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Chapter 1

Background

1.1 Compressed sensing

Traditionally, given a linear system

y = Ax, (1.1)

for y ∈ Cm, A ∈ Cm×N , it requires the dimension m, N of A satisfy m ≥ N to guarantee the uniqueness

of the recovery.

From empirical observation one obtains that various types of signals admit sparse representation with

respect to certain bases or frames. Which means, comparing to how much information the dimension can

be loaded, these signals carry in fact only few information farer away than that. In this situation, can we

recover them also from measurements less than the system can carry, i.e., in mathematical expression,

m << N? Sparse recovery has already long history. This problem is nowadays called compressed sensing

(CS).

Candès, Romberg, Tao [12], and Donoho [21] first combined the ideas of linear program, or `1-

minimization with a random choice of compressed sensing matrices [26]. Recovering the sparse signal by

solving a linear program is called basis pursuit.

Compressed sensing [12,14,21] deals with reconstructing (approximately) sparse vectors x ∈ RN from

significantly few measurements generated linearly from x by the form (〈ai, x〉)mi=1 with vectors ai ∈ RN

and m < N . Exact recovery is theoretical possible, due to the low information carried by the original
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signal and its “oversampled” measurements. In contrast to its linear structure between the signal and its

measurements, the recovery is done non-linearly by such as a convex optimization problem or a greedy

numerical algorithm (e.g., [6, 16,23,41]).

Given a measurement matrix A with rows (Ai)
m
i=1 ∈ RN well-chosen vectors, the measurement noise

denoted by (ei)
m
i=1, m measurements (yi = 〈Ai, x〉+ei)mi=1 and x̂ recovered from `1-minimization problem,

then the recovery of the standard compressed sensing problem

y = Ax+ e, (1.2)

will have a guaranteed result (e.g., [12, 14, 21], see also [26]) that the solution x̂ to the optimization

problem

min
z
‖z‖1 subject to ‖Az − y‖2 < ε, (1.3)

can be bounded meaningfully from above, see an example below. Denote the set of sparse signals with

unit length in `2, Ds,N := {x ∈ RN , supp(x) ≤ s, ‖x‖2 = 1}, define σs(x)p = minv∈Ds,N ‖x − v‖p the

best s-term approximation error of x in `p, which is a function that measures how close x is to being

s-sparse. [12, 21] show that for a wide class of random matrices the solution x̂ to (1.3) satisfies

‖x− x̂‖2 ≤ C1

( ε√
m

+
σs(x)1√

s

)
, (1.4)

when m ≥ C2s log(N/k), for some positive constants C1 and C2. Note that which implies directly that

in noise-free scenario, an s-sparse signal x can be uniquely determined.

In the following section, several popular criteria for unique recovery of compressed sensing are intro-

duced.

Sparsity and criteria for reconstruction

We refer the reader to [26] for further information of this chapter. When m << N , under certain

criteria (for example, null space property), the `1-minimization problem (1.3) recovers a sparse signal

from (1.1) guarantees the reconstruction (when the error is under control). There are three scenarios to
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be considered and therefore three varied types of null space property are required respectively to control

the reconstruction error. They will be briefly listed below, and will be introduced more precisely in the

following sections.

1 If x is sparse and no noise exists, then the null space property guarantees recovery.

2 If x is approximately sparse and no noise exists, then the stable null space space property guarantees

approximate recovery.

3 If x is approximately sparse and measurement noise exists, then robust null space property guar-

antees approximate recovery.

Note that robust null space property implies stable null space property implies robust null space

property.

Null Space Property

Definition 1. [26] A matrix A ∈ Cm×N is said to satisfy the null space property relative to a set

S ⊂ [N ] if

‖vS‖1 < ‖vS̄‖1 for all v ∈ ker A \ {0}. (1.5)

It is said to satisfy the null space property of order s if it satisfies the null space property relative to any

set S ⊂ [N ] with card S ≤ s.

Theorem 1. [26] Given a matrix A ∈ Cm×N , every s-sparse vector is the unique solution of (1.3) with

ε = 0 if and only if A satisfies the null space property to the set S.

Proof. Given v ∈ ker A. Since the theorem is for all y, to verify the theorem, for any support set S with

cardinality s the problem (1.3) with y = AvS and ε = 0. Since

Av = A(vS + vS̄) = 0

⇒A(vS + vS̄) = A(vS)−A(−vS̄) = 0

⇒A(vS) = A(−vS̄)
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By assumption vS is supported on S thus the unique solution of 1.3, thus ‖vS‖1 < ‖vS̄‖1. Conversely,

given x ∈ CN a solutions to (1.3), if there is z, which is also a solution to (1.3), (z can be either s-sparse

or not.) Denote support set of x, Sx respectively, then,

‖x‖1 ≤ ‖xSx − zSx‖1 + ‖zSx‖1

< ‖(x− z)S̄x‖1 + ‖zSx‖1

= ‖zS̄x‖1 + ‖zSx‖1

= ‖z‖1,

which constricts the assumption that both of them are minimizer of 1.3. Therefore the solution to 1.3 is

unique.

Stable Null Space Property

In this chapter a criteria stronger than null space property will be applied for the signal x is now only

approximately sparse, then we have

Theorem 2. [26] For any 1 > p > 0 and any x ∈ CN ,

σs(x)q ≤
1

s1/p−1/q
(1.6)

Proof. Without loss of generality we can rearrange xj according to its length (`1-norm) in nonincreasing

order and assume |xi| ≤ 0 for all i = 1, . . . , N . Then

σs(x)qq =

N∑
j=s+1

(|xj |)q

≤ (|xs|)q−p
N∑

j=s+1

(|xj |)p

≤
(1

s

s∑
j=1

(
(|xj |)p

) q−p
p
)( N∑

j=s+1

(|xj |)p
)

≤
(1

s
‖x‖pp

) q−p
p
)(
‖x‖pp

)
=

1

sq/p−1
‖x‖qp
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A tighter bound to Theorem 2 is:

Theorem 3. [26] For any q > p > 0 and any x ∈ CN , the inequality

σs(x)q ≤
cp,q

s1/p−1/q
‖x‖p (1.7)

holds with

cp,q :=
[(p
q

)p/q(
1− p

q

)1−p/q]1/p ≤ 1. (1.8)

Proof. Again, following similar steps as in Theorem 2, without loss of generality, given signal x = (xj)
N
j=1

nonincreasing rearranged according to length of xj
′s.

Robust Null Space Property

If there exists measurement noise, i.e., ε in (1.3) is not always 0, then define the criterion robust null

space property as following.

Definition 2. [26] The matrix A ∈ Cm×N is said to satisfy the robust null space property (with respect

to ‖ · ‖) with constants 0 < ρ < 1 and τ > 0 if for any set S ⊂ [N ] with card(S) ≤ s if

‖vS‖1 ≤ ρ‖vS̄‖1 + τ‖Av‖ for all v ∈ CN . (1.9)

Note that in the definition v doesn’t need to be in ker A.

Theorem 4. [26] The matrix A ∈ Cm×N satisfies the robust null space property with constants 0 < ρ < 1

and τ > 0 of order s if and only if for any S with |S| ≤ s

‖z − x‖1 ≤
1 + ρ

1− ρ
(‖z‖1 − ‖x‖1 + 2‖xS̄‖1) +

2τ

1− ρ
‖A(z − x)‖ (1.10)

Further the `q-robust null space property defined as

11



Definition 3. [26] The matrix A ∈ Cm×N is said to satisfy the `q-robust null space property of order

s (with respect to ‖ · ‖) with constants 0 < ρ < 1 and τ > 0 if for any set S ⊂ [N ] with card(S) ≤ s if

‖vS‖q ≤
ρ

s1−1/q
‖vS̄‖1 + τ‖Av‖ for all v ∈ CN . (1.11)

Theorem 5. [26] Given 1 ≤ p ≤ q, suppose that the matrix A ∈ Cm×N satisfies the `q-robust null space

property of order s with constants 0 < ρ < 1 and τ > 0. Then, for any x, z ∈ CN ,

‖z − x‖p ≤
C

s1−1/p

(
‖z‖1 − ‖x‖1 + 2σs(x)1

)
+Ds1/p−1/q‖A(z − x)‖, (1.12)

where C := (1 + ρ)2/(1− ρ) and D := (3 + ρ)τ/(1− ρ).

Restricted Isometry Property

The null space property is not easy to be proved diretly, therefore restricted isometry property (RIP) is

used as the most popular criterion in the CS regime since first introduced in [13]. Plenty of papers focus

on proving the RIP of different types of matrices such as Gaussian random matrices [2], subgaussian

random matrices [26], partial random discrete Fourier matrices [46], In this thesis we will use our new

method as another approach to prove the RIP of partial random discrete Fourier matrices.

Definition 4. [13] The restricted isometry property of order s with constant, called restricted isometry

constant, δs = δs(A) of a matrix A ∈ Cm×N is the smallest δ ≥ 0 such that

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 (1.13)

for all s-sparse vectors x ∈ CN .

Checking the restricted isometry property is in general an NP hard problem [53], and deterministic

matrices with guaranteed restricted isometry property are known for relative large embedding dimensions

(e.g., [20]). Therefore many papers on CS work with random matrices. Random matrices such as

subgaussian matrices [2], partial random circulant matrices [39], and partial random Fourier matrices [46]

are known to have the restricted isometry property for large enough embedding dimension with high
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probability. Examples of subgaussian matrices include Gaussian and Bernoulli. Such matrices are shown

to have the restricted isometry property provided m = Ω(s log(eN/s)) (e.g. [2]). This order of the

embedding dimension m is known to be optimal [47].

Define Ds,N := {x ∈ RN : ‖x‖2 = 1 and |supp(x)| ≤ s}, equivalently,

δs = sup
x∈Ds,N

∣∣∣‖Ax‖22 − ‖x‖22‖x‖22

∣∣∣ = sup
x∈Ds,N

∣∣‖Ax‖22 − 1
∣∣. (1.14)

Since `2-robust null space property implies robust null space property implies stable null space prop-

erty implies null space property and of purpose of this thesis, only that the restricted isometry property

implies robust null space property will be shown. In the following theorem, the restricted isometry

property is shown to imply robust null space property.

Theorem 6. [25] Given compressed sensing matrix A ∈ Cm×N having restricted isometry property with

constant δ2s ≤ 1/9 then the matrix A satisfies the `2-robust null space property of order s relative to the

`2-norm on Cm and with constants 0 < ρ < 1 and τ > 0 depending only on δ2s.

Proof. Let v ∈ Cm, and let S = S0 denote an index set of s largest absolute entries of v and further S1

of next s largest absolute entries, etc. By similar argument as in (2)

‖vSk‖2 ≤
1√
s
‖vSk−1

‖1, for all k ≥ 1, (1.15)

so that a summation gives ∑
k≥1

‖vSk‖2 ≥
1√
s
‖v‖1. (1.16)
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By assumption of restricted isometry property

‖vS‖22 = ‖vS0
‖22 ≤

1

1− δs
‖AvS0

‖22

=
1

1− δs
〈AVS0

, Av −AvS̄0
〉

=
1

1− δs
〈AvS0

, Av〉 − 1

1− δs
〈AvS0

,
∑
k≥1

AvS̄k〉

=
1

1− δs
‖AvS0

‖2‖Av‖2 −
1

1− δs

∑
k≥1

〈AvS0
, AvSk〉 >

≤
√

1 + δ

1− δs
‖vS0
‖2‖Av‖2 −

1

1− δs

∑
k≥1

〈A(vS0
)S0∪Sk , A(vSk)S0∪Sk〉

=

√
1 + δs

1− δs
‖vS0‖2‖Av‖2 −

1

1− δs

∑
k≥1

(〈A(vS0)S0∪Sk , A(vSk)S0∪Sk〉 − 〈vS0 , vSk〉)

=

√
1 + δs

1− δs
‖vS0‖2‖Av‖2 −

1

1− δs

∑
k≥1

〈(A∗sAs − Id)(vs0)S0∪Sk , (vsk)S0∪Sk〉

≤
√

1 + δ

1− δs
‖vS0
‖2‖Av‖2 +

1

1− δs

∑
k≥1

‖(A∗sAs − Id)vS0
‖2‖vSk‖2

≤
√

1 + δs
1− δs

‖vS0
‖2‖Av‖2 +

1

1− δs

∑
k≥1

δ2s‖vS0
‖2‖vSk‖2

≤
√

1 + δs
1− δs

‖vS0
‖2‖Av‖2 +

1

1− δs

∑
k≥1

δ2s‖vS0
‖2‖vSk‖2

=

√
1 + δs

1− δs
‖vS0‖2‖Av‖2 +

δ2s
1− δs

‖vS0‖2
∑
k≥1

‖vSk‖2

≤
√

1 + δs
1− δs

‖vS0‖2‖Av‖2 +
δ2s

1− δs
‖vS0‖2

∑
k≥1

‖vSk‖1

≤
√

1 + δs
1− δs

‖vS0
‖2‖Av‖2 +

δ2s
1− δs

‖vS0
‖2‖vS̄‖1,

cancel both side by ‖vS0
‖2, which equals ‖vS‖2

‖vS‖2 ≤
√

1 + δs
1− δs

‖Av‖2 +
δ2s

1− δs
‖vS̄‖1. (1.17)

Since δs ≤ δ2s ≤ 1
9 ,
√

1+δs
1−δs > 0 and 0 < δ2s

1−δs < 1 which ends the proof by setting ρ = δ2s
1−δs , τ =

√
1+δs

1−δs

in (2).
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1.2 Quantization

Given an analogue signal, one needs to transform the signal into finitely many digits to make the digital

transmission and storage possible. How can one represent it by finitely many digits? First thanks to the

research result from physicist Nyquist, the Nyquist rate ensures that, with sampling rate twice faster

than the largest signal frequency, one can exactly recover the signal without any loss. This means a

continuous signal can be represented by these discrete values (called measurements). Since this works

for signals, to which the frequency is bounded (otherwise there is no such “largest” frequency). This

is an important result of sampling theory in Fourier analysis, and is uniquely determined by these

measurements. Precisely, the signal is proved to be able to be represented by a linear expansion of the

measurements with respect to a basis formed by sinc functions (this led to research on wavelets).

Sampling indeed discretizes the signal, however these sampled data can be irrational numbers, which

cannot be represented by finite digits. Quantization is the technique to represent these data by finitely

many digits (rational numbers). This ”transform” is called ”quantization” (or modulation).

Quantization consists of two steps, sampling and representing by finitely many symbols from a finite

alphabet. An alphabet is a finite set of numbers. The most natural and usual choices of alphabets have

equispaced elements, as for example we will focus in the so-called mid-rise alphabet with 2L levels and

step-size ∆, denoted by A∆
L and given by A := ∆Z + i∆Z. The extreme case of such an alphabet is

the 1-bit quantization alphabet, which we denote by A = {−1,+1}. It is called one-bit quantization,

because each element is represented by one-bit digit.

1.2.1 Memoryless scalar quantization

Memoryless scalar quantization quantizes each component independently. Intuitively one might use it

to quantize (compressed sensing) measurements.

As an simplest example of MSQ, pulse code modulation (PCM) uses a scalar quantizer

QA : C→ A

z 7→ arg min
v∈A
|z − v| (1.18)
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to quantize every entry of a vector y independently.

However it has its drawback in context of compressed sensing. This will be discuss further in Chapter

1.3.1, therefore we work in this thesis with another structured quantization method, Σ∆-quantization.

1.2.2 Σ∆-quantization

In [29] Güntürk showed that even with extreme coarse case (one-bit), one-bit well-designed Σ∆-quantization

can reach a reconstruction error decays exponentially in λ = s
m as O(2−0.07λ), while the expected bound

is O(2−λ), where 1/λ is the sampling rate. In [19] Deift et al. designed a family of Σ∆-quantizationby us-

ing rth order greedy Σ∆-quantization together with a feedback filter, and then they improved the bound

from O(2−0.07λ) to O(2−0.102λ). This bound is further improved in [18], in which a near-optimal coeffi-

cient comparing to the optimal result in [38]. In [38], the first lower bound for one-bit Σ∆-quantization

is provided, which says for K-bit quantization the lower bound is bounded by O(2−K/λ).

As an introduction to Σ∆-quantization, see an example on the first order greedy Σ∆-quantization,

which runs the following iteration:

qi = QA(yi + ui−1)

ui = ui−1 + yi − qi,
(1.19)

where QA as defined in (1.18).

Generally, an rth-order Σ∆-quantization with quantization rule ρ : Rr+1 → R iterates

qi = QA(ρ(yi, ui−1, ui−2, . . . , ui−r)),

ui = yi − qi −
∑r
j=1

(
r
j

)
(−1)jui−j ,

(1.20)

for some quantization rule ρ.

We say a Σ∆-quantization is stable, if for all m ∈ N, and for all y ∈ Rm with ‖q‖∞ bounded from

above, or equivalently if the quantization rule ρ and property of y in recursion (1.20) imply that u in

(1.25) is bounded from above by an absolute constant which depends only on the order r in the form

‖u‖∞ ≤ γ(r). (1.21)
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As an example of stable r-th order greedy Σ∆-quantization, which is also the Σ∆-quantization used

through this thesis, is introduced below in Chapter 1.2.3.

1.2.3 The r-th order greedy Σ∆-quantization

The rth order greedy Σ∆-quantization is defined as following.

qi = QA(ρ(yi, ui−1, ui−2, . . . , ui−r)),

ui = yi − qi −
∑r
j=1

(
r
j

)
(−1)jui−j ,

(1.22)

where

ρ(yi, ui−1, ui−2, . . . , ui−r) =

r∑
j=1

(
r

j

)
un−j + yn. (1.23)

Using the first-order difference m×m matrix D with entries given by

Di,j :=


1 if i = j

−1 if i = j + 1

0 otherwise

, (1.24)

the relationship between x, u, and q can be concisely written in matrix-vector notation as

Dru = y − q. (1.25)

Since y is bounded, if the alphabet A = ∆Z, for some (small) quantity ∆, |ui| ≤ ∆
2 , then ‖q‖∞ is

bounded, i.e., this quantization is stable. And further, ‖u‖2 ≤
√
m∆

2 and

|yi − qi| = |
r∑
j=1

(
r

j

)
(−1)jui−j + ui|

= |
r∑
j=0

(
r

j

)
(−1)jui−j | ≤ |

r∑
j=0

(
r

j

)
ui−j |

≤ ∆

2
|
r∑
j=0

(
r

j

)
| = ∆

2
2r = 2r−1∆,

qi is within the range [±(2r−1∆+‖y‖∞)]. This can be generalized similarly to an alphabetA = ∆Z+i∆Z.
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Daubechies et al. [17] shows that for band-limited functions, reconstruction error from rth order

greedy Σ∆ quantized measurements is bounded by O(λ−k).

1.3 Compressed sensing and quantization

Only concerning about compressed sensing without quantization is actually not practical, since nowadays

the process of this technique is done on computer. For transmission and storage of the data, one must

represent the data by only finitely many digits.

Signal recovery from quantized compressed sensing measurements is the main topic of this thesis.

More precisely, we estimate the error bound of the signal recovery , with a two-stage signal process, first

by compressed sensing and then quantization.

There are plenty of works focusing on the first stage of signal process, i.e., the compressed sensing

introduced in chapter 1.1. The second stage, the quantization, which was first applied on frame structure

was introduced in chapter 1.2.

In this chapter we recap the papers which worked on quantization on compressed sensing.

In the compressed sensing context, quantization is the map that replaces the vector y = Ax+e ∈ Cm

by a representation that uses a finite number of bits as of the form

Q : Cm → Am,

where A ⊂ C is a finite set, called the quantization alphabet. Both memoryless scalar quantization and

Σ∆-quantization discussed in this thesis use this quantization map.

As the reconstruction, Zymnis et al. in [56] provided two decoder based on maximum likelihood

and least square respectively. The performance is shown numerically. A more “compressed sensing-like”

reconstruction was proposed in [34] by Jacques. Instead of reconstruct the quantized measurements by

standard `1 minimization with `2-norm constraint on the noise (called Basis Pursuit DeNoise (BPDN)).

Jacques et al. proposed Basis Pursuit DeQuantizer of moment p (BPDQp) as a decoder for general

quantization. BPDQp is also an `1-minimization optimization problem, but with `p-norm constraint on

noise. It is showed that the reconstruction error is bounded if the compressed sensing matrix satisfies the
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restricted isometry property of `p-norm. And for Gaussian compressed sensing matrix the reconstruction

error outperforms that reconstructed via BPDN by dividing its error bound by
√
p+ 1. Methods proposed

in these two papers are designed for arbitrary quantizer. In contrast to it, [48] provided the decoder

designed specifically for rth order greedy Σ∆-quantization. This is also the decoder we used in our

research, see Chapter 4.

Considering about the quantizer, in [51], it concerns about designing an optimal quantizer.

In [10], it is the first time that the one bit compressed sensing is considered, and instead of recover

the signal by traditional basis pursuit and treating the one-bit quantized Gaussian measurements simply

as ±1, Boufounos et al. treating the measurements as sign constraints and then solving an optimization

problem (this is however non-convex) on a unit sphere, and it was shown numerically to outperform the

traditional reconstruction stably and robustly.

In contrast to [10], a sub-Gaussian compressed sensing matrix is used in [1]. Also by treating the

quantized measurements as signs and reconstruct the signal by an convex optimization problem, one

achieves the error bound by O((s log(N/s)/m)1/4).

There can be a variety of choices as the decoder for reconstructing the signal from its one-bit mea-

surements. In [42], Plan et al. showed that the reconstruction for accurately recovering of an s-sparse

signal can be achieved by simply solving a linear program. It is in [50], a reconstruction from memory-

less one-bit measurements of a structured compressed sensing matrix is analysed. It is shown that with

number of measurements m ∼ ε−4s log(N/sε), any s-sparse can be recovered with error ε. This result

holds due to the `1/`2-restricted isometry property of the circulant Gaussian matrices.

Beside the discussion on one-bit quantization (either memoryless quantization, Σ∆-quantization,

or any other quantization schemes), [24, 28, 37, 49], use a more generalized alphabet, with Gaussian

or sub-Gaussian compressed sensing matrix. And it is worthwhile to note that in these works the

compressed sensing matrices are within the range of sub-Gaussian matrices or directly assuming the

restricted isometry property of the compressed sensing matrix. And signal recovery from quanized

measurements of a structured compressed sensing matrix is discussed in [32, 50, 55]. No paper prior

to [32] analysed quantization on structured compressed sensing matrices, such as discrete Fourier matrix

or partial random circulant matrices. More details are provided in Chapter 1.3.2.
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1.3.1 MSQ on CS

MSQ is a nice choice to analyse the effect and performance of quantization on compressed sensing, due

to its simplicity. The first paper with MSQ on compressed sensing is [10]. It has been however shown

that, MSQ has its theoretical limit in the context of compressed sensing. What does it mean? Let us

consider how we can do to improve the error bound in practical? First, we can increase the number of

the measurements. Or we can use a finer alphabet.

And indeed if treating the measurements after MSQ quantization as noise in compressed sensing

problem, and then reconstruct the problem by standard decoder such as (1.3), it is true that one can

have smaller noise if a finer alphabet is used, which means by the reconstruction guarantee (1.4) a smaller

reconstruction error bound. This is somehow not meaningful for a fixed quantizer, therefore which is

outside the discussion about improving the reconstruction error bound in context of quantization on

compressed sensing. The meaningful pursuit for better bound is then to increase the number of the

measurements.

In fact it has been shown that MSQ is not an efficient quantizer for compressed sensing [9,27], in [35]

that the error in reconstructing sparse signals from 1-bit quantized measurement is bounded by

O(s log(N/s)/m).

In fact shown by Goyal, Vetterli, and Thao [27], even if the support set is given, the reconstruction

error of MSQ cannot be better than

Ω(
s

m
log(N/s)).

This bottleneck of MSQ in context of compressed sensing comes from the fact that each measurement

is mapped individually, which, however, doesn’t benefit from the structure of compressed sensing, i.e., the

nicely redundant linear structure. While quantizing each of the measurements, the correlation between

measurements is totally ignored.

On the other hand, in Σ∆-quantization schemes, each measurement is quantized by taking the pre-

vious quantization steps into account. Although it is not designed based on the correlation of the mea-

20



surements, one is correcting in each iteration the quantization error from previous iterations, therefore

Σ∆-quantization outperforms MSQ. In [51], a quantization scheme is created specifically for compressed

sensing measurements. This scheme is however not so commonly used in practice. Therefore in this

thesis we still work with Σ∆-quantization.

1.3.2 Σ∆-quantization on CS

A compressed sensing problem has its hidden structure as a finite-frame expansion once the support set

is determined.

Besides directly analysing the reconstruction error from Σ∆-quantized compressed sensing measure-

ments, papers [3–5,7,8,15,36,37,43,55] also work with Σ∆-quantizationon finite-frame expansions. One

can view in this context that the sparsity s of x as the dimension of x, i.e., s = N here.

In [4], signal recovery from first order Σ∆ quantized frame expansions under different frames are

analysed by Benedetto et al. It is shown that for normalized tight frame and harmonic frames, the

reconstruction error is bounded by O(s/m). Soon after that Benedetto et al. provided the result on

second order Σ∆ quantized frames expansion [3]. In [3], for unit-norm tight frames and Harmonic frames

the reconstruction error is in fact generally bounded again by O(s/m), and only when the dimension of

the space is even, the Harmonic frames can reach a bound by O((s/m)2). In [7], the same bound as

in [3] is also proved by Bodmann, and furthermore, the reconstruction error for first order Σ∆ quantized

frame expansion is proved to have its maximal error is both lower and upper bounded by Ω(s/m) and

O(s/m). Bodmann et al. in [8] continuing provided the error bound for frame expansion with higher

order Σ∆ quantization.

In fact in [8], the result is valid also for any proper quantizer, and the method used involving smooth

frame-path. This is also the idea of the Sobolev dual frame. Sobolev duals in frame theory and Σ∆-

quantizationwas first studied by Blum et al. in paper [5]. In [5], Blum et al. showed that generally the

reconstruction error bound for rth order Σ∆-quantization can achieve O((s/m)r), while using Sobolev

dual frame as the decoder. The above papers are actually recapped historically. And until at this

point, the error bound is within polynomial scaling size, while in [9] Boufounos et al. gave an optimal

reconstruction error bound for quantization of sparse representation is O(e−(m/s)) in year 2007. First
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until year 2012 in [36], Krahmer et al. achieved an error bound of O(e−
√
m/s) for higher order Σ∆-

quantization.

The frames mention above are somehow deterministic. Actually back in [27] an asymptotic approach

was used to demonstrate the tightness of a random frame, and then in [28] random frames came up on

stage nonasymptotically as underlying frame on signal recovery problem from quantized frame expansion.

This setting is closer to the compressed sensing setting, and is indeed analysed as the first step on

the way to compressed sensing. In [28] Güntürk et al. work first with random compressed sensing

matrices, more specifically, a Gaussian matrix. In this paper, given a noise-free environment, a two-step

method is proposed, in first step, an exactly sparse signal with components appropriate larger than

some threshold, it is guaranteed that the support set of the signal can be recovered by solving an `1-

minimization problem. After recovering the support set of the signal, a finite-frame expansion of the

signal showed up. As the next step, the Sobolev dual frame is applied to reconstruct the signal from

its frame expansion. This method successfully achieves an error bound of O((m/s)(r−1/2)α) for any

0 < α < 1, if m ≥ s(logN)1/(1−α) up to a constant with respect to Σ∆-quantizationorder r with high

probability. Since it is actually the background knowledge for our result in Chapter 3, the results is

stated in the following up section below.

Recently in [15] another dual frame called Beta duals was designed for recovering the quantized mea-

surements of random (Gaussian) frame expansions, which reaches an error bound of O(
√
sL−(1−η)m/s),

for L being the quantization levels (how fine the alphabet is used), and η some small quantity.

Two-Step Recovery

Given an s-sparse signal x, and an m × N compressed sensing matrix Φ, where m � N , obtaining

measurements y = Φx. Applying an rth order Σ∆- quantization scheme to y, q is obtained. If treat q

as perturbed measurements, i.e., q = y + e = Φx + e, then by [28], the support set can be determined.

This is proved by a modified version of Proposition 4.1 in [28] and the reconstruction guarantee in [11].

Proposition 1. Given x ∈ RN an s-sparse signal, denote e a noise vector with ‖e‖2 ≤ ε, and let

Φ ∈ RN×m be a compressed sensing matrix. Reconstruct x from q = Φx + e via `1 minimization

22



obtaining x′, i.e.,

x̂ = argmin ‖z‖1 subject to ‖Φz − q‖2 ≤ ε.

If 1√
m

Φ has restricted isometry constants such that δ2s <
1√
2

, then ‖x − x̂‖2 ≤ K 1√
m
ε, let ‖T‖0 = s,

and if minj∈T |xj | ≥ K2r−
1
2 ∆, j ∈ T , for some positive constant K, then the index set of largest s

components of x′ is T .

With criteria of Proposition 1, the support set, T , of x can be identified. Then reconstructing the

signal by multiplying a left inverse of ΦT , say L on the left of the submatrix, ΦT , consisting of columns

of Φ with respect to the support set T , the reconstruction `2-error is then given by

‖x− x̂‖2 = ‖Ly − Lq‖ = ‖L(y − q)‖2 = ‖L(Dru)‖2 ≤ ‖LDr‖2→2‖u‖2.

The Sobolev dual matrix Lsob,r, first introduced in [5], is a left inverse of ΦT defined to minimize

‖LDr‖2→2, i.e.,

Lsob,r := argminL ‖LDr‖2→2 subject to LΦT = I.

The geometric intuition is that the dual frame Lsob,r is smoothly varying. Since LΦT = I, LDrD−rΦT =

I. And Lsob,r := argminL ‖LDr‖2→2 we choose LsobD
r to be the Moore-Penrose pseudoinverse of

D−rΦT , written as (D−rΦT )†, for which recovers the `2 minimized solution, as well as in [28], the error

bound is then obtained

‖x− x̂‖2 ≤ ‖(D−rΦT )†‖2→2‖u‖2 =
1

σmin(D−rΦT )
‖u‖2. (1.26)

Recall that ‖u‖2 ≤ 2−1∆
√
m, once a bound for σmin(D−rΦT ) is found from below we can bound ‖x−x̂‖2

from above. The bound of this singular value is stated in Proposition 5 proved based on study of Toeplitz

matrices, which depends highly on Weyl’s inequality [31] (see also for example in [28]).

With the same two-step approach as above from [28], in paper [37] the frame used in [28] was extended

to a sub-Gaussian frame expansion, and the error bound was further improved from polynomial to root-

exponential O(e−(m/s)).

Beyond the quantization on finite-frame expansion, papers [24,28,32, 37,55] provide error bound for
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Σ∆-quantizationon compressed sensing. Since this is the main issue of this thesis, we will take a closer

look of these papers.

Following the two-step method proposed in [28], the author of this thesis joint with Krahmer in [24]

exploit the property of the compressed sensing matrices used in [28,37] to the matrices, of which a certain

linear transformation satisfies the restricted isometry property. The results are presented in this thesis,

see Chapter 3 for more details.

I would say that this two-step approach is somehow a“frame-like” approach to quantization problem

on compressed sensing, and it can analyse the cases without noise and the exactly-sparse signals. Instead

of using the two-step recovery approach in [24, 28, 37], in [48] Saab utilized a “compressed sensing”-like

approach to estimate the error bound of quantization on compressed sensing, by solving a convex problem,

or more precisely, a `1-minimization problem, which then allowing the analysis of approximately-sparse

signals with existence of noise. In contrast to BPDQp in [33], which is for general quantization, the

decoder here is specifically designed for rth order Σ∆-quantization. This approach is “compressed

sensing-like”, such that it can get rid of the drawback in the “frame-like” approach to quantization on

compressed sensing, that doesn’t allow the existence of noise and the signal has to be exact sparse (not

robust to noise and not stable of the signal). In [48], even approximately sparse can be handled with

noise bounded by ε. Specifically, if q results from quantizing compressed sensing measurements y using

an rth-order Σ∆ scheme, one approximates x with x̂ via

(x̂, ê) := arg min
(z,ν)
‖z‖1 subject to ‖D−r(Φz + ν − q)‖2 ≤ γ(r)

√
m

and ‖ν‖2 ≤ ε
√
m, (1.27)

where γ(r) depends on the quantization scheme used. As the result the reconstruction error decays

polynomially in m as m−r+1/2, and the approach is shown to be stable and robust.

[48] gave a general form for reconstruction error, however they took only sub-Gaussian matrices for

example, we in this thesis (also in paper [32]) applies it to a structured case, i.e., partial random circulant

matrices. The main task is to prove the RIP of its transformation.

What is this important transformation of the compressed sensing matrix used in [24, 49]? Such
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that once the restricted isometry property of which is satisfied, the reconstruction error is bounded

polynomially, as results in [24, 49]. It is in fact the interaction between the compressed sensing matrix

and the right unitary matrix, denoted by V ∗, of the singular value decomposition of the inverse of rth

order difference matrix gone through a projection,denoted by P`. With these notation the result is stated

below.

Theorem 7. [48] Let Φ be an m×N matrix, and let s, l ∈ {1, ...,m}. Suppose that 1√
`
P`V

∗Φ satisfies

the restricted isometry property of order 2s and constant δ < 1/9. Denote by QrΣ∆ a stable rth order

Σ∆ quantizer. Then, for all x ∈ RN with ‖Φx‖∞ ≤ µ < 1 and all e ∈ Rm with ‖e‖∞ ≤ ε < 1 − µ the

estimate x̂ obtained by solving (1.27) with q = QrΣ∆(Φx+ e) satisfies

‖x̂− x‖2 ≤ C1

(m
`

)−r+1/2

δ + C2
σs(x)√

k
+ C3

√
m

`
ε, (1.28)

where the constants C1, C2, C3 depend on the quantizer, but not the dimensions of the problem.

