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Abstract 

The B cell receptor (BCR) signaling, required for the survival and maturation of B cells, is one 

major deregulated pathway in B cell lymphomas. Several mutations are known to enhance 

the tonic BCR signal in Burkitt lymphomas (BL) or to mimic an activated receptor in some 

diffuse large B cell lymphomas (DLBCL). While the proximal events and kinases of the BCR 

signaling are well studied, less is known about the interactions of downstream effector 

pathways. As the signaling interplays and feedback loops can influence the therapeutic 

success, this thesis aims for a better understanding of signaling interplays and for an 

improvement of oncogenic network models of B cell lymphomas. 

For this purpose, BCR-related pathway interplays were examined by analyzing several 

protein phosphorylations with a multiplex immunoassay. Our investigations of pathway 

activations after thirteen defined perturbations revealed positive as well as negative 

interplays of pathways downstream of the BCR in BLs. During the tonic and active BCR 

signaling, the PI3K-AKT pathway, essential for many B cell lymphomas, enhanced its own 

activation probably through a positive feedback to kinases in close proximity of the BCR. We 

proposed that the positive feedback loop is one explanation for the potent effects of PI3K, 

AKT and mTOR inhibitors on BL proliferation. Furthermore, two negative feedbacks on the 

MEK-ERK pathway were detected after BCR activation. Beside ERK1/2 itself, p38 MAPK 

negatively influenced upstream kinases of ERK1/2. Interestingly, further fine-tuning of the 

p38 MAPK and ERK1/2 activation was assumed due to the ERK-mediated upregulation of 

MKK6 which could contribute to p38 MAPK activation. The mentioned feedbacks were 

generally identified downstream of the BCR signaling in all examined BL and DLBCL cell 

lines except for the p38 MAPK-dependent attenuation of the MEK-ERK pathway which was 

not observed in the DLBCL cell line OCI-LY3. In a second approach, the NF-κB and 

JAK-STAT-dependent proliferation of B cell lymphomas was investigated. Therefore, the 

signaling network following TLR9 and IL10R stimulation was analyzed by a phosphoproteom 

analysis. Our results revealed that the simultaneous activation of TLR9 and IL10R changed 

over 200 protein phosphorylations influencing cell cycle, metabolism and migration. The 

direct phosphorylation of CDK2 and JNK was suggested to contribute to the proliferative 

effect after TLR9 and IL10R activation. 

The signaling interplays and feedbacks identified in this study provide a deeper insight and 

refinement of the signaling network structure in lymphomas. Additional improvements of 

computational network models are advantageous to predict signaling alterations by external 

influences as well as therapeutic responses. 
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1. Introduction 

The immune system consists of various cell types to counteract pathogens through 

recognition, destruction and disposal. B cells including antibody secreting plasma cells 

and memory B cells are involved in the detection and labeling of foreign molecules. To 

cover the diversity and to increase the affinity of antibodies, B cells have the opportunity to 

modify their immunoglobulins. The adaptation and selection of B cells secreting high-

affinity antibodies occur in germinal centers (Klein and Dalla-Favera, 2008; Natkunam, 

2007). Germinal centers are histological structures in lymphoid tissues with a dark and a 

light zone (MacLennan, 1994). In the dark zone, B cells proliferate extensively and 

undergo somatic hypermutations to alter their antigen specificity. To further adjust the 

effector functions, B cells perform class switch recombination in the light zone. Depending 

on the suitability of the antibody affinity, B cells are selected in the light zone to exit the 

germinal center. All other B cells with unsuitable antibody affinity die by apoptosis or 

re-enter the dark zone for further somatic hypermutations (Victora and Nussenzweig, 

2012; Victora et al., 2010). 

The adaptation and selection of antibody secreting B cells follow a distinct program of 

signals and transcriptional alterations. Beside the activation of B cells, cell-cell interactions 

and costimulatory signals are essential to induce a specific set of intracellular signaling 

cascades and transcriptional modulators. These pathway activations regulate B cell 

proliferation, somatic hypermutations or class switch recombination during the germinal 

center reaction (Kuppers, 2005; Pone et al., 2010). Although different check points serve 

as a strong control to avoid and eliminate mistakes, the gene remodeling process 

provides an opportunity for B cells to transform into malignancies like B cell lymphomas 

(Basso and Dalla-Favera, 2015; Victora et al., 2012). 

 

 

1.1 Non-Hodgkin Lymphoma 

B cell lymphomas comprise a wide spectrum of malignancies and thus are further 

categorized in Hodgkin and non-Hodgkin lymphoma due to different genetically, 

phenotypically and clinically aspects (Vardiman et al., 2009). B cell lymphomas derive 

from mature B cells during the germinal center reaction (Kuppers, 2005). The 

heterogeneity of lymphomas reflects the origin from distinct phases of the germinal center 

reaction. Therefore, lymphomas can be classified by the B cell state of origin and on the 

basis of genetic alterations causing abnormal signal transductions (Victora et al., 2012). 

The aggressive non-Hodgkin lymphomas include Burkitt lymphoma (BL) and diffuse large 
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B cell lymphoma (DLBCL). While BLs derive from germinal center B cells of the dark 

zone, the DLBCLs are closer related to B cells from the light zone (germinal center B cell 

like) or to early stages of post germinal center plasma cell differentiation (activated B cell 

like) (Basso and Dalla-Favera, 2015). 

 

1.1.1 Burkitt Lymphoma 

BL was first described by Denis Burkitt as a highly aggressive B cell lymphoma in African 

children (Burkitt, 1958). The characteristics of BLs are uniform, highly proliferating cells 

and a starry-sky appearance due to tingible body macrophages phagocytosing the 

apoptotic debris (Blum et al., 2004). Nowadays, BLs are subdivided in three different 

types with some distinct pathological features (Molyneux et al., 2012). The endemic 

variant occurs predominantly in 4 to 7 years old children of equatorial Africa. A variant 

affecting children and young adults worldwide is classified as sporadic BL. The third, the 

immunodeficiency-related type is associated with immunodeficiency virus (HIV) infected 

individuals or with posttransplant complications. In addition, an infection with the Epstein-

Barr virus is related to all endemic, 15 % of sporadic and 40 – 50 % of immunodeficiency-

associated BLs although its impacts are still discussed (Molyneux et al., 2012; Spender 

and Inman, 2014). BLs account for 40 - 50 % of lymphomas in children and only 1 - 2 % of 

lymphoma cases in adults (Aldoss et al., 2008). 

The typical immune-phenotype of BLs comprises high Ki67 indices, the expression of 

surface immuno-globulin M (IgM) and B cell markers such as cluster of differentiation 

(CD) 10, CD19, CD20, CD22 (Kelemen et al., 2010). Furthermore, BLs are characterized 

by a chromosomal translocation affecting the proto-oncogene myelocytomatosis 

oncogene cellular homolog (MYC). The translocation places MYC under the control of the 

regulatory elements of Ig and thus causes an aberrant expression. The transcription factor 

c-MYC is involved in regulation of proliferation, cell growth, differentiation, metabolism and 

apoptosis (Basso and Dalla-Favera, 2015). In addition, the transcription factor E2-alpha 

(E2A) or its negative regulator inhibitor of DNA binding 3 (ID3) are frequently mutated in 

70 % of BL patients and 38 % of BL patients have cyclin D3 aberrations (Richter et al., 

2012; Schmitz et al., 2012). E2A is known to enhance phosphatidylinositol 3-kinase (PI3K) 

activation and constitutive PI3K and c-MYC activation is sufficient to provoke BL-like 

lymphomas in transgenic mice. However, due to a clonality of the tumor, further mutations 

are suggested to be necessary for lymphomagenesis (Klapproth and Wirth, 2010; Sander 

et al., 2012; Schmitz et al., 2012). 
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1.1.2 Diffuse Large B cell Lymphoma 

DLBCLs are the most frequent type of non-Hodgkin lymphomas in adults accounting for 

40 % of cases. The medium to large-sized lymphoid cells are arranged in a diffuse pattern 

and displacing the normal tissue architecture (Boyd et al., 2013). Due to the molecular 

diversity and different clinical outcomes, DLBCLs can be distinguished by different criteria. 

In Germany, DLBCLs are subdivided by their centroblastic or immunoblastic morphology 

(Stein and Hummel, 2006). Furthermore, a molecular classification was introduced by 

Alizadeh and coworkers. The germinal center B cell (GCB) like and activated B cell (ABC) 

like DLBCLs are characterized by subtype specific mutations although some genetic 

alterations are found in both subtypes (Alizadeh et al., 2000). A common feature of all 

DLBCLs is the influence on chromatin modifiers and the immune escape (Basso and 

Dalla-Favera, 2015). 

The typical immune-phenotype of DLBCLs comprises the expression of the surface 

immunoglobulin M (IgM) or G (IgG) and B cell markers such as CD19, CD20, CD22 and 

CD79a (Boyd et al., 2013). Common genetic alterations of DLBCLs increase the activity of 

B cell lymphoma 6 protein (BCL6) in order to enhance proliferation, to suppress DNA 

damage response and to block terminal differentiation (Basso and Dalla-Favera, 2015). 

Additionally, defects of cell surface markers promote the immune escape. Mutations of 

human leukocyte antigen class I (HLA-I), beta 2 microglobulin (B2M) and CD58 cause 

invisibility to cytotoxic T cells and nature killer cells (Challa-Malladi et al., 2011). Apart 

from these common features, the pathogenesis of GCB DLBCLs is poorly understood and 

only in a fraction of cases mutations of phosphatase and tensin homolog (PTEN), BCL2, 

c-MYC, enhancer of zeste homolog 2 (EZH2) or G protein subunit alpha 13 (Gα13) are 

found (Basso and Dalla-Favera, 2015; Rickert, 2013). Aberrations of EZH2 enhance 

proliferation, impair differentiation and promote germinal center formation. However, 

mutations of EZH2 are insufficient to induce DLBCL development and additional 

alterations of for example BCL2 are required to accelerate lymphomagenesis in mice 

(Beguelin et al., 2013). On the contrary, ABC DLBCLs depend on constitutive active 

nuclear factor kappa B (NF-κB) which is induced for instance by oncogenic mutations of 

BCR components, myeloid differentiation primary response 88 (MyD88) or caspase 

recruitment domain-containing protein 11 (CARD11) (Davis et al., 2001; Young and 

Staudt, 2013). The blockage of terminal differentiation in ABC DLBCLs can occur through 

inactivation of PR/SET domain 1 (PRDM1) (Pasqualucci et al., 2006). Interestingly, 

PRDM1 inactivation promotes lymphoma development in mice with critical features of 

ABC DLBCLs (Mandelbaum et al., 2010). 
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1.2 BCR signaling 

The PI3K and NF-κB pathways, aberrantly regulated in BLs and DLBCLs, are major 

components of the BCR signaling. Many non-Hodgkin lymphomas show a strong 

dependency on the BCR signaling implicating a pivotal role of the BCR in 

lymphomagenesis (Young and Staudt, 2013). The BCR is essential for normal B cell 

development and maturation. The strength of BCR signaling and the additional activation 

of cofactors like CD40, toll-like receptors (TLR) and the survival factor B cell activating 

factor (BAFF) are necessary for the adaptation and survival of the B cells during the 

germinal center reaction (Pone et al., 2010). While the survival of resting mature B cells 

depends on a basic so called “tonic” BCR signal, the activation of the BCR by antigens 

induces B cell proliferation, maturation and antibody production (Avalos and Ploegh, 2014; 

Lam et al., 1997). 

A functional BCR consists of a membrane bound immunoglobulin and the two 

co-receptors Ig alpha (CD79a) and Ig beta (CD79b) (Kurosaki, 1999). In normal and 

malignant B cells, the BCR can transmit a tonic signal through the PI3K pathway or 

induces further pathway activations after recognition of an antigen (Rickert, 2013). 

Ligation of an antigen to the BCR induces conformational changes and crosslinking of 

several receptors (Avalos and Ploegh, 2014). Hence, tyrosine phosphorylations within the 

immunoreceptor tyrosine-based activation motifs (ITAMs) of CD79a and CD79b are 

triggered by SRC family tyrosine kinases (SFKs) such as Lyn. These phosphorylations 

promote the binding of spleen tyrosine kinase (SYK) and initiate the formation of a 

signalosome complex (Jin et al., 2013; Kurosaki, 1999; Pao et al., 1998). The complex is 

assembled by adaptor proteins and multiple tyrosine kinases. While adaptor proteins as 

B cell linker (BLNK) and B cell adaptor for phosphatidylinositol 3-kinase (BCAP) manage 

the signal distribution, tyrosine kinases like Bruton’s tyrosine kinase (BTK) and 

phospholipase Cγ2 (PLCγ2) forward the signal (Jin et al., 2013; Takata and Kurosaki, 

1996; Wienands et al., 1998). Besides, phosphatases are also implicated in the BCR 

signaling regulation. The SH2 domain-containing protein tyrosine phosphatase 1 (SHP-1) 

counteracts the activity of SRC and SYK whereas the SH2 domain-containing protein 

tyrosine phosphatase 2 (SHP2) enhances the signaling especially of the extracellular 

regulated kinase (ERK) pathway (Jiang et al., 2014; Pao et al., 2007; Tartaglia et al., 

2004). 

Although even further signaling events occur, the outcome of proximal BCR signaling 

leads to activation of the NF-κB, PI3K, mitogen-activated protein kinase (MAPK) and 

nuclear factor of activated T cells (NFAT) pathway (Kurosaki, 2011; Niiro and Clark, 

2002). The signal transmission through the MAPK pathways includes ERK, p38 MAPK 
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and JUN N-terminal kinase (JNK) activation (Jiang et al., 1998). All BCR-induced pathway 

activations contribute to proliferation and survival of B cells with the exception of the NFAT 

pathway. The NFAT pathway is suggested to modulate B cell responses in plasma cell 

differentiation (Niiro and Clark, 2002; Winslow et al., 2006). In the following sections, the 

pathways relevant for this study are described in more detail. 

 

1.2.1 PI3K-AKT-mTOR pathway 

Activation of the PI3K pathway is sufficient to maintain resting mature B cell survival after 

depletion of the BCR. Therefore, the PI3K signal transduction is suggested to be the main 

component of the tonic BCR signaling (Srinivasan et al., 2009). Besides, the tonic signal is 

essential for many B cell malignancies although the PI3K itself is infrequently mutated 

(Blachly and Baiocchi, 2014). 

The BCR signal is transmitted by the adapter protein BCAP to a PI3K heterodimer 

consisting of a catalytic and a regulatory subunit (Blachly and Baiocchi, 2014; Okada et 

al., 2000). A variety of effectors are further involved. On the one hand, PI3K together with 

BTK activates NF-κB. On the other hand, v-akt murine thymoma viral oncogene 

homolog (AKT) acts as an immediate effector between PI3K and mammalian target of 

rapamycin (mTOR). For this purpose, PI3K induces phosphoinositide-dependent kinase-1 

(PDK1) and along with the mTOR complex 2 (mTORC2) the serine-threonine protein 

kinase AKT is recruited and phosphorylated. Following, AKT phosphorylates the mTOR 

complex 1 (mTORC1) and additionally inactivates Forkhead/winged helix box class O 

(FOXO) to induce cell cycle progression and survival (Baracho et al., 2011; Brunet et al., 

1999; Rickert, 2013). Two of the best characterized downstream targets of mTORC1 are 

the ribosomal S6 kinase (S6K) and the eIF4E binding protein (4E-BP1) (Laplante and 

Sabatini, 2012). The signaling affects protein synthesis, nutrient response and many 

additional functions required for a rapid growth (Limon and Fruman, 2012). Furthermore, a 

S6K-dependent inactivation of insulin receptor substrate 1 (IRS-1), S6K-dependent 

suppression of mTORC2 and a mTORC1-dependent phosphorylation of the adaptor 

protein glycine-rich RNA-binding protein 10 (GRB10) serve as negative feedback 

mechanisms to reduce the upstream PI3K-AKT signaling (Logue and Morrison, 2012; 

Tremblay et al., 2007; Yea and Fruman, 2011). 

 

1.2.2 MEK-ERK pathway 

Several MAPK pathways like ERK are activated following BCR activation and transmit the 

signal through a distinct core cascade of kinases (Dhillon et al., 2007). ERK plays an 

important role in B cell development and is required for the proliferative expansion of 
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immature and the differentiation of mature B cells (Yasuda et al., 2011; Yasuda et al., 

2008). Similar to other cancer identities, constitutive ERK activation is also described for 

B cell malignancies (Ogasawara et al., 2003). 

For initiation, receptor tyrosine kinases trigger the loading of guanosine triphosphate 

(GTP) to the small GTPase rat sarcoma (Ras). After BCR activation this is mediated 

rather by the guanine nucleotide exchange factor RAS guanyl-releasing protein 1 

(RASGRP1) then by the growth factor receptor-bound protein 2 (GRB2)- son of sevenless 

homolog (SOS) complex (Oh-hora et al., 2003). Once activated the GTP-bound Ras 

recruits RAF family members like RAF-1 and B-RAF to the plasma membrane for 

activation. The effector protein mitogen-activated protein kinase kinase 1 and 2 (MEK1/2) 

is activated by RAF and phosphorylates ERK1 and ERK2 (ERK1/2) on a threonine-X-

tyrosine motif (Alessi et al., 1994; Dhillon et al., 2007; Wellbrock et al., 2004). 

Phosphorylated ERKs can function in the cytosol or dimerize and translocate to the 

nucleus (Chen et al., 1992). In the nucleus, ERK1/2 contributes to several tasks which are 

determined by the signal strength and duration. Early target gene expressions and 

activations of the proto-oncogene FOS, early growth response 1 (EGR-1), MYC or proto-

oncogene JUN point to a sustained signaling of ERK1/2 (Dhillon et al., 2007; Murphy and 

Blenis, 2006). Furthermore, about hundred other targets are modulated in an ERK-

dependent manner (Roskoski, 2012). Interestingly, upstream pathway components are 

affected by ERK1/2 target genes indicating the existence of autoregulatory feedback loops 

(Corbalan-Garcia et al., 1996; Dougherty et al., 2005). For instance, ERK1/2 induces the 

expression of Sprouty to prevent the GRB2-SOS complex and MAP kinase phosphatases 

(MKPs) to reduce its own activation (Hanafusa et al., 2002; Ozaki et al., 2001; Sun et al., 

1993). Additionally, the ERK-dependent phosphorylations of SOS, RAF and MEK1 lead to 

inactive conformations, reduced binding capacities and finally to a decreased pathway 

activation (Brunet et al., 1994; Dhillon et al., 2007).  

 

1.2.3 p38 MAPK pathway 

The p38 MAPK pathway is also activated by a distinct kinase cascade and is induced by 

inflammatory cytokines and environmental stress factors. However, the role and impacts 

of p38 MAPK are versatile and still controversially discussed (Ding et al., 2009; Trempolec 

et al., 2013a). Nevertheless, p38 MAPK activation is found in numerous B cell 

malignancies and predicts the failure of response in CHOP-treated DLBCL patients (Vega 

et al., 2015). 
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The first kinases of the p38 MAPK activating cascade are mitogen-activated protein 

kinase kinase kinase 3 and 4 (MEKK3/4), apoptosis signal regulating kinase (ASK), 

protein delta homolog 1 (DLK1), mixed linage kinase 3 (MLK3) and TGF-beta activated 

kinase 1 (TAK1). After activation of one of the first kinases, mitogen-activated protein 

kinase kinase 3 (MKK3), 4 (MKK4) and 6 (MKK6) are induced to further activate one out 

of five p38 MAPK subunits. Thereby, a threonine-X-tyrosine motif existing in all subunits is 

phosphorylated (Feng et al., 2009; Zarubin and Han, 2005). 

In the cytosol, p38 MAPK regulates protein activations, for instance, the activation of the 

serine/threonine protein kinase MAPK-activated protein kinase 2 (MAPKAP-K2) with 

subsequent small heat shock 27 kDa protein (Hsp27) activation. Furthermore, p38 MAPK 

initiates protein degradation through phosphorylation-mediated destabilization or ligase 

activation (Cuenda and Rousseau, 2007; Trempolec et al., 2013a). After activation 

p38 MAPK can also translocate into the nucleus to enhance transcription factor activity for 

a rapid induction of immediate-early genes. The p38 MAPKs are emerging as important 

modulators of gene expression by regulation of chromatin modifiers and remodelers 

(Ashwell, 2006; Trempolec et al., 2013b; Zarubin and Han, 2005). Several targets and 

anti-apoptotic as well as pro-apoptotic functions are described and so far not elucidated in 

detail (Feng et al., 2009). 

 

1.2.4 NF-κB pathway 

The NF-κB pathway is important for the proliferation and survival of B cells as it 

counteracts apoptotic signals (Jost and Ruland, 2007). An aberrant NF-κB activation is a 

hallmark of several B cell malignancies to induce cell cycling and to block apoptosis 

(Staudt, 2010). 

Through PLCγ2, BTK and the adapter protein BLNK the canonical NF-κB pathway 

activation is initiated (Niiro and Clark, 2002). In addition to diacyl glycerol (DAG) and 

increased intracellular calcium flux, PLCγ2 activity induces the classical isoform PKCβ to 

phosphorylate CARD11 (Young and Staudt, 2013). Furthermore, the mucosa-associated 

lymphoid tissue lymphoma translocation protein 1 (MALT1) associates with BCL-10 and 

becomes activated. After multimerization with CARD11, TNF receptor-associated factor 6 

(TRAF6) and TAK1 are recruited to the complex. TRAF6 further activates IκB-kinase (IKK) 

in an ubiquitin-dependent manner while TAK1 leads to phosphorylation of the activation 

loop of IKK. IKK-mediated phosphorylations of the inhibitory protein IκB triggers IκB 

polyubiquitinylation with subsequent proteolytic degradation thus releasing the 

transcription factor NF-κB (Ruland and Mak, 2003; Shinohara et al., 2005; Staudt, 2010; 

Thome et al., 2010). Besides, the alternative NF-κB pathway also activates IKKs to induce 
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a direct phosphorylation and partial proteolysis of specific subunits of NF-κB (Jost and 

Ruland, 2007). 

As result heterodimers are formed consisting the subunits RelA (p65), RelB, c-Rel, 

NF-κB1 (p50) and NF-κB2 (p52). The heterodimeric NF-κB transcription factors 

accumulate in the nucleus and activate the transcription of target genes (Jost and Ruland, 

2007). NF-κB target genes include positive cell cycle regulators, anti-apoptotic proteins, 

inflammatory and immunoregulatory factors as well as negative feedback regulators to 

decrease the activation of upstream pathway components. For instance, cell cycle 

regulators like MYC and cyclin D1 are upregulated and anti-apoptotic proteins of the 

BCL-2 family are enhanced by NF-κB. The expression of immunoregulatory cytokines 

includes interleukins (IL) like IL2, IL6 and IL10 to activate growth receptors in an autocrine 

or paracrine fashion (Jost and Ruland, 2007; Lam et al., 2008). 

 

 

1.3 JAK-STAT signaling 

Autocrine as well as paracrine secreted interleukins are the main activators of the Janus 

kinase (JAK) and signal transducer and activator of transcription (STAT) pathway 

(Leonard and Lin, 2000). The JAK-STAT pathway is a pivotal signaling to regulate cell 

proliferation, survival, differentiation and immune response (Levy and Darnell, 2002). In 

addition to BCR signaling, several interleukin serum levels are elevated in non-Hodgkin 

lymphomas (Fabre-Guillevin et al., 2006). Especially in ABC DLBCLs the aberrant 

regulated NF-κB pathway leads to the expression of IL6 or IL10 and thereby to a 

subsequent growth factor stimulation (Gupta et al., 2012; Jost and Ruland, 2007). 

The binding of a cytokine to a basally inactivated cognate receptor initiates to 

conformational changes or dimerization of the receptor. Intracellular bound JAKs become 

activated and trigger cross phosphorylations with the receptor. The phosphorylation sites 

serve as anchor points for STAT proteins to receive phosphorylations through JAKs (Ihle, 

1995). For instance, in non-Hodgkin lymphoma the receptor activation by IL6 or IL10 

causes a signal transmission over JAKs to STAT3 (Gupta et al., 2012; Lam et al., 2008). 

Besides, JAKs can activate the MAPK, PI3K and mTOR pathway while receptor 

internalization or phosphatase recruitment terminates the JAK activity (Vainchenker and 

Constantinescu, 2013). 

Phosphorylated STATs can dimerize and translocate into the nucleus where they perform 

their task as transcription factors. Apart from proliferation and survival associated genes, 

STATs regulate the transcription of suppressors of cytokine signaling (SOCS) (Rawlings 
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et al., 2004). SOCS 1 to 7 belong to negative feedback loops of this pathways and 

deactivate STAT signaling by direct binding to JAK and hence preventing further STAT 

phosphorylation. In addition, protein inhibitors of STATs (PIAS) interact directly with 

STATs to repress the transcriptional activity (Vainchenker and Constantinescu, 2013). 

 

 

1.4 Oncogenic signaling 

The complexity of the germinal center reaction provides many vulnerabilities for B cells to 

transform into malignancies. Mutations, leading to aberrant signaling through modulation 

of cascades and feedbacks, play an important role in tumor progression and survival 

(Basso and Dalla-Favera, 2015; Young and Staudt, 2013). Due to the heterogeneity of 

lymphomas and their causing mutations, the understanding of molecular pathways that 

drive and maintain tumorigenesis is necessary in order to improve therapies and to avoid 

resistances or relapses (Schmitz et al., 2012; Victora et al., 2012). Despite subtype 

specific mutations and different clinical outcomes, many B cell malignancies are highly 

sensitive to kinase inhibitors disrupting the BCR signaling. Thus, targeted therapy aiming 

at the BCR signaling emerges as a new treatment opportunity for several B cell 

malignancies (Smith, 2015). 

 

1.4.1 Burkitt lymphoma 

BLs in young patients are often cured by high dose chemotherapy whereas the outcome 

for elderly patients is worse due to therapeutic intolerance. The common chemotherapy of 

BLs includes DNA and cell cycle damaging reagents beside glucocorticoids to target cells 

with high proliferation rates. The treatment-associated immune suppression is a major 

hurdle in less developed regions emphasizing the need for new targetable candidates 

(Aldoss et al., 2008; Schmitz et al., 2012). 

In BLs the genetic aberrations apart from c-MYC are often associated with an enhanced 

PI3K pathway comprising the tonic BCR signal (Figure 1) (Spender and Inman, 2014). 

E2A and its negative regulator ID3 are normally expressed in germinal center B cells of 

the dark zone to modulate the BCR signaling (Ott et al., 2013). In BLs ID3 is often 

mutated as well as the ID3 binding site in E2A. As a result, E2A activation is enhanced 

and appears to promote the PI3K signaling by inhibiting the BCR-related phosphatase 

SHP-1 (Love et al., 2012; Schmitz et al., 2014). Another mechanism to induce the 

PI3K-AKT pathway is the modulation of the negative regulator PTEN. While direct PTEN 

mutations are infrequent, the upregulation of the miR-17-92 cluster occurs more often in 

order to inhibit PTEN expression in BLs (Lenz et al., 2008c; Schmitz et al., 2012). In 
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addition to the tonic signal promotion, E2A could also induce the cell cycle through its 

downstream target cyclin D3 (CCND3). Cyclin D3 induces cell cycle progression along 

with cyclin dependent kinase 6 (CDK6). Furthermore, repression of the CDK6 inhibitor 

cyclin dependent kinase inhibitor 2A (CDKN2A) is a common lesion in BLs to promote 

proliferation (Schmitz et al., 2012; Spender and Inman, 2014). 

As many mutations in BL enhance the tonic BCR signaling, the PI3K pathway is 

suggested as a new druggable pathway for the treatment of BL. The inhibition of PI3K is 

so far approved for chronic lymphocytic leukemia and indolent lymphoma (Smith, 2015). 

In vitro studies using BL cell lines clearly demonstrated that proliferation is reduced after 

inhibition of PI3K, AKT, mTOR and cyclin D3/CDK6 (Spender and Inman, 2014). 

Therefore, the number of small pharmaceutical molecules targeting BCR-specific kinases 

increases steadily but their benefits still remains to be examined in clinical trials (Smith, 

2015). 

 

 

Figure 1: Schematic representation of some known deregulated signaling pathways in BLs. 

Activation of c-MYC and the PI3K pathway are the main oncogenic alterations in BLs. An enhanced 

activation of E2A or a missing suppression of PI3K by PTEN contributes to the tonic BCR signaling 

in BLs. Black lines represent the interaction. Upregulated and downregulated proteins are 

displayed in green and red, respectively. Adapted from Spender and Basso (Basso and Dalla-

Favera, 2015; Spender and Inman, 2014). 
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1.4.2 Diffuse large B cell lymphoma 

Due to their divergent genetic mutations and the different developmental states they 

derive from, DLBCL subtypes have various pathway dependencies. GCB DLBCLs mainly 

comprise a tonic BCR signaling and occur more often in younger patients. Mutations in 

ABC DLBCLs mimic a chronic active BCR with constitutive activation of the NF-κB 

pathway and are associated with worse outcomes than GCB DLBCLs. However, GCB and 

ABC DLBCLs cannot be clearly distinguished and both subtypes are treated with the 

same standard therapy (Deeb et al., 2015; Lenz et al., 2008b; Pfeifer and Lenz, 2013). As 

40 % of all DLBCL cases are still incurable, a better understanding of deregulated 

pathways in each subtype is needed to reveal similarities as well as differences (Ott et al., 

2010). 

