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Abstract

In the last couple of years, electron cryomicroscopy (cryo-EM) has gained of rising im-
portance in the field of structural biology and biophysics. Not only that the routinely
achievable resolution of the method has dramatically increased to routinely near-atomic
resolution. First and foremost the opportunity to resolve structures which where far
beyond the size limit for classical methods such as X-ray crystallography and NMR in-
creased the popularity. These features make cryo-EM also more and more interesting
for the pharmaceutical industry. However, certain challenges are being unresolved until
today. One of them is the usage of the full dynamical information cryo-EM experiments
bring with them. The other is the fact that classical transmission electron microscopy
(TEM) on biological samples still is limited by the radiation sensitivity and the low signal
in the images. This thesis will first present a new algorithm based on statistical methods
to decipher the conformational landscape of a macromolecular complex from cryo-EM
experiments. This information can be used to quantify biochemical phenomena like al-
lostery on the intramolecular level. Such analyses will be discussed to be useful in the
drug development pipeline and help to understand the physical foundations of the regula-
tion and function of macromolecular complexes. Secondly, a new imaging method based
on scanning TEM will be introduced. In the corresponding publication we evaluate this
method in its capability to resolve non-biological samples as well as biological macromole-
cues. We show that the surrounding medium influences the imaging process in a way that
no compromise between the applied dose and the achievable signal can be found and it
will be discussed what implications can be drawn for new biological imaging modes in

general.
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1 Introduction

Latest since the Direct Electron Detector (DED) displaced the charged coupled devices
(CCD) literally out of the microscope, electron cryo-microscopy (cryo-EM) catched up to
the established methods in structural biology[2) 43, 00]. Next, Kuehlbrandt [78] exclaimed
the "Resolution Revolution" and the whole development peaked with the Nobel Prize for
Chemistry in 2017 to Joachim Frank, Jacques Debouchet and Richard Henderson[I31].
Together with this boost in hardware, also recently developed algorithmical improvements,
such as Maximum-Likelihood based reconstruction methods [123], [136] increased the ca-
pability of the method to resolve "near-atomic" resolution. There are numerous reviews in
the literature (a pubmed search of just two-years old reviews containing "cryo-EM" yields
more then 160 results)[13], 15} B0, 311 [38, 144} 90} 137, 140]. But apart from the numerous
technological advances in the last years, what differentiates cryo-EM from the established
methods of X-ray crystallography and nuclear magnetic resonance spectroscopy (NMR)?
NMR reconstructs the position of nuclei from spin interactions. However, as the size of the
observed molecules increases, the number of interactions do as well and the reconstruction
is limited by a lack of degeneracy of the signals[49]. Therefore, NMR is limited to small
proteins. On the other hand, NMR is an in-solution method, which allows to directly
visualize the conformational ensemble of a (small) biomolecule in solution. As will be
outlined later, NMR until now played the major role in understanding thermodynamical

or kinetic macroscopic observations (e.g. allostery) on the ensemble scale.

In contrast to this, X-ray crystallography is based on a crystallized sample of the inves-
tigated molecule, which is then investigated by X-ray diffraction. X-ray crystallography
is the benchmark of understanding the chemistry of any biomolecule. Once a suitable
crystallization condition is found (and this is still the major bottleneck in some cases),
modern beamline technology allows the imaging of rather large unit cells with "chemical"
resolution [127]. However, deriving dynamics from a crystal structure is hardly possible

and never resembles the native in solution situation.

cryo-EM has its strength in the determination of rather large complexes - up to full viruses

- even though the lower limit constantly decreases. However, at the moment the routin-



2 INTRODUCTION

ably achievable mean resolution is somewhere between 3 and 4 A[I09]. Even though,
higher resolved structures have been reported. Nevertheless, cryo-EM aims to conquer
the role of crystallography in resolving the chemistry of for example drug binding [140],
not only since a provocative Nature editorial stating that "The Revolution will not be
crystallized" [11].

NMR explained the physical basis of biochemical phenomena like binding, allostery and
intra-molecular signalling for small molecules already on the ensemble level. Cryo-EM
could in contrast explain all of this for the large central hubs in cellular metabolism and
signalling: as cryo-EM captures a frozen snapshot of the in-solution sample, it is per-
fectly suited to decipher the conformational motions underlying the large macromolecular
(brownian) machines. The question to answer can be nicely depicted by imagine the fol-
lowing scenario: a few thousand blindfolded dancers are put on a stage. They all know
the same choreography and when the music starts to play, one after the other starts to
dance. Now you take a snapshot of the dancers to a random time point. This will look
completely random, because any of the dancers started to a different - random - point in
time. The question is now: given the observation of all the dancers in different positions,
what is the underlying choreography? The first part of this thesis will tackle that question
and will even go one step further asking what the underlying energetical and functional
relation between thosre movements are. Finally, it should be clear that even this feature
might pave cryo-EM’s role into the pharmaceutical research much faster than waiting for
resolution to be routinely on the level that truly atomic resolutions can be achieved. Un-
derstanding the impact of drug binding to the dynamics of a macromolecular complex on

the structural level, might offer a new way of validating and understanding drug targets.

The two major limiting factors for cryo-EM are resolution and the signal-to-noise ratio
(SNR). Talking about dynamics, the SNR is what limits the distangling of individual
conformers. This is in statistics known as the identifiability problem [137], which in a
nutshell says that the ability of identifying subpopulations in a sample depends on the
noise in the observation. The SNR can be approximated as the signal divided by the
squareroot of the background whereas the contrast is the ratio of signal divided by the
background [I10]. The typical biological sample is a weak scatterer, hence, contrast is
very low. Amplitude contrast is estimated to be only 4% [99] in a typical cryo-EM image
at 300kV. Hence high resolution transmission electron micrsocopy (HR-TEM) relies on
the introduction of phase contrast. In the second part of the thesis a new method for
the generation of phase contrast images from TEM is introduced and tested on biological
samples: integrated differential phase contrast scanning TEM (iDPC STEM).



1.0.1 Single Particle cryo-EM
1.0.1.1 The Transmission Electron Microscope

It is important for the general understanding of the image formation process that the
optical setup of a TEM is briefly explained. Even in modern electron microscopes, the
ray path still resembles the one of the light microscope (figure . At the very top, the
electron source is - ordered by increasing coherence - either a tungsten filament, a LaBg
crystal or a field emission gun (FEG). In all of them the physical principle of electron
production is always the same: the kinetic energy of the electrons is increased by heating
the source such that the kinetic energy is larger than the work function of the filament or
crystal. Through anode/cathode pairs, the electrons are then first extracted and next ac-
celarated (usually by 300kV for single particle cryo-EM). The following aperture increases
the coherence of the beam and the condenser lens forms a parallel illumination. This ray
bundle then interacts with the object. After being focussed by the objective lens again,
electrons scattered to the outside of the beam are filtered out by the objective aperture
and the projector systems adds a final magnification to the image. This image can then
be recorded.[99]

Electron source

Aperture

Condenser lens

Object Al

Objective lens

Aperture =

Projector
lens

Image

Fig. 1.1: Simplified Ray Diagram of a TEM[99]
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There are two things that should be of superior interest when discussing contrast formation
later on: firstly, electron microscopy is prone to abberations due to the imperfections of the
electron lenses. The primary occuring are spherical abberations, chromatic abberations,
astigmatism and coma[99][74]. Spherical abberations (Cs) originate from the distance an
electron traverses through a lense from the optical center axis. Even though spherical
abberation are used in the theoretical framework to describe image contrast - as will be
discussed in the next section - it has been found useful to correct those to increase in
absolute resolution [43, [54].

Secondly, the interaction cross section for light (bio)elements is larger for inelastic than
for elastic scattering[59]. Consequently, these inelastically scattered electrons have a large
energy spread, which is due to plasmon excitation in the sample [35]. This implies that
chromatic abberations in the image forming optics are induced, which leads to the fact
that those lower-energy electrons have another focal plane after they left the specimen,
leading to hazy features in the detector plane (which is not in focus for those electrons
anymore)[35][74]. A part of the inelastically scattered electrons is already filtered out by
the objective aperture[99].

1.0.1.2 Phase Contrast and the Contrast Transfer Function

One aim of testing STEM for biological imaging in the third publication shown here was
that the contrast formation mechanism is different and the hope arose that this limitation
could be overcome. Contrast in TEM is achieved by the interaction of elastically scattered
and unscattered electrons and the phase difference results from the path difference the
elastically scattered electrons have with respect to the unscattered. The image formation
process in a TEM can be described by fourier optics and here the notation of [I50] will
be used:

The transmission function describing the exiting wave from the sample is

7(r, 2) = T0exp(i)) (1.1)

with 7 being the two dimensional position in the image plane, z being the third dimension
along the beam, 79 = 7(r,0) being the incoming wave front and ¢ being the phase shift,

which depends on the specimen potential U:

o(r) = mA [ d(U(r,2))

as biological specimen are usually thin and do not contain strong scatterers, the weak

phase object approximation (WPOA) can be applied: inspecting the last term in equation



by a first order taylor expansion and using ¢ << 1 equation [57]can be rewritten

as

7(r, z) = 7o[1 + i(7)] (1.2)

As the intensity in the image plane is 77%, where the asterisk denotes the complex con-
jugate, such a weak phase object will have basically constant contrast. Namely, the path

difference between scattered and unscattered electrons is just not different enough.

When the phase of the scattered beam experience an additional phase shift of 7/2 the
situation changes [99] and
I(r,z) =1rx =~ 1 —2¢(r, 2) (1.3)

This phase shift is usually introduced by manipulating the fourier pattern in the back
focal plane (BFP) either by introducing a physical object ( a phase plate [94]) or by using
image distortions. The latter can be achieved by changing the contrast transfer function
(CTF, i.e. the point spread function in the backfocal plane) through either defocussing
or increasing abberations. The CTF of a TEM is

2r —ANR?  C\R?

K(R) = sm(j( 5 + 1 ) (1.4)

with R being the reciprocal space coordinate, A being the defocus and C§ being the
spherical abberation coefficient [150].

From equation[I.4]it becomes clear that the contrast in TEM relies on the defocus stronger
than on the spherical abberation. However, the high spatial resolution signal fades with in-
creasing defocus. TEM imaging is therefore always a compromise between high-resolution
information and contrast. This is the major motivation for developing phase plates, which
optically manipulate the BFP and introduce the phase contrast while being close to focus
[19].

1.0.1.3 Sample Vitrification for cryo-EM

Vitrification (cryo sample preparation) Electron
e beam _—
Paper— i e
i N 1 o [ — Sample o -
a o . M| Liquid ® om ®
— 2 L; J‘ ethane ®. N
r {r r (5]
¢ h Detector 0
Apply sample solution Blotting Rapid cryo-cooling Electron micrograph

Fig. 1.2: Experimental workflow of vitrification The sample solution is pipetted on to a support
grid and access liquid is removed by removing it with a filterpaper ("Blotting") to reduce the
ice thickness. Next, and in a very quick manner, this grid is shot into liquid ethane. This
sample is then imaged in the electron microscope. Modified from [109]

The sample for single particle cryo-EM needs to withstand on the one hand an extreme

local energy density and on the other hand the applied vaccum in the microscope coloumn.
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Therefore, vitrification was introduced by [29]. The sample is generated by rapid freezing
of a solution of biomolecules on to a support grid. The molecules are sometimes stabilised
by the addition of fixating agents, which modifies certain side chains [139]. Figure
shows the general idea of vitrification. A purified protein solution is applied to a support
grid usually by pipetting. Then, the excess liquid is removed by blotting with a filter pa-
per. This step basically determines the ice thickness on the final grid to a certain extend,
which will be of importance later in the discussion of the results of the iDPC STEM.
Right after the blotting step, the grid is plunged into liquid ethane. The cooling rate
of liquid ethane is that fast that the ice does not crystalize but rather form a vitreous
("glass-like") structure [29]. As the pressure, the duration of the blotting procedures, the
time between removing the blotting paper and the actual plunging as well as the envi-
ronmental humidity are key paramters for the reproducibility of the process, this process
is automated in most labs. On the other hand, automation of the full process, including
the positioning of the droplets is still experimentally and one burden was just recently

overcome by "self-blotting" grids [66] [107].

One thing should be emphasized here: the process of cooling is assumed to be extremely
fast, as the vitrification of water happens at 107/K*—1. That would mean that to cool a
sample by 100 K, one would in the slowest case need 10 ps. One major factor for this is
apart from using liquid ethane the preferrable surface/volume ratio of a thin layer [4§].
At this cooling rates, usually no relaxation of large and intermediate molecular motions
can happen, as just very local motions happen on faster time scales as will be shown
later. Therefore it is fair to assume that the conformational distribution found in solution
is represented one to one in the vitrified sample. Based on this thinking, the first part
of this thesis will focus on how this conformational information can be analysed from a
cryo-EM dataset.

1.0.2 Single Particle Analysis (SPA)

Having acquired an image of the sample in the microscope, reconstructions of the single
molecules can be calculated. The randomness of the grid preparation process implies
not only that all the conformational states are represented in the data but also that - at
least for a perfectly spherical object - all viewing directions are represented within the
data. By applying reconstruction methods, the 3D volume can be calculated from their
2D projections, which was shown already in 1986 by Klug and de Rosier[26]. However,
biomolecules are prone to being damaged by radiation. Hence, the images are acquired
at very low doses and consequently have a very poor signal-to-noise ratio (SNR), which
is the main obstacle of SPA. This is solved by averaging images in the same orientation

together.



The first publications on computationally extracting and aligning such images go back to
the late 70s and early 80s [146H148]. From this times, much has be done in the field, but
one of the largest impacts on the computational side, was the introduction of Maximum-
Likelihood Methods first by Sigworth [135] and later by Scheres [123] for the 2D-level.

The overall scheme is always the same: firstly, from the micrographs, single particles have
to be extracted. This is at its heart a recongnition problem, which as of today is mostly
solved by pattern matching algorithms, either with low-resolved models of the molecule
as template or with gaussian blobs [114] 122]. These images then need to be aligned
and classified. Alignment is still solved by an exhaustive search of the translational and
rotational degrees of freedom in plane. One and actually the historically oldest way to
classify cryo-EM images was based on fundamentally the same multivariate statistical
methods as will be used in this thesis [147]. Multivariate statistical analysis (MSA) is
based on that each n x m-image can be seen as being a single experiment composed of
n X n = N observations - i.e. random variables. Based on this statistical methods can
be used to describe the differences between those "experiments'. Whereas early work was
based on correspondance analysis (CA), later principle component analysis (PCA) was
used. CA is based on a &2 metric, PCA uses the covariance matrix ¥ of the experiments.
Both matrices are symmetrical such that the eigenvector matrix I' and the corresponding

eigenvalue matrix A can be calculated [68]:
A=TTxr (1.5)

In the case of CA ¥ would be the distance matrix. As will be described in the second
publication (Lambrecht et al., submitted) in more detail, the eigenvectors can be used as
the orthonmormal basis (ONB) of a new coordinate system. Classification of 2D images
can hence be done by reducing the dimensionality of the images into a few basis functions

and by clustering in this space [149].

The later introduced Maximum-Likelihood techniques [I35] iteratively calculate a model
of parameters describing the alignment parameters as well as the class affiliation. It
optimizes the overall probability of the data describing this model in a Expectation-
Maximization algorithm [28][123]. These 2D classes can be used to evaluate the underlying
data and to clean out non-particle or broken particle images. Also, these classes do not
only represent different views on the molecule - i.e. different projection directions. Rather
already on this level, structural heterogeneity can be differentiated [32].

From this cleaned dataset a 3D volume can be reconstructed, either by reprojecting class
sums or single particles back into 3D. Again today, primarily Maximum-Lkelihood refine-

ments are used [I19]. Here, two more paramters are added to the model, which are the
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left two eulerian angles. Even though also other 3D-Maximum-Likelihood implementation
exist, the primary algorithm used is RELION [119][122], which increased significantly in
speed since the implementation of CUDA kernels [73]. RELION developed the idea of
the Maximum-Likelihood based refinement and classification further by using a bayesian
maximum a-posteriori function. The a-priori information added to the model was that
in fourier space, the scattering potential has to be smoothly varying, as chemical bonds

do not impose discrete jumps in the density [120].

As the possibility to marginalize the class affiliation was already implemented in the 2D
case, it was straight-forward to also allow the classification of 3D volumes, which basically
just differs from the 2D case by the computational complexity [124]. Even though there are
in the meanwhile also different flavors of 3D classification algorithms [85] [106], RELION
is still the bench mark and will be primarily used throughout this thesis. As will be
discussed now in greater details, the combination of 3D classification (k > 1, where k is
the number of reference volumes) and 3D refinement (k = 1) algorithms has evolved a
"standard" workflow in the field. In the work here, it will be shown that the methodology of
applying MSA to 2D images is also applicable to 3D volumes. Furthermore in Haselbach
and Schrader (2017) and Lambrecht (submitted), the interpretation of the eigenvectors

with respect to conformational motions will be described.

1.0.2.1 Computational Standard Workflow

The question is, after a first preprocessing phase (figure , upper region), how are 3D
classification and 3D refinement combined to yield a high-resolution structure? The center
part in figure [1.3shows the ususal case: a small number of classes are used and in a sieve-
like approach classes are thrown away after visual inspection. Usually this does not just
imply two iterations but rather up to ten different "sieving'-steps. And in all of those
steps particles, even if they contain valuable information, are discarded by the fact that
the underlying conformational state is not populated enough to refine to high resolution.

This strategy has some implications:

1. By choosing a low number of classes it is likely that particles belonging to neither
of the main conformational states are collected in a dirt-class, even though those

contain valuable information.

2. The uncertainty of the class affiliation at the beginning of the classification procedure
is very high, hence the probability of doing a mistake right at the beginning is very
high.
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Fig. 1.3: Common refinement workflow for cryo-EM experiments After a initial preprocessing
in which from the acquired images a initial model is generated, 3D classification is used to sort
out dirt or uninterpretable images. Only a subset of the clases (namely usually only the ones
with a high enough resolution) are retained. The final few classes having survived this "sieving"
are then refined to high resolution (here, HR-Volumes A and B in two different conformations).



10 INTRODUCTION

3. As will be described in the next chapter in more detail, the low number of classes
discretize a continuos space to a very large extend. Consequently, the physical
information of the pathways between the major minima in the conformational space

is lost.

In the first two publications in this thesis, we advised a way to circumvent these limitations
by applying a less discrete approach to the classification problem. We basically merge
the two historically most prominent solutions to the classifcation problem: Maximum-
Likelihood 3D classification, as it came up in the late 90s and Multivariate Statistical
Analysis as it was first described in the early 80s. Here, we will use Maximum-Likelihood
based classification to generate an ensemble of states, which will then be interpreted by
multivariate statistics. The foundation of our description are the underlying thermody-
namical principles of protein’ motion, namely the glass-like state model. It will be shown
in the next chapter, how the glass-like state model and the derived conformational land-
scapes influence the interpretation on important biophysical concepts such as binding and
regulation. The overall aim of this part of the thesis shall be to describe how, using the

landscape-mindset, such phenomena can be described by using an electron microscope.

1.1 Conformational Landscapes from Cryo-EM

Experiments

"The living organism seems to be a macroscopic system which in part of its
behaviour approaches to that purely mechanical (as contrasted with thermo-
dynamical) conduct to which all systems tend, as the temperature approaches

the absolute zero and the molecular disorder is removed."

Erwin Schrodinger: What is Life?

As described above, the major group of investigated molecules by cryo-EM are macro-
molecular complexes consisting of mostly polypeptides (e.g. the proteasome as studied
here) or a mixture from polypeptides and nucleic acids (e.g. the ribosome). All of them
are usually built up from many individual polypeptide chains which assemble together
to form the mature complex. The three dimensional structure of peptides and nucleic
acids is determined by the composition ot their bulding blocks, which successively fold

and assemble to form the native form of the complex.

The process of folding is extremely interesting from a energetical point of view: the folding

increases the ordering, which means it decreases the entropy. As folding is able to happen
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spontaneously, there has to be another driving force [97], 98]. Figure shows the typical
schematic picture of a folding funnel. The x-Axis shows the conformational coordinate,
while the y-axis shows the free energy of the system. While the configurational entropy
decreases during the folding process, the enthalpic contribution has to increase to gain
free energy from this process. In the lower region of the funnel, where the native structure
is located, this contribution comes mainly from the formation of specific interactions. In
the upper part of the funnel, the chain is still too elongated to form these interactions
and a random walk through this space would probably last forever. Here, another effect
come into play, which helps forming a compacted form of the chain and thereby lowering
the search space. The hydrophobic effect drives the hydrophobic regions of the protein
to the center, whereas the hydrophilic ones come closer togehter and stronger (polarised

and charged) interactions can be formed.

A
chain compaction
by hydrophobic effect

o Misfolded states
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Conformational Coordinate

Fig. 1.4: Schematic drawing of a slice through the energy funnel of protein folding: shown
in green is the overall folding funnel, in which the upper part has a high number of degrees of
freedom and is folding is governed by the hydrophobic effect. In the lower region - governed by
specific interactions - the native state is located. In the circle this folded, native state is zoomed
in. It involves misfolded parts as well as the functional landscape. adapted from [97, [I45]

Each configuration in this funnel is in equilibrium with all the others and can in theory
be reached by a purely statistical process [79, [I58]. This is still true when one is looking
at the very bottom of the funnel, which covers the "native" configurations of the complex.
This part of the landscape is in the literature referred to as the "functional landscape'

[158], the part of the landscape which is biologically (i.e. functionally) relevant.
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1.1.1 Conformational Dynamics of Proteincomplexes

Structural biologists look at the dynamics of a protein complex usually by describing
its different conformations. These conformations are distinct stabilised configurations of
the complex in the funnel shown above. The different conformations of a protein usu-
ally reflect different functional states. A very illustrative example is myglobin, which is
the oxygen carrier in the muscle. Dioxygen is bound via a porphyrin-coordinated Fe(II)
atom. The sixth free binding position of the iron is taken by a histidin. The "bound"
conformation of myoglobin positions the iron such that oxygen is allowed to bind. When
the conformation changes to the unbound state, the histidin pulls the iron out of the
porphyrin ring and the dioxygen dissociates. Each of these states are well stabilised min-
ima in the conformational landscape of the myoglobin, as will be explained now in more
theoretical depth.

