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Abstract

The aim of this thesis is to develop a theory that describes errors in fixed point iter-
ations stochastically, treating the iterations as a Markov chain and analyzing them for
convergence in distribution. These particular Markov chains are also called iterated ran-
dom functions. The convergence theory for iterated random averaged operators turns out
to be simple in Rn: If an invariant measure for the Markov operator exists, the chain
converges to an invariant measure, which may depend on the initial distribution. The
stochastic fixed point problem is hence to find invariant measures of the Markov opera-
tor. We formulate different error models and study whether the corresponding Markov
operator possesses an invariant measure; in some cases also rates of convergence w.r.t.
metrics on the space of probability measures can be computed (geometric rates).

There occur two major types of convergence. Weak convergence of the distributions of
the iterates (or their average) and almost sure convergence. The stochastic fixed point
problem can be seen as either consistent or inconsistent stochastic feasibility problem,
where almost sure convergence is observed in the former (see [25]) and weak convergence
in the latter. The type of convergence turns out to determine the consistency of the
problem. We give conditions for which we can expect convergence in the above terms for
general assumptions on the underlying metric space, and nonexpansive, paracontractive
or averaged mappings.

Since the focus of this thesis is probabilistic, when applied to algorithms for optimization,
convergence is in distribution and the fixed points are measures. This perspective is
particularly useful when the underlying problem models systems with measurement errors,
or even when the problem is deterministic, but the algorithm for its numerical solution is
implemented on conventional computers with finite-precision arithmetic.

Keywords: Averaged mappings, nonexpansive mappings, stochastic feasibility, stochastic
fixed point problem, iterated random functions, convergence of Markov chain

1





CHAPTER 1

Introduction

We consider here only one simple algorithm, that captures many other algorithms in
its generality. We are not interested in it for numerical purposes, just to determine its
behavior when errors enter in every iteration. This algorithm is a stochastic extension of
the simple fixed point iteration, that is, for an operator T : G → G , where G is a yet
arbitrary set, the sequence (xk), where xk+1 := Txk, k ∈ N and x0 ∈ G. A description
of errors entering this iteration is achieved via i.i.d. random variables (ξk)k∈N0 that map
from a probability space (Ω,F ,P) into a measurable space (I, I), where I is called the
index set. These errors ξk model the random selection of a mapping from a fixed family
of mappings {Ti : G→ G | i ∈ I}. Errors are hence implicitly contained in the choice of
the family (Ti)i∈I . The stochastic fixed point iteration, or as we will refer to it in the
following, the random function iteration (RFI ), see also [17], is thus

Xk+1 := TξkXk, k ∈ N, where X0 ∼ µ ∈P(G). (1.1)

The iterates Xk form a Markov chain of random variables on the space G, which is not yet
specified, but will, in the subsequent analysis, become a separable and complete metric
space (we refer to it then as a Polish space). Since one is working with random variables,
the more general initialization of a random variable is now appropriate, i.e. letting X0 be
any random variable, but with a fixed distribution µ in the space of probability measures
P(G) on G. Still the deterministic initialization in a point x0 ∈ G is possible by choosing
a delta distribution µ = δx0 . Also, the deterministic fixed point iteration is representable
in this setting, by letting I = {1} and T1 = T in the setting of (1.1).

For a Polish space (G, d) many important classical results of probability theory are still
true, see for example [21], this includes in particular the theory of convergence in the
weak sense of sequences of probability measures and also the concept of tightness and
the equivalence of tightness of a sequence of probability measures and the existence of
clusterpoints for any subsequence (Prokhorov’s Theorem).

Our aim is to study the behavior of the RFI mainly in the case when convex feasibility
problems are considered (in (G, d) = (Rn, ‖·‖)) and an error concept for the projection
on these sets is introduced. The convex feasibility problem consists in finding a point
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4 1 Introduction

x ∈ Rn in the intersection of the convex and closed sets Cj, j ∈ J , where J is an (mostly
finite) index set. Many projection algorithms for solving this problem can be expressed
as simple fixed point iteration with nonexpansive, even averaged operators, that fit into
the framework studied here.

One way to express the influence of errors of the sets, due to measurement or computa-
tional errors, and their projectors is to model them as exact projections onto different,
slightly perturbed sets. As an example for the convex feasibility problem with only a sin-
gle set, we consider an affine subspace C = {x ∈ Rn | 〈a, x〉 = b} with a ∈ Rn and b ∈ R.
In this case, an error model could be given by Cξ := {x ∈ Rn | 〈a+ ξ1, x〉 = b+ ξ2} for a
random variable ξ = (ξ1, ξ2) ∈ Rn × R. This would describe the affine subspace C, but
with (in general small) distortions in the normal vector a→ a+ ξ1 and the displacement
b → b + ξ2. It is clear that the simple fixed point iteration consisting of just T = PC ,
where PCx = argminx∈C ‖x− c‖ is the projector onto C, converges after one step to a
point in C, while the RFI for this error model behaves totally different. In general the
iteration does not converge to a point in Rn, since the subspaces in every iteration change
randomly according to the random variables ξ and ζ. But still, as we will show later on,
the distributions of the iterates, also denoted by L(Xk) (the law of Xk) or PXk converge
in the weak sense to a probability measure on Rn.

Modelling errors of sets in the above sense is useful because, as we will show, convergence
of the RFI (more precisely for the distributions in the weak sense) follows for projections
algorithms as soon as there exists an invariant measure for the Markov operator. So, a
well-posed error model should yield existence of an invariant measure. As some examples
indicate, it is often not the specific distribution of the error, but more so the actual
error model of the underlying set that has a great influence on the existence of invariant
measures.

But the framework of the RFI allows also different interpretations of the random variable
ξ. Instead of an error of a set, it could just model a random selection of operators (Ti)i∈I
(see also [25]). When |I| is large or infinite, any generic deterministic algorithm to solve
the feasibility problem could be too slow or not finish a cycle through all indices after
finite time. The stochastic choice of indices can help in this case, if ξ would describe a
weighting of the choice of the operators Ti.

If I = J = {1, . . . ,m} and Ti = PCi is the projector onto a convex set Ci, then the
algorithm resembles the stochastic projection algorithm (stochastic variant of cyclic pro-
jections). And instead of possible convergence to a unique limit cycle (in the deterministic
case), one would have convergence to an invariant measure for the corresponding RFI.

In contrast to the affine subspace example, there are cases, when not only the distributions
converge but also the random variables themselves (almost surely). In these cases we speak
of a consistent stochastic feasibility problem, otherwise the problem is called inconsistent.
The theory of consistent stochastic feasibility problems is very rich and enables us to
analyze this problem in some more depth than the inconsistent problem. Also a great
difference is the possible analysis even on Hilbert spaces in contrast to the inconsistent
problem, where we need to stay in Rn to be able to get convergence in distribution.
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This thesis consists of content of the article [25] and a not yet submitted article, so in
particular the consistent stochastic feasibility problem in this thesis can in parts be found
in [25]. A second article is in progress, where the content and examples in the thesis of
the inconsistent case are coming from (same authors).





CHAPTER 2

Probability Theory

In this section we review the fundamental concepts of probability theory that we need
throughout this study. These include conditional expectations for nonintegrable random
variables and weak convergence. But first the basics.

2.1. Probability theory: basics

Probability theory is a powerful tool to describe natural processes, because it reduces the
description from many possibly depending variables to just a relative frequency of events
that can be observed. For example, rolling a dice has many free parameters like speed,
rotation, height, (refer to these as variables in the phase space) that influence its motion
on the table after it was rolled. Observation of just 6 relative frequencies, one for each
side, enables characterization of its behavior for many turns, but not for a single one.
So the introduction of a probability distribution is to give a weight to the set of all the
points in the phase space that lead to one possible outcome. This reduces the phase space
immensely from Rp, where p is number of free parameters to the set {1, 2, . . . , 6}, but
still captures some properties of the dice with the drawback not to be able to predict an
outcome of a single experiment.

The phase space is denoted by Ω. A measure on Ω, is defined on a family F of subsets of
Ω. To guarantee richness of operations with the interesting events, that can be observed,
this family is assumed to be a σ-algebra, that is, Ω ∈ F and for any A ∈ F it holds that
the complement Ac := Ω \ A ∈ F and for any sequence (An) ⊂ F the union ⋃nAn ∈ F .
A measure µ on (Ω,F) is a function µ : F → R+ ∪ {∞} satisfying µ(∅) = 0 and
µ(A) = ∑∞

n=1 µ(An) for any pairwise disjoint sequence (An) ⊂ F . A probability measure
µ satisfies additionally µ(Ω) = 1. A probability space is a triple (Ω,F ,P), where Ω is a
set, F a σ-algebra and P a probability measure.

Of course, the set of all subsets of Ω (the power set) is also a σ-algebra, but measures on
this σ-algebra do not satisfy rich properties in general (unless Ω is countable), e.g. there
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8 2 Probability Theory

exists no Lebesgue-measure on the power set of R, but it exists on the so called Borel-
algebra. It is in general enough to deal with sets in the smallest σ-algebra that includes
all open sets of a metric space (G, d), these are called Borel sets and the corresponding
σ-algebra B(G) the Borel-algebra of G.

Usually there are no further assumptions on the probability space, except that it is rich
enough to guarantee existence of random variables with certain distributions. A random
variable X : Ω→ G , where G is the state space, is a measurable function, i.e.X−1(A) ∈ F
for all A ∈ B(G). The distribution µ of the random variable X, denoted by X ∼ µ, is
a probability measure on the state space G given by µ := L(X) := PX := P ◦ X−1.
For example, there exists a uniformly distributed random variable - X ∼ U(0, 1) - on
(Ω,F ,P) = ([0, 1],B([0, 1]), λ), where P = λ = U(0, 1) is the Lebesgue measure; simply
take X = Id. The next lemma states that we can find a random variable with given
distribution under mild assumptions. (Note that Polish spaces – separable and complete
metric spaces – are included in the set of Borel spaces, i.e. a space on which there exists
a measurable bijection from it to a Borel-set of R.)

Lemma 2.1.1 (existence of r.v. for given distribution). Let (S,S) be a Borel space, µ
a probability measure on S and ϑ ∼ U(0, 1), then there exists a measurable function
f : [0, 1]→ S such that f(ϑ) ∼ µ.

Proof. This is a special case of [28, Theorem 2.22].

If we choose the probability space in our example rich enough, i.e. it contains at least 6
elements, then one can define a random variable X that describes the experiment through
its probabilities that a certain face is up, when casting a dice. Or, when working with the
phase space, let f : Rp → {1, 2, . . . , 6} be the solution to the physical model that gives
the outcome i ∈ {1, 2, . . . , 6} depending on the current parameter set (i.e. speed, height,
angle and so on). We are interested in determining the probability that f = i, but this is
only possible if we specify the distribution of each parameter. If we choose deterministic
initial distributions, i.e. µ = δx for x ∈ Rp, we would get that P(f = i) = 1{i}(f(x)) for
i = 1, 2, . . . , 6. If we choose the parameters independently and uniformly on [0, 1], then
P := λp is the appropriate probability measure on the phase space or parameter space Rp.
We have that f−1({i}) are all the parameter constellations that lead in an experiment to
the outcome “face i is up” and hence P(f = i) = λp(f−1({i})) =

∫
[0,1]p 1{i}(f(x)) dx.

2.2. Conditional expectation

Conditional expectations are a useful tool to compute expectations of expressions of two
dependent variables, for example E[f(X, Y )] for an integrable f : G × G → R . Note
that for another couple (X̃, Ỹ ) of random variables with the same marginals, that is,
L(X) = L(X̃) and L(Y ) = L(Ỹ ), in general one has E[f(X, Y )] 6= E[f(X̃, Ỹ )], unless
these variables have the same joint distribution, i.e. L((X, Y )) = L((X̃, Ỹ )). For the case



2.2 Conditional expectation 9

that X and Y are independent – we also write X ⊥⊥ Y in this case – we have for every
couple (X̃, Ỹ ) with the same marginals that E[f(X, Y )] = E[f(X̃, Ỹ )].

We will say random variables (Xi)∈∈I for an arbitrary index set I are independent, if
for any finite selection J ⊂ I and any Aj ∈ B(G) it holds that P(Xj ∈ Aj, ∀j ∈ J) =∏
j∈J P(Xj ∈ Aj). One has the following fact.

Theorem 2.2.1 (Existence and Independence, Theorem 2.19 in [28]). With the notation
of Lemma 2.1.1, let ξ1 = f(ϑ). Let T be another Borel space and η a distribution thereon.
Then there exists a measurable function g : [0, 1] → T with ξ2 := g(ϑ) ∼ η such that
ξ1⊥⊥ ξ2.

This generalizes immediately to sequences by induction, so for any probability measures
µ1, µ2, . . . on a Borel spaces S1, S2, . . ., there exist independent random variables ξ1, ξ2, . . .
on the probability space ([0, 1],B([0, 1]), λ) with distributions µ1, µ2, . . . [28, Theorem
2.19]. One also has that arbitrary transformations of independent variables do not de-
stroy this property. Define for random variable X : (Ω,F ,P) → (G,B(G)) the smallest
σ-algebra on Ω that makes X measurable by σ(X). Then independence of (Xi)i∈I is
equivalent to the independence of (σ(Xi))i∈I , where the latter is defined as follows. For
any finite selection J ⊂ I and any Bj ∈ σ(Xj) it holds that P(Bj ∀j ∈ J) = ∏

j∈J P(Bj).

Lemma 2.2.2 (Independence after Transformation). Let (Ω,F ,P) be a probability space
and X ⊥⊥ Y two random variables on some measurable spaces (Si,Si), i = 1, 2. Let
f : S1 → T1 and g : S2 → T2 be measurable, where (Ti, Ti), i = 1, 2 are measurable
spaces, then f(X)⊥⊥ g(Y ).

Proof. One has that X ⊥⊥ Y iff σ(X)⊥⊥ σ(Y ) and since σ(f(X)) ⊂ σ(X) and analogous
for Y , this assertion follows.

For any two random variables X, Y one can define a nontrivial third random variable out
of these, called conditional expectation. This conditional expectation can be imagined as
integrating out all independent parts, i.e. if one would have X = f(Y, ξ), where ξ⊥⊥ Y ,
then computing the conditional expectation of X given Y is the random variable

E [X |Y ] :=
∫
f(Y, u)Pξ(du). (2.1)

This decomposition of the random variable X is always possible (for a rich enough prob-
ability space), but not almost surely, only in distribution, but still the joint distribution
of X and Y is not changed, as the following theorem shows.

Theorem 2.2.3 (Decomposition, Theorem 5.10 in [28]). Let X, Y be random elements on
Borel spaces S, T respectively, then there exists a measurable function f : T × [0, 1]→ S
such that for any ξ ∼ U(0, 1) with ξ⊥⊥ Y it holds that L(X, Y ) = L(f(Y, ξ), Y ).
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Here U(0, 1) = λ is the uniform distribution on ([0, 1],B([0, 1])), the probability space
needs to be large enough for ξ to exist. One can always enlarge a probability space to
guarantee the existence of a U(0, 1) distributed random variable by considering Ω× [0, 1]
as underlying state space with σ-algebra F⊗B([0, 1]) and probability measure P⊗λ. One
can ensure the existence of ξ⊥⊥ Y by Theorem 2.2.1, if Y was constructed by Lemma 2.1.1.
This theorem means that for any variable X̃ = f(Y, ξ̃) (ξ̃⊥⊥ Y ) it holds that E[g(X, Y )] =
E[g(X̃, Y )], so X and X̃ are indistinguishable under these integrals for any measurable
g : G × G → R , whenever the integral exists. Since there always exists such a function
f satisfying the above decomposition we could interpret Eq. (2.1) as definition of the
conditional expectation (uniqueness, i.e. E [X |Y ] = E

[
X̃
∣∣∣Y ] can also be shown). This

enables the interpretation of the conditional expectation E [X |Y ] as the random variable
that remains after integrating out or taking the expectation of the independent part of
X from Y . The more usual definition however is via an a.s. unique density as seen in the
next theorem. We will in the following stick to that definition, since it is more common.
We will only work with conditional expectations on real-valued random variables.

Theorem 2.2.4 (conditional expectation - basics, see Theorem 5.1 in [28]). Let (Ω,F ,P)
be a probability space and X a real-valued random variable with E|X| < ∞ (X is inte-
grable). Let F0 ⊂ F a sub-σ-algebra. Then there exists an a.s. unique F0-mb. random
variable Z := E [X | F0] with E(Z1A) = E(X1A) for all A ∈ F0.
Let Y, (Xn)n∈N be integrable random variables. Further properties are:

(i) E(E [X | F0]) = EX;

(ii) X is F0-mb, then E [X | F0] = X a.s.;

(iii) X independent of F0, then E [X | F0] = EX a.s.;

(iv) E [aX + bY | F0] = aE [X | F0] + bE [Y | F0] a.s. for all a, b ∈ R;

(v) X ≤ Y , then E [X | F0] ≤ E [Y | F0] a.s.;

(vi) 0 ≤ Xn ↗ X (monotonically non-decreasing), then E [Xn | F0]↗ E [X | F0] a.s.;

(vii) F0 ⊂ F1 ⊂ F with σ-algebra F1, then E [E [X | F1] | F0] = E [X | F0];

(viii) Y is F0-mb. and E[|XY |] <∞, then E [XY | F0] = Y E [X | F0].

Note that we set E [X |Y ] := E [X |σ(Y )] with the definition of the conditional expecta-
tion from Theorem 2.2.4. One can generalize the definition of the conditional expectation
from integrable random variables to random variables X, where just their negative part
X− := max(0,−X) is integrable. Therefore, we need to convince ourselves that the
positive part X+ := max(0, X) is well-behaved, and induces a conditional expectation
(existence of a density).

Lemma 2.2.5 (Satz 17.11 in [4]). Let (Ω,F) be a measurable space and µ be σ-finite
((i.e. there exists (Ωn)n∈N ⊂ F with µ(Ωn) < ∞ and ⋃n Ωn = Ω)). Let f : Ω → [0,∞]
and set ν = f ·µ (i.e. ν(A) =

∫
A f dµ for A ∈ F). Then f is µ-a.s. unique. Furthermore,

ν is σ-finite if and only if f is real-valued µ-a.s.
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Remark 2.2.6: A nonnegative real-valued random variable X on a probability space
(Ω,F ,P) induces a σ-finite measure ν = X · P. This is clear by letting Ωn := {X ≤ n}.

Theorem 2.2.7 (conditional expectation for nonnegative r.v.). Let (Ω,F ,P) be a prob-
ability space and X ≥ 0 be a real-valued random variable (not necessarily integrable).
Let F0 ⊂ F be a sub-σ-algebra. Then there exists an a.s. unique nonnegative real-valued
random variable Z := E [X | F0] on (Ω,F0) with E(Z1A) = E(X1A) for all A ∈ F0.
Let additionally Y, (Xn) be nonnegative and real-valued, then all items (i) to (vii) in The-
orem 2.2.4 are satisfied for these and (viii) even if E[XY ] =∞.

Proof. From Remark 2.2.6 follows the existence of disjoint sets Ωn ∈ F0 with ⋃n Ωn = Ω
and the property that

∫
Ωn X dP <∞. One has that a.s.

1ΩnE [X | F0 ∩ Ωn] = E [X1Ωn | F0 ∩ Ωn] = E [X | F0 ∩ Ωn] = E [X1Ωn | F0] .

Define Z := ∑
n E [X | F0 ∩ Ωn], then Z = E [X | F0]. The items (i) to (viii) follow now

from Theorem 2.2.4 on Ωn and the Monotone Convergence Theorem, see Theorem A.0.13.

Now we are ready to formulate the results of Theorem 2.2.4 in a more general form, i.e.
for nonintegrable random variables.

Theorem 2.2.8 (conditional expectation for r.v. with integrable negative part). Let
(Ω,F ,P) be a probability space and X be a real-valued random variable with E[X−] <∞,
where X− := max(0,−X). Let F0 ⊂ F be a sub-σ-algebra. Then there exists an a.s.
unique real-valued random variable Z := E [X | F0] on (Ω,F0) with E(Z1A) = E(X1A)
for all A ∈ F0.
Let additionally Y, (Xn) be real-valued with integrable negative part, then all items (i) to
(vii) in Theorem 2.2.4 are satisfied for these and (viii) if E[(XY )−] <∞.

Proof. Follows immediately from X = X+ − X−, where X+ := max(0, X) and Theo-
rem 2.2.4 and Theorem 2.2.7.

2.3. Probability kernel, regular conditional dis-
tribution

A major tool when working with conditional expectations is the Disintegration Theorem,
see Theorem 2.3.2. This is a more general version of Eq. (2.1) and giving conditions when
and how to integrate out independent parts of given random variables. Therefore, we will
need two more definitions. A probability kernel from (T, T ) to (S,S) is a function p : T ×
S → [0, 1] that is measurable in the first argument, i.e. p(·, A) is measurable for all A ∈ S
and is a probability measure in the second argument, i.e. p(x, ·) is a probability measure
for all x ∈ T . A regular conditional distribution of P (X ∈ · |Y ) := E [1{X ∈ ·} |Y ] :=
E [1{X ∈ ·} | σ(Y )] withX, Y inG,S, respectively is a probability kernel p : S×G → [0, 1]
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with p(Y,A) = P (X ∈ A |Y ) a.s. Note that for (S,S) = (Ω,F0), where F0 ⊂ F is a sub
σ-algebra and Y = Id, the conditional probability P (X ∈ · | F0) := P (X ∈ A |Y ) is a
regular conditional distribution if there exists a probability kernel p : Ω× B(G)→ [0, 1]
with p(·, A) = P (X ∈ A |Y ) a.s. One has the following existence theorem.

Theorem 2.3.1 (existence of regular conditional distribution, Theorem 5.3 in [28]). Let
(S,S) be a Borel space and (T, T ) a measurable space and let X1, X2 be random variables
in S, T , respectively. Then there exists a L(X2)-a.s. unique probability kernel µ from T
to S satisfying P (X1 ∈ · |X2) = µ(X2, ·) a.s.

Theorem 2.3.2 (disintegration). Let (Ω,F ,P) be a probability space and let (S,S), (T, T )
be measurable spaces. Let X1, X2 be two random variables in S, T , respectively and let
F0 ⊂ F be a sub σ-algebra, such that X2 is F0 measurable. Let furthermore f : G×S → R
be measurable and E[f−(X1, X2)] <∞. Suppose µ is a regular version of P (X1· | F0), then

E [f(X1, X2) | F0] =
∫
f(x1, X2)µ(·, dx1) a.s.,

where µ(ω, ·) = P (X1 ∈ · | F0) (ω) for ω ∈ Ω.

Proof. First we note that by [28, Lemma 1.38 (i)] the rhs. is indeed F0-measurable. In
the proof of [28, Theorem 5.4] is shown that

E[g(X1, X2)] = E
∫
g(x1, X2)µ(·, dx1) (2.2)

for all measurable g ≥ 0. If we now replace X2 with the F0-measurable random variable
(X2,1A) ∈ G×{0, 1} with A ∈ F0, and let g(X1, (X2,1A)) := f(X1, X2)1A the statement
follows for f ≥ 0. By uniqueness of E [f(X1, X2) | F0] (Theorem 2.2.7) linearity it also
holds for measurable functions with E[f−(X1, X2)] <∞.

Remark 2.3.3 (disintegration for independent variables): If F0 = σ(X2) and X1⊥⊥ X2,
then P (X1 ∈ · |X2) = L(X1) a.s. and

E [f(X1, X2) |X2] =
∫
f(x1, X2)PX1(dx1) a.s.

2.4. Support of a measure

Theorem 2.4.1 (support of a measure). Let (G, d) be a Polish space and B(G) its Borel
σ-algebra. Let π be a measure on (G,B(G)) and define its support via

supp π = {x ∈ G | π(B(x, ε)) > 0 ∀ε > 0} .

Then the following hold

(i) supp π 6= ∅, if π 6= 0.

(ii) supp π is closed.
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(iii) π(A) = π(A ∩ supp π) for all A ∈ B(G), i.e. π((suppπ)c) = 0.

(iv) For closed S ⊂ G with π(A ∩ S) = π(A) for all A ∈ B(G) it holds that supp π ⊂ S.

(v) Let π(G) <∞. For closed S ⊂ G with π(S) = π(G) it holds that supp π ⊂ S.

Proof. (i) If π(G) > 0, then due to separability one could find for any ε1 > 0 a countable
cover of G with balls with radius ε1, where at least one needs to have nonzero
measure, because 0 < π(G) ≤ ∑

n π(B(xn, ε)). Now just consider B1 := B(xN , ε1)
such that π(B1) > 0 and apply the above procedure of countable covers with ε2 < ε1
iteratively, then there is a sequence εn → 0 and B(xn+1, εn+1) ⊂ B(xn, εn), such that
xn → x, i.e. x ∈ supp π.

(ii) Let (xn)n∈N ⊂ supp π with xn → x as n → ∞. Let ε > 0 and N > 0 such that
d(xn, x) < ε for all n ≥ N . Then xn ∈ B(x, ε) and ∃ε̃ > 0 with B(xn, ε̃) ⊂ B(x, ε),
so we get

π(B(x, ε)) ≥ π(B(xn, ε̃)) > 0,

i.e. x ∈ supp π.

(iii) Write S = (suppπ)c. Choose {xn}n∈N ⊂ S dense. By openness of S there exists
εn > 0 with B(xn, εn) ⊂ S, hence S = ⋃

n∈N B(xn, εn) and

π(S) ≤
∑
i∈N

π(B(xn, εn)) = 0.

(It holds π(B(xn, εn)) = 0, because otherwise, one could find for any small enough
ε > 0 a countable cover of B(xn, εn) with balls with radius ε, where at least one
needs to have nonzero measure. Since this holds for all ε, there is a contradiction
to B(xn, εn) ⊂ S.)

(iv) Let x ∈ supp π. So π(B(x, ε)∩ S) > 0 for all ε > 0, i.e. B(x, ε)∩ S 6= ∅ for all ε > 0.
Let xn be such that xn ∈ B(x, εn)∩S, where εn → 0 as n→∞. Then by closedness
of S, xn → x ∈ S.

(v) We have that S = G \ N with N ⊂ G and π(N) = 0. For any A ∈ B(G) it holds
that π(A ∩ S) = π(A)− π(A ∩N) = π(A). The assertion follows from (iv).

From Theorem 2.4.1 (v) it follows that the support of a probability measure µ on G can
equivalently be defined as the smallest closed set S ⊂ G, for which µ(S) = 1. The next
Lemma shows the connection between a random variable and the support of its law.
Lemma 2.4.2 (support of random variable). Let X : (Ω,F ,P)→ (G,B(G)) be a random
variable, and G a Polish space. Then

suppL(X) =
⋂

P(N)=0
X(Ω \N),

where L(X) = P(X ∈ ·) is the distribution (law) of X. In particular, if X(Ω \ N) ⊂
suppL(X) for a nullset N ⊂ Ω, then suppL(X) = X(Ω \N).
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Proof. First let x ∈ X(Ω \N) for all P-nullsets N ⊂ Ω, i.e. there exists a sequence
(ωNn )n∈N ⊂ Ω \ N with X(ωNn ) → x as n → ∞. Would hold P(Nε) = 0, where Nε :=
X−1B(x, ε) for some ε > 0, then X(Ω \Nε) ⊂ G \ B(x, ε), i.e. a contradiction to the
existence of a convergent sequence in X(Ω \Nε) to x. So P(Nε) > 0 for all ε > 0, i.e.
x ∈ suppL(X).
Let now x ∈ suppL(X), then PX(B(x, ε)) > 0 for all ε > 0, i.e. for any P-nullset N ⊂ Ω
holds {ω ∈ Ω \N |X(ω) ∈ B(x, ε)} 6= ∅. So one can find a sequence (ωNn )n∈N ⊂ Ω \ N
with X(ωNn )→ x as n→∞, so x ∈ X(Ω \N) for all nullsets N .

2.5. Weak convergence, its metrization and tight-
ness

A nice source and consistent summary on weak convergence on metric spaces are the
lecture notes in [21]. These are based on the books [50, Chapter 9], [43, Chapter II], [8,
Chapter 1] that give detailed and further results on this and other topics. Let (G, d)
be a Polish space with induced Borel-σ-algebra B(G). A sequence (µn) of probability
measures on G is said to converge to µ ∈P(G) (in the weak sense) if for any f ∈ Cb(G)
(i.e. continuous and bounded function f : G→ R ) it holds that

µnf =
∫
f(y) dµn →

∫
f(y) dµ = µf as n→∞.

One has the following useful characterizations of weak convergence. Recall, that f : G→
R is lower semi-continuous (l.s.c.) if lim infx→x0 f(x) ≥ f(x0) for all x0 ∈ G and upper
semi-continuous (u.s.c.) if −f is l.s.c. Recall also, a sequence (νn) of probability measures
is called tight, if for any ε > 0 there exists a compact K ⊂ G with νn(K) > 1 − ε for all
n ∈ N. At last recall, clA := A is the closure of A, i.e. the set of all clusterpoints of any
sequence in A and intA the interior, i.e. the set of points in A, such that there exists a
ball centered around it which is contained in A.

Theorem 2.5.1 (Portmanteau). Let (µn) ⊂ P(G) and µ ∈ P(G). The following are
equivalent

(i) µn → µ as n→∞ in the weak sense.

(ii) µnf → µf for all f ∈ Cb(G).

(iii) µnf → µf for all bounded and uniformly continuous f : G→ R .

(iv) µnf → µf for all bounded and Lipschitz continuous f : G→ R .

(v) lim supn µnf ≤ µf for all u.s.c. f : G→ R that are bounded from above.

(vi) lim infn µnf ≥ µf for all l.s.c. f : G→ R that are bounded from below.

(vii) lim supn µn(B) ≤ µ(B) for all closed B ∈ B(G).

(viii) lim infn µn(U) ≥ µ(U) for all open U ∈ B(G).
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(ix) µn(A)→ µ(A) for all A ∈ B(G) with µ(clA \ intA) = 0.

(x) µnf → µf for all bdd. and mb. f : G→ R with µ({x | f is continuous at x}) = 1.

(xi) (µn) is tight and every convergent subsequence has the same limit µ.

(xii) dP (µn, µ)→ 0, where dP is defined in Theorem 2.5.4.

(xiii) d0(µn, µ)→ 0, where d0 is defined in Theorem 2.5.5.

Furthermore, the weak limit µ is unique.

Proof. The last three items are proved below in separate theorems, see Theorems 2.5.3,
2.5.4 and 2.5.5. All of the other points can be found in [43, Theorem 6.1] and [50, Theorem
9.1.5], except item (iv). Since any bounded Lipschitz function is contained in Cb(G), to
finish the proof, we just need to show that (iv) implies (viii). Given an open set U ∈ B(G),
we define a sequence of bounded Lipschitz continuous functions fm = min(1,m d(x, U c)),
m ∈ N and note that 0 ≤ fm ↑ 1U , since U is open, and hence

lim inf
n

µn(U) ≥ lim inf
n

µnfm = µfm ↑ µ(U)

by the Monotone Convergence Theorem. This proves (viii). For uniqueness of the weak
limit, note that if two limits µ, ν would exist, then we get that

µ(U) ↑ µ(fm) = ν(fm) ↑ ν(U)

with the Monotone Convergence Theorem. This holds for all open U ∈ B(G) and hence
equality ν = µ follows from Theorem A.0.18. (In particular we also get that two probabil-
ity measure are equal, if µ(f) = ν(f) for all f ∈ Cb(G) that are Lipschitz continuous).

Remark 2.5.2: Weak convergence of probability measures is in functional analysis also
referred to as weak-∗ convergence of corresponding functionals on Cb(G). To see that,
consider the space of probability measures as a subset of linear functionals on the Banach
space (Cb(G), ‖·‖∞) of continuous and bounded functions f : G→ R with the supremum
norm. Every probability measure ν induces a functional Φν on Cb(G) through Φν(f) :=
〈ν, f〉 :=

∫
G f(x)ν(dx). Weak convergence of the probability measures νn → ν can then

be understood as weak-∗ convergence of Φνn to Φν , i.e. 〈νn, f〉 → 〈ν, f〉 as n→∞ for all
f ∈ Cb(G).

We turn our attention to the last three items of Theorem 2.5.1. For item (xi) we need
the following concept of compactness in the space of probability measures.