The pathogenesis of GCB DLBCLs is poorly understood, however some aberrations are 

quite similar to BLs (Figure 2 A). In a fraction of cases mutations of PTEN, c-MYC, BCL-2, 

EZH2 or Gα13 are found (Basso and Dalla-Favera, 2015; Rickert, 2013). Similar to BLs, 

c-MYC enhances cell cycle progression but this is rather mediated by gain of low gene 

copy numbers or mutations of c-MYC regulators than by genetic translocations as seen in 

BLs (Ott et al., 2013). Furthermore, like in BLs the PI3K-AKT pathway is induced through 

loss of the negative regulator PTEN in 55 % of cases (Lenz et al., 2008c; Pfeifer et al., 

2013). The aberrations of Gα13 modulate the germinal center formation and cell 

movements but can also contribute to an enhanced PI3K-AKT pathway (Basso and Dalla-

Favera, 2015; Muppidi et al., 2015; Muppidi et al., 2014). 

While in ABC DLBCLs no deregulations of PTEN are found, the PI3K pathway activation 

is still increased due to receptor mutations of CD79a/b (Figure 2 B) (Kloo et al., 2011). 

These mutations in addition to receptor activation by self-antigens contribute to a 

constitutive activation of NF-κB, ERK and NFAT (Davis et al., 2010; Young et al., 2015). 

Beside the receptor activation, NF-κB can also been activated by modulation of CARD11 

or MyD88. MyD88 induces NF-κB activation independent of upstream signals through 

IL1 receptor-associated kinase (IRAK) (Lenz et al., 2008a; Ngo et al., 2011). A further 

enhanced NF-κB signaling is caused by inactivation of the repressor A20 (Compagno et 

al., 2009). The constitutive activation of NF-κB leads to the expression of IL6 or IL10 and 

to a subsequent autocrine activation of STAT3 (Davis et al., 2001; Lam et al., 2008). 

Besides this NF-κB-dependent JAK-STAT activation, STAT3 mutations are also found in 

ABC DLBCLs and indicate along with high IL10 serum levels a worse clinical outcome 

(Ding et al., 2008; Lech-Maranda et al., 2006). 
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For the therapeutic aspect, the PI3K pathway is a promising drug target in GCB DLBCLs 

similar to BLs (Pfeifer et al., 2013). As the pathogenesis of GCB DLBCLs is not fully 

elucidated, it is not surprising that some GCB DLBCL cases with wild type PTEN show no 

PI3K-AKT-dependency. However, the response to PI3K pathway inhibitors can be traced 

back to the expression status of PTEN (Pfeifer et al., 2013). In ABC DLBCLs the BCR-

mediated NF-κB activation relies on BTK and PI3K activation. Inhibition of these kinases 

leads to a reduced proliferation in vitro except for cases with BCR-independent NF-κB 

activation (Wilson et al., 2015). MyD88 or CARD11 mutations causing a BCR-independent 

NF-κB activation can be counteracted through the inhibition of MALT1 or IRAK (Young 

and Staudt, 2013). As BTK inhibitors are well tolerable, the addition to standard therapies 

showed good results for B cell malignancies in the first clinical trials (Hendriks et al., 

2014). 

 

      

Figure 2: Schematic overview of some known deregulated signaling pathways in DLBCLs. 

(A) The PI3K pathway is a major deregulated pathway of GCB DLBCLs. Missing negative 

interactions of Gα13 and PTEN contribute to the tonic BCR signaling. Aberrant regulation of c-MYC 

and BCL-2 enhance proliferation whereas EZH2 influences chromatin remodeling. (B) In ABC 

DLBCLs self-antigens and receptor mutations of CD79a/b initiate a BCR signaling with activation of 

the PI3K-AKT, NF-κB, ERK and NFAT pathways. CARD11, MyD88 or A20 mutations contribute to 

an enhanced NF-κB activation which induces IL6 or IL10 expression. Black lines represent the 

interaction. Upregulated and downregulated proteins are displayed in green and red, respectively. 

Adapted from Basso and Rickert (Basso and Dalla-Favera, 2015; Rickert, 2013). 
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1.5 Important pathway interactions and crosstalks 

The inhibition of BCR-related kinases is promising for the treatment of several B cell 

malignancies. However, unexpected side effects and resistances occur consistently 

indicating disregarded feedback mechanisms (Blachly and Baiocchi, 2014). For cellular 

responses, the signal transmission from receptors to target gene expressions is not only a 

linear pathway. The signaling outcome is strongly regulated by different pathway kinetics 

and intensities. Thereby, the signal transduction from receptors to core kinase, the 

interaction between pathways and the modulation of feedbacks is essential to cause 

different reactions to extracellular stimuli (Bluthgen, 2015; Murphy and Blenis, 2006; Reth 

and Brummer, 2004). For this reason, signaling feedbacks and crosstalks can hamper 

targeted therapy through unknown effects. So far positive feedbacks of the BCR tyrosine 

kinases and the signalosome complex or negative feedbacks within one pathway have 

been described previously (Reth and Brummer, 2004). However, the downstream wiring 

of BCR-related pathways remains largely unexplored. 

Beside its own negative feedback loop, the PI3K-AKT pathway interacts with the β-catenin 

pathway. AKT can phosphorylate and therefore inactivate glycogen synthase kinase-3 

beta (GSK3β) which is an inhibitory protein for β-catenin (Baracho et al., 2011). This leads 

to increased expression of cell cycle regulators like c-MYC and cyclin D3 and constitutes 

a further opportunity of the PI3K-AKT pathway to promote proliferation (Cato et al., 2011; 

Mazzoletti et al., 2011). Besides, a similar negative impact of ERK1/2 to GSK3β is 

described (Ding et al., 2005). The PI3K-AKT and MEK-ERK pathway share not only 

common downstream targets, they also influence each other. AKT can affect RAF 

phosphorylations leading to attenuation of the MEK-ERK pathway (Zimmermann and 

Moelling, 1999), whereas an ERK-dependent phosphorylation of MEK1 induces an 

interaction with PTEN at the membrane and causes a negative feedback on the PI3K-AKT 

pathway (Zmajkovicova et al., 2013). 

Positive and negative feedbacks are not exclusively mediated through phosphorylation of 

target proteins. Both kinases and phosphatases must be precisely regulated to determine 

the duration and intensity of pathways and thereby the signaling output. Several 

phosphatases are known to intervene at any tier of signal transduction, however, a large 

number of phosphatases regulate especially MAPKs (Bluthgen, 2015; Junttila et al., 

2008). Dual-specificity MAPK phosphatases (DUSP) specifically dephosphorylate 

threonine and tyrosine residues on different MAPK isoforms and can mediate the interplay 

between pathways (Jeffrey et al., 2007). For instance, in lung cancer cells DUSP1 is 

induced in an ERK-dependent manner by cisplatin. DUSP1 then decreases the pathway 

activity of p38 MAPK and JNK (Low and Zhang, 2016). Furthermore, the PI3K-AKT 



Introduction 

14 

pathway can induce the degradation of the ERK-specific phosphatase DUSP6 and thus 

influences the ERK1/2 signal duration (Bermudez et al., 2008). 

Despite first approaches analyzing the interactions of pathways, interplays and feedback 

loops are often disregarded in signaling schemes. Classical genetic or modern loss-of-

function experiments only reveal the linear order of signaling elements. Therefore, studies 

investigating pathway inhibitions are needed for the detection of feedbacks (Reth and 

Brummer, 2004). Our group previously generated a network model based on gene 

expression effects after different pathway perturbations (Pirkl et al., 2016). However, this 

analysis could not fully elucidate the signaling network. To discover feedback loops and 

crosstalks the analysis of pathway activations seems to be indispensable. 
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Aims 

Many non-Hodgkin lymphomas are characterized by a strong dependency on the BCR 

signaling. The tonic BCR signaling is essential for the proliferation of Burkitt lymphoma 

and some GCB DLBCLs. In ABC DLBCLs mutations mimic a chronic active BCR, thereby 

causing NF-κB activation with subsequent JAK-STAT activation. While the proximal 

events and signaling cascades of the BCR are well studied, the downstream interplay of 

pathways is barely investigated although signaling feedbacks can promote or hinder the 

therapeutic success. Therefore, the establishment of reliable network models is useful to 

predict signaling alterations by external influences as well as therapeutic responses. 

Our group has previously generated a Boolean Nested Effect model for BCR signaling 

from downstream gene expression changes of pathway perturbations (Pirkl et al., 2016). 

To verify and complement the signaling network structure and to generate more accurate 

network models, the interplay of BCR-related signaling pathways was analyzed in B cell 

lymphomas. Thus, the primary objective of this study focused on the following questions: 

1. Which pathway interplays exist downstream of the tonic BCR signaling in BLs? 

2. Which pathway interplays occur after activation of the BCR in BLs? 

3. Is it possible to construct a general network model with pathway interplays? 

4. Do pathway interplays affect cellular functions like proliferation? 

5. Are pathway interplays similar for tonic, activated and chronic active BCR signaling? 

To address these aims, an antibody-based screen of phosphoproteins was used to 

compare different pathway perturbations and selected interactions were investigated in 

more detail.  

In addition, our group has demonstrated that a simultaneous activation of TLR9 and IL10R 

signaling synergistically enhances proliferation by influencing cell cycle genes and 

metabolism (Feist, 2016). We proposed that in addition to NF-κB and STAT3 

phosphorylation the interplay of TLR9 and IL10R activation led to hitherto unconsidered 

protein phosphorylations. Therefore, the second part of my thesis concentrated on the 

following questions: 

1. Which other mediators beside NF-κB and STAT3 promote the proliferative boost? 

2. Which cellular processes are directly influenced by the pathway activations? 

For this purpose, comprehensive mass spectrometry analysis of the phosphoproteom was 

performed in the model cell line P493-6 after stimulation of TLR9 and IL10R to imitate a 

combined activation of NF-κB and STAT3. 
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2. Material and Methods 

2.1 Material, recipes and equipment 

2.1.1 Biological material 

Cell lines used in the study are listed in table 1. 

Table 1: Cell lines 

Cell line Source Distributor Reference 

BL-2 Homo sapiens  

Burkitt Lymphoma 

DSMZ, 

Brunswick 

(Bertrand et al., 1981) 

BL-41 Homo sapiens  

Burkitt Lymphoma 

DSMZ, 

Brunswick 

(Lenoir et al., 1985) 

CA-46 Homo sapiens  

Burkitt Lymphoma 

DSMZ, 

Brunswick 

(Magrath et al., 1980) 

HBL-1 Homo sapiens  

Diffuse Large B Cell Lymphoma (ABC) 

Krappmann, 

Munich 

(Nozawa et al., 1988) 

OCI-LY3 Homo sapiens  

Diffuse Large B Cell Lymphoma (ABC) 

DSMZ, 

Brunswick 

(Tweeddale et al., 1987) 

P493-6 Homo sapiens 

c-Myc transformed lymphoblastoid cell 

line 

Bornkamm, 

Munich 

(Polack et al., 1996) 

 

 

2.1.2 Chemicals, solutions and consumable supplies 

The chemicals, solutions and supplies used are recorded in table 2, 3 and 4, respectively. 

Table 2: Chemicals 

Chemical Manufacturer 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) 

Sigma-Aldrich, St. Louis, US 

4-Iodophenylboronic acid (4-IPBA) Sigma-Aldrich, St. Louis, US 

Adenosine phosphosulfate (APS) Serva, Heidelberg, DE 

Albumin Fraction V (BSA) Roth, Karlsruhe, DE 

Ammonium sulfate Merck KGaA, Darmstadt, DE 

Bromophenol blue Serva, Heidelberg, DE 

Chameleon Duo Pre-stained Protein Ladder LI-COR, Lincoln, US 

cOmplete Mini Roche, Basel, CH 

Desoxyribonucleosid triphosphate (dNTP) PrimeTech LTD, Minsk, BY 

Diethylpyrocarbonate (DEPC) Roth, Karlsruhe, DE 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich, St. Louis, US 

Dithiothreitol (DTT) Sigma-Aldrich, St. Louis, US 
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Chemical Manufacturer 

DMSO cell culture grade Sigma-Aldrich, St. Louis, US 

Ethanol Roth, Karlsruhe, DE 

Ethylenediaminetetraacetic acid (EDTA) Merck KGaA, Darmstadt, DE 

Ethylene glycol bis(2-aminoethyl ether) tetraacetic acid 

(EGTA) 

Sigma-Aldrich, St. Louis, US 

Full range rainbow molecular weight marker GE Healthcare, Chicago, US 

Glycerol Merck KGaA, Darmstadt, DE 

Glycine Roth, Karlsruhe, DE 

HEPES cell culture grade (Gibco) Thermo Fisher, Waltham, US 

Hot FIREpol DNA polymerase (5 U/µl) PrimeTech LTD, Minsk, BY 

Hydrochloric acid 37 % Merck KGaA, Darmstadt, DE 

Hydrogen peroxide 30 % Sigma-Aldrich, St. Louis, US 

Isopropanol Roth, Karlsruhe, DE 

L-Arginine:HCl unlabeled Euriso-Top, Saarbrücken, DE 

L-Arginine:HCl (13C6, 99 %; 15N4, 99 %) Euriso-Top, Saarbrücken, DE 

L-Lysine:2HCl unlabeled Euriso-Top, Saarbrücken, DE 

L-Lysine:2HCl (13C6, 99 %) Euriso-Top, Saarbrücken, DE 

L-Proline Sigma-Aldrich, St. Louis, US 

Luminol Sigma-Aldrich, St. Louis, US 

Magnesium chloride (MgCl2) Merck KGaA, Darmstadt, DE 

Meliseptol B. Braun, Melsungen, DE 

Methanol Roth, Karlsruhe, DE 

Nonylphenyl-polyethylene glycol (NP-40) Sigma-Aldrich, St. Louis, US 

Phenylmethanesulfonyl fluoride (PMSF) Sigma-Aldrich, St. Louis, US 

Phosphatase Inhibitor Cocktail 2 Sigma-Aldrich, St. Louis, US 

Phosphatase Inhibitor Cocktail 3 Sigma-Aldrich, St. Louis, US 

PhosSTOP Roche, Basel, CH 

Potassium chloride (KCl) Merck KGaA, Darmstadt, DE 

Sodium chloride (NaCl) Roth, Karlsruhe, DE 

Sodium dodecyl sulfate (SDS) Serva, Heidelberg, DE 

Sodium fluoride Sigma-Aldrich, St. Louis, US 

Sodium orthovanadate Sigma-Aldrich, St. Louis, US 

Sodium pyruvate Sigma-Aldrich, St. Louis, US 

SYBR green master mix fast Applied Biosystems, 

Kalifornien, US 

Tetramethylethylenediamine (TEMED) Sigma-Aldrich, St. Louis, US 

Trehalose dihydrate Roth, Karlsruhe, DE 

Tris(hydroxymethyl)-aminomethanhydrochlorid 

(Tris-HCl) 

Roth, Karlsruhe, DE 

TritonX-100 Roth, Karlsruhe, DE 

Tween-20 Serva, Heidelberg, DE 

Water HPLC grade Th.Geyer, Renningen, DE 

Urea Sigma-Aldrich, St. Louis, US 
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Table 3: Solutions 

Solution Manufacturer 

Acrylamide/Bis Solution 40 % (w/v) Serva, Heidelberg, DE 

Dulbecco's Phosphate Buffered Saline (DPBS) Lonza, Basel, CH 

Fetal Bovine Serum (FBS) (Gibco) Thermo Fisher, Waltham, US 

Fetal Bovine Serum (FBS) Dialyzed (Gibco) Thermo Fisher, Waltham, US 

Odyssey Blocking Buffer LI-COR, Lincoln, US 

Penicillin and Streptomycin Lonza, Basel, CH 

Ponceau S Solution Sigma-Aldrich, St. Louis, US 

Re-Blot Plus Mild Solution (10x) Merck Millipore, Burlington, US 

RPMI-1640 with L-Glutamine Lonza, Basel, CH 

RPMI 1640 Media for SILAC Thermo Fisher, Waltham, US 

Roti-Load 1 (4x) Roth, Karlsruhe, DE 

Roti-Quant (5x) Roth, Karlsruhe, DE 

Trypan Blue Solution 0.4 % Sigma-Aldrich, St. Louis, US 

 

Table 4: Consumables 

Consumable Manufacturer 

Blotting paper BF3 Th.Geyer, Renningen, DE 

C-Chip disposable hemocytometer NI NanoEnTek, Waltham, US 

Cell culture flasks, suspension (T25, T75, T175) Sarstedt, Nümbrecht, DE 

Combitips advanced (0.5, 5.0 ml) Eppendorf, Hamburg, DE 

Cryo tubes (2 ml) Greiner Bio-One, Kremsmünster, AT 

Eppendorf tubes (5.0 ml) Eppendorf, Hamburg, DE 

Falcon tubes (15, 50 ml) Sarstedt, Nümbrecht, DE 

Filtropur S 0.2 Sarstedt, Nümbrecht, DE 

Immobilon-FL transfer membrane PVDF 0.45 µm Merck KGaA, Darmstadt, DE 

Immobilon-P transfer membrane PVDF 0.45 µm Merck KGaA, Darmstadt, DE 

membranes (8 µm pores) Neuro Probe, Gaithersburg, US 

Micro tubes (0.5, 1.5, 2.0 ml) Sarstedt, Nümbrecht, DE 

Microplate PCR (384 well) Greiner Bio-One, Kremsmünster, AT 

Microtest plate (96 well) Sarstedt, Nümbrecht, DE 

Multiply- µStrip pro 8-strip Sarstedt, Nümbrecht, DE 

Optical adhesive covers Applied Biosystems, Kalifornien, US 

Pasteur pipettes (150, 230 mm) Th.Geyer, Renningen, DE 

Pipette tips (20, 200, 1000 µl) Sarstedt, Nümbrecht, DE 

Serological pipettes (5, 10, 25 ml) Sarstedt, Nümbrecht, DE 

Sterling nitrile powder-free exam gloves Halyard Health, Georgia, US 

Syringe (5.0, 50 ml) B. Braun, Melsungen, DE 

TipOne filter tips (10, 200, 1000 µl) Starlab, Hamburg, DE 

well plate, suspension, flat (6, 12, 96 well) Sarstedt, Nümbrecht, DE 

well plate, suspension, round (96 well) Sarstedt, Nümbrecht, DE 



Material and Methods 

19 

2.1.3 Buffers and media 

The recipes of buffers used in the study are presented in table 5. All buffers are water-

based. For cell culture used media and supplements are listed in table 6. 

Table 5: Recipes of buffers 

Buffer Recipe 

chemiluminescence solution 1 100 mM Tris pH 8.8 

2.5 mM Luminol 

4 mM 4-IPBA 

chemiluminescence solution 2 100 mM Tris pH 8.8 

9 mM Hydrogen peroxide 

NP-40 lysis buffer 50 mM Tris pH 7.4 

150 mM NaCl 

1 mM EDTA 

0.50 % (v/v) NP-40 

0.1 mg/ml PMSF 

1 x cOmplete Mini 

1 x PhosSTOP 

125 µM Sodium orthovanadate 

NP-40 lysis buffer modified 50 mM Tris pH 7.8 

150 mM NaCl 

0.5 mM EDTA 

1 % (v/v) NP-40 

10 % (v/v) Glycerol 

2 mM Sodium orthovanadate 

1 mM Sodium fluoride 

1 x cOmplete Mini 

1 x Phosphatase Inhibitor Cocktail 2 

1 x Phosphatase Inhibitor Cocktail 3 

nuclear extraction buffer A 10 mM HEPES pH 7.9 

10 mM KCl 

100 µM EDTA 

100 µM EGTA 

1 mM DTT 

1 x cOmplete Mini 

1 x PhosSTOP 

nuclear extraction buffer B 20 mM HEPES pH 7.9 

400 mM KCl 

1 mM EDTA 

1 mM EGTA 

1 mM DTT 

1 x cOmplete Mini 

1 x PhosSTOP 
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Buffer Recipe 

PCR buffer 750 mM Tris pH 8.8 

200 mM Ammonium sulfate 

0.1 % (v/v) Tween-20 

in 0.1% (w/v) depc water 

resolving gel buffer 375 mM Tris pH 8.8 

25 % (v/v) Acrylamide/Bis Solution (40%) 

0.0004 % (w/v) APS 

0.00125 % (v/v) TEMED 

running buffer 25 mM Tris 

192 mM Glycine 

34.67 mM SDS 

stacking gel buffer 125 mM Tris pH 6.8 

12.5 % (v/v) Acrylamide/Bis Solution (40%) 

0.0004 % (w/v) APS 

0.00125 % (v/v) TEMED 

SYBR green Mix 1 x PCR buffer 

3 mM MgCl2 

1:80000 SYBR green 

0.2 mM dNTP each 

20 U/ml Hot FIREpol DNA polymerase 

0.25 % (v/v) TritonX-100 

0.5 mM Trehalose dihydrate 

in 0.1% (w/v) depc water 

Tris buffered saline (TBS) pH 7.6 20 mM Tris 

137 mM NaCl 

TBS-T 1 x TBS buffer 

0.1 % (v/v) Tween-20 

transfer buffer 

pH 8.3 

25 mM Tris 

192 mM Glycine 

15 % (v/v) methanol 

urea buffer 25 mM Tris pH 8.0 

8 M urea 

1 x cOmplete Mini 
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Table 6: Media 

Medium Recipe (Manufacturer) 

cell culture medium RPMI-1640 with L-Glutamine (Lonza) 

10 % (v/v) heat-inactivated FBS (Gibco) 

100 U/ml Penicillin + 100 U/ml Streptomycin 

cell labeling medium light RPMI 1640 Media for SILAC (Thermo Fisher) 

10 % (v/v) heat-inactivated FBS Dialyzed (Gibco) 

100 U/ml Penicillin + 100 U/ml Streptomycin 

0.824 mM L-Arginine:HCl unlabeled 

0.275 mM L-Lysine:2HCl unlabeled 

200 mg/l L-Proline 

cell labeling medium heavy RPMI 1640 Media for SILAC (Thermo Fisher) 

10 % (v/v) heat-inactivated FBS Dialyzed (Gibco) 

100 U/ml Penicillin + 100 U/ml Streptomycin 

0.824 mM L-Arginine:HCl (13C6, 99 %; 15N4, 99 %) 

0.275 mM L-Lysine:2HCl (13C6, 99 %) 

200 mg/l L-Proline 

cell freezing medium 90 % (v/v) heat-inactivated FBS (Gibco) 

10 % (v/v) DMSO cell culture grade 

 

 

2.1.4 Cell culture supplements, inhibitors and siRNA 

In this study, cells were stimulated with soluble factors under the conditions listed in 

table 7. Inhibitors used to reduce different pathway activities are presented in table 8 with 

their respective working concentrations. Table 9 includes the small interfering RNA 

(siRNA) used for transient transfection analyses. 

Table 7: Stimulants used in cell culture 

Stimulant 

Working 

concentration Manufacturer 

anti-human IgM F(ab')2 

(α-IgM) Fragment 

13 µg/ml Jackson ImmunoResearch, 

Cambridgeshire, GB 

CpG ODN2006 0.5 µM InvivoGen, San Diego, US 

Doxycycline 1 ng/ml Clontech, Saint-Germain-en-Laye, FR 

recombinant human IL10 40 ng/ml Peprotech, Rocky Hill, US 
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Table 8: Inhibitors used in cell culture 

Inhibitor Target 

Working 

concentration Manufacturer 

(5Z)-7-Oxozeaenol TAK1 0.5 µM Tocris Bioscience, Bristol, GB 

ACHP IKKβ 7 µM Merck KGaA, Darmstadt, DE 

AZD6244 MEK 1,2 1 µM Selleckchem, Munich, DE 

AZ-TAK1 TAK1 0.5 µM Abcam, Cambridge, GB 

BKM120 p100 α,δ,β,γ 1 µM Selleckchem, Munich, DE 

CAL-101 p100 δ,γ 1 µM Selleckchem, Munich, DE 

Ibrutinib BTK 10 µM Selleckchem, Munich, DE 

JNK Inhibitor VIII JNK 3,1,2 5 µM Merck KGaA, Darmstadt, DE 

LY294002 p100 α,δ,β 10 µM Merck KGaA, Darmstadt, DE 

MK-2206 AKT 1,2,3 1 µM Selleckchem, Munich, DE 

MLN120B IKKβ 10 µM MedChemExpress, Sollentuna, SE 

Rapamycin mTOR 1 µM Selleckchem, Munich, DE 

SB203580 p38 α,β  2 µM Sigma-Aldrich, St. Louis, US 

SP600125 JNK 1,2,3 5 µM Merck KGaA, Darmstadt, DE 

U0126 MEK 2,1 10 µM Sigma-Aldrich, St. Louis, US 

 

Table 9: siRNA 

siRNA Manufacturer Order no. 

MAPK14 (p38 MAPK) Dharmacon, Colorado, US L-003512-00-0005 

negative control (scrb) Life Technologies, Carlsbad, US 4390844 

 

 

2.1.5 Antibodies 

The detection of phosphorylated or total proteins was conducted in the study with 

antibodies listed in table 10. 

Table 10: Antibodies 

Antibody against 

Host 

species Dilution Order no. Source 

AKT rabbit 1:1000 9272 Cell Signaling Technology, 

Leiden, NL 

p-AKT (Ser473) rabbit 1:1000 9271 Cell Signaling Technology, 

Leiden, NL 

Histone Deacetylase 1  

   (HDAC1) 

rabbit 1:1000 2062 Cell Signaling Technology, 

Leiden, NL 

MEK1/2 rabbit 1:1000 9122 Cell Signaling Technology, 

Leiden, NL 
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Antibody against 

Host 

species Dilution Order no. Source 

p-MEK1/2 (Ser217/221)  

   (41G9) 

rabbit 1:1000 9154 Cell Signaling Technology, 

Leiden, NL 

Mouse IgG-HRP goat 1:2000 sc-2005 Santa Cruz Biotechnology, 

Dallas, US 

Mouse IRDye 680RD goat 1:15000 925-

68070 

LI-COR, Lincoln, US 

p38 MAPK rabbit 1:1000 9212 Cell Signaling Technology, 

Leiden, NL 

p-p38 MAPK  

   (Thr180,Tyr182) (D3F9) 

rabbit 1:1000 4511 Cell Signaling Technology, 

Leiden, NL 

p44/p42 (ERK1/2) 

(L34F12) 

mouse 1:1000 4696 Cell Signaling Technology, 

Leiden, NL 

p-p44/p42 (pERK1/2)  

   (Thr202/Tyr204) (197G2) 

rabbit 1:1000 4377 Cell Signaling Technology, 

Leiden, NL 

p70 S6 Kinase (49D7) rabbit 1:1000 2708 Cell Signaling Technology, 

Leiden, NL 

p-p70 S6 Kinase (Thr389)  

   (108D2) 

rabbit 1:1000 9234 Cell Signaling Technology, 

Leiden, NL 

Rabbit IgG-HRP goat 1:2000 sc-2004 Santa Cruz Biotechnology, 

Dallas, US 

Rabbit IRDye 800CW goat 1:15000 925-

32211 

LI-COR, Lincoln, US 

p-Raf1 (Ser289/296/301) rabbit 1:1000 9431 Cell Signaling Technology, 

Leiden, NL 

p-Raf1 (Ser338) (56A6) rabbit 1:1000 9427 Cell Signaling Technology, 

Leiden, NL 

S6 ribosomal protein  

   (54D2) 

mouse  1:1000 2317 Cell Signaling Technology, 

Leiden, NL 

p-S6 ribosomal protein  

   (Ser240/244) 

rabbit 1:1000 2215 Cell Signaling Technology, 

Leiden, NL 

TAK1 (D94D7) rabbit 1:1000 5206 Cell Signaling Technology, 

Leiden, NL 

Tubulin mouse 1:1000 05-829 Merck Millipore, Burlington, 

US 
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2.1.6 Oligonucleotides 

For quantitative real-time PCR (qRT-PCR), oligonucleotides listed in table 11 were 

applied. All oligonucleotides were purchased from IBA Lifesciences (Goettingen, DE).  

Table 11: Oligonucleotides 

Gene Forward primer (5' - 3') Reverse primer (5' - 3') 

EGR2 GCA CCA GCT GTC TGA CAA CAT CT CAT GTC AAT GTT GAT CAT GCC ATC 

EGR3 CGG TGA CCA TGA GCA GTT TG GTA GGT CAC GGT CTT GTT GC 

FOS GCT TCA ACG CAG ACT ACG AG AGT GAC CGT GGG AAT GAA GT 

GAPDH CAG CCT CAA GAT CAT CAG CA CAT GAG TCC TTC CAC GAT ACC 

MAP2K6 GTG AAG GCA GAT GAC CTG GAG  GGA TCC GCT TCA CTG CCA T 

PDP1 CCA GAC GAA TTG GAA TCC CAG  AGT GCC ATA GAT CCT GCT CAG TTC  

PLD6 CAA ATC GGT CTG CTG CGC  AGT GAT GAG CAC CCT CTT GTC C 

PTGS1 AGC AGA GTT GGA GGA ATT GTA 

TGG 

CAG GGT AGA ACT CCA ACG CAT C 

TNFα TCT CTA ATC AGC CCT CTG G CTA CAA CAT GGG CTA CAG G 

ZFP36L1 TCT GCC ACC ATC TTC GAC TT GTC TTG TAG CGG CTG GAG TT 

 

 

2.1.7 Ready to use reaction systems 

Assays in the study were conducted with ready to use reaction systems which are shown 

in table 12. 