1.1.1.1 The Glass-Like Model of Conformational Changes

A
state
o]
tier 0
ms to ps Kinetics
= e.g. collective
] o) [A domain movements
|
us to ns Kinetics
tier 1 e.g. loop motions or
o side chain rotamers
tier 2 ns to ps Kinetics
e.g. side chain rotation
o]

Fig. 1.5: The dynamics of one particular state is hierarchically ordered: the dynamical contri-
butions to the overall broadening of the state is described by different tiers, which describe the
imposed ruggedness on different scales of energy and time. The decreasing energy differences
between minima and maxima in the landscape lead to shorter kinetics on the corresponding
tiers. The differences between minima (A) can be described by Adapted from [47] [60]

Myglobin is a historically important example. Frauenfelder, Parak and Young showed by

elegant laser specroscopy in 1988 that proteins in solution are inhomogeneous and they
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proved that this is due to several conformational substates [46]. Frauenfelder elaborated
further on this idea and found analogies in the physical chemistry of glasses [47][9]. From
these he introduced the idea of a rugged energy landscape, which is a hypersurface in the
configurational space of all atoms. In that publication also the idea of structuredness on
different lengthscales as well as energyscales (figure was introduced. This structured-
ness implies a certain hierarchy ("tiers'[47]) which is similar to the ones discussed above.
To each configuration of a domain, several configurations of secondary structures are pos-

sible and within each of those, different rotamers of a certain side chain might be accesible.

Each conformation is in equilibrium with all the others and can consequently be reached
by overcoming a certain activation energy. Again lower-order tiers (0,1) will have higher
activation barriers as higher-order tiers, as moving a whole domain is more expensive then
just e.g. rotating a phenole-moiety. However, the probability with which one molecule
can move from one conformation to the other is directly related to all activation energies
on all paths from one conformation to the other. Phenomenologically, or experimentally
it is hard to asses these energies for a single molecule. It is easier to monitor how many
complexes exist in each state. The difference in Gibb’s free energy which is necessary
to come from one conformation to the other is then dependent on the ratio of single
molecules in the two states and is given by the Boltzman-factor

AG = —hyTin(l) (1.6)

fo
where, kp is Boltzmann’s constant, 1" is the absolute temperature and f; and f, are the
observation frequencies of molecules in state 1 and 0, respectively. This concept is a pure
physical one, based in statistical thermodynamics, generally describing the distribution
of a group of particles in different energetic states. Such a group of particles is referred
to as an esemble and the ensemble view on to protein biochemistry is a general feature of
this part of thesis[5] [79].

1.1.1.2 Recognition by Ensemble

From the concept of rugged energy landscapes of proteins developed by Frauenfelder,
important considerations can be drawn for systemically interesting features of proteins:
recognition and regulation. Recognition and regulation build up the "intelligence' of
the cellular interior up to the organismic level. Recognition of substrates and binding
partners was first described in 1894 by Emil Fischer, who coined the "key-and-lock" model
[41]. In 1958 Koshland et al. [76] then defined the induced fit model, in which the

substrate basically enforces the tight binding conformation in the protein. This concept
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overlived another fortyone years until the discussions about energy landscapes led to the
development of "conformational selection" [86].

All three concepts are sketched in figure In contrast to key-and-lock and induced
fit, conformational selection takes into account that the ensemble of one protein exists
in different conformational states and binding does only happen in preferred ones. The
difference to the induced fit model is that the bound conformation is already existing in
the ensemble. In the limit of an extreme unflexible protein, which would only exist in
one native conformation able to bind its partner, this model simplifies again to Fischer’s
lock-and-key model (figure , middle reaction of panel c¢). As the binding imposes
new enthalpic binding contributions and restricts the degrees of freedom in which the
polypeptide chain can move, binding usually stabilises the conformational state at least
locally [I7, 52, 53].

a)

b)

©)

>

Fig. 1.6: Overview on different binding mechanisms: a) shows the classical key-and-lock model by
Fischer, where the binding site is already predefined to just fit the substrate in. b) sketches the
induced fit model, which is split in a two-step-mechanism, first binding the substrate weakly,
which secondly alters the binding site and allows full recognition. c¢) shows the conformational
selection model, where the three conformers are prototypically for the full conformational
ensemble.

1.1.1.3 Allosteric Regulation by Ensemble

Allostery originates from the greek "allos", which simply means "other" and refers to a
two-side regulation, one side being the catalytic active site and the other being the ef-
fector side, where the regulator binds to the complex far away from the active site. The
examples for this feature especially of metabolic proteins are numerous and the impact on
cellular regulation are consistently large. One famous example is the aspartate transcar-

bamoylase (ATCase), which is the first enzyme in the pyrimidine biosynthesis leading to
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the formation of N-Carbamoylaspartate from Carbamoyl phosphate and aspartate under
the release of a phosphate ion [87]. The ATCase is allosterically down-regulated by CTP
- cytidine triphosphate -, which itself is an endproduct of the pyrimidine biosynthesis.

Clasically two models described allosteric regulation: the symmetry model of Monod,
Wyman and Changeaux (MWC [91]) and the sequential model of Koshland, Nemethy
and Filmer (KNF [77]). Not only from the appearence of Daniel Koshland in this an the
preceding chapter the overlap with recognition shall be apparent. Both models assume
distinct states R and T of the molecule, which stand for relaxed (able to bind) and tense
(unable to bind). In the KNF model, which focusses more on the effector binding, the
effector binds preferentially to one conformation, which undergoes the transition from
tense to relaxed, consequently. By a cooperative mechanism, this transition happens then
also in the adjacent subunit. The MWC model in contrast assumes that the two confor-
mations T and R exist in equilibrium and there are different probabilities for an effector
to bind to one of them. From there on, cooperativity leads to the propagation of the
binding event. Figure shows the difference of the two models by taking into account

all possible permutation of states (i.e. a partition function) for this tetramer [63].
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Fig. 1.7: Partition function of a tetrameric protein with a binding partner: Each subunit of the
complex can exist in in T and R state (square and circle, respectively). The substrate binding
(triangle) happens consecutively. In a) the sequential KNF model is shown. Upon binding the
teramer sequentially changes from one to the other conformation by a induced fit model. In b)
the WMC model the substrate binding can occur in all yellow states with different affinities.
Both models do not take the never-yellow partitions into account, which is in accordance with
the EAM model. Adapted from [63].

Both models were well aware of the existence of all the intermediate states but tried
to phenomenologically describe kinetic experiments. Surely important findings were not
covered by this models; as the one of Cooper and Dryer [83], who showed that allostery

might appear without changing the overall structure of the complex but by just adjusting
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entropy, which broadens the conformational distribution rather than changing the over-
all look of the conformation. The MWC model already has the discussion about energy
landscapes in mind, when it assumes both conformations T and R to be present all the
time. With the previous chapter about energy landscapes in mind, one easily comes to
the discussion that binding on the one hand happens in different regions of the energy
landscape - i.e. to different states of the ensemble - with other probabilities. Cooper and
Dryer furthermore showed that the binding event leads to changes of the energy landscape
which might imply cooperative energies up to a few kcal per mol [92]. That implies that
an effector binding to a complex changes the enrgy landscape and shifts preferred confor-
mations, leading to either states which bind substrates or binding partner more effectively
(positive cooperativity) or to states which do not (negative cooperativity). Based on these
observations Hilser et al. [63] formulated an ensemble based model of allostery: the en-
semble allosteric model (EAM). While the classical models describe only a part of the full
configurational space, the EAM describes all the states in figure [[.7] to learn something
about the transition from one major state to the other. Pan et al. showed the shift of the
ensemble as the micro-mechanism of allostery for the Dihydrofolatereductase from E. coli.
On the extreme one could then even ask where allostery starts and ends, as any interac-
tion or modification will affect the energy landscape to a certain extend. This question
'Is allostery an intrinsic property of all dynamic proteins?" was discussed in Gunasekaran
et al. [53]. These findings underpin the importance of studying the energy landscape of
biological complexes, as the principal structure of such a molecule would always be the
same. Studying the functional energy landscape of a protein is probably the only key to
understanding the full picture of influences of binding partners and modifications.

As will be outlined in the next section, the microscopic (in contrast to the averaged macro-
scopic constant) observation of phenomena such as allostery is restricted to a few methods,
where the primary one used in the past was NMR. It was already briefly introduced that
NMR is limited by the size of the molecule. Consequently, detailed observations on the
mechanisms underlying regulatory effects are lacking in thre literature. Here, cryo-EM
might help the molecular biphysics field to gain deeper insights in how such phenomena
work at larger scales. A first glimpse will be given in the first publication in this thesis
(Haselbach and Schrader, 2017).

1.1.2 State-Of-The-Art Visualization of Conformational Landscapes

Richard Feynman once said: "Everything that living things do can be understood in
terms of the jigglings and wigglings of atoms" [40]. The dynamics of a complex harbor
the information about its function and its regulation. The question is now: how can one

visualize or measure the "jiggling and wiggling"? And how to put this back in the context
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of the full conformational space? Here, only methods applicable to the lower-order tiers

will be discussed, as the scope of this thesis is cryo-EM.

1.1.2.1 Molecular Dynamics Simulations

In the discussion about energy landscapes above, it was implicitley assumed that the main
driving force of all movements is thermal energy. The multiplier kg7 in equation has
the dimension of an energy [[] and is nothing else than the energy which is available by
brownian motion at a certain temperature 7. This brownian motion can be simulated
and applied to an experimental model of a molecule, which is either atomistic or more
frequently grained [116]to a certain extend by treating the building blocks of this molecule
by classical (Newton’s) mechanics. By applying potential energy functions (the force field)
one can calculate the forces acting on a atom or grained particle in a short period of time
At. One then updates the position of the atoms and calculates the next At iteratively
until the system converges [69]. Thereby, the dynamics of certain regions, conformational
changes and even molecular recognition can be visualized and analyzed. The limitations
are clearly at the computation intensive calculations, which makes compromises between
calculation time, molecular size and the degree of coarse-graining applied necessary [103],
especially for macromolecular complexes.

There are several ways to calculate free energies from the simulations which would be
necessary to build up an energy landscape and those are extensivley reviewed elsewhere
[T02]. Ome particularly interesting method is umbrella sampling [70]. In a nutshell um-
brella sampling applies an additional umbrella potential to the simulation, which enforces
a particular reaction coordinate to be sampled. The difference in free energy is calculated
along the reaction coordinate in snapshots. By summing over all energy differences from
one snapshot to the other, the pathintegral is calculated and the free energy difference of
the sampled transition is the result. Of course, this is not the full energy landscape as
discussed above, but the information is most valuable to judge e.g. conformational tran-
sitions from a open to a closed state or the binding of a ligand. Umbrella sampling has
some parellels to the algorithm presented in this part of the thesis and will be discussed

again later.

1.1.2.2 X-ray crystallography

The first works discussing dynamics of protein complexes and especially allsotery used X-
ray crystallography, where the protein is translated into a crystal lattice by chance and its

diffraction is recorded upon an incident X-ray beam. E.g. the fundamental works by Max

IThe Boltzmann constant has the dimension of J x K~!. Hence kgT has the dimension of Joule, which
is the SI unit of an energy
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Ferdinand Perutz on hemoglobin function and notably allostery [104] where done using X-
ray crystallography. Deciphering dynamics is challenging using crystals: firstly, one crystal
hardly contains more than one conformation. That restricts one experiment usually to
one conformer. Secondly, there are only a few very well stabilised (tier 2-3) conformers,
which will crystallise at all, and thirdly, even if a protein inside a crystal allows enough
degrees of freedom to see (as in Perutz’ case for oxygen-binding) dynamics, they are
just locally, as the global dynamics are restricted by the crystal contacts. Consequently,
crystallography is for sure the method capable of the highest resolutions, but also not
best suited to decipher the dynamics of especially large macromolecular complexes [125].
On top of this, building up a full landscape from crystallographic experiments is not

possible.

1.1.2.3 Spectroscopical Approaches to Dynamics

Measuring dynamics with specroscopy rather than 3D stuctures is another way to look
at conformational landscapes. The clear advantage of such methods is that the native [
in-solution dynamics are accesible rather than the dynamics in a non-native state, e.g.
a crystal. Here, two often used methods are described: fluorescence spectroscopy with
resonance energy transfer (FRET), and nuclear magnetic resonance specroscopy (NMR)
[61].

FRET is only one variety of classical photonic spectroscopic methods including absorbance
and quenching which can today be used as single-molecule techniques. FRET uses two
fluorescent labels on the protein to measure the distance dependent energy transfer be-
tween the acceptor and the donor [128]. By this studies on e.g. the folding pathway and
the conformational dynamics of protein complexes were done on the single-molecule level
leading to a description of trajectories through the energy landscape[l105]. The downside
is clear: the gained information is a one-dimensional path trough the multidimensional
conformational space, which is barely interpretable without any structural information.
Nuclear magnetic resonance spectroscopy in contrast analyses the pertubation of spin
couplings of the nuclear spins in a magnetic field. These resonance properties are used
in medical imaging (magnetic resonance imaging, MRI) as well as in spectroscopy. In
spectroscopy the chemical environment of a nucleus is probed and the informations are
treated as a 3D distance-geometry problem, which can be solved by additional restraints
[155].

Different types of experiments where designed, including so called dispersion experiments,
which pushed the field of deciphering structure with dynamics further [7]. Those methods

are extensivley reviewed in the literature and out of scope for this text. Even if in the

2where "native" does not imply that the extremely crowded cellular environment is in any method taken
into account
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meanwhile dynamics information of of large macromolecular complexes such as the GroEL
chaperonin and the ribosome where feasible [62], those are rare and the natural limitation
of NMR to resolve the signals coming from different nuclei are the major limitation when
it comes to larger complexes. Hence, NMR is the method of choice when it comes to small
to medium-size polypeptides and nucleic acids also for intrinsically disordered proteins [].
As the full structural and dynamical spectrum of the protein in solution is accessible, free
energy landscapes are derived quite frequently in the literature [126] and especially the
discussion in the previous chapters abot different binding and allostery models is primar-
ily fueled by the NMR field. However, in contrast to the single-molecule techniques such
as FRET, the information is not accessible for each individual molecule, as also in NMR

an averaging occurs.

1.1.3 Computational Approaches for Distangling Conformations in
Cryo-EM

Deciphering of macromolecular motions is important for the in depth understanding of
their function. In chapter one it was explained that cryo-EM basically captures a snap-
shot of the in-solution state. Hence, the full conformational space as it exists in solution
is captured and the observation frequencies directly reflect the energetical proportions
via equation [I.6] It is currently under research primarily by the MD community if the
speed of vitrification is really sufficient to not imply constraints on the resolution of the

landscape (oral communication Prof. Dr. Erik Lindahl, Stockholm University).

One 'lab rat'-molecule taken as a benchmark for algorithms deciphering the different
conformational states in the past was the ribosome, and a specific dataset by Joachim
Frank which shows distinct tRNA movements and the accompanying motions of subunit
ratchetting, was used throughout all publications until about 2013. Elmlund et al. [37]
showed the performance of different approaches on this dataset in a comparative review.

Table [1.1] shows an overview over the main algorithms for conformational sorting.

The first three approaches include simple and also more advanced clustering algorithms
which cluster conformational heterogeneity based on different metrics. More statistically
advances methods are shown in rows four and five. Elad et al. [32] also in the end applies
a clustering but does this on a pre-adjusted space from Principal Component Analysis
(PCA), as will be also used here. This analysis is basically similar to feature extraction
approaches in face recognition. Still, this approach works in 2D and is therefore sensitive
to poor SNR. With Bootstrapping a completely different approach was introduced, which

finally works in 3D but has its limitations in the non-optimizing statistics. The introduc-
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tion of Maximum-Likelihood-Methods as already described above for the refinement of a
single structure also impacted the analysis of dynamics. In this approach k randomized
volumes are used as starting models and refined competetively, where the class affiliation
is used as another hidden variable and is consequently marginalized in an expectation
maximization algorithm[IT8]. Based on these findings, focussed classification, where the
rigid part of the molecule is masked out and signal subtraction, where the rigid part is

even cut away from the reference images, where developed [3].

Table 1.1: Comparism of different algorithmical approaches. Modified from [37]. R = Ratcheted, R+Efg
= Ratcheted with Efg bound, UE = Unratcheted with an occupied E-Site, UL1 = Unratch-
eted with free E-site and L1 domain out, LSU = Large Subunit only,

Approach R R+Efg UE UL1 LSU
Supervised classification [51], 2004 X X

Cluster tracking [50], 2006 X X

Clustering in 3D [130], 2010 X X

Multivariate statistical analysis [32], 2008 | x X
Bootstrapping in 3D [50], 2006 X X

Maximum Likelihood [121], 2007 X X X X

All of these approaches imply a discretisation ( "classes”) of the continuous space described
in the chapters before. In the work presented here, a continuos approach is achieved by
using PCA in 3D, i.e. in voxel-space. The idea to this was first introduced by [138]. They
used PCA on a set of bootstrapped volumes, by which they where able to extract signif-
icant heterogeneity-describing eigenvectors. These eigenvectors are linear approximation
to the heterogeneity in the dataset, which as discussed in the scond publication in this
work, might correspond to conformational changes.

In the last years, two approaches significantly gained importance. Firstly, the usage of
elastic network models like normal modes analysis (NMA). This approach goes back to
Tama et al. [142], but never found usage until just recently [142]. Additionally, Nakane
et al. [95] published multi-body-refinement as an additional feature of RELION. Here
different mobile domains are approximated as rigid bodies and refined independently, cal-
culating relative shifts by a PCA-based algorithm. This approach is clearly influenced by
the first publication in this work. The main difference is the coarsing of the analytics of
dynamics to rigid bodies and the consequent reduction in calculation time, which enables

an iteration-wise update of the calculation.

However, all of these approaches do only contain a one-dimensional view on a move-
ment, i.e. they visualize only one principal movement on a very coarse-grained level. A
more 'landscape-like" approach was described already a few years earlier: Fischer et al.
[42] showed in a fundamental study that the energy landscape of retro-translocation of

the ribosome can be described from hand-sorted single-particle data. They could even
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show temperature-dependent shifts in the distribution, which underpinned the interpre-
tation of the ribosome as a brownian machine. Another more automated alogorithm
where single-particle images were analyzed by manifolds-embedding [23, [45] also yields a
landscape representation of the conformational movements, but until today no working
implementation was made publicly available. Anyways, in these cases the images are
directly projected on to a manifold describing the conformational landscape. One path
through this landscape corresponds to a non-linear trajectory through real-space. It can
due to the lack of a accessible software only be assumed that this approach is limited
to the low singal-to-noise ratio in the individual images. A thorough discussion of the

differences is given in the supplemental materials to Lambrecht (submitted).

1.1.3.1 Contributions in this work: the CowScape algorithm

In the last chapter three important developments or mindsets were introduced for the

analysis of dynamics by cryo-EM:

e Maximum-Likelihood based methods allow to classify a vast number of states through-

out a dataset.

e Principal Component Analysis on the 3D level allows to find eigenvectors which
correspond directly to the heterogeneity in the dataset and allow to describe this

continuously.

e The distribution of particles with respect to these movements can be used to describe
a higher-dimensional landscape, where the number of particle observations directly

correlate to the energy differences between them.

The first two pubications presented here combine these three concepts and apply the
methodology to the problems of the analysis of dynamics in general, allostery in particu-
lar, and drug binding as an important application. They built up on the scripts developed
in my Master’s thesis which already tried around with a similar dataset.

The publication Haselbach and Schrader et al. (2017) shows how this analysis can be done
by classical methods of cryo-EM: classification and interpretation of B-factors. On the
other hand it was the first benchmark of our methodology. We calcultated an ensemble of
volumes by exhaustive classification and applied PCA to them. This yields interpretable
eigenvectors in terms of dynamics and that we can use these to span a new orthonormal
basis in which we can then describe the conformational energy landscape of the human
26S proteasome with and without a bound inhibitor. In this first version, these energy
landscapes where still interpolated by triangulation.

In the second publication, we applied a more physical description of the landscape by ex-

changing the triangulation by kernel-density-estimation with a gaussian kernel function.
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We benchmarked our approach on more examples, namely the interpretation of compo-
sitional heterogeneity in the Anaphase Promoting Complex (APC), the conformational
motions of the 26S proteasome’s lid complex and effector binding to the TRPM1 ion
channel. Both publications will show the impact of the method on to the interpetation
on binding events and allostery in an ensemble view and especially the second publication

yields the full description of the algorithm and its implementation.

1.2 Single Particle Cryo-EM with iDPC-STEM

Contrast and resolution are the limiting factors for structure determination. It turned out
that for biomolecules both are related to radiation damage and therefore with dose. Just
6 years after Ernst Ruska published "Das Elektronenmikroskop" (the TEM) in 1932 [75],
Manfred von Ardenne published his first theoretical ideas for a scanning transmission
electron microscope ('Das Elektronen-Rastermikroskop', STEM). However, STEM and
biology was not really a success-story until now. This is basically due to the extreme
dose one needs for sufficient contrast on organic molecules - to an extend that would
never allow SPA on biomolecules. In this part of the thesis, I will try to introduce a new
imaging mode for STEM - namely integrated differential phase contrast (iDPC) and why
it might allow to use STEM in single particle analysis.

