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Preface

Light microscopy is an important instrument in life sciences. Over the last two decades,

superresolution fluorescence microscopy techniques have been established, breaking the Abbé

diffraction barrier, which before had posed a resolution limitation for over a century. The

fundamentally new idea of these approaches is to use optically switchable fluorophores in order

to detect features within the resolution limit imposed by the diffraction barrier consecutively

instead of simultaneously. However, the relatively long imaging times needed in many modern

superresolution fluorescence microscopy techniques at the nanoscale, one of them being single

marker switching (SMS) microscopy, come with their own drawbacks. The challenge lies in

the correct alignment of long sequences of sparse but spatially and temporally highly resolved

images. This alignment is necessary due to rigid motion of the displayed object of interest

or its supporting area during the observation process. In this thesis, a semiparametric model

for motion correction, including drift, rotation and scaling of the imaged specimen, is used to

estimate the motion and correct for it, reconstructing thereby the true underlying structure of

interest. This technique is also applicable in many other scenarios, where an aggregation of

a collection of sparse images is employed to obtain a good reconstruction of the underlying

structure, like, for example, in real time magnetic resonance imaging (MRI).

Further motivation and a more detailed description of the SMS imaging method are given

in Chapter 1. In Chapter 2, a semiparametric model is developed and M-estimators for the

parameters of the motion functions are derived, which are obtained by minimizing certain

contrast functionals. The basic idea is to perform a two-step estimation, where the motion

deformations are linearized by applying the Fourier-Mellin transform to the squared Fourier

magnitudes of the obervations. This allows to estimate rotation and scaling in a first step,

correct for it, and subsequently estimate translational drift. The main theoretical results, namely

consistency as well as asymptotic normality of the motion parameter estimators are established

in Chapter 3. Additionally, consistency of the final plug-in image estimator is obtained. The

results of a simulation study and an application to real SMS microscopy data are presented in

Chapter 4, demonstrating the practicability of this purely statistical method. It is shown to be

competitive with state of the art calibration techniques which require to incorporate fiducial

markers. Moreover, a simple bootstrap algorithm allows to quantify the precision of the motion

estimate and visualize its effect on the final image estimation. A summary of the findings and

outlook can be found in Chapter 5. We argue that purely statistical motion correction is even

more robust than fiducial tracking rendering the latter superfluous in many applications. The

proofs are presented separately in Chapter 6. Some auxiliary results are deferred to Appendix A
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to avoid a distraction from the principle arguments. In Appendix B, well-known results from the

literature, which are applied in the proofs, are collated for the readers’ convenience. Appendix

C holds additional figures with reconstruction results from our simulation study, which were

excluded from the main text body in order to avoid lengthening it unnecessarily.

This thesis is an extension of previous work by Hartmann (2016) and constitutes a generalization

of the developed method of pure drift estimation to more general motion types, namely any

combination of drift, rotation and scaling. The theoretical results of the present document are

joint work with Dr. Alexander Hartmann, who contributed equally to the demonstration of

consistency. The elaboration of the proof of asymptotic normality, however, is an original result

of the author of this dissertation. In addition, the derivation of the semiparametrical model has

been revised, leading to a different approach which better represents the data acquisition process.

A publication together with the co-authors Dr. Alexander Hartmann, Dr. Benjamin Eltzner, Prof.

Dr. Stephan Huckemann, Dr. Oskar Laitenberger, Dr. Claudia Geisler, PD Dr. Alexander Egner,

and Prof. Dr. Axel Munk in a peer-reviewed journal, covering the main aspects of this thesis in

a condensed format is in preparation. The programs and routines used in the application of the

method to artificial and real data are based on code provided by Dr. Alexander Hartmann and

have been modified and amended to fit the new model and the generalized setting.
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CHAPTER 1

Introduction

Superresolution fluorescence microscopy is an important instrument for the investigation of

the properties or the structure of biological molecules at the subcellular level. It enables the

observation of active biological molecules at a resolution level down to 10-20 nm, giving rise

to great advances in the understanding of signaling and transport processes within cells (see,

e.g., Westphal et al., 2008; Berning et al., 2012; Jones et al., 2011; Huang et al., 2013). These

imaging techniques have been developed and refined over the last two decades, overcoming

the physical resolution limitation called the Abbé diffraction barrier, which before had posed a

problem for all optical imaging methods for more than a century (see, e.g., Hell and Wichmann,

1994; Hell, 2007). The Abbé barrier describes the phenomenon that two features that are closer

than a resolution limit of about 200 nm (approximately half the smallest wavelength of visible

light) overlap and can not be distinguished (Abbe, 1873; Born and Wolf, 1999). The entirely new

approach of superresolution imaging techniques is to register features within this resolution limit

consecutively instead of simultaneously. This is achieved not by modifying the experimental

setup, but by changing the appearance of the specimen over time. A variation of a fluorophore’s

ability to emit a fluorescence photon or of the properties of the emitted photon, like, for example,

its color, allows for a much higher spatial resolution in fluorescence microscopy (Hell, 2009).

The implementation of this approach in various methods (e.g., Hell, 2003; Betzig et al., 2006;

Rust et al., 2006; Hess et al., 2006) has fundamentally enhanced the field of cell microscopy.

Two different categories of superresolution fluorescence microscopy techniques can be identi-

fied. The first group consists of deterministic imaging methods using a targeted mode. Here,

fluorophores (markers) are switched on and off at predefined and precisely known coordi-

nates. This group includes, among others, techniques such as stimulated emission depletion

(STED) (Hell and Wichmann, 1994; Klar et al., 2000; Schmidt et al., 2008), saturated patterned

excitation microscopy (SPEM) (Heintzmann et al., 2002), saturated structured illumination

microscopy (SSIM) (Gustafsson, 2005), and reversible saturable optical fluorescence transitions

(RESOLFT) (Hofmann et al., 2005; Hell, 2003). Because of the direct targeting, the specimen

can usually be scanned in a relatively short time, and thus, movements are not a major source of

blurring.

The second category comprises the techniques based on stochastic switching (single marker

switching, SMS, or single molecule localization, SML), where the whole sample is illuminated

simultaneously but with a low activation intensity. This leads to a random activation of very few
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markers, keeping all other markers in their non-fluorescent state. Since only a small proportion

of all markers is visible in each image (or frame), the probability that two of them are closer

than the diffraction barrier is negligible. Therefore, the deconvolution step needed in the first

category can be replaced by a simple localization procedure. The drawback is that a large

number of frames has to be recorded over a relatively long acquisition time to ensure that the

whole structure of interest is registered with high enough precision, leading to a blurring of

the final image due to movement of the imaged specimen (Laitenberger, 2018). This motion

blur is the main source of distortion associated with SMS microscopy and dealing with this

issue using a statistical approach is the focus of this thesis. Among the imaging techniques in

this second category are stochastic optical reconstruction microscopy (STORM) (Rust et al.,

2006; Holden et al., 2011), photoactivated localization microscopy (PALM) (Betzig et al., 2006),

fluorescence photoactivation localization microscopy (FPALM) (Hess et al., 2006), and PALM

with independently running acquisition (PALMIRA) (Geisler et al., 2007; Egner et al., 2007).

See Hell (2007) or Sahl et al. (2017) for a survey and Aspelmeier et al. (2015) and references

therein for a more detailed description of the underlying physical principles and methodology

of techniques based on (superresolution) fluorescence microscopy.

1.1 Motion blur in SMS microscopy

As described in Aspelmeier et al. (2015), an SMS microscope is essentially a conventional

fluorescence microscope with an additional activation laser (see Figure 1.1). In Figure 1.2, the

imaging procedure is illustrated schematically. The data acquisition process in SMS microscopy

is performed in two steps. The first step of the data acquisition is the transfer of a sparse random

subset of all accessible markers to the active state by illumination of the whole sample with

a low intensity. In the second step, the active markers are excited and then emit a random

number of photons. This fluorescent signal is read out with a detector, and displayed as an image

of well separated diffraction patterns. As mentioned in the above paragraph, active markers

are sufficiently distant with high probability, and thus, any detected diffraction pattern can be

assumed to originate from a single fluorescence marker. Hence, the unknown marker positions

in each image are usually determined by calculating the centroid of their observed patterns.

This way, spatial sparseness is physically enforced, and because of the known simple structure

more sophisticated deconvolution methods are unnecessary. After this localization process,

the markers are recorded in temporally and spatially highly resolved position histograms (see

bottom row of Figure 1.2). The overlay of a large number of these frames gives the final SMS

image (see Figure 1.2 on the right). Note that the localization precision in the single histograms

will be
√

N times better than the original resolution of the microscope, where N is the number

of photons forming the pattern (Thompson et al., 2002). An exemplary single frame from

the dataset we will analyze in Section 4.2, is displayed in Figure 1.3 as the result of the just

described data acquisition procedure. For a more detailed description on the statistics of the

activation, emission and detection processes, see Aspelmeier et al. (2015).

Due to the fact that only very few random markers are activated at any given time, each single
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Figure 1.1: Experimental setup of SMS microscopy (Aspelmeier et al., 2015, Figure 10a). SMS
microscope with additional activation laser (purple); few active markers (left inset) produce a
image on the camera with well separated diffraction patterns (right inset).

image contains only little (but sparse) information. Consequently, a long sequence of images

has to be recorded in order to ensure that each marker is observed at least once and the overlay

of these frames represents the observed specimen. A comparison between the frames consisting

of the detected diffraction patterns, their overlay forming the widefield image and the overlay of

the localized data points is displayed in Figure 1.4. Usually, the number of recorded frames is in

the range of tens of thousands with a temporal resolution of several milliseconds. Hence, the

complete recording typically takes a few minutes. During this time, the specimen may move (see

Geisler et al. (2012) and references therein), which leads to a blurring of the overlay forming

the final SMS image, see Figure 1.4 on the right.

There are multiple reasons causing different types of movement during the measurement process.

External systematic movements of the optical device may cause mechanical drift and rotation.

Drift and rotation of the observed structure may further occur due to small vibrations coupled

with a rigid specimen that is not perfectly adhesive to the object layer. A vertical movement

of the specimen or the object layer can lead to a varying distance between the original focal

plane and the ocular. This, or thermal expansion due to heating of the optical device may result

in a scaled appearance of the image. Moreover, movement of the living specimen under the

microscope, for example due to temperature variations, in horizontal direction (appearing as

drift or rotation) or in vertical direction (appearing as scaling) may also contribute to motion

blur.

The challenge is therefore to appropriately align the sparse frames correcting for this motion of

the observed object. The current practice to tackle this problem is to incorporate fiducial markers

(i.e., bright fluorescent microspheres) into the specimen, which can be tracked and used to

correct for the motion, either during the measurement process or as a post-processing step after
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Figure 1.2: SMS imaging procedure (inspired by Aspelmeier et al. (2015, Figure 10b) and
Laitenberger (2018, Figure 2.5.1)). In each cycle, a small number of activated fluorophores (top
row) generates images on the detector with well separated diffraction patterns (middle row),
the overlay of which forms the widefield image (middle row on the right); localization yields
position histograms (bottom row), the overlay of which forms the final SMS image (bottom row
on the right).

Figure 1.3: A single frame containing a sparse position histogram of the specimen of interest.
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Figure 1.4: Single frames as they are recorded by the detector (left); widefield image (middle);
overlay of all position histograms after localization (right). In the zoom-in in the upper right
corner a motion blur is clearly visible.

the recording (see, e.g., Grover et al., 2015, and references therein). However, this approach

has several disadvantages. Firstly, it is technically demanding and expensive to introduce the

fiducial markers and attach them to the specimen. Secondly, often the fiducial markers outshine

relevant parts of the image, making it impossible to identify the specimen’s features in these

areas (see, e.g., Geisler et al., 2012). The design of methods which enable the assessment of

the drift, rotation, and scaling of the specimen without using fiducial markers is therefore a

significant improvement.

1.2 Relation to the literature

A first attempt at estimating drift has been made by Geisler et al. (2012), who suggested a

heuristic correlation method to align subsequent frames properly (see Deschout et al. (2014)

for a survey on this issue). In Hartmann et al. (2015), the problem is addressed in a statistically

rigorous way, focusing, however, exclusively on drift motion. Working with a parametric

model for the drift function, they derived a consistent and asymptotically normally distributed

M-estimator for the drift parameter. In this thesis, the M-estimation method is expanded to

include also rotation and scaling of the observed specimen and any concatenation of the three,

as initiated by Hartmann (2016). Similarly to before, we formulate a parametric model for drift,

rotation and scaling functions. We obtain M-estimators for the motion function parameters,

which are consistent and jointly asymptotically normally distributed as the acquisition time

increases. We further prove consistency of the plug-in estimator for the image. Using these

asymptotic results, we construct simple bootstrap confidence bands for the drift, rotation, and

scaling functions yielding a measure to assess the statistical uncertainty of our reconstruction.

With our generalization of the method, we are now able to handle all orientation preserving

similarity transforms, i.e., all (sufficiently smooth) motion types that leave the object as such

unchanged and only modify its position or the size in which it appears.

Like the preceeding paper on drift estimation (Hartmann et al., 2015) and the dissertation

Hartmann (2016), the present work is closely related to Gamboa et al. (2007) and Bigot et al.
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(2009). The former considers curves, which can be referred to as one-dimensional images,

subjected to Gaussian noise and translation and the latter two-dimensional images with Gaussian

noise, which have been transformed by translation, rotation and scaling. The idea of exploiting

the shift-property of the Fourier transform and determine estimators as minimizers of certain

contrast functionals stems from those papers. Furthermore, Bigot et al. (2009) describe already

the two-step procedure based on the application of the Fourier-Mellin transform to the squared

Fourier magnitudes of the data, which is used also here to combine estimation of drift with

estimation of rotation and scaling.

Note however, that our asymptotics is substantially different to that underlying most other image

alignment and registration methods, and in particular also to the setting used in the two articles

just mentioned. Considering the number of recorded frames tending to infinity is specifically

well applicable to the scenario of sparse single images and relatively long acquisition times

which are inherent to techniques like SMS microscopy. In contrary, for other imaging methods

usually the number of pixels is assumed to increase, and the full image is observed at each time

step. The latter setting corresponds to an asymptotically ideal spatial resolution, whereas in

our setting we assume an improving temporal resolution with a predefined spatial resolution.

As a matter of fact, in both of the above mentioned works, the number of images is fixed and

each single one is subjected to an unknown similarity transform. For each of these images, the

transformation is estimated as an individual set of parameters, which means that the number

of parameters is of the same scale as the number of observed images. They prove consistency

for their estimators and asymptotic normality as the number of pixels tends to infinity. In

contrast to that, here we work with parametrized motion functions, allowing for estimation of a

time dependent motion using a fixed small number of parameters and sparse single frames, the

number of which tends to infinity in our asymptotic setting.

Finally, we remark that even though our method is inspired by an application in SMS microscopy,

it may be used in other scenarios, where the same setting applies, i.e., only a sequence of sparse

registrations of an object is available, like for example in undersampled real time magnetic

resonance imaging (Li et al., 2014).
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Modeling and estimation procedure

We continue in Section 2.1 with explaining our semiparametric model in detail and specifying

the assumptions on the underlying gray scale image and the motion functions. In Section 2.2 we

then elaborate on the estimation procedure, which enables us to perform motion correction in

SMS microscopy data, where the motion can be drift, rotation, scaling or a combination of any

of the three. The basic idea is to first correct for possible rotation and scaling, and subsequently

estimate drift, obtaining then a final plug-in estimate for the SMS image displaying the specimen

of interest.

2.1 The semiparametric model

We first derive a basic Bernoulli model explaining the data acquisition process well. Afterwards,

we apply a binning procedure and several standard transformations and approximations leading

to a Gaussian Fourier model, which is then used for the estimation of the motion parameters.

As described in the introduction, the measurement process involves the recording of a large

number of frames consecutively. Each of these frames contains a collection of distinct diffraction

patterns generated by the random sparse subset of fluorescent markers which are active during

the recording of this frame. As a preprocessing step, the diffraction patterns are localized

by calculating their centroid, which is only possible due to the known sparse structure. As

mentioned in the introductory Chapter 1, the statistics of the activation, emission and detection

processes generating the observed diffraction patterns in SMS microscopy and other superres-

olution imaging techniques will not be treated here. A detailed description can be found in

Aspelmeier et al. (2015). For the purpose of this thesis, namely the motion correction of frames

to obtain a deblurred final SMS image, it is favorable to focus on the preprocessed data, i.e., the

localized position histograms.

To describe our model precisely, we introduce some notation. Our aim is to estimate the true

unknown marker density f 0 : R2 → [0, 1]. For parameters (θ, φ, α) ∈ Θ × Φ × A ⊆ Rd1+d2+d3 in

the compact parameter space Θ × Φ × A and time points t ∈ [0, 1], we consider

• drift vectors δθt ∈ R
2,

• rotation angles ρφt ∈ (−π/2, π/2],

• and scaling factors σαt ∈ [σmin, σmax], for some σmin, σmax > 0.
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We further consider a fixed finite grid X B {x j ∈ R
2, 1 ≤ j ≤ n} of n ∈ N pixels and denote with

f t
j = f t(x j) B f

(
1/σα0

t · R−ρφ0
t

(
x j − δ

θ0
t
))
,

the deformed gray scale image, where (θ0, φ0, α0) are the unknown true parameters, and

Rρ B

(
cos(ρ) − sin(ρ)

sin(ρ) cos(ρ)

)

is the rotation matrix with angle ρ. Here, f t can be regarded as a shifted, rotated and scaled

version of f 0 and f t
j is its value at the pixel location x j ∈ X. Starting from the position

histograms, we transfer each recorded marker position to the closest pixel position in X. For

reasonably large number of pixels, the error induced by this assignment is irrelevant compared

to the motion blurring and can therefore be ignored - with one caveat: Rotation of small objects

may be misclassified as drift. This can be dealt with by choosing an appropriate cutoff for the

Fourier coefficients, see Section 4.1. The observed frames are now denoted as Ot =
(

Ot
j

)
1≤ j≤n

,

for time points t ∈ T B {0, 1/T, . . . , (T − 1)/T }, where T ∈ N is the total number of frames.

They consist of single observations Ot
j = Ot(x j) taking the values Ot

j = 1 if a signal was recorded

at x j, and Ot
j = 0 otherwise. Since the activation of fluorescent markers happens independently,

the observations Ot
j can be modeled as independent realizations of Bernoulli random variables

with some success probability pt
j. This probability pt

j is proportional to the marker density f t
j at

this pixel location j ∈ {1, . . . , n} at time t ∈ T. It further depends on external influences given

by the experimental setup, like the activation and excitation laser intensities or properties of

the microscopy (e.g., its detection power). These external factors are collectively modeled as

a contribution p ∈ (0, 1), which is assumed to be fixed and known. Hence, we arrive at the

following basic Bernoulli model for our independent observations:

Ot
j ∼ Ber( f t

j · p), 1 ≤ j ≤ n, t ∈ T. (2.1)

Remark 2.1 (Bounds on the rotation angle ρφt and the scaling factor σαt ). As mentioned in the

introduction, we will work with the squared Fourier magnitude of the marker density, which is

invariant under rotation by an angle of multiples of π (Hartmann, 2016, Lemma 2.10). Therefore,

we restrict ourselves to values of the rotation angle ρφt in an interval of length φ to ensure

identifiability. We want the interval to contain 0, as we will assume that we have no rotation

at the beginning, i.e., ρφ0 = 0 (see Assumption 2.14 (B1)). Hence, we choose the symmetric

interval (−π/2, π/2], which allows for clockwise and counter-clockwise rotation. The bounds

on the scaling function σαt are useful for technical reasons, but they are also induced by the

setup, namely by the resolution of the microscope and the pixel size (σmin), and by the size of

the observation window (σmax).
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2.1.1 Binning

In SMS microscopy, each frame Ot =
(

Ot
j

)
1≤ j≤n

typically contains very little information

because the number of observed pixels is small, whereas the length T of the image sequence

is comparatively large. The idea is to bin subsequent frames, i.e., take the point-wise average

of them in order to increase the information per frame and reduce the noise level of the data.

This represents a bias-variance trade-off in the following sense. Calculating the average over all

observed frames gives an estimate for the true unknown image, which has a strongly reduced

noise level due to the large number of single observations. However, as described in the

introduction, the motion of the imaged object over time causes a large bias of the resulting

superimposed image, which will be blurred very much. On the other hand, considering the

single frames there is no motion of the object, since all observations on one specific frame have

been obtained at the same time. Here, the issue is that the variance among the frames is high

due to the extreme sparsity. The goal of the binning procedure is to strike a balance between

both error sources. A suitable bin width is chosen small enough such that the binned frames

are not blurred too strongly but also large enough to control the noise level and gain sufficient

information about the observed specimen. This pre-averaging also has the benefit of reducing

the memory needed to process reconstruction methods on the sequence.

Hence, for all T ∈ N, we define a bin size βT ∈ N such that T/βT ∈ N. We construct a new

image sequence of length T/βT by averaging over βT subsequent frames,

Õt
j B

1
βT

βT−1∑
i=0

Ot+i/T
j , t ∈ T̃, j ∈ {1, . . . , n} , (2.2)

where T̃ B {0, βT/T, 2βT/T, . . . , (T − βT )/T }. The bin size βT regulates the degree of spar-

sity of the binned frames. The scaled observations βT Õt
j =

∑βT−1
i=0 Ot+i/T

j follow a Poisson

binomial distribution as sum of independent Bernoulli distributed random variables. Le Cam

(1960) showed that they can be well approximated by a Poisson distribution with parameter∑βT−1
i=0 f t+i/T

j · p = βT f̃ t
j · p, where we denote the average marker density with

f̃ t
j =

1
βT

βT−1∑
i=0

f t+i/T
j , t ∈ T̃, j ∈ {1, . . . , n} .

The bin width βT is chosen small enough, such that the maximal time step between two

density values contributing to f̃ t
j , namely βT/T , is very short and tends to zero as T → ∞

(see Assumption 2.15). Since motion functions and marker density are smooth enough (see

Assumptions 2.14 and 2.13), the average marker density f̃ t
j is a good approximation to the single

density values f t+i/T
j for 1 ≤ i ≤ βT − 1. Hence, we can reconstruct this average marker density

instead, without inducing a significant error. The obtained Poisson distributed random variable

Poi(βT f̃ t
j · p) equals in distribution the sum of βT independent and identically Poisson distributed

random variables with parameter f̃ t
j · p. We perform a variance stabilizing transformation based

on the Delta-method (Theorem B.7) applied to the i.i.d. Poi( f̃ t
j · p) random variables using the
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function g(x) = 2
√

x. This yields

√
βT

(
2

√
1
βT

Poi
(
βT f̃ t

j · p
)
− 2
√

f̃ t
j · p

)
T→∞
−→ N(0, 1).

Summarizing, we arrive at the following approximation:

√
Õt

j ≈

√
1
βT

Poi(βT f̃ t
j · p) ≈ N

(√
f̃ t

j · p,
1

4βT

)
. (2.3)

Remark 2.2 (Anscombe Transformation). In practice, instead of the exact variance stabilization

transformation x 7→ 2
√

x, often an Anscombe type transform, x 7→ 2
√

x + c for some constant

c > 0 is used (see Anscombe (1948)), since they have a better finite sample size performance,

depending on the choice of c. In our case we would primarily like to reduce the bias, keeping

however an approximately constant variance. Following Chapter 2 of Brown et al. (2010), we

therefore select c = 1/4 for the transformation of our real SMS data instead of c = 3/8, which

would have optimal rates for the sole purpose of variance stabilization.

Remark 2.3 (Justification of Gaussian approximation). Note that the approximation of the

binned observations by the stated normal distribution can further be justified by the following

argumentation. For any given j ∈ {1, . . . , n}, which describes an ‘empty’ pixel location x j, i.e.,

a location without any markers present at time point t, the distribution of the observations Ot
j,

t ∈ T, degenerates to a dirac measure at 0. But so does the normal distribution on the right

hand side of (2.3), since both mean and variance tend to zero in this case. For the remaining

pixels containing signal, however, f̃ t
j · p are bounded away from 0 and 1, and therefore the

corresponding observations Ot
j fulfill Lindeberg’s condition (Billingsley, 1995, Theorem 27.2)

for T → ∞, implying the validity of the central limit theorem.

In the following, we will only work with the binned observations Õt
j. Therefore, we will omit

the tilde and write again Ot
j for the binned observations as well as T for T̃. As mentioned

before, we can reconstruct the average marker density f̃ t
j and will suppress the tilde here, too.

Furthermore, assuming the detection probability p determined by the experimental setup to be

known, we absorb it into the marker density f 0. For ease of notation, we leave out the square

root emerging from the variance stabilization. This means, that we write f t
j instead of

√
f̃ t

j · p

and f for
√

f 0 · p in the remainder of this thesis, keeping in mind, that we need to invert the

transform x 7→
√

x in the end to obtain an estimator for the true (scaled) marker density f 0 · p.

Collating all these preliminary steps, we can now define the model on which our theory is based,

and which approximates the actual data collection process sufficiently well.

Definition 2.4. The approximate Gaussian model for SMS microscopy is given by

Ot
j = f t

j +
1

2
√
βT
εt

j, t ∈ T, j ∈ {1, . . . , n},

where ε i.i.d.
∼ N(0, 1) are standard Gaussian random variables.



2.1. The semiparametric model 11

2.1.2 The standard Fourier transform and its shift property for translation

In this subsection, we define the Fourier transform and in the following subsection the re-

lated (analytical) Fourier-Mellin transform, which are crucial for this work because of their

(generalized) shift properties. First, we need the following definition of spaces of integrable

functions.

Definition 2.5 (Lp-spaces). Let (Ω,A, µ) be a measure space. For p ∈ [1,∞], we define

Lp(Ω,A, µ) B
{

g : Ω→ C | g is µ-measurable and ‖g‖Lp < ∞
}
,

with the Lp-seminorm

‖·‖Lp : Lp → [0,∞], g 7→
(∫

Ω

|g(x)|p µ(dx)
)1/p

, for p ∈ [1,∞), and

‖·‖L∞ : L∞ → [0,∞], g 7→ inf
N∈A,µ(N)=0

sup
x∈Ω\N

|g(x)| .

Identifying functions that are equal µ-a.e. leads to the normed Lp-spaces. To this end, let

N p B
{

g ∈ Lp(Ω,A, µ) | g = 0 µ-a.e.
}

be the set of functions which are 0 µ-a.e. Using this notation, we define the Lp-space Lp(Ω,A, µ) B

Lp(Ω,A, µ)/N p, together with the Lp-norm

‖·‖Lp : Lp(Ω,A, µ)→ [0,∞), [g] 7→ ‖g‖Lp .

Remark 2.6. We will often write Lp(R2) for the Lp-space on R2 with the Borel σ-algebra and

the Lebesgue-measure µ, Lp(R2,B(R2), µ).

Recall now the Fourier transform of a function g ∈ L1(R2) ∩ L2(R2),

Fg : R2 → C, ω 7→

∫
R2

e−2πi〈ω,x〉g(x) dx. (2.4)

Let (δ, ρ, σ) ∈ R2 × R × (0,∞). As can be easily derived from the definition in (2.4), a shifted,

rotated, and scaled version

g̃ : R2 → R, x 7→ g
(

1/σ · R−ρ
(

x − δ
))

of a function g has the Fourier transform

Fg̃(ω) = σ2e−2πi〈ω,δ〉Fg
(
σR−ρω

)
, (2.5)

transferring the rotation by −ρ from the image domain into the Fourier domain while inverting

the scaling factor 1/σ. The drift term δ results in a phase shift. For (ρ, σ) = (0, 1), (2.5) becomes
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the classical shift property of the Fourier transform for translation,

Fg̃(ω) = e−2πi〈ω,δ〉Fg(ω). (2.6)

2.1.3 The analytical Fourier-Mellin transform and its shift property for rotation
and scaling

To get a property similar to (2.6) for rotation and scaling, we consider a Fourier-type transform

defined on the similarity group, which is called the Fourier-Mellin transform or FMT (see, e.g.,

Derrode and Ghorbel, 2004; Ghorbel, 1994; Lenz, 1990; Gauthier et al., 1991; Segman et al.,

1992). Consider the locally compact groups
(
(0,∞), ·

)
and

(
[0, 2π),+

)
, where the addition in

the latter should be understood modulo 2π. Their direct product G B
(
(0,∞), ·

)
×
(
[0, 2π),+

)
is

also a locally compact group and can be equipped with the Haar measure r−1 dr dψ, where dr and

dψ denote the standard Lebesgue measures on (0,∞) and on [0, 2π), respectively. The measure

r−1 dr dψ is positive and invariant on G. Furthermore, G has the dual group (R,+) × (Z,+),

representing the parameter space in the Fourier-Mellin domain. Hence, we can define a Fourier

transform for functions on G (Rudin, 1990). To this end, for p ∈ {1, 2}, let

Lp(G) B
{

g : G → R
∣∣ ‖g‖Lp(G) < ∞

}
,

where

‖g‖Lp(G) B

(∫ ∞
0

∫ 2π

0
|g(r, ψ)|p dψ

dr
r

)1/p

.

The standard FMT of a function g : G → R such that g ∈ L1(G) is given as

M̃g : Z × R→ C, (u, v) 7→
∫ ∞

0

∫ 2π

0
e−2πiuψr−ivg(r, ψ) dψ

dr
r
. (2.7)

However, the FMT exists only for functions g that behave like rγ in the vicinity of the origin

(i.e., r = 0) for some γ > 0 (Derrode and Ghorbel, 2004), which usually does not hold for real

grey value images or their Fourier transforms as their value would have to be zero for small r.

To overcome this problem, Derrode and Ghorbel (2004) and Ghorbel (1994) have proposed to

use gγ : (r, ψ) 7→ rγg(r, ψ) instead of g in such contexts for some fixed γ > 0, which leads to

the following definition of the so-called analytical Fourier-Mellin transform (AFMT) of g. If

gγ ∈ L1(G), let

Mg : Z × R→ C, (u, v) 7→
∫ ∞

0

∫ 2π

0
e−2πiuψrγ−ivg(r, ψ) dψ

dr
r
. (2.8)

As stated in Rudin (1990), if gγ ∈ L1(G) ∩ L2(G), the AFMT fulfills the following Parseval

equation, ∥∥gγ
∥∥2

L2(G) =

∫
R

∑
u∈Z

∣∣Mg(u, v)
∣∣2 dv. (2.9)
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Consider a rotated and scaled version g̃(x) B g
(
1/σ · R−ρx

)
of g, where ρ ∈ [0, 2π) and σ > 0.

Then,

Mg̃(u, v) = σγ−ive−2πiuρMg(u, v), (2.10)

which can be interpreted as a shift property for the AFMT that converts rotation and scaling into

a phase shift in the Fourier-Mellin domain as well as a multiplication of the magnitude with σγ.

In order to be able to compute the Fourier-Mellin transform also for functions defined on R2

and not G, we will need the following coordinate transforms.

Definition 2.7 (Polar and log-polar coordinate transforms). We define the polar coordinate

transform P and the log-polar coordinate transform LP as

P : [0,∞) × [0, 2π)→ R2, (r, ψ) 7→
(
r cos(ψ), r sin(ψ)

)
,

LP : R × [0, 2π)→ R2, (l, ψ) 7→
(
el cos(ψ), el sin(ψ)

)
.

Remark 2.8 (Connection between Fourier transform and Fourier-Mellin transform).
Note that the analytical Fourier-Mellin transform is a Fourier-type transform from R+ × S 1 onto

the similarity group R × Z. More specifically, for g ∈ L1
(
R2
)

we getMg(u, v) = Fg̃(u, v) by

basic calculations, with

g̃ : [0,∞) × [0, 2π), (r, ψ) 7→ rγ(g ◦ LP)(r, ψ).

This will allow us to use the Fast Fourier Transform algorithm (FFT, see, e.g., Cooley and

Tukey (1965)) to efficiently compute the analytical Fourier-Mellin transform in the application

to datasets.

2.1.4 Model assumptions

Before stating the formal assumptions that we make on the underlying image (Assumption 2.13),

the motion functions (Assumption 2.14) and the binning and cutoff rates (Assumption 2.15), we

introduce some terminology.

Definition 2.9 (Not translation, rotation, or scaling invariant). A function g : R2 → C is called

not translation invariant, if there is no δ ∈ R2 \ {0} such that g(x) = g(x − δ) for all x ∈ R2.

Similarly, g is called not rotation invariant, if there is no ρ ∈ (0, 2π) such that g(x) = g
(
R−ρ(x)

)
for all x ∈ R2. Moreover, g is called not scaling invariant, if there is no σ ∈

(
(0, 1) ∪ (1,∞)

)
such that g(x) = g

(
x/σ
)

for all x ∈ R2.

Definition 2.10 (Identifiability). For some index set I, let GI =
{

gi : [0, 1]→ R | i ∈ I
}

a set of

functions. We call GI identifiable, if for all i, j ∈ I, the existence of a Borel set B ⊆ [0, 1] of

Lebesgue measure equal to 1 with gi(t) = g j(t) for all t ∈ B implies i = j.
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Definition 2.11 (Sobolev space). For p > 0, we call

Hp(R2) B

g ∈ L1(R2,B(R2), µ)
∣∣∣∣ ∫
R2

(
1 + ‖ω‖2

)p ∣∣Fg(ω)
∣∣2 dω < ∞


the Sobolev space of order p, where µ is the Lebesgue measure.

Definition 2.12 (Total variation). Let g : [0, 1]→ C and define the set of all finite partitions of

[0, 1] as P B {{t0, . . . , tk} | k ∈ N, 0 = t0 < t1 < · · · < tk = 1}. The total variation of g is

TV(g) B sup
{t0,...,tk}∈P

k−1∑
i=0

|g(ti+1) − g(ti)| .

Assumption 2.13 (Assumptions on the image).

(A1) The support of the marker density f is contained in a compact set, more specifically, there

is a C f > 0 such that f (x) = 0 for all x ∈ R2 with ‖x‖ > C f . Furthermore, f is bounded,

i.e., ‖ f ‖∞ B supx∈R2 | f (x)| < ∞.

(A2) The image f is not translation, rotation, or scaling invariant.

(A3) We have that f ∈ L2(R2) ∩ H3+κ(R2) for some κ > 0, where L2(R2) is the usual normed

space of square integrable functions from Definition 2.5 and H3+κ(R2) is the Sobolev

space defined in Defintion 2.11.

(A4) We have the following Sobolev-(2 + κ̃) condition for some κ̃ > 0,∫
R

∑
u∈Z

(
1 + ‖(u, v)‖2

)2+κ̃
∣∣∣M
|F f |

2(u, v)
∣∣∣2 dv < ∞.

(A5) We have the following continuity condition: for any ε > 0 there is a δ > 0 such that for

all y ∈ R2 with ‖y‖ < δ ∫
R2
| f (x + y) − f (x)| dx < ε.

Assumption 2.14 (Assumptions on the motion functions).

(B1) Since we do not expect drift, rotation, or scaling at time t = 0, we assume that δθ0 = 0,

ρ
φ
0 = 0, and σα0 = 1 for all (θ, φ, α) ∈ Θ × Φ × A.

(B2) There are convex open neighborhoods U ⊆ Φ × A of (φ0, α0) and U′ ⊆ Θ of θ0 and there

is a C > 0 such that for all t ∈ [0, 1], α 7→ σαt and φ 7→ ρ
φ
t are twice differentiable on U,

and θ 7→ δθt is twice differentiable on U′. Moreover,

∥∥gradθ(δ
θ
t )1
∥∥ ,∥∥gradθ(δ

θ
t )2
∥∥ ≤ C,

∥∥Hessθ(δθt )1
∥∥

1 ,
∥∥Hessθ(δθt )2

∥∥
1 ≤ C2,∥∥∥gradφρ

φ
t

∥∥∥ , ∥∥gradασ
α
t

∥∥ ≤ C,
∥∥∥Hessφρ

φ
t

∥∥∥
1
,
∥∥Hessασαt

∥∥
1 ≤ C2,

uniformly in θ, φ, α, and t.
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(B3) The second partial derivatives

θ 7→
∂2(δθt )1

∂θm1∂θm′1
, θ 7→

∂2(δθt )2

∂θm1∂θm′1
, φ 7→

∂2ρ
φ
t

∂φm2∂φm′2
, α 7→

∂2σαt
∂αm3∂αm′3

,

are continuous at the true parameters θ0, φ0 and α0, respectively, for all ml,m′l ∈

{1, . . . , dl}, l ∈ {1, . . . , 3}. Furthermore, the first partial derivatives at θ0, φ0, and α0,

as functions in t, are of bounded total variation, i.e., there is a C′ > 0 such that

TV
(

t 7→
∂(δθt )1

∂θm1

)
,TV

(
t 7→

∂(δθt )2

∂θm1

)
,TV

(
t 7→

∂ρ
φ
t

∂φm2

)
,TV

(
t 7→

∂σαt
∂αm3

)
< C′,

for all ml ∈ {1, . . . , dl}, l ∈ {1, . . . , 3}.

(B4) The maps

Θ→ L1([0, 1],R2), θ 7→
(
δθ : t 7→ δθt =

(
(δθt )1, (δθt )2

))
,

Φ→ L1([0, 1], (−π/2, π/2]
)
, φ 7→

(
ρφ : t 7→ ρ

φ
t

)
,

A→ L1([0, 1], [σmin, σmax]
)
, α 7→

(
σα : t 7→ σαt

)
are continuous. Moreover, for each (θ, φ, α) ∈ Θ × Φ × A, the motion functions t 7→ δθt ,

t 7→ ρ
φ
t , and t 7→ σαt are continuous.

(B5) The sets
{

t 7→ δθt
∣∣θ ∈ Θ

}
,
{

t 7→ ρ
φ
t
∣∣φ ∈ Φ

}
, and

{
t 7→ σ

φ
t
∣∣α ∈ A

}
are identifiable.

(B6) There are open neighborhoods Uδ ⊆ Θ of θ0 and Uρ,σ ⊆ Φ × A of (φ0, α0) and constants

Lδ, Lρ, Lσ > 0 such that the following local uniform Lipschitz conditions hold,

sup
t∈[0,1]

∥∥∥δθt − δθ0
t

∥∥∥ ≤ Lδ ‖θ − θ0‖ for all θ ∈ Uδ, as well as

sup
t∈[0,1]

∣∣∣ρφt − ρφ0
t

∣∣∣ ≤ Lρ ‖φ − φ0‖, and sup
t∈[0,1]

∣∣σαt − σα0
t
∣∣ ≤ Lσ ‖α − α0‖

for all (φ, α) ∈ Uρ,σ.

(B7) There is a C′′ > 0 such that uniformly in θ, φ, and α, respectively,

TV
(
t 7→ (δθt )1

)
+ TV

(
t 7→ (δθt )2

)
< C′′, TV(t 7→ ρ

φ
t ) + TV(t 7→ σαt ) < C′′.

(B8) For each of the four gradients

[0, 1]→ R, t 7→ gradθ
(
δθt
)

1

∣∣∣
θ=θ0

, [0, 1]→ R, t 7→ gradθ
(
δθt
)

2

∣∣∣
θ=θ0

[0, 1]→ R, t 7→ gradφρ
φ
t

∣∣∣
φ=φ0

, [0, 1]→ R, t 7→ gradασ
α
t

∣∣∣
α=α0

the components are linearly independent functions in t.
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Assumption 2.15 (Assumptions on the cutoff and binning rates). For the binning rate βT and

Fourier-cutoff rates rT , uT and vT we assume the following asymptotic behavior

(C1) rT , uT , vT , βT
T→∞
−→ ∞, βT = o(T ), rT = o(T 1/6),

(C2)
√

Tr4
T = o(βT ),

√
Tr2+γ

T = o(βT ),
√

TuT vT ‖(uT , vT )‖2 r2γ
T = o(βT ).

(C3) Let rT , uT and vT be such thatM
|F f |

2(u, v) =MT
|F f |

2(u, v) + o
(
(uT vT )−1

)
.

(C4) consider only a subsequence of total number of frames T ∈ N such that (C1) and (C2)

hold and T/βT ∈ N.

Remark 2.16 (Identifiability of the model). The Assumptions 2.13 (A2), 2.14 (B1, B5) are

crucial to the identifiability of our model.

If (A2) does not hold, for example, because f is invariant to rotations by some angle ρ′, then the

rotation function ρφ is only well defined modulo the period length ρ′. Similar problems arise for

the drift and scaling functions.

If (B1) does not hold, we can choose arbitrary intercepts (δ0, ρ0, σ0) ∈ R2 × R × (0,∞) and

rewrite our model via δ̃θt B δθt + δ0, ρ̃φt B ρ
φ
t + ρ0, σ̃αt B σαt · σ0, and

f̃ (x) B f
(
σ0 · Rρ0

(
x + δ0

))
, x ∈ R2,

absorbing the intercepts into the function f .

Assumption 2.14 (B5) ensures that the motion functions can be identified by their respective

parameters.

Example 2.17. Clearly, an appropriate choice of the parametric model is crucial to obtain

satisfactory results. As a very common example, consider polynomial models for the motion

functions, i.e., for t ∈ T and some decomposition d1 = d′1 + d′′1 ,

(
δθt
)

1 =

d′1∑
m=0

θmtm,
(
δθt
)

2 =

d′′1∑
m=0

θmtm, ρ
φ
t =

d2∑
m=0

φmtm, σαt =

d3∑
m=0

αmtm.

To ensure identifiability, we need by Assumption (B1) that δθ0 = 0d1 , ρφ0 = 0d2 and σα0 = 1d3 ,

which is why we can restrict the above models to

(
δθt
)

1 =

d′1∑
m=1

θmtm,
(
δθt
)

2 =

d′′1∑
m=1

θmtm, ρ
φ
t =

d2∑
m=1

φmtm, σαt = 1 +

d3∑
m=1

αmtm.