Quantization problem on structure random compressed sensing matrices such as discrete Fourier

matrix was first analysed in [55]. [55] shows that by using the first order Σ∆-quantization the compressed

sensing recovery error decays polynomially as O
(

m
s4 logN

)−1/2
, when the compressed sensing matrix is a

randomly selected m×N submatrix of the N ×N discrete Fourier transform matrix, with m scales like

k4, while a linear scaling of m with k (up to log factors) arising in Theorem 7 is expected and a linear

scaling of m is also common in compressed sensing without quantization.

As another example of structured random compressed sensing matrix, in Chapter 4 we demonstrate

our result in [32] on partial random circulant matrices and which result in the theorem below.

Theorem 8. Denote by QrΣ∆ a stable rth order Σ∆ quantizer. Let Φ be an m × N partial random

circulant matrix associated to a vector with independent L-subgaussian entries with mean 0 and variance

1. Suppose that N ≥ m ≥ (Cη)
1

1−2α s log
2

1−2α N log
2

1−2α s, for some η > 1 and α ∈ [0, 1/2). With

probability exceeding 1− e−η, the following holds:

For all x ∈ RN with ‖Φx‖∞ ≤ µ < 1 and all e ∈ Rm with ‖e‖∞ ≤ ε < 1− µ the estimate x̂ obtained by
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solving (1.27) satisfies

‖x̂− x‖2 ≤ C1

(m
`

)−r+1/2

δ + C2
σk(x)√

k
+ C3

√
m

`
ε.

Here C,C1, C2, C3 are constants that only depend on r and L.

Still another, it is of great interest to find the error bound of signal recovery from Σ∆-quantization

quantized Fourier transformation (DFT) due to its popularity in industry and engineering.

Thus the problem in this chapter is then to bound the reconstruction error of the Σ∆-quantization

quantized partial random discrete Fourier transformation.

The difficulty of this problem is that it is still not clear what is exactly the singular value decom-

position (svd) of the higher order quantization matrix, i.e. the matrix V ∗ in svd of Dr = V ∗SU . A

conjecture is proposed as following.

Conjecture 1. There exists a constant c such that for any r, the singular vectors V ∗ of D−r ∈ Rm×m

satisfies

‖V ‖max ≤ crr
√

1

m
,

where ‖V ‖max := maxi,j |vi,j | is the element-wise norm of V .

And when trying to apply our method (i.e. Dudley’s inequality together with McDiarmid’s inequality)

in Chapter 4 for finding the restricted isometry property of the product P`V
∗RΩCx, another problem is

that the DFT doesn’t repeat like the circulant matrix, with which the cancellation can happen to reduce

the effect of P`V
∗.

It was hoped that the product 1√
`
P`V

∗RΩF satisfies the RIP. In [55], it is shown to achieve the

restricted isometry property if F contains no all one column. However if F contains the all one column,

there is no satisfactory upper bound for the product.

Theorem 9. [55] Let F ∈ CN×s be an nonnormalized DFT with any s out of N columns (i.e. FTF =

NIs)and assume that F contains no all 1 column. Then there exists a positive function c1 such that for
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any c, ε > 0, as long as ` satisfies m ≥ ` ≥ c1(r, c)s log3(m/ε), it holds with probability 1− ε that

σ2
min(P`V

∗RΩF ) ≥ `
(
1− c− 2

√
s

`
log

4s

ε

)
,

and

σ2
max(P`V

∗RΩF ) ≥ `
(
1 + c+ 2

√
s

`
log

4s

ε

)
,

where c1(r, c) = c2r
2r/c2 with c2 being an absolute constant.

In Theorem 9 [55], the error bound is established by controlling the norm of P`V
∗RΩF and constraint

in the decoder, i.e. `1-minimization.

Theorem 10. [55] Let F be an nonnormalized DFT matrix of dimension N , and let RΩF ∈ Cm×N be

a matrix with randomly selected rows from F with replacement. Assume x ∈ RN is an s-sparse signal. If

Conjecture 1 is true, let q be the rth order Σ∆-quantization of the compressed measurements RΩF with

the quantization alphabet δZ + δZi and suppose x̂ is the solution to

min ‖z‖1, s.t. ‖D−1(q −RΩFz)‖∞ ≤ δ/2.

Then there exist absolute constants c1 and c2 such that for any ε > 0,

sup
x∈Ds,N

‖x− x̂‖2 ≤ C(s,N, r)m−r+1/2,

with probability over 1− ε provided that m > c2s
4 log3N/ε.

1.3.3 What’s the goal

An overview of the problem setting can be described as following. Given an original signal x, and a

compressed sensing matrix A, collecting the measurement y = Ax randomly and after going through the

Σ∆-quantization, recover the signal by the proposed method, say decoder, to get x̂.

Fundamentally the problem in this thesis is to find an ”good” upper bound for the reconstruction
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error in `2, i.e., ‖x̂ − x‖2. When the measurement noise exists, the problem is extended by letting the

measurement y = Ax+ e, and for the possibility to recovery the signal nicely, surely the noise cannot be

too large therefore set an upper bound for it as conventionally, ‖e‖2 ≤ ε. And if the signal is not strictly

sparse, but approximately the result should show how the nonsparsity would effect the bound, this may

be expressed in terms of σs(x)p.

What is then a ”good” upper bound for the reconstruction error? Let us first ask: The upper bound

should be a function of which variables?

To be a meaningful bound, this upper bound should reveal what one can do to make the error smaller.

And also a good upper bound should be ”tight” enough, i.e., should be small.

And if the signal is not strictly sparse, but approximately, the bound should show in which level or

how badly this nonsparsity can affect the recovery.

On the perspective to the decoder, since the variables related to the quantizer is fixed once the

quantization is decided, Thus the order r, the step size ∆ of the quantization can be regarded as constant

when the quantizer is decided. The number of the measurements is then the essential variable to see

whether the bound is good enough. Literally the optimal reconstruction error of sparse signals decays

exponentially in m, O(e−m). The dimension of the signal N is decided once the signal is there, which

can not be changed by any artificial interference. The sparsity of the signal also cannot be changed.

Noise is also not changeable but have to be under control.

To evaluate the results, we first notice that as in the case with Σ∆-quantization in the finite-frames

context (e.g., [36]) and in the sub-Gaussian compressed sensing measurements context [37,49], the optimal

reconstruction error decays root-exponentially (to the sampling ratem/s) when the original signal is exact

sparse and without noise. With this, we may say that polynomial decay (to the sampling rate m/s) is

already satisfactory. Second, if with m meaningfully scales linearly up to sparsity s satisfactory? Now

comparing to the case of Gaussian or Bernoulli random compressed sensing matrix, it is required to have

m linearly scaling to sparsity s. Therefore it is actually quite exciting to reach also a linear scale.

The decoder to be chosen can surely affect the upper bound in this thesis, since a practical, instead

of a general, recovery is one of the main issue in the series of signal recovery problem on quantization

compressed sensing.
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In [28], a two-step recovery is proposed. The support set of a sparse signal is recovered first, and

then the problem is reduced to signal recovery for frame expansions. This decoder has the limit that the

signals have to be strictly sparse, and the terms should be away from zero. In [48] with robust null space

property, or restricted isometry property, the decoder is stable and robust. In this thesis, the decoder

proposed in [48] will be applied here.

In the context of quantization compressed sensing, despite the importance of circulant matrices, all

of papers in this topic focus on the random subgaussian measurement matrices for its nice properties to

be analysed. However since every linear time invariant (LTI) system is represented by convolution to a

kernel function, and a convolution is then represented by a circulant matrix. For the generality of a LTI

system, it is of importance to analyse the circulant matrix in quantization compressed sensing.
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Chapter 2

Review of mathematical tools

2.1 Dudley’s inequality

This chapter is modified from [52]. Dudley’s inequality, specifically, Dudley’s entropy bound is a typical

method nowadays to bound the supremum of a random variable over an index set. The technique is

based on the chaining argument, which runs along the index set by approximating an aimed index by a

series of elements from the index set. To the end, the entropy bound, which contains a covering bound

will be evaluated by, here in the thesis, Maurey’s method and a volumetric argument.

2.1.1 The generic chaining

The generic chaining is an essential step on the way to Dudley’s inequality [52]. To demonstrate it,

we need a set of random variables with an index set T , denoted as Xs, s ∈ T , which satisfies the tail

property.

P(|Xs −Xt| ≥ ud(s, t)) ≤ 2 exp(
−u2

2
), for all u ∈ R. (2.1)

As stated above, this index set T is a metric set with distance between x, y denoted by d(x, y). Let

Tn be a subset of T and for t ∈ T , πn(t) ∈ Tn which is closest to t.
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The chaining argument

Now consider the following argument. If given event E

|Xπn(t) −Xπn−1(t)| < ud(πn(t), πn−1(t))2n/2, ∀n ≥ 1, t ∈ T, (2.2)

then we are ready to go into the chaining step.

sup
t∈T
|Xt −Xt0 | = sup

t∈T
|
∑
n≥1

Xπn(t) −Xπn−1(t)|

≤ sup
t∈T

∑
n≥1

|Xπn(t) −Xπn−1(t)|

≤ sup
t∈T

∑
n≥1

ud(πn(t), πn−1(t))2n/2

≤ sup
t∈T

∑
n≥1

u[d(πn(t), t) + d(πn−1(t), t)]2n/2

= sup
t∈T
{
∑
n≥1

ud(πn(t), t)2n/2 +
∑
n≥1

ud(πn−1(t), t)2n/2}

≤ sup
t∈T
{
∑
n≥0

ud(πn(t), t)2n/2 +
∑
n≥0

ud(πn(t), t)2n/2}

= sup
t∈T

2u
∑
n≥0

d(πn(t), t)2n/2,

which implies that taking infimum of all admitted sequence (Tn)n≥0 with card Tn ≤ Nn, it holds also

sup
t∈T
|Xy −Xt0 | ≤ 2u

∑
n≥

inf
Tn

sup
t∈T

d(Tn, t)2
n/2. (2.3)

The next thing we want to do is to express the right hand side by the covering number of the set X.

Now define entropy numbers en and covering number.

Definition 5. [52]

en = inf sup
t∈T

d(Tn, t), (2.4)

where the infimum is taken over all subsets Tn of T .

Definition 6. [52] Let (X, d) be a metric space and let ε > 0. A subset Nε of X is called an ε-net of X
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if every point x ∈ X can be approximated to within ε by some point y ∈ Nε, i.e. so that d(x, y) ≤ ε. The

minimal cardinality of an ε-net of X, if finite, is denoted N (X, d, ε) and is called the covering number

of X.

To evaluate the summation in (2.3) by using covering numbers, there should be a connection between

Definition (2.1.1) and Definition (2.1.1). This is by setting the cardinality to the sequence Tn such that

card Tn ≤ Nn = 22n , and than obtaining

en = inf{ε,N (T, d, ε) ≤ 22n}. (2.5)

Therefore

√
log 22n(en − en+1) ≤

∫ en

en+1

√
logN(T, d, ε)dε

⇒
√

log 2
∑
n≥0

2n/2(en − en+1) ≤
∑
n≥0

∫ en

en+1

√
logN(T, d, ε)dε

⇒
√

log 2
∑
n≥0

2n/2en −
∑
n≥1

2
n−1

2 en ≤
∫ e0

0

√
logN(T, d, ε)dε

⇒
√

log 2(1− 1√
2

)
∑
n≥0

2n/2en ≤
∫ e0

0

√
logN(T, d, ε)dε.

Therefore the summation part in (2.3) is bounded by

∑
n≥0

2n/2en ≤ {
√

log 2(1− 1√
2

)}−1

∫ e0

0

√
logN(T, d, ε)dε. (2.6)

Insert (2.6) to (2.3)obtaining

sup
t∈T
|Xt −Xt0 | ≤ 2u{

√
log 2(1− 1√

2
)}−1

∫ e0

0

√
logN(T, d, ε)dε. (2.7)

To make the statement clear, summarized this chapter as following:

If

|Xπn(t) −Xπn−1(t)| < ud(πn(t), πn−1(t))2n/2, ∀n ≥ 1, t ∈ T, (2.8)
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then

sup
t∈T
|Xt −Xt0 | ≤ 2u{

√
log 2(1− 1√

2
)}−1

∫ e0

0

√
logN(T, d, ε)dε. (2.9)

2.1.2 Tail bound for supXt

Our goal is however to find a upper bound p(u) for supt∈T Xt, or stronger statement:

P(sup
t∈T
|Xt −Xt0 | > 2u{

√
log 2(1− 1√

2
)}−1

∫ e0

0

√
logN(T, d, ε)dε) ≤ p(u). (2.10)

This is an compliment event to event (2.8), therefore

P(sup
t∈T
|Xt −Xt0 | > 2u{

√
log 2(1− 1√

2
)}−1

∫ e0

0

√
logN(T, d, ε)dε)

≤P(∃(πn(t), πn−1(t))such that |Xπn(t) −Xπn−1(t)| > ud(πn(t), πn−1(t))2n/2) (2.11)

≤22n+1

P(|Xπn(t) −Xπn−1(t)| > ud(πn(t), πn−1(t))2n/2) (2.12)

≤22n+1+1 exp(−u2/(2−n/2+1)) = 22n+1+1 exp(−u22n−1) (2.13)

≤22n+1+1 exp(−u
2

2
− 2n+1) ≤ 2 exp(

−u2

2
) := p(u).

In (2.13) by argument in Chapter 2 [52],

u22n−1 ≥ u2

2
+ u22n−2 ≥ u2

2
+ 2n+1, (2.14)

and then applying union bound in (2.11) and Proposition (3) in (2.12)yields the result. For later use,

this chapter will be concluded as

Theorem 11 (Dudley’s inequality [52]).

P
(

sup
t∈T
|Xt −Xt0 | > u

)
. exp

(
−u2( ∫ e0

0

√
logN(T, d, ε)dε

)2). (2.15)

In the followed up chapter, two classical method for estimating the covering number will be introduced.
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2.1.3 Evaluation of covering number

In this chapter Maurey’s method and volumetric argument will be demonstrated. And note that two of

them can be used together for one same set for volumetric argument is tighter than Maurey’s method

when ε is small.

Volumetric argument

Lemma 1. [54] Volumetric argument says that the covering number N (B(0, 1), d, ε) of a unit ball

B(0, 1) := {x ∈ Rn, d(x, 0) ≤ 1} is less than or equal to (1 + 2
t )
n.

Proof. Let ε > 0 and Nε be a maximal ε-separated subset of B(0, 1), i.e., ∀x ∈ B(0, 1) there exists t ∈ Nε

such that d(t, x) ≤ ε, then for any s 6= t ∈ Nε B(s, ε/2) and B(t, ε/2) do not intersect. Which implies

that

Vol(|Nε|B(t, ε/2)) ≤ B(0, 1 + ε/2)

|Nε|Vol(B(t, ε/2)) ≤ B(0, 1 + ε/2)

|Nε|(ε/2)n ≤ (1 + ε/2)n

|Nε| ≤ (1 + 2/ε)n.

Since the unit ball is covered by ε-balls of elements in Nε, Nε is larger then or equal to the covering

number. And since they are disjoint, the covering number is greater then or equal to it, and since the

covering number is the smallest such number, which is then less then or equal to it. Thus the Nε equals

the covering number.

Maurey’s method

Maurey’s method estimates the covering number of a convex hull consisted from U = {uj}Nj=1 by ap-

proaching each element of the convex hull by an average of a summation of random vector taking values

from U .

Lemma 2. [44] Given U = {uj}Nj=1 If x ∈ conv(U) then x =
∑N
j=1 θjuj with θj ≥ 0,

∑N
j=1 θj = 1. Let

Z be a random vector which takes value uj. Let M be a number to be determined later, and set (Zj)
M
j=1
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be independent copies of Z, and treating them for the moment as fixed numbers. If for some norm ‖ · ‖X

there is an absolute constant A such that Eεk‖
∑M
k=1 εkZk‖X ≤ A

√
M , then

log
1
2 N (conv(U), ‖ · ‖X , ε) ≤ (

2A

ε
) log

1
2 N. (2.16)

Proof. If x ∈ conv(U) then x =
∑N
j=1 θjuj with θj ≥ 0,

∑N
j=1 θj = 1. Let Z be a random vector

which takes value uj with probability θj for j = 1, . . . , N and thus EZ = x. Let M be a number to be

determined later, and set (Zj)
M
j=1 be independent copies of Z, and z = 1

M

∑M
k=1 Zk. Given (ξk)Mk=1 a

i.i.d. Rademacher random vector applying symmetrization in Lemma 16), and x is approached by z as

E‖z − x‖X = E‖ 1

M

M∑
k=1

Zk − EZk‖X ≤
2

M
E‖

M∑
k=1

ξkZk‖X .

If for some norm ‖ · ‖X there is an absolute constant A such that E‖
∑M
k=1 εkZk‖X ≤ A

√
M , then

E‖z − x‖x ≤
2A√
M
. (2.17)

Which means there exist at least one such z∗ = 1
M

∑M
k=1 Zk such that

‖z∗ − x‖X ≤
2A√
M
. (2.18)

Now M can be determined since ‖z∗−x‖X is supposed to be less than ε. This is achievable if M = ( 2A
ε )2.

And since there are NM candidates which can be the z∗, the covering number is hence bounded by NM ,

Hence

log
1
2 N (conv(U), ‖ · ‖X , ε) ≤ (

2A

ε
) log

1
2 N. (2.19)

2.2 Moments and tails

Moments and tails are used commonly to see the behaviour of a random variable. In this section we

introduce some properties which will be used in this thesis.
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Proposition 2 (Höffding’s inequality for Rademacher sums). [26] Let = (b1, . . . , bM ) ∈ RM and

ε = (ε1, . . . , εM ) be an i.i.d. Rademacher sequence, i.e., each εi takes value ±1 with equal probability.

Then, for u > 0,

P
( M∑
j=1

|εjbj | ≥ ‖b‖2u
)
≤ exp(−u2/2). (2.20)

Proof. By Markov’s inequality,

P
( M∑
j=1

εjbj ≥ u
)

= P
(

exp(

M∑
j=1

λεjbj) ≥ exp(λu)
)

≤ e−λuE[exp(λ

M∑
j=1

εbj)]

= e−λuΠM
j=1E[exp(εjλbj)]

= e−λuΠM
j=1[

1

2
exp(−1λbj) +

1

2
exp(1λbj)]

= e−λuΠM
j=1

1

2
[

∞∑
k=0

(−λbj)k

k!
+

∞∑
k=0

(λbj)
k

k!
]

= e−λuΠM
j=1[

∞∑
k=0

(λbj)
2k

(2k)!
]

≤ e−λuΠM
j=1[

∞∑
k=0

(λbj)
2k

(2k)k!
]

= e−λuΠM
j=1[e(λbj)

2/2]

= e−λu[e(λ2 ∑M
j=1 b

2
j )/2)]

= e−λu[e(λ2‖b‖22/2)]

= e−λu+λ2‖b‖22/2.

Minimizing the exponential by letting λ = u
‖b‖22

, then

P
( M∑
j=1

εjbj ≥ u
)
≤ e

−u2

2‖b‖22 , (2.21)
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or equivalently,

P
( M∑
j=1

εjbj ≥ ‖b‖2u
)
≤ e

−u2

2 . (2.22)

Proposition 3 (Proposition 7.14 [26]). Let Z be a random variable satisfying

P(|Z| ≥ u) ≤ βe−u
2/2, ∀u ≥

√
2,

for some constants α > 0, β ≥ 2. Then

E|Z| ≤ Cβ
√

ln(4β),

with Cβ =
√

2 + 1/(4
√

2 ln(4β)) ≤
√

2 + 1/(4
√

2 ln(8)) ∼ 1.499 < 3/2.

Proof. For some κ ≥ u ≥
√

2,

E|Z| =
∫ ∞

0

P(|Z| > u)du

=

∫ κ

0

1du+

∫ ∞
κ

P(|Z| > u)du ≤ κ+

∫ ∞
κ

βe−u
2/2du,

by Lemma 13 in Appendix, and assumption that κ >
√

2,

E|Z| ≤ κ+
βe−κ

2/2

κ
,

choosing κ =
√

2 ln(4β) yields

E|Z| ≤
√

2 ln(4β) +
1

4
√

2 ln(4β)

= (
√

2 +
1

4
√

2 ln(4β)
)
√

ln 4β.
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2.3 McDiarmid’s inequality

This chapter is based on [40]. McDiarmid’s inequality provides an upperbound to the concentration

probability of a function of independent random variables. This is based on measuring how the function

changes its value by varying only one random variable in the domain.

Theorem 12 ( [40], Theorem 3.7). Consider a random vector X = (Xi)
m
i=1, where the Xi are taking

values in given sets Ai, i ∈ [m], and let f be a bounded real-valued function defined on
∏m
j=1Aj. For

k ≤ m and ~x = (xi)
m
i=1 ∈

∏m
j=1Aj, let Bk denote the event that Xi = xi for all i = 1, . . . , k − 1. For

gk(x) := E[f(X)|Bk ∪ {Xk = x}] − E[f(X)|Bk], consider the range ran(x1, . . . , xk−1) := sup{|gk(x) −

gk(y)| : x, y ∈ Ak}. Assume that the sum of squared ranges

R2(~x) =

m∑
k=1

(ran(x1, . . . , xk−1))2,

is bounded outside a ‘bad’ subset B of
∏m
j=1Aj, that is, R2(~x) ≤ r2 for all ~x /∈ B. Then

P(|f(X)− Ef(X)| ≥ t) ≤ 2 exp(−2t2/r2) + P(X ∈ B).

McDiarmid’s inequality solves a concentration problem, here a generalized version, which states:

Theorem 13 ( [40], Theorem 3.14). Let (Ω,F ,P) be a probability space and (∅,Ω) = F0 ⊆ F1 ⊆ ... ⊆ Fm

a filtration in F . Consider a bounded random variable X, and set Xk := E(X|Fk). Define the sum of

squared conditional ranges

R2 =

m∑
k=1

ran2
k,

where

rank := sup(Xk|Fk−1) + sup(−Xk|Fk−1),

and denote its (essential) supremum by

r̂2 := supR2.
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Then,

P(X − E(X) ≥ t) ≤ e−2t2/r̂2

.

Proof. Let Vi := Xk −Xk−1, and Fm = σ(X), then X0 = E(x) and Xm = X. Thus

P(X − EX ≥ ε)

= P(

m∑
i=1

Vi ≥ ε)

= P(et
∑m
i=1 Vi ≥ etε)

by Markov’s inequality

≤ e−tεE(e
∑m
i=1 Vi)

= e−tεE
[
E(et

∑m
i=1 Vi)|Fm−1

]
= e−tεE

[
et

∑m−1
i=1 ViE(etVm |Fm−1)

]
.

(2.23)

Since the expectation of random variable (Vm|Fm−1)

E(Vm|Fm−1) = E
[
E(X|Fm)− E(X|Fm−1)|Fm−1

]
= E

[
E(X|Fm)|Fm−1]

]
− E

[
E(X|Fm−1)|Fm−1

]
= E(X|Fm−1)− E(X|Fm−1) = 0,

and due to boundedness of X, both sup(Vm|Fm−1) = sup
[
(Xm|Fm−1) −Xm−1

]
, and inf(Vm|Fm−1) =

inf
[
(Xm|Fm−1) − Xm−1

]
are also bounded with range sup

(
Xm|Fm−1

)
+ sup

(
− Xm|Fm−1

)
= ranm.

By Höffding’s lemma (see Lemma 17),

E(etVm |Fm−1) ≤ exp(
t2ran2

m

8
). (2.24)
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Substitute (2.24) to (2.23) and iterating these steps,

P(X − EX ≥ ε) ≤ e−tε exp(
t2
∑m
k=1 ran2

k

8
). (2.25)

After minimizing the right hand side of (2.25) with variable t = 4ε∑m
k−1 ran2

k
,

P(X − EX ≥ ε) ≤ exp(
−2ε2

R2
), (2.26)

taking supremum of R2,

P(X − EX ≥ ε) ≤ exp(
−2ε2

r̂2
). (2.27)

By definition, Xk := E(X|Fk) it is clear that E(Xk+1|Fk) = E(E(X|Fk+1)|Fk) = E(X|Fk) = Xk.

The result of McDiarmid’s inequality is thus the consequence of a martingale sequence. The interested

readers are refered to [40] for further information.
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Chapter 3

RIP approached error bound

The content in this chapter is a joint work with Felix Krahmer. In this chapter the approach to estimating

the error of reconstruction from Σ∆ quantized measurements for compressed sensing in [24] is introduced.

Our method is based on the restricted isometry property (RIP) of the matrix 1√
`
P`V

∗Φ of the

compressed sensing matrix Φ with projection P` and the right unitary matrix V ∗ of singular value

decomposition of the rth power to the inverse of difference matrix D, i.e., D−r (1.24). The main

application of our result is the error analysis for random subgaussian matrices.

The main result in this chapter is that once we know the restricted isometry property of the interaction

matrix 1√
`
P`V

∗Φ of the compressed sensing matrix Φ, then the reconstruction error can be bounded by

our result.

In this chapter the rth order greedy Σ∆-quantized measurements with quantization alphabet Z = ∆Z

are used as introduced in Chapter 1.2.

Throughout this chapter the rth power of the difference matrix D, i.e., Dr will be used repeatedly,

especially its singular value decomposition. Denoting the singular value decomposition of D−r by D−r =

UD−rSD−rV
∗
D−r .

Note that the compressed sensing matrix Φ is not normalized, while in almost all the compressed

sensing literature, it is usual normalized to have unit-norm columns. Since we here use an alphabet

(more precisely, the step size, ∆) which is independent of the size of the measurement, i.e., m, if the

columns are however normalized (up to 1√
m

), it is not fair to compare the result when adjusting the

43



measurement size m. Therefore, in this Chapter 3 as well as in [28] the measurement matrices are not

normalized, and assuming that each entry of the measurement matrices has variance one.

In chapter 3.2 its application on Gaussian (generalized to subgaussian) is shown.

We state our main theorem as follows.

Theorem 14. Given an s-sparse signal x ∈ RN , denoted by Φ ∈ Rm×N a compressed sensing matrix,

and q the rth order Σ∆-quantized measurements of Φx with step size ∆. Suppose Φ has the restricted

isometry property such that the support set T can be determined. Choose L as the Sobolev dual matrix

of ΦT and reconstruct the signal by x̂ = Lq (see Chapter 1.3.2 for details), if
√

1
`P`V

∗
D−rΦ, ` ≤ m,

has the restricted isometry constant δs ≤ δ, where P` maps a vector to its first ` components. then the

reconstruction error is bounded above by

‖x− x̂‖2 ≤
∆

2c2(r)
√

(1− δ)
(
m

`
)−r+

1
2 ,

where c2(r) > 0 is a constant depending only on r.

Note from Theorem 14, the smaller ` is the better the bound. However, ` has to be large enough

such that 1√
m

(P`V
∗
D−rΦ) has the restricted isometry constant δs ≤ δ.

This result can be applied to obtain recovery guarantees for various compressed sensing setting such

as Gaussian, subgaussian measurements. We will show in later chapter that our result covers which

in [28] and [37].

The proof used the two-step analysis. In the first step, the support set is recovered via an `1-

minimization problem. In the second step, the recovery error is estimated by recovering this frame-based

problem obtained from step one in two-step recovery by multiplication with the Sobolev dual frame.

3.1 RIP-based error analysis

From Equation (1.26), the main issue to bound the reconstruction error from below of σmin(D−rΦT ).

Finding the infimum of σmin(D−rΦT ) over all possible support sets T is equivalent to finding the s-sparse

vector with the smallest image under D−rΦT . In this chapter we show mathematically that how the

restricted isometry property of P`V
∗Φ can reveal the reconstruction bound. The reason in words, it is
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due to the constraints on both sides of the restricted isometry property, these constraints actually give

the bounds for singular values of the matrix 1√
`
P`V

∗Φ over all possible support sets. This gives the

connection to the concept of RIP.

In the following proof, how the restricted isometry property can be applied to find this effective

smallest singular value is shown.

Proof of Theorem 14. Recall that D−r = UD−rSD−rV
∗
D−r . Then, as S is a diagonal matrix,

σmin(D−rΦT ) = σmin(SD−rV
∗
D−rΦT )

≥ σmin(P`SD−rV
∗
D−rΦT )

= σmin((P`SD−rP
∗
` )(P`V

∗
D−rΦT )`×s)

≥ s`σmin(P`V
∗
D−rΦT )`×s,

Next, need to bound σmin(P`V
∗
D−rΦT ) uniformly over all support set T .

If 1√
`
P`V

∗
D−rΦ has the restricted isometry constant δs ≤ δ then σmin(P`V

∗
D−rΦT )`×s is uniformly

bounded from below by

√
`
√

1− δ. (3.1)

Theorem 18, Proposition 5 in Appendix A, and (3.1) yields the result that

1

σmin(D−rΦT )
‖u‖2 ≤

∆

2c2(r)
√

(1− δ)
(
m

`
)−r+

1
2 . (3.2)

3.2 Gaussian and subgaussian matrices

Given Φ a standard Gaussian random matrix. Since (P`V
∗
D−rΦ) is also a standard Gaussian random

matrix due to rotation invariance, with ` = Ω(s logN), 1√
`
P`V

∗
D−rΦ has the restricted isometry constant
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δs < δ with high probability [26]. Since s ≤ ` ≤ m,

m

`
≤ (

m

s
)α, α ∈ (0, 1).

Provided that ` = Ω(s logN),

m

`
. (

m

s
)α

⇒ m

s logN
. (

m

s
)α

⇒m & s(logN)
1

α−1 .

Applying Theorem 14 directly obtained

‖x− x̂‖2 . ∆(
m

s
)−α(r− 1

2 ),

with high probability. This therefore recovers the result in [28].

By similar steps, this can also be generalized to subgaussian measurement matrices, which recovering

the result in [2]. As this argument involves some additional technical steps, the details are omitted.
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Chapter 4

Error bound of recovery from Σ∆

quantized partial random circulant

measurements

As the first author, the results in this chapter is a joint work with Felix Krahmer and Rayan Saab. This

chapter is aimed to estimate the reconstruction error from quantized measurements of a compressed

sensing problem.

More specifically, we obtain a quantized measurement vector from an original signal via linear trans-

formation by a randomly subsampled circulant matrix formed of i.i.d. subgaussian vector.

The quantization we use here is the greedy Σ∆-quantization. And note that throughout this chapter

we subsample the compressed sensing matrix uniformly at random WITHOUT REPLACEMENT.

4.1 Contributions

In this chapter, we demonstrate our results in [32] of analysis to the reconstruction error on partial

random circulant matrices. We show that if the compressed sensing matrix is a randomly (without

replacement) subsampled partial random circulant matrix, and the measurements are quantized by the

greedy Σ∆-quantization introduced in Chapter 1.2.3, then with the decoder in (1.27) we conclude that:

47



• The reconstruction error decays polynomially with the number of measurements.

• The recovery is robust (whether or not the noise exists) and stable (whether the signal is exactly

or only approximately sparse).

• With number of measurements m meaningfully scales linearly to the sparsity s.

How we can evaluate our results? How do we know that we got a good and suitable one? First

notice that as in the case with Σ∆-quantization in the finite-frames context (e.g., [36]) and in the

sub-Gaussian compressed sensing measurements context [37,49], the optimal reconstruction error decays

root-exponentially when the original signal is exact sparse and without noise. With this, we may say that

polynomial decay with our set-up, i.e., with noise and the original signal is only approximately sparse,

is already satisfactory. Second, if with m meaningfully scales linearly up to sparsity s satisfactory? Now

comparing to the case of Gaussian or Bernoulli random compressed sensing matrix, it is required to have

m linearly scaling to sparsity s. Therefore it is actually quite exciting to reach also a linear scale here.

Our analysis relies on proving a restricted isometry property for the product of our compressed sensing

compressed sensing matrix and the matrix formed by the left singular vectors of an rth order difference

operator in (1.24), denoted in Theorem 7 as 1√
`
P`V

∗Φ. To prove the restricted isometry property of this

product of matrices, we combine a variation of McDiarmid’s inequality [40], Dudley’s inequality [22], and

recent results on suprema of chaos processes [39].This is worthwhile to point out that comparing to all

the previous works on compressed sensing even with quantization context, we are here subsampling the

random compressed sensing matrix without replacement. The first attention is to prove the restricted

isometry property of the matrix 1√
`
P`V

∗Φ, and then Theorem 7 yields the reconstruction error. Then

in the proof of its restricted isometry property, the tube constraint is divided into three parts. One

part of it can be reached by direct computation, another part is a direct application of the results on

suprema of chaos process [39], the final part is treated by first solving a concentration problem, and then

reaching the suprema by chaining argument and its bound by Dudley’s inequality. Binding these three

parts together shows that the product of the matrices satisfies the restricted isometry property with high

property.
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4.2 Notation and basic definitions

Denote by [N ] the set {1, . . . , N}. A vector x ∈ RN is s-sparse if only s of its entries are non-vanishing,

that is, its support T = suppx = {j ∈ [N ] : xj 6= 0} satisfies |T | = s. F =
(
e2πijk/N

)N
j,k=1

denotes the

nonnormalized N × N discrete Fourier transform matrix, F̄ the conjugate of F . That is, FF̄ = F̄F =

NId.

Given a vector x ∈ R, we denote by X̂ ∈ RN×N the diagonal matrix with x̂ := Fx on the diagonal.

For a matrix A, Ak denotes its kth column.

We write f . g for two functions f and g if they are defined on the same domain D and there exists

an absolute constant C such that f(y) ≤ Cg(y) for all y ∈ D, f & g is defined analogously.

Given a full-rank matrix A ∈ Rm×d with m > d, its pseudo-inverse is given by A† = (A∗A)−1A∗.

