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6 Summary

The analysis of high-precision long-term photometric time-series of data from the NASA
Kepler space mission (2008 − 2012) has revolutionized the field of red-giant seismology.
Solar-like oscillations could be detected in several thousands of pulsating red-giant stars
that cover a wide range of stellar properties and different evolutionary stages. This thesis
presents a dedicated study of oscillating red giants that belong to eclipsing binary systems
(EBs) and open clusters. Through the study of stellar oscillation modes it is possible to
draw inferences on the interior structure and evolution of stars, which is called asteroseis-
mology. In the case of oscillating binary and cluster stars, the stellar parameters can be
determined either by analysing the asteroseismic signal or through orbital analysis (EBs),
and through stellar isochrones (clusters). The comparison between stellar parameters de-
rived from independent analyses provides the means to test the reliability and accuracy of
asteroseismic methods. The research presented in this thesis provides improvements to
already existing asteroseismic concepts to allow high-precision asteroseismology.

The first part of this thesis focuses on three oscillating red-giant components in EBs.
Consistencies between the asteroseismic and dynamical stellar parameters using Kepler’s
laws were found in cases where the asteroseismic methods accounted for the stellar mass,
temperature, and metallicity dependence, as well as the so-called surface effect. The sec-
ond part of this thesis discusses an asteroseismic ensemble study with the main objective
of determining asteroseismic age estimates of about 60 oscillating red-giant stars that are
members of the open clusters NGC 6791 and NGC 6819. Individual age determinations
for the cluster giants led to a fairly large age span, although stars in open clusters are
assumed to be coeval. The spread in the asteroseismic ages could be reduced by using
the clusters’ metallicity from isochrone fitting as constraints for the asteroseismic mod-
elling of the observed cluster giants. The global metallicity of the stars was shown to
have a large impact on the age determinations. Improving the accuracy of this parameter
would be helpful in obtaining more accurate asteroseismic ages. Among the stars that
were targeted by Kepler for open cluster studies was a rare case of a Fourier power den-
sity spectrum showing solar-like oscillations of two red giants. The similar asteroseismic
ages and masses of the two stars provided indications that they could be physically bound
into a rare case of a multiple star system, while different distance estimates could point to
an even rarer case of a chance alignment. This study is presented in the third part of this
thesis.





8 Zusammenfassung

Die NASA Kepler Weltraummission (2008 − 2012) konnte sonnenähnliche Oszillatio-
nen in Tausenden von Roten Riesensternen nachweisen, die verschiedene physikalische
Eigenschaften besitzen, und sich in unterschiedlichen Entwicklungsstadien befinden. Die
Zeitreihenanalyse der photometrischen Daten von Kepler führte zu grundlegenden neuen
Erkenntnissen auf dem Gebiet der “Roten Riesen Asteroseismologie”. Diese Disserta-
tion widmet sich der Untersuchung von Roten Riesen, die sich in Doppelsternsystemen
oder offenen Sternhaufen befinden. Es werden physikalische Zustandsgrößen wie Masse,
Radius, mittlere Dichte und Oberflächenschwerkraft ermittelt, die einen Einblick in den
inneren Aufbau dieser Sterne und in ihre Entwicklung geben. Um die Eigenschaften
der Sterne zu bestimmen, können einerseits asteroseismologische Methoden verwendet
werden, andererseits können Doppelsternsysteme mithilfe der Keplergesetze untersucht
oder offene Sternhaufen mit sogenannten Isochronen (Evolutionsmodelle für Sterne mit
einem bestimmten Alter und einer bestimmten Metallizität) erforscht werden. Diese Ar-
beit stellt Verbesserungen von bereits existierenden asteroseismologischen Konzepten vor
und ermöglicht damit eine bessere Charakterisierung der Roten Riesensterne.

Zunächst wurden drei Sterne auf dem Roten Riesenast untersucht, die Komponenten
von bedeckungsveränderlichen Doppelsternsystemen sind. Für diese Sterne wurden ver-
schiedene physikalische Zustandsgrößen bestimmt, die anschließend mit den Ergebnis-
sen der Doppelsternsystemanalysen verglichen wurden. Die Resultate beider Verfahren
stimmten nur überein, wenn die Masse, Temperatur und chemische Zusammensetzung der
Sterne, sowie der sogenannte “Oberflächeneffekt”, in den asteroseismologischen Metho-
den berücksichtigt wurde. Darüberhinaus wurden ungefähr 60 Rote Riesen analysiert,
die sich in den offenen Sternhaufen NGC 6791 and NGC 6819 befinden. Das Alter der
beobachteten Haufensterne wurde mithilfe der Asteroseismologie ermittelt und mit Stern-
Isochronen verglichen, die das Alter und die Metallizität des jeweiligen Sternhaufens
repräsentierten. Durch Miteinbeziehung der chemischen Zusammensetzung der Stern-
haufen in die Sternmodelle konnte die Altersspanne der Roten Riesensterne verringert
werden. Bei der Altersbestimmung spielte die Metallizität der einzelnen Sterne eine sehr
wichtige Rolle. Je präziser diese bekannt war, desto genauer konnte das Alter der Sterne
bestimmt werden. Um die Arbeit abzurunden, wurde eine ausführliche Untersuchung von
zwei Roten Riesen durchgeführt, die sich eine gemeinsame Kepler Lichtkurve teilen. Ihr
ähnliches Alter und ihre ähnlichen Massen könnten ein Hinweis darauf sein, dass sie sich
in einem Mehrfachsternsystem befinden. Anhand der beobachteten Helligkeiten beider
Sterne wurden jedoch unterschiedliche Entfernungen festgestellt, was auch auf ein optis-
ches Doppelsternsystem hindeuten könnte, dass sich gravitativ nicht beinflusst.





We are All made of Stardust
- Anonymous





12 Chapter 1

1 Introduction

In the introductory chapter, key aspects of this thesis are outlined that are dedicated to
draw inferences from red-giant stars through asteroseismology. After a preface on the
evolution of low-mass stars and stellar oscillations, I describe how stellar parameters can
be determined for oscillating red-giant stars. In addition, I introduce the crucial role of
eclipsing binary systems as well as open clusters for this research.

1.1 Stellar evolution (in a nutshell)
Stars live for some ten millions to billions of years. Their lifetime and end-product are
strongly linked to their initial mass. Lower mass stars consume their energy slower and
thus live longer, while higher mass stars burn their fuel faster and have a shorter lifetime.
In the classical picture, star formation takes place in dense giant molecular clouds of gas
and dust with masses between 103 and 107 M� (Murray 2011). The Jeans criterion de-
scribes the conditions for a cloud to undergo gravitational collapse and, as it collapses,
breaks into smaller and smaller fragments. These fragments further collapse releasing
gravitational energy and increasing their temperature and pressure, until they reach a state
of hydrostatic equilibrium and rotating spheres of hot gas are formed. These objects,
known as protostars, are fully convective with core temperatures of a few thousand de-
grees and high opacities in their interiors. After reaching hydrostatic equilibrium, the
protostar begins its pre-main-sequence phase, which is characterized by slow contraction.
When the internal temperature is high enough, the protostar starts converting hydrogen
into deuterium, and then to helium. At this point the nuclear reactions are very sensi-
tive to temperature, which causes a convective core to develop. While stars with masses
. 1.1 M� loose the convective core again, more massive stars retain it. Finally, the star
reaches the zero-age main sequence (ZAMS), when hydrogen burning in the core becomes
the dominant source of energy production. From this stage onward, stars are powered by
nuclear fusion reactions that occur deep in their interiors. The life cycle of a star after
leaving the main sequence consists of different evolutionary phases, which depend on the
initial mass. When stars die, they enrich the surrounding interstellar medium with ele-
ments heavier than helium and hence provide the basic component for the creation of new
stars and planets. The full complexity of the process of star formation is demonstrated in
recent three-dimensional hydrodynamical simulations (e.g. Bate et al. 2014, Wurster et al.
2018).

During stellar evolution, the inner structure (e.g. chemical composition, temperature, and
pressure stratification) varies, causing the stellar characteristics to change. As the physi-
cal changes occur slowly during the life cycle of a star and mostly in sequences over very
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Main sequence

Subgiant branch

Red-giant branch

a.)
b.)

c.)
d.)

e.)

RGB bumpRed clump

Asymptotic giant branch

First dredge-up

Figure 1.1: Hertzsprung-Russell diagram showing the evolution of a star with M =

1.8 M�. The evolutionary track was computed with MESA (e.g. Paxton et al. 2018)
by using an initial heavy-element and helium abundance of Z0 = 0.02 and Y0 = 0.28,
respectively (see Sec. 1.1.3). The colours represent different phases of stellar evolution,
i.e. main-sequence, subgiant, red-giant-branch, and asymptotic giant branch phase, which
are described in Section 1.1.1 for low-mass stars.

long timescales, it is difficult to probe stellar evolution on a single star. Stellar clusters
are helpful in this context, since they contain many stars of different masses that can be
observed at different evolutionary stages. Stellar evolution can be studied through simula-
tions of the stellar structure and computations of the evolutionary path of stars. Through
comparison with observations it is possible to improve our understanding of stars.

1.1.1 Evolution of low-mass stars
One of the most important charts in stellar astrophysics is the Hertzsprung-Russell dia-
gram (HRD), which shows the relation between a star’s brightness (luminosity) and its
color (temperature). Throughout their lives, stars change their positions in this diagram.
Figure 1.1 shows the evolutionary path of a star with M = 1.8 M� from the ZAMS to the
asymptotic giant branch (AGB) in the HRD. Stars spend about 90 % of their lifetime on
the main sequence (MS), while later stages of stellar evolution proceed faster with stars
relatively rapidly reaching their end-products.

After settling on the MS low-mass stars (0.48 . M� . 2) pass through the following
stages of stellar evolution:
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a.) On the main sequence low-mass stars can have radiative (below about 1− 1.2 M�)
or convective cores (above ∼ 1.2 M�), which affect their interior structure and
evolution. For stars with radiative cores, the energy production is dominated by
the proton-proton (p-p) chain, which slowly fuses hydrogen to helium in the stel-
lar core and the energy transport is carried out by radiation. Stars with convec-
tive cores, like the one in Figure 1.1, have a more centrally concentrated carbon-
nitrogen-oxygen (CNO) burning region as their dominating energy source. This
set of fusion reactions operates at higher temperatures than the p-p chain. In these
stars, overshooting of material beyond the formal convective boundary, a process
called convective-core overshoot, can extend the main-sequence lifetime by mixing
additional hydrogen into the burning regions.

As the star evolves on the main sequence, hydrogen is gradually depleted from the
growing inert helium core. The nuclear burning in the centre increases the mean
molecular weight, which consequently decreases the ideal gas pressure affecting
the hydrostatic equilibrium of the star. To compensate for this, the central density
and temperature rise by means of core contraction in order to maintain the support
for the overlying stellar layers. The higher efficiency of the burning causes the lu-
minosity to increase. At the point when complete hydrogen depletion in the core
occurs, the star has reached the terminal-age main sequence and begins its sub-
giant phase. For a 1.8 M� star with a convective core this event is visible as a
‘hook’ feature in the HRD (see Fig. 1.1).

b.) After the cease of nuclear reactions in the stellar core, the star requires a new source
of energy generation. The central density in stars with M . 1.1 M� is high enough
for electron degeneracy to occur. Due to the pressure support that is provided, a
low-mass star with a degenerate isothermal helium core remains in thermal and
hydrostatic equilibrium, while it gradually transitions to hydrogen-shell burning.
With the beginning of shell burning, the degenerate helium core slowly increases
in mass, while the envelope of the star expands. The boundary between contraction
and expansion lies near the hydrogen-burning shell, where the CNO cycle becomes
the dominating energy source. When the star moves from the main sequence to the
red-giant branch, the stellar envelope expands and cools down. At a specific point,
i.e. the Hayashi line, the temperature cannot be decreased any further, otherwise the
star would not be able to remain in hydrostatic equilibrium. Thus, a further increase
of the radius leads to a rise in the stellar luminosity. The transition is the so-called
bottom of the red-giant branch (RGB).

c.) On the RGB, the hydrogen-burning shell continues to move outwards, while the
bottom of the convective envelope moves inwards. In the deep interior the ashes
of the hydrogen-burning shell are deposited on the degenerate helium core, which
continues to grow in mass. The increasing temperature in the contracting core heats
up the hydrogen-burning shell which, due to compression, enhances the energy pro-
duction. Inevitable, the shrinking stellar core becomes effectively decoupled from
the expanding stellar envelope.

When the star ascends the RGB the inward moving convective envelope transports
material from the deep interior processed by nuclear reactions during the main-
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sequence phase to the surface. This is the so-called first dredge-up event. At this
point, the convective envelope extends deep into the star and is forced to retreat
by the hydrogen-burning shell moving outwards. Since convection is an efficient
form of mixing that homogenized the chemical composition in the star, all that re-
mains is a chemical mean molecular weight discontinuity. Convection is also an
efficient means of energy transport. The shell becomes less blanketed and energy is
efficiently transported to the surface. This causes the stellar luminosity to rise dra-
matically during the RGB phase of stellar evolution and the stellar radius to expand
greatly. Once the stellar surface is cooled, the star proceeds nearly vertically in the
HRD.

The degenerate helium core grows in mass and the hydrogen-burning shell moves
further outwards. When the shell encounters the chemical composition discontinu-
ity, the stellar luminosity first decreases due to the reduced mean molecular weight
and then increases again, when the helium core continues to grow in mass at a con-
stant mean molecular weight. In simple terms, the star readjusts itself and reverses
its direction of evolution before continuing on the RGB. This feature is observable
as the so-called RGB bump.

In the final stages of the RGB phase, the temperature in the degenerate core is even-
tually high enough (T ∼ 108 K) to ignite helium fusion via the triple-alpha process.
The onset of helium fusion causes a short-lived thermal runaway process, in which
enormous amounts of energy are produced. Due to efficient neutrino cooling and
losses in the inner centre, the helium-burning is first initiated in a shell off centre,
where the temperature is at its maximum. The resulting energy release occurs ex-
plosively in one or more so-called helium flashes. In order for them to stop, the
degeneracy in the helium-rich core has to be lifted by the energy generated during
these flashes. Since most of the energy is absorbed by the overlying layers without
reaching the surface, the stellar luminosity remains very similar during this process.

d.) At this point, the star has two energy sources, i.e. helium-burning in a convective
core that produces predominantly carbon and oxygen, and hydrogen-burning in a
shell, which is the dominant source of energy. After the helium flash, the energy
production in the hydrogen-burning shell is less efficient due to its expansion and,
thus, has a lower temperature and density. Hence, the stellar luminosity decreases
and the star ends up in the red clump. As a further note, stars that are massive
enough to slowly start the ignition of helium under non-degenerate core conditions,
form the population of secondary clump stars.

e.) Once the helium is exhausted in the core, the star rapidly ascends the asymptotic
giant branch. Now, the star has an inert carbon and oxygen core, a helium-burning
shell, which is thermally unstable, and a hydrogen-burning shell further out. When
the star climbs up the AGB, the stellar luminosity and radius increase. The shells
become thinner and alternate in being the most efficient energy source. This is
caused by thermal instabilities due to the extinction and reignition of the helium-
burning shell. Since nuclear reactions are highly temperature-dependent, thermal
pulses are created when the regions between the nuclear-burning shells become
very narrow. This phase of stellar evolution is very important for the chemical
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enrichment of the universe. The star produces large amounts of carbon and through
several mass loss processes and dredge-up events, the galaxy gets enriched with
heavier elements.

