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ABSTRACT 

Polyploidization (whole genome duplication – WGD) is a recurrent process in 

plants and provides greater potential for diversification. Neopolyploids in natural populations 

should go under substantial structural changes in their genetics, reproductive mode (e.g. apomixis 

– asexual reproduction via seeds), and ecological preferences to ensure their successful 

establishment. Apomixis in plants provides reproductive assurance, and superior colonizing 

abilities respect to sexuals, but it also constrains genetic variation and clonal plants are expected 

to have restricted adaptive capabilities. These complex rearrangement processes and adaptations 

in polyploid complexes are well reflected by their genetic variation. However, there is a lack of 

non-model systems that exhibit successful changes with pronounced reflection for studies. 

Paspalum intermedium is a grass species with diverging genetic systems (diploidy vs. 

autopolyploidy, allogamy vs. autogamy and sexuality vs. apomixis) with substantial ecological 

differentiation between cytotypes occurring in allopatry, sympatry and parapatry, hence provides 

an ideal platform to study polyploidization, apomixis and their ecological and genetic importance 

in plant evolution.  

Therefore, in this thesis, I used P. intermedium as a model system to recognize the 

causality of biogeographic patterns, adaptation and ecological flexibility of cytotypes, to study 

variations in the expression of sexuality and apomixis, to analyze developmental competition 

between reproductive modes, and their effects on reproductive fitness, and to study genetic 

variation and its significance in polyploid complexes. I used chromosome counts, flow cytometry, 

and embryological analyses to characterize within-species genetic systems diversity. 

Environmental niche modelling was performed to evaluate intraspecific ecological attributes and 

to assess correlations among ploidy, and ecological conditions ruling species’ population 

dynamics, range expansion, adaptation and evolutionary history. Proportions of sexuality and 

apomixis in situ were analyzed against local climatic conditions to study the influence of 

environmental factors on reproductive modes. Total seed set and germinability analyses were used 

to estimate the reproductive fitness. Analysis of genetic markers AFLPs was used to assess the 

genetic variation between and within cytotypes and within and among populations. To get insights 

into the genetic structure variation depending on the reproductive mode and how it explains the 

niche variation between cytotypes, the results were compared with the geographical distribution 

patterns and different ecological preferences of the cytotypes. My results show that the two 

dominant cytotypes of P. intermedium are non-randomly distributed along local and regional 

geographical scales and displayed niche differentiation. Polyploidy and contrasting reproductive 

traits between cytotypes have promoted shifts in niche optima, and increased ecological tolerance 

and niche divergence. Ecologically specialized diploids maintain cytotype stability in core areas 
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by displacing tetraploids, while broader ecological preferences and a shift from sexuality to 

apomixis favored polyploid colonization in peripheral areas promoting range expansion. The 

expression of sex and apomixis in tetraploid populations shows high variation both within and 

among populations. Even though ovule and seed analyses show apomictic development has 

higher competitive ability, fitness of apomictic individuals is depleted compared to sexual 

individuals and populations, indicating asexuality suffering higher seed abortion. Environmental 

modulation of reproduction was evident at population level where sex increased with higher mean 

diurnal range (MDR) while apomixis decreased. Thus, a Tug of War situation was identified 

between factors intrinsic to apomixis and environmental stressors promoting sex, suggesting a 

crucial role of local ecological conditions in sexual expression and adaptation of apomictic 

populations. Population structure analyses show that apomictic autotetraploids are of multiple 

independent origin. Although diploids show higher genetic variation, within and among 

population genetic variation equally make up the observed variation in all cytotypes. All 

individuals fall into three genetic clusters with substantial genetic admixture, and geographical 

distribution of genetic variation is in accordance with niche differentiation. The contact zone of 

the two cytotypes is primary in origin where tetraploids may frequently occur in mix ploidy 

populations. Polyploidization in P. interemedium is a recurring phenomenon and the newly arisen 

polyploids successfully establish themselves by acquiring enough genetic variation that allows 

them to adapt to new environments. Genetic variation analysis points to a slight deviation from 

the known General Purpose Ghenotype and the Frozen Niche Variation concepts as there is 

neither a common genotype nor are the diploids occupying a part of diploid sexuals’ niche. 
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CHAPTER 1 

1. INTRODUCTION 

1.1. Polyploidization and Plant Evolution 

Whole genome duplication (WGD), commonly referred to as polyploidy has been 

recognized as a major driving force of plant evolution; A phenomenon which was previously 

considered as evolutionary noise, unimportant to the main evolutionary processes, an 

evolutionary dead end (e.g. Stebbins 1950, Wagner 1970), and “blind alleys” (Arrigo and Barker 

2012) leading studies to nothing else but stalemate. However, with the courtesy of new genomic 

and computational tools, recent studies show that not only polyploidy is recurrent but also more 

frequent than expected in nature (Soltis and Soltis 1999, 2000). It has been estimated that the 

formation of polyploids is relatively higher than the genetic mutation rate (Ramsey and Schemske 

1998). Moreover, a crucial step of polyploidization, unreduced gamete formation (see below), was 

found to be occurring at a high rate of approximately 0.5% per gamete (Ramsey and Schemske 

1998, Wood et al. 2009). Studies show that approximately 15% of plant speciation events resulted 

from polyploidy (Wood et al. 2009) and that polyploidy is substantially associated to higher plant 

diversity (Symonds et al. 2010, Jiao et al. 2011). For instance, extensive analysis of the Arabidopsis 

thaliana genome indicates two WGDs events in Brassicaseae and one triplication event shared in 

all eudicots (Vision et al. 2000, Barker et al. 2008). Furthermore, genome doubling is present not 

only in plants but also in other eukaryotes including yeast (Kellis et al. 2004) and other vertebrate 

and invertebrate groups (reviewed in Levin 2002, Gregory and Mable 2005). 

1.1.1. Types of polyploidy and mechanisms of their formation 

Two major types of polyploids  have been recognized depending on their origin, 

which are characterized by the segregation pattern of chromosomes during meiosis: 

Allopolyploids arise through outcrossing of two closely related species (i.e. hybridization) and 

followed by chromosome doubling, autopolyploid originate from within species parents (e.g. 

genome duplication).  A third type called segmental allopolyploids ranging between the major 

tow originates from parents with partially non-homologous chromosome arrangements where 

some chromosome regions between parents are homologous and others are not (Soltis and Soltis 

2000). Bivalent formation at meiosis is characteristic of allopolyploids due to fixed (i.e. non-

segregating) heterozygosity resulting from divergent parental genomes, as a result disomic 

inheritance operate at each locus. The autopolyploids are characterized by multivalent formation 

at meiosis as a result of polysomic inheritance. Irregularities such as univalent, trivalent and other 
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multivalent during meiosis is characteristic of segmental allopolyploidy (Soltis and Soltis 2000, 

Boff and Schifino-Wittmann 2003, Wu et al. 2004, Xu et al. 2013). Nevertheless, mechanisms of 

formation and post-polyploidization changes such as chromosome rearrangements and reshuffling 

of homologs and homeologs are unclear in all recognized polyploids (see Soltis et al. 2010). 

Studies demonstrated that autotetraploids are much more common in nature than previously 

expected (Soltis and Soltis 2000). 

There are two largely recognized mechanisms explaining the formation of 

polyploids in natural population: i) one-step process involving the fusion of an unreduced egg 

with an unreduced pollen, ii) two-step process via a triploid bridge (Husband 2004) involving the 

fusion of a normal haploid gamete (e.g. haploid egg) with an unreduced gamete (e.g. 

unreduced/diploid pollen) forming a triploid, followed by the fusion of a triploid gamete (e.g. 

typically an unreduced egg cell from the triploid mother) with a haploid gamete (e.g. haploid 

pollen) (reviewed in Soltis et al. 2010). Nevertheless, despite recent findings, the frequency, 

dominance, and the importance of these two processes is still to be fully understood (reviewed in 

Hojsgaard 2018). In Arabidopsis thaliana, studies have characterized the gene (AtPS1) implicated 

in the formation of unreduced diplogametes and mutants in this gene lead to the generation of F1 

triploids (D’Erfurth et al. 2008). Even though it is evident that the mechanisms of unreduced 

gamete formation are of preeminent importance to discern the polyploid formation, we are only 

starting to untangle the complex processes involved. 

1.1.2. Evolutionary importance of polyploidy 

Polyploidization events in natural populations, on the one hand, can act as a 

mechanism for instantaneous sympatric speciation, due to barriers that prevent gene flow between 

the new polyploid and the progenitor species (Hendry 2009). On the other hand it can lead to 

isolated individuals in a population destined for extinction due to reproductive isolation (Minority 

cytotype exclusion, Levin 1975), hence, polyploidization is a double-edged sword. Although 

newly arisen polyploids are most likely to go extinct after the emergence in a population even 

before they are detected (Ramsey and Schemske 1998, Soltis et al. 2010), once they reproduce 

and become locally established, and survive while adapting to different environments, they can 

achieve long-term evolutionary success (see Soltis et al. 2015). Recent studies demonstrated 

numerous ancient polyploidy and that all extant angiosperms have gone through at least one round 

of polyploidy (e.g. Jiao et al. 2011) (Figure 1.1). Furthermore, apart from ancient polyploidy, there 

is abundant evidence that polyploidy has been a major contributor for diverisification of many 

plant taxa (e.g. Ranunculus – Paun et al. 2006, Hörandl 2008; Nicotiana – Leitch and Leitch 2008; 

Suaveolentes – Marks et al. 2011; Opuntia – Majure et al. 2012; Triticum – Bordbar et al. 2011; 

Viola – Marcussen et al. 2012; Salix – Serapiglia et al. 2015; Paspalum - Quarin 1992). 



5 
 

 

Over the past few decades, it was evident from studies that polyploidy is highly 

dynamic and a recurrent process, even within the same population. Multiple origin of polyploids 

can maintain high genetic and genotypic variation, arising from different individuals of the diploid 

progenitor populations (e.g. Werth et al. 1985). However, the extent to which the variation is 

contained depends on several factors such as how much genetic variation of diploid progenitors 

passed on to the poplyploids and the eventual gene flow among different entities (e.g diploids to 

polyploids and among polyploids) (Soltis et al. 2010). Furthermore, there is compelling evidence 

that polyploid genomes are highly dynamic in its tendency for variation and genomic novelty 

(reviewed in Soltis et al. 2009). Polyploidization alters gene dosage and gene expression (Hegarty 

 

 

Figure 1.1. Phylogenetic trees showing (a) polyploidization events in plants, adopted from 

Campbell et al. (2016); (b) incidence of apomixis in angiosperms, adopted from Hörandl and 

Hojsgaard (2012). Branch lengths are not to scale. 
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and Hiscock 2005) which can lead to phenotypic changes such as self-compatibility thereby 

acquiring new features, for example the ability to colonize new marginal habitats (Stebbins 1950, 

Vogel et al. 1999, Pannell et al. 2004). Polyploid genomes can act as a “genomic playground” 

allowing new genomic and structural changes (e.g. mutations) and eventually fix them leading to 

trait innovations (see Madlung 2013, Soltis and Soltis 2016).  

Polyploids can be predisposed to survival in new environments where they are 

preadapted to new habitats. For example, traits such as large cells and organs and slower rates of 

cell division in polyploids can affect polyploid populations’ ecophysiology (Mcarthur and 

Sanderson 1999, Ramsey and Schemske 2002) resulting in superior adaptability to certain 

environmental conditions and adapting to new and harsh habitats and ecological differentiation 

(Baack 2005, Te Beest et al. 2012). Rigorous study of ancient polyploid genomes in model plants 

(e.g. Arabidopsis thaliana, Brassica, and Wheat) revealed that primary polyploids go through series 

of genomic modifications resulting in post-polyploid diploidization. These ploidy changes with 

chromosome rearrangements give rise to genomes that function like diploids’ (reviewed in 

Mandáková and Lysak 2018). Post-polyploid diploidization is accompanied by a variety of 

processes (e.g. genome downsizing, loss/gain new gene functions, activation of transposable 

elements and epigenetic reprograming) for a successful diversification (e.g. Freeling 2009, Conant 

et al. 2014).  Mandáková et al. (2010) and Mandáková and Lysak (2018) categorized polyploids 

into three groups, depending on the age of WGD and the diplodization rate as an attempt to study 

the evolutionary significance of different polyploidization events: paleopolyploids, 

mesopolyploids, and neopolyploids. The authors further stated that “Dysploidies (ploidy change) 

may lead to reproductive isolation among post-polyploid offspring and significantly contribute to 

speciation and cladogenetic events” (Mandáková et al. 2010, Mandáková and Lysak 2018), and 

they concluded demonstrating the importance of genetic and genomic studies on paleo-, meso-, 

and neo-polyploids to understand the role of dysploid changes preceded by polyploidization in 

genome evolution and speciation. 

Intraspecific trait variation is known to affect the structure of the community, 

ecological opportunities and adaptive eco-evolutionary dynamics of the species (Bolnick et al. 

2011, Wellborn and Langerhans 2015). In the case of trait variation associated with polyploidy, 

especially reproductive modes affects the plant physiology, ecological preferences and dispersal 

abilities and as a result altering the population density, species’ niche preferences and the ecology 

of the plant community (Bolnick et al. 2011, Araújo et al. 2013). Therefore, it is essential to study 

such traits, especially in polyploid species, in oder to understand the local and regional population 

dynamics (Castro et al. 2012, Sonnleitner et al. 2016, Visger et al. 2016), to recognize the 

underlying mechanisms of species coexistance and evolutionary pathways, and to get insights into 
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ecological opportunity and adaptive diversification (Arrigo and Barker 2012, Wellborn and 

Langerhans 2015). During the past few years, there has been a rise of interest in the topic aided 

by new ecological modeling techniques studying the intraspecific diversity, especially in diploid-

polyploid species (e.g. Raabová et al. 2008, Kirchheimer et al. 2016, 2018, Sonnleitner et al. 2016, 

Visger et al. 2016, Chumová et al. 2017, Paule et al. 2017). Nevertheless, our understanding of 

interploidy relationships, especially in terms of ecological divergence and opportunity is far from 

complete. Therefore, more comprehensive analyses focusing on intraspecific trait variations in 

relation to bioclimatic conditions are needed and essential to better understand the natural forces 

underlying plant adaptation and distribution in different regions of the world. Furthermore, the 

influence of the environmental factors (e.g. climate, stress) on one of the essential factors of 

polyploidization, the formation of unreduced gametes is yet to be fully understood (Ramsey and 

Schemske 1998). Therefore, it is unequivocally important to study the variation of geographical 

distribution to understand the the environmental impact on the formation of unreduced gametes 

thereby polyploids. 

1.1.3. Cytotype contact zones and Mixed-ploidy populations 

Geographic regions where polyploid hybrids and their diploid progenitors overlap, 

often referred to as Contact Zones, provide ideal platforms to study characteristics of the early 

stages of poplyploid establishment and to test hypotheses concerning dynamics and evolution of 

polyploid complexes (reviewed in Petit et al. 1999, Soltis et al. 2016). Moreover, contact zones 

are significantly important for testing biologically relevant questions regarding, for example the 

nature of interactions between cytotypes (e.g. competition), fine scale genetic variation, or the 

emergence of reproductive isolation and reinforcement mechanisms (Cosendai et al. 2013, 

Hopkins 2013, Sabara et al. 2013, Zozomová-Lihová et al. 2015) . In general, three important 

processes that takes place in cytotype contact zones have been discussed: a) reproductive restrains 

between cytotypes by sterile intermediate cytotypes (e.g. triploids), b) produce conditions for the 

establishment of new polyploids, and c) enhance the dynamics and further evolution of polyploid 

complexes (see Petit et al. 1999). Depending on the origin of the contact zone, they are 

categorized into two: i) primary – zones where the emergence of neopolyploids is within a diploid 

population (e.g. Castro et al. 2012), ii) secondary – zones where formerly allopatric diploids and 

polyploids come into contact. While primary zones are composed of genetically related 

individuals, secondary contact zones are mostly composed of individuals combining genetically 

distinct parental gene pools (e.g. Hardy et al. 2000, Weiss et al. 2002, Stuessy et al. 2004, Kolár 

et al. 2009). Even though the two processes seem exclusive from each other, there reports of both 

primary and secondary contacts occurring in the same zone (e.g. Aster amellus – Castro et al. 

2012, Knautia arvensis – Kolár et al. 2009). 
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Distribution of cytotypes within contact zones are particularly relevant to 

understand the underlying evolutionary processes. Burton and Husband (1999) reported that the 

distribution of cytotypes in contact zones of Galax urceolata consisting mixed-ploidy populations 

is governed by a combination of genetic and ecological variables. Sympatric distribution of 

polyploids in mixed-ploidy populations in contact zones is regulated by ecological sorting in a 

heterogeneous physical environment (Husband and Schemske 1998). Fine scale shift of niche 

optima at contact zones and local adaptation to different ecological conditions propell the 

establishment of polyploid cytotypes in newly available habitats (e.g. Zozomová-Lihová et al. 

2015, Kirchheimer et al. 2018), especially in the areas that were glaciated during the last 

Pleistocene (Bierzychudek 1987). Furthermore, fine scale-niche differentiation, phenological shifts 

and increased selfing are observed in zones of cytotype coexistence in sympatry as a result of 

coping coexistence (e.g. Felber-Girard et al. 1996, Petit et al. 1999, Soltis et al. 2016). 

Despite overstated reproductive isolation of polyploidy from diploids, Stebbins 

(1971) pointed that gene flow can occur in two pathways: i) via sporadic hybrids forming triploids 

(also triploid bridge, Levin 2002) and eventually allowing gene flow from diploid progenitors to 

the polyploids, ii) via unreduced gametes (2n = 2x) formed in diploid progenitor populations 

followed by the crossed with reduced gametes (1n = 2x) of tetraploids. Both these pathways are 

unidirectional, allowing gene flow from diploids to higher ploidy although gene flow may occur 

in both directions (e.g. diploid Betula nana and tetraploid B. pubescence – Thórsson et al. 2001). 

Henry et al. (2005) stated that triploids of Arabidopsis thaliana can function as bridges between 

euploid types, hence mediate genetic link between diploids and tetraploids. Schinkel et al. (2017) 

using flow cytometry seed analysis showed that female triploid bridge via unreduced egg cell is a 

major pathway for polyploidization in Rununculus kuepferi, allowing gene flow to polyploids. The 

observation of high percentage of mixed-ploidy populations in contact zones reaffirms these 

mechanisms of gene flow are relevant for plant evolution (e.g. Husband and Schemske 1998, 

Husband and Sabara 2003, Husband 2004, Cosendai et al. 2013). Therefore, detailed examination 

of dynamics of gene flow, genetic variation and mechanisms of polyploid generation in mixed-

ploidy populations is unequivocally important to understand the early stages of polyploid 

establishment in nature. 

Fine-scale analysis of patterns of genetic variability and gene flow are crucial to 

understand how independent formations of polyploid cytotypes shape the genetic structure and 

adaptation of plant populations. Such kind of fine-scale analysis require the study of both newly 

formed and recently established polyploid taxa in order to get a glimps on different times along 

the phases of polyploid evolution. Nevertheless, there is only a handful of known polyploid species 

formed recently (<500 years): Spartina anglica (Ainouche et al. 2004), Tragopogon mirus and 
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T.micellus (Ownbey 1950, Soltis et al. 2004), Cardamine schulzii (Urbanska et al. 1997), Senecio 

cambrensis and S.eboracensis (Abbott and Lowe 2004) that may bear genetic clues to formation 

of polyploids. Contact zones are a potential source of new polyploid formation and establishment 

at different stages. Therefore, it is indisputably important to study contact zones of different origin, 

ages, and with different underlying mechanisms of segregation. 

1.2. Apomixis 

Apomixis is a widely used term for asexual reproduction via seeds in flowering 

plants (Nogler 1984, Asker and Jerling 1992). After the initial discovery of apomixis in a higher 

plants (i.e. Alchornea ilicifolia – Smith, 1841), the term was vaguely used for all forms of asexual 

reproduction found in different plant groups. The current usage of the term is synonymous with 

“agamospermy,” the formation of asexual seeds by a mechanism that avoids meiosis (apomeiosis) 

and fertilization of the egg cell (parthenogenesis), leading to asexual embryo development 

(Richards 1997). Apomixis is an effective form of asexual reproduction exploiting the benefits of 

seed dispersal (Mogie 1992). Studies on apomixis over the past decades revealed that this natural 

process plays a central role in plant evolution and diversification within apomictic systems (see 

Bicknell and Koltunow, 2004; Hojsgaard et al. 2014), apart from its potential utility in agricultural 

crop development (see Koltunow et al. 2013). 

1.2.1. Mechanisms of apomixis 

During sexual reproduction in angiosperms, a sequence of events must take place 

for viable seed production. i) Megaspore mother cell (MMC) differentiation followed by production 

of (three-) four megaspores (1n) via meiosis (megasporogenesis), ii) selection of one megaspore i.e. 

the subsequent programmed cell death of all but one megaspore, iii) The selected megaspore (1n) 

undergoes three mitotic divisions (megagametogenesis program) resulting in the development of 

an 8-nucleate embryo sac (ES) (one egg cell, two synergids at the micropylar end, two polar bodies 

that fuse to form a 2n central cell, and three antipodals at the chalazal end). Later when the flower 

opens and pollination occurs, iv) double fertilization (1. fusion of egg cell with one sperm, 2. 

fusion of central cell with the other sperm) takes place followed by embryo and endosperm 

development. Completion of all these processes is crucial in sexual seed production. This is the 

most common form of sexual ES formation observed in angiosperms, often known as the 

Polygonum type ES (Figure 1.2) (Willemse and van Went 1984); Other types bear varying number 

of reduced nuclei (e.g. less than four or ranging from 16-32) (Carman 1997). During apomixis, 

however, some of these processes are skipped or modified (Nogler 1984, Asker and Jerling 1992). 

Therefore, depending on the differential development, two major types of apomixis have been 

identified (Figure 1.2): Gametophytic – the seed embryo develops from an unreduced egg cell 
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without fertilization, and Sporophytic – the development of the embryo from a somatic cell 

(capable of embryogenesis without fertilization) of  different tissues inside the ovule (e.g. the 

nucellus, integuments). 

The sporophytic type of apomixis is also known as adventitious or nucellar 

embryony and they develop alongside sexual embryos. As in the sexual embryo development, 

adventitious embryony requires the formation of the endosperm. Therefore, the adventitious 

embryony utilizes the endosperm from sexual embryo sacs. As a result, adventitious embryony 

produces multiple embryos in a single seed, thus known as polyembryony. This type of apomixis 

is commonly seen in tropical trees and orchids (Naumova 1992).  

Gametophytic apomixis is divided into two major developmental pathways, based 

on the cell type that gives rise to the ES: i) Apospory – the unreduced ES develops from a somatic 

cell in the nucellus of the ovule called aposporous initial cell (AI).  The differentiation of AIs can 

occur at various times of ovule development. As a result, one meiotically produced ES and one or 

more aposporous ESs can coexist in the same ovule. Apospory can be further divided into two 

types: a) the Hieracium type – produces an unreduced eight nucleate ES cytologically similar to 

sexual Polygonum type; b) Panicum type – produces an unreduced four nucleate ES commonly 

without antipodals. ii) Diplospory – MMC gives rise to the unreduced ES where the MMC undergos 

restitutional meiosis or mitotic-like division. Diplospory is also further divided into two: a) meiotic 

diplospory – the MMC begins meiosis but does not complete, instead a restitution meiosis takes 

place followed by mitosis (e.g. Erigeron annuus); b) mitotic diplospory – the MMC undergoes direct 

mitosis without entering meiosis (e.g. Tripsacum dactyloides). Mitotic diplospory is the most 

common type of diplospory observed in plants (Nogler 1984, Crane 2001). 

The endosperm formation is essential for embryo development in higher plants, 

except for a few plant groups that seek other forms for acquiring nutrition (e.g. Orchids). This is 

achieved either by fertilization of the polar nuclei in the central cell by a sperm nucleus of the 

pollen grain (pseudogamy), or it can develop independently (autonomous development). In sexual  

ovules, the two central cells in the ESs are fertilized by a reduced pollen nucleus (sperm), 

maintaining a maternal to paternal genome ratio of 2:1. Interestingly, while deviations of any kind 

in the paternal contributions to the formation of the endosperm in Polygonum type ESs will 

drastically alter the development of the endosperm and a viable seed, in apomictic plants, ESs are 

cytologically and anatomically different and hence male and female contributions are asymmetric 

but deviations to the 2:1 paternal contribution to the endosperm are tolerated (Talent 2009). In 

Panicum type apomixis, the central cell is formed by only one unreduced maternal nucleus (2n=4x 

or higher), which is often fertilized by a reduced (n) sperm allowing the maternal and paternal 
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ratios of 2:1. However, in most apomicts, the central cell is formed by two unreduced maternal 

nuclei which might fuse before fertilization by a reduced pollen nuclei resulting in an endosperm  

nucleus with a 4:1 maternal to paternal genome ratio.  

 

 

Figure 1.2. The mechanisms of apomixis, mitotic/meiotid diplospory and apospory compared with 

Polygonum type sexual embryo sac development. The illustration is primarily based on Nogler 

(1984). The common pathways are aligned in the same verticle line. Sporophytic apomixis 

(adventitious embryony) is not shown. 

 



12 
 

1.2.2. Genetic control of apomixis 

Apomixis is a heritable trait and can be expressed facultatively with sex (Ozias-

Akins and van Dijk 2007). However, the genetic control of apomixis is still poorly known despite 

the increased interest. Considering different apomictic mechanisms and the occurrence of 

apomixis in angiosperm families (discussed below), it is evident that apomixis exhibits multiple 

independent origin (Carman 1997, van Dijk and Vijverberg 2005). 

Apomixis was previously thought of a consequence of polyploidy. This however 

does not explain the existence of non-apomictic polyploids (Carman 1997) although studies have 

pointed the strong connection of polyploidy and hybridization to activate a switch from sex to 

apomixis in plants (Hörandl and Hojsgaard 2012, Lovell et al. 2013). Nevertheless, studies have 

attempted to decipher complex nature ofthe genetic control of apomixis. Apomixis in flowering 

plants has been shown to be inherited as a dominant trait (reviewed in Hand and Koltunow, 2014). 

Although earlier studies suggested that apomixis is controlled by a single dominant locus, later, it 

was found that several developmental components of apomixis in some taxa are controlled by 

independent loci (e.g. Taraxacum – van Dijk et al. 1999, Poa – Albertini et al. 2001, Hieracium – 

Catanach et al. 2006, Hypericum – Schallau et al. 2010, Cenchrus – Conner et al. 2013). In 

Hieracium praealtum, the deletion of LOA (LOSS OF APOMEIOSIS) or LOP (LOSS OF 

PARTHENOGENEIS) loci reactivated the sexual pathway (Catanach et al. 2006), implying that 

apomixis in Hieracium is superimposed on the sexual pathway. Therefore, Koltunow et al. 2013 

stated that apomixis is not completely independent of the genetic control of the sexual pathway. 

This is supported by the observation that apomixis and sexuality are not exclusive and they 

coexists. This rather seems different in the case of diplospory because  sexual pathway is altered 

in a way that the meiosis is not completed (Rodrigues et al. 2010), rather than having a completely 

independent control of apomixis. 

The suppression of recombination, frequently found around the apomixis loci, 

poses a challenge to identify apomictic loci. This recombination frequency distortion in many 

apomictic species, points to the assumption of increased divergence of alleles involved in 

apomixis. The hemizygosity of the apomixis associated loci has been found to be causing such 

divergence in some extreme cases e.g. Hieracium – (Okada et al. 2011) and Pennisetum – 

(Akiyama et al. 2004). In other instances, apomixis loci have been associated to heterochromatin 

e.g. Pennisetum squamulatum (Akiyama et al. 2004) and/or with increased repetitive or 

transposon-rich genome regions e.g. apospory-specific genome region (ASGR) in Pennisetum, 

LOA in Hieracium, and apomictic controlling locus (ACL) in Paspalum) (Calderini et al. 2006). As 

a result, much attention has been given to these repetitive sequences as they may explain the 

deviation of sexual pathway by rearrangement of the repetitive regions enabling apomixis 
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(Koltunow and Grossniklaus 2003). However, this was not evident in progeny tests of crosses 

between Hieracium pilosella and H.praealtum when tested with LOA-linked markers as they 

lacked the repetitive structure (Kotani et al. 2014). This has led to the hypothesis that chromosomal 

restructuring and recombination degree presumably are an indication of the age of apomixis in a 

species (reviewed in Hand et al. 2014). Nevertheless, while most of the studies concluded without 

much luck with identifying apomictic genes, a few led to the identification of several candidate 

genes with a potential role in the induction and maintenance of apomixis (see Koltunow et al. 

2013, Hand and Koltunow 2014).  

Rapid development of transcriptomic analysis has also allowed numerous studies 

to assess gene expression in apomixis. Comparative analysis of gene expression has revealed 

massive differential expression of genes, including genes putatively responsible for apomictic and 

sexual pathways, (Albertini et al. 2005, Polegri et al. 2010, Sharbel et al. 2010, Okada et al. 2013, 

Ortiz et al. 2017). However, aforementioned studies have not been yet able to identify a master 

candidate gene for apomixis. Further, studies have identified apomeiosis-like phenotypes in 

mutants that replace meiosis with a mitosis and thus, they mimick apomeiosis (e.g. MiMe – Mitosis 

instead of Meiosis in Arabidopsis thaliana – D’Erfurth et al. 2008). In a different study, inactivation 

of DNA methyltransferase in maize produced diploid gametes and multiple ES (Garcia-Aguilar et 

al. 2010), suggesting epigenetic influence of the regulation of sexual and apomictic pathways (see 

Kumar 2017). 

Recent studies have identified environmental conditions to be an important factor 

that may directly influence the reproductive pathway (e.g. Knight et al. 2006, Liu et al. 2011). In 

this regard, environmental stress (e.g. temperature fluctuation, drought, etc.) has been pointed out 

as a key environmental factor that affects both sexual and apomictic pathways (Gounaris et al. 

1991, Rodrigo et al. 2017, Klatt et al. 2018). There are several reports of increase in sexuality in 

facultative apomictic plants under stress conditions (Carman et al. 2011, Mateo De Arias 2015) as 

well as vice versa; For instance, drought conditions increased the production of sexual ES in 

Boechera (Mateo De Arias 2015) while cold treatments increased the apomictic seed formation in 

Ranunculus kuepferi (Klatt et al. 2018). Nevertheless, apart from a handful of studies, our 

understanding of the environmental influence on the modulation of reproductive pathways within 

apomictic complexes is far from being satisfactory.  

1.2.3. Importance of apomixis 

Apomixis in flowering plants is tightly linked to polyploidy even though the 

mechanisms from which they arise are not necessarily similar. Most interestingly, sexual 

counterparts of the same or closely related taxa are usually diploids (Asker and Jerling 1992, 

Koltunow 1993). Apomixis coupled with polyploidy not only provides reproductive assurance to 
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polyploids by aiding them to overcome minority cytotype disadvantages (Levin 1975), but also 

enhances dispersal colonizing new habitats, and reinforce founder events (Baker 1955). 

Simulation of reproductive mode in apmictic complexes showed that a switch to apomixis 

overemphazises the superiority of polyploids in their colonizing abilities (e.g. Kirchheimer et al. 