4.2.1 Subgaussian random variable

Definition 7 (see, e.g., [54]). A random variable X is called L-subgaussian if

P(|X| > t) ≤ exp(1− t2/L2). (4.1)

Up to absolute multiplicative constants, the subgaussian parameter L is equivalent to the subgaussian

norm ‖X‖Ψ2
defined as ‖X‖Ψ2

= supp≥1 p
−1/2(E|X|p)1/p. Specifically, (4.1) implies that [54]

‖X‖ψ2 ≤
√

e
2L. (4.2)

4.2.2 Partial random circulant matrices

Given a vector ξ = (ξ1, ξ2, . . . , ξN ) ∈ RN , the corresponding circulant matrix Cξ = C(ξ) ∈ RN×N is

defined by
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Cξ =



ξ1 ξ2 ξ3 · · · ξN

ξN ξ1 ξ2 · · · ξN−1

...
...

ξ2 ξ3 ξ4 · · · ξ1


. (4.3)

When ξ is a random vector and its entries are L-subgaussian random variables with variance 1 and mean

0, we call the corresponding matrix Cξ a random circulant matrix. An m×N partial random circulant

matrix with m < N is obtained from an N × N random circulant matrix by sampling the rows of Cξ.

In this thesis, the rows of our compressed sensing matrix are m rows of a random circulant matrix Cξ

selected randomly (with equal probability), and without replacement.

More precisely, let Ω = (Ω1, . . . ,Ωm) be a random vector obtained by sampling from [N ] := {1, . . . , N}

without replacement, that is, Ω is drawn uniformly at random from the set

Ξ := {Ω ∈ [N ]m : Ωi 6= Ωj for i 6= j}. (4.4)

The corresponding subsampling operator is then given by

Rm×N 3 RΩ =

m∑
j=1

eje
∗
Ωj ,

where ek is the k-th standard basis vector, and we study measurement matrices of the form

Φ = RΩCξ.

Partial random circulant matrices are important to the practical application of compressed sensing.

This is due to the simple observation that a circular convolution of a signal x ∈ RN with ξ̃ ∈ RN can be

represented by the action of a circulant matrix Cξ, i.e., by Cξx. And every linear time invariant (LTI)

system is represented by convolution to a kernel function, and a convolution is then represented by a

circulant matrix. For the generality of a LTI system, it is of importance to analyse the circulant matrix
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in quantization compressed sensing. Defining ξ ∈ RN via ξ̃j = ξN−j+1 for j ∈ {1, ..., N} the matrix Cξ

is then as in (4.3). Consequently, partial random circulant matrices model subsampled random convo-

lutions. Since linear time invariant system is so ubiquious in reality, convolutions in signal processing

applications, or more precisely partial random circulant matrices (randomly selected convolutions) have

played an important role in the development of compressed sensing applications such as radar imaging,

Fourier optical imaging, and wireless channel estimation (see, e.g., [30, 45]).

Consequently, as the convolution is commutative, Cξx = Cx̃ξ̃. In the context in this paper, it is

mathematically equivalent to analyse Cxξ instead of Cx̃ξ̃ through the map ξ̃ → ξ and x̃→ x, where

Cx = (ci,j) =



x1 x2 x3 · · · xN−1 xN

x2 x3 x4 · · · xN x1

...
...

xN x1 x2 · · · xN−2 xN−1


. (4.5)

Throughout this chapter, we will repeatedly use Cxξ rather than Cξx.

4.3 Probabilistic tools

We will use a number of different probabilistic tools for different parts of our argument. We state them

here for convenience. The first one is a variation of McDiarmid’s inequality.

Theorem 15 ( [40], Theorem 3.14). Let (Ω,F ,P) be a probability space and (∅,Ω) = F0 ⊆ F1 ⊆ ... ⊆ Fm

a filtration in F . Consider a bounded random variable X, and set Xk := E(X|Fk). Define the sum of

squared conditional ranges

R2 =

m∑
k=1

ran2
k

where

rank := sup(Xk|Fk−1) + sup(−Xk|Fk−1),
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and denote its (essential) supremum by

r̂2 := supR2.

Then,

P(X − E(X) ≥ t) ≤ e−2t2/r̂2

.

A second tool that we will be using is Dudley’s inequality introduced in Chapter 2.1. Here is a version

with subgaussian random variables Zx and distance ‖ · ‖Φ2 .

Theorem 16 (Dudley’s inequality [22]). Let Zx be a random variable depending on x ∈ T , for some set

T and define d(x, y) = ‖Zx − Zy‖Ψ2
, if

P(|Zx − Zy| > t) . exp
(
− t2/‖Zx − Zy‖2Ψ2

)
,

then for any x0 ∈ T

P(sup |Zx − Zx0
| > t) . exp

(
− t2/

( ∫ supx∈Ds,N
‖Zx‖Ψ2

0

√
logN (Ds,N , (.x, y), ε)dε

)2)
.

A third result we will need concerns the subgaussian chaos processes. Whose original version involves

the Talagrand γ2 functional related to the generic chaining [52], which can be bounded in terms of

covering numbers via Dudley’s inequality (Theorem 16). A combined version in terms of only these

upper bounds is stated for easier reading.

Theorem 17 ( [39]). Let C be a set of matrices and consider the complexity parameters

dF (C) = sup
C∈C
‖C‖F , d2→2(C) = sup

C∈C
‖C‖2→2, D(C) =

∫ d2→2(C)

0

√
logN (C, ‖ · ‖2→2, u) du.

Let ξ be a random vector whose entries ξj are independent, mean-zero, variance 1, L-subgaussian random

variables. Then, for t > 0, the random variable

CC(ξ) = sup
C∈C
|‖Cξ‖22 − Eξ‖Cξ‖22,
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satisfies

P(CC(ξ) ≥ c1E + t) ≤ 2 exp(−c2 min{ t
2

V 2
,
t

U
}),

where

E = D(C)(D(C) + dF (C)) + dF (C)d2→2(C), V = d2→2(C)(D(C) + dF (C)), U = d2
2→2,

and the constants c1, c2 depend only on L.

4.4 Main results

In this chapter, we prove the following theorem, which is the main result of this chapter.

Theorem 18. Denote by QrΣ∆ a stable rth order Σ∆ quantizer. Let Φ be an m × N partial random

circulant matrix associated to a vector with independent L-subgaussian entries with mean 0 and variance

1. Suppose that N ≥ m ≥ (Cη)
1

1−2α s log
2

1−2α N log
2

1−2α s, for some η > 1 and α ∈ [0, 1/2). With

probability exceeding 1− e−η, the following holds:

For all x ∈ RN with ‖Φx‖∞ ≤ µ < 1 and all e ∈ Rm with ‖e‖∞ ≤ ε < 1− µ the estimate x̂ obtained by

solving (1.27) satisfies

‖x̂− x‖2 ≤ C1

(m
`

)−r+1/2

δ + C2
σk(x)√

k
+ C3

√
m

`
ε.

Here C,C1, C2, C3 are constants that only depend on r and L.

Proof. Theorem 18 can be immediately obtained from Theorem 7, which requires a bound on the re-

stricted isometry constants of P`V
∗RΩCξ where ` = m( sm )α, and Proposition 4 below, which provides

the required bound.

Proposition 4. Consider the same set-up and assumptions as Theorem 18; in particular assume that

m ≥ (Cη)
1

1−2α s log
2

1−2α N log
2

1−2α s, for some η > 1 and α ∈ [0, 1/2). Setting ` = m( sm )α, we have

P
(

sup
x
|‖ 1√

`
P`V

∗RΩCxξ‖22 − 1| > 1

9

)
< e−η,
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where the supremum is over all s-sparse vectors. In other words, with probability exceeding 1− e−η, the

matrix 1√
`
P`V

∗RΩCξ satisfies the restricted isometry property of order s, with constant 1/9.

Proof. Note that by the triangle inequality,

sup
x

∣∣∣‖ 1√
`
P`V

∗RΩCxξ‖22 − 1
∣∣∣

≤ sup
x

(∣∣∣‖ 1√
`
P`V

∗RΩCxξ‖22 − E[‖ 1√
`
P`V

∗RΩCxξ‖22|Ω]
∣∣∣+∣∣∣E[‖ 1√

`
P`V

∗RΩCxξ‖22|Ω]− E‖ 1√
`
P`V

∗RΩCxξ‖22
∣∣∣+

|E‖ 1√
`
P`V

∗RΩCxξ‖22 − 1|
)
. (4.6)

Thus, the proof of Proposition 4 is divided into controlling these three summands in (4.6). First, Lemma

3 (below) shows that by direct computation the third summand is bounded by sm
`N , while Lemma 4 and

Lemma 5 bound the probability that the remaining summands exceed 1
18 and 1

36 respectively. Our bound

on m (potentially with an increased value of C) ensures that sm
`N ≤

s
` =

(
s
m

)1−α ≤ 1
36 and the result

follows using a union bound.

Lemma 3. Given the same set-up as in Theorem 18 and Proposition 4, one has

|E‖ 1√
`
P`V

∗RΩCxξ‖22 − 1| ≤ (s− 1)(m− `)
`(N − 1)

≤ sm

`N
.

Proof. Denoting by ci,j the (i, j)-th entry of Cx and noting that we are sampling without replacement,

we observe that for p 6= q ∈ [m]

E(cΩ(p),kcΩ(q),k) =
1

N(N − 1)

N∑
u6=v=1

cu,kcv,k =
1

N(N − 1)

( N∑
u,v=1

cu,kcv,k −
N∑
u=1

c2u,k

)

=
1

N(N − 1)

( N∑
u,v=1

cu,kcv,k −
N∑
u=1

x2
u

)
=

1

N(N − 1)

(( N∑
u=1

xu
)2 − 1

)
. (4.7)
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The last two equalities both use the fact that each row of Cx is a shifted copy of x. Furthermore

∣∣∣E‖ 1√
`
P`V

∗RΩCxξ‖22 − 1
∣∣∣ =

∣∣∣E‖ 1√
`
P`V

∗RΩCx‖2F − 1
∣∣∣

=
∣∣∣1
`
E
∑̀
j=1

N∑
k=1

|
m∑
p=1

vjpcΩ(p),k|2 − 1
∣∣∣

=
∣∣∣1
`

∑̀
j=1

N∑
k=1

( m∑
p=1

v2
jpEc2Ω(p),k +

m∑
p,q=1
p 6=q

vjpvjqEcΩ(p),kcΩ(q),k

)
− 1
∣∣∣

=
∣∣∣1
`

∑̀
j=1

(
1 +

(
∑N
i=1 xi)

2 − 1

N − 1

m∑
p,q=1
p 6=q

vjpvjq
)
− 1
∣∣∣.

where in the last equality we used (4.7) and the fact that the rows of both Cx and V are normalized.

Using that x is s-sparse, it follows that

∣∣∣E‖ 1√
`
P`V

∗RΩCxξ‖22 − 1
∣∣∣ ≤ ∣∣∣ s− 1

`(N − 1)

(∑̀
j=1

(

m∑
p=1

vjp)
2 −

∑̀
j=1

m∑
p=1

v2
jp

)∣∣∣
=

s− 1

`(N − 1)

∣∣∣‖V ∗(1, . . . , 1)T ‖22 − `
∣∣∣

≤ s− 1

`(N − 1)

∣∣∣‖V ‖22→2m− `
∣∣∣

=
(s− 1)(m− `)
`(N − 1)

.

Lemma 4. Consider again the set-up of Theorem 18 and Proposition 4 and denote by DN,s the set of

all s-sparse vectors in RN . Then

P
(

sup
x∈Ds,N

∣∣∣∣‖ 1√
`
P`V

∗RΩCxξ‖22 − Eξ
[
‖ 1√

`
P`V

∗RΩCxξ‖22
∣∣∣Ω]∣∣∣∣ > 1

18

∣∣∣) ≤ 1

2
e−η.

Proof. We will apply Theorem 17 conditionally given Ω with C = { 1√
`
P`V

∗RΩCx : x ∈ Ds,N}. This set

is almost the same as the one considered in the proof of Theorem 4.1 in [39], the only differences being

the additional projection P` and our normalization factor of 1√
`

(instead of 1√
m

in [39]). Indeed, since
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‖P`‖2→2 ≤ 1 we can estimate the necessary parameters for applying Theorem 17 exactly as in the proof

of Theorem 4.1 in [39]. This yields

d2→2(C) ≤
√
s

`
, dF (C) ≤

√
m

`
, D(C) ≤

√
s

`
logN log s.

Consequently for c1, c2, and E as in Theorem 17, we have

E ≤
√
s

`
logN log s

(√
s

`
logN log s+

√
m

`

)
+

√
m

`

√
s

`

≤
( s
m

)1−α
log2N log2 s+ 2

( s
m

)1−2α

logN log s ≤ 1

36c1
.

Here, the second inequality follows from our choice of ` and the last inequality follows from our assumption

on m in Theorem 18 (potentially adjusting the constant C). Again adjusting the constant, we similarly

obtain

V ≤
√
c2
4η

and U ≤ c2
4η
.

Hence the probability is bounded by 2e−4η. Finally, as η ≥ 1, e−4η ≤ 1
4e
−η and the result follows by

taking the expectation over Ω.

Lemma 5. With the same notation as before, we have

P( sup
x∈Ds,N

|E[‖ 1√
`
P`V

∗RΩCxξ‖22|Ω]− E‖ 1√
`
P`V

∗RΩCxξ‖22| >
1

36
)

≤ C ′ exp(−c/(
√
sm

`
logN logm)2) ≤ 1

2
e−η,

where c, C ′ are constants that depends only on L.

Proof. The proof is a direct application of Theorem 16 for the random variable

Zx := E
[
‖ 1√

`
P`V

∗RΩCxξ‖22 − E‖ 1√
`
P`V

∗RΩCxξ‖22
∣∣∣∣Ω] = ‖ 1√

`
P`V

∗RΩCx‖2F − E‖ 1√
`
P`V

∗RΩCx‖2F
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to find the supremum of the deviation. Since Theorem 16 requires the covering number with respect to

the metric d(x, y) := ‖Zx − Zy‖Ψ2
we need a bound for d(x, y), which we provide in Lemma 7 below.

Specifically, the first inequality in Lemma 5 follows from Theorem 16 together with Lemma 3 and Lemma

4 above. Indeed, applying Lemma 7 with y = 0 yields

sup
x,y
‖Zx‖Ψ2 ≤

√
m

`
‖x‖∞̂ ≤

√
m

`
‖F (x)‖∞ ≤

√
m

`
‖x‖1 ≤

√
sm

`
‖x‖2 ≤

√
sm

`
. (4.8)

To bound the integral in Theorem 16, we note that

N (Ds,N ,

√
m

`
‖ · ‖∞̂, ε) = N (Ds,N ,

1√
m
‖ · ‖∞̂,

`

m
ε),

and hence applying the argument in [39, Section 4] scaled by m
` , (a detailed calculation stated in Lemma

8)

∫ supx ‖Zx‖Ψ2

0

√
logN (Ds,N ,

1√
m
‖ · ‖∞̂,

`

m
ε)dε

.

√
sm

`
logN log s.

For the second inequality note that by the definition of ` and the assumed lower bound on m

(

√
sm

`
logN log s)2 =

( s
m

)1−2α

log2N log2 s (4.9)

≤ C−1η−1. (4.10)

The result follows from the assumption that η ≥ 1 as in the proof of Lemma 4.

All that remains now is to prove Lemma 7. Before that, we derive a technical bound required for its

proof.

Lemma 6. Let Ω, Ω′ ∈ Ξ = {Ω ∈ [N ]m : Ωi 6= Ωj for i 6= j} be such that Ω differs from Ω′ in at most

two components. Then the function

f(Ω) := ‖ 1√
`
P`V

∗RΩCx‖2F − ‖
1√
`
P`V

∗RΩCy‖2F
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satisfies

|f(Ω)− f(Ω′)| ≤ 24

`
‖x− y‖∞̂,

where ‖x‖∞̂ := ‖Fx‖∞.

Proof. Note that, as a circulant matrix is diagonalized by the Fourier transform,

f(Ω) = ‖ 1√
`
P`V

∗RΩCx‖2F − ‖
1√
`
P`V

∗RΩCy‖2F

= ‖ 1√
`
P`V

∗RΩF
−1X̂F‖2F − ‖

1√
`
P`V

∗RΩF
−1Ŷ F‖2F

=
1

`N
‖P`V ∗RΩFX̂‖2F −

1

`N
‖P`V ∗RΩFŶ ‖2F

=
1

`N

N∑
k=1

(
|x̂k|2 − |ŷk|2

)
‖P`V ∗RΩF k‖22, (4.11)

where F denotes the non-normalized Fourier transform, FTk its k-th row, and x̂ = Fx.

We first consider the case that Ω and Ω′ differ only in one component, say the first (without loss of

generality). To bound |f(Ω)− f(Ω′)| for this case, we note that for V Tj denoting the j-th row of V , and

η = exp(− 2πi
N ) an N -th root of unity,

‖P`V RΩF k‖22 − ‖P`V RΩ′F k‖22

=

m∑
p,q=1

〈η−kΩpP`Vp, η
−kΩqP`Vq〉 −

m∑
r,s=1

〈η−kΩ′rP`Vr, η
−kΩ′sP`Vs〉

=

m∑
p,q=1

(ηk(Ωp−Ωq) − ηk(Ω′p−Ω′q))〈P`Vp, P`Vq〉

= (ηk(Ω1−Ω1) − ηk(Ω′1−Ω′1))〈P`V1, P`V1〉+

m∑
q=2

(ηk(Ω1−Ωq) − ηk(Ω′1−Ωq))〈P`V1, P`Vq〉

+

m∑
p=2

(ηk(Ωp−Ω1) − ηk(Ωp−Ω′1))〈P`Vp, P`V ∗1 〉+

m∑
p,q=2

(ηk(Ωp−Ωq) − ηk(Ωp−Ωq))〈P`Vp, P`Vq〉

=

m∑
q=2

(ηkΩ1 − ηkΩ′1)η−kΩq 〈P`V1, P`Vq〉+

m∑
p=2

(η−kΩ1 − η−kΩ′1)ηkΩp〈P`Vp, P`V1〉.
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Combining this with (4.11), we obtain

f(Ω)− f(Ω′) =
1

`N

N∑
k=1

(
|x̂k|2 − |ŷk|2

)( m∑
q=2

(ηkΩ1 − ηkΩ′1)η−kΩq 〈P`V1, P`Vq〉

+

m∑
p=2

(η−kΩ1 − η−kΩ′1)ηkΩp〈P`Vp, P`V1〉
)
. (4.12)

Observe that the right hand side is a sum of four different rescaled Fourier coefficients of the vector

u ∈ RN given by uk := |x̂k|2 − |ŷk|2, as for example

1

`N

m∑
p=2

〈P`V1, P`Vp〉
N∑
k=1

(|x̂k|2 − |ŷk|2)ηk(Ωp−Ω1) =
1

`N

m∑
p=2

〈P`V1, P`Vp〉(Fu)Ωp−Ω1 = V ∗1 P
∗
` P`V

∗v,

where v ∈ Rm is given by v1 = 0 and vp = (Fu)Ωp−Ω1
for 2 ≤ p ≤ m. Note that as Ω ∈ Ξ and hence the

Ωq are all different, v is a projection of Fu on a subset of its entries, and so ‖v‖2 ≤
√
N‖u‖2. Note that

in this step, it is crucial to sample without replacement, as otherwise, the bound would no longer hold.

Consequently, using the Cauchy-Schwartz inequality, and the fact that

|uk| =
∣∣|x̂k| − |ŷk|∣∣(|x̂k|+ |ŷk) ≤

∣∣x̂k − ŷk∣∣(|x̂k|+ |ŷk)

≤
√

2‖x− y‖∞̂(|x̂k|2 + |ŷk|2),

therefore

‖u‖2 ≤
√

2‖x− y‖∞̂
√
‖x̂‖22 + ‖ŷ‖22 ≤ 2

√
N‖x− y‖∞̂,

and

1
`N

∣∣∣ m∑
p=2

〈P`V1, P`Vp〉
N∑
k=1

(
|x̂k|2 − |ŷk|2

)
ηk(Ωp−Ω1)

∣∣∣
≤ 1

`N ‖V ‖2→2‖P ∗` P`V1‖2‖v‖2

≤ 1
`
√
N
‖u‖2

≤ 2
` ‖x− y‖∞̂. (4.13)
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Similar to the other three summands in (4.12), which yields the result for Ω and Ω′ differing in only one

component with a scale 8 to the result (4.13), i.e.,

|f(Ω)− f(Ω′)| ≤ 8

`
‖x− y‖∞̂.

If Ω and Ω′ differ in two components (without loss of generality say in first and second component),

one can add and minus two middle terms, (say ΩHALLO and ΩHELLO) each of which differs from Ω and

Ω′ in only one component,

Ω = (Ω1,Ω2, ...)

Ω′ = (Ω′1,Ω
′
2, ...)

ΩHALLO = (Ω′1,Ω2, ...)

ΩHELLO = (Ω1,Ω
′
2, ...),

then

|f(Ω)− f(Ω′)| ≤ 8

`
‖x− y‖∞̂

≤ |f(Ω)− f(ΩHALLO) + f(ΩHALLO)− f(ΩHELLO) + f(ΩHELLO)− f(Ω′)|

≤ |f(Ω)− f(ΩHALLO)|+ |f(ΩHALLO)− f(ΩHELLO)|+ |f(ΩHELLO)− f(Ω′)|

≤ 24

`
‖x− y‖∞̂,

i.e., use triangle inequality we have a scale of 24 (3 times 8).

We are now ready to bound the distance d(x, y) = ‖x− y‖Ψ2
.

Lemma 7. For all x, y ∈ RN it holds that

d(x, y) ≤ 24
√
m

`
‖x− y‖∞̂.
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Proof. By (4.2), it suffices to show that for all t ≥ 0,

PΩ(|Zx − Zy| > t) ≤ exp
(

1− t2/
(24
√
m

`
‖x− y‖∞̂

)2)
, (4.14)

where again with

Zx := E
[
‖ 1√

`
P`V

∗RΩCxξ‖22 − E‖ 1√
`
P`V

∗RΩCxξ‖22
∣∣∣∣Ω] = ‖ 1√

`
P`V

∗RΩCx‖2F − E‖ 1√
`
P`V

∗RΩCx‖2F .

It is proved by applying Theorem 15 with Fk, the σ-algebra generated by Ω1, ...,Ωk to the function f(Ω)

as defined above

f(Ω) = ‖ 1√
`
P`V

∗RΩCx‖2F − ‖
1√
`
P`V

∗RΩCy‖2F .

Assuming (Ω′k, ...,Ω
′
m) an independent copy of (Ωk, ...,Ωm), we denote Ω′ = (Ω1, ...Ωk−1,Ω

′
k, ...,Ω

′
m),

and Ω = (Ωm, ..., ,Ωk−1,Ωk, ...,Ω1). And then we need to bound the sum of squared ranges

R2 = sup

m∑
j=1

ran2
k

By definition,

Xk := E(X|Fk) = E(f(Ω)|Ωk, . . . ,Ω1),
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and

rank := sup
Ωk /∈{Ω1,...,Ωk−1}

(
Xk

∣∣∣Ωk−1, . . . ,Ω1

)
+ sup

Ωk /∈{Ω1,...,Ωk−1}

(
−Xk

∣∣∣Ωk−1, . . . ,Ω1

)
= sup

Ωk /∈{Ω1,...,Ωk−1}

(
E(f(Ω)|Ωk, . . . ,Ω1)

∣∣∣Ωk−1, . . . ,Ω1

)
+ (4.15)

sup
Ωk /∈{Ω1,...,Ωk−1}

(
E(−f(Ω′)|Ωk, . . . ,Ω1)

∣∣∣Ωk−1, ...,Ω1

)
= sup

Ωk,Ω′k /∈{Ω1,...,Ωk−1}

(
E(f(Ω)|Ωk,Ωk−1...,Ω1) + E(−f(Ω′)|Ω′k,Ωk−1, ...,Ω1)

∣∣∣Ωk−1, ...,Ω1

)
(4.16)

= sup
Ωk,Ω′k /∈{Ω1,...,Ωk−1}

[(
E(f(Ω)|Ωk,Ωk−1...,Ω1)

∣∣∣Ωk−1, ...,Ω1

)
+
(
E(−f(Ω′)|Ω′k,Ωk−1, ...,Ω1)

)]
.

(4.17)

Now it is essential if we can bound E(f(Ω)|Ωk,Ωk−1...,Ω1) +E(−f(Ω′)|Ω′k,Ωk−1, ...,Ω1), conditional

on Ωk−1, ...,Ω1 from above. It is expected that we can bound the term by bounding the combination of

the two summands by

E[f(Ω)− f(Ω′)|Ωk,Ω′k,Ωk−1, ...,Ω1].

However this cannot be done in one glance (at least for me), since we are sampling without replacement,

while calculating the expectation over Ω′js for m ≥ j > k, the space {Ωk+1, . . . ,Ωm} is different from

{Ω′k+1, . . . ,Ω
′
m}, for there can be some i > k, such that Ωi = Ω′k, and vice versa for some i > k, Ω′i = Ωk.

Therefore E(f(Ω)|Ωk,Ωk−1...,Ω1) cannot immerses with E(f(Ω′)|Ω′k,Ωk−1...,Ω1) in one step. This is

then analysed by dividing the space generated by (Ωi)i>k into partition events (Ej)m−kj=1 and (E ′j)
m−k
j=1

defined in the next paragraph.

Define the events E0 = {Ωj 6= Ω′k ∀j > k}, E ′0 = {Ω′j 6= Ωk ∀j > k}, and, for j ∈ [m − k],

Ej = {Ωk+j = Ω′k}, E ′j = {Ω′k+j = Ωk} and note that

P[∪m−kj=0 Ej |Ω1, ...,Ωk,Ω
′
k] = P[∪m−kj=0 E

′
j |Ω1, ...,Ωk,Ω

′
k] = 1. (4.18)

Which says that events (Ej)m−kj=1 and (E ′j)
m−k
j=1 are two partitions of the probability space conditional
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on {Ω1, . . . ,Ω
′
k,Ωk}, and the measure (probability) of each pair of events

(
(Ej |Ω1, ...,Ωk,Ω

′
k), (E ′j |Ω1, ...,Ωk,Ω

′
k)
)m−k
j=1

is the same, i.e.,

P[Ej |Ω1, ...,Ωk,Ω
′
k] = P[E ′j |Ω1, ...,Ωk,Ω

′
k], for j = 1, ...,m− k. (4.19)

Now, we can write

E[f(Ω)|Ω1, ...,Ωk−1,Ωk] =

m−k∑
j=0

E[f(Ω)1Ej |Ω1, ...,Ωk−1,Ωk,Ω
′
k], (4.20)

and similarly

E[f(Ω′)|Ω1, ...,Ωk−1,Ωk] =

m−k∑
j=0

E[f(Ω′)1E′j |Ω1, ...,Ωk−1,Ω
′
k,Ωk]. (4.21)

Put (4.20), (4.21) together, we have

E[f(Ω)|Ω1, ...,Ωk−1,Ωk]− E[f(Ω′)|Ω1, ...,Ωk−1,Ωk]

=

m−k∑
j=0

E[f(Ω)1Ej − f(Ω′)1E′j |Ω1, ...,Ωk−1,Ωk,Ω
′
k]. (4.22)

It remains to bound the term

f(Ω)1Ej − f(Ω′)1E′j |Ω1, ...,Ωk−1,Ω
′
k,Ωk.

Note that due to the partition of the events, for j = 0, i.e., in events E0, E ′0, Ω and Ω′ differ at most in

one component, i.e., the kth component,or equivalently Ωk and Ω′k can be different. Thus by Lemma 6,

f(Ω)1Ej − f(Ω′)1E′j |Ω1, ...,Ωk−1,Ω
′
k,Ωk ≤

24

`
‖x− y‖∞̂. (4.23)
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For j > 0, in events Ej , E ′j , Ω and Ω′ differ at most in two components, i.e., the kth and the k + jth.

Thus by Lemma 6,

f(Ω)1Ej − f(Ω′)1E′j |Ω1, ...,Ωk−1,Ω
′
k,Ωk ≤

24

`
‖x− y‖∞̂. (4.24)

Hence for all j = 1, ...,m− k,

E[f(Ω)1Ej − f(Ω′)1E′j |Ω1, ...,Ωk−1,Ωk,Ω
′
k] ≤ 24

`
‖x− y‖∞̂P[Ej |Ω1, ...,Ωk,Ω

′
k]. (4.25)

The above inequality (4.25) and the fact from space partition (4.18), (4.19), we have

rank = sup
Ωk,Ω′k /∈{Ω1,...,Ωk−1}

[(
E(f(Ω)|Ωk,Ωk−1...,Ω1)

∣∣∣Ωk−1, ...,Ω1

)
+
(
E(−f(Ω′)|Ω′k,Ωk−1, ...,Ω1)

)]
≤ sup

Ωk,Ω′k /∈{Ω1,...,Ωk−1}

[m−k∑
j=0

E[f(Ω)1Ej − f(Ω′)1E′j |Ω1, ...,Ωk−1,Ωk,Ω
′
k]
]

≤ sup
Ωk,Ω′k /∈{Ω1,...,Ωk−1}

[m−k∑
j=0

24

`
‖x− y‖∞̂P[Ej |Ω1, ...,Ωk,Ω

′
k]
]
≤ 24

`
‖x− y‖∞̂.

Now applying Theorem 15 with r̂2 := supR2 ≤
∑m
k=1 ran

2
k ≤ ( 24

√
m

` ‖x− y‖∞̂)2, one obtains

P(|Zx − Zy| > t) ≤ 2 exp(−t2/(24
√
m

`
‖x− y‖∞̂)2),

which implies (4.14). We conclude

d(x, y) := ‖Zx − Zy‖Ψ2 ≤
24
√
m

`
‖x− y‖∞̂,

as desired.

Now the details for calculating the Dudley’s integral is demonstrated below.
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Lemma 8.

∫ supx ‖Zx‖Ψ2

0

√
logN (Ds,N ,

1√
m
‖ · ‖∞̂,

`

m
ε)dε

.

√
sm

`
logN log s.

Proof. The integral is calculated by three parts. First the Maurey’s method for larger integral factor ε,

secondly the volumetric argument for smaller ε, and insert both the above into the Dudley’s integration.

In Maurey’s method, set U = {±
√

2e1,±
√

2e2, · · · ,±
√

2eN}, and ‖ · ‖X = ‖ · ‖∞ = ‖
√
NFx‖∞ =

maxk∈[N ]〈
√
NF k, x〉. Then BN (0, 1) ⊂ conv(U), and

E‖
M∑
k=1

εkZk‖X

= E max
k=1...N

|
M∑
k=1

εk〈
√
NF p, Zk〉|.

Since by Hölder’s inequality |〈
√
NF p, Zk〉| ≤ ‖

√
NF p‖∞‖Zk‖1 ≤ 1 ·

√
2. Note that the norm ‖ · ‖∞̂

is defined by nonnormalized discrete Fourier matrix because ‖
√
NF p‖∞, and it should be a constant

independent of N .

‖(〈
√
NF p, Zk〉)Mk=1‖2 ≤

√
2M,

for k ∈ [N ] By Höffding’s inequality, conditional on Zk,

Pε(|
M∑
k=1

εk〈
√
NF p, Zk〉| ≥

√
2Mt) ≤ 2et

2/2, t > 0.

By union bound

Pε(max
p∈[N ]

|
M∑
k=1

εk〈
√
NF p, Zk〉| ≥

√
2Mt) ≤ 2Net

2/2, t > 0.

By Proposition 3, we have

Eε max
p∈[N ]

|
M∑
k=1

εk〈
√
NF p, Zk〉| ≤ 3/2

√
2
√

ln 8N
√
M,
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then by Fubini’s theorem,

E max
p∈[N ]

|
M∑
k=1

εk〈
√
NF p, Zk〉| ≤ 3/2

√
2
√

ln 8N
√
M.

Hence by letting A = 3/2
√

2
√

ln 8N .
√

lnN , Maurey’s method yields

logN (conv(U), ‖ · ‖X , ε) . (
1

ε
)2 ln2N.

Therefore

logN (Ds,N , ‖ · ‖Ψ2 , ε) . logN (Ds,N ,

√
m

`
‖ · ‖∞̂, ε)

≤ logN (
√
sBN1 (0, 1),

√
m

`
‖ · ‖∞̂, ε) = logN (BN1 (0, 1), ‖ · ‖∞̂,

`√
s
√
m
ε)

≤ logN (conv(U), ‖ · ‖∞̂,
`√
s
√
m
ε)

. (

√
sm

`ε
)2 ln2N. (4.26)

Volumetric argument reveals that

logN (Ds,N , d(x, x0), ε) ≤ logN (
√
sD1

s,N , ‖ · ‖∞̂, ε)

≤ log

(
N

s

)
N (Bs1(0, 1), ‖ · ‖∞, ε)

≤ log(
eN

s
)sN (Bs∞̂(0, 1), ‖ · ‖∞̂, ε)

≤ log(
eN

s
)s(1 +

2

ε
)s

= log(
eN

s
+

2eN

sε
)s

= s log(
eNε+ 2eN

sε
)

. s log(
N

sε
). (4.27)

Bs1 ⊂ 1Bs∞̂ holds because ‖ · ‖∞̂ ≤ maxp∈[N ] ‖
√
NF p‖∞‖ · ‖1 = 1‖ · ‖1.

With the two results 4.26 and 4.27 from above, we are ready to bound the Dudley’s integration.
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First by definition we have

e0 = sup
x∈Ds,N

‖Zx‖F2
≤
√
m

`
‖x‖∞̂

=

√
m

`
‖
√
NFx‖∞ ≤

√
m

`
‖x‖1 ≤

√
sm

`
‖x‖2 ≤

√
sm

`
.