The final stages of stellar evolution depend primarily on the initial mass of the star and the
amount of mass loss that occurred during the star’s lifetime. Helium fusion generates a
carbon-oxygen core, which in the case of a low-mass star will never ignite carbon fusion.
Most of the star’s mass is lost due to dust-driven winds. At some point, its envelope starts
to contract and shell-burning is ceased. The outer stellar layers are ejected by radiation
and a planetary nebula is formed. Finally, the star becomes a white dwarf.

As the described sequence only tells part of the story of the life of a star, I refer the
interested reader to e.g. Kippenhahn and Weigert (1990), Maeder and Renzini (1984),
Lattanzio (1986), Salaris and Cassisi (2005), Aerts et al. (2010), Iben (2013), Hekker and
Christensen-Dalsgaard (2017) as well as the lecture notes1 on stellar structure and evo-
lution by Christensen-Dalsgaard (2008), which give an elaborate description of different
evolutionary phases for low-, intermediate-, and high-mass stars.

1.1.2 Overview of stellar structure

In a stellar model, a star is defined as a spherical symmetric fluid that is in hydrostatic
equilibrium without any rotation or magnetic fields (e.g. Basu and Chaplin 2017). In this
‘standard theory’, the influence of these more complex processes is usually neglected.
Also, if hydrodynamic effects, e.g. convection, convective overshoot, and chemical mix-
ing between radiative and convective zones, are included in the model, they are treated in
a simplified manner. The stellar structure can be described by a set of non-linear equa-
tions under the assumption that radius r(m), gas pressure P(m), temperature T (m), density
ρ(m), luminosity L(m) and chemical composition Xi(m) vary only in the radial direction
r(m) at a point in time and where m is the mass of the star enclosed within the radius r
from the stellar centre. Hence, when the star evolves, its mass remains constant, while its
radius changes considerably. This assumption holds for many evolutionary stages, even
though mass loss plays an important role in very early and late stages of stellar evolution.
The conditions in the stellar interior can be characterized by means of four stellar struc-
ture equations that are based on the conservation of mass, momentum, and energy, as well

1http://astro.phys.au.dk/˜jcd/evolnotes/LN_stellar_structure

http://astro.phys.au.dk/~jcd/evolnotes/LN_stellar_structure
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as the descriptions for energy transport and nucleosynthesis:
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Eq. 1.1: In the conservation of mass equation, the star is described by a number of
spherical mass shells with ∂m representing the mass of a shell at a radius r and thickness
∂r. Eq. 1.2: The conservation of momentum defines the balance between the downward
force of gravity and upward pressure, with G as the gravitational constant and m as the
fractional mass (hydrostatic equilibrium). Eq. 1.3: In the conservation of energy equation,
εn, εν, and εg represent the energy release through nuclear reactions, the energy loss due
to neutrinos, and the gravitational energy release, respectively. On this basis, the inflow
and outflow of energy are in balance. Eq. 1.4: The equation defines the temperature
stratification in the stellar interior. Here, ∇ is the dimensionless temperature gradient,
which depends on the mechanism of energy transport inside the star that is, radiation and
convection. Eq. 1.5: The composition inside the star changes with time and position.
The parameter Xi is the mass fraction of the element i, mi is the mass of the nucleus
of the isotope i, r ji is the energy generation rate for the formation of the isotope i from
the isotope j, and rik is the rate at which the isotope i is lost when transforming into the
isotope k.

1.1.3 Stellar modelling
A stellar model can be computed by solving the stellar structure equations 1.1 − 1.5 with
the addition of some external physics and boundary conditions. The properties of stellar
matter are given by the equation of state, radiative opacities (interactions between radia-
tion and matter), nuclear reaction rates (e.g. energy generation, neutrino fluxes, compo-
sition changes), diffusion coefficients (e.g. transport processes in the matter) and element
settling (e.g. collisions and interactions between gas components). An atmospheric model
serves as an external constraint to set the outer boundary conditions of the star. Based on
these inputs one obtains a classical stellar model that can be computed in a reasonable
amount of time. Another major issue in stellar modelling is the incorporation of heat
transport in convective stellar layers. The standard approach is based on mixing-length
theory (Böhm-Vitense 1958), which describes how far a convective element rises before
it merges with its environment, thus providing information about the efficiency of energy
transport from the deep interior to the stellar surface. In a general manner, the complex
concept of convection is parametrized with a single mixing-length parameter that is com-
monly set to a solar-calibrated value. This approximation is used due to the computation
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cost of the process with very different timescales.

Models of stars can be obtained by using stellar evolution codes, e.g. the PAdova and
TRieste Stellar Evolution Code2 (PARSEC; e.g. Bressan et al. 2012, Marigo et al. 2017)
or the Modules for Experiments in Stellar Astrophysics3 (MESA; e.g. Paxton et al. 2011,
2018), as well as databases such as the Bag of Stellar Tracks and Isochrones database4

(BaSTI; e.g. Pietrinferni et al. 2004, 2014). All these stellar modelling codes use slightly
different input physics and approximations to create their grids of stellar models.

Stellar evolutionary tracks: Starting from some basic conditions, i.e. initial mass M0,
initial heavy-element abundance Z0, and initial helium abundance Y0, the stellar model
can be evolved in time until it satisfies some observed surface properties (e.g. effective
temperature and luminosity). The initial input values for M0,Y0, and Z0 affect the structure
and evolution of the model, which becomes the proxy of an observed star. Figure 1.2
shows evolutionary tracks for modelled stars with initial masses between 0.6 M� and
1.4 M� as a function of age from the zero-age main sequence up to the red-giant branch.
In case of the 1 M� model, the variations due to different heavy-element abundances are
shown as well. Stars with lower initial Z0 are generally hotter.

Isochrones: Stellar isochrones for any given choice of age and metallicity can be de-
rived from stellar evolutionary tracks that were calculated for a range of different M0,Y0

and Z0. An isochrone is a curve, which represents a population of stars with the same
age and metallicity as a function of mass. Figure 1.3 presents a selection of isochrones
for varying metallicities and ages that extend from the MS to the AGB. Along these
isochrones, important stellar parameters such as the luminosity, effective temperature,
radius, and evolutionary phase can be retrieved for any given stellar model. In combina-
tion with bolometric corrections, the theoretical luminosities and effective temperatures
can be transformed into several photometric systems in order to provide magnitudes and
colours.

By comparing stellar models with observational data it is possible to improve the under-
standing of stellar physics and test theoretical stellar evolution calculations. This opens
up new possibilities to refine theoretical assumptions and it helps to analyze and predict
future observations. Even if a stellar model is able to reproduce the global properties of
an observed star, the age and internal structure of the best-fitting model can still be dif-
ferent from the observed star. One way to improve the model fitting is to use additional
information from individual frequencies of oscillation modes (see Sec. 1.3.6) that can be
measured for stars that show oscillations.

1.2 Stellar oscillations
Acoustic stellar oscillations are a common feature among stars with a large range of
stellar properties and different evolutionary stages. In the following, I provide a brief

2http://stev.oapd.inaf.it/cgi-bin/cmd
3http://mesa.sourceforge.net
4http://www.te.astro.it/BASTI/index.php

http://stev.oapd.inaf.it/cgi-bin/cmd
http://mesa.sourceforge.net
http://www.te.astro.it/BASTI/index.php
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Figure 1.2: Examples of MESA model tracks (e.g. Paxton et al. 2011) in the Hertzsprung-
Russell diagram with different initial masses M0 (solid lines) at given heavy-element
abundance Z0 = 0.02. For the 1 M� model the impact of different Z0 values are shown
(dotted lines). Models with lower initial heavy-element abundance are shifted towards
higher temperatures and larger luminosities.

overview of why, how, and which types of stars pulsate, and what methods are used to
analyze them. More information about the theory of stellar oscillations is available in Cox
(1980), Aerts et al. (2010), Hekker and Christensen-Dalsgaard (2017), Basu and Chaplin
(2017), amongst others, as well as the lecture notes5 on stellar oscillations provided by
Christensen-Dalsgaard (2014).

1.2.1 A description of oscillations in stars
Low-amplitude acoustic oscillations arise from small perturbations to the equilibrium
structure of a star, which are generated in the stellar interior, and then propagate as acous-
tic waves inside the star. They can be described as acoustic oscillations on the basis of the
general equations of hydrodynamics in the presence of a gravitational field and under the

5http://users-phys.au.dk/jcd/oscilnotes/

http://users-phys.au.dk/jcd/oscilnotes/
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Figure 1.3: Examples of PARSEC (e.g. Bressan et al. 2012) isochrones. Left: A set
of isochrones for a fixed age (log τ = 9.91) and varying metallicities of [M/H] =

−2.0,−1.0,−0.4,+0.1, and +0.6 dex from left to right. Right: A set of isochrones with
different ages between about 41 Myr and about 10 Gyr (log age = 7.61, 8.21, 8.81, 9.4,
and 10.01 (dex) from top to bottom) at a fixed metallicity of [M/H] = 0.04 dex.

assumption that oscillations are adiabatic linear perturbations to a spherically symmetric
stellar model. The use of the linear approximation is justified, since velocity amplitudes of
oscillations are in most cases much smaller than the sound speed in the region where they
propagate. For example the velocity perturbations at the surface of the Sun are smaller
than 20 cm s−1 (Libbrecht 1988), i.e. roughly 104 times smaller than the local sound speed
at the solar photosphere. The use of the adiabatic approximation is also justified, since
the oscillations operate on much shorter timescales than the heat transport timescale in
the corresponding layer.

Based on these assumptions, it is possible to write the linearised equation of continuity
and momentum, and the linearised Poisson equation for gravity, which represent the set
of so-called stellar adiabatic oscillation equations. These equations, complemented with a
set of boundary conditions at the surface and at the centre of the star, constitute an eigen-
value problem, whose eigenmode solutions give the resonant oscillations of the star. Each
eigenmode can be completely described by its eigenfrequency ωn` and its displacement
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vector δrn`m, which in spherical coordinates can be written in the form:

δrn`m(r, θ, φ, t) = Re
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e−iωn`t

}
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(1.6)
where r is the radial distance from the centre of the star, θ is the colatitude, and φ is the
longitude. This vector is split in a radial (ξr) and horizontal (ξh) component with Re repre-
senting the real part. Here ar, aθ, and aφ denote the unit vectors in the spherical coordinate
system. Moreover, spherical harmonics Ym

` (θ, φ) are used to define the geometrical prop-
erties of the oscillation modes of a spherically symmetric star. They are characterized by
two integer numbers, the angular degree `, with ` ≥ 0, and the azimuthal order m, with
−` ≤ m ≤ `:

Ym
` (θ, φ) = (−1)m

√
2` + 1

4π
(` − m)!
(` + m!)

Pm
` (cos θ)eimφ, (1.7)

where Pm
` (cos θ) are the associated Legendre polynomials.

The eigenmode solution is uniquely determined by three integer numbers n, `,m. For any
given value of `, we obtain different eigenfrequencies ωn` that are indicated by the radial
order n, i.e. the overtone of the mode, which represents the number of node surfaces
between the centre and the surface of the star. Positive (negative) values of n are used to
indicate acoustic (gravity) modes. For ` > 0 and for each n, there are 2` + 1 eigenmodes
of different azimuthal order m. In presence of rotation these modes may have different
frequencies. However, in a non-rotating spherically symmetric star, as is assumed here,
eigenmodes are degenerate in m, and therefore all the modes with the same values of n
and ` have the same eigenfrequency ωn`. The eigenfrequency is further related to the
cyclic oscillation frequency according to νn` = ωn`/2π. We can directly measure νn` from
the observations.

Radial and non-radial modes of oscillation: Many stars show pulsations in both radial
(` = 0) and non-radial modes (` ≥ 1 and n ≥ 1). A star with ` = 0 oscillates in the
radial direction only and thus remains spherically symmetric. These modes appear as
pure pressure modes (see Sec. 1.2.4). Non-radial modes have both horizontal and vertical
displacements. In Figure 1.4 we show a graphical visualization of non-radial modes in
stars with a viewing angle of 60◦. Adjacent surface elements move in opposite directions
with different colours indicating contracting (i.e. heating) and expanding (i.e. cooling)
parts. These parts are separated by nodal lines. The angular degree ` represents the total
number of nodal lines on the stellar surface, and the azimuthal order m is the number
of meridional node lines. As distant stars are observed as point sources, one measures
the integrated brightness or velocity in the line-of-sight over the visible disk of the star.
This causes partial cancellation of modes, where the intensity variations of the surface
elements of high-degree modes with ` > 3 cancel each other out. According to theoretical
predictions, the visibility of ` = 3 modes in intensity observations is already only about
one tenths compared to radial ` = 0 modes (Aerts et al. 2010).
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Figure 1.4: Graphical illustration of different oscillation modes as seen from an inclination
angle of 60◦. Black lines show the axis of rotation. The angular degree ` and azimuthal
order m are increasing from left to right with (`,m) = (1, 0), (2, 1), and (3, 2).

1.2.2 Driving mechanisms
Small perturbations to the stars equilibrium structure do not generate enough energy to
preserve stellar oscillations over time. Most of the energy is lost throughout the star,
where layers damp the oscillations, because the star attempts to recede into hydrostatic
equilibrium. Therefore, stars require efficient driving mechanisms in order to excite os-
cillation modes globally and to reach amplitudes that can be detected.

κ mechanism: Many stars have forced self-excited oscillations, where radial stellar lay-
ers act as heat engines by converting thermal energy into mechanical energy. The tem-
perature plays an important role for this mechanism. Thus, the layer where the modes
are excited must be located at a certain depth. In classical pulsators (see Fig. 1.5 and
Sec. 1.2.3), oscillations are predominantly driven in the first partial ionization zones of
hydrogen and helium (Mira stars, semiregular variables) and the second partial ionization
zone of helium (rapidly oscillating Ap stars, δ Scuti, RR Lyrae, Cepheids and pre-main-
sequence stars). In more massive stars, such as β Cepheids, slowly pulsating B stars, B
supergiants, and subdwarf B stars, the κ mechanism acts in iron partial ionization zones.
In these ionized stellar layers, the radiation is blocked by opacity. Due to increasing
pressure and heat of the gas, the star surpasses its equilibrium point. With increasing ion-
ization of the gas, the layer becomes less opaque and the radiation passes through. Then,
the gas cools down and the overlying layers can no longer be supported. Compression
takes place, which causes the layer to gain heat again.

Only modes that are in resonance with the forcing can be excited by the κ mechanism.
They usually have large amplitudes and therefore they have been studied by means of
ground- and space-based data for several decades. The ‘classical’ instability strip shown
in the HRD in Figure 1.5, is occupied by classical pulsators with oscillations driven by
the heat engine mechanism.

Stochastic excitation: In solar-type main-sequence, subgiant and red-giant stars, modes
are stochastically excited and damped through turbulence in convection zones near the
stellar surface.
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In contrast to classical pulsators, all modes can be excited. These small-amplitude oscil-
lations were first detected in the Sun (Sec. 1.3.2), hence they are called solar-like oscil-
lations. Long-term space-based observations were necessary to study them in detail in
many stars with different evolutionary stages. In the HRD, the solar-like oscillators are
situated on and near the main sequence (Fig. 1.5).

ε mechanism: According to theoretical considerations, global oscillations could possi-
bly be driven by variations in the energy rate produced in the stellar core of very massive
and evolved stars, which have yet to be observed.

