
 

New Insights into Nucleophagy in 

S. cerevisiae 

 

 

 

Dissertation  

for the award of the degree 

“Doctor rerum naturalium” 

of the Georg-August-Universität Göttingen 

 

within the doctoral program Molecular Medicine 

of the Georg-August University School of Science (GAUSS) 

 

 

 

 

 

submitted by 

Stefanie Karnebeck 

from Reutlingen 

 

Göttingen, 2019  



 

 

Members of the Thesis Committee 

 

Prof. Dr. Michael Thumm   University Medical Centre Göttingen 
(First referee)     Department of Cellular Biochemistry 
      Göttingen, Germany 

 

Prof. Dr. Blanche Schwappach  University Medical Centre Göttingen 
(Second referee)    Department of Molecular Biology 
      Göttingen, Germany 

 

Prof. Dr. Stefan Jacobs   Structure and Dynamics of Mitochondria 
      Max Planck Institute for Biophysical 
Chemistry 
      Göttingen, Germany 

 

 

 

Further members of the Examination Board 

 

Prof. Dr. Detlef Doenecke  University Medical Centre Göttingen 
     Department of Molecular Biology 

      Göttingen, Germany 

 

Prof. Dr. Michael Meinecke  University Medical Centre Göttingen 
     Department of Cellular Biochemistry 

      Göttingen, Germany 

 

Dr. Roland Dosch    University Medical Centre Göttingen 
     Department of Developmental Biochemistry 

      Göttingen, Germany 

 

 

 

 

 

 

 

Date of oral examination: 11.03.19 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Affidavit: 

 

Here I declare, that my doctoral thesis entitled “New Insights into Nucleophagy 

in S. cerevisiae” has been written independently and with no other sources and 

aids than quoted. 

 

 

 

Stefanie Karnebeck 

   Göttingen, January 2019 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

„Freiheit bedeutet, dass man nicht unbedingt alles so machen muss wie andere 

Menschen.“ 

Astrid Lindgren 

 





 I 

 

Content 

1 Summary ...................................................................................... 1 

2 Introduction ................................................................................. 3 

2.1 Saccharomyces cerevisiae as a model organism ......................... 3 

2.2 Autophagy ..................................................................................... 4 

2.2.1 Macroautophagy .................................................................................... 5 

2.2.2 Microautophagy ..................................................................................... 6 

2.2.3 Chaperone-mediated autophagy ........................................................... 7 

2.3 Biogenesis of autophagosomes .................................................... 7 

2.3.1 The Atg1 complex .................................................................................. 7 

2.3.2 Atg9 cycling ........................................................................................... 8 

2.3.3 The phosphatidylinositol 3-kinase complex ............................................ 9 

2.3.4 Two ubiquitin-like conjugation systems .................................................. 9 

2.3.5 Closure and delivery to vacuole ........................................................... 11 

2.4 Selective forms of autophagy ...................................................... 12 

2.4.1 The Cvt pathway .................................................................................. 12 

2.4.2 Pexophagy .......................................................................................... 13 

2.4.2.1 Macropexophagy .......................................................................................... 14 

2.4.2.2 Micropexophagy ............................................................................................ 14 

2.5 Nucleophagy: the autophagic degradation of the nucleus........... 17 

2.5.1 Macronucleophagy and ER-Phagy ...................................................... 17 

2.5.2 Piecemeal Microautophagy of the Nucleus (PMN) (Micronucleophagy) 19 

2.5.2.1 Structure and function of the Nucleus-vacuole junction ............................... 20 

2.5.2.1.1 The integral ER-membrane protein Nvj1 ................................................. 22 

2.5.2.1.2 The vacuolar protein Vac8 ...................................................................... 22 

2.5.2.1.3 The oxysterol-binding protein Osh1 ........................................................ 23 

2.5.2.1.4 The enoyl reductase Tsc13 ..................................................................... 23 

2.5.2.2 Different stages of PMN ................................................................................ 23 

2.6 Aim of the thesis.......................................................................... 25 

3 Material and Methods ............................................................... 26 

3.1 Material ....................................................................................... 26 

3.1.1 Yeast Strains ....................................................................................... 26 

3.1.2 E. coli Strains ...................................................................................... 27 

3.1.3 Plasmids .............................................................................................. 27 

3.1.4 Oligonucleotides .................................................................................. 28 



 

 II 

3.1.5 Antibodies ............................................................................................ 30 

3.1.6 Commercial available Kits.................................................................... 31 

3.1.7 Chemicals, supplements, enzymes and protein purification systems ... 31 

3.1.8 Equipment ........................................................................................... 33 

3.1.9 Software .............................................................................................. 34 

3.1.10 Media .................................................................................................. 35 

3.2 Methods ....................................................................................... 37 

3.2.1 Cultivation and storage of E. coli.......................................................... 37 

3.2.2 Cultivation and storage of S. cerevisiae ............................................... 37 

3.2.3 Molecular biologic methods ................................................................. 37 

3.2.3.1 Determination of cell density ......................................................................... 37 

3.2.3.2 Determination of DNA concentration ............................................................ 38 

3.2.3.3 Restriction of DNA ......................................................................................... 38 

3.2.3.4 DNA agarose gel electrophoresis ................................................................. 38 

3.2.3.5 DNA gel extraction ........................................................................................ 38 

3.2.3.6 Polymerase chain reaction (PCR) ................................................................. 38 

3.2.3.7 Molecular cloning .......................................................................................... 39 

3.2.3.8 Ligation of DNA fragments ............................................................................ 39 

3.2.3.9 Preparation of chemically competent E. coli (XL1 blue) ............................... 40 

3.2.3.10 Transformation of plasmid DNA in chemically competent E. coli ............. 40 

3.2.3.11 Site directed mutagenesis of plasmids ..................................................... 41 

3.2.3.12 Purification of plasmids from E. coli .......................................................... 41 

3.2.3.13 Sequencing of DNA .................................................................................. 41 

3.2.3.14 Plasmid constructs .................................................................................... 41 

3.2.3.14.1 GFP-Osh1_A159V construct ................................................................. 41 

3.2.3.14.2 Nvj1_V20E_V23E-GFP construct .......................................................... 41 

3.2.3.14.3 Nvj1
∆318-321

-GFPconstruct ...................................................................... 42 

3.2.3.14.4 Pho8-GFP .............................................................................................. 42 

3.2.3.15 Isolation of chromosomal DNA from yeast cells ....................................... 42 

3.2.3.16 High efficiency yeast cell transformation .................................................. 42 

3.2.3.17 “Quick and Dirty” variant of yeast cell transformation ............................... 43 

3.2.3.18 Knockout and chromosomal tagging of genes by homologous 

recombination ........................................................................................... 43 

3.2.3.19 Direct fluorescence microscopy ................................................................ 44 

3.2.3.20 Vacuolar staining using FM4-64 ............................................................... 44 

3.2.3.21 Induction and monitoring of autophagy .................................................... 45 

3.2.4 Biochemical Methods ........................................................................... 45 

3.2.4.1 Alkaline lysis of yeast cells ............................................................................ 45 

3.2.4.1.1 PMN-Assay (measurement of e.g. GFP-Osh1 breakdown) .................... 46 

3.2.4.2 GFP-Trap ...................................................................................................... 46 



 III 

3.2.4.3 Discontinuous SDS-Polyacrylamid-Gel-Electrophoresis (SDS-PAGE) ........ 47 

3.2.4.4 Immunoblotting (Wet Blot) ............................................................................ 48 

3.2.4.5 Statistical Analysis ........................................................................................ 49 

4 Results ....................................................................................... 50 

4.1 Nvj1 isn’t essential for degradation of nucleolar proteins ............ 50 

4.1.1 Relevance of Nvj1 for the degradation of GFP-Osh1 ........................... 50 

4.1.2 Relevance of Nvj1 for the degradation of Nop1-GFP ........................... 51 

4.1.3 Degradation of Nop1-GFP is similar in SD(-N) medium or after 

rapamycin treatment ............................................................................ 53 

4.1.4 The nucleus-vacuole junction is intact in nvj1Δ::HIS3 cells but not in 

nvj1Δ::NatNT2 cells ............................................................................. 55 

4.1.5 Degradation of Nab-NLS-mCherry is only blocked in atg1Δ cells ......... 56 

4.1.6 Degradation of GFP-Osh1 and Nop1-GFP isn’t blocked in different nvj1Δ 

deletion strains .................................................................................... 57 

4.2 Screen for potential novel components of the nucleus-vacuole junction 59 

4.2.1 Nvj2 as an additional essential component of the nucleus-

vacuole junction ................................................................................... 59 

4.2.1.1 Nvj2 is not essential for degradation of GFP-Osh1 or Nop1-GFP ................ 59 

4.2.1.2 Nucleus-vacuole junctions are intact in Nvj2 deletion strains ....................... 62 

4.2.2 Scs2 as an additional essential component of the nucleus-

vacuole junction ................................................................................... 64 

4.2.2.1 Scs2 isn’t essential for degradation of GFP-Osh1 or Nop1-GFP ................. 64 

4.2.2.2 Scs2 is necessary for the intactness of the nucleus-vacuole junction .......... 66 

4.2.3 Glc8 as an additional essential component of the nucleus-

vacuole junction ................................................................................... 68 

4.2.3.1 Degradation of GFP-Osh1 and Nop1-GFP isn’t blocked in glc8Δ or ymr310cΔ 

strains ................................................................................................................ 68 

4.2.3.2 The nucleus-vacuole junction is intact in GLC8 or YMR310C deletion strains . 71 

4.3 Osh1 is not exclusively degraded via PMN ................................. 73 

4.3.1 Mutation of Osh1 impedes interaction with Nvj1 .................................. 73 

4.3.2 GFP-Osh1_A159V is not localized to nucleus-vacuole junctions ......... 73 

4.3.3 GFP-Osh1_A159V is degraded in equal amounts as GFP-Osh1 ......... 75 

4.4 Role of Atg39 and Atg40 in PMN ................................................ 78 

4.4.1 Degradation of GFP-Osh1 suggests crosstalk between Atg39 and  

 Atg40 ................................................................................................... 78 

4.4.2 Degradation of Nop1-GFP is dependent on Atg39 and Atg40 .............. 80 

4.4.3 Atg39 and Atg40 are necessary of degradation of Nvj1-GFP ............... 82 

4.5 New insights into the role of Nvj1 during PMN ............................ 84 



 

 IV 

4.5.1 The hydrophobic core of Nvj1 is essential for its function in PMN ........ 84 

4.5.1.1 Perinuclear localization is disrupted for Nvj1_V20E_V23E-GFP .................. 84 

4.5.1.2 The hydrophobic ER-anchor is necessary for degradation of Nvj1-GFP ...... 85 

4.5.2 Nvj1 degradation is independent of Vac8 dimerization ......................... 87 

4.5.2.1 Nvj1
∆318-321

-GFP is not exclusively localized to nucleus-vacuole junctions ... 87 

4.5.2.2 Vac8 dimerization is not essential for Nvj1 degradation ............................... 88 

4.6 Pho8-GFP is no suitable marker for differentiation between  

 micro-and macroautophagy in western blots ............................... 91 

4.6.1 Pho8-GFP is localized to the vacuolar membrane ............................... 91 

4.6.2 Pho8-GFP is degraded independent of Nvj1, Atg39 and Atg40 ........... 92 

4.7 Screen for selective substrates of PMN ....................................... 95 

5 Discussion ................................................................................. 97 

5.1 GFP-Osh1 can be degraded in a Nvj1 independent manner ....... 98 

5.2 Nvj1-GFP – a superior marker protein for PMN/ NVJ-phagy 

measurement............................................................................. 100 

5.2.1 Nvj1Δ318-321-GFP is not suitable as negative control for PMN/  

 NVJ-phagy measurement .................................................................. 100 

5.2.2 The hydrophobic core of Nvj1 is crucial for PMN/ NVJ-phagy ............ 100 

5.2.3 PMN – a process for the degradation of the nucleus-vacuole  

 junction? ............................................................................................ 101 

5.3 Atg39 is pivotal for PMN/ NVJ-phagy and macronucleophagy .. 103 

5.4 A knockout strain selectively inhibited for PMN/ NVJ-phagy is  

 not available .............................................................................. 104 

5.4.1 Nvj2, Glc8 and Ymr310c play no direct role in PMN/ NVJ-phagy ....... 104 

5.4.2 Scs2 is required for the intactness of the nucleus-vacuole junction and is 

not directly involved in autophagic degradation of nucleolar proteins . 105 

5.4.3 A multiple knockout as negative control for PMN/ NVJ-phagy ............ 107 

5.5 Pho8-GFP and Nab-NLS-mCherry are no suitable marker  

 proteins ...................................................................................... 108 

5.5.1 A differentiation between macro- and microautophagy via the 

degradation of Pho8-GFP is not possible ........................................... 108 

5.5.2 Nab-NLS-mCherry is degraded via unspecific nucleophagy .............. 109 

5.6 Conclusion ................................................................................. 109 

6 Bibliography............................................................................. 110 

7 Acknowledgement ................................................................... 125 



 V 

8 Curriculum Vitae ..................................................................... 126 

  



 

 VI 

List of Figures 

Figure 2.1: Schematic life cycle of S. cerevisiae (Hanson and Wolfe, 2017) ...... 3 

Figure 2.2: Macroautophagy and Microautophagy (Feng et al., 2013) ............... 6 

Figure 2.3: Two ubiquitin like conjugation systems (Nakatogawa et al., 2009) . 10 

Figure 2.4: The Cvt pathway and macroautophagy in yeast (Nair et al., 2010) 13 

Figure 2.5: Micropexophagy in P. pastoris (Farré et al., 2009) ......................... 17 

Figure 2.6: Macronucleophagy is dependent on Atg39 in S. cerevisiae (modified 

from Luo et al., 2016) .................................................................... 19 

Figure 2.7: Structure of the nucleus-vacuole junction  

(modified from Elbaz and Schuldiner, 2011) .................................. 21 

Figure 2.8: Five Stages of PMN (Krick et al., 2009a) ........................................ 24 

Figure 3.1: Setup for immunoblotting ................................................................ 48 

Figure 4.1: Degradation of GFP-Osh1 and Nop1-GFP is blocked in different  

nvj1Δ strains .................................................................................. 53 

Figure 4.2: Nop1-GFP degradation in cells starved with either SD(-N)  

or rapamycin containing medium ................................................... 54 

Figure 4.3: Nucleus-vacuole junctions are intact in nvj1Δ::HIS3 cells but not in 

nvj1Δ::NatNT2 cells ....................................................................... 56 

Figure 4.4: Degradation of Nab-NLS-mCherry isn’t blocked in nvj1Δ::HIS3  

and nvj1Δ::NatNT2 cells. ............................................................... 57 

Figure 4.5: Further newly generated NVJ1 knockouts were tested in regard  

of their ability to degrade GFP-Osh1 or Nop1-GFP. ...................... 58 

Figure 4.6: Degradation of GFP-Osh1 and Nop1-GFP isn’t blocked in  

NVJ2 knockouts. ............................................................................ 61 

Figure 4.7: Evaluation of nucleus-vacuole junctions in nvj2Δ strains ................ 63 

Figure 4.8: PMN isn’t blocked in scs2Δ strains ................................................. 65 

Figure 4.9: Microscopic evaluation of scs2Δ cells ............................................ 67 

Figure 4.10: Degradation of GFP-Osh1 and Nop1-GFP in glc8Δ or  

ymr310cΔ cells. ........................................................................... 70 

Figure 4.11: Evaluation of nucleus-vacuole junctions in GLC8 and  

YMR310C deletion strains. .......................................................... 72 

Figure 4.12: Binding of Osh1 and Nvj1 is reduced after mutating the binding  

site of Osh1 ................................................................................. 75 

 



 VII 

Figure 4.13: GFP-Osh1_A159V and GFP-Osh1 show no differences in regard  

to their degradation ..................................................................... 77 

Figure 4.14: Degradation of GFP-Osh1 is reduced in atg39Δ atg40Δ cells ..... 79 

Figure 4.15: Degradation of Nop1-GFP is dependent on Atg39 ....................... 81 

Figure 4.16: Degradation of Nvj1-GFP is dependent on Atg39 and Atg40. ...... 83 

Figure 4.17: Microscopic evaluation of Nvj1_V20E_V23E-GFP ....................... 85 

Figure 4.18: Degradation of Nvj1_V20E_V23E-GFP is blocked....................... 87 

Figure 4.19: Microscopic evaluation of Nvj1∆318-321-GFP .................................. 88 

Figure 4.20: Degradation of Nvj1∆318-321-GFP is increased in wild type and  

nvj1Δ cells ................................................................................... 90 

Figure 4.21: Pho8-GFP is localized to the vacuole .......................................... 92 

Figure 4.22: Pho8-GFP is degraded dependent on Atg1 and Vac8 ................. 94 

Figure 4.23: Potential hits of selective substrates of PMN ............................... 96 

  



 

 VIII 

List of Tables 

Table 1: Yeast Strains used in this study .......................................................... 26 

Table 2: E. coli strains used in this study .......................................................... 27 

Table 3: Plasmids used/ generated for this study ............................................. 27 

Table 4: Oligonucleotides used in this study..................................................... 28 

Table 5: Primary Antibodies used in this study ................................................. 30 

Table 6: Secondary Antibodies used in this study ............................................ 31 

Table 7: Commercial available Kits used in this study ...................................... 31 

Table 8: Chemicals, supplements, enzymes and protein purification systems . 31 

Table 9: Equipment used in this study .............................................................. 33 

Table 10: Software used in this study ............................................................... 34 

Table 11: Yeast Media used in this study ......................................................... 35 

Table 12: E. coli media used in this study ........................................................ 36 

Table 13: Filter sets for living cell imaging ........................................................ 44 

Table 14: Mixture of one SDS Polyacrylamid gel for a  

Mini-Protean III electrophoresis chamber from BioRad ................... 47 

  



 IX 

List of Abbreviations 

 

-       without 

°C      Degree Celsius 

∆      Delta 

A      Alanine 

A      Ampere 

AIM      Atg8-interacting motif 

ANK      Ankyrin repeat domain 

ApeI      Aminopeptidase I 

APS      Ammonium persulfate 

ARM      Armadillo repeat domains 

Atg      Autophagy-related protein 

cER      cortical ER 

CBB      Coomassie brilliant blue 

CM      Complete minimal medium 

Cvt      Cytoplasm-to-Vacoule Targeting 

cytoER     cytoplasmic ER 

DDM      n-Dodecyl β-D-maltoside 

DNA      Desoxyribonucleic acid 

E      Glutamic acid 

E. coli      Escherichia coli 

EDTA      Ethylenediaminetetraacetic acid 

ER      Endoplasmic Reticulum 

g      gram 

GFP      Green Fluorescent Protein 

Glc      Glycogen 

GOLD      Golgi dynamics 

h      hour 

HCl      Hydrogen Chloride 

HRPO      Horsereddish peroxidase 

KAN      Kanamycin 

kb      kilobase 

kDa      kilodalton 



 

 X 

l      liter 

M      Molar 

m      meter 

mCherry     monomeric Cherry 

met      Methionine 

min      minute 

MIPA      Micropexophagic membrane apparatus 

mTOR      mechanistic target of rapamycin 

N      Nitrogen 

n      nano 

NaOH      Sodium hydroxide 

NatNT2     Nourseotricine 

NE      Nuclear envelope 

Nop1      nucleolar protein 1 

Nvj1      Nucleus-vacuole junction protein  

NVJ      Nucleus-vacuole junction 

OD600      Optical Density (600 nm) 

ORD      OSBP-related domain 

ORPs      OSBP-related proteins 

OSBP      Oxysterol-binding protein  

Osh1      Oxysterol Binding Protein 

P. pastoris     Pichia pastoris 

PAGE      Polyacrylamide gel electrophoresis 

PAS      Pre-autophagosomal structure 

PCR      Polymerase Chain Reaction 

pH      negative logarithm of H+concentration 

PH domain     Pleckstrin homology domain 

Pho      Phosphate metabolism 

PI4P      Phosphatidylinositol 4-phosphate 

PMN  Piecemeal Microautophagy of the 

Nucleus 

PMSF      Phenylmethylsulfonylfluoride 

pnER      perinuclear ER 

PpAtg  P. pastoris autophagy-related protein 



 XI 

PtdIns3P     Phosphatidylinositol 3-phosphate 

PVS      Perivacuolar structure 

prApeI     Precursor of ApeI 

Q      Glutamine 

rDNA      ribosomal DNA 

RFP      Red fluorescent protein 

rpm      Rounds per minute 

RT      room temperature 

S. cerevisiae     Saccharomyces cerevisiae 

Scs      Suppressor of choline sensitivity 

SD      Synthetic defined 

SDS      Sodium dodecyl sulfate 

SEM      Standard error of the mean 

TCA      Trichloracetic acid 

Tsc  Temperature-sensitive suppressors of 

Csg2 mutants 

Ura      Uracil 

V      Valine 

V      Volt 

Vac      Vacuolar Protein 

VLCFA     very-long-chain fatty acid 

VSM      Vacuolar sequestering membrane 

v/v      volume per volume 

w/o      without 

wt      Wild type 

w/v      weight per volume 

YPD      Yeast Peptone Dextrose 

µ      micro





  Summary 

 1 

1 Summary 

Nucleophagy is a specific type of autophagy, a process for the degradation of 

non-essential parts of the nucleus under starvation conditions. Nucleophagy 

can be subdivided into Atg39 and Atg40 dependent macronucleophagy 

(Mochida et al., 2015) and piecemeal microautophagy of the nucleus (PMN), 

also called micronucleophagy (Roberts et al., 2003). PMN takes place at the 

contact site between nucleus and vacuole, the nucleus-vacuole junction (NVJ) 

(Roberts et al., 2003). The backbone of the NVJs is formed by the interaction of 

Nvj1 and Vac8 (Pan et al., 2000a). Furthermore, Osh1 and Tsc13 are part of 

this cellular contact site (Kohlwein et al., 2001; Levine and Munro, 2001). 

Surprisingly, within this study it was shown, that degradation of GFP-Osh1, a 

marker protein for PMN, can be degraded independent of Nvj1. Recently, the 

structure of Osh1 was partially solved and it was shown, that a mutated version 

of Osh1, Osh1_A159V, is impeded in its interaction with Nvj1 (Jeong et al., 

2017). Comparison of GFP-Osh1 and GFP-Osh1_A159V degradation showed 

equal results for both constructs in different deletion strains. This suggests, that 

impeded interaction of Osh1 and Nvj1 or the absence of NVJs results in an 

autophagic degradation of GFP-Osh1 different from PMN. Therefore, Nvj1-GFP 

is considered to be a better marker for PMN measurement. However, a genetic 

negative control for PMN isn’t available at the moment. Also, a truncated 

version of Nvj1, Nvj1∆318-321, that is known to bind to Vac8 and impedes Vac8 

dimerization, but still forms proper NVJs (Jeong et al., 2017) can not serve as 

negative control for PMN measurement. This construct was shown to localize to 

the perinuclear ER and was degraded to a greater extent as Nvj1-GFP via 

Atg39 dependent macronucleophagy.  

The N-terminus of Nvj1 is known to be essential for strict localization to the 

perinuclear ER (Millen et al., 2008). In this study it was shown, that the 

hydrophobic core of the N-terminus is crucial for the degradation of Nvj1. 

Therewith, this marker protein can be used as negative control for PMN 

measurement. This suggests a role of the hydrophobic core of Nvj1 in the 

bulging of the NVJ into the vacuole and therewith PMN/ NVJ-phagy. 

 

Degradation of Nvj1-GFP was completely blocked in atg39∆cells. Therewith, 

this study showed for the first time, that Atg39 is not only essential for 
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macronucleophagy (Mochida et al., 2015), but also plays an important role in 

PMN.  

 

Due to the lack of negative control for PMN measurement, several genes were 

tested in regard to their involvement in PMN. All tested genes, including NVJ2, 

SCS2, GLC8 and YMR310C were shown to be dispensable for PMN. However, 

in scs2∆ cells the NVJs appeared to be affected. 

 

Degradation of the nucleolar marker Nop1-GFP was shown to be independent 

of Nvj1 and therewith PMN. This means, that Nop1-GFP is mainly degraded via 

Atg39 dependent macronucleophagy (this study) (Mochida et al., 2015). Based 

on these results is seemed to be reasonable that the main goal of PMN is not 

the degradation of nuclear material, but the degradation of the NVJ together 

with the associated protein machinery. Therefore, PMN should be renamed into 

NVJ-phagy. 

 

Finally, the two marker proteins Nab-NLS-mCherry and Pho8-GFP were tested 

in regard to their ability for measuring of PMN/ NVJ-phagy or the differentiation 

between micro- and macroautophagy, respectively. Unfortunately, both marker 

proteins appeared not to be suitable for the intended purpose.  
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2 Introduction 

2.1 Saccharomyces cerevisiae as a model organism  

Saccharomyces cerevisiae (S. cerevisiae), also known as baker’s yeast, is a 

budding yeast that belongs to the kingdom of Fungi and the class of 

Saccharomycetes. It is a round to oval shaped single-cell organism 5-10 µm in 

diameter with a short generation time under nutrient rich conditions (about 

90 min at 30°C). The cell cycle of S. cerevisiae consists of three cell types: 

haploids of two isogamous mating types a and and a/ diploids (Figure 2.1). 

Mating can only take place between two mating types MATa (a cells) and MAT 

( cells) and results in an a/ diploid cell. The three cell types are all able to 

divide mitotically (Hanson and Wolfe, 2017)Under nitrogen-starving conditions 

diploid cells undergo meiosis and form four haploid spores. These can 

germinate into two MATa cells and two MAT cells (Duina et al., 2014). 

