the localization of projecting neurons and projection terminals

in the areas of these networks. We found that projections from FEF neurons

end mainly in infragranular layers, but also in layer I. This is in accordance

with previous studies (Leichnetz, 1989; Stanton et al., 1995). In addition, we

find retrogradely tranduced cells, i.e., MT neurons projecting to area FEF,

mainly in supragranular layers of MT. Several previous studies reported that

MT neurons projecting to area FEF are mainly located in layer III of MT

(Huerta et al., 1987; Leichnetz, 1989; Schall et al., 1995).



46 Chapter 2 - Project manuscripts

In summary, our results show that optogenetics can be used to target the

fronto-visual and fronto-parietal network. Stimulation experiments could be

conducted in the injection areas as well as in distant areas that are targeted

by axons of the injection area.
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Introduction

Visual attention has been shown to modulate neural activity in the visual

system of the macaque. Modulations have been observed in many visual ar-

eas, e.g., V1 (Motter, 1993; McAdams and Maunsell, 1999), V2 (Motter, 1993;
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Luck et al., 1997), V4 (Moran and Desimone, 1985; Motter, 1993), MT (Treue

and Maunsell, 1996, 1999), and MST (Treue and Maunsell, 1996, 1999). This

common finding raises the question how the neural activity in these areas is

modulated. It seems likely that feedback signals originating in higher brain

areas, like the parietal and prefrontal cortex, cause a modulation. Several

studies indicate that the frontal eye field (FEF), located in the prefrontal cor-

tex, provides a feedback signal to visual areas that results in the attentional

gain modulation of firing rates. This has primarily been shown for area V4

(Moore and Fallah, 2001; Moore and Armstrong, 2003; Moore, 2004; Arm-

strong and Moore, 2007; Gregoriou et al., 2009; Noudoost and Moore, 2011a;

Gregoriou et al., 2012).

The most direct evidence stems from a study of Gregoriou et al. (2014) and

shows a causal relationship of activity in the prefrontal cortex and attentional

modulation in area V4. The authors lesioned the prefrontal cortex, including

the FEF, of one hemisphere and evaluated the effect on attentional modulation

of V4 neurons. Attentional modulation was reduced on average by 40% in V4

of the lesioned hemisphere compared to V4 of the non-lesioned hemisphere. In

addition, latencies of attentional effects were longer and attentional enhance-

ment of LFP gamma frequency power was lower in the lesioned hemisphere.

This study showed that there is a causal relationship between activity in the

prefrontal cortex and attentional modulation in area V4, but the method that

was used was not able to differentiate whether these effects emerge via direct

connections between the areas or via indirect pathways including additional

brain areas. It is known from anatomical studies that the FEF sends direct

neuronal projections to visual areas V4 and MT (Stanton et al., 1995; Ander-

son et al., 2011; Ninomiya et al., 2012). However, it is unknown whether this

direct connection plays a role during attention and the modulation of firing

rates in visual areas.

As mentioned above, most studies investigated the role of the FEF on the

attentional modulation in area V4. Despite the existence of reliable evidence

that attention modulates activity also in visual area MT (Treue and Maunsell,

1996; Treue and Martinez Trujillo, 1999; Treue and Maunsell, 1999), no study

so far addressed the question of a causal role of the FEF in this area.

We wanted to shed light into the circuitry of attention. Therefore, we used
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pathway-specific optogenetics to manipulate the direct neuronal projection

from the FEF to area MT. We injected a viral vector (AAV5-αCamKII-

eNpHR3.0-mCherry) into the FEF of two rhesus macaques, bringing an in-

hibitory opsin into excitatory neurons. We used an opsin that has been shown

to be incorporated into the membrane of axons and has successfully been used

to inhibit axonal projections before (Gradinaru et al., 2010; Tye et al., 2011;

Kim et al., 2013). Assuming that the opsin is incorporated into the neuronal

membrane, including long-range axonal projections, we optically stimulated

FEF axons in area MT of one of the monkeys while the animal was con-

ducting a spatial attention task. The approach of axon stimulation has been

successfully used with excitatory opsins in two other studies in the non-human

primate (Inoue et al., 2015; Galvan et al., 2016). In both studies, projections

from cortical to subcortical regions were stimulated. Inhibition of axons has

been successfully used in rodents (Tye et al., 2011; Kim et al., 2013), but not

yet in non-human primates. Our approach, therefore, includes two method-

ological components new to experiments in non-human primates: optogenetic

targeting of cortico-cortical projections and inhibition of projections.

The experiment allowed answering two yet open questions. The first is whether

the FEF plays a role in attentional modulation of area MT neurons. The

second is whether the direct projection from the FEF to visual areas alone

has a significant contribution during deployment of attention.

Results

Several months after virus injections, we started to record single-cell activity

in area MT in combination with optical stimulation (figure 2.8); see tables S3-

S5 for further details about the recordings) in one animal (monkey H). The

monkey was performing a spatial attention task (figure 2.9), in which he was

cued to attend to one of two moving random dot patterns (RDP): one was

placed in the receptive field of the recorded neuron and the other isoeccen-

tric at the other side of the fixation point in the other visual hemifield. This

generated two attention conditions: the monkey was either attending to the

stimulus inside the receptive field (AttIN) or to the stimulus outside of the

receptive field (AttOUT). The animal was rewarded for responding to a direc-

tion change in the cued stimulus with the release of a proximity sensor and had
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Figure 2.8: A. Experimental design. We injected a viral vector into the FEF of two
monkeys, bringing an inhibitory opsin into the axons of FEF neurons. Electrophys-
iological recordings and laser stimulation of the FEF projections to area MT were
conducted in area MT. B. Injection locations in monkey H and monkey X. Blue
circles depict the injection locations. The values pointing to the locations specify
the depths at which we injected in mm and number and the total injection volume
in µl (the value is the same for all three units).
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to ignore direction changes in the uncued stimulus. We optically stimulated

during a period of stimulus presentation in which we expected attentional

modulations of firing rates. Trials with and without laser stimulation were

randomly interleaved, generating two stimulation conditions (noLaser, laser).

Effects of laser stimulation on behavioral performance

We compared performance between trials without and with laser stimulation

(noLaser, laser) separately for the two attention conditions (AttIN, AttOUT).

The hit rate in the AttIN condition was not changed by optical stimulation

(mean across sessions n=42, noLaser: 84%, laser: 85%, Wilcoxon signed-rank

test p=0.27). However, reaction times showed a small difference with opti-

cal stimulation (mean across sessions n=42, noLaser: 361ms, laser: 356ms,

Wilcoxon signed-rank test, p < 0.05). In the AttOUT condition, stimulation

had a small effect on the hit rate (mean across sessions n=42, noLaser: 86%,

laser: 88%, Wilcoxon signed-rank test p < 0.01). In contrast, reaction times

were not affected by stimulation (mean across sessions n=42, noLaser: 382ms,

laser: 380ms, Wilcoxon signed-rank test p=0.19).

Attentional effects on firing rate over time

We recorded 42 neurons, 38 were direction-selective (see method section for

details). For each neuron, we recorded several pseudo-randomly interleaved

conditions. Despite the AttIN, AttOUT, noLaser and laser conditions, we

presented either 2 or 8 different directions. In the following report of results,

we only analyzed the preferred direction.

Since we wanted to examine the effect of inhibiting the projection from the

FEF to area MT on attentional modulation, we first determined how the

attentional modulation developed over time during the progressing of a trial.

It has been shown in other studies that the attentional modulation can be

dependent on task expectancies of the monkey (Ghose and Maunsell, 2002)

and can increase over the time course of a trial (Treue and Martinez Trujillo,

1999).

Without laser stimulation, the average attentional modulation (expressed by
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Figure 2.9: A. Behavioral task. A fixation point was shown in the middle of the
screen. Monkeys had to fixate it and touch a proximity sensor. A cue appeared on
the screen indicating which of the two RDPs was the target stimulus. Subsequently,
the two RDPs were shown, one in the receptive field of the recorded neuron, the
other in the opposite visual hemifield. The monkeys had to respond to a direc-
tion change in the cued RDP and ignore direction changes in the uncued RDP. B.
Time course of trial events and laser stimulation. Direction changes in the target
or distractor occurred between 350 and 2000ms after stimulus onset. Therefore,
trials had varying lengths. We stimulated with a continuous laser pulse of 700ms,
starting 300ms after stimulus onset. Durations of specific trial epochs are given in
milliseconds.
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Figure 2.10: Time course of normalized firing rates without and with laser stimula-
tion in the two attention conditions (AttIN, AttOUT) and time course of attentional
indices without and with laser stimulation.
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Figure 2.11: Attentional indices in the two stimulation conditions for each
neuron in the time interval 300-1000ms after stimulus onset. Filled circles mark
the neurons that showed a significant modulation with attention without laser
stimulation.
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Figure 2.12: Attentional indices in the two stimulation conditions for each neuron
in the time interval 540-1000ms after stimulus onset. Filled circles mark the neurons
that showed a significant modulation with attention without laser stimulation.
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Figure 2.13: Distribution of attentional indices dependent on stimulation condition
in the time interval 300-1000ms after stimulus onset. The red bar depicts the mean
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Figure 2.14: Distribution of attentional indices dependent on stimulation condition
in the time interval 540-1000ms after stimulus onset. The red bar depicts the mean
of the distribution. Attention increased responses by 36% in the noLaser condition
and by 25% in the laser condition.
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attentional index, AI; see methods section for further details) increased over

time (figure 2.10). After around 540ms there was a pronounced increase in

modulation. Therefore, we used two different time intervals for computing the

AI: (1) 300-1000ms after stimulus onset and (2) 540-1000ms after stimulus

onset.

Effects of laser stimulation on attentional modulation

We calculated an attentional index for each cell separately for the noLaser

and laser conditions (see table S6 and S7). As mentioned above, we used

two different time intervals. On the single cell level, 26 out of 42 (62%) neu-

rons showed a significant attentional modulation without stimulation in the

period between 300 and 1000ms (figure 2.11, comparison of average response

between AttIN and AttOUT condition, Wilcoxon rank-sum test, p < 0.05).

With laser stimulation 22 neurons (52% of total cells) showed a significant

attentional modulation. In the period of 540 to 1000ms, 10 out of 42 (24%)

neurons showed significant attentional modulation without stimulation (figure

2.12, Wilcoxon rank-sum test, p < 0.05), and 11 neurons (26% of total cells)

with laser stimulation.

To estimate the effect of laser stimulation on the population level, we com-

pared the distributions of attentional indices (figures 2.13 and 2.14). Without

stimulation, we found a mean increase of firing rates with attention by 30%

(time interval 300-1000ms, AI: 0.12) and 36% (time interval 540-1000ms, AI:

0.14). With optical stimulation attention increased firing rates by 22% (time

interval 300-1000ms, AI: 0.09) and 25% (time interval 540-1000ms, AI: 0.10 ).

Inhibition of the projection from the FEF to area MT, hence, decreased at-

tentional modulation by 27% (figure 2.15, time interval 300-1000ms, Wilcoxon

signed-rank test, p < 0.05) and 31% (figure 2.16, time interval 540-1000ms,

Wilcoxon signed-rank test, p < 0.01).

Effects of laser stimulation on firing rates

To understand how stimulation changes firing rates in the two attention con-

ditions (AttIN, AttOUT), we calculated a stimulation index (SI) for both

conditions. Cells were differently affected by the stimulation (figures 2.17 and



58 Chapter 2 - Project manuscripts

SIAttOUT

-0.2 -0.1 0 0.1 0.2

S
I A

ttI
N

-0.2

-0.1

0

0.1

0.2

Figure 2.17: Stimulation indices in the two attention conditions for each neuron
in the time interval 300-1000ms after stimulus onset.

SIAttOUT

-0.2 -0.1 0 0.1 0.2

S
I A

ttI
N

-0.2

-0.1

0

0.1

0.2

Figure 2.18: Stimulation indices in the two attention conditions for each neuron
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Figure 2.19: Distribution of stimulation indices in the two attention conditions in
the time interval 300-1000ms after stimulus onset. The red bar depicts the mean
of the distribution. Laser stimulation decreased firing rates by 3% in the AttIN
condition and increased firing rates by 3% in the AttOUT condition.

2.18), that is, cells can be found in all quadrants of the scatterplot. On the

single cell level, only 5 cells were significantly affected by stimulation in one

of the two attention conditions (both time intervals, Wilcoxon rank sum test,

p < 0.05). Albeit not significant for a majority of single cells, stimulation

decreased firing rates in the AttIN condition by 3 to 4% and increased firing

rates in the AttOUT condition by 3 to 4% on the population level (figures 2.19

and 2.20). These effects were significant for the time interval 540-1000ms, but

not for the time interval 300-1000ms (Wilcoxon signed-rank test, p < 0.05).

Discussion

We used pathway-specific optogenetics to inhibit the projection from area FEF

to area MT while a monkey was performing a spatial attention task. We find

that optical stimulation significantly reduces average attentional modulation

of area MT neurons by 27 to 31%. We show that stimulation of FEF projec-

tions decreases firing rates when the monkey is attending to the stimulus in the

receptive field, and increases firing rates when the monkey is attending to the
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Figure 2.20: Distribution of stimulation indices in the two attention conditions in
the time interval 540-1000ms after stimulus onset. The red bar depicts the mean
of the distribution. Laser stimulation decreased firing rates by 4% in the AttIN
condition and increased firing rates by 4% in the AttOUT condition.

stimulus outside of the receptive field. This result suggests that there is push-

pull mechanism of spatial attention mediated at least partially by FEF input.

Relevant information is increased, while distracting information is decreased.

This finding is in accordance with the results of previous studies. Moore et al.

