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SUMMARY 

 

On many levels, there is a lack of understanding regarding the impacts of deforestation 

on water resources and soil properties in the Amazon-Cerrado ecotone, where the 

Amazonian agricultural frontier is mostly present. Both the large spatial extent of this 

region and the wide diversity of environmental conditions requires extensive field-

based data collection to allow comprehensive process characterization and to improve 

hydrological modelling parameterization. Furthermore, the Cerrado biome, where 

most of the deforestation in this region has occurred, is often not integrated into the 

studies regarding the Amazon deforestation. 

To contribute to fill this knowledge gap, I, in the context of the CarBioCial project 

(Gerold, 2017), conducted several hydrological and soil analyses in areas of Southern 

Amazonia that have been rapidly deforested. To that end, two macro-catchments were 

selected, one in the Amazon biome (Jamanxim River basin, 37,403 km2) and one in 

the Cerrado biome (das Mortes River basin, 17,556 km2), both located on the Amazon 

agricultural frontier. In both the das Mortes and the Jamanxim River basins, paired 

micro-catchments under different land use and land cover, i.e., native vegetation 

(rainforest or cerrado vegetation) vs. pasture for extensive cattle ranching, and a 

cropland area were selected to characterize the changes in hydrology and soil hydro-

physical properties due to these contrasting land uses. The general objectives of this 

PhD research were to: a) analyze trends in discharge and water quality in streams of 

macro-catchments in the Amazon and Cerrado biomes; b) determine soil hydro-

physical properties and quantify streamflow and evapotranspiration from adjacent 

micro-catchments whose major difference is the LULC; c) quantify stream CAN 

concentrations and output fluxes during prevalent baseflow and stormflow conditions 

to improve the understanding of carbon and nutrient drivers in low-order streams; d) 

assess the soil hydro-physical and chemical properties, as well as water quality of 

cropland and riparian vegetation areas of a catchment in a typical large-scale 

commercial cropland system.  

 



 

 

The analyses showed that land-use and land-cover change alters water quantity of 

large rivers in the Amazon and Cerrado biomes. These changes are more pronounced 

as an increase in the low flows, which are mainly maintained by hundreds of small 

streams that have baseflow as a dominant discharge condition. In these small 

catchments, catchment physiographic parameters play an essential role in the 

hydrological responses in both Amazon and Cerrado biomes, and the native 

vegetation conversion into pastures substantially change the water balance of these 

catchments. This proved to drive an increase in the baseflow in low-order streams. 

The changes due to soil hydro-physical degradation (e.g., increased bulk density and 

reduced soil porosity) cause increases in short-lived events as peak flows, as 

observed in the pasture catchment in the Amazon biome. The decrease of 

evapotranspiration is also another critical driver in the water balance in this region, 

because pastures could not maintain evapotranspiration rates as high as the native 

vegetation. All these changes are connected to other aspects of the environment. As 

this thesis shows, the difference in the hydrological fluxes increases the carbon and 

nutrient fluxes. In this context, the stormflow is a substantial hydrological pathway for 

carbon and nutrient losses, especially in areas where rainfall intensities exceed the 

infiltration capacity rates. On account of these impacts, the conservation of riparian 

zones appears to be one of the land management strategies that will mitigate further 

implications in the hydrochemistry of rivers. This study indicates that, indeed, riparian 

zones have a complex ecosystem of plants and soil properties that directly improve 

the water quality of flows towards the streams. However, the long-term implications of 

deforestation in the Amazon and Cerrado in these riparian zones are still unknown. 

This Ph.D. research connects several themes under discussion regarding the 

environmental changes in the Amazon and Cerrado biomes. The outcomes of this 

thesis provide solid research directions for further studies in these biomes, which 

should focus on the subsurface water flows and the role of the fragmented vegetation 

patches, such as the riparian zones, in these regions. 
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1. General Introduction 

1.1. Thesis outline 

1.1.1. Deforestation in the Amazon and Cerrado biomes 

Land use and land cover (LULC) changes have been one of the main factors impacting 

ecosystem services, such as adequate soil and water quality, provided by forests 

around the world (Vose et al., 2011; Gharibreza et al., 2013; Crossman et al., 2014; 

Ghimire et al., 2014; Li et al., 2014). The Amazon biome has been massively 

deforested for decades since the 1990s (Fig. 1.1), with subsequent expansion of large-

scale commercial cropping systems and establishing with the Cerrado biome, i.e., on 

the Amazon-Cerrado ecotone, the largest zone of agricultural expansion on earth 

(Neill et al., 2017). 

 

Figure 1.1 Annual deforestation and the area of indigenous territories, sustainable 
development reserves (e.g., extractive reserves), strict protection reserves, and agrarian 

reform settlements in the Brazilian Amazon (source: Nepstad et al., 2014). 
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Figure 1.2 Deforestation patterns following the business-as-usual and governance 
approaches: a) for the Amazon basin (adapted from Soares-Filho et al., 2005), and b) for the 

BR-163 from Sinop (Mato Grosso) to Santarém (Pará) (Adapted from Soares-Filho et al., 2004) 

The establishment of road networks is one of the main drivers of deforestation in the 

Amazon (Jusys, 2016; Pinheiro et al., 2016; Gollnow et al., 2017). These roads allow 

colonists and farmers increasing access to forests, which leads to the expansion of 

industrial logging, mining and agriculture (Laurance, 2001). To illustrate this, Fig. 1.2a 

compares the LULC status in 1996 with scenarios of deforestation that consider the 

historical socio-economical patterns (named as business-as-usual scenario) and 

where advances in environmental regulation, support for sustainable land-use 

systems and planning (referred to as governance scenario) are also taken into 

account. It shows that the development of roads is still a lead pathway to LULC 

changes in the Amazon. In this context, the national highway, BR-163, has an 

important role in leading these changes. The BR-163 highway connects Cuiabá, in the 

Mato Grosso state, to Santarém, in the Pará state, close to the Amazon River (Fig. 

1.2b), and provides farmers in areas along this highway with access to the 

international port of Santarém (Fearnside, 2007). Although the BR-163 is not entirely 

paved, the Brazilian government has prioritized the paving of this road in order to turn 

the port of Santarém into a major soybean exportation facility (Carvalho et al., 2002), 

reducing the total of over 1,000 km of unpaved segments to less than 100 km during 

the last 15 years (Soares-Filho et al., 2004a; Canal Rural, 2017).  
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Although environmental research in Brazil has focused on the Amazon biome, most 

of deforestation and agricultural expansion in Brazil has occurred in the Cerrado 

biome, a biodiversity hotspot for conservation comprises dry forests, woodland 

savannas, and grasslands (Myers et al., 2000; Spera et al., 2016). The conversion of 

natural cerrado vegetation to crops and pastures since the 1970s has removed 50% 

of the original 2 million km² of the native vegetation in this biome. This is greater than 

the rainforest loss in the Amazon biome (Klink and Machado, 2005; Lambin et al., 

2013). To illustrate how LULC has changed in this biome, Fig. 1.3 shows the land-

cover classification of the das Mortes River basin (ca. 18,000 km²) located in the 

Cerrado portion of Amazonian agricultural frontier in Mato Grosso. In this basin, 

croplands and pastures occupied approximately 75% of the total area in 2011 (Müller 

et al., 2015). 

 

Figure 1.3 Land-cover classification for the das Mortes River basin in 2011 (Adapted from 
Müller et al., 2015). 

Although Müller et al. (2015) show that most of the das Mortes River basin is occupied 

by croplands (51%), the conversion of cerrado vegetation to pastures had been the 

leading cause of deforestation until the beginning of the 1990s. Over time these 

pastures are often replaced by cash crop systems (Barona et al., 2010; Cohn et al., 

2016) or are abandoned due to the decrease of grass productivity, reaching advanced 

stages of degradation (Davidson et al., 2012). Based on the records of the Brazilian 

Institute of Geography and Statistics (IBGE), Fig. 1.4 shows the development of the 

total area of the das Mortes River basin used for pastures from 1974 to 2011. The 

area of pastures increased from ca. 1,800 km² in 1985 to ca. 4,500 km² in 1990, and 
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remained relatively stable, reaching 5,400 km² in 2011, while the total area for 

croplands continuously increased from 2,595 km² in 1990 to 8,312 km² in 2011 

(SIDRA/IBGE, 2012). 

 

Figure 1.4 Development of pasture areas in the municipalities of the das Mortes River basin in 
the Cerrado biome area of the state of Mato Grosso. The area of pastures was quantified using 
the number of cattle in each municipality (proportional to their area within the River basin) and 

the area used per cattle unit provided by SIDRA/IBGE (2012b) 

Rufin et al. (2015) and Gollnow et al. (2017) have shown that the same pattern of 

conversion of native cerrado vegetation to grassland pastures that caused well-

established agro-industrial areas in the Brazilian Cerrado to exist is being established 

since the 2000s in the Amazon biome. Figure 1.5a shows the land-cover in areas 

along the BR-163 highway in 2010 between Sinop and Novo Progresso. The Mato 

Grosso domain of Fig 1.5a (Sinop–Guarantã do Norte) shows a great deforestation 

with a substantial presence of pastures and croplands in the South portion, whereas 

the Pará domain (between Guarantã do Norte and Parque Nacional do Jamaxim) has 

a still higher proportion of land cover under forest and no significant croplands. Figure 

1.5b shows the development of deforestation in the region of Novo Progresso from 

2000 to 2016. Novo Progresso, which is one of the areas of study in this thesis, is 
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considered a hotspot of deforestation in the Amazon biome mainly because of the 

increase of deforestation for logging and pasture activities in the past years (Pinheiro 

et al., 2016). This intensification of agricultural activities at the expense of natural 

forest in this region of the Amazon biome is turning this area into the fastest-growing 

agricultural frontier in the world (Brando et al., 2013; Nobre et al., 2016). 

 

 

Figure 1.5 a) Land-map cover of 2010 from Mato Grosso and Pará states with an emphasis on 
the BR-163 between Sinop and Novo Progresso municipalities (Gollnow et al., 2017), and b) 

Satellite (Landsat 7) images from the Novo Progresso area from 2000 to 2016. 
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1.2. Effects of LULC change on soil properties and water and nutrient 
fluxes 

1.2.1. Effects of LULC change on water fluxes and soils 

 

Figure 1.6 Schematic representation of the global hydrological cycle (excluding Antarctica) 
with the storages (in bold and km³) and fluxes (in italic and km³ y-1). Adapted from Teuling 

(2007) with data from Oki and Kanae (2006). 

Forests play a major role in the global hydrological cycle (Fig. 1.6) as they are 

responsible for almost half of the total evapotranspiration (ET) (Oki and Kanae, 2006). 

Reduction of forest cover is unbalancing the ET contribution across spatial scales, and 

this has implications in other hydrological components such as streamflow and 

groundwater recharge (Neu et al., 2011; Richey et al., 2011; Oliveira et al., 2015). 

Guimberteau et al. (2017) showed LULC change scenarios for the Amazon indicating 

that by the end of this century the total forested area of the Amazon Basin will have 

decreased between 7 and 34%. The most severe forest clearing will occur in Southern 

Amazonia, with the Madeira, Xingu and Tapajós River basins experiencing a 50% 

decrease in forest cover area. They also show that pastures and croplands do not 

sustain evapotranspiration rates as forests, and that deforestation in the Amazon will 
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lead to an increase in baseflows — also demonstrated by Lamparter et al. (2016) in 

the Tapajós River basin — by the end of this century. 

Forest clearing in the Amazon also causes soil changes (Zimmermann et al., 2006; 

Neill et al., 2008), as the soil compaction is induced by land use after deforestation, 

which in turn increases bulk density and reduces infiltration rates and hydraulic 

conductivity mainly by pasture land use (Martı ́nez et al., 2004; Scheffler et al., 2011; 

Hunke et al., 2015b). Further research could provide insight into the relationship of 

stormflow volume increase due to LULC change on different soils and at different 

scales (Germer et al., 2010). The magnitude and duration of LULC change effects on 

base and peak flows depend on several catchment characteristics such as soils, 

morphology, and geology of the catchment, as well as climate conditions, including 

rainfall patterns (Birkinshaw et al., 2010). Time series records of hydroclimatic 

variables such as precipitation and streamflow have been widely used to support 

detection of trends (or lack thereof) in catchments (Burn et al., 2010; Esterby, 1996; 

Fu et al., 2010; Halliday et al., 2012; Oliveira et al., 2014). In many parts of the world, 

several large-scale analyses of such trends have been conducted on precipitation and 

streamflow data at different time scales, which is not the case for the South American 

continent, where analyses of trends in instrumental records of streamflow and 

precipitation are scarce (Guzha et al., 2013a). 

The impacts of LULC changes in the water balance are also scale-dependent (Gerold, 

2011; Lima et al., 2014). Although some studies on meso- to macro-scale catchments 

have shown that deforestation causes an increase in annual streamflows (e.g., Costa 

et al. (2003), Chappell and Tych (2012) and Dias et al. (2015), Awotwi et al. (2015) 

observed streamflow reductions and Wilk et al. (2001) were unable to detect any 

change in hydrological fluxes, i.e., base and peak flows, in a watershed with 

substantial deforestation. These contrasting results are exemplified in Table 1.1 and 

could be attributed to differences in climate, topography, morphology, soil properties 

and differences in land cover types and sizes of each catchment (Guzha et al., 2014). 

Studies using small watersheds are usually more prone to detect hydrological changes 

due to LULC changes than macro-scale approaches (Jepson, 2005; Oliveira et al., 

2014). 
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Table 1.1 Contradictory results: ecosystem processes changes due to deforestation 
in the Amazon (source: Gerold (2017)). 

Ecosystem processes Negative consequence No change or positive 

Climate change and 
rainfall trends 

Increasing droughts and 
decreasing rainfall 

Until 60% deforestation 
no rainfall decreases; 

increase of rainfall over 
large forest patches 

River discharge and 
water stress 

Increasing discharge and 
flood risk 

Decreasing discharge 
with reduced regional P 

C-stocks and GHG Large scale forest 
disturbance with 15–26 
Pg C-emissions next 20 

years 

All protected areas can 
avoid 5.8–10.8 Pg C-
emissions until 2050 

 

1.2.2. Effects of LULC on nutrient fluxes 

In addition to understanding the impacts of LULC changes on hydrological regimes, it 

is also fundamental to comprehend how the LULC changes influence the 

hydrochemistry processes in environments such as pristine catchments undergoing 

anthropogenic changes (Jordan et al., 1997; Neill et al., 2013). In the past years, 

projects such as Large-Scale Biosphere-Atmosphere Experiment (Lahsen and Nobre, 

2007), CLIM-AMAZON (http://www.clim-amazon.eu/) and ANACONDAS/ROCA 

(Satinsky et al., 2014), have profoundly contributed to the scientific awareness of the 

Amazon environment. Despite these scientific efforts, the understanding of 

deforestation impacts on the water quality in the Brazilian Amazon is still scarce. 

It is widely known that surface water plays a substantial role in the C balance in the 

Amazon region (Moreira-Turcq et al., 2003; Waterloo et al., 2006; Neu et al., 2011; 

Richey et al., 2011). Therefore, it is important to quantify the impacts of LULC changes 

in streamflow carbon and nutrient (CAN) fluxes. To that end, research has often 

focused on identifying the impacts of the conversion of forests into pastures (Thomas 

et al., 2004; Neill et al., 2011; Silva et al., 2011), and just a few have quantified the 

importance of water pathways in CAN fluxes in this region (e.g., Biggs et al. (2006), 

Johnson et al. (2006), Germer et al. (2009)). Figueiredo et al. (2010) and Silva et al. 

(2007) have shown that LULC change alters CAN fluxes in the Amazon and Cerrado 

biomes. In more detailed studies, Johnson et al. (2006) showed that DOC comprised 

ca. 60% of the annual total organic C export and Germer et al. (2009) reported 
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quickflow contributions as being responsible for 50% of the total K and Ca stream 

fluxes, which shows the relevance of studies with high-temporal resolution in order to 

better quantify CAN fluxes in streams in the Amazon. Although sampling on a day-of-

week basis is usually adopted to estimate nutrient fluxes (Smith et al., 2001), it 

frequently underestimates nutrient fluxes, because storm events are often more 

relevant for this type of studies (Tang et al., 2008). Currently, the collection of 

information in such temporal scale is facilitated by the use of instruments that gives 

the potential to develop our understanding of nutrient dynamics (Halliday et al., 2015), 

which have significantly enhanced our ability to monitor CAN fluxes in streams (Blaen 

et al., 2016). 

Although the few studies on the effects of the LULC change in the Amazon on water 

hydrochemistry have shown some degree of impact, there is limited information on 

impacts of conversion of LULC to large-scale commercial cropping systems. Neill et 

al. (2017) have found that streamwater chemistry remained largely unchanged in a 

large-scale commercial cropping region in the Amazon region. Modern agricultural 

practices used in this region, i.e., precision farming and no-till cropping processes, 

have been reported as a land use management approach with low environmental 

impact (Bongiovanni and Lowenberg-Deboer, 2004; Bramley et al., 2008; Jenrich, 

2011). However, it is believed that the riparian vegetation, whose conservation is 

regulated by federal law, is important in keeping ecosystem services, such as water 

quality, in croplands of the Amazon region (Soares-Filho et al., 2006; Hunke et al., 

2015a). Nevertheless, there is a substantial lack of assessments of Amazonian 

riparian vegetation zones’ characteristics (e.g. plant diversity, soils, and water fluxes) 

that may have a direct relation to the function of riparian zones as buffers of LULC 

change impacts on stream water quality. 

 

1.3. Research context, regions and methods 

This thesis is a result of a collaborative research project (www.carbiocial.de, Gerold 

(2017) funded by the German Federal Ministry for Education and Research (BMBF) 

that aimed to investigate viable carbon-optimized land management strategies for 

maintaining ecosystem services under LULC and climate changes conditions in the 
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Southern Amazon, a region that comprises the Amazon-Cerrado ecotone. The 

Carbiocial project focused on three study areas along the BR-163 (Fig. 1.7). The 

results in the thesis are related to Carbiocial’s Subproject 01 (SP01), which aimed to 

quantify impacts of human-induced LULC change on soil properties and in water and 

nutrient fluxes in the Carbiocial’s study areas 1 (Cuiabá) and 3 (Southern Pará) (Fig. 

1.7). In the surroundings of Cuiabá, the main agricultural colonization of the southern 

Amazon happened during 1975–1990, and has ever since pushed northwards. It 

reached the area of Sinop during the 1990s and recently southern Pará, not more than 

two decades ago. Central Mato Grosso today is a highly industrialized area, with large-

scale soybean, cotton, and maize production, while Northern Mato Grosso still exhibits 

a major fraction of intensive cattle farming on pasture. The pioneers at Southern Pará 

only recently started extensive cattle farming, which replaces timber logging as 

another substantial income source. Crop production is limited to very few examples. 

The BR-163 is a prominent illustration of all sorts of problems afflicted with pioneer 

front development in the Amazon (Brando et al., 2013), while continuously being 

paved northwards to link the soy and cotton production region in Northern Mato 

Grosso with the export harbor of Santarém. 

For this thesis, two macro-catchments (Jamaxim and das Mortes River basins) for 

macro-scale analysis and, within these macro-catchments, five micro-catchments 

under contrasting land use and land cover (one with rainforest, one with cerrado 

vegetation, two with pasture and one with cropland) for space-for-time analysis were 

selected. The micro-catchments were instrumented in the dry season of 2012 and 

monitored until end of 2014. The instrumentation comprised weirs, multiparameter 

probes, direct and throughfall rain gauges, weather stations, automatic water 

samplers, deep access tubes for soil moisture measurements and overflow detectors. 

Additionally, the characterization of these areas included topographic and botanical 

surveys, soil sampling and analyses, and remote sensing data acquisition. These data 

were used to apply state-of-the-art methods (e.g., hydrological modelling, remote 

sensing techniques, high-temporal-resolution water quality analyses, and ecosystem 

integrated assessments, such as soil-plant-water interactions). 
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Figure 1.7 Carbiocial study areas in the Cerrado and Amazon biomes along the BR-163: (1) 
Novo Progresso (Southern Pará); (2) Sinop (Northern Mato Grosso); and (3) Cuiabá (Central 

Mato Grosso) (Source: www.carbiocial.de). 

1.4.   Objectives and thesis structure 

The central hypothesis of this thesis is that forest clearing for pastures in active 

deforestation zones of Amazon and Cerrado biomes leads to soil hydro-physical 

degradation and changes stream discharge, evapotranspiration, and CAN fluxes. , and 

that despite modern agricultural approaches, i.e. no-till and precision farming, that are 

often associated with low environmental impacts, the conservation of native riparian 

vegetation within cropland areas is still crucial to keep the minimum ecosystem 

services, i.e. water and soil quality, in this region. 

Based on the central hypothesis, the objectives of this thesis were to: a) analyze trends 

in discharge and water quality in streams of macro-catchments in the Amazon and 

Cerrado biomes; b) determine soil hydro-physical properties and quantify streamflow 

and evapotranspiration from adjacent micro-catchments whose major difference is the 

LULC; c) quantify stream CAN concentrations and output fluxes during baseflow and 

stormflow prevalent conditions to improve the understanding of CAN drivers in low-

order streams; d) assess the soil hydro-physical and chemical properties, as well as 

water quality of cropland and riparian vegetation areas of a catchment in a typical 

large-scale commercial cropland system. These objectives were achieved through six 

scientific manuscripts, which addressed the thesis hypothesis by using two macro-

catchments and five micro-catchments as study areas (Fig. 1.8).  
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Figure 1.8 Study areas. 

 

To address the objectives, chapters 2 through 7 of this thesis are structured as follows: 

 Chapters 2 and 3 show trend analyses of the water quantity and quality at 

macro-catchment scales in the Cerrado and Amazon biome domains of the 

Amazon Agricultural Frontier, respectively. Chapter 3 also considers the 

changes in water quantity in smaller spatial scales of the Amazon biome. These 

results are used as an overview of the impacts of LULC change on the 

hydrological and hydrochemistry dynamics in this region; 

 Chapters 4 and 5 show the results of the hydrological and soil analyses in four 

selected micro-catchments under contrasting land-use and land-cover in the 

Amazon and Cerrado biomes, respectively. These analyses quantify 

hydrological fluxes in each catchment and show how the LULC change impact 

hydrological signatures and soil hydro-physical properties; 

 Chapter 6 compiles the hydrochemistry results of the 4 catchments described 

in chapters 4 and 5. By using the water fluxes from chapters 4 and 5, it was 

possible to quantify the CAN fluxes from each of these micro-catchments; 
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 Chapter 7 focuses on a cropland catchment located on the Amazon Agricultural 

Frontier, in the Cerrado biome domain. While the other chapters focus on the 

LULC change of native vegetation into pasture landscapes, this chapter shows 

an assessment of the water and soil quality of an agricultural catchment with 

riparian vegetation preserved, which is another major LULC in the region. This 

chapter also assesses the ecosystem services provided by this protected area. 

This catchment differs from the other studied catchments due to its soil with 

high clay content and low sloppiness. In this cropland catchment, the 

techniques and analyses used in chapters 4, 5, and 6 were applied. 

Additionally, in this catchment, analyses of overflow and groundwater quality 

were performed in combination with a vegetation characterization. 
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Image source:  https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA11420 
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2. Investigating discharge and rainfall variability in an 

Amazonian watershed: Do any trends exist? 
 

This manuscript is published as: Guzha, AC, Nóbrega, RLB, Santos, CAG, and Gerold, G. 2013. In: the 

Proceedings of H01 (IAHS Red Book, IAHS Publ. 359), IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden. 

 

Abstract 

A trend analysis of stream discharge from the upper Mortes watershed, southern 
Amazon, was performed using discharge and rainfall data in order to investigate the 
temporal variability of stream discharge, and relate it to associated rainfall variability. 
Non-parametric tests were done on daily, seasonal and annual discharge data. 
Frequency analysis using wavelet transform was also done. Results indicate 
increasing trends in discharge. The wavelet analysis identified dry periods; i.e. 
19671975, 19821986 and 1993, which were followed by wet periods. In some 
cases, discharge increases could not be satisfactorily correlated to the rainfall. Further 
interpretation of the data for possible causes of streamflow changes is needed and 
discussion of the implications of these results in the context of climate change, 
deforestation and water resource management.  

Key words: trend analysis; streamflow; rainfall; Mann–Kendall test; wavelet 
transform. 
 

2.1. Introduction 

An important aspect of climate change and variability research is trend analysis of 

hydro-climatic variables using available records. Even though studies indicate that 

climate changes have a significant impact on streamflow and other hydrological 

processes (Milly et al., 2005), regional patterns of streamflow changes are complex 

and less certain. Streamflow responds to a number of factors which can be classified 

as climatic and non-climatic. Climate factors include temperature, precipitation, 

evaporation, wind speed and direction, cloud cover and a combination of these. Non- 

climatic factors include catchment cover, vegetation, and man-made structures 

including diversion and detention structures such as dams. In the Amazon basin, 

conversion of forest to pasture is also known to influence watershed hydrological 

processes (Ziegler et al., 2004; Moraes et al., 2006; Zimmermann et al., 2006; Germer 

et al., 2009). While the influences of climatic changes and land- use variations on 

watershed hydrology cannot be investigated in isolation, understanding the influence 

of these watershed response drivers independently provides preliminary information. 



Chapter 2 

 

35 
 

The debate on climate variability and climate change relies heavily on the detection of 

trends in records of hydroclimatic variables such as precipitation and streamflow. In 

many parts of the world, and in particular in the USA, Canada and Europe, numerous 

large-scale analyses of hydro-climatic trends have recently been conducted on 

precipitation and streamflow data at different time scales (e.g., Groisman et al., 2001; 

Zhang et al., 2001; Molnár and Ramírez, 2001; Burn & Hag Elnur, 2002; Kahya and 

Kalayci, 2004; Birsan et al., 2005). However, such studies are limited in the South 

American continent (e.g., Rosenblüth et al., 1997).  

Therefore, the main objective of this study was to identify trends in observed 

streamflow data and their occurrence in time in the Upper Rio Das Mortes watershed, 

and to analyse the linkages between any observed changes in streamflow and 

precipitation. As outlined by Jakeman and Hornberger (1993), it is important to 

determine: “what reliable information may reside in concurrent observed precipitation–

streamflow measurements for assessing the dynamic characteristic of catchment 

response.” 

2.2. Study Area Description 

The study was conducted in the upper Rio das Mortes watershed (Fig. 2.1) located in 

Mato Grosso State, Brazil. The watershed is located between 53° 45′ and 55° 30′W, 

and 14° 45′ and 16° 00′S, and covers an area of 17 555 km2. The study area is in the 

western part of the Central Brazilian Plateau, where the basement of the South 

American platform is covered by Tertiary (Cachoeirinha formation) and Mesozoic 

(Bauru group) sedimentary rocks, which are mainly arenites and conglomerates. The 

main soil types in the watershed are red and yellow Latossolos (Brazilian classification 

system, EMBRAPA 1999).  

The relief of this area is mostly flat to very gently undulating, and elevation varies from 

336 m in the lowlands along the river network and the gallery forests to 908 m with 

slopes predominantly in the 15% range. The main soil types are the Latossolo 

Vermelho-Escuro and the Latossolo Vermelho-Amarelo Podsolico covering almost 

70% of the watershed. The remaining natural vegetation, concentrated along the 

rivers, is dominated by the Cerrado and gallery forests. Land-use in this region is 

predominantly agricultural and it is one of the principal production areas of grain and 
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cotton in Mato Grosso State with annual production of maize, cotton and soybeans. 

The Rio das Mortes River can be generally classified as a rain-fed river and is 

characterized by a pronounced seasonal flow regime showing year-to-year variability. 

Generally, high flows occur during the summer period (November to April) and low 

flows occur during winter (dry) season which, on average, spans from May to October. 

The daily flow ranges from 126 to 1615 m3/s with a long-term mean flow of 361 m3/s. 

 

Figure 2.1 Upper Rio das Mortes watershed in central Mato Grosso State, Brazil. 

The discharge gauge of Toriqueje (ANA 26050000) located at 15.31S 53.08W was 

selected because of the existence of a long time series (19672007) of daily discharge 

data. Discharge data were downloaded from http://www.ana.gov.br. Precipitation from 

four weather stations upstream of the gauging stating is spatially averaged to build the 

rainfall time series used in this study. 

 

2.3. Study methodology 

The methodology used in this study consisted of trend tests applied to 40 years’ time 

series data of streamflow measured at the ANA gauging station (26050000) The 

magnitude of the trend slope was also determined for each time series. Trend analysis 

of hydrometric data is most commonly performed using the Mann–Kendall non-

parametric tests. The main reason for using non-parametric statistical tests is that 

compared to parametric statistical tests, the non-parametric tests are thought to be 

more suitable for non-normally distributed data and censored data, which are 

frequently encountered in hydro-meteorological time series (Ehsanzadeh et al., 2010). 

This method was adopted in this study. To avoid serial auto-correlation complications, 

Kendall’s test was applied on annual basis. The calculated Mann-Kendall trend 
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statistic determines the statistical significance of a trend in a data set. Decadal flow 

duration curves were also generated. Low-flow magnitude and frequency are used 

often by water-supply planners and reservoir managers to manage water availability 

for supply. In this study, we estimated the 7-day low flows and the Mann-Kendall test 

was also applied to test for any significant trends in the 7-day low flow time series. The 

7-day low flow in any year is determined by calculating the average flow over seven 

consecutive days for every seven-consecutive-day period in the year and choosing 

the lowest. The trend was considered to be significant if the probability value (p-value) 

was less than or equal to 0.05. This value represents a 95-percent confidence level. 

 Precipitation data from four stations located within the study watershed were 

analysed in this study. 

2.4. Results and discussion 

2.4.1. Annual rainfall and streamflow 

The Mann-Kendall trend test applied to annual rainfall showed no statistically 

significant upward or downward trend in the watershed (Fig. 2.2a). To investigate if 

the trends in annual streamflow were related to climatic factors, mean annual stream 

flows for the period 1967-2007 were analysed using the same method and the results 

are shown in Fig. 2.2b and 2.2c. Monthly streamflow data revealed important trends 

in the natural hydrological regime of the watershed. A statistically significant upward 

trend was detected in the watershed at the 0.01 and 0.05 levels of significance for 

annual streamflow (Fig. 2.2b). A similar trend was also observed for the 7-day low 

flows (Fig. 2.2c). The Sen’s slopes of the trends in streamflow are also presented and 

confirm these findings. 

 

Figure 2.2 Mann-Kendall test on (a) annual rainfall in the study watershed, (b) the mean annual 
streamflows, and (c) 7-day low flows recorded at ANA 26050000 gauging station. 
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2.4.2. Decadal flow duration curves 

The decadal flow duration curves (Fig. 2.3) show a marked increasing shift in 

discharge after the 19681977 decade. As there is no marked increase in annual 

precipitation during this period, these results show that streamflow trends are 

influenced more by other forces. Low (Q75-100), median (Q45-55) and high (Q0-10) flows 

derived from the decadal flow duration curves are shown in Table 2.1. The decadal 

values flow values also show significant changes in streamflow after 19681977.  

 

Figure 2.3 Decadal flow duration curves for stream flow measured at the ANA station 26050000 
for the period 1968–2007. 

Precipitation variability could be the main driver of changes in the hydrological 

response in a watershed and could mask other changes in the nature of rainfall–runoff 

response (Rodriguez et al., 2010). However, from this study, increasing discharge 

changes are not matched by increases in precipitation, over the four decades. There 

is no evidence of any increasing trend in precipitation. This suggests that other factors 

are more important in this watershed in controlling streamflow trends. Land-use 

change from forest to agriculture and pasture, is generally considered a leading cause 

for changes in watershed hydrological responses, through changes in runoff 

generation mechanisms.  

Table 2.1 Decadal low, medium and high stream flows derived from flow 
duration curves. 

 1968–1977 1978–1987 1988–1997 1998–2007 

High flow (Q0–10) 

Median flow (Q45–55) 

Low flow (Q75–100) 

418 

264 

173 

630 

344 

243 

607 

344 

242 

560 

313 

217 

2.4.3. Wavelet analysis  

Wavelet analysis maintains time and frequency localization in a signal analysis by 
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decomposing or transforming a one-dimensional time series into a diffuse two-

dimensional time-frequency image simultaneously. Then it is possible to get 

information on both the amplitude of any “periodic” signals within the series, and how 

this amplitude varies with time. This information was not readily available in the raw 

signal (Fig. 4(a)). Thus, Fig. 4(b) is the diffuse two-dimensional simultaneously time-

frequency image called the wavelet power spectrum. 

Wavelet power spectrum: Figure 4(a) shows the raw data of the daily streamflow at 

Araguaia gauge. Figure 4(b) shows the power (absolute value squared) of the wavelet 

transform for those raw data, using the Morlet mother wavelet because it gives more 

accurate frequency information. Figure 4(b) shows the actual oscillation of the 

individual wavelet rather than just its magnitude. Observing it, the concentration of 

power can be easily identified in the frequency or time domain, i.e. an annual 

frequency along the entire time series (1967–2007), but with high concentration 

starting in 1972, which is highlighted by the thick contours. The variance of power in 

the 256–512-day band (also confirmed by Fig. 4(c)) also shows the dry and wet years; 

i.e. when the power decreases substantially in this band, it means a dry year and when 

the power is maximum means a wet year, as discussed by Santos et al. (2001, 2003) 

and Santos and Ideião (2006). The area below the well-defined line is called the 

influence cone, where zero padding was performed. Thus, this area must be avoided; 

e.g. there is a power concentration until 1990 at the 40968192-day band (a 

hydrological event occurring each 15 years), but this must be influenced by the zero 

padding. 

Global wavelet power spectrum: The global wavelet spectra provide an unbiased 

and consistent estimation of the true power spectrum of the time series. The dashed 

line is the 5% significance level for the global wavelet spectrum, using a red-noise 

background spectrum. Trends of the time series are confirmed by an integration of the 

power over time spectrum, assuming red-noise, represented by the dashed lines (Fig. 

4(c)). Many geophysical time series can be modelled as either white-noise or red-

noise. As explained by Torrence and Compo (1998), a simple model for red-noise is 

the univariate lag-1 autoregressive process. The lag-1 (1) is the correlation between 

the time series and itself, but shifted (or lagged) by one time unit. In this present case, 

this would be a shift of one day. The lag-1 measures the persistence of an anomaly 
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from one day to the next. When the lag-1 is greater than 0.4, it is recommended to 

compute the true lag-1  as  = (1 + 2
1/2)/2, in which 2 is the autocorrelation lag-2, 

which is the same as lag-1 but lagged by two days instead of one day. When 1 is less 

than 0.4, it is recommended to model the series as white-noise ( = 0). The null 

hypothesis is defined for the wavelet power spectrum as assuming that the time series 

has a mean power spectrum, and then it can be assumed to be a true feature with a 

certain percent confidence. For definitions, “significant at the 5% level” is equivalent to 

the “95% confidence level,” and implies a test against a certain background level, while 

the “95% confidence interval” refers to the range of confidence about a given value 

(Torrence and Compo 1998). 

 

 

 

Figure 2.4 (a) Daily streamflow at Araguaia gauge for the 1967–2007 period. (b) The wavelet 
power spectrum using Morlet mother wavelet. The thick contour encloses regions of greater 

than 95% confidence for a red- coefficient of 0.99158. (c) The global 
wavelet power spectrum. The dashed line is the 5% significance level for the global wavelet 

spectrum, using a red-noise background spectrum. (d) Scale-average wavelet power over the 
256–512-day band. The dashed line is also the 95% confidence level assuming red-noise. 
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Scale-average time series: The scale-average wavelet power is a time series of the 

average variance in a certain band. On the case of Fig. 4(d), it is the 256–512-day 

band. It can be used to examine modulation of one frequency by another within the 

same time series. Figure 4(d) is generated as the average of Fig. 4(b) over all scales 

between 256 and 512 days. A dry period can be identified between 1967 and 1975, 

followed by a wet period until the beginning of 1982. Other reductions in power can be 

also found between the years 1982–1986 and in 1993, which correspond to dry years 

followed by wet periods. 

2.5. Conclusions 

Analyses of historical records of annual precipitation and discharge could have 

potential applications to help water managers and decision makers make informed 

decisions regarding water resources management and economic development 

planning, especially considering predicted future climatic change scenarios. From this 

study, the following conclusions can be made: (a) Stream discharge in the study 

watershed has increased over the past four decades. Similar trends were observed 

for high, medium and low flows estimated using flow duration curves. However, the 

nature of the observed change is not completely known. This can vary from simple 

upward trends that are monotonic to increasing shifts in the average values, or may 

be a combination of both. Further investigation of this trend and an extension to other 

watersheds within the basin is required. (b) Mean annual precipitation during this same 

period under consideration (1967–2007) indicate no statistically significant evidence 

of an increasing or decreasing trend. Results from this study indicate that the observed 

increasing trend in streamflow is most likely influenced by other factors in the 

watershed besides the precipitation pattern. Land-use change patterns that have 

occurred in the study area in the last few decades are likely to play a significant role 

in the observed streamflow trends. (c) Although the study is limited and cannot be 

used in isolation to determine watershed changes in low-flow conditions, the study 

provides an important pattern where streamflow increase is not matched by increases 

in annual rainfall amounts. Prediction in ungauged watersheds and basins is an 

important topic in hydrological studies. The low-flow determinations in this study and 

trend analysis could be used in conjunction with basin characteristics to develop 
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regional equations for estimating low flows at ungauged streams. Finally, (d) This 

study represents an initial step towards a quantitative understanding of historical 

changes in precipitation and streamflow in the Upper Das Mortes watershed. Literature 

suggests a variety of anthropogenic factors influencing the watershed hydrology 

climate of southern Amazonia watersheds which may overshadow any climatic change 

signals. Ongoing studies include quantifying spatial and temporal land use/land cover 

dynamics and investigating how these observed changes influence streamflow trends, 

establishing trends in parameters controlling overall watershed water balance and 

seasonal trends and use hydrologic models to predict the influence of likely future land 

use land cover scenarios and climate on watershed hydrology. 
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3. A multi-approach and multi-scale study on water quantity 

and quality changes in the Tapajós River basin, Amazon 
 

This manuscript is published as: Nóbrega, RLB, Lamparter, G, Hughes, H, Guzha, AC, Amorim, RSS, Gerold, G. 

2018. A multi-approach and multi-scale study on water quantity and quality changes in the Tapajós River basin, 

Amazon. Proc. Int. Assoc. Hydrol. Sci. 377, 3–7. DOI:10.5194/piahs-377-3-2018. 

 

Abstract 

We analyzed changes in water quantity and quality at different spatial scales within 
the Tapajós River basin (Amazon) based on experimental fieldwork, hydrological 
modelling, and statistical time-trend analysis. At a small scale, we compared the river 
discharge (Q) and suspended-sediment concentrations (SSC) of two adjacent micro-
catchments (< 1 km²) with similar characteristics but contrasting land uses (forest vs. 
pasture) using empirical data from field measurements. At an intermediary scale, we 
simulated the hydrological responses of a sub-basin of the Tapajós (Jamanxim River 
basin, 37,400 km2), using a hydrological model (SWAT) and land-use change scenario 
in order to quantify the changes in the water balance components due to deforestation. 
At the Tapajós’ River basin scale, we investigated trends in Q, sediments, 
hydrochemistry, and geochemistry in the river using available data from the HYBAM 
Observation Service. The results in the micro-catchments showed a higher runoff 
coefficient in the pasture (0.67) than in the forest catchment (0.28). At this scale, the 
SSC were also significantly greater during stormflows in the pasture than in the forest 
catchment. At the Jamanxim watershed scale, the hydrological modelling results 
showed a 2% increase in Q and a 5% reduction of baseflow contribution to total Q 
after a conversion of 22% of forest to pasture.  In the Tapajós River, however, trend 
analysis did not show any significant trend in discharge and sediment concentration. 
However, we found upward trends in dissolved organic carbon and NO3 over the last 
20 years. Although the magnitude of anthropogenic impact has shown be scale-
dependent, we were able to find changes in the Tapajós River basin in streamflow, 
sediment concentration, and water quality across all studied scales. 

 

3.1. Introduction 

Southern Amazonia was the first region of Brazil’s Amazon area to be exposed to 

intensive conversion to agricultural lands (Fearnside, 2016). The Tapajós River, an 

important tributary of the Amazon River, lost in this basin ca. 30% of forest cover (ca. 

500,000 km²) by 2016, mainly due to the establishment of agro-industrial farms. The 

forest loss in this River basin is projected to reach approximately 65% by 2050 

(Soares-Filho et al., 2006). 

https://doi.org/10.5194/piahs-377-3-2018
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The understanding of small areas is essential to propose solutions to maintain tropical 

forest services, such as water and nutrient cycling, in the Amazon (Vedovato et al., 

2016). These areas can be well assessed by experimental catchment studies. For 

example, Bleich et al. (2016) studied 10 small pristine streams in the Tapajós River 

basin and argue that in case measures of conservation of small catchments are not 

taken, environmental impacts on regional streams in South Amazonia are expected to 

increase. Impacts at regional scales have been the concern of the scientific community 

with regards to the role of tropical forests in the global climate systems, especially the 

effects of the Amazon deforestation in large scales (Ometto et al., 2011). Lima et al. 

(2014) argue that large-scale deforestation triggers complex non-linear interactions 

between the atmosphere and biosphere, which may impair important ecosystem 

services such as water for agriculture and hydroelectric power generation. 

Although it has been reported that deforestation leads to changes in the water cycle 

in this region (Davidson et al., 2012), the effects of forest clearing on the 

concentrations of suspended and dissolved materials that are usually seen in small 

streams are difficult to be detected in larger streams and rivers (Thomas et al., 2004). 

However, the chemistry of the large rivers in the Amazon that remained relatively 

unaltered until 2000 was compromised because of the upcoming growing of area 

occupied by pastures (Neill et al., 2001). Additionally, analyses of land-use change 

impacts that were usually limited to small plots or experimental catchments are now 

possible to be applied to larger scales, such as river basins, due to recent 

improvements in data collection, archiving and distribution (Eshleman, 2004). New 

evidence shows that the conversion of forest to pasture is manifested in systematic 

changes in the hydro-climatology cycle with increase in river discharge in large 

catchments in the Amazon (Souza-Filho et al., 2016). 

In this study, we examined the impact of the land-use change on the streamflow and 

water quality of the Tapajós River basin using different spatial scales and approaches. 

We seek to understand what signatures from the land-use change are possible to 

observe within and across these scales. 
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3.2. Area of study 

Our study focus on the Tapajós River basin (ca. 500,000 km²), which is the fifth largest 

sub-basin of the Amazon River and covers 7% of the total Amazon basin (Pavanato 

et al., 2016). This basin includes 7 of the 41 municipalities where Brazilian 

Environmental authorities concentrate anti-deforestation efforts due to their high 

incidence of forest clearing (Bragança, 2015). In order to estimate the impacts of scale, 

we integrated to our study a sub-basin of the Tapajós, the Jamanxim River basin 

(37,400 km²), and a pair of micro-catchments (<1 km²) with contrasting land uses 

(forest vs. pasture) located in the municipality of Novo Progresso, in the Brazilian state 

of Pará (Fig. 3.1). The climate in this area is humid tropical with a rainy season from 

November to May and a dry season that extends from June to October. Mean annual 

precipitation averages 1,900 mm. 

 

Figure 3.1 Area of study. 
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3.3. Methods 

3.3.1. Experimental micro-catchment study 

We compared the streamflow of the micro-catchments by using empirical data from 

field measurements from 2013 to 2014. At the catchment outlets, we installed 

rectangular weirs and a DS 5X multiparameter sonde (OTT, USA) to measure water 

level and to quantify streamflow. In these catchments, we also collected 1-L water 

samples during stormflow events for suspended sediment concentration (SSC) 

analysis following the method of ASTM (2000). More details on the catchments’ 

characteristics and instrumentation setup can be found in Guzha et al. (2015). 

3.3.2. Jamanxim River basin modelling 

We simulated the hydrological behavior of the Jamanxin River basin using the SWAT 

eco-hydrological model (Arnold et al., 2012). For the setup, calibration and validation 

of SWAT, we used a gradual land-use change parameterization, field assessments, 

and available regional data, and then simulated a land-use change scenario in order 

to quantify the changes in the water balance components due to deforestation. The 

model parameterization, calibration and validation details can be found in Lamparter 

et al. (2016). The land-use change scenario used in this study (Fig. 3.2) suggests a 

rapid pasture expansion according the study of Gollnow et al. (2017). 

3.3.3. Tapajós River basin analysis 

We investigated trends in Q, sediments, hydrochemistry, and geochemistry in the river 

using available data from the HYBAM Observation Service (www.ore-hybam.org). We 

used Mann-Kendall test for detecting either an upward or downward trend in the data 

series with a significance threshold set at .05. The data were also used to quantify 

fluxes of nitrate and total dissolved carbon (DOC) in 5-year periods from 1996 to 2015. 

3.4. Results and Discussion 

Figure 3.3 shows the streamflow comparison between the two micro-catchments. The 

pasture catchment has a higher runoff coefficient (0.67) than the forest catchment 

(0.28). Baseflow indices were 0.76 and 0.88 for the pasture and forest catchments, 

respectively, showing a higher baseflow contribution in the forest catchment. At this 
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scale, the SSC were also significantly higher during stormflows in the pasture (579.7 

± 985.3 mg L-1) than in the forest catchment (81.8 ± 148.6 mg L-1). 

 

Figure 3.2 (a) Land-use distribution in 2011, and (b) Land-use scenario (22% of deforestation) 
for the year 2030 following a business as usual approach (Göpel & Schaldach, 2016). 

 

 
Figure 3.3 Streamflow and rainfall in the forest and pasture micro-catchments. 

For the Jamanxim River basin, simulation results show a 2% increase in discharge (Q) 

and a 5% reduction of baseflow contribution to total Q after a 22% conversion of forest 

to pasture (Fig. 3.4 and Table 3.1). Our results are in accordance to Davidson et al. 

(2012); they state that even though basin-scale impacts of land use may not yet 

surpass the magnitude of natural hydrological variability and biogeochemical cycles, 
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there are some signs of a transition to a disturbance-dominated regime, which include 

changes in the water cycle in the Southern and Eastern regions of the Amazon basin. 