2018). Due to the avoidance of meiosis, apomixis counteracts genetic drift and maintain higher 

heterozygosity (Paun et al. 2006, Cosendai et al. 2013). Furthermore, processes such as, 

spontaneous mutation, genetic restructuring, and residual sexuality introduces additional genetic 

variation to apomictic populations (Hörandl and Paun 2007, Hojsgaard and Hörandl 2015), 

further diversifying the apomictic taxa. It has been also suggested that apomicts can reverse to 

obligate sexuals (Carman 1997, Hörandl and Hojsgaard 2012, Hojsgaard and Hörandl 2015) and 

they may diversify more rapidly than their sexual diploid progenitors as they accumulate new traits 

with genomic rearrangements along the way and expanded distribution allowed by superior 

colonizing abilities of pro-apomictis (Soltis et al. 2016, Mandáková and Lysak 2018). 

Many studies on apomixis have and are being focused on its potential utility in 

crop development as it is, not only a convenient mechanism of clonal propagation via seeds but 

also it has shown to maintain hybrid vigor in progenies over generations (reviewed in Koltunow 

1993, Bicknell and Koltunow 2004, Ortiz et al. 2013, Kumar 2017). Nevertheless, the focus of my 

project is to assess the evolutionary consequences and importance of apomixis. 

Over the years since the first description of apomixis, studies continuously found 

apomixis in different plant taxa increasing the number of species, genera and families containing 

apomixis. Stebbins (1941) – 23 families, 44 genera; Asker and Jerling (1992) – 108 genera, 

Naumova (1992) – 116 genera and Carman (1997) – 222 genera are the major revisions along the 

history. Previously it was hypothesized that a predisposition of apomixis  occurring in three large 

families: Asteraceae, Poaceae, and Rosaceae (Carman 1997, Richards 1997, Ozias-Akins and van 

Dijk 2007). However, in the last comprehensive study on the occurrence and distribution of 

apomixis in angiosperms, Hojsgaard et al. (2014) reported the presence of apomixis in 73 families 

(19% of all described plant families) and 293 genera (ca. 2.2% of all plant genera), and showed 

that apomixis is scattered among all angiosperms thus  founding is no support for a “predisposition 

hypothesis”. The most common type of apomixis was adventitious embryony, found in 148 

genera, followed by apospory (110 genera) and diplospory (68 genera). Interestingly, 

combinations of all three types of apomixis occur in several genera (ca.17 genera). Furthermore, 

their study also showed that total numbers of genera in families were highly correlated to the 

frequency of apomictic-containing genera, suggesting that apomixis is associated to biodiversity 

(see Hojsgaard et al. 2014). A comparison of the distribution of polyploidy and apomixis among 

major plant groups is illustrated in the Figure 1.1. Despite the considerable lack of studies on 
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apomixis in plants covering all regions and climatic zones, apomixis appear to occur in all climatic 

zones of the earth, including Arctic (except in Antarctic) and provides a clear advantage for 

exploiting new habitats, environments and niches (Carman 1997, Whitton et al. 2008, Tucker and 

Koltunow 2009, Hojsgaard et al. 2014b, Firetti 2018). 

Another phenomenon associated with apomixis is geographical parthenogenesis, 

where asexuals exhibit a wider distribution than their sexual progenitors (Hörandl 2006, 2008). 

This is commonly seen along latitudinal gradients and previously glaciated areas (Kearney 2005, 

Hörandl 2008). In this regard, it is argued that the ability of asexual plants to found a new 

population (uniparental reproduction) is a major advantage (Mogie et al. 2007, Hörandl 2009). 

Superior colonizing abilities of apomictic taxa combined with polyploidy have allowed them to 

spread into new habitats and occupy novel niches, acquiring broader distributions and species 

expansion (Chapman et al. 2003, Suda et al. 2004, Brochmann et al. 2004, Hörandl 2006, 2008, 

Soltis et al. 2010). Three of many hypotheses on geographical parthenogenesis have been often 

tested: i) General Purpose Genotype model – this model assumes that a highly flexible genotype 

emerges as a result of heterogeneous environmental conditions (Lynch 1984), ii) The Frozen Niche 

Variation model suggests that different apomictic descendants produced by sexual hybridization 

freezes a part of the genetic, genotypic and the niche variation of the parents (Vrijenhoek 1994), 

iii) The Baker’s Law is based on the assumption that plant characteristics such as selfing and 

apomixs, that enhance uniparental reproduction and founder events will maintain superior 

colonizing abilities and range expansion (Baker 1955, 1967). These three major concepts have 

received both positive and negative support from studies. I also test these hypotheses and draw 

inferences on the geographical parthenogenesis observed in my model system. 

Although the evolutionary significance of geographical parthenogenesis is not well 

understood yet, it is often seen as a consequence of the short term success provided by asexuality 

(e.g. Van Dijk, 2003). It has been also suggested that parthenogenesis in several cases may have 

more of a secondary role stabilizing strongly selected hybrid genotypes; hence parthenogenesis 

rather conveys the role of hybridization than sex per se (Kearney 2005). In contrast, formation of 

autopolyploids accompanied by apmixis have helped the range expantion and niche divergence 

allowing the species to occupy new habitats which otherwise would have been unavailable (e.g. 

Cosendai et al. 2013, Kirchheimer et al. 2018). Despite the increased interest and enormous efforts 

by researchers to understand all possible causes and consequences of apomixis, our understanding 

of the complex dynamics of apomixis and its advantages in plant diversification both in short term 

and the long run remain unclear. 



16 
 

1.3. Paspalum intermedium Munro ex Morong 

The species of my model system in this project is Paspalum intermedium, a 

perennial Panicoid grass of the genus Paspalum L.,  one of the ten largest genera within Poaceae, 

with a centre of origin in tropical South America (Zuloaga and Morrone 2005). The genus is a 

well-known model system for biosystematics and reproductive biology studies (e.g. Quarin 1992, 

Giussani et al. 2009, Rua et al. 2010, Ortiz et al. 2013). Cytogenetic evaluation of different 

accessions shows that ploidy levels in Paspalum species range from diploid to hexadecaploid (2x 

- 16x) (e.g. Honfi et al. 1990, Pagliarini et al. 2001, Hojsgaard et al. 2009). In P. intermedium we 

found two cytotypes with contrasting reproductive modes occurring in nature, sexual self-sterile 

diploids (2n = 2x = 20) and apomictic self-fertile auto-tetraploids(2n = 4x = 40) (diploids and), 

intermingled in sympatry, parapatry or allopatry (Burson and Bennett 1970, Norrmann et al. 1989). 

The centre of diversification of P. intermedium is considered to be the neo-

subtropics, where they inhabit marshy grasslands in diverse phytogeographic formations along 

ecological gradients in Argentina, Paraguay, Bolivia and Brazil (Zuloaga et al. 2012). Overall, the 

species occupy a wide range of ecological and climatic gradients (e.g. latitudinal gradient) in Sub-

tropical and temperate regions of Argentina (Zuloaga et al. 2012, Karunarathne et al. 2018). 

Therefore, P. intermedium not only provides a unique venue for testing various 

hypotheis on polyploidization, its consequences and geographical parthenogenesis but also serves 

as an ideal model system for studying cytotype coexistence, ecological and biological factors 

governing intraspecific trait variation along climatic, geographic and ecological gradients, 

population dynamics and adaptation at local and regional geographic scales. Previous studies 

have demonstrated the utility of the species as a convenient non-model plant for such studies; For 

instance,  

i. Meiotic and apomeiotic processes had been well-characterize by embryology, cytogenetic 

and molecular studies. Most studies shows apospory as main type of functional apomixis 

found in tetraploids (e.g. Martínez and Quarín 1999, Martínez et al. 2001, Hojsgaard et al. 

2008). On the other hand, anatomical features of meiotic and apomictic embryo sacs are 

different, which makes it easy to identify and calculate relative proportions of functional 

reproductive pathways (e.g. Hojsgaard et al. 2013). Furthermore, specific structure of 

embryo sacs observed in the species allow for discrimination of reproductive origin of seeds 

and functional reproductive pathways by Flow Cytometry (e.g. Hojsgaard et al. 2013), 

hence, P. intermedium is a convenient model species to study not only the reproductive 

biology of polyploid complexes but also the competition and the environmental influence 

on the reproductive success of different cytotypes with varying reproductive pathways. 
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ii. The species exhibit divergent reproductive systems and cytotypes (i.e. allogamy vs. 

autogamy, sexuality vs. apomixis and diploidy vs. polyploidy) which has been reported as 

substantial contributors for the genetic diversity of plants that facilitate ecological 

diversification and evolutionary potential of species and plant communities (Tilman and 

Lehman 2001, Pauls et al. 2013, Allan et al. 2015); more on ecological and niche 

divergence in P.intermedium is published under this project (Karunarathne et al. 2018 – 

presented in Chapter 2). 

iii. The tetraploids are autopolyploid (Norrmann et al. 1989), thus avoid potential suppression 

of alleles due to genomic asymmetry after hybridization (e.g. Feldman et al. 2012). Further, 

the polyploid complex is also relatively new in terms of evolutionary time compared to other 

systems (Hojsgaard et al. 2009, Karunarathne et al. 2018), which represents an ideal 

opportunity to examine ecological and evolutionary mechanisms acting upon natural 

populations, like ecological niche divergence and sources of genetic variation, cytotype 

coexistence and recurrent polyploidy.  

1.4. Aims of the Project 

In this thesis project, I conducted a comprehensive and multidisciplinary analysis 

of intraspecific cytotype associations, ecological and niche divergence, reproductive pathway 

variation and genetic diversity among different genetic systems and cytotypic associations using 

Paspalum intermedium.  

The first part of the study focused on deciphering natural factors and stressors 

governing intraspecific trait diversity, cytotype coexistence and their dynamics within and among 

populations. Therefore, in Chapter 2, I focus on the analysis of Niche divergence, changes in 

phenology and reproductive strategies between cytotypes to discern ecological consequences of 

polyploidy (Chapter 2). In chapter 3, I present a thorough population level analysis focusing on 

the influence of environmental factors (e.g. bioclimatic variables) on the expression of apomixis 

and meiosis. (Chapter 3).  

In chapter 4, I present a study of population structure of polyploids in comparison 

to their diploid progenitors to assess the genetic variation within and among populations and 

between cytotypes (Chapter 4) since such studies in various systems (e.g. old and new polyploid 

complexes) have shown significant importance in terms of understanding the evolutionary history 

where it can generate a snapshot of the ancestor diploids and provide a fine scale resolution of 

the origin of different ploidy levels, as well as providing clues on the fate of the neopolyploids. 

Furthermore, it can also provide information on various factors that shape the distribution patterns 

observed in plants; for example, the influence of environmental factors and spatial separation on 

the coexistence and establishment of the polyploid complexes. In this regard, studies on newly 
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established polyploids or in the process of establishment such as P. intermedium are of increased 

importance as they can provide crucial insights into the genetic processes that take place soon 

after and/or during the process of establishment of polyploidization. Findings were also useful to 

recognize patterns of polyploid formation and dispersal and to evaluate the proposed hypotheses 

explaining the mechanism to geographical parthenogenesis. 

 

Furthermore, following specific objectives are addressed in different chapters. 

Chapter 2 – In this chapter, I (i) evaluate the natural prevalence of P. intermedium cytotypes at 

various spatial scales; (ii) evaluate reproductive and phenological shifts; (iii) assess climatic and 

ecological preferences between cytotypes of P. intermedium; (iv) determine the presence of 

singular ecological and biological signals driving cytotype distribution and dominance; and (v) 

provide evidence of niche differentiation between cytotypes and further insights into natural 

stressors governing the dynamic of cytotype associations, geographic displacement and range 

expansions that contribute to local adaptation and ecological opportunity. 

Chapter 3 – The main objectives of the chapter 3 was to (i) assess the varied expression of apomixis 

in population level, (ii) get insights into the competition between meiotic and apomictic pathways 

in facultative apomictic complexes, (iii) evaluate the fitness levels of each reproductive mode in 

terms of fertility, (iv) examine the spatial and temporal variation of apomixis, and (v) determine 

the ecological and environmental influence on the expression of apomixis. 

Chapter 4 – In the chapter 4, I present the findings obtained using P. intermedium with flow 

cytometry, genetic marker AFLPs, and ecological and geographical data, (i) to assess the genetic 

structure of populations of two cytotypes showing niche divergence, (ii) to determine the origin 

and genetic variability of within and among autotetraploid populations, (iii) to examine the genetic 

composition of mix ploidy and contact zone populations, and finally (iv) to draw inferences on 

the distribution patterns and ecological amplitude of the two cytotypes based on the genetic 

variability. 
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CHAPTER 2 

2. DISTRIBUTION PATTERNS AND ECOLOGICAL DIFFERENTIATION IN DIFFERENT 
CYTOTYPES OF PASPALUM INTERMEDIUM 

This chapter presents the results of cytotype determination, regional and local 

assemblage patterns and niche differentiation of the polyploid complex P. intermedium. The 

findings are published in the research article Karunarathne et al., 2018. Intraspecific ecological 

niche divergence and reproductive shifts foster cytotype displacement and provide ecological 

opportunity to polyploids. Annals of Botany 121: 1183–1196. 

 

2.1. ABSTRACT  

Niche divergence between polyploids and their lower ploidy progenitors is one of the 

primary mechanisms fostering polyploid establishment and adaptive divergence. However, 

within-species chromosomal and reproductive variability have usually been neglected in 

community ecology and biodiversity analyses even though they have been recognized to play a 

role in the adaptive diversification of lineages. I used Paspalum intermedium, a grass species with 

diverging genetic systems (diploidy vs. autopolyploidy, allogamy vs. autogamy and sexuality vs. 

apomixis), to recognize the causality of biogeographic patterns, adaptation and ecological 

flexibility of cytotypes. Chromosome counts and flow cytometry were used to characterize within-

species genetic systems diversity. Environmental niche modelling was used to evaluate 

intraspecific ecological attributes associated with environmental and climatic factors and to assess 

correlations among ploidy, reproductive modes and ecological conditions ruling species’ 

population dynamics, range expansion, adaptation and evolutionary history. Two dominant 

cytotypes non-randomly distributed along local and regional geographical scales displayed niche 

differentiation, a directional shift in niche optima and signs of disruptive selection on ploidy 

related ecological aptitudes for the exploitation of environmental resources. Ecologically 

specialized allogamous sexual diploids were found in northern areas associated with higher 

temperature, humidity and productivity, while generalist autogamous apomictic tetraploids 

occurred in southern areas, occupying colder and less productive environments. Four localities 

with a documented shift in ploidy and four mixed populations in a zone of ecological transition 

revealed an uneven replacement between cytotypes. Polyploidy and contrasting reproductive 

traits between cytotypes have promoted shifts in niche optima, and increased ecological tolerance 

and niche divergence. Ecologically specialized diploids maintain cytotype stability in core areas 

by displacing tetraploids, while broader ecological preferences and a shift from sexuality to 

apomixis favoured polyploid colonization in peripheral areas where diploids are displaced, and 

fostered the ecological opportunity for autotetraploids supporting range expansion to open 

southern habitats. 

 

 



20 
 

2.2. INTRODUCTION 

Polyploidization events in plants have been recurrently associated with niche 

divergence and ecological differentiation of cytotypes as an important mechanism for the 

establishment of new polyploids in nature. This facilitates both the maintenance of intraspecific 

cytotype diversity as well as sympatric speciation events among closely related taxa (Soltis et al. 

2004, Schluter 2009, Givnish 2010, Glennon et al. 2014, Anacker and Strauss 2014, Visger et al. 

2016). Thus, polyploidy alters the ecological niche of a species by broadening environmental 

tolerance and providing ecological and evolutionary flexibility (e.g. Dubcovsky and Dvorak 2007, 

Fawcett et al. 2009). Although there are many concepts of ‘niche’ (Soberón and Nakamura, 2009), 

the Grinnellian niche, defined by the sub-set of scenopoetic (non-interactive) environmental 

conditions under which populations of a species have positive growth rates (Grinnell 1917, 

Soberón 2007), is the one extensively used in recent years. This concept has become popular also 

because data for niche-defining variables (e.g. topography, average temperature, solar radiation, 

precipitation, etc.) are progressively becoming available for the entire planet (e.g. Turner et al., 

2003). At present, increasing availability of public databases [e.g. the Global Biodiversity 

Information Facility (GBIF); WorldClim] and information gateways [e.g. Geographic Information 

Systems (GIS)], and a renewed interest in plant polyploidy allow modern biogeography to use 

mathematical models [species distribution modelling (SDM)/ ecological niche modelling (ENM)] 

(e.g. Elith and Leathwick 2009, Soberón 2010) to better understand how polyploidy and associated 

features influence niche evolution, habitat suitability and organism distributions. 

Natural intraspecific trait variation associated with polyploidy, in particular 

reproductive modes, is widely known to affect plant physiology, ecology and dispersal abilities. 

Experimental studies indicate that intraspecific trait variation can have a significant effect on 

community ecology (Bolnick et al. 2011, Araújo et al. 2013). Intraspecific trait variation is 

expected to alter population density, niche breadth and the strength of the interaction among 

phenotypes, affecting the structure of the community, ecological opportunities and adaptive eco-

evolutionary dynamics (Bolnick et al. 2011, Wellborn and Langerhans 2015). The study of traits 

such as cytotype diversity, dispersal ability, phenology, different reproductive modes and 

associated environmental signals is essential for understanding local and regional population 

dynamics (e.g. Castro et al. 2012, Sonnleitner et al. 2016, Visger et al. 2016), provides insights 

into evolutionary pathways and forces driving species coexistence, ecological opportunity and 

adaptive diversification (Arrigo and Barker 2012, Wellborn and Langerhans 2015). For example, 

reproductive shifts toward self-fertility and apomixis (asexual reproduction via seeds) are 

frequently linked to polyploid cytotypes (Asker and Jerling 1992, Robertson et al. 2010) and 

drastically affect species’ dispersal abilities and distribution patterns. Such features provide 
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reproductive assurance to polyploids by enabling them to overcome density-dependent 

reproductive limitations (e.g. minority cytotype disadvantage; Levin 1975) and gamete 

incompatibility (Asker and Jerling 1992, Hojsgaard et al. 2014b), and facilitate ‘founder events’ 

(e.g. Baker’s Law; Baker 1955). Consequently, polyploids with better colonizing abilities may 

capitalize on ecological opportunities, achieve wider distributions leading to phenomena such as 

geographical parthenogenesis (e.g. Hörandl 2006, Vrijenhoek and Parker-Jr. 2009) and enhance 

diversification abilities via reversals to sex (Hojsgaard et al. 2014a, Hojsgaard and Hörandl 2015). 

Despite the increased interest in the topic, studies examining intraspecific diversity 

and modelling ecological divergence in diploid–autotetraploid species (e.g. Visger et al., 2016), 

diploid–allopolyploid species (e.g. Sonnleitner et al. 2016) or other diploid–polyploid associations 

(e.g. Raabová et al. 2008, Chumová et al. 2017, Paule et al. 2017) are just starting to be feasible 

as high-resolution climatic data sets are becoming available. More studies carrying comprehensive 

analyses of intraspecific traits and bioclimatic conditions are needed and essential to better 

understand the natural forces underlying plant adaptation and distribution in different regions of 

the world. Here, we utilize the grass species Paspalum intermedium Munro ex Morong to decipher 

natural factors and stressors governing intraspecific trait diversity, cytotype coexistence and their 

dynamics within and among populations. Niche divergence and changes in phenology and 

reproductive strategies that may provide a platform for ecological opportunity are also studied to 

discern ecological consequences of polyploidy. 

In this part of the study, I (1) evaluate the natural prevalence of P. intermedium 

cytotypes at various spatial scales; (2) evaluate reproductive and phenological shifts; (3) assess 

climatic and ecological preferences between cytotypes of P. intermedium; (4) determine the 

presence of singular ecological and biological signals driving cytotype distribution and 

dominance; and (5) provide evidence of niche differentiation between cytotypes and further 

insights into natural stressors governing the dynamic of cytotype associations, geographic 

 

2.3. MATERIALS AND METHODS 

2.3.1. Sampling sites and collection of plant materials 

Plant materials were collected from Eastern Gran Chaco, Central and Northern 

Mesopotamia (core distribution areas of the species), and Northern Pampas and Western Gran 

Chaco (peripheral distribution of the species) in Argentina (Table 2.1; Figure 2.1; Supplementary 

Data Table S2.1) (see Zuloaga et al. 2012). Additional information on cytotype occurrences was 

gathered from the literature and from material examined at different herbaria (MNES, CTES, BAA, 

SI, B, GOET, HUH and PE) (acronyms follow Thiers 2017) (see Supplementary Data Table S2.2). 
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Sampling was done during two different time periods (November/December and February/ March) 

to avoid seasonal bias on cytotype frequencies and evaluate phenological differentiation between 

cytotypes. Changes in phenology were evaluated by grouping observations into early (October–

December) and late (January–March) flowering followed by testing for independence. Collection 

sites were categorized into (1) sites for ploidy determination only (up to three individuals were 

collected) and (2) sites to evaluate cytotype diversity and dynamics at the population level (on 

average 30 individuals per population were collected) (Supplementary Data Table 1). For the 

latter, sampling sites were selected to attain a maximum representation of the distribution range 

of the species (i.e. North–South and East–West), and include both macro-scale (among 

populations) and micro-scale (within populations) trends. Overall, samples were collected from 

75 localities, out of which 35 were selected for population evaluations (Table 2.1; Supplementary 

Data Table S2.1). A transect spanning the longest length available across the population was 

followed to obtain information on local dispersal of cytotypes. An even representation of 

individuals within the population was attained by uniform sampling (i.e. the distance between two 

consecutive individuals was maintained the same, and varied between 4 and 12 m depending on 

the spatial dimensions of each population). Young (i.e. smaller bushes with a diameter <40 cm 

with no or a few flowering stems) and mature individuals (i.e taller bushes with a diameter >60 

cm with many flowering stems) were distinguished and collected to account for individual 

turnover and overlapping generations. Several vouchers from all locations were prepared and 

deposited at different herbaria (CTES, MNES, BAA and SI). 

Table 2.1. Summary of ecoregions, collection sites, number of individuals and ploidy levels of 

the P. intermedium plants analysed. 

 

Geographic 
region 

Number of collection sites for Total n° of 
individuals 

Ploidy (x=10) 

Mesopotamia 

    
populations 5 119 2x 
 17 460 4x 
solitary 
individuals 

4 5 2x 
6 10 4x 

Gran Chaco 

    
populations 10 301 2x 
 10 286 4x 
solitary 
individuals 

6 6 2x 
6 6 4x 

Pampas 

    
populations - - 2x 
 1 30 4x 
solitary 
individuals 

- - 2x 
1 1 4x 

Total  68 1224  
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2.3.2. Assessment of ploidy and reproductive trait variation 

The ploidy level of each sample was determined by flow cytometry (FC) estimations 

of relative nuclear DNA contents in comparison with a P. intermedium plant with known ploidy 

(2x = 2n = 20). An AT-specific DNA fluorochrome, DAPI (4’,6-diamidino-2-phenylindole) was 

used for FC with a CyFlow® Ploidy Analyser (Sysmex Partec GmbH, Görlitz, Germany). The 

protocol described by Suda and Trávníček (2006) for dried leaf materials was followed, with 

modifications (detailed in Supplementary Data Method S1). Histograms with a relative 

fluorescence intensity of around 5000 nuclei were analysed with CyView™ v. 1.5 data acquisition 

and data analysis software (Sysmex Partec GmbH, Münster, Germany). A maximum coefficient of 

variation (CV) value of 5 % was accepted for each sample peak (G0/G1 peak). FC ploidy 

determinations were cross-checked with (1) repetitions of FC measurements in selected samples 

and (2) chromosome counts in cells at the mitotic division of 17 samples recognized as diploids 

or tetraploids through FC analyses (following Hojsgaard et al. 2009). Mitotic metaphase cells were 

observed under a Leica DM5500B microscope (Leica Microsystems GmbH, Wetzlar, Germany) 

for chromosome counts. 

Analysis of reproductive modes was conducted using FC. Open pollinated seeds 

from three randomly selected individuals per population were collected from a total of 20 P. 

intermedium populations with unknown ploidy (other populations did not bear mature seeds 

during the fieldwork). After ploidy determination, only three out of 20 were determined as diploid 

populations. A total of 500 seeds belonging to 15 populations (three diploids and 12 tetraploids) 

were used to assess variations in reproductive modes at geographic and/or cytotype levels 

following the methodology of Hojsgaard et al. (2014a) with a few modifications (details in 

Supplementary Data Method S2.2). The relative fluorescence intensity of around 3000 nuclei was 

analysed with CyView™, and discrete peaks were assigned to embryo and endosperm seed tissues. 

A maximum CV value of 5 % was accepted for each peak. Reproductive pathways were 

determined according to the rationale by Matzk et al. (2000) and following considerations for 

Paspalum spp. as in Hojsgaard et al. 2013). Sexually derived seeds have a diploid embryo (2n; 

2C-value) and a triploid endosperm (3n; 3C-value), whereas seeds derived from apomixis carry a 

diploid embryo and a pentaploid endosperm (5n; 5C-value) (for details, see Hojsgaard et al. 2013). 

2.3.3. Cytotype localities, environmental and climatic data 

Since scenopoetic variables (abiotic variables that do not interact with each other) 

are regarded as being associated with heritable components of the physiology of species (Kearney 

and Porter 2009), it was assumed that (1) geographic distribution reflects adaptation and 

underlying ecological tolerance and (2) the occurrence data assembled here are a non-biased 

representation of intraspecific diversity and variability. Thus, the absence of any cytotype in a 
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geographic area was considered to be a result of natural processes underlying ecological signals, 

adaptation and evolutionary mechanisms acting within the species. 

 

 

Ecological data of 26 bioclimatic variables were downloaded from various open-

source databases. Nineteen commonly used bioclimatic variables were retrieved from the 

WorldClim data set (1950–2000; version 1.4) at 2.5 arc-min resolution (approx. 5 km2) (Hijmans 

et al. 2005; http://www.worldclim.org). The elevation data were downloaded from the Shuttle 

Radar Topography Mission (SRTM; http://srtm.csi.cgiar.org/) elevation data set at 30 arc-s (approx. 

1 km2) resolution. Photosynthetically available radiation (PAR) data were downloaded from the 

 

Figure 2.1. Map displaying all collection localities of P. intermedium and ploidy levels 

determined in the present study. The North–South cytotype cline is apparent, together with an 

East–West transition zone where cytotypes occur intermingled in pure and mixed populations. 

Ploidies at sites of populations are represented by data from at least 30 individual plants. Ploidies 

at sites of individuals are represented by data from 1–3 individuals. Triangles 1, 2, 3 and 4 

indicate populations (geographical sites) representing vis-à-vis ploidy shifts between previous 

and present records (see the Discussion). Grey lines demarcate country boundaries (block 

letters) and dotted lines separate ecoregions (italic letters) 

http://www.worldclim.org/
http://srtm.csi.cgiar.org/
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Moderate Resolution Imaging Spectroradiometer (MODIS) database (Myneni et al. 2015; 

https://lpdaac.usgs.gov). The annual mean UV-B radiation data set was downloaded from glUV (a 

global UV-B radiation data set for macro ecological studies) at 15 arc-min resolution (Beckmann 

et al. 2014; www.ufz.de/gluv). Cloud cover percentage, vapour pressure and frost day frequency 

data were downloaded from CGIAR CSI (www.cgiar-csi.org) at 30 arc-s resolution. Finally, soil 

type data (soil taxonomy) were downloaded from the SoilGrids database (ISRIC, 2015; 

www.soilgrids.org) in 30 arc-s resolution. Data sets with different resolutions were either 

aggregated or disaggregated to 2.5 arc-min accordingly using the bilinear method (Hijmans and 

Van Etten 2015) to match WorldClim data. R packages ‘sp’ (Bivand et al. 2013) ‘maptools’ (Bivand 

and Lewin-Koh 2013) and ‘raster’ (Hijmans and Van Etten 2015) were used in these steps. 

For the analysis of past ecological niches of cytotypes, bioclimatic variables for 

past climatic conditions [Last Glacial Maximum (LGM) – approx. 21 000 years before present 

(ybp) and Mid-Holocene (MH) – approx. 6000 ybp] were retrieved from WorldClim for two 

different scenarios (BCC-CSM1-1 and CCSM4; see www.worldclim.org) at 2.5 arc-min resolution. 

2.3.4. Environmental niche modeling 

Species and cytotype distribution models were constructed using MaxEnt v. 3.3.3k 

(Phillips et al. 2006). A raster grid stack of all 26 bioclimatic variables for the entire South American 

continent was generated and the relevant data at each collection point for cytotype distribution 

analysis were extracted using the R package ‘dismo’ (Hijmans et al. 2016). A multiple logistic 

regression was performed to test ecological preferences and associations between ploidy and 

environmental variables. The R-package ‘nnet’ (Venables and Ripley 2002) was used for the 

analysis. Principal component analysis (PCA) was performed for the 26 variables using the R-

package ‘vegan’ (Oksanen et al. 2016) to determine the main drivers of the niche space and 

cytotype differentiation. To avoid overfitting the data and minimize niche aggregation of cytotypes, 

we removed predictor variables exhibiting high pair-wise correlation values (Fisher weighted 

mean r values >0.85) and high collinearity on multiple logistic regression and PCA ordination 

output. Based on these criteria, 15 bioclimatic and environmental variables were retained and 

used as predictors to calibrate distribution models in MaxEnt (see Table 2.2). 

For reconstructing past niches, data on PAR, UV-B, cloud cover percentage, vapour 

pressure, frost day frequency and soil type were not available. Therefore, only eight out of 15 

selected bioclimatic predictors together with elevation data (see Table 2.2) were used for model 

calibration. Distribution of both cytotypes based on their realized Grinnellian niches was 

modelled with the present data and simulated into two past climatic periods, the MH and the 

LGM. The accuracy of past predictions was assessed against predictions for the present data using 

https://lpdaac.usgs.gov/
http://www.ufz.de/gluv
http://www.cgiar-csi.org/
http://www.soilgrids.org/
http://www.worldclim.org/
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the area under the model’s receiver operator characteristic (ROC) curve (AUC values), a threshold-

independent ROC analysis that measures the performance of models (Hanley and McNeil 1982). 

 

 

2.3.5. Niche breadth and overlap 

Niche characteristics were extracted using parametric generalized models. Coarse 

spatial resolution of ecological and geographic properties of the species was used to define 

Grinnellian niches of cytotypes. Niche breadth and niche shifts were computed as 1.5 s.d. of the 

Euclidian distance from the centroid of an individual’s cloud for each cytotype and weighted by 

the Eigenvalues of PCA ordination axes, respectively. The amplitude of cytotype-specific habitat 

distribution and ecological requirements was considered as a measure of Grinnellian realized 

specialization (Devictor et al. 2010). Schoener’s D index was used to assess the overall overlap of 

the environmental niche space between cytotypes. Therein, the similarity of the niches was 

summarized from 0 (no similarity) to 1 (complete similarity). The obtained niche overlap was 

plotted against a randomly simulated niche overlap generated with the assumptions of both niche 

equivalency and similarity (as described in Broennimann et al. 2012). In order to avoid 

uninformative data extraction for background environment, environmental data were extracted 

from random points (500 for diploids and 800 for tetraploids; the number of points was empirically 

chosen based on the highest AUC values of the SDM) drawn from a circular area around the 

Table 2.2. Bioclimatic and environmental variables retained (after multivariate analysis and binomial 

logistic regression) for cytotype distribution and niche analysis in P. intermedium, its 

significance values, and PCA contributions. 