Then insert the above to the integration

∫ e0

0

√
logN(Ds,N , d(x, x0), ε)dε

=

∫ √
sm
`

0

√
logN(Ds,N , d(x, x0), ε)dε

=

∫ κ

0

√
s log

N

sε
dε+

∫ √
sm
`

κ

√
sm

`ε
logNdε

=
√
s

∫ κ

0

√
log

N

sε
dε+

√
sm

`
logN

∫ √
sm
`

κ

1

ε
dε,

now changing variable with setting 1
t = N

sε one reaches

∫ e0

0

√
logN(Ds,N , d(x, x0), ε)dε

=
√
s
N

s

∫ s
N κ

0

√
log

1

t
dt+

√
sm

`
logN log(

√
sm

κ`
)

≤ N√
s

∫ s
N κ

0

√
log

1

1 + t
dt+

√
sm

`
logN log(

√
sm

κ`
)

≤ N√
s

(
sκ

N
)

√
log e(1 +

N

sκ
) +

√
sm

`
logN log(

√
sm

κ`
)

let κ =

√
m

`
,

=
√
s

√
m

`
logN log

√
s+
√
s

√
m

`

√
log

N`

s
√
m

.

√
sm

`
logN log s

= (
s

m
)

1
2−α logN log s,

where the latest equality stands by writing ` = m( s` )
α. Note that, to make the inequality reasonable,

i.e., ( sm )
1
2−α > 1, α is naturally restricted as α ∈ [0, 1/2).
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Chapter 5

Restricted Isometry Property of

discrete Fourier matrix

Due to popularity of the discrete Fourier matrix, it is important to prove the RIP of it. There are already

papers on this topic. We here do not aim to improve the bound rather than that, we apply again our

method from Chapter 4 with more details to prove the RIP of the discrete Fourier matrix, and then

summarize it to be a quick test for proving RIP in Chapter 5.1.

The discrete Fourier matrix used here is nonnormalized, and the normalization after randomly choos-

ing m rows is then by scale 1√
m

. By using McDiarmid’s inequality, the restricted isometry property of

partial random discrete Fourier matrix can be shown. Again for clarity the restricted isometry property

is stated here below.

δs = sup
x∈Ds,N

{‖ 1√
m
RΩFx‖22 − 1}

= sup
x∈Ds,N

{‖ 1√
m
RΩFx‖22 − E‖ 1√

m
RΩFx‖22}.

The main theorem is thus stated below.

Theorem 19. For m ≥ δ−2 ln ε−2s2 log2 s log2N , F has the restricted isometry property of order s with

constant δ with probability larger than 1− ε.
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The proof of Theorem 19 is derived directly from Lemma 11.

Lemma 9. Let Ω and Ω′ differ at one component. Then the function

f(Ω) := ‖ 1√
m
RΩFx‖22 − ‖

1√
m
RΩFy‖22

satisfies

|f(Ω)− f(Ω′)| ≤ 2
√

2s

m
‖x− y‖∞̂.

Proof. Let complex vector v := (e
−2πi
N · 1, e−2πi

N · 2, . . . , e−2πi
N · N) the first row of the discrete Fourier

matrix. Denote Ω = (Ω1,Ω2, . . . ,Ωm) and Ω′ = (Ω′1,Ω2, . . . ,Ωm) the m realizations of the random

matrix RΩ, by assumption and without loss of generality they differ in the first component. Then

m
∣∣∣f(Ω)− f(Ω′)

∣∣∣ = |

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

〈x, vΩ1〉

〈x, vΩ2〉
...

〈x, vΩm〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

−

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

〈y, vΩ1〉

〈y, vΩ2〉
...

〈y, vΩm〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

−

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

〈x, vΩ′1〉

〈x, vΩ2〉
...

〈x, vΩm〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

〈y, vΩ′1〉

〈y, vΩ2〉
...

〈y, vΩm〉

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

|

=
∣∣∣〈x, vΩ1〉2 − 〈y, vΩ1〉2 − 〈x, vΩ′1〉2 + 〈y, vΩ′1〉2

∣∣∣
=
∣∣∣(〈x, vΩ1〉+ 〈y, vΩ1〉)(〈x, vΩ1〉 − 〈y, vΩ1〉)−

(〈x, vΩ′1〉+ 〈y, vΩ′1〉)(〈x, vΩ′1〉 − 〈y, vΩ′1〉)
∣∣∣

≤
∣∣∣2(〈x, vΩ1〉+ 〈y, vΩ1〉)(〈x, vΩ1〉 − 〈y, vΩ1〉)

∣∣∣
≤
∣∣∣2‖x− y‖∞̂(〈x+ y, vΩ′1〉)

∣∣∣
≤ 2
√

2s‖x− y‖∞̂.

Let Zx = 1√
m
RΩFx‖22 − E 1√

m
RΩFx‖22, and d(x, y) := ‖Zx − Zy‖ψ2

. The distance d(x, y) := ‖Zx −

Zy‖ψ2 is thus bounded in the following lemma.
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Lemma 10.

d(x, y) ≤ 2
√

2s√
m
‖x− y‖∞̂. (5.1)

Proof. It is suffice to show that for all t ≥ 0

P(|Zx − Zy| > t) . exp

(
− t2/(2

√
2s√
m
‖x− y‖∞̂)2

)
.

By Lemma 9

ranj = sup
Ωj

(
E(f(Ω)|Ωj , ...,Ω1)

∣∣∣Ωj−1, ...,Ω1

)
+ sup

Ωj

(
E(−f(Ω′)|Ωj , ...,Ω1)

∣∣∣Ωj−1, ...,Ω1

)
= sup

Ωj

(
E(f(Ω)|Ωj ,Ωj−1...,Ω1) + E(−f(Ω′)|Ω′j ,Ωj−1, ...,Ω1)

∣∣∣Ωj−1, ...,Ω1

)
= sup

Ωj ,Ω′j /∈{Ω1,...,Ωj−1}

(
E(f(Ω)|Ωj ,Ωj−1...,Ω1)− E(f(Ω′)|Ω′j ,Ωj−1, ...,Ω1)

∣∣∣Ωj−1, ...,Ω1

)
.

Since

E[f(Ω)|Ω1, ...,Ωk−1,Ωk]− E[f(Ω′)|Ω1, ...,Ωk−1,Ω
′
k]

=

m∑
i=j+1

[f(Ω)|Ω1, ...,Ωk−1,Ωk]P(Πm
i=j+1Ωi)−

m∑
i=j+1

[f(Ω′)|Ω1, ...,Ωk−1,Ωk]P(Πm
i=j+1Ωi)

=

m∑
i=j+1

([f(Ω)|Ω1, ...,Ωk−1,Ωk]− [f(Ω′)|Ω1, ...,Ωk−1,Ωk])P(Πm
i=j+1Ωi)

≤ 2
√

2s

m
‖x− y‖∞̂

m∑
i=j+1

P(Πm
i=j+1Ωi) =

2
√

2s

m
‖x− y‖∞̂,

and R2 ≤ 2
√

2s√
m
‖x− y‖∞̂, McDiarmid’s inequality yields the result.

Below volumetric argument together with Maurey’s method will be applied to bound the covering

number N (Ds,N ,
√
s√
m
‖ · ‖∞̂, ε).

Dudley’s inequality then reveals the property of the restricted isometry property as below.

Lemma 11.

P( sup
x∈Ds,N

|‖ 1√
m
RΩFx‖22 − 1| > t) . exp

(
− t2/(s logN log s√

m
)2

)
.
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Proof. As setting before Zx = ‖ 1√
m
RΩFx‖22−E‖ 1√

m
RΩFx‖22, this lemma is proved by bound the supre-

mum of Zx over x ∈ Ds,N by Dudley’s inequality Theorem 11

P( sup
x∈Ds,N

|Zx − Zx0
| > u) . exp(

−u2( ∫ e0
0

√
logN(Ds,N , d(x, x0), ε)dε

)2 , (5.2)

where d(x, x0) := ‖Zx − Zx0
‖Ψ2

is the (up to a absolute constant) smallest value such that

P(|Zx − Zy| > ud(x, y)) . exp(
−u2

d2(x, y)
). (5.3)

This bound is derived in Lemma 10.

Secondly, we need to bound the integral in denominator, i.e.
∫ e0

0

√
logN(Ds,N , d(x, x0), ε)dε by

Maurey’s method and Volumetric argument. First use Lemma 10 set y = 0,

e0 = sup
x∈Ds,N

‖Zx‖Ψ2
≤ 2
√

2s√
m
‖x‖∞̂ =

2
√

2s√
m
‖Fx‖∞ ≤

2
√

2s√
m
‖x‖1 ≤

2
√

2s√
m
‖x‖2 ≤

2
√

2s√
m
. (5.4)

Secondly, applying Maurey’s method Lemma 2, by setting U = {±
√

2e1,±
√

2e2, · · · ,±
√

2eN}, and

‖ · ‖X = ‖ · ‖∞ = ‖Fx‖∞ = maxp∈[N ]〈F p, x〉. Then BN (0, 1) ⊂ conv(U), and

E‖
M∑
k=1

εkZk‖X (5.5)

= E max
p=1...N

|
M∑
k=1

εk〈F p, Zk〉|. (5.6)

Note that the norm ‖ ·‖∞̂ is defined by nonnormalized discrete Fourier matrix because ‖F p‖∞ should

be a constant independent of N . By Hölder’s inequality 〈F p, Zk〉 ≤ ‖F p‖∞‖Zk‖1 ≤ 1
√

2, we have

‖(〈F p, Zk〉)Mk=1‖2 ≤
√

2M, (5.7)

for k ∈ [N ] By Höffding’s inequality, conditional on Zk,

Pε(|
M∑
k=1

εk〈F p, Zk〉| ≥
√

2Mt) ≤ 2et
2/2, t > 0. (5.8)
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By union bound

Pε(max
p∈[N ]

|
M∑
k=1

εk〈F p, Zk〉| ≥
√

2Mt) ≤ 2Net
2/2, t > 0. (5.9)

Applying Proposition 3 yields

Eε max
p∈[N ]

|
M∑
k=1

εk〈F p, Zk〉| ≤ 3/2
√

2
√

ln 8N
√
M, (5.10)

and by Fubini’s theorem,

E max
p∈[N ]

|
M∑
k=1

εk〈F p, Zk〉| ≤ 3/2
√

2
√

ln 8N
√
M. (5.11)

Hence by letting A = 3/2
√

2
√

ln 8N .
√

lnN , Maurey’s method yields

logN (conv(U), ‖ · ‖X , ε) . (
1

ε
)2 ln2N.

Therefore

logN (Ds,N , ‖ · ‖Ψ2
, ε) . logN (Ds,N ,

√
s√
m
‖ · ‖∞̂, ε)

≤ logN (
√
sBN1 (0, 1),

√
s√
m
‖ · ‖∞̂, ε) = logN (BN1 (0, 1), ‖ · ‖∞̂,

√
m√
s
√
s
ε)

≤ logN (conv(U), ‖ · ‖∞̂,
√
m√
s
√
s
ε)

. (
s√
mε

)2 ln2N. (5.12)

By a volumetric argument, we have

logN (Ds,N , d(x, x0), ε) ≤ logN (Bs2,

√
s√
m
‖ · ‖∞̂, ε) ≤ log

(
N

s

)
N (
√
sBs1,

√
s√
m
‖ · ‖∞̂, ε)

≤ log(
eN

s
)sN (Bs∞̂, ‖ · ‖∞̂,

√
m

s
ε) ≤ log(

eN

s
)s(1 +

2s√
mε

)s ≤ s log(
eN

s
)(1 +

2s√
mε

)

= s log(
eN

s
+

2eN√
mε

) . s log(
N

sε
). (5.13)
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Bs1 ⊂ 1Bs∞̂ holds because ‖ · ‖∞̂ ≤ maxp∈[N ] ‖F p‖∞‖ · ‖1 = 1‖ · ‖1. Then combining (5.12)(5.13),

∫ e0

0

√
logN(Ds,N , d(x, x0), ε)dε =

∫ s√
m

0

√
logN(Ds,N , d(x, x0), ε)dε

=

∫ κ

0

√
s log

N

sε
dε+

∫ s√
m

κ

s√
mε

logNdε =
√
s

∫ κ

0

√
log

N

sε
dε+

s logN√
m

∫ s√
m

κ

1

ε
dε,

by changing variable 1
t = N

sε ,

∫ e0

0

√
logN(Ds,N , d(x, x0), ε)dε =

√
s
N

s

∫ s
N κ

0

√
log

1

t
dt+

s√
m

logN log(
s

κ
√
m

)

≤ N√
s

∫ s
N κ

0

√
log

1

1 + t
dt+

s√
m

logN log(
s

κ
√
m

)

≤
√
sκ

√
log e(1 +

N

sκ
) +

s√
m

logN log(
s

κ
√
m

),

now let κ =
√
s logN√
m

∫ e0

0

√
logN(Ds,N , d(x, x0), ε)dε =

s logN√
m

√
ln e(1 +

N
√
m

s logN
) +

s logN√
m

log

√
s

logN
.
s logN log s√

m
.

This ends the proof.

5.1 Quick test of RIP

In this section I summarise the above method of the combination of Dudley’s inequality with McDiarmid’s

inequality to a quick test for proving the RIP of partial random matrices 1√
m
RΩA (the randomness occurs

at drawing the m rows out of N rows), for A any arbitrary matrix E‖ 1√
m
RΩAx‖22 = 1.

(In case with Σ∆-quantization, multiply a term (
√
m√
`
P`V

∗) in front of 1√
m
RΩA.)

δs = sup
x∈Ds,N

{‖ 1√
m
RΩAx‖22 − 1}

= sup
x∈Ds,N

{‖ 1√
m
RΩAx‖22 − E‖ 1√

m
RΩAx‖22}.
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Lemma 12. Let Ω and Ω′ differ at one component. If the function

f(Ω) := ‖ 1√
m
RΩAx‖22 − ‖

1√
m
RΩAy‖22

satisfies

|f(Ω)− f(Ω′)| . 1

K(s, `,m)
‖x− y‖∞̂,

for some function K of variables s, `, m, then

P(δs > t) . exp(−t2/(
√
sm

K(s, `,m)
logN logm)2).

5.2 RIP of random matrices 1√
`
P`V

∗RΩF

If we can prove the RIP of 1√
`
P`V

∗RΩF then we can apply Theorem 7 again as in Chapter 4 to get a

reconstruction error bound for the partial random discrete Fourier matrices. The essential step while

applying Dudley’s inequality together with McDiarmid’s inequality to found the restricted isometry

property of 1√
`
P`V

∗RΩF is to bound the difference similarly in Lemma 12 i.e. f(Ω)− f(Ω′).

|f(Ω)− f(Ω′)| :=∣∣∣∣(‖ 1√
`
P`V

∗RΩFx‖22 − ‖
1√
`
P`V

∗RΩFy‖22)− (‖ 1√
`
P`V

∗R′ΩFx‖22 − ‖
1√
`
P`V

∗R′ΩFy‖22)

∣∣∣∣
=

1

`

∣∣∣∣{( < P`V
∗RΩF1·, x〉2 + · · ·+ < P`V

∗RΩF`·, x〉2
)

−
(
< P`V

∗RΩF1·, y〉2 + · · ·+ < P`V
∗RΩF`·, y〉2

)
−
(
< P`V

∗RΩ′F1·, x〉2 + · · ·+ < P`V
∗RΩ′F`·, x〉2

)
+
(
< P`V

∗RΩ′F1·, y〉2 + · · ·+ < P`V
∗RΩ′F`·, y〉2

)}∣∣∣∣
=

1

`

∣∣∣∣(P`V ∗RΩF1·[x+ y]P`V
∗RΩF`· + · · ·+ P`V

∗RΩF1·[x+ y]P`V
∗RΩF`·

)
[x− y]
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−
(
P`V

∗RΩ′F1·[x+ y]P`V
∗RΩ′F`· + · · ·+ P`V

∗RΩ′F1·[x+ y]P`V
∗RΩ′F`·

)
[x− y]

∣∣∣∣.
However there is so far no proper upper bound for this difference, and comparing to the result from

Theorem 9, I might refer an implication that if the difference is larger than a certain amount there is no

RIP.
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Chapter 6

Appendix A

Lemma 13. [26] For u > 0,

∫ ∞
u

e−t
2/2dt ≤ e−u

2/2 min
{√π

2
,

1

u

}
. (6.1)

Proof.

∫ ∞
u

e−t
2/2dt =

∫ ∞
0

e−(t+u)2/2dt = e−u
2/2

∫ ∞
0

e−(tu)e−t
2/2dt.

On one hand: for t, u > 0, e−tu ≤ 1, and then

e−u
2/2

∫ ∞
0

e−(tu)e−t
2/2dt ≤ e−u

2/2

∫ ∞
0

e−t
2/2dt =

√
π

2
e−u

2/2. (6.2)

On the other hand: for u, t > 0, e−t
2/2 ≤ 1, and then

e−u
2/2

∫ ∞
0

e−(tu)e−t
2/2dt ≤ e−u

2/2

∫ ∞
0

e−(tu)dt =
1

u
e−u

2/2. (6.3)
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Lemma 14. [26] In CN , for 0 < p < q, then

‖x‖q ≤ ‖x‖p ≤ N (1/p−1/q)‖x‖q. (6.4)

Proof. See reference for more details.

Lemma 15. [26] For α > 0 it holds

∫ α

0

√
ln(1 +

1

t
)dt ≤ α

√
ln(e(1 +

1

α
))

Proof. [26] Apply Cauchy-Schwarz’ inequality to obtain

∫ α

0

√
ln(1 + t−1) ≤

√∫ α

0

1dt

∫ α

0

ln(1 + t−1). (6.5)

Let u = t−1, integration by parts yields

∫ α

0

ln(1 + t−1)dt =

∫ ∞
α−1

u−2 ln(1 + u)du

= −u−1 ln(1 + u)|∞α−1 +

∫ ∞
α−1

u−1 1

1 + u
du ≤ α ln(1 + α−1) +

∫ ∞
α−1

1

u2
du

= α ln(1 + α−1) + α.

Substituting this into (6.5) ends the proof.

Proposition 5. [28] Let r be any positive integer and D be as in (1.24). There are positive constants

cs1(r) and cs2(r), independent of m, such that

cs1(r)(
m

j
)r ≤ σj(D−r) ≤ cs2(r)(

m

j
)r, j = 1, . . . ,m. (6.6)

Proof. See reference for more details.

Lemma 16. [44] Assume that ξ = (ξj)
M
j=1 is a sequence of independent random vector in Cn equipped
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with a (semi-)norm ‖ · ‖, having expectations xj = Eξj. Then for 1 ≤ p ≤ ∞

(
E‖

M∑
j=1

(ξj − xj)‖p
)1/p

≤ 2

(
E‖

M∑
j=1

εjξj‖p
)1/p

,

where ε = (εj)
N
j=1 is a Rademacher sequence independent of ξ.

Proof. Let ξ′ = (ξ′1, ξ
′
2, . . . , ξ

′
M ) denote an independent copy of the sequence of random vectors (ξ1, ξ2, . . . , ξM ).

Since Eξ′j = xj an application of Jensen’s inequality yields

E := E‖
M∑
j=1

(ξj − xj)‖p = E‖
M∑
j=1

(ξj − Eξ′j)p‖p ≤ E‖
M∑
j=1

(ξj − ξ′j)‖p.

Since (ξj−ξ′j)Mj=1 is a vector of independent symmetric random variables; thus it has the same distribution

as (εj(ξj − ξ′j))Mj=1. The triangle inequality gives

E1/p ≤ (E‖
M∑
j=1

εj(ξj − ξ′j)‖p)1/p ≤ (E‖
M∑
j=1

εjξj‖p)1/p + (E‖
M∑
j=1

εjξ
′
j‖p)1/p = 2(E‖

M∑
j=1

εjξj‖p)1/p.

The last equality is due to the fact that ξ′ is an independent copy of ξ.

Lemma 17. Let X be any real-values random variable with expected value E = 0 and such that a ≤ X ≤ b

almost surely. Then for all lambda ∈ R,

E[eλX ] ≤ exp

(
λ2(b− a)2

8

)
.

Proof. Since eλx is convex

eλx ≤ b− x
b− a

eλa +
x− a
b− a

eλb ∀a ≤ x.

So

E[eλx] ≤ b− E(X)

b− a
eλa +

E(X)− a
b− a

eλb ∀a ≤ x.
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Let h = λ(b− a), p = −a
b−a and L(h) = −hp+ ln(1− p+ peh). Then

b− E(X)

b− a
eλa +

E(X)− a
b− a

eλb = eL(h)

since E(X) = 0. Taking derivative of L(h),

L(0) = L′(0) = 0 and L′′(h) ≤ 1

4
for all h.

By Taylor’s expansion,

L(h) ≤ 1

8
h2 =

1

8
λ2(b− a)2.

Hence

E[eλX ] ≤ e 1
8λ

2(b−a)2

.
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Chapter 7

Appendix B

This chapter shows the proof of Theorem 7 [48].

Theorem 20 ( [25] ). Given q ≤ 1, suppose that the matrices Φ ∈ Rm×N satisfy the `q robust null space

property of order s with constants 0 < ρ < 1 and τ > 0 relative to a norm ‖ · ‖ on Rm. Then, for any

1 ≤ p ≤ q, the bounds

‖f − g‖p ≤
C

s1−1/p
(‖g‖1 − ‖f‖1 + 2σs(f)1) +Ds1/p−1/q‖Φ(f − g)‖ (7.1)

hold for all f ∈ RN and e ∈ Rm with ‖e‖ ≤ η. The constants C,D > 0 depend only on ρ and τ .

Proof. First note that since for q ≥ 1, by Young’s inequality ‖xS‖1 ≤ s1/1

s1/q
‖xS‖q, the `q-robust null space

property implies `1-robust null space property for all index set S, with cardinality |S| ≤ s,

‖vS‖1 ≤ ρ‖vS‖1 + τs1−1/q‖Φv‖. (7.2)

Now write

‖f‖1 = ‖fS‖1 + ‖fS‖1 ≤ ‖(f − g)S‖1 + ‖gS‖1 + ‖fS‖1,

0 = ‖fS‖1 + ‖fS‖1 ≤ ‖(f − g)S‖1 + ‖gS‖1 + ‖fS‖1 − ‖f‖1, (7.3)

(7.4)
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‖(f − g)S‖1 ≤ ‖gS‖1 + ‖fS‖1. (7.5)

Summing these two up,

‖(f − g)S‖1 ≤ ‖(f − g)S‖1 + ‖g‖1 − ‖f‖1 + 2‖fS‖1. (7.6)

Inserting (7.2) to substitute ‖(f − g)S‖1,

‖(f − g)S‖1 ≤ (ρ‖(f − g)S‖1 + τs1−1/q‖Φ(f − g)‖) + 2‖fS‖1 + ‖g‖1 − ‖f‖1 (7.7)

⇒ ‖(f − g)S‖1 ≤
1

1− ρ
(‖g‖1 − ‖f‖1 + 2‖fS‖1 + τs1−1/q‖Φ(f − g)‖). (7.8)

Proof of Theorem 7. Let (z, ν) be a feasible pair to (1.27), and let γ̃ := γ(r)/∆. Define u := D−r(Φz +

ν − q), and p := ( 1
γ̃u,

−∆
ε ν) and then

‖u‖2 ≤ γ̃∆
√
m, and ‖p‖2 ≤ ∆

√
2m. (7.9)

By definition, u, p, q, z and ν have the relation

Φz − q = Dru− ν = [γ̃Dr,
ε

∆
I]p. (7.10)

Denote [γ̃Dr, ε∆I] by H, and let the singular value decomposition of H = V ΣU∗, and then the pseudo-

inverse of H, denoted by H†.

H† = (HH∗)−1H = (V ΣU∗)∗(V ΣU∗(V ΣU∗)∗)−1 = UΣ−1V ∗. (7.11)

Multiplying both side of (7.10),

H†(Φz − q) = H†Hp = UU∗p. (7.12)
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Since ‖p‖2 ≤ ∆
√

2m, and U is a unitary matrix,

‖H†(Φz − q)‖2 ≤ ∆
√

2m. (7.13)

By triangle inequality,

‖H†Φ(x− x̂)‖2 ≤ ‖H†(Φx− q)‖2 + ‖H†(Φx̂− q)‖2 ≤ 2∆
√

2m. (7.14)

Turn to another side and see the singular value decomposition of H in terms of singular value

decomposition of Dr = VDSDU
∗
D:

HH∗ = V ΣU∗(V ΣU∗)∗ = V Σ2V ∗

= [γ̃Dr,
ε

∆
I][γ̃Dr,

ε

∆
I]∗

= [γ̃2Dr(Dr)∗) + (
ε

∆
)2II∗]

= [γ̃2VDSDU
∗
D(VDSDU

∗
D)∗) + (

ε

∆
)2I]

= [γ̃2(VDS
2
DV
∗
D) + (

ε

∆
)2I]

= [(VD(γ̃SD)2V ∗D) + VD((
ε

∆
)2I)V ∗D]

= VD((γ̃SD)2 + (
ε

∆
)2I)V ∗D, (7.15)

and since

H† = H∗(HH∗)−1 = (V ΣU∗)∗(V ΣU∗(V ΣU∗)∗)−1 = UΣ−1V ∗, (7.16)

applying Weyl’s inequality, the `th singular value of H† is bounded as

σ`(H
†) = (γ̃2σ2

m−`(D
r) + (

ε

∆
)2)−1/2 ≥ (γ̃2(

3πr`

m
)2r + (

ε

∆
)2)−1/2. (7.17)
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Therefore by denoting P` ∈ R`×m a projection to the first ` dimension.

‖H†Φ(x− x̂)‖2 = ‖UΣ−1V ∗Φ(x− x̂)‖2 (7.18)

= ‖Σ−1V ∗Φ(x− x̂)‖2 ≥ ‖P`Σ−1V ∗Φ(x− x̂)‖2 (7.19)

= ‖P`Σ−1P ∗` P`V
∗Φ(x− x̂)‖2 = σ`(H

†)‖P`V ∗Φ(x− x̂)‖2, (7.20)

together with (7.14) then

2∆
√

2m ≥ σ`(H†)‖P`V ∗Φ(x− x̂)‖2 = σ`(H
†)
√
`‖ 1√

`
P`V

∗Φ(x− x̂)‖2 = σ`(H
†)
√
`‖Φ̃Φ(x− x̂)‖2 (7.21)

by setting Φ̃ := 1√
`
P`V

∗Φ.

Now by assumption Φ̃ has restricted isometry property of order 2k and constant δ < 1/9, Theorem

6 shows that the `q-robust null space property is also satisfied, hence Theorem 20 holds here by setting

f = x̂ and g = x.

‖x− x̂‖2 ≤ C4‖Φ̃(x− x̃)‖2 + C5
σk(x)√

s

≤ 2
√

2C4∆

√
m

`

1

σ`(Hdag)
+ C5

σk(x)1√
s

≤ 2
√

2C4∆

√
m

`
(γ̃2(

3πr`

m
)2r + (

ε

∆
)2)1/2 + C5

σk(x)1√
s

≤ 2
√

2C4∆

√
m

`
(γ̃(

3πr`

m
)r + (

ε

∆
)) + C5

σk(x)1√
s

≤ 2
√

2C4γ̃3rπrrr(
`

m
)r−1/2∆ + 2

√
2C4

√
m

`
ε+ C5

σk(x)1√
s

.

Setting C6 = 2
√

2C4γ̃3rπrrr, C7 = 2
√

2C4, C8 = C5 finishes the proof.
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[5] J. Blum, M. Lammers, A. M. Powell, and Ö. Yımaz. Sobolev duals in frame theory and sigma-delta
quantization. Journal of Fourier Analysis and Applications, 16(3):365–381, 2010.

[6] T. Blumensath and M.E. Davies. Iterative hard thresholding for compressed sensing. Applied and
Computational Harmonic Analysis, 27(3):265–274, 2009.

[7] B. G. Bodmann and V. I. Paulsen. Frame paths and error bounds for sigma–delta quantization.
Appl. Comp. Harmon. Anal., 22(2):176–197, 2007.

[8] B.G. Bodmann, V.I. Paulsen, and S.A. Abdulbaki. Smooth frame-path termination for higher order
sigma-delta quantization. J. Fourier Anal. and Appl., 13(3):285–307, 2007.

[9] P. T. Boufounos and R. G. Baraniuk. Quantization of sparse representations. In Rice University
ECE Department Technical Report 0701. Summary appears in Proc. Data Compression Conference
(DCC), Snowbird, UT, March 27-29 2007.

[10] P. T. Boufounos and R. G. Baraniuk. 1-bit compressive sensing. In Proc. Conf. Inform. Science
and Systems (CISS), Princeton, NJ, March 19-21 2008.

[11] T. Cai and A. Zhang. Sparse representation of a polytope and recovery of sparse signals and low-rank
matrices. IIEEE Transactions on Information Theory, 60(1):122–132, 2013.

[12] E. J. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate
measurements. Communications on Pure and Applied Mathematics, 59:1207–1223, 2006.

[13] E. J. Candès and T. Tao. Decoding by linear programming. Information Theory, IEEE Transactions
on, 51(12):4203–4215, 2005.

[14] E.J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruc-
tion from highly incomplete frequency information. IEEE Transactions on Information Theory,
52(2):489–509, Feb 2006.

[15] E. Chou and Güntürk. Distributed noise-shaping quantization: I. beta duals of finite frames and
near-optimal quantization of random measurements. Constructive Approximation, 44(1):1–22, 2016.

[16] W. Dai and O. Milenkovic. Subspace pursuit for compressive sensing signal reconstruction. Infor-
mation Theory, IEEE Transactions on, 55(5):2230–2249, 2009.

85



[17] I. Daubechies and R. DeVore. Approximating a bandlimited function using very coarsely quantized
data: a family of stable sigma-delta modulators of arbitrary order. Ann. Math., 158(2):679–710,
2003.

[18] I. Daubechies and R. Saab. A deterministic analysis of decimation for sigma-delta quantization of
bandlimited functions. IEEE Signal Proc. Lett., 22(11):2093–2096, 2015.
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Abstract

We provide the first analysis of a non-trivial quantization scheme for compressed sensing measure-
ments arising from structured measurements. Specifically, our analysis studies compressed sensing matri-
ces consisting of rows selected at random, without replacement, from a circulant matrix generated by a
random subgaussian vector. We quantize the measurements using stable, possibly one-bit, Sigma-Delta
schemes, and use a reconstruction method based on convex optimization. We show that the part of
the reconstruction error due to quantization decays polynomially in the number of measurements. This
is in-line with analogous results on Sigma-Delta quantization associated with random Gaussian or sub-
gaussian matrices, and significantly better than results associated with the widely assumed memoryless
scalar quantization. Moreover, we prove that our approach is stable and robust; i.e., the reconstruction
error degrades gracefully in the presence of non-quantization noise and when the underlying signal is
not strictly sparse. The analysis relies on results concerning subgaussian chaos processes as well as a
variation of McDiarmid’s inequality.

1 Introduction

Compressed sensing [8, 9, 14] deals with accurately reconstructing sparse (or approximately sparse)
vectors x ∈ RN from relatively few generalized linear measurements of the form (〈ai, x〉)mi=1, where
m < N and where the vectors ai ∈ RN are chosen appropriately. Accurate reconstruction is theoretically
possible because well chosen compressed sensing measurement maps are injective on the “low-complexity”
set of sparse vectors. On the other hand, tractable reconstruction algorithms in the compressed sensing
context rely heavily on sophisticated, non-linear techniques including convex optimization and greedy
numerical methods (e.g., [3, 10, 31]). Consider the m× n matrix A whose rows are given by the vectors
ai, and denote the possibly noisy compressed sensing measurements by

y = Ax+ e, (1)

where e ∈ Rm represents noise. If ‖e‖2 ≤ ε, and A is chosen appropriately, then standard compressed
sensing results guarantee (e.g., [8, 9, 14], see also [17]) that the solution x̂ to the optimization problem

min
z
‖z‖1 subject to ‖Az − y‖2 ≤ ε (2)

satisfies

‖x− x̂‖2 ≤ C(‖e‖2 +
‖x− xs‖1√

s
). (3)

Above, xs denotes the best s-sparse approximation to x (i.e., the vector with at most s non-zero entries
that best approximates x).

The need for sophisticated non-linear decoders such as (2), which can only be reliably implemented
on digital computers, implies that compressed sensing is inextricably linked to a digitization (quantiza-
tion) step. Through quantization, the measurements are converted from continuous valued quantities to
elements from a finite set (e.g., {±1}), so that they can be stored and manipulated (and ultimately used
for reconstruction) via digital computers.
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Despite the importance of quantization, and a flurry of recent activity focusing on this subject in the
compressed sensing context, its treatment remains rather underdeveloped in at least two ways. First,
most of the current literature (e.g., [6, 23, 28, 33, 38, 42]) has focused on the most intuitive approach
to quantization, namely memoryless scalar quantization (MSQ). However, MSQ is known to have strong
theoretical limitations to its reconstruction error guarantees, which we discuss in Section 2.3. Second, all
works on the topic to date have only considered compressed sensing matrices A with subgaussian random
entries, both for MSQ and for more sophisticated quantization schemes such as Σ∆ quantization, which
have been shown to outperform MSQ (see Section 2.3 below for more details).

1.1 Contributions

In this paper, we address the lack of a non-trivial quantization theory for a practically important class of
measurement matrices: partial random circulant matrices. Our main result, Theorem 5 shows that if the
compressed sensing measurement matrix is a randomly subsampled partial random circulant matrix, and
the measurements are quantized by a stable (even 1-bit) Sigma-Delta quantizer, then with an appropriate
tractable decoder (which we specify):

• The reconstruction error due to quantization decays polynomially with the number of measurements.

• The recovery is robust to noise and stable with respect to deviations from the sparsity assumption.

Our analysis relies on proving a restricted isometry property for the product of our compressed sensing
measurement matrix and the matrix formed by the left singular vectors of an rth order difference operator,
which we provide in Proposition 1. For this, we use a combination of a version of McDiarmid’s inequality
[29], Dudley’s inequality [15], and recent results on suprema of chaos processes [24]. As a notable
technical difference to previous works (without quantization) studying measurement systems involving
random subsampling, our proof explicitly exploits that we are subsampling without replacement. Let us
now introduce the necessary background information, starting with partial random circulant matrices,
followed by a brief introduction to quantization and to the concentration of measure techniques we
employ.