 

Table 3.1 Q results with SWAT for the land-use distribution and scenario. 

P 
(mm) 

Q 
(mm) 

Q 
Scenario 

(mm) 

Qbase 
(mm) 

Qbase 
Scenario 

(mm) 
1,639 637 685 396 405 

 

 

Figure 3.4 Calibration and validation with land-use update for the Jamanxim catchment. 

 

 

Figure 3.5 Nitrate and total dissolved carbon fluxes. 

At the scale of the Tapajós River basin, however, trend analysis did not show any 

significant trend in discharge and sediment concentration. Hydrological changes due 

to land-use change are known to be primarily manifested at smaller scales. Therefore, 

we ascribe the absence of visible trend at a large scale to the fact that most of the 
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deforestation in the Tapajós River basin has occurred in its upper portion, which 

produces hydrological signatures that may be buffered along the river until its outlet. 

The analyses of the outflow fluxes over the last 20 years in the Tapajós River revealed 

upward trends in dissolved organic carbon and NO3, which have reached an up to 10-

fold increase (Fig. 3.5). 

3.5. Conclusions 

Effects of deforestation on large rivers of the Amazon basin were relatively unknown 

due to the low degree of connection between large rivers and land uses in these basins 

(Neill et al., 2001). We were able to find changes in the Tapajós River basin in river 

discharge, sediment concentration, and water quality across all studied scales. In this 

context, our study adds to an increasing body of literature showing that although the 

magnitude of anthropogenic impact has shown to be scale-dependent, some changes 

are detectable in both small and large rivers in the Amazon.  
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4. Characterizing rainfall runoff signatures from micro 

catchments with contrasting land cover characteristics in 

southern Amazonia 
 

This manuscript is published as: Guzha, AC, Nóbrega, RLB, Kovacs, K, Rebola-Lichtenberg, J, Amorim, RSS, 
Gerold, G. 2015. Characterizing rainfall-runoff signatures from micro-catchments with contrasting land cover 
characteristics in southern Amazonia. Hydrol. Process. 29, 508–521. DOI:10.1002/hyp.10161. 

 
Abstract 

Based on interactions between landscape characteristics and precipitation inputs, 
watersheds respond differently to different climatic inputs. The objective of this study 
was to quantitatively characterize controls on runoff generation from two first order 
micro-catchments in the Amazonia region. The study investigated the variation of 
hydrological signatures at micro-catchment scale, and relates these to landscape and 
land cover differences and weather descriptors that control the observed responses. 
One catchment is a pasture cleared of all natural vegetation in the early 1980’s and 
the second catchment is a primary tropical forest with minor signs of disturbance. 
Water levels and meteorological variables were continuously monitored during the 
study period (December 2012-May 2013). Water level measurements were converted 
to discharge, evapotranspiration was quantified using Penman-Monteith equation and 
catchment pedohydrological properties were also determined. During the study period, 
mean total rainfall was 1200 mm and runoff ratios were 0.79 and 0.47 for the pasture 
and forest catchments, respectively. Base flow index was relatively higher in the forest 
catchment (0.76) compared to pasture catchment (0.63). Results from this study 
showed that the pasture catchment had a 35% higher mean stream flow. Analysis of 
selected individual rainstorm events also showed peak discharges were attained much 
faster in the pasture catchment compared to the forest catchment. At both sites, 
rainfall-runoff responses were highly dependent on surface and subsurface flow 
generation. Overland flow was observed in the pasture site during intense rainfall 
events. The pasture catchment exhibited higher event water contribution than the 
forest catchment. Findings from this research suggest that shallow lateral pathways 
play a significant role in controlling runoff generation processes in the forest 
catchment, while infiltration excess runoff generation processes dominate in the 
pasture catchment. Results from this study suggest that the conversion of forest to 
pasture may lead to important changes in runoff generation processes and water 
storage in these head water catchments. 

Key Words: hydrological processes, spatial and temporal variations, water balance, 

land cover, Amazonia.  
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4.1. Introduction and objectives 

Even though there is a general agreement on the importance of the Amazonia forest 

to world’s climate, rainfall patterns and water resources, there is relatively limited 

research on examining the influences of land use changes on catchment hydrology in 

the humid tropics (Roa-Garcia and Weiler, 2010; Roa-Garcia et al., 2011). Tropical 

forest watersheds are valuable terrestrial ecosystems for biodiversity and provision of 

water related ecosystem services (Hamilton et al., 1995; Tognetti et al., 2010; 

Zadroga, 1981). However, dramatic degradation in these ecosystems have occurred 

in the last few decades (Scatena et al., 2010). While there is substantial evidence that 

the conversion of forest to pasture or crops in the tropics is associated with an increase 

in annual stream flow totals because of the lower evapotranspiration of the 

replacement vegetation, there are reports of diminished stream flows during the dry 

season, and in this respect, the effects of tropical forest conversion on catchment 

hydrology are even less understood (Bruijnzeel et al., 2011). Scientific conclusions 

and inferences generated from modeling efforts have often been tampered with limited 

field data and based on model parameter calibration and thus increased uncertainty 

in the model predictions. As stated by Blume et al. (2007), basin inter-comparison and 

maximization of the scientific value of available data sets, and field campaigns are 

important in order to generate data sets for catchments and watersheds in various 

study regions. 

Headwater catchments can play a significant role in understanding the influence of 

anthropogenic and climate changes on stream flow dynamics because of their 

relatively small contributing areas which make them highly responsive to changes in 

energy, water, and chemical inputs (Roa‐García et al., 2011). The low-order streams 

in these catchments are the sources or origins for larger rivers and therefore 

hydrological signatures from these may serve as useful indicators of different 

catchment stresses.  

Classical and recent studies show that hydrologic properties of catchments, including 

infiltration and hydraulic conductivity are strongly affected by various stresses (Alegre 

and Cassel, 1996; Schoenholtz et al., 2000) and these properties play a key role in 

surface and sub-surface flow paths, and runoff generation (Elsenbeer, 2001; 
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Elsenbeer and Lack, 1996) and subsequently hydrochemical dynamics. While the 

intensity and amount of rainfall are key factors, recent studies give rise to the 

assumption that besides the amount of precipitation, other factors play important roles 

in controlling seasonal patterns of catchment hydrochemical signatures (Breitenbach 

et al., 2010; Feng et al., 2009; Kebede and Travi, 2011; Lee et al., 2009). 

Schnorbus and Alila (2013) observed that land use change did not have a statistically 

significant (α = 0.05) impact on the peak flow distribution until a threshold level (20-

30%) in spatial extent of the land use change (forest harvesting in their case). They 

also noted that the magnitude of peak flow change is a function of changes in input 

fluxes (rainfall minus evapotranspiration) and changes in runoff synchronization, which 

directly affect peak discharge magnitude and timing. Thus understanding catchment 

characteristics is an important prerequisite for evaluating the effects of various 

anthropogenic and climatic drivers in catchment hydrological responses, and 

subsequent hydrochemical dynamics. 

As outlined by Pfeffer et al. (2013), existing data and knowledge points out the central 

role of land use and confirm that land cover changes have a greater impact on runoff 

production than the rainfall amounts (Séguis et al., 2004; Boulain et al.,2009; Massuel 

et al., 2011).  De Moraes et al. (2006), asserts that the removal of forest decreases 

interception and evapotranspiration (Wright et al., 1996), increases soil moisture levels 

(Hodnett et al., 1995) and groundwater recharge (Jipp et al., 1998), decreases 

infiltration capacity and soil water storage capacity of the upper root zone, and 

increases both quick flow and delayed flow to various degrees that depend on the 

land-cover history. While the runoff responses of catchments are  mainly  influenced  

by rainfall regime, topography, vegetation, and soil hydraulic properties (Dunne, 1978), 

Bonell and Balek (1993) observed the differences in these driving variables between 

temperate landscapes and the humid tropics. In the humid tropics, the presence of 

clay-rich soils and high rainfall intensities result in generation of saturation overland 

flow where hardpans or impeding horizons exists near the surface. Thus with forest 

conversion to pastures, the impeding layer could be extended to the surface due to 

compaction, and thus increasing the occurrence of infiltration-excess overland flow 

and thus increased discharges. However, as highlighted by Cappelaere et al. (2009), 
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finer process understanding  at various spatial and temporal scales is still needed to 

explain the observed surface fluxes and improve future water management scenarios.  

Results presented in this paper are part of a project which aims to develop a decision 

support tool to alleviate land use intensification associated problems in Southern 

Amazonia. These losses of ecosystem services include loss of natural vegetation and 

associated ecosystem functions in the global and regional climate system, increasing 

emissions of greenhouse gases (GHG), and the reduction of livelihoods. This paper 

examines the rainfall runoff relationships and the various controls of catchment 

hydrology in micro-catchments. An important source of variability in the study 

catchments is the contrasting land use. The study focuses on a natural forest 

catchment and a pasture catchment in which the original forest vegetation has been 

removed and replaced with Brachiaria brisanta grass for intensive cattle rearing. To 

reduce the effect of spatial variability typical for the medium-sized and large basins, 

this study focuses on micro-catchments that are less than 1 km2 in spatial extent.  

The objective of the study was to understand how stream flow is conditioned by 

microclimate, precipitation pattern, land cover and soil properties, amongst other 

catchment properties. The catchment physiographic characteristics were examined in 

relation to observed stream flow dynamics for selected rain storms and also how these 

are likely related to current land use and land cover patterns. This paper contributes 

to the understanding of process hydrology by characterizing the hydrological behavior 

of small headwater catchments in active deforestation zones of Southern Para State 

on the south east of the Amazonia.  

Our central hypothesis is that clearing for pastures and agricultural development leads 

to increased flashiness of catchment discharge dynamics and also reduces dry season 

flows. By quantifying the water balance components of the selected catchments, we 

test the infiltration trade-off hypothesis for tropical environments and the applicability 

of the linear reservoir concept. The following sections provide a description of the 

studied catchment; details of the chosen methodologies for the analysis; and an 

overview of the results.  
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4.2. Study site and methods 

4.2.1. Location and Physical Characteristics 

The experimental catchments are located within the boundaries of Fazenda Paraiso 

(7.042oS, 55.385oW), which is about 5km from the town of Novo Progresso in Southern 

Para Brazil (Fig. 4.1), and situated in the watershed of the Jamanxim River, one of the 

major southern sub-tributaries of the Amazon River. The climate is humid tropical with 

a rainy season from November to May and a dry season that extends from June to 

October. Mean annual precipitation averages 1900 mm. Figure 4.2 shows typical soil 

profiles in the study area, and tables 4.1 and 4.2 show the basic soil profile horizon 

characteristics for the two study catchments. The dominant soils are Lixisols 

(Haplustox / Latossolo vermelho-amarelo distrófico (Brazil classification)) with sandy 

clay texture (mean soil texture of 55% sand, 2% silt, and 43% clay) (Soil Survey Staff, 

1999). Lixisols are related to the Oxisol order of the U.S. Soil Taxonomy. The pasture 

catchment with an area of 24 ha is covered by pasture grass (Brachiaria brisanta). The 

forest catchment with an area of 93 ha is located approximately 1.5 km from the 

pasture catchment, on the south eastern fringe of the farm is generally a natural forest 

with existing signs of vegetation/tree regrowth and the existence of tree logging sites. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.1 Study area location and study catchments instrumentation. 

 

 

 

Pasture catchment 

Forest catchment 

http://www.britannica.com/EBchecked/topic/436739/Oxisol
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Table 4.1 Soil horizon characteristics in the study catchments 

Pasture: Clayic Lixisols 
Horizon 
Symbol 

Depth (cm) Texture Color Bulk Density 
(g/cm3) 

Structure Roots Other features 

A 
 
 
E 
 
 
 
Bt 

0-5 
 
 
5-70  
 
 
 
70-103 

Sandy Loam 
 
 
Sandy clay 
loam 
 
 
Clay loam 

10YR 3/11 
 
 
2.5Y 6/4 
 
 
 
2.5Y 7/3 

1.2 
 
 
 
1.1 
 
 
 
 
1.1 

Block sub 
angular 
moderate 
 
Block sub 
angular 
moderate 
 
 
Block sub 
angular 
moderate 

Few  
Very fine 
 
Very few 
Very fine 
 
none 

  - 
 
 
 
 
  - 
 
 
 
  -  
 

 
Forest: Albic Lixisols 

Horizon 
Symbol 

Depth 
(cm) 

Texture Color Bulk Density 
(g/cm3) 

Structure Roots Other features 

A 
 
 
 
E 
 
 
 
Bt 
 
 
Bvm 

0-7 
 
 
 
7-47  
 
 
 
47-60 
 
 
60- 

Sandy Loam 
 
 
 
Sandy clay loam 
 
 
 
Clay loam 
 
 
Plinthic layer 

10YR 
2/2 
 
 
10YR 
4/3 
 
 
2.5Y 
5/3 
 
 
- 

1.1 
 
 
 
1.3 
 
 
 
1.4 
 
 
- 

Block sub 
angular 
moderate 
 
Block sub 
angular 
moderate 
 
Blocky sub 
angular 
moderate 
- 

Few  
Very fine 
 
 
Very few 
Very fine 
 
 
None 
 
 
- 

  - 
 
 
 
 
  - 
 
 
  - 
 
 
Impenetrable 

 
 

Table 4.2 Saturated Hydraulic conductivity (cm/hr) measured at two depths 
and three different positions in the study catchments. 

 

Catenal Position Measurement Depth Pasture Forest 

Upslope 
25cm 0.339 1.53 
40cm 1.66 0.915 

     

Middle Slope 
25cm 0.39 7.72 
40cm - 4.34 

     

Valley Bottom 
25cm 0.77 6.01 

40cm 0.95 7.88 
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Figure 4.2 Typical soil profiles in the two study catchments. 

 

4.3. Methods 

4.3.1. Rainfall and weather data  

In order to capture the rainfall variability within the catchments, a network of tipping 

bucket rain gages was installed. In the pasture catchment, four tipping buckets with 

data loggers (Tinytag, Gemini, UK) were installed. Three tipping buckets were at the 

forest catchment. Each of the tipping buckets has a resolution of 0.2 mm, and rainfall 

was recorded at 10 minute intervals. A weather station was installed within the pasture 

catchment with sensors to measure total solar radiation, net solar radiation, 

temperature, relative humidity, wind speed and direction and rainfall. Data was logged 

at a 10 minute time interval using two GP1 loggers. Reference evapotranspiration was 

quantified using the Penman–Monteith equation following the procedure presented by 

Allen et al. (1998).  

 

 

Forest: Albic Lixisol Pasture: Clayic Lixisol 

(Photo: J. Rebola-Lichtenberg) 
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ETo =
0.408∆(Rn−G)+γ

900

T+273
u2(es−ea)

∆+γ(1+0.34u2)
        (1) 

where:  

ETo reference evapotranspiration [mm/day], Rn surface net radiation [MJ/m2/day], G 

soil heat flux density [MJ m-2 day-1], T mean daily air temperature at 2m height [°C], 

u2 wind speed at 2m height [m s-1], es saturation vapor pressure [kPa], ea actual vapor 

pressure [kPa], es - ea saturation vapor pressure deficit [kPa], ∆ slope vapor pressure 

curve [kPa °C-1], γ psychrometric constant [kPa°C-1]. The grassland vegetation in the 

pasture catchments is perennial grasses with minimal seasonal growth stage variation 

and few scattered trees and shrubs. Therefore uniform Kc values were utilized to 

estimate actual evapotranspiration. Similarly, in the forest catchment a relatively 

uniform canopy of hardwood trees 20-30m tall cover the entire catchment all year 

through and therefore a uniform Kc value was used to quantify actual 

evapotranspiration. 

4.3.2. Catchment Discharge 

At the catchment outlets, rectangular weirs were built and fitted with a DS 5X 

multiparameter sonde (OTT) which measured water level, electrical conductivity, pH, 

turbidity, dissolved oxygen (LDO) and temperature at 15-minute intervals. The 

standard rectangular weir equation based on the Bernoulli equation was used to 

estimate catchment discharge (flow rate). 

𝑄 =
2

3
𝐶𝑑𝑏(√2𝑔)ℎ

3

2              (2) 

where: 

Q: discharge over weir (m3/s); Cd: discharge coefficient; b: weir length (m); h: head on 

weir (m) 

In order to understand the temporal dynamics in the hydrological response of the study 

catchments, the rainfall-run off relationships exhibited in the obtained discharge data 

for the period January 2013 to the end of May 2013 were examined. This coincides 

with the rain season in the study area. A few rainy storms were missed in November 

and December due to delays in field equipment installation. 



Chapter 4 

 

60 
 

4.3.3. Soil Moisture 

From a hydrologic viewpoint, soil moisture controls the partitioning of rainfall into runoff 

and infiltration and therefore has an important effect on the runoff behavior of 

catchments (Aubert et al., 2003). Time domain reflectometry (TDR) was used to 

monitor soil moisture dynamics. The TDR system was used to measure volumetric 

water content on a weekly basis, with TECANAT access tubes installed to a depth of 

200 cm in two transects in each catchment. The study catchments feature a 

toposequence of landscape positions from a gently sloping upper plateau, a middle 

slope and a low-gradient valley bottom. Access tubes were installed along this 

toposequence and thus the measured soil moisture represents water content 

dynamics along this toposequence. A TRIME-PICO T3 probe (IMKO 

Micromodultechnik GmbH, Ettlingen, Germany) was used to take measurements of 

volumetric water content at the following soil depth intervals: 0-20, 20-40, 40-60, 60-

80, 80-100, 100-120, 120-140, 140-160 and 180-200 cm. Since the TRIME probe 

measures water content in an elliptical field, two measurements were taken at each 

depth increment and averaged to account for local and spatial variability in water 

content.  

Detailed hydraulic properties (saturated hydraulic conductivity, Ks, and bulk density, 

BD) characterizing these catchments were also quantified. A constant head 

permeameter (Amoozemeter) designed by Amoozegar (1989) for in situ 

measurements above the water table was used to estimate hydraulic conductivity. This 

was done by augering a borehole at 25 cm depth and at 40 cm depth, establishing a 

constant water head in the hole and calculating Ks from the steady-state infiltration 

rate using the Glover equation (Amoozegar, 1989b). Particle size distribution of the 

soils was measured using the pipette method (Gee and Bauder, 1986) after chemical 

dispersion and removal of organic matter and carbonate contents. Soil bulk density 

was estimated using undisturbed samples dried in an oven at 105oC (Burke et al., 

1986). Soil particle density was measured in the laboratory using the pycnometer 

method of Blake and Hartge (1986) and total porosity was determined from bulk 

density and particle density values. 
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4.3.4. Hydrograph separation 

In line with procedures utilized by Recha et al. (2012), for the study period, the stream 

hydrographs were normalized using the approximate catchment area in order to allow 

a comparison of the catchments. Using discharge data, the Runoff Ratio (RR) was 

quantified as the ratio of total runoff to total rainfall. The discharge data were further 

analyzed using hydrograph separation techniques implemented in the Web GIS-based 

Hydrograph Analysis Tool (WHAT) using the recursive digital filter method for base 

flow separation (Lim et al. 2005; Lim et al. 2010). From this analysis, base flow and 

storm flow components of the runoff ratio (RRBF and RRSF as the ratio of total base 

flow and storm flow to total rainfall, respectively) were obtained. The base flow index 

(BFI) is the ratio of base flow to total discharge (Bloomfield et al., 2009). Flow duration 

curves were calculated to compare the differences in high, low, and median flows 

across the catchments (Vogel and Fennessey 1994). The Baker et al. (2004) method 

was used to estimate catchment flashiness indices.  

4.3.5. Water Balance 

Using the monitoring data, a water balance for each study catchment can be 

constructed as follows: 

P = R + ET + ΔS                                  (3) 

where P the rainfall, R is the surface water flow out of the catchment, ET is the 

evapotranspiration, and ΔS is the water content change in the unsaturated zone and 

recharge to saturated zone. ΔS, thus, includes lateral as well as vertical groundwater 

losses and gains from the catchment as well as error in estimating all mass balance 

components on the right-hand side of Equation 3. Due to logistical difficulties and 

equipment shortages, aquifer recharge could not be quantified and therefore in the 

water balance this term is lumped together with unsaturated zone water content. 

4.4. Results and discussion 

In this section, results obtained from the two study catchments are presented. The 

rainfall characteristics, pattern and variability between the two sites and the major soil 

profile characteristics are analyzed. After this, results of measured soil moisture 
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dynamics over the study period, stream discharge characteristics and quantified actual 

evapotranspiration variations in the study catchments are presented and discussed.  

4.4.1. Precipitation characteristics 

Figure 4.3 shows the daily rainfall amounts in each catchment. During the study period 

(December 2012 to May 2013) the pasture catchment received 1254 mm of rainfall 

while 1190 mm was recorded in the forest catchment. Given the convective rainfall 

typical of the tropical regions, the spatial variability in daily rainfall amounts was 

investigated by comparing average daily accumulations recorded in the pasture site 

with those recorded by tipping buckets in the forest site. A scatter plot of the two 

sampling locations is shown in Figure 4.4. This figure shows high coefficient of 

determination (r2 = 0.84) between these two sites. Considering the small size of the 

study catchments this analysis can provide confidence of using rainfall from only one 

site and apply to the other site. Rain events occur simultaneously at both locations. 

Most of the rainstorms are mid-afternoon storms of varying durations and peak 

intensities of 20mm/10min and 23mm/10min were observed in the pasture and forest 

catchments, respectively. Data analysis also shows the typical short, intense nature 

of tropical storms with mean storm duration of about 2 hours. 

4.4.2. Soil Profile Characteristics 

The forest catchment had a markedly lower mean bulk density (1.2 g cm-3) than the 

pasture catchment (1.42 g cm-3). This difference may be attributed to the higher root 

penetration and lack of compaction by the cattle in the forest catchment. The forest 

catchment exhibited a blocky structure while the pasture catchment had mainly blocky 

and platy structure. The platy structure in the pasture originates from compaction as a 

consequence of the operations for deforestation or cattle trampling. 
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Figure 4.3 Daily rainfall in the two study catchments (average of the tipping buckets). 

 

 
 

Figure 4.4 Correlation between daily rainfall data from Forest and Pasture catchments 

 

Results from this study show that the saturated hydraulic conductivity was relatively 

lower in the pasture catchment compared to the forest catchment. The low Ksat values 

in the pasture catchment can be an indication of the absence of a well-defined macro 

pore structure. The forest catchment had more than six times higher rate of saturated 
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hydraulic conductivity than the pasture (Table 4.2). That means moderately rapid 

infiltration and subsequently lower probability of runoff. Most probably the higher 

organic matter content and the lower bulk density in the forest favor the infiltration of 

water. Even though our study was only limited to two depths of measurements (25cm 

and 40cm), these results show relative anisotropy in Ksat with depth. Strong anisotropy 

has also been reported on oxisols in south western Amazonia (Elsenbeer et al., 1999). 

 

4.4.3. Soil Moisture variation 

From weekly soil moisture measurement data, the average soil moisture content 

remained in the 15–35% range during most of the measurement period. While soil 

moisture measurements were done on a weekly basis, the lack of large peaks in soil 

moisture contents at both sites even one day after large rainfall events may suggest 

that there is rapid drainage in the soil profiles at these two sites. Drying out was also 

observed beginning at the top and decreasing with depth. As shown in Figure 4.5, soil 

moisture content variability between the two catchments was generally limited. The 

pasture catchment exhibited lower hydraulic conductivity, compared to the forest 

catchment. Therefore, any greater surface inputs (rainfall) in the pasture catchment 

compared to the forest are likely offset by this difference in hydraulic conductivity. 

There is a general similarity in mean soil moisture contents between these two 

catchments. Maybe the drainage processes in these catchments behaves in similar 

ways and the soil profiles drain rapidly. This was observed by Hodnett et. al (1995) in 

central Amazonia catchments. Surface compaction in the pasture catchment can be a 

reason for a delay in replenishment of soil moisture stores while in the forest catchment 

while in the forest catchment, water uptake by plant roots influence profile moisture 

changes.  
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Figure 4.5 Time series of soil moisture (% vol.) at three catena positions in the forest 
and pasture catchments. 

 

 

 

In the forest site, the soil profile was generally shallower, with bedrock at about 50cm 

and presence of hardpan horizon was also observed. This may limit soil water 

reservoirs and also the hardpan horizon also promotes subsurface flow generation. 

The high base flow values observed in the forest catchment also support this 
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observation. The low water contents in the forest may also suggest the great influence 

of root water extraction in the forest site. This trend was also observed by Hodnett et 

al. (1995), who noted the great variation in soil moisture content between pasture and 

forest catchments in the Amazon.  

As expected, Figure 4.5 also shows a general increase in soil moisture from the 

upslope to the bottom slope. Because the soil moisture measurements were manually 

done on weekly basis and at times suitable for field work, the highest soil moisture 

content measured at both sites is likely to be between the saturation point and field 

capacity. In the pasture catchment the average Volumetric Moisture Content (VMC) 

was about 21% while in the forest catchment this was about 24%. These low VMC are 

typical in these lixisols which behave like sands in terms of water movement at low 

tensions but hold water like clay at high tensions (Sanchez (1976) in Hodnett et al. 

(1995). 

4.4.4. Catchment Discharge  

Figure 4.6 shows the peak daily stream flows at the 2 sites and Figure 4.7 shows the 

normalized daily discharges. During the study period, mean and peak discharges were 

higher in the pasture catchment compared to the forest catchment. The mean 

discharge was 8mm/day in the pasture catchment and 5mm/day in the forest 

catchment and the peak discharge was 49 mm/day in the pasture catchment and 20 

mm/day in the forest catchment. These results are similar to those obtained by 

Trancoso et al. (2007) in relatively similar catchments in the Amazon. The results show 

that land cover alterations impact on catchment water storage properties and this has 

direct effects on water quantity and water quality related ecosystem services. 

The relative hydrological behavior of the study catchments in a wet season as shown 

through the FDCs (Figure 4.8) provides evidence of the major rainfall runoff control 

processes. The Flow Duration Curves indicated that the pasture catchment exhibits 

almost 50% high flows (0 to 5th percentiles on FDC) than the forest catchment. The 

pasture catchment discharges more water at all percentages of time that the discharge 

is equaled or exceeded. For example, a 10mm/day runoff is equaled or exceeded in 

the pasture catchment for 30% of the time while in the forest it is exceeded only for 

10% of the time. Differences between the FDC’s are limited during the low flow 
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periods. To illustrate characteristics of individual flow events in the study catchments, 

two hydrographs were plotted for the rainfall storm of March 23th 2013 (Figure 4.9). 

The runoff response was much faster in the pasture catchment with an average lag 

time of 25 minutes compared to 60 minutes for the forest catchment. In the forest 

catchment, the hydrograph shows a delayed response suggesting that sub surface 

flow and subsequent overland flow on saturated areas were important processes. As 

explained by Suryatmojo et al. (2013), physical catchment parameters such as slope, 

shape, main-stream slope and drainage density affect stream flow and influence the 

shape of the hydrograph through catchment storage, runoff speed, infiltration and soil 

water content. While the study catchments display similar patterns, when the flows 

begin to decline with the onset of the dry season, the flow of forest catchment 

decreases first. 

 

 
Figure 4.6 Peak discharges and areal average rainfall in the study catchments. 

Hydrologic indices calculated from discharge data for these two catchments are shown 

in Table 4.3. Runoff ratios were significantly higher in the pasture catchment (0.79) 

than the forest catchment (0.46). However base flow contribution to stream flow was 

higher in the forest catchment (0.76) compared to the pasture (0.63). Table 4.3 shows 

a water balance for the two catchments and for almost similar rainfall totals during the 

study period, discharge normalized to catchment area was higher in the pasture 

catchment (992 mm) compared to the forest catchment (584 mm). The average daily 
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stream flow for the pasture catchment was 9.0 mm while it was 5.6 mm for the forest 

catchment. 

 

Figure 4.7 Normalised discharges and areal average rainfall in the study catchments. 

For selected representative rainstorms in the study catchments, the hydrographs are 

shown in Figure 4.10 (a-c) for the two study catchments. For the rainstorm on February 

26th 2013, 46 mm of rain produced 7 mm discharge at peak discharge rates of 0.24 

mm/10 min in the forest catchment while 55 mm of rain produced 31 mm of runoff at 

peak discharge rates of to 4 mm/10 min in the pasture catchment. The runoff 

coefficient for the pasture site was almost five times higher than for the forest 

catchment. The March 18th rainstorm (120 mm) produced 55 mm of runoff in the 

pasture catchment and on the same day 121 mm of rainfall produced only 26 mm 

runoff in the forest catchment. Similarly, on April 17th, 39 mm of rain produced 23 mm 

runoff in the pasture while 38 mm of rain produced only 6 mm discharge in the forest 

catchment. These hydrologic signatures show the relationship between total 

precipitation, base flow and runoff, with land cover playing an important role. As 

outlined by Bruijnzeel (2006), that even though it can be argued that a direct 

comparison of the catchments may lead to biased results because of inherent 

topographic differences between the two areas, it is pertinent to note that the relative 

size of the topographically controlled area potentially generating SOF was larger for 
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the forest catchment than for the pasture. Thus, the larger peak flows observed for the 

pasture catchment cannot be attributed only to intrinsic differences in catchment 

topography. An increase of runoff in the pasture could mainly be attributed to an 

increase in infiltration excess (Hortonian) overland flow. As stated by Elsenbeer (2001) 

and Niedzialek and Ogden (2010), the observed runoff properties are typical of many 

tropical catchments with dominant sources of water at the event scale being rapid 

lateral transport of water. 

 

 

Figure 4.8 Flow duration curves for daily discharge data from the study catchments. 

Most of the rainfall intensities in the pasture exceeded the Ksat values near the surface 

and this may mean that there are high frequencies of Hortonian overland flows 

occurring at this site.  Moraes et al. (2006) observed similar results in pasture 

catchments in Eastern Amazonia. The higher discharges of the pasture catchment 

could be explained by the compaction of soil upper layers by cattle grazing in the 

grasslands relative to the characteristics of soils in forest catchment. Compaction 

reduces rainfall infiltration, reducing groundwater replenishment and promotes surface 

flows (Bruijnzeel, 2004). As observed by Roa-Garcia (2011), the high flows in the 

pasture catchment also suggests a smaller water storage potential and higher surface 

runoff rates, related to grasslands that have less potential to store water than forests. 

In the forest catchments, higher Ks values were observed and usually forest soils are 
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dominant in vertical flow paths (Williams et al., 1997). However, the occurrence of 

shallow impeding layers within the soil profiles in the forest result in increases in lateral 

flow contributing to stream flow. Overall results suggest that land use plays an 

important role in the observed hydrologic signatures. The overall water balance for the 

study catchments during the study period (Table 4) shows that in the forest site, 49% 

of all rainfall inputs were discharged from the catchment while for the pasture 

catchment this amounted to 79%. 

Table 4.3 Hydrological analysis and indices for the study catchments derived from rainfall 
runoff data for the period January to May 2013. 

Index Pasture Catchment Forest Catchment 
Discharge (mm) 992 584 
RCa 0.791 0.466 
Storm Flow (mm) 371 154 
RCSF

b 0.296 0.123 
Base Flow (mm) 621 442 
RCBF

c 0.495 0.352 
BFId 0.626 0.757 
Flashiness Index 0.099 0.028 

a = total discharge/precipitation; b= storm flow/precipitation 

c= base flow/precipitation; d= base flow/total discharge 

 

These catchment discharge results could provide important information on water 

storage, fluctuation and runoff in these tropical head water catchments and the ability 

of the ecosystems in the headwaters to regulate water flows. The transformation of 

the headwater catchments from forests and wetlands to grasslands and pastures is 

most likely contributing to the reduction in their water regulation capacity, as indicated 

by this research, and ultimately impacts on the potential of management to influence 

dry season flows and storm flow attenuation. 

 

Table 4.4 Results from a mass balance exercise with summations of rainfall, 
runoff, ET, and residuals over the study period (Jan-May 2013) for the study 

catchments. 

Site Precipitation 
(P) (mm) 

Discharge 
(Q) (mm) 

Evapotranspiration 
ET (mm) 

Recharge and change 
in Storage (∆S) (mm) 

Pasture 
Catchment 

1254 992 445 -183 

Forest 
Catchment 

1190 584 560 46 

 
 
 
 

Forest Catchment 
P (mm) = 122 
Imax (mm/10 min ) = 20.8 
Qp (mm/15 min) = 1.3 
Rc =0.18 

Pasture Catchment 
P (mm) = 120 
Imax (mm/10 min ) = 18.4 
Qp (mm/15 min) = 7.0 
Rc =0.53 
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Figure 4.9 Example storm hydrographs from the two catchments. Precipitation (P, mm), 
maximum intensity of precipitation (mm/10 min), Peak discharge (Qp, mm/10 min), and runoff 

coefficient (RC). 

Forest Catchment 
P (mm) = 46 
Imax (mm/10 min ) = 
11.6 
Qp (mm/15 min) =  0.2 
Rc =0.1 

Pasture Catchment 
P (mm) = 55 
Imax (mm/10 min ) = 11.6 
Qp (mm/15 min) = 4.9 
Rc =0.63 

Pasture Catchment 
P (mm) = 39 
Imax (mm/10 min ) = 
12 
Qp (mm/15 min) = 3.0 
Rc =0.64 

Forest Catchment 
P (mm) = 38 
Imax (mm/10 min ) = 
11 
Qp (mm/15 min) = 0.3 
Rc =0.14 

Pasture Catchment 
P (mm) = 120 
Imax (mm/10 min ) = 18.4 
Qp (mm/15 min) = 7.0 
Rc =0.53 

Forest Catchment 
P (mm) = 122 
Imax (mm/10 min ) = 
20.8 
Qp (mm/15 min) = 1.3 
Rc =0.18 

(a) 26th February 

(b) 18th March 

(c) 17th April 
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4.4.5. Evapotranspiration 

Figure 11 shows time series of daily ET from each of the sites. The average ET in the 

forest catchment was 4.9 mm/day while in the pasture catchment the average daily 

ET was 3.6 mm/day. As asserted by Spracklen et al. (2012) that when forests are 

replaced by pasture or crops, evapotranspiration of moisture from soil and vegetation 

is often diminished, leading to reduced atmospheric humidity and potentially 

suppressing precipitation. Water budget calculation is a conceptual simple way to 

study the hydrological behavior of an ecosystem and provides a useful tool to assess 

the relative importance of the hydrological processes (Ingram, 1983; Price and 

Maloney, 1994). For the study catchments, water budget components for the study 

period are shown in Table 4.4. The quantification of ET using the semi empirical 

Penman–Monteith equation was based entirely on information provided by the 

meteorological station located in the pasture catchment. ET losses accounted for 35 

% of the water losses in the pasture site and 47% in the forest site. On the basis of 

these data, replacing forests with pastures and grasslands produces an increase in 

annual water yield. However, Roa-Garcia et al. 2010, notes that rather than this effect 

as the main driver for the increase in annual flows after forest clearing, in the tropics it 

appears to be the reduced infiltration capacity of the soil. 

 
 

Figure 4.10 Daily Evapotranspiration and areal average rainfall for the study catchments. 
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4.5. Summary and conclusions 

The rainfall runoff characteristics of two small headwater catchments in southern 

Amazonia were investigated. Land cover and catchment physiographic parameters 

play a significant role in the hydrologic responses of the catchments. Data from this 

study highlight linkages between land cover and the rainfall runoff characteristics as 

shown in the discharge hydrographs. Analyses of individual events have shown 

relative differences between forest and pasture sites in terms of the rainfall-runoff 

responses. The pasture catchment exhibits high instantaneous peak discharges 

compared to the forest catchment. The pasture catchment exhibited relatively rapid 

response to precipitation compared to the forest catchment. Normalized discharge 

was also higher in the pasture catchment which also exhibited higher runoff ratios 

compared to the forest catchment. Initial findings confirm that hydrological responses 

in these catchments are driven by various factors and depend not only on the 

watershed features but also on prior conditions and the characteristics of the rainfall 

episodes, e.g. intensity. Both catchments are underlain by soils with well defined, A, 

E and Bt Horizons. Soil moisture exhibits temporal variations following rainfall patterns 

and spatially showing the influence of topography. During the study period there is 

limited variation in moisture reservoirs in the study catchments, and both catchments 

also exhibited limited ranges in available water capacities. Results of this study 

highlight that land cover alterations and transformation of the headwater catchments 

from forests most likely contributes to the reduction in their water regulation capacity. 

While results presented here provide a useful initial assessment of catchment 

hydrological controls, further research is ongoing to better understand the influence of 

land use and soil moisture on discharge over a longer time period and also to 

characterize the influence on hydrochemical transport. Further work will use these 

data to validate hydrological models identifying the actual pathways of the water in the 

catchments, calculate mean transit times, and quantify associated hydro-chemical 

fluxes. 
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5. Effects of conversion of native cerrado vegetation to pasture on 

soil hydro-physical properties, evapotranspiration and 

streamflow on the Amazonian Agricultural Frontier 
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properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLoS One 12, e0179414. 
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Abstract 

Understanding the impacts of land-use change on landscape-hydrological dynamics 
is one of the main challenges in the Northern Brazilian Cerrado biome, where the 
Amazon agricultural frontier is located. Motivated by the gap in literature assessing 
these impacts, we characterized the soil hydro-physical properties and quantified 
surface water fluxes from catchments under contrasting land-use in this region. We 
used data from field measurements in two headwater micro-catchments with similar 
physical characteristics and different land use, i.e. cerrado sensu stricto vegetation 
and pasture for extensive cattle ranching. We determined hydraulic and physical 
properties of the soils, applied ground-based remote sensing techniques to estimate 
evapotranspiration, and monitored streamflow from October 2012 to September 2014. 
Our results show significant differences in soil hydro-physical properties between the 
catchments, with greater bulk density and smaller total porosity in the pasture 
catchment. We found that evapotranspiration is smaller in the pasture (639 ± 31% mm 
yr-1) than in the cerrado catchment (1,004 ± 24% mm yr-1), and that streamflow from 
the pasture catchment is greater with runoff coefficients of 0.40 for the pasture and 
0.27 for the cerrado catchment. Overall, our results confirm that conversion of cerrado 
vegetation to pasture causes soil hydro-physical properties deterioration, reduction in 
evapotranspiration reduction, and increased streamflow.  

5.1. Introduction 

Despite accounting for nearly half of all tropical forests and approximately 6% of the 

Earth’s land surface, tropical dry forests are underrepresented in the literature on 

tropical forest research (Sánchez-Azofeifa et al., 2005; Santos et al., 2011; Farrick and 

Branfireun, 2013). Further, tropical dry forests are recognized as one of the world’s 

most endangered terrestrial ecosystems, as they are threatened by deforestation and 

climate change impacts (Miles et al., 2006). 

Available empirical data for tropical forests are insufficient for adequate 

parameterization of water balance models, including the understanding of the effects 

of deforestation on evapotranspiration and runoff ratios. Therefore, increased efforts 

with focus on field-based characterizations and catchment processes are 

https://doi.org/10.1371/journal.pone.0179414
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recommended to quantify human influence on all aspects of tropical hydrology (Wohl 

et al., 2012). Farrick and Branfireun (Farrick and Branfireun, 2013) supported this 

recommendation, adding that standard hydrological metrics such as runoff coefficients 

also lack comprehensive characterization in tropical dry forests. 

The Cerrado ecosystem, commonly called the Brazilian savanna, is South America’s 

largest tropical dry forest and second-most extensive biome. Although public interest 

in deforestation in Brazil focuses on the Amazon biome, most of the deforestation has 

occurred in areas adjacent to the Cerrado-Amazon transition zone (Smith et al., 1998), 

also known as the Amazonian agricultural frontier. Approximately 50% of the original 

2 million km² of the Cerrado area is under agricultural use (Klink and Machado, 2005; 

Sano et al., 2008; Beuchle et al., 2015), compromising ca. 80% of the primary cerrado 

vegetation (Myers et al., 2000). Other studies indicate that the conversion of cerrado 

vegetation will continue to be a dominant process of land-use change in Brazil (Lapola 

et al., 2011, 2013). 

It is widely known that the removal of forest cover associated with agricultural 

expansion shifts water balances by reducing evapotranspiration and increasing 

streamflow (Brown et al., 2005; Recha et al., 2012; Neill et al., 2013). Studies 

evaluating the impacts of land-use change on hydrological processes in the Amazon 

are relatively common (Williams and Melack, 1997; Neill et al., 2001; Ballester, 2003; 

Germer et al., 2009; Figueiredo et al., 2010b; Richey et al., 2011). However, 

assessments of the environmental impacts of the Cerrado conversion into agro-

pastoral landscapes are scarce (Jepson et al., 2010; Hunke et al., 2015b; Oliveira et 

al., 2015) despite the importance of the cerrado in provisioning and maintaining 

ecosystem services such as adequate water quantity and quality (Alho, 2012; 

Davidson et al., 2012; Hunke et al., 2015a). Although studies show that land-cover 

change in the Brazilian Cerrado alters the water balance, e.g. by increasing streamflow 

(Costa et al., 2003; Guzha et al., 2013a), they do not allow generalizations since they 

are based mostly on low-resolution datasets. In this biome, water balance components 

such as streamflow and infiltration, and soil physical properties are poorly understood, 

especially at field scale in the Cerrado (Juhász et al., 2007; Oliveira et al., 2015). 

Furthermore, the scarcity of hydrometeorological data, and the lack of information on 
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vegetation and geological characteristics are major limitations for a reliable 

quantification of these land-use change effects.  

In fact, most of hydrological characterizations of the Cerrado are often limited to either 

grey or non-peer reviewed literature, which is difficult to access. Evapotranspiration 

has been the water balance component studied in greater detail in this biome (da 

Rocha et al., 2009; Giambelluca et al., 2009). In more recent studies, the emphasis 

has been on the use of remote sensing techniques to establish a better understanding 

of evapotranspiration in large areas of the Brazilian Cerrado (Lathuillière et al., 2012; 

Scherer-Warren, 2012; Scherer-Warren and Rodrigues, 2013; Andrade et al., 2014; 

Oliveira et al., 2014; Ataíde and Baptista, 2015). However, there are limitations to 

obtain cloud-free satellite images in this region of Brazil (Sano et al., 2007), and due 

to inconsistent field information, studies often have restrictions to apply ground-based 

validation methods (da Silva et al., 2015).  

Burt and McDonnell (Burt and McDonnell, 2015) emphasize that there is a noticeable 

need for field research to seek new fundamental understanding of catchment 

hydrology particularly in regions outside of the traditional focus, such as the Cerrado. 

Due to the lack of data with high temporal and spatial resolution for this region of Brazil, 

macroscale analyses are often the only alternative. Our study focuses on small 

headwater catchments because they are the origins of larger rivers, and, as outlined 

by Guzha et al. (Guzha et al., 2015), hydrological signatures exhibited in these 

catchments can provide useful indicators of environmental changes in larger areas. 

Studies using small watersheds in the Brazilian Cerrado are usually more feasible than 

macro-scale approaches to detected hydrological responses to human impacts 

regarding land-use and land-cover changes (Jepson, 2005; Oliveira et al., 2014). 

Our hypothesis is that conversion of undisturbed cerrado to pasture leads to soil hydro-

physical degradation, increased stream discharge, and reduced evapotranspiration 

fluxes. In this respect, our study aims to aid filling the gap in the understanding of soil 

degradation and hydrological processes in active deforestation zones on the 

Amazonian agricultural frontier in Brazil. The specific objectives were to: i) determine 

soil hydro-physical properties, and; ii) quantify streamflow and evapotranspiration; 



Chapter 5 

 

79 
 

from two adjacent catchments whose major difference is the land use (undisturbed 

cerrado vs. pasture).  

5.2. Methods 

5.2.1. Study area description 

We conducted this study in the municipality of Campo Verde (Mato Grosso state, 

Brazil), situated in the das Mortes River basin and in the Cerrado biome (Fig 5.1). This 

area is underlain by a Cretaceous sandstone (Schneider, 1963). The soils in this 

biome are generally highly weathered and acidic with high aluminum concentrations, 

thus requiring fertilizers and lime for crop production and livestock farming (Ratter et 

al., 1997). The climate in this region is tropical wet and dry, and the mean annual 

precipitation is 1,800 mm yr-1; the wet season extends from October to April, and the 

dry season extends from May to September (Marcuzzo et al., 2011). 

 

Figure 5.1 Overview of the Amazon and Cerrado biomes, the deforestation extension in the 
Legal Amazon, and the location of the cerrado and pasture catchments. Deforestation data 

from: IMAZON [Internet]; 2016. Available from: 
http://www.imazongeo.org.br/doc/downloads.php; and MMA [Internet]; 2016. Available from: 

http://mapas.mma.gov.br/i3geo/datadownload.htm. 

We compared two adjacent headwater micro-catchments selected on the basis of their 

Predominant Land Use (PLU), i.e. cerrado vegetation and pasture for extensive cattle 

ranching, and monitored them from October 2012 to September 2014. The selected 

catchments are less than 1 km² in spatial extent, with similar slopes, aspects, soils, 
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and climate. We used the space for time substitution approach for the comparison 

between the catchments, which it is often used in hydrology to compare adjacent small 

catchments with similar characteristics and different land cover (de Moraes et al., 

2006; Germer et al., 2010; Roa-García et al., 2011; Muñoz-Villers and McDonnell, 

2013; Ogden et al., 2013). This method has yielded significant insights in the 

hydrologic response of landscapes in the absence of historical data and one major 

different pattern (Troch et al., 2015).  

With an area of 78 ha, the cerrado catchment is located within the boundaries of the 

Rancho do Sol farm (15.797° S, 55.332° W) and is mostly covered by cerrado sensu 

stricto vegetation. The cerrado sensu stricto is described as a deep-rooting and dense 

orchard-like vegetation consisting of many species of grasses and sedges mixed with 

a great diversity of forbs, such as Leguminosae, Compositae, Myrtaceae, and 

Rubiaceae plant species, and trees with an average height of 6 m (Goodland, 1971; 

Goodland and Pollard, 1973; Canadell et al., 1996; Ratter et al., 1997; Furley, 1999). 