(2003) found that sub-threshold microstimulation of FEF neurons increased

firing rates of V4 neurons when a target stimulus was shown in the receptive

field of the neurons and the location of the receptive field matched the location

of the response fields of the stimulated FEF neurons. In contrast, stimulation

resulted in a decrease of firing rates when a distractor stimulus was shown in

the receptive field. Further evidence for a push-pull mechanism stems from

human fMRI studies (Rees, 1997; Pinsk, 2004), which found that the increase

of activity related to target processing and the suppression of activity related

to distracter processing was inversely related to the attentional load in these

studies.

It is impossible to design an experiment in which a sensory stimulus is neither

attended nor unattended, and the pure sensory response can be measured.
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Therefore, it is not possible to find out how neural firing rates would be with-

out attentional effects in an awake animal. Our results indicate that the pure

sensory response would lie between the attended and unattended response.

Without stimulation, we find that attentional modulation increased with the

progressing of the trial. Firing rates were modulated shortly after stimulus

onset, but the modulation increased sharply at around 540ms after stimulus

onset. Concurrently, attentional modulation with laser stimulation started to

sharply decrease around the same time. We started stimulation 300ms after

stimulus onset. It is unlikely that it takes 240ms until stimulation effects be-

come active. The latency of opsin activation has been shown to be less than

10ms (Mattis et al., 2012). Blocking already evoked action potentials within

an axon, as we were aiming at in our experiment, might take more time, but it

is implausible that the time difference would be more than 200ms. Rather the

results suggest that there is a modulation of firing rates that is independent

of FEF input, and that the effect of FEF on attentional modulation starts

or is pronounced at around 540ms in our task. It is likely that MT inherits

part of its attentional modulation from an already modulated sensory input

from lower areas, since neural activity can already by modulated by attention

in V1 (Motter, 1993; McAdams and Maunsell, 1999). However, lesioning the

prefrontal cortex (Gregoriou et al., 2014) resulted in a reduction of attentional

modulation by 40%, but not a complete abolishing of attentional modulation

in visual area V4. The laser stimulation in our experiment can be assumed to

reach only a limited spatial volume of tissue around the optical fiber tip. In

addition, we probably did not reach all FEF neurons projecting to area MT

with the viral vector injection. That means, we only partially inhibited the

input from FEF to area MT. Therefore, it is not expected to see bigger effects

on attentional modulation than with a complete lack of the FEF. However,

the results of lesioning FEF indicate that the remaining attentional modula-

tion in V4 could not be inherited from V1 assuming that all visual areas are

modulated in a similar way. Therefore, it is likely that other cortical areas,

like LIP, or cholinergic, dopaminergic or noradrenergic input plays a role in

the modulation. Is has been shown, for example, that acetylcholine has an

effect on attentional modulation in area V1 (Herrero et al., 2008). LIP shows

a clear attentional modulation (e.g., Herrington and Assad, 2009; Ibos and
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Freedman, 2016), however its role as a potential source of top-down modula-

tion in other visual areas still needs to be investigated.

Due to factors not related to the experiment, we started recording and stimu-

lation not until nine months after viral vector injection and recorded the last

cell 17 months after it. Even after this relatively long time after injection,

we still found pronounced effects of laser stimulation on the attentional mod-

ulation of MT neurons. This indicates that FEF neurons and axons possess

a robust expression of opsins and optogenetic experiments can be conducted

over broad periods of time.

We find that laser stimulation has a small effect on behavioral performance or

reaction time. However, the differences are so small that we do not consider

them to represent a change in the animals perception at this point. Recording

and stimulation in the second animal might clarify this finding.

The fact that stimulation had different effects on firing rates in different condi-

tions indicates that systematic secondary effects, for example, heat produced

by the laser, cannot explain our results. However, we cannot exclude the pos-

sibility that we partly stimulated MT neurons that project to the FEF and

have taken up the viral vector retrogradely. We have shown in the project

described in chapter 2.1 that after optogenetic injection in the FEF, retro-

gradely transduced cells can be found in several distant areas. Only a low

number of neurons could be found in area MT. However, only a histological

examination could clarify this concern.

We show for the first time, that FEF has a causal influence on attentional

modulation in area MT. In addition, we show for the first time that a top-

down long-range cortico-cortical projection directly modulates firing rates in

a target area during a higher cognitive task in the non-human primate. Our

results demonstrate that pathway-specific optogenetic inhibition can be used

in non-human primates to expand our knowledge of the circuitry underlying

complex behaviors.
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Methods

Animals

Two male monkeys (macaca mulatta) participated in this study. Monkey Har-

vey (H) was 19 years old during the data collection; his weight was varying

between 11 and 13kg during the recording. Monkey Xaver (X) was 12 years

old and weighing 11kg at the point of virus injection. Monkey H was prefer-

ably using his left hand for the task, while monkey X was preferably using

his right hand. The animals were group-housed in an animal facility of the

German Primate Center. Both monkeys were alpha animals. They were con-

tinuously exposed to the natural day/night circle through windows and access

to an outdoor cage. Diverse enrichment objects were present in the cages and

exchanged by the animal caretakers on a regular basis. Each group was kept in

sight with two additional monkey groups within one big room, so that commu-

nication was also possible between groups. Both monkeys had continuous free

access to dry food. During the training and recording days they were gaining

their fluid intake by juice reward during the experiment. The juice was chosen

according to the animal‘s preference and usually switched from day to day be-

tween the most preferred juices (preferences: monkey H grape and pineapple

juice, monkey X banana, grape and pear juice). Additional juices or mixtures

of juices were tried occasionally to test the animal‘s preference and provide

more variety. The animals could work as long as they wanted. They got an

additional amount of fruits and vegetables each day, chosen according to the

animal‘s taste preference, and a portion of protein-containing insects, cereals,

nuts or yoghurt. Whenever no training or recording was conducted, monkeys

had free access to water and got additional fruits and vegetables. The health

of the monkeys was monitored daily by a veterinarian, animal caretakers, the

responsible scientist and technical assistants.

All animal work and housing was conducted in accordance with all applicable

German and European regulations. The scientists in this study are aware

and are committed to the great respnsibility they have in ensuring the best

possible science with the least possible harm to any animals used in scientific

research. All animal procedures have been approved by the responsible re-

gional government office (Niedersächsisches Landesamt fur Verbraucherschutz
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und Lebensmittelsicherheit [LAVES], Oldenburg, Germany) under the permit

number 3392 42502-04-13/1100. All surgical and imaging procedures were

done under appropriate anesthesia, with appropriate analgesics and in accor-

dance with German laws governing animal use.

Implants

Monkey H was implanted with a titanium head post ten years before the ex-

periment. He participated in other attention studies before. A peek recording

chamber targeting area MT of the left hemisphere was implanted before the

experiment. Monkey X was also implanted with a titanium head post.

Viral vector injection

We determined the location and the shape of the FEF with the help of an MRI

scan and by anatomical landmarks (i.e., the arcuate and principal sulcus) af-

ter dura opening. A viral vector (AAV5-αCamKII-eNpHR3.0-mCherry, UNC

Vector Core, titer: 4.7x1012 vg/ml) was injected into the left FEF of monkey

H and the right FEF of monkey X. We opened the dura in a surgery and

used a Hamilton syringe (25µl, 32gauge needle with sharpened tip) to make

four penetrations (see figure 2.8). The distance between two penetrations was

approximately 1.5-2mm. At each penetration, we injected at multiple depths.

In monkey H, we injected 1µl every mm with a speed of 200nl/sec. Starting

with the deepest injection, we waited 5 minutes after each microliter to retract

the tip of the syringe to the next depth. In monkey X, we injected 1µl every

mm with a speed of 300nl/sec, and waited 2-5 minutes before retracting the

syringe to the next depth. The exact spatial configuration of the four pene-

trations was dependent on individual anatomy and the shape of blood vessels.

Therefore, the configuration differed between both monkeys.

Recordings and stimulation

Stimulation experiments started several months (monkey H) after the injec-

tion (see table S3-S5 for details about the recordings). We recorded single-cell

responses in area MT while optically stimulating in the vicinity of the elec-

trode tip (figure 2.8).
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Area MT was localized by an anatomical MRI scan after chamber implanta-

tion and our recording sites were chosen based on the MRI scan. Prior to

a recording and after isolating a neuron, we determined the position of the

receptive field and the preferred direction of a neuron by a hand mapping

using a moving RDP whose direction and position could be controlled by a

computer mouse. If the preferred direction was not apparent with the hand

mapping, we systematically presented different stimulus directions in the re-

ceptive field of a neuron, and determined the preferred direction based on an

online analysis of the firing rate.

We used a multi-electrode manipulator (20-channel tetrode Mini Matrix Sys-

tem, TREC) with a concentric arrangement of five guide tubes for our record-

ings: a circle of four guide tubes surrounded a central guide tube. We placed

an optical fiber (diameter 120µm, conical tip, TREC) into the central guide

tube and four microelectrodes into the surrounding ones. The optical fiber

was coupled to an orange (594nm) diode-pumped solid state (DPSS) laser

(Cobolt) by an optical patch cable (105µm, NA 0.22, Thorlabs). The laser

power was controlled by an acousto-optical modulator (AOM). The AOM and

the experiment were controlled by the software Mworks (version 0.6) running

on an iMac (Apple Inc.). Neural data was recorded with an Omniplex system

(Plexon Inc.). The eye position was monitored with an eyetracker (Eyelink

1000, SR Research). We analyzed whether there was a systematic difference

between the gaze position of the monkey in the noLaser and laser condition.

The mean difference was 0.02dva or less throughout the whole analysis pe-

riod. Since receptive fields in area MT are much bigger, we assume that gaze

position did not influence our results.

Before each recording session, we measured the light power at the end of the

optical fiber tip. We used each optical fiber repeatedly in several sessions,

but exchanged them whenever a major change in the light power at the tip

occurred or when the glass body showed any sign of crack. We used a laser

power that resulted in a measurable light power of 14mW or 16mW at the

fiber tip (these values were based on the maximum laser power reported in

Stauffer et al., 2016). Each optical fiber was usually used on several days

without showing considerable change in the maximum output power. The

optical fibers never broke as a result of the recordings. They had a sharpened
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tip, which resulted in an approximately circular light distribution around the

tip. The power measured straight at the tip was usually higher than the

laser power measured at the flanks of the tip. The tip length and shape dif-

fered slightly from fiber to fiber and therefore also the light distribution. We

adapted the laser power for each recording session, so that the light power

coming out straight at the tip was constant. The optical fiber tip was always

placed above the tip of the recording electrode during the recordings. We used

variable verticle distances of 0 to 800µm between the two tips (see table S5

for details).

Behavioral task

The animals were conducting a spatial attention task (figures 2.9). A red

(size 0.2x0.2dva) fixation point was shown in the center of a computer monitor

(BenQ XL2720T, resolution 1920x1080, refresh rate 120Hz). The animals had

to foveate it and touch a proximity sensor (Carlo Gavazzi EC3016-NPAPL)

in front of them to start a trial. A red circular cue (radius 0.3dva) appeared

on the screen next to the fixation point after 50ms. The cue instructed the

monkeys, which of the two subsequently presented moving random dot pattern

(RDP) was the target stimulus. The cue was shown for 500ms and followed

by a blank period with only the fixation point present for 400ms. After it, two

RDPs appeared, one in the receptive field of the recorded neuron, the other

with the maximum distance at the same eccentricity in the opposite visual

field. The size of the stimulus was adapted to cover the most responsive part

of the receptive field. We used a motion direction pool of 8 directions (0◦,

45◦, 90◦, 135◦ etc.). For each neuron, we either recorded the full set of eight

directions or we only recorded two directions (the one out of the direction pool

that was closest to the preferred direction and the direction 180◦ apart). Trials

with and without laser stimulation, the movement direction and the target

location were pseudo-randomly chosen. This resulted in 2x2x2 conditions

or 2x8x2 conditions per recorded neuron. The monkey had to respond to a

direction change of 25◦ to 45◦ in the target stimulus by releasing the proximity

sensor, a direction change in the non-cued stimulus had to be ignored. The

monkey was rewarded with a juice reward for completing the trial correctly.

False alarms or misses were not rewarded. 1/6 of the trials were catch trials,
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in which no direction change occurred in the target stimulus. In this case, the

monkey had to hold the proximity sensor until he received a reward.

We stimulated with a continuous pulse of 700ms, starting 300ms after the

onset of the two moving RDP. The direction change happened between 350ms

and 2000ms after onset of the two RDPs.

Data analysis

We calculated performance and reaction time of the monkey. We differen-

tiated between attention inside and outside of the receptive field (AttIN vs.

AttOUT) and trials without and with laser stimulation (noLaser vs. laser).

We did not differentiate between different directions for the calculation of the

performance. Since we were interested in the effects of stimulation, we tested

for differences in the noLaser vs. laser condition.

After the recordings, we first determined again offline whether the neurons

were responding to the motion stimulus. We compared firing rates in the pe-

riod of 300 to 200ms before stimulus onset with the firing rates 200 to 300ms

after stimulus onset in the AttIN condition. All cells included in the analysis

(n=42) show significant differences (Wilcoxon signed-rank test, p < 0.05). We

then determined whether cells were direction-selective. For that we compared

firing rates in the period of 200 to 300ms after stimulus onset between the

presumably preferred and the opposite direction. 38 out of the 42 neurons

were direction-selective (Wilcoxon rank sum test, p < 0.05). For the 5 cells

that were not direction-selective, we defined the direction that resulted in the

highest firing rate during the period 200-300ms after stimulus onset as the

preferred direction.

We only analyzed successfully completed trials, only the trial period until

the occurrence of any change in stimulus direction, and only the response to

the preferred direction. Since trials varied in duration until the first stimulus

change happened, for each cell and each condition (AttIN, AttOUT, noLaser,

laser) we calculated a PSTH with a bin size of 10ms.