The regularity conditions of Assumption 2.14 are trivially fulfilled by polynomial motion func-

tions. Consider for example (B8). The components of t 7→ gradθ
(
δθt
)

1

∣∣∣
θ=θ0

are just the

monomials ∂
(
δθt
)

1 /∂θm = tm, for 1 ≤ m ≤ d′1, and as such are linearly independent functions

in t. The same is true for drift in y-direction, rotation and scaling.
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2.2 Two-step estimation procedure for image registration

In the following, we describe a method for the estimation of the drift, rotation, and scaling

parameters θ0, φ0, and α0 based on M-estimation. This means that we define certain functions

(called contrast functionals) depending on the data, which are small for parameter values close

to the true parameters. To obtain estimators for the motion function parameters, we therefore

minimize these empirical contrast functionals with respect to θ, φ, and α. To benefit from the

(generalized) shift properties of the Fourier transform and the Fourier-Mellin transform, we

transfer the model first to the Fourier domain and later to the Fourier-Mellin space to carry

out the estimation of the motion function parameters. The Fourier transform of the binned

observations Ot : j 7→ Ot
j is given by

FOt (ω) =
1
n

n∑
j=1

e−2πi〈ω,x j〉Ot
j =

1
n

n∑
j=1

e−2πi〈ω,x j〉

(
f t

j +
1

2
√
βT
εt

j

)
.

Denoting with

W t(ω) B
1

2n
√
βT

n∑
j=1

e−2πi〈ω,x j〉εt
j (2.11)

the Fourier transform of the Gaussian error term, we define the Fourier model for motion

estimation in SMS microscopy data as follows.

Definition 2.18 (Fourier Model). For t ∈ T and ω ∈ R2, with W t(ω) from (2.11), we define

Y t(ω) B FOt (ω) = F f t (ω) + W t(ω). (2.12)

From the generalized shift property (2.5) we know that

F f t (ω) = (σα0
t )2e−2πi

〈
ω,δ

θ0
t

〉
F f (σ

α0
t R

−ρ
φ0
t
ω), (2.13)

which implies ∣∣F f t (ω)
∣∣2 = (σα0

t )4
∣∣∣F f (σ

α0
t R

−ρ
φ0
t
ω)
∣∣∣2 . (2.14)

Note that
∣∣F f t (ω)

∣∣2 does not depend on the drift δθ0
t . We aim to estimate the rotation parameter

φ and the scaling parameter α from
{∣∣Y t

∣∣2}
t∈T. Then, we can calibrate the images f t with the

estimated rotation and scaling, leaving only the drift to be estimated. Because of (2.12), the

analytical Fourier-Mellin transform of
∣∣Y t
∣∣2 is

M
|Y t |2(u, v) =

∫ ∞
0

∫ 2π

0
e−2πiuψr−ivrγ

(∣∣Y t
∣∣2 ◦ P)(r, ψ) dψ

dr
r

=

∫ ∞
0

∫ 2π

0
e−2πiuψr−ivrγ

(∣∣F f t
∣∣2 ◦ P +Wt ◦ P

)
(r, ψ) dψ

dr
r

= M∣∣∣F f t

∣∣∣2(u, v) +MWt (u, v), (2.15)
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where P is the polar coordinate transform and

Wt(ω) B
∣∣W t(ω)

∣∣2 + 2<
(
F f t (ω)W t(ω)

)
. (2.16)

We further define for a suitable cutoff rT ≥ 1 (see Assumption 2.15) the restricted version

MT
|Y t |2

(u, v) B
∫ rT

0

∫ 2π

0
e−2πiuψr−ivrγ

(∣∣Y t
∣∣2 ◦ P)(r, ψ) dψ

dr
r

=MT∣∣∣F f t

∣∣∣2(u, v) +MT
Wt (u, v). (2.17)

From the shift property of the analytical Fourier-Mellin transform (2.10) and (2.14), we get

M∣∣∣F f t

∣∣∣2(u, v) = du,v(1/σα0
t ,−ρ

φ0
t )Ft(u, v), (2.18)

where

du,v(σ, ρ) B σ−ive2πiuρ, and Ft(u, v) B (σα0
t )4−γM

|F f |
2(u, v). (2.19)

This, together with (2.15), gives the idea that (if the error terms get small)

du,v(σα0
t , ρ

φ0
t )M

|Y t |2(u, v) ≈ Ft(u, v).

Based on this, we define an estimator for the scaling and rotation parameters as a minimizer of a

contrast functional, as defined below.

Definition 2.19 (Contrast functionals for rotation and scaling). For suitable Fourier cutoffs

uT , vT ≥ 1 (see Assumptions 2.15), we define the empirical contrast functional for rotation and

scaling,

M̃T (φ, α)

B

∫ vT

−vT

∑
|u|≤uT

βT

T

∑
t∈T

∣∣∣∣du,v(σαt , ρ
φ
t )MT

|Y t |2
(u, v) −

βT

T

∑
t′∈T

du,v

(
σαt′ , ρ

φ
t′

)
MT
|Y t′ |

2(u, v)
∣∣∣∣2 dv

= M0
T + MT (φ, α),

with

M0
T B

∫ vT

−vT

∑
|u|≤uT

βT

T

∑
t∈T

∣∣∣MT
|Y t |2

(u, v)
∣∣∣2 dv,

MT (φ, α) B −
∫ vT

−vT

∑
|u|≤uT

∣∣∣∣∣βT

T

∑
t∈T

du,v(σαt , ρ
φ
t )MT

|Y t |2
(u, v)

∣∣∣∣∣
2

dv,

where we used
∣∣du,v(σ, ρ)

∣∣ = 1.
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Similarly, we define the population contrast functional for rotation and scaling,

M̃(φ, α) B
∫
R

∑
u∈Z

∫ 1

0

∣∣∣∣du,v

(
σαt
σα0

t
, ρ

φ
t − ρ

φ0
t

)
Ft(u, v)

−

∫ 1

0
du,v

(
σαt′

σα0
t′
, ρ

φ
t′ − ρ

φ0
t′

)
Ft′(u, v) dt′

∣∣∣∣2 dt dv

= M0 + M(φ, α),

with

M0 B

∫
R

∑
u∈Z

∫ 1

0

∣∣Ft(u, v)
∣∣2 dt dv,

M(φ, α) B −
∫
R

∑
u∈Z

∣∣∣∣∫ 1

0
du,v

(
σαt
σα0

t
, ρ

φ
t − ρ

φ0
t

)
Ft(u, v) dt

∣∣∣∣2 dv.

We now define the parameter estimators as minimizers of the empirical contrast functional.

Since M0
T and M0 are constant in (φ, α), we can equivalently minimize MT or M, respectively.

Definition 2.20. (Scaling and rotation parameter estimator) M-estimators for the rotation and

scaling parameters φ and α are defined as

(φ̂T , α̂T ) ∈ argmin
(φ,α)∈A×Φ

MT (φ, α).

The next step is to calibrate the Fourier data Y t with those estimators, which leads to the

following model. Note, that the following Definitions 2.21 and 2.22 are formulated for arbitrary

(φ, α) ∈ Φ × A, because we need to compute derivatives later to show asymptotic normality.

However, we plug in (φ̂T , α̂T ) for the drift estimation (see Definition 2.23).

Definition 2.21 (Fourier model after rotation and scaling correction). Define the transformation

(combining rotation and scaling)

τ : Φ × A × [0, 1]→ R2×2, (φ, α, t) 7→ τ
(φ,α)
t B

σα0
t

σαt
R
ρ
φ
t −ρ

φ0
t
.

Note that τ(φ0,α0)
t = idR2 for all t ∈ [0, 1]. For φ ∈ Φ, α ∈ A, ω ∈ Ω, and t ∈ [0, 1], we define the

drift correction term

ht,t′
ω : Θ × Φ × A→ C,

(θ; φ, α) 7→ exp
(

2πi
(〈

(σαt )−1R
ρ
φ
t
ω, δθt − δ

θ0
t

〉
−

〈
(σαt′)

−1R
ρ
φ
t′
ω, δθt′

〉))
, (2.20)

the error term corrected for rotation and scaling

V t
T (ω; φ, α) B (σαt )−2W t

(
1/σαt · Rρφt ω

)
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=
1

2n
√
βT (σαt )2

n∑
j=1

exp
(
−2πi

〈
1/σαt · Rρφt ω, x j

〉)
εt

j, (2.21)

and the Fourier data corrected for rotation and scaling,

Zt
T (ω; φ, α) B

(
σαt
)−2 Y t

((
σαt
)−1 R

ρ
φ
t
ω
)

= h0,t
ω (θ0; φ, α)

(
σα0

t

σαt

)2

F f

(
τ

(φ,α)
t ω

)
+ V t

T (ω; φ, α). (2.22)

Similarly to the estimation of the rotation and scaling parameters, we minimize a contrast

functional to estimate the true drift parameter θ0.

Definition 2.22 (Contrast functionals for drift). For a suitable cutoff rT ≥ 1 as in (2.17) (see

Assumption 2.15), let ΩT B
{
ω ∈ R2 | ‖ω‖ < rT

}
be the (open) Euclidean ball with center

0 ∈ R2 and radius rT and define the empirical contrast functional (for drift),

ÑT (θ; φ, α) B
∫

ΩT

βT

T

∑
t∈T

∣∣∣∣h0,t
ω (θ; φ, α)−1Zt

T (ω; φ, α)

−
βT

T

∑
t′∈T

h0,t′
ω (θ; φ, α)−1Zt′

T (ω; φ, α)
∣∣∣∣2 dω

= N0
T (φ, α) + NT (θ; φ, α),

with

N0
T (φ, α) B

∫
ΩT

βT

T

∑
t∈T

∣∣Zt
T (ω; φ, α)

∣∣2 dω,

NT (θ; φ, α) B −
∫

ΩT

∣∣∣∣∣βT

T

∑
t∈T

h0,t
ω (θ; φ, α)−1Zt

T (ω; φ, α)

∣∣∣∣∣
2

dω,

where we used
∣∣h0,t
ω (θ; φ, α)−1

∣∣ = 1. For notational purpose, let

Ft
ω(θ; φ, α) B ht,0

ω (θ; φ, α)
(
σα0

t

σαt

)2

F f

(
τ

(φ,α)
t ω

)
,

with ht,0
ω defined by (2.20). Note that

h0,t
ω (θ; φ, α)−1Zt

T (ω; φ, α) = Ft
ω(θ; φ, α) + h0,t′

ω (θ; φ, α)−1V t′
T (ω; φ, α).

We define the population contrast functional (for drift),

Ñ(θ; φ, α) B
∫
R2

∫ 1

0

∣∣∣∣Ft
ω(θ; φ, α) −

∫ 1

0
Ft′
ω(θ; φ, α) dt′

∣∣∣∣2 dt dω

= N0(φ, α) + N(θ; φ, α),
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where

N0(φ, α) B
∫
R2

∫ 1

0

∣∣∣∣∣
(
σα0

t

σαt

)2

F f

(
τ

(φ,α)
t ω

)∣∣∣∣∣
2

dt dω,

N(θ; φ, α) B −
∫
R2

∣∣∣∣∫ 1

0
Ft
ω(θ; φ, α) dt

∣∣∣∣2 dω.

Similarly to the definition of (φ̂T , α̂T ), we ignore the parts of the contrast functional that are

constant in θ. We will repeatedly use the following decompostion:

NT (θ; φ, α) = AT (θ; φ, α) + BT (θ; φ, α) + CT (θ; φ, α), (2.23)

where

AT (θ; φ, α) B −
∫

ΩT

∣∣∣∣∣βT

T

∑
t∈T

Ft
ω(θ; φ, α)

∣∣∣∣∣
2

dω

BT (θ; φ, α) B −
∫

ΩT

2<

[(
βT

T

∑
t∈T

Ft
ω(θ; φ, α)

)

·

(
βT

T

∑
t′∈T

h0,t′
ω (θ; φ, α)−1V t′

T (ω; φ, α)

)]
dω

CT (θ; φ, α) B −
∫

ΩT

∣∣∣∣∣βT

T

∑
t∈T

h0,t
ω (θ; φ, α)−1V t

T (ω; φ, α)

∣∣∣∣∣
2

dω.

Now, we can define estimators for the drift parameter θ0 and the unknown image f .

Definition 2.23 (Drift parameter estimator and image estimator). An M-estimator for the drift

parameter θ is defined to be

θ̂T ∈ argmin
θ∈Θ

NT (θ; φ̂T , α̂T ).

Moreover, we define a preliminary estimator for f as the inverse Fourier transform of the

calibrated Fourier data,

f̂ ′T (x j) B
∫

ΩT

βT

T

∑
t∈T

e2πi〈ω,x j〉h0,t
ω

(
θ̂T ; φ̂T , α̂T

)−1 Zt
T (ω; φ̂T , α̂T ) dω, j ∈ {1, . . . , n} .

Recall that we still need to invert the variance stabilization transform in order to obtain an

estimator for the actual marker density, leading to the following definition for the final image

estimator:

f̂T (x j) B
(

f̂ ′T (x j)
)2
, j ∈ {1, . . . , n} .

The two-step estimation method is summarized in Algorithm 1.
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Algorithm 1 Motion correction using semiparametric M-estimation
Choose a bin size βT , γ > 0, cutoffs rT , uT , vT ≥ 1 and parametric models for the motion
functions δθ, ρφ and σα.

1. Given a sequence of observed frames average over βT subsequent frames to obtain the
binned frames (Ot)t∈T.

2. Apply the Anscombe transformation with constant c = 1/4, as described in Remark 2.2.

3. Approximate the squared Fourier magnitudes
∣∣Y t
∣∣2 by |FOt |

2, t ∈ T.

4. Calculate the Analytical Fourier-Mellin transformM
|Y t |2 , t ∈ T.

5. Estimate the rotation and scaling parameters (φ0, α0) through minimizers (φ̂T , α̂T ) of the
contrast functional MT (φ, α).

6. Correct Y t for rotation and scaling and arrive at

Zt
T (ω; φ̂T , α̂T ) =

(
σα̂T

t

)−2
Y t
((

σα̂T
t

)−1
R
ρ
φ̂T
t
ω

)
, t ∈ T.

7. Estimate the drift parameter θ through a minimizer θ̂T of the contrast functional
NT (θ; φ̂T , α̂T ).

8. Correct Zt for drift.

9. Obtain an estimator f̂T for the image by applying the inverse Fourier transform to the
calibrated frames and inverting the Anscombe transform.



CHAPTER 3
Theoretical results

This chapter contains the main theoretical results including consistency of the motion parameter

estimators and the final image estimator (Section 3.1) as well as joint asymptotic normality of

the motion parameter estimators (Section 3.2). The results have been grouped thematically into

statements on consistency and statements on distributional limits, since we proof a joint central

limit theorem for all three motion function parameters. However, we need some of the outcomes

of Section 3.2, namely asymptotic normality of the rotation and scaling parameters, already

in Section 3.1 to show consistency of the drift parameter estimator. The implications are as

follows:

Consistency of rotation and scaling parameters

⇓

Asymptotic normality of rotation and scaling parameters

⇓

Consistency of drift parameter

⇓

Joint central limit theorem

For better readability only sketches of the proofs are included, and the full versions are moved

to a separate final chapter, Chapter 6.

3.1 Consistency

Under the model assumptions formulated in 2.1.4 the estimators (θ̂T , φ̂T , α̂T ) from Definitions

2.20 and 2.23 as well as the estimator f̂T for f from Definition 2.23 are consistent.

Theorem 3.1 (Consistency of rotation and scaling parameters). Suppose that the Assumptions

2.13 (A2-A4), 2.14 (B1, B4-B5, and B7), and 2.15 hold. Then the rotation and scaling estimator

(φ̂T , α̂T ) from Definition 2.20 is consistent, i.e.,

(φ̂T , α̂T )
T→∞
−→ (φ0, α0) in probability. (3.1)

Sketch of proof. The proof follows a standard three step argument in M-estimation (e.g., van der
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Vaart (2000); Gamboa et al. (2007); Bigot et al. (2009); Hartmann et al. (2015)). The three steps

are:

1. Show the uniqueness of the population contrast minimizer (φ0, α0).

2. Show the continuity of the population contrast functional M.

3. Show that MT
T→∞
−→ M in probability, uniformly over (φ, α).

Together with the compactness of Φ × A, parts 1 and 2 ensure the condition that (φ0, α0) is a

well separated point of minimum. Part 3 proves uniform convergence of the empirical contrast

functional. Since (φ̂T , α̂T ) are defined as minimizers of MT , the condition that MT (φ̂T , α̂T ) ≤

MT (φ0, α0) + oP(1) is trivially fulfilled. Hence, the desired consistency follows directly from

Theorem B.6. Note that in van der Vaart (2000), the theorem is formulated for a maximization

problem. A detailed proof of the three steps can be found in Chapter 6. �

Theorem 3.2 (Consistency of the drift parameter). Suppose that the Assumptions 2.13, 2.14

(B1-B5, B7-B8) and 2.15 hold. If
√

T (φ̂T − φ0, α̂T − α0) is asymptotically centered normal, then

the drift estimator θ̂T from Definition 2.23 is consistent, i.e.,

θ̂T
T→∞
−→ θ0 in probability. (3.2)

Sketch of proof. The proof of consistency of the drift parameter estimator follows the standard

three step argument, which we used in the proof of Theorem 3.1, including the application of

Theorem B.6. The three steps are here:

1. Show the uniqueness of the minimizer θ0 of the population contrast N( · ; φ0, α0).

2. Show the continuity in θ of the population contrast functional N( · ; φ0, α0).

3. Show that NT (θ; φ̂T , α̂T )
T→∞
−→ N(θ; φ0, α0) in probability, uniformly over θ.

The proofs of the three steps are very similar to the reasoning used in the proof of Theorem 3.1

and are deferred to Chapter 6, too. �

Theorem 3.3 (Consistency of the image estimator). Under the Assumptions 2.13, 2.14 and 2.15

the image estimator f̂T from Definition 2.23 is consistent, i.e.,

∥∥ f̂T − f
∥∥

L2

T→∞
−→ 0 in probability. (3.3)

Sketch of proof. Using the Plancherel equality (Theorem B.2) we show that the difference∥∥ f̂ ′T (x j) − f
∥∥2

L2 vanishes asymptotically, in probability, where f ′ denotes the transformed marker

density with integrated square root (see the model derivation in Section 2.1). By the continuous

mapping theorem (see, e.g., Theorem 2.3 in van der Vaart (2000)), we can conclude convergence

of the final image estimator f̂T , for which the variance stabilizing transformation has been

inverted, to the original (scaled) marker density f 0 · p. A detailed argument can be found in

Chapter 6. �
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Theorem 3.4 (Consistency). Under the Assumptions 2.13, 2.14, and 2.15, we have that

(i) (θ̂T , φ̂T , α̂T )
T→∞
−→ (θ0, φ0, α0) in probability,

(ii)
∥∥ f̂T − f 0 · p

∥∥
L2

T→∞
−→ 0 in probability.

Outline of proof. The proof of part (i) is split up into the proof of consistency of the rotation

and scaling parameter estimators (Theorem 3.1), and the consistency of the drift parameter

estimator (Theorem 3.2). The proofs of these two theorems have the same structure and both

rely mainly upon standard argumentation for M-estimators, as stated, e.g., in Theorem B.6. The

proof of consistency of the drift parameter estimator further uses asymptotic normality of the

rotation and scaling parameter estimators as given by Theorem 3.5 in the subsequent Section

3.2. The joint consistency of all three motion parameters then follows directly with Theorem

2.7 from van der Vaart (2000). The consistency of the image estimator, part (ii), is proven in

Theorem 3.3. �

3.2 Asymptotic normality

Theorem 3.5 (Central limit theorem for rotation and scaling parameters). Suppose that Assump-

tions 2.13 (A2-A4), 2.14 (B2-B4, B8), and 2.15 hold. Then,

√
T

(
φ̂T − φ0

α̂T − α0

)
= −

∑
t′∈T

∑
j∈Jt′

T

H−1
M wt′

j ε
t′
j + oP(1),

with HM = Hess(φ,α)M(φ0, α0) from Lemma 6.11 and weights wt′
j ∈ R

d2+d3 from Theorem 6.10.

In particular,

√
T

(
φ̂T − φ0

α̂T − α0

)
T→∞
−→ N(0,H−1

M ΣRS H−1
M ) in distribution,

with ΣRS given explicitly in Definition 6.9.

Sketch of proof. For better readability, the detailed proof is again deferred to Chapter 6 and only

a brief sketch of the single steps is given in the following. Likewise, the exact expression of the

weights and the covariance matrix of the limiting distribution can be found in Chapter 6.

The first step is to show that the gradient of the empirical contrast functional converges in proba-

bility to a linear combination of the independent error terms. In particular,
√

Tgrad(φ,α)MT (φ0, α0)

asymptotically follows a normal distribution, see Theorem 6.10. In Lemma 6.11 we prove

that, under some assumptions, the Hessian of the population contrast functional at the true

parameters is invertible, and in Theorem 6.12 we see that the Hessian of the empirical contrast

functional converges in probability toward the Hessian of the population contrast functional, i.e.,

Hess(φ,α)MT (φ̂∗T , α̂
∗
T )

T→∞
−→ HM in probability for all sequences such that (φ̂∗T , α̂

∗
T )

T→∞
−→ (φ0, α0)

in probability. Finally, using the differentiability assumption on the contrast functionals in a

neighborhood of the true parameters (as an implication of Assumption 2.14 (B3)), the mean
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value theorem and Lemma A.12 on uniform tightness of sequences of random variables, we

can combine the previous results to obtain asymptotic normality for the rotation and scaling

parameter estimators. �

Theorem 3.6 (Central limit theorem for the drift estimator). Suppose that the Assumptions 2.13,

2.14, and 2.15 hold. Then,

√
T
(
θ̂T − θ0

) T→∞
−→ N

(
0,H−1

N ΣDH−1
N
)
,

with HN from Lemma 6.15, and some covariance matrix ΣD, which can be expressed in terms of

the covariance matrices ΣRS and Σ̃ appearing in Theorems 3.5 and 6.14.

Sketch of proof. We first show in Theorem 6.13 that the mixed derivatives of the empirical

contrast functional for drift converge to the derivatives of the population contrast functional.

Similarly to before, we prove in Theorem 6.14 that the gradient of the contrast functional for

drift, gradθNT (θ0; φ̂T , α̂T ), is a linear combination of the error terms with an additional vanishing

term. In Lemma 6.15 we show that the Hessian HN B HessθN(θ0; φ0, α0) is invertible, and in

Theorem 6.16 that it converges in probability: HessθNT (θ̂∗T ; φ̂T , α̂T )
T→∞
−→ HN for any sequence

θ̂∗T
T→∞
−→ θ0 converging in probability. We bring these results together and apply the mean value

theorem to show that
√

T (θ̂T − θ0) can be written as a linear combination of the aforementioned

independent Gaussian random variables with an additional vanishing term. The details of this

proof are deferred to Chapter 6. �

Theorem 3.7 (Joint central limit theorem). Under the Assumptions 2.13, 2.14, and 2.15, we

have with some covariance matrix Σ, which is explicitly given in Chapter 6, that

√
T

 θ̂T − θ0

φ̂T − φ0

α̂T − α0

 T→∞
−→ N(0,Σ) in distribution,

i.e., the estimators for the motion function parameters are jointly asymptotically normally

distributed.

Outline of proof. For the proof of consistency of the drift parameter estimators in Theorem 3.4,

we already used the result from Theorem 3.5, that
√

T (φ̂T −φ0, α̂T −α0) can be written as a linear

combination of the independent Gaussian errors εt
j and an additional vanishing term. The crucial

step is then to show that
√

T (θ̂T − θ0) can be expressed as a linear combination of the same

Gaussian variables and some additional vanishing term in Theorem 3.6. The linear combinations

of the rotation and scaling parameter estimators and of the drift parameter estimators are then

combined into one, establishing convergence of the joint distribution and thereby concluding

the proof of Theorem 3.7. �



CHAPTER 4

Application: Simulation study and real SMS data

To illustrate the applicability of our method, we show the results of a simulation study using

polynomial models for the motion functions in Section 4.1. Moreover, our reconstruction

technique is applied to real SMS data and compared with calibration using fiducial markers

in Section 4.2. We show that our method is competitive to this current approach revealing the

incorporation of fiducials as redundant in the analysis and processing of SMS images. Finally,

simple bootstrap confidence bands for the drift rotation and scaling estimators are constructed

in Section 4.3, quantifying the statistical uncertainty.

4.1 Simulation study

In order to validate our method and to demonstrate its applicability, we conducted a simulation

study. The image displayed in Figure 4.1 is used as the true underlying structure f : [0, 1]2 →

[0, 1]. As we would like the simulations to be comparable to our motivating real data example,

we chose the true motion function parameters such that the total amount of drift, rotation and

scaling are of similar size to the ones observed in the SMS microscopy data, which is analyzed

in Section 4.2. We used a 256 × 256 pixel grid for the gray scale images and T = 200 binned

frames for the simulation runs, corresponding to a supposed binning size of about βT = 150.

This binning size is close to the square root of the typical total number of recorded frames,

which we found to be a suitable size to balance the retained motion blur and the noise level in

the averaged frames well. For comparison, we also included simulation runs using only T = 100

binned frames and ones with a 128 × 128 pixel grid.

Figure 4.1: True underlying test image with intensities in [0, 1] displayed as colors ranging from
black (0) over red and yellow to white (1).
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Data generation. We simulated two different statistical models. Firstly, we considered ob-

servations generated as Gaussian random variables corresponding to our theoretical model,

which is an approximate model for the SMS data. Secondly, we generated the binned frames

as arrays of Poisson binomially distributed random variables. As described in Section 2.1, this

is the model which is closest to the idealized data acquisition process. The results show that

the estimated parameter values and the image reconstructions differ only slightly from the ones

obtained using the Gaussian model. This empirically validates the theoretically justified normal

approximation. To be more specific on how the artificial observations are constructed, for the

Gaussian case we generate independently distributed observations

Ot
j ∼ N

(
f t

j ,
1

4βT

)
, for j = 1 . . . n, t ∈ T,

where f t
j =

√
f̃ t

j · p for the detection probability p and the average marker density f̃ t
j from

Section 2.1. The square root is induced by the variance stabilizing transformation in the Gaussian

approximation. In the binomial case, we have the independently distributed binned observations

Ot
j =

1
βT

Pt
j, with Pt

j ∼ PoiBin
((

f t+i/T
j · p

)βT−1

i=0

)
, for j = 1 . . . n, t ∈ T.

Here, PoiBin
((

f t+i/T
j · p

)βT−1

i=0

)
denotes the Poisson binomially distributed random variable

with probability vector
(

f t+i/T
j · p

)βT

i=0
, i.e., the sum of βT independent Bernoulli random vari-

ables having success probabilities f t+i/T
j · p, 0 ≤ i ≤ βT −1, resp. We do not need the square root

in this case, since the Anscombe type transformation will be performed during the reconstruction

process in this model, just like in the application of the method to real data.

For each of the statistical models, we present the results of two different parametrical models

for the motion functions. Both are polynomial models, as introduced in Example 2.17, namely

using linear and quadratic motion functions. For the linear model, the drift vector at time

t ∈ T = {i/T : 0 ≤ i ≤ T − 1} is given by

δθ0
t = θ0 · t ∈ R2,

for a true drift parameter θ0 = ((θ0)1, (θ0)2)> ∈ Θ ⊂ R2, and analogously we have the one-

dimensional rotation angle,

ρ
φ0
t = φ0 · t, with t ∈ T, φ0 ∈ Φ,

and scaling factor,

σα0
t = 1 + α0 · t, with t ∈ T, α0 ∈ A.

Here, the parameter spaces Θ, Φ and A are chosen in such a way, that we only consider sensible
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parameter choices, see also Remark 2.1. For the drift we chose Θ = [−1, 1]2, ensuring that

−1 ≤
(
δθ0

t

)
1
,
(
δθ0

t

)
2
≤ 1 for all t ∈ T, which means that the object of interest moves at

most as far as the width and height of the observation window. We do not need to consider

other parameter values for the drift, since for farther drift, the structure moves out of the

imaged area and can not be registered any more. We have argued already in Remark 2.1,

why it is reasonable that we restrict ourselves to rotation angles ρφt ∈ (−π/2, π/2) and scaling

factors σαt ∈ [σmin, σmax]. For the linear model, we can simply choose Φ = (−π/2, π/2) and

A = [σmin − 1, σmax − 1] in order to ensure that these constraints hold. Appropriate values for

the boundaries for the scaling factor are σmin = 1/256 and σmax = 2, induced by the relative

pixel size and the size of the observation window around the imaged structure.

In the quadratic setting, we get analogous expressions for the motion functions, namely for

θ0 ∈ Θ ⊂ R4, φ0 ∈ Φ ⊂ R2, α0 ∈ A ⊂ R2, and t ∈ T,

δθ0
t =

(
(θ0)1

(θ0)3

)
· t +

(
(θ0)2

(θ0)4

)
· t2 ∈ [0, 1]2,

ρ
φ0
t = (φ0)1 · t + (φ0)2 · t

2 ∈ (−π/2, π/2),

σα0
t = 1 + (α0)1 · t + (α0)2 · t

2 ∈ [σmin, σmax].

To translate these conditions into conditions on the parameters, consider for example drift

in x-direction. It is necessary that the endpoints are contained in [−1, 1]. This is fulfilled if
(θ0)1 + (θ0)2 ∈ [−1, 1]. We further need that the value at the extreme point is contained in [−1, 1]

if it is attained for some t ∈ [0, 1]. Hence, we want the following implication to hold:

−
(θ0)1

2 (θ0)2
∈ (0, 1) =⇒ −

(θ0)2
1

4 (θ0)2
∈ [−1, 1].

Conditions for the parameters of the other motion types can be obtained in an analogous way.

Estimation and reconstruction. After creating the observations in the described way, we

applied our reconstruction method to the artificial dataset. As described in Section 2.2, estima-

tors for the motion function parameters are obtained as minimizers of the empirical contrast

functionals given there. These minimizers are determined by a standard Nelder-Mead-type

algorithm, which is preimplemented in the statistical software R. As initial value for the op-

timization in drift estimation we used 0 ∈ Rd1 . For the estimation of the rotation and scaling

parameters, we used the vector with components equal to 0.5, since we found that the built-in

optimization routine of R tends to never leave 0 ∈ Rd2+d3 if this is used as starting value. The

Fourier transform and Fourier-Mellin transform are computed using the fast Fourier transform

algorithm (FFT, see, e.g., Cooley and Tukey, 1965). This is possible, since the Fourier-Mellin

transform is a Fourier-type transform as explained in Remark 2.8. Due to discretization and the

relatively small total rotation angle, we will be able to see the rotation in the Fourier domain

only for rather large structures in the original image. The reason for this is that only for long

objects, a rotation will result in a shift of parts of the object to a new pixel. For small features,
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rotation will appear as a translation of the whole feature. Hence, we choose a quite small cutoff

parameter of 16 for the Fourier type coefficients to avoid misinterpreting rotation as drift, which

would result in an underestimation of the rotation and overestimation of drift.

Results. The estimated values for the motion function parameters are summarized in Table 4.1.

Table 4.2 shows the mean values for the parameters calculated from 100 independent simulation

runs using the same underlying marker density and true motion function parameters.

To quantify how reliably our method is able to correct for the motion blur, we consider the

square root of the mean squared error (RMSE) E
(∥∥(θ0, φ0, α0) −

(
θ̂T , φ̂T , α̂T

)∥∥2
)

, calculated

from the 100 simulation runs we used to compute the mean parameter values in Table 4.2. We

further report the RMSE of the single motion types, E
(∥∥(θ0 − θ̂T

)
x

∥∥2
)

, and likewise for drift

in y-direction, rotation and scaling in order to gain insight into what motion types are most

difficult to estimate correctly. The corresponding results are displayed in Table 4.3.

In the linear model, the rotation angle seems to be the most difficult to estimate correctly. The

scaling factor is reconstructed quite well already. Yet, for the drift parameter estimator we obtain

even lower RMSE-values. This indicates, that translational movement can be detected and

removed best with our method, although the drift correction is performed on data which have

been corrected for rotation and scaling by the slightly less accurate estimators for these motion

types. Despite the little differences in accuracy, it can be seen that we also obtain quite good

results for the combined estimation of all three motion types. RMSE-values for the quadratic

setting are generally slightly higher than for the linear setting. Here, the scaling factor and the

drift in y-direction yield the highest RMSE values.

In Figure 4.2 we present the resulting final image estimator for linear motion functions, and in

Figure 4.3 for quadratic motion functions. Both figures show the results obtained using T = 200

binned frames and a 256 × 256 pixel grid. On the left is the original image for comparison

with the reconstructions. The middle column holds the results obtained in the Gaussian setting,

the right column the ones for the Poisson binomial setting. We show a single binned frame

each in the first row, i.e., a sparse subsample of the underlying marker density visualized in

Figure 4.1. In the second row, the superpositions of all frames with a clearly visible motion

blur is displayed. The third row contains the final reconstructions, which have greatly improved

resolution compared to the original superimposed SMS image and capture the main features

of the underlying structure. The reconstructions in the linear model are almost identical with

the original image. In the quadratic setting some deformation remains, but the blurring is still

significantly reduced compared to the superimposed images. The visual inspection confirms

therefore, that the estimation works better for the linear model. The reconstructions in the

quadratic setting are still satisfying, nonetheless. Even better results can be obtained in both

motion models by calculating the average over the final images estimates from all 100 simulation

runs, as shown in the last row.

However, the increase in quality by averaging over multiple simulation runs is costly in terms of

runtime. Even though the reconstruction itself only takes between 20 seconds for a 128 × 128

pixel grid and T = 100 binned frames and 2 minutes for a 256 × 256 pixel grid and T = 200
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binned frames on a standard laptop, the data generation is computationally intensive and may

lead to a runtime of up to an hour for a single run using a 256 × 256 pixel grid. Moreover,

decreasing the number of binned frames T reduces the time needed for the reconstruction, but

has no effect on the run time of the data generation process, since we still have to compute the

marker densities for all original time points in order to reproduce the small bias retained in the

binned frames. As the data generation mainly governs the total run time of the simulation, we

can hardly gain any speed by using a smaller T . To obtain results faster, the number of pixels

may be reduced at the cost of a lower total resolution and possibly more difficulties in estimating

the rotational motion. Appendix C contains reconstructions using T = 100 frames and a pixel

grid of size 128 × 128.
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linear motion quadratic motion
true parameter (θ0; φ0;α0) (0.059, 0.041; 0.039; 0.001) (0.029, 0.029, 0.016, 0.039; 0.026, 0.031; 0.001, 0.001)
statistical model pixels T (θ̂T ; φ̂T ; α̂T ) (θ̂T ; φ̂T ; α̂T )

Gaussian
256

100 (0.059, 0.046; 0.026; -0.003) (0.002, 0.053, 0.012, 0.024; 0.069, 0.083; 0.028, -0.028)
200 (0.059, 0.041; 0.027; -0.001) (0.015, 0.041, 0.015, 0.023; 0.082, 0.064; 0.037, -0.045)

128
100 (0.059, 0.051; 0.011; -0.013) (0.058, 0.005, 0.039, 0.017; 0.058, 0.016; -0.064, 0.070)
200 (0.059, 0.041; 0.015; -0.001) (0.032, 0.026, 0.034, 0.029; -0.005, 0.042; -0.051, 0.064)

Poisson binomial
256

100 (0.059, 0.032; 0.037; -0.001) (0.003, 0.043, -0.011, 0.030; 0.082, 0.075; 0.027, -0.025)
200 (0.059, 0.037; 0.007; -0.001) (0.010, 0.041, -0.007, 0.025; 0.068, 0.085; 0.032, -0.034)

128
100 (0.059, 0.041; 0.011; 0.001) (0.034, 0.021, 0.019, 0.034; -0.050, 0.059; -0.068, 0.080)
200 (0.059, 0.041; 0.021; -0.002) (0.010, 0.041, 0.012, 0.029; 0.067, 0.004; 0.053, -0.053)

Table 4.1: Estimated parameter (θ̂T ; φ̂T ; α̂T ) for one simulation run. Results of Gaussian and Poisson binomial models with linear and quadratic motion
functions for a total number of binned frames of T = 100 and T = 200 on 128 × 128 and 256 × 256 pixel grids.

linear motion quadratic motion
true parameter (θ0; φ0;α0) (0.059, 0.041; 0.031; 0.01) (0.029, 0.029, 0.016, 0.039; 0.026, 0.031; 0.01, 0.01)
statistical model pixels T mean of (θ̂T ; φ̂T ; α̂T ) mean of (θ̂T ; φ̂T ; α̂T )

Gaussian
256

100 (0.059, 0.042; 0.024; -0.001) (0.011, 0.045, 0.012, 0.025; 0.063, 0.078; 0.034, -0.032)
200 (0.059, 0.043; 0.024; -0.001) (0.018, 0.039, 0.015, 0.028; 0.065, 0.056; 0.34, -0.042)

128
100 (0.059, 0.050; 0.019; -0.012) (0.037, 0.019, 0.025, 0.027; 0.002, 0.051; -0.007, 0.004)
200 (0.059, 0.044; 0.038; -0.001) (0.035, 0.022, 0.027, 0.027; 0.0312, 0.031; -0.045, 0.057)

Poisson binomial
256

100 (0.059, 0.039; 0.004; 0) (0.006, 0.042, -0.008, 0.028; 0.074, 0.080; 0.073, 0.042)
200 (0.059, 0.040; 0.003; 0) (0.008, 0.041, -0.006, 0.027; 0.072, 0.071; 0.028, -0.028)

128
100 (0.057, 0.038; 0.015; 0.002) (0.031, 0.024, 0.020, 0.017; 0.035, 0.065; -0.034, 0.046)
200 (0.058, 0.039; 0.018; 0.001) (0.007, 0.041, 0.005, 0.027; 0.059, 0.033; 0.046, -0.045)

Table 4.2: Setting as in Table 4.1. Means of estimated parameter values (θ̂T ; φ̂T ; α̂T ) from 100 simulation runs.
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linear motion quadratic motion

statistical model pixels T
RMSE(θ̂T ; φ̂T ; α̂T ) RMSE(θ̂T ; φ̂T ; α̂T )

(RMSE(θ̂T ); RMSE(φ̂T ); RMSE(α̂T )) (RMSE(θ̂T ); RMSE(φ̂T ); RMSE(α̂T ))

Gaussian

256
100

1e-2 8e-2
(4e-4, 2e-3; 1e-2; 2e-3) (2e-2, 6e-2; 2e-2; 6e-2)

200
1e-2 8e-2

(8e-4, 3e-3; 1e-2; 3e-3) (1e-2, 5e-2; 1e-2; 5e-2)

128
100

3e-2 9e-2
(6e-4, 1e-2; 2e-2; 1e-2) (2e-2, 6e-2; 2e-2; 6e-2)

200
3e-2 9e-2

(1e-3, 7e-3; 3e-2; 7e-3) (2e-2, 6e-2; 2e-2; 6e-2)

Poisson binomial

256
100

3e-2 9e-2
(8e-4, 3e-3; 3e-2; 2e-3) (2e-2, 5e-2; 2e-2; 5e-2)

200
3e-2 1e-1

(7e-4, 2e-3; 3e-2; 2e-3) (2e-2, 6e-2; 2e-2; 6e-2)

128
100

3e-2 1e-1
(4e-3, 6e-3; 3e-2; 5e-3) (1e-2, 7e-2; 1e-2; 6e-2)

200
3e-2 1e-1

(3e-3, 7e-3; 3e-2; 5e-3) (2e-2, 8e-2; 2e-2; 8e-2)

Table 4.3: Setting as in Table 4.1. Empirical values of the RMSE of
(
θ̂T , φ̂T , α̂T

)
and of the components, θ̂T , φ̂T , and α̂T computed from 20 simulation runs

are displayed.
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Figure 4.2: Image reconstructions of the simulation study for linear motion model with T = 200
binned frames on a 256 × 256 pixel grid: true underlying image (left); for Gaussian (middle
column) and Poisson binomial (right column) model, a single binned frame (first row), the
blurred superpositions of all frames (second row), final image estimates, which are corrected for
rotation, scaling and translational drift (third row) and average over images estimates from 100
simulation runs (fourth row).
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Figure 4.3: Image reconstructions of the simulation study for quadratic motion model with
T = 200 binned frames on a 256 × 256 pixel grid: true underlying image (left); for Gaussian
(middle column) and Poisson binomial (right column) model, a single binned frame (first row),
the blurred superpositions of all frames (second row), final image estimates, which are corrected
for rotation, scaling and translational drift (third row) and average over images estimates from
100 simulation runs (fourth row).
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4.2 Application to SMS data

In this section, we demonstrate how our method can be applied to estimate and correct for

the motion blur in SMS microscopy data. We first briefly describe the experimental setup in

which the data have been obtained, as explained by Dr. Oskar Laitenberger, who conducted the

measurements. Afterwards, we discuss suitable choices for the types of the motion function and

other model parameters. Finally, we show the results of our reconstruction method and compare

it to the ones obtained with conventional fiducial marker tracking (for a description of the

fiducial marker tracking procedure see Algorithm 8.4 in Hartmann (2016)). Note that in order

to enable this comparison, the data have been obtained with fiducial markers included into the

sample. We want to demonstrate the validity of our method without the additional information

stemming from these traceable markers. For this reason, we delete the signal originating from

the fiducial markers and perform the reconstruction only on the remaining observations.

Setup. A modified Leica DMIRE2 body was used, which was equipped with an oil immersion

objective (UPLSAPO 100XO of Olympus) and a self-constructed stable sample holder ensuring

that the sample drift is well below the expected average localization accuracy. A dichroic mirror

(545 DCXRUV reflection 360–535 nm > 90%, transmission 555–750 nm > 90% of AHF

Analysentechnik AG) separated the fluorescence light of Rhodamine B (Belov et al., 2009) from

the excitation light of wavelength 532 nm generated by a continuous wave laser (HB-Laser

Germany, model LC-LS-532-1.2W). Furthermore, the fluorescence light passed a bandpass filter

ET 560/40 (transmission 544-578 nm > 90% of AHF Analysentechnik AG) right in front of the

EMCCD-camera (iXon X3 of Andor). To control the number of events per frame, a continuous

wave UV laser generating 371 nm (Coherent Cube 371nm/16mW) was used. The named sample

holder is mounted on top of a translation (SLC of SmarAct) and rotation stage (RVS80CC of

Newport).