Environmental Variable Code p-value PC1 Co2 PC2 Co2 AC 

Annual  Mean Temperature (°C) BIO1 0.004 -0.9313 0.867404 0.31867 0.101556 8.796792 

Isothermality (BIO2/BIO7) (*100) BIO3 0.001 -0.6329 0.400577 0.53660 0.28795 6.974405 

Temperature Seasonality (SD *100) BIO4 <0.001 0.9615 0.924507 -0.0252 0.000638 8.07602 

Min Temperature of Coldest Month (°C) BIO6 0.007 -0.9018 0.813358 -0.18677 0.034883 7.5197 

Temperature annual range (°C) BIO7 0.005 0.6018 0.362187 0.56517 0.31942 7.01954 

Mean Temperature of Wettest Quarter (°C) BIO8 0.013 -0.2564 0.065749 0.8668 0.751362 9.65046 

Mean Temperature of Driest Quarter (°C) BIO9 <0.001 0.9687 0.938464 0.21164 0.044792 8.73122 

Mean Temperature of Warmest Quarter(°C) BIO10 <0.001 -0.8491 0.721005 0.41351 0.170999 8.35803 

Mean Temperature of Coldest Quarter (°C) BIO11 0.001 -0.9621 0.925642 0.22777 0.05188 8.70494 

Precipitation seasonality (CV) BIO15 0.008 0.2617 0.068509 0.91909 0.84474 10.80257 

UV-B radiation (J/m2/day) U 0.001 -0.7011 0.806261 0.67793 0.133702 9.84241 

Photosynthetically active radiation (PAR) P 0.002 -0.8979 0.49162 0.36565 0.45959 8.65153 

Frost day frequency (days per year) F 0.017 0.6853 0.874856 0.07113 0.060288 4.16024 

Surface vapor pressure (hPa) S 0.002 -0.9353 0.469697 0.24553 0.00506 8.36329 

Elevation E 0.023 -0.5258 0.27651 0.22309 0.049773 3.01441 

p-value: significance values (α = 0.05) of the binomial multiple logistic regression analysis on climatic and 
ecological preferences between diploids and tetraploids; AC: Sum of absolute contributions of variables to 
principal components one and two; PC1 and PC2: eigenvalues of first two axes of the PCA for the ordination of 
variables demarcating the niche space between the two cytotypes. Co2: squared coordinates of variables (higher 
values indicate better representation of variables in the principal components) 
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observed data points. Simulations for niche similarity and equivalency were performed in 1000 

replicates each, using the R package ‘ecospat’ (Di Cola et al. 2017). A new approach was used to 

visualize density distributions of each cytotype in a collective environmental gradient (CEG). The 

CEG was computed utilizing all the selected environmental variables (predictors). The data set 

was transferred into a table with predictors in columns and geographic points in rows. A z-

transformation was applied to all the predictors (columns) to create a CEG for each cytotype where 

all variables are collapsed into one single gradient. The transformed values for each locality and 

cytotype were summed up and used to obtain a ‘collective’ value representing the overall 

ecological setting for that particular geographical point assuming that all predictors contribute to 

the occurrence of the cytotype at a given location. 

Collective values were then mapped into the CEG to obtain a kernel density 

estimation (KDE) (probability density) and to visualize any trend on main ecological preferences 

relative to each cytotype. For the KDE, a bandwidth of 0.5 s.d. was applied to achieve a moderate 

smoothing of the resulting density curves (Figure 2.2). The CEG was structured into quartile and 

interquartile points to assess the significance of the data and to better visualize the relative 

ecological differentiation between cytotypes along the collective environmental gradient (Figure 

2.2). 

2.3.6. Statistical analyses 

Complete spatial randomness (CSR) of all the occurrences was tested with K-

function (also Ripley’s K-function) in the R package ‘spatstat’ (Baddeley and Turner 2005), prior to 

all the statistical analyses and modelling. Furthermore, a χ2 dispersion test for spatial point patterns 

based on quadrat counts (quadrattest; Baddeley and Turner 2005) was used to test spatial 

separation of cytotypes in the sampling area (further details are given in Supplementary Data Fig. 

S5). All the statistical analyses and mapping were performed in R version 3.3.2 (R Core Team 

2016) unless mentioned otherwise. QGIS [QGIS Development Team. QGIS Development Team. 

Open Source Geospatial Foundation (2016)] was used for visualization and creating maps. 

2.4. RESULTS 

2.4.1. Ploidy level variation, local and regional spatial separation 

The ploidy evaluation of a total of 1224 individuals revealed two major cytotypes: 

diploids (2n = 2x = 20; N = 431; 35.2 %) and tetraploids (2n = 4x = 40; N = 793; 64.8 %) 

(Supplementary Data Fig. S2.1a, b; Method S2.1). In addition, one triploid individual (2n = 3x = 

30) was also recorded (Supplementary Data Table S2.1). Thirty-one out of the 35 (88.6 %) 

populations were uniform, consisting of pure diploid or pure tetraploid plants; the remaining four 

(11.4 %) were mixed-ploidy populations (Hojs456, Hojs470, Hojs481 and Hojs487). Populations 
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consisting of multiple cytotypes are rare in Paspalum, and this is the first record for P. intermedium. 

The tetraploid was the most common cytotype, present in 28 (24 pure tetraploid) populations, 

while the diploid cytotype was found in 15 (11 pure diploid) populations (Figure 2.1; Table 2.1). 

The rare triploid cytotype was found in a mixed-ploidy (2x–4x) population (Figure 2.1). On 

comparison with previous records by various authors (Supplementary Data Table S2.2), we 

observed a shift of ploidy in four localities: three along a contact zone between cytotypes and one 

in the core distribution area of diploids (details in Figures 2.1 and 2.2; Supplementary Data Tables 

S2.1 and S2.2). The within-population sampling strategy unveiled localscale distribution patterns 

of cytotypes in mixed populations (Supplementary Data Figure S2.2). While one population 

(Hojs456) had only five diploid individuals restricted to one end of the population, the rest had 

various numbers of diploid and tetraploid cytotypes mixed in different patterns along the sampling 

line (Supplementary Data Figure S2.2). A Mann–Kendall rank test for randomness (in the R-

package ‘randtests’; Caeiro and Mateus, 2014) indicated a non-random distribution in the 

occurrence of cytotypes along the sampling transects (p-value ≤ 0.01 in all cases), suggesting that 

the local-scale distribution patterns and turnover followed a certain clustering order. In addition, 

in population Hojs470, we collected eight young ndividuals (seven tetraploids and one diploid) 

widespread among mature individuals (Supplementary Data Figure S2.2). 

The spatial randomness test for the recorded occurrences of the two cytotypes with 

Ripley’s K-function showed deviations of λK(r) (the expected vs. observed number of points per 

unit area) from the Poisson (theoretical) distribution (paired-end t-test p-value < 0.001) 

(Supplementary Data Figure S2.3a). This indicates a non-random distribution of ploidies among 

all geographically dispersed data points. In addition, a Pearson χ2 goodness-of-fit test using quadrat 

counts showed a deviation (χ2 = 161.14, p-value = 0 .0001; Supplementary Data Figure S2.3b) in 

the observed distribution compared with the null distribution, thus confirming a clustering of 

cytotypes along the observed North–South spatial separation and East–West contact zone of 

sympatric and parapatric occurrences (mixed-ploidy populations were considered both diploid 

and tetraploid in the analysis; triploids were not considered). 

2.4.2. Cytotype reproduction modes and ploidy as a proxy for reproductive biology 

A total of 500 seeds originating from 45 individuals (100 seeds from nine diploids 

and 400 seeds from 36 tetraploids) were analysed to assess reproductive modes of P. intermedium 

(Table 2.3). Single-seed histograms produced two types of peak configurations, corresponding to 

different embryo to endosperm DNA content ratios: peak configurations 2C:3C correspond to 

sexual seeds, carrying a diploid embryo and a triploid endosperm; peak configurations 2C:5C 

correspond to clonal seeds, carrying a parthenogenetic diploid embryo and a pentaploid 

endosperm (see details in Supplementary Data Method S2.2; Figure S2.1c). In diploid plants, only 
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seeds with a 2C:3C peak configuration were observed, and therefore diploids are considered as 

obligate sexuals (all seeds were produced after syngamy of meiotic gametes). Tetraploid plants 

presented a moderately low proportion of sexual seeds (<30 %; Table 2.3) and a larger amount of 

clonal seeds (>70 %; Table 2.3). Hence, tetraploids are considered as facultative apomicts. 

Since ploidy levels in P. intermedium (Norrmann et al. 1989; this study) as well as 

in other Paspalum spp. and grasses (e.g. Galdeano et al. 2016) are tightly connected to divergent 

reproductive syndromes, our reproductive screenings validate the use of ploidy as a priori 

information and a proxy for reproductive biology in P. intermedium. 

 

Figure 2.2. Niche breadth of diploid (red) and tetraploid (blue) P. intermedium cytotypes 

depicted as probability density function for occurrences along the collective environmental 

gradient of the ecological requirements of species. Boxplot-ranked sets of data (quartiles and 

interquartile range) further illustrate ecological differentiation between cytotypes. The 

ecological gradient of species coalesce the observed environmental heterogeneity after 

pooling (z-transformed) data of environmental variables showing significant differences (P < 

0.05). Pie charts indicate the relative position of mixed-ploidy populations within the 

environmental gradient (x-axis) (upper left, Hojs487; lower left, Hojs481; upper right, 

Hojs470; lower right, Hojs456), and slices represent percentages of each cytotype (red = 

diploids, blue = tetraploids). 
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2.4.3. Phenological shift and intraspecific ecological differentiation of cytotypes 

In the present analysis of phenology, I recorded a total of 38 sites in flowering 

during the early and late season trips and added 33 records of materials with known ploidy from 

herbaria. Three out of four mixed-ploidy populations were flowering; however, ploidy levels of 

individuals were unknown during collection. The probability of blooming incidence per ploidy 

indicates that diploids tend to flower early in the season (n = 24; p-value = 0.0074; df = 1) while 

the probability of finding tetraploids with flowering stems was the same for both the early and the 

late summer periods (n = 47; p-value = 0.2108; df = 1). 

Generalized linear models with multiple error distribution (logistic regression) 

detected 15 environmental variables having significant differences between cytotypes (p-value ≤ 

0.0147 in all cases; Table 2.2), indicating unique ecological and climatic preferences. Thus, most 

extreme cytotype differences were found for Bio1, annual mean temperature (p-value = 0.00019); 

Bio6, minimum temperature in the coldest month (p-value = 0.00037); and Bio15, precipitation 

seasonality (p-value = 0.0114) (Supplementary Data Figures S2.4 and S2.5). PAR and UV-B 

radiation (mean value for diploids, PAR = 0.532 ± 0.009 Jm–2, UVB = 415 ± 79 Jm–2; tetraploids, 

PAR = 0.511 ± 0.01 Jm–2, UVB = 402 ± 92 Jm–2; Supplementary Data Figure S2.4) also showed 

strong association with differences in climatic preferences between cytotypes (p-value = 0.000138 

and 0.00026, respectively). The elevation, however, did not show a strong correlation as the 

species distribution range is restricted to a topographically flat area (58–156 ± 18.2 m for 2x; 35–

93 ± 12.9 m for 4x; Table 2.2; Supplementary Data Figures S2.4 and S2.5). 

Scenopoetic variables gathered from all localities defined the realized niche of 

species and displayed divergent differences between cytotypes (Supplementary Data Figure S2.4), 

with tetraploids occupying broader environmental ranges than diploids. The diploid range was 

fully enclosed within the tetraploid range in eight out of 13 variables, and tetraploids included the 

core of the ecological preferences of diploids (i.e. interquartile ranges) in 12 out of 13 variables 

(Figures 2.2 and 2.3). In the PCA, two principal components explained the majority of 

environmental variation observed for the P. intermedium data set (see Supplementary Data Figure 

S2.5). PC1 (represented 44.1 % of the variation) was explained by temperature-related variables, 

vapour pressure, PAR, UV-B radiation, frost day frequency and soil type, and defined the Euclidean 

space of diploids. PC2 (represented 31.8 % of the variation) was best explained by precipitation-

related variables (Table 2.2; Supplementary Data Figure S2.5). The PCA revealed a shift in the 

Euclidean space between cytotypes along the PC1 axis and a large overlap along the PC2 axis, 

with tetraploids having a greater niche breadth (Figures 2.2 and 2.3). The differentiation of niche 

optima in Fig. 3 is defined as the Euclidean distance between centroids of ellipses weighted by the 

inertia of the first two axes after decomposition of inertia (six axes). The observed niche overlap of 
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diploids and tetraploids (Schoener’s D = 0.25) is significantly lower (p-value = 0.0099) than the 

simulated overlap (mean = 0.65) under niche equivalency (Supplementary Data Figure S2.6a). On 

the other hand, the niche similarity test indicated that the observed environmental space similarity 

is higher than expected on a random basis (p-value = 0.297) (Supplementary Data Figure S2.6b). 

These reject the null hypothesis that diploids and tetraploids occupy equal climatic niche spaces, 

and recognize that both cytotypes occupy habitats with slightly dissimilar climatic regimes and 

environmental resources. 

Ploidy 
n  

(pop.) 
n  

(ind.) 
Seeds P.i.±SD Rep. path 

Proportion 
(%) ±SD 

Diploid 3 9 100 1.45 ±0.039 Sex. 100% ±0.0 

Tetraploi
d 

12 36 400 
1.49 ±0.089 Sex. 27.9% ±7.0 

2.40 ±0.071 Apo. 72.1% ±9.7 

n (pop): number of populations; n (ind.): number of individuals; Sex.: sexuality (cross- and self-fertility); Apo.: 
pseudogamous apomixis; P.i.: Peak index or endosperm: embryo peak ratio in flow cytometry analyses;  Rep. path: 
reproductive pathway; SD: Standard deviation 

 

The collective environmental gradient further shows this tendency by visualizing 

the probability density of cytotypes along a continuous gradient representing all ecological settings 

of the species. Diploids are symmetrically centred and display inferior ecological amplitude 

compared with tetraploids (Figure 2.2). In contrast, tetraploids can grow in a wider range of 

environmental conditions, exhibiting a broader yet lower probability density along the gradient 

with a median value and main ecological preferences shifted away from those of diploids (Figure 

2.2). Overall, tetraploids display wider ecological amplitude and are ‘generalists’, while diploids 

are ‘specialists’. Environmental niche differentiation of P. intermedium cytotypes followed a 

latitudinal gradient where tetraploids grow under more extreme environmental conditions (e.g. 

lower temperatures and light radiation) and therefore can cope well with seasonal changes in 

southern areas. 

2.4.4. Ecological niche modelling and past distribution 

Model simulations produced high AUC scores (0.83 and 0.81 for diploids and 

tetraploids, respectively) and thereby highly accurate predictions of climatic niche spaces which 

reflect the realized range of distribution of each cytotype. Prediction scores >0.65 were considered 

strong signals for habitat suitability of the cytotypes (see Fig. 4). MaxEnt predictions show that the 

environmental niche spaces of both cytotypes nearly reflect their realized niches in the sampling 

area, with a few exceptions. For example, the climatic niche of diploids is marginally expanded 

toward the North-east of their realized distribution (Figure 2.4; Supplementary Data Table S2.2), 

and the climatic niche of tetraploids is expanded toward the North along a stretch of the Paraguay 

River, reaching Bolivia and Brazil (Figure 2.4). Likewise, a surprisingly large area predicting a 

Table 2.3. Reproductive mode variation between cytotypes of P. intermedium in the study area 
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niche overlap around the core distribution of diploids is not realized for the distribution range of 

tetraploids. The complete absence of tetraploids in this region suggests a zone of cytotype 

exclusion (Figure 2.1 and 2.4). 

 

Projections of past environmental niche space of P. intermedium for both CCSM4 

and BCC-CSM1-1 past climatic scenarios showed a temporo-spatial range shift in estimated spatial 

distributions of cytotypes. Both ecological models indicated the absence of suitable habitats for 

either cytotype in our current sampling area during the LGM (25 000 ybp), and the presence of 

suitable climatic conditions for diploids in northern Bolivia and central and southern parts of Brazil 

(Supplementary Data Figure S2.7). Towards the MH (approx. 6000 ybp), changes in environmental 

 

Figure 2.3. Multidimensional analysis of the ecological niche of P. intermedium and the 

shift in niche optima between cytotypes. The specialization of cytotypes and differentiation 

of niche optima is reflected by the multidimensional volume (here represented in a 2D 

space) represented by the spatial distribution of points (collection sites, each indicating a 

particular environmental setup), and the distance between centroids of ellipses. Main 

environmental variables used in the ordination are shown in the correlation circle (r=1; 

codes follow Table 2.2). Red circles symbolize diploids, blue squares tetraploids and red-

filled blue squares heteroploid sites. Eigenvalues for first two axis inertia are given in 

parenthesis. Red and blue arrows indicate the direction of the shift in niche optima for 

diploid and tetraploid cytotypes. The grey-shaded ellipse represents the niche space of the 

species. Dotted ellipses indicate diploid (red) and tetraploid (blue) niches. 
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conditions in the South American continent moved habitat suitability of diploids towards southern 

parts of Brazil, Paraguay and northern Argentina, thus expanding its distribution area, and priming 

the conditions for a successful establishment of tetraploids as projected for northern Argentina and 

southern Paraguay (Supplementary Data Figure S2.7). 

 

 

Figure 2.4. The output of species distribution modeling using MaxEnt. The map shows the 

realized and the potential distribution ranges of diploid (red) and tetraploid (blue) cytotypes 

of P. intermedium in the study area. The realized and the potential habitat suitability (the 

probability of occurrence inferred from the model output values of AUC) shows similar 

predicted distributions for diploids, but for tetraploids. The area inside the dotted line 

represents a zone where ecological conditions meet the requirements for the coexistence of 

diploids and tetraploids, yet it is only occupied by diploids 
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2.5. DISCUSSION 

Knowledge on plant distributions and intraspecific trait variability is central to 

underpin ecological and physical factors affecting evolutionary dynamics and history of species. 

Studies on cytotype distributions and associated environmental and reproductive traits provide 

valuable insights into diploid–polyploid dynamics and factors responsible for contraction–

expansion cycles (e.g. Cosendai and Hörandl 2010, Caperta et al. 2016, Sonnleitner et al. 2016). 

The present macro- and micro-scale study on P. intermedium is an attempt to recognize 

environmental factors and biological traits affecting cytotype coexistence, population dynamics 

and ecological adaptation outlining early events endowing polyploidization and speciation in 

plants. 

2.5.1. Cytotype composition and distribution patterns 

The distribution range of P. intermedium is centred in north and eastern Argentina 

with records spanning to Southern Brazil, eastern Paraguay and northern Uruguay (Zuloaga et al. 

2012). The study revealed a North–South spatial segregation of the two cytotypes with a narrow 

East–West overlapping zone in the centre. Despite the fact that tetraploids are evolutionarily 

younger than diploids (see below), it has become the most common cytotype, occupying two-

thirds of the species’ geographic range. 

Odd polyploids are known to be infrequent in nature; however, they provide 

crucial information on fundamental mechanisms of polyploid formation and establishment (e.g. 

Ramsey and Schemske 1998, Husband 2004). Previous and present findings of rare triploid 

cytotypes of P. intermedium do not provide much information, but rather an opportunity to study 

the role of triploids in polyploid formation and population dynamics that need to be addressed in 

a set of new experiments. The presence of one tetraploid population in the far North-west of the 

species’ distribution may represent a case of polyploidization in the northern periphery of diploids, 

a glimpse of the progression of past cytotype displacement (further details below), a consequence 

of anthropogenic activities (extensive human intervention in the area is evident through 

agricultural activities) or a combination of such factors. 

2.5.2. Ecological specialization and niche differentiation between cytotypes 

In P. intermedium, the realized niche specialization based on environmental 

parameters and background similarity tests, niche breadth and cytotype densities showed 

significant differentiation on ecological requirements between cytotypes, indicating that diploids 

are adapted to a narrow range of ecological settings compared with tetraploids. By having a 

broader and transgressive niche breadth, tetraploids enclose the whole range of climatic 

preferences of diploids; a situation observed in other polyploid complexes as well (e.g. Claytonia 
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perfoliata complex, McIntyre 2012; Tolmeia, Visger et al. 2016), and expected in autopolyploids 

such as P. intermedium, recurrently originated from a diploid’s gene pool. However, unlike in the 

C. perfoliata complex (McIntyre 2012) and other autopolyploid systems such as Allium oleraceum 

(Duchoslav et al. 2016), in P. intermedium we observe a significant separation of ecological 

optima between cytotypes, suggesting a segregation of ploidy-related ecophysiological aptitudes 

for the exploitation of environmental resources after polyploidization. Recently established 

polyploids usually display intermediate ecological preferences compared with diploids and 

established polyploids (e.g. Maherali et al. 2009, Levin 2011). Similarly, tetraploids from mixed 

populations in P. intermedium (presumably the product of recent polyploidization events and 

therefore younger than those occurring in southern areas) show ecological preferences 

intermediate to those observed in diploids and general tetraploids, which further reinforces our 

observations of cytotype dynamics. Different studies of niche shifts in autopolyploids support the 

common hypothesis that polyploids evolve to occupy wider or more extreme ranges than their 

progenitors (reviewed in Spoelhof et al. 2017). Accordingly, the directional and opposed shift in 

niche optima observed between P. intermedium cytotypes, the bimodal distribution of cytotypes 

and skewness observed for tetraploids along the collective environmental gradient suggest the 

action of past disruptive selection on established tetraploids favouring a divergent departure 

between the ecological preferences of cytotypes. Niche differentiation is a primary mechanism to 

avoid competitive exclusion by diploid progenitors and foster polyploid establishment (e.g. Levin 

2003, Ramsey 2011). Thus, establishment and persistence of P. intermedium polyploids 

apparently took place at the expense of becoming (sub-) adapted to a broader range of ecological 

conditions and less competitive in areas where multidimensional space meets the niche optimum 

of diploids. The question remaining is whether the observed broader ecological tolerance is due 

to an effect of polyploidy (e.g. Kearney 2005) or caused by the fact that asexuality is probably 

freezing a range of genotypes among autopolyploid clones (carrying a sub-set of genes from the 

diploid ancestors) adapted to local narrow niches (Vrijenhoek 1979). While a shift from sexuality 

to apomixis can partition the use of resources in polyploids, it may not necessarily affect the niche 

dynamics (Dellinger et al. 2016). Nevertheless, achieving reproductive assurance through 

asexuality certainly shields polyploids from environmental stress (Freeling 2017; see next section) 

and confer higher colonizing ability to tetraploids (Hörandl 2006, Hojsgaard and Hörandl 2015). 

Molecular genetic analyses will benefit us to better understand the origin of tetraploids, the 

competitive dynamics between cytotypes within mixed populations, and the effect of asexuality 

and environmental stressors on partitioning genetic diversity and resource use. 
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2.5.3. Population dynamics, ploidy shifts and ecological displacement between cytotypes 

The North–South distribution pattern of P. intermedium cytotypes is defined by a 

divergence in cytotype-specific ecological preferences. In core distribution areas, seasonal 

environmental variables foster cytotype stability. Dispersion of cytotypes following a seasonal–

latitudinal gradient as observed in P. intermedium is not rare in nature (Španiel et al. 2008, 

Trávnícek et al. 2011, Zozomová-Lihová et al. 2015). Diploid–tetraploid coexistence is possible 

by different pre- and post-zygotic isolation barriers (Husband and Sabara 2003) or by character 

displacement and ecological differentiation (Beans 2014). Despite being rarely found in nature, 

niche displacement (i.e. when the niche of a cytotype is affected by the presence of another 

cytotype) through a shift in niche optima or breadth plays an important role in enabling closely 

related species to coexist. For example, Sonnleitner et al. (2016) found that contact zones in 

Senecio carniolicus were stabilized and reinforced by ecological differentiation of cytotypes as a 

result of habitat displacement. Unlike in other species, in P. intermedium the uneven replacement 

and local and regional spatial separation of cytotypes, the biased recruitment of young polyploid 

individuals in heteroploid populations and the discrepancy between predicted and observed 

distributions in tetraploids suggest a pattern of unstable temporal coexistence and directional 

turnover during which one cytotype is locally displaced reliant on ecological specialization and 

local environmental conditions. 

The model prediction for the distribution of diploids is not significantly different 

from the observed distribution (Figure 2.4). However, the prediction for tetraploids indicates that 

polyploids should coexist along with diploids in its main distribution zone; a situation that has not 

been realized according to our field observations. This suggests the presence of a wide area of 

tetraploid exclusion. In addition, the current observation that only a pure diploid population is 

found in an area in the core zone of diploids where one tetraploid was collected 30 years ago 

(Norrmann et al. 1989), and that diploids are being replaced by tetraploids in peripheral areas of 

its distribution suggests that tetraploids may only overcome ecological competition in the marginal 

zones of diploids with greater environmental heterogeneity. Thus, tetraploids may fail to become 

locally established in areas where optimal niche requirements of diploids are successfully met. 

Reciprocal transplantation experiments would certainly provide more accurate conclusions on 

this observation. 

By definition, boundaries of distribution in plants represent zones of ecological 

transition, i.e. areas where environmental conditions do not satisfy the main ecological 

preferences of a particular species or group (Grant 1981). Even when plants exhibit plasticity to 

environmental conditions, their performance at niche edges may decline due to the effects of 

biotic and abiotic factors on their reproductive success (Vergeer and Kunin 2013). Cytotypes 
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occupying habitats in areas of ecological transition, irrespective of the mode of coexistence (i.e. 

sympatry or parapatry), are prone to ecophysiological sub-adaptation. Changes in reproductive 

strategies (e.g. allogamy– autogamy, sexuality–apomixis) and ploidy levels are known to improve 

local and regional performance (Hörandl 2006). Mixed populations of P. intermedium appear in 

a region of spatial niche overlap between cytotypes, a zone of ecological transition between 

diploid–tetraploid niche optima (Figure 2.3) where competition is expected to be stronger and 

driven not only by ecological differences (as the ecological requirements of neither cytotype were 

fully met) and spatial segregation of cytotypes but also by reproductive changes. In fact, two out 

of four mixed populations (Hojs456 and Hojs470) found in the transition area where ecological 

conditions resembled more those of the niche optima of diploids (interquartile range; Figure 2.2) 

harbored a significantly higher number of tetraploids. Similarly, one of the other two populations 

(Hojs481) located in a transition area where conditions resembled more those of the niche optima 

of tetraploids was dominated by diploids, indicating that the reproductive mode might have an 

effect, even if temporary, on local cytotype success. Apomixis is known to shelter the polyploid 

from introgressive hybridizations, particularly heteroploid hybridizations (Hörandl and Temsch 

2009). The observed incongruity between ecological conditions, niche preferences and 

population composition mentioned above, together with the documented ploidy shifts, suggests 

the existence of a temporal succession of polyploid establishment–diploid displacement events. 

In this case, whenever a tetraploid is successfully established in the peripheral areas of diploids, 

the new heteroploid population will eventually reach a situation of asymmetric turnover between 

cytotypes which will most probably drive diploids to a local extinction. 

In P. intermedium, a shift to apomixis not only shelters the polyploid from 

introgression of diploids (only one triploid among 122 individuals in mixed populations), thus 

reducing fitness loss by infertile hybrids and avoiding minority cytotype disadvantages (Levin 

1975), but also facilitates the multiplication of superior genotypes better adapted to local 

environmental conditions. In marginal areas where both cytotypes co-occur in sympatry, a 

generalist strategy with broader ecological tolerance and a capacity clonally to propagate rare and 

highly adapted genotypes may enhance the relative fitness of polyploids and their chances to 

displace diploids locally. Our observation of seven out of eight young P. intermedium plants 

sampled in a population with mixed ploidy being tetraploids and the non-random distribution of 

cytotypes within mixed populations supports the interpretation of non-random turnover and local 

displacement between cytotypes. 

2.5.4. Reconstruction of past migrations, and evolutionary history of polyploid cytotypes 

Reconstruction of past climatic niches indicated that only diploids of P. 

intermedium may have existed in northern Bolivia, and central and south Brazil during the LGM 
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around 21 000 ybp, in an area in southern Amazonia that was colder and drier than now, occupied 

by grasslands and savanna (e.g. Behling 2002). During late Quaternary, neither tropical climates 

nor vegetation were stable and, as climate started to warm up, deglaciation (14000 to 8000 ybp) 

transformed global vegetation distributions, even in tropical zones (Comes and Kadereit 1998, 

Williams 2009). Toward the MH (6000 ybp), the forest cover expanded and thermophilous taxa 

moved to higher altitudes and latitudes, reshuffling distributions of species with dramatic changes 

in some cases. For example, Picea suffered a biogeographic shift of around 2000 km northward 

from the central eastern USA (Williams 2009). Similar regional to continental shifts in distributions 

took place in different species in South America (e.g. Araucaria forest; Behling 2002), which may 

have affected the distribution of diploid P. intermedium. The present climatic niche modelling 

showed a shift of diploid occurrence during the Holocene, from central-east Brazil to southern 

areas in northern Argentina and Paraguay, perhaps a consequence of species’ migration to track 

adaptive peaks as the fitness landscape changed (Supplementary Data Figure S2.7). The presence 

of fossil impressions of P. intermedium spikelets found in Gran Chaco region (northern Argentina) 

suggests that the species lived in the area around MH (Contreras et al. 2015), which agrees with 

model reconstructions of past vegetation types and distribution in South America (Cerling et al. 

1997, Piovano et al. 2009). 

Plant taxa primarily respond to climate variations via local changes in abundance 

and, consequently, climate change shapes vegetation dynamics in the long run (Williams 2009). 

In P. intermedium, climatic and fitness landscape changes seem to have prompted geographic 

shifts to new environments. The question remains of whether diploids and tetraploids coexisted in 

those areas adapted to similar climatic niches and diverged later, or whether tetraploids directly 

occupied vacant niches unfavorable for diploids while moving south. In either case, niche 

divergence facilitated the spatial segregation and establishment of both cytotypes. Since apomixis 

and selfing are known to provide superior colonization abilities in peripheral areas via uniparental 

reproduction (Baker’s Law; Baker 1955), niche availability and segregating ecophysiological and 

reproductive traits may have delivered the appropriate background for polyploids to expand into 

southern habitats that are inaccessible to diploids where primary production and productivity 

measures are lower (Alcaraz-Segura et al. 2013). Broader ecophysiological tolerance of tetraploids 

and their habitat-associated characteristics featured by the Mesopotamian water system that drains 

toward Parana delta to the Atlantic Ocean certainly favored tetraploid dispersal, which eventually 

shaped the currently observed North–South distribution pattern. 
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CHAPTER 3 

3. Evolutionary implications of a TUG OF WAR between sexual and apomictic 
reproductive modes in Paspalum intermedium (Poaceae) leading to fitness variation in 
the polyploid complex 

This chapter focuses on reproductive mode assessment, environmental influence 

on reproductive pathways and fitness assessment of diploids and tetraploids of P. intermedium. 

The findings have been compiled in a manuscript and submitted to New Phytologist, which at the 

time of writing this thesis is under review: Piyal Karunarathne, Verena Reutemann, Mara Schedler, 

Adriana Glücksberg, Eric J Martínez, Ana I Honfi, Diego Hojsgaard. Sexual modulation and the 

evolutionary implications of a TUG OF WAR between sexual-apomictic reproductive modes in 

a polyploid grass species. 