The adjacent pasture catchment (58 ha) is located on the Gianetta farm (15.805° S, 

55.336° W). In 1993 the original cerrado vegetation in this catchment was removed 

and replaced by Brachiaria grass species for intensive cattle farming. The soils in both 

micro-catchments are Arenosols (IUSS Working Group WRB, (IUSS Working Group 

WRB, 2015)) characterized by a sandy loam texture, and are correlated with Entisols 

Quartzipsamments (Soil Survey Staff, 2015) and Neossolos Quartzenicos (Brazilian 

Soil Classification, (EMBRAPA, 2006)). 

Although each catchment was selected on the basis of the PLU, gallery forests exist 

in both micro-catchments following the stream channel. The width of the gallery forest 

within each catchment varies from 50 to 200 m. The gallery forests have a higher plant 

diversity compared to the dominant cerrado vegetation (Felfili and Silva Júnior, 1992; 

Marimon et al., 2010), and they are common formations in the riparian zones in the 

Cerrado, which occupy about 5% of the Cerrado biome area (Felfili et al., 2001).  

5.3. Catchment instrumentation, characterization, and analysis 

5.3.1. Topographic survey 

To define the catchment boundaries and topographic features for the pasture 

catchment, we used the Quarryman® Auto-Scanning Laser System (ALS) LaserAce 
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Scanner 300p laser profiling system (Measurement Devices Ltd., UK). Due to 

interferences of the cerrado vegetation in the laser scanner results, we surveyed the 

cerrado catchment by using a ProMark™ differential Global Positioning System (dGPS) 

instrument (Ashtech, USA). For the survey of the gallery forests, we used the dGPS 

instrument and a Geodetic Rover System (GRS1) GPS (Topcon, USA) with an 

integrated TruPulse® 360° B distance measurement system (Laser Technology Inc., 

USA). We used the topographic data to develop a Digital Elevation Model (DEM) at 5 

m resolution for each catchment. Catchment slope distributions and Compound 

Topographic Index (CTI) were derived from the DEMs. The CTI is a hydrologically-

based compound topographic attribute, represented by a steady state wetness index 

as a function of both the slope and the upstream contributing area (Moore et al., 1991). 

High CTI is represented by areas with greater contributing areas and low slopes. The 

CTI was computed using the algorithm described by Gessler et al. (Gessler et al., 

1995), which was implemented in ArcGIS® by Evans et al. (Evans, 2014). 

5.3.2. Soil geostatistical analysis and sampling 

We delineated transects for soil sampling based on the surface elevation and 

geostatistical analysis of the clay content to regionalize the soil properties (Voltz and 

Goulard, 1994; Chaplot et al., 2000; Montanari et al., 2012). For the surface elevation 

analysis we used the DEMs derived from the topographic survey, and for the clay 

content we collected and analyzed 45 disturbed soil samples at the depth intervals of 

0–20 and 40–60 cm from randomly selected points throughout each catchment. We 

interpolated the clay content results at each soil depth using isotropic variogram 

analyses and the ordinary kriging method. The variogram results of soil properties as 

a prerequisite to kriging allow the quantification of the semivariance for any given 

distance (Herbst and Diekkrüger, 2002). 

For the transect delineation only the interpolation of the clay content at 0–20 cm soil 

depth was used because it showed variogram correlations of 0.94 for the cerrado 

catchment and 0.83 for the pasture catchment, which were higher than the correlations 

obtained with the 40–60 cm soil depth. We validated the interpolation results by using 

the leave-one-out cross-validation method (Herbst et al., 2006), which was based on 

leaving actual data out one at time and estimating the properties of the location from 
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the neighboring data. We then categorized the surface elevation in 5 equal intervals 

and clay content in quintiles, and delineated transects from the catchments crest to 

the stream valley passing over all elevation and clay content categories. We 

established 15 approximately equally-spaced points along the transects in each 

catchment to collect in each point one disturbed sample and two undisturbed soil core 

samples (4.8 cm in diameter and 5.2 cm in height) at depth intervals of 0–10, 10–20, 

20–40, and 40–60 cm. 

5.3.3. Soil physical and hydraulic properties 

The disturbed soil samples were analyzed to obtain the particle size distribution, and 

the undisturbed samples were used to determine bulk density, saturated hydraulic 

conductivity (Ksat), particle size distribution, total porosity, macroporosity, 

microporosity, and field capacity. Particle size distributions of the soils were obtained 

by using the pipette method (Gee, 1986) after chemical dispersion and removal of 

organic matter and carbonates. Soil bulk density was estimated by weighing the 

samples after drying them in an oven at 105 °C (Burke et al., 1986). Ksat was 

determined by using the constant-head permeameter method. Total porosity was 

quantified with the cylinder volume method (EMBRAPA, 1997); the macroporosity 

(pore diameter ≥ 0.05 mm) was determined using the tension table method 

(EMBRAPA, 1997); and the microporosity was obtained by the difference between the 

total porosity and the macroporosity. Field capacity moisture content was estimated 

with the pressure membrane method at -0.01 MPa (Richards, 1947). 

5.3.4. Rainfall and evapotranspiration 

To account for rainfall spatial variability, three tipping bucket rain gauges (0.2 mm 

resolution) with data loggers (Tinytag®, Gemini, UK) were installed in each catchment 

to record rainfall at 10-min intervals. A WS-GP1 weather station (Delta-T, UK) installed 

at a farm approximately 7 km from the two catchments (15.741435° S, 55.363134° 

W) provided total solar radiation, net solar radiation, temperature, relative humidity, 

wind speed and direction, and rainfall data at 10-min intervals. Using this weather data 

we quantified the reference evapotranspiration (ETo) using the standardized reference 

evapotranspiration equation (ASCE-EWRI, 2005): 
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𝐸𝑇𝑜 =
0.408∆(Rn−G)+γ

𝐶𝑛
T+273

u2(es−ea)

∆+γ(1+𝐶𝑑u2)
,  (1) 

where ETo is in mm day-1 or mm h-1 for daily or hourly time steps), Rn is the surface net 

radiation (MJ m-2 day-1 or MJ m-2 h-1 for daily or hourly time steps), G is the soil heat 

flux density (MJ m-2 day-1 or MJ m-2 h-1 for daily or hourly time steps), T is the mean 

daily air temperature (°C) and u2 is the wind speed (m s-1) at 2 m height, es and ea 

are, respectively, the saturation and actual vapor pressure (kPa), es − ea is the 

saturation vapor pressure deficit (kPa), ∆ is the slope of vapor pressure curve (kPa 

°C-1), γ is the psychrometric constant (kPa °C-1), Cn and Cd are, respectively, the 

numerator and denominator constants for the reference type and calculation time step 

given by ASCE-EWRI (ASCE-EWRI, 2005). 

We applied satellite-based image-processing models to improve our ET estimation for 

the study area. We estimated the evapotranspiration (ET) by using a combination of 

the Surface Energy Balance Algorithm for Land (SEBAL) and Mapping 

EvapoTranspiration at high Resolution with Internalized Calibration (METRIC™) 

models, as described by Allen et al. (Allen et al., 2011). Both models are based on the 

energy balance at the land surface. SEBAL is based on latent heat flux as a residual 

of the energy balance equation, and its principles and computational basis are 

described in Bastiaanssen et al. (Bastiaanssen et al., 1998) and Bastiaanssen 

(Bastiaanssen, 2000). METRIC considers soil and vegetation as a sole source in the 

estimation of ET, and its principles and application procedures are described in Allen 

et al. (Allen et al., 2007). The application of SEBAL has shown to be adequate to 

quantify the energy balance for the ET estimation for Cerrado landscapes (Ruhoff et 

al., 2012; da Silva et al., 2015), and the use of the METRIC model allows to directly 

integrate a variety of factors, such as orchard architecture, land-use practices, water 

stress occurrence, and changes in the weather conditions during the day (Paço et al., 

2014; Mkhwanazi et al., 2015). 

SEBAL was applied by using a composite of spectral bands 1–7 (path 226 and row 

071) of all 13 valid satellite scenes from the Landsat 7 Enhanced Thematic Mapper 

Plus (ETM+) for our study area and period to determine the energy consumed by the 

ET process; this is calculated as a residual of the surface energy equation (Eq (2)) 

using the software ERDAS Imagine® v. 14 (Hexagon AB, USA). To match the satellite 
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spatial extension we used a 90-m-resolution DEM (Shuttle Radar Topography Mission, 

version 4.1, (Jarvis et al., 2008)) cropped to the study area to adjust the surface 

temperature according to the differences in elevation and to derive surface slope and 

aspect information as required in SEBAL to estimate solar radiation (Allen et al., 2007). 

The Earth-Sun distance parameter, also required by SEBAL, was obtained from 

Chander et al. (Chander et al., 2009) when not available in the satellite metadata file. 

𝐿𝐸 = 𝑅𝑛 − 𝐺 − 𝐻, (2) 

where LE is the latent heat flux, Rn is the instantaneous net radiation, G is the soil heat 

flux, and H is the sensible heat flux (all in W m-2). 

METRIC was used to compute the instantaneous ET from the obtained latent heat flux 

from SEBAL for each pixel within the catchments at the instant of satellite overpass 

(Eq (3)). We used two anchor points to define the limit conditions by means of a cold 

pixel (15.7402° S, 55.5292° W) and a hot pixel (15.7264° S, 55.3325° W) for the 

energy balance over the study area for the internal calibration of sensible heat flux of 

METRIC (Allen et al., 2007). 

𝐸𝑇𝑖𝑛𝑠𝑡 = 3600
𝐿𝐸

𝜆𝜌𝑤
, (3) 

where ETinst is the instantaneous ET (mm h-1), 3600 is the time conversion from 

seconds to hours, ρw is the density of water (~ 1000 kg m-3), and λ is the latent heat of 

vaporization (J kg-1) representing the heat absorbed when one kg of water evaporates 

and it is computed as: 

𝜆 = [2.501 − 0.00236(𝑇𝑠 − 273.15)] × 106, (4) 

where Ts is the surface temperature (K). 

We applied the evaporative fraction (ETrF) and daily ETo to estimate the actual daily ET 

assuming that the ETrF is constant during a day (Allen et al., 2007) according to Eq (5).  

Additionally, the Penman–Monteith equation, which we used to estimate ETo, is known 

to well-represent the impacts of advection (Allen et al., 2011). The ET values for each 

type of land use were area-weighted and summed to obtain the total actual 

evapotranspiration estimation for each catchment. 

𝐸𝑇 = 𝐸𝑇𝑟𝐹𝐸𝑇𝑜 . (5) 
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Table 5.1 Satellite scenes description, weather data at the satellite overpass 
time, and ETrF values. 

Landsat 7 ETM+ scene description Weather station ETrF 

Date Satellite 
overpas
s time 
(GMT) 

Relative 
Earth-Sun 
distancea 

Solar 
zenith 
angle 
cosin
eb 

Air 
temperatur
e (°C) 

Relative 
humidit
y (%) 

Wind 
speed 
(m s-1) 

Surface 
net 
radiation 
(MJ m-2 h-

1) 

Cerrado Pasture 

GF PLU GF PLU 

09 Oct 12 13:41 0.99861 0.882 29.5 49% 3.2 612 1.09 0.93 1.25 0.72 

02 Mar 13 13:41 0.99108 0.832 26.2 75% 4.6 532 1.21 0.92 1.07 0.64 

08 Jul 13 13:41 1.01668 0.652 29.0 34% 2.8 648 0.63 0.52 0.66 0.16 

10 Sep 13 13:41 1.00698 0.811 30.9 30% 5.3 558 0.61 0.37 0.70 0.19 

26 Sep 13 13:41 1.00250 0.855 27.7 28% 1.9 601 0.84 0.52 0.77 0.15 

13 Nov 13 13:41 0.98961 0.905 27.0 66% 3.4 672 1.10 0.76 1.17 N/Ac 

29 Nov 13 13:41 0.98641 0.896 27.9 68% 2.1 667 N/Ac 1.29 N/Ac 0.97 

01 Feb 14 13:42 0.98536 0.847 27.0 69% 2.9 495 N/Ac 1.19 N/Ac 0.51 

06 Apr 14 13:42 1.00069 0.791 27.4 73% 2.1 630 1.14 0.96 0.94 0.60 

25 Jun 14 13:43 1.01647 0.651 24.5 67% 2.1 430 1.20 0.98 0.96 0.47 

11 Jul 14 13:43 1.01661 0.659 20.9 80% 3.4 453 1.20 0.96 1.10 0.45 

12 Aug 14 13:43 1.01332 0.725 27.3 46% 2.0 510 0.91 0.68 0.77 0.30 

13 Set 14 13:43 1.00620 0.823 30.2 38% 1.8 458 1.16 0.89 1.03 0.61 
GF = Gallery Forest area, PLU = Predominant Land Use area 

a Inverse square and dimensionless. 
b Dimensionless. 
c Not available due to cloud masking or Scan Line Corrector-Off malfunction. 

The ETrF is calculated as the ratio of the ETinst derived for each pixel to the ETo at an 

hourly time step computed from weather data at the time of the satellite overpass 

(Allen et al., 1998, 2011) using Eq (6). To quantify the ET we used the mean and the 

respective ±1 standard deviation of the obtained values for ETrF for the wet and dry 

seasons, separately, considering all valid pixels within each catchment domain. Table 

5.1 shows the description of the satellite scenes, the main local weather data at the 

satellite overpass time, and the respective ETrF values for the study areas. Some 

results were not available due to cloud masking or Scan Line Corrector-Off malfunction 

[86]. 

𝐸𝑇𝑟𝐹 =
𝐸𝑇𝑖𝑛𝑠𝑡

𝐸𝑇𝑜
. (6) 

5.3.5. Catchment discharge and hydrograph analysis 

At the outlet of each catchment, an adjustable weir was installed. During the wet 

season the weirs were maintained as rectangular weirs, and during the dry season a 

v-notch contraction was inserted. At a distance of 2 m upstream of each weir, a DS 5X 

(OTT, USA) multiparameter probe was installed to measure, among other variables, 
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the water level at 10-min intervals. For the rectangular weir, we used the standard flow 

equation (Eq (7)) based on the Bernoulli equation to quantify stream discharge. For 

the v-notch weir, the Kindsvater–Shen equation (Eq (8)) and respective calibration 

adjustment functions (Eqs (9) and (10)) were used to quantify discharge: 

𝑄 =
2

3
𝐶𝑑𝑟𝑏√2𝑔ℎ

3

2, (7) 

𝑄 =
8

15
𝐶𝑒√2𝑔 tan (

𝜃

2
) ℎ𝑒

5

2, (8) 

𝐾ℎ = 0.001[𝜃(1.395𝜃 − 4.296) + 4.135], (9) 

𝐶𝑒 = 𝜃(0.02286𝜃 − 0.05734) + 0.6115, (10) 

where Q is the discharge over the weir (m3 s-1), Cdr and Ce are the effective 

dimensionless discharge coefficients for the rectangular and v-notch weirs, 

respectively, b is the weir length (m), θ is the v-notch’s angle (radians), h is the 

upstream head above the weir’s crest (m), he is the effective head (h + Kh), and Kh is 

the head-adjustment factor.  

In each catchment, we conducted discharge calibration measurements with an 

acoustic digital current meter (ADC, OTT, USA) to estimate the Cdr factor for each 

catchment. The obtained Cdr values were 0.74 for the cerrado catchment and 0.65 for 

the pasture catchment. The discharged data were normalized by the correspondent 

catchment area to allow comparisons between the catchments. To estimate the total 

streamflow, we used the mean discharge values for each wet and dry seasons. 

Additionally, we applied ±1 standard deviation of the mean of each wet and dry 

seasons to the discharge-gap days in order to estimate the total error. 

The discharge time series were analyzed with the recursive digital filter method 

(Eckhardt, 2005) implemented in the Web GIS-based Hydrograph Analysis Tool 

(WHAT) for baseflow separation (Lim et al., 2005, 2010). The baseflow index (BFI) 

was computed as the ratio of baseflow to total discharge. The runoff coefficient (RC) 

was determined as the ratio of total discharge to total rainfall. Flow-duration curves 

(FDCs) were derived from the daily discharge data in order to compare the differences 

in high, low, and median flows between the catchments (Vogel and Fennessey, 1994), 

and catchment flashiness indices were obtained using the method described by Baker 

et al. (Baker et al., 2004). 
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5.3.6. Statistical analyses 

Pearson’s correlation analysis was applied to test the relationships between the soil 

properties, and between the rainfall daily values in each catchment. The results were 

compared using two sample t-test for the data with normal distribution (soil properties), 

and a nonparametric test (Mann-Whitney U) in the other cases (rainfall, ET, and 

streamflow), to determine whether the results were significantly different. The 

significance threshold was set at .05. 

5.4. Results 

5.4.1. Catchment physiographic attributes 

The soil sampling points, the slope distribution, and the CTI for each catchment are 

shown in Fig 5.2. The cerrado and pasture catchments have similar slope ranges with 

most of the values between 0 and 10° and an average of approximately 8°. In both 

catchments over 95% of the area shows CTI values ranging between 5 and 12, and 

areas with CTI over 10 have linear form extending from the crest to the outlet of the 

catchments, which indicates the surface flow pathways. 

 

Figure 5.2 Slope, soil sampling points, and Compound Topographic Index (CTI) in the cerrado 
and pasture catchments. 

Table 5.2 shows a summary of the topographic characteristics of the catchments. The 

data are distinguished for the gallery forest and the PLU areas. The topographic 

survey shows that the gallery forests cover approximately 7% of the total areas in both 

catchments. 
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Table 5.2 Summary of catchments’ physical and topographic characteristics. 

 Cerrado catchment Pasture catchment 

 Gallery 
Forest 

PLU 
Area 

Total 
Area 

Gallery 
Forest 

PLU 
Area 

Total 
Area 

Area (km²) 

(% of total) 

0.05 

(6.4%) 

0.73 

(93.6%) 

0.78 

(100%) 

0.04 

(6.9%) 

0.54 

(93.1%) 

0.58 

(100%) 

Predominant 
land cover 

Cerrado sensu stricto 
vegetation 

Grassland (Brachiaria 
species) 

Soil type Arenosols Arenosols 

Soil texture Sandy loam Sandy loam 

Aspect E-W E-W 

Average 
Elevation (m) 

770 814 811 775 821 818 

Average 
slope (°) 

7.6 4.6 4.8 3.9 4.4 4.4 

 

5.4.2. Soil physical and hydraulic properties 

Table 5.3 shows that the cerrado and pasture catchments have comparable soil 

properties. The pasture catchment shows a greater bulk density (p < .0001) at 0–40 

cm depth and a lower total porosity (p < .001) at 0–10 cm soil depth compared to the 

cerrado catchment. Our findings confirm results from Valpassos et al. (Valpassos et 

al., 2001), who reported greater bulk densities in the topsoil of a pasture compared to 

an area covered by cerrado vegetation. The gallery forest and the PLU areas of the 

cerrado catchment do not show significant differences in total porosity and bulk 

densities with identical bulk density results at 0–10 cm soil depth (1.43 ± 9% g cm-3), 

whereas these properties found in the gallery forest area of the pasture catchment are 

significantly smaller than those in its PLU area (p < .0001), especially at 0–20 cm soil 

depth. 

Figure 5.3 shows the relationship between the soil properties in the gallery forest 

(upper panel) and PLU (lower panel) areas in the cerrado and pasture catchments. As 

expected, in both catchments the total porosity inversely correlates with the bulk 

density, and a high correlation (0.98, p < .0001) between the microporosity and the 

field capacity. The microporosity and macroporosity in both catchments exhibited 

comparable values, with a predominance of the macroporosity between 60 and 70% 

of the total porosity. In the PLU areas of the cerrado and pasture catchments, there is 
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a positive correlation between the macroporosity and Ksat of 0.74 (p < .0001) and 0.68 

(p < .0001), respectively. 

Table 5.3 Summary of the soil properties. 

Catchment 
Depth 
interval 
(cm) 

BD (g cm-3) TP (%) MaP (%) MiP (%) FC (%) Ksat (mm h-1) Sand (%) Silt (%) Clay (%) 

 0–10 
1.43 ± 9% 

(1.43 ± 9%) 

49.2 ± 8% 

(49.4 ± 10%) 

31.8 ± 12% 

(26.9 ± 13%) 

17.4 ± 35% 

(22.5 ± 36%) 

15.9 ± 36% 

(20.5 ± 40%) 

559.5 ± 38% 

(361.1 ± 15%) 

85.8 ± 10% 

(83.7 ± 8%) 

2.4 ± 95% 

(2.64 ± 109%) 

11.9 ± 54% 

(13.6 ± 27%) 

Cerrado 10–20 
1.47 ± 6% 

(1.55) 

45.8 ± 5% 

(45.7) 

30.8 ± 18% 

(28.3) 

15.0 ± 32% 

(17.5) 

13.2 ± 37% 

(16.1) 

611.7 ± 45% 

(363.4) 

88.9 ± 2% 

(81.3 ± 9%) 

1.5 ±75% 

(3.73 ± 78%) 

9.6 ± 10% 

(15.0 ± 29%) 

 20–40 1.52 ± 4% 42.9 ± 7% 27.0 ± 18% 15.9 ± 32% 14.7 ± 32% 515.56 ± 56% 87.4 ± 1% 1.3 ± 37% 11.3 ± 7% 

 40–60 1.51 ± 3% 42.1 ± 2% 25.2 ± 24% 16.9 ± 36% 15.6 ± 36% 509.6 ± 33% 86.2 ± 1% 1.9 ± 49% 11.9 ± 10% 

 0–10 
1.56 ± 3% 

(1.23 ± 10%) 

44.4 ± 3% 

(53.5 ± 4%) 

28.1 ± 8% 

(33.0 ± 9%) 

16.4 ± 10% 

(20.4 ± 16%) 

15.5 ± 10% 

(19.3 ± 19%) 

399.0 ± 40% 

(297.3 ± 52%) 

88.4 ± 1% 

(86.0 ± 2%) 

1.5 ± 40% 

(2.1 ± 8%) 

10.1 ± 9% 

(11.9 ± 12%) 

Pasture 10–20 
1.57 ± 3% 

(1.37 ± 3%) 

45.7 ± 3% 

(49.8 ± 5%) 

32.1 ± 5% 

(32.0 ± 10%) 

13.6 ± 10% 

(17.8 ± 9%) 

12.9 ± 9% 

(16.6 ± 13%) 

655.6 ± 15% 

(666.5 ± 46%) 

89.2 ± 1% 

(86.6 ± 2%) 

0.9 ± 97% 

(2.1 ± 48%) 

9.9 ± 10% 

(11.3 ± 22%) 

 20–40 
1.56 ± 3% 

(1.41 ± 3%) 

46.4 ± 4% 

(50.3 ± 1%) 

32.9 ± 7% 

(33.6 ± 7%) 

13.5 ± 10% 

(16.7 ± 16%) 

12.8 ± 10% 

(15.8 ± 18%) 

705.1 ± 17% 

(611.3 ± 25%) 

87.8 ± 1% 

(86.7 ± 2%) 

1.7 ± 28% 

(1.9 ± 27%) 

10.5 ± 5% 

(11.4 ± 14%) 

 40–60 
1.52 ± 3% 

(1.44 ± 4%) 

43.0 ± 6% 

(46.5 ± 11%) 

28.8 ± 7% 

(30.2 ± 12%) 

14.3 ± 6% 

(16.3 ± 10%) 

13.4 ± 8% 

(15.7 ± 11%) 

510.4 ± 30% 

(411.8 ± 24%) 

88.6 ± 1% 

(88.8 ± 2%) 

1.3 ± 39% 

(1.4 ± 67%) 

10.1 ± 10% 

(9.8 ± 6%) 

BD = Bulk Density, TP = Total Porosity, MaP = Macroporosity, MiP = Microporosity, FC = Field Capacity. 

Results are expressed in terms of average and relative standard deviation. The results between parentheses are exclusively for the 
gallery forest areas, and the results without parentheses are related to the Predominant Land Use (PLU) areas of each micro-
catchment. 

The Ksat distribution for the catchments is shown in Fig 5.4. The Ksat values found in 

the 0–10 cm soil depth in the PLU areas of the cerrado (559.5 ± 38% mm h-1) and 

pasture (399 ± 40% mm h-1) catchments are significantly different (p < .05). Martínez 

and Zink (Martı ́nez et al., 2004) and Zimmerman et al. (Zimmermann et al., 2006) also 

found significantly smaller infiltration rates in pasturelands when compared to nearby 

areas covered by natural forests. In relation to the rainfall intensities in these 

catchments, the Ksat indicate a high infiltration capacity in both catchments, which 

generally exceeds the rainfall intensities. This is related to the sandy soil texture and 

the high macroporosity, which is typical for Arenosols. Our results are in accordance 

with findings of Scheffler et al. (Scheffler et al., 2011) who analyzed soil hydraulic 

properties of catchments with sandy-loam soil texture ca. 450 km from our study area 

and found Ksat values up to 1,200 mm h-1. 
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Figure 5.3 Scatter-plot matrix of soil properties values in the gallery forest (upper panel) and 
PLU (lower panel) areas in the cerrado and pasture catchments. 

 

Figure 5.4 Boxplot of the Ksat results, and the 50th and 90th percentiles of the rainfall intensity in 
the cerrado and pasture catchments. 
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5.4.3. Rainfall characteristics 

The monthly total rainfall in each micro-catchment during the two-year study period is 

shown in Fig 5.5. Between October 2012 and September 2014, the total rainfall was 

3,392 mm in the cerrado catchment, and 3,560 mm in the pasture catchment. For both 

catchments, the wet season in 2013–2014 had a smaller contribution to the total 

annual rainfall than in 2012–2013, which was caused by some atypical rainstorms in 

the dry season of 2014. The greatest daily rainfall values were recorded on March 2, 

2014, for the cerrado catchment, and on January 30, 2013, for the pasture catchment, 

both at 64 mm d-1. 

 

Figure 5.5 Monthly rainfall per catchment. 

The difference between the catchments’ daily rainfall in the study period is not 

significant, showing a coefficient of determination of 0.93 (p < .0001). We also could 

not find any significant difference in the rainfall intensity patterns between the cerrado 

and pasture catchments. In both catchments, the majority of the rainstorms occurred 

between noon and mid-afternoon with a mean intensity of 28 mm h-1, peaks intensities 

up to 130 mm h-1, and a duration between 30 and 90 min. 

Evapotranspiration 

The daily values of ET are shown in Fig 5.6. The daily ET was significantly greater in 

the cerrado catchment (p < .0001). In the PLU areas, the average ET was 2.7 mm d-1 

for the cerrado catchment and 1.7 mm d-1 for the pasture catchment. In the gallery 

forest areas, average daily ET was 3.3 and 2.7 mm d-1 for the cerrado and pasture 

catchments, respectively. The average annual ET was 1,004 ± 24% mm in the cerrado 

catchment and 639 ± 31% mm pasture catchment. Our results are comparable to ET 
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values for cerrado sensu stricto vegetation ranging between 822 and 1,010 mm yr-1 

found by Giambelluca et al. (Giambelluca et al., 2009), Oliveira et al. (Oliveira et al., 

2014), and Dias et al. (Dias et al., 2015) who applied eddy-covariance measurements, 

remoting sensing techniques, and a water balance model, respectively. Da Silva et al. 

(da Silva et al., 2015) found maximum values between 6 and 7 mm d-1 during the wet 

season for an area covered by cerrado vegetation (mostly sensu stricto type), which are 

in the same range of the maximum values we found. 

 

Figure 5.6 10-day moving average of evapotranspiration, and daily areal average rainfall for the 
cerrado and pasture catchments. 

Our ET results for the grassland vegetation are in accordance with Dias et al. (Dias et 

al., 2015) who used a water balance simulation model and found ET at 567 mm yr−1 in 

the Cerrado-Amazon ecotone, and with Andrade et al. (Andrade et al., 2014) who used 

remote sensing techniques and found the daily ET varying between 1.5 and 2 mm d-1 

in the Cerrado biome. In a macro-scale analysis for the Mato Grosso state, Lathuillière 

et al. (Lathuillière et al., 2012) reported a range of greater values (822–889 mm yr-1) 

for pasturelands compared to our study; we attribute this difference to the state of 

degradation of the grassland vegetation in the pasture catchment, which is accredited 

to reduce the ET (Andrade et al., 2014). 

Streamflow 

The daily discharge values are shown in Fig 5.7. Due to equipment failure, this time 

series includes some data gaps. The mean stream discharge was 1.24 mm d-1 in the 

cerrado catchment, and 1.96 mm d-1 in the pasture catchment. During the wet season, 

the mean stream discharge was 1.49 mm d-1 in the cerrado catchment, and 2.20 mm 
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d-1 in the pasture catchment. In the dry season, the stream discharge was 0.92 mm d-

1 in the cerrado catchment, and 1.58 mm d-1 in the pasture catchment. 

 

Figure 5.7 Daily discharges and areal average rainfall for the cerrado and pasture catchments. 

Table 5.4 shows a summary of the hydrological indices derived for the study 

catchments. During the two-year study period, the daily streamflow was significantly 

greater (p < .0001) in the pasture catchment (1,416 ± 7% mm) compared to the 

cerrado catchment (914 ± 18% mm). We found RC values of 0.27 for the cerrado and 

0.40 for the pasture. Dias et al. (2015) found RC of 0.25 for a cerrado catchment and 

0.58 for a pasture catchment using a model based on water balance equations while 

Tomasella et al. (Tomasella et al., 2009) reported a RC of 0.38 for a pasture catchment. 

The flashiness indices are generally small, particularly for the pasture catchment with 

indices as low as 0.05. The catchment’s streamflow decreased by 27% from the wet 

to the dry season while the decrease in the cerrado catchment was 40%. 

Table 5.4 Total streamflow and hydrological indices. 

 
Cerrado Pasture 

2012–2013 2013–2014 2012–2013 2013–2014 

Mean 
streamflow 
(mm yr-1) 

453 461 724 692 

Runoff 
Coefficient 

(RC) 
0.29 0.25 0.45 0.35 

Flashiness 0.1145 0.1015 0.0567 0.0517 

Baseflow 
Index 
(BFI) 

0.96 0.97 0.98 0.96 
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The FDCs (Fig 5.8) of the two catchments show differences in the low flows (Q95) with 

the cerrado catchment exhibiting the smaller values and greater decrease. Flows with 

20% or greater probability of exceedance are higher in the pasture than in the cerrado 

by an average of 82%. The FDCs curves show a flat slope from the middle to the low 

flows, supporting that low flows are sustained by the baseflow contribution. This is 

confirmed by the BFI results, which show a high baseflow contribution to total 

streamflow in both catchments, with ratios higher than 95%. Total quickflow 

contribution under 5% was also found in other areas of Cerrado at plot (Oliveira et al., 

2015) and micro-catchment scales (Silva and Oliveira, 1999; Lima, 2000; Alencar et 

al., 2006). 

 

Figure 5.8 Flow-duration curves of daily discharge for the cerrado and pasture catchments. 

5.5. Discussion 

The pasture catchment showed significantly greater bulk densities and smaller Ksat 

and total porosity at the topsoil. Findings like these have been attributed to soil 

compaction as a consequence of deforestation, cattle grazing and machinery use, e.g. 

(Greenwood and McKenzie, 2001; De Oliveira et al., 2004; Hamza and Anderson, 

2005; Drewry et al., 2008). Although we found significantly smaller Ksat values in the 

pasture catchment, these values exceed the observed peak rainfall intensities, which 

are likely to restrain Hortonian overflow generation and consequently limit the 
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quickflow contribution (< 5%) to the streamflow in both catchments. Zimmerman et al. 

(Zimmermann et al., 2006) found similar results in a study on deforested areas in the 

Amazon basin, showing that the Ksat reduction due to land-use change had no 

significant impact on quickflow generation in those areas. We associate the Ksat results 

to the high macroporosity in both catchments, which has a known effect on soil 

permeability (Logsdon et al., 1990; Lin et al., 1998). While macroporosity values 

around 10% maintain adequate soil permeability (Carter, 1988), our results show a 

macroporosity of approximately 30% for both catchments. The presence of 

macroporosity is related to preferential flow (Diab et al., 1988), which often limits the 

overflow generation. In fact, our hydrograph analysis shows that baseflow is a major 

driver of streamflow in both catchments, with BFI over 95%. 

Table 5.5 shows a compilation of the daily and annual ET and Q results for both 

catchments. The cerrado catchment had the greater ET compared with the pasture 

catchment. While the mean ET decreased 45% in the pasture catchment from the wet 

to the dry season, the ET in the cerrado catchment was reduced by 24%. We attribute 

this result to the canopy cover in the cerrado vegetation with leaf area index values 

ranging from approximately 0.7 to 1.1 throughout the year (Hoffmann et al., 2005) and 

with root lengths sufficient to reach deep soil horizons (Canadell et al., 1996), which 

ensures ET rates at 2.32 ± 24% mm d-1 during the dry season.  

Table 5.5 Daily and annual evapotranspiration and streamflow rates. 

Catchment Evapotranspiration Streamflow 

 
Dry 

(mm d-1) 
Wet 

(mm d-1) 
Annual 

(mm yr-1) 
Dry 

(mm d-1) 
Wet 

(mm d-1) 
Annual 

(mm yr-1) 

Cerrado 2.32 ± 24% 3.06 ± 26% 1,004 ± 24% 0.92 ± 27% 1.49 ± 46% 457 ± 18% 

Pasture 1.19 ± 44% 2.15 ± 27% 639 ± 31% 1.58 ± 15% 2.20 ± 20% 708 ± 7% 

ET is a major component of the water balance in tropical regions (Wohl et al., 2012). 

As reported in other studies (Bruijnzeel, 2005; Muñoz-Villers and McDonnell, 2013), 

the differences in ET between native vegetation and grassland plays a major role in 

the streamflow dynamics. Our results confirms trend analyses and water balance 

modelling studies at the macro-scale (das Mortes River basin), which show an 

increase of streamflow due to the deforestation of the cerrado vegetation (Guzha et 

al., 2013b, 2013a). In fact, the conversion of native vegetation to croplands and 

pasturelands in the Mato Grosso state resulted in a 25% decrease in ET (Lathuillière 
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et al., 2012), and that water export increases up to fourfold in agricultural areas due to 

the reduction of ET (Neill et al., 2013). Our results are also consistent with those of 

other studies that reported decreases in ET (Dias et al., 2015; Oliveira et al., 2014) and 

increases in discharge (Coe, Costa, & Soares-Filho, 2009; Costa et al., 2003; 

Davidson et al., 2012; de Moraes et al., 2006; Guzha et al., 2015; Hayhoe et al., 2011; 

Neill et al., 2008, 2011) due to conversion of natural vegetation to grasslands on the 

Amazonian agricultural frontier. 

Results from other tropical catchments studies that show a decrease in dry season 

streamflow as a consequence of forest conversion (Bruijnzeel, 2004; Ogden et al., 

2013) cannot be confirmed in our study in the Cerrado biome. From the wet to the dry 

season our results showed a greater decrease in streamflow in the cerrado catchment 

than in the pasture catchment, while the ET behaved otherwise with lower decrease in 

the cerrado catchment. We suggest that this is related to the higher root zone storage 

capacity of the cerrado vegetation. The deep roots of the cerrado vegetation influence 

the water balance and appear to be important in proving water for vegetation during 

the dry season (Oliveira et al., 2005). Indeed, the cerrado vegetation is highly adapted 

to a long dry season and deeply weathered soils (Hunke et al., 2015a), which is a 

particular situation that demands more detailed hydrological research in this region. 

The replacement of the cerrado vegetation with exotic grasses seems to increase the 

deep seepage and reduce ET, which in turn will increase the streamflow, especially 

during the dry season. 

5.6. Conclusions 

We investigated the hydrological responses of two headwater micro-catchments with 

contrasting land use (cerrado vs. pasture) in the Brazilian Cerrado using field data 

collected between 2012 and 2014. From our study, we conclude that the conversion 

of the undisturbed cerrado to pasture caused:  

i) Significant soil hydro-physical degradation as indicated by higher bulk 

density and reduced soil porosity in the pasture catchment in comparison to 

the cerrado catchment; 

ii) An increase in streamflow as shown by the significantly greater daily and 

annual streamflow values in the pasture catchment. Furthermore, we 
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conclude that cerrado conversion to pasture reduced the 

evapotranspiration. 

While our study contributes to understanding of the soil degradation and hydrological 

processes in this region, we suggest long-term measurements including quantifying 

changes in groundwater storage in order to better clarify the mechanisms causing the 

observed behavior in our data.  
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6. Impacts of land-use and land-cover change on stream 

hydrochemistry in the Cerrado and Amazon biomes 
 

This manuscript is published as: Nóbrega, RLB, Guzha, AC, Lamparter, G, Amorim, RSS, Couto, EG, Hughes, HJ, 

Jungkunst, HF, Gerold, G. 2018. Impacts of land-use and land-cover change on stream hydrochemistry in the 

Cerrado and Amazon biomes. Sci. Total Environ. 635, 259–274. DOI:10.1016/j.scitotenv.2018.03.356. 

 

Abstract 

Studies on the impacts of land-use and land-cover change on stream hydrochemistry 
in active deforestation zones of the Amazon agricultural frontier are limited and have 
often used low-temporal-resolution datasets. Moreover, these impacts are not 
concurrently assessed in well-established agricultural areas and new deforestations 
hotspots. We aimed to identify these impacts using an experimental setup to collect 
high-temporal-resolution hydrological and hydrochemical data in two pairs of low-order 
streams in catchments under contrasting land use and land cover (native vegetation 
vs. pasture) in the Amazon and Cerrado biomes. Our results indicate that the 
conversion of natural landscapes to pastures increases carbon and nutrient fluxes via 
streamflow in both biomes. These changes were the greatest in total inorganic carbon 
in the Amazon and in potassium in the Cerrado, representing a 5.0- and 5.5-fold 
increase in the fluxes of each biome, respectively. We found that stormflow, which is 
often neglected in studies on stream hydrochemistry in the tropics, plays a substantial 
role in the carbon and nutrient fluxes, especially in the Amazon biome, as its 
contributions to hydrochemical fluxes are mostly greater than the volumetric 
contribution to the total streamflow. These findings demonstrate that assessments of 
the impacts of deforestation in the Amazon and Cerrado biomes should also take into 
account rapid hydrological pathways; however, this can only be achieved through 
collection of high-temporal-resolution data. 

 

6.1. Introduction 

It has been widely acknowledged that surface conditions of terrestrial ecosystems 

have strong synergies with hydrological processes (Neill et al., 2008; Rodriguez et al., 

2010; Recha et al., 2012; Cuo et al., 2013). These processes are often influenced by 

land-use practices, which, in turn, can change catchment responses, such as stream 

hydrochemistry (Öztürk et al., 2013; Salemi et al., 2013; Crossman et al., 2014; Oni et 

al., 2014; El-Khoury et al., 2015; Vogt et al., 2015). Because of large-scale 

environmental impacts resulting from the conversion of native habitats into agricultural 

frontiers (Schiesari et al., 2013), it is fundamental to comprehend how land-use and 

land-cover (LULC) change influences hydrochemical processes in pristine catchments 

https://doi.org/10.1016/j.scitotenv.2018.03.356
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undergoing anthropogenic changes (Jordan et al., 1997; Neill et al., 2013). Therefore, 

studies have often focused on regions under intensive forest degradation due to 

agricultural expansion, such as the Brazilian Amazon, to assess the impacts of LULC 

change on stream hydrochemistry (Dias et al., 2015; Figueiredo et al., 2010b; Germer 

et al., 2009; Neill et al., 2011; Recha et al., 2013; Williams and Melack, 1997). 

The Amazonian agricultural frontier (AAF), also known as the arc of deforestation, 

extends from the eastern to the southwestern edge of the Brazilian Amazon, 

comprising a wide area along the Amazon–Cerrado ecotone (Durieux, 2003; Silva et 

al., 2013; Do Vale et al., 2015). Deforestation in this region has taken place due to 

agricultural expansion during recent decades, and represents most of the 

deforestation of the AAF (Fearnside, 2001; Brannstrom et al., 2008; Riskin et al., 2013; 

Tollefson, 2015). This ongoing change threatens the services provided by native 

ecosystems, such as the water quantity and quality that sustain aquatic biodiversity 

and mitigates eutrophication of water bodies (Davidson et al., 2012; Coe et al., 2013; 

Neary, 2016; Penaluna et al., 2017). However, despite the important contribution of 

several research initiatives (e.g., Andreae et al., 2015; Lahsen and Nobre, 2007; 

Satinsky et al., 2014), an understanding of the influence of LULC change on water 

resources in the Brazilian Amazon region remains limited. Furthermore, the Cerrado 

biome, where most of the AAF deforestation has occurred (Klink and Machado, 2005), 

is often not integrated in studies regarding Amazon deforestation; consequently, it is 

one of the lesser-studied regions in terms of the environmental effects of LULC change 

resulting from agricultural expansion (Jepson et al., 2010; Hunke et al., 2015a; Oliveira 

et al., 2015) despite being a biodiversity hotspot for conservation comprised of dry 

forests, woodland savannas and grasslands (Spera et al., 2016; Strassburg et al., 

2017). The conversion of native vegetation to crops and pastures has removed ca. 

50% of the original 2 million km² in the Cerrado, which is greater than the forest loss 

in the Amazon biome (Klink and Machado, 2005; Lambin et al., 2013). 

The negative impacts on water quality due to LULC change are reported to be a result 

of interrelated processes (i.e., changes in vegetation, soil and hydrology) that 

negatively disturbs its land capability, which is the ability of the land to sustain its use 

(Valle et al., 2014; Valle Junior et al., 2015). On the AAF, soil and hydrological changes 

have been linked to forest clearing and conversion to pastures (Zimmermann et al., 
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2006; Neill et al., 2008). Indeed, LULC change on the AAF has been primarily driven 

by the expansion of pastures (Armenteras et al., 2013; Schierhorn et al., 2016). After 

some years, these pastures are often either replaced by cash crop systems (Barona 

et al., 2010; Cohn et al., 2016) or abandoned due to decreased grass productivity, 

ultimately reaching advanced stages of degradation (Davidson et al., 2012). Variations 

in nutrient input into rivers caused by LULC change on the AAF deserve particular 

attention because of their potential impact on both biogeochemistry and aquatic 

ecosystem functioning (Neill et al., 2011). Even though rain and dry forests account 

for ca. 60% of the net primary production of global terrestrial ecosystems (Grace et 

al., 2006; Potter et al., 2012), the effects of the impacts of LULC change in these 

systems are not well studied as they are for other regions of the world (Luke et al., 

2017).  

The initial effects of LULC change on the hydrochemistry of rivers have often been 

observed in low-order streams (Richey et al., 1997; Neill et al., 2001; Hope et al., 

2004), which connect the terrestrial environment to large rivers and integrate 

environmental processes, especially landscapes undergoing change (Alexander et al., 

2000; Moreira-Turcq et al., 2003). These characteristics qualify small streams as 

sensitive indicators of changes in ecosystems due to LULC change and allow their 

use as important references in carbon exportation studies and as early warning 

systems for ecological change (Christophersen et al., 1994). Although many studies 

have evaluated the dynamics of carbon and nutrients in streams in several regions of 

the world (e.g. Southeastern USA (Marchman et al., 2015), subtropical China (Yan et 

al., 2015), Germany (Strohmeier et al., 2013) and Canada (Jollymore et al., 2012)), 

studies of carbon export dynamics in low-order tropical catchments are still scarce (de 

Paula et al., 2016). There is increasing research interest in high-temporal-resolution 

data collection in low-order fluvial systems that should also be taken into account in 

hydrochemistry studies (Hughes et al., 2005; Richey et al., 2011; Wohl et al., 2012) 

due to their importance to the global carbon dynamics (Bass et al., 2014). 

The dynamics of stream hydrochemistry that have remained largely invisible due to 

the monitoring schemes that only consider weekly or monthly sampling (Kirchner and 

Neal, 2013), have been gradually unveiled due to approaches that use subdaily 

sampling intervals (Tang et al., 2008). However, the high-frequency water sampling 
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approach that has been shown to be useful for these studies in temperate regions 

(Clark et al., 2007) has been discredited in tropical regions (Chaussê et al., 2016). 

Moreover, findings in Amazonian headwater streams that have used subhourly 

sampling routines have found that the conversion of forests to fertilized agricultural 

lands changed neither the stream water chemistry nor nutrient output per unit of 

catchment area (Neill et al., 2017; Riskin et al., 2017).  

Our study aims to identify the differences in stream carbon and nutrient (CAN) 

concentrations and output fluxes during prevalent baseflow and stormflow conditions 

in headwater catchments under contrasting LULC (native vegetation vs. pasture), 

thereby contributing to the understanding of CAN drivers in low-order streams on the 

AAF. Our hypothesis is that LULC change is impacting stream hydrochemistry in 

active deforestation zones of the Amazon and Cerrado biomes, with the stormflow, 

which is often neglected in studies in these regions, as a substantial contributor to the 

total CAN fluxes.  

6.2. Study area 

Our study follows the space-for-time substitution approach to compare adjacent 

headwater catchments with different LULC but with similar characteristics, i.e. slope, 

geology, soils, aspect and climate (Troch et al., 2015). Studies have often used this 

approach to understand the effects of vegetation and land use on hydrological 

responses in small catchments (Brown et al., 2005; de Moraes et al., 2006; Germer et 

al., 2010; Roa-García et al., 2011; Muñoz-Villers and McDonnell, 2013; Ogden et al., 

2013). It has also been applied to compare the impacts of LULC change on stream 

hydrochemistry of contrasting catchments (Zhao et al., 2010; Sun et al., 2013). 

We used two pairs of microcatchments on the AAF (Fig. 6.1) with contrasting LULC. 

Each pair of catchments consists of a catchment with predominantly native vegetation 

land cover and a catchment with predominantly pasture land cover used for extensive 

cattle ranching. One pair of catchments is in the municipality of Novo Progresso 

(Brazilian state of Pará), which is a hotspot of deforestation in the Amazon biome 

(Rufin et al., 2015; Pinheiro et al., 2016), and the other pair is in the municipality of 

Campo Verde (Brazilian state of Mato Grosso), which is a region that has been 

massively deforested since the 1970s and is now a well-established agro-industrial 
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area in the Cerrado biome. The catchments in Novo Progresso, hereafter referred to 

as the Amazonian catchments, are in the Jamanxim River watershed, which is one of 

the major southern subtributaries of the Amazon River. The catchments in Campo 

Verde, hereafter referred to as the Cerrado catchments, are in the das Mortes River 

watershed, the principal tributary of the Araguaia River. 