Convective blocking: Convective blocking is another mechanism that is capable of
driving oscillations. At the base of the convection zone, the radiative flux can be ef-
fectively blocked by convection. This causes the heating of the star to be in phase with its
compression, which then leads to the excitation of modes. This driving mechanism has
been found to excite g modes in γ Doradus stars.

Tidally induced oscillations: Global oscillations in close binary systems can be trig-
gered by tidal actions, which force resonantly excited oscillation modes. Theoretical
studies imply that the period and eccentricity of the binary orbit, masses and radii of the
components, as well as the properties of the oscillation modes strongly influence the driv-
ing of these oscillations. The modes can be excited through resonances between forced
frequencies from dynamic tides and free oscillation modes of one of the binary compo-
nents. Observationally, they are detectable for spherical degree ` = 2, which is the domi-
nant degree for dynamic tides. They appear as g modes, since their frequencies are similar
to the orbital frequencies of binary systems. Solid detections, however, are hampered by
the presence of multiples of the orbital frequency, which can be falsely interpreted as
resonantly excited modes.

1.2.3 Stellar oscillations across the Hertzsprung-Russell diagram
Pulsating stars occupy certain regions in the HRD. Due to different physical mechanisms
(Sec. 1.2.2) their brightness varies periodically, semi-periodically, or irregularly as a func-
tion of time. According to common characteristics, pulsating stars are grouped together
in several classes and subclasses. Besides some hybrid pulsators that have both p- and
g-mode oscillations, each group exhibits one dominating mode type. The asteroseismic
HRD shows that oscillations can be excited in almost all types of stars and in many differ-
ent stages of stellar evolution. In the following, the main characteristics of the oscillations
of different classes of pulsating stars are introduced, which are shown in the HRD in Fig-
ure 1.5.

Near the main sequence

? Slowly pulsating B stars: The SPB stars are multiperiodic g-mode pulsators with
amplitudes smaller than 50 mmag and periods between 0.5 and 5 days.
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Figure 1.5: Theoretical asteroseismic HRD showing different groups of pulsating stars
(see Sec. 1.2.3). Black solid lines show evolutionary tracks of model stars with different
initial masses (1 M�, 4 M�, and 15 M�). The dashed line represents the main sequence
and the instability strip is indicated by the two nearly vertically long dashed lines. The
dotted line shows the path from the AGB to the white-dwarf stage and the double-dotted-
dashed line marks the horizontal branch. The main mode type of oscillations, i.e. p
modes and g modes through the heat engine mechanism, are emphasized by blue and
purple colours. Solar-like oscillations occur in main-sequence, subgiant and red-giant
stars, which are highlighted in yellow.
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? β Cepheids: Members of this group range from dwarfs to giants. They can be
multiperiodic p- and g-type pulsators with short periods from 2 to 8 hours (p modes
with < 0.1 mag) and of a few days (g modes with < 0.01 mag).

? Pulsating Be stars: This class comprises fast rotating population I stars that show
Balmer-like emission lines due to the presence of circumstellar discs. They usu-
ally oscillate with one dominant mode, even though multiperiodicity is possible.
Oscillation periods range from 0.1 to 5 days with amplitudes < 20 mmag. Many
pulsating Be stars are members of close binary systems.

? δ Scuti stars: The population I stars of this group have radial and non-radial low-
order p modes with short periods of 18 minutes to 8 hours. The observed amplitudes
range from one mmag to tenths of a magnitude. Some stars show amplitude vari-
ability over years and even decades, as well as non-linear resonant mode coupling.
In more evolved stars mixed modes can appear. The population II (SX Phe) stars
of this group have a generally lower metallicity and high amplitudes. Usually, they
are members of globular clusters and some of them may even be blue stragglers.

? roAp stars: The rapidly oscillating A-type pulsators are highly-magnetic population
I stars with peculiar chemical surface compositions. They show multiperiodic low-
degree p-mode oscillations of high radial order with periods between 5 and 20 min,
and amplitudes < 10 mmag. Moreover, rotational amplitude modulations occur,
when the axis of pulsation is aligned with stellar magnetic fields. This is the so-
called oblique pulsator model (Kurtz 1982).

? γ Doradus stars: This group of multiperiodic stars exhibits non-radial g modes of
high order and low degree with periods of 0.3− 3 days and amplitudes < 50 mmag.

? Solar-like oscillating stars: On the main sequence, solar-like oscillating stars show
multiperiodic p modes with low amplitudes of a few ppm and periods of minutes to
tens of minutes.

Evolved stars

? RR Lyræ stars: They are low-mass population II stars burning helium in their cores.
RR Lyræ stars mostly pulsate mono-periodically or additionally in the first overtone
of the mode. Special characteristics of this class of stars are amplitude and phase
modulations that are caused by the Blazhko effect, strong atmospheric shocks, and
many overtones in the frequency spectrum. They have radial modes with periods in
the range between 0.3 and 0.5 days and their amplitudes reach up to about 1.5 mag.
RR Lyræ stars are divided into three sub-classes (RRab, RRc, and RRd) based on
the skewness of their light curve and their oscillation period and amplitude.

? Cepheids: This group comprises stars with high masses that are in the core-helium
burning phase. Due to their brightness, Cepheids are commonly used as standard
candles to determine distances through the period-luminosity relation. Population I
classical Cepheids are giants or supergiants with periods ranging from 1 to 50 days
and with amplitudes < 1 mag. Their light curves are extremely periodic. They
can oscillate in both the fundamental and the first overtone, or the first and second
overtone of the mode. The population II Cepheids exhibit periods from one day to
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one month with amplitudes < 1 mag. These stars cross the instability strip when
moving away from the horizontal branch or during the AGB phase and are divided
into groups according to their period. Among the short-period pulsators are the
BL Her class with periods from 1 to 5 days and the W Virginis class with periods
between 10 and 20 days. Longer pulsation periods belong to the RV Tauri class,
which are F to K supergiants with radial pulsations that have periods between 30
and 150 days. They show regularly alternating deep and less deep minima in their
light curves. Many of them are long-period binaries.

? Semiregular variables: The SR stars are giants and supergiants that pulsate in an
overtone with periods from about 20 days to longer than 2 000 days. Strong period-
icities and irregularities are present in their light curves.

? Mira stars: They represent the long-period pulsators near the tip of the red-giant
branch. Mira stars oscillate in the radial fundamental mode (` = 0) with long
periods (> 80 days to years) and amplitudes up to 8 mag.

? Solar-like oscillating stars: The more evolved solar-like oscillators (subgiants, red
giants) have multiperiodic low-spherical degree p modes in the range of minutes to
hours as well as mixed pressure-gravity modes (Sec. 1.2.4).

Compact pulsators

? Variable subdwarf B stars: This group of old low-mass population I stars is located
on the extreme horizontal branch with members having masses less than ∼ 0.5 M�
due to extreme mass loss. They are multiperiodic pulsators that show p modes with
periods of the order of ∼ 1 to 5 min with amplitudes < 0.1 mag as well as g modes
with periods of ∼ 0.5 to 3 hours with amplitudes < 0.01 mag.

? White dwarfs: There are three distinct types of white dwarf pulsators, which all have
multiperiodic g modes of low degree and high order with amplitudes < 0.2 mag.
Strong mode trapping occurs because of the stratification in their envelope layers.
The first group are the GW Vir stars, which are among the DO variable dwarfs.
These stars have periods between 7 and 30 min, and their spectra show a deficiency
in hydrogen and large abundances of helium, carbon, and oxygen. The second
group are the DB type stars (V777 Her) with periods of the order of ∼ 4 to 12 min
with amplitudes < 0.2 mag. The DA type stars (ZZ Ceti stars) constitute the third
group, which exhibit periods from less than 100 s to longer than 1 000 s. These
variable dwarfs have hydrogen atmospheres with strong Balmer lines visible in the
spectrum and a frequency spectrum that contains multiplets.

A complete picture and more information about different types of pulsating stars is pro-
vided by Aerts et al. (2010) and references therein.

1.2.4 Asteroseismology of red-giant stars
Asteroseismology is an observational method to analyze pulsating stars. This technique
is based on the study of global stellar oscillations through the measurement of mode fre-
quencies, when they reach observable amplitudes at the surface of stars. Asteroseismol-
ogy provides a unique view into the deep stellar interior. Other ‘classical’ photometric
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Figure 1.6: Graphical visualization of pressure (acoustic) waves propagating as rays
through the star. Higher angular degree ` modes have more nodes on the stellar sur-
face (e.g. orange ray), while lower angular degrees penetrate deeper inside the star (e.g.
purple ray) with the ` = 0 mode (in blue) propagating through the stellar core.

and spectroscopic methods are mostly useful for exploring stellar surfaces, since distant
stars are very opaque and can only be observed as point sources.

Over the past two decades, asteroseismology has shown its great astrophysical poten-
tial (e.g. Aerts et al. 2010, Hekker and Christensen-Dalsgaard 2017, Basu and Chaplin
2017). The advent of continuous long-term high-precision space observations and high-
resolution spectroscopic ground-based campaigns have introduced, what is sometimes
referred to as, a ‘golden era of stellar variability’. The quantity and quality of photo-
metric time series data and radial velocity measurements have reached a level to perform
in-depth analyses for hundreds of thousands of oscillating stars. By using different as-
teroseismic methods combined with spectroscopy it is possible to derive several stellar
properties, including mass and radius, age, luminosity and thus distance, temperature,
chemical composition, and evolutionary stage. In addition, physical processes can be
studied through stellar modelling in order to advance the understanding of the internal
stellar structure, evolution, rotation, diffusion, convection, and excitation mechanisms.
Some of this information cannot be retrieved by any other method, which makes astero-
seismology a very powerful analysis tool.

Asymptotic theory for solar-like oscillators: Solar-like oscillators show pressure (p)
modes with pressure acting as their primary restoring force. Modes with different degrees
are sensitive to different regions inside the star with low-degree p modes reaching the
deeper layers. Figure 1.6 illustrates pressure waves as rays travelling through the star. As
the wave moves towards the centre, the sound speed increases, which causes the wave
to travel faster in the deeper interior and to be refracted until it reaches an inner turning
point. There, the wave is reflected back to the surface, where the drop in pressure prevents
it from leaving the star and the wave is reflected again. The observational signature that
can be measured are the frequency, amplitude, and phase of the pressure wave, which
provide valuable information about the stellar regions that the wave penetrated through.
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In solar-like oscillators, gravity (g) modes are mostly trapped in the deep stellar interior.
Their primary restoring force is buoyancy.

Deriving the properties of the oscillations from the linear and adiabatic stellar oscilla-
tion equations is a complicated task and oscillatory solutions can only be obtained for
the eigenfrequencies of the star (Sec. 1.2.1). To mitigate this difficulty, it is possible to
use some approximations. One of the basic assumptions is to neglect the perturbation
to the gravitational potential by using the Cowling approximation (Cowling 1941). This
principle holds for modes of high radial order and is applicable to many stars that show
oscillations, among which are the red-giant stars and the Sun. After reducing the adia-
batic stellar oscillation equations to a second-order system, three characteristic frequen-
cies can be derived that are important for describing the behaviour of the oscillations (e.g.
Hekker and Christensen-Dalsgaard 2017, Basu and Chaplin 2017). The Lamb frequency
is a characteristic frequency for pressure (acoustic) waves, the Brunt-Väisälä frequency
represents a characteristic frequency of internal gravity waves, and the acoustic cut-off

frequency marks the frequency below which waves are reflected. These frequencies de-
termine regions, so-called cavities, inside the star where p and g modes propagate. The
boundaries of the trapping regions are called turning points. G modes have their turning
point below the base of the convection zone, which is defined by the location where the
Brunt-Vaisälä frequency matches the frequency of a g mode. The Lamb frequency identi-
fies the lower turning point for a p mode, while the acoustic cut-off frequency is the upper
turning point beyond which a p mode is damped. As the star evolves, the locations of
the p- and g-mode cavities change and the frequencies of the modes can overlap. When
a g-mode frequency gets close to a non-radial p-mode frequency with the same spheri-
cal degree, coupling takes place and mixed p-g modes can appear. Due to their mixed
character, they behave like p modes in the stellar envelope and like g modes in the deep
interior of the star. The observed oscillation spectrum is different for a main-sequence and
a more evolved red-giant star, which can show many mixed p-g modes. Due to their very
low amplitudes, mixed modes are mainly observed for ` = 1 modes. For these modes the
coupling between the cavities is strongest and the modes are better resolved.

1.3 Accurate stellar parameters of red-giant stars
The focus of this thesis is the determination of stellar parameters of oscillating red-giant
stars, which can be determined from measurements of their observed asteroseismic sig-
nals. The target stars were monitored by the Kepler space mission (Sec. 1.3.3) and they
belong to eclipsing binary systems or open clusters. Stars in these associations benefit
from the fact that their stellar parameters can also be determined independently of astero-
seismology, either from the eclipsing binary analysis or from isochrone fitting to clusters
(Sec. 1.3.9). They are perfect candidates for testing the accuracy and reliability of astero-
seismic methods, and for validating asteroseismically derived stellar parameters.

1.3.1 Motivation
The Sun is the only star for which the stellar properties are known to high accuracy and
precision due to the fact that the solar surface can be resolved. The situation is different
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for stars that are located at far distances and, which can only be observed as point sources.
Obtaining reliable estimates of their stellar parameters requires different measures and the
results typically have larger uncertainties. A good example is the age of the Sun, which
can be determined to better than 1 %, while ages for field stars can only be derived with
an accuracy of up to 30 − 40 % (e.g. Soderblom 2010).

One way to improve the accuracy of stellar parameter measurements is to use stars that
are associated in binary systems and/or stellar clusters. The basic assumption that stars
are formed at approximately the same time and from the same molecular cloud puts useful
constraints on the stars’ age, chemical composition, and distance. This thesis focuses on
oscillating red-giant stars in these associations. Their stellar parameters can be computed
based on the analysis of the observed asteroseismic signal. Complementary to astero-
seismology, the binary nature can be used to derive stellar masses and radii in a model-
independent way by using Kepler’s laws, if radial velocity measurements are available,
and if the system is eclipsing. For an ensemble of stars in a cluster sufficient constraints
are available to find a matching cluster isochrone, which provides the cluster’s global
age and metallicity. If the same stellar parameters are determined from different methods,
they are expected to be consistent to a certain level and hence, they can be used to validate
asteroseismic results. Moreover, the impact of different choices of constraints on stellar
parameter determinations can be investigated as well as the accuracy, with which the ini-
tial input parameters need to be known. One of the essential requirements for studying
stellar parameters of a sample of stars are homogeneously determined quantities in order
to avoid systematics and biases in the results. With a dedicated approach the reliability
of asteroseismic methods can be tested, which is very important for the future analysis
of asteroseismic data that will become available for an unprecedented number of stars
thanks to the K2, TESS and PLATO missions (Sec. 5.1). In the wider context, accurate
stellar parameters play a role for the study of extrasolar planetary systems, because their
understanding depends on accurate descriptions of their host stars. Additionally, detailed
characterizations of the properties of stellar populations add to the current knowledge of
the Milky Way.