 

3.1. ABSTRACT 

In systems alternating between sexual and asexual reproduction, sex increases under 

unfavorable environmental conditions. In plants, capable of producing asexual (apomictic) seeds, 

the influence of the environment on sex is equivocal under experimental conditions and has not 

been studied in natural populations. Apomixis provides reproductive assurance, and superior 

colonizing abilities compared to sexuals, but it also constrains genetic variation and clonal plants 

are expected to have restricted adaptive capabilities. Thus, any influence that the surrounding 

conditions can have on the expression of sex in apomictic plants can play a major role in 

facilitating range expansion and local adaptation by introducing genetic variation. So far, studies 

evaluating the influence of bioclimatic variables into proportions of sex and reproductive fitness 

of natural apomictic populations are scarce. I used Paspalum intermedium, a species having two 

ploidy levels with contrasting reproductive modes and ecological differentiation, to study variation 

in the expression of sexuality and apomixis due to environmental influence, to analyze 

developmental competition between both reproductive modes, and their effects on reproductive 

fitness between cytotypes. Flow Cytometry and embryological analyses were used for ploidy and 

reproductive modes analyses. Proportions of sexuality and apomixis in situ were analyzed against 

local climatic conditions. Total seed set and germinability analyses were used to estimate the 

reproductive fitness of different cytotypes. The expression of sex and apomixis in tetraploid 

populations shows high variation both within and among populations. This variation is correlated 

to the number of ovules with both meiotic and apomictic embryo sacs existing in the same ovule. 

Even though ovule and seed analyses show that apomictic development has higher competitive 

ability, fitness of apomictic individuals is depleted compared to sexual individuals and 

populations, indicating asexuality results in higher seed abortion. Evidence was found for 

environmental modulation of embryo sac formation at population level by lower temperatures and 

mean diurnal range (MDR) whereby sexual ES formation increased with higher MDR while 

apomixis decreases. Thus, I identified a Tug of War situation between factors intrinsic to apomixis 

and environmental stressors promoting sex which influence the expression and distribution of sex 

in apomictic populations and suggest a crucial role of local ecological conditions in sexual 

expression and adaptation of apomictic populations. 
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3.2. INTRODUCTION 

Sexual reproduction is inherent to all eukaryotes. Sexuality promotes the creation 

of genetically variable and physiologically flexible organisms capable of coping with spatial and 

temporal environmental heterogeneity. In different phylogenetic groups, changing environmental 

conditions induce stress often associated to a temporal suppression of sexuality and a shift to 

asexual reproduction (Neiman et al. 2014). This change of reproductive strategy, often referred to 

as facultative sexuality, produces both sexual and asexual seeds in the same generation in plants. 

Further, patterns of facultative and/or cyclical asexuality has been reported in different animals 

and plants capable of switching off sex, where individuals can produce offspring either sexually 

or asexually in the same or different generations. In higher plants the formation of asexual offspring 

(seeds) is done via a process called apomixis, and involves a complex developmental setup in 

which meiosis is converted into an apomeiosis and form unreduced female gametophytes, the egg 

cell develops by parthenogenesis into a clonal embryo, and the development of the endosperm 

may or may not require fertilization (Asker and Jerling 1992). Such developmental changes are 

associated to certain genetic and epigenetic backgrounds that fix apomixis transgenerationally 

(e.g. Grimanelli 2012, Rodriguez-Leal and Vielle-Calzada 2012, Verhoeven et al. 2018), except 

perhaps for the very early stages of the evolution in a new lineage (Hojsgaard 2018). Thus, in 

plants apomixis is not cyclical, but see possible cases of reversals from apomixis to sexuality 

(details in Hojsgaard et al. 2014a), though it is continuously expressed at different levels by 

facultative asexual individuals. Variable rates of sex (mostly low) had been found in different 

apomictic plant species (e.g. Espinoza et al. 2002, Bicknell and Koltunow 2004, Hojsgaard et al. 

2013, Krahulcová et al. 2014) and are likely to have a genetic basis and be environmentally 

modulated. However, studies on natural populations are missing and experimental analyses of the 

influence of environmental factors on the incidence of apomixis and sexuality in individual plants 

are equivocal.  

While most studies demonstrate a clear influence of different stressors on observed 

proportions of sexual and apomictic ovules, they have not analyzed or have failed to find any 

influence at seed and progeny levels. For example, Knox (1967) studying plants of Dichanthium 

aristatum artificially grown in a range of climatic conditions throughout 27 degrees of latitude 

revealed an association between photoperiods prevailing during development of the 

inflorescences and the proportion of apomixis. In a common garden experiment, Quarin (1986) 

found a similar quantitative response between the expression of apomixis and seasonal changes 

in length of day in Paspalum cromyorrhizon plants. Accordingly, experimental setups exposing 

facultative apomictic plants to diverse environmental stressors show an increase in the frequency 

of sexual gametophyte formation. For example, Gounaris et al. (1991) exposed daily apomictic 
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plants of Cenchrus ciliaris to a series of inorganic salts to observe abnormal features in pistils of 

salt-treated plants, including an increase in the number of sexual embryo sacs. Mateo De Arias 

(2015) found that some of the five apomictic Boechera species (and one sexual) subjected to 

drought stress and drought plus heat stress increased the frequency of sexual ovules significantly 

compared to those without stress, but did not find changes in the frequencies of sexual and 

apomictic seeds. Similarly, Klatt et al. (2016) grew different clones of the apomict Ranunculus 

carpaticola x cassubicifolius under a prolonged photoperiod and observed a significant increase 

in the frequency of ovules with functional meiotic megaspores yet without a significant increase 

in sexual seeds. Rodrigo et al. (2017) exposed apomict plants of Eragrostis curvula to drought stress 

conditions and showed that under water depravation, facultative apomictic plants increase the 

formation of sexual embryo sacs though without any influence on number of sexual offspring. 

Thus, even when varied environmental stressors including heat, drought, light and nutrients 

availability induce higher expression of sex during ovule development, their effects on increasing 

sexual offspring formation are still unclear. 

In single ovules of many apomicts, both meiotic and apomictic pathways can run 

in parallel but they differ in spatiotemporal timing of developmental steps (e.g. Leblanc et al. 1995, 

Grimanelli et al. 2003). Flowers of apomictic plants exhibit highly asynchronous development and 

massive changes in gene expression patterns compared to sexual flowers (e.g. Sharbel et al. 2010, 

Pellino et al. 2013). Hence, modulation of sex during the development of the flowers in facultative 

apomictic plants is likely highly sensitive to environmental signals. Competition between meiotic 

and apomictic pathways within the ovule will affect the reproductive output and fitness of the 

plant. Studying different apomictic Paspalum malacophylum genotypes under homogeneous 

experimental conditions, Hojsgaard et al. (2013) showed gametophytic competition in ovules 

varies substantially among individuals, and observed a significant increase in efficiency of the 

apomictic pathway toward the formation of seeds and offspring. Yet, how environmental 

conditions affect the proportion of residual sexuality in natural populations of apomictic plants 

and its local and regional impact on plant fitness has not been analyzed. 

In natural conditions, the existence of ecological modulation of sexual 

reproduction in otherwise clonal plants will provide a much-needed perspective on the question 

whether environmental variation facilitates the creation of genetic variability, local adaptation and 

survival of lineages traditionally condemned to extinction. In spite apomixis provides a colonizing 

advantage via uniparental reproduction (Baker’s Law - Baker 1955) and clonality, without sex, 

apomictic plants will struggle to create the genotype diversity necessary for better use resources 

(Frozen Niche Variation Model - Vrijenhoek and Parker-Jr. 2009) and for local adaptation. 

Selection of genotypes best fitted to new conditions can promote niche shifts and departures from 
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areas of ecological competition to sexual counterparts (Karunarathne et al. 2018) endorsing range 

expansions (e.g. geographical parthenogenesis; Bierzychudek 1985, Hörandl 2006). In addition, 

sex is needed to purge clonal organisms from deleterious mutations (Muller´s ratchet; Muller 

1964). Therefore, understanding whether rates of functional sex are environmentally modulated, 

its distribution at local and regional scales, and how functional reproductive pathways affect 

relative fitness in facultative apomictic plants will shed light on mechanistic causes determining 

the success of sexuality vs. asexuality in natural populations. 

Here, I analyze levels of functional sexuality in geographically widespread 

populations of a facultative apomict under a variety of ecological conditions, and their relative 

contribution to plant fitness. I aim at 1) assessing the expression of sexuality in facultative 

apomictic populations, 2) evaluating the efficiency of both meiotic and apomictic pathways in the 

formation of seed offspring, 3) examining ecological and environmental factors possibly 

influencing the expression of sexuality, and 4) analyzing the impact of variable levels of sex and 

apomixis on maternal fitness at different geographic scales. For doing so, I use Paspalum 

intermedium Munro ex Morong, a caespitose perennial grass that grows in marshes and wetlands 

of South America, and has two cytotypes, self-sterile sexual diploids and self-fertile aposporous 

tetraploids (Norrmann et al. 1989, Ortiz et al. 2013). Both cytotypes co-occur in different 

combinations (i.e. allopatry, sympatry and parapatry) and are adapted to slightly different 

ecological settings (Karunarathne et al. 2018). Tetraploids display a wider tolerance to varied 

ecological conditions whereas diploids occupy only a fraction of the ecological niche of the 

species, and both cytotypes out-compete each other in their main distribution zones. Since 

northern tetraploids growing in sympatry to diploids are likely younger than southern allopatric 

tetraploids (Karunarathne et al. 2018), P. intermedium is an ideal model species to study how the 

environmental heterogeneity influence the expression of sexuality, plant fitness under diverse 

reproductive modes and ecological setups, and the release of variability that might contribute to 

the observed adaptive plasticity among apomictic populations. 

 

3.3. MATERIALS AND METHODS 

3.3.1. Plant materials and ploidy levels 

Paspalum intermedium florets (spikelets) are bisexual consisting of an ovary 

containing one ovule and two feathery stigmas, and surrounded by three stamens. Florets are 

exclusively wind pollinated and grouped in racemes and inflorescences. P. intermedium plants do 

not propagate vegetatively, and flowering and fruiting occur from late October till early April. 
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A total of 39 P. intermedium populations were identified in two field trips during 

the beginning and end of the blooming season of the species (November-December and March, 

respectively). The distribution area of the populations covers most of the main distribution area of 

the species in Eastern Gran Chaco, central and Northern Mesopotamia as well as peripheral areas 

in Northern Pampas and Western Gran Chaco (Supplementary Data. Table S2.1). Around 30 

individuals were used to characterize the ploidy level of each population by chromosome counts 

in mitotic root cells and by flow cytometry with leaf tissues according to Karunarathne et al. (2018). 

A total of 11 pure diploid, 24 pure tetraploid and four mixed-ploidy populations were identified 

(Suppl. Table S1; Karunarathne et al. 2018). 

3.3.2. Common garden experiments  

Three to five individuals per population were transplanted to a common 

environmental setting in experimental gardens at Instituto de Botánica del Nordeste (IBONE), 

National University of the Northeast, Argentina. Around 25 plants from 7 different populations 

were also keep under controlled temperature and humidity inside walk-in climate chambers (York, 

Pflanzenwuchskammer 1.305, ENGIE Deutscheland, Hamburg, Germany) at the Albrecht-von-

Haller Institute for Plant Science, University of Goettingen, Germany; at temperuature range – 18-

24  °C, photoperiod – 10-12 h/day, light intensity - 250 mmol/m2/s, humidity – 80%. 

3.3.3. Reproductive pathway analyses 

The reproductive mode of three individuals per population was characterized at 

two developmental stages by using two methodologies, embryology and flow cytometry on seeds. 

Embryological analysis. Inflorescences at meiosis and anthesis of 27 P. intermedium populations 

were collected in situ during field explorations, fixed in FAA for 24 hours, transferred to 70% 

ethanol and storage at 4°C. Individual flowers were dissected under a Stereomicroscope (Leica 

M125; Leica Microsystems GmbH, Wetzlar, Germany), ovaries were cleared using Methyl 

Salicylate (Herr 1973) and analyzed under a DIC (Differential Interference Contrast) microscope 

(Leica DM5500B; Leica Microsystems GmbH, Wetzlar, Germany). A total of 1243 ovules which 

were fixed during male meiosis from randomly selected samples, were analyzed to check the type 

of gametophytic apomixis (i.e. diplospory or apospory). For evaluation of reproductive efficiency, 

distribution of sex and environmental modulation, between 10-20 ovules were examined from 

each individual and three individuals per population. 

Flow cytometry seed analysis. Mature seeds from 20 P. intermedium natural populations and 5 

populations from common garden experiments were collected under open pollination conditions. 

At least 30 seeds from each individual (accounting more than 100 seeds per population) were 

assessed following the protocol described in Karunarathne et al. (2018). Single seed histograms 

were produced with a Ploidy Analyzer (Sysmex-Partec GmbH, Görlitz, Germany) and were 
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analyzed with CyViewTM data processing software (Sysmex Partec GmbH, Münster, Germany). 

The relative fluorescence of at least 3000 particles (nuclei) was measured for each sample seed 

and histogram peaks were assigned to embryo and endosperm tissues following the rationality 

described in Hojsgaard et al. (2013).  

The mean peak values of relative DNA content (C-values) for embryo and endosperm seeds were 

used to determine their developmental pathways as to sexual or apomictic, where sexual seeds 

have a diploid embryo (2n; 2C-value: see Figure S2.1) and a triploid endosperm (3n; 3C-value: 

see Figure S2.1), while apomictic seeds bear a diploid embryo and a pentaploid endosperm (5n; 

5C-value see Figure S2.1) (also see Karunarathne et al., 2018). Peak indeces of the embryo (G1) 

and endosperm (G3 or G5) peaks were also calculated a ratio of the latter to the former; peak 

index value of 1.32-1.73 represents a sexual seed and a peak index value of 2.28-2.78 represents 

apomictic seeds (see Supplementary Table S3.1) A maximum coefficient of variation (CV) value of 

5% was accepted for each sample peak. The raw data of histograms are stored on the network 

server of the Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller 

Institute for Plant Sciences, University of Göttingen.  

3.3.4. Fecundity (seed set) and fertility (offspring) assessment 

Seed set. The number of seeds produced throughout the season was used as a 

measure of fecundity (Begon et al. 2006, Burns et al. 2013). Thus, fecundity was estimated as the 

average number of seeds produced per population. During flowering, once all spikelets were in 

anthesis, three to six inflorescences from each individual were bagged using Sulphite paper 

crossing bags (Baumann Saatzuchtbedarf GmbH, Waldenburg, Germany), . One month after 

bagging, the inflorescences were collected and full and empty spikelets (seeds with and without 

caryopses) were sorted out in two groups using a 757 South Dakota Seed Blower (SeedBuro 

Equipment Company, Illinois, USA). The total number of full and empty seeds was estimated by 

weighing three sets of hundred seeds from each inflorescence, averaging and extrapolating that 

value to the total weight of full and empty seed groups per individual. The total number of 

inflorescences was recorded throughout the flowering season and used to calculate the number of 

flowers (ovules) and the number of seeds produced by each individual and population. 

Offspring. Fertility, as the capability to produce offspring (Begon et al. 2006), was 

determined by the number of seedlings produced by diploid and tetraploid individuals after seed 

germination tests. Seeds from three individuals per population and a total of 30 populations were 

sown in sterilized soil and kept in a glasshouse under same light, temperature and water regime. 

Germination ability was checked every second day during 60 days, and indices of germination 

power and germinability were estimated from the number of seedlings and the total number of 

caryopses sown for each individual and population. 
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3.3.5. Reproductive pathway efficiency and maternal fitness 

The efficiency of each reproductive pathway (sexual and apomictic) in tetraploid 

plants was calculated as the ratio between the observed and the expected proportions of spikelets 

undergoing the meiotic or the apomictic pathway (Hojsgaard et al. 2013). The observed proportion 

of embryo sacs was estimated as nm/(nm+na) for the meiotic pathway and na/(nm+na) for the 

apomictic pathway, where nm is the total number of ovules with a meiotic embryo sac (MES), and 

na is the total number of ovules with apomictic embryo sacs (AES). A similar formula was used for 

estimating proportions of sexual and apomictic seeds. The expected proportion were calculated 

from the data observed in the previous developmental stage, using the formulas nm + 0.5 nma/nt 

and na + 0.5 nma/nt for meiotic and apomictic pathways respectively; where nma is the number 

of observed ovules with both meiotic and apomictic pathways and nt is the total number of ovules 

analyzed. In our analysis, it was assumed that i) MES and AES occur independent from each other, 

and ii) they have the same probability of successful development into a seed. A standard Pearson’s 

Chi-squared test was performed on both meiotic and apomictic observed and expected values to 

check for significant differences. Further, a paired t-test was performed on the mean difference 

between the observed and expected proportions of sexual and apomictic pathways in both 

developmental stages. 

For the analyses of fitness, I focused on the maternal fitness. The effect of paternal 

fitness was considered negligible because 1) tetraploid apomicts in P. intermedium are self-fertile 

and self-pollinated, 2) male gametes do not contribute to the formation of parthenogenetic 

embryos in apomictic seeds although it contributeds to the endosperm formation; endosperm 

imbalance however, is tolerated in P.intermedium (Hojsgaard et al. 2008), and 3) the maternal 

genotype and maternal environments are both known to affect offspring performance (e.g. 

maternal plants producing bigger seeds have more resources and hence have advantages in 

germination and/or establishment; e.g. Primack and Kang 1989). Estimation of maternal fitness 

potential context-dependent effects on rates of self-fertilization or inbreeding depression are 

skipped by apomictic progenies, and they might affect only sexual progenies. A cost of self-

fertilization in terms of pollen fitness (i.e. pollen discounting; Barrett 2003), is not expected as 

anthers dehisce at the opening of the floret and each anther in Paspalum spp. carries around 800-

1,000 pollen grains (Hojsgaard, personal communication), hence pollen availability was 

considered to be high. Therefore, in P. intermedium, fitness estimates based on seed quantity and 

germinability are expected to effectively reflect plant´s fitness. 

Measures of differential reproductive success or maternal fitness were therefore 

estimated as a product of fecundity x fertility for each individual and population. These values 

were used for within and among populations comparisons of relative plant fitness assuming that 
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individual plants producing more seeds and seedlings contribute more offspring to the next 

generation than a plant producing few seeds and seedlings does. Although I admit that this 

approach disregards selective pressure acting upon the establishment of seedlings in natural 

conditions, an in situ test of germinability was not possible due to the extensive distribution of the 

species. 

3.3.6. Ecological, spatial and seasonal effects on reproductive modes 

Data for ecological/environmental analysis were downloaded from open source 

data bases: 19 bioclimatic variables downloaded from WorldClim (1950–2000; version 1.4, 

Hijmans et al. 2005; www.worldclim.org), UV-B radiation downloaded from glUV (a global UV-

B radiation data set for macroecological studies, Beckmann et al. 2014; www.ufz.de/gluv), and 

photosynthetically active radiation (PAR) data was downloaded from Moderate Resolution 

Imaging Spectroradiometer (MODIS) database (Myneni et al. 2015; https://lpdaac.usgs.gov), and 

cloud cover, frost day frequency, and vapor pressure at ground level were downloaded from 

CGIAR CSI (www.cgiar-csi.org). These data were downloaded as raster grid files either at 2.5 arc 

minute resolution or (dis)aggregated to match 2.5 arc minute resolution. The environmental data 

for each population was extracted from these raster layers using the R package dismo (Hijmans et 

al. 2016). 

Pearson-Correlation tests were performed between the environmental variables 

(explanatory variables) and the expression of meiotic and apomictic pathways (response variables) 

both at blooming (mature embryo sac) and seed stages. A generalized linear model (GLM) was 

applied to the explanatory variables showing significant correlation to observations (meiotic and 

apomictic pathways). Since the fitted values of the GLM exhibited a nonlinear pattern of the 

observed mean values, a nonlinear regression model was used to determine best-fitting parameters 

and predict responses of reproductive modes. Parameter estimates of the nonlinear regression 

formula were determined as the parameter values providing the best fit for the mean function in 

relation to the observations (in this case apomictic/meiotic proportions). The estimation was 

obtained by minimization of the residual sums of squares (RSS) (Venables and Ripley 2002). Once 

the estimation of start values was established, a grid search was performed to find the RSS values 

for a coarse grid based on the (above) estimated ranges of the parameter values. The parameter 

values that yield the smallest number of RSS in the grid search were used as the starting values for 

the nonlinear regression analysis (see supplementary information for a detailed explanation). The 

function nls2 of the R package nls2 (Grothendieck 2013) was used for the grid search and the 

nonlinear regression. The function curve in stats R package (R Core Team 2016) was used to add 

the curve described by the mean function to the plot. A nonparametric bootstrap analysis of 10000 
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replicates was performed to test the significance of the gradient value obtained for the mean 

function. 

For analysis of seasonal effects on the incidence of reproductive pathways and on 

reproductive mode efficiency, sampling of flowers and seeds were grouped in two time periods 

(early season: November-December; and late season: February-March), and a paired t-test and 

standard Pearson’s Chi-squared test were performed on the relevant data. 

 

3.4. RESULTS 

3.4.1. Ploidy and reproductive mode evaluation of P. intermedium cytotypes 

Reproductive pathways were assessed in over 1181 mature ovules of P. 

intermedium from 21 pure tetraploid populations, four pure diploid populations and three mixed-

ploidy populations. Ovules analyzed during male meiosis showed that apomixis is initiated from 

a nucellar cell surrounding the germline. Meiotic and apomictic female gametophytes (MES and 

AES) were differentiated by their anatomical characteristics. MES consist of an egg cell flanked by 

two synergids at the micropylar area, a central cell with two polar nuclei, and three to several 

antipodal cells at the chalazal area (see Figure 3.1). AES contain an egg cell, one or two synergids 

and a central cell with two (or three) polar nuclei. The absence of antipodal cells is characteristic 

to AES (Figure 3.1). 

 

All ovules from diploid plants were bearing single MES except for one ovule which 

had two ES carrying antipodal cells. In tetraploid plants, three kinds of ovules were found: i) ovules 

carrying only MES, ii) ovules carrying only AES, and iii) ovules carrying MES + AES. In ca. 40% of 

ovules with AES and MES + AES more than one AES were observed. ES aborted or in abortion of 

 

 

Figure 3.1. Microscopic images of meiotic and apomictic ovules of P. intermedium at maturity 

showing the anatomical differences; A. Apomictic embryo sac of tetraploid, B. Multiple embryo 

sacs of both meiotic and apomictic origin coexisting in the same ovule (1,3-apomictic, 2-

meiotic), C. Diploid meiotic embryo sac. (en – embryo nucleus, cc – central cells, sy – synergids, 

ap – antipodals) 
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meiotic and apomictic origin were observed, and in a few individual ovules (ca. <1%) no ES was 

detected. The overall percentages of MES and AES for all tetraploid individuals were 32.7% and 

63.6%, respectively. Nevertheless, values of MES and AES varied immensely among all the studied 

populations (Table 3.1). 

Flow cytometry histograms were generated for over 1500 seeds of P. intermedium 

from 14 pure tetraploid populations, four pure diploid populations, and three mixed populations. 

Histogram analyses revealed all seeds from diploid plants were of sexual origin (having an embryo 

to endosperm ploidy ratio of 2:3) while among tetraploid plants a broad variation in the proportion 

of sexual and apomictic (embryo to endosperm ploidy ratio of 2:5) seeds was observed (see details 

in Table 3.1 and Figure S2.1), with overall average values of ca. 18% sexual and ca. 82% 

apomictic seeds. 

From both embryological assessment and flow cytometric analysis of seeds, it is 

evident that diploids are exclusively sexual and auto-tetraploids of P. intermedium are facultative 

apomictic. This observation agrees with previous studies on the species itself (Norrmann et al. 

1989, Karunarathne et al. 2018). 

3.4.1. Efficiency and competition between reproductive pathways 

The observed proportions of meiotic (and apomictic) reproductive pathways at ES and seed stages 

showed a significant difference among all populations (p-value for the paired t-test = 0.009). 

Significant differences were also found in comparisons within populations (chi-squared test χ2 < 

6.11 and p-value < 0.013 in all populations) except for two populations (Hojs402 and Hojs478; 

Table 3.2). The overall proportion of sexual seeds exhibit a significant reduction from the expected 

38.2% to the observed 15.3% (p-value = 0.0017, χ2 = 9.8478), while the proportion of apomictic 

seeds showed a substantial increase from the expected 61.8% to the observed 84.7% (p-value = 

0.049, χ2 = 3.594) (Table 3.2). At population level, most differences between expected and 

observed values were significant (Table 3.2), the highest being 42.4% and 40.2% for apomictic 

and sexual pathways respectively (Hoj465/2R; Table 3.2), while the lowest were 0.4% for the 

apomictic and 0.3% for the sexual pathways (not significant; p-value > 0.90). In all the studied 

populations, a reduction in reproductive efficiency of the sexual pathway between proportion in 

ovules and seeds was observed, ranging from 0.16 to 0.98 (Table 3.2). Conversely, in the 

apomictic pathway, an increase from 1.0 to 2.07 was observed (Table 3.2: small table with the 

efficiency analysis). This increase of apomictic pathway efficiency showed a positive correlation 

(Pearson correlation r = 0.50) to the number of ovules with MES + AES, suggesting a competition 

between reproductive strategies ovules with parallel meiotic and apomictic developments that 

was realized in seeds toward the apomictic pathway.



49 
 

Population Pop. ploidy 
ES proportion  Seeds proportion  Chi-squared test for observed 

values 

Meiotic Apomictic  sexual Apomictic  χ2 p-value 

Hoj402/1C 4 0.161 0.839  0.169 0.831  0.0530 0.817 

Hoj403/1D 4 0.318 0.591  0.068 0.932  34.906 <0.001 

Hoj404/1E 4 0.333 0.667  0.076 0.924  51.020 <0.001 

Hoj405/1F 4 0.385 0.615  0.100 0.900  34.305 <0.001 

Hoj409/1H 4 0.267 0.733  0.061 0.939  21.767 <0.001 

Hoj410/1I 4 0.327 0.673  0.263 0.737  1.8500 0.174 

Hoj414/1J 4 0.050 0.950  0.067 0.933  0.1210 0.780 

Hoj415/1K 4 0.250 0.750  0.143 0.857  6.1180 0.013 

Hoj424/1S 4 0.333 0.667  0.129 0.871  18.810 <0.001 

Hoj445/2H 4 0.433 0.567  0.096 0.904  46.148 <0.001 

Hoj453/2Ñ 4 0.466 0.534  0.167 0.833  31.260 <0.001 

Hoj455/2P 4 0.383 0.617  0.225 0.775  10.511 0.001 

Hoj456/2Q 2,4 0.444 0.556  0.235 0.765  17.644 <0.001 

Hoj465/2R 4 0.500 0.500  0.076 0.924  71.978 <0.001 

Hoj470/2T 2,3,4 0.725 0.275  0.333 0.667  76.955 <0.001 

Hoj475/2U 4 0.396 0.604  0.184 0.816  18.844 <0.001 

Hoj478/2V 4 0.063 0.938  0.037 0.963  1.1410 0.286 

Hoj471/2X 4 0.360 0.640  0.172 0.828  15.357 <0.001 

Hoj468/2S 2 0.980 0.000  1.000 0.000    
Hoj422/1Q 2 0.990 0.000  1.000 0.000    

M26/1X 2 0.990 0.000  1.000 0.000    
M31/1W 2 0.990 0.000  1.000 0.000    

proportion of each reproductive pathway is expected at the seed stage as in the ES stage 

Table 3.1. Proportions of meiotic/sexual and apomictic at embryo sac and seed stages in studied populations of P.intermedium. Proportions were calculated 

as a fraction of all the observed ES/seeds. Chi-squared values were calculated for both meiotic/sexual and apomictic proportions with the assumption that 

the same
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In mixed ploidy populations where both diploid and tetraploid individuals of P. 

intermedium grow together, tetraploids showed considerably different proportions of sexual and 

apomictic pathways compared to those of tetraploids in pure populations. While in mixed 

populations the average of ovules with MES was 45% (ranging from 33% to 51%), in pure 

tetraploid populations it was 34.1% (ranging from 7% to 41%). At the seed stage, the same mixed 

populations showed a proportion of sexual seeds (21%) similar to that of pure tetraploid 

populations (ca. 18%).  

3.4.2. Fitness variation in diploids and tetraploids cytotypes 

Fecundity assessments show that the average number of spikelets produced per 

inflorescence is similar between diploid and tetraploid populations (4805.18 florets in diploids 

and 4348.87 in tetraploids; Table 3.3). However, the percentage of full seeds in diploids is twice 

as high as in tetraploids (32.61% in diploids versus 15.83% in tetraploids; Table 3.3). Fertility 

measured by germinability tests also showed similar values in both diploid and tetraploid 

individuals and populations. As a result, relative fitness between diploid and tetraploid individuals 

and populations reflects approximately the relative proportions of seed set, with diploids having a 

two folds higher reproductive fitness (f2x=0.276) compared to that of tetraploids (f4x=0.135). 

The regional evaluation of fitness values of different populations (Table 3.3) 

indicates that tetraploids have lower fecundity in Southern areas (14.43%) compared to the 

Northern and Central areas, while diploids in these areas maintain similar values (Table 3.3). 

Interestingly, the pure populations of both cytotypes in the Central region show the highest values 

of fecundity (37.04% for diploids and 19.99% for tetraploids) and fitness (0.435 in diploids and 

0.174 in 4xtetraploids). In mixed-ploidy populations, diploid individuals showed the lowest fitness 

values (0.031) among all diploid populations evaluated, while local tetraploids surpassed the 

fitness of diploids having almost a 10 fold higher fitness (0.293) (Table 3.3). The only triploid found 

in one of the mixed-ploidy populations surprisingly showed the highest fecundity value (39.55%) 

observed among all cytotypes although its fitness was very low (0.039), mainly due to a reduced 

number of inflorescences and low germinability (Table 3.3). 

3.4.3. Climatic variation and incidence of reproductive pathways 

Initial scatter plots of each environmental variable verses proportions of apomictic 

and sexual pathways showed no visible patterns in all but one variable. A Pearson correlation test 

confirmed  a moderate correlation between Mean Diurnal Range (MDR; Mean difference of 

monthly maximum and minimum temperatures) and reproductive pathways at ovule stages 

(r=0.69 for sex; r= -0.67 for apomictic) (Figure 3.2; Supplementary Table S3.2: All climatic-

reproductive correlations must be in a table). This correlation is inversed between reproductive 
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pathways, meaning that sexual gametophytes proportions increased proportionally to MDR while 

apomictic gametophytes decreased. 

Accordingly, proportions of sexual and apomictic seeds showed a similar behavior 

and sexual seeds increased with MDR (r=55 for sex) and apomictic seeds decreased with MDR (r 

= -0.56 for apomictic) (Figure 3.2; Table S3.2). Two other bioclimatic variables (Bio5 and Bio8) 

which showed strong association to MDR (r = 0.81 and r = 0.78, respectively; Supplementary  

Table S3.2) were weakly correlated (r < 0.41 in all combinations) to reproductive proportions at 

both developmental stages. Therefore, these two variables were not considered for further analysis. 

We performed a Generalized Linear Model (GLM) with Gaussian inverse link on 

the diurnal variation data and the proportions of apomictic and meiotic reproductive pathways at 

the two developmental stages. The overall values show a negative relationship between MDR and 

the occurrence of AES (t = 4.18, p-value = 0.0006) and apomictic seeds (t = 2.324, p-value = 0.03) 

and a positive influence between MDR and the meiotic pathway (t = -4.18, p-value = 0.0006). 