Theorem 2.5.3 (Prokhorov’s Theorem). Let (G, d) be a Polish space and (νn) ⊂P(G).
Then (νn) is tight, if and only if (νn) is weakly compact in P(G), i.e. any subsequence of
(νn) has a convergent subsequence in the weak sense.

Proof. See [8, Theorem 5.1, Theorem 5.2].
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Note that with help of Theorem A.0.16 we get immediately the assertion (xi) in Theo-
rem 2.5.1. There are further characterizations of weak convergence. The following charac-
terizations are based on viewing the space of probability measures equipped with certain
metrics as metric space, where convergence with respect to the metric is equivalent to
weak convergence of the measures.

Theorem 2.5.4 (properties of the Prokhorov-Levi distance). Let G be a Polish space.
Define for µ, ν ∈P(G) the Prokhorov-Levi distance

dP (µ, ν) = inf {ε > 0 |µ(A) ≤ ν(B(A, ε)) + ε, ν(A) ≤ µ(B(A, ε)) + ε ∀A ∈ B(G)} .

(i) It holds the representation

dP (µ, ν) = inf
{
ε > 0

∣∣∣∣∣ inf
L(X,Y )∈C(µ,ν)

P(d(X, Y ) > ε) ≤ ε

}
,

where C(µ, ν) := {γ ∈P(G×G) | γ(· ×G) = µ, γ(G× ·) = ν} is called the set of
couplings for µ and ν. Furthermore, the inner infimum for fixed ε > 0 is attained
and the outer infimum is also attained.

(ii) dP (µ, ν) ∈ [0, 1].

(iii) dP metrizes weak convergence, i.e. for µn, µ ∈ P(G), n ∈ N holds µn → µ if and
only if dP (µn, µ)→ 0 as n→∞.

(iv) (P(G), dP ) is a Polish space.

(v) For µi, νi ∈P(G) and λi ∈ [0, 1], i = 1, . . . ,m with ∑m
i=1 λi = 1 holds

dP (
∑
i

λiµi,
∑
i

λiνi) ≤ max
i
dP (µi, νi).

Proof. (i) See [49, Corollary] for the first assertion. To see that the infimum is attained,
let γn ∈ C(µ, ν) be a minimizing sequence, i.e. for (Xn, Yn) ∼ γn holds P(d(Xn, Yn) >
ε) = γn(Uε) → inf(X,Y )∈C(µ,ν) P(d(X, Y ) > ε), where Uε := {(x, y) | d(x, y) > ε} ⊂
G×G is open. The sequence (γn) is tight and for a clusterpoint γ holds γ ∈ C(µ, ν)
by Lemma 2.6.3. From Theorem 2.5.1 (viii) it follows that γ(Uε) ≤ lim infk γnk(Uε).
To see, that the outer infimum is attained, let (εn) be a minimizing sequence, chosen
to be monotonically nonincreasing with limit ε ≥ 0. One has that Uε = ⋃

n Uεn where
Uεn ⊃ Uεn+1 and hence γ(Uε) = limn γ(Uεn) ≤ limn εn = ε.

(ii) Clear by (i).

(iii) See [50, Theorem 9.1.11].

(iv) See [50, Theorem 9.1.11].

(v) If ε > 0 is such that µi(A) ≤ νi(B(A, ε)) + ε and νi(A) ≤ µi(B(A, ε)) + ε for all
i = 1, . . . ,m and all A ∈ B(G), then also ∑i λiµi(A) ≤ ∑

i λiνi(B(A, ε)) + ε as well
as ∑i λiνi(A) ≤ ∑i λiµi(B(A, ε)) + ε.
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Another metric that metrizes weak convergence is the Kantorovich-Rubinshtein or Fortet-
Mourier metric.

Theorem 2.5.5 (Kantorovich-Rubinshtein or Fortet-Mourier metric). Let G be a Polish
space. Define for µ, ν ∈P(G) the Kantorovich-Rubinshtein or Fortet-Mourier metric

d0(µ, ν) = sup {µf − νf | f ∈ Lip1(G), ‖f‖∞ ≤ 1} ,

where Lip1(G) := {f : G→ R | |f(x)− f(y)| ≤ d(x, y)∀x, y ∈ G}. Then d0 metrizes
weak convergence, i.e. for µn, µ ∈ P(G), n ∈ N it holds that µn → µ if and only if
d0(µn, µ)→ 0 as n→∞. Furthermore, (P(G), d0) is a Polish space.

Proof. See [10, Section 8.3].

2.6. Measures on the product space, couplings

The product space is needed in the description of metrics on the space of probability
measures. We will give properties of couplings. For a metric space (G, d) we can define a
product space (G×G, d×), which is also a metric space, via any metric d× : G2×G2 → R+
that satisfies

d× (( xnyn ) , ( xy ))→ 0 ⇔ d(xn, x)→ 0 and d(yn, y)→ 0. (2.3)

Examples would be

d× (( x1
y1 ) , ( x2

y2 )) = max(d(x1, x2), d(y1, y2)) (2.4)

d× (( x1
y1 ) , ( x2

y2 )) = (dp(x1, x2) + dp(y1, y2))
1
p , p ≥ 1. (2.5)

This product space satisfies a desirable property as the next lemma shows.

Lemma 2.6.1. Let (G, d) be a Polish space and let the metric d× on G × G satisfy
Eq. (2.3), then B(G×G) = B(G)⊗ B(G).

Proof. First we note that for A,B ⊂ G it holds that A × B is closed in (G × G, d×) if
and only if A,B are closed in (G, d) by Eq. (2.3). Since the σ-algebra B(G) ⊗ B(G) is
generated by the family A := {A1 × A2 |A1, A2 ⊂ G closed}. One has that the rhs. is
always contained in the lhs. For the other direction, note that any metric d× with the
property (2.3) has the same open and closed sets. If A is closed in (G×G, d×) and d̃× is
another metric on G×G satisfying (2.3), then for (an, bn) ∈ A with (an, bn)→ (a, b) ∈ G×
G w.r.t. d̃× it holds that d(an, a)→ 0 and d(bn, b)→ 0 and hence d×((an, bn), (a, b))→ 0,
i.e. (a, b) ∈ A, so A is closed in (G× G, d̃×). It follows that all open sets in (G× G, d×)
are the same for any metric that satisfies Eq. (2.3). Furthermore separability of G × G
yields that any open set is the countable union of balls: by Theorem A.0.20 there exists
(un)n∈N ⊂ U dense for U ⊂ G × G open. We can find εn > 0 with ⋃n B(un, εn) ⊂ U .
If there exists x ∈ U , which is not covered by any ball, then we may enlarge a ball, so
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that x is covered: since there exists ε > 0 with B(x, ε) ⊂ U and there exists m ∈ N with
d(x, um) < ε/2 by denseness, we may put εm = ε/2 and get x ∈ B(um, εm) ⊂ B(x, ε) ⊂ U .
Now to continue the proof, let d× be given by Eq. (2.4). Then for any open U ⊂ G× G
there exist (un) ⊂ U and εn > 0 with U = ⋃

n B(un, εn) and since

B(un, εn) = B(un,1, εn)× B(un,2, εn) ∈ B(G)⊗ B(G),

for un = (un,1, un,2) ∈ G×G we also get that the lhs. is contained in the rhs, so equality
of the σ-algebras follows.

As we have seen in the proof above the advantage is that we can equip G × G with the
metric in Eq. (2.4), so that balls have a simple structure, that will be helpful as well in
the next lemma.

We call a pair of random variables (X, Y ) with X ∼ µ and Y ∼ ν a coupling of µ and ν.
We define for given probability measures µ, ν on G

C(µ, ν) := {γ ∈P(G×G) | γ(· ×G) = µ, γ(G× ·) = ν} ,

by abuse of language, we also call this the set of couplings for µ and ν. We have the
following properties of couplings.

Lemma 2.6.2 (couplings). Let (G, d) be a Polish space and let µ, ν ∈ P(G). Let γ ∈
C(µ, ν), then

(i) supp γ ⊂ suppµ× supp ν,

(ii) {x | (x, y) ∈ supp γ} = suppµ.

Proof. We let the product space be equipped with the metric in Eq. (2.4).

(i) Suppose (x, y) ∈ supp γ and let ε > 0, then

µ(B(x, ε)) = γ(B(x, ε)×G) ≥ γ(B(x, ε)× B(y, ε)) = γ(B((x, y), ε)) > 0.

Analogous follows ν(B(y, ε)) > 0. So (x, y) ∈ suppµ× supp ν.

(ii) Suppose x ∈ suppµ, then γ(B(x, ε)×G) > 0 for all ε > 0. By Theorem 2.4.1 there
either exists y ∈ G with (x, y) ∈ supp γ or there exists a sequence (xn, yn) ∈ supp γ
with xn → x. Hence the assertion follows.

As a last point, we want to give a result on tightness of couplings and their clusterpoints.

Lemma 2.6.3 (weak convergence in product space). Let (G, d) be a Polish space and
suppose (µn), (νn) ⊂P(G) are tight sequences. Let Xn ∼ µn and Yn ∼ νn and denote by
γn = L((Xn, Yn)) the joint law of Xn and Yn. Then (γn) is tight.
If furthermore, µn → µ ∈P(G) and νn → ν ∈P(G) in the weak sense, then clusterpoints
of (γn) are in C(µ, ν).
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Proof. For the proof idea see [47, Theorem 3.12]. By tightness of (µn) and (νn), there
exists for any ε > 0 a compact set K ⊂ G with µn(G \K) < ε/2 and νn(G \K) < ε/2 for
all n ∈ N, so also

γn(G×G \K ×K) ≤ γn((G \K)×G) + γn(G× (G \K))
= µn(G \K) + νn(G \K)
< ε

for all n ∈ N, implying tightness of (γn). By Prokhorov’s Theorem, every subsequence of
(γn) has a convergent subsequence and so there exists (nk) ⊂ N and γ ∈P(G×G) with
γnk → γ. One has γ ∈ C(µ, ν): Since for every f ∈ Cb(G×G) holds γnkf → γf , we may
choose f(x, y) = g(x)1G(y) with g ∈ Cb(G). One has µnkg → µg and

γnkf → γf = γ(· ×G)g

as k → ∞. Since µnkg = γnkf for all k one has the equality µ = γ(· × G). So similarly
ν = γ(G× ·) and hence γ ∈ C(µ, ν).

2.7. Markov chains, Random Function Iterations,
Markov operator

Recall the definition of a time-homogeneous Markov chain with transition kernel p.

Definition 2.7.1. A sequence of random variables (Xk)k≥0, Xk : (Ω,F ,P)→ (G,B(G))
is called Markov chain with transition kernel p if for all k ∈ N0 and A ∈ B(G) P-a.s. the
following hold:

(i) P (Xk+1 ∈ A |X0, X1, . . . , Xk) = P (Xk+1 ∈ A |Xk);

(ii) P (Xk+1 ∈ A |Xk) = p(Xk, A).

From Theorem 2.3.1 follows the existence of regular versions for P (Xk+1 ∈ · |Xk). One
has the following fact.

Proposition 2.7.2 (existence of update function, Markov chain property, Proposition
7.6 in [28]). The sequence (Xk)k≥0 of random variables on a Borel space G is a time-
homogeneous Markov chain if and only if there exist a measurable function Φ : G×[0, 1]→
G , called update function, and a U(0, 1) i.i.d. sequence (ξk)⊥⊥ X0 with Xk+1 = Φ(Xk, ξk)
for k ∈ N0.

That ξk is U(0, 1) distributed is not necessary for (Xk) to have the Markov property, only
the independence of ξk and X0, . . . , Xk is important, as the next proposition shows.

Proposition 2.7.3 (Markov chain via update function). Let (I, I) be a measurable space.
If an i.i.d. sequence (ξk) of I-valued random variables is given and a measurable function
Φ : G×I → G , then Xk+1 = Φ(Xk, ξk) defines a Markov chain, if ξk⊥⊥ X0 for all k ∈ N.
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Proof. The assertion is an easy consequence of Theorem 2.3.2. Let f : G × I → R ,
f(x, y) := 1A(Φ(x, y)), where A ∈ B(G), F0 = σ(X0, X1, . . . , Xk), Y = ξk and X =
Xk. Then by construction F0 and Y are independent, X is F0 measurable, and hence
P (Y ∈ · | F0) = L(Y ) has a regular version. Let g(x) :=

∫
f(x, y)PY (dy). Then, since

E|f(X, Y )| ≤ 1 <∞, Theorem 2.3.2 yields

E [f(X, Y ) | F0] = g(X),

and hence

P (Xk+1 ∈ A |X0, . . . , Xk) = g(Xk).

By the same argument with F0 = σ(Xk) one has that

P (Xk+1 ∈ A |Xk) = g(Xk),

hence g is the transition kernel of the Markov chain (Xk)k∈N0 . Note that g(y) = E(f(X, y)) =
P(Φ(X, y) ∈ A), hence p(·, A) := g(·) for A fixed is the transition kernel, as claimed.

Let us write also Tyx := Φ(x, y), so we implicitly introduce a family of mappings

{Ty : G→ G | y ∈ [0, 1]} ,

then the transition kernel p of a Markov chain with update function Φ is given by

(x ∈ G)(A ∈ B(G)) p(x,A) := P(Φ(x, ξ) ∈ A) = P(Tξx ∈ A) (2.6)

as follows from Proposition 2.7.3. So we can write the Markov chain formally as the
following algorithm.

Algorithm 1 Random Function Iteration (RFI)
Initialization: X0 ∼ µ, (ξk) i.i.d., X0⊥⊥ (ξk)
for k = 0, 1, 2, . . . do

Xk+1 = TξkXk

return {Xk}k∈N

Thus the RFI appears naturally in the study of convergence of Markov chains. We will
use the notation XX0

k := Tξk−1 . . . Tξ0X0 to denote the RFI sequence with update function
Tyx = Φ(x, y) initialized with X0 ∼ µ. This is particularly helpful when characterizing
RFI sequences initialized with the delta distribution of a point x ∈ G, where Xx

k denotes
this sequence initialized with X0 ∼ δx. We throughout assume that the variables X0, (ξk)
are constructed by Theorem 2.2.1, so that we can always construct more independent or
dependent variables in the later analysis.

The Markov operator P acting on a measure µ ∈P(G) is defined via

(A ∈ B(G)) µP(A) :=
∫
G
p(x,A)µ(dx).
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With this notation, one is able to write for the distribution of the k-th iterate of the
Markov chain with Markov operator P that L(Xk) = PXk = µPk (see [28, Proposition
7.2]).

One defines the operation of the Markov operator acting on a measurable function f :
G→ R via

(x ∈ G) Pf(x) :=
∫
G
f(y)p(x, dy).

Note that

Pf(x) =
∫
G
f(y)PΦ(x,ξ)(dy) =

∫
Ω
f(Φ(x, ξ(ω)))P(dω) =

∫
I
f(Φ(x, u))Pξ(du).

The symbol P is used ambiguously, sometimes authors use the symbol P∗ to mean the
operator on P(G) with the property that P∗µ = µP , but it will always be clear from the
context, which operator is meant in a formula.

An important regularity property for the Markov operator is the Feller property, i.e.
Pf ∈ Cb(G) whenever f ∈ Cb(G), it is needed in Theorem 2.8.2 to ensure we can construct
invariant measures for P with help of the average of the distributions of the Markov chain
iterates.

Theorem 2.7.4 (Feller property for continuous mappings). If Ti is continuous for every
i ∈ I, then the Markov operator P is Feller.

Proof. See also [23, Theorem 4.22]. By continuity of Ti, i ∈ I, the update function Φ is
continuous in the first argument. It follows for f ∈ Cb(G) and xn → x as n → ∞ by
Lebesgue’s Dominated Convergence Theorem

Pf(xn) =
∫
I
f(Φ(xn, u))Pξ(du)→

∫
I
f(Φ(x, u))Pξ(du) = Pf(x).

Note that Pf is bounded, whenever f is a bounded function.

2.8. Invariant measure

A fixed point of the Markov operator P is called an invariant distribution, i.e. π ∈P(G)
is invariant if and only if πP = π. We denote the set of all invariant distributions by
invP . In terms of corresponding random variables, we have the following lemma.

Lemma 2.8.1. Let π be an invariant probability measure for P defined in Eq. (2.6) and
let Y ∼ π. Suppose ξ is independent of Y , then TξY ∼ π.
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Proof. For A ∈ B(G)

P(TξY ∈ A) = E[E [1A(TξY ) | ξ]] = E
∫
1A(Tξy)π(dy) =

∫ ∫
1A(z)PTξy(dz)π(dy)

=
∫ ∫

1A(z)p(y, dz)π(dy) = πP(A) = π(A) = P(Y ∈ A),

where we used Theorem 2.3.2 and Fubini’s Theorem.

More generally, if we choose Y independent of (ξk), also denoted Y ⊥⊥ (ξk), we get that
XY
k ∼ π for all k ∈ N with the notation from above. A fundamental result and central in

our analysis of the inconsistent feasibility problem is the next theorem.

Theorem 2.8.2 (construction of an invariant measure). Let µ ∈ P(G) and P be the
Markov operator for a given transition kernel p, which is assumed to be Feller. Let
(µPn)n∈N be a tight family of probability measures on a Polish space (G, d), i.e. for any
ε > 0 there exists Kε ⊂ G compact with (µPn)(G \ Kε) < ε for all n ∈ N. Then any
clusterpoint of (νn) where νn = 1

n

∑n
i=1 µP i is an invariant measure for P.

Proof. This is basically [24, Theorem 1.10]. The tightness of (µPn) implies tightness of
(νn) and therefore there exists a weakly converging subsequence (νnk) with limit π ∈P(G)
by Prokhorov’s Theorem. By the Feller property of P one has for any continuous and
bounded f : G→ R that also Pf is continuous and bounded and hence

|(πP)f − πf | = |π(Pf)− πf |
= lim

k
|νnk(Pf)− νnkf |

= lim
k

1
nk

∣∣∣µPnk+1f − µPf
∣∣∣

≤ lim
k

2‖f‖∞
nk

= 0.

We have the following existence result.

Proposition 2.8.3 (existence of invariant measure). Let (G, d) be a Polish space and
P be the Markov operator corresponding to the transition kernel in (2.6). Suppose P is
Feller and that there exists a compact set K ⊂ G and µ ∈P(G) with

lim sup
n→∞

νµn(K) := lim sup
n→∞

1
n

n∑
i=1

µP i(K) > 0,

then there exists an invariant measure for P.

Proof. See [35, Proposition 3.1].
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Remark 2.8.4: It readily can be shown that there exists an invariant probability measure
π that has compact support, if and only if lim supn→∞ νµn(K) = 1 for some compact K
and some µ ∈P(G).

A Markov operator need not possess a unique invariant probability measure or any in-
variant measure at all, as the next example illustrates.

Example 2.8.5 (no invariant measure). Consider the case of two subspaces C1 and C2
in Rn that have noncompact intersection (i.e. both at least 2 dimensional) and which are
distorted by an affine noise model as follows. Let ξ1, ξ2 be independent affine perturbations
of the projectors onto C1 and C2 respectively, i.e. we let

(x ∈ Rn) Pξ1x = PC1x+ ξ1, Pξ2x = PC2x+ ξ2 (2.7)

where PCi denotes the projector onto Ci (i = 1, 2). We consider the fixed point mapping
Tξ in Algorithm 1 corresponding to the composition of the projectors: Tξx := Pξ1Pξ2x
where ξ = (ξ1, ξ2). The noise ξ satisfies the property P(〈h, ξi〉 > 0) = α > 0 (i = 1, 2) for
all h ∈ C1∩C2 with ‖h‖ = 1. (In particular, this holds for isotropic noise.) For this noise
model, one can show that there does not exist an invariant measure.

To see this, note that we can find an h ∈ Rn with ‖h‖ = 1 such that th ∈ C1 ∩ C2 for all
t ∈ R. For any c = c(t) = th, let

H>c := {x ∈ Rn | 〈h, x− c〉 > 0}

be the open half-space with normal h that contains th+c for t > 0. Note that for x ∈ H>c,
the probability to end up in H>c after one projection is ≥ α, since

〈h, Pξix− c〉 = 〈h, PCix− c〉+ 〈h, ξi〉 , i = 1, 2

Here 〈h, PCix− c〉 > 0 since Ci is a subspace and P(〈h, ξi〉 > 0) = α, by the assumption
on the noise. So one has for x ∈ H>c that

P(Tξx ∈ H>c) = E [E [1{Pξ1Pξ2x ∈ H>c} | ξ2]]
≥ αE [1{Pξ2x ∈ H>c}] ≥ α2.

This is in contradiction to the existence of an invariant measure π. Indeed,

π(H>c) ≥
∫
H>c

p(x,H>c)π(dx) ≥ α2

for any c ∈ C1 ∩C2. But π is tight, so there is a compact set K for which π(K) > 1−α2.
If c is chosen such that K ∩H>c = ∅, the contradiction follows.

Consider the Polish space (Rn, ‖·‖) for the case that Ti = Pi, i ∈ I is a projector onto a
nonempty closed and convex set. A sufficient condition for the deterministic Alternating
Projections Method to converge in the inconsistent case to a limit cycle for convex sets is
that one of the sets is compact (this is an easy consequence of [13, Theorem 2]). We try
to translate this into our setting. A sufficient condition for the existence of an invariant
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measure for P is then the existence of a compact set K ⊂ Rn with p(x,K) ≥ ε for
all x ∈ Rn and some ε > 0. This would be given in the case that I consists of only
finitely many sets, where one of them, say Ci = K, is compact and P(ξ = i) = ε, since
p(x,K) = P(Pξx ∈ K) ≥ P(Pix ∈ K, ξ = i) = P(ξ = i) = ε for all x ∈ Rn. More
generally, we have the following result

Corollary 2.8.6 (existence of invariant measures for finite collections of continuous map-
pings). Let (G, d) be a Polish space and let Ti : G→ G be continuous for i ∈ I, where I
is a finite index. If for one index i ∈ I it holds that P(ξ = i) > 0 and Ti(G) ⊂ K, where
K ⊂ G is compact, then there exists an invariant measure for P.

Proof. We have from Ti(G) ⊂ K that P(Tξx ∈ K) ≥ P(ξ = i) and hence for the sequence
(Xk) generated by Algorithm 1 for an arbitrary initial probability measure

P(Xk+1 ∈ K) = E[P (TξkXk ∈ K |Xk)] ≥ P(ξ = i) ∀k ∈ N0.

The assertion follows now immediately from Proposition 2.8.3, since P(ξ = i) > 0 and P
is Feller by continuity of Tj for all j ∈ I.

Next we mention an existence version for invariant measures of the RFI Markov operator,
if the corresponding RFI sequence (Xk) has uniformly bounded expectation.

Lemma 2.8.7 (existence in Rn, RFI). Let Ti : Rn → Rn (i ∈ I). Let (Xk) be an RFI
sequence (generated by Algorithm 1) for some initial measure. Suppose that for all k ∈ N
it holds that E [‖Xk‖] ≤ M for some M ≥ 0, then there exists an invariant measure for
the RFI Markov operator P given by Eq. (2.6).

Proof. For any ε > M Markov’s inequality implies that

P(‖Xk‖ ≥ ε) ≤ E [‖Xk‖]
ε

≤ M

ε
< 1

Hence,

lim sup
k→∞

P(‖Xk‖ ≤ ε) ≥ lim sup
k→∞

P(‖Xk‖ < ε) ≥ 1− M

ε
> 0.

Existence of an invariant measure then follows from Proposition 2.8.3 since closed balls
in Rn with finite radius are compact, P(Xk ∈ ·) = µPk and continuity of Ti yields the
Feller property for P .

2.9. Wasserstein metric

A useful metric later on, to describe convergence of a sequence of probability measures, in
many examples is the so called Wasserstein metric on the space of probability measures
P(G). Especially to describe geometric convergence this metric will become very helpful.
We give in the following the definition and some properties we make use of.
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Lemma 2.9.1 (properties of the Wasserstein metric). Let (G, d) be a Polish space. Denote
the Wasserstein metric Wp : P(G) ×P(G) → [0,∞] for p ∈ [0,∞) and µ, ν ∈ P(G)
through

Wp(µ, ν) =
(

inf
γ∈C(µ,ν)

∫
dp(x, y)γ(dx , dy)

)1
p

.

Define the subsets Pp(G) ⊂P(G) via

Pp(G) =
{
θ ∈P(G)

∣∣∣∣ ∃x ∈ G :
∫
dp(x, y)θ(dy) <∞

}
.

(i) The representation of Pp(G) is independent of x and for µ, ν ∈ Pp(G) we have
Wp(µ, ν) <∞.

(ii) If Wp(µ, ν) <∞, then the infimum is attained.

(iii) (Pp(G),Wp(G)) is a Polish space.

(iv) If Wp(µn, µ)→ 0 for (µn) ⊂P(G), then µn → µ (but not vice versa).

Proof. (i) See [53, Remark after Definition 6.4].

(ii) From Lemma 2.6.3 we know that the sequence (γn) which is assumed to be a mini-
mizing sequence for Wp(µ, ν) is tight and hence there is a clusterpoint γ ∈ C(µ, ν).
By continuity of the metric d it follows that d is lower semi-continuous and bounded
from below and from [50, Theorem 9.1.5] follows then γd ≤ lim infk γnkd = Wp(µ, ν).

(iii) See [53, Theorem 6.9].

(iv) See [53, Theorem 6.18].

We want to emphasize here that the Wasserstein metric may take the value infinity,
unless G is compact. For example in Rn the Wasserstein metric takes the value infinity if
µ = L(X) with E[‖X‖] =∞ and ν ∈P(G) has compact support. But if we would choose
ν = µ(· − a) for some a ∈ Rn, then W (µ, ν) ≤ ‖a‖ < ∞. Also (iv) of Lemma 2.9.1 is
an important implication. If we are able to show convergence of (L(Xn)) to a probability
measure µ in the Wasserstein metric, then we immediately get weak convergence L(Xn)→
µ. Since convergence in the Wasserstein metric is stronger than weak convergence [53,
Definition 6.8] the implication is not true in general, unless G is compact [53, Corollary
6.13].

In Section 8.2 we give an important application of the Wasserstein metric to describe
geometric convergence of the RFI Markov chain for the case the mappings Ti (i ∈ I) are
contractions in expectation, as for example is the case for Ti being the projection onto an
affine subspace (Example 8.2.6).
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Theorem 2.9.2 (Geometric convergence for contractions in expectation). Let (G, d) be a
Polish space and let {Ti | i ∈ I} be contractions in expectation, i.e. there exists r ∈ (0, 1)
such that Ti : G→ G (i ∈ I) are mappings with E[d(Tξx, Tξy)] ≤ rd(x, y) for all x, y ∈ G,
see also [48]. Suppose furthermore that there exists y ∈ G with E[d(Tξy, y)] < ∞, then
there exists a unique invariant measure π ∈P1(G) for P with

W (µPn, π) ≤ rnW (µ, π)

for all µ ∈P1(G).

Proof. Note that for any pair of distributions µ, ν ∈P1(G) and a pair random variables
(X, Y ) that is an optimal coupling for W (µ, ν) (possible by Lemma 2.9.1) satisfies

W (µP , νP) ≤ E[d(TξX,TξY )] ≤ rE[d(X, Y )] = rW (µ, ν),

if (X, Y ) is chosen independent of ξ (possible due to Theorem 2.2.1) and by application
of Remark 2.3.3. We have that P : P1(G) →P1(G) : let X ∼ µ ∈P1(G) with X ⊥⊥ ξ
then

E[d(TξX, y)] ≤ E[d(TξX,Tξy)] + E[d(Tξy, y)] <∞,

that means µP ∈P1(G). So in total we have shown that P is a contraction on the Polish
space (P1(G),W ) and hence Banach’s Fixed Point Theorem yields the assertion of the
theorem.

We want to note here that there is no further assumption like continuity or nonexpan-
siveness on the mappings Ti (i ∈ I) needed, also the underlying metric space is a general
Polish space, which emphasizes the generality of this assertion.

As a consequence of Example 2.8.5, from Theorem 2.9.2 we can conclude that the mapping
Tξ cannot be contractive in expectation, indeed ‖Tξ‖ = 1.

2.10. TV-norm

Another metric on the space of probability measures is the TV-norm. We will make use
of it in some examples later on to describe geometric convergence of the sequence (L(Xn))
to an invariant probability measure for the RFI Markov chain for projectors onto compact
intervals (Example 8.2.8). In the following we give its definition on some properties we
make use of.

Lemma 2.10.1 (properties of the TV-norm). Let (G, d) be a metric space. Define the
TV-norm of two probability measures as

‖µ− ν‖TV := sup
A∈B(G)

|µ(A)− ν(A)|.

Then
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(i) ‖µ− ν‖TV = 1
2 supf :G→[−1,1] mb. |µf − νf | = infL(X,Y )∈C(µ,ν) P(X 6= Y ).

(ii) (P(G), ‖·‖TV) is complete.

(iii) supx,y∈D ‖p(x, ·)− p(y, ·)‖TV = supµ,ν∈P(D),µ6=ν
‖µP−νP‖TV
‖µ−ν‖TV

for D ⊂ G.

Proof. (i) See [46, Proposition 3].

(ii) See [23, Theorem 4.28].

(iii) See [19, Corollary 3.14].

Next we show that in view of Remark 2.5.2 the TV-norm is equivalent to the operator
norm in the dual space of (Cb(G), ‖·‖∞), so that convergence in either norm implies
convergence in the other.

Lemma 2.10.2 (TV-norm equivalent to operator norm). Let (G, d) be a metric space
and let µ, ν ∈P(G). Then

‖µ− ν‖TV ≤ ‖µ− ν‖∗ ≤ 2‖µ− ν‖TV,

where for φ ∈ C∗b (G)

‖φ‖∗ = sup
f∈Cb(G)
‖f‖∞=1

〈φ, f〉 .

Proof. From (i) in Lemma 2.10.1 we get that

‖µ− ν‖∗ ≤ 2‖µ− ν‖TV.

For the other direction, fix U ⊂ G open and let (fn) be a sequence in Cb(G) with ‖fn‖∞ =
1 and 0 ≤ fn ≤ 1U (construction in the proof of Theorem 2.5.1). Then

‖µ− ν‖∗ = sup
f∈Cb(G)
‖f‖∞=1

|(µ− ν)f | ≥ lim
n→∞

|(µ− ν)fn| = |µ(U)− ν(U)|.

This inequality follows immediately also for all closed sets A, since G \ A is open.
For any real-valued measure η (σ-additive and η(∅) = 0) on a measure space (S,S) there
exist disjoint S+, S− ∈ S with η+(A) := η(S+∩A) ≥ 0 and η−(A) := −η(S−∩A) ≥ 0 for
all A ∈ S (Hahn-Jordan decomposition [9, Theorem 3.1.1]). In particular, η = η+ − η−.
Letting η = µ− ν, we have that

(µ− ν) = (µ− ν)+ − (µ− ν)−,

and the existence of G+ ∈ B(G) with (µ− ν)(G+) = (µ− ν)+(G).
Since (µ − ν)+ is a finite measure, by Theorem A.0.18 there exists a sequence (An) of
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closed sets with An ⊂ G+ and (µ − ν)+(An) → (µ − ν)+(G+). Hence we have (by
Theorem A.0.18) that

lim sup
n

(µ− ν)−(An) = lim sup
n

(µ− ν)(An)− (µ− ν)+(An) ≤ (µ− ν)(G+)− (µ− ν)+(G+) = 0,

which implies (for n large enough)

‖µ− ν‖∗ ≥ lim
n
|µ(An)− ν(An)| = lim

n
(µ− ν)+(An)− (µ− ν)−(An) = (µ− ν)+(G+).

Now, since

‖µ− ν‖TV = sup
A∈B(G)

|µ(A)− ν(A)| = sup
A∈B(G)

µ(A)− ν(A)

= sup
A∈B(G)

(µ− ν)+(A)− (µ− ν)−(A) = (µ− ν)+(G+),

it follows that ‖µ− ν‖∗ ≥ ‖µ− ν‖TV.

We want to note that convergence of (L(Xk)) in the TV-norm is a strong type of conver-
gence, that implies convergence in the Wasserstein and Levi-Prokhorov metric. In contrast
to convergence in the weak sense, convergence in the TV-norm implies that µnf → µf
for all measurable and bounded f : G→ R .