In the imaging process a series of T = 29000 single frames was taken over a time period of 600 s.

This corresponds to an exposition time of about 20 ms for each frame. During the measurement,

a controlled rotation with linear angle velocity and maximal displacement of 1.4◦ was applied

to the sample, a stained β-tubulin in HeLa cells. Moreover, the sample was subjected to small

uncontrolled translations caused by vibrations and possibly a small scaling due to heating.

Usually, the rotation center is not exactly in the middle of the field of view. This introduces an

additional translation with a trigonometrical component, which can be approximated by a linear

model well enough because of the small total rotational displacement.

Model and parameter choices. Due to the relatively small total displacement, movement

can be approximated reasonably well by linear functions and still produce very satisfactory

reconstructions. However, other models, using for example splines, might lead to even better

results (see Chapter 5). For the given data set a linear model is adequate. As explained in the

previous section on the simulation study (Section 4.1) we chose a relatively small value of 16

for the Fourier cutoff to avoid misinterpretating rotation as drift. From the 29000 initial frames
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we obtain T = 200 binned frames, on which the calibration method is performed. With a value

of 145, the corresponding bin size is not far from the square root of the total number of frames

in order to balance reduction of noise level and retained motion blur well. We used a pixel grid

of size 512 × 507, corresponding to pixel size of about 45 nm in both directions (about twice the

localization precision).

Results. The obtained values for the motion function parameter estimators are

θ̂T = (−0.025,−0.015)>

φ̂T = 0.012

α̂T = −0.0003,

which corresponds to a maximal drift of about 13 pixels in negative x-direction, 7 pixels in

negative y-direction, a maximal rotational displacement of about 0.7◦ and an reduction in size of

about 0.03 percent. These values are not too far from what we would expect. With the reference

method of fiducial marker tracking, we obtained a maximal drift of about 13 pixels in negative

x-direction, 8 pixels in negative y-direction, a maximal rotational displacement of about 1.3◦ and

a size reduction of about 0.1 percent. The rotation angle for fiducial marker tracking is closer to

the externally applied rotation movement of 1.4◦. However, because of the small values of the

total rotation angle and scaling factor, the slight discrepancies do not have a significant effect on

the reconstructions.

In Figure 4.4, we show the reconstructed images obtained in our data analysis. We present

the superposition of all single frames on the left, the final image estimator produced by our

correction method in the middle and the reference image, where the motion blur was removed

using fiducial marker tracking, on the right. The second row shows a zoom in for each of

the above images. It can be seen very well that our reconstruction gives great improvement

in resolution compared to the original superimposed SMS image. Comparing the zoomed in

images shows particularly well that after our motion correction single filament strands can be

distinguished, whereas in the original SMS image on the left only a large region containing

signal can be identified. Furthermore, the reconstruction is of a quality at least as high as the

one obtained using fiducial marker tracking. Note that there are different ways to implement

fiducial marker tracking. Better results can be obtained, additional knowledge about the values

of the parameters and motion function types is used (see Laitenberger (2018)).

Remark 4.1 (Variation of the detection probability p). In real data sets, the detection probability

p from (2.1), which we assume to be constant in our model, might in fact vary over time,

for example due to bleaching of some of the markers towards the end of the measurement

process. Because of this bleaching, larger structures appear fragmented into smaller pieces

even in the binned images. For this reason, the last part of the observations sometimes is

discarded and the estimation is run only on the remaining subset of frames. We refrain from this

adjustment, however, since the extrapolation of the parameters which were obtained in this way

is problematic.
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Figure 4.4: Image reconstructions of the SMS data analysis: overlay of the single frames with
clearly visible motion blur (left); reconstruction obtained with our correction method (middle);
results of a simple fiducial tracking procedure (right). The second row shows zoom-ins of the
above images.

4.3 Bootstrap confidence bands

We would like to have some kind of assessment of how accurate our estimation of the parameters

in the real data example is. Our goal in this chapter is therefore to construct confidence bands

for the estimated motion functions that give regions around the estimator such that if the true

parameter lies outside these regions, a data set resulting in the estimated parameter would

only arise with a predefined low probability under the assumed model. Ideally, these bands

are rather narrow around our estimate. From Section 3.2 we know that our M-estimators are

asymptotically normally distributed. We have, however, no results on the actual distribution

of the estimators. Nevertheless, the convergence towards a Gaussian distribution justifies the

application of a bootstrap procedure in order to estimate confidence bands. Like in the previous

paper (Hartmann et al., 2015) on pure drift estimation, we do this using the method described

in Hall and Pittelkow (1990), which was already applied in a similar way in Hartmann (2016)

based on the asymptotic normality of the parameters, which was only conjectured then. To

illustrate the procedure, we briefly outline how it is applied to the estimator
(
δθ̂T

t

)
1

of drift in

x-direction. The confidence bands for the other motion types are computed analogously.

We determine the residuals

rt
j B Ot

j − f̂T
(

1/σα̂T
t R

−ρ
φ̂T
t

(
x j − δ

θ̂T
t

))
, t ∈ T, 1 ≤ j ≤ n, (4.1)

which are estimators for the Gaussian errors 1
2
√
βT
εt

j = Ot
j− f

(
1
σ
α0
t

R
−ρ

φ0
t

(
x j − δ

θ0
t

))
, and define
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the standardized difference

∆t B
((
δθ̂T

t

)
1
−

(
δθ0

t

)
1

)
/λδ,1, (4.2)

where λδ,1 is the unknown standard deviation of the estimator of drift in x-direction. We decide

upon a shape for the confidence band by choosing two template functions g+, g− : [0, 1]→ [0,∞).

The size of the band and thereby also the coverage rate is governed by two scaling factors

u+, u− ∈ [0,∞). The lower and upper boundaries of the confidence band for drift in x-direction,(
δθ0

t

)
1
, are then given by

(
δθ̂T

t

)
1
− λδ,1u−g−(t), and

(
δθ̂T

t

)
1

+ λδ,1u+g+(t),

or equivalently by −u+g+(t) and u−g−(t) for the standardized difference ∆t. For a given confi-

dence level η ∈ (0, 1) we want to minimize the width u+ + u− of the confidence band under the

constraint that

Pθ0

((
δθ0

t

)
1
∈

[(
δθ̂T

t

)
1
− λδ,1u−g−(t),

(
δθ̂T

t

)
1

+ λδ,1u+g+(t)
]

for all t ∈ [0, 1]
)
≥ 1 − η,

or equivalently

Pθ0

(
∆t ∈

[
−u+g+(t), u−g−(t)

]
for all t ∈ [0, 1]

)
≥ 1 − η.

Since the distribution of ∆t is unknown, we apply a bootstrap procedure in order to approximate

the quantiles. For every pixel location 1 ≤ j ≤ n and every time point t ∈ T, we independently

draw B ∈ N times with replacement from the set of all residuals {rt′
j′ |1 ≤ j′ ≤ n, t′ ∈ T} with rt′

j′

from (4.1). These give rise to the resampled errors
(
εt

j

)(b)
and observations

(
Ot

j
)(b)

= f̂T
(

1/σα̂T
t R

−ρ
φ̂T
t

(
x j − δ

θ̂T
t

))
+
(
εt

j
)(b)

, 1 ≤ j ≤ n, t ∈ T, 1 ≤ b ≤ B.

For every 1 ≤ b ≤ B we run our estimation method on the replicate observations given by{(
Ot

j

)(b) ∣∣1 ≤ j ≤ n, t ∈ T
}

and thereby produce bootstrap replicates θ̂(b)
T , φ̂(b)

T and α̂(b)
T of the

parameter estimators and hence, replicates f̂ (b)
T of the image estimator as well. We can now

compute replicates of the standardized difference,

∆
(b)
t =

((
δ
θ̂(b)

T
t

)
1
−

(
δθ̂T

t

)
1

)
/λ̂δ,1,

where

λ̂δ,1 =

√√√√ 1
T B

B∑
b=1

∑
t∈T

((
δ
θ̂(b)

T
t

)
1
−

(
δθ̂T

t

)
1

)2

is the empirical standard deviation. Using these replicates, we minimize the sum u+ + u− such
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that

#
{

1 ≤ b ≤ B
∣∣∆(b)

t ∈
[
−u+g+(t), u−g−(t)

]
for all t ∈ [0, 1]

}
≥ (1 − η)B.

In our application we only use polynomial models for the motion function, as described in

Example 2.17, focusing on linear models in the SMS data analysis. Furthermore, by Assumption

2.14 (B1) the motion functions have predefined values δθ0 = 0, ρφ0 = 0 and σα0 = 1 at time t = 0.

Now, the fact that for polynomials on [0, 1] the linear part dominates the others (t ≥ tp for all

t ∈ [0, 1], p > 1) justifies the use of linear template functions g+(t) = g−(t) = t.

In Figure 4.5, the confidence bands for the motion functions obtained using B = 100 bootstrap

replicates and a confidence level of η = 0.05 are displayed. The insets in the plots of the

estimated drift curves show a zoom-in on the confidence bands for the last minute of the imaging

process. The motion paths estimated using fiducial marker tracking are given in red. The values

obtained with both methods are of similar order of magnitudes. Generally, the estimation with

fiducial marker tracking is much more variable. This is partly because in practice, the linear

motion enforced by our parametric model can only be an approximation to the real movement.

However, other effects leading to a more unstable fiducial estimation also play a role like

movement of the fiducial markers relative to the sample structure or mistakes in the classification

of observations into signal by the sample and signal by a fiducial marker. Still, for the estimation

of rotation and scaling, the fiducial curves are mostly covered by the confidence bands around

our estimators. For the drift estimation this is not the case anymore, mainly because of the very

small width of the corresponding confidence bands. However, since the maximal translational

offsets are almost identical for drift in x-direction and very close for drift in y-direction, the

narrowness of the confidence bands mainly indicates that our estimation is able to estimate the

best possible linear approximation with extremely high accuracy.

In order to illustrate the result on the reliability of our estimator, we use the bootstrap replicates

f̂ (b)
T of the image estimator and compute their average. The result is displayed in Figure 4.6.

As is to be expected, the bootstrap average (in the middle) is a little blurrier than the original

estimate (on the left). However, due to the small widths of the confidence bands, they are

remarkably close. If there was a high variability in the resulting estimator, the average image

would be blurred much more or it would contain off-set features that originate from parameter

outliers. This is not the case, which is a strong indicator that our reconstruction method works

well and is able to reliably perform a motion correction. Moreover, in comparison with the

reconstruction obtained by a simple fiducial marker tracking implementation (on the right), the

bootstrap average is only slightly more blurred and still captures all the features and filament

strands that can be identified by fiducial marker tracking.
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Figure 4.5: Bootstrap confidence bands (grey area) around the motion functions with the
estimated parameters (black) and fiducial marker tracking paths (red); for the drift parameters
(upper row), insets show zoom-ins on the last minute.
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Figure 4.6: Results of the Bootstrap confidence analysis: image estimator from the previous
section (left); average of the bootstrap replicates of the image estimate (middle); results of
a simple fiducial tracking procedure (right). The second row shows zoom-ins of the above
pictures.



CHAPTER 5

Summary and Outlook

In this thesis, the method of drift correction for SMS data or other application scenarios featuring

sparse sequential dynamic imaging from Hartmann et al. (2015) was extended to incorporate

also rotational and scaling movement as proposed in Hartmann (2016), using the two step

estimation procedure described in Bigot et al. (2009).

The sparsity of the single frames in SMS microscopy data enables a significant improvement in

resolution compared to conventional imaging techniques. At the same time, the induced need

to record a large number of frames imposes a major blurring due to movement of the structure

of interest. We presented a semiparametric estimation approach to correct for this motion, and

examined the asymptotic properties of our estimators, which are defined as minimizers of certain

contrast functionals. We were able to prove consistency for all motion function parameter

estimators and for the final image estimator. Furthermore, we showed that the parameter

estimators are asymptotically normally distributed, which enabled us to make confidence

statements using a bootstrap procedure. We conducted a simulation study and performed a

reconstruction of real SMS data. In the latter we used fiducial marker tracking as a reference.

Our findings indicate that the current practice of fiducial marker tracking is not needed in most

cases. SMS data can be corrected for motion by our purely statistical approach, which makes

the incorporation of bright fiducial markers obsolete in future measurements. Moreover, our

results are relatively stable with respect to the parameter choices, like, for example, the bin size

βT , the Fourier thresholds and the size of the pixel grid. More care should be taken in the choice

of the starting values for the minimization.

It remains to investigate whether a varying detection probability can be included in the statistical

model. As mentioned before, in real data sets the detection probability usually decreases due

to bleaching of the fluorescent markers. This can only partly be made up for by adjusting the

laser intensity used for reading out the signal. Secondly, for some application scenarios it might

be of interest to implement further models for the motion functions apart from polynomials in

the reconstruction software package. Moreover, an extension of the estimation method using

non-parametric approaches could be studied, for example, an estimation of the motion functions

using splines. Another approach would be to perform a reconstruction by directly estimating

the marker density - without inference on any motion functions - using barycenters based on

optimal transport distances. However, in that case it is not immediately clear, how the fact that

the structure moves only very little between two consecutive frames can be used to make up for
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the sparsity of the single frames. Finally, it would be desirable to loosen the assumption that

the whole imaged structure undergoes the same motion deformation and allow also for local

distortions of the observed specimen.

The presented method serves as a prototype for motion correction in SMS microscopy and many

other typical imaging techniques where sparse observations with high temporal resolution are

blurred by relative motion of the object to be reconstructed.



CHAPTER 6

Proofs

In this chapter we present detailed proofs for our theoretical results on the asymptotic properties

of the estimators of the motion function parameters. We start in Section 6.1 by showing some

properties of the error terms and the motion correction terms. Some statements are taken from

Hartmann (2016) together with their proofs, whereas others are inspired by similar results in the

same document or present generalized results, which are adapted to the setting of estimation of

all three motion types, drift, rotation and scaling in this work. These preliminary results will be

used in Section 6.2 for the demonstrations of consistency and joint asymptotic normality.

6.1 Properties of the correction functions and error terms

In the following, some basic properties of the error terms W t(ω) from (2.11),Wt(ω) from (2.16),

and V t
T (ω; φ̂T , α̂T ) from (2.21) (Lemmas 6.1, 6.2, and 6.3), and of the derivatives of the motion

correction terms du,v(σαt , ρ
φ
t ) defined in (2.19), and ht,t′

ω (θ; φ, α) defined in (2.20) (Lemmas 6.4

and 6.7) are collated. Most of them can be obtained by basic calculations, which are similar to

the corresponding proofs in Chapter 5 of Hartmann (2016). However, since we adjusted our

model to better fit the data registration process, we arrive at slightly different values and rates.

Therefore, we present the proofs, which are adapted from the ones found in Hartmann (2016).

Lemma 6.1 (Properties of W t(ω), see also Lemma 5.1 in Hartmann (2016)). Recall

W t(ω) = 1
2n
√
βT

∑n
j=1 e−2πi〈ω,x j〉εt

j from (2.11). The following properties hold.

1. The real and imaginary parts of W t(ω) are centered normal,

<
(
W t(ω)

)
∼ N

0,
1

4n2βT

n∑
j=1

(
cos
(
2π
〈
ω, x j

〉))2

 ,

=
(
W t(ω)

)
∼ N

0,
1

4n2βT

n∑
j=1

(
sin
(
2π
〈
ω, x j

〉))2

 .

2. We have E
(∣∣W t(ω)

∣∣2) = 1
4nβT

.

3. W t(ω) and W t′(ω′) are independent unless t = t′.
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4. For j, j′ ∈ {1, . . . , n}, and ω ∈ R2, define cos j, j′
ω B cos

(
2π
〈
ω, x j − x j′

〉)
. With this, we

have the following expressions for the expectation of the mixed error terms:

E(<
(
F f t (ω)W t(ω)

)
<
(
F f t (ω′)W t(ω′)

)
)

=
1

4n4βT

n∑
j, j′, j′′=1

cos j, j′
ω cos j′′, j′

ω′ f t(x j) f t(x j′′),

E(<
(
F f t (ω)W t(ω)

) ∣∣W t(ω′)
∣∣2) = 0,

and E(
∣∣W t(ω)

∣∣2 ∣∣W t(ω′)
∣∣2) =

1
16n4β2

T

[
3n +

∑
j, j′

(
1 + 2 cos j, j′

ω cos j, j′
ω′

)]
.

Proof.

1. Since they are linear combinations of independent centered Gaussian random variables{
εt

j | j ∈ Jt
T

}
,<
(
W t(ω)

)
and =

(
W t(ω)

)
are also centered Gaussian. Because the εt

j are

standard normal and independent, we get

Var
(
<
(
W t(ω)

))
=

1
4n2βT

n∑
j=1

Var
(

cos
(
2π
〈
ω, x j

〉)
εt

j

)
=

1
4n2βT

n∑
j=1

(
cos
(
2π
〈
ω, x j

〉))2
,

and, similarly,

Var
(
=
(
W t(ω)

))
=

1
4n2βT

n∑
j=1

Var
(
− sin

(
2π
〈
ω, x j

〉)
εt

j

)
=

1
4n2βT

n∑
j=1

(
sin
(
2π
〈
ω, x j

〉))2
,

2. This follows from

E
(∣∣W t(ω)

∣∣2) = E
(
<
(
W t(ω)

)2
)

+ E
(
=
(
W t(ω)

)2
)

= Var
(
<
(
W t(ω)

))
+ Var

(
=
(
W t(ω)

))
=

1
4n2βT

n∑
j=1

((
cos
(
2π
〈
ω, x j

〉))2
+
(
sin
(
2π
〈
ω, x j

〉))2
)

=
1

4n2βT

n∑
j=1

1 =
1

4nβT
.

3. Since
{
εt

j

∣∣ j ∈ {1 . . . , n}
}

and
{
εt′

j′
∣∣ j′ ∈ {1 . . . , n}

}
are independent for t , t′, so are

W t(ω) and W t′(ω′).
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4. First, note that

<
(
F f t (ω)W t(ω)

)
= <

n−2β−1/2
T

n∑
j, j′=1

e−2πi〈ω,x j〉 f t(x j)e2πi〈ω,x j′〉εt
j′


=

1
2n2 √βT

n∑
j, j′=1

cos j, j′
ω f t(x j)εt

j′ .

Since E(εt
j′ε

t
j′′′) = 0 unless j′ = j′′′ and E

(
(εt

j′)
2
)

= 1, it follows that

E
[
<
(
F f t (ω)W t(ω)

)
<
(
F f t (ω′)W t(ω′)

)]
=

1
4n4βT

n∑
j, j′, j′′=1

cos j, j′
ω cos j′′, j′

ω′ f t(x j) f t(x j′′).

Furthermore, using the trigonometrical addition theorems,

∣∣W t(ω)
∣∣2 =

 1
2n
√
βT

n∑
j=1

cos
(
2π
〈
ω, x j

〉)
εt

j

2

+

 1
2n
√
βT

n∑
j=1

sin
(
2π
〈
ω, x j

〉)
εt

j

2

=
1

4n2βT

 n∑
j, j′=1

cos
(
2π
〈
ω, x j

〉)
cos
(
2π
〈
ω, x j′

〉)
εt

jε
t
j′

+

n∑
j, j′=1

sin
(
2π
〈
ω, x j

〉)
sin
(
2π
〈
ω, x j′

〉)
εt

jε
t
j′


=

1
4n2βT

n∑
j, j′=1

cos j, j′
ω εt

jε
t
j′ .

Because E(εt
j′ε

t
j′′ε

t
j′′′) = 0 even if j′ = j′′ = j′′′, we get

E
[
<
(
F f t (ω)W t(ω)

) ∣∣W t(ω′)
∣∣2]

=
1

8n4β3/2
T

n∑
j, j′, j′′, j′′′=1

cos j, j′
ω cos j′′, j′′′

ω′ f t(x j)E
[
εt

j′ε
t
j′′ε

t
j′′′
]

= 0.

Finally, because E
(
(εt

j)
4
)

= 3,

E
(∣∣W t(ω)

∣∣2 ∣∣W t(ω′)
∣∣2) =

1
16n4β2

T

n∑
j, j′, j′′, j′′′=1

cos j, j′
ω cos j′′, j′′′

ω′ E
(
εt

jε
t
j′ε

t
j′′ε

t
j′′′
)

=
1

16n4β2
T

 ∑
j= j′= j′′= j′′′

+
∑

j= j′, j′′= j′′′
+

∑
j= j′′, j′= j′′′

+
∑

j= j′′′, j′= j′′


(

cos j, j′
ω cos j′′, j′′′

ω′ E
(
εt

jε
t
j′ε

t
j′′ε

t
j′′′
))

=
1

16n4β2
T

(
3n +

∑
j, j′

(
1 + 2 cos j, j′

ω cos j, j′
ω′

))
. �
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Lemma 6.2 (Properties ofMT
Wt (u, v), see also Lemma 5.2 in Hartmann (2016)). RecallWt =∣∣W t(ω)

∣∣2 + 2<
(
F f t (ω)W t(ω)

)
from (2.16). We have

E
[∣∣MT

Wt (u, v)
∣∣2] = O

(
r2γ

T
βT

)
. (6.1)

Proof. With Lemma 6.1, we get

E
[∣∣MT

Wt (u, v)
∣∣2]

=E

[∣∣∣∣∫ rT

0

∫ 2π

0
e−2πiuψrγ−iv(Wt ◦ P

)
(r, ψ) dψ

dr
r

∣∣∣∣2
]

=

∫ rT

0

∫ rT

0

∫ 2π

0

∫ 2π

0
e−2πiu(ψ−ψ′)rγ−iv(r′)γ+iv

· E

[(∣∣W t(P(r, ψ)
)∣∣2 + 2<

((
F f t W t

)(
P(r, ψ)

)))
·

(∣∣W t(P(r′, ψ′)
)∣∣2 + 2<

((
F f t W t

)(
P(r′, ψ′)

)))]
dψ dψ′

dr
r

dr′

r′

=

∫ rT

0

∫ rT

0

∫ 2π

0

∫ 2π

0
e−2πiu(ψ−ψ′)rγ−iv(r′)γ+iv

{
E

[ ∣∣W t(P(r, ψ)
)∣∣2 ∣∣W t(P(r′, ψ′)

))∣∣2 ]
+ 4E

[
<

((
F f t W t

)(
P(r, ψ)

))
<

((
F f t W t

)(
P(r′, ψ′)

))]}
dψ dψ′

dr
r

dr′

r′

=

∫ rT

0

∫ rT

0

∫ 2π

0

∫ 2π

0
e−2πiu(ψ−ψ′)rγ−iv(r′)γ+iv

{
1

16n4β2
T

[
3n

+
∑
j, j′

(
1 + 2 cos

(
2π
〈
P(r, ψ), x j − x j′

〉)
cos
(

2π
〈
P(r′, ψ′), x j − x j′

〉))]

+
1

n4βT

n∑
j, j′, j′′=1

[
cos
(

2π
〈
P(r, ψ), xt

j − x j′
〉)

cos
(

2π
〈
P(r′, ψ′), xt

j′′ − x j′
〉)

· f t(xt
j) f t(xt

j′′)
]}

dψ dψ′
dr
r

dr′

r′
.

In particular, because of the triangle inequality and |cos(x)| ≤ 1 for all x ∈ R,

E
[∣∣MT

Wt (u, v)
∣∣2]

≤

∫ rT

0

∫ rT

0

∫ 2π

0

∫ 2π

0
rγ(r′)γ

(
3

16n2β2
T

+
1

nβT
‖ f ‖2∞

)
dψ dψ′

dr
r

dr′

r′

= 4π2
(

3
16n2β2

T
+

1
nβT
‖ f ‖2∞

)(∫ rT

0
rγ−1 dr

)2

= 4π2r2γ
T γ−2

(
3

16n2β2
T

+
1

nβT
‖ f ‖2∞

)
= O

(
r2γ

T
βT

)
,

where we used that f is bounded by Assumption 2.13 (A1). �
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Lemma 6.3 (Properties of V t
T (ω; φ̂T , α̂T ), see also Lemma 5.3 in Hartmann (2016)). Recall

V t
T (ω; φ̂T , α̂T ) = 1

2n
√
βT (σαt )2

∑n
j=1 exp

(
−2πi

〈
1/σαt · Rρφt ω, x j

〉)
εt

j from (2.21). For all T ∈ N,

t, t′ ∈ T, and ω ∈ R2, we have

E
∣∣∣V t

T (ω; φ̂T , α̂T )V t′
T (ω; φ̂T , α̂T )

∣∣∣ = O

(
1
βT

)
.

Proof. Since the εt
j are independent standard normal random variables, we get

E
∣∣∣V t

T (ω; φ̂T , α̂T )V t′
T (ω; φ̂T , α̂T )

∣∣∣
= E

∣∣∣∣ 1

4n2βT (σα̂T
t )2(σα̂T

t′ )2

n∑
j, j′=1

exp
(
−2πi

〈
1/σα̂T

t · Rρφ̂T
t
ω, x j

〉)
· exp

(
2πi
〈

1/σα̂T
t′ · Rρφ̂T

t′
ω, x j′

〉)
εt

jε
t′
j′

∣∣∣∣
≤

1
4n2βTσ

4
min

n∑
j, j′=1

E
∣∣∣εt

jε
t′
j′

∣∣∣ =
1

4βTσ
4
min

= O

(
1
βT

)
.

�

The following three lemmas on the motion correction terms and their derivatives are generalized

and reviewed versions of similar statements in Hartmann (2016), which are modified to the

setting of three motion types and proved rigorously here. Note that in contrast to Hartmann

(2016), a dependency of the drift correction error terms on the rotation and scaling parameters

is included. This is necessary in order to be able to calculate the mixed derivatives of the drift

contrast functional in the proof of asymptotic normality of the drift parameter.

Lemma 6.4 (Derivatives of du,v(σαt , ρ
φ
t ), see also Lemma 5.7 in Hartmann (2016)). Under

Assumption 2.14 (B2), for u ∈ Z, v ∈ R, t, t′ ∈ [0, 1], and (φ, α) ∈ U, we define

dt,t′
u,v(φ, α) B du,v(σαt /(σ

α
t′σ

α0
t ), ρφt − ρ

φ
t′ − ρ

φ0
t ) ∈ C, (6.2)

at,t′
u,v(φ, α) B

(
2πu grad>φ (ρφt − ρ

φ
t′),−vσαt′σ

α0
t /σ

α
t grad>α (σαt /σ

α
t′)
)>
∈ Rd2+d3 , (6.3)

H t,t′
u,v (φ, α) B

(
H1 0

0 H2

)
∈ R(d2+d3)×(d2+d3), (6.4)

where

H1 B 2πu Hessφ(ρφt − ρ
φ
t′),

and H2 B v
σαt′

σαt

(
σαt′

σαt
gradα

(
σαt
σαt′

)
grad>α

(
σαt
σαt′

)
− Hessα

(
σαt
σαt′

))
.

Note, that dt,0
u,v(φ0, α0) = du,v(1, 0) = 1. There is a constant C̃ > 0 (independent from u, v, t, t′, φ,
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and α) such that

grad(φ,α)d
t,t′
u,v(φ, α) = iat,t′

u,v(φ, α)dt,t′
u,v(φ, α), (6.5)

Hess(φ,α)dt,t′
u,v(φ, α) =

(
iH t,t′

u,v (φ, α) − at,t′
u,v(φ, α)at,t′

u,v(φ, α)>
)

dt,t′
u,v(φ, α), (6.6)∥∥∥at,t′

u,v(φ, α)
∥∥∥ ≤ C̃ ‖(u, v)‖ , (6.7)∥∥∥grad(φ,α)d

t,t′
u,v(φ, α)

∥∥∥ ≤ C̃ ‖(u, v)‖ , (6.8)∥∥∥Hess(φ,α)dt,t′
u,v(φ, α)

∥∥∥
1
≤ C̃ ‖(u, v)‖ + C̃2 ‖(u, v)‖2 . (6.9)

Proof. First of all,

grad(φ,α)du,v(σαt /(σ
α
t′σ

α0
t ), ρφt − ρ

φ
t′ − ρ

φ0
t )

= grad(φ,α) exp
(
2πiu(ρφt − ρ

φ
t′ − ρ

φ0
t ) − iv log(σαt /(σ

α
t′σ

α0
t ))
)

= du,v(σαt /(σ
α
t′σ

α0
t ), ρφt − ρ

φ
t′ − ρ

φ0
t )

·i
(

2πu grad>φ (ρφt − ρ
φ
t′),−vσαt′/σ

α
t grad>α (σαt /σ

α
t′)
)>

,

which proves (6.5). It follows that

Hess(φ,α)du,v(σαt /(σ
α
t′σ

α0
t ), ρφt − ρ

φ
t′ − ρ

φ0
t )

= grad>(φ,α)

[
du,v(σαt /(σ

α
t′σ

α0
t ), ρφt − ρ

φ
t′ − ρ

φ0
t )

·i
(

2πu grad>φ (ρφt − ρ
φ
t′),−vσαt′/σ

α
t grad>α (σαt /σ

α
t′)
)> ]

= du,v(σαt /(σ
α
t′σ

α0
t ), ρφt − ρ

φ
t′ − ρ

φ0
t )

·

[
−

(
2πu grad>φ (ρφt − ρ

φ
t′),−vσαt′/σ

α
t grad>α (σαt /σ

α
t′)
)>

·

(
2πu grad>φ (ρφt − ρ

φ
t′),−vσαt′/σ

α
t grad>α (σαt /σ

α
t′)
)

+i

(
2πu Hessφ(ρφt − ρ

φ
t′) 0

0 v
σαt′
σαt

(
σαt′
σαt

gradα
(
σαt
σαt′

)
grad>α

(
σαt
σαt′

)
− Hessα

(
σαt
σαt′

)) )],
proving (6.6). Now, let C̃1 B max{4πC, 2Cσmax/σ

2
min} with C > 0 from Assumption 2.14 (B2).

Then,

∥∥∥at,t′
u,v(φ, α)

∥∥∥2
≤ 4π2u2

∥∥∥gradφ(ρφt − ρ
φ
t′)
∥∥∥2

+ v2
(
σαt′

σαt

)2 ∥∥gradα(σαt /σ
α
t′)
∥∥2

≤ 4π2u2
(∥∥∥gradφρ

φ
t

∥∥∥ +

∥∥∥gradφρ
φ
t′

∥∥∥)2

+v2
(

1
σαt σ

α
t′

)2 (
σαt′
∥∥gradασ

α
t

∥∥ + σαt
∥∥gradασ

α
t′
∥∥)2

≤ 16π2C2u2 + 4
σ2

max

σ4
min

C2v2 ≤ C̃2
1 ‖(u, v)‖2 ,
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which implies (6.7). Hence, (6.8) holds because, by (6.5),∥∥∥grad(φ,α)d
t,t′
u,v(φ, α)

∥∥∥ =

∥∥∥at,t′
u,v(φ, α)

∥∥∥ .
Furthermore, by Assumption 2.14 (B2), and because of

∥∥xy>
∥∥

1 = ‖x‖1 ‖y‖1 ≤ d3 ‖x‖ ‖y‖ for all x, y ∈ Rd3 ,

we have that

∥∥Hessα(σαt /σ
α
t′)
∥∥

1

=
∥∥(σαt′ Hessασαt + gradασ

α
t grad>ασ

α
t′ − σ

α
t Hessασαt′ − gradασ

α
t′ grad>ασ

α
t
)
(σαt′)

−2

−2(σαt′)
−3(σαt′ gradασ

α
t − σ

α
t gradασ

α
t′
)

grad>ασ
α
t′
∥∥

1

≤
2C2(σmax + 1)

σ2
min

+
4d3C2σmax

σ3
min

≤
8d3C2σmax

σ3
min

.

It follows that∥∥∥H t,t′
u,v (φ, α)

∥∥∥
1

= 2π |u|
∥∥∥Hessφ(ρφt − ρ

φ
t′)
∥∥∥

1

+ |v|
σαt′

σαt

(
σαt′

σαt

∥∥gradα(σαt /σ
α
t′)
∥∥2

1 +
∥∥Hessα(σαt /σ

α
t′)
∥∥

1

)
≤ 4πC2 |u| + |v|C2σ

2
max

σ2
min

+ 8d3C2σ
2
max

σ4
min
|v| ≤ C̃2 ‖(u, v)‖ ,

where C̃2 B C2 max{4π, σ2
maxσ

−2
min, 8d3C2σ2

maxσ
−4
min}, which implies∥∥∥Hess(φ,α)dt,t′

u,v(φ, α)
∥∥∥

1
≤

∥∥∥H t,t′
u,v (φ, α)

∥∥∥
1

+ d3

∥∥∥at,t′
u,v(φ, α)

∥∥∥2
≤ C̃2 ‖(u, v)‖ + d3C̃2

1 ‖(u, v)‖2 .

Then, (6.9) holds with C̃ B max
{√

d3C̃1, C̃2
}

. �

Lemma 6.5 (Properties of ht,t′
ω (θ; φ, α), see also Lemma 5.8 in Hartmann (2016)). Recall from

(2.20) that

ht,t′
ω (θ; φ, α) = exp

(
2πi
(〈

(σαt )−1R
ρ
φ
t
ω, δθt − δ

θ0
t

〉
−

〈
(σαt′)

−1R
ρ
φ
t′
ω, δθt′

〉))
.

We have ∣∣∣ht,t′
ω (θ; φ, α)

∣∣∣ ≡ 1, (6.10)

ht,t′
ω (θ; φ, α) = ht,t′

ω (θ; φ, α)−1, (6.11)

ht,0
ω (θ0; φ0, α0) = 1, (6.12)

ht,0
ω (θ; φ, α)h0,t′

ω (θ; φ, α) = ht,t′
ω (θ; φ, α). (6.13)
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Moreover, the following terms can be expressed with the help of ht,t′
ω (θ; φ, α):

exp
(

2πi
〈

(σαt )−1R
ρ
φ
t
ω, δθt

〉)
= h0,t

ω (θ; φ, α)−1, (6.14)

exp
(

2πi
〈

(σαt )−1R
ρ
φ
t
ω, δθt − δ

θ0
t

〉)
exp

(
2πi
〈

(σαt′)−1R
ρ
φ
t′
ω, δθt′ − δ

0
t′

〉)
= ht,0

ω (θ; φ, α)/ht′,0
ω (θ; φ, α). (6.15)

Proof. The fact that
∣∣eix
∣∣ = 1 and eix = e−ix for all x ∈ R implies (6.10) and (6.11). The

properties (6.12) and (6.13) follow because e0 = 1 and exey = ex+y for all x, y ∈ C. (6.14) and

(6.15) hold by definition of ht,t′
ω (θ; φ, α). �

Before formulating the Lemma on the derivatives of ht,t′
ω , some definitions to shorten the notation

are in order.

Definition 6.6. Let ω = (ω1, ω2) ∈ R2, t, t′ ∈ [0, 1] and (θ, φ, α) ∈ Rd1+d2+d3 . Let further

et,t′(θ; φ, α) B
(
et,t′

1 (θ; φ, α), et,t′
2 (θ; φ, α)

)
, where for j = 1, 2

et,t′
j (θ; φ, α) B

((
σαt
)−1 R

−ρ
φ
t

(
δθt − δ

θ0
t

)
−
(
σαt′
)−1 R

−ρ
φ
t′
δθt′
)

j
.

Note that

ht,t′
ω (θ; φ, α) = exp

(
2πi
〈
ω, et,t′(θ; φ, α)

〉)
. (6.16)

We further define

bt,t′
ω (θ; φ, α) B 2π

(
ω1gradθ

(
et,t′

1 (θ; φ, α)
)

+ ω2gradθ
(
et,t′

2 (θ; φ, α)
))

. (6.17)

Similarly,

ct,t′
ω (θ; φ, α) B 2π

((
ct,t′
ω (θ; φ, α)

)>
φ
,
(
ct,t′
ω (θ; φ, α)

)>
α

)>
∈ Rd2+d3 , (6.18)

where (
ct,t′
ω (θ; φ, α)

)
φ
B ω1gradφ

(
et,t′

1 (θ; φ, α)
)

+ ω2gradφ
(
et,t′

2 (θ; φ, α)
)

(
ct,t′
ω (θ; φ, α)

)
α
B ω1gradα

(
et,t′

1 (θ; φ, α)
)

+ ω2gradα
(
et,t′

2 (θ; φ, α)
)
.

In order to examine also the second derivatives we further define

H t,t′
ω (θ; φ, α) B 2π

(
ω1 Hessθ

(
et,t′

1 (θ; φ, α)
)

+ ω2 Hessθ
(
et,t′

2 (θ; φ, α)
))

. (6.19)

To tackle the mixed derivatives we will need

Gt,t′
ω (θ; φ, α) B

(
gradφ

(
bt,t′
ω (θ; φ, α)

)
, gradα

(
bt,t′
ω (θ; φ, α)

))
∈ Rd1×(d2+d3), (6.20)
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where we write gradφ
(
bt,t′
ω (θ; φ, α)

)
for the Jacobian of bt,t′

ω (θ; φ, α), and similarly for the second

block, in a slight abuse of notation.

Lemma 6.7 (Derivatives of ht,t′
ω (θ; φ, α), generalization of Lemma 5.9 in Hartmann (2016)).

Under Assumptions 2.14 (B2, B3) it holds that

gradθh
t,t′
ω (θ; φ, α) = ibt,t′

ω (θ; φ, α)ht,t′
ω (θ; φ, α), (6.21)

grad(φ,α)h
t,t′
ω (θ; φ, α) = ict,t′

ω (θ; φ, α)ht,t′
ω (θ; φ, α), (6.22)

Hessθht,t′
ω (θ; φ, α) =

(
iH t,t′

ω (θ; φ, α) − bt,t′
ω (θ; φ, α)bt,t′

ω (θ; φ, α)>
)
ht,t′
ω (θ; φ, α), (6.23)

grad(φ,α)grad>θ ht,t′
ω (θ; φ, α) =

(
iGt,t′

ω (θ; φ, α) − bt,t′
ω (θ; φ, α)ct,t′

ω (θ; φ, α)>
)

ht,t′
ω (θ; φ, α), (6.24)

where we write grad(φ,α)grad>θ ht,t′
ω (θ; φ, α) for the Jacobian of gradθh

t,t′
ω (θ; φ, α) in a slight abuse

of notation. Moreover, there is a constant C̃ > 0 (independent of ω, t, t′, and the parameters θ,

φ and α) such that ∥∥∥bt,t′
ω (θ; φ, α)

∥∥∥ ,∥∥∥ct,t′
ω (θ; φ, α)

∥∥∥ ≤ C̃ ‖ω‖ , (6.25)∥∥∥gradθh
t,t′
ω (θ; φ, α)

∥∥∥ , ∥∥∥grad(φ,α)h
t,t′
ω (θ; φ, α)

∥∥∥ ≤ C̃ ‖ω‖ , (6.26)∥∥∥H t,t′
ω (θ; φ, α)

∥∥∥
1
≤ C̃ ‖ω‖ , (6.27)∥∥∥Hessθht,t′

ω (θ; φ, α)
∥∥∥

1
≤ C̃ ‖ω‖ + C̃2 ‖ω‖2 (6.28)∥∥∥Gt,t′

ω (θ; φ, α)
∥∥∥

1
≤ C̃ ‖ω‖ (6.29)∥∥∥grad(φ,α)grad>θ ht,t′

ω (θ; φ, α)
∥∥∥

1
≤ C̃ ‖ω‖ + C̃2 ‖ω‖2 (6.30)

Proof. Using (6.16) we get for the gradient with respect to θ that

gradθh
t,t′
ω (θ; φ, α) = gradθ exp

(
2πi
〈
ω, et,t′(θ; φ, α)

〉)
= ht,t′

ω (θ; φ, α)2πi gradθ
〈
ω, et,t′(θ; φ, α)

〉
= ht,t′

ω (θ; φ, α)2πi
(
ω1gradθ

(
et,t′

1 (θ; φ, α)
)

+ ω2gradθ
(
et,t′

2 (θ; φ, α)
))

= iht,t′
ω (θ; φ, α)bt,t′

ω (θ; φ, α),

proving (6.21). Similarly, for the gradient of ht,t′
ω with respect to φ and α it holds that

grad(φ,α)h
t,t′
ω (θ; φ, α)

=grad(φ,α) exp
(

2πi
(〈
ω, et,t′(θ; φ, α)

〉))
=ht,t′

ω (θ; φ, α)2πi grad(φ,α)

〈
ω, et,t′(θ; φ, α)

〉
=ht,t′

ω (θ; φ, α)2πi
(
ω1grad(φ,α)

(
et,t′

1 (θ; φ, α)
)

+ ω2grad(φ,α)

(
et,t′

2 (θ; φ, α)
))

=iht,t′
ω (θ; φ, α)ct,t′

ω (θ; φ, α),
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implying (6.22). Since gradθb
t,t′
ω (θ; φ, α) = H t,t′

ω (θ; φ, α), where we use again a somewhat sloppy

notation for the Jacobian of bt,t′
ω , we have

Hessθht,t′
ω (θ; φ, α)

= gradθ
(

iht,t′
ω (θ; φ, α)bt,t′

ω (θ; φ, α)
)

= i2ht,t′
ω (θ; φ, α)bt,t′

ω (θ; φ, α)bt,t′
ω (θ; φ, α)> + iht,t′

ω (θ; φ, α)H t,t′
ω (θ; φ, α)

=
(

iH t,t′
ω (θ; φ, α) − bt,t′

ω (θ; φ, α)bt,t′
ω (θ; φ, α)>

)
ht,t′
ω (θ; φ, α),

which proves (6.23). Similarly, we have that

grad(φ,α)b
t,t′
ω (θ; φ, α) =

(
gradφ

(
bt,t′
ω (θ; φ, α)

)
, gradα

(
bt,t′
ω (θ; φ, α)

))
= Gt,t′

ω (θ; φ, α),

and therefore,

grad(φ,α)gradθh
t,t′
ω (θ; φ, α)

= i
(

grad(φ,α)b
t,t′
ω (θ; φ, α)ht,t′

ω (θ; φ, α) + bt,t′
ω (θ; φ, α)grad>(φ,α)h

t,t′
ω (θ; φ, α)

)
=
(

iGt,t′
ω (θ; φ, α) − bt,t′

ω (θ; φ, α)ct,t′
ω (θ; φ, α)>

)
ht,t′
ω (θ; φ, α),

which shows (6.24).