2 Background and notation

2.1 Notation and basic definitions

We denote by [N ] the set {1, . . . , N} and by ek the k-th standard basis vector. A vector x ∈ RN is
s-sparse if only s of its entries are non-vanishing, that is, its support T = supp(x) = {j ∈ [N ] : xj 6= 0}
satisfies |T | = s. Throughout, the matrix F =

(
e2πijk/N

)N
j,k=1

is the unnormalized N×N discrete Fourier

transform matrix, and F̄ denotes the complex conjugate of F . That is, FF̄ = F̄F = NId. We say that a
matrix A satisfies the restricted isometry property of order s and constant δ, if for all s-sparse vectors x

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22.

Given a vector x ∈ RN , we denote by X̂ ∈ RN×N the diagonal matrix with x̂ := Fx on the diagonal.
For a matrix A, Ak denotes its k-th column.

We write f . g for two functions f and g if they are defined on the same domain D and there exists
an absolute constant C such that f(y) ≤ Cg(y) for all y ∈ D, f & g is defined analogously. Given a
full-rank matrix A ∈ Rm×d with m > d, its pseudo-inverse is given by A† = (A∗A)−1A∗.

2.2 Partial random circulant matrices

Given a vector ξ = (ξ1, ξ2, . . . , ξN ) ∈ RN , the corresponding circulant matrix Φ = Φ(ξ) ∈ RN×N is
defined by

Cξ =


ξ1 ξ2 ξ3 · · · ξN
ξN ξ1 ξ2 · · · ξN−1

...
...

ξ2 ξ3 ξ4 · · · ξ1

 . (4)
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In this paper we consider random circulant matrices Cξ arising from random vectors ξ whose entries are
independent L-subgaussian random variables with variance 1 and mean 0, in the sense of the following
definition.

Definition 1 (see, e.g., [40]). A random variable X is called L-subgaussian if

P(|X| > t) ≤ exp(1− t2/L2). (5)

Up to absolute multiplicative constants, the subgaussian parameter L is equivalent to the subgaussian
norm ‖X‖Ψ2 defined as ‖X‖Ψ2 = supp≥1 p

−1/2(E|X|p)1/p. Specifically, (5) implies that [40]

‖X‖ψ2 ≤
√

e
2
L. (6)

A partial random circulant matrix is obtained from a random circulant matrix by sampling the rows
of the latter. In this paper, we consider only sampling without replacement, thus obtaining the following
definition.

Definition 2. Let Φ = Cξ ∈ RN×N be a random circulant matrix as in (4) and, for m ≤ N , let
Ω = (Ω1, . . . ,Ωm) be a random vector obtained by sampling from [N ] without replacement. That is, Ω is
drawn uniformly at random from the set

Ξ := {ω ∈ [N ]m : ωi 6= ωj for i 6= j}. (7)

Then the associated partial random circulant matrix is given by

A = RΩΦ.

where RΩ is the subsampling operator

Rm×N 3 RΩ =

m∑
j=1

eje
∗
Ωj .

Partial random circulant matrices are important to the practical application of compressed sensing.
This is due to the simple observation that a circular convolution of a signal x ∈ RN with a “filter”
ξ̃ ∈ RN , as given by the vector y = x~ ξ̃ ∈ RN with entries

yj :=

N∑
i=1

xiξ̃j−i mod n,

can be represented by the action of a circulant matrix. Indeed one has x~ ξ̃ = Cξx, where

ξ ∈ RN is defined via ξN−j+1 = ξ̃j for j ∈ {1, ..., N} and Cξ is as in (4). Consequently, as the
convolution is commutative, one has Cξx = Cxξ; we will repeatedly make use of this observation.

Due to the ubiquity of convolutions in signal processing applications, partial random circulant ma-
trices, modeling subsampled random convolutions, have played an important role in the development of
compressed sensing applications such as radar imaging, Fourier optical imaging, and wireless channel
estimation (see, e.g., [21, 35]). Recovery guarantees for partial circulant matrices have been an active
area of research in the last decade, the best known results have recently been proved by Mendelson,
Rauhut, and Ward [30].

2.3 Quantization

In the compressed sensing context, quantization is the map that replaces the vector y = Ax + e ∈ Rm
by a representation that uses a finite number of bits. Most often, practical quantization maps are of the
form

Q : Rm → Am

where A ⊂ R is a finite set, called the quantization alphabet. Both memoryless scalar quantization and
Σ∆ quantization, which we will discuss in the next paragraphs, execute quantization maps of this form.
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The most natural and common choices of alphabets have equispaced elements. As representatives for
such alphabets we will focus on the so-called mid-rise alphabet with 2L levels and step-size δ, denoted
by AδL and given by AδL :=

{
± (2`+1)δ/2, ` ∈ {0, ..., L−1}

}
. The minimal instance of such an alphabet

is the 1-bit quantization alphabet, which we denote by A = {−1,+1}.
The fact that Q outputs a vector of alphabet elements allows the quantization to be implemented

progressively. That is, one can relate each entry of the quantized vector to some measurement and each
subsequent measurement can then be quantized in a way that depends on previous measurements. This
idea is exploited in Σ∆ schemes.

Memoryless scalar quantization

Memoryless scalar quantization is an intuitive approach to digitizing compressed sensing measurement.
It simply uses a scalar quantizer

QA : R→ A
z 7→ arg min

v∈A
|z − v| (8)

to quantize every entry of y independently. Using a standard compressed sensing recovery algorithm such
as (2), one can use the robustness of standard compressed sensing reconstruction algorithms (3) to bound
the reconstruction error. Such results guarantee that the reconstruction error decays as the size of the
alphabet increases. However, they do not guarantee error decay as one takes more measurements. One
could argue that a better reconstruction algorithm or a sharper analysis would alleviate this issue, but
that is hardly the case. Indeed, consider working with a fixed quantization alphabet, as one would do in
practice due to fixing the quantization hardware. Then, as shown by Goyal, Vetterli, and Thao [18], the
error in reconstructing a k-sparse signal from its m MSQ-quantized measurements cannot decay faster
than k/m, even when using an optimal decoder. This means that by linearly increasing the number of
measurements, and hence increase the number of bits used, denoted byR (for rate), one can, at best, only
linearly decrease the reconstruction error, denoted DMSQ (for distortion). That is, the rate-distortion
relationship associated with MSQ satisfies

DMSQ(R) ≥ CR−1. (9)

This lower bound stands in sharp contrast to the rate-distortion relationship that an optimal assignment
of bits (for encoding k-sparse vectors in the unit-ball of RN ) yields, namely (see, e.g., [5])

D∗(R) ≤ CN
k
e−cR/k.

In this sense MSQ is far from optimal. One factor preventing MSQ from being optimal in general,
is that it does not exploit any correlations among the measurements, as it treats each measurement
independently of the others.

Sigma-Delta quantization

Sigma-Delta (Σ∆) quantization is an alternative quantization method that, in its simplest form, works by
scalar quantizing the sum of the current measurement and a state variable, and then updating the state
variable. It is through the state variable that the dependencies between the measurements are accounted
for in the quantization. Σ∆ schemes were proposed in the 1960’s [22] for quantizing bandlimited functions
and have seen widespread use in practice, particularly in audio applications [32]. For almost 40 years,
there was no precise understanding of Σ∆ from a mathematical perspective, before recently, following the
seminal work of Daubechies and Devore in [11], a number of works analyzed Σ∆ schemes for bandlimited
functions from a mathematical perspective [12, 13, 19, 27].

In addition, Σ∆ schemes have recently been shown to be well suited for quantizing finite-frame
expansions [1, 2, 4, 25] as well as compressed sensing measurements [20, 26, 36, 37]. We review these
results in the following subsection, and we now focus on the relevant details of Σ∆ quantization schemes.

In the simplest Σ∆ scheme, a first order Σ∆ quantizer, the state variable ui accounts for the accu-
mulated quantization error. That is, the quantizer applies to the measurements yi the iteration

qi = QA(yi + ui−1) (10)
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ui = ui−1 + yi − qi. (11)

Here QA is the scalar quantizer (8). In an rth-order Σ∆ scheme, the first order finite difference ∆ (given
by (∆u)i := ui−ui−1, and appearing in (11)) is replaced by an rth-order finite difference ∆r. Moreover,
before applying the scalar quantizer, some quantization rule ρ : Rr+1 → R is applied.

That is, the quantized measurement vector q with entries qi ∈ A is computed via the recursion

qi = QA (ρ(yi, ui−1, ui−2, . . . , ui−r)) , (12)

ui = yi − qi −
r∑
j=1

(
r

j

)
(−1)jui−j . (13)

Using the first-order difference matrix D with entries given by

Di,j :=


1 if i = j
−1 if i = j + 1
0 otherwise

, (14)

the relationship between x, u, and q can be concisely written in matrix-vector notation as

Dru = y − q. (15)

The inverse D−r will play a crucial role in our analysis, which is why we fix the notation

D−r = USV ∗,

for its singular value decomposition throughout this paper.
Recalling that (D−1z)j =

∑j
i=1 zi, in the case of first order schemes (where r = 1) the state variable

u can be interpreted as an accumulated error, as can be seen by appying D−1 to the equation above. It
intuitively follows that it is crucial for the sequence of state variable u to be bounded in this case. This
intuition can be made precise and generalizes to higher order schemes. For this reason we seek stable
rth-order schemes, i.e., schemes for which (12) and (13) result in

‖u‖∞ ≤ Cρ,Q(r)

for all N ∈ N, and y ∈ RN with ‖y‖∞ ≤ 1. Importantly, we require that Cρ,Q : N 7→ R+ be entirely
independent of both N and y. One can show that stable rth-order Σ∆ schemes exist with Cρ,Q(r) =
O((Cr)r) for some constant C [13, 19], even when A is a 1-bit alphabet, but that there are fundamental
lower bounds on C and no better dependence on r can be achieved [7, 27].

2.4 Probabilistic Tools

We will use a number of different probabilistic tools for different parts of our argument. We state them
here for convenience. The first one is a variation of McDiarmid’s inequality. Note that it closely relates
to the Azuma-Hoeffding inequality and the method of bounded differences.

Theorem 1 ( [29], Theorem 3.14). Let (Ω,F ,P) be a probability space and (∅,Ω) = F0 ⊆ F1 ⊆ ... ⊆ Fm
a filtration in F . Consider a bounded random variable X, and set Xk := E(X|Fk). Define the sum of
squared conditional ranges

R2 =

m∑
k=1

ran2
k

where
rank := sup(Xk|Fk−1) + sup(−Xk|Fk−1),

and denote its (essential) supremum by
r̂2 := supR2.

Then,

P(X − E(X) ≥ t) ≤ e−2t2/r̂2 .

A second tool that we will be using is Dudley’s inequality. In order to formulate the result, we recall
the definitions of the covering number and of subgaussian random variables.
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Definition 3. Let (S, d) be a metric space and ε > 0. A subset Nε of S is called an ε-net if every point
in S can be approximated to within ε by some point in Nε, i.e., for all x ∈ S there exists y ∈ Nε such
that d(x, y) < ε. The covering number N (S, d, ε) is the minimal cardinality of an ε-net of S.

Theorem 2 (Dudley’s inequality [15]). Let Zx be a random variable depending on x ∈ T , for some set
T and define d(x, y) = ‖Zx − Zy‖Ψ2 , if

P(|Zx − Zy| > t) . exp
(
− t2/‖Zx − Zy‖2Ψ2

)
,

then for any x0 ∈ T

P(sup |Zx − Zx0 | > t) . exp
(
− t2/

( ∫ supx∈DN,s ‖Zx‖Ψ2

0

√
logN (DN,s, d(x, y), ε)dε

)2)
.

A third result that we will be using concerns subgaussian chaos processes. Its original version involves
the Talagrand γ2 functional, an intricate complexity parameter related to the generic chaining [39], which
can be bounded in terms of covering numbers via Dudley’s inequality (Theorem 2). To avoid discussing
the generic chaining methodology in detail, we state a combined version in terms of only these upper
bounds.

Theorem 3 ( [24]). Let C be a set of matrices and consider the complexity parameters

dF (C) = sup
C∈C
‖C‖F , d2→2(C) = sup

C∈C
‖C‖2→2, D(C) =

∫ d2→2(C)

0

√
logN (C, ‖ · ‖2→2, u) du.

Let ξ be a random vector whose entries ξj are independent, mean-zero, variance 1, L-subgaussian random
variables. Then, for t > 0, the random variable

CC(ξ) = sup
C∈C
|‖Cξ‖22 − Eξ‖Cξ‖22

satisfies

P(CC(ξ) ≥ c1E + t) ≤ 2 exp(−c2 min{ t
2

V 2
,
t

U
}),

where

E = D(C)(D(C) + dF (C)) + dF (C)d2→2(C), V = d2→2(C)(D(C) + dF (C)), U = d2
2→2(C),

and the constants c1, c2 depend only on L.

3 Related Work

3.1 Σ∆ quantization of finite-frame expansions

The first paper analyzing Σ∆ quantization of finitely many measurements of finite-dimensional vectors
was [1], initiating a series of papers on the subject. For example, the papers [1, 2, 4, 25] all studied
Σ∆ quantization when one collects m > N linear measurements yi = 〈ai, x〉 of x ∈ RN , where the
collection (ai)

m
i=1 spans RN (and is called a finite-frame). In this finite-frame setting, [1] showed that

the reconstruction error associated with first order Σ∆ quantization can be made to decay linearly
with the number of measurements, hence the bit-rate. With this first order Σ∆ approach, the upper
bound on the error already matched the lower bound (9) associated with MSQ. Using higher order Σ∆
schemes, subsequent papers (e.g., [2, 4]) showed that the error can be made polynomial in the number of
measurements, significantly outperforming the MSQ lower bound. Importantly, the linear reconstruction
scheme proposed in [4] to approximate x from its quantized finite-frame measurements also proved fruitful
in the compressed sensing context. Denoting by A the m×N matrix (m ≥ N) having ai as its rows, the
rth-order Sobolev dual of A is the N ×m matrix

B := (D−rA)†D−r,

which is easily seen to be a left-inverse of A. The approach of [4] was to estimate x from q via x̂ = Bq,
yielding error rates that decayed like m−r (i.e., polynomially in the number of measurements and bits)
provided the rows of A obeyed some smoothness conditions.
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3.2 Σ∆ quantization of compressed sensing measurements

The paper [20], soon followed by [16, 26], was first to study Σ∆ quantization of compressed sensing
measurements. They focused on the setup where the compressed sensing matrix is subgaussian, the
underlying signal is strictly sparse, and no noise contaminates the measurements. They analyzed a two-
stage approach to signal recovery whereby one uses a standard decoder like (2) to estimate the support
of the k-sparse signal, then applies the Sobolev dual of the associated m × k sub-matrix of A to q.
With this approach, the reconstruction error was again shown to decay polynomially in the number
of measurements. The proofs in [20, 26] relied on bounding the smallest singular value of a certain
anisotropic random matrix, while [16] significantly simplified the analysis by using an approach based
on the restricted isometry property. These results showed that frame-theoretic quantization techniques
could be extended to the compressed sensing setup. On the other hand, the reliance of [20, 26] on
a two-step approach involving support recovery meant that obtaining a result for compressed sensing
measurements of arbitrary signals in the presence of noise would be difficult.

More recently, in [?] a decoder based on convex optimization was proposed (to replace the two-
step approach) and analyzed, with the main result being that it could handle both arbitrary signals
and measurement noise (bounded by ε). Specifically, if q results from quantizing compressed sensing
measurements y (as in (1)) using an rth-order Σ∆ scheme, one approximates x with x̂ via

(x̂, ê) := arg min
(z,ν)
‖z‖1 subject to ‖D−r(Az + ν − q)‖2 ≤ γ(r)

√
m

and ‖ν‖2 ≤ ε
√
m, (16)

where γ(r) depends on the quantization scheme used. The resulting approximation error due to quan-
tization in [?] decays as m−r+1/2, i.e., polynomially in m, and the approach is shown to be stable and
robust. As in [16], a main ingredient in the proofs of [?] is an analysis based on the restricted isometry
properties of certain matrices arising from the interaction of the difference matrix with the compressed
sensing matrix. Indeed, the following result, which we will also use, is proved in [?].

Theorem 4. [?] Let A be an m×N matrix, and let k, l ∈ {1, ...,m}. Suppose that 1√
`
P`V

∗A satisfies

the restricted isometry property of order 2k and constant δ < 1/9. Denote by QrΣ∆ a stable rth order
Σ∆ quantizer. Then, for all x ∈ RN with ‖Ax‖∞ ≤ µ < 1 and all e ∈ Rm with ‖e‖∞ ≤ ε < 1 − µ the
estimate x̂ obtained by solving (16) with q = QrΣ∆(Ax+ e) satisfies

‖x̂− x‖2 ≤ C1

(m
`

)−r+1/2

δ + C2
σk(x)√

k
+ C3

√
m

`
ε, (17)

where the constants C1, C2, C3 depend on the quantizer, but not the dimensions of the problem.

The combination of stability, robustness, quantization error decay, and practicability make the Σ∆
quantization approach, followed by recovery via (16) amenable to practical applications where one has
the freedom to select subgaussian compressed sensing matrices. Nevertheless, the only matrices Φ for
which [?] proved that the assumptions of Theorem 4 hold are subgaussian. As such, the results of [?]
do not apply to important practical setups such as system identification, radar, and coded-aperture
imaging, where structured random matrices such as partial random circulant ones arise naturally in the
compressed sensing context (see, e.g., [21, 34]). The only result we are aware of (aside from those of this
manuscript) that addresses quantization in the context of structured random measurement matrices is
that of [41]. [41] shows that first order Σ∆ quantization coupled with an appropriate decoder yields an

error decaying as
(

m
k4 logN

)−1/2
, when the measurement matrix is a randomly selected m×N submatrix

of the N ×N discrete Fourier transform matrix. Consequently the results are only meaningful when m
scales like k4, which is considerably worse than the linear scaling of m with k (up to log factors) arising
in Theroem 4 and commonly in compressed sensing without quantization. One of our main contributions
(Theorem 5) is to show that such a linear scaling (up to log factors) also holds for certain structured
random measurements, specifically for random circulant matrices.

4 Main results

In this section, we prove the following theorem, which is the main result of this paper.
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Theorem 5. Denote by QrΣ∆ a stable rth order Σ∆ quantizer. Let A be an m × N partial random
circulant matrix associated to a vector with independent L-subgaussian entries with mean 0 and variance

1. Suppose that N ≥ m ≥ (Cη)
1

1−2α s log
2

1−2α N log
2

1−2α s, for some η > 1 and α ∈ [0, 1/2). With
probability exceeding 1− e−η, the following holds:
For all x ∈ RN with ‖Ax‖∞ ≤ µ < 1 and all e ∈ Rm with ‖e‖∞ ≤ ε < 1− µ the estimate x̂ obtained by
solving (16) satisfies

‖x̂− x‖2 ≤ C1

(m
`

)−r+1/2

δ + C2
σk(x)√

k
+ C3

√
m

`
ε.

Here C,C1, C2, C3 are constants that only depend on r and L.

Proof. Theorem 5 can be immediately obtained from Theorem 4, which requires a bound on the restricted
isometry constants of P`V

∗RΩCξ where ` = m( s
m

)α, and Proposition 1 below, which provides the required
bound.

Proposition 1. Consider the same setup and assumptions as Theorem 5; in particular assume that

m ≥ (Cη)
1

1−2α s log
2

1−2α N log
2

1−2α s, for some η > 1 and α ∈ [0, 1/2). Setting ` = m( s
m

)α, we have

P
(

sup
x
|‖ 1√

`
P`V

∗RΩCxξ‖22 − 1| > 1

9

)
< e−η,

where the supremum is over all s-sparse vectors. In other words, with probability exceeding 1− e−η, the
matrix 1√

`
P`V

∗RΩCξ satisfies the restricted isometry property of order s, with constant 1/9.

Proof. Note that by the triangle inequality,

sup
x

∣∣∣‖ 1√
`
P`V

∗RΩCxξ‖22 − 1
∣∣∣

≤ sup
x

(∣∣∣‖ 1√
`
P`V

∗RΩCxξ‖22 − E[‖ 1√
`
P`V

∗RΩCxξ‖22|Ω]
∣∣∣+∣∣∣E[‖ 1√

`
P`V

∗RΩCxξ‖22|Ω]− E‖ 1√
`
P`V

∗RΩCxξ‖22
∣∣∣+

|E‖ 1√
`
P`V

∗RΩCxξ‖22 − 1|
)
. (18)

Thus, the proof of Proposition 1 boils down to controlling each of the summands in (18). To that end,
Lemma 1 (below) shows that the third summand is bounded by sm

`N
, while Lemma 2 and Lemma 3

bound the probability that the remaining summands exceed 1
18

and 1
36

respectively. Our bound on m

(potentially with an increased value of C) ensures that sm
`N
≤ s

`
=
(
s
m

)1−α ≤ 1
36

and the result follows
using a union bound.

Lemma 1. Given the same setup as in Theorem 5 and Proposition 1, one has

|E‖ 1√
`
P`V

∗RΩCxξ‖22 − 1| ≤ (s− 1)(m− `)
`(N − 1)

≤ sm

`N
.

Proof. Denoting by ci,j the (i, j)-th entry of Cx and noting that we are sampling without replacement,
we observe that for p 6= q ∈ [m]

E(cΩ(p),kcΩ(q),k) =
1

N(N − 1)

N∑
u6=v=1

cu,kcv,k =
1

N(N − 1)

( N∑
u,v=1

cu,kcv,k −
N∑
u=1

c2u,k

)

=
1

N(N − 1)

( N∑
u,v=1

cu,kcv,k −
N∑
u=1

x2
u

)
=

1

N(N − 1)

(( N∑
u=1

xu
)2 − 1

)
. (19)

The last two equalities both use the fact that each row of Cx is a shifted copy of x. Furthermore∣∣∣E‖ 1√
`
P`V

∗RΩCxξ‖22 − 1
∣∣∣ =

∣∣∣E‖ 1√
`
P`V

∗RΩCx‖2F − 1
∣∣∣

8



=
∣∣∣1
`
E
∑̀
j=1

N∑
k=1

|
m∑
p=1

vjpcΩ(p),k|2 − 1
∣∣∣

=
∣∣∣1
`

∑̀
j=1

N∑
k=1

( m∑
p=1

v2
jpEc2Ω(p),k +

m∑
p,q=1
p 6=q

vjpvjqEcΩ(p),kcΩ(q),k

)
− 1
∣∣∣

=
∣∣∣1
`

∑̀
j=1

(
1 +

(
∑N
i=1 xi)

2 − 1

N − 1

m∑
p,q=1
p6=q

vjpvjq
)
− 1
∣∣∣

where in the last equality we used (19) and the fact that the rows of both Cx and V are normalized.
Using that x is s-sparse, it follows that∣∣∣E‖ 1√

`
P`V

∗RΩCxξ‖22 − 1
∣∣∣ ≤ ∣∣∣ s− 1

`(N − 1)

(∑̀
j=1

(

m∑
p=1

vjp)
2 −

∑̀
j=1

m∑
p=1

v2
jp

)∣∣∣
=

s− 1

`(N − 1)

∣∣∣‖V ∗(1, . . . , 1)T ‖22 − `
∣∣∣

≤ s− 1

`(N − 1)

∣∣∣‖V ‖22→2m− `
∣∣∣

=
(s− 1)(m− `)
`(N − 1)

.

Lemma 2. Consider again the setup of Theorem 5 and Proposition 1 and denote by DN,s the set of all
s-sparse vectors in RN . Then

P
(

sup
x∈DN,s

∣∣∣∣‖ 1√
`
P`V

∗RΩCxξ‖22 − Eξ
[
‖ 1√

`
P`V

∗RΩCxξ‖22
∣∣∣Ω]∣∣∣∣ > 1

18

∣∣∣) ≤ 1

2
e−η.

Proof. We will apply Theorem 3 conditionally given Ω with C = { 1√
`
P`V

∗RΩCx : x ∈ DN,s}. This set

is almost the same as the one considered in the proof of Theorem 4.1 in [24], the only differences being
the additional projection P` and our normalization factor of 1√

`
(instead of 1√

m
in [24]). Indeed, since

‖P`‖2→2 ≤ 1 we can estimate the necessary parameters for applying Theorem 3 exactly as in the proof
of Theorem 4.1 in [24]. This yields

d2→2(C) ≤
√
s

`
, dF (C) ≤

√
m

`
, D(C) ≤

√
s

`
logN log s.

Consequently for c1, c2, and E as in Theorem 3, we have

E ≤
√
s

`
logN log s

(√
s

`
logN log s+

√
m

`

)
+

√
m

`

√
s

`

≤
( s
m

)1−α
log2 N log2 s+ 2

( s
m

)1−2α

logN log s ≤ 1

36c1
.

Here, the second inequality follows from our choice of ` and the last inequality follows from our assumption
on m in Theorem 5 (potentially adjusting the constant C). Again adjusting the constant, we similarly
obtain

V ≤
√
c2
4η

and U ≤ c2
4η
.

Hence the probability is bounded by 2e−4η. Finally, as η ≥ 1, e−4η ≤ 1
4
e−η and the result follows by

taking the expectation over Ω.

9



Lemma 3. With the same notation as before, we have

P( sup
x∈DN,s

|E[‖ 1√
`
P`V

∗RΩCxξ‖22|Ω]− E‖ 1√
`
P`V

∗RΩCxξ‖22| >
1

36
)

≤ C′ exp(−c/(
√
sm

`
logN logm)2) ≤ 1

2
e−η

where c, C′ are constants that depends only on L.

Proof. The proof is a direct application of Theorem 2 for the random variable

Zx := E
[
‖ 1√

`
P`V

∗RΩCxξ‖22 − E‖ 1√
`
P`V

∗RΩCxξ‖22
∣∣∣∣Ω] = ‖ 1√

`
P`V

∗RΩCx‖2F − E‖ 1√
`
P`V

∗RΩCx‖2F

to find the supremum of the deviation. Since Theorem 2 requires the covering number with respect to
the metric d(x, y) := ‖Zx − Zy‖Ψ2 we need a bound for d(x, y), which we provide in Lemma 5 below.
Specifically, the first inequality in Lemma 3 follows from Theorem 2 together with Lemma 1 and Lemma
2 above. Indeed, applying Lemma 5 with y = 0 yields

sup
x,y
‖Zx‖Ψ2 ≤

√
m

`
‖x‖∞̂ ≤

√
m

`
‖F (x)‖∞ ≤

√
m

`
‖x‖1 ≤

√
sm

`
‖x‖2 ≤

√
sm

`
. (20)

To bound the integral in Theorem 2, we note that

N (DN,s,

√
m

`
‖ · ‖∞̂, ε) = N (DN,s,

1√
m
‖ · ‖∞̂,

`

m
ε),

and hence applying the argument in [24, Section 4] scaled by m
`

,∫ supx ‖Zx‖Ψ2

0

√
logN (DN,s,

1√
m
‖ · ‖∞̂,

`

m
ε)dε

.
√
sm

`
logN log s.

For the second inequality note that by the definition of ` and the assumed lower bound on m

(

√
sm

`
logN log s)2 =

( s
m

)1−2α

log2 N log2 s (21)

≤ C−1η−1. (22)

The result follows from the assumption that η ≥ 1 as in the proof of Lemma 2.

All that remains now is to prove Lemma 5. Before that, we derive a technical bound required for its
proof.

Lemma 4. Let ω, ω′ ∈ Ξ = {ω ∈ [N ]m : ωi 6= ωj for i 6= j} be such that ω differs from ω′ in at most
two components. Then the function

f(ω) := ‖ 1√
`
P`V

∗RωCx‖2F − ‖
1√
`
P`V

∗RωCy‖2F

satisfies

|f(ω)− f(ω′)| ≤ 12

`
‖x− y‖∞̂,

where ‖x‖∞̂ := ‖Fx‖∞.

Proof. Note that, as a circulant matrix is diagonalized by the Fourier transform,

f(ω) = ‖ 1√
`
P`V

∗RωCx‖2F − ‖
1√
`
P`V

∗RωCy‖2F

= ‖ 1√
`
P`V

∗RωF
−1X̂F‖2F − ‖

1√
`
P`V

∗RωF
−1Ŷ F‖2F

10



=
1

`N
‖P`V ∗RωFX̂‖2F −

1

`N
‖P`V ∗RωFŶ ‖2F

=
1

`N

N∑
k=1

(
|x̂k|2 − |ŷk|2

)
‖P`V ∗RωF k‖22, (23)

where F denotes the non-normalized Fourier transform, FTk its k-th row, and x̂ = Fx.
We first consider the case that ω and ω′ differ only in one component, say the first (without loss of

generality). To bound |f(ω)− f(ω′)| for this case, we note that for V Tj denoting the j-th row of V , and
η = exp(− 2πi

N
) an N -th root of unity,

‖P`V RωF k‖22 − ‖P`V Rω′F k‖22

=

m∑
p,q=1

〈η−kωpP`Vp, η−kωqP`Vq〉 −
m∑

r,s=1

〈η−kω
′
rP`Vr, η

−kω′sP`Vs〉

=

m∑
p,q=1

(ηk(ωp−ωq) − ηk(ω′p−ω
′
q))〈P`Vp, P`Vq〉

= (ηk(ω1−ω1) − ηk(ω′1−ω
′
1))〈P`V1, P`V1〉+

m∑
q=2

(ηk(ω1−ωq) − ηk(ω′1−ωq))〈P`V1, P`Vq〉

+

m∑
p=2

(ηk(ωp−ω1) − ηk(ωp−ω′1))〈P`Vp, P`V ∗1 〉+

m∑
p,q=2

(ηk(ωp−ωq) − ηk(ωp−ωq))〈P`Vp, P`Vq〉

=

m∑
q=2

(ηkω1 − ηkω
′
1)η−kωq 〈P`V1, P`Vq〉+

m∑
p=2

(η−kω1 − η−kω
′
1)ηkωp〈P`Vp, P`V1〉.

Combining this with (23), we obtain

f(ω)− f(ω′) =
1

`N

N∑
k=1

(
|x̂k|2 − |ŷk|2

)( m∑
q=2

(ηkω1 − ηkω
′
1)η−kωq 〈P`V1, P`Vq〉

+

m∑
p=2

(η−kω1 − η−kω
′
1)ηkωp〈P`Vp, P`V1〉

)
(24)

Observe that the right hand side is a sum of four different rescaled Fourier coefficients of the vector
u ∈ RN given by uk := |x̂k|2 − |ŷk|2, as for example

1

`N

m∑
p=2

〈P`V1, P`Vp〉
N∑
k=1

(|x̂k|2 − |ŷk|2)ηk(ωp−ω1) =
1

`N

m∑
p=2

〈P`V1, P`Vp〉(Fu)ωp−ω1 = V ∗1 P
∗
` P`V

∗v,

where v ∈ Rm is given by v1 = 0 and vp = (Fu)ωp−ω1 for 2 ≤ p ≤ m. Note that as ω ∈ Ξ and hence the

ωq are all different, v is a projection of Fu on a subset of its entries, and so ‖v‖2 ≤
√
N‖u‖2. Note that

in this step, it is crucial to sample without replacement, as otherwise, the bound would no longer hold.
Consequently, using the Cauchy-Schwartz inequality,

1
`N

∣∣∣ m∑
p=2

〈P`V1, P`Vp〉
N∑
k=1

(
|x̂k|2 − |ŷk|2

)
ηk(ωp−ω1)

∣∣∣ ≤ 1
`N
‖V ‖22→2‖P ∗` P`V1‖2‖v‖2

≤ 1

`
√
N
‖Fu‖2 ≤ 1

`
‖Fu‖∞ = 1

`
‖x− y‖∞̂.

Identical bounds for the other three summands in (24) are attained in an analogous way, which yields
the result for ω and ω′ differing in only one component (with a constant of 4 rather than 12). If they
differ in two components, replacing one of these components in both ω and ω′ by an entry that appears
in neither of them, yields ω′′, ω′′′ ∈ Ξ, which differ only in the other one of these components. Thus
applying the above bound three times yields the result.
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We are now ready to bound the distance d(x, y) = ‖x− y‖ψ2 .

Lemma 5. For all x, y ∈ RN it holds that

d(x, y) ≤ 12
√
m

`
‖x− y‖∞̂.

Proof. By (6), it suffices to show that for all t ≥ 0

PΩ(|Zx − Zy| > t) ≤ exp
(

1− t2/
(12
√
m

`
‖x− y‖∞̂

)2)
. (25)

To prove this, we will apply Theorem 1 for Fk, the σ-algebra generated by Ω1, ...,Ωk. For that, we
need to bound the sum of squared ranges

R2 = sup

m∑
j=1

ran2
j

where, for (Ω′j , ...,Ω
′
m) an independent copy of (Ωj , ...,Ωm) and Ω′ = (Ω1, ...Ωj−1,Ω

′
j , ...,Ω

′
m),

ranj = sup
Ωj /∈{Ω1,...,Ωj−1}

(
E(f(Ω)|Ωj , ...,Ω1)

∣∣∣Ωj−1, ...,Ω1

)
+ sup

Ωj /∈{Ω1,...,Ωj−1}

(
E(−f(Ω′)|Ωj , ...,Ω1)

∣∣∣Ωj−1, ...,Ω1

)
= sup

Ωj ,Ω
′
j /∈{Ω1,...,Ωj−1}

(
E(f(Ω)|Ωj ,Ωj−1...,Ω1) + E(−f(Ω′)|Ω′j ,Ωj−1, ...,Ω1)

∣∣∣Ωj−1, ...,Ω1

)
. (26)

For that, define the events E0 = {Ωj 6= Ω′k ∀j > k}, E ′0 = {Ω′j 6= Ωk ∀j > k}, and, for j ∈ [m − k],
Ej = {Ωk+j = Ω′k}, E ′j = {Ω′k+j = Ωk} and note that

P[∪mj=0Ej |Ω1, ...,Ωk,Ω
′
k] = P[∪mj=0E ′j |Ω1, ...,Ωk,Ω

′
k] = 1. (27)

Now, we can write

E[f(Ω)|Ω1, ...,Ωk−1,Ωk]− E[f(Ω′)|Ω1, ...,Ωk−1,Ω
′
k] =

m−k∑
j=0

E[f(Ω)1Ej − f(Ω′)1E′j |Ω1, ...,Ωk,Ω
′
k]. (28)

Given Ω1, . . . ,Ωk and Ω′k, consider random variables Ω′′k+1, . . .Ω
′′
m drawn subsequently without replace-

ment from [N ] \ {Ω1, . . . ,Ωk,Ω
′
k} and set

Ω′′ = (Ω1, . . . ,Ωk,Ω
′′
k+1, . . . ,Ω

′′
m), Ω′′′ = (Ω1, . . . ,Ωk−1,Ω

′
k,Ω

′′
k+1, . . . ,Ω

′′
m).