 

 

 
 

Figure 2.1: Schematic life cycle of S. cerevisiae (Hanson and Wolfe, 2017) 

S. cerevisiae can exist in diploid or haploid cells. Haploid cells exist in two 

mating types: MATa (a cells) and MAT ( cells). These three cell types can 
divide mitotically. Under starving conditions, diploid cells form four haploid 
spores. 
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Due to the fact, that handling as well as manipulation of S. cerevisiae is easy 

and it shows a great homology to the human genome, S. cerevisiae is widely 

used as a model organism in research. In 1996 S. cerevisiae was the first 

eukaryotic genome, that was completely sequenced and contains 

approximately 6 000 genes on 16 chromosomes (Goffeau et al., 1996). Genetic 

manipulation of S. cerevisiae via homologous recombination is highly efficient 

and easy. Therefore, PCR-based strategies for deletion of genes and gene 

tagging, but also addition of genes via transformation in S. cerevisiae is widely 

used (Baudin et al., 1993; Wach et al., 1994; Schneider et al., 1995; Wach et 

al., 1997; Longtine et al., 1998; Knop M et al., 1999). Based on the great 

homology to the human genome, basic research for complex human diseases 

like Huntington’s and Parkinson’s disease can be performed in the model 

organism S. cerevisiae (Tenreiro et al., 2017; Hofer et al., 2018). 

 

2.2 Autophagy 

Autophagy is a catabolic process that is universal to all eukaryotic cells, e.g. 

yeast, worms, insects, plants and mammals (Reggiori and Klionsky, 2002; 

Delorme-Axford et al., 2014). It serves as a stress response, for example during 

nutrient starvation, but also occurs under normal conditions at a basal level. 

During autophagy, cytoplasmic components as well as organelles are delivered 

to lysosomes/ vacuoles, where macromolecules are degraded and building 

blocks are recycled. Autophagy can be subdivided into three different forms: 

macroautophagy (Chapter 2.2.1), microautophagy (Chapter 2.2.2) and the 

Chaperone-mediated autophagy (CMA) (Chapter 2.2.3). During 

macroautophagic and the Cvt pathway cargo is engulfed by newly synthesized 

membranes. While in microautophagy cargo is directly engulfed by the vacuolar 

membrane. Autophagy holds homeostatic and biosynthetic functions, for 

example degradation of peroxisomes (pexophagy) (Chapter 2.4.2) when no 

longer needed (Hutchins et al., 1999; Kim and Klionsky, 2000) or the Cvt 

pathway, where the hydrolase aminopeptidase I (ApeI) is delivered to the 

vacuole (Chapter 2.4.1). Autophagy depends on the so-called Atg-proteins of 

which until now 42 are known (Parzych et al., 2018). For the biogenesis of 

autophagosomes the so-called core Atg-machinery, consisting of 18 genes, is 
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essential (Ariosa and Klionsky, 2016). This core Atg-machinery is needed for all 

kinds of autophagy (Suzuki and Ohsumi, 2010; Suzuki et al., 2016). 

Autophagy plays an important role during neurodegeneration, cancer, 

programmed cell death, ageing and removal of intracellular bacteria (Galluzzi et 

al., 2017; Menzies et al., 2017). 

 

2.2.1 Macroautophagy 

Macroautophagy (hereafter referred to as autophagy) starts with the formation 

of the phagophore (isolation membrane), a cup-shaped structure, that 

elongates and fuses into a cytosolic double membrane vesicle that sequesters 

parts of the cytoplasm. These vesicles are called autophagosomes (Klionsky 

and Ohsumi, 1999) (Figure 2.2). The biogenesis of the autophagosome takes 

place at the perivacuolar, phagophore assembly site (PAS) (Suzuki et al., 2001; 

Noda et al., 2002), where also the core Atg-machinery is localized. 

Autophagosomes reach sizes of 300-900 nm in diameter, these then fuse with 

the vacuole (lysosome) and the so-called autophagic body, a single membrane 

vesicle, is released into the vacuole. The autophagic body is lysed, its contents 

are degraded and finally recycled. Macroautophagy is activated by nutrient 

starvation or TORC1 inactivation, this leads to the dephosphorylation of Atg13 

and subsequently the upregulation of Atg1 kinase activity (Nakatogawa et al., 

2009). TORC1 can be inhibited by the macrolide antibiotic Rapamycin, its effect 

mimics starvation in cells (Noda and Ohsumi, 1998; Abeliovich and Klionsky, 

2001). Under starvation conditions, the TORC1 dependent repression the 

Nem1/ Spo7-Pah1 pathway is abolished. This pathway was found to be 

important for macroautophagy, since degradation of GFP-Atg8, a marker for 

macroautophagy, is severely reduced in the respective knockout strains 

(Rahman et al., 2018). 

Autophagy can be subdivided into bulk autophagy and selective autophagy, 

depending on how the cargoes are loaded into the autophagosomes. During 

selective autophagy receptor proteins bind to and thus recruit specific target 

proteins or organelles. These cargoes are then degraded via e.g. mitophagy 

(mitochondria), aggrephagy (protein aggregates) and pexophagy (peroxisomes)  

(Miller et al., 2015; Wang and Subramani, 2017; Vigié et al., 2019). The 

receptor proteins typically interact with Atg8 on the autophagosomal 
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membranes, which finally leads to the delivery of the respective cargo to the 

vacuole (Nakatogawa and Mochida, 2015). Selective autophagy is important for 

intracellular quality control. Cellular waste, e.g. superfluous or damaged 

organelles or invasive bacteria are degraded (Mizushima and Komatsu, 2011; 

Farré and Subramani, 2016). 

 

 

 

 

Figure 2.2: Macroautophagy and Microautophagy (Feng et al., 2013) 

Illustration of macro- and microautophagy in yeast. During macroautophagy 
cytoplasm and dysfunctional organelles are surrounded by the cup-shaped 
phagophore and finally by the autophagosome. The autophagosome fuses with 
the vacuole, the autophagic body is released and subsequently degraded via 
vacuolar hydrolases. During microautophagy, the cargo is directly taken up by 
invagination and scission of the vacuolar membrane. Finally, the cargo is 
degraded by vacuolar hydrolases. 

 

2.2.2 Microautophagy 

During microautophagy substrates are delivered to the vacuolar lumen by direct 

invagination and scission of the vacuole membrane. Finally, the cargoes are 

degraded via the vacuolar hydrolases (Figure 2.2) (Roberts et al., 2003). 

Microautophagy can be induced by e.g. nitrogen starvation or rapamycin 

treatment. Piecemeal microautophagy of the nucleus (PMN) (Chapter 2.5.2) 

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3879710_cr2013168f1.jpg
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and micropexophagy (Chapter 2.4.2.2) represent two typical forms of selective 

microautophagy (Krick et al., 2008; Li et al., 2012). 

 

2.2.3 Chaperone-mediated autophagy 

Chaperone-mediated autophagy (CMA) is a form of autophagy, that is almost 

exclusively described in mammalian cells. This process is based on 

chaperones, that recognize cargo proteins with a specific KFERQ motif. These 

proteins are then unfolded and transported into the lysosomes (Agarraberes 

and Dice, 2001; Bandyopadhyay et al., 2008; Arias and Cuervo, 2011). 

 

2.3 Biogenesis of autophagosomes 

Non-selective autophagy is initiated at the pre-autophagosomal structure or 

phagophore assembly site (PAS), a punctate structure next to the vacuole 

(Suzuki et al., 2001). For autophagosome formation 18 core Atg proteins are 

essential, the so-called core Atg-machinery (Suzuki et al., 2016). The 

recruitment of the Atg-proteins to the PAS is carried out in a hierarchical 

manner (Suzuki et al., 2007). Most Atg-proteins are at least transiently localized 

to the PAS (Mao et al., 2013b). 

Five main subcomplexes are involved in autophagy: the Atg1 complex 

(Chapter 2.3.1), the Atg9 cycling (Chapter 2.3.2), the phosphatidylinositol 3-

kinase complex (Chapter 2.3.3) and two ubiquitin-like conjugation systems 

(Chapter 2.3.4). 

 

2.3.1 The Atg1 complex 

Atg1 is a serine/threonine protein kinase, that is essential for the initiation of 

autophagy and is up to now the only identified protein kinase in the autophagic 

machinery (Matsuura et al., 1997). The induction of autophagy is triggered by 

the Atg1 kinase complex upon starvation and consists of the three components 

Atg1, Atg13 and the Atg17-Atg31-Atg29 scaffolding subcomplex (Cheong et al., 

2008; Mizushima, 2010). The proteins Atg17-Atg31-Atg29 form a ternary 

complex, that is constitutively located at the PAS (Kabeya et al., 2009). Under 

nutrient rich conditions, this complex further recruits Atg11 to the PAS 

(Kawamata et al., 2008; Mao et al., 2013a). Upon induction of autophagy, the 

Atg17-Atg31-Atg29 subcomplex together with Atg11 are one of the first proteins 
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localized to the PAS and therefore are thought to promote the PAS assembly 

and autophagy progression (Kawamata et al., 2008; Ragusa et al., 2012; Mao 

et al., 2013a). The target of rapamycin complex I (TORCI) kinase is a nutrient 

sensor and its inactivation through starvation induces autophagy (Davies et al., 

2015). Atg13 is a positive regulator of Atg1. Under nutrient rich conditions 

TORC1 phosphorylates Atg13 at different serine residues (Kamada et al., 2000; 

Stephan et al., 2009). Starvation leads to downregulation of TORC1 activity and 

dephosphorylation of Atg13. Then, Atg13 associates with Atg1, which activates 

its kinase activity (Kamada et al., 2000; Fujioka et al., 2014). 

 

2.3.2 Atg9 cycling 

So far, the origin of the membrane necessary for the autophagosome formation 

is unknown, even though different sources like mitochondria or the ER are 

under debate. After induction of autophagy, vesicles containing Atg9 are used 

for building the phagophore (Mari et al., 2010). These vesicles are generated 

from the Golgi apparatus and probably endosomal pathways (Mari et al., 2010; 

Ohashi and Munro, 2010; Yamamoto et al., 2012). Atg9 is a transmembrane 

protein, that belongs to the core Atg-machinery (Noda et al., 2000; Reggiori et 

al., 2004). The expression levels of Atg9 are upregulated upon starvation (Mari 

et al., 2010; Yamamoto et al., 2012). 

Atg9 is not only located at the PAS, but also at the ER, Golgi complex and 

adjacent to mitochondria. It is thought, that Atg9 might cycle between the PAS 

and the peripheral structures (Noda et al., 2000; Reggiori et al., 2004; Mari et 

al., 2010). The cycling of Atg9 is mediated by Atg23 and Atg27, together with 

the scaffold protein Atg11 (He et al., 2006; Yen et al., 2007; Backues et al., 

2015). Also, Atg41 was found to interact with Atg9 and shows a comparable 

distribution pattern as Atg9. Atg41 plays a role in autophagosome formation 

(Yao et al., 2015). Since Atg9 isn’t detected on the vacuolar membrane it is 

suggested, that the Atg9 vesicles, that are used for the autophagosome 

formation, are then recycled as new Atg9 vesicles (Yamamoto et al., 2012). For 

this retrograde movement two complexes are necessary: one complex 

consisting of Atg9, Atg1-Atg13 and the other consisting of Atg2-Atg18 (Reggiori 

et al., 2004; Suzuki et al., 2013).  
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2.3.3 The phosphatidylinositol 3-kinase complex 

S. cerevisiae has two similar phosphatidylinositol 3-kinase complexes, 

complexes I and II, that synthesize of phosphatidylinositol 3-phosphate (PI3P). 

During autophagy, PI3P acts as a platform for protein recruitment for 

phagophore assembly (Kihara et al., 2001). Both complexes share three 

subunits, Vps34, Vps15 and Vps30/Atg6. Complex I is required for autophagy 

and contains Atg14 as a fourth subunit. The localization of complex I to the PAS 

is mediated by Atg14 (Obara et al., 2006). Atg38, a further additional subunit of 

complex I, is important for PAS localization as well as for homodimerization 

(Ohashi et al., 2016). Also the localization of Atg2, Atg5, Atg8 and Atg18 

depends on Atg14 (Kihara et al., 2001; Shintani et al., 2001; Suzuki et al., 2001; 

Krick et al., 2006; Obara et al., 2006). However, Jao et al. (2013) reported that 

a HORMA domain in Atg13 is required for the recruitment of Atg14 to the PAS. 

Complex II contains Vps38 as a specific subunit and plays a role in the vacuolar 

protein sorting. In contrast to complex I, complex II isn’t involved in autophagy 

and is localized to the endosomes (Obara et al., 2006). 

 

2.3.4 Two ubiquitin-like conjugation systems 

For the phagophore expansion two ubiquitination systems, that mediate the 

conjugation of Atg8 and Atg12, are important (Ichimura et al., 2000). Atg8 and 

Atg12 have structural similarities with ubiquitin (Geng and Klionsky, 2008). 

The C-terminal glycine of Atg12 is conjugated to an internal lysine of Atg5 via 

an isopeptide bond. The enzymatic activation of Atg12 is mediated by Atg7, an 

E1-like enzyme (Figure 2.3). The conjugation of Atg12 to Atg5 is mediated by 

the E2-like enzyme Atg10 (Mizushima et al., 1998; Shintani et al., 1999). Atg16, 

is a coiled-coil protein, that is essential for autophagy. Atg16 interacts with the 

Atg12-Atg5 conjugate and mediates the formation of a multimeric complex, that 

finally leads to cross-linking of Atg5 and the formation of a stable protein 

complex (Mizushima et al., 1999; Kuma et al., 2002). Atg16 is crucial for 

autophagosome biogenesis, but is unnecessary for the enzymatic activity of the 

Atg12-Atg5 complex (Mizushima et al., 1999; Hanada et al., 2007). Dimerization 

of the Atg12-Atg5 complex leads to an increased affinity to negatively charged 

lipids. In vitro this leads to tethering of membranes (Romanov et al., 2012). The 

Atg12-Atg5-Atg16 complex is only found on the convex site of the phagophore 
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and is set free before completion of the autophagosome (Mizushima et al., 

2001; 2003). 

 

 

Figure 2.3: Two ubiquitin like conjugation systems (Nakatogawa et al., 
2009) 

a) The Atg8 ubiquitin like conjugation system. Atg4 removes the C-terminal 
arginine residue of Atg8. Activation of Atg8 by the E1-like enzyme Atg7 
and transfer to the E2-like enzyme Atg3. Finally, conjugation of 
phosphatidylethanolamine (PE) to Atg8. Recycling of Atg8 is also 
mediated by Atg4. 

b) The Atg12 ubiquitin like conjugation system. Activation of Atg12 by the 
E1-like enzyme Atg7 and transfer to the E2-like enzyme Atg10. 
Formation of the Atg12-Atg5 complex and finally, interaction with Atg16 
and formation of an oligomer. The Atg12-Atg5-Atg16 complex can act an 
E3-like enzyme function in the conjugation of Atg8 to PE. The Atg12-
Atg5-Atg16 complex possibly determines the production site of Atg8-PE. 

 
 

Atg8 is conjugated to the membrane lipid phosphatidylethanolamine (PE) 

(Figure 2.3). Therefore, the C-terminal arginine of Atg8 is removed by the 

cysteine protease Atg4, to expose the glycine that is needed for subsequent 

reactions (Kirisako et al., 2000; Kim et al., 2001a). Activation of Atg8 is 

mediated by the E1 enzyme Atg7. The activated protein is then transferred to 

the E2 enzyme Atg3, that conjugates Atg8 to PE (Ichimura et al., 2000; Geng 

and Klionsky, 2008). The Atg12-Atg5/Atg16 complex acts as a ubiquitin-protein 

ligase (E3)-like enzyme during the conjugation of Atg8 to PE (Hanada et al., 
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2007; Cao et al., 2008). Atg8-PE associates together with Atg12-Atg5-Atg16 

into a membrane coat, which is dissembled by Atg4 (Kaufmann et al., 2014). 

Atg8-PE is found on both sites of the autophagosome (Kirisako et al., 2000; Xie 

et al., 2008). Atg8 interacts with many proteins via the so called Atg8-interacting 

motifs (AIMs). On the concave site of the phagophore Atg8 recruits AIM-

containing proteins (Yorimitsu and Klionsky, 2005; Kondo-Okamoto et al., 

2012). Therefore, Atg8 is delivered to the vacuole and degraded (Huang et al., 

2000).  

Atg4 also acts as a deconjugation enzyme, that cleaves Atg8 off membranes. 

This cleavage is important for Atg8 recycling and controlling of Atg8 function 

(Kirisako et al., 2000). Synthesis as well as lipidation of Atg8 are up-regulated 

under autophagy-inducing conditions (Kirisako et al., 2000; Nakatogawa et al., 

2007) and since the amount of Atg8-PE correlates with the size of the 

autophagosomes, Atg8-PE is suggested to be directly involved in the expansion 

of the phagophore (Geng and Klionsky, 2008; Xie et al., 2008). 

 

2.3.5 Closure and delivery to vacuole 

Before the content of the autophagosome can be degraded, the phagophore 

expansion has to be completed and form into a double membrane vesicle, the 

autophagosome. This vesicle can then be delivered to the vacuole and 

degraded. 

The PI3P phosphatase Ymr1 was shown to be important in late steps of 

autophagosome formation. In YMR1 deletion cells Atg proteins fail to dissociate 

from autophagosomal membranes and autophagosomes accumulate in the 

cytoplasm. This indicates that the Atg machinery has to be removed from the 

autophagosomes in order to allow fusion with the vacuole. This seems to be 

regulated by Ymr1 (Cebollero et al., 2012). 

Little is known about the very last steps of the closure and delivery of the 

autophagosome to the vacuole. It is possible, that the endosomal sorting 

complex required for transport (ESCRT) is involved in the membrane sealing 

(Hurley, 2010; Hurley and Hanson, 2010). For an Arabidopsis mutant defective 

for a component in the ESCRT-III complex arrested phagophores were 

reported, indicating an involvement in phagophore closure (Spitzer et al., 2015). 
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Upon completion of the autophagosome, certain SNAREs are required for 

fusion with the vacuole: Ypt7 (a GTP-binding protein), Sec18, Vam7 and Ykt6 

(Darsow et al., 1997; Mayer and Wickner, 1997; Sato et al., 1998; Dietrich et 

al., 2004; Balderhaar et al., 2010; Bas et al., 2018). 

After completion of the autophagosome, the outer membrane of the 

autophagosome fuses with the vacuolar membrane and leads to the release of 

a single membrane vesicle, the autophagic body. Following, the autophagic 

body is degraded via the lipase Atg15 and finally the cargo can be degraded 

with the help of vacuolar hydrolases (Epple et al., 2001). 

 

2.4 Selective forms of autophagy 

2.4.1 The Cvt pathway 

The cytoplasm-to vacuole targeting (Cvt) pathway in S. cerevisiae is a form of 

selective autophagy, that seems to exclude bulk cytoplasm. Selectively 

hydrolases, especially aminopeptidase I (ApeI) but also -mannosidase (AmsI), 

are delivered to the vacuole under basal conditions (Xie and Klionsky, 2007). In 

comparison to normal autophagosomes (500 nm) the Cvt vesicles are rather 

small (150 nm) (Baba et al., 1997; Scott et al., 1997). Immediately after its 

synthesis prApeI (the precursor form of ApeI) folds into a homododecamer (Kim 

et al., 1997). Subsequently, the homodecamers assemble to the so-called ApeI 

complexes, which is a main cargo for the Cvt vesicles. Dodecamer formation is 

essential for ApeI complex formation and its delivery to the vacuole via the Cvt 

pathway (Su et al., 2015). The propeptide of ApeI is located at the N-termiuns 

of the protein and is important for the formation of the ApeI complex as well as 

the ApeI-Atg19 interaction (Oda et al., 1996; Shintani et al., 2002; Suzuki et al., 

2002). The ApeI complex is recognized by its receptor Atg19 (Scott et al., 2001; 

Shintani et al., 2002). Atg19 then recruits Atg11 and Atg8, what leads to the 

formation of the Cvt complex. The following recruitment of the core Atg 

machinery is initiated by Atg19 and Atg11, this then leads to the membrane 

formation around the Cvt complex, the Cvt vesicle (Shintani et al., 2002; Suzuki 

et al., 2002; Yorimitsu and Klionsky, 2005; He et al., 2006). The double-

membraned vesicle then finally fuses with the vacuole (Scott et al., 1996; Baba 

et al., 1997; Kim et al., 1997; Klionsky and Ohsumi, 1999) and prApeI is 

processed into its mature form mApeI (Klionsky et al., 1992). 
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Figure 2.4: The Cvt pathway and macroautophagy in yeast (Nair et al., 
2010)  

Under vegetative conditions, precursor ApeI (prApeI) is engulfed by double 
membrane vesicles and delivered to the vacuole via the Cvt pathway. There it is 
processed to its mature form mApeI. The Cvt pathway is a biosynthetic 
pathway, that uses the core Atg machinery. Upon starvation, ApeI is delivered 
to the vacuole via the macroautophagic pathway together with other cargo.  

 

2.4.2 Pexophagy  

Pexophagy is a selective form of autophagy, where superfluous or damaged 

peroxisomes are degraded. Peroxisomes are involved in many aspects of lipid 

metabolism and elimination of peroxides and depending on the cell status they 

are synthesized or degraded. Through the change of experimental conditions, 

from peroxisome biogenesis inducing conditions to peroxisome biogenesis 

repressing conditions, pexophagy can be triggered experimentally. Depending 

on the yeast species, pexophagy can be induced differently. In S. cerevisiae 

pexophagy can be triggered by the change from medium with oleic acid as sole 

carbon source to glucose-rich and nitrogen-limiting medium (Hutchins et al., 

1999). The methylotrophic yeast Pichia pastoris (P. pastoris), can use methanol 

as exclusive carbon source, what leads to the synthesis of high levels of 

peroxisomes. Peroxisomes contain enzymes that are necessary for the 

metabolism of methanol (Fukui et al., 1975a; 1975b). Two forms of autophagy 

are known in methylotrophic yeast: macropexophagy (Chapter 2.4.2.1) and 

micropexophagy (Chapter 2.4.2.2) (Veenhuis et al., 1992; Dunn et al., 2005). In 

P. pastoris a shift from methanol to ethanol induces macropexophagy (Nazarko 
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et al., 2009), whereas a shift from methanol to glucose induces 

micropexophagy (Tuttle and Dunn, 1995). For pexophagy most of the core Atg-

machinery and some additional components, like Atg30 are required (Farré et 

al., 2009). In contrast to S. cerevisiae, P. pastoris (or alternatively Hansenula 

polymorpha) exhibit giant methanol induced peroxisome clusters, thus, the 

structures of interest can be visualized more clearly. Therefore, these two yeast 

species are mainly used for pexophagy studies (Farré et al., 2009). 

Macropexophagy and micropexophagy are analogous to macroautophagy and 

microautophagy (Veenhuis et al., 1983; Tuttle and Dunn, 1995; Sakai et al., 

1998).  

 

2.4.2.1 Macropexophagy 

Transfer of the methylotrophic yeast P. pastoris from methanol containing 

medium to ethanol-containing medium leads to macropexophagy. Here, single 

peroxisomes are enclosed in autophagosomes (pexophagosomes), that arise 

from the PAS. The peroxisomes are then individually delivered to the vacuole 

(Tuttle and Dunn, 1995; Sakai et al., 1998). The process of macropexophagy is 

similar to that of autophagy. After selection of the cargo, the isolation 

membrane forms and expands and finally engulfs the peroxisomes in 

pexophagosomes. Then, the autophagic machinery is removed, the 

pexophagosome fuses with the vacuole and finally, the cargo can be degraded 

and recycled (Farré et al., 2009). The same core Atg-machinery as during 

autophagy is required with a few adaptions to obtain specificity for pexophagy. 

This specificity is mainly obtained by PpAtg30, a receptor that interacts with 

peroxisomes via Pex3 and Pex14 (Farré et al., 2008). PpAtg30 also interacts 

with PpAtg11 and PpAtg17, proteins that organize PAS assembly (Farré et al., 

2008). 

 

2.4.2.2 Micropexophagy 

Micropexophagy is induced in P. pastoris after a switch from methanol-

containing medium to glucose-containing medium. Methanol-containing medium 

leads to development and clustering of peroxisomes juxtaposed to the vacuole. 

In order to engulf the peroxisome cluster, the vacuolar membrane invaginates 

along the peroxisomes after shift to glucose-containing medium (Figure 2.5). 
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The so-called vacuolar sequestering membrane (VSM) protrudes along the 

peroxisomes. Additionally, the micropexophagic membrane apparatus (MIPA), 

a cup-shaped double-membrane structure develops on the surface of the 

peroxisome cluster. The heterotypic fusion of the MIPA and VSM tips is 

dependent on Atg24 (Ano et al., 2005) and leads to the transport of the 

peroxisome cluster into the vacuole (Mukaiyama et al., 2004). The MIPA 

possibly originates from the Golgi (Yamashita et al., 2006). The complete core 

Atg machinery is needed for the assembly of the MIPA and pexophagosome 

formation, as well as the pexophagy-specific Atg proteins Atg11, Atg26 and 

Atg30 (in H. polymorpha also Atg25 is a specific factor) (Monastyrska et al., 

2005). Like in S. cerevisiae, Atg8 is localized to the isolation membrane 

(Mukaiyama et al., 2004). Under peroxisome proliferation conditions, the Atg8 

levels increase, but mainly remain localized to the cytosol. Under pexophagy 

conditions the Atg8 levels remain consistent, but Atg8-PE levels increase, now 

localized to the PAS, a perivacuolar structure, where the MIPA and herewith the 

pexophagosome will develop (Farré and Subramani, 2004). 

Atg11 is the scaffold in yeast, in S. cerevisiae Atg36 is the corresponding cargo 

receptor for pexophagy, in P. pastoris PpAtg30 is used as cargo receptor for 

pexophagy. Atg36 (PpAtg30) is essential for selective autophagy of 

peroxisomes. Binding to Atg36 (PpAtg30) is mediated via Pex3 (PpPex3) (Farré 

et al., 2008; Motley et al., 2012). Atg11 initiates the attachment of Atg8-PE to 

the peroxisomes and following the engulfment of the peroxisomes with the 

phagophore. Localization of PpAtg11 to the vacuole is dependent on PpVac8 

(Kim et al., 2001b; Fry et al., 2006). 