We calculated an attentional indexAI = (RAttIN−RAttOUT )/(RAttIN+RAttOUT )

for each cell separately for the noLaser condition and laser condition by averag-

ing the responses in the potential stimulation period based on the PSTH. We

used two different time intervals (300-1000ms and 540-1000ms), and compared
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the distributions of attentional indices between the two stimulation conditions

(noLaser and laser).

The use of two different time intervals resulted from an analysis of the time

course of firing rates and attentional modulation with the progressing of the

trial. We calculated the averaged normalized response dependent on trial

time across all neurons and for the four conditions (AttIN, AttOUT x no-

Laser, laser). For each neuron, we binned the trials in 10ms and divided the

resulting firing rates of each bin by the average response of that neuron across

all trials in the four conditions during 0 to 200ms after stimulus onset. In

addition, we calculated an AI for each bin by using the PSTH.

Analog to the attentional index, we calculated a stimulation index SI =

(Rlaser − RnoLaser)/(Rlaser + RnoLaser) for each cell to test how stimulation

affects firing rates in the two attention conditions (AttIN vs. AttOUT).
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Introduction

Humans, like many other species with highly developed sensory systems have

the ability to voluntarily attend to specific information in their environment.

This selective attention confines processing to selected information, and is the

basis for an efficient use of sensory processing resources. However, it also lim-

its sensory perception.

When we try to detect a briefly presented white letter in a rapid serial presen-

tation of otherwise black letters, the perception of letters following the white

letter is impaired. This ‘attentional blink‘(Raymond et al., 1992) has two

predominant characteristics: a top-down origin and a duration similar to an

eye blink. In typical studies of the attentional blink (such as Raymond et

al., 1992) subjects view sequences of visual stimuli in rapid serial visual pre-

sentation, with two target stimuli embedded within each sequence and with
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different time intervals between the two targets. The ability of humans to

detect the second target is ideally determined as a function of inter-target in-

terval in two conditions: a single-task in which subjects solely have to detect

the second target and a dual-task in which they additionally have to identify

the first target. While in the dual-task subjects often fail in detection, they

show no impairment in the single-task despite the identical stimulus presen-

tation. Processing of the first target triggers the impairment and interferes

with the ability to detect or identify the second target for about 500ms. At

later time points, subjects detect the second target equally well in single- and

dual-task. The attentional blink, therefore, seems to represent the time atten-

tion stays on a target stimulus (the ‘dwell time of attention‘, Duncan et al.,

1994).

Most of the many studies of the attentional blink have used stationary vi-

sual stimuli (like letters or digits), which are processed by the ventral visual

pathway (e.g., Livingstone and Hubel, 1987). We wondered if stimuli elicit

the same temporary deficit in perception when they are processed in the dor-

sal visual pathway instead. The dorsal visual pathway is considered to be

primarily involved in the processing of spatial information and planning and

execution of actions (e.g., Goodale and Milner, 1992), including visual motion

processing (e.g., Dubner and Zeki, 1971). Therefore, we chose moving random

dot patterns (RDPs) as stimulus for our experiments. The sensory input to

the dorsal visual pathway comes mainly from magnocellular cells of the lat-

eral geniculate nucleus (e.g., Maunsell et al., 1990) - cells that are sensitive for

luminance contrast and temporal frequency (e.g., Shapley et al., 1981; Meri-

gan and Maunsell, 1990). In contrast, the ventral visual pathway receives its

main input from the parvocellular cells of the lateral geniculate nucleus (e.g.,

Ferrera et al., 1994), which comprises cells that are sensitive for high spatial

frequencies and color contrast (e.g., Merigan et al., 1991).

Despite this difference in sensory information input, similar top-down modu-

lations have been observed in areas of both visual pathways. Visual attention

modulates neural responses in areas of the dorsal pathway (e.g., Treue and

Maunsell, 1996) as it does in areas of the ventral pathway (e.g., Moran and

Desimone, 1985). Moreover, studies of object-based attention indicate that

a unified attentional system operates globally upon the visual system. For
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example, two studies found that the response of neurons sensitive for features

(color or motion) of an attended object that were irrelevant for the subjects‘

task was enhanced even if the relevant feature was processed in the other vi-

sual pathway (Schoenfeld et al., 2003; Katzner et al., 2009).

As mentioned above, the attentional blink is not a sensory phenomenon, but

rather shows a limitation in deployment of attentional resources (for a review

see also Dux and Marois, 2010). Therefore, if processing of motion stimuli

employs the same attentional resources, we expected that motion stimuli do

cause an attentional blink and that an attentional blink influences processing

in both visual pathways simultaneously.

We conducted four experiments to investigate a) if processing of motion stimuli

causes an attentional blink and b) if an attentional blink elicited by a stimu-

lus processed mainly in one of the two visual pathways affects perception of a

stimulus processed by the other pathway in the same way.

Methods

Subjects

Twelve subjects with normal or corrected-to-normal vision participated in

each experiment (Exp 1: 22 to 31 years, mean 26.6 years, 8 female; Exp 2: 21

to 31 years, mean 26.6 years, 6 female; Exp 3: 20 to 31 years, mean 26.9 years,

5 female; Exp 4: 19 to 31, mean age 25.6 years, 7 female, see tables S8-S15

for details about subjects). Except for one subject in experiments 3 and 4,

subjects were naive to the aim of the experiment. Subjects provided informed

written consent before the experiment and received a monetary compensation

for their participation.

Equipment

All experiments were written and executed with the open source software

MWorks on a MacPro (2x2.4 GHz Quad-Core Intel Xeon). The stimuli were

shown on a 22” TFT monitor (Samsung SyncMaster 2233RZ) with a resolution

of 36pix/deg and a frame rate of 120Hz. The subjects were sitting in a quiet,

dimly lit room; a chin and forehead rest stabilized their heads at a distance

of 57cm from the monitor. They received verbal instructions and gave their
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responses using a gamepad (Logitech Precision). In experiment 2, 3, and 4

eye positions were recorded with a video-based eye tracker (EyeLink 1000,

SR Research). Subjects had to maintain their gaze in a window of 4dva x

4dva on a fixation point placed in the middle of the screen for the duration

of stimulus presentation; trials in which the gaze deviated from that window

were repeated.

Stimuli and procedure

We adapted the design of Experiment 2 of Raymond et al. (1992) for the use

with moving RDPs (figure 2.21). The general design was as follows. A gray

(9.15cd/m2) box (height 12.5dva, width 16.3dva) was presented centered on a

dark (0.1cd/m2) background. Subjects started each trial by pressing a start

button on the gamepad; a white (33cd/m2) fixation point (height 0.2dva x

0.2dva) appeared for 183ms in the middle of the gray box. Subsequently, a

sequence of letters, random dot patterns (RDPs), or letters and RDPs was

shown in RSVP in the middle of the gray box. Subjects had to give a response

at the end of each trial.

The letters had a height of 1dva and were of font type Arial. The RDPs were

shown within a stationary and circular virtual aperture with a radius of 4dva

(experiment 1, 2, 4) or 5dva (experiment 3) and consisted of 250 (experiment

1, 2, 4) or 391 (experiment 3) dots (diameter 0.2dva) moving coherently at a

speed of 25dva/s. The dots received a random position at the beginning of an

RDP‘s presentation. Dots that left the RDP reentered at a random position at

its opposite side. The letters and the dots of the RDP were black (0.1cd/m2)

except for one stimulus in each sequence, which was white (33cd/m2). Each

sequence of stimuli contained either one or two target stimuli: target 1 (T1)

was the white colored stimulus, target 2 (T2) appeared in half of the trials

and was shown at different target onset asynchronies (TOA) following T1.

An experimental session started with a training phase, in which subjects were

trained separately to determine T1, or to indicate whether T2 occurred in

the stream. They participated in the main experiment if they solved both

tasks with an accuracy of at least 75%. The main experiment consisted of two

tasks, one of which was the detection of T2 (single-task). The other was a dual-

task in which subjects had to determine T1 and to detect T2. The order of
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Figure 2.21: Procedure and stimuli. (A) RSVP time course. In experiment 1 and
2, a sequence of RDP was presented. Each RDP was shown for 83ms and followed
by a blank period of 75ms (experiment 1) or 33ms (experiment 2), resulting in SOAs
of 158ms and 117ms. In experiment 3 and 4, a combination of RDPs and letters
was presented. The time course of the RDP stream was the same as in experiment
2, the letters were shown for 17ms and followed by a blank period of 75ms. (B)
Target stimuli. In experiment 1 and 2, target 1 (T1) was a white RDP moving in
one of four directions (0◦, 90◦, 180◦, 270◦), target 2 (T2) was a rightward (90◦)
movement. In experiment 3, T1 was a white letter randomly chosen out of the 26
letters of the alphabet, T2 was a rightward (90◦) movement. In experiment 4, T1
was a white RDP moving in one of four directions (0◦, 90◦, 180◦, 270◦), T2 was the
letter X.

executing both tasks was counterbalanced among subjects. Before conducting

the dual-task, subjects got around 20 practice trials to get familiar with the

task. During the whole session they could pause whenever they wanted, but

were at least forced to make two breaks each of 1 minute during both single-

and dual-task.
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Trial course

Experiment 1 and 2

Each trial consisted of a sequence of moving RDPs. The direction of a RDP‘s

movement was randomly set to a value other then the range of 45◦-135◦. Each

RDP was shown for 83ms (figure 2.21), which was the minimal presentation

time necessary to enable acceptable performance. It was followed by a blank

period of 75ms (experiment 1) or 33ms (experiment 2), which resulted in two

different stimulus onset asynchronies (SOA): 158ms (experiment 1) or 117ms

(experiment 2). Motion stimuli need to be presented longer than stationary

stimuli to allow for sufficient integration over time (e.g., McKee and Welch,

1985). To estimate if this parameter has a substantial influence on our re-

sults, we tested these two different time courses. The number of RDPs varied

between 12 and 17 (experiment 1) or 14 and 19 (experiment 2), so that a

trial lasted between 2083ms and 2875ms (experiment 1) and between 1817ms

and 2400ms (experiment 2). T1 was a white colored RDP (figure 2.21). Its

dots moved in one of the four cardinal directions (0◦, 90◦, 180◦, 270◦), and

its temporal position was randomly chosen between RDP 5 and 10. Seven

(experiment 1) or 9 (experiment 2) RDPs were always presented after T1. T2

was a RDP whose dots moved in the rightward (90◦) direction (figure 2.21),

and it was either the white RDP (experiment 1) or presented at one of the

5 (experiment 1) or 7 (experiment 2) temporal positions following it. In ex-

periment 2, T2 was never the white RDP. Therefore, T1 could only move in

the 0◦, 180◦ or 270◦ direction. Nonetheless, subjects were told that T1 could

move in any of the four cardinal directions to make the experiment as similar

as possible to experiment 1. We accepted that difference in favor of reducing

the number of trials, since subjects reported and showed signs of fatigue very

rapidly in this task. In the single-task, subjects had to indicate whether T2

was presented. The dual-task was to determine the direction of T1 and to

detect T2. Both tasks consisted of 180 (experiment 1) or 210 (experiment 2)

trials. T2 was shown 15 times at each of the 6 (experiment 1) or 7 (experi-

ment 2) possible temporal positions. An experimental session lasted about 70

(experiment 1) or 90 minutes (experiment 2) (including breaks).
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Experiment 3

Each trial consisted of a sequence of RDPs and a sequence of letters. The

dots of the RDPs were spatially superimposed on the letters. The letters were

chosen randomly out of the English alphabet, no letter occurred twice in a

trial, and each letter was shown for 17ms and followed by a blank period of

75ms. The movement directions of the RDPs were randomly set to a value

other than the range of 45◦-135◦, and the SOAs of the RDP sequence was the

same as in experiment 2 (figure 2.21). T1 was a white letter chosen randomly

out of the 26 letters of the alphabet, and T2 was a rightward movement. The

time course of the RDP stream was dependent on the letter stream in the

sense that the temporal position of T2 was adjusted to the onset of T1 or the

8 subsequent temporal letter positions. The whole RDP stream was shifted

accordingly, so that there could be a temporal offset at the beginning of a

trial. T1 was shown between position 8 and 14, and 11 letters always followed

it. The number of letters shown determined the end of a trial, but an RDP

presented at that time was always fully shown (including the following blank

period). The number of RDPs consequently varied between 16 and 21 and

a trial lasted between 1875ms and 2425ms. In the single-task, subjects were

instructed to detect T2, and in the dual-task to identify T1 and to detect

T2. Both tasks consisted of 252 trials. T2 was shown 16 times at each of the

9 possible temporal positions. An experimental session lasted about 2 hours

(including breaks).

Experiment 4

A sequence of RDPs and a sequence of letters with the same SOAs as in ex-

periment 3 (figure 2.21) were shown. The direction of the RDP‘s movement

was randomly set to a value between 0◦ and 360◦, the letters were chosen

randomly out of the English alphabet. T1 was a white RDP that moved in

one of the four cardinal directions, T2 was the letter X (figure 2.21). The

temporal position of T2 was adjusted to the temporal position of the RDP

at the position of T1 or the 6 subsequent temporal positions. The number

of RDPs varied between 11 and 14. The position of T1 was 3 to 6, and 8

RDPs always followed it. The number of RDPs shown determined the end of
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a trial, but a letter shown at that time was always fully presented (including

the following blank period). The number of letters varied between 14 and 18.

The duration of a trial was between 1517ms and 1867ms.