1.3.2 From helio- to asteroseismology

Solar-like oscillations were first detected for the Sun in the early 1960s and were con-
firmed as global oscillations in the late 1970s, when the Sun was first observed as a star.
Dedicated ground-based multi-site campaigns and long-term space-based observations
followed this discovery, which revolutionized the field of helioseismology. The left panel
of Figure 1.7 shows a smoothed version of the Fourier power density spectrum of the
Sun, which was computed based on a 4-year long photometric time series with one data
point taken every minute. The data were provided by the VIRGO experiment (Variability
of solar IRradiance and Gravity Oscillations) on board SOHO (Solar and Heliospheric
Observatory) by using three Sun photometers (e.g. Fröhlich et al. 1995, 1997, Jiménez
et al. 2002). The right panel of Figure 1.7 shows the frequency range of the observed
oscillations for the Sun. Many individual frequencies of oscillation modes with different
spherical degrees and radial orders were detected in ‘Sun-as-a-star’ data.

The first indications of low-amplitude solar-like oscillations in stars other than the Sun
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Figure 1.7: Left: Fourier power density spectrum (smoothed with 50 µHz) of the Sun
based on 4 years of SOHO Virgo SPM observations. The main components of the spec-
trum are granulation, oscillations, and instrumental noise. Right: Background-normalized
spectrum (Sec. 1.3.5) centred on the oscillation modes. The inset shows a small excerpt
with different spherical degrees ` indicated by numbers.

were based on radial velocity and photometric studies from the ground in the early 1990s
for a few bright main-sequence and subgiant stars. Extensive observing efforts were nec-
essary to detect their small brightness variations, since ground-based observations suffer
from bad weather conditions, turbulent seeing, and incomplete datasets due to the day-
night rhythm, which introduces large gaps in the time series data. Arcturus (Smith et al.
1987) and Procyon (Brown et al. 1991) were among the first stars, where the typical
power excess due to solar-like oscillations were detected based on spectroscopic one-site
campaigns. Using ground-based datasets for the detection of many individual frequencies
of oscillation modes was challenging and due to extensive observing efforts (e.g. ob-
servations over many months, multi-site campaigns) not practicable for a large number of
solar-like oscillators (e.g. Bedding and Kjeldsen 2008). This difficulty could be overcome
with observations from space.

While earlier photometric space surveys, such as the Wide Field Infrared Explorer (WIRE;
e.g. Buzasi et al. 2000), the Hubble Space Telescope (HST; e.g. Edmonds and Gilliland
1996) and the Microvariability and Oscillations of STars (MOST; e.g. Matthews et al.
2000) detected solar-like oscillations in single stars, the breakthrough for red-giant as-
teroseismology could be achieved by the Convection, Rotation and planetary Transits
(CoRoT; e.g. Baglin et al. 2006) and Kepler (e.g. Borucki et al. 2008) missions. The
nearly continuous long-term high-precision photometric observations from CoRoT and
Kepler provided the accuracy necessary for asteroseismic studies with unambiguous de-
tections of frequencies in an unprecedented number of stars. The analysis of these data
have shown the potential of asteroseismic methods to characterize the interior proper-
ties of many main-sequence, subgiant and red-giant stars. An overview of the ground-
breaking results for solar-like oscillators can be found in Chaplin and Miglio (2013),
Hekker (2013), Hekker and Christensen-Dalsgaard (2017), Basu and Chaplin (2017), and
references therein.
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1.3.3 The Kepler space mission
The photometric time series of data used in this thesis were obtained by the Kepler space
mission (e.g. Koch et al. 2010), which was launched on May 13, 2009. The mission
was dedicated to search for transits of extrasolar planets, in particular terrestrial planets,
around Sun-like stars. From 2009 to 2013, Kepler monitored more than 190 000 stars in
a 115 deg2 field in the constellations of Cygnus and Lyra. With about 30 min and 1 min
cadences for the brightness measurements, the datasets were of great interest for aster-
oseismic studies (e.g. Blomme et al. 2010). The data were collected during operational
quarters Q0 to Q17. After the commissioning quarter Q0 (∼ 10 days) and the start of the
science program in Q1 (∼ 1 month), all the consecutive quarters lasted for an average of
about 3 months each. In addition to advances in the field of asteroseismology, Kepler has
discovered thousands of transiting exoplanets by the end of its mission. More than 100 of
them are located in the habitable zone with many more exoplanet candidates identified,
which require further investigations (e.g. Batalha 2014, Mullally et al. 2015, Kane et al.
2016).

1.3.4 Stellar intensity observations
Time series observations can be used to detect variations of the stellar signal, e.g. bright-
ness, or radial velocity, over time. Most of the data used in this thesis are stellar inten-
sity observations, which form the basis of asteroseismic studies of oscillating red-giant
stars. The top panel of Figure 1.8 shows the Kepler photometric time series data for
KIC 8410637. This light curve consists of more than 66 000 data points that were ob-
tained during 4 years of observations with one measurement taken every ∼ 29.4 min
(long-cadence mode). Important parameters of the time series are the total time span
(T = N × δt) of the observations and the cadence (δt) of the data. The latter is a measure
of the typical sampling time of the total number of flux measurements (N).

Most asteroseismic diagnostics are determined from the Fourier transform of the pho-
tometric time series, which converts the data from the time-domain into the frequency-
domain. Due to discrete-time datasets with real values, a single-side calibration of the
discrete Fourier transform can be adopted, where the positive-frequency transform yields
all the power from the time-domain. Parseval’s theorem is commonly applied to calibrate
the power in the discrete Fourier transform in order for the total power in the transform
to be equal to the mean-squared power of the flux data in the time-domain. The power
can be calculated per frequency unit, which provides a Fourier power density spectrum
(PDS). The computed PDS in the bottom panel of Figure 1.8 shows the behaviour, fre-
quency range and amplitudes of the solar-like oscillations of a red-giant star. In Fourier
space, the observational time span and the sampling of the time series data are related to
the frequency resolution (δν = 1/T ) and the Nyquist frequency (νnyq = 1/(2 δt)), which
is the highest frequency that can be resolved in the transform. For Kepler long-cadence
observations νnyq is about 283 µHz.

An important aspect of time series analysis is the window function, which shows the effect
of gaps in the observations by providing the times when data were stored. Gaps create
significant artefacts, i.e. alias peaks, in the frequency-domain that hamper the analysis
of the oscillations. In contrast to ground-based single-site campaigns, observations from
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Figure 1.8: Top: The Kepler light curve for the red-giant star KIC 8410637. Bottom:
Computed Fourier power density spectrum (in black) derived from 4 years of Kepler long-
cadence observations. The global fit (eq. 1.9) to the power density spectrum is shown in
red. Blue dashed lines represent the granulation background components (eq. 1.10), the
violet dashed line shows the white noise component, and the orange dotted line is the
Gaussian fit to the power excess (eq. 1.11).

space are usually not prone to many gaps. The former are in particular affected by diurnal
gaps causing additional peaks (and sidelobes) that surround the true signal frequencies.
Their regular occurrence leads to one-day aliasing effects in the Fourier spectrum. Due to
the stochastic nature of solar-like oscillations where the phase information is lost, large
gaps can be removed by stitching the datasets together, which provides a cleaner PDS
(Hekker et al. 2010a).

The intrinsic stellar signal is also influenced by the integration time of the photon mea-
surements from the star. This causes apodization η with the largest effect on the power of
frequencies close to the Nyquist frequency (e.g. Kallinger et al. 2014):

η = sinc
(
π

2
ν

νnyq

)
with sinc =

sin x
x

. (1.8)

More information about the fundamentals of observational light curve data, their statistics
and the analysis of the data in the frequency-domain are provided in Chapters 4 and 5 by
Basu and Chaplin (2017).

1.3.5 Characteristics of the red-giant power density spectrum
In the PDS of a red-giant star, the oscillations are superimposed on a global background
signal that comprises a number of other stellar intrinsic features, as well as photon-
counting (‘white’) noise, and instrumental effects (Figs. 1.7 and 1.8). The low-frequency
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regime in the PDS is dominated by signatures of the visible surface patterns of convection,
i.e. granulation, magnetic activity, spots and flares, and instrumental noise (e.g. telescope
drifts and jitter). White noise is predominant in the high-frequency regime. Other har-
monic signatures that can be detected in the PDS are the signals of stellar rotation, binary
companions, or exoplanets. Their contributions are usually removed with filters before
asteroseismic analyses are performed.

The PDS of an oscillating red-giant star shows contributions from the following compo-
nents:

PPDS(ν) = nw + η2
[
Pgran(ν) + Pgauss(ν)

]
. (1.9)

Here, nw describes the white noise that is used to model the photon-shot noise. This
parameter can be estimated from the apparent magnitude of the target star and the perfor-
mance of the instrument. The global granulation background is represented by Pgran(ν).
The third contribution are the oscillations, which are embedded in a power envelope
Pgauss(ν). The stellar granulation and oscillation signals are both influenced by the apodiza-
tion defined in equation 1.8.

Global granulation background: The number of granulation components for describ-
ing the global background over the range of observed frequencies (ν) depends on the
presence of features such as activity, (meso-) and (super-)granulation, or faculae. Usu-
ally, one to three components are used, which can have different functional forms. The
formulations are all based on the ‘classical Harvey model’ that was introduced for fitting
the solar background signal (Harvey 1985). Kallinger et al. (2014) have shown that for
most red-giant stars, observed with Kepler, a two-granulation component fit is suitable
for studying the global properties of the oscillations that is given by:

Pgran(ν) =

2∑
i=1

Ai

1 + (ν/bi)ci
. (1.10)

Each granulation background component is characterized by an amplitude Ai and charac-
teristic frequency bi. This frequency is further related to the characteristic timescale (τi)
of granulation with bi = (2πτ)−1, which depends on the properties of the outer layers of
the star. The exponent ci describes the decay of the power with increasing frequency for
the granulation component. While Harvey (1985) originally adopted a value of two for the
slope of the decay, it was found that a value of 4 is more appropriate for fitting red-giant
stars (e.g. Kallinger et al. 2014). In the bottom panel of Figure 1.8, a two-granulation
component fit to the PDS of a red-giant star is shown.

1.3.6 Global asteroseismic diagnostics from the oscillation spectrum
The most distinct feature in the PDS of a red-giant star is the power excess due to solar-
like oscillations. The bottom panel of Figure 1.8 shows excess power at about 45 µHz
for KIC 8410637. From the PDS it is possible to derive a number of global oscillation
parameters that provide information about the physical properties of red giants.
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Figure 1.9: Background-normalized power density spectrum over the range of observed
frequencies for KIC 8410637. The large and small frequency separations are indicated
with arrows and for some peaks the spherical degree is shown with numbers 0, 1, 2, or 3.

The frequency of maximum oscillation power: Solar-like oscillations observed in red-
giant stars are acoustic modes of low-spherical degree (`) and radial overtones n > `. The
oscillation modes form a power envelope that has a Gaussian-like shape. The specific
frequency of the oscillations at the centre of the power excess is the frequency of maxi-
mum oscillation power νmax. This global oscillation parameter can be determined from a
Gaussian fit to the power excess:

Pgauss(ν) = Λg exp
(
−(ν − νmax)2

2σ2
g

)
, (1.11)

where Λg and σg represent the height and the width (i.e. standard deviation) of the Gaus-
sian function. When red giants evolve, νmax shifts to lower frequencies and the observed
power excess becomes narrower (e.g. Stello et al. 2010).

P-mode frequency pattern: Figure 1.9 provides a closer look at the oscillation modes.
The significant peaks form a near-regular pattern of frequencies in the PDS, which re-
veals the structure of the radial (` = 0) and non-radial (` = 1, 2, 3) modes. In evolved
stars, non-radial modes have a mixed character. Their diagnostic potential is larger, be-
cause they are not restricted to the stellar envelope as is the case for pure p non-radial
modes. Observationally, the pattern of p-mode frequencies is defined by the asymptotic
approximation (e.g. Tassoul 1980, Mosser et al. 2011):

νn,` ' ∆ν

(
n +

`

2
+ ε

)
− δν0,`, (1.12)

where νn,` is the frequency of an oscillation mode with radial order n and spherical de-
gree `. The parameter ∆ν represents the mean large frequency separation and ε is the
frequency-dependent phase term, i.e. the offset of the radial ` = 0 modes. Here, δν0,`

denotes the small frequency separations of non-radial modes relative to radial modes. An
observable feature is that red giants with low-radial (n ∼ `) order modes show a triplet
structure of ` = 1, 2, 0 modes (top panel in Fig. 1.12) instead of the ` = 0, 2 duplet
with ` = 1 modes at half ∆ν-spacing between consecutive radial modes (second panel in
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Fig. 1.12). The asymptotic approximation (eq. 1.12) is useful for identifying the spherical
degree and for estimating the radial order of the mode.

The global mean large frequency separation: The global oscillation parameter ∆νn,` is
the difference between frequencies of consecutive radial orders (n) and the same spherical
degree (`), as shown in Figure 1.9:

∆νn,` = νn+1,` − νn,`. (1.13)

Both global asteroseismic parameters (νmax and ∆ν) are related according to ∆ν ∼ ν
exp
max

(e.g. Hekker et al. 2009, Stello et al. 2009, Mosser et al. 2010) with the exponent (exp)
depending on mass and to a lesser extent on metallicity (Hekker et al. 2011a). Different
methods can be employed to determine the global mean large frequency separation, for
example the power spectrum of the power spectrum (e.g. Hekker et al. 2010b), the au-
tocorrelation of the time series (e.g. Mosser and Appourchaux 2009), or the frequency
differences between radial modes with consecutive orders, i.e. ‘peakbagging analysis’
(e.g. Kallinger et al. 2010).

The local large frequency separation: When the large frequency separation is derived
as a central value based on the three innermost ` = 0 modes around νmax, it can be used as
an indicator for the evolutionary stage of red-giant stars (Kallinger et al. 2012). For radial
modes, the asymptotic relation can be expressed as:

νc,0 = ∆νc(n + ε′c) with ε′c =
νc,0

∆νc
modulo 1, (1.14)

where εc = ε′c + 1 if ε′c < 0.5 and ∆ν > 3 µHz, otherwise εc = ε′c. The local large frequency
separation ∆νc together with the local phase term εc provides a means to differentiate
between hydrogen-shell burning stars on the red-giant branch and more evolved core-
helium burning stars. Figure 1.10 shows that red-giant-branch stars have a larger value
of εc than more evolved red clump, secondary clump, and asymptotic giant branch stars
with ∆νc of the same value. One of the drawbacks of this method is the lack of a clear
separation between stars of different evolutionary stages.

The mean small frequency separations: In addition to the large frequency separation,
there are three characteristic small frequency separations between ` = 0 and 2 modes
(δν02), between ` = 0 and 1 modes (δν01), and between ` = 0 and 3 modes (δν03), which
are shown in Figure 1.9. They can be defined according to:

δν02(n) = νn,0 − νn−1,2, (1.15)

δν01(n) =
1
2

(νn,0 + νn+1,0) − νn,1, (1.16)

δν03(n) =
1
2

(
νn,0 + νn+1,0

)
− νn,3. (1.17)
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Figure 1.10: The central values for the phase term (εc) as a function of the central values
for the mean large frequency separation (∆νc) for about 6600 red-giant stars observed
with Kepler. The colours represent stars with different evolutionary stages. Data courtesy
of Dr. Thomas Kallinger.

For main-sequence stars, the small frequency separations are a diagnostic for age, because
they are related to the gradient of the sound speed in the stellar interior (Christensen-
Dalsgaard 1984, Ulrich 1986), which is sensitive to the chemical composition and hence
to the evolutionary stage of the star. As structural changes occur when the star evolves,
the small separations cannot be used as an age diagnostic for red-giant stars, because they
are no longer sensitive to the density gradient due to their compact cores and expanded
envelopes. The mean small frequency separations are usually derived from the individual
frequencies of the observed oscillation modes.