1.2.1 The Optics of a STEM

Figure shows the general ray path inside a STEM. The aim of the optics is to first
produce a small spot - the electron probe - which can be described as being "converged'
or "demagnified". Therefore first a few condenser lenses focus the spot on to a final aper-
ture. Before this objective aperture, the scan coils are located. By changing the circular
electric current elliptically, these coils enable to scan the probe over the sample plane.
The final lens, the objective lens does most of the magnification, therefore its abberra-
tions are practically dominating the shape of the incoming wavefront. After the sample,
the beam magnifies again on the detector. In STEM the detection modes are basically
divided into bright- and darkfield techniques. Resembling their photonic counterparts,
darkfield-techniques collect electrons far away from the optical axis, whereas brightfield
STEM uses the electrons in the center.

Comparing the ray path to a conventional TEM (CTEM), one does find that there is a
reciprocity: if one considers only elastic scattering, namely all the electrons have equal
energies, the processes are time reversal and the path the electrons take are exactly the
same in both cases. This implies that CTEM and STEM should have the same imaging
properties but with a fundamental difference. That is that the optics in the STEM case
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Fig. 1.8: Optics of a STEM (a) The general optical path consists of a condenser lens system, the scan
coils, which are allowing to scan the converged beam over the sample and an objective lens,
forming the final probe. Dependent on the detection angle either a brightfield or a darfkfield
image is acquired. (b) The optics in a STEM and a CTEM are basically equivalent, just turned
around. That implies that most of the optics in the STEM case are before the sample plane
and in TEM it is the other way. Both images taken from [10T]

are all in front of the sample and in the CTEM they are mostly behind (see also figure
. Considering now inelastic scattering in the sample, STEM turns out to be less sensi-
tive to it, because in TEM this inelastic scattering contributes significantly to chromatic
abberations [35]. Hence, as the inelastic mean free path is significantly shorter than the
specimen thickness, STEM allows to image much thicker specimen, without being limited

by noise through inelastic events [112].

The resolution determining factor in any STEM setup is the diameter of the probe
dprobe[67]. An important parameter for STEM imaging is therefore the angle formed
by the converged spot and the optical axis, the convergence angle « (see figure left
part):

A

dprove = — ; A = De Broglie wavelength (1.7)

Q@
There is a second reason, why STEM is perfectly suited for thick specimen, apart from
the "blindness" towards inelastic scattering. Tuning the convergence angle steeper and
steeper, the focal depth T increases significantly:

- dP'robe A

T = == 1.8
= (1.8)
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The effect is nicely depicted in figure [1.9] which shows a simulation of defocus series for
darfkfield STEM. Importantly, STEM has the best contrast transfer in focus, which is a
significant difference to CTEM. Hence it is very appreciable to gain a very large region
of stable focus, as this implies that also the maximum contrast transfer happens at this
point and no additional modifications to the backfocal plane are necessary to introduce
contrast like it is done in conventional cryo-EM. It should become clear in the next section

that this is especially useful for some biological use cases.
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Fig. 1.9: The focal depth depence on the convergence angle The point spread function is simu-
lated for different convergence angles. At 2 mrad convergence angle more than 1 pum of stable
focus can be achieved, whereas the focal depth decays quadratically according to equation
when increasing the convergence angle. [64]

1.2.2 STEM and Imaging of Biological Molecules

The history of biomolecular STEM started in the 80s when negative-stained filaments
where visualized by darkfield STEM [39]. A third flavour of STEM was then used on
unstained biomolecules: electronic energy loss spectroscopy (EELS). EELS in contrast to
the imaging methods analyses the inelastically scattered electrons, which fly close to the
optical axis and can therefore be detected together with a darkfield-STEM image [39)].
Additionally, Wall and Hainfeld [I5I] showed that the contrast of darkfield detectors is
sensitive enough to perform mass measurements on single DNA strands. This application
became later superfluous as the mass spectrometry field advanced.

Buban et al. [I0] tried to find suitable imaging conditions for biological imaging on a
high angle darkfield setup. They reported that at low-dose conditions, image artifacts
where overwhelming the image and at least 100 %5 where necessary to resolve an image of
an inorganic specimen. Interestingly, they discuss an important fact: STEM images are
usually taken with large oversampling, i.e. the projected pixel size is much larger than the

probe diameter. For single particle recordings that would imply that only a few particles
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per micrograph would be acquirable, which leads to a much larger acquisition time for a
data set.

Another example for the imaging of single particles with a STEM was just recently pub-
lished by Elad et al. [33]. They acquired vitrified ferritin with a darkfield setup at a
dose which was only slightly larger than the one Buban et al. [I0] used. They were able
to resolve single zinc- and iorn binding sites within the protein surface of the molecule
(figure . However, the protein structure itself was not even refined to the secondary-
structure level (third isosurface level in figure[1.10]), which was firstly due to the fact that
only a small number of particles was processed and secondly, that darkfield STEM does

not produce sufficient contrast to resolve light, biological molecules well.
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Fig. 1.10: Detection of single metal ions in a protein Elad et al. [33] showed that they are able
to resolve single binding sites of Zn-ions in vitrified ferretin usin DF-STEM. However, the
protein structure is only on minor resolution.

Much more successfull was in contrast the usage of STEM for the tomography field. Here,
ususally brightfield and darkfield signals were combined. In a groundbreaking publication,
Wolf et al. [I52] showed that they can make use of the extended focal depth of STEM
and image the full volume of a A. tumefaciens. Afterwards they could also show that by
the quantitative STEM contrast the amounts of phopshporus [I53] and calcium [154] in
intracellular storage compartments could be quantified. Last but not least, they made
a very intersting observation when comparing the image acquisition with CTEM: H,
formation through radiation damage became visible in STEM after applying a much
larger cumulative dose than in CTEM. This raises the question whether STEM would
probably allow to image single particles at much lower doses as was described in the
previous publications, since they all used darkfield techniques. The downside of these

techniques is, that only a minor fraction of the electrons passing through the specimen
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is scattered to such high angles. Hence, the ration between effectively collected electrons
and total dose is very small. Using brightfield STEM on biological molecules, would allow
to detect much more electrons. However, conventional brightfield imaging is not sensitive
enough to gain sufficient signal [33] B5]. Hence, another method using a larger fraction
of the total dose with a sufficently high contrast would be necessary. Due to this fact
we investigated the recording of differential phase contrast from the brightfield disc as
one option. With this we aimed to on the one hand, gain the an in-focus imaging and a
improved damaging mechanism, while having enough contrast to resolve biomolecules at

resolution comparable to CTEM.

1.2.3 (integrated) Differential Phase Contrast

Phase contrast in CTEM is introduced by varying the defocus, which leads to an additional
phase shift for electrons that have not passed through the sample. As for STEM all the
electrons go through the beam probe, the mechanism of contrast generation is different.
Differential phase contrast uses the difference in space, which originates from the beam
being deflected while traversing through the object. DPC STEM was already formulated
by Dekkers and de Lang [27] and Rose [I13]. The fundamental difference to other STEM
methods is that a split detector is used, as it is shown in figure(1.11. However, at that time
this detector design was challenging, and it needed a few years until DPC was first brought
to the same atomic resolution, as one is used to from STEM. Shibata et al. reported in
2012 that they have recorded the local electric field of a magnetic specimen [96, 132].

2

specimen

(i o

Fig. 1.11: Detector Setup for iDPC STEM The left side of the image shows the incident beam
on the specimen, which demagnifies under a convergence angle o. Then the beam magnifies
again on a split detector, which is shown again with the unperturbed beam in the right part
of the image. Modified from [88]
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The principle of DPC is depicted in figure for the 1D-case. As we are looking at
the 2D projection, the real detector is composed of four quadrants, as it is shown in figure
1.11} The observable is the shift of the intensity distribution in the brightfield disc (the
so called ronchigram, figure [1.12(b))).

The electron ronchigram undergoes a momentum transfer due to the underlying non-zero

SNENE

Fig. 1.12: Working Principle of Differential Phase Contrast (a) In a 1D case, when no charge
is present, the beam is aligned as such it is illuminating both detectors equally. At the next
scan position, the beam approaches a charge and becomes deflected to the right detector more
than to the left, such that the subtraction I(X) — I(Y") is negative. At the next scan position
the sign changes. [I32] (b) The image seen on the detector while traversing from the first to
the second scan position equals a shift of the intensity of the electron rochigram [93].

electric field. The momentum transfer is proportional to the underlying Lorentz force.
According to Ehrenfest’s theorem, this still holds for the expectation value of the momen-
tum transfer [93]. The expectation value of the momentum transfer relates to the shift
of the center of mass in the ronchigram upon applying the electric field of the specimen,

and the center of mass in fact can be approximated via the differential signal of the split
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detector [80]. Using the notation of [8I] and the detctor enumeration of figure it
follows that
k
177 () = SEI% () = 19(ry))

22

IDPCy(Tp) = @([QA(TZ;)—[QB(TP))

22
(1.9)

7p is the scan position and gy is the diameter of the brightfield disc. Both images together

can be linear combined into one vector image

PP () = [PPCs . g2 4 [PPCy . g (1.10)

According to the nature of the underlying shift of the ronchigram, this is the projected

representation of the electric field E of the specimen. As
E=-VV (1.11)

it follows that by integrating the vector image I°PC(r,) = VI*PFC the electric potential
is derived, which directly scales with the atomic number, allowing even the "light" bio-
logical elements to be imaged[80), 81]. Lazi¢ et al. [81] derived the same expression from
imaging theory, showing that iDPC imaging yields a linear representation of the electric
potential:

F{IPPC(r,)}(k) = CTF(k, W (K)) - F{oV (r,) }(k) (1.12)

the operator F'{} denotes the Fourier transform, o collects all the constants, k is the
reciprocal space ccordinate and W (k) is a function describing the detector geometry.
W(k) is the only deviation the CTF has from ideal center-of-mass imaging [80]. The
CTF of iDPC is shown in figure and resembles the common features for contrast
transfer in any STEM:

e The maximum contrast transfer happens in the very low resolution regime and drops

fast to high resolutions

e Apart from the very out of focus case, there are barely zero crossings, which is in
contrast to CTEM where the CTF is sinusoidal

e At higher convergence angles, the focus might even not be enough to cover full

molecular machines (about 80 A for the 30 mrad convergence angle simulated here).

Until today, there is little experimental evidence on the performance of iDPC STEM.

However, as the ratio of detected electrons per full electron dose is very large (as one is



1.2 Single Particle Cryo-EM with iDPC-STEM 29

a=7mrad a=30mrad
0.2

0.15

01

CTF;5
CTF;s

0.05

~0.05 | 1 ) . —0.05 . L " .
0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

- Kolkgr

Fig. 1.13: Theoretical iDPC CTF The theoretical CTF for the first term in equation [L.12] where
W (k) is chosen to account for a four-fold symmetrical detector, is shown as a function of
defocus from the disc with best contrast. The ratio k,/kyy is just one possible choice for k.
[R0]

observing changes in the brightfield disc) and the contrast at least theoretically let even
the biological relevant molecules become visible, it was assumed that the imaging of radi-
ation sensitive specimen might be finally feasible by a high-resolution STEM technique.
Zeolites are crystalline materials which are characterized by their porous physical prop-
erties. One unit cell is generally composed out of a cation which is coordinated by four
oxygen atoms donored from silicate or aluminate ions. Those are prone to radiation dam-
age at doses higher than 5000 e~ /A? [I2]. Carlsson et al. [I2] and Yiicelen et al. [I56] have
shown that the imaging of zeolites up to the sub-A level is possible with iDPC-STEM at
doses comparable to 1000 e~ /A? resolving even the oxygen atoms, which were until now
hidden by means of conventional STEM techniques. This opens up the field of imaging
radiation sensitive metal-organic-frameworks (MOFS).

However, this dose might be potentially even too high for radiation sensitive biomolecules.
Therefore, the aim of the third publication Lambrecht and Riedel, in preparation was, to
find suitable imaging condition for biomolecules optimizing the parameters dose, con-
vergence angle (which scales with resolution) and focus. This would allow to overcome
the thickness limitations in cryo-EM and additionally, to overcome the need to introduce
phase contrast through image distortions as described above. Thereby the quality of the
resulting EM maps would hopefully increase and make interpretation of the atomic struc-
ture more reliable. Furthermore, chances are high that due to the increased axial contrast
intracellular imaging would be feasible which could pave the way for intracellular visiual

proteomics.






2 Long-range allosteric regulation of
the human 26S proteasome by 20S

proteasome-targeting cancer drugs

Cited as: Haselbach and Schrader (2017)

Own contribution:
e Analysis of the conformational landscape
e Manual model building and refinement
e Analysis of B-factor distribution
e Analysis of symmetry breaking
e Analysis of the dynamical path through the molecule
e Figure 1 b-f
e Figure 2 a and b

e Figure 3 in parts

31



ARTICLE

Received 30 Nov 2016 | Accepted 7 Apr 2017 | Published 25 May 2017

Long-range allosteric regulation of the human 26S
proteasome by 20S proteasome-targeting cancer
drugs

David Haselbach!*, Jil Schrader"*, Felix Lambrecht!, Fabian Henneberg1, Ashwin Chari' & Holger Stark!

The proteasome holoenzyme is the major non-lysosomal protease; its proteolytic activity is
essential for cellular homeostasis. Thus, it is an attractive target for the development of
chemotherapeutics. While the structural basis of core particle (CP) inhibitors is largely
understood, their structural impact on the proteasome holoenzyme remains entirely elusive.
Here, we determined the structure of the 26S proteasome with and without the inhibitor
Oprozomib. Drug binding modifies the energy landscape of conformational motion in the
proteasome regulatory particle (RP). Structurally, the energy barrier created by Oprozomib
triggers a long-range allosteric regulation, resulting in the stabilization of a non-productive
state. Thereby, the chemical drug-binding signal is converted, propagated and amplified into
structural changes over a distance of more than 150 A from the proteolytic site to the
ubiquitin receptor Rpn10. The direct visualization of changes in conformational dynamics
upon drug binding allows new ways to screen and develop future allosteric proteasome
inhibitors.
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he proteasome holoenzyme is composed of the catalytic

core particle (CP, 750kDa) and in addition either one or

two molecules of the regulatory particle (RP, 900 kDa), to
form the 26S (1.6MDa) and 30S (2.5MDa) proteasome
holoenzyme!, respectively. The CP consists of four co-axially
stacked rings of seven distinct o and P subunits, whereas the
RP consists of an AAA+ ATPase assembly (Rptl-6) and 12
non-ATPase subunits (Rpnl-3 and an5—13)2 (Fig. 1a,b). Its
main task is the degradation of polyubiquitinated substrates.
Consequently, cellular homeostasis including diverse functions
such as the control of the cell division cycle, transcription
regulation, protein quality control, apoptosis and many more
pathways, depends on its proteolytic activity’. For the
mechanistic understanding of its cellular activities and its
therapeutic targeting in disease, the elucidation of high-
resolution structures of the proteasome holoenzyme in complex
with drugs are therefore of paramount importance. In particular,
the structural impact of 20S inhibitors on the proteasome
holoenzyme remains entirely elusive.

Here we determined the high-resolution structures of
the human 26S proteasome holoenzyme bound to the
chemotherapeutic Oprozomib and its apo form using single
particle cryo-electron microscopy (cryo-EM) and additionally
determined the dynamic properties of the proteasome. We
identify a clear restriction of the conformational landscape of the
holoenzyme upon drug binding using a newly developed method
to map the conformational and energy landscape of the 26S
proteasome. From the energy landscape, we can infer that drug
binding introduces an energy barrier minimizing the possibility of
the RP to rotate on the CP. This rotation however is necessary for
deubiquitination of the substrate? and its translocation into the
proteolytic core of the proteasome. We thus find a long-range
allosteric regulation that spans more than 150 A from the location
of drug binding towards the ubiquitin recognizing and regulatory
regions in the 19S subunit.

Results

Structure determination of the inhibited 26S proteasome. The
treatment of the proteasome holoenzyme with 20S inhibitors
leads to stabilization and suppresses disassembly”. To address the
question how 20S inhibitors affect the proteasome holoenzyme
structure, we initially considered the conformational motions
of the RP, which have been described previously (Fig. 1g)*®7.
In essence, two conformational states have been described:
a non-rotated- and a rotated-state in which the non-ATPase
segments of the RP are rotated by up to 25° around the long axis
of the 20S CP. This motion is coupled to the ATPase part of the
RP with its Rpt4/Rpt5 coiled coil contacting the ubiquitin
receptor Rpnl0 (Supplementary Movie 1). Treating the 26S
proteasome with either the drug Oprozomib or the natural
product Epoxomicin, which both belong to the epoxyketone class
of 20S proteasome inhibitors, we found the proteasome
holoenzyme to be stabilized in the non-rotated state (Fig. 1h).
The treatment of the 26S proteasome with 20S proteasome
inhibitors leads to a stabilization of polyubiquitinated substrates®,
which may remain bound to the proteasome holoenzyme. We
therefore investigated if polyubiquitinated substrates are
accumulated in our proteasome preparations upon inhibition
by drugs using anti-ubiquitin western Blot analysis. As shown in
Supplementary Fig. 1, we have found no profound accumulation
of polyubiquitinated substrates in our inhibited 26S proteasome
preparation over non-treated controls. This indicates no
correlation between the accumulation of polyubiquitinated
substrates and proteasome inhibition. As a consequence, the
allosteric regulation of RP rotation described in this manuscript is

2

exclusively dependent on inhibitor binding (Supplementary
Fig. 1). We then proceeded to reconstruct the three-
dimensional (3D) structure of both the non-inhibited and
Oprozomib-inhibited 26S proteasome at 4.8 A/3.8 A resolution,
respectively. To achieve this, we utilized the identical image
processing and classification protocol (Supplementary Fig. 2) for
the reconstruction with and without Oprozomib. Notably, in both
non-inhibited and inhibited structures the structure of the
proteasome  holoenzyme strongly resembles (real-space
correlation>0.9) the two other high-resolution EM structures
reported recently®®. While additional density is absent in the B5
active sites of the non-inhibited structure (Fig. 1f), a clear density
for Oprozomib is visible in the B5 active sites of the inhibited
structure (Fig. le, Supplementary Fig. 3).

Model of the Oprozomib-bound human 26S proteasome. The
Oprozomib-26S proteasome structure (Supplementary Tables 1
and 2) exhibits well-defined densities for the entire proteasome
holoenzyme (with the exception of Rpnl, Supplementary Fig. 4),
showing numerous amino-acid side chains in most parts
of the molecule and relatively small variations in local resolution
(Fig. 1c). Specifically, regions encompassing both B subunit
rings and the o subunit ring of the CP bound to the RP, as
well as the ATPase of the RP are resolved at a resolution range
of 3.5-4.5 A. The local resolution of the structure decreases with
increasing distance from the CP (Fig. 1c) to the upper regions of
the proteasome lid structure, which appear to be the most mobile
regions within the proteasome. Owing to the visible side-chain
densities, we built an accurate atomic model of the holoenzyme
with the unequivocal assignment of amino acid registry
for regions with B factors smaller than 110A% (Fig. 1d,
Supplementary Fig. 5). The B-factors of the model correlate well
with the local resolution differences visible in the EM density map
(Fig. 1c,d).

Long-range allosteric effects of drug binding to the proteasome.
We utilized only a relatively small subset of particles from both
non-inhibited and Oprozomib-inhibited datasets (4% and 12%,
respectively) to obtain reconstructions at high resolution described
above, which are nearly identical in conformation. Thus, the
differences between proteasomes with and without drug are
expected to be manifested in the particle images that did not con-
tribute to the high-resolution structures and more likely affect the
conformational space adopted by the proteasome. To harness
this information, we studied the conformational variations in the
RP in a quantitative manner by extensive 3D classification
(Supplementary Fig. 6), calculated the corresponding energy
landscape (Fig. 2) and analysed how drug binding modifies
this energy landscape of the RP. Briefly, we focused on the
conformational variability in the RP by aligning all 26S 3D
structures with respect to their 20S part only and applied principal
component analysis (PCA) to reveal the eigenvectors as major
modes of motion of the RP (see Fig. 2, Methods, Supplementary
Note 1 and Supplementary Movie 1). The known particle number
for each conformation allows the transformation of a conforma-
tional landscape into an energy landscape that describes the
complexity of RP motion in a comprehensive, quantifiable manner.
It also enables the direct visualization of the changes in proteasome
dynamics upon Oprozomib binding (Fig. 2b, Supplementary
Movie 1). According to this analysis, the energy landscape of the
non-inhibited proteasome is rather flat and allows the RP to sample
a large number of conformations making use of thermal energy
only. In contrast, drug binding considerably decreases the available
conformational space and creates an energy barrier for the
molecules making it less likely to reach a fully rotated state. This is

| 8:15578 | DOI: 10.1038/ncomms15578 | www.nature.com/naturecommunications
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Figure 1 | Effect of Oprozomib. (a) SDS-PAGE of purified human proteasomes. (b) Surface view of the human Oprozomib-bound 26S proteasome
cryo-EM density map at 3.8 A resolution. The CP (20S) subcomplex is depicted in grey, the AAA+ ATPase subcomplex in green and the remaining
RP (19S) components in yellow. (€) Local resolution map of the structure shown in b Each part of the density is coloured according to the local resolution as
specified in the colour bar. The resolution ranges from 3.5 A (blue) to 6 A (red). (d) Atomic model of the complete 26S proteasome. The model is coloured
according to the B-factor distribution. B factors range from 25 A2 (blue) to 175 A2 (red). (e) Close-up view of the Oprozomib binding site in the B5 subunit
of the CP. The Oprozomib model is coloured in red the CP subunits are shown in brown. (f) Close-up view of the empty Oprozomib binding site in the g5
subunit of the CP. The Oprozomib model is coloured in red the CP subunits are shown in brown. (g) Schematic representation of the two major rotational
modes of the RP reveals a rotation of the RP along the long axis of the 26S proteasome as indicated in a cartoon representation as a visual aid.