Table 12: Reaction systems 

Description Manufacturer Order no. 

Amaxa Cell Line Nucleofector Kit V Lonza, Basel, CH VCA-1003 

BCA Protein Assay Thermo Fisher, Waltham, US 23225 

Bio-Plex Pro Cell Signaling Reagent BIO-RAD, Hercules, US 171-304006M 

Calcein AM Cell Viability R&D Systems, Minneapolis, US  

NucleoSpin RNA Macherey-Nagel, Düren, DE 740.955.250 

SuperScript II Reverse Transcriptase Invitrogen, Carlsbad, US 18064-014 
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2.1.8 Equipment 

Analyses in the study were done with the equipment listed in table 13. 

Table 13: Equipment 

Instrument Manufacturer 

7900HT Fast Real-Time PCR System Thermo Fisher, Waltham, US 

Balance Kern EW420-3NM Kern&Sohn, Balingen, DE 

Bio‐Plex Protein Array system BIO-RAD, Hercules, US 

Centrifuge Heraeus Fresco 21 Thermo Fisher, Waltham, US 

Centrifuge Heraeus Multifuge 3 L-R Thermo Fisher, Waltham, US 

Centrifuge Heraeus Multifuge X3R Thermo Fisher, Waltham, US 

Counting chamber Neubauer Improved LO LaborOptik, Friedrichsdorf, DE 

Freezer (-80°C) Panasonic Corporation, Osaka, JP 

Heraeus BB6220 Thermo Fisher, Waltham, US 

IKAMAG RCT IKA Works, Staufen, DE 

Image Reader LAS-4000 mini Fujifilm, Tokio, JP 

Infinite F50 Tecan Group, Männedorf, CH 

Laminar flow Telstar Bio-II-A Prettl, Pfullingen, DE 

Micro centrifuge 1-15K Sigma-Aldrich, St. Louis, US 

Micro centrifuge 220 VAC Roth, Karlsruhe, DE 

Micro centrifuge 5424 Eppendorf, Hamburg, DE 

Micro Chemotaxis Chamber (48-well) Neuro Probe, Gaithersburg, US 

Microscope Telaval 31 Zeiss, Oberkochen, DE 

Mini Trans-Blot Cell BIO-RAD, Hercules, US 

Multipette plus Eppendorf, Hamburg, DE 

Nalgene Cryo 1°C Freezing Container Thermo Fisher, Waltham, US 

Nucleofector 2b Lonza, Basel, CH 

Odyssey CLx LI-COR, Lincoln, US 

pH-Meter 761 Calimatic Knick, Berlin, DE 

Pipette 8-channel (1-10 µl) Eppendorf, Hamburg, DE 

Pipette 8-channel (10-100 µl) ErgoOne Starlab, Hamburg, DE 

Power Pac 300 BIO-RAD, Hercules, US 

Power Supply EV202 Consort bvba, Turnhout, BE 

Roller Mixer SRT6 Stuart, Staffordshire, GB 

Shaker 3005 GFL, Burgwedel, DE 

Spectrophotometer ND-1000 Thermo Fisher, Waltham, US 

Synergy HTX multi-mode reader BioTek, Winooski, US 

Biometra Thermocycler T3000 Analytik Jena, Jena, DE 

UVC/T-AR, DNA/RNA UV-cleaner box BioSan, Riga, LV 

Vortex Genius 3 IKA Works, Staufen, DE 

Water bath Köttermann, Uetze, DE 
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2.1.9 Software 

Software presented in table 14 was used for analysis and visualization of the obtained 

data. 

Table 14: Software 

Software Developer 

ABI 7900HT SDS 2.4 Applied Biosystems, Kalifornien, US 

ABI RQ Manager 1.2.1 Applied Biosystems, Kalifornien, US 

Adobe Illustrator CS6 Version 16.0.0 Adobe Systems, Kalifornien, US 

Adobe Photoshop CS2 Version 9.0 Adobe Systems, Kalifornien, US 

Bio-Plex Manager Software BIO-RAD, Hercules, US 

EndNote X5 Clarivate Analytics, Pennsylvania, US 

Gen5 2.0 BioTek, Winooski, US 

GraphPad Prism Version 7.03 GraphPad Software, La Jolla, US 

Image Studio Lite Version 5.2.5 LI-COR, Lincoln, US 

Microsoft Office Professional Plus 2016 

(Excel, Word, PowerPoint) 

Microsoft, Washington, US 

Magellan for F50 Version 7.0 Tecan Group, Männedorf, CH 

LAS-4000 mini Version2.0 Fujifilm, Tokio, JP 

NanoDrop 1000 3.8.1 Thermo Fisher, Waltham, US 

 

 

2.2 Cell Biology 

2.2.1 Cell Culture 

All cell lines used in this study were grown in cell culture medium at 37°C and 5 % CO2. 

The cells were kept in culture for up to four weeks. BLs were cultivated at a density of 

1.5 x 105 to 1.5 x 106 cells/ml by splitting three times a week. ABC DLBCLs and P493-6 

cells were maintained at a higher density of 3 x 105 to 1.5 x 106 cells/ml. To determine the 

cell numbers a hemocytometer was used for counting and dead cells were excluded by 

trypan blue. For experiments, cells were freshly adjusted the day before. Furthermore, the 

MYC overexpressing P493-6 cells were supplemented with 1 ng/ml doxycycline 16 hours 

prior to the experiment to obtain a c-Myc depleted condition. 

For long-term storage, the cell lines were frozen. For this propose, cells were centrifuged 

(100 x g, RT) for 5 minutes and resuspended in cell freezing medium. Suspensions of 

1 ml containing 3 x 106 cells of BLs or 5 x 106 cells of DLBCLs/P493-6 were cooled down 

to -80°C using a cryo freezing container. The cryo freezing container filled with 

isopropanol provides a constant cooling of -1°C per minute. After 24 hours the cryo tubes 

were placed at -150°C for long-term storage. The thawing was performed rapidly in a 
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37°C water bath and the 1 ml cell suspension was transferred in 9 ml cell culture medium. 

After centrifugation (100 x g, RT) for 5 minutes the cells were resuspended in fresh cell 

culture medium and adjusted to their optimal density. 

 

2.2.2 Stable isotope labeling by amino acids in cell culture 

For phosphoproteomics, stable isotope labeling by amino acids in cell culture (SILAC) was 

used to analyze two conditions simultaneously by mass spectrometry. The incorporation 

of 13C- and 15N-labeled amino acids during protein turnover leads to a distinct mass 

difference between the samples making them quantitative and accurate comparable 

(Mann, 2006). P493-6 cells were thawed and cultured in cell culture medium for three 

days. Afterwards the cell medium was replaced by either cell labeling medium light or cell 

labeling medium heavy for seven days to fully incorporate the label into proteins. To avoid 

an arginine to proline conversion, the labeling medium was supplemented with 200 mM 

L-proline. After six days and 16 hours prior to the experiment, the cells were centrifuged 

(100 x g, RT) for 5 minutes and freshly adjusted to 8 x 105 cells/ml. Besides, the light-

labeled cells were stimulated with 1 ng/ml doxycycline to obtain a c-Myc depleted 

condition. 

 

2.2.3 Inhibitor treatment and stimulation of the BCR signaling 

The inhibition of distinct pathway activations was done with inhibitors which are displayed 

with their working concentrations in Table 8. As all inhibitors are solved in DMSO, the 

control cells were always treated with the equal volume of DMSO. The different cell lines 

were seeded in fresh cell culture medium and adjusted to a density of 1 x 106 cells/ml. For 

studying protein phosphorylations, the cells were incubated with inhibitors for 3 hours. 

HBL-1 and OCI-LY3 were then harvest while BLs were incubated for additional 

30 minutes with or without BCR activation. The BCR activation was done by stimulation 

with 13 µg/ml anti-human IgM F(ab')2 for 5 or 30 minutes. For RNA analysis, inhibitors 

were supplemented 3 hours before the BCR was activated for 1 - 3 hours.  

 

2.2.4 IL10 and CpG stimulation 

For phosphoproteomics, isotope labeled P493-6 cells were counted and 20 million heavy-

labeled cells stimulated with 40 ng/ml IL10 and 0.5 µM CpG as control reference. The 

light-labeled cells were divided in two samples of 10 million cells respectively. While one 

was treated with 40 ng/ml IL10 and 0.5 µM CpG, the other was equally stimulated with 

DPBS + 0.1 % BSA as control. After 30 minutes of pathway activation cells were 

harvested for mass spectrometry analysis. 
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For studying the impact of STAT3 and NF-κB activation on the migration capacity, c-Myc 

depleted P493-6 cells were counted and centrifuged (100 x g, RT) for 5 minutes. After 

adjustment to a density of 1 x 106 cells/ml in FBS-free cell culture medium, P493-6 cells 

were supplemented with 1 ng/ml doxycycline to maintain the c-Myc depleted condition. 

Furthermore, the cells were stimulated with 40 ng/ml IL10 and 0.5 µM CpG and the control 

cells were treated with equal amounts of DPBS + 0.1 % BSA. The migration assay was 

performed immediately. 

 

2.2.5 RNA-interference-mediated gene knockdown 

To down regulate specific proteins, small interfering RNAs (siRNA) were transferred by an 

electroporation-based method called NucleofectorTM Technology (Lonza). The 

combination of unique buffers with cell-specific electroporation programs ensures high 

transfection efficiencies especially for suspension cells. For the BL-2 cell line the Amaxa 

Cell Line Nucleofector Kit V (Lonza) and the Nucleofector 2b (Lonza) with program R-013 

was used. According to the manufacturer’s transfection protocol, 2 million cells were 

centrifuged (90 x g, RT) for 10 minutes and resuspended in 100 µl Nucleofector Solution V 

with 2 µg siRNA. The cells were immediately transfected and received in pre-warmed cell 

culture medium supplemented with 10 mM HEPES and 1 mM sodium pyruvate. After 

24 hours cells were stimulated with 13 µg/ml anti-human IgM F(ab')2 for 30 minutes and 

harvested for protein phosphorylation analysis. 

 

2.2.6 Cell viability assay 

The cell viability after inhibitor treatment was determined using the Calcein AM Cell 

Viability Assay (R&D Systems). Calcein AM is a non-fluorescent, cell-permeable 

compound that is converted to a green-fluorescent dye by esterases of living cells. The 

inhibition of distinct pathway activations was done with inhibitors which are displayed with 

their working concentrations in Table 8. As all inhibitors are solved in DMSO, the control 

cells were always treated with the equal volume of DMSO. Inhibitor treated and control 

cells were seeded as triplicates in a 96-well plate. BLs were adjusted to 7.5 x 103 

cells/well and ABC DLBCLs to 1.5 x 104 cells/well in a final volume of 50 µl. After certain 

time points, 50 µl 1 x Calcein buffer were added to each well and the plate was 

centrifuged (200 x g, RT) for 3 minutes. The supernatant was removed and the cells 

incubated in 100 µl 1 x Calcein buffer with 0.1 µM Calcein AM for 20 minutes at 37°C. 

Three wells without cells were additionally filled as blank value. Punctually, the absorption 

at 485 nm was measured and the viability calculated. For this purpose, the blank value 

was subtracted from sample values and all treatments normalized to the control.  
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2.2.7 Migration assay 

The migration potential of cells towards a stimulus was studied with the Boyden Chamber 

assay (Chen, 2005). The boyden chamber consists of two chambers separated by a 

porous membrane. Therefore, the movement of cells through pores of a defined size can 

be regarded. For the P493-6 cell line, a 48-well micro chemotaxis chamber and 

membranes with 8 µm pore size were used. The lower wells were filled with either cell 

culture medium containing 10 % FCS as directed migration or medium without FCS as 

undirected condition. After placing the membrane and sealing the chamber, the upper 

wells were filled with cell suspension. The cell suspension contained 1 x 106 cells/ml in 

FCS-free cell culture medium. The chamber was then incubated at 37°C and the cells 

were allowed to migrate for 6 hours. Afterwards, the chamber was disassembled and the 

cell concentration of the lower wells was determined. For each condition six technical 

replicates were evaluated by cell counting using disposable hemocytometer chips. The 

cell amount of each condition was normalized to the directed control condition. 

 

 

2.3 Protein biochemistry 

2.3.1 Preparation of cell lysates and cell fractionation for Western Blot analysis 

After stimulation, inhibitor treatment or siRNA transfection cells were harvested for 

pathway analysis. To protect protein phosphorylation cells were firstly cooled down on ice 

by addition of the two-fold volume of ice-cold DPBS supplemented with 0.5 x PhosSTOP 

(Roche) and 100 µM sodium orthovanadate. Furthermore, the cells were centrifuged 

(500 x g, 4°C) for 5 minutes, washed once and the dry pellet stored at -80°C. For lysis, the 

cell pellet was resuspended in 50 µl cold NP-40 lysis buffer and shaken for 30 minutes on 

ice. The debris was removed by centrifugation (14.000 x g, 4°C) for 15 minutes and the 

supernatant transferred into new tubes. The protein concentration was determined with 

Roti-Quant (Roth) according to the manufacturer’s instructions for use. Protein 

concentration of all samples were adjusted to each other with lysis buffer. 

To separate cytosolic and nuclear fractions cells were burst by swelling and intact nuclei 

isolated as described by Schreiber et al. (Schreiber et al., 1989). After stimulation or 

inhibitor treatment, cells were cooled down on ice by addition of the one-fold volume of 

ice-cold DPBS supplemented with 0.5 x PhosSTOP (Roche) and 100 µM sodium 

orthovanadate. The cells were centrifuged (500 x g, 4°C) for 5 minutes and washed once. 

In order to burst the cell membrane 200 µl nuclear extraction buffer A were added and 

samples were shaken 15 minutes on ice. Immediately, samples were supplemented with 

12.5 µl 10 % NP-40, mixed by vortexing and the nuclei were collected by centrifugation 
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(14000 x g, 4°C) for 1 minute. The supernatant containing the cytosolic fraction was 

transferred to a new tube. The pellets were washed with 50 µl nuclear extraction buffer A 

and centrifuged (14000 x g, 4°C) for 1 minute. After discarding the supernatant pellets 

were lysed in 30 µl nuclear extraction buffer B for 25 minutes while shaking on ice. Finally, 

the debris was removed by centrifugation (14000 x g, 4°C) for 5 minutes and the 

supernatant with the nuclear fraction transferred to a new tube. The protein concentration 

of both fractions was determined with Roti-Quant (Roth) according to the manufacturer’s 

instructions for use. Protein concentrations of all samples were adjusted to each other 

with the respective buffer. 

 

2.3.2 SDS Page, Western Blot and Immunodetection 

The separation of proteins was done by a discontinuous sodium dodecyl sulfate (SDS) 

polyacrylamide gel electrophoresis (Page) (Laemmli, 1970). For this purpose, modified 

buffers were used to generate a 10 % resolving gel with a 5 % stacking gel at least 

24 hours in advance. The samples were supplemented with 1 x Roti-Load (Roth) and 

heated to 95°C for 5 minutes just before use. The gel was loaded with 20 µg protein and a 

molecular weight marker to determine protein size. For separation, the chamber was filled 

with 1 x running buffer and a current of 30 mA for 20 minutes was firstly used. 

Furthermore, the current was set to 20 mA for 1 hour. The voltage was limited to 150 V to 

avoid overheating and the run was stopped after the dye front had left the gel. 

In order to transfer the separated proteins to a hydrophobic membrane, the tank transfer 

system was used (Towbin et al., 1979). In deviation to this, a PVDF membrane was taken 

which needs to be activated by 100 % methanol for 20 seconds, to be rehydrated in 

ddH2O for 2 minutes and to be equilibrated in transfer buffer for 5 minutes. Meanwhile, the 

SDS page gels were incubated in transfer buffer and the stacking gel was cut off. After 

blotting at 4°C and 100 V for 1 hour the membranes were removed and air-dried for 

30 minutes. For re-wetting, membranes were shortly incubated in 100 % methanol and 

washed twice with TBS for 5 minutes. Blocking of unspecific binding sites was done with 

Odyssey Blocking Buffer or 5 % BSA in TBS for 1 hour (RT). 

To detect the protein of interest the membranes were incubated overnight (4°C) in 5 % 

BSA-TBS-T with the primary antibody (Table 10). After washing 3 times for 5 minutes with 

TBS-T the suitable secondary antibody in 5 % BSA-TBS-T was added for 1 hour (RT). 

Finally, the membranes were washed further 3 times and the secondary antibodies 

visualized either by chemiluminescence or fluorescence detection. For chemi-

luminescence, the self-prepared chemiluminescence solutions 1 and 2 were mixed in 

equal parts according to Haan & Behrmann (Haan and Behrmann, 2007) and the Image 



Material and Methods 

31 

Reader LAS-4000 mini (Fujifilm) was used. The detection of fluorescence was performed 

light-protected with the Odyssey CLx (LI-COR). After staining of protein phosphorylations, 

the membranes were reblotted 15 minutes in 1 x Re-Blot Plus Mild Solution and washed 

three times with TBS. Before analyzing the total protein, the membrane was blocked in 

Odyssey Blocking Buffer or 5 % BSA in TBS for 1 hour (RT). Then the next antibody 

detection could be performed overnight as described above. 

 

2.3.3 Bio-Plex® Multiplex Immunoassay 

To measure 15 different protein phosphorylations in one sample, the magnetic bead-

based multiplex assay (BIO-RAD) was performed in close collaboration with the Blüthgen 

group of the Institute of Pathology (Charité – University Medicine Berlin). The principle is 

that a specific antibody coupled to a color-coded bead identifies the protein of interest 

while a second detection antibody determines the magnitude of a distinct phosphorylation. 

For this analysis, the Bio-Plex Pro Cell Signaling Reagent Kit (BIO-RAD) was used. The 

treated lymphoma cells were cooled down by addition of the three-fold volume of ice-cold 

DPBS supplemented with 1 x PhosSTOP (Roche) and 100 µM sodium orthovanadate. 

After 5 minutes centrifugation (500 x g, 4°C) the cells were washed once. According to the 

instruction manual the cells were lysed in the provided buffer containing 1 x factor QG and 

2 mM PMSF. After shaking for 20 minutes at 4°C debris was removed by centrifugation 

(14000 x g, 4°C) for 15 minutes. The protein concentration was determined with the BCA 

Protein Assay Kit according to the user guide. In brief, the samples were diluted 1:8 and 

1 part of solution B was mixed with 50 parts of solution A. 112 µl of the solution mix was 

added to 14 µl diluted sample, the samples were shaken for 30 seconds and then 

incubated for 30 minutes at 37°C. To determine the protein concentration the absorption 

was measured at 560 nm. Afterwards the samples were transferred in a 96 well plate, 

stored at -80°C and shipped on dry ice to the Blüthgen group for analysis.  

The analysis with the Bio-Plex Protein Array system (BIO-RAD) was done by Anja Sieber 

of the Institute of Pathology (Charité – University Medicine Berlin) as published before 

(Klinger et al., 2013) and according to the manufacturer’s instructions. Specific beads 

were used for p-SYK (Y352), p-70 kDa zeta-chain associated protein (ZAP70) (Y319), 

p-BTK (Y223), p-AKT (S473), p-40S ribosomal protein S6 (RPS6) (S235/S236), p-Bcl2-

associated agonist of cell death (BAD) (S136), p-MEK1 (S217/S221), p-ERK1/2 

(T202/Y204, T185/Y187), p-90 kDa ribosomal protein S6 kinase (p90RSK) (S380), 

p-GSK3αb (S21/S9), p-p38 MAPK (T180/Y182), p-HSP27 (S78), p-JNK (T183/Y185), 

p-c-Jun (S63) and p-p65 NF-κB (S536). The Bio‐Plex manager software was used for 

data acquisition. Subsequently, Bertram Klinger of the Institute of Pathology (Charité – 



Material and Methods 

32 

University Medicine Berlin) performed the evaluation and network modeling using Modular 

Response Analysis-based R package STASNet (Dorel et al., 2018; Klinger et al., 2013). 

 

2.3.4 Mass spectrometry based phosphoproteomics 

In order to ensure a complete incorporation of the isotope labeled amino acids, P493-6 

cells were harvested after growing in cell labeling medium for 7 days. To that, 1 million 

cells were sedimented (500 x g, 4°C) and washed once with DPBS. The cell pellet was 

resuspended in 500 µl urea buffer and the protein concentration determined. An aliquot of 

each labeling was analyzed by mass spectrometry to ensure a protein labeling above 

95 % and to exclude an arginine to proline conversion. 

For phosphoproteomics, cells were harvested by centrifugation (500 x g, 4°C) for 

5 minutes and washed once with ice-cold DPBS + 1 x PhosSTOP (Roche). The cell pellet 

was stored by -80°C until lysis. Afterwards the cell pellet was resuspended in 450 µl 

modified NP-40 lysis buffer for 30 minutes at 4°C. The cell debris was removed by 

15 minutes centrifugation (14000 x g, 4°C) and the supernatant collected. The light and 

heavy labeled samples were mixed in equal parts, the protein concentration was 

determined with Roti-Quant (see 2.3.1) and the samples stored at -80°C until mass 

spectrometry analysis. 

The further steps were executed by Jasmin Corso from the Bioanalytical Mass 

Spectrometry Group of Henning Urlaub (Max-Planck-Institute for Biophysical Chemistry, 

Goettingen) as described elsewhere (Corso et al., 2016). In summary, a global enrichment 

of phosphopeptides was done and analyzed with liquid chromatography-tandem mass 

spectrometry. Raw data were analyzed with the MaxQuant software (Max Planck Institute 

for Biochemistry, DE) (Cox and Mann, 2008) and further processed using the Perseus 

software (Max Planck Institute for Biochemistry, DE) (Deshmukh et al., 2015). 

Phosphorylation sites with a localization probability lower than 0.75 were removed and the 

logarithmic SILAC ratios displayed as described by Corso et al. (Corso et al., 2016). 

 

 

2.4 Molecular Biology 

2.4.1 RNA isolation 

For RNA analysis, cells were harvested by centrifugation (500 x g, 4°C) for 5 minutes and 

washed once with ice-cold DPBS. Total RNA was isolated from the cell pellets using the 

NucleoSpin RNA kit (Macherey-Nagel) and following the user manual. In brief, the cell 

pellet was lysed without β-mercaptoethanol, debris was removed and the RNA was 
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loaded to a spin column. After digestion of DNA and several washing steps the RNA was 

eluted in 50 µl RNase free H2O. The concentration was determined with the 

spectrophotometer ND-1000. 

 

2.4.2 Reverse transcription 

The SuperScript II Reverse Transcriptase kit (Invitrogen) was used to generate 

complementary DNA (cDNA) from messenger RNA. First, 1 µg RNA was filled up with 

RNase free water to a total volume of 10 µl. After adding 2 µl random hexamer primers 

the samples were denaturated at 70°C for 10 minutes. Furthermore, samples were cooled 

down on ice, supplemented with 8 µl master mix (Table 15) and the reverse transcription 

performed in a thermocycler following the program detailed in Table 16. 

Table 15: Reverse transcriptase master mix 

 

 

Table 16: Thermocycler program 

Temperature Cycle length 

25°C 10 minutes 

42°C 60 minutes 

65°C 10 minutes 

4°C continuously 

 

 

2.4.3 Quantitative real-time polymerase chain reaction 

To analyze distinct gene expressions a SYBR green-based qRT-PCR was performed in 

384 well plates using the 7900HT Fast Real-Time PCR System. SYBR green is a nucleic 

acid binding dye emitting a much higher green fluorescence upon intercalation with double 

stranded DNA compared to single strands (Schneeberger et al., 1995). As the amount of 

DNA rises exponentially with the number of amplification cycles, the fluorescence signal 

increases equally. Hence, the number of cycles crossing a fluorescence threshold is 

inversely proportional to the DNA amount and defined as CT-value. The comparison of 

CT-values allows a relative quantification of gene expression. For this purpose, 5.6 µl 

SYBR green mix were supplemented with 0.3 µM of each primer and filled up to 8 µl as 

Substance Amount 

First strand buffer (5x) 4 µl 

DTT (0.1 M) 2 µl 

Super Script II RT 1 µl 

dNTPs (10 mM) 1 µl 
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PCR master mix. The cDNA samples were diluted to 50 ng/µl and 10 ng of cDNA added 

to the PCR master mix. After closing the well plate with an optical adhesive cover, the 

analysis was done following the qRT-PCR program shown in Table 17. 

Table 17: qRT-PCR program 

Temperature Cycle length Cycle amount 

95°C 15 minutes  

95°C 

60°C 

15 seconds 

1 minute 
40 x 

95°C 

60°C 

95°C 

15 seconds 

15 seconds 

15 seconds 

 

 

The relative quantification of gene expression was determined using the software ABI 

7900HT SDS 2.4 and ABI RQ Manager 1.2.1. Thereby, normalization was firstly 

implemented to the internal housekeeper glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) (ΔCT) in order to compensate technical differences: 

𝛥𝐶𝑇 = 𝐶𝑇𝑔𝑒𝑛𝑒 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡 − 𝐶𝑇ℎ𝑜𝑢𝑠𝑒𝑘𝑒𝑒𝑝𝑒𝑟 

The relative gene expression changes were calculated by reference to the untreated 

control (ΔΔCT): 

𝛥𝛥𝐶𝑇 = 𝐶𝑇𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 − 𝐶𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

As the number of cycles is inversely proportional to the DNA amount, the expression fold 

changes can be calculated as follows: 

𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  2−𝛥𝛥𝐶𝑇 

 

 

2.4.4 RNA sequencing 

RNA sequencing was conducted in three previous projects at the clinic for Hematology 

and medical Oncology (University Medical Centre, Goettingen). Hence, the 

implementation of the BL-2 analysis is described by Wolff et al. (Wolff et al., 2018). For 

P493-6 and ABC DLBCLs, the RNA analysis was performed as described by Maren Feist 

(Feist, 2016) and Annekatrin Arlt (Arlt, 2018). 

 

 



Material and Methods 

35 

2.5 Statistics and bioinformatical analyses 

Statistical and bioinformatical analyses of the multiplex immunoassay were performed by 

Bertram Klinger of the Institute of Pathology (Charité – University Medicine, Berlin). 

For the phosphoproteomic experiment, phosphosites quantified in less than two replicates 

were excluded. Significance testing was done using the two-way ANOVA method and a 

two-stage step-up method of Benjamini, Krieger and Yekutieli to correct for multiple 

comparisons by a FDR threshold of 0.05. The calculation was performed with 

log2-transformed ratios and GraphPad Prism 7. Therefore, phosphosites altered in two or 

more replicates, with p-value of less than 0.05 and log2 ratio above 0.58 (over 50 % fold 

change) were deemed significantly changed. The network representation of changed 

protein phosphorylations was created with STRING (Szklarczyk et al., 2015). 

Furthermore, a gene set enrichment was performed with the online DAVID bioinformatics 

annotation tool (Huang da et al., 2009). Thereby, a functional annotation clustering for 

biological processes (GOTERM_BP_Fat) was used with an EASE score of 0.1 and a 

medium classification stringency. Due to a long list of gene ontology terms, REVIGO was 

used with default settings and allowed similarity of 0.5 for summarization and visualization 

(Supek et al., 2011). The changed protein phosphorylations were also used to predict 

possible kinase activities with a literature-based kinase-substrate library of the online 

Kinase Enrichment Analysis 2 (KEA2) tool (Lachmann and Ma'ayan, 2009).  
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3. Results 

The result section is divided in two chapters. At first, the interplay of BCR-related signaling 

pathways was investigated to generate a semi-quantitative network by complementation 

of a literature-based model with the experimental data. Thereafter, the combined 

stimulation of IL10R and TLR9 was examined for their impact on the phosphoproteome to 

investigate the synergistic effects on proliferation in more detail. 

 

 

3.1 Tonic and active BCR signaling contains several feedback loops 

In a previous analysis, our group applied the Boolean-Nested Effect Model framework to 

gene expression changes after pathway perturbations using the BL cell line BL-2 with a 

tonic or activated BCR signaling (Pirkl et al., 2016). The results provided a first 

unsupervised model of the distal BCR signaling nodes and a hypothesis explaining how 

downstream nodes of this pathway were affected. Nevertheless, this analysis could not 

fully elucidate the signaling network. For a better understanding and extension of the 

network structure, protein phosphorylation analyses of the BCR signaling were performed 

to uncover the interplay and feedback loops of downstream effector pathways. 

For data consistency, we used BL-2 cells again and investigated pathway perturbations 

during a tonic or an activated BCR signaling. The tonic BCR signaling is next to c-MYC a 

hallmark of BLs and includes in particular the activation of the PI3K pathway (Schmitz et 

al., 2012; Srinivasan et al., 2009). However, a fully active BCR signaling can be achieved 

by stimulation of the receptor with antigens and in case of BL-2 with α-IgM. This 

crosslinking of the BCR leads to an additional activation of the MAPK, NFAT and NF-κB 

pathways (Hendriks et al., 2014). For the inhibition of these signal transmissions, the 

same inhibitors were used as in the previous study and some new ones included. Beside 

the inhibition of PI3Kα,β,δ (Ly294002), MEK1/2 (U0126), TAK1 (5’-7-Oxozeanol), 

p38 MAPK (SB203580), JNK (SP600125) and IKKα,β (ACHP), the list was extended with 

the inhibition of BTK (Ibrutinib), PI3Kα,β,γ,δ (BKM120), PI3Kγ,δ (CAL-101), AKT 

(MK-2206), mTOR (Rapamycin), MEK1/2 (AZD6244), JNK (JNK Inh VIII) and IKKα,β 

(MLN120b). Instead of analyzing gene expression changes, we detected the pathway 

activations by measuring specific kinase phosphorylations. For this purpose, we used an 

antibody-based multiplex immunoassay to quantify 15 different protein phosphorylations 

simultaneously in one sample. Thereby, the phosphorylations of the upstream kinases 

SYK, ZAP70 and BTK as well as the pathway activations of PI3K-AKT, MEK-ERK, 

p38 MAPK, JNK and NF-κB were determined. Only such an approach allowed us to 



Results 

37 

compare the thirteen inhibitor treatments during a tonic or active BCR signaling in BL-2 

cells. 