Period spacing: Similar to the asymptotic relation for p modes, g modes are equally
spaced in period and follow an asymptotic approximation in period. The periods of the g
modes (Πn,`) of a given spherical degree ` and radial order n satisfy the following asymp-
totic approximation in the period PDS:

Πn,` = ∆Π`(n + εg +
1
2

) with ∆Π` =
Π0

√
`(` + 1)

. (1.18)

Here, ∆Π` is the asymptotic period spacing and εg is the phase term for g modes. Pure g
modes are not observable in red-giant stars. Instead, ` = 1 modes with a mixed p and g
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Figure 1.11: Échelle diagrams for three red-giant stars. Left: For KIC 5112744 three
ridges of spherical degree ` = 1, 2, and 0 (from left to right) are visible. Middle:
KIC 5111949 is a clump star, which shows many mixed modes. Right: KIC 2436688
shows three distinct ridges of ` = 2, 0, and 1 modes (from left to right).

character can be detected and analyzed (Sec. 1.2.4). Common methods for determining
the period spacing include period échelle diagrams (e.g. Bedding et al. 2011, Mosser
et al. 2012b, Datta et al. 2015, Hekker et al. 2018), inertia ratio of dipole and radial modes
(Benomar et al. 2014), and analysis of stretched period power density spectrum (e.g.
Mosser et al. 2015, Vrard et al. 2016). Since the observed period spacing is measured
based on mixed modes (not on pure g modes), its value is different from the asymptotic
period spacing. Mixed modes have a strong diagnostic power for the central regions of
the star. Therefore, the (observed) period spacing can be used to differentiate between
different evolutionary stages of red-giant stars (e.g. Bedding et al. 2011, Mosser et al.
2012b, 2014).

Peakbagging: Due to the high quality of space data, it is possible to extract a set of in-
dividual frequencies of oscillation modes for a large number of observed red-giant stars.
This procedure is called ‘peakbagging analysis’. The region around νmax in the PDS con-
tains many peaks. At the side of νmax towards higher frequencies, the peaks are broadened
due to short mode lifetimes. Towards lower frequencies the peaks are more narrow due to
increased damping rates (e.g. Basu and Chaplin 2017).

The significant peaks in the PDS can be described with a set of Lorentzian functions of
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Figure 1.12: Background-normalized power density spectra (in black) showing the fre-
quency range of the oscillations for four red-giant stars with KIC numbers indicated in
each panel. The red solid lines represent the peakbagging fits. Although νmax values are
similar for KIC 5112744 and KIC 5111949, they show different mixed-mode patterns, be-
cause they are in different evolutionary stages. For KIC 5111949 many mixed modes are
present, which is typical for a red-clump star.

the form (e.g. Anderson et al. 1990, Corsaro et al. 2015a):

Ppeaks(ν) =
∑

j

Hj

1 + 4
(
ν−νj

Γj

)2 . (1.19)

Each Lorentzian function j is defined by a mode frequency νj, mode height Hj and mode
linewidth Γj. While the height relates to the amplitude of the mode with Aj =

√
πHjΓj/2,

the width is related to the mode lifetime τj according to Γj = (πτj)−1 (Chaplin et al. 2005).
If unresolved oscillation peaks are present in the PDS, they can be fitted with sinc func-
tions that are described by two parameters, i.e. a frequency and a height (or amplitude).

The extracted set of frequencies can be used to generate an échelle diagram (Grec et al.
1983), which shows segments of the Fourier spectrum of equal lengths ∆ν stacked on top
of each other (see Fig. 1.11). The observed oscillation modes form near-vertical ridges
in this diagram, which are representative of the spherical degrees. Individual frequencies
provide additional constraints to find best-fitting models for the observed star, which are
usually constrained by using the global oscillation parameters and some spectroscopic ob-
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servables. However, if frequencies are included in stellar modelling, one needs to account
for the so-called surface effect (Sec. 1.3.8).

1.3.7 Parameter estimation in the Fourier power density spectrum
For the interpretation of the asteroseismic signal it is important to obtain reliable esti-
mates of the parameters that describe the global granulation background (eq. 1.10), the
Gaussian fit to the power excess (eq. 1.11), and the Lorentzian functions for peakbagging
(eq. 1.19). Maximum likelihood estimation techniques are commonly used to fit a model
to the data. These fitting procedures require a likelihood function to define the proba-
bility of a dataset given the model parameters and they have to include the correct noise
statistics of the data. Boundaries are set for the model parameters by using some prior
distributions that are based on previous knowledge. In the case of a solar-like oscillating
star, the Fourier power density spectrum can be modelled by a mean spectrum profile
M(νk; θ) that is characterized by a number of free parameters θ, which is multiplied by
random noise that has a χ2 distribution with two degrees of freedom (e.g. Duvall and Har-
vey 1986, Appourchaux 2003). The relation between the mean spectrum profile and the
observed Fourier power density spectrum (Dk) at a frequency bin (k) can be expressed by
the following probability density (e.g. Handberg and Campante 2011):

f (Dk) =
1

M(νk; θ)
exp

(
−

Dk

M(νk; θ)

)
. (1.20)

Under the assumption of uncorrelated frequency bins, the joint probability density func-
tion for the data sample can be obtained from the product over the frequency interval
k:

L(θ) =
∏

k

f (Dk; θ). (1.21)

Estimates of the model parameters can be derived by maximizing the likelihood function
(e.g. Toutain and Appourchaux 1994):

L(θ) ≡ ln L(θ) = −
∑

k

{
lnM(νk; θ) +

Dk

M(νk; θ)

}
. (1.22)

Due to improved numerical stability, the log-likelihood is preferred for the computations.

Metropolis-Hastings Markov Chain Monte Carlo method: Markov Chain Monte
Carlo (MCMC) methods are commonly used for fitting Bayesian statistical models (e.g.
Metropolis et al. 1953, Hastings 1970, Robert 2015). The Metropolis-Hastings algorithm
is a sampling technique based on MCMC that performs a quasi random walk through a
predefined parameter space by using a probability density distribution. While at the be-
ginning the sampling area is large, with increasing number of iterations the size decreases
and the probability to reach the global minimum is enhanced. The idea behind this method
is to obtain the posterior probability density function for the model parameters, and to es-
timate their median values, and credible intervals.

The algorithm generates a sequence of random samples with stationary distributions that
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Figure 1.13: Posterior probability distributions (PPD) of the parameters Λg, νmax, and
σg computed by means of the MCMC algorithm. The vertical red solid lines represent
median values of the parameters of the Gaussian fit (eq. 1.11) to the oscillation power
excess of KIC 8410637. The vertical red dotted lines indicate the boundaries of the 68 %
credible intervals.

lie within the prior parameter space. At each iteration, a parameter is randomly changed
by a small value within an arbitrary range to ensure that the new parameter space is close
to the previous point. While at the beginning the amount of change can be large, it should
decrease when the search algorithm approaches the true value towards the end of the total
number of iterations. Based on the proposed value, the likelihood is re-evaluated. If a
higher likelihood is achieved, the new value is accepted and the so-called Markov chain
moves to this position in the parameter space. Otherwise, the proposed value is rejected
and the parameter remains the same in the next iteration. With each iteration the chain
is extended and after a sufficient number of samples are drawn, a random walk through
the prior parameter space is accomplished. To avoid local minima, the algorithm accepts
certain bad samples in proportion to the evaluated likelihood. In addition, multiple chains
are generated, which start at random places within the prior parameter space. In the end,
the chain with the best likelihood is chosen and used to build the posterior probability
density function containing all accepted values after an initial ‘burn-in’ phase. Due to the
burn-in period, the influence of random starting values of the chain is minimized, since a
certain fraction of earlier parameter samples is discarded. The posterior probability den-
sity function of the sample can be used to compute the best parameter set and its credible
intervals.

It is important to check the mixing and the convergence of the chains, because MCMC
algorithms stop after a number of iterations when a certain sample size is reached. The
MCMC sample can be examined graphically by means of trace plots, histograms and den-
sity plots.

The parameter estimations in Chapter 2 were carried out by using the Metropolis-Hastings
MCMC method. Figure 1.13 shows the posterior parameter distributions normalized by
the frequency of the counts (probability) of the Gaussian parameters for KIC 8410637,
which was one of the stars under study. The most likely parameter values are located in
the high-probability regions.
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1.3.8 Determination of asteroseismic stellar parameters
The stellar parameters of oscillating red-giant stars can be determined by using different
asteroseismic methods. The two global oscillation parameters (νmax and ∆ν) together with
spectroscopic effective temperatures and global metallicities are most frequently used as
input parameters for deriving asteroseismic mean densities and surface gravities. Based
on these fundamentals it is possible to infer stellar masses and radii, luminosities, and
ages.

Direct method through asteroseismic scaling relations: While the mean density (ρ̄)
can be computed based on ∆ν alone, νmax and effective temperature (Teff) are required for
the calculation of the surface gravity (log g) from the asteroseismic scaling relations.

The parameter νmax can be defined as the observed frequency where the oscillations reach
a maximum amplitude. This observable can be further related to the physical properties
in the near-surface layers of the star, where the acoustic cut-off frequency (νac) affects the
modes of oscillations. Since both frequencies could be linked empirically, and because
νac is proportional to g and T (Lamb 1932):

νac ∝ gT−1/2 and g ∝
M
R2 , (1.23)

νmax can be used to obtain g,M, and R, if Teff of the star is known (e.g. Brown et al. 1991,
Kjeldsen and Bedding 1995):

νmax = νmax�
M/M�

(R/R�)2

√
Teff,�

Teff

. (1.24)

A theoretical explanation for the νmax scaling relation does not exist. A first step towards
exploring equation 1.24 from the theoretical point of view is provided by Belkacem et al.
(2011).

The observed mean large frequency separation ∆ν is proportional to the inverse of the
sound-travel time in the star. The parameter is further related to the stellar mean density
ρ̄ according to:

∆ν '

(
2
∫ R

0

1
c

dr
)−1

∝
√
ρ̄, (1.25)

where c is the sound speed and r is the distance to the stellar centre, and thus (Ulrich
1986):

∆ν = ∆ν�

√
M/M�

(R/R�)3 . (1.26)

The asteroseismic scaling relations are only approximations. By assuming an uncertainty
of ∼ 2.5 % for ∆ν, of ∼ 5 % for νmax and of ∼ 1.5 % for Teff , one obtains an uncertainty
of ∼ 20 and ∼ 10 % in stellar mass and radius, when derived from equations 1.24 and
1.26 (Basu and Chaplin 2017). In addition, the νmax and ∆ν scaling relations have to be
scaled. Usually, the Sun is adopted as a reference and so inherently it is assumed that the
structure of the interior of stars is the same. This assumption does not hold, since both
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theoretical predictions and observations show that many structural changes occur during
the evolution of a star. Therefore, many studies proposed modifications to the original
asteroseismic scaling relations or suitable reference values in order to improve the astero-
seismic stellar parameter estimates for stars with different masses, metallicites, tempera-
tures, and evolutionary stages from the main sequence to the red-giant branch (e.g. White
et al. 2011, Miglio et al. 2012, Mosser et al. 2013, Hekker et al. 2013b, Guggenberger
et al. 2016, Sharma et al. 2016, Rodrigues et al. 2017, Viani et al. 2017, Guggenberger
et al. 2017, Themeßl et al. 2018). Chapter 2 presents a dedicated study of three red-giant
stars in eclipsing binary systems, where a new reference value for the ∆ν scaling rela-
tion (eq. 1.26) was found, which takes the mass, effective temperature, and metallicity
dependence of the stars, as well as the surface effect into account.

Grid-based modelling: A set of asteroseismic stellar parameters can be derived by us-
ing a pre-computed grid of stellar models (e.g. Gai et al. 2011). An advantage of this
method is that additional knowledge about the structure and evolution of stars can be in-
cluded. In order to search for matching stellar models a set of observables is used. The
different choices of input parameters include the global oscillation parameters, effective
temperatures, global metallicities, period spacings, luminosities, and parallaxes. Usually,
the asteroseismic scaling relations are used to calculate ∆ν and νmax for stellar models,
although the mean large frequency separation can also be derived from calculations of
computed frequencies. An advantage of grid-based modelling is that stellar ages are pro-
vided, which is not possible by using the asteroseismic scaling relations. Chapter 3 of this
thesis discusses the importance of metallicity for asteroseismic stellar parameter determi-
nations based on grid-based modelling.

One of the issues of this method is that a stellar model can be obtained, which satisfies the
global properties of the star, yet it can have a different age and internal structure. There-
fore, it would be useful to also add the knowledge from individual oscillation frequencies
in the stellar modelling approach. Due to high-precision photometric data from space
missions, many individual mode frequencies can be measured for solar-like oscillators.
In order to use the information provided by the frequencies, it is important to relate the
observed frequencies to those calculated from stellar models. In this regard, the ‘surface
effect’ plays an important role. This effect is caused by improper modelling of the convec-
tive near-surface layers of the star. Convective regions in stars are usually approximated
by mixing-length theory in stellar models, although the whole process of convection and
turbulence is much more complex. As a result, the surface effect causes a systematic shift
between modelled and observed frequencies that gets larger with increasing frequency.
In addition, p modes of all spherical degrees are affected, which is an indication that this
effect is connected to the stellar surface (Ball 2017). Several groups suggested paramet-
ric forms for a function to describe the surface effect of mode frequencies in other stars,
e.g. a power law (correction) with an index fixed to a solar-calibrated value (Kjeldsen
et al. 2008); direct scaling of the solar offset on a suitable frequency scale (Christensen-
Dalsgaard 2012); corrections that are based on mode inertia with a cubic and combined
term (Ball and Gizon 2014, Ball et al. 2016, Ball and Gizon 2017, Ball et al. 2018), and a
modified Lorentzian (Sonoi et al. 2015).
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Figure 1.14: Left: Illustration of two stars with masses (MA,MB) and relative velocities
(3A, 3B) moving on circular orbits around a common centre of mass (CM) of the system.
Parameters aA and aB represent semi-major axes. Right: Observable is the velocity along
the line of sight of the star, which can be defined as: 3r,A = 3A sin i, since the binary system
is observed at an angle i with respect to the observer.

1.3.9 Stellar parameters from ‘classical’ methods
In order to further validate and improve asteroseismic results one can use additional
knowledge about the properties of stars under study, when available. For stars in binary
systems or open clusters we do have additional knowledge as these stars are assumed to
be born at about the same time, from material with the same initial chemical composition,
and they are located at about the same distance. These additional constrains can be used
to derive stellar parameters with higher accuracy. Hence, binary and cluster stars provide
a robust benchmark for testing the asteroseismic stellar parameters and for improving age
estimates.