Within-population analysis showed a significant influence of MDR on the proportion of AES and 

apomictic seeds in all cases with a stronger effect at mid MDR values (t-test for GLM, p-value = 

0.013) and low at high MDR values (Figure 3.3). This indicates that reproductive modes are 

sensitive to and modulated by the environment. 

 

Figure 3.2. Map depicting the variation of meiotic and apomictic ES percentages in the 

studied apomictic tetraploid populations of P.intermedium with the mean diurnal range 

(MDR); Contours demarcate the MDR variation zones: temperature changes in Celsius; pies: 

blue – apomictic, red – meiotic. 
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Population 
Population 

ploidy 
Reproductive Mode proportions 

Chi-squared for ex. vs obs. 
values 

Reprod. Mode efficiency 
(obs. /ex.) 

Exp. Sex Obs. Sex exp. Ap. obs. Ap. χ2 p-value Sex Ap. 

Hoj402/1C 4 0.173 0.169 0.827 0.831 0.0110 0.916 0.981 1.004 

Hoj403/1D 4 0.415 0.068 0.585 0.932 49.597 <0.001 0.164 1.594 

Hoj404/1E 4 0.387 0.076 0.613 0.924 38.126 <0.001 0.196 1.507 

Hoj405/1F 4 0.401 0.100 0.599 0.900 37.719 <0.001 0.249 1.503 

Hoj409/1H 4 0.307 0.061 0.693 0.939 28.445 <0.001 0.198 1.355 

Hoj410/1I 4 0.356 0.263 0.644 0.737 3.7730 0.042 0.740 1.144 

Hoj414/1J 4 0.093 0.067 0.907 0.933 3.0140 0.031 0.719 1.029 

Hoj415/1K 4 0.318 0.143 0.682 0.857 14.121 <0.001 0.450 1.256 

Hoj424/1S 4 0.376 0.129 0.624 0.871 26.003 <0.001 0.342 1.397 

Hoj445/2H 4 0.448 0.096 0.552 0.904 50.104 <0.001 0.215 1.636 

Hoj453/2Ñ 4 0.469 0.167 0.531 0.833 44.751 <0.001 0.355 1.569 

Hoj455/2P 4 0.429 0.225 0.571 0.775 16.989 <0.001 0.525 1.358 

Hoj456/2Q 2,4 0.463 0.235 0.537 0.765 20.908 <0.001 0.509 1.423 

Hoj465/2R 4 0.500 0.076 0.500 0.924 71.910 <0.001 0.152 1.848 

Hoj470/2T 2,3,4 0.678 0.333 0.322 0.667 54.520 <0.001 0.491 2.072 

Hoj475/2U 4 0.400 0.184 0.600 0.816 19.440 <0.001 0.459 1.361 

Hoj478/2V 4 0.063 0.037 0.938 0.963 1.0750 0.300 0.593 1.027 

Hoj471/2X 4 0.407 0.172 0.593 0.828 22.882 <0.001 0.423 1.396 

Table 3.2. Reproductive pathway efficiency analysis of studied populations of P.intermedium. The expected and observed proportion values were 

calculated using the formulae described in Hojsgaard et al. (2013); observed values are the observed proportions of sexual and apomictic seeds and 

expected values were calculated using the observed proportions of meiotic and apomictic pathways at ES stage (also see the materials and methods). 

Chi-squared values were calculated for these observed and expected proportions. Reproductive mode efficiency was calculated as a ratio of observed 

to expected values for both pathways



53 
 

 

Seed set (full seed 
%) 

No. of spikelets 
/inflorescence 

No. of inflorescence 
/individual 

Germinability 
(fertility) 

Relative 
fitness 

Relative fitness 
/population 

OVERALL FITNESS  SE  SE  SE  SE   

2x 32.6 3.15 4805.2 360.6 39.2 5.13 0.739 0.025 0.276 0.275 
4x 15.8 1.51 4348.9 296.8 31.9 2.70 0.791 0.017 0.135 0.129 
REGIONAL FITNESS           

Northern           

2x 31.2 14.97 5261.3 436.6 35.8 6.49 0.702 0.041 0.255 0.267 
4x 18.7 8.32 4349.3 412.4 34.2 5.99 0.760 0.029 0.137 0.128 
Central           

2x 29.1 4.74 4381.7 556.2 42.4 7.81 0.774 0.026 0.296 0.281 
4x 18.1 3.25 4555.9 537.5 33.9 4.67 0.742 0.028 0.154 0.146 
Southern           

2x - - - - - - - - - - 
4x 14.4 2.05 4219.8 461.5 32.6 4.59 0.829 0.028 0.135 0.152 
Mix pop. in central           

2x 10.2 1.26 3934.4 691.1 14.7 2.91 0.829 0.087 0.031 0.031 

3x 39.5 12.65 2590.0 1586.0 8.0 2.00 0.710 0.000 0.039 0.039 
4x 15.0 7.62 4640.4 745.1 27.6 10.81 0.704 0.063 0.293 0.197 
Pure pop. in central           

2x 37.0 5.69 4026.0 599.8 58.7 8.22 0.787 0.020 0.435 0.435 
3x - - - - - - - - - - 
4x 20.0 3.39 4433.7 590.5 36.9 4.77 0.768 0.024 0.174 0.174 
SE – standard error 

 

Table 3.3. Analysis of reproductive mode fitness in all the studied populations of P.intermedium. The table presents i) the overall fitness of each 

cytotype from all the locations as average values and ii) relative fitness of the two cytotypes separated by the region of occurrence; the regions 

separation is according to Karunarathne et al. (2018).
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In order to better understand the ecological influence on reproductive modes and 

to model its possible responses, a nonlinear function for the observed expression of meiotic and 

apomictic pathways and the MDR was formulated. The nonlinear equation best explaining our 

results takes the form of an exponential increase/decay with a horizontal asymptote. For apomixis 

ES proportion, it can be written as 

A(d) = Am + A0 • e (-k(d- d0))  

Where, Am is the minimum AES%, A0 is the maximum AES%, k is the gradient 

constant, d is diurnal variation (MDR) and the d0 is the temperature at which AES% is 100%. The 

values obtained from the grid search (see Materials and Methods) were, Am = 30%, k = 0.21 and 

d0 = 7.8; A0 was assumed to be 100 as it is the maximum theoretical AES% possible. Therefore, 

the equation can be written as  

A(d) = 30 + 100 • e (-0.21(d-7.8)) ………………… (see Figure 3.4) 

 
 

 

Figure 3.3. GLM plot of the fitted values for apomictic proportions at both embryo sacs and 

seed stages in all the studied P. intermedium populations; whiskers indicate the standard error. 
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3.4.4. Seasonal changes in meiotic and apomictic incidence 

A paired t-Test between the mean proportion of MES (and AES) for each population 

collected at two seasons (see materials and methods) showed a significant difference (Apomictic: 

t = 2.99, df = 16.591, p-value = 0.008; Meiotic: t = -2.4566, df = 16.296, p-value = 0.0256) 

indicating a seasonal variation in the expression of apomictic and meiotic pathways, likely 

associated to climatic variation. However, the proportion of sexual and apomictic seeds showed 

no significant variations (t = 1.0655, df = 12.022, p-value = 0.3076). The changes observed in 

reproductive efficiency of each apomictic and meiotic pathways at ovule and seed stages were 

not significant between seasons (early season: χ2 = 42, df = 36, p-value = 0.227; late season: χ2 = 

56, df = 49, p-value = 0.2289). This indicates that reproductive modes are affected by the seasonal 

changes only at the ovule development stage. 

 

3.5. DISCUSSION 

Asexuality is usually assumed to have a two-fold fitness advantage compare to 

sexuals (e.g. silvertown 2008). Differences in the reproductive mode and the degree of their 

expression is highly variable at both within and among populations in the studied Paspalum 

intermedium populations. Facultative apomixis in these populations are highly influenced by the 

environmental factors leading to the differences in the expression of apomixis from the embryo 

sac stage to the seeds. 

3.5.1. Reproductive variability in Paspalum intermedium 

The genus Paspalum is characterized by a large variation in reproductive systems 

categorized by their ploidy levels and reproductive modes (Ortiz et al. 2013). As in many 

Paspalum species and most studied apomictic plant systems in angiosperms, P. intermedium 

shows a reproductive dimorphism linked to different chromosomal races. Diploid cytotypes are 

self-sterile obligate sexuals and derived tetraploid cytotypes are self-fertile apomicts (Norrmann et 

al. 1989, Karunarathne et al. 2018). The type of apomixis found in P. intermedium is aposporous, 

implying that the asexual pathway is independent from the meiotic one as it develops from a 

somatic nucellar cell surrounding the embryo sac.  In agreement with various reproductive studies 

on individual plants from different species (Quarin 1992, Urbani et al. 2002, Hojsgaard et al. 

2008, Siena et al. 2008, Sartor et al. 2011, Cosendai et al. 2013), my population level analysis 

covering most of species distribution show diploids had a highly stable sexual reproductive mode 

while polyploids show variable incidence of both sexuality and apomixis along the distribution 

area. I found levels of sexuality and apomixis in ovules ranging from 6-68% and 32-94% 

respectively, while at seeds variation was 3-33% for sex and 67-96% for apomixis. The analysis 
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of reproductive modes revealed the expression of sexuality and apomixis in tetraploid facultative 

apomictic P. intermedium plants is geographically structured to a certain extent (see details below). 

So far, all studies on facultative apomictic plants have suggested the allocation to sexual or asexual 

seeds is determined by genotype-by-environment interactions (e.g. Aliyu et al. 2010, Hojsgaard et 

al. 2013, Molins et al. 2014, Schinkel et al. 2016a). 

3.5.2. Apomictic pathway efficacy excels at a cost of depleted fitness 

 Seeds coming from common garden experiments 

Despite the large variation observed among P. intermedium populations at the 

levels of facultativeness between the two developmental stages, the proportion of apomixis 

significantly increased in most cases at the expenses of sexuality, as indicated by the reproductive 

mode efficiency values for both pathways. Many spikelets (63% of the total) presented two or 

more apomictic embryo sacs inside the same ovule, suggesting a strong penetrance of the trait 

which may explain its higher reproductive efficiency. Another factor that might provide an 

advantage for the apomictic pathway against the sexual one is the higher ploidy of the former. 

Selection is more effective eliminating deleterious recessive mutations in haploid organisms than 

diploids because of masking effects (Otto and Gerstein 2008). While there is no chromosomal 

reduction in apomictically derived gametophytes, meiotic gametophytes are haploid and more 

likely to expose deleterious mutations and developmental problems. Yet, since plants are 

tetraploids, even meiotically reduced gametophytes have at least two copies for each locus thus 

masking effects are expected. 

Another relevant factor likely influencing reproductive pathway efficiency relates 

to the embryo sac competition for space within the ovule. The orientation of the embryo sacs 

within the ovule is not random (e.g. Willemse and van Went 1984, Hojsgaard et al. 2013) and 

while dislocated aposporous embryo sacs toward the chalazal zone and closer to the funiculus 

might have a more direct access to resources from the sporophytic tissue, most meiotic embryo 

sacs had a well-developed egg-apparatus and synergid cells with a filiform apparatus well inserted 

in the micropylar end of the ovule, and therefore they are conveniently positioned for pollen tube 

access. 

The development of meiotic female gametophytes into sexual seeds was drastically 

reduced. Accordingly, the observation of a strict association between apomixis efficiency and the 

number of ovules with both meiotic and apomictic embryo sacs indicates the sexual pathway in 

ovules of P. intermedium is handicapped and likely failed to form seeds in most cases. A similar 

observation was reported in five Paspalum malacophyllum genotypes showing a complete 

depletion of sexuality from ovules to adult progenies (Hojsgaard et al. 2014a). The most probable 

explanation is likely linked to the genetic nature of the trait. Apomixis is known to be caused by a 
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de-regulation of the sexual program upon which apomixis is superimposed (Hand and Koltunow 

2014). Massive up- and down-regulation of genes during megaspore and embryo sac formations 

characterize apomictic ovules of all studied species in different plant genera, including Boechera 

spp (Sharbel et al. 2010), Hieracium spp. (Rabiger et al. 2016), Ranunculus spp. (Pellino et al. 

2013), Hypericum spp. (Galla et al. 2015), Pennisetum spp. (Akiyama et al. 2004), and Paspalum 

spp. (Polegri et al. 2010, Ortiz et al. 2017).  

 

Even though the type of apomixis in P. intermedium is aposporous implying that 

both meiotic and apomictic pathways are initiated from independent cell types inside the ovule, 

the inherent genetic changes causing apomixis are likely destabilizing sexual development. This 

seems to be also the reason of the observed upsurge in the number of aborted ovules that fail to 

produce seeds (whether sexual and/or asexual) and cause a sharp reduction in fitness of tetraploid 

apomicts compared to sexual diploids in pure populations along the species distribution. Likewise, 

Schinkel et al. (2016) reported that obligate sexual individuals of Ranunculus kuepferi produce 

higher number of achenes compared to the apomictic individuals. In P. intermedium, I found a 

direct link between the incidence of apomixis, ovule abortion and reduced seed set in most natural 

populations. The only exception is in those cases were diploids growing in sympatry with 

polyploids show a remarkable depletion of fitness. Since P. intermedium is wind-pollinated, it is 

 

Figure 3.4. Nonlinear curve fitting of the mean functions (A(d) = 30 + 100 • e (-0.21(d-7.8))) for 

meiotic and apomictic embryo sac proportions of P.intermedium, observed under different 

mean diurnal range values in the studied area. 
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not expect to have pre-mating barriers to crossing in nature. Like in other sexual-apomictic 

complexes, apomictic embryo sacs are recalcitrant to hybridization because the unreduced egg-

cell develops parthenogenetically. In addition, maternal-to-paternal genome contribution to the 

development of the endosperm are relaxed in apomicts (e.g. Talent 2009), including Paspalum 

spp. (Quarin 1999). P. intermedium is a pseudogamous apomict, i.e. central cell fertilization is 

needed for developing a functional seed. Therefore, in mixed-ploidy populations, introgression of 

pollen from diploids into ovules of tetraploids will be avoided by parthenogenesis without 

affecting perceptively the development of the endosperm and a functional seed (endosperm 

imbalance is tolarated in the genus Paspalum, Sartor et al. 2011). In contraposition, introgression 

of pollen from tetraploids into diploids will create a triploid zygote and an endosperm with 

incompatible maternal-to-paternal contribution (i.e. triploid block) to sexual seed development 

(Köhler et al. 2010). Thus, in mixed-ploidy populations of P. intermedium, unidirectional 

introgression from polyploid apomicts to diploid sexuals is expected to increase number of 

ineffective matings and non-viable progeny with dramatic consequences on plant fitness. 

Experimental crossings will help us to test this hypothesis. 

3.5.3. A reproductive TUG OF WAR: environmental stimuli versus reproductive efficacy/genetic 

background  

Flowering is controlled by environmental conditions and an intricate network of 

regulatory pathways that play important roles in flowering-time control, like photoreception, 

circadian clock regulation, growth regulator synthesis and response, chromatin structure, and 

response to low temperatures (Mouradov et al. 2002). Adaptive responses to cold seasonal 

climates (including cold acclimation, freezing tolerance, endodormancy, and vernalization) point 

to an evolutionary lability of such traits and a potential role for local adaptation in response to 

climate change (Preston and Sandve 2013). The relevance of such lability can be exemplified with 

the observed niche transition that enabled the evolution of seasonal cold tolerance within the 

Pooideae grass family and supported its extensive radiation within temperate regions (Zhong et al. 

2018). Sexuality is intrinsically associated to flowering in most angiosperms: the sexual 

development of ovules and anthers and the formation of a sexual seed and offspring. However, in 

facultative apomictic plants, apomixis emerges as a parallel alternative to sexuality, where both 

sexual (meiotic) and apomictic developmental programs can be activated simultaneously within 

a single ovule and compete to produce a seed (Hojsgaard et al. 2013). Hence, the environmental 

conditions that affect flowering will also influence the molecular interaction between meiotic and 

apomictic developmental programs, and the output will depend on how such conditions will favor 

one pathway against the other, determining the incidence of sexuality versus apomixis. 
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Apomixis behaves as a dominant trait against sexuality. In Paspalum, the genetic 

factors responsible for apomixis are located in a large chromosomal region recalcitrant to 

recombination that is inherited as a block (e.g. Pupilli et al. 2004, Hojsgaard et al. 2011). A similar 

situation is observed in other apomictic grasses (e.g. Akiyama et al., 2011). Genetic analysis of 

DNA segments within the apomixis locus in Paspalum shows highly interrupted genes sequences 

(Calderini et al. 2006), and gene expression studies revealed apomixis involves a genetic 

reprograming that affects the expression of a variety of genes  including meiotic genes, 

transcription factors, stress-associated genes (Polegri et al. 2010, Okada et al. 2013, Shah et al. 

2016, Ortiz et al. 2017) and genes needed for the emergence of apomixis during ovule 

development (Mancini et al. 2018). Therefore, in facultative apomictic plants, apomixis is a 

leading developmental mechanism that is superimposed over, and drastically distress the regular 

sexual program. Nevertheless, despite its genetic dominance, apomixis shows incomplete 

penetrance (Matzk et al. 2005). 

Thus, the interaction of apomixis factors with the genomic background of each 

asexual clone and the environmental conditions determine variable levels of expression of the 

character as well as the level of realized sexuality in facultative apomicts. As mentioned above, 

previous studies using different experimental setups had shown the proportion of sexuality in 

facultative apomicts increases under stressors, including temperature (Šarhanová et al. 2012, 

Mateo De Arias 2015, Klatt et al. 2018), water availability (Rodrigo et al. 2017) and photoperiod 

(Quarin 1986, Rebozzio et al. 2011, Klatt et al. 2016). 

In my analysis, the first one using in situ population level data, beside the observed 

occurrence of sexual (diploid) and apomictic (tetraploid) cytotypes strictly delineated by climatic 

variables like Mean temperature of coldest quarter, frost day frequency and photosynthetically 

active radiation (Karunarathne et al. 2018), within facultative polyploids, a significant correlation 

between the occurrence of sexual ovules and seeds and the seasonal variation of daily temperature 

was observed. A change in mean diurnal range can induce a stress response and alterations in 

physiology and biosynthesis pathways during flower development (Gent and Ma 1998, Cohen et 

al. 2012). Adaptive evolution of low-temperature-induced stress responses is relevant for 

adaptation to cold habitats in grasses (Vigeland et al. 2013). In asexual plants with reduced genetic 

and genotype variability, higher frequencies of sex in apomictic populations exposed to colder 

and wider temperature range may have an important role in facilitating local adaptation of clonal 

populations as well as enhancing further geographical expansions. 

Combined with the results obtained from the common garden experiments, the 

data suggest that sex is environmental modulated locally in P. intermedium populations, and point 

towards a developmental tug of war between meiotic and apomictic programs to make the most 
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out of reproductive season. Maternal investment is expected to allocate resources among offspring 

maximizing plant fitness (e.g. Povilus et al. 2018). However, in P. intermedium the conflict 

between genetic factors promoting the expression of apomixis and the environmental stressors 

stimulating sexuality, is likely the basis for the drastic reduction of fitness in facultative apomictic 

polyploids compared to sexual diploids. Alternatively, apomictic polyploids can better tolerate 

environmental variability than sexual diploid counterparts (Karunarathne et al. 2018), and among 

tetraploid populations, sexuality is higher in areas of greater environmental stress. Accordingly, 

seasonal variation shows a significant increase in the formation of meiotic female gametophytes 

among apomictic populations (paired t-test p-value = 0.01) associated to the drier and warmer 

season (December – March). Our modelling of population level data further indicates that total 

sexuality will never be reached (fixed) in these polyploids, a situation observed in natural 

populations of P. intermedium, and in all other studied apomictic species where homopolyploids 

individuals and populations are always apomictic and no single case of natural obligate sexuals 

has been yet recorded (Asker and Jerling 1992, Carman 1997). 

Temporal and spatial changes in the incidence of sexuality may be a consequence 

of the inherent nature of apomixis expression and deregulation of ovule gene networks; 

alternatively, modulation of residual sexuality in facultative apomicts may have evolved as a 

response to adaptive pressure, allowing clonal lineages to maintain adapted genotypes keeping 

backed up genetic variability until environmental changes allow for the creation of new gene 

combinations able to address novel ecological challenges. 
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CHAPTER 4 

4. Population genetic structure analysis echoes the distribution, coexistence and niche 
divergence of cytotypes in the polyploid grass species Paspalum intermedium (Poaceae) 

This chapter presents the results of population structure analysis of the studied Paspalum 

intermedium populations in this thesis. The findings have been compiled and the manuscript for 

publication is under preparation. 

 

4.1. ABSTRACT 

Polyploidization is a recurrent process in plants and provides greater potential for 

diversification. Neopolyploids in natural populations should go under substantial structural 

changes in their genetics, reproductive mode (e.g. apomixis), and ecological preferences to ensure 

their successful establishment. These processes are well reflected by their genetic variation. 

However, there is a lack of non-model systems that exhibit successful changes with pronounced 

reflection for studies. Paspalum intermedium is a polyploid complex with different ploidy levels 

and different reproductive modes (i.e. obligate sexual diploids and facultative apomictic 

tetraploids), with both niche divergence and cytotype coexistence, hence provides an ideal 

situation to study genetic variation in polyploid complexes. Flow cytometry, genetic markers 

amplified fragment length polymorphism (AFLPs), and geographical data were used to assess the 

genetic variation between cytotypes, within cytotypes, among populations and within 

populations. To get insights into the genetic structure variation depending on the reproductive 

mode and how it explains the niche variation between cytotypes, the results were compared with 

the distribution patterns and different ecological preferences of the cytotypes. My findings show 

that apomictic autotetraploids are of multiple independent origins. Although diploids show higher 

genetic variation, within and among population genetic variation equally make up the observed 

variation in all cytotypes. All individuals fall into three genetic clusters with substantial genetic 

admixture. Together with reproductive pathway analysis, results of genetic variation analyses 

suggest that the contact zone of the two cytotypes is primary in origin where tetraploids frequently 

occur in mix ploidy populations. Genetic cluster maps point to a distribution of genetic variation 

in accordance with niche differentiation. Polyploidization in P. intermedium is a recurring 

phenomenon and the newly arisen polyploids successfully establish themselves by acquiring 

enough genetic variation that allows them to adapt to new environments. Genetic variation 

analysis points to a slight deviation from the known General Purpose Genotype and the Frozen 

Niche Variation concepts as there is neither a common genotype nor are the diploids occupying 

a part of diploid sexuals’ niche. The present study provides important insights into the mechanisms 

that aid neopolyploids to survive, coexist, expand and establish successfully after polyploidization. 
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4.2. INTRODUCTION 

Polyploidization in plants is a recurring and a pivotal evolutionary phenomenon 

that brings benefits for plant diversification both in the short term as well as in the long run (Werth 

et al. 1985b, Soltis et al. 2010, Symonds et al. 2010). Comparative genomic studies show that 

approximately 15% of plant speciation events resulted from polyploidy (Wood et al. 2009) and 

that polyploidy is substantially associated to higher plant diversity (Symonds et al. 2010, Jiao et al. 

2011). Moreover, a crucial step of polyploidization, unreduced gamete formation, was found to 

be occurring at a high rate of approximately 0.5% per gamete (Ramsey and Schemske 1998, Wood 

et al. 2009). As a result, the occurrence of new polyploids in natural populations is unequivocally 

higher than expected. However, polyploidization per se can act as a double-edged sword. On the 

one hand, it can act as an instantaneous mechanism for speciation because of reproductive 

isolation (see Soltis et al. 2009). On the other hand, due to competitive exclusion by the majority 

cytotype (i.e. minority cytotype disadvantage, Levin 1975), continuously occurring new polyploids 

will most likely go extinct because they arise among their diploid progenitors (Parisod et al. 2010). 

Therefore, mechanisms that help newly arisen polyploids to overcome competition, survive and 

establish themselves devoid of reproductive incapability, are key to the success of neopolyploids. 

Even though there are studies focusing on different mechanisms explaining the ecological 

consequences of polyploidization, there is a lack of non-model plant systems with pronounced 

population structural changes where genetic structure can explain and reaffirm the observed 

patterns of polyploid coexistence. 

Although there have been a few opposite views (e.g. polyploids are common in 

nature but not significantly differentiated from their diploid relatives; Arrigo and Barker 2012), 

ecological and niche variation in neopolyploids is crucial to avoid competition with their already 

established diploid parents and escape minority cytotype disadvantage (Hegarty and Hiscock 

2008, Zozomová-Lihová et al. 2015), one of the main demographic obstacles faced by emerging 

polyploid individuals. Furthermore, studies show that higher polyploid establishment is associated 

with higher environmental stochasticity (Oswald and Nuismer 2011), resulting in polyploids 

colonizing and establishing in newer and harsher environments (Baack 2005). This represents a 

win-win situation for the polyploids as well as for the species itself as polyploid establishment and 

range expansion of the species is eventually achieved. Coexistence of different cytotypes has also 

been reported frequently in plants when there is higher self-compatibility in the cytotype with 

frequency disadvantage (Fowler and Levin 1984, Kao 2007). Mechanisms on how different 

cytotypes achieve niche differentiation and/or coexistence and the advantages and disadvantages 

of these two processes are still not clear. 
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Apomixis (asexual reproduction via seeds) coupled with polyploidy, not only 

provides reproductive assurance to neopolyploids by aiding them overcome minority cytotype 

exclusion (Levin 1975), but also enhances dispersal ability and colonizing new habitats and 

reinforce founder events (Baker 1955). Due to the avoidance of meiosis, apomixis counteracts 

against genetic drift and maintain higher heterozygosity (Paun et al. 2006, Cosendai et al. 2013). 

Furthermore, processes such as, mutation accumulation, genetic restructuring, and residual 

sexuality introduce additional genetic variation to apomictic populations (Hörandl and Paun 

2007, Hojsgaard and Hörandl 2015), further diversifying the apomictic taxa. This provides new 

polyploids with novel traits for increased tolerance to harsher environmental conditions thus 

resulting in wider distribution (e.g. geographical parthenogenesis) (Suda et al. 2004, Brochmann 

et al. 2004, Hörandl 2006). 

The General purpose genotype hypothesis (Baker 1967, Lynch 1984) explains that 

one fit genotype with higher tolerance to a broader ecological setting may colonize different 

habitats, while the frozen niche variation hypothesis assumes that specialized multiple polyploids 

carrying a portion of the genetic variation arising from genetically varying sexual progenitors will 

efficiently partition underutilized resources by the ancestors. This will allow them to occur in 

sympatry or completely eliminate sexual ancestors (Vrijenhoek 1984, 1994). Although these two 

concepts seem mutually exclusive, recent views on the two hypotheses explain that they are 

complex syllogisms with shared common assumptions presenting possible processes of interclonal 

selection through which the asexual populations acquire their ecological breadth clonal 

divergence (see Vrijenboek and Parker Jr. 2009). On the other hand, coexistence (e.g. sympatry) 

of different ploidy levels allow gene flow resulting in genetic admixture (Petit et al. 1999, Paun et 

al. 2006, Zozomová-Lihová et al. 2015). This mainly takes place from diploids to higher ploidy 

levels although the opposite is also present (Bretagnolle and Thompson 1996, Van Dijk and Bakx-

Schotman 1997, Ramsey and Schemske 1998). Mixing of these newly arisen genotypes with 

various origins and reproductive pathways will introduce novel restructuring of the genetic 

material resulting in larger population level structural changes (Baack 2005, Sabara et al. 2013). 

This may further enhance trait variation (e.g. reversal to sex) and allopatric divergence (Hojsgaard 

and Hörandl 2015). 

Study of population structure of polyploids in comparison to their diploid 

progenitors in plant systems of different temporal stages, has shown significant importance in terms 

of understanding the evolutionary history, and  can generate a glimpse of the diploid ancestors’ 

evolutionary course and provide a fine scale resolution of the origin of different ploidy levels 

(Symonds et al. 2010), as well as providing clues as to what the fate of the neopolyploids would 

be (Soltis and Soltis 2000). Furthermore, it can also provide information on various factors that 
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shape the distribution patterns observed in plants; for example, the influence of environmental 

factors and spatial separation on the coexistence and establishment of the polyploid complexes 

(Burton and Husband 1999, Lo et al. 2009). In this regard, studies on newly established polyploids 

are of increased interest as they can provide crucial insights into the genetic processes that take 

place soon after and/or during the process of establishment of polyploids. 

Paspalum intermedium Munro ex Morong is a grass species of the plant sub-family 

Panicoideae with two major cytotypes: diploids (2n = 2x = 20) and tetraploids (2n = 4x = 40); and 

two reproductive modes (self-sterile sexual diploids and self-fertile apomictic tetraploids). 

Tetraploids are autopolyploids and the two cytotypes occur in different ecological settings (i.e. 

allopatry, sympatry and parapatry) (Norrmann et al. 1989). Furthermore, the species occurs in a 

wide range of ecological and climatic gradients (e.g. latitudinal gradient) in the region where it 

has diversified (i.e. Sub-tropical Argentina, Brazil, Paraguay and Bolivia) (Zuloaga et al. 2012). 

Most importantly, in a recent study, (Karunarathne et al. 2018) showed an existence of niche 

divergence between diploids and tetraploids owning to an optimal ecological/climatic preference 

by the differing cytotypes (Figure 4.1). The study also presented interesting dynamics of cytotype 

displacement and the existence of a contact zone of 2x and 4x including mix ploidy populations, 

apart from the north-south latitudinal separation of the two cytotype populations. Divergent 

genetic systems in the species, a common characteristic of species within  Paspalum L., is known 

to provide the necessary genetic diversity and ecological capacity to overcome environmental 

hardship (Tilman and Lehman 2001, Allan et al. 2015). There is also indirect evidence suggesting 

the relatively recent establishment of the polyploid (Hojsgaard et al. 2009, Karunarathne et al. 

2018). Therefore, P.intermedium makes an ideal non-model plant system to examine population 

structure variation and patterns of genetic variation with regards to niche divergence, cytotype 

coexistence and recurrence of polyploidy as well as to decipher the backstage role of apomixis in 

plant evolution. 

In the present study, using flow cytometry, genetic marker AFLPs, and ecological 

and geographical data, I aim i) to assess the genetic structure of populations in two P. intermedium 

cytotypes showing niche divergence, ii) to determine the origin and genetic variability within and 

among autotetraploid populations, iii) to examine the genetic composition of mixed-ploidy and 

contact zone populations, and finally iv) to draw inferences on the distribution patterns and 

ecological amplitude of the two cytotypes based on the genetic variability. 

 



65 
 

4.3. MATERIALS AND METHODS 

4.3.1. Sampling 

Sampling was done covering the core and peripheral distribution areas of the 

species (i.e. Pampas, Mesopotamia, Gran Chaco of Argentina). Leaf materials were collected in 

silica gel from 35 populations consisting of 24 pure tetraploid populations, nine pure diploid 

populations, and four mix ploidy populations (Figure 4.1). From all the sampling populations, leaf 

materials were collected from at least 20 individuals from each population. In the first part of our 

study, I analyzed close to 1200 plants for ploidy levels by flow cytometry (see Karunarathne et al. 