Atg26 is a sterol glucosyltransferase, that is specific for micro-and 

macropexophagy in P. pastoris (Nazarko et al., 2007) and is not involved in 

autophagy in S. cerevisiae (Cao and Klionsky, 2007). For the localization to the 

MIPA and the pexophagosome phosphatidylinositol 4-phosphate (PI4P) is 

required. This localization is mediated by Atg26, since this protein binds PI4P 

(Oku et al., 2003; Yamashita et al., 2006). 

The formation of complete VSM is inhibited in several mutants (atg2∆, atg9∆, 

atg11∆, atg18∆, atg28∆, vac8∆ and vps15∆) (Kim et al., 2001b; Mukaiyama et 

al., 2002; Chang et al., 2005; Dunn et al., 2005; Fry et al., 2006). 
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In P. pastoris PpAtg9 is essential for formation of the sequestering membranes 

and assembly of the MIPA. During peroxisome biogenesis conditions PpAtg9 is 

localized to a peripheral compartment, localized near the plasma membrane. 

Upon induction of micropexophagy, PpAtg9 relocates together with PpAtg11 to 

unique perivacuolar structures (PVS). PVS are located next to VSMs and are 

distinct from the PAS (Chang et al., 2005). Subsequently, PpAtg9 can be found 

on the sequestering membranes and on the vacuolar surface (Chang et al., 

2005). Cycling of PpAtg9 from the peripheral compartment to the PVS is based 

on PpAtg11 and PpVps15. Movement of PpAtg9 from the PVS to the VSM and 

the vacuolar surface requires PpAtg2 and PpAtg7 (Chang et al., 2005).  

During micropexophagy PpAtg28 and its interaction partner PpAtg35 are 

required for MIPA formation. PpAtg35 is specific for micropexophagy, but not 

required for macropexophagy, in contrast to PpAtg28, that is at least partially 

required for autophagy and the Cvt pathway (Nazarko et al., 2011). PpAtg35 

interacts with PpAtg17, a scaffold protein that is involved in the pexophagy-

specific PAS assembly together with PpAtg30 and PpAtg11 (Farré et al., 2008; 

Nazarko et al., 2009). The interaction of PpAtg35 and PpAtg17 is mediated by 

PpAtg28 (Nazarko et al., 2011). Overexpression of PpAtg35 specifically leads 

to an inhibition of micropexophagy (Nazarko et al., 2011). 
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Figure 2.5: Micropexophagy in P. pastoris (Farré et al., 2009) 

In P. pastoris micropexophagy is induced through the shift of methanol-
containing medium to glucose-containing medium. The vacuolar membrane 
invaginates to so called vacuolar sequestering membranes (VSM) and engulfs 
peroxisome clusters. On the surface of the peroxisomes, the micropexophagic 
membrane apparatus (MIPA) is formed and finally mediates the heterotypic 
fusion of VSM and MIPA.  

 

2.5 Nucleophagy: the autophagic degradation of the nucleus 

Nucleophagy is the autophagic degradation of superfluous or damaged parts of 

the nucleus. This process is important to maintain cellular integrity in yeast, as 

well as in mammalian cells (Roberts et al., 2003; Park et al., 2009; Mijaljica et 

al., 2012). Until now nucleophagy in mammalian cells is only mentioned in the 

context of pathological conditions (Park et al., 2009). Since nucleophagy targets 

specifically the nucleus, it is a selective form of autophagy. This selective 

degradation of the nucleus can be differentiated into two forms of nucleophagy: 

macronucleophagy (Chapter 2.5.1) and micronucleophagy (also referred to as 

PMN; Chapter 2.5.2). It was recently shown, that macronucleophagy as well as 

micronucleophagy are dependent on the Nem1/ Spo7-Pah1 pathway after 

inactivation of TORC1 (Rahman et al., 2018). Unfortunately, both processes are 

poorly described. 

 

2.5.1 Macronucleophagy and ER-Phagy 

During macronucleophagy non-essential or damaged parts of the nucleus are 

sequestered by autophagosomes in a Atg39 dependent manner (Mochida et al., 

2015). These then fuse with the vacuole and the content is released into the 

vacuole and is finally degraded 

Atg39 and Atg40 are two proteins involved in ER-phagy and nucleophagy and 

are localized to different ER domains. Atg39 is localized to the perinuclear ER 

(pnER)/ nuclear envelope (NE) and is needed for pnER-phagy and 

nucleophagy. It is under debate, if proper localization of Atg39 is dependent on 

the Nem1/ Spo7-Pah1 pathway (Rahman et al., 2018). The cytoER-phagy is 

dependent on Atg40, which is localized to the cytoplasmic ER (cytoER)/ cortical 

ER (cER) (Mochida et al., 2015). Both proteins contain Atg8-family-interacting 

motifs (AIM) and probably bind to Atg8 on forming autophagosomal membranes 

(Mochida et al., 2015). 
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Atg39 is a single membrane-spanning protein with its C-terminus located in the 

pnER lumen. Therefore it is speculated, that Atg39 might interact as a receptor 

with nuclear proteins and/or lipids in the inner nuclear membrane with its C-

terminal region. This interaction might lead to the formation double-membrane 

vesicles (Nakatogawa and Mochida, 2015). Atg40 preferably localizes to highly 

curved ER regions and its putative transmembrane region contains a reticulon-

like domain (Mochida et al., 2015).  

 

Endoplasmic reticulum (ER) is further degraded by the so-called ER-phagy (or 

reticulophagy). In S. cerevisiae, ER stress leads to massive ER expansion, 

what results in the formation of large ER whorls. During ER-phagy these whorls 

are selectively taken up into the vacuole. This event is independent of the core 

autophagic machinery and it involves the invagination of vacuolar membrane 

(Schuck et al., 2014).  

It is under debate how the ER is fragmented and sequestered by a phagophore. 

Either the ER fragments before autophagosome formation or the fragmentation 

and autophagosome formation are coupled (Figure 2.6) (Nakatogawa and 

Mochida, 2015). 

Both Atg39 and Atg40 are upregulated under nitrogen starvation or inhibition of 

TORCI, suggesting a role of these two proteins in the regulation of nucleophagy 

and ER-phagy (Mochida et al., 2015). ER-phagy is reduced in knockout of 

either ATG39 or ATG40 and almost completely blocked in the double knockout. 

The deletion of ATG39 leads to decreased cell survival under starving 

conditions, indicating, that nucleophagy is important for cell survival under these 

conditions (Mochida et al., 2015). 
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Figure 2.6: Macronucleophagy is dependent on Atg39 in S. cerevisiae 
(modified from Luo et al., 2016) 

Macronucleophagy is dependent on Atg39. The formation of the 
autophagosomal membrane is induced upon binding of Atg39 to Atg8. Parts of 
the nucleus are engulfed by autophagosomes and finally degraded in the 
vacuole. 

2.5.2 Piecemeal Microautophagy of the Nucleus (PMN) 

(Micronucleophagy) 

Piecemeal microautophagy of the nucleus (PMN) is a selective autophagic 

process (Roberts et al., 2003) that occurs upon nitrogen or carbon starvation. 

PMN can also be induced by rapamycin, an inhibitor of the TORC1 kinase 

(Roberts et al., 2003). During PMN only non-essential parts of the nucleus are 

removed, chromosomal DNA, nuclear pore complexes and spindle pole bodies 

are excluded from PMN (Roberts et al., 2003; Kvam and Goldfarb, 2007; Farré 

et al., 2009; Kraft et al., 2009; Millen et al., 2009). Therefore this process is not 

linked to cell death (Roberts et al., 2003). PMN occurs at the so-called nucleus- 

vacuole junction (NVJ), the membrane contact site between nucleus and 

vacuole (Roberts et al., 2003), that is formed by the interaction of Nvj1 and 

Vac8 (Pan et al., 2000b). Stress induces enlargement of the NVJ (Pan et al., 

2000a). Upon starvation, the NVJs bulge into the vacuole, to form a teardrop-

like nuclear bleb, that finally is pinched off and degraded in the vacuole 

(Roberts et al., 2003). PMN doesn’t require the components of the homotypic 

fusion machinery (Krick et al., 2008; 2009a; Millen et al., 2009). Using GFP-

Osh1 as a marker for PMN, the core Atg-machinery was described to be 

essential for PMN together with some macroautophagic- and Cvt-specific Atg-

proteins like Atg11 and Atg24 (Krick et al., 2008). However, this is under 

debate, as by that time, macronucleophagy was unknown and a differentiation 

between micro- and macronucleophagy wasn’t possible (Mostofa et al., 2018). 

Lately it was shown, that inactivation of TORC1 results in the separation and 

repositioning of nucleolar proteins and ribosomal DNA (rDNA) depending on the 

CLIP-cohibin system (Mostofa et al., 2018). This system is required for the 

anchoring of rDNA to the inner nuclear membrane (Mekhail et al., 2008). Both, 

CLIP and cohibin were tested to be essential for the degradation of nucleolar 

proteins, but not for macro- or microautophagy (Mostofa et al., 2018). 

Micronucleophagy seems to be a very specific process, since the lack of CLIP 

or cohibin does not lead to aberrant nucleophagy of rDNA, in the meantime, 



Introduction 

 20 

micronucleophagy still occurs. Furthermore, micronucleophagy was shown to 

be the driving force for repositioning of rDNA and nucleolar proteins after 

TORC1 inactivation (Mostofa et al., 2018). 

2.5.2.1 Structure and function of the Nucleus-vacuole junction 

The crucial backbone of the NVJ is formed by the interaction of Nvj1 and Vac8 

(Figure 2.7). These two interaction partners cluster into velcro-like patches. 

Deletion of either NVJ1 or VAC8 leads to the disruption of the NVJ (Pan et al., 

2000a)   Nutritional limitation leads to an expansion and proliferation of the 

NVJs (Roberts et al., 2003). In addition to the two backbone proteins Nvj1 and 

Vac8, also Osh1 and Tsc13 are part of the NVJ, which play roles in lipid 

biosynthesis and trafficking (Kohlwein et al., 2001; Levine and Munro, 2001). 

Both, Osh1 and Tsc13 are interacting with Nvj1, also in the absence of Vac8 

(Kvam and Goldfarb, 2004; Kvam et al., 2005). 

In addition to the just mentioned proteins, further components of the NVJ have 

been described: e.g. Nvj2, Nvj3, Lam5, Lam6, Mdm1, Vps13 (Toulmay and 

Prinz, 2011; Elbaz-Alon et al., 2015a; Gatta et al., 2015; Henne et al., 2015; 

Murley et al., 2015; Lang et al., 2015a). 

In S. cerevisiae Lam6 can be found in several contact sites: ERMES 

(ER/mitochondria encounter structure), vCLAMP (vacuole and mitochondria 

patch) and in NVJs. The formation of NVJs is not dependent on Lam6 (Elbaz-

Alon et al., 2015a), but Lam6 is able to enlarge the ERMES, vCLAMP and 

NVJs, when it is overexpressed (Elbaz-Alon et al., 2015a). Lam6 is considered 

to be a regulatory protein and to regulate cross-talk between different contact 

sites (Elbaz-Alon et al., 2015a). 

Mdm1 is localised to the ER-vacuole/ lysosome membrane contact site (NVJ) 

and is therefore a interorganelle tethering protein (Henne et al., 2015). 

Overexpression of Mdm1 leads to an elongated vacuole- nER interphase, 

similar to what Pan et al. (2000a) observed for Nvj1. Nvj3 is a paralog to Mdm1 

and was also found to be localised to the NVJ. However, this localisation is 

dependent on Mdm1, since in mdm1∆ cells Nvj3 is located in the cytoplasm 

(Henne et al., 2015). The localisation of Mdm1 and Nvj3 to the ER-vacuole 

contact site is independent of the presence or absence of Nvj1 and vice versa, 

Mdm1 has no impact on the formation of the NVJs (Henne et al., 2015). 
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A clear role for the NVJs is so far unknown. However Osh1 and Tsc13 are two 

proteins that are located at the NVJs and are involved in lipid biosynthesis and 

trafficking (Elbaz and Schuldiner, 2011). Osh1 is a oxysterol-binding protein 

(Levine and Munro, 2001) and is involved in non-vesicular lipid trafficking 

(Kvam and Goldfarb, 2004). Deletion of the seven-membered yeast Osh family 

leads to inhibition of PMN at a late stage (Kvam and Goldfarb, 2004). Osh1 is 

known to bind PI4P and ergosterol in a competitive manner and is therefore 

considered to transport ergosterol in exchange for PI4P in a non-vesicular 

manner between lipid bilayers (Manik et al., 2017). Tsc13 is an essential enoyl-

CoA reductase that is involved in the biosynthesis of very-long-chain fatty acid 

synthesis (VLCFAs) (Kohlwein et al., 2001), that are important for structure and 

fluidity of membranes (Elbaz and Schuldiner, 2011). A decrease in the size of 

PMN blebs is observed in the absence of Tsc13 (Kvam et al., 2005).  

 

 

 

Figure 2.7: Structure of the nucleus-vacuole junction (modified from Elbaz 
and Schuldiner, 2011) 

The nucleus-vacuole junction (NVJ) consist of four proteins: Nvj1, Osh1, Tsc13 
and Osh1, whereat the backbone of this membrane contact site is formed by 
the interaction of Nvj1 and Vac8. 
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2.5.2.1.1 The integral ER-membrane protein Nvj1 

Nvj1 is an integral ER-membrane protein, that contains a single transmembrane 

domain and clamps together inner and outer nuclear membrane (Millen et al., 

2008). At the lumenal N-terminus Nvj1 contains an inner nuclear membrane 

anchor, that strictly retains Nvj1 in the perinuclear ER and furthermore bisects 

the width of the perinuclear lumen. Reduction of hydrophobicity or introduction 

of charged residues to the inner nuclear membrane anchor leads to disrupted 

localization of Nvj1 (Millen et al., 2008). Also the Nem1/ Spo7-Pah1 axis, a 

pathway involved in the synthesis of triacylglycerol, is reported to be crucial for 

correct Nvj1 localisation (Rahman et al., 2018). The C-terminus of Nvj1 is 

located in the cytoplasm, where it interacts with Vac8 (Pan and Goldfarb, 1998; 

Wang et al., 1998). Binding of Nvj1 and Vac8 is crucial for formation of NVJs 

(Pan et al., 2000a), since Nvj1 induces Vac8 dimerization, what is essential for 

normal formation of NVJs (Jeong et al., 2017). Nvj1 also interacts with Osh1 

and Tsc13 (Kvam and Goldfarb, 2004; Kvam et al., 2005). The Osh1 binding 

was localized to the cytosolic segment (residues 130-177), next to the 

membrane-spanning region (Kvam and Goldfarb, 2006). Independent of 

interaction with Vac8 or NVJ formation, Nvj1 binds targets Tsc13 to the 

perinuclear ER (Kvam et al., 2005). 

 

2.5.2.1.2 The vacuolar protein Vac8 

Vac8 is a vacuolar protein, that forms through its interaction with Nvj1 the 

crucial backbone for the NVJ (Pan et al., 2000a). Vac8 is dimerized by binding 

of Nvj1, what is necessary for normal formation of NVJs (Jeong et al., 2017). 

The N-terminus of Vac8 is palmitoylated and myristoylated and these lipid 

modifications are anchored into the vacuolar membrane (Wang et al., 1998). 

Additionally, Vac8 contains several ARM domains (Tewari et al., 2010). These 

are partially required for proper localization of Nvj1 to the NVJs (Tang et al., 

2006). Due to its ARM domains, Vac8 serves as an adapter protein, that is 

involved in different vacuolar processes, e.g. vacuole inheritance and 

homotypic fusion (Fleckenstein et al., 1998; Pan and Goldfarb, 1998). Through 

its interaction with Atg13, Vac8 also plays an important role in the import of 

aminopeptidase I during the CVT pathway (Wang et al., 1998; Scott et al., 
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2000). Jeong et al. (2017) recently reported that Vac8 either can interact with 

Nvj1 or Atg13, what is in agreement with their physiological role. 

 

2.5.2.1.3 The oxysterol-binding protein Osh1 

Osh1 is an oxysterol-binding protein (OSBP), similar to those in mammalian 

cells (Schmalix and Bandlow, 1994). OSBP-related proteins (ORPs) are 

reported to be involved in intracellular lipid transfer and facilitate the transport of 

sterols and other phospholipids between intracellular membranes (Mesmin and 

Antonny, 2016). Osh1 contains three targeting domains: Ankyrin repeat domain 

(ANK), PH and the FFAT motif additionally, it contains the OSBP-related 

domain (ORD) (Levine and Munro, 2001; Tong and Boone, 2006). Osh1 

interacts via the ANK domain with Nvj1 in an Vac8 independent manner (Levine 

and Munro, 2001; Kvam and Goldfarb, 2004). The Osh1 ANK displays a bi-

lobed structure, with an Nvj1-binding cleft between the two subdomains, and 

recognizes the small cytosolic segment of Nvj1 (Manik et al., 2017). The 

recruitment of Osh1 from cytoplasmic and Golgi pools into the NVJs depends 

on the cellular level of Nvj1 (Kvam and Goldfarb, 2004). Osh1 also interacts 

with the ER anchor protein Scs2 at the NVJ (Loewen et al., 2003). 

Furthermore, GFP-Osh1 was postulated to be a marker for PMN measurement 

(Krick et al., 2008; Millen et al., 2009).  

 

2.5.2.1.4 The enoyl reductase Tsc13 

Tsc13 is a enoyl reductase that is involved in last step in very-long-chain fatty 

acid synthesis (VLCFAs) (Kohlwein et al., 2001; Gable et al., 2004). Through its 

physical interaction with Nvj1, which is independent of Vac8, Tsc13 is enriched 

in NVJs (Kvam et al., 2005). During PMN Tsc13 is degraded in a Nvj1 

dependent manner (Kvam et al., 2005).  

 

2.5.2.2 Different stages of PMN 

PMN can be divided into five different stages (Figure 2.8). The NVJs are formed 

by the interaction of Nvj1 and Vac8 (Pan et al., 2000a). Then, the NVJs bulge 

into the vacuole and form bleb-like structures, followed by partial nuclear bud 

off. The vacuolar extensions then fuse and now the vesicle is surrounded by 

three membranes: two from the nucleus and one from the vacuole. Finally, the 
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PMN vesicle is released into the vacuole and is degraded by the vacuolar 

proteinase A (Kvam and Goldfarb, 2007). No PMN occurs in VAC8 or NVJ1 

deletion strains (Roberts et al., 2003).  

 

 

Figure 2.8: Five Stages of PMN (Krick et al., 2009a) 

I. NVJs are formed 
II. NVJs bulge into the vacuole 

III. Part of the nucleus buds off 
IV. Fusion of the vacuolar extensions  
V. PMN vesicle is released in the vacuole and is degraded  
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2.6 Aim of the thesis 

PMN is a selective type of autophagy, during which non-essential parts of the 

nucleus are degraded in a Nvj1-dependent manner. This takes place at the 

NVJ, a contact site of nucleus and vacuole. The backbone of the NVJ is caused 

by the interaction of Nvj1 and the Vac8 (Pan et al., 2000a). Knowledge about 

this process is limited. 

Recently, two new Atg-proteins that are involved in ER-phagy were described: 

Atg39 and Atg40. Atg39 is localized to the perinuclear ER and is involved in 

autophagic degradation of the perinuclear ER and parts of the nucleus. In 

contrast to that, Atg40 is localized to the cortical and cytoplasmic ER and is 

important for the degradation of these ER subdomains (Mochida et al., 2015). 

One aim of this thesis was to determine the role of Atg39 and Atg40 in PMN.  

 

Based on results obtained initially during this study, the first question to be 

answered was, if Nvj1 is essential for the degradation of GFP-Osh1, the marker 

protein for PMN, and Nop1-GFP, a nucleolar marker protein. Subsequently, the 

potential involvement of Nvj2, Scs2, Glc8 and Ymr310c in PMN was analysed. 

In this context, the role of Nvj1 during PMN was analysed using two different 

Nvj1 mutants Nvj1_V20E_V23E (Millen et al., 2008) and Nvj1Δ318-321 (Jeong et 

al., 2017). 

Jeong et al. (2017) were able to partially solve the structure of Osh1 and 

showed that Osh1_A159V is impeded in its interaction with Nvj1. Within this 

study, it was one aim to investigate, how this Osh1 mutation influences its 

degradation during PMN. 

Finally, two marker proteins, Pho8-GFP and Nab-NLS-mCherry were to be 

tested in regard of their suitability for differentiation of micro- and 

macroautophagy and PMN measurement, respectively. 
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3 Material and Methods 

3.1 Material 

3.1.1 Yeast Strains 

Table 1: Yeast Strains used in this study 

Yeast Strain Genotype Reference 

WCG4 WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 

Thumm et al., 1994 

atg1Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 atg1Δ::KAN 

Straub et al., 1997 

atg39Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 atg39Δ::natNT2 

AG Thumm 

atg40Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 

atg40Δ::hphNT2 

AG Thumm 

atg39Δ atg40Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 atg39Δ::natNT2 

atg40Δ::hphNT2 

This study 

atg39Δ atg40Δ nvj1Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 atg39Δ::natNT2 

atg40Δ::hphNT2 nvj1Δ::HIS3 

This study 

glc8Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 glc8Δ::NatNT2 

This study 

osh1Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 osh1Δ::NatNT2 

This study 

nvj1-6xHA WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 Nvj1-

6xHA::KanMX6 

This study 

nvj1Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 nvj1Δ::HIS3 

Krick et al., 2008 

nvj1Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 nvj1Δ::NatNT2 

This study 

nvj1Δ scs2Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 nvj1Δ::NatNT2 

scs2Δ::hphNT1 

This study 
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nvj2Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 nvj2Δ::hphNT1 

This study 

nvj1Δ nvj2Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 nvj1Δ::NatNT2 

nvj2Δ::hphNT1 

This study 

Scs2Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 scs2Δ::hphNT1 

This study 

vac8Δ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 vac8Δ::HIS3 

Krick et al., 2008 

ymr310cΔ WCG4a MAT α his 2-11,15 

leu2‐3,112 ura3 

ymr310cΔ::hphNT1 

This study 

 

3.1.2 E. coli Strains 

Table 2: E. coli strains used in this study 

E. coli strains Genotype Reference 

DH5α F’ (Φ 80 (ΔlacZ) M15) Δ(lacZYAargF) 

U169 recA1 endA1 hsdR17 rK- mK + 

supE44 thi-1 gyrA relA 

Hanahan, 1983 

XL1 blue endA1 gyrA96(nalR) thi-1 recA1 

relA1 lac glnV44 F'[::Tn10 proAB+ 

lacIq Δ(lacZ)M15] hsdR17(rK- mK+) 

Stratagene 

 

3.1.3 Plasmids 

Table 3: Plasmids used/ generated for this study 

Name/ Insert Genotype Reference 

GFP-Osh1 pRS416 CEN6 URA3 TEF1 

GFP-OSH1 

AG Thumm  

(Göttingen) 

GFP-Osh1_A159V pRS416 CEN6 URA3 TEF1 

GFP-OSH1_A159V 

This study 

mRFP1-Nop1 pUN100 CEN6 LEU2 

mRFP1-Nop1 

AG Bohnsack 

(Göttingen) 

Nab2NLS-mCherry pYX242 2µ LEU2 TPI1 

Nab2NLS-2mCherry 

D. Goldfarb (University 

of Rochester) 
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Nop1-GFP pUG35 CEN6 URA3 MET25 

Nop1-GFP 

AG Thumm  

(Göttingen) 

Nvj1-GFP pUG35 CEN6 URA3 MET25 

Nvj1-GFP 

Millen et al., 2009 

Nvj1-GFP_V20E_V23E pUG35 CEN6 URA3 MET25 

Nvj1-GFP_V20E_V23E 

This study 

Nvj1-GFP∆318-321 pUG35 CEN6 URA3 MET25 

Nvj1-GFP∆318-321 

This study 

Pho8-GFP pUG35 CEN6 URA3 Pho8-

yEGFP3 

This study 

pFA6a-natNT2 pFA6a-natNT2 Euroscarf, (Janke et al., 

2004) 

pFA6a-hphNT1 pFA6a-hphNT1 Euroscarf, (Janke et al., 

2004) 

pFA6a-kanMX6 pFA6a-kanMX6 Longtine et al., 1998 

pFA6a-HIS3MX6 pFA6a-HIS3MX6 Longtine et al., 1998 

pUG35 pUG35 CEN6 URA3 MET25 

yEGFP3 C-FUS 

AG Thumm  

(Göttingen) 

pYM17 pYM17-6xHA Euroscarf, (Janke et al., 

2004) 

 

3.1.4 Oligonucleotides 

Table 4: Oligonucleotides used in this study 

Name Sequence (5’ to 3’) 

MCS-KPN1 aatacgactcactatagggcg 

NatNT2 rev CGATTCGTCGTCCGATTCGTC 

ATG16 seq 3 
for 

GGCCAACACTTGTCACTAC 

Glc8 KO_S1 ATCAGTACAACGAGTTCGTATCATCAAGAACGCACATCAGCAGAA

TAATGCGTACGCTGCAGGTCGAC 

Glc8 KO_S2 AAATAAGATATATTTAGTATAGGTAAACGTTATGGAGGTGTCATGT

TTCAatcgatgaattcgagctcg 

Glc8_Prom CACCACTACAACTTAAAGTCC 

Glc8_rev GTCGTACTATCATCTTCGTC 

HIS-2 CATCTGGGCAGATGATGTC 

hphNT1 r CAATCGCGCATATGAAATCAC 

kanMX-r GTAATGAAGGAGAAAACTCACC 
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NatNT2 rev CGATTCGTCGTCCGATTCGTC 

  