Basic principles of eclipsing binary analysis: Observational studies show that most
(nearby) stars are formed in binary (≥ 50 %) or multiple systems (e.g. Batten 1973, Shu
et al. 1987, White and Ghez 2001, Kirk et al. 2016). The study of binaries is very valuable
for astrophysics, since the masses in a binary system can be determined both, accurate
and precise, by using Kepler’s laws. This is not the case for isolated field stars, where the
stellar parameters can only be determined with larger uncertainties. The different types
of binary stars can be classified according to their appearance on the sky, i.e. optical,
visual, astrometric, and spectroscopic binaries, as well as according to the orientation of
their orbits with respect to the line of sight, i.e. eclipsing binaries, and according to the
level of their physical interaction, i.e. detached, semi-detached and contact systems. In
addition, there are also optical (apparent) doubles, which are not gravitationally bound
and only appear as companion stars due to projection effects when they lie along the same
line of sight. Of particular interest are double-lined eclipsing binary systems (EBs). They
have orbital planes lying near the line of sight to the observer (≈ 90◦) and their spectrum is
composed of spectral lines from both binary components. In these systems, the dynamical
masses and radii of each individual component can be derived from the combined analysis
of radial velocity data (spectroscopy) and light curves (photometry).

The basic concept of binary analysis is build on Kepler’s 3rd law, which states that the
squares of orbital periods are proportional to the cubes of the semi-major axis. As a
basis, one can consider an isolated binary system that comprises two stars with similar
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masses MA and MB that move on circular orbits around a common centre of mass. The
movements of the binary components are influenced by their mutual gravitational forces
without any further interactions taking place between them. This constitutes a classical
two-body problem, which can be solved in the reference frame of the centre of mass. From
the definition of the centre of mass, the ratio of the stellar masses satisfies the condition:

MA

MB
=

aB

aA
, (1.27)

where aA and aB are the orbital radii (see left panel in Fig. 1.14). After applying Newton’s
laws of motion and Newton’s law of gravity we can express Kepler’s 3rd law for circular
orbits as:

MA + MB =
4π2

G
a3

P2
orb

, (1.28)

where G is the gravitational constant, Porb is the orbital period, and a is the semi-major
axis of the binary orbit, i.e. the total separation between the stars with a = aA + aB. As an
additional note, equation 1.28 is also valid for elliptical orbits, which will not be described
in further detail here. From equation 1.28 follows, that the sum and ratio of masses can
be calculated, if the period and semi-major axis of the binary system are known. Since it
is particularly difficult to obtain a for distant binary systems, one can derive the velocities
of the stars instead in order to substitute a in Kepler’s 3rd law. Based on the assumption
that the orbits are circular, the relative velocities of the two binary components (3A, 3B)
can be expressed as:

3A =
2πaA

Porb
and 3B =

2πaB

Porb
. (1.29)

These velocities remain constant around the orbit. From this follows:

a = aA + aB =
Porb

2π
(3A + 3B) , (1.30)

which substituted into Kepler’s 3rd law provides the relation between the sum of masses
and the relative velocities of the stars:

MA + MB =
Porb

2πG
(3A + 3B)3. (1.31)

However, due to projection effects only the component of velocity along the line of sight,
i.e. the radial velocity (RV), can be observed (see right panel in Fig. 1.14). In practise, RV
variations of stars can be measured from spectral lines. The lines in a spectrum are shifted
due to the Doppler effect, which describes the relative motion of a star with respect to the
observer. For 3r << c, the Doppler shift is given by:

λobs − λrest

λrest
=

∆λ

λ
=
3r

c
, (1.32)

where λobs is the observed wavelength, λrest is the wavelength one would obtain if the
star was at rest, 3r is the radial velocity component along the line of sight, and c is the
speed of light. A positive value of 3r indicates that the star is receding from the observer.
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Then, the lines are shifted towards redder wavelength (redshift). A negative value of 3r
shows that the object is moving towards the observer and the lines are shifted to bluer
wavelength (blueshift). When all phases of the binary orbit are well sampled with RVs,
it is possible to describe the orientation of the binary system with a number of orbital
elements. To determine these variables, the RVs are plotted as a function of time and/or
phase. Then, by fitting the RVs to the shape of the velocity curve, one obtains the orbital
period, eccentricity, and semi-major axis together with additional parameters that define
the binary orbit and its orientation on the sky. The observed radial velocities (3r,A, 3r,B) are
related to the true relative velocities according to:

3r,A = 3A sin i, (1.33)
3r,B = 3B sin i, (1.34)

where i represents the inclination angle of the orbital plane of the system with respect
to the observer. Thus, 3r,A and 3r,B represent the lower limits to 3A and 3B. By including
this, the relation between the ratio of the masses and the observed radial velocities can be
expressed as:

MA

MB
=

aB

aA
=
3B

3A
=
3r,B

3r,A
, (1.35)

and by substituting the true relative velocities in Kepler’s 3rd law, one obtains:

MA + MB =
Porb

2πG
(3r,A + 3r,B)3

sin3 i
. (1.36)

While the mass ratio can be derived independently of the inclination of the orbit of the
binary system, the knowledge of i is necessary for deriving the sum of masses. If i re-
mains unknown, stellar masses have a sin i ambiguity and only the minimum masses
(MA sin3 i,MB sin3 i) and the minimum orbital separation (a sin i) can be obtained. In case
of EBs, the orbital inclination i can be computed from the light curve data, and thus dy-
namical stellar masses can be determined for each component in the system.

Another parameter of interest is the stellar radius, which for components in eclipsing bi-
naries can be derived from the analysis of the light curve, which shows the brightness
variations of a star over time. A distinct feature of the light curve of EBs are the dis-
tinct dips in brightness, when the components periodically eclipse one another. These
eclipses can only be observed, when the inclination angle of the systems is close to 90◦.
Their shape depends on the types of stars that are involved and in particular on their lu-
minosities, radii, and effective temperatures, as well as the inclination of the binary orbit.
Figure 1.15 shows part of the Kepler light curve of KIC 8410637, which is an eclipsing
binary system that consists of an oscillating red-giant component and a main-sequence
companion star. The deeper eclipse occurs, when the main-sequence star passes behind
the red giant, while the eclipse is shallower when part of the red-giant surface is obscured
by the main-sequence star. By fitting a geometrical model to the light curve, it is possible
to determine the orbital period of the system from the eclipse period, which defines the
radius of the binary orbit. One of the challenges of fitting light curve data is that the sur-
face brightness of the visible disc of a distant star decreases towards the edge. This effect
is known as limb darkening and has to be accounted for in the model. Moreover, the depth
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Figure 1.15: Part of the Kepler light curve of the eclipsing binary system KIC 8410637.
Two primary and two secondary eclipses are shown. Letters a.) - d.) indicate approximate
positions of the binary stars with respect to each other during one orbit, which is shown
in the graphic above.

of the eclipse minimum is related to the effective temperature of the eclipsed star. Hence,
the ratio of the effective temperatures of the binary stars can be derived. Furthermore,
from the timing and the duration of eclipses, one can measure the radii of both binary
components. The radius of the smaller star (RA) can be calculated from the time duration
from first contact (ta) to minimum light (tb) of the eclipse (see right panel in Fig. 1.16):

3 =
2RA

tb − ta
⇒ RA =

3

2
(tb − ta), (1.37)

where 3 = 3A + 3B is the relative velocity of the two stars. Similarly, the time duration
from first contact (ta) to first exposure (tc) of the eclipse provides the radius of the larger
star (RB):

3 =
2RB

tc − ta
⇒ RB =

3

2
(tc − ta) = RA +

3

2
(tc − tb). (1.38)

If RVs are available, individual stellar radii can be derived for each component of an
eclipsing binary system. Without RVs, only the ratio of the radii can be computed.

The light curves and RVs of a binary system can be modelled together by using dedicated
analysis codes such as jktebop (Southworth 2013, and references therein). This algorithm
provides the physical properties of the eclipsing binary system including the dynamical
stellar parameters (e.g. masses, radii, logarithmic surface gravities, mean densities) of its
components.

Basic principles of isochrone fitting to star clusters: Star clusters are important stel-
lar laboratories for astrophysical studies due to the wide range of masses, luminosities,
effective temperatures, and different evolutionary stages that are found in a cluster. Clus-
ter stars are born from the same molecular cloud at approximately the same time. Thus,
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Figure 1.16: Illustration of the determination of individual radii for components of an
eclipsing binary system. Left: Radius determination of the smaller star. Middle: Radius
determination of the larger star. Right: Relation between radii and timing of eclipse. See
text for further details.

one expects a population of stars in a cluster with common properties. Their similar ages,
metallicities, and distances make cluster stars ideal test objects for investigating the for-
mation and evolution of stars, the dynamical interactions that take place between them, as
well as the formation of our own Galaxy, and its chemical and dynamical evolution.

There are two types of star clusters, i.e. globular and open clusters. Globular clusters
resemble tight spherical bundles that contain hundreds of thousands of usually old and
metal-poor stars. They are located around the centres of galaxies. Owing to their age,
the most massive cluster members have already exploded as supernova. Globular clusters
were formed during the early phases of the formation of the Galaxy, thus providing a
limit to the age of the universe, since the oldest clusters have to be younger than the uni-
verse itself. In contrast, open clusters have an irregular shape and they comprise a more
loosely-bound collection of stars. Generally, hundreds to a few thousands of generally
young and metal-rich stars are found in these clusters. Open clusters are mostly located
in the Galactic plane and they gradually fall apart. When non-cluster-members are pass-
ing through, they can disrupt the motion of the cluster stars, which causes members to be
ejected during this interaction.

A common way to estimate the age of a cluster is to use brightness and colour mea-
surements of individual cluster stars that can be plotted together in a colour-magnitude
diagram (CMD). Figure 1.17 shows the apparent magnitudes V versus colour index B−V
for observed stars in the region of NGC 6791, which is an old (∼ 8.5 Gyr) metal-rich
([M/H] ≈ +0.35 dex) open cluster that has been extensively studied over decades (e.g.
Stetson et al. 2003, 2005). In the CMD of the cluster, the main sequence is densely
populated by observed stars and a well defined turn-off is visible. This point in stellar
evolution, when stars evolve off the main sequence, is a commonly used indicator for the
age of the cluster. By comparing theoretical calculations of mono-age populations, i.e.
isochrones, to observed colour-magnitude measurements of cluster stars, it is possible to
derive the physical properties of a cluster. This technique is known as isochrone fitting
and it requires a suitable grid of models, which can describe the stellar properties of every
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star in the cluster population. Each isochrone is characterized by a fixed age and metal-
licity. Along the isochrone a set of stellar parameters such as mass, luminosity, effective
temperature, surface gravity, as well as magnitudes, are provided.

A source of systematic uncertainty in the isochrones is introduced by the conversion from
luminosities and temperatures to absolute magnitudes and colours in different photometric
systems. This step requires appropriate tabulations of bolometric corrections and colours,
which can be obtained from a convolution of spectral energy distributions from spectral
libraries with response functions of filters. A necessary input parameter is the total ex-
tinction. The interaction of starlight with dust grains along the line of sight prevents some
stellar photons from reaching the observer. This effect is called interstellar extinction and
reddening. Due to the absorption and scattering of blue light, distant stars appear dimmer
and redder in an optical filter. Interstellar reddening (EB−V) can be estimated from the
observed colour index B − V of a star by comparing it to its intrinsic value (B − V)0:

EB−V = (B − V) − (B − V)0. (1.39)

The total extinction, i.e. the sum of absorption and scattering of star light, is wavelength
dependent and can be derived from the colour excess:

EB−V =

(
AB

AV
− 1

)
AV = 0.324 AV ⇒ AV = 3.086 EB−V, (1.40)

where AB and AV are the total extinctions in the photometric bands B and V . The ratio
AB/AV represents the wavelength dependence of extinction based on the empirically de-
rived Milky Way extinction law with AB = 1.324 and AV = 1. Without correcting the
CMD for the effect of interstellar extinction, the age and distance estimates of the cluster
from isochrone fitting would be compromised.

Moreover, stellar isochrones provide absolute magnitudes, while apparent magnitudes are
observed for the cluster stars. Thus, one needs to apply a conversion before isochrone fit-
ting can be performed. Stellar magnitudes are defined on a logarithmic scale with larger
values representing fainter stars. The observed brightness of stars is given in apparent
magnitudes, i.e. the appearance of the brightness of the star at its distance from the ob-
server. Absolute magnitudes are a measure of the apparent magnitude of the star if viewed
at a distance of 10 pc from the observer. In order to convert between absolute (M) and
apparent (m) magnitudes, the distance modulus can be used:

m − M = 5 log
(

d
10

)
+ AV, (1.41)

where d is the distance in units of pc. This relation is in particular useful for determin-
ing the distance to a star in cases where both, the apparent and absolute, magnitudes are
known. From equation 1.41 follows, that one needs to know the distance to a cluster in
order to convert the magnitudes.

Once these issues are solved, isochrones can be fitted to the colour-magnitude data of
cluster stars. Commonly, the physical properties of clusters are derived from visual fitting
of the main sequence and the turn-off point, mostly because there is no parametric form
of the isochrones. Instead, each isochrone comprises tabulated points for a set of stellar
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Figure 1.17: Left: The observed colour-magnitude diagram (CMD), i.e. apparent V mag-
nitudes versus colour index B − V , of NGC 6791 (Stetson et al. 2003, 2005). Right: An
isochrone (in blue) is shown on top of the CMD of NGC 6791. Here, apparent magni-
tudes of the extinction-corrected isochrones were transformed into absolute magnitudes
by using the distance modulus.

parameters (luminosity, effective temperature, surface gravity) with a constant age and
metallicity. Using this traditional technique, one first adjusts the ZAMS to the observed
CMD of the cluster, which provides an estimate of the interstellar reddening. Then af-
ter fixing this parameter, the distance and age can be derived through adjustments of the
isochrones to the CMD. Since this approach is based on visual inspections, it is a subjec-
tive method that is prone to incorrect results. Frayn and Gilmore (2003) pointed out that
similar geometrical properties of isochrones lead to large discrepancies in the age and
metallicity estimates from isochrone fitting. Due to the age-metallicity degeneracy, an
isochrone with an increased metal abundance is very similar to an isochrone with a higher
age. Moreover, the distance-metallicity degeneracy can lead to an underestimate in the
true metallicity when stellar magnitudes are overestimated, while the true metallicity can
be overestimated in cases where distances are underestimated. These discrepancies can
be of the order of 20 %. In addition, the interstellar reddening causes the star to appear
dimmer, which can be reflected in a larger distance, while a shift to redder colours results
in an increased metallicity. Due to the similarities in the geometry of isochrones with
different ages and metallicities, it is better to use a proper statistical framework in order
to match isochrones with observed data and to evaluate the goodness of fit.
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Among the first statistical approaches that were introduced to perform isochrone fitting
was the deterministic ‘near point estimator’ method, which was described by e.g. Flan-
nery and Johnson (1982). Based on this approach, one uses a statistic to measure the
coincidence between isochrones and stars in a CMD through minimization of a χ2 statis-
tic. Moreover, with this method one assumes that stars are uniformly distributed along
the isochrone. The set of observed data (N) is defined as (xi,obs, yi,obs) with i = 1, ...,N,
where (x = B−V) and (y = V) are the coordinates in the observed CMD, while individual
isochrones consist of a set of coordinates (xmod, ymod) in the theoretical CMD. It is possible
to compute the minimum distance between each pair of (xi,obs, yi,obs) with each isochrone.
The nearest point of the isochrone is then given by:

(xi,mod, yi,mod) = min
(xmod,ymod)

{(xi,obs − xmod)2 + (yi,obs − ymod)2}. (1.42)

Then, the χ2 statistic of the observed data with respect to that isochrone can be calculated
according to:

χ2 =

N∑
i=1

 (yi,mod − yi,obs)2

σ2
i,y

+
(xi,mod − xi,obs)2

σ2
i,x

 , (1.43)

where σi,y and σi,x are the uncertainties of the observed colour-magnitude measurements.
The isochrone with the lowest χ2 value is considered to be close to the actual age and
metallicity of the cluster under study. Uncertainties in the estimated parameters can be
derived from the elements of the covariance matrix. The right panel of Figure 1.17 shows
an isochrone (in blue) placed on the CMD of NGC 6791, which was obtained through
isochrone fitting by using a similar formulation as the near point estimator method intro-
duced by Flannery and Johnson (1982).

