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ABSTRACT 
Spatial genetics aims to understand the influence of environmental features and 

biological interactions on gene flow and genetic structure. In plants, spatial genetics is 

determined by the rate, pattern and spatial extent of gene dispersal within and between 

populations. Gene dispersal in plants is composed by seed dispersal and pollination. Seed 

dispersal increases the probabilities of mating between spatially distant, non-related, 

individuals, reducing the probability of biparental inbreeding, decreasing the incidence of 

unfavorable traits and increasing genetic diversity. In animal seed dispersal, foraging behavior 

and post-feeding movement range affect seed dispersal pattern and distance, with 

consequences in plant spatial genetics. This thesis aims to understand the relationship between 

frugivore behavior and spatial genetics while strengthening the current knowledge on seed 

dispersal by tamarins and using their dispersal of Leonia cymosa as a case study for a finer 

analysis of the effect of frugivore behavior on spatial genetics. Leonia cymosa Mart. (Violaceae), 

a small Neotropical understory tree, is exclusively dispersed at our study site by tamarins, 

Saguinus mystax, and Leontocebus nigrifrons. Leonia cymosa is, therefore, a good model for 

understanding the effects of frugivore behavior and plants spatial genetics. First, I analyzed the 

presence and strength of SGS in animal-dispersed plants studied in the last 20 years. I found 

animal behavior has an effect on spatial genetic structure, but pollination and marker type used 

could also have an influence on the strength of SGS. Second, I analyze seed dispersal distance of 

Leonia cymosa by tamarins, using plant genetics and animal behavior data in parallel. Methods 

for estimating seed dispersal distance did not differ significantly and mean seed dispersal 

distance for Leonia cymosa was between 218 and 304m. Third, I analyze spatial genetic structure 

(SGS) in Leonia cymosa through its life stages and put it in the context of tamarin behavior. SGS 

was present in seedlings, and weaker in juveniles and absent in adults of Leonia cymosa, likely 

due to tamarin seed dispersal patterns and extent. Clumped seed dispersal patterns might have 

a strong influence on SGS of seedlings, while the combination of-density-dependent mortality 

and relatively long seed dispersal distance likely reduces this effect in adulthood. Fourth, I 

analyzed the genetic composition of Leonia cymosa individuals growing on different tamarin 

home ranges. Home ranges were expected to create a seed dispersal barrier influencing overall 

gene flow. However, even though the parentage analysis showed no seed exchange across home 
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ranges, genetic makeup shows no difference between individuals located in different home 

ranges, at all life stages, giving evidence that pollination or small shifts in time of home ranges, 

could have a strong effect in maintaining gene flow across home ranges. The results of this thesis 

give evidence that seed dispersal patterns and distance can strongly and differently affect plant 

spatial genetic structure, while, pollination might play an important role in maintaining gene 

flow in case of seed dispersal constraints.   
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Importance of seed dispersal   

Advantages of Seed dispersal and its influence in spatial genetics 

Spatial genetics aims to understand the influence of environmental features and 

biological interactions on gene flow and genetic structure (Guillot et al. 2009).  Spatial genetics 

in plants is determined by the rate, pattern, and extent of gene dispersal within and between 

populations (Levin & Kerster 1974; Adams 1992).  Gene dispersal in plants is composed of seed 

dispersal and pollination (Clark 1998). Pollination will transfer only one set of alleles, while seed 

dispersal will transfer both sets of alleles, composing two-thirds of total gene dispersal 

(Crawford 1984). Seed dispersal patterns determine the location where seeds will be deposited 

and the number of conspecifics surrounding the seeds. Effective seed dispersal will take away 

seeds, to adequate environments, resulting in survival into adulthood (Schupp et al. 2010). The 

transort of seeds away from source trees brings many advantages concerning plant individual 

success, population survival to adversity and increased genetic diversity. The advantages of seed 

dispersal for the plant individuals’ success have been addressed by three hypotheses: escape, 

colonization and directed hypotheses. These state the following advantages, respectively: 1) 

Seed dispersal will allow seeds to avoid overcrowding beneath parent trees, escaping potential 

density-dependent mortality by predation, diseased and intra-specific competition for resources 

resulting germination success and survival into adulthood (Janzen 1970; Connell 1971; 

Augspurger 1984). 2) Seed dispersal will take seeds to other environments increasing the 

probability of finding appropriate conditions for growth (Howe & Smallwood 1982). 3) Seed 

dispersal will allow for species with particular needs, such as epiphytes, to directly get where 

they can grow (Wenny 2001). The advantages of seed dispersal regarding habitat and species 

conservation include seeds reaching degraded habitats and promoting regeneration (Culot et al. 

2010). Furthermore, seed dispersal increases the probability of finding suitable areas where the 

species can survive in cases of disturbances potentially driven by climate change, deforestation 

and invasive species (Snyder 2011; Ruxton & Schaefer 2012). Finally, seed dispersal brings 

advantages in terms of spatial genetics (Hamrick et al. 1993), it increases the probabilities of 

mating between spatially distant, non-related,  individuals, reducing the probability of 

biparental inbreeding, decreasing the incidence of unfavorable traits and increasing genetic 
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diversity (Lowe et al. 2004; Nature 2010). High genetic diversity defines a large gene pool that 

makes the population more resilient to environmental changes (Schaberg et al. 2008).  

Frugivore behavior determines dispersal patterns and spatial genetics 

Different mechanisms can disperse seeds, theese include abiotic mechanisms: 

barochory, hydrochory, anemochory, and biotic mechanisms, such as, zoochory (endo-, epi- or 

synzoochory) or self-propulsion (Murray 1986). Seed dispersal patterns vary according to seed 

dispersal mechanisms, abiotic mechanisms are related to higher spatial aggregation of seedlings 

than biotic mechanisms, which can last into adulthood (Seidler & Plotkin 2006) and can translate 

into differences in spatial genetic structure (Hamrick et al. 1993). While seed shadows created 

by abiotic vectors depend on the physical properties of the environment, those created by 

animal vectors depend on their daily decisions (Côrtes & Uriarte 2013). These daily decisions will 

depend on resource availability, environmental constraints, biological interactions and intrinsic 

characteristics of animal behavior. Foraging behavior and post-feeding movement range affect 

seed dispersal pattern and distance and resulting spatial genetics (Figure 1). Free roaming 

animals with few environmental constraints, like the Mongolian gazelles (Olson et al. 2010), can 

have very long dispersal distances consequently increasing the probability of seed shadow 

overlap between distantly located plant individuals, increasing future mating probability 

between these conceivably unrelated individuals. Reduced availability of resources or specific 

reproductive sites, might drive animals to make long distance movements, carrying over seeds 

with them and increasing connectivity between distant populations (Herrera et al. 2011; Uriarte 

et al. 2011). Animals with restricted home ranges or defined territories will feed only on those 

areas, reducing the probability of overlap between seeds shadows of plants growing on separate 

home ranges or territories, thereby increasing their spatial genetic distance with time (Karubian 

& Durães 2009). Restricted seed dispersal could lead to genetic differentiation between 

populations. Differentiation risk increases with distance among population subdivisions and by 

restricted pollination (Williams & Guries 1994). Lack of gene flow between territories has been 

analyzed for pollination by hummingbirds (Linhart 1973), and although gene flow across 

territories has not been studied for seed dispersal, research shows territories restrict seed 

dispersal and decrease seed dispersal distances even in animals with long daily paths (Yumoto 

et al. 1999) and long gut passage times (Rodríguez-Pérez et al. 2012). Furthermore, the frequent 



6 
 

use of areas by dispersal vectors has been seen recurrently to have genetic effects on the 

dispersed plants (Hanson et al. 2007; García et al. 2009; Karubian et al. 2010, 2015; Muñoz Lazo 

et al. 2011).  

The movement of seeds away from fruiting trees creates an area of seed deposition 

denominated seed shadow. Each fruiting tree has its own seed shadow, and the amount of 

overlap between these will determine the future genetic structure of plant populations (Fleming 

& Heithaus 1981; Hamrick & Loveless 1986). The shape of seed shadows will be determined by 

the seed dispersers’ visitation rate and the number of seeds dispersed away from the seed 

source, and how far these are dispersed (Chapman & Russo 2002).  If seed shadows strongly 

overlap, the distribution of individuals in space will not be related to their genetic makeup, and 

it will be considered random. These individuals will not show any genetic patterns in space, i.e., 

no spatial genetic structure (SGS). Limited dispersal with reduced overlap of seed shadows 

causes genetic isolation to build up over generations, and relatives will exhibit a degree of spatial 

proximity creating a spatial genetic structure (Epperson 2003). Vice versa, when populations are 

strongly genetically structured it is an indication that seeds are not homogeneously mixed and 

seed dispersal distances are possibly restricted (Williams & Guries 1994). This can happen when 

plant species are dispersed by gravity (Ibanes et al. 2015) or if dispersing vectors are absent in 

the area (Wang et al. 2009). It may also happen if biotic vectors are present in the area but their 

movement is limited after feeding, by physical or biological constraints, or if their feeding 

behavior itself creates an accumulation of seeds (Choo et al. 2012) or if they repetitively use 

sites for resting or sleeping (Karubian et al. 2015). There is a direct relationship between the 

presence of spatial genetic structure within a population and its seed dispersal system 

(Vekemans & Hardy 2004). Moreover, even though pollination can counteract and maintain 

gene dispersal, it has not been seen to counteract the formation of SGS in the presence of 

restricted seed dispersal (Krauss et al. 2009).   
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Figure 1 Relationship between seed disperser behavior and plant  spatial genetics. Animals can either 
disperse seeds in clumps or scattered around area. The effect of these seed dispersal patterns on spatial 
genetics will depend on different factors. Whether clumps lead to spatial genetic structure will depend 
on the number of maternal sources, the size of the clump, the distance from source trees and whether 
survival is density dependent. Scattered seeds will affect spatial genetics differently according to seed 
dispersal distance and distance between conspecifics and siblings which will depend on several factors 
influencing movement pattern and extent of dispersers.  

Primate seed dispersal 
Large primates in the tropical rainforest disperse a 70-93% of the fruit species they 

handle (Bufalo et al. 2016). Seed shadows by primates are the result of the interaction between 

primate traits and the dispersed plants’ traits (Chapman & Russo 2002). Primates, as a group, 

display such a wide-ranging set of traits that the generated seed shadows will be highly 

heterogeneous. The main determinants of seed shadows will be seed handling, ranging pattern 

and gut passage time (Gross-Camp & Kaplin 2011). Seed handling will depend on seed or fruit 

size, and primate size or internal anatomy. Most primates in the Neotropics and the Paleotropics 

swallow seeds, although seed spitting is common in African and Asian cheek-pouched monkeys 

(Cercopithecinae) (Corlett & Lucas 1990; Dominy & Duncan 2005). Large home ranges and long 

daily travel paths of primates can also contribute to wide seed shadows (Wehncke et al. 2003). 

Gut passage time can also increase the extent of seed shadows, and depends on body size, 
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digestive anatomy, seed size and pulp consistency (Milton 1984; Benítez-Malvido et al. 2014). 

The gut passage can also affect germination success, sometimes enhancing it (Otani 2004; Petre 

et al. 2015).  

Some case studies on seed dispersal by primates are available for the subtropical Asian 

region (Corlett 2017). For example, orangutans can spit out seeds up to 74m away from the seed 

source (Corlett 1998; Nielsen et al. 2011). Gibbons can disperse seeds more than 90% of seeds 

for beyond 100m and up to 1300m (McConkey & Chivers 2007). In contrast, Colobine monkeys  

destroy most of the species they consume, for example, only 11% of seeds were found in fecal 

samples of proboscis monkeys in Borneo (Matsuda et al. 2013). In the Neotropics, primates can 

disperse up to 112 species, with a rate of 50%-99% of intact seeds, and seed dispersal distances 

between 0 m and 1,540 m, most of which beyond 100 m (Fuzessy et al. 2017). Primarily 

frugivorous primates, with moderate gut passage time and long daily path lengths within large 

home ranges, dispersed the farthest away. Instead, large folivore-frugivore howler monkeys 

have long gut passage times but short daily paths within their home ranges and slow movement 

rates, potentially with shorter seed dispersal distance regardless of long gut passage time 

(Milton 1981). Several other factors can also influence the role of primates as seed dispersers, 

such as interspecific associations, human activities and crop-access (McConkey & O’Farrill 2016). 

Therefore, primates can have very different seed shadows, which will lead to different effects 

at the spatial genetics level.   

Tamarin seed dispersal 

Tamarins are small primates, but they are no exception to the seed dispersal role of 

primates, as they disperse almost 60% of the fruit species they handle (Knogge & Heymann 

2003). Tamarins are also efficient seed dispersers: 95% of their depositions contain intact seeds 

and in low numbers (mean 1.4 seeds) (Garber 1986; Knogge et al. 2003), which guarantees low 

competition for germination and low predation risk (Culot 2009). Tamarins disperse a wide 

range of seed sizes (0.1 to 23 mm) (Knogge & Heymann 2003). The gut passage times of the 

seeds they consume changes with seed size and pulp composition (Knogge pers. comm.) for 

some species it can be as a long as 4 hours, and it has been proven to have no negative effects 

on germination (Knogge 1999; Knogge et al. 2003). The average gut passage time through 

tamarins is 174±57 min for S. mystax and 133±21min for L. nigrifrons (unpub. data). Tamarins 
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can have strong ecological impacts regarding forest regeneration, since, given their small size, 

tamarins can enter disturbed forests, bringing seeds in their guts with them, promoting 

regeneration (Culot et al. 2010). Overall, tamarins seem to have a high probability of being 

effective seed dispersers: many fruits are dispersed far away from each fruiting tree mostly 

singularly, reducing competition and density-dependent mortality (Schupp et al. 2010, 2017; 

Schupp & Jordano 2011). 

The two species of tamarins of this study live in mixed-species group: Saguinus mystax 

(commonly known as moustached tamarin) and Leontocebus nigrifrons (commonly known as 

saddle-back tamarin, previously named Saguinus fuscicollis nigrifrons (Hershkovitz 1977) and 

later Saguinus nigrifrons (Rylands & Mittermeier 2014)  but recently reproposed as a distinct 

genus, Leontocebus (Sampaio et al. 2015; Rylands et al. 2016) given their genetic divergence 

(Matauschek et al. 2011). Living in a mixed-species group provides the safety advantages of large 

group associations with reduced intra-specific competition. Both species live in two different 

vertical strata of the rainforest (S. mystax 5-15m, L. nigrifrons <5m), possibly reducing resource 

competition and having a complementary role when it comes to vigilance against predators 

(Stojan-Dolar & Heymann 2010b). The two species are in association an average of 82% of the 

time, S. mystax being dominant over L. nigrifrons, with predominant access to large food 

patches, and most often initiating feeding bouts. If food patches are large enough, both species 

can feed together, while in smaller patches L. nigrifrons are excluded. Therefore, if L. nigrifrons 

finds small patches of fruit, they rapidly eat these before S. mystax individuals arrive (Peres 

1996).  Most direct interactions are agonistic, however, competition costs are low and 

counterbalanced by the advantages of their association, such as a higher detection rate of fruits 

(Heymann 1990). The feeding behavior and ranging pattern of the two species is highly 

coordinated (Garber 1986), sharing 80-85% of the fruit species eaten (Peres 1993), one of these 

being Leonia cymosa (Knogge 1999; Culot 2009). 

Feeding and foraging behavior  

Tamarins spend circa 40-55% of their daily activity budget on feeding and foraging 

(Knogge & Heymann 2003; Reinehr 2010). The two species eat fruits, insects and trunk exudates, 

and when fruits are scarce, nectar from flowers as well. Fruit pulp composes a mean of 65% of 

their diets, and their fruit feeding activity is most intense during the first three to four hours 
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after sunrise (Garber 1986). Tamarins are generalist frugivores: they eat a high number of fruit 

species with small fruit crop sizes, changing species consumption based on fruit availability 

(Garber et al. 1993). Almost 40% of fruits they consume are yellow, and the preference for these 

does not change over the year with fruit-color availability (Knogge 1999). Green, brown and red 

fruits are also consumed but in lower quantities. As a result, over 45% of the seeds defecated 

by tamarins belong only to yellow-colored fruits (Knogge 1999). 

Tamarins usually open the fruits, discard the exocarp (outer layer) and consume the 

mesocarp (pulp). They have not been observed masticating seeds, nor destroyed seeds have 

been seen in their depositions (Knogge 1999). This evidence shows tamarins do not usually act 

as seed predators, except for certain species with small, juicy berries (E.g., Ficus spp. Tococa 

guianensis) from which they consume the juice, crashing the seeds and spitting them with the 

residual fruit (Knogge, 1998). Nonetheless, over 70% of the fruits they consume have a jelly-like, 

slimy pulp, with the seeds strongly adhered to the pulp, which swallowed completely. Tamarins 

also eat fruits with mealy or fibrous pulp, albeit in lower proportions (Knogge 1999). Seeds from 

these fruits are rarely swallowed, the fibrous pulp is gnawed, and then the seed is spat while 

mealy pulp is scraped from the seed’s surface leaving the seed behind.  

The fruit species they consume are mostly single-seeded fruits, with seeds over 1.5cm 

and 0.70cm, only 20% of these with seeds over 1.5 cm (Garber 1986). However, they also eat 

many-seeded fruits with thin pericarps that are often ingested as a whole. Large seeds with 

fibrous, thick pericarps are usually discarded, but if the fibrous fruits are relatively juicy, and 

small, they are ingested with the seed as well (Peres, 1993). Seeds that are ingested will leave 

the intestinal tract without damage. Field experiments showed over 90% of seeds that had been 

through the tamarins’ gut had a germination success rate equal to the control seeds, and around 

5% had a positive effect on germination success.     

Depending of fruit pulp composition, seed volume and resting patterns, tamarins have a 

gut passage rate of one to five hours (Garber 1986; Knogge 1999), 90% of the seed species have 

an average gut passage time ≤3.5 hours in S. mystax (N=49) and <4 hours in L. nigrifrons (N=65) 

[Knogge, 2009]. Gut passage times have been previously related to body mass of seed dispersers 

and its gut complexity (Wotton & Kelly 2012; Fuzessy et al. 2017). Supporting this theory, S. 

mystax, is bigger than L. nigrifrons (in average  515g and 362g., respectively) and has overall 
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significantly longer gut passage times (2.9 ± 1hr and 3.9 ± 0.3hr, respectively; Figure 2A) (Knogge 

1999). Furthermore, they also differ in the distribution density curves of the mean gut passage 

time of the several plant species they disperse. Saguinus mystax has a wider bell curve, with 

more species having a mean gut passage time between 1.5 and 3.5 hrs. while L. nigrifrons has a 

higher frequency of species dispersed in average between 1.75 hrs and 2.75 hrs after feeding 

(Figure 2B). Gut passage time of plant species consumed by tamarins has been previously 

significantly correlated with seed dispersal distances (Knogge 1999). 

 

 

Figure 2 Differences in mean gut passage times of plant species dispersed by Saguinus mystax and 
Leontocebus nigrifrons (A). Distribution curve of diurnal gut passage times of the plant species dispersed 
by the tamarins (B) plot made with the ggplot2 package, geom_boxplot(), geom_smooth() function in R, 
with data from Knogge, 1998. 

Seeds that remain on the tamarins’ gut when the tamarins retire to their sleeping sites 

are deposited within the first few hours of the following morning (Figure 3).  
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Figure 3 Diurnal and Overnight Gut passage time differences between Saguinus mystax and Leontocebus 
nigrifrons. Plot made with ggplot2 package, geom_smooth() function in R, with data from Knogge, 1998. 

 

Sleeping and resting sites 

Repetitive use of areas, such as sleeping or resting sites, can influence seed dispersal, 

creating an accumulation of seeds under these (Chapman & Russo 2002; Muñoz Lazo et al. 

2011). Tamarins can use >80 sleeping trees in their home range, with an average of 2.75-3.35 

nights spent on each sleeping site (Smith et al. 2007).  These sleeping sites are mainly located in 

the central area of their home ranges (Smith et al. 2007). Tamarins spend between 23% and 30% 

of their daily activity budget resting on resting trees, of which 61% are used repetitively (Reinehr 

2010; Muñoz Lazo et al. 2011). The number of sleeping trees and resting trees, the number of 

nights spent on these and the total resting time during the day, are positively correlated with 

seed deposition densities (Knogge 1999). Even though within resting sites tamarins disperse 

significantly more seeds than outside resting sites, seed survival is not influenced by this 

clustering of seeds under resting and sleeping sites (Muñoz Lazo et al. 2011). Therefore, a higher 

concentration of seedlings is generally found under these sites. Tamarins visit resting sites a 

median of 2 times per day (max=5, n=86). The two species rest mainly in trees (S. mystax = 

60.6%, L. nigrifrons = 89.2%), however L. nigrifrons uses dead trunks too. Given the vertical 

stratification, S. mystax rests in higher places (12.5m) than L. nigrifrons (5m). Resting sites are 
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abundant in areas with a high density of feeding trees (Muñoz Lazo et al. 2011). According to 

fruit availability, resting sites may change seasonally and yearly, potentially homogenizing seed 

dispersal patterns. 

Movement patterns and home ranges.  

Around our study site, there are six mixed-species groups of tamarins. Their home ranges 

have little spatial and temporal overlap; however, the home range areas of these groups have 

shifted gradually in 20 years (Heymann et al. 2017). Fruit availability seems to be the main 

determinant of these temporal shifts in home range delimitations (Culot 2009). The groups 

under analysis within this Ph.D. project are Group 1, located NW of the field station and Group 

2 located SE of the field station. Leonia cymosa, the focus plant species of the project, is present 

in both group areas. These two groups have been adjacent to each other for several years until 

the year before our sampling, 2013. In 2013 Group 3, normally located N of the field station has 

shifted its home range to in between these groups. The area covered by group 3 previous to 

2013 does not contain any Leonia cymosa. However, area in-between group 1 and group 2, now 

covered by group 3, does contain low numbers of L. cymosa. 

Tamarins are stable foragers, keeping the same feeding and movement patterns (Garber 

et al. 1993). Movement patterns of the tamarins are random and convoluted, especially during 

prey foraging (Knogge 1999). However, they can remember locations and fruiting schedules of 

trees, therefore, during fruit feeding bouts, they usually travel in a direct line between fruiting 

individuals (traplining behavior). Consequently, they can travel over much of their home range 

each day, efficiently concentrating their efforts on a large number of fruiting individuals from a 

limited number of fruiting species (Garber 1986). Average daily travel distance is 1508.9 ± 251.8 

m for S. mystax and 1425.3 ± 288.6 m for L. nigrifrons (Reinehr 2010). However, the marked the 

delimitations of their home range area, and seldomly cross over these (Culot 2009), limiting their 

maximum seed dispersal distances to the diameter of their home range areas. 

Seed dispersal distances  

Seed dispersal curve by tamarin shows a leptokurtic distribution (N=1180 seed dispersal 

events observed by Knogge in 1998), with the mode between 50 and 150m from fruit sources. 
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Despite their gut passage time difference described above, the two species of tamarins show no 

evidence of differences among their seed dispersal patterns (Figure 4, Knogge 1999). 

 

Figure 4 Seed dispersal curve differences between Saguinus mystax and Leontocebus nigrifrons. Plot 
made with ggplot2 package, geom_smooth() function in R, with data from Knogge, 1998. 

Tamarins disperse 88 of the 155 species exploited for fruit (Knogge & Heymann 2003). 

Plant, fruit and seed characteristics of dispersed species do not differ between S. mystax and L. 

nigrifrons (Knogge 1999). For both tamarin species, seed dispersal distance estimates remained 

constant over time and range between 0-730 m, with most seeds being dispersed around 152-

183m and less than 3% dispersed beyond 10m (Heymann et al. 2017). 

Leonia cymosa as a model for seed dispersal  

Leonia cymosa is a relatively unknown species. Its seed dispersal ecology has been 

previously studied in Ecuador (Pfrommer 2009), where height, phenology, and dispersal systems 

differ from our study site in Peru (Reinehr 2010). L. cymosa has also been studied for its 

pharmacological application in relationship to HIV, and its biochemical content in relationship 

to scent component and its role in seed dispersal by primates (Hallock et al. 2000; Nevo 2015). 

Leonia cymosa Mart. (Violaceae) is a small Neotropical understory tree, with an average 

height of 7m (Adults: min 2.5 m.; max 11.5m) (Reinehr 2010), a diameter at breast height (dbh) 

of ≤10 cm and a crown volume significantly correlated with height (5-115 m3) (Pfrommer 2009). 

L. cymosa can be identified by their irregularly curved thin trunks and their characteristic leaves: 
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oblong-elliptical leaves, 10-18 cm long and 4-7.5 cm wide with the sides slightly serrated and 

with an alternate arrangement (Pfrommer 2009). It is geographically distributed on the north 

and north-west area of the Amazon rainforest (Figure 5). Leonia cymosa is spatially arranged in 

clusters of different sizes and has high variance when it comes to plant population density (3.8-

23 ind/ha) (Pfrommer 2009). 

 

Figure 5 Geographical distribution of L. cymosa. Paces were L. cymosa has been observed (  ). Field station 
EBQB marked in red. 