 

Figure 6.1 Study areas in the Amazon and Cerrado biomes. 

The Amazonian catchments consist of one catchment covered with evergreen 

rainforest, with sings of logging and tree regrowth (AFOR), and another catchment 

covered by degraded pasture grassland (APAS). The AFOR catchment is the only 

catchment that is drained by a non-perennial stream; it typically flows from November 

to July. The Cerrado catchments are approximately 200 m apart, consisting of one 

catchment covered with cerrado sensu stricto vegetation (CCER) and another 

catchment covered by pasture grassland with signs of degradation (CPAS). The 

cerrado sensu stricto is characterized as dense orchard-like vegetation consisting of 

many species of grasses and sedges, and mixed with a great diversity of forbs and 

trees with an average height of 6 m (Goodland, 1971; Goodland and Pollard, 1973; 
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Canadell et al., 1996; Ratter et al., 1997; Furley, 1999). The APAS catchment was 

established in 1984, and the CPAS catchment was established in 1994. Both pasture 

catchments are mostly covered by grasses (Brachiaria grass species) that exhibit low 

productivity rates. Lime (calcium carbonate, CaCO3) was applied in the pasture 

catchments several years before the study period. The climate in the Amazonian 

catchments is humid tropical, with a mean precipitation of ca. 1,900 mm yr-1, and a 

tropical wet and dry climate in the Cerrado catchments, with a mean precipitation of 

ca. 1,700 mm yr-1. More details regarding the climate, soils, morphology and hydrology 

of this region can be found in Lamparter et al. (2018), and Guzha et al. (2015) and in 

Nóbrega et al. (2017) for the Amazonian and Cerrado catchments, respectively. For 

clarity and to simultaneously compare the contrasting catchments within their 

respective biomes, we use the term native vegetation catchments to refer to the AFOR 

and CCER catchments, and the term pasture catchments to refer to the APAS and 

CPAS catchments, whose main characteristics are shown in Table 6.1. We 

instrumented these catchments during the dry season of 2012 and continuously 

monitored them from October of 2012 until the September of 2014. 

6.3. Methods 

6.3.1. Soil physical and chemical properties 

To support our findings related to CAN stream dynamics, we used evidence from soil 

chemical and textural analyses. We collected disturbed soil samples from the topsoil 

(0–10 cm soil depth), from 6 to 8 approximately equally spaced points along a 

topographic sequence of landscape positions from a gently sloping upper plateau, to 

a middle slope and a low-gradient valley bottom on the basis of digital elevation models 

(DEMs) derived from a topographic survey in each catchment. The topsoil of these 

catchments was chosen because it has a strong synergy with the surface waters and 

it is the soil layer under most direct influence of the LULC change (Lamparter et al., 

2018). 

The topographic survey conducted in the Cerrado catchments is described in detail in 

Nóbrega et al. (2017); the described procedure was also used for the Amazonian 

catchments. We analyzed these soil samples to determine pH, total carbon (TC), total 

nitrogen (TN), aluminum (Al), calcium (Ca), iron (Fe), potassium (K), magnesium (Mg), 
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sodium (Na), phosphorus (P), sulfur (S) and particle size distribution. The particle size 

distribution was measured using the Köhn pipette method (DIN ISO 11277:2002-08, 

2002). pH was measured using the potentiometric method (inoLAB® pH Level 2, 

Wissenschaftlich‐Technische Werkstätten GmbH). TC and TN were quantified using 

an elemental analysis method (TruSpec® CHN, LECO Instrumente GmbH). For 

chemical analysis, a total digestion of 100–150 mg of soil was created with HClO4, HF 

and HNO3 in 30-mL polytetrafluoroethylene (PTFE) vessels (Pressure Digestion 

System DAS 30, PicoTrace GmbH), and chemical concentrations were determined 

using inductively coupled plasma atomic emission spectroscopy (ICP-OES, Optima 

4300™ DV for the Cerrado catchments and ICP-OES Optima 5300™ for the 

Amazonian catchments, PerkinElmer, Germany). Chemical analyses of soils from the 

Amazonian catchments were conducted at the Laboratory of the Department of Plant 

Ecology and Ecosystems Research and those of the Cerrado catchments were 

conducted at the Laboratory of the Department of Landscape Ecology, both at the 

University of Goettingen, Germany. 

Table 6.1 Main characteristics of the catchments. 

 Amazonian catchments Cerrado catchments 

 AFOR APAS CCER CPAS 

Biome Amazon Cerrado 

Area (ha) 93.4 23.1 77.8 58.4 

Mean precipitation 
(mm yr-1) 

1,900 1,700 

Wet season Nov–May Oct–Apr 

Farm property Paraíso farm 
Rancho do Sol 

farm 
Gianetta farm 

Coordinates 
7.032° S, 
55.363° W 

7.023° S, 
55.375° W 

15.797° S, 
55.332° W 

15.805° S, 
55.336° W 

Soil classification 
(IUSS Working Group 
WRB, 2015, and Soil 
Survey Staff, 2014) 

Lixisols, Oxisols Arenosols, Entisols Quartzipsamments 

Predominant land 
cover 

Rainforest Pasture 
Cerrado sensu 

stricto 
Pasture 

Aspect E-W 

Average slope (%) 23.6 7.5 8.4 7.7 

Average elevation (m) 292.4 223.0 811.1 817.8 

 

6.3.2. Water sampling design and analysis 

An automatic water sampler (BL2000®, Hach-Lange GmbH) was installed at the outlet 

of each catchment to collect stream water ca. 20 cm below the water surface and 2–4 



Chapter 6 

 

107 
 

m upstream from the catchment weir. The sampling procedure was simultaneously 

based on both time intervals and water-level variations to characterize the streamflow 

hydrochemistry during baseflow- and stormflow-prevailing conditions, respectively. 

The time sampling routine was based on filling a 1-L sample bottle over 1–3 days using 

an extraction of 200 mL from the stream at equal intervals. The stormflow sampling 

was determined suing a subhourly routine activated by water-level increase and 

detected by a pressure bell switch (FD-01, Profimess GmbH). The pressure bell 

switches and the automatic samplers were calibrated throughout the year according 

to the water-level variation to maximize the coverage of the catchment stormflows, 

which considered the time of every sampling procedure and its respective hydrograph. 

The samples from the Cerrado catchments were transported to the Ecofisiologia 

Vegetal Laboratory (EVL) at the Federal University of Mato Grosso (UFMT) in Cuiabá, 

Mato Grosso. The samples from the Amazonian catchments were also brought to this 

laboratory with prior preparation at a field facility ca. 5 km from the catchments and 

stored in light-free freezers until their transportation to the EVL. Transport of all water 

samples to the EVL was made using light-free coolers packed with ice. After 

transportation, the water in each bottle was used to fill two 50-mL aliquots in high-

density polyethylene bottles prewashed with deionized water. One aliquot was used 

for the analysis of TC, total organic carbon (TOC), total inorganic carbon (TIC) and 

TN, and the other was filtered with pre-ashed glass fiber filters (0.7-µm nominal pore 

size, Whatman GF/F) prewashed with 20 mL of water sample for the remaining 

analyses. The samples were then frozen and shipped in Styrofoam coolers for analysis 

at the Laboratory of the Department of Landscape Ecology, University of Goettingen, 

Germany (total travel time of ca. 22 h). 

TC, TIC, TOC, total dissolved carbon (DC), dissolved inorganic carbon (DIC) and DOC 

contents were determined using high-temperature catalytic oxidation (TC-Analyzer, 

DIMATOC 100 (R), Dimatec GmbH). TN and DN were quantified using the 

chemiluminescence detection method (DIMA_N module (CLD), Dimatec GmbH). 

Fluorine (F), chlorine (Cl), nitrate (NO3) and sulfate (SO4) concentrations were 

determined using ion chromatography (761 Compact IC, Metrohm, Switzerland). 

Dissolved Ca, Fe, K, Mg, Na, P and S concentrations were quantified using atomic 

spectroscopy (ICP-OES, Optima 4300™ DV, PerkinElmer). Prior to the analyses of 
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the dissolved solutes, the water samples were filtered through membrane filters (0.45-

µm nominal pore size, cellulose acetate, Sartorius Stedim Biotech GmbH). These 

filters were prewashed with ultrapure water and transferred to high density 

polyethylene (HDPE) bottles that were prewashed with nitric acid solution (2.6% 

HNO3) and rinsed with ultrapure water. 

For quality control, during the entire study period, approximately 20% of the water 

samples were analyzed for DOC within 12 hours after collection using a UV-Vis 

spectrometric device (spectro::lyserTM UV-Vis, s::can Messtechnik GmbH) to cross-

check with the final DOC results. This comparison indicated a linear correlation (r = 

.96, n = 200, p < .001, Pearson’s correlation), which is considered adequate because 

of the insignificant differences in DOC estimation by the spectrometric device 

calibration (Bass et al., 2011; Avagyan et al., 2014). Additionally, a 1-L water sample 

was manually collected in an automatic sampler bottle and kept in a separate 

automatic water sampler unit at the EVL to check DOC fluctuations resulting from the 

storage of the samples in this instrument. This water sample was analyzed using the 

spectrometric device up to 8 days after sampling, which was the average time interval 

of the field trips for sample collection. This procedure was conducted during the first 

wet season (January–May of 2013) and did not indicate any significant changes in the 

DOC concentrations. 

6.3.3. Streamflow and CAN output fluxes 

At the outlet of each catchment, an adjustable weir was installed. During the rainy 

season, the weirs were rectangular, whereas a v-notch contraction section was 

inserted during the dry season. A multiparameter probe (DS 5X, OTT) was installed 

2–4 m upstream of each catchment’s weir to obtain data on water level at 10 or 15-

min intervals. To quantify catchment discharge (flow rate), we used the standard flow 

equation (Eq. (1)) based on the Bernoulli equation for the rectangular weir, and the 

Kindsvater–Shen equation (Eq. (2)) together with calibration adjustment functions 

(Eqs. (3) and (4)) for the v-notch weir (Shen, 1981), as follows: 

𝑄 =
2

3
𝐶𝑑𝑅𝑏√2𝑔ℎ

3

2, (1) 

𝑄 =
8

15
𝐶𝑒√2𝑔 tan (

𝜃

2
) ℎ𝑒

5

2, (2) 



Chapter 6 

 

109 
 

𝐾ℎ = 0.001[𝜃(1.395𝜃 − 4.296) + 4.135], (3) 

𝐶𝑒 = 𝜃(0.02286𝜃 − 0.05734) + 0.6115, (4) 

where Q is the discharge over the weir (m3 s-1); CdR and Ce are the effective 

dimensionless discharge coefficients for the rectangular and v-notch weirs, 

respectively; b is the weir length (m); θ is the angle of the v-notch (radians); h is the 

upstream head above the crest of the weir (m); he is the effective head (h + Kh); and 

Kh is the head-adjustment factor. For the Amazonian catchments, we adopted a CdR 

of 0.62 based on the geometric characteristics of the weirs (Kindsvater and Carter, 

1957). For the Cerrado catchments, we conducted discharge calibration 

measurements using an acoustic digital current meter (ADC, OTT) and estimated CdR 

values of 0.74 for the CCER catchment and 0.65 for the APAS catchment. 

We classified the streamflow as base streamflow (Sb) and storm streamflow (Ss), which 

represent the total stream discharge during baseflow- and stormflow-prevailing 

conditions, respectively. Ss was computed as the flow change in response to event 

precipitation and ending at the point separating the stormflow components, i.e. the 

surface and subsurface stormflow, from the baseflow recession. These flows were 

determined using a recursive digital filter (Eckhardt, 2005) implemented in the Web 

GIS-based Hydrograph Analysis Tool (WHAT) for baseflow separation (Lim et al., 

2005, 2010). Using this information, we calculated the ratio of Ss to total streamflow 

(St) discharge. 

The annual CAN stream output fluxes for each catchment were calculated multiplying 

the annual mean CAN concentration by the respective annual Sb and Ss volumes (Eqs. 

5 and 6) as follows: 

𝐹𝑇𝑆𝑏 =
𝐶𝑆𝑏×𝑉𝑆𝑏

𝐴×106
, (5) 

𝐹𝑇𝑆𝑠 =
𝐶𝑆𝑠×𝑉𝑆𝑠

𝐴×106
, (6) 

where FTSb and FTSs are, respectively, the annual CAN output fluxes of Sb and Ss (kg 

ha-1 yr-1); CSb is the mean CAN concentration in Sb (mg L-1); CSs is the volume-weighted 

mean CAN concentration obtained using Eq. 7 (mg L-1); VSb and VSs are the mean 

annual Sb and Ss discharges (L yr-1), respectively; and A is the catchment area (ha). 
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𝐶𝑆𝑠 =
∑ (∑

𝐶𝑆𝑠(𝑖)

𝑛
𝑛
𝑖=1 )×𝑉𝑗𝑚

𝑗=1

∑ 𝑉𝑗𝑚
𝑗=1

, (7) 

where CSs(i) is the CAN concentration per Ss event interval i for the number of event 

intervals n (mg L-1) and Vj is the volume per event j for the number of Ss events m (L). 

6.3.4. Statistical analysis 

We used principal component analysis (PCA) to identify the most representative 

hydrochemical parameters causing most of the total variance in Sb and Ss. PCA is 

commonly used to identify the variables that contain the most information and to 

provide future data collection criteria in ecological studies (King and Jackson, 1999; 

Zhang et al., 2009). It is useful for the identification of important surface water-quality 

parameters (Ouyang, 2005; Zeinalzadeh and Rezaei, 2017). 

We conducted PCAs separately for each biome (Amazon and Cerrado) and flow 

condition (Sb and Ss) in order to avoid the dominance of the PCA by the data variance 

of only one specific region or streamflow condition. We used the Kaiser–Meyer–Olkin 

(KMO) test (Kaiser, 1974) as a measure of quality control in the PCAs. The KMO test 

measures the sampling adequacy of each variable for the complete analysis. We only 

considered CAN parameters with individual KMO values greater than the bare 

minimum of .5; therefore we repeated the PCAs, excluding the unacceptable CAN 

parameters from the analyses, until we obtained acceptable individual KMO results. 

We applied the orthogonal rotation varimax with Kaiser normalization to the PCAs to 

maximize the dispersion of loadings within the factors and considered the results with 

the most significant components (eigenvalues > 1). 

We used the Kolmogorov-Smirnov test of normality for each dataset to determine the 

adequate statistical test, i.e., parametric or nonparametric, for comparison of 

catchments within the same biome. We used the two-sample t-test to compare the soil 

chemistry and the Mann–Whitney (MW) U-test to compare the CAN concentrations by 

means of sample ranks to determine whether Sb and Ss were significantly different 

between the native vegetation and pasture catchments. Additionally to the MW test, 

we used Mood’s median test, given its robustness for outliers to detect differences in 

the median. We used the language and environment R (R Core Team, 2017) and the 

significance threshold at .05 for all statistical analyses. 
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6.4. Results 

6.4.1.  Soil physical and chemical properties 

The soils exhibited textural similarities within each pair of catchments, with mostly 

sandy clay loams in the Amazonian and loamy sand textures in the Cerrado 

catchments (Table 6.2). The soil pH was between 10 to 25% higher in the pasture 

catchments, being significantly different (p < .01) between the CCER and CPAS 

catchments. The soils from all catchments have a high content of Al and Fe and low 

nutrient contents (Table 2). K, Mg and Mn contents exhibited significant differences (p 

< .05) between the Amazonian catchments, with higher Mn content in the AFOR than 

that of the APAS catchment. In the Cerrado catchments, Ca was the only element to 

exhibit significant differences (p < .01) between the CCER (0.03 g kg-1) and CPAS 

catchments (0.18 g kg-1). 

Figure 6.2 shows the soil chemical results. The soils from all catchments have a high 

content of Al and Fe, a characteristic often found in Amazon soils (Quesada et al., 

2011; Dos Santos and Alleoni, 2013) and Cerrado (Buol, 2009). Further, we found low 

nutrient contents in the soils of all catchments. The K, Mg, and Mn contents exhibited 

significant differences (p < .05) among the Amazonian catchments, with higher Mn 

content in the AFOR than in APAS catchment. In the Cerrado catchments, Ca was the 

only element to exhibit significant differences (p < .01) between the CCER (0.03 g kg-

1) and CPAS catchments (0.18 g kg-1). 

Table 6.2 Mean, one standard deviation and n of soil physical properties, and C 
and N contents. 

Soil 
attributes 

Amazonian catchments Cerrado catchments 

 AFOR APAS CCER CPAS 

Sand (%) 67.2 ± 6.0 (8) 57.6 ± 6.4 (8) 81.1 ± 20.5 (6) 93.3 ± 1.0 (8) 

Silt (%) 9.1 ± 3.9 (8) 22.8 ± 6.0 (8) 6.1 ± 7.3 (6) 1.5 ± 0.4 (8) 

Clay (%) 23.7 ± 6.1 (8) 19.6 ± 5.5 (8) 14.0 ± 13.4 (6) 5.2 ± 0.7 (8) 

pH 5.7 ± 0.3 (3) 6.4 ± 0.7 (3) 3.6 ± 0.3 (6) 4.4 ± 0.5 (8) 

C (%) 3.19 ± 2.54 (5) 1.47 ± 0.45 (6) 3.41 ± 3.88 (6) 1.33 ± 1.01 (8) 

N (%) 0.27 ± 0.22 (5) 0.12 ± 0.04 (6) 0.18 ± 0.20 (6) 0.07 ± 0.05 (8) 

C:N ratio 11.9 ± 1.8 11.8 ± 0.5 17.9 ± 2.4 18.3 ± 3.3 
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6.4.2. Hydrochemistry results 

TOC, DOC, K and NO3 exhibited the highest mean concentrations (> 1 mg L-1) in the 

Amazonian catchments under both flow conditions. For these catchments, our results 

indicate low mean streamflow concentrations for Cl, SO4, Na, Ca and Mg (< 0.4 mg L-

1). In the Cerrado catchments, TOC, DOC, NO3 and Ca showed the highest mean 

concentrations. Other elements, such as Mg and Na, exhibited relatively low 

concentrations in the CCER catchment. Fe, F, P, S and SO4 had the lowest 

concentrations in all catchments, with most values less than the limit of detection 

(Appendix 1 and Appendix 2). 

The varimax rotation applied to the PCA on the water quality parameters exhibited 

individual KMO values greater than .5 (Table 6.3). The overall KMO was .70 for Sb and 

.63 for the Ss PCAs in the Amazonian catchments, and .68 for both the Sb and Ss 

PCAs in the Cerrado catchments, which are acceptable values of sampling adequacy 

for PCA (Kaiser, 1974). Bartlett’s test of sphericity for the parameters indicated that 

correlations between items were sufficiently great for PCA (p < .001). Kaiser’s criterion 

of eigenvalues greater than 1 was met by two components in the Sb PCAs and by 

three components in the stormflow PCAs for the Amazonian and Cerrado catchments. 

In combination, these components explained 80% and 86% of the variance in the Sb 

and Ss values in the Amazonian catchments, and 83% and 88% of the variance in the 

Sb and Ss values in the Cerrado catchments, respectively. Some parameters, such as 

TC, TOC, DC and DOC, cluster in the same components in all PCAs with high factor 

loadings. 

In all of the PCAs, the first two components account for more than 60% of the total 

variance (Fig.6. 2). For the Amazonian catchments, the first component of the Sb PCA 

(Fig 6.2a) was mostly correlated with nitrogen and organic carbon, which showed the 

highest standard deviations. The items that cluster in the second component represent 

the inorganic carbon and cations (Ca and K). The main difference between the Sb and 

Ss PCAs (Fig. 6.2b) is the clustering of NO3, TN and DN in the third component of the 

Ss PCA, suggesting that during stormflow events, nitrogen fluxes have a distinct 

dynamic from that of the other nutrients. For the Cerrado catchments, the first 

component of the Sb PCA (Fig. 6.2c) groups carbon and Ca, and the second 
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component groups TN, DN and NO3. This is the only PCA where the organic and 

inorganic carbon compounds cluster in the same component. The Ss PCA (Fig. 6.2d) 

shows that the first component groups DOC with DN, NO3 and K, and the second 

component shows a high factor loading grouping of TIC, DIC and Ca. The third 

component of this PCA groups TC, TOC and TN. This is the only PCA where TOC 

does not group together with DOC, which indicates the importance of particulate 

organic carbon (POC) in these catchments. We did not directly measure POC in our 

study, but the differences between TOC and DOC, which could be interpreted as POC 

(Zhou et al., 2013), were the highest in the Cerrado catchments, representing an 

average of 19% of the TOC. 

Based on the results of the PCAs, we compared TOC, DOC, TIC, DIC, TN and DN 

(Fig. 6.3), and NO3, Ca and K (Fig. 6.4). With the exception of higher TOC in the APAS 

catchment, Ss carbon concentrations between the Amazonian catchments did not 

exhibit significant differences. In the Cerrado catchments, the highest differences were 

found in Ss, with higher TOC and DOC concentrations in the CPAS catchment 

compared to those of the CCER (Fig. 6.3a–b). For DIC, the differences in 

concentration between the Amazonian catchments in Sb and between the Cerrado 

catchments in Ss (Fig. 6.3c–d) were significant. 

Except for DN in Sb of the Amazonian catchments, the pasture catchments exhibited 

higher TN and DN concentrations than those of the native vegetation catchments. The 

differences in NO3 were significant between the Cerrado catchments, with higher 

concentrations in the CPAS catchment, whereas there was no significant difference in 

the Amazonian catchments (Fig. 6.4a). Differences in Ca concentrations (Fig. 6.4b) 

were significant in the catchments of both biomes, but not for the same flow conditions. 

While the difference in Ca was significant only in Sb of the Amazonian catchments, 

this was only observed in Ss of the Cerrado catchments. There were significantly 

higher K concentrations in both Sb and Ss for the pasture catchments (Fig. 6.4c). 

6.4.3. Hydrological and CAN output fluxes 

The Amazonian catchments exhibited the greater annual average stream discharge 

with 23.2 L s-1 for the AFOR catchment and 18.3 L s-1 for the APAS catchment, 

whereas the stream discharge for the Cerrado catchments were 11.6 L s-1 for the 
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CCER catchment and 13.4 L s-1 for the CPAS catchment. The average stream 

discharge during stormflow events were 94.2 L s-1 for the AFOR catchment, 89.5 for 

the APAS catchment, 11.6 L s-1 for the CCER catchment and 30.9 L s-1 for the CPAS 

catchment. 

In the Amazonian catchments, TOC output fluxes were between 35 and 135 kg ha-1 

yr-1, and K and NO3 values ranged from 8 to 60 kg ha-1 yr-1 (Fig. 6.5). In the Cerrado 

catchments, TOC, Ca and NO3 had total output fluxes between 2 and 12 kg ha-1 yr-1, 

and DIC and DN had output fluxes less than 2 kg ha-1 yr-1. Although the two biomes 

show different magnitudes of CAN fluxes with higher fluxes in the Amazonian 

catchments, the Sb CAN fluxes were higher than those of the Ss in all catchments. 

Furthermore, the fluxes in the pasture catchments were generally higher compared to 

those of the native vegetation catchments. 

Table 6.3 Correlations between variables and components after varimax 
rotation. 

 

  
Amazonian catchments Cerrado catchments 

 Sb Ss Sb Ss 

 C1 C2 C1 C2 C3 C1 C2 C1 C2 C3 

TC .92 .27 .99 .07 .07 .98 -.02 .32 .25 .90 

TIC .12 .88 .07 .95 -.17 .94 -.12 .00 .99 .05 

TOC .95 .05 .99 .02 .08 .77 .11 .33 .06 .92 

TN .81 .30 .12 .10 .92 -.04 .96 .49 .01 .75 

DC .88 .19 .99 .12 .01 .96 -.24 .74 .36 .41 

DIC .01 .93 .07 .95 -.25 .94 -.12 .01 .99 .07 

DOC .91 -.05 1.00 .07 .03 .79 -.35 .79 .01 .41 

DN .85 .19 .09 -.14 .95 -.03 .92 .77 -.05 .33 

NO3 - - -.12 -.40 .56 -.16 .74 .87 .03 .12 

Ca .22 .82 -.02 .92 -.01 .93 -.06 .12 .97 .13 

K .20 .79 .17 .56 .37 - - .87 .05 .29 

Eigenvalue 5.5 2.5 4.3 3.2 2.0 6.0 2.3 5.8 2.9 1.0 

Variability (%) 48.2 31.7 36.6 28.8 20.9 57.7 25.4 34.0 28.4 25.4 

Correlations between variables and components greater than .5 are 

bolded. 
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Figure 6.2 Biplots of the PCAs after varimax rotation for the first (C1) and second (C2) 
components of the: a) Amazon catchments base streamflow (Sb); b) Amazon catchments storm 
streamflow (Ss); c) Cerrado catchments base streamflow (Sb); and d) Cerrado storm strea 
streamflow (Ss). 
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Figure 6.3 Boxplot and violin plots of non-flow weighted carbon and nitrogen concentrations in 
base streamflow and storm streamflow. The violin plots indicate the density of the sample 
distribution across the y-values. The y-axis was limited to exclude some outliers (only 
graphically) for better visualization of the results. NS stands for not significant and *, ** and *** 
indicate statistical significance at the .05, .01 and .001 probability levels, respectively. The 
significance of the results was based on the MW and Mood tests. When the test type is not 
indicated, the result is valid for both tests. 
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Figure 6.4 Boxplot and violin plots of NO3, Ca and K non-flow weighted concentrations in base 
streamflow and storm streamflow. The violin plots indicate the density of the sample distribution 
across the y-values. The y-axis was limited to exclude some outliers (only graphically) for better 
visualization of the results. NS stands for not significant and *, ** and *** indicate the statistical 
significance at the .05, .01 and .001 probability levels, respectively. The significance results were 
based on the MW and Mood tests. When the test type is not indicated, the result is valid for both 
tests.  
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6.5. Discussion 

6.5.1.  Stream hydrochemistry 

Our results showed significantly higher CAN concentrations in the pasture catchments 

compared to those of the native vegetation catchments, especially for TIC, TN and K. 

Some other macronutrients (Mg, P and S) and micronutrients (F, Cl, Fe and Na) 

exhibited concentrations of < 1 mg L-1 in all of the studied catchments. Our DOC results 

for the Amazonian streams are in accordance with other studies of Sb of major 

tributaries of the Amazon River (Moreira-Turcq et al., 2003; Tardy et al., 2005) and in 

Ss of small Amazonian streams (Johnson et al., 2006). Although stream 

hydrochemistry data are scarce in these regions, studies have reported low stream 

concentrations for nutrients in a forested catchment in the central Amazon (Zanchi et 

al., 2015) as well in natural and disturbed catchments in the central and southwestern 

Cerrado (Silva et al., 2011, 2012). For some nutrients, i.e. F and Fe, we attributed this 

to the absence of fertilizer application in the pasture catchments during our study 

period and the poor soil nutrient conditions in both regions, which is typical of Lixisols 

(Driessen and Deckers, 2001) and Arenosols (Markewitz et al., 2006) because of their 

strongly weathered substrate. Additionally, the highly weathered soils fix available 

nutrients, especially P, in the form of Fe and Al sesquioxides (Uehara and Gillman, 

1981). Indeed, the soils from all catchments exhibited a high content of Al and Fe and, 

a characteristic often found in Amazon (Quesada et al., 2011; Dos Santos and Alleoni, 

2013) and Cerrado soils (Buol, 2009). 

Soil pH in the pasture catchments was higher than that in the native vegetation 

catchments, which has also been reported in other studies in other regions of the 

Amazon (Mazzetto et al., 2016) and Cerrado (Neufeldt et al., 2002; Carvalho et al., 

2007; Hunke et al., 2015b). This is owing to liming practices in the pasture catchments. 

Lime (CaCO3) is often applied to acidic soils in these regions to increase soil pH (Couto 

et al., 1997; Jepson et al., 2010; Moreira and Fageria, 2010). Therefore, Ca content 

was higher in the soils of the pasture catchments than in the soils of the native 

vegetation catchments. The pasture catchments exhibited significantly higher stream 

Ca concentrations, which reported in in other studies in the Amazon (Biggs et al., 2002; 

Figueiredo et al., 2010) and Cerrado (Markewitz et al., 2011; Silva et al., 2011). 
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Figure 6.5 Annual carbon and nutrient output fluxes of base streamflow (Sb) and storm 
streamflow (Ss). 

The significantly higher Ss Ca concentrations exhibited in the CPAS catchment 

compared to those of the CCER catchment indicates that liming practices are 

increasing Ca content in the topsoil of the CPAS catchment and facilitating the 

leaching of this element to the stream during stormflow events. Other studies have 

already reported that the high rainfall rates in the Cerrado are sufficient to solubilize 

and leach fertilizers such as Ca (Villela and Haridasan, 1994; Hunke et al., 2015a). 

Conversely, between the Amazonian catchments, the Ca concentrations in stream 

water were significantly higher in the APAS, but only in Sb. Such an enrichment of Ca 

in the Sb has been observed in other studies in Brazil (Da Silva et al., 1998; Gonzatto, 

2014), and we attribute this to the slow percolation of the residual lime through the soil 

profile (Rowe, 1982). Because Lixisols are in an advanced weathering stage (Quesada 

et al., 2011) and characterized by a low cation exchange capacity (Driessen and 

Deckers, 2001), the percolating soil water carries the residual Ca, thereby increasing 

its concentration in the Sb. In contrast, during storm events, the surface runoff dilutes 

the Ca concentration in the Sb, resulting in similar concentrations between the 

Amazonian catchments. Biggs et al. (2002) found strong correlations between the soil 

exchangeable cation content and the concentration of stream solutes and suggested 

that pasture age may help explain the substantial variation in solute concentration 
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responses to deforestation, especially for Ca. DIC presented dynamics similar to Ca; 

its differences within the Amazonian and Cerrado catchments occur in the same flow 

types, and they are grouped in the same components in all PCAs. We ascribe this to 

be a consequence of liming practices. As lime is applied, the CaCO3 reacts with water, 

increasing the soil pH and producing HCO3, which is one of the main DIC components 

and has been identified as a main driver of DIC fluxes in small streams in the Amazon 

(Johnson et al., 2006; Cak et al., 2015). 

We found NO3 concentrations to be significantly different only between the Cerrado 

catchments, with higher values in the CPAS catchment. The increase in NO3 

concentrations due to deforestation in Amazonian streams are not as clear (Figueiredo 

et al., 2010; Silva et al., 2007; Williams and Melack, 1997) as they are in the Cerrado 

(Silva et al., 2011). It has been reported that the high percentage of mineralized N 

nitrified in forests is the cause of a high potential for NO3 loss in soil solution and 

streamwater when these forests are cleared and burned (Neill et al., 2006; Vourlitis 

and Hentz, 2016), which has occurred in small catchments under recent or ongoing 

deforestation (Williams and Melack, 1997). The fact that we could not find this same 

relationship between the NO3 concentrations of the Amazonian catchments is 

consistent with patterns of N cycling and N availability, which shows high soil solution 

NO3 concentrations in Amazonian forests (Neill et al., 2001). The Amazonian forest 

behaves rather similar to old and temperate forests, which present high nitrification 

rates and NO3 pool losses that occur under normal conditions (Aber et al., 1989; 

Stevens et al., 1994; Neill et al., 2001). These forests may become net sources of 

nitrogen, thereby causing NO3 leaching to streams (Aber et al., 1995). 

6.5.2. Stream CAN output fluxes 

Except Except for DIC in the Cerrado catchments, the CAN fluxes were greater in the 

pasture catchments (Table 6.4). The Amazonian catchments exhibited the greatest 

differences in CAN fluxes. In these catchments, Ss showed a greater difference 

between the APAS and AFOR catchments, with an average APAS:AFOR ratio 37% 

higher than that in Sb. Conversely, for the Cerrado catchments, the CPAS:CCER CAN 

ratios were, on average, 56% less in Ss than in Sb. This is consistent with that fact that 

nutrients, especially K and Ca, have been shown to have higher stream fluxes in 
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pastures than in forests in the Amazon (Williams and Melack, 1997; Germer et al., 

2009) and Cerrado (Figueiredo et al., 2010; Silva et al., 2011). 

The total and dissolved carbon stream outputs were higher from the pasture 

catchments. Strey et al. (2016) found that degraded pasture areas exhibit lower 

organic carbon (OC) content than that of areas with native vegetation in the Cerrado 

and Amazon biomes, which is likely connected to larger losses of forest-derived OC 

after deforestation. In these biomes, the reduced organic carbon due to native 

vegetation clearing for pasture has been shown to be associated with reduced 

aggregate stability (Longo et al., 1999), which, in turn, has resulted in degraded 

pasture soils storing less carbon than soils covered with natural vegetation (Fonte et 

al., 2014). This facilitates carbon leaching and, consequently, increases the TOC and 

DOC fluxes. Kindler et al. (2011) affirmed that the quantification of DOC leaching from 

soil is crucial for the carbon balance. These authors found that losses of biogenic 

carbon from grasslands account for ca. 22% of the net ecosystem exchange, whereas 

leaching from forest sites hardly affects net ecosystem carbon balances. In the 

Amazon, the decreased soil carbon storage as a consequence of forest conversion to 

pastures has been reported to be directly correlated with pasture age (Asner et al., 

2004). In the Cerrado, while well-managed pastures may sustain soil carbon content, 

most pastures in this biome are in advanced stages of degradation (Davidson et al., 

2012). In this region, the sandy soils, such as the Arenosols, are commonly found and 

the decrease of their organic matter content owing to their increasingly use for 

agricultural practices (Speratti et al., 2017) is likely to increase the leaching of nutrients 

(Hunke et al., 2015a). 

Table 6.4 Base streamflow, storm streamflow and total streamflow ratios of 
stream output fluxes for each pair of catchments. 

Ratio Flow type TOC TIC TN DOC DIC DN NO3 Ca K 

APAS:AFOR Base streamflow 2.8 5.0 3.4 2.3 4.5 2.8 3.9 3.6 4.1 

APAS:AFOR Storm streamflow 5.8 5.0 4.7 5.8 4.8 4.4 3.8 4.6 5.7 

APAS:AFOR Total streamflow 3.6 5.0 3.7 3.2 4.6 3.2 3.9 3.8 4.4 

CPAS:CCER Base streamflow 1.8 1.5 3.3 1.2 0.4 4.0 3.8 1.8 6.8 

CPAS:CCER Storm streamflow 1.0 0.7 1.2 1.1 0.6 1.7 2.7 2.8 1.4 

CPAS:CCER Total streamflow 1.6 1.4 3.0 1.2 0.4 3.7 3.7 1.8 5.5 
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The results of C content and C:N ratios for the Amazonian catchments are in 

accordance with studies on primary forests and old pastures in the Amazon (McGrath 

et al., 2001). For the Cerrado catchments, the C:N ratios are also similar to other 

results for topsoil in areas with cerrado vegetation and pasture in this biome 

(Figueiredo et al., 2010; Neufeldt et al., 2002). Similar to C, N output fluxes were higher 

in the pasture catchments. In comparison to the Cerrado catchments, the Amazonian 

catchments exhibited a lower C:N ratio, which is typical for Oxisols in the uppermost 

horizon (Tardy et al., 2005), and has been identified as an important controlling factor 

of total ecosystem N retention. High C:N promotes N immobilization, reduces net 

nitrification and consequently contributes to greater N retention (Templer et al., 2012). 

This has direct implications for the net N fluxes in this region, as the atmospheric 

deposition of N (3.5–10 kg N ha−1 year−1 (Bobbink et al., 2010; Salemi et al., 2015)) is 

exceeded by N output via streamflow in the APAS catchment. This indicates that the 

pastures in this region might be a sink for N, as has been found in other studies in the 

Amazon (e.g., Germer et al., 2009 and Salemi et al., 2015). 

Our results show the importance of Ss as a significant contributor to St CAN fluxes in 

catchments of the Amazon and Cerrado biomes. To illustrate this, we provide the 

ratios between the short-lived events (Ss) to the St duration, volume and CAN fluxes 

in Table 6.5. The Ss:St duration ratios were only 4.9–5.3% in the Amazonian 

catchments and 1.7–2.1% in the Cerrado catchments. Nevertheless, the relatively 

small durations of the Ss events caused an increase of 15.9–26.5% and 2.8–5.5% in 

the St volume in the Amazonian and Cerrado catchments, respectively. Moreover, in 

nearly all cases the Ss contribution to the St CAN output fluxes was greater than its 

contribution to the St volume. In the APAS catchment, 50% of the St DOC output fluxes 

were caused by Ss. In the Cerrado catchments, Ss fluxes accounted for 16–26% of the 

TOC total streamflow output fluxes, despite the Ss contribution to St volume of only 

approximately 2–5%. This shows that Ss is especially important as a rapid hydrological 

pathway for CAN losses in areas on the AAF where deforestation reduces the 

infiltration capacity rates, which are in turn exceeded by the rainfall intensities, causing 

greater stormflow contributions (Zimmermann et al., 2006). The substantial 

contribution exhibited by Ss to St CAN fluxes is mainly owing to their higher CAN 

concentrations compared to those of Sb. These concentrations may be higher in Ss 
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because of the rapid subsurface response in streams dominated by pre-event water, 

where a rapid mobilization of old water occurs (Kirchner, 2003), and to surface flow 

paths that contribute to higher CAN concentrations (Johnson et al., 2006). 

DIC also exhibits a rapid response during stormflows in wet tropical catchments under 

pristine rainforest and agriculture LULC (Bass et al., 2014). In the Amazonian 

catchments, we found that Ss represented slightly more than 30% of St DIC fluxes, 

with similar Ss:St DIC fluxes between these catchments. In contrast, Ss DIC fluxes 

represented only 6% of the total output fluxes in the CCER catchment and 10% in the 

CPAS catchment. 

Table 6.5 Percentage ratio of the storm streamflow duration, volume and fluxes 
to the total streamflow. 

 

While many recent studies showed insights of high-temporal monitoring schemes in 

areas with fairly easy access (e.g., close to urban centers accessed via paved roads) 

in Europe (e.g., Blaen et al., 2016; Cuomo and Guida, 2016) and North America (e.g., 

Jollymore et al., 2012; Sherson et al., 2015) as a valid and new approach to ensure 

appropriate management of the natural resources (Skeffington et al., 2015), our study 

uses this method to assess the impacts of LULC change in catchments located in 

data-scarce active zones of deforestation of the two largest biomes of South America. 

Despite the contribution of our study contributes to the understanding of the 

hydrochemical fluxes on the AFF, the magnitude and duration of these impacts 

depend on several catchments characteristics (e.g., soils, morphology and geology) 

that should also be addressed in further studies (Birkinshaw et al., 2010). Long-term 

measurements (over 10 years) of stormflow events including quantifying changes in 

groundwater quality are required to analyze trends in water quality. Biggs et al. (2006) 

   Ss:St (CAN fluxes) 

Catchment 
Ss:St 

(duration) 

Ss:St 

(volume) 
TOC TIC TN DOC DIC DN NO3 Ca K 

AFOR 4.9% 15.9% 26% 24% 23% 28% 31% 23% 7% 29% 23% 

APAS 5.3% 26.5% 42% 23% 28% 50% 33% 32% 7% 34% 30% 

CCER 2.0% 5.2% 26% 3% 14% 18% 6% 12% 4% 2% 24% 

CPAS 1.6% 2.8% 16% 2% 6% 17% 10% 6% 3% 2% 6% 
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found evidence of long-term increases in solute fluxes following the conversion of 

forest to pasture in the Amazon. Hence, empirical studies that contemplate the 

comparison of pastures with different ages are fundamental to quantify the effect 

pasture age in CAN fluxes.  

The degree to which the chemical changes of the streamwater in the Amazon and 

Cerrado biomes are affecting the CAN delivery to the ocean is poorly understood and 

difficult to assess (Bouchez et al., 2014). Notwithstanding, the changes in stream 

hydrochemistry are likely to unfold greater impacts due to several large dams under 

construction in this region (Tollefson, 2015; Pavanato et al., 2016), which will receive 

and store the increased loads of CAN and negatively affect their suitability as aquatic 

habitats. To that end, we recommend studies that take into account the long-term 

effects of LULC change on stream hydrochemistry in nested scales and their impacts 

in large watershed systems in this region. 

6.6.  Conclusions 

Our research demonstrates how the conversion of natural vegetated landscapes 

(forest and cerrado) to pasture changes stream hydrochemistry, which can disturb the 

natural carbon and nutrient balance in the Amazon and Cerrado biomes. Stream 

carbon and nutrient concentrations were significantly higher in catchments where the 

native vegetation was replaced by pastures. These higher concentrations underlie 

further implications for carbon and nutrient fluxes as streamflow increase occurs, 

which is widely reported in this region as a consequence of the conversion of native 

vegetation into agricultural lands. 

We found that most of the carbon and nutrient flux contributions of stormflow to total 

streamflow is proportionately greater than its respective volumetric contribution to 

stream discharge. This shows that stormflow is a substantial hydrological pathway for 

carbon and nutrient losses, including areas with small stormflow contribution, as 

shown in the Cerrado catchments. This indicates that the unaccounted stream carbon 

and nutrient fluxes derived from sampling approaches on a daily or weekly basis are 

substantially great. Our study confirms the need for detailed temporal data on stream 

hydrochemistry that include the sampling of short-lived stormflow events to not only to 
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understand natural tropical ecosystems, but also to unveil impacts of anthropogenic 

changes in these environments. 

Although the acquisition of high-temporal resolution data in tropical forests is often 

limited by logistical restraints, we recommend that further studies use novel monitoring 

techniques such as automatic overland flow sampling and real-time water-quality 

sensors to improve the understanding of hydrochemical pathways and fluxes in forest 

ecosystems under anthropogenic changes such as the Amazonian agricultural 

frontier. 
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7. Ecosystem services in the Amazon agricultural frontier: 

separating the wheat from the chaff in a functionally diverse 

riparian zone 
 

Abstract 

The ecological services provided by pristine riparian zones in human-altered 
landscapes are widely acknowledged, yet little is known about them. In this study, we 
assess ecosystem properties that a protected riparian zone maintains in contrast to 
environmental changes in its surroundings caused by agro-industrial activities in the 
northwestern fringe of the Brazilian Cerrado, on the Amazonian agricultural frontier. 
We conducted a detailed assessment of the plant biodiversity, soil hydro-physical 
properties, and water quality, to understand at how the underlying ecological 
characteristics of a riparian zone sustain its neighboring cropland area. We show that 
the riparian zone is fundamental in providing key ecosystem regulating services, 
including maintenance of plant biodiversity, soil properties and water quality. Our 
results indicate that the protection of the plant biodiversity in the riparian zone sustain 
a synergy between plants and soil by promoting higher infiltration rates, higher soil 
porosity and natural soil chemistry conditions, which in turn has direct implications on 
the quality of water that becomes streamflow. Our study reaffirms that conservation of 
riparian zones is crucial to buffer the negative impacts of land-use conversion 
associated to agricultural practices on ecosystem services supply. 

 

7.1. Introduction 

The concept of ecosystem services is related to the benefits that the environment 

offers for human well-being, and it has become useful for promoting sustainable 

management of natural resources (Guzha et al., 2013). Essential ecosystem services, 

such as plant biodiversity, water provisioning, water quality regulation and soil carbon 

storage, are commonly provided by landscapes in pristine conditions (Guswa et al., 

2014). When such environments are under threat by anthropogenic change, the 

vegetation is usually one of the first ecosystem components affected, which in turn 

can cause further impacts, such as soil degradation and water quality deterioration 

(Galford et al., 2010; Silva et al., 2011). The magnitude, types and scope of these 

impacts are still poorly understood, especially on landscape components such as the 

riparian zones (RZs), such as those found in agro-industrial regions (Skorupa et al., 

2013). These RZs, also known as riparian vegetation, riparian corridors or riparian 

forests (Silva et al., 2008; Mcjannet et al., 2012; Bianchi and Haig, 2013; Ferraz et al., 

2014), are often spared from deforestation in agricultural areas because they do not 
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offer satisfactory agricultural productivity conditions (usually due to their high slope 

and frequent waterlogging conditions) (Tiwari et al., 2016) or because there are 

regulatory restrictions that require their conservation. This is a common situation for 

the RZs found in the Brazilian Cerrado, which has historically held the highest 

deforestation rates of the Amazon agricultural frontier (AAF) (Klink and Machado, 

2005). 

The conversion from natural land cover to crops and pastures has resulted in the 

reduction of the native fire-adapted savannah-like Cerrado vegetation to 

approximately 50% (ca. 1 million km²) of its original land cover (Mendonça et al., 1998; 

Klink and Machado, 2005; Lambin et al., 2013). The Cerrado is one of the world’s 

critical hotspots for conservation due to its high amount of endemic species (Myers et 

al., 2000; Brooks et al., 2002; Myers, 2003; Brooks, 2006; Loyola et al., 2009), and is 

the savanna with the greatest plant diversity in the world (Mendonça et al., 1998). The 

Cerrado environment contains different vegetation formations, ranging from 

grasslands to forests, including the interspersed gallery forests, which are found in 

RZs and contain ca. 30% of Cerrado plant biodiversity (Felfili et al., 2001; Ribeiro and 

Walter, 2008). Most plant species in the Cerrado RZs are commonly associated with 

Amazonian and Atlantic rainforests and display distinguished adaptations, enduring 

high level of root zone soil water levels (Oliveira-filho and Ratter, 1995), which is 

facilitated by their position along the watercourses. Further away from the RZs, the 

natural Cerrado landscape is occupied by other types of vegetation with lower water 

demand, which exhibit more open, grassy physiognomies that are substantially 

different from the gallery forests (Felfili and Silva Júnior, 1992). Gallery forests are 

occupied by plant species that have a higher leaf area index (Hoffmann et al., 2005) 

and biodiversity (Santiago et al., 2005; Silva-Júnior, 2005) than the other Cerrado 

vegetation types, with tree heights up to 40 m (Felfili, 1997).  