The bounds on the derivatives can be obtained as follows. With C from Assumption 2.14 (B2)

and using that ‖x‖ ≤ ‖x‖1 ≤
√

d ‖x‖ for any x ∈ Rd, we have for C̃1 B 4C
√

2d1σ
−1
min that∥∥∥bt,t′

ω (θ; φ, α)
∥∥∥

=

∥∥∥∥ω1

[
1
σαt

(
cos
(
ρ
φ
t

)
gradθ

(
δθt
)

1 + sin
(
ρ
φ
t

)
gradθ

(
δθt
)

2

)
−

1
σαt′

(
cos
(
ρ
φ
t′

)
gradθ

(
δθt′
)

1 + sin
(
ρ
φ
t′

)
gradθ

(
δθt′
)

2

)]
+ ω2

[
1
σαt

(
− sin

(
ρ
φ
t

)
gradθ

(
δθt
)

1 + cos
(
ρ
φ
t

)
gradθ

(
δθt
)

2

)
−

1
σαt′

(
− sin

(
ρ
φ
t′

)
gradθ

(
δθt′
)

1 + cos
(
ρ
φ
t′

)
gradθ

(
δθt′
)

2

)]∥∥∥∥
1

≤
|ω1| + |ω2|

σmin

(∥∥gradθ
(
δθt
)

1

∥∥
1 +
∥∥gradθ

(
δθt
)

2

∥∥
1 +
∥∥gradθ

(
δθt′
)

1

∥∥
1 +
∥∥gradθ

(
δθt′
)

2

∥∥
1

)
≤ 4C

√
2d1σ

−1
min ‖ω‖ = C̃1 ‖ω‖ .

Since, by Assumption 2.14 (B7), the drift function δθ has bounded variation over [0, 1] uniformly

in θ, it is bounded as function in t, uniformly in θ. Hence, there is a constant C2 such that

∥∥δθt ∥∥ ≤ C2 uniformly in θ and t. (6.31)

We get with C > 0 from Assumption 2.14 (B2) and using again the equivalence of the norms
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that ∥∥∥∥(ct,t′
ω (θ; φ, α)

)
φ

∥∥∥∥
1

=

∥∥∥(σαt )−1
[
ω1

(
− sin

(
ρ
φ
t

)(
δθt − δ

θ0
t

)
1

+ cos
(
ρ
φ
t

)(
δθt − δ

θ0
t

)
2

)
+ω2

(
− cos

(
ρ
φ
t

)(
δθt − δ

θ0
t

)
1
− sin

(
ρ
φ
t

)(
δθt − δ

θ0
t

)
2

)]
gradφρ

φ
t

+
(
σαt′
)−1
[
ω1

(
− sin

(
ρ
φ
t′

) (
δθt′
)

1 + cos
(
ρ
φ
t′

) (
δθt′
)

2

)
+ω2

(
− cos

(
ρ
φ
t′

) (
δθt′
)

1 − sin
(
ρ
φ
t′

) (
δθt′
)

2

)]
gradφρ

φ
t′

∥∥∥
1

≤ σ−1
min (|ω1| + |ω2|)

∥∥∥δθt − δθ0
t

∥∥∥
1

∥∥∥gradφρ
φ
t

∥∥∥
1

+ σ−1
min (|ω1| + |ω2|)

∥∥δθt′∥∥1

∥∥∥gradφρ
φ
t′

∥∥∥
1

≤ 6
√

d2σ
−1
min ‖ω‖C2C,

and similarly,∥∥∥(ct,t′
ω (θ; φ, α)

)
α

∥∥∥
1

=

∥∥∥(σαt )−2 gradασ
α
t

[
ω1

(
cos
(
ρ
φ
t

)(
δθt − δ

θ0
t

)
1

+ sin
(
ρ
φ
t

)(
δθt − δ

θ0
t

)
2

)
+ω2

(
− sin

(
ρ
φ
t

)(
δθt − δ

θ0
t

)
1

+ cos
(
ρ
φ
t

)(
δθt − δ

θ0
t

)
2

)]
+
(
σαt′
)−2 gradασ

α
t′

[
ω1

(
cos
(
ρ
φ
t′

) (
δθt′
)

1 + sin
(
ρ
φ
t′

) (
δθt′
)

2

)
+ω2

(
− sin

(
ρ
φ
t′

) (
δθt′
)

1 + cos
(
ρ
φ
t′

) (
δθt′
)

2

)]∥∥∥
1

≤ 6
√

d3σ
−2
min ‖ω‖C2C.

Thus, for C̃2 B 12πCC2
(√

d2σ
−1
min +

√
d3σ

−2
min

)
∥∥∥ct,t′

ω (θ; φ, α)
∥∥∥ ≤ 2π

(∥∥∥∥(ct,t′
ω (θ; φ, α)

)
φ

∥∥∥∥
1

+

∥∥∥(ct,t′
ω (θ; φ, α)

)
α

∥∥∥
1

)
≤ 12πC2C

(√
d2σ

−1
min +

√
d3σ

−2
min

)
‖ω‖ = C̃2 ‖ω‖ ,

proving (6.25). Combining this with (6.21) and (6.10), it follows that∥∥∥gradθh
t,t′
ω (θ; φ, α)

∥∥∥ =

∥∥∥bt,t′
ω (θ; φ, α)

∥∥∥ ∣∣∣ht,t′
ω (θ; φ, α)

∣∣∣ ≤ C̃1 ‖ω‖ ,

and, using (6.22) that∥∥∥grad(φ,α)h
t,t′
ω (θ; φ, α)

∥∥∥ =

∥∥∥ct,t′
ω (θ; φ, α)

∥∥∥ ∣∣∣ht,t′
ω (θ; φ, α)

∣∣∣ ≤ C̃2 ‖ω‖ ,

showing (6.26).
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Next, we derive bounds for the mixed derivatives. For the first block we get∥∥∥gradφb
t,t′
ω (θ; φ, α)

∥∥∥
1

= 2π
∥∥∥(σαt )−1

[
ω1

(
− sin

(
ρ
φ
t

)
gradθ

(
δθt
)

1 + cos
(
ρ
φ
t

)
gradθ

(
δθt
)

2

)
+ω2

(
− cos

(
ρ
φ
t

)
gradθ

(
δθt
)

1 − sin
(
ρ
φ
t

)
gradθ

(
δθt
)

2

)]
grad>φ ρ

φ
t

−
(
σαt′
)−1
[
ω1

(
− sin

(
ρ
φ
t′

)
gradθ

(
δθt′
)

1 + cos
(
ρ
φ
t′

)
gradθ

(
δθt′
)

2

)
+ω2

(
− cos

(
ρ
φ
t′

)
gradθ

(
δθt′
)

1 − sin
(
ρ
φ
t′

)
gradθ

(
δθt′
)

2

)]
grad>φ ρ

φ
t′

∥∥∥
1

≤ 2πσ−1
min (|ω1| + |ω2|)

((∥∥gradθ
(
δθt
)

1

∥∥
1 +
∥∥gradθ

(
δθt
)

2

∥∥
1

)∥∥∥grad>φ ρ
φ
t

∥∥∥
1

+
(∥∥gradθ

(
δθt′
)

1

∥∥
1 +
∥∥gradθ

(
δθt′
)

2

∥∥
1

)∥∥∥grad>φ ρ
φ
t′

∥∥∥
1

)
≤ 4π

√
2d1d2σ

−1
minC2 ‖ω‖ .

For the second block we obtain∥∥∥gradαb
t,t′
ω (θ; φ, α)

∥∥∥
1

= 2π
∥∥∥− (σαt )−2

[
ω1

(
cos
(
ρ
φ
t

)
gradθ

(
δθt
)

1 + sin
(
ρ
φ
t

)
gradθ

(
δθt
)

2

)
+ω2

(
− sin

(
ρ
φ
t

)
gradθ

(
δθt
)

1 + cos
(
ρ
φ
t

)
gradθ

(
δθt
)

2

)]
grad>ασ

α
t

+
(
σαt′
)−2
[
ω1

(
cos
(
ρ
φ
t′

)
gradθ

(
δθt′
)

1 + sin
(
ρ
φ
t′

)
gradθ

(
δθt′
)

2

)
+ω2

(
− sin

(
ρ
φ
t′

)
gradθ

(
δθt′
)

1 + cos
(
ρ
φ
t′

)
gradθ

(
δθt′
)

2

)]
grad>ασ

α
t′

∥∥∥
1

≤ 2πσ−2
min (|ω1| + |ω2|)

((∥∥gradθ
(
δθt
)

1

∥∥
1 +
∥∥gradθ

(
δθt
)

2

∥∥
1

)∥∥grad>ασ
α
t

∥∥
1

+
(∥∥gradθ

(
δθt′
)

1

∥∥
1 +
∥∥gradθ

(
δθt′
)

2

∥∥
1

)∥∥grad>ασ
α
t′
∥∥

1

)
≤ 4π

√
2d1d3σ

−2
minC2 ‖ω‖ .

Hence, for C̃3 B 4π
√

2d1C2
(√

d2σ
−1
min +

√
d3σ

−2
min

)
, we get (6.29) by∥∥∥Gt,t′

ω (θ; φ, α)
∥∥∥

1
=

∥∥∥gradφb
t,t′
ω (θ; φ, α)

∥∥∥
1

+

∥∥∥gradαb
t,t′
ω (θ; φ, α)

∥∥∥
1

≤ 4π
√

2d1C2
(√

d2σ
−1
min +

√
d3σ

−2
min

)
‖ω‖ = C̃3 ‖ω‖ .

Since also the second derivatives of the drift functions are bounded by Assumption 2.14 (B2),

we get with C from that Assumption that for C̃4 = C̃1/
√

d1∥∥∥H t,t′
ω (θ; φ, α)

∥∥∥
1

=

∥∥∥∥(ω1

[
1
σαt

(
cos
(
ρ
φ
t

)
Hessθ

(
δθt
)

1 − sin
(
ρ
φ
t

)
Hessθ

(
δθt
)

2

)
−

1
σαt′

(
cos
(
ρ
φ
t′

)
Hessθ

(
δθt′
)

1 − sin
(
ρ
φ
t′

)
Hessθ

(
δθt′
)

2

)]
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+ ω2

[
1
σαt

(
sin
(
ρ
φ
t

)
Hessθ

(
δθt
)

1 + cos
(
ρ
φ
t

)
Hessθ

(
δθt
)

2

)
−

1
σαt′

(
sin
(
ρ
φ
t′

)
Hessθ

(
δθt′
)

1 + cos
(
ρ
φ
t′

)
Hessθ

(
δθt′
)

2

)])∥∥∥∥
1

≤ σ−1
min (|ω1| + |ω2|)

(∥∥Hessθ
(
δθt
)

1

∥∥
1 +
∥∥Hessθ

(
δθt
)

2

∥∥
1

+
∥∥Hessθ

(
δθt′
)

1

∥∥
1 +
∥∥Hessθ

(
δθt′
)

2

∥∥
1

)
≤ 4
√

2σ−1
minC ‖ω‖ = C̃4 ‖ω‖ ,

proving (6.27).

Plugging this and (6.25) into (6.23), we obtain for C̃5 B max
{√

d1C̃1, C̃4
}

∥∥∥Hessθht,t′
ω (θ; φ, α)

∥∥∥
1
≤

(∥∥∥H t,t′
ω (θ; φ, α)

∥∥∥
1

+ d1

∥∥∥bt,t′
ω (θ; φ, α)

∥∥∥2
) ∣∣∣ht,t′

ω (θ; φ, α)
∣∣∣

≤ C̃5 ‖ω‖ + C̃2
5 ‖ω‖

2 ,

which shows (6.28). Likewise, for C̃6 = max{
√

d1C̃1,
√

d2 + d3C̃2, C̃3}∥∥∥grad(φ,α)gradθh
t,t′
ω (θ; φ, α)

∥∥∥
1

≤

(∥∥∥Gt,t′
ω (θ; φ, α)

∥∥∥
1

+
√

d1
√

d2 + d3

∥∥∥bt,t′
ω (θ; φ, α)

∥∥∥∥∥∥ct,t′
ω (θ; φ, α)

∥∥∥) ∣∣∣ht,t′
ω (θ; φ, α)

∣∣∣
≤ C̃6 ‖ω‖ + C̃2

6 ‖ω‖
2 ,

which proves (6.30). Taking C̃ = max{C̃1, C̃2, C̃3, C̃4, C̃5, C̃6} yields the claim and finishes the

proof of the Lemma. �
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6.2 Details of the proofs

In this section, we provide proofs of our theoretical results on the asymptotic properties of the

estimators of the motion function parameters using the preparatory results from the previous

Section 6.1 and the auxiliary results from the Appendix, Section A.

6.2.1 Proof of Theorem 3.1 (Consistency of the rotation and scaling parameter
estimators)

In this subsection we give the detailed proofs of steps 1 to 3 in order to complete the proof

of consistency of the rotation and scaling parameter estimators. It is very similar to the proof

of Theorem 6.13 in Hartmann (2016), but is modified here to fit the new model, which better

describes the data acquisition process. Furthermore, some technical issues have been resolved.

Step 1: uniqueness of the contrast minimizer (φ0, α0). First, note that because Ft(u, v) =

(σα0
t )4−γM

|F f |
2(u, v) and

∣∣du,v(σ, ρ)
∣∣ = 1, we have

M(φ, α) = −

∫
R

∑
u∈Z

∣∣∣∣∫ 1

0
du,v(σαt /σ

α0
t , ρ

φ
t − ρ

φ0
t )(σα0

t )4−γM
|F f |

2(u, v) dt
∣∣∣∣2 dv

= −

∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2 ∣∣∣∣∫ 1

0
du,v(σαt /σ

α0
t , ρ

φ
t − ρ

φ0
t )(σα0

t )4−γ dt
∣∣∣∣2 dv

≥ −

∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2(∫ 1

0

∣∣∣du,v(σαt /σ
α0
t , ρ

φ
t − ρ

φ0
t )(σα0

t )4−γ
∣∣∣ dt
)2

dv

= −

∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2(∫ 1

0
(σα0

t )4−γ dt
)2

dv (6.32)

for all (φ, α) with equality if (φ, α) = (φ0, α0). Let (φ, α) ∈ Φ×A such that equality holds. Since

f is not scaling invariant by Assumption 2.13 (A2), by Lemma A.7 there are u ∈ Z and an open

Borel set B ⊆ R with positive Lebesgue-measure such thatM
|F f |

2(u, v) , 0 for all v ∈ B. Then,

for equality in (6.32) to hold, we must have∣∣∣∣∫ 1

0
du,v(σαt /σ

α0
t , ρ

φ
t − ρ

φ0
t )(σα0

t )4−γ dt
∣∣∣∣ =

∫ 1

0
(σα0

t )4−γ dt

for this u and all v ∈ B. By Lemma A.1, t 7→ du,v(σαt /σ
α0
t , ρ

φ
t − ρ

φ0
t ) is constant a.e. on [0, 1].

Because of the identifiability constraint (Assumption 2.14 (B1)), (σα0 , ρ
φ
0) = (1, 0) for all (φ, α)

and by the continuity of σα and ρφ as functions in t (Assumption 2.14 (B4)), this constant has to

be 1, i.e.,

1 = du,v(σαt /σ
α0
t , ρ

φ
t − ρ

φ0
t ) = exp

(
−iv
(
log(σαt ) − log(σα0

t )
)

+ 2πiu
(
ρ
φ
t − ρ

φ0
t
))

(6.33)
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a.e. on [0, 1] for u as above and all v ∈ B. Choose v1, v2 ∈ B \ {v} such that

v − v1 ∈ Q, v − v2 ∈ R \ Q. (6.34)

From (6.33),

exp
(
−i(v − v1)

(
log(σαt ) − log(σα0

t )
))

=
du,v(σαt /σ

α0
t , ρ

φ
t − ρ

φ0
t )

du,v1(σαt /σ
α0
t , ρ

φ
t − ρ

φ0
t )

= 1,

and similarly, exp
(
−i(v − v2)

(
log(σαt ) − log(σα0

t )
))

= 1, which implies that

(v − v1)
(
log(σαt ) − log(σα0

t )
)
/(2π) ∈ Z,

(v − v2)
(
log(σαt ) − log(σα0

t )
)
/(2π) ∈ Z.

Because of (6.34), this means that log(σαt ) − log(σα0
t ) = 0 a.e. on [0, 1]. Since the logarithm is

bijective and the scaling functions are identifiable (Assumption 2.14 (B5)), we get α = α0.

Since f is not rotation invariant by Assumption 2.13 (A2), by Lemma A.8 there are u ∈ Z \ {0}
and v ∈ R such thatM

|F f |
2(u, v) , 0. Then, for equality in (6.32) to hold, we must have

∣∣∣∣∫ 1

0
du′′,v(σαt /σ

α0
t , ρ

φ
t − ρ

φ0
t )(σα0

t )4−γ dt
∣∣∣∣ =

∫ 1

0
(σα0

t )4−γ dt.

Like above, we conclude that (6.33) holds for these u and v. It follows that

exp
(

2πiu
(
ρ
φ
t − ρ

φ0
t
))

= 1, a.e. on [0, 1],

which means that u(ρφt − ρ
φ0
t ) ∈ Z a.e. on [0, 1]. The function t 7→ ρ

φ
t − ρ

φ0
t is continuous by

Assumption 2.14 (B4) and takes the value 0 at t = 0 (Assumption 2.14 (B1)). Hence, so does the

function t 7→ u(ρφt − ρ
φ0
t ). Together, this yields that u(ρφt − ρ

φ0
t ) = 0 a.e. on [0, 1]. As u , 0, we

obtain ρφt = ρ
φ0
t and the identifiability of the rotation functions (Assumption 2.14 (B5)) yields

φ = φ0.

Step 2: Continuity of the population contrast functional M. The second step follows

essentially from Theorem B.3 on the continuity of parameter integrals. The measurability,

continuity, and integrability conditions of Assumptions 2.13 (A3, A4) and 2.14 (B4) ensure the

applicability of the mentioned result. More precisely, by Assumption 2.14 (B4), the functions

t 7→ σαt and t 7→ ραt are measurable for all α ∈ A, φ ∈ Φ. Therefore, the functions

t 7→ du,v(σαt /σ
α0
t , ρ

φ
t − ρ

φ0
t )Ft(u, v) = du,v(σαt /σ

α0
t , ρ

φ
t − ρ

φ0
t )(σα0

t )4−γM
|F f |

2(u, v)

are measurable for all u ∈ Z, v ∈ R, α ∈ A, φ ∈ Φ, as they are concatenations of measurable

functions. By the same Assumption, the functions α 7→ σαt and φ 7→ ρ
φ
t are continuous for all

t ∈ [0, 1]. As a concatenation of continuous functions, (φ, α) 7→ du,v(σαt /σ
α0
t , ρ

φ
t − ρ

φ0
t )Ft(u, v)
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is also continuous for all u ∈ Z, v ∈ R, and t ∈ [0, 1]. Furthermore, the constant function

t 7→ g̃u,v B max
{
σ4−γ

max, σ
4−γ
min

}
M
|F f |

2(u, v)

is an integrable majorant for t 7→ du,v(σαt /σ
α0
t , ρ

φ
t − ρ

φ0
t )Ft(u, v). Thus, we can apply Theorem

B.3 on the continuity of parameter integrals, to get that

(φ, α) 7→
∫ 1

0
du,v(σαt /σ

α0
t , ρ

φ
t − ρ

φ0
t )Ft(u, v) dt

is continuous for all u ∈ Z, v ∈ R. Because x 7→ |x|2 is continuous, so is

(φ, α) 7→ gα,φu,v B

∣∣∣∣∫ 1

0
du,v(σαt /σ

α0
t , ρ

φ
t − ρ

φ0
t )Ft(u, v) dt

∣∣∣∣2 .
By Assumption 2.13 (A3) and Lemma A.3,M

|F f |
2 is continuous. Since the function (u, v) 7→

du,v(σαt /σ
α0
t , ρ

φ
t − ρ

φ0
t ) is continuous, too, we get that (u, v) 7→ du,v(σαt /σ

α0
t , ρ

φ
t − ρ

φ0
t )Ft(u, v)

is continuous. Hence, by the same chain of arguments as above, the function (u, v) 7→ gα,φu,v is

continuous and as such Lebesgue measurable for all α ∈ A, φ ∈ Φ. Since gα,φu,v ≤
∣∣g̃u,v

∣∣2 for all

α ∈ A, φ ∈ Φ, and by Assumption 2.13 (A4),∫
R

∑
u∈Z

∣∣g̃u,v
∣∣2 dv = max

{
σ8−2γ

max , σ
8−2γ
min

}∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2 dv < ∞,

the function (u, v) 7→
∣∣g̃u,v

∣∣2 is an integrable majorant for (u, v) 7→ gα,φu,v . Applying Theorem B.3

again yields the continuity of M.

Step 3: Convergence of the empirical contrast functional MT
T→∞
−→ M in probability uni-

formly in (φ, α). By Assumption 2.15 (C3),M
|F f |

2(u, v) =MT
|F f |

2(u, v)+o
(
(uT vT )−1

)
. Hence,

from (2.15) and (2.18), we get

MT
|Y t |2

(u, v) = du,v(1/σα0
t ,−ρ

φ0
t )Ft(u, v) +MT

Wt (u, v) + o
(
(uT vT )−1) . (6.35)

Therefore, the following decomposition is justified:

MT (φ, α) = −

∫ vT

−vT

∑
|u|≤uT

∣∣∣∣∣βT

T

∑
t∈T

du,v(σαt , ρ
φ
t )MT

|Y t |2
(u, v)

∣∣∣∣∣
2

dv

= −

∫ vT

−vT

∑
|u|≤uT

∣∣∣∣βT

T

∑
t∈T

du,v(σαt /σ
α0
t , ρ

φ
t − ρ

φ0
t )Ft(u, v)

+du,v(σαt , ρ
φ
t )MT

Wt (u, v)
∣∣∣∣2 dv + o(1)

= AT (φ, α) + BT (φ, α) + CT (φ, α) + o(1), (6.36)
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with

AT (φ, α) B −

∫ vT

−vT

∑
|u|≤uT

∣∣∣∣∣βT

T

∑
t∈T

du,v(σαt /σ
α0
t , ρ

φ
t − ρ

φ0
t )Ft(u, v)

∣∣∣∣∣
2

dv,

BT (φ, α) B −

∫ vT

−vT

∑
|u|≤uT

2<
[(

βT

T

∑
t∈T

du,v(σαt /σ
α0
t , ρ

φ
t − ρ

φ0
t )Ft(u, v)

)

·

(
βT

T

∑
t′∈T

du,v(σαt′ , ρ
φ
t′)M

T
Wt′ (u, v)

)]
dv,

CT (φ, α) B −

∫ vT

−vT

∑
|u|≤uT

∣∣∣∣∣βT

T

∑
t∈T

du,v(σαt , ρ
φ
t )MT

Wt (u, v)

∣∣∣∣∣
2

dv,

where we used that |a ± b|2 = |a|2 ± 2<(ab) + |b|2 for a, b ∈ C. The idea is to show the

convergence of the deterministic part AT
T→∞
−→ M uniformly in (φ, α) and of the random part

BT + CT
T→∞
−→ 0 in probability uniformly in (φ, α).

Recall that with dt,t′
u,v(φ, α) from (6.2), we have du,v(σαt /σ

α0
t , ρ

φ
t − ρ

φ0
t ) = dt,0

u,v(φ, α). It holds that

|AT (φ, α) − M(φ, α)|

=

∣∣∣∣ ∫ vT

−vT

∑
|u|≤uT

∣∣∣∣∣βT

T

∑
t∈T

dt,0
u,v(φ, α)Ft(u, v)

∣∣∣∣∣
2

−

∣∣∣∣∫ 1

0
dt,0

u,v(φ, α)Ft(u, v) dt
∣∣∣∣2
 dv

−

∫ −vT

−∞

∑
|u|≤uT

+

∫ ∞
vT

∑
|u|≤uT

+

∫
R

∑
|u|>uT

∣∣∣∣∫ 1

0
dt,0

u,v(φ, α)Ft(u, v) dt
∣∣∣∣2 dv

∣∣∣∣
=

∣∣∣∣ ∫ vT

−vT

∑
|u|≤uT

∣∣∣M
|F f |

2(u, v)
∣∣∣2( ∣∣∣∣∣βT

T

∑
t∈T

dt,0
u,v(φ, α)(σα0

t )4−γ

∣∣∣∣∣
2

−

∣∣∣∣∫ 1

0
dt,0

u,v(φ, α)(σα0
t )4−γ dt

∣∣∣∣2) dv

−

∫ −vT

−∞

∑
|u|≤uT

+

∫ ∞
vT

∑
|u|≤uT

+

∫
R

∑
|u|>uT

∣∣∣M
|F f |

2(u, v)
∣∣∣2 ∣∣∣∣∫ 1

0
dt,0

u,v(φ, α)(σα0
t )4−γ dt

∣∣∣∣2 dv
∣∣∣∣

≤ 2Cγ

∫ vT

−vT

∑
|u|≤uT

∣∣∣M
|F f |

2(u, v)
∣∣∣2 ∣∣∣∣∣βT

T

∑
t∈T

dt,0
u,v(φ, α)(σα0

t )4−γ −

∫ 1

0
dt,0

u,v(φ, α)(σα0
t )4−γ dt

∣∣∣∣∣ dv

+

∫ −vT

−∞

∑
|u|≤uT

+

∫ ∞
vT

∑
|u|≤uT

+

∫
R

∑
|u|>uT

∣∣∣M
|F f |

2(u, v)
∣∣∣2 ∫ 1

0

∣∣dt,0
u,v(φ, α)(σα0

t )4−γ
∣∣2 dt dv

≤
2CγβT

T

∫ vT

−vT

∑
|u|≤uT

TV
(
t 7→ dt,0

u,v(φ, α)(σα0
t )4−γ) ∣∣∣M

|F f |
2(u, v)

∣∣∣2 dv

+Cγ

∫ −vT

−∞

∑
|u|≤uT

+

∫ ∞
vT

∑
|u|≤uT

+

∫
R

∑
|u|>uT

∣∣∣M
|F f |

2(u, v)
∣∣∣2 dv, (6.37)
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where for the first inequality we used |a|2 − |b|2 ≤ 2C |a − b| for a, b ∈ C such that |a| , |b| ≤ C

with the constant

Cγ B max
{
σ

8−2γ
min , σ8−2γ

max , σ
4−γ
min , σ

4−γ
max

}
, (6.38)

and for the second inequality we used part 2 of Lemma A.4. Because∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2 dv < ∞ (6.39)

by Assumption 2.13 (A4), and because uT , vT
T→∞
−→ ∞ by Assumption 2.15 (C1), the second

term in (6.37) vanishes for T → ∞. To tackle the first term, we show that

sup
(φ,α)∈Φ×A

TV
(
t 7→ dt,0

u,v(φ, α)(σα0
t )4−γ) ≤ C4 ‖(v, u)‖ + C3, (6.40)

with some constants C3,C4 > 0. First of all, σα : t 7→ σαt and ρφ : t 7→ ρ
φ
t are of bounded varia-

tion uniformly in α ∈ A, φ ∈ Φ, by Assumption 2.14 (B7). It holds that σ 7→ σ4−γ is Lipschitz-

continuous on [σmin, σmax] with constant in
{

(4 − γ)σ3−γ
max, (4 − γ)σ−3+γ

min , 0, (−4 + γ)σ−3+γ
min

}
(for

γ < 3, 3 < γ < 4, γ = 4, and γ > 4, respectively). Furthermore, the logarithm, restricted

to the interval [σmin, σmax], is differentiable with derivative bounded by log′(σmin) = 1/σmin.

Hence, log|[σmin,σmax] is Lipschitz-continuous with Lipschitz-constant 1/σmin. Since t 7→ σαt is of

bounded variation uniformly in α ∈ A, so is t 7→ log(σαt ). Together with part 4 of Lemma A.4 on

the total variation of linear combinations of functions, this implies that there are C1,C2,C3 > 0

such that

TV
(
log(σα) − log(σα0)

)
≤ C1, TV

(
ρφ − ρφ0

)
≤ C2, TV

(
(σα0)4−γ) ≤ C3, (6.41)

uniformly in (φ, α). Since ‖x‖ ≤ ‖x‖1 for all x ∈ R2, we have for all t, t′ ∈ [0, 1], that∣∣∣ exp
(

i
〈(
−v, 2πu

)
,
(
log(σαt ) − log(σα0

t ), ρφt − ρ
φ0
t
)〉)

− exp
(

i
〈(
−v, 2πu

)
,
(
log(σαt′) − log(σα0

t′ ), ρφt′ − ρ
φ0
t′
)〉)∣∣∣

≤
√

2
∥∥(2πu,−v

)∥∥
·

∥∥∥(log(σαt ) − log(σα0
t ), ρφt − ρ

φ0
t
)
−
(
log(σαt′) − log(σα0

t′ ), ρφt′ − ρ
φ0
t′
)∥∥∥

1

≤ 2π
√

2 ‖(u, v)‖
( ∣∣(log(σαt ) − log(σα0

t )
)
−
(
log(σαt′) − log(σα0

t′ )
)∣∣

+

∣∣∣(ρφt − ρφ0
t
)
−
(
ρ
φ
t′ − ρ

φ0
t′
)∣∣∣ ),

where for the first inequality we used that x 7→ ei〈a,x〉, is Lipschitz-continuous with Lipschitz-

constant
√

2 ‖a‖ for a ∈ R2. Hence,

TV
(

t 7→ dt,0
u,v(φ, α)

)
= TV

(
t 7→ exp

(
i
〈(
−v, 2πu

)
,
(
log(σαt ) − log(σα0

t ), ρφt − ρ
φ0
t
)〉))

≤ 2π
√

2(C1 + C2) ‖(u, v)‖ .
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Now, part 1 of Lemma A.4 yields

TV
(
t 7→ dt,0

u,v(φ, α)(σα0
t )4−γ)

≤
∥∥t 7→ (σα0

t )4−γ
∥∥
∞

TV
(
t 7→ dt,0

u,v(φ, α)
)

+
∥∥t 7→ dt,0

u,v(φ, α)
∥∥
∞

TV
(
t 7→ (σα0

t )4−γ)
≤ C4 ‖(u, v)‖ + C3,

uniformly in (φ, α), where C4 B 2π
√

2Cγ(C1 + C2) with Cγ from (6.38), proving (6.40). From

(6.37) and (6.40), we get

|AT (φ, α) − M(φ, α)| ≤
2CγβT

T

∫ vT

−vT

∑
|u|≤uT

(
C4 ‖(u, v)‖ + C3

) ∣∣∣M
|F f |

2(u, v)
∣∣∣2 dv + o(1)

≤
2CγC5βT

T
+ o(1) = o(1),

where the integral is bounded by some constant C5 > 0 because of Assumption 2.13 (A4) and

the Sobolev Imbedding Theorem (see Theorem B.11). Since Cγ and C5 do not depend on (φ, α),

AT
T→∞
−→ M uniformly in (φ, α). (6.42)

Next, we show that ECT
T→∞
−→ 0 uniformly in (φ, α), which implies uniform convergence

CT
T→∞
−→ 0 in probability due to Markov’s inequality (Theorem B.10). With the Cauchy-Schwarz

inequality (Theorem B.1) and Lemma 6.2, we get that

0 ≥ inf
(φ,α)∈Φ×A

ECT (φ, α)

= inf
(φ,α)∈Φ×A

E

−∫ vT

−vT

∑
|u|≤uT

∣∣∣∣∣βT

T

∑
t∈T

du,v(σαt , ρ
φ
t )MT

Wt (u, v)

∣∣∣∣∣
2

dv


≥ inf

(φ,α)∈Φ×A
E

−∫ vT

−vT

∑
|u|≤uT

(
βT

T

∑
t′∈T

∣∣∣du,v(σαt′ , ρ
φ
t′)
∣∣∣2)(βT

T

∑
t∈T

∣∣MT
Wt (u, v)

∣∣2) dv


= −

∫ vT

−vT

∑
|u|≤uT

βT

T

∑
t∈T

E
(∣∣MT

Wt (u, v)
∣∣2) dv

≥ −

∫ vT

−vT

∑
|u|≤uT

βT

T

∑
t∈T

O

(
r2γ

T
βT

)
dv

= O

(
r2γ

T uT vT

βT

)
.

Since r2γ
T uT vTβ

−1
T

T→∞
−→ 0 by Assumption 2.15 (C2), ECT (φ, α)

T→∞
−→ 0 uniformly in (φ, α), and

thus,

CT (φ, α)
T→∞
−→ 0 in probability uniformly in (φ, α). (6.43)

Finally, the Cauchy-Schwarz inequality (Theorem B.1) and Slutzky’s Lemma (Theorem B.9)
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imply that

(
BT (φ, α)

)2
≤ 4AT (φ, α)CT (φ, α)

T→∞
−→ 0 in probability uniformly in (φ, α). (6.44)

Applying Slutzky’s Lemma (Theorem B.9) again, it then follows from (6.42), (6.43), and (6.44)

that

MT (φ, α) = AT (φ, α) + oP(1)
T→∞
−→ M(φ, α)

in probability uniformly in (φ, α), finishing the proof of Theorem 3.1. �

6.2.2 Proof of Theorem 3.2 (Consistency of the drift parameter estimator)

As already indicated in the sketch of the proof from Section 3.1, we use asymptotic normality of

the rotation and drift parameter estimators as given by Theorem 3.5 to show consistency of the

drift parameter estimator. More specifically, we will need some implications of this theorem,

which are stated in Lemma 6.8 below. Using that, we give the thorough demonstration of

Theorem 3.2 (Steps 1 to 3), proving consistency of the drift parameter estimator. The argument

is close to the proof of Theorem 5.16 in Hartmann (2016). However, we adjusted the details

using our generalized expression for the drift correction error term ht,t′
ω (θ; φ, α) depending on all

three motion function parameters.

Lemma 6.8. Under the Assumption 2.14 (B3), if
√

T (φ̂T−φ0, α̂T−α0) is asymptotically centered

normal, we have for all ω ∈ R2 \ {0} and t ∈ [0, 1], that for τ(φ,α)
t =

σ
α0
t
σαt

R
ρ
φ
t −ρ

φ0
t

from Definition

2.21,
√

T
(
τ

(φ̂T ,α̂T )
t ω − ω

)
is asymptotically centered normal. Furthermore, it holds that∣∣∣F f

(
τ

(φ̂T ,α̂T )
t ω

)
− F f (ω)

∣∣∣ = OP
(
T−1/2) , (6.45)

implying ∣∣∣F f

(
τ

(φ̂T ,α̂T )
t ω

)∣∣∣ = OP
(
T−1/2 +

∣∣F f (ω)
∣∣) , (6.46)

and ∣∣∣∣= [F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)]∣∣∣∣ ≤ OP( 1
T

)
+ 2
∣∣F f (ω)

∣∣OP( 1
√

T

)
. (6.47)

Proof. For ω ∈ R2 \ {0} and t ∈ [0, 1], let

gt
ω : Rd2+d3 → R2, (φ, α) 7→

σα0
t

σαt
R
ρ
φ
t −ρ

φ0
t
ω.

By Assumption 2.14 (B3), there is an open neighborhood U ⊆ Φ×A of (φ0, α0) such that φ 7→ ρ
φ
t

and α 7→ σαt are continuously differentiable on U. Hence, gt
ω is continuously differentiable

on U. Because gt
ω(φ0, α0) = ω, applying the Delta method (Theorem B.7) yields the first
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assertion. From this, the second line follows using Assumptions 2.13 (A1) and (A3), since

the Fourier transform Fg : R2 → C of functions g : R2 → C, which fulfill the condition that

Lg B 2π
√

2
∫
R2 ‖x‖ |g(x)| dx < ∞, is Lipschitz-continuous with Lipschitz-constant Lg:

∣∣∣F f

(
τ

(φ̂T ,α̂T )
t ω

)
− F f (ω)

∣∣∣ ≤ L f

∥∥∥τ(φ̂T ,α̂T )
t ω − ω

∥∥∥ = OP

(
1
√

T

)
.

The third statement is a direct implication of this:∣∣∣F f

(
τ

(φ̂T ,α̂T )
t ω

)∣∣∣ ≤ ∣∣∣F f

(
τ

(φ̂T ,α̂T )
t ω

)
− F f (ω)

∣∣∣ +
∣∣F f (ω)

∣∣ = OP

(
1
√

T
+
∣∣F f (ω)

∣∣) .
Moreover, since =

[
F f (ω)F f (ω)

]
= =

[∣∣F f (ω)
∣∣2] = 0, it follows that∣∣∣∣= [F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)]∣∣∣∣
=

∣∣∣∣=[{F f

(
τ

(φ̂T ,α̂T )
t ω

)
− F f (ω)

}{
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)
− F f (ω)

}
+
{
F f

(
τ

(φ̂T ,α̂T )
t ω

)
− F f (ω)

}
F f (ω) + F f (ω)

{
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)
− F f (ω)

}]∣∣∣∣
≤ OP

(
1
T

)
+ 2
∣∣F f (ω)

∣∣OP( 1
√

T

)
. �

Step 1: Uniqueness of contrast minimizer θ0. Using that
∣∣ht,0
ω (θ; φ0, α0)

∣∣ = 1, we have that

N(θ; φ0, α0) = −

∫
R2

∣∣F f (ω)
∣∣2 ∣∣∣∣∫ 1

0
ht,0
ω (θ; φ0, α0) dt

∣∣∣∣2 dω

≥ −

∫
R2

∣∣F f (ω)
∣∣2(∫ 1

0

∣∣ht,0
ω (θ; φ0, α0)

∣∣ dt
)2

dω

≥ −

∫
R2

∣∣F f (ω)
∣∣2 dω (6.48)

for all θ ∈ Θ with equality if θ = θ0. Let θ ∈ Θ such that equality in (6.48) holds. Since f is

not translation invariant by Assumption 2.13 (A2), by Lemma A.9, there is an open Borel set

B ⊆ R2 with positive Lebesgue measure such that F f (ω) , 0 for all ω ∈ B. Since equality in

(6.48) holds, we have ∣∣∣∣∫ 1

0
ht,0
ω (θ; φ0, α0) dt

∣∣∣∣ = 1 for all ω ∈ B.

By Lemma A.1, the function t 7→ ht,0
ω (θ; φ0, α0) is constant a.e. on [0, 1]. Because of the

identifiability constraint δθ0 = 0 for all θ ∈ Θ (see Assumption 2.14 (B1)), the continuity of δθ

at t = 0 (Assumption 2.14 (B4)), and the continuous mapping theorem (Theorem B.8), this

constant has to be 1, i.e., for all ω ∈ B,

1 = ht,0
ω (θ; φ0, α0) = exp

(
2πi
〈
ω, 1/σα0

t · R−ρφ0
t

(δθt − δ
θ0
t )
〉)

, (6.49)
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a.e. on [0, 1]. Fix ω = (ω1, ω2) ∈ B and choose ω(1)
1 , ω(2)

1 ∈ R \ {ω1} and ω(1)
2 , ω(2)

2 ∈ R \ {ω2}

such that (ω(1)
1 , ω2), (ω(2)

1 , ω2), (ω1, ω
(1)
2 ), (ω1, ω

(2)
2 ) ∈ B and

ω1 − ω
(1)
1 , ω2 − ω

(1)
2 ∈ Q, ω1 − ω

(2)
1 , ω2 − ω

(2)
2 ∈ R \ Q. (6.50)

From (6.49),

1 =
exp

(
2πi
〈
ω, 1/σα0

t · R−ρφ0
t

(δθt − δ
θ0
t )
〉)

exp
(

2πi
〈

(ω(1)
1 , ω2), 1/σα0

t · R−ρφ0
t

(δθt − δ
θ0
t )
〉)

= exp
(

2πi(ω1 − ω
(1)
1 )
(

1/σα0
t · R−ρφ0

t
(δθt − δ

θ0
t )
)

1

)
,

and similarly,

1 = exp
(

2πi(ω1 − ω
(2)
1 )
(

1/σα0
t · R−ρφ0

t
(δθt − δ

θ0
t )
)

1

)
,

1 = exp
(

2πi(ω2 − ω
(1)
2 )
(

1/σα0
t · R−ρφ0

t
(δθt − δ

θ0
t )
)

2

)
,

and 1 = exp
(

2πi(ω2 − ω
(2)
2 )
(

1/σα0
t · R−ρφ0

t
(δθt − δ

θ0
t )
)

2

)
.

This implies that

(ω1 − ω
(1)
1 )
(

1/σα0
t · R−ρφ0

t
(δθt − δ

θ0
t )
)

1
∈ Z,

(ω1 − ω
(2)
1 )
(

1/σα0
t · R−ρφ0

t
(δθt − δ

θ0
t )
)

1
∈ Z,

(ω2 − ω
(1)
2 )
(

1/σα0
t · R−ρφ0

t
(δθt − δ

θ0
t )
)

2
∈ Z,

and (ω2 − ω
(2)
2 )
(

1/σα0
t · R−ρφ0

t
(δθt − δ

θ0
t )
)

2
∈ Z.

Because of (6.50), we get that

1/σα0
t · R−ρφ0

t
(δθt − δ

θ0
t ) = (0, 0)> a.e. on [0, 1]. (6.51)

Since R
−ρ

φ0
t

is a rotation matrix,

det
(

1/σα0
t · R−ρφ0

t

)
= (σα0

t )−2 ≥ (σmax)−2 > 0 for all t ∈ [0, 1],

which, together with (6.51), implies that δθt = δθ0
t a.e. on [0, 1]. Since the drift function is

identifiable by Assumption 2.14 (B5), we conclude that θ = θ0.