(h) Histogram of the relative distribution of 26S proteasome particles found in either the rotated or the non-rotated state which can be modified by
epoxyketone inhibitor binding. The control dataset (DMSO) reveals an almost balanced distribution with ~41% of the particles in the rotated state. The
number of particles in the rotated state is significantly reduced upon Oprozomib (~13% rotated) or Epoxomicin (~25% rotated) binding. Error bars
displaying s.d. indicate a high reproducibility based on data from three independent proteasome preparations (n=3).

manifested along several eigenvectors (data not shown) and
indicates that although a subset (14%) of 26S proteasomes is
observed in a rotated state upon Oprozomib inhibition, the
maximal amplitude of rotation attained is only 20°. At this state of
RP rotation, Rpn10 approaches the coiled coil of Rpt4/5, whereas
non-inhibited 26S proteasomes rotate the RP up to 25° with high
probability, where the Rpt4/5 coiled coil reaches the Rpn10/Rpn9
interface (Fig. 1g, Supplementary Movie 1).

Our data clearly suggests that in addition to a competitive,
irreversible inhibition of the proteolytic activity'?, CP inhibitors
also affect the conformational landscape of the proteasome
holoenzyme by restriction of its capability to adopt the rotated
state. The most surprising feature about the allosteric regulation

elicited by Oprozomib on the 26S proteasome is that the
inhibition reaction is converted to a conformational signal that
is relayed over a distance of over 150 A.

Discussion

In this paper, we have determined high-resolution structures of
inhibited and non-inhibited endogenously purified 26S protea-
somes. Inhibition of the proteasome allows a structure of higher
resolution to be determined. Importantly, by employing a novel
image analysis procedure, we can show that inhibitor binding
causes a long-range allosteric regulation of the proteasome
holoenzyme. Surprisingly, both species bind similar amounts of
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Figure 2 | Modification of the energy landscape upon Oprozomib binding. (a) Schematic representation of the strategy to obtain an energy landscape,
which corresponds to the conformational states adopted by the proteasome holoenzyme: Principal component analysis of a large number (n=346) of 3D
structures yields eigenvectors corresponding to the major modes of conformational variability. The first mode corresponds to a lid rotation with respect to
the 20S subunit and the second mode to a more complex rotational rearrangement of the lid (Supplementary Movies 1 and 2). The relative particle
numbers, which can be obtained for the various conformational states, are used to calculate the energy landscape according to Boltzmann's law. (b) Energy
landscapes with and without Oprozomib are depicted. Without Oprozomib, the energy landscape is rather broad and flat which allows proteasomes to
sample a wide range of conformations without facing a significant energy barrier. In contrast, upon drug binding, well-separated minima can be observed
next to a significant energy barrier (red) which restricts the conformational space that can be sampled by the proteasome. The 3.8 A resolution structure
was determined from particles belonging to this proteasome conformation in a local energy minimum (dark blue). (¢) Graphical representation of the
movement modes. The average structure has been segmented in its three subcomplexes and fitted as rigid bodies in the eigenmodes.

polyubiquitinated substrates as shown by western Blot analysis.
We can therefore conclude that the observed long-range
conformational changes of the proteasome upon drug binding
are exclusively due to the binding of the inhibitor Oprozomib.
This raises the interesting question about possible determinants
that enable such long-range regulation. While an accurate
description of this will require many more high-resolution
structures, mechanistic biochemistry and molecular dynamics
simulations, a detailed analysis of the Oprozomib-inhibited
structure allows a first glimpse on the components that might
be involved in signal relay and amplification (Supplementary
Fig. 4). The chemical inhibition signal is located in the B-ring
of the proteasome and needs to be relayed over several tiers
(CP alpha ring, two ATPase rings) to the top of the lid structure
of the RP. Two correlated criteria, such as decreased local
resolutions in the EM reconstruction (Fig. 1c,d) and

correspondingly regions of higher B-factors in the atomic model
(Supplementary Fig. 5) indicate conformational mobility, which
we used to monitor the signal pathway from the inhibition site to
the upper parts of the RP. Moving vertically in tiers from the site
of inhibition (the 20S B5 active site), an asymmetric B-factor
elevation on o-subunits 1, 2, 3 and 4 becomes evident (Fig. 3a).
This asymmetric conformational mobility of the o-subunits is
further relayed in two directions onto the RP: 1) A lateral
transmission onto the adjacent RP subunits Rpn5 and 6 and 2) a
vertical transmission to the next higher tier (Fig. 3b), the ATPase.
At present, which pathway of transmission of conformational
mobility (the lateral or vertical) is dominant remains unclear and
speculative but both are most likely synergistic and mutually
potentiate each other. Irrespective of the precise pathway of the
propagation of conformational dynamics, the ATPase subunits
(Rpt2, 3 and 6) adjacent to Rpn5 and 6 and directly above the
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Figure 3 | Representation of potential bi-directional signalling pathway. (a) Model of the upper a-ring and the adjacent regions of Rpn5 and Rpn6 are
shown coloured according to their B-factors. For better orientation, the HbYX motifes of Rpt3 and Rpt5 are depicted in their binding pockets (green and
cyan) and the orange arch corresponds to the position of Rpt3's region with highest B-factors. A significant increase in B-factors can be seen on the outer
parts of a2, a3 and a 4 which all are adjacent to the Oprozomib binding subunit B5. The regulatory subunits Rpn5 and Rpné, which directly bind the a-ring,
show the highest B-factors, presenting a potential communication path indicated by flexible parts. (b) The model of the ATPase ring and the adjacent parts
of Rpn5 and 6 are shown coloured by B-factors. The perspective onto the segment is the same as in a. A similar distribution of B-Factors as in a can be
seen. Subunits Rpt2, 6 and 3 show increased B-factors as they are adjacent to the more mobile a-subunits in a. Similarly, the regulatory subunits Rpn5 and
6 show very high B-factors. Right: to analyse the symmetry of the ATPase, three conserved amino acids have been chosen in all six. The Ca-atoms have
been connected and the inner angles of the resulting hexagons enclosed by Rpt6é, Rpt2 and Rpt1 have been calculated. Whereas the C-terminal region of the
ATPase forms a perfectly regular hexagon, the symmetry is clearly broken in the N-terminal region near the centre of the ATPase. This deviation from
perfect symmetry indicates the required motion for ATPase activity and is consistent with an increase in model B factors. (¢) Focused classification on the
Rpn9/10 (orange) region and subsequent refinement in RELION revealed different conformational states for the receptor regions. Only exemplary
conformations are shown. Similar conformations can be found by focusing on Rpn5 (blue) only.

a-subunits 1, 2, 3 and 4, exhibit an asymmetric B-factor elevation.  (Supplementary Fig. 7). Furthermore, the motion of Rpn5 is
In addition, a gradual vertical deviation from perfect six-fold correlated in the next vertical tier with the local conformation
symmetry is evident in the ATPase (Fig. 3b), which is even visible ~variations of the ubiquitin receptor Rpnl0 (Fig. 3c,
in a different sugar conformation of the bound nucleotide in Rpt2 ~ Supplementary Movie 2). Focused 3D classification reveals
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considerable mobility of Rpn10, which in some conformers is in
direct contact to the coiled-coil region of Rpt4/5. In other
conformers, Rpn10 completely detaches from the deubiquitinase
Rpn8 (Supplementary Movie 3).

In conclusion, we have provided evidence that 20S proteasome
inhibitors allosterically regulate the RP to adopt a non-rotated
(presumably inactive) conformation. To our best knowledge,
allosteric effectors that have such an extended reach are
unprecedented and have not been described yet. We have
presented evidence that the RP subunit Rpn5 most likely is the
lever, which conveys the information about inhibition of the
proteolytic active site over a long-range distance. This is
supported by the notion that Rpn5 is an essential lid protein
(so far described in yeast and plants)”. Previous studies at lower
resolution have shown that the rotated (presumably active) state
is preferentially adopted by RP binding to a slowly degraded
substrate®, or by the addition of slowly hydrolyzable nucleotide®
to the yeast holoenzyme. Ligand binding to either the RP or the
CP has distinctly opposing effects on the conformational motion
of the RP, which suggests a feedback regulation between RP and
CP through Rpn5. This knowledge enforces the notion that
development of 20S inhibitors with novel binding sites and
inhibition chemistries will have a profound impact on the
allosteric regulation of the proteasome holoenzyme. Vice versa,
inhibitors that target the conformational variability of the RP will
profoundly influence the catalytic activity of CP active sites. We
postulate that allosteric regulation of large macromolecular
complexes, by catalytic active site small molecule inhibitors is a
general feature.

Methods

Materials. Standard chemicals were obtained from Sigma Aldrich (Taufkirchen,
Germany). Oprozomib and Epoxomicin were purchased from ApexBio (Houston,
USA). The crosslinking agent BS3 was obtained from Thermo Scientific (Waltham,
USA).

Protein purification. $30 Hela cytoplasmic extract'? was prepared by hypotonic

lysis, centrifugated at 30,000g for 30 min at 4 °C, flash frozen in liquid nitrogen
and stored at — 80 °C. The S30 extract was thawed in a water bath at 37°C,
supplemented with purification buffer to 1 x froma 10 x stock, sucrose powder to
20% (w/v), octyl glucose neopentyl glycol (from a 10% (w/v) stock solution in
water) to 0.1% (w/v), iodacetamide to 10 mM, N-ethylmaleimide to 10 mM,
benzamidine chloride to 10 mM and ATP to 7.5 mM. The extract was incubated at
room temperature on a magnetic stirrer for 30 min, followed by an addition of
Dithiothreitol (DTT) powder to 50 mM and a second incubation at room
temperature for 30 min. The S100 extract was prepared by centrifugation at
100,000 for 2h at 4 °C and the supernatant was filtered through three layers each
of cheese cloth and miracloth.

The S100 extract was processed by two subsequent rounds of precipitation with
PolyEthyleneGlycol400 (PEG400; number signifies the mean molecular weight of the
PEG polymer). First, PEG400 was added to a concentration of 23% (v/v) to the S100
extract at 18 °C on a magnetic stirrer and incubated for 30 min. Second, the
supernatant was precipitated by raising the concentration of PEG400 to 30% (v/v) as
described before. The precipitate contains the human 265/30S proteasomes and was
resuspended with purification buffer supplemented with 7.5mM ATP, 5mM DTT
and 0.01% (w/v) lauryl maltose neopentyl glycol (LMNG) in an orbital shaker at
18°C. The resuspended material was incubated with an ATP regeneration system
(10 mM sodium creatine phosphate, 5 ugml~! creatine kinase) at 30 °C for 30 min.

The sample was loaded on 20%/50% two-step sucrose cushions in purification
buffer containing 7.5 mM ATP and 5mM DTT. The cushions were centrifuged
at 260,000g for 14h at 4°C, harvested in 500 pl fractions with Akta Prime
(GE Healthcare, Munich, Germany) and analysed by SDS-polyacrylamide gel
electrophoresis (PAGE) to identify fractions containing 26S and 30S proteasomes.
Fractions were pooled and precipitated by the addition of 40% (v/v) PEG400 for
30 min and after centrifugation (30,000g, 30 min), the precipitate was resuspended
in purification buffer containing 5% sucrose, 7.5 mM ATP, 5mM DTT and 0.01%
(w/v) LMNG. The proteasomes were treated with Oprozomib at a concentration of
0.5mM at 25 °C for 30 min. Proteasomes were loaded on linear 10-40% (w/v)
sucrose gradients in purification buffer containing 7.5 mM ATP, 5 mM DTT, which
were centrifuged at 220,000g for 16 h at 4 °C. In total, 400 ul fractions were
analysed by SDS-PAGE, selected proteasome fractions were precipitated by the
addition of 40% (v/v) PEG400 and resuspended in purification buffer containing
7.5% (w/v) sucrose, 7.5 mM ATP, 5mM DTT and 0.01% (w/v) LMNG. As a final

6

step, proteasomes were fractionated on linear 10-45% (w/v) sucrose gradients in
purification buffer containing 7.5 mM ATP, 5mM DTT, which were centrifuged at
260,000g for 16 h at 4 °C. Fractions containing 26/30S proteasomes were yet again
identified by SDS-PAGE, precipitated by the addition of 40% (v/v) PEG400 and
resuspended in 2 X purification buffer containing 15% (w/v) sucrose, 15 mM ATP,
10mM DTT and 0.02% (w/v) LMNG yielding the final purified protein preparation
at 30mgml ~ L. Protein concentrations were determined by the Bradford assay
(BioRad, Munich, Germany) using BSA as a standard. This purification procedure
reproducibly yields 45 mg purified human 26/30S proteasomes, starting from
800 ml S100 HeLa cytoplasmic extract at a concentration of 10 mgml ~ 1,

Purification buffer: 0.05 M Bis-Tris pH 6.5, 0.05M KCl, 0.01 M MgCl,,

0.01 M B-Glycerophosphate

Negative staining EM sample preparation and image analysis. Proteasomes
were either supplemented with 2 mM Epoxomicin, 2 mM Oprozomib or DMSO as
a control. After 30 min of incubation on ice, the respective samples were loaded on
sucrose gradients (10-30% w/v sucrose). Gradient centrifugations were carried out
in a TH660 Rotor (Thermo Scientific, Osterode, Germany) at a centrifugational
force of 114,000g for 16 h at 4 °C. In total, 200 ul gradient fractions were collected.

EM grids of 26S proteasome fractions were prepared by floating a continuous
carbon film in the solution for 1 min at 4 °C and staining with a saturated uranyl
formate solution. Samples were imaged on a Philips CM200 microscope at a
magnification of x 88,000 corresponding to a pixel size of 2.5 A per pixel. In total,
500 micrographs per sample were collected in spot scanning mode using a TVIPS
CCD camera.

Particles were selected and CTF correction was performed on the
individual particle level. Resulting particles were subjected to several rounds of
two-dimensional classification to remove images without particles and images
containing contaminations such as ice crystals. The remaining particles were
aligned against a 3D model of the rotated and independently to a model of the
non-rotated state and assigned to the better fitting model according to the cross
correlation. This was repeated in three iterations. After each iteration, new volumes
were reconstructed from the assigned particles, low-pass filtered to the same
resolution and normalized. Particles contributing to the individual classes were
counted.

Cryo-EM sample preparation. BS3 (2.5 mM) was added to the purified protea-
some holoenzyme (12 mgml ~ 1y and incubated at 4 °C for 2h. The crosslink
reaction was terminated by the addition of 10 mM sodium aspartate (pH 6.5)
and loaded on a GraFix gradient! (10-30% w/v sucrose, 0-0.1% glutaraldehyde).
The gradient centrifugation was carried out in a TH660 Rotor (Thermo Scientific,
Osterode, Germany) at a speed of centrifugational force of 114,000g for 16 h at
4°C. A total of 200 pl gradient fractions were collected and immediately quenched
by adding 20 mM of sodium aspartate (pH 6.5). The protein peak in the gradient
fractions was assessed by a dotblot with Amidoblack staining. Peak fractions were
analysed by negative staining EM. The fractions containing the single capped 26S
proteasomes were buffer exchanged to the purification buffer without any sucrose
using a Zeba spin column (Thermo Scientific, Osterode, Germany). The particles
were adsorbed to a continuous carbon film for 1 min at 4 °C, attached to a
Quantifoil (3,5/1) (Quantifoil, Jena, Germany) grid and freeze plunged in a Leica
EM GP (Leica, Wetzlar, Germany) employing the blotting sensor at 75% humidity
and 4°C.

Cryo-EM data acquisition. The grids were imaged in a Titan Krios

(FEL, Eindhoven, The Netherlands) (Supplementary Data 7) equipped with a
Cs-Corrector (CEOS, Heidelberg, Germany) on a Falcon II detector. Images were
taken at a nominal magnification of x 110,000, corresponding to a pixel size of
127 A per pixel. The total dose (50 electrons per A?2) was fractionated on 17 frames.
The first frame revealing inhomogeneous illumination due to the camera shutter
was discarded. In total, 18,707 micrographs were collected in total (Supplementary
Fig. 8).

Image processing. Individual image frames were aligned and weighted according
to electron dose using the software unblur'® to reduce the effects of drift and
charging. The CTF of the remaining micrographs was determined using Getf!>.
Particles were selected in a template-free manner, using image statistical properties
in combination with mass centring. Individual particle coordinates were
additionally refined by alignment against twelve low resolution reference images
representing different views of the proteasome (Supplementary Fig. 9).

Subsequently, we performed several image sorting steps to remove
contaminations, blurred images and bad particles. In a first step, power spectra
were calculated, for each particle and classified using a hierarchical clustering
scheme. The resulting class averages were visually inspected for Thon ring
appearance and particles belonging to strongly charged or blurred classes were
discarded. Second, several rounds of multi-reference alignment and two-
dimensional classification were performed. Particles belonging to classes that did
not show clear molecule views were discarded.

After having applied these image sorting procedures, the best class averages
were used to generate an initial 3D model using simple PRIME!®. This 3D model
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was used as an initial reference in a 3D classification in RELION'7, which we used
to classify the particles according to their two main conformational states. To
ensure correct class assignment, all particles were aligned competitively against
averaged maps obtained for the two main states. The flexible protein Rpnl
interferes with the alignments and therefore its density was masked out.

Particle images belonging to the non-rotated state of the proteasome were
refined by RELION auto-refine. Subsequent hierarchical sorting discriminated
further sub classes of various RP conformations. Specifically, a series of 3D
classification steps without alignment using increasingly smaller masks was
performed in RELION. In the first classification step, we used a mask for the whole
proteasome holoenzyme excluding Rpnl, in the second iteration we used a mask
for the whole RP (19S) subcomplex, in the third iteration a mask for the whole lid
and finally a mask for Rpn2 only. The remaining particles (233,000) were refined to
a final resolution of 3.8 A and B-factor corrected in RELION. To further improve
the map, particle polishing!® was performed on the final particle stack in RELION.

A local resolution map was calculated in ResMap!® by calculating local FSC
values in a sphere with a diameter of 13 voxels moving over the entire 3D volume.
In addition, the signal of CP was subtracted from the raw particles?’. These
subtracted particles were centred and again refined in RELION. Masks for the
Rpt2/6, Rpn9/10 and Rpn5/6 regions were created in Chimera and focussed 3D
classification without alignment was performed on the computationally generated
19S particles. Resulting 3D classes were refined.

Conformational landscape analysis of the RP subunit. A comprehensive
explanation of the method is given in the Supplementary Note 1 of this manuscript.
In brief, more than 346 3D class averages were obtained in RELION revealing
conformational differences in the RP. The conformational variability was analysed
quantitatively using PCA Eigenvolumes. By determining the linear factors of each
volume towards those Eigenvolumes an energy landscape was calculated in
MATLAB. The MATLAB scripts can be provided upon request.

Model building. The initial atomic coordinate model for the 20S particle was taken
from a crystal structure of the Oprozomib-inhibited human 20S complex (PDB
5LEY)!?. Models of each RP (19S) subunit were generated with Robetta?!22 and
docked as rigid bodies into the EM density map with UCSF Chimera®3. The six
nucleotides of the ATPase subunits were placed by fitting the crystal structure of
PAN (PDB 3H4M)?4 into our density. Additional aid for regions, which had to be
modelled at least partly de novo, was obtained using the secondary structure
prediction server psipred?>.

An initial rigid body refinement was performed using real space refinement in
Phenix®® and subsequent manual modelling in coot?’. Next, secondary structure
restraints were generated using phenix.ksdssp. All secondary structure restraints
were visually inspected and additional restraints were added manually. Several
iterative rounds of real space refinement in Phenix and manual modelling in coot
followed, where the last Phenix refinements included ADP refinement to calculate
B-factors.

The present map quality does not allow to distinguish clearly between ATP and
ADP in the ATPase and hence we modelled all nucleotides as ADP. In addition, to
account for local resolution differences in the EM density map, we used calculated
model B-factor distributions as a guideline to define the level of structural details
interpreted in the final model (Supplementary Fig. 5). Accordingly, we analysed B
factors in segments of five amino acids. Side chains were only modelled if the mean
atomic B-factor per segment was smaller than 110 A%, segments with mean
B-factors between 110 and 150 A2 were truncated to poly-alanine. Residues with
mean B-factors higher than 150 A2 were not included in the final deposited PDB
model.

Data availability. EM density maps have been deposited in the EMDB with
accession number 4,146. Raw micrographs have been uploaded to EMPIAR
database. Modelled atomic coordinates have been deposited in the Protein Data
Bank with the accession number 5M32. The data that support the findings of this
study are available from the corresponding authors upon request.
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Abstract

Typical cryo-EM data processing often discards images that belong to structures other than the main state
under investigation; however, this likewise discards enormous amounts of information that could be
valuable for determining three-dimensional ensembles of structures. Here we describe an approach
(“CowScape”) that analyses all particle data in a cryo-EM dataset to obtain a quantitative description of
structural and conformational variability, which can represent the entire biochemically relevant
conformational space of macromolecular complexes. By combining extensive image classification and
principal component analysis (PCA) of the classified 3D volumes, CowScape can be used as a quantitative
tool to analyze this variability. PCA orders all calculated 3D structures along the major modes of structural
variability, and the known number of particle images in a given state can be used to calculate an energy
landscape based on Boltzmann conversion. Thus, by revealing allosteric interactions in macromolecular
complexes, CowScape allows dynamic changes in macromolecular complexes during function and
regulation to be distinguished and interpreted.

Most biological processes in the cell are not driven by individual proteins but rather by large
macromolecular assemblies comprising numerous protein and/or nucleic acid components®. These
complexes can be considered as molecular machines, as they are usually very dynamic and undergo
significant conformational rearrangements during their reaction cycles. These molecular machines are
regulated in their natural biological context, for instance by binding external factors that influence the
conformational freedom of a macromolecular complex in a functionally relevant manner. Understanding
the function of such macromolecular machines requires taking the entire conformational landscape that
the macromolecular complex adopts during regulation and its reaction cycle into account®*. This implies
a drastic step beyond the current state-of-art in cry-EM, in which the focus is on high-resolution structure
determination of a single static state. The optimal situation would be to determine a high-resolution
molecular “movie” of the entire conformational space that can be covered. This would allow for instance
a better understanding of allosteric regulation effects as a consequence of a ligand (such as a drug) binding
event that affects the activity of the complex.