Now we give a helpful result on geometric convergence of a Markov chain in the TV-norm,
under the assumption that the global minorization condition for the transition kernel is
satisfied.

Theorem 2.10.3 (Doeblin, Theorem 4.29 in [23]). Let (G, d) be a metric space. Assume
p satisfies the global minorization property, i.e. there exists a probability measure ν and
κ > 0 such that p(x,A) ≥ κν(A) for all A ∈ B(G) and x ∈ G. Then there exists
a unique invariant measure π for P and, for all probability measures µ, it holds that
‖µPn − π‖TV ≤ (1− κ)n.

Note that the global minorization property can be interpreted as a (strong) regularity
property of the transition kernel of the Markov chain. It is an interesting question,
if regularity properties of the kernel can be formulated similar to metric regularity of
mappings to describe linear (geometric) convergence of fixed point iterations also in cases
where invP is not a singleton.
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The Stochastic Fixed Point Problem

Let (Ω,F ,P) be a (rich enough) probability space and (G, d) be a Polish space. Let
{Ti | i ∈ I} be a family of mappings from G → G, where I is an arbitrary index set.
Let ξ be a random variable into the measurable space (I, I), where I is a σ-algebra on
I. We can define an update function Φ : G × I → G that generates an RFI on G via
Φ(x, i) = Tix in Algorithm 1, so that, if an i.i.d. sequence (ξk) and X0 ∼ µ with X0⊥⊥ (ξk)
are given, where µ ∈P(G) is the initial distribution, we have

Xk+1 = TξkXk, k ∈ N0.

With the notation from Section 2.7 the induced transition kernel (RFI kernel) on G is

p(x,A) := P(Φ(x, ξ) ∈ A) = P(Tξx ∈ A) x ∈ G,A ∈ B(G).

Then the the stochastic fixed point problem is to

Find π ∈ invP , (3.1)

where P is the Markov operator defined through the RFI kernel (see Section 2.7) and
where

invP := {π ∈P(G) |πP = π} ,

see Section 2.8. For the stochastic fixed point problem to be well-defined, we will hence-
forth assume without exception as a standing assumption that Φ is measurable.

There are two further specializations which are fundamentally different. The consistent
and inconsistent stochastic feasibility problem. While the former is characterized by ob-
servation of almost sure convergence of the RFI sequence of random variables for the
latter at most convergence of the distributions in the weak sense can be expected.

29
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3.1. Consistent Stochastic Feasibility Problem

The stochastic feasibility problem is to find a point

x∗ ∈ C := {x ∈ G |P(x ∈ Fix Tξ) = 1} , (3.2)

where the fixed point set of the operator Ti is denoted as

Fix Ti = {x ∈ G |x = Tix} .

The problem is called consistent, if C 6= ∅.

Letting Ti = Pi be a projector onto a convex, closed and nonempty set Ci in a Hilbert
space (i ∈ I), this specializes immediately to the stochastic feasibility problem formulated
by Butnariu and Flåm [15] where Fix Tξ = Cξ. In order to make sense of this formulation
of stochastic feasibility, we need the event {x ∈ Fix Tξ} to be an element of F for any
x ∈ G.
Remark 3.1.1: Since {x} ∈ B(G) and the function Φξ : G × Ω → G , (x, ω) 7→
Φξ(x, ω) := (Φ ◦ (Id, ξ))(x, ω) = Tξ(ω)x is measurable as composition of two measurable
functions, we find

{x ∈ Fix Tξ} =
{
ω ∈ Ω

∣∣∣x ∈ Fix Tξ(ω)
}

=
{
ω ∈ Ω

∣∣∣Tξ(ω)x = x
}

=
{
ω ∈ Ω

∣∣∣ (x, ω) ∈ Φ−1
ξ {x}

}
∈ F ,

since slices of sets in the product σ-field are measurable with respect to the single σ-fields
(see Lemma A.0.19).

Furthermore, the definition of C does not depend on the variable ξ itself only on its
distribution as can be seen by the following computation:

P(x ∈ Fix Tξ) =
∫

Ω
1{Tξx = x} dP =

∫
I
1{Tix = x}Pξ(di).

3.2. Consistent Stochastic Feasibility for Contin-
uous Mappings

We will specialize from here on to continuous functions. This will have too major advan-
tages, for one, the consistent feasibility problem then becomes a deterministic feasibility
problem which will be used throughout, and, for the other, consistent feasibility character-
izes a very strong kind of convergence for Markov chains, namely, almost sure convergence.
We tend to the latter now.
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Lemma 3.2.1 (C 6= ∅ is necessary for a.s. convergence). Let (G, d) be a Polish space and
Ti be continuous (i ∈ I). Let there exist π ∈ invP and let X ∼ π with X ⊥⊥ (ξk). If the
RFI sequence (XX

k ) converges almost surely as k →∞, then supp π ⊂ C.

Proof. We assume from now on that C = ∅, i.e. P(Tξx = x) < 1 for all x ∈ G and lead
that to a contradiction. Fix x ∈ suppL(X) = suppπ and let for ε > 0

Aε := {i ∈ I | d(Tix, x) ≥ ε} .

Since A1/n ↑ A0+ := {i ∈ I | d(Tix, x) > 0} as n → ∞ and Pξ(A0+) = P(Tξx 6= x) > 0,
there exists ε0 > 0 with Pξ(Aε0) > 0. Define now in view of continuity of Ti (i ∈ I) the
sets

Aεn :=
{
i ∈ I

∣∣∣ d(Tiy, Tix) ≤ ε ∀y ∈ B(x, 1
n
)
}

for n ∈ N. The set Aεn is measurable, since

g = inf
y∈Dn

gy, where

i ∈ I 7→ gy(i) = 1{d(Tiy, Tix) ≤ ε},

is measurable, where Dn ⊂ B(x, 1
n
) is countable and dense (exists by Theorem A.0.20),

and application of Lemma A.0.19. Since Aεn ↑ I as n → ∞ for any ε > 0, there exists
M > 0 with 1/M < ε0/2 and Pξ(A) > 0, where A := A

ε0/2
M ∩Aε0 . For each i ∈ A we have

that

d(Tiy, x) ≥ d(Tix, x)− d(Tiy, Tix) ≥ ε0
2 >

1
M

∀y ∈ B(x, 1
M

).

We then have, denoting B := B(x, 1
M

), that

P(XX
k ∈ B,XX

k+1 /∈ B) ≥ P(XX
k ∈ B, ξk ∈ A) = π(B)Pξ(A) > 0,

for all k ∈ N0, where we used independence of ξk andXX
k and that P(XX

k ∈ B) = π(B) > 0
for all k ∈ N0, since by Lemma 2.8.1 it holds that XX

k ∼ π for all k ∈ N. Since by
assumption XX

k → Y a.s. for some random variable Y , it also follows that

P(XX
k ∈ B,XX

k+1 /∈ B)→ P(Y ∈ B, Y /∈ B) = 0,

which is a contradiction and the assumption P(Tξx = x) < 1 needs to be false, so x ∈
C.

Next we convince ourselves that the formulation in Eq. (3.2) is indeed a fixed point
problem in the classical deterministic sense. Therefore denote in the following for A ⊂
Ω,

C(A) :=
⋂
ω∈A

Fix Tξ(ω).
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Lemma 3.2.2 (equivalence of stochastic and deterministic feasibility problems). Let
(G, d) be a Polish space. Let Ti be continuous (i ∈ I). If C 6= ∅, there exists a P-nullset
N ⊂ Ω, such that

C = C(Ω \N) =
⋂

ω∈Ω\N
Fix Tξ(ω).

Furthermore, C ⊂ G is closed.

Proof. For the direction "⊃", let x ∈ C(Ω\N) for a P-nullset N ⊂ Ω, then P(x ∈ Fix Tξ) =
P(Ω \N) = 1, i.e. x ∈ C.
Consider now the direction "⊂". Let Q be a dense and countable subset of C (exists
by Theorem A.0.20). Since for each q ∈ Q, P(q ∈ Fix Tξ) = 1, there is Nq ⊂ Ω with
P(Nq) = 0 and q ∈ C(Ω \Nq). Set N = ⋃

q∈QNq, then P(N) = 0 and q ∈ C(Ω \N) for all
q ∈ Q.
Now let c ∈ C, so ∃(qn)n∈N ⊂ Q with qn → c as n → ∞. Since, for all i ∈ I, Fix Ti is
closed by continuity of Ti, we get c = limn→∞ qn ∈ C(Ω \N).
The set C(Ω \N) is defined as intersection over closed sets and hence closed itself.

Remark 3.2.3 (interpretation): Lemma 3.2.2 shows that the feasible set C in the separa-
ble case can be written as intersection of a selection of sets Fix Tξ(ω) as in the deterministic
formulation of the fixed point problem, but where ω ∈ Ω \ N for a nullset N ⊂ Ω. In
fact C(Ω) is in general a proper subset of C = C(Ω \ N) or can even be empty. But
note that, even though the construction of C in Lemma 3.2.2 appears to depend on the
random variable ξ, in fact C only depends on the distribution Pξ as pointed out earlier.
Furthermore, in the context of more general Markov chains, we have,

(c ∈ C) p(c, {c}) = P(Tξc ∈ {c}) = P(Ω \N) = 1.

Hence
(A ∈ B(G)) δcP(A) = p(c, A) = 1A(c) = δc(A).

In other words, the delta function δc for c ∈ C is an invariant measure for P .

Corollary 3.2.4 (Pξ nullset, separable space). Under the assumptions of Lemma 3.2.2
there exists a P-nullset N with C = C(Ω \ N), such that ξ(N) := {ξ(ω) |ω ∈ N} is a
Pξ-nullset, where we denote Pξ = P(ξ ∈ ·), and it satisfies

C =
⋂

i∈ξ(Ω)\ξ(N)
Fix Ti.

Proof. We will construct a P-nullset N for which ξ(Ω \N) = ξ(Ω) \ ξ(N), where ξ(N) is
a Pξ-nullset, in that case immediately follows that⋂

ω∈Ω\N
Fix Tξ(ω) =

⋂
i∈ξ(Ω)\ξ(N)

Fix Ti.
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Let Ax := {i ∈ I |Tix = x} for x ∈ G, then analogously to Remark 3.1.1

Ax =
{
i ∈ I

∣∣∣ (x, i) ∈ Φ−1{x}
}
∈ I

and so is A := ⋂
c∈C Ac = ⋂

q∈QAq as countable intersection of measurable sets (Q ⊂ C

dense and countable, see proof of Lemma 3.2.2). Let Ñ be the P-nullset from Lemma 3.2.2,
i.e. C = C(Ω \ Ñ), note that due to

C =
⋂

ω∈Ω\Ñ

Fix Tξ(ω) =
⋂

i∈ξ(Ω\Ñ)

Fix Ti 6= ∅

it holds ξ(Ω \ Ñ) ⊂ Ac 6= ∅, for all c ∈ C. Set N := Ω \ ξ−1A, then from Ω \ Ñ ⊂ ξ−1A
follows N ⊂ Ñ is a P-nullset and

Pξ(A) = P(ξ−1A) ≥ P(Ω \ Ñ) = 1,

i.e. Pξ(ξ(N)) = 1− Pξ(A) = 0. By definition of A we have for ω ∈ ξ−1A, that any c ∈ C
satisfies c ∈ Fix Tξ(ω), so it follows C ⊂ C(ξ−1A). Due to C(Ω \N) ⊂ C(Ω \ Ñ) holds

C =
⋂

ω∈ξ−1A

Fix Tξ(ω) =
⋂

i∈ξ(ξ−1A)
Fix Ti =

⋂
i∈ξ(Ω)\ξ(N)

Fix Ti.

Note that from N = Ω \ ξ−1A follows ξ(N) = ξ(Ω) \ ξ(ξ−1A).

If ξ is not surjective, then ξ(Ω) 6= I. In that case, there is a Pξ-nullset ξ(N) of indices in I,
that are not needed to characterize the fixed point set, and these indices can be removed
from the index set I. Note also that, in general, the P-nullsets occurring in Lemma 3.2.2
and Corollary 3.2.4 are different. If there is N ⊂ Ω with C = C(Ω \N), then it need not
be the case that C = ⋂

i∈ξ(Ω)\ξ(N) Fix Ti.

In the context of the iterates Xk of the RFI in many of the results below we construct
the set N in Lemma 3.2.2 as follows:

N =
⋃
k

Nk where Nk := Ω \ {ω ∈ Ω | Tξk(ω)c = c ∀c ∈ C}. (3.3)

From Lemma 3.2.2 we have that Nk is a set of measure zero, hence so is N .

3.3. Inconsistent Stochastic Feasibility

If C = ∅ we call this the inconsistent stochastic feasibility problem.

Example 3.3.1 (inconsistent stochastic feasibility). Consider the (trivially convex, non-
empty and closed) sets C−1 := {−1} and C1 := {1} together with a random variable
ξ such that P(ξ = 1) = P(ξ = −1) = 1/2. The mappings Tix = PCix = i for x ∈ R
and i ∈ I = {−1, 1} are the projections onto the sets C−1 and C1. The RFI iteration
then amounts to just random flipping between the values −1 and 1. So it holds that
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P(Tξx = i) = 1/2 for all x ∈ R and hence there is clearly no feasible fixed point to this
iteration, that is, C = ∅. Nevertheless, by Theorem 2.3.2 we have

P(Xk+1 = i) = E[P (TξkXk = i |Xk)] = 1
2

for all k ∈ N0. That means the unique invariant distribution to which the distributions
of the iterates of the RFI (i.e. (P(Xk ∈ ·))k) converges is π = 1

2(δ−1 + δ1), and this is
attained after one iteration.

As the above example demonstrates, inconsistent stochastic fixed point problems are
neither exotic nor devoid of meaningful notions of convergence. As we have seen in
Lemma 3.2.1, one can not expect the RFI to converge to a point in the case C = ∅, but
still one can ask for convergence of the distributions (L(Xk)) of the iterates (Xk) of the
RFI to some invariant measure π for P .

3.4. Notions of Convergence for Inconsistent Fea-
sibility

In the following, we will describe two modes of convergence for the sequence (L(Xk)) on
P(G).

1. Weak convergence of the Cesáro average of the distributions of the variables (Xk)
to a probability measure π ∈P(G), i.e. for continuous and bounded f ∈ Cb(G)

νnf := 1
n

n∑
k=1
L(Xk)f = E

[
1
n

n∑
k=1

f(Xk)
]
→ πf, as n→∞.

2. Weak convergence of the probability distributions of the variables (Xk) to a proba-
bility measure π ∈P(G), i.e. for continuous and bounded f ∈ Cb(G)

L(Xk)f = E[f(Xk)]→ πf, as k →∞.

Clearly, the second mode implies the first, but the latter will not occur as natural as seen
in Example 8.1.11.

If we again assume continuity of the family of mappings Ti on the Polish space (G, d) we
get that, indeed, the limiting measure is an invariant measure for P .

Lemma 3.4.1. Let (G, d) be a Polish space. Let Ti be continuous (i ∈ I). Suppose
νµn → π or µPk → π in the weak sense, then π ∈ invP.
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Proof. An elementary fact from the theory of Markov chains (Theorem 2.8.2) is that, if
π is a cluster point of (νn) in the weak sense, then π is an invariant probability measure
for the Markov operator P . From Theorem 2.5.3 we have that (νn) is tight and hence
relatively compact in P(G). In particular, this means any subsequence has a convergent
subsequence (νnk) with

(∀f ∈ Cb(G)) νnkf = E

 1
nk

nk∑
j=1

f(Xj)
→ πf, as k →∞.

Convergence of the whole sequence, i.e. νn → π, amounts then to showing that π is the
unique cluster point of (νk) (see Theorem A.0.16), which is clear in our case.
For the other case, one has

πf ← µPk+1f = µPk(Pf)→ π(Pf)

as k →∞ for any f ∈ Cb(G). So it needs to hold that π = πP .

The notion of convergence we considered for the consistent stochastic feasibility problem
was much stronger. Clearly, almost sure convergence of the sequence implies the more
general notion above. This is common in the studies of stochastic algorithms in opti-
mization, though this does not require the full power of the theory of general Markov
processes.





CHAPTER 4

Convergence Analysis - Consistent Feasibility

We achieve convergence of iterated random functions for consistent stochastic feasibility
in several different settings under different assumptions on the metric spaces and the
mappings Ti (i ∈ I). The main properties of the mappings we consider are:

• quasi-nonexpansive mappings, i.e.

(∀x /∈ Fix Ti)(∀y ∈ Fix Ti) d(Tix, y) ≤ d(x, y). (4.1)

• paracontractions, i.e. Ti is continuous and

(∀x /∈ Fix Ti)(∀y ∈ Fix Ti) d(Tix, y) < d(x, y); (4.2)

• nonexpansive mappings, i.e.

(∀x, y ∈ G) d(Tix, Tiy) ≤ d(x, y); (4.3)

• averaged mappings on a normed linear space H, i.e. mappings T : H → H for
which there exists an α ∈ (0, 1) such that

(∀x, y ∈ H) ‖Tx− Ty‖2 + 1− α
α
‖(x− Tx)− (y − Ty)‖2 ≤ ‖x− y‖2. (4.4)

Note that for a quasi-nonexpansive mapping T : G→ G the condition x ∈ Fix T implies
that d(Tx, y) = d(x, y) for all y ∈ G. The set of quasi-nonexpansive mappings contains
the paracontractions and the nonexpansive mappings. The set of projectors onto convex
sets or more generally the set of averaged mappings on a Hilbert space H is contained in
both the set of nonexpansive mappings and the set of paracontractions [7, Remark 4.24
and 4.26]. For an example of a paracontraction that is not averaged see Example 4.0.2
and Appendix B. Averaged mappings were first used in the work of Mann, Krasnoselski,
Edelstein, Gurin, Polyak and Raik who wrote seminal papers in the analysis of (firmly)
nonexpansive and averaged mappings [20,22,31,38] although the terminology “averaged”
wasn’t coined until sometime later [3].

37
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Example 4.0.2. Let f : R → R+ be continuous. Let f(0) = 0 and |f(x)| < |x| for all
x ∈ R \ {0}, then f is paracontractive. This includes also convex functions, e.g. Huber
functions, which are not averaged in general (see Appendix B). For other examples on Rn

also see Appendix B.

4.1. RFI on a compact metric space

In this section we establish convergence of the RFI on a compact metric space. The next
example illustrates why nonexpansivity alone does not suffice to guarantee convergence
to the intersection set C.

Example 4.1.1 (nonexpansive mappings, negative result). For non-expansive mappings
in general, one cannot expect that the support of every invariant measure is contained in
the feasible set C. Consider a rotation in positive direction in R2

A =
(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
, ϕ ∈ (0, 2π),

and set ξ = 1 and I = {1}, T1 = A. Then C = {0} and, since ‖A‖ = 1, A is nonexpansive,
but ‖Ax‖ = ‖x‖ for all x ∈ R2. So the (deterministic) iteration Xk+1 = AXk will not
converge to 0, whenever X0 ∼ δx, x 6= 0.

A sufficient requirement on the mappings Ti to ensure convergence of the RFI is para-
contractiveness. The next Lemma is the main ingredient for proving a.s. convergence of
(Xk) to a random point in C. The support of a probability measure ν ∈ P(G) is the
smallest closed set S ⊂ G, for which ν(G \ S) = 0 (see also Theorem 2.4.1 for equivalent
representations); we then write S = supp ν.

Lemma 4.1.2 (invariant measures for paracontractions). Under the standing assumptions
and if Ti (i ∈ I) is paracontracting on a compact metric space, then the set of invariant
measures for P is {π ∈P(G) | supp π ⊂ C}.

Proof. It is clear that π ∈P(G) with supp π ⊂ C is invariant, since p(x, {x}) = P(Tξx ∈
{x}) = P(x ∈ Fix Tξ) = 1 for all x ∈ C and hence πP(A) =

∫
C p(x,A)π(dx) = π(A) for

all A ∈ B(G).

The other implication is not so immediate. Suppose supp π \ C 6= ∅ for some invariant
measure π of P . Then due to compactness of supp π (as it is closed in G) we can find
s ∈ supp π maximizing the continuous function dist(·, C) on G. So dmax = dist(s, C) > 0.
We show that the probability mass around s will be attracted to the feasible set C,
implying that the invariant measure loses mass around s in every step, which yields a
contradiction.

Define the set of points being more than dmax − ε away from C:

K(ε) := {x ∈ G | dist(x,C) > dmax − ε} , ε ∈ (0, dmax).
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This set is measurable, i.e. K(ε) ∈ B(G), because it is open. Let M(ε) be the event in F ,
where Tξs is at least ε closer to C than s, i.e.

M(ε) :=
{
ω ∈ Ω

∣∣∣ dist(Tξ(ω)s, C) ≤ dmax − ε
}
.

There are two possibilities, either there is an ε ∈ (0, dmax) with P(M(ε)) > 0 or no such
ε exists. In the latter case we have dist(Tξs, C) = dmax = dist(s, C) a.s. by paracontrac-
tiveness of Ti. By compactness of C there exists c ∈ C such that 0 < dmax = d(s, c).
Hence the probability of the set of ω ∈ Ω such that s 6∈ Fix Tξ(ω) is positive and so is the
probability that dist(Tξ(ω)s, C) ≤ d(Tξ(ω)s, c) < d(s, c) - a contradiction.

So it must hold that there is an ε ∈ (0, dmax) with P(M(ε)) > 0. In view of continuity of
the mappings Ti around s, i ∈ I, define

An :=
{
ω ∈M(ε)

∣∣∣ d(Tξ(ω)x, Tξ(ω)s) ≤ ε
2 ∀x ∈ B(s, 1

n
)
}

(n ∈ N).

It holds that An ⊂ An+1 and P(⋃nAn) = P(M(ε)). So in particular there is an m ∈ N,
m ≥ 2/ε with P(Am) > 0. For all x ∈ B(s, 1

m
) and all ω ∈ Am we have

dist(Tξ(ω)x,C) ≤ d(Tξ(ω)x, Tξ(ω)s) + dist(Tξ(ω)s, C) ≤ dmax −
ε

2 ,

which means Tξ(ω)x ∈ G \K( ε2). Hence, in particular we conclude that

p(x,K( ε2)) < 1 ∀x ∈ B(s, 1
m

).

Since p(x,K(ε)) = 0 for x ∈ G with dist(x,C) ≤ dmax − ε due to paracontractiveness, it
holds by invariance of π that

π(K(ε)) =
∫
G
p(x,K(ε))π(dx) =

∫
K(ε)

p(x,K(ε))π(dx).

It follows, then, that

π(K( ε2)) =
∫
K( ε2 )

p(x,K( ε2))π(dx)

=
∫
B(s, 1

m
)
p(x,K( ε2))π(dx) +

∫
K( ε2 )\B(s, 1

m
)
p(x,K( ε2))π(dx)

< π(B(s, 1
m

)) + π(K( ε2) \ B(s, 1
m

)) = π(K( ε2))

which is a contradiction. So the assumption that supp π \ C 6= ∅ is false, i.e. supp π ⊂ C
as claimed.

Theorem 4.1.3 (almost sure convergence for a compact metric space). Under the stand-
ing assumptions, let Ti be paracontractive, i ∈ I, and let (G, d) be a compact metric space.
Then the RFI sequence (Xk) of random variables converges almost surely to a random
variable Xµ ∈ C depending on the initial distribution µ.
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Proof. Since P is Feller and G compact, Theorem 2.8.2 implies that any subsequence
of (νn), where νn = 1

n

∑n
i=1 L(Xi), has a convergent subsequence and clusterpoints are

invariant measures for P . Let (νnk) be a convergent subsequence with limit π. So for the
bounded and continuous function dist(·, C) it holds that νnk dist(·, C) → π dist(·, C) =
0 as k → ∞ by weak convergence of the probability measures and the fact that, by
Lemma 4.1.2, supp π ⊂ C.
Due to quasi-nonexpansiveness and Lemma 3.2.2 (a compact metric space is separable),
we have a.s. (for all ω /∈ N with N given by (3.3)) that d(Xk+1, c) ≤ d(Xk, c) for all
c ∈ C and k ∈ N, which implies dist(Xk+1, C) ≤ dist(Xk, C) for all k ∈ N a.s. It therefore
follows that

E[dist(Xnk , C)] ≤ 1
nk

nk∑
i=1

E[dist(Xi, C)] = νnk dist(·, C)→ 0

by monotonicity of (E[dist(Xk, C)])k. This yields E[dist(Xk, C)] → 0 as k → ∞. Now
since (dist(Xk, C))k is nonincreasing, it must be that dist(Xk, C) → 0 a.s. Hence for
any cluster point xω of (Xk(ω))k we have xω ∈ C. This together with a.s. monotonicity
of (d(Xk, c))k for all c ∈ C implies that d(Xk(ω), xω) → 0 for any cluster-point xω of
(Xk(ω))k, which implies the uniqueness of xω. In other words, (Xk) converges almost
surely to a random variable Xµ, with Xµ(ω) = xω ∈ C, ω 6∈ N , as claimed.

4.2. Finite dimensional normed vector space

The results for compact metric spaces can be applied, with minor adjustments, to finite
dimensional vector spaces. In the following let (G, d) = (V, ‖·‖) be a finite dimensional
normed vector space over R. This means in particular, that V is also complete and
every closed and bounded set is compact (Heine-Borel property) and all norms on V are
equivalent. So actually, since all n-dimensional vector spaces are isomorphic, it is enough
to study convergence in Rn equipped with the euclidean norm ‖·‖.

The following result for Rn is a straight forward application of Theorem 4.1.3.

Theorem 4.2.1 (almost sure convergence in Rn). Under the standing assumptions, let
Ti : Rn → Rn be paracontractive, i ∈ I. Then the RFI sequence (Xk) of random variables
converges almost surely to a random variable Xµ ∈ C depending on the initial distribution
µ.

Proof. First, suppose µ = δx for x ∈ Rn. LetN be given by (3.3). The quasi-nonexpansiveness
property gives us ‖Xk+1 − c‖ ≤ ‖Xk − c‖ for all c ∈ C a.s. (i.e. if ω 6∈ N). Letting c ∈ C
with dist(x,C) = ‖x− c‖, this implies Xk ∈ B(c, ‖x− c‖), where B(s, ε) ⊂ Rn is the
closed ball around s ∈ Rn with radius ε. The assertion Xk → Xδx a.s. then follows from
Theorem 4.1.3. Denote the corresponding invariant measure as πx := L(Xδx).

Suppose now that µ ∈ P(Rn) is arbitrary. For f ∈ Cb(Rn) one has pk(x, f) ≤ ‖f‖∞
for all k ∈ N and x ∈ Rn. Note that pk(x, f) = δxPkf , and from the above argument
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δxPk → πx in the weak sense as k → ∞. Hence by Lebesgue’s Dominated Convergence
Theorem, we get

µPkf =
∫
Rn
pk(x, f)µ(dx)→

∫
Rn
πxfµ(dx) =: µπxf =: πµf, as k →∞.

We conclude that L(Xk) = µPk → πµ weakly. The measure πµ = µπx is an invariant
probability measure for P , since πx is a invariant probability measure for P .

Choosing f = min{dist(·, C),M} ∈ Cb(Rn) with M > 0 yields L(Xk)f → πµf = 0.
Since f(Xk+1) ≤ f(Xk) a.s. and L(Xk)f = E[f(Xk)] → 0, it holds that f(Xk) → 0
a.s. In particular, dist(Xk, C) → 0 a.s. So for a converging subsequence (Xnk(ω))k
with limit xω it holds that xω ∈ C. Moreover, since (‖Xk − xω‖)k is monotone, actually
Xk(ω)→ Xµ(ω) := limkXk(ω) = xω ∈ C, ω 6∈ N .

4.3. Weak convergence in Hilbert spaces

In this section (G, d) is a Hilbert space (H, 〈·, ·〉). Under the standing assumptions the
following extended-valued function

R(x) := E
[
‖x− Tξx‖2

]
=
∫

Ω

∥∥∥x− Tξ(ω)x
∥∥∥2
P(dω) =

∫
I
‖x− Tux‖2Pξ(du) (4.5)

is measurable from H to [0,∞]. Following [41] we use this function to characterize con-
vergence of the consistent fixed point problem under the weaker assumption that the
mappings Tξ are averaged (see Eq. (4.4)).

Lemma 4.3.1 (properties of R and C for quasi-nonexpansive mappings). In addition to
the standing assumptions, suppose that Ti (i ∈ I) is quasi-nonexpansive and continuous.
Then

(i) C = R−1(0);

(ii) R is finite everywhere;

(iii) R is continuous;

(iv) C is convex and closed.

Proof. (i) We have x ∈ C ⇔ x ∈ Fix Tξ a.s. ⇔ x = Tξx a.s. ⇔ R(x) = 0.

(ii) Fix x ∈ C, then x = Tξx a.s. Using quasi-nonexpansivity we get a.s., that

‖y − Tξy‖ ≤‖y − x‖+ ‖x− Tξy‖ ≤ 2‖x− y‖ ∀y ∈ H, (4.6)
⇐⇒

‖y − Tξy‖2 ≤ 4‖y − x‖2 ∀y ∈ H. (4.7)

From (4.7) it follows that R(y) ≤ 4‖y − x‖2 <∞ for all y ∈ H.
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(iii) Let x, xn ∈ H, n ∈ N, with xn → x as n → ∞. Define the functions fn(ω) =∥∥∥xn − Tξ(ω)xn
∥∥∥2

on Ω (n ∈ N). Then, by continuity of Tξ(ω) for fixed ω ∈ Ω, one
has fn → f := ‖x− Tξx‖2 for all ω ∈ Ω. Define the constant function g(ω) =
8ε2 + 8‖x− c‖2 for some c ∈ C and some ε > 0. By (4.6) we have that ‖y − Tξy‖ ≤
2‖y − c‖ for all y ∈ H. For y ∈ B(x, ε) this yields ‖y − Tξy‖ ≤ 2ε + 2‖x− c‖. We
conclude that g is P-integrable and fn ≤ g for all n ∈ N with xn ∈ B(x, ε). Finally,
application of Lebesgue’s Dominated Convergence Theorem yields R(xn) = Efn →
Ef = R(x) as n→∞.

(iv) This follows from [7, Proposition 4.13, Proposition 4.14]. Note that for any α ∈ R,
a, b ∈ H we have [7, Corollary 2.14]

‖αa+ (1− α)b‖2 = α‖a‖2 + (1− α)‖b‖2 − α(1− α)‖a− b‖2.

Let z = λx + (1 − λ)y with x, y ∈ R−1(0) = C, λ ∈ [0, 1]. One has with Tξx = x
and Tξy = y a.s. that a.s. holds

‖Tξz − z‖2 = ‖λ(Tξz − x) + (1− λ)(Tξz − y)‖2

= λ‖Tξz − x‖2 + (1− λ)‖Tξz − y‖2 − λ(1− λ)‖x− y‖2

≤ λ‖z − x‖2 + (1− λ)‖z − y‖2 − λ(1− λ)‖x− y‖2

= ‖λ(z − x) + (1− λ)(z − y)‖2

= 0.

So R(z) = 0, i.e. z ∈ R−1(0). Closedness of R−1(0) follows by continuity of R.

In the next theorem we need to compute conditional expectations of nonnegative real-
valued random variables, which are non-integrable in general (for example, if the random
variable X0 with distribution µ does not have a finite expectation, E[‖X0‖] = +∞).
But for these random variables the classical results on integrable random variables are
still applicable (see Theorem 2.2.7), also the disintegration theorem is still valid (see
Theorem 2.3.2).

The stage is now set to show convergence for the corresponding Markov chain. The next
several results concern weak convergence of sequences of random variables with respect
to the Hilbert space, namely, xn w−→ x if 〈xn, y〉 → 〈x, y〉 for all y ∈ H.

Theorem 4.3.2 (weak cluster points belong to feasible set for averaged mappings). Under
the standing assumptions, let Ti be αi-averaged with αi ≤ α < 1 for all i ∈ I. Then weak
cluster points (in the sense of Hilbert spaces) of the RFI sequence (Xk)k∈N0 of random
variables in H are a.s. contained in C.