Flowers are small, yellow-orange, 3 – 4 mm each, irregularly arranged in a sympodial 

inflorescence (Macbride 1941). Based on flower morphology, it is most probably pollinated by 

insects (Michael Schwerdtfeger, pers. com.). Stingless bees (Meliponinae) have been observed 

around crowns during flowering, in Ecuador (Pfrommer 2009). After flowering, fruiting 

development requires up to two months, and fruit maturity requires three more months 

(Pfrommer 2009). Fruiting seasons can have a duration of 2-4.5 months (Pfrommer 2009)ere 

fruits ripen asynchronously. Fruiting periods can be variable between areas, for example, in 

Ecuador, its fruiting season repeats twice a year, while on our study site, fruits usually ripen once 

a year, from February to May, within the main rainy season (Reinehr 2010). 

Fruit crop size ranges between 1 to 120 fruits, with high inter-annual variation even 

within individuals (Pfrommer 2009). Fruits are spherical berries with a mean diameter of 1.8 cm 

(range 1-3.4 cm) and a mean mass of 2.1 g (range 1.2-15 g) (Reinehr 2010). During the ripening 
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process, fruits change in color (dark green to yellow) (Reinehr 2010), and in scent complexity 

(Nevo et al. 2016), woody pericarps become softer and easily detachable from the pulp. The 

pulp is white-yellow, fibrous, high in sugars and proteins, and tightly adhered to the contained 

seeds (Pfrommer 2009; Reinehr 2010). Fruits contain mostly 1-2 seeds, (max seven seeds), with 

an average weight of 0.45g. (Reinehr 2010). Fruit size has been significantly correlated to seed 

number (Pfrommer 2009). Fruits must be consumed in order to germinate, seeds that remain 

inside the husk will inevitably be decomposed in 1-2 weeks (Pfrommer 2009). 

Leonia cymosa shows characteristics of having a specialized seed dispersal system by 

producing few fruits per tree and having a high nutrient content (Howe 1993; Pfrommer 2009). 

The only known consumers and primary seed dispersers are tamarins (Saguinus spp. and 

Leontocebus spp.) and squirrel monkeys (Saimiri spp.) (Pfrommer 2009; Reinehr 2010). At our 

study site, camera traps done by Reinehr (2010) revealed that L. cymosa is exclusively dispersed 

by S. mystax and L. nigrifrons. Leonia cymosa is, therefore, a good model for understanding the 

effects of frugivore behavior and plants spatial genetics.  

Feeding behavior of tamarins on Leonia cymosa 

During the field work time of this thesis Leonia cymosa did not fruit, but from previous 

analysis (Reinehr 2010) 164 feeding episodes on 95 different L. cymosa were recorded. A mean 

of 7.5 ± 4.3 individuals of L. cymosa (min=1, max=14, n=20 days) were visited per day, from 

which a single individual of L. cymosa was visited a mean of 1.8±1.1 times during the recordings 

(max=6, n=89). A mean of 5.2 ± 4.3 fruits (min=1, max=38, n=157) were eaten per feeding 

episode. From the fruits eaten, 70 ± 28% were ripe (min=0%, max=100%, n=71). Fruiting trees 

were visited by a mean of 2.17 ± 1.19 individuals at a time (n=82), with a maximum of 4 

individuals of S. mystax and a maximum of 5 individuals of L. nigrifrons.  Both tamarin species 

fed together on the same tree 23.4% of the feeding episodes recorded (n=110), 13.3% S. mystax 

fed alone and 63% of the time L. nigrifrons fed alone. The whole intra-specific group of S. mystax 

(5 individuals) was never seen completely on one L. cymosa tree, while for L. nigrifrons this was 

seen 4 times out 110 feeding episodes recorded. Feeding bouts were 2:08 ± 2:01 minutes long 

(min=0:08m, max=9:57m.) for S. mystax and 1:48 ± 1:30 minutes long (min=0:06m, 

max=10:13m.) for L. nigrifrons. 
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Reinehr (2010) showed seed depositions are not homogenous across the home range. 

Tamarins spent 50% of their time in 9 ha out of the 26ha they spent 95% of their time on. Within 

these 9ha, they also deposited 50% of L. cymosa seeds (Figure 6). Reinehr shows how tamarin 

movement patterns and seed deposition of L. cymosa are strongly correlated.  

 

Figure 6 Seed deposition of Leonia cymosa related to tamarin Group 1 movement patterns. 50% 

kernel of seed depositions (brown) overlaps 50% kernel of area used by tamarins (blue) within the 

95% of area used (i.e. home range) (--). Image from Reinehr (2010).  

Understanding seed dispersal using molecular markers 

Seed dispersal can be very hard to quantify for species that have dispersal vectors with 

complex behaviors or seeds that are hard to follow from source to deposition area. Fruit traps 

or removal count (Davidar & Morton 1986), seed tags (Sidhu & Datta 2015) radio-tags (Pons & 

Pausas 2007), camera traps (Koike 1994; Kitamura et al. 2009; McConkey et al. 2015), vector 

radio-tagging, and isotope impregnation, have been used to overcome these limitations and 

understand seed dispersal. An alternative and recently a very common approach, is to use 

molecular markers to analyze the genetics of the plant and work backwards towards 

understanding seed dispersal and how environment and vectors affect it. In fact, since the 
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genetic makeup of populations is related to seed dispersal, analyses of genotypes can give a 

backward insight on seed dispersal and the processes related to it. 

Molecular markers (e.g., microsatellites, AFLP, RAPD, SNPs, and DNA barcoding) are used 

to distinguish individuals and their relatedness through its genetic information. Hence, without 

the need to follow the precise movements of vectors or seeds, we can understand distances and 

patterns with which seeds are being deposited (Hamrick & Trapnell 2011). Relatedness in space 

between individuals and within and among life stages gives an insight on temporal and spatial 

patterns of seed dispersal. With molecular markers, direct observations of seed dispersal events 

are not needed, but these two approaches can also be combined to directly recognize maternal 

sources from seed tissue (Heymann et al. 2012; Thompson et al. 2014). Furthermore, molecular 

markers can also be used to recognize which frugivore species dispersed the seeds, through DNA 

fingerprinting (González-Varo et al. 2014) and to quantify genetic influx of populations through 

parentage analysis, either using known parental sexes or sex-specific markers (ie. ctDNA) 

(Ramos et al. 2016b; Torroba-Balmori et al. 2017).  

Microsatellite markers are the most popular and versatile marker type for ecological 

studies. These markers are regularly used to study population differentiation, spatial genetic 

structure analysis, migration rates, population size, bottlenecks, parentage analysis (Selkoe & 

Toonen 2006). Microsatellites (a.k.a. simple sequence repeats SSRs) are short tandem repeats 

of DNA (10-50 copies),  with high mutation rates, present in non-coding regions (Vieira et al. 

2016). The tandem repeats can be made of repetitions of one to four bases (i.e., mono- to tetra-

nucleotide repeats). Polymorphisms of these repeats are usually the result of changes in the 

number of repeat units due to mutations that cause the addition or deletion of bases. Therefore 

genotyping of microsatellites is based on the different size forms each microsatellite locus can 

have (Lowe et al. 2004). Lowe et al. (2004) identified the advantages of microsatellites. These 

include: 1) Abundancy and uniform coverage across the genome; 2) Codominant markers so 

allelic polymorphisms can be distinguished; 3) Possibility to detect nuclear DNA and organelle 

DNA polymorphisms in total DNA extracts, potentially useful for distinguishing between pollen 

and seed gene flow, 4) High mutation rates compared to other DNA markers, useful for intra-

population studies, such as spatial genetic structure; 5) Microsatellite loci are defined by the 

primer pairs, facilitating information exchange between research groups, other groups only 



19 
 

need the primer sequence, and they can analyze their samples. Disadvantages include the high 

costs of identification and the specificity of primers, although cross-species amplification is 

possible. Rather than a high number of microsatellite loci, for spatial studies, it is important to 

have microsatellite loci with a high number of alleles, i.e., — high polymorphism (Kalinowski & 

Waples 2002).  

Study site 

Study site, Estación Biológica Quebrada Blanco (EBQB) is located 90km SE from Iquitos, 

Loreto in the lowland Amazon Rainforest from Northeastern Peru (04°21’S, 73°09’W) (Figure 7). 

The field station is located on the valley (in spanish Quebrada) of the Blanco river, a tributary of 

the Tahuayo river, which flows into the Amazon river. The Blanco river is characterized for its 

white-water, hence the name. The study area is circa 100 ha and is crossed by perpendicular 

pathways every 100m forming a grid system, making the whole area easily accessible. 

Dominantly composed of primary forest, surrounding some secondary forest. Primary forest in 

the study area is characterized by 1) Tierra firme (or Terra firme) forest, high-ground rainforest, 

not inundated by flooded rivers, standing on a slightly undulating, dry, well-drained firm soil, 

and 2) Palmal de Altura areas, small swampy areas scattered around the Tierra firme forest 

(Heymann & Hartmann 1991). Tierra firme soil is acid, strongly nutrient-limited, and its 

vegetation growth is limited by Phosphorus availability (Cuevas & Medina 1986; Lavelle & Spain 

2001). Regardless of the poor soils, this forest is noticeably taller (<26m) and more diverse (>400 

species/hectare in some areas) than flooded forests (de Oliveira & Mori 1999; Montagnini & 

Muñiz-Miret 1999; Duque & Cavelier 2003; de Mendonça et al. 2017). The canopy is composed 

of hardwood trees, vines, and palms, the middle layer of the forest is composed of shrubs and 

10-17m high trees and the lower layer or understory, where we find Leonia cymosa, includes 

shrubs and herbs and trees measuring up to 6-9m (Culot 2009).  

Tamarins live mainly on the primary forest but can also travel back and forth to 

secondary forest, although they rarely sleep in it (Culot et al. 2010). The secondary forest was 

originated by slash and burn agriculture in 1984, which then became a pasture for Buffalos and 

was abandoned in 2000 (Culot 2009). Altitude of the study area is about 110m. Temperatures 

range between 16 and 8 °C but have a yearly average of 26.2°C (SENAMHI, 2006-2012, 

Tamshiyacu meteorological station, 40 km north of EBQB). Rainfall can reach >3600 mm, and is 



20 
 

generally constant throughout the year with a short dry season from July to September, an early 

wet season with increasing rainfall from October to January, a main wet season from February 

to May, and a late wet season with decreasing rainfall in June (Garber et al. 1993; Culot 2009). 

 
Figure 7 Map of the region surrounding field station. Map created using qGIS and the open layers plugin  
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Objectives of the thesis 

This thesis aims to understand the relationship between frugivore behavior and spatial 

genetics while strengthening the current knowledge on seed dispersal by tamarins and using 

their dispersal of Leonia cymosa as a case study for a finer analysis of the effect of frugivore on 

spatial genetics.   

The first objective is to understand, from previews literature, general patterns between 

seed disperser behavior and spatial genetic structure. In Chapter I I analyze the relationship 

between seed dispersal mode, seed disperser taxa and seed disperser behavior with the spatial 

genetic structure of plant species dispersed by animal vectors (i.e., zoochorously dispersed plant 

species). Given the strong relationship between animal behavior and seed dispersal patterns, 

we expect that animal behavior that enhances seed dispersal distance and reduces seed 

clumping will be associated with reduced SGS. 

The second objective is to use genetic markers to further understand seed dispersal by 

tamarins in L. cymosa, overcoming species-specific observation limitations. In Chapter II I 

estimate seed dispersal distance by tamarins using animal behavior data and plant genetics in 

parallel and compare these to the few field observations available. From tamarins’ short-timed 

feeding behavior, and long daily travel paths, we expect seed dispersal by tamarins to be 

moderate to long and seed dispersal curves to have a higher density of seeds dispersed away 

from seed sources. 

The third objective is to understand the effects of tamarin seed dispersal on spatial 

genetic effects of L. cymosa. In Chapter III I analyze spatial genetic structure within different life 

stages of L. cymosa and compare these with pattern and extent of tamarin seed dispersal. If 

spatial genetic pattern and seed dispersal distance are strongly associated with SGS, we expect 

tamarins to decrease SGS of L. cymosa at least in the adult stage. In Chapter IV I analyze how 

the social organization of tamarins affects seed dispersal patterns and its effect on L. cymosa 

spatial genetics. The social organization of tamarins confines small groups into delimited home 

ranges with a small overlap and small spatio-temporal shifts; this could generate a seed dispersal 

barrier. Therefore, we expect a small number of seeds crossing home range borders and a 

resulting difference in the genetic makeup of the subpopulations.  
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The characterization of microsatellites used for this study and the validation of an 

alternative form of sampling for tropical studies is presented in Chapter V.  In this final chapter; 

I analyze the characteristics of the microsatellite loci and test for intra-genera cross-species 

amplification. Moreover, the alternative form of sample storage and DNA extraction is 

compared to the extraction of DNA from leaves stored in dry silica gel; I expect this alternative 

method, currently used only in agricultural studies, to have an excellent application in tropical 

studies.   
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EFFECTS OF ZOOCHORY ON THE SPATIAL GENETIC STRUCTURE OF PLANT 

POPULATIONS 
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Abstract 

Spatial genetic structure (SGS) of plants results from the non-random distribution of 

related individuals. SGS provides information on gene flow and spatial patterns of genetic 

diversity within populations. The spatial template for plant distribution is created by seed 

dispersal. Thus, in zoochorous plants, dispersal mode and disperser behavior might have a 

strong impact on SGS. However, many studies only report the taxonomic group of seed 

dispersers, without further details. The recent increase in studies on SGS provides the 

opportunity to review findings and test for the influence of dispersal mode, taxonomic affiliation 

of dispersers and their behavior. We compared the proportions of studies with SGS among 

groups and tested for differences in strength of SGS using Sp statistics. Presence of SGS differed 

among taxonomic groups, with reduced presence in plants dispersed by birds. Strength of SGS 

was instead significantly influenced by the behavior of seed dispersal vectors, with higher Sp 

values in plant species dispersed by animals with behavior traits that result in short seed 

dispersal distances. We observed a high variance in SGS of plants dispersed by animals that 

actively or passively accumulate seeds. Additionally, we found SGS was also affected by 

pollination and marker type used. Our study highlights the importance of seed disperser 

behavior on SGS even in the presence of variance created by other factors. Thus, more detailed 

information on the behavior of seed dispersers would contribute to better understand which 

factors shape the spatial scale of gene flow in animal-dispersed plant species. 
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Introduction 

Fine-scale spatial genetic structure (SGS) is the non-random spatial distribution of 

related individuals within a population (Hamrick & Loveless 1986; Vekemans & Hardy 2004). SGS 

in plants results primarily from gene flow via pollen and seed dispersal. A number of additional 

factors, such as environmental conditions, the plant’s life history traits, morphology and 

demographics, might also influence the presence and strength of SGS by affecting the pattern 

and spatial scale of gene flow, and the seedling survival rate (Hamrick & Godt 1996; Hardy et al. 

2006). Pollination and seed dispersal differ in strength and scale of their effect on gene flow 

(Hardy et al. 2006). While pollen grains carry only the paternal set of chromosomes, seeds carry 

the combined set from both parents and thereby contribute twice as much to overall gene flow. 

The contribution of pollen (σp) and seed (σs) dispersal variance to the overall parent-offspring 

dispersal variance (σg) can thus be expressed as σg
2 = ½ σp

2 + σs
2 (Crawford 1984). Furthermore, 

seed dispersal creates the spatial template for recruitment and the resulting genotype 

distribution of future generations (Howe & Miriti 2004). While pollen dispersal can compensate 

for genetic drift within populations and counteract genetic differentiation among populations 

(Howe & Miriti 2004) by homogenizing spatial genetic patterns on large scales (Isagi et al. 2004), 

seed dispersal is generally regarded to have a stronger effect on small-scale genetic patterns 

(Hamilton 1999). In fact, the analysis of SGS can shed light on the patterns of seed dispersal 

(Slatkin 1985; Hamrick & Trapnell 2011) and allow for an approximation of dispersal distances 

(Heuertz et al. 2003). 

Post-dispersal processes that affect seed germination and establishment can influence 

SGS as well and have to be considered for the interpretation of SGS patterns. These processes 

include seed and seedling predation, pathogen attacks, and intra- and inter-specific competition 

for nutrients and light. Density-dependent mortality, and host-specific predation or pathogens, 

by increasing mortality with increasing density of conspecific seedlings (Janzen 1970; Connell 

1971), can reduce SGS. Similarly, random demographic thinning with increasing age of cohorts 

can also reduce SGS (Schroeder et al. 2014). Conversely, micro-geographic environmental 

heterogeneity might favor survival of locally well-adapted and potentially related genotypes, 

resulting in the aggregation of quantitative traits within populations (Yeaman & Jarvis 2006; 

Scotti et al. 2015). In such cases, the importance of the spatial scale of gene flow for evolutionary 
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processes becomes evident. While large-scale gene flow can increase local genetic diversity and 

provide a varied gene pool for adaptation under high selective pressure, in sites with low to 

intermediate selective pressure it can instead counteract adaptation. In this case, restricted 

gene flow facilitates local adaptation (Savolainen et al. 2007; Scotti et al. 2015). This scenario 

might also result in high levels of biparental inbreeding (in absence of self-incompatibility) 

resulting in a reduction of genetic diversity within the population (Ellstrand & Elam 1993) and, 

in the long-term, of fitness and adaptability (Lankau 2009). Presence of spatial patterns in 

genetic variation is therefore an important prerequisite for evolutionary processes (Sokal & 

Wartenberg 1983; Rundle & Nosil 2005). 

In this review, we focus on the influence of zoochory, i.e. seed dispersal by animals, on 

SGS. 

Zoochory and spatial patterns of seed dispersal 

Zoochorous seed dispersal occurs through three different mechanisms. Seeds can be (a) 

swallowed, transported inside the guts of frugivores and deposited through defecation or 

regurgitation (endozoochory); (b) actively carried in hands, mouths, bills or mandibles and 

dropped after the edible part of the fruit has been removed (synzoochory) or (c) transported 

passively attached to skin, fur or feathers (epizoochory) (Howe & Smallwood 1982). Animals can 

act as primary seed dispersers when they deposit seeds after having removed fruits from the 

plant, or as secondary dispersers when already dispersed seeds are moved further on (Wang & 

Smith 2002). Since zoochorous seed dispersal is an interaction between animals and 

fruits/seeds, it is plausible that the behavior of animal dispersal vectors influences patterns of 

seed dispersal (Russo et al. 2006; Sasal & Morales 2013; Côrtes & Uriarte 2013). Generally, the 

behavior of vectors, e.g. frequency of visits to fruiting plants, quality and quantity of fruit and 

seed handling, play a role in determining seed dispersal efficiency (Schupp 1993; Schupp et al. 

2010). More specifically, spatial patterns of seed dispersal are directly related to vectors’ 

movement patterns which in turn are affected by intrinsic (vector-specific) and extrinsic 

(ecological/environmental) factors (Patterson et al. 2008; Laundré et al. 2010). Intrinsic factors 

include body size, nutrient requirements and dietary strategies, physiological condition, social 

organization and mating system (e.g. Wehncke et al. 2004; Jordano et al. 2007; Karubian et al. 

2012; Lichti et al. 2017). Extrinsic factors include seasonal and inter-annual variation in fruit 
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abundance, the spatial distribution of feeding, sleeping, resting and singing sites, and predation 

risk (e.g., Julliot 1997; Wenny & Levey 1998; Perea et al. 2011; Abedi-Lartey et al. 2016). 

Although the influence of behavior of seed dispersal vectors on spatial patterns of seed dispersal 

has been empirically studied and theoretically modelled for a long time (Estrada & Coates-

Estrada 1984; Fleming & Williams 1990; Jordano & Herrera 1995; Russo et al. 2006; Cousens et 

al. 2010; Sasal & Morales 2013; Côrtes & Uriarte 2013; Bialozyt et al. 2014a), its implications for 

SGS of plant populations have come under intensive study only recently.  

Spatial genetic structure analysis 

SGS is analyzed by genotyping georeferenced plant individuals and by assessing changes 

in genetic relatedness with spatial distance. For genotyping, a variety of different marker types 

have been used, but in the last few years, most SGS studies have used microsatellites whose 

high variability allows to determine kinship even between closely related individuals. The 

relatedness between pairs of individuals can be calculated with a number of kinship coefficients 

(e.g., Sokal & Oden 1978; Burgman & Williams 1995; Loiselle et al. 1995). Following the 

recommendations of Vekemans and Hardy (2004), most recent studies employ the coefficient 

published by Loiselle et al. (1995) which has proven to be more robust than other coefficients if 

rare alleles occur in the data set (e.g. Ritland 1996; Rousset 2000). This is frequently the case 

when highly variable microsatellites are used. For spatial autocorrelation analysis, the kinship 

coefficient of pairs of individuals is averaged in predefined distance classes and tested for 

significance by permutations within in each distance class. Alternatively, for a one-value 

measure of SGS, Vekemans and Hardy (2004) introduced the Sp statistics. It is calculated by 

regressing pairwise genetic relatedness over the logarithm of pairwise spatial distance. Sp is 

calculated as 𝑆𝑝 =  −�̂�𝐹/1 − �̂�(1), with �̂�𝐹  as the slope of the linear regression, and �̂�(1) as the 

mean kinship coefficient of the first distance class which comprises closest neighbors. Thus, Sp 

values primarily depend on the rate of decrease of pairwise kinship over distance. By providing 

a numerical value for the strength of SGS that is largely independent of sampling scheme and of 

arbitrarily chosen distance classes, it allows for the comparison of SGS between populations and 

species (Vekemans & Hardy 2004).  

Previous reviews used the Sp statistics to compare SGS among plant groups in order to 

determine the influence of different factors on SGS.  For example, Nazareno et al. (2013) showed 
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a relationship between plant sexual system and the strength of SGS. Vekemans and Hardy (2004) 

found significant effects of breeding system, life form and plant population density, but no 

significant effects of pollination mechanism or of seed dispersal on SGS. Dick et al. (2008) 

compared SGS of plant species focusing on gene dispersal distances and climate region. While 

mean Sp values did not differ between tropical and temperate regions, a significant difference 

was found between wind- and animal-pollinated species in temperate regions, and among seed 

dispersal vectors (birds, bats and primates vs. gravity, wind, water and rodents) in tropical 

regions. However, none of these reviews focused on the effects of animal seed dispersal on SGS.  

Aims of this review 

The number of studies on SGS in animal-dispersed plant species has increased as a result 

of methodological advances. This includes plant species whose seeds are dispersed endo- or 

synzoochorously by vectors from different taxonomic and functional groups. Thus, it is timely to 

review the effect of zoochorous seed dispersal on the occurrences and strength of SGS. 

In our review, we address the following questions: 

1. Does seed dispersal mode (endozoochory vs. synzoochory) influences the occurrence 

and strength of SGS? We expect seeds transported in guts are dispersed over longer distances 

than seeds carried in hands, mouths, bills or mandibles (Herrera & Jordano 1981; Howe 1989; 

Vander Wall & Beck 2012; Wehncke et al. 2003). Under this assumption, SGS should occur more 

frequently and be stronger (i.e. Sp values higher) in synzoochorously compared to 

endozoochorously dispersed plant species. 

2. Does taxonomic affiliation of the seed dispersal vector influence the occurrence and 

strength of SGS? Since the major groups of seed dispersal vectors (bats, birds, primates, rodents 

and ants) vary in their morphological features of physiology and mobility, we expect differences 

in the occurrence frequency and strength of SGS between these (Ness et al. 2004; Côrtes & 

Uriarte 2013). More specifically, we expect plant species dispersed by highly mobile animals 

(bats, birds) are less likely to show SGS and have weaker SGS compared to less mobile taxa. 

3. Does the behavior of seed dispersal vectors influence the occurrence and strength of 

SGS? While vectors from different taxonomic groups differ in various basic aspects of their 

biology, they may nevertheless show functionally similar behavior, such as hoarding of seeds by 
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rodents and birds or dropping of seeds at specific roosting sites by birds and bats. Specifically, 

we expect plant species dispersed by vectors that move over large distances immediately after 

feeding or that cache seeds far away from food sources are less likely to show SGS or have 

weaker SGS compared to animals that remain close to fruiting plants after feeding or discard 

seeds while feeding. Furthermore, since vector behaviors also determine seed dispersal 

distances, we expect Sp values to be related to observed seed dispersal distances.   

4. Which additional factors have an influence on occurrence and strength of SGS of 

zoochorous plants?  

Other factors besides seed dispersal have been previously seen to influence SGS of plant 

species, but the number of animal-dispersed species was low in these studies (Vekemans & 

Hardy 2004; Dick et al. 2008; Nazareno et al. 2013). In line with previous reviews, we examine 

the effect of pollination mechanism (animal vs. wind), climate region (temperate vs. tropical), 

plant life form, sexual and breeding system, population density and genetic marker type used 

(AFLP, Allozymes, ISSR, Microsatellites and RAPD) on the strength of SGS.   

Methods 

Compilation of database 

We queried Web of ScienceTM for articles listed until July 2017, describing SGS of 

zoochorously dispersed plant species (query: “spatial genetic structure” or “population genetic 

structure” + “seed dispersal” or “frugivory” or “endozoochory” or “synzoochory” or “ants” or 

“bats” or “birds” or “primates” or “rodents”). Additionally, we included studies on animal-

dispersed plant species included in previously published reviews on SGS. For each study, we 

extracted data on plant characteristics (habitat, plant population density, pollination 

mechanism, sexual system, etc.), and data on the analytical methods (marker type used) from 

the publication itself or from the publications referenced therein. We also noted the presence 

or absence of SGS and, if provided, its strength in terms of Sp values (Table 1). Presence or 

absence of SGS was based on whether the authors identified significant SGS through one of the 

following three methods: (1) spatial auto-correlogram based on permutations, (2) the slope of 

the linear regression over the pairwise distance matrix or (3) significance of Sp statistics. 