Historically, X-ray crystallography has dominated as the method for determining high-resolution structure
of macromolecular complexes, yet it is mainly limited to static structure determination, which can be
roughly understood as molecules with the same conformation packed into a crystalline lattice. In cryo-



EM, in contrast, molecules are imaged individually in a frozen hydrated state with no bias to adopt any
preferred conformation as a result of crystal packing. The range of structural heterogeneity
(conformational dynamics) in cryo-EM is therefore significantly higher than in X-ray crystallography, which
can be very problematic for high-resolution structure determination. The current Electron Microscopy
Data Bank (EMDB) statistics exemplify how detrimental structural heterogeneity can be, as they reveal a
mean value of deposited cryo-EM structures only in a range of ~6 Angstrom resolution, despite the
ground-breaking technical developments in cryo-EM that now allow up to sub-3A resolution®. Indeed, any
mixture of conformations (due to either low sample quality or the presence of multiple conformations)
will always be resolution-limiting in cryo-EM.

Some aspects of this heterogeneity problem can be tackled using advanced computational image
processing tools, which can sort cryo-EM images according to differences in composition and
conformation. A large dataset of cryo-EM images can thus be purified a posteriori in silico to compensate
for a higher level of conformational and structural heterogeneity. Extremely helpful computational tools
have been recently developed for this computational sorting, including two-dimensional (2D) PCA ¢,
maximum likelihood-based classification in 2D/3D 7', and manifold embedding of raw images °. However,
while these computational tools effectively distinguish between distinct conformational states of the
molecules, their ability to separate continuous conformational differences is usually limited. Currently,
the most widely used classifications in the cryo-EM field are maximum-likelihood—based ones?® that do
not require previous knowledge, as these are easy to use within powerful software packages, such as
Relion’. The major focus in most cryo-EM projects to date is to computationally purify particle images that
belong to the main conformational state present in the cryo-EM dataset in an automated manner, and to
get rid of the particle images that do not match based on several rounds of classifications. Subsequently,
this “purified” particle subpopulation can be refined to high resolution. In some cases, this approach must
discard more than 90% of all images in a given dataset to reach a level of structural homogeneity that
allows a high-resolution structure to be calculated. Thus, in most applications to date, the majority of
images does not belong to the best subpopulation. By large, the discarded data is not analysed, so that it
is often unclear why the majority of molecular images do not contribute to the high-resolution structure.
Nonetheless, it is probable that this discarded cryo-EM data contain interesting and relevant information.
In an ideal situation, all data would be used to computationally purify all well-defined states that exist in
a given dataset, rather than only the most evident one, and each image in the recorded dataset would be
classified to its corresponding three-dimensional (3D) structure. However, such a procedure would
require massive image statistics, as the conformational freedom of the entire molecule should be
computationally sorted to understand the overall dynamics of the macromolecular complex. An
alternative approach, which is implemented in Relion, uses local masks on the structure and tries to solve
the locally different alignment parameters on multiple flexible regions of a given complex (multi-body
refinement); this has the advantage of a more moderate requirement for particle image statistics 2.

The first attempt to determine the entire conformational landscape from a large image dataset was the
exhaustive computational analysis of an E. coli 70S ribosome trapped in intermediate states of tRNA retro-
translocation 2. In this study, 2 million particle images were used to separate 50 conformational states by
a hierarchical computational purification procedure as well as by visual inspection of the calculated 3D
structures based on the tRNA positions on the ribosome. Following the tRNA motions by visual
comparison of all structures allowed the order of the structures to be determined along a conformational
trajectory. After taking the particle statistics into account, the first energy landscape based on cryo-EM



data was determined?. The entire procedure required extensive manual image processing, as well as prior
knowledge about tRNA motions, to find the order of all states which was later confirmed by molecular
dynamic simulations®?. It is therefore impossible to apply this approach to samples for which little or no
prior knowledge is available.

We have now developed an approach, “CowScape” (Fig. 1a), to obtain a quantitative description of
conformational variability of macromolecular complexes. CowScape combines extensive maximum-
likelihood 3D classification and PCA (3D-PCA) to determine all possible conformational states without the
need for any prior knowledge about the complexes. CowScape analyses the similarities and differences of
the states in a meaningful and automated manner and then orders the states by 3D-PCA of all calculated
and aligned 3D volumes. The number of states can range from in the tens to several hundred structures.
The main modes of conformational variations are directly obtained by the major eigenvectors of the 3D-
PCA analysis (Fig. 1b). Taking two major modes allows the conformational landscape to be plotted, which
provides a likely trajectory of conformational changes (Fig. 1c). Furthermore, as the number of particle
images used to calculate the structures of each conformational state is known, CowScape can convert the
conformational landscape into an energy landscape by applying Boltzmann’s law. We have successfully
used CowScape analysis for two large macromolecular complexes, the human B*! spliceosome? and the
human 26S proteasome®. For both complexes, CowScape allowed us to determine structures of unknown
conformations and to obtain new structural insight into functionally relevant regulatory mechanisms. We
provide here the details of how CowScape works and a further validation of its general applicability to
cryo-EM data by using CowScape for other macromolecular complexes.

RESULTS

The CowScape algorithm, available in the COW image processing suite (www.cow-em.de), provides the
3D classification and refinement tools as well as the tools required for generating a conformational
landscape and an energy landscape, for plotting data into a 2D heat map, and subsequently for visualizing
these data in a 3D landscape. The first step in the analysis is an extensive 3D classification of all data
identified as true particle images within a cryo-EM dataset (see overview, Fig. 1). This 3D classification can
be performed in various image processing packages” ® > 14 including the COW package. After
classification, each subpopulation is refined to the highest possible resolution. Notably, the 3D
classification step provides not only a qualitative estimation about the conformational ensemble but also
quantitative information, by taking the number of particles into account that belong to each class. The
idea behind this is straightforward: any thermodynamically stable conformation of a macromolecular
complex will be observed at a higher particle frequency than a thermodynamically less-favoured state.
The particle number per conformational subpopulation thus directly translates into free energy
differences and, as such, can be used to determine an energy landscape via the Boltzmann factor (for
details, see Supplementary Methods).

Classification provides a large number of 3D structures in different conformations and the corresponding
particle numbers that were used to calculate the structures. However, at this first stage, the set of 3D
structures lacks any order with respect to each other; instead, it simply reflects the conformation
ensemble present in the dataset. To obtain a quantitative description of the major structural similarities,
all 3D structures are then subjected to 3D-PCA. The most important output of the 3D-PCA are the
eigenvectors (which themselves are 3D volumes) that describe the 3D structural variance in a hierarchical



manner; that is, the first few eigenvectors can be used to describe most of the heterogeneity in the
dataset. CowScape can use this information to then visualize the continuous motions along those major
eigenvectors in a movie-like manner, which can illustrate the major modes of motions present in the
dataset as well as reveal any potential coupling of movable parts in the macromolecular complex. The
major eigenvectors also serve as coordinates that span the energy landscape—that is, a heatmap with all
classified 3D structures positioned within a coordinate system that describes the major conformational
variability. The x-y position in the energy landscape plot thus depicts the respective conformation of the
complex, and the colour shows the relative Gibbs free energy difference (Fig. 2). The energy profile
provides the user with valuable information about the number of conformational states and an estimate
of the energy barriers between them.

To show the general applicability of CowScape, we have previously used it in our studies of the 26S
proteasome and the human spliceosome > and have now used it for publically available cryo-EM datasets
in the Electron Microscopy Public Image Archive (EMPIAR) database (Supplementary Methods). These
datasets also serve as different examples of what can be learned from the CowScape analysis. All datasets
were downloaded and processed in a similar manner (see Methods). The 3D volumes were then subjected
to 3D-PCA, and the corresponding energy landscapes were calculated (Fig. 2) by Kernel Density Estimation
with a Gaussian kernel function (Supplementary Methods). Some general features of macromolecular
complexes can be seen directly in the energy landscape plots (Fig. 3). For some biochemically well-
behaved complexes, such as the non-selective cation channel TRPM4 (Fig. 4), the energy landscape reveals
well-defined thermodynamic minima (blue), suggesting that a large part of the data contributes to one
major structure, and that there is only a relatively small number of defined states in the dataset. In
contrast, other complexes, such as the spliceosome, reveal a continuously populated energy landscape,
making it more difficult to find a sufficient number of molecular images to determine structures of all
conformational states at high resolution. For these complexes, the energy barriers between the various
states are much smaller, and the entire energy landscape can usually be more easily modulated by ligands
that bind to the complex.

It is also noteworthy that, depending on the kind of macromolecular complex, the energy landscape not
only reflects the potential conformational changes of the complex but can also contain subpopulations of
complexes that differ in their composition. CowScape always analyses the entire variability in the dataset,
which comprises both conformational and compositional changes. If the biochemical sample is known to
be very pure, the population landscapes can be interpreted as differences in conformational sampling of
the same complex, and thus assumed to correspond to an energy landscape. In either case, the landscape
provides the user with the unique possibility of discovering previously unknown conformations, for which
one can subsequently try to select the raw data and refine them to high-resolution. For instance, the
landscape determined for the mitotic checkpoint complex (MCC) bound to the anaphase promoting
complex (APC) ¥ revealed a high level of biochemical heterogeneity within the complex; this therefore
cannot be used as a depiction of an energy landscape (Fig. 2). The two major eigenvectors of this dataset
describe the stable integration of MCC into the APC complex, and the presence or absence of the protein
APC2. Such a landscape can thus be used as a tool to quantitatively monitor any improvement in complex
preparation and purification, with the goal of maximizing the number of molecules that have all desired
components stably integrated into the complex. Energy landscapes can only be determined at a later stage
after successful biochemical optimization.



To focus on conformational variability, we analysed examples that can be considered to be biochemically
optimized, namely, the 26S proteasome and the TRPM4 channel®® (Figs. 3 and 4). For the 26S proteasome
(Fig. 3), our analysis verified the macromolecular complex conformations that had been previously
described'” '8, However, the energy landscapes provided a more quantitative view about the data in
general that goes beyond previous findings. Specifically, we applied CowScape to two highly dynamic
proteasome samples, focusing on the subunit RPN1 within the 26S proteasome holocomplex (Fig. 2a) and
the regulatory 19S subcomplex bound to the chaperone p28 (Fig. 2b). A focused classification and
subsequent CowScape analysis revealed an almost continuous pendulum-like motion for RPN1, which
would explain why this protein has so far been elusive in high-resolution structure studies of the 26S
proteasome. The pendulum-like two-state distribution has its pivot point within the N-terminal coiled coil
of RPT1 and RPT2 and might represent a regulatory mechanism by which the Rpt1/2 interface can be
blocked (Supplemental Fig. 1). In contrast to other observed motions, RPN1 pendulum mobility does not
seem to be directly coupled to the larger modes of motions that can be observed for the entire 26S
proteasome. For the 19S proteasome, we observed opening of the Rpt2/Rpt6 interface in the ATPase ring
structure with a simultaneous closing of the Rpt3/4 interface. These changes correlate with a second
interface closure at the RPN3 / RPN7 interface in the non-ATPase part of the complex (Supplementary Fig.
2). Thus, using CowScape, we can not only automatically recover the order of minimum changes through
the conformational snapshots but also directly distinguish between non-coupled and coupled motions
within a macromolecular complex, which is likely to provide valuable information about the function of
these large assemblies.

A further striking case is shown for the TRPM4 channel with and without bound calcium ions (EMPIAR-
10127 and EMPIAR-10126, respectively; Fig. 4)'6. We detected an interesting conformational flexibility at
the cytoplasmic side of the channel, which to our knowledge has not yet been described in the literature
(Fig. 4b, Supplementary Fig. 3). By comparing the landscape with and without bound calcium, we can
speculate that calcium binding increases the number of contact sites between the soluble channel parts
with the central coiled coil. These soluble parts might be involved in second messenger signalling, and
increased flexibility might hence precede channel opening. The location of calcium binding is significantly
distant from the detected conformational changes, which implies allosteric signalling. The functional
relevance of these changes in conformation sampling after binding small ligands has yet to be determined.

We previously showed for the 26S proteasome that the major conformation of the entire complex was
almost identical irrespective of the presence or absence of the cancer drug oprozomib®*. However, after
drug binding to the 26S proteasome, the overall conformational space differed considerably®. A similar
situation was observed for the TRPM4 channel. Calcium binding to the TRPM4 channel is analogous to
oprozomib binding to the 26S proteasome, with direct consequences on the ability of the large
macromolecular complex to adopt the set of conformations that are relevant for its function
(Supplemental figure 4). While the exact details of how this happens are still not known, it is possible to
study such effects by calculating energy landscapes based on the analyses of all particle images present
in a given dataset. This also implies that CowScape is a powerful tool for the structural interpretation of
ligand binding to a macromolecular complex and for allowing functionally relevant conformational
changes to be observed that would otherwise remain invisible (e.g., if they do not affect the stability of
the major conformation).

The above examples illustrate that the quantitative analysis of conformational sampling is even more
informative when two or more energy landscapes of the same complex but under different biochemical



conditions can be compared. Such comparative studies are ideally suited to elucidating how regulatory
factors influence macromolecular machines in a more quantitative manner. However, as analysis requires
a minimal particle image frequency for a conformational state to be discovered, short-lived intermediates
of a macromolecular complexes (such as those in transition states in catalysis) will not show up in this
analysis, as they are not sufficiently populated. How sensitive CowScape can become at visualizing the
conformational variability in macromolecular complexes in a quantitative manner in the future will
depend on the image statistics used for the CowScape analysis and on the power of the applied 3D
classification algorithms and the computational processing strategy. While this may be a limitation at the
moment, one can expect that detectors and computers become significantly faster in the near future, and
that novel 3D classification algorithms can be developed that will be able to determine ever smaller
conformational differences. The CowScape algorithm itself is very fast and will not be a limiting factor
even if analysis were to use several tens of thousands of conformations.

DISCUSSION

CowScape currently offers a comprehensive way to analyse and display “motions” in a cryo-EM dataset
and to estimate quantitative free energy differences, which can be used to deduce mechanisms
underlying motions or allosteric signal propagation®®. This is the most appealing difference to other
approaches for modelling molecular motions from cryo-EM data, which are highly selective and/or stop
at the purely descriptive level. Furthermore, in contrast to other methods, CowScape does not need any
a prioriinformation, which makes it possible to use the approach at a very early stage of a project, thereby
allowing the macromolecular complex conformations to be identified for which high-resolution structure
refinement are most possible. The kind of insight generated by CowScape goes beyond the purely
structural point of view and enables information to be gained that is comparable with for instance
spectroscopic data, for which the distribution of states is usually accessed by only a one-dimensional
output. This powerful feature of the CowScape analysis is strongly coupled to the idea of not discarding
any true particle images from a given dataset but rather using all the available data to obtain a quantitative
understanding of the ensemble. Doing so may make more detailed quantitative experiments possible in
the future that describe how variables (e.g., temperature, pH values, salt conditions, or specific drugs)
interfere with a macromolecular complex. This information will be difficult to obtain by any other method
yet is critical for our understanding of how large macromolecular complexes act as “molecular machines”.
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Fig. 1: The CowScape algorithm landscape (for more details, see Supplementary Methods)

a)

b)

<)

Overview of the algorithm. CowScape is roughly divided into three steps: I) generate the conformational
ensemble by applying classification algorithms; II) carry out PCA; and Ill) make a final selection of reaction
coordinates and construct the energy landscape.

Interpretation of eigenvolumes. Each volume of a trajectory (left column) can be described as a linear
combination of the eigenvolume multiplied with a linear factor and the average volume. Hence, each
eigenvolume describes a conformational motion.

Using the linear factors, volumes can be plotted into a 2D conformational space with the respective energies
(indicated by a colour gradient). Energetic minima (in blue) guide the most probable overall path through
the landscape (grey arrows).
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Fig. 2: Compositional landscape of APC

This mainly compositional landscape visualizes the different assembly states of APC in a sample with a large degree
of biochemical heterogeneity (i.e., it is not yet optimized in an early state of the project). The three major maxima
correspond (red circles) to the different binding states of MCC (along the x-axis; shown in magenta). Any structural
changes along this x-axis correspond to compositional heterogeneity of MCC binding as well as to some motion of
the MCC towards the active center of the APC. The y-axis reveals the level of substoichiometric binding of the protein
APC2 (shown in blue). The plot can be used as a quantitative tool to monitor and improve the biochemistry of
complex purification and preparation. As such, it cannot be interpreted as an energy landscape, yet it still provides
valuable information about the quality of the complex to be studied.
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Fig. 3: Dynamic aspects within the 26S Proteasome

a) RPN1 is a very dynamic protein that can adopt various conformations on the 26S proteasome. CowScape
analysis reveals the two major conformations of RPN1 with respect to the Rpt2/Rpt1 interface (purple) and
a requirement for a pendulum-like motion in order to proceed from one major state to the other. The major
variability along the x-axis of the energy landscape can be described by this pendulum-like movement (see
also Supplementary Fig. 1) whereas the y-axis in the plot describes RPN1 abundance. The RPN1-ON state
reveals an energy profile similar to a two-state energy profile of a pendulum, as schematically depicted.

b) Detailed analysis of the dynamic behaviour of the ATPase subunit (blue) as a major component of the 195
regulatory subunit of the 26S proteasome. Whereas the major mode describes an opening and closing of
the 19S subunit along the x-axis of the plot, the y-axis reveals a novel conformational change in the ATPase
subunit that can be summarized as an opening and closing of the ATPase ring system via different subunit
interfaces.
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Figure 4: Allosteric Ca®* signaling in the TRPM4 channel

a) CowsScape analysis of the TRPM4 (transient receptor potential melastatin member 4) channel not only
revealed the overall conformations ¢ but also conformational variations that can be attributed to an overall
change from a C4 to a (more-or-less) C2 symmetry behaviour (x-axis). Changes along the y-axis can be
described by additional contact sites of the MHR1/2 domains being established to the central coiled-coil
domain.

b) Binding of calcium leads to an overall change in symmetry and to a conformational change that creates new
internal contact sites.

c) Even though the binding sites for calcium is on the membrane site, an increased flexibility of the MHR1/2
domains located at the opposite site can be observed, strongly suggesting that an allosteric signaling (d)
pathway affects the entire TRPM4 channel and finally leads to channel opening.



Supplementary Figures

Supplementary Fig. 1
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Supplementary Fig. 1: RPN1 movement.

The upper panel shows the same view of the human 26S Proteasome (PDB 5M32) with and without the
protein RPN1. RPN1 is labelled in red and the proteins RPT1 and RPT2 are coloured in purple and blue,
respectively. CowScape revealed a combined shift and pendulum-like movement of RPN1 described in the
main text which reflects the major variability along the first eigenvector. RPN1's center of mass completely
covers the RPT1/2 interface (white circle). RPN1 shifts from its position in front of RPT1 (white dot)
towards RPT2 following the indicated movement vector.



Supplementary Fig. 2
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Supplementary Fig. 2: p28-bound 19S proteasome.
Binding of p28 is a necessary component of the 26S assembly pathway, as it positions the 19S correctly on the 20S
core particle, to form the full 26 proteasome. CowScape detected—automatically and without a priori information—
the findings described by Lu et al.’.
a) The results of the PCA analysis confirm the lid closing observed by Lu et al.
b) Using CowScape we determined another motion located in the ATPase ring system that correlates with the
lid closing. Here we observe an alternating opening of the RPT2/6 and RPT3/4 interfaces. Based on the
energy landscape shown in Fig. 2, we can conclude that the lid closes upon p28 binding. Simultaneously,
the ATPase interface changes in going from an open RPT2/6 interface to an open RPT3/4 interface.
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Supplementary Fig. 3: Analysis of motions in the TRPM4 channel.

TRPM4 has been implicated in various severe diseases, such as diffuse large B-cell ymphomas and complete heart
block. Our analysis focused on the cytoplasmic domain by applying a mask during PCA. Additionally, we did not
restrict our analysis to C4 symmetry. The original structure (6BQV) is shown in the upper panel, with the MHR1/2
domains marked in red. We detected large symmetry breaks in the second eigenvolume as well as additional contact
sites of the MHR1/2 domains with the central coiled coil in the eigenvolumes 2 and 3. These contact sites were not
observed in the original analysis by Autzen et al.®. Interestingly, the MHR1/2 domains harbour putative binding sites
for secondary messengers, such as PIP2 and PIP3. Flexibility seems to increase upon binding of calcium ions, which
precedes channel opening. The observed additional binding sites to the coiled-coil might be the reason why Autzen
et al. observed more side chains to be visible in the calcium bound state.
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Introduction

Imaging of biological molecules with electron microscopy experienced a rising importance in the last
decade®?. This ascendency is mostly governed by the advances in the field of conventional high-
resolution transmission electron microscopy (CTEM). While in CTEM a parallel illumination is used to
acquire images over the full field of view, scanning transmission electron microscopy (STEM) uses a
converged beam and scans each position of the acquired image individually®. STEM imaging modes
can be divided by the collection angle range into brightfield and darkfield techniques. The former
makes use of electrons which where barely scattered and are consequently detected close to the
central optical axis of the microscope. Darkfield techniques in contrast use the electrons which are
collected at higher angles®.