Observe that given the event E0, Ω and Ω′′ are conditionally identically distributed, and the same
holds for Ω′ and Ω′′′ given the event E ′0. So, using that E0 and Ω′′ as well as E ′0 and Ω′′′ are conditionally
independent given Ω1, . . . ,Ωk,Ω

′
k, the summand in (28) corresponding to j = 0 becomes

E[f(Ω)1E0 − f(Ω′)1E′0 |Ω1, ...,Ωk,Ω
′
k]

=E[f(Ω′′)1E0 − f(Ω′′′)1E′0 |Ω1, ...,Ωk,Ω
′
k]

=E[f(Ω′′)|Ω1, ...,Ωk,Ω
′
k]P[E0|Ω1, ...,Ωk,Ω

′
k]− E[f(Ω′′′)|Ω1, ...,Ωk,Ω

′
k]P[E ′0|Ω1, ...,Ωk,Ω

′
k] (29)

=
(
E[f(Ω′′)− f(Ω′′′)|Ω1, ...,Ωk,Ω

′
k]
)
P[E0|Ω1, ...,Ωk,Ω

′
k],

≤12

`
‖x− y‖∞̂P[E0|Ω1, ...,Ωk,Ω

′
k]

where the third equality uses that (Ω′k, . . . ,Ω
′
m) is an independent copy of (Ωk, . . . ,Ωm) and so the two

probabilities in (29) are equal. The last inequality holds almost surely and follows from Lemma 4.
To bound the summand in (28) for j > 0, we proceed in a similar way. Given Ω1, . . . ,Ωk and Ω′k,

consider random variables Ω′′k+1, . . . ,Ω
′′
k+j−1,Ω

′′
k+j+1, . . .Ω

′′
m drawn subsequently without replacement

from [N ] \ {Ω1, . . . ,Ωk,Ω
′
k} and set

Ω′′ =(Ω1, . . . ,Ωk,Ω
′′
k+1, . . . ,Ω

′′
k+j−1,Ω

′
k,Ω

′′
k+j−1, . . . ,Ω

′′
m),

Ω′′′ =(Ω1, . . . ,Ω
′
k,Ω

′′
k+1, . . . ,Ω

′′
k+j−1,Ωk,Ω

′′
k+j−1, . . . ,Ω

′′
m).
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As before, observe that given the event Ej , Ω and Ω′′ are conditionally identically distributed, and the
same holds for Ω′ and Ω′′′ given the event E ′j . The remainder of the estimate proceeds exactly as for
j = 0, with the slight difference that Ω′′ and Ω′′′ now differ in two entries, but nevertheless Lemma 4
still applies. Thus we obtain

E[f(Ω)1Ej − f(Ω′)1E′j |Ω1, ...,Ωk,Ω
′
k] ≤ 12

`
‖x− y‖∞̂P[Ej |Ω1, ...,Ωk,Ω

′
k].

Consequently, one has almost surely

E[f(Ω)|Ω1, ...,Ωk−1,Ωk]− E[f(Ω′)|Ω1, ...,Ωk−1,Ω
′
k] ≤

m−k∑
j=0

12

`
‖x− y‖∞̂P[Ej |Ω1, ...,Ωk,Ω

′
k]

=
12

`
‖x− y‖∞̂,

where the last equality follows from (27), and hence, by (26), ranj ≤ 12
`
‖x− y‖∞̂ and R2 ≤

(
12
√
m

`
‖x−

y‖∞̂
)2

.
With this bound, Theorem 1 can be applied. One obtains

P(|Zx − Zy| > t) ≤ 2 exp(−t2/(12
√
m

`
‖x− y‖∞̂)2),

which implies (25). We conclude

d(x, y) := ‖Zx − Zy‖Ψ2 ≤
12
√
m

`
‖x− y‖∞̂,

as desired.
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Abstract

In this paper, we provide a new approach to estimating the error of re-
construction from Σ∆ quantized compressed sensing measurements. Our
method is based on the restricted isometry property (RIP) of a certain
projection of the measurement matrix. Our result yields simple proofs
and a slight generalization of the best-known reconstruction error bounds
for Gaussian and subgaussian measurement matrices.

1 Introduction

1.1 Compressed sensing

Compressed sensing has drawn significant attention since the seminal works by
Candès, Romberg, Tao [8], and Donoho [14]. The theory of compressed sensing is
based on the observation that various cases of natural signals are approximately
sparse with respect to certain bases or frames. The basic idea is to recover such
signals from a small number of linear measurements. Hence the problem turns
into an underdetermined linear system. Various criteria have been proposed to
determine whether such a system has a unique sparse solution. In this paper we
will work with the restricted isometry property (RIP) as introduced by Candès
et al. [9] in the context of recovery guarantees for `1 minimization.

Definition 1. A matrix A ∈ Rm×N has the restricted isometry property (RIP)
of order s if there exists 0 < δ < 1 such that for all s-sparse vectors x ∈ RN ,
i.e., vectors that have at most s non-zero components, one has

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22.

The smallest such δ is called the restricted isometry constant of order s and is
denoted by δs.

There have been a number of works on recovery guarantees for compressed
sensing with RIP measurement matrices. Recovery can be guaranteed for var-
ious algorithms. For the original context of `1 minimization, the most recent
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results require the measurement matrix to have a restricted isometry constant
of δ2s <

1√
2

[7], which is known to be optimal [11].

Finding the restricted isometry constant of a measurement matrix is, in
general, an NP hard problem [31]. On the other hand, deterministic matrix
constructions with guaranteed RIP are only known for relatively large embed-
ding dimensions (see for example [13]). That is why many papers on the subject
work with random matrices.

Examples of random matrices known to have the RIP for large enough em-
bedding dimension with high probability include subgaussian, partial random
circulant [23], and partial random Fourier matrices [29]. A subgaussian matrix
has independent random entries whose tails are dominated by a Gaussian ran-
dom variable (cf. Definition 2). Such matrices have been shown to have the RIP
provided m = Ω(s log(eN/s)), see for example [2]. This order of the embedding
dimension m is known to be optimal [15]. Examples of subgaussian matrices
include Gaussian and Bernoulli matrices.

1.2 Quantization

To allow for digital transmission and storage of compressed sensing measure-
ments, one needs to quantize these measurements. That is, the measurements
need to be represented by finitely many symbols from a finite alphabet. In this
paper, we only consider alphabets consisting of equispaced real numbers. The
extreme case of considering the set of only the two elements {−1, 1} is also called
1-bit quantization.

The most intuitive method to quantize the measurements is to map each of
them to the closest element from the alphabet. Since this method processes the
quantization independently for each measurement, it is also called memoryless
scalar quantization (MSQ).

Most of the literature on MSQ compressed sensing up to date considers
1-bit quantization [6, 22, 28, 1], which amounts to considering only the mea-
surement signs. Jacques et al. [22] showed that for Gaussian measurements or
measurements drawn uniformly from the unit sphere, a reconstruction error of
O( sm log mN

s ) is feasible. However, they did not provide an efficient algorithm
that guarantees this accuracy. Later, for Gaussian measurements, Gupta et al.
[18] demonstrated that one may tractably recover the support of a signal from
O(s logN) measurements. Plan et al. [28] showed that one can, again for Gaus-
sian measurements, reconstruct the direction of an s-sparse signal via convex
optimization, with accuracy O(( sm )

1
5 ) up to logarithmic factors with high prob-

ability. Ai et al. [1] derived similar results for subgaussian measurements under
additional assumptions on the size of the signal entries.

On the other hand, in [22] it was shown that the `2 reconstruction error can
never be better than Ω( sm ). To break this bottleneck of MSQ, Σ∆ quantization
for compressed sensing has drawn attention recently. Σ∆ quantizes a vector
as a whole rather than the components individually, i.e., the quantized values
depend on previous quantization steps.
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Σ∆ quantization was originally introduced as an efficient quantizer for re-
dundant representation of oversampled band-limited functions [21]. Later on, a
rigorous mathematical error analysis was provided by [10] and many follow-up
papers. The best known error decay rates are exponential in the oversampling
rate, as derived in [16, 12]. This is known to be optimal: in [26], corresponding
lower bounds are derived, which also show that the achievable accuracy must
depend on the signal amplitude.

In [3], Σ∆ has been extended to frame expansions; this will be also the
viewpoint taken in this paper. The first works on Σ∆ schemes for frame quan-
tization, such as [3, 5], required frame constructions with particular smoothness
properties to yield reconstruction guarantees. In [27], the authors observed that
what is needed is in fact a requirement on the dual frame used for reconstruction
rather than the frame itself. Reconstruction guarantees can hence be improved
by choosing the dual frame used for reconstruction appropriately. Optimizing
the dual frame in this respect led to the definition of Sobolev dual frames [4],
cf. Section 2.2.2 below. Combined with the exponential error bounds derived
for the corresponding Σ∆ schemes for bandlimited functions [16, 12], Sobolev
dual reconstructions yield root-exponential error decay in the oversampling rate.
This constitutes the best known accuracy guarantees for coarse frame quanti-
zation, both for harmonic frames and Sobolev self-dual frames [24] and for
subgaussian random frames [25].

Sobolev dual reconstructions have also been crucial for being able to ap-
ply Σ∆ quantization to compressed sensing measurements. Güntürk et al. [17]
proved the first recovery guarantees for this setup, showing that for rth order
Σ∆ quantization applied to Gaussian compressed sensing measurements, the
`2 reconstruction error is of order O(( sm )α(r−

1
2 )) with high probability. Here

α ∈ (0, 1) is a parameter and the required measurements grows with α, tending
to infinity as α → 1. Indeed for r large enough this breaks the MSQ bottle-
neck. More recently, in [25], this result has been generalized to subgaussian
measurements.

1.3 Contributions

The main contribution of this paper is that the restricted isometry property
(RIP) is applied to estimate the error bound for Σ∆ quantized compressed
sensing. That is, once we know the restricted isometry constant of a modification
of the measurement matrix, we can estimate the reconstruction error.

In the following results, we assume that the Σ∆ quantized measurements
with quantization alphabet Z = ∆Z, ∆ > 0, are given. We refer the readers
to Section 2.2 for details on the quantization scheme employed. A special role
is played by the rth power of the inverse of the finite difference matrix D as
introduced in (2) below; denoting the singular value decomposition of D−r by
D−r = UD−rSD−rV ∗D−r , we obtain our main theorem given as follows.

Theorem 1. Suppose one is given a measurement matrix Φ ∈ Rm×N such that

both Φ and
√

1
`P`V

∗
D−rΦ, ` ≤ m have the restricted isometry constant δ2s <

1√
2

,
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where P` maps a vector to its first ` components.
Then for an s-sparse signal x ∈ RN satisfying minj |xj | ≥ K2r−

1
2 ∆, for

some positive constant K, denote by q the rth order Σ∆ quantized measurements
of Φx with step size ∆. Furthermore, denote by T the support set recovered from
Φx via `1 minimization and choose Lsob,r to be the Sobolev dual matrix of ΦT
(see Section 2.2.2 for details). Then reconstructing the signal via x̂T = Lsob,rq
yields a reconstruction error bounded by

‖x− x̂‖2 ≤ C∆(
m

`
)−r+

1
2 ,

where C > 0 is a constant depending only on r.

Note from Theorem 1 that smaller values of ` yield better error bounds.
However, ` has to be large enough such that 1√

`
(P`V

∗
D−rΦ) has the restricted

isometry constant δ2s ≤ 1√
2
.

This result can be applied to obtain recovery guarantees for Gaussian and
subgaussian measurements (in the sense of Definition 2 below). The resulting
bounds for the first two cases agrees with those derived in [17] and [25], as
summarized in the following Theorem.

Theorem 2 ([17, 25]). Let Φ be an m×N matrix whose entries are independent,
mean zero, unit variance ρ-subgaussian random variables and suppose that λ :=

m/k ≥ (C log(eN/k))
1

1−α where α ∈ (0, 1). With high probability the rth order
Σ∆ reconstruction x̂ satisfies

‖x− x̂‖2 ≤ C ′λ−α(r−1/2)δ,

for all x ∈ ΣNk for which minj∈supp(x) |xj | > K ′∆. Again, ∆ is the step size
of the Σ∆ quantization alphabet and C,C ′,K ′ are appropriate constants that
depend only on r and ρ.

1.4 Organization

The paper is organized as follows. We first introduce in Section 2 some back-
ground and previous results on Σ∆ quantization, suprema of chaos processes,
and the partial random circulant matrices. In Section 3 we present our main
result showing how the RIP is used to estimate the reconstruction error for
quantized compressed sensing. In Section 4, we explain how our result recovers
the best-known bounds for Gausssian and subgaussian measurement matrices
using a simple argument, in Section 5 we slightly generalize these bounds. We
conclude in Section 6.

2 Background and previous results

2.1 Notation

Throughout this paper, we use the following notation. The set Ds,N = {x ∈
R|‖x‖2 ≤ 1, ‖x‖0 ≤ s} is the set of unit norm s-sparse vectors. The `0-norm ‖·‖0
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counts the number of non-zero components of a vector. Given a signal x, the
support set of x, in short, supp x, is the index set of the non-zero components.
The `2-operator norm is denoted by ‖A‖2→2 = sup‖x‖2=1 ‖Ax‖2. For a matrix
A, σi(A) and σmin(A) denote the ith largest and the smallest singular value,
respectively. Furthermore we write & and . to denote ≥ or ≤ up to a positive
multiplicative constant. The Moore-Penrose pseudoinverse of a matrix A is
denoted by A† = (A∗A)−1A∗.

We will mainly study subgaussian random matrices, that is, matrices with
independent subgaussian entries in the sense of the following definition.

Definition 2. A random variable X is called ρ-subgaussian if P(|X| ≥ t) ≤
2 exp(−t2/2ρ2).

2.2 Σ∆ Quantization

In this paper, we exclusively focus on quantization alphabets Z such that Z =
∆Z, for some ∆ > 0. Note that while this is an infinite set, one can show that
in fact only a finite range of values are assumed [17, 24]. Hence this setup is
in line with requiring a finite alphabet. The idea of rth order Σ∆ quantization
is to quantize each component of a vector taking the previous r quantization
steps into account. More explicitly, a greedy rth order Σ∆ quantization scheme
maps a sequence of inputs (yj) to elements qi ∈ Z via an internal state variable
ui chosen to satisfy the recurrence relation

(∆ru)i :=

r∑
j=0

(
r

j

)
(−1)jui−j = yi − qi, (1)

where qi is chosen such that |ui| is minimized (Note that only in this equation,
∆ denotes the finite difference operator, whereas all other occurences in this
paper refer to the quantization step size).

With the initial condition (ui)
−∞
i=0 = 0, Equation (1) can be expressed as

Dru = y − q,

where the finite difference matrix D ∈ Rm×m is given by

Dij ≡

 1 , if i = j,
−1 , if i = j + 1,
0 , otherwise.

(2)

2.2.1 Support set recovery

Given an s-sparse signal x, and an m×N measurement matrix Φ, where m� N ,
we acquire measurements y = Φx. Applying an rth order Σ∆ quantization
scheme to y, we obtain q. Treating q as perturbed measurements, i.e., q =
y + e = Φx + e, one can determine the support set. This is a consequence of
the following observation, which is a modified version of Proposition 4.1 in [17]
combined with the reconstruction guarantees in [7].
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Proposition 1. Given ε > 0 as well as x ∈ RN an s-sparse signal with suppx =
T and minj∈T |xj | ≥ K ε√

m
. Here K is an absolute constant. Let Φ ∈ RN×m be

a measurement matrix such that 1√
m

Φ has the RIP with δ2s <
1√
2

. Denote by

e ∈ Rm a noise vector with ‖e‖2 ≤ ε, and let x′ be the signal reconstructed from
the noisy measurements q = Φx+ e via `1 minimization, i.e.,

x′ = arg min ‖z‖1 subject to ‖Φz − q‖2 ≤ ε.

Then the index set of largest s components of x′ is T , that is, the support set of
x is correctly recovered.

Note that in this result, the measurement matrix Φ is not normalized, while
in the compressed sensing literature, it is common to normalize the measure-
ment matrix such that it has unit-norm columns. This is because for normalized
matrix columns, each measurement will be of order 1√

m
, so quantizing it with

a fixed step size ∆ will lead to worse and worse resolution. To allow for a fair
comparison when m grows, the measurements should rather be chosen inde-
pendently of m. Therefore, in this paper as well as in [17] the measurement
matrices are not normalized, each entry of the measurement matrices is chosen
to have variance one.

To apply Proposition 1 to greedy Σ∆ quantization, one sets e = q−y, where
q is the quantized measurement vector. Elementary estimates (cf. [17]) yield
that ‖q − y‖2 ≤ 2r−1∆

√
m. Thus one obtains that `1 minimization recovers

the correct support set provided that 1√
m

Φ has restricted isometry constant

δ2s <
1√
2

and minj |xj | ≥ K2r−
1
2 ∆.

2.2.2 Estimating the error and the Sobolev dual

When the support set T has been identified, we solve for x using some left
inverse of ΦT , say L. Then the reconstruction `2-error is given by

‖x− x̂‖2 = ‖Ly − Lq‖2 = ‖L(y − q)‖2
= ‖L(Dru)‖2 ≤ ‖LDr‖2→2‖u‖2.

The Sobolev dual matrix Lsob,r, first introduced in [4], is a left inverse of ΦT
defined to minimize ‖LDr‖2→2, i.e.,

Lsob,r = arg minL ‖LDr‖2→2 subject to LΦT = I.

The geometric intuition is that this dual frame is smoothly varying.
As in [17], the explicit formula Lsob,rD

r = (D−rΦT )† yields the error bound

‖x− x̂‖2 ≤ ‖(D−rΦT )†‖2→2‖u‖2

=
1

σmin(D−rΦT )
‖u‖2 ≤

∆
√
m

2σmin(D−rΦT )
, (3)

where the last inequality is derived in [17].
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A key ingredient to bounding σmin(D−rΦT ) is the following result from the
study of Toeplitz matrices, which depends heavily on Weyl’s inequality [20] (see
for example [17]).

Proposition 2. Let r be any positive integer and D be as in (2). There are
positive constants cs1(r) and cs2(r), independent of m, such that

cs1(r)(
m

j
)r ≤ σj(D−r) ≤ cs2(r)(

m

j
)r, j = 1, . . . ,m.

3 RIP-based error analysis

In this section we will give the quantized compressed sensing problem a math-
ematical model, and explain how we approach the reconstruction error via the
RIP. In the next two sections we show its applications. From Section 2.2.2, the
main issue to estimate the reconstruction error is to estimate σmin(D−rΦT ).
Finding the supremum of this expression over all potential support sets T can
be interpreted as finding the supremum of the smallest image under D−rΦ over
all unit norm s-sparse vectors. This motivates the connection to the RIP.

In the following proof we show how the RIP can be applied to find this
effective smallest singular value.

Proof of Theorem 1. As the assumptions of the theorem are stronger than those
of Proposition 1, we conclude that the support is correctly recovered. Based on
this observagtion, we now show the error bound. Recall thatD−r = UD−rSD−rV ∗D−r .
Then, as S is a diagonal matrix,

σmin(D−rΦT ) = σmin(SD−rV ∗D−rΦT )

≥ σmin(P`SD−rV ∗D−rΦT )

= σmin((P`SD−rP ∗` )(P`V
∗
D−rΦT ))

≥ s`σmin(P`V
∗
D−rΦT )

& (
m

`
)rσmin(P`V

∗
D−rΦT ), (4)

where the final inequality follows from Proposition 2.
Thus we need to bound σmin(P`V

∗
D−rΦT ) uniformly over all possible sup-

port sets T . Indeed by the RIP assumption for 1√
`
P`V

∗
D−rΦ, we obtain that

σmin(P`V
∗
D−rΦT ) is uniformly bounded from below by

√
`
√

1− 1√
2
. (5)

The theorem follows by combining (3), (4), and (5).
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4 Gaussian and subgaussian matrices

To illustrate the simplicity of our method, we first present a proof of Theorem
2 for standard Gaussian matrices, i.e. matrices with independent entries Φi,j ∼
N (0, 1).

Proof of Theorem 2 for Gaussian matrices. Set ` := m( sm )α. As the second
factor is less than 1, one always has 1 ≤ ` ≤ m. Since Φ is a standard Gaussian
random matrix, due to rotation invariance Φ̃ := (P`V

∗
D−rΦ) is also a standard

Gaussian random matrix. The assumption on λ implies that its embedding
dimension satisfies ` ≥ Cs log( eNk ), so standard results (see, e.g., [2]) yield that

for C and C ′ large enough, both 1√
`
Φ̃ and 1√

m
Φ have the RIP with constant

δ2s ≤ 1√
2
. Applying Theorem 1 (choose K ′ = K2r−

1
2 ), we obtain

‖x− x̂‖2 . ∆(
m

s
)−α(r−

1
2 ),

again with high probability, as desired.

Sketch of proof of Theorem 2 for subgaussian matrices:
The proof proceeds long the same lines as for Gaussian matrices, except that one
cannot use the rotation invariance. To bound the RIP constant of 1√

`
P`V

∗
D−rΦ,

we note that for any x ∈ Ds,N , ‖P`V ∗D−rΦx‖22 is a quadratic form in the “vec-
torization” of Φ. Hence its tail decay can be estimated via the Hanson-Wright
inequality [19, 30]. The RIP then follows via a union bound over an ε-net of
Ds,N . This approach is related to certain steps in the original proof in [25].

Remark 1. Note that a complete proof for Σ∆ recovery guarantees needs both
support set recovery and fine recovery (cf. [17, 25]) and in this paper we omitted
the details of the former. We argue, however, that this coarse recovery step is
straightforwardly based on standard compressed sensing results. Hence the core
of our error estimate is really just captured in a few lines.

5 Generalization

In contrast to the techniques presented in [25], our method generalizes to cer-
tain random matrices with independent subgaussian columns, but no entrywise
independence. As an additional criterion, one needs a type of small ball condi-
tion for P`V

∗
D−r applied to one of the random columns of Φ, (which denoted by

Φj in the following). That is, one needs to exclude that ‖P`VD−rΦj‖2 is small
with too large probability. If such a condition holds, the necessary RIP bound
follows from a modified version of the RIP bound for matrices with independent
subgaussian columns [32]. While we do not consider this to be an important
generalization (which is why we refrain from presenting the details), we still
believe it shows that our method is stronger than previous approaches, so we
see the potential to apply it to more relevant, structured measurement scenarios
such as partial random Fourier matrices, partial random circulant matrices, etc.
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6 Conclusion

In this work we provided a new technique for bounding the reconstruction error
arising in Σ∆ quantization for compressed sensing. In addition to greatly sim-
plifying the proofs for the best known recovery guarantees, the new viewpoint
hopefully opens the possibility to study broader classes of measurement matries.
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Abstract—Extension from the single-measurement vector
(SMV) problem to the multiple-measurement vectors (MMV)
problem is critical for compressed sensing (CS) applications in
many fields. A few signal recovery algorithms, such as simultane-
ous orthogonal matching pursuit (SOMP), have been proposed to
recover a jointly-sparse signal from the corresponding multiple-
measurement vectors. However, those previously proposed al-
gorithms generally do not have restricted isometry property
(RIP) guarantee. In this paper, we propose the simultaneous
compressive sampling matching pursuit (SCoSaMP) algorithm,
a generalization of the compressive sampling matching pursuit
(CoSaMP) algorithm for the MMV problem. We show the
RIP guarantee that leads to the convergence of the proposed
SCoSaMP algorithm and the uniqueness of the recovered signal.
Simulation results confirm that SCoSaMP outperforms SOMP
under random sampling matrix setup and with noisy measure-
ments.

I. INTRODUCTION

In a compressed sensing (CS) problem, greedy algorithms
such as orthogonal matching pursuit (OMP) [1], [2], regu-
larized OMP (ROMP) [3], subspace pursuit (SP) [4], and
compressive sampling matching pursuit (CoSaMp) [5], were
proposed to recover sparse signal x ∈ RN from measurement
vector y = Φx, where y ∈ Rn and Φ ∈ Rn×N is a
sampling matrix. Extension of this single-measurement vector
(SMV) problem to a multiple-measurement vectors (MMV)
problem [6] in order to recover a signal X ∈ RN×M from
multiple-measurement vectors Y = ΦX, where Y ∈ Rn×M ,
is mandatory for applications in many fields, such as magne-
toencephalography (MEG), array processing, equalization of
sparse communication channels, cognitive radio, and multi-
band communications [6]. Since algorithms like subspace
pursuit can exactly recover signal x from measurement vector
y = Φx with the restricted isometry property (RIP)-guarantee,
a straightforward approach for solving the MMV problem is
to apply the SP algorithm on each measurement vector of Y to
recover a k-jointly-sparse signal X from Y = ΦX if Φ satisfies
the exact recovery guarantee of CoSaMP. Since the number of
the columns of Y is M , however, the complexity will scales
linearly with M if this approach is taken. A more efficient
algorithm is thus required. Several approaches have been
proposed for solving the MMV problem, such as optimization-
based algorithms [6], [7], greedy pursuit algorithms [6], [7],
and the reduction to the SMV problem [6]. These algorithms
are basically adapted from the algorithms proposed for the
SMV signal recovery problem mentioned above. However,

the exact recovery capabilities of these algorithms are either
not guaranteed or only assured by such as the coherence-
related guarantee and the rank-related guarantee [6], instead of
the RIP guarantee. For example, the simultaneous orthogonal
matching pursuit (SOMP) algorithm [1], [6], [7], [8], a popular
greedy pursuit algorithm developed for the MMV problem,
does not provide RIP guarantee.

In this paper, we propose the simultaneous compressive
sampling matching pursuit (SCoSaMP) algorithm, an RIP
and fusion restricted isometry property (FRIP, which will
be explained in Section III)-guaranteed greedy algorithm, for
solving the MMV problem. The SCoSaMP algorithm is not
only an MMV extension but also a generalization of the
subspace pursuit algorithm (a new parameter z is introduced,
which will be explained in Section II). We will in this paper
show the uniqueness guarantee of the recovery of a k-jointly-
sparse signal for the MMV problem and prove the RIP/FRIP
guarantee of the SCoSaMP algorithm. Simulation results con-
firm that (a) SCoSaMP is more efficient compared to applying
CoSaMP directly to the MMV problem– unlike CoSaMP
which scales linearly with M , SCoSaMP scales sublinearly
with M , and (b) SCoSaMP outperforms SOMP under the
random sampling matrix setup and the noisy measurement
conditions.

The organization of this paper is the following. In Section
II we introduce the SCoSaMP algorithm. In Section III we
present the uniqueness guarantee of the recovery of a k-jointly-
sparse signal for the MMV problem and the exact recovery
guarantee of SCoSaMP. Then we evaluate the performance of
SCoSaMP in Section IV and conclude the paper in Section V.

II. THE SCOSAMP ALGORITHM

The SCoSaMP algorithm is a generalization of the CoSaMP
algorithm in two aspects: (a) The ℓ2-norm of each row is
computed as the representing magnitude and the Frobenious
norm (denoted as ℓF ) replaces the ℓ2-norm used in CoSaMP,
and (b) a parameter z1 and z2 is introduced to control the
number of columns to be selected (explained later). Before
going into the details of the SCoSaMP algorithm, let us define
some notations.
Definition 1. Given a matrix Φ ∈ Rn×N and the index set
T ⊆ {1, . . . , N}, Φ·,T is a matrix consisting of the T -indexed
columns of Φ. For convenience, denote Φ·,T by ΦT and denote
span(ΦT ) as the column space spanned by column vectors of



ΦT . Also X|T = { Xi,· , if i ∈ T
0 , if i ̸∈ T

, where Xi,· is the ith

row of X.
Definition 2. Let Y ∈ Rn×M and ΦT ∈ Rn×|T |, where |T |
is the size of T . Suppose that Φ∗

TΦT is invertible, where
Φ∗

I is the transposition of ΦT . The projection of Y onto
span(ΦI) is defined as Yp = proj(Y,ΦT ) ≡ ΦTΦ

†
T Y, where

Φ†
T ≡ (Φ∗

TΦT )
−1Φ∗

T is the pseudo-inverse of the matrix
ΦI . Also, define the residue vector of the projection Yr as
Yr = resid(Y,ΦT ) ≡ Y − Yp.

Now let us go through the steps of SCoSaMP, which are
summarized in Table I. In SCoSaMP, the inputs are the MMV
Y and the sampling matrix Φ. SCoSaMP in step It2 computes
the inner products of each column of Φ with all columns of
Yℓ−1

r and forms the signal proxy. In step It3/It3’ SCoSaMP
identifies large components from signal proxy. In step It4
SCoSaMP merges supports. Step It5 is called signal estimation
by least-squares, in which SCoSaMP projects Y onto the space
spanned by k+ ceil(k/z1) or k+ ceil(k/z2) columns with
indices selected in step It4. In step It6 SCoSaMP chooses k
columns out according to the spanning scalars of the projection
of Y on the spanning space of these k + ceil(k/z1) or
k + ceil(k/z2) columns, and thus in step It6 the index
set is pruned. After step It6 we obtain a k-sparse signal
approximation X̂T ℓ = Φ†

T ℓY. In step It7, Y is projected on
the column space spanned by the pruned indexed columns
in It6, and the difference between Y and its projection is
the residue, which is fed into the next iteration. The process
repeats until the stopping criterion is satisfied, where ℓ is the
iteration number and ∥ · ∥F is the Frobenious norm.

Note that for convenience, throughout this paper we demand
ceil(k/z2) ≤ k+ceil(k/z1) ≤ 2k. This is because we want
to improve the performance at large sparsity, even when the
uniqueness is not preserved, and reducing the identification
number at step It3 reduces the probability of selecting un-
wanted columns. In Subsection III-B it will be seen that with
the restriction to the identification number, z2 plays the leading
role when deciding the coefficients to ensure the convergence
of SCoSaMP.

III. RIP GUARANTEE

In the SMV problem, a sampling matrix Φ satisfies RIP of
order k with constant δk if for any k-sparse x, (1−δk)∥x∥22 ≤
∥Φx∥22 ≤ (1 + δk)∥x∥22, where ∥ · ∥2 is the ℓ2 norm and
k is the number of non-zero entries in x. The uniqueness
of the solution of the MMV problem can be guaranteed by
the multiple-dimension version of RIP, the fusion restricted
isometry property. A matrix Φ satisfies FRIP of order k
with constant δk if there exists a constant δk such that for
all k-jointly-sparse signals X, (1 − δk)∥X∥2F ≤ ∥ΦX∥2F ≤
(1 + δk)∥X∥2F , where ∥ · ∥F is the Frobenious (ℓF ) norm.
A signal X is k-jointly-sparse if, regardless of the abuse of
notation, ∥X∥0 = |{j : Xj,· ̸= 0}| ≤ k, where | · | counts the
number of a set and Xj,· denotes the jth row of X [9]. Note
that RIP implies FRIP [9], i.e., if for each column of X and

TABLE I
THE SCOSAMP ALGORITHM.

Input: k, Φ, Y.
Initialization:

1) T 0 = ∅.
2) Y0

r = Y.
3) ℓ = 0.

Iteration: At the ℓth iteration, go through the following steps.
It1) ℓ = ℓ+ 1.
It2) Compute Φ∗Yℓ−1

r .
It3) Ω = {ceil(k/z2) largest

ℓ2-norm of the row vectors of Φ∗Yℓ−1
r }.

It3’) When ℓ = 1: Ω = {k + ceil(k/z1) largest
ℓ2-norm of the row vectors of Φ∗Yℓ−1

r }.
It4) T̃ ℓ = Ω

∪
T ℓ−1.

It5) Compute Φ†
T̃ ℓY.

It6) T ℓ = {k largest ℓ2-norm of the row vectors of Φ†
T̃ ℓY}.

It7) Yℓ
r = resid(Y,ΦT ℓ).

It8) If ∥Yℓ
r∥F is small enough quit the iteration.

Output:
1) Index set T ℓ.
2) Estimated signal X̂T ℓ = A†

T ℓY.

the corresponding column of Y, RIP of order k with constant
δk holds, then FRIP of order k with constant δk also holds.
Thus by carefully choosing the coefficients, RIP guarantees
the exact recovery of SSP. Several methods have been known
to construct a matrix satisfying RIP [10], thus FRIP, of specific
order and constant.

In Subsection III-A, a necessary and sufficient condition
for the unique recovery of a k-jointly-sparse signal will be
stated, and the FRIP-related uniqueness guarantee for a k-
jointly-sparse signal will be given. It is easy to see that the
unique recovery of a k-jointly-sparse signal can be assured
if any 2k columns of Φ are linearly independent. Then in
Subsection III-B, the exact recovery guarantee of the proposed
SCoSaMP algorithm will be demonstrated.