Strength of SGS was assessed by the Sp statistics whenever values were provided or when we 
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could obtain the regression slope and first distance class kinship coefficient values for its 

calculation. We calculated the mean of all analyzed populations if more than one population of 

the same species was analyzed in the same or different studies and if there was no indication 

seed dispersal system differed. In cases where seed dispersers differed between studied 

populations of the same plant species, we considered them separately. As many publications 

did not provide detailed information on the animal species that acted as seed dispersal vectors 

or on vector behavior, we extracted pertinent information from publications referenced in the 

studies. For our analysis, we only considered studies on adult life stage of the plant since we 

were ultimately interested in the long-term effects of animal seed dispersal in SGS. In total, we 

obtained data for SGS in adult plants of 65 zoochorously dispersed species from 54 studies. 

Table 1. Categorization of seed dispersers based on feeding and post -feeding behavior traits. Seed 
dispersers were assigned to a given category if they were described as having one or more behavior traits 
of the respective category. 

 Feeding / foraging Behavior Post-feeding behavior 

Category A Swallows seeds at source 
Spits/ Regurgitates seeds after 
transport 
Short feeding bouts 

Moves away from source after 
feeding 
High mobility 

Category B Spits/regurgitates seeds at source 
High loss of fruits while foraging 
Long feeding bouts 

Remains close to source after 
feeding 
Low mobility 

Category C Swallows seeds at source Low or high mobility 
Passive accumulation of seeds i.e. 
consistently used roosting, 
perching or lekking sites 

Category D Takes fruits/seeds and feeds away 
from source 

Active accumulation of seeds 
through caching or hoarding 
Low mobility 

E.g. rodents, ants 

Category E Takes fruits/seeds and feeds away 
from source 

Active accumulation of seeds 
through caching or hoarding 
High mobility 

E.g. scatter-hoarding birds 

 

Statistical analyses 

First, we examined the effect of seed dispersal mode (endozoochory or synzoochory) on 

the presence and strength of SGS in plant species. Epizoochorously dispersed species were 

underrepresented, therefore we excluded them from the analysis (Williams & Guries 1994; 
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Bonnin et al. 2001; Rico & Wagner 2016). Second, we tested whether the presence and strength 

of SGS in plant species was related to the taxon of the seed dispersers (ants, bats, birds, 

primates, rodents). We assigned plant species for which more than one animal taxon was 

described as seed disperser to the category “mixed”. Third, we tested for the effect of seed 

disperser behavior on SGS. For this, whenever this information was available in the respective 

publications or in literature referenced therein, we assigned dispersers to five categories 

according to behavior traits (Table 2). Fourth, we compared Sp values between groups of 

zoochorous plants that differed in pollination mechanism, climatic region, breeding system and 

genetic marker used. Finally, we correlated Sp values with observed seed dispersal distance and 

plant population density using the Spearman rank correlation.  

To determine whether dispersal mode, disperser taxa and behavior had a statistically 

significant influence on the occurrence of SGS in a plant population, we used the prop.test() 

function in R which tests for the null hypothesis that the proportion of studies with presence of 

SGS is equal across all categories. For testing the influence of different categories of dispersal 

vectors on SGS, we first identified outliers with the modified Thompson tau test (Thompson, 

1985) and based on the results, excluded two studies from the subsequent analysis [Moronobea 

coccinea (Hardy et al. 2006) and Ficus pumila (Wang et al. 2009)]. Moronobea coccinea was 

variably described as rodent or gravity-dispersed by Hardy et al. (2006) and Dick et al. (2008), 

respectively. Similarly, F. pumila was described as bat-, ant- and rodent-dispersed, but in an 

urban area without seed dispersers where most fruits fell to the ground without further 

removal. Therefore, in both cases, seeds might have been mainly gravity-dispersed which 

explains the high Sp values.  Second, we examined whether the assumptions for an ANOVA were 

met, namely, the normal distribution of residuals and homogeneity of variance, which we tested 

with Shapiro Wilk test a Barlett’s K-squared test. Both assumptions were met after log-

transformation of Sp values, which were then used for further analysis.  

We conducted Factorial ANOVAs to analyze the influence of seed dispersal (mode, taxa 

and behavior) on the strength of SGS using the aov() function in R (Rstudio team 2015). In each 

model, we included additional factors previously considered as relevant for SGS (i.e. pollination 

mechanism, climate region, plant life form, sexual and breeding system, and marker type) to 

account for potential interactions with seed dispersal. In cases where significant differences 
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between categories were detected, we performed a Tukey post-hoc comparison using the 

TukeyHSD() function.  

We then analyzed, separately, the main effects of these additional factors on SGS 

strength using again a Factorial ANOVA. In addition, to maintain comparability with previous 

reviews, we also tested each factor separately with either a one-way ANOVA or a t-test, 

depending on the number of levels.  

Finally, to analyze the correlation of Sp values with plant population density and 

observed seed dispersal distance, we conducted the Spearman rank correlation. For cases where 

populations of the same plant species were analyzed, we used the geom_smooth() function to 

visualize intra-specific differences of the effect of plant population density and marker type use 

on the strength of SGS. For statistical analysis and its graphical representation, we used the R 

packages “stats”, “doBy”, “userfriendlyscience”, “ggplot2” and “ggpubr” (Wickham 2009; R core 

team 2015, 2016; Højsgaard & Halekoh 2016; Kassambara 2017; Peters 2017) 
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Adansonia digitata 
(Bombacaceae) 

T Tr-d m A Endo Ba C AFLP Y 0.022 Kyndt et al. 
(2009) 

Araucaria angustifolia  
(Araucariaceae) 

T Tr-w d W Syn Bi E Mi Y 0.006 Stefenon et al. 
(2008), 
Sant’Anna et 
al. (2013) 

Attalea phalerata 
(Arecaceae) 

T Tr-w d A Endo P B Mi Y 0.024 Choo et al. 
(2012) 

Baillonella toxisperma 
(Sapotaceae) 

T Tr-w m A Endo P, Ro, E n/a Mi Y 0.010 Duminil et al. 
(2016a) 

Cabralea canjerana  
(Meliaceae) 

T Tr-w d A Endo Bi n/a Mi N n/a Tavares De 
Oliveira Melo 
et al. (2014) 

Carapa guianensis 
(Meliaceae) 

T Tr-w m A Syn Ro D Mi Y 0.005 Cloutier et al. 
(2007), Dick et 
al. (2008) 

Carapa procera 
(Meliaceae) 

T Tr-w m A Syn Ro D RAPD Y 0.028 Hardy et al. 
(2006) 

Castanopsis sclerophylla 
(Fagaceae) 

T Te m W Syn Ro D Mi Y 0.005 Wang et al. 
(2011) 

Ceratiola ericoides 
(Ericaceae) 

S Tr-d d W Endo Bi n/ak Al N n/a Trapnell et al. 
(2008) 

Chrysophyllum sanguinolentum 
(Sapotaceae) 

T Tr-w d A Endo P n/a AFLP, 
RAPD 

Y 0.015 Hardy et al. 
(2006) 

Cinnamomum insularimontanum 
(Lauraceae) 

T Te m A Endo Bi A Al N n/a Chung et al. 
(2003) 

Clusia lechleri 
(Clusiaceae) 

T Tr-w d A Endo Bi A Mi N n/a Quevedo et al. 
(2013) 

Clusia sphaerocarpa 
(Clusiaceae) 

T Tr-w d A Endo Bi A Mi N n/a Quevedo et al. 
(2013) 

Dicorynia guianensis 
(Leguminosea) 

T Tr-w m A Syn Ro D RAPD Y 0.019 Hardy et al. 
(2006) 

Dioscorea japonica 
(Dioscoreaceae) 

E Te d A Syn Ro D Mi Y 0.014 Mizuki et al. 
(2010) 

Disoxylum malabaricum 
(Meliaceae) 

T Tr-w m A Endo Bi B  N n/a Bodare et al. 
(2016) 

Erythrophleum suaveolens 
(Fabaceae) 

T Tr-w m A Endo P n/a Mi Y 0.006 Duminil et al. 
(2016b) 

Fagus crenata 
(Fagaceae) 

T Te m W Syn Ro D Mi Y 0.003 Oddou-
Muratorio et 
al. (2010) 

Fagus sylvatica 
(Fagaceae) 

T Te m W Syn Ro D AFLP Y 0.022 Jump et al. 
(2012) 

T Te m W Syn Bi E Mi Y 0.014 Oddou-
Muratorio et 
al. (2010) 

Ficus citrifolia 
(Moraceae) 

E Tr-w m A Endo Ba C Mi Y 0.013 Heer et al. 
(2015) 

E Tr-w m A Endo Ba n/a Mi Y 0.007 Nazareno et al. 
(2013) 

Ficus cyrtophylla 
(Moraceae) 

T Tr-w d A Endo Bi B Mi N 0.029 Zhou & Chen 
(2010) 

Ficus exasperata 
(Moraceae) 

T Te d A Endo Bi n/a Mi Y 0.035 Dev et al. 
(2011) 

Ficus eximia 
(Moraceae) 

T Tr-w m A Endo Ba n/a Mi Y 0.006 Nazareno et al. 
(2013) 

Ficus hispida 
(Moraceae) 

T Te d A Endo Ba n/a Mi Y 0.031 Dev et al. 
(2011)1 

Ficus insipida 
(Moraceae) 

T Tr-w m A Endo Ba C Mi Y 0.004 Heer et al. 
(2015) 
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Ficus obtusifolia 
(Moraceae) 

E Tr-w m A Endo Ba C Mi Y 0.031 Heer et al. 
(2015) 

Ficus pumila 
(Moraceae) 

E Te d A Endol Ba, Bi* n/a Mi Y 0.074 Wang et al. 
(2009) 

Ficus yoponensis 
(Moraceae) 

T Tr-w m A Endo Ba C Mi Y 0.008 Heer et al. 
(2015) 

Globba lancangensis 
(Zingiberaceae) 

H Te m A Syn A n/a ISSR Y n/a Zhou et al. 
(2007) 

Manilkara máxima 
(Sapotaceae) 

T Tr-w M A Endo Ba, Bi, 
P 

n/a Mi Y 0.015 Ganzhorn et al. 
(2015) 

Milicia excelsa 
(Moraceae) 

T Te d W Endo Ba A Mi Y 0.005 Bizoux et al. 
(2009) 

Moronobea coccinea 
(Clusiaceae) 

T Tr-w m A Syn Ro D RAPD Y 0.053 Hardy et al. 
(2006) 

Neolitsea sericea 
(Lauraceae) 

T Te d A Endo Bi A Al N n/a Chung et al. 
(2000b) 

Notholithocarpus densiflorus 
(Fagaceae) 

S Te m A Syn Bi E Mi Y 0.010 Dodd et al. 
(2013) 

Oenocarpus bataua 
(Arecaceae) 

T Tr-w m n/a Syn Bi n/a Mi Y n/a Karubian et al. 
(2010) 

Olea europaea 
(Oleaceae) 

T Te d W Endo Bi n/a Mi Y 0.005 Beghè et al. 
(2017) 

Parkia panurensis 
(Fabaceae) 

T Tr-w m A Endo P n/a Mi Y n/a Bialozyt et al. 
(2014b) 

Pinus pumila 
(Pinaceae) 

T Te m W Syn Bi n/a Al Y n/a Tani et al. 
(1998) 

Polygala reinii 
(Polygalaceae) 

S Te n/a A Syn A D Al Y 0.026 Nakagawa 
(2010) 

Pouteria reticulata 
(Sapotaceae) 

T Tr-w d A Endo Bi, P A Mi Y 0.006 Schroeder et 
al. (2014) 

Protium spruceanum 
(Burseraceae) 

T Tr-w d n/a Endo Bi n/a Al N 0.011 Vieira et al. 
(2012) 

Prunus africana 
(Rosaceae) 

T Tr-w m A Endo Bi, P B Mi Y 0.014 Berens et al. 
(2014)1 

Prunus avium 
(Rosaceae) 

T Te m A Endo Bi A Mi Y 0.009 Schueler et al. 
(2006) 

Psychotria acuminata (Rubiaceae) S Tr-w m A Endo Bi C AFLP Y 0.036 Theim et al. 
(2014) 

Psychotria hoffmannseggiana 
(Rubiaceae) 

S Tr-w m A Endo Bi C AFLP Y 0.023 Theim et al. 
(2014) 

Psychotria horizontalis (Rubiaceae) S Tr-w m A Endo Bi C AFLP Y 0.015 Theim et al. 
(2014) 

Psychotria marginata (Rubiaceae) S Tr-w m A Endo Bi C AFLP Y 0.046 Theim et al. 
(2014) 

Psychotria nervosa 
(Rubiaceae) 

S Tr-w m A Endo Bi n/a Al N 0.012 Dewey & 
Heywood 
(1988), 
Vekemans & 
Hardy (2004) 

Psychotria officinalis 
(Rubiaceae) 

S Tr-w m A Endo Bi A Al Y 0.010 Loiselle et al. 
(1995), 
Vekeman & 
Hardy (2004) 

Pulmonaria officinalis 
(Boraginaceae) 

H Te m A Syn A D Mi Y 0.004 Meeus et al. 
(2013) 

Quercus ellipsoidalis 
(Fagaceae) 

T Te m W Syn Bi E Mi Y 0.011 Lind-Riehl & 
Gailing (2015) 

Quercus ilex 
(Fagaceae) 

T Te m W Syn Bi E Mi N 0.004 Soto et al. 
(2007) 

Quercus lobata 
(Fagaceae) 

T Tr-d m W Syn Bi E Mi Y 0.005 Sork et al. 
(2015) 

Quercus mongolica 
(Fagaceae) 

T Te m W Syn Bi n/a Al Y n/a Chung & 
Chung (2004) 

Quercus petraea 
(Fagaceae) 

T Te m W Syn Ro D Mi Y 0.008 Streiff et al. 
(1998), 
Vekemans & 
Hardy (2004) 
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Table 2. Information on zoochorously dispersed plant species included in this review. 

an E: epiphyte or hemi-epiphyte: H: herb; S: shrub; T: tree.  
b Tr-d: tropical-dry; Tr-w: tropical-wet/moist; Te: temperate.  
c d: dioecious; m: monoecious.  
d a: animal (insect or vertebrate); w: wind.  
e Endo: Endozoochory, Syn: Synzoochory.  
f A: ants; Ba: bats; Bi: birds; P: primates; Ro: Rodents; Mix: including various taxa (AM: Nocturnal arboreal mammals, 

E: Elephants, SR: Small ruminants, T: Tapirs) 
g A: Long-distance movements after feeding; B: short-distance dispersal behavior; C: roosting behavior; D: hoarding; E: 

long-distance caching.  
h AFLP: Amplified fragment length polymorphism; Al: Allozymes; ISSR: inter-sequence short repeats; Mi: 

Microsatellites; RAPD: Random amplified polymorphic DNA.  
i Y: SGS present; N: SGS absent.  
j Mean Sp values for adults of all populations of that species or specific study. 
k Information not available. 
l absent seed dispersers Ficus pumila. 
1 Sp value calculated from published results. 

 

Quercus robur 
(Fagaceae) 

T Te m W Syn Bi E Mi Y 0.003 Streiff et al. 
(1998), 
Vekemans & 
Hardy (2004) 

Quercus rubra 
(Fagaceae) 

T Te m W Syn Bi E Mi Y 0.005 Lind-Riehl & 
Gailing (2015) 

Rhus javanica 
(Anacardiaceae) 

T Te d A Endo Bi n/a Mi Y 0.015 Chung et al. 
(2000a), 
Vekemans & 
Hardy (2004) 

Schinus molle 
(Anacardiaceae) 

T Tr-d d A Endo Bi B AF Y 0.021 Lemos et al. 
(2015) 

Sclerolaena diacantha 
(Chenopodiaceae) 

S Tr-d m W Syn A n/a Al Y n/a Peakall & 
Beattie (1995) 

Sextonia rubra 
(Laureaceae) 

T Tr-w m A Endo Bi A Mi, 
RAPD 

N 0.006 Hardy et al. 
(2006) 

Simarouba amara 
(Simaroubaceae) 

T Tr-w d A Endo Ba, Bi, 
P 

n/a AFLP, Mi Y 0.008 Hardesty et al. 
(2005), Dick et 
al. (2008) 

Sorbus torminalis 
(Rosaceae) 

T Te m A Endo Bi B Mi Y 0.014 Jankowska-
Wroblewska et 
al. (2016), 
Oddou-
Muratorio et 
al. 2004 

Symphonia globulifera 
(Clusiaceae)  

T Tr-w m A Endo Ba, P, 
R, AM, 
T 

A Mi Y 0.011 Torroba-
Balmori et al. 
(2017) 

T Tr-w m A Endo Bi, P, 
SR 

B Mi Y 0.025 Torroba-
Balmori et al. 
(2017) 

T Tr-w m A Endo Ba, 
AM, SR 

n/a Mi, 
RAPD 

Y 0.017 Hardy et al. 
(2006) 

Trillium grandiflorum 
(Melanthiaceae) 

H Te m A Syn A n/a Al Y 0.025 Kalisz et al. 
(2001), 
Vekemans & 
Hardy (2004) 

Trillium maculatum 
(Melanthiaceae) 

H Te n/a n/a Syn A D Al N n/a Walker et al. 
2009) 

Virola michelii 
(Myristicaceae) 

T Tr-w d A Endo Bi, P, 
AM 

n/a AFLP, 
RAPD 

Y 0.015 Hardy et al. 
(2006) 

Voucapoua americana 
(Fabaceae) 

T Tr-w m A Syn Ro D Mi, 
RAPD 

Y 0.028 Dutech et al. 
(2002)1, Hardy 
et al. (2006) 
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Results 

Effect of seed dispersal mode on SGS 

Seed dispersal mode (endozoochory or synzoochory) had a marginally significant 

influence on the occurrence of SGS: synzoochorous plants tended to have SGS more frequently 

compared to endozoochorous plant species (Table 3; ²(1) = 3.1, p = 0.058.). Strength of SGS 

differed significantly between endozoochorously and synzoochorously dispersed plant species 

(ANOVA, F(1,18) = 7.04, p = 0.016) with lower Sp values in synzoochorously dispersed species 

compared to endozoochorously dispersed species. However, the effect of seed dispersal mode 

on SGS strength was significantly dependent on marker type used (ANOVA, F(1,18) = 4.49, p = 

0.048). Therefore, with the available data we cannot disentangle the effects of seed dispersal 

mode and marker type used. 

Table 3. Presence of SGS in zoochorously dispersed plant species. We report the number and percentage 
of plant species with SGS for which we obtained information on seed dispersal mode, seed disperser 
group and/or seed disperser behavior. 

 
Category # of plant species 

studied 
# (%) of plant species 
with SGS 

Seed dispersal mode Endozoochory 42 31 (74) 
 Synzoochory 26 24 (92) 

Seed disperser taxonomy Ants 6 5 (83) 
 Bats 7 7 (100) 
 Birds 32 20 (63) 
 Primates 4 4 (100) 
 Rodents 10 10 (100) 

Seed disperser behavior Category A 10 5 (50) 

 Category B 7 5 (71) 
 Category C 9 9 (100) 
 Category D 13 12 (92) 
 Category E 8 7 (88) 

 

Effect of seed disperser taxonomic group on SGS 

The proportion of plant species with SGS varied significantly between dispersers from 

different taxonomic groups (²(5) = 14.894, p = 0.011; Table 3). This difference could be 

attributed to the much lower proportion of plant species dispersed by birds that showed SGS 

(Tab. 2). However, the strength of SGS did not differ between taxonomic groups (ANOVA, F(4,16) 
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= 0.17, p = 0.94.; Figure 8A, Table 4). No interaction effects were found with the additional 

factors. Our results suggest seed dispersal by birds reduces the likelihood of the formation of 

SGS, but when present, strength is comparable to that produced by other seed disperser groups. 

High variance in Sp values within categories indicates other factors that we could not account 

for affected the strength of SGS within the taxonomic groups. 

Table 4. Comparison of the strength of SGS, via Sp statistics, among the seed disperser categories for seed 
dispersal mode, seed disperser taxonomy and seed disperser behavior. Mean Sp, median, standard 
deviation (SD) and the number of studies (N) are given for each category. Significance was tested with a 
Factorial ANOVA. 

  
Sp mean Sp median SD N 

Seed dispersal  Endozoochory 0.0164 0.0145 0.0108 29 
mode Synzoochory 0.0144 0.0102 0.0129 19 

 ANOVA,  F(1,18)=7.04, p=0.02 

Seed disperser  Ants 0.0182 0.0250 0.0122 3 
taxonomy Bats 0.0149 0.0098 0.0108 9 

 
Birds 0.0156 0.0120 0.0122 18 

 
Primates 0.0151 0.0151 0.0073 4 

 
Rodents 0.0185 0.0163 0.0152 10 

 ANOVA, F(4,16)=0.17, p=0.94 

Seed disperser  Category A 0.0084 0.0094 0.0026 5 
behavior Category B 0.0195 0.0212 0.0053 5 

 
Category C 0.0221 0.0221 0.0136 9 

 
Category D 0.0178 0.0163 0.0146 12 

 
Category E 0.0075 0.0058 0.0039 7 

 ANOVA, F(4,12)=4.35, p=0.02. 

 

 

Figure 8. Comparison of Sp values of plant species with A) different dispersal modes: dispersal through 
defecation or regurgitation (endozoochory) vs. dispersal through actively carried seeds (synzoochory), B) 
different taxonomic groups of dispersal vectors, and (C) different functional groups of dispersal vectors. 
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In (C), bars with different superscripts differ at p<0.05 (Tukey post-hoc test). Horizontal lines are median 
values, boxes indicate 25% and 75% quartiles. 

Effect of seed disperser behavior on SGS 

The occurrence of SGS differed significantly among behavioral groups of seed dispersers 

(2(4) = 11.9, p = 0.018; Table 3). Plant species dispersed by vectors of category A were less 

likely to have SGS compared to other groups. These dispersers were characterized by having 

short feeding bouts or travel faster and longer away from the source plant. Sp values were also 

significantly different between categories (ANOVA: F(4,12) = 4.35, p = 0.02.; Figure 8C, Table 4), 

without significant interaction effects of the additional factors. SGS was the weakest for plant 

species dispersed by highly mobile animals which move away from source plants immediately 

after feeding (category A), and which accumulate seeds in widely distributed caches (category 

E, see below). In contrast, Sp values were the highest for plants dispersed by animals with short-

range movement and behaviors that maintain individuals around fruit sources after feeding or 

that increase the rate of fruit or seed droppings around sources (category B), and for plants with 

dispersers that accumulate seeds in roosts (category C).  

 The Tukey post-hoc test indicated only categories C and E differed significantly in the 

strength of SGS (p = 0.044), and the difference between B and E was marginally significant (p = 

0.071). Thus, if seeds were accumulated either actively in roosts, or passively in close vicinity to 

the maternal plant, SGS was higher than in plants whose seeds were actively distributed to 

caches by scatter-hoarding birds.  

One noticeable result was the high variance in Sp values within plants from category C 

and plants dispersed by terrestrial animals that accumulate seeds in e.g. caches or anthills 

(category D) (Figure 8C, Table 4). In both cases, seeds are accumulated, either in in roosts by 

flying animals or in caches by scatter hoarding mammals or in ant mounds. In contrast, SGS was 

generally low in species dispersed by scatter- hoarding birds (E). In all three cases, the strength 

of SGS will strongly depend on i) the number of seeds taken from each source plant, ii) the 

number of seeds accumulated in a single cache or roosting site, iii) the number of source plants 

for a single caching site, and iv) the distance between source plant(s) and the caching or roosting 

sites. Although the respective studies did not report whether dispersers tended to accumulate 

seeds from a few or many source plants, research shows scatter hoarding birds fly for long 
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distances after fruit and seed collection, transporting a small number of seeds in their beaks 

(Lovette & Fitzpatrick 2016), which results in a wide distribution of dispersed seeds and could 

potentially reduce SGS. For example, blue jays carry a mean of 2.2 acorns from the same tree at 

a time, and travel on average 1.1 km before depositing seeds in widely distributed caches 

(Darley-Hill & Johnson 1981). In contrast, category D comprised ground-dwelling rodents and 

ants which frequently stay near source plants after collecting seeds. For example, rodents 

transport fallen seeds of Holm oaks (Quercus ilex) over short distances (median = 1.5 m) before 

depositing them in caches (Gómez et al. 2008), thus increasing the potential for formation of 

SGS.  Category C included studies of Paleotropical and Neotropical bats that often deposit seeds 

beyond feeding roosts and birds with roosting behavior. We expect seed dispersal by birds with 

lekking behavior or primates with recurrent sleeping or resting sites to result in similar dispersal 

patterns, but we did not find studies on strength of SGS for these. The high variance in category 

C might be further explained by factors previously shown to influence seed deposition by bats: 

spatial distribution of resources, body size, social structure and feeding competition (Heithaus 

et al. 1975). In all cases where seeds are accumulated under roosts, leks or in caches; the number 

of source plants, and potentially also the distance to source plants, can be determined with 

genetic markers providing information on how hoarding and roosting behavior shape SGS 

(Godoy & Jordano 2001; García et al. 2009; Hamrick & Trapnell 2011).  