Besides using the geometrical shapes of isochrones to find the age and metallicity of a
cluster, it can be useful to apply a more elaborate statistical basis that can be described
with a Bayesian formalism. A useful feature of Bayesian techniques is that individual
probabilities of membership can be assigned to different populations of stars in a clus-
ter. These methods are computationally intensive and it is not easy to include them in
the fitting and evaluation process of isochrones. Valls-Gabaud (2014) provides a recent
review on Bayesian isochrone fitting and discusses different statistical methods that are
commonly used, including some descriptions about the different treatments that can be
applied to single objects, binaries, and whole ensembles of stars.
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1.3.10 Scope of this thesis
My research is focused on asteroseismic studies of oscillating red-giant stars that are ei-
ther components of eclipsing binary systems or that are part of open clusters. In addition,
I may have found a rare candidate binary system that comprises two oscillating red-giant
components.

? In Chapter 2, I describe the analysis of three eclipsing binary systems that were ob-
served during the nominal Kepler space mission with supplementary spectroscopic
data available from ground-based observatories. In this study, I investigate consis-
tencies between asteroseismic and dynamical stellar parameters for the oscillating
red-giant components in these systems. I found a new reference value for the ∆ν-
scaling relation (eq. 1.26) that takes mass, effective temperature, metallicity, as well
as surface effects, for red-giant stars into account. This reference provides param-
eter estimates that agree when obtained from asteroseismic scaling relations and
when obtained from the orbital analysis.

? In Chapter 3, I present an asteroseismic ensemble analysis of about 60 red giants
in the open clusters NGC 6791 and NGC 6819. For the asteroseismic age determi-
nations, I use additional constraints from the physical properties (metallicity) of the
open clusters that are derived from isochrone fitting. I show that the accuracy of the
obtained metallicity of individual stars is the limiting factor in determining accurate
ages.

? Chapter 4 is dedicated to the in-depth study of a rare Kepler Fourier power den-
sity spectrum, which shows solar-like oscillations of two red-giant stars. Based
on the stellar properties (masses, ages, and distances) of both stars, I investigate
the probability of this pair of stars being gravitationally bound into a binary star
system. Based on the similar asteroseismic ages and masses for both stars this is
a rare candidate binary system consisting of either two red-giant-branch stars or a
red-giant-branch and asymptotic-giant-branch combination.

? Finally, Chapter 5 provides the final discussion and future prospects concerning
asteroseismic inferences of red-giant stars in eclipsing binaries and open clusters.
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2 Red giants in eclipsing binaries

This chapter reproduces the article Oscillating red giants in eclipsing binary systems:
empirical reference value for asteroseismic scaling relation by N. Themeßl, S. Hekker,
J. Southworth, P. G. Beck, K. Pavlovski, A. Tkachenko, G. C. Angelou, W. H. Ball, C.
Barban, E. Corsaro, Y. Elsworth, R. Handberg, and T. Kallinger, published in Monthly
Notices of the Royal Astronomical Society, Volume 478, Issue 4, p.4669-4696 (2018),
DOI: 10.1093/mnras/sty1113. The Author(s) Published by Oxford University Press on
behalf of the Royal Astronomical Society1.

2.1 Summary

The internal structures and properties of oscillating red-giant stars can be accurately in-
ferred through their global oscillation modes (asteroseismology). Based on 1460 days
of Kepler observations we perform a thorough asteroseismic study to probe the stellar
parameters and evolutionary stages of three red giants in eclipsing binary systems. We
present the first detailed analysis of individual oscillation modes of the red-giant com-
ponents of KIC 8410637, KIC 5640750, and KIC 9540226. We obtain estimates of their
asteroseismic masses, radii, mean densities, and logarithmic surface gravities by using
the asteroseismic scaling relations as well as grid-based modelling. As these red giants
are in double-lined eclipsing binaries, it is possible to derive their independent dynamical
masses and radii from the orbital solution and compare them with the seismically inferred
values. For KIC 5640750 we compute the first spectroscopic orbit based on both compo-
nents of this system. We use high-resolution spectroscopic data and light curves of the
three systems to determine up-to-date values of the dynamical stellar parameters. With our
comprehensive set of stellar parameters we explore consistencies between binary analysis
and asteroseismic methods, and test the reliability of the well-known scaling relations. For
the three red giants under study, we find agreement between dynamical and asteroseismic
stellar parameters in cases where the asteroseismic methods account for metallicity, tem-
perature, and mass dependence, as well as surface effects. We are able to attain agreement
from the scaling laws in all three systems if we use ∆νref,emp = 130.8 ± 0.9 µHz instead of
the usual solar reference value.

1Contribution statement: NT and SH designed research. NT performed asteroseismic analysis and
wrote the paper. SH carried out grid-based modelling analysis. JS, KP, PGB and AT performed eclipsing
binary analysis. CB, EC and TK provided independent background-fitting and peakbagging results for a
consistency check. RH contributed corrected Kepler light curves. SH, YE, WHB and GCA provided useful
advice, comments, and discussions on the paper.
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2.2 Introduction

Asteroseismology is the study of stellar oscillations with the aim of unravelling the struc-
ture and dynamics of stellar interiors. In-depth asteroseismic studies require either high-
precision photometric time series observations or time series of accurate radial velocity
measurements (RVs). The former has been obtained by space missions such as MOST
(e.g. Barban et al. 2007, Kallinger et al. 2008), CoRoT (e.g. Baglin et al. 2007, De Ridder
et al. 2009) and Kepler (e.g. Borucki et al. 2010). From 2009 to 2013, the nominal Kepler
mission provided nearly continuous photometric time series data for more than 100 000
stars. These data are suitable for asteroseismic analyses and led to many discoveries in
the field of red-giant seismology: determination of evolutionary stages (e.g. Bedding et al.
2011, Mosser et al. 2014, Elsworth et al. 2017), rotation studies (e.g. Beck et al. 2012,
Mosser et al. 2012a), stellar parameter determinations (Kallinger et al. 2010, Huber et al.
2010, Hekker et al. 2013b), ensemble studies and galactic archaeology (e.g. Corsaro et al.
2012, Miglio et al. 2013, Casagrande et al. 2016), amongst others. For recent overviews
see Hekker (2013) and Hekker and Christensen-Dalsgaard (2017).

Pulsating red giants exhibit solar-like oscillations that are driven by the turbulent convec-
tion in the stellar envelope. The physical properties of red giants, such as mean density
and surface gravity and thus stellar mass and radius, can be determined through the study
of their oscillations. The most commonly used asteroseismic method is based on scal-
ing relations (e.g. Ulrich 1986, Brown et al. 1991, Kjeldsen and Bedding 1995) that use
direct observables from the oscillation spectrum as input. These so-called global oscilla-
tion parameters can be measured in a large number of red giants for which high-precision
photometric data are available. However, the asteroseismic scaling relations assume that
all stars have an internal structure homologous to the Sun (e.g. Belkacem et al. 2013).
Since evolved G and K giants span a wide range of masses, metallicities, and evolution-
ary stages different than that of the Sun, the validity of these scaling relations, based on
the principle of homology to the Sun, has to be tested. One possibility is to use eclipsing
binary systems with a pulsating red-giant component. For double-lined eclipsing binaries,
the stellar mass and radius of the red-giant component can be derived independently of
asteroseismology through the binary orbit analysis using Kepler’s laws. The binary anal-
ysis is limited to the cases in which the orbital parameters can be resolved and require
spectra covering the full orbital period of the system.

So far a number of eclipsing binary systems with a red-giant component were detected
in Kepler data (e.g. Hekker et al. 2010c, Gaulme et al. 2013). The first such system,
KIC 8410637, was identified by Hekker et al. (2010c), who carried out a preliminary as-
teroseismic study based on a month long photometric time series of data in which only one
eclipse was detected. The stellar parameters of the red-giant star could be measured from
both the solar-like oscillations and from spectroscopy. A detailed comparison between
the asteroseismic and dynamical stellar mass and radius of the red giant was performed
by Frandsen et al. (2013), who found agreement between the binary and asteroseismic
results within uncertainties. When Huber (2014) repeated the asteroseismic analysis of
KIC 8410637 with a longer Kepler dataset, he contested the findings of Frandsen et al.
(2013) and reported large discrepancies between the asteroseismic and dynamical stellar
parameters.
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Beck et al. (2014) carried out a seismic and binary analysis of 18 red-giant stars among
which was KIC 9540226. The red giant was not only found to be in an eccentric eclipsing
binary, but also to exhibit an increase in flux during the actual periastron passage (Kumar
et al. 1995, Remus et al. 2012). These stars are colloquially referred to as ‘heartbeat stars’
(Thompson et al. 2012). Beck et al. calculated the orbital parameters of the system from
high-resolution spectroscopy and estimated the stellar parameters of the red giant from
the asteroseismic scaling relations. In a more recent study, the mass and the radius of the
red-giant component of KIC 9540226 could be constrained from two consecutive binary
analyses2 (Brogaard et al. 2016, 2018). Moreover, Brogaard et al. (2018) computed sev-
eral estimates of its asteroseismic mass and radius based on different methodologies and
by using the asteroseismic observables presented by Gaulme et al. (2016).

KIC 8410637, KIC 5640750, and KIC 9540226 were also part of several ensemble stud-
ies3 (Gaulme et al. 2013, 2014, 2016, hereafter G16). In these surveys, eclipse modelling
and modelling of the radial velocities were used to derive the orbital and dynamical stellar
parameters. In addition, masses and radii of the red-giant components were computed by
using the asteroseismic scaling relations. In an extensive comparison between the results
from detailed binary modelling and asteroseismology, they showed that the stellar masses
and radii are systematically overestimated when the asteroseismic scaling relations are
used.

In Table 2.1 we summarize the orbital and stellar parameters for the three red-giant stars
(KIC 8410637, KIC 5640750, and KIC 9540226) that are the subject of this study.

For a number of red-giant components in eclipsing binary systems it has been found that
the dynamical and asteroseismic stellar parameters differ significantly. This leads us to
investigate three such systems in detail, both from the binary point of view including a
dedicated spectral disentangling analysis as well as by obtaining individual frequencies.
In addition to the observational analysis, we use an asteroseismic grid-based approach to
model the three red-giant components. KIC 8410637, KIC 5640750, and KIC 9540226
belong to wide eclipsing binary systems where the components are not expected to be
strongly influenced by tidal effects and/or mass transfer. All three systems were observed
during the nominal 4-year long Kepler mission providing a large photometric dataset of
unprecedented accuracy and supplemented with additional high-resolution spectra from
ground-based observatories. We analyze these spectroscopic and photometric data and
derive up-to-date values of the stellar parameters from both the asteroseismic and orbital
analysis. Since the stellar parameters determined using Kepler’s laws are considered to be
both accurate and precise, they provide a means to test the reliability of the asteroseismic
mass and radius from the scaling laws.

For the current in-depth study we obtained orbital solutions and physical properties of
three eclipsing binary systems from Kepler light curves and phase-resolved spectroscopy
(Sec. 2.3). In addition, we analyzed the Fourier spectra of the red-giant components in
these systems to derive both global oscillation parameters as well as individual frequen-

2Note that we only provide the updated dynamical values of Brogaard et al. (2018) in Tab. 2.1 and
Fig. 2.12.

3Here we only consider the updated values of Gaulme et al. (2014) and not the results by Gaulme et al.
(2013).
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cies (Sec. 2.4.3). We studied their asteroseismic stellar parameters and evolutionary states
(Sec. 2.4.4). In Section 2.5 we discuss and compare stellar parameters obtained from dif-
ferent asteroseismic methods and from the binary orbit. In the same section we provide an
overview of tests that we performed to investigate the importance of different observables
that are used for the determination of the asteroseismic stellar parameters and we present
the conclusions of our study in Section 2.6.

2.3 Physical properties of the systems from light curves
and radial velocity time series

2.3.1 Kepler light curves and ground-based spectroscopic data
For the eclipse modelling, we extracted the light curves of each eclipse from the Kepler
datasets. In this case, we retained all data obtained within three eclipse durations of the
eclipse. The data were then converted from flux to magnitude units and a low-order poly-
nomial was fitted to normalize the out-of-transit data to zero relative magnitude. This
step removes any slow trends due to instrumental effects and stellar activity. We tested
the effects of different treatment of the light curve normalization (e.g. polynomial order),
and found that it does not have a significant impact on the best-fitting parameters.

By definition the primary eclipse is deeper than the secondary eclipse, and occurs when
the hotter star is eclipsed by the cooler star. For all three objects, the dwarf star is smaller
and hotter than the giant, so the primary eclipse is an occultation and the secondary eclipse
is a transit. This also means that according to standard terminology (e.g. Hilditch 2001)
the dwarf is the primary star and the giant is the secondary star. To avoid possible confu-
sion, we instead refer to the stellar components as the ‘dwarf’ (denoted as A) and ‘giant’
(denoted as B).

Complementary to Kepler photometry we use spectroscopic data for the binary systems
KIC 8410637, KIC 5640750, and KIC 9540226, which were obtained with the hermes
spectrograph (Raskin et al. 2011, Raskin 2011) mounted on the 1.2 m Mercator telescope
in La Palma, Canary Islands, Spain. These spectra cover the wavelength range from
3 750− 9 000 Å with a resolution of R ' 85 000. Emission spectra of thorium-argon-neon
reference lamps are provided in close proximity to each exposure to allow the most accu-
rate wavelength calibration of the spectra possible. Some hermes spectra for KIC 8410637
and KIC 9540226 were already used in previous studies by Frandsen et al. (2013) and
Beck et al. (2014). Observations were continued to extend the number of spectra and time
base of the spectroscopic data. Moreover, the long-period system KIC 5640750 has been
monitored spectroscopically by members of our team since its discovery as a binary.
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2.3.2 Spectroscopic orbital elements from cross-correlation function
and spectral disentangling

2.3.2.1 Cross-correlation function (CCF)

For the three red giants under study we reanalyzed the archived hermes data and obtained
radial velocities by using the cross-correlation method (e.g. Tonry and Davis 1979). Based
on this approach each wavelength-calibrated spectrum in the range from 4 780 − 6 530 Å
was cross-correlated with a line mask optimized for hermes spectra (Raskin et al. 2011).
In this case a red-giant-star template was used that contains spectral lines corresponding to
the spectrum of Arcturus. This method provides excellent precision for deriving the RVs
of red-giant stars showing solar-like oscillations (Beck et al. 2014). For KIC 8410637
those RVs with large measurement uncertainties were not included in the further analysis.
This leaves 43 RVs for the giant, with a root mean square (rms) scatter of 0.23 km s−1

around the best fit, and 20 for the dwarf with a scatter of 0.92 km s−1 (Tab. 2.11). In
the case of KIC 5640750 we only have RV data of the giant star (22 observations with
a scatter of 0.08 km s−1, Tab. 2.12), since we were not able to detect the signature of
the dwarf component with CCF. As a further attempt to obtain its RVs we applied the
least-squares deconvolution (LSD) method developed by Tkachenko et al. (2013). This
technique is similar to a cross-correlation with a set of δ functions. It is sensitive to small
contributions and thus more suitable for the detection of faint components in double-lined
spectroscopic binary systems. Although the overall signal-to-noise ratio (S/N) was high,
the contribution from the dwarf star was very weak and therefore difficult to detect. With
LSD we were not able to measure sufficiently precise RVs for the dwarf component that
could be used to further constrain the orbital parameters for the system KIC 5640750. For
KIC 9540226 we derived 32 RVs for the giant with a scatter of 0.33 km s−1 that we present
in Table 2.13. These were supplemented by RV data for the dwarf star recently published
by Gaulme et al. (2016) (7 RVs with a scatter of 0.91 km s−1).