2018). From this, 867 individuals come from the populations analyzed here for the population 

genetic structure (see Table 4.1). Genetic marker analysis by AFLP fingerprinting was performed 

on all these selected individuals from the studied populations. 

 

 

Figure 4.1. Map depicting the collection location of studies populations and their ploidy 

levels (adopted from Karunarathne et al. 2018). The dashed lines demarcate the contact zone 

of cytotypes in the middle separating the north and south diploid and tetraploid distribution 

zones respectively. 
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4.3.2. Amplified Fragment Length Polymorphism (AFLPs) 

For AFLP, we followed the methodology described by Vos et al. 1995) with a 

modification skipping the pre-selective amplification of the digested fragments. The reason for this 

modification was a result of failure of selective amplification yielding unexplainable large size 

DNA clumps. Therefore, here, after the adapter ligation to the digested fragments using a frequent 

cutter (Mse I) and a rare cutter (EcoR I) restriction enzymes, a direct selective amplification PCR 

was performed instead of the original pre-selective PCR. Further, to avoid the amplification of bulk 

selective-amplified fragments, I used selective primer combinations with four additional bases in 

one of the primers, though not in all combinations. The three primer combinations used were 

EcoR I- ACA-5’ FAM/Mse I- GAAC, EcoR I - AATG/ Mse I -AAC-5’ HEX, EcoR I - AGA/ Mse I -

ACA-5’ TAMRA. The reproducibility of PCRs was checked with 10 duplicate samples with each 

primer pair. 

For restriction digestion and ligation, approximately 500 ng of genome DNA of 

each sample was digested overnight with EcoR I (5 Units) and Mse I (1 Unit) (New England Biolabs, 

Frankfurt, Germany), and T4 DNA ligase (Promega Corporation, Mannheim, Germany) (1 Unit) 

with EcoR adapter pair (5 pmol) and Mse adapter pair (50 pmol) with the presence of NaCl (0.05 

M) and BSA (0.05 mg/ml) in 1X Ligase buffer (Promega Corporation, Mannheim, Germany). Direct 

selective amplification reaction mixture consisted of 1X PCR buffer (10x NH4 Reaction buffer: 

Bioline GmbH, Germany), 2.5 mM MgCl2 (Bioline GmbH, Germany), 0.2 mM dNTPs (Promega 

Corporation, Mannheim, Germany), 4 pmol of each EcoR and Mse primers, 1 Unit Taq polymerase 

(BioTaq – Bioline GmbH, Germany), ca. 80 ng of digested DNA in 25 l final volume. The PCR 

was done in a Thermal Cycler (BioRad T100: Bio-Rad Laboratories GmbH, Munich, Germany) 

with the following program. Denatured at 94 °C, 2 min, 9 x (94 °C, 1 sec; 65 °C, 30 sec, -1 

°C/cycle; 72 °C, 2 min), 23 x (94 °C, 1 sec; 56 °C, 30 sec; 72 °C, 2 min), 60 °C, 30 min. Amplified 

fragments were analyzed in an ABI 3130xl Genetic Analyzer (Applied Biosystems inc., Foster City, 

CA, USA) with the 500 ROX (Applied Biosystems Inc.) size standard. A total of 887 individual 

fingerprints were retained after the initial analysis of all the individuals (48 atypical fingerprints 

were removed). Genotyping and binary presence-absence matrices were assembled in 

GeneMarker 2.6.0 (Softgenetics, PA, USA), with a threshold of 75 RFU for scoring bands of size 

range of 100–510 bp (small fragments between 50-100 were not considered due to the possibility 

of non-homologous fragments: Vekemans et al. 2002). All the peaks were checked in the panel 

editor eliminating non-reproducible bands by comparing to replicated samples where the 

reproducibility of the data was checked using the error rate with 30 duplicate samples, where the 

similarity of the scoring (i.e. presence-absence of fragments) was cross checked. The error rate was 

less than 0.1% indicating high reliability of the data. 
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4.3.3. Statistical Analyses 

The combined binary matrix (stored in the network server of Department of 

Systematics, Biodiversity and Evolution of Plants Albrecht-von-Haller Institute for Plant Sciences  

University of Goettingen) of the three primer combinations was analyzed with the R-script 

AFLPDAT (Ehrich 2007) to calculate diversity indices (i.e. Masatoshi Nei 1987) gene diversity for 

each population), and genotype diversity (using Nei’s (1987) formula for haplotype diversity). The 

binary matrix was assembled into an individual genotype  data object with the R package 

ADEGENET (includes a method that can hadle clonal data and allows for analyses of mixed-ploidy 

data sets with a correction for allele copy-number ambiguity in polyploids) (Jombart 2008), which 

was used in the rest of the genetic analyses in the R environment (R Core Team 2016). A Neighbor-

Joining tree was constructed using the Prevosti’s Distance Coefficient (a measurement over all loci 

of the proportion of unshared alleles) with a bootstrap analysis of 1000 sample size. The R package 

POPPR 2.7.1 (Kamvar et al. 2014) was used for the distance matrix and the bootstrapping. 

Principal Coordinate Analysis (PCoA) was computed based on pairwise Euclidian distance used 

in the DAPC (Discriminant Analysis of Principal Component) function of the ADEGENET R 

package. Analysis of Molecular Variance (AMOVA) was calculated on the discrete dissimilarity 

matrix with 1000 permutations also using POPPR R package. For AMOVA both ploidy and 

populations were used as different strata to calculate both between ploidy and within and among 

population molecular variance. 

Bayesian model-based clustering implemented in the “find.clusters” function of R 

package ADEGENET was used to determine the potential number of clusters that can describe the 

data best. Here, a BIC (Bayesian Information Criteria) is calculated using k-means algorithm (also 

Ripley's K-function, where sum of squares from points to the assigned cluster centers is minimized: 

Baddeley and Turner 2005) and the resulting BIC values are plotted against increasing number of 

k (clusters). Ideally, the number of clusters where the BIC value starts to increase is taken as the 

best cluster solution. In the present case, the BIC value did not increase (supplementary Figure 

S4.1). Therefore, according to the plot any number of clusters more than two and less than 15 will 

describe the data. Considering the number of groups observed in the NJ tree, k=3 was taken as the 

number of clusters, thus it is a biologically meaningful number of clusters. This was also tested 

with ad hoc statistic ΔK based on the rate of change in the log probability of data between 

successive K values described by Evanno et al. (2005) (Figure S4.1b). Plotting the genetic clusters 

was performed using the R package LEA (Frichot and Francois 2014). 

A Mantel test was performed using pairwise Euclidean distance (R package VEGAN: 

Oksanen et al. 2016) to calculate the geographical isolation of each cytotype and population 

based on genetic data. The R package MPMCORRELOGRAM (Matesanz et al. 2011) was used to 
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visualize the geographic isolation based on distance intervals (Supplementary Figure S4.2). The R 

package LEA (Frichot and Francois 2014) was used to plot the genetic admixture on the map (figure 

4). 

 

4.4. RESULTS 

In the combined binary matrix, a total of 189 fragments were scored; 84 from the 

EcoR-Mse (ACA- GAAC), 58 from EcoR-Mse (AATG- AAC) and 44 from EcoR-Mse (AGA- ACA). 

Out of this, 66.2 % were polymorphic. The number of bands per individual ranged from 84 to 91. 

Cytotype specific fragments were higher in tetraploids (41) than in diploids (34). Therefore, a 

significantly higher number of bands (p = 0.02) were present in tetraploids. 

Diversity analysis (Nei’s gene diversity) showed that all diploids have significantly 

higher values (paired t-test p-value < 0.001) in both genotype and gene diversity (Table 4.1) and 

thus the effective number of genotypes were 100% in diploid populations while it ranged from 1 

to 100 % in tetraploids. Interestingly, in mixed-ploidy populations, this was relatively high (30-

100%) and was significantly correlated (r2 = 0.91, p < 0.01) to the number of 2x individuals in the 

population; one of these populations (Hojs 481/2W: 24-2x, 6-4x) harbored five non-clonal 4x 

individuals, indicative of independent origin. The highest number of effective genotypes observed 

in 4x populations was 13 (46.4 %) while six populations were pure clonal populations (Table 4.1).  

AMOVA revealed that half of the genetic variation (50.18 %) is observed within populations, the 

rest accounting for among populations. When cytotype was assigned as preferred hierarchy, within 

cytotype genetic variation was 36 %, dividing the rest equally between within and among 

population variations. Among population variation increased to 64.8% in tetraploids when 

cytotypes were analyzed separately, while values for diploids did not change noticeably. 

Three major clusters were observed in the unrooted NJ tree (Figure 4.2) with strong 

bootstrap support (>90%) although altogether seven clusters resolved in the tree. These sub 

clusters were not well supported by the bootstrap values (<70%). All the pure 2x and 4x 

populations were grouped in all three clusters indicating the independent multiple origins of 

tetraploids. Individuals of several 2x populations (Hojs420, Hojs422, Hojs423, Hojs425 and M31) 

were grouped in two or all clusters indicating high genetic variation in those populations as well 

as supporting the three clusters. Interestingly, mixed ploidy populations were also grouped in all 

three major clusters indicating high within population genetic variation. 

Bayesian clustering revealed three major clusters (k=3) where majority of the pure 4x and 2x 

populations made each one separate cluster while the rest with mix populations made the third 

cluster. However, the PCoA (Figure 4.3A) showed a continuous genetic variation in 4x populations 

except for a few populations (Figure 4.3B) while all the diploids were clustered close to each other 
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than tetraploids were to themselves. Interestingly, the tetraploid population (Hojs 424) far in the 

north of the distribution clustered with diploids. Two of the mixed-ploidy populations clustered 

close to diploids while the other two clustered closer to tetraploids. The triploid individual 

clustered with diploids. Cluster analysis also shows substantial admixture among populations 

(Figure 4.4), especially in the populations in and close to the contact zone. This can be seen quite 

clearly when the genetic clusters were plotted as pies on the map (Figure 4.4, also see 

Karunarathne et al. 2018). Most interestingly, two mixed-ploidy populations (Hojs456/2Q and 

Hojs487/2Y) harbor greater amounts of admixture compared to all the other populations. Further, 

the isolated 4x populations (Hojs451/2M, Hojs453/2Ñ(EN), Hojs475/2U) show very low or no 

admixture suggesting that they are recent in origin. 

 

 

Figure 4.2. The unrooted Neighbor-Joining (NJ) tree constructed using the Prevosti’s 

Distance Coefficient among amplified fragment polymorphism (AFLP) of all the studied 

individuals of P. intermedium with a bootstrap analysis of 1000 sample size. The bootstrap 

values are shown only for the main branches. The tip labels show the respective population 

(red – diploid populations, blue – tetraploid populations, green – mixed-ploidy populations, 

strar* - triploid individual). 
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Population 
Population 

Ploidy 
No. of 

individuals 
Genotype 
diversity 

No. of 
effective 

genotypes 

cytotype 
gene 

diversity 

Nei's gene 
diversity 

Hojs420/1P 2 26 1.000 26.000 

0.169 

0.165 

Hojs422/1Q 2 26 1.000 26.000 0.208 

Hojs423/1R 2 24 1.000 24.000 0.176 

Hojs425/1T 2 17 1.000 17.000 0.174 

Hojs429/1U 2 22 1.000 22.000 0.157 

Hojs432/1V 2 26 0.997 24.143 0.188 

M31/1W 2 21 1.000 21.000 0.173 

M26/1X 2 11 1.000 11.000 0.146 

Hojs468/2S 2 25 1.000 25.000 0.135 

Hojs401/1A 4 23 0.249 1.313 

0.032 

0.098 

M29/1B 4 26 0.772 3.885 0.067 

Hojs402/1C 4 26 0.000 1.000 0.000 

Hojs403/1D 4 30 0.480 1.867 0.024 

Hojs404/1E 4 20 0.195 1.227 0.026 

Hojs405/1F 4 26 0.895 7.191 0.075 

Hojs406/1G 4 11 0.000 1.000 0.000 

Hojs409/1H 4 23 0.000 1.000 0.000 

Hojs410/1I 4 28 0.958 13.067 0.107 

Hojs414/1J 4 27 0.000 1.000 0.000 

Hojs415/1K 4 27 0.359 1.528 0.034 

Hojs416/1M 4 24 0.000 1.000 0.000 

Hojs424/1S 4 25 0.000 1.000 0.000 

Hojs440/2C 4 24 0.228 1.280 0.015 

Hojs443/2F 4 29 0.567 2.207 0.023 

Hojs445/2H 4 29 0.488 1.890 0.039 

Hojs451/2M 4 28 0.198 1.237 0.034 

Hojs453/2Ñ 4 11 0.182 1.198 0.015 

Hojs455/2P 4 19 0.105 1.111 0.054 

Hojs465/2R 4 17 0.485 1.841 0.024 

Hojs475/2U 4 27 0.501 1.934 0.024 

Hojs471/2X 4 19 0.731 3.252 0.043 

Hojs470/2T 2,3,4 25 0.810 4.496 

0.123 

0.134 

Hojs456/2Q 2,4 25 0.367 1.543 0.137 

Hojs481/2W 2,4 23 1.000 23.000 0.147 

Hojs487/2Y 2,4 29 0.820 4.806 0.075 

Table 4. 1All the studied populations of Paspalum intermedium in the present study. (population codes 

are as in Karunarathne et al. 2018), ploidy levels of the population, number of individuals retained in 

the genetic marker analysis (AFLPs), genotype diversity, effective number of genotypes and Nei’s gene 

diversity calculated from AFLPs.
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Figure 4.3. Principle coordinate analysis of the studied populations of Paspalum intermedium 

based on pairwise Euclidian distance used in the DAPC (Discriminant Analysis of Principal 

Component) function of the ADEGENET R package; The first two axes represent 37 and 21 % 

of total variation. A. genetic similarity among all the individuals depicted by RGY (i.e. Red, 

Green, Yellow) color scheme, B. genetic variation between cytotypes from all the populations 

– red: diploids, blue: tetraploids, labels show the population codes, ellipses represent the 95% 

dispersion of each indicated population 
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Mantel test for the geographic isolation of the population (test statistic = 0.360, p 

= 0.001) demonstrated genetic variation strongly correlated to distance. Furthermore, when the 

overall distance found among populations and genetic clusters of the studied individuals were 

plotted against distance intervals for all the geographical distance intervals (Mantel correlogram: 

Matesanz et al. 2011), almost all groups (except for two) indicated significant isolation 

(Supplementary Figure S4.2: filled points are significant; i.e. p < 0.05). This is expected especially 

in apomictic species as there is substantial reproductive isolation among individuals (see 

discussion for details). 

 

4.5. DISCUSSION 

Studying the genetic composition and the population structure in apomictic 

populations is crucial for understanding the evolutionary history, establishment and evolutionary 

fate of polyploid complexes and associated geographical parthenogenesis. The present genetic 

analysis of the P.intermedium populations and indirect evidence from species distribution 

modeling (Karunarathne et al. 2018) and chromosome counts (e.g. Caponio and Quarin 1993, 

Hojsgaard et al. 2009) suggest that the polyploid is recently established in terms of species’ 

evolutionary course. Despite having multiple independent origin, apomictic tetraploids do not 

show drastic genetic differentiation from the diploid progenitors. Higher amount of genetic 

differentiation with varying population structures are expected in older polyploid systems as 

processes such as accumulation of mutations, interploid hybridization, and residual sexuality are 

mechanisms increasing genetic variation in apomictic populations (e.g. Smith 1989, Paun et al. 

2006, Hörandl and Paun 2007, Cosendai et al. 2013) and references therein). 

4.5.1. Genetic variation and genotype composition in different cytotypes 

Despite the noticeable number of cytotype-specific bands in the AFLP genotypes, 

considerable proportion of bands (33.8%) are shared between the main two cytotypes; this is in 

accordance with the previously observed tetrasomic inheritance and autopolyploid origin of the 

tetraploids (Norrmann et al. 1989, Hojsgaard et al. 2008). Unique dominant fragments in apomicts 

are likely a consequence of post polyploidization rearrangements of the genomes as has been 

observed in many other systems (e.g. Ainouche et al. 2003, Hegarty and Hiscock 2005, Paun et 

al. 2006). Nevertheless, most tetraploid populations show a very low genotype diversity (Table 

4.1) indicating rather recent founder events and that most 4x populations are isolated population 

with a few clonal genotypes. Though not in its entirety, this observation has not been often 

reported in facultative apomictic populations (e.g. Martens et al. 2009, Vrijenhoek and Parker-Jr. 

2009, Cosendai et al. 2013), where strict clonality is extremely rare in nature, except perhaps for 
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a few obligate apomicts (e.g. Taraxacum officinale Van der Hulst et al. 2000). Most interestingly, 

when the genetic and genotype diversity in apomictic populations was analyzed in relation to the 

proportion of residual sexuality (reproductive pathway efficiency: chapter 3) and they show a 

strong positive correlation to the proportion of residual sexuality (r2 = 0.71) except in mixed ploidy 

populations. This further reinforces the hypothesis that residual sexuality plays a major role in the 

causality of genetic diversity in apomictic populations (Hojsgaard and Hörandl 2015). Despite the 

low within population genetic variation in tetraploids, we observed a significant among population 

diversity (AMOVA test statics = 0.4102, p = 0.001), which was also observed in the PCoA 

(discussed below). Nevertheless, mixed-ploidy populations maintain a relatively high genetic 

variation (Table 4.1) even among tetraploid individuals presumably due to various mechanisms 

that favor assortative mating and decrease in cytotype reproductive interactions (Petit et al. 1999, 

Sabara et al. 2013) (discussed below). Alternatively, the possibility of higher amount of gene flow 

introducing genetic variability to higher ploidies via new polyploid from the primary genepool of 

diploids can result in the same observation. 

4.5.2. Population structure and genetic clusters 

Genetic clusters can be biologically meaningful when they best explain the genetic 

variation observed in the data. However, since all clusters are models, there is no true k (number 

of clusters) (Kalinowski 2011 and references therein). In my cluster analysis, the test for best k did 

not point to a clear number of clusters (see materials and methods). This is either an indication of 

higher genetic admixture (discussed below) through gene flow (Paun et al. 2006, Cosendai et al. 

2013) and/or tetraploid populations are of multiple independent origin (e.g. Zozomová-Lihová et 

al. 2015) or of high number of clusters with undetectable variations. My observations support the 

latter as the genetic variation within 4x populations are relatively low. However, the assignment 

of three clusters explained the variation optimally and the assignment of k = 2 did not change the 

admixture values in tetraploids noticeably. Clusters were unstable upon the increase of k (>3) with 

admixture in almost all individuals (see Figure S4.3). Further, when the two cytotypes were 

analyzed separately (see materials and methods), both showed three optimal clusters (data not 

shown). This was also evident in the NJ tree by the presence of 4x populations placed in three 

clusters closely related to diploids; and the branching of 4x within clusters is variable indicating 

low genetic variation. This observation is expected in newer systems as within and among 

population variability in closely related taxa are related to the different ages and histories of the 

respective systems (Fehrer et al. 2005, Lo et al. 2009).  

Diploid individuals from all populations made a compact cluster in the PCoA 

indicating a higher similarity among diploids irrelevant of the population of origin, despite having 

a higher genetic diversity within 2x populations, unlike among tetraploids. Constant gene flow 
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among populations, given the self-incompatibility and geographically restricted distribution of 

diploids is a possible explanation for this observation. Naturally, frequent gene flow and seed 

dispersal to nearby diploids populations, given the proximity, results in stretching of the genetic 

variability of diploid populations while once a 4x individual (an outlier) arises and found a 

population, it  rather captures and fixes a fraction of diploids’ genetic variability and can only 

differentiate further from ancestors due to post polyploidization rearrangements of the genome. 

Furthermore, selection pressure may also be a factor in these populations as we discussed in 

(Karunarathne et al. 2018), the diploids are highly specialized for their current niche and thus only 

most fitting genotypes are retained; a similar observation was reported in Taraxacum and 

Chondrilla (Van Dijk 2003). In contrast, several pure tetraploid populations (M29/1B, Hojs474/2U, 

Hojs471/2X, and Hojs424/1S) and three mixed-ploidy populations (Hojs470/2T, Hojs456/2Q, and 

Hojs481/2W) clustered with diploids. This points toward a low level of genetic differentiation in 

these populations from their (diploid) progenitors. There are multiple studies showing the 

recurrence of polyploidization and hybridization in nature (Lo et al. 2009, Soltis et al. 2009, Arrigo 

and Barker 2012). However, their differentiation, establishment and expansion depend on several 

factors such as rate of formation and the interplay between genetic and ecological factors 

promoting their survival (Soltis et al. 2014). Genetic differentiation of new polyploids, although 

not always, is key for successful establishment (Cosendai and Hörandl 2010), especially when 

colonizing new environments (Zozomová-Lihová et al. 2015). Hence, the lower level of 

differentiation in these pure 4x populations may indicate that they are of recent origin and without 

enough time to accumulate independent mutations and differentiate from their progenitor 

populations/genotypes.  

4.5.3. Genetic admixture and ecological niche divergence 

Exchange of genetic material among individuals of the same or different ploidies 

has been commonly reported in polyploid and apomictic plants (Parisod et al. 2010, Cosendai et 

al. 2013), thus resulting in genetic admixture. In this regard, residual sexuality, hybridization, and 

outcrossing act as mediators of genetic admixture thereby promise for beneficial genetic variation  

(Paun et al. 2006, Hörandl and Paun 2007, Hojsgaard and Hörandl 2015). In P. intermedium, 

however hybridization is not known as of now, except in few single cases (Honfi 2003). The 

present results show that there is a considerable level of genetic admixture among and within both 

cytotypes (Figure 4.4), especially in diploids. Although admixture in tetraploid apomictic 

populations is relatively low, several closely occurring populations show mixed genetic structure, 

indicating some form of gene flow. This seems to be correlated to the distribution and isolation by 

distance (see below) among these populations. Moreover, the likely recent origin of apomictic 
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tetraploid populations in peripheral areas may be a factor limiting historical likelihood of genetic 

exchange between populations and therefore the observed levels of admixture. 

 

Figure 4.4. Genetic cluster in Paspalum intermedium inferred from AFLPs; A. Bayesian 

clustering of all the individuals at K = 3. Vertical bars represent the individuals with the 

proportion of the admixture (i.e. admixture coefficients) in different colors. B. Admixture 

coefficients of populations plotted on the map indicating the collection location. Different 

clusters are represented by the same colors and in A. Small colored circles indicate the ploidy 

level of each population (red – diploids, blue – tetraploid, red and blue – mix populations). 

The dash line on the map shows the contact zone between the diploids and tetraploids 

 

In contrast, the geographic distribution of different genetic clusters of the studied 

species (studied populations) partly supports the hypothesis that assumes the partitioning of genetic 

structure so that resources in the broader niche are shared between the cytotypes as well as among 

different clonal polyploids (Frozen Niche: Vrijenhoek and Parker-Jr. 2009). However, since there 

is less between-cytotype competition in the southern distribution range of the species, my 

observation is that on the one hand, genotypes with different tolerant levels to harsher 

environmental conditions (e.g. colder and drier climate; especially the conditions that the diploid 

ancestors do not occur in) have been successful in different areas rather than freezing a certain 

part of niche partitioning. This becomes clear when the genetic clusters obtained from Bayesian 
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analysis plotted on the map (Figure 4.4). On the other hand, diploids with specialized genotypes 

to its restricted ecological settings dominate the core area, thus resulting in ecological niche 

divergence and range expansion (Levin 2003, Zozomová-Lihová et al. 2015, Karunarathne et al. 

2018). Several studies have shown that increased environmental stress increases residual sexuality 

in apomictic plants (e.g. Knox 1967, Nogler 1984, Quarin 1986, Mateo De Arias 2015, Rodrigo 

et al. 2017, Karunarathne et al. under review) and may act as a mechanism for creating new 

genotypes better adapted to new environments and climate. This further supports the observations 

that for successful establishment of autopolyploids, ecological divergence and/or stochasticity 

favoring autopolyploids in small populations is unequivocally imperative (Petit et al. 1999, Rausch 

and Morgan 2005, Parisod et al. 2010). Overall, geographical distribution and genetic variation 

observed in P. intermedium does not fit either of the afore mentioned two hypotheses of 

geographical parthenogenesis (discussed further in chapter 5) Therefore, I propose Casting 

genotype model where different genotypes with variable tolerance to the changing and harsher 

environmental conditions spread away from the progenitor populations and genotypes bearing 

genetic variations that allow them to succed in new environments will survive and expand, which 

in turn results in niche divergence and expansion. 

4.5.4. Spatial distribution and isolation by distance 

The spatial arrangement of populations is an important factor that determines 

specific genetic structure within and among populations (Cruse-Sanders and Hamrick 2004, 

Matesanz et al. 2011) and can provide useful information on key life history such as dispersal, 

genetic drift, and selection processes (Ng et al. 2004). All the studied populations in the present 

study show isolation by distance and significant spatial dissociation (p = 0.001) for almost all the 

distances (Supplementary Figure S4.2). However, this isolation mainly comes from between 

cytotype isolation indicating that dispersal of the apomictic polyploids plays a major role in 

shaping the genetic structure of the species. This further reinforces the observation of niche 

divergence reported previously (Karunarathne et al. 2018). Moreover, strong isolation in apomicts 

is an indication of less interaction among populations and possibly leading to directional selection 

for local adaptations (Carson 1968), this however cannot be attributed being useful for niche 

expansion and wider distribution without the help of applied studies such as transplantation 

experiments. Part of this may also have been a result of anthropogenic activities in the region as 

most grasslands are used for cattle grazing. More insights on the influence on the genetic structure 

by isolation can be gained through studies focusing on the mix ploidy populations and the contact 

zone where the different cytotypes interact (e.g. Cosendai et al. 2011, 2013; Zozomová-Lihová et 

al. 2015). Nevertheless, the present study provides useful preliminary information on the genetic 

structure variation in relation to coexistence and niche divergence in apomictic complexes. 
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4.5.5. Mixed-ploidy populations and the contact zone 

Geographical or distributional ranges where different ploidy levels occur in 

sympatry (contact zones) and populations with mixed ploidy levels are of increased interest as 

they provide ideal platforms to study characteristic conditions of the early stage poplyploid 

establishment and to test hypotheses concerning dynamics and evolution of polyploid complexes 

(Petit et al. 1999, Cosendai et al. 2013, Sabara et al. 2013, Zozomová-Lihová et al. 2015). Three 

major important processes observed in two cytotype contact zones have been discussed: a) 

reproductive restrains between cytotypes by sterile intermediate cytotypes (e.g. triploid block), b) 

regenerate conditions that occur in the establishment of polyploids, c) enhance the dynamics and 

further evolution of polyploid complexes (see Petit et al. 1999). Depending on the origin of the 

contact zone they are categorized into two: i) primary – emergence of neopolyploids within a 

diploid population, ii) secondary – formerly allopatric diploids and polyploids coming into 

contact. The present results show that the contact zone between the diploid and tetraploids of P. 

intermedium is primary in origin. Individuals of mixed-ploidy populations clustering together and 

with diploids, especially the triploid individual clustering with diploids, and genetic and genotypic 

variation among tetraploid individuals in mixed-ploidy populations where all tetraploids are non-

clonal, support this assumption. Furthermore, no seeds with embryo to endosperm ploidy ratios 

that originate from tetraploid as pollen doners were found in the flow cytometric seed screening. 

This observation implies the absence of backcrosses from tetraploid to diploid usually observed in 

secondary contact zones (e.g. Zozomová-Lihová et al. 2015). I assume that the initial tetraploid 

populations originated at the contact zone and spread to the south of the distribution range. 

Therefore, the contact zone acts as a perenial source  of neotetraploids of P. intermedium. In 

accordance, we reported that there is a tendency of tetraploids displacing the diploid populations 

in the contact zone, however, depending on the climatic and niche preferences of each cytotype 

(see Karunarathne et al. 2018). Nevertheless, with the current data, I cannot explain the presence 

of mixed-ploidy populations only on the south of the diploids’ range. Hypothetically, even though 

rare, all diploid populations should give rise to autotetraploids in P. intermedium, but we only 

observe the generation of new tetraploids in the south border of the diploid distribution, despite 

our thorough sampling in the area. This may be a consequence of environmental influence on the 

production of tetraploids in diploids as this has shown to affect the rate of polyploidization (see 

Soltis and Soltis 2009). A detailed look to the populations in the contact zone with thorough 

sampling covering as much of geographical distribution of the contact zone as possible, 

exclusively covering the spatial arrangement of the two ploidies accompanied by a genetic 

analysis will provide better insight into the dynamics of the occurrence and the establishment of 

polyploids. On the other hand, the observation of a pure tetraploid population (Hojs424/1S) with 
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higher genetic variation and close affinity to the diploids, far north of the distribution may be an 

indication of the occurrence of tetraploids at the edge of the diploid distribution. 

 

4.6. CONCLUSIONS 

The present results show that apomictic autotetraploids are of multiple independent 

origins. This indicates that the polyploidization in P. intermedium is recurrent. The placement of 

tetraploids in different genetic clusters in both NJ tree and the cluster analysis indicates that 

tetraploid populations show substantial among-population genetic variation confirming that 

higher genetic variation in apomictic polyploid populations aid them in niche divergence and 

expansion. The scattered distribution of genetic variation along the distribution range reinforces 

this observation. The contact zone of the diploids and tetraploids is a primary contact zone where 

tetraploids frequently occur in mixed-ploidy populations. Therefore, the contact zone acts as a 

perenial source of genetic variation and tetraploid generation, especially at the periphery of the 

diploid distribution where they may be constantly under selective pressure from varying climatic 

conditions. Therefore, this observation does not necessarily agree with the known hypotheses 

General purpose genotypes and Frozen Niche Variation by not having a clear definition as to what 

governs the geographical parthenogenesis observed in the species. There is significant isolation of 

genetic variation by distance among populations. However, I cannot elaborate on these variations 

as distance among the observed genetic clusters are inherently high due to the broad distribution 

range. Therefore, a closer look to the mixed-ploidy populations and the contact zone will provide 

greater insights into genetic variation in sympatry. Overall, the present study provides important 

insights into the mechanisms that aid newly arisen polyploid to survive, coexist, expand and 

establish themselves after polyploidization. 
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CHAPTER 5 

5. GENERAL DISCUSSION 

In this thesis, I have addressed several important questions pertaining to plant 

polyploidy, apomixis, geographical parthenogenesis, species range expansion, and population 

structure of polyploids and apomicts, all leading to a broader understanding of plant evolution 

and diversification. The model system, Paspalum intermedium is a noteworthy in such studies as 

it provided not only an ideal platform but also valuable insights to our understanding of ecological 

and niche divergence of different cytotypes, cytotype coexistence, population structure variation 

in comparison to reproductive modes and distribution, and environmental influence on the 

expression of apomixis. Major reviews on polyploidy and apomixis in plants have frequently 

mentioned the significance of studies using different approaches and model systems to address 

relevant questions as it has been clearly evident that polyploidy and apomixis are not only linked 

together but also are recurrent and have multiple independent origins (e.g. Soltis and Soltis 1999, 

Bicknell and Koltunow 2004, Soltis et al. 2004, 2009, 2010, Hörandl 2006, 2008, Tucker and 

Koltunow 2009, Jiao et al. 2011, Koltunow et al. 2013, Hojsgaard et al. 2014b). Even though the 

present study is not complete in any way for answering all the research questions I have brought 

up here, it was immensely useful in getting further insights into all the concepts in concern and 

contributed to our collective understanding of plant evolution. 