The spatial distribution of resources, body size, social structure and feeding competition 

likely influence dispersal patterns in all behavioral categories. Therefore, the differences we 

detected between behavior categories, despite these additional influencing factors, make the 

detected differences even more notable. Our results confirm SGS strength is strongly dependent 

on how animals feed, whether they deposit seeds around fruit source and whether they stay 

close to the fruit sources after feeding or gathering seeds, which directly influences seed 

deposition patterns and seed dispersal distance. In fact, based on the few studies that provided 

estimates or observations of seed dispersal distances (N = 13), we found a trend towards lower 

Sp values with longer seed dispersal distances (Spearman's rank correlation, rs = -0.320, p = 

0.113, Figure 9). 
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Figure 9. Relationship between Sp values and observed seed dispersal distance (SDD, given in meters; 
Spearman rank correlation. (rs = -0.32, p = 0.11) 

Several studies did not supply Sp statistics but nevertheless provide strong indications 

for effects of animal behavior on SGS. (i) Trapnell et al. (2008) studied two populations of the 

shrub Ceratiola ericoides, whose seeds are dispersed by frugivorous birds in sand dunes. The 

population where the surrounding tree community offered safe perching sites for birds had 

higher mean kinship coefficients between neighboring shrub individuals than the population 

where forest cover was reduced. In the latter, birds flew away more rapidly after collecting fruits 

as a strategy to reduce predation risk. (ii) The trees Neolitsea sericea and Cinnamomum 

insularimontanum are mainly dispersed by frugivorous birds that tend to leave the fruiting tree 

immediately after the collection of single fruits (Chung et al. 2003, Chung et al., 2000). No SGS 

was detected in populations of these trees. (iii) Seeds of Ficus hispida are mainly dispersed by 

large green pigeons (Treron capellei), solitary fig specialist that frequently drops fruits while 

feeding (Lambert 1989; Birdlife International 2001). In an autocorrelation analysis, adult F. 

hispida showed high kinship coefficient values within the first distance class (Dev et al. 2011). 

(iv) Seeds of the palm Oenocarpus bataua are dispersed by the umbrella bird (Cephalopterus 

penduliger). Male umbrella birds had individual-specific leks to which they returned constantly 

after feeding. They spent 80% of their time at their leks and deposited there 50% of the ingested 

seeds. This created a diverse pool of seeds within the leks, with five times more seed sources 
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than outside the leks. SGS within leks was weaker than in the surrounding areas (Karubian et al. 

2012). (v) The same plant species, Oenocarpus bataua, is also dispersed by white-bellied spider 

monkeys (Ateles belzebuth). These monkeys used sleeping sites repeatedly which resulted in an 

accumulation of seeds but only from the few palms on which they fed before retiring to sleep. 

Consequently, seed source diversity beneath sleeping sites was high and SGS significant. 

(Karubian et al. 2015).   

Secondary seed dispersal, i.e. subsequent movement of the seeds after its primary 

deposition, can also influence SGS strength by increasing seed dispersal distances and further 

modifying the spatial patterns of seed dispersal (Mizuki & Takahashi 2009; Hirsch et al. 2012; 

Gallegos et al. 2014; Hämäläinen et al. 2017). A study on agoutis showed a large number of 

seeds were stolen from caches and transported further, which resulted in final dispersal 

distances of >100 m (Jansen et al. 2012). This suggests secondary seed dispersal might be more 

efficient than previously considered, and thus might have a non-trivial influence on SGS.  

Additional factors influencing SGS of zoochorously dispersed species 

In our data set of zoochorously dispersed plant species, among the additional factors, 

we found only pollination mechanisms (ANOVA: F(1,20) = 5.92, p = 0.02) and marker type used 

(ANOVA: F(3,20) = 4.23, p = 0.02) had a significant influence the strength of SGS  (Table 5). Plant 

species pollinated by animals had higher Sp values than wind-pollinated species (Figure 10). A 

similar trend of pollination on SGS has been seen before for temperate species (Dick et al., 2008), 

but not for species from diverse climatic regions (Vekemans & Hardy, 2004) (Table 6). We found 

no effect of sexual system, nor breeding system, in contrast to previous reviews (Vekemans et 

al., 2004, Nazareno et al.,2013), however our results showed high variance within categories 

and a low number of self-compatible species. Like previous findings, we did not detect a 

difference in the strength of SGS between plants growing in different climatic regions (Dick et 

al., 2008). Neither did we detect differences among plant life forms, but our data set consisted 

mainly of tree species so the results cannot be compared to other studies. Jump et al. (2012) 

suspected that the use of different markers might impact the strength of SGS. In our data set, 

studies using microsatellites resulted in significantly lower Sp values compared to studies using 

AFLPs (Figure 11A). However, when we restricted the comparison to plant species investigated 

in parallel with two different marker types, we could not confirm the finding by Jump et al. 
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(2012) (Figure 11B). The potential interaction effect of pollination and marker type use was 

accounted for on all our analysis by testing for interactions using the Factorial ANOVA.  

 

  
Sp mean Sp median SD N 

Pollination Animal 0.0183 0.0150 0.0117 37 
mechanism Wind 0.0066 0.0051 0.0041 11 

 ANOVA,  F(1,20)=0.39, p=0.02 
Plant life form Epiphyte 0.0183 0.0140 0.0113 3  

Herbs 0.0146 0.0146 0.0147 2  
Shrub 0.0237 0.0230 0.0135 7  
Tree 0.0138 0.0100 0.0108 36 

 ANOVA, F(3,20)=2.31, p=0.11 
Sexual system/  Monoecious (Mixed) 0.0179 0.0187 0.0099 5 
Breeding system Monoecious (Outcrossing) 0.0120 0.0100 0.0078 11 
 Monoecious (Self-incompatible) 0.0140 0.0103 0.0119 31  

Dioecious 0.0162 0.0145 0.0099 12 
 ANOVA, F(3,20)=2.06, p=0.14. 

Climate region Temperate 0.0129 0.0102 0.0096 21  
Tropical 0.0177 0.0150 0.0127 27 

 ANOVA, F(1,20)=2.91, p=0.10. 
Markers AFLP 0.0231 0.0212 0.0110 9 

 Allozyme 0.0203 0.0250 0.0086 3 
 Microsatellite 0.0123 0.0094 0.0094 35  

RAPD 0.0184 0.0150 0.0076 6 
 ANOVA, F(3,20)=0.85, p=0.02. 
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Table 5. Effects of additional factors (i.e. factors other than seed dispersal) on the strength of SGS.   

 
Pollination Vekemans et al. 2004  This study 
 Animals 0.017 ± 0.014 n=17 0.018 ± 0.012 n=37 
 Wind 0.006 ± 0.004 n=6 0.007 ± 0.004 n=11 
 t-test n.s.  t(21.51)=4.99, p<0.001 
 
  Dick et al. 2008 
 Animals 0.029 (SD n/a) n=8 
 Wind 0.010 (SD n/a) n=15 
 t-test p<0.02  

 
Life form  Vekemans et al. 2004  This study 
 Epiphytes n/a  0.018 ± 0.011 n=3 
 Herbs 0.046 ± 0.064 n=24 0.015 ± 0.015 n=2 
 Shrubs 0.026 ± 0.156 n=6 0.024 ± 0.013 n=7 
 Trees 0.010 ± 0.01 n=17 0.014 ± 0.011 n=36 
 ANOVA p<0.01  F(3,44)=1.80, p=0.16 

 
Sexual system Nazareno et al. 2012  This study 
 Monoecious 0.010 ± 0.008 n=14 0.015 ± 0.012 n=35 
 Dioecious 0.025 ± 0.017 n=15 0.016 ± 0.010 n=12 
 t-test p<0.001  t(22.35)=0.75, p=0.46 

 
Breeding system Vekemans et al. 2004  This study 
 Selfing 0.143 ± 0.008 n=5 n/a 
 Mixed 0.037 ± 0.008 n=7 0.018 ± 0.010 n=5 
 Outcrossing 0.013 ± 0.017 n=18 0.013 ± 0.009 n=11 
 Self-incompatible 0.013 ± 0.017 n=17 0.015 ± 0.011 n=31 
 t-test p<0.001  F(2,44) =0.40, p=0.67 

Climate region Dick et al. 2008  This study 
 Temperate 0.0166 (SD n/a) n=24 0.013 ± 0.010 n=21 
 Tropical 0.0173 (SD n/a) n=15 0.018 ± 0.013 n=27 
 t-test n.s.  t(41.39)= -1.62, p=0.11 

 
Marker system   This study 
 AFLP   0.023 ± 0.011 n=9 
 Allozymes   0.020 ± 0.009 n=3 
 Microsatellites   0.012 ± 0.010 n=35 
 RAPD   0.018 ± 0.008 n=6 
 ANOVA   F(3,49)=4.94, p=0.005 
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Table 6. Comparison of Sp values for factors other than seed dispersal between previous studies and this 
study 

 

Figure 10. Effects of additional factors on SGS of zoochorously dispersed plant s: Pollination mechanism 
(A), Life form (B), Climate region (C), Sexual system/Breeding system (D). For the monoecious species in 
D, abbreviations indicate mixed-system (outcrossing and selfing) [M], outcrossing [O] and self-
incompatible [SI] species). Letters above box plots indicate significant difference among categories which 
was only the case for the pollination mechanisms. 

 

Figure 11. Comparison of the strength of SGS among plant species that were studied with different types 
of markers (A), and comparison of Sp values for the subset of plant species for which SGS was determined 
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with different marker types (B). Letters above box plots indicate significant difference among categories 
which was only the case for the pollination mechanisms. 

Contrary to what we expected, plant population density showed no correlation with 

strength of SGS (Spearman's rank correlation, rs= -0.01, p = 0.48, Figure 12A). Furthermore, when 

we compared populations from the same plant species with different adult plant densities 

through a generalized linear regression, there was no clear pattern (Figure 12B). Nine out of 

fifteen plant species showed a decrease in Sp value with an increase in plant population density, 

while seven out of fifteen showed an increase in Sp values. 

 

Figure 12. Effect of plant density on SGS of zoochorously dispersed plants. Sp values for are plotted 
against adult density of each population for every species (rs = -0.01, p = 0.48) (A), Changes in Sp values 
across populations of the same Species with different densities (B). 

The list of additional factors that might potentially influence SGS in the surveyed studies, 

but were present in too few studies to include in the analysis, included fruit availability and plant 

distribution (Trapnell et al. 2008, Bizoux et al, 2009), management situation of plant populations 

(Lind-Riehl & Gailing 2015), habitat fragmentation (WANG et al. 2011; Vieira et al. 2012), 

urbanization level of study site (Wang et al. 2009), specific microhabitat requirements limiting 

germination success (Chung et al. 2003; Heer et al. 2015) and plant life history, such as masting 

events or high fruiting yields (Vieira et al. 2012; Lind-Riehl & Gailing 2015), clonality (Dodd et al. 

2013) or plant life form (Heer et al. 2015). Many of these factors influence directly or indirectly 

foraging behavior of the seed dispersal vectors. The available evidence on our study shows 
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zoochorous seed dispersal has an important impact on spatial distribution of genotypes at local 

scales.  

Future directions 

In many studies that analyze spatial genetic structure of zoochorous plants, behavior of 

seed dispersal vectors was neglected. Our study provides evidence that vector behavior impacts 

SGS via shaping seed dispersal patterns (Stiles 2000). These patterns can be highly consistent 

over time (Heymann et al. 2017), increasing the probability of an effect of seed dispersal on SGS. 

Anthropogenic disturbances that might modify vector behavior are thus likely to influence seed 

dispersal patterns and in turn SGS (McConkey & O’Farrill 2015; Jones et al. 2017). Our results 

emphasize the need for future studies on population genetics of animal-dispersed plants to 

include ecological and behavioral observations of dispersal vectors as a key for understanding 

gene flow and spatial distribution of genetic diversity in animal-dispersed plant species.   

Focal observations of fruiting trees (Jordano & Godoy 2002; Donatti et al. 2011) can 

provide data on number and identity of dispersers present in the area, and their behavior during 

and immediately after feeding. Furthermore, focal-animal sampling (Morales et al. 2013) or 

radio-tracking dispersers or seeds (Holbrook & Smith 2000; Levey & Sargent 2000; Pons & Pausas 

2007) can determine whether seed dispersers deposit seeds in clusters or clumps. If so, 

molecular markers can be used to determine the number of maternal source plants, and 

potentially, also their location (Heymann et al. 2012; Agrawal et al. 2013).  

Our analyses were based on studies that examine SGS in adult plants, however, the scale 

and strength of SGS may change over life stages (e.g. Bialozyt et al. 2014). Future studies relating 

seed dispersal to SGS in zoochorously dispersed plants should consistently include earlier life 

stages (seedlings, saplings). Although seedlings are not fully representative of seed dispersal 

shadows, as surviving seedlings passed the bottlenecks of seed and seedling mortality due to 

predators and pathogens, they are still more likely to reflect the initial spatial template created 

by seed dispersal. Furthermore, our analysis showed that besides seed dispersal behavior, 

pollination mechanism and marker type used can have a significant effect on SGS. Therefore, 

future studies on the effect of animal seed dispersal on SGS should consider the impact of 

pollination on SGS and take caution when comparing studies that used different marker types. 
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Overall, our results show SGS is strongly dependent on plant-animal interaction. Consequently, 

a more integrative approach between plant and animal ecology is needed to fully comprehend 

its formation and strength in zoochorous plants. 

Although not widely acknowledged, the analyses of SGS can also have practical 

implications for conservation (Escudero et al. 2003). The spatial extent of SGS can be used to 

identify the scale over which seeds should be collected and planted to optimize genetic diversity 

of recruits in managed forest regeneration (Jin et al. 2003; Cruse-Sanders & Hamrick 2004; Yao 

et al. 2011; Melo Júnior et al. 2015; Ramos et al. 2016a). Understanding the impact of 

zoochorous seed dispersal on SGS may help to integrate frugivore behavior in forest 

conservation and management strategies.  
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CHAPTER II  

 

 

SEED DISPERSAL DISTANCE: COMPARING ESTIMATES USING ANIMAL 

MOVEMENT DATA, PLANT GENETIC MATERIAL AND MODELING.  

CASE STUDY OF TAMARINS AND LEONIA CYMOSA (VIOLACEAE)  
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Abstract 

Seed dispersal distances (SDD) critically influence the survival of seedlings, spatial 

patterns of genetic diversity within plant populations and gene flow among plant populations. In 

zoochorously dispersed plant species, distances are determined by an interaction between seed 

size, shape and number, fruit attractiveness, retention times, movement ability and animal 

behavior. Observations of feeding and deposition moments are a direct method to estimate seed 

dispersal event. However these are commonly constrained by the high mobility and low visibility 

of the vectors or low fruit availability, as in our case. Diverse alternative methods are used to 

estimate SDD, but a comparison of these approaches within the same seed dispersal system is 

mostly missing. In this chapter, I compare SDD estimates obtained from direct observations, 

genetic identification of mother plants from seed coats, parentage analysis of seedlings, and 

modelling approaches, including the combination of movement data and gut passage times and 

an individual-based model. Furthermore, I examine in detail how gut passage time and 

seasonality affects the model combining movement data and gut passage time in our tamarin 

species. The highest mean seed dispersal distance obtained was 318±137 m through the 

combination of movement data and gut passage estimates. The lowest mean distance was 178m 

± 201m through parentage analysis of seedlings. Parentage analysis can include undispersed 

seedlings discarded or fallen beneath fruiting trees and will include germination success. 

Therefore this method can underestimate seed dispersal distance if germination under density-

dependent processes is high. Given that each method includes different processes within the 

seed dispersal loop, a combination of methods may be used to understand the whole ecosystem 

service in detail.  
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Introduction 

Seed dispersal distances determine the degree of seed shadow overlap between fruiting 

trees. Seed shadows are the areas where seeds belonging to the same fruiting tree are deposited 

(Jordano 2007). High seed shadow overlap increases future mating probability between 

unrelated offspring, reducing spatial genetic structure and maintaining high genetic diversity. 

Seed dispersal distance can also influence seed survival by reducing predation risk and increasing 

germination success (Janzen 1970; Connell 1971; Valenta & Fedigan 2010). Short seed dispersal 

distances are related to stronger spatial genetic structures (WANG et al. 2011; Theim et al. 2014; 

Beghè et al. 2016). Long distance seed dispersal can promote inter-population seed exchange 

(Cain et al. 2000; He et al. 2010) and colonization of more suitable areas in case of anthropogenic 

disturbances such as climate change (Ruxton & Schaefer 2012) 

How far seeds are deposited from sources varies according to dispersal mechanism and 

dispersal vectors. In abiotically dispersed species, distances are determined by seed 

aerodynamics and wind strength and direction (Thomson et al. 2011). In zoochorously dispersed 

species, distances are determined by an interaction between seed size, shape and number, fruit 

attractiveness, retention times (e.g., gut passage), movement ability and animal behavior 

(Ruxton & Schaefer 2012). In detail, seed dispersal distance by zoochorous vectors can be 

determined by extrinsic factors to the vectors, such as resource availability, fruit nutrient 

content, seed size,  and landscape configuration, and by intrinsic factors, such as home range 

extent, migration patterns, social, mating and foraging behaviors, body size and group size 

(Miyaki & Kikuzawa 1988; Ness et al. 2004; Abe et al. 2006; Moore et al. 2007; Carlo & Morales 

2008; Karubian & Durães 2009; Uriarte et al. 2011; Karubian et al. 2012; Wang et al. 2014; Viana 

et al. 2015; Takahashi & Itino 2015; Pesendorfer et al. 2016). For example, in bat-dispersed 

plants, seed dispersal distance is influenced by gut passage, seed size, urbanization, and 

seasonality in bats (Shilton et al. 1999; Abedi-Lartey et al. 2016). In primate-dispersed plants, 

dispersal distances can be determined by body size, fruit handling behavior, oral and digestive 

anatomy, social organization, species-specific diets,(Lledo-Ferrer et al. 2011) sex and age of 

disperser, and the interaction between movement patterns and gut passage times (Garber & 

Lambert 1998; Chapman & Russo 2002; Wehncke et al. 2003; Razafindratsima et al. 2014). 
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Seed dispersal distances can be calculated through several methods, for example, the 

tracking of vectors (Knogge 1999; Stevenson 2000; Valenta & Fedigan 2010) or marked seeds 

(Chauvet et al. 2004; Pons & Pausas 2007; Hirsch et al. 2012; Jansen et al. 2012; Sork 2016). 

Polymorphic genomic markers can be used to identify seed source by genotyping maternal tissue 

surrounding seeds (seed coat) or through parentage analysis of seedlings (Dow & Ashley 1996; 

Grivet et al. 2005; Bittencourt & Sebbenn 2007; Smouse et al. 2012; Heymann et al. 2012). 

Knowledge on the seed dispersers can be used to do individual-based spatially-explicit modelling 

(Nathan et al. 2001; Schurr et al. 2005; Williams et al. 2006; Levey et al. 2008; Uriarte et al. 2011; 

Bialozyt et al. 2014a). 

Some methods can have species-specific limitations. For example, identifying seed source 

during field observations can give limited results if seed dispersers feed on more plant individuals 

from the same species before defecating (e.g., traplining), not necessarily the first seed is the first 

the animal swallowed. If plant species is monoecious, i.e., female and male flowers are on the 

same plant, parentage analysis gives parents with unknown sex. Hence it does not directly give 

seed dispersal distance. The latter is usually overcome by considering the closest parent as the 

seed source (Burczyk et al. 2006; Hadfield et al. 2006; González-Martínez et al. 2006), but this 

has been previously considered as misleading (Smouse et al. 2012). 

The aim of this chapter is to compare methods for estimating seed dispersal distances, in 

a seed dispersal system comprised of one plant species, Leonia cymosa, and two vector species, 

tamarins Leontocebus nigrifrons and Saguinus mystax. I compare SDD estimates based on five 

methods: (1) observed seed dispersal events (OSD), (2) seed dispersal estimates from maternal 

identification through genotyping of seed coats (GSC), (3) parentage analysis of seedlings (PAS), 

(4) modelling of SDD through a combination of movement data with gut passage times 

(CMG),and (5) simulation of seed dispersal by individual-based modelling (IBM). 

Methods 

Study system 

The Estación Biológica Quebrada Blanco (4° 21’ S, 73° 09’ W, Loreto, Peru) within the 

Neotropical rainforest contains Tierra firme habitat, where Leonia cymosa grows. Previous 

research through focal tree observation using camera traps (Reinehr, 2010) showed a seed 
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dispersal system for L. cymosa with reduced complexity. Leonia cymosa is an Amazonian 

understory tree which at our study site is dispersed only by mixed-species groups of tamarins, 

Leontocebus nigrifrons, and Saguinus mystax. These two species live in mixed-species troops, in 

which they move through the joint home range in a highly coordinated way (Heymann & 

Buchanan-Smith 2000). These primates are mainly frugivorous, but also eat gum and insects 

(Peres 1993), and their movements patterns are determined by fruit availability (Culot 2009). 

Leonia cymosa produces pulpy fruits, consisting of 2-7 seeds, that will ripe asynchronously over 

a period of three or more months during the rainy season. This seed dispersal system is a good 

example where an estimate of seed dispersal distance through field observations of seed 

dispersal events is limited. Leonia cymosa has a cluster distribution. Therefore tamarins will 

usually feed on several trees of L cymosa in a row before defecating, making maternal 

identification through observation difficult. Furthermore, L. cymosa has a monoecious sexual 

system, where female and male flowers are on the same plant, making seed source and pollen 

source of seedlings unknown. Consequently, parentage analysis gives parent pairs with 

undetermined sex, making seed dispersal distance estimates difficult. However, because pericarp 

(i.e., maternal tissue) remains attached to seeds after gut passage, maternal identification 

directly from seeds is possible.   

Observed seed dispersal events (OSD) 

Direct observations of seed dispersal events of Leonia cymosa where taken from historical 

data collected by Culot (2009) and Knogge (1998). These observations were made during daily 

animal behavior sampling of tamarins concerning feeding behavior, movement pattern and seed 

dispersal efficiency. Focal observations started when tamarins left the sleeping site in the 

morning and ended when they went to sleep in the afternoon. Time and place of feeding 

observations were recorded using GPS Garmin GPSMapH 76CSx, except for data collected by 

Knogge in 1993, where GPS was not available yet, and positions were determined through 

reference to the trail system and mapped trees.  

Maternal identification through genotyping of seed coats (GSC) 

During regular behavior observation of tamarins by the field assistants in 2016, Leonia cymosa 

was finally observed to fruit. Therefore, whenever feeding events on L. cymosa happened, 
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subsequent scats were collected, and seeds of L. cymosa found were stored on a saline solution. 

Seeds were rehydrated at room temperature to separate outer layer of seeds. Seed coats were 

then dried on filter paper, grinded and total genomic DNA was extracted following ATMAB 

protocol (Dumolin et al. 1995). I genotyped seed coat DNA using eleven nuclear microsatellites 

(Error! Reference source not found.) following the protocol described in Chapter V. Seed coat 

DNA, is maternal DNA. Therefore seed coat genotypes were matched to our adult genotype 

database (obtained from the genetic analysis described in the next paragraph) using GenAlex 

(Peakall & Smouse 2006). To estimate seed dispersal distance, I calculated distances between 

seed deposition location and recognized source tree using qGIS. 

Parentage analysis of seedlings (PAS) 

Exhaustive sampling of seedlings (<100cm), juveniles (100-250cm) and adults (>250cm) 

within 50m x 50m plots on a checkerboard arrangement was done within home ranges of two 

mixed-species groups of tamarins. We used crossings of walking pathways available on the study 

site as a reference for the checkerboard arrangement of quadrats. Additionally, to increase the 

probability of finding parents, we sampled adults exhaustively using the following sampling 

schemes based to the locations adult plant density: Within home range area of tamarin Group 1, 

adult plant density was high. Therefore we connected the previously described quadrats by 

sampling 15m-wide transects. Within home range area of tamarin Group 2, adult plant density 

was lower. Hence we increased the number 50m x 50m quadrats on the alternate crossing of 

pathways. In-between home range areas, adult plant density was very low. Therefore we 

randomly chose pathways crossing to sample 50m x 50m quadrats. In 2016, for an additional 

project on gene flow, not included in this thesis, we increased the area of exhaustive sampling: 

we sampled intensively a 200 m x 200 m quadrat for adults with embedded in this, a 100m x 

100m quadrat for juveniles for seedlings. To increase the probability of finding parent pairs, 

individuals sampled for this alternate project were also used in the parentage analysis.  Figure 13 

shows the several sampling schemes.  In total, we sampled 475 seedlings and juveniles (candidate 

offspring) and 175 adults (candidate parents). Each individual’s location was geographically 

recorded using GPS Garmin GPSMapH 76CSx, and leaves were sampled and stored in silica gel 

beads or WhatmanTM FTATM PlantSaver cards.  
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Figure 13 Sampled areas shown on the map created using qGIS. Maps shows 50mx50m quadrats sampled 
exhaustively for candidate offspring and parents (dark grey), 50mx50m quadrats sampled exhaustively for 
candidate parents (light grey), 15m wide transects sampled exhaustively for candidate parents (grey 
transects), 100mx100m quadrat sampled exhaustively for candidate offspring (dark red) and 200mx200m 
quadrat sampled exhaustively for candidate parents (light red). Tamarin home range delimitation is given 
for Group 1 (left) and Group 2 (right). 