Proof. Fix c ∈ C. Since Tξ is averaged we have for all k ∈ N that

‖Xk+1 − c‖2 ≤ ‖Xk − c‖2 − 1− α
α
‖Xk+1 −Xk‖2 (4.8)
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everywhere but on a P-nullset Nc, which may depend on c. Let Fk = σ(X0, ξ0, . . . , ξk−1) be
the σ-algebra of all iterations of the algorithm up to the k-th and apply Lemma A.0.22. We
get that∑k∈N0 R(Xk) <∞ a.s., where from Theorem 2.3.2 follows that E

[
‖Xk+1 −Xk‖2

∣∣∣Fk] =
R(Xk). Hence there is Ñ ⊂ Ω with P(Ñ) = 0 and R(Xk(ω)) → 0 as k → ∞ for
ω ∈ Ω \ (Nc ∪ Ñ).
By nonexpansiveness of Tξ for all we find for any x, xn ∈ H

‖x− Tξx‖2 = ‖xn − Tξx‖2 + ‖x− xn‖2 + 2 〈xn − Tξx, x− xn〉
= ‖xn − Tξx‖2 − ‖x− xn‖2 + 2 〈x− Tξx, x− xn〉
= ‖xn − Tξxn‖2 + ‖Tξx− Tξxn‖2 + 2 〈xn − Tξxn, Tξxn − Tξx〉
− ‖x− xn‖2 + 2 〈x− Tξx, x− xn〉

≤ ‖xn − Tξxn‖2 + 2 〈xn − Tξxn, Tξxn − Tξx〉+ 2 〈x− Tξx, x− xn〉
≤ ‖xn − Tξxn‖2 + 2‖xn − Tξxn‖‖xn − x‖+ 2 〈x− Tξx, x− xn〉 .

Taking expectation and using Jensen’s inequality yields

R(x) ≤ R(xn) + 2
√
R(xn)‖xn − x‖+ 2E[〈x− Tξx, x− xn〉]. (4.9)

Now assume that the sequence (xn) is weakly converging to x ∈ H, i.e. xn w−→ x. Then
the functions fn = 〈x− Tξx, x− xn〉, n ∈ N, on Ω satisfy fn → 0 a.s. Defining the
P-integrable function g(ω) :=

∥∥∥x− Tξ(ω)x
∥∥∥ supn ‖x− xn‖ gives us |fn| ≤ g for all n ∈ N

and hence by Lebesgue’s Dominated Convergence Theorem E[〈x− Tξx, x− xn〉] → 0 as
n→∞.
So for ω ∈ Ω \ (Nc ∪ Ñ) there is a weakly convergent subsequence of the bounded se-
quence (Xk(ω))k∈N, denoted xn := Xkn(ω) w−→ xω =: x as n → ∞. As shown above this
subsequence satisfies R(xn) → 0 as n → ∞. We conclude with (4.9) that R(x) = 0, i.e.
x ∈ C and hence any weak cluster point of the sequence (Xk(ω))k is contained in C.

In the case of separable Hilbert spaces, we are able to show Fejér monotonicity (a sequence
(xk) in a Hilbert space H is Fejér monotone w.r.t. S ⊂ H, if ‖xk+1 − s‖ ≤ ‖xk − s‖ for all
s ∈ S and k ∈ N) of the sequence (Xk) a.s., so the classical theory of convergence analysis
from [7] can be applied in this case. An analogous statement for nonseparable Hilbert
spaces remains open since we do not have the representation Lemma 3.2.2 at hand.

Theorem 4.3.3 (almost sure weak convergence under separability). Under the same
assumptions as in Theorem 4.3.2 assume additionally that H is a separable Hilbert space.
Then the sequence (Xk) is a.s. weakly convergent (in the sense of Hilbert spaces) to a
random variable Xµ ∈ C, depending on the initial distribution µ. Furthermore PCXk →
Xµ strongly a.s. as k →∞.

Proof. Instead of a nullset Nc, which may depend on c ∈ C, as in the proof of Theo-
rem 4.3.2, separability gives with help of Lemma 3.2.2 that there is a nullset N , such
that on Ω \N Eq. (4.8) is satisfied for all c ∈ C. This implies a.s. Fejér monotonicity of
(Xk). Since from Theorem 4.3.2 follows that weak clusterpoints of (Xk) are contained in
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C a.s., we can now apply Theory in [7] developed for Fejér monotone sequences, we get:
From [7, Theorem 5.5] (a Fejér monotone sequence w.r.t. C that has all weak clusterpoints
in C is weakly convergent to a point in C) follows that Xk

w−→ Xµ ∈ C a.s.

For strong convergence of (PCXk) a.s. we apply [7, Proposition 5.7]. From [7, Corollary
5.8] we get from Xk

w−→ Xµ a.s., that PCXk → Xµ a.s. strongly as k →∞.

Example 4.3.4 (convergence to projection for affine subspaces). Let H be separable and
Ci be an affine subspace, i ∈ I, where I is an arbitrary index set. Let Ti = Pi be the
projector onto Ci. Under the standing assumptions holds that limkXk = Xµ = PCX0 for
X0 ∼ µ and any µ ∈P(H).

We show, that PCXk+1 = PCXk for any k ∈ N0. This allows us to conclude that PCXk =
PCX0 for any k ∈ N0, and thus PCX0 is the only possible weak cluster point of (Xk)
by Theorem 4.3.3. Using the characterization [16, Theorem 4.1] (if K ⊂ H is nonempty,
closed and convex and u ∈ K then 〈x− u, k − u〉 ≤ 0 for all k ∈ K iff u = PKx)
of a projection, we find with help of [16, Theorem 4.9] (for a subspace S holds that
〈x− PSx, s〉 = 0 for all s ∈ S), that for c ∈ C holds that

〈Xk+1 − PCXk, c− PCXk〉 = 〈PξkXk −Xk, c− PCXk〉︸ ︷︷ ︸
=0

+ 〈Xk − PCXk, c− PCXk〉︸ ︷︷ ︸
≤0

≤ 0.

Hence by [16, Theorem 4.1] we have that PCXk+1 = PCXk.



CHAPTER 5

Geometric Convergence - Consistent Feasibility

We will assume in this section that H is a separable Hilbert space and Ti is αi-averaged,
i ∈ I. We will furthermore assume, that αi ≤ α for some α < 1. As with the deterministic
case, geometric convergence of the algorithm can be analyzed by introducing a condition
on the set of fixed points. In the context of set feasibility with finitely many sets, the
condition is equivalent to linear regularity of the sets [42, Assumption 2]: There exists
κ > 0 such that

dist2(x,C) ≤ κR(x) ∀x ∈ H, (5.1)

where R is defined by (4.5). In the more general context of fixed point mappings, this
property is more appropriately called global metric subregularity of R at all points in C
for 0 [32]; in particular there exists a κ > 0 such that

dist2(x,R−1(0)) ≤ κR(x) ∀x ∈ H.

Here C = R−1(0), so the above is just another way of writing (5.1). The smallest constant
satisfying this inequality will be called the regularity constant, it is given by

sup
x∈H\C

dist2(x,C)
R(x) .

Theorem 5.0.5. In addition to the standing assumptions, suppose the regularity condition
in Eq. (5.1) is satisfied and Ti is αi-averaged, i ∈ I with αi ≤ α for some α < 1. Then
the RFI converges geometrically in expectation to the fixed point set, i.e. for any initial
distribution

E[dist(Xk+1, C)] ≤
√

1− κ−1 1− α
α

E[dist(Xk, C)] ∀k ∈ N0. (5.2)

Proof. Revisiting (4.8) in the proof of Theorem 4.3.2 gives us for ω ∈ Ω \N (N given by
(3.3)) and x = PCXk(ω)

dist2(Xk+1(ω), C) ≤ ‖Xk+1(ω)− x‖2 ≤ dist2(Xk(ω), C)− 1− α
α
‖Xk+1(ω)−Xk(ω)‖2.
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With help of Jensen’s inequality and concavity of x 7→
√
x on [0,∞), we get that

E [dist(Xk+1, C) | Fk] ≤ E

√dist2(Xk, C)− 1− α
α
‖TξkXk −Xk‖2

∣∣∣∣∣∣Fk


≤
√

dist2(Xk, C)− 1− α
α

E
[
‖TξkXk −Xk‖2

∣∣∣Fk]
=
√

dist2(Xk, C)− 1− α
α

R(Xk)

≤
√

1− κ−1 1− α
α

dist(Xk, C).

Note that it could be E[dist(Xk, C)] =∞ for all k ∈ N, depending on the initial distribu-
tion µ.

The next theorem concerns the Wasserstein distance of two probability measures. For
two measures ν1, ν2 ∈P(G) this is given by

W (ν1, ν2) = inf
Y1∼ν1
Y2∼ν2

E[‖Y1 − Y2‖].

Theorem 5.0.6 (strong convergence and geometric convergence of measures). Under the
standing assumptions, suppose the regularity condition in Eq. (5.1) is satisfied and Ti is
αi-averaged, i ∈ I with αi ≤ α for some α < 1. Then Xk → X strongly a.s. as k →∞ and
the Wasserstein distances W (L(Xk),L(X)) also converge geometricly, there is r ∈ (0, 1)
such that

W (L(Xk),L(X)) ≤ 2rkW (L(X0),L(X)).

Proof. See also [7, Theorem 5.12]. One has a.s. that

‖Xk −Xk+m‖ ≤ ‖Xk − PCXk‖+ ‖PCXk −Xk+m‖ ≤ 2 dist(Xk, C) ≤ 2
√
κR(Xk).

We used here, that Tξ is nonexpansive and it satisfies Tξc = c for any c ∈ C a.s.,
hence ‖PCXk −Xk+m‖ =

∥∥∥Tξk+m−1 · · ·TξkPCXk −Xk+m

∥∥∥ ≤ dist(Xk, C). This gives us
that (Xk) is a Cauchy sequence a.s., since R(Xk) → 0 as seen in the proof of Theo-
rem 4.3.2. Its limit X is contained in C, since its weak limit needs to coincide with the
strong limit. Letting m → ∞ one arrives at ‖Xk −X‖ ≤ 2 dist(Xk, C). Taking the
expectation yields E[‖Xk −X‖] ≤ 2E[dist(Xk, C)]. Hence, using Theorem 5.0.5 gives
us E[‖Xk −X‖] ≤ 2rkE[dist(X0, C)] with r =

√
1− κ−1 1−α

α
and using the fact that

E[dist(X0, C)] ≤ W (L(X0),L(X)), we have, by the definition of the Wasserstein distance,

W (L(Xk),L(X)) ≤ 2rkW (L(X0),L(X)).
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Note that it could be W (L(X0),L(X)) =∞, depending on the initial distribution µ.
Remark 5.0.7 (ε-fixed point): In order to assure that, with probability greater than
1 − β, the k-th iterate is in an ε neighborhood of the feasible set C, it is sufficient that
k ≥ ln

(
βε√
κR(x)

)
/ ln(c), where c =

√
1− 1−α

α
κ−1 and X0 ∼ δx. To see this, note that, by

Markov’s inequality,

P(Xk ∈ C + εB(0, 1)) = P(dist(Xk, C) < ε)
= 1− P(dist(Xk, C) ≥ ε)

≥ 1− E[dist(Xk, C)]
ε

≥ 1− rkdist(x,C)
ε

≥ 1− rk
√
κR(x)
ε

.

Remark 5.0.8: As seen in Example 4.3.4 the probability P(Xk ∈ C) can increase to 1
as k →∞, but this is not necessarily the case, as we will see in Examples 8.1.7 and 8.1.9.
There, one finds that P(Xk ∈ C) = P(X0 ∈ C) for k ∈ N. In Example 8.1.8 it holds that
P(Xk ∈ C) = P(X1 ∈ C) for all k ∈ N.

Theorem 5.0.9 (necessary and sufficient conditions for geometric convergence). Under
the standing assumptions, let Ti be αi-averaged, i ∈ I with αi ≤ α for some α < 1. The
regularity condition in Eq. (5.1) is satisfied if and only if there exists r ∈ [0, 1) such that

E[dist(Tξx,C)] ≤ r dist(x,C) ∀x ∈ H. (5.3)

Furthermore, condition Eq. (5.1) is necessary and sufficient for geometric convergence in
expectation of Algorithm 1 to the fixed point set C as in Eq. (5.2) with a uniform constant
for all initial probability measures.

Proof. Eq. (5.1) implies Eq. (5.2), which in turn implies Eq. (5.3) (with X0 ∼ δx) by
Theorem 5.0.5 with r =

√
1− κ−1 1−α

α
. The other implication follows the same proof

pattern as [36, Theorem 3.11]. We note that, by Theorem 2.3.2, if X0 ∼ δx for x ∈ H,
then

E [‖X1 −X0‖ | ξ0] = ‖Tξ0x− x‖,

hence by Hölder’s inequality

E[‖X1 −X0‖] ≤
√
R(x).

Furthermore we can estimate

‖X1 −X0‖ = ‖X1 − PCX1 + PCX1 −X0‖ ≥ dist(X0, C)− dist(X1, C).
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Taking the expectation above, the assumption that E[dist(X1, C)] ≤ rE[dist(X0, C)] yields

(∀x ∈ H) R(x) ≥ (1− r)2 dist2(x,C),

i.e. the constant κ in Eq. (5.1) is finite with κ ≤ (1 − r)−2 < ∞. So Eq. (5.3) implies
Eq. (5.1).

For the last implication of the theorem, note that, in case Eq. (5.2) is satisfied with the
same constant r ∈ (0, 1) for all Dirac measures δx with x ∈ H, then Eq. (5.3) also holds
(letting X0 ∼ δx) and hence by the above equivalence Eq. (5.1) is satisfied. This completes
the proof.

Remark 5.0.10: Conventional analytical strategies invoke strong convexity in order to
achieve geometric convergence. Our analysis makes no such assumption on the sets Ci.
Theorem 5.0.9 shows that geometric convergence is a by-product, mainly, of the regularity
of the set of fixed points. The results of [36] indicate that one could formulate a necessary
regularity condition for sublinear convergence, which also might be useful for stochastic
algorithms.



CHAPTER 6

Convergence Analysis - Inconsistent Feasibility

We now analyze convergence of the inconsistent feasibility problem. More exactly, we
analyze both the consistent and inconsistent feasibility problem at once, by analyzing the
stochastic fixed point problem as formulated in Eq. (3.1). The consistent and inconsistent
feasibility problem are then just specializations of this formulation. The next example
illustrates how characterization of convergence of Markov chains is more subtle (see the
notions of convergence in section 3.4) depending on the contraction properties of the class
of mappings defining the RFI.

Example 6.0.11 (nonexpansive mappings, negative result). For non-expansive mappings
in general, one cannot expect that the sequence (L(Xk)) converges to an invariant prob-
ability measure. Consider a rotation by 180◦ in R2, i.e. A = − Id. We have in the RFI
setup ξ = 1 and I = {1}, T1 = A. Then A is nonexpansive with ‖Ax‖ = ‖x‖ for all
x ∈ R2. Furthermore, if X0 ∼ δx for x 6= 0, then X2k = x and X2k+1 = −x for all k ∈ N.
This implies that (L(Xk)) does not converge to the invariant distribution πx = 1

2(δx+δ−x)
(depending on x), since P(X2k ∈ B) = δx(B) and P(X2k+1 ∈ B) = δ−x(B) for B ∈ B(R2).
Nevertheless the Cesáro average νn := 1

n

∑n
i=1 PXi converges to πx in the weak sense.

The analysis of Markov chains often separates into the ergodic analysis, i.e. when starting
in an invariant (and ergodic) measure, and general convergence theory, when also initial
measures which are not invariant are considered.

6.1. Ergodic theory

We understand here under ergodic theory more generally analysis of the properties of the
RFI Markov chain when starting it in the support of any ergodic measure for the Markov
operator P . The convergence properties for these points can be much stronger than the
convergence properties of Markov chains initialized by measures with support outside the
support of the ergodic measures.

49
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As Example 6.0.11 shows, meaningful notions of ergodic convergence are possible, even
when convergence in distribution can not be expected, in our case, convergence of the
average. We develop ergodic facts for the Markov chain under consideration for general
classes of mappings and at the end specialize to continuous mappings Ti (i ∈ I). We
begin with fundamental facts of ergodic chains.

An invariant probability measure π of P is called ergodic, if any p-invariant set, i.e.
A ∈ B(G) with p(x,A) = 1 for all x ∈ A, has π-measure 0 or 1. Two measures π1, π2 are
called mutually singular when there is A ∈ B(G) with π1(Ac) = π2(A) = 0.
Remark 6.1.1 (A different notion of Ergodicity): In many standard literature works
ergodicity is introduced in a different manner, which is not quite suitable for what we need.
Usually ergodicity is introduced on the product space G∞ :=×∞i=0G. A map T : G∞ →
G∞ is called measure preserving or µ-preserving, if µ ∈ P(G∞) and µ(T−1A) = µ(A)
for all A ∈ B(G∞). A measure preserving map T is called ergodic, if µ(I) ∈ {0, 1} for all
invariant sets I ∈ B(G∞), i.e. those sets I, which satisfy T−1I = I. To see the connection
of this ergodicity notation and the one we use, let θ : G∞ → G∞ be the left-shift, i.e.

x = (xi)i∈N0 7→ θ(x) = (xi+1)i∈N0 .

Now some authors argue that θ is ergodic if and only if µ = Pπ, where Pπ is the distribution
of the sequence (Xk)k∈N0 with X0 ∼ π, where π is ergodic and invariant. The problem
with that is that θ need not be measure preserving, because θ−1(A) = G × A and in
general Pπ(G × A) 6= Pπ(A), so one has to work with the doubly infinite sequence space
G∞−∞ =×∞i=−∞G instead, to overcome that problem.

In contrast to processes on N, a stochastic process indexed by Z does not require an
initial distribution. That is the case for example, when the process is stationary, i.e.
when θ(Xk)k∈Z d= (Xk)k∈Z. One has by [28, Lemma 9.2] that for every stationary process
X0, X1, . . . there exist random variables X−1, X−2, . . . such that . . . , X−1, X0, X1, . . . is
stationary. In particular stationarity implies that π = L(Xk) = L(Xk+1) for all k ∈ Z
is an invariant measure. The left shift is measure preserving for the stationary time-
homogeneous Markov process (Xk)k∈Z with transition kernel p: for the cylindrical sets
An1,...,nl ⊂ G∞−∞ with indices ni ∈ Z, i ∈ {1, . . . , l}, l ∈ N – i.e. there exist A1, . . . , Al ⊂ G
with a ∈ An1,...,nl exactly when ank ∈ Ak – we have

Pπ(A) = π ⊗ pn2−n1 ⊗ · · · ⊗ pnl−nl−1(A1 × · · · × Al),

where for two kernels pi onG×Fi, i = 1, 2 denote p1⊗p2(s, B) :=
∫
p1(s, dt)

∫
p2(t, du)1B(t, u)

for B ∈ F1 ⊗F2. One then has

Pπ(θ−1A) = Pπ(An1+1,...,nl+1) = Pπ(An1,...,nl) = Pπ(A)

that means the shift operator θ is actually invariant for this measure, since the cylindrical
sets generate ⊗k∈Z B(G). Furthermore P(Xk)k≥0 = Pπ(G−∞ × ·), where G−∞ =×−1

i=−∞G.
One then has the desired connection by [23, Corollary 5.11] that if π ∈ P(G) is an
invariant probability measure for the Markov operator P , then θ is ergodic with respect
to Pπ, if and only if π is ergodic (where Pπ is now defined on G∞−∞ instead of G∞).
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The following decomposition theorem is key to our development.

Theorem 6.1.2 (Theorem 1.7 in [24]). Given a Markov kernel p, denote by I the set
of all invariant probability measures for P and by E ⊂ I the set of all those that are
ergodic. Then, I is convex and E is precisely the set of its extremal points. Furthermore,
for every invariant measure π ∈ I, there exists a probability measure Qπ on E such that
π(A) =

∫
E ν(A)Qπ(dν). In other words, every invariant measure is a convex combina-

tion of ergodic invariant measures. Finally, any two distinct elements of E are mutually
singular.

Remark 6.1.3: If there exists only one invariant probability measure of P , we know by
Theorem 6.1.2 that it is ergodic. If there exist more invariant probability measures, then
there exist uncountably many invariant and at least two ergodic ones.

Theorem 6.1.4 (Birkhoff’s ergodic theorem, Theorem 9.6 in [28]). Let π be an ergodic
invariant probability measure for P, and let (G,G) be a measure space, f : G → R be
such that π|f |p <∞ and p ∈ [1,∞], then

1
n

n∑
i=1

f(Xi)→ πf, a.s. and in Lp as n→∞,

where the sequence (Xn) is generated by Algorithm 1 with X0 ∼ π.

Corollary 6.1.5. Same assumptions as in Theorem 6.1.4. Let f : G→ R be measurable
and bounded, i.e. ‖f‖∞ := supx∈G |f | <∞, then

νxnf := 1
n

n∑
i=1

pi(x, f)→ πf as n→∞ for π-a.e. x ∈ G,

where pi(x, f) := δxP if .

Proof. Let Z,Z1, Z2, . . . be real-valued random variables with Zn → Z a.s. as n→∞ and
|Zn| ≤ Y where E|Y | < ∞. Then E [Zn | F0] → E [Z | F0] a.s. as n → ∞ for any sub-σ-
algebra F0 ⊂ F (c.f. [29, Satz 8.14 (viii)]). For a bounded function f (so π|f | ≤ ‖f‖∞),
the statement follows by application of this fact with Y = ‖f‖∞, Zn = 1

n

∑n
i=1 f(Xi),

Z = πf and F0 = σ(X0) from Theorem 6.1.4.

To get weak convergence of the Cesáro average νxn to π from Birkhoff’s Theorem, the
fact in Corollary 6.1.5 needs to be strengthened such that the limit is well-defined for all
f ∈ Cb(G) except on a π-nullset. This is done in the following for compact metric spaces
and the Euclidean space Rn.

Corollary 6.1.6 (Weak convergence of (νxn)). Let (G, d) be a compact metric space and let
π be an ergodic invariant probability measure for P. Then for π-a.e. x ∈ G the sequence
νxn → π as n→∞, where νxn = 1

n

∑n
i=1 p

i(x, ·).
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Proof. Our proof follows the pattern of [33, Theorem 1.1, Chapter 3]. By Corollary 6.1.5,
we have for f ∈ Cb(G) a.s. that

νX0
n f = 1

n

n∑
i=1

pi(X0, f)→ πf, n→∞, (6.1)

where X0 ∼ π. Since (Cb(G), ‖·‖∞) = (C(G), ‖·‖∞) is separable by compactness of G,
there exists a countable dense subset (gk)k∈N ⊂ Cb(G). Let Nk ⊂ Ω be the P-nullset,
where (6.1) is not satisfied for gk. Define the P-nullset N = ⋃

kNk, it holds for ω ∈ Ω \N
that

νX0(ω)
n gk → πgk, n→∞, ∀k ∈ N.

Let f ∈ Cb(G), then we want to show that also νxnf → πf for x ∈ X0(Ω \N). Let ε > 0.
By denseness of (gk) ⊂ Cb(G) there is m ∈ N with ‖f − gm‖∞ < ε. One has that

|νxnf − πf | ≤ |νxnf − νxngm|+ |πf − πgm|+ |νxngm − πgm|
≤ 2‖f − gm‖∞ + |νxngm − πgm|
< 3ε

for n large enough.

Corollary 6.1.7 (Weak convergence of (νxn) in Rn). Let (G, d) = (Rn, ‖·‖) and let π be an
ergodic invariant probability measure for P. Then for π-a.e. x ∈ Rn the sequence νxn → π
as n→∞, where νxn = 1

n

∑n
i=1 p

i(x, ·).

Proof. We proceed similar to the proof above. We know that the metric space (Cc(Rn), ‖·‖∞)
of compactly supported continuous functions with the supremum-norm is separable. So
for f ∈ Cc(Rn) holds a.s. that

νX0
n f → πf, n→∞,

where X0 ∼ π. Defining the P-nullset N as above and using the 3ε-argument then gives
for π-a.e. x ∈ Rn that

νxnf → πf, n→∞, ∀f ∈ Cc(Rn).

Choosing f ∈ Cc(Rn) to be a smoothed indicator function of a ball, the tightness of (νxn)
can be shown, implying that

νxnf → πf, n→∞, ∀f ∈ Cb(Rn).

Let ε > 0 and M > 0 such that π(B(0,M)) > 1 − ε. Let φδ be 1 on B(0,M) and 0
outside of B(0,M + δ) and else continuous and nonnegative. Since φδ ∈ Cc(Rn), one has
that νxnφδ → πφδ ≥ π(B(0,M)) > 1− ε, so there is N such that for all n ≥ N holds that
νn(B(0,M + δ)) > 1 − ε. After possibly making δ larger (but still finite) this is true for
all n. Tightness implies the existence of weakly convergent subsequences of (νxn), but all
possible clusterpoints coincide with π on Cc(Rn) and hence on all compact boxes of Rn

and then by regularity the clusterpoint is unique.
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An open question for us is if continuity of the mappings Ti (i ∈ I) is already enough to
get from π-a.e. x to the statement that νxn converges to π for all x ∈ supp π. If it was
true, this could simplify Theorem 6.2.3 for the case that (G, d) is the Euclidean space Rn.
If it was not true, then a counter example would be nice to see, which could not be found
yet.

The results above do not require any explicit structure on the mappings Ti that generate
the transition kernel p and hence the Markov operator P . In the results that follow, we
assume continuity of Ti. Lemma 2.8.1 could one make think that the support of any
invariant measure is invariant under Tξ, i.e. Tξ supp π ⊂ supp π, but this need not be the
case for Markov operators generated from discontinuous mappings Ti. Indeed, let

Tx :=
x, x ∈ R \Q
−1, x ∈ Q

,

the transition kernel is then p(x,A) = 1A(Tx) for x ∈ R and A ∈ B(R). Let µ be the
uniform distribution on [0, 1], then, since λ-a.s. T = Id, we have that µPk = µ for all k ∈
N. Consequently, π = µ is invariant and Sπ = [0, 1], but T ([0, 1]) = {−1}∪ [0, 1]∩(R\Q),
which is not contained in [0, 1].

Lemma 6.1.8 (invariance of the support of invariant measures). Let (G, d) be a Polish
space and let Ti : G→ G be continuous for all i ∈ I. Let Sπ := suppπ for any invariant
probability measure π ∈P(G) of P. It holds that TξSπ ⊂ Sπ a.s.

Proof. We can write with Fubini for any A ∈ B(G) that

π(A) =
∫
Sπ
p(x,A)π(dx) =

∫
Ω

∫
Sπ
1A(Φ(x, ξ))π(dx) dP

=
∫

Ω

∫
Sπ
1T−1

ξ(ω)A
(x)π(dx) dP (ω)

= Eπ(T−1
ξ A ∩ Sπ) = Eπ(T−1

ξ A).

Since 1 = π(Sπ) = Eπ(T−1
ξ Sπ) and π(·) ≤ 1, we find that π(T−1

ξ Sπ) = 1 a.s. We have
that T−1

i Sπ is closed for all i ∈ I due to continuity of Ti and closedness of Sπ, hence it
must hold that Sπ ⊂ T−1

ξ Sπ a.s. by Theorem 2.4.1. (v), i.e. TξSπ ⊂ Sπ a.s.

This Lemma means that, if the random variable Xk enters Sπ for some k, then it will
stay in Sπ forever. This can be interpreted as a mode of convergence, i.e. convergence to
the set Sπ, which is closed under application of Tξ a.s. Equality TξSπ = Sπ a.s. cannot
be expected in general. E.g. let I = {1, 2}, G = R and T1x = −1, T2x = 1, x ∈ R and
P(ξ = 1) = 0.5 = P(ξ = 2), then π = 1

2(δ−1 + δ1) and Sπ = {−1, 1}. So T1Sπ = {−1} and
T2Sπ = {1}.

Corollary 6.1.9 (characterization of support). Under the assumptions of Lemma 6.1.8,
we have that

Sπ =
⋃
x∈Sπ

suppL(Tξx).
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Proof. From Lemma 6.1.8 it is clear that there exists a P-nullset N ⊂ Ω such that
Tξ(Ω\N)x ⊂ Sπ for all x ∈ Sπ. Hence by Lemma 2.4.2 suppL(Tξx) ⊂ Sπ for all x ∈ Sπ.
Would there on the other hand exist x ∈ Sπ \

⋃
y∈Sπ suppL(Tξy), then one can find ε0 > 0

such that for all ε ∈ (0, ε0) P(Tξy ∈ B(x, ε)) = 0 for all y ∈ Sπ, which is a contradiction
to invariance π(B(x, ε)) = πP(B(x, ε)).

In the following we will denote Sπ := suppπ and

S :=
⋃
π∈E

Sπ, (6.2)

where E is the set of ergodic measures, see Theorem 6.1.2.

6.2. Ergodic theory for nonexpansive mappings

Our subsequent developments make heavy use of the following important fact in [51] about
tightness of the sequence of the iterated kernel (pk(s, ·)), where s ∈ S.

Theorem 6.2.1 (tightness of (δsPk)). Let (G, d) be a Polish space. Let Ti : G → G be
nonexpansive, i ∈ I. Suppose there exists an invariant measure for P. Then (δsPk) is
tight for all s ∈ S defined by (6.2).

Proof. We will apply [51, Proposition 2.1]. Therefore, we need to ensure, that we have
equicontinuity of the sequence of functions (x 7→ δxP

kf) for any Lipschitz continuous
f : G→ R : Let ε > 0 and x, y ∈ G with d(x, y) < ε/‖f‖Lip, then, using nonexpansivity,
we get ∣∣∣δxPkf − δyPkf ∣∣∣ ≤ E[|f(Xx

k )− f(Xy
k )|] ≤ ‖f‖LipE[d(Xx

k , X
y
k )] < ε

for all k ∈ N.
Furthermore, letting f = 1B(s,ε) for some s ∈ Sπ, where π ∈ E and ε > 0 in Theorem 6.1.4
shows that

lim sup
n→∞

νxn(B(s, ε)) = lim
n
νxn(B(s, ε)) = π(B(s, ε)) > 0 for π-a.e. x ∈ G,

where νxn = 1
n

∑n
i=1 δxP i. So, the assumptions in [51, Proposition 2.1] for (δsPk) to be

tight are met.

Remark 6.2.2 (tightness of (νsn)): Note that (νsn) is tight for s ∈ S, since by Theo-
rem 6.2.1, for all ε > 0, there is a compact subset K ⊂ G such that pk(s,K) > 1− ε for
all k ∈ N, and hence also νsn(K) > 1− ε for all n ∈ N.

Theorem 6.2.3 (weak convergence of (νsn) on Polish spaces). Let (G, d) be a Polish space
and let Ti : G → G , i ∈ I be nonexpansive. Let π be an ergodic invariant probability
measure for P. Then for all s ∈ Sπ := supp π the sequence νsn → π as n → ∞, where
νsn = 1

n

∑n
i=1 p

i(s, ·).
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Proof. Let f ∈ Cb(G). Then by Corollary 6.1.5 there is a nullset N = N(f) (depending
on f) such that for all x ∈ X0(Ω \N) holds that νxnf → πf . Since X0 ∼ π one has that
X0(Ω \N) = Sπ and hence for any ε > 0 and any s ∈ Sπ there exists s̃ = s̃(f, s, ε) ∈ Sπ
with d(s, s̃) < ε and ν s̃nf → πf as n → ∞. Let ν be a cluster point of (νsn), i.e.
νsnl → ν. Then for the Kantorovich-Rubinstein or also called Fortet-Mourier metric (see
also [10, Section 8.3]) holds that

d0(ν, π) = sup {νf − πf | f ∈ Lip1(G), ‖f‖∞ ≤ 1}

= sup
{

lim
l
νsnlf − ν

s̃(f,s,ε)
nl

f

∣∣∣∣ f ∈ Lip1(G), ‖f‖∞ ≤ 1
}

≤ sup
{

lim
l

1
nl

nl∑
i=1

∫ ∣∣∣f(Xs
i )− f(X s̃(f,s,ε)

i )
∣∣∣ dP ∣∣∣∣∣ f ∈ Lip1(G), ‖f‖∞ ≤ 1

}
≤ sup {d(s, s̃(f, s, ε)) | f ∈ Lip1(G), ‖f‖∞ ≤ 1}
≤ ε

for all ε > 0, where Lip1(G) := {f : G→ R | |f(x)− f(y)| ≤ d(x, y)∀x, y ∈ G}, which
means d0(ν, π) = 0, i.e. ν = π.