On the AAF, the Brazilian Forest Code regulates the protection of the RZs, which are 

categorized as riparian preservation areas (Stickler et al., 2013; Soares-filho et al., 

2014; Garrastazú et al., 2015). However, Nagy et al. (2015) has identified human-

induced degradation in an Amazon’s agricultural landscape, which significantly 

decreased its biodiversity and regeneration capacity. In fact, it is well-known that the 

application of pesticides and fertilizers in agricultural lands cause anthropogenic 
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pressure, endangering the ecological functions of the RZs (Gregory et al., 1991). In 

other parts of the world, there is evidence that natural RZs act as buffer zones, filtering 

nutrients and pollutants (Addy et al., 1999; Daniels and Gilliam, 1996; Gyawali et al., 

2013; Lowrance et al., 1984; Lowrance and Sheridan, 2005; Ranalli and Macalady, 

2010; Randhir and Ekness, 2013; Smith et al., 2012), and reducing sediment load into 

streams (Daniels and Gilliam, 1996; Randhir and Ekness, 2013). Still, the width of the 

riparian buffer zone, i.e., the distance to the streams, which is used as a measure of 

protection of the native RZ vegetation, is arbitrarily established in Brazil. Since an 

appropriate riparian width can substantially buffer the impacts of the agricultural 

activities (Mander and Tournebize, 2015), it is inferred that the riparian width should 

depend on the ecological functions that need to be protected (Newbold et al., 1980). 

One of the few studies in Brazil in this matter, conducted in the Atlantic Forest (Aguiar 

et al., 2015), showed that a 36-m riparian width retained 70–94% of pesticides. By 

contrast, the previous compulsory cut-off value of 30 m for restoration of the riparian 

width buffer zone of small streams was reduced to 15 m in the new Brazilian Forest 

Code of 2012. This reduction in the protected riparian width threatens the maintenance 

of water quality and availability in streams (Garrastazú et al., 2015). 

The survival of many non-aquatic plants and animals depends upon the RZs of small 

forest headwater streams (Richardson et al., 2005). The understanding of the 

ecosystem properties in the RZ is fundamental to support further guidelines on riparian 

conservation (Bowler et al., 2012; Weigelhofer et al., 2012). The description of the 

ecological functioning of plant species in natural landscapes is limited in the literature, 

including data on the capacity of individual plant species to retain nutrients (Haridasan, 

2008). The same applies for plant biodiversity, hydro-physical and chemical soil 

characteristics, and stream hydrochemistry in the RZs. Most environmental studies on 

the Cerrado RZs were conducted in areas surrounded by pristine savanna vegetation 

(e.g., Parron and Markewitz, 2010; van den Berg et al., 2012) and only a few studies 

analyzed the provision of RZ’s ecosystem services in areas under intense 

anthropogenic influence (e.g., Ferraz et al., 2014), which are located outside of the 

AAF. 

Despite the fact that RZs often represent a small portion of the altered landscapes, 

when protected, they can be natural barriers between these extended altered 
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environments and entire stream networks. Considering the sum of individual benefits 

that hundreds of RZs provide at large scales, their relevance in environmental 

protection is amplified. However, the ecosystem services provided by RZs at the 

catchment level remain poorly understood, especially in the tropics (Iñiguez-Armijos 

et al., 2016; Luke et al., 2018). RZs on the AFF have suffered degradation (Macedo 

et al., 2013), and large streams that have historically been influenced by the 

agricultural expansion in this region have also shown upwards trends in nutrient fluxes 

(Nóbrega et al., 2018b). 

Our work aims to improve the understanding of the ecosystem services provided by 

the Cerrado RZs, adding to an increasing body of evidence that recognizes the 

importance of RZs as ecological buffer zones. By analyzing field environmental data 

across different landscape gradients of a typical large-scale agro-industrial system 

with a RZ in the Cerrado of the AAF, we provide a detailed assessment of the 

associated plant biodiversity, soil hydro-physical properties, and water quality, 

showing the contrasting ecologies in the RZ and its surrounding cropland area. 

7.2. Study area  

This study was conducted in the municipality of Campo Verde (15.7381°S, 

55.3618°W) in the Brazilian state of Mato Grosso (Fig. 7.1). This region is 

characterized by a typical tropical savanna climate with a wet season extending from 

October to April, a dry season from May to September, rainfall averaging ca. 1,800 

mm and the mean annual temperatures ranging from 18 to 24 °C (Meister et al., 2017; 

Nóbrega et al., 2017). Dominant soils in the Cerrado (e.g., Arenosols and Ferralsols, 

IUSS Working Group WRB, 2015) are typically highly weathered and acidic with high 

aluminum concentrations, thus requiring fertilizers and lime for crop production and 

livestock farming (Hunke et al., 2015). 
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Figure 7.1 Study area location: a) Amazon, Cerrado and the Campo Verde municipality; b) the 
study catchment with elevation and soil sampling points; c) a zoom to the riparian zone 
surroundings where the plots were surveyed and water samples were collected. 

We selected a 93 ha catchment that lies within the das Mortes River basin (15.743°S, 

55.363°W), the main tributary of Araguaia River. This catchment is on the Santa Luzia 

farm, an agro-industrial property with ca. 2,500 ha where agricultural activities have 

been expanding since the 1980s. The catchment area is dominated by cropland (91% 

of the total area) with an average slope of 2.4%. The cropland area is used for no-till 

mechanized rainfed agriculture based on crop rotation of soybean from October to 

January and maize from February to July. The RZ of this catchment occupies only 9% 

of the catchment area and has a mean slope of 4.9%. The RZ area is composed of a 

gallery forest and a campo de murundus Cerrado formation (Ribeiro and Walter, 2008) 

connected in a continuum manner and forming a mixture of typical plant species from 

Cerrado and Amazon and Atlantic rainforests (Oliveira-filho and Ratter, 1995; Marimon 

et al., 2002). Within this catchment, the average width is approximately 250 m for the 
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gallery forest and 175 m for the campo de murundus. The campo de murundus is the 

vegetative community located closest to the stream. The campo de murundus is a 

subtype of Cerrado vegetation, and it is characterized by plain areas intertwined with 

large mounds, with the former colonized by herbaceous and shrub vegetation, and 

presenting mostly woody savannah species (Eiten, 1972; De Oliveira-Filho, 1992; 

Ponce and Cunha, 1993; Resende et al., 2004; Ribeiro and Walter, 2008; Marimon et 

al., 2012). Soils in the cropland catchment are Ferralsols (IUSS Working Group WRB, 

2015) characterized by clay loam texture, and are correlated with Oxisols (Soil Survey 

Staff, 2014) and Latossolos Vermelhos Distróficos de textura argilosa (EMBRAPA, 

2006). 

7.3. Methods 

7.3.1. Vegetation survey 

Surveys were conducted in the RZ for the two vegetation formations (i.e., gallery forest 

and campo de murundus) in March (wet season) and September (dry season) of 2014 

to consider the vegetative characteristics in both dominant seasons. For the surveys, 

we selected eight of 20 × 30 m plots (total area of 4,800 m²) spaced approximately 50 

m from each other along a 400-m transect from the gallery forest area near the stream 

to an area of the campo de murundus formation in transition to the cropland area (Fig. 

7.1c). To characterize the plant biodiversity within the plots, we sampled woody 

individuals (dead and alive) with a minimum of 15.5 cm DBH (diameter at breast 

height) as well as with a minimum of 15.5-cm trunk diameter at 30 cm above ground 

height, which is an adequate measurement for small and mid-sized plants in similar 

Cerrado vegetation types (Phillip, 1994). We collected vegetative and fertile plant 

specimens that could not be identified in the field for posterior identification at the 

Tangará da Serra herbarium of the Mato Grosso State University (UNEMAT). 

7.3.2. Soil sampling and analysis 

To regionalize soil properties, we delineated transects for soil sampling based on the 

surface elevation and geostatistical analysis of the clay content (Fig. 1b). We used the 

DEMs derived from a topographic survey for the surface elevation analysis, and 

collected 55 disturbed soil samples at the 0–20 cm soil depth from randomly selected 

points throughout the catchment for clay content analysis. We interpolated the clay 
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content values using isotropic variogram analysis and the ordinary kriging method, 

which exhibited a correlation coefficient of 0.92, and then we validated the interpolation 

by using the leave-one-out cross-validation method (Herbst et al., 2006). This 

procedure allowed the categorization of the surface elevation in 5 equal intervals and 

clay content in quintiles and delineated transects from the catchment’s crest to the 

stream valley passing over all elevation and clay content categories. 

For the hydro-physical analysis, we selected 2 points in the RZ and 13 in the cropland 

area approximately equally-spaced along the transects to collect one disturbed sample 

and two undisturbed soil core samples (4.8 cm in diameter and 5.2 cm in height) at 

depth intervals of 0–10, 10–20, 20–40, and 40–60 cm for each sampling point. The 

disturbed soil samples were analyzed to obtain the particle size distribution, and the 

undisturbed samples were used to determine bulk density, saturated hydraulic 

conductivity (Ksat), total porosity, macroporosity, microporosity, and field capacity. 

These procedures are in line with the soil geostatistical and hydro-physical analyses 

conducted by Nóbrega et al. (2017) in catchments located in the das Mortes River 

basin. 

For the soil chemical analysis, we collected soil samples at 5 and 30 cm depths in 4 

points in the RZ and 3 points in the cropland area (Fig. 7.1b). The collection of soil 

samples for chemical analysis was primarily focused on understanding the effects of 

land-use on the overland flow quality. Therefore, we restricted the soil sampling to 

areas where we detected overland flow generation, i.e., overland flow sampling points, 

considering the different elevation and clay categories defined for the regionalization 

of the soil properties. We analyzed these soil samples to determine pH, total carbon 

(TC), total nitrogen (TN), calcium (Ca), potassium (K), magnesium (Mg), phosphorus 

(P), and sulfur (S) at the Laboratory of Landscape Ecology at the University of 

Goettingen, Germany. pH was measured by using the potentiometric method 

(inoLAB® pH Level 2, Wissenschaftlich‐Technische Werkstätten GmbH). TC and TN 

were quantified by using the elemental analysis method (TruSpec® CHN, LECO 

Instrumente GmbH). The total digestion of 100–150 mg of soil was made with HClO4, 

HF and HNO3 in 30 mL PTFE vessels (Pressure Digestion System DAS 30, PicoTrace 

GmbH) and used to determine chemical concentrations by using atomic spectroscopy 

(ICP-OES, Optima 4300™ DV PerkinElmer). 
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7.3.3. Water sampling and analysis 

An automatic water sampler (BL2000®, Hach-Lange GmbH) was installed at the outlet 

of the catchment inside the RZ to collect stream water samples at 20 cm below the 

water surface during the 2013–2014 hydrological year. The sampling procedure was 

based simultaneously on both time and water level variation in order to represent the 

streamflow either during baseflow or stormflow prevailing conditions, respectively. The 

sampling routine was based on filling a 1-L sample bottle in 3 days by using an 

extraction of 200 mL from the stream at 14.4 h intervals. The stormflow sampling was 

determined by a sub-hourly routine activated by water level increase, detected by a 

pressure bell switch (FD-01, Profimess GmbH). 

Overland flow samples were collected by using self-made overland flow detectors 

(OFDs) (Kirkby et al., 1976; Elsenbeer and Vertessy, 2000), consisting of a 50 mm-

diameter PVC tubes with a permeable section with 5 mm holes connected at a right 

angle by a “tee” to a reservoir section tube with 200 mL capacity. The contact of the 

detector section with the soil diverted the ponded overland flow into the reservoir tube. 

After field observations during rainfall events, we placed OFDs on observed flowpaths 

in the RZ and in the cropland area (Fig. 7.1b). We installed the OFDs during the wet 

season and collected the samples within 12 h after the rainfall events. Additionally, to 

evaluate potential impacts of the cropland on the groundwater of the RZ, samples were 

taken twice per month in the wet and dry season from eight wells, each located in one 

of the eight vegetation survey plots. 

The transportation, analysis and quality control of the water samples followed the 

same procedure described in Nóbrega et al. (2018). The water samples were 

protected from light following collection and transported in coolers packed with ice to 

the Ecofisiologia Vegetal Laboratory (EVL) of the Federal University of Mato Grosso 

(UFMT) in Cuiabá, Mato Grosso. At the laboratory, the water sample in each bottle 

was used to fill two aliquots of 50 mL in high-density polyethylene bottles pre-washed 

with deionized water. One aliquot was used for the analysis of total organic carbon 

(TOC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and TN, 

and the other aliquot was filtered through pre-ashed glass fiber filters (0.7 µm nominal 

pore size, Whatman GF/F) pre-washed with 20 mL of water sample for the remaining 
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analyses. The samples were then frozen and shipped in Styrofoam coolers for analysis 

at the Laboratory of the Department of Landscape Ecology, University of Goettingen, 

Germany. The quality control of this procedure was conducted by comparing the DOC 

of water samples within 12 h after collection using a UV-Vis spectrometric device 

(spectro::lyser™ UV-Vis, s::can Messtechnik GmbH) with the DOC results obtained in 

the laboratory after final transportation and assuring that the results were not 

significantly different (Nóbrega et al., 2018). 

TOC, DOC and DIC concentrations in water were determined by using high 

temperature catalytic oxidation (TC-Analyzer, DIMATOC 100 (R), Dimatec GmbH). 

Total nitrogen (TN) concentration was quantified by using the chemiluminescence 

detection method (DIMA_N module (CLD), Dimatec GmbH). SO4 concentrations were 

determined by using ion chromatography (761 Compact IC, Metrohm, Switzerland). 

Dissolved K, Ca, P, SO4, and Mg concentrations were quantified by using atomic 

spectroscopy (ICP-OES, Optima 4300™ DV, PerkinElmer). Before the analyses of the 

dissolved solutes, the water samples were filtered through membrane filters (0.45 µm 

nominal pore size, cellulose acetate, Sartorius Stedim Biotech GmbH). These filters 

were pre-washed with ultrapure water, transferred to HDPE bottles pre-washed with 

nitric acid solution (2.6% HNO3) and rinsed with ultrapure water. 

7.3.4. Statistical analyses 

Data on soil properties were compared using the Mann-Whitney U nonparametric test 

due to their non-normal distributions to determine whether the results from the RZ and 

cropland area were significantly different from each other. Soil pH was converted to 

H3O for statistical comparison because of the non-linearity of these values. To 

compare the water quality parameters from the different hydrological pathways, we 

used the Kruskal–Wallis H test by ranks with the Steel–Dwass–Critchlow–Fligner 

(Fligner, 1984) method for multiple comparisons. We used the language and 

environment R v. 3.5.1 (R Core Team, 2017), the XLSTAT-Base v. 2018.6 software 

(Addinsoft, Paris, France, www.xlstat.com), with a significance threshold of 0.05. 

However, because no significant difference at this level was found for the soil 

chemistry, we considered the significance threshold for these results at 0.057. 
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7.4. Results 

7.4.1. Riparian Zone Vegetation 

The 378 individuals sampled in the plots across the RZ revealed a floristic composition 

of 66 species belonging to 28 families (Appendix C). The most abundant botanical 

families in the campo de murundus plots were Euphorbiaceae, Melastomataceae and 

Simaroubaceae. In this formation, a total of 15 botanical families were found, adding 

up to a total of 242 living individuals and 17 dead individuals belonging to 27 different 

plant species. In the gallery forest, the most abundant plant families were Burseraceae 

and Anacardiaceae. 

The first four plots (Plots 1–4), located in the gallery forest, were dominated with plant 

species that are primarily distributed in the Amazon rainforest, Atlantic rainforest and 

Cerrado vegetation (Fig 7.2a; Oliveira-Filho and Ratter, 1995; Flora do Brasil 2020, 

http://floradobrasil.jbrj.gov.br). The last four plots (Plots 5–8) are in the campo de 

murundus, where an increasing predominance of Cerrado-related vegetation and a 

decrease in Amazon-related vegetation exist. As the plots were located further from 

the gallery forest and stream network and closer to the cropland area, typical Cerrado 

species began to predominate for increasing distance from the stream. The 

predominance of tropical wet forests over dry vegetation types in the gallery forest are 

evident, and the opposite relationship was exhibited in the campo de murundus area 

(Fig. 7.2b).  

 

Figure 7.2 (a) Assembly and phytogeographic distribution of the surveyed plant species along 
the plots; (b) Percentage of the represented phytogeographic domains according to the two 
vegetation formations in RZ transect. Outer circle represents gallery forest (plots 1-4) and inner 
circle campo de murundus (plots 5-8).  
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7.4.2. Soil hydro-physical and chemical properties 

Soil hydro-physical properties of both RZ and cropland have a clay-loam texture (Table 

7.1). The cropland area only shows a greater clay content in the topsoil compared to 

the RZ. The bulk density values in the RZ were significantly lower than those in the 

cropland area (p < 0.01). Ksat and field capacity did not show significant differences 

between these areas, but total porosity was significantly different for the upper layer 

(0–10 cm), with higher values in the RZ. In both areas the soil total porosity is 

dominated by about 75% micropores due to the high clay content (58 ± 7%, average 

of both areas). The soil acidity was significantly higher (p = 0.057) in the RZ than in 

the cropland area at the 5-cm soil depth (Table 7.2). The soil nutrient content analysis 

showed that the cropland area had higher Ca and P content than the RZ at both soil 

depths, and higher Mg content at 5-cm soil depth. 

Table 7.1 Soil hydro-physical properties. 

Soil 

depth 

(cm) 

BD 

(g cm-3) 

TP 

(%) 

MaP 

(%) 

MiP 

(%) 

FC 

(%) 

Ksat 

(mm h-1) 

Sand 

(%) 

Silt 

(%) 

Clay 

(%) 

0–10 

1.18 ± 14%a 

(0.86 ± 9%)b 

59.1 ± 8%a 

(69.1 ± 9%)b 

10.5 ± 40%a 

(22.5 ± 3%)b 

48.7 ± 10%a 

(46.6 ± 

12%)a 

39.4 ± 12%a 

(40.7 ± 

14%)a 

42.9 ± 154%a 

(130.4 ± 68%)a 

26.5 ± 56%a 

(35.4 ± 

18%)a 

16.0 ± 41%a 

(13.1 ± 14%)a 

57.6 ± 17%a 

(51.5 ± 16%)a 

10–20 

1.19 ± 11%a 

(0.95 ± 10%)b 

56.9 ± 7%a 

(60.1 ± 8%)a 

13.6 ± 33%a 

(15.0 ± 

18%)a 

43.3 ± 13%a 

(45.7 ± 

17%)a 

35.9 ± 14%a 

(39.9 ± 

19%)a 

166.9 ± 93%a 

(302.8 ± 12%)a 

25.5 ± 50%a 

(29.2 ± 

35%)a 

22.0 ± 37%a 

(16.0 ± 5%)a 

52.5 ± 14%a 

(54.8 ± 20%)a 

20–40 

1.16 ± 11%a 

(0.94 ± 13%)a 

57.1 ± 9%a 

(63.3 ± 

11%)a 

16.2 ± 35%a 

(15.6 ± 

47%)a 

41.0 ± 10%a 

(47.6 ± 

30%)a 

34.2 ± 13%a 

(41.1 ± 

31%)a 

95.5 ± 163%a 

(69.9 ± 83%)a 

25.3 ± 57%a 

(26.0 ± 

35%)a 

19.4 ± 29%a 

(13.0 ± 40%)a 

55.4 ± 19%a 

(61.0 ± 23%)a 

40–60 

1.19 ± 9%a 

(1.07 ± 3%)b 

56.7 ± 9%a 

(57.8 ± 1%)a 

11.8 ± 29%a 

(14.8 ± 

41%)a 

44.9 ± 9%a 

(43.1 ± 

13%)a 

36.7 ± 11%a 

(37.2 ± 

12%)a 

51.9 ± 162%a 

(53.3 ± 55%)a 

19.4 ± 12%a 

(23.8 ± 

32%)a 

21.4 ± 12%a 

(9.9 ± 40%)b 

59.3 ± 6%a 

(66.4 ± 17%)a 

Results are expressed in terms of average and relative standard deviation. The results without parentheses are for the cropland area, and the 
results between parentheses are results for the riparian zone. 

Significant differences (p < 0.05) are indicated by different letters and highlighted in bold. Comparisons were performed between Riparian 

Zone and Cropland at each soil property and depth. 
* BD = Bulk Density, TP = Total Porosity, MaP = Macroporosity, MiP = Microporosity, FC = Field Capacity, Ksat = Saturated Hydraulic 

Conductivity. 

7.4.1. Water quality 

The Kruskal–Wallis H test by ranks with the multiple comparison (Steel-Dwass-

Critchlow-Fligner method) exhibited the water quality varying from three to five groups 

with similar mean values (Fig. 7.3). Mg was the parameter with less groups (3) and 

with the smallest variation (0–6 mg L-1). The other nutrients with 3 groups were TOC 

(0.3–312.2 mg L-1), TN (0.1–18.5 mg L-1) and P (0–13.3 mg L-1). DOC (0.1–32 mg L-
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1), DIC (0–16.2 mg L-1), K (0–32.2 mg L-1), Ca (0.1–22.6 mg L-1) and SO4 (0–20.8 mg 

L-1) exhibited the greater number groups (5). The descriptive statistics of each nutrient 

and each hydrological path is shown in Appendix D.   

 

Table 7.2 Mean, one standard deviation and sample size (n) of soil chemical 
properties. 

 5-cm soil depth 30-cm soil depth 

 RZ Cropland RZ Cropland 

pH 3.8 ± 0.2 (4)a 5.5 ± 0.7 (3)b 4.5 ± 0.3 (4)a 4.9 ± 0.4 (3)a 

Total C (%) 4.69 ± 0.72 (4)a 3.57 ± 0.65 (3)a 1.99 ± 0.26 (4)a 1.89 ± 0.30 (3)a 

Total N (%) 0.30 ± 0.05 (4)a 0.22 ± 0.05 (3)a 0.15 ± 0.07 (4)a 0.09 ± 0.01 (3)a 

Ca (mg kg-1) 77.4 ± 44.9 (4)a 2,389.0 ± 1,781.8 (3)b 34.9 ± 11.7 (4)a 311.3 ± 22.5 (3)b 

K (mg kg-1) 692.9 ± 129.2 (4)a 786.4 ± 167.2 (3)a 569.4 ± 100.7 (4)a 639.3 ± 31.6 (3)a 

Mg (mg kg-1) 167.8 ± 40.1 (4)a 839.8 ± 617.2 (3)b 129.6 ± 23.7 (4)a 190.7 ± 38.1 (3)a 

P (mg kg-1) 352.4 ± 121.2 (4)a 1,244.7 ± 487.8 (3)b 187.9 ± 53.8 (4)a 430.1 ± 69.8 (3)b 

S (mg kg-1) 372.1 ± 14.5 (4)a 416.6 ± 43.0 (3)a 208.8 ± 29.0 (4)a 297.7 ± 81.9 (3)a 

Most significant differences (p = 0.057) are indicated by different letters and highlighted in bold. 

Comparisons were performed between Riparian Zone and Cropland at each soil depth. 

Baseflow exhibited the lowest concentrations for all water quality parameters, whereas 

the overland flow in the cropland (hereafter referred to as OF-Cropland) area exhibited 

most of the highest nutrient concentrations. Except for Ca, the differences between 

OF-Cropland and baseflow, stormflow and groundwater were all significant (p < 0.01) 

for all other nutrients. The overland flow in the RZ (hereafter referred to as OF-RZ) 

also exhibited high nutrient concentrations that were significantly lower (p < 0.01) than 

OF-Cropland but still higher than the other hydrological fluxes, except for TOC, DOC 

and TN. OF-RZ showed significant differences in TOC, TN, Ca and SO4 from 

streamflow (baseflow and stormflow). Difference between stormflow and OF-RZ were 

not significant for DOC, DIC, K, P and Mg. 
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Figure 7.3 Boxplot of water quality parameters throughout the study are in different hydrological 
pathways. The y-axis was limited to graphically omit some outliers for a better visualization of 
the results. Significant differences (p < 0.05) are indicated by different letters. These letters 
follow an alphabetical order that correspond to groups with an ascendant order of mean of 
ranks. 
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7.5. Discussion 

7.5.1. The functionally and evolutionarily diverse plant community 

Our botanical survey showed that the RZ is richly assembled by species belonging to 

several clades or families in the plant tree of life (APG, 2016). Evolutionarily diverse 

plant communities are considered a key element for enhancing ecological functions 

by controlling light and temperature, offering shelter for biota, providing food for 

aquatic and terrestrial fauna, contributing with large and small woody debris that 

influence sediment directions, channeling morphology and microhabitats inside the 

river, controlling the flow of water and nutrients, and maintaining the local biodiversity 

(Décamps and Naiman, 1990; Naiman et al., 1993; Weisberg et al., 2013). The 

composition of plant species defines the efficiency of nutrient uptake from the soil and 

the water (Osborne and Kovacic, 1995). Functionally diverse plant communities are 

known to promote greater environmental stability because their associated multiple 

functional traits balance abiotic instability of buffer ecosystems (Cadotte et al., 2011). 

In our study, we found that the RZ is ecologically dominated by the legume trees 

Tachigali vulgaris, Bowdichia virgilioides, Hydrochorea corymbosa and Ormosia 

paraensis, which are all known as nitrogen fixing species (Sprent, 2001). Tibouchina 

stenocarpa contributed with the greatest individual incidence in the RZ. This species 

in fact belongs to a genus that is well-known for its ability to colonize intensively 

degraded areas, thus contributing to their recovery (Lorenzo et al., 1994). 

In the gallery forest, Tapirira obtusa was the most abundant, which is a pioneer species 

(Raaimakers and Lambers, 1996) that contributes to vegetation re-establishment by 

attracting seed dispersers (birds) (Pereira et al., 2012). In fact, we found several dead 

and juvenile individuals of Tapirira obtusa, which indicates that a regeneration process 

is underway (Goodale et al., 2012). The main common characteristic of the gallery 

forest and campo de murundus across the RZ was the predominance of pioneer 

species, which has important ecological roles, such as the recovery of a perturbed 

area or a degraded site by refilling canopy spaces inside the forest (Goodale et al., 

2012). Similarly to Morais et al. (2013), we also observed the family Melastomataceae 

as having the greatest dominance in the campo de murundus. A relevant characteristic 

of this family is the capacity of intense regeneration in RZs, preparing the soil for the 
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process of increasing forestation and facilitating the normal course of successional 

stages (Mendonça et al., 2008). The fruits of Melastomataceae generally produce 

great seed quantity for germinating and propagating new plants (Domingos et al., 

2003; Fava and Albuquerque, 2009), which also supports the indication that this RZ is 

under regeneration. 

7.5.2. Implications of RZ conservation on soil and water quality 

The mean Ksat ranged from 43 to 167 mm h-1 in the cropland area and 53 to 303 mm 

h-1 in the RZ. We attribute the higher variability of Ksat in the cropland to the use of 

heavy farm machinery and field operations in this area, which follow precise 

established routes and impact the soil heterogeneously (cf. Fig. 7.1). Although modern 

agricultural approaches, i.e., no-till and precision farming, are often associated with 

low environmental impacts (Bongiovanni and Lowenberg-Deboer, 2004; Bramley et 

al., 2008; Jenrich, 2011), changes in the soil properties as a result of modern 

agriculture were reported by Hamza and Anderson (2005). Farming practices such as 

these, particularly for soybean cultivation, are reported to enhance subsoil compaction 

(Scheffler et al., 2011; Hunke et al., 2015). Indeed, we observed significant higher soil 

bulk density in the cropland area than in the RZ, and over a five-fold Ksat decrease 

after the 10–20 cm soil depth interval in the cropland area, which indicates that the 

conservation of the RZ maintains its soil properties and, consequently, the balance 

between water fluxes. These fluxes distribute nutrients in the soil through infiltration 

and runoff, influencing the vegetation composition and structure (Ravi et al., 2007). 

For example, undisturbed soil hydro-physical conditions that promote waterlogging in 

the campo de murundus are known to reduce the Fe-oxides (Oliveira and Marquis, 

2002), which play an important role in driving soil biogeochemical processes during 

periods of anaerobiosis (Yang and Liptzin, 2015). 

Plant species in the Cerrado are evolutionarily adapted to thrive on soils with low pH 

and nutrient content (Ruggiero et al., 2002). However, changes in the soil chemistry 

due to agricultural practices in this region disturb these soil conditions. We found 

higher pH at the topsoil of the cropland area than that of the RZ. Our results are 

consistent with other studies, such as Ruggiero et al. (2002), that showed the soil pH 

less than 4.5 for three distinguished Cerrado formations (Campo Cerrado, Cerrado 
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sensu strictu and Cerradão). We attribute the lower acidity of the soil in the cropland 

area to the Calcium carbonate (CaCO3) applied to the topsoil of this area, which is a 

common practice in the Cerrado and has the objective to reduce soil acidity and 

support nutrient availability to the crops. In our study area, the application of CaCO3 

to croplands had implication on the soil Ca content, which was significantly higher in 

the topsoil of the cropland area. Further, as CaCO3 reacts with water, it produces 

bicarbonate (HCO3), which is a main component of DIC. In fact, the Ca and DIC 

concentrations in the overland flow were significantly higher in the cropland area than 

in the RZ. Despite this, concentration of Ca and DIC in the streamflow was low 

compared to the other hydrological pathways. The groundwater in the RZ exhibited a 

concentration not as high as the overland flow but significantly higher than the one 

found in the streamflow. This shows evidence of long-term impacts of the topsoil 

application of CaCO3 on the soil profile and groundwater. As indicated by Nóbrega et 

al. (2018), residuals of the CaCO3 applied to the soil surface can percolate the soil 

profile and reach the stream via groundwater. In this context, the protected RZs are 

crucial to maintain natural soil properties in agricultural landscapes, as the Cerrado-

inhabiting plant species are adapted to these properties and can regenerate without 

nutrient additions, which in turn also protects the ecosystem from invasive plant 

species.  

Haridasan (2000) observed C content between 0.74 and 3.33% in soils located under 

Cerrado sensu stricto and Cerradão vegetation types and Parron and Markewitz 

(2010) showed N varying from 0.10 to 0.35% in Cerrado soils. Our results are similar 

to these studies with the C and N content reaching maximum mean values (ca. 5% for 

C and 0.3% for N) at the 5-cm soil depth of the RZ and minimum mean values (ca. 2% 

for C and 0.1% for N) at the 30-cm soil depth of the cropland area. We ascribe the 

greater C and N contents in the topsoil of the RZ to the natural processes in the gallery 

forest and campo de murundus, such as litterfall and high organic matter 

decomposition (Parron and Markewitz, 2010), which is more intense in RZ ecosystems 

(Aguiar Jr. et al., 2015). We ascribe the higher TOC concentration in the overland flow 

of the RZ than in the cropland area as a result of this vegetation–soil interaction. 

Conversely, DOC and TN were higher in the cropland area, which a consequence of 
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crop fertilization that causes nutrient leaching (Chantigny, 2003; Richardson et al., 

2005; Pittaway et al., 2018). 

We found significantly higher P and Mg at the topsoil of the cropland area than that of 

the RZ. Other studies (Tinker and Nye, 2000; Cruz Ruggiero et al., 2002; Haridasan, 

2008; Silva et al., 2008) found nutrients, such as K, Mg or P, higher in cropland areas 

than in native vegetation zones without direct agricultural influence. Our results are 

likely due to regular fertilizer application to cropland area while undisturbed Cerrado 

soils are highly weathered and low in nutrients (Hunke et al., 2015). However, we were 

able to find a downward gradient of K, P, SO4 and Mg concentrations, which were 

highest in the overland flow of the cropland area, exhibiting a gradual decrease in 

concentration from the cropland area towards the stream. On a farm in the USA, 

Lowrance and Sheridan (2005) also verified the capacity of RZs in retaining nutrients, 

i.e., NO3, NH4 and K. These results are also in agreement with earlier findings in the 

Cerrado by Parron and Markewitz (2010), who reported reduction of N and P in water 

fluxes going through an RZ towards a stream. 

Considering the hydrological pathways analysed, our overarching finding is that the 

nutrient overland flow from the cropland area is drastically higher than that of the 

streamflow. Our results indicate that a reduction or fragmentation of the RZ to the 

advantage of cropland expansion can increase the soil bulk density, reduce its porosity 

and Ksat, which in turn will increase the overland flow generation in the cropland 

towards the RZ. This aligns with findings from Alvarenga et al. (2017), who used the 

Distributed Hydrology Soil Vegetation Model (Sun et al., 2015) and found that 

increases in riparian width from 30 to 100 m in a catchment of 6.76 km2 in the Atlantic 

rainforest decrease 6.2% of total overland flow generation in the catchment. 

7.5.3. Uncertainties and research directions on RZ studies in agricultural landscape 

Our results uphold two main causes accredited to the capacity of RZs to act as buffers 

(Peterjohn and Correll, 1984). The first concerns the uptake of nutrients by RZ 

vegetation. Our findings agree with the fact that the vegetation and the soil in the RZs 

form a micro-environment, where the capillarity of the Cerrado’s diverse RZ root plant 

system allows extensive contact with nutrients and their uptake by plants (Sternberg 

et al., 2005). The second is related to the capacity of the soils of RZs to reduce 
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nutrients and pollutants, which is sustained by the hyporheic zone, a component of 

streams and rivers that interacts with the RZ (Ward, 1989). The hyporheic zone acts 

as a water-purifying bioreactor that contains microbial biofilms, which in turn control 

biogeochemical fluxes of nutrients (Peralta-Maraver et al., 2018). Concerning the 

ecological buffering potential of RZs, there are, however, many variables that need to 

be considered in further studies, such as the residence time or the period of 

hydrodynamic retention in the hyporheic zone where biogeochemical processing of 

dissolved solutes occur (Buffington and Tonina, 2009). There is an ecosystem 

arrangement of these variables that may follow spatial and temporal nestings (Peralta-

Maraver et al., 2018), which vary according to the different ecosystems and 

environmental conditions. 

How pollutants and nutrients are transformed during their travel through the hyporheic 

zone is still unanswered (Peralta-Maraver et al., 2018). The uncertainties in the 

efficiency of the RZs in buffering effects of croplands are also related to the 

fragmentation of the landscape, since small changes in vegetation cover or machinery 

routes in an agricultural catchment can strongly influence hydrological pathways (Leal 

et al., 2016). Weller and Baker (2014) used models to predict the stream nitrate 

concentration and annual streamflow to estimate nitrate loads and found that RZs 

removed 21.5% of the nitrate loads released by the croplands, which would have 

increased to 53.3% in case the gaps in the riparian width that caused fragmentation 

of the riparian vegetation were restored. Although the riparian width is widely used as 

a measure to protect streams, Tiwari et al. (2016) have argued that this approach has 

been criticized for ignoring the spatial heterogeneity of biogeochemical processes and 

biodiversity in RZs debates, and that by using hydrologically adapted site-specific 

riparian buffers, landowners can maintain site specific efficient RZs. 

To address these concerns, further studies on the efficiency of RZs using long-term 

datasets are recommended. As our findings show, the groundwater often exhibited 

nutrient concentrations higher than the streamflow, i.e., baseflow and stormflow, and 

DIC and Ca concentrations in the groundwater were also higher than overland flow in 

the RZ. We highlight that the magnitude of agricultural influences on streamflow water 

quality under baseflow conditions due to the contamination of groundwater is 

uncertain. Another uncertainty is the portion of the active root zone of the RZ that 
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provides a nutrient uptake significant enough to protect the soil and water. To that end, 

the soil-plant-atmosphere continuum needs to be addressed in a more integrated 

manner in future research. This should consider the effects that interflow and 

groundwater have on the streamflow quality by using field measurements and reactive 

transport modelling, as well as the ecological functioning of the hyporheic zone in 

Cerrado soils and the role that root uptake systems play in the groundwater quality, 

which are known to be complex in the Cerrado (Canadell et al., 1996). 

7.6. Conclusions 

We assessed the characteristics of the vegetation, soil and water of a cropland 

dominated catchment with a riparian zone in an agro-industrial area in the Cerrado on 

the Amazon Agricultural Frontier. Our study showed that the riparian zone sustains 

ecosystem services by providing an intense synergy between the plant biodiversity 

and soil and water quality. Among our findings, we highlight the following: 

 In the riparian zone, we identified a high plant species diversity that ecologically 

function as pioneers, by improving and recovering altered environments in the 

Amazon agricultural frontier, especially in the Cerrado; 

 The soil chemistry in the riparian zone maintains the major Cerrado soil 

characteristics (e.g., low pH and nutrients content), which facilitate the 

conservation of the native species. We identified that not only the soil chemical 

properties were conserved in the riparian zone in contrast to its surrounding 

cropland area, but also soil hydro-physical properties, such as bulk density and 

porosity were significantly different, which are important in maintaining natural 

water fluxes that are directly linked to buffering effects of the riparian zone; 

 The maintenance of soil hydro-physical properties in riparian zones provides 

important ecosystem services since this is directly connected to water dynamics 

that flow to the stream. In this respect, we found the overland flow water from 

the cropland with the highest water nutrient concentrations, mostly related to 

inorganic carbon and fertilizers. We observed that these concentrations 

became lower as the water fluxes were closer to the stream, which were areas 

under higher influence of the riparian zone ecosystem. 
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8. Conclusions and outlook 
 

In this thesis, many approaches over several temporal and spatial scales were used 

to assess the impacts of land use and land cover change on hydrology, 

hydrochemistry, soil hydro-physical properties and vegetation in the Amazon and 

Cerrado biomes. By applying a top-down approach, large-scale analyses (macro-

catchments) were conducted and, consequently, refined with studies on small scales 

(micro-catchments). The results were obtained using state-of-the-art methods 

including hydrological modelling, remote sensing techniques, high-temporal-resolution 

analyses, and ecosystem integrated assessments (soil-plant-water relationships). To 

that end, the study was supported by extensive field data collection in addition to 

laboratory and computational analysis. To the best of my knowledge, up to date, no 

published study has investigated both Amazon and Cerrado biomes using such 

different scales and methods in an integrated manner. 

The macro-scale analyses (chapters 2 and 3) showed that land use and land cover 

change alters water quantity of large rivers in the Amazon and Cerrado biomes. These 

changes are more pronounced as an increase in the low flows, which are mainly 

maintained by the streams under baseflow dominant condition. Chapter 3 introduced 

the small-scale analysis in this thesis and showed that, although the magnitude of land 

use and land cover impact on water quantity and quality is known to be scale-

dependent, some changes are detectable in both small and large rivers in the Amazon 

biome. 

The hydrological and soil analyses in small scale catchments (chapters 4 and 5) 

showed that land cover and catchment physiographic parameters play a substantial 

role in the hydrological responses of small catchments in the Amazon and Cerrado 

biomes, changing the water balance due to the conversion of native vegetation to 

pastures. Moreover, this land cover and land use conversion caused significant soil 

hydro-physical degradation (e.g., increased bulk density and reduced soil porosity). 

While an increase in the streamflow during baseflow conditions was observed in both 

biomes, an increase in peak flows was observed only in the pasture catchment of the 
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Amazon biome. This is attributed to the decreased hydraulic conductivity of the topsoil, 

which was exceeded by the rainfall intensities, causing an increase in surface runoff 

and, consequently, greater peak flows. Additionally, the conversion of native 

vegetation to pastures reduced the evapotranspiration from the catchments in both 

biomes, which explained the increase in the baseflow due to the natural water balance 

of these areas. 

The analysis of the role of stream discharge on carbon and nutrient dynamics and 

fluxes (chapter 6) showed how the conversion of forest and cerrado land covers to 

pastures changed hydrochemical fluxes. Stream carbon and nutrient concentrations 

were significantly higher in pasture catchments. These higher carbon and nutrient 

concentrations have further implications for carbon and nutrient fluxes as streamflow 

increases take place, as observed in chapters 4 and 5. In this context, the stormflow 

has an essential role as a rapid hydrological pathway for carbon and nutrient losses, 

especially in areas where infiltration capacity rates are exceeded by the rainfall 

intensities, as observed in the pasture catchment in the Amazon biome. 

By assessing vegetation biodiversity, soil hydro-physical and chemical characteristics, 

and water quality of a riparian zone in an agro-industrial catchment in the Cerrado 

biome (chapter 7), it was possible to observe that the riparian zone is providing 

ecosystem services and maintaining plant biodiversity, soil properties and water 

quality in the areas close to the stream. The riparian zone provides a strong synergy 

between the plants and soil, which has direct implications on water quality. In this area, 

it was identified that the majority of plants are pioneer plant species, which improve 

and recover altered environments. The soil chemistry in the riparian zone maintains 

the Cerrado soil characteristics (e.g., low pH and nutrients content), which facilitates 

the conservation of the native species. It was observed that not only were the soil 

chemical properties significantly different between the riparian zone and its 

surrounding cropland area, but the soil hydro-physical properties, such as bulk density, 

porosity, and hydraulic conductivity, were different as well. The maintenance of soil 

hydro-physical properties in riparian zones is a valuable ecosystem service since this 

is directly connected to dynamics (quantity and quality) of the water that flows to the 

stream. The overflow water from the cropland showed the highest water nutrient 



Conclusions and outlook 

 

151 
 

concentrations, mostly related to inorganic carbon and fertilizer applications. These 

nutrient concentrations became lower closer to the stream, showing the influence of 

the riparian zone ecosystem. 

This study shows a chain reaction caused by the land use and land cover change that 

causes changes in the environment. The removal of native vegetation and the change 

of land use practices cause direct alterations in the soil characteristics. These changes 

subsequently alter the water, carbon and nutrient balances. Despite recent findings 

concluding that no-till agricultural practices in this region associated with high soil P 

fixation capacity of the soils protect streams from the impacts of land use and land 

cover change (Neill et al., 2017), more studies are crucial for the understanding of the 

role of riparian zones as important buffer systems influencing the water balance and 

reducing eutrophication in surface waters (Hattermann et al., 2006).  

While this study contributes to the understanding of the hydrological and 

hydrochemical fluxes, as well as soil degradation and ecosystem services in these 

biomes, long-term measurements including quantifying changes in groundwater 

storage are required. The great baseflow contribution to the streamflow, highlighted in 

chapters 2, 3, 4, 5 and 6, shows the importance of the groundwater in the water 

balance of these catchments. To that end, it is recommended that more empirical 

studies be undertaken to assess the manner in which the deforestation in the Amazon 

and Cerrado biomes affects the water balance, especially regarding the groundwater 

flow mechanisms and deep seepage. 

 



References 

 

152 
 

References 
 

Aber JD, Magill A, Mcnulty SG, Boone RD, Nadelhoffer KJ, Downs M, Hallett R. 1995. Forest 
biogeochemistry and primary production altered by nitrogen saturation. Water, Air, & Soil Pollution 85 
(3): 1665–1670. DOI: 10.1007/BF00477219 

Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM. 1989. Nitrogen Saturation in Northern Forest 
EcosystemsExcess nitrogen from fossil fuel combustion may stress the biosphere. BioScience 39 (6): 
378–386 DOI: 10.2307/1311067 

Addy KL, Gold AJ, Groffman PM, Jacinthe PA. 1999. Ground Water Nitrate Removal in Subsoil of 
Forested and Mowed Riparian Buffer Zones. Journal of Environment Quality 28 (May): 962 DOI: 
10.2134/jeq1999.00472425002800030029x 

Aguiar TR, Bortolozo FR, Hansel FA, Rasera K, Ferreira MT. 2015. Riparian buffer zones as pesticide 
filters of no-till crops. Environmental Science and Pollution Research 22 (14): 10618–10626 DOI: 
10.1007/s11356-015-4281-5 

Aguiar TR, Rasera K, Parron LMM, Brito AGG, Ferreira MTT, Aguiar Jr. TR, Rasera K, Parron LMM, 
Brito AGG, Ferreira MTT. 2015. Nutrient removal effectiveness by riparian buffer zones in rural 
temperate watersheds: The impact of no-till crops practices. Agricultural Water Management 149: 74–
80 DOI: 10.1016/j.agwat.2014.10.031 

Alegre JC, Cassel DK. 1996. Dynamics of soil physical properties under alternative systems to slash-
and-burn. Agric. Ecosyst. Environ. 58 (1), 39-48. 

Alencar DBS, Silva CL, Oliveira CAS. 2006. Influência da precipitação no escoamento superficial em 
uma microbacia hidrográfica do Distrito Federal. Engenharia Agrícola 26 (1): 103–112 DOI: 
10.1590/S0100-69162006000100012 

Alexander RB, Smith RA, Schwarz GE. 2000. Effect of stream channel size on the delivery of nitrogen 
to the Gulf of Mexico. Nature 403 (6771): 758–761. DOI: 10.1038/35001562 

Alho CJR. 2012. Importância da biodiversidade para a saúde humana: uma perspectiva ecológica. 
Estudos Avançados 26 (74): 151–166. DOI: 10.1590/S0103-40142012000100011 

Allen R, Irmak A, Trezza R, Hendrickx JMH, Bastiaanssen W, Kjaersgaard J. 2011. Satellite-based ET 
estimation in agriculture using SEBAL and METRIC. Hydrological Processes 25 (26): 4011–4027 DOI: 
10.1002/hyp.8408 

Allen RG, Pereira LS, Raes D, Smith M. 1998. Crop evapotranspiration: Guidelines for computing crop 
requirements. Irrigation and Drainage Paper No. 56, FAO (56): 300. DOI: 10.1016/j.eja.2010.12.001 

Allen RG, Tasumi M, Trezza R, Morse A, Trezza R, Wright JL, Bastiaanssen W, Kramber W, Lorite I, 
Robison CW. 2007. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized 
Calibration (METRIC)—Model. Journal of Irrigation and Drainage Engineering 133 (4): 380–394 DOI: 
10.1061/(ASCE)0733-9437(2007)133:4(380) 

Alvarenga LA, Mello CR de, Colombo A, Cuartas LA. 2017. Hydrologic Impacts Due To the Changes 
in Riparian Buffer in a Headwater Watershed. Cerne 23 (1): 95–102 DOI: 
10.1590/01047760201723012205 

Amoozegar A. 1989. A compact, constant-head permeameter for measuring saturated hydraulic 
conductivity of the vadose zone. Soil Science Society Of  America  Journal. 53: 1356-1361. 