 

3.1.1 Determination of a suitable time point for pathway interaction analyses 

As the kinetics of posttranslational modifications occur prior to the gene expression 

responses, the suitable time point to analyze protein phosphorylations had to be 

determined first. Therefore, protein phosphorylations of three major pathways were 

investigated after different durations of BCR activation. The phosphorylation of PI3K, AKT, 

pS6 kinase, MEK1, ERK1/2 and p38 MAPK was measured after 15, 30, 60 and 

90 minutes of BCR stimulation with α-IgM. The detection was done with immunoblot 

analysis (Figure 3 A) and the multiplex immunoassay in BL-2 cells (Figure 3 B).  

 

 

Figure 3: Time dependent activation of specific signaling pathways after BCR activation. 

Protein phosphorylations were investigated after BCR activation by α-IgM at the indicated time 

points. (A) Immunoblot analysis of AKT, ERK1/2, S6 kinase and p38 MAPK phosphorylation and 

total proteins. Tubulin served as loading control (n=1). (B) multiplex immunoassay for quantitative 

phosphorylation analysis of PI3K, MEK1, AKT, ERK1/2 and p38 MAPK. Data points displayed the 

mean fluorescence intensity of two technical replicates. The black line displays the unstimulated 

control (Ctrl), whereas the red line indicates BCR activation by α-IgM stimulation (n=1). 

 

Activation of the BCR led to an increasing phosphorylation of PI3K till 60 minutes in the 

multiplex immunoassay (Figure 3 B). In addition, both analyses clearly showed a 

phosphorylation of the PI3K target AKT by α-IgM stimulation up to 60 minutes (Figure 

3 A, B). After 90 minutes of BCR activation a declining phosphorylation was observed for 

PI3K and AKT. However, in the immunoblot analysis no phosphorylation changes were 

detected for the AKT downstream kinase S6 compared to the unstimulated control (Figure 

3 A). The phosphorylation of MEK1, ERK1/2 and p38 MAPK was highest at 15 or 
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30 minutes of α-IgM stimulation, decreased slightly till 60 minutes and showed a stronger 

decline after 90 minutes (Figure 3 A, B).  

In conclusion, the PI3K activation increased up to 60 minutes of BCR activation, whereas 

the phosphorylations of the other kinases already decreased at this time point. In order to 

detect the most pathway activations and interactions, we decided to choose a time point 

suitable for all measured kinases. Therefore, 30 minutes of BCR activation was selected 

for further analysis. 

 

3.1.2 Tonic BCR signaling is enhanced by positive feedback loop  

We then analyzed the tonic BCR signaling in BL-2 cells with the multiplex immunoassay 

and the results are displayed in comparison to the untreated control in Figure 4. The 

quantitative values of this analysis are presented in the supplement (Figure A-1, Figure A-

2). In BL-2 cells it was shown that the inhibition of BTK, PI3K, AKT and mTOR lowered all 

measured protein phosphorylations except for p38 MAPK (Figure 4 A). In detail, the 

affected phosphorylations belonged to the upstream kinases SYK, ZAP70 and BTK as 

well as the pathway activations of PI3K-AKT, MEK-ERK, JNK, NF-κB and GSK3β. As a 

signal inhibition of the PI3K pathway led to a decreased phosphorylation of downstream 

as well as upstream kinases, we hypothesized the existence of a positive feedback loop 

from mTOR to kinases nearby the BCR. However, the inhibition of MEK1/2 or p38 MAPK 

had nearly no effect on any detected phosphorylation. The impacts of JNK or NF-κB 

inhibition were also not notable and decreased only slightly the phosphorylations of SYK, 

ZAP70, BTK, GSK3β and the PI3K-AKT, MEK-ERK, JNK and NF-κB pathways. 

Therefore, no clear influences of the MAPKs or NF-κB on the other pathways were seen. 

In order to confirm the obtained findings, a second BL cell line was investigated using a 

smaller set of inhibitors. Similar results were obtained in BL-41 cells compared to BL-2 

cells (Figure 4 B). Only the MEK1/2 inhibition differed from the BL-2 data and rather 

induced a slight increase of the phosphorylation of SYK, ZAP70, BTK, GSK3β and the 

PI3K-AKT, MEK-ERK, p38 MAPK, JNK and NF-κB pathways. 

In summary, we concluded that the PI3K pathway enhances its own activation by a 

positive feedback loop to the proximal kinases of the BCR. In addition, the MAPKs and 

NF-κB pathways are not interacting with other pathways during the tonic BCR signaling. 

As the PI3K pathway is the main driver of the tonic BCR signaling (Sander et al., 2012; 

Schmitz et al., 2012), we suspected that the other pathways are maybe not active enough 

to reveal pathway interplays. 
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Figure 4: Signaling changes by pathway perturbations during the tonic BCR signaling. 

Signal transduction was disrupted by inhibitors of BTK, PI3K, AKT, mTOR, MEK1/2, p38 MAPK, 

JNK and IKKα,β for 3.5 hours. Specific phosphorylations of SYK, ZAP70, BTK, AKT, RPS6, BAD, 

MEK1, ERK1/2, p90RSK, GSK3αb, p38 MAPK, HSP27, JNK, c-JUN and p65 NF-κB were 

measured with the multiplex immunoassay. The log2 values normalized to control are shown for the 

BL cell lines BL-2 (A) and BL-41 (B) (n=3). 

 

In order to determine whether all PI3K-AKT pathway inhibitors hamper the proliferation of 

BLs, the cell viability was examined over 72 hours. Besides, a MEK1/2 inhibitor was 

included to confirm that this pathway is not pivotal for the proliferation of BLs. While the 

inhibition of AKT and mTOR clearly reduced the viability of BL-2 cells to 72 hours, the 

PI3K and MEK1/2 inhibitor showed nearly no influences (Figure 5 A). However, in BL-41 

cells the inhibition of PI3K, AKT and mTOR decreased the cell viability, whereas only the 

MEK1/2 inhibition had no impact (Figure 5 B). This indicated that the PI3K-AKT pathway 

was altogether important for BL proliferation. 

We concluded that the PI3K is indeed the main driver of the tonic BCR signaling and the 

MEK-ERK pathway is negligible or not active under these conditions. 
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Figure 5: Cell viability of BLs after pathway inhibition during the tonic BCR signaling. 

Cell viability assay was performed after 24, 48 and 72 hours with the fluorescence dye Calcein AM. 

The cells were treated with inhibitors of PI3K, AKT, mTOR and MEK1/2.The amount of viable cells 

was normalized to control and the mean +/- SD is displayed for the Burkitt lymphoma cell lines 

BL-2 (A) and BL-41 (B) (n=3). 

 

 

3.1.3 Active BCR signaling is influenced by positive and negative interplays 

Next we examined the pathway phosphorylations after 30 minutes of BCR activation in 

BL-2 cells with the multiplex immunoassay. The quantitative values of this analysis are 

presented in the supplement (Figure A-1, Figure A-2). The α-IgM stimulation of the BCR 

increased all measured protein phosphorylations in comparison to the unstimulated 

control (Figure 6 A). More precisely, the activation of SYK, ZAP70, BTK, GSK3β and the 

PI3K-AKT, MEK-ERK, p38 MAPK, JNK and NF-κB pathways were heightened. 

To verify these findings, BL-41 cells were included as well (Figure 6 B). Similar to BL-2, 

the phosphorylations of SYK, ZAP70, BTK, GSK3β and the PI3K-AKT, MEK-ERK and 

NF-κB pathways were stronger after α-IgM stimulation compared to control cells. 

However, no phosphorylation changes were detected for p38 MAPK whereas the 

phosphorylation of the downstream target HSP27 was reduced. The JNK phosphorylation 

was not altered as well, while the phosphorylation of c-Jun was enhanced. As the exact 
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signal transduction to the MAPKs was still not fully clarified, we suggested that little 

differences in the activation of upstream kinases were an explanation for these variations.

In conclusion, activation of the BCR receptor induced the phosphorylation of SYK, ZAP70 

and BTK as well as a further activation of the PI3K-AKT, MAPK and NF-κB pathways as 

described previously (Hendriks et al., 2014). Besides, we assumed that the signal 

distribution to the MAPK pathways depend on the activity of upstream kinases and can 

differ between cell lines. 

For an easier interpretation of the inhibitor effects, the values were normalized to the 

α-IgM-stimulated control. Similar to the tonic BCR results, the inhibition of BTK, PI3K, AKT 

and mTOR diminished all measured protein phosphorylations in BL-2 cells (Figure 6 C). 

Thereby, the phosphorylations of the upstream kinases SYK, ZAP70 and BTK as well as 

the pathway activations of PI3K-AKT, MEK-ERK, p38 MAPK, JNK, NF-κB and GSK3β 

were affected. We concluded that the enhanced PI3K pathway after BCR activation also 

comprised a positive feedback loop from mTOR to the BCR. 

In addition, a similar pattern like for PI3K inhibitors was seen after inhibition of MEK1/2 

(Figure 6 C). The MEK1/2 inhibitor caused a lower phosphorylation of SYK, ZAP70, BTK, 

GSK3β and of the PI3K-AKT, p38 MAPK, JNK and NF-κB pathway, while its own 

phosphorylation was enhanced. As ERK1/2 is known to reduce its own pathway activity 

through inactivating phosphorylations of RAF-1 and MEK1/2 (Steelman et al., 2011), we 

suggested that the signal inhibition to ERK1/2 provoked the increase of the activating 

MEK1 phosphorylation. Furthermore, the inhibition of p38 MAPK heightened strongly the 

phosphorylation of MEK1 and ERK1/2. In comparison to the other pathways only slight 

increased phosphorylations of ZAP70, BTK, AKT, GSK3β, JNK, c-Jun and NF-κB were 

detected. These pointed out that p38 MAPK attenuated especially the MEK-ERK pathway. 

Comparable with the tonic BCR signaling in BL-2 cells, JNK and NF-κB inhibition achieved 

only little phosphorylation changes. Thereby, the phosphorylations of SYK, ZAP70, BTK, 

GSK3β and the PI3K-AKT, MEK-ERK, JNK and NF-κB pathways were only slightly 

diminished. Thus, no clear influences of JNK and NF-κB were seen on the other pathways 

after BCR activation. 
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Figure 6: Signaling changes by pathway perturbations during the active BCR signaling. 

The signal transduction was disrupted by inhibitors of BTK, PI3K, AKT, mTOR, MEK1/2, 

p38 MAPK, JNK and IKKα,β for 3 hours. Afterwards the BCR were activated by α-IgM for 

30 minutes. Specific phosphorylations of SYK, ZAP70, BTK, AKT, RPS6, BAD, MEK1, ERK1/2, 

p90RSK, GSK3αb, p38 MAPK, HSP27, JNK, c-JUN and p65 NF-κB were measured with the 

multiplex immunoassay. The log2 values normalized to untreated control are shown for the Burkitt 

lymphoma cell line BL-2 (A) and BL-41 (B). Furthermore, the log2 values of A and B were 

normalized to the α-IgM-stimulated control and displayed for BL-2 (C) and BL-41 (D) (n=3). 

 

For the verification of these results, a second BL cell line was examined with a smaller set 

of inhibitors. The BL-41 cells showed similar results in comparison with BL-2 cells (Figure 

6 D). Therefore, only the differences are mentioned in the following. In contrast to the BL-2 

results, the inhibition of AKT caused a stronger phosphorylation of p90RSK and JNK while 

the other kinase phosphorylations were not affected compared to the antigen-stimulated 
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control. In addition, the JNK inhibitor showing no effects in BL-2 led to increased 

phosphorylation of SYK, ZAP70, BTK, GSK3β and the PI3K-AKT, MEK-ERK, p38 MAPK, 

JNK and NF-κB pathways. After inhibition of NF-κB, the increased phosphorylation of 

BTK, p90RSK, HSP27 and JNK was contrary to the reduced phosphorylations in BL-2 

cells. Another difference compared to the BL-2 analysis was the combined inhibition of 

MEK1/2 and p38 MAPK. As a negative impact from p38 MAPK was considered on MEK1 

and ERK1/2, the inhibition of both kinases was performed to reveal whether p38 MAPK 

directly influences ERK1/2. The phosphorylation of ERK1/2 was over 80 % lower after 

inhibition of p38 MAPK and MEK1/2 compared to the p38 MAPK inhibition alone. This 

pointed out that p38 MAPK reduced mainly the phosphorylation of MEK1 or upstream 

components.

In summary, the PI3K pathway was also promoted by a positive feedback loop to proximal 

kinases of the BCR after receptor activation. Furthermore, the BCR activation induced 

negative feedbacks on the MEK-ERK pathway which are mediated by ERK1/2 and 

p38 MAPK on upstream kinases of ERK1/2. 

 

3.1.4 Schematic model represents interactions of signaling pathways 

Current literature-based networks present mostly a linear signal transduction from the 

receptor along the pathway components. Furthermore, the data collected from different 

publications often focus on a particular signaling or on protein complexes within the own 

pathway. For the BCR signaling, the proximal events are so far investigated in more detail 

(Satpathy et al., 2015), even though a final network is still missing. In contrast, the distal 

signaling of the BCR is just partially understood. In order to refine the network structure, 

we used a literature-derived signaling network, depicted in a recent review, as a starting 

point (Figure A-3) (Hendriks et al., 2014). In collaboration with Bertram Klinger (Institute of 

Pathology, Charité – University Medicine Berlin), a semi-quantitative network analysis was 

performed on the perturbation data using the modular response analysis and the profile 

likelihood (Klinger et al., 2013). For this purpose, pathway interactions were included or 

excluded to achieve the best likelihood and network. 

In Figure 7 the network for the BL-2 analysis is displayed. As the network analysis of 

BL-41 is comparable, it is presented in the appendix (Figure A-4). After BCR activation, 

the signal was transmitted through SYK, BTK and PI3K over AKT to mTOR (upper part of 

Figure 7). Furthermore, a link from mTORC1 to GSK3β and the BCR was proposed. The 

interaction between AKT and GSK3β was known before and confirmed by our analysis 

(Baracho et al., 2011). While negative feedbacks were only described for the PI3K-AKT 
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pathway (Logue and Morrison, 2012), our results suggested a positive feedback loop from 

mTOR to the BCR in BLs. 

 

 

Figure 7: Network model of BCR signaling interactions and feedbacks. 

Network model of BL-2 based on Modular Response Analysis by STASTNet was calculated by 

Bertram Klinger (Institute of Pathology, Charité – University Medicine Berlin). Stimulated (blue), 

inhibited (red) and measured (Yellow) nodes are displayed. The corresponding numbers reveal the 

inhibition strength (red) and the value of the local response coefficients (black). Arrows present 

interaction with positive (black) or negative (orange) local response coefficients.  

 

The BCR signal was also transduced through SYK, PI3K and BTK to RAF-1, p38 MAPK, 

JNK and IKK (lower part of Figure 7). The activation of JNK led to the phosphorylation of 

c-Jun, whereas IKK subsequently activated NF-κB. For these both pathways, no 

feedbacks or other interactions were likely in our analyses. Besides, p38 MAPK induced 

HSP27 and influenced RAF-1. Although our results just implicated that p38 MAPK 

attenuates the MEK-ERK pathway upstream of ERK1/2, a connection from p38 MAPK to 

RAF-1 was assumed based on the literature. Finally, the activation of RAF-1 mediated the 
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phosphorylation of MEK1 and further ERK1/2. The activated ERK1/2 reduced then the 

activation of RAF-1 and GSK3β. Therefore, our findings confirmed the negative feedback 

from ERK1/2 to RAF-1 and validated the interaction with GSK3β in BLs. 

To sum up, our signaling analyses revealed a positive feedback loop of the PI3K-AKT 

pathway which has not been described before. In addition, two negative feedbacks on the 

MEK-ERK pathway were mediated by ERK1/2 and p38 MAPK. The phosphorylation of 

GSK3β was both AKT- and ERK1/2-dependent. Therefore, the pathway analyses 

contribute to the validation of known feedbacks, to the discovery of new interactions and 

to a better understanding of the pathway interplays in BL cell lines. 

 

 

3.2 p38 MAPK attenuates the MEK-ERK pathway 

The importance of the PI3K pathway for BL proliferation is well studied (Sander et al., 

2012; Schmitz et al., 2012) while the role of MAPKs is not elucidated and less is known 

about the attenuation of the MEK-ERK pathway. So far the capability of ERK1/2 to inhibit 

MEK1/2 and RAF-1 has been discovered (Dougherty et al., 2005). An influence on the 

MEK-ERK pathway by p38 MAPK was only seen in other cell types and controversially 

discussed (Birkenkamp et al., 2000; Zhang et al., 2003). Therefore, we focused on the 

negative regulation of the MEK-ERK pathway in our next analyses. 

 

3.2.1 p38α (MAPK14) limits the MEK-ERK pathway 

As the RAF-1 activity increased linearly by raising concentration of the p38 MAPK inhibitor 

SB203580 above the required inhibitor concentrations to block p38 MAPK, this effect was 

referred to an unspecific inhibitory effect (Kalmes et al., 1999). However, an increased 

MEK-ERK signaling after p38 inhibition was also observed with another inhibitor 

(Hirosawa et al., 2009) and with dominant negative p38 MAPK expression (Aguirre-Ghiso 

et al., 2001). Thus, we validated the p38 MAPK influence on the MEK-ERK pathway in 

BL-2 cells first. As shown in Figure 8 A, the phosphorylation of MEK1 and ERK1/2 was 

induced by antigen stimulation. Additionally, the inhibition of p38 MAPK (SB203580) led to 

much higher levels of MEK1 and ERK1/2 phosphorylations compared to the antigen-

stimulated control. To confirm this effect, p38 MAPK was downregulated with specific 

siRNAs. p38 MAPK comprises four subunits and the p38 inhibitor SB203580 is known to 

block the α- and β-subunit (Bain et al., 2007). Therefore, siRNAs for p38α (MAPK14) were 

chosen as the β-subunit is only expressed to a small extent in BL-2 cells (Figure 8 C). The 

immunoblot analysis (Figure 8 B) and the summary of three independent siRNA 

transfections (Figure 8 D) revealed that a downregulation of p38α induced two-fold higher 



Results 

46 

ERK1/2 phosphorylations compared to the antigen-stimulated control. We concluded that 

the p38α (MAPK14) subunit was involved in the attenuation of the MEK-ERK pathway and 

that the effect was not an inhibitory side effect. 

 

 

Figure 8: Verification of TAK-1 and p38 MAPK influence on the MEK-ERK pathway 

(A) Representative immunoblot analysis of TAK-1 (5’-7-Oxozeanol, AZ-TAK) or p38 MAPK 

(SB203580) inhibition in BL-2 cells. Kinases were inhibited for 3 hours and the BCR additionally 

activated for 30 minutes with α-IgM. Tubulin served as loading control (n=2). (B) Representative 

immunoblot analysis of TAK-1 and p38α (MAPK14) knockdowns with specific siRNAs. Protein 

phosphorylation was measured after 24 hours of transfection and 30 minutes α-IgM stimulation. 

Tubulin served as loading control (n=3). (C) Total reads of the p38 subunits α (MAPK14), 

β (MAPK11), γ (MAPK12), δ (MAPK13) are displayed from RNA sequencing analysis of BL-2 cells 

(n=3). (D) Quantification of phosphorylated ERK1/2 of the immunoblot analyses from B.  

 

Besides, a second effect of the p38 MAPK activating kinase TAK-1 was observed. 

Inhibition of TAK-1 led to an increased MEK1 but not ERK1/2 phosphorylation (data not 

shown) and was more similar to a MEK1/2 than to a p38 MAPK inhibition. As an upstream 

activation of p38 MAPK was expected to obtain comparable results, the role of TAK-1 on 

ERK1/2 was analyzed. As shown in Figure 8 A, inhibition of TAK-1 with 5’-7-Oxozeanol 

caused a slight increase of MEK1 phosphorylation and a diminished ERK1/2 

phosphorylation after BCR activation. However, an additional TAK-1 inhibitor (AZ-TAK) 

did not show comparable results. In addition, downregulation of TAK-1 with specific 
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siRNAs could also not confirm the effects of 5’-7-Oxozeanol (Figure 8 B,D). We suggested 

that the effect of TAK-1 inhibition on MEK1 and ERK1/2 was an inhibitor specificity and 

hence 5’-7-Oxozeanol was excluded from the analyses.

 

3.2.2 RAF-1 phosphorylations are affected by ERK1/2 but not by p38 MAPK 

To investigate whether the p38 MAPK effect on the MEK-ERK pathway occurred directly 

after BCR activation, an earlier time point was chosen. Apart from 30 minutes of α-IgM 

stimulation, the ERK phosphorylation was analyzed after 5 minutes of BCR activation 

(Figure 9 A). In all three tested cell lines the ERK1/2 phosphorylation was higher at 

5 minutes of α-IgM stimulation compared to 30 minutes. Additionally, inhibition of 

p38 MAPK (SB203580) caused a stronger increased of phosphorylated ERK1/2 at any 

time point compared to the antigen stimulated control. Therefore, we assumed that 

p38 MAPK attenuated directly or through phosphatases the MEK-ERK pathway although 

transcriptional changes by p38 MAPK inhibition were not excluded. 

As purified p38 MAPK was shown to inhibit RAF-1 activity (Hutchison, 2012), we further 

investigated the phosphorylations of RAF-1. Over 50 phosphorylation sites were 

described for RAF-1. However, one study suggested that the activating phosphorylation 

on serine 338 of RAF-1 was heightened by p38 MAPK inhibition (Zhang et al., 2003). A 

slight phosphorylation of RAF-1 on serine 338 was detectable in BL-2 and BL-41 cells 

after BCR activation (Figure 9 A). The stimulation with α-IgM for 5 or 30 minutes showed 

no differences and no additional influences were shown on this activating phosphorylation 

of RAF-1 by p38 MAPK inhibition (SB203580). 

Apart from many activating phosphorylations, the phosphorylations of serine 289, 296 and 

301 are described to induce an inactive conformation of RAF-1. This inactive conformation 

is enhanced by active ERK1/2 and known as negative feedback for the MEK-ERK 

pathway (Dougherty et al., 2005). We further examined whether this inactive conformation 

was promoted by p38 MAPK (Figure 9 A). While an increase of these phosphorylations 

was measured up to 30 minutes after α-IgM stimulation, the inhibition of p38 MAPK 

(SB203580) had no effect. Therefore, we tested whether the inactive conformation of 

RAF-1 was ERK1/2 dependent or only induced by BCR activation (Figure 9 B,C). After 

30 minutes of α-IgM stimulation, the inactive phosphorylations of RAF-1 were clearly 

detectable in BL-41 cells and diminished by MEK1/2 inhibition (AZD6244). As before, no 

impacts on the ERK-dependent phosphorylation of RAF-1 were found by p38 MAPK 

inhibition. 
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This indicated that p38 MAPK attenuates the MEK-ERK pathway directly after BCR 

activation while the negative feedback from ERK to RAF-1 increases up to 30 minutes. 

Furthermore, p38 MAPK had no impacts on the activating serine 338 or the inactivating 

serine 289, 296 and 301 phosphorylations of RAF-1. The interaction of p38 MAPK to the 

MEK-ERK pathway and the involvement of RAF-1 requires further investigations. 

 

 

Figure 9: p38 MAPK and ERK1/2 impact on RAF-1 phosphorylations 

(A) Representative immunoblot analysis of 3 hours p38 MAPK (SB203580) inhibition in the BL cell 

lines BL-2, BL-41 and CA-46. The BCR was stimulated with α-IgM for 5 and 30 minutes. Tubulin 

served as loading control and imaging was done with fluorescence antibodies (n=2). 

(B) Representative immunoblot analysis of MEK1/2 (AZD6244) and p38 MAPK (SB203580) 

inhibition in BL-41. After 3 hours inhibitor treatment, the BCR was activated with α-IgM for 

30 minutes. Tubulin served as loading control and imaging was done with fluorescence antibodies 

(n=2). (C) Quantification of the inactivating RAF-1 phosphorylations of the immunoblot analyses 

from B. 

 

 

3.2.3 p38 MAPK reduces activation and duration of the MEK-ERK pathway 

Beside the connection of p38 MAPK to the MEK-ERK pathway, the question was also 

whether p38 MAPK limited the ERK1/2 activity. Firstly, the signaling duration of ERK1/2 

was investigated more precisely. Once activated, the ERK1/2 signal diminished during the 

first 5 to 30 minutes but was still present over hours (data not shown). Therefore, an 
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experiment was planned whereby the BCR was activated for 5 minutes following a signal 

disruption by inhibition of the upstream kinase BTK. This analysis enabled us to monitor 

and compare the dephosphorylation of ERK1/2 between control and p38 MAPK inhibited 

BL-2 cells at several time points (Figure 10 A). After 5 minutes of α-IgM stimulation 

ERK1/2 was phosphorylated and this signal started to decline after 10 minutes of BTK 

inhibition by ibrutinib. In comparison to the respective control, inhibition of p38 MAPK 

(SB203580) caused stronger ERK1/2 phosphorylations at each time point. However, the 

dephosphorylation of ERK1/2 was not prevented and only delayed by p38 MAPK 

inhibition. 

As the dephosphorylation did not provide sufficient insights into ERK1/2 activity, ERK1/2 

was immune-precipitated and the kinase activity measured in BL-2 cells (data of our 

collaboration partner and not shown). After stimulation of the BCR with α-IgM for 

30 minutes, the ERK1/2 activity was about two-fold higher in p38 inhibited cells. 

Furthermore, in vitro stimulation of purified ERK1/2 revealed that the p38 MAPK inhibitor 

(SB203580) alone had no influence on the activity. In conclusion, p38 MAPK caused a 

reduced kinase activity of ERK1/2 and an unspecific inhibitor effect on ERK1/2 was 

excluded. 

In order to evaluate whether the increased ERK1/2 activity is limited to cytosolic functions 

or could also affect nuclear tasks, the translocation of ERK1/2 was investigated in CA-46 

cells (Figure 10 B). The stimulation of the BCR with α-IgM for 5 minutes led to 

phosphorylation and translocation of ERK1/2 to the nucleus. In comparison, a higher 

amount of phosphorylated ERK1/2 was detected in the nucleus after inhibition of 

p38 MAPK (SB203580). Nevertheless, the ERK1/2 phosphorylation was also increased in 

the cytosolic fraction after p38 MAPK inhibition in comparison to the antigen-stimulated 

control. We assumed that p38 MAPK could alter cytosolic as well as nuclear tasks of 

ERK1/2. 

To sum up, p38 MAPK not only diminished the phosphorylation of MEK1 and ERK1/2 

after BCR activation but also reduced the pathway activity. We concluded that p38 MAPK 

shortens the signal duration and activity of ERK1/2 thus influencing ERK targets. 
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Figure 10: Alteration of ERK1/2 activity after p38 MAPK inhibition 

(A) Representative immunoblot analysis of 3 hours p38 MAPK (SB203580) inhibition in BL-2 cells. 

The BCR was activated for 5 minutes by α-IgM stimulation followed by a signal disruption through 

inhibition of the BCR-related kinase BTK for the indicated time points. Tubulin served as loading 

control (n=3). (B) Representative immunoblot analysis of nuclear and cytosolic fractions after 

p38 MAPK (SB203580) inhibition in CA-46. After 3 hours inhibitor treatment the BCR was 

stimulated with α-IgM for 5 and 30 minutes. HDAC1 and tubulin served as loading controls (n=3). 

 

 

3.2.4 Early target gene expression of ERK1/2 is not influenced by p38 MAPK 

To examine whether ERK1/2 targets were affected by p38 MAPK, we investigated the 

expression of well-known target genes. The expression of several genes is mediated by 

ERK1/2 through binding to promotor regions or through activation of transcription factors 

(Fukunaga and Hunter, 1997; Shaul and Seger, 2007). We analyzed the target genes 

FOS, early growth response 2 (EGR2) and early growth response 3 (EGR3) because 

ERK1/2 can bind to the promotor region and quickly induces their expression (Yasuda et 

al., 2008). The activation of the BCR with α-IgM for 3 hours strongly increased the 

expression of EGR2, EGR3 and FOS in BL-2 and CA-46 compared to the unstimulated 

control (Figure 11). In addition, all three gene expressions were ERK-dependent and 

diminished by inhibition of MEK1/2 (AZD6244, U0126). The p38 MAPK inhibition 

(SB203580) did not affect the gene expression compared to the antigen-stimulated control 

in BL-2 cells (Figure 11 A-C). In CA-46 cells the expression of FOS was also not altered 

by p38 MAPK inhibition (Figure 11 F). However, a slight increase was detectable for 
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EGR2 and EGR3 expression after p38 MAPK inhibition compared to the antigen-

stimulated control in CA-46 (Figure 11 D-E). Although EGR2, EGR3 and FOS expression 

was induced by ERK1/2, the higher activity of ERK1/2 after p38 MAPK inhibition only led 

to a stronger expression of EGR2 and EGR3 in CA-46 cells. 