Remark 6.2.4: In Theorem 6.1.2 the decomposition of any invariant measure into a
convex combination of ergodic invariant measures was stated and in particular two ergodic
measures π1, π2 were mutually singular. Note that still it could be that supp π1∩supp π2 6=
∅. But Theorem 6.2.3 establishes that for nonexpansive mappings Ti, i ∈ I this is not
possible, so the singularity of ergodic measures extends to their support. In particular for
two ergodic measures π, π̃ holds Sπ ∩ Sπ̃ = ∅ if and only if π 6= π̃.
This seemingly simple property that two ergodic measures are mutually singular with
respect to their support has tremendous implications for the ergodic behavior of the
Markov chain generated by the RFI algorithm. In particular it gives us uniqueness of
invariant measures on the metric space (Sπ, d).

Corollary 6.2.5. Under the assumptions of Theorem 6.2.3 for two ergodic measures π, π̃
it holds that Sπ ∩ Sπ̃ = ∅ if and only if π 6= π̃.

Theorem 6.2.6 (convergence on S). Let (G, d) be a Polish space and Ti : G → G be
nonexpansive, i ∈ I. Let µ ∈P(S) with S 6= ∅, i.e. we assume there exists an invariant
probability measure π for P. Then νn := 1

n

∑n
i=1 µP i converges to an invariant probability

measure for P.

Proof. The case µ = δx with x ∈ S follows easily from Theorem 6.2.3 and Remark 6.2.4
which ensure the existence of a unique ergodic invariant measure πx with x ∈ Sπx =
supp πx and νxn → πx.

For the general case, let µ ∈P(S) be arbitrary. One finds for f ∈ Cb(G) that

νnf = 1
n

n∑
i=1

µP if =
∫

1
n

n∑
i=1

δxP ifµ(dx) =
∫
νxnfµ(dx).
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From the special case established above we have νxn → πx as n→∞, so that application
of Lebesgue’s Dominated Convergence Theorem yields∫

νxnfµ(dx)→
∫
πxfµ(dx), n→∞.

Using a loose notation the measure µπx(·) :=
∫
πx(·)µ(dx) is invariant by invariance of πx

and νnf → µπxf as n→∞.

Remark 6.2.7: Theorem 6.2.6 only establishes convergence of the Markov chain when
it is initialized with a measure in the support of an ergodic invariant measure; moreover,
it is only the Cesáro average of the distributions of the iterates that converges.

The next technical lemma implies that every point in the support of an ergodic measure
is reached infinitely often starting from any other point in this support.

Lemma 6.2.8 (positive transition probability for ergodic measures). Let (G, d) be a
Polish space and let Ti : G → G be nonexpansive, i ∈ I. Let π be an ergodic invariant
probability measure for P. Then for any s, s̃ ∈ Sπ it holds that

∀ε > 0∃δ > 0, ∃(in) ⊂ N : pin(s,B(s̃, ε)) ≥ δ ∀n ∈ N.

Proof. Given s̃ ∈ Sπ and ε > 0, find a continuous and bounded function f = fs̃,ε : G →
[0, 1] with the property that f = 1 on B(s̃, ε2) and f = 0 outside B(s̃, ε). For s ∈ Sπ
let X0 ∼ δs and (Xk) generated by Algorithm 1. By Theorem 6.2.6 (νn) converges to
π, where νn := 1

n

∑n
i=1 p

i(s, ·). So in particular νnf → πf ≥ π(B(s̃, ε2)) > 0 as n → ∞.
Hence, for n large enough there is δ > 0 with

νnf = 1
n

n∑
i=1

pi(s, f) ≥ δ.

Now, we can extract a sequence (in) ⊂ N with pin(s, f) ≥ δ, n ∈ N and hence

pin(s,B(s̃, ε)) ≥ pin(s, f) ≥ δ > 0.

A very helpful fact used later on is that the distance between the supports of two ergodic
measures is attained; moreover, any point in the support of the one ergodic measure has
a nearest neighbor in the support of the other ergodic measure. Denote by C(µ, ν) the
set of all couplings for µ and ν, i.e. probability measures on G×G with marginals µ and
ν.

Lemma 6.2.9 (distance of supports is attained). Let (G, d) be a Polish space and Ti :
G → G be nonexpansive, i ∈ I. Suppose π, π̃ are ergodic probability measures for P.
Then for all s ∈ Sπ there exists s̃ ∈ Sπ̃ with d(s, s̃) = dist(s, Sπ̃) = dist(Sπ, Sπ̃).
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Proof. First we show, that dist(Sπ, Sπ̃) = dist(s, Sπ̃) for all s ∈ Sπ. Therefore, recall the
notationXx

k = Tξk−1 · · ·Tξ0x and note that by nonexpansivity of Ti, i ∈ I and Lemma 6.1.8
it holds a.s. that

dist(Xx
k+1, Sπ) ≤ dist(Xx

k+1, TξkSπ) = inf
s∈Sπ

d(TξkXx
k , Tξks) ≤ dist(Xx

k , Sπ)

for all x ∈ G, π ∈ invP and k ∈ N. Suppose now there would exist an ŝ ∈ Sπ with
dist(ŝ, Sπ̃) < dist(s, Sπ̃). Then by Lemma 6.2.8 for all ε > 0 there is a k ∈ N with
P(X ŝ

k ∈ B(s, ε)) > 0 and hence

dist(s, Sπ̃) ≤ d(s,X ŝ
k) + dist(X ŝ

k, Sπ̃) ≤ ε+ dist(ŝ, Sπ̃)

with positive probability for all ε > 0, which is a contradiction. So, it holds that
dist(ŝ, Sπ̃) = dist(s, Sπ̃) for all s, ŝ ∈ Sπ.

For s ∈ Sπ let (s̃m) ⊂ Sπ̃ be a minimizing sequence for dist(s, Sπ̃), i.e. limm d(s, s̃m) =
dist(s, Sπ̃). Now define a probability measure γmn on G×G via

γmn f := E
[

1
n

n∑
i=1

f(Xs
i , X

s̃m
i )

]

for measurable f : G × G → R . Then γmn ∈ C(νsn, ν s̃mn ) and by Lemma 2.6.3 and
Theorem 6.2.3 (γmn )n is tight for fixed m ∈ N and there exists a clusterpoint γm ∈
C(π, π̃). The sequence (γm) ⊂ C(π, π̃) is again tight by Lemma 2.6.3 and hence for
any clusterpoint γ ∈ C(π, π̃) holds for the bounded and continuous function (x, y) 7→
fM(x, y) = min(M,d(x, y)) that

γmn d = γmn f
M ↘ γmfM as n→∞

for allM ≥ d(s, s̃m), m ∈ N. Since by the Monotone Convergence Theorem γmfM ↗ γmd
as m→∞, it follows γmfM = γmd for all M ≥ d(s, s̃1). By the same argument holds for
M ≥ d(s, s̃1) and a subsequence (γmk) with limit γ that γd = γfM . Hence,

γd = γfM = lim
k
γmkfM = lim

k
γmkd ≤ lim

k
d(s, s̃mk) = dist(s, Sπ̃).

In particular for γ-a.e. (x, y) ∈ Sπ × Sπ̃ it holds that d(x, y) = dist(Sπ, Sπ̃), because
d(x, y) ≥ dist(Sπ, Sπ̃) on Sπ×Sπ̃. Taking the closure of these (x, y) in G×G, we see that
for any s ∈ Sπ there is s̃ ∈ Sπ̃ with d(s, s̃) = dist(Sπ, Sπ̃) by Lemma 2.6.2.

As a consequence of Lemma 6.2.9 one can show that S is closed.

Lemma 6.2.10 (S is closed). Let (G, d) be a Polish space and let Ti : G → G be
nonexpansive, i ∈ I. Then S is closed, and S = ⋃

π∈invP Sπ.

Proof. Let (sm) ⊂ G be a sequence with sm ∈ πm ∈ E and sm → s. We have to show
that s ∈ S. The representation of S = ⋃

π∈invP Sπ follows from closedness of S and
Theorem 6.1.2.
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First we show tightness of (δsPk). From Theorem 6.2.1 we have that (δsmPk)k∈N is tight
for any m ∈ N. Fix ε > 0 and m ∈ N with d(s, sm) ≤ ε. According to [34, Chp. 3,
Theorem 2.2] there exists a compact set K ⊂ G such that

δsmPk(B(K, ε)) ≥ 1− ε ∀k ∈ N.

Due to nonexpansiveness of Ti, i ∈ I we have with the notation Xx
k := Tξk−1 · · ·Tξ0x for

x ∈ G that

dist(Xs
k,B(K, ε)) ≤ d(Xs

k, X
sm
k ) + dist(Xsm

k ,B(K, ε)) ≤ 2ε

for all k ∈ N. Hence,

δsPk(B(K, 2ε)) ≥ δsmPk(B(K, ε)) ≥ 1− ε ∀k ∈ N.

By [34, Chp. 3, Theorem 2.2] that implies tightness of (δsPk) and hence of the Cesáro
average (νsn).
Let ν be a clusterpoint of (νsn) such that νsnk → ν. Then

d0(ν, πsm) = lim
k
d0(νsnk , ν

sm
nk

) ≤ d(s, sm).

Hence, πsm → ν as m→∞, which implies that ν is the unique limit of (νsn) and also by
the Feller property of P that ν is invariant.
We show now ergodicity of ν. By Theorem 6.1.2 we have that ν(S) = 1. Since by The-
orem 2.4.1 (iii) it holds that 1 = ν(S) = ν(S ∩ Sν), there exists s̃ ∈ Sν ∩ S. W.l.o.g.
let s̃ ∈ Sπ̃ for some π̃ ∈ E . We assume from now on that s /∈ S and lead that to a
contradiction, yielding the desired result. Let ε < dist(s, Sπ̃)/2, where the latter expres-
sion is positive, since Sπ̃ is closed and s /∈ S. Fix m ∈ N such that d(s, sm) < ε. From
Lemma 6.1.8 we can find s̃m ∈ Sπ̃ such that dist(Sπsm , Sπ̃) = d(sm, s̃m). Then,

dist(Xs
k, Sπ̃) ≥ dist(Xsm

k , Sπ̃)− d(Xs
k, X

sm
k )

≥ dist(Sπsm , Sπ̃)− d(s, sm)
= d(sm, s̃m)− d(s, sm)
≥ d(s, s̃m)− 2d(s, sm)
≥ dist(s, Sπ̃)− 2ε > 0.

This is a contradiction to the fact that s̃ ∈ Sν ∩ Sπ̃. So, we have that s ∈ S, and hence S
is closed.

6.3. General convergence theory for nonexpan-
sive mappings

When the Markov chain is initialized with a point not supported in S, i.e. we allow
µ ∈ P(G), the convergence results on general Polish spaces are much weaker than for
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the ergodic case in the previous section. One major problem is that the sequences (νxn)
for x ∈ G \ S need not be tight anymore. The right-shift operator θ on l2, for example,
with the initial distribution δe1 , generates the sequence θke1 = ek. Spaces, on which we
can guarantee tightness are of course compact metric spaces, since then (P(G), dP ) is
compact, i.e. the space of probability measures equipped with the Prokhorov-Levi metric
(see Theorem 2.5.4) is a metric space and metrizes convergence in the weak sense. For
Euclidean space Rn one also has tightness, though this requires some justification.

Lemma 6.3.1 (tightness of (µPk) in Rn). Let (G, d) be the Euclidean space (Rn, ‖·‖)
and Ti : G → G be nonexpansive, i ∈ I and let invP 6= ∅ for the corresponding Markov
operator. The sequence (µPk) is tight for any µ ∈P(G).

Proof. First, let µ = δx for x ∈ G = Rn. We know, that (δsPk) is tight for s ∈ S by
Theorem 6.2.1. So for ε > 0 there is a compact K ⊂ Rn with pk(s,K) ≥ 1 − ε for all
k ∈ N. Since a.s. holds d(Xx

k , X
s
k) ≤ d(x, s), we have that pk(x,B(K, ‖x− s‖)) = P(Xx

k ∈
B(K, ‖x− s‖)) ≥ pk(s,K) ≥ 1− ε for all k ∈ N. Hence (δxPk) is tight.

Now consider any µ ∈P(G). For given ε > 0 there is a compact Kµ
ε ⊂ Rn with µ(Kµ

ε ) >
1 − ε. From the special case established above, there exists a compact Kε ⊂ Rn with
pk(0, Kε) > 1− ε for all k ∈ N. Let M > 0 such that Kµ

ε ⊂ B(0,M) and let x ∈ B(0,M).
We have that pk(x,B(Kε,M)) > 1− ε for all x ∈ B(0,M), since ‖Xx

k −X0
k‖ ≤ ‖x‖ ≤M .

Hence µPk(B(Kε,M)) > (1− ε)2, which implies tightness of (µPk).

Remark 6.3.2 (tightness of (νµk ) in Rn): The tightness of (νµk ) for any µ ∈P(Rn) follows
immediately from tightness of (µPk) as in Remark 6.2.2.

Lemma 6.3.3 (properties for nonexpansive mappings). Let (G, d) be a Polish space and
Ti : G → G be nonexpansive, i ∈ I. Suppose invP 6= ∅. Let X0 ∼ µ ∈ P(G) and let
(Xk) be the sequence generated by Algorithm 1.

(i) If π ∈ invP then dist(Xk+1, Sπ) ≤ dist(Xk, Sπ) a.s. for all k ∈ N.

Denote νn := 1
n

∑n
i=1 µP i and assume that the sequence (νn) has a clusterpoint π. Then,

(ii) dist(Xk, Sπ)→ 0 a.s. as k →∞.

(iii) clusterpoints of (νn) have the same support.

(iv) clusterpoints of (µPk) are in P(Sπ) (if they exist).

Proof. (i) By Lemma 6.1.8, the sets Nk ⊂ Ω on which not holds TξkSπ ⊂ Sπ are P-
nullsets and so is their union, denoted as N . So, except for ω ∈ N holds for all
s ∈ Sπ

dist(Xk+1, Sπ) ≤ d(Xk+1, Tξks) = d(TξkXk, Tξks) ≤ d(Xk, s),

and hence

dist(Xk+1, Sπ) ≤ dist(Xk, Sπ) a.s.



60 6 Convergence Analysis - Inconsistent Feasibility

(ii) Since the function f = min(M, dist(·, Sπ)) for some M > 0 is bounded and con-
tinuous, we have for a subsequence (νnk) of (νn) converging to π, that νnkf =
1
nk

∑nk
i=1 µP if → πf = 0 as k →∞. Now ((i)) and

µP i+1f = E[min(M, dist(Xi+1, Sπ))] ≤ E[min(M, dist(Xi, Sπ))] = µP if

yield µP if = E[min(M, dist(Xi, Sπ))]→ 0 as i→∞. Again by ((i))

Y := lim
i→∞

min(M, dist(Xi, Sπ))

exists and is nonnegative; so by Lebesgue’s dominated convergence theorem it fol-
lows that Y = 0 a.s., since otherwise E[Y ] > 0 = limi→∞ µP if would yield a
contradiction.

(iii) Let π1, π2 be two clusterpoints of (νn) with support S1, S2 respectively, then these
probability measures are invariant for P by Theorem 2.8.2. By Corollary 6.2.5
S1 ∩ S2 = ∅ is not possible, so S1 ∩ S2 6= ∅. Suppose now w.l.o.g. ∃y ∈ S1 \ S2.
Then there is an ε > 0 with B(y, 2ε) ∩ S2 = ∅. Let f : G → [0, 1] be a continuous
function that takes the value 1 on B(y, ε2) and 0 outside of B(y, ε). Then π1f > 0 and
π2f = 0. But there are two subsequences of (νn) with νnkf → π1f and νñkf → π2f
as k →∞. For the former sequence we have, for k large enough,

∃δ > 0 : 1
nk

nk∑
i=1

µP if ≥ δ > 0.

So, one can from this extract a sequence (in) ⊂ N with µP inf ≥ δ, n ∈ N. Note
that P(Xin ∈ B(y, ε)) ≥ µP inf ≥ δ > 0. This implies dist(Xin , S2) ≥ ε with P ≥ δ
and hence E[dist(Xin , S2)] ≥ δε, in contradiction to ((ii)). So there cannot be such
y which yields S1 = S2, as claimed.

(iv) Let ν be a clusterpoint of (µPk), which is assumed to exist, and assume there is
s ∈ supp ν \ Sπ and ε > 0 such that dist(s, Sπ) > 2ε. Let f : G → [0, 1] be a
continuous function, that takes the value 1 on B(s, ε2) and 0 outside of B(s, ε). With
((ii)) we find, that

0 < νf = lim
k

PXnkf ≤ lim
k

P(Xnk ∈ B(s, ε)) = 0.

Were P(Xnk ∈ B(s, ε)) ≥ δ > 0 for k large enough, then this would imply that

E[dist(Xnk , Sπ)] ≥ δε

for k large enough, which is a contradiction. We conclude that there is no such s,
which completes the proof.

We show now the convergence of the Cesáro average (νn) of (µPk), where νn := 1
n

∑n
k=1 µPk,

to an invariant probability measure for P for arbitrary initial measure. We restrict our-
selves to Polish spaces with finite dimensional metric in order to apply a differentiation
theorem. We begin with the next technical fact.
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Lemma 6.3.4 (characterization of balls in (E , dP )). Let G be a Polish space and Ti :
G→ G be nonexpansive, i ∈ I. Let π, π̃ ∈ E, then

π̃ ∈ B(π, ε) ⇐⇒ Sπ̃ ⊂ B(Sπ, ε)

for ε ∈ (0, 1).

Proof. By Lemma 6.2.9 there exist s ∈ Sπ and s̃ ∈ Sπ̃ such that d(s, s̃) = dist(Sπ, Sπ̃).
First note that, if π 6= π̃, then Sπ ∩ Sπ̃ = ∅ by Corollary 6.2.5, and hence d(s, s̃) =
dist(Sπ, Sπ̃) > 0.
Recall the notation Xx

k := Tξk−1 · · ·Tξ0x for x ∈ G and note that by Lemma 2.6.2((i)) and
Lemma 6.1.8, suppL(Xs

k) ⊂ Sπ and suppL(X s̃
k) ⊂ Sπ̃. So it holds that d(Xs

k, X
s̃
k) ≥

dist(Sπ, Sπ̃) a.s. for all k ∈ N. From nonexpansiveness of Ti, i ∈ I, we have that
d(Xs

k, X
s̃
k) ≤ d(s, s̃) a.s. for all k ∈ N. So, both inequalities together imply the equal-

ity

d(Xs
k, X

s̃
k) = d(s, s̃) a.s. ∀k ∈ N. (6.3)

Now, letting c := min(1, d(s, s̃)), we show that dP (π, π̃) = c, where dP denotes the
Prokhorov-Levi metric (see Theorem 2.5.4). Therefore take (X, Y ) ∈ C(L(Xs

k),L(X s̃
k)).

Again, by Lemma 2.6.2((i)) and Lemma 6.1.8 suppL(X) ⊂ Sπ and suppL(Y ) ⊂ Sπ̃ and
hence d(X, Y ) ≥ dist(Sπ, Sπ̃) = d(s, s̃) a.s. We have, thus

P(d(X, Y ) > c− δ) ≥ P(d(X, Y ) > d(s, s̃)− δ) = 1 ∀δ > 0,

which implies dP (L(Xs
k),L(X s̃

k)) ≥ c by Theorem 2.5.4(i). In particular, for c = 1 it
follows that dP (L(Xs

k),L(X s̃
k)) = 1, since dP is bounded by 1. Now, let c < 1, i.e.

c = d(s, s̃) < 1. We have by (6.3)

inf
(X,Y )∈C(L(Xs

k
),L(X s̃

k
))
P (d(X, Y ) > c) ≤ P

(
d(Xs

k, X
s̃
k) > c

)
= 0 ≤ c.

Altogether we find that dP (L(Xs
k),L(X s̃

k)) = c by Theorem 2.5.4((i)). Since also supp νsn ⊂
Sπ and supp ν s̃n ⊂ Sπ̃, where νxn = 1

n

∑n
k=1 L(Xx

k ) for any x ∈ G, it follows that

c ≤ dP (νsn, ν s̃n) ≤ max
k=1,...,n

dP (L(Xs
k),L(X s̃

k)) = c (6.4)

by Theorem 2.5.4(v). Now taking the limit n → ∞ of (6.4) and using Theorem 6.2.3, it
follows that dP (π, π̃) = c.

The proves the assertion.

Definition 6.3.5 (Besicovitch family). A family B of balls B = B(xB, εB) with xB ∈ G
and εB > 0 on the metric space (G, d) is called a Besicovitch family of balls if

(i) for every B ∈ B one has xB 6∈ B′ ∈ B for all B′ 6= B, and

(ii) ⋂B∈B B 6= ∅.
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Definition 6.3.6 (σ-finite dimensional metric). Let (G, d) be a metric space. We say that
d is finite dimensional on a subset D ⊂ G if there exist constants K ≥ 1 and 0 < r ≤ ∞
such that CardB ≤ K for every Besicovitch family B of balls in (G, d) centered on D
with radius < r. We say that d is σ-finite dimensional if G can be written as a countable
union of subsets on which d is finite dimensional.

Proposition 6.3.7 (differentiation theorem, Theorem 5.12 in [44]). Let (G, d) be a com-
plete separable metric space. For every locally finite regular measure λ over (G, d), it holds
that

lim
r→0

1
λ(B(x, r))

∫
B(x,r)

f(y)λ(dy) = f(x) for λ-a.e. x ∈ G, (6.5)

for all f ∈ L1
loc(G, λ), if and only if d is σ-finite dimensional.

Proposition 6.3.8 (Besicovitch covering property in E). Let (G, d) be a Polish space with
finite dimensional metric d and let Ti : G → G be nonexpansive, i ∈ I. The cardinality
of any Besicovitch family of balls in (E , dP ) is bounded by the same constant that bounds
the cardinality of Besicovitch families in G.

Proof. Let B be a Besicovitch family of closed balls B = B(πB, εB) in (E , dP ), where
πB ∈ E and εB > 0. Note that if εB ≥ 1, then |B| = 1, since in that case B = E since dP
is bounded by 1. So let |B| > 1, that implies εB < 1 for all B ∈ B.

The defining properties of a Besicovitch family translate then with help of Lemma 6.3.4
into

πB 6∈ B′, ∀B′ ∈ B \B ⇐⇒ SπB ∩ B(SπB′ , εB′) = ∅, ∀B′ ∈ B \B (6.6)

and ⋂
B∈B

B 6= ∅ ⇐⇒
⋂
B∈B

B(SπB , εB) 6= ∅. (6.7)

Now fix π in the latter intersection in (6.7) and let s ∈ Sπ. Also fix for each B ∈ B a
point sB ∈ SπB with the property that sB ∈ argmins̃∈SπB d(s, s̃) (possible by Lemma 6.2.9).
Then the family C of balls B(sB, εB) ⊂ G, B ∈ B is also a Besicovitch family: We have
sB 6∈ B′ for B 6= B′ due to (6.6) and by the choice of sB one has s ∈ ⋂B∈C B.
Since the cardinality of any Besicovitch family in G is bounded by a uniform constant, it
follows, that also the cardinality of B is uniformly bounded.

Remark 6.3.9 (Euclidean metric on Rn is finite dimensional): The cardinality of any
Besicovitch family in Rn is uniformly bounded depending on n [39, Lemma 2.6].

Lemma 6.3.10 (equality around support of ergodic measures implies equality of mea-
sures). Let (G, d) be a Polish space with the finite dimensional metric d and let Ti : G→ G
be nonexpansive (i ∈ I). If π1, π2 ∈ invP satisfy

π1(B(Sπ, ε)) = π2(B(Sπ, ε))

for all ε > 0 and all π ∈ E, then π1 = π2.
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Proof. From Theorem 6.1.2 follows the existence of probability measures Q1, Q2 on the
set E of ergodic measures for P such that one has

πi(A) =
∫
E
π(A)Qi(dπ), A ∈ B(G), i = 1, 2.

If we set Q = 1
2(Q1+Q2), then by Radon-Nikodyms theorem, there are densities f1, f2 ≥ 0

on E with Qi = fi ·Q and hence

πi(A) =
∫
E
π(A)fi(π)Q(dπ), A ∈ B(G), i = 1, 2.

For Q-m.b. subsets E ⊂ E , one can define a probability measure on E via

π̃i(E) :=
∫
E
1E(π)fi(π)Q(dπ), i = 1, 2.

One then has for ε > 0 and π ∈ E that

πi(B(Sπ, ε)) = π̃i(B(π, ε)), i = 1, 2, (6.8)

where B(π, ε) := {π̃ ∈ E | dP (π̃, π) ≤ ε}. This is due to Lemma 6.3.4, from which follows

π̃(B(Sπ, ε)) =
1, π̃ ∈ B(π, ε)

0, else
.

We want to employ Proposition 6.3.7 to show that f1 = f2 Q-a.s., which would imply
that π1 = π2. From [44, Theorem 5.12] the differentiation theorem is applicable for any
probability measure Q on (E ,B(E)) if dP is finite dimensional, i.e. the weak Besicovitch
property is satisfied. So, according to Proposition 6.3.8 [44, Theorem 5.12] is applicable
and differentiation of π̃i with respect to Q then gives Q-a.s.

lim
ε→0

π̃i(B(π, ε))
Q(B(π, ε))

= fi(π).

And since π̃1(B(π, ε)) = π̃2(B(π, ε)) by (6.8) and the assumption, we have f1 = f2 Q-
a.s.

Remark 6.3.11: In the assertion of Lemma 6.3.10, it is enough to claim the existence
of a sequence (επi )i∈N ⊂ R+ with επi → 0 as i→∞ satisfying

π1(B(Sπ, επi )) = π2(B(Sπ, επi )) ∀π ∈ E , ∀i ∈ N,

because from Proposition 6.3.7 one has the existence of the limit in the last equation of
the proof Q-a.s. So by the definition of the limit, any particular null-sequence needs to
yield the same limit in the last equation of the proof of Lemma 6.3.10.

Theorem 6.3.12 (convergence of Cesáro average). Let (G, d) be a Polish space with finite
dimensional metric d, let Ti : G → G be nonexpansive (i ∈ I) and assume invP 6= ∅.
Let νn = 1

n

∑n
i=1 µP i generated by Algorithm 1 for any µ ∈ P(G). If (νn) is tight then

this sequence converges to an invariant probability measure for P.
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Proof. Since P is Feller and (νn) is tight it follows from Theorem 2.8.2 that clusterpoints
of (νn) are invariant measures for P . Let ν1, ν2 be such clusterpoints, then we need to
show that ν1 = ν2.
This follows from Lemma 6.3.10, we just need to verify the assumptions. It is required
that

(∀π ∈ E)(∀ε > 0) ν1(Bε) = ν2(Bε) (6.9)

where Bε := B(Sπ, ε). First, fix x ∈ G and ε > 0. Let Ak := {Xx
k ∈ Bε}. By non-

expansivity Ak ⊂ Ak+1 for i ∈ N, since we have by Lemma 6.1.8 a.s. d(Xx
k+1, Sπ) =

d(Xx
k+1, TξkSπ) ≤ d(Xx

k , Sπ) ≤ ε. Hence (pk(x,Bε)) = (P(Ak)) is a monotonically in-
creasing sequence and bounded from above and therefore the sequence converges to some
bxε ∈ [0, 1] as k →∞. It follows for the average by the Monotone Convergence Theorem

νn(Bε) := 1
n

n∑
k=1

∫
pk(x,Bε) dµ→

∫
bxε dµ , n→∞.

So, in particular ν1(Bε) = ν2(Bε) =
∫
bxε dµ for all ε > 0. Application of Lemma 6.3.10

gives the uniqueness of the clusterpoint, implying convergence of (νn).

Corollary 6.3.13 (convergence in Rn). Let (G, d) = (Rn, ‖·‖), let Ti : G→ G be nonex-
pansive (i ∈ I) and assume invP 6= ∅. Let νn = 1

n

∑n
i=1 µP i generated by Algorithm 1 for

any µ ∈P(Rn). Then this sequence converges to an invariant probability measure for P.

Proof. The Euclidean norm is finite dimensional by Remark 6.3.9 and (νn) is tight for any
initial probability measure µ by Remark 6.3.2. Now Theorem 6.3.12 is applicable.

6.4. Convergence theory for averaged mappings

Continuing the development of the convergence theory under increasingly strong assump-
tions on the mappings Ti (i ∈ I), in this section we examine what is achievable under the
assumption that the mappings Ti are averaged. We restrict ourselves to the Euclidean
space (Rn, ‖·‖). A mapping T : Rn → Rn is said to be averaged when this can be written
as the convex combination of the identity mapping Id and a nonexpansive mapping T ′,
that is, T is averaged when there exists a T ′ : Rn → Rn nonexpansive such that

T = αT ′ + (1− α) Id

for some α ∈ (0, 1). It is easy to see that averaged mappings are also nonexpansive. We
will use the following equivalent characterization: a mapping T is averaged with constant
α ∈ (0, 1) if and only if

‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1− α
α
‖(Id−T )x− (Id−T )y‖2. (6.10)
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6.4.1 Convergence of (L(Xk))

We begin with a technical Lemma that describes properties of sequences whose relative
expected distances are invariant under Tξ.

Lemma 6.4.1 (constant expected separation). Let Ti : Rn → Rn be αi-averaged with
αi ≤ α < 1, i ∈ I. Let µ, ν ∈P(Rn) and X ∼ µ, Y ∼ ν independent of (ξk) satisfy

E
[∥∥∥XX

k −XY
k

∥∥∥2
]

= E
[
‖X − Y ‖2

]
∀k ∈ N.

Then for P(X,Y )-a.e. (x, y) ∈ Rn × Rn we have Xx
k − X

y
k = x − y P-a.s. for all k ∈ N.

Moreover, if there exists an invariant measure for P, then

πx(·) = πy(· − (x− y)) P(X,Y )a.s.

for the limiting invariant measures πx of the Cesáro average of (δxPk) and πy of the
Cesáro average of (δyPk).

Proof. From averagedness, one has

E
[
‖X − Y ‖2

]
≥ E

[
‖Tξ0X − Tξ0Y ‖

2
]

+ 1− α
α

E
[
‖(X − Tξ0X)− (Y − Tξ0Y )‖2

]
≥ . . .

≥ E
[∥∥∥Tξk−1 · · ·Tξ0X − Tξk−1 · · ·Tξ0Y

∥∥∥2
]

+ 1− α
α

k−1∑
i=0

E
[∥∥∥(Tξi−1 · · ·Tξ−1X − Tξi · · ·Tξ0X)− (Tξi−1 · · ·Tξ−1Y − Tξi · · ·Tξ0Y )

∥∥∥2
]
,

where we used Tξ−1 := Id for a simpler representation of the sum. We will denote Xx
k =

Tξk−1 · · ·Tξ0x. The assumption E
[∥∥∥XX

k −XY
k

∥∥∥2
]

= E
[
‖X − Y ‖2

]
for all k ∈ N then

implies, that for i = 1, . . . , k P-a.s.

XX
k −XX

k−1 = XY
k −XY

k−1, k ∈ N

and hence by induction

XX
k −XY

k = X − Y.

By the disintegration theorem Theorem 2.3.2 and using (X, Y )⊥⊥ (ξk) we have P-a.s.

0 = E
[∥∥∥(X −XX

k )− (Y −XY
k )
∥∥∥2
∣∣∣∣X, Y ]

=
∫
Ik
‖(X − Tik · · ·Ti0X)− (Y − Tik · · ·Ti0Y )‖2Pξ(dik) · · ·Pξ(di0),

which means for P(X,Y )-a.e. (x, y) ∈ Rn × Rn, that P-a.s. holds

Xx
k −X

y
k = x− y, ∀k ∈ N.
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So in particular for any A ∈ B(Rn)

pk(x,A) = P(Xx
k ∈ A) = P(Xy

k ∈ A− (x− y)) = pk(y, A− (x− y))

and hence, denoting fh = f(· + h) and νxn = 1
n

∑n
i=1 p

i(x, ·), one also has for f ∈ Cb(Rn)
by Corollary 6.3.13

νynfx−y → πyfx−y = πyx−yf,

νxnf → πxf

as n→∞ and where πyx−y := πy(· − (x− y)). So from νynfx−y = νxnf for any f ∈ Cb(Rn)
and n ∈ N follows πyx−y = πx.