Step 2: Continuity of the population contrast functional for drift N( · ; φ0, α0).
By Assumption 2.14 (B4), the motion functions δθ, ρφ, and σα are measurable for all θ ∈ Θ,

φ ∈ Φ and α ∈ A. Hence, t 7→ ht,0
ω (θ; φ, α) is measurable for all θ ∈ Θ, φ ∈ Φ, α ∈ A, and ω ∈ R2,

as a concatenation of measurable functions. By the same assumption, the functions θ 7→ δθt ,

φ 7→ ρ
φ
t , and α 7→ σαt are continuous for all t ∈ [0, 1], giving that (θ, φ, α) 7→ ht,0

ω (θ; φ, α) is



6.2. Details of the proofs 67

continuous for all t ∈ [0, 1] andω ∈ R2, as a concatenation of continuous functions. Furthermore,

t 7→ 1 is an integrable majorant for t 7→ ht,0
ω (θ; φ, α). Consequently, Theorem B.3 on the

continuity of parameter integrals yields that

(θ, φ, α) 7→
∫ 1

0
ht,0
ω (θ; φ, α) dt

is continuous for all ω ∈ R2. Since x 7→ |x|2 is continuous, we get that

(θ, φ, α) 7→ gθ,φ,αω B

∣∣∣∣∫ 1

0
ht,0
ω (θ; φ, α) dt

∣∣∣∣2
is continuous for all ω ∈ R2. By the same argument, because ω 7→ ht,0

ω (θ; φ, α) is continuous

for all (θ, φ, α, t) ∈ Θ × Φ × A × [0, 1], ω 7→ gθ,φ,αω is continuous, too, and hence, Lebesgue-

measurable. Since
∣∣F f (ω)

∣∣2 is continuous in ω as Fourier transform of a function that satisfies∫
R2 ‖x‖ | f (x)| dx < ∞ (by Assumptions 2.13 (A1, A3)) and since

∣∣F f (ω)
∣∣2 is constant in (θ, φ, α),

the product
∣∣F f (ω)

∣∣2 gθ,φ,αω is also continuous in ω as well as in (θ, φ, α) as a concatenation of

continuous functions. In particular, ω 7→
∣∣F f (ω)

∣∣2 gθ,φ,αω is Lebesgue-measurable. Furthermore,

ω 7→
∣∣F f (ω)

∣∣2 is an integrable majorant for ω 7→
∣∣F f (ω)

∣∣2 gθ,φ,αω because of Assumption 2.13

(A3) and gθ,φ,αω ≤ 1. Hence, we can apply Theorem B.3 on the continuity of parameter integrals

again to get the continuity of N( · ; φ0, α0).

Step 3: Convergence of NT (θ; φ̂T , α̂T )
T→∞
−→ N(θ; φ0, α0) in probability uniformly in θ.

Recall the decomposition NT (θ; φ̂T , α̂T ) = AT (θ; φ̂T , α̂T )+ BT (θ; φ̂T , α̂T )+CT (θ; φ̂T , α̂T ) from

(2.23). We will show convergence of the first term AT (θ; φ̂T , α̂T )
T→∞
−→ N(θ; φ0, α0) in probability

uniformly in θ, and of the other two, BT (θ; φ̂T , α̂T ) + CT (θ; φ̂T , α̂T )
T→∞
−→ 0 in probability

uniformly in θ. Because of Assumption 2.13 (A3) and ΩT ↗ R
2 as T → ∞, we have that

∫
R2\ΩT

∣∣F f (ω)
∣∣2 ∣∣∣∣∫ 1

0
ht,0
ω

(
θ; φ̂T , α̂T

)
dt
∣∣∣∣2 dω ≤

∫
R2\ΩT

∣∣F f (ω)
∣∣2 dω

T→∞
−→ 0.

Hence,

∣∣AT (θ; φ̂T , α̂T ) − N(θ; φ0, α0)
∣∣

=

∣∣∣∣∫
ΩT

∣∣∣∣∣βT

T

∑
t∈T

ht,0
ω

(
θ; φ̂T , α̂T

)(σα0
t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)∣∣∣∣∣
2

dω

−

(∫
ΩT

+

∫
R2\ΩT

) ∣∣∣∣∫ 1

0
ht,0
ω (θ; φ0, α0)F f (ω) dt

∣∣∣∣2 dω
∣∣∣∣

=

∣∣∣∣∫
ΩT

∣∣∣∣∣βT

T

∑
t∈T

ht,0
ω

(
θ; φ̂T , α̂T

)(σα0
t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)∣∣∣∣∣
2

−

∣∣∣∣∫ 1

0
ht,0
ω (θ; φ0, α0)F f (ω) dt

∣∣∣∣2 dω
∣∣∣∣ + o(1).
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Since |a|2 − |b|2 ≤ 2C |a − b| for a, b ∈ C and C > 0 such that |a| , |b| ≤ C holds, it follows that

∣∣AT (θ; φ̂T , α̂T ) − N(θ; φ0, α0)
∣∣

≤

∫
ΩT

2
∥∥F f

∥∥
∞

(
σmax

σmin

)2 ∣∣∣∣βT

T

∑
t∈T

ht,0
ω

(
θ; φ̂T , α̂T

)(σα0
t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)
−

∫ 1

0
ht,0
ω (θ; φ0, α0)F f (ω) dt

∣∣∣∣ dω + o(1)

= 2
∥∥F f

∥∥
∞

(
σmax

σmin

)2 ∫
ΩT

∣∣∣∣∑
t∈T

∫ βT /T

0
ht,0
ω

(
θ; φ̂T , α̂T

)(σα0
t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)
−ht+t′,0

ω (θ; φ0, α0)F f (ω) dt′
∣∣∣∣ dω + o(1)

≤ 2
∥∥F f

∥∥
∞

(
σmax

σmin

)2 ∫
ΩT

∑
t∈T

∫ βT /T

0
(6.52)(∣∣∣∣ht,0

ω

(
θ; φ̂T , α̂T

)(σα0
t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)
− ht,0

ω

(
θ; φ̂T , α̂T

)
F f (ω)

∣∣∣∣
+

∣∣∣ht,0
ω

(
θ; φ̂T , α̂T

)
F f (ω) − ht+t′,0

ω (θ; φ0, α0)F f (ω)
∣∣∣) dt′ dω + o(1)

= 2
∥∥F f

∥∥
∞

(
σmax

σmin

)2 ∫
ΩT

∑
t∈T

∫ βT /T

0

( ∣∣∣∣∣
(
σα0

t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)
− F f (ω)

∣∣∣∣∣
+

∣∣∣ht,0
ω

(
θ; φ̂T , α̂T

)
− ht+t′,0

ω (θ; φ0, α0)
∣∣∣ ∣∣F f (ω)

∣∣ ) dt′ dω + o(1) (6.53)

First, we consider the second part of (6.53). Because x 7→ ei〈a,x〉, is Lipschitz-continuous with

Lipschitz-constant
√

2 ‖a‖ for a ∈ R2, we get∫
ΩT

βT

T

∑
t∈T

∫ βT /T

0

∣∣∣ht,0
ω

(
θ; φ̂T , α̂T

)
− ht+t′,0

ω (θ; φ0, α0)
∣∣∣ ∣∣F f (ω)

∣∣ dt′ dω

=

∫
ΩT

βT

T

∑
t∈T

∫ βT /T

0

∣∣∣∣exp
(

2πi
〈

1/σα̂T
t · Rρφ̂T

t
ω, δθt − δ

θ0
t

〉)
− exp

(
2πi
〈

1/σα0
t+t′ · Rρφ0

t+t′
ω, δθt+t′ − δ

θ0
t+t′

〉)∣∣∣∣ ∣∣F f (ω)
∣∣ dt′ dω

=

∫
ΩT

βT

T

∑
t∈T

∫ βT /T

0

∣∣∣∣exp
(

2πi
〈
ω, 1/σα̂T

t · R
−ρ

φ̂T
t

(δθt − δ
θ0
t )
〉)

− exp
(

2πi
〈
ω, 1/σα0

t+t′ · R−ρφ0
t+t′

(δθt+t′ − δ
θ0
t+t′)
〉)∣∣∣∣ ∣∣F f (ω)

∣∣ dt′ dω

≤ 23/2π

∫
ΩT

‖ω‖
∣∣F f (ω)

∣∣ dω
∑
t∈T

∫ βT /T

0∥∥∥1/σα̂T
t · R

−ρ
φ̂T
t

(δθt − δ
θ0
t ) − 1/σα0

t+t′ · R−ρφ0
t+t′

(δθt+t′ − δ
θ0
t+t′)
∥∥∥ dt′

≤ 23/2π

∫
ΩT

‖ω‖
∣∣F f (ω)

∣∣ dω ·
∑
t∈T

∫ βT /T

0

(
1/σα̂T

t

∥∥∥(δθt − δ
θ0
t ) − (δθt+t′ − δ

θ0
t+t′)
∥∥∥
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+

∥∥∥(1/σα̂T
t · R

−ρ
φ̂T
t
− 1/σα0

t+t′ · R−ρφ0
t+t′

)
(δθt+t′ − δ

θ0
t+t′)
∥∥∥) dt′, (6.54)

where we used the fact that ‖Rδ‖ = ‖δ‖ for any rotation matrix R ∈ R2×2 and any δ ∈ R2. Since

the drift function δθ is of bounded variation uniformly in θ (Assumption 2.14 (B7)), there is a

C > 0 such that

∑
t∈T

∫ βT /T

0
1/σα̂T

t

∥∥∥(δθt − δ
θ0
t ) − (δθt+t′ − δ

θ0
t+t′)
∥∥∥ dt′

≤ σ−1
min

∫ βT /T

0

∑
t∈T

(∥∥δθt − δθt+t′
∥∥ +

∥∥∥δθ0
t − δ

θ0
t+t′

∥∥∥) dt′

≤
2CβT

σminT
= o(1) (6.55)

because of βT = o(T ) (Assumption 2.15 (C1)). Together with Assumption 2.13 (A3) and Lemma

A.10, it follows that the first part of (6.54) converges to zero in probability. To see that the

second part of (6.54) also vanishes, recall that the drift function δθ is bounded as function in t,

uniformly in θ, as argued in the previous Section 6.1. Hence, with C2 from (6.31), it holds that

∑
t∈T

∫ βT /T

0

∥∥∥(1/σα̂T
t · R

−ρ
φ̂T
t
− 1/σα0

t+t′ · R−ρφ0
t+t′

)
(δθt+t′ − δ

θ0
t+t′)
∥∥∥ dt′

≤ 2C2

∑
t∈T

∫ βT /T

0

∥∥∥1/σα̂T
t · R

−ρ
φ̂T
t
− 1/σα0

t+t′ · R−ρφ0
t+t′

∥∥∥ dt′

≤
2C2βT

T

∑
t∈T

∥∥∥1/σα̂T
t · R

−ρ
φ̂T
t
− 1/σα0

t · R−ρφ0
t

∥∥∥
+2C2

∫ βT /T

0

∑
t∈T

∥∥∥1/σα0
t · R−ρφ0

t
− 1/σα0

t+t′ · R−ρφ0
t+t′

∥∥∥ dt′

= OP

(
1
√

T
+
βT

T

)
= oP(1), (6.56)

due to the Delta method (Theorem B.7), applied to the consistent rotation and scaling parameter

estimators, and the bounded total variation of the rotation and scaling functions. This means

that (6.54) converges to zero in probability and hence, so does the second part of (6.53).

Next, we show that the first part of (6.53) vanishes, too. We have that

βT

T

∑
t∈T

∣∣∣∣∣
(
σα0

t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)
− F f (ω)

∣∣∣∣∣
≤

βT

T

∑
t∈T

((
σα0

t

σα̂T
t

)2 ∣∣∣F f

(
τ

(φ̂T ,α̂T )
t ω

)
− F f (ω)

∣∣∣ +

∣∣∣∣∣
(
σα0

t

σα̂T
t

)2

− 1

∣∣∣∣∣F f (ω)
)

≤

(
max{1, σmax}

σmin

)2
βT

T

∑
t∈T

(
L f

∥∥∥τ(φ̂T ,α̂T )
t ω − ω

∥∥∥ +

∣∣∣(σα0
t )2 − (σα̂T

t )2
∣∣∣ ∥∥F f

∥∥
∞

)
= OP

(
1
√

T

)
, (6.57)
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where we used the Lipschitz continuity of the Fourier transform (see Lemma A.2), Lemma 6.8,

and the fact that
√

T
(
(σα̂T

t )2 − (σα0
t )2
)

is asymptotically centered normal for T → ∞ by the

Delta-method (Theorem B.7) and Theorem 3.5. Hence, with Assumption 2.15 (C1) it follows

that ∫
ΩT

βT

T

∑
t∈T

∣∣∣∣∣
(
σα0

t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)
− F f (ω)

∣∣∣∣∣ dω = OP

(
r2

T√
T

)
= oP(1). (6.58)

Collecting (6.53), (6.54), and (6.58), we obtain

∣∣AT (θ; φ̂T , α̂T ) − N(θ; φ0, α0)
∣∣ T→∞
−→ 0 in probability uniformly in θ, . (6.59)

Now we prove that CT (θ; φ̂T , α̂T )
T→∞
−→ 0 in probability uniformly in θ. With the Cauchy-Schwarz

inequality (Theorem B.1) and Lemma 6.3, we get

0 ≥ E
(
CT (θ; φ̂T , α̂T )

)
= −E

∫
ΩT

∣∣∣∣∣βT

T

∑
t∈T

h0,t
ω

(
θ; φ̂T , α̂T

)−1 V t
T (ω; φ̂T , α̂T )

∣∣∣∣∣
2

dω


≥ −E

(∫
ΩT

(
βT

T

∑
t∈T

∣∣∣h0,t
ω

(
θ; φ̂T , α̂T

)−1
∣∣∣2)(βT

T

∑
t∈T

∣∣V t
T (ω; φ̂T , α̂T )

∣∣2) dω

)

= −

∫
ΩT

βT

T

∑
t∈T

E
(∣∣V t

T (ω; φ̂T , α̂T )
∣∣2) dω

= −

∫
ΩT

O

(
1
βT

)
dω

= O

(
r2

T
βT

)
.

Since r2
T/βT

T→∞
−→ 0 by Assumption 2.15 (C1), we get E

(
CT (θ; φ̂T , α̂T )

) T→∞
−→ 0 uniformly in θ,

and thus,

CT (θ; φ̂T , α̂T )
T→∞
−→ 0 in probability uniformly in θ. (6.60)

Finally, the Cauchy-Schwarz inequality (Theorem B.1) implies

(
BT (θ; φ̂T , α̂T )

)2
≤ 4AT (θ; φ̂T , α̂T )CT (θ; φ̂T , α̂T )

T→∞
−→ 0 in probability (6.61)

uniformly in θ. From (6.59), (6.60), and (6.61), we get NT (θ; φ̂T , α̂T )
T→∞
−→ N(θ; φ0, α0) in

probability uniformly in θ, finishing the proof of Theorem 3.2. �
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6.2.3 Proof of Theorem 3.3: Consistency of the image estimator

As an implication of Theorems 3.1 and 3.2, in this subsection we obtain consistency of the final

image estimator. Using the Plancherel equality (Theorem B.2) and (2.22), we have

∥∥ f̂ ′T − f
∥∥2

L2

=

∫
ΩT

∣∣∣∣∣βT

T

∑
t∈T

h0,t
ω

(
θ̂T ; φ̂T , α̂T

)−1 Zt
T (ω; φ̂T , α̂T ) − F f (ω)

∣∣∣∣∣
2

dω +

∫
R2\ΩT

∣∣F f (ω)
∣∣2 dω

=

∫
ΩT

∣∣∣∣βT

T

∑
t∈T

ht,0
ω

(
θ̂T ; φ̂T , α̂T

)(σα0
t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)
− F f (ω)

+
βT

T

∑
t∈T

h0,t
ω

(
θ̂T ; φ̂T , α̂T

)−1 V t
T (ω; φ̂T , α̂T )

∣∣∣∣2 dω + o(1)

= DT + ET + CT (θ̂T ; φ̂T , α̂T ) + o(1),

with CT from (2.23) and

DT B

∫
ΩT

∣∣∣∣∣βT

T

∑
t∈T

ht,0
ω

(
θ̂T ; φ̂T , α̂T

)(σα0
t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)
− F f (ω)

∣∣∣∣∣
2

dω,

ET B

∫
ΩT

2<
[(

βT

T

∑
t∈T

ht,0
ω

(
θ̂T ; φ̂T , α̂T

)(σα0
t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)
− F f (ω)

)

·

(
βT

T

∑
t′∈T

h0,t
ω

(
θ̂T ; φ̂T , α̂T

)−1 V t′
T (ω; φ̂T , α̂T )

)]
dω,

and CT (θ̂T ; φ̂T , α̂T ) ≤ supθ∈Θ CT (θ; φ̂T , α̂T )
T→∞
−→ 0 in probability as shown in the proof of step 3

of Theorem 3.2. Because of (6.57), we have

DT ≤

∫
ΩT

(
βT

T

∑
t∈T

∣∣∣∣ht,0
ω

(
θ̂T ; φ̂T , α̂T

)(σα0
t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)
− ht,0

ω

(
θ̂T ; φ̂T , α̂T

)
F f (ω)

∣∣∣∣
+
βT

T

∑
t∈T

∣∣∣∣ht,0
ω

(
θ̂T ; φ̂T , α̂T

)
F f (ω) − F f (ω)

∣∣∣∣)2

dω

=

∫
ΩT

(
βT

T

∑
t∈T

∣∣∣∣∣
(
σα0

t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)
− F f (ω)

∣∣∣∣∣
+
∣∣F f (ω)

∣∣ βT

T

∑
t∈T

∣∣ht,0
ω

(
θ̂T ; φ̂T , α̂T

)
− 1
∣∣ )2

dω

≤

∫
ΩT

(
OP

(
1
√

T

)
+ 2
√

2πσ−1
min ‖ω‖

∣∣F f (ω)
∣∣ βT

T

∑
t∈T

∥∥∥δθ̂T
t − δ

θ0
t

∥∥∥)2

dω

≤

∫
ΩT

(
OP

(
1
√

T

)
+ 2
√

2πσ−1
min ‖ω‖

∣∣F f (ω)
∣∣OP (Lδ ∥∥θ̂T − θ0

∥∥))2

dω
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=OP

(
r2

T
T

)
+ OP

(
1
√

T

∥∥θ̂T − θ0
∥∥∫

ΩT

‖ω‖
∣∣F f (ω)

∣∣ dω
)

+ OP

(∥∥θ̂T − θ0
∥∥2
∫

ΩT

‖ω‖2
∣∣F f (ω)

∣∣2 dω
)
,

where we used that x 7→ ei〈a,x〉, a ∈ R2, is Lipschitz-continuous with Lipschitz-constant
√

2 ‖a‖
and that ‖Rω‖ = ‖ω‖ for any Rotation matrix R for the second inequality, as well as Assumption

2.14 (B6) for the third. Since r2
T/T

T→∞
−→ 0 by Assumption 2.15 (C1), it follows by the consistency

of the drift parameter estimator (Theorem 3.2) and Assumption 2.13 (A3) together with Lemma

A.10, that DT
T→∞
−→ 0 in probability.

Finally, by the Cauchy-Schwarz inequality (Theorem B.1),

E2
T ≤ 4DTCT (θ̂T ; φ̂T , α̂T )

T→∞
−→ 0

in probability. Since f̂T is defined as the squared value of f̂ ′T , the continuous mapping theorem

(Theorem B.8) immediately gives consistency also for the final image estimator f̂T , completing

the proof of (3.3).

6.2.4 Proof of Theorem 3.5: Central limit theorem for the rotation and scaling
parameter estimators

We first prove three results on the derivatives of the empirical contrast functional MT in Theorem

6.10, Lemma 6.11, and Theorem 6.12, and then give the detailed proof of the central limit

theorem for rotation and scaling, Theorem 3.5. The first of the mentioned results is a central

limit theorem for grad(φ,α)MT (φ0, α0), formulated in the next theorem. Prior to it, we introduce

some notation. The second result then describes properties of the Hessian of the population

contrast functional M, and the last shows the convergence of the Hessian of the empirical

contrast functional MT to the Hessian of M. Combining all three we then conclude the proof

of Theorem 3.5. The main structure is analogous to the proof of asymptotic normality of the

drift parameter estimator in Hartmann et al. (2015) and of asymptotic normality of the rotation

and scaling parameter estimators in Hartmann (2016). Here, the argument is modified to fit the

revised model and the details are worked out in a mathematically rigorous way.

Definition 6.9. With dt,t′
u,v(φ, α) from (6.2) let

Gt′
j B =

[ ∫ 1

0
(σα0

t )4−γ
∫
R

∑
u∈Z

M
|F f |

2(u, v)Mqt
j
(u, v)at,t′

u,v(φ0, α0)d0,t′
u,v (φ0, α0) dv dt

]
,

where qt
j(ω) B <

(
e2πi〈ω,x j〉F f t (ω)

)
. We define

ΣRS B 4
∫ 1

0

1
n

n∑
j=1

Gt′
j (Gt′

j )> dt′. (6.62)
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Theorem 6.10 (Central limit theorem for grad(φ,α)MT (φ0, α0)). Under the Assumptions 2.13

(A4), 2.14 (B2), and 2.15, we have that

√
Tgrad(φ,α)MT (φ0, α0) =

∑
t′∈T

n∑
j=1

wt′
j ε

t′
j + oP(1), (6.63)

with weights

wt′
j B −

2β3/2
T

nT 3/2

∑
t∈T

∑
|u|≤uT

∫ vT

−vT

<

[
grad(φ,α)d

t,t′
u,v(φ, α)

∣∣∣
(φ,α)=(φ0,α0)

Ft(u, v)MT
qt′

j
(u, v)

]
dv,

t′ ∈ T, 1 ≤ j ≤ n, with qt
j(ω) B <

(
e2πi〈ω,x j〉F f t (ω)

)
as in Definition 6.9. In particular,

√
Tgrad(φ,α)MT (φ0, α0)

T→∞
−→ N(0,ΣRS ) in distribution,

with covariance matrix ΣRS from (6.62).

Proof. We will use the decomposition MT = AT + BT + CT + o(1) from (6.36) and show that
√

Tgrad(φ,α)AT (φ0, α0) = 0,
√

Tgrad(φ,α)CT (φ0, α0)
T→∞
−→ 0 in probability, while

√
Tgrad(φ,α)BT (φ0, α0) =

∑
t∈T

∑
j∈Jt

t

wt
jε

t
j + oP(1).

Since the error terms εt
j are mutually independent it is then easy to prove the asymptotic

normality
√

Tgrad(φ,α)BT (φ0, α0)
T→∞
−→ N(0,ΣRS ) in distribution.

First, consider the gradient of the integrand of AT . By Lemma A.5 and Lemma 6.4, we get

grad(φ,α)

(
−
∑
t,t′∈T

dt,0
u,v(φ, α)Ft(u, v)dt′,0

u,v (φ, α)Ft′(u, v)

)
= − 2

∑
t,t′∈T

<

(
grad(φ,α)d

t,0
u,v(φ, α)Ft(u, v)dt′,0

u,v (φ, α)Ft′(u, v)
)

=2
∑
t,t′∈T

(
2πu (gradφρ

φ
t )>,−vσα0

t /σ
α
t (gradασ

α
t )>
)>

· =

(
dt,0

u,v(φ, α)dt′,0
u,v (φ, α)Ft(u, v)Ft′(u, v)

)
, (6.64)

Because of dt,0
u,v(α0, φ0) = 1 and

=

(
Ft(u, v)Ft′(u, v)

)
= (σα0

t )4−γ(σα0
t′ )4−γ=

(∣∣∣M
|F f |

2(u, v)
∣∣∣2) = 0,

(6.64) vanishes for (φ, α) = (φ0, α0), implying that

√
Tgrad(φ,α)AT (φ0, α0) = 0. (6.65)



74 Proofs

Next, we consider the asymptotic behaviour of
√

Tgrad(φ,α)CT (φ0, α0). By Lemma A.5 and

Lemma 6.4, we get for parameters in the neighborhood U from Assumption 2.14 (B2) around

the true parameters, that

grad(φ,α)

(
−
∑
t,t′∈T

du,v(σαt , ρ
φ
t )MT

Wt (u, v)du,v(σαt′ , ρ
φ
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T
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∑
t,t′∈T

<

(
grad(φ,α)du,v(σαt , ρ

φ
t )MT

Wt (u, v)du,v(σαt′ , ρ
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)
,

where the terms with t′ = t vanish due to

=

(∣∣∣du,v(σαt , ρ
φ
t )MT

Wt (u, v)
∣∣∣2) = 0.

With Lemma 6.4, it follows that

E
∥∥∥√Tgrad(φ,α)CT (φ0, α0)
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= E

∥∥∥∥√T
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φ
t′)M

T
Wt′ (u, v)

)
dv
∥∥∥∥

≤ 2C̃
√

T
∫ vT
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β2

T
T 2
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E
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O

(
r2γ

T
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= O

( √
TuT vT ‖(uT , vT )‖ r2γ

T
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)
,

where we used that, due to Lemma 6.2,

E
∣∣MT

Wt (u, v)
∣∣ ≤ √E(∣∣MT

Wt (u, v)
∣∣2) = O

(
rγT√
βT

)
.

Since
√

TuT vT ‖(uT , vT )‖ r2γ
T /βT

T→∞
−→ 0 by Assumption 2.15 (C2), we have

√
Tgrad(φ,α)CT (φ0, α0)

T→∞
−→ 0 in probability. (6.66)
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Finally, we tackle
√

Tgrad(φ,α)BT (φ0, α0). We write BT = B(1)
T + B(2)

T with

B(1)
T (φ, α) B −
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With Lemma 6.1, we have

E
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=
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1

4nβT
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)
.

Hence, with Lemma 6.4,

E
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= O

( √
Tr2+γ

T
βT

)
,

due to Assumption 2.13 (A4) and Lemma A.11. Since
√

Tr2+γ
T /βT

T→∞
−→ 0 by Assumption 2.15

(C2), we get using Markov’s inequality (Theorem B.10) that

√
Tgradφ,αB(1)

T (φ0, α0)
T→∞
−→ 0 in probability. (6.67)
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It remains to show the asymptotic normality of
√

Tgradφ,αB(2)
T (φ0, α0). We have

MT
2<
(
F f t W t

)(u, v)

= 2
∫ rT

0

∫ 2π

0
e−2πiuψr−ivrγ

(
<
(
F f t W t

)
◦ P

)
(r, ψ) dψ

dr
r

= 2
∫ rT

0

∫ 2π

0
e−2πiuψr−ivrγ<

[(
F f t ◦ P

)
(r, ψ)

 1
2n
√
βT

n∑
j=1

e2πi〈P(r,ψ),x j〉εt
j

] dψ
dr
r

=
1

n
√
βT

n∑
j=1

εt
j

∫ rT

0

∫ 2π

0
e−2πiuψr−ivrγ<

[
e2πi〈P(r,ψ),x j〉

(
F f t ◦ P

)
(r, ψ)

]
dψ

dr
r

=
1

n
√
βT

n∑
j=1

MT
qt

j
(u, v)εt

j,

with qt
j(ω) B <

(
e2πi〈ω,x j〉F f t (ω)

)
from Definition 6.9. Hence,

B(2)
T (φ, α) = −

2βT

T

∑
t′∈T

<

[
βT

T

∑
t∈T

∫ vT

−vT

∑
|u|≤uT

dt,t′
u,v(φ, α)Ft(u, v)MT

2<
(
F f t′W t′

)(u, v)
]

dv

= −
2
√
βT

T

∑
t′∈T

1
n

n∑
j=1

εt′
j<

[
βT

T

∑
t∈T

∫ vT

−vT

∑
|u|≤uT

dt,t′
u,v(φ, α)Ft(u, v)MT

qt′
j
(u, v) dv

]
.

(6.68)

Now, let ξ ∈ Rd2+d3 . From (6.5) and (6.68), we get that at (φ, α) = (φ0, α0)〈
ξ,
√

Tgrad(φ,α)B
(2)
T (φ0, α0)

〉
= −2

√
βT

T

∑
t′∈T

1
n

n∑
j=1

εt′
j<

[
βT

T

∑
t∈T

∫ vT

−vT

∑
|u|≤uT

·

〈
ξ, grad(φ,α)d

t,t′
u,v(φ, α)

∣∣∣
(φ,α)=(φ0,α0)

〉
Ft(u, v)MT

qt′
j
(u, v) dv

]
= 2

√
βT

T

∑
t′∈T

1
n

n∑
j=1

εt′
j =

[
βT

T

∑
t∈T

∫ vT

−vT

∑
|u|≤uT

·

〈
ξ,at,t′

u,v(φ0, α0)d0,t′
u,v (φ0, α0)

〉
Ft(u, v)MT

qt′
j
(u, v) dv

]
is a linear combination of independent standard-normal random variables εt′

j and therefore a

centered Gaussian random variable with variance

4βT

T

∑
t′∈T

1
n

n∑
j=1

=

[
βT

T

∑
t∈T

∫ vT

−vT

∑
|u|≤uT

Ft(u, v)MT
qt′

j
(u, v)

·

〈
ξ,at,t′

u,v(φ0, α0)d0,t′
u,v (φ0, α0)

〉
dv
]2
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T→∞
−→ 4

∫ 1

0

1
n

n∑
j=1

=

[ ∫ 1

0
(σα0

t )4−γ
∫
R

∑
u∈Z

M
|F f |

2(u, v)Mqt′
j
(u, v)

·

〈
ξ,at,t′

u,v(φ0, α0)d0,t′
u,v (φ0, α0)

〉
dv dt

]2

dt′

= ξ>ΣRS ξ, (6.69)

with ΣRS from (6.62). Note that ΣRS has finite operatornorm, since by Lemma 6.4, the Cauchy-

Schwarz-inequality (Theorem B.1), and the Parseval equation (2.9),∣∣∣∣∣
∫
R

∑
u∈Z

M
|F f |

2(u, v)Mqt′
j
(u, v)at,t′

u,v(φ0, α0)d0,t′
u,v (φ0, α0) dv

∣∣∣∣∣
≤C

∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣ ∣∣∣Mqt′

j
(u, v)

∣∣∣ ‖(u, v)‖ dv

≤C
∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2 ‖(u, v)‖2 dv

∫
R

∑
u∈Z

∣∣∣Mqt′
j
(u, v)

∣∣∣2 dv

=

∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2 ‖(u, v)‖2 dv

∫
R2

∣∣∣qt′
j (ω)

∣∣∣2 dω

≤

∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2 ‖(u, v)‖2 dv

∫
R2

∣∣F f (ω)
∣∣2 dω < ∞,

where the first integral is finite because of Assumption 2.13 (A4), and F f is square integrable

by the Plancherel Theorem (Theorem B.2) using that f ∈ L2(R2). Because the upper bound is

independent of t′, the norm of ΣRS is bounded, as well. By Lemma A.13 and the Cramér-Wold

Device (Theorem B.5), we have

√
Tgrad(φ,α)B

(2)
T (φ0, α0)

T→∞
−→ N(0,ΣRS ) in distribution (6.70)

as an application of Theorem 2.13 in van der Vaart (2000). From (6.65), (6.66), (6.67), (6.70),

and Slutzky’s Lemma (Theorem B.9), we deduce

√
Tgrad(φ,α)MT (φ0, α0) =

√
Tgrad(φ,α)B

(2)
T (φ0, α0) + oP(1)

T→∞
−→ N(0,ΣRS )

in distribution, completing the proof. �

Lemma 6.11. Under the Assumptions 2.13 (A4) and 2.14 (B2-B3), Hess(φ,α)M(φ, α) has finite

operator norm for all (φ, α) ∈ U with U ⊆ Φ × A from Assumption 2.14 (B2). Furthermore, the

matrix

HM B Hess(φ,α)M(φ0, α0) (6.71)

is symmetric. If the Assumptions 2.13 (A2, A3) and 2.14 (B1, B4, and B8) hold, HM is also

positive definite and hence, invertible.

Proof. By Assumptions 2.14 (B2-B3), Lemma 6.4, Lemma A.6, and Theorem B.4 on the
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differentiability of parameter integrals,

Hess(φ,α)M(φ, α)

= −

∫
R

∑
u∈Z

Hess(φ,α)

(∫ 1

0

∫ 1

0
dt,0

u,v(φ, α)Ft(u, v)dt′,0
u,v (φ, α)Ft′(u, v) dt dt′

)
dv

= − 2
∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2 ∫ 1

0

∫ 1

0
(σα0

t σ
α0
t′ )4−γ

· <

(
dt′,0

u,v (φ, α) Hess(φ,α)dt,0
u,v(φ, α) + grad(φ,α)d

t,0
u,v(φ, α)grad>(φ,α)d

t′,0
u,v (φ, α)

)
dt dt′ dv

= − 2
∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2 ∫ 1

0

∫ 1

0
(σα0

t σ
α0
t′ )4−γ<

(
dt,0

u,v(φ, α)dt′,0
u,v (φ, α)

·

[
iH t,0

u,v(φ, α) − at,0
u,v(φ, α)

(
at,0

u,v(φ, α) − at′,0
u,v (φ, α)

)>])
dt dt′ dv. (6.72)

Let ξ ∈ Rd2+d3 with ‖ξ‖ = 1. By Assumption 2.13 (A4) and the Sobolev embedding theorem

(Theorem B.11), we have

∥∥Hess(φ,α)M(φ, α)ξ
∥∥

≤ 2
∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2 ∫ 1

0

∫ 1

0
(σα0

t σ
α0
t′ )4−γ

·

[∥∥H t,0
u,v(φ, α)ξ

∥∥ +

∥∥∥∥at,0
u,v(φ, α)

(
at,0

u,v(φ, α) − at′,0
u,v (φ, α)

)>
ξ

∥∥∥∥] dv

≤ 2 max
{
σ4−γ

max, σ
4−γ
min

}∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2 [C̃ ‖(u, v)‖ + 2C̃2 ‖(u, v)‖2

]
dv < ∞,

with C̃ > 0 from Lemma 6.4. Hence, Hess(φ,α)M(φ, α) has finite operator norm. From (6.72),

we get using dt,0
u,v(α0, φ0) = 1, that at (φ, α) = (φ0, α0)

HM = Hess(φ,α)M(φ0, α0)

= 2
∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2 [ ∫ 1

0

∫ 1

0
(σα0

t σ
α0
t′ )4−γat,0

u,v(φ0, α0)at,0
u,v(φ0, α0)> dt dt′

−

(∫ 1

0
(σα0

t )4−γat,0
u,v(φ0, α0) dt

)(∫ 1

0
(σα0

t′ )4−γat′,0
u,v (φ0, α0) dt′

)> ]
dv. (6.73)

Since matrices of the form xx> with x ∈ Rd2+d3 are always symmetric, it follows that HM is

symmetric.

Now, let ξ(2) ∈ Rd2 and ξ(3) ∈ Rd3 such that ξ B
(
(ξ(2))>, (ξ(3))>

)>
, 0. By Assumptions

2.13 (A2, A3) and Lemma A.7, there are u ∈ Z \ {0} and an open Borel set B ⊆ R with

positive Lebesgue-measure such thatM
|F f |

2(u, v) , 0 for all v ∈ B. The goal is now to show

that if Assumptions 2.14 (B4, B8) hold, there is another Borel set B′ ⊆ [0, 1] with positive
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Lebesgue-measure such that

B′ → R, t 7→
〈
ξ,at,0

u,v(φ0, α0)
〉

(6.74)

is not constant for all v ∈ R \ V0 with some Lebesgue null-set V0 ⊆ R. To this end, define

S 1(t) B
∑d2

m=1 ξ
(2)
m

∂ρ
φ
t

∂φm

∣∣∣
φ=φ0

and S 2(t) B
∑d3

m′=1 ξ
(3)
m′

∂σαt
∂αm′

∣∣∣
α=α0

. Note that if there was a constant

c such that S 1(t) = c a.e. this constant would have to be c = 0, since by Assumption 2.14 (B1)

S 1(0) =

d2∑
m=1

ξ(2)
m
∂ρ

φ
0

∂φm

∣∣∣∣
φ=φ0

= 0,

and S 1 is continuous at t = 0 as linear function of t 7→ ρ
φ
t , which is continuous at t = 0 by

Assumption 2.14 (B4). By the same argument, applied to t 7→ σαt , we know that S 2 has to

be zero if it is constant. This property carries over to the scalar product t 7→
〈
ξ,at,0

u,v(φ0, α0)
〉
.

Suppose now, it were constant (that is, equal to zero):

〈
ξ,at,0

u,v(φ0, α0)
〉

= 2πuS 1(t) − vS 2(t) = 0 a.e., (6.75)

which is equivalent to S 1(t) = (2πu)−1vS 2(t) a.e. For this to hold true, either both S 1 = 0

a.e. and S 2 = 0 a.e. or the value of v is determined by u, implying v ∈ V0 ⊂ R for some

Lebesgue null-set V0. However, by Assumption 2.14 (B8) the components of gradφρ
φ
t
∣∣
φ=φ0

are

linearly independent, which is a contradiction to S 1(t) = 0 a.e. By the same argument, applied

to gradασ
α
t

∣∣
α=α0

, we get that S 2 cannot be constant a.e. We can now conclude that (6.75) can

only be satisfied for v ∈ V0, where V0 has Lebesgue measure zero. Hence, there is a Borel set B′

of positive Lebesgue measure such that t 7→
〈
ξ,at,0

u,v(φ0, α0)
〉

is non-constant on B′ for almost

all v ∈ R.

From the Cauchy-Schwarz inequality (Theorem B.1), we have that

(∫ 1

0
g1(t)g2(t) dt

)2

≤

∫ 1

0
g1(t)2 dt

∫ 1

0
g2(t′)2 dt′

for all integrable functions g1, g2 : [0, 1]→ R, with equality if and only if g1 and g2 are linearly

dependent a.e. Let

gu,v
1 (t) B (σα0

t )2−γ/2 〈ξ,at,0
u,v(φ0, α0)

〉
, gu,v

2 (t) B (σα0
t )2−γ/2.

For all v ∈ R \ V0, these are linearly independent, since t 7→
〈
ξ,at,0

u,v(φ0, α0)
〉

is not constant.

Hence,(∫ 1

0
(σα0

t )4−γ 〈ξ,at,0
u,v(φ0, α0)

〉
dt
)2

<

∫ 1

0
(σα0

t )4−γ 〈ξ,at,0
u,v(φ0, α0)

〉2
dt
∫ 1

0
(σα0

t′ )4−γ dt′
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for all v ∈ R \ V0. It follows that

ξ>HMξ ≥ 2
∫
R\V0

∣∣∣M
|F f |

2(u, v)
∣∣∣2 [ ∫ 1

0
(σα0

t )4−γ 〈ξ,at,0
u,v(φ0, α0)

〉2
dt
∫ 1

0
(σα0

t′ )4−γ dt′

−

(∫ 1

0
(σα0

t )4−γ 〈ξ,at,0
u,v(φ0, α0)

〉
dt
)2 ]

dv

> 0, (6.76)

as the integrand (as a function in v) is strictly positive. We conclude that HM is symmetric and

positive definite and thus, invertible. �

Theorem 6.12. Under the Assumptions 2.13 (A4), 2.14 (B2-B4), and 2.15 let (φ̂∗T , α̂
∗
T )T∈N a

sequence of random vectors with values in U, such that (φ̂∗T , α̂
∗
T )

T→∞
−→ (φ0, α0) in probability.

Then, with HM from (6.71),

∥∥Hess(φ,α)MT (φ̂∗T , α̂
∗
T ) − HM

∥∥
1

T→∞
−→ 0 in probability,

Proof. We will use the decomposition MT = AT + BT + CT + o(1) from (6.36) and show that

∥∥Hess(φ,α)AT (φ̂∗T , α̂
∗
T ) − HM

∥∥
1

T→∞
−→ 0 in probability,

sup
(φ,α)∈U

∥∥Hess(φ,α)BT (φ, α) + Hess(φ,α)CT (φ, α)
∥∥

1
T→∞
−→ 0 in probability.

By Lemma 6.4 and Lemma A.5, we get

Hess(φ,α)AT (φ, α)

= −

∫ vT

−vT

∑
|u|≤uT

2β2
T

T 2

∑
t,t′∈T

<

[
Ft(u, v)Ft′(u, v)

·

(
dt′,0

u,v (φ, α) Hess(φ,α)dt,0
u,v(φ, α) + grad(φ,α)d

t,0
u,v(φ, α)gradT

(φ,α)d
t′,0
u,v (φ, α)

)]
dv

= − 2
∫ vT

−vT

∑
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∣∣∣M
|F f |

2(u, v)
∣∣∣2 β2

T
T 2

∑
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t σ
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· <
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u,v (φ, α)

(
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u,v(φ, α) − at,0
u,v(φ, α)

(
at,0

u,v(φ, α) − at′,0
u,v (φ, α)

)>)] dv. (6.77)

Since φ 7→ ρ
φ
t and α 7→ σαt are continuous by Assumption 2.14 (B4) and du,v is Lipschitz-

continuous, as x 7→ ei〈a,x〉 is Lipschitz-continuous with Lipschitz-constant
√

2 ‖a‖ for a ∈ R2,

the continuous mapping theorem (Theorem B.8) yields that

∣∣dt,0
u,v(α̂∗T , φ̂

∗
T ) − 1

∣∣ ≤ √2 ‖(2πu,−v)‖

∥∥∥∥∥
(

ρ
φ̂∗T
t − ρ

φ0
t

log(σα̂
∗
T

t ) − log(σα0
t )

)∥∥∥∥∥ = oP
(
‖(u, v)‖

)
,

where the logarithm is Lipschitz-continuous on [σmin, σmax] because it has bounded derivative
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on this compact interval. Hence,

dt,0
u,v(α̂∗T , φ̂

∗
T )dt′,0

u,v (α̂∗T , φ̂
∗
T ) = 1 + oP

(
‖(u, v)‖2 + ‖(u, v)‖

)
.