Andrade RG, de C. Teixeira AH, Sano EE, Leivas JF, de C. Victoria D, Nogueira SF. 2014. Pasture 
evapotranspiration as indicators of degradation in the Brazilian Savanna: a case study for Alto 
Tocantins watershed. Proceedings Volume 9239, Remote Sensing for Agriculture, Ecosystems, and 
Hydrology XVI; 92391Z (2014), Event: SPIE Remote Sensing, 2014, Amsterdam, Netherlands. DOI: 
10.1117/12.2067225 



References 

 

153 
 

Andreae MO, Acevedo OC, Araújo A, Artaxo P, Barbosa CGG, Barbosa HMJ, Brito J, Carbone S, Chi 
X, Cintra BBL, et al. 2015. The Amazon Tall Tower Observatory (ATTO): overview of pilot 
measurements on ecosystem ecology, meteorology, trace gases, and aerosols. Atmospheric 
Chemistry and Physics 15 (18): 10723–10776. DOI: 10.5194/acp-15-10723-2015 

APG TAPG, Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, Mabberley DJ, 
Sennikov AN, Soltis PS, et al. 2016. An update of the Angiosperm Phylogeny Group classification for 
the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181 (1): 
1–20 DOI: 10.1111/boj.12385 

Armenteras D, Rodríguez N, Retana J. 2013. Landscape Dynamics in Northwestern Amazonia: An 
Assessment of Pastures, Fire and Illicit Crops as Drivers of Tropical Deforestation (DQ Fuller, ed.). 
PLoS ONE 8 (1): e54310 DOI: 10.1371/journal.pone.0054310 

Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, 
van Griensven A, Van Liew MW. 2012. SWAT: Model Use, Calibration, and Validation. Transactions 
of the ASABE 55 (4): 1491–1508 DOI: 10.13031/2013.42256 

ASCE-EWRI. 2005. The ASCE standardized reference evapotranspiration equation. ASCE-EWRI 
Standardization of Reference Evapotranspiration Task Comm. Report. ASCE Bookstore. 

Asner GP, Townsend AR, Bustamante MMC, Nardoto GB, Olander LP. 2004. Pasture degradation in 
the central Amazon: linking changes in carbon and nutrient cycling with remote sensing. Global 
Change Biology 10 (5): 844–862 DOI: 10.1111/j.1529-8817.2003.00766.x 

ASTM. 2000. Standard Test Methods for Determining Sediment Concentration in Water Samples: 
D3977-97. West Conshohocken, PA. 

Ataíde KRP, Baptista GM de M. 2015. Modelagem de determinação da evapotranspiração real para o 
bioma. Proceedings of XVII Simpósio Brasileiro de Sensoriamento Remoto - SBSR, João Pessoa-PB, 
Brazil, INPE (1): 6381–6388 

Aubert D, Loumagne C, Oudin L. 2003. Sequential assimilation of soil moisture and stream flow data in 
a conceptual rainfall runoff model, Journal of. Hydrology, 280:145–161. 

Avagyan A, Runkle BRK, Kutzbach L. 2014. Application of high-resolution spectral absorbance 
measurements to determine dissolved organic carbon concentration in remote areas. Journal of 
Hydrology 517: 435–446 DOI: 10.1016/j.jhydrol.2014.05.060 

Awotwi A, Yeboah F, Kumi M. 2015. Assessing the impact of land cover changes on water balance 
components of White Volta Basin in West Africa. Water and Environment Journal 29 (2): 259–267 DOI: 
10.1111/wej.12100 

Baker DB, Richards RP, Loftus TT, Kramer JW. 2004. A new flashiness index: characteristics and 
applications to midwestern rivers and streams. Journal of the American Water Resources Association 
40 (2): 503–522 DOI: 10.1111/j.1752-1688.2004.tb01046.x 

Ballester M. 2003. A remote sensing/GIS-based physical template to understand the biogeochemistry 
of the Ji-Paraná river basin (Western Amazônia). Remote Sensing of Environment 87 (4): 429–445 
DOI: 10.1016/j.rse.2002.10.001 

Barona E, Ramankutty N, Hyman G, Coomes OT. 2010. The role of pasture and soybean in 
deforestation of the Brazilian Amazon. Environmental Research Letters 5 (2): 024002 DOI: 
10.1088/1748-9326/5/2/024002 

Bass AM, Bird MI, Liddell MJ, Nelson PN. 2011. Fluvial dynamics of dissolved and particulate organic 
carbon during periodic discharge events in a steep tropical rainforest catchment. Limnology and 
Oceanography 56 (6): 2282–2292 DOI: 10.4319/lo.2011.56.6.2282 

Bass AM, Munksgaard NC, Leblanc M, Tweed S, Bird MI. 2014. Contrasting carbon export dynamics 
of human impacted and pristine tropical catchments in response to a short-lived discharge event. 
Hydrological Processes 28 (4): 1835–1843 DOI: 10.1002/hyp.9716 

Bastiaanssen WG. 2000. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, 
Turkey. Journal of Hydrology 229 (1–2): 87–100 DOI: 10.1016/S0022-1694(99)00202-4 



References 

 

154 
 

Bastiaanssen WGM, Menenti M, Feddes RA, Holtslag AAM. 1998. A remote sensing surface energy 
balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology 212–213: 198–212 DOI: 
10.1016/S0022-1694(98)00253-4 

Beuchle R, Grecchi RC, Shimabukuro YE, Seliger R, Eva HD, Sano E, Achard F. 2015. Land cover 
changes in the Brazilian Cerrado and Caatinga biomes from 1990 to 2010 based on a systematic 
remote sensing sampling approach. Applied Geography 58: 116–127 DOI: 
10.1016/j.apgeog.2015.01.017 

Bianchi CA, Haig SM. 2013. Deforestation trends of tropical dry forests in Central Brazil. Biotropica 45 
(3): 395–400 DOI: 10.1111/btp.12010 

Biggs TW, Dunne T, Domingues TF, Martinelli LA. 2002. Relative influence of natural watershed 
properties and human disturbance on stream solute concentrations in the southwestern Brazilian 
Amazon basin. Water Resources Research 38 (8): 25-1-25–16 DOI: 10.1029/2001WR000271 

Biggs TW, Dunne T, Muraoka T. 2006. Transport of water, solutes and nutrients from a pasture hillslope, 
southwestern Brazilian Amazon. Hydrological Processes 20: 2527–2547 DOI: 10.1002/hyp.6214 

Birkinshaw SJ, O’Donnell GM, Moore P, Kilsby CG, Fowler HJ, Berry PAM. 2010. Using satellite 
altimetry data to augment flow estimation techniques on the Mekong River. Hydrological Processes 
24 (26): 3811–3825 DOI: 10.1002/hyp.7811 

Birsan MV, Molnár P, Burlando P, Pfaundler M. 2005, Stream flow trends in Switzerland. J. Hydrol. 
314(1-4), 312–329, DOI: 10.1016/j.jhydrol.2005.06.008. 

Blaen PJ, Khamis K, Lloyd CEM, Bradley C, Hannah D, Krause S. 2016. Real-time monitoring of 
nutrients and dissolved organic matter in rivers: Capturing event dynamics, technological opportunities 
and future directions. Science of the Total Environment 569–570: 647–660 DOI: 
10.1016/j.scitotenv.2016.06.116 

Blake GR and Hartge KH. 1986. Bulk density, in Klute, A. (Ed.), Methods of Soil Analysis, Part I. Am. 
Soc. Agron., Madison, WI. pp. 363 -376. 

Bleich ME, Mortati AF, André T, Piedade MTF. 2016. Structural Dynamics of Pristine Headwater 
Streams from Southern Brazilian Amazon. River Research and Applications 32 (3): 473–482 DOI: 
10.1002/rra.2875 

Bleich ME, Mortati AF, André T, Teresa M, Piedade F. 2014. Riparian deforestation affects the structural 
dynamics of headwater streams in Southern Brazilian Amazonia Patterns and processes in streams 
are determined by ecological and hydrological connectivity [1-5], in. Tropical Conservation Science 7 
(4): 657–676 Available at: http://tropicalconservationscience.mongabay.com/content/v7/TCS-2014-
Vol7(4)_657-676_Bleich.pdf 

Bloomfield JP, Allen DJ, Griffiths KJ. 2009. Examining geological controls on baseflow index (BFI) using 
regression analysis: An illustration from the Thames Basin, UK. Journal of Hydrology 373 (1–2): 164–
176 DOI: 10.1016/j.jhydrol.2009.04.025 

Blume T, Zehe E and Bronstert A. 2007. Rainfall-runoff response, event-based runoff coefficients and 
hydrograph separation, Hydrological Sciences Journal, 52(5):843-862. 
http://dx.doi.org/10.1623/hysj.52.5.843. 

Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, 
Davidson E, Dentener F, et al. 2010. Global assessment of nitrogen deposition effects on terrestrial 
plant diversity: A synthesis. Ecological Applications 20 (1): 30–59 DOI: 10.1890/08-1140.1 

Bongiovanni R, Lowenberg-Deboer J. 2004. Precision Agriculture and Sustainability. Precision 
Agriculture 5 (4): 359–387 DOI: 10.1023/B:PRAG.0000040806.39604.aa 

Bouchez J, Galy V, Hilton RG, Gaillardet J, Moreira-Turcq P, Pérez MA, France-Lanord C, Maurice L. 
2014. Source, transport and fluxes of Amazon River particulate organic carbon: Insights from river 
sediment depth-profiles. Geochimica et Cosmochimica Acta 133: 280–298 DOI: 
10.1016/j.gca.2014.02.032 

http://dx.doi.org/10.1623/hysj.52.5.843


References 

 

155 
 

Boulain N, Cappelaere B, Séguis L, Favreau G, Gignoux J. 2009. Water balance and vegetation change 
in the Sahel: A case study at the watershed scale with an eco-hydrological model, Journal of Arid 
Environments., 73:1125–1135, DOI: 10.1016/j.jaridenv.2009.05.008 

Bowler DE, Mant R, Orr H, Hannah DM, Pullin AS. 2012. What are the effects of wooded riparian zones 
on stream temperature? Environmental Evidence 1 (1): 3 DOI: 10.1186/2047-2382-1-3 

Bramley RG V, Hill PA, Thorburn PJ, Kroon FJ, Panten K. 2008. Precision agriculture for improved 
environmental outcomes: Some Australian perspectives. Landbauforschung Volkenrode 58 (58): 161–
177 

Brando PM, Coe MT, DeFries R, Azevedo AA. 2013. Ecology, economy and management of an 
agroindustrial frontier landscape in the southeast Amazon. Philosophical transactions of the Royal 
Society of London. Series B, Biological sciences 368 (1619): 20120152 DOI: 10.1098/rstb.2012.0152 

Brannstrom C, Jepson W, Filippi AM, Redo D, Xu Z, Ganesh S. 2008. Land change in the Brazilian 
Savanna (Cerrado), 1986–2002: Comparative analysis and implications for land-use policy. Land Use 
Policy 25 (4): 579–595 DOI: 10.1016/j.landusepol.2007.11.008 

Breitenbach SFM, Adkins JF, Meyer H, Marwan N, Kumar KK, Haug GH. 2010. Strong influence of 
water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE 
India, Earth Planet. Sc. Letters., 292:212–220, DOI: 10.1016/j.epsl.2010.01.038. 

Brooks TM, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Rylands AB, Konstant WR, Flick P, 
Pilgrim J, Oldfield S, Magin G, et al. 2002. Habitat Loss and Extinction in the Hotspots of Biodiversity. 
Conservation Biology 16 (4): 909–923 DOI: 10.1046/j.1523-1739.2002.00530.x 

Brooks TM. 2006. Global Biodiversity Conservation Priorities. Science 313 (5783): 58–61 DOI: 
10.1126/science.1127609 

Brown AE, Zhang L, McMahon TA, Western AW, Vertessy RA. 2005. A review of paired catchment 
studies for determining changes in water yield resulting from alterations in vegetation. Journal of 
Hydrology 310 (1–4): 28–61 DOI: 10.1016/j.jhydrol.2004.12.010 

Bruijnzeel LA. 2004. Hydrological functions of tropical forests: Not seeing the soil for the trees? 
Agriculture, Ecosystems and Environment 104: 185–228. DOI: 10.1016/j.agee.2004.01.015 

Bruijnzeel LA. 2005. Tropical montane cloud forest: a unique hydrological case. In Forests, Water and 
People in the Humid Tropics, Bonell, M; Bruijnzeel LA (ed.). Cambridge Univ. Press: Cambridge, UK; 
462–483. 

Bruijnzeel LA, Mulligan M, Scatena FN. 2011. Hydrometeorology of tropical montane cloud forests: 
emerging patterns, Hydrological Processes, 25, 465–498. 

Bruijnzeel LA. 2006. Hydrological impacts of converting tropical montane cloud forest to pasture, with 
initial reference to northern Costa Rica. Final Technical Report DFID-FRP Project no. R7991. Vrije 
Universiteit, Amsterdam, and Forestry Research Programme of the U.K. Department for International 
Development, London, 52 pp. 

Buffington JM, Tonina D. 2009. Hyporheic Exchange in Mountain Rivers II: Effects of Channel 
Morphology on Mechanics, Scales, and Rates of Exchange. Geography Compass 3 (3): 1038–1062 
DOI: 10.1111/j.1749-8198.2009.00225.x 

Buol SW. 2009. Soils and agriculture in central-west and north Brazil. Scientia Agricola 66 (5): 697–707 
DOI: 10.1590/S0103-90162009000500016 

Burke W, Gabriels D and Bouma J. (Eds). 1986. Soil Structure Assessment. A. A. Balkema, Rotterdam. 
93 pp. 

Burn DH, Sharif M, Zhang K. 2010. Detection of trends in hydrological extremes for Canadian 
watersheds. Hydrological Processes 24 (13): 1781–1790 DOI: 10.1002/hyp.7625 

Burn DH and Hag Elnur MA. 2002. Detection of hydrologic trends and variability. J. Hydrol. 255(1-4), 
107–122, DOI: 10.1016/S0022-1694(01)00514-5.  

http://dx.doi.org/10.1016%2fS0022-1694(01)00514-5


References 

 

156 
 

Burt TP, McDonnell JJ. 2015. Whither field hydrology? The need for discovery science and outrageous 
hydrological hypotheses. Water Resources Research 51 (8): 5919–5928 DOI: 
10.1002/2014WR016839 

Cadotte MW, Carscadden K, Mirotchnick N. 2011. Beyond species: functional diversity and the 
maintenance of ecological processes and services. Journal of Applied Ecology 48 (5): 1079–1087 DOI: 
10.1111/j.1365-2664.2011.02048.x 

Cak AD, Moran EF, Figueiredo RDO, Lu D, Li G, Hetrick S. 2015. Urbanization and small household 
agricultural land use choices in the Brazilian Amazon and the role for the water chemistry of small 
streams. Journal of Land Use Science 4248 (October): 1–19 DOI: 10.1080/1747423X.2015.1047909 

Canadell J, Jackson RB, Ehleringer JB, Mooney HA, Sala OE, Schulze E-D. 1996. Maximum rooting 
depth of vegetation types at the global scale. Oecologia 108 (4): 583–595 DOI: 10.1007/BF00329030 

Canal Rural. 2017. Governo promete completar asfaltamento da BR-163 Available at: 
http://www.canalrural.com.br/videos/rural-noticias/governo-promete-completar-asfaltamento-br-163-
78671 [Accessed 1 July 2017] 

Cappelaere B, Descroix L, Lebel T, Boulain N, Ramier D, Laurent J-P, Favreau G, Boubkraoui S, 
Boucher M, Moussa IB, Chaffard V, Hiernaux P, Issoufou HBA, Le Breton E, Mamadou I, Nazoumou 
Y, Oï M, Ottlé C and Quantin G. 2009. The AMMA-CATCH experiment in the cultivated Sahelian area 
of south-west Niger - Investigating water cycle response to a fluctuating climate and changing 
environment.  Journal of Hydrology, 375, 34–51, DOI: 10.1016/j.jhydrol.2009.06.021 

Carter MR. 1988. Temporal variability of soil macroporosity in a fine sandy loam under mouldboard 
ploughing and direct drilling. Soil and Tillage Research 12 (1): 37–51 DOI: 10.1016/0167-
1987(88)90054-2 

Carvalho GO, Nepstad D, McGrath D, del Carmen Vera Diaz M, Santilli M, Barros AC. 2002. Frontier 
Expansion in the Amazon: Balancing Development and Sustainability. Environment: Science and 
Policy for Sustainable Development 44 (3): 34–44 DOI: 10.1080/00139150209605606 

Carvalho JLN, Cerri CEP, Cerri CC, Feigl BJ, Píccolo MC, Godinho VP, Herpin U. 2007. Changes of 
chemical properties in an oxisol after clearing of native Cerrado vegetation for agricultural use in 
Vilhena, Rondonia State, Brazil. Soil and Tillage Research 96 (1–2): 95–102 DOI: 
10.1016/j.still.2007.04.001 

Chander G, Markham BL, Helder DL. 2009. Summary of current radiometric calibration coefficients for 
Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment 113 (5): 893–903 
DOI: 10.1016/j.rse.2009.01.007 

Chantigny MH. 2003. Dissolved and water-extractable organic matter in soils: a review on the influence 
of land use and management practices. Geoderma 113 (3–4): 357–380 DOI: 10.1016/S0016-
7061(02)00370-1 

Chaplot V, Walter C, Curmi P, Hollier-Larousse A. 2000. The use of auxiliary geophysical data to 
improve a soil-landscape model. Soil Science 165 (12): 961–970 DOI: 10.1097/00010694-200012000-
00006 

Chappell NA, Tych W. 2012. Identifying step changes in single streamflow and evaporation records due 
to forest cover change. Hydrological Processes 26 (1): 100–116 DOI: 10.1002/hyp.8115 

Chaussê TCC, dos Santos Brandão C, da Silva LP, Salamim Fonseca Spanghero PE, da Silva DML. 
2016. Evaluation of nutrients and major ions in streams—implications of different timescale 
procedures. Environmental Monitoring and Assessment 188 (1): 38 DOI: 10.1007/s10661-015-5034-
0 

Christophersen N, Clair TA, Driscoll CT, Jeffries DS, Neal C, Semkin RG. 1994. Hydrochemical Studies. 
In Biogeochemistry of Small Catchments: A Tool for Environmental Research, Moldan B, Cerny J 
(eds). J. Wiley: Chichester, West Sussex, England; 285–297. 

Clark JM, Lane SN, Chapman PJ, Adamson JK. 2007. Export of dissolved organic carbon from an 
upland peatland during storm events: Implications for flux estimates. Journal of Hydrology 347 (3–4): 
438–447 DOI: 10.1016/j.jhydrol.2007.09.030 



References 

 

157 
 

Coe MT, Costa MH, Soares-Filho BS. 2009. The influence of historical and potential future deforestation 
on the stream flow of the Amazon River – Land surface processes and atmospheric feedbacks. Journal 
of Hydrology 369 (1–2): 165–174 DOI: 10.1016/j.jhydrol.2009.02.043 

Coe MT, Marthews TR, Costa MH, Galbraith DR, Greenglass NL, Imbuzeiro HM a, Levine NM, Malhi 
Y, Moorcroft PR, Muza MN, et al. 2013. Deforestation and climate feedbacks threaten the ecological 
integrity of south-southeastern Amazonia. Philosophical transactions of the Royal Society of London. 
Series B, Biological sciences 368 (1619): 20120155 DOI: 10.1098/rstb.2012.0155 

Cohn AS, Gil J, Berger T, Pellegrina H, Toledo C. 2016. Patterns and processes of pasture to crop 
conversion in Brazil: Evidence from Mato Grosso State. Land Use Policy 55: 108–120 DOI: 
10.1016/j.landusepol.2016.03.005 

Costa MH, Botta A, Cardille JA. 2003. Effects of large-scale changes in land cover on the discharge of 
the Tocantins River, Southeastern Amazonia. Journal of Hydrology 283 (1–4): 206–217 DOI: 
10.1016/S0022-1694(03)00267-1 

Couto EG, Stein A, Klamt E. 1997. Large area spatial variability of soil chemical properties in central 
Brazil. Agriculture Ecosystems & Environment 66 (2): 139–152 DOI: 10.1016/S0167-8809(97)00076-
5 

Crossman J, Futter MN, Whitehead PG, Stainsby E, Baulch HM, Jin L, Oni SK, Wilby RL, Dillon PJ. 
2014. Flow pathways and nutrient transport mechanisms drive hydrochemical sensitivity to climate 
change across catchments with different geology and topography. Hydrology and Earth System 
Sciences 18 (12): 5125–5148 DOI: 10.5194/hess-18-5125-2014 

Cruz Ruggiero PG, Batalha MA, Pivello VR, Meirelles ST. 2002. Soil-vegetation relationships in cerrado 
(Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecology 160 (1973): 1–16 
DOI: 10.1023/A:1015819219386 

Cuo L, Zhang Y, Gao Y, Hao Z, Cairang L. 2013. The impacts of climate change and land cover/use 
transition on the hydrology in the upper Yellow River Basin, China. Journal of Hydrology 502: 37–52 
DOI: 10.1016/j.jhydrol.2013.08.003 

Cuomo A, Guida D. 2016. Using hydro-chemograph analyses to reveal runoff generation processes in 
a Mediterranean catchment. Hydrological Processes 30 (24): 4462–4476 DOI: 10.1002/hyp.10935 

da Rocha HR, Manzi AO, Cabral OM, Miller SD, Goulden ML, Saleska SR, R.-Coupe N, Wofsy SC, 
Borma LS, Artaxo P, et al. 2009. Patterns of water and heat flux across a biome gradient from tropical 
forest to savanna in Brazil. Journal of Geophysical Research 114: G00B12 DOI: 
10.1029/2007JG000640 

da Silva BB, Wilcox BP, da Silva V de PR, Montenegro SMGL, de Oliveira LMM. 2015. Changes to the 
energy budget and evapotranspiration following conversion of tropical savannas to agricultural lands 
in São Paulo State, Brazil. Ecohydrology 8 (7): 1272–1283 DOI: 10.1002/eco.1580 

Da Silva NM, Van Raij B, De Carvalho LH, Bataglia OC, Kondo JI. 1998. Efeitos do calcário e do gesso 
nas características químicas do solo e na cultura do algodão. Bragantia 56 (2): 389–401 DOI: 
10.1590/S0006-87051997000200018 

Daniels RB, Gilliam JW. 1996. Sediment and Chemical Load Reduction by Grass and Riparian Filters. 
Soil Science Society of America Journal 60: 246 DOI: 10.2136/sssaj1996.03615995006000010037x 

Davidson EA, de Araújo AC, Artaxo P, Balch JK, Brown IF, Bustamante MMC, Coe MT, DeFries RS, 
Keller M, Longo M, et al. 2012. The Amazon basin in transition. Nature 481 (7381): 321–328 DOI: 
10.1038/nature10717 

de Moraes JM, Schuler AE, Dunne T, Figueiredo R de O, Victoria RL. 2006. Water storage and runoff 
processes in plinthic soils under forest and pasture in eastern Amazonia. Hydrological Processes 20 
(12): 2509–2526 DOI: 10.1002/hyp.6213 

De Oliveira OC, De Oliveira IP, Alves BJR, Urquiaga S, Boddey RM. 2004. Chemical and biological 
indicators of decline/degradation of Brachiaria pastures in the Brazilian Cerrado. Agriculture, 
Ecosystems and Environment 103 (2): 289–300 DOI: 10.1016/j.agee.2003.12.004 



References 

 

158 
 

De Oliveira-Filho AT. 1992. Floodplain ‘murundus’ of Central Brazil: evidence for the termite-origin 
hypothesis. Journal of Tropical Ecology 8 (1): 1–19 DOI: 10.1017/S0266467400006027 

de Paula JD, Luizão FJ, Piedade MTF. 2016. The size distribution of organic carbon in headwater 
streams in the Amazon basin. Environmental Science and Pollution Research 23 (12): 11461–11470 
DOI: 10.1007/s11356-016-6041-6 

Décamps H, Naiman RJ. 1990. The Ecology and Management of Aquatic-Terrestrial Ecotones. CRC 
Press: Paris:Unesco; Park Ridge, N.J., USA. 

Diab M, Merot P, Curmi P. 1988. Water Movement in a glossaqualf as measured by two tracers. 
Geoderma 43 (2–3): 143–161 DOI: 10.1016/0016-7061(88)90040-7 

Dias LCP, Macedo MN, Costa MH, Coe MT, Neill C. 2015. Effects of land cover change on 
evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. 
Journal of Hydrology: Regional Studies 4: 108–122 DOI: 10.1016/j.ejrh.2015.05.010 

DIN ISO 11277:2002-08. 2002. Bodenbeschaffenheit – Bestimmung der Partikelgrößenverteilung in 
Mineralböden – Verfahren mittels Siebung und Sedimentation. ISO 11277: 1998/Cor.1:2002. Beuth 
Verlag, Berlin, Germany., Germany. 

Do Vale I, Miranda IS, Mitja D, Grimaldi M, Nelson BW, Desjardins T, Costa LGS. 2015. Tree 
Regeneration Under Different Land-Use Mosaics in the Brazilian Amazon’s “Arc of Deforestation”. 
Environmental Management 56 (2): 342–354 DOI: 10.1007/s00267-015-0500-6 

Domingos M, Klumpp A, Rinaldi MCS, Modesto IF, Klumpp G, Delitti WBC. 2003. Combined effects of 
air and soil pollution by fluoride emissions on Tibouchina pulchra Cogn., at Cubatao, SE Brazil, and 
their relation with aluminium. Plant and soil 249: 297–308 

Dos Santos SN, Alleoni LRF. 2013. Reference values for heavy metals in soils of the Brazilian 
agricultural frontier in Southwestern Amazônia. Environmental Monitoring and Assessment 185 (7): 
5737–5748 DOI: 10.1007/s10661-012-2980-7 

Drewry JJ, Cameron KC, Buchan GD. 2008. Pasture yield and soil physical property responses to soil 
compaction from treading and grazing - A review. Australian Journal of Soil Research 46: 237–256 
DOI: 10.1071/SR07125 

Driessen P, Deckers J. 2001. Lecture notes on the major soils of the world. Rome. 

Durieux L. 2003. The impact of deforestation on cloud cover over the Amazon arc of deforestation. 
Remote Sensing of Environment 86 (1): 132–140 DOI: 10.1016/S0034-4257(03)00095-6 

Eckhardt K. 2005. How to construct recursive digital filters for baseflow separation. Hydrological 
Processes 19 (2): 507–515 DOI: 10.1002/hyp.5675 

Ehsanzadeh E, Ouarda TBMJ, Saley HM. 2011. A simultaneous analysis of gradual and abrupt changes 
in Canadian low stream flows. Hydrol. Processes 25(5), 727–739, DOI: 10.1002/hyp.7861. 

Eiten G. 1972. The cerrado vegetation of Brazil. The Botanical Review 38 (2): 201–341 DOI: 
10.1007/BF02859158 

El-Khoury  A, Seidou O, Lapen DR, Que Z, Mohammadian M, Sunohara M, Bahram D. 2015. Combined 
impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a 
Canadian river basin. Journal of Environmental Management 151: 76–86 DOI: 
10.1016/j.jenvman.2014.12.012 

Elsebeer H, Newton BE, Dunne T, Moraes JM. 1999. Hydraulic conductivities of latosols under pasture, 
forest and teak in Rondonia, BRAZIL, Hydrological Processes 13: 1417-1422 DOI: 
10.1002/(SICI)1099-1085(19990630)13:9<1417::AID-HYP816>3.0.CO;2-6 

Elsenbeer H, Vertessy RA. 2000. Stormflow generation and flowpath characteristics in an Amazonian 
rainforest catchment. Hydrological Processes 14 (14): 2367–2381 DOI: 10.1002/1099-
1085(20001015)14:14<2367::AID-HYP107>3.0.CO;2-H 

Elsenbeer H. 2001. Hydrologic flowpaths in tropical rainforest soilscapes – a review. Hydrological  
Processes, 15: 1751–1759.  DOI: http://dx.doi.org/10.1002/hyp.237. 

http://dx.doi.org/10.1002/hyp.237


References 

 

159 
 

Elsenbeer H, Lack A. 1996. Hydrometric and hydrochemical evidence for fast flowpaths at La Cuenca, 
Western Amazonia. Journal of  Hydrology. 180: 237-250. 

EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) (1999) Sistema brasileiro de classificação 
de solos. Brasília, DF: Embrapa Produção de Informação. Rio de Janeiro: Embrapa Solos, 412. 

EMBRAPA. 1997. Manual de Métodos de Análise de Solo. EMBRAPA-CNPS: Rio de Janeiro. 

EMBRAPA. 2006. Sistema brasileiro de classificação de solos. EMBRAPA-SPI: Rio de Janeiro. 

EMBRAPA. 2006. Sistema brasileiro de classificação de solos. EMBRAPA-SPI: Rio de Janeiro. 

Eshleman KN. 2004. Hydrological consequences of land use change: A review of the state-of-science. 
In Ecosystems and Land Use Change 13–29. DOI: 10.1029/153GM03 

Esterby SR. 1996. Review of methods for the detection and estimation of trends with emphasis on water 
quality applications. Hydrological Processes 10 (2): 127–149 DOI: 10.1002/(SICI)1099-
1085(199602)10:2<127::AID-HYP354>3.0.CO;2-8 

Evans JS. 2014. An ArcGIS Toolbox for surface gradient and geomorphometric modeling, version 2.0-
0 Available at: http://evansmurphy.wix.com/evansspatial [Accessed 15 May 2015] 

Farrick KK, Branfireun BA. 2013. Left high and dry: a call to action for increased hydrological research 
in tropical dry forests. Hydrological Processes 3262 (27): 3254–3262 DOI: 10.1002/hyp.9935 

Esterby SR. 1996. Review of methods for the detection and estimation of trends with emphasis on water 
quality applications. Hydrological Processes 10 (2): 127–149 DOI: 10.1002/(SICI)1099-
1085(199602)10:2<127::AID-HYP354>3.0.CO;2-8 

Fearnside PM. 2001. Soybean cultivation as a threat to the environment in Brazil. Environmental 
Conservation 28 DOI: 10.1017/S0376892901000030 

Fearnside PM. 2007. Brazil’s Cuiabá- Santarém (BR-163) Highway: The environmental cost of paving 
a soybean corridor through the Amazon. Environmental Management 39 (5): 601–614 DOI: 
10.1007/s00267-006-0149-2 

Fearnside PM. 2016. Brazil’s Amazonian forest carbon: the key to Southern Amazonia’s significance 
for global climate. Regional Environmental Change 18 (1): 1–15 DOI: 10.1007/s10113-016-1007-2 

Felfili J. 1997. Dynamics of the natural regeneration in the Gama gallery forest in central Brazil. Forest 
Ecology and Management 91 (2–3): 235–245 DOI: 10.1016/S0378-1127(96)03862-5 

Esterby SR. 1996. Review of methods for the detection and estimation of trends with emphasis on water 
quality applications. Hydrological Processes 10 (2): 127–149 DOI: 10.1002/(SICI)1099-
1085(199602)10:2<127::AID-HYP354>3.0.CO;2-8 

Felfili JM, Silva Júnior MC. 1992. Floristic composition, phytosociology and comparison of cerrado and 
gallery forests at Fazenda Água Limpa, Federal District, Brazil. In Nature and Dynamics of Forest-
Savanna Boundaries, Furley, P. A.; Proctor, J.; Ratter JA (ed.).Chapman and Hall: London; 393–415. 

Feng X, Faiia AM, Posmentier ES. 2009. Seasonality of isotopes in precipitation: A global perspective, 
Journal of Geophysical Research., 114, D08116 DOI:10.1029/2008JD011279, 2009. 

Ferraz SFB, Ferraz KMPMB, Cassiano CC, Brancalion PHS, da Luz DTA, Azevedo TN, Tambosi LR, 
Metzger JP. 2014. How good are tropical forest patches for ecosystem services provisioning? 
Landscape Ecology 29 (2): 187–200 DOI: 10.1007/s10980-014-9988-z 

Figueiredo CC De, Resck DVS, Carneiro MAC. 2010a. Labile and stable fractions of soil organic matter 
under management systems and native cerrado. Revista Brasileira de Ciência do Solo 34 (3): 907–
916 DOI: 10.1590/S0100-06832010000300032 

Figueiredo RO, Markewitz D, Davidson EA, Schuler AE, Dos S. Watrin O, De Souza Silva PP. 2010b. 
Land-use effects on the chemical attributes of low-order streams in the eastern Amazon. Journal of 
Geophysical Research: Biogeosciences 115 (4): 1–14 DOI: 10.1029/2009JG001200 

Fligner MA. 1984. A Note on Two-Sided Distribution-Free Treatment versus Control Multiple 
Comparisons. Journal of the American Statistical Association 79 (385): 208–211 DOI: 
10.1080/01621459.1984.10477086 



References 

 

160 
 

Fligner MA. 1984. A Note on Two-Sided Distribution-Free Treatment versus Control Multiple 
Comparisons. Journal of the American Statistical Association 79 (385): 208–211 DOI: 
10.1080/01621459.1984.10477086 

Fonte SJ, Nesper M, Hegglin D, Velásquez JE, Ramirez B, Rao IM, Bernasconi SM, Bünemann EK, 
Frossard E, Oberson A. 2014. Pasture degradation impacts soil phosphorus storage via changes to 
aggregate-associated soil organic matter in highly weathered tropical soils. Soil Biology and 
Biochemistry 68: 150–157 DOI: 10.1016/j.soilbio.2013.09.025 

Fu G, Barber ME, Chen S. 2010. Hydro-climatic variability and trends in Washington State for the last 
50 years. Hydrological Processes 24 (7): 866–878 DOI: 10.1002/hyp.7527 

Furley PA. 1999. The nature and diversity of neotropical savanna vegetation with particular reference 
to the Brazilian cerrados. Global Ecology and Biogeography 8 (3–4): 223–241 DOI: 10.1046/j.1466-
822X.1999.00142.x 

Galford GL, Melillo J, Mustard JF, Cerri CEP, Cerri CC. 2010. The Amazon Frontier of Land-Use 
Change: Croplands and Consequences for Greenhouse Gas Emissions. Earth Interactions 14 (15): 
1–24 DOI: 10.1175/2010EI327.1 

Garrastazú MC, Mendonça SD, Horokoski TT, Cardoso DJ, Rosot MAD, Nimmo ER, Lacerda AEB. 
2015. Carbon sequestration and riparian zones: Assessing the impacts of changing regulatory 
practices in Southern Brazil. Land Use Policy 42 (January): 329–339 DOI: 
10.1016/j.landusepol.2014.08.003 

Gee GW. 1986. Particle-size analysis. In Methods of Soil Analysis, Klute A (ed.).ASA and SSSA: 
Madison, WI; 383–411. 

Germer S, Neill C, Krusche AV, Elsenbeer H. 2010. Influence of land-use change on near-surface 
hydrological processes: Undisturbed forest to pasture. Journal of Hydrology 380 (3–4): 473–480 DOI: 
10.1016/j.jhydrol.2009.11.022 

Germer S, Neill C, Vetter T, Chaves J, Krusche AV, Elsenbeer H. 2009. Implications of long-term land-
use change for the hydrology and solute budgets of small catchments in Amazonia. Journal of 
Hydrology 364 (3–4): 349–363 DOI: 10.1016/j.jhydrol.2008.11.013 

Gerold G. 2011. Wasserhaushalt in Regenwaldeinzugsgebieten – regionale Folgen von 
Landnutzungsänderung und „climate change“. In Geographie Für Eine Welt Im Wandel, Fassmann H, 
Glade T (eds).Vienna University Press bei V&R unipress: Wien; 255–281. 

Gerold G. 2017. Impacts of carbon-optimised land use management in Southern Amazonia – multi-
disciplinary perspectives: An Introduction. Erdkunde 71 (3): 171–175 DOI: 
10.3112/erdkunde.2017.03.01 

Gessler PE, Moore ID, McKenzie NJ, Ryan PJ. 1995. Soil-landscape modelling and spatial prediction 
of soil attributes. International journal of geographical information systems 9 (4): 421–432 DOI: 
10.1080/02693799508902047 

Gharibreza M, Raj JK, Yusoff I, Othman Z, Tahir WZWM, Ashraf MA. 2013. Land use changes and soil 
redistribution estimation using137Cs in the tropical Bera Lake catchment, Malaysia. Soil and Tillage 
Research 131: 1–10 DOI: 10.1016/j.still.2013.02.010 

Ghimire CP, Bruijnzeel LA, Lubczynski MW, Bonell M. 2014. Negative trade-off between changes in 
vegetation water use and infiltration recovery after reforesting degraded pasture land in the Nepalese 
Lesser Himalaya. Hydrology and Earth System Sciences 18 (12): 4933–4949 DOI: 10.5194/hess-18-
4933-2014 

Giambelluca TW, Scholz FG, Bucci SJ, Meinzer FC, Goldstein G, Hoffmann WA, Franco AC, Buchert 
MP. 2009. Evapotranspiration and energy balance of Brazilian savannas with contrasting tree density. 
Agricultural and Forest Meteorology 149: 1365–1376 DOI: 10.1016/j.agrformet.2009.03.006 

Gollnow F, Göpel J, deBarros Viana Hissa L, Schaldach R, Lakes T. 2017. Scenarios of land-use 
change in a deforestation corridor in the Brazilian Amazon: combining two scales of analysis. Regional 
Environmental Change 18 (1): 1–17 DOI: 10.1007/s10113-017-1129-1 



References 

 

161 
 

Gonzatto, R., 2014. Aplicação superficial de calcário: até onde migram e até quando persistem os 
efeitos no perfil do solo? PhD Thesis. Programa De Pós-Graduação Em Ciência Do Solo, Federal 
University of Santa Maria. 

Goodale UM, Ashton MS, Berlyn GP, Gregoire TG, Singhakumara BMPP, Tennakoon KU. 2012. 
Disturbance and tropical pioneer species: Patterns of association across life history stages. Forest 
Ecology and Management 277 (August 2012): 54–66 DOI: 10.1016/j.foreco.2012.04.020 

Goodland R, Pollard R. 1973. The Brazilian Cerrado Vegetation: A Fertility Gradient. Journal of Ecology 
61 (1): 219–224 DOI: 10.2307/2258929 

Goodland R. 1971. A physiognomic analysis of the Cerrado vegetation of Central Brazil. Journal of 
Ecology 59 (2): 411–419 DOI: 10.2307/2258321 

Grace J, José JS, Meir P, Miranda HS, Montes RA. 2006. Productivity and carbon fluxes of tropical 
savannas. Journal of Biogeography 33 (3): 387–400 DOI: 10.1111/j.1365-2699.2005.01448.x 

Greenwood KL, McKenzie BM. 2001. Grazing effects on soil physical properties and the consequences 
for pastures: a review. Australian Journal of Experimental Agriculture 41 (8): 1231–1250 

Gregory SV, Swanson FJ, McKee WA, Cummins KW. 1991. An Ecosystem Perspective of Riparian 
Zones. BioScience 41 (8): 540–551 DOI: 10.2307/1311607 

Groisman PY, Knight RW, Karl TR. 2001. Heavy precipitation and high stream flow in the contiguous 
United States: trends in the twentieth century. Bull. Am. Met. Soc., 82(2), 219–246.  

Guimberteau M, Ciais P, Pablo Boisier J, Paula Dutra Aguiar A, Biemans H, De Deurwaerder H, 
Galbraith D, Kruijt B, Langerwisch F, Poveda G, et al. 2017. Impacts of future deforestation and climate 
change on the hydrology of the Amazon Basin: A multi-model analysis with a new set of land-cover 
change scenarios. Hydrology and Earth System Sciences 21 (3): 1455–1475 DOI: 10.5194/hess-21-
1455-2017 

Guswa AJ, Brauman KA, Brown C, Hamel P, Keeler BL, Sayre SS. 2014. Ecosystem services: 
Challenges and opportunities for hydrologic modeling to support decision making. Water Resources 
Research 50 (5): 4535–4544 DOI: 10.1002/2014WR015497 

Guzha AC, Amorim RSS, Nóbrega RLB, Lamparter G, Kovacs K, Bertão N, Gerold G. 2014. Impacts 
of Land Cover and Climate Change on Hydrology and Hydrochemistry in Selected Catchments in 
Southern Amazonia: Preliminary Analysis and Results. In Interdisciplinary Analysis and Modeling of 
Carbon-Optimized Land Management Strategies for Southern Amazonia, Gerold G, Jungkunst HF, 
Wantzen KM, Schönenberg R, Amorim RSS, Couto E, Madari B, Hohnwald S (eds). Universitätsverlag 
Göttingen: Goettingen; 71–83. 

Guzha AC, Nóbrega R, Kovacs K, Amorim RSS, Gerold G. 2013a. Quantifying impacts of agro-
industrial expansion in Mato Grosso, Brazil, on watershed hydrology using the Soil and Water 
Assessment Tool (SWAT) model. In Proceedings of the 20th International Congress on Modelling and 
Simulation, Adelaide, Australia, 1–6 December1833–1839. 

Guzha AC, Nobrega R, Santos CAG, Gerold G. 2013b. Investigating discharge and rainfall variability 
in an Amazonian watershed: Do any trends exist? In Proceedings of H01, IAHS-IAPSO-IASPEI 
Assembly, IAHS: Gothenburg, Sweden; 346–351. 

Guzha AC, Nobrega RLB, Kovacs K, Rebola-Lichtenberg J, Amorim RSS, Gerold G. 2015. 
Characterizing rainfall-runoff signatures from micro-catchments with contrasting land cover 
characteristics in southern Amazonia. Hydrological Processes 29 (4): 508–521 DOI: 
10.1002/hyp.10161 

Gyawali S, Techato K, Yuangyai C, Musikavong C. 2013. Assessment of Relationship between Land 
uses of Riparian Zone and Water Quality of River for Sustainable Development of River Basin, A Case 
Study of U-Tapao River Basin, Thailand. Procedia Environmental Sciences 17: 291–297 DOI: 
10.1016/j.proenv.2013.02.041 

Halliday SJ, Skeffington R a., Wade AJ, Bowes MJ, Gozzard E, Newman JR, Loewenthal M, Palmer-
Felgate EJ, Jarvie HP. 2015. High-frequency water quality monitoring in an urban catchment: 



References 

 

162 
 

hydrochemical dynamics, primary production and implications for the Water Framework Directive. 
Hydrological Processes 3407 (March). DOI: 10.1002/hyp.10453 

Halliday SJ, Wade AJ, Skeffington RA, Neal C, Reynolds B, Rowland P, Neal M, Norris D. 2012. An 
analysis of long-term trends, seasonality and short-term dynamics in water quality data from Plynlimon, 
Wales. Science of the Total Environment 434: 186–200 DOI: 10.1016/j.scitotenv.2011.10.052 

Hamilton LS, Juvik JO, Scatena FN 1995. The Puerto Rico Tropical Cloud Forest Symposium: 
Introduction and Workshop Synthesis. In: Hamilton, L. S., J. O. Juvik & F. N. Scatena (eds.): Tropical 
Montane Cloud Forest. Springer, New York, 1-23. 

Hamza MA, Anderson WK. 2005. Soil compaction in cropping systems: A review of the nature, causes 
and possible solutions. Soil and Tillage Research 82: 121–145 DOI: 10.1016/j.still.2004.08.009 

Haridasan M. 2000. Nutricao Mineral de Plantas Nativas do Cerrado. Revista Brasileira de Fisiologia 
Vegetal 12 (1): 54–64 

Haridasan M. 2008. Nutritional adaptations of native plants of the cerrado biome in acid soils. 20 (3): 
183–195 

Hattermann FF, Krysanova V, Habeck A, Bronstert A. 2006. Integrating wetlands and riparian zones in 
river basin modelling. Ecological Modelling 199 (4): 379–392 DOI: 10.1016/j.ecolmodel.2005.06.012 

Hayhoe SJ, Neill C, Porder S, Mchorney R, Lefebvre P, Coe MT, Elsenbeer H, Krusche A V. 2011. 
Conversion to soy on the Amazonian agricultural frontier increases streamflow without affecting 
stormflow dynamics. Global Change Biology 17 (5): 1821–1833 DOI: 10.1111/j.1365-
2486.2011.02392.x 

Herbst M, Diekkrüger B, Vereecken H. 2006. Geostatistical co-regionalization of soil hydraulic 
properties in a micro-scale catchment using terrain attributes. Geoderma 132 (1–2): 206–221 DOI: 
10.1016/j.geoderma.2005.05.008 

Herbst M, Diekkrüger B. 2002. The influence of the spatial structure of soil properties on water balance 
modeling in a microscale catchment. Physics and Chemistry of the Earth, Parts A/B/C 27 (9–10): 701–
710 DOI: 10.1016/S1474-7065(02)00054-2 

Hodnett M.G, Oyama M.D, Tomasella J, Marques Filho O. 1995. Comparisons of long-term soil water 
storage behaviour under pasture and forest in three areas of Amazonia. In Amazonian Deforestation 
and Climate, Gash JHC, Nobre CA, Roberts JM, Victoria RL (eds). Wiley: Chichester; 57–77. 

Hoffmann WA, da Silva ER, Machado GC, Bucci SJ, Scholz FG, Goldstein G, Meinzer FC. 2005. 
Seasonal leaf dynamics across a tree density gradient in a Brazilian savanna. Oecologia 145 (2): 306–
315 DOI: 10.1007/s00442-005-0129-x 

Hope D, Palmer SM, Billett MF, Dawson JJC. 2004. Variations in dissolved CO2 and CH4 in a first-
order stream and catchment: an investigation of soil-stream linkages. Hydrological Processes 18 (17): 
3255–3275 DOI: 10.1002/hyp.5657 

Hughes FMR, Colston A, Mountford JO. 2005. Restoring riparian ecosystems: The challenge of 
accommodating variability and designing restoration trajectories. Ecology and Society 10 (1): 12 
Available at: http://www.ecologyandsociety.org/vol10/iss1/art12/ 

Hunke P, Mueller EN, Schröder B, Zeilhofer P. 2015a. The Brazilian Cerrado: assessment of water and 
soil degradation in catchments under intensive agricultural use. Ecohydrology 8 (6): 1154–1180 DOI: 
10.1002/eco.1573 

Hunke P, Roller R, Zeilhofer P, Schröder B, Mueller EN, Nora E, Mueller N, Mueller EN. 2015b. Soil 
changes under different land-uses in the Cerrado of Mato Grosso, Brazil. Geoderma Regional 4 
(2015): 31–43 DOI: 10.1016/j.geodrs.2014.12.001 

Ingram HAP. 1983. Hydrology. In Ecosystems of the World 4A, Mires: Swamps, Bog, Fen & Moor, 
General Studies, Gore AJP (ed.). Elsevier Scientific Publishing Company: Amsterdam; 67–158. 