NVJ1 KO S1 
 

TGTGCATAATATCAAAAAAGCTACAAATATAATTGTAAAATATAA 

TAAGCATGCGTACGCTGCAGGTCGAC 

NVJ1 KO S2 CACCTCGTTGTAAGTGACGATGATAACCGAGATGACGGAAATATA

GTACATTAATCGATGAATTCGAGCTCG 

S2_Nvj1-HA CGTTGTAAGTGACGATGATAACCGAGATGACGGAAATATAGTACA

TTAATCGATGAATTCGAGCTCG 

S3_Nvj1-HA GCACAAGTGAACACTGAACAAGCATACTCTCAACCATTTAGATAC

CGTACGCTGCAGGTCGAC 

PromNvj1_Co
ntro 

GGAACCAACAACTGTTGCGTTTGCG 

Nvj2 KO S1 CATCGAAGAGCAGAACAGCAAGAGAAAAGTAGCATTAAAAGACC

ATAATGCGTACGCTGCAGGTCGAC 

Nvj2 KO S2 TATAGCTTCAAGTGATATTTATTTATTTTTAATATAGTACCGTGGA

CTCAatcgatgaa ttcgagctcg 

Nvj2rev GGGCTCTCGCTGTTCTTCAAATTCT 

Prom Nvj2 GGGTTTTGAACACATCGAAGAGCAG 

Nvj1_L20E_V
23E_forw 

GTCTTTCTGTAGCCGTTGAGAAAGGTGAAGAAAAAACAGTTCGTA
AG 

Nvj1_L20E_V
23E_rev 

CTTACGAACTGTTTTTTCTTCACCTTTCTCAACGGCTACAGAAAGA
C 

Nvj1_BamHI_f
orw 

AGTCAAGGATCCAGCATGACTCGTCCCCCATTGGTTCGTGGAAT
CTTTTC 

Nvj1_EcoRI_r
ev 

TTGACTTTAGTATCTAAATGGGAATTCTTGAGAGTATGCTTGTTCA
GTGTTCACTTGTGCATC 

Osh1_KO_S1 GAAAAGTTTAAACATCAAAGTACACCTTTCACCCCTCCACACACC

ATGCGTACGCTGCAGGTCGA 

Osh1_KO_S2 CAATGGATACAAATGAACGAGTGTTATTGTGACTACATTGCACAG

CTTAGatcgatgaattcgagctcg 

Osh1_fw GCTGAGTTTTTGCGCATCAATATTATTTTTACTACTAC 

Osh1 forw 3 CTACAAATTGCGTTGGTTC 

Osh1 forw 4 AGGAGACTCCAGCTAATG 

Osh1_rev GTTGGTCCATTTTTTCAGGTAGCCTTTGTAAG 

Osh1 rev 2 GGAGATCTTGTAGGTTGG 

Osh1 rev 4 TTCTCACTGGGTCTTCATATC 

Osh1_A159V

_forw 

CCACATACGTTGCAGAGACCGTCCAGGAATTCAGAACAGCTTTTA

AC 

Osh1_A159V

_rev 

GTTAAAAGCTGTTCTGAATTCCTGGACGGTCTCTGCAACGTATGT

GG 
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Osh1 forw 2 GGAACAACCTGATCTATCG 

Osh1 rev CAGCACAATCTTTAAAGTCATG 

Osh1 rev 3 GAATTTCAACTTTTCAGACG 

Pho8-GFP_ 

BamHI_rev 

TTGACTGGATCCGTTGGTCAACTCATGGTAGTATTCGTC 

Pho8-GFP_ 

BspEI_forw 

AGTCAATCCGGATTCTACTGTTGGAATTCAATGTTAGGAGGAGAA

C 

Pho8_seq 

forw (1) 

GAGACTCATATGGAGAAACG 

Pho8_seq 

forw (2) 

CACCAGTTAGGCGAATATC 

Pho8_seq rev 

(1) 

GCAAAGAGACCCAAGAAAG 

Scs2 KO S1 TTAATAGTGTAGCAGAAGGGTATTCTACAATCTCCGCGAACCTAA

GTATGCGTACGCTGCAGGTCGAC 

Scs2 KO S2 CACACATATATAAATATATATTTAGAATACAGCTATATCCTCAATC

TCCCTATTAatcgatgaattcgagctcg 

Scs2 Prom TCAGCACACCTGATCTAATAC 

Scs2 rev GCAACCAATATGAATATACCCATG 

Seq2r Nvj1 CCCTTCCAAAACGTTCATGTC 

Seq 3f Nvj1 CCTTAAGTCGTTAAACCAGC 

Sec3r Nvj1 GCTGGTTTAACGACTTAAGG 

 

3.1.5 Antibodies 

 

Table 5: Primary Antibodies used in this study 

Antibody Dilution (in TBST containing 

10% skim milk powder (w/v)) 

Source 

Mouse-anti-GFP 1:1 000 Roche, Mannheim 

Mouse-anti-HA 1: 10 000 Santa Cruz Biotechnology, 

Heidelberg 

Mouse-anti-PGK1 1: 10 000 Molecular Probes, Leiden, 

NL 

Mouse-anti Red 1:1 000 ChromoTek, Planegg-

Martinsried 
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Table 6: Secondary Antibodies used in this study 

Antibody Dilution (in TBST 

containing 1% skim milk 

powder (w/v)) 

Source 

anti-mouse-HRPO-

conjugate 

1:10 000 Dianova, 

Hamburg 

 

 

3.1.6 Commercial available Kits 

 

Table 7: Commercial available Kits used in this study 

Name of the Kit Source 

Clarity Western ECL Substrate BIO RAD, München 

CloneJET PCR Cloning Kit ThermoFisher Scientific™ 

ECL Western Blotting Detection Amershan Bioscience, GB 

Instant Sticky-end Ligase Master Mix NEB, Frankfurt 

NucleoSpin®Microbial DNA Macherey-Nagel, Düren 

QIAGEN Plasmid Maxi Kit Qiagen, Hilden 

QIAquick Gel Extraction Kit Qiagen, Hilden 

QIAquick PCR Purification Kit Qiagen, Hilden 

QuickChange Lightning Sit-Directed 

Mutagensis Kit 

Agilent Technologies 

Wizard Plus SV Miniprep Kit Promega, Mannheim 

 

3.1.7 Chemicals, supplements, enzymes and protein purification 

systems 

 

Table 8: Chemicals, supplements, enzymes and protein purification systems 

Name Source 

Acetone Carl Roth, Karlsruhe 

Ammoniumperoxodisulfat Carl Roth, Karlsruhe 

Acrylamid Carl Roth, Karlsruhe 

Bacto Agar Becton Dickinson, Heidelberg 

Bacto Peptone Becton Dickinson, Heidelberg 
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Bacto Tryptone Becton Dickinson, Heidelberg 

Bacto Yeast Extract Becton Dickinson, Heidelberg 

-mercaptoethanol Carl Roth, Karsruhe 

clon NAT (nourseotricine) Werner BioAgents, Jena 

CompleteTM protease inhibitor (EDTA-

free) 

Roche, Mannheim 

Deosyadenosin-triphosphate (dATP) NEB, Frankfurt 

Deoxycytidin-triphosphate (dCTG) NEB, Frankfurt 

Deoxyguanosin-triphosphate (dGTP) NEB, Frankfurt 

Deoxythymidin-triphosphate (dTTP) NEB, Frankfurt 

Difco Yeast nitrogen base w/o amino 

acids and ammonium 

Becton Dickinson, Heidelberg 

Difco Yeast nitrogen base w/o amino 

acids 

Becton Dickinson, Heidelberg 

DDM SIGMA-ALDRICH 

DNA polymerase (FideliTaq) USB, Santa Clara, USA 

DNA polylmerase (KOD) Novagen, Darmstadt 

DNA polymerase (Taq) NEB, Frankfurt 

DNA polymerase (Vent) NEB, Frankfurt 

DNA-marker (1 kb DNA-ladder) NEB, Frankfurt 

DreamTaqTM Hot Start Green PCR 

Master Mix 

ThermoFisher Scientific™ 

Gel Loading Dye, Purple (6x) NEB, Frankfurt 

FM4-64 ThermoFisher Scientific™ 

GFP-Trap Chromotek, München 

Glass Beads Schütt, Göttingen 

Glucose Carl Roth, Karlsruhe 

Glycerin Carl Roth, Karlsruhe 

Glycin Merck, Munich 

Herring-sperm-DNA Promega, Madison, USA 

Hydrochloric acid Carl Roth, Karlsruhe 

Isopropanol Carl Roth, Karlsruhe 

2x Laemmli Sample Buffer BIO RAD, München 

PMSF Carl Roth, Karlsruhe 

Sodium hydroxide Carl Roth, Karlsruhe 

Precision Plus Protein All Blue Standard BIO RAD, München 



  Material and Methods 

 33 

Protease inhibitor cocktail (bacteria) Sigma, Deisenhofen 

Protogel National Diagnostics, fisher scientific 

Restriction enzymes NEB, Frankfurt 

SDS Carl Roth, Karlsruhe 

Skim milk powder Granovita, Lüneburg 

Sodium chloride Carl Roth, Karlsruhe 

Supplements for yeast media Becton Dickinson, Heidelberg 

T4-Ligase NEB, Frankfurt 

TEMED Carl Roth, Karlsruhe 

TritonX-100 Carl Roth, Karlsruhe 

Tris Carl Roth, Karlsruhe 

 

3.1.8 Equipment 

 

Table 9: Equipment used in this study 

Name Source 

Agarose gel equipment BioRad Laboratores GmbH, München 

Autoclave Adolt Wolf, SANOclav, Bad Überkingen-

Hausen 

Autoclave DX200 Systec, Wettenberg 

Bench BDK Luft- und Reinraumtechnik GmbH, 

Sonnenbühl 

Blot shaker GFL 3019 GFL, Burgwedel 

Centrifuge 5804 Eppendorf, Hamburg 

Centrifuge 5404R Eppendorf, Hamburg 

Centrifuge 5415D Eppendorf, Hamburg 

Centrifuge 5415R Eppendorf, Hamburg 

Chemical balance Sartorius, Göttingen 

Cuvettes no. 67.742 Sarstedt, Nümbrecht 

Freezer (-20°C) Liebherr, Bulle, CH 

Freezer (-80°C) Heareus, Hanau 

Incubator (37°C) Heraeus, Hanau 

Incubator 4200 Innova, USA 

Incubator Thermomixer comfort Eppendorf, Hamburg 

Labshaker for diverse culture sizes A. Kühner, Birsfelden, CH 

LAS 3000 Intelligent Dark Box Fuji/ Raytest, Benelux 
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Magnetic stirrer MR 3001 Heidolph, Kelheim 

Microscope cover slides Menzel-Gläser, Braunschweig 

Microscope DeltaVision, Olympus IX71 Applied Precision, USA 

Microscope slides (76x26 mm) Menzel-Gläser, Braunschweig 

Microwave R-939 Sharp, Hamburg 

Mini centrifuge M6 Allsheng, China 

Multivortex IKA vibray VXR basic IKA, Staufen 

Over head shaker Roto-Shake Genie Scientific Industries Inc, USA 

PCR Mastercycler gradient Eppendorf, Hamburg 

pH meter pH537 WTW, Weilheim 

Photometer Eppendorf 

Pipette tips, petri dishes,… Sarstedt, Nümbrecht/ Eppendorf, 

Hamburg 

Pipettes Gilson, USA/ Eppendorf, Hamburg 

PowerPac Basic Power Supply BioRad Laboratories GmbH, München 

PowerPac HC Power Supply BioRad Laboratories GmbH, München 

PVDF membrane Hybond-P Amersham; GE healthcare, Freiburg 

Refrigerator Bosch, Stuttgart/ Liebherr, Bulle CH 

SDS-PAGE equipment BioRAD Mini 

Protean cell 

BioRad Laboratories GmbH, München 

Sterile filter Whatman, GE healthcare, München 

Thermomixer Comfort Eppendorf, Hamburg 

Transilluminator TI1 Whatman Biometra, Göttingen 

Vacuum pump Vacuubrand, Wertheim 

Water bath SWB25 Thermo Electron, Karlsruhe 

Western Blot equipment Trans Blot Cell BioRad Laboratories GmbH, München 

 

 

3.1.9 Software 

Table 10: Software used in this study 

Name Source 

Adobe Illustrator CS6, Version 

16.0.0 

Adobe 

Aida Version 4.06.116 Raytest Isotopenmessgeräte GmbH, 

Straubenhardt 

FileMakerPro 12.Ov1 FileMaker, Inc. 
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Graphpad Prism 7.0d GraphPad Software, Inc. 

ImageJ 1.48 National Institutes of Health, USA 

MATLAB MathWorks® 

Microsoft Office Microsoft 

Papers3, Version 3.4.19 Digital Science & Research Solutions Inc. 

SnapGene® 4.0.8 GSL Biotech LLC 

 

3.1.10 Media 

The media used in this study, was prepared with deionized water (H2Odd). The 

pH of the media was adjusted by using HCl or NaOH. For sterilization, the 

media was autoclaved at 121°C for 20 min. This chapter indicates percent 

values in weight per volume (w/v). The addition of 2% of liquid sterile agar to 

the respective 2x medium was used for the generation of plates. 

 

Table 11: Yeast Media used in this study 

Name Supplements 

YPD medium, pH 5.5 1% Bacto Yeast Extract, 2% Bacto Pepton, 2% D-

glucose 

CM medium, pH 5.6* 0.67% Yeast Nitrogen Base w/o amino acids, 2% D-

glucose and dropout-mix: 0.0117% of each of L-alanine, 

L-methionine, L-arginine, L-phenylalanine, L-

asparagine, L-proline, L-aspartic acid, L-serine, L-

cysteine, L-threonine, L-glutamine, L-tyrosine, L-

glutamic acid, L-valine, L-glycine, myo-inositol, L-

isoleucine and p-aminobenzoic-acid 

CM medium w/o methionine, 

pH 5.6* 

See CM-medium, pH 5.6 w/o methionine 

SD(-N) medium 0,67 Yeast Nitrogen Base w/o amino acids and w/o 

ammonium sulfate, 2% D-glucose 

 

*Following supplements were added depending on selection of genetic 

markers: 0.4 mM L-tryptophan, 0.3 mM adenine, 1 mM L-lysine, 0.2 mM uracil, 

0.3 mM L-histidine and 1.7 mM L-leucine 
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Table 12: E. coli media used in this study 

Name Supplements 

LB-medium, pH 7.5 1% Bacto Trypton, 0.5% Bacto Yeast extract, 0.5% 

sodium chloride 

For plasmid selection: 75 µg/ml ampicillin 

SOC-medium, pH 7.5 2% Bacto Trypton, 0.5% Bacto Yeast extract, 0.4% D-

glucose, 10 mM sodium chloride, 10 mM magnesium 

sulfate, 10 mM magnesium chloride, 

2.5 mM potassium chloride 
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3.2 Methods 

3.2.1 Cultivation and storage of E. coli 

The E. coli cell lines XL1 blue and DH5 were used for all described methods. 

The E. coli cells were grown in LB medium containing the respective antibiotic 

for plasmid selection. The liquid cultures were inoculated from an agar plate or 

a long-term storage and grown at 37°C at 220 rpm overnight. The E. coli cells 

were on agar plates for 3-5 weeks at 4°C. For long time storage, a liquid cell 

culture was mixed with 60 % sterile glycerol in a 1:2 ratio and was stored at -

80°C.  

 

3.2.2 Cultivation and storage of S. cerevisiae 

As nutrient rich medium YPD medium containing 2% glucose was used. 

Synthetic selection medium CM supplemented with the essential compounds 

and lacking the selection compounds was used for the selection of genetic 

markers in liquid yeast cell cultures. The liquid cell cultures were grown at 30°C 

with an agitation of 220 rpm overnight. The cell density was measured at OD600. 

1 OD600 of the yeast cell culture corresponds with 3x107 cells per millilitre. A 

preculture was inoculated from an agar plate for the main culture for the 

experiment. For the main culture the preculture was diluted depending on the 

growth strain of the respective strain.  

Yeast was stored for up to six weeks on agar plates. For long-term storage, a 

liquid cell culture was mixed with 30% glycerol in a 1:2 ratio and was stored at     

-80°C. 

  

3.2.3 Molecular biologic methods 

 

3.2.3.1 Determination of cell density 

The cell density in liquid cell cultures was determined via photometry. The liquid 

cell culture was diluted by a factor of 10 and the OD600 (optical density 

measured at a wavelength of 600 nm) was determined. As a reference a 

sample of the respective medium was used. 1 OD600 corresponds to 3x107 cells 

per millilitre.  
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3.2.3.2 Determination of DNA concentration 

DNA concentration was determined by using the UV spectrometer (GE 

Healthcare). 

3.2.3.3 Restriction of DNA 

For DNA analysis and the generation of defined DNA fragments for cloning, 

restriction enzymes were used. For the restriction of DNA enzymes from NEB 

were used according to the manufacturer’s recommendations. For the digestion 

0.5-1.0 µg DNA was used. The reaction was incubated at the indicated optimal 

enzyme temperature for 1-2 h. Following, the restricted DNA was analysed by 

DNA electrophoresis (chapter 3.2.3.4). 

 

3.2.3.4 DNA agarose gel electrophoresis 

DNA agarose gel electrophoresis was used for analysing DNA fragments in 

regard to their size. The negatively charged DNA moves along the electric field 

to the anode, what leads to a separation of DNA fragments by size, since 

smaller fragments move faster than larger fragments. Before loading of the 

samples, the DNA was mixed with 6x loading dye (NEB). The samples were 

separated in 0.8% agarose gels (w/v) in TAE buffer (40 mM Tris/acetate pH 8.2, 

2 mM EDTA, 0.144% acidic acid) and 1 µg/ml ethidium bromide for visualization 

of DNA by UV light. For size determination, the DNA ladder Tri Dye 1 kb (NEB) 

was used as a reference. 

 

3.2.3.5 DNA gel extraction 

The “Qiagen Gel Extraction Kit” was used to purify DNA after agarose gel 

electrophoresis and to purify PCR reactions. The kit was used according to the 

manufacturers recommendations. 

 

3.2.3.6 Polymerase chain reaction (PCR) 

The polymerase chain reaction (PCR) was used to amplify DNA fragments for 

different purposes: e.g. homologous recombination in yeast, control of knockout 

strains and molecular cloning. Two primers (DNA oligomers) that correspond to 

the complementary target region and flank the region of interest were created. 

The PCR can be subdivided into four repetitive steps: initialization, 

denaturation, annealing and elongation. The DNA was amplified by a DNA 
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polymerase during repeated cycles of heating and cooling. Depending on the 

purpose of the PCR and the length of the PCR product, different polymerases 

were used. Normally, the KOD Hot Start DNA Polymerase (NEB) was used for 

PCRs and for control PCRs the DreamTaq Mastermix (Thermo Fisher 

Scientific) was used. As a template, genomic yeast DNA or plasmid DNA was 

used. Standard PCRs were done according to the manufacturers 

recommendations. The cycle of the thermocycler was adapted to the size of the 

DNA product (elongation time) and the annealing temperature of the primers.  

 

3.2.3.7 Molecular cloning 

Molecular cloning is the integration of DNA fragments into vectors for replication 

of this DNA in large quantities. The DNA fragments (inserts) with two flanking 

restriction sites were generated via PCR (chapter 3.2.3.6). The therefore 

designed primers contained the respective restriction sites. DNA gel 

electrophoresis (chapter 3.2.3.4) was used to determine if the PCR product had 

the predicted size and was then purified using the gel extraction kit (Qiagen, 

chapter 3.2.3.5). According to manufacturer’s advice (NEB) the target plasmid 

and the PCR product was digested in a 50 µl reaction using the respective 

enzymes. The reaction was incubated at the recommended temperature for 2-4 

hours. To avoid religation, the vector was incubated with 1 µl CIP (alkaline 

phosphatase, calf intestinal, NEB) for the dephosphorylation of the 5’ and 3’ 

ends of the vector DNA. The reaction was purified using the gel extraction kit 

from Qiagen (protocol for purification of PCR products). The ligation of DNA 

fragments and the vector DNA was done in a 20 µl overall reaction volume 

according to the manufacturers recommendation (NEB, chapter 3.2.3.8). The 

ligated vector was then transformed into chemically competent E. coli cells 

(chapter 3.2.3.10). 

 

3.2.3.8 Ligation of DNA fragments 

For the ligation of DNA fragments into a linearized vector the T4-DNA-ligase 

(NEB) was used. DNA fragments and vector were prepared by DNA restriction 

(chapter 3.2.3.3) and DNA gel extraction (chapter 3.2.3.5). In a total volume of 

20 µl, 2 µl T4-DNA-ligase, 10 µl DNA and 2 µl vector were incubated for 2 h at 

25°C or at 16°C overnight. The ligated vector was used for transformation in 
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E. coli cells (chapter 3.2.3.10). The insert/vector ration was calculated by 

following equation:  

 

mass insert (ng) = 
                                         

                   
 

 

Alternatively, the Sticky-end Ligase Master Mix (NEB) was used according to 

the manufacturers recommendations. 

 

3.2.3.9 Preparation of chemically competent E. coli (XL1 blue) 

In order to generate chemically competent E. coli, XL1 blue cells were used. 

Therefore, a 400 ml cell culture of OD600∼0.6 (growing in LB medium) was 

pelleted (3000 g, 10 min, 4°C). The pellet was resuspended in 150 ml buffer I 

(100 mM rubidium chloride, 50 mM manganese(II) chloride, 30 mM potassium 

acetate pH 5.8, 10 mM calcium chloride, 15% glycerol) and was incubated for 

15 min on ice. The cells were harvested (3000 g, 10 min, 4°C) and the pellet 

was resuspended in 15 ml buffer II (75 mM calcium chloride, 10 mM MOPS 

pH 6.8, 10 mM rubidium chloride, 15% glycerine). Aliquots of 100 µl were stored 

at -80°C. 

 

3.2.3.10 Transformation of plasmid DNA in chemically competent 

E. coli 

For transformation, chemically competent XL1 blue cells were thawed on ice 

and the complete ligation reaction or 1 µl of the respective plasmid-DNA was 

added to 50 µl E. coli aliquots (chapter 3.2.3.8). The cells were incubated on ice 

for 30 min and then incubated at 42°C for 90 seconds. The cells were then 

chilled on ice for 2 min. Afterwards the E. coli resuspended in 1 ml SOC 

medium and were incubated for 40 min at 37°C while shaking. Finally, the cells 

were harvested and plated on LB agar plates containing the respective 

antibiotic for plasmid selection. The plates were incubated overnight at 37°C. 

Finally, clones were picked and were prepared for plasmid isolation 

(chapter 3.2.3.12), checked for correct insertion by restriction enzyme digestion 

and sequencing (chapter 3.2.3.3 and 3.2.3.13). 
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3.2.3.11 Site directed mutagenesis of plasmids 

For the site directed mutagenesis of plasmids the QuickChange Lightning Site-

directed Mutagenesis Kit (Agilent) was used. For the introduction of the desired 

point mutations in a DNA sequence, two complementary primers with the 

exchanged nucleotides were designed and used according to the 

manufacturer’s recommendations. Via sequencing, the introduced (point) 

mutations were tested (chapter 3.2.3.13). 

 

3.2.3.12 Purification of plasmids from E. coli 

For small-scale plasmid purification, the Wizard Plus SV Minipreps DNA 

Purification System (Promega) was used according to the manufacturer’s 

recommendations. 

For large-scale plasmid purification, the Plasmid Maxi Kit (Qiagen) was used 

according to the manufacturer’s recommendations. 

 

3.2.3.13 Sequencing of DNA 

All cloned plasmids were verified by sequencing. The sequencing was done by 

Microsynth Seqlab (Göttingen). For the sequencing the samples, including the 

plasmid DNA and the primers, were prepared according to the manufacturer’s 

recommendations. 

 

3.2.3.14 Plasmid constructs 

3.2.3.14.1 GFP-Osh1_A159V construct 

For construction of pRS416-GFP-Osh1_A159V, plasmid DNA was amplified 

using the primers Osh1_A159V_forw and Osh1_A159V_rev. The PCR was 

performed according to the QuickChange Lightning Site-Directed Mutagenesis 

protocol (chapter 3.2.3.11). This construction was made according to Manik et 

al. (2017) 

 

3.2.3.14.2 Nvj1_V20E_V23E-GFP construct 

For construction of pUG35-Nvj1_V20E_V23E-GFP, plasmid DNA was amplified 

using the primers Nvj1_L20E_V23E_forw and Nvj1_L20E_V23E_rev. The PCR 

was performed according to the QuickChange Lightning Site-Directed 
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Mutagenesis protocol (chapter 3.2.3.11). This construction was made according 

to Millen et al. (2008). 

 

3.2.3.14.3 Nvj1∆318-321-GFP construct 

Nvj1 was amplified from wild type chromosomal DNA using the primers 

Nvj1_BamHI_forw and Nvj1_EcoRI_rev. The PCR was performed according to 

the molecular cloning protocol (chapter 3.2.3.7). The vector pUG35 and the 

PCR product were digested using the enzymes EcoRI and BamHI and were 

then ligated. This construction was made according to Jeong et al. (2017). 

 

3.2.3.14.4 Pho8-GFP 

Pho8 was amplified from wild type chromosomal DNA using the primers Pho8-

GFP_BspEI_forw and Pho8-GFP_BamHI_rev. The PCR was performed 

according to the molecular cloning protocol (chapter 3.2.3.7). The vector pUG35 

and the PCR product were digested using the enzymes BspEI and BamHI and 

were then ligated. 

 

3.2.3.15 Isolation of chromosomal DNA from yeast cells 

For the isolation of chromosomal DNA from yeast cells, the Nucleo 

SpinMicrobial DNA Kit (Macherey-Nagel) was used according to the 

manufacturer’s recommendations. 