Total genomic DNA was extracted from leaf samples following ATMAB protocol (Dumolin 

et al. 1995). We genotyped ten nuclear microsatellites (Error! Reference source not found.) 

following the protocol described in Chapter V. To identify parent pairs for each candidate 

offspring, we input candidate offspring and candidate parent genotypes in Cervus v3.0. First, we 

calculated allele frequencies using the default parameters. Second, we ran the simulation for 

parent pairs with unknown sexes with parameters set at 0.15 proportion sampled, 0.05 

proportion loci mistyped and to consider only samples with 6 minimum typed loci. We calculated 

confidence level using LOD scores, and these were set to relaxed at 80% and strict at 95%. Third, 

we used the allele frequencies and the simulation output files to run the parentage analysis for 

parents with unknown sex. We only considered results of parent pairs with TRIO LOD significance 

higher than 95%.   

Euclidean distances between parents and offspring ( 𝐷𝑃,𝑂 ) were calculated using 

coordinates in UTM of parents ( 𝑋𝑃, 𝑌𝑃)  and of offspring 𝑋𝑂, 𝑌𝑂) : 𝐷𝑃,𝑂 =

√(𝑋𝑃 − 𝑋𝑂)2 + (𝑌𝑃 − 𝑌𝑂)2. To avoid bias of considering closest parent as mother when sexes 
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are an unknown (see above), like in monoecious species such L. cymosa, we assumed any parent 

could be either a mother or a father. Following this assumption, we used all possible mother-

seedling combinations to calculate the mean seed dispersal distance. In parallel, we calculated 

the same seed dispersal kernel density curve through bootstrapping 10 000 random re-samples 

of mother-seedling distances from the parent pairs and got equivalent mean seed dispersal 

distance. Both methods proved good options for calculating mean seed dispersal distance from 

parent pairs with unknown sexes. Bootstrapping could prove more appropriate for larger 

datasets. Our dataset was not large; therefore, we show results for the first method only. A 

comparison of both results is shown on the supplementary material. To estimate the kernel 

density curve, I used all possible parent-seedling combinations to calculate kernel density curves. 

As observations of seed dispersal events showed that seed dispersal distances by tamarins do 

not exceed 709 m (N=1884; Knogge, 1998) which corresponds to the diameter of a tamarin home 

range, we excluded seedling-parent pairs at distances > 709 m from this analysis assuming that 

this is rather a pollen than a seed source. 

Combination of movement data with gut passage times (CMG) 

For determination of tamarin movement patterns, sampling was planned in order to 

collect feeding locations and following tamarin movement during L. cymosa’s fruiting period. 

However it did not fruit during the duration of this project 2014-2015. Research shows seed 

dispersal patterns, of the tamarin groups at our study site, stay constant throughout the years 

(Heymann et al. 2017). Therefore I used the movement data set collected by Darja Slana the year 

before our plant sampling. For this data set, tamarin’s geographic location was recorded every 

30 minutes from the time they wake up until the time they went to sleep. Movement data were 

recorded for a total of 62 days, a mean 7.7±2.8 days per month from December 2012 to July 

2013. Geographic location was recorded with GPS Garmin GPSMapH 76CSx. GPS positions were 

input into qGIS (Quantum GIS Development Team, 2016) to visualize their movement.  

I developed a function in R (see supplementary data) to calculate the linear travel distance 

of tamarins between each same-day scan points separated by 0:30hr, 1:00hr, 1:30hr and so on, 

to a maximum of 9 hrs. The time between scan points was then related to distance travelled in 

the form of a histogram and its regression using the method “loess” from the function 

“geom_smooth” in ggplot2 package of R (Wickham, 2009; Rstudio Team, 2015). I first did the 
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analyses separately for the seasons described by Garber (1993), given changes in the seasonal 

movement described by Culot (2010). I tested for seasonality difference throughout the time 

periods using two-way ANOVA. Then, according to whether we found seasonality difference we 

used the season where L. cymosa generally has its fruiting period at our study site. I then 

proceeded to restrict the time periods considered for the analysis to the time periods that 

correspond to the estimated gut passage time of L. cymosa. For this estimate, I used the few 

observations recorded in previous studies by Culot (2009) and Knogge (1998), from which I only 

used observations where tamarins had not fed on any other L. cymosa tree between feeding and 

deposition. Estimate of mean gut passage time range using the few observations available was 

177 ± 59min (N=3), so I considered a gut passage time range of 2-4 hrs (Table 7). This estimate 

was then used to create a subset of data points considering only linear distance travelled in 2:00, 

2:30, 3:00, 3:30, 4:00 hrs.  This subset of distance data points was then used to plot a kernel 

density estimate. Additionally, to understand what the effect of gut passage estimates has on the 

overall result, I calculated kernel density estimated considering different gut passage times. The 

kernel density estimate gives the probability of a seed deposition event at a given distance. For 

this, I plotted the density distance kernel using the bkde() function from the “KernSmooth” 

package (Wand and Ripley, 2015) following suggestions by Deng and Wickham (2011). For each 

method, I decided the bandwidth for the density curve based on the function density(). 

Individual-based modelling of seed dispersal events (IBM) 

A previous model on Parkia panurensis (Bialozyt, 2014) was adjusted by Ronal Bialozyt 

himself for the seed dispersal scenario of L. cymosa. Four critical aspects were adjusted. First, 

since L. cymosa is never the only fruit source available in this area, we needed to add other 

species as fruit source to allow for enough energy input during the daily routine of the tamarins. 

We used the other species of feeding trees observed during L. cymosa’s fruiting season in 2013 

as additional fruit sources. Furthermore, not all L. cymosa trees fruit yearly; therefore, we used 

the subset of L. cymosa trees (N = 8) observed that same year. Second, L. cymosa contains 415-

642 mg of soluble sugars per g dry matter, whereas P. panurensis contains 811 mg/g (Pfrommer, 

2009); therefore, we adjusted the mean energy level provided by the trees in the simulation 

model. Third, different time intervals in feeding trees for a single feeding event were 

implemented for P. panurensis and L. cymosa to reflect the respective fruit crop sizes and the 
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resulting shorter feeding times in L. cymosa. Fourth, we adjusted gut passage time for L. cymosa 

according to field observations of seed dispersal events reported by Knogge (1999) and Culot 

(2009). All other parameters were kept at values of the P. panurensis simulation (Bialozyt et al. 

2014a).  

Simulations of daily movements were carried out for 200 days to get enough L. cymosa 

seed dispersal events. we then determined the Euclidian distance between dispersed seeds and 

their mother trees.  

Statistical analysis of seed dispersal distance 

To evaluate differences between methods I used the non-parametric Kruskal-Wallis test 

through the kruskal.test() function from the stats package in R (R Core Team, 2018). I did further 

posthoc comparisons with the non-parametric multiple comparison test and Bonferroni 

corrections, using the pairwise.wilcox.test() function, from the stats package in R (R Core Team, 

2018). 

To estimate seed dispersal curves, I determined the empirical frequency distribution (i.e., 

density distance kernels) of dispersal distances for each method by adjusting a non-parametric 

function (smooth spline curve) and its confidence envelope estimated by bootstrapping (n = 100 

resamplings) using the mykernel() function (Jordano 2016). Bandwidth size was calculated with 

the function density() from the “stats” package (R Core Team, 2018). 

Finally, to compare seed dispersal curves between methods I estimated the probability 

distribution of all methods using the stat_ecdf() function from the “ggplot2” package in R 

(Wickham, 2016). Subsequently, I tested differences between the empirical cumulative 

distribution functions of each method with the two-sample Kolmogorov-Smirnov test, which is 

sensitive to differences in both location and shape of the cumulative distribution function. For 

the Kolmogorov-Smirnov test, I used the ks.test() function from the package “stats” in R (R Core 

Team, 2018). 
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Results 

Observed seed dispersal events (OSD) 

Observations of seed dispersal events gave a mean seed dispersal distance of 234m ± 

111m (N=4) (Table 7). 

Table 7 Records of seed dispersal events from previous research on the study site. year of observations, 
seed dispersal distance (SDD), and gut passage time are given. 

year SDD (M) Gut passage time 
(MIN) 

2007 335 167 

2007 215 124 

1993 300 N/A 

1993 86 240 

 

Maternal identification through genotyping of seed coats (GSC) 

After two years of no fruiting of Leonia cymosa, fruit crop in 2016 was small. Therefore 

only nine seeds were collected. The mean estimated seed dispersal distance considering all seeds 

was 300m ± 74m (Table 8, Figure 18), and the kernel density curve shows 50% of all seed dispersal 

events within 339m. 

Table 8 Maternal recognition based on direct genotype match of pericarps to adult genotype. Seed and 
match labels, Geographic location of seed (XS , YS) and mother (XM, YM), and the distance between these is 
given as seed dispersal distance (SDD) 

SEED  IDENTIFIED 
MATCH 

XS YS XM YM SDD 
(m) 

LS16I-001 LA14I-112 704087 9517256 704355 9517494 357 

LS16I-002 LA14I-112 704086 9517257 704355 9517494 358 

LS16I-003 LA14I-112 704099 9517250 704355 9517494 352 

LS16I-004 LA14I-112 704148 9517225 704355 9517494 339 

LS16I-005 LA14I-112 704155 9517223 704355 9517494 336 

LS16I-006 LA14I-112 704362 9517327 704355 9517494 166 

LS16I-007 LA16I-028 704025 9517452 704250 9517434 225 

LS16I-009 LA14I-090 703965 9517617 703920 9517400 222 
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Parentage analysis of seedlings (PAS) 

I found parent pairs with significant TRIO LOD scores for 17 offspring (Table 9). The kernel 

density estimate, based on the parentage analysis, calculated using an all-possible-combinations 

approach, had a mean seed dispersal distance of 218m ± 60m (Figure 14), 95% of the events were 

probabilistically calculated to be between 163m and 273m. If we use the parents with the 

shortest distance as maternal sources, then the mean seed dispersal distance is 178m ± 201m, 

and the kernel density curve shows 50% of all seed dispersal events within 118m. 

Table 9 Parentage recognition using microsatellite markers. Offspring and parents (Parent A, Parent B) 
labels, and between offspring and each of the parents (Distance A, Distance B) are given.  

Offspring 
ID 

Parent1 
(P1) ID 

Parent 2  
(P2) ID 

Distance. 
O-P1 

Distance. 
O-P2 

Distance 
P1-P2  

Nearest  
Parent 

LP16I-016 LA14II-019 LA15II-034 887 361 620 361 

LP16I-045 LA14I-064 LA16I-016 292 13 290 13 

LP16I-135 LA14I-113 LA16I-041 175 19 193 19 

LP14III-017 LA14I-090 LA14III-001 739 615 1338 615 

LP14III-002 LA14I-091 LA14III-001 717 615 1329 615 

LP14II-024 LA14II-007 LA15II-024 52 20 35 20 

LP14I-061 LA14I-112 LA14I-113 208 209 8 208 

LP14I-062 LA14I-112 LA14I-113 208 209 8 208 

LP16I-025 LA14I-102 LA16I-053 116 131 48 116 

LP14I-082 LA14I-076 LA14I-097 325 341 231 325 

LP14I-100 LA14I-051 LA14I-062 133 166 33 133 

LP14I-071 LA14I-093 LA16I-049 244 322 240 244 

LP14I-070 LA14I-087 LA14I-091 118 210 99 118 

LP14III-004 LA14III-001 LA15II-009 4 296 292 4 

LP14III-008 LA14III-001 LA16I-027 7 442 436 7 

LP14II-066 LA14II-032 LA14III-006 9 466 470 9 

LP14III-013 LA14III-001 LA15II-020 16 731 730 16 

 

Figure 14. SDD Kernel density 
estimate of seed dispersal 
distances according to parentage 
analysis and all possible maternal 
combinations. Mean seed 
dispersal density (---) and 95% 
confidence intervals (- - -) are 
shown 
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Combination of movement data with gut passage times (CMG) 

Seasons showed a significant difference in the linear movements obtained from the 

movement data (Factorial ANOVA, F(3,6386)=62.44, P<0.001, Error! Reference source not 

found.). The main rainy season (N=32), between February and May (L. cymosa’s fruiting season) 

and the late rainy (N=12), June, had longer linear distances throughout the time periods than the 

dry season (N=10), July, and early rainy season (N=8), December and January (Figure 15, Table 

10). Therefore, to estimate seed dispersal, we only considered linear movement from the season 

in which L. cymosa has mature fruits, the main rainy season (Figure 16)  

Table 10 Adjusted p-values for differences between seasons using Tukey's honestly significant difference 
(HSD) post hoc test. 

Seasons compared 
Adjusted 
P-value 

Early rainy season-Dry season 0.103 

Late rainy season-Dry season <0.001 

Main rainy season-Dry season <0.001 

Late rainy season-Early rainy season <0.001 

Main rainy season-Early rainy season <0.001 

Main rainy season-Late rainy season 0.003 

Figure 15 Linear travel distance (m) of tamarins across the time periods of movement  
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Figure 16 Movement rate of tamarins during the main rainy season, dissected over increasing time periods. 
Time periods corresponding to gut passage time are shaded in red.  

 

Mean seed dispersal distance obtained from linear movement rate within gut passage 

time range was 318m ± 137m, 50% of the seed dispersal events were probabilistically calculated 

to be deposited within 315m from source tree (Table 11) Kernel density estimate had a bell 

shaped curve (Figure 20, CMG). Furthermore, further analysis showed shorter gut passage times 

lead not only a shorter mean seed dispersal distance, but also to a taller and narrower probability 

distribution curve of seed dispersal events (Figure 17). 

 

 

Figure 17 Changes in kernel density estimate of seed dispersal distances with changes of gut passage time 
range considered 
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Individual-based modelling of seed dispersal events (IBM) 

Through the individual-based modelling developed by Ronald Bialozyt, we obtained a 

series of deposition events (Figure 18), with a range of seed dispersal distances between 0m and 

700m, from which 50% of the seed dispersal events were within 276m (Table 11).  

 

Figure 18 Location of the 484 dispersed seeds obtained through individual -based modeling. 

Comparison of seed dispersal estimates  

Depending on the method used, mean SDD estimates range between 178 and 318 m 

(Error! Reference source not found.) for L. cymosa. Overall, methods varied significantly in the 

resulting SDD estimates (L. cymosa: H(4) = 17.3, p = 0.002, Figure 19). Specifically, Wilcoxon 

pairwise comparisons revealed SDD estimates from PAS were significantly lower than those from 

GSC, CMG, and IBM in L. cymosa (Figure 19). Moreover, the shape of the SDD distributions was 

highly variable on results from methods executed with small sample number. However, the PAS 

curve was significantly more left-skewed than GSC, CMG, and IBM (Kolmogorov-Smirnov test, 

p=0.03, p<0.001, and p<0.001, respectively) (Figure 20)  
Table 11 Comparison of Seed 
dispersal (SD) estimates 
between methods. Mean 
deed dispersal density 
standard deviations (SD) and 
standard error of bootstrap 
(SE), Modes, SDD of 5%, 50%, 
95% of seed dispersal events, 
sample number (N) 
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Discussion 

The main difference between methods were seed dispersal distances obtained through 

parentage analysis. This difference is likely for two reasons 1) Parentage analysis also includes 

undispersed seedlings fallen beneath fruiting trees, or 2) it includes seeds discarded during 

feeding events, and the lower outcome in SDD in comparison to methods that do not include 

such individuals suggests there is no near source density-dependent mortality. The PAS method 

gives a great example of how different methodologies can measure different processes of the 

seed dispersal system described originally by Wang & Smith (2002) (Figure 21), such as including 

post-dispersal or pre-dispersal processes, that might create differences between the outcomes 

Figure 19 SDD estimates for Leonia 
cymosa based on the five methods: 
observed seed dispersal events (OSD), 
genotyped seed coats (GSC), parental 
analysis of seedlings (PAS), 
combination of movement data and 
gut passage (CMG), and individual-
based modelling (IBM). Horizontal 
lines represent medians, boxes the 25-
75% quartiles, dots are outliers. Bars 
above the boxplots indicate 
differences among methods based on 
a Kruskal Wallis test and multiple 
pairwise comparisons with Wilcoxon 
rank sum test. 

  

Figure 20 Kernel density estimates of seed dispersal distances for the five methods used for Leonia cymosa. The 
figures show for each method, the density of dispersal events within the distance class (blue bars), a nonparametric 
smoothing spline fit to the empirical distance distributions (blue lines) together with b ootstrapped estimates (grey 
lines). Red vertical bars along the x‐axis represent each observed dispersal event.    
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on SDD obtained and how a combination of methodologies can explain further the seed dispersal 

system.  

In technical terms, each method has its own limitations. Methods using plant genetic 

material, require highly polymorphic markers, and a high percentage of the area sampled to avoid 

underestimating. A low number of loci genotyped, low polymorphic markers and a reduced 

percentage of area sampled might also reduce the probability of finding parents in both methods. 

For example, genotyping 11 loci with 3-14 alleles each (mean 6±3 alleles), albeit low effective 

alleles (mean 1.9±1.7 AE), and 15% of the area sampled, I found parent pairs for only 6% of the 

offspring sampled through parentage analysis. Furthermore, parentage analysis (PAS) results 

may be affected by sampling scheme; for example, quadrat sampling could increase the 

possibility of only sampling individuals that were deposited close to maternal trees, leaving gaps 

were offspring-parent pairs are not sampled. Finally, even though maternal recognition seems a 

robust and direct method for calculating seed dispersal distance, it is ultimately, also affected by 

the same factors the OSD method, since animals must be followed, and defecations collected.  

Figure 21 Seed dispersal loop as (modified from Wang and Smith 2002) showing which processes or steps 
of the dispersal loop are integrated by each method we used for estimating SDD  
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Using animal movement data and gut passage time estimates show no difference with 

the other methods (except PAS), providing a good alternative for researchers that have only 

animal movement data. This method might increase in popularity with the arrival of new and 

smaller tracking devices increasing the availability of movement data. However, as our results 

show, the method is sensible to gut passage time range used. In the analysis of this chapter, gut 

passage estimates were based on a small number of observations (N=3), and a more reliable 

range of retention time would provide more accurate results, however, given the absence of 

difference with the other methods, a rough estimate also provides practical results.  

The OSD method had a small sample number given that observation of seed dispersal 

events of Leona cymosa fruits are difficult because tamarins regularly feed on more than one L. 

cymosa tree in a row before depositing seeds (traplining behavior). Therefore, it is rarely possible 

to identify in-situ the source tree of a dispersed seed. With such a small number of dispersal 

events recorded in situ, we cannot distinguish properly whether the function created for the CMG 

method can identify SDD accurately. Therefore, I successfully validated my CMG R function on a 

previously studied species (Parkia panurensis) sharing the same seed dispersal system but with a 

high number of seed dispersal observations (N=358) (Knogge, 1998) (see supplementary data).  

Our results show methods can be used interchangeably according to the resources 

available while providing ecologically meaningful results. However, when pooling SDD estimates 

obtained from different studies, the methodology used for obtaining each estimate and the 

processes of seed dispersal they include should be carefully considered. 
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Supplementary data 

Validation of tamarin movement method for estimating SDD 

The tamarins at our study site also disperse Parkia panurensis, a species studied 

previously by Heymann et al. (2012). Previously, seed dispersal distance of P. panurensis was 

analyzed using observations of seed dispersal events and maternal recognition by genotyping 

pericarp of seeds and adults with microsatellite markers. Seed dispersal distance of P. panurensis 

was also modelled by Bialozyt et al. (2012) through a spatially explicit individual-based model, 

where tree used, and geographic disposition was paired with simulated energy-driven animal 

movements. Since seed dispersal distance of P. panurensis has been analyzed through several 

other methods, and gut passage times were available from previous seed dispersal observations 

(Knogge), we further validated our CMG method with data from P. panurensis. 

Results for Parkia panurensis 

 

 

 

 

 

 

 

 

 

 

The results of P. panurensis show comparable results to both, analysis using the 

individual-based modelling approach and through maternal recognition from pericarps (Table 12, 

Figure 22). Seed dispersal distance estimates showed no significant differences (ANOVA 

F(2,53)=0.23, p=0.80), and shape of KDE were all left skewed. Seed dispersal kernel showed a 

mean seed dispersal distance is 212 ± 140m, and 95% of the events were probabilistically 

calculated to be between 27 m and 478m, a minimum of 0m and a maximum of 665m (Table 12).  

Figure 22 Seed dispersal curve for Parkia panurensis  using tamarin movement data  
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Table 12 Comparison between seed dispersal (SD) estimates for Parkia panurensis using different methods 

Method Min Max Mean (SD) 

Observed (Heymann el al., 2012)  9.5m 656m 239m (103m) 

Genetic (Heymann et al., 2012) 9.5m 513m 229m (99m) 

Model (Bialozyt et al., 2014) 0m 643m 201m (136m) 

CMG method 0m 665m 205m (133m) 

Analysis for L. cymosa and for P. panurensis use the same animal movement data, but 

seeds of these plant have different gut passage times. The contrast between their KDE shows the 

strong difference gut passage estimate determines. This shows how important gut passage time 

is for dispersal distances and seed shadow overlap. The same seed disperser will have a different 

seed dispersal pattern of different plant species with a different gut passage time, consequently 

affecting their population dynamics differently.  

 

R function for extracting linear travel distances from movement data and for 

executing the CMG method (combination of movement data and gut passage 

time). 

 

####Linear.distances() function 

linear.distances <- function (time, year, month, day, xUTM, yUTM){ 
  timeN <- sapply(strsplit(time,":"), 
         function(x) { 
           x <- as.numeric(x) 
           x[1]+x[2]/60#+x[3]/1200 
         } ) #converts time to decimal (e.g 11:30=11.5, 01:00 = 1.0) 
  time_interval <- abs(apply(combn(timeN,2), 2, diff)) 
  year_interval <- abs(apply(combn(year,2), 2, diff)) 
  month_interval <- abs(apply(combn(month,2), 2, diff))  
  day_interval <- abs(apply(combn(day,2), 2, diff))  
  X_interval <- abs(apply(combn(xUTM,2), 2, diff))  
  Y_interval <- abs(apply(combn(yUTM,2), 2, diff))  
  distance_interval <- sqrt((X_interval^2)+(Y_interval^2))  
  date_interval <- year_interval+month_interval+day_interval 
  comb <- data.frame (date_interval, distance_interval,time_interval) 
  daily_linear_travel_paths <- comb[ which(comb$date_interval == 0), ] 
  daily_linear_travel_paths$date_interval <- NULL 
  return(daily_linear_travel_paths) 
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}  
 
#example of input parameteres 

time <- as.character(c("11:00", "11:30", "12:00", "12:30", "13:00", "13:30")) 
year <- as.numeric(c(2012,2012,2012,2012, 2012)) 
month <- as.numeric(c(12,12,12,12, 12, 12)) 
day <- as.numeric(c(14,14,14,14,14,14)) 
xUTM <- as.numeric(c(704265,704256, 704249, 704146, 704090, 704010)) 
yUTM <- as.numeric(c(9517640, 9517554, 9517526, 9517567, 9517564, 9517571)) 
 

##########to obtain SDD estimates using the CMG method####### 

##1. Load data file from csv, time format should be in "%H:%M” or "%H:%M:%S", and 

date should be separated in columns according to day, month, year. 

 trial <- read_csv("~/linearmovement_automatization_trial.csv",  
                   locale = locale(date_format = "%Y-%m-%d",  
                                   time_format = "%H:%M:%S",tz = "UTC")) 
##2. Restrict data to fruiting season 

trial[trial$Month %in% c("3","4","5"),]-> trial_FS 

##3. Order data chronologically  

trial_FS <- trial_FS [order(trial_FS$Year, trial_FS$Month, trial_FS$Day, trial_FS$Time),] 

## 4. Determine input parameters for function 
 
as.character(trial_FS$Time) ->time #format "%H:%M" if "%H:%M:%S" then add 
+x[3]/1200 to function by deleting “#” on line 5. 
as.numeric (trial_FS $Year )-> year 
as.numeric(trial_FS$Month) -> month 
as.numeric(trial_FS$Day) -> day #data points have to be in chronological order 
as.numeric(trial_FS$X) -> xUTM 
as.numeric(trial_FS$Y) -> yUTM 
 

##5. execute function 

linear.distances (time, year, month, day, xUTM, yUTM) -> daily_linear_travel 

##6. restrict linear travel paths to those within the gut passage time of a particular plant 

species or a mean for the animal species. 

CMG_SDDestimates <-daily_linear_travel[daily_linear_travel$time %in% c(1,1.5,2),] #e.g. 

gut passage of 1-2hrs 
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CHAPTER III 

 

 

SPATIAL GENETIC STRUCTURE OF THE PRIMATE-DISPERSED AMAZONIAN 

TREE LEONIA CYMOSA 
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Abstract 

The degree to which plant individuals growing closer together are genetically more 

related than individuals growing further apart is denominated Spatial genetic structure (SGS). 

Strong spatial genetic structure has been linked to restricted seed dispersal and clumped seed 

dispersal patterns. Leonia cymosa provides the opportunity to study the influence of primate 

behavior on spatial genetic structure, since it is exclusively dispersed by two primate species 

Saguinus mystax and Leontocebus nigrifrons the live in mixed-species groups. To understand 

whether SGS is related to tamarin behavior I tested for the presence of fine-scale spatial genetic 

structure across life stages and put it into context of previous research of tamarin behavior. 

Furthermore, I test the difference in SGS between two subpopulations with different plant 

population density. Fine-scale genetic structure was present for seedlings and juveniles, and 

absent for adults. Tamarins discard 40% of the seeds beneath the feeding site and 21% beneath 

resting sites, however dispersed seeds have long seed dispersal distances between 200-300m. 