 

 

Figure 11: Impact on early target gene expressions by ERK1/2 and p38 MAPK 

Gene expression analyses of early target genes were investigated after 3 hours inhibitor treatment 

with additionally 3 hours BCR activation. Data were normalized to GAPDH (housekeeper) and the 

untreated control. The mean +/- SD is shown for EGR2 (A, D), EGR3 (B, E) and FOS (C, F) for the 

BL cell lines BL-2 (A - C) or CA-46 (D - F) (n=3). 

 

In order to reduce the possibility of feedbacks or secondary effects that influence or limit 

the target gene expressions after 3 hours of BCR activation, the expression of EGR2 and 

EGR3 was analyzed after 1 hour of BCR activation (Figure 12). Due to the observed 

differences between BL-2 and CA-46 cells, a third lymphoma cell line, BL-41, was 

included. In all three lymphoma cell lines the stimulation with α-IgM for 1 hour increased 

the expression of EGR2 and EGR3. Furthermore, the target gene expressions were 

ERK1/2-dependent (AZD6244, U0126) in all three cell lines. Unlike as before, the 

p38 MAPK inhibition (SB203580) resulted in a reduced expression of EGR2 and EGR3 

compared to the antigen-stimulated control in BL-41 and CA-46 (Figure 12 B-C,E-F), while 

almost no difference was found in BL-2 cells (Figure 12 A,D). 

In conclusion, EGR2, EGR3 and FOS are ERK1/2 target genes. However, the limiting 

effect of p38 MAPK on the EGR2 and EGR3 expression in CA-46 cells after 3 hours of 

BCR activation could not been verified after 1 hour of BCR activation. Interestingly, the 
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fold changes revealed that the EGR2 expression increased up to 3 hours of BCR 

activation (Figure 11 A,D; Figure 12 A,C), whereas the EGR3 expression seemed to be 

terminated after 3 hours of BCR activation (Figure 11 A,D; Figure 12 A,C). Therefore, we 

suggested that p38 MAPK is not limiting the EGR2 expression and due to a peaking 

expression at an earlier time point, EGR3 remains to be further examined. 

 

 

Figure 12: Impact of ERK1/2 and p38 MAPK on early target gene expression 

Gene expression of early target genes was analyzed after 3 hours inhibitor treatment following 

1 hour BCR activation. Data were normalized to GAPDH (housekeeper) and the untreated control. 

The mean +/- SD is shown for EGR2 (A - C) and EGR3 (D - F) for the BL cell lines BL-2 (A, D), 

BL-41 (B, E) or CA-46 (C, F) (n=3). 

 

 

3.2.5 p38 MAPK attenuates ERK1/2-regulated gene expression of the kinase MKK6 

To further pursue the analysis of ERK1/2 targets affected by p38 MAPK, we used and 

re-evaluated the previous generated microarray analyses. In this project, gene expression 

changes were examined after pathway perturbations during the BCR signaling in BL-2 

cells to achieve a network structure indirectly from downstream effects (Hand, 2013). 

Therefore, we could compare the gene expression changes of MEK1/2 (U0126) and 

p38 MAPK (SB203580) inhibition during an activated BCR. As p38 MAPK increased the 

ERK1/2 activity, we examined the expression data for oppositely regulated genes. This 

comparison and evaluation of the microarray data was performed by Maren Sitte 

(Statistical Bioinformatics Department Medical Statistics, University Medical Centre 

Goettingen). The following genes were found to be contrarily regulated after MEK1/2 and 
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p38 MAPK inhibition: zinc finger protein 800 (ZNF800), pyruvate dehydrogenase 

phosphatase 1 (PDP1), special AT-rich sequence-binding protein 1 (SATB1), zinc finger 

protein 36 C3H1 type-like 1 (ZFP36L1), EGR3, phospholipase D6 (PLD6), myotubularin-

related protein 4 (MTMR4), NACHT, LRR and PYD domains-containing protein 11 

(NLRP11), neurogenic locus notch homolog protein 2 (NOTCH2), prostaglandin-

endoperoxide synthase 1 (PTGS1), CD40 and MAP2K6. 

For the validation of these 12 target genes, BL-2 cells were treated in the same way as 

performed for the microarray analyses and then analyzed with qRT-PCR. Namely, BL-2 

cells were pretreated with MEK1/2 or p38 MAPK inhibitors for 3 hours and then the BCR 

was activated with α-IgM for additional 3 hours. The CA-46 cell line was also included in 

the analyses. The found targets MTMR4, NOTCH2, CD40 were not ERK1/2 or p38 MAPK 

regulated (data not shown). SATB1 was an ERK target gene but the expression was not 

altered by p38 MAPK inhibition (data not shown). The expression of EGR3 was already 

displayed in the previous chapter 3.2.4 while the examination of the other candidates is 

shown in Figure 13. The microarray data proposed a downregulation of PLD6 by ERK1/2 

whereas all other target gene expressions were suggested to be upregulated. A 

decreased expression of PLD6 was measured after α-IgM stimulation in both cell lines 

(Figure 13 A,D). In addition, p38 MAPK inhibition (SB203580) induced no changes and 

MEK1/2 inhibition (AZD6244, U0126) was not able to rescue the gene expression to the 

level of the untreated control. 

The expression of the other targets PDP1, ZFP36L1, PTGS1 and MAP2K6 were clearly 

increased by α-IgM stimulation in both cell lines (Figure 13 B-C,E-F,G-H,J-K). Besides, 

the expressions were induced to a higher extent in BL-2 cells compared to CA-46 cells. 

The inhibition of MEK1/2 (AZD6244, U0126) reduced the gene expression of PDP1, 

ZFP36L1, PTGS1 and MAP2K6 to the unstimulated control level thus revealing the 

dependence on ERK1/2. However, the inhibition of p38 MAPK (SB203580) caused no 

differences compared to the antigen-stimulated control except for MAP2K6 in CA-46. The 

expression of MAP2K6 was almost doubled after p38 MAPK inhibition compared with the 

antigen-stimulated control (Figure 13 K). As TNFα can lead to MKK6 (MAP2K6) activation 

and the expression is known to be ERK1/2 as well as p38 MAPK regulated (Sabio and 

Davis, 2014), the TNFα gene expression was further investigated (Figure 13 I,L). 

Interestingly, TNFα was strongly upregulated by BCR and especially ERK1/2 activation 

(AZD6244, U0126). An influence on the expression of TNFα by p38 MAPK inhibition 

(SB203580) was not detected. 
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To sum up, the target gene expressions of PDP1, ZFP36L1, PTGS1, MAP2K6 and TNFα 

depended on ERK1/2 activity. However, the increased ERK1/2 activity after p38 MAPK 

inhibition was only reflected by an increased expression of MAP2K6 in CA-46 cells. 

 

 

Figure 13: p38 MAPK influence on ERK1/2 target gene expression 

Expression of ERK1/2 target genes was measured after 3 hours inhibitor treatment and additional 

3 hours BCR activation. Data were normalized to GAPDH (housekeeper) and the untreated control. 

The mean +/- SD is shown for PLD6 (A, D), PDP1 (B, E), ZFP36L1 (C, F), PTGS1 (G, J), MAP2K6 

(H, K) and TNFα (I, L) for the BL cell lines BL-2 (A – C, G – I) or CA-46 (D – F, J – L) (n=3). 
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Not to overlook gene expression differences in BL-2 at an earlier time point, the 

expression of MAP2K6 (MKK6) and the MKK6 activator TNFα was examined after 1 hour 

of BCR activation (Figure 14). Due to the observed differences between BL-2 and CA-46 

cells, the lymphoma cell line BL-41 was included in the analysis. In all three cell lines the 

TNFα expression was induced by α-IgM stimulation in an ERK-dependent manner 

(AZD6244, U0126) (Figure 14 A-C). The inhibition of p38 MAPK (SB203580) showed no 

notable impacts on TNFα expression compared to the antigen-stimulated control in BL-2 

and CA-46 cells (Figure 14 A,C), while in BL-41 cells p38 MAPK inhibition reduced the 

expression similar to MEK1/2 inhibition (Figure 14 B). The expression analysis of MAP2K6 

revealed that BCR activation by α-IgM caused a clear induction in BL-2 cells (Figure 14 D) 

and a slight increase in BL-41 cells (Figure 14 E). While in BL-2 cells the ERK1/2 

dependence (AZD6244, U0126) was obvious, it was only supposed in BL-41 cells. On the 

contrary, in CA-46 no increased MAP2K6 expression was observed and therefore no 

ERK1/2-dependence is concluded (Figure 14 F). Nevertheless, the inhibition of p38 MAPK 

(SB203580) resulted in a stronger expression of MAP2K6 in all three cell lines (Figure 

14 C-F). 

 

 

Figure 14: p38 MAPK influence on ERK1/2 target gene expression 

Expression of ERK1/2 target genes was investigated after 3 hours inhibitor treatment and 

additional 1 hour BCR activation. Data were normalized to GAPDH (housekeeper) and the 

untreated control. The mean +/- SD is shown for TNFα (A - C) and MAP2K6 (D - F) for the BL cell 

lines BL-2 (A, D), BL-41 (B, E) or CA-46 (C, F) (n=3). 

 

To sum up, p38 MAPK not only attenuated the MEK-ERK pathway, the target gene 

expression of MAP2K6 was also limited by p38 MAPK after 1 hour of BCR activation. 
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Interestingly, MAP2K6 transcribes for the kinase MKK6 which can be activated by TNFα 

and which is known as upstream activator of p38 MAPK (Sabio and Davis, 2014). Due to 

the ERK-dependent upregulation of TNFα and MKK6, we suggested that the negative 

feedback of p38 MAPK on the MEK-ERK pathway can be further promoted by high 

ERK1/2 activities but this remains to be elucidated. 

 

 

3.3 DLBCLs with chronic active BCR contain divers feedback loops 

Unstimulated BLs showed a positive feedback loop of the PI3K pathway and only after 

BCR activation with antigens two negative feedbacks on the MEK-ERK pathway were 

revealed. Therefore, the question was whether B cell lymphomas with a chronic active 

BCR involve the same pathway interplays. In ABC DLBCLs mutations of CD79b, MyD88 

or CARD11 mimic an active BCR with subsequent activation of NF-κB (Davis et al., 2010; 

Ngo et al., 2011). As different mutations in ABC DLBCLs can cause similar pathway 

activations, the cell lines HBL-1 and OCI-LY3 were chosen. HBL-1 cells harbor mutations 

in MyD88 and CD79b, while the OCI-LY3 cells are characterized by a receptor-

independent activation of NF-κB due to mutations in MyD88 and CARD11 (Paul et al., 

2017). 

 

3.3.1 Positive and negative feedbacks influence chronic active BCR signaling 

In order to compare the feedbacks with BLs, pathway phosphorylations during a chronic 

active BCR signaling were examined like before using a smaller set of inhibitors than for 

the BL-2 analysis. The quantitative values of this analysis are presented in the 

supplement (Figure A-5). In HBL-1 cells we observed that the inhibition of BTK, PI3K, 

mTOR and JNK reduced the phosphorylation of all measured protein phosphorylations 

(Figure 15 A). More precisely, the activation of SYK, ZAP70, BTK, GSK3β and the 

PI3K-AKT, MEK-ERK, p38 MAPK, JNK and NF-κB pathways were decreased. On the 

contrary, the inhibition of AKT increased the phosphorylation of SYK, ZAP70, BTK, 

GSK3β, MEK1, ERK1/2, JNK and c-Jun while the amount of phosphorylated RPS6 was 

reduced. As a signal inhibition at PI3K or mTOR led to a decreased phosphorylation of 

downstream and upstream kinases, we suggested that a positive feedback loop from 

mTOR to the BCR enhanced the signal as observed in BL cells. However, the JNK 

inhibitor had similar effects like a PI3K inhibitor and the inhibition of AKT revealed an 

opposite effect although no phosphorylation changes of the downstream target RPS6 

were measured. 
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Besides, the inhibition of MEK1/2 diminished clearly the ERK1/2 and p90RSK 

phosphorylation and heightened the MEK1 phosphorylation. This indicated the negative 

feedback loop from ERK1/2 on its own pathway. The p38 MAPK inhibition heightened 

strongly the MEK1 and ERK1/2 phosphorylation suggesting that p38 MAPK had even a 

negative impact on the MEK-ERK pathway. The simultaneous inhibition of p38 MAPK and 

MEK1/2 revealed that the influence on the pathway occurred mainly upstream of ERK1/2 

as ERK1/2 phosphorylation was reduced around 85 % compared to p38 MAPK inhibition 

alone. Finally, the NF-κB inhibition just slightly reduced the phosphorylation of SYK, 

ZAP70, BTK and of the PI3K-AKT, p38 MAPK and NF-κB pathway, whereas an increased 

phosphorylation of MEK1 was detected. However, NF-κB seemed not to be a further 

regulator of the MEK-ERK pathway because no effects on ERK1/2 were measured. 

 

 

Figure 15: Signaling changes by pathway perturbations during the chronic active BCR 

signaling. 

The signal transduction were disrupted by inhibitors of BTK, PI3K, AKT, mTOR, MEK1/2, 

p38 MAPK, JNK and IKKα,β for 3 hours. Specific phosphorylations of SYK, ZAP70, BTK, AKT, 

RPS6, BAD, MEK1, ERK1/2, p90RSK, GSK3αb, p38 MAPK, HSP27, JNK, c-JUN and p65 NF-κB 

were measured with the multiplex immunoassay. The log2 values for the ABC DLBCL lymphoma 

cell line HBL-1 (A) or OCI-LY3 (B) are shown normalized to the control (n=3). 

 

The treatment of OCI-LY3 cells caused mostly the same effects though the overall 

phosphorylation changes were smaller (Figure 15 B). Therefore, only the differences to 

HBL-1 cells are described. The inhibition of AKT caused a diminished phosphorylation of 

RPS6 and similar effects like PI3K and mTOR inhibition. Only the phosphorylation of 

GSK3β was raised and therefore controversial to HBL-1 cells. The inhibition of MEK1/2 

had no influence on p38 MAPK in HBL-1 cells, whereas in OCI-LY3 cells a slight 

increased phosphorylation was observed. Furthermore, the NF-κB inhibition did not lead 
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to higher MEK1 phosphorylations as seen in HBL-1 cells. However, the most obvious 

difference was that inhibition of p38 MAPK had no impact on the MEK-ERK pathway. 

In conclusion, we suggested that the positive feedback of the PI3K signaling and the 

negative feedback from ERK1/2 on the MEK-ERK pathway is conserved in B cell 

lymphomas. Nevertheless, we assumed that due to genetic variations the regulation of the 

MEK-ERK pathway by p38 MAPK differs between the ABC DLBCL cell lines. This 

indicated that the genetic background can influence possible interactions and feedbacks 

and thereby the signal distribution. 

The obvious assumption for the missing influence of p38 MAPK on the MEK-ERK 

pathway could be that the p38 MAPK inhibitor was not functioning. But due to the slight 

reduction of phosphorylated p38 MAPK after the inhibitor treatment in several analyses, 

the three biological replicates and the simultaneously performed HBL-1 analyses, this 

possibility was excluded. Furthermore, the missing effect could be explained by an 

inactive MEK-ERK signaling. Comparing BL-2, HBL-1 and OCI-LY3 cells, it was shown 

that OCI-LY3 had phosphorylated ERK1/2 and furthermore high levels of phosphorylated 

p38 MAPK (Figure 16 A). Therefore, the cellular state of OCI-LY3 cells were suggested to 

be responsible for the missing negative feedback on the MEK-ERK pathway. One 

explanation can be that different mutations like the mutation of CARD11 entail an altered 

expression of some proteins. However, this would not be an explanation for the missing 

p38 MAPK effect if p38 MAPK directly interacted with RAF-1. But due to the not known 

interaction between p38 MAPK and RAF-1, we suggested that a p38 MAPK regulated 

phosphatase would rather explain the cell line differences as it could reduce any 

phosphosites in the MEK-ERK pathway. 

In order to investigate kinases or phosphatases differently expressed in HBL-1 and 

OCI-LY3 cells, the gene expression of two previous RNA-sequencing projects were 

analyzed. Therefore, the estimated RNA sequencing reads of BL-2, HBL-1 and OCI-LY3 

cells were compared to find a missing kinase or phosphatase expression in OCI-LY3 cells 

(Figure 16 B). An overview of phosphatases and kinases with more than 50 % differential 

expression between HBL-1 and OCI-LY3 cells is displayed. The extract of the gene list 

revealed that some phosphatases were highly expressed by HBL-1 and BL-2 cells and 

nearly absent in OCI-LY3 cells. For instance, the lymphocyte cell-specific protein tyrosine 

kinase (LCK), paladin (PALD1), tyrosine protein phosphatase non-receptor type 22 

(PTPN22) and PTPN7 were barely expressed in OCI-LY3 cells which could explain the 

missing p38 MAPK influence on the MEK-ERK pathway. However, this hypothesis 

remained to be proven. 
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Figure 16: Comparison of BL-2, HBL-1 and OCI-LY3 cells on protein and RNA level 

To explain the cell line differences of the multiplex immunoassay BL-2, HBL-1 and OCI-LY3 cells 

were compared on protein and RNA level. (A) Representative immunoblot analysis of the different, 

untreated lymphoma cell lines. Tubulin served as loading control (n=3). (B) An extract of 

phosphatases and kinases of the RNA sequencing analyses with mean of estimated counts are 

displayed for HBL-1, OCI-LY3 and BL-2 cells (n=3). 

 

 

3.3.2 Negative feedbacks of the chronic active BCR signaling have no impacts on 

proliferation 

While the inhibition of BTK, PI3K, JNK and NF-κB is well studied in DLBCLs (Gururajan et 

al., 2005; Kloo et al., 2011; Young and Staudt, 2013), less is known about the impact of 

MEK1/2 or p38 MAPK inhibition on proliferation. Only one paper indicated that inhibition of 

MEK1/2 with the AZD6244 inhibitor induced apoptosis in OCI-LY3 cells after 48 hours 

(Bhalla et al., 2011). Therefore, the inhibition of MEK1/2 and p38 MAPK was analyzed on 

cell viability over 72 hours (Figure 17). No influences on cell viability of HBL-1 cells were 

detectable (Figure 17 A) and OCI-LY3 cells showed only a small decrease of cell viability 

about 15 - 20 % after MEK1/2 and p38 MAPK inhibition (Figure 17 B). Consequently, the 

inhibition of ERK1/2 or p38 MAPK did not reduce considerably the cell viability. 

This indicated that the negative feedbacks on the MEK-ERK pathway are not involved in 

the regulation of cell proliferation and therefore the specific role of MAPKs in lymphoma 

needs to be further elucidated.  
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Figure 17: Cell viability of HBL-1 and OCI-LY3 cells after MEK1/2 or p38 MAPK inhibition 

Cell viability assay was performed after 24, 48 and 72 hours with the fluorescence dye Calcein AM. 

The amount of viable cells was normalized to control and the mean +/- SD is displayed for 

HBL-1 (A) and OCI-LY3 (B) cells (n=3). 

 

 

 

3.4 IL10R and TLR9 activation modify cell response and behavior 

Apart from the several signaling pathways of the chronic active BCR, ABC DLBCLs 

contain an autocrine JAK-STAT activation. This is mediated by a BCR-dependent NF-κB 

signaling which causes an increased expression of ILs and thereby subsequently 

stimulates IL receptors and JAKs (Gupta et al., 2012; Jost and Ruland, 2007). Our group 

has previously described that only the combined activation of NF-κB and STAT3 induces 

proliferation in a synergistic manner (Feist et al., 2017; Feist et al., 2018). To further 

examine mediators of the proliferative boost and the directly altered cellular processes 

after receptor activation, a phosphoproteomics analysis was performed. As ABC DLBCLs 

differ in their behavior due to cell line specific mutations, the analyses were done with the 

model cell line P493-6. This allows a direct comparison of cells with active or inactive 

NF-κB and STAT3 without variations resulting from mutations. 

 

3.4.1 IL10R and TLR9 activation change 239 protein phosphorylations 

The examination of global protein phosphorylations was done after TLR9 and IL10R 

activation with mass spectrometry. For an accurate comparison of two conditions, the 

cells were labelled with stable isotopes (SILAC). In Figure 18 A the workflow is presented, 

the heavy labeled P493-6 cells (Mychigh) were left untreated while the light labeled cells 

were supplemented with doxycycline to reduce the amount of c-MYC (Myclow). Afterwards 

Myclow cells were stimulated with IL10+CpG to activate TLR9 and IL10R for 30 minutes or 

left untreated as control (Ctrl). The Mychigh cells served as a reference control for 

normalization and thus were also activated by IL10+CpG stimulation for 30 minutes to 
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obtain sufficient protein phosphorylations. Heavy and light labeled conditions were mixed 

in equal parts, the protein phosphorylation was determined and the phosphorylation 

changes of control or IL10+CpG stimulated Myclow cells in relation to Mychigh cells were 

calculated. 

 

 

Figure 18: Workflow and global phosphosites identification of mass spectrometry analysis 

To reveal protein phosphorylations Ctrl and IL10+CpG stimulated Myclow cells were analyzed in 

relation to Mychigh cells with mass spectrometry (n=3). (A) Schematic workflow for labeling, 

stimulating and harvesting of Myclow and Mychigh cells. (B) Proportion of phosphorylated residues of 

quantified and IL10+CpG-regulated proteins. 

 

Out of 8062 detected phosphosites, 1387 were quantified in at least two out of three 

replicates and with a p-value less than 0.05 (Figure 18 B). The stimulation of TLR9 and 

IL10R led to significant change of 239 phosphosites with a phosphorylation differences 

between Ctrl and IL10+CpG stimulated Myclow cells of more than 50 %. Thereby, the 

proportion of threonine, tyrosine and serine phosphorylated residues was not altered 

between quantified and IL10+CpG-regulated phosphosites. This proportion accurately 

reflects the relative abundance of serine, tyrosine and threonine phosphorylations after 

receptor activation (Olsen et al., 2006). 

 

In order to compare the results of the biological replicates, the phosphorylation ratios for 

the Ctrl (Figure 19 A) and IL10+CpG stimulated (Figure 19 B) Myclow cells in relation to 

Mychigh cells were plotted for each biological replicate against the other replicates. The 
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Pearson’s correlation coefficient was similar for each comparison of the biological 

replicates and ranged from 0.78 to 0.88 indicating an acceptable reproducibility. 

 

 

Figure 19: Global phosphoproteomics results of Ctrl and IL10+CpG stimulated Myclow cells 

Scatter Plots with Pearson’s correlation coefficients were demonstrating the reproducibility of 

biological replicates for Ctrl (A) or IL10+CpG stimulated (B) Myclow cells. (C) Scatter Plot with 

Pearson correlation coefficients compared the values of quantified phosphosites of Ctrl and 

IL10+CpG stimulated Myclow cells. (D) Scatter plot showed the measured intensities for the log2 

ratios of IL10+CpG stimulated Myclow cells in relation to the Ctrl. Log2 ratios with difference above 

1.0 are indicated in blue. All quantified phosphosites are listed in the supplement. 

 

To present the phosphosite changes after IL10+CpG stimulation, the phosphorylation 

ratios of the IL10+CpG stimulated Myclow cells were displayed to the ratios of the Ctrl 

Myclow cells (Figure 19 C). As more phosphosite ratios were higher in IL10+CpG 

stimulated cells compared to Ctrl, we suggested that the stimulation of cells clearly 

induced a phosphorylation of proteins while only few sites were dephosphorylated. The 

precision of quantitation increased with the protein abundance, therefore the measured 

intensities were displayed over the relation of IL10+CpG stimulation to the Ctrl Myclow cells 

(Figure 19 D). Protein phosphorylations with a log2 change higher than 1.0 are marked 

(blue dots). For example, the STAT3 tyrosine phosphorylation known to be induced by 
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IL10 was strongly increased after IL10+CpG stimulation as well as some further sites of 

p38 MAPK (MAPK14), capZ-interacting protein 1 (RCSD1) and nucleolar protein 2 

homolog (NOP2). The full list of the 239 changed phosphosites is presented in Table A-1. 

 

3.4.2 Phosphoproteome reveals influence on cell cycle, metabolism and migration 

Identifying the connection of regulated proteins is valuable in order to build a network 

which can help to reveal closely related proteins and altered protein groups. Therefore, 

the IL10+CpG-influenced phosphosites were used for a network generation with STRING 

(Figure 20). 

 

 

Figure 20: Network of affected phosphoproteins after IL10+CpG stimulation 

Phosphoproteins that were up- or down-regulated by stimulation with IL10+CpG were used for an 

interaction analysis with STRING. The known interactions from curated databases (blue) and 

experimentally determined (red) are displayed.  
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The network revealed an interaction of proliferation associated proteins like RPS6, 

Poly(A)-specific ribonuclease (PARN) and EIF4B. Some MAPK-related proteins such as 

JUN, MAP3K1 and MAP2K2 clustered around p38 MAPK (MAPK14). This pointed out 

that, beside NF-κB and STAT3 activation, MAPKs were affected by TLR9 and IL10R 

activation to probably induce proliferation-associated proteins. 

Previously, our group showed by RNA sequencing analyses that the impact of IL10+CpG 

stimulation alters the expression of cell cycle and metabolism-related genes (Feist, 2016). 

On the basis of phosphorylated proteins we further investigated the biological processes 

affected by the TLR9 and IL10R activation. Therefore, the 239 phosphosites altered after 

IL10+CpG stimulation were used for an enrichment of Gene Ontology (GO) terms with the 

functional annotation clustering tool of DAVID (Table A-2; Figure A-6). As the regulated 

phosphosites were part of many different biological processes, the list of GO terms was 

visualized in a tree map by REVIGO (Figure 21). Interestingly, the main altered biological 

process was also cell cycle. Furthermore, positive regulation of molecular function, cellular 

localization and protein phosphorylation were influenced by IL10+CpG stimulation. More 

precisely, DNA or mRNA metabolism, signal transduction, ameboidal-type cell migration 

as well as cell-cell adhesion belonged to altered processes.  

In conclusion, we assumed that MAPK activation and the induction of proliferation-

associated proteins may contribute to the proliferative effect after IL10+CpG stimulation. 

In addition, the protein phosphorylation after 30 minutes of receptor activation pointed to 

influences on cell cycle, metabolism and movement of cells. 
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Figure 21: GO annotation of biological process changed by IL10+CpG stimulation 

Biological processes that were up- or down-regulated by stimulation with IL10+CpG were identified 

using the 239 regulated phosphosites and the annotation tool DAVID. REVIGO was used for 

summarization and visualization of GO terms in a tree map. Clusters of related terms are marked 

with the same color and the size of boxes displays the p-values. 

 

 

3.4.3 Phosphoproteome analysis indicates MAP kinase involvement 

To reveal further mediators of the proliferative effect, an overview of the involved signaling 

components was required. Therefore, the phosphoproteins altered after TLR9 and IL10R 

activation were analyzed with the KEA2 tool to identify the possible upstream kinases and 

activated pathways (Figure 22 A). Beside the STAT3 activating kinases JAK1 and JAK2, 

the MAPK activation seemed to be further involved through JNK (MAPK9), MKK6 

(MAP2K6) and p21-activated kinase 2 (PAK2). Furthermore, the cell cycle regulator CDK2 

was listed. The kinase enrichment led to the assumption that MAPK as well as a direct 

phosphorylation of CDK2 were involved in the initiation of proliferation. As previous 

findings of our group uncovered that the combined activation of STAT3 and NF-κB 

induced the gene expression of CDK4 and thereby enhanced the proliferation of cells, the 

gene expression changes of these predicted kinases were considered (Figure 22 B). 

Similar to CDK4 and CDK6, the expression of CDK2 was enhanced and to a lower extent 

the expression of JAK1, JAK2, MAPK9 and PAK2 after IL10+CpG stimulation in Myclow 

cells.  
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We concluded that the stimulation with IL10+CpG induces probably not only CDK4 and 

CDK6 expression as published before (Feist, 2016), furthermore, some proliferation 

associated proteins seem to be enhanced in their expression as well as in their direct 

phosphorylation. The impact of these possible mediators remains to be investigated. 

 

 

Figure 22: IL10+CpG stimulation caused phosphorylation and expression of CDKs and 

MAPKs 

(A) Network of predicted upstream kinases for the changed 239 phosphosites using the kinase 

enrichment analysis (KEA) tool. Node size indicated the number of changed phosphosites which 

were predicted to be phosphorylated by that kinase. (B) RNA expression after 24 hours of proteins 

relevant in A. Displayed are the log2 fold changes after different stimulations normalized to Ctrl 

Myclow cells (n=3).  
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3.4.4 IL10R and TLR9 activation reduce migration capacity of P493-6 cells 

Beside the known influence on cell cycle and metabolism, the phosphoproteomics 

analysis pointed to an altered movement of cells. To investigate which phosphoproteins 

were involved in this process, those out of the 239 changed phosphosites are displayed 

that were annotated to the GO term “movement of cell or subcellular component” (Figure 

23 A). The receptor activations mainly led to an increased phosphorylation of movement 

associated proteins. Several proteins well-known to play a role in migration were listed like 

p21-activated kinase 1 (PAK1), STAT3 and SOS1. Therefore, the cell movement was 

analyzed with the Boyden chamber assay (Figure 23 B). The migration potential of 

stimulated Myclow cells through 8 µm membranes for 6 hours was shown in relation to the 

migration potential of the unstimulated Ctrl Myclow cells. While IL10 stimulation alone had 

no effect on the migration, the TLR9 activation by CpG reduced the movement potential of 

Myclow cells about 30 %. Nevertheless, combined receptor activation led to a reduction of 

50 % in comparison to Myclow cells.  