 

3.2.3.16 High efficiency yeast cell transformation 

The high efficiency yeast cell transformation was used for gene knockout or 

chromosomal tagging of genes. A 50 ml liquid cell culture was grown to a 

OD600~0.5 and were harvested by centrifugation (2 000 rpm, 5 min, RT). The 

cells were washed twice with 20 ml H2Odd and once with 2,5 ml LiOAc-Sorb 

(1 M D-sorbitol, 100 mM lithium acetate, 10 mM Tris/acetate pH 8.0). Then the 

cells were resuspended in 250 µl LiOAc-Sorb and were incubated at 30°C for 

15 min. Subsequently, 50 µl of the cell suspension was mixed with 5 µl herring 

sperm DNA (10 mg/ ml), 5 µl of DNA and 300 µl PEG in Li-TE (1 mM EDTA, 

100 mM lithium acetate, 10 mM Tris/acetate pH 8.0, 40% (v/v) PEG 3350). The 

cells were incubated at 30°C for 30 min and then heat-shocked at 42°C for 

15 min. The cells were harvested (2 000 rpm, 5 min, RT) and were 



  Material and Methods 

 43 

resuspended in 2 ml YPD for recovery (2 h, 30°C, 220 rpm agitation). In the last 

step, the cells were harvested (2 000 rpm, 5 min, RT), resuspended in 50 µl 

H2Odd and were plated on the corresponding agar plates containing the 

respective antibiotics for selection of genetic markers. After 2-3 days of 

incubation at 30°C, colonies were picked, tested for the correct transformation 

and then used for further analyses. 

 

3.2.3.17 “Quick and Dirty” variant of yeast cell transformation 

For plasmid transformation into yeast cells a „quick and dirty“ variant of the 

transformation protocol (chapter 3.2.3.16) was used. Yeast cells were directly 

picked from agar plates and incubated with 5 µl of herring sperm DNA 

(10 mg/ml), 300 µl of PEG in Li-TE (10 mM Tris/acetate pH 8.0, 100 mM lithium 

acetate, 1 mM EDTA, 40% (v/v) PEG 3350) and 5 µl of the respective plasmids 

for 30 min at 30°C. The cells then were heat-shocked at 42°C for 15 min, 

harvested by centrifugation (5 min, 2 000 rpm), resuspended in 50 µl H2Odd and 

plated on CM agar plates containing the respective selection markers. The 

plates were incubated at 30°C for two to three days. 

 

3.2.3.18 Knockout and chromosomal tagging of genes by homologous 

recombination 

Deletion strains and chromosomal tagging of genes were done by homologous 

recombination according to the protocol of Janke et al. (2004). For this purpose, 

primers consisting of a ~ 45 bp region homologous to the flanking region of the 

target gene and a 20 bp region homologous to the selection gene were 

designed. As a template for the PCR reaction the plasmid containing the 

respective selection gene, e.g. pFA6a-NatNT2 (a nourseothricin cassette) was 

used (chapter 3.2.3.6). The PCR product was purified using the DNA extraction 

kit (Qiagen, chapter 3.2.3.5) and then integrated via homologous recombination 

(chapter 3.2.3.16). So, the target gene was either replaced with the selection 

gene or the chromosomal tag was integrated. After growth on selection plates, 

the obtained clones were verified by PCR. 
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3.2.3.19 Direct fluorescence microscopy 

Via direct fluorescence microscopy fluorescence labelled proteins or plasmids 

were visualized in the cell. The protein of interest was tagged on a plasmid with 

a protein, that fluoresces when it is exposed to light in a defined range, e.g. 

GFP or mCherry. The yeast strains were grown overnight in the respective 

selection medium and depending on the experiment setup, starved for 2-4 h in 

SD(-N) medium. The yeast strain of interest was dropped on a glass slide and 

was covered by a cover slip. The microscopy was performed using the 

DeltaVision Spectris fluorescence microscope (Olympus IX71, Applied 

Precision). Pictures were taken by a CoolSNAP HQ camera with the respective 

filter set for each fluorescent tag (Table 13) and an 100x objective. Image 

stacks were taken, so that 20 stacks with a distance of 20 µm covered the yeast 

cells from top to bottom. For each stack one image was taken for each 

fluorescent marker and one reference image from the middle of the sample. 

Deconvolution of the obtained pictures was done using the SoftWoRx software 

(Applied Science). Analyses and editing of the images were performed using 

Fiji and Illustrator software.  

 

Table 13: Filter sets for living cell imaging 

Filter set Excitation wavelength 

(nm) 

Emission wavelength 

(nm) 

GFP 475/28 525/50 

mCherry 575/25 632/60 

Pol -50/28 -50/0 

 

3.2.3.20 Vacuolar staining using FM4-64 

For visualization of vacuolar membranes during microscopy, the FM4-64 

staining was used. Cells were grown to stationary phase, harvested and 

resuspended in 2 ml of the respective selection medium. 2 µl of a FM4-64 

solution (1 mg/ 200 µl H20, Thermo Fisher Scientific) was added. The cells were 

incubated at 30°C for 30 min, then starved in SD(-N) medium and finally 

microscoped. 
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3.2.3.21 Induction and monitoring of autophagy 

For the induction of autophagy in yeast cells nitrogen free medium (SD(-N)) or 

rapamycin was used. As the measurement of the breakdown of an 

overexpressed marker is difficult, therefore the breakdown of GFP-tagged 

proteins was determined. Free GFP is proteolysis resistant and the 

accumulation of GFP can be used as a readout marker. 

Free GFP was either detected by immunoblotting (chapter 3.2.4.4) or by direct 

fluorescence microscopy (chapter 3.2.3.19). For alkaline lysis (chapter 3.2.4.1) 

and following immunoblotting (chapter 3.2.4.4) up to 40 OD600 of yeast cell 

culture with a cell density of 5-9 OD600 was harvested, washed twice in SD(-N) 

medium and resuspended to a cell density of 10 OD600 per millilitre. Samples of 

2 OD600 were collected after different time points (e.g. 0 h, 2 h, 4 h, 6 h and 24 h 

starvation). The obtained signals were quantified and evaluated statistically 

using the AIDA and PRISM software.  

For microscopic analysis 5 OD600 of a yeast cell culture with a cell density of 3-

4 OD600 were harvested, washed twice in SD(-N) medium and resuspended to a 

cell density of 2 OD600 per millilitre. Microscopic imaging was done after 2-4 h 

starvation. The images were analysed as described in chapter 3.2.3.19. 

 

3.2.4 Biochemical Methods 

3.2.4.1 Alkaline lysis of yeast cells 

Yeast cells (up to 40 OD600) were harvested by centrifugation (2 000 rpm, 

5 min, RT). The supernatant was discarded and the pellet was resuspended in 

1 ml ice-cold H2Odd. 150 µl of lysis solution (7,5% β-Mercaptoethanol, 1,85 M 

NaOH) was added, the samples were mixed, incubated on ice for 10 min and 

150 µl of 50% TCA (w/v) was added. The samples were vortexed and incubated 

on ice for 10 min. After centrifugation (13 200 rpm, 10 min, 4°C) the supernatant 

was discarded and the pellet was washed twice with 200 µl ice-cold acetone 

(storage at -20°C). After the last washing step, the supernatant was discarded 

and the pellet was dried at 37°C. Then the pellet was dissolved in 50 µl 2x 

laemmli-buffer (116 mM Tris/HCl pH 6.8, 3.42% (w/v) SDS, 12% (w/v) glycerol, 

2% β-mercaptoethanol, 0.004% bromphenolblue). 
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3.2.4.1.1 PMN-Assay (measurement of e.g. GFP-Osh1 breakdown) 

The deletion strains were transformed with pRS416-GFP-OSH. In order to 

improve the signal intensity of the free GFP, the plasmids were prepared by a 

Maxi-Preparation Kit (Qiagen). A pre-culture of the transformed cells was made 

in the respective selective medium (usually CM-Ura) and was cultured overnight 

at 30°C. The main culture was inoculated 1:100 in the same selective medium, 

or in selective medium containing 0,3 mM methionine and grown over night 

(depending on the respective promotor) at 30°C. The next morning 40 OD600 

were harvested at an OD600 of 5-9. The cells were washed twice in SD(-N) 

starvation medium, resuspended in 4 ml SD(-N) medium and incubated at 

30°C. 200 µl samples (2 OD600 cells) were collected at the different time points 

(usually 0, 2, 4, 6, and 24 h) and alkaline lysed (chapter 3.2.4.1). The samples 

were applied on 10% SDS gels and analysed using a wet blot (chapter 3.2.4.4). 

The signals were detected with ECL (BioRad). 

The degradation of Nop1-GFP, Nab-NLS-mCherry, Pho8-GFP, GFP-

Osh1_A159V, Nvj1_V20E_V23E-GFP, Nvj1∆318-321-GFP was measured 

accordingly.  

 

3.2.4.2 GFP-Trap 

For protein-protein interactions in vivo the GFP-Trap approach was used. This 

method is based on the idea, that the bait protein, expressed with a GFP tag, 

can attach to GFP beads via GFP binding proteins on the surface of the GFP 

beads. In the end, the bound bait protein as well as the interacting proteins or 

protein complexes can be purified from the cell extracts. 

250 OD600 were harvested by centrifugation (2000 rpm, 5 min, 4°C), were 

washed once with 15 ml cold PBS and were resuspended in GFP-Trap buffer 

(250 OD600/ ml buffer; 1x PBS pH 7.4, 5 mM MgCl2, 0.2 M sorbitol, 1x Complete 

(w/o EDTA) (Roche), 1x protease inhibitors, 1 mM PMSF, DDM,). For cell 

disruption, the cells were incubated with 200 µl glass beads (Schütt, Göttingen, 

Germany) on a shaker (Disruptor Genie® digital 230 V, Schütt Labortechnik, 

Göttingen, Germany) for 30 min. During that time, the GFP-beads were 

equilibrated, 8 µl of the GFP-beads were resuspended in 500 µl GFP-Trap 

buffer and sedimented (2000 g, 2 min, 4°C). The cells were then centrifuged 

(5 min, 2700 g, 4°C) for the removement of glass beads and cell debris. The 
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supernatant (Input sample) was incubated with GFP-Trap beads (GFP-Trap A, 

ChromoTek, Planegg-Martinsried, Germany) on an overhead shaker at 4°C for 

2 h (Roto-Shake Genie, Scientific Industries Inc, USA). The GFP-Trap beads 

were then washed 4 times using 1,4 ml GFP-Trap buffer (centrifugation 2000 g, 

2 min) (Non bound sample). Finally, the proteins were eluted in 25 µl GFP-Trap 

buffer and 25 µl 4xLaemmli at 95°C for 5 min. The samples were loaded to a 

polyacrylamide gel (chapter 3.2.4.3) and were analysed by immunoblotting 

(chapter 3.2.4.4). 

3.2.4.3 Discontinuous SDS-Polyacrylamid-Gel-Electrophoresis (SDS-

PAGE) 

Discontinuous SDS-PAGE is a biochemical method to separate proteins 

according to their molecular weight in an electric field. SDS masks the intrinsic 

charge of the proteins and at the same time negatively charges the proteins 

proportionally to their weight. Therefore, the proteins can be separated 

according to their molecular weight. For SDS-PAGE a Mini-Protean III 

electrophoresis chamber from BioRad was used according to the 

manufacturer’s recommendations. The contents of the SDS-polyacrylamid-gels 

are described in Table 14. 

 

Table 14: Mixture of one SDS Polyacrylamid gel for a Mini-Protean III 
electrophoresis chamber from BioRad 

Components 10% Separating Gel 5% Collecting Gel 

H2Odd 1.9 ml 3.0 ml  

1.5 M Tris, pH8.8 1.25 ml - 

0.5 M Tris, pH 6.8 - 1.25 ml 

Protogel 1.8 ml 1.8 ml 

10% (w/v) SDS 50 µl 50 µl 

10% (w/v) APS 50 µl 50 µl 

TEMED 2.5 µl 5 µl 

 

The SDS chamber was filled with SDS running buffer (25 mM Tris, 200 mM 

glycerol, 0.1% SDS). For the estimation of the molecular weight of the 

separated proteins, the protein marker Precision Plus Protein All Blue Standard 

(BioRad) was used. The samples for SDS-PAGE were dissolved in laemmli 

buffer (0.35 M Tris/HCl (pH 6.8), 36% glycerin, 10.28% SDS, 5% -
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mercaptoehanol 0.012% bromphenolblue,). Normally, 15 µl of the protein 

sample were loaded per lane. The electrophoresis was performed at 150 V and 

was stopped when the bromphenolblue of the laemmli buffer left the gel. The 

SDS-gels then were used for immunoblotting (chapter 3.2.4.4).  

 

3.2.4.4 Immunoblotting (Wet Blot) 

Immunoblotting was used to visualize proteins that were separated by SDS-

Page (chapter 3.2.4.3). The proteins were transferred from a polyacrylamide gel 

to a PVDF membrane by immunoblotting (Western blot). The protein transfer 

was performed using a blotting chamber from BioRad, filled with wet blot buffer 

(25 mM tris, 192 mM glycine and 20% ethanol). Each gel was blotted with 

75 mA (1.2 mA per cm2) for 5 to 6 h at 4°C. The SDS gel and the PVDF 

membrane were placed between 2x2 Whatman papers and two fiber pads, that 

were soaked with wet blot buffer. The gel holder cassette was closed and 

placed into the wet blot chamber (Figure 3.1).  

 

Figure 3.1: Setup for immunoblotting  

(adapted from Mini Trans-Blot® Electrophoretic Transfer Cell Instruction 

Manual, BioRad). Immunoblotting was used for the protein transfer from a 

polyacrylamide gel to a PVDF membrane, followed by a staining of the 

membrane with the respective antibodies. 
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After the protein transfer, the membrane was incubated in blocking solution 

(10% (w/v) skim milk powder in TBST (20 mM Tris/HCl pH7.6, 137 mM NaCl, 

0.1% (w/v) Tween20)) for at least 1 h at room temperature or overnight at 4°C. 

Unspecific binding sites are masked by the proteins in the milk powder. The 

membrane was then washed three times with TBST for 10 min. Following, the 

membrane was incubated in the primary antibody for 2-4 h at room temperature 

or overnight at 4°C (table Table 5). The membrane was washed three times with 

TBST, was then incubated in the secondary antibody for 45 min to 1 h and was 

washed then again with TBST. For development of the western blot, the 

membrane was incubated in ECL solution from BioRad for 5 min. Signals were 

visualized using the LAS-3000 (Fujifilm). The AIDA software (version 4.06.116) 

was used for further analyses and quantification of the obtained signals.  

For further analyses the membrane was stripped using 10% acetic acid for 

10 min and then could be incubated with another primary antibody. 

 

3.2.4.5 Statistical Analysis 

The Graph Pad Prism 6 software was used for statistical analysis of western 

blots. The standard error of the mean (SEM) is indicated by the error bars. The 

statistical significance as follows: not significant for P > 0.05 (ns), * for P < 0.05, 

** for P < 0.01, *** for P < 0.001 and **** for P < 0.0001. 

The AIDA software was used for quantification of the Western blots. For the 

PMN-Assay the amount of free GFP was determined and the wild type was set 

to 100%. Subsequently, the different samples were tested in regard of their 

statistical significance. For this purpose, a one sample t-test was used. 
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4 Results 

4.1 Nvj1 isn’t essential for degradation of nucleolar proteins 

Nvj1 together with Vac8 forms the backbone of the NVJ (Pan et al., 2000a). 

Deletion of one of these two proteins is considered to block the degradation of 

GFP-Osh1, a marker protein for PMN (Krick et al., 2008; Millen et al., 2009). 

Also nucleolar proteins were shown to be putative marker proteins for the 

measurement of PMN, however degradation of these proteins wasn’t blocked in 

NVJ1 deletion strains (Dawaliby and Mayer, 2010; Mochida et al., 2015).  

 

4.1.1 Relevance of Nvj1 for the degradation of GFP-Osh1 

In order to be more flexible in the usage of plasmids, within this study a new 

NVJ1 knockout strain was made using nourseothricin (NatNT2) as a knockout 

marker. The new nvj1Δ::NatNT2 knockout strain was then compared to the 

already existing nvj1Δ::HIS3 knockout stain in regard of the PMN rate. 

As previously shown (Krick et al., 2008), the PMN rate in different knockout 

strains was measured by the breakdown of GFP-Osh1 in SD(-N) starvation 

medium (Chapter 3.2.4.1.1). Under these conditions, GFP-Osh1 is transported 

to the vacuole and degraded. The degradation of GFP-Osh1 results in a rather 

proteolysis resistant GFP that can be used for the measurement of the PMN 

rate. GFP-Osh1 was expressed from a pRS416 plasmid. Cells were grown to 

late stationary phase and were starved for 0 h, 2 h, 4 h, 6 h and 24 h in SD(-N) 

starvation medium. Then, the cells were alkaline lysed and free GFP was 

detected on western blots using an anti-GFP antibody. 

As expected deletion of VAC8 completely blocked the degradation of GFP-

Osh1. For that reason, the vac8∆ strain was used here as a negative control. 

The amount of free GFP in the wild type strain after 24 h starvation in SD(-N) 

starvation medium in the wild type strain was set to 100%. 

Degradation of GFP-Osh1 was blocked in vac8∆ cells, the negative control 

(8,97% ± 3,45%), as well as in nvj1∆::HIS3 cells (7,82% ± 0,83%) (Figure 4.1 A, 

B). In contrast, PMN wasn’t blocked in the new knockout strain nvj1∆::NatNT2, 

that showed wild type like behaviour (104,1% ± 4,81%).  

Since the PMN rate in both tested NVJ1 deletion strains was contradicting, the 
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degradation of Nop1-GFP, a nucleolar marker, was measured in the respective 

knockout strains. 

 

4.1.2 Relevance of Nvj1 for the degradation of Nop1-GFP 

Knockout of NVJ1 was shown not to affect degradation of Nop1-GFP (Mochida 

et al., 2015). Therefore, nvj1∆::HIS3 and nvj1∆::NatNT2 were analysed in 

regard to their ability to degrade Nop1-GFP. Nop1-GFP was expressed from a 

plasmid under a MET25 promotor. Cells were grown over night to late 

stationary phase in CM medium containing 0,3 mM methionine. The cells were 

then starved for 0 h, 2 h, 4 h, 6 h and 24 h in SD(-N) medium. Following, the 

cells were alkaline lysed and free GFP was detected on western blots using an 

anti-GFP antibody. 

No free GFP was detected in vac8∆ and nvj1∆::HIS3, whereas in 

nvj1∆::NatNT2 free GFP was visible (Figure 4.1 C). Quantification showed, that 

degradation of Nop1-GFP was blocked in vac8∆ (3,12% ± 1,28%) and in 

nvj1∆::HIS3 (13,1% ± 1,69%), but again was only slightly reduced in 

nvj1∆::NatNT2 (56,36% ± 13,61%) compared to the wild type (Figure 4.1 D). 

This indicates, that both degradation of GFP-Osh1 (Chapter 4.1.1), and of 

Nop1-GFP results in contradicting phenotypes in the two tested NVJ1 

knockouts.  

However, Mochida et al. (2015) found, that degradation of Nop1-GFP wasn’t 

blocked in nvj1∆ cells. But they used a slightly different experimental setup, so it 

couldn’t be completely ruled out, that varying results were based on these 

differences. Thus, both experimental setups were compared (Chapter 4.1.3). 
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Figure 4.1: Degradation of GFP-Osh1 and Nop1-GFP is blocked in different 
nvj1Δ strains 

(A) PMN was measured through the expression of GFP-Osh1 and analysis 
via western blot. Degradation of GFP-Osh1 in the vacuole leads to the 
release of free GFP and therefore corresponds with the PMN rate. Cells 
were starved in SD(-N) medium and samples were taken at 0 h, 2 h, 4 h, 
6 h, 24 h and were alkaline lysed. Free GFP was detected with an anti-
GFP antibody. PGK1, used as a loading control, was detected with an 
anti-PGK1 antibody. 

(B) Quantification of four independent experiments showed, that the 
degradation of GFP-Osh1 was blocked in nvj1Δ::HIS3 but not in 
nvj1Δ::NatNT2 cells. Statistics were performed using the one sample t-
test. Error bars represent SEM and asterisks represent p-values. 

(C) Degradation of Nop1-GFP was measured in different knockouts and was 
analysed via western blot. Cells were starved in SD(-N) medium and 
samples were taken at the indicated time points. Free GFP and was 
detected with an anti-GFP antibody. PGK1, used as a loading control, 
was detected by an anti-PGK1 antibody. 

(D) Quantification of four independent experiments showed, that the 
degradation of Nop1-GFP was blocked in nvj1Δ::HIS3 but not in 
nvj1Δ::NatNT2 cells. Statistics were performed using the one sample t-
test. Error bars represent SEM and asterisks represent p-values 

 

4.1.3 Degradation of Nop1-GFP is similar in SD(-N) medium or after 

rapamycin treatment 

Mochida et al. (2015) were able to show that degradation of Nop1-GFP isn’t 

blocked in NVJ1 knockout cells. However, they had a different experiment 

setup, as they used rapamycin for starvation of the cells. To clarify the reason 

for the contradicting results in two different NVJ1 knockout strains 

(Chapter 4.1.2), both starvation conditions were compared. Cells expressing 

Nop1-GFP from a plasmid under a MET25 promotor were grown to late 

stationary phase in CM medium containing 0,3 mM methionine. The cells were 

then starved in either SD(-N) medium or CM medium containing rapamycin 

(0,2 µg/ml). Samples were collected after 0 h, 2 h, 4 h, 6 h and 24 h starvation 

in the respective starvation medium. Following, the cells were alkaline lysed 

and free GFP was detected on western blots using an anti-GFP antibody.  

The type of starvation induction had no impact on the outcome of the 

experiment. While degradation of Nop1-GFP was blocked in nvj1∆::HIS3 cells, 

as it was the case in the negative controls atg1∆ and vac8∆ cells under both 

starving conditions, nvj1∆::NatNT2 cells showed wild type like amounts of free 

GFP (Figure 4.2). This was to be expected, since starvation of cells with SD(-N) 
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medium or treatment of cells with rapamycin, leads both to inhibition of TORC1, 

what results in a hypophosphorylation of Atg13 and finally to the induction of 

autophagy (Noda and Ohsumi, 1998). Together the data suggest, that unknown 

differences between the both nvj1∆ strains might be responsible for the 

contradictory outcomes and not the experimental setup. Thus, these strains 

were next analysed microscopically (Chapter 4.1.4). 

 

 

Figure 4.2: Nop1-GFP degradation in cells starved with either SD(-N) or 
rapamycin containing medium 

Degradation of Nop1-GFP was measured in different knockouts and was 
analysed via western blot. Cells were starved in SD(-N) medium (upper western 
blots) or with 0,2 µg/ml rapamycin (lower western blots), samples were taken 
after different time points (0 h, 2 h, 4 h, 6 h, 24 h) and were alkaline lysed. Free 
GFP and Nop1-GFP was detected with an anti-GFP antibody. PGK1, used as a 
loading control, was detected by an anti-PGK1 antibody.  
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4.1.4 The nucleus-vacuole junction is intact in nvj1Δ::HIS3 cells but 

not in nvj1Δ::NatNT2 cells 

To further analyse the discrepancy between nvj1Δ::HIS3 and nvj1Δ::NatNT2 

cells (Chapter 4.1.1 and 4.1.2 and), the NVJs were visualized microscopically. 

Pan et al. (2000a) showed, that absence of either Nvj1 or Vac8 affects NVJs.  

For visualization of the NVJs GFP-Osh1 was expressed from a plasmid under a 

TEF1 promotor. Nop1-RFP was further expressed from a pUN100 plasmid as 

nucleolus marker. Nop1-RFP was included, since it was observed, that the NVJ 

is mostly localized adjacent to the nucleolus (data not shown).  

The cells were grown to stationary phase and starved for 2 h in SD(-N) medium 

and then microscopically evaluated using the Delta Vision microscope. The NVJ 

in nvj1Δ::HIS3 was localized next to Nop1 and appeared wild type like (Figure 

4.3). In contrast to that, the new knockout strain nvj1Δ::NatNT2 showed only 

residuals of the NVJ, comparable to the negative control, the vac8Δ strain.  

Taken together, these results indicate, that one of the NVJ1 knockout strains 

might carry additional mutations. However, it was unclear which strain was 

potentially incorrect. nvj1Δ::HIS3 was blocked in the degradation of the 

respective marker proteins, but showed intact NVJs, while nvj1Δ::NatNT2 

showed disrupted NVJs, but wild type like degradation of the tested marker 

proteins. 
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Figure 4.3: Nucleus-vacuole junctions are intact in nvj1Δ::HIS3 cells but 
not in nvj1Δ::NatNT2 cells 

The NVJs were visualized using GFP-Osh1 as a marker in the indicated 
strains. The nucleolar marker Nop1-RFP was expressed as an additional 
marker. The cells were grown to late stationary phase and starved for 2 h in 
SD(-N) medium. Finally, the cells were analysed using the Delta Vision 
microscope. 

 

4.1.5 Degradation of Nab-NLS-mCherry is only blocked in atg1Δ cells 

The results obtained previously (Chapter 4.1.1, 4.1.2, and 4.1.4), suggested 

that one of the NVJ1 knockout strains, either nvj1Δ::HIS3 or nvj1Δ::NatNT2, 

might be wrong. In order to clarify, which one of the NVJ1 knockout strains was 

correct, the breakdown of Nab-NLS-mCherry was measured. Nab-NLS-

mCherry is localized to the nucleus and, according to the current literature, 

shouldn’t be degraded in the correct NVJ1 knockout, since PMN is blocked in 

the respective strain.  

Different deletion strains expressing Nab-NLS-mCherry were grown to late 

stationary phase and were starved in SD-(N) medium. Samples were taken 

after 0 h, 2 h, 4 h, 6 h and 24 h. Following, the cells were alkaline lysed and free 
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mCherry was detected on western blots using an anti-RFP antibody. 

The measurement of free mCherry showed, that the breakdown was blocked 

only in atg1Δ cells, but was wild type like in all other tested strains. This 

suggested that there was an alternative mechanism for the breakdown of Nab-

NLS-mCherry than PMN and that this marker wasn’t suitable to solve the 

problem or to measure PMN (Figure 4.4). 