Theorem 6.4.2 (convergence of iterates for averaged mappings). Let Ti : Rn → Rn be
αi-averaged with αi ≤ α < 1 (i ∈ I) and assume there exists an invariant probability
distribution for P. For any initial distribution µ ∈P(Rn) the distributions of the iterates
µPk generated by Algorithm 1 converge to an invariant probability measure for P.

Proof. Let x, y ∈ Rn and define d(x, y) := ‖x− y‖2 and fM(x, y) := min(M,d(x, y)),
where M ∈ R. For given g : Rn×Rn → R define a sequence of functions (gn) on Rn×Rn

via

gk(x, y) = E [g(Xx
k , X

y
k )] , k ∈ N,

where Xz
k := Tξk−1 · · ·Tξ0z for any z ∈ Rn. Note that gk ∈ Cb(Rn) for all k ∈ N if

g ∈ Cb(Rn) by continuity of Ti, i ∈ I and Lebesgue’s Dominated Convergence Theorem.
From averagedness of Ti, i ∈ I, we get that a.s. for all k ∈ N

‖Xx
k −X

y
k‖

2 ≥
∥∥∥Xx

k+1 −X
y
k+1

∥∥∥2
+ 1− α

α

∥∥∥(Xx
k −Xx

k+1)− (Xy
k −X

y
k+1)

∥∥∥2
. (6.11)

After taking expectation, this is the same as writing

dk(x, y) ≥ dk+1(x, y) + 1− α
α

E
[∥∥∥(Xx

k −Xx
k+1)− (Xy

k −X
y
k+1)

∥∥∥2
]
.

We conclude that (dk(x, y)) is a monotonically nonincreasing sequence for any x, y ∈ G.
Let s, s̃ ∈ Sπ for some π ∈ E and define the sequence of measures

γkf := E
[
f(Xs

k, X
s̃
k)
]

for any measurable function f : Rn×Rn → R . Note that due to nonexansiveness (Xs
k, X

s̃
k)

a.s. takes values in Dr := {(x, y) ∈ Rn × Rn : ||x− y||2 ≤ r} for r = ||s− s̃||2 so that γk
is concentrated on this set. Since (Xs

k) is a tight sequence by Lemma 6.3.1 and likewise
(X s̃

k) we know from Lemma 2.6.3 that the sequence (γk) is tight as well. Let γ be a
clusterpoint of (γk), which is again concentrated on D||s−s̃||2 , and consider a subsequence
(γkn) such that γkn → γ. By Lemma 2.6.3 we also know that γ ∈ C(ν1, ν2) where ν1 and
ν2 are the distributions of the weak limit of (Xs

kn) and (X s̃
kn). For any f ∈ Cb(Rn) we have
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γknf → γf. We now consider f = fM and use that for M ≥ ‖s− s̃‖2 we have γkn and γ
a.s. that d = fM in order to conclude that

γknd = γknf
M → γfM = γd.

However, by the monotonicity in (6.11) we now also obtain the convergence

γkd = γkf
M ↘ γfM = γd

for the entire sequence. Let (X, Y ) ∼ γ and (ξ̃k)⊥⊥ (ξk) be another i.i.d. sequence with
(X, Y )⊥⊥ (ξ̃k), (ξk). We use the notation X̃x

k := Tξ̃k−1
· · ·Tξ̃0

x, x ∈ Rn. Since fMk ∈ Cb(Rn)
we have for M ≥ ‖s− s̃‖2 that

γdk = γfMk = E
[
min

(
M,

∥∥∥X̃X
k − X̃Y

k

∥∥∥2
)]

= lim
n→∞

γknf
M
k

= lim
n→∞

E
[
min

(
M,

∥∥∥∥X̃Xs
kn

k − X̃X s̃
kn

k

∥∥∥∥2
)]

= lim
n→∞

E
[
min

(
M,

∥∥∥Xs
k+kn −X

s̃
k+kn

∥∥∥2
)]

= lim
n→∞

γk+knf
M = γfM = γd.

This means that for all k ∈ N,

E
[∥∥∥XX

k −XY
k

∥∥∥2
]

= E[‖X − Y ‖2].

For P(X,Y )-a.e. (x, y) we have x, y ∈ Sπ and thus πx = πy = π where πx is the unique
ergodic measure with x ∈ Sπx , see Remark 6.2.3. An application of Lemma 6.4.1 yields
then that π(·) = π(· − (x− y)), i.e. x = y. Hence X = Y a.s. implying ν1 = ν2 =: ν and
γd = 0. That means

γkd = E
[∥∥∥Xs

k −X s̃
k

∥∥∥2
]
→ 0 as k →∞,

which implies convergence W2 Wasserstein metric of the corresponding probability mea-
sures δsPk and δs̃Pk and thus also in the Prohorov metric, namely

dP (δsPk, δs̃Pk)→ 0.

Hence, by the triangle inequality, if we have convergence of δsPkn → ν then also δs̃Pkn → ν
for any s̃ ∈ Sπ :

dP (δs̃Pkn , ν) ≤ dP (δsPkn , δs̃Pkn) + dP (δsPkn , ν)→ 0, as n→∞.

We conclude that for any f ∈ Cb(Rn) and µ ∈P(Sπ) it holds that

µPknf =
∫
Sπ
δsPknfµ(ds)→ νf, as n→∞
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by Lebesgue’s Dominated Convergence Theorem. This means that µPkn → ν and since
we may set µ = π, we have ν = π. Thus, all clusterpoints of (δsPk) for all s ∈ Sπ have
the same distribution π and hence the convergence δsPk = pk(x, ·) → π follows due to
tightness.

Now, let µ ∈ P(S), where S = ⋃
π∈E Sπ. By what we have just shown we have for

x ∈ suppµ, that pk(x, ·)→ πx, where πx is unique ergodic measure with x ∈ Sπx . Then,
by Lebesgue’s Dominated Convergence Theorem, one has for any f ∈ Cb(Rn),

µPkf =
∫
f(y)pk(x, dy)µ(dx)→

∫
f(y)πx(dy)µ(dx) =: πµf (6.12)

as k →∞ and the measure πµ is again invariant for P by invariance of πx for all x ∈ S.
Now, let µ = δx, x ∈ Rn \ S. We obtain the tightness of (δxPk) from the tightness of
(δsPk) for s ∈ S : For ε > 0 there exists a compact Kε ⊂ Rn with pk(s,Kε) > 1 − ε
for all k ∈ N. Combining this with nonexpansiveness of Ti, i ∈ I implying ‖Xx

k −Xs
k‖ ≤

‖x− s‖ for all k ∈ N leads to pk(x,B(Kε, ‖x− s‖)) > 1 − ε. Tightness implies the
existence of a clusterpoint ν of the sequence (δxPk). From Corollary 6.3.13 we know,
that νxn = 1

n

∑n
i=1 δxP i → πx for some πx ∈ invP with Sπx ⊂ S. Furthermore, we have

ν ∈ P(Sπx) ⊂ P(S) by Lemma 6.3.3((iv)). So by (6.12) there exists πν ∈ invP with
νPk → πν .

In order to complete the proof we have to show ν = πx, i.e. πx is the unique clusterpoint
of (δxPk) and hence convergence follows by Theorem A.0.16. This is possible by showing
that πν = πx, since then, as k →∞

dP (ν, πx) = lim
n
dP (δxPn, πx) = lim

n
dP (δxPn+k, πx) = dP (νPk, πx) = dP (νPk, πν)→ 0.

To see that ν = πx, fix π ∈ invP . For any ε > 0 let Ak := {Xx
k ∈ B(Sπ, ε)}. By

nonexpansivity Ak ⊂ Ak+1 for i ∈ N, since we have by Lemma 6.1.8 a.s.

dist(Xx
k+1, Sπ) ≤ dist(Xx

k+1, TξkSπ) ≤ dist(Xx
k , Sπ).

Hence (pk(x,B(Sπ, ε))) = (P(Ak)) is a monotonically increasing sequence and bounded
from above and therefore the sequence converges to some bxε ∈ [0, 1] as k →∞. It follows
for all π ∈ invP that

bxε = lim
k
pk(x,B(Sπ, ε)) = lim

n

1
n

n∑
i=1

pi(x,B(Sπ, ε)). (6.13)

and thus ν(B(Sπ, ε)) = πx(B(Sπ, ε)) for all ε, which make B(Sπ, ε) both ν- and πx-
continuous. Note that there are at most countably many ε > 0 for which this may fail,
see [33, Chapter 3, Example 1.3]). With the same argument as in (6.13) we also obtain
for any k ∈ N that νPk(B(Sπ, ε)) = πx(B(Sπ, ε)) with only countably many ε excluded
and so also

πν(B(Sπ, ε)) = πx(B(Sπ, ε))
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needs to hold for all except countably many ε, which implies since πν ∈ invP that πν = πx

by Lemma 6.3.10 combined with Remark 6.3.11.
For a general initial measure µ ∈P(Rn), one has by Lebesgue’s Dominated Donvergence
Theorem that

µPkf =
∫
f(y)pk(x, dy)µ(dx)→

∫
f(y)πx(dy)µ(dx) =: πµf,

where πx denotes the limit of (δxPk) and the measure πµ is again invariant for P .

6.4.2 Structure of ergodic measures for averaged
mappings

Theorem 6.4.3 (structure of ergodic measures). Let Ti : Rn → Rn be αi-averaged with
αi ≤ α < 1 (i ∈ I) and assume there exists an invariant probability distribution for P.
Any two ergodic measures π, π̃ are shifted versions of each other, i.e. there exist s ∈ Sπ
and s̃ ∈ Sπ̃ with π = π̃(· − (s− s̃)).

Proof. Since we can find for any s ∈ Sπ a closest point s̃ ∈ Sπ̃, i.e. dist(Sπ, Sπ̃) = d(s, s̃),
by Lemma 6.2.9, the assertion follows from

dist(Sπ, Sπ̃) ≤
√
E[‖Xs

k −X s̃
k‖

2] ≤ ‖s− s̃‖ ∀k ∈ N, (6.14)

where we also used that suppL(Xs
k) ⊂ Sπ, suppL(X s̃

k) ⊂ Sπ̃.

Proposition 6.4.4 (specialization to projectors). Let the mappings Ti = Pi : Rn → Rn

be projectors onto nonempty closed and convex sets (i ∈ I). If there exist two ergodic
measures π1, π2, then there exist infinitely many ergodic measures πλ with πλ := π2(·−λa)
for all λ ∈ [0, 1], where a is the shift such that π1 = π2(· − a).

Proof. For any pair (s1, s2) ∈ Sπ1 × Sπ2 of closest neighbors it holds that a = s1 − s2
by Theorem 6.4.3. From (6.14) and Lemma 6.4.1 follows Pξs1 = Pξs2 + a a.s. Hence,
a ⊥ (si − Pξsi), i = 1, 2, and then Pξ(s2 + λa) = Pξs2 + λa for λ ∈ [0, 1]. Hence
Xs2+λa
k = Xs2

k + λa and limk L(Xs2+λa
k ) = π2(· − λa). Note, that if P is Feller and the

limit (µPk) exists for some µ ∈ R, then it is also an invariant measure.

6.5. Embedding into existing work

Random function iterations are often understood as a finite system of functions and
probabilities thereon. There are also dynamical systems, where the function space is
infinite, but these are mostly considered for continuous time. We understand random
function systems as infinite (possibly uncountable) function systems. These were in the
literature mostly analyzed with contraction properties of the mappings or the expected
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contraction property, see e.g. the review [48]. In that review also the terminology of an
equicontinuous Markov chain comes into play. Equicontinuous Markov chains have been
analyzed thoroughly in Meyn and Tweedie [40], there called e-chains. There equicontinuity
is understood as equicontinuity for (Pkf) for any f ∈ Cc(R). This concept is appropriate
for only locally-compact metric spaces. Still their concept is not suitable for us, it is too
demanding on the properties of the Markov operator P . But there is another concept,
the e-property concept by Lasota and Szarek [35]. Here equicontinuity is understood
as equicontinuity of the sequence (Pkf) for any Lipschitz continuous f : G → R . This
concept is working also on general Polish spaces. Any Markov operator that is constructed
via nonexpansive functions fits exactly into that framework. There is a lot known and
done in the case of Markov operators that satisfy the e-property. For example there is
an extraordinary dissertation by Worm [54], who covers Theorem 6.3.12 in his Theorem
7.3.1, where he can show that even on general Polish spaces for any Markov operator
satisfying the weaker Cesàro e-property and for which the sequence (δxPk) is tight for
some x ∈ G, this sequence of Cesàro averages is converging to an invariant measure for
the Markov operator. (We found out about that after our proof was done, so the proof in
this thesis is independent of that). But Worm is also able to show a much finer structure
of the ergodic set S even without the e-property. Our work is based on his results on
general Polish spaces as well as on the work by Szarek [35,51] (and later work), especially
when dealing with Markov operators satisfying the e-property.

In this thesis we are just interested in Rn. Work on properties of Markov operators on
locally compact spaces are the monographs by Duflo [18], Hernandez-Lerma and Lasserre
[26] and Zaharopol [55]. Neither of these monographs uses the e-property, but Meyn and
Tweedie [40, Theorem 12.0.1] and Zaharopol [55, Theorem 4.3.1] can show convergence
of Cesàro averages for e-chains. In [26, Theorem 5.2.2] there are more general results
than we have found in Corollary 6.1.7 about the ergodic behavior of our Markov chain in
locally compact metric spaces, in particular this theorem is generalized to locally compact
metric spaces.

In compact metric spaces a strong law of large numbers and convergence of the Cesàro
averages could be shown under the assumption that there exists a unique probability
measure, or that the Markov operator is equicontinuous in the sense of e-chains, see for
example [12], [27]. These results were generalized in the popular monograph [40] by Meyn
and Tweedie. Under the assumption of uniqueness of the invariant measure, there could
be shown a law of large numbers [40, chapter 17] for e-chains. For the even stronger
condition of positive Harris recurrence, there could be shown also a strong law of large
numbers and a central limit theorem [40, chapter 18]. See also [18, chapter 8]. It would
be interesting to know, if these results are also true in our case.
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Geometric Convergence - Inconsistent Feasibility

For a general metric space G, we have the property that the sequence (µPk) ⊂P(G) for
some µ ∈P(G) is Fejér monotone with respect to invP (i.e.D(µPk+1, π) ≤ D(µPk, π) for
all π ∈ invP and k ∈ N, and some metricD on P(G)) in the TV-norm by [46, Proposition
3(d)]. Under the assumption that {Ti}i∈I is a family of nonexpansive mappings, Fejér
monotonicity is given also for the Wasserstein metric directly by the definition and with
help of Lemma 2.8.1.

In [30] they introduce the concept of the modulus of regularity to be able to speak of a
convergence rate of the Fejér monotone sequence under a regularity assumption on the
sequence. In particular, a function F : P(G) → R with F−1(0) = invP is said to have
a modulus of regularity φ w.r.t. to B(z, r) if for ε > 0

|F (x)| < φ(ε) =⇒ dist(x, F−1(0)) < ε

for a function φ : (0,∞)→ (0,∞) and for all x ∈ B(z, r) with z ∈ F−1(0) and r > 0.

Theorem 7.0.1 (Theorem 4.1 in [30]). Let (X, d) be a complete metric space and F :
X → R with F−1(0) 6= ∅. Suppose that (xn) is a sequence in X which is Fejér monotone
w.r.t. F−1(0), b > d(x0, z) for some z ∈ F−1(0) and there exists α : (0,∞) → N such
that

∀ε > 0∃n ≤ α(ε) : |F (xn)| < ε.

If φ is a modulus of regularity for F w.r.t. B(z, b), then (xn) is a Cauchy sequence, and
if F−1(0) is closed then (xn) converges to a zero of F with rate of convergence α(φ(ε/2)).

In Theorem 7.0.1 it is shown how to get a rate of convergence for the sequence (µPk).
The only difficulty is to find an appropriate function that has a modulus of regularity for
this sequence. A candidate could possibly be F (µ) = d(µ, µP), but we were not able to
show the regularity property in general. They also mention how to get a linear rate of
convergence in an updated version of [30, Theorem 4.5].

71
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We now focus on geometric rates of convergence and, in simple cases of the structure of
invariant measures, show what regularity conditions lead to geometric convergence. We
will just consider special structures on the set of ergodic measures, and were not able to
give a statement for the general case, but at the end of this chapter there will be some
thoughts, where to start.

Recall, the regularity condition for the consistent stochastic feasibility problem to show
geometric convergence behavior was

dist2(x,C) ≤ κR(x) ∀x ∈ Rn, (7.1)

where R is defined in Eq. (4.5). First, we will give a regularity condition, that is equivalent
to that in (7.1) in the consistent case: Let π be the unique invariant measure for P with
compact support, assume

‖x− y‖2 ≤ κE[‖(Tξx− x)− (Tξy − y)‖2], ∀x ∈ G, ∀y ∈ supp π. (7.2)

In the consistent case, that would correspond to C = {c} for a c ∈ Rn. Then (7.2) would
read as dist2(x,C) ≤ κR(x), which is (7.1).
To see the geometric convergence, note that from averagedness of Ti, i ∈ I follows for all
x, y ∈ Rn a.s., that (see (6.10))

‖x− y‖2 ≥ ‖Tξx− Tξy‖2 + 1− α
α
‖(Tξx− x)− (Tξy − y)‖2.

Taking the expectation, letting y ∈ supp π and using (7.2) yields

‖x− y‖2
(

1− 1− α
α

κ−1
)
≥ E

[
‖Tξx− Tξy‖2

]
.

Integration with respect to γ ∈ C(µ, π), where µ ∈P(Rn) and γ is the optimal coupling
for W2(µ, π) yields (note that supp γ ⊂ suppµ× supp π)

W 2
2 (µ, π)

(
1− 1− α

α
κ−1

)
≥ W 2

2 (µP , π).

A trivial generalization to the case that more invariant measures exist, is possible in the
case, that Rn is decomposable into the closed sets Dπ, such that δxPk → π with x ∈ Dπ

and π ∈ E . So, one has that Rn = ⋃
π∈E Dπ, where the sets Dπ are disjoint.

A regularity condition, that ensures geometric convergence of (L(Xk)) to its limit and
which is equivalent to (7.1) in the consistent case is:

‖x− y‖2 ≤ κE[‖(Tξx− x)− (Tξy − y)‖2], ∀x ∈ Dπ, ∀y ∈ supp π. (7.3)

Suppose the problem is consistent, i.e. C 6= ∅, then from the proof of [7, Theorem 5.12]
we know that ‖x−X‖2 ≤ 2 dist2(x,C), where X is the a.s. limit of (Xx

k ), i.e. X ∼ π for
x ∈ Dπ. So in particular for x ∈ Dπ and all y ∈ Sπx it holds, if (7.1) is satisfied, that

‖x− y‖2 ≤ 2κE[‖Tξx− x‖2].

Clearly, if (7.3) is satisfied, then also (7.1) holds.
Now we will show, that the regularity condition in (7.3) implies in fact geometric conver-
gence:
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Theorem 7.0.2 (Geometric Convergence). Let Ti : Rn → Rn be αi-averaged with αi ≤
α < 1, i ∈ I. Suppose there exists an invariant measure for P and assume that (7.3) is
satisfied (i.e. also a decomposition of Rn into sets Dπ exists), then

W 2
2 (µPk, πµ) ≤

(
1− 1− α

α
κ−1

)k ∫
W 2

2 (δx, πx)µ(dx)

for any initial probability measure µ ∈ P(Rn) and corresponding limiting measure πµ of
(µPk).

Proof. Letting x ∈ Rn and Yx ∼ πx with Yx⊥⊥ (ξk), where πx the unique ergodic measure
such that x ∈ Dπx , we get from averagedness (6.10) that k ∈ N holds∥∥∥Xx

k −XYx
k

∥∥∥2
≥
∥∥∥Xx

k+1 −XYx
k+1

∥∥∥2
+ 1− α

α

∥∥∥(Xx
k −Xx

k+1)− (XYx
k −XYx

k+1)
∥∥∥2
,

where Xx
k = Tξk−1 · · ·Tξ0x. Taking the expectation and using (7.3) (possible, since

(Xx
k , X

Yx
k ) ∈ Dπx × supp πx a.s. by ) yields

E[
∥∥∥Xx

k −XYx
k

∥∥∥2
]c ≥ E[

∥∥∥Xx
k+1 −XYx

k+1

∥∥∥2
],

where c = 1− 1−α
α
κ−1. So, by induction

E[
∥∥∥Xx

k −XYx
k

∥∥∥2
] ≤ ckE[‖x− Yx‖2].

For the Wasserstein distance between µPk and πx we find

W 2
2 (µPk, πx) ≤

∫
E[
∥∥∥Xx

k −XYx
k

∥∥∥2
]µ(dx) ≤ ck

∫
E[‖x− Yx‖2]µ(dx) = ck

∫
W 2

2 (δx, πx)µ(dx).

In the first inequality we used that µP(X·k,X
Y·
k

) ∈ C(µPk, πµ), where x 7→ Yx can be chosen
to be measurable by Section 6.4.2, since ergodic supports are shifted, we let Yx = Y + sx,
where for some fixed π ∈ E we let Y ∼ π and sx be the shift between Sπ and Sπx . Note
that W 2

2 (δx, πx) could be infinite in this theorem, which would make the assertion trivial.
So it is just reasonable for π ∈P2(Rn).

Another criterion for geometric convergence is the minorization condition, i.e. the exis-
tence of a measure ν for which holds

p(x, ·) ≥ κν, ∀x ∈ Rn.

Linear convergence with respect to the TV-norm, i.e.

‖µ− ν‖TV = sup
‖f‖∞≤1,f mb.

|µf − νf |

is then a consequence of Theorem 2.10.3. This is again for the case of a single invariant
measure, but existence is implied by the theorem.
Again the simple generalization for the case of sets Dπ that decompose Rn, with

Dπ =
{
x ∈ Rn

∣∣∣ pk(x, ·)→ π
}
, π ∈ E



74 7 Geometric Convergence - Inconsistent Feasibility

is possible. Theorem 2.10.3 is applicable on the closed set P(Dπ) with minorization
measure νπ and uniform constant κ, so that∥∥∥δxPk − πx∥∥∥TV

≤ (1− κ)k‖δx − πx‖TV

for all x ∈ Rn and all k ∈ N. By Lemma 2.10.1((i)) immediately follows that∥∥∥µPk − πµ∥∥∥
TV
≤ (1− κ)k

∫
‖δx − πx‖TVµ(dx).

Remark 7.0.3 (Minorisation condition): Note, that the condition νP ≥ κνπ for all
ν ∈ P(Dπ) implies, that also π ≥ κνπ by properties of measures on metric spaces [43,
Theorem 1.2] and properties of the weak limit [43, Theorem 6.1 (c)]. This makes clear,
that the minorisation condition is very strong, since knowledge of νπ localizes π to some
extend, e.g. its support.

It is important to note that still, the following simple problem is not describable in any
of the previous frameworks, since the sets Dπ do not form a partition of R2:

Example 7.0.4 (Geometric convergence, regularity condition?). Define the following two
convex sets in R2

C1 := {x = (x1, x2) |x2 ≥ |x1|, x1 ≤ 0} ,
C2 := {x = (x1, x2) |x2 ≥ 0, x1 ≥ 1} .

The projectors satisfy P2P1x ∈ Fix(P2P1) and P1P2x ∈ Fix(P1P2) for all x ∈ R2. Letting
P(ξ = 1) = P(ξ = 2) = 1

2 , the invariant measure that is limit of (Pkδx) is given for
x = (x1, x2) with −x1 > x2 > 0 by

πx = 1
4
(
δ(0,x2) + δ(1,x2) + δ(0,x̃2) + δ(1,x̃2)

)
,

for x̃2 := 1
2(x2 − x1), where P1P2x = (0, x2), P2P1x = (1, x̃2), P1P2P1x = (0, x̃2) and

P2P1P2x = (1, x2). Note that this measure is not ergodic for any of these x satisfying the
above conditions. The convergence is linear (in the TV-norm), since for k ≥ 2

P(Xx
k ∈ A) = 1

2k (1A{P1x}+ 1A{P2x}) + 1
4 (1A{P2P1x}+ 1A{P1P2x})

+ 1
4
(
1− 1

2k−2

)
(1A{P1P2P1x}+ 1A{P2P1P2x}) .

A satisfying regularity conditions is yet to be found that would describe geometric con-
vergence for a general structure of the ergodic measures. A potentially fitting framework
would be to view P as a linear operator on the Banach space, that is generated as the
closure of the span of all Dirac’s delta measures, see [54, Chapter 2]. The set of all finite
signed measures is densely contained in it, for details see [54, Corollary 2.3.10]. Another
possibility is to consider the cone of all finite measures, see [54, Theorem 2.3.9]. Then
hopefully the Fejér monotonicity and some regularity condition on P (metric regularity)
can be formulated to get linear convergence of (µPk) for any µ ∈P(G).



CHAPTER 8

Applications and Examples

We give several artificial and also practically relevant examples of consistent and incon-
sistent feasibility problems. These will show the richness and generality of our setup to
model errors as selection of averaged mappings.

8.1. Consistent Feasibility

We specialize the framework above to several well-known settings: consistent convex fea-
sibility, linear operator equations and in particular Hilbert-Schmidt operators (i.e. linear
integral equations).

8.1.1 Feasibility and stochastic projections

There are many algorithms for solving convex feasibility problems. We focus on the (con-
ceptually) simplest of these, namely stochastic projections. In the context of Algorithm 1,
Ti = Pi is a projector, i ∈ I, onto a nonempty closed and convex set Ci ⊂ H, i ∈ I and H
a Hilbert space. Note that projectors are 1

2 -averaged operators [7, Proposition 4.8] (also
referred to as firmly nonexpansive operators), so αi = 1

2 for all i ∈ I, we then can choose
the upper bound α = 1

2 as well. Also note that FixPi = Ci, i ∈ I.

As a first assertion we give an equivalent characterization for the regularity property in
Eq. (5.1) using just properties of R. This characterization, known as Kurdyka-Łojasiewicz
(KL) property, eliminates the term with the distance to the usually unknown fixed point
set C, but one needs to be able to compute the first derivative of the function R. For
convex sets this is unproblematic since R is the expectation of the squared distances to
the convex sets Ci, see Lemma A.0.23.

75
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Definition 8.1.1 (KL property). A convex, continuously differentiable function f : H →
R with infx f(x) = 0 and S := argmin f 6= ∅ is said to have the global KL property, if
there exists a concave continuously differentiable function ϕ : R+ → R+ with ϕ(0) = 0
and ϕ′ > 0 such that

ϕ′(f(x))‖∇f(x)‖ ≥ 1 ∀x ∈ H \ S.

The following theorem is a direct consequence of [11].

Proposition 8.1.2 (equivalent characterization of Eq. (5.1)). Under the standing assump-
tions, let Ti = Pi be projectors onto nonempty, closed and convex sets, i ∈ I. Then the
regularity condition in Eq. (5.1) is satisfied with κ > 0 if and only if R(x) ≤ κ

4‖∇R(x)‖2

∀x ∈ H, i.e. R has the global KL property.

Proof. Apply [11, Corollary 6] with ϕ(s) :=
√
κs and f = R and note that R is convex

and differentiable (see Lemma A.0.23).

Theorem 8.1.3 (uniform bounds). Under the standing assumptions, suppose the regu-
larity condition in Eq. (5.1) is satisfied and that H is separable and Ti = Pi are projectors
onto nonempty, closed and convex sets, i ∈ I. Then the probability of any point being
feasible is uniformly bounded, i.e. P(x ∈ Cξ) ≤ r < 1 for all x ∈ H \ C.

Proof. It holds surely for all x ∈ H

dist(Pξx,C) ≥ dist(x,C)− dist(x,Cξ).

This, together with the expectation

E[dist(x,Cξ)] = E[dist(x,Cξ)1{x/∈Cξ}] ≤ E[dist(x,C)1{x/∈Cξ}] = dist(x,C)(1− P(x ∈ Cξ))

yields, for X0 ∼ δx,

E[dist(X1, C)] ≥ P(x ∈ Cξ) dist(x,C).

Hence by Theorem 5.0.9

1 > r := sup
x∈H\C

E[dist(X1, C)]
dist(x,C) ≥ sup

x∈H\C
P(x ∈ Cξ).

Theorem 8.1.4 (finite vs. infinite convergence). Under the standing assumptions, let H
be separable and let Ti = Pi be projectors (i ∈ I). Then one of the following holds:

(i) P(X1 ∈ C) = 1 and P(Xn ∈ C) = 1 for all n ∈ N,

(ii) P(X1 ∈ C) < 1 and P(Xn ∈ C) < 1 for all n ∈ N.

Proof. (i) If P(X1 ∈ C) = 1, then Xk = X1 a.s. for all k ≥ 1.
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(ii) From
∫
p(x,C)µ(dx) = P(X1 ∈ C) < 1 we get, that there is x ∈ suppµ \ C with

p(x,C) < 1, where µ is the initial distribution. Since p(x,H \ C) > 0, there exists
y ∈ supp p(x, ·) \ C. Then by Theorem 2.4.1 this implies that p(x,B(y, ε)) > 0 for
all ε > 0.
Furthermore, one has for any ε > 0 that

(∀z ∈ B(y, ε)) p(z,B(y, 2ε)) ≥ p(x,B(y, ε)) > 0. (8.1)

To see this, note that, for ω ∈M(ε) :=
{
ω ∈ Ω

∣∣∣Pξ(ω)x ∈ B(y, ε)
}
, we have∥∥∥Pξ(ω)z − y

∥∥∥ ≤ ∥∥∥Pξ(ω)z − Pξ(ω)y
∥∥∥+

∥∥∥Pξ(ω)y − y
∥∥∥

≤ ‖z − y‖+
∥∥∥Pξ(ω)y − y

∥∥∥
≤ ‖z − y‖+

∥∥∥Pξ(ω)x− y
∥∥∥

≤ 2ε.
Here we have used nonexpansiveness of Pξ and the definition of a projection. Now
(8.1) follows from the identity P(Mk(ε)) = p(x,B(y, ε)) > 0.
Furthermore, one has for ε > 0 that

(∀w ∈ B(x, ε)) p(w,B(y, 2ε)) ≥ p(x,B(y, ε)) > 0. (8.2)
To see this, note that for ω ∈M(ε), we have∥∥∥Pξ(ω)w − y

∥∥∥ ≤ ∥∥∥Pξ(ω)w − Pξ(ω)x
∥∥∥+

∥∥∥Pξ(ω)x− y
∥∥∥

≤ 2ε.

Now, fix ε > 0 such that both B(y, ε) ∩ C = ∅ and B(x, ε) ∩ C = ∅. We get for any
w ∈ H and n ∈ N

pn+1(w,B(y, ε)) ≥
∫
B(y, ε2 )

p(z,B(y, ε))pn(w, dz) ≥ p(x,B(y, ε2))pn(w,B(y, ε2)).

So iteratively, denoting εn := 2−nε, we arrive at

pn+1(w,B(y, ε)) ≥
n∏
i=1

p(x,B(y, εi))p(w,B(y, εn)).

The last probability can be estimated for w ∈ B(x, εn+1) by (8.2) through
p(w,B(y, εn)) ≥ p(x,B(y, εn+1)).

Summarizing, we have that pn(w,B(y, ε)) is locally uniformly bounded from below
for w ∈ B(x, εn). That implies

P(Xn ∈ H \ C) =
∫
H
pn(w,H \ C)µ(dw)

≥
∫
B(x,εn)

pn(w,B(y, ε))µ(dw)

≥ [p(x,B(y, εn))]nµ(B(x, εn)) > 0,
i.e. P(Xn ∈ C) < 1 for all n ∈ N, as claimed.
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Remark 8.1.5: Theorem 8.1.4 can be interpreted as a lower bound on the complexity
of the RFI analogous to the deterministic case [36, Theorem 5.2], where the alternating
projection algorithm converges either after one iteration or after infinitely many. Alter-
natively, the stopping or hitting time of a process is defined as

T := inf {n |Xn ∈ C} .

In this context, Theorem 8.1.4 says that, either P(T = 1) = 1 or P(T = n) < 1 for all
n ∈ N. Note, it could happen that P(T = ∞) = 1, in which case P(T = n) = 0 for all
n ∈ N.