 

5.1. Cytotype Composition in Paspalum intermedium 

From all the populations studied in this thesis, the majority was pure tetraploid 

populations (24 populations) and tetraploids made 64.8% of all the studied individuals (presented 

in chapter 2). Previous studies on the species had suggested that autotetraploids occur in 

abundance (e.g. Norrmann et al., 1989; Hojsgaard et al., 2009) but had not examined the relative 

abundance of each cytotype. Increased abundance of higher ploidies however has been observed 

in other systems of autopolyploidy (e.g. Parisod and Joost 2010, Cosendai et al. 2011, Oswald and 

Nuismer 2011, Zozomová-Lihová et al. 2015) although a common causality is not observed in all 

systems. Superior colonizing ability and higher climatic tolerances can be seen listed as two 

important factors for the observed cytotype occurrence variability in P.intermedium. The 

observation of mixed-ploidy populations in a contact zone of the two ploidy levels is a crucial 

finding towards understanding the variation of cytotype composition throughout the geographical 

distribution of the species. As a highlight, observation of a rare triploid may be immensely usefull 



80 
 

in understading processes through which the polyploids are fromed in P. intermedium as study of 

triploid formation in natural poupulations have provided an opportunity to study the role of 

intermediate or rare ploidy in polyploid formation and population dynamics (Ramsey and 

Schemske 1998, Husband 2004). 

Interactions of different forms between cytotypes, e.g. genetically, physiologically 

and ecologically, may shape the composition of populations both locally and regionally (e.g. 

Halverson et al. 2008, Sonnleitner et al. 2010). Inter-cytotype competition for resources and 

mating partners is another vital component of cytotype coexistence (Cosendai et al. 2011, Schinkel 

et al. 2016b, Kirchheimer et al. 2018). In accordance, the ecological specialization and local 

environmental conditions influence the distribution of the two cytotypes substantially; this is 

reflected by the displacement of one cytotype making a directional turnover as a result of unstable 

temporal coexistence of the two cytotypes. The regional and spatial separation of the diploids and 

tetraploids with their scatterred replacement and biased recruitment of new polyploid individuals 

in mixed ploidy populations provide support for the observed cytotype displacement. A study 

probing on fine scale ecological and spatial variations in mixed-ploidy populations of 

P.intermedium will provide valuable insights to the factors underlying cytotype co-existence and 

ploidy establishment. 

 

5.2. Spatial and Geographical Distribution of Cytotypes and Their Ecological Importance 

Studies on traits associated with environmental differntiation and reproductive 

mode variation and cytotype distribution patterns provides valuable insights into diploid–

polyploid dynamics and factors responsible for contraction–expansion cycles (e.g. Cosendai and 

Hörandl 2010, Caperta et al. 2016, Sonnleitner et al. 2016). In this thesis, I attempted to recognize  

the environmental factors and biological traits in P. intermedium (presented in chapter 2) that may 

affect cytotype coexistence, population dynamics and ecological adaptation in both macro and 

micro scale, during the early events of polyploidization and speciation in plants.  

The observed geographical distribution range of P. intermedium is centered in 

northern and eastern Argentina with few records from neighboring regions (Zuloaga et al. 2012). 

The study revealed a North–South spatial segregation of the two cytotypes with a narrow East–

West overlapping zone in the center. Even though tetraploids are evolutionarily younger than 

diploids, it has become the most common cytotype, occupying two-thirds of the species’ 

geographic range. The latitudinal tailing of the species’ distribution may represent a glimpse of the 

progression of past cytotype displacement (see chapter 2) and/or the influence of other external 

factors such as anthropogenic activities. Nevertheless, the presence of a pure tetraploid population 
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in the far north of the distribution provides us an invaluable opportunity to probe into to the factors 

that affect cytotype distribution with genetic data (discussed below). 

In this study, I observed that the ecological preferences of the two cytotypes exhibit 

significant differentiation owning to a change of niche optima. The tetraploids have acquired a 

larger range of climatic preferences by becoming generalists while diploids exhibit a highly 

specialized narrow niche. Spoelhof et al. (2017) compiled findings of studies showing the 

broadening of the niche and adapting to extreme environmental conditions by autotetraploids. 

The findings of my thesis are also in congruence with this observation. Therefore, although the 

findings show substantial similarities to the Frozen Niche Variation concept, tetraploids occupying 

new niches and evident broadening of the ecological preferences with substantial genetic variation 

(see below and chapter 4) points to an exception of both General Purpose Genotype and Frozen 

Niche Variation concepts.  Along with the reproductive assurance by apomixis for the 

autotetraploids, this represents an example of species niche expansion and ecological 

exploitation. Furthermore, if at all reversal to sex is observed in Paspalum, it is highly likely that 

isolated populations at the periphery will diversify further broadening the genetic variation. 

Prediction of past distribution range of P.intermedium indicated a dynamic range 

shift in accordance with the climate change. The presence of a “macro-scale” cytotype turnover 

implies that the polyploid complex is highly sensitive to the climate and the preferred niche, 

especially by the diploids. P. intermedium, therefore, is a highly dynamic polyploid system with 

pronounced polyploid establishment and potential cytotype diversification. Nevertheless, 

transplantation experiments addressing the ecological preferences of the two cytotypes will 

immensely provide a clearer conclusion on this observation. 

5.3. Reproductive Modes, Competition and Reproductive Fitness 

While apomixis in plants acts as a shield for genomic instability, unbalanced 

chromosomal segregation, and frequency-dependent reproductive disadvantage caused by 

hybridization or polyploidy (reviewed in Hojsgaard 2018), residual sexuality in apomictic plant 

populations may contribute to genotypic variation, avoid lethal mutation accumulation, and favor 

resilient genetic variation ( see Hörandl and Paun 2007, Hojsgaard and Hörandl 2015). Different 

apomictic plant species exhibit varied levels of residual sexuality (e.g. Naumova et al. 1999, 

Espinoza et al. 2002, Bicknell and Koltunow 2004, Hojsgaard et al. 2013) with possible underlying 

genetic control as well as environmental influence. However, studies addressing the causality of 

differed levels of reproductive modes in natural populations remain limited. In this study (chapter 

3), I observed a similar variation of levels of sexual and apomictic reproductive modes in both 

ovules (6-68% and 32-94% in sex and apomixis respectively) and seeds (3-33% for sex and 67-

96% for apomixis). Genetic and population structure aside (see chapter 4), this variation follows 
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an environmental stress alternation (mean diurnal range: see chapter 3). As addressed by several 

studies (e.g. Garcia-Aguilar et al. 2010, Armenta-Medina et al. 2011, Grimanelli 2012, Podio et 

al. 2014), epigenetic responses to environmental factors may play a considerable role in 

reproductive mode determination in P.intermedium. Nevertheless, a detailed epigenetic profiling 

of these apomictic populations will provide a clear conclusion on this aspect. 

Diploids of P.intermedium are obligate sexuals as it has been observed in this study 

as well as previous studies (e.g Quarin 1992, Hojsgaard et al. 2008). Although abnormalities of 

embryo sac formation has been observed in diploids (Honfi et al. 1990, Hojsgaard et al. 2009), 

no apomictic embryo sacs were observed and the turnover rate of sexsual embryo sacs was 99.7% 

(0.3% aborted). In contrast, apomictic plants indicated an active competition of meiotic and 

apomictic reproductive pathways favoring the apomictic embryo sac and seed development. The 

penetrance of apomixis has been put to question as it has been observed to be a crucial factor for 

apomixis turnover in plants (e.g. Matzk et al. 2005, Aliyu et al. 2010). In my study, P.intermedium 

exhibited a strong penetrance of apomixis by having a high percentage of ovules (63%) with more 

than one apomictic embryo sacs and a substantial reduction of meiotic embryo sacs in these 

individuals (0 – 10% meiotic embryo sacs in individuals with multiple AES, the average meiotic 

embryo sac percentage of all the populations was 32.7%). However, this high percentage of 

apomixis comes at the cost of a reduction in the reproductive pathway fitness (see chapter 3) 

compared to sexual diploids. The fecundity and thus fitness of diploid populations were, in almost 

in all cases, twice that of apomictic populations (fertility and germinability did not show noticeable 

difference between cytotypes). This suggests that despite the reproductive assurance, apomicts 

have reduced fitness in natural populations while diploids have capitalized on the sexual 

reproductive fitness. However, genomic instabilities, pollination variation, and apomictic pathway 

regulation variation cannot be ruled out and hence a comprehensive look into genomics in 

apomictic embryo sac development will provide a clearer understanding of such fitness 

differences. 

5.4. Population Structure and Genetic Composition 

Obligate apomicts where strict clonality can exist, are rare in natural populations 

although it has been reported in plants (e.g. Martens et al., 2009). Whereas in most natural 

apomictic populations, a considerable genetic and genotypic diversity is observed with higher 

clonal diversity (Cosendai et al. 2011, 2013, Zozomová-Lihová et al. 2015). Paspalum 

intermedium, in the contrary, harbors a higher percentage of populations with a single genotype 

(25% of all pure 4x populations) (presented in chapter 4). This indicates considerable reproductive 

isolation and isolation by dispersal. Obligate diploid sexuals maintain a higher genetic and 

genotypic diversity although the among-population genetic variation is relatively lower than that 



83 
 

of tetraploids, while mixed-ploidy populations show intermediate genetic variations between pure 

2x and 4x populations. The independent multiple of origin of autotetraploids explains the 

observation of higher genetic variation among tetraploid populations, where the 4x individuals 

captured a portion of genetic variation from 2x progenitors and acquiring further variations with 

time as it has been observed in other systems (see Soltis et al. 2016, Mandáková and Lysak 2018). 

The geographical distribution of genetic clusters observed within the species (see Chapter 4, Figure 

4.4) provides another clue about the origin of genetic variation in 4x population from 2x sexuals, 

where tetraploids share varying levels of genetic variations with multiple diploid populations. 

Apart from the genetic variation between cytotypes and among populations, 

genetic clusters observed and their spatial distribution may explain the inevitable ecological and 

niche divergence between the cytotypes in P.intermedium (Karunarathne et al. 2018). The broad 

genetic distance present among 4x populations (see PCoA Chapter 4, Figure 4.3) may have helped 

them to acquire traits that favor wider tolerance to environmental changes (Bolnick et al. 2011, 

Sonnleitner et al. 2016), thus achieving broader distribution (geographical parthenogenesis), 

unlike diploids where constant gene flow may have prevented them from adapting to new 

environments. Nevertheless, fine scale analysis of both ecological and genetic variations in contact 

zones where both cytotypes occur in sympatry as well as parapatry will help us to gain clear 

insights to the underlying forces of ecological differentiation observed between diploids and 

tetraploids of P.intermedium as they are the perenial source of early stage polyploidization. 

Overall, the findings of this thesis elucidate that genetic and ecological trait 

changes as a result of polyploidy, accompanied by superior colonizing abilities of apomixis have 

enabled the observed niche divergence and range expansion in Paspalum intermedium, giving 

rise to a scenario of geographical parthenogenesis. Adapting to harsher environmental conditions 

with a shift in niche optima have been observed to be crusial in apomictic plants (e.g. Schinkel et 

al. 2016b, Karunarathne et al. 2018, Kirchheimer et al. 2018), which is clearly observed also in 

autotetraploids of P. intermedium. Furthermore, phenological differentiation and reproductive 

mode modulation by environment in facultative apomicts may be playing a crucial role in 

introducing new genetic variation critical for adapting to changing environments, especially in 

peripheral populations. Therefore, Paspalum intermedium provides a unique opportunity to study 

the evolutionary fate of polyploids and ecological consequences of apomixis. 
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SUPPLEMENTARY DATA 

Table S2.1. Details on collection sites, collection codes, number of individuals and ploidy of P. intermedium 
materials collected in the present study. 
 
Col._code Longitude 

Latitude 
Location and vouchers Elevation 

(m) 
No._ind Ploidy 

(x=10) 

Hojs401 WO057.0760 
S27.5831 

Ctes, NR12, b/ Ituzaingó and Itá Ibaté 
HojsHonMar401  (CTES, MNES) 

81 30 4x# 

M29 WO57.5069 
S29.8516 

Ctes, Dpt Gral San Martín, NR14, 4km 
South-western PR126 intersection 
MarSched29  (CTES) 

48 30 4x# 

Hojs402 WO057.28145 
S29.60798 

Ctes, PR123, b/ access to NR14 and 
Aguapey creek 
HojsHonMar402  (CTES, MNES) 

80 30 4x 

Hojs403 WO057.48440 
S29.82671 

Ctes, PR126, b/ Curuzú Cuatiá and Paso 
de los Libres 
HojsHonMar403  (CTES, MNES) 

74 32 4x 

Hojs404 WO058.20937 
S29.90815 

Ctes, PR126, b/ Curuzú Cuatiá and Sauce 
HojsHonMar404  (CTES, MNES) 

81 30 4x 

Hojs405 WO058.70831 
S30.10079 

Ctes, Dpt Sauce, PR126, 9 km of Sauce, b/ 
C.Cuatiá and Sauce 
HojsHonMar405  (CTES, MNES) 

81 31 4x 

Hojs406 WO058.83574 
S29.87327 

Ctes, Dpt Sauce, PR23, b/ Barrancas´creek 
and Perugorría 
HojsHonMar406  (CTES, MNES) 

64 20 4x 

Hojs407 WO058.76494 
S29.80516 

Ctes, Dpt Sauce, PR 23, 59 km from 
Perugorría 

76 1 4x 

Hojs408 WO058.74647 
S29.78708 

Ctes, Dpt Sauce, PR 23, 57 km from 
Perugorría 

68 1 4x 

Hojs409 WO058.65584 
S29.47009 

Ctes, Dpt Curuzú Cuatiá, PR23, 16 km 
from Perugorría 
HojsHonMar409  (CTES, MNES) 

66 30 4x 

Hojs410 
 

WO058.65475 
S29.29530 

Ctes, PR24, b/ Perugorría and intersection 
to NR12 
HojsHonMar410 

45 31 4x# 

Hojs411 WO057.47974 
S27.92195 

Ctes, Dpt Concepción ó San Miguel, 
NR118, 16 Km North-eastern San Miguel 

78 1 4x 

Hojs412 WO056.59378 
S27.56915 

Ctes, NR12, 9 Km North-eastern Ituzaingó 
 

1 2x 

Hojs413 WO057.96355 
S27.32959 

Ctes, NR12, 88 Km North-eastern 
Corrientes´ city 

 
1 2x 

Hojs414 WO059.11377 
S27.52680 

Chaco, NR11, near Resistencia 
HojsSchedMar414  (CTES, MNES) 

61 30 4x 

Hojs415 WO059.34552 
S28.48242 

Sta Fe, Villa Ocampo, NR11 and access to 
slaughterhouse 
HojsSchedMar415  (CTES, MNES) 

55 30 4x 

Hojs416 WO059.77002 
S29.58014 

Sta Fe, PR1, 3 km Southern Romang (1 km 
before El Gusano creek) 
HojsSchedMar416  (CTES, MNES) 

35 
 

4x 

Hojs417 WO059.79140 
S29.73126 

Sta Fe, PR1, 10 km South El Gusano creek 31 3 
 

Hojs420 WO059.63136 
S28.52924 

Sta Fe, PR32, 5 Km Southern Villa Ana 61 30 2x 

Hojs421 WO059.34472 
S27.17748 

Chaco, NR16, 47 Km North-eastern 
Resistencia 

71 1 2x 

Hojs422 WO059.61130 
S27.09917 

Chaco, NR16, 73 km North-eastern from 
Resistencia 
HojsSchedMar422  (CTES, MNES) 

73 30 2x 
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Hojs423 WO059.73522 
S25.25398 

Formosa, NR95, 13 km Eastern Ibarreta 106 31 2x 

Hojs424 WO058.93208 
S24.95655 

Formosa, NR86, 41 km North-western 
Espinillo 
HojsSchedMar424  (CTES, MNES) 

88 30 4x 

Hojs425 WO058.13835 
S25.40336 

Formosa, PR6, 15 km Eastern Riacho He 
He 

75 30 2x 

Hojs426 WO057.92860 
S25.48052 

Formosa, PR6, 37 km Eastern Riacho He 
He 

66 2 na 

Hojs427 WO057.86054 
S25.54320 

Formosa, NR11, 32 km South-eastern 
Clorinda 

66 1 na 

Hojs428 WO058.04519 
S25.981791 

Formosa, NR11, 67 km South-eastern 
Clorinda 

60 1 2x 

Hojs429 WO058.14276 
S25.96397 

Formosa, NR11, 25 km Northern 
Formosa´s city 

60 30 2x 

Hojs430 WO058.37255 
S26.02715 

Formosa, NR81, 26 km North-western 
Formosa´s city 

79 1 2x 

Hojs431 WO058.75047 
S25.85316 

Formosa, NR81, 68 km North-western 
Formosa´s city 

75 1 na 

Hojs432 WO058.93347 
S25.77588 

Formosa, NR81, 89 km North-western 
Formosa´s city 

92 30 2x 

M31 WO59.5572 
S26.0305 

Formosa, PR3 
MarSched31  (CTES) 

89 30 2x 

M26 WO59.3546 
S26.2404 

Formosa, PR3, 9 km Northern El Colorado 
town 
MarSched26  (CTES) 

82 30 2x 

Hojs433 WO59.15915 
S25.80561 

Formosa, PR3, 10 km Southern Pirané 89 1 2x 

Hojs434 WO59.09938 
S26.31699 

Formosa, PR9, 27 km Eastern El Colorado 72 1 2x 

Hojs435 WO58.73112 
S26.58489 

Formosa, PR9, 71 km South-eastern El 
Colorado 

66 1 na 

Hojs436 WO58.64436 
S26.67490 

Chaco, NR11, border with Formosa, 2,6 
km Southern Mansilla 

57 1 na 

Hojs437 WO58.78233 
S26.88637 

Chaco, NR11, 30 km South-eastern 
Mansilla 

56 1 na 

Hojs440 WO59.8931 

S27.73475 

Chaco, PR7, towards La Sabana settlement 62 30 4x 

Hojs441 WO59.98304 

S28.37057 

Santa Fe, PR3, after Cañada Ombú 

settlement 

HojsKaruSchedMar441  (CTES, MNES) 

59 1 na 

Hojs442 WO59.99956 

S28.50595 

Sta Fe, b/Los Tábanos and Golondrina´s 

settlements 

50 1 4x 

Hojs443 WO60.09288 

S28.78237 

Sta Fe, PR3, Southern La Colmena 

settlement 

HojsKaruSchedMar443  (CTES, MNES) 

58 30 4x 

Hojs444 WO60.14272 

S28.99336 

Sta Fe, PR3, 12 km before PR40, 5 km 

South Garabato settlement 

59 1 4x 

Hojs445 

 

WO60.092 

S28.7822 

Sta Fe, PR3, 2,5 Km after Toba asttlement, 

21 km Northern Vera 

HojsKaruSchedMar445  (CTES, MNES) 

55 30 4x# 
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Hojs448 WO61.0186 

S30.09820 

Sta Fe, 16 km Western intersection b/RP2 

and PR13, back way on PR13 

48 1 4x 

Hojs451 WO61.19000 

S30.50303 

Sta Fe, PR4, 21 km Southern San Cristobar 

HojsKaruSchedMar451  (CTES, MNES) 

64 30 4x 

Hojs453 WO61.08156 

S29.31401 

Sta Fe, PR13, 3-5 km before intersect 

NR98 towards Chaco 

HojsKaruSchedMar453  (CTES, MNES) 

59 16 4x 

Hojs454 WO60.99241 

S29.1106 

Sta Fe, PR13, 20 km North of NR98 

intersection 

61 1 4x 

Hojs455 

 

WO60.74791 

S28.15866 

Sta Fe, PR13, 18 km before the border 

with Chaco 

HojsKaruSchedMar455  (CTES, MNES) 

61 30 4x# 

Hojs456 WO60.69983 

S27.49539 

Chaco, NR95, 10 km after Villa Angela, 

towards R.S. Peña 

HojsKaruSchedMar456  (CTES, MNES) 

85 30 2x, 4x 

Hojs460 WO60.19020 

S26.89304 

Chaco, NR16, 6 km Eastern intersection 

PR4, towards Resistencia 

HojsKaruSchedMar460  (CTES, MNES) 

85 1 4x 

Hojs465 WO60.17674 

S26.89774 

Chaco, NR16 and intersection to Colonia 

Aborigen, from R.S. Peña towards 

Resistencia 

HojsKaruSchedMar465  (CTES, MNES) 

86 30 4x 

Hojs466 WO59.99973 

S26.95990 

Chaco, NR16, 15 km Western intersection 

PR7 

84 1 4x 

Hojs467 WO59.7264 

S27.05106 

Chaco, NR16, 15 km Eastern intersection 

PR7 

72 1 2x 

Hojs468 WO58.78228 

S26.88631 

Chaco, NR11, 66 km Northern Resistencia 

HojsKaruSchedMar468  (CTES, MNES) 

57 30 2x 

Hojs470 WO58.12484 

S27.74285 

Ctes, PR5, 53 km from San Luis del Palmar 

towards Caá Catí 

HojsKaruHonMar470  (CTES, MNES) 

59 31 2x, 3x, 

4x 

Hojs471 WO57.93462 

S28.34835 

Corrientes, PR6, 9 km North-western 

Concepción 

HojsKaruHonMar471  (CTES, MNES) 

64 30 4x 

Hojs474 WO58.01721 

S31.28989 

Entre Ríos, 6 km Eastern NR14, access to 

Salto Grande International Bridge 

HojsKaruHonMar474  (CTES, MNES) 

25 1 4x 

Hojs475 WO58.00263 

S31.26702 

Entre Rios, dirt road on Monseñor Ricardo 

Rösch Avenue

HojsKaruHonMar475  (CTES, MNES) 

21 30 4x 

Hojs477 WO56.80818 

S29.35417 

Ctes, NR14, b/ Yapeyú and La Cruz 

settlements 

53 2 na 



102 
 

HojsKaruHonMar477  (CTES, MNES) 

Hojs478 WO56.38324 

S28.79345 

Ctes,NR14, 37 km Northern Alvear town 

HojsKaruHonMar478  (CTES, MNES) 

82 30 4x 

Hojs479 WO56.10051 

S28.60016 

Corrientes, Dpt Santo Tomé, NR14, 

milestone km 679 

HojsKaruHonMar479  (CTES, MNES) 

66 1 na 

Hojs480 WO56.02895 

S28.47094 

Corrientes, Dpt Santo Tomé, PR94, 8.8 km 

before Sto Tomé´s city 

HojsKaruHonMar480  

61 1 4x 

Hojs481 WO55.93099 

S28.34389 

Ctes, PR94, 27 km Northern Santo Tome´s 

city, after PR174 intersection 

HojsKaruMar481  (CTES, MNES) 

79 30 2x, 4x 

Hojs482 WO56.09195 

S27.49069 

Ctes, NR12, 24 km South-eastern Posadas´ 

city, after PR34 intersection 

156 1 2x 

Hojs483 WO56.64299 

S27.58813 

Ctes, NR12, milestone km 1250, 1 km 

Eastern NR120 intersection, bridge on the 

route  

HojsKaruMar483  (CTES, MNES) 

78 2 2x 

Hojs485 WO57.48130 

S27.92212 

Ctes, NR118, 27 km South-Eastern 

Loreto´s village 

HojsKaruMar485  (CTES, MNES) 

72 1 4x 

Hojs486 WO58.74216 

S28.17197 

Ctes, NR12, 15 km North-western 

Saladas´ city 

HojsKaruMar486  (CTES, MNES) 

76 1 na 

Hojs487 WO58.74547 

S28.16563 

Ctes, NR12, 16 km North-western Saladas, 

milestone km 951 

51 31 2x, 4x 

M9 WO58.385400 
S 27.613250 
 

Corrientes, PR5, 21 km from San Luis del 
Palmar towards Caá Catí 

67 10 2x 

M15 WO57.2640 
S28.8716 

Corrientes, PR114, Estancia Cerro Tuna, 
5km before Miriñay´s swamp 
MarSched15 

72 14 4x 

M28 WO58.753983 
S27.615017 

Corrientes, 3 km Southern Riachuelo, 
back way along railways 

63 17 2x# 

M35 WO57.78926 
S27.38394 

Corrientes, NR12, 45 km Eastern Itá Ibaté 77 2 4x# 

Collector abreviations: Hojs – Hojsgaard, Mar -  Martinez, Karu – Karunarathne, Sched – Schedler 
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Table S2.2. Collections sites of P. intermedium plant materials with known ploidy level from previous 
studies 
 

Col_code 

 

Longitude 

Latitude 

Location 

 

Ploidy 

(x=10) 

Reference 

 

Date 

 

Q3758 
WO59.2904 

S27.8573 
Argentina, Chaco, Basail 2x 

Norrmann et al. 

1989 
25/10/1982 

Q3749 
WO58.9741 

S27.002 

Argentina, Chaco, 50 km Northern 

Resistencia 
2x 

Norrmann et al. 

1989 
14/10/1982 

Q3752 
WO58.9712 

S27.0171 

Argentina, Chaco, 48 km Northern 

Resistencia 
2x 

Norrmann et al. 

1989 
14/10/1982 

Sch22857 
WO59.3825 

S26.997 

Argentina, Chaco, 13 km Northern La 

Verde, estancia Dos Tranqueras 
2x 

Norrmann et al. 

1989 
15/10/1982 

Q3757 
WO56.6817 

S27.5936 
Argentina, Corrientes, Ituzaingó 2x 

Norrmann et al. 

1989 
25/10/1982 

Q3790 
WO56.0408 

S28.6108 

Argentina, Corrientes, 17 km south of 

Santo Tomé 
2x 

Norrmann et al. 

1989 
06/05/1983 

N96 
WO60.2882 

S26.8599 

Argentina, Chaco, 5 km west of 

Quitilipi 
2x 

Norrmann et al. 

1989 
15/12/1983 

N97 
WO60.109 

S26.9265 

Argentina, Chaco, 9 km west of 

Machagai 
2x 

Norrmann et al. 

1989 
15/12/1983 

N98 
WO59.6962 

S27.0102 

Argentina, Chaco, 15 km east of 

Presidencia de la Plaza 
2x 

Norrmann et al. 

1989 
15/12/1983 

PI 

404654 

WO57.9788 

S24.6896 

Paraguay, Presidente Hayes, Route 9, 

65 km northwest of Paraguay River 
2x 

Norrmann et al. 

1989 
22/01/1975 

V12220 
WO54.6499 

S28.4018 

Brazil, Rio Grande do Sul, 30 km E de 

Sao Luis Gonzaga 
2x Honfi et al. 1990 03/12/1989 

Q4020 
WO54.194 

S23.1286 

Brazil, Mato Grosso do Sul, 8 km S de 

Naviraí, junto ao Rio Amambai. 
2x Honfi et al. 1990 30/11/1988 

Q4019 
WO54.2985 

S23.0245 

Brazil, Mato Grosso do Sul, 10 km 

WNW de Naviraí. 
2x Honfi et al. 1990 20/12/1988 

V11801 
WO54.7937 

S22.4001 

Brazil, Mato Grosso do Sul, 18 km S de 

Dourados. 
2x Honfi et al. 1990 16/06/1988 

Q4034 
WO58.1961 

S25.5452 
Argentina, 70 km N de Formosa 2x Honfi et al. 1990 10/1988 

Rua35 
WO56.5139 

S22.2642 

Paraguay, Amambay, 15 km S de Bella 

Vista. Rua35  

(BAA) 

2x 
Hojsgaard et al. 

2009 
07/01/1994 

V11802 
WO54.8038 

S22.4297 
Brasil, MGS, 18 km S Dourados 2x Vaio et al. 2005 unknown 

Q3846 
WO58.7361 

S28.1527 

Argentina, Corrientes, 76 km east-

southeast of Corrientes city 
4x 

Norrmann et al. 

1989 
05/01/1984 
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Q3850 
WO43.9885 

S19.8456 

Brazil, Minas Gerais, Belo Horizonte, 

by the lake of Pampulha dam 
4x 

Norrmann et al. 

1989 
09/01/1984 

Q3784 
WO57.0669 

S29.6266 

Argentina, Corrientes, 39 km north of 

Paso de los Ubres 
4x 

Norrmann et al. 

1989 
17/05/1983 

Q3856 
WO59.4775 

S28.8543 
Argentina, Santa Fé, Las Garzas 4x 

Norrmann et al. 

1989 
26/10/1984 

Q3848 
WO60.4071 

S30.412 

Argentina, Santa Fé, 5 km southern 

Gobernador Crespo 
4x 

Norrmann et al. 

1989 
09/01/1984 

Q3842 
WO58.7428 

S28.0838 

Argentina, Corrientes, 67 km South-

eastern Corrientes´ city 
4x 

Norrmann et al. 

1989 
05/01/1984 

Q3859 
WO55.5308 

S27.2872 

Argentina, Misiones, between San 

Ignacio and Santa Ana, near Yabebiry 

stream 

4x 
Norrmann et al. 

1989 
11/12/1984 

Q3855 
WO56.5963 

S29.0969 

Argentina, Corrientes, Alvear, near 

Aguapey River 
4x 

Norrmann et al. 

1989 
26/10/1984 

Q3753 
WO59.365 

S26.3035 
Argentina; Formosa, El Colorado 4x 

Norrmann et al. 

1989 
14/10/1982 

Q3865 
WO58.8308 

S27.4833 
Argentina, Corrientes, Corrientes city 4x 

Norrmann et al. 

1989 
13/05/1985 

Q3867 
WO59.2151 

S28.0949 

Argentina, Santa Fé, 5 km south of 

Florencia 
4x 

Norrmann et al. 

1989 
26/11/1985 

K2258 
WO62.0000 

S16.1333 

Bolivia, Dpt Santa Cruz , Prov. Ñuflo 

Chávez , Estancia La Pachanga, 52 km 

S of Concepción, route to Lomerío   

(ISC, LPB, F, US, MO, NY) 

4x 
Norrmann et al. 

1994 
28/11/1986 

K1631 
WO62.0833 

S16.1333 

Bolivia, Dpt Santa Cruz , Prov. Ñuflo 

Chávez , Estancia Viera, 2 km S of 

Concepción, route to Lomerío   

(ISC, LPB, F, US, MO, NY) 

4x 
Norrmann et al. 

1994 
20/01/1986 

K1673  

Bolivia, Dpt Santa Cruz, Prov. Velasco, 

5 km E of Santa Cruz de la Frontera 

(ISC, LPB, F, US, MO, NY) 

4x 
Norrmann et al. 

1994 
27/01/1986 

V11920 
WO55.2658 

S22.3549 

Brazil, Mato Grosso do Sul, 50 km 

WSW de Dourados, rio Dourados. 
4x Honfi et al. 1990 20/11/1989 

Q4036 
WO58.4853 

S29.4385 

Argentina, Corrientes, 16 km SE de 

Perugorria 
4x Honfi et al. 1990 28/10/1988 

M5327 
WO58.7884 

S27.948 

Argentina, Corrientes, Empedrado, Rta. 

Nac. 12, Km 958, Ayo. San Lorenzo, 

Morrone et al. 5327  

(MO, SI) 

4x Sede et al. 2010 05/04/2005 
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Table S3.1. Flow cytometric seed analysis (FCSS) peak indices 

Population 
Ind. 
No. 