In particular, the imaginary part vanishes asymptotically. With Lemma 6.4 and Assumption 2.13

(A4), it follows that∥∥∥∥∫ vT

−vT

∑
|u|≤uT

∣∣∣M
|F f |
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∣∣∣2

·
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[
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]
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∥∥∥∥

1
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σ
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}∫ vT

−vT

∑
|u|≤uT

∣∣∣M
|F f |
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·
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T
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∑
t,t′∈T

∣∣∣=[dt,0
u,v(φ, α)dt′,0

u,v (φ, α)
]∣∣∣ ∥∥H t,0

u,v(φ, α)
∥∥

1 dv

= oP

∫ vT
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(
‖(u, v)‖3 + ‖(u, v)‖2
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|F f |

2(u, v)
∣∣∣2 dv


= oP(1). (6.78)

Moreover,∫ vT

−vT

∑
|u|≤uT

∣∣∣M
|F f |

2(u, v)
∣∣∣2 β2

T
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(σα0
t σ

α0
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[
iH t,0

u,v(φ0, α0)
]

dv = 0. (6.79)

From Assumption 2.14 (B2), Lemma 6.4, and the continuous mapping theorem (Theorem B.8),

we get that∥∥∥at,0
u,v(φ̂∗T , α̂

∗
T )
(
at,0

u,v(φ̂∗T , α̂
∗
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∥∥∥
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.
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This, together with (6.77), (6.78), (6.79), and Assumption 2.14 (B2), gives

∥∥Hess(φ,α)AT (φ̂∗T , α̂
∗
T ) − Hess(φ,α)AT (φ0, α0)

∥∥
1

= 2
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u,v (φ̂∗T , α̂
∗
T )
)>

−at,0
u,v(φ0, α0)

(
at,0

u,v(φ0, α0) − at′,0
u,v (φ0, α0)

)>} dv
∥∥∥∥

1
+ oP(1)

≤ oP

∫ vT

−vT

∑
|u|≤uT

‖(u, v)‖4
∣∣∣M
|F f |

2(u, v)
∣∣∣2 dv

 + oP(1) (6.80)

= oP(1). (6.81)

By the first part of Lemma 6.11, HM has finite operator norm. In particular, the components of

HM are finite. Hence,∥∥∥∥2
∫
R

∑
u∈Z

∣∣∣M
|F f |

2(u, v)
∣∣∣2

·

∫ 1

0

∫ 1

0
(σα0

t σ
α0
t′ )4−γat,0

u,v(φ0, α0)
(
at,0

u,v(φ0, α0) − at′,0
u,v (φ0, α0)

)> dt dt′ dv
∥∥∥∥

1
= O(1),

as T → ∞. and therefore∥∥∥∥2
∫
R\[−vT ,vT ]

∑
u∈Z:|u|>uT

∣∣∣M
|F f |

2(u, v)
∣∣∣2

·

∫ 1

0

∫ 1

0
(σα0

t σ
α0
t′ )4−γat,0

u,v(φ0, α0)
(
at,0

u,v(φ0, α0) − at′,0
u,v (φ0, α0)

)> dt dt′ dv
∥∥∥∥

1
= o(1).

With (6.77) and (6.81), this implies that

∥∥Hess(φ,α)AT (φ̂∗T , α̂
∗
T ) − HM

∥∥
1

=
∥∥Hess(φ,α)AT (φ0, α0) − HM

∥∥
1 + oP(1)

≤ 2
∫ vT

−vT

∑
|u|≤uT

∣∣∣M
|F f |

2(u, v)
∣∣∣2(∥∥∥∥∥β2

T
T 2

∑
t,t′∈T

At,t′
u,v −

∫ 1

0

∫ 1

0
At,t′

u,v dt dt′
∥∥∥∥∥

1

+

∥∥∥∥∥β2
T

T 2

∑
t,t′∈T

Bt,t′
u,v −

∫ 1

0

∫ 1

0
Bt,t′

u,v dt dt′
∥∥∥∥∥

1

)
dv + oP(1), (6.82)

where

At,t′
u,v B (σα0

t σ
α0
t′ )4−γat,0

u,v(φ0, α0)at,0
u,v(φ0, α0)>,

Bt,t′
u,v B (σα0

t σ
α0
t′ )4−γat,0

u,v(φ0, α0)at′,0
u,v (φ0, α0)>.

Note that functions on R with bounded derivative on a compact interval are Lipschitz, restricted
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to that interval. Using parts 1, 3 and 4 of Lemma A.4, we have by Assumption 2.14 (B3) that∥∥∥∥∥β2
T

T 2

∑
t,t′∈T

At,t′
u,v −

∫ 1

0

∫ 1

0
At,t′

u,v dt dt′
∥∥∥∥∥

1

=

d2+d3∑
m,m′=1

∣∣∣∣∣β2
T

T 2

∑
t,t′∈T

(
At,t′

u,v

)
m,m′
−

∫ 1

0

∫ 1

0

(
At,t′

u,v

)
m,m′

dt dt′
∣∣∣∣∣

≤ max
{

CγC̃2 ‖(u, v)‖2 ,Cγ

} βT

T

·

d2+d3∑
m,m′=1

{
TV
[
t 7→ (σα0

t )4−γ(at,0
u,v(φ0, α0)

)
m

(
at,0

u,v(φ0, α0)
)

m′

]
+ TV

[
t 7→ (σα0

t )4−γ
]}

≤ max
{

CγC̃2 ‖(u, v)‖2 ,Cγ

} βT

T

{
2(d2 + d3)CγC̃ ‖(u, v)‖

d2+d3∑
m=1

TV
[
t 7→

(
at,0

u,v(φ0, α0)
)

m

]
+(d2 + d3)2C3C̃2 ‖(u, v)‖2 + (d2 + d3)2C3

}
≤ (d2 + d3) max

{
CγC̃2 ‖(u, v)‖2 ,Cγ

} βT

T

{
2CγC̃ ‖(u, v)‖

(
2π |u|

d2∑
m=1

TV

[
t 7→

∂ρ
φ
t

∂φm

∣∣∣∣
φ=φ0

]

+ |v|
d3∑

m′=1

TV

[
t 7→

∂σαt
∂αm′

∣∣∣∣
α=α0

])
+ (d2 + d3)C3

(
C̃2 ‖(u, v)‖2 + 1

)}
= OP

(
‖(u, v)‖4

βT

T

)
, (6.83)

with C̃ > 0 from Lemma 6.4, Cγ B max
{
σ

4−γ
min , σ

4−γ
max

}
, and C3 > 0 from (6.41). Similarly,

∥∥∥∥∥β2
T

T 2

∑
t,t′∈T

Bt,t′
u,v −

∫ 1

0

∫ 1

0
Bt,t′

u,v dt dt′
∥∥∥∥∥

1

≤ CγC̃ ‖(u, v)‖
βT

T

·

d2+d3∑
m,m′=1

{
TV
[
t 7→ (σα0

t )4−γ(at,0
u,v(φ0, α0)

)
m

]
+ TV

[
t 7→ (σα0

t )4−γ(at,0
u,v(φ0, α0)

)
m′

]}
≤ 2(d2 + d3)CγC̃ ‖(u, v)‖

βT

T

·

{
Cγ

d2+d3∑
m=1

TV
[
t 7→

(
at,0

u,v(φ0, α0)
)

m

]
+ (d2 + d3)C3C̃ ‖(u, v)‖

}
= OP

(
‖(u, v)‖2

βT

T

)
. (6.84)

From (6.82), (6.83), and (6.84), we get that

∥∥Hess(φ,α)AT (φ̂∗T , α̂
∗
T ) − HM

∥∥
1 OP

βT

T

∫ vT

−vT

∑
|u|≤uT

‖(u, v)‖4
∣∣∣M
|F f |

2(u, v)
∣∣∣2 dv

 , (6.85)
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which converges to 0 due to Assumptions 2.13 (A4) and 2.15 (C1).

Next, we show that

sup
(φ,α)∈U

∥∥Hess(φ,α)BT (φ, α)
∥∥

1
T→∞
−→ 0 in probability. (6.86)

From Lemma 6.4, we have

sup
(φ,α)∈U

∥∥∥Hess(φ,α)dt,t′
u,v(φ, α)

∥∥∥
1

= O
(
‖(u, v)‖2

)
. (6.87)

By Lemma 6.2 and (6.87), we get that

sup
(φ,α)∈U

∥∥Hess(φ,α)BT (φ, α)
∥∥

1

= sup
(φ,α)∈U

∥∥∥∥∫ vT

−vT

∑
|u|≤uT

2<
[
β2

T
T 2

∑
t,t′∈T

Ft(u, v)MT
Wt′ (u, v) Hess(φ,α)dt,t′

u,v(φ, α)
]

dv
∥∥∥∥

1

≤ 2Cγ sup
(φ,α)∈U

∫ vT

−vT

∑
|u|≤uT

∣∣∣M
|F f |

2(u, v)
∣∣∣ β2

T
T 2

∑
t,t′∈T

∣∣MT
Wt′ (u, v)

∣∣ ∥∥∥Hess(φ,α)dt,t′
u,v(φ, α)

∥∥∥
1

dv

= OP

 rγT√
βT

∫ vT

−vT

∑
|u|≤uT

‖(u, v)‖2
∣∣∣M
|F f |

2(u, v)
∣∣∣ dv


≤ OP

rγT ‖(uT , vT )‖
√
βT

∫ vT

−vT

∑
|u|≤uT

‖(u, v)‖
∣∣∣M
|F f |

2(u, v)
∣∣∣ dv

 .

Because of Assumption 2.13 (A4), Lemma A.11 and since r2γ
T ‖(uT , vT )‖2 /βT

T→∞
−→ 0 as a

consequence of Assumption 2.15 (C2), the above converges to 0 and we conclude that (6.86)

holds.

Finally, we consider sup(φ,α)∈U

∥∥Hess(φ,α)CT (φ, α)
∥∥

1. By Lemma 6.2 and (6.87),

sup
(φ,α)∈U

∥∥Hess(φ,α)CT (φ, α)
∥∥

1

= sup
(φ,α)∈U

∥∥∥∥∫ vT

−vT

∑
|u|≤uT

β2
T

T 2

∑
t,t′∈T

Hess(φ,α)
d0,t′

u,v (φ, α)

d0,t
u,v(φ, α)

MT
Wt (u, v)MT

Wt′ (u, v) dv
∥∥∥∥

1

≤ sup
(φ,α)∈U

∫ vT

−vT

∑
|u|≤uT

β2
T

T 2

∑
t,t′∈T

∥∥∥∥∥Hess(φ,α)
d0,t′

u,v (φ, α)

d0,t
u,v(φ, α)

∥∥∥∥∥
1

∣∣MT
Wt (u, v)

∣∣ ∣∣MT
Wt′ (u, v)

∣∣ dv

= OP

r2γ
T
βT

∫ vT

−vT

∑
|u|≤uT

‖(u, v)‖2 dv


= OP

(
‖(uT , vT )‖2 uT vT r2γ

T
βT

)
.
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Since ‖(uT , vT )‖2 uT vT r2γ
T /βT

T→∞
−→ 0 by Assumption 2.15 (C2), we get

sup
(φ,α)∈U

∥∥Hess(φ,α)CT (φ, α)
∥∥

1
T→∞
−→ 0 in probability. (6.88)

From (6.85), (6.86), and (6.88), we conclude that

∥∥Hess(φ,α)MT (φ̂∗T , α̂
∗
T ) − HM

∥∥
1

T→∞
−→ 0 in probability. �

Proof of Theorem 3.5 (Central limit theorem for the rotation and scaling parameter esti-
mators).
We now bring together the results of Theorem 6.10, Lemma 6.11 and Theorem 6.12 to proof

asymptotic normality for the rotation and scaling parameter estimators.

By Assumption 2.14 (B3), MT is twice continuously differentiable in a convex open neighbor-

hood U ⊆ Φ × A of (φ0, α0). In particular, if MT has a minimum at some (φ, α) ∈ U, then

grad(φ,α)MT (φ, α) = 0. Let

GT (φ, α) B

grad(φ,α)MT (φ, α), if (φ, α) ∈ U,

grad(φ,α)MT (φ0, α0), if (φ, α) ∈ (Φ × A) \ U.

Since (φ̂T , α̂T ) is defined as a minimizer of MT (i.e., grad(φ,α)MT (φ̂T , α̂T ) = 0) and because

(φ̂T , α̂T )
T→∞
−→ (φ0, α0) ∈ U in probability, we have for all ε > 0 that

P
(√

TGT (φ̂T , α̂T ) > ε
)

= P
(√

Tgrad(φ,α)MT (φ̂T , α̂T ) > ε, (φ̂T , α̂T ) ∈ U
)

+P
(√

Tgrad(φ,α)MT (φ0, α0) > ε, (φ̂T , α̂T ) < U
)

≤ P
(
(φ̂T , α̂T ) < U

) T→∞
−→ 0,

which means that
√

TGT (φ̂T , α̂T ) = oP(1). (6.89)

For (φ, α) ∈ U, we can apply the mean value theorem for real functions of multiple variables to

each component of grad(φ,α)MT (φ, α) to get that

grad(φ,α)MT (φ, α) = grad(φ,α)MT (φ0, α0) + Hess(φ,α)MT (φ†, α†)

(
φ − φ0

α − α0

)
, (6.90)

where (φ†, α†) ∈ U such that its components are convex combinations of the respective compo-

nents of (φ, α) and (φ0, α0). By (6.90), on the event {(φ̂T , α̂T ) ∈ U}, we can find (φ̂†T , α̂
†
T ) ∈ U

between (φ̂T , α̂T ) and (φ0, α0) such that

grad(φ,α)MT (φ̂T , α̂T ) = grad(φ,α)MT (φ0, α0) + Hess(φ,α)MT (φ̂†T , α̂
†
T )

(
φ̂T − φ0

α̂T − α0

)
. (6.91)
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With the definitions

(φ̂∗T , α̂
∗
T ) B

(φ̂†T , α̂
†
T ), if (φ̂T , α̂T ) ∈ U,

(φ0, α0), if (φ̂T , α̂T ) ∈ (Φ × A) \ U,

and

HT B

Hess(φ,α)MT (φ̂∗T , α̂
∗
T ) = Hess(φ,α)MT (φ̂†T , α̂

†
T ), if (φ̂T , α̂T ) ∈ U,

0, if (φ̂T , α̂T ) ∈ (Φ × A) \ U,

and using (6.89), we get that

√
Tgrad(φ,α)MT (φ0, α0) + HT

√
T

(
φ̂T − φ0

α̂T − α0

)
=
√

TGT (φ̂T , α̂T ) = oP(1), (6.92)

which holds on {(φ̂T , α̂T ) < U} by design of GT and HT and on {(φ̂T , α̂T ) ∈ U} due to (6.91).

Equation (6.92) and Theorem 6.10 yield that

HT
√

T

(
φ̂T − φ0

α̂T − α0

)
= −
√

Tgrad(φ,α)MT (φ0, α0) + oP(1) = OP(1). (6.93)

Since (φ̂∗T , α̂
∗
T ) ∈ U is between (φ̂T , α̂T ) and (φ0, α0) and (φ̂T , α̂T ) is a consistent estimator, we

have that (φ̂∗T , α̂
∗
T )

T→∞
−→ (φ0, α0) in probability. Because of Assumption 2.14 (B8) and Lemma

6.11, HM is invertible, and by Theorem 6.12, HT
T→∞
−→ HM in probability. Together with (6.93)

and Lemma A.12, this implies that

√
T

(
φ̂T − φ0

α̂T − α0

)
= OP(1). (6.94)

Hence, again with Theorem 6.12,

(HT − HM)
√

T

(
φ̂T − φ0

α̂T − α0

)
= oP(1)OP(1) = oP(1).

From this, (6.93), and Theorem 6.10, it follows that

HM
√

T

(
φ̂T − φ0

α̂T − α0

)
= −

√
Tgrad(φ,α)MT (φ0, α0) + oP(1)

T→∞
−→ N(0,ΣRS ) in distribution,

where we used that, for all centered normal random vectors X, X and −X have the same

distribution. Finally, multiplication with H−1
M yields the assertion. �



6.2. Details of the proofs 87

6.2.5 Proofs of Theorem 3.6 and Theorem 3.7: Central limit theorem for the
drift parameter estimator and joint central limit theorem

The first step of the proof of asymptotic normality of the drift parameter estimator is to show

the convergence of the mixed derivatives of the empirical contrast functional NT , see Theorem

6.13. Following that, we proceed in a way similar to the proof of asymptotic normality of the

rotation and scaling parameter estimators. In Theorem 6.14, we show the asymptotic normality

of the gradient of the empirical contrast functional NT at the true parameters, in Lemma 6.15

we derive properties of the Hessian of the population contrast functional N, and in Theorem

6.16 we then show the convergence of the Hessian of the empirical contrast functional, NT , to

the population contrast functional, N. Afterwards, we collect the results to prove asymptotic

normality of the drift parameter estimator and combine this with the asymptotic normality of the

rotation and scaling parameter estimators (see Theorem 3.5) in order to obtain the desired joint

central limit theorem of all three motion function parameters. Similarly to before, the proofs

of the preparatory Theorems 6.13, 6.14, 6.16 and Lemma 6.15 are based on the corresponding

Theorems 6.35, 6.41 and 6.42 as well as Lemma 6.39 in Hartmann (2016), but are edited to fit

the revised model and reworked to provide for more comprehensive demonstrations. Moreover,

instead of uniform tightness of the gradient of the empirical contrast functional and the drift

parameter estimator, here a central limit theorem is proven, which together with the asymptotic

normality of the rotation and scaling parameter estimators enables the derivation of a joint

central limit theorem of all three motion parameter estimators. This justifies the bootstrap

procedure, which is applied in Section 4.3 in order to assess the statistical uncertainty of the

estimation.

Theorem 6.13. Suppose that Assumptions 2.13 (A1,A3), 2.14 (B2-B3) and Assumption 2.15

hold and that (φ̂†T , α̂
†
T )

T→∞
−→ (φ0, α0) in probability. Then, we have that∥∥∥grad(φ,α)grad>θ NT (θ0; φ̂†T , α̂

†
T ) − grad(φ,α)grad>θ N(θ0; φ0, α0)

∥∥∥
1

T→∞
−→ 0 in probability.

Proof. Again, we proceed in two steps, using the decomposition (2.23). For U from Assumption

2.14 (B2) we show that∥∥∥grad(φ,α)grad>θ AT (θ0; φ̂†T , α̂
†
T ) − grad(φ,α)grad>θ N(θ0; φ0, α0)

∥∥∥
1

T→∞
−→ 0 in probability,

and

sup
(φ,α)∈U

∥∥grad(φ,α)grad>θ BT (θ0; φ, α) + grad(φ,α)grad>θ CT (θ0; φ, α)
∥∥

1

T→∞
−→ 0 in probability.

First, show the convergence of the mixed derivatives of AT . Using Lemma A.6 and Lemma 6.7

we see that

grad(φ,α)grad>θ N(θ; φ, α)

= − grad(φ,α)grad>θ

∫
R2

∣∣∣∣∫ 1

0
Ft
ω(θ; φ, α) dt

∣∣∣∣2 dω
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= − grad(φ,α)

∫
R2

∫ 1

0

∫ 1

0
2<
(

grad>θ Ft
ω(θ; φ, α)Ft′

ω(θ; φ, α)
)

dtdt′dω

= − 2
∫

R2

∫ 1

0

∫ 1

0
grad(φ,α)<

(
ibt,0
ω (θ; φ, α)>Ft

ω(θ; φ, α)Ft′
ω(θ; φ, α)

)
dtdt′dω

= 2
∫

R2

∫ 1

0

∫ 1

0
grad(φ,α)=

(
bt,0
ω (θ; φ, α)>Ft

ω(θ; φ, α)Ft′
ω(θ; φ, α)

)
dtdt′dω

and in particular

grad(φ,α)grad>θ N(θ0; φ0, α0)

= 2
∫

R2

∫ 1

0

∫ 1

0
grad(φ,α)=

(
bt,0
ω (θ0; φ, α)>Ft

ω(θ0; φ, α)Ft′
ω(θ0; φ, α)

) ∣∣∣∣
(φ,α)=(φ0,α0)

dtdt′dω.

Now, we calculate the mixed derivatives of AT . For the gradient of the integrand of AT (θ; φ, α)

with respect to θ we get

gradθ

[
−
∑
t,t′∈T

Ft
ω(θ0; φ, α)Ft′

ω(θ0; φ, α)

]

= −2
∑
t,t′∈T

<

[
gradθ

(
ht,0
ω (θ; φ, α)

)(σα0
t

σαt

)2

F f

(
τ

(φ,α)
t ω

)

· ht′,0
ω (θ; φ, α)

(
σα0

t′

σαt′

)2

F f

(
τ

(φ,α)
t′ ω

)]

= 2
∑
t,t′∈T

=

[(
σα0

t σ
α0
t′

σαt σ
α
t′

)2

bt,0
ω (θ; φ, α)

ht,0
ω (θ; φ, α)

ht′,0
ω (θ; φ, α)

F f (τ
(φ,α)
t ω)F f (τ

(φ,α)
t′ ω)

]
= 2

∑
t,t′∈T

=

[
bt,0
ω (θ; φ, α)Ft

ω(θ; φ, α)Ft′
ω(θ; φ, α)

]
.

In a second step, we see that

grad(φ,α)

{
=

[
bt,0
ω (θ; φ, α)>Ft

ω(θ; φ, α)Ft′
ω(θ; φ, α)

]} ∣∣∣
(φ,α)=(φ̂†T ,α̂

†

T )

=grad(φ,α)

{(
σα0

t σ
α0
t′

σαt σ
α
t′

)2

=

[
bt,0
ω (θ; φ, α)>ht,0

ω (θ; φ, α)F f (τ
(φ,α)
t ω)

· ht′,0
ω (θ; φ, α)F f (τ

(φ,α)
t′ ω)

]}∣∣∣∣
(φ,α)=(φ̂†T ,α̂

†

T )

=

[
grad(φ,α)

{(
σα0

t σ
α0
t′

σαt σ
α
t′

)2
}
=

[
bt,0
ω (θ; φ, α)>ht,0

ω (θ; φ, α)F f (τ
(φ,α)
t ω)

· ht′,0
ω (θ; φ, α)F f (τ

(φ,α)
t′ ω)

] ]∣∣∣∣
(φ,α)=(φ̂†T ,α̂

†

T )

+

[(
σα0

t σ
α0
t′

σαt σ
α
t′

)2

grad(φ,α)=

[
bt,0
ω (θ; φ, α)>ht,0

ω (θ; φ, α)F f (τ
(φ,α)
t ω)
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· ht′,0
ω (θ; φ, α)F f (τ

(φ,α)
t′ ω)

] ]∣∣∣∣
(φ,α)=(φ̂†T ,α̂

†

T )

T→∞
−→ =

[
bt,0
ω (θ; φ0, α0)>

ht,0
ω (θ; φ0, α0)

ht′,0
ω (θ; φ0, α0)

∣∣F f (ω)
∣∣2] grad(φ,α)

{(
σα0

t σ
α0
t′

σαt σ
α
t′

)2
}∣∣∣∣

(φ,α)=(φ0,α0)

+ grad(φ,α)=

[
bt,0
ω (θ; φ, α)>Ft

ω(θ; φ, α)Ft′
ω(θ; φ, α)

] ∣∣∣
(φ,α)=(φ0,α0)

, (6.95)

with convergence in probability, and therefore the mixed derivatives of AT can be obtained as

grad(φ,α)grad>θ AT (θ0; φ̂†T , α̂
†
T )

= 2
∑
t,t′∈T

(
βT

T

)2 ∫
ΩT

grad(φ,α)=

[
bt,0
ω (θ0; φ, α)>Ft

ω(θ0; φ, α)Ft′
ω(θ0; φ, α)

] ∣∣∣
(φ,α)=(φ̂†T ,α̂

†

T )
dω

T→∞
−→ 2

∫
R2

∫ 1

0

∫ 1

0
=

[
bt,0
ω (θ0; φ0, α0)>

∣∣F f (ω)
∣∣2] grad(φ,α)

{(
σα0

t′ σ
α0
t

σαt′σ
α
t

)2
}∣∣∣∣

(φ,α)=(φ0,α0)

+ grad(φ,α)=

[
bt,0
ω (θ0; φ, α)>

ht,0
ω (θ0; φ, α)

ht′,0
ω (θ0; φ, α)

F f (τ
(φ,α)
t ω)F f (τ

(φ,α)
t′ ω)

] ∣∣∣
(φ,α)=(φ0,α0)

dtdt′dω

= 2
∫
R2

∫ 1

0

∫ 1

0
grad(φ,α)=

[
bt,0
ω (θ0; φ, α)>

·
ht,0
ω (θ0; φ, α)

ht′,0
ω (θ0; φ, α)

F f (τ
(φ,α)
t ω)F f (τ

(φ,α)
t′ ω)

] ∣∣∣
(φ,α)=(φ0,α0)

dtdt′dω

= grad(φ,α)grad>θ N(θ0; φ0, α0)

in probability, where we used (6.10) and the fact that the imaginary part of reals is zero in the

second and third steps. The integrals converge by the dominated convergence theorem (Amann

and Escher, 2001, Theorem 3.12), as shown below. We need to give an upper bound for the

norm of the appearing gradient. This can be done as follows. First, we need some preparatory

steps. Note that with C̃ from Lemma 6.7 and using
∣∣ht,t′
ω (θ; φ, α)

∣∣ = 1,∥∥∥grad(φ,α)

(
ht,0
ω (θ; φ, α)/ht′,0

ω (θ; φ, α)
)∥∥∥

=

∥∥∥∥ct,0
ω (θ; φ, α)ht,0

ω (θ; φ, α)ht′,0
ω (θ; φ, α) − ct′,0

ω (θ; φ, α)ht,0
ω (θ; φ, α)ht′,0

ω (θ; φ, α)
ht′,0
ω (θ; φ, α)2

∥∥∥∥
≤2C̃ ‖ω‖ . (6.96)

Second, since the norms of the gradients of the motions functions are bounded by C from

Assumption 2.14 (B2), we have for x ∈ R2 with Cτ B 2σmax
(
σ−1

min + σ−2
min

)
C, using the norm

equivalence that∥∥∥grad(φ,α)

〈
τ
φ,α
t ω, x

〉∥∥∥ ≤ ∥∥∥∥grad(φ,α)

(
σα0

t

σαt

[(
cos
(
ρ
φ
t − ρ

φ0
t

)
ω1 − sin

(
ρ
φ
t − ρ

φ0
t

)
ω2

)
x1

+
(

sin
(
ρ
φ
t − ρ

φ0
t

)
ω1 + cos

(
ρ
φ
t − ρ

φ0
t

)
ω2

)
x2

])∥∥∥
1

≤
σmax

σ2
min

C ‖ω‖1 ‖x‖1 +
σmax

σmin
C ‖ω‖1 ‖x‖1 ≤ Cτ ‖ω‖ ‖x‖ .
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We only need to consider x ∈ R2 with ‖x‖ ≤ C f for C f from Assumption 2.13 (A1). Since f is

integrable as a consequence of Assumption 2.13 (A1), we have that the integral over its absolute

value is bounded by some constant C̃ f . It now follows that

∥∥∥grad(φ,α)F f (τ
(φ,α)
t ω)

∥∥∥ =

∥∥∥∥grad(φ,α)

∫
R2

exp
(
−2πi

〈
τ

(φ,α)
t ω, x

〉)
f (x)dx

∥∥∥∥
= 2π

∥∥∥∥∫
R2

exp
(
−2πi

〈
τ

(φ,α)
t ω, x

〉)
f (x)grad(φ,α)

〈
τ

(φ,α)
t ω, x

〉
dx
∥∥∥∥

≤ 2πCτ ‖ω‖C f

∫
R2
| f (x)| dx ≤ 2πCτC f C̃ f ‖ω‖ . (6.97)

Hence, using Lemma 6.8, we get that∥∥∥∥grad(φ,α)

(
F f (τ

(φ,α)
t ω)F f (τ

(φ,α)
t′ ω)

) ∣∣∣
(φ,α)=(φ̂†T ,α̂

†

T )

∥∥∥∥
=

∥∥∥∥grad(φ,α)F f (τ
(φ,α)
t ω)

∣∣∣
(φ,α)=(φ̂†T ,α̂

†

T )
F f (τ

(φ̂†T ,α̂
†

T )
t′ ω)

+F f (τ
(φ̂†T ,α̂

†

T )
t ω)grad(φ,α)F f (τ

(φ,α)
t′ ω)

∣∣∣
(φ,α)=(φ̂†T ,α̂

†

T )

∥∥∥∥
≤4πCτC f C̃ f ‖ω‖

(∣∣F f (ω)
∣∣ + OP

(
T−

1
2

))
. (6.98)

We further obtain for C from Assumption 2.14 (B2)∥∥∥∥∥grad(φ,α)

(
σα0

t σ
α0
t′

σαt σ
α
t′

)2
∥∥∥∥∥ =

∥∥∥∥∥−2
(
σα0

t σ
α0
t′

σαt σ
α
t′

)2 σαt′grad(φ,α)σ
α
t + σαt grad(φ,α)σ

α
t′

σαt σ
α
t′

∥∥∥∥∥
≤ 4σ4

maxσ
−5
minC. (6.99)

Collecting (6.96), (6.98) and (6.99) and using
∣∣ht,t′
ω (θ; φ, α)

∣∣ = 1 and Lemma 6.7, we obtain∥∥∥∥grad(φ,α)

[
Ft
ω(θ0; φ, α)Ft′

ω(θ0; φ, α)
] ∣∣∣

(φ,α)=(φ̂†T ,α̂
†

T )

∥∥∥∥
1

=

∥∥∥∥∥∥∥grad(φ,α)
ht,0
ω (θ; φ, α)

ht′,0
ω (θ; φ, α)

∣∣∣
(φ,α)=(φ̂†T ,α̂

†

T )

 σα0
t σ

α0
t′

σ
α̂†T
t σ

α̂†T
t′

2

F f (τ
(φ̂†T ,α̂

†

T )
t ω)F f (τ

(φ̂†T ,α̂
†

T )
t′ ω)

+
ht,0
ω (θ; φ̂†T , α̂

†
T )

ht′,0
ω (θ; φ̂†T , α̂

†
T )

grad(φ,α)

(
σα0

t σ
α0
t′

σαt σ
α
t′

)2 ∣∣∣
(φ,α)=(φ̂†T ,α̂

†

T )
F f (τ

(φ̂†T ,α̂
†

T )
t ω)F f (τ

(φ̂†T ,α̂
†

T )
t′ ω)

+
ht,0
ω (θ; φ̂†T , α̂

†
T )

ht′,0
ω (θ; φ̂†T , α̂

†
T )

 σα0
t σ

α0
t′

σ
α̂†T
t σ

α̂†T
t′

2

grad(φ,α)

(
F f (τ

(φ,α)
t ω)F f (τ

(φ,α)
t′ ω)

) ∣∣∣
(φ,α)=(φ̂†T ,α̂

†

T )

∥∥∥∥∥∥∥
1

≤ 2C̃ ‖ω‖
√

d2 + d3σ
4
maxσ

−4
min

(∣∣F f (ω)
∣∣ + OP

(
T−

1
2

))2

+ 4σ4
maxσ

−5
minC

(∣∣F f (ω)
∣∣ + OP

(
T−

1
2

))2

+ 4π ‖ω‖
√

d2 + d3σ
4
maxσ

−4
minCτC f C̃ f

(∣∣F f (ω)
∣∣ + OP

(
T−

1
2

))
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Finally, we arrive at the integrable upper bound∥∥∥∥grad(φ,α)=

[
bt,0
ω (θ0; φ, α)Ft

ω(θ0; φ, α)Ft′
ω(θ0; φ, α)

] ∣∣∣
(φ,α)=(φ̂†T ,α̂

†

T )

∥∥∥∥
1

=

∥∥∥= [Gt,0
ω (θ0; φ̂†T , α̂

†
T )Ft

ω(θ0; φ, α)Ft′
ω(θ0; φ, α)

+bt,0
ω (θ0; φ̂†T , α̂

†
T )grad(φ,α)

(
Ft
ω(θ0; φ, α)Ft′

ω(θ0; φ, α)
) ∣∣∣

(φ,α)=(φ̂†T ,α̂
†

T )

]∥∥∥∥
1

≤

(
C̃ ‖ω‖ + C̃2 ‖ω‖2

)
σ4

maxσ
−4
min

(∣∣F f (ω)
∣∣ + OP

(
T−

1
2

))2

+ 2C̃2 ‖ω‖2
√

d1(d2 + d3)σ4
maxσ

−4
min

(∣∣F f (ω)
∣∣ + OP

(
T−

1
2

))2

+ 4C̃ ‖ω‖
√

d1σ
4
maxσ

−5
minC

(∣∣F f (ω)
∣∣ + OP

(
T−

1
2

))2

+ 4πC̃ ‖ω‖2
√

d1(d2 + d3)σ4
maxσ

−4
minCτC f C̃ f

(∣∣F f (ω)
∣∣ + OP

(
T−

1
2

))
= C1 ‖ω‖

(∣∣F f (ω)
∣∣ + OP

(
T−

1
2

))2
+ C2 ‖ω‖

2
(∣∣F f (ω)

∣∣ + OP

(
T−

1
2

))2

+ C3 ‖ω‖
2
(∣∣F f (ω)

∣∣ + OP

(
T−

1
2

))
,

for some constants C1,C2,C3 > 0. By Assumption 2.13 (A3) and Lemma A.10, ‖ω‖2
∣∣F f (ω)

∣∣ is

integrable. Since H2(R2) ⊂ H1(R2) ⊂ H1/2(R2) by the Sobolev embedding theorem (Theorem

B.11), ‖ω‖2
∣∣F f (ω)

∣∣2 and ‖ω‖
∣∣F f (ω)

∣∣2 are integrable as well. Since r4
T/T = o(1) by Assumption

2.15 (C1), the remaining terms vanish. This yields the integrability of the upper bound needed

to apply the dominated convergence theorem (Amann and Escher, 2001, Theorem 3.12) and

hence, it finishes the proof of the convergence of the mixed derivatives of AT .

Next, we tackle the mixed derivatives of CT . Similarly to before, we get for C̃ from Lemma 6.7,

using Lemma A.5, that

∥∥grad(φ,α)grad>θ CT (θ0; φ, α)
∥∥

=

∥∥∥∥∥grad(φ,α)grad>θ

∫
Ω

(
βT

T

)2 ∑
t,t′∈T

h0,t
ω (θ; φ, α)−1V t

T (ω; φ, α)

·h0,t′
ω (θ; φ, α)−1V t′

T (ω; φ, α)dω
∣∣∣∣
θ=θ0

∥∥∥∥∥
=

∥∥∥∥∥2
∫

ΩT

(
βT

T

)2 ∑
t,t′∈T

grad(φ,α)=

[
bt,0
ω (θ0; φ, α)>h0,t′

ω (θ0; φ, α)V t
T (ω; φ, α)

·h0,t
ω (θ0; φ, α)V t′

T (ω; φ, α)
]

dω
∥∥∥

≤2
∫

ΩT

(
βT

T

)2 ∑
t,t′∈T

∥∥∥grad(φ,α)=

[
bt,0
ω (θ0; φ, α)>h0,t′

ω (θ0; φ, α)V t
T (ω; φ, α)

·h0,t
ω (θ0; φ, α)V t′

T (ω; φ, α)
]∥∥∥ dω.
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It remains to show that uniformly in (φ, α), ω and in t and t′∥∥∥∥grad(φ,α)=

[
bt,0
ω (θ0; φ, α)>

h0,t′
ω (θ0; φ, α)

h0,t
ω (θ0; φ, α)

V t
T (ω; φ, α)V t′

T (ω; φ, α)
]∥∥∥∥

T→∞
−→ 0 in probability. (6.100)

Since the convergence is uniformly in ω, the integral will vanish asymptotically as well. First,

we note that

∣∣V t
T (ω; φ, α)

∣∣ =

∣∣∣∣∣∣ 1
2n
√
βT (σαt )2

n∑
j=1

exp
(
−2πi

〈
1/σαt · Rρφt ω, x j

〉)
εt

j

∣∣∣∣∣∣
≤

1
2σ2

min
√
βT

n∑
j=1

∣∣εt
j

∣∣ = OP

(
β
− 1

2
T

)
(6.101)

With C from Assumption 2.14 (B2) and rT from Definition 2.22 we have using the norm

equivalence that∥∥∥grad(φ,α)

〈
1/σαt · Rρφt ω, x j

〉∥∥∥
=

∥∥∥∥grad(φ,α)

(
1
σαt

((
cos
(
ρ
φ
t

)
ω1 − sin

(
ρ
φ
t

)
ω2

)
x j,1

+
(

sin
(
ρ
φ
t

)
ω1 + cos

(
ρ
φ
t

)
ω2

)
x j,2

))∥∥∥
≤

1
σαt

∥∥∥gradφρ
φ
t

∥∥∥
1

∣∣∣(− sin
(
ρ
φ
t

)
ω1 − cos

(
ρ
φ
t

)
ω2

)
x j,1 +

(
cos
(
ρ
φ
t

)
ω1 − sin

(
ρ
φ
t

))
x j,2

∣∣∣
+

1(
σαt
)2

∥∥gradασ
α
t

∥∥
1

∣∣∣(cos
(
ρ
φ
t

)
ω1 − sin

(
ρ
φ
t

)
ω2

)
x j,1

+
(

sin
(
ρ
φ
t

)
ω1 + cos

(
ρ
φ
t

)
ω2

)
x j,2

∣∣∣
≤
√

2
√

d2 + d3C ‖ω‖
∥∥x j
∥∥

1

(
σ−2

min + σ−1
min
)

= OP (rT ) ,

since
∥∥x j
∥∥

1 ≤ 2 for all j = 1, . . . , n. From this, it follows that, using (6.101) we get

∥∥grad(φ,α)V
t
T (ω; φ, α)

∥∥
=

∥∥∥∥−2grad(φ,α)σ
α
t

σαt
V t

T (ω; φ, α) + V t
T (ω; φ, α)grad(φ,α)

(
−2πi

〈
(σαt )−1R

ρ
φ
t
ω, x j

〉)∥∥∥∥
≤

2
σαt

∥∥gradασ
α
t

∥∥
1

∣∣V t
T (ω; φ, α)

∣∣ +
2πλ

√
βT
(
σαt
)2

∑
j∈JT

∣∣εt
j

∣∣ ∥∥∥grad(φ,α)

〈(
σαt
)−1 R

ρ
φ
t
ω, x j

〉∥∥∥
≤

2
√

d2 + d3Cλ
σ3

min
√
βT

n∑
j=1

∣∣εt
j

∣∣ +
2πλC′rT

σ2
min
√
βT

n∑
j=1

∣∣εt
j

∣∣
≤

2λrT

σ2
min
√
βT

( √
d2 + d3C
σmin

+ πC′
) n∑

j=1

∣∣εt
j

∣∣ = OP

(
rTβ

− 1
2

T

)
, (6.102)
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which implies∥∥∥grad(φ,α)

(
V t

T (ω; φ, α)V t′
T (ω; φ, α)

)∥∥∥ ≤ 2
∥∥grad(φ,α)V

t
T (ω; φ, α)

∥∥ ∣∣V t
T (ω; φ, α)

∣∣
= OP

(
rTβ

−1
T
)

(6.103)

Hence, using again Lemma 6.7,
∣∣ht,t′
ω (θ; φ, α)

∣∣ = 1 and the bounds obtained in (6.101) and

(6.103), we can conclude that for ω ∈ ΩT ,∥∥∥grad(φ,α)=

[
bt,0
ω (θ0; φ, α)>h0,t′

ω (θ0; φ, α)h0,t
ω (θ0; φ, α)−1V t

T (ω; φ, α)V t′
T (ω; φ, α)

]∥∥∥
1

=

∥∥∥= [Gt,0
ω (θ0; φ, α)>h0,t′

ω (θ0; φ, α)h0,t
ω (θ0; φ, α)−1V t

T (ω; φ, α)V t′
T (ω; φ, α)

+ict,t′
ω (θ0; φ, α)bt,0

ω (θ0; φ, α)>h0,t′
ω (θ0; φ, α)h0,t

ω (θ0; φ, α)−1V t
T (ω; φ, α)V t′

T (ω; φ, α)

+ bt,0
ω (θ0; φ, α)>h0,t′

ω (θ0; φ, α)h0,t
ω (θ0; φ, α)−1grad(φ,α)

(
V t

T (ω; φ, α)V t′
T (ω; φ, α)

)]∥∥∥
1

=OP
(
rTβ

−1
T
)

+ 2OP
(
r2

Tβ
−1
T
) T→∞
−→ 0 in probability,

since r2
T = o(βT ) by Assumption 2.15 (C1).

Finally, consider the mixed derivatives of BT . Note that for C̃ f from (6.97)∣∣∣F f

(
τ

(φ,α)
t (ω)

)∣∣∣ ≤ ∫
R2

∣∣∣exp
(
−2πi

〈
τ

(φ,α)
t (ω), x

〉)
f (x)

∣∣∣ dx

=

∫
R2
| f (x)| dx ≤ C̃ f . (6.104)

By the same arguments as above, the first factor of BT converges to some deterministic term

while the second factor converges to zero. More specifically, we have for the gradient of the

integrand of BT that

gradθ<

[(∑
t∈T

Ft
ω(θ; φ, α)

)(∑
t′∈T

h0,t′
ω (θ; φ, α)−1 V t′

T (ω; φ, α)

)]

= <

[∑
t,t′∈T

grad>θ ht,t′
ω (θ; φ, α)

(
σα0

t

σαt

)2

F f (τ
(φ,α)
t ω)V t′

T (ω; φ, α)

]

= <

[∑
t,t′∈T

ibt,t′
ω (θ; φ, α)>ht,t′

ω (θ; φ, α)
(
σα0

t

σαt

)2

F f (τ
(φ,α)
t ω)V t′

T (ω; φ, α)

]
.