In conclusion, many proteins associated with migration were changed by IL10+CpG 

stimulation. The phosphorylation of these proteins was mainly upregulated. Interestingly, 

the overall effect of this upregulation after stimulation was a reduced migration of the cells. 

The effect of the identified phosphorylations and how these proteins interact to regulate 

migration will need further investigations. 
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Figure 23: IL10+CpG impact on movement associated proteins and the migration potential 

Investigation of the influence on movement associated proteins by TLR9 and IL10R activation. 

(A) Phosphoprotein changes of Ctrl and IL10+CpG stimulated Myclow cells were displayed as well 

as the difference between the values of Ctrl and IL10+CpG stimulated Myclow cells. (B) Boyden 

chamber analysis with 8 µm pore size membrane. Myclow cells were allowed to migrate for 6 hours 

towards 10 % FCS (directed) or 0 % FCS (undirected) after IL10, CpG or combined stimulation. 

Cell counts were normalized to the directed migration of the Ctrl Myclow cells (n=3). 
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4. Discussion 

Many B cell non-Hodgkin lymphomas depend on the BCR signaling (Young and Staudt, 

2013). Targeting BCR-related kinases emerges as a promising therapeutic strategy for 

several B cell malignancies (Smith, 2015). Nevertheless, the occurrence of unexpected 

side effects and toxicities is limiting the therapeutic success as feedback mechanisms are 

often disregarded (Blachly and Baiocchi, 2014). In the literature, mostly the linear 

signaling cascade from the receptor to the nucleus is displayed, while the interplays and 

feedback loops of pathways are often neglected (Reth and Brummer, 2004). This is also 

the case for the BCR signaling as the proximal events after receptor activation are well 

investigated but an accurate network model is still missing (Corso et al., 2016; Satpathy et 

al., 2015). Therefore, the downstream interplay of pathways remains to be examined for a 

further refinement of the signaling network. First approaches were performed by our group 

with Boolean-Nested Effect Models on the basis of gene expression changes after 

pathway perturbations (Pirkl et al., 2016). However, pathway interplays and feedbacks 

hampered the network elucidation and thus an additional examination of pathway 

activations was required. The aim of this thesis was to uncover pathway interplays and 

feedbacks during the tonic, activated and chronic active BCR signaling to generate a 

semi-quantitative network model. In addition, the BCR-induced NF-κB activation with 

subsequent JAK-STAT activation is so far not examined for further pathway interactions. 

Thus, the interplay of TLR9 and IL10R signaling was investigated to identify additional 

mediators contributing to the NF-κB and JAK-STAT-dependent proliferative effect in the 

model cell line P493-6. 

 

 

4.1 Positive feedback loop enhances tonic BCR signaling 

The tonic BCR signaling is essential for the survival of BLs (Schmitz et al., 2012). 

Aberrant regulation of c-MYC with additional activation of the PI3K pathway is sufficient to 

cause BL-like lymphomagenesis (Sander et al., 2012; Schmitz et al., 2012). An enhanced 

PI3K pathway activation is caused by several different mutations. Aberrations increasing 

E2A activity enhance the tonic BCR signaling by regulation of the BCR-related 

phosphatase SHP-1 (Basso and Dalla-Favera, 2015; Schmitz et al., 2012). Besides, an 

inactivation or missing expression of PTEN, a negative regulator of PI3K, is common to 

increase the PI3K-AKT pathway (Lenz et al., 2008c; Schmitz et al., 2012). The main 

finding of our pathway analyses suggested a positive feedback loop of the PI3K-AKT 

pathway to the BCR to enhance its own pathway activation (Figure 4, Figure 24). 

However, the described negative feedback loop of the PI3K-AKT pathway could not be 
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concluded from our results (Logue and Morrison, 2012). We assume that the negative 

feedback loop is missing or overlaid by the positive feedback loop in BLs. 

Besides, no further interplays of pathways or feedback loops were found during the tonic 

BCR in BLs (Figure 4). One limitation could be that, except for the PI3K pathway, the 

pathway activations and protein phosphorylations were too weak to uncover pathway 

interplays. However, this is in accordance with the suggestion that the PI3K pathway is 

the pivotal cascade of the tonic BCR signaling (Sander et al., 2012; Schmitz et al., 2012). 

Therefore, it is not surprising that inhibition of the PI3K-AKT pathway reduced the cell 

viability of BLs whereas a MEK inhibition had no effect (Figure 5). Our findings confirmed 

previous analyses demonstrating the dependency of BLs on PI3K, AKT and mTOR 

(Schmitz et al., 2012; Spender and Inman, 2012). Only in BL-2 cells, we could not observe 

an effect of PI3K inhibition on cell viability. However, Schmitz et al. demonstrated that the 

double PI3K inhibitor concentration also reduced BL-2 cell viability after 96 hours (Schmitz 

et al., 2012). Furthermore, we assume that especially the positive feedback loop of the 

PI3K pathway to the BCR contributes to the potent and survival-reducing effect of PI3K 

pathway inhibitors. As negative feedback loop hamper the inhibitory effect through 

upregulation of AKT as it was shown in breast cancer (Logue and Morrison, 2012), we 

suggested that PI3K, AKT and mTOR inhibitors are considered as additional treatment 

strategy for BLs due to the positive feedback loop (Spender and Inman, 2014). 

In conclusion, mutations of BLs contribute not only to the PI3K pathway activation but also 

enhance this pathway activation through a positive feedback loop probably to the BCR. As 

other BCR-related pathways seem to be negligible, we also assume that the PI3K 

pathway is the central component of the tonic BCR signaling in BLs (Figure 24). However, 

the exact feedback mechanism to the BCR remains to be investigated and can be 

achieved by phosphorylation analyses of the upstream kinases using for example mass 

spectrometry. In addition, it has not been elucidated yet whether mTOR or downstream 

signaling components are responsible for the feedback. 
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Figure 24: Proposed network scheme of pathway interplays for the tonic BCR signaling 

Tonic BCR signaling in BLs includes an intrinsic induction of the PI3K pathway with a further signal 

transmission to AKT and mTOR. E2A activity, missing PTEN activity and a positive feedback loop 

downstream from mTOR to the BCR enhance the PI3K pathway. The black lines indicate the 

known linear signal transductions and the blue lines represent the analyzed pathway interplays and 

feedback loops. Proteins, which are not expressed in BL-2 cells, and the absence of pathway 

interactions are indicated in grey. 

 

 

 

4.2 BCR signaling contains crosstalk from AKT and ERK1/2 to GSK3β 

As only the PI3K pathway was essential for the tonic BCR signaling, we additionally 

investigated the pathway activations after BCR stimulation in BLs. The outcome of BCR 

activation by antigens and induction of proximal kinases is known to increase the activity 

of the NF-κB, PI3K, MAPK and NFAT pathway (Kurosaki, 2011; Niiro and Clark, 2002). 

Our analyses confirmed the pathway activations of NF-κB, PI3K and MAPK after 

stimulation of the BCR with antigens (Figure 6). Interestingly, we further discovered that 

the positive feedback loop of the PI3K pathway was not limited to the tonic BCR signaling 

and was also present after receptor activation (Figure 6). As the upstream kinases were 

involved in the signal distribution to the different effector pathways, it was not surprising 

that the PI3K-AKT pathway inhibitors caused a decrease of all measured pathway 

activities. However, the exact mechanism and kinases which determined the signal 
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distribution to the effector pathways are not fully elucidated and are still under 

investigation. 

The PI3K-AKT pathway is not exclusively regulating its own activity. An ERK-mediated 

phosphorylation of MEK1 was shown to recruit and activate PTEN with subsequent 

negative impact on the AKT pathway (Zmajkovicova et al., 2013). Our results indicate that 

the activated BCR signaling contained no MEK-dependent inhibition of AKT (Figure 6). 

However, this could be due to mutations or absence of PTEN which is often described for 

BLs (Lenz et al., 2008c; Schmitz et al., 2012). Furthermore, a known interaction of AKT 

attenuates the MEK-ERK pathway activation by changing RAF phosphorylations 

(Zimmermann and Moelling, 1999). As all PI3K-AKT pathway inhibitors reduced the MEK1 

and ERK1/2 phosphorylations, we could not identify a negative impact on the MEK-ERK 

pathway by AKT (Figure 6). Therefore, we assumed that the PI3K-AKT pathway was 

necessary for the MEK-ERK pathway activation during activated BCR signaling. One 

explanation for this pathway interplay is the regulation of an ERK-specific phosphatase by 

mTOR. mTOR induces the degradation of the ERK-specific phosphatase DUSP6 and 

therefore prolongs the ERK signaling (Bermudez et al., 2008). Nevertheless, since 

DUSP6 is not expressed in BL-2 cells we suggest that the decreased ERK signal was 

rather mediated by the positive feedback loop of the PI3K-AKT pathway to the BCR (data 

not shown).  

Although we could not discover any interaction between the AKT and the MEK-ERK 

pathway in the BL cell lines, the common influence on GSK3β was confirmed (Figure 6). 

Our pathway analyses validated a reduced GSK3β phosphorylation through inhibition of 

PI3K, AKT, mTOR and MEK1/2. The influence of the AKT and MEK-ERK pathway on 

GSK3β modulates the β-catenin pathway through a double-negative feedback inducing 

c-MYC and cyclin D3 expression (Baracho et al., 2011; Cato et al., 2011; Ding et al., 

2005; Mazzoletti et al., 2011). Therefore, the PI3K-AKT and MEK-ERK pathways were 

reducing GSK3β probably to induce cell cycle progression of BLs. Despite the fact that 

AKT was suggested to mediate the GSK3β phosphorylation, we also detected a reduced 

GSK3β phosphorylation by mTOR inhibition (Figure 6). However, this effect could be 

mediated by the inhibition of the positive feedback loop of the PI3K pathway as mTOR 

inhibition caused also reduced AKT phosphorylation. 

In summary, we assume that after BCR activation the positive feedback loop of the PI3K 

pathway also influences the pathway activation of NF-κB and MAPKs. Although the 

PI3K-AKT and MEK-ERK pathway regulate GSK3β phosphorylation possibly to enhance 

cell proliferation, a direct interplay of the AKT and ERK pathway does not exist in BLs 

(Figure 25 left part). 
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4.3 MEK-ERK pathway is diminished by several negative feedbacks 

For cell fate decisions, the precise regulation of MAPK signal strength and duration is 

essential (Murphy and Blenis, 2006). Therefore, MAPKs are involved in many feedback 

mechanisms (Steelman et al., 2011). Due to a strong negative impact on its upstream 

kinases, the feedbacks of the MEK-ERK pathway were uncovered early. The common 

feedbacks of ERK1/2 are responsible for distinct phosphorylations of RAF as well as 

MEK1/2. The ERK-dependent phosphorylations of RAF-1 cause a conformation change to 

an inactive state (Wartmann et al., 1997), whereas the ERK-mediated MEK1/2 

phosphorylation decreases the binding affinity to ERK1/2 (Lake et al., 2016). In our 

pathway analyses only the activating MEK1 phosphorylation were investigated. 

Interestingly, a strong increase in this phosphorylation was measured after MEK1/2 

inhibition during the activated BCR signaling (Figure 6). This is in accordance with the 

well-known effect that ERK1/2 decreases the binding affinity and thus the activating 

phosphorylations of MEK1/2 (Lake et al., 2016). Therefore, the signal inhibition to ERK1/2 

causes an increase of the active MEK1/2 phosphorylations (Fritsche-Guenther et al., 

2011). As the increased MEK1 phosphorylation indicates the existence of the negative 

feedback loops, the ERK1/2 mediated RAF-1 phosphorylations were also investigated. 

The RAF-1 phosphorylation of the inactive state increased till 30 minutes after BCR 

activation in an ERK-dependent manner (Figure 9). While the ERK signaling is activated 

after few minutes, the increasing RAF-1 phosphorylation until 30 minutes further validates 

its ERK1/2 dependency due to the delayed induction. However, the signal duration of 

ERK1/2 indicates further negative regulators, as ERK1/2 activity peaks after few minutes 

of receptor activation followed by an intermediate activation before the signal is turned off 

(Figure 3) (Bluthgen, 2015). Another possibility how ERK1/2 decreases its own pathway 

activity could be mediated by regulation of gene expression. For instance, the gene 

expression of the negative regulator Sprouty2 is initiated by ERK1/2. Sprouty2 inhibits 

SOS and therefore the activation of RAF. However, Sprouty2 is downregulated in some 

lymphomas and was also not expressed in BL-2 cells (data not shown) (Frank et al., 

2009). This indicates that the MEK-ERK pathway activation is quickly decreased by 

negative feedbacks on RAF-1 and MEK but the signal duration might be still prolonged at 

an intermediate activation in BLs due to the missing expression of Sprouty2. 

Furthermore, the regulation of phosphatases plays a pivotal role to determine the signal 

strength and duration of MAPKs and to constitute pathway interplays. Several 

phosphatases are known to intervene at any tier of signal transduction, however some 

regulate especially MAPKs (Junttila et al., 2008). For instance, in lung cancer ERK 

induces DUSP1 after cisplatin treatment. DUSP1 in turn attenuates the pathway activity of 
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p38 MAPK and JNK (Low and Zhang, 2016). However, in B cells we could not detect an 

ERK-dependent phosphorylation of p38 MAPK and JNK after BCR activation (Figure 6), 

which is in agreement with a low expression of DUSP1 in BL-2 cells (Figure 16). We 

assume that the interaction from ERK1/2 over DUSP1 to p38 MAPK and JNK is missing in 

BLs. 

In addition to the positive feedback loop of the PI3K pathway, we add a negative feedback 

loop from ERK1/2 to RAF and MEK1/2 to the network scheme after BCR activation 

(Figure 25 middle part). While the positive feedback loop enhanced the PI3K pathway, the 

negative feedback loops of ERK diminished the MEK-ERK pathway activity after an 

initially peak. 

 

 

Figure 25: Proposed network scheme of pathway interplays for the activated BCR signaling 

BCR signaling after antigen stimulation in BLs includes the activation of the PI3K, MEK-ERK and 

p38 MAPK pathway. E2A activity, missing PTEN activity and a positive feedback loop downstream 

from mTOR to the BCR enhance the PI3K pathway. The MEK-ERK pathway reduces its own 

activity by negative feedback loops to its upstream kinases. p38 MAPK negatively influences the 

MEK-ERK pathway, while an ERK-dependent expression of MKK6 is suggested to increase 

p38 MAPK activation. The black lines indicate the known linear signal transductions and the blue 

lines represent the analyzed pathway interplays and feedback loops. Proteins, which are not 

expressed in BL-2 cells, and the absence of pathway interactions are indicated in grey. 
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4.4 p38 MAPK attenuates the MEK-ERK pathway 

Beside the positive feedback loop of the PI3K pathway and the negative feedback loop of 

the MEK-ERK pathway, the negative influence of p38 MAPK on the MEK-ERK pathway 

was another major finding (Figure 6). The interaction of p38 MAPK to the MEK-ERK 

pathway is controversially discussed and is so far not described for BLs. Due to a linear 

increasing RAF activity with raising p38 MAPK inhibitor concentrations higher than the 

concentration necessary to block p38 MAPK, the influence of p38 MAPK on the MEK-ERK 

pathway was referred to an unspecific inhibitor effect (Kalmes et al., 1999). However, an 

increasing ERK1/2 phosphorylation was also provoked by inhibition of p38 MAPK with a 

different inhibitor (Hirosawa et al., 2009) or by expression of a dominant negative p38 

MAPK variant (Aguirre-Ghiso et al., 2001). Furthermore, our knock-down analysis of the 

p38α subunit caused higher ERK1/2 phosphorylations after BCR activation and thereby 

indicated a specific effect (Figure 8). A modulation of the MEK-ERK pathway by 

p38 MAPK was previously described at any kinase of the signaling cascade. In 

chondrocytes an immunoprecipitation of p38 MAPK and RAF-1 revealed a direct 

modulation of RAF-1 activity by p38 MAPK (Hutchison, 2012). Furthermore, in HL-60 cells 

an increased phosphorylation of RAF-1 on serine 338 was detected after p38 MAPK 

inhibition (Zhang et al., 2003). However, in our BL cell lines no phosphorylation changes 

of RAF-1 serine 338 were identified during the activated BCR signaling (Figure 9). In 

addition, p38 MAPK also showed no influence on the inactive state of RAF-1. As RAF-1 

comprises more than 50 different phosphorylation sites, analysis of the activity could 

provide more insights whether p38 MAPK influences RAF-1. Furthermore, it cannot be 

excluded that p38 MAPK interacts with other RAF family members or upstream of RAF-1 

and regulates for instance RAS activity. 

Although many analyses suggested an induction of the upstream signaling compounds of 

MEK1/2 by p38 MAPK, a p38 MAPK-mediated activation of the phosphatase PP2A was 

shown to reduce the MEK1/2 phosphorylation (Wang et al., 2006). However, Wang et al. 

only compared the effects of a p38 MAPK inhibitor with those of a PP2A inhibitor while it 

was shown by others that a combinatorial inhibition still caused higher levels of 

phosphorylated ERK1/2 (Birkenkamp et al., 2000). Other possibilities of p38 MAPK to 

regulate ERK1/2 are the stabilization of phosphorylations or the induction of 

phosphatases. So far, no p38 MAPK-mediated effect on ERK1/2 is described. Therefore, 

BL-41 cells were treated with a combination of p38 MAPK and MEK1/2 inhibitors to 

investigate a direct influence of p38 MAPK on ERK1/2 after BCR activation (Figure 6). 

The addition of the p38 MAPK inhibitor to the MEK inhibitor caused little more ERK1/2 

phosphorylation compared to the MEK inhibitor alone. However, the ERK1/2 
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phosphorylation after combinatorial treatment amounted only 20 % of the ERK1/2 

phosphorylation after p38 MAPK inhibition. In conclusion, we suggest that the negative 

interaction of p38 MAPK to the MEK-ERK pathway is upstream of MEK1/2, however, the 

exact mechanism remains to be elucidated (Figure 25). 

Beside the ERK-mediated negative feedbacks, we assume that p38 MAPK further 

contributes to the fine tuning of the MEK-ERK pathway. Until now, ERK signal durations 

and strengths were connected to some different signaling outputs (Bluthgen, 2015), but 

how feedbacks influence the cellular outcomes is so far not achieved. In BLs p38 MAPK 

inhibition prolonged the phosphorylation of ERK1/2 but it could not be excluded that this is 

only due to higher initial levels of phosphorylated ERK1/2 after BCR activation (Figure 10). 

Besides, p38 MAPK inhibition increased the ERK1/2 activity and nuclear amounts of 

phosphorylated ERK1/2 after BCR activation (Figure 10). Therefore, we investigated 

whether p38 MAPK limits ERK1/2 target gene expression. For p38 MAPK as well as 

ERK1/2 more than 100 targets are described (Roskoski, 2012; Trempolec et al., 2013b). 

As in a previous project gene expression changes after pathway perturbations were 

investigated, we validated ERK1/2 target genes which were inversely regulated by 

p38 MAPK inhibition. Many targets were identified as ERK1/2-dependent but only 

MAP2K6 expression was further attenuated by p38 MAPK after BCR activation for 1 hour 

(Figure 14). MAP2K6 encodes the kinase MKK6, an upstream activator of p38 MAPK 

(Sabio and Davis, 2014). Therefore, we hypothesized that the activation of ERK1/2 

upregulates MKK6 and thereby modulates p38 MAPK activation. However, the activation 

of MKK6 and subsequently of p38 MAPK is so far not analyzed with regard to ERK1/2 

activity. 

In conclusion, the activated BCR signaling contains a further negative interplay from 

p38 MAPK to the MEK-ERK pathway (Figure 25 right part). Thereby, we assume that 

p38 MAPK probably interacts with RAF-1. The attenuation of the MEK-ERK pathway by 

p38 MAPK reduces not only the ERK1/2 activity but also modulates ERK1/2 target gene 

expressions. Through the ERK-dependent expression of MKK6 an additional interaction 

from ERK1/2 to p38 MAPK was hypothesized. These results suggest that the balance 

between the MEK-ERK and p38 MAPK pathway is strongly regulated, which contributes to 

the pathway durations and thus determines the signaling output. 
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4.5 Feedback loops differ in ABC DLBCLs with chronic active BCR 

signaling 

As in BLs more pathway interplays were analyzed after BCR activation, we further 

investigated the pathway interactions in lymphoma cell lines with a chronic active BCR 

signaling. While in ABC DLBCLs no deregulations of PTEN or E2A are found, the PI3K 

pathway is still increased due to receptor mutations of CD79a/b (Kloo et al., 2011; 

Schmitz et al., 2012). These mutations and the activation with self-antigens contribute to a 

constitutive activation of NF-κB, ERK and NFAT (Davis et al., 2010; Young et al., 2015). In 

addition, NF-κB can also been activated by aberrant inductions of CARD11 or MyD88 

(Lenz et al., 2008a; Ngo et al., 2011). The cell lines used for this study were selected 

based on different mutation profiles. HBL-1 cells carry a CD79b and MyD88 mutation, 

whereas OCI-LY3 cells are characterized by CARD11 and MyD88 mutations (Paul et al., 

2017). 

The pathway analyses after distinct perturbations in HBL-1 cells validated the discovered 

pathway interplays in BLs. The PI3K-AKT pathway was enhanced through a positive 

feedback loop, ERK1/2 negatively influenced MEK1 phosphorylation and p38 MAPK 

attenuated the MEK-ERK pathway (Figure 15). However, the inhibition of AKT in HBL-1 

cells led to different outcomes in comparison to BL cell lines. One explanation might be 

that the regulation and feedbacks of the mTORC1 and mTORC2 are different compared 

to BLs but this hypothesis is so far not elucidated. As HBL-1 cells have no PTEN 

aberration, a negative influence of MEK1 along with PTEN on the PI3K pathway was 

expected (Zmajkovicova et al., 2013). However, no increased PI3K-AKT pathway 

activation was identified following MEK1/2 inhibition (Figure 15). Interestingly, in T cells it 

was recently discovered that the negative influence of MEK1 on PI3K required aside from 

PTEN the protein MAGI1 (Kozakai et al., 2018). As MAGI1 is not expressed in HBL-1 

cells, this can be an explanation for the missing interplay from MEK1 to PI3K (data not 

shown). 

Although OCI-LY3 cells are not PI3K-dependent like HBL-1 cells (Kloo et al., 2011), the 

positive feedback loop of the PI3K-AKT pathway was also present, however, to a lesser 

extent (Figure 15). This indicates that this feedback mechanism is characteristic for 

lymphomas even though the proliferation of OCI-LY3 cells is mediated by other pathway 

activations. Furthermore, the negative feedback loop of the MEK-ERK pathway was 

consistent in all examined cell lines, while the influence of p38 MAPK on the MEK-ERK 

pathway was not present in OCI-LY3 cells (Figure 15). As the absence of phosphorylation 

of p38 MAPK and ERK1/2 could be excluded (Figure 16), we assumed that the lack of 
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interplay of p38 MAPK to the MEK-ERK pathway might be due to genetic differences and 

that p38 MAPK did not directly interact with RAF-1. We assume that p38 MAPK regulates 

rather a phosphatase or kinase and thereby influences the MEK-ERK pathway. The 

comparison of phosphorylation-related protein expressions led to the hypothesis that 

PTPN22, PTPN7, PALD1 or LCK, which were highly expressed in HBL-1 and BL-2 cells 

but not in OCI-LY3 cells, could mediate the interaction from p38 MAPK to the MEK-ERK 

pathway (Figure 16). LCK is involved in the aryl hydrocarbon receptor-mediated 

impairment of immunoglobulin secretion in human primary B cells (Zhou et al., 2018). In 

BL cell lines high expression levels of LCK were reported but so far the benefit or reason 

is not known (Von Knethen et al., 1997). However, in T cells an interaction of p38 MAPK 

to ZAP70 regulates the signaling duration of the MEK-ERK pathway (Giardino Torchia et 

al., 2018). As ZAP70 and LCK are known to interact with each other, we hypothesize that 

LCK and ZAP70 probably regulate the signal duration of the MEK-ERK pathway in a 

p38 MAPK-dependent manner. Nevertheless, the interaction of p38 MAPK and LCK or 

ZAP70 as well as the ZAP70-triggered MEK-ERK pathway activation remains to be 

elucidated in B cell lymphomas. 

In another DLBCL lymphoma cell line, DB cells, it was shown that p38 MAPK inhibition 

had also no impact on the ERK1/2 phosphorylation (Wojciechowski et al., 2005). Because 

this lymphoma cell line is a GCB DLBCL, the CARD11 mutation of OCI-LY3 cannot be 

responsible for the missing interplay. One similarity between OCI-LY3 and DB cells is the 

expression of immunoglobulin IgG, whereas the other cell lines with p38 MAPK to ERK1/2 

interplay express IgM. Mature B cells express IgM in a monomeric form on their cell 

surface prior to activation. Afterwards, B cells undergo clonal expansion and class switch 

recombination causing a downregulation of IgM and an upregulation of the IgG isotype 

(Engels et al., 2009). The class switch occurs during the germinal center reaction and the 

IgM expression is essential for the proliferation of B cells, while IgG expression is 

connected to differentiation (Rickert, 2013). Therefore, we suggest that the B cell state of 

origin comprises different signaling interplays and feedbacks which are reflected in B cell 

lymphomas.

To examine whether the different interplays of HBL-1 and OCI-LY3 cells had different 

cellular outcomes, the MEK1/2 and p38 MAPK inhibition was analyzed in relation to the 

cell viability. An impact of MEK-ERK or p38 MAPK pathway inhibition on proliferation has 

so far not been described. While in BLs the activation of the BCR led to a cell cycle arrest 

which complicates the analysis of the interplays and feedbacks with regard to proliferation 

(Marches et al., 1998), an increased rate of apoptosis was identified after MEK1/2 

inhibition in OCI-LY3 cells (Bhalla et al., 2011). Although the same MEK1/2 inhibitor was 
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used, the inhibition of MEK1/2 did not affect cell viability of OCI-LY3 cells over 72 hours 

(Figure 17). Furthermore, no effect on cell viability of HBL-1 and OCI-LY3 were detected 

after p38 MAPK or MEK1/2 inhibition. However, p38 MAPK is known to cause an 

increased ERK1/2 activation and tumor volume in prostate cancer (Aguirre-Ghiso et al., 

2003). Although no impact on the proliferation of HBL-1 and OCI-LY3 cells was identified, 

further analysis regarding tumor volume, stress response or differentiation might reveal 

the role of p38 MAPK and ERK1/2 in B cell lymphomas. 

In summary, the positive feedback loop of the PI3K pathway and the negative feedback 

loop of the MEK-ERK pathway seem to be conserved across the tested B cell lymphoma 

cell lines. The p38 MAPK influence on the MEK-ERK pathway is assumed to be 

Ig-dependent and might even include some unknown effector proteins. 

 

 

4.6 Interplay of TLR9 and IL10R activation induces CDK2 and JNK 

In ABC DLBCLs the constitutive activation of NF-κB leads to the expression of IL6 or IL10 

and to a subsequent autocrine activation of the JAK-STAT signaling (Davis et al., 2001). 

In the model cell line P493-6 it was shown that especially the combined activation of 

NF-κB and STAT3 by TLR9 and IL10R stimulation induced proliferation in a synergistic 

manner through expression changes of cell cycle genes (Feist et al., 2017). In addition, 

we showed that TLR9 and IL10R activation induced over 200 phosphorylation changes in 

the proteome (Figure 19). Several differences in phosphorylation were detected in the 

MAPK pathways (Figure 22). Therefore, we assume that the activation of MAPKs and 

especially JNK contributes in addition to NF-κB and STAT3 activation to the proliferative 

effect in the model cell line. The dependency of ABC DLBCL proliferation on JNK is 

already known (Gururajan et al., 2005), which further supports our hypothesis that JNK 

contributes to the NF-κB and STAT3-dependent proliferation of the cells. Nevertheless, 

the role of JNK regarding proliferation of the model cell line P493-6 after TLR9 and IL10R 

activation remains to be examined. Furthermore, cell cycle regulators like CDK4 were 

shown to be expressed after TLR9 and IL10R activation and to be essential for the 

proliferative effect in the model cell line P493-6 (Feist et al., 2017). Interestingly, we 

demonstrated that the cell cycle regulator CDK2 displayed not only higher expression 

levels after TLR9 and IL10R activation, but was also directly phosphorylated after receptor 

stimulation (Figure 22). Therefore, we suggest that the cell cycle is directly induced by 

TLR9 and IL10R activation and the upregulation of the cell cycle genes is only one further 

aspect that enhances the proliferation rate. Although a reduced proliferation in DLBCLs 

was already shown after CDK2 inhibition (Faber and Chiles, 2007), the explicit 



Discussion 

80 

dependence of proliferation on CDK2 remains to be investigated in our model cell line 

P493-6. 