As for the biologically relevant light elements brightfield STEM does not produce enough contrast,
darkfield methods were usually used. Those techniques have the downside of collecting only a
fraction of the full electron dose, which for single biomolecule observation implies that damaging
doses would be necessary to collect enough signal®. Generating differential phase contrast (DPC) is
one way to reduce the necessary number of electrons by providing a more efficient contrast
formation mechanism®. DPC is a special case of center of mass imaging, where the center of mass of
the converged beam electron diffraction (CBED) is determined at each probe position . The phase
difference from one scanning position to the other is determined by the displacement the center of
mass upon experiencing the local electric forces in the sample (Fig 1a)”2. A split detector is used to
determine the relative shift of the center of mass by observing the difference between the two
detectors. Here, this detector is divided in four quadrants, to determine the shift on a two-
dimensional plane (Fig 1b)2. The intensity of the x- and y-components is the subtraction of the two
corresponding detector intensities at each scan position 7':

IPPCx(r) = 14(r) — I€(1)
PP () = 1B(r) = IP (1)

By applying a linear combination of both images, the vector image I°P¢ = V ['PPC can be formed.
Lazic et al. showed that the integration of I°FC yields the projection of the electric potential of the
sample®,

There are several benefits over darkfield STEM: firstly, a larger number of electrons is collected which
is superior for light biological elements®. Secondly, the intensity scales approximately linear with the
atomic number”. Both should in theory allow to image at low dose conditions, which is necessary to
overcome limitations by radiation damage and charging for biomolecules. Indeed, it was shown that
zeolites could be imaged under such conditions with iDPC%1,



Apart from such specialized usage cases iDPC STEM should also have beneficial features over CTEM
for single-particle analysis. Contrary to CTEM, where defocusing is necessary to introduce phase
contrast via an oscillating transfer function, iDPC STEM has maximum contrast transfer in focus and
the transfer function is positively defined over a large interval in frequency space as well as a large
range of defoci®. The latter, namely the large focal depth, makes STEM in general interesting for thick
specimen, as it should practically allow to image a few nanometers away from the absolute focus and
still achieve maximum contrast transfer. Taking advantage of this property, Wolf et al. were able to
tomographically inspect the full volume of a bacterial cell by darkfield STEM*2, The second
interesting feature is the specificity of the contrast to the atomic mass, which can be used to quantify
single metal binding sites in biological macromolecules?.

The large focal depth comes by a cost. Both the focal depth (squared) and the resolution (linearly)
scale directly with the opening angle. That means the drawback of aiming for high resolution is a
compromise in the focal depth, which is necessary to have optimal information transfer throughout
the specimen®®. On top if this, increasing the resolution consequently reduces the beam current as
the spot size is decreased. This in turn decreases the SNR in the image significantly 4.

On the other hand, dose is always an important parameter when working with biomolecules, as
those are naturally prone to radiation damage and usually in particular high resolution features
decay rapidly already after a few electrons®>. When using tomographical darkfield STEM, Wolf et al.
experienced that the accumulated dose before radiation damage occured was much larger for STEM
then for CTEM® and additionally Elad et al. showed that they could resolve the overall shape of

ferritin at more than 120 ;\—; 13, This might be an indication for a less harmful damaging behavior of
STEM with respect to CTEM.

Implementing a useful single particle workflow for iDPC STEM hence on the one hand includes
finding an applicable dose to not generate radiation damage and on the other hand having enough
contrast to analyze the acquired images. Here we show that it is possible to achieve a sufficient
compromise between dose and contrast on non-biological samples. However, single particle analysis
of the acquired images turns out to be hindered by the enhanced low-resolution signal. This intense
low-resolution signal scales significantly with the background introduced by the embedding medium
in single-particle imaging, which does not allow to gain sufficient contrast at acceptable doses.

Materials and methods

For cryo-EM preparation of ribosomes, five microliters of 0.05 uM vacant Escherichia coli 70S
ribosomes (kindly provided by M.V. Rodnina) were applied onto cryo-EM grids (Quantifoil 3.5/1 um,
Jena) covered with custom-made pre-floated continuous carbon film; grids were blotted manually
under controlled environmental conditions at 4°C and 95% humidity.

Results

As discussed above, firstly a convergence angle had to be found, which offers a compromise between
focal depth and resolution, where optimal (small) resolution and optimal (large) focal depth behave
reciprocally to each other. From a theoretical point of view 3 we should be able to achieve a
resolution of close to 3 A with a pm-long focal depth with a convergence angle of 4 mrad. Due to
stability and handling reasons, the imaging conditions were first assessed on non-vitrified inorganic
samples. We tested the achievable resolution at 4 mrad on graphitized carbon black (GCB) under first
high-dose conditions and found a clear 3.4 A signal (Supplemental figure 1). Subsequently the

e

contrast transfer on bio-compatible doses was tested at 68 +

for different semi-convergence angles



(first column in figure 2a). While at 4 and 7 mrad, the signal was nicely visible in the power spectra, it
was not detectable at 10 mrad. Additionally, imaging at 10 mrad turned out to be challenging as the
focal depth on our non-aberration-corrected setup was tough to adjust. As the spot size decreases
with increasing opening angle, we tried to recover the signal by increasing the beam current and
indeed found that we construct a constant contrast by increasing the dose with two times the
convergence angle squared (Fig 2a). However, for 7 and 10 mrad the dose was far too high for
biological imaging.

While passing along this constant contrast diagonal in Fig 2a we recognized that the background
signal increased significantly and made the interpretation of the images in real space challenging (Fig
2b, first column, fig. 2c). This overlaying background signal could be completely eliminated by
extensive high-pass filtering with a cut-off frequency of 10 X fy,,, on the whole micrograph. As a
proof-of-principle, we acquired six micrographs of GCB with &« = 4 mrad at the same location with

each having about 10 2—2 per acquisition and aligned and averaged them with cross-correlation based

alignment algorithms usually used for single-particle processing. For non-filtered micrographs we
could not retain the 3.5 A signal in the average image after alignment (“alisum”). The alisum of the
high-pass filtered micrographs in contrast showed an increased signal with respect to the non-
averaged micrographs (Fig 2d). This gave us confidence that the acquisition at @ = 4 mrad should
yield sufficient contrast and resolution to perform single particle alignments while having a
theoretically large focal depth. This focal depth we cross-validated by performing focus series on a
very thin layer of a silicon specimen, verifying more than 500 nm with about constant contrast
transfer (Supplemental figure 2). Most important, the doses at higher convergence angles where far
too high to perform imaging on biological specimen.

With this parameters, we aimed to image a vitrified sample of the A. thermophilus 20S proteasome.
This molecule is especially suited for prototyping, as it is D7 symmetrical and therefore a rather small
number of images should be necessary to refine to high resolution. Either colloidal gold added to the
sample or the edge of the grid hole where used to come close to absolute focus. We acquired a
dataset with the same imaging settings as used above for GCB and filtered the raw micrographs
accordingly (Fig 3a, upper right panel). However, single particles were barely visible and automated
extraction algorithms such as gautomatch even failed with template matching. Consequently, the
dose was increased by a factor of two and single particles were nicely visible (Fig 3a, upper left
panel). However, there were still large differences in contrast within one and the same micrograph.
As a control, the same specimen was acquired with @ = 7 mrad but no particle was visible at all, with
comparable and even doubled dose.

In contrast to CTEM there are two resolution determining features in STEM: the brightfield disc
diameter kgs, which depends on the semi-convergence angle and as in CTEM the pixel size, which
depends on the magnification and the resolution’s dependence originates from Nyquist’s theorem.
Consequently, we determined the dependence of the resolution and contrast on the pixel size at @ =
4 mrad (Fig 3b). Interestingly, the contrast increased with larger pixel sizes and slight undersampling
might be advantageous.

As the imaging of the 20S turned out to be non-straightforward, we also tested the 70S ribosome, as
a second model system, with a larger diameter as well as a higher contrast due to the containing
RNA. Firstly, the same imaging settings were used as for the 20S proteasome, resulting in extremely
bright and nearly shapeless spots. Anyways, the contrast increased extremely. We decreased the

dose to 34 g—z and could acquire images with shaped particles and a contrast which allowed us to

extract the single particles with automated, template-free tools. Notably, for all biomolecules
imaged, we could never see a clear boundary between molecule and solvent, as one is used to from



CTEM (Supplemental Figure 3), but the outermost solvent layer around the molecule was rather
fuzzy. Additionally, we recognized different qualities of contrast in one and the same micrograph.

Next, single particles were extracted manually from the proteasome data (Fig 3a) and the ribosome
data (template-free, Fig 4a). The coordinates were determined on the highpass-filtered micrographs
and particles were then extracted from the non-filtered ones, to have more flexibility with respect to
filtering. The two 4 mrad proteasome datasets shown in Fig. 3a showed a clear difference with

respect to the background. Where in the 64 eA—; dataset boundaries between background and particle

could be achieved in the 2D class sum, this was not possible, when doubling the dose. Also, another
dataset at 3 mrad was acquired at intermediate dose, which showed the most isotropic and contrast-
rich class sums. For the ribosomes, we could not detect any shape in the class sums acquired with

more than 34 ej\_z' but rather damaged particles where visible (fig. 4b and c), even though in some

rare particles higher resolution features could be found (fig. 4b). Still, even the best class averages
did only show really low resolved features like domain separation (e.g. small and large subunit in the
ribosome or central pore in the proteasome). The outer particle boundary was never well defined in
any of the class sums, regardless of the imaging condition or the molecule. Additionally for the
ribosome it became apparent that for higher doses radiation damage led to blurring of the images
(fig. 4b). All in all, no class sum could be calculated which was even close to the theoretical
resolution, even though the resolution and the contrast on the inorganic GCB looked fairly promising.

Discussion

We have shown that iDPC STEM is capable of resolving near-atomic information at low semi-
convergence angles and low doses with a really comfortable focal depth on GCB, which was shown
before for the radiation sensitive zeolites 1%, These images could be aligned and averaged by
single-particle algorithms, after filtering out low-resolution background components, which increase
with the semi-convergence angle. Also, the contrast itself depends on the semi-convergence angle
but can be compensated for by increasing the dose. This might be a statistical problem of the
number of electrons hitting the quadrants while decreasing the probe size. However, as we could
show that a semi-convergence angle of 4 mrad yielded enough resolution, we focused on this value
for the analysis of biological samples as the necessary dose was in a regime that no radiation damage
could be expected and the focal depth did not limit the unautomated acquisition.

When going to vitrified samples, the background increased dramatically. Particle extraction was only
possible in high-pass filtered images as otherwise the cloudy features overwhelmed the image as was
previously described for single-particle images in darkfield STEM 3. We found that in a respectable

dose regime below 200 ;—; the contrast was only sufficient with a semi-convergence angle of 4 mrad

and below, underpinning the trend seen for GCB. Rez 8 discussed from a theoretical point of view
that ice might limit the contrast of STEM for single particle cryo-EM compared to CTEM. As CTEM’s
contrast transfer function suppresses low-resolution signals, the background signal is not visible in
CTEM?3, Additionally, for STEM the sample does not behave as a weak phase object as in CTEM.
Therefore the scattering of the embedding medium adds sufficiently to the image formation. This in
turn leads to a thickness-dependent suppression of contrast throughout the frequency spectrum,
which is about a factor of two compared to CTEM when the surrounding is as thick as the molecule
but might become a factor of 5 already for a 20 nm thick ice film?°. Recent studies on the ice
thickness of 20S proteasome preparations even assume a distribution of ice thicknesses ranging from
50 to 200 nm 2°, Unfavorable is also in accordance with our finding that slight undersampling



19,21

increases the visibility of the particles: contrast scales with the pixel dimension and consequently,

we could recover contrast loss by the ice thickness by increasing the pixel size.

If we assume that the large low-resolution background signal originates significantly from the
surrounding medium and is proportional to the thickness, then this also explains the observation that
the contrast changes within a few ten nanometers in one field of view. This on the one hand
emphasizes the sensitivity of iDPC STEM to light elements in the water but on the other hand this
also implies that individual filter values for certain regions or even particle would be needed. During
the processing of the data shown above, we found micrographs, which needed to be filtered to a
frequency which affected the low-resolution frequencies of the individual particles. As alignment
algorithms are usually sensitive to these frequencies, affecting those might lead to a decrease in
alignment accuracy. On the other hand, the wavenumber to which the background extends, might be
a reasonable estimate of the evenness of the ice layer.

Interestingly, proteasomes and ribosomes behaved differently in our experiments. Ribosomes
showed some low-resolution features at significantly lower doses, which can be explained by
ribosomes being larger in diameter and contain RNA. Increasing the doses led to immediate burning
of the ribosomes, which became apparent in the shapeless class sums shown in figure 3. Based on
our results we were not able to find a sufficient compromise between contrast — which should
increase with dose — and radiation damage. This contradicts the hypothesis that STEM might be less
harmful for single particle analysis, which was shown before for tomography.

The promising results of STEM tomography published in the last years 2® might lead the way to a
more suited application for iDPC-STEM than in single particle analysis. Another opportunity which
might lead to interesting biological findings is the evaluation of the iDPC-Signal together with the
HAADEF signal as both detectors can be inserted in parallel and the analysis of metal species with
STEM was already shown before 3. For the use in single particle analysis, contrast enhancement
would be necessary which might possibly come from more sensitive detector technology in the
future.
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Figure 1: General principle of differential phase contrast STEM with a four-quadrant detector

a) Shows aslice through a generalized ray-path. The beam converges to a defined probe under
the semi-convergence angle . The focus stays constant over a certain range (the focal
depths) before the ray diverges again and hits the detector, forming the CBED pattern.
Without a sample, the center of mass (COM, circle in a) of the CBED pattern is aligned in the
center of the detector. Upon scanning, the probe experiences the sample and is deflected,
which leads to a shift of the COM on the detector. The full four-quadrant detector is shown
in

b) , where the deformation of the probe away from the charged particle is shown. The
deflection in x direction is the difference of the quadrants A and C, whereas the deflection in
y is the difference of the quadrants B and D
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Figure 2: Graphitized Carbon Black (GCB) imaged under low-dose conditions for different o
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c)

Imaging biological molecules requires to go to low-dose conditions, while the theoretical
achievable resolution should be better than 3A. All signals visible in the Fourier transforms of
the individual images correspond to the 3.5 A signal of GCB and the relative positions
originate from the different pixel sizes.

e_
iz
results in the signal not being detectable at &« = 10 mrad. We found that to keep the
constant about equal while increasing the opening angle, the dose has to scale with two
times the semi-convergence angle squared. The pronunciation of the low-resolution region
also increases with increasing opening angle.

Shows that extensive high-pass filtering at a cut-off frequency corresponding to 0.1 times the
Nyquist frequency is necessary to recover the full information in the images.

Rotational power spectra of the unfiltered images from b) showing the increase in

background for larger convergence angles

Shows that keeping the dose constant at low — results in a loss of contrast which even



d) After applying high-pass filtering as shown in figure b) the signal to noise ratio could be
increased by averaging.
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Figure 3: Imaging of 20S proteasomes with iDPC STEM

a) Exemplary micrographs showing 20S proteasomes imaged with different dose at 4 and 7
mrad, respectively. At 7 mrad semi-convergence angle the contrast was not sufficient do

distinguish single particles. At 4 mrad semi-convergence angle, a dose of 64 2—2 hardly

allowed to recognize particles. At 133 2—2 nearly all micrographs showed sufficient contrast to
distinguish single proteasomes. All micrographs were high-pass filtered to remove the
enhanced low-resolution signal.

b) Shows the dependence on the pixel size. Sufficient sampling is judged by the theoretically
achievable resolution at 4 mrad. We see that a larger pixel size increases the contrast



b)

c)

significantly. The particles imaged at 64 ;—; (undersampled) and 133 2—; were extracted and
class sums are shown in c)

c) Additionally a dataset was taken at 3 mrad at intermediate dose, which showed nice contrast
in the raw micrographs.
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Figure 4: Imaging of ribosomes with iDPC STEM

a) Ribosomes in contrast could be resolved at lower doses. The best defined features in the

exemplary micrographs could be achieved at 34 ;—2, whereas larger doses led to a loss in

features, which is in contrast with the respective class sums shown in
Line plots over single ribosome particles underpin the trend to lose information already hown in
the micrographs
Even though rarely single ribosome particles could be found showing higher resolved features,
no class sum showed features, even close to the theoretically feasible resolution.






5 Discussion

5.1 Conformational Landscapes from Cryo-EM

Experiments

In the first two publications presented here, the concept of deriving conformational co-
ordinates from cryo-EM experiments by extensive 3D classification and subsequent 3D
multivariate statistical analysis was introduced. These conformational coordinates come
as eigenvectors of the voxel-wise covariance matrix. The high-dimensional (d = N3) vol-
umes can then be projected into a low-dimensional (usually d = 2) space, representing
their conformational state.

This approached was used to solve different questions in the past two years, since the
publication of Haselbach and Schrader (2017) which are listed in [5.1] The plethora of
usage cases in different biological contexts already demonstrates the usefulness for the in-
terpretation of molecular dynamics from experimental data. In the following discussion,
first, algorithmic extensions and different options in developing CowScape further shall be

shown and then its future usage will be discussed with interfaces to different disciplines.

Table 5.1: Overview on usage cases of the CowScape idea

of the assembly

Interest Macromolecular Com- | Reference
plex
Judging upon the quality | APC Lambrecht (submitted)

known reaction pathway

mal Bact

Describing the conforma- | Rpnl, 26S proteasome Lambrecht  (submitted),
tional motion of single sub- Haselbach and Schrader
units (2017)

Order the states on an un- | 19S proteasome, spliceoso- | Lambrecht — (submitted),

Haselbach et al. [5§]

Find new and unknown
conformational states

spliceosomal Bact

Haselbach et al. [5§]

Find allosteric mechanisms
by comparing landscapes

26S proteasome, TRPMI,
FAS

Haselbach and Schrader
2017, Lambrecht (submit-
ted), Singh (in prepara-
tion)

Detect concerted move-

ments

APC, 19S proteasome

Lambrecht (submitted)
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5.1.1 PCA on Density Maps

There have been attempts to describe the heterogeneity in the sample by means of PCA,
mostly in the 2D case. Penczek et al. [100] et al. first showed that it is in priciple
possible to estimate the covariance of a sample by a bootstrapping algorithm. Nameley,
they resampled all 2D images into random volumes and calculated the covanriance matrix
from them. This approach is generally not limited by the pure number of volumes, but
the information content of the individual volumes is low. Furthermore, as bootstrapping
allows single observations to be contained in more than one volume, no valid estimate of
the energies can be done. However, the CowScape approach is based on the same idea to
estimate covariances directly from the volumes, but the 3D classification prior to the PCA
analysis enhances the interpretability of the data, which was shown in the supplement to
Haselbach and Schrader (2017).

It is nevertheless noteworthy that in the past years, there have been attempts to directly
estimate the covariance matrix or the principal components of the 3D space directly from
the 2D observations [71], 141]. Even though such concepts would be a computational
shortcut to the approach presented here, we where not able to implement one of the algo-
rithms in a form that yielded a converged and interpretable result and no testable version

of the algorithms is available until today.

5.1.1.1 The Potential of Clustering Algorithms

For the analyis of the conformational ensemble, PCA has the advantage that it directly
orders each volume in a space, which we define as the conformational space. However,
if one carefully looks through the volumes of an ensemble, then it becomes clear that
volumes representing the same or equal conformations exist in the ensemble more then
once. This seems to be an intrinsic property of the way the ensemble is generated by the
3D classification and might be uvercome by recent implementations in our department
(data not shown). However, as one would like to reconstruct the average volume of all
volumes belonging to one energetical minimum, clustering is necessary.

A first naive approach would be to cluster the volumes in the N3-dimensional voxel-
space. However this imposes two problems, the first being computational complexity and
the second being redundancy. Redundancy describes the property of the volumes that
neighbouring voxels will contain nearly the same information content. This leads to a less
robust clustering result as most of the metrics used in clustering will calculate a voxel-wise
distance [I30]. Therefore it is appreciable to cluster after PCA was applied to reduce this

redundancy. In statistics and unsupervised machine learning, this pre-treatment by PCA
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is referred to as "whitening" [65]. In cryo-EM, this feature was already used for years in
2D classification prior to 3D reconstruction [I149]. When applying the same strategy to 3D
the importance of whitening will increase as also redundancy increases when projecting
the information from 2D to 3D. It will be a matter of testing how many and which
principal compomnents are necessary to guide clustering. In the most "human" form of
clustering, it will be already sufficient to let the user cluster within the 2-dimensional
landscape. A more physical correct form might be grouping together all volumes falling
in one minimum in the energy landscape, for which basically just an energy threshold
has to be defined. This resembles to some extent a flood-fill algorithm. However, it
will be interesting to apply clustering algorithms in higher-dimensional spaces and learn
about, how this "conformational cleaning" can affect resolution. Thereby the usual high-
resolution refinement scheme presented in chapter 1 is quasi-inverted and refinements

could in future be done starting from many classes and converge to a few stable ones.

5.1.1.2 Hierarchy of Conformational Landscapes

When thinking about clustering volumes in one minimum together, the discussion about
the glass-like state model comes into play again. It was discussed in the introduction that
there is a hierarchy of states and "zooming" into one well of the energy landscape should
allow to resolve more, energetically flatter and lower-amplitude motions. Translating this
into the properties of PCA that would mean that within the minima defined by the low-
order PCs the higher-order PCs should allow us to identify other minima. Materese et al.
[89] showed in a very intersting study that one can use PCA on ensembles generated from
NMR and MD and that those have an intrinsic hierarchy. Namely, when they focussed
on one minimum in a landscape constructed by the low-order PCs they could resolve new
minima and this scheme hold for five iterations. By traversing down in the hierarchy the
probability distribution shaped more and more gaussian.

This iterative scheme was also tested with our approach but already after two hierarchy
levels, no further minima were obtained and the shape looked completely gaussian. It is
fair to assume that for our testcases the statistics was just not sufficient and hence the
resolution did only allow to further inspect the first few eigenvectors.