Applying also the gradient with respect to (φ, α), we obtain for ω ∈ ΩT

grad(φ,α)<

[(
βT

T

)2 ∑
t,t′∈T

ibt,t′
ω (θ; φ, α)>ht,t′

ω (θ; φ, α)
(
σα0

t

σαt

)2

F f

(
τ

(φ,α)
t ω

)
V t′

T (ω; φ, α)

]

=<

[(
βT

T

)2 ∑
t,t′∈T

iGt,t′
ω (θ; φ, α)>ht,t′

ω (θ; φ, α)
(
σα0

t

σαt

)2

F f

(
τ

(φ,α)
t ω

)
V t′

T (ω; φ, α)

− ct,t′
ω (θ; φ, α)bt,t′

ω (θ; φ, α)>ht,t′
ω (θ; φ, α)

(
σα0

t

σαt

)2

F f

(
τ

(φ,α)
t ω

)
V t′

T (ω; φ, α)
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+ ibt,t′
ω (θ; φ, α)>ht,t′

ω (θ; φ, α)grad(φ,α)

(
σα0

t

σαt

)2

F f

(
τ

(φ,α)
t ω

)
V t′

T (ω; φ, α)

+ ibt,t′
ω (θ; φ, α)>ht,t′

ω (θ; φ, α)
(
σα0

t

σαt

)2

grad(φ,α)F f

(
τ

(φ,α)
t ω

)
V t′

T (ω; φ, α)

+ ibt,t′
ω (θ; φ, α)>ht,t′

ω (θ; φ, α)F f

(
τ

(φ,α)
t ω

)
grad(φ,α)V

t′
T (ω; φ, α)

]
= OP

(
rTβ

− 1
2

T

)
+ OP

(
r2

Tβ
− 1

2
T

)
+ OP

(
rTβ

− 1
2

T

)
+ OP

(
r2

Tβ
− 1

2
T

)
+ OP

(
r2

Tβ
−1
T
)

= OP

(
r2

Tβ
− 1

2
T

)
, (6.105)

using
∣∣ht,t′
ω (θ; φ, α)

∣∣ = 1 and the bounds from Assumption 2.14 (B2), Lemma 6.7, (6.104) and

(6.97), as well as (6.101) and (6.102). Thus, the norm of the mixed derivatives of BT is bounded

by

∥∥grad(φ,α)gradθBT (θ; φ, α)
∥∥

1 =

∫
ΩT

OP

(
r2

Tβ
− 1

2
T

)
dω = OP

(
r4

Tβ
− 1

2
T

)
,

which converges to zero because r4
T = o(

√
βT ) as a consequence of Assumption 2.15 (C1). This

concludes the proof of the second statement and finishes the proof of the convergence of the

mixed derivatives of the empirical contrast functional,

grad(φ,α)grad>θ NT (θ0; φ̂†T , α̂
†
T )

T→∞
−→ grad(φ,α)grad>θ N(θ0; φ0, α0) in probability. �

Theorem 6.14. Suppose that Assumptions 2.13 (A3), 2.14 (B2-B3) and 2.15 hold. Then

gradθNT (θ0; φ0, α0) is asymptotically normally distributed:

√
TgradθNT (θ0; φ0, α0)

T→∞
−→ N(0, Σ̃),

for some covariance matrix Σ̃ stated explicitly in the proof below.

Proof. As before, we use the decompostion NT (θ) B NT (θ; φ0, α0) = AT (θ)+BT (θ)+CT (θ) from

(2.23), where plugging in φ0 and α0, using τ(φ0,α0)
t ω = ω and denoting V t

T (ω) B V t
T (ω; φ0, α0)

yields the following simplified expressions for the three summands:

AT (θ) B −
∫

ΩT

∣∣∣∣∣βT

T

∑
t∈T

Ft
ω(θ; φ0, α0)

∣∣∣∣∣
2

dω = −

∫
ΩT

∣∣∣∣∣βT

T

∑
t∈T

ht,0
ω (θ; φ0, α0)F f (ω)

∣∣∣∣∣
2

dω,

BT (θ) B −
∫

ΩT

2<

[(
βT

T

∑
t∈T

Ft
ω(θ; φ0, α0)

)(
βT

T

∑
t′∈T

h0,t′
ω (θ; φ0, α0)−1V t′

T (ω)

)]
dω

= −

∫
ΩT

2<

[(
βT

T

∑
t∈T

ht,0
ω (θ; φ0, α0)F f (ω)

)(
βT

T

∑
t′∈T

h0,t′
ω (θ; φ0, α0)−1V t′

T (ω)

)]
dω,

CT (θ) B −
∫

ΩT

∣∣∣∣∣βT

T

∑
t∈T

h0,t
ω (θ; φ0, α0)−1V t

T (ω)

∣∣∣∣∣
2

dω.
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Similarly to before we devide the proof into several steps. The aim is to show that

√
TgradθAT (θ0) = 0, (6.106)
√

TgradθCT (θ0)
T→∞
−→ 0 in probability, (6.107)

and
√

TgradθBT (θ0)
T→∞
−→ N(0, Σ̃). (6.108)

Let

S t′
j = 2=

[∫
R2

∫ 1

0
Gt′

j (ω)bt,t′
ω (θ0; φ0, α0)ht,t′

ω (θ0; φ0, α0)dt dω
]
,

with Gt′
j (ω) defined by

Gt′
j (ω) B

(
σα0

t′
)−2 exp

(
2πi
〈

1
σα0

t′
R
ρ
φ0
t′
ω, x j

〉)
F f (ω) . (6.109)

The covariance matrix Σ̃ is then given by

Σ̃ =

∫ 1

0

1
n2

n∑
j=1

S t′
j (S t′

j )T dt′. (6.110)

Note that Σ̃ has finite operatornorm, since by Lemma 6.7 and Lemma A.10,∣∣∣∣∫
R2

∫ 1

0
Gt′

j (ω)bt,t′
ω (θ0; φ0, α0)ht,t′

ω (θ0; φ0, α0)dt dω
∣∣∣∣

≤

∫
R2

∣∣F f (ω)
∣∣ ‖ω‖ dω < ∞.

First, consider the gradient of AT . By Lemma A.5, Lemma 6.7, and since ht,0
ω (θ0; φ0, α0) = 1, it

holds that

√
TgradθAT (θ)

∣∣
θ=θ0

= −
√

T
∫

ΩT

(
βT

T

)2

gradθ

[∑
t,t′∈T

ht,0
ω (θ; φ0, α0)F f (ω) ht′,0

ω (θ; φ0, α0)F f (ω)

] ∣∣∣∣
θ=θ0

dω

= −
√

T
∫

ΩT

(
βT

T

)2

2<

[∑
t,t′∈T

gradθh
t,0
ω (θ; φ0, α0)

∣∣
θ=θ0

∣∣F f (ω)
∣∣2] dω

= −
√

T
∫

ΩT

(
βT

T

)2

2<

[∑
t,t′∈T

ibt,0
ω (θ0; φ0, α0)

∣∣F f (ω)
∣∣2] dω

=
√

T
∫

ΩT

(
βT

T

)2

2
∑
t,t′∈T

=

[
bt,t′
ω (θ0; φ0, α0)

∣∣F f (ω)
∣∣2] dω

= 0,
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proving (6.106). Next, we show the convergence of the gradient of CT . For the integrand we

can calculate using Lemma 6.7 and Lemma 6.3

E

∥∥∥∥∥−gradθ

(
βT

T

)2 ∑
t,t′∈T

h0,t
ω (θ; φ0, α0)−1 V t

T (ω)h0,t′
ω (θ; φ0, α0)−1 V t′

T (ω)
∣∣∣∣
θ=θ0

∥∥∥∥∥
=E

∥∥∥∥∥2<

[(
βT

T

)2 ∑
t,t′∈T

ib0,t
ω (θ0; φ0, α0)h0,t

ω (θ0; φ0, α0)−1 V t
T (ω)h0,t′

ω (θ0; φ0, α0)−1 V t′
T (ω)

]∥∥∥∥∥
≤2C̃ ‖ω‖

(
βT

T

)2 ∑
t,t′∈T

E
∣∣∣V t

T (ω)V t′
T (ω)

∣∣∣
=2C̃ ‖ω‖

(
βT

T

)2 ∑
t,t′∈T

O

(
1
βT

)
=O

(
rT

βT

)
,

for ω ∈ ΩT , with C̃ from Lemma 6.7. Hence, for the gradient of CT it holds that

E
∥∥∥√TgradθCT (θ0)

∥∥∥ ≤ √T
∫

ΩT

O
(
rTβ

−1
T
)

dω = O
(√

Tr3
Tβ
−1
T

)
.

By Assumption 2.15 (C2),
√

Tr3
Tβ
−1
T → 0 as T → ∞ and hence, (6.107) follows.

Finally, we tackle the asymptotic behavior of the remaining term
√

TgradθBT (θ0). For the

gradient we obtain

gradθBT (θ0)

= −

∫
ΩT

2<

[(
βT

T

)2 ∑
t,t′∈T

gradθh
t,t′
ω (θ; φ0, α0)

∣∣∣∣
θ=θ0

F f (ω) V t′
T (ω)

]
dω

= −

∫
ΩT

2<

[(
βT

T

)2 ∑
t,t′∈T

ibt,t′
ω (θ0; φ0, α0)ht,t′

ω (θ0; φ0, α0)F f (ω) V t′
T (ω)

]
dω

=

∫
ΩT

2
(
βT

T

)2 ∑
t,t′∈T

=

[
bt,t′
ω (θ0; φ0, α0)ht,t′

ω (θ0; φ0, α0)F f (ω) V t′
T (ω)

]
dω

=

∫
ΩT

2
(
βT

T

)2 ∑
t,t′∈T

=

[
bt,t′
ω (θ0; φ0, α0)ht,t′

ω (θ0; φ0, α0)F f (ω)

·
1

2n
√
βT (σα0

t′ )2

n∑
j=1

exp
(

2πi
〈

1/σα0
t′ · Rρφ0

t′
ω, x j

〉)
εt′

j

 dω

=

√
βT

T

∑
t′∈T

1
n

n∑
j=1

εt′
j =

[∫
ΩT

βT

T

∑
t∈T

bt,t′
ω (θ0; φ0, α0)ht,t′

ω (θ0; φ0, α0) Gt′
j (ω) dω

]
,

with Gt′
j from 6.109.
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For ξ ∈ Rd1 , we get that〈
ξ,
√

TgradθBT (θ0)
〉

=

√
βT

T

∑
t′∈T

1
n

n∑
j=1

εt′
j =

[∫
ΩT

βT

T

∑
t∈T

〈
ξ, bt,t′

ω (θ0; φ0, α0)
〉

ht,t′
ω (θ0; φ0, α0) Gt′

j (ω) dω

]

is a linear combination of the independent standard normal random variables εt′
j and thus, itself

a centered Gaussian random variable with variance

βT

T

∑
t′∈T

1
n2

n∑
j=1

=

[∫
ΩT

βT

T

∑
t∈T

〈
ξ, bt,t′

ω (θ0; φ0, α0)
〉

ht,t′
ω (θ0; φ0, α0) Gt′

j (ω) dω

]2

,

converging to

∫ 1

0

1
n2

n∑
j=1

=

[∫
R2

∫ 1

0

〈
ξ, bt,t′

ω (θ0; φ0, α0)
〉

ht,t′
ω (θ0; φ0, α0) Gt′

j (ω) dt dω
]2

dt′,

as T → ∞. This can be written as ξT Σ̃ξ with Σ̃ from (6.110). Cramér-Wold’s Theorem (Theorem

B.5) yields the claimed convergence in distribution of the gradient of BT . Now, (6.106), (6.107)

and (6.108) together with Slutzky’s Lemma (Theorem B.9) prove the third statement, namely

that gradθNT (θ0; φ0, α0) can be written as a linear combination of the errors εt
j plus some oP(1)

term. �

Lemma 6.15. Under Assumptions 2.13 (A2-A3) and 2.14 (B2-B3), HessθN(θ; φ0, α0) has finite

operator norm for all θ ∈ U′ with U′ ⊂ Θ from Assumption 2.14 (B2). Moreover,

HN B HessθN(θ0; φ0, α0) (6.111)

is symmetric. If the Assumptions 2.14 (B1, B4, and B8) hold, HN is also positive definite and

thus, invertible.

Proof. By Lemma 6.7, Lemma A.6, and Theorem B.4 on the differentiability of parameter

integrals, we get

HessθN(θ; φ0, α0)

= −Hessθ

∫
R2

∣∣F f (ω)
∣∣2 ∫ 1

0

∫ 1

0
ht,0
ω (θ; φ0, α0)ht′,0

ω (θ; φ0, α0)dtdt′dω

= −2
∫
R2

∣∣F f (ω)
∣∣2 ∫ 1

0

∫ 1

0
<

(
ht′,0
ω (θ; φ0, α0) Hessθht,0

ω (θ; φ0, α0)

+ grad>θ ht,0
ω (θ; φ0, α0)gradθh

t′,0
ω (θ; φ0, α0)

)
dtdt′dω

= −2
∫
R2

∣∣F f (ω)
∣∣2 ∫ 1

0

∫ 1

0
<

(
ht,0
ω (θ; φ0, α0)ht′,0

ω (θ; φ0, α0)
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·

[
iH t,0

ω (θ; φ, α) − bt,0
ω (θ; φ0, α0)

(
bt,0
ω (θ; φ0, α0) − bt′,0

ω (θ; φ0, α0)
)>])

dtdt′dω. (6.112)

Let ξ ∈ Rd1 with ‖ξ‖ = 1. Then, because f ∈ H2(R2) by Assumption 2.13 (A3), using the

equivalence of norms and the Sobolev embedding theorem, we have with C̃ from Lemma 6.7,

‖HessθN(θ; φ0, α0)ξ‖

≤ 2
∫
R2

∣∣F f (ω)
∣∣2 ∫ 1

0

∫ 1

0

∥∥H t,0
ω (θ; φ, α)

∥∥
1 +
∥∥bt,0

ω (θ; φ0, α0)
∥∥

·

(∥∥bt,0
ω (θ; φ0, α0)

∥∥ +

∥∥∥bt′,0
ω (θ; φ0, α0)

∥∥∥) dtdt′dω

≤ 2
∫
R2

∣∣F f (ω)
∣∣2 (C̃ ‖ω‖ + 2C̃2 ‖ω‖2

)
dω < ∞.

Thus, Hessθ(θ0; φ0, α0) has finite operator norm. From (6.112), we have for θ = θ0 that

HN = HessθN(θ0; φ0, α0)

= 2
∫
R2

∣∣F f (ω)
∣∣2 ∫ 1

0

∫ 1

0
bt,0
ω (θ0; φ0, α0)

(
bt,0
ω (θ0; φ0, α0) − bt′,0

ω (θ0; φ0, α0)
)>

dtdt′dω

= 2
∫
R2

∣∣F f (ω)
∣∣2(∫ 1

0
bt,0
ω (θ0; φ0, α0)bt,0

ω (θ0; φ0, α0)>dt

−

(∫ 1

0
bt,0
ω (θ0; φ0, α0)dt

)(∫ 1

0
bt′,0
ω (θ0; φ0, α0)dt′

)>)
dω. (6.113)

Since matrices of the form xx> with x ∈ Rd1 are symmetric, it follows that HN is symmetric.

Now, let ξ ∈ Rd1 \ {0}. By Assumption 2.13 (A2) and Lemma A.9, there is an open Borel set

B ⊆ R2 with positive Lebesgue measure such that F f (ω) , 0 for all ω ∈ B. Similarly to (6.74),

the goal is now to show that if Assumptions 2.14 (B4, B8) hold, there is another Borel set

B′ ⊆ [0, 1] with positive Lebesgue measure such that

B′ → R, t 7→
〈
ξ,bt,0

ω (θ0; φ0, α0)
〉

is not constant for all ω ∈ R2 \ Ω0 with some Lebesgue null-set Ω0 ⊆ R2. To this end we define

S 1(t) B
∑d1

m=1 ξm
∂(δθt )1
∂θm

∣∣∣
θ=θ0

and S 2(t) B
∑d1

m=1 ξm
∂(δθt )2
∂θm

∣∣∣
θ=θ0

. Similarly to before we know that

if S i, i = 1, 2 were constant a.e. they would have to be zero a.e. as
(
δθt
)

i, i = 1, 2, are continuous

at t = 0 by Assumption 2.14 (B4) and take the value
(
δθ0
)

i = 0 there by Assumption 2.14 (B1).

However, by Assumption 2.14 (B8) the components of the gradient of the drift function are

linearly independent, which is why there has to be some Borel set B′ such that S 1 is non-constant

on this set, and the same holds for S 2. Let now

a(t) B
(
σα0

t
)−1
(

cos
(
ρ
φ0
t

)
S 1(t) + sin

(
ρ
φ0
t

)
S 2(t)

)
,

b(t) B
(
σα0

t
)−1
(
− sin

(
ρ
φ0
t

)
S 1(t) + cos

(
ρ
φ0
t

)
S 2(t)

)
,
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and suppose the scalar product is constant, i.e.,

〈
ξ,bt,0

ω (θ0; φ0, α0)
〉

= 2π (ω1a(t) + ω2b(t)) = c a.e.

For the same reasons as before, this can only hold for c = 0. For that to be fulfilled either we

need a(t) = 0 a.e. and b(t) = 0 a.e. or ω1 is determined by ω2, which implies that ω ∈ Ω0 for

some Lebesgue null-set Ω0 ⊂ R. Assume both a and b are zero a.e. Since σα0
t ∈ [σmin, σmax],

from a(t) = 0 a.e. we get that S 2(t) = −
(

sin
(
ρ
φ0
t

))−1
cos
(
ρ
φ0
t

)
S 1(t) a.e. Together with

b(t) = 0 a.e. this yields that

− sin
(
ρ
φ0
t

)
S 1(t) − cos

(
ρ
φ0
t

)(
sin
(
ρ
φ0
t

))−1
cos
(
ρ
φ0
t

)
S 1(t) =

(
sin
(
ρ
φ0
t

))−1
S 1(t) = 0

a.e., leading to a contradiction since S 1(t) is non-constant on B′. Hence, it follows that

B′ → R, t 7→
〈
ξ,bt,0

ω (θ0; φ0, α0)
〉

is not constant for all ω ∈ R2 \Ω0 with some Lebesgue null-set Ω0 ⊆ R2.

Since the Cauchy-Schwarz inequality (Theorem B.1) implies that
(∫ 1

0 g(t) dt
)2
≤
∫ 1

0 g(t)2 dt for

all integrable functions g : [0, 1]→ R, with equality if and only if g is constant a.e., we get that

for almost all ω∫ 1

0

〈
ξ, bt,0

ω (θ0; φ0, α0)
〉2

dt −
(∫ 1

0

〈
ξ, bt,0

ω (θ0; φ0, α0)
〉

dt
)2

> 0.

Hence,

ξ>HNξ ≥ 2
∫

B

∣∣F f (ω)
∣∣2 [∫ 1

0

〈
ξ, bt,0

ω (θ0; φ0, α0)
〉2

dt −
(∫ 1

0

〈
ξ, bt,0

ω (θ0; φ0, α0)
〉

dt
)2]

dω > 0,

since the integrand (as a function in ω) is strictly positive on B. We conclude that HN is

symmetric and positive definite and thus, invertible. �

Theorem 6.16. Under the Assumption 2.14 (B2), let
(
θ̂∗T
)

T∈N be a sequence of random vectors

with values in U′ from that Assumption, such that θ̂∗T
T→∞
−→ θ0 in probability. Suppose, that the

Assumptions 2.13 (A3) and 2.14 (B2 -B4, B6) hold. Assume further that Assumption 2.15 is

fulfilled. Then, with HN from (6.111),

∥∥HessθNT (θ̂∗T ; φ̂T , α̂T ) − HN
∥∥

1
T→∞
−→ 0 in probability.

Proof. The idea is to consider again the decomposition (2.23) and show that

∥∥HessθAT (θ̂∗T ; φ̂T , α̂T ) − HN
∥∥ T→∞
−→ 0 in probability, and

sup
θ∈U′

∥∥HessθBT (θ; φ̂T , α̂T ) + HessθCT (θ; φ̂T , α̂T )
∥∥ T→∞
−→ 0 in probability,
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with U′ ⊂ Θ from Assumption 2.14 (B2).

First we tackle the Hessian of AT . With Lemma 6.7, Lemma A.5, and τ(φ̂T ,α̂T )
t from Definition

2.21, we get

HessθAT (θ; φ̂T , α̂T )

= Hessθ

−∫
ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0

t

σα̂T
t

)2

ht,0
ω (θ; φ̂T , α̂T )F f

(
τ

(φ̂T ,α̂T )
t ω

)(σα0
t′

σα̂T
t′

)2

·ht′,0
ω (θ; φ̂T , α̂T )F f

(
τ

(φ̂T ,α̂T )
t′ ω

)
dω
]

= − 2
∫

ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0

t σ
α0
t′

σα̂T
t σα̂T

t′

)2

<

{
F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)
· Hessθht,0

ω (θ; φ̂T , α̂T )ht′,0
ω (θ; φ̂T , α̂T ) + gradθh

t,0
ω (θ; φ̂T , α̂T )grad>θ ht′,0

ω (θ; φ̂T , α̂T )
}

dω

= − 2
∫

ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0

t σ
α0
t′

σα̂T
t σα̂T

t′

)2

<

{
F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)
· ht,0

ω (θ; φ̂T , α̂T )ht′,0
ω (θ; φ̂T , α̂T )

[
iH t,0

ω (θ; φ̂T , α̂T ) − bt,0
ω (θ; φ̂T , α̂T )bt,0

ω (θ; φ̂T , α̂T )>

+bt,0
ω (θ; φ̂T , α̂T )bt′,0

ω (θ; φ̂T , α̂T )>
]}

dω

= − 2
∫

ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0

t σ
α0
t′

σα̂T
t σα̂T

t′

)2

<

{
F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)
ht,0
ω (θ; φ̂T , α̂T )

· ht′,0
ω (θ; φ̂T , α̂T )

[
iH t,0

ω (θ; φ̂T , α̂T ) − bt,0
ω (θ; φ̂T , α̂T )bt,t′

ω (θ; φ̂T , α̂T )>
]}

dω. (6.114)

where we used that bt,0
ω (θ; φ, α) − bt′,0

ω (θ; φ, α) = bt,t′
ω (θ; φ, α). By the Lipschitz-continuity of ht,t′

ω

in δθt as a function of the type x 7→ ei〈a,x〉 having Lipschitz constant
√

2 ‖a‖ we have for θ̂∗T ∈ Uδ

with Uδ ⊂ Θ from Assumption 2.14 (B6) that

∣∣ht,0
ω (θ̂∗T ; φ̂T , α̂T ) − 1

∣∣ ≤ 2π
√

2
∥∥∥∥(σα̂T

t

)−1
R
ρ
φ̂T
t
ω

∥∥∥∥∥∥∥δθ̂∗Tt − δ
θ0
t

∥∥∥
≤ 2π

√
2σ−1

min ‖ω‖ Lδ
∥∥θ̂∗T − θ0

∥∥
= oP

(
‖ω‖
)
, (6.115)

since
∥∥∥R

ρ
φ̂T
t
ω
∥∥∥ = ‖ω‖, as any rotation is isometric. Because of this and

∣∣ht,t′
ω (θ; φ, α)

∣∣ = 1 we

have ∣∣∣ht,0
ω (θ̂∗T ; φ̂T , α̂T )ht′,0

ω (θ̂∗T ; φ̂T , α̂T ) − 1
∣∣∣

≤
∣∣ht,0
ω (θ̂∗T ; φ̂T , α̂T ) − 1

∣∣ ∣∣∣ht′,0
ω (θ̂∗T ; φ̂T , α̂T )

∣∣∣ +

∣∣∣ht′,0
ω (θ̂∗T ; φ̂T , α̂T ) − 1

∣∣∣
= oP

(
‖ω‖
)
. (6.116)
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In particular, the imaginary part converges to 0. With (6.47), (6.46), and (6.116), we have using

Lemma 6.7 and again
∣∣ht,t′
ω (θ; φ, α)

∣∣ = 1, that∥∥∥∥<{F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)
ht,0
ω (θ̂∗T ; φ̂T , α̂T )ht′,0

ω (θ̂∗T ; φ̂T , α̂T )

·iH t,0
ω (θ̂∗T ; φ̂T , α̂T )

}∥∥
1

=

∣∣∣∣={F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)
ht,0
ω (θ̂∗T ; φ̂T , α̂T )ht′,0

ω (θ̂∗T ; φ̂T , α̂T )
}∣∣∣∣

·
∥∥H t,0

ω (θ̂∗T ; φ̂T , α̂T )
∥∥

1

=

∣∣∣∣={F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)}
<

{
ht,0
ω (θ̂∗T ; φ̂T , α̂T )ht′,0

ω (θ̂∗T ; φ̂T , α̂T )
}

+ <

{
F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)}
=

{
ht,0
ω (θ̂∗T ; φ̂T , α̂T )ht′,0

ω (θ̂∗T ; φ̂T , α̂T )
} ∣∣∣∣

·
∥∥H t,0

ω (θ̂∗T ; φ̂T , α̂T )
∥∥

1

≤

∣∣∣∣={F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)}∣∣∣∣ ∥∥H t,0
ω (θ̂∗T ; φ̂T , α̂T )

∥∥
1

+

∣∣∣F f

(
τ

(φ̂T ,α̂T )
t ω

)∣∣∣ ∣∣∣F f

(
τ

(φ̂T ,α̂T )
t′ ω

)∣∣∣ ∣∣∣={ht,0
ω (θ̂∗T ; φ̂T , α̂T )ht′,0

ω (θ̂∗T ; φ̂T , α̂T )
}∣∣∣

·
∥∥H t,0

ω (θ̂∗T ; φ̂T , α̂T )
∥∥

1

= OP

(
‖ω‖

T
+
‖ω‖

∣∣F f (ω)
∣∣

√
T

)
+ oP

(
‖ω‖2

∣∣F f (ω)
∣∣2) .

It follows that∥∥∥∥∫
ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0

t σ
α0
t′

σα̂T
t σα̂T

t′

)2

<

{
F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)
·ht,0
ω (θ̂∗T ; φ̂T , α̂T )ht′,0

ω (θ̂∗T ; φ̂T , α̂T ) · iH t,0
ω (θ̂∗T ; φ̂T , α̂T )

}
dω
∥∥∥∥

1

≤

(
σmax

σmin

)4 ∫
ΩT

β2
T

T 2

∑
t,t′∈T

OP

(
‖ω‖

T
+
‖ω‖

∣∣F f (ω)
∣∣

√
T

)
+ oP

(
‖ω‖2

∣∣F f (ω)
∣∣2) dω

= OP

(
r3

T
T

+
1
√

T

∫
ΩT

‖ω‖
∣∣F f (ω)

∣∣ dω
)

+ oP

(∫
ΩT

‖ω‖2
∣∣F f (ω)

∣∣2 dω
)

= oP(1), (6.117)

because of r3
T/T

T→∞
−→ 0 (Assumption 2.15 (C1)), Assumption 2.13 (A3) and Lemma A.10.

Similarly, ∥∥∥∥<{F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)
· iH t,0

ω (θ0; φ̂T , α̂T )
}∥∥∥∥

1

=

∣∣∣∣={F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)}∣∣∣∣ ∥∥H t,0
ω (θ0; φ̂T , α̂T )

∥∥
1

= OP

(
‖ω‖

T
+
‖ω‖

∣∣F f (ω)
∣∣

√
T

)
,



102 Proofs

which implies that

∥∥∥∥∫
ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0

t σ
α0
t′

σα̂T
t σα̂T

t′

)2

<

{
F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)
·iH t,0

ω (θ0; φ̂T , α̂T )
}

dω
∥∥∥∥

1
= oP(1). (6.118)

For i = 1, 2 we define the notation

gδi
t B gradθ

(
δθt
)

i

∣∣
θ=θ̂∗T
− gradθ

(
δθt
)

i

∣∣
θ=θ0

.

Note that since θ̂∗T
T→∞
−→ θ0 and δθt is differentiable by Assumption 2.14 (B2), we have that∥∥gδi

t

∥∥ T→∞
−→ 0 by the continuous mapping theorem (Theorem B.8). Using this, we obtain∥∥∥bt,t′

ω (θ̂∗T ; φ̂T , α̂T )
)
θ
−

(
bt,t′
ω (θ0; φ̂T , α̂T )

∥∥∥
1

= 2π
∥∥∥∥ω1

[(
σα̂T

t

)−1 (
cos
(
ρ
φ̂T
t

)
gδ1

t + sin
(
ρ
φ̂T
t

)
gδ2

t

)
−

(
σα̂T

t′

)−1 (
cos
(
ρ
φ̂T
t′

)
gδ1

t′ + sin
(
ρ
φ̂T
t′

)
gδ2

t′

)]
+ ω2

[(
σα̂T

t

)−1 (
− sin

(
ρ
φ̂T
t

)
gδ1

t + cos
(
ρ
φ̂T
t

)
gδ2

t

)
−

(
σα̂T

t′

)−1 (
− sin

(
ρ
φ̂T
t′

)
gδ1

t′ + cos
(
ρ
φ̂T
t′

)
gδ2

t′

)]∥∥∥∥
1

≤ ‖ω‖1 σ
−1
min
(∥∥gδ1

t

∥∥
1 +
∥∥gδ2

t

∥∥
1 +
∥∥gδ1

t′
∥∥

1 +
∥∥gδ2

t′
∥∥

1

)
= ‖ω‖1 oP(1) = oP (‖ω‖) . (6.119)

Hence, for C̃ from Lemma 6.7 we have using that
∣∣ht,t′
ω (θ; φ, α)

∣∣ = 1, as well as (6.116) and

(6.119), that ∥∥∥ht,0
ω (θ̂∗T ; φ̂T , α̂T )ht′,0

ω (θ̂∗T ; φ̂T , α̂T )bt,0
ω (θ̂∗T ; φ̂T , α̂T )bt,t′

ω (θ̂∗T ; φ̂T , α̂T )>

−bt,0
ω (θ0; φ̂T , α̂T )bt,t′

ω (θ0; φ̂T , α̂T )>
∥∥∥

1

≤

∣∣∣ht,0
ω (θ̂∗T ; φ̂T , α̂T )ht′,0

ω (θ̂∗T ; φ̂T , α̂T ) − 1
∣∣∣ ∥∥∥bt,0

ω (θ̂∗T ; φ̂T , α̂T )bt,t′
ω (θ̂∗T ; φ̂T , α̂T )>

∥∥∥
1

+

∥∥∥bt,0
ω (θ̂∗T ; φ̂T , α̂T )

[
bt,t′
ω (θ̂∗T ; φ̂T , α̂T ) − bt,t′

ω (θ0; φ̂T , α̂T )
]>∥∥∥

1

+

∥∥∥[bt,0
ω (θ̂∗T ; φ̂T , α̂T ) − bt,0

ω (θ0; φ̂T , α̂T )
]
bt,t′
ω (θ0; φ̂T , α̂T )>

∥∥∥
1

≤ d1C̃2 ‖ω‖2 oP
(
‖ω‖
)

+
√

d1C̃ ‖ω‖ oP
(
‖ω‖
)

= oP
(
‖ω‖3

)
. (6.120)

With (6.46), (6.114), (6.117), (6.118), and (6.120) it follows that

∥∥HessθAT (θ̂∗T ; φ̂T , α̂T ) − HessθAT (θ0; φ̂T , α̂T )
∥∥

1
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=

∥∥∥∥2
∫

ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0

t σ
α0
t′

σα̂T
t σα̂T

t′

)2

<

{
F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)
·

(
ht,0
ω (θ̂∗T ; φ̂T , α̂T )ht′,0

ω (θ̂∗T ; φ̂T , α̂T )bt,0
ω (θ̂∗T ; φ̂T , α̂T )bt,t′

ω (θ̂∗T ; φ̂T , α̂T )>

−bt,0
ω (θ0; φ̂T , α̂T )bt,t′

ω (θ0; φ̂T , α̂T )>
)}

dω
∥∥∥∥

1
+ oP(1)

≤ 2
∫

ΩT

β2
T

T 2

∑
t,t′∈T

(
σmax

σmin

)4 ∣∣∣F f

(
τ

(φ̂T ,α̂T )
t ω

)∣∣∣ ∣∣∣F f

(
τ

(φ̂T ,α̂T )
t′ ω

)∣∣∣ oP(‖ω‖3) dω + oP(1)

= oP

(∫
ΩT

‖ω‖3

(
1
T

+

∣∣F f (ω)
∣∣

√
T

+
∣∣F f (ω)

∣∣2) dω

)
+ oP(1)

= oP

(
r5

T
T

+
r2

T√
T

∫
ΩT

‖ω‖
∣∣F f (ω)

∣∣ dω +

∫
ΩT

‖ω‖3
∣∣F f (ω)

∣∣2 dω
)

+ oP(1)

= oP(1), (6.121)

because of r5
T/T

T→∞
−→ 0 (Assumption 2.15 (C1)), Assumption 2.13 (A3) and Lemma A.10. By

Lemma 6.15, HN has finite operator norm. In particular, the components of HN are finite. Hence,

with (6.113)∥∥∥∥2
∫
R2\ΩT

∣∣F f (ω)
∣∣2 ∫ 1

0

∫ 1

0
bt,0
ω (θ0; φ0, α0)bt,t′

ω (θ0; φ0, α0)> dt dt′ dω
∥∥∥∥

1
= o(1),

as T → ∞. With (6.114), (6.117) and (6.121), it follows that

∥∥HessθAT (θ̂∗T ; φ̂T , α̂T ) − HN
∥∥

1 =
∥∥HessθAT (θ0; φ̂T , α̂T ) − HN

∥∥
1 + oP(1)

≤ 2
∫

ΩT

∥∥∥∥β2
T

T 2

∑
t,t′∈T

( σα0
t σ

α0
t′

σα̂T
t σα̂T

t′

)2

<

{
F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)}
·bt,0
ω (θ0; φ̂T , α̂T )bt,t′

ω (θ0; φ̂T , α̂T )>
]

−
∣∣F f (ω)

∣∣2 ∫ 1

0

∫ 1

0
bt,0
ω (θ0; φ0, α0)bt,t′

ω (θ0; φ0, α0)> dt dt′
∥∥∥∥

1
dω + oP(1)

≤ 2
∫

ΩT

β2
T

T 2

∑
t,t′∈T

[(
σα0

t σ
α0
t′

σα̂T
t σα̂T

t′

)2 ∣∣∣∣F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)∣∣∣∣
·

∥∥∥bt,0
ω (θ0; φ̂T , α̂T ) − bt,t′

ω (θ0; φ̂T , α̂T )>bt,0
ω (θ0; φ0, α0)bt,t′

ω (θ0; φ0, α0)>
∥∥∥

1

+

∣∣∣∣∣∣
(
σα0

t σ
α0
t′

σα̂T
t σα̂T

t′

)2

<

{
F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)}
−
∣∣F f (ω)

∣∣2∣∣∣∣∣∣
·

∥∥∥bt,0
ω (θ0; φ0, α0)bt,t′

ω (θ0; φ0, α0)>
∥∥∥

1

]
+
∣∣F f (ω)

∣∣2 ∥∥∥∥∥β2
T

T 2

∑
t,t′∈T

bt,0
ω (θ0; φ0, α0)bt,t′

ω (θ0; φ0, α0)>
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−

∫ 1

0

∫ 1

0
bt,0
ω (θ0; φ0, α0)bt,t′

ω (θ0; φ0, α0)> dt dt′
∥∥∥∥

1
dω + oP(1) (6.122)

To show convergence of the first of the three summands, note that by Assumption 2.14 (B4) and

the continuous mapping theorem (Theorem B.8)∣∣∣∣(σα̂T
t

)−1
cos
(
ρ
φ̂T
t

)
−
(
σα0

t
)−1 cos

(
ρ
φ0
t

)∣∣∣∣
=

∣∣∣∣(σα̂T
t

)−1 (
cos
(
ρ
φ̂T
t

)
− cos

(
ρ
φ0
t

))∣∣∣∣ +

∣∣∣∣((σα̂T
t

)−1
−
(
σα0

t
)−1
)

cos
(
ρ
φ0
t

)∣∣∣∣
≤ σ−1

minoP(1) + oP(1) = oP(1).

The same holds true if we substitute the cosine by the sine function. Hence, it follows that∥∥bt,t′
ω (θ0; φ̂T , α̂T )> − bt,t′

ω (θ0; φ0, α0)>
∥∥

1 = oP (‖ω‖), as well, from the definition of bt,t′
ω and

Assumption 2.14 (B2). From this it follows for C from Assumption 2.14 (B2), that∥∥∥bt,t′
ω (θ0; φ̂T , α̂T )> − bt,t′

ω (θ0; φ0, α0)>
∥∥∥

1

=

∥∥∥∥ω1

[((
σα̂T

t

)−1
cos
(
ρ
φ̂T
t

)
−
(
σα0

t
)−1 cos

(
ρ
φ0
t

))
gradθ

(
δθ0

t

)
1

+

((
σα̂T

t

)−1
sin
(
ρ
φ̂T
t

)
−
(
σα0

t
)−1 sin

(
ρ
φ0
t

))
gradθ

(
δθ0

t

)
2

−

((
σα̂T

t

)−1
cos
(
ρ
φ̂T
t′

)
−
(
σα0

t
)−1 cos

(
ρ
φ0
t′

))
gradθ

(
δθ0

t′

)
1

−

((
σα̂T

t

)−1
sin
(
ρ
φ̂T
t′

)
−
(
σα0

t
)−1 sin

(
ρ
φ0
t′

))
gradθ

(
δθ0

t′

)
2

]
+ ω2

[(
−

(
σα̂T

t

)−1
sin
(
ρ
φ̂T
t

)
+
(
σα0

t
)−1 sin

(
ρ
φ0
t

))
gradθ

(
δθ0

t

)
1

+

((
σα̂T

t

)−1
cos
(
ρ
φ̂T
t

)
−
(
σα0

t
)−1 cos

(
ρ
φ0
t

))
gradθ

(
δθ0

t

)
2

−

(
−

(
σα̂T

t

)−1
sin
(
ρ
φ̂T
t′

)
+
(
σα0

t
)−1 sin

(
ρ
φ0
t′

))
gradθ

(
δθ0

t′

)
1

−

((
σα̂T

t

)−1
cos
(
ρ
φ̂T
t′

)
−
(
σα0

t
)−1 cos

(
ρ
φ0
t′

))
gradθ

(
δθ0

t′

)
2

]∥∥∥∥
1

=4C ‖ω‖1 oP(1) = oP (‖ω‖) .

Thus, for C̃ from Lemma 6.7∥∥∥bt,0
ω (θ0; φ̂T , α̂T )bt,t′

ω (θ0; φ̂T , α̂T )> − bt,0
ω (θ0; φ0, α0)bt,t′

ω (θ0; φ0, α0)>
∥∥∥

1

≤

∥∥∥bt,0
ω (θ0; φ̂T , α̂T )

(
bt,t′
ω (θ0; φ̂T , α̂T )> − bt,t′

ω (θ0; φ0, α0)>
)∥∥∥

1

+

∥∥∥(bt,0
ω (θ0; φ̂T , α̂T ) − bt,0

ω (θ0; φ0, α0)
)
bt,t′
ω (θ0; φ0, α0)>

∥∥∥
1

≤2
√

d1C̃ ‖ω‖ oP (‖ω‖) = oP
(
‖ω‖2

)
. (6.123)
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Using (6.46) we conclude that for the first summand in (6.122)

2
∫

ΩT

β2
T

T 2

∑
t,t′∈T

(
σα0

t σ
α0
t′

σα̂T
t σα̂T

t′

)2 ∣∣∣∣F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)∣∣∣∣
·

∥∥∥bt,0
ω (θ0; φ̂T , α̂T )bt,t′

ω (θ0; φ̂T , α̂T )> − bt,0
ω (θ0; φ0, α0)bt,t′

ω (θ0; φ0, α0)>
∥∥∥

1
dω

≤ 2
∫

ΩT

β2
T

T 2

∑
t,t′∈T

(
σmax

σmin

)4 ∣∣∣F f

(
τ

(φ̂T ,α̂T )
t ω

)∣∣∣ ∣∣∣F f

(
τ

(φ̂T ,α̂T )
t′ ω

)∣∣∣ oP(‖ω‖2) dω

= oP

(∫
ΩT

‖ω‖2

(
1
T

+

∣∣F f (ω)
∣∣

√
T

+
∣∣F f (ω)

∣∣2) dω

)
= oP(1), (6.124)

analogously to before, by Assumption 2.15 and Assumption 2.13 (A3) together with Lemma

A.10. To tackle the second summand observe that by the continuous mapping theorem (Theorem

B.8) we have (
σα0

t σ
α0
t′

σα̂T
t σα̂T

t′

)2
T→∞
−→ 1 in probability.

Using again (6.46) and C̃ from Lemma 6.7 we can show that

∫
ΩT

β2
T

T 2

∑
t,t′∈T

∣∣∣∣∣∣
(
σα0

t σ
α0
t′

σα̂T
t σα̂T

t′

)2

<

{
F f

(
τ

(φ̂T ,α̂T )
t ω

)
F f

(
τ

(φ̂T ,α̂T )
t′ ω

)}
−
∣∣F f (ω)

∣∣2∣∣∣∣∣∣
·

∥∥∥bt,0
ω (θ0; φ0, α0)bt,t′

ω (θ0; φ0, α0)>
∥∥∥

1
dω

≤

∫
ΩT

d1C̃2 ‖ω‖2

∣∣∣∣∣(1 + oP(1)
)
OP

(
1
T

+

∣∣F f (ω)
∣∣

√
T

+
∣∣F f (ω)

∣∣2) − ∣∣F f (ω)
∣∣2∣∣∣∣∣ dω

= oP(1), (6.125)

by Assumption 2.13 (A3), Lemma A.10 and Assumption 2.15. Note that under Assumption 2.14

(B3), using that x 7→ x−1 restricted to [σmin, σmax] as well as x 7→ cos(x) and x 7→ sin(x) are

Lipschitz continuous functions preserving the bounded variation property, we get from part 1 of

Lemma A.4 that TV
(

t 7→
(
σα0

t
)−1 sin

(
ρ
φ0
t

))
and TV

(
t 7→

(
σα0

t
)−1 cos

(
ρ
φ0
t

))
are bounded.