The single-task was the detection of T2, in the dual-task subjects were in-

structed to indicate the direction of T1 and to detect T2. Both tasks consisted

of 224 trials. T2 was shown 16 times at each of the 7 possible temporal posi-

tions. One experimental session lasted about 90 minutes (including breaks).

Data analysis

We wanted to determine the influence of T1 identification on the ability to

detect T2 as a function of the TOA. Therefore, we calculated the T2 detec-

tion rates in the single- and dual-tasks as the percentage of correctly detected

T2 in trials in which T2 was present. In the dual-tasks, we only considered

trials in which T1 was correctly determined and in the following always re-

fer to this conditional T2 detection rate for the dual-tasks. To quantify the

impact of T1 identification on detection of T2, we computed the difference

between the T2 detection rates for each TOA in both tasks. We conducted a

repeated-measure two-way ANOVA and multiple paired t-tests corrected by

the Holm-Bonferroni method to test for a dependence of T2 detection rates

on task and TOA.

Separately, to give a measure for comparing overall performance in the dual-

and single-tasks, we calculated the percentage of trials in which T1 was cor-

rectly determined (T1 accuracy), the percentage of trials in which the presence

or absence of T2 was correctly indicated (T2 accuracy), and the false alarm

rate of T2 independent of T1 accuracy.

Results

The aim of our study was to investigate if a stimulus that is processed by

the dorsal visual pathway can evoke an attentional blink and if an attentional

blink influences different pathways in the visual system simultaneously. We

used moving RDPs and examined in four experiments how processing of such

a stimulus affects and is affected by the processing of moving and stationary

stimuli.
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Experiment 1

In the first experiment, we adapted a previous experimental design (Raymond

et al., 1992) to investigate whether motion processing can cause an attentional

blink and impair subsequent motion perception. Subjects had to detect a

rightward movement in the single-task, and to additionally discriminate the

direction of T1 in the dual-task.

The overall T2 accuracy (includes trials with and without T2) in the single-

task was 86%, and mean false alarm rate 15% (ranging from 2% to 33% across

subjects). In the dual-task, overall T2 accuracy accounted for 76%, and mean

false alarm rate for 20% (ranging from 2% to 43% between subjects). T1

accuracy in the dual-task was 85%.

The single-task was designed to test for task-independent interference (such

as masking) between the stimuli. Task-independent interference should be

small or absent, since we were looking for task-dependent interference. In the

single-task, we calculated T2 detection rates for trials in which T2 had been

shown dependent on TOA. T2 detection rates in the dual-task were calculated

for trials in which T2 had been shown and T1 had been determined correctly.

Indeed we find that in the single-task, T2 detection rates were consistently

high (80% or more) for all TOAs (figure 2.22A). In contrast, in the dual-

task, T2 detection rates dropped transiently as low as 55%. We conducted

an ANOVA, which revealed a significant effect of task (single-task, dual-task;

F(1,55)=14.23, p < 0.01), a significant effect of TOA (F(5,55)=10.05, p <

0.01), and a significant interaction of task and TOA (F(5,55)=12.63, p < 0.01).

An attentional blink manifests in a transient difference of T2 detection rates in

single- and dual-task. Figure 2.22B shows the difference between T2 detection

rates dependent on TOA. T2 detection rates were significantly different for

TOAs of 158ms and 317ms, but not for longer TOAs (paired t-test, p < 0.05).

Experiment 2

In the second experiment, we used the same design as in the first experiment,

but changed the time course of the experiment: the blank period between

subsequent stimuli was decreased to 33ms (instead of 75ms). This change de-

creased overall performance. In the single-task, overall T2 accuracy was 83%,
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Figure 2.22: Results of experiment 1 and 2. (A) The T2 detection rates of both
experiments are plotted as a function of TOA for the dual- and single-tasks. (B)
The differences between the T2 detection rates in the dual- and single-tasks of both
experiments are displayed as a function of TOA. The error bars show the 95%
confidence interval of the difference.

and mean false alarm rate 19% (ranging from 1% to 31%). In the dual-task,

overall T2 accuracy accounted for 73%, and mean false alarm rates for 29%

(ranging from 13% to 43%). The T1 accuracy in the dual-task averaged 76%.

Since these values do not provide information about the temporal dependency,

we again calculated T2 detection rates for the single- and dual-task dependent

on TOA. As in experiment 1, we did not find task-independent interferences.

T2 detection rates were high (81% or more) for all TOAs. In the dual-task,

T2 detection rates dropped to a minimum of 60% for a TOA of 233ms (figure

2.22A). The ANOVA revealed a significant effect of task (single-task, dual-

task; F(1,66)=13.98, p < 0.01), a significant effect of TOA (F(6,66)=3.48,

p < 0.01), and a significant interaction of task and TOA (F(6,66)=8.50,

p < 0.01). The difference in T2 detection rates between single- and dual-

task is shown in figure 2.22B. It was significant for TOAs up to 350ms, but

not for longer TOAs (paired t-test, p < 0.05).

Experiment 3

The third experiment was designed to test if an attentional blink evoked by

stationary stimuli (letters) influences the processing of motion. Subjects had

to conduct a single-task (detection of a movement [T2]), and a dual-task
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Figure 2.23: Results of experiment 3 and 4. (A) The T2 detection rates of both
experiments are plotted as a function of TOA for the dual- and single-tasks. (B)
The differences between the T2 detection rates in the dual- and single-tasks of both
experiments are displayed as a function of TOA. The error bars show the 95%
confidence interval of the difference.

(detection of T2 and identification of a letter [T1]). In the single-task, the

overall T2 accuracy was 80%, and the mean false alarm rate 18% (ranging

from 4% to 28%). In the dual-task, the overall T2 accuracy was 73%, and

the mean false alarm rate 22% (ranging from 2 to 33%). T1 accuracy in

the dual-task averaged 96%. Figure 2.23A shows the T2 detection rates for

single- and dual-task. Subjects detected T2 in 72% of trials or more for all

TOAs in the single-task. In the dual-task, T2 detection rates were low for

TOAs of 0ms (37%) and 92ms (30%), and reached the rates in the single-

task for TOAs longer than 183ms. We conducted an ANOVA that revealed

a significant effect of task (F(1,88)=18.83, p < 0.01), a significant effect of

TOA (F(8,88)=23.1, p < 0.01), and a significant interaction of task and TOA

(F(8,88)=16.60, p < 0.01). The difference in T2 detection rates in single- and

dual-task is shown in figure 2.23B. Detection rates differed significantly for

TOAs up to 183ms (paired t-test, p < 0.05).

Experiment 4

The fourth experiment was conducted to test if an attentional blink evoked by

processing of a motion stimulus influences processing of a subsequently shown

stationary stimulus. Subjects again had to conduct a single-task (detection
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of a letter [T2]), and a dual-task (detection of T2 and determination of a

movement direction [T1]). In the single-task, mean T2 accuracy was 88%, and

mean false alarm rate 5% (ranging from 0% to 15%). In the dual-task, the

mean accuracy of T2 detection was 76%, and the mean false alarm rate 11%

(ranging from 0 to 38%). T1 identification in the dual-task was performed with

a mean accuracy of 73%. T2 detection rates were 73% or more for all TOAs

in the single-task. They showed a U-shaped time course in the dual-task,

starting with 68% for a TOA of 0ms, decreasing to a minimum of 45% for a

TOA of 243ms, and reaching the rates of the single-task for TOAs longer than

350ms (figure 2.23A). As expected, the ANOVA revealed a significant effect

of task (F(1,66)=36.20, p < 0.01), a significant effect of TOA (F(6,66)=6.46,

p < 0.01), and a significant interaction of task and TOA (F(6,66)=7.75, p <

0.01). T2 detection rates for TOAs up to 350ms differed significantly between

single- and dual-task (figure 2.23B, paired t-test, p < 0.05).

Discussion

The aim of this study was to explore if processing of a motion stimulus can

cause an attentional blink. Moving random dot patterns are processed by

the dorsal visual pathway and thus constitute a type of stimulus that has

marginally been used in attentional blink studies. Previous studies predom-

inantly tested stationary visual stimuli, which are processed by the ventral

visual pathway. We conducted two experiments to test how processing of a

moving random dot pattern influences perception of subsequently shown mov-

ing random dot patterns. In two additional experiments we investigated how

an attentional blink affects the two visual processing streams, i.e., the dorsal

and the ventral stream. We combined stationary letter stimuli with moving

random dot patterns and examined their interaction.

We show that processing of motion stimuli induces an attentional blink that

affects both perception of motion and perception of stationary letters; equally,

an attentional blink elicited by letter stimuli impairs perception of motion. A

stimulus that is processed by the dorsal visual pathway, thus, can evoke an

attentional blink. Moreover, an attentional blink seems to impact both visual

processing streams, no matter which kind of stimulus caused the attentional

blink, and, thus, seems to affect visual processing globally.
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Two previous studies showed already that processing of a stationary stimulus

can affect processing of a motion stimulus in RSVP (Kawahara et al., 2001;

Sahraie et al., 2001). However, in these studies stimuli were not shown at

the same spatial location, and, therefore, the necessity to shift or increase the

attentional focus in the spatial domain could also be a cause of the observed

performance impairment. The stimuli in our experiment were spatially over-

lapping to reduce the impact that a shift in spatial attention might have on

performance.

In experiment 1 and 2, we used two different SOAs (117ms and 158ms) to test

how motion processing influences subsequent motion perception. The shorter

SOA resulted in a slightly reduced attentional blink magnitude. This could

simply be due to the variance in subjects‘ performances or to the fact that

shortening the blank period between sequential RDPs made the movement

more continuous and therefore likelier to be perceived as a single object. Ob-

ject continuity reduced or even abolished an attentional blink in studies of

Raymond (2003) and Kellie and Shapiro (2004).

Several studies have suggested that the attentional blink is a consequence of

the limited capacity of a late processing stage, and while the first target occu-

pies this stage, the second target cannot be processed sufficiently (for a review

see Martens and Wyble, 2010). However, other findings put the generality of

this explanation in question. In about half (Visser et al., 1999) of all atten-

tional blink studies subjects detected the second target more often when it

was shown directly after the first target (i.e., at lag 1) than when it was shown

at the following lags (this finding is known as ‘lag-1 sparing‘, Potter et al.,

1998), and additional studies extend this finding by demonstrating that sub-

jects detect several targets as long as no intervening distractor is shown (Di

Lollo et al., 2005; Nieuwenstein and Potter, 2006; Olivers et al., 2007; Potter

et al., 2008; Raymond, 2003). Part of our results supports these results. In

experiment 4, the first target was a RDP and the second target the letter X.

When they were shown simultaneously, subjects detected the second target

in about 68% of trials, which was higher than chance performance (50%) and

higher than the performance for the three following TOAs. Even though the

performance was lower than in the single-task, it means that in a majority

of the trials subjects were able to process both targets simultaneously, and a
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capacity-limit as cause of the following detection deficit is implausible. Visser

and colleagues suggested that the absence of lag-1 sparing in many studies

arose by reason of the difference of the first and second target (Visser et al.,

1999). They suggested thatt a filter and attentional settings are adjusted to

the properties of the first target, and after its detection had to be reconfig-

ured to process the second target. Since our stimuli necessitated very different

processing but could still be processed simultaneously, our results contradict

this explanation.

In contrast to experiment 4, in experiment 3, in which the first target was a

letter and the second target a rightward movement, subjects‘ ability to detect

the second target was lowest when both targets were shown simultaneously or

directly following each other. This means that even though the stimulus types

were similar in our experiments, the elicited perceptional deficits differed in

their time course. While in experiment 1, 2 and 3 the duration of about 400ms

was similar to that of most attentional blink studies, in experiment 4 the im-

pairment lasted only about 200ms, and was similar to the results of a study

of Sahraie et al. (2001). Instead of identifying a letter, subjects in their study

had to detect a fixation point in a specific color. The second target task was

a linear movement. As mentioned above, the two stimuli were not completely

overlapping, instead the motion stimulus was surrounding the fixation point.

However, the similarity in tasks and results and the difference to the time

course in our experiment 3 indicate that magnitude and time course of the

attentional blink to some extent display the needs to process the first, but

also the second target.

Our results show that even though moving and stationary stimuli diverge in

processing, they both can cause an attentional blink that impacts processing

of both stimulus types similarly and simultaneously, supporting the hypothesis

that a unified attentional system operates across the visual system.
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Introduction

Our ability to process information in parallel is limited. This limitation comes

to the fore during a phenomenon known as the ‘attentional blink ‘: visual pro-

cessing of a chronologically second target (T2) is impaired when it is presented

within 500ms after a first target (T1) (Raymond et al., 1992). Since Raymond

et al. named the phenomenon in 1992, plenty of studies have dealt with it.

Nevertheless, it is still unclear which neuronal mechanisms are underlying it.

One of the many models explaining the attentional blink suggests that the lo-

cus coeruleus (LC) played a basic role in causing an attentional blink (Nieuwen-

huis et al., 2005). The LC is a part of the brain stem, and it projects to al-

most all cortical areas, including areas considered to be involved in attentional

processing (e.g., Morrison et al., 1982). It provides the major source of nora-

drenergic neurons to cortical areas (Berridge and Waterhouse, 2003), where it

mainly binds to α1-adrenergic and β-adrenergic receptors (Arnsten, 2000). LC

neurons respond to visual target stimuli with a phasic response (Aston-Jones
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et al., 1994; Usher, 1999; Murphy et al., 2014), which is thought to provide

noradrenergic input to LCs recipient areas and modulate activity in sensory

areas (Waterhouse et al., 1998). The phasic activity has been suggested to

act as a temporal attentional filter supporting selective, task-relevant behavior

(Aston-Jones and Cohen, 2005).