 

 

Figure 4.4: Degradation of Nab-NLS-mCherry isn’t blocked in nvj1Δ::HIS3 
and nvj1Δ::NatNT2 cells. 

Different deletion strains expressing Nab-NLS-mCherry were starved in SD(-N) 
medium. Samples were taken at 0 h, 2 h, 4 h, 6 h and 24 h, were alkaline lysed 
and immunoblotted. Degradation of Nab-NLS-mCherry results in free mCherry 
in the vacuole, therefore mCherry signals were detected using an anti-RFP 
antibody. 

 

4.1.6 Degradation of GFP-Osh1 and Nop1-GFP isn’t blocked in 

different nvj1Δ deletion strains 

Not being able to explain the different phenotypes between nvj1Δ::HIS3 and 

nvj1Δ::NatNT2 cells in regard of the breakdown of GFP-Osh1 (Chapter 4.1.1) or 

Nop1-GFP (Chapter 4.1.2) and the intactness of the NVJs (Chapter 4.1.4), new 

NVJ1 knockout strains using NatNT2 or HIS3 as a knockout marker were 
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generated. Cells expressing either GFP-Osh1 from a plasmid under a TEF1 

promotor or Nop1-GFP from a plasmid under a MET25 promotor were grown to 

late stationary phase overnight in CM medium or CM medium containing 

0,3 mM methionine, and were starved in SD(-N) medium. Samples were taken 

after 0 h and 24 h starvation. Following, the cells were alkaline lysed and free 

GFP was detected on western blots using an anti-GFP antibody. Surprisingly, 

all newly generated knockouts weren’t blocked in the degradation of GFP-Osh1 

or Nop1-GFP, respectively (Figure 4.5). Meaning, that the already existing 

nvj1Δ::HIS3 is wrong, even though it showed the expected degradation defects 

of GFP-Osh1. 

Therefore, for all following experiments, the correct nvj1Δ::NatNT2 strain was 

used. 

 

Figure 4.5: Further newly generated NVJ1 knockouts were tested in regard 
of their ability to degrade GFP-Osh1 or Nop1-GFP. 

New nvj1Δ::HIS3 or nvj1Δ::NatNT2 knockout strains expressing GFP-Osh1 or 
Nop1-GFP were starved for 0 h and 24 h in SD(-N) medium. The samples were 
alkaline lysed and immunoblotted. Free GFP was visualized using anti-GFP 



  Results 

 59 

antibody. PGK1, used as a loading control, was detected by an anti-PGK1 
antibody. 

 

4.2 Screen for potential novel components of the nucleus-vacuole 

junction 

In contrast to the current view, Nvj1 seems not to be essential for the 

degradation of GFP-Osh1 or Nop1-GFP (Chapter 4.1.1 and 4.1.2). But since 

the nvj1Δ::HIS3 knockout was proven to be wrong, the question came up, what 

gene was further affected in this strain and caused the observed phenotypes. 

Therefore, this study focused among other things on the question, which further 

proteins might play an essential role in PMN in addition to what was already 

known. Different proteins were tested for their potential involvement in PMN: 

Nvj2 (Chapter 4.2.1), Scs2 (Chapter 4.2.2), as well as Glc8 and Ymr310c 

(Chapter 4.2.3) 

 

4.2.1 Nvj2 as an additional essential component of the nucleus-

vacuole junction 

An additional essential component for PMN was thought to be Nvj2. Nvj2 is 

enriched at the NVJ and is a lipid-binding ER protein (Toulmay and Prinz, 

2012). Therefore, it was thought to play a role in PMN, possibly in combination 

with Nvj1. 

 

4.2.1.1 Nvj2 is not essential for degradation of GFP-Osh1 or Nop1-GFP 

To answer the question, if Nvj2 might play a role in PMN, the respective 

knockouts were tested in regard of the degradation rate of GFP-Osh1. The cells 

expressing GFP-Osh1 from a plasmid under a TEF1 promotor, were grown to 

late stationary phase and starved in SD(-N) medium. Samples were taken after 

0 h, 2 h, 4 h, 6 h and 24 h starvation, were alkaline lysed and free GFP was 

detected on western blots using anti-GFP antibody. 

Degradation of GFP-Osh1 wasn’t blocked in nvj2Δ (124,8% ± 31,9%) or 

nvj1Δ nvj2Δ cells (151,5% ± 53,98%) (Figure 4.6 A, B).  

To further analyse the respective NVJ2 deletion strains, cells expressing Nop1-

GFP from a plasmid under a MET25 promotor were grown to late stationary 

phase in CM medium containing 0,3 mM methionine. Samples were prepared 

as described above. Also, degradation of Nop1-GFP wasn’t blocked in nvj2Δ or 
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nvj1Δ nvj2Δ cells (Figure 4.6 C). Quantification of the experiment showed 

significantly increased levels of free GFP in nvj2Δ (248,8% ± 28,48%) and 

nvj1Δ (167% ± 8,89%) when compared to wild type (Figure 4.6 D). The amount 

of free GFP was wild type like in nvj1Δ nvj2Δ (189,8% ± 43,82%). 

These results indicated, that Nvj2 wasn’t necessary for the degradation of GFP-

Osh1 or Nop1-GFP and therefore wasn’t essential for PMN. Despite these 

results, the diverse nvj2Δ cells were evaluated microscopically 

(Chapter 4.2.1.2). 
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Figure 4.6: Degradation of GFP-Osh1 and Nop1-GFP isn’t blocked in NVJ2 
knockouts. 

(A) Different deletion strains expressing GFP-Osh1 were starved in SD(-N) 
medium. Samples were taken at 0 h, 2 h, 4 h, 6 h and 24 h, were alkaline 
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lysed and immunoblotted. Free GFP was detected using an anti-GFP 
antibody. Pgk1 was used as a loading control and was stained with anti-
Pgk1 antibody. 

(B) Quantification of four independent experiments showed that degradation 
of GFP-Osh1 wasn’t blocked in nvj2Δ and nvj1Δ nvj2Δ. Statistics were 
performed using the one sample t-test. Error bars represent SEM and 
asterisks represent p-values 

(C) Nop1-GFP degradation was measured as described in (A). 
(D) Degradation of Nop1-GFP was wild type like in the nvj1Δ nvj2Δ deletion 

strain. Significantly increased free GFP levels were measured in nvj1Δ 
and nvj2Δ deletion strains. Statistics were performed as described in (B). 

 

4.2.1.2 Nucleus-vacuole junctions are intact in Nvj2 deletion strains 

Even though degradation of GFP-Osh1 and Nop1-GFP wasn’t affected in NVJ2 

deletion strains, the NVJs were analysed using the Delta Vision microscope. 

Cells expressing GFP-Osh1 and mRFP-Nop1 from plasmids were grown to 

stationary phase and starved for 2 h in SD(-N) medium.  

The nvj2Δ cells showed intact NVJs, comparable to those seen in the wild type 

strain (Figure 4.7), what also was seen by others (Toulmay and Prinz, 2012). 

However, the nvj1Δ nvj2Δ strain showed disrupted NVJs. This was expected, 

since knockout of NVJ1 leads to the disruption of the NVJs (Pan et al., 2000a). 
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Figure 4.7: Evaluation of nucleus-vacuole junctions in nvj2Δ strains 

In the indicated strains the intactness of the NVJ was visualized using GFP-
Osh1 and mRFP-Nop1 as marker proteins. Cells were grown to stationary 
phase and starved for 2 h in SD(-N) medium. Finally, the cells were analysed 
using the Delta Vision microscope. 
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4.2.2 Scs2 as an additional essential component of the nucleus-

vacuole junction 

Scs2 is an integral ER anchor protein (Kagiwada et al., 1998) and interacts with 

Osh1 at the NVJ (Loewen et al., 2003). Based on this interaction, Scs2 was 

thought to be a possible essential component of the NVJs. 

 

4.2.2.1 Scs2 isn’t essential for degradation of GFP-Osh1 or Nop1-GFP 

In order to test, if Scs2 was essential for PMN, different deletion strains 

expressing GFP-Osh1 from a plasmid under a TEF1 promotor were grown to 

late stationary phase. The yeast strains were then starved in SD(-N) medium for 

0 h, 2 h, 4 h, 6 h and 24 h. Samples were taken at the respective time points, 

were alkaline lysed and free GFP was detected on western blots using an anti-

GFP antibody.  

Degradation of GFP-Osh1 was significantly increased in scs2Δ cells in 

comparison to the wild type (173,8% ± 21,8%) (Figure 4.8 A, B). The double 

knockout of NVJ1 and SCS2 showed wild type like behaviour (145,5% ± 

22,7%).  

For further analysis, degradation of Nop1-GFP was also measured in the 

respective deletion strains. Cells expressing Nop1-GFP from a plasmid under a 

MET25 promotor were grown in medium containing 0,3 mM methionine to late 

stationary phase. Samples were taken as outlined above. Degradation of Nop1-

GFP was wild type like in scs2∆ cells (57,5% ± 22,33%), as well as in the 

double knockout cells nvj1∆ scs2∆ (127% ± 27,36%) (Figure 4.8 C, D). 

Taken together, these results show that Scs2 is not essential for the 

degradation of GFP-Osh1 or Nop1-GFP. Anyhow, the SCS2 deletion strains 

were analysed in respect to the intactness of the NVJs (Chapter 4.2.2.2). 
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Figure 4.8: PMN isn’t blocked in scs2Δ strains 

(A) The indicated deletion strains expressing GFP-Osh1 were starved in 
SD(-N) medium. Samples were taken at 0 h, 2 h, 4 h, 6 h and 24 h, were 
alkaline lysed and immunoblotted. Free GFP was detected using an anti-
GFP antibody. Pgk1 was used as a loading control and was stained with 
anti Pgk1-antibody.  
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(B) Quantification of four independent experiments showed, that degradation 
of GFP-Osh1 was slightly increased in scs2Δ cells and was wild type like 
in nvj1Δ scs2Δ cells. Statistics were performed using the one sample t-
test. Error bars represent SEM and asterisks represent p-values 

(C) Nop1-GFP degradation was measured as described in (A). 
(D) Degradation of Nop1-GFP was wild type like in scs2Δ and nvj1Δ scs2Δ 

cells. Statistics were performed as described in (B). 

 

4.2.2.2 Scs2 is necessary for the intactness of the nucleus-

vacuole junction 

The NVJs in scs2Δ and nvj1Δ scs2Δ cells were analysed using the Delta Vision 

microscope. The NVJ was visualized with GFP-Osh1 as a marker, additionally 

the nucleolus marker Nop1-RFP was expressed in the respective deletion 

strains. The cells were grown to late stationary phase and then starved for 2 h 

in SD(-N) medium.  

Like the negative controls vac8Δ and nvj1Δ cells, also scs2Δ cells showed 

disrupted NVJs (Figure 4.9). Accordingly, also nvj1Δ scs2Δ cells had no intact 

NVJs. This was expected, as knockout of NVJ1 disrupts NVJs (Pan et al., 

2000a). These results indicate, that Scs2 is necessary for the intactness of the 

NVJs. This further shows, that the NVJs don’t necessarily have to be intact for 

wild type like degradation of GFP-Osh1 or Nop1-GFP (Chapter 4.2.2.1). 

However, it can’t be ruled out, that the usage Nvj1-GFP as a marker for the 

NVJ, might lead to a different result, as Nvj1 does not directly interact with 

Scs2. 
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Figure 4.9: Microscopic evaluation of scs2Δ cells 

GFP-Osh1 and mRFP-Nop1 were expressed in the indicated yeast strains. 
Cells were grown to late stationary phase, starved for 2 h in SD(-N) medium 
and evaluated via fluorescence microscopy. 
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4.2.3 Glc8 as an additional essential component of the nucleus-

vacuole junction 

As previously shown (Chapter 4.1.6), the nvj1Δ::HIS3 knockout strain might 

contain further mutations. PCR analysis showed, that this strain contained the 

HIS3 knockout cassette, but also the whole NVJ1 gene (data not shown). 

Sequencing of the PCR product of the NVJ1 gene showed no mutations (data 

not shown). Therefore, it was assumed, that the knockout cassette might have 

integrated additionally at another wrong site. Nevertheless, this strain showed 

an interesting phenotype for the understanding of PMN, since the degradation 

of the two marker proteins GFP-Osh1 and Nop1-GFP was blocked. To identify 

which gene might have been affected by chance, a PCR approach was used. 

Using primers that bound in the HIS3-cassette and random primers, a PCR 

product was received and cloned into the pJET vector. Sequencing of the 

vector led to two possible gene regions, where the knockout cassette might 

have been integrated: GLC8 and YMR310C. Thus, these two genes were 

tested in regard of their involvement in PMN. 

 

4.2.3.1 Degradation of GFP-Osh1 and Nop1-GFP isn’t blocked in glc8Δ 

or ymr310cΔ strains 

To verify, that the HIS3 knockout cassette was integrated at regions that 

encode either Glc8 or YMR310C, different deletion strains expressing GFP-

Osh1 from a plasmid under a TEF1 promotor were grown to late stationary 

phase and were starved in SD(-N) medium. Samples were collected after 0 h, 

2 h, 4 h, 6 h and 24 h starvation and were alkaline lysed. Free GFP was 

detected on western blots using anti-GFP antibody.  

Degradation of GFP-Osh1 wasn’t blocked in either glc8Δ or ymr310cΔ cells 

(Figure 4.10 A). Quantification of the experiment showed wild type like amounts 

of free GFP in glc8Δ cells (97,75% ± 11,01%) and a slight reduction in 

YMR310CΔ cells (70,25% ± 7,76%) (Figure 4.10 B). 

In addition, the respective deletion strains expressing Nop1-GFP from a 

plasmid under a MET25 promotor were grown to late stationary phase in CM 

medium containing 0,3 mM methionine. Samples were collected as described 

above. The glc8Δ cells as well as the ymr310cΔ cells weren’t blocked in 

degradation of Nop1-GFP (Figure 4.10 C). Quantification showed wild type like 
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degradation of Nop1-GFP in glc8Δ (115% ± 21,08%) and ymr310cΔ cells 

(102% ± 20,36%) (Figure 4.10 D). 

Measurement of the degradation of GFP-Osh1 and Nop1-GFP showed that the 

degradation of these two marker proteins wasn’t blocked as it was the case for 

the “wrong” nvj1Δ::HIS3 deletion strain. This indicates, that the obtained PCR 

product might have been a result of unspecific binding of the two primers and 

that the so obtained genes weren’t involved in PMN. Nevertheless, both 

deletion strains were examined using the Delta Vision microscope 

(Chapter 4.2.3.2). 
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Figure 4.10: Degradation of GFP-Osh1 and Nop1-GFP in glc8Δ or 
ymr310cΔ cells. 
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(A) The indicated deletion strains expressing GFP-Osh1 were starved in 
SD(-N) medium. Samples were taken at 0 h, 2 h, 4 h, 6 h and 24 h, were 
alkaline lysed and immunoblotted. Free GFP was detected using an anti-
GFP antibody. Pgk1 was used as a loading control and was stained with 
anti-Pgk1 antibody.  

(B) Quantification of four independent experiments showed, that degradation 
of GFP-Osh1 was wild type like in glc8Δ cells and was slightly reduced in 
ymr310cΔ cells. Statistics were performed using the one sample t-test. 
Error bars represent SEM and asterisks represent p-values. 

(C) Nop1-GFP degradation was measured as described in (A). 
(D) Degradation of Nop1-GFP was wild type like in glc8Δ and ymr310cΔ 

cells. Statistics were performed as described in (B). 

 

4.2.3.2 The nucleus-vacuole junction is intact in GLC8 or YMR310C 

deletion strains 

For further evaluation, the NVJs in GLC8 and YMR310C deletion strains were 

analysed using GFP-Osh1 and mRFP-Nop1 as marker proteins. Cells 

expressing the respective marker proteins from plasmids were grown to 

stationary phase and starved for 2 h in SD(-N) medium. The yeast strains were 

evaluated using the Delta Vision microscope. Both deletion strains of interest, 

GLC8 andYMR310C, showed intact NVJs (Figure 4.11).  

If either GLC8 or YMR310C would have been the gene knocked out 

accidentally in the “wrong” nvj1Δ::HIS3 knockout strain, intact NVJs would have 

been expected, as it was the case in this strain of interest. But measurement of 

the degradation of GFP-Osh1 and Nop1-GFP (Chapter 4.2.3.1) have already 

shown, that neither GLC8 nor YMR310C had been knocked out by chance. 
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Figure 4.11: Evaluation of nucleus-vacuole junctions in GLC8 and 
YMR310C deletion strains. 

The indicated yeast strains expressing GFP-Osh1 and mRFP-Nop1 as marker 
proteins were grown to stationary phase and starved for 2 h in SD(-N) medium. 
The NVJ was analysed using fluorescence microscopy. 
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4.3 Osh1 is not exclusively degraded via PMN 

It was shown, that mutation of either A159Q or A159V in the binding pocket of 

Osh1 ANK impedes its interaction with Nvj1 (Manik et al., 2017). The targeting 

of Osh1 to the NVJs is dependent on the ANK domain of Osh1 (Levine and 

Munro, 2001). Since GFP-Osh1 was reported to be a suitable marker for the 

measurement of PMN (Krick et al., 2008), it was of great interest, if the mutated 

version of this marker protein, GFP-Osh1_A159V, was degraded differently 

than the non-mutated version. 

 

4.3.1 Mutation of Osh1 impedes interaction with Nvj1 

It was reported, that mutation of Osh1 to Osh1_A159V prevents interaction with 

Nvj1 (Manik et al., 2017). First of all, the lack of interaction between 

Osh1_A159V and Nvj1 was confirmed in vivo using the GFP-Trap approach. 

GFP-Osh1_A159V was expressed from a plasmid under a TEF1 promotor in 

cells with chromosomally HA-tagged NVJ1. GFP-Osh1 and GFP were used as 

controls. The cells were grown to late stationary phase before cell lysis and 

protein co-precipitation. The proteins were detected in western blot analysis 

using anti-GFP and anti-HA antibodies.  

The interaction between GFP-Osh1_A159V and Nvj1-6xHA was very week 

when compared to the interaction of GFP-Osh1 and Nvj1-6xHA (Figure 4.12 A). 

Nvj1-6xHA didn’t bind to GFP alone. This confirmed, that the described 

mutation of Osh1 prevents its interaction with Nvj1 and that this mutant could be 

used to examine localization as well as degradation of Osh1_A159V. 

 

4.3.2 GFP-Osh1_A159V is not localized to nucleus-vacuole junctions 

To see the impact of the mutation A159V in GFP-Osh1 in regard to its 

localization, GFP-Osh1_A159V was analysed using the Delta Vision 

microscope. GFP-Osh1_A159V and the respective controls GFP-Osh1 and 

GFP together with the nucleolar marker mRFP-Nop1 were expressed from 

plasmids in osh1Δ cells. The cells were grown to stationary phase, were 

starved for 2 h in SD(-N) medium and then analysed via fluorescence 

microscopy (Figure 4.12 B).  

GFP-Osh1 was exclusively localized to the NVJs next to mRFP-Nop1. In 

contrast to that, GFP-Osh1_A159V wasn’t localized to the NVJs, but appeared 
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in patches all over the cells. Therefore, the NVJ weren’t visible in cells 

expressing the mutated Osh1. This can be explained by the fact, that the GFP-

Osh1_A159V mutant wasn’t localizing to the NVJ since its Nvj1-binding site 

wasn’t functional. 
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Figure 4.12: Binding of Osh1 and Nvj1 is reduced after mutating the 
binding site of Osh1 

(A) Osh1-Nvj1 interaction was analysed using the GFP-Trap method. NVJ1 
was chromosomally tagged with HA (cNVJ1-6xHA). GFP-Osh1 or GFP-
Osh1_A159V were expressed from a plasmid under a TEF1 promotor. 
Cells were grown to late stationary phase, lysed and immunoblotted. 
GFP was detected using an anti-GFP antibody, HA was detected with an 
anti-HA antibody. 

(B) Localization of GFP-Osh1_A159V was analysed in osh1Δ cells and 
compared to GFP-Osh1 and GFP. The cells were grown to stationary 
phase, starved in SD(-N) medium for 2 h and then analysed using the 
Delta Vision microscope. 

 

4.3.3 GFP-Osh1_A159V is degraded in equal amounts as GFP-Osh1 

The mutated construct GFP-Osh1_A159V and Nvj1 were demonstrated not to 

interact (Chapter 4.3.1). Additionally, GFP-Osh1_A159V was shown not to be 

localized to the NVJs (Chapter 4.3.2). Within this study, the degradation of 

GFP-Osh1_A159V was measured in comparison to the degradation of GFP-

Osh1. Therefore, the breakdown of GFP-Osh1_A159V was measured in 

different knockout strains and was compared to the breakdown of GFP-Osh1 in 

wild type cells. For this reason, the amount of free GFP after 24 h starvation in 

SD(-N) medium in the wild type strain expressing GFP-Osh1 was set to 100%.  

Compared to wild type cells expressing GFP-Osh1, GFP-Osh1_A159V was 

degraded to the same amount in wild type cells, namely 94,25 % ± 14,94%. The 

degradation of GFP-Osh1_A159V was blocked in atg1Δ and vac8Δ cells 

(atg1Δ: 15,25% ± 6,3%; vac8Δ: 22,75% ± 10,78%) and slightly reduced in nvj1Δ 

cells (66,75% ± 11,06%). But it was not significantly reduced in atg39Δ, atg40Δ 

and atg39Δ atg40Δ cells (atg39Δ: 114% ± 18.04%; atg40Δ: 131,3% ± 72,47%; 

atg39Δ atg40Δ: 62% ± 18,55%) (Figure 4.13 A, B). Direct comparison of GFP-

Osh1 and GFP-Osh1_A159V degradation in the respective knockout strains, 

showed no differences between these two marker proteins (Figure 4.13 C). 

These results were surprising, as a reduced degradation of GFP-Osh1_A159V 

in comparison to GFP-Osh1 was expected. This outcome could be explained by 

the assumption, that Osh1 isn’t exclusively degraded via PMN, but dependent 

on Atg1 and Vac8. This in turn would lead to the conclusion, that GFP-Osh1 is 

no bona fide marker for the measurement of PMN. Probably, Nop1-GFP or 

Nvj1-GFP are more suitable marker proteins for measurement of PMN. 
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Figure 4.13: GFP-Osh1_A159V and GFP-Osh1 show no differences in 
regard to their degradation 

(A) The indicated yeast strains expressing GFP-Osh1 or GFP-Osh1_A159V 
were starved in SD(-N) medium. Samples were taken at 0 h, 2 h, 4 h, 6 h 
and 24 h, were alkaline lysed and immunoblotted. Free GFP was 
detected using an anti-GFP antibody. Pgk1 was used as a loading 
control and was stained with an anti-Pgk1 antibody.  

(B) Quantification of four independent experiments showed, that degradation 
of GFP-Osh1_A159 was wild type like in atg39Δ, atg40Δ and atg39Δ 
atg40Δ cells. The amount of free GFP was reduced in atg1Δ, vac8Δ and 
nvj1Δ cells. The amount of free GFP after 24 h starvation in SD(-N) 
medium in the wild type strain expressing GFP-Osh1 was set to 100%. 
Statistics were performed using the one sample t-test. Error bars 
represent SEM and asterisks represent p-values. 

(C) Direct comparison of degradation of GFP-Osh1 and GFP-Osh1_A159V 
in different deletion strains showed no differences in regard of free GFP 
between both marker proteins.
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4.4 Role of Atg39 and Atg40 in PMN 

Recently, two new Atg-proteins were described: Atg39 and Atg40 (Mochida et 

al., 2015). Atg39 was described to be localized to the perinuclear ER and to be 

involved in the degradation of parts of the nucleus and the perinuclear ER. 

Atg40 is localized to the cortical and cytoplasmic ER and is involved in loading 

of ER subdomains into autophagosomes (Mochida et al., 2015). It was of great 

interest, to get to know how Atg39 and Atg40 are involved in PMN. Therefore, 

the degradation of different marker proteins was measured in the respective 

deletion strains. 

 

4.4.1 Degradation of GFP-Osh1 suggests crosstalk between Atg39 

and Atg40 

In order to determine the role of Atg39 and Atg40 during PMN, degradation of 

GFP-Osh1 was measured, even though this marker protein might not be the 

ideal marker for the measurement of PMN (Chapter 4.3.3). Deletion strains 

expressing GFP-Osh1 from a plasmid under a TEF1 promotor were grown to 

late stationary phase and then starved in SD(-N) medium. Samples were taken 

after 0 h, 2 h, 4 h, 6 h and 24 h starvation, were alkaline lysed and 

immunoblotted. The free GFP on the western blots was detected using an anti-

GFP antibody.  

The amount of free GFP was wild type like in atg39Δ and atg40Δ cells and 

reduced in atg39Δ atg40Δ cells (Figure 4.14 A). Quantification showed wild type 

like amounts of free GFP in atg39Δ (104% ± 12,65%) atg40Δ cells (77,06% ± 

12,8%) and nvj1Δ cells (87,16% ± 12,7%) (Figure 4.14 B). Degradation of GFP-

Osh1 was reduced in atg39Δ atg40Δ cells (43,22% ± 2,74%) and blocked in 

vac8Δ cells (16,76% ± 1,42%). A single knockout of either ATG39 or ATG40 

didn’t affect degradation of GFP-Osh1. However, knockout of both Atg-proteins 

resulted in a lower amount of free GFP, what indicated a crosstalk between 

these two proteins. However, these results have to be handled with care, since 

GFP-Osh1 was used as a marker protein, that was previously described as not 

ideally suitable for PMN measurement (Chapter 4.3.3). 

Therefore, the role of Atg39 and Atg40 in nucleophagy was studied in more 

detail by using Nop1-GFP (Chapter 4.4.2) and Nvj1-GFP (Chapter 4.4.3) as 

additional nucleophagy marker proteins. 
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Figure 4.14: Degradation of GFP-Osh1 is reduced in atg39Δ atg40Δ cells 

(A) The indicated deletion strains expressing GFP-Osh1 were starved in 
SD(-N) medium. Samples were taken at 0 h, 2 h, 4 h, 6 h and 24 h, were 
alkaline lysed and immunoblotted. Free GFP was detected using an anti-
GFP antibody. Pgk1 was used as a loading control and was stained with 
anti-Pgk1 antibody.  