Example 8.1.6 (finite and infinite convergence). With just two sets, the deterministic
alternating projections algorithms can converge in finitely many steps. But when the
projections onto the respective sets are randomly selected, convergence might only come
after infinitely many steps. For example, let C1 = R+ × R and C2 = R × R+ and
P(ξ = 1) = 0.3, P(ξ = 2) = 0.7. Then C = R+ × R+. Set µ = δx, where x =

(
−1
−1

)
. Then

P(X1 ∈ C) = 0 or more generally P(Xn ∈ C) = 1 − 0.3n − 0.7n < 1, n ∈ N. Now let
P(ξ = 1) = 1 and P(ξ = 2) = 0, then C = C1 and for µ as above P(X1 ∈ C) = 1 and so
P(Xn ∈ C) = 1.

Example 8.1.7 (no uniform geometric convergence). In this example we show a sublinear
convergence rate for infinitely many overlapping intervals. This is in contrast to the
convergence properties of finitely many intervals with nonempty interior, where one would
expect a geometric rate.

Let ξ ∼ unif[ε − 1
2 ,

1
2 − ε] for some ε ∈ [0, 1

2). Define the nonempty and closed intervals
Cr = [r − 1

2 , r + 1
2 ], r ∈ R.

Figure 8.1:

The projector onto these intervals is given by

Prx =


r + 1

2 x ≥ r + 1
2

r − 1
2 x ≤ r − 1

2
x r − 1

2 ≤ x ≤ r + 1
2

.
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The Lebesgue-density ρε of ξ is

ρε(y) = 1
1− 2ε1[ε−1

2 ,
1
2−ε]

(y).

One can compute

Rε(x) = E[|Pξx− x|2] =
∫
R
|Prx− x|2ρε(r) dr = 1

1− 2ε

∫ 1
2−ε

ε−1
2
|Prx− x|2 dr

= 1
1− 2ε1[ε,∞)(|x|)

(|x| − ε)3 + min(1− |x| − ε, 0)3

3 .

Now, let us examine regularity properties. For the case ε ∈ [0, 1
2), the problem is a

consistent feasibility problem with C = [−ε, ε]. While the regularity condition in Eq. (5.1)
is trivially satisfied for |x| ≤ ε, for ε ≤ |x| ≤ 1 − ε we find Rε(x) = 1

1−2ε
(|x|−ε)3

3 and
dist2(x,C) = (|x| − ε)2. So the regularity property in Eq. (5.1) is not satisfied for any
κ > 0 here. That means by Theorem 5.0.9, that we cannot expect uniform geometric
convergence (i.e. there is no r ∈ [0, 1) with E[dist(Xk+1, C)] ≤ rE[dist(Xk, C)], where
X0 ∼ δx, x ∈ H).

Example 8.1.8 (uniform geometric convergence). We provide here a concrete example
where geometric convergence of the RFI is achieved. This is somewhat surprising since
the angle between the sets can become arbitrarily small. In the deterministic setting, this
results in arbitrarily slow convergence of the algorithm. This provides some intuition for
why stochastic algorithms can outperform deterministic variants.

Let Cα := Reα with eα =
(

cos(α)
sin(α)

)
, α ∈ [0, 2π) and let ξ ∼ unif[0, β], where β ∈ (0, π2 ).

Figure 8.2:

We have C = {0}, so dist(x,C) = ‖x‖ and the density of ξ is ρβ(α) = 1
β
1[0,β](α). The

projector onto the linear subspace Cα of R2 is given by

Pα(x) = x−
〈(

sin(α)
− cos(α)

)
, x

〉(
sin(α)
− cos(α)

)
.
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We find then

Rβ(x) = 1
β

∫ β

0
‖Pαx− x‖2 dα = 1

β

∫ β

0
(x1 sin(α)− x2 cos(α))2 dα

= 1
β

[
x2

1

(
β − sin(β) cos(β)

2

)
+ x2

2

(
β + sin(β) cos(β)

2

)
− x1x2 sin2(β)

]
.

Using that for x = λeα with λ ≥ 0 holds dist(x,C) = λ and Rβ(x) = λ2Rβ(eα) and
employing trigonomertric calculation rules, we find the regularity constant in Eq. (5.1)
not to be smaller than

κ = sup
x∈R2

dist2(x,C)
Rβ(x) = sup

α∈[0,2π)

8β
2β − sin(2β − 2α)− sin(2α) = 4β

β − sin(β) ,

where the last supremum is attained at α = β
2 . So from Theorem 5.0.5 we get uniform

geometric convergence.
Example 8.1.9 (disks on a circle). This example illustrates Theorem 8.1.3. Let Cα :=
B(ρeα, 1) ⊂ R2, where 0 < ρ < 1 and eα =

(
cos(α)
sin(α)

)
, α ∈ [0, 2π) and let ξ ∼ unif[0, 2π].

Figure 8.3: Figure 8.4:

The intersection is given by C = B(0, 1−ρ). We show next that sets with this configuration
do not satisfy (5.1). To see this we show that there is a sequence (xn)n ⊂ R2 with
P(xn ∈ Cξ) → 1 as n → ∞. By Theorem 8.1.3 we conclude that (5.1) cannot hold.
Indeed, let x = x(λ) = λ ( 1

0 ) with λ ≥ 1− ρ, then

P(x ∈ Cξ) = 1
2π

∫ 2π

0
1{‖x− ρeα‖ ≤ 1} dα

= 1
2π

∫ 2π

0
1{λ2 + ρ2 − 2λρ cos(α) ≤ 1} dα

= 1
2π

∫ β

−β
1 dα

= β

π
,
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where β = β(λ) = cos−1
(
λ2+ρ2−1

2λρ

)
, if λ ≤ 1 + ρ. We have β(λ) → π as λ → 1 − ρ, so

P(x(λ) ∈ Cξ)→ 1 as λ→ 1− ρ.

In contrast to the case where ρ ∈ (0, 1), the extreme cases where ρ = 0 and ρ = 1 do
satisfy (5.1). Indeed, if ρ = 0, since Cα = C = B(0, 1) for all α ∈ [0, 2π), then we have
R(x) = dist2(x,C), i.e. κ = 1, and (5.1) holds.

On the other hand, if ρ = 1, i.e. C = {0}, one has for x = λeγ, where λ > 0 and γ ∈ [0, 2π)

R(x) =
(

1− β

π

)
(λ2 + 2) + 2λ

π

√
1− λ2

4 −
1
π

∫ 2π−β

β

√
λ2 + 1− 2λ cos(α) dα ,

where β = β(λ) = cos−1(min(λ/2, 1)). Note that this expression is rotationally symmetric,
i.e. independent of γ. In order for this collection of sets to satisfy Eq. (5.1), we need
supx 6∈C dist2(x,C)/R(x) to be finite. Since by (i) and (ii) of Lemma 4.3.1 R ≥ 0 is finite
everywhere and 0 only in C we need just to consider the limits λ → 0 and λ → ∞ of
dist2(x,C)/R(x) with x = λeγ. The Taylor expansion of the square root expression at 0
with respect to λ yields

f(λ, α) :=
√
λ2 + 1− 2λ cos(α) = 1− cos(α)λ+ 1

2λ
2(1− cos2(α)) +O(λ3), λ→ 0

and hence

1
π

∫ 2π−β

β
f(λ, α) dα =

(
1− β

π

)(
2 + λ2

2

)
+ 2λ

π

√
1− λ2

4 +O(λ3), λ→ 0.

The error of the above expression is of order O(λ3), because the integral of the error term
of the Taylor approximation is

− 1
2π

∫ 2π−β

β

∂3

∂λ3f(θλ, α) dα ≤
(

1− β

π

)
1 + θλ

|θλ− 1|5
,

where θ ∈ [0, 1]. So in the limit λ → 0, using β ≤ π
2 , dist2(x,C)/R(x) is bounded from

above by 4. In the case λ→∞, we may let λ > 2 and so β = 0. We get

R(x) = λ2 + 2− 1
π

∫ 2π

0

√
λ2 + 1− 2λ cos(α) dα .

Since cos(α) ≥ −1, it follows that

R(x) ≥ λ2 − 2λ,

yielding the finite limit 1 for κ = dist2(x,C)/R(x). Since x = λeγ is continuous in λ and
x 7→ dist2(x,C)/R(x) is also nonnegative, continuous and bounded as a function of λ on
[0,+∞), then this shows that κ is finite, hence (5.1) holds.
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8.1.2 RFI with two families of mappings

The set feasibility examples above lead very naturally to the more general context of map-
pings Ti : G→ G , i ∈ I and Sj : G→ G , j ∈ J on a metric space (G, d), where I, J are
arbitrary index sets. Here we envision the scenario where CT := {x ∈ G |P(x ∈ Fix Tξ) = 1}
and CS := {x ∈ G |P(x ∈ Fix Sζ) = 1} are distinctly different sets, possibly nonintersect-
ing. Let (Ω,F ,P) be a probability space and let ξ : Ω → I , ζ : Ω → J be two random
variables. Let (ξn)n∈N be an iid sequence with ξn d= ξ and (ζn)n∈N iid with ζn d= ζ. The two
sequences are assumed to be independent of each other. Let µ be a probability measure
on (G,B(G)). Consider the stochastic selection method for two families of mappings

Algorithm 2 RFI for two families of mappings
Initialization: X0 ∼ µ
for k = 0, 1, 2, . . . do

Xk+1 = SζkTξkXk

return {Xk}k∈N

Note, that this structure of two families of mappings is a special case of Algorithm 1, just
set T̃(i,j) = SjTi, where (i, j) ∈ Ĩ = I × J and ξ̃ = (ξ, ζ). Also the Markov chain property
is still satisfied, the transition kernel takes the form p(x,A) = P(SζTξx ∈ A) for x ∈ G
and A ∈ B(G). An advantage of this formulation is that properties of the two families
{Sj}j∈J and {Ti}i∈I can be analyzed more specifically, and independently. As long as the
mapping T̃ satisfies the properties needed for convergence of the RFI, then convergence
of the RFI for two families of mappings follows. At the very least, we need

C :=
{
x ∈ G

∣∣∣P(x ∈ Fix T̃ξ̃) = 1
}
6= ∅.

From this it is easy to see that for convergence the set CT could be empty, but the set CS
must be nonempty.

Example 8.1.10 (consistent feasibility). Revisit Example 8.1.6. We had C1 = R+ × R
and C2 = R × R+. Set I = {1} and J = {2}, then the algorithm is the deterministic
alternating projections method. One has P(X1 ∈ C) = 1 for all initial distributions.

Example 8.1.11 (inconsistent stochastic feasibility). In this example we show that the
framework established here is not exclusively limited to consistent feasibility. Consider
the (trivially convex, nonempty and closed) set S := {(0, 10)} together with the collection
of balls in Example 8.1.9, Cα := B(ρeα, 1) ⊂ R2, where 0 ≤ ρ ≤ 1 and eα =

(
cos(α)
sin(α)

)
,

α ∈ [0, 2π) and let ξ ∼ unif[0, 2π]. The intersection of the disks is given by CT = B(0, 1−ρ)
where Tα := PCα is the metric projection onto Cα. Although S∩Cα = ∅ for all α ∈ [0, 2π),
still the fixed point set for the mapping in Algorithm 2 (where Sζ = PS) is C = {(0, 10)},
and this is found after one iteration for any initial probability distribution µ, where
X0 ∼ µ.

This is indeed a special example, but points to the richness of inconsistent stochastic
feasibility, which will be studied in greater depth in Section 8.2.
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8.1.3 Linear Operator equations

There are several applications of the RFI to the feasibility problem [15], [14]. We want to
focus first on linear operator equations in the separable Hilbert space H = L2([a, b]). Let
T : H → H be a bounded linear operator, we want to find x ∈ H, such that

Tx = g,

for a given g ∈ H. Clearly this is possible only if g ∈ R(T ). The idea in [14] to solve
Tx = g is to consider the family of evaluation mappings ϕt : H → R , t ∈ [a, b], which are
given by

ϕt(x) := (Tx)(t).

Define the affine subspaces Ct := {x ∈ H |ϕt(x) = g(t)}, t ∈ [a, b]. Consider the prob-
ability space (Ω,F ,P) = ([a, b],B([a, b]), λ

b−a), where λ is the Lebesgue-measure. Let
ξ : (Ω,F ,P) → ([a, b],B([a, b])) be a random variable with Pξ = P = λ

b−a . Then for
g ∈ R(T ), we have that

Tx = g if and only if x ∈ C := {y ∈ H |P(y ∈ Cξ) = 1} .

So the linear operator equation becomes a stochastic feasibility problem.

In order to be able to compute projections onto the sets Ct, t ∈ [a, b], we need the
evaluation functionals ϕt to be continuous, i.e. ‖ϕt‖ <∞ for almost all t ∈ [a, b]. By the
Riesz representation theorem there exists a unique ut ∈ H with ϕt(x) = 〈ut, x〉 for all
x ∈ H and almost all t ∈ [a, b]. We conclude that the projection onto Ct takes the form

Ptx = x+ g(t)− (Tx)(t)
‖ut‖2 ut x ∈ L2([a, b]).

Example 8.1.12 (linear integral equations). Concretely, consider an integral equation of
the first kind in the separable Hilbert space L2([a, b])

(Tx)(t) =
∫ b

a
K(t, s)x(s) ds = g(t) t ∈ [a, b],

with g ∈ L2([a, b]). For K ∈ L2([a, b]× [a, b]), T is a continuous linear compact operator
[1, Theorem 8.15] (a Hilbert-Schmidt operator). For the Riesz representation of the
evaluation functionals we have that ϕt(x) = (Tx)(t) = 〈ut, x〉, t ∈ [a, b], as well as
ut = K(t, ·) and hence ‖ϕt‖ ≤ ‖K(t, ·)‖ <∞.

Example 8.1.13 (differentiation). LetK(t, s) = 1[a,t](s) = ut(s), i.e. (Tx)(t) =
∫ t
a x(s) ds

and suppose g ∈ C1([a, b]), then Tx = g if and only if x = g′ almost surely and g(a) = 0.
The projectors take the form

Ptx = x− g(t)−
∫ t
a x(s) ds

t− a
1[a,t].
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The meaning of the operator equation can be extended for g ∈ R(T )⊕R(T )⊥ as done in
inverse problems. In that case the optimization problem

min
x∈H
‖Tx− g‖2

is solvable and a solution x ∈ H, called least squares solution, satisfies the normal equa-
tion

T ∗Tx = T ∗g,

which is again a linear operator equation in H. There is a unique element in the set
of least squares solution with minimal norm. One often denotes this solution the best
approximate or minimal norm least squares solution x† = T †g ∈ N(T )⊥ = R(T ∗), where
T † is the linear operator that maps g to the solution of the normal equation with minimal
norm, it holds D(T †) = R(T ) ⊕ R(T )⊥. Note that T † is unbounded if the problem is
ill-posed, i.e. the dependence of x† on g is not continuous, which means small noise can
lead to huge change for the solution x†. In that case R(T ) 6= R(T ) and

∥∥∥T †∥∥∥ = ∞.
So since H = R(T ) ⊕ R(T )⊥, there will not exist a solution to the normal equation for
g ∈ R(T ) \ R(T ), and hence the least squares solution will not exist. So it is enough to
consider operator equations of the form Tx = g, since the corresponding normal equation
has the same structure, where T is replaced by T ∗T and g with T ∗g, where g is then
allowed to be an element in R(T )⊕R(T )⊥, since R(T )⊥ = N(T ∗).

When solving such a problem numerically, it is necessary to discretize the problem in some
sense. One idea is to solve the problem on a finite dimensional subspace Hm spanned by
the basis {ϕ1, . . . , ϕm} ⊂ H. Instead of drawing points according to the distribution
λ/(b − a) on [a, b] there are several alternatives, for example, choosing at random or
deterministically m nodes ti ∈ [a, b], so that the approximate problem becomes

Find x =
m∑
i=1

xiϕi ∈ Hm satisfying Tx(tj) = g(tj), j = 1, . . . ,m.

This is equivalent to solving the linear system

Wx̃ = g̃

with Wi,j = 〈uti , ϕj〉, x̃j = xj and g̃j = g(tj), i, j ∈ {1, . . . ,m}.

This approximation thus corresponds to solving a finite dimensional affine feasibility prob-
lem (solving a linear system). The projectors Pi := Pti onto the sets Ci, i = 1, . . . ,m
become the metric projections onto Ci = {x | 〈uti , x〉 = (Wx̃)i = g̃i}. The finite dimen-
sional approximation to the stochastic feasibility problem would thus become to find

x ∈
⋂

i∈{1,...,m}
Ci.

If W is invertible the solution x̃ ∈ Rm is unique and the RFI would converge to this
solution a.s. for any distribution on {t1, . . . , tm} with P(ξ = ti) > 0 for i = 1, . . . ,m.
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Using the stochastic framework to its full potential is with this approach difficult, since
the computation of (Tx)(t) needs knowledge of x. A cheap way of approximating the
solution x∗ through solutions xn on subspaces Hn has also to be thought of, which is not
to be done in this thesis. Another example where the infinite feasibility problem gives a
new model are convex optimization problems as pointed out in [14].

8.2. Inconsistent Feasibility

We give several examples on inconsistent feasibility problems that we will analyze for con-
vergence and if possible for rates of convergence. Since we are interested in inexact prob-
lems or problems where the noise has a non negligible influence, we mention beforehand
noise models that use to describe errors in general inconsistent convex feasibility problems.
We restrict ourselves in the following to the Euclidean space (G, d) = (Rn, ‖·‖).

Definition 8.2.1 (error models). Let C ⊂ Rn be convex, closed and nonempty and let
PC denote the metric projection onto C. Let ξ be a random variable in I and denote by
PC,ξ the inexact or noisy projector onto C.

(i) We say PC,ξ is given by the affine noise model, if I = Rn and

PC,ξx = PCx+ ξ, x ∈ Rn. (8.3)

(ii) We say PC,ξ is given by the generalized affine noise model, if there are finite param-
eters p ∈ Rm such that C = C(p), I = Rm and

PC,ξx = PC(p+ξ)x, x ∈ Rn. (8.4)

(iii) We say PC,ξ is given by the rotational and affine noise model, if {Oα}α∈A is a family
of rotation matrices in SO(n), where A is an index set, {cα}α∈A is a family of points
in C, I = A× Rn and

Pξx := PRξ1C
x+ ξ2, x ∈ Rn,

where (α, x) 7→ Rαx := Oα(x − cα) + cα is assumed to be measurable and where
ξ = (ξ1, ξ2) (also called r.a.n. random variable).

(iv) We say PC,ξ is a random projector, if there exist convex closed and nonempty sets
Ci ⊂ Rn, i ∈ I ⊂ R, ξ ∼ unif(I) and

PC,ξx = PCξx, x ∈ Rn. (8.5)
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8.2.1 Contractions in expectation

In Theorem 2.9.2 we reviewed convergence of Markov chains under the often employed
assumption that the mappings {Ti | i ∈ I} are contractions in expectation, i.e. there exists
r ∈ (0, 1) such that

E[d(Tξx, Tξy)] ≤ rd(x, y) ∀x, y ∈ G.

Then it could be shown that the Markov operator is a contraction on P1(G) equipped
with the Wasserstein metric and application of Banach’s fixed point theorem yields a nice
result on geometric convergence of the distributions (L(Xn)) of the RFI iterates (Xk) to
the unique invariant measure for P .

Example 8.2.2 (AR(1) process, affine noise). Let r ∈ (0, 1) and T : R → R , Tx = rx.
Let ξ be a real-valued random variable with supp ξ = [a, b] for some a, b ∈ R. Consider
the contraction operator Tξx := Tx + ξ. Then there exists a unique distribution π on
R with PXk = µPk → π for all µ ∈ P1(G) (in fact we have geometric convergence, i.e.
W (µPk, π) ≤ rkW (µ, π)). In particular for all Dirac’s delta distributions δx, x ∈ R the
sequence of distributions of the iterates PXk = δxPk converges weakly to π.
Furthermore in this special case for the structure of Tξ, we find for the variances of the
iterates VarXk = 1−r2k

1−r2 Var ξ, since Xk = rkx + ∑k−1
i=0 r

iξk−1−i, where (ξi)i∈N is an i.i.d.
sequence with ξi

d= ξ. Hence, Var π = 1
1−r2 Var ξ. Note that this is still true for any

selection rule ξ not necessarily having compact support.

Example 8.2.3 (two lines, generalized affine noise). Let C1 = R ( 1
0 ) and C2(α) =

R
(

cos(α)
sin(α)

)
with α ∈ (0, π2 ). Then C1 ∩ C2 = {0}. Assume now that the noise is:

ξ = (ξ1, ξ2) with ξ1 ∈ [−ε, ε]2 for some ε > 0 and ξ2 ∈ [β1, β2] with β1 < β2 ∈ (0, π2 ).
Let Tξx = PC1(PC2(ξ2)x+ ξ1) for x ∈ R2.
The projectors onto the sets C1, C2 are linear operators and hence Tξ is a contraction:
From [16, Theorem 9.31] we have for k ∈ N that∥∥∥(PC1PC2(α))k − PC1∩C2

∥∥∥ = cos2k−1(α) < 1,

that means in our case, for any x, y ∈ R2

‖Tξx− Tξy‖ ≤
∥∥∥PC1PC2(ξ2)

∥∥∥‖x− y‖ = cos(ξ2)‖x− y‖ ≤ cos(β1)‖x− y‖.

It follows from Theorem 2.9.2 that there exists a unique invariant probability measure
for P and the rate of convergence of the laws of the RFI iterates is geometric in the
Wasserstein metric. Furthermore we can deduce that π has compact support that is
bounded by

√
2ε

1−cos(β1) (see Lemma 8.2.4).

Denote by Sπ the support of the unique invariant measure π ∈ P1(G). We denote for
A ⊂ G

diamA := sup
x,y∈A

d(x, y) = sup
x∈A

sup
y∈A

d(x, y).
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In a normed vector space holds max(diamA, diamB) ≤ diam(A+B) ≤ diamA+diamB.
This is due to

max
(

sup
a1,a2∈A

‖a1 − a2‖, sup
b1,b2∈B

‖b1 − b2‖
)
≤ sup

x,y∈A+B
x=a1+b1
y=a2+b2

‖x− y‖ ≤ sup
a1,a2∈A
b1,b2∈B

‖a1 − a2‖+ ‖b1 − b2‖

Lemma 8.2.4 (estimation of support). Consider the affine noise model Tξx := Tx +
ξ for a contraction T : Rn → Rn with constant r ∈ (0, 1), we will write diam ξ :=
diam suppL(ξ) in the following. Then one has the following estimates for the diameter
of the support

diam ξ ≤ diamSπ ≤
1

1− r diam ξ.

Proof. From Corollary 6.1.9 we have that Sπ = ⋃
x∈Sπ L(Tξx). Since L(Tξx) = Tx+supp ξ

by Lemma 2.4.2, one gets with the above estimates

diam ξ ≤ diamSπ ≤ diamTSπ + diam ξ.

Using diamTSπ ≤ r diamSπ and continuing inductively the estimation of diamSπ yields

diamSπ ≤
∑
i∈N0

ri diam ξ = 1
1− r diam ξ.

Note that in the case that the support of ξ is unbounded, also the limiting measure will
have unbounded support. Of course, the usual quantity to measure an error of a variable is
its variance. It would be interesting to know if similar to Example 8.2.2 an estimation as in
Lemma 8.2.4 is possible for the variances instead of diameters. The estimation from below
nevertheless is still possible by the trivial fact, that VarXk+1 = Var[TXk + ξk] ≥ Var ξ
for all k ∈ N and so Var π ≥ Var ξ.
Remark 8.2.5 (Numerical error of fixed point iteration): For the fixed point iteration
xk+1 = Txk, k ∈ N, x0 ∈ R with a contraction T : R → R with constant r ∈ (0, 1), we
will presume the model Xk+1 = TξXk := TXk + ξk for an i.i.d. sequence (ξk), ξk d= ξ,
k ∈ N to describe the machine error |ξ| ≤ 10−15 made on a computer in every iteration
through approximation of the binary representation of any real number.

For the diameter of the support of the invariant probability measure π, we have by the
above estimation, that diamSπ ≤ 2·10−15/(1−r). It is worth to mention that boundedness
of the infinite sequence of erroneous iterates is not true for nonexpansive mappings in
general, e.g. the nonexpansive operator x 7→ Tξx = x+ξ can produce a divergent sequence,
if E[ξ] 6= 0 (this operator could be a model for summing up 0.1 on the computer N -times
and subtracting N/10 and this sequence would diverge for N → ∞, due to the non-
exact binary representation of 0.1). For contractions however, as we have seen above,
unboundedness can only occur, if the error ξ would be modeled as not finite.
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In the case of the fixed point iteration it is also interesting to know, when limk xk ∈ Sπ,
because that is the actual value of interest. A sufficient, but not necessary condition for
that assertion to be true is 0 ∈ suppL(ξ). Because then P({|ξ| ≤ ε}) > 0 for all ε > 0
and hence there is (ωn) ⊂ Ω with ωn ∈ {|ξ| ≤ 1

n
}, n ∈ N such that TSπ + ξ(ωn) ⊂ Sπ by

Lemma 6.1.8, implying that dist(TSπ, Sπ) = 0, i.e. TSπ ⊂ Sπ and that means T ks ∈ Sπ
for all s ∈ Sπ, k ∈ N and by closedness of Sπ, also the unique limit x = limk T

ks ∈ Sπ,
which is independent of s ∈ Sπ, in fact even of s ∈ G by Banach’s theorem.

The following example shows that the RFI applied to projections onto arbitrary affine sub-
spaces with a generalized affine noise model possesses an invariant measure and, moreover,
the RFI converges geometrically. This is to be contrasted to the usual approach to model
inexact computation or uncertainty with affine noise models. Affine noise models are
not appropriate for the applications we have in mind (most of which are elementary, like
solving systems of linear equations on machines with finite precision arithmetic); these
examples show that, at least for existence of fixed points of the Markov operator, more
realistic noise models pose no particular challenge. Indeed, simple affine noise models do
not even have invariant measures, as demonstrated in Example 2.8.5.

Example 8.2.6 (invariant measure for subspaces). We propose the following generalized
affine noise model for a single affine subspace Hξ,ζ = {x ∈ Rn | 〈a+ ξ, x〉 = b+ ζ}, where
a ∈ S and b ∈ R and noise (ξ, ζ) ∈ Rn × R is independent. The projector onto Hξ,ζ is
given by

P(ξ,ζ)x = x− 〈a+ ξ, x〉 − (ζ + b)
‖a+ ξ‖2 (a+ ξ).

We show now that the projector is a contraction in expectation under some mild assump-
tions on the noise. In particular we assume

d := sup
a∈S

E
[

(b+ ζ)2

‖a+ ξ‖2

]
<∞,

c := inf
a∈S
x∈S

E
[
〈a+ ξ, x〉2

]
> 0.

The latter condition is satisfied e.g. if ξ is isotropic or radially symmetric, the former e.g.
if ζ has bounded variance and ‖ξ‖ is bounded away from 1. We find for any x, y ∈ Rn

that ∥∥∥P(ξ,ζ)x− P(ξ,ζ)y
∥∥∥2

= ‖x− y‖2 − 〈aξ, x− y〉
2

‖aξ‖2 = (1− cos2(aξ, x− y))‖x− y‖2,

where aξ := a+ ξ. Taking the expectation and using the assumption yields

E
[∥∥∥P(ξ,ζ)x− P(ξ,ζ)y

∥∥∥2
]
≤ (1− c)‖x‖2.

From Theorem 2.9.2 we get that there exists a unique invariant measure π for P (even
π ∈P2) and that it satisfies

W 2
2 (µPk, π) ≤ (1− c)kW 2

2 (µ, π),
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where W 2
2 (µ, π) = infX∼µ,Y∼π E[‖X − Y ‖2].

Note that for finitely many distorted affine subspaces (i.e. we are given m normal vectors
a1, . . . , am ∈ Rn and displacement vectors b1, . . . , bm), the linearity of the projector yields
for a cyclic variant of the algorithm, that there also exists an invariant measure and the
rate of convergence in the Wasserstein metric is also linear. We denote by Pj the inexact
projection onto the j-th affine subspace, i.e.

Pjx = x− 〈aj + ξj, x〉 − (bj + ζj)
‖aj + ξj‖2 (aj + ξj),

where (ξi)mi=1 and (ζi)mi=1 are i.i.d. and (ξi)⊥⊥ (ζi). Furthermore we denote by

T(ξ,ζ)x = Pm ◦ . . . ◦ P1x, x ∈ Rn

the inexact cyclic projector, then

E
[∥∥∥T(ξ,ζ)x− T(ξ,ζ)y

∥∥∥2
]
≤ (1− c)m‖x− y‖2.

Hence, there exists a unique invariant measure and (µPk) converges geometrically to it
in the W2 metric.

The next example is using random projections onto 3 affine subspaces with empty in-
tersection. Again geometric convergence can only be shown in the Wasserstein metric.

Example 8.2.7 (Global geometric convergence: equilateral triangle). The scenario pre-
sented here is a randomized cyclic projection algorithm (see the review [5]). Let a1, a2, a3 ∈
R2 be given with ‖ai+1 − ai‖ = 1 for i = 1, 2, 3, where a4 := a1. Define a chart
gi : [0, 1]→ R2 onto an edge via

gi(λ) = ai + λ(ai+1 − ai), λ ∈ [0, 1] i = 1, 2, 3.

Let Ci := gi([0, 1]), and let ξ be a random variable with P(ξ = i) = 1
3 for all i ∈ I :=

{1, 2, 3}, so C = ∅. The projection onto the edges for x ∈ convA := {a1, a2, a3} (i.e. the
convex hull of a1, a2, a3) is given by

Pix = x−
〈
x− ai, (ai+1 − ai)⊥

〉
(ai+1 − ai)⊥,

where we denote x⊥ := ( −x2
x1 ) for x = (x1, x2) ∈ R2. Since Pix ∈ A for all x ∈ R2 and all

i ∈ I, we get immediately from Corollary 2.8.6 that there exists an invariant probability
measure π for P . We show next that the invariant measure is π = 1

3
∑3
i=1 λCi , where λCi

is the Lebesgue measure for the corresponding manifold, i.e.

λCi(B) =
∫
gi([0,1])

1B(x)λCi(dx) =
∫ 1

0
1B(gi(λ)) dλ , B ∈ B(R2).
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First of all we have〈
ai − ai−1, (ai+1 − ai)⊥

〉
(ai+1 − ai)⊥ = ai − ai−1 + 1

2(ai+1 − ai)

= ai+1 − ai−1 −
1
2(ai+1 − ai)

=
〈
ai+1 − ai−1, (ai+1 − ai)⊥

〉
(ai+1 − ai)⊥,

where a0 = a3. With that one can derive the following rules for composing the projections
Pi with the charts gi, i = 1, 2, 3

Pi ◦ gi = Id

Pi ◦ gi+1(·) = gi

(
1− ·2

)
Pi ◦ gi−1(·) = gi

( ·
2

)
,

where g0 := g3 and g4 := g1. An invariant measure is given by π(A) = 1
3
∑3
i=1 λCi(A),

since with the transition kernel p(x,A) = 1
3
∑3
i=1 1A(Pix) we get that

πP(A) = 1
3

3∑
i=1

∫
R2
1A(Pix)π(dx)

= 1
9

3∑
i,j=1

∫
R2
1A(Pix)λCj(dx)

= 1
9

3∑
i,j=1

∫ 1

0
1A(Pi(gj(λ))) dλ

= 1
9

3∑
i

λCi(A) + 2λCi(A ∩ gi([1
2 , 1])) + 2λCi(A ∩ gi([0, 1

2 ]))

= 1
3

3∑
i=1

λCi(A)

= π(A).

To get a geometric rate we proceed as in Example 8.2.6 and get that

‖Pix− Piy‖2 = ‖x− y‖2 −
〈
(ai+1 − ai)⊥, x− y

〉2
= (1− cos2((ai+1 − ai)⊥, x− y))‖x− y‖2.

So, with

cos2 (( 1
0 ) , b) + cos2

((
−1

2√
3

2

)
, b

)
+ cos2

((
−1

2
−
√

3
2

)
, b

)
= 3

2

for any b ∈ R2 \ {0} and hence

E
[
cos2((aξ+1 − aξ)⊥, x− y))

]
= 1

21{x 6= y},
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we get that Pξ is a contraction in expectation, i.e. for all x, y ∈ R2

E
[
‖Pξx− Pξy‖2

]
= 1

2‖x− y‖
2.