Strong SGS in seedlings reflects the cumulative seed dispersal patterns. However, its decrease 

through older life stages and the absence of SGS in adults suggests demographic thinning of 

accumulated seeds probably due to density-dependent processes, and a higher persistence of 

seeds dispersed seeds beyond these agglomerations of seeds. A comparison with P. panurensis, 

a tree species sharing the same exclusive seed dispersers but a different life history, suggests that 

gut passage time, number of seeds per fruit, and fruits consumed per tree may also influence the 

strength of SGS. 
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Introduction 

The degree in which plant individuals growing closer together are genetically more 

related than individuals growing further apart is denominated spatial genetic structure (SGS) 

(Wright 1949). The absence of SGS is an indication of high gene flow within populations. High 

gene flow maintains low biparental inbreeding and keeps a highly varied gene pool reducing 

susceptibility to environmental changes (Epperson 2003; Lowe et al. 2004). Gene flow in plants 

depends on seed dispersal, and pollination, the farther the distances the vectors cover, the higher 

the probability unrelated individuals will mate. Restricted dispersal distances have been widely 

linked to a strong presence of spatial genetic structure (Wright 1949; Vekemans & Hardy 2004; 

Hardy et al. 2006; Dick et al. 2008). A clumped distribution of seeds from the same maternal 

sources is more likely to result in strong SGS (Epperson 2003; Walker et al. 2009; Choo et al. 2012; 

Ibanes et al. 2015). However, predation and diseases will thin out populations, usually in a 

density-dependent manner, regardless of the seed dispersal pattern, reducing SGS over life 

stages (Hamrick et al. 1993; Schroeder et al. 2014). If survival is density-independent, and several 

seeds/seedlings survive into adulthood after clumped seed deposition, SGS is expected to be 

consistent over life stages (Chung et al. 2003). 

Leonia cymosa (Violaceae) is a small Neotropical understorey tree, widely distributed 

among the Amazon basin, mainly in tierra firme forest (Vásquez 1997; Newing & Parellada 1998). 

It is spatially clustered and has a highly variant adult population density (3.8-23 ind/ha).  Each 

cluster has differently sized individuals, but the degree of clustering decreases with life stages 

(Pfrommer, 2009). It grows up to 10 m in height, with a diameter at breast height of up to 10 cm.  

L. cymosa has oblong-elliptical leaves, 10-18 cm long and 4-7.5 cm wide with the sides slightly 

serrated with an alternate arrangement. It has small yellow-orange flowers, 3 – 4 mm each, 

irregularly arranged in a sympodial inflorescence (Macbride, 1941). The floral structure indicates 

that L. cymosa flowers are pollinated by insects (Michael Schwerdtfeger, pers. comm., Pfrommer 

2009). Fruits are spherical berries with a mean diameter of 1.8 cm (range 1-3.4 cm) and a mean 

mass of 2.1 g (range 1.2-15 g) (Reinehr 2010). Fruit crop size ranges between 1 to 120 fruits that 

ripen asynchronously from February to May which corresponds to the rainy season (Reinehr, 

2010).  During the ripening process, fruits change color from dark green to yellow, and also the 

complexity of their scent (Nevo, Heymann, Schulz, & Ayasse, 2016). Fruits contain mostly 1-2, 
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sometimes up to 7 seeds surrounded by an edible fibrous pulp (Reinehr 2010). The only known 

consumers and primary seed dispersers are tamarins (Saguinus spp. and Leontocebus spp.) and 

squirrel monkeys (Saimiri spp.) (Pfrommer, 2009; Reinehr, 2010). 

At our study site, Estación Biológica Quebrada Blanco (4° 21’ S, 73° 09’ W, Loreto, Peru), 

Saguinus mystax and Leontocebus nigrifrons are the only seed dispersers of L. cymosa (Reinehr, 

2010). These two tamarin species live together in sympatric heterospecific groups, interspecific 

group size ranges between 3 and 10, occasionally more (Löttker et al. 2004), sharing movement 

patterns and vigilance duties from two different vertical layers of the rainforest (Heymann & 

Buchanan-Smith 2000; Stojan-Dolar & Heymann 2010a). Six groups are present around our study 

site, and their home ranges vary in size between ca. 30-60 ha. Their diet consists of fruit pulp, 

insects and exudates (Garber 1986; Knogge & Heymann 2003). They are opportunistic 

frugivorous, and their movement patterns mainly follow fruit availability (Culot et al. 2010). L. 

cymosa fruit crops ripen asynchronously, tamarins eat a mean of 5 fruits per feeding episode, 

and since tree crown size is small and fruit availability is low, a mean of two individuals can eat 

from the same tree individual at a time (Reinehr 2010). Feeding bouts on L. cymosa, of the two 

species of tamarins have a mean of 1:58±1:46 min, a minimum of 6 seconds and a maximum of 

10:13 minutes (Reinehr 2010). Furthermore, tamarins have a mean gut passage time of 148±72 

min (n=1047), a minimum of 20 min. and a maximum of 514 min (8.6 hrs.) (Knogge 1998). 

Therefore, tamarins can generally disperse seeds for up to 700m, although 85% of seeds 

dispersed are within 300m, and the mean is 185±133m (Knogge 1999; Knogge & Heymann 2003; 

Heymann et al. 2017). For L. cymosa a few seed dispersal observations indicate the gut passage 

time to be around 2-4 hours (Culot, Knogge, unpub. data) and a mean seed dispersal distance of 

214-305m (Chapter II). Furthermore, tamarins repeatedly use sleeping and resting sites (Smith et 

al. 2007), and beneath these sites they disperse six times the seeds they disperse outside, without 

a reduction in seedling survival (Muñoz Lazo et al. 2011). Movement patterns of tamarins have 

been seen to affect seed and seedling distribution of the several fruit species they consume (Culot 

et al. 2010), and also spatial genetic structure of Parkia panurensis (Bialozyt et al. 2014b) 

Aim 

Leonia cymosa provides the opportunity to study the direct influence of primate behavior 

on spatial genetic structure, which has not been studied thoroughly so far. We know primate 
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behavior affects seed dispersal patterns (Stevenson 2000; Wehncke et al. 2004; Valenta & 

Fedigan 2010; Razafindratsima et al. 2014; Valenta et al. 2015) and that recurrent use of sleeping 

sites by white-bellied spider monkeys can affect SGS of seeds dispersed beneath these sites 

(Karubian et al. 2015), but information is limited on how primate foraging behavior and seed 

dispersal extent can affect SGS within the plant population. Previous research on our study area 

shows tamarins can affect SGS for Parkia panurensis (Bialozyt et al. 2014b). P. panurensis is a 

canopy tree with low adult population densities and large fruit crop size. Leonia cymosa instead 

is an understorey tree with high population densities and small fruit crop size. Therefore, 

tamarins’ feeding behavior on L. cymosa is different, with short feeding bouts and a small number 

of fruits eaten per visit (Reinehr, 2010). In this chapter, I aim to understand the spatial genetic 

structure of L. cymosa, its relationship to tamarin behavior and whether it changes through life 

stages and plant population density. Given the fruiting phenology of L. cymosa and the short 

feeding bouts of the tamarins, it is expected for L. cymosa to show an absence of SGS. 

Methods 

Sampling 

I examined the population of Leonia cymosa present at the study site Estación Biológica 

Quebrada Blanco (4° 21' S, 73° 09' W) in Loreto, Peru. The study site is lowland tropical rainforest 

(100m alt.) and is mainly composed of Tierra firme habitat. Leonia cymosa grows in the 

understory, grows up to 7m. and maintains a small diameter of the trunk (dbh <10cm). Within 

trees, fruits ripen asynchronously, once a year, during the whole fruiting period of around 3 

months, between February and May. 

Exhaustive sampling was done in 2014 for all life stages in 50mx50m quadrats covering 

15% of the study area (Figure 23). Life stages were defined as following: seedlings <100cm, 

juveniles 100-250cm, adults >250cm. For each individual height, the number of leaves and the 

geographical position was recorded using a GPS [Garmin GPSMapH 76CSx] and leaves were 

collected and stored either on silica beads or WhatmanTM FTATM PlantSaver cards.  
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Figure 23 Sampling map for 2014. Exhaustive sampling of seedlings (circles), juveniles (triangles) and adults 
(asterisks) was done in 50mx50m quadrats. 12-13 for each home range area and additional adults sampled 
beyond quadrats. 

Genetic analysis 

DNA was extracted from the leaves using the ATMAB protocol (Dumolin et al. 1995). For 

DNA extraction from WhatmanTM FTATM PlantSaver cards., 2 mm diameter disks of the 

membranes were then washed, using FTA reagent buffer and TE Buffer (TRIS, EDTA), and dried 

at 56°C for 20 minutes. Washed disks were incubated for 5 min in TE buffer at 95°C to obtain 

eluted DNA.  

The amplification of 10 microsatellites (SSR) loci was done using Qiagen Type-it 

microsatellite PCR kit according to manufactures instructions (Qiagen, Venlo, Netherlands) and 

the following PCR conditions: 5 min at 94 °C for denaturation, followed by 34 cycles with 30 s at 

94°C 90 s at the respective annealing temperature and 30 s at 72°C, and a final extension at 60° 

C for 30 min. PCR products were then genotyped using capillary sequencing using the MegaBACE 

1000 automated sequencer (GE Healthcare) with the size standard MegaBACE ET400-R (GE 

Healthcare). Alleles were called using the MegaBACE Genetic Profiler version 2.   
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Statistics 

To test for the presence of fine-scale spatial genetic structure I executed an 

autocorrelation analysis with SPAGeDi 1.4c. This calculates pairwise kinship coefficients (Fij) 

(Loiselle et al. 1995) for all pairs of individuals and regressed these on pairwise spatial distances. 

I defined nine distance intervals based on a constant number of pairs of individuals within each 

distance class, keeping >50 % partic and ≤ 1 CV partic as suggested by  Hardy & Vekemans (2002). 

We used 95% confidence intervals and determined significance of the logarithmic regression 

slope (b) using 10,000 permutations. The strength of SGS was estimated using Sp statistics: Sp = 

-b/(1-Fij(1)), where Fij(1) is the mean pairwise kinship coefficient Fij of the first distance interval. a 

Standard error for each distance class and Sp statistic was done through jackknifing genetic loci 

Results 

Differences between life stages 

A fine-scale genetic structure was present for seedlings and juveniles, and absent for 

adults. Strength of SGS gradually decreased through life stages in both subpopulations (Table 13, 

Figure 24). However, the juvenile stage on the area with a lower population density (G2) had a 

higher Sp value, indicating stronger SGS for this life stage.  

Table 13. SGS statistics for different life stages of L. cymosa. Sp values (Sp), kinship coefficient at first 
distance class (F ij(1)), regression with linear distance in the logarithmic form (b slope), and sample number 
(N) are given. 

A. Leonia cymosa: Group 1  

Life stage Sp Fij(1) b slope N 

Seedlings  0.015(0.003) 0.022*** -0.014*** 131 

Juveniles 0.011(0.006) 0.028* -0.011* 45 

Adults  -0.0001(0.003) 

 

0.013 7.33E-05n.s 69 

B. Leonia cymosa: Group 2  

Life stage Sp Fij(1) b slope N 

Seedlings  0.013(0.004) 0.051*** -0.012*** 80 

Juveniles 0.034(0.010) 0.070* -0.032** 19 

Adults  -0.001(0.006)  0.014 n.s 0.0011 n.s 56 
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Figure 24  SGS of subpopulations (G1 and G2) of Leonia cymosa. Correlograms between pairwise kinship 
coefficient (Fij) and pairwise distance arranged in distance intervals according to a fixed number of distance 
intervals with a constant number of pairs. Life stages are analyzed separately 1. Seedlings (<100cm), 2. 
Juveniles (100-250cm) and 3. Adults (<250cm). Correlograms show correlation between mean F ij of each 
distance interval (  ) and 95% confidence intervals (- - -) and standard error (SE) of each value. 

  



85 
 

Discussion 

SGS is present differently across life stages, in both subpopulations, regardless of plant 

population density. Juveniles of subpopulation with lower population density shows stronger SGS 

in juveniles, however this could be confounded with the small sample number of juveniles in its 

area, given the similarities between subpopulations of life stage classes with higher sample 

number. Our results give evidence that plant population density is not a main determinant of SGS 

in L. cymosa.  

Estimates of seed dispersal distance (SDD) of L. cymosa by tamarins at our study site show 

mean SDD of 205-304m (see chapter II). With such SDD estimates one would expect low SGS even 

at the seedling stage, but our results show the opposite. The generalized presence of SGS in 

younger life stages may be related to: 1) The high percentage of seeds discarded with fruit rests 

beneath the fruiting trees (40%) or the high rate of seed deposition near conspecifics (22%) 

(Reinehr 2010). 2) The use of resting sites repeatedly (61% of resting sites used repeatedly) and 

the high deposition rate beneath these (21%) (Muñoz Lazo et al. , 2011). Therefore, successfully 

dispersed seedlings with the average SDD cannot compensate, in terms of seedling SGS, for the 

high accumulation of seeds beneath trees and beneath resting sites due to foraging behavior and 

repetitive behavior.  These results give evidence seed dispersal patterns seem to have a stronger 

effect than average seed dispersal distance in SGS of seedlings. 

The decrease seen in our results across life stages the contrasts with previous studies on 

seed dispersal by tamarins in Parkia panurensis, where SGS is present in all life stages. The 

absence of SGS in adults for L. cymosa could be attributed to 1) high density-dependent mortality 

leading to demographic thinning, 2) high density of seeds dispersed with moderate to long 

distance. When we sampled the different life stages of L. cymosa, we observed a reduction in the 

cluster spatial distribution with increasing life stage, which could indicate a system under density-

mortality pressure. Furthermore, kernel density estimates in Chapter II show seed dispersal 

curves with have a bell shape for L. cymosa with its mean between 200-300m, while P. panurensis 

shows a right-skewed curve with its peak around 100m, indicating P. panurensis has a high 

proportion of seeds dispersed within 100m (Heymann et al. 2012, 2017). This could indicate that 

in seed dispersal systems with long distance dispersal events and high density-dependent 
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mortality, even if feeding behavior or repetitive use of sites creates clumping of seedlings, any 

resulting SGS of this clumping seed dispersal pattern is not maintained into adulthood.  

However, Leonia cymosa and Parkia panurensis show other differences that could give 

information on additional factors affecting SGS. First, in contrast to P. panurensis, L. cymosa 

shows a clumped distribution of fruiting trees. Therefore, tamarins tend to feed on more 

individuals of L. cymosa before depositing the seeds. Consequently, seeds of L. cymosa beneath 

sleeping sites stem from more different maternal sources. Second, time of gut passage by P. 

panurensis can be much shorter than L. cymosa (Chapter II), increasing the number of seeds 

dispersed at lower distances. Third, P. panurensis has 16-23 seeds per fruit, while L. cymosa has 

between 1-7 seeds per fruits. A higher number of seeds per fruit increases the numbers of seeds 

co-dispersed. Furthermore, seeds within one fruit can have one or more pollen donors, in the 

case P. panurensis, only seeds within each fruit share the same pollen donor, increasing the 

genetic relatedness between these co-dispersed seeds. These first three differences could 

indicate that even though tamarins disperse both L. cymosa and P. panurensis in clumps beneath 

feeding sites and resting sites, P. panurensis’ clumps will likely have a higher number of seeds 

with the stronger genetic relationship. This increases the likelihood that the seeds surviving 

density-dependent mortality will be strongly genetically related. Further research is needed to 

separate the influence between plant traits and disperser behavior on SGS. 

Finally, both species are pollinated by animals, P. panurensis is pollinated by bats, and L. 

cymosa is very likely, based on flower morphology, pollinated by insects, possibly stingless bees 

(Euglossine) (Pfrommer, 2009). Both pollination vectors have been linked to long distance pollen 

flow. Thompson (2014) shows pollination by bats maintains high gene flow even in fragmented 

forests and with extinct seed dispersers, resulting in a low genetic structure in seedlings. 

Substantial long-distance gene flow has also been seen by insect pollination, in particular, 

stingless bees can also have been linked to high pollen flow (Janzen 1971; Williams & Dodson 

1972). The effect of pollination vectors on SGS needs to be further studied. However, both plant 

species show that even in the presence of high gene flow, clumped seed dispersal can potentially 

create SGS in seedlings which may or may not remain into older life stages, depending on density-

dependent mortality and seed dispersal curves.  
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CHAPTER IV 

 

 

CAN SOCIAL ORGANIZATION OF TAMARINS CREATE A BARRIER FOR SEED 

DISPERSAL AND AFFECT GENETIC RELATEDNESS BETWEEN TWO 

SUBPOPULATIONS OF LEONIA CYMOSA? 
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Abstract 

Social behavior, in particular, social organization, territoriality, and mating system is a 

strong determinant of movement patterns. In frugivores, these will affect spatial patterns of seed 

dispersal. Tamarins Saguinus mystax and Leontocebus nigrifrons are organized into small groups 

that occupy home ranges which are majorly exclusively used. Thus, plants, in exclusively used 

areas of the home range, experience a restricted range of seed dispersal. This limited spatial 

extent of seed deposition area could potentially lead to higher intra-specific relatedness between 

plant individuals growing on the same home range areas than to plant individuals growing on 

other home range areas. At our study site, these tamarins are the exclusive seed dispersers of 

Leonia cymosa. Tamarins at our study site show long-term stability of home ranges. Therefore 

we expect these to influence the genetic makeup of Leonia cymosa subpopulations dispersed by 

different tamarin groups. Leonia cymosa is a model for examining the effect of seed dispersal on 

the genetic makeup of a population in a simplified system and without confounding effects of 

other seed dispersal vectors. Therefore, the aim of this chapter is to 1. Analyze the spatio-

temporal dynamics of tamarin home range areas, 2. Estimate the degree of seed dispersal across 

the analyzed home range areas, and 3. Analyze genetic relatedness between seedlings growing 

on different home range areas. First, we found tamarin home ranges show small overlap and a 

slight shift over the years. Second, only one seedling out of 12 had a parent on the other home 

range area, potentially a paternal parent. Therefore no seeds were found to have a tree source 

on the opposite home range area. Third, no differences in the genetic relatedness were found 

between home range areas. We discuss the lack of difference in the genetic makeup of the two 

subpopulations could be due to spatio-temporal shifts in the space of the tamarins’ home range 

or potentially to long-distance pollination by insects maintaining high gene flow across seed 

dispersal barriers.  
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Introduction 

Seed dispersal is a process influencing (local) gene flow in plant populations (Heuertz et 

al. 2003). Together with pollination, it defines the genetic composition of plant populations over 

space and time. In contrast to pollination, seed dispersal moves the whole genome and directly 

determines the spatial area of potential recruits. Limited seed dispersal will restrict future 

recruits to areas near fruiting trees, subsequently increasing the probability of breeding between 

strongly related organisms, and consequently decreasing genetic diversity over space and time 

(Charlesworth 2003). Previous research shows the effects of restricted seed dispersal, for 

example, due to the absence of seed dispersers or presence of ecological barriers by 

anthropogenic activities, can cascade down to the genetic imprint of plant populations (Pérez-

Méndez et al. 2016). These effects include increased inbreeding coefficient, increased 

homozygosity, reduced allelic richness and increased fine-scale spatial genetic structure 

(Williams & Guries 1994; WANG et al. 2011; Ruxton & Schaefer 2012).   

Type of seed dispersal has a strong effect on seed dispersal outcomes. For instance, 

dispersal by gravity produces much shorter seed dispersal distances and thus stronger clustering 

of individuals than dispersal by wind (Seidler & Plotkin 2006). In such abiotic dispersal physical 

properties of seeds and the environment (e.g., wind speed). Zoochorous seed dispersal, instead, 

will be determined by the fruits’ and seeds ‘physical and biochemical properties, the plant’s 

phenology and spatial distribution, and how the animal behavior is affected by these properties 

and overall habitat conditions (Russo et al. 2006; Jordano et al. 2007; Sasal & Morales 2013; 

Côrtes & Uriarte 2013). Animals’ decisions on which fruit plants to feed, or on which areas to 

forage, and their movement patterns in general, will have a strong impact on seed deposition 

patterns. Animal social behavior is a strong determinant of movement patterns and the resulting 

seed deposition patterns, in particular, social organization, territoriality, and mating system 

(Chapman & Russo 2002; Karubian & Durães 2009; Karubian et al. 2012). Larger group sizes, by 

influencing the degree of inter-group competition for resources and depletion rate of resources, 

can lead to longer seed dispersal distances and a higher degree of clumping (Karubian & Durães 

2009). Exclusive use of resources, through territoriality  or defense, can increase the proportion 

of fruits consumed per fruiting source but the limit number of visitors per fruiting tree and 

number of fruit sources per deposition site (Karubian & Durães 2009). By confining animal 
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movements to a limited area, territoriality can restrict the spatial extent of seed dispersal, and 

by decreasing competition for resources and allowing animals to stay longer on feeding sites; 

territoriality can also increase the degree of seed clumping. Seed dispersal patterns, created by 

territoriality and the defense of few source trees, have been linked to a strong spatial genetic 

structure within granaries of acorn woodpeckers (Grivet et al. 2005).  

Primates of the family Callitrichidae have a social organization where they form small, 

generally territorial, cooperative polyandrous groups (Sussman & Kinzey 1984; Ferrari & Lopes 

Ferrari 1989; Solomon & French 1997). At our study site, Estación Biológica Quebrada Blanco 

(EBQB) (Loreto, Peru) Saguinus mystax and Leontocebus nigrifrons live together in stable mixed-

species troops (Heymann & Buchanan-Smith 2000). Each species forms groups of 3-9 individuals 

and shares with the other species the same home range areas, the same movement patterns, 

and the same fruit resources, with the exception of a few species (Heymann & Buchanan-Smith 

2000; Knogge & Heymann 2003).  Home range areas of these mixed-species troops may or may 

not be actively defended and scent-marked. Intergroup encounters occur on average every other 

day, and 59% of these encounters include aggressive interactions (Lledo-Ferrer et al. 2011). 

Nonetheless,  previous research on the movement patterns of the tamarin groups shows 

exclusive use of central areas of home ranges and, on the delimiting periphery, small areas of 

overlap with neighboring groups which may vary over the years (Heymann 2000, Lledo-Ferrer et 

al. 2011). A social organization of small groups with exclusive use of areas of foraging, based on 

Karubian and Duraes (2009), the limited spatial extent of seed deposition area, potentially 

leading to higher intra-specific relatedness between individuals growing on the same home range 

area. 

Tamarins at the study site EBQB feed on a variety of fruit species, insects and plant 

exudates (Peres 1993), and work as a unison, dispersing 50% of the fruiting species they exploit 

(Knogge & Heymann 2003; Culot et al. 2010). For their relatively small sizes (300-600gr.) they 

disperse relatively large seeds (up to 2.35 cm long and 1.35 cm wide) (Knogge & Heymann 2003) 

around the whole area of their home ranges, but mostly within 300m (Knogge, 1998). At our 

study site, tamarins are the exclusive seed dispersers of the understory tropical tree Leonia 

cymosa (Reinehr, 2010). Given the exclusivity of its service, any movement patterns of the 

tamarins should have a direct effect on their seed deposition and potentially on the populations’ 
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genetic composition. The aim of this paper is to 1. analyze the spatio-temporal dynamics of 

tamarin home range areas, 2. Estimate the number of seed dispersal events across the analyzed 

home range areas, and 3. Analyze genetic relatedness between seedlings growing on different 

home range areas in relationship to spatio-temporal dynamics of tamarins’ home range areas. 

 

Methods 

Study species 

Leonia cymosa (Violaceae) is a small Neotropical understorey tree, widely distributed 

among the Amazon basin, mainly in tierra firme forest (Vásquez 1997; Newing & Parellada 1998). 

It is spatially clustered and has a highly variant adult population density (3.8-23 ind/ha).  Each 

cluster has differently sized individuals, but the degree of clustering decreases with life stages 

(Pfrommer, 2009). It grows up to 10 m in height, with a diameter at breast height of up to 10 cm.  

L. cymosa has oblong-elliptical leaves, 10-18 cm long and 4-7.5 cm wide with the sides slightly 

serrated with an alternate arrangement. It has small yellow-orange flowers, 3 – 4 mm each, 

irregularly arranged in a sympodial inflorescence (Macbride, 1941). The floral structure indicates 

that L. cymosa flowers are pollinated by insects (Michael Schwerdtfeger, pers. comm., Pfrommer 

2009). Fruits are spherical berries with a mean diameter of 1.8 cm (range 1-3.4 cm) and a mean 

mass of 2.1 g (range 1.2-15 g) (Reinehr 2010). Fruit crop size ranges between 1 to 120 fruits that 

ripen asynchronously from February to May which corresponds to the rainy season (Reinehr, 

2010).  During the ripening process, fruits change color from dark green to yellow, and also the 

complexity of their scent (Nevo, Heymann, Schulz, & Ayasse, 2016). Fruits contain mostly 1-2, 

sometimes up to 7 seeds surrounded by an edible fibrous pulp (Reinehr 2010).  

Sampling  

Historical data on tamarins’ (Table 14) movement pattern are available for the years 

2004-2011. For years 2012-2013, we used data collected by Darja Slana within the latest project 

before our plant sampling in 2014. In all studies, location was recorded every 15-30 minutes using 

GPS Garmin GPSMapH 76CSx. 
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Table 14 Sources of Historical data of tamarin movement 

Year Reference 
2004  Johannes Bitz  

2007-08  (Stojan-Dolar 2009) 

2009 (Kubisch 2009; Neurath 2009) 

2011  (Kupsch 2009) 

2012-13  Darja Slana, Ph.D. thesis in prep 

 

L. cymosa was sampled in 2014 within two adjacent home range areas of tamarins, in 

thirteen 50mx50m quadrats, covering 10% of each home range area in a checkerboard design. 