(B) Quantification of four independent experiments showed that degradation 
of GFP-Osh1 was wild type like in nvj1Δ, atg39Δ and atg40Δ cells. The 
amount of free GFP was reduced in vac8Δ and atg39Δ atg40Δ cells. 
Statistics were performed using the one sample t-test. Error bars 
represent SEM and asterisks represent p-values. 
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4.4.2 Degradation of Nop1-GFP is dependent on Atg39 and Atg40 

To further analyse the role of Atg39 and Atg40 in nucleophagy, the degradation 

of Nop1-GFP was measured. Previous results regarding these two Atg-proteins 

in this study were based on the breakdown of GFP-Osh1 (Chapter 4.3.3). Thus, 

different deletion strains expressing Nop1-GFP from a plasmid under a MET25 

promotor were grown to late stationary phase in CM-medium containing 0,3 mM 

methionine. The cells were starved in SD(-N) medium and samples were taken 

after 0 h, 2 h, 4 h, 6 h and 24 h starvation. The samples were alkaline lysed and 

immunoblotted. Free GFP on western blots was detected using an anti-GFP 

antibody.  

In comparison to the wild type, the amount of free GFP was reduced in nvj1Δ 

and atg40Δ cells (Figure 4.15 A). However, no free GFP was visible in vac8Δ, 

atg39Δ and atg39Δ atg40Δ cells. This was confirmed by quantification of the 

western blots (Figure 4.15 B). Compared to the wild type, the nvj1Δ deletion 

strain was reduced to 56,36% ± 13,61% and the atg40Δ deletion strain to 

30,48% ± 3,26%. All additionally tested deletion strains showed a complete 

block of Nop1-GFP degradation (vac8Δ: 3,12% ± 1,28%; atg39Δ: 9,02% ± 

1,03%; atg39Δ atg40Δ: 4,1% ± 0,94%). This suggested that degradation of 

Nop1-GFP was dependent on primarily Atg39, but also on Atg40, as it was 

reported recently (Mochida et al., 2015). 
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Figure 4.15: Degradation of Nop1-GFP is dependent on Atg39 

(A) The indicated deletion strains expressing Nop1-GFP were starved in 
SD(-N) medium. Samples were taken at 0 h, 2 h, 4 h, 6 h and 24 h, were 
alkaline lysed and immunoblotted. Free GFP was detected using an anti-
GFP antibody. Pgk1 was used as a loading control and was stained with 
an anti-Pgk1 antibody.  

(B) Quantification of four independent experiments showed, that degradation 
of Nop1-GFP was reduced in nvj1Δ and atg40Δ cells and was blocked in 
vac8Δ, atg39Δ and atg39Δ atg40Δ cells. Statistics were performed using 
the one sample t-test. Error bars represent SEM and asterisks represent 
p-values. 
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4.4.3 Atg39 and Atg40 are necessary of degradation of Nvj1-GFP  

As previously shown (Chapter 4.3), GFP-Osh1 is not the best choice for the 

measurement of PMN. Instead, Nvj1-GFP might be the more suitable marker 

protein, in order to determine the roles of Atg39 and Atg40 during PMN. 

Different deletion strains expressing Nvj1-GFP from a plasmid under a MET25 

promotor were grown to late stationary phase in CM-medium containing 0,3 mM 

methionine. Cells were starved in SD(-N) medium and samples were taken after 

0 h, 2 h, 4 h, 6 h and 24 h starvation. The samples were alkaline lysed and 

immunoblotted. Free GFP was detected on western blots using anti-GFP 

antibody.  

In comparison to the wild type and nvj1Δ cells, less free GFP was detectable in 

atg40Δ cells (Figure 4.16 A). No free GFP could be seen in atg1Δ, vac8Δ, 

atg39Δ and atg39Δ atg40Δ cells. Quantification of four independent 

experiments showed wild type like degradation of Nvj1-GFP in nvj1Δ cells 

(109% ± 38,78%) and therewith that deletion of NVJ1 could be rescued using 

Nvj1-GFP from a plasmid under a MET25 promotor. The degradation of Nvj1-

GFP was reduced in atg40Δ cells (62,25% ± 15,01%) (Figure 4.16 B) and was 

blocked in all remaining deletion strains (atg1Δ: 15% ± 2,16%; vac8Δ: 28,5% ± 

3,79%; atg39Δ: 21,5% ± 4,37%; atg39Δ atg40Δ:16,75% ± 3,75%). Therefore it 

can be concluded, that degradation of Nvj1-GFP is dependent of Atg39, but 

also on Atg40, as it was the case for Nop1-GFP (Chapter 4.4.2). 
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Figure 4.16: Degradation of Nvj1-GFP is dependent on Atg39 and Atg40. 

(A) The indicated deletion strains expressing Nvj1-GFP were starved in SD(-
N) medium. Samples were taken at 0 h, 2 h, 4 h, 6 h and 24 h, were 
alkaline lysed and immunoblotted. Free GFP was detected using an anti-
GFP antibody. Pgk1 was used as a loading control and was stained with 
an anti-Pgk1 antibody.  

(B) Quantification of four independent experiments showed, that degradation 
of Nvj1-GFP was reduced in atg40Δ cells and was blocked in vac8Δ, 
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atg39Δ and atg39Δ atg40Δ cells. Statistics were performed using the 
one sample t-test. Error bars represent SEM and asterisks represent p-
values. 

 

4.5 New insights into the role of Nvj1 during PMN 

4.5.1 The hydrophobic core of Nvj1 is essential for its function in PMN 

Nvj1 contains a hydrophobic core, that is essential for strictly perinuclear 

localization (Millen et al., 2008). Mutation of the region, e.g. the introduction of 

charged residues to L20E_V23E, leads to mislocalization of Nvj1. In order to 

get a better insight into the role of Nvj1 during PMN, the question came up, if 

interaction of Nvj1 and Vac8 was sufficient for Nvj1 degradation, or if the 

perinuclear localization or the hydrophobic core of Nvj1, respectively, had an 

impact on PMN. 

 

4.5.1.1 Perinuclear localization is disrupted for Nvj1_V20E_V23E-GFP 

Before measuring the degradation of Nvj1_V20E_V23E-GFP, the localization of 

this construct was tested in order to confirm the findings of previous studies 

(Millen et al., 2008). Therefore, vacuoles of wild type cells or vac8Δ cells 

expressing Nvj1-GFP or Nvj1_V20E_V23E-GFP were stained with FM4-64. The 

cells were starved for 2 h in SD(-N) medium and then analysed using the Delta 

Vision microscope.  

Nvj1-GFP and Nvj1_V20E_V23E-GFP in wild type cells were localized to the 

NVJs (Figure 4.17). In vac8Δ cells Nvj1-GFP is localized to the perinuclear ER, 

in contrast to that, Nvj1_V20E_V23E-GFP localization was deranged. This was 

in congruency with the findings of Millen et al. (2008), who postulated, that the 

hydrophobic sequence next to the N-terminus is necessary for correct 

localization of Nvj1. Following, the degradation of Nvj1_V20E_V23E-GFP was 

measured (Chapter 4.5.1.2). 
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Figure 4.17: Microscopic evaluation of Nvj1_V20E_V23E-GFP 

Vacuoles were stained with FM4-64 in wild type or vac8Δ cells expressing 
either Nvj1-GFP or Nvj1_V20E_V23E-GFP. The cells were starved for 2 h in 
SD(-N) medium. Finally, the deletion strains were analysed using fluorescence 
microscopy. 

 

4.5.1.2 The hydrophobic ER-anchor is necessary for degradation of 

Nvj1-GFP 

It was shown, that a hydrophobic sequence at the N-terminus is necessary for 

localization of Nvj1 to the nER (this study) (Millen et al., 2008). But it is 

unknown, if this sequence is important for the degradation of Nvj1. Thus, cells 

expressing Nvj1_V20E_V23E-GFP from a plasmid under a MET25 promotor 

were grown in CM medium containing 0,3 mM methionine to late stationary 

phase. The cells were starved in SD(-N) medium and samples were taken after 

0 h, 2 h, 4 h, 6 h and 24 h starvation. The samples were alkaline lysed and 

immunoblotted. Free GFP was detected using an anti-GFP antibody. The 
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amount of free GFP after 24 h starvation in wild type cells expressing Nvj1-GFP 

was set 100%.  

In wild type cells, as well as in all tested deletion strains, free GFP was barely 

visible (Figure 4.18 A). Quantification of the experiment underlined this 

impression: wt: 21% ± 3,11%; atg1Δ: 4,75% ± 2,49%; vac8Δ: 15% ± 4,34%; 

nvj1Δ: 22,25% ± 3,43%; atg39Δ: 21,75% ± 3,9%; atg40Δ: 15,25% ± 4,25%; 

atg39Δ atg40Δ: 9,25% ± 4,87%. This showed, that degradation of 

Nvj1_V20E_V23E-GFP is blocked even in the wild type, when compared to the 

degradation of Nvj1-GFP. This means, that the perinuclear localization of Nvj1, 

or more likely, the hydrophobic core of the N-terminus, is crucial for its 

degradation. 
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Figure 4.18: Degradation of Nvj1_V20E_V23E-GFP is blocked 

(A) The indicated deletion strains expressing Nvj1_V20E_V23E-GFP were 
starved in SD(-N) medium. Samples were taken at 0 h, 2 h, 4 h, 6 h and 
24 h, were alkaline lysed and immunoblotted. Free GFP was detected 
using an anti-GFP antibody. Pgk1 was used as a loading control and 
was stained with an anti-Pgk1 antibody.  

(B) Quantification of four independent experiments showed, that degradation 
of Nvj1_V20E_V23E-GFP was reduced in atg40Δ cells and was blocked 
in vac8Δ, atg39Δ and atg39Δ atg40Δ cells. Statistics were performed 
using the one sample t-test. Error bars represent SEM and asterisks 
represent p-values. 

 

4.5.2 Nvj1 degradation is independent of Vac8 dimerization 

It is known, that a truncated version of Nvj1, Nvj1∆318-321, is able to bind to Vac8, 

but fails to induce Vac8 dimerization (Jeong et al., 2017). This led to the 

question, whether Vac8 dimerization induced by Nvj1 was essential for 

degradation of Nvj1∆318-321-GFP and therewith PMN. 

 

4.5.2.1 Nvj1∆318-321-GFP is not exclusively localized to nucleus-vacuole 

junctions 

In order to verify the correct localization of Nvj1∆318-321-GFP, vacuoles of wild 

type and vac8Δ cells expressing Nvj1-GFP or Nvj1∆318-321-GFP from a plasmid 

were stained with FM4-64. The cells were starved for 2 h in SD(-N) medium and 

then analysed using the Delta Vision microscope.  

In wild type cells Nvj1-GFP is exclusively localized to NVJs, whereas Nvj1∆318-

321-GFP was localized to the perinuclear ER (Figure 4.19). The localization to 

the perinuclear ER also could be observed in vac8Δ cells expressing either 

Nvj1-GFP or Nvj1∆318-321-GFP, since here Nvj1 wasn’t retained to the NVJs by 

interaction with Vac8. These findings were in congruency with Jeong et al. 

(2017) and therefore, degradation of Nvj1∆318-321-GFP could be measured 

(Chapter 4.5.2.2). 
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Figure 4.19: Microscopic evaluation of Nvj1∆318-321-GFP 

Vacuoles were stained with FM4-64 and wild type or vac8Δ cells expressing 
either Nvj1-GFP or Nvj1∆318-321-GFP were starved for 2 h in SD(-N) medium. 
Finally, the cells were analysed using fluorescence microscopy. 

 

4.5.2.2 Vac8 dimerization is not essential for Nvj1 degradation 

In order to determine, if degradation of Nvj1 is dependent on Nvj1 induced Vac8 

dimerization, the degradation of Nvj1∆318-321-GFP was measured. This truncated 

version of Nvj1 is still able to bind to Vac8, but is unable to induce Vac8 

dimerization (Jeong et al., 2017). 

Therefore, diverse deletion strains expressing Nvj1∆318-321-GFP from a plasmid 

under a MET25 promotor were grown to late stationary phase in CM medium 

containing 0,3 mM methionine. Wild type cells expressing Nvj1-GFP were used 

as a reference for the amount of degraded Nvj1∆318-321-GFP. The cells were 

starved in SD(-N) medium and samples were taken after 0 h, 2 h, 4 h, 6 h and 
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24 h starvation. The samples were alkaline lysed and immunoblotted. Free GFP 

was detected on western blots using anti-GFP antibody. The amount of free 

GFP in wild type cells expressing Nvj1-GFP after 24 h starvation was set to 

100%.  

No free GFP or reduced amounts were seen in atg1Δ (3,25% ± 1,11%), vac8Δ 

(27,75% ± 7,59%), atg39Δ nvj1Δ (30% ± 5,61%) and atg39Δ atg40Δ nvj1Δ cells 

(11,5% ± 2,9%) (Figure 4.20 A, B). The degradation of Nvj1∆318-321-GFP in 

atg40Δ nvj1Δ cells was comparable to the control (132,5% ± 38,79%). 

Surprisingly, in wild type cells and nvj1Δ expressing Nvj1∆318-321-GFP, 

significantly more free GFP was detected when compared to wild type cells 

expressing Nvj1-GFP (wt: 221% ± 10,64%; nvj1Δ: 279,8% ± 64,53%). There 

was no significant difference in the amount of free GFP in wild type cells and 

nvj1Δ expressing Nvj1∆318-321-GFP. Possibly, the disrupted localization of the 

truncated Nvj1 is the reason, why in wild type and nvj1Δ cells expressing 

Nvj1∆318-321-GFP more free GFP was detectable, than in wild type cells 

expressing Nvj1-GFP. It is thinkable, that this degradation occurs in an Atg39 

dependent manner. Vac8 dimerization seems not to have any impact on Nvj1 

degradation, as the obtained results, except for wild type and nvj1Δ cells, were 

comparable to those obtained for Nvj-GFP degradation (Chapter 4.4.3). 
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Figure 4.20: Degradation of Nvj1∆318-321-GFP is increased in wild type and 
nvj1Δ cells 

(A) The indicated deletion strains expressing Nvj1-GFP or Nvj1∆318-321-GFP 
were starved in SD(-N) medium. Samples were taken at 0 h, 2 h, 4 h, 6 h 
and 24 h, were alkaline lysed and immunoblotted. Free GFP was 
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detected using an anti-GFP antibody. Pgk1 was used as a loading 
control and was stained with an anti-Pgk1 antibody.  

(B) Quantification of four independent experiments showed, that degradation 
of Nvj1∆318-321-GFP was reduced in atg1Δ, vac8Δ, atg39Δnvj1Δ and 
atg39Δ atg40Δ nvj1Δ cells. Significantly increased amounts of free GFP 
were seen in wild type and nvj1Δ cells. atg40Δ nvj1Δ deletion cells 
showed wild type like amounts of free GFP. The amount of free GFP in 
wild type cells expressing Nvj1-GFP after 24 h starvation was set to 
100%. Statistics were performed using the one sample t-test. Error bars 
represent SEM and asterisks represent p-values. 

 

4.6 Pho8-GFP is no suitable marker for differentiation between micro-

and macroautophagy in western blots 

Recently it was described, that nucleophagy not only occurs as microautophagy 

(or micronucleophagy/ PMN), but also as macroautophagy (or 

macronucleophagy) (Mochida et al., 2015). However, so far it is not possible to 

easily distinguish between these two types of autophagy. Pho8 is a vacuolar 

protein (Klionsky and Emr, 1989), that was thought to be a suitable marker 

protein for the differentiation between micro- and macroautophagy. During 

macroautophagy, the outer autophagosomal membrane fuses with the vacuolar 

membrane (Darsow et al., 1997; Sato et al., 1998) and the content is released 

into the vacuole, therefore, no degradation of Pho8-GFP was to be expected. In 

contrast to that, PMN vesicles that are released into the vacuole are surrounded 

a vacuolar membrane and two ER membranes (Krick et al., 2009b; Elbaz and 

Schuldiner, 2011) and so Pho8-GFP might be degraded.  

 

4.6.1 Pho8-GFP is localized to the vacuolar membrane 

Using the Delta Vision microscope, it was determined, if the Pho8-GFP 

construct was localized to the vacuolar membrane. In wild type cells expressing 

Pho8-GFP from a plasmid under an endogenous promotor, the vacuoles of wild 

type cells were stained with FM4-64 and then starved for 2 h in SD(-N) medium. 

Fluorescence microscopy showed very faint expression of Pho8-GFP. 

Nevertheless, colocalisation of Pho8-GFP and the vacuolar marker FM4-64 was 

clearly visible (Figure 4.21). Therefore, Pho8-GFP could be tested as a marker 

protein in order to being able to distinguish between micro- and 

macroautophagy (Chapter 4.6.2). 
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Figure 4.21: Pho8-GFP is localized to the vacuole 

Vacuoles of wild type cells expressing Pho8-GFP were stained with FM4-64 
and then starved for 2 h in SD(-N) medium. Finally, the cells were examined 
using the Delta Vision microscope. 

 

4.6.2 Pho8-GFP is degraded independent of Nvj1, Atg39 and Atg40 

In order to being able to distinguish between microautophagy and 

macroautophagy, the degradation of the potential marker protein Pho8-GFP 

was measured. Different deletion strains expressing Pho8-GFP from a plasmid 

under an endogenous promotor, were grown to late stationary phase and then 

starved in SD(-N) medium. Samples were taken after 0 h, 2 h, 4 h, 6 h and 24 h 

starvation. The samples were alkaline lysed and immunoblotted. Free GFP on 

western blots was detected using an anti-GFP antibody.  

Degradation of Pho8-GFP was blocked in atg1Δ and vac8Δ cells (Figure 

4.22 A). Degradation of Pho8-GFP was observed in nvj1Δ, atg39Δ, atg40Δ, 

atg39Δ atg40Δ and atg39Δ atg40Δ nvj1Δ cells. Quantification showed no 

degradation of Pho8-GFP in ATG1 and VAC8 deletion strains (atg1Δ: 13,5% ± 

5,91%; vac8Δ: 25% ± 7,56%) (Figure 4.22 B). Wild type like degradation was 

seen in nvj1Δ (106% ± 21,74%) atg39Δ (179,3% ± 54,75%), atg40Δ (212% ± 

70,85%), atg39Δ atg40Δ (137% ± 38,75%) and atg39Δ atg40Δ nvj1Δ cells 

(74% ± 11,94%). Atg40 is not thought to be directly involved in PMN and 

therefore was expected to be blocked in regard of Pho8-GFP degradation. Also, 

Atg39 was considered to be blocked, since this Atg-protein is thought to be 
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mainly involved in macronucleophagy. Surprisingly this wasn’t the case and free 

GFP was visible in these two deletion strains, as well as in all additionally tested 

deletion strains, except for the negative controls ATG1 and VAC8. This leads to 

the conclusion, that Pho8-GFP possibly is degraded via an another autophagic 

pathway, dependent on Atg1 and Vac8. 
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Figure 4.22: Pho8-GFP is degraded dependent on Atg1 and Vac8 

(A) The indicated deletion strains expressing Pho8-GFP were starved in 
SD(-N) medium. Samples were taken at 0 h, 2 h, 4 h, 6 h and 24 h, were 
alkaline lysed and immunoblotted. Free GFP was detected using an anti-
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GFP antibody. Pgk1 was used as a loading control and was stained with 
an anti-Pgk1 antibody.  

(B) Quantification of four independent experiments showed that degradation 
of Pho8-GFP was wild type like in nvj1Δ, atg39Δ, atg40Δ, atg39Δ atg40Δ 
and atg39Δ atg40Δ nvj1Δ cells. Degradation of Pho8-GFP was blocked 
in atg1Δ and vac8Δ cells. Statistics were performed using the one 
sample t-test. Error bars represent SEM and asterisks represent p-
values. 

 

4.7 Screen for selective substrates of PMN 

In cooperation with the group of Prof. Blanche Schwappach, a screen for 

selective substrates of PMN was performed. Therefore, GFP-Osh1 was 

expressed from a plasmid under a TEF1 promotor and Nop1 was 

chromosomally tagged with mCherry in a BY4741 deletion library and a DAmP 

library. Microscopic pictures were then taken with an automated microscope 

system. Evaluation of the obtained data was performed using the MATLAB 

software in cooperation with Prof. Dr. Silvio Rizzoli. Here, the distance between 

the weighted average of the NVJ and the mass centre of the nucleolus was 

calculated. The data then was ordered according to the nucleolus NVJ distance 

( 

Figure 4.23). The mean distance between NVJ and nucleolus was 0,96 µm. In 

deletion cells with a great gap between nucleolus and NVJ a distance of 1,3 

and 1,46 µm was measured. In deletion cells with a small gap between 

nucleolus and NVJ a distance of 0,6 and 0,75 µm was measured. A further in-

depth analysis of the obtained hits is under progress. 

 

 

 

 

 

 

 

 

 

 

 

 



Results 

 96 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.23: Potential hits of selective substrates of PMN 

Cells from a BY4741 deletion library or DAmP library expressing chromosomal 
Nop1-mCherry and GFP-Osh1 from a plasmid were microscopically analysed 
and ordered in regard to the nucleolus NVJ distance. Represented here are hits 
with the greatest or smallest measured nucleolus NVJ distance. 

 

Deletion Library 
DAmP Library 
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5 Discussion 

Autophagy is a catabolic process for the degradation of superfluous or 

damaged organelles, but also occurs under normal conditions at a basal level. 

This process is conserved among all eukaryotes (Reggiori and Klionsky, 2002). 

Autophagy appears in two forms, macroautophagy and microautophagy. 

Initiation of macroautophagy, or short autophagy, starts with the formation of a 

cup-shaped isolation membrane, the phagophore. This structure finally evolves 

into a double membrane vesicle, the autophagosome, that sequesters the 

respective cargo (Klionsky and Ohsumi, 1999). The autophagosome then fuses 

with the vacuole and the autophagic body is released into the vacuole, where it 

is degraded. The biogenesis of the autophagosome is located at the PAS 

(Suzuki et al., 2001; Noda et al., 2002), here the core Atg-machinery, consisting 

of 18 Atg-proteins is localized (Ariosa and Klionsky, 2016). Autophagy can take 

place either as bulk autophagy or selective autophagy, depending on the way, 

how the cargo is loaded into the autophagosomes. 

 

Nucleophagy is defined as the autophagic degradation of non-essential parts of 

the nucleus including parts of the nuclear ER and is therefore a selective form 

of autophagy. It can occur via two distinct mechanisms: PMN (also called 

micronucleophagy) (Roberts et al., 2003) and the recently described 

macronucleophagy (Mochida et al., 2015). Until now, both processes are poorly 

understood. 

Macronucleophagy and ER-phagy have been shown to be dependent on Atg39 

and Atg40 (Mochida et al., 2015). Atg39 is localized to the pnER and is 

important for macronucleophagy combined with pnER-phagy. During 

macronucleophagy non-essential parts of the nucleus are sequestered in 

autophagosomes in a Atg39 dependent manner, the vesicles then fuses with 

the vacuole, the content is released and finally degraded in the vacuole 

(Mochida et al., 2015). The degradation of cortical ER is dependent on Atg40, a 

protein localized to cytoplasmic and cortical ER (Nakatogawa and Mochida, 

2015). Both above mentioned Atg-proteins contain AIMs, that can interact with 

Atg8 on forming autophagosomal membranes (Mochida et al., 2015). 
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PMN is a microautophagic type of autophagy and takes place at the NVJ, a 

contact site between nucleus and vacuole (Roberts et al., 2003). The NVJ 

consists of at least four proteins: Nvj1, Vac8, Osh1 and Tsc13 (Pan et al., 

2000a; Kohlwein et al., 2001; Levine and Munro, 2001). The backbone of this 

contact site is formed by the interaction of Nvj1 and Vac8. Absence of one of 

these two proteins results in the loss or at least significant reduced formation of 

the NVJs (Pan et al., 2000a). Starvation leads to bulging of the NVJs into the 

vacuole and formation of a teardrop-like bleb, that buds off. Finally, the vacuolar 

extensions fuse and the vesicle is released into the vacuole, where it is 

degraded (Kvam and Goldfarb, 2007). 

 

It has been proposed, that PMN is dependent on the core Atg-machinery and 

furthermore, it was shown, that degradation of GFP-Osh1, a marker protein for 

PMN, is blocked in a NVJ1 deletion strain (Krick et al., 2008). However, 

Mochida et al. (2015) reported, that degradation of Nop1-GFP, also a marker 

protein for microautophagy, isn’t blocked in a NVJ1 deletion strain. This 

discrepancy was used as a starting point for this study. 

Results of this study suggest, that PMN should be renamed into NVJ-phagy 

(Chapter 5.2.3). When appropriate, in the following discussion PMN will be 

referred to as PMN/ NVJ-phagy. 

 

5.1 GFP-Osh1 can be degraded in a Nvj1 independent manner  

Under nutrient rich conditions, Osh1 is localized to the late Golgi, cytoplasm 

and the NVJs, whereas during starving conditions Osh1 is only localized to the 

cytoplasm and for the main part to the NVJs (Levine and Munro, 2001). The 

localization of Osh1 to the NVJs is based on physical interaction with Nvj1 

(Kvam and Goldfarb, 2004). These characteristics suggest, that Osh1 is almost 

exclusively degraded via the mechanism known as PMN/ NVJ-phagy. 