Mother 
Ploidy 

G1 
G3    

(G5) 
C2 

C3  
(C5) 

Peak Index 
(G3(G5)/G2) 

Hojs401 12 4 2 2.82 2 3 1.41 

Hojs401 12 4 2 4.58 2 5 2.29 

Hojs401 12 4 2 4.80 2 5 2.40 

Hojs401 12 4 2 4.81 2 5 2.41 

Hojs401 12 4 2 4.86 2 5 2.43 

Hojs401 12 4 2 4.86 2 5 2.43 

Hojs401 12 4 2 4.86 2 5 2.43 

Hojs401 12 4 2 4.87 2 5 2.44 

Hojs401 12 4 2 4.88 2 5 2.44 

Hojs401 12 4 2 4.89 2 5 2.44 

Hojs401 12 4 2 4.89 2 5 2.45 

Hojs401 12 4 2 4.90 2 5 2.45 

Hojs401 12 4 2 4.91 2 5 2.45 

Hojs401 12 4 2 4.93 2 5 2.47 

Hojs401 12 4 2 4.93 2 5 2.47 

Hojs401 12 4 2 4.93 2 5 2.47 

Hojs401 12 4 2 4.99 2 5 2.50 

Hojs401 12 4 2 5.10 2 5 2.55 

Hojs401 16 4 2 4.72 2 5 2.36 

Hojs401 16 4 2 4.73 2 5 2.36 

Hojs401 16 4 2 4.76 2 5 2.38 

Hojs401 16 4 2 4.77 2 5 2.38 

Hojs401 16 4 2 4.77 2 5 2.39 

Hojs401 16 4 2 4.78 2 5 2.39 

Hojs401 16 4 2 4.80 2 5 2.40 

Hojs401 16 4 2 4.81 2 5 2.41 

Hojs401 16 4 2 4.81 2 5 2.41 

Hojs401 16 4 2 4.83 2 5 2.41 

Hojs401 16 4 2 4.83 2 5 2.42 

Hojs401 16 4 2 4.84 2 5 2.42 

Hojs401 16 4 2 4.85 2 5 2.42 

Hojs401 16 4 2 4.85 2 5 2.43 

Hojs401 16 4 2 4.86 2 5 2.43 

Hojs401 16 4 2 4.87 2 5 2.43 

Hojs401 16 4 2 4.87 2 5 2.43 

Hojs401 16 4 2 4.91 2 5 2.46 

Hojs401 16 4 2 4.92 2 5 2.46 

Hojs401 16 4 2 5.10 2 5 2.55 

Hojs401 21 4 2 2.89 2 3 1.44 

Hojs401 21 4 2 4.61 2 5 2.31 



106 
 

Hojs401 21 4 2 4.62 2 5 2.31 

Hojs401 21 4 2 4.71 2 5 2.35 

Hojs401 21 4 2 4.73 2 5 2.37 

Hojs401 21 4 2 4.77 2 5 2.38 

Hojs401 21 4 2 4.78 2 5 2.39 

Hojs401 21 4 2 4.78 2 5 2.39 

Hojs401 21 4 2 4.79 2 5 2.40 

Hojs401 21 4 2 4.81 2 5 2.41 

Hojs401 21 4 2 4.82 2 5 2.41 

Hojs401 21 4 2 4.82 2 5 2.41 

Hojs401 21 4 2 4.83 2 5 2.42 

Hojs401 21 4 2 4.83 2 5 2.42 

Hojs401 21 4 2 4.84 2 5 2.42 

Hojs401 21 4 2 4.84 2 5 2.42 

Hojs401 21 4 2 4.85 2 5 2.42 

Hojs401 21 4 2 4.85 2 5 2.42 

Hojs401 21 4 2 4.85 2 5 2.42 

Hojs401 21 4 2 4.89 2 5 2.45 

Hojs401 21 4 2 5.00 2 5 2.50 

Hojs401 21 4 2 5.00 2 5 2.50 

Hojs401 21 4 2 5.03 2 5 2.52 

Hojs401 21 4 2 5.18 2 5 2.59 

Hojs403 18 4 2 4.75 2 5 2.38 

Hojs403 18 4 2 4.85 2 5 2.43 

Hojs403 18 4 2 4.85 2 5 2.43 

Hojs403 18 4 2 4.87 2 5 2.43 

Hojs403 18 4 2 4.90 2 5 2.45 

Hojs403 19 4 2 4.79 2 5 2.40 

Hojs403 19 4 2 4.83 2 5 2.41 

Hojs403 19 4 2 4.84 2 5 2.42 

Hojs403 19 4 2 4.89 2 5 2.44 

Hojs403 19 4 2 4.89 2 5 2.44 

Hojs403 19 4 2 4.90 2 5 2.45 

Hojs403 19 4 2 4.92 2 5 2.46 

Hojs403 20 4 2 2.93 2 3 1.47 

Hojs403 20 4 2 3.26 2 3 1.63 

Hojs403 20 4 2 4.71 2 5 2.36 

Hojs403 20 4 2 4.78 2 5 2.39 

Hojs403 20 4 2 4.79 2 5 2.39 

Hojs403 20 4 2 4.81 2 5 2.40 

Hojs403 20 4 2 4.83 2 5 2.41 

Hojs403 20 4 2 4.90 2 5 2.45 

Hojs403 20 4 2 4.91 2 5 2.45 

Hojs403 20 4 2 4.91 2 5 2.46 
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Hojs403 20 4 2 4.94 2 5 2.47 

Hojs403 20 4 2 4.99 2 5 2.49 

Hojs403 20 4 2 5.00 2 5 2.50 

Hojs403 20 4 2 5.04 2 5 2.52 

Hojs405 4 4 2 4.75 2 5 2.37 

Hojs405 4 4 2 4.76 2 5 2.38 

Hojs405 4 4 2 4.82 2 5 2.41 

Hojs405 4 4 2 4.85 2 5 2.42 

Hojs405 4 4 2 4.87 2 5 2.43 

Hojs405 12 4 2 2.85 2 3 1.42 

Hojs405 12 4 2 4.80 2 5 2.40 

Hojs405 12 4 2 4.86 2 5 2.43 

Hojs405 12 4 2 5.46 2 5 2.73 

Hojs409 6 4 2 4.61 2 5 2.30 

Hojs409 6 4 2 4.66 2 5 2.33 

Hojs409 6 4 2 4.68 2 5 2.34 

Hojs409 6 4 2 4.69 2 5 2.34 

Hojs409 6 4 2 4.76 2 5 2.38 

Hojs409 6 4 2 4.83 2 5 2.42 

Hojs409 6 4 2 4.87 2 5 2.44 

Hojs409 6 4 2 5.02 2 5 2.51 

Hojs409 6 4 2 5.09 2 5 2.55 

Hojs409 10 4 2 2.93 2 3 1.47 

Hojs409 10 4 2 4.59 2 5 2.29 

Hojs409 17 4 2 3.10 2 3 1.55 

Hojs409 17 4 2 4.65 2 5 2.33 

Hojs409 17 4 2 4.72 2 5 2.36 

Hojs409 17 4 2 4.75 2 5 2.37 

Hojs409 17 4 2 4.79 2 5 2.40 

Hojs409 17 4 2 4.80 2 5 2.40 

Hojs409 17 4 2 4.82 2 5 2.41 

Hojs409 17 4 2 4.86 2 5 2.43 

Hojs409 17 4 2 4.87 2 5 2.44 

Hojs409 17 4 2 4.88 2 5 2.44 

Hojs409 17 4 2 4.92 2 5 2.46 

Hojs409 17 4 2 4.95 2 5 2.48 

Hojs409 17 4 2 4.99 2 5 2.49 

Hojs410 13 4 2 4.88 2 5 2.44 

Hojs410 17 4 2 2.99 2 3 1.50 

Hojs410 17 4 2 3.13 2 3 1.57 

Hojs410 17 4 2 3.19 2 3 1.60 

Hojs410 17 4 2 3.24 2 3 1.62 

Hojs410 17 4 2 4.59 2 5 2.30 

Hojs410 17 4 2 4.67 2 5 2.34 
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Hojs410 17 4 2 4.69 2 5 2.34 

Hojs410 17 4 2 4.72 2 5 2.36 

Hojs410 17 4 2 4.74 2 5 2.37 

Hojs410 17 4 2 4.75 2 5 2.37 

Hojs410 17 4 2 4.76 2 5 2.38 

Hojs410 17 4 2 4.78 2 5 2.39 

Hojs410 17 4 2 4.85 2 5 2.42 

Hojs410 17 4 2 4.92 2 5 2.46 

Hojs415 2 4 2 4.56 2 5 2.28 

Hojs415 2 4 2 4.65 2 5 2.32 

Hojs415 2 4 2 4.67 2 5 2.33 

Hojs415 2 4 2 4.68 2 5 2.34 

Hojs415 2 4 2 4.71 2 5 2.35 

Hojs415 2 4 2 4.75 2 5 2.38 

Hojs415 2 4 2 4.76 2 5 2.38 

Hojs415 2 4 2 4.78 2 5 2.39 

Hojs415 2 4 2 4.79 2 5 2.39 

Hojs415 2 4 2 4.81 2 5 2.41 

Hojs415 3 4 2 3.05 2 3 1.53 

Hojs415 3 4 2 4.66 2 5 2.33 

Hojs415 3 4 2 4.68 2 5 2.34 

Hojs415 3 4 2 4.71 2 5 2.36 

Hojs415 3 4 2 4.75 2 5 2.37 

Hojs415 3 4 2 4.78 2 5 2.39 

Hojs415 3 4 2 4.81 2 5 2.40 

Hojs415 3 4 2 4.84 2 5 2.42 

Hojs415 3 4 2 4.85 2 5 2.43 

Hojs415 3 4 2 4.85 2 5 2.43 

Hojs415 3 4 2 4.87 2 5 2.44 

Hojs415 3 4 2 4.88 2 5 2.44 

Hojs415 3 4 2 4.89 2 5 2.45 

Hojs415 5 4 2 2.71 2 3 1.35 

Hojs415 5 4 2 3.08 2 3 1.54 

Hojs415 5 4 2 4.70 2 5 2.35 

Hojs415 5 4 2 4.74 2 5 2.37 

Hojs415 5 4 2 4.74 2 5 2.37 

Hojs415 5 4 2 4.74 2 5 2.37 

Hojs415 5 4 2 4.75 2 5 2.37 

Hojs415 5 4 2 4.75 2 5 2.38 

Hojs415 5 4 2 4.76 2 5 2.38 

Hojs415 5 4 2 4.76 2 5 2.38 

Hojs415 5 4 2 4.77 2 5 2.39 

Hojs415 5 4 2 4.78 2 5 2.39 

Hojs415 5 4 2 4.82 2 5 2.41 
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Hojs415 5 4 2 4.85 2 5 2.42 

Hojs415 5 4 2 4.85 2 5 2.42 

Hojs415 5 4 2 4.86 2 5 2.43 

Hojs415 5 4 2 4.87 2 5 2.43 

Hojs415 5 4 2 4.92 2 5 2.46 

Hojs415 5 4 2 4.96 2 5 2.48 

Hojs415 5 4 2 4.97 2 5 2.48 

Hojs445 10 4 2 2.99 2 3 1.49 

Hojs445 10 4 2 2.99 2 3 1.49 

Hojs445 10 4 2 4.58 2 5 2.29 

Hojs445 10 4 2 4.69 2 5 2.35 

Hojs445 10 4 2 4.79 2 5 2.39 

Hojs445 10 4 2 4.80 2 5 2.40 

Hojs445 10 4 2 4.83 2 5 2.42 

Hojs445 10 4 2 4.85 2 5 2.43 

Hojs445 10 4 2 4.86 2 5 2.43 

Hojs445 10 4 2 4.87 2 5 2.43 

Hojs445 10 4 2 4.87 2 5 2.43 

Hojs445 10 4 2 4.91 2 5 2.46 

Hojs445 10 4 2 4.91 2 5 2.46 

Hojs445 10 4 2 4.92 2 5 2.46 

Hojs445 10 4 2 4.93 2 5 2.46 

Hojs445 10 4 2 4.94 2 5 2.47 

Hojs445 10 4 2 4.94 2 5 2.47 

Hojs445 10 4 2 4.96 2 5 2.48 

Hojs445 10 4 2 5.50 2 5 2.75 

Hojs445 17 4 2 2.80 2 3 1.40 

Hojs445 17 4 2 4.73 2 5 2.36 

Hojs445 17 4 2 4.77 2 5 2.39 

Hojs445 17 4 2 4.78 2 5 2.39 

Hojs445 17 4 2 4.79 2 5 2.39 

Hojs445 17 4 2 4.80 2 5 2.40 

Hojs445 17 4 2 4.81 2 5 2.41 

Hojs445 17 4 2 4.81 2 5 2.41 

Hojs445 17 4 2 4.81 2 5 2.41 

Hojs445 17 4 2 4.83 2 5 2.41 

Hojs445 17 4 2 4.85 2 5 2.43 

Hojs445 17 4 2 4.89 2 5 2.45 

Hojs445 17 4 2 4.92 2 5 2.46 

Hojs445 17 4 2 4.98 2 5 2.49 

Hojs445 17 4 2 4.99 2 5 2.49 

Hojs445 24 4 2 4.79 2 5 2.39 

Hojs445 24 4 2 4.82 2 5 2.41 

Hojs445 24 4 2 4.83 2 5 2.41 
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Hojs445 24 4 2 4.85 2 5 2.42 

Hojs445 24 4 2 4.86 2 5 2.43 

Hojs445 24 4 2 4.87 2 5 2.44 

Hojs445 24 4 2 4.88 2 5 2.44 

Hojs445 24 4 2 4.98 2 5 2.49 

Hojs445 24 4 2 4.99 2 5 2.50 

Hojs455 1 4 2 2.83 2 3 1.42 

Hojs455 1 4 2 2.84 2 3 1.42 

Hojs455 1 4 2 3.21 2 3 1.61 

Hojs455 1 4 2 3.33 2 3 1.67 

Hojs455 1 4 2 4.70 2 5 2.35 

Hojs455 1 4 2 4.75 2 5 2.37 

Hojs455 1 4 2 4.82 2 5 2.41 

Hojs455 1 4 2 4.84 2 5 2.42 

Hojs455 1 4 2 4.88 2 5 2.44 

Hojs455 1 4 2 4.89 2 5 2.45 

Hojs455 1 4 2 4.90 2 5 2.45 

Hojs455 1 4 2 4.91 2 5 2.46 

Hojs455 1 4 2 4.91 2 5 2.46 

Hojs455 1 4 2 4.96 2 5 2.48 

Hojs455 1 4 2 5.00 2 5 2.50 

Hojs455 1 4 2 5.17 2 5 2.58 

Hojs455 7 4 2 2.96 2 3 1.48 

Hojs455 7 4 2 2.97 2 3 1.48 

Hojs455 7 4 2 2.98 2 3 1.49 

Hojs455 7 4 2 3.02 2 3 1.51 

Hojs455 7 4 2 4.73 2 5 2.36 

Hojs455 7 4 2 4.76 2 5 2.38 

Hojs455 7 4 2 4.82 2 5 2.41 

Hojs455 26 4 2 3.02 2 3 1.51 

Hojs455 26 4 2 3.13 2 3 1.56 

Hojs455 26 4 2 4.60 2 5 2.30 

Hojs455 26 4 2 4.74 2 5 2.37 

Hojs455 26 4 2 4.80 2 5 2.40 

Hojs455 26 4 2 4.83 2 5 2.41 

Hojs455 26 4 2 4.84 2 5 2.42 

Hojs455 26 4 2 4.85 2 5 2.43 

Hojs455 26 4 2 4.86 2 5 2.43 

Hojs455 26 4 2 5.01 2 5 2.50 

Hojs456 1 2 2 2.83 2 3 1.42 

Hojs456 1 2 2 2.85 2 3 1.42 

Hojs456 1 2 2 2.94 2 3 1.47 

Hojs456 1 2 2 2.98 2 3 1.49 

Hojs456 1 2 2 3.01 2 3 1.50 
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Hojs456 a 4 2 4.76 2 5 2.38 

Hojs456 a 4 2 4.86 2 5 2.43 

Hojs456 a 4 2 4.86 2 5 2.43 

Hojs456 b 4 2 2.89 2 3 1.44 

Hojs456 b 4 2 4.82 2 5 2.41 

Hojs456 b 4 2 4.88 2 5 2.44 

Hojs456 b 4 2 4.89 2 5 2.44 

Hojs465 1 4 2 4.85 2 5 2.42 

Hojs465 1 4 2 4.88 2 5 2.44 

Hojs465 1 4 2 4.93 2 5 2.46 

Hojs465 1 4 2 5.05 2 5 2.53 

Hojs465 13 4 2 3.08 2 3 1.54 

Hojs465 13 4 2 4.90 2 5 2.45 

Hojs465 13 4 2 4.97 2 5 2.48 

Hojs465 13 4 2 5.04 2 5 2.52 

Hojs465 13 4 2 5.20 2 5 2.60 

Hojs465 21 4 2 4.83 2 5 2.41 

Hojs465 21 4 2 4.85 2 5 2.42 

Hojs465 21 4 2 4.88 2 5 2.44 

Hojs465 21 4 2 4.92 2 5 2.46 

Hojs468 24 2 2 2.93 2 3 1.46 

Hojs468 24 2 2 2.93 2 3 1.46 

Hojs468 24 2 2 2.94 2 3 1.47 

Hojs468 24 2 2 2.95 2 3 1.48 

Hojs468 24 2 2 3.01 2 3 1.50 

Hojs468 24 2 2 3.01 2 3 1.51 

Hojs468 27 2 2 2.69 2 3 1.34 

Hojs468 27 2 2 2.76 2 3 1.38 

Hojs468 27 2 2 2.79 2 3 1.40 

Hojs468 27 2 2 2.81 2 3 1.40 

Hojs468 27 2 2 2.83 2 3 1.41 

Hojs468 27 2 2 2.84 2 3 1.42 

Hojs468 27 2 2 2.86 2 3 1.43 

Hojs468 27 2 2 2.89 2 3 1.45 

Hojs468 27 2 2 2.92 2 3 1.46 

Hojs470 1 2 2 2.77 2 3 1.39 

Hojs470 1 2 2 3.04 2 3 1.52 

Hojs470 2 3 2 2.72 2 3 1.36 

Hojs470 2 3 2 2.75 2 3 1.38 

Hojs470 2 3 2 2.88 2 3 1.44 

Hojs470 2 3 2 2.90 2 3 1.45 

Hojs470 2 3 2 2.93 2 3 1.47 

Hojs470 2 3 2 2.94 2 3 1.47 

Hojs470 2 3 2 3.47 2 3 1.73 
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Hojs470 2 3 2 4.70 2 5 2.35 

Hojs470 2 3 2 4.74 2 5 2.37 

Hojs470 2 3 2 4.83 2 5 2.41 

Hojs470 2 3 2 4.85 2 5 2.42 

Hojs470 2 3 2 4.85 2 5 2.42 

Hojs470 2 3 2 4.85 2 5 2.43 

Hojs470 2 3 2 4.85 2 5 2.43 

Hojs470 2 3 2 4.87 2 5 2.43 

Hojs470 2 3 2 4.89 2 5 2.44 

Hojs470 2 3 2 4.89 2 5 2.45 

Hojs470 2 3 2 4.92 2 5 2.46 

Hojs470 2 3 2 4.93 2 5 2.46 

Hojs470 2 3 2 4.94 2 5 2.47 

Hojs470 2 3 2 5.02 2 5 2.51 

Hojs470 2 3 2 5.08 2 5 2.54 

Hojs470 2 3 2 5.10 2 5 2.55 

Hojs471 5 4 2 4.86 2 5 2.43 

Hojs471 5 4 2 4.87 2 5 2.44 

Hojs471 5 4 2 4.89 2 5 2.44 

Hojs471 5 4 2 5.06 2 5 2.53 

Hojs471 16 4 2 2.91 2 3 1.45 

Hojs471 16 4 2 3.01 2 3 1.51 

Hojs471 16 4 2 3.17 2 3 1.58 

Hojs471 16 4 2 4.77 2 5 2.38 

Hojs471 16 4 2 4.81 2 5 2.41 

Hojs471 16 4 2 4.85 2 5 2.42 

Hojs471 16 4 2 4.86 2 5 2.43 

Hojs471 16 4 2 4.91 2 5 2.46 

Hojs471 16 4 2 4.97 2 5 2.48 

Hojs471 16 4 2 5.01 2 5 2.50 

Hojs471 26 4 2 4.78 2 5 2.39 

Hojs471 26 4 2 4.85 2 5 2.42 

Hojs471 26 4 2 4.85 2 5 2.42 

Hojs471 26 4 2 4.91 2 5 2.45 

Hojs471 26 4 2 4.95 2 5 2.47 

Hojs478 21 4 2 4.83 2 5 2.42 

Hojs478 21 4 2 4.86 2 5 2.43 

Hojs478 21 4 2 4.86 2 5 2.43 

Hojs478 21 4 2 4.88 2 5 2.44 

Hojs478 21 4 2 4.88 2 5 2.44 

Hojs478 28 4 2 3.04 2 3 1.52 

Hojs478 28 4 2 4.75 2 5 2.38 

Hojs478 28 4 2 4.78 2 5 2.39 

Hojs478 28 4 2 4.84 2 5 2.42 
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G1: embryo peak, G3/5: endosperm peak, C1: relative DNA content of the embryo 

nuclie, C3/5 relative DNA content of the endosperm nuclie; seeds of sexual origin are 

shaded in grey  

Hojs478 28 4 2 4.86 2 5 2.43 

Hojs478 28 4 2 4.88 2 5 2.44 

Hojs478 28 4 2 4.93 2 5 2.47 

Hojs478 28 4 2 5.04 2 5 2.52 

Hojs478 28 4 2 5.13 2 5 2.57 

Hojs478 29 4 2 4.74 2 5 2.37 

Hojs478 29 4 2 4.82 2 5 2.41 

Hojs478 29 4 2 4.83 2 5 2.41 

Hojs478 29 4 2 4.88 2 5 2.44 

Hojs478 29 4 2 4.89 2 5 2.44 

Hojs478 29 4 2 5.03 2 5 2.51 

Hojs478 29 4 2 5.05 2 5 2.52 

Hojs481 21 4 2 2.97 2 3 1.48 

Hojs481 21 4 2 4.73 2 5 2.37 

Hojs481 21 4 2 4.75 2 5 2.37 

Hojs481 21 4 2 4.85 2 5 2.43 

Hojs481 21 4 2 4.87 2 5 2.43 

Hojs481 21 4 2 4.89 2 5 2.44 

Hojs481 21 4 2 4.89 2 5 2.44 

Hojs481 21 4 2 4.90 2 5 2.45 

Hojs481 21 4 2 4.90 2 5 2.45 

Hojs481 21 4 2 4.91 2 5 2.45 

Hojs481 21 4 2 4.94 2 5 2.47 

Hojs481 21 4 2 4.97 2 5 2.48 

Hojs481 21 4 2 5.03 2 5 2.52 

Hojs481 21 4 2 5.04 2 5 2.52 

Hojs481 21 4 2 5.10 2 5 2.55 
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Table S3.2. Correlation of meiotic/sexual and apomictic pathways in seeds and embryo sacs to 
environmental variables 

Climatic Variable Embryo Sac Seeds 

 p.value 
Pearson 
correlation p.value 

Pearson 
correlation 

BIO1 = Annual Mean Temperature 
0.446 -0.181 0.989 -0.004 

BIO2 = Mean Diurnal Range  
0.019 -0.69 0.030 -0.559 

BIO3 = Isothermality (BIO2/BIO7) (* 100) 
0.050 -0.362 0.691 -0.112 

BIO4 = Temperature Seasonality  
0.881 0.036 0.223 -0.334 

BIO5 = Max Temperature of Warmest Month 
0.066 -0.419 0.083 -0.462 

BIO6 = Min Temperature of Coldest Month 
0.511 0.160 0.174 0.371 

BIO7 = Temperature Annual Range  
0.045 -0.452 0.055 -0.379 

BIO8 = Mean Temperature of Wettest Quarter 
0.190 -0.306 0.051 -0.465 

BIO9 = Mean Temperature of Driest Quarter 
0.530 -0.149 0.766 0.084 

BIO10 = Mean Temperature of Warmest Quarter 
0.361 -0.216 0.619 -0.140 

BIO11 = Mean Temperature of Coldest Quarter 
0.530 -0.149 0.766 0.084 

BIO12 = Annual Precipitation 
0.059 0.429 0.115 0.424 

BIO13 = Precipitation of Wettest Month 
0.338 0.226 0.796 -0.073 

BIO14 = Precipitation of Driest Month 
0.104 0.375 0.058 0.518 

BIO15 = Precipitation Seasonality  
0.082 -0.398 0.051 -0.432 

BIO16 = Precipitation of Wettest Quarter 
0.401 0.199 0.698 0.109 

BIO17 = Precipitation of Driest Quarter 
0.100 0.378 0.077 0.370 

BIO18 = Precipitation of Warmest Quarter 
0.687 -0.096 0.295 -0.289 

BIO19 = Precipitation of Coldest Quarter 
0.100 0.378 0.077 0.370 

UV-B radiation 0.300 -0.244 0.567 -0.161 

Elevation 0.549 -0.143 0.414 0.228 

Photosynthetically Active Radiation (PAR) 0.523 -0.152 0.708 0.106 

Average Cloud Cover 0.456 0.177 0.233 0.328 

Frost Day frequency 0.616 -0.119 0.536 -0.174 

Vapor pressure at ground level 0.833 -0.050 0.475 0.200 
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Figure S2.1. Flow cytometry histograms from different tissues and individuals of P. intermedium. A. Leaf tissue 
of diploid standard peak 2x (C1) peak positioned at 200. B. Leaf tissue of tetraploid 4x (C4) peak using diploid 
as an internal standard (C1), C. A tetraploid seed of sexual origin showing embryo peak (C1), endosperm peak 
(C3) and G2 phase peak of the embryo nuclie (C4), D. a tetraploid seed of apomictic origin showing endosperm 
peak (C1) G2 phase of the embryo nuclei (C4) and the endosperm peak (C5). 

 

 

 

 

 
Figure S2.2. Composition and placement of individual cytotypes within mixed-ploidy populations 
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Figure S2.3. Spatial analysis of cytotype distribution of P. intermedium.
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Figure S2.4. Boxplots depicting P. intermedium cytotype ecological preferences and niche differentiation for 
most significant bioclimatic and environmental variables. Whiskers represent minimum (lower) and 
maximum (upper) values falling out of the Inter-Quartile ranges. Dots represent minor and major outliers. 
Bio1 through Bio11 is as in WorldClim dataset (Hijmans et al. 2005).
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Figure S2.5. Ordination scaling plot for environmental variables and their dimensional contribution to the 
distribution of diploid and tetraploid P. intermedium cytotypes. 

 

 

Figure S2.6. Histograms displaying the distribution of 100 randomly simulated niche overlap scores 
contrasted to the observed niche overlap (red line – 0.25). Schoener´s D index is plotted under the assumption 
of A. niche equivalency B. niche similarity between cytotypes. 
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Figure S2.7. Reconstruction of past environmental niches showing suitable habitats available for diploid and 
tetraploid cytotypes of P. intermedium. A. Habitat availability for the two cytotypes during Last Glacial 
Maximum (ca. 21000 y.a), B. Habitat availability for the two cytotypes during Mid-Holocene (ca. 6000 y.a), 
C. Current niches for the two cytotypes. 
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Figure S4.1. A. Bayesian model-based determination of potential number of clusters implemented in the 
“find.clusters” function of R package ADEGENET. A BIC (Bayesian Information Criteria) is calculated using k-
means algorithm (also Ripley's K-function: Baddeley and Turner 2005) and the resulting BIC values are plotted 

against increasing number of k (clusters). B. Evanno plot (ΔK vs. K) of cluster determination of the AFLP 
marker data using the method described by Evanno et al. (2005). 

 

Figure S4.2. Mantel test correlogram showing geographical isolation of P.intermedium cytotypes and 
population based on genetic data 
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Figure S4.3. AFLP markers bayesian clustering of all the individuals at (a) K = 2, (b) K=4. 

a 

b 
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Method S1 

Flow cytometry ploidy estimations 

The relative nuclear DNA content of each sample was measured as follow: approximately 0.2 g of 

silica dried leaf materials were placed into a clean micro centrifuge tube (2 mL; Sarstedt AG & Co., 

Nümbrecht, Germany) together with one tungsten carbide bead (QIAGEN®, Hilden, Germany). 

The tube was submerged in liquid nitrogen for one minute and immediately transferred to a tissue 

homogenizer (TissueLyser II QIAGEN®, Hilden, Germany) and were beaten for seven seconds at 

30 shakes/sec. Then, 400 μL of Otto I buffer (0.1M Citric Acid monohydrate and 0.5% v/v Tween 

20) (Otto, 1990) was added to the macerated tissue, mixed and incubated for 10 minutes at room 

temperature. The homogenate was filtered through a 30 µm nylon mesh (CellTrics®, Sysmex Partec 

GmbH, Münster, Germany) into a 3.5 mL sample tube (Sarsdtedt AG & Co., Nümbrecht, 

Germany), and incubated for another 5 minutes before adding 1 mL of Otto II staining buffer (0.4M 

Na2HPO4 dissolved in H2O plus 4 μg/mL DAPI (C16H15N5), adjusted to pH 8.5) (Otto, 1990) 

containing DAPI and 2 µL/mL of β-mercaptoethanol. After incubating for 10 minutes at room 

temperature, each sample was analyzed in the flow cytometer (CyFlow® Cube 6, Sysmex Partec 

GmbH, Münster, Germany). For each histogram, the relative fluorescence intensity of particles (at 

least 5000 nuclei) were analyzed with CyView™ data acquisition and data analysis software 

(Sysmex Partec GmbH, Münster, Germany) and referenced to an external diploid standard 

(2n=2x=20 chromosomes). The standard was measured every 10th sample during the ploidy 

evaluation process. A maximum CV value of 5% was accepted for each sample peak (G0/G1 peak). 

Peak indexes were calculated as the ratio between the mean peak of the sample / the mean peak 

of the standard. Samples with a peak index value of 1 were determined as diploids; samples with 

peak index >1 as polyploid (1.5 for triploids; 2 for tetraploids).  

 

 

Method S2 

Flow cytometric seed screening 

Single seeds were placed in a 2 mL centrifuge tube (Sarstedt AG & Co., Nümbrecht, Germany) 

together with one tungsten carbide bead (QIAGEN®, Hilden, Germany) and 50 μL of Otto I 

isolation buffer (Otto 1990). Tubes were beaten in a tissue homogenizer (TissueLyser II QIAGEN®, 

Hilden, Germany) for seven seconds at 30 shakes/sec to obtain a substantial homogenate of the 

seed tissues. A final 150 μL of Otto I buffer was then added and then each tube was gently mixed 

and spin-down centrifuged. Sample suspensions were filtered (30 μm mesh CellTrick® filters; 

Sysmex Partec GmbH, Münster, Germany), stained with 800 μL of Otto II staining buffer  (Otto, 

1990), and incubated for 5–15 min on dark before analyzed on a CyFlow® Cube 6 flow cytometer 

(Sysmex Partec GmbH). For each seed histogram the relative fluorescence intensity of at least 3000 

nuclei was analyzed with the CyView™ data acquisition software (Sysmex Partec GmbH, Münster, 

Germany) and referenced to the external standard (a diploid P. intermedium plant). The standard 

was measured at least two times on a daily work basis, at the beginning and the end of the batch 

of samples. A maximum CV value of 5% was accepted for each sample peak (embryo and 

endosperm tissue peaks). 
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