Beside the influence on proliferation, the changed protein phosphorylations after TLR9 

and IL10R activation indicated an altered cell adhesion and movement (Figure 21). For 

GCB DLBCLs, it was shown that modulation of cell movement resulted from Gα13 

mutations (Muppidi et al., 2014). However, less is known for the migration capacity of 

ABC DLBCLs. One recent publication investigated the migration speed in ABC DLBCLs 

which was enhanced by STAT3 activation (Pan et al., 2018). Our findings of IL10R 

activation with subsequent STAT3 activation showed no higher migration rates of the 

model cell line P493-6 (Figure 23). Nevertheless, we cannot exclude an influence on the 

migration speed. Therefore, the cell movement requires further examinations using 

time-lapse microscopy. In addition, the impact of NF-κB pathway activation on cell 

migration of B cell lymphomas was so far not reported. The migration rate of the model 

cell line P493-6 was reduced after TLR9 activation (Figure 23). Furthermore, the 

combined activation of TLR9 and IL10R activation showed a stronger reduction of the 

migration rate compared to TLR9 activation alone. This is in accordance with 

phosphorylation of PAK2 which was identified in our phosphoproteome analysis and is 

described to inactivate the protein and thereby reduce the migration capacity. 

Nevertheless, the TLR9 and IL10R activation led mainly to a higher phosphorylation of 

migration-associate proteins and it remains to be elucidated whether these 

phosphorylations have a negative impact on the migration of cells. Controversially, 

inhibition of NF-κB was reported to reduce the migration of for instance lung cancer stem 

cells (Zakaria et al., 2018). This emphasizes the need of further investigations to fully 

explain the migration capacity of the model cell line after TLR9 and IL10R activation as 

well as of ABC DLBCLs in relation to NF-κB activation. 
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5. Summary and Conclusion 

In conclusion, this study provides a general network model of pathway interplays for B cell 

lymphomas. Three major interplays and feedback loops were uncovered downstream of 

the BCR. A positive feedback loop from mTOR or downstream targets to proximal kinases 

of the BCR enhances the PI3K pathway. Further investigations like phosphoproteome 

analyses are required to disclose the involved and affected kinases. A negative feedback 

loop of the MEK-ERK pathway to MEK1/2 and RAF-1 was consistently detected in all 

tested B cell lymphoma cell lines. While a negative influence from p38 MAPK on the 

MEK-ERK pathway was uncovered in B cell lymphomas expressing IgM, this interplay 

was missing in IgG expressing B cell lymphomas. To further illuminate the negative 

influence of p38 MAPK on the MEK-ERK pathway, analyses of the p38 MAPK interactome 

are necessary to uncover the affected pathway components. In addition, the validation of 

our findings in other lymphoma types like GCB DLBCLs, follicular lymphoma or mantle cell 

lymphoma can be a further aim to confirm the general network model. Nevertheless, these 

pathway interplays and feedback loops contribute to a better understanding and 

refinement of the BCR signaling network model. As pathway interplays and feedbacks 

alter signaling durations and strengths to achieve distinct responses to external 

influences, the improvement of computational network models is advantageous to predict 

the signaling outcome and furthermore the response of therapies. As the heterogeneity of 

lymphomas was shown to contain different pathway interplays, a further perspective is to 

include the genetic background for more accurate network models. Gene mutation and 

expression analyses will be useful tools to examine which pathway interplays and 

feedbacks occur and will hopefully provide deeper insights to improve the targeted 

therapies for lymphoma patients. 

In the second approach, the pathway interplays after TLR9 and IL10R activation was 

investigated to uncover further mediators of the proliferative effect in the model cell line 

P493-6. Beside NF-κB and STAT3 activation, the stimulation of TLR9 and IL10R changed 

over 200 protein phosphorylations. A first network model of activated proteins was 

proposed and an impact on cell proliferation, metabolism and migration validated. 

Interestingly, the TLR9 and IL10R activation influence directly JNK and the cell cycle 

protein CDK2 to probably induce proliferation whereas the induction of proliferation-

associated genes seems to be only a further aspect to increase the proliferation rate. 

However, a knock-out screening is required to confirm the phosphoproteom results and 

further possible mediators of the proliferative effect. 
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Appendix 

Figure A-1 displays the mean log2 fold changes and the standard deviation of the 

measured protein phosphorylations after distinct pathway perturbation in BL-2 cells. The 

analysis was done with the multiplex immunoassay, the means were calculated with three 

independent experiments and the values were normalized to the untreated control. These 

results were evaluated by Bertram Klinger (Institute of Pathology, Charité – University 

Medicine Berlin) and are part of Figure 4 and Figure 6. 
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Figure A-1: Multiplex immunoassay values and standard deviation of the BL-2 cell analysis 

BL-2 cells were analyzed with the multiplex immunoassay after 3 hours inhibitor treatment and 

additionally BCR activation for 30 minutes. (A) Mean log2 fold changes of measured protein 

phosphorylations were presented for each pathway perturbation normalized to the untreated 

control (n=3). (B) Standard deviation of A was calculated. This evaluation was done by Bertram 

Klinger (Institute of Pathology, Charité – University Medicine Berlin). 
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Figure A-2 displays the mean log2 fold changes and the standard deviation of the 

measured protein phosphorylations after distinct pathway perturbation in BL-41 cells. The 

analysis was done with the multiplex immunoassay, the means were calculated with three 

independent experiments and the values were normalized to the untreated control. These 

results were evaluated by Bertram Klinger (Institute of Pathology, Charité – University 

Medicine Berlin) and are part of Figure 4 and Figure 6 

 

 

Figure A-2: Multiplex immunoassay values and standard deviation of the BL-41 cell analysis 

BL-41 cells were analyzed with the multiplex immunoassay after 3 hours inhibitor treatment and 

additionally BCR activation for 30 minutes. (A) Mean log2 fold changes of measured protein 

phosphorylations were presented for each pathway perturbation normalized to the untreated 

control (n=3). (B) Standard deviation of A was calculated. This evaluation was done by Bertram 

Klinger (Institute of Pathology, Charité – University Medicine Berlin). 
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Figure A-3 presents the starting network of the BCR signaling which was complemented 

with the results of the multiplex immunoassay to generate a refined network model. This 

scheme was created by Bertram Klinger (Institute of Pathology, Charité – University 

Medicine Berlin). 

 

 

Figure A-3: Literature-derived network model with the experimental setup 

Network model scheme based on the review of Hendriks et al. was created by Bertram Klinger 

(Institute of Pathology, Charité – University Medicine Berlin) (Hendriks et al., 2014). Stimulated 

(blue), inhibited (red) and measured (yellow) nodes are displayed. The corresponding details 

present the used inhibitors (red) and the measured protein phosphorylations (black). 
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Figure A-4 displays the generated network model of BL-41 cells which was done by 

Bertram Klinger (Institute of Pathology, Charité – University Medicine Berlin) and belongs 

to Figure 7. 

 

 

Figure A-4: Network model of BCR signaling interactions and feedbacks of BL-41 cells 

Network model of BL-41 cells based on Modular Response Analysis by STASTNet was calculated 

by Bertram Klinger (Institute of Pathology, Charité – University Medicine Berlin). Stimulated (blue), 

inhibited (red) and measured (yellow) nodes are displayed. The corresponding numbers indicate 

the inhibition strength (red) and the value of the local response coefficients (black). Arrows present 

interaction with positive (black) or negative (orange) local response coefficients. 
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Figure A-5 displays the mean log2 fold changes and the standard deviation of the 

measured protein phosphorylations after distinct pathway perturbation in HBL-1 and 

OCI-LY3 cells. The analysis was done with the multiplex immunoassay, the means were 

calculated with three independent experiments and the values were normalized to the 

untreated control. These results were evaluated by Bertram Klinger (Institute of Pathology, 

Charité – University Medicine Berlin) and are part of Figure 15. 

 

 

Figure A-5: Multiplex immunoassay values and standard deviation of ABC DLBCLs analyses 

HBL-1 and OCI-LY3 cells were analyzed with the multiplex immunoassay after 3 hours inhibitor 

treatment. (A) Mean log2 fold changes of measured protein phosphorylations were presented for 

each pathway perturbation normalized to the untreated control (n=3). (B) Standard deviation of A 

was calculated. This evaluation was done by Bertram Klinger (Institute of Pathology, Charité – 

University Medicine Berlin). 
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A list of all quantified protein phosphorylations in P493-6 cells, which are shown in Figure 

19, is attached. This includes the name of protein, phosphorylation site, mean log2 values 

of the light/heavy ratio, p-values and the measured intensities. The calculation of the log2 

values were done by Jasmin Corso from the Bioanalytical Mass Spectrometry Group of 

Henning Urlaub (Max-Planck-Institute for Biophysical Chemistry, Goettingen). 

 

The significantly changed phosphosites after IL10+CpG stimulation displayed in Figure 19 

are listed in Table A-1. This includes the name of protein, phosphorylation site, mean log2 

values of the light/heavy ratio, p-values and the measured intensities. 

 

Table A-1: The changed phosphosites after IL10+CpG stimulation 

T: Gene names 
C: 

Amino 
acid 

N: 
Position 

light Myc 
low /heavy 
Myc high 
IL10+CpG 

light Myc 
low 

IL10+CpG 
/heavy 

Myc high 
IL10+CpG 

 Differ-
ence 
IL10+ 
CpG    
- Ctrl 

Individual 
p-value 

N: Intensity 

ABL2 S 936 -0,90 -0,07 0,83 0,0011 103040000 
ACIN1;DKFZp667N107 S 652 -0,81 -0,18 0,62 0,0142 399670000 

ADD1 T 11 0,09 1,13 1,05 0,0001 1904600000 

ADRBK1 S 652 -1,07 -0,11 0,96 0,0002 574690000 

AHNAK S 3426 -1,56 1,35 2,91 0,0001 461270000 

AHNAK S 5110 0,32 1,26 0,94 0,0002 642210000 

AHNAK S 135 1,19 2,07 0,88 0,0005 3396400000 

AHNAK S 210 0,63 1,27 0,64 0,0118 962530000 

AHNAK S 5830 0,87 1,30 -0,73 0,0187 50311000 

AKAP1 S 150 -2,06 -1,32 0,74 0,0035 101850000 

AKAP13 S 2709 -1,77 0,74 2,34 0,0001 78983000 

AMFR;hCG_1811773 S 191 -0,91 0,03 0,94 0,0002 61806000 

ANKRD28 S 1011 -1,27 -0,29 0,70 0,0241 30248000 

APOB48R;APOBR T 563 1,29 1,96 0,67 0,0313 67005000 

APPL1 S 401 1,22 0,62 -0,64 0,0147 185830000 

ARHGAP30 S 240 -0,54 0,15 0,69 0,0067 67400000 

ARHGAP4 S 340 -0,75 0,22 0,96 0,0001 291210000 

ARHGEF6 S 684 1,26 0,86 -0,69 0,0089 103420000 

ASAP1 S 660 0,79 -0,15 -1,06 0,0001 54716000 

BET1;DKFZp781C0425 S 50 -0,13 0,44 0,75 0,0157 131550000 

BIN1 S 267 0,86 0,22 -0,64 0,0031 650660000 

C2orf49 S 151 -0,93 0,24 1,17 0,0001 187440000 

CAMSAP1 S 945 -1,00 -0,06 0,94 0,0002 212820000 

CARHSP1 S 30 0,28 -0,46 -0,74 0,0001 1537300000 

CCDC55;NSRP1 T 221 -0,19 -0,82 -0,80 0,0025 117450000 

CD2AP S 458 2,01 1,14 -0,87 0,0001 597740000 

CD72 Y 7 3,44 2,74 -0,70 0,0011 44524000 

CDC42EP3 S 144 1,59 2,33 0,74 0,0178 95180000 



Appendix 

104 

T: Gene names 
C: 

Amino 
acid 

N: 
Position 

light Myc 
low /heavy 
Myc high 
IL10+CpG 

light Myc 
low 

IL10+CpG 
/heavy 

Myc high 
IL10+CpG 

 Differ-
ence 
IL10+ 
CpG    
- Ctrl 

Individual 
p-value 

N: Intensity 

CDV3 Y 190 -0,11 0,85 0,81 0,0094 530910000 

CENPF S 3119 -1,62 -2,35 -0,72 0,0201 26095000 

CHAMP1 S 427 -0,69 0,10 0,78 0,0020 824110000 

CIC;CIC/DUX4 fusion S 1405 -0,17 0,59 0,77 0,0138 34471000 

CLASP2;DKFZp686D11262 S 934 -1,53 -0,44 1,10 0,0004 44827000 

CLTA S 105 -0,80 0,15 0,95 0,0002 1956200000 

DIDO1 S 1456 -0,96 0,10 1,05 0,0001 1413300000 

DKC1 S 485 -1,35 -0,59 0,76 0,0026 121250000 

DKFZp781H1925;EIF2AK3 S 564 -2,12 -0,54 1,32 0,0001 44186000 

DNMBP S 684 -1,40 0,16 1,12 0,0003 17740000 

DNMT1 S 130 -2,47 -0,63 1,89 0,0001 136570000 

DOCK2 S 1685 -0,63 0,36 0,99 0,0001 4787800000 

DTL S 236 -2,57 -1,26 1,31 0,0001 31988000 

DYNC1LI1 S 516 -1,26 0,10 1,37 0,0001 3187700000 

EIF4B S 382 -1,23 -0,69 0,62 0,0471 973860000 

ELMSAN1;C14orf43 S 996 -2,32 -0,72 1,61 0,0001 10157000 

ELMSAN1;C14orf43 S 461 -1,05 0,02 1,07 0,0001 1275800000 

EPB41L1 T 378 -0,51 0,78 1,29 0,0001 140210000 

EPS15 S 796 -0,98 0,65 1,63 0,0001 227790000 

EPS15L1 S 376 -2,70 -1,32 1,28 0,0001 180320000 

ESCO2 S 512 -1,32 0,12 1,45 0,0001 97003000 

FAM195A S 82 -1,83 -0,86 0,97 0,0001 249730000 

FAM21C;FAM21A S 728 -0,35 0,48 0,78 0,0123 141120000 

FAM21C;FAM21A S 288 -0,43 0,33 0,75 0,0152 144640000 

FBRSL1 S 937 -2,05 -2,69 -0,64 0,0031 146610000 

FCHO1 S 520 0,23 0,84 0,61 0,0171 153990000 

FHOD1 S 549 -1,44 -0,02 1,43 0,0001 107880000 

GABPA S 303 -2,99 0,10 3,08 0,0001 100250000 

GATAD2B S 470 -1,51 -0,30 1,26 0,0001 212070000 

GBF1 S 1784 -1,67 0,44 2,16 0,0001 103570000 

GCC2 S 554 -1,96 -0,09 1,87 0,0001 491240000 

GCC2 S 409 -1,02 -0,03 1,13 0,0003 47754000 

GPATCH8 S 1107 -0,63 0,13 0,76 0,0027 609850000 

GPS1 S 454 0,48 -0,21 -0,69 0,0013 284620000 

GTF3C1;DKFZp686A111;DK
FZp686O0870 

S 1068 -0,26 -1,07 -0,90 0,0007 124150000 

HAUS6 T 448 -3,07 -0,61 2,46 0,0001 324730000 

hCG_1989366;NUP50 S 221 -2,36 -1,58 0,79 0,0019 107330000 

HEL-S-102;HSPB1 S 15 -2,62 0,42 3,04 0,0001 60325000 

HEL-S-102;HSPB1 S 82 -0,75 0,29 1,03 0,0001 2,0624E+10 

HEL-S-270;ANXA2;ANXA2P2 S 26 0,69 -0,34 -1,03 0,0001 114390000 

HEL-S-37;LCP1 S 5 1,38 2,31 0,94 0,0002 1,2519E+10 

HNRPD;HNRNPD S 87 -0,55 0,57 1,12 0,0003 347070000 

HSH2D S 210 0,61 1,41 0,80 0,0017 302560000 
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T: Gene names 
C: 

Amino 
acid 

N: 
Position 

light Myc 
low /heavy 
Myc high 
IL10+CpG 

light Myc 
low 

IL10+CpG 
/heavy 

Myc high 
IL10+CpG 

 Differ-
ence 
IL10+ 
CpG    
- Ctrl 

Individual 
p-value 

N: Intensity 

INPP5D S 971 0,64 1,34 0,75 0,0155 2998000000 

INPP5D T 963 0,64 1,33 0,75 0,0166 154000000 

IQGAP2 S 16 0,56 1,39 0,83 0,0012 348440000 

IRF2BP2 S 240 -0,70 0,04 0,74 0,0036 201260000 

IRF2BP2 S 457 0,38 -0,58 -0,72 0,0063 172360000 

JUN;JUND S 100 -1,13 0,88 2,01 0,0001 112020000 

KCNAB2 S 9 -0,64 -1,25 -0,68 0,0100 88158000 

KDM3B;JMJD1B S 798 -2,79 0,22 3,05 0,0001 179340000 

KDM4B;JMJD2B S 324 -1,55 -0,09 1,35 0,0001 291910000 

KIAA1267;KANSL1 S 1081 -1,33 -0,52 0,80 0,0099 78048000 

KIAA1737;CIPC S 113 -1,73 -1,02 1,11 0,0004 78929000 

KIF18B S 94 -1,86 -1,04 0,82 0,0084 39783000 

KIF4A S 804 -1,30 0,50 1,81 0,0001 52333000 

KIFC1 S 6 0,99 -0,17 -1,16 0,0001 534050000 

KLC2 S 610 -0,70 -0,04 0,66 0,0336 21362000 

KMT2D S 2274 -0,95 -0,05 0,90 0,0004 346090000 

LCK;YES1;FYN;SRC Y 419 -0,07 0,69 1,09 0,0005 282310000 

LRMP S 28 -1,47 -0,36 0,71 0,0228 33192000 

LSM14A S 183 0,21 -0,51 -0,72 0,0008 1415700000 

LSP1 S 177 -1,04 -1,94 -0,90 0,0038 252620000 

MAP1B;DKFZp686F1345 S 1852 -0,78 0,45 1,32 0,0001 55692000 

MAP2K2;DKFZp686L02273 S 295 -0,13 0,51 0,63 0,0416 243570000 

MAP3K1 S 1018 1,03 0,23 -1,10 0,0001 77596000 

MAPK14 Y 182 -1,99 0,02 2,02 0,0001 2425900000 

MAPRE1 S 155 0,11 1,24 0,91 0,0034 143320000 

MARCKS S 118 -0,77 1,11 1,71 0,0001 216990000 

MAVS S 222 -1,54 0,05 1,60 0,0001 143590000 

MCM3AP S 153 -0,47 0,30 0,77 0,0132 111300000 

MCM4 S 80 -1,51 -2,34 -0,65 0,0135 32890000 

MED24 S 38 -1,53 0,14 1,40 0,0001 74733000 

MEF2C S 226 -1,57 0,68 2,15 0,0001 173660000 

MEF2C S 220 -0,42 0,44 0,86 0,0001 298990000 

MEF2C S 238 -0,18 0,60 0,80 0,0099 36709000 

MEF2D variant 
protein;MEF2D 

S 126 -2,14 0,04 2,30 0,0001 98449000 

MEF2D variant 
protein;MEF2D 

S 185 -1,05 0,08 1,13 0,0001 187660000 

MEPCE S 152 -1,84 0,01 1,86 0,0001 59393000 

MICAL3 S 1310 -2,19 -0,85 1,34 0,0001 66870000 

MKI67 S 1130 -0,52 0,15 0,67 0,0321 59047000 

MKL1;mkl1 S 454 0,09 0,79 0,70 0,0060 172650000 

MLLT4 S 1234 0,62 -0,19 -0,91 0,0006 80188000 

MPZL1 Y 237 0,02 0,67 0,65 0,0025 84308000 

MS4A1 S 36 -1,32 0,84 2,15 0,0001 5718200000 

MS4A1 S 35 0,47 1,65 1,27 0,0001 711490000 
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T: Gene names 
C: 

Amino 
acid 

N: 
Position 

light Myc 
low /heavy 
Myc high 
IL10+CpG 

light Myc 
low 

IL10+CpG 
/heavy 

Myc high 
IL10+CpG 

 Differ-
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IL10+ 
CpG    
- Ctrl 

Individual 
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N: Intensity 

MS4A1 S 36 0,47 1,65 1,27 0,0001 5718200000 

MS4A1 S 218 0,37 1,60 1,09 0,0005 275800000 

MS4A1 S 35 1,46 0,74 -0,72 0,0001 711490000 

MST065;TOMM22 S 15 -0,18 0,41 0,60 0,0189 2241200000 

MTSS1L S 455 -2,05 -1,44 0,83 0,0076 91922000 

MYO9B variant 
protein;MYO9B 

T 1352 -2,21 0,03 2,24 0,0001 145300000 

MYO9B variant 
protein;MYO9B 

S 1411 -2,48 -0,41 2,07 0,0001 352100000 

MYO9B variant 
protein;MYO9B 

S 1273 -1,05 0,26 1,32 0,0001 371830000 

MYO9B variant 
protein;MYO9B 

S 1296 -1,21 -0,01 1,21 0,0001 1558700000 

NAP1L1 S 69 -0,28 -0,71 -0,66 0,0347 77631000 

NELFE;RDBP;NELF-E S 51 -2,56 -0,18 2,23 0,0001 309490000 

NELFE;RDBP;NELF-E S 115 -1,94 -0,49 1,45 0,0001 2085800000 

NELFE;RDBP;NELF-E S 251 -1,23 -0,62 0,61 0,0166 376780000 

NOC2L S 49 -0,79 -0,39 0,63 0,0434 148950000 

NOL8 S 1031 -0,75 -0,12 0,63 0,0429 67523000 

NOLC1 T 610 -1,63 -2,22 -0,70 0,0079 284210000 

NOLC1 S 397 -2,16 -3,07 -0,76 0,0041 123650000 

NOP2 S 58 -2,34 0,35 2,68 0,0001 288400000 

NUCKS1 T 179 -0,84 -1,46 -0,62 0,0038 862350000 

NUCKS1 S 181 -0,81 -1,47 -0,66 0,0023 2,325E+10 

NUMA1;NUMA1 variant 
protein 

S 1741 -1,10 -0,17 0,92 0,0003 376830000 

NUP188 S 1709 -1,75 -0,95 0,82 0,0086 134880000 

OSBPL11 S 181 0,49 -0,25 -0,74 0,0006 59062000 

OSBPL3 S 437 -0,93 0,25 1,18 0,0001 137170000 

OXR1 S 113 0,63 1,35 0,79 0,0110 185140000 

OXSR1 S 359 -0,69 0,35 1,04 0,0008 16074000 

PAK1 T 114 -2,27 -0,17 2,05 0,0001 52953000 

PAK2 S 58 -1,96 0,21 1,83 0,0001 15526000 

PAPOLG S 525 -2,70 -0,56 2,14 0,0001 73832000 

PARN S 557 -1,47 -0,59 0,88 0,0005 150810000 

PDS5A T 1208 -0,55 -1,21 -0,67 0,0020 178640000 

PFKL S 775 -1,09 0,22 1,31 0,0001 227750000 

PI4K2A S 462 0,54 1,13 0,77 0,0130 44624000 

PLEKHM1 S 346 0,40 1,26 0,77 0,0130 30251000 

PML S 518 1,33 0,68 -0,65 0,0027 596350000 

PML S 527 1,33 0,68 -0,65 0,0027 1175000000 

PML S 527 1,64 0,92 -0,71 0,0010 1175000000 

PPFIBP2;DKFZp781K06126 S 252 -0,60 0,63 1,37 0,0001 66492000 

PPP1R10 S 313 -0,35 0,34 0,68 0,0071 1795000000 

PRKD2 S 198 1,24 1,73 0,86 0,0057 33320000 

PROSER1 S 552 -1,61 -0,84 0,77 0,0023 163150000 

PROSER2;C10orf47 S 212 -2,61 -1,70 0,92 0,0003 67830000 
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acid 

N: 
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light Myc 
low /heavy 
Myc high 
IL10+CpG 

light Myc 
low 

IL10+CpG 
/heavy 

Myc high 
IL10+CpG 

 Differ-
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IL10+ 
CpG    
- Ctrl 

Individual 
p-value 

N: Intensity 

PSM8;PSMB8 S 39 1,35 1,97 0,62 0,0143 35825000 

PSMA5 S 56 -0,33 0,58 0,91 0,0004 372170000 

PSMA5 S 16 -0,65 -0,02 0,63 0,0124 367770000 

PSMF1 S 153 -1,11 -0,41 0,71 0,0054 601910000 

RAF1;SRGAP3:RAF1 S 609 0,36 1,36 0,81 0,0093 80432000 

RALGPS2 S 308 1,94 0,98 -1,28 0,0001 330400000 

RALGPS2 S 296 1,94 0,31 -1,95 0,0001 407060000 

RANBP3 S 126 -0,25 0,42 0,66 0,0089 115560000 

RBM34 S 17 -1,03 0,16 1,19 0,0001 497240000 

RBM7 S 136 -2,48 0,10 2,58 0,0001 106880000 

RCSD1 S 82 -2,76 0,19 2,96 0,0001 808720000 

RCSD1 S 83 -2,63 -0,23 2,40 0,0001 5518600000 

RCSD1 S 68 -0,99 0,47 1,46 0,0001 863810000 

RCSD1 S 284 -0,41 0,58 0,99 0,0001 1637100000 

RCSD1 S 179 -0,17 0,67 0,84 0,0010 3197800000 

RCSD1 S 120 0,97 0,20 -0,77 0,0003 394830000 

RHBDF2 S 61 -0,79 -0,14 0,65 0,0107 143330000 

RIC1 S 909 -1,14 0,97 2,11 0,0001 151090000 

RNF214;DKFZp547C195 S 15 0,02 -0,62 -0,64 0,0398 13980000 

RPRD2 S 1099 -1,32 0,24 1,56 0,0001 289780000 

RPS6 S 240 -0,85 0,01 0,74 0,0175 58425000 

SACS S 1779 -2,52 -0,67 1,85 0,0001 31816000 

SACS S 4264 -1,71 -0,35 1,35 0,0001 112540000 

SART1 S 448 -0,73 0,19 0,92 0,0003 518090000 

SCRIB S 1448 -0,98 -0,20 0,78 0,0021 583260000 

SCRIB S 1486 -1,67 -0,92 0,74 0,0034 141830000 

SCRIB S 1475 -1,44 -0,72 0,72 0,0045 973960000 

SCRIB S 504 -1,03 -0,36 0,67 0,0088 1100700000 

SEC16A S 1964 -0,73 0,15 0,76 0,0151 139820000 

SETX S 1366 -0,71 0,69 1,40 0,0001 762420000 

SLC29A2 S 252 -2,17 -1,11 0,92 0,0031 34200000 

SLC9A1 S 364 0,29 1,07 0,77 0,0023 272210000 

SLC9A3R1 S 290 0,20 1,17 0,97 0,0018 338940000 

SNAPIN T 14 -1,16 -0,47 0,87 0,0054 90821000 

SOS1 S 752 2,08 0,74 -1,02 0,0001 39536000 

SPTBN1 S 2254 -0,16 -0,77 -0,61 0,0050 482260000 

SRPK1 S 311 -0,33 -0,94 -0,73 0,0056 128830000 

SRRM2;KIAA0324 S 2272 -1,60 -0,90 0,71 0,0054 313600000 

SRRM2;KIAA0324 T 2104 0,33 -0,53 -0,87 0,0001 2267000000 

STAT1 S 727 1,33 2,12 0,78 0,0020 415540000 

STAT3 Y 607 -4,26 1,52 5,84 0,0001 515900000 

STAT3 Y 704 -1,33 1,51 2,85 0,0001 73240000 

STAU2;STAU2 variant 
protein 

S 105 -1,81 -0,13 1,69 0,0001 75642000 
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STK10 T 952 0,04 0,73 0,69 0,0062 650860000 

STK24;HEL-S-95 S 4 -0,54 0,09 0,63 0,0131 699270000 

STMN1 S 25 -1,13 0,83 1,95 0,0001 5048800000 

STX6 S 2 -1,16 -1,07 0,63 0,0414 17434000 

TAOK3 S 442 0,68 0,12 -0,62 0,0181 75975000 

TBC1D4 S 591 -0,83 -1,58 -0,75 0,0005 1062200000 

TBC1D5 S 43 1,53 0,83 -0,70 0,0012 153940000 

TFAP4 S 63 -3,17 -3,81 -0,63 0,0418 47441000 

THRAP3 S 184 -0,03 -0,89 -0,85 0,0012 57521000 

TMEM201 S 364 -1,16 -2,79 -1,63 0,0001 17847000 

TMF1 S 333 -1,44 -0,19 1,25 0,0001 30240000 

TMPO S 424 -1,25 -1,85 -0,60 0,0056 69924000 

TMPO T 160 1,23 0,59 -0,64 0,0028 110670000 

TNKS1BP1 S 836 -2,05 -0,74 1,15 0,0002 70829000 

TRIM24 S 953 -2,13 -0,18 2,12 0,0001 242790000 

TRIM28 S 473 -0,89 -0,14 0,75 0,0034 1906700000 

TRRAP S 1772 -2,25 -0,53 2,02 0,0001 130780000 

TSC22D4 S 165 0,90 0,29 -0,64 0,0150 22224000 

UBAP1 S 172 -0,32 1,06 1,19 0,0001 58307000 

UBE2O S 839 -1,38 -0,21 1,10 0,0004 767920000 

UBE4B S 105 -1,11 -0,23 0,81 0,0092 179120000 

UBR5 S 1543 -0,97 -0,10 0,87 0,0006 577750000 

ULK1 S 450 -0,73 -0,05 0,68 0,0287 23276000 

ULK1 S 623 -0,70 -0,03 0,66 0,0089 48393000 

USP1 S 313 -1,29 -0,82 0,94 0,0025 109970000 

USP10 S 365 -0,27 -0,65 -0,62 0,0182 33173000 

VGLL4 S 149 -2,10 -1,38 0,72 0,0008 58534000 

WAC T 293 -2,11 -0,43 1,61 0,0001 40383000 

WDR62;DKFZp434J046 S 1123 -1,56 -0,83 0,68 0,0279 63753000 

ZC3H12D;FLJ00361 S 428 -1,55 1,20 2,64 0,0001 81621000 

ZC3H13 S 993 -0,84 -1,55 -0,71 0,0010 143120000 

ZCCHC8 S 420 -1,53 -0,06 1,56 0,0001 37632000 

ZDHHC5 S 398 0,21 -0,43 -0,64 0,0148 34041000 

ZFC3H1 S 352 -2,11 -0,28 1,83 0,0001 387690000 

ZFC3H1 T 766 -1,33 -0,19 1,16 0,0002 67428000 

ZFP91-
CNTF;hCG_2042749;ZFP91 

S 83 0,97 -0,08 -1,04 0,0001 241060000 

ZNF609 S 413 -0,86 0,35 1,40 0,0001 268850000 

ZYX S 238 0,31 1,19 0,88 0,0005 262250000 

ZZEF1 S 1518 -0,78 0,52 1,30 0,0001 186700000 

 S 18 -1,41 0,78 2,10 0,0001 61626000 
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Table A-2 presents the GO annotation of the phosphorylated proteins which were 

significantly changed by IL10+CpG stimulation. Only terms with more than 10 counts and 

p-values below 0.05 were included. 