A similar scheme was applied already in Fischer et al. [42], Haselbach et al. [58]. They
ordered the volumes on one PC and clustered in this one dimension. These clusters where
then again classified and hence the local motions could be refined to more detail. In
Lambrecht (submitted), we described this part as an iterative variant of the CowScape
algorithm. However, both methods, the dissection of the landscape by the hierarchical
organization of the PCs as well as the "relaxation" [42] of one conformational coordinate to
improve the refinement of the substates resemble the glass-like state model. This empha-

sizes that enhanced cryo-EM classification schemes and the analysis by PCA can recover
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the true physical nature of the hierarchical organization of conformational states. The
limitation seems to be the resolution of the individual maps. As described above, the na-
ture of the higher-order tiers are secondary structure and side-chain movements. As with
the current numbers of particles and the classification algorithms we can hardly resolve

low-populated states to medium resolution, these tiers are nowadays out of scope.

5.1.2 Estimation of the Landscape

The primary aim of the algorithm presented in Haselbach and Schrader and Lambrecht
was to find an interpretable visualization of the conformational space of the underlying
sample. The overall workflow after calculating PCs firstly includes the choice of the PCs
in which the landscape should be projected and secondly the interpolation of the final

landscape.

5.1.2.1 Choice of Principal Components

The principal components (PCs) in general encode the biological information which will

be assessable through the landscape. In general that implies two things:

e In the end, the PCA will calculate PCs on any dataset given to it. That is shown in
Lambrecht, 2018, where in the first figure compositional rather then conformational
heterogeneity is displayed. This resembles the general "garbage-in-garbage-out'-
philosophy in many image processing applications that if the dataset is not of good

quality, the landscape will display non-sense information.

e The implementation is done in a way that any system of PCs can be used as basis
function for a given dataset. Otherwise, generalized components (e.g. "Define a
common basis function set for all AAA+ ATPases") or comparism between datasets
would not be possible. That also implies that by mischoosing the PCs, non-sense

information can be generated, again.

However, in the current implementation, the choice of the PC is a left to the user, after
optically inspecting them (Lambrecht,2018). As discussed above, the motions displayed by
PCA should be hierarchically ordered into different levels that relate more to locality then
to significance. Another quite good estimate for significance is shape of the probability
distribution of the eigenvector, which in lingo of statistics would act as a discriminant
measure. As a PC just displays one single state and the fluctuations within, it converges
more and more to a single gaussian [1l 24]. Consequently, an automated way of advising
"significant” PCs to the landscape might in the future involve calculating the deviation

from a gaussian function [89]. Nevertheless, the interpretation of the movement is still at
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the core of structural biology and a visual inspection of the encoded motions will allways

be necessary.

5.1.2.2 Interpolation of the Landscape

The aim of interpolating all the intermediate steps is at the moment governed by the eas-
ier visual interpretation and foremost the identification of potential pathways. However
in the two publications in this thesis the general look of the landscapes differ significantly.
The first versions of the algorithms did not have their own visulization and interpolation
tool, hence the interpolation was done in MATLAB. The used algorithm was based on
Delaunay triangulation [25]. Triangulation is a geometrical process, which interpolates
the height values linearly on an area between three adjacent points.

This is for sure not the most physical correct interpretation of the data, as it yields a
non-continuos probability function. Hence, the final implementation of the CowScape
algorithm used Kernel Density Estimation (KDE) with a gaussian kernel function to es-
timate the underlying probability density [129]. In KDE, each data point is described by
the gaussian and each point is the sum of all gaussians normalized by the number of data
points in the plot (a thorough description can be found in the supplement to Lambrecht
(submitted)). KDE also offers its own solution to the process of forming probability-based
clustering in the landscape as discussed above, as the clustering in this case depends on
the minima found by KDE and hence on the widths of the underlying kernel functions,
which can be estimated from the data e.g. by cross-validation as implemented in the
current version of the algorithm [55].

When generalizing the concept of KDE a bit more, i.e. unfixes the means of the gaussians,
a gaussian mixture model (GMM) could be used. GMM’s describe a probability distri-
bution by a number of k gaussians each having their own parameter set O, = (g, 2x),
with p; being the mean and Y, being the covariance matrix of the gaussian mixture
component. As we can assume that especially the higher-order tiers will have only a
few gaussian shaped peaks, keeping k << n, (with n being the number of data points),
might yield a more robust version of the algorithm presented here. However, one major
shortcoming of the approach can not be overcome by any interpolation method, which is
the fact that the short-lived transition states representing the barrier between the local
energetical minima are not resolved at all. A complete discription of the energetical path

from one conformation to the other is thus not possible.
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5.1.3 Interpreting Allostery with cryo-EM

Cryo-EM is powerful when it comes to resolving different conformational states of a
molecule in one sample or under different biochemical conditions and the examples in
the literature are numerous. By comparing differences between the resolved structures
conclusions about the significant motions can be drawn and by interpolation methods
similar to the ones used here trajectories can be drawn[95]. However, when it comes to
allostery this single-structure based view is retained in the field. Roseman et al. [I15] dis-
cussed already on a very low-resolved model of the GroEL chaperonin how ATP-binding
cooperatively affects the subunits of the complex. Still 17 years later, when cryo-EM was
already near atomic the interpretation of allostery came from a single-structure point of
view: Zhang et al. [I57] discusses changes in intersubunit binding sites, interestingly while
oberserving single histidines at 4.5 Aresolution. Lii et al. [84] uses measures of assymetry
to determine allosteric communications between different states of a NMDA receptor and
Banerjee et al. [4] already showed the structural differences of a human p97 map with and
wthout an allosteric inhibitor. In Haselbach and Schrader (2017) we have basically used
all these features as well: detection of symmetry breaking, changes in subunit interfaces

and the influence of binding of a small inhibitor.

We added yet another level of description to allostery, which is based on the ensem-
ble nature discussed in the introduction. By comparing the landscapes with and without
the inhibitor we could conclude about the type information transfer: the main confor-
mation is always the same but the chance to observe another conformation was far lower
in the inhibitor-bound state. This implies rigidification or stabilisation of the 19S part
upon inhibitor binding in the 20S (figure 2), which resembles the characteristics of a con-
formational selection model (binding and stabilisation of a distinct state) and not of an
induced-fit like behavior. In contrast to this, the TRPM1 channel undergoes a slight shift

in the preferred conformation upon calcium binding (Lambrecht (submitted), figure 3).

In general this shows the capability of the method to dinstinguish different models de-
scribing binding or allostery. However, Induced fit and conformational selection actually
describe the binding of the molecule (Oprozomib or Calcium in our case) and not the
results of binding up to a few hundred A away from the binding site. In the two examples
presented here, the analysis is restricted to the fact that binding occured in the rigid parts
of the molecule and the affected, dynamic parts of the molecule were analysed (whereas
the rigid parts were masked out). This also limits the interpretability of the results with
respect to the classic macroscopic models. However, current investigations in the group
show that there are molecules, in which the amplitudes of the effector and affector regions

are about comparable so that masking might not be necessary and a more thorough in-
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vestigation might be possible.

On the other hand, the fact that binding especially of small molecules happens of course
on small scales whereas the affected regions (the central coiled-coil in the TRPM1 or the
19S in the proteasome) remodel on larger scales seems to be common theme. This could
be a signal-enhancement mechanism on the molecular scale. While signal enhancement
on the systemic, cellular level is quite understood (e.g. by cascading signal transduction
as in kinase cascades) this molecular level in large macromolecular machines could be
a prior enhancing step. This seems logical if one assumes that the binding of a small
molecule like calcium might just lead to a charge difference of two in the binding pocket
(which leads to very local deformations) but for the opening of a channel gate much larger
remodeling is necessary. Understanding mechanisms of signal enhancement might even

lead to new concepts of biosensors for the biotechnological application.

5.1.4 Quality Assesment and Biochemical Optimization

It was already discussed in the section about the choice of conformational coordinates that
these coordinates can also encode compositional rather then conformational heterogeneity.
Until now this property was discussed as a downside of the method but in fact it is rather
the opposite: it is a guide. Elmlund et al. [38] state the sample preparation step as
being one of the major "nuts and bolts" for high-resolution structure determination and
indeed if one assumes that the major limit for high-resolution is still statistics it makes
sense to not waste acquisition time to image broken particles. Several methods where
introduced to stabilize the macomolecular complex prior to imaging, primary crosslinking
gradient fixation (Grafix [I39]) and buffer screening methods based on differential scanning
fluoromoetry (Proteoplex [14]). However, there is yet not one objective measure on how
"broken" a sample is. We have shown that by computing a landscape of the full sample,
compositional heterogeneity can be visualized in a comprehensive way. By using one
set of eigenvectors (one ONB) calculated once on one or more samples, one can easily
compare samples not only with respect to their conformational but also compositional
heterogeneity. For optimization purposes, it would be e.g. a fair strategy to screen the
few most stablest conditions from a proteoplex screen and visualize by a CowScape the
intactness of the different samples. This introduces another layer of stability screening
especially for more fragile samples. Using just the most stablest fraction of a sample for
subsequent refinements and dynamics analyses makes these algorithms probably converge
to higher resolutions. Taking into account all these considerations one can advice an
"heterogeneity-based" refinement scheme for cryo-EM single particle analysis which in the
future has to be compared against the classical workflow (figure [5.1).



76 DISCUSSION

Acquisition - Preprocessing - 2D Classification

Compositional Landscape

Broken

Compare with
different conditions to find most
stable complex

Stable

Conformational Landscape

Conformation A Conformation B Compare with
ﬁ. biochemical modification
Conformation D Conformation C to describe allostery

Conformation D1

oxe.

Conformation D2

ﬁ-— Interface to MD

Y

High resolution refinement

Fig. 5.1: Based on the analysis of full ensembles rather then single structures one can imagine a hier-
archical refinement scheme, which resembles the tier-structure shown in figure By firstly
relaxing the compositional misture and focussing on the stable protein complex the overall en-
ergy landscape of the stable complex can be refined. Here comparing studies can be done with
other biochemical modifications such as inhibitor or substrate binding. "Zooming" further in
one of the minima, single gaussian minima should be accessible, which should refine to highest
resolution. The variability within one of these minima could be analysed by MD simulations.
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5.1.5 The Interplay with MD-Simulation

Let us summarise the major limitations worked out until now: due to the resolution (and
hence due to limited statistics) the resolution of the individual volumes is too low to de-
scribe energetics in the higher-order tiers. One consequence of this is that for example the
local changes upon inhibitor binding can hardly be resolved. Additionally we discussed
in Lambrecht (submitted) that we are not able to acces the height of activation barriers
as those are not sampled in sufficient numbers.

MD-simulations play an important role in retrieving information on the physical fun-
damentals of biomolecuar motions and are well suited to predict motions and epecially
explain the energetics and kinetics underlying allosteric communication. However, as the
underlying forces are calculated for each time point and each atom in the simulation
box, the computational complexity makes long simulation times for macromolecular com-
plexes such as the proteasome problematic. As the transition from one lower-order tier
to another happens usually on the us to ms timescale, they are usually not accesible for

all-atom MD and compromises have to be found as for example coarse graining.

It is obvious that both methods complement each other [6]. The time- and lengthscales
could be sampled by a hybrid method: for each minimum in the conformational landscape
from EM, a rigid body model could be fitted into the best resolved structure. Then energy
minimization is performed and from the energy minimized starting model a MD simula-
tion can sample the higher-order tiers "on the bottom" of the low-order tier found by the
CowScape algorithm. By applying an additional potential, generated from all points in
the sampled minimum, one could potentially restrict the simulation to sample only the

aimed locality of the landscape.

Applying an additional potential is also a way to complement another limitation of cryo-
EM: the activation barriers (and intermediate but still infrequent sampled areas) in be-
tween the maxima. One potential method to solve this might be umbrella sampling. In
umbrella sampling, free energy differences are calculated along a trajectory between two
states by forcing the simulation to sample this trajectory by an additional potential. The
trajectory could be chosen as being similar to the eigenvectors found by PCA.

These examples should make clear how potentially in the future cryo-EM and MD simula-
tions could compensate each others weaknesses when it comes to the analysis of dynamics

and energetics in macromolecular complexes.
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5.1.6 Drug Development

Structure based drug discovery (SBDD) is today routinely applied in the pharmaceutical
industry. It relies on the fact that the structure of a drug target is known and for example
the binding pose of a inhibitor library can be predetermined in silico. This step narrows
the search space significantly. However, with cryo-EM it is nowadays not routinely possible
to achieve resolutions which can be used for predictions on the atomistic level. Renaud
et al. [I09] discusses another role of cryo-EM in the hit-to-lead characterization and lead
optimization. Lead optimization describes the process of understanding the mechanism of
action underlying a substance, which was found to be active in high-throughput screenings
[T17]. This involves also the analysis of the biological context and also on the underlying -
conformational - mechanism. It was shown above that the CowScape algorithm is capable
of describing the conformational changes induced by drug-binding in a comprehensive
way and here it should be further explained how this feature could be utilized in the

pharmaceutic development.

Pre-Clinical Phase |, II, llI

Structure
Binding site
Mechanism

Protein-ligand structures
of new leads
Fragment screening

Fig. 5.2: SBDD in the early phases can be divided into three major phases. Where Target ID and
Hit ID are primarily high-resolution guided process, Lead optimization can win from medium-
resolution dynamical data. (ID=Identification, OPT=optimization), [I17]
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5.1.6.1 Mechanistic studies

In the literature several examples can be found in which drug-bound protein complexes
where resolved and Haselbach and Schrader (2017) is just one example. Only a few of
them show resolutions better then 3A [I09], and for some of them the validity of the
map has to be challenged by objective means (missing water molecules, inplanarity of the
aromatic systems). This sub-3-A-resolution, which can routinely be achieved by crystal-
lography once a sufficient crystallisation condition was found [I0§], allows to interprete
side-chain information. In fact, this side chain information is necessary to draw conclu-
sions about the underlying binding model. Additionally, to investigate the underlying
binding model on an ensemble basis, it would be necessary to resolve the full ensemble
on an atomistic scale. Such descriptions are as of today only possible by NMR on small
proteins [7].

Routinely overcoming this resolution barrier by computational means (e.g. Ewald sphere
correction or beam tilt correction [143] [159]) as well as by instrumentation and pipelining
[T17] might be possible within the next few years. Then there is an particular advantage
over NMR as protein and inhibitor conformation can be visualized together [18]. However,
for some applications this resolution might not be necessary at all. Especially for large
macromolecular complexes the understanding of large scale remodelling to understand
and detect the influence a drug has on the whole complex might be important [134] [144].
Cryo-EM has shown its power in detecting such motions. Apart from the examples given
in Haselbach and Schrader (2017) and Lambrecht (submitted) interesting results where
also generated for microtubule stabilizers [72], which have shown to be promising leads
in oncology. Another quite early example was the stabilization of the v-secretase by the
dipeptidic inhibitor DAPT, used to suppress (-amyoloid plaque formation in primary
neurons [3].

From discussions above, it is fair to assume that an active allosteric inhibitor will cause
large-scale remodeling within the macromolecular target complex. This remodelling will
always affect the energy landscape, even if the principal mean structure does not change
[16]. It might therefore be a new paradigm to characterise a drug-protein complex not
only by a mean structure (the "crystallographic" point of view) but rather by the change
drug binding applies to the conformational landscape. One could for example imagine a
workflow in which the apo-structure of the target complex was solved with large statis-
tics and PCA is used to calculate the apo-energy landscape - probably also in a mixture
with a set of known affectors or substrates. The result would be a "benchmarking" ortho-
normal-basis (ONB). Then, preparations with new lead candidates could be used to assess
if there is a significant change in the landscape of the candidate (in the benchmark ONB)
with respect to the apo-benchmark. As the coordinates of the spaces directly encode

conformational motions, implications on the functional level could be drawn. Thereby
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inhibitors, which affect regions in the complex, which should not be touched (e.g. sig-
nalling hotspots in an inhibitor which should just slow-down the catalytic function), could
directly be sorted out. Thereby, a more dynamics-based point of view (in contrast to the
static structure picture) would be achieved. However as of today, this vision is limited by
the computational complexity, which requires the analysis to run over a few iterations for

more than a day.

5.1.7 Conclusion

In the publications Haselbach and Schrader (2017) and Lambrecht (submitted) the usabil-
ity of a ensemble based analysis of cryo-EM data yields important information on the
allosteric pathway the durg binding activated. Especially in Lambrecht (2018), the con-
cept was applied to different kinds of motions and different molecules. Also it was shown
that it is possible to detect and analyse allosteric mechanism of protein regulation as well
as having a tool to guide the biochemical optimization of macromolecular complexes.

In this chapter further improvements were suggested. By applying clustering algorithms
and using the ensemble view, one can envision a new paradigm in the analyis of single-
particle data. This is actually based on the tier-like description of protein motion in-
troduced by Frauenfelder in the late 80’s. It can only be assumed at this point that by
applying a physically more realistic scheme, based on the actual hierarchy in the dynam-
ics of proteins, the refinement performance will also increase. However, such a scheme
enables harnessing the full information content with respect to the classical scheme intro-
duced in chapter 1, where all "non-interpretable" results are discarded to a certain extend.
Furthermore, the opportunities for drug development were shown, where in particularly
the interpretation of conformational changes upon inhibitor binding is a task which can

hardly be performed by any other method at the moment.

However, at the moment the computational task of all the refinement steps included
is a burden, but it is a general interest in the field to speed up that process. Then, this
method is perfectly suited to be integrated in an automated workflow, as it allows to di-
rectly assess and compare the quality of different samples and the influence of inhibitors
and stabilising agents. All in all, a versatile and flexible method was presented which
presents a cryo-EM experiment as what it is: the observation of the in-solution ensemble

of a biomolecular sample.
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5.2 Single Particle Cryo-EM with iDPC-STEM

In Lambrecht and Riedel (in preparation) we tried to optimize iDPC STEM for the imaging
of biological macromolecules. We could show that on organic but non-biological specimen
such as GCB we were able to image at conditions which should in theory allow to image
cryo-EM samples up to a resolution of 3.4 A. However, when we examined proteasomel and
ribosomel samples in vitrified ice, the contrast immediatley dropped and the background
contribution to the image increased drastically. When trying to compensate this effect
by increasing the dose, radiation damage became apparent. Here, I will outline the
contribution of the background from the point of view from imaging theory. In particular,
the shape of the CTF can be compared to other imaging modes and allows to speculate

how cryo-EM can be further contrast-optimized.

5.2.1 Contribution of the Background

Typically, biomolecules are rather weak scatterers which is due to the elemental compo-
sition. For each carbon atom there are in average 1.585 hydrogen atoms, 0.285 nitrogen
atoms, 0.3 oxygen atoms, and 0.01 sulfur atoms in proteins. This fact, and the fact that
the samples in cryo-EM are typically very thin, allows to treat the samples as weak phase
object. This means that the phase shift ¢(z,y) << 1. For equation , the concept of the
WPOA was introduced. The WPOA also implies that if the phase contrast is weak the
surrounding medium can usually be neglected in the description of the background signal
and only ineleastical collision events and non-scattered electrons contribute to background
noise. Two different theoretical approaches describe background noise formation for phase
contrast TEM under assumption of the WPOA: Rez [110] and Henderson [59]. Both ba-
sically come to the same conclusion, but the model of Rez [110] is directly comparable to
ADF-STEM. According to this work, the intensity of the background in the case of phase

contrast TEM is independent of the surrounding
I5P0 = Jjd? (5.1)

with J being the elctron flux and d being the pixel dimension. In contrast to this, for ADF-
STEM, the WPOA does not hold, the embedding medium contributes to the background
and

IE9 = Nto,Jd? (5.2)

with N, being the number of water molecules and o, is the scattering cross section of
water. Indeed, for all the iDPC relevant literature deriving the image formation theory

numerically, the WPOA was never used[8(), 82]. This theory is basically based on Bosch
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and Lazié¢ [8], who in contrast to the WPOA derives another fomulation which in the
end uses a comparable linear approach to describe the dependence of the exiting wave
on the sample. However, none of the authors ever discussed the embedding medium as
a source of contrast suppression. Indeed, new primary results from numerical simula-
tions based on the above cited theory show that there is a rather strong dependence on
the embedding medium, which can not be fully explained by the theoretical description
until now (E. Bosch, oral communication). Nevertheless, this seams to imply that the
background contributes in a way that is theoretically not understood and needs to be in-

vestigated in depths using a better framework which accounts for the embedding medium.

Interestingly, Lazi¢ and Bosch [80], assumed that the integration of the differential phase
contrast signal should even improve the contrast in the images by the following mechanism:
as outlined in the introduction, the DPC image is a representation of the projected elec-
tric volume field having two dimensions. Integrating this image yields a representation of
the electric potential. However, noise should not be integratable as it is non-conservative
field. Hence, the integration should yield a better signal-to-noise ratio. However, one
reason for iDPC producing that much background in contrast to CTEM might be, that
it is sensitive to buffer ions and other charges in the sovent (or even the solvent dipole
itself). This would again yield a conservative vector field which can be integrated and

information is retained, leading to a smaller SNR in the images.

Another discussion about the theoretical description of the DPC image was published
by Majert and Kohl [88]. They in contrast used the WPOA to describe DPC imaging and
found that the inner cutoff angle (defined by the cetral hole in figure of the detection
is limiting the resolution and is actually damping the high- and medium-resolution area.
This dependence might be also explainable with Lazi¢ and Bosch [80], where they found a
statistical limit to resolve the high-resolution regime. However, we also found that while
the low-resolution signal is overwhelming, the high-resolution data is rather suppressed.
The finding of Majert and Kohl [88] implies that the physical hole size of the detector has
to be changed to improve the damping of the high-resolution regime. This seems to be
not necessary for non-ice embedded specimen [I56]. As the contrast transfer is already
low for the ice-embedded specimen, this might be the only optical feature which can be
improved to enhance contrast in the limit of the radiation damage. From the results pre-
sented above, it is hard to imagine that without changing the optical parameters of the

setup, any improvement of the imaging conditions for biomolecules can be achieved.
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5.2.2 The contribution of the contrast transfer function (CTF) and

phase plates

The CTF adds another layer of complexity on to the problem of imaging biomolecules.
Whereas the previous paragraph focussed on how the contrast is generated by scattering
cross-section differences, here the focus is on how this contrast is transferred to the image.
It was already discussed in the beginning of this thesis that the fourier transform of the
PSF is the CTF, which basically determines how the produced contrast in the image is
visible in the image.

Elbaum et al. [36] discusses the influences of the different CTF’s of TEM and STEM.
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Fig. 5.3: Transmission electron microscope (TEM, a) phase contrast and scanning transmission electron
microscope (STEM, b) transfer as functions of the spatial frequency, g for different defoci. (a)
Bright-field TEM (BF-TEM) contrast transfer functions (CTFs) (blue and green) for a thin-
phase object and (b) incoherent STEM optical transfer function (OTF, red and orange) for a
thin-amplitude object for the same spherical aberration, Cs = 2.0 mm, at 200 kV. [36]

As can be seen in figure [5.3] the sinuosidal nature of the CTF in TEM supresses the low-
resolution features of the image. Thereby it acts as a "optical high-pass filter' [33]. This
is in contrast to STEM, having an evenly decaying contrast transfer, which peaks at the
very center of the detection beam, namely at the lowest resolution. This implies that the
above discussed damping of high-resolution features and the overwhelming low-resolution
are optically instrinsic features of each STEM setup. This is in accordance with the ob-
servation of Elad et al. [33]. When they imaged single particles by HAADF-STEM they
also reported about extremely high low-resolution noise in the images. This underpins the
statement already done in the last paragraph about the necessary changes to the optics,

when STEM on single particle cryo-samples shall be successful.
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In the field of TEM there are for years discussions on how to improve the contrast, as this
would enable imaging of smaller molecules. The most discussed opportunity is the usage
of phase plates similar to photonic microscopy. Two concepts emerged to be succesfull,
even though the practical usage is not fully proven yet, due to long-term stability[22]: the
Zernike phase plate (ZPP) and the Volta phase plate (VPP). Both are placed in the back
focal plane of the microscope (quasi in fourier space) and modulate the spectrum accord-
ingly. The ZPP was the first sucessfully applied phase plate in single-particle analysis and
tomography [19-21]. It is based on a thin layer of amorphous carbon and its thickness is
adjusted according to acceleration voltage such that a 7 phaseshift is achieved. A central
hole is needed to align the microscope properly|21]. In contrast to this, the VPP is a con-
tinuos and heated carbon layer, and the phase shift is potentially generated by inducing

a volta potential on the surface of the carbon layer [22]. These two have a difference in
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Fig. 5.4: a) Overview on the different options to introduce phase contrast: defocusing, VPP, ZPP. Note
the central hole of ZPPs that introduce a cutoff in the low-resolution regime of the image,
taken from [19] b) Experimental CTF of a standard TEM and a TEM equipped with a VPP,
taken from [22]. c¢) Theoretical CTF of a ZPP for different phase shifts, taken from [20]
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the first zero crossing (figure . Both plates shift the first zero-crossing much further
to the positiv direction as compared to the CTF without any additional phase contrast.
The CTF of the ZPP is theoretical. It lacks one important feature, namely the cutoff in
the low-resolution regime. The CTF of the VPP instead is a measured quantity, therefore
not showing that it actually starts at (0,0). This is in contrast to the ZPP and the STEM
CTF, which both have the maximum contrast transfer in the lowest frequency. From the
findings above about the problems of low-resolution noise in the STEM case, one might
draw the conclusion that the extreme low-resolution signal enhancement of the ZPP might

lead to unwanted background contributions, if this is not compensated for by the central
hole.

Another complication was not discussed before which might be a general concern also
for phase plates. For the STEM measurements, the focus had to be adjusted especially
for high convergence angles. In the literature, the focus sensitivity of phase plates is
rarely discussed. In the STEM images presented here, some pictures where clearly out of
focus or were pre-exposed due to the manual focussing procedures. For both, STEM and
PP-TEM a robust and pre-exposure free focussing algorithm has to be implemented in
the acquisition software as manual focussing does not allow to come up with the necessary

throughput to routinely acquire images with both techniques.

5.2.3 Orthogonal Information from STEM

Until now only the pure iDPC signal was discussed. However as it turns out that this will
not yield promising insights into biomolecules, maybe orthogonal techniques can be used.
As already explained above the actually measured quantity is not the iDPC signal but
rather the DPC - the differential phase contrast in x- and y-direction. Lazi¢ and Bosch
[80] showed that the DPC is directly proportional to the electric field of a charge and
indeed in material sciences DPC is mostly used to assess the fields in magnetic samples
[96], 132]. Just recently Shibata et al. [I33] imaged the local electric field of a single atom
using the DPC signal of a four-quadrant detector in a crystalline lattice. In the same
manner, one could try to gain in-depth insight of the coordination sphere of protein-
bound metals, with a significant electric field vector to the stabilising charged side chains.
A comparable study was done before with ferritin imaged by HAADF [33]. They could
resolve the overall location of the metal centers but again due to the large background
signal and the insufficient resolution, no further mechanistic conclusions could be drawn.
However, Shibata et al. [I33] showed that the resolution and localization of the charges
is far better in DPC as in ADF. Additionally, we could show that at least low-resolution
protein features are detectable in iDPC. Therefore, a study on a metal-bound protein

might reveal another usage case for quadrant detectors in biology.
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Additionally, the four-quadrant detector can be used in parallel with the HAADF-detector.
Therefore, an interesting experiment might be the parallel visualization of a protein (or
again protein-metal complex) by both detectors. This might at least increase the number
of electrons gained from one experiment and an algebraic combination of different STEM

signals has be done before [152].

5.2.4 STEM-tomography

In the last couple of years, a variety of methods arose which made electron tomography
a powerful tool to dissect cellular structures. Those are extensively reviewed e.g. in
Hanssen [56]. Primarily two departments at the Weizmann Institute focussed on STEM
tomography [36], [152]. This work focussed on ADF-STEM, even thouh also combinations
of DF and BF signals were used [I52]. The main advantage is that STEM has as discussed
above a higher focal depths then TEM and hence it was shown that a bacterial cell could
be measured with high z-detail in one tomogram [34], 36]. Additionally, Wolf et al. [152]
showed that the charging behavior in STEM tomography is less harmful then in TEM,
as bubbling occured at a much higher cumulative dose. Another advantage is that as
STEM contrast is quantitative, the inclusion of for example phosphorus or calcium can
be visualized and approximately quantified [153] [154].

Hoewever, even though STEM tomography fits perfectly within the "thickness-gap" be-
tween soft X-ray tomography and focussed ion beam surface electron microscopy (FIB-
SEM), it has still some limitations to reach through even higher thicknesses. Nearly all
electrons that have reached the ADF detector had to be scattered more than once, and
the probability scales with the thickness of the specimen. Therefore a volume of more
than two times the mean free path length for the aquaeous medium seems feasible with-
out a resolution penalty [112]. This effect is not as severe for electrons scattered on the
brightfield detector, as those will have experienced less scattering events. iDPC here offers
to get the best from two worlds: the bright-field phase contrast used to from TEM and
the large depth of focus from a STEM[35]. In the section before, several limitations were
worked out, which should not matter for cellular tomography anymore. Firstly, we dis-
cussed the large background noise from the embedding medium. For cellular tomography
the density of protein and nucleic acids is higher than for a single particle experiment [112]
and furthermore the results with ADF STEM tomography show that highpass-filtering
out the low-resolution background does still yield robust tomographic slices [152]. Sec-
ondly, the low contrast for proteins in the vitrified medium was discussed in Lambrecht
and Riedel (in preparation). Again in tomography, this should not play a major role, as
the contrast directly scales with the size of the molecule or the feature under investigation
[T10, IT1]. As these features are much larger in cellular tomography, the contrast should

also be much better then it was reported for the single-particle case here.
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5.2.5 Conclusion

We have shown in Lambrecht and Riedel (submitted) that a direct visulization of high-
resolved single particle images will not be feasible with iDPC STEM due to the high
background and the low contrast - at least not for radiation sensitive biomolecules. It
was made clear here that the large contribution of background is not in agreement with
a WPO and that the current theoretical framework for iDPC STEM does not cover the
embedding medium in a sufficient extend. It can only be speculated that by physically
tuning the detector, the contrast for biomolecules can be improved. However, further
usage cases especially for bioinorganic complexes and in STEM tomography were worked
out and in particular the usage in tomography is very promising, due to the detection of
the dignal in the brightfield disc.






6 QOutlook

In the first part of this thesis and the corresponding publications we have shown that
cryo-EM is capable to assess the conformational landscape of a macromolecular com-
plex. Analysing cryo-EM data from the ensemble point of view rather than from a
pure-structural point of view, opens up a plethora of possible usage cases, where the
quality assessment and pharmaceutical charactization of a drug-binding event in terms of
allostery are just two in particularly interesting ones.

In the second part we have shown that improving the contrast with the help of iDPC
STEM is not straight-forward. We have learned there that even if a method works sucess-
fully on a "simple" specimen such as we have shown it with graphitized carbon black,
radiation-sensitive, vitrified cryo-EM samples are introducing even new and challenging
condition for any setup.

Even if both topics seem to be very unrelated, the motivation behind them interdepend.
As was introduced right in the beginning, distangling the heterogeneity in cryo-EM sam-
ples is a problem of indentifiability. Or in other words: in the case of infinite contrast,
one could see everything. Advances in the field of conformational dynamics might be
triggered through the development of a more sophisticated optic, increasing the contrast
of the images. On the other hand, such optics might need better behaved specimen, for
example with respect to ice thickness or sample impurities. At this point, the quality
assessment use case described above might be helpful.

In the end it is obvious that software can not improve endlessly without optics and lim-
itation in optics might be compensated by software. The current focus of the cryo-EM
community seems to be primarily on the software. But in the end, an investment in
optics might potentiate the power of the algorithmic improvements. This thesis tackles
both sites more or less successful and it might be appreciable to represent both - optics

and image processing - in the focus of the future research.
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A Abbreviations

AAA-+ ATPases ATPases associated with diverse cellular activities
ATP Adenosinetriphosphate

BFP Back focal plane

CA Correspondence analysis

CBED Converged beam electron diffraction
CCD Charged coupled device

C, Spherical abberation

CTF Contrast transfer function

DED Direct electron detector

DPC Differential phase contrast

EELS Electron energy loss spectroscopy

EM Electron microscope

FEG Field emission gun

FRET Fluorescence resonance energy transfer
GMM Gaussian mixture model

HAADF High-angle annular darkfield

iDPC Integrated differential phase contrast
KDE Kernel density estimation

KNF Koshland, Némethy and Filmer model of allostery
MDS Molecular dynamics simulation

MSA Multivariate statistical analysis

MWC Monod-Wyman-Changeux model

NMA Normal modes analysis

NMDA N-methyl-D-aspartate

NMR Nuclear magnetic resonance

ONB Orthonormal basis

PCA Principal component analysis

PSF Point spread function

SBDD Structure based drug design

SNR Signal to noise ratio

SPA Single particle analysis

STEM Scanning transmission electron microscope
TEM Transmission electron microscope

TRPM Transient receptor potential ion channels
VPP Volta phase plate

ZPP Zernike phase plate
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Supplementary Methods

Data analysis.

All raw data were downloaded from the EMPIAR Database (spliceosome, 10160; proteasome, 10166; 19S
particle with p28, 10091; and the TRPM4 channel, 10126 and 10127) and subjected to several rounds of
2D classification in the COW image processing suite to remove non-particle views.

As described in the main text, the general workflow covers three steps of image processing: 1) generate
the conformational ensemble by applying classification algorithms; Il) carry out PCA; and Ill) construct the
energy landscape.

Ensemble generation and alignment.

An ensemble was defined as a set of 3D volumes calculated from one given dataset in which the particle
images may be representatives of more than just one structure. Our approach can be applied to any set
of 3D volumes that share the same image frame size. Here, we describe an application to 3D volumes
generated by extensive Maximum-Likelihood 3D Classification, which was tested in RELION, SPHIRE, and
the COW suite. For all examples described in the manuscript, classification runs were calculated using
200 000 particles separated into 40 classes (note that, if the initial dataset was smaller, fewer classes were
used to maintain the same ratio between number of particles and number of classes). For this separation
into classes, the entire population of particles must first be split randomly into multiple subsets, which
are then classified separately, to reduce the computational effort (which increases dramatically with the
number of particles). After classification, individual volumes were autorefined, and the set of all 3D
volumes was subjected to PCA to: i) identify the major sources of variability among all 3D volumes; and ii)
order them with respect to those major variabilities. Because PCA is sensitive to any differences between
the volumes, aligning them against the same reference is crucial. This alighment was carried out either in
the COW suite using the Logic “3DAlignhment” with standard parameters, or in UCSF Chimera® with the
FitinMap procedure. 3DAlignment maximizes the real-space cross-correlation to a reference by applying
shifts and rotations to the volume. Special measures applied to some of the datasets are listed below:

Dataset Remarks to classification and processing

26S/RPN1 No alignment was necessary, as the classification was only local, and the
20S part remained stable throughout the classification runs

TRPM4 The classification and subsequent refinement was—in contrast to the
original publication—performed without applying symmetry restraints

All subsequent steps were performed within the COW image processing suite. The volumes were low-pass
filtered to the lowest resolution among all ensemble members. Again, this is necessary to avoid the
detection of resolution differences via PCA. The Fourier space cutoff of the filter is given by

2 x pixel Size

Y= lowest Resolution



Subsequently, all volumes were normalized to a mean of zero and a o of 2. The ¢ is an important variable
to fine-tune the information content of the eigenvolumes, as it directly influences the detection of
information by PCA in the next step.

Principal Component Analysis (PCA).

PCA finds a representation of the input data in a lower dimensional space that preserves the correlation
structure of data as much as possible (for a thorough review of PCA for single-particle analysis, see van
Heel et al'. The coordinate axes of the lower dimensional space are obtained by calculating the
eigenvectors of the data covariance matrix. The eigenvectors are orthogonal to each other and sorted by
their eigenvalue (which correlates with the fraction of the total variance described by this eigenvector).
CowEyes’ implementation of PCA is memory efficient especially for large volumes, as it uses the N X N
dimensional covariance matrix, where N is the number of volumes. Selecting a subset of the eigenvectors
means that these span a new lower dimensional space, which represents the input. The position of the
volume in this lower-dimensional space is determined by a vector of linear factors a, where ay (belonging
to the k-th volume) has as many entries as the new space has dimensions. COW calculates the linear
factors by a matrix multiplication performed in the logic “PCATransform”.

Visual inspection of eigenvectors.

To decide which conformational transitions are captured by the eigenvectors, one needs to visually
inspect them. Therefore, trajectories are simulated from one eigenvector. The algorithm for generation
of trajectories is implemented as “TrajectoryVisualizer” in CowEyes. It shows the information represented
by a single user—specified eigenvolume by simulating a trajectory of N volumes. From the linear factors
calculated in “PCATransform”, one could approximate each volume V}, in the dataset through the relation

Vi= Yioak; XE +A (1)

where A is the average volume calculated in the PCA, V}, is the k-th volume in the dataset, E; is the i-th
eigenvolume describing a conformational motion, and ay ; is the linear factor that acts as a coordinate for
Vi in a space spanned by E;.

The TrajectoryVisualizer module in the COW software suite simulates a volume that only displays the
information encoded by one eigenvolume E; . Hence (1) simplifies to:

Vsim = aq X Ei + A (2)

To show the N snapshots along the trajectory, the linear factors of all volumes with respect to the specified
eigenvector E; are collected and then sorted into one vector a; = {ai,O: ,ai_n}, where a;, and a;,, are
the lowest and highest linear factors, respectively. The average volume A is constant throughout the
dataset. TrajectoryVisualizer now offers two modes: either the real linear factors are used for the
calculation (i.e. all elements of a;), or an equally sampled interval between a;, and a;,, is used. In the



a0

latter case, a sampling with a distance of al% is visualized. By applying (2) for each element in the

vector a;, or for each sample in the interval [a; o ,a; ,], a volume series is calculated.

The final snapshot volumes of the trajectory can directly be visualized by the 3D viewer implemented in
CowEyes. Supplementary Videos were generated by loading the full trajectory into UCSF Chimera and
recording a movie of a morph between those snapshots.

Iterative refinement of classification.

As the dataset was initially split in random subsets, the first 3D classification results in a very rough
estimation of the total conformational landscape, and lower populated states will be clearly missed. Thus,
particles are sorted by the linear factor towards the first eigenvector and split in subsets. These sorted
particle subsets are again subjected (individually) to 3D classification. The resulting classes are joined, and
3D PCA analysis is repeated as above. The entire procedure is repeated several times until populations
are stable. In most cases, three iterations are sufficient.

Energy landscape estimation.

The previous analysis steps mainly serve to find an efficient representation of the input 3D volumes in a
low-dimensional space. What is still missing is a quantitative continuous description of this space that
would also allow the estimation of the thermodynamic properties of the system. The algorithm for the
estimation of a continuous surface from the linear factor representation is also implemented in CowEyes
as EnergylLandscape. From two chosen eigenvolumes E; and E,, the linear factors are saved in two vectors
ayg-q1] = {ao,l, ,al} and ay_,; = {ao'z, ,an,z}, respectively. Additionally, a third vector f=
{fo, ..., f,} containing the observation frequencies or particle counts of the corresponding volume is saved.
Each data point of the form (a; x | azk | fx) is then placed on a grid forming a weighted point cloud. To
estimate a continuous surface, kernel density estimation (KDE) with a Gaussian kernel function

_<(x—x§>2 N (y—yzo)Z)
fxy)=Ae \ 20 %

is used, whereby x and y are the coordinates on the sampling grid, and x, and y, are the coordinates of
the points specified by a;x and a,y, respectively. Hence, the kernel function is evaluated for each
combination of grid point (x,y) and data point (xg, yo). The sum of all Gaussians fitted to the data points
is then the continuous probability surface. o determines the width of the Gaussian and has to be user-
adjusted. With the standard grid spacing, all landscapes shown are plotted with a o of 300 px. A
determines the height of the Gaussian and can either be the observation frequency fi or the
corresponding temperature-normalized Gibb’s free energy

(1A<2$>k =In maff(f)



A final 3D-rendered visualization of the landscape can be obtained by CowEyes’ built in surface viewer,
which is based on the Qt Data Visualization library.

Supplemental discussion.

An outline of the algorithmic workflow to analyze an ensemble of cryo-EM volumes with respect to their
intrinsic modes of motion is provided herein. These motions are then used to describe the functional
region of the energy landscape that the macromolecular machine samples in solution.

A competitive maximum likelihood refinement (‘3D classification’), whereby one particle is assigned to a
randomly initialized reference, generates all the volumetric ensembles used in this work. Nevertheless,
generation of this ensemble is extremely flexible and not restricted to 3D. Rather, an ensemble of 2D
images, all of which represent the same view, could also be used; this would not require either a large
datasets or the 3D classification step (which is computationally quite expensive). A prerequisite for an
analysis in 3D space is that a certain subset of 2D images have been averaged during 3D reconstruction.
This strategy has a major disadvantage that can however be offset through its advantage. The
disadvantage is that it discretizes the continuous movement of macromolecular machines into only those
volumes that form the ensemble. However, averaging 2D images suppresses noise and hence increases
the robustness and information content of the statistical analysis by PCA. The last point is a clear
advantage over statistical methods based purely on 2D images.

PCA has been previously used to detect conformational motions in cryo-EM data on both 2D 2 and 3D data
35 However, PCA only finds a linear approximation to the motions in the dataset. This also implies that
the real motions of the molecule are always a linear combination of all eigenvolumes found for the
dataset. Non-linear approaches are in contrast prone to overfitting, and their validity has to be verified
thoroughly in the future. Further, CowScape uses the eigenvolumes primarily for dimensionality reduction
of the high-dimensional volumes. For this purpose, PCA offers a robust way of finding dimensions
representing conformational motions), and being able to apply it to volumes rather than to coarse models
further increases the information content.

After embedding the volumes into a low-dimensional space, CowScape quantitatively interprets the
experiment by deriving Gibb’s free energies. These free energies are calculated by the Boltzmann
coefficient from the number of particles per 3D class. Counting information resulting from 3D classification
algorithms has been presented in the literature only rarely. The estimated energies are prone to errors
for the following reasons: i) generation of 3D volumes needs a minimum of a few thousand particles that
should represent different projection directions. On the one hand, this makes it hard to detect minimally-
populated states; on the other hand, in certain projection directions, the conformational change might
hardly be detectable. In both cases, the final landscape will be smoother, and the energies will be
underestimated; ii) even with the most careful sorting, broken particles will always be contained in the
dataset and thus will be randomly assigned to the volumes. This will lead to an underestimation of the
energies and to a smoothening of the landscape; iii) higher resolved structures tend to attract more
particles even if they do not fit in with respect to their conformation. This must be addressed by constant
filtering of obtained 3D volumes; iv) refinement after 3D classification discretizes the particle assignment
to a single conformation, which might due to the noise in the individual image not be fully justified. This
argument is addressed by estimating energy surfaces using Gaussian kernel density estimation (KDE). KDE



will a posteriori soften the assignments in the 3D classification and increase the robustness of the
energies. A Gaussian kernel has two parameters: its mean , and its standard deviation or bandwidth o.
Since the means are fixed by the position in 2D space, the bandwidth is critical for the absolute height of
the energies and still has to be adjusted. In CowScape, this is left to the expertise of the user. Future
improvements of the model have to include a stable estimation procedure of the bandwidth parameter.

The computationally most complex step is the generation of the ensemble prior to the actual analysis with
CowScape, which in terms of computation time is negligible compared to the first step. Hence, the analysis
and testing of different parameters can be done directly after the ensemble has been generated once.
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