Based on the radial velocities determined for the stars in these binary systems we ob-
tained orbital elements by using Kepler’s laws. The lack of RVs for the dwarf star of
KIC 5640750 means we cannot measure the masses and radii of the component stars
without additional constraints. As these parameters are important for our current study,
we extended the spectroscopic analysis to detect the dwarf component of KIC 5640750
by using spectral disentangling.

2.3.2.2 Spectral disentangling (SPD)

The spectra of the binary stars under study are dominated by the spectra of the red-giant
components since they contribute the prevailing fraction of the total light of the systems.
From the light curve analysis (see light ratio between components in Tab. 2.3, Sec. 2.3.3)
it was found that the dwarf companions contribute only about 9.2, 6.5, and 2.0 % to the
total light of the system for KIC 8410637, KIC 5640750, and KIC 9540226, respectively.
This makes the RVs of the Doppler shifts of the faint companions more difficult to detect,
i.e. the rms scatter of the dwarfs is about three times more uncertain than for the giants for
KIC 8410637 and KIC 9540226, and undetectable for KIC 5640750. The spectral lines of
both components are, however, present in the spectra and to extract both we apply spectral
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disentangling (SPD).

The method of SPD was developed by Simon and Sturm (1994). In this method, the in-
dividual spectra of the components as well as a set of orbital elements can be optimised
simultaneously. During this process the fluxes of the observed spectra are effectively
co-added. This results in disentangled spectra that have a higher S/N compared to the ob-
served spectra. There is no need for template spectra like in the cross-correlation method.
This is highly beneficial in the case of barely visible components’ spectrum, like in our
case (see Mayer et al. 2013, Torres et al. 2014, Kolbas et al. 2015, for other examples).
With the method of SPD the spectra of the faint dwarf companions were successfully re-
constructed with the fractional light in the visual spectral region at the extreme values of
barely ∼ 1 − 2 %.

For the present work, we used the spectral disentangling code fdbinary (Ilijic et al. 2004),
which operates in Fourier space based on the prescription of Hadrava (1995) including
some numerical improvements. In particular, the Discrete Fourier Transform is imple-
mented in fdbinary, which gives more flexibility in selecting spectral segments for SPD
while still keeping the original spectral resolution. We used the wavelength range of the
spectra from 5 000 − 6 000 Å for both the determination of the orbital elements and the
isolation of the individual spectra of the components.

In fdbinary the optimisation is performed with a simplex routine (cf. Press et al. 1989).
We performed 100 runs, each with 1000 iterations, examing a relatively wide parameter
space around an initial set of parameters. In most cases of high S/N spectra, that are well
distributed in the orbital phases, the convergence is achieved quite fast. The uncertainties
in the determination of the orbital elements were then calculated with a novel approach
using a bootstrapping method (Pavlovski et al. in prep.). The faint companion’s spectra
for all three systems were extracted (see Figs. 2.1 and 2.2).

2.3.2.3 Orbital elements

For the three binary systems under study we report the spectroscopic orbital elements ob-
tained from CCF and SPD analysis in Table 2.2. These include the orbital period P, the
time of periastron T0, the eccentricity e, the longitude of periastron ω, the radial velocity
semi-amplitudes of the dwarf and giant component KA, KB, and the mass ratio q = KA/KB.
The comparison of the results shows agreement between both methods. We note, how-
ever, that T0 is different from SPD and CCF for KIC 5640750 since about one third of the
orbital phase is not covered by spectroscopic observations, which results in ambiguities
regarding its orbital parameters (Fig. 2.4). From SPD we derived RV semi-amplitudes for
all components in the three binary systems making the determination of the dynamical
masses for all stars possible. Hence, we adopted these solutions for the further analysis.

KIC 5640750: In the current study we present the first spectroscopic orbit for this bi-
nary system based on both components. The CCF nor LSD analysis did reveal the radial
velocities of the dwarf spectrum. According to our light curve analysis (Sec. 2.3.3) the
companion star contributes only ∼ 6.5 % to the total light in the visual passband. In addi-
tion, the long orbital period of 987 days makes the detection of the dwarf spectrum diffi-
cult since for such small Doppler shifts the spectral lines are along the whole cycle close
to the prominent lines of the red-giant component. From the SPD analysis we find two
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Figure 2.1: Disentangled spectra for the giant (blue) and dwarf (red) component of
the eclipsing binary systems KIC 8410637 (top panel), KIC 5640750 (middle), and
KIC 9540226 (bottom) centred on Mg I triplet at λ = 5168 − 5185 Å. The spectra are
normalized with respect to the composite continuum and for better visibility we use an
arbitrary offset between the individual spectra of the binary components.
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Figure 2.2: Close-ups of the disentangled spectra for the dwarf components (red) of
the eclipsing binary systems KIC 8410637 (top panel), KIC 5640750 (middle), and
KIC 9540226 (bottom) centred on Mg I triplet at λ = 5168−5185 Å. Synthetic spectra are
overplotted in black. The spectra are normalized with respect to the composite continuum
and for better visibility we use an arbitrary offset between the individual spectra of the
dwarf components.

statistically significant solutions for this system which are indistinguishable and whose
difference is barely visible in the disentangled spectra. This ambiguity arises due to an
insufficient coverage of the orbital phase which lacks spectroscopic observations between
0 and 0.35 (see bottom left in Fig. 2.4). Thus, only one extremum in the RV curve is cov-
ered by spectroscopic observations. As a result we obtain more than one local minimum
in the SPD analysis due to spurious patterns in the reconstructed spectra of the individual
components, which can also affect the quality of the orbital solution (Hensberge et al.
2008). As a further attempt to lift the ambiguity between the two orbital solutions, we
rerun the SPD with fixed e and ω without success. In any case, follow-up observations
would be required to resolve this ambiguity by filling the gap in the orbital phases. In
the current study, we use both solutions of this system to infer the stellar parameters of
its components and we check these results for consistencies with asteroseismic stellar
parameters. It should be noted that the RV semi-amplitudes for the giant are within 1σ
confidence level for all solutions.

KIC 8410637: In a comprehensive study by Frandsen et al. (2013) the first spectroscopic
orbit was determined for this binary system. Even with about 10 % contribution to the
total light, the dwarf companion is barely detectable due to a long orbital period of
P ∼ 408 days. Frandsen et al. used several methods to measure the radial velocities
for both components; the line broadening function (Rucinski 2002), the two-dimensional
cross-correlation (2D-CCF, Zucker and Mazeh 1994), and the Fourier spectral disentan-
gling (Hadrava 1995). These three sets of measurements gave consistent orbital param-
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eters within 1σ errors. Their final orbital solution is a mean of the results determined
from the line broadening function and 2D-CCF, and reads, KA = 30.17±0.39 km s−1, and
KB = 25.85 ± 0.07 km s−1, with the mass ratio, q = 0.857 ± 0.011. Comparing Frand-
sen et al. spectroscopic solution with our CCF and SPD results, the agreement is only
at a 3σ confidence level for the RV semi-amplitudes, and at a 1σ level for the geometric
orbital parameters, i.e. the eccentricity, and the longitude of periastron. It is difficult to
trace the source of these differences. Some systematics could arise because of the dif-
ferent methodology and different datasets that were used. Frandsen et al. worked with
three spectroscopic datasets that were collected with different spectrographs of compa-
rable spectral resolution, fies at the Nordic Optical Telescope, hermes at the Mercator
Telescope, and ces at the Thüringer Landessternwarte. We used hermes spectra exclu-
sively, hence our dataset is homogeneous, yet less extensive. Since there is no need for
template spectra in the SPD technique, this method is not liable to mismatch problems
as the methods used by Frandsen et al. (2013), as shown in numerical experiments by
Hensberge and Pavlovski (2007).

KIC 9540226: The first attempt to determine the spectroscopic orbit for this binary sys-
tem was made by Beck et al. (2014). The cross-correlation method applied on 31 hermes
spectra did not reveal the dwarf’s spectrum. Hence, only the giant’s RV semi-amplitude
was determined, KB = 23.32 ± 0.04 km s−1, and the geometric orbital parameters, the ec-
centricity e = 0.39 ± 0.01, and the longitude of periastron ω = 4.0 ± 0.6 deg. The Kepler
light curve solution published by Gaulme et al. (2016) shows that the dwarf component
contributes barely ∼ 2 % to the total light. Despite the low secondary contribution to the
total flux, Gaulme et al. report a detection of the dwarf spectra in 7 out of 12 of their ob-
servations by using CCF. They used a new series of spectra secured with the 3.5 m ARC
telescope at Apache Point Observatory. It is encouraging that the spectroscopic orbital
elements derived by Gaulme et al. (2016) and ours based on SPD (Tab. 2.2) agree within
1σ uncertainties.

2.3.2.4 Individual components’ spectra from SPD

Spectral disentangling was performed in pure ‘separation’ mode (Pavlovski and Hens-
berge 2010) since the light curves do not show any significant light variations outside the
eclipses. This is also true for the eccentric eclipsing binary system KIC 9540226 which
shows flux modulations at periastron. However, these so-called heartbeat effects are ex-
tremely small amplitude that is why they only became widely known through the Kepler
mission. Hence it is justified to use the pure separation mode for all three binary systems.

The disentangled spectra of the components still have a common continuum of a binary
system. For the renormalization of the separated spectra from a common continuum of
the binary system to the components’ spectra with their individual continua we followed
the prescription by Pavlovski and Hensberge (2005). First, an additive correction was
made due to different line-blocking of the components. Then these spectra were multi-
plied for the dilution factor. This multiplicative factor is determined from the light ratio.
Since Kepler photometry is very precise, we preferred the light ratio determined in the
light curve analysis (Sec. 2.3.3), rather than the spectroscopically determined one. Disen-
tangled spectra of all binary components could be extracted and are shown in Figures 2.1
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and 2.2. The latter presents close-ups of the disentangled spectra for the dwarfs with de-
creasing S/N from top (KIC 8410637) to bottom (KIC 9540226). For the synthetic spectra
we used the atmospheric parameters from Table 2.4 and the light ratios from Table 2.3.
Since the dwarf component of KIC 5640750 is at the limit of detection, we did not obtain
its atmospheric parameters and therefore we adjusted the projected rotational velocity to
10 km s−1 for its synthetic spectrum in Figure 2.2.

2.3.3 Eclipse modelling

The available light curves of the three systems were modelled with the jktebop code
(Southworth 2013, and references therein) in order to determine their physical properties.
jktebop parameterises the light curve using the sum and ratio of the fractional radii of the
components, rA + rB and k = rB/rA. The fractional radii are defined as rA = RA/a and
rB = RB/a, where RA and RB are the true radii of the stars and a is the orbital semimajor
axis. The parameters rA + rB and k were included as fitted parameters, as was the orbital
inclination i. We fitted for the combination terms e cosω and e sinω where e is the orbital
eccentricity and ω is the argument of periastron. The orbital period, P, and midpoint of
primary eclipse, T0, were also fitted.

The radiative properties of the stars were modelled using the quadratic limb darkening
law (Kopal 1950), with linear coefficients denoted uA and uB and quadratic coefficients vA

and vB. We fitted for uB, which is well constrained by the shape of the light curve during
totality. We fixed vB to theoretical values interpolated from the tabulations of Sing (2010),
as it is strongly correlated with uA (e.g. Southworth et al. 2007, Carter et al. 2008). Both
limb darkening coefficients for the dwarf stars (uA and vA) were fixed to theoretical values
because they are not well constrained by the available data. We also fitted for the central
surface brightness ratio of the two stars, J.

According to the Kepler Input Catalog (Brown et al. 2011), all three systems have a small
but non-zero flux contamination from nearby stars (0.001 for KIC 8410637, 0.021 for
KIC 5640750, and 0.012 for KIC 9540226). We obtained solutions with third light, L3,
as a fitted parameter but found that they were not significantly different from solutions
with L3 = 0. In each case, the best-fitting value of L3 was small and its inclusion had a
negligible effect on the other fitted parameters.

We included measured RVs for the stars in the jktebop fit, and fitted for the velocity am-
plitudes of the two stars, KA and KB. This was done to include constraints on e cosω and
e sinω provided by the RVs and we found that the measured values of KA and KB were in
agreement with the input values. However, we did not use them in the subsequent analysis
because we prefer the homogeneous set for all dwarfs and giants from SPD (Sec. 2.3.2.2).
Note that RVs are not available for the dwarf component of KIC 5640750. We also fitted
for the systemic velocities of the stars, γA and γB, but did not require γA = γB because the
gravitational redshifts of the giants are significantly different to those of the dwarfs. The
systemic velocities are formally measured to high precision, but have significantly larger
systematic errors due to the intrinsic uncertainty in the stellar RV scale.

As we analyzed the Kepler long-cadence data for each system, the jktebopmodel was nu-
merically integrated to match the 1765 s sampling rate of these data (Southworth 2012).
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Figure 2.3: Observational data for KIC 8410637 and the best-fitting model from jktebop.
The red points give the data and the blue lines the best fits. The four panels show the phase
folded light curve (top left), primary eclipse (top right), the RV curve as derived from CCF
(left bottom), and secondary eclipse (right bottom). Each panel is accompanied by a plot
of the residuals in the lower panel.

This is one point of difference between the current analysis and the study of KIC 8410637
by Frandsen et al. (2013). We note that short-cadence data are available for KIC 9540226
but that we did not use them because the long-cadence data already provide a sufficient
sampling rate for both the eclipses and pulsations (Sec. 2.4.1).

The best-fitting values of the fitted parameters for the three systems are listed in Table 2.3,
where MA,B are the masses, RA,B the radii, log gA,B the surface gravities, LA,B the lumi-
nosities and a the orbital separation of the two stars. The light ratio `B/`A of the giant to
the dwarf is computed in the Kepler passband. The light curves and RV data for the three
systems are shown in Figures 2.3, 2.4 and 2.5, superimposed on the best-fitting models
from jktebop. Uncertainty estimates for each parameter were obtained via both Monte
Carlo and residual-permutation algorithms (see Southworth 2008), and the larger of the
two uncertainty estimates is reported for each parameter. In most cases we found that the
residual-permutation algorithm yielded uncertainties two to three times larger than those
from the Monte Carlo algorithm. This is due to the presence of pulsations, which for the
purposes of eclipse modelling are simply a source of correlated (red) noise.
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Figure 2.4: Same as Fig. 2.3 now for KIC 5640750.

Figure 2.5: Same as Fig. 2.3 now for KIC 9540226.
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2.3.3.1 Physical properties of the systems

In Table 2.3 we list the physical properties of the systems derived from the spectral dis-
entangling analysis and the jktebop analyses. These were calculated using the jktabsdim
code (Southworth et al. 2005), and the uncertainties were propagated via a perturbation
approach. We emphasise that the velocity amplitudes from the spectral disentangling
analysis were preferred over those from the RV measurements because they are available
for all