Sampling within each quadrat was exhaustive; life stages were distinguished based on height 

(seedlings <100cm, juveniles 100-250cm, Adults >250cm). Furthermore, to increase the success 

of parentage analysis adults were further sampled in transects 15m wide transects connecting 

quadrats in Group 1 home range area and in additional quadrats inside Group 2 home range area 

and in the periphery of both groups. For each individual, height and location were recorded using 

GPS [Garmin GPSMapH 76CSx], and leaf samples were collected. Leaves were stored dried on 

silica gel and on WhatmanTM FTATM PlantSaver cards.  

Movement pattern analysis  

Tamarins locations 2004-2013 were input into QGIS software (QGIS Development Team, 

2016) and contour vectors were created for each year and for each tamarin group present around 

the sampling area and measured any movements of the home range areas. However, time of 

scan points was available only for years 2012-2013. Therefore we analyzed daily movement paths 

for these two years. These were made for each sampling day on qGIS using plugin pointstopath 

with a gap period of 30. I calculated the daily travel path length using days for which continuous 

measurements were available for at least 6 hrs. Furthermore, since Leonia cymosa was present 

only within home range area of Group 1 and Group 2, I analyzed the use of these home range 

areas in more details using heatmaps of their scanned locations. Heatmaps of scan points were 

done by converting vector map of scan point to raster using plugin heatmap, with 30000 rows 

and 12239 columns, rendering bands in pseudo color using a minimum of 15 and a maximum of 

450 map units, with discrete color interpolation.  
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Seed dispersal across home range areas 

We extracted DNA from dried leaves using the ATMAB protocol (Dumolin et al. 1995) and 

from the WhatmanTM FTATM PlantSaver cards using protocol described in Chapter V. With the 

diluted DNA we performed PCR amplifications using Qiagen Type-it microsatellite PCR kit 

(Qiagen, Venlo, Netherlands) for 11 microsatellite loci previously characterized for L. cymosa 

(Chapter V). Microsatellite primers were amplified in multiplexes based on their annealing 

temperatures and product size. PCR reactions were performed using 14.6 µl volume containing 

20 ng of template DNA, 1x Type-it multiplex PCR master mix and 2 mM of each primer. For the 

PCR reactions we used thermal cycler “T1” from Biometra (Goettingen, Germany), programmed 

with the following conditions: 5 min at 94°C for denaturation, followed by 34 cycles with 30 s at 

94°C 90 s at the respective annealing temperature (Chapter V) and 30 s at 72°C, and a final 

extension at 60°C for 30 min. We then analyzed the PCR amplification products using capillary 

electrophoresis with the MegaBACE 1000 automated sequencer (GE Healthcare) and the size 

standard MegaBACE ET400-R (GE Healthcare). Alleles were called using the MegaBACE Genetic 

Profiler version 2 software. 

To identify parent pairs and their offspring for the analysis of seed dispersal across home 

range areas I used the software Cervus 3.0 (Kalowinski et al., 2007). First, I calculated allele 

frequencies using the default parameters. Second, we ran the simulation for parent pairs with 

unknown sexes with parameters set at 0.15 proportion sampled, 0.05 proportion loci mistyped 

and to consider only samples with 6 minimum typed loci. We calculated confidence level using 

LOD scores, and these were set to relaxed at 80% and strict at 95%. Third, we used the allele 

frequencies and the simulation output files to run the parentage analysis for parents with 

unknown sex. We only considered results of parent pairs with TRIO LOD significance higher than 

95%.  We then input these individuals and their locations into qGIS were we connected seedlings 

and juveniles to their respective parents with linear vectors.  

Plant genetic differences between home range areas 

Genetic differences between plant populations growing on different home ranges were 

analyzed by comparing pairwise genetic relatedness (Queller & Goodnight 1989) between 

individuals growing within the same home range and in different home range areas (Buston et 
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al. 2009). We only considered individuals growing on home range area of Tamarin Group 1 and 2 

because Leonia cymosa was scarcely present in the home range area of Group 3. Pairwise genetic 

relatedness was calculated using GenAlEx version 6.5 (Peakall & Smouse 2006). We considered 

only individuals growing more than 10 meters away from each other to avoid bias due to 

undispersed or co-dispersed seeds. We then used a beta model regression to quantify and verify 

the difference between individuals growing within the same home range area and individuals 

growing on opposing home range areas. The beta model corrects for the independence of 

parameter and the parameter’s characteristic of having a delimited value range (-1,1). To run the 

model we used R package “devtools” and “brms” (Bürkner, in press). 

Results  

The three groups of tamarins historically sampled at the study site showed mainly 

exclusive use of areas with small overlap on the periphery between 2004 and 2008 (Figure 25). 

No information is available for Group 2 between 2009-2011. Sampling from 2012-2013, showed 

that rom 2008-2012 Group 2’s western boundary had shifted towards east by around 270m, 

leaving a wider separation between Group 1 and Group 2 that remained steady for 2012-2013, 

while Group 3 shifted from 2008-2013 southeastward by around 330m, slowly occupying the area 

between these two groups, partially in 2012 (Figure 26A) and fully in 2013. (Figure 26B) 
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Figure 25 home range areas of tamarin Groups 1-3 (G1, G2, G3) in years for which data were available: 
2004, 2007, 2008. Contour lines for different years are shown using different dash patterns and lighter 
purple color for Group 3 given its overlap with Group 2 in the year 2007. 
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Figure 26 Movement tracks of Tamarin Groups 1-3 for years 2012 (A) and 2013 (B). Movement tracks are 
shown for these years instead of contours given its higher accuracy and finer detail on Group 3’s 
occupation of area in-between Group 1 and 2. 

Movement patterns of Group 1 and Group 2 show hotspot areas of activity that also 

persisted for the last two years before sampling as well (Figure 27). Heatmaps overlaid with daily 

movement paths showed tamarins really range over most of the home range areas with few 

lacunas and some areas of more intense use. The movement paths showed they don’t necessarily 

spend whole days in these areas; they visit these areas over the days on a more frequent basis. 

Tamarins showed variable daily travel path length (Table 15) km and very rarely make excursions 

beyond the confines of the home range. The lack of overlap between home ranges of Group 1 
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and 2 suggests that there is no area into which both groups can disperse seeds from their 

respective L. cymosa subpopulations. 

 

Figure 27 Finer detail of Group 1 and Group 2 movement patterns. Daily movement tracks of tamarin 
Groups 1 and 2, for the years 2012-2013, overlaid to heatmap of locations. Heatmaps show areas with 
more frequent visitation by tamarins with a darker shade.  

Table 15 Daily travel path lengths of tamarins Group 1,2,3, for the years 2012 -2013. Distances are given in 
meters. Sample number is days with minimum 6 hours of continuous observation.  

Tamarin Group Year Mean SD Min. Max. N 

1 2012 1467 1082 681 5914 25 

1 2013 1792 1201 922 6798 28 

2 2012 1598 969 572 5326 38 

2 2013 1312 773 663 3121 7 

3 2012 941 336 390 1528 17 

3 2013 1349 564 722 2642 8 

 

Seed dispersal across home range areas 

We identified parent pairs for 17 seedlings (Table 16,Figure 28). Twelve seedlings of these 

17 were located in either home range of tamarin Group 1 or Group 2 and 11 out of these 12 

seedlings had parent pairs on the same home range area where they were growing, while one 
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seedling had one parent 50m outside of the contour of the home range areas where it was 

located, and the other parent was located in home range area of tamarin group 2, 620m away 

from the first parent. Five seedlings of the 17 seedlings for which parent pairs were identified 

were located in the in-between home range area, where tamarin Group 3 had recently moved 

into. Three of these five seedlings had one parent within 15 m, and the other parent was located 

in the home range area of Group 2 (N=2, 293m, and 731m away) or Group 1 (N=1, 446m away), 

while two of these five seedlings had parents on opposing home range areas (1320m and 1330m 

away from each other) (Table 17). These two seedlings shared one of the parents (the one in the 

home range area of Group 2) and were located 2m. away from each other, indicating a possible 

co-dispersal event from the shared parent, located 615m away from these (Figure 29).  
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Figure 28 Parental links (purple lines) between offspring and the identified parent pair. The three members 
of each family area numerated with one number (1-17). territory boundaries are shown for year 2012-2013 
(gray contours). 
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Figure 29 Offspring from the in-between area in detail. Map image shows the three offspring (orange O) 
sharing one parent (P1) within 16m and the two offspring (green O) sharing one parent in home range area 
from tamarin group 2. Family links are shown with purple lines.  

Table 16 Parent pairs identified through Parentage Analysis. Offspring list is given with respective parent 
pairs (P1 and P2) and their Pair LOD score, confidence, and Trio LOD score and confidence. 

Offspring Parent 1 Pair LOD 
score 

Pair 
confidence 

Parent 2 Pair LOD 
score 

Pair 
confidence 

Trio LOD 
score 

Trio 
confidence 

LP14I-100 LA14I-051 3.92E+00 
 

LA14I-062 5.62E+00 * 1.18E+01 * 
LP16I-045 LA14I-064 6.09E+00 * LA16I-016 4.85E+00 + 1.17E+01 * 
LP14I-082 LA14I-076 3.86E+00 

 
LA14I-097 4.10E+00 - 1.13E+01 * 

LP14I-070 LA14I-087 1.48E+00 
 

LA14I-091 1.09E+01 * 1.39E+01 * 
LP14I-071 LA14I-093 8.78E+00 * LA16I-049 5.84E-01 

 
1.25E+01 * 

LP16I-025 LA14I-102 7.73E+00 * LA16I-053 4.16E-01 
 

1.14E+01 * 
LP14I-061 LA14I-112 4.97E+00 + LA14I-113 4.40E+00 + 1.22E+01 * 
LP14I-062 LA14I-112 6.83E+00 * LA14I-113 2.95E+00 

 
1.17E+01 * 

LP16I-135 LA14I-113 4.26E+00 - LA16I-041 4.96E+00 + 1.16E+01 * 
LP14II-024 LA14II-007 3.62E+00 - LA15II-024 6.90E+00 * 1.18E+01 * 
LP16I-016 LA14II-019 4.25E+00 - LA15II-034 6.11E+00 * 1.20E+01 * 
LP14II-066 LA14II-032 4.60E+00 + LA14III-006 5.28E+00 + 1.19E+01 * 
LP14III-004 LA14III-001 9.07E+00 * LA15II-009 1.68E-01 

 
1.14E+01 * 

LP14III-013 LA14III-001 8.15E+00 * LA15II-020 -1.26E-01 
 

1.14E+01 * 
LP14III-008 LA14III-001 7.41E+00 * LA16I-027 3.52E+00 - 1.16E+01 * 
LP14III-017 LA14I-090 9.17E-01 

 
LA14III-001 8.60E+00 * 1.26E+01 * 

LP14III-002 LA14I-091 1.56E+00 - LA14III-001 8.33E+00 * 1.24E+01 * 
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Table 17 Parent pairs identified through Parentage Analysis. Offspring list is given with respective Parent 
pairs (P1 and P2) and heights in cm. Distance between offspring and parents and between parents is given 
in meters. 

Offspring 
(O) 

Height.O 
Parent 1 
(P1) 

Height.P1 
Parent 2 
(P2) 

Height.P2 
Distance. 
O-P1 

Distance. 
O-P2 

Distance  
P1-P2 

LP14I-100 15 LA14I-051 300 LA14I-062 800 133 166 33 
LP16I-045 #N/A LA14I-064 300 LA16I-016 #N/A 292 13 290 
LP14I-082 100 LA14I-076 600 LA14I-097 500 325 341 231 
LP14I-070 40 LA14I-087 500 LA14I-091 400 118 210 99 
LP14I-071 50 LA14I-093 600 LA16I-049 #N/A 244 322 240 
LP16I-025 #N/A LA14I-102 600 LA16I-053 #N/A 116 131 48 
LP14I-061 10 LA14I-112 700 LA14I-113 300 208 209 8 
LP14I-062 15 LA14I-112 700 LA14I-113 300 208 209 8 
LP16I-135 #N/A LA14I-113 300 LA16I-041 #N/A 175 19 193 
LP14II-024 10 LA14II-007 500 LA15II-024 500 52 20 35 
LP16I-016 #N/A LA14II-019 700 LA15II-034 600 887 361 620 
LP14II-066 10 LA14II-032 600 LA14III-006 300 9 466 470 
LP14III-004 15 LA14III-001 700 LA15II-009 500 4 296 292 
LP14III-013 10 LA14III-001 700 LA15II-020 350 16 731 730 
LP14III-008 20 LA14III-001 700 LA16I-027 #N/A 7 442 436 
LP14III-017 10 LA14I-090 700 LA14III-001 200 739 615 1338 
LP14III-002 30 LA14I-091 400 LA14III-001 200 717 615 1329 

 

Genetic relatedness 

Pairwise genetic relatedness (QGM) between plant individuals growing in different home 

ranges was not significantly different from those of individuals growing on the same home range 

area [Seedlings (P=0.989); Juveniles (P=0.064), Adults (P=0.546)]. (Figure 30). Distribution curve 

of pairwise relatedness values of plant individuals growing within the same home range area and 

those pairs growing on opposing home range areas strongly overlap. If the genetic composition 

of individuals growing on different home ranges was somehow differentiated, the distribution 

curve of individuals growing within the same home range would be shifted towards positive 

values, while the curve of individuals growing on opposing home range areas would be shifted to 

the negative values. Instead, the beta model regression shows no significant differences between 

these curves for all life stages.  
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Figure 30 Distribution curves of pairwise relatedness values between individuals growing on different 
territories (grey), and within seedlings on the same territories (black). Life stages are considered 
separately: seedlings (<100cm), juveniles (100cm-250cm), adults (>250cm) 

Discussion 

Even though parentage analysis showed almost no seed dispersal across home range 

areas, and tamarin movement patterns showed no overlap between Group 1 and Group 2 for the 

previous years, nor any movement of the tamarins from one area to the other exchanging home 

range areas, genetic relatedness of individuals showed that gene flow between home range areas 

is maintained. Plant subpopulations showed no significant genetic differences based on the home 

range area where they grow. We would’ve expected at least a significant difference between 

seedlings, given the clumped seed dispersal patterns by tamarins (Chapter II), and the presence 

of SGS (Chapter III). The absence of significant differences between seedlings from the two 

subpopulations suggests pollination is maintaining gene flow between home ranges. Supporting 

this theory, the distances between parent pairs are high (377±406m, max=1338m). Given its 

flower morphology, and previous observations (Pfrommer, 2009), L. cymosa is likely pollinated 

by insects, possibly stingless bees (Euglossine). Previous research shows insects can have long-

distance pollination range (Janzen, 1971; Williams and Dodson, 1972), for example a mean 

pollination distance of 303±206m and a maximum of 1263m by coleoptera and bees for 

Oenocarpus bataua (Ottewell et al., 2012), and foraging distances of up to 6km by the carpenter 

bee Xylocopa flavorufa (Pasquet et al., 2008). Such pollination distances would be able to 
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compensate any possible gene flow barrier created by seed dispersal, like it has been seen for 

bat pollination in areas where seed dispersal is limited (Thompson, 2014). 

The lack of significance in adults could reflect the previous closeness between home range 

areas or indicate that small spatial shifts of tamarins’ home ranges over time are relevant in terms 

of L. cymosa’s life expectancy and reproductive span. The home range limits analyzed are from 

the last 10 years (2004-2013), and these have slowly but steadily shifted over the last 20 years. 

Heymann et al. (2017) showed tamarin Group 1 had shifted southward by around 250m from 

1994 to 2008. In the historical data we analyzed (Table 14), we see that from 2008-2013, Group 

1 has maintained its position but Group 2’s western boundary has shifted towards east by around 

270m, and Group 3 shifted southeastward by around 330m. If L. cymosa’s reproductive span was 

beyond 30 years, these spatial shifts of the home ranges could slowly but steadily guarantee 

homogenization of gene flow over generations. Life span of L. cymosa is not known so this 

hypothesis cannot be discarded.  

All life stages showed no significant values in genetic relatedness between 

subpopulations. Because of the results on previous chapters, we would’ve expected a stronger 

difference between seedlings than juveniles and a stronger difference between juveniles than 

between adults from different subpopulations. However, there is no gradual increase in 

difference, interms of p-value, going through the life stages. Juvenile life stage (100-250cm) 

showed values of the beta model approaching significance (p=0.06), while p-values of seedlings 

and adults were strongly not significant. Two hypotheses could explain this 1) Juveniles represent 

the generation dispersed while Group 1 and Group 2 were spatially more separated, and Group 

3 had still not gained the terrain in-between, increasing the difference between subpopulations 

of this generation. However, since growth rate of L. cymosa is not known, we cannot assign the 

juvenile size range to a single generation nor attribute it to seed dispersal events of a determined 

year. 2) The recent presence of Group 3 in-between Group 1 and Group 2 may be taking seeds 

from one territory to the other reducing dissimilarities between subpopulations of seedlings. The 

latter would be visible on the parentage analysis, however given the small percentage of parent 

pairs found (6%) we cannot exclude this. If these hypotheses were true, then we could strongly 

suspect the shifts in time of tamarins’ home ranges are able to maintain gene flow regardless of 

spatial restrictions on seed dispersal by home range areas and areas of exclusive resource use. 
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Further research on tamarin home ranges and spatio-temporal shifts could further illustrate the 

effects its exclusive use of resources could on plant spatial genetics.   
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CHAPTER V 

 

CHARACTERIZATION OF NUCLEAR MICROSATELLITE PRIMERS AND VALIDATION 

OF WHATMANTM FTATM PLANTSAVER CARDS. FOR DNA SAMPLING IN THE 

NEOTROPICAL TREE,  

LEONIA CYMOSA (VIOLACEAE) 
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Abstract 

Microsatellite primers were developed for the Neotropical understory tree, Leonia 

cymosa (Violaceae), to investigate potential effects of primate seed dispersal on plant population 

genetics. Primer pairs for eleven microsatellite markers were developed from samples stored as 

dried leaves and in WhatmanTM FTATM PlantSaver cards. Primer were successfully amplified in 

two populations of L. cymosa (N=648, N=6) and partially in two other species from the same 

genus: L. glycicarpa (N=5) and L. crassa (N=3). We compared results from different sampling and 

storage methods and got comparable results. These eleven microsatellites have applicability on 

congeneric species and can be successfully used for studies of genetic diversity, genetic 

population structure and parentage analysis. WhatmanTM FTATM PlantSaver cards are a valid and 

more advantageous sample storage method for plant species in tropical study sites.   
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Introduction 

Microsatellites were developed to investigate the effects of frugivore behavior and seed 

dispersal in spatial genetics of Leonia cymosa, a relatively unknown tree species for which 

markers were not available yet. Leonia cymosa (Violaceae) is a small Neotropical understorey 

tree, widely distributed among the Amazon basin, mainly in tierra firme forest (Vásquez 1997; 

Newing & Parellada 1998). It grows up to 10 m in height, with a diameter at breast height of up 

to 10 cm.  L. cymosa has oblong-elliptical leaves, 10-18 cm long and 4-7.5 cm wide with the sides 

slightly serrated with alternate arrangement. It has small yellow-orange flowers, 3 – 4 mm each, 

irregularly arranged in a sympodial inflorescence (Macbride, 1941). The floral structure indicates 

that L. cymosa flowers are pollinated by insects (Michael Schwerdtfeger, personal 

communication). Fruits are spherical berries with a mean diameter of 1.8 cm (range 1-3.4 cm) 

and a mean mass of 2.1 g (range 1.2-15 g) (Reinehr 2010). Fruit crop size ranges between 1 to 

120 fruits that ripen asynchronously from February to May which corresponds to the rainy season 

(Reinehr, 2010).  During the ripening process, fruits change color from dark green to yellow, and 

also the complexity of their scent (Nevo, Heymann, Schulz, & Ayasse, 2016). Fruits contain mostly 

1-2, sometimes up to 7 seeds surrounded by an edible fibrous pulp (Reinehr 2010). The only 

known consumers and primary seed dispersers are tamarins (Saguinus spp. and Leontocebus 

spp.) and squirrel monkeys (Saimiri spp.) (Pfrommer, 2009; Reinehr, 2010). At our study site in 

north-eastern Peru, L. cymosa is exclusively dispersed by Leontocebus nigrifrons and Saguinus 

mystax, for which it was amongst the top five plant food resources in some of the years (Smith 

1997; Culot 2009). Hallock and co-workers (2000) reported the presence of active anti-HIV 

macrocyclic peptides from in dry bark of L. cymosa. 

Here, we describe three multiplex PCR reactions for genotyping with 11 microsatellite 

primers. We also report their transferability to two congeneric species: Leonia glycicarpa and 

Leonia crassa. Furthermore, we validated the application of WhatmanTM FTATM PlantSaver cards 

for microsatellite genotyping by comparing DNA extracted from dried leaves and from the cards.  

These cards are already widely used on fungi (Mukuma 2016), viral pathogens (Ndunguru et al. 

2005), yeast (Borman et al. 2006), lichens (Gueidan et al. 2016) and have been already been 

validated for agricultural analysis of Solanum spp., Sorghum bicolor  and Hordeum vulgare 

(Drescher and Graner, 2002; Adugna et al., 2011; Aguoru et al., 2015) have not yet been used for 
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microsatellite genotyping of tropical tree species where adequate storing of material for DNA 

extraction is particularly challenging.  

 

Methods and Results 

Microsatellite characterization 

Samples of L. cymosa were collected at the Estación Biológica Quebrada Blanco in north-

eastern Peruvian Amazonia (4° 21' S, 73° 09' W). Additional samples for L. cymosa, and samples 

from L. glycicarpa and L. crassa were collected near to Allpahuayo-Mishana, Peru (4° 29' S, 73° 

35' W). Microsatellites were developed by Ecogenics (Balgach, Switzerland). Briefly, size-selected 

fragments from genomic DNA were enriched for SSR content by using magnetic streptavidin 

beads and biotin-labelled GATA, GTAT, AAAC and AAAG repeat oligonucleotides. The SSR-

enriched library was sequenced on an Illumina MiSeq platform using the Nano 2x250 v2 format. 

After assembly, 3’855 contigs or singlets contained a microsatellite insert with a tetra- or a 

trinucleotide of at least six repeat units or a dinucleotide of at least 10 repeat units. Suitable 

primer design was possible in 171 microsatellite candidates from which 13 polymorphic 

microsatellite markers were successfully generated. Markers were further tested, for optimal 

conditions, on 32 individuals using an automatic capillary sequencer (MegaBACE 1000, GE 

Healthcare, Uppsala, Sweden). Amplification products of 11 microsatellite primers showed 

scorable and polymorphic bands.   

The primers for the targeted microsatellites were assembled in multiplexes according to 

their annealing temperatures. PCR reactions were performed with the Qiagen Type-it 

microsatellite PCR kit according to the manufacturer’s instructions (Qiagen, Venlo, Netherlands). 

For each of the three multiplex reactions we used 20 ng of template DNA, or alternatively, a 2 

mm disk of the Whatman cards (for details on DNA extraction see below), 1x Type-it multiplex 

PCR master mix and 2 mM of each primer (specific quantities used and fluorescent labels 

described on Table 18) in a total volume of 14.6 µl. The thermal cycler (T1, Biometra, Göttingen, 

Germany) was programmed with the following conditions: 5 min at 94 °C for denaturation, 

followed by 34 cycles with 30 s at 94°C 90 s at the respective annealing temperature (Table 18), 

and 30 s at 72°C, and a final extension at 60° C for 30 min. The PCR amplification products were 



113 
 

separated by capillary electrophoresis using the MegaBACE 1000 automated sequencer (GE 

Healthcare) with the size standard MegaBACE ET400-R (GE Healthcare). Alleles were called using 

the MegaBACE Genetic Profiler version 2.  An example of a resulting electropherogram from the 

three multiplexes is given in Figure 31.  

Parameters for genetic diversity of L. cymosa samples were estimated using GenAlex 

version 6.2 (Peakall and Smouse, 2006). All eleven loci were polymorphic with a mean of 5.7 

alleles per locus, ranging between two and 14 (Table 19). Expected heterozygosity ranged from 

0.119 to 0.866, with a mean of 0.410. Significant deviations from HWE were observed for four 

primers and null alleles for only one. However, corrected estimated frequencies vary only by 0.02 

in relationship to the observed frequencies, so these were not considered when using this marker 

for genetic analyses (Table 19). Microsatellite markers were compatible with two Neotropical 

Leonia species: L. glycicarpa, L. crassa and another L. cymosa population (Table 20). Cross-species 

amplification was found for six and seven markers, respectively, on the same fragment length 

range as L. cymosa.  
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Figure 31 Example of genotyping results obtained using 3 multiplexes (1-3, upper left corner). Peaks are 
coloured according to the dyes used for each primer (FAM blue, HEX green, TMR black) 
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Table 18. Characteristics of 11 nuclear microsatellite loci for Leonia cymosa. For each locus, we provide 
the forward and reverse primer sequence, the repeat motif, the optimized annealing temperature (Ta), the 
NCBI accession number, the fluorescent dye used o multiplex number. Size ranges of the amplified 
fragments include all fragments discovered within all Leonia species used in this study. For explicit size 
ranges within a specific Leonia species see Table 19. 