Iñiguez-Armijos C, Rausche S, Cueva A, Sánchez-Rodríguez A, Espinosa C, Breuer L. 2016. Shifts in 
leaf litter breakdown along a forest–pasture–urban gradient in Andean streams. Ecology and Evolution 
6 (14): 4849–4865 DOI: 10.1002/ece3.2257 



References 

 

163 
 

IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. 
International soil classification system for naming soils and creating legends for soil maps. Rome. 

Jakeman AJ, Hornberger GM. 1993. How much complexity is warranted in a rainfall-runoff model? 
Water Resour. Res. 29(8), 2637–2649, DOI: 10.1029/93WR00877. 

Jarvis A, Reuter HI, Nelson A, Guevara E. 2008. Hole-filled seamless SRTM data V4, International 
Centre for Tropical Agriculture (CIAT) Available at: http://srtm.csi.cgiar.org [Accessed 1 January 2015] 

Jenrich M. 2011. Potential of precision conservation agriculture as a means of increasing productivity 
and incomes for smallholder farmers. Journal of Soil and Water Conservation 66: 171A–174A DOI: 
10.2489/jswc.66.6.171A 

Jenrich M. 2011. Potential of precision conservation agriculture as a means of increasing productivity 
and incomes for smallholder farmers. Journal of Soil and Water Conservation 66: 171A–174A DOI: 
10.2489/jswc.66.6.171A 

Jepson W, Brannstrom C, Filippi A. 2010. Access Regimes and Regional Land Change in the Brazilian 
Cerrado, 1972–2002. Annals of the Association of American Geographers 100 (1): 87–111 DOI: 
10.1080/00045600903378960 

Jepson W. 2005. A disappearing biome? Reconsidering land-cover change in the Brazilian savanna. 
The Geographical Journal 171 (2): 99–111 DOI: 10.1111/j.1475-4959.2005.00153.x 

Jipp PH, Nepstad DC, Cassel DK, Reis de Carvalho C. 1998. Deep soil moisture storage and 
transpiration in forests and pastures of seasonally-dry Amazonia. Climatic Change 39: 395–412. 

Johnson MS, Lehmann J, Couto EG, Filho JPN, Riha SJ. 2006. DOC and DIC in Flowpaths of 
Amazonian Headwater Catchments with Hydrologically Contrasting Soils. Biogeochemistry 81 (1): 45–
57 DOI: 10.1007/s10533-006-9029-3 

Jollymore A, Johnson MS, Hawthorne I. 2012. Submersible UV-Vis spectroscopy for quantifying 
streamwater organic carbon dynamics: implementation and challenges before and after forest harvest 
in a headwater stream. Sensors (Basel, Switzerland) 12 (4): 3798–813 DOI: 10.3390/s120403798 

Jordan TE, Correll DL, Weller DE. 1997. Relating nutrient discharges from watersheds to land use and 
streamflow variability. Water Resources Research 33 (11): 2579–2590 DOI: 10.1029/97WR02005 

Juhász CEP, Cooper M, Cursi PR, Ketzer AO, Toma RS. 2007. Savanna woodland soil 
micromorphology related to water retention. Scientia Agricola 64 (4): 344–354 DOI: 10.1590/S0103-
90162007000400005 

Jusys T. 2016. Fundamental causes and spatial heterogeneity of deforestation in Legal Amazon. 
Applied Geography 75 (October): 188–199 DOI: 10.1016/j.apgeog.2016.08.015 

Kahya E, Kalayci S. 2004. Trend analysis of stream flow in Turkey. J. Hydrol. 289(1-4), 128–144, DOI: 
10.1016/j.jhydrol.2003.11.006. 

Kaiser HF. 1974. An index of factorial simplicity. Psychometrika 39 (1): 31–36 DOI: 
10.1007/BF02291575 

Kebede, S. and Travi, Y. 2011. Origin of the _18O and _2H composition of meteoric waters in Ethiopia, 
Quatern. Int., 257, DOI: 10.1016/j.quaint.2011.09.032 

Kindler R, Siemens J, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, Eugster W, 
Gleixner G, Grũnwald T, et al. 2011. Dissolved carbon leaching from soil is a crucial component of the 
net ecosystem carbon balance. Global Change Biology 17 (2): 1167–1185 DOI: 10.1111/j.1365-
2486.2010.02282.x 

Kindsvater CE, Carter RWC. 1957. Discharge Characteristics of Rectangular Thin Plate Weirs. 
Proceedings of the American Society of Civil Engineers, Journal of the Hydraulics Division 83 (HY6): 
1453/1-1453/36. 

King JR, Jackson D a. 1999. Variable selection in large environmental data sets using principal 
components analysis. Environmetrics 10 (June 1998): 67–77 DOI: 10.1002/(SICI)1099-
095X(199901/02)10:1<67::AID-ENV336>3.0.CO;2-0 



References 

 

164 
 

Kirchner JW, Neal C. 2013. Universal fractal scaling in stream chemistry and its implications for solute 
transport and water quality trend detection. Proceedings of the National Academy of Sciences 110 
(30): 12213–12218 DOI: 10.1073/pnas.1304328110 

Kirchner JW. 2003. A double paradox in catchment hydrology and geochemistry. Hydrological 
Processes 17 (4): 871–874 DOI: 10.1002/hyp.5108 

Kirkby M, Callan J, Weyman D, Wood J. 1976. Measurement and modelling of dynamic contributing 
areas in very small catchments. 167. Leeds. 

Klink CA, Machado RB. 2005. Conservation of the Brazilian Cerrado. Conservation Biology 19 (3): 707–
713 DOI: 10.1111/j.1523-1739.2005.00702.x 

Lahsen M, Nobre CA. 2007. Challenges of connecting international science and local level sustainability 
efforts: the case of the Large-Scale Biosphere–Atmosphere Experiment in Amazonia. Environmental 
Science & Policy 10 (1): 62–74 DOI: 10.1016/j.envsci.2006.10.005 

Lambin EF, Gibbs HK, Ferreira L, Grau R, Mayaux P, Meyfroidt P, Morton DC, Rudel TK, Gasparri I, 
Munger J. 2013. Estimating the world’s potentially available cropland using a bottom-up approach. 
Global Environmental Change 23 (5): 892–901 DOI: 10.1016/j.gloenvcha.2013.05.005 

Lamparter G, Nobrega RLB, Kovacs K, Amorim RSS, Gerold G. 2018. Modelling hydrological impacts 
of agricultural expansion in two macro-catchments in Southern Amazonia, Brazil. Regional 
Environmental Change 18 (1): 91–103 DOI: 10.1007/s10113-016-1015-2 

Lapola DM, Martinelli LA, Peres CA, Ometto JPHBHB, Ferreira ME, Nobre CA, Aguiar APD, 
Bustamante MMCC, Cardoso MF, Costa MH, et al. 2013. Pervasive transition of the Brazilian land-
use system. Nature Climate Change 4 (1): 27–35 DOI: 10.1038/nclimate2056 

Lapola DM, Schaldach R, Alcamo J, Bondeau A, Msangi S, Priess JA, Silvestrini R, Soares-Filho BS. 
2011. Impacts of Climate Change and the End of Deforestation on Land Use in the Brazilian Legal 
Amazon. Earth Interactions 15 (16): 1–29 DOI: 10.1175/2010EI333.1 

Lathuillière MJ, Johnson MS, Donner SD. 2012. Water use by terrestrial ecosystems: temporal 
variability in rainforest and agricultural contributions to evapotranspiration in Mato Grosso, Brazil. 
Environmental Research Letters 7 (2): 024024 DOI: 10.1088/1748-9326/7/2/024024 

Laurance WF. 2001. ENVIRONMENT: The Future of the Brazilian Amazon. Science 291 (5503): 438–
439 DOI: 10.1126/science.291.5503.438 

Leal CG, Pompeu PS, Gardner TA, Leitão RP, Hughes RM, Kaufmann PR, Zuanon J, de Paula FR, 
Ferraz SFB, Thomson JR, et al. 2016. Multi-scale assessment of human-induced changes to 
Amazonian instream habitats. Landscape Ecology 31 (8): 1725–1745 DOI: 10.1007/s10980-016-0358-
x 

Lee JE, Johnson K, Fung I. 2009. Precipitation over South America during the Last Glacial Maximum: 
An analysis of the “amount effect” with a water isotope-enabled general circulation model, Geophysical 
Research Letters 36, L19701, DOI: 10.1029/2009GL039265 

Li F, Ye YP, Song BW, Wang RS, Tao Y. 2014. Assessing the changes in land use and ecosystem 
services in Changzhou municipality, Peoples’ Republic of China, 1991–2006. Ecological Indicators 42: 
95–103 DOI: 10.1016/j.ecolind.2013.11.012 

Lim KJ, Engel BA, Tang Z, Choi J, Kim K-S, Muthukrishnan S, Tripathy D. 2005. Automated Web GIS 
based hydrograph analysis tool, WHAT. Journal of the American Water Resources Association 41 (6): 
1407–1416 DOI: 10.1111/j.1752-1688.2005.tb03808.x 

Lim KJ, Park YS, Kim J, Shin Y-C, Kim NW, Kim SJ, Jeon J-H, Engel BA. 2010. Development of genetic 
algorithm-based optimization module in WHAT system for hydrograph analysis and model application. 
Computers & Geosciences 36 (7): 936–944 DOI: 10.1016/j.cageo.2010.01.004 

Lim KJ, Engel BA, Tang Z, Choi J, Kim K, Muthukrishnan S, Tripathy D. 2005. Automated Web GIS 
based Hydrograph Analysis Tool, WHAT. Journal of American Water Resources Association 41: 
1407–1416. DOI: 10.1111/j.1752-1688.2005.tb03808.x 



References 

 

165 
 

Lim KJ, Park YS, Kim J, Shin Y-C, Kim NW, Kim SJ, Jeon J-H, Engel BA. 2010. Development of genetic 
algorithm-based optimization module in WHAT system for hydrograph analysis and model application. 
Computers & Geosciences 36 (7): 936–944 DOI: 10.1016/j.cageo.2010.01.004 

Lima JEFW. 2000. Determinação da evapotranspiração de uma bacia hidrográfica sob vegetação 
natural de cerrado, pelo método do balanço hídrico. Universidade de Brasília, Brasília, Brazil. 

Lima LS, Coe MT, Soares Filho BS, Cuadra S V., Dias LCP, Costa MH, Lima LS, Rodrigues HO. 2014. 
Feedbacks between deforestation, climate, and hydrology in the Southwestern Amazon: Implications 
for the provision of ecosystem services. Landscape Ecology 29 (2): 261–274 DOI: 10.1007/s10980-
013-9962-1 

Lin HS, Mclnnes KJ, Wilding LP, Hallmark CT. 1998. Macroporosity and initial moisture effects on 
infiltration rates in vertisols and vertic intergrades. Soil Science 163 (1): 2–8 DOI: 10.1097/00010694-
199801000-00002 

Logsdon SD, Allmaras RR, Wu L, Swan JB, Randall GW. 1990. Macroporosity and Its Relation to 
Saturated Hydraulic Conductivity under Different Tillage Practices. Soil Science Society of America 
Journal 54 (4): 1096 DOI: 10.2136/sssaj1990.03615995005400040029x 

Longo RM, Espíndola CR, Ribeiro AÍ. 1999. Modificações Na Estabilidade De Agregados No Solo 
Decorrentes Da Introdução De Pastagens Em Áreas De Cerrado E Floresta Amazônica Introduction 
of Pasture Areas in “ Cerrado ” and Amazon Forest. Revista Brasileira de Engenharia Agrícola e 
Ambiental, 3 (3): 276–280 DOI: 10.1590/1807-1929/agriambi.v3n3p276-280 

Lorenzo JS, Griffith JJ, Juchsch I, Souza AL, Reis MGF, Vale ABA. 1994. Fitossociologia para 
recuperar área de lavra. Ambiente - rev. CETESB tecnol. 8 (1): 26–33 

Lowrance R, Sheridan JM. 2005. Surface runoff water quality in a managed three zone riparian buffer. 
Journal of environmental quality 34 (5): 1851–1859 DOI: 10.2134/jeq2004.0291 

Lowrance R, Todd R, Fail, J, Hendrickson, O, Leonard R, Asmussen L. 1984. Riparian Forests as 
Nutrient Filters in Agricultural Watersheds. BioScience 34 (6): 374–377 DOI: 10.2307/1309729 

Loyola RD, Oliveira-Santos LGR, Almeida-Neto M, Nogueira DM, Kubota U, Diniz-Filho JAF, Lewinsohn 
TM. 2009. Integrating economic costs and biological traits into global conservation priorities for 
carnivores. PLoS ONE 4 (8) DOI: 10.1371/journal.pone.0006807 

Luke SH, Barclay H, Bidin K, Chey VK, Ewers RM, Foster WA, Nainar A, Pfeifer M, Reynolds G, Turner 
EC, et al. 2017. The effects of catchment and riparian forest quality on stream environmental conditions 
across a tropical rainforest and oil palm landscape in Malaysian Borneo. Ecohydrology 10 (4): e1827 
DOI: 10.1002/eco.1827 

Luke SH, Slade EM, Gray CL, Annammala K V., Drewer J, Williamson J, Agama AL, Ationg M, Mitchell 
SL, Vairappan CS, et al. 2018. Riparian buffers in tropical agriculture: Scientific support, effectiveness 
and directions for policy (T Siqueira, ed.). Journal of Applied Ecology DOI: 10.1111/1365-2664.13280 

Macedo MN, Coe MT, DeFries R, Uriarte M, Brando PM, Neill C, Walker WS. 2013. Land-use-driven 
stream warming in southeastern Amazonia. Philosophical transactions of the Royal Society of London. 
Series B, Biological sciences 368 (1619): 20120153 DOI: 10.1098/rstb.2012.0153 

Mander Ü, Tournebize J. 2015. Riparian Buffer Zones: Functions and Dimensioning. In Reference 
Module in Earth Systems and Environmental Sciences Elsevier; 1–23. DOI: 10.1016/B978-0-12-
409548-9.09304-0 

Marchman SC, Miwa M, Summer WB, Terrell S, Jones DG, Scarbrough SL, Jackson CR. 2015. 
Clearcutting and pine planting effects on nutrient concentrations and export in two mixed use 
headwater streams: Upper Coastal Plain, Southeastern USA. Hydrological Processes 29 (1): 13–28 
DOI: 10.1002/hyp.10121 

Marcuzzo FFN, Melo DCR, Rocha HM. 2011. Distribuição Espaço-Temporal e Sazonalidade das 
Chuvas no Estado do Mato Grosso. Revista Brasileira de Recursos Hídricos 16 (4): 157–167 

Marimon BS, Felfili JM, Lima EDS, Duarte WMG, Marimon-Júnior BH. 2010. Environmental 
determinants for natural regeneration of gallery forest at the Cerrado/Amazonia boundaries in Brazil. 
Acta Amazonica 40 (1): 107–118 DOI: 10.1590/S0044-59672010000100014 



References 

 

166 
 

Marimon BS, Felfili JM, Lima ES. 2002. Floristics and Phytosociology of the Gallery Forest of the 
Bacaba Stream, Nova Xavantina, Mato Grosso, Brazil. Edinburgh Journal of Botany 59 (2): 303–318 
DOI: 10.1017/S0960428602000124 

Marimon BS, Marimon-Junior BH, Mews HA, Jancoski HS, Franczak DD, Lima HS, Lenza E, Rossete 
AN, Moresco MC. 2012. Florística dos campos de murundus do Pantanal do Araguaia, Mato Grosso, 
Brasil. Acta Botanica Brasilica 26 (1): 181–196 DOI: 10.1590/S0102-33062012000100018 

Markewitz D, Lamon EC, Bustamante MC, Chaves J, Figueiredo RO, Johnson MS, Krusche A, Neill C, 
Silva JSOO. 2011. Discharge–calcium concentration relationships in streams of the Amazon and 
Cerrado of Brazil: soil or land use controlled. Biogeochemistry 105 (1–3): 19–35 DOI: 10.1007/s10533-
011-9574-2 

Markewitz D, Resende JCF, Parron L, Bustamante M, Klink CA, Figueiredo R de O, Davidson EA. 2006. 
Dissolved rainfall inputs and streamwater outputs in an undisturbed watershed on highly weathered 
soils in the Brazilian cerrado. Hydrological Processes 20 (12): 2615–2639 DOI: 10.1002/hyp.6219 

Martı́nez LJ, Zinck JA, Martínez LJ, Zinck JA. 2004. Temporal variation of soil compaction and 
deterioration of soil quality in pasture areas of Colombian Amazonia. Soil and Tillage Research 75 (1): 
3–18 DOI: 10.1016/j.still.2002.12.001 

Massuel S, Cappelaere B, Favreau G, Leduc C, Lebel T, Vischel T. 2011. Integrated surface water–
groundwater modelling in the context of increasing water reserves of a regional Sahelian aquifer. 
Hydrological Sciences Journal 56 (7): 1242–1264 DOI: 10.1080/02626667.2011.609171 

Mazzetto AM, Feigl BJ, Cerri CEP, Cerri CC. 2016. Comparing how land use change impacts soil 
microbial catabolic respiration in Southwestern Amazon. Brazilian Journal of Microbiology 47 (1): 63–
72 DOI: 10.1016/j.bjm.2015.11.025 

McGrath DA, Smith CK, Gholz HL, Oliveira FDA. 2001. Effects of land-use change on soil nutrient 
dynamics in Amaz??nia. Ecosystems 4 (7): 625–645 DOI: 10.1007/s10021-001-0033-0 

Mcjannet D, Wallace J, Keen R, Hawdon A, Kemei J. 2012. The filtering capacity of a tropical riverine 
wetland: II. Sediment and nutrient balances. Hydrological Processes 26 (1): 53–72 DOI: 
10.1002/hyp.8111 

Meister S, Nobrega RLB, Rieger W, Wolf R, Gerold G. 2017. PROCESS-BASED MODELLING OF THE 
IMPACTS OF LAND USE CHANGE ON THE WATER BALANCE IN THE CERRADO BIOME (RIO 
DAS MORTES, BRAZIL). Erdkunde DOI: 10.3112/erdkunde.2017.03.06 

Mendonça RC de, Felfili JM, Walter BM, Silva Júnior MC da, Rezende AV, Filgueiras T de S, Nogueira 
PE, Fagg CW. 2008. Flora Vascular do Bioma Cerrado, Checklist com 12356 espécies. Cerrado: 
ecologia e flora 2: 422–442 

Mendonça RC, Felfili JM, Walter BM., Silva Junior MC, Rezende  a. V., Filgueiras TS, Nogueira P. 
1998. Flora vascular do bioma Cerrado. Cerrado: Ambiente e Flora. Embrapa, Planaltina: p.289-556 
DOI: 10.1590/S0100-84042008000300005 

Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE. 2006. A global 
overview of the conservation status of tropical dry forests. Journal of Biogeography 33 (3): 491–505 
DOI: 10.1111/j.1365-2699.2005.01424.x 

Milly PCD, Dunne KA. Vecchia AV. 2005. Global pattern of trends in stream flow and water availability 
in a changing climate. Nature 438, 347–350, DOI: 10.1038/nature04312. 

Mkhwanazi M, Chávez J, Andales A. 2015. SEBAL-A: A Remote Sensing ET Algorithm that Accounts 
for Advection with Limited Data. Part I: Development and Validation. Remote Sensing 7 (11): 15046–
15067 DOI: 10.3390/rs71115046 

Molnár P, Ramírez JA. 2001, Recent trends in precipitation and streamflow in the Rio Puerco basin. J. 
Climate 14(10), 2317–2328, DOI: 10.1175/1520-0442(2001)014<2317:RTIPAS>2.0.CO;2. 

Montanari R, Souza GSA, Pereira GT, Marques J, Siqueira DS, Siqueira GM. 2012. The use of scaled 
semivariograms to plan soil sampling in sugarcane fields. Precision Agriculture 13 (5): 542–552 DOI: 
10.1007/s11119-012-9265-6 

http://dx.doi.org/10.1175/1520-0442(2001)014%3c2317:RTIPAS%3e2.0.CO;2


References 

 

167 
 

Moore ID, Grayson RB, Ladson AR. 1991. Digital terrain modelling: A review of hydrological, 
geomorphological, and biological applications. Hydrological Processes 5 (1): 3–30 DOI: 
10.1002/hyp.3360050103 

Moraes, J.M., Schuler, A.E., Dunne, T., Figueiredo, R.O., Victoria, R.L. 2006. Water storage and runoff 
processes in plinthic soils under forest and pasture in Eastern Amazonia. Hydrological Processes 20: 
2509-2526. Doi: 

Morais RF de, Silva ECS da, Metelo MRL, Morais FF de. 2013. Composição florística e estrutura da 
comunidade vegetal em diferentes fitofisionomias do Pantanal de Poconé, Mato Grosso. Rodriguésia 
64 (4): 775–790 DOI: 10.1590/S2175-78602013000400008 

Moreira A, Fageria NK. 2010. Liming influence on soil chemical properties, nutritional status and yield 
of alfalfa grown in acid soil. Revista Brasileira de Ciência do Solo 34 (4): 1231–1239 DOI: 
10.1590/S0100-06832010000400022 

Moreira-Turcq P, Seyler P, Guyot JL, Etcheber H. 2003. Exportation of organic carbon from the Amazon 
River and its main tributaries. Hydrological Processes 17 (7): 1329–1344 DOI: 10.1002/hyp.1287 

Müller H, Rufin P, Griffiths P, Barros Siqueira AJ, Hostert P. 2015. Mining dense Landsat time series 
for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote 
Sensing of Environment 156: 490–499 DOI: 10.1016/j.rse.2014.10.014 

Muñoz-Villers LE, McDonnell JJ. 2013. Land use change effects on runoff generation in a humid tropical 
montane cloud forest region. Hydrology and Earth System Sciences 17 (9): 3543–3560 DOI: 
10.5194/hess-17-3543-2013 

Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for 
conservation priorities. Nature 403 (6772): 853–858 DOI: 10.1038/35002501 

Myers N. 2003. Biodiversity Hotspots Revisited. BioScience 53 (10): 916 DOI: 10.1641/0006-
3568(2003)053[0916:BHR]2.0.CO;2 

Nagy RC, Porder S, Neill C, Brando P, Quintino RM, Do Nascimento SASA. 2015. Structure and 
composition of altered riparian forests in an agricultural Amazonian landscape. Ecological Applications 
25 (6): 1725–1738 DOI: 10.1890/14-1740.1 

Naiman RJ, Decamps H, Pollock M. 1993. The Role of Riparian Corridors in Maintaining Regional 
Biodiversity. Ecological Applications 3 (2): 209–212 DOI: 10.2307/1941822 

Neary DG. 2016. Long-term forest paired catchment studies: What do they tell us that landscape-level 
monitoring does not? Forests 7 (8): 1–15 DOI: 10.3390/f7080164 

Neill C, Chaves JE, Biggs T, Deegan L a., Elsenbeer H, Figueiredo RO, Germer S, Johnson MS, 
Lehmann J, Markewitz D, et al. 2011. Runoff sources and land cover change in the Amazon: An end-
member mixing analysis from small watersheds. Biogeochemistry 105 (1): 7–18 DOI: 10.1007/s10533-
011-9597-8 

Neill C, Coe MT, Riskin SH, Krusche A V., Elsenbeer H, Macedo MN, McHorney R, Lefebvre P, 
Davidson EA, Scheffler R, et al. 2013. Watershed responses to Amazon soya bean cropland 
expansion and intensification. Philosophical Transactions of the Royal Society B: Biological Sciences 
368 (1619): 20120425–20120425 DOI: 10.1098/rstb.2012.0425 

Neill C, Deegan LA, Thomas SM, Cerri CC. 2001. Deforestation for pasture alters nitrogen and 
phosphorus in small Amazonian streams. Ecological Applications 11 (6): 1817–1828 DOI: 
10.1890/1051-0761(2001)011[1817:DFPANA]2.0.CO;2 

Neill C, Germer S, Neto G, Krusche A, Chaves J, Neill C, Germer S, Neto SG, Krusche A, Elsenbeer 
H. 2008. Land management impacts on runoff sources in small Amazon watersheds. Hydrological 
Processes 22 (12): 1766–1775 DOI: 10.1002/hyp.6803 

Neill C, Jankowski K, Brando PM, Coe MT, Deegan LA, Macedo MN, Riskin SH, Porder S, Elsenbeer 
H, Krusche A V. 2017. Surprisingly Modest Water Quality Impacts From Expansion and Intensification 
of Large-Sscale Commercial Agriculture in the Brazilian Amazon-Cerrado Region. Tropical 
Conservation Science 10: 194008291772066 DOI: 10.1177/1940082917720669 



References 

 

168 
 

Neill C, Piccolo MC, Cerri CC, Steudler PA, Melillo JM. 2006. Soil solution nitrogen losses during 
clearing of lowland Amazon forest for pasture. Plant and Soil 281 (1–2): 233–245 DOI: 
10.1007/s11104-005-4435-1 

Nepstad D, McGrath D, Stickler C, Alencar A, Azevedo A, Swette B, Bezerra T, DiGiano M, Shimada 
J, Seroa da Motta R, et al. 2014. Slowing Amazon deforestation through public policy and interventions 
in beef and soy supply chains. Science 344 (6188): 1118–1123 DOI: 10.1126/science.1248525 

Neu V, Neill C, Krusche A V. 2011. Gaseous and fluvial carbon export from an Amazon forest 
watershed. Biogeochemistry 105 (1–3): 133–147 DOI: 10.1007/s10533-011-9581-3 

Neufeldt H, Resck DVS, Ayarza MA. 2002. Texture and land-use effects on soil organic matter in 
Cerrado Oxisols, Central Brazil. Geoderma 107 (3–4): 151–164 DOI: 10.1016/S0016-7061(01)00145-
8 

Newbold JD, Erman DC, Roby KB. 1980. Effects of Logging on Macroinvertebrates in Streams With 
and Without Buffer Strips. Canadian Journal of Fisheries and Aquatic Sciences 37 (7): 1076–1085 
DOI: 10.1139/f80-140 

Niedzialek JM, Ogden FL. 2010. First-order catchment mass balance during the wet season in the 
Panama Canal Watershed, Journal of Hydrology, 462-463: 77–86, DOI:10.1016/j.jhydrol.2010.07.044. 

Nobre CA, Sampaio G, Borma LS, Castilla-Rubio JC, Silva JS, Cardoso M. 2016. Land-use and climate 
change risks in the Amazon and the need of a novel sustainable development paradigm. Proceedings 
of the National Academy of Sciences of the United States of America 113 (39): 10759–10768 DOI: 
10.1073/pnas.1605516113 

Nóbrega RLB, Guzha AC, Lamparter G, Amorim RSSS, Couto EG, Hughes HJ, Jungkunst HF, Gerold 
G, Programs I, Science E, et al. 2018a. Impacts of land-use and land-cover change on stream 
hydrochemistry in the Cerrado and Amazon biomes. Science of The Total Environment 635: 1–42 DOI: 
10.1016/j.scitotenv.2018.03.356 

Nóbrega RLB, Lamparter G, Hughes H, Guzha AC, Amorim RSS, Gerold G. 2018b. A multi-approach 
and multi-scale study on water quantity and quality changes in the Tapajós River basin, Amazon. 
Proceedings of the International Association of Hydrological Sciences 377: 3–7 DOI: 10.5194/piahs-
377-3-2018 

Nóbrega RLB, Guzha AC, Torres GN, Kovacs K, Lamparter G, Amorim RSSS, Couto E, Gerold G. 
2017. Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, 
evapotranspiration and streamflow on the Amazonian agricultural frontier (JA Jones, ed.). PLOS ONE 
12 (6): e0179414 DOI: 10.1371/journal.pone.0179414 

Ogden FL, Crouch TD, Stallard RF, Hall JS. 2013. Effect of land cover and use on dry season river 
runoff, runoff efficiency, and peak storm runoff in the seasonal tropics of Central Panama. Water 
Resources Research 49 (12): 8443–8462 DOI: 10.1002/2013WR013956 

Oki T, Kanae S. 2006. Global Hydrological Cycles and World Water Resources. Science 313 (5790): 
1068–1072 DOI: 10.1126/science.1128845 

Oliveira PS, Marquis RJ. 2002. The Cerrados of Brazil (PS Oliveira and RJ Marquis, eds). Columbia 
University Press: New York Chichester, West Sussex. DOI: 10.7312/oliv12042 

Oliveira PTS, Nearing MA, Moran MS, Goodrich DC, Wendland E, Gupta H V. 2014. Trends in water 
balance components across the Brazilian Cerrado. Water Resources Research 50 (9): 7100–7114 
DOI: 10.1002/2013WR015202 

Oliveira PTS, Wendland E, Nearing M a., Scott RL, Rosolem R, da Rocha HR. 2015. The water balance 
components of undisturbed tropical woodlands in the Brazilian cerrado. Hydrology and Earth System 
Sciences 19 (6): 2899–2910 DOI: 10.5194/hess-19-2899-2015 

Oliveira RS, Bezerra L, Davidson E a., Pinto F, Klink C a., Nepstad DC, Moreira  a. 2005. Deep root 
function in soil water dynamics in cerrado savannas of central Brazil. Functional Ecology 19 (4): 574–
581 DOI: 10.1111/j.1365-2435.2005.01003.x 

Oliveira-filho AT, Ratter JA. 1995. A study of the origin of central Brazilian Forests by the analysis of 
plant species distribution patterns. Edinb. J. Bot. 52 (2): 141–194 DOI: 10.1017/S0960428600000949 

http://dx.doi.org/10.1016/j.jhydrol.2010.07.044


References 

 

169 
 

Ometto JP, Aguiar APD, Martinelli LA. 2011. Amazon deforestation in Brazil: effects, drivers and 
challenges. Carbon Management 2 (5): 575–585 DOI: 10.4155/cmt.11.48 

Oni SK, Futter MN, Molot LA, Dillon PJ. 2014. Adjacent catchments with similar patterns of land use 
and climate have markedly different dissolved organic carbon concentration and runoff dynamics. 
Hydrological Processes 28 (3): 1436–1449 DOI: 10.1002/hyp.9681 

Osborne LL, Kovacic DA. 1995. 94Z/00035 Riparian vegetated buffer strips in water-quality restoration 
and stream management. Biological Conservation 71: 215 DOI: 10.1016/0006-3207(95)90078-0 

Ouyang Y. 2005. Evaluation of river water quality monitoring stations by principal component analysis. 
Water Research 39: 2621–2635 DOI: 10.1016/j.watres.2005.04.024 

Öztürk M, Copty NK, Saysel AK. 2013. Modeling the impact of land use change on the hydrology of a 
rural watershed. Journal of Hydrology 497: 97–109 DOI: 10.1016/j.jhydrol.2013.05.022 

Paço TA, Pôças I, Cunha M, Silvestre JC, Santos FL, Paredes P, Pereira LS. 2014. Evapotranspiration 
and crop coefficients for a super intensive olive orchard. An application of SIMDualKc and METRIC 
models using ground and satellite observations. Journal of Hydrology 519: 2067–2080 DOI: 
10.1016/j.jhydrol.2014.09.075 

Parron LM, Bustamante MMC, Markewitz D. 2011. Fluxes of nitrogen and phosphorus in a gallery forest 
in the Cerrado of central Brazil. Biogeochemistry 105 (1–3): 89–104 DOI: 10.1007/s10533-010-9537-
z 

Pavanato H, Melo-Santos G, Lima D, Portocarrero-Aya M, Paschoalini M, Mosquera F, Trujillo F, 
Meneses R, Marmontel M, Maretti C. 2016. Risks of dam construction for South American river 
dolphins: a case study of the Tapajós River. Endangered Species Research 31 (1): 47–60 DOI: 
10.3354/esr00751 

Penaluna BE, Olson DH, Flitcroft RL, Weber MA, Bellmore JR, Wondzell SM, Dunham JB, Johnson SL, 
Reeves GH. 2017. Aquatic biodiversity in forests: a weak link in ecosystem services resilience. 
Biodiversity and Conservation 26 (13): 3125–3155 DOI: 10.1007/s10531-016-1148-0 

Peralta-Maraver I, Reiss J, Robertson AL. 2018. Interplay of hydrology, community ecology and 
pollutant attenuation in the hyporheic zone. Science of the Total Environment 610–611: 267–275 DOI: 
10.1016/j.scitotenv.2017.08.036 

Pereira P, Martha GB, Santana CA, Alves E. 2012. The development of Brazilian agriculture: future 
technological challenges and opportunities. Agriculture & Food Security 1 (1): 4 DOI: 10.1186/2048-
7010-1-4 

Peterjohn WT, Correll DL. 1984. Nutrient Dynamics in an Agricultural Watershed: Observations on the 
Role of a Riparian Forest. Ecology 65 (5): 1466–1475 DOI: 10.2307/1939127 

Pfeffer J, Champollion C, Favreau G, Cappelaere B, Hinderer J, Boucher M, Nazoumou Y, Oï M, 
Mouyen M, Henri C, Le Moigne N, Deroussi S, Demarty J, Boulain N, Benarrosh B, Robert O. 2013. 
Evaluating surface and subsurface water storage variations at small time and space scales from 
relative gravity measurements in semi-arid Niger. Water Resources Research. 49 (6): 3276-3291. DOI: 
10.1002/wrcr.20235 

Phillip MS. 1994. Measuring trees and forests. CABI Publishing: Wallingford, UK. 

Pinheiro TF, Escada MISS, Valeriano DM, Hostert P, Gollnow F, Müller H. 2016. Forest degradation 
associated with logging frontier expansion in the Amazon: The BR-163 region in southwestern pará, 
Brazil. Earth Interactions 20 (17): 1–26 DOI: 10.1175/EI-D-15-0016.1 

Pittaway PA, Melland AR, Antille DL, Marchuk S. 2018. Dissolved Organic Carbon in Leachate after 
Application of Granular and Liquid N–P–K Fertilizers to a Sugarcane Soil. Journal of Environment 
Quality 47 (3): 522 DOI: 10.2134/jeq2017.11.0433 

Ponce VM, Cunha CN da. 1993. Vegetated Earthmounds in Tropical Savannas of Central Brazil: A 
Synthesis: With Special Reference to the Pantanal do Mato Grosso. Journal of Biogeography 20 (2): 
219–225 DOI: 10.2307/2845673 

http://onlinelibrary.wiley.com/doi/10.1002/wrcr.20235/abstract
http://onlinelibrary.wiley.com/doi/10.1002/wrcr.20235/abstract


References 

 

170 
 

Potter C, Klooster S, Genovese V. 2012. Net primary production of terrestrial ecosystems from 2000 to 
2009. Climatic Change 115 (2): 365–378 DOI: 10.1007/s10584-012-0460-2 

Price JS, Maloney DA 1994. Hydrology of a patterned bog-fen complex in south-eastern Labrador, 
Canada. Nordic Hydrology 25: 313–330. 

Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI. 2011. Soils of Amazonia with 
particular reference to the RAINFOR sites. Biogeosciences 8 (6): 1415–1440 DOI: 10.5194/bg-8-1415-
2011 

R Core Team. 2017. R: A language and environment for statistical computing Available at: 
https://www.r-project.org/ 

Raaimakers D, Lambers H. 1996. Response to phosphorus supply of tropical tree seedlings: a 
comparison between a pioneer species Tapirira obtusa and a climax species Lecythis corrugata. New 
Phytologist 132 (1): 97–102 DOI: 10.1111/j.1469-8137.1996.tb04513.x  

Ranalli AJ, Macalady DL. 2010. The importance of the riparian zone and in-stream processes in nitrate 
attenuation in undisturbed and agricultural watersheds - A review of the scientific literature. Journal of 
Hydrology 389 (3–4): 406–415 DOI: 10.1016/j.jhydrol.2010.05.045 

Randhir TO, Ekness P. 2013. Water quality change and habitat potential in riparian ecosystems. 
Ecohydrology and Hydrobiology 13 (3): 192–200 DOI: 10.1016/j.ecohyd.2013.09.001 

Ratter J a., Ribeiro JF, Bridgewater S, S. B, Bridgewater S. 1997. The Brazilian Cerrado Vegetation 
and Threats to its Biodiversity. Annals of Botany 80 (3): 223–230 DOI: 10.1006/anbo.1997.0469 

Ravi S, D’Odorico P, Okin GS. 2007. Hydrologic and aeolian controls on vegetation patterns in arid 
landscapes. Geophysical Research Letters 34 (24): 1–5 DOI: 10.1029/2007GL031023 

Recha JW, Lehmann J, Walter MT, Pell A, Verchot L, Johnson M. 2012. Stream Discharge in Tropical 
Headwater Catchments as a Result of Forest Clearing and Soil Degradation. Earth Interactions 16 
(13): 1–18 DOI: 10.1175/2012EI000439.1 

Recha JW, Lehmann J, Walter MT, Pell A, Verchot L, Johnson M. 2013. Stream water nutrient and 
organic carbon exports from tropical headwater catchments at a soil degradation gradient. Nutrient 
Cycling in Agroecosystems (3) DOI: 10.1007/s10705-013-9554-0 

Resende ILDM, Araújo GM De, Oliveira APDA, Oliveira AP De, Ávila Júnior RS De. 2004. A 
comunidade vegetal e as características abióticas de um campo de murundu em Uberlândia, MG. 
Acta Botanica Brasilica 18 (1): 9–17 DOI: 10.1590/S0102-33062004000100002 

Ribeiro JF, Walter BMT. 2008. AS PRINCIPAIS FITOFISIONOMIAS Ribeiro e Walter 2008.pdf: 151–
212. 

Richards LA. 1947. Pressure-membrane apparatus, construction and use. Agricultural Engineering 
(28): 451–454. 

Richardson JS, Naiman RJ, Swanson FJ, Hibbs DE. 2005. Riparian communities associated with pacific 
northwest headwater streams: assemblages, processes, and uniqueness. Journal of the American 
Water Resources Association 41 (4): 935–947 DOI: 10.1111/j.1752-1688.2005.tb03778.x 

Richey JE, Ballester MV, Davidson EA, Johnson MS, Krusche A V. 2011. Land-Water interactions in 
the amazon. Biogeochemistry 105 (1–3): 1–5 DOI: 10.1007/s10533-011-9622-y 

Richey JE, Wilhelm SR, Mcclain ME, Victoria RL, Melack JM, Araujo Lima C. 1997. Organic matter and 
nutrient dynamics in river corridors of the Amazon Basin and their response to anthropogenic change. 
Ciencia e Cultura (Sao Paulo) 49 (1–2): 98 DOI: 10.1029/20086M000728 

Riskin SH, Neill C, Jankowski K, Krusche A V., McHorney R, Elsenbeer H, Macedo MN, Nunes D, 
Porder S. 2017. Solute and sediment export from Amazon forest and soybean headwater streams: 
Ecological Applications 27 (1): 193–207 DOI: 10.1002/eap.1428 

Riskin SH, Porder S, Neill C, Figueira AMES, Tubbesing C, Mahowald N. 2013. The fate of phosphorus 
fertilizer in Amazon soya bean fields. Philosophical transactions of the Royal Society of London. Series 
B, Biological sciences 368 (1619): 20120154 DOI: 10.1098/rstb.2012.0154 



References 

 

171 
 

Roa-García MC, Brown S, Schreier H, Lavkulich LM. 2011. The role of land use and soils in regulating 
water flow in small headwater catchments of the Andes. Water Resources Research 47 (5): W05510 
DOI: 10.1029/2010WR009582 

Roa-Garcia, M. C. and Weiler, M. 2010. Integrated response and transit time distributions of watersheds 
by combining hydrograph separation and long-term transit time modeling, Hydrology and Earth System 
Sciences, 14, 1537–1549, DOI: 10.5194/hess-14-1537-2010 

Roa‐García MC, Brown S, Schreier H, Lavkulich LM. 2011. The role of land use and soils in regulating 
water flow in small headwater catchments of the Andes, Water Resources Research 47 (5):  DOI: 
10.1029/2010WR009582. 

Rodriguez DA, Tomasella J, Linhares C. 2010. Is the forest conversion to pasture affecting the 
hydrological response of Amazonian catchments? Signals in the Ji-Paraná Basin. Hydrological 
Processes 24 (10): 1254–1269 DOI: 10.1002/hyp.7586 

Rosenblüth B, Fuenzalida HA, Aceituno P. 1997. Recent temperature variations in Southern South 
America. Int. J. Climatol. 17(1), 67–85, DOI: 10.1002/(SICI)1097-0088(199701)17:1<67::AID-
JOC120>3.0.CO;2-G. 

Rowe BA. 1982. Effects of limestone on pasture yields and the pH of two krasnozems in north-western 
tasmania. Australian Journal of Experimental Agriculture 22 (115): 100–105 DOI: 10.1071/EA9820100 

Rufin P, Müller H, Pflugmacher D, Hostert P. 2015. Land use intensity trajectories on Amazonian 
pastures derived from Landsat time series. International Journal of Applied Earth Observation and 
Geoinformation 41 (SEPTEMBER): 1–10 DOI: 10.1016/j.jag.2015.04.010 

Ruhoff AL, Paz AR, Collischonn W, Aragao LEOC, Rocha HR, Malhi YS. 2012. A MODIS-Based Energy 
Balance to Estimate Evapotranspiration for Clear-Sky Days in Brazilian Tropical Savannas. Remote 
Sensing 4 (12): 703–725 DOI: 10.3390/rs4030703 

Salemi LF, Groppo JD, Trevisan R, de Barros Ferraz SF, de Moraes JM, Martinelli LA. 2015. Nitrogen 
dynamics in hydrological flow paths of a small tropical pasture catchment. Catena 127: 250–257 DOI: 
10.1016/j.catena.2015.01.009 

Salemi LF, Groppo JD, Trevisan R, de Moraes JM, de Barros Ferraz SFF, Villani JP, Duarte-Neto PJ, 
Martinelli LA. 2013. Land-use change in the Atlantic rainforest region: Consequences for the hydrology 
of small catchments. Journal of Hydrology 499: 100–109 DOI: 10.1016/j.jhydrol.2013.06.049 

Sánchez-Azofeifa GA, Quesada M, Rodríguez JP, Nassar JM, Stoner KE, Castillo A, Garvin T, Zent 
ELEL, Calvo-Alvarado JC, Kalacska MER, et al. 2005. Research priorities for neotropical dry forests. 
Biotropica 37 (4): 477–485 DOI: 10.1111/j.1744-7429.2005.00066.x 

Sano EE, Ferreira LG, Asner GP, Steinke ET. 2007. Spatial and temporal probabilities of obtaining 
cloud‐free Landsat images over the Brazilian tropical savanna. International Journal of Remote 
Sensing 28 (12): 2739–2752 DOI: 10.1080/01431160600981517 

Sano EE, Rosa R, Luís J, Brito S, Ferreira G, Brito JLS, Ferreira LG. 2008. Notas Científicas 
Mapeamento semidetalhado do uso da terra do Bioma Cerrado. Pesquisa Agropecuária Brasileira 43 
(1): 153–156 DOI: 10.1590/S0100-204X2008000100020 

Santiago J, Da Silva MC, Lima LC, Silva Júnior MC da, Lima LC. 2005. Fitossociologia da regeneração 
arbórea na Mata de Galeria do Pitoco (IBGE-DF), seis anos após fogo acidental. Scientia 
Forestalis/Forest Sciences (67): 64–77 

Santos JC, Leal IR, Almeida-Cortez JS, Fernandes GW, Tabarelli M. 2011. Caatinga: the scientific 
negligence experienced by a dry tropical forest. Tropical Conservation Science 4 (3): 276–286 
Available at: http://tropicalconservationscience.mongabay.com/content/v4/11-09-25_276-
286_Santos_et_al.pdf 

Santos CAG, Ideião SMA. 2006. Application of the wavelet transform for analysis of precipitation and 
runoff time series. In: Prediction in Ungauged Basins (ed. by M. Sivapalan et al.). IAHS Publ. 303, 
431–439. IAHS Press, Wallingford, UK. 

Santos CAG, Galvão CO, Trigo RM. 2003. Rainfall data analysis using wavelet transform. In: Hydrology 
in Mediterranean and Semi-arid Regions (ed. by E. Servat et al.). IAHS Publ. 278, 195–201. IAHS 



References 

 

172 
 

Press, Wallingford, UK. 

Santos CAG, Galvão CO, Suzuki K, Trigo RM. 2001. Matsuyama city rainfall data analysis using 
wavelet transform. Ann. J. Hydraul. Engng, JSCE 45, 211–216. 

Satinsky BM, Zielinski BL, Doherty M, Smith CB, Sharma S, Paul JH, Crump BC, Moran M. 2014. The 
Amazon continuum dataset: quantitative metagenomic and metatranscriptomic inventories of the 
Amazon River plume, June 2010. Microbiome 2 (1): 17 DOI: 10.1186/2049-2618-2-17 

Scatena FN, Bruijnzeel LA, Bubb P, Das S. 2010. Setting the stage, in: Tropical Montane Cloud Forests: 
Science for Conservation and Management, edited by: Bruijnzeel LA, Scatena FN, Hamilton LS, 
Cambridge Univ. Press, UK, 3–13, 2010. 

Scheffler R, Neill C, Krusche A V., Elsenbeer H. 2011. Soil hydraulic response to land-use change 
associated with the recent soybean expansion at the Amazon agricultural frontier. Agriculture, 
Ecosystems and Environment 144 (1): 281–289 DOI: 10.1016/j.agee.2011.08.016 

Scheffler R, Neill C, Krusche A V., Elsenbeer H. 2011. Soil hydraulic response to land-use change 
associated with the recent soybean expansion at the Amazon agricultural frontier. Agriculture, 
Ecosystems and Environment 144 (1): 281–289 DOI: 10.1016/j.agee.2011.08.016 

Scherer-Warren M, Rodrigues LN. 2013. Estimativa de Evapotranspiração Real por Sensoriamento 
Remoto: procedimento e aplicação em pivô central. Boletim de Pesquisa e Desenvolvimento (CPAC), 
Planaltina, DF: Embrapa Cerrados, 35 p. 