Using part 4 and again part 1 of Lemma A.4, as well as Assumption 2.14 (B3), we obtain for

1 ≤ m ≤ d1 with C from Assumption 2.14 (B2) that

TV
(
t 7→

(
bt,0
ω (θ0; φ0, α0)

)
m

)
=TV

t 7→
∂
(
δθt
)

1
∂θm

∣∣∣∣
θ=θ0

ω1

cos
(
ρ
φ0
t

)
σα0

t
+ ω2

− sin
(
ρ
φ0
t

)
σα0

t


+
∂
(
δθt
)

2
∂θm

∣∣∣∣
θ=θ0

ω1

sin
(
ρ
φ0
t

)
σα0

t
+ ω2

cos
(
ρ
φ0
t

)
σα0

t
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≤TV

(
t 7→

∂
(
δθt
)

1
∂θm

∣∣∣∣
θ=θ0

)
·

∥∥∥∥∥∥
ω1

cos
(
ρ
φ0
t

)
σα0

t
+ ω2

− sin
(
ρ
φ0
t

)
σα0

t

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∂
(
δθt
)

1
∂θm

∣∣∣∣
θ=θ0

∥∥∥∥∥
∞

· TV

t 7→ ω1

cos
(
ρ
φ0
t

)
σα0

t
+ ω2

− sin
(
ρ
φ0
t

)
σα0

t


+TV

(
t 7→

∂
(
δθt
)

2
∂θm

∣∣∣∣
θ=θ0

)
·

∥∥∥∥∥∥ω1

sin
(
ρ
φ0
t

)
σα0

t
+ ω2

cos
(
ρ
φ0
t

)
σα0

t

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∂
(
δθt
)

2
∂θm

∣∣∣∣
θ=θ0

∥∥∥∥∥
∞

· TV

t 7→ ω1

sin
(
ρ
φ0
t

)
σα0

t
+ ω2

cos
(
ρ
φ0
t

)
σα0

t


≤

2 ‖ω‖1
σmin

TV

(
t 7→

∂
(
δθt
)

1
∂θm

∣∣∣∣
θ=θ0

)

+ C

|ω1|TV

t 7→
cos
(
ρ
φ0
t

)
σα0

t

 + |ω2|TV

t 7→
sin
(
ρ
φ0
t

)
σα0

t


+

2 ‖ω‖1
σmin

TV

(
t 7→

∂
(
δθt
)

2
∂θm

∣∣∣∣
θ=θ0

)

+ C

|ω1|TV

t 7→
sin
(
ρ
φ0
t

)
σα0

t

 + |ω2|TV

t 7→
cos
(
ρ
φ0
t

)
σα0

t


=O(‖ω‖). (6.126)

By parts 3 and 4 of Lemma A.4 and Assumption 2.14 (B3), we get that∥∥∥∥∥β2
T

T 2

∑
t,t′∈T

bt,0
ω (θ0; φ0, α0)bt′,0

ω (θ0; φ0, α0)> −
∫ 1

0

∫ 1

0
bt,0
ω (θ0; φ0, α0)bt′,0

ω (θ0; φ0, α0)> dt dt′
∥∥∥∥∥

1

=

d1∑
m,m′=1

∣∣∣∣∣β2
T

T 2

∑
t,t′∈T

(
bt,0
ω (θ0; φ0, α0)

)
m

(
bt′,0
ω (θ0; φ0, α0)

)
m′

−

∫ 1

0

∫ 1

0

(
bt,0
ω (θ0; φ0, α0)

)
m

(
bt′,0
ω (θ0; φ0, α0)m′

)
dt dt′

∣∣∣∣
≤ C̃ ‖ω‖

βT

T

d1∑
m,m′=1

[
TV
(
t 7→

(
bt,0
ω (θ0; φ0, α0)

)
m

)
+ TV

(
t′ 7→

(
bt′,0
ω (θ0; φ0, α0)m′

))]
= O

(
‖ω‖2

βT

T

)
, (6.127)

with C̃ > 0 from Lemma 6.7. Similarly, with parts 1 and 2 of Lemma A.4,∥∥∥∥∥βT

T

∑
t∈T

bt,0
ω (θ0; φ0, α0)bt,0

ω (θ0; φ0, α0)> −
∫ 1

0
bt,0
ω (θ0; φ0, α0)bt,0

ω (θ0; φ0, α0)> dt

∥∥∥∥∥
1
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≤
βT

T

d1∑
m,m′=1

TV
(
t 7→

(
bt,0
ω (θ0; φ0, α0)

)
m

(
bt,0
ω (θ0; φ0, α0)

)
m′
)

≤ 2d1C̃ ‖ω‖
βT

T

d1∑
m=1

TV
(
t 7→

(
bt,0
ω (θ0; φ0, α0)

)
m

)
= O

(
‖ω‖2

βT

T

)
. (6.128)

Now, (6.127) and (6.128) together with bt,0
ω (θ; φ, α) − bt′,0

ω (θ; φ, α) = bt,t′
ω (θ; φ, α) yield that∥∥∥∥∥β2

T
T 2

∑
t,t′∈T

bt,0
ω (θ0; φ0, α0)bt,t′

ω (θ0; φ0, α0)> −
∫ 1

0

∫ 1

0
bt,0
ω (θ0; φ0, α0)bt,t′

ω (θ0; φ0, α0)> dt dt′
∥∥∥∥∥

1

= O

(
‖ω‖2

βT

T

)
. (6.129)

Plugging (6.124), (6.125) and (6.129) into (6.122), we obtain that

∥∥HessθAT (θ̂∗T ; φ̂T , α̂T ) − HN
∥∥

1 = 3oP(1) + O

(
βT

T

∫
ΩT

‖ω‖2
∣∣F f (ω)

∣∣2 dω
)

= oP(1). (6.130)

Next, show that supθ∈U′
∥∥HessθBT (θ; φ̂T , α̂T )

∥∥ T→∞
−→ 0 in probability. By Lemma 6.7,

sup
θ∈U′

∥∥∥Hessθht,t′
ω (θ; φ, α)

∥∥∥ = OP(‖ω‖2).

Using further (6.46), the fact that
∣∣V t

T (ω; φ̂T , α̂T )
∣∣ = OP(β

−1/2
T ) by Lemma 6.3 and Markov’s

inequality (Theorem B.9), we obtain

sup
θ∈U′

∥∥HessθBT (θ; φ̂T , α̂T )
∥∥

= sup
θ∈U′

∥∥∥∥∥
∫

ΩT

2<

[(
βT

T

)2 ∑
t,t′∈T

Hessθht,t′
ω (θ; φ̂T , α̂T )

·

(
σα0

t

σα̂T
t

)2

F f

(
τ

(φ̂T ,α̂T )
t ω

)
V t′

T (ω; φ̂T , α̂T )

]
dω

∥∥∥∥∥
≤ sup

θ∈U′

∫
ΩT

2
(
βT

T

)2 ∑
t,t′∈T

∥∥∥Hessθht,t′
ω (θ; φ̂T , α̂T )

∥∥∥
·

(
σmax

σmin

)2 ∣∣∣F f

(
τ

(φ̂T ,α̂T )
t ω

)∣∣∣ ∣∣∣V t′
T (ω; φ̂T , α̂T )

∣∣∣ dω
=OP

(∫
ΩT

‖ω‖2
√
βT

(
1
√

T
+
∣∣F f (ω)

∣∣) dω
)

=OP

(
r4

T√
TβT

+
rT
√
βT

∫
ΩT

‖ω‖
∣∣F f (ω)

∣∣ dω) .
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By Assumption 2.15, r4
T√

TβT

T→∞
−→ 0 and rT√

βT

T→∞
−→ 0. The integral is bounded by the Sobolev

condition (Assumption 2.13 (A3)) and Lemma A.10 and hence, we get the desired convergence

of the Hessian of BT :

sup
θ∈U′

∥∥HessθBT (θ; φ̂T , α̂T )
∥∥ T→∞
−→ 0 in probability. (6.131)

Finally, consider the Hessian of CT . Note that

h0,t
ω (θ; φ, α)−1h0,t′

ω (θ; φ, α)−1 = ht,t′
ω (θ; φ, α)h0,t

ω (θ0; φ0, α0)−1.

Using this together with Lemmas 6.7 and 6.3, we have similarly to before that

sup
θ∈U′

∥∥HessθCT (θ; φ̂T , α̂T )
∥∥

= sup
θ∈U′

∥∥∥∥∥
∫

ΩT

(
βT

T

)2 ∑
t,t′∈T

Hessθht,t′
ω (θ; φ̂T , α̂T )h0,t

ω (θ0; φ0, α0)−1

· V t
T (ω; φ̂T , α̂T )V t′

T (ω; φ̂T , α̂T )dω
∥∥∥

≤ sup
θ∈U′

∫
ΩT

(
βT

T

)2 ∑
t,t′∈T

∥∥∥Hessθht,t′
ω (θ; φ̂T , α̂T )

∥∥∥ ∣∣∣V t
T (ω; φ̂T , α̂T )V t′

T (ω; φ̂T , α̂T )
∣∣∣ dω

=

∫
ΩT

OP

(
‖ω‖2

βT

)
dω

= OP

(
r4

T
βT

)
.

Since r4
T
βT

T→∞
−→ 0, we have

sup
θ∈U′

∥∥HessθCT (θ; φ̂T , α̂T )
∥∥ T→∞
−→ 0 in probability. (6.132)

Together, (6.130), (6.131) and (6.132) yield the claimed convergence of the Hessian of the

contrast functional from the first statement:∥∥∥HessθNT (θ̂†T ; φ̂T , α̂T ) − HessθN(θ0; φ0, α0)
∥∥∥ T→∞
−→ 0 in probability. �

Proof of Theorem 3.6 (Central limit theorem for the drift parameter estimator).
Combining the results, we obtain a central limit theorem for the estimator of the drift parameter.

As a consequence of Assumption 2.14 (B4), NT is twice continuously differentiable in θ in a

convex open neighborhood U ⊂ Θ of θ0. In particular, if NT has a minimum at some θ ∈ U for

some (φ, α), then gradθNT (θ; φ, α) = 0. Let U′ ⊂ Φ × A be some convex open neighborhood of
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(φ0, α0) and define

GT (θ) B

gradθNT (θ; φ̂T , α̂T ), if (θ, φ̂T , α̂T ) ∈ U × U′,

gradθNT (θ0; φ0, α0), if θ ∈ Θ \ U or (φ̂T , α̂T ) ∈ (Φ × A) \ U′.

As θ̂T is defined as a minimizer of NT (θ; φ̂T , α̂T ) and so gradθNT (θ̂T ; φ̂T , α̂T ) = 0, and because

θ̂T
T→∞
−→ θ0 ∈ U, (φ̂T , α̂T )

T→∞
−→ (φ0, α0) ∈ U′ in probability, we have that for all ε > 0

P
(√

TGT (θ̂T ) > ε
)

≤ P
(√

TgradθNT (θ̂T ; φ̂T , α̂T ) > ε, θ̂T ∈ U, (φ̂T , α̂T ) ∈ U′
)

+ P
(√

TgradθNT (θ0; φ0, α0) > ε, θ̂T < U
)

+ P
(√

TgradθNT (θ0; φ0, α0) > ε, (φ̂T , α̂T ) < U′
)

≤ P
(
θ̂T < U

)
+ P
(
(φ̂T , α̂T ) < U′

) T→∞
−→ 0,

which means that
√

TGT (θ̂T ) = oP(1). (6.133)

On the event that θ̂T ∈ U, and that (φ̂T , α̂T ) ∈ U′ we can apply the mean value theorem for real

functions of multiple variables to each component of gradθNT (θ; φ̂T , α̂T ) as a function of θ and

of gradθNT (θ0; φ, α) as a function of (φ, α), resp. to get that

gradθNT (θ̂T ; φ̂T , α̂T )

= gradθNT (θ0; φ̂T , α̂T ) + HessθNT (θ̂†T ; φ̂T , α̂T )
(
θ̂T − θ0

)
= gradθNT (θ0; φ0, α0) +

(
grad(φ,α)grad>θ NT (θ0; φ̂†T , α̂

†
T )
)>(φ̂T − φ0

α̂T − α0

)
+ HessθNT (θ̂†T ; φ̂T , α̂T )

(
θ̂T − θ0

)
, (6.134)

for some intermediate values denoted by the superscript †. With (6.133), (6.134), and the

definitions

HT B

HessθNT (θ̂†T ; φ̂T , α̂T ), if (θ̂T , φ̂T , α̂T ) ∈ U × U′,

0, if θ̂T ∈ Θ \ U or (φ̂T , α̂T ) ∈ (Φ × A) \ U′,

and

D̃T B


(

grad(φ,α)grad>θ NT (θ0; φ̂†T , α̂
†
T )
)>

, if (θ̂T , φ̂T , α̂T ) ∈ U × U′,

0, if θ̂T ∈ Θ \ U or (φ̂T , α̂T ) ∈ (Φ × A) \ U′,
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we get that

√
TgradθNT (θ0; φ0, α0) + D̃T

√
T

(
φ̂T − φ0

α̂T − α0

)
+ HT

√
T
(
θ̂T − θ0

)
=
√

TGT (θ̂T ) = oP(1),

(6.135)

which holds on {θ̂T < U} and {(φ̂T , α̂T ) < U′} by design of GT , HT and D̃T , and on {(θ̂T , φ̂T , α̂T ) ∈

U × U′} because of (6.134). Equation (6.135) yields that

HT
√

T
(
θ̂T − θ0

)
= −D̃T

√
T

(
φ̂T − φ0

α̂T − α0

)
−
√

TgradθNT (θ0; φ0, α0) + oP(1). (6.136)

By Theorem 3.5 there are weights wt′
j such that

√
T

(
φ̂T − φ0

α̂T − α0

)
= −

∑
t′∈T

n∑
j=1

H−1
M wt′

j ε
t′
j + oP(1) = OP(1).

It holds that D̃T
T→∞
−→ DN B

(
grad(φ,α)grad>θ N(θ0; φ0, α0)

)> in probability, since by the assump-

tions formulated in Theorem 6.13 (φ̂†T , α̂
†
T )

T→∞
−→ (φ0, α0) in probability and the estimators θ̂T ,

φ̂T , and α̂T are consistent by Theorems 3.2 and 3.1, resp. Hence,

(
D̃T − DN

) √
T

(
φ̂T − φ0

α̂T − α0

)
= oP(1)OP(1) = oP(1).

Similarly,

√
TgradθNT (θ0; φ0, α0) =

∑
t′∈T

n∑
j=1

w̃t′
j ε

t′
j + oP(1)

for some weights w̃t′
j by Theorem 6.14. Plugging these results into (6.136) we obtain for

w̌t′
j B −DN H−1

M wt′
j + w̃t′

j

HT
√

T
(
θ̂T − θ0

)
= −DN

√
T

(
φ̂T − φ0

α̂T − α0

)
−
√

TgradθNT (θ0; φ0, α0) + oP(1)

= −
∑
t′∈T

n∑
j=1

w̌t′
j ε

t′
j + oP(1) = OP(1). (6.137)

Since θ̂†T is between θ̂T and θ0 and θ̂T is a consistent estimator, we have that θ̂†T
T→∞
−→ θ0 in

probability, and similarly (φ̂†T , α̂
†
T )

T→∞
−→ (φ0, α0) . Because of Lemma 6.15, HN is invertible, and

by Theorem 6.16, HT
T→∞
−→ HN in probability. Together with (6.136) and Lemma A.12, this

implies that
√

T
(
θ̂T − θ0

)
= OP(1).
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Hence, again with Theorem 6.16,

(HT − HN)
√

T
(
θ̂T − θ0

)
= oP(1)OP(1) = oP(1).

From this and (6.137) it follows that for ΣD B DN H−1
M ΣRS H−1

M DN + Σ̃ with ΣRS from Theorem

3.5 and Σ̃ from Theorem 6.14 we have

HN
√

T
(
θ̂T − θ0

)
= −

∑
t′∈T

∑
j∈Jt′

w̌t′
j ε

t′
j + oP(1)

T→∞
−→ N(0,ΣD) in distribution,

where we used that, for all centered normal random vectors X, X and −X have the same

distribution. Finally, multiplication with H−1
N yields the assertions and concludes the proof of

asymptotic normality of the drift parameter estimator. �

Proof of Theorem 3.7 (Central limit theorem for the joint distribution of the motion func-
tion parameters).
As a consequence of Theorems 3.5 and 3.6, we establish joint asymptotic normality of all three

motion function parameter estimators, finishing thereby the proof of Theorem 3.7. By Theorem

3.5 there are weights wt′
j such that

√
T

(
φ̂T − φ0

α̂T − α0

)
= −

∑
t′∈T

n∑
j=1

H−1
M wt′

j ε
t′
j + oP(1).

Moreover, from the proof of Theorem 3.6 we know that there are weights w̌t′
j such that

√
T
(
θ̂T − θ0

)
= −

∑
t′∈T

n∑
j=1

H−1
N w̌t′

j ε
t′
j + oP(1).

Let now ξ ∈ Rd1+d2+d3 \ {0}. Writing ξ = (ξ1, ξ2) ∈ Rd1 × Rd2+d3 we obtain〈
ξ,
√

T
(
θ̂T − θ0, φ̂T − φ0, α̂T − α0

)〉
=
〈
ξ1,
√

T (θ̂T − θ0)
〉

+
〈
ξ2,
√

T
(
φ̂T − φ0, α̂T − α0

)〉
= −

∑
t′∈T

n∑
j=1

(〈
ξ1,H−1

N w̌t′
j

〉
+
〈
ξ2,H−1

M wt′
j

〉)
εt′

j + oP(1).

The expression −
∑

t′∈T
∑n

j=1

(〈
ξ1,H−1

N w̌t′
j

〉
+
〈
ξ2,H−1

M wt′
j

〉)
εt′

j is a linear combination of the

error terms εt′
j and as such is centered normally distributed with variance given by

Var

−∑
t′∈T

n∑
j=1

(〈
ξ1,H−1

N w̌t′
j

〉
+
〈
ξ2,H−1

M wt′
j

〉)
εt′

j
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=
∑
t′∈T

n∑
j=1

(〈
ξ1,H−1

N w̌t′
j

〉
+
〈
ξ2,H−1

M wt′
j

〉)2
Var
(
εt′

j

)
=
∑
t′∈T

n∑
j=1

〈
ξ1,H−1

N w̌t′
j

〉2
+
∑
t′∈T

n∑
j=1

〈
ξ2,H−1

M wt′
j

〉2

+ 2
∑
t′∈T

n∑
j=1

〈
ξ1,H−1

N w̌t′
j

〉〈
ξ2,H−1

M wt′
j

〉
=
(
ξ1)> H−1

N ΣDH−1
N ξ1 +

(
ξ2)> H−1

M ΣRS H−1
M ξ2

+ 2
(
ξ1)> (H−1

N ΣDH−1
N
)1/2 (

H−1
M ΣRS H−1

M
)1/2

ξ2

= ξ>Σξ,

where

Σ B

(
H−1

N ΣDH−1
N

(
H−1

N ΣDH−1
N

)1/2 (H−1
M ΣRS H−1

M

)1/2(
H−1

N ΣDH−1
N

)1/2 (H−1
M ΣRS H−1

M

)1/2 H−1
M ΣRS H−1

M

)
,

with ΣRS from Theorem 3.5 and ΣD from Theorem 3.6. This concludes the proof of Theorem

3.7. �



APPENDIX A
Auxiliary Results

In this first appendix, we list some general mathematical results. Some of them have already

been shown and used in Hartmann (2016), others are inspired by similar statements in the same

document, but are proved here for the first time in a mathematically rigorous way. For each

result the corresponding statement in Hartmann (2016) is given, whenever applicable. The

following six lemmas can be found in Hartmann (2016) together with detailed proofs.

Lemma A.1 (Lemma A.11 in Hartmann (2016)). Let g1 : [0, 1] → C and g2 : [0, 1] → (0,∞)

integrable such that |g1| ≤ 1 and∣∣∣∣∫ 1

0
g1(t)g2(t) dt

∣∣∣∣ =

∫ 1

0
g2(t) dt. (A.1)

Then, there is c ∈ C with |c| = 1 such that g1(t) = c a.e. on [0, 1].

Lemma A.2 (Lemma A.12 in Hartmann (2016)). Let g : R2 → C such that

Lg B 2π
√

2
∫
R2
‖x‖ |g(x)| dx < ∞.

Then, the Fourier transform Fg : R2 → C is Lipschitz-continuous with Lipschitz-constant Lg.

Lemma A.3 (Lemma A.13 in Hartmann (2016)). Let g : R2 → C such that

L′g B
√

2
∫ ∞

0

∫ 2π

0

∥∥(2πψ, log(r)
)∥∥ rγ |(g ◦ P)(r, ψ)| dψ

dr
r
< ∞.

Then, the analytical Fourier-Mellin transform Mg : R2 → C is Lipschitz-continuous with

Lipschitz-constant L′g.

Lemma A.4 (Lemmas A.5 (part 2), A.6, A.7 and A.9 in Hartmann (2016)). Consider

g, g1, g2 : [0, 1]→ C and C > 0 such that |g1(t)| ≤ C and |g2(t)| ≤ C for all t ∈ [0, 1]. Let T ∈ N

and ti B i/T for i ∈ {0, 1, . . . ,T }. Then,

1. TV(g1 · g2) ≤ ‖g2‖∞ TV(g1) + ‖g1‖∞ TV(g2),

2.
∣∣∣ 1

T

∑T−1
i=0 g(ti) −

∫ 1
0 g(t) dt

∣∣∣ ≤ TV(g)
T , and

3.
∣∣∣( 1

T

∑T−1
i=0 g1(ti)

)(
1
T

∑T−1
i′=0 g2(ti′)

)
−
∫ 1

0 g1(t) dt
∫ 1

0 g2(t′) dt′
∣∣∣ ≤ C(TV(g1)+TV(g2))

T .
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4. If additionally g = ag1 + bg2 for a, b ∈ C, then TV(g) ≤ |a|TV(g1) + |b|TV(g2).

Lemma A.5 (Lemma A.14 in Hartmann (2016)). Let I a finite index set, d ∈ N, and gi : Rd → C

for i ∈ I.

1. If gi is differentiable for all i ∈ I, then, for all m ∈ {1, . . . , d},

∂

∂xm

∑
i,i′∈I

gi(x)gi′(x) = 2
∑
i,i′∈I

<

(
∂gi

∂xm
(x)gi′(x)

)
.

2. If gi is twice differentiable for all i ∈ I, then, for all k,m ∈ {1, . . . , d},

∂2

∂xk∂xm

∑
i,i′∈I

gi(x)gi′(x) = 2
∑
i,i′∈I

<

(
∂2gi

∂xk∂xm
(x)gi′(x) +

∂gi

∂xm
(x)

∂gi′

∂xk
(x)
)
.

Lemma A.6 (Lemma A.15 in Hartmann (2016)). Let d ∈ N and let g : Rd × [0, 1] → C such

that

1. t 7→ g(x, t) is integrable for all x ∈ Rd,

2. x 7→ g(x, t) is continuously differentiable a.e. on [0, 1],

3. there is an integrable h : [0, 1]→ [0,∞) such that, for all (x, t) ∈ Rd × [0, 1] and for all

m ∈ {1, . . . , d}, ∣∣∣∣ ∂g
∂xm

(x, t)
∣∣∣∣ ≤ h(t).

Then,
∂

∂xm

∫ 1

0

∫ 1

0
g(x, t)g(x, t′) dt dt′ = 2

∫ 1

0

∫ 1

0
<

(
∂g
∂xm

(x, t)g(x, t′)
)

dt dt′.

The following two lemmas provide characterization of rotation and scaling invariance properties,

linking them to the existence of regions where the analytical Fourier-Mellin transform does not

vanish. They are inspired by similar statements in Hartmann (2016).

Lemma A.7 (inspired by Lemma 6.5 in Hartmann (2016)). Let g ∈ L2(R2) and γ > 0 such that(
ω 7→ ‖ω‖γ

∣∣Fg(ω)
∣∣2) ∈ L1(R2). The function g is not scaling invariant if and only if there are

u ∈ Z and an open Borel set B ⊆ R with positive Lebesgue measure such thatM
|Fg|

2(u, v) , 0

for all v ∈ B.

Proof. Let σ ∈ R2×(0,∞) such that g(x) = g
(
1/σ · x

)
for all x ∈ R2. Because of the generalized

shift property (2.5), this implies that

∣∣Fg(ω)
∣∣2 = σ4

∣∣Fg(σω)
∣∣2 for all ω ∈ R2.

Hence, by (2.10),

M
|Fg|

2(u, v) = σ4−γ+ivM
|Fg|

2(u, v) for all (u, v) ∈ Z × R.
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ForM
|Fg|

2(u, v) , 0, this implies that σ4−γ+iv = 1. In the case of γ , 4, taking the absolute

value yields σ = 1. For γ = 4, it follows that

eiv log(σ) = 1. (A.2)

Assume that this holds for all v in an open Borel set B ⊆ R with positive Lebesgue-measure.

Because both Q and R \Q are dense in R, we can therefore fix v ∈ B and choose v1, v2 ∈ B \ {v}

such that

v − v1 ∈ Q, while v − v2 ∈ R \ Q. (A.3)

By (A.2), we have that

ei(v−v1) log(σ) =
eiv log(σ)

eiv1 log(σ) = 1,

which implies (v − v1) log(σ)/2π ∈ Z. Similarly, we get (v − v2) log(σ)/2π ∈ Z. Because of

(A.3), this implies log(σ) = 0 and thus, σ = 1 for all possible values of γ.

On the other hand, if for all u ∈ Z and all open Borel sets B ⊆ R with positive Lebesgue-measure

there is v ∈ B such that M
|Fg|

2(u, v) = 0, then M
|Fg|

2 = 0 a.e. With the inverse analytical

Fourier-Mellin transform, it follows that

rγ
(∣∣Fg

∣∣2 ◦ P)(r, ψ) =

∫
R

∑
u∈Z

e2πiuψrivM
|Fg|

2(u, v) dv = 0 for all (r, ψ) ∈ [0,∞) × [0, 2π).

Hence, Fg = 0, and thus,

g(x) =

∫
R2

e2πi〈x,ω〉Fg(ω) dω = 0 for all x ∈ R2,

i.e., g is constant and, in particular, g(x) = g
(
1/σ · (x)

)
for all x ∈ R2 and σ ∈ R2 × (0,∞). �

Lemma A.8 (inspired by Lemma 6.4 in Hartmann (2016)). Let g ∈ L2(R2) and γ > 0 such that(
ω 7→ ‖ω‖γ

∣∣Fg(ω)
∣∣2) ∈ L1(R2). If the function g is not rotation invariant, there are u ∈ Z \ {0}

and v ∈ R such thatM
|Fg|

2(u, v) , 0.

Proof. Assume that for all u ∈ Z \ {0} and v ∈ R we have thatM
|Fg|

2(u, v) = 0. With the inverse

analytical Fourier-Mellin transform, we get that

rγ
(∣∣Fg

∣∣2 ◦ P)(r, ψ) =

∫
R

∑
u∈Z

e2πiuψrivM
|Fg|

2(u, v) dv = 0 for all (r, ψ) ∈ [0,∞) × [0, 2π),

implying that Fg = 0. Hence,

g(x) =

∫
R2

e2πi〈x,ω〉Fg(ω) dω = 0 for all x ∈ R2,

i.e., g is constant and, in particular, g(x) = g
(
R−ρ(x)

)
for all x ∈ R2 and ρ ∈ R2 × [0, 2π) �
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The following three results are again taken from Hartmann (2016) together with their proofs.

The first one is a characterization of translation invariance by Fourier transform properties and is

analogous to the previous two characterizations of rotation and scaling invariance. The second

one is a result on uniform tightness of sequences of random variables. The last one is a result on

the convergence of normally distributed random variables.

Lemma A.9 (Lemma 6.27 in Hartmann (2016)). A function g ∈ L2(R2) is not translation

invariant if and only if there is an open Borel set B ⊆ R2 with positive Lebesgue-measure such

that Fg(ω) , 0 for all ω ∈ B.

Lemma A.10 (Integrability of the Fourier transform). Let g ∈ L2(R2) ∩ H3+κ(R2) for some

κ > 0. Then it holds that ∫
R2
‖ω‖ j

∣∣Fg(ω)
∣∣ dω < ∞, j = 1, 2.

Proof. Using the Cauchy-Schwarz-inequality (Theorem B.1) in the second step and a transform

to polar coordinates in the third, we obtain∫
R2
‖ω‖2

∣∣Fg(ω)
∣∣ dω

=

∫
R2
‖ω‖2

(
1 + ‖ω‖2

)(1+κ)/2 ∣∣Fg(ω)
∣∣ (1 + ‖ω‖2

)−(1+κ)/2
dω

≤

∫
R2

(
1 + ‖ω‖2

)2 (
1 + ‖ω‖2

)(1+κ) ∣∣Fg(ω)
∣∣2 dω

∫
R2

(
1 + ‖ω‖2

)−(1+κ)
dω

=

∫
R2

(
1 + ‖ω‖2

)(3+κ) ∣∣Fg(ω)
∣∣2 dω · 2π

∫ ∞
0

r(
1 + r2

)1+κ
dr

=

∫
R2

(
1 + ‖ω‖2

)(3+κ) ∣∣Fg(ω)
∣∣2 dω ·

π

κ
< ∞,

since g ∈ H3+κ(R2). Similarly,∫
R2
‖ω‖

∣∣Fg(ω)
∣∣ dω

=

∫
R2
‖ω‖

(
1 + ‖ω‖2

)(1+κ)/2 ∣∣Fg(ω)
∣∣ (1 + ‖ω‖2

)−(1+κ)/2
dω

≤

∫
R2

(
1 + ‖ω‖2

) (
1 + ‖ω‖2

)(1+κ) ∣∣Fg(ω)
∣∣2 dω

∫
R2

(
1 + ‖ω‖2

)−(1+κ)
dω

=

∫
R2

(
1 + ‖ω‖2

)(2+κ) ∣∣Fg(ω)
∣∣2 dω · 2π

∫ ∞
0

r(
1 + r2

)1+κ
dr

=

∫
R2

(
1 + ‖ω‖2

)(2+κ) ∣∣Fg(ω)
∣∣2 dω ·

π

κ
< ∞,

since g ∈ H3+κ(R2) ⊂ H2+κ(R2) by the Sobolev Embedding Theorem, Theorem B.11. �
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Lemma A.11 (Integrability of the analytical Fourier-Mellin transform). Assume that g ∈

L1(R ∗>0 ×S 1) and that ∫
R

∑
u∈Z

(
1 + ‖(u, v)‖2

)2+κ ∣∣Mg(u, v)
∣∣2 dv < ∞

holds for some κ > 0. Then we have∫
R

∑
u∈Z

‖(u, v)‖
∣∣Mg(u, v)

∣∣ dv < ∞.

Proof. Analogously to the previous Lemma A.10, we get∫
R

∑
u∈Z

‖(u, v)‖
∣∣Mg(u, v)

∣∣ dv

=

∫
R

∑
u∈Z

‖(u, v)‖
(
1 + ‖(u, v)‖2

)(1+κ)/2 ∣∣Mg(u, v)
∣∣ (1 + ‖(u, v)‖2

)−(1+κ)/2
dv

≤

∫
R

∑
u∈Z

‖(u, v)‖2
(
1 + ‖(u, v)‖2

)(1+κ) ∣∣Mg(u, v)
∣∣2 dv

∫
R

∑
u∈Z

(
1 + ‖(u, v)‖2

)−(1+κ)
dv

=

∫
R

∑
u∈Z

(
1 + ‖(u, v)‖2

)(2+κ) ∣∣Mg(u, v)
∣∣2 dv ·

π

κ
< ∞.

�

Lemma A.12 (Lemma A.17 in Hartmann (2016)). For d ∈ N and a probability space (Ω,A,P),

let (XT )T∈N a sequence of random matrices XT : Ω → Rd×d and X ∈ Rd×d such that X is

invertible and XT
T→∞
−→ X in probability. Furthermore, let (YT )T∈N a sequence of random vectors

in Rd, such that (XT YT )T∈N is uniformly tight. Then, (YT )T∈N is uniformly tight.

Lemma A.13 (Lemma A.16 in Hartmann (2016)). Let (λT )T∈N a sequence in (0,∞) and

λ ∈ (0,∞) such that λT
T→∞
−→ λ. Furthermore, let XT ∼ N(0, λT ) and X ∼ N(0, λ). Then,

XT
T→∞
−→ X in distribution.
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APPENDIX B
Known theorems from the literature

In this second appendix, for the readers convenience, some of the theorems from the literature,

which are applied in this thesis, are stated explicitly.

Theorem B.1 (Cauchy-Schwarz inequality, Theorem 2.2.7 in Hassani (2013)).
Let g1, g2 ∈ L2(R2). Then their product is integrable and∣∣∣∣∫

R2
g1(x)g2(x)dx

∣∣∣∣2 ≤ ∫
R2
|g1(x)|2 dx

∫
R2
|g2(x)|2 dx,

with equality if and only if g1 and g2 are not linearly independent.

Theorem B.2 (Plancherel, Theorem 1.6.1 in Rudin (1990)). Let d ∈ N. There is an isometry

Ψ : L2
(
Rd,B(Rd), λ

)
→ L2

(
Rd,B(Rd), λ

)
which is unitary (i.e., for all g1, g2 ∈ L2

(
Rd,B(Rd), λ

)
we have that 〈Ψg1,Ψg2〉 = 〈g1, g2〉) and uniquely defined by Ψ(g) = Fg for all g ∈ S(Rd), where

the Schwartz space S(Rd) is a certain subset of the set of smooth functions that is dense in

Lp
(
Rd,B(Rd), λ

)
for all p ∈ [0,∞).

Theorem B.3 (Continuity of parameter integrals, Theorem 128.1 in Heuser (1995)). Let X a

metric space, E a Banach space, and (Ω,A, µ) a measure space. Let g : X ×Ω→ E with

(i) ω 7→ g(x, ω) is in µ-measurable for all x ∈ X,

(ii) x 7→ g(x, ω) is continuous µ-a.e. on Ω,

(iii) there is an h ∈ L1(Ω, µ, E) such that |g(x, ω)| ≤ h(ω) for all (x, ω) ∈ X ×Ω.

Then, G : X → E, x 7→
∫

Ω
g(x, ω) µ(dω) is well-defined and continuous.

Theorem B.4 (Differentiability of parameter integrals, Theorem 128.2 in Heuser (1995)). Let

d ∈ N, U ⊆ Rd open, E a Banach space, and (Ω,A, µ) a measure space. Let g : U × Ω → E

with

(i) ω 7→ g(x, ω) is in L1(Ω, µ, E) for all x ∈ U,

(ii) x 7→ g(x, ω) is continuously differentiable µ-a.e. on Ω,

(iii) there is an h ∈ L1(Ω, µ, E) such that for all (x, ω) ∈ U ×Ω, i ∈ {1, . . . , d},∣∣∣∣ ∂g
∂xi

(x, ω)
∣∣∣∣ ≤ h(ω).
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Then, G : U → E, x 7→
∫

Ω
g(x, ω) µ(dω) is well-defined and continuously differentiable such

that for all (x, ω) ∈ U ×Ω, i ∈ {1, . . . , d},

∂G
∂xi

(x) =

∫
Ω

∂g
∂x j

(x, ω) µ(dω).

Corollary B.5 (Cramér-Wold Device, p. 16 in van der Vaart (2000)). Let for d ∈ N, (XT )T∈N be

a sequence of random vectors in Rd, and X a random vector in Rd. Then, XT
D
→ X if and only if

〈ξ, XT 〉
D
→ 〈ξ, X〉 for all ξ ∈ Rd.

Theorem B.6 (Theorem 5.7 in van der Vaart (2000)). Let Θ ⊆ Rd, θ0 ∈ Θ, and consider the

function M : Θ→ R. Furthermore, let (YT )T∈N a sequence of random variables on a probability

space (Ω,A,P) with values in a measure space (Ω′,A′). Let m : Θ ×Ω′ → R a function such

that y 7→ m(θ, y) is measurable for all θ ∈ Θ and θ 7→ m(θ, y) is continuous for all y ∈ Ω′. For

all T ∈ N, define

MT : Θ→ R, θ 7→ m(θ,YT ).

Let (θ̂T )T∈N a sequence of estimators for θ. Assume that

sup
θ∈Θ
|MT (θ) − M(θ)|

T→∞
−→ 0 in probability, (B.1)

inf {M(θ) | θ ∈ Θ, ‖θ − θ0‖ ≥ ε} > M(θ0) for all ε > 0, (B.2)

lim sup
T→∞

(
MT (θ̂T ) − MT (θ0)

)
≤ 0. (B.3)

Then, θ̂T
T→∞
−→ θ0 in probability.

Theorem B.7 (Delta method, Theorem 3.8 in van der Vaart (2000)). Let (µ̂T )T∈N a sequence of

random vectors in Rd, µ0 ∈ R
d, and Σ ∈ Rd×d, such that

√
T (µ̂T − µ0)

T→∞
−→ N(0,Σ) in distribution.

Let k ∈ N and let g : Rd → Rk continuously differentiable. Then

√
T
(
g(µ̂T ) − g(µ0)

) T→∞
−→ N(0, Jg(µ0)ΣJg(µ0)>) in distribution,

where Jg(µ0) ∈ Rk×d is the Jacobi matrix of g at µ0.

Theorem B.8 (Continuous mapping theorem, Theorem 2.3 in van der Vaart (2000)).
Let d, k ∈ N and let g : Rd → Rk continuous a.e. on Rd. Furthermore, let (XT )T∈N a sequence of

random vectors in Rd and X a random vector in Rd.

1. If XT
T→∞
−→ X in distribution, then g(XT )

T→∞
−→ g(X) in distribution.

2. If XT
T→∞
−→ X in probability, then g(XT )

T→∞
−→ g(X) in probability.

3. If XT
T→∞
−→ X almost surely, then g(XT )

T→∞
−→ g(X) almost surely.
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Theorem B.9 (Slutzky’s Lemma, Theorem 2.8 in van der Vaart (2000)). For d ∈ N, let (XT )T∈N

and (YT )T∈N sequences of random vectors in Rd, (ZT )T∈N a sequence of random variables in R,

X a random vector in Rd, c ∈ Rd, and c′ ∈ R. Assume that XT
T→∞
−→ X in distribution, YT

T→∞
−→ c

in probability, and ZT
T→∞
−→ c′ in probability. Then,

1. XT + YT
T→∞
−→ X + c in distribution,

2. ZT XT
T→∞
−→ c′X in distribution,

3. if ZT , 0 almost surely and c′ , 0, Z−1
T XT

T→∞
−→ (c′)−1X in distribution.

Theorem B.10 (Markov’s inequality, Example 2.6 in van der Vaart (2000)). Let d ∈ N, m, p > 0,

and let (XT )T∈N a sequence of random vectors in Rd. Then,

P
(
‖XT ‖ > m

)
≤
E
(
‖XT ‖

p)
mp .

Theorem B.11 (Sobolev Embedding, Proposition 2 of Chapter 2.3 in Triebel (1983)). For s ∈ R

and p ∈ (1,∞), let Hs
p(Rn) be the Bessel potential spaces (which coincide with the Sobolev

spaces as defined in this thesis for p = 2). Then, for ε > 0,

Hs+ε
p (Rn) ⊂ Hs

p(Rn)

is a continuous embedding.
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APPENDIX C
Additional results of the simulation study

This section contains the reconstruction results obtained in our simulation study, which were

not shown in the main text body to avoid lengthening it unnecessarily. They vary in the number

of binned frames (T = 100 or T = 200), the size of the pixel grid (128 × 128 or 256 × 256),

and the polynomial degree of the motion functions (linear or quadratic). Each figure is build as

the corresponding figures in Section 4.1, showing the original image on the left, results for the

Gaussian model in the middle column, and for the Poisson binomial model in the right column.

The first row shows a single binned frame, the second row the overlay of all frames, the third

row contains the final image estimator and the last row displays the average over all image

estimators from 100 simulation runs.
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Figure C.1: Image reconstructions of the simulation study for linear motion model with T = 100
binned frames on a 256 × 256 pixel grid: true underlying image (left); for Gaussian (middle
column) and Poisson binomial (right column) model, a single binned frame (first row), the
blurred superpositions of all frames (second row), final image estimates, which are corrected for
rotation, scaling and translational drift (third row) and average over images estimates from 100
simulation runs (fourth row).
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Figure C.2: Image reconstructions of the simulation study for quadratic motion model with
T = 100 binned frames on a 256 × 256 pixel grid: true underlying image (left); for Gaussian
(middle column) and Poisson binomial (right column) model, a single binned frame (first row),
the blurred superpositions of all frames (second row), final image estimates, which are corrected
for rotation, scaling and translational drift (third row) and average over images estimates from
100 simulation runs (fourth row).
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Figure C.3: Image reconstructions of the simulation study for linear motion model with T = 200
binned frames on a 128 × 128 pixel grid: true underlying image (left); for Gaussian (middle
column) and Poisson binomial (right column) model, a single binned frame (first row), the
blurred superpositions of all frames (second row), final image estimates, which are corrected for
rotation, scaling and translational drift (third row) and average over images estimates from 100
simulation runs (fourth row).



127

Figure C.4: Image reconstructions of the simulation study for quadratic motion model with
T = 200 binned frames on a 128 × 128 pixel grid: true underlying image (left); for Gaussian
(middle column) and Poisson binomial (right column) model, a single binned frame (first row),
the blurred superpositions of all frames (second row), final image estimates, which are corrected
for rotation, scaling and translational drift (third row) and average over images estimates from
100 simulation runs (fourth row).
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Figure C.5: Image reconstructions of the simulation study for linear motion model with T = 100
binned frames on a 128 × 128 pixel grid: true underlying image (left); for Gaussian (middle
column) and Poisson binomial (right column) model, a single binned frame (first row), the
blurred superpositions of all frames (second row), final image estimates, which are corrected for
rotation, scaling and translational drift (third row) and average over images estimates from 100
simulation runs (fourth row).
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Figure C.6: Image reconstructions of the simulation study for quadratic motion model with
T = 100 binned frames on a 128 × 128 pixel grid: true underlying image (left); for Gaussian
(middle column) and Poisson binomial (right column) model, a single binned frame (first row),
the blurred superpositions of all frames (second row), final image estimates, which are corrected
for rotation, scaling and translational drift (third row) and average over images estimates from
100 simulation runs (fourth row).
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