Primer Primer sequences 5’- 3’ 
Repeat 
motif 

Ta (°C) 
Accession 
No.   

Dye 
Multiple
x N° 

Primer 
2µmol 
(µl) 

Leocym89 
F: GTTCGCCTCACCATAAAGGC 
R: AAGAGTGAGCATGCGTGAAG 

(TTTC)8 55 MF002375 TMR 1 2 

Leocym270 
F: GTACTTGCACCATGCCACC 
R: TAGCACTTCTGCACTTGTTG 

(AAAC)8 55 MF002377 FAM 1 1.4 

Leocym466 
F: AGCATAGACACCACGGCTAC 
R: AACTTGATCCCCAGTTTGGC 

(AAGA)9 55 MF002378 HEX 1 1.4 

Leocym2853 
F: TTGCAAGGCACAATGACGAC 
R: TACACAGTGCCAACATGCAG 

(ATAC)8 55 MF002384 FAM 1 1.4 

Leocym94 
F:AAACCCTTGTTTTCGAATTTAGATG 
R: GGGGCCAATTTGACTTTTTGC 

(TTTG)8 59 MF002376 TMR 2 1.8 

Leocym1842 
F: ACCCCATGACCCTTTAGTGC 
R: TTTTATGTTAAGTTCTTGCAATGGG 

(AAAG)7 59 MF002379 FAM 2 1.4 

Leocym2428 
F: TTATATTTGTCCTCCCTTCTGATAAC 
R: GATCAATGGCTGCTCTCGTG 

(TTTG)7 59 MF002381 TMR 2 1.4 

Leocym2433 
F: AGGAGTTAGCAATACAAAGTGAGTG 
R: TCGTGTTAATCCCTTCTTTCCC 

(ATAC)14 59 MF002382 HEX 2 1.4 

Leocym80 
F: TTTAGCGGTACGCTTTTCAC 
R: AAAAGCATGGCCTTTCCAGC 

(TTGT)7 53 MF002374 FAM 3 1.7 

Leocym2254 
F: ATGCACCATTGAACTTGGTC 
R: AACCCACGCCTTTTATGCAG 

(AAGA)8 53 MF002380 HEX 3 1.2 

Leocym2833 
F: ACTATGTCACCTCACAAGCC 
R: CTGAAATGCACCCTACGGAAC 

(CATA)8 53 MF002383 HEX 3 1.2 

 

Table 19 Results of primer application in three Leonia species. The primers were originally developed in 
Leonia cymosa. For each locus the following information is shown: locus name, number of alleles (A), size 
range of PCR products in base pairs (bp), observed (Ho) and expected (He) heterozygosity with significance 
regarding deviation from Hardy-Weinberg equilibrium (*<0.05; **>0.01;***<0.001), and mean null allele 
frequency with (*) indicating significance. The sample size for each species is given in parentheses behind 
the species name. The second line shows the geographic coordinates of each study site, where the samples 
came from. 

 

 

 

 
L. cymosa [EBQB] (664) 

4° 21’ S, 73° 09’ W 
 

Locus N A AE Size Ho He AN Freq. 

Leo80 662 3 1.9 224-236 0.423 0.469 0.052 

Leo89 662 6 1.4 197-221 0.307 0.307 -0.006 

Leo94 664 3 1.1 220-236 0.117 0.119 0.005 

Leo270 663 4 1.1 110-122 0.116 0.125 0.040 

Leo466 662 4 1.9 196-216 0.488 0.484 -0.008 

Leo1842 662 4 2.1 224-244 0.495 0.514 0.018 

Leo2254 664 8 2.7 126-166 0.660 0.632 -0.024 

Leo2428 665 4 1.5 100-112 0.317 0.349* 0.053 

Leo2433 661 14 7.3 216-268 0.817 0.863 0.028 

Leo2833 664 6 2.6 178-206 0.562 0.609 0.041 

Leo2853 663 7 1.4 158-190 0.256 0.271 0.045 
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Table 20 Compatibility of SSR primers with other populations and other species. Sampling site [], Number 
of samples tested (), compatible loci (+) and incompatible loci (-) are described for each species.  

Loci 
L. cymosa [EBQB] 
(664) 

L. cymosa [Nauta] 
(6) 

L. crassa 
[Nauta] (3) 

L. glycicarpa 
[Nauta] (5) 

 Amp. Seq. Amp. Seq. Amp Seq. Amp. Seq. 

Leo80 + + + + + - + - 

Leo89 + + + + + - + - 

Leo94 + + + + + - + - 

Leo270 + + + + + - + - 

Leo466 + + + + + + + + 

Leo1842 + + + + + + + + 

Leo2254 + + + + + + + + 

Leo2428 + + + + + + + + 

Leo2433 + + + + + - + - 

Leo2833 + + + + + + + + 

Leo2853 + + + + + - + - 

 

 

Validation of WhatmanTM FTATM PlantSaver cards for microsatellite genotyping 

In plant genetic studies, DNA is conventionally extracted from samples of dried tissue, 

often leaf or cambium material. Here, we tested an alternative sample storage method using 

WhatmanTM FTATM PlantSaver Cards, and the DNA extracted from these compared it to DNA 

extracted from leaf material. Sampling and storage with Flindex Technology Associates (FTA) 

plant saver cards are obtained by soaking plant material on the internal membrane of the card, 

achieved by positioning plant material within the card and applying physical pressure with a 

hammer. Cards are then left to dry and stored in plastic bags.  

For validating this method, DNA storage and extraction was done with two parallel 

approaches. First, we dried leaves using silica beads and extracted DNA using an ATMAB protocol 

(Dumolin et al. 1995). Second, we collected plant material by pressing leaves on the membranes 

of WhatmanTM FTATM PlantSaver Cards. For DNA extraction, 2 mm diameter disks of the 

membranes were then washed, using FTA reagent buffer and TE Buffer (TRIS, EDTA), and dried 

at 56°C for 20 minutes. Washed disks were either directly added to the reaction mix for PCR 

amplification or alternatively, for obtaining eluted DNA, an extra step was added where we 

incubated the washed disks for 5 min in TE buffer at 95°C, cooled them on ice, transferred the to 

a clean well and discarded the disk. Afterwards, DNA was then stored at -20°C. Eluting DNA from 
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disks decreases problems experienced with static electricity of disks and handling contamination 

when distributing disks to each PCR well and provides a higher yield of PCR repetitions for an 

equal amount of treated surface membrane.  

DNA concentrations obtained from the DNA collected in WhatmanTM FTATM PlantSaver 

cards and from dried leaves varied according to the surface area of material used for extraction. 

When using 2 x 2mm diameter disks, we obtained a mean of 4.75 µg/µl of DNA. Higher 

concentrations of DNA were obtained when we increased diameter, or the number of disks 

extracted per reaction well. We achieved successful extraction for a maximum of 85mm2 

(3x6mm θ disks) in one reaction well, obtaining a maximum of 64.83ng/µl of DNA. Surface area 

per reaction well might be successfully increased. DNA concentration obtained from a 

determined area of membrane might vary also according to quality of embedment and quantity 

of linfa absorbed.  However, independently of DNA concentration, genotyping results showed no 

difference between sample storage methods. DNA quality obtained from both storage methods 

can therefore be considered equivalent. We found FTA cards to be more advantageous in terms 

of transportation and technical handling. 

Conclusions 

The microsatellites markers where highly variable in the investigated population of L. 

cymosa. Variability was confirmed with one additional population, and most of the markers also 

amplified in L. glycicarpa and L. crassa. Thus, these markers can be applied for studying genetic 

diversity, spatial genetic structure and parentage in L. cymosa in north-eastern Peru.  

The alternative method for DNA sampling and storage with WhatmanTM FTATM PlantSaver 

cards proved valid for all Leonia species, confirming the result from previous studies on 

agricultural species. FTA cards can be therefore used for tropical species, resisting the weather 

conditions and long transportation times between field and laboratory.  
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GENERAL DISCUSSION 
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Previous research has identified a relationship between plant spatial genetics and plant 

characteristics, habitat, pollination and seed dispersal mechanisms (Vekemans & Hardy 2004; 

Hardy et al. 2006; Dick et al. 2008). However, little was known about how animal behavior can 

affect spatial genetic structure through behavior-specific seed dispersal patterns. At our study 

site, research had found tamarins as seed dispersers of a high number of seeds for long distances 

(Knogge 1998) which could determine shape and extent of seed shadows based on their daily 

decisions (Bialozyt et al. 2014a),and resulting movement patterns which can remain stable over 

long periods of time (Heymann et al. 2017), influencing spatial genetic structure of Parkia 

panurensis (Bialozyt et al. 2014b). Nonetheless, little was known about another species 

exclusively dispersed by tamarins, Leonia cymosa, a smaller tree with different spatial 

distribution and fruit characteristics, that might influence foraging behavior of tamarins 

differently.  

The aim of this study was to link animal behavior and plant spatial genetics, and further 

understand seed dispersal by tamarins and its effects on the spatial genetics of L. cymosa. This 

study successfully achieves its initial aims and contributes to further understand the influence of 

animal seed dispersal in plant gene flow and spatial genetic structure. Additionally, this study 

provides methodological advances for overcoming field and species-specific limitations. In this 

section, each aim will be approached separately, with their respective study limitations and 

future directions. Finally, we will briefly discuss the contribution of this study in terms of 

methodological alternatives. 

Objective I: Understanding the effects of animal behavior on spatial genetic 

structure.  

In Chapter I we found a relationship between foraging behavior and movement range, 

with presence and strength of spatial genetic structure. Animal vectors with short feeding bouts 

or long movement range were related to weaker plant spatial genetic structure than animals with 

long feeding bouts, regurgitation behavior or short movement range. From our results, animals 

can weaken the formation of SGS by taking seeds away from fruit sources on high proportions 

and spreading them around the landscape. Furthermore, seed disperser behavior that leads to 

the accumulation of seeds showed highly variable strength of SGS, likely resulting from the 

variability between study systems of factors such as relatedness of trees visited by the animals 
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before the accumulation of seeds, number of seeds accumulated, and post-dispersal processes. 

Chapter I provides evidence that vector behavior impacts SGS by shaping seed shadows through 

their seed dispersal patterns (Stiles 2000). Previous research shows these patterns can be highly 

consistent over time (Heymann et al. 2017), potentially increasing its effect on SGS. 

Anthropogenic disturbances that might modify vector behavior, such as deforestation, 

urbanization, or introduction of competing alien species, are likely to influence seed dispersal 

patterns and in turn SGS (McConkey & O’Farrill 2015; Jones et al. 2017). Chapter I emphasizes 

the need for future studies on population genetics of animal-dispersed plants to include 

ecological, and behavioral observations of dispersal vectors, for understanding gene flow and 

spatial distribution of their genetic diversity. Furthermore, we saw considerable differences on 

SGS results between marker types, however the number of species analyzed with markers other 

than microsatellites was low. Nonetheless, ideally, to identify potential factors influencing 

differences in SGS, more species sharing characteristics on only certain aspects of their phenology 

or their dispersal systems should be analyzed and compared using the same methodological 

approaches. 

The analysis in Chapter I was done on adult spatial genetic structure, therefore, the results 

show how animal behavior can have long-term effects on plant spatial genetic structure. SGS in 

seedlings is more likely to reflect the initial spatial template created by seed dispersal, before 

density-dependent mortality, making its analysis more appropriate if the aim is to relate seed 

dispersal patterns to SGS.  

In Chapter III, I related pattern and extent of seed dispersal to SGS on different life stages. 

Our results show seed dispersers, depending on their feeding behavior and post-feeding 

movement patterns, can create aggregation of seeds or can scatter seeds sparsely around the 

area. These two seed dispersal patterns are not mutually exclusive and, in presence of density-

dependent mortality, can affect SGS differently on life stages. When few maternal sources are 

visited before the accumulating behavior or when seeds are the result of spitting or regurgitation 

on feeding sites, these aggregations have the potential to promote formation of SGS in seedlings, 

which will not necessarily be maintained into adulthood.  

Differences in SGS of adults from Leonia cymosa and Parkia panurensis and differences 

on their seed dispersal curves shed light on factors determining SGS maintenance into adulthood. 
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The probability of SGS being maintained into the adult life stage, in presence of density-

dependent mortality, is likely reduced if in addition to clumped seed deposition, there is a high 

proportion of seeds scattered to moderate or long-distance, like in L. cymosa. The analysis of 

maternal source within clumps of L. cymosa and P. panurensis could further determine whether 

the maintenance of SGS into adulthood is due to a high density of seeds dispersed far, rather 

than a low number of maternal sources within clumps. Nonetheless, several studies show similar 

seed dispersal patterns and distances, and their SGS results support the idea that moderate to 

long distance seed dispersal might influence whether SGS in seedlings, created by seed clumping, 

will be maintained into adulthood. For example, studies with clumping of seeds, beneath feeding 

sites and short distance seed dispersal, show plant species with presence of SGS in seedlings and 

in adults (Hardesty et al. 2005; Choo et al. 2012; Berens et al. 2014). Studies with clumping and 

long-distance seed dispersal show SGS in seedlings but weak SGS in adults (Schroeder et al. 2014). 

Finally, where seed dispersal systems created no clumping of seeds and moderate to long-

distance seed dispersal, SGS was absent in all life stages (Fuchs & Hamrick 2010). Further studies 

comparing SGS in life stages and considering seed dispersal patterns and distance would further 

elaborate on this hypothesis.  

Finally, we found a consistent importance of pollination as a determinant of SGS strength 

in Chapter I. However, we only distinguish between animal and wind pollination, and a much 

finer categorization of pollination vectors could help understand its effect on SGS. Heuertz et al. 

(2003) attributes mathematically a lower effect of pollination on gene dispersal than seed 

dispersal, and, in seed dispersal studies, insect pollination is commonly expected to be short 

distance (Degen et al. 2001). Yet, foraging range of insects can be highly variable (Chifflet et al. 

2011), for example,  bees can forage up to 6km from their nest (Pasquet et al. 2008) and the 

overall distance can largely vary depending on their size (Greenleaf et al. 2007). Vertebrate 

pollination can also depend on animal behavior and social organization, e.g. solitary and 

territorial humming birds can have a restricted number of foraging resources (Cotton 2008) while 

bat foraging behavior can be affected by inter-specific competition and spatio-temporal 

distribution of resources (Arias-Cóyotl et al. 2006).  Given the strong influence of pollination on 

spatial genetic structure at coarser scales and the fine-differences on foraging range between 
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animal pollinators, future research should investigate how pollination by different animals can 

influence spatial genetic structure and inter-population gene-flow.  

Objective II: Closing the loop on seed dispersal by tamarins of Leonia cymosa. 

Seed dispersal patterns are highly dependent on feeding behavior and movement range 

(Russo et al. 2006). Reinehr (2010) showed feeding of Leonia cymosa by tamarins to be 

exhaustive, depleting the small fruit crops throughout the fruiting season. However, the same 

study also estimated only 60% of seeds were swallowed and dispersed, while the remaining 40% 

of seeds fell beneath feeding sites. Furthermore, Culot (2009) showed tamarins defecate seeds 

in low density throughout the day in a scattered manner, but a subsequent study, Culot (2011), 

estimated that during the rainy season (L. cymosa’s fruiting period), 20% of seeds defecated by 

these tamarins are accumulated under resting sites. Our results in this study complements these 

previous findings on seed dispersal by tamarins. Chapter II shows moderate to long mean seed 

dispersal distance of L. cymosa, and a seed dispersal curve with a bell shape indicating a low 

number of seeds dispersed near fruiting sources. Chapter III shows high spatial genetic structure 

of seedlings, indicating clumped seeds are likely from the same fruiting trees or at least related 

fruiting trees. However, Chapter IV shows, through parentage analysis of a clumped seeds in the 

in-between home range area, seeds within clumps may also come from different parent pairs.  

Therefore, the results from this thesis give evidence of tamarins likely having three types of seed 

deposition pattern:1) clumps of half-siblings beneath fruiting trees, likely proportional to the 

amount of fruits produced by the fruiting tree, 2) clumps of possibly unrelated seeds beneath 

resting sites 3) randomly scattered dispersal throughout the home range area. Furthermore, 

recognition of fruit source from maternal DNA on seed coats in Chapter IV shows co-dispersion 

is likely, but limited, given the small number of seeds per fruit in L. cymosa.  Further research on 

genetic relatedness of seeds clumped beneath feeding and resting sites, using uniparentally 

inherited markers or analysis of SGS of seed aggregations, can shed light on the number of 

maternal sources within aggregations. For example, SGS analysis solely of seeds dispersed 

beneath sleeping sites shows white-bellied spider monkeys aggregate seeds only from the few 

trees they feed on before going to sleep at their sleeping sites (Karubian et al. 2015).  

Results from Chapter IV show, through parentage analysis, that seed dispersal is strongly 

correlated with limitations on the tamarin’s movement patterns dictated by their social 
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organization. Seed dispersal across home ranges is limited, showing home ranges of tamarins 

creates a barrier for gene flow through seed dispersal. Similarly, territorial behavior restricts 

movement patterns of acorn woodpeckers to a few seed sources, reducing the number of 

maternal sources per cache and shortening its dispersal distance (Scofield et al., 2010). This 

behavior can potentially increase spatial genetic structure within these exclusive areas, 

increasing biparental inbreeding and reducing genetic diversity within home range areas. In 

contrast, results in Chapter IV also show seedlings growing in-between home range areas have 

parent pairs coming from the two adjacent home range areas. This gives evidence of how social 

organization of seed dispersers can create an edge effect on the periphery of their home ranges. 

If tamarin groups have a higher rate of encounter on the periphery of the home ranges than 

within the exclusively used area, maternal sources within these areas will increase and so will 

local genetic diversity. Further research could shed light on whether the periphery area can act 

as source of heterozygosity for the whole population, maintaining genetic diversity high even in 

view of restricted seed dispersal. 

Finally, differences between seed dispersal curves of Leonia cymosa and Parkia 

panurensis seed dispersal patterns are likely not dependent on the identity of the seed disperser. 

L. cymosa and P. panurensis have the same seed dispersal vectors, nonetheless seed dispersal 

patterns of P. panurensis show a higher proportion of seeds is dispersed closer to its source. 

Differences in plant characteristics are likely at the origin of changes in the behavior of tamarins 

during and after feeding on each plant species. First, feeding bouts of P. panurensis are between 

36-144 min. likely related to number of fruits produced (Feldmann, unpub.) while feeding bouts 

on L. cymosa last an average of 2 minutes. This reduces the probability of dispersing seeds near 

conspecifics. Second, number of seeds within fruits of P. panurensis are 16-23 while L. cymosa 

fruits have 1-7 seeds, this increases the number of co-dispersed seeds for P. panurensis, directly 

influencing the kernel density curve. Third, pulp consistency of P. panurensis is jelly-like, while L. 

cymosa has fibrous pulp. Jelly consistence is likely linked to faster gut passage rates, while fibrous 

pulp consistency has been linked to slower gut passages (Knogge 1998). Empirical data shows P. 

panurensis has faster gut passage rates than L. cymosa (Knogge 1999). Therefore, shorter feeding 

times likely due to smaller fruit crops, lower seed numbers per fruit and longer gut passage times 
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likely due to pulp consistency, are all factors that may lead to a higher proportion of seeds being 

dispersed for longer distances in L. cymosa.  

Objective III: Tamarin seed dispersal patterns and its influence on plant spatial 

genetics of Leonia cymosa.  

In Chapter III we analyze spatial genetic structure on different life stages of Leonia 

cymosa. We compare our results to seed dispersal patterns by tamarins studied by Reinehr 

(2010) and estimates of seed dispersal distance and seed dispersal curves of L. cymosa analyzed 

in Chapter II. Results from Chapter III show strong spatial genetic structure in seedlings, likely 

created by clumped seed dispersal by tamarins either beneath feeding sites or beneath resting 

and sleeping sites. However, our results indicate absence of SGS in adults. The effects of clumped 

seed dispersal are likely counteracted by density-dependent mortality and long mean seed 

dispersal distances, like those described in Chapter II. Therefore, the inefficiency of tamarins in 

transporting most seeds produced away from fruit sources can be compensated by the long seed 

dispersal distance of those seeds effectively dispersed by tamarins and likely their higher survival 

rates than those dispersed in clumps (Schupp & Jordano 2011).   

Chapter IV evaluates seed dispersal across tamarin’s exclusive home range areas and 

differences in the genetic composition of L. cymosa individuals growing under the dispersal of 

different tamarin groups. Seed dispersal across home range areas was low, only one offspring 

out of 17 had one parent on the opposite tamarin home range area (likely the paternal source, 

given the location of the other parent, on the periphery of the home range area where the 

offspring was growing). However, contrary to what expected, we found no significant differences 

in the genetic composition of L. cymosa individuals growing in areas under the dispersal of 

different tamarin groups. The strongest difference we found was in the juvenile stage, which 

could coincide with recruitment happening in the year where the two home range areas where 

further apart from each other. This opens the possibility for the following explanations 1) the 

small overlap between home range areas combined with the small spatio-temporal shifts of 

territories over time (Heymann et al. 2017) might maintain a genetically homogenous 

recruitment within each home range area. Previous research shows a shift of home range areas 

in space and time can happen in response to changes in resource abundance (Culot, 2010). 2) 

Pollination across home range areas is sufficient to maintain gene flow, despite restricted seed 
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dispersal between home ranges. The limitations of our study arise from the limited knowledge 

on pollination of L. cymosa. Therefore, further research on focal tree observations during the 

flowering period of L. cymosa  might shed light on pollinator identity while gene flow analysis 

using markers on uniparentally inherited organelles (Torroba-balmori et al.; Agrawal et al. 2013) 

could confirm whether pollination distances are long enough to maintain gene flow across home 

range areas, or whether the small overlap between these and their small shifts in space and time 

are enough to maintain gene flow across home range areas. Future research could help 

understand the role of pollination in the maintenance of gene-flow when seed dispersal is 

restricted, and sub populations are biologically or physically separated. 

Seed dispersal restrictions due to biological constraints is analog to seed dispersal 

restrictions due to physical constraints caused by anthropogenic disturbance. The effect of 

fragmentation in spatial genetic structure has been widely studied (WANG et al. 2011; Collevatti 

et al. 2014). Lack of connectivity between fragments can increase genetic differentiation 

between these. Similarly, social organizations with active defense of resources and little overlap 

with contiguous groups could also potentially lead to genetic differentiation. However, similar to 

our study model, pollination likely counteracts gene flow reduction from blocked seed dispersal 

by fragmentation (Wang et al. 2012). If we understand how other factors can compensate gene 

flow barrier due to restricted seed dispersal, we can potentially understand how fragmentation 

caused by deforestation and urbanization could be mitigated (Rands et al. 2011) .   

Overall, our results suggest that fine-scale spatial genetic structure over life stages are the 

result of the combination between seed dispersal patterns and seed dispersal extent. While seed 

dispersal barriers created by the exclusive use of resources can be likely counteracted by long-

range pollination but might not be sufficient to mitigate formation of spatial genetic structure at 

local scales in particular of younger life stages. One would expect that if pollination of L. cymosa 

is able to maintain gene flow across subpopulations it should also be sufficient to disrupt the 

formation of spatial genetic structure. Instead, we see strong spatial genetic structure up to the 

juvenile stage. If pollination is in fact counteracting a gene flow barrier cause by seed dispersal, 

it could indicate the strong potential of seed dispersal in determining the formation of SGS. To 

understand the different contributions of seed dispersal and pollination on SGS, future research 
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could analyze, in parallel, SGS of dispersal systems with different pollination and seed dispersal 

combinations. 

Alternative methodological approaches presented in this study 

This study not only contributes to expand the knowledge on seed dispersal and its effects 

on plant population genetics, it also contributes to the advancement of methodological 

techniques in the field of molecular ecology. Field work can bring difficulties in terms of sampling 

storage and availability of data for collection. Tropical weather is suboptimal for sample 

conservation, space capacity is limited for sample transportation, and ecological processes can 

be unpredictable hampering data collection. Consequently, to overcome these challenges, during 

this study we tested alternative methods for sample collection, and techniques for estimating 

seed dispersal when fruit productivity fails. 

Chapter V shows how DNA soaking membranes such as the WhatmanTM FTATM PlantSaver 

cards can be used to store DNA samples from plants, optimizing storage space, reducing the need 

for expensive leaf grinders and time needed for DNA extraction. These cards can also be used for 

animal samples as well. FTATM PlantSaver cards had been used in agricultural studies but not in 

tropical ecology studies. Our tests indicate these cards successfully maintain optimal DNA 

samples in tropical weather and increase DNA extraction rate, reducing time needed from three 

days for 36 samples to 96 samples in a few hours. The only limitation for this method is the 

transfer of linfa from old and hard leaves to the membranes and the quantity of DNA extracted 

from the membranes. Collecting younger leaves facilitated and increased the amount of DNA 

absorbed by the membranes. 

Chapter II describes a method for estimating seed dispersal distance based solely on 

animal movement data and retention times of seeds without the need for plant sampling 

collection. This method has the potential to be an alternative for zoologists and conservation 

biologists characterizing the importance of animals as seed dispersers. Long distance seed 

dispersers are extremely important for the colonization of new habitats in front of climate change 

and habitat degradation (Soons & Ozinga 2005; Abedi-Lartey et al. 2016). It is important to 

recognize which animals has such crucial ecological role to increase their protection status and 

implement the knowledge in conservation policies.  
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