Therefore, GFP-Osh1 was used as a marker protein to measure the PMN/ NVJ-

phagy rate (Krick et al., 2008; Millen et al., 2009). Surprisingly, within this study 

it was shown, that degradation of GFP-Osh1 can also take place independent 

of Nvj1 (Chapter 4.1.1). The assumption, that GFP-Osh1 is exclusively 

degraded via PMN/ NVJ-phagy, was based on a NVJ1 knockout that was 

proven to be wrong (Chapter 4.1).  
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Even in the absence of the NVJs, GFP-Osh1 can be degraded in a wild type 

like amount (Figure 4.1 A, B). This shows, that GFP-Osh1 is not exclusively 

degraded via PMN/ NVJ-phagy and can be degraded in a Nvj1 independent 

manner. In cells missing the NVJs, GFP-Osh1 can also be degraded, however, 

this most likely occurs via an alternative autophagic pathway. How exactly GFP-

Osh1 is degraded in nvj1Δ cells remains to be clarified.  

 

Manik et al. (2017) were able to partially solve the structure of Osh1 and also 

showed that a mutated version of Osh1, Osh1_A159V isn’t interacting with 

Nvj1. This knowledge was used for the better characterization of GFP-Osh1 as 

a marker protein. First of all, the interaction of Osh1_A159V and Nvj1 was 

analysed in vivo using the GFP-trap approach. Indeed, the interaction of GFP-

Osh1_A159V and Nvj1-6xHA was impeded (Figure 4.12 A). Also, visualization 

of GFP-Osh1_A159V showed patch-like localization in the cells, when 

compared to GFP-Osh1, that is localized to the NVJs (Figure 4.12 B). Osh1 is 

known to be localized to the Golgi under non-starving conditions (Levine and 

Munro, 2001). Possibly, the patches observed for GFP-Osh1_A159V represent 

the Golgi apparatus. However, the pictures were taken under starving 

conditions and a cytosolic localization of GFP-Osh1_A159V would be more 

likely. Therefore, it still remains to be clarified, if this mutated Osh1 construct is 

located to the Golgi, appears as protein aggregates in the cytoplasm or is 

localized to a different cellular structure. 

Degradation of GFP-Osh1_A159V occurred to the same amount as GFP-Osh1 

and was comparable in the respective tested knockout strains (Figure 4.13). 

This was in congruency with the above-mentioned results. In the absence of the 

NVJs or impeded interaction of Osh1 and Nvj1, Osh1 can be degraded via an 

alternative autophagic pathway independent of PMN/ NVJ-phagy. The amount 

of degraded GFP-Osh1 is comparable in both pathways.  

Within this study it was shown, that up to date no genetic knockout is available, 

that selectively blocks PMN/ NVJ-phagy (Chapter 4.1 and 5.4). This in turn 

means, that no final conclusion can be drawn how GFP-Osh1 is degraded in a 

respective knockout. Therefore, GFP-Osh1 shouldn’t be the first choice, when 

one wants to measure PMN/ NVJ-phagy. In that case, Nvj1-GFP would 

probably be the better choice. 
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5.2 Nvj1-GFP – a superior marker protein for PMN/ NVJ-phagy 

measurement 

As PMN/ NVJ-phagy is defined as the degradation of Nvj1 and this protein is 

exclusively located to the perinuclear ER (Pan et al., 2000a), Nvj1-GFP 

represents a better possibility for measurement of this process. However, as a 

genetic knockout, that selectively blocks PMN/ NVJ-phagy is not available, two 

mutated versions of Nvj1 were taken into account as a negative control, 

Nvj1Δ318-321-GFP and Nvj1_V20E_V23E-GFP. 

 

5.2.1 Nvj1Δ318-321-GFP is not suitable as negative control for PMN/ NVJ-

phagy measurement 

Nvj1 induces Vac8 dimerization and recently it was shown, that a truncated 

version of Nvj1 missing the last four amino acids impedes this dimerization, but 

is still able to bind to Vac8 (Jeong et al., 2017). The almost exclusive 

localization to the NVJ of Nvj1 in wild type cells is impeded in the truncated 

version Nvj1Δ318-321-GFP, which is located in the perinuclear ER, not only in 

vac8∆ cells, but also in wild type cells (Figure 4.19). This shows, that the last 

four amino acids of Nvj1 are not only essential for Vac8 dimerization, but are 

also important for proper formation of NVJs. These results were in congruency 

with data recently described Jeong et al. (2017). Surprisingly, degradation of 

Nvj1Δ318-321-GFP was significantly increased in wild type and in nvj1Δ cells when 

compared to the degradation of Nvj1-GFP in wild type cells (Figure 4.20 A, B). 

This shows, that mislocalization of Nvj1Δ318-321-GFP leads to an increased 

degradation of this protein. Potentially, this overcompensated degradation of 

Nvj1Δ318-321-GFP is mediated by Atg39 dependent ER-phagy, what can take 

place in larger amounts than PMN/ NVJ-phagy. Therefore, this mutant can’t be 

used as negative control for PMN/ NVJ-phagy measurement. 

 

5.2.2 The hydrophobic core of Nvj1 is crucial for PMN/ NVJ-phagy 

It is known, that introduction of charged residues in the hydrophobic core of 

Nvj1, impedes its strict localization to the perinuclear ER (Millen et al., 2008). A 

mutated version of Nvj1-GFP, Nvj1_V20E_V23E-GFP, was examined in regard 

of its localization. Indeed, its localization was disrupted in vac8∆ cells (Figure 
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4.17) (Millen et al., 2008). In wild type cells, Nvj1_V20E_V23E-GFP was 

localized to the NVJs, based on the physical interaction of Vac8 and Nvj1. 

Degradation of Nvj1_V20E_V23E-GFP was blocked in all tested deletion 

strains, as well as in the wild type, when compared to the wild type expressing 

Nvj1-GFP, (Figure 4.18). Obviously, for the degradation of Nvj1, the perinuclear 

localization or an activity mediated by the N-terminus of Nvj1 is crucial, whereas 

its interaction with Vac8 and therewith localization to the NVJ seems to be 

irrelevant. Nvj1 is considered to be responsible for the bending of the whole 

NVJ during PMN/ NVJ-phagy (Millen et al., 2008). Possibly, this function is 

mediated by the hydrophobic core of Nvj1. Mutation of this hydrophobic core 

leads to a loss of this function and therefore the bending of the structure is 

impeded. In conclusion this suggests, that Nvj1 mediated bending of the NVJ is 

crucial for PMN/ NVJ-phagy. Furthermore, this means, that Nvj1_V20E_V23E-

GFP can serve as negative control for PMN/ NVJ-phagy measurement. 

 

5.2.3 PMN – a process for the degradation of the nucleus-

vacuole junction? 

PMN is described as a process for the specific degradation of the nucleus and 

nucleolus (Roberts et al., 2003; Dawaliby and Mayer, 2010). PMN was not only 

observed visually (Roberts et al., 2003; Kvam and Goldfarb, 2007; Krick et al., 

2009a), but was also measured quantitatively (Krick et al., 2008; Millen et al., 

2009). The new analyses presented here showed, that degradation of nucleolar 

proteins, as well as nuclear proteins aren’t blocked in nvj1∆ cells (this study, 

Chapter 4.1.6) (Mijaljica et al., 2012; Mochida et al., 2015). Though, results of 

this study showed, that degradation of Nop1-GFP is reduced to about 56% in 

the respective NVJ1 deletion strain (Figure 4.15 B). This indicates, that only a 

part of the nucleolar proteins is degraded via PMN. If degradation of nuclear 

components via PMN is unselective, or possesses selectivity is under 

investigation (Chapter 4.7). Also, unknown intranuclear parts of the NVJ could 

be degraded via this mechanism. However, it is reported, that degradation of 

Nop1-GFP in different genetic backgrounds is wild type like in the absence of 

Nvj1 (Mochida et al., 2015; Mostofa et al., 2018). Nevertheless, this underlines 

the new theory, that degradation of nucleolar and nuclear proteins can take 

place in the absence of NVJs and therewith PMN. Furthermore, the obtained 
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results led to the conclusion, that degradation of nuclear components is mainly 

based on Atg39 and, to a smaller amount, on Atg40 dependent 

macronucleophagy (Mochida et al., 2015) and that PMN only plays a partial role 

in this degradation pathway.  

However, it is undeniable, that nuclear material is degraded during PMN. 

Roberts et al. (2003) were able to visualize, that portions of the nucleolus are 

sequestered into PMN vesicles. Also, electron microscopy showed bulging of 

nucleolar material into a PMN vesicle (Kvam and Goldfarb, 2007). Additionally, 

PMN vesicles with a diameter of about 1,5 µm were observed in wild type cells 

using Nvj1-GFP as a marker for the NVJ and FM4-64 as a marker for the 

vacuolar membrane (Kvam et al., 2005). Finally, in wild type cells, expressing 

Nvj1-GFP as a marker for the NVJ and Nab-NLS-mCherry as a nuclear marker, 

PMN vesicles containing nuclear material were observed (Florian Otto, 

unpublished data). 

 

If the main goal of PMN is not the degradation of nuclear material, the question 

comes up, what is PMN needed for? Most likely, the purpose of this process is 

the removal of the NVJs. Proteins involved in lipid biosynthesis and trafficking 

are localized to the NVJs. Tsc13 and Osh1 both interact with Nvj1 and are 

known to play a role in lipid biosynthesis (Elbaz and Schuldiner, 2011). Osh1 

belongs to the family of oxysterol-binding proteins. These are lipid-binding 

proteins, that are involved in diverse cellular processes. They are considered to 

function in signalling, vesicular trafficking, lipid transfer and lipid metabolism 

(Raychaudhuri and Prinz, 2010). Upon starvation, Osh1 is almost exclusively 

localized to the NVJs (Levine and Munro, 2001). Knockout of all seven Osh 

proteins in S. cerevisiae results in an inhibition of PMN (Kvam and Goldfarb, 

2004).Tsc13 is an essential enoyl-CoA reductase and catalyses the very last 

step of very-long-chain fatty acid biosynthesis (Kohlwein et al., 2001). Under 

starving conditions Tsc13 is degraded via PMN vesicles in a Nvj1 dependent 

manner. It was shown, that mutants impaired in elongation of very-long-chain 

fatty acid biosynthesis exhibit smaller PMN vesicles than wild type cells. The 

same effect was observed for cells treated with cerulenin and therefore, Tsc13 

metabolites can be considered to play an important role during PMN (Kvam et 

al., 2005). It was shown, that lack of the acyl-CoA-binding protein Acb1 in 
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S. cerevisiae, impedes protein trafficking, ceramide levels, vacuole fusion and 

structure (Faergeman et al., 2004). Also, the PI3P binding protein Mdm1, that 

was shown to be an interorganelle tethering protein, is degraded like Nvj1 under 

nitrogen starvation conditions (Henne et al., 2015). Furthermore, it is known, 

that under starvation conditions, the NVJs serve as sites for production of lipid 

droplets (Hariri et al., 2018). This is reasonable, as the NVJs contain several 

proteins involved in lipid synthesis (Schuldiner and Bohnert, 2017). During 

stationary phase, the lipid droplets move away from the NVJ and surround the 

vacuole (Schuldiner and Bohnert, 2017). Approximately at the same time, PMN 

and therewith the degradation of the NVJs starts. 

Since the main goal of the process known as PMN possibly isn’t the autophagic 

degradation of nuclear material, but the degradation of the NVJ and associated 

components, PMN should be renamed into NVJ-phagy. 

 

5.3 Atg39 is pivotal for PMN/ NVJ-phagy and macronucleophagy 

Degradation of Nvj1-GFP was completely blocked in atg39Δ and reduced in 

atg40Δ cells (Figure 4.16). Therewith, this study showed for the first time, that 

Atg39 is not only essential for degradation of the perinuclear ER and 

macronucleophagy (Mochida et al., 2015), but is also crucial for PMN/ NVJ-

phagy. This suggests, that PMN/ NVJ-phagy is a specific Atg39 dependent type 

of ER-phagy, aiming specifically for the NVJs and associated proteins. This 

leads to the conclusion, that Atg39 is a pivotal regulator of macronucleophagy 

and PMN/ NVJ-phagy. Therewith, also in the absence of Nvj1 the residuals of 

the NVJ can be removed.  

As expected, Atg39 dependent degradation of Nvj1 isn’t limited to the NVJs, but 

occurs at the whole perinuclear ER. Degradation of a truncated version of Nvj1, 

Nvj1Δ318-321-GFP, which localization is not limited to the NVJs, but is found in the 

perinuclear ER, was even overcompensated (Chapter 4.5.2.2). 

However, degradation of GFP-Osh1 was not dependent on Atg39. Possibly, this 

maker protein is degraded via an alternative autophagic mechanism. 

 

The present study shows, that PMN/ NVJ-phagy and macronucleophagy are 

linked via Atg39. This poses the question, if there is also a crosstalk between 

these two degradation pathways. Degradation of Nop1-GFP is reduced in nvj1Δ 
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cells (Figure 4.15) and completely blocked in atg39Δ cells (this study) (Mochida 

et al., 2015). This shows, that Nop1-GFP can be degraded via both 

nucleophagic pathways. Cells deficient for NVJ1 are incapable of 

micronucleophagic degradation of nuclear material via PMN/ NVJ-phagy 

(Mostofa et al., 2018). However, degradation of Nop1-GFP is only reduced in 

nvj1Δ cells (Figure 4.15). This shows, that in the absence of Nvj1, PMN/ NVJ-

phagy can be compensated by Atg39 dependent macronucleophagy. If 

macronucleophagy can be compensated by PMN/ NVJ-phagy is unknown, but 

as Atg39 is crucial for both nucleophagic processes, a compensation seems to 

be unlikely. 

 

5.4 A knockout strain selectively inhibited for PMN/ NVJ-phagy is not 

available 

5.4.1 Nvj2, Glc8 and Ymr310c play no direct role in PMN/ NVJ-phagy 

Degradation of GFP-Osh1, as well as nuclear and nucleolar marker proteins 

were shown not to be dependent on Nvj1 (Chapter 4.1) (Mijaljica et al., 2012; 

Mochida et al., 2015). Therefore, it was of interest, if other proteins alone or in 

combination with Nvj1 were involved in PMN/ NVJ-phagy.  

Since Nvj2 is enriched in NVJs (Toulmay and Prinz, 2012), this protein was 

considered to be involved in PMN/ NVJ-phagy. Degradation of GFP-Osh1 and 

Nop1-GFP was neither blocked in the nvj2Δ cells nor in nvj1Δ nvj2Δ cells 

(Figure 4.6 A-D). Microscopic evaluation showed intact NVJs in a NVJ2 deletion 

strain. In nvj1Δ nvj2Δ cells no NVJs were visible (Figure 4.7). This was to be 

expected, because the knockout of NVJ1 leads to the loss of NVJs (Pan et al., 

2000a). Also Toulmay and Prinz (2012) postulated that Nvj2 is localized to the 

NVJs, but is not necessary for the formation of this contact site. Degradation of 

Nop1-GFP in nvj1Δ nvj2Δ cells potentially is mediated by Atg39 and to lesser 

extend by Atg40 in a macronucleophagic manner (Mochida et al., 2015). If 

Nop1-GFP in nvj2Δ cells is degraded via PMN/ NVJ-phagy or via Atg39 

dependent macronucleophagy is unknown. Results obtained for experiments 

based on the degradation of GFP-Osh1 have to be evaluated cautiously, 

because this marker protein can also be degraded independent of PMN/ NVJ-

phagy (Chapter 4.3.3 and 5.1). Therefore, degradation of GFP-Osh1 in nvj1Δ 
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nvj2Δ cells results most likely from ER-phagy, since it is dispersed under these 

conditions.  

 

The already existing nvj1Δ::HIS3 strain was shown to be an otherwise affected 

knockout, nevertheless, this knockout strain showed a very interesting 

phenotype, since it was blocked for the degradation of GFP-Osh1 and Nop1-

GFP (Figure 4.1 A-D, Chapter 4.1). In order to identify the gene, that might 

have been knocked out by chance, a PCR approach was used. Two potential 

hits were obtained: GLC8 and the putative methyltransferase YMR310C. GLC8 

was considered to be a reasonable hit, since it is the activator of GLC7 

(Nigavekar et al., 2002), the catalytic subunit of protein phosphatase 1 

(Ramaswamy et al., 1998). GLC8 and YMR310C were knocked out and the 

respective knockout strains were evaluated using the Delta Vision microscope. 

Both knockout strains showed intact NVJs (Figure 4.11). This was to be 

expected, since the nvj1Δ::HIS3 strain also showed intact NVJs (Figure 4.3). 

Following, these strains were tested in regard of their ability for degradation of 

GFP-Osh1 and Nop1-GFP. The degradation of both marker proteins was wild 

type like in glc8Δ and in ymr310cΔ cells (Figure 4.10 A-D). This led to the 

conclusion, that neither GLC8 nor YMR310C were the gene(s) knocked out or 

were affected in the nvj1Δ::HIS3 strain. Probably, the obtained PCR product 

resulted from unspecific binding of the used primers. The final analysis of the 

gene knockout out in the nvj1Δ::HIS3 strain via genomic sequencing is still 

outstanding. 

 

5.4.2 Scs2 is required for the intactness of the nucleus-vacuole 

junction and is not directly involved in autophagic degradation 

of nucleolar proteins 

Microscopic evaluation of nvj1Δ scs2Δ cells showed disrupted NVJs, when 

using GFP-Osh1 as junction marker (Figure 4.9). This was to be expected, as 

knockout of NVJ1 leads to this phenotype (Pan et al., 2000a). Surprisingly, in 

scs2Δ cells the NVJs were only partially visible. Possibly, this can be explained 

by the fact, that Scs2, like Nvj1 also interacts with Osh1 (Loewen et al., 2003). 

Is Scs2 missing, less GFP-Osh1 can be recruited to the NVJs, so that the NVJs 

are only partially or less clearly visible. However, it is also thinkable, that the 
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disruption of the NVJ is a problem of the visualization and that a different 

marker protein, e.g. Nvj1-GFP, shows intact NVJs. On the other hand, the 

disrupted appearance of the NVJs in scs2Δ cells can also be caused by a 

functional or structural disruption of this contact site. This has to be determined 

in future studies. 

Scs2 together with six other proteins is involved in tethering endoplasmic 

reticulum-plasma membrane (ER-PM) junctions (Manford et al., 2012). So, it 

wouldn’t be surprising, if Scs2 is also part of the NVJ, even though it plays no 

essential role. Additionally, it is known, that not only Nvj1, Vac8, Osh1 and 

Tsc13 (Pan et al., 2000a; Kohlwein et al., 2001; Levine and Munro, 2001) are 

located at the contact site between nucleus and vacuole, but also different 

proteins, like Nvj2, Nvj3, Lam5, Lam6, Mdm1 and Vps13 (Toulmay and Prinz, 

2011; Elbaz-Alon et al., 2015b; Gatta et al., 2015; Henne et al., 2015; Murley et 

al., 2015; Lang et al., 2015b). There are also hints that the tethering of vacuole 

and ER can take place in the absence of Nvj1 (Henne et al., 2015). Lam6 is an 

integral ER membrane protein and is not only localized to the NVJs via its 

interaction with Vac8, but is also found at two other contact sites, the ERMES 

and the vCLAMP. Lam6 mediates crosstalk between these two cellular contact 

sites (Murley et al., 2015; Elbaz-Alon et al., 2015b). Also Mdm1 and its 

paralogue Nvj3 were shown to be interorganellar tethering proteins, that are 

localized to the NVJ independent of Nvj1 (Henne et al., 2015). It is unclear, to 

what extent the afore mentioned proteins are involved in the formation of the 

NVJs or if this contact site represents an interaction possibility for the respective 

proteins. Since the most relevant backbone of the NVJ is formed by Nvj1 and 

Vac8, the absence of one of these two proteins leads to reduced formation of 

NVJs (Pan et al., 2000a). Nevertheless, this means, that the NVJ is more 

complex than initially thought.  

 

To examine the role of Scs2 in PMN/ NVJ-phagy, the degradation of GFP-Osh1 

as well as Nop1-GFP was measured in the respective knockout strains 

(Chapter 4.2.2). The degradation of GFP-Osh1 was slightly increased in scs2Δ 

cells in comparison to nvj1Δ and nvj1Δ scs2Δ cells (Figure 4.8 A, B). The 

impaired NVJ in the SCS2 knockout strain seemed to not have any impact on 

the degradation of GFP-Osh1. Although it is known, that Scs2 as well as Nvj1 
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are interaction partners of Osh1 (Loewen et al., 2003; Kvam and Goldfarb, 

2004). However, the results obtained for GFP-Osh1 have to be handled with 

care, since also degradation of GFP-Osh1 independent of PMN/ NVJ-phagy is 

possible (Chapter 5.1). Therefore, it is considered, that GFP-Osh1 might be 

degraded via an alternative autophagic pathway in the respective knockout 

strains. But it can’t be ruled out, that the interaction with Scs2 and Nvj1 

somehow effects the degradation of GFP-Osh1. 

The degradation of Nop1-GFP was wild type like in scs2Δ, nvj1Δ and in 

nvj1Δ scs2Δ cells (Figure 4.8 C, D). As PMN/ NVJ-phagy is blocked in nvj1Δ 

cells, degradation of Nop1-GFP in nvj1Δ scs2Δ cells can take place via Atg39 

dependent macronucleophagy. How degradation of the nucleolar marker takes 

place in scs2Δ cells is unclear. It could take place via PMN/ NVJ-phagy, 

although, this mechanism now is considered to primarily degrade the NVJ and 

not nuclear content as initially thought (Chapter 5.2.3). It is also unknown, if the 

partially disrupted NVJ had an impact on degradation of Nop1-GFP via this 

micronucleophagic pathway. However, it is more probable, that also in scs2Δ 

cells, degradation of Nop1-GFP takes place in a Atg39 dependent 

macronucleophagic manner, as recently described (Mochida et al., 2015). 

Mdm1 and Nvj3 have been shown to be located at the NVJs. In the absence of 

Mdm1 and Nvj3 PMN vesicles are formed, indicating, that both proteins aren’t 

required for PMN/ NVJ-phagy. Furthermore, Mdm1-GFP was observed to be 

incorporated in protrusions into the vacuole. Meaning, that Mdm1 is degraded in 

a manner comparable to Nvj1 during PMN/ NVJ-phagy (Henne et al., 2015). 

This implicates, that even though Scs2 isn’t involved in PMN/ NVJ-phagy at the 

first glance, it still can play a role. 

 

5.4.3 A multiple knockout as negative control for PMN/ NVJ-phagy 

Mostofa et al. (2018) suggested, that nvj1∆ cells are deficient for PMN/ NVJ-

phagy and atg39∆atg40∆ cells are deficient for macronucleophagy. This seems 

to be reasonable, since they observed a reduction of Nop1-GFP degradation to 

about 50% in atg39∆atg40∆ cells, whereas degradation of Nop1-GFP was wild 

type like in nvj1∆ cells. In fact, in atg39∆ atg40∆ nvj1∆ cells, deficient for micro- 

and macronucleophagy, degradation of Nop1-GFP was blocked (Rahman et al., 
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2018). This shows, that the respective knockouts could represent reasonable 

negative controls for PMN/ NVJ-phagy or macronucleophagy.  

Though within this present study, degradation of Nop1-GFP was shown to be 

completely blocked in atg39∆ atg40∆ cells (Figure 4.15). This was also 

observed by Mochida et al. (2015). They also observed wild type like 

degradation of Nop1-GFP in nvj1∆ cells, whereas within this study a reduction 

to about 50% was seen. Possibly, the diverse results of the different studies are 

caused by the different genetic yeast backgrounds. 

Based on these diverse results it is unclear, if the respective knockout strains 

would represent suitable negative controls for PMN/ NVJ-phagy or 

macronucleophagy.  

 

5.5 Pho8-GFP and Nab-NLS-mCherry are no suitable marker proteins 

5.5.1 A differentiation between macro- and microautophagy via the 

degradation of Pho8-GFP is not possible 

A differentiation between micro- and macroautophagy via the degradation of the 

so far used marker proteins is not possible. Therefore, the vacuolar protein 

Pho8 (Klionsky and Emr, 1989) was considered to be a possibility to get an 

insight into these two mechanisms. Macroautophagy is based on the fusion of 

the autophagosomal membrane and the disposal of the content into the 

vacuole. This leads to the assumption, that Pho8-GFP isn’t degraded during 

macroautophagy. In contrast to that, during PMN/ NVJ-phagy, the vesicles are 

surrounded by a vacuolar membrane before the release into the vacuole and 

therefore, Pho8-GFP was expected to be degraded. Unfortunately, degradation 

of Pho8-GFP was only blocked in atg1Δ and vac8Δ cells, but appeared to be 

wild type like in nvj1Δ, atg39Δ, atg40Δ, atg39Δ atg40Δ and atg39Δ atg40Δ 

nvj1Δ cells (Figure 4.22). Microscopic evaluation of Pho8-GFP showed only 

very faint signals at the vacuolar membrane, hardly more intense than 

cytoplasmic signals (Figure 4.21). 

Unfortunately, the obtained results show, that Pho8-GFP was degraded 

unspecifically. Finally, it can be said, that measurement of Pho8-GFP 

degradation is not suitable for differentiation of micro- and macroautophagy. 
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5.5.2 Nab-NLS-mCherry is degraded via unspecific nucleophagy 

Nab-NLS-mCherry is a nuclear marker protein (Ryan et al., 2007), that was 

tested in regard to be an alternative marker protein for measurement of 

nucleophagy. Surprisingly, degradation of Nab-NLS-mCherry was only blocked 

in atg1Δ cells, but not in all other tested deletion stains, including vac8Δ cells 

(Figure 4.4). This shows, that Nab-NLS-mCherry is not degraded via PMN/ 

NVJ-phagy, nor the Atg39/ Atg40 dependent macronucleophagy (data not 

shown), but via an alternative autophagic pathway. Therefore, this marker 

protein doesn’t represent a new possibility to measure nucleophagy. 

 

5.6 Conclusion 

This study predicts, that the main goal of PMN is not the degradation of 

nucleoplasm, but the degradation of the NVJ. Therefore, this process should be 

renamed into NVJ-phagy. Furthermore, it was shown, that Atg39 is not only 

involved in macronucleophagy, but also plays a crucial role in PMN/ NVJ-

phagy. 
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