Scherer-Warren M. 2012. Desmembramento de Estimativas de Evapotranspiração Obtidas por 
Sensoriamento Remoto nas Componentes de Evaporação e Transpiração Vegetal. Revista Brasileira 
de Geografia Física (02): 361–373 

Schierhorn F, Gittelson AK, Müller D. 2016. How the Collapse of the Beef Sector in Post-Soviet Russia 
Displaced Competition for Ecosystem Services to the Brazilian Amazon. In Land Use Competition, 
Springer International Publishing: Cham; 165–182. DOI: 10.1007/978-3-319-33628-2_10 

Schiesari L, Waichman A, Brock T, Adams C, Grillitsch B. 2013. Pesticide use and biodiversity 
conservation in the Amazonian agricultural frontier. Philosophical transactions of the Royal Society of 
London. Series B, Biological sciences 368 (1619): 20120378 DOI: 10.1098/rstb.2012.0378 

Schneider R. 1963. Ground-Water Provinces of Brazil. Washington. 

Schnorbus M, Alila Y. 2013. Peak flow regime changes following forest harvesting in a snow-dominated 
basin: Effects of harvest area, elevation, and channel connectivity, Water Resour. Res., 49, DOI: 
10.1029/2012WR011901. 

Schoenholtz SH, Van Miegroet H, Burger JA. 2000. A review of chemical and physical properties as 
indicators of forest soil quality: challenges and opportunities. Forest Ecology Management 138 (1–3): 
335–356. 

Séguis L, Cappelaere B, Milési G, Peugeot C, Massuel S, Favreau G. 2004. Simulated impacts of 
climate change and land-clearing on runoff from a small Sahelian catchment. Hydrological Processes 
18 (17): 3401–3413 DOI: 10.1002/hyp.1503 

Shen J. 1981. Discharge Characteristics of Triangular-notch Thin-plate Weirs. Geological Survey 
Water-Supply Paper 1617-B: 1–62 

Sherson LR, Van Horn DJ, Gomez-Velez JD, Crossey LJ, Dahm CN. 2015. Nutrient dynamics in an 
alpine headwater stream: use of continuous water quality sensors to examine responses to wildfire 
and precipitation events. Hydrological Processes 3207 (February) DOI: 10.1002/hyp.10426 

SIDRA/IBGE. 2012. Sistema IBGE de Recuperação Automática Available at: 
http://www.sidra.ibge.gov.br/ [Accessed 20 February 2008] 

Silva CL, Oliveira CAS. 1999. Runoff measurement and prediction for a watershed under natural 
vegetation in central Brazil. Revista Brasileira de Ciência do Solo 23 (3): 695–701 DOI: 
10.1590/S0100-06831999000300024 

http://dx.doi.org/10.1029/2012WR011901


References 

 

173 
 

Silva DML da, Ometto JPHB, Lobo G de A, Lima WDP, Scaranello MA, Mazzi E, Rocha HR da. 2007. 
Can land use changes alter carbon, nitrogen and major ion transport in subtropical Brazilian streams? 
Scientia Agricola 64 (4): 317–324 DOI: 10.1590/S0103-90162007000400002 

Silva DML, Camargo PB, Mcdowell WH, Vieira I, Salomão MSMB, Martinelli LA. 2012. Influence of land 
use changes on water chemistry in streams in the State of São Paulo, southeast Brazil. Anais da 
Academia Brasileira de Ciências 84 (4): 919–930 DOI: 10.1590/S0001-37652012000400007 

Silva JSO, da Bustamante MMC, Markewitz D, Krusche AV, Ferreira LG. 2011. Effects of land cover 
on chemical characteristics of streams in the Cerrado region of Brazil. Biogeochemistry 105 (1): 75–
88 DOI: 10.1007/s10533-010-9557-8 

Silva LCR, Sternberg L, Haridasan M, Hoffmann WA, Miralles-Wilhelm F, Franco AC. 2008. Expansion 
of gallery forests into central Brazilian savannas. Global Change Biology 14 (9): 2108–2118 DOI: 
10.1111/j.1365-2486.2008.01637.x 

Silva ME, Pereira G, Rocha R. 2013. Increasing deforestation at the Arc of Deforestation in Brazil. In 
Geophysical Research Abstracts, Vienna; EGU2013-12011–1. 

Silva-Júnior MC. 2005. Fitossociologia e Estrutura Diamétrica na Mata de Galeria do Pitoco, na 
Reserva Ecológica do IBGE, DF. Cerne 11: 147–158. 

Skeffington RA, Halliday SJ, Wade AJ, Bowes MJ, Loewenthal M. 2015. Using high-frequency water 
quality data to assess sampling strategies for the EU Water Framework Directive. Hydrology and Earth 
System Sciences 19 (5): 2491–2504 DOI: 10.5194/hess-19-2491-2015 

Skorupa  ALA, Fay M, Zinn YL, Scheuber M. 2013. Assessing hydric soils in a gallery forest in the 
Brazilian Cerrado. Soil Use and Management 29 (1): 119–129 DOI: 10.1111/sum.12023 

Smith J, Winograd M, Gallopin G, Pachico D. 1998. Dynamics of the agricultural frontier in the Amazon 
and savannas of Brazil: analyzing the impact of policy and technology. Environmental Modeling and 
Assessment 3 (1/2): 31–46 DOI: 10.1023/A:1019094218552 

Smith KA, Jackson DR, Withers PJA. 2001. Nutrient losses by surface run-off following the application 
of organic manures to arable land. 2. Phosphorus. Environmental Pollution 112 (1): 53–60 DOI: 
10.1016/S0269-7491(00)00098-1 

Smith M, Conte P, Berns AE, Thomson JR, Cavagnaro TR. 2012. Spatial patterns of, and environmental 
controls on, soil properties at a riparian-paddock interface. Soil Biology and Biochemistry 49 (March 
2012): 38–45 DOI: 10.1016/j.soilbio.2012.02.007 

Soares-Filho B, Alencar A, Nepstad D, Cerqueira G, Del Carmen Vera Diaz M, Rivero S, Solórzano L, 
Voll E. 2004a. Simulating the response of land-cover changes to road paving and governance along a 
major Amazon highway: The Santarém-Cuiabá corridor. Global Change Biology 10 (5): 745–764 DOI: 
10.1111/j.1529-8817.2003.00769.x 

Soares-filho B, Rajão R, Macedo M, Carneiro A, Costa W, Coe M, Rodrigues H, Alencar A. 2014b. 
Cracking Brazil ’ s Forest Code. Science 344 (April): 363–364 DOI: 10.1126/science.124663 

Soares-Filho BS, Nepstad DC, Curran L, Cerqueira GC, Garcia RA, Ramos CA, Voll E, McDonald A, 
Lefebvre P, Schlesinger P, et al. 2005. Cenários de desmatamento para a Amazônia. Estudos 
Avançados 19 (54): 137–152 DOI: 10.1590/S0103-40142005000200008 

Soares-Filho BS, Nepstad DC, Curran LM, Cerqueira GC, Garcia RA, Ramos CA, Voll E, McDonald A, 
Lefebvre P, Schlesinger P. 2006. Modelling conservation in the Amazon basin. Nature 440 (7083): 
520–523 DOI: 10.1038/nature04389 

Soil Survey Staff 1999, Soil Taxonomy A basic system of soil classification for making and interpreting 
soil surveys; 2nd edition. Agricultural Handbook 436; Natural Resources Conservation Service, USDA, 
Washington DC, USA, pp. 869 

Soil Survey Staff. 2015. Illustrated guide to soil taxonomy, version 2. Lincoln, Nebraska. 

Souza-Filho PWM, de Souza EB, Silva Júnior RO, Nascimento WR, Versiani de Mendonça BR, 
Guimarães JTF, Dall’Agnol R, Siqueira JO. 2016. Four decades of land-cover, land-use and 



References 

 

174 
 

hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon. Journal of 
Environmental Management 167: 175–184 DOI: 10.1016/j.jenvman.2015.11.039 

Spera SA, Galford GL, Coe MT, Macedo MN, Mustard JF. 2016. Land-use change affects water 
recycling in Brazil’s last agricultural frontier. Global Change Biology 22 (10): 3405–3413 DOI: 
10.1111/gcb.13298 

Speratti A, Johnson M, Martins Sousa H, Nunes Torres G, Guimarães Couto E. 2017. Impact of 
Different Agricultural Waste Biochars on Maize Biomass and Soil Water Content in a Brazilian Cerrado 
Arenosol. Agronomy 7 (3): 49 DOI: 10.3390/agronomy7030049 

Sprent JI. 2001. Nodulation in legumes. Royal Botanic Gardens: Kew, UK. 

Sternberg LDSL, Bucci S, Franco A, Goldstein G, Hoffman WA, Meinzer FC, Moreira MZ, Scholz F. 
2005. Long range lateral root activity by neo-tropical savanna trees. Plant and Soil 270 (1): 169–178 
DOI: 10.1007/s11104-004-1334-9 

Stevens PA, Norris DA, Sparks TH, Hodgson AL. 1994. The impacts of atmospheric n inputs on 
throughfall, soil and stream water interactions for different aged forest and moorland catchments in 
Wales. Water, Air, & Soil Pollution 73 (1): 297–317 DOI: 10.1007/BF00477994 

Stickler CM, Nepstad DC, Azevedo AA, McGrath DG, B PTRS. 2013. Defending public interests in 
private lands: compliance, costs and potential environmental consequences of the Brazilian Forest 
Code in Mato Grosso. Philosophical transactions of the Royal Society of London. Series B, Biological 
sciences 368 (1619): 20120160 DOI: 10.1098/rstb.2012.0160 

Strassburg BBN, Brooks T, Feltran-Barbieri R, Iribarrem A, Crouzeilles R, Loyola R, Latawiec AE, 
Oliveira Filho FJB, Scaramuzza CA de M, Scarano FR, et al. 2017. Moment of truth for the Cerrado 
hotspot. Nature Ecology & Evolution 1 (4): 0099 DOI: 10.1038/s41559-017-0099 

Strey S, Boy J, Strey R, Weber O, Guggenberger G. 2016. Response of soil organic carbon to land-
use change in central Brazil: a large-scale comparison of Ferralsols and Acrisols. Plant and Soil 408 
(1–2): 327–342 DOI: 10.1007/s11104-016-2901-6 

Strohmeier S, Knorr KH, Reichert M, Frei S, Fleckenstein JH, Peiffer S, Matzner E. 2013. 
Concentrations and fluxes of dissolved organic carbon in runoff from a forested catchment: Insights 
from high frequency measurements. Biogeosciences 10 (2): 905–916 DOI: 10.5194/bg-10-905-2013 

Sun J, Tang C, Wu P, Strosnider WHJ, Han Z. 2013. Hydrogeochemical characteristics of streams with 
and without acid mine drainage impacts: A paired catchment study in karst geology, SW China. Journal 
of Hydrology 504: 115–124 DOI: 10.1016/j.jhydrol.2013.09.029 

Suryatmojo H, Masamitsu F, Mizuyama T. 2013. Effects of elective logging methods on runoff 
characteristics in paired small headwater catchment. Procedia Environmental Sciences 17: 221 – 229. 

Tang J-L, Zhang B, Gao C, Zepp H. 2008. Hydrological pathway and source area of nutrient losses 
identified by a multi-scale monitoring in an agricultural catchment. CATENA 72 (3): 374–385 DOI: 
10.1016/j.catena.2007.07.004 

Tardy Y, Bustillo V, Roquin C, Mortatti J, Victoria R. 2005. The Amazon. Bio-geochemistry applied to 
river basin management: Part I. Hydro-climatology, hydrograph separation, mass transfer balances, 
stable isotopes, and modelling. Applied Geochemistry 20 (9): 1746–1829 DOI: 
10.1016/j.apgeochem.2005.06.001 

Templer PH, Mack MC, III FSC, Christenson LM, Compton JE, Crook HD, Currie WS, Curtis CJ, Dail 
DB, D’Antonio CM. 2012. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15 N 
tracer field studies. Ecology 93 (8): 1816–1829 DOI: 10.1890/11-1146.1 

Teuling AJ. 2007. Soil moisture dynamics and land surface-atmosphere interaction. PhD Thesis, 
Wageningen University. 

Thomas SM, Neill C, Deegan LA, Krusche AV., Ballester VM, Victoria RL. 2004. Influences of land use 
and stream size on particulate and dissolved materials in a small Amazonian stream network. 
Biogeochemistry 68: 135–151 DOI: 10.1023/B:BIOG.0000025734.66083.b7 

Tinker PB, Nye PH. 2000. Solute movement in the rhizosphere. Oxford University Press: Oxford. 



References 

 

175 
 

Tiwari T, Lundström J, Kuglerová L, Laudon H, Öhman K, Ågren AM. 2016. Cost of riparian buffer 
zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed 
widths. Water Resources Research 52 (2): 1056–1069 DOI: 10.1002/2015WR018014 

Tognetti S, Aylward B, Bruijnzeel LA. 2010. Assessment needs to support the development of 
arrangements for payments for ecosystem services from tropical montane cloud forests, in: Tropical 
Montane Cloud Forests. Science for Conservation and Management, edited by: Bruijnzeel, L. A., 
Scatena, F. N., and Hamilton, L. S., Cambridge Univ. Press, Cambridge, UK, 671–685. 

Tollefson J. 2015. Stopping deforestation: Battle for the Amazon. Nature 520 (7545): 20–23 DOI: 
10.1038/520020a 

Tomasella J, Neill C, Figueiredo R, Nobre AD. 2009. Water and chemical budgets at the catchment 
scale including nutrient exports from intact forests and disturbed landscapes. In Geophysical 
Monograph Series 505–524. DOI: 10.1029/2008GM000727 

Torrence C, Compo GP. 1998. A practical guide to wavelet analysis. Bull. Am. Met. Soc., 79(1), 61–78, 
DOI: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2. 

Trancoso R, Tomasella J, Filho AC,  Ferreira MT, Rodrigues DA, da Silva RC,  Cuartas LA, Nascimento 
AHM, Nascimento TAM. 2007. Hydrological impacts of forest conversion to grassland in small 
catchments in Brazilian Amazon. In: 87th Conference on Hydrology, Texas, USA.  

Troch PA, Lahmers T, Meira A, Mukherjee R, Pedersen JW, Roy T, Valdés-Pineda R. 2015. Catchment 
coevolution: A useful framework for improving predictions of hydrological change? Water Resources 
Research 51 (7): 4903–4922 DOI: 10.1002/2015WR017032 

Uehara G, Gillman G. 1981. The Mineralogy, Chemistry, and Physics of Tropical Soils with Variable-
Charge Clays. West-View Press: Buolder, Colorado, Colorado. 

Valle Junior RF, Varandas SGP, Pacheco FAL, Pereira VR, Santos CF, Cortes RMV, Sanches 
Fernandes LF. 2015. Impacts of land use conflicts on riverine ecosystems. Land Use Policy 43: 48–
62 DOI: 10.1016/j.landusepol.2014.10.015 

Valle RF, Varandas SGP, Sanches Fernandes LF, Pacheco FAL. 2014. Groundwater quality in rural 
watersheds with environmental land use conflicts. Science of the Total Environment 493: 812–827 
DOI: 10.1016/j.scitotenv.2014.06.068 

Valpassos MAR, Cavalcante EGS, Cassiolato AMR, Alves MC. 2001. Effects of soil management 
systems on soil microbial activity, bulk density and chemical properties. Pesquisa Agropecuária 
Brasileira 36 (12): 1539–1545 DOI: 10.1590/S0100-204X2001001200011 

van den Berg E, Chazdon R, Corrêa BS. 2012. Tree growth and death in a tropical gallery forest in 
Brazil: Understanding the relationships among size, growth, and survivorship for understory and 
canopy dominant species. Plant Ecology 213 (7): 1081–1092 DOI: 10.1007/s11258-012-0067-8 

Vedovato LB, Fonseca MG, Arai E, Anderson LO, Aragão LEOC. 2016. The extent of 2014 forest 
fragmentation in the Brazilian Amazon. Regional Environmental Change 16 (8): 2485–2490 DOI: 
10.1007/s10113-016-1067-3 

Villela DM, Haridasan M. 1994. Response of the ground layer community of a cerrado vegetation in 
central Brazil to liming and irrigation. Plant and Soil 163 (1): 25–31 DOI: 10.1007/BF00033937 

Vogel RM, Fennessey NM. 1994. Flow-Duration Curves. I: New Interpretation and Confidence Intervals. 
Journal of Water Resources Planning and Management 120 (4): 485–504 DOI: 10.1061/(ASCE)0733-
9496(1994)120:4(485) 

Vogt E, Braban CF, Dragosits U, Durand P, Sutton MA, Theobald MR, Rees RM, McDonald C, Murray 
S, Billett MF. 2015. Catchment land use effects on fluxes and concentrations of organic and inorganic 
nitrogen in streams. Agriculture, Ecosystems & Environment 199 (12): 320–332 DOI: 
10.1016/j.agee.2014.10.010 

Voltz M, Goulard M. 1994. Spatial interpolation of soil moisture retention curves. Geoderma 62 (1–3): 
109–123 DOI: 10.1016/0016-7061(94)90031-0 



References 

 

176 
 

Vose JM, Sun G, Ford CR, Bredemeier M, Otsuki K, Wei X, Zhang Z, Zhang L. 2011. Forest 
ecohydrological research in the 21st century: What are the critical needs? Ecohydrology 4 (2): 146–
158 DOI: 10.1002/eco.193 

Vourlitis GL, Hentz CS. 2016. Impacts of chronic N input on the carbon and nitrogen storage of a postfire 
Mediterranean-type shrubland. Journal of Geophysical Research: Biogeosciences 121 (2): 385–398 
DOI: 10.1002/2015JG003220 

Ward JV. 1989. The Four-Dimensional Nature of Lotic Ecosystems. Journal of the North American 
Benthological Society 8 (1): 2–8 DOI: 10.2307/1467397 

Waterloo MJ, Oliveira SM, Drucker DP, Nobre AD, Cuartas LA, Hodnett MG, Langedijk I, Jans WWP, 
Tomasella J, de Araújo AC, et al. 2006. Export of organic carbon in run-off from an Amazonian 
rainforest blackwater catchment. Hydrological Processes 20: 2581–2597 DOI: 10.1002/hyp.6217 

Weigelhofer G, Fuchsberger J, Teufl B, Welti N, Hein T. 2012. Effects of riparian forest buffers on in-
stream nutrient retention in agricultural catchments. Journal of Environment Quality 41 (2): 373–379 
DOI: 10.2134/jeq2010.0436 

Weisberg PJ, Mortenson SG, Dilts TE. 2013. Gallery Forest or Herbaceous Wetland? The Need 
for??Multi-Target Perspectives in Riparian Restoration Planning. Restoration Ecology 21 (1): 12–16 
DOI: 10.1111/j.1526-100X.2012.00907.x 

Weller DE, Baker ME. 2014. Cropland riparian buffers throughout chesapeake bay watershed: Spatial 
patterns and effects on nitrate loads delivered to streams. Journal of the American Water Resources 
Association 50 (3): 696–712 DOI: 10.1111/jawr.12207 

Wilk J, Andersson L, Plermkamon V. 2001. Hydrological impacts of forest conversion to agriculture in 
a large river basin in Northeast Thailand. Hydrological Processes 15 (14): 2729–2748 DOI: 
10.1002/hyp.229 

Williams MR, Fisher TR, Melack J.M. 1997. Solute dynamics water and groundwater in a central 
Amazon catchment undergoing deforestation. Biogeochemistry 38: 303–335. 

Williams MR, Melack JM. 1997. Solute export from forested and partially deforested catchments in the 
central Amazon. Biogeochemistry 38 (1): 67–102 DOI: 10.1023/A:1005774431820 

Wohl E, Barros A, Brunsell N, Chappell NA, Coe M, Giambelluca T, Goldsmith S, Harmon R, Hendrickx 
JMH, Juvik J, et al. 2012. The hydrology of the humid tropics. Nature Climate Change 2 (9): 655–662 
DOI: 10.1038/nclimate1556 

Wright IR, Gash JHC, da Rocha HR, Roberts JM. 1996. Modelling surface conductance for Amazonian 
pasture and forest. In Amazonian Deforestation and Climate, Gash JHC, Nobre CA, Roberts JM, 
Victoria RL (eds). Wiley: Chichester; 437–458. 

Yan J, Li K, Wang W, Zhang D, Zhou G. 2015. Changes in dissolved organic carbon and total dissolved 
nitrogen fluxes across subtropical forest ecosystems at different successional stages. Water 
Resources Research 51 (5): 3681–3694 DOI: 10.1002/2015WR016912 

Yang WH, Liptzin D. 2015. High potential for iron reduction in upland soils. Ecology 96 (7): 2015–2020 
DOI: 10.1890/14-2097.1 

Zadroga, F. 1981. The hydrological importance of a montane cloud forest area of Costa Rica, in: 
Tropical Agricultural Hydrology, edited by: Lal, R. and Russell, E. W., John Wiley and Sons, New York, 
NY, 59–73. 

Zanchi FB, Waterloo MJ, Tapia AP, Alvarado Barrientos MS, Bolson MA, Luizão FJ, Manzi AO, Dolman 
AJ. 2015. Water balance, nutrient and carbon export from a heath forest catchment in central 
Amazonia, Brazil. Hydrological Processes 3648 (March) DOI: 10.1002/hyp.10458 

Zeinalzadeh K, Rezaei E. 2017. Determining spatial and temporal changes of surface water quality 
using principal component analysis. Journal of Hydrology: Regional Studies 13 (June): 1–10 DOI: 
10.1016/j.ejrh.2017.07.002 



References 

 

177 
 

Zhang Y, Guo F, Meng W, Wang X-Q. 2009. Water quality assessment and source identification of 
Daliao river basin using multivariate statistical methods. Environmental Monitoring and Assessment 
152 (1–4): 105–121 DOI: 10.1007/s10661-008-0300-z 

Zhang X, Harvey KD, Hogg WD and Yuzyk TR. 2001. Trends in Canadian streamflow. Water Resour. 
Res. 37(4), 987–998, DOI: 10.1029/2000WR900357. 

Zhao M, Zeng C, Liu Z, Wang S. 2010. Effect of different land use/land cover on karst 
hydrogeochemistry: A paired catchment study of Chenqi and Dengzhanhe, Puding, Guizhou, SW 
China. Journal of Hydrology 388 (1–2): 121–130 DOI: 10.1016/j.jhydrol.2010.04.034 

Zhou W, Zhang Y, Schaefer DA, Sha L, Deng Y, Deng X-B, Dai K-J. 2013. The Role of Stream Water 
Carbon Dynamics and Export in the Carbon Balance of a Tropical Seasonal Rainforest, Southwest 
China (DL Kirchman, ed.). PLoS ONE 8 (2): e56646 DOI: 10.1371/journal.pone.0056646 

Ziegler AD, Giambelluca TW, Tran LT, Vana TT, Nullet MA, Fox J, Vien TD, Pinthong J, Maxwell JF, 
Evett S. 2004, Hydrological consequences of landscape fragmentation in mountainous northern 
Vietnam: evidence of accelerated overland flow generation. J. Hydrol. 287(1-4), 124–146, DOI: 
10.1016/j.jhydrol.2003.09.027. 

Zimmermann B, Elsenbeer H, De Moraes JM. 2006. The influence of land-use changes on soil hydraulic 
properties: Implications for runoff generation. Forest Ecology and Management 222 (1–3): 29–38 DOI: 
10.1016/j.foreco.2005.10.070



References 

 

 
 

 



Appendices 

 

 
 

Appendices 
 

Appendix A 
Table A.1. Descriptive statistics of the base streamflow hydrochemistrya. 

 Amazonian catchments Cerrado catchments 

Parameter 

(mg L-1) 

AFOR APAS CCER CPAS 

N min max median mean sd vc n min max median mean sd vc n min max median mean sd vc n min max median mean sd vc 

TC 75 1.18 12.62 4.04 4.67 2.29 0.49 96 1.17 10.27 4.67 5.12 1.90 0.37 126 0.48 5.46 1.19 1.65 1.17 0.70 86 0.19 13.81 1.04 1.78 1.89 1.06 

TIC 75 < LODb 1.33 0.50 0.51 0.30 0.59 96 < LODb 2.21 0.86 0.92 0.51 0.56 126 < LODb 3.37 0.03 0.38 0.66 1.75 86 < LODb 3.23 < LODb 0.35 0.74 2.11 

TOC 75 1.18 11.78 3.50 4.16 2.18 0.52 96 1.17 9.63 3.63 4.20 1.74 0.41 126 0.48 3.42 1.10 1.28 0.62 0.48 86 0.19 13.81 0.97 1.43 1.66 1.15 

TN 75 0.18 1.55 0.27 0.35 0.21 0.58 96 0.18 1.00 0.36 0.43 0.19 0.45 126 < LODb 0.55 0.18 0.14 0.09 0.62 86 0.11 0.88 0.26 0.29 0.12 0.42 

DC 73 0.48 9.76 3.54 3.83 1.99 0.51 95 0.70 6.51 3.12 3.33 1.34 0.40 82 0.01 5.58 1.00 1.37 1.13 0.82 53 0.20 4.23 0.71 0.97 0.88 0.89 

DIC 73 < LODb 1.44 0.23 0.29 0.34 1.16 95 < LODb 2.08 0.25 0.47 0.49 1.06 101 < LODb 3.19 0.00 0.20 0.59 2.93 73 < LODb 1.40 < LODb 0.05 0.23 4.53 

DOC 73 < LODb 9.76 3.29 3.54 1.95 0.55 95 < LODb 5.76 2.84 2.86 1.21 0.42 82 0.10 3.70 1.00 1.14 0.59 0.52 53 0.20 3.62 0.71 0.89 0.73 0.81 

DN 41 0.18 0.73 0.27 0.31 0.14 0.43 37 0.18 0.65 0.27 0.31 0.11 0.37 62 < LODb 0.28 < LODb 0.09 0.09 1.08 16 0.10 0.48 0.20 0.23 0.09 0.37 

F 75 0.01 0.09 0.02 0.02 0.01 0.43 95 0.01 0.20 0.04 0.04 0.02 0.53 114 < LODb 0.64 0.01 0.05 0.11 2.03 88 < LODb 1.18 0.03 0.12 0.21 1.82 

Cl 75 0.17 0.79 0.43 0.45 0.15 0.32 95 0.10 2.03 0.44 0.55 0.32 0.57 119 0.04 2.81 0.19 0.39 0.48 1.22 88 0.10 5.18 0.27 0.62 0.81 1.30 

NO3 51 0.06 7.58 0.68 1.16 1.52 1.29 66 0.04 6.92 0.94 1.62 1.84 1.13 90 0.02 5.83 0.23 0.50 1.03 2.03 77 0.12 5.30 0.85 1.20 1.01 0.84 

SO4 70 < LODb 0.63 0.04 0.08 0.10 1.29 87 < LODb 0.34 0.04 0.06 0.05 0.93 119 < LODb 0.50 0.06 0.08 0.08 0.95 88 < LODb 0.74 0.06 0.11 0.13 1.18 

Ca 75 0.15 1.85 0.40 0.47 0.26 0.56 95 0.15 1.36 0.57 0.60 0.24 0.40 126 < LODb 6.36 0.15 0.79 1.26 1.58 87 0.01 15.54 0.15 0.92 2.13 2.29 

Fe 75 < LODb 0.11 < 0.01 0.01 0.02 1.54 95 < LODb 0.06 < 0.01 0.01 0.01 1.73 126 < LODb 0.05 < 0.01 < 0.01 0.01 3.18 87 < LODb 0.09 < 0.01 < 0.01 0.01 4.78 

K 75 0.40 3.34 1.55 1.51 0.50 0.33 95 0.35 3.98 2.30 2.20 0.81 0.36 126 0.02 0.76 0.04 0.07 0.09 1.16 87 0.01 2.96 0.18 0.30 0.50 1.64 

Mg 75 0.03 0.40 0.10 0.12 0.06 0.50 95 0.03 0.42 0.15 0.16 0.07 0.42 126 0.01 0.56 0.05 0.07 0.07 0.98 87 0.01 0.35 0.06 0.07 0.06 0.81 

Na 75 0.24 1.36 0.90 0.89 0.25 0.28 95 0.21 1.65 0.93 0.90 0.31 0.34 125 < LODb 0.73 0.10 0.16 0.13 0.86 87 < LODb 1.40 0.23 0.27 0.16 0.59 

P 75 < LODb 0.11 0.04 0.04 0.03 0.78 95 < LODb 0.15 0.03 0.03 0.04 1.03 126 < LODb 0.09 < 0.01 0.01 0.02 1.92 87 < LODb 0.20 < 0.01 0.02 0.04 1.92 

S 75 < LODb 0.27 0.03 0.05 0.05 1.07 95 < LODb 0.19 0.04 0.05 0.03 0.66 126 < LODb 0.06 < 0.01 0.01 0.01 1.63 87 < LODb 0.21 < 0.01 0.01 0.04 2.51 

a The results of the base streamflow chemistry are related to sampling routines performed from 04/2013 to 07/2014 in the Amazonian catchments and from 12/2012 to 07/2014 in the Cerrado catchments. 

b LOD stands for limit of detection. 
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Appendix B 
Table A.2. Descriptive statistics of the storm streamflow hydrochemistrya. 

 Amazonian catchments Cerrado catchments 

Parameter 

(mg L-1) 

AFOR APAS CCER CPAS 

n min max median mean sd vc n min max median mean sd vc n min max median mean sd vc n min max median mean sd vc 

TC 108 1.56 25.80 6.08 7.39 4.91 0.66 160 2.63 96.80 7.04 8.59 9.71 1.13 119 0.77 24.90 3.57 4.27 3.16 0.74 43 0.50 20.02 7.00 7.47 3.98 0.53 

TIC 108 0.08 2.20 0.35 0.53 0.47 0.87 160 < LODb 2.70 0.52 0.64 0.49 0.76 119 < LODb 3.79 < LODb 0.17 0.58 3.44 43 < LODb 4.00 0.08 0.64 1.11 1.73 

TOC 108 1.38 25.01 5.50 6.86 4.81 0.70 160 2.63 95.50 6.29 7.95 9.66 1.21 119 0.77 23.10 3.47 4.10 3.00 0.73 43 0.50 18.27 6.50 6.84 3.88 0.56 

TN 108 0.18 1.82 0.40 0.46 0.24 0.53 160 0.22 1.30 0.50 0.49 0.17 0.35 119 0.10 1.50 0.27 0.27 0.18 0.65 43 0.20 3.10 0.50 0.61 0.48 0.79 

DC 93 1.94 27.30 5.35 6.73 4.41 0.65 148 1.12 98.60 5.18 6.94 10.58 1.52 119 0.80 10.20 2.90 3.26 1.73 0.53 38 3.30 11.40 6.21 6.50 1.96 0.30 

DIC 46 < LODb 2.10 0.34 0.52 0.56 1.06 125 < LODb 2.60 0.30 0.45 0.51 1.14 115 < LODb 2.25 < LODb 0.12 0.40 3.43 41 < LODb 3.90 < LODb 0.62 1.10 1.75 

DOC 93 1.21 26.30 4.87 6.13 4.33 0.70 148 1.12 97.60 4.73 6.47 10.49 1.61 119 0.80 8.22 2.80 3.13 1.62 0.51 38 2.10 10.90 5.45 5.81 2.03 0.34 

DN 91 0.18 1.46 0.36 0.42 0.23 0.55 117 0.27 0.90 0.40 0.42 0.15 0.34 65 < LODb 0.91 0.18 0.22 0.11 0.49 35 0.10 2.10 0.40 0.49 0.37 0.75 

F 109 0.01 3.62 0.02 0.07 0.35 5.03 159 0.01 0.10 0.03 0.03 0.01 0.42 119 < LODb 0.33 0.01 0.01 0.03 2.93 36 < LODb 1.23 0.04 0.19 0.30 1.51 

Cl 109 0.35 16.05 0.53 0.81 1.53 1.88 159 0.08 4.95 0.60 0.63 0.40 0.64 119 0.06 4.20 0.17 0.28 0.42 1.50 36 0.20 3.65 0.59 0.93 0.90 0.96 

NO3 107 0.10 6.66 0.44 0.93 1.21 1.29 142 0.01 7.56 0.40 1.18 1.74 1.48 109 < LODb 6.53 0.34 1.09 1.62 1.48 35 0.27 3.20 1.00 1.02 0.50 0.48 

SO4 107 0.01 1.03 0.07 0.12 0.16 1.26 159 0.01 0.55 0.07 0.09 0.07 0.82 117 0.02 0.62 0.05 0.07 0.07 0.97 36 0.04 0.38 0.11 0.14 0.09 0.67 

Ca 109 0.22 2.65 0.48 0.70 0.53 0.77 160 0.09 3.71 0.47 0.61 0.54 0.88 118 0.06 5.30 0.17 0.41 0.84 2.02 42 0.08 7.18 0.45 1.43 1.88 1.30 

Fe 109 < LODb 0.06 0.01 0.01 0.02 1.04 160 < LODb 0.23 0.03 0.03 0.03 1.02 119 < LODb 0.11 0.01 0.02 0.02 1.09 42 < LODb 0.05 < 0.01 0.01 0.02 1.75 

K 109 0.91 3.62 1.87 1.96 0.46 0.23 160 0.31 4.11 2.51 2.54 0.53 0.21 118 0.02 1.68 0.16 0.23 0.23 0.98 42 0.15 2.80 0.50 0.60 0.45 0.73 

Mg 109 0.04 0.30 0.12 0.14 0.06 0.40 160 0.02 0.26 0.12 0.14 0.05 0.35 118 0.03 2.36 0.08 0.12 0.22 1.81 42 0.04 0.42 0.08 0.11 0.07 0.65 

Na 109 0.56 1.95 0.92 0.96 0.22 0.23 160 0.14 1.18 0.76 0.72 0.23 0.33 118 0.05 1.57 0.11 0.22 0.22 1.01 42 0.15 1.62 0.27 0.41 0.30 0.72 

P 109 < LODb 0.11 < LODb 0.02 0.03 1.45 160 < LODb 0.14 0.01 0.04 0.04 1.13 119 < LODb 0.11 < 0.01 0.02 0.03 1.39 42 < LODb 0.09 < 0.01 0.02 0.03 1.82 

S 109 < LODb 0.52 0.05 0.07 0.08 1.18 160 < LODb 0.21 0.07 0.07 0.05 0.78 119 < LODb 0.26 0.02 0.03 0.03 1.18 42 < LODb 0.09 < 0.01 0.01 0.03 1.76 

a The results of the storm streamflow chemistry are related to sampling obtained from 02/2013 to 02/2014 in the Amazon and Cerrado catchments. 

b LOD stands for limit of detection. 
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Appendix C 
Table A.1. List of plant species and their respective family and occurrence in each surveyed plot. 

Family  Species Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot 7 Plot 8 

Anacardiaceae 
Tapirira guianensis - - - - - 2 - - 

Tapirira obtusa - - 4 17 - - - - 

Annonaceae 
Xylopia aromatica - - - 1 1 - 1 1 

Xylopia cf. chivantinensis 1 - - - - - - - 

Apocynaceae 
Aspidosperma cf. excelsum 1 - - - - - - - 

Himatanthus articulatus - - 1 - - - - - 

Bignoniaceae Jacaranda copaia - 1 - - - - - - 

Boraginaceae Cordia bicolor 2 1 - - - - - - 

Burseraceae 

Dacryodes microcarpa - - 1 - - - - - 

Protium cf. heptaphyllum 1 - 1 1 - - - - 

Protium pilosissimum - - 1 - - - - - 

Protium spruceanum - 1 13 3 - - - - 

Ebenaceae Diospyros sericea - - 1 - - - - - 

Elaeocarpaceae Sloanea sinemariensis 1 - - - - - - - 

Euphorbiaceae 

Alchornea glandulosa - - 2 - 2 3 1 - 

Alchornea discolor - - - - - 3 1 5 

Croton cf. palanostigma 1 - - 1 - - - - 

Mabea fistulifera 1 1 - - - - - - 

Maprounea guianensis - - - - 3 7 7 - 

Fabaceae 
Bowdichia virgilioides - - - - - - 1 - 

Hydrochorea corymbosa 2 - - - - - - - 
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Family  Species Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot 7 Plot 8 

Inga pezizifera - 2 1 - - - - - 

Inga vera - - 3 3 - - - - 

Ormosia paraensis 1 - 1 - - - - - 

Tachigali vulgaris - - - - 5 3 1 - 

Humiriaceae Sacoglottis guianensis 3 1 - 1 - - - - 

Hypericaceae 

Vismia gracilis - - - - - 1 - - 

Vismia angusta 2 - - - - - 1 - 

Vismia guianensis - - - - - - - 5 

Vismia macrophylla - - - - - - 1   

Icacinaceae Emmotum nitens - - - - - 1 - 1 

Lauraceae 

Nectandra cuspidata 1 - - - - 2 - - 

Ocotea aciphylla 2 3 - - - - - - 

Ocotea leucoxylon 1 1 1 - - - - - 

Malpighiaceae 

Byrsonima arthropoda - 1 - - - - - - 

Byrsonima chrysophylla  - 1 - 1 - - - - 

Byrsonima clausseniana  - - - - 1 2 6 3 

Byrsonima laxiflora  - - - - 2 - - - 

Diplopterys cf. lucida  - - - - -  1 1 - 

Melastomataceae 

Bellucia grossularioides 2 1 - - - - - - 

Macairea cf. pachyphylla - - - - 1 - 2 1 

Miconia albicans - - - - 1 6 2 - 

Miconia cuspidata 1 6 - - 5 3 3 1 

Pleroma stenocarpum - - - -   14 28 35 

Moraceae 
Pseudolmedia cf. laevigata - 1 - - - - - - 

Pseudolmedia laevis 1 1 - - - - - - 
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Family  Species Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot 7 Plot 8 

Myristicaceae Virola sebifera - - - - - - 4 1 

Myrtaceae Myrcia splendens - - - - - 1 1  - 

Olacaceae Minquartia guianensis 4 4 1 - - - -  - 

Polygalaceae Bredemeyera divaricata - - - 1 - - -  - 

Primulaceae Myrsine coriacea - - - 1 - - 2  - 

Rubiaceae Alibertia edulis - - - 1 - - 1 3 

Sapotaceae 

Ecclinusa cf. ramiflora 1 - - - - - - - 

Micropholis guyanensis - 2 - - - - - - 

Micropholis venulosa - - 2 - - - - - 

Pouteria cf. filipes - - 1 - - - - - 

Simaroubaceae Simarouba amara - - 1 1 - 23 1 - 

Siparunaceae Siparuna guianensis - - - - - - 1 - 

Styracaceae Styrax ferrugineus - - - - - - 1 - 

Symplocaceae Symplocos sp. - - - - 5 4 - - 

Dead - 1 4 3 3 4 4 5 4 

Not Identified - - - 1 - -  - -  - 
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Appendix D 
Table A.2. Descriptive statistics of the water quality parameters. 

Water 
quality 

parameter 
(mg L-1) 

Flow type n Min. Max. 
Freq. 

of 
min. 

Freq. 
of 

max. 

1st 
Quartile 

Median 
3rd 

Quartile 
Mean 

Variance 
(n-1) 

Standard 
deviation 

(n-1) 

Variation 
coefficient 

Skewness 
(Pearson) 

Kurtosis 
(Pearson) 

Standard 
error of 

the 
mean 

TOC 

Baseflow 50 0.3 1.4 1 1 0.4 0.5 0.6 0.5 0.1 0.2 0.4 1.5 2.7 0.0 

Stormflow 21 1.2 13.1 1 1 2.5 3.5 4.2 4.2 8.9 3.0 0.7 2.0 3.4 0.7 

Groundwater 24 1.0 7.6 1 1 1.6 3.0 4.5 3.1 3.2 1.8 0.6 0.7 -0.3 0.4 

OF-RZ 22 5.1 312.2 1 1 11.0 22.7 45.5 48.4 5,832.8 76.4 1.5 2.7 6.0 16.3 

OF-Cropland 18 2.9 92.2 1 1 5.5 7.7 16.4 17.8 586.5 24.2 1.3 2.2 3.8 5.7 

DOC 

Baseflow 50 0.1 1.2 1 1 0.4 0.5 0.7 0.6 0.1 0.2 0.4 0.6 -0.3 0.0 

Stormflow 23 0.7 4.0 1 1 1.8 2.1 2.9 2.3 0.8 0.9 0.4 0.3 -0.7 0.2 

Groundwater 24 0.8 1.9 1 1 1.2 1.4 1.7 1.4 0.1 0.3 0.2 -0.1 -1.0 0.1 

OF-RZ 22 1.0 32.0 1 1 2.0 3.8 10.8 7.5 65.8 8.1 1.1 1.6 1.9 1.7 

OF-Cropland 19 3.2 15.4 1 1 5.7 9.3 11.8 9.2 14.3 3.8 0.4 0.0 -1.1 0.9 

DIC 

Baseflow 50 0.0 0.2 43 1 0.0 0.0 0.0 0.0 0.0 0.1 2.6 2.6 5.4 0.0 

Stormflow 23 0.0 0.9 8 1 0.0 0.1 0.2 0.1 0.0 0.2 1.5 2.5 5.4 0.0 

Groundwater 24 0.0 4.2 2 1 0.7 1.7 2.8 1.8 1.7 1.3 0.7 0.3 -1.1 0.3 

OF-RZ 22 0.0 6.3 7 1 0.0 0.3 1.4 1.0 2.5 1.6 1.6 2.1 4.0 0.3 

OF-Cropland 19 2.4 16.3 1 1 5.1 8.0 9.8 8.2 14.0 3.7 0.4 0.6 -0.4 0.9 

TN 

Baseflow 50 0.1 0.3 6 1 0.1 0.2 0.2 0.2 0.0 0.0 0.2 -0.2 1.0 0.0 

Stormflow 21 0.1 1.1 1 1 0.3 0.5 0.5 0.5 0.1 0.2 0.5 1.2 1.4 0.1 

Groundwater 24 0.2 4.2 3 1 0.4 1.0 2.1 1.4 1.4 1.2 0.9 1.0 0.0 0.2 

OF-RZ 22 0.6 18.5 1 1 1.3 2.2 3.7 3.7 19.6 4.4 1.2 2.4 4.8 0.9 

OF-Cropland 19 0.4 18.2 2 1 1.3 4.2 7.0 5.1 22.1 4.7 0.9 1.3 1.2 1.1 

K 

Baseflow 50 0.0 0.1 1 1 0.0 0.0 0.1 0.0 0.0 0.0 0.5 1.9 4.2 0.0 

Stormflow 22 0.1 1.0 1 1 0.4 0.5 0.6 0.5 0.1 0.3 0.5 0.3 -0.7 0.1 

Groundwater 24 0.1 0.6 1 1 0.2 0.3 0.3 0.3 0.0 0.1 0.4 0.9 0.3 0.0 

OF-RZ 22 0.1 25.2 1 1 0.2 0.3 1.3 1.8 27.8 5.3 2.8 4.2 16.3 1.1 

OF-Cropland 19 0.1 32.2 1 1 4.9 8.3 14.1 10.6 56.0 7.5 0.7 1.2 1.6 1.7 

Ca 

Baseflow 50 0.1 0.6 1 1 0.1 0.2 0.2 0.2 0.0 0.1 0.5 2.7 9.6 0.0 

Stormflow 22 0.1 2.4 1 1 0.2 0.2 0.3 0.4 0.3 0.5 1.2 2.8 7.6 0.1 

Groundwater 24 1.9 8.0 1 1 4.6 5.8 6.5 5.3 3.4 1.8 0.3 -0.5 -0.7 0.4 

OF-RZ 22 0.1 12.4 1 1 0.7 1.4 2.7 2.5 8.8 3.0 1.2 2.1 4.0 0.6 

OF-Cropland 19 2.1 22.6 1 1 3.8 5.6 12.5 8.3 33.9 5.8 0.7 1.0 -0.1 1.3 

P 

Baseflow 39 0.0 0.1 3 1 0.0 0.0 0.1 0.0 0.0 0.0 0.8 0.7 -0.6 0.0 

Stormflow 22 0.0 0.1 1 1 0.0 0.0 0.1 0.0 0.0 0.0 0.6 0.5 -0.4 0.0 

Groundwater 8 0.0 0.1 1 1 0.1 0.1 0.1 0.1 0.0 0.0 0.4 0.8 -0.6 0.0 

OF-RZ 22 0.0 4.9 1 1 0.0 0.1 0.1 0.3 1.1 1.0 3.5 4.4 17.0 0.2 

OF-Cropland 19 0.2 13.3 1 1 0.5 1.0 1.2 1.9 9.6 3.1 1.6 2.9 7.8 0.7 

SO4 

Baseflow 48 0.0 0.3 3 1 0.0 0.0 0.1 0.1 0.0 0.1 0.9 1.7 2.2 0.0 

Stormflow 23 0.0 0.2 1 1 0.0 0.1 0.1 0.1 0.0 0.0 0.6 0.5 -0.6 0.0 

Groundwater 24 0.0 0.3 1 1 0.1 0.1 0.1 0.1 0.0 0.0 0.5 1.5 3.1 0.0 

OF-RZ 22 0.1 15.9 1 1 0.1 0.2 0.3 0.9 11.2 3.3 3.5 4.4 17.0 0.7 

OF-Cropland 19 0.0 20.8 1 1 1.3 1.5 1.6 2.6 20.4 4.5 1.7 3.7 12.5 1.0 

Mg 

Baseflow 50 0.0 1.0 1 1 0.1 0.1 0.1 0.1 0.0 0.1 1.3 6.0 37.4 0.0 

Stormflow 22 0.1 0.3 1 1 0.1 0.1 0.2 0.1 0.0 0.1 0.4 0.8 -0.3 0.0 

Groundwater 24 0.1 0.3 2 1 0.1 0.1 0.2 0.1 0.0 0.1 0.4 0.5 -0.7 0.0 

OF-RZ 22 0.1 1.9 3 1 0.1 0.1 0.6 0.4 0.2 0.5 1.1 1.7 2.6 0.1 

OF-Cropland 19 0.7 6.0 1 1 1.0 1.8 3.8 2.4 2.7 1.6 0.7 0.8 -0.6 0.4 
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