A. Uniqueness of the Recovery of k-jointly-sparse Signals

The non-FRIP-related necessary and sufficient condition of
the unique recovery of a k-joint-sparse signal is stated below.
Theorem 1. [8] A necessary and sufficient condition for the
measurement vectors Y = ΦX to uniquely determine the k-
jointly-sparse matrix X is that

k <
spark(Φ)− 1 + rank(X)

2
, (1)

where spark(Φ) is the smallest number of linearly dependent
columns of Φ, and rank(X) is the rank of X.

Proof: See [7], [8].
Now we give an FRIP guarantee of the uniqueness of the

recovery of a k-jointly-sparse signal. Denote the support set
of X by supp(X) as the index set such that for element j ∈
supp(X), Xj,· ̸= 0. Then Theorem 2 below guarantees the
uniqueness of the recovery of a k-jointly-sparse signal.



Theorem 2. Suppose that k ≥ 1 and Φ satisfies FRIP of order
2k with constant δ2k < 1, and let X be a k-jointly-sparse
signal and Y = ΦX. Then X can be reconstructed uniquely
from the matrix Y.

Proof: If X = 0, then Y = ΦX = 0. Given Y = 0, X = 0
is the only solution. If X ̸= 0, we prove by contradiction.
Suppose there exist two nonzero k-jointly-sparse signals X1

and X2 such that X2 ̸= X1 and Y2 = ΦX2 = Y1. Let D =
X1 − X2, then D is a nonzero 2k-jointly-sparse signal. By
applying FRIP, we get

(1− δ2k)∥D∥2F ≤ ∥ΦD∥2F ≤ (1 + δ2k)∥D∥2F
⇒ (1− δ2k)∥D∥2F ≤ ∥ΦX1 − ΦX2∥2F ≤ (1 + δ2k)∥D∥2F
⇒ (1− δ2k)∥D∥2F ≤ 0 ≤ (1 + δ2k)∥D∥2F .

While (1− δ2k)∥D∥2F > 0, this shows a contradiction.
Theorem 2 guarantees the exact recovery X̂ of a k-jointly-

spare signal X via the following ℓ0-norm problem

X̂ = argmin
∥X∥0≤k

∥X∥0, subject to Y = ΦX. (2)

Thus Theorem 2 implies Theorem 1 and therefore the unique
recovery of a k-jointly-sparse signal.

B. RIP Guarantee of SCoSaMP

In order to prove the convergence and the exact recovery
guarantee of the SCoSaMP algorithm, we need the following
four lemmas.

Lemma 1. (Identification). Under condition of Theorem 3.
There exists a constant s1 such that if for each column of
X and the corresponding column of Y, the sampling matrix
Φ satisfies RIP of order 4k with constant δ4k ≤ s1, then for
each ℓ ≥ 0

∥X − X̂T ℓ |Ωc∥F ≤ 0.2223∥X − X̂T ℓ∥F ,

where Ωc is the set complement of Ω.

Proof: Similar to Lemma 4.2 [5] by three changes, and
since we are given noiseless MMV, we delete terms including
noise e. in [5]. First, ∥ · ∥2 is changed to ∥ · ∥F . Second, since
we demand number of Ω, ceil(k/z2) ≤ k + ceil(k/z1) ≤
2k, ∥Φ∗Yℓ

r|supp(X−X̂
Tℓ )

∥F ≤ ∥Φ∗Yℓ
r|Ω∥F is changed to

∥Φ∗Yℓ
r|supp(X−X̂

Tℓ )
∥F ≤ 2z2∥Φ∗Yℓ

r|Ω∥F . Third, in line 6 of
proof Lemma 4.2 [5], we change set Ω \ supp(X − X̂T ℓ) to
set Ω. Then finally it yields that

∥X − X̂T ℓ |Ωc∥F ≤ δ2k + 2z2δ4k
1 + δ2k

∥X − X̂T ℓ∥F . (3)

Since δ2k ≤ δ4k and analytical property of equation 3, we can
choose δ4k ≤ s1 such that δ2k+2z2δ4k

1+δ2k
< 0.2223

Table II shows the relationship between z2 and s1.

Lemma 2. (Support merger). Under condition of Theorem 3.

∥X|T̃ ℓc∥F ≤ ∥X − X̂T ℓ |Ωc∥F .

Proof: Similar to Lemma 4.3 [5] by changing ∥ · ∥2 to
∥ · ∥F .

Lemma 3. (Estimation). Under condition of Theorem 3. If for
each column of X and the corresponding column of Y, the
sampling matrix Φ satisfies RIP of order 4k with constant
δ4k ≤ 0.1, then for each ℓ ≥ 0

∥X − Φ†
T̃ ℓ

Y∥F ≤ 1.112∥X|T̃ c∥F

Proof: Similar to Lemma 4.4 [5] by changing ∥ · ∥2 to
∥ · ∥F and delete terms including noise e.

Lemma 4. (Pruning).

∥X − Φ†
T ℓY∥F ≤ 2∥X − Φ†

T̃ ℓ
Y∥F

Proof: Similar to Lemma 4.5 [5] by changing ∥ · ∥2 to
∥ · ∥F .

Now we are ready to see the main Theorem which shows
the convergence of SCoSaMP.

Theorem 3. Demand ceil(k/z2) ≤ k+ceil(k/z1) ≤ 2k. Let
X = (Xj,·)

N
j=1 be a k-jointly-sparse signal and Y = ΦX the

corresponding noiseless MMV. There exists a constant s <
1 such that if for each column of X and the corresponding
column of Y, the sampling matrix Φ satisfies RIP of order 4k
with constant δ4k ≤ s, then for each ℓ ≥ 0, ∥X − X̂T ℓ+1∥F ≤
0.5∥X−X̂T ℓ∥F . Thus SCoSaMP with constant (z1, z2) recover
X exactly.

Proof: Similar to Theorem 4.1 in [?] by changing ∥ · ∥2
to ∥ · ∥F . Choosing s = min{0.1, s1}, where s1 is from
Lemma 1 and following proof of Theorem 4.1 in [5], then
we have ∥X − X̂T ℓ+1∥F ≤ 0.5∥X − X̂T ℓ∥F . Since 0.5 < 1,
SCoSaMP converges. From Theorem 2, once SCoSaMP con-
verges, SCoSaMP finds the unique k-jointly-sparse signal, and
thus recover exactly.

From the proof we see that by demanding ceil(k/z2) ≤
k + ceil(k/z1) ≤ 2k, only z2 influences the RIP constant.

IV. PERFORMANCE EVALUATION

In this section we will evaluate the performance of the
proposed SCoSaMP algorithm. First, the complexity in terms
of execution time of SCoSaMP will be compared to that of
CoSaMP applying directly to the MMV problem. Then we
investigate the performance of SCoSaMP under different con-
stants (z1, z2). Finally, we compare the performance between
SCoSaMP and SOMP.

In the following simulations, random sampling matrices,
instead of RIP-guaranteed sampling matrices, are used. This
is because it is generally hard to construct an RIP-guaranteed
sampling matrix and furthermore, a random matrix is proved
to satisfy RIP criteria with high probability [11], [12]. Thus
practical application scenarios favor the use of random matri-
ces and it is critical for a signal recovery algorithm to perform
well under this situation.

A. CoSaMP and SCoSaMP

Due to number of identification of CoSaMP, it can only
recover one third sparsity out of signal dimension. Thus
in SCoSaMP, we reduce the number of identification. Fig.



TABLE II
COEFFICIENTS FOR RIP GUARANTEE OF SCOSAMP.

z2 = 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 · · ·
s1 = 0.0999 0.0689 0.0526 0.0425 0.0357 0.0307 0.0270 0.0240 0.0217 0.0198 · · ·
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SCoSaMP ((z1, z2) = (5, 5))

CoSaMP

Fig. 1. Comparison of execution time of SCoSaMP and CoSaMP. k = 5,
n = 128, N = 256, and the number of realizations is 300.

1 shows the performance of CoSaMP and SCoSaMP with
constant (5, 5). The number of realizations is set to 500,
n = 128, N = 256, and M = 10, meaning that X ∈ R256×10,
Φ ∈ R128×256, and Y ∈ R128×10. Entry values of X are
standard normally distributed and Φ is a random matrix with
standard normal distribution.

Fig. 2 compares the execution time of CoSaMP and
SCoSaMP with constant (z1, z2) = (1, 0.5) when solving the
MMV problem (remember that SCoSaMP is a generalization
of CoSaMP and when M = 1 and (z1, z2) = (1, 0.5)
SCoSaMP becomes CoSaMP). In this simulation, k = 5,
n = 128, N = 256, the number of realizations is 300,
and M ranges from 1 to 1001, meaning that Φ ∈ R128×256,
X ∈ R256×M , and Y ∈ R128×M . Also, the entry values of X
are standard normally distributed and Φ is a random matrix
with standard normal distribution. The execution time was
measured by running the algorithms on MATLAB. It is shown
that the execution time of CoSaMP scales linearly with M , but
the execution time of SCoSaMP scales sublinearly with M .
This shows how much more efficient the SCoSaMP algorithm
is when dealing with the MMV problem.

B. SCoSaMP Performance with Different Constant (z1, z2)

It is interesting to see how the SCoSaMP constant (z1, z2)
affects the rate of exact recovery, which is defined as the rate
that the estimated signal X̂ is different from X 1. In Fig.
??, we show the rate of exact recovery of SCoSaMP with
constant (z1, z2) = (5, 1), (z1, z2) = (5, 2), (z1, z2) = (5, 5)
and (z1, z2) = (5, 10). In Fig. ??, we show the rate of
exact recovery of SCoSaMP with constant (z1, z2) = (1, 5),

1Due to MATLAB computational precision, in each realization, if the ℓ2
norm of the difference between X and X̂ is less than 10−10, then we claim
that they are equivalent; otherwise, they are different.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

M

E
xe

cu
ti

on
ti

m
e

(s
)

 

 

SCoSaMP ((z1, z2) = (1, 0.5))
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Fig. 2. Comparison of execution time of SCoSaMP and CoSaMP. k = 5,
n = 128, N = 256, and the number of realizations is 300.

(z1, z2) = (2, 5), (z1, z2) = (5, 5) and (z1, z2) = (10, 5). The
number of realizations is set to 500, n = 128, N = 256,
and M = 10, meaning that X ∈ R256×10, Φ ∈ R128×256,
and Y ∈ R128×10. Entry values of X are standard normally
distributed and Φ is a random matrix with standard normal
distribution. Since that given a 128×256 sampling matrix the
best scenario is to recover a signal with sparsity 128, we let
the sparsity k range from 1 to 128 (although Theorem 1 does
not guarantee the uniqueness of a signal when the sparsity is
larger than k).

The results in Fig. 4 show that larger z generally yields
better performance. This is because when M is fixed and
the sparsity is large, it is highly probable for SCoSaMP to
select a column vector which is not linearly independent to
other chosen column vectors. Thus increasing the constant z
decreases the possibility of selecting column vectors that are
dependent to each other. However, when z1 and z2 are too
large, it also decreases the possibility of selecting the correct
spanning column vectors. As a result, properly choosing the
value of z leads to the optimal performance of the algorithm.

From the simulations, we also observe that the rate of exact
recovery of SCoSaMP with (z1, z2) = (5, 5), (z1, z2) =
(5, 10), and (z1, z2) = (10, 5) remain 1 when sparsity is
87, which is larger than 66 that inequality (1) of Theorem 1
guarantees. This demonstrates the robustness of the proposed
SCoSaMP algorithm.

C. SCoSaMP v.s. SOMP

Now we compare the performance of SCoSaMP and SOMP.
There are extensive discussions about the norm used in the
SOMP algorithm [8]. Since ℓ2-norm is used in SCoSaMP, we
also use ℓ2-norm in SOMP to be fair. We let the entry values
of X be standard normally distributed and we compare the
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Fig. 3. Rate of exact recovery using SCoSaMP with different constants
(z1, z2). n = 128, N = 256, M = 10, and the number of realizations is
500.
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Fig. 4. Rate of exact recovery using SCoSaMP with different constants
(z1, z2). n = 128, N = 256, M = 10, and the number of realizations is
500.

performance under two types of random sampling matrices:
random matrix with standard normal distribution (denoted as
N (0, 1) sampling matrix) and random matrix with uniform
distribution (denoted as U(0, 1) sampling matrix). Let n =
128, N = 256, M = 10, the number of realizations be 500,
and the SCoSaMP constant be (5, 5). Fig. 5 clearly shows that
SCoSaMP outperforms SOMP in both cases in terms of the
rate of exact recovery.

It is also of great interest to know how SCoSaMP and
SOMP perform when the measurements are noisy. Let us
assume that noise is standard normally distributed. Instead of
the rate of exact recovery, we evaluate the performances by
the rate of exact selection, which is defined as the rate that
supp(X) = T ℓ. Recall that supp(X) = {i : Xi,· ̸= 0} and
from SCoSaMP we found T ℓ to be the estimated support set
of X, which means span(ΦT ℓ) is the estimated spanning space
of Y. Again let n = 128, N = 256, M = 10, the number
of realizations be 500, and the SCoSaMP constant be (5, 5).
The results in Fig. 6 show that SCoSaMP outperforms SOMP
even under noisy measurements. We attribute the stability of
SCoSaMP to the pruning part (step 2 and 3 in the iteration)
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Fig. 5. Rate of exact recovery with differently distributed sampling matrices.
n = 128, N = 256, M = 10, the number of realizations is 500, and the
SCoSaMP constant is (5, 5).
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Fig. 6. Rate of exact selection with standard normally distributed noise.
n = 128, N = 256, M = 10, the number of realizations is 500, and the
SCoSaMP constant is (5, 5).

of the algorithm, which allows the algorithm to have better
chance to select correct columns.

V. CONCLUSION

It is natural to extend from the single-measurement vector
problem to the multiple-measurement vectors problem in com-
pressed sensing. In this paper, we have proposed an efficient
algorithm, the simultaneous subspace pursuit algorithm, for
solving the MMV problem. This proposed SCoSaMP algo-
rithm is efficient in the sense that it deals with these multiple-
measurement vectors at the same time rather than using the
SP algorithm to cope with the single measurement vector
multiple times. We have shown the RIP/FRIP guarantees of
the proposed algorithm and surprisingly SCoSaMP works well
even when the sparsity is larger than what is guaranteed. By
properly choosing the constant parameter z, SCoSaMP easily
outperforms the popular SOMP algorithm when the sampling
matrix is random and under noisy measurements.
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Abstract This paper extends and completes the discussion by Xing et al. (Canonical dual
solutions to the quadratic programming over a quadratic constraint, submitted) about the
quadratic programming over one quadratic constraint (QP1QC). In particular, we relax
the assumption to cover more general cases when the two matrices from the objective
and the constraint functions can be simultaneously diagonalizable via congruence. Under
such an assumption, the nonconvex (QP1QC) problem can be solved through a dual approach
with no duality gap. This is unusual for general nonconvex programming but we can explain
by showing that (QP1QC) is indeed equivalent to a linearly constrained convex problem,
which happens to be dual of the dual of itself. Another type of hidden convexity can be also
found in the boundarification technique developed in Xing et al. (Canonical dual solutions
to the quadratic programming over a quadratic constraint, submitted).

Keywords Non-convex quadratic programming · Simultaneously diagonalizable via
congruence · Slater’s condition · Duality · Hidden convexity

1 Introduction

Let A and B be two n × n real symmetric matrices, μ be a real number and f, g be two n × 1
vectors. This paper concerns the (nonconvex) quadratic minimization problem (QP1QC)

P0 = min P(x) = 1
2 xT Ax − f T x

s.t. 1
2 xT Bx − gT x ≤ μ,

(1)
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which has a single non-homogeneous quadratic constraint. To make sense the problem, we
assume that the problem (QP1QC) has a non-empty feasible domain, and that

• (A1) there exists a σ ′ ≥ 0 such that A + σ ′ B � 0,

where the notation “�” means “positive definiteness”. Although the assumption (A1) looks
restrictive, it can be shown that our results indeed cover more general cases when A and
B are simultaneously diagonalizable via congruence (SDC in short). However, we can also
prove that cases between (A1) and (SDC) are either unbounded below or transformed to an
equivalent unconstrained problem. It is thus clear that the only relevant cases remained for
study are those under (A1).

The problem (QP1QC) arises from many optimization algorithms, in particular, the trust
region methods. See, e.g., [2,3,7,9,15,17,18,20,21]. Most cases dealed with B � 0 and
g = 0. Extensions to an indefinite B but still with g = 0 are considered in [1,6,14,16,19,22].
Recently, a general non-convex function f (x) rather than a non-convex quadratic function
P(x) over a single quadratic constraint was discussed by Jeyakumar et al. [13]. Stern and
Wolkowicz [19] first studied the two-sided nonconvex quadratically constrained problem

minμ(y) = yT By − 2ψT y
s.t. β ≤ yT Cy ≤ α, y ∈ R

n (2)

and gave the necessary and sufficient optimality conditions with no duality gap under various
assumptions. Ben-Tal and Teboulle [1] further explained the surprising result by proving that,
under the assumption (A1), the problem (2) is indeed equivalent to a convex minimization
problem with linear constraints. Xing et al. [22] relaxed the assumption (A1) to

• (A2) the domain J = {σ ≥ 0|A + σ B � 0} has a non-empty interior; and
• (A3) the vectors f, g ∈ R(A + σ B) for some σ ∈ int (J ),
where R(A +σ B) denotes the column space of A +σ B and int (J )means the interior of J .
(Remark: g = 0 in [22]). By applying the canonical duality of Gao [8], they formulate and
solve the dual problem of (QP1QC) (with g = 0) analytically. With a proper selection of the
dual optimal solution when there are multiple ones, they used a technique called “boundari-
fication” to construct a primal global optimal solution with no duality gap. Xing et al. [22]
also showed that problem (2) can be solved by doing (QP1QC) (with g = 0) at most twice.
As a result, it is sufficient to consider only (QP1QC).

In spite that all theoretical results were related to the quadratic form, direct applications of
(QP1QC) having a nonhomogeneous quadratic constraint can be found in solving an inverse
problem via regularization [5,10] and in minimizing the double well potential function [4].
Our purpose in this paper is to provide a complete mathematical treatment for (QP1QC) from
the dual side. Following Xing’s derivation in [22], it is not difficult to formulate the canonical
dual problem (D-QP1QC) (with the appearance of g) as follows.

Pd
0 = supσ Pd(σ ) = − 1

2 ( f + σg)T (A + σ B)−1( f + σg)− μσ

s.t. σ ∈ F = {σ ≥ 0|A + σ B � 0}. (3)

The Lagrange dual and the canonical dual of (QP1QC) are indeed equivalent in this case.
We do not intend to distinguish them in the presentation.

In the next section, we shall discuss and compare various assumptions necessarily for
solving (QP1QC), including (A1), (A2)+(A3), Slater conditions, and the (SDC) condition.
We will show that the (SDC) condition is the broadest in the sense that it contains all three
other assumptions. In fact, the (SDC) condition for more than two quadratic forms is the
twelfth open question among 14 such ones in nonlinear analysis and optimization raised by
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J.-B. Hiriart-Urruty [11]. In the third section, we extend the analysis in Xing et al. [22] to
provide a dual approach for solutions of (QP1QC), while focusing on new cases exclusively
for g �= 0. In the fourth section, a deeper view for the boundarification technique will be
also presented. In the fifth section, we extend the idea in Ben-Tal and Teboulle [1] to derive
the dual of the dual for (QP1QC). It is shown that the double dual of (QP1QC) is a linearly
constrained convex minimization problem, which is equivalent to (QP1QC) itself under a
one-one nonlinear transformation. Finally, we illustrate with some numerical examples.

2 Relaxed assumptions

In a constrained optimization problem, Slater condition requires a strictly feasible solution.
The assumption (A1) can be viewed as the dual Slater condition. For the primal problem
(1), the primal Slater condition requires an x0 such that 1

2 xT
0 Bx0 − gT x0 < μ. Ben-Tal

and Teboulle [1] and Xing et al. [22] needed the dual Slater condition (A1) whereas Ye and
Zhang’s exact semi-definite programming approach [23] did both. Although (A2)+(A3) is
weaker than (A1), they can be reduced to (A1) after space reduction. See [22] for details.

Notice that the Lagrange function

L(x, σ ) = 1

2
xT (A + σ B)x − ( f + σg)T x − μσ (4)

is unbounded below when A + σ B is not positive semi-definite. If J = {σ ≥ 0|A + σ B �
0} = ∅, the dual problem becomes identically negative infinite and thus useless. Assump-
tions like (A1) or (A2) are important since they guarantee that a sensible dual information
is indeed there. Although J = ∅ implies no dual information, we show that those cases
satisfying either

• (A4) F ′ = {(λ, ν) ∈ R
2| λA + νB � 0} �= ∅, or more generally

• (A5) (SDC) A and B are simultaneously diagonalizable via congruence

while J = ∅ can be reduced to some trivial quadratic problems.
Recall that the matrices A and B are said to be simultaneously diagonalizable via congru-

ence if there exists a nonsingular matrix C with

CT AC = A := diag(α1, · · · , αn), α j ∈ R, j ∈ [1 : n];

CT BC = B := diag(β1, · · · , βn), β j ∈ R, j ∈ [1 : n].
It is different from being simultaneously diagonalizable via similarity in the usual sense. It
is known that “(A4)⇒(A5)”, e.g. in [12]. Using the transformation x = Cy, η = CT f , and
ϕ = CT g, the primal problem (1) can be written as a linear combination of separated squares
as follows:

P ′
0 = min P ′(y) =

n∑

i=1

1
2αi y2

i − ηi yi

s.t. S′(y) =
n∑

i=1

1
2βi y2

i − ϕi yi − μ ≤ 0.
(5)

Similarly, the dual problem (3) becomes

Pd ′
0 = supσ≥0 Pd ′

(σ ) = − 1
2

n∑

i=1

(ηi +σϕi )
2

αi +σβi
− μσ

s.t. αi + σβi > 0,
(6)
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and the condition (A4) becomes {(λ, ν) ∈ R
2| λA + νB � 0} �= ∅.

We first call the two matrices A and B to be of type I if there is some i ∈ [1 : n] for which
αi ≤ 0 and βi ≤ 0; and are of type II otherwise. When the two matrices A and B are of type
I, we may assume that it occurs to i = 1. Moreover, if (A4) is satisfied, α1 and β1 can not be
0 simultaneously. Therefore, when α1 = 0, β1 must be less than 0. When α1 < 0, β1 can be
non-positive. We now study cases of type I, satisfying (A4) while violating (A1).

(a) Suppose thatα1 = 0, β1 < 0. Sinceβ1 < 0, we observe that any y ∈ Rn will eventually
become feasible if the first component y1 is increased to infinity or decreased to negative
infinity while all others y2, y3, . . . , yn being fixed. As a result, if η1 �= 0 in the objective
function, we can pass y1 (of any selected y) to +∞ for η1 > 0, or to −∞ for η1 < 0,
both of which imply that the Problem (5) is unbounded below. If η1 = 0, the objective
function lacks the y1 term and the constraint becomes redundant. The problem (5) is
reduced to the unconstrained quadratic programming problem min

∑n
i=2

1
2αi y2

i −ηi yi .
(b) Suppose that α1 < 0, β1 ≤ 0. For any feasible solution y, replace y1 by y1 = sign(ϕ1)t

if ϕ1 �= 0, and by y1 = t otherwise. As t → +∞, the constraint remains satisfied while
the objective value approaches to −∞. The problem (5) is unbounded.

Next we assume that the two matrices A and B are of type II. That is, for all i ∈ [1 : n],
either αi > 0 or βi > 0. Then we can partition the index set [1 : n] = I1 ∪ I2 ∪ I3 where
I1 = {i : βi > 0}, I2 = {i : αi > 0, βi < 0}, and I3 = {i : αi > 0, βi = 0}. We claim
that, if (A1) is violated, I1 �= ∅, I2 �= ∅ and there exist two indices i ∈ I1, j ∈ I2 such that
αi < 0, βi > 0 and α j > 0, β j < 0.

Suppose I1 = ∅. Since αi > 0, ∀i ∈ [1 : n], the assumption (A1) is satisfied by setting
σ ′ = 0, which is a contradiction and we conclude that I1 �= ∅. Suppose I2 = ∅. We can
choose σ ′ sufficiently large to make a contradiction that (A1) is satisfied. Therefore, I2 �= ∅.

Secondly, we must have maxi∈I1
−αi
βi

≥ mini∈I2
−αi
βi

. If this is not true, we can choose
μ̃ > 0, ν̃ > 0 such that

max
i∈I1

−αi

βi
<
ν̃

μ̃
< min

i∈I2

−αi

βi
.

That is, μ̃αi + ν̃βi > 0 for all i ∈ I1 ∪ I2. It follows that αi + ν̃
μ̃
βi > 0 for all i ∈ [1 : n]. It

is again a contradiction.
In general, we may assume 1 ∈ I1, 2 ∈ I2, maxi∈I1

−αi
βi

= −α1
β1
,mini∈I2

−αi
βi

= −α2
β2

,

and −α1
β1

≥ −α2
β2

> 0. It follows that α1 < 0, β1 > 0, α2 > 0, β2 < 0, and there are two
possibilities:

(c) Suppose maxi∈I1
−αi
βi

= mini∈I2
−αi
βi

, i.e., −α1
β1

= −α2
β2

. Since

{(μ, ν) | μα1 + νβ1 > 0, μα2 + νβ2 > 0} =
{

(μ, ν) | μα1

β1
+ ν > 0,

μ
−α2

β2
− ν > 0

}

= ∅,

Assumption (A4) is violated.
(d) Suppose maxi∈I1

−αi
βi

> mini∈I2
−αi
βi

, i.e., −α1
β1

> −α2
β2

. For any fixed t ∈ (
−β1
β2
, −α1
α2
),

we have α1 + α2t < 0 and β1 + β2t < 0. Consider y = (y1, y2, 0, 0, . . . , 0)t where y2

satisfies y2
2 = t y2

1 . Then, y is feasible to (5) for all large enough |y1|, which decreases
the objective values indefinitely. In other words, the problem (5) is unbounded below.
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Bearing the above discussion in mind, for cases that violate (A4), there is only one case
in type I, that is αi = βi = 0 for some i ∈ [1 : n]; and only one case in type II, which is case
(c). We begin with type I by assuming that α1 = β1 = 0.

(e) Suppose that α1 = 0, β1 = 0, η1 �= 0, η1ϕ1 ≥ 0. For any feasible solution y, let
η1 y1 → +∞. The problem (5) is unbounded below.

(f) Suppose that α1 = 0, β1 = 0, η1ϕ1 < 0. Rewrite the constraint as ϕ1 y1 ≥
(
∑n

i=2
1
2βi y2

i − ϕi yi )− μ. If ϕ1 > 0, we substitute

y1 ≥ 1

ϕ1

n∑

i=2

(
1

2
βi y2

i − ϕi yi

)

− μ

ϕ1

into the objective and obtain

−η1 y1 +
n∑

i=2

(
1

2
αi y2

i − ηi yi

)

≥ −η1

ϕ1

n∑

i=2

(
1

2
βi y2

i − ϕi yi

)

+ η1μ

ϕ1

+
n∑

i=2

(
1

2
αi y2

i − ηi yi

)

(7)

The problem (5) is equivalently reduced to the unconstrained quadratic programming
problem: min

∑n
i=2(

1
2αi y2

i − ηi yi ) − η1
ϕ1
(
∑n

i=2(
1
2βi y2

i − ϕi yi ) − μ). For ϕ1 < 0, the
same inequality (7) can be also established and the problem (5) is equivalently reduced
to the above unconstrained quadratic programming problem.

(g) Suppose that α1 = 0, β1 = 0, η1 = 0, ϕ1 �= 0. Since limy1→+∞ −|ϕ1 y1| = −∞ and
the objective function has no y1 term, the problem (5) is equivalent to the unconstrained
quadratic programming problem: min

∑n
i=2(

1
2αi y2

i − ηi yi ).
(h) Suppose that α1 = 0, β1 = 0, η1 = 0, ϕ1 = 0. The variable y1 can be directly removed

from the problem (5).

Next, we discuss the case left in type II, case (c). In this case, α1 < 0, β1 > 0, α2 >

0, β2 < 0 and −α1
β1

= −α2
β2

. We can further assume ϕ1 = 0 and ϕ2 = 0, by introducing the

linear transformations ỹ1 = y1 − ϕ1
β1

and ỹ2 = y2 − ϕ2
β2

if necessary. As a result,

−1

2
β1 y2

1 − 1

2
β2 y2

2 ≥ −μ+
n∑

i=3

(
1

2
βi y2

i − ϕi yi

)

.

(i) Suppose η1 = 0 and η2 = 0. We have

1

2
α1 y2

1 + 1

2
α2 y2

2 = −α1

β1

(

−1

2
β1 y2

1 − 1

2
β2 y2

2

)

≥ −α1

β1

(

−μ+
n∑

i=3

(
1

2
βi y2

i − ϕi yi

))

(8)

The problem (5) is reduced to an unconstrained quadratic programming problem:
min

∑n
i=3(

1
2 (αi − α1

β1
βi )y2

i − (ηi − α1
β1
ϕi )yi )+ α1

β1
μ.

(j) Supposeη1 �= 0 orη2 �= 0. Let us assumeη1 �= 0. Set ŷ1 = sign(η1)t and ifη2 �= 0, ŷ2 =
sign(η2)

√−β1
β2

t2 + 2μ
β2

, otherwise ŷ2 =
√−β1

β2
t2 + 2μ

β2
. Notice that (ŷ1, ŷ2, 0, . . . , 0)

is feasible for any large enough t . Furthermore, the corresponding objective function
value is 1

2α1 ŷ2
1 + 1

2α2 ŷ2
2 − η1 ŷ1 − η2 ŷ2 = μα2

β2
− η1 ŷ1 − η2 ŷ2 = μα2

β2
− |η1|t −

|η2|
√−β1

β2
t2 + 2μ

β2
→ −∞ as t → +∞. That is, the problem (5) is unbounded below.
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Therefore, we only have to discuss problem (QP1QC) under the assumption (A1), while
in principle we know how to deal with it under the (SDC) condition. Cases between (A1)
and (SDC) are either unbounded below or reduced to an unconstrained problem.

In addition, we comment that the condition (A2)+ (A3) in in Xing et al. [22] is also a
special case of (SDC). They have shown in [22] that, under (A2)+ (A3), there exists an
orthogonal matrix W such that

W T AW =
[

0 0
0 A1

]

,W T BW =
[

0 0
0 B1

]

, W T (A + σ B)W =
[

0 0
0 A1 + σ B1

]

,

and A1+σ B1 � 0. Since (A1) ⇒ (A5), there is a nonsingular matrix U such that U T A1U =
diag(α1

1, . . . , α
1
m) and U T B1U = diag(β1

1 , . . . , β
1
m). Therefore, A and B can be simulta-

neously diagonalizable via congruence with a nonsingular matrix C = W

[
I 0
0 U

]

such that

both CT AC and CT BC are diagonal matrices, which is (A5).
Finally, we remark that the primal Slater condition is redundant under the assumption

(A1). The gap between these two assumptions is the case when B � 0, g ∈ R(B), μ =
− 1

2 gT B+g, where B+ is the Moore-Penrose generalized inverse of B. This special case can
be treated by (case 7) discussed in the next section.

Proposition 1 Let F0 := {(B, g, μ) : ∃x, 1
2 xT Bx − gT x ≤ μ} and F1 := {(B, g, μ) :

∃x, 1
2 xT Bx − gT x < μ}. Then it holds that

F0\F1 =
{

(B, g, μ) : B � 0, g ∈ R(B), μ = −1

2
gT B+g

}

.

Proof According to the definitions of F0 and F1, (B, g, μ) ∈ F0\F1 if and only if μ =
minx { 1

2 xT Bx − gT x} > −∞, which is equivalent to B � 0 and the linear system Bx = g
has a solution. In this case, μ = − 1

2 gT B+g. ��

3 Solutions to (QP1QC) via dual approach

In the general theoretical view of nonlinear programming, the problem (QP1QC) can be writ-
ten as min{P(x)| S(x) ≤ 0} where P(x) = 1

2 xT Ax − f T x and S(x) = 1
2 xT Bx − gT x −μ.

For the single inequality constrained problem, let σ ≥ 0 be the Lagrange multiplier. Then,
the dual problem is formulated as follows:

sup
σ∈D

(Pd(σ ) = inf
x∈Rn

{P(x)+ σ S(x)})

where a natural dual feasible domain D = {σ ≥ 0|Pd(σ ) > −∞} ⊂ {σ ≥ 0| A + σ B �
0} = J . For any σ ∈ D, suppose x(σ ) is a global minimizer of the quadratic convex function
P(x)+ σ S(x), we have Pd(σ ) = P(x(σ ))+ σ S(x(σ )). Equivalently,

P(x(σ ))− Pd(σ ) = −σ S(x(σ )). (9)
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Moreover, if Pd(σ ) and x(σ ) are smooth with respect to σ , the first derivative of Pd(σ ) can
be computed using the implicit differentiation and the chain rule to get

d

dσ
Pd(σ ) = ∇ P(x(σ ))

d

dσ
x(σ )+ S(x(σ ))+ σ∇S(x(σ ))

d

dσ
x(σ )

= [∇ P(x(σ ))+ σ∇S(x(σ ))] d

dσ
x(σ )+ S(x(σ )) (10)

= S(x(σ ))

where ∇ P(x(σ )) + σ∇S(x(σ )) = 0 since x(σ ) minimizes P(x) + σ S(x). Likely, we can
compute the second derivative of Pd(σ ) as

d2

dσ 2 Pd(σ ) = −
[

d

dσ
S(x(σ ))

]T

(∇2 P(x)+ σ∇2S(x))−1
[

d

dσ
S(x(σ ))

]

(11)

provided the Lagrangian Hessian ∇2 P(x)+ σ∇2S(x) is invertible.
Equations (9, 10, 11) are general results for any single constrained smooth nonlinear pro-

gramming problem. They provide structural insight to many direct computation in Xing et al.
[22]. When P(x) and S(x) are quadratic and σ ∈ F = {σ ≥ 0|A + σ B � 0},

x(σ ) = (A + σ B)−1( f + σg) (12)

is the unique minimum solution to P(x)+ σ S(x). We thus have

Lemma 1 For any σ ∈ int (F),
d Pd(σ )

dσ
= S(x(σ ))

= 1

2
( f + σg)T (A + σ B)−1 B(A + σ B)−1( f + σg) (13)

−gT (A + σ B)−1( f + σg)− μ,

and

d2 Pd(σ )

dσ 2 = −uT (A + σ B)−1u ≤ 0 (14)

where u = Bx(σ )− g = B(A + σ B)−1( f + σg)− g. Moreover,

P(x(σ ))− Pd(σ ) = −σ d Pd(σ )

dσ
. (15)

Observe from Lemma 1 that Pd(σ ) is a smooth concave function over int (F). Addition-
ally, it has been shown in [22] that F is an interval. Let σ0, σ1 respectively be the left and
right boundary of F . According to the various places where the supremum of Pd(σ ) could
possibly attain over F , we can classify into the following cases.