So, we get that

W 2
2 (µPk, π) ≤

(1
2

)k
W 2

2 (µ, π)

for any µ ∈ P(R2). (Note, that W2(µ, π) could be infinite, but it is always finite for
µ ∈P(A)). Hence the rate of convergence is geometric in the Wasserstein metric and π
is the unique invariant measure for P . However, one can show that geometric convergence
in the TV-norm can not occur for this example.

8.2.2 Convergence in TV-norm

The following example is the inconsistent instance of Example 8.1.7, where the consistent
problem was shown to have uncountably many invariant measures and the RFI has no
uniform geometric convergence. In comparison to Example 8.1.7, this example shows that
the convergence properties of the RFI change drastically when the feasibility problem is
inconsistent. Here uniform geometric convergence and a unique invariant measure are
present.
Example 8.2.8 (Global geometric convergence: overlapping intervals). Let ξ ∼ unif[−1

2−
ε, 1

2 + ε] for some ε > 0. We apply here random projections on the nonempty and closed
intervals Cr = [r− 1

2 , r+ 1
2 ], where r ∈ [−1

2 − ε,
1
2 + ε]. The projector onto these intervals

is given by

Prx =


r + 1

2 x ≥ r + 1
2

r − 1
2 x ≤ r − 1

2
x r − 1

2 ≤ x ≤ r + 1
2

, x ∈ R.

The density ρ of the uniform distribution on [−1
2 − ε,

1
2 + ε]

ρ(y) = 1
1 + 2ε1[−1

2−ε,
1
2 +ε]

(y)

determines the distribution function

F (x) =


0 x ≤ −1

2 − ε
1

1+2ε(x+ ε+ 1
2) −1

2 − ε ≤ x ≤ 1
2 + ε

1 x ≥ 1
2 + ε

.

With this we can give an explicit expression for the transition kernel

p(x,A) = P(Pξx ∈ A) = P(ξ ∈ (A− 1
2) ∩ (−∞, x− 1

2 ]) + P(ξ ∈ (A+ 1
2) ∩ [x+ 1

2 ,∞))
+ P(ξ ∈ [x− 1

2 , x+ 1
2 ])1A(x).

(8.6)
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Let
ρ1
x(y) := ρ(y − 1

2)1(−∞,x](y), ρ2
x(y) := ρ(y + 1

2)1[x,∞)(y),

and
ρ3
x(y) := P(ξ ∈ [x− 1

2 , x+ 1
2 ])δx(y).

Then the transition kernel in (8.6) can be written equivalently as

p(x,A) =
∫
A
ρ1
x(y) + ρ2

x(y) + ρ3
x(y) dy .

An invariant distribution π for the corresponding Markov operator P determined by the
mappings Pr in the sense of Eq. (2.6) is given by the density

ρπ(x) = 1
2ε1[−ε,ε](x),

since∫
R
ρ1
x(y)ρπ(x) dx = ρ(y − 1

2)
∫ ∞
y

ρπ(x) dx = ρ(y − 1
2)(1(−∞,−ε](y) + (ε− y)ρπ(y)) = ε− y

1 + 2ερπ(y),∫
R
ρ2
x(y)ρπ(x) dx = ρ(y + 1

2)
∫ ∞
y

ρπ(x) dx = ρ(y + 1
2)(1[ε,∞)(y) + (y + ε)ρπ(y)) = ε+ y

1 + 2ερπ(y),

and ∫
R
ρ3
x(y)ρπ(x) dx = (F (y + 1

2)− F (y − 1
2))ρπ(y) = 1

1 + 2ερπ(y),

which, upon application of Fubini’s Theorem, yields

πP(A) =
∫
R
p(x,A)π(dx) =

∫
A

∫
R
ρ1
x(y) + ρ2

x(y) + ρ3
x(y)π(dx) dy = π(A).

For convergence of the Markov chain (i.e. the distributions of the iterates), we will apply
a result due to Doeblin about uniform ergodicity of the transition kernel (see Theo-
rem 2.10.3) under the global minorization property that we will now show for the specific
kernel at hand.

x ≥ ε : p(x,A) ≥
∫
A
ρ1
x(y)1[−ε,ε](y) dy = 1

1 + 2ε

∫
A
1[−ε,ε](y) dy = 2ε

1 + 2επ(A)

x ≤ −ε : p(x,A) ≥
∫
A
ρ2
x(y)1[−ε,ε](y) dy = 1

1 + 2ε

∫
A
1[−ε,ε](y) dy = 2ε

1 + 2επ(A)

x ∈ [−ε, ε] : p(x,A) ≥
∫
A

(ρ1
x + ρ2

x)1[−ε,ε](y) dy = 1
1 + 2ε

∫
A
1[−ε,ε](y) dy = 2ε

1 + 2επ(A).

Thus the global minorization property of p is satisfied for this setup with κ = 2ε
1+2ε and

ν = π. Theorem 2.10.3 then yields that π is the unique invariant measure for P , and
for any starting distribution µ one has geometric convergence of the distribution of Xn,
i.e. L(Xn) = µPn, to π in the TV-norm (see Lemma 2.10.1 for its definition and further
properties).
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Remark 8.2.9: When extending Example 8.2.8 into 2 dimensions, such that the sets do
not change in the y-direction (C2d

r = Cr ×R), we see that the uniqueness of the invariant
distribution fails, but still one can expect geometric convergence to the set of invariant
distributions.

The following example shows that the support of an invariant measure does not have to
be convex. It also shows that geometric convergence can occur just locally (here that
means for all compactly supported initial distributions). Again the appropriate metric to
measure distances of probability measures is here the TV-norm.

Example 8.2.10 (Local geometric convergence: half-lines in a circle). We use here ran-
dom projections onto the half-lines Cα = (R+ + 1)eα ⊂ R2 with eα =

(
cos(α)
sin(α)

)
, α ∈ [0, 2π).

Let ξ ∼ unif[0, 2π).
The projector onto Cα is given by

Pαx =
〈x, eα〉 eα, 〈x, eα〉 > 1
eα, 〈x, eα〉 ≤ 1.

The transition kernel p(x,A) = P(Pξx ∈ A), x ∈ R2, A ∈ B(R2) is explicitly given by

p(x,A) = 1
λS(S)(λS(A ∩Hx) + λS(1A ◦ ϕx1Hc

x
)),

where λS is the Lebesgue measure of the unit circle S,

ϕx : R2 → R , y 7→ 〈x, y〉 y

and

Hx :=
{
y ∈ R2

∣∣∣ 〈x, y〉 ≤ 1
}
.

An invariant measure of P is given by normalizing λS, i.e. π = λS/λS(S) is invariant:

πP(A) =
∫
S
π(A ∩Hx)π(dx) +

∫
S
π(fA,x1Hc

x
)π(dx)

=
∫
S

∫
S
1A(y)1Hx(y)︸ ︷︷ ︸

=1

π(dy)π(dx) +
∫
S

∫
S
(1A ◦ ϕx)(y)1Hc

x
(y)︸ ︷︷ ︸

=0

π(dy)π(dx)

= π(A).

There are three cases to consider: First, let µ ∈ P(B(0, 1)). When x ∈ B(0, 1), notice
that p(x,A) = π(A), so if X0 ∼ µ, then L(Xn) = π for all n ∈ N. This means that the
probability measures L(Xn) converge after one step.
Consider next the case that µ ∈ P(B(0,M)) with M > 1. We claim that still the
convergence is geometric. To see this, note that for x, y ∈ B(0,M) we have B(0, 1

M
) ⊂

Hx ∩Hy, because 〈x, z〉 , 〈y, z〉 ≤ 1 for all z ∈ B(0, 1
M

). But that means the intersection
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Hx∩Hy has nonempty interior around the origin uniformly in x and y, and hence λS(Hx∩
Hy) ≥ λ(M) > 0, where λ(M) is independent of x and y. Now we observe that

‖p(x, ·)− p(y, ·)‖TV := 1
2 sup
|f |≤1
|p(x, f)− p(y, f)|

= 1
2 sup
|f |≤1

∣∣∣π(f · (1Hx − 1Hy)) + π(f ◦ ϕx1Hc
x
− f ◦ ϕy1Hc

y
)
∣∣∣

≤ 1
2
(
π
∣∣∣1Hx − 1Hy

∣∣∣+ π
∣∣∣1Hc

x
− 1Hc

y

∣∣∣) ,
where the suprema are taken over all measurable f : R2 → [−1, 1] , and∣∣∣1Hx − 1Hy

∣∣∣(z) = 1− 1Hx∩Hy(z)− 1Hc
x∩Hc

y
(z)∣∣∣1Hc

x
− 1Hc

y

∣∣∣(z) = 1− 1Hx∩Hy(z)− 1Hc
x∩Hc

y
(z).

From this it follows that

‖p(x, ·)− p(y, ·)‖TV ≤ 1− π(Hx ∩Hy)− π(Hc
x ∩Hc

y)
≤ 1− λ(M) < 1.

The local contraction coefficient β(D) for a domain D ⊆ R2 satisfies (see Lemma 2.10.1)

β(D) := sup
x,y∈D

‖p(x, ·)− p(y, ·)‖TV = sup
µ,ν∈P(D)

µ 6=ν

‖µP − νP‖TV
‖µ− ν‖TV

.

By completeness of (P(G), ‖·‖TV) for any space G, application of Banach’s fixed point
theorem in the case β(G) < 1 (meaning P is a contraction) yields the existence of a unique
element π ∈P(G) with

‖µPn − π‖TV ≤ β(G)n‖µ− π‖TV, n ∈ N.

So in our case β(B(0,M)) ≤ 1− λ(M) < 1 and hence for every M > 1 there is the same
unique invariant measure π as defined above and the Markov chain converges geometrically
for any initial probability measure µ with support in B(0,M).
For a general initial measure µ ∈ P(R2), the Markov chain still converges, but not
necessarily geometrically. Indeed, we find for f : R2 → [−1, 1] , x ∈ R2, that

|pn(x, f)− πf | ≤ β(‖x‖)n ‖δx − π‖TV︸ ︷︷ ︸
=1

,

which implies

‖µPn − π‖TV ≤
∫
R2
β(‖x‖)nµ(dx) =: λn,

where λn ∈ [0, 1] and λn+1 ≤ λn. As a monotone decreasing nonnegative sequence, it
converges to a nonnegative number. We claim that λn → 0, hence the convergence of the
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Markov chain. To see this, choose any ε > 0 and Mε > 0 such that µ(B(0,Mε)) ≥ 1− ε.
Then

λn =
∫
R2
β(‖x‖)nµ(dx) ≤ ε+

∫
B(0,Mε)

β(‖x‖)nµ(dx) ≤ ε+ β(Mε)n.

Letting n→∞, we see that limn λn ≤ ε. Since ε was arbitrary, this implies that λn → 0
as n→∞. So L(Xn) = µPn converges to π in TV-norm with rate (λn), which is possibly
non-geometric.

8.2.3 Other examples

The next example shows that two distorted random sets, where one of them is compact,
have an invariant measure for the affine noise model of the RFI. These sets do not have to
intersect for any observation. In Example 8.1.11 we considered two nonintersecting convex
sets: the sets S := {(0, 10)} together with the collection of balls Cα := B(ρeα, 1) ⊂ R2,
where 0 ≤ ρ ≤ 1 and eα =

(
cos(α)
sin(α)

)
, α ∈ [0, 2π) and let ξ ∼ unif[0, 2π]. Although

S ∩ Cα = ∅ for all α ∈ [0, 2π), still the fixed point set for the composition PSPCα is
C = {(0, 10)}, and this is found after one iteration for any initial probability distribution
µ, where X0 ∼ µ. With the tools developed in the present study, we can expand this
example considerably. We will employ the rotational and affine noise model for a set
C ⊂ Rn.

Example 8.2.11 (existence for compact set). Let C1, C2 ⊂ Rn be closed, convex and
nonempty sets. Let C1 be compact. We will consider the rotational and affine noise model
for C1 and C2. Let ξ = (ξ1, ξ2) be a vector of r.a.n. random variables such that Tξx =
Pξ1Pξ2x, x ∈ Rn. Note that RαC1 ⊂ B(c, 2 diamC1) =: C for any c ∈ C1. By tightness of
any probability measure on Rn we can find an M > 0 with P(ξ1,2 ∈ B(0,M)) ≥ 1− ε and
hence

P(Tξx ∈ B(C,M)) ≥ inf
z∈Rn

P(PRξ1,1C1z + ξ1,2 ∈ B(C,M)) ≥ P(ξ1,2 ∈ B(0,M)) ≥ 1− ε

for arbitrary x ∈ Rn. So we have by independence of (ξk) that

P(Xk+1 ∈ B(C,M)) = E[P (TξkXk ∈ B(C,M) |Xk)] ≥ 1− ε

for the RFI sequence (Xk) with arbitrary initial probability measure. In particular we
can conclude with Proposition 2.8.3 that there exists an invariant probability measure
for P . In particular, if ξ1,2 is bounded, then any invariant measure has compact support,
see Remark 2.8.4. It is important to point out here that convexity is only used to ensure
that Tξ is single-valued: the projector onto any closed convex set is single-valued, but not
so if the set is not convex. It is not difficult to envision a theory of Markov chains for
set-valued mappings, but this requires building it from scratch, which is beyond the scope
of this study.

The next example shows that a more complicated structure for the operator Tξ still leads
to an invariant measure for two compact convex sets and bounded noise.
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Example 8.2.12 (TDRλ). Let C1, C2 ⊂ Rn be compact, convex and nonempty sets. Define
the operator Tξ via

Tξx := TDRλ,ξx := λ

2 (Rξ1Rξ2x+ x) + (1− λ)Pξ2x,

for x ∈ Rn and λ ∈ (0, 1), where Pξix := PCix + ξi, i = 1, 2 and Rξix := 2Pξix − x and
where we let ξ = (ξ1, ξ2) with E[‖ξ1‖],E[‖ξ2‖] ≤ M1 < ∞. Let M2 > 0 be such that
C1, C2 ⊂ B(0,M2) and set

M3 := (λ+ |1− 2λ|)(M1 +M2).

Then we have for any x ∈ Rn that

E[‖Tξx‖] = E[‖λPC1(Rξ2x) + (1− 2λ)PC2x+ λx+ λξ1 + (1− 2λ)ξ2‖]
≤M3 + λ‖x‖.

Choosing X0 ∼ δ0, inductively we get for the corresponding RFI sequence (Xk) that

E[‖Xk+1‖] = E [E [‖TξkXk‖ |Xk]] ≤M3 + λE[‖Xk‖] ≤M3

k∑
i=0

λi ≤ M3

1− λ

for any k ∈ N0. Now Lemma 2.8.7 is applicable by uniform boundedness of the ex-
pectations and yields existence of an invariant measure for P . Note that existence
still follows when employing the rotational and affine noise model, since in that case
PRξi,1x ∈ B(ci, 2 diamCi), i = 1, 2 for any ci ∈ Ci and only the constants appearing in the
above analysis might become larger.
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Conclusion

This thesis deals with analysis of convergence of the random function iteration (RFI) (see
Algorithm 1). We analyzed the stochastic fixed point problem (see Eq. (3.1)) for the
consistent and inconsistent case. Specializing to consistent feasibility, the characterizing
strong type of convergence (almost sure convergence) enables one to analyze the RFI even
on Hilbert spaces with a.s. weak convergence. A suitable description for a corresponding
object for the inconsistent case was not applicable, so in that case an analysis of the RFI
is only possible on the set of points that are contained in the support of any invariant
measure.

We have shown that for averaged mappings convergence of the RFI in the weak sense is
given as soon as an invariant measure exists for the corresponding Markov operator P .
That means that this is a reasonable question to ask, but yet to be done is a satisfying
convergence rate analysis to get quantitative statements. This could only be done in
special cases and several examples. The different examples show the generality of our
approach and the different ways of modelling errors in a feasibility problem.

We showed that still a useful description of convergence of a noisy fixed point iteration
is present. We hope that this description enables other researchers to formulate their
problems in this setup to get a different understanding and that this work contributes to
establishing a new view on inexact fixed point iterations and therefore in many branches
of optimization.

Directions, in which further research is interesting, would be the following:

1. Go beyond convex setup, i.e. develop theory for set-valued Markov operators and
almost averaged mappings, see [32] or [37].

2. We were able to characterize global geometric convergence in the consistent setup
thoroughly, but for the inconsistent problem or general fixed point problem this is
yet to be done. In particular, when the set of invariant measures is not a singleton.
Or when the space is not decomposable into sets of points x ∈ G, where the limit
measure of the sequence (δxPk) is ergodic.

97
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3. Also an extension of weak convergence of the RFI in Hilbert spaces would be inter-
esting to see.

4. Numerical experiments, to see if one can model several examples in our framework,
like a model for the cut-off error in approximating real numbers on a computer.

5. Using the stochastic framework to get quantitative results on applying the RFI to
solving linear operator equations or convex optimization problems. Maybe develop
other (stochastic) algorithms for solving these problems.



APPENDIX A

Appendix

Theorem A.0.13 (Monotone Convergence Theorem). Let (Xn) be a sequence of nonneg-
ative real-valued random variables with X1 ≤ X2 ≤ . . . and let X := limnXn ∈ [0,∞] a.s.
be the point-wise limit, we write in that case also Xn ↑ X a.s. as n → ∞. Then X is a
random variable and ∫

X dµ = lim
n

∫
Xn dµ

for any measure µ on (Ω,F).

Theorem A.0.14 (Lebesgue’s Dominated Convergence Theorem). Let (Xn) be a sequence
of real-valued random variables such that the point-wise limit X := limnXn ∈ R exists
a.s. Suppose there exists a random variable Y ≥ 0 with∫

Y dµ <∞ and |Xn| ≤ Y ∀n ∈ N.

Then ∫
X dµ = lim

n

∫
Xn dµ

for any measure µ on (Ω,F).

Theorem A.0.15 (Jensen’s inequality). Let (Ω,F ,P) be a probability space and F0 ⊂ F
a σ-algebra. Let X be a real-valued random variable with E[X−],E[f(X)−] < ∞ and
f : R→ R convex, then

f(E [X | F0]) ≤ E [f(X) | F0] a.s.

Furthermore, if E[|X|] <∞, then

f(E[X]) ≤ E[f(X)].

Proof. The proof in [29, Satz 8.20] is applicable using Theorem 2.2.8.
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Theorem A.0.16 (Convergence with subsequences). Let (G, d) be a metric space. Let
(xn) ⊂ G be a sequence with the property that any subsequence has a convergent subse-
quence with the same limit x ∈ G. Then xn → x.

Proof. Assume that xn 6→ x, i.e. there exists ε > 0 such that for all N ∈ N there is
n = n(N) ≥ N with d(xn, x) ≥ ε. But by assumption the subsequence (xn(N))N∈N has a
convergent subsequence with limit x, which is a contradiction and hence the assumption
is false.

Remark A.0.17: In a compact metric space, it is enough, that all clusterpoints are the
same, because then every subsequence has a convergent subsequence.

Theorem A.0.18 (Regularity of measures, Proposition 2.3 and Corollary 2.5 in [21]).
Any finite measure µ on a Polish space is regular, that is, for every A ∈ B(G)

µ(A) = sup {µ(K) |K is compact with K ⊂ A}
= sup {µ(B) |B is closed with B ⊂ A} (inner regular)
= inf {µ(U) |U is open with A ⊂ U} (outer regular)

Lemma A.0.19 (slices of product σ-field, see Proposition 3.3.2 in [9]). Let (Ωi,Fi),
i = 1, 2 be two measurable spaces and M ∈ F1 ⊗ F2. Then for ω1 ∈ Ω1 holds Mω1 :=
{ω2 ∈ Ω2 | (ω1, ω2) ∈M} ∈ F2.

Theorem A.0.20 (dense sets in separable metric space). Let (G, d) be a Polish space
(complete separable metric space). Then for any A ⊂ G, there is a dense countable subset
{an}n∈N ⊂ A and if A is closed then even A = cl{an} (clU denotes the closure of the set
U ⊂ G w.r.t. the metric d).

Proof. Since G is separable there exists a dense and countable subset {un}n∈N ⊂ G with
G = cl{un}n. By denseness of {un} ⊂ G, for any x ∈ G and any ε > 0, there is un, where
n is depending on x and ε, with d(un, x) < ε. Let ε > 0 and choose aεn ∈ B(un, ε) ∩ A,
n ∈ N, if the intersection is nonempty. The set Ã := {a1/m

n }n,m∈N ⊂ A is nonempty and
countable as union of countable sets. It holds for any a ∈ A and any ε > 0 that ∃n,m
with 1/m < ε and d(a, un) < ε, hence

d(a, a1/m
n ) ≤ d(a, un) + d(un, a1/m

n ) < 2ε,

i.e. Ã ⊂ A dense. So then A ⊂ cl Ã and if A is closed, then also cl Ã ⊂ A.

Lemma A.0.21 (measurability of integral of kernel). Let (S,S), (T, T ) be measur-
able spaces and p a probability kernel from S to T . Let f : S × T → R+ , then
s 7→

∫
f(s, t)p(s, dt) is measurable.

Lemma A.0.22. Let (Ω,F ,P) be probability space. Let (Xk)k∈N0, (Uk)k∈N0 be sequences
of nonnegative real-valued random variables with Xk ∈ Fk, where F0 ⊂ F1 ⊂ . . . ⊂ F are
σ-algebras. Suppose for all k ∈ N0

Xk+1 ≤ Xk − Uk a.s.

Define Vk := E [Uk | Fk] for k ∈ N0. Then Xk → X a.s. and ∑k Uk,
∑
k Vk <∞ a.s.
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Proof. This is a special instance of the more general supermartingale convergence theorem
in [45]. We will give a proof of this simpler result nevertheless. First define the P-nullsets
Nk = {Xk > Xk−1 − Uk−1}, k ∈ N and N = ⋃

kNk. So Xk+1(ω) ≤ Xk(ω)− Uk(ω) for all
k ∈ N0 and all ω ∈ Ω \N .
Since (Xk) is monotonically decreasing a.s., there exists a nonnegative random variable X
with Xk → X a.s. as k →∞. So ∑k Uk ≤ X0 −X <∞ a.s. Since 0 ≤ ∑n

k=1 Uk ↑
∑
k Uk

and 0 ≤ ∑n
k=1 Vk ↑

∑
k Vk as n→∞ we have by the Monotone Convergence Theorem for

any A ∈ F0 that
∫
A

∑
k

Vk dP =
∑
k

∫
A
Vk dP =

∑
k

∫
A
Uk dP =

∫
A

∑
k

Uk dP .

We conclude from the fact that ∑k Uk ·P determines a σ-finite measure, that also ∑k Vk ·P
does so. Then Lemma 2.2.5 implies ∑k Vk <∞ a.s.

Lemma A.0.23 (further properties of R). If Ti = Pi are projectors onto nonempty, closed
and convex sets, i ∈ I, then:

1. R is convex.

2. R is continuously differentiable, 1
2∇R(x) = x− E[Pξx] for all x ∈ H.

3. ∇R is globally Lipschitz continuous with constant not larger than 4.

4. C = {∇R = 0}.

Proof. 1. The function x 7→ dist(x,Ci) is convex for all i ∈ I, since Ci = FixPi is
convex, nonempty and closed. On [0,∞) the function x 7→ x2 is increasing and
convex, so x 7→ dist2(x,Ci) is convex, i ∈ I. The convexity of R follows by linearity
of the expectation.

2. We need to show that

lim
0 6=‖y‖→0

|R(x+ y)−R(x)− 2E[〈x− Pξx, y〉]|
‖y‖

= 0.

Let (yn) ⊂ B(0, ε) ⊂ H with yn → 0. Define a sequence of functions on Ω via

fn =

∣∣∣dist2(x+ yn, Cξ)− dist2(x,Cξ)− 2 〈x− Pξx, yn〉
∣∣∣

‖yn‖
.

Then for fixed ω ∈ Ω we have fn(ω) → 0 as n → ∞ since the function x 7→
dist2(x,Ci) is Fréchet differentiable for all i ∈ I [7, Corollary 12.30]. Furthermore,
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we find for any n ∈ N that

fn =

∣∣∣‖x+ yn − Pξ(x+ yn)‖2 − ‖x− Pξx‖2 − 2 〈x− Pξx, yn〉
∣∣∣

‖yn‖

=

∣∣∣‖yn − Pξ(x+ yn) + Pξx‖2 + 2 〈x− Pξx, Pξx− Pξ(x+ yn)〉
∣∣∣

‖yn‖

=

∣∣∣‖yn‖2 + ‖Pξx− Pξ(x+ yn)‖2 + 2 〈yn + x− Pξx, Pξx− Pξ(x+ yn)〉
∣∣∣

‖yn‖

≤ 4‖yn‖2 + 2 dist(x,Cξ)‖yn‖
‖yn‖

≤ 4ε+ 2 dist(x,Cξ) =: g,

where, in the first inequality, we used nonexpansivity of the projectors Pi, i ∈ I
and the Cauchy-Schwartz inequality. In particular with Hölder’s inequality follows
that E[g] ≤ 4ε + 2

√
R(x), i.e. g is integrable and hence Lebesgue’s Dominated

Convergence Theorem yields E[fn] → 0, which gives us Fréchet differentiability of
R with derivative ∇R(x) = 2E[x− Pξx] (note that this integral exists in the sense
of Bochner, since H is separable and 〈Pξx, y〉 is measurable for any y ∈ H [52]).
Continuity of ∇R follows from

‖∇R(x+ y)−∇R(x)‖ = 2‖E[y − Pξ(x+ y) + Pξx]‖
≤ 2E[‖y‖+ ‖Pξ(x+ y)− Pξx‖]
≤ 4‖y‖,

where we used [52, Proposition 1.16] for the first inequality and nonexpansivity of
the projectors Pi, i ∈ I in the second inequality.

3. For any x, y ∈ H it holds that ‖∇R(x)−∇R(y)‖ ≤ 2(‖x− y‖ + ‖E[Pξx− Pξy]‖).
Applying [52, Proposition 1.16] and nonexpansivity, we arrive at the desired result.

4. Clearly if x ∈ C, then x = Pξx a.s. and so x = E[Pξx], i.e. ∇R(x) = 0 by 2.
Now conversely, if ∇R(x) = 0, then by convexity R(x)−R(y) ≤ 〈∇R(x), x− y〉 = 0
for all y ∈ H. Since C 6= ∅ there is y ∈ H with R(y) = 0, so also R(x) = 0, i.e.
x ∈ C.
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Paracontractions

Paracontractions include the set of averaged operators, but averaged mappings possess
more useful regularity properties, e.g. when composing these operators, one stays in the
set of averaged operators, whereas for nonaveraged operators this is not clear in general.
An example of a nonaveraged paracontraction in R is a Huber function with parameter
α > 0 (see also [6, Example 2.3] for α = 1)

fα(x) :=

x2

2α , |x| ≤ α

|x| − α
2 , |x| > α

, x ∈ R.

We have that fα is nonexpansive and paracontractive, but not averaged, since for x = −2α
and y = −α one has f(x) = 3α

2 and f(y) = α
2 . Consequently

|f(x)− f(y)| = α = |x− y|, but |x− f(x)− (y − f(y))| = 2α 6= 0.

In general metric spaces with nonlinear structure the averaged mappings are not defined
or at least demand a different definition, but still the paracontraction framework applies
here and exhibits a useful description of mappings which ensure that the RFI converges
to a common fixed point. Paracontractions were used in Section 4.1 to guarantee Fejér
monotonicity, yielding convergence; averagedness in this context would be too strong an
assumption (and is not defined actually). In the following we provide an example of a
class of paracontracting operators in Rn, that are not in general averaged, resolvents of
quasiconvex functions.

Definition B.0.24. A function f : Rn → R is called quasiconvex, if the sublevel sets

{x ∈ Rn | f(x) ≤ α}

are convex for all α ∈ R. Equivalently, f satisfies

f(λx+ (1− λ)y) ≤ max{f(x), f(y)} ∀x, y ∈ Rn, ∀λ ∈ [0, 1].
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The proximity operator of a function f : Rn → R is given by the set-valued mapping

proxf (x) := argmin
y∈Rn

{
f(y) + 1

2‖x− y‖
2
}
, x ∈ Rn.

Lemma B.0.25. Let f : Rn → R be twice differentiable and quasiconvex and satisfy
S := argmin f 6= ∅ and ∇f 6= 0 on Rn \ S, furthermore suppose that Id + Hess f(x) is
positive definit for all x ∈ Rn, then proxf is paracontracting.

Proof. Denote A := Id +∇f . Let x, y ∈ Rn with f(x) ≥ f(y), then

‖A(x)− y‖2 = ‖x− y‖2 + ‖∇f(x)‖2 + 〈∇f(x), x− y〉 ≥ ‖x− y‖2,

where we used that in [2] it is shown, that a quasiconvex and differentiable function
satisfies

f(x) ≥ f(y) =⇒ 〈∇f(x), x− y〉 ≥ 0,

for any x, y ∈ Rn. Note that if x /∈ S then ∇f(x) 6= 0 by assumption and hence for
y ∈ Rn with f(y) ≤ f(x) it holds that

‖A(x)− y‖ > ‖x− y‖. (B.1)

Moreover, the function

g(y) := f(y) + 1
2‖x− y‖

2

for fixed x ∈ Rn is bounded from below, since infx f(x) > −∞ by assumption and
coercive. From positive definitness of Id + Hess f we have that g is also twice continuously
differentiable and strictly convex, hence it possesses a unique minimizer x̄ that satisfies

x = ∇f(x̄) + x̄ = A(x̄),

it follows that A(Rn) = Rn, i.e. A is surjective. Furthermore, A is injective, since from
uniqueness of the minimizer and sufficiency of the first order optimality criterion for x̄ to
be a minimizer (g is convex) it follows that, if A(x̄) = A(ȳ), then x̄ = ȳ is the minimizer
for g and in particular A(x̄) = x ⇔ proxf (x) = x̄.

To show that also proxf is continuous, fix x ∈ Rn and let y ∈ B(x, ε). We can find a
z ∈ B(x, ε) with f(z) ≤ f(y) for all y ∈ B(x, ε) by continuity of f , so we get with (B.1)
that∥∥∥proxf (x)− proxf (y)

∥∥∥ ≤ ∥∥∥proxf (x)− z
∥∥∥+

∥∥∥proxf (y)− z
∥∥∥ < ‖x− z‖+ ‖y − z‖ < 2ε.

In particular, letting y = x̄ ∈ S in (B.1), we have that∥∥∥proxf (x)− x̄
∥∥∥ < ‖x− x̄‖ ∀x ∈ Rn \ S,

where S = argmin f = Fix proxf .
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Example B.0.26 (non-averaged resolvent of quasiconvex function). The function f(x) :=
1−exp

(
−‖x‖2

)
for x ∈ Rn satisfies all the conditions in Lemma B.0.25. Its proximity oper-

ator has the derivative prox′f (A(x)) = (A′(x))−1, where A(x) =
(
1 + 2 exp

(
−‖x‖2

))
x, i.e.

A′(x) =
(
1 + 2 exp

(
−‖x‖2

))
Id−4 exp

(
−‖x‖2

)
xxT. Since

∥∥∥prox′f (A(x))
∥∥∥ ≥ ‖y‖/‖A′(x)y‖

for any y ∈ Rn \ {0}, we have with x = e1 = (1, 0, . . . , 0)T = y that
∥∥∥prox′f (A(e1))

∥∥∥ > 1,
which is in contradiction to nonexpansiveness of averaged mappings, that have derivative
bounded by 1, if it exists.

Where paracontractions also occur are nonconvex feasibility problems, both consistent and
inconsistent. As long as the fixed point set of the averaged projections operator consists
of isolated points and the projectors are single-valued in a neighborhood of this fixed
point, [37, Theorem 3.2] shows that these operators are paracontractions, whenever all
assumptions of the theorem are met. Unfortunately, a statement on paracontractiveness,
for the case that the fixed point set of the averaged projections operator does not consist
of isolated points, is however not possible in general.

Furthermore, also nonconvex forward-backward operators appearing in structured opti-
mization of nonconvex objective functions show the paracontractiveness property, see [37,
Proposition 3.9], and these are not averaged in general, still the assumption that the fixed
points are isolated is used.
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