In the LC itself, noradrenaline exerts an inhibitory effect by binding to α2-

adrenergic auto-receptors (Svensson et al., 1975; Egan et al., 1983; Washburn

and Moises, 1989). Consequently, the phasic activity within the LC is often

followed by a brief period of inactivity of LC neurons (Aghajanian et al., 1977;

Aston-Jones et al., 1994; Usher, 1999). The duration of this refractory period

(lasting several hundred milliseconds, Nieuwenhuis et al., 2005) is similar to

the duration of an attentional blink. This similarity constitutes the basis for

the suggestion of Nieuwenhuis et al. that activity in the LC is causing an

attentional blink.

Nieuwenhuis and colleagues tested the role of noradrenaline in temporal and

spatial attention (Nieuwenhuis et al., 2007). Subjects were administered the

noradrenergic agonist clonidine, which acts as an agonist for the α2-adrenergic

auto-receptors within the LC and thereby decreases activity within the LC

(Aghajanian et al., 1977; Svensson et al., 1975). Subjects were conducting a

temporal and a spatial attention task during a time window following drug

administration in which clonidine exerts a physiological effect (Tiplady et al.,

2005; Halliday et al., 1989; Coull et al., 2001). Contrary to the expectations,

the authors did not find a difference in performance between treated subjects

and a placebo group in an attentional blink task.

However, a study using the noradrenergic antagonist propanolol, which acts

on the β-adrenergic receptors throughout the brain, showed a general reduc-

tion in the ability to either detect T1 or T2 (De Martino et al., 2008).

These results should be regarded with caution. As reviewed in Arnsten (2000),

activation of different adrenergic receptors can have opposing effects in dif-

ferent brain areas. Therefore, global, unspecific administration of adrenergic

drugs together with the temporal imprecision of this kind of drug administra-

tion can provide delusive results, and might mask the specific role of the LC.

In recent years, a non-invasive physiological measure has more and more been

used in the study of attention: tracking the diameter of the pupil. After early
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reports that the pupil size is influenced not only by sensory input, but also by

higher cognitive processes like attention (Loewenstein, 1920; Hess and Polt,

1964), more recently, it has been suggested that pupil diameter can be used as

an indirect measurement for LC activity in human subjects (Gilzenrat et al.,

2010), and based on this assumption the role of the LC in visual processing

has been investigated by measuring pupil size (Kihara et al., 2015).

A study in the non-human primate provided experimental evidence for the hy-

pothesis that pupil size reflects LC activity (Joshi et al., 2016). The authors

found that LC activity reliably preceded changes in pupil size. Additional

brain areas showed the same relationship, but with longer latencies than the

LC. Furthermore, a fMRI study in humans reported a correlation between

pupil size and BOLD activity in the LC (Murphy et al., 2014).

As pupil size is influenced by attentional demands, Hoeks and Levelt (1993)

developed a method with which changes of pupil size over time can be used

to compute the potentially underlying attentional pulses. The method al-

lows deconvolving the pupil size trace over time by using an Erlang gamma

function as impulse response function, and delivers the underlying attentional

pulses as an output. Parameters of the impulse response function have been

determined experimentally by the authors.

Wierda et al. (2012) adapted this method for the application in tasks with

high temporal frequency stimulus presentation. They analyzed pupil size dur-

ing an attentional blink task and compared attentional pulses between blink

and no-blink trials. Attentional pulses evoked by T1 presentation were higher

in amplitude, and those evoked by T2 presentation lower in amplitude in blink

tasks. The authors concluded that these results are consistent with a role of

the LC during the attentional blink and pupil dilation.

In this study, we measured pupil size during a motion direction discrimination

task that was based on the design of attentional blink experiments and the

modified version used by Duncan et al. (1994). We used the deconvolution

method (Wierda et al., 2012; Hoeks and Levelt, 1993) to indirectly test the

hypothesis that LC activity is responsible for the occurrence of an attentional

blink. Similar to our previous approach described in chapter 2.3, we compared

a single-task (ST), in which only T2 had to be identified, and a dual-task (DT),

in which T1 and T2 had to be identified, while presenting both target stimuli



86 Chapter 2 - Project manuscripts

with varying target onset asynchrony (TOA). The two tasks were different

only in the instruction the subjects received, but not in the visual sensory

input, i.e., both target stimuli were shown in each trial. Therefore, our exper-

imental design differed from previous studies that measured pupil size during

attentional blink experiments (Wierda et al., 2012; Zylberberg et al., 2012),

since in these studies the presented target stimuli were always relevant and

attended, and no condition with an unattended, irrelevant target stimulus was

conducted.

Our working hypothesis was that LC activity could be reconstructed by ana-

lyzing the pupil size with the deconvolution method. The resulting attentional

pulses, under this assumption, would correspond to the LC input to the neu-

ronal circuit controlling pupil size and resulting in a change of pupil size.

Our expectation was that attentional pulses evoked by the two target stim-

uli should differ between single- and dual-task concerning their amplitude.

Pulses evoked by T1 presentation should be smaller in the single-task than

in the dual-task, since in the former T1 is irrelevant and should not capture

attention as much as in the dual-task. Furthermore, the attentional pulses

evoked by T2 presentation should be smaller in the dual-task compared to

the single-task within the period where an attentional blink typically occurs,

because the LC is in its refractory period after T1 presentation. Pulses evoked

by T2 presentation outside the attentional blink window should be similar in

single- and dual-task.

Methods

Subjects and experimental set-up

All experiments were conducted in accordance with institutional guidelines for

human experiments and the principles of the Declaration of Helsinki. Each

subject gave informed written consent prior to the experiment and received

a monetary compensation. In total, 26 naive subjects were trained in the

task, out of which 14 subjects (female: 6, left-handed: 1, age: 19-45years;

mean 25.5, see tables S16 and S17 for more information) reached a predefined

criterion (performance of at least 75% in the single-task) within a few training

sessions and participated in the main experiment. All subjects reported to
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have normal or corrected-to-normal vision. They were sitting in a quiet, dimly

lit room. A chin and forehead rest stabilized their head, so that the subjects‘

eye distance to the monitor was 57cm. Pupil size and gaze position were

recorded with an EyeLink 1000 system (SR Research). The experiment was

written with MWorks 0.6 and run on a MacPro (2x2.4GHz Quad-Core Intel

Xeon). Stimuli were presented on a 22“ LCD-monitor (Samsung SyncMaster

2233RZ) with a refresh rate of 120Hz and a resolution of 1680x1050 pixel.

Subjects gave their responses with a standard keyboard (Dell).

Task design

A red fixation point (15.1cd/m2) was presented in the center of a grey back-

ground (21.6cd/m2) (figure 2.24). A black (0.1cd/m2) and a white (79.2cd/m2)

moving random dot pattern (RDP) were shown at an eccentricity of 5 degrees

of visual angle (dva). The black RDP was always located below the fixation

point, the white RDP always above the fixation point. The RDPs consisted of

400 dots (radius 0.2dva) presented behind a circular virtual aperture of 3dva

and moving with a speed of 6dva/s. Dots that left the circular aperture ap-

peared at a random position at the opposite side of the RDP. Subjects started

each trial by pressing a start button on the keyboard and fixating the central

fixation point (fixation window 3dva). After 500ms the two RDPs appeared,

one above and one below the fixation point. The dots moved in random di-

rections. After 500-1000ms (pseudo-randomized) the black RDP (T1) started

to move coherently into one of four possible target directions (45◦, 135◦, 225◦,

315◦) for 83ms. Subsequently, the coherent motion was replaced by a mask,

in which each quarter of the dots moved into one of the four possible target

directions. The mask was shown for at least 500ms, but always as long as

the second stimulus was shown on the screen. The dots of the second, white

RDP (T2) moved coherently into one of four target directions (0◦, 90◦, 180◦,

270◦) after a pseudo-randomized target onset asynchrony (TOA) of 0-700ms.

The coherent motion lasted for 83ms and was followed by a mask of 500ms.

After both masks had been presented, both RDPs disappeared, but subjects

had to keep fixation for 1500ms. At the end of the fixation period, a tone

indicated that subjects were allowed to give a response. Trials were aborted

and repeated, in case subjects pressed a button or lost fixation before trial
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Figure 2.24: Task design. (A) Spatial arrangement of stimuli. T1 was always
presented 5 dva below the fixation point, T2 always 5dva above. (B) Time course
of stimulus presentation. Numbers indicate duration in milliseconds. After 500ms
of fixation, both stimuli simultaneously appeared on the screen. They differed in
the time course of their intrinsic movement. Both stimulus streams started with the
presentation of a randomly moving RDP. After 500 to 1000ms, T1 moved coherently
for 83ms into one of four possible directions and was followed by a mask for at least
500ms. T2 showed coherent movement after 0 to 700ms after T1 onset and was
followed by a mask of 500ms. Both stimuli disappeared after presentation of the
T2 mask. Subjects continued fixation for 1500ms.
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end. Each subject conducted two conditions: a single-task and a dual-task.

In the single-task, subjects had to indicate in which direction the second tar-

get stimulus (T2) was moving. In the dual-task, they had to identify the

movement direction of both target stimuli (T1 and T2). Subjects conducted

the two conditions block-wise and were always starting with the single-task.

During a session each subject conducted two further tasks, which are not part

of the following analysis.

Data analysis

All analyses were conducted in Matlab (MathWorks), except for the decon-

volution modeling, which was done in R (version 3.2.1) using RStudio (ver-

sion 1.0.143). We analyzed the overall performance of target identification

in the different conditions. Furthermore, we determined the performance of

T2 identification for the single- and dual-task in dependence of the TOA and

compared it between the two tasks. T2 performance in the dual-task was only

analyzed based on trials in which T1 was correctly identified.

The pupil size data was analyzed in the following way. For each trial we di-

vided the pupil size at each point in time by the mean pupil size in the 500ms

period before T1 onset in that specific trial. Since we were interested in the

influence of the target stimuli on the pupil size, we aligned the change of the

pupil size to T1 onset time.

We compared pupil size between single-and dual-task in different ways. First,

we averaged the pupil size over a period of 1000-2000ms after T1 onset and

compared the mean between single-and dual-task based on trials with correct

T2 identification (and additional correct T1 identification in the dual-task).

We only used the correct trials, because we were interested in the pupil re-

sponse elicited by the two target stimuli. In this way, we were as sure as

possible that the subjects have seen the target stimuli and the measured pupil

size was a result of target processing.

For the TOAs, in which performance was significantly different between single-

and dual-task, we computed pupil size in the dual-task separately for correct

(’no-blink trials’) and incorrect (’blink trials’) T2 responses based on trials

with correct T1 identification. We again compared the averages over a period

of 1000-2000ms after T1 onset between no-blink and blink trials.
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We used the deconvolution method as implemented by Wierda et al. (2012)

and adjusted it to our needs. As described in Wierda et al. (2012), the

method is based on the pupil deconvolution developed by Hoeks and Lev-

elt (1993), but adapted to high frequency stimulus presentation. An atten-

tional input i = ω1,ω2,. . . ,ωk was deconvolved with an Erlang gamma function

h = s · (tn) · e(−n·t/tmax). ωI was the strength of the attentional pulses at the

position I in the vector i, s (= 1/1027) a constant to scale the pupillary

response. The parameters tmax (=930ms) and n (=10.1) have been experi-

mentally determined by Hoeks and Levelt (1993), and can be assumed to be

stable over subjects and tasks. Tmax was the temporal position of the maxi-

mum pupil response and n the number of layers implemented in the model.

We used the parameters of the Erlang gamma function as experimentally de-

termined by Hoeks and Levelt. The predicted pupil dilation was calculated

as pd = I · b+ (i ∗ h); where b was a parameter accounting for the drift in the

pupil data. The strength ωI of the attentional pulses was fit by minimizing

the mean square error by using the Nelder-Mead method.

With this analysis, we calculated the underlying attentional pulses for several

conditions. For all conditions, we modeled 21 pulses starting at -500ms before

T1 onset and ending 1400ms after T1 onset with an inter-pulse distance of

100ms. The Nelder-Mead method gives a slightly different result for each run.

Therefore, we calculated the mean pulse strength out of 200 iterations.

We first analyzed trials independent of the TOA for trials with correct T2

identification (and additional correct T1 identification in the dual-task) and

compared attentional pulses between single-and dual-task. Furthermore, we

calculated attentional pulses dependent on TOA for trials with correct T2

identification (and additional correct T1 identification in the dual-task). In

addition, we compared blink and no blink trials for a TOA of 100ms. We

chose this TOA, because it resulted in the biggest difference in performance

between single-and dual-task.

Results

We first analyzed the performance of the subjects. Overall, T1 was reported

correctly in 82% (±0.03%(SEM)) of trials in the dual-task. T2 was reported

correctly in 75% (±0.04%) of trials in the dual-task and 91% (±0.02%) of
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Figure 2.25: Performance in single- and dual-task. T2 performance dependent on
TOA. The performance in the single-task is based on all trials, performance in the
dual-task was calculated only for trials with correct T1 identification. Errorbars
represent the SEM, asterisks mark TOAs with significant difference between single-
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trials in the single-task. Figure 2.25 shows the performance for T2 identi-

fication in the single- and dual-task dependent on TOA. Performance was

consistently high (> 80%) in the single-task for all TOAs. In the dual-task,

performance was high for long TOAs (400-700ms, > 85%), but dropped to

a minimum of 46% for a TOA of 100ms. A two-way ANOVA (task x TOA)

revealed a significant effect of task (F(1,91)=43.35, p < 0.05), a significant

effect of TOA (F(7,91)=23.92, p < 0.05), and a significant interaction of both

(F(7,91)=10.43, p < 0.05). Post-hoc analysis revealed significant differences

for TOAs of 0ms to 300ms (p < 0.05, paired t-test, FDR-corrected), but not

for longer TOAs.

We next analyzed the pupil size change aligned to the onset of T1 occurrence

based on trials with correct T2 identification (and additional correct T1 iden-

tification in the dual-task). Figure 2.26 shows that throughout the trial the

mean pupil size was higher in the dual-task than in the single-task. The av-

erage pupil size in the period of 1000-2000ms differed significantly between

single- and dual-task (mean ST: 0.045±0.006(SEM), mean DT: 0.066±0.01;

p < 0.01, Wilcoxon signed-rank test). We used the deconvolution method

to compute the attentional pulses underlying these pupil size changes over

time. Figure 2.27 shows the strength of the attentional pulses in the single-

and dual-task. For the dual-task, we found three clear peaks at 0ms, 500ms

and 900ms. At 200ms, there was a minimum in the attentional strength. In

contrast, in the single-task, the attentional strength rose at 0ms, and stayed at

an elevated, but lower level than in the dual-task. The strength of attentional

pulses differed between single- and dual-task for all timepoints except -200ms

and 100ms after T1 onset (Wilcoxon rank sum test, p < 0.05).

Figure 2.28 shows the attentional pulses computed separately for the different

TOAs. In the single-tasks, we found that at T1 onset, there was an increase

in the attentional pulse. Dependent on the TOA we found a second, higher

pulse at a later time point which was roughly centered at the time point of

T2 occurrence. For long TOAs, a third peak was located later in the trial. In

the dual-task, we found two clear peaks with a similar strengths for all TOAs.

The two peaks were all centered at 0ms and at 400-600ms. Similar to the long

TOAs in the single-task, a third peak occurred later in the trial.

We calculated the pupil size for blink trials for the TOAs that resulted in signif-
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Figure 2.27: Deconvolution results correct trials in single- and dual-task. (A) Pupil
size: model vs. data. (B) Strength of attentional pulses.

icant differences in performance. Figure 2.29 shows the pupil sizes dependent

on time. We compared the mean pupil size in the interval of 1000-2000ms

for blink and no blink trials, and found that blink and no blink trials did

not differ significantly (Wilcoxon signed rank test, p = 0.33). For a TOA of

100ms, we applied the deconvolution method (figure 2.29). Whereas in the

blink trials three distinct peaks were present, in the no blink trials we found

only two peaks.

Discussion

We measured pupil dilation in a motion discrimination task that is similar to

the design of attentional blink experiments. We wanted to test the hypothesis

that LC activity is underlying the attentional blink by assuming that pupil di-

lation is an indirect measure for LC activity. We used a deconvolution method

(Hoeks and Levelt, 1993; Wierda et al., 2012) to compute the underlying at-

tentional pulses that supposedly lead to changes in pupil size.

The performance of the subjects in our task showed a similar, albeit a bit
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Strength of attentional pulses for blink and no-blink trials for a TOA of 100ms.

shorter, temporary drop as reported in previous attentional blink studies (e.g.,

Raymond et al., 1992). Our task differs from other attentional blink experi-

ments in that our stimuli were not shown in the classical way of rapid serial

visual presentation and are presented at two distinct spatial locations (simi-

lar to the paradigm used in Duncan et al., 1994). Nonetheless, performance

was impaired in the dual-task for up to 300ms after presentation of the first

target stimulus T1. We used this experimental design, because we wanted to

maintain the luminance of stimulation as constant as possible throughout the

trial by using moving RDPs.

Pupil size was on average higher in the dual-task than in the single-task, which

is in accordance with studies showing that pupil dilation depends on atten-

tional load or on the number of target stimuli that need to be detected during

a task (Zylberberg et al., 2012; Alnaes et al., 2014; Wahn et al., 2016). We

found three distinct peaks in the underlying attentional pulses for the dual-

task, while the pulses in the single-task were less distinct. In accordance with

our hypothesis, we found that the attentional pulse related to T1 presentation

was higher in the dual-task than in the single-task. Analyzing the pupil size

separately for each TOA showed that in the single-task an attentional pulse

was aligned to the onset of T2. In contrast, in the dual-task all TOAs showed

the same temporal pattern: a first peak aligned to T1 onset and a second

peak approximately 500ms later. These results support the hypothesis that
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in the dual-task, T2 does not evoke an attentional pulse when it is presented

within the period of an attentional blink.

We found that for a TOA of 700ms, single-and dual-task resulted in the same

pattern of attentional pulses. This is partly in accordance with our hypothesis

that attentional pulses evoked by T2 presentation should not differ between

single- and dual-task outside of the period of an attentional blink. However,

for the single-task we would rather expect a single pulse aligned to 700ms.

Our results suggest that in the dual-task, T1 presentation triggered a sequence

of attentional pulses influencing pupil size with a frequency of around 2-3Hz.

This pattern was not changed by the presentation of T2. In the single-task in

comparison, T1 presentation did not seem to trigger such a sequence; instead

we found a small attentional pulse evoked by T1 and a second, higher peak

aligned to the onset of T2. These findings support the hypothesis that the

pupil size is affected by a phasic input being released in response to a target

stimulus. The phasic input is followed by a period, in which no input is affect-

ing the pupil size network. As described before, this pattern of activity can be

found in the locus coeruleus, and therefore our results support the hypothesis

that LC is involved during the attentional blink.

Contrary to previous studies (Zylberberg et al., 2012), we found no difference

in overall pupil dilation between blink and no-blink trials. However, we found

a difference in the temporal pattern of attentional pulses computed for a TOA

of 100ms. While in the blink trials we find an oscillatory pattern with peaks

at 0ms, 450ms and 900ms, in no-blink trials, there were only two peaks, one

at 0ms and a much wider peak centered at around 550ms. These findings

suggest that there is an oscillatory input to the pupil network aligned to T1

onset and operating as long as subjects are still looking for a target stimulus.

Such oscillatory activity in the delta range is usually linked to sleep states.

However, there is evidence that delta oscillations also play a role during stim-

ulus processing (e.g., Schroeder and Lakatos, 2009; Safaai et al., 2009). Safaai

et al., for example, developed a model based on recordings in the LC and the

somatosensory cortex of rats. The model proposes that LC activity and its

coupling to the cortex can amplify delta oscillations in the cortex and dur-

ing stimulus processing. However, if that was the case, and the input to the

pupil network was also reflecting an input to the cortex influencing target
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detection, target detection should be easier for targets presented at a high of

this oscillatory input. The oscillatory pattern that we find for the attentional

pulses, would suggest that performance in the dual-task is higher for TOAs

that fall onto the highs of the oscillation, i.e. 0ms, 450ms, 900ms after T1

onset. However, this was neither the case in previous attentional blink studies

nor in our experiment, as the performance is constantly high for long TOAs.

Therefore, our results suggest that the source influencing the pupil size, be it

the locus coeruleus or not, is not alone causing the processing deficit during

an attentional blink.





Chapter 3

Summary and outlook

This thesis contains four projects that investigated the complex nature of vi-

sual top-down attention from different perspectives and with different meth-

ods.

We provide anatomical evidence that the method of optogenetics can be used

to target the fronto-visual and fronto-parietal network and its long-range ax-

onal projections. Injection of viral vectors into frontal areas (FEF and PMv)

resulted in profound opsin expression around the injection location. We con-

firmed that the opsins are not only incorporated into the membrane of the

somata in the injection region, but are present within the dendrites and ax-

ons of the neurons. We find opsin-positive axons in the white matter and in

distant target areas, like the parietal area MIP and the visual area MT. We

show that 10 weeks after viral vector injection, opsins can already be found

in a decent amount in the axons in distant areas. Our results indicate that

optical stimulation of axonal projections can be conducted in the fronto-visual

and fronto-parietal network.

Based on these results, we injected one of the previously tested viral vectors

into the FEF of two animals trained in a spatial attention task. We inhibited

the connection of the FEF to visual area MT in one monkey while the animal

was conducting a visual spatial attention task. Based on numerous evidence,

the FEF has been suggested to play a fundamental role in guiding visual at-

tention. However, these studies were unable to distinguish between direct

effects of the FEF on extrastriate visual areas and indirect effects. By using

optogenetics, we show that the modulation that the FEF exerts on visual area

MT during attention results at least partly from a direct input from the FEF.
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In our experiments, attentional enhancement of firing rates was reduced by

up to 31% when the input from the FEF was inhibited or reduced by laser

stimulation. Our results show that attentional modulation in an area of the

dorsal visual pathway seems to be influenced by the FEF similar to areas of

the ventral visual pathway.

However, our results and the results of other studies (Gregoriou et al., 2014)

indicate that the FEF might not be the only source of attentional signals in

visual areas. It is known that several other cortical areas, for example, area

LIP, and subcortical areas, like the superior colliculus, play a role in top-down

attention (Bisley and Goldberg, 2010; Krauzlis et al., 2013). In addition, the

locus coeruleus, the nucleus basalis of Meynert or the ventral tegmental area

– areas that send noradrenergic, cholinergic or dopaminergic projections to

widespread brain areas – most likely play a role during top-down attention

(Noudoost and Moore, 2011b).

In the human subject, we investigated the phenomenon of the attentional blink

in two further studies. Since an attentional blink has primarily been shown to

occur for stimuli processed in the ventral visual pathway, we asked whether it

also occurs for stimuli processed in the dorsal visual pathway. We show that

motion stimuli do evoke an attentional blink in a similar way as do stationary

visual stimuli. In addition, we found that an attentional blink caused by one

type of stimulus also affects processing of the other kind of stimulus. These

results suggest that an attentional blink affects the whole visual processing

system. In line with the results of several previous and our physiology study

(i.e., that the FEF is involved in attentional modulation within dorsal and

ventral stream visual areas) the findings speak for the existence of a unified

attentional system operating comprehensively within the brain.

We used a similar, but simplified experimental design in a follow-up psy-

chophysics study. In addition to behavioral performance, we measured pupil

size of the subjects. It is known that cognitive processes, e.g., attention, affect

the pupil size. A model had been derived that allows to compute attentional

pulses underlying pupil size changes (Hoeks and Levelt, 1993; Wierda et al.,

2012). We used this model to analyze pupil size, relate it to performance, and

create a link to the activity of the locus coeruleus. The locus coeruleus has
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been suggested to influence pupil size and to play a role in causing an atten-

tional blink. We find evidence for the hypothesis that the attentional blink

and locus coeruleus activity might be related. Our results show that the pupil

size is differently affected by the single-and dual-tasks. While we found an

attentional pulse aligned to the onset of the second target in the single-task,

we found no attentional pulse aligned to the second target in the dual-task.

Instead, we found a pattern of pulses aligned only to the onset of the first

target. Our results are in line with the hypothesis that the locus coeruleus

is involved in the phenomenon of the attentional blink. However, we did not

find evidence that the pupil size reflects the behavioral outcome of the trials.

Top-down attention is a complex process that involves a complex network of

brain areas and neurotransmitters. It can neither be reduced to the interaction

of two brain areas, nor can it be understood by measuring psychophysical per-

formance. Understanding top-down attention necessitates the disentangling

of the network interactions including cortical areas, but also subcortical areas,

and maybe even the whole body. Our projects explored two different mech-

anisms of attentional modulation: a modulation by the cortical prefrontal

cortex and a modulation by a subcortical structure that acts by releasing the

neuromodulator noradrenaline into multiple target areas. As mentioned in the

introduction, the most prescribed drugs for treatment of ADHD act on the

noradrenaline and dopamine signaling. One of the emerging questions out of

this and our results is whether these neurotransmitters also play a role during

attention in visual areas and whether and how the release of these neurotrans-

mitters interacts with the input and the modulation by the prefrontal cortex

(and maybe also the parietal cortex). Since visual area MT receives a direct

input from the locus coeruleus (Tigges et al., 1982), it is tempting to ask for

the role of this input during top-down attention and whether there might be

an interaction with the modulation by the FEF.

Investigating the influence of two areas onto a third area had been very diffi-

cult in the past. However, combining pathway-specific optogenetics with neu-

ropharmacological manipulations or cell-type specific optogenetics provides a

new possibility to understand the interaction of cortical and subcortical struc-

tures during top-down attention.



102 Chapter 3 - Summary and outlook

If we want to understand psychological disorders like ADHD, we have to study

the complex attentional networks and the interactions of cortical and subcor-

tical areas.
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Manuscript 1

Antibodies

Table S1. Primary antibodies

Antibody species dilution vendor

Anti-GFP chicken 1:1000 Aves Labs, GFP-1020

Anti-mCherry rabbit 1:500-1000 Rockland, 600-401-P16

Anti-NeuN mouse 1:500 Millipore, MAB377

Table S2. Secondary antibodies

all ordered via Dianova, from Jackson ImmunoReseaarch Laboratories, Inc.

Antibody species dilution code

Anti-Chicken IgY (IgG) (H+L) donkey 1:400 703-546-155

Alexa Fluor 488-conjugated AffiniPure F(ab’)2 Fragment

Anti-Mouse IgG donkey 1:400 715-546-150

Alexa Fluor 488-conjugated AffiniPure F(ab’)2 Fragment

Anti-Rabbit IgG (H+L) donkey 1:400 711-166-152

CyTM3-conjugated AffiniPure F(ab’)2 Fragment

Anti-Mouse IgG (H+L) donkey 1:400 715-606-150

Alexa Fluor 647-conjugated AffiniPure F(ab’)2 Fragment
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Manuscript 2

Table S3. Datafiles of neurons included in the analysis

Filename

jah-spAtt2-hay-005-01+07 jah-spAtt2-hay-044-01+02

jah-spAtt2-hay-006-01+04 jah-spAtt2-hay-045-01+01

jah-spAtt2-hay-009-01+02 jah-spAtt2-hay-045-01+03

jah-spAtt2-hay-010-01+04 jah-spAtt2-hay-047-01+01

jah-spAtt2-hay-011-01+02 jah-spAtt2-hay-049-01+02

jah-spAtt2-hay-011-01+04 jah-spAtt2-hay-050-01+01

jah-spAtt2-hay-012-01+06 jah-spAtt2-hay-050-01+03

jah-spAtt2-hay-015-01+02 jah-spAtt2-hay-051-01+02

jah-spAtt2-hay-021-01+04 jah-spAtt2-hay-052-01+01

jah-spAtt2-hay-022-01+03 jah-spAtt2-hay-053-01+03

jah-spAtt2-hay-023-01+01 jah-spAtt2-hay-054-01+02

jah-spAtt2-hay-024-01+05 jah-spAtt2-hay-055-01+01

jah-spAtt2-hay-026-01+02 jah-spAtt2-hay-055-01+03

jah-spAtt2-hay-029-01+02 jah-spAtt2-hay-057-01+01

jah-spAtt2-hay-034-01+02 jah-spAtt2-hay-057-01+02

jah-spAtt2-hay-035-01+01 jah-spAtt2-hay-058-01+01

jah-spAtt2-hay-036-01+01 jah-spAtt2-hay-059-01+01

jah-spAtt2-hay-037-01+01 jah-spAtt2-hay-061-01+01

jah-spAtt2-hay-038-01+01

jah-spAtt2-hay-040-01+01

jah-spAtt2-hay-041-01+02

jah-spAtt2-hay-041-01+04

jah-spAtt2-hay-042-01+01

jah-spAtt2-hay-043-01+01
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Table S3b. Excluded datafiles

Datafiles were excluded due to different reasons: not enough repetitions, bad

isolation, or because the same cell was recorded twice with different parame-

ters, e.g., different values of laser power.

Filename

jah-spAtt2-hay-008-01+05 jah-spAtt2-hay-032-01+02

jah-spAtt2-hay-012-01+03 jah-spAtt2-hay-033-01+01

jah-spAtt2-hay-012-01+05 jah-spAtt2-hay-039-01+01

jah-spAtt2-hay-014-01+03 jah-spAtt2-hay-042-01+02

jah-spAtt2-hay-016-01+02 jah-spAtt2-hay-044-01+01

jah-spAtt2-hay-017-01+03 jah-spAtt2-hay-047-01+02

jah-spAtt2-hay-020-01+03 jah-spAtt2-hay-049-01+01

jah-spAtt2-hay-021-01+01 jah-spAtt2-hay-051-01+01

jah-spAtt2-hay-022-01+02 jah-spAtt2-hay-053-01+04

jah-spAtt2-hay-023-01+02 jah-spAtt2-hay-055-01+02

jah-spAtt2-hay-024-01+04 jah-spAtt2-hay-056-01+02

jah-spAtt2-hay-025-01+03 jah-spAtt2-hay-056-01+03

jah-spAtt2-hay-026-01+04 jah-spAtt2-hay-058-01+02

jah-spAtt2-hay-028-01+02 jah-spAtt2-hay-060-01+01

jah-spAtt2-hay-030-01+05
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Table S4. Information about the recording sessions

For each neuron included in the analysis, the table lists the recording date,

the position of the MiniMatrix’s (MM) guidetube bundle in anterior-posterior

(AP) and medial-lateral (ML) coordinates relative to the middle point of the

recording chamber, and the days since the viral vector injection.

Cell ID date MM pos AP MM pos ML days since injection

[mm] [mm]

005-01+07 170321 6.6 0.3 323

006-01+04 170322 6.7 0.2 324

009-01+02 170327 6.7 0.1 329

010-01+04 170328 6.6 0.3 330

011-01+02 170329 6.7 0.1 331

011-01+04 170329 6.7 0.1 331

012-01+06 170330 6.6 0.2 332

015-01+02 170405 7.0 0.0 338

021-01+04 170425 7.5 0.2 358

022-01+03 170426 6.9 0.2 359

023-01+01 170428 7.0 0.2 360

024-01+05 170502 6.6 0.1 365

026-01+02 170505 6.5 0.3 368

029-01+02 170615 7.2 0.5 409

034-01+02 170705 7.1 0.1 429

035-01+01 170706 7.1 0.2 430

036-01+01 170707 7.2 0.2 431

037-01+01 170717 7.0 0.2 441

038-01+01 170718 7.2 0.2 442

040-01+01 170726 7.7 0.2 450

041-01+02 170727 7.8 0.2 451

041-01+04 170727 7.8 0.2 451
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Cell ID date MM pos AP MM pos ML days since injection

[mm] [mm]

042-01+01 170728 7.7 0.2 452

043-01+01 170729 7.7 0.2 453

044-01+02 170801 7.8 0.2 456

045-01+01 170802 7.6 0.2 457

045-01+03 170802 7.6 0.2 457

047-01+01 170804 7.7 0.4 459

049-01+02 170808 7.0 0.4 463

050-01+01 170809 7.0 0.4 464

050-01+03 170809 7.0 0.4 464

051-01+02 170810 6.8 0.3 465

052-01+01 170811 6.6 0.3 466

053-01+03 170814 7.0 0.7 469

054-01+02 170815 7.0 0.7 470

055-01+01 170816 7.0 1.0 471

055-01+03 170816 7.0 1.0 471

057-01+01 170818 7.3 0.7 473

057-01+02 170818 7.3 0.7 473

058-01+01 170819 7.3 0.7 474

059-01+01 170820 7.3 0.7 475

061-01+01 171017 7.0 0.7 533
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Table S5. Recording parameters

For each neuron included in the analysis, the table lists the preferred direction

in degree (0 degree was an upward movement, 90 degree a rightward move-

ment, etc.), the receptive field position in degrees of visual angle (dva), the

electrode depth as approximate distance of recording position to the dura in

µm, and the vertical distance between electrode tip (E) and optical fiber tip

(OF).

Cell ID pref dir RF X RF Y electrode depth distance E-OF

[◦] [dva] [dva] [µm] [µm]

005-01+07 225 9.3 -4.7 6060 560

006-01+04 270 1.8 -6.3 5375 675

009-01+02 270 -3.4 -7.9 6789 589

010-01+04 90 4 4 8913 613

011-01+02 315 13.8 -7 5729 429

011-01+04 45 6.8 -4.2 6274 474

012-01+06 45 4.2 -8.9 6706 406

015-01+02 315 7.4 -4.2 6489 489

021-01+04 90 4.5 4.2 9893 719

022-01+03 45 6.1 -0.3 9932 532

023-01+01 225 5.6 3.1 10330 330

024-01+05 270 5.1 0.3 9288 288

026-01+02 90 3.3 3.1 9695 595

029-01+02 315 2.6 -9.6 7319 319

034-01+02 315 5.7 -7.2 7225 425

035-01+01 90 4.4 -0.1 11800 800

036-01+01 270 4.1 2.9 11274 679

037-01+01 225 3.6 0.4 10375 429

038-01+01 315 4.2 0.3 10367 367

040-01+01 90 3.5 5.7 10680 380

041-01+02 135 4.2 2.6 10704 504

041-01+04 90 2.5 3.6 10749 549
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Cell ID pref dir RF X RF Y electrode depth[µm] dist E-OF[µm]

[◦] [dva] [dva] [µm] [µm]

042-01+01 135 2.7 2 10851 451

043-01+01 180 2.1 3.3 10827 227

044-01+02 315 1.5 4.4 11436 436

045-01+01 270 -0.5 3.3 12065 365

045-01+03 45 -1.9 4.5 12653 453

047-01+01 225 1.7 4 12261 361

049-01+02 90 4.5 2.9 12849 349

050-01+01 45 1.5 4.2 11985 465

050-01+03 0 1.7 2.3 12124 114

051-01+02 135 2.5 2.2 12817 117

052-01+01 225 3.3 1.5 12458 108

053-01+03 90 3.8 -3 8389 47

054-01+02 90 2.8 3.2 12770 770

055-01+01 0 2.3 2.5 12803 182

055-01+03 45 1.8 3.3 12758 58

057-01+01 180 4.9 3.3 12552 59

057-01+02 180 3.5 3.7 12339 27

058-01+01 0 4 0.8 11978 188

059-01+01 90 2.8 4.7 12381 381

061-01+01 0 4.6 -2.6 8700 600
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Figure 3.1: Receptive field locations of recorded neurons. Circles are not repre-
senting the size of the receptive fields.
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Table S6. Attentional index and stimulation index in time interval

300-1000ms

Cell ID AI noStim AI stim SI AttIN SI AttOUT

005-01+07 0.35 0.31 -0.10 -0.06

006-01+04 0.13 0.04 -0.04 0.05

009-01+02 0.28 0.22 -0.03 0.04

010-01+04 0.00 0.06 0.01 -0.05

011-01+02 0.24 0.15 -0.08 0.01

011-01+04 0.07 -0.02 -0.09 0.00

012-01+06 0.09 0.16 0.02 -0.05

015-01+02 0.02 0.00 0.01 0.03

021-01+04 0.09 0.02 -0.01 0.06

022-01+03 0.06 0.02 -0.02 0.01

023-01+01 0.19 0.14 -0.06 0.00

024-01+05 0.11 0.14 0.05 0.02

026-01+02 0.09 0.05 -0.05 -0.02

029-01+02 0.22 0.20 -0.01 0.01

034-01+02 0.20 0.24 0.03 -0.02

035-01+01 0.11 0.09 0.00 0.02

036-01+01 0.11 0.09 0.04 0.06

037-01+01 0.04 -0.01 0.00 0.05

038-01+01 0.08 0.06 0.00 0.02

040-01+01 0.06 0.10 0.02 -0.01

041-01+02 0.14 0.13 0.01 0.02

041-01+04 0.21 0.14 -0.04 0.04

042-01+01 0.07 0.11 0.02 -0.01

043-01+01 0.11 0.03 -0.05 0.03

044-01+02 0.09 0.14 0.03 -0.02

045-01+01 0.04 0.10 0.04 -0.02

045-01+03 0.01 0.04 0.03 -0.01

047-01+01 0.00 0.06 -0.06 -0.11

049-01+02 0.21 0.06 -0.05 0.11
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Cell ID AI noStim AI stim SI AttIN SI AttOUT

050-01+01 0.13 0.01 -0.05 0.06

050-01+03 0.18 0.00 -0.08 0.10

051-01+02 0.13 0.07 0.01 0.06

052-01+01 0.22 0.19 -0.05 -0.03

053-01+03 0.19 0.09 -0.10 0.00

054-01+02 0.02 0.04 0.04 0.02

055-01+01 0.18 0.26 0.06 -0.02

055-01+03 0.19 0.14 -0.03 0.03

057-01+01 -0.01 0.06 0.01 -0.06

057-01+02 0.15 0.18 -0.01 -0.05

058-01+01 0.06 0.03 0.01 0.04

059-01+01 0.08 -0.05 0.03 0.10

061-01+01 0.13 0.03 -0.01 0.09
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Table S7. Attentional index and stimulation index in time interval

540-1000ms

Cell ID AI noStim AI stim SI AttIN SI AttOUT

005-01+07 0.40 0.34 -0.13 -0.07

006-01+04 0.15 0.03 -0.04 0.08

009-01+02 0.35 0.23 -0.06 0.07

010-01+04 -0.04 0.11 0.04 -0.10

011-01+02 0.26 0.17 -0.08 -0.01

011-01+04 0.13 -0.04 -0.10 0.07

012-01+06 0.13 0.12 0.01 0.02

015-01+02 -0.02 0.01 0.03 -0.01

021-01+04 0.10 0.01 -0.03 0.06

022-01+03 0.07 0.03 -0.03 0.00

023-01+01 0.26 0.21 -0.06 0.00

024-01+05 0.14 0.18 0.07 0.04

026-01+02 0.11 0.03 -0.08 0.00

029-01+02 0.21 0.19 -0.02 0.00

034-01+02 0.21 0.23 -0.01 -0.03

035-01+01 0.13 0.11 0.02 0.05

036-01+01 0.15 0.10 0.01 0.07

037-01+01 0.09 -0.02 -0.02 0.09

038-01+01 0.09 0.06 0.00 0.03

040-01+01 0.09 0.12 0.03 0.00

041-01+02 0.17 0.14 0.01 0.04

041-01+04 0.26 0.19 -0.02 0.04

042-01+01 0.09 0.13 0.02 -0.02

043-01+01 0.10 0.06 -0.04 0.00

044-01+02 0.09 0.14 0.04 -0.01

045-01+01 0.03 0.10 0.02 -0.05

045-01+03 0.01 -0.01 -0.01 0.01

047-01+01 0.01 0.03 -0.07 -0.09

049-01+02 0.21 0.07 -0.06 0.08
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Cell ID AI noStim AI stim SI AttIN SI AttOUT

050-01+01 0.17 0.03 -0.09 0.05

050-01+03 0.20 0.00 -0.08 0.13

051-01+02 0.16 0.02 -0.06 0.08

052-01+01 0.27 0.20 -0.07 0.01

053-01+03 0.22 0.09 -0.12 0.02

054-01+02 0.03 0.03 0.01 0.01

055-01+01 0.20 0.27 0.07 0.00

055-01+03 0.22 0.14 -0.04 0.04

057-01+01 -0.05 0.06 0.04 -0.07

057-01+02 0.16 0.22 -0.02 -0.08

058-01+01 0.06 0.04 0.00 0.03

059-01+01 0.12 -0.03 -0.05 0.10

061-01+01 0.14 0.06 0.00 0.08
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Table S8. Subject information

Subject Gender Age Task order

AnR female 27 ST, DT

BaS male 27 ST, DT

CaZ female 29 ST, DT

ChD female 22 ST, DT

CvW female 26 ST, DT

EdT male 26 ST, DT

FaA female 28 DT, ST

LiT female 28 DT, ST

PhS male 26 ST, DT

RaP female 24 DT, ST

SaW male 31 DT, ST

ShP male 26 DT, ST

excluded subjects (i.e, they did not reach the predefined performance to par-

ticipate in the recording):

FrM

LaN

MiM

StW



Supplementary material 145

Table S9. Subject information

Subject Gender Age Task order

BaS male 27 DT, ST

ChG female 24 ST, DT

CvW female 26 ST, DT

EdT male 26 DT, ST

FaA female 28 ST, DT

FaS male 21 ST, DT

LiT female 28 ST, DT

PaG female 29 DT, ST

PhS male 26 DT, ST

RaP female 25 DT, ST

SaW male 31 DT, ST

SbP male 28 ST, DT

excluded subjects (i.e, they did not reach the predefined performance to par-

ticipate in the recording):

AlJ

AnE

AnR

CaZ

MaG

AyM
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Table S10. Subject information

Subject Gender Age Task order

BaS male 28 ST, DT

CaZ female 30 ST, DT

CvW female 27 DT, ST

FaA female 28 ST, DT

FaS female 21 ST, DT

FaV male 29 DT, ST

FlH female 24 DT, ST

IsF female 20 DT, ST

JoS male 31 DT, ST

KrD female 24 ST, DT

SbP male 29 DT, ST

SaW male 32 ST, DT

excluded subjects (i.e, they did not reach the predefined performance to par-

ticipate in the recording):

ChL

FaH

JaG

KaB

MeD

PaG
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Table S11. Subject information

Subject Gender Age Task order

BaS male 28 ST, DT

CaZ female 30 DT, ST

ChG female 25 DT, ST

ChL female 29 ST, DT

CvW female 27 ST, DT

FaA female 28 ST, DT

FlK male 20 DT, ST

IsF female 21 DT, ST

JeS male 22 ST, DT

JoS male 31 DT, ST

MaM female 25 DT, ST

SaW male 31 ST, DT

excluded subjects (i.e, they did not reach the predefined performance to par-

ticipate in the recording):

AKH

AKR

AyM

FaH

FaS

LoS

MeD

WiR
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Table S12. Datafiles of subjects included in analysis

Subject Task Filename

AnR single-task JaH ABRDP ST AnR 7.mwk

BaS single-task JaH ABRDP ST BaS 2.mwk

CaZ single-task JaH ABRDP ST CaZ 5.mwk

ChD single-task JaH ABRDP ST ChD 6.mwk

CvW single-task JaH ABRDP ST CvW 1.mwk

EdT single-task JaH ABRDP ST EdT 10.mwk

FaA single-task JaH ABRDP ST FaA 13.mwk

LiT single-task JaH ABRDP ST LiT 9.mwk

PhS single-task JaH ABRDP ST PhS 8.mwk

RaP single-task JaH ABRDP ST RaP 4.mwk

SaW single-task JaH ABRDP ST SaW 3.mwk

ShP single-task JaH ABRDP ST ShP 11.mwk

AnR dual-task JaH ABRDP DT AnR 7.mwk

BaS dual-task JaH ABRDP DT BaS 2.mwk

CaZ dual-task JaH ABRDP DT CaZ 5.mwk

ChD dual-task JaH ABRDP DT ChD 6.mwk

CvW dual-task JaH ABRDP DT CvW 1.mwk

EdT dual-task JaH ABRDP DT EdT 10.mwk

FaA dual-task JaH ABRDP DT FaA 13.mwk

LiT dual-task JaH ABRDP DT LiT 9.mwk

PhS dual-task JaH ABRDP DT PhS 8.mwk

RaP dual-task JaH ABRDP DT RaP 4.mwk

SaW dual-task JaH ABRDP DT SaW 3.mwk

ShP dual-task JaH ABRDP DT ShP 11.mwk
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Table S13. Datafiles of subjects included in analysis

Subject Task Filename

BaS single-task JaH AB RDP V2 ST BaS 5.mwk

ChG single-task JaH AB RDP V2 ST ChG 11.mwk

CvW single-task JaH AB RDP V2 ST CvW 1.mwk

EdT single-task JaH AB RDP V2 ST EdT 6.mwk

FaA single-task JaH AB RDP V2 ST FaA 10.mwk

FaS single-task JaH AB RDP V2 ST FaS 01082012.mwk

LiT single-task JaH AB RDP V2 ST LiT 7.mwk

PaG single-task JaH AB RDP V2 ST PaG 03082012.mwk

PhS single-task JaH AB RDP V2 ST PhS 9.mwk

RaP single-task JaH AB RDP V2 ST RaP 4.mwk

SbP single-task JaH AB RDP V2 ST SbP 8.mwk

SaW single-task JaH AB RDP V2 ST SaW 2.mwk

BaS dual-task JaH AB RDP V2 DT BaS 5.mwk

ChG dual-task JaH AB RDP V2 DT ChG 11.mwk

CvW dual-task JaH AB RDP V2 DT CvW 1.mwk

EdT dual-task JaH AB RDP V2 DT EdT 6.mwk

FaA dual-task JaH AB RDP V2 DT FaA 10.mwk

FaS dual-task JaH AB RDP V2 DT FaS 01082012.mwk

LiT dual-task JaH AB RDP V2 DT LiT 7.mwk

PaG dual-task JaH AB RDP V2 DT PaG 03082012.mwk

PhS dual-task JaH AB RDP V2 DT PhS 9.mwk

RaP dual-task JaH AB RDP V2 DT RaP 4.mwk

SaW dual-task JaH AB RDP V2 DT SaW 2.mwk

SbP dual-task JaH AB RDP V2 DT SbP 8.mwk



Supplementary material 150

Table S14. Datafiles of subjects included in analysis

Subject Task Filename

BaS single-task JaH AB LetterRDP ST BaS 8.mwk

CaZ single-task JaH AB LetterRDP ST CaZ 6.mwk

CvW single-task JaH AB LetterRDP ST CvW 14.mwk

FaA single-task JaH AB LetterRDP ST FaA 2.mwk

FaS single-task JaH AB LetterRDP ST FaS 3.mwk

FaV single-task JaH AB LetterRDP ST FaV 17.mwk

FlH single-task JaH AB LetterRDP ST FlH 4.mwk

IsF single-task JaH AB LetterRDP ST IsF 5.mwk

JoS single-task JaH AB LetterRDP ST JoS 1.mwk

KrD single-task JaH AB LetterRDP ST KrD 15.mwk

SaW single-task JaH AB LetterRDP ST SaW 12.mwk

SbP single-task JaH AB LetterRDP ST SbP 9.mwk

BaS dual-task JaH AB LetterRDP DT BaS 8.mwk

CaZ dual-task JaH AB LetterRDP DT CaZ 6.mwk

CvW dual-task JaH AB LetterRDP DT CvW 14.mwk

FaA dual-task JaH AB LetterRDP DT FaA 2.mwk

FaS dual-task JaH AB LetterRDP DT FaS 3.mwk

FaV dual-task JaH AB LetterRDP DT FaV 17.mwk

FlH dual-task JaH AB LetterRDP DT FlH 4.mwk

IsF dual-task JaH AB LetterRDP DT IsF 5.mwk

JoS dual-task JaH AB LetterRDP DT JoS 1.mwk

KrD dual-task JaH AB LetterRDP DT KrD 15.mwk

SaW dual-task JaH AB LetterRDP DT SaW 12.mwk

SbP dual-task JaH AB LetterRDP DT SbP 9.mwk
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Table S15. Datafiles of subjects included in analysis

Subject Task Filename

BaS single-task JES AB RDPLetter ST BaS 10.mwk

CaZ single-task JaH AB RDPLetter ST CaZ 19.mwk

ChG single-task JES AB RDPLetter ST ChG 11.mwk

ChL single-task JaH AB RDPLetter ST ChL 16.mwk

CvW single-task JES AB RDPLetter ST CvW 12.mwk

FaA single-task JaH AB RDPLetter ST FaA 14.mwk

FlK single-task JES AB RDPLetter ST FlK 9.mwk

IsF single-task JaH AB RDPLetter ST IsF 20.mwk

JES single-task JES AB RDPLetter ST JES 7.mwk

JoS single-task JaH AB RDPLetter ST JoS 18.mwk

MaM single-task JES AB RDPLetter ST MaM 8.mwk

SaW single-task JES AB RDPLetter ST SaW 3.mwk

BaS dual-task JES AB RDPLetter DT BaS 10.mwk

CaZ dual-task JaH AB RDPLetter DT CaZ 18.mwk

ChG dual-task JES AB RDPLetter DT ChG 11.mwk

ChL dual-task JaH AB RDPLetter DT ChL 16.mwk

CvW dual-task JES AB RDPLetter DT CvW 12.mwk

FaA dual-task JaH AB RDPLetter DT FaA 14.mwk

FlK dual-task JES AB RDPLetter DT FlK 9.mwk

IsF dual-task JaH AB RDPLetter DT IsF 20.mwk

JES dual-task JES AB RDPLetter DT JES 7.mwk

JoS dual-task JaH AB RDPLetter DT JoS 18.mwk

MaM dual-task JES AB RDPLetter DT MaM 8.mwk

SaW dual-task JES AB RDPLetter DT SaW 3.mwk
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Table S16. Subject information

Subject Gender Age Handedness Task order

AnS female 29 right ST, DT

DeM female 20 right ST, DT

FeS male 22 right ST, DT

FiW female 21 right ST, DT

FlR male 22 right ST, DT

GeR male 24 right ST, DT

LeD male 21 left ST, DT

LiT female 33 right ST, DT

MaR male 26 right ST, DT

MeB female 24 right ST, DT

MrH male 19 right ST, DT

OaS male 45 right ST, DT

ThM female 24 right ST, DT

TiM male 27 right ST, DT

excluded subjects (i.e, they did not reach the predefined performance to par-

ticipate in the recording):

AaB LoD

ArB LrB

HaJ MaV

JeM OsC

JuF RoD

JuS SxS
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Table S17. Datafiles of subjects included in analysis

Subject Task Filename

AnS single-task DwT v3.4.2 AnS T1 2 83 R12 1.mwk

DeM single-task DwT v3.4.2 DeM T1 2 83 R12 2.mwk

FeS single-task DwT v3.4.2 FeS T1 2 83 R12 2.mwk

FiW single-task DwT v3.4.2 FiW T1 1 83 R12 5.mwk

FlR single-task DwT v3.4.2 FlR T1 2 83 R12 1.mwk

GeR single-task DwT v3.4.2 GeR T1 2 83 R12 2.mwk

LeD single-task DwT v3.4.2 LeD T1 1 83 R12 1.mwk

LiT single-task DwT v3.4.2 LiT T1 1 83 R12 1.mwk

MaR single-task DwT v3.4.2 MaR T1 1 83 R12 2.mwk

MeB single-task DwT v3.4.2 MeB T1 2 83 R12 1.mwk

MrH single-task DwT v3.4.2 MrH T1 1 83 R12 2.mwk

OaS single-task DwT v3.4.2 OaS T1 1 83 R12 1.mwk

ThM single-task DwT v3.4.2 ThM T1 2 83 R12 1.mwk

TiM single-task DwT v3.4.2 TiM T1 1 83 R12 3.mwk

AnS dual-task DwT v3.4.2 AnS DT T2F 83 R12 1.mwk

DeM dual-task DwT v3.4.2 DeM DT T2F 83 R12 1.mwk

FeS dual-task DwT v3.4.2 FeS DT T2F 83 R12 1.mwk

FiW dual-task DwT v3.4.2 FiW DT T2F 83 R12 1.mwk

FlR dual-task DwT v3.4.2 FlR DT T2F 83 R12 1.mwk

GeR dual-task DwT v3.4.2 GeR DT T2F 83 R12 1.mwk

LeD dual-task DwT v3.4.2 LeD DT T2F 83 R12 1.mwk

LiT dual-task DwT v3.4.2 LiT DT T2F 83 R12 1.mwk

MaR dual-task DwT v3.4.2 MaR DT T2F 83 R12 1.mwk

MeB dual-task DwT v3.4.2 MeB DT T2F 83 R12 1.mwk

MrH dual-task DwT v3.4.2 MrH DT T2F 83 R12 1.mwk

OaS dual-task DwT v3.4.2 OaS DT T2F 83 R12 1.mwk

ThM dual-task DwT v3.4.2 ThM DT T2F 83 R12 1.mwk

TiM dual-task DwT v3.4.2 TiM DT T2F 83 R12 1.mwk






	1 Introduction
	1.1 Part I
	1.1.1 Visual processing pathways
	1.1.2 The medial temporal area
	1.1.3 Attentional modulation in area MT
	1.1.4 The premotor theory of attention
	1.1.5 Anatomical and physiological classification of the FEF
	1.1.6 Attentional modulation in the FEF
	1.1.7 Evidence for the guidance role of the FEF in attention
	1.1.8 Anatomical connections between the FEF and area MT
	1.1.9 Optogenetic targeting of the projection from FEF to area MT

	1.2 Part II
	1.2.1 The attentional blink
	1.2.2 The locus coeruleus
	1.2.3 The effect of attention on pupil size


	2 Project manuscripts
	2.1 An anatomical viability evaluation of using optogenetics to examine the fronto-visual and fronto-parietal network in the macaque
	2.2 Optogenetic inhibition of FEF input to area MT reduces attentional modulation of neuronal responses
	2.3 An attentional blink with motion stimuli and in a task combining motion and letter stimuli
	2.4 Pupil size suggests that the locus coeruleus is involved during attentional blink tasks without a direct perceptual consequence

	3 Summary and outlook
	Bibliography
	Supplementary material