• (case 1) Pd
0 is attained at σ ∗ ∈ int (F). In this case, it is necessary that d Pd (σ ∗)

dσ = S(x(σ ∗))
= 0. By (15), P(x(σ ∗)) = Pd(σ ∗) so that(x(σ ∗), σ ∗) is the primal-dual optimal pair.

• (case 2) Pd
0 is attained at the left boundary σ0 of F and limσ→σ+

0

d Pd (σ )
dσ = 0. In this case,

the limit

x(σ0) = limσ→σ+
0
(A + σ B)−1( f + σg) (16)

exists. By

123



282 J Glob Optim (2012) 54:275–293

lim
σ→σ+

0

d Pd(σ )

dσ
= lim
σ→σ+

0

S(x(σ )) = S(x(σ0)) = 0,

x(σ0) is the primal boundary optimal solution.

• (case 3) Pd
0 is attained at σ0, σ0 = 0 and limσ→σ+

0

d Pd (σ )
dσ < 0. In this case, let x(σ0) be

defined as in (16). Since S(x(σ0)) < 0 and −σ0
d Pd (σ0)

dσ = 0 in (15), x(σ0) is an interior
optimal solution.

• (case 4) Pd
0 is attained at σ0, σ0 > 0 and limσ→σ+

0

d Pd (σ )
dσ < 0. Then, A + σ0 B � 0 has at

least one zero eigenvalue so that Pd(σ0) = inf x∈Rn {P(x)+σ0S(x)} has multiple minimum
solutions. That is, the optimal set arg inf{P(x)+σ0S(x)} is not a singleton. Since the point
x(σ0) in (16) satisfies (A + σ0 B)x(σ0) = f + σ0g, it belongs to the set arg inf{P(x) +
σ0S(x)} but has a positive duality gap: P(x(σ0)) − Pd(σ0) = −σ0

d Pd (σ0)
dσ > 0. The

boundarification technique developed in [22] chooses from the set arg inf{P(x)+σ0S(x)}
another more appropriate point than x(σ0) to close the gap.

• (case 5) Pd
0 is attained at the right boundary σ1 of F , σ1 < ∞ and limσ→σ−

1

dPd (σ )
dσ = 0.

This case is analogous to (case 2). The limit x(σ1) = limσ→σ−
1
(A + σ B)−1( f + σg) is a

boundary optimal solution.

• (case 6) Pd
0 is attained at σ1, σ1 < ∞ and limσ→σ−

1

dPd (σ )
dσ > 0. This case is similar to

(case 4) and requires a boundarification step to move x(σ1) from the exterior S(x(σ1)) > 0
to a boundary optimal solution.

• (case 7) Pd(σ ) approaches asymptotically to a finite value as σ → +∞. This case can
happen only when B � 0 and a specific μ is associated.

In the following, we write the above seven cases into a few theorems with proofs which
extend from the previous work of Xing et al. [22]. We shall try to reduce the duplicate to a
minimum, while keeping it self-contained.

Under (A1), there exists a σ ′ ≥ 0 such that A+σ ′ B � 0. The entire analysis relies heavily
on the simultaneous decomposition that converts A+σ ′ B � 0 to an identical matrix I and B
to a diagonal matrix H . First decompose A + σ ′ B = L DLT with a lower triangular matrix

L and a diagonal matrix D having only positive diagonal entries. Let G1 = (L D
1
2 )−1 so that

G1(A + σ ′ B)GT
1 = I . Since G1 BGT

1 is real and symmetric, there is an orthogonal matrix
G2 such that G2(G1 BGT

1 )G
−1
2 = H = diag(h1, h2, . . . , hn). Respectively, we have

G1(A + σ ′ B)GT
1 = I, G2G1(B)G

T
1 GT

2 = H.

Lemma 2 (For cases 2–6) Suppose the dual optimal occurs at σ ∗ = σ0 or at σ1 < ∞. Then
the corresponding (right/left) limit

x̄ = lim
σ→σ ∗(A + σ B)−1( f + σg) (17)

exists. Moreover, x̄ minimizes the Lagrange function P(x)+ σ ∗S(x).

Proof Let G = G2G1. Then, for any σ ∈ F ,

G(A + σ B)GT = G(A + σ ′ B + σ B − σ ′ B)GT

= G(A + σ ′ B)GT + (σ − σ ′)G BGT

= I + (σ − σ ′)H
= diag(d1(σ ), d2(σ ), . . . , dn(σ )) (18)
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where di (σ ) = 1 + (σ − σ ′)hi > 0, i ∈ [1 : n]. In addition, we also have

Pd(σ ) = −1

2
( f + σg)T GT diag(d−1

1 (σ ), d−1
2 (σ ), . . . , d−1

n (σ ))G( f + σg)− μσ.

Note that, as a function of σ ∈ F ,

d−1
i (σ ) = 1

1 + (σ − σ ′)hi
> 0

is monotone with a lower bound 0. As σ → σ ∗, d−1
i (σ )might tend monotonically to a finite

positive number or to +∞. In the latter case if limσ→σ ∗ d−1
i (σ ) tends to +∞ for some compo-

nent i , the corresponding (G( f +σg))i must be 0 or otherwise Pd
0 could have been unbounded

below, which is impossible under (A1). In other words, limσ→σ ∗ d−1
i (σ )(G( f + σg))i will

be either 0 or a finite limit for all i ∈ [1 : n], so the limit

x̄ = limσ→σ ∗ GT diag(d−1
1 (σ ), d−1

2 (σ ), . . . , d−1
n (σ ))G( f + σg)

= limσ→σ ∗(A + σ B)−1( f + σg).

exists. Moreover, since A + σ ∗ B � 0, the Lagrange function P(x)+ σ ∗S(x) is convex. By

(A + σ ∗ B)x̄ = ( lim
σ→σ ∗(A + σ B))( lim

σ→σ ∗(A + σ B)−1( f + σg)) = f + σ ∗g, (19)

it is seen that x̄ minimizes P(x)+ σ ∗S(x). ��

Theorem 1 (Boundarification Technique for cases (4) and (6)) For any x̃ �= 0 in the null
space of A + σ ∗ B, there exists at least one real number α0 satisfying

α2 x̃ T Bx̃ + 2α(x̄ T Bx̃ − gT x̃)+ x̄ T Bx̄ − 2gT x̄ − 2μ = 0

such that x∗ = x̄ + α0 x̃ is a required boundary global optimal solution for (1) with the
global minimum value 1

2 (x
∗)T Ax∗ − f T x∗.

Proof Let σ ∗ = σ0. The case when σ ∗ = σ1 can be done similarly. Since A+σ ∗ B is positive
semi-definite but not positive definite, there exists some x̃ �= 0 such that (A + σ ∗ B)x̃ = 0.
However, x̃ T (A + σ B)x̃ > 0 as (A + σ B) � 0 for σ ∈ F . Then,

x̃ T (A + σ B)x̃ − x̃ T (A + σ0 B)x̃ = (σ − σ ∗)x̃ T Bx̃ > 0 (20)

implies that x̃ T Bx̃ > 0.
Now we consider the following quadratic function of one variable α:

α2 x̃ T Bx̃ + 2α(x̄ T Bx̃ − gT x̃)+ x̄ T Bx̄ − 2gT x̄ − 2μ = 0. (21)

Since x̃ T Bx̃ > 0 and x̄ T Bx̄ − 2gT x̄ − 2μ < 0, we find

� = (2x̄ T Bx̃ − 2gT x̃)2 − 4(x̃ T Bx̃)(x̄ T Bx̄ − 2gT x̄ − 2μ) > 0

so that a real number α0 satisfying (21) exists, and
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S(x∗) = 1

2
(x∗)T Bx∗ − gT x∗ − μ

= 1

2
(x̄ + α0 x̃)T B(x̄ + α0 x̃)− gT (x̄ + α0 x̃)− μ

= 1

2
[α2

0 x̃ T Bx̃ + 2α0(x̄
T Bx̃ − gT x̃)+ x̄ T Bx̄ − 2gT x̄ − 2μ]

= 0.

Since (A + σ ∗ B)x∗ = (A + σ ∗ B)(x̄ + α0 x̃) = ( f + σ ∗g), the point x∗ also minimizes
P(x)+ σ ∗S(x). By (9), P(x∗)− Pd

0 = −σ ∗S(x∗) = 0 and proves the optimality of x∗. ��
Recall that B � 0 if and only if σ1 = +∞. For convenience, let the first r diagonal

elements of H = G BGT are 0 and the remaining n − r positive. When r = 0, B is positive
definite. We denote G f = w = (w̃T , wT )T ; Gg = s = (̃sT , sT )T where w̃ means the
first r components of w whereas w the last n − r . Similarly for s, and H � 0 represents
diag(hr+1, hr+2, . . . , hn).

Theorem 2 (Case 7) If Pd
0 is achieved when σ tends to +∞, then μ = −∑hi>0

s2
i

2hi
and

si = 0 for hi = 0. Otherwise, Pd
0 is unbounded above and problem (1) is infeasible. In case

B � 0, the limit

x̄ = lim
σ→+∞(A + σ B)−1( f + σg) = B−1g

exists and x̄ is a boundary optimal solution for problem (1). In case B � 0,

x̄ = GT (w̃T , (H
−1

s)T )T

is the boundary optimal solution for problem (1).

Proof Expand Pd(σ ) into a rational polynomial of terms σ 2, σ, σ 0, σ−1 as follows:

Pd(σ ) = −1

2
( f + σg)T (A + σ B)−1( f + σg)− μσ

= −1

2
(G( f + σg))T (I + (σ − σ ′)H)−1(G( f + σg))− μσ

= −1

2

n∑

i=1

(wi + σ si )
2

1 + (σ − σ ′)hi
− μσ

= −1

2

∑

hi =0

(wi + σ si )
2 − 1

2

∑

hi>0

(wi + σ si )
2

1 + (σ − σ ′)hi
− μσ

= −1

2
σ 2
∑

hi =0

s2
i − σ

∑

hi =0

wi si − 1

2

∑

hi =0

w2
i

−1

2
σ 2
∑

hi>0

s2
i

1 + (σ − σ ′)hi
− σ

∑

hi>0

wi si

1 + (σ − σ ′)hi

−1

2

∑

hi>0

w2
i

1 + (σ − σ ′)hi
− μσ

= −1

2
σ 2
∑

hi =0

s2
i − σ

∑

hi =0

wi si − 1

2

∑

hi =0

w2
i
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−1

2

∑

hi>0

(
σ s2

i

hi
− s2

i (1 − σ ′hi )

h2
i

+ s2
i (1 − σ ′hi )

2

h2
i (1 + (σ − σ ′)hi )

)

−
∑

hi>0

(
wi si

hi
− wi si (1 − σ ′hi )

hi (1 + (σ − σ ′)hi )

)

− 1

2

∑

hi>0

w2
i

1 + (σ − σ ′)hi
− μσ

= −1

2
σ 2
∑

hi =0

s2
i − σ

⎡

⎣
∑

hi =0

wi si + 1

2

∑

hi>0

s2
i

hi
+ μ

⎤

⎦

−
⎡

⎣1

2

∑

hi =0

w2
i − 1

2

∑

hi>0

s2
i (1 − σ ′hi )

h2
i

+
∑

hi>0

wi si

hi

⎤

⎦

−
⎡

⎣
∑

hi>0

(
s2

i (1 − σ ′hi )
2

2h2
i

− wi si (1 − σ ′hi )

hi
+ 1

2
w2

i

)(
1

1 + (σ − σ ′)hi

)
⎤

⎦ .

By the fact that Pd
0 = limσ→+∞ Pd(σ ) < ∞, it is necessary that si = 0 if hi = 0 and

μ = − ∑

hi>0

s2
i

2hi
, or Pd

0 is unbounded above, causing an infeasible primal problem.

When B � 0, hi > 0 for all i ∈ [1 : n]. Then,

lim
σ→+∞ d−1

i (σ )(G( f + σg))i = lim
σ→+∞

wi + σ si

1 + (σ − σ ′)hi
= si

hi

and

x̄ = lim
σ→+∞(A + σ B)−1( f + σg)

= lim
σ→+∞ GT (I + (σ − σ ′)H)−1G( f + σg)

= GT lim
σ→+∞(I + (σ − σ ′)H)−1G( f + σg)

= GT H−1Gg

= B−1g.

Consequently,

P(x̄)− Pd
0 = lim

σ→+∞(P(x(σ ))− Pd(σ ))

= lim
σ→+∞ −σ S(x(σ ))

≤ 0,

since, in case 7, d Pd (σ )
dσ = S(x(σ )) ≥ 0 on int (F). This forces P(x̄) = Pd

0 and S(x̄) = 0 so
that x̄ is a boundary optimal solution of (1).

In the case that B � 0, we have G AGT = I − σ ′ H = diag(1, 1, . . . , 1, 1 − σ ′hr+1, 1 −
σ ′hr+2, . . . , 1 − σ ′hn). Let x = GT t , and by the fact that si = 0 if hi = 0, problem (1)
becomes

P0 = min P(t) = 1
2 t T

[
Ĩ 0
0 I − σ ′ H

]

t − (w̃T , wT )t

s.t. 1
2 t T

[
0 0
0 H

]

t − (0r , sT )t ≤ μ,

(22)
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which can be divided into two separated subproblems, an unconstrained (̃P) and a smaller
(P) with t = (̃t T , t T

)T :

(̃P) : P̃0 = min P̃(̃t) = 1

2
t̃ T t̃ − w̃T t̃

and

(P) : P0 = min P(t) = 1
2 t T

(I − σ ′ H)t − wT t
s.t. 1

2 t T Ht − sT t ≤ μ.
(23)

The unconstrained convex subproblem (̃P) attains the minimum at a t̃∗ for which d P̃
dt̃ (̃t

∗) = 0.

Hence t̃∗ = w̃ and P̃0 = − 1
2 w̃

T w̃. As for (P), the minimum occurs at t∗ = H
−1

s due to

H � 0. Combining both t̃∗ and t∗ together, x̄ = GT (w̃T , (H
−1

s)T )T is the boundary optimal
solution for problem (1). ��

4 Insights into boundarification

To look into the boundarification technique for more insights, we work on the (SDC) form
(P ′) in (5) and (Pd ′

) in (6) by thinking of A as diag(α1, . . . , αn); B as diag(β1, . . . , βn);
f as η = (η1, η2, . . . , ηn)

T ; and g as ϕ = (ϕ1, ϕ2, . . . , ϕn)
T . In (case 4), Pd

0 occurs at the
left boundary σ0 > 0 so that the index set

I0 := {i |αi + σ0βi = 0} �= ∅. (24)

We assume that I0 = [1 : r ], r ≥ 1. Hence, αi + σ0βi > 0, i ∈ [r + 1 : n].
Lemma 3 (Case 4) For all i ∈ I0, βi > 0 and αi < 0. Moreover,

σ0 = −αi

βi
= −ηi

ϕi
and thus

ϕi

βi
= ηi

αi
. (25)

Proof From (24), if i ∈ I0 and βi = 0, αi = 0. However, from assumption (A1), βi = 0
implies αi > 0. The contradiction shows that βi �= 0. On the other hand, suppose βi < 0.
To make αi + σβi > 0 for βi < 0, we need σ < σ0, which contradicts to the fact that σ0 is
a left boundary of F . Therefore, βi > 0, i ∈ I0 in Case 4. By σ0 > 0, we immediately have
αi < 0.

From Lemma 2, it is shown that

ȳ = lim
σ→σ+

0

(A + σ B)−1( f + σg) = lim
σ→σ+

0

ηi + σϕi

αi + σβi

exists. Since αi + σ0βi = 0 for i ∈ I0, it is necessary that ηi + σ0ϕi = 0, i ∈ I0 and

yi =

⎧
⎪⎨

⎪⎩

ηi + σ0ϕi

αi + σ0βi
, if i �∈ I0,

ϕi

βi
, if i ∈ I0,

(26)

which proves (25). ��
From the condition of case (4),

lim
σ→σ+

0

d Pd(σ )

dσ
= S′(ȳ) =

n∑

i=1

{
βi

2
y2

i − ϕi yi

}

− μ < 0
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and there is a duality gap P ′(ȳ) − Pd ′
0 = −σ0S′(ȳ) > 0. Since βi > 0 for i ∈ I0, we

observe that limt→±∞ βi
2 t2 − ϕi t = +∞. To improve S′(ȳ) to 0, it is sufficient to increase

(or decrease) any (or all) ȳi for i ∈ I0, while keeping all other ȳi fixed if i �∈ I0. This amounts
to moving y in the null space of A + σ0 B as for any ỹ in the null space of A + σ0 B, it must
have

ỹi = 0, if i �∈ I0.

This explains why in Eq. (21) there is a real root α0.
From Theorem 1, we also see that the moving direction in the null space of A + σ0 B is

indifferent to global optimality. It has to do with the specialty of case 4 as revealed in Lemma
3. For simplicity, let r = 2 and consider the problem:

min
(α1

2
y2

1 − η1 y1

)
+
(α2

2
y2

2 − η2 y2

)
+

n∑

i=3

1

2
αi y2

i − ηi yi

s.t.

(
β1

2
y2

1 − ϕ1 y1

)

+
(
β2

2
y2

2 − ϕ2 y2

)

+
n∑

i=3

1

2
βi y2

i − ϕi yi − μ ≤ 0. (27)

By (25), we can assume

ϕ1

β1
= η1

α1
= c1 and

ϕ2

β2
= η2

α2
= c2

so that (27) becomes

min P ′(y) = α1

(
y2

1

2
− c1 y1

)

+ α2

(
y2

2

2
− c2 y2

)

+
n∑

i=3

1

2
αi y2

i − ηi yi

s.t. S′(y) = β1

(
y2

1

2
− c1 y1

)

+ β2

(
y2

2

2
− c2 y2

)

+
n∑

i=3

1

2
βi y2

i − ϕi yi − μ ≤ 0. (28)

Since β1(
y2

1
2 − c1 y1)+ β2(

y2
2
2 − c2 y2) ≥ −β1c2

1
2 − β2c2

2
2 , we have

n∑

i=3

1

2
βi y2

i − ϕi yi ≤ β1c2
1

2
+ β2c2

2

2
+ μ. (29)

let 
 = {(y3, y4, . . . , yn)|∑n
i=3

1
2βi y2

i − ϕi yi ≤ β1c2
1

2 + β2c2
2

2 + μ}. Rewrite (28) as

min
(y3,y4,...,yn)∈


⎧
⎪⎪⎨

⎪⎪⎩

min
(y1,y2)

α1

(
y2

1
2 − c1 y1

)

+ α2

(
y2

2
2 − c2 y2

)

+
n∑

i=3

1
2αi y2

i − ηi yi

s.t. β1

(
y2

1
2 − c1 y1

)

+ β2

(
y2

2
2 − c2 y2

)

≤ μ−
n∑

i=3

1
2βi y2

i + ϕi yi

⎫
⎪⎪⎬

⎪⎪⎭

.

(30)

As −α1
β1

= −α2
β2

= σ0 by Lemma 3, the inner minimization in (30) becomes

min
(y1,y2)

−σ0β1

(
y2

1

2
− c1 y1

)

− σ0β2

(
y2

2

2
− c2 y2

)

+
n∑

i=3

1

2
αi y2

i − ηi yi

s.t. β1

(
y2

1

2
− c1 y1

)

+ β2(
y2

2

2
− c2 y2) ≤ μ−

n∑

i=3

1

2
βi y2

i + ϕi yi , (31)
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which can be easily solved as

n∑

i=3

1

2
(αi + σ0βi )y

2
i − (ηi + σ0ϕi )yi − σ0μ (32)

so that (30) becomes

min
(y3,y4,...,yn)∈


n∑

i=3

1

2
(αi + σ0βi )y

2
i − (ηi + σ0ϕi )yi − σ0μ. (33)

Since αi + σ0βi > 0 for i �∈ I0, problem (33) has a convex objective function of which
the only critical point is ȳi = ηi +σ0ϕi

αi +σ0βi
, i ∈ [3 : n] as defined in (26). Since ȳ is an interior

feasible solution in (case 4), (ȳ3, ȳ4, . . . , ȳn) is also an interior point in
 and thus the unique
minimizer of (33).

We have just seen that any global minimizer of problem (28) must have its i th component
equal to ȳi for i ∈ [3 : n]. The remaining is to determine the optimal y1 and y2 from (31)
by substituting yi with ȳi for i ∈ [3; n]. Then problem (31) has an ellipsoid constraint in
variables (y1, y2). The optimal (y1, y2) happens if and only if it is on the boundary of the
ellipsoid. The solution

ȳ1 = lim
σ→σ+

0

η1 + σϕ1

α1 + σβ1
= ϕ1

β1
= c1 and ȳ2 = lim

σ→σ+
0

η2 + σϕ2

α2 + σβ2
= ϕ2

β2
= c2

is the center of the ellipsoid. The boundarification technique moves it to the boundary and
solves case 4.

5 Dual of the dual problem

In this section, we show that the dual of the dual problem reveals the hidden convex nature of

the primal problem (1). Notice that if βi �= 0, (ηi + σϕi )
2 =

(
ηi − αiϕi

βi
+ ϕi

βi
(αi + σβi )

)2
.

Define indices sets

J0 = {i ∈ [1 : n] : βi = 0},
J1 =

{

i ∈ [1 : n] : βi �= 0, ηi − αiϕi

βi
= 0

}

,

J2 =
{

i ∈ [1 : n] : βi �= 0, ηi − αiϕi

βi
�= 0

}

with which we can write the above dual problem (6) as

Pd ′
0 = sup

σ≥0

{

−σμ−∑i∈J2
(ηi − αiϕi

βi
)
ϕi
βi

− 1
2

∑

i∈J2

(ηi − αi ϕi
βi
)2

αi +σβi

− 1
2

∑

i∈J1∪J2

ϕ2
i
β2

i
(αi + σβi )− 1

2

∑

i∈J0

(ηi +σϕi )
2

αi

}

s.t. αi + σβi > 0, i ∈ J1 ∪ J2.

(34)
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Proposition 2 A Lagrangian dual of Problem (34) is the following linearly constrained
convex minimization problem

Pdd ′ = −
∑

i∈J2

(

ηi − αiϕi

βi

)
ϕi

βi

+
⎧
⎨

⎩
inf
z,w

⎧
⎨

⎩

∑

i∈J1∪J2

αi zi −
∑

i∈J2

|ηi − αiϕi

βi
|
√

2zi + ϕ2
i

β2
i

+
∑

i∈J0

{

ηiwi + αiw
2
i

2

}⎫
⎬

⎭

s.t.
∑

i∈J1∪J2

βi zi +
∑

i∈J0

ϕiwi ≤ μ, zi + ϕ2
i

2β2
i

≥ 0, i ∈ J1 ∪ J2; wi ∈ R, i ∈ J0

⎫
⎬

⎭
.

(35)

Proof The dual problem (34) can be equivalently written as

sup
σ≥0

⎧
⎨

⎩
−σμ−

∑

i∈J2

(ηi − αiϕi

βi
)
ϕi

βi
− 1

2

∑

i∈J2

(ηi − αiϕi
βi
)2

ti

−1

2

∑

i∈J1∪J2

ϕ2
i

β2
i

ti − 1

2

∑

i∈J0

t2
i

αi

⎫
⎬

⎭

s.t. αi + σβi = ti , i ∈ J2,

αi + σβi = ti , i ∈ J1,

ηi + σϕi = ti , i ∈ J0,

ti > 0, i ∈ J1 ∪ J2. (36)

Let zi ∈ R, i ∈ J2; zi ∈ R, i ∈ J1 andwi ∈ R, i ∈ J0 be the dual multipliers associated with
the first, second and third linear equality constraints in (36), respectively. The dual problem
of Problem (34) becomes

−
∑

i∈J2

(

ηi − αiϕi

βi

)
ϕi

βi
+ inf

z,w

⎧
⎨

⎩

∑

i∈J1∪J2

αi zi +
∑

i∈J0

ηiwi + v(z)+ v(w)

+ sup
ti>0, i∈J1

{

− ϕ2
i

2β2
i

ti − zi ti

}

+ sup
σ≥0

⎧
⎨

⎩
σ

⎛

⎝
∑

i∈J1∪J2

βi zi +
∑

i∈J0

ϕiwi − μ

⎞

⎠

⎫
⎬

⎭

⎫
⎬

⎭
(37)

where

v(z) :=
∑

i∈J2

sup
ti>0

⎧
⎪⎨

⎪⎩
−ti zi − ϕ2

i

2β2
i

ti −
(
ηi − αiϕi

βi

)2

2ti

⎫
⎪⎬

⎪⎭
,

v(w) :=
∑

i∈J0

sup

{

− t2
i

2αi
− wi ti

}

=
∑

i∈J0

αiw
2
i

2
. (38)

The computation of the first inner maximization in (37) with respect to ti > 0, i ∈ J1, leads

to the optimal value zero with the linear constraint zi + ϕ2
i

2β2
i

≥ 0 and that of the second inner
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maximization in (37) with respect to σ ≥ 0 leads to the optimal value zero with the linear
constraint

∑
i∈J1∪J2

βi zi +∑i∈J0
ϕiwi ≤ μ. Finally, for i ∈ J2 in (38)

sup
ti>0

{

−ti zi − ϕ2
i

2β2
i

ti − (ηi − αiϕi
βi
)2

2ti

}

=

⎧
⎪⎨

⎪⎩

−|ηi − αiϕi
βi

|
√

2zi + ϕ2
i
β2

i
, if zi + ϕ2

i
2β2

i
≥ 0,

+∞, if zi + ϕ2
i

2β2
i
< 0.

(39)

Substituting the above computations into (37), we get (35). ��

Theorem 3 Under the assumption (A1), the primal problem (5) is equivalent to the convex
programming problem (35).

Proof First we can rewrite the primal problem (5) as follows

P ′
0 = min

∑

i∈J1∪J2

{

αi

(
1

2

(

yi − ϕi

βi

)2

− ϕ2
i

2β2
i

)

−
(

ηi − αiϕi

βi

)

yi

}

+
∑

i∈J0

(
1

2
αi y2

i − ηi yi

)

s.t.
∑

i∈J1∪J2

βi

(
1

2

(

yi − ϕi

βi

)2

− ϕ2
i

2β2
i

)

−
∑

i∈J0

ϕi yi ≤ μ.

Under the assumption (A1), according to the 7 cases discussed in Sect. 3, the global mini-
mizer of the primal problem (5) exists, denoted by y∗. Let i0 ∈ J2 be arbitrary. Construct ȳ
according to:

yi =
{

2 ϕi
βi

− y∗
i , if i = i0 ∈ J2,

y∗
i , if i �= i0.

Then ȳ is feasible to (5). Since
∑n

i=1
αi
2 (y

∗
i )

2 − ηi y∗
i ≤ ∑n

i=1
αi
2 yi

2 − ηi yi and i0 ∈ J2

is arbitrary, we must have −(ηi − αiϕi
βi
)(y∗

i − ϕi
βi
) ≤ 0 for all i ∈ J2. In addition, by the

definition of J1, the objective function is homogeneous in terms of (yi − ϕi
βi
) for i ∈ J1. That

is, we can also restrict (yi − ϕi
βi
) to be nonnegative for i ∈ J1. Therefore, the problem (5) is

further equivalent to

P ′
0 = min

∑

i∈J1∪J2

{

αi

(
1

2

(

yi − ϕi

βi

)2

− ϕ2
i

2β2
i

)

−
(

ηi − αiϕi

βi

)

yi

}

+
∑

i∈J0

(
1

2
αi y2

i − ηi yi

)

s.t.
∑

i∈J1∪J2

βi

(
1

2

(

yi − ϕi

βi

)2

− ϕ2
i

2β2
i

)

−
∑

i∈J0

ϕi yi ≤ μ,

yi − ϕi

βi
≥ 0, ∀i ∈ J2 and ηi − αiϕi

βi
> 0,

yi − ϕi

βi
≤ 0, ∀i ∈ J2 and ηi − αiϕi

βi
< 0,

yi − ϕi

βi
≥ 0, ∀i ∈ J1.

Introducing zi = 1
2 (yi − ϕi

βi
)2 − ϕi

2

2βi
2 for i ∈ J1 ∪ J2 (which is now a one-to-one map between

zi and yi ) and wi = −yi for i ∈ J0, we exactly obtain the dual of the dual problem (35).
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That is, problem (5) is equivalent to (35) via the following nonlinear transformation

yi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕi

βi
+

|ηi − αiϕi

βi
|

ηi − αiϕi

βi

√

2zi + ϕ2
i

β2
i

, if i ∈ J2,

ϕi

βi
+
√

2zi + ϕ2
i

β2
i

, if i ∈ J1,

−wi , if i ∈ J0.

(40)

Theorem 3 explains why the nonconvex problem (QP1QC) has a strong duality with no
duality gap under condition (A1).

6 Examples

A few examples are selected to demonstrate the validity of the dual method for solving
(QP1QC).

Example 1 (Illustration for case 4) Let A =
[

2 −1
−1 0

]

, B =
[

4 −2
−2 2

]

, f =
[

1
−1

]

,

g =
[

4
−1

]

, and μ = 5.

We can calculate that F = {σ ≥ 0|A + σ B � 0} = (0.5,+∞) with σ0 = 0.5 > 0. Since

limσ→0.5+ dPd (σ )
dσ = −7.375 < 0, this is (case 4). One can verify that x̄ = limσ→0.5+(A +

σ B)−1( f + σg) = (1.25, 1)T is an interior feasible point. Applying the boundarification

technique, we select a vector x̃ = (1, 2)T from the null space of A + 0.5B =
[

4 −2
−2 1

]

,

and then solve the quadratic equation

α2 x̃ T Bx̃ + 2α(x̄ T Bx̃ − gT x̃)+ x̄ T Bx̄ − 2gT x̄ − 2μ = 0

to obtain two roots: 1.92 and −1.92. If α0 = 1.92, x∗
1 = x̄ + α0 x̃ = (3.17, 4.84)T is the

global minimizer for the problem with the optimal value −3.625. If α0 = −1.92, x∗
2 =

x̄ +α0 x̃ = (−0.67,−2.84)T is the other global minimizer. Since the null space of A + 0.5B
is one-dimensional, x∗

1 and x∗
2 are the only two global minimizers.

Example 2 (Illustration for case 7) Let A =
⎡

⎣
1 3 2
3 −2 0
2 0 1

⎤

⎦ , B =
⎡

⎣
4 1 −2
1 5 −2

−2 −2 2

⎤

⎦ ,

f =
⎡

⎣
3
4

−2

⎤

⎦ , g =
⎡

⎣
−6
2
3

⎤

⎦ , and μ = −6.95. Note that B is positive definite and F = (1.2673

+∞). Since limσ→1.2673+ dPd (σ )
dσ = +∞ and limσ→+∞ dPd (σ )

dσ = 0, this is (case 7). By
Theorem 2, x̄ = limσ→+∞(A +σ B)−1( f +σg) = B−1g = (−0.8, 1.4, 2.1)T is the global
minimizer for the problem with the optimal value −5.15.
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Example 3 (Another illustration for case 7) Let A =
⎡

⎣
5 3 2
3 6 0
2 0 4

⎤

⎦ , B =
⎡

⎣
3 1 −2
1 3 −2

−2 −2 2

⎤

⎦ , f =
⎡

⎣
0
3
1

⎤

⎦ , g =
⎡

⎣
3
1

−2

⎤

⎦ , and μ = −1.5.

Since A � 0 and B � 0, we have F = [0,+∞). Since limσ→0+ dPd (σ )
dσ = 6.05 > 0 and

limσ→+∞ dPd (σ )
dσ = 0, this is (case 7) with B � 0. Choose σ ′ = 5 ∈ F , by (18), we have

G =
⎡

⎣
−0.156 −0.156 −0.312
−0.168 0.061 0.147
0.117 −0.214 0.052

⎤

⎦ ,

with G(A + σ ′ B)GT = diag(1, 1, 1) and G BGT = H = diag(0, 0.182, 0.154). Then,
computew = G f = (−0.78, 0.33,−0.59)T and s = Gg = (0,−0.74, 0.03)T to obtain that

x̄ = GT (w̃T , (H
−1

s)T )T = (0.83,−0.17,−0.34)T is the global minimizer for the problem
with the optimal value 1.9.

7 Conclusion

Quadratic programming is very important not only because many real world applications
from physics, statistics, management sciences, etc. can be formulated in quadratic forms,
but also because it can be used as a second-order approximation model for more complex
systems. Quadratic problems with multiple quadratic constraints are known to be NP-hard.
Nevertheless, this paper provides a thorough and comprehensive study, from the assump-
tions, solution methods, duality, to the hidden convexity for us to understand better about
the single quadratic constrained problem. Hopefully, with the new insights it leads a way to
study the global optimization for more general nonconvex programming problems.
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