Table A-2: GO annotation of phosphoproteins changed by IL10+CpG stimulation 

Category Term 
 

Count % P value 
-log10  

P value 

Annotation Cluster 1 Enrichment Score: 3,7335796159192123     

GOTERM_BP_FAT GO:0010608 posttranscriptional regulation of gene 
expression 

15 7,81 0,0003327 3,48 

       

Annotation Cluster 2 Enrichment Score: 3,3521003094311026     

GOTERM_BP_FAT GO:0043933 macromolecular complex subunit 
organization 

48 25,00 0,0000083 5,08 

GOTERM_BP_FAT GO:0065003 macromolecular complex assembly 35 18,23 0,0000946 4,02 

GOTERM_BP_FAT GO:0006461 protein complex assembly 31 16,15 0,0001234 3,91 

GOTERM_BP_FAT GO:0070271 protein complex biogenesis 31 16,15 0,0001250 3,90 

GOTERM_BP_FAT GO:0044085 cellular component biogenesis 49 25,52 0,0002912 3,54 

GOTERM_BP_FAT GO:0071822 protein complex subunit organization 33 17,19 0,0003225 3,49 

GOTERM_BP_FAT GO:0022607 cellular component assembly 45 23,44 0,0003687 3,43 

GOTERM_BP_FAT GO:0043623 cellular protein complex assembly 12 6,25 0,0328116 1,48 

GOTERM_BP_FAT GO:0034622 cellular macromolecular complex 
assembly 

17 8,85 0,0491809 1,31 

       

Annotation Cluster 3 Enrichment Score: 3,1526962069914504     

GOTERM_BP_FAT GO:0007049 cell cycle 41 21,35 0,0000002 6,73 

GOTERM_BP_FAT GO:0000278 mitotic cell cycle 29 15,10 0,0000005 6,32 

GOTERM_BP_FAT GO:0022402 cell cycle process 33 17,19 0,0000056 5,25 

GOTERM_BP_FAT GO:1903047 mitotic cell cycle process 25 13,02 0,0000114 4,94 

GOTERM_BP_FAT GO:0007067 mitotic nuclear division 14 7,29 0,0004644 3,33 

GOTERM_BP_FAT GO:0000280 nuclear division 16 8,33 0,0008974 3,05 

GOTERM_BP_FAT GO:0048285 organelle fission 16 8,33 0,0017042 2,77 

GOTERM_BP_FAT GO:0044772 mitotic cell cycle phase transition 14 7,29 0,0022892 2,64 

GOTERM_BP_FAT GO:0044770 cell cycle phase transition 14 7,29 0,0038923 2,41 

GOTERM_BP_FAT GO:0007017 microtubule-based process 15 7,81 0,0042328 2,37 

GOTERM_BP_FAT GO:0007059 chromosome segregation 10 5,21 0,0071646 2,14 

GOTERM_BP_FAT GO:0000226 microtubule cytoskeleton organization 10 5,21 0,0308129 1,51 

GOTERM_BP_FAT GO:0051301 cell division 12 6,25 0,0328116 1,48 

       

Annotation Cluster 4 Enrichment Score: 2,9792557107087028     

GOTERM_BP_FAT GO:0044093 positive regulation of molecular function 40 20,83 0,0000057 5,24 

GOTERM_BP_FAT GO:0035556 intracellular signal transduction 49 25,52 0,0000287 4,54 

GOTERM_BP_FAT GO:0051336 regulation of hydrolase activity 31 16,15 0,0000298 4,53 

GOTERM_BP_FAT GO:0043085 positive regulation of catalytic activity 34 17,71 0,0000362 4,44 

GOTERM_BP_FAT GO:0065009 regulation of molecular function 51 26,56 0,0000455 4,34 

GOTERM_BP_FAT GO:0051345 positive regulation of hydrolase activity 24 12,50 0,0000545 4,26 

GOTERM_BP_FAT GO:0043087 regulation of GTPase activity 19 9,90 0,0002358 3,63 

GOTERM_BP_FAT GO:0009966 regulation of signal transduction 47 24,48 0,0002390 3,62 

GOTERM_BP_FAT GO:0010646 regulation of cell communication 50 26,04 0,0003530 3,45 

GOTERM_BP_FAT GO:0023051 regulation of signalling 50 26,04 0,0005208 3,28 

GOTERM_BP_FAT GO:0023014 signal transduction by protein 
phosphorylation 

21 10,94 0,0005913 3,23 

GOTERM_BP_FAT GO:0043547 positive regulation of GTPase activity 17 8,85 0,0007437 3,13 

GOTERM_BP_FAT GO:0006468 protein phosphorylation 34 17,71 0,0008926 3,05 

GOTERM_BP_FAT GO:0007264 small GTPase mediated signal 
transduction 

15 7,81 0,0009821 3,01 
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Category Term 
 

Count % P value 
-log10  

P value 

GOTERM_BP_FAT GO:0050790 regulation of catalytic activity 40 20,83 0,0011813 2,93 

GOTERM_BP_FAT GO:0016310 phosphorylation 37 19,27 0,0028837 2,54 

GOTERM_BP_FAT GO:1902531 regulation of intracellular signal 
transduction 

30 15,63 0,0040778 2,39 

GOTERM_BP_FAT GO:0009967 positive regulation of signal transduction 26 13,54 0,0050427 2,30 

GOTERM_BP_FAT GO:0023056 positive regulation of signalling 27 14,06 0,0081512 2,09 

GOTERM_BP_FAT GO:0000165 MAPK cascade 17 8,85 0,0116933 1,93 

GOTERM_BP_FAT GO:0010647 positive regulation of cell communication 26 13,54 0,0141272 1,85 

GOTERM_BP_FAT GO:0048584 positive regulation of response to 
stimulus 

30 15,63 0,0355079 1,45 

       

Annotation Cluster 5 Enrichment Score: 2,859204278988926     

GOTERM_BP_FAT GO:0051641 cellular localization 52 27,08 0,0000006 6,20 

GOTERM_BP_FAT GO:0051649 establishment of localization in cell 40 20,83 0,0000410 4,39 

GOTERM_BP_FAT GO:0046907 intracellular transport 34 17,71 0,0000561 4,25 

GOTERM_BP_FAT GO:0034504 protein localization to nucleus 14 7,29 0,0000872 4,06 

GOTERM_BP_FAT GO:0017038 protein import 13 6,77 0,0001381 3,86 

GOTERM_BP_FAT GO:0044744 protein targeting to nucleus 12 6,25 0,0001383 3,86 

GOTERM_BP_FAT GO:0006606 protein import into nucleus 12 6,25 0,0001383 3,86 

GOTERM_BP_FAT GO:1902593 single-organism nuclear import 12 6,25 0,0001425 3,85 

GOTERM_BP_FAT GO:0051170 nuclear import 12 6,25 0,0002440 3,61 

GOTERM_BP_FAT GO:1902582 single-organism intracellular transport 19 9,90 0,0002529 3,60 

GOTERM_BP_FAT GO:0034613 cellular protein localization 32 16,67 0,0003219 3,49 

GOTERM_BP_FAT GO:0070727 cellular macromolecule localization 32 16,67 0,0003704 3,43 

GOTERM_BP_FAT GO:0008104 protein localization 42 21,88 0,0006682 3,18 

GOTERM_BP_FAT GO:1902580 single-organism cellular localization 24 12,50 0,0007753 3,11 

GOTERM_BP_FAT GO:0033365 protein localization to organelle 21 10,94 0,0008381 3,08 

GOTERM_BP_FAT GO:0033036 macromolecule localization 46 23,96 0,0009425 3,03 

GOTERM_BP_FAT GO:0051169 nuclear transport 14 7,29 0,0010960 2,96 

GOTERM_BP_FAT GO:0006886 intracellular protein transport 22 11,46 0,0015721 2,80 

GOTERM_BP_FAT GO:1903827 regulation of cellular protein localization 15 7,81 0,0017988 2,75 

GOTERM_BP_FAT GO:0015031 protein transport 33 17,19 0,0019200 2,72 

GOTERM_BP_FAT GO:0045184 establishment of protein localization 35 18,23 0,0019784 2,70 

GOTERM_BP_FAT GO:0006913 nucleocytoplasmic transport 13 6,77 0,0028511 2,54 

GOTERM_BP_FAT GO:0060341 regulation of cellular localization 18 9,38 0,0048767 2,31 

GOTERM_BP_FAT GO:0051049 regulation of transport 30 15,63 0,0077832 2,11 

GOTERM_BP_FAT GO:0072594 establishment of protein localization to 
organelle 

15 7,81 0,0080232 2,10 

GOTERM_BP_FAT GO:0032880 regulation of protein localization 19 9,90 0,0089895 2,05 

GOTERM_BP_FAT GO:1903829 positive regulation of cellular protein 
localization 

10 5,21 0,0119474 1,92 

GOTERM_BP_FAT GO:0006605 protein targeting 15 7,81 0,0122015 1,91 

       

Annotation Cluster 6 Enrichment Score: 2,6955951501894386     

GOTERM_BP_FAT GO:0007265 Ras protein signal transduction 13 6,77 0,0001064 3,97 

GOTERM_BP_FAT GO:0043087 regulation of GTPase activity 19 9,90 0,0002358 3,63 

GOTERM_BP_FAT GO:0043547 positive regulation of GTPase activity 17 8,85 0,0007437 3,13 

GOTERM_BP_FAT GO:0007264 small GTPase mediated signal 
transduction 

15 7,81 0,0009821 3,01 

       

Annotation Cluster 7 Enrichment Score: 2,628977224705781     

GOTERM_BP_FAT GO:0051276 chromosome organization 31 16,15 0,0000028 5,56 

GOTERM_BP_FAT GO:0051129 negative regulation of cellular component 
organization 

19 9,90 0,0000661 4,18 

GOTERM_BP_FAT GO:0010639 negative regulation of organelle 
organization 

12 6,25 0,0003605 3,44 

GOTERM_BP_FAT GO:0033044 regulation of chromosome organization 10 5,21 0,0027466 2,56 
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Category Term 
 

Count % P value 
-log10  

P value 

GOTERM_BP_FAT GO:0006325 chromatin organization 17 8,85 0,0051095 2,29 

GOTERM_BP_FAT GO:0016570 histone modification 12 6,25 0,0053534 2,27 

GOTERM_BP_FAT GO:0016569 covalent chromatin modification 13 6,77 0,0104628 1,98 

       

Annotation Cluster 8 Enrichment Score: 2,450069107726637     

GOTERM_BP_FAT GO:0006259 DNA metabolic process 24 12,50 0,0001842 3,73 

GOTERM_BP_FAT GO:0006281 DNA repair 13 6,77 0,0079391 2,10 

GOTERM_BP_FAT GO:0006974 cellular response to DNA damage 
stimulus 

17 8,85 0,0080847 2,09 

GOTERM_BP_FAT GO:0051052 regulation of DNA metabolic process 10 5,21 0,0133948 1,87 

       

Annotation Cluster 10 Enrichment Score: 2,2644571324985088     

GOTERM_BP_FAT GO:0035556 intracellular signal transduction 49 25,52 0,0000287 4,54 

GOTERM_BP_FAT GO:0033554 cellular response to stress 36 18,75 0,0000843 4,07 

GOTERM_BP_FAT GO:0023014 signal transduction by protein 
phosphorylation 

21 10,94 0,0005913 3,23 

GOTERM_BP_FAT GO:0006468 protein phosphorylation 34 17,71 0,0008926 3,05 

GOTERM_BP_FAT GO:0016310 phosphorylation 37 19,27 0,0028837 2,54 

GOTERM_BP_FAT GO:0000165 MAPK cascade 17 8,85 0,0116933 1,93 

GOTERM_BP_FAT GO:0036211 protein modification process 52 27,08 0,0174549 1,76 

GOTERM_BP_FAT GO:0006464 cellular protein modification process 52 27,08 0,0174549 1,76 

GOTERM_BP_FAT GO:0071900 regulation of protein serine/threonine 
kinase activity 

11 5,73 0,0236050 1,63 

       

Annotation Cluster 11 Enrichment Score: 2,262335128933962     

GOTERM_BP_FAT GO:0018193 peptidyl-amino acid modification 22 11,46 0,0088483 2,05 

       

Annotation Cluster 12 Enrichment Score: 2,20248095655825     

GOTERM_BP_FAT GO:1902589 single-organism organelle organization 39 20,31 0,0000006 6,22 

GOTERM_BP_FAT GO:0007010 cytoskeleton organization 28 14,58 0,0000333 4,48 

GOTERM_BP_FAT GO:0030036 actin cytoskeleton organization 16 8,33 0,0005232 3,28 

GOTERM_BP_FAT GO:0032956 regulation of actin cytoskeleton 
organization 

11 5,73 0,0008570 3,07 

GOTERM_BP_FAT GO:0030029 actin filament-based process 17 8,85 0,0013675 2,86 

GOTERM_BP_FAT GO:0032970 regulation of actin filament-based 
process 

11 5,73 0,0022626 2,65 

GOTERM_BP_FAT GO:0051493 regulation of cytoskeleton organization 12 6,25 0,0039288 2,41 

GOTERM_BP_FAT GO:0043254 regulation of protein complex assembly 11 5,73 0,0056071 2,25 

GOTERM_BP_FAT GO:0007015 actin filament organization 10 5,21 0,0073000 2,14 

GOTERM_BP_FAT GO:0044087 regulation of cellular component 
biogenesis 

16 8,33 0,0174964 1,76 

GOTERM_BP_FAT GO:0043623 cellular protein complex assembly 12 6,25 0,0328116 1,48 

       

Annotation Cluster 13 Enrichment Score: 2,165151910246645     

GOTERM_BP_FAT GO:0006915 apoptotic process 33 17,19 0,0006793 3,17 

GOTERM_BP_FAT GO:0012501 programmed cell death 34 17,71 0,0008926 3,05 

GOTERM_BP_FAT GO:0008219 cell death 35 18,23 0,0011554 2,94 

GOTERM_BP_FAT GO:0043065 positive regulation of apoptotic process 14 7,29 0,0056338 2,25 

GOTERM_BP_FAT GO:0043068 positive regulation of programmed cell 
death 

14 7,29 0,0060475 2,22 

GOTERM_BP_FAT GO:0042981 regulation of apoptotic process 25 13,02 0,0077278 2,11 

GOTERM_BP_FAT GO:0043067 regulation of programmed cell death 25 13,02 0,0086204 2,06 

GOTERM_BP_FAT GO:0010942 positive regulation of cell death 14 7,29 0,0090671 2,04 

GOTERM_BP_FAT GO:0010941 regulation of cell death 25 13,02 0,0181630 1,74 

       

Annotation Cluster 14 Enrichment Score: 2,0883071313015815     

GOTERM_BP_FAT GO:0016032 viral process 24 12,50 0,0001193 3,92 
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-log10  
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GOTERM_BP_FAT GO:0044764 multi-organism cellular process 24 12,50 0,0001328 3,88 

GOTERM_BP_FAT GO:0044403 symbiosis; encompassing mutualism 
through parasitism 

24 12,50 0,0001925 3,72 

GOTERM_BP_FAT GO:0044419 interspecies interaction between 
organisms 

24 12,50 0,0001925 3,72 

GOTERM_BP_FAT GO:0050792 regulation of viral process 10 5,21 0,0014392 2,84 

GOTERM_BP_FAT GO:0043903 regulation of symbiosis; encompassing 
mutualism through parasitism 

10 5,21 0,0025537 2,59 

GOTERM_BP_FAT GO:0043900 regulation of multi-organism process 10 5,21 0,0149688 1,82 

GOTERM_BP_FAT GO:0019058 viral life cycle 11 5,73 0,0179019 1,75 

       

Annotation Cluster 15 Enrichment Score: 1,9941548315648696     

GOTERM_BP_FAT GO:0010608 posttranscriptional regulation of gene 
expression 

15 7,81 0,0003327 3,48 

       

Annotation Cluster 16 Enrichment Score: 1,9755340900925409     

GOTERM_BP_FAT GO:0098609 cell-cell adhesion 22 11,46 0,0072871 2,14 

GOTERM_BP_FAT GO:0007155 cell adhesion 28 14,58 0,0124756 1,90 

GOTERM_BP_FAT GO:0022610 biological adhesion 28 14,58 0,0130251 1,89 

       

Annotation Cluster 17 Enrichment Score: 1,959411589145368     

GOTERM_BP_FAT GO:0051248 negative regulation of protein metabolic 
process 

24 12,50 0,0003924 3,41 

GOTERM_BP_FAT GO:0032269 negative regulation of cellular protein 
metabolic process 

23 11,98 0,0004541 3,34 

GOTERM_BP_FAT GO:0010605 negative regulation of macromolecule 
metabolic process 

40 20,83 0,0009171 3,04 

GOTERM_BP_FAT GO:0031324 negative regulation of cellular metabolic 
process 

39 20,31 0,0020281 2,69 

GOTERM_BP_FAT GO:0009892 negative regulation of metabolic process 41 21,35 0,0022467 2,65 

GOTERM_BP_FAT GO:0031400 negative regulation of protein 
modification process 

14 7,29 0,0061331 2,21 

       

Annotation Cluster 18 Enrichment Score: 1,936584758141524     

GOTERM_BP_FAT GO:0016050 vesicle organization 11 5,73 0,0008793 3,06 

GOTERM_BP_FAT GO:0051656 establishment of organelle localization 12 6,25 0,0037914 2,42 

GOTERM_BP_FAT GO:0051640 organelle localization 13 6,77 0,0042647 2,37 

GOTERM_BP_FAT GO:0061024 membrane organization 19 9,90 0,0166639 1,78 

       

Annotation Cluster 19 Enrichment Score: 1,8795156753917819     

GOTERM_BP_FAT GO:0044772 mitotic cell cycle phase transition 14 7,29 0,0022892 2,64 

GOTERM_BP_FAT GO:0044770 cell cycle phase transition 14 7,29 0,0038923 2,41 

GOTERM_BP_FAT GO:0007346 regulation of mitotic cell cycle 13 6,77 0,0044042 2,36 

GOTERM_BP_FAT GO:0051726 regulation of cell cycle 19 9,90 0,0103361 1,99 

GOTERM_BP_FAT GO:0010564 regulation of cell cycle process 13 6,77 0,0183945 1,74 

       

Annotation Cluster 20 Enrichment Score: 1,8009512240557284     

GOTERM_BP_FAT GO:0006928 movement of cell or subcellular 
component 

36 18,75 0,0001080 3,97 

GOTERM_BP_FAT GO:0001667 ameboidal-type cell migration 11 5,73 0,0016181 2,79 

GOTERM_BP_FAT GO:0016477 cell migration 23 11,98 0,0042877 2,37 

GOTERM_BP_FAT GO:0040011 locomotion 27 14,06 0,0062275 2,21 

GOTERM_BP_FAT GO:0051674 localization of cell 24 12,50 0,0082302 2,08 

GOTERM_BP_FAT GO:0048870 cell motility 24 12,50 0,0082302 2,08 

       

Annotation Cluster 22 Enrichment Score: 1,6759945901312603     

GOTERM_BP_FAT GO:0051098 regulation of binding 10 5,21 0,0035997 2,44 

       

Annotation Cluster 23 Enrichment Score: 1,6693802181144233     
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GOTERM_BP_FAT GO:0016050 vesicle organization 11 5,73 0,0008793 3,06 

       

Annotation Cluster 24 Enrichment Score: 1,6676421778588604     

GOTERM_BP_FAT GO:0010605 negative regulation of macromolecule 
metabolic process 

40 20,83 0,0009171 3,04 

GOTERM_BP_FAT GO:0016070 RNA metabolic process 66 34,38 0,0018345 2,74 

GOTERM_BP_FAT GO:0031324 negative regulation of cellular metabolic 
process 

39 20,31 0,0020281 2,69 

GOTERM_BP_FAT GO:0009892 negative regulation of metabolic process 41 21,35 0,0022467 2,65 

GOTERM_BP_FAT GO:0010467 gene expression 72 37,50 0,0033792 2,47 

GOTERM_BP_FAT GO:1903508 positive regulation of nucleic acid-
templated transcription 

25 13,02 0,0049290 2,31 

GOTERM_BP_FAT GO:0045893 positive regulation of transcription; DNA-
templated 

25 13,02 0,0049290 2,31 

GOTERM_BP_FAT GO:1902680 positive regulation of RNA biosynthetic 
process 

25 13,02 0,0059035 2,23 

GOTERM_BP_FAT GO:0071310 cellular response to organic substance 35 18,23 0,0068966 2,16 

GOTERM_BP_FAT GO:0051254 positive regulation of RNA metabolic 
process 

25 13,02 0,0087650 2,06 

GOTERM_BP_FAT GO:0070887 cellular response to chemical stimulus 40 20,83 0,0091588 2,04 

GOTERM_BP_FAT GO:0045944 positive regulation of transcription from 
RNA polymerase II promoter 

20 10,42 0,0094253 2,03 

GOTERM_BP_FAT GO:2000113 negative regulation of cellular 
macromolecule biosynthetic process 

23 11,98 0,0149422 1,83 

GOTERM_BP_FAT GO:0010629 negative regulation of gene expression 25 13,02 0,0152244 1,82 

GOTERM_BP_FAT GO:0006366 transcription from RNA polymerase II 
promoter 

29 15,10 0,0164142 1,78 

GOTERM_BP_FAT GO:0010558 negative regulation of macromolecule 
biosynthetic process 

24 12,50 0,0167612 1,78 

GOTERM_BP_FAT GO:0051172 negative regulation of nitrogen 
compound metabolic process 

25 13,02 0,0177728 1,75 

GOTERM_BP_FAT GO:0010557 positive regulation of macromolecule 
biosynthetic process 

26 13,54 0,0191004 1,72 

GOTERM_BP_FAT GO:0051171 regulation of nitrogen compound 
metabolic process 

58 30,21 0,0211689 1,67 

GOTERM_BP_FAT GO:0010033 response to organic substance 40 20,83 0,0242937 1,61 

GOTERM_BP_FAT GO:0031327 negative regulation of cellular 
biosynthetic process 

24 12,50 0,0261876 1,58 

GOTERM_BP_FAT GO:0045935 positive regulation of nucleobase-
containing compound metabolic process 

26 13,54 0,0286900 1,54 

GOTERM_BP_FAT GO:0006357 regulation of transcription from RNA 
polymerase II promoter 

28 14,58 0,0305811 1,51 

GOTERM_BP_FAT GO:0009890 negative regulation of biosynthetic 
process 

24 12,50 0,0307789 1,51 

GOTERM_BP_FAT GO:0071495 cellular response to endogenous 
stimulus 

20 10,42 0,0318812 1,50 

GOTERM_BP_FAT GO:0010628 positive regulation of gene expression 26 13,54 0,0354523 1,45 

GOTERM_BP_FAT GO:0010468 regulation of gene expression 56 29,17 0,0357412 1,45 

GOTERM_BP_FAT GO:0034645 cellular macromolecule biosynthetic 
process 

63 32,81 0,0383441 1,42 

GOTERM_BP_FAT GO:0031328 positive regulation of cellular biosynthetic 
process 

26 13,54 0,0441184 1,36 

       

Annotation Cluster 26 Enrichment Score: 1,6267402762137324     

GOTERM_BP_FAT GO:0007015 actin filament organization 10 5,21 0,0073000 2,14 

       

Annotation Cluster 27 Enrichment Score: 1,573279514658293     

GOTERM_BP_FAT GO:0044265 cellular macromolecule catabolic process 20 10,42 0,0048455 2,31 

GOTERM_BP_FAT GO:0009057 macromolecule catabolic process 22 11,46 0,0102123 1,99 

GOTERM_BP_FAT GO:0044257 cellular protein catabolic process 14 7,29 0,0234922 1,63 

GOTERM_BP_FAT GO:0006511 ubiquitin-dependent protein catabolic 
process 

12 6,25 0,0335224 1,47 

GOTERM_BP_FAT GO:0051603 proteolysis involved in cellular protein 
catabolic process 

13 6,77 0,0358169 1,45 

GOTERM_BP_FAT GO:0019941 modification-dependent protein catabolic 
process 

12 6,25 0,0364752 1,44 
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GOTERM_BP_FAT GO:0030163 protein catabolic process 15 7,81 0,0367867 1,43 

GOTERM_BP_FAT GO:0043632 modification-dependent macromolecule 
catabolic process 

12 6,25 0,0396070 1,40 

       

Annotation Cluster 28 Enrichment Score: 1,556576769515713     

GOTERM_BP_FAT GO:0048534 hematopoietic or lymphoid organ 
development 

16 8,33 0,0129480 1,89 

GOTERM_BP_FAT GO:0002520 immune system development 16 8,33 0,0200911 1,70 

GOTERM_BP_FAT GO:0030097 haemopoiesis 14 7,29 0,0382189 1,42 

       

Annotation Cluster 29 Enrichment Score: 1,5536345503696056     

GOTERM_BP_FAT GO:0016071 mRNA metabolic process 14 7,29 0,0196111 1,71 

GOTERM_BP_FAT GO:0008380 RNA splicing 10 5,21 0,0211074 1,68 

GOTERM_BP_FAT GO:0006396 RNA processing 17 8,85 0,0228503 1,64 

       

Annotation Cluster 31 Enrichment Score: 1,433959843797708     

GOTERM_BP_FAT GO:0071407 cellular response to organic cyclic 
compound 

13 6,77 0,0068716 2,16 

GOTERM_BP_FAT GO:1901699 cellular response to nitrogen compound 13 6,77 0,0116311 1,93 

GOTERM_BP_FAT GO:1901701 cellular response to oxygen-containing 
compound 

17 8,85 0,0232646 1,63 

GOTERM_BP_FAT GO:0032870 cellular response to hormone stimulus 13 6,77 0,0233614 1,63 

GOTERM_BP_FAT GO:0071495 cellular response to endogenous 
stimulus 

20 10,42 0,0318812 1,50 

GOTERM_BP_FAT GO:1901698 response to nitrogen compound 16 8,33 0,0389384 1,41 

       

Annotation Cluster 32 Enrichment Score: 1,4086294256407783     

GOTERM_BP_FAT GO:0031175 neuron projection development 18 9,38 0,0039748 2,40 

GOTERM_BP_FAT GO:0030030 cell projection organization 23 11,98 0,0124018 1,91 

GOTERM_BP_FAT GO:0048666 neuron development 18 9,38 0,0189116 1,72 

GOTERM_BP_FAT GO:2000026 regulation of multicellular organismal 
development 

27 14,06 0,0252845 1,60 

       

Annotation Cluster 36 Enrichment Score: 1,3372413426913092     

GOTERM_BP_FAT GO:0002768 immune response-regulating cell surface 
receptor signalling pathway 

11 5,73 0,0076645 2,12 

GOTERM_BP_FAT GO:0002764 immune response-regulating signalling 
pathway 

13 6,77 0,0080526 2,09 

GOTERM_BP_FAT GO:0002757 immune response-activating signal 
transduction 

11 5,73 0,0308856 1,51 

GOTERM_BP_FAT GO:0002682 regulation of immune system process 22 11,46 0,0395641 1,40 

GOTERM_BP_FAT GO:0006955 immune response 24 12,50 0,0415212 1,38 

GOTERM_BP_FAT GO:0031347 regulation of defence response 13 6,77 0,0429616 1,37 

       

Annotation Cluster 37 Enrichment Score: 1,3324823788934246     

GOTERM_BP_FAT GO:0097190 apoptotic signalling pathway 14 7,29 0,0065757 2,18 

 

 

Figure A-6 shows the graphic representation of Table A-2 with terms including a p-value 

below 0.001. 
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Figure A-6: GO annotation of phosphoproteins changed by IL10+CpG stimulation 

Terms of Table A-2 with a p-value below 0.001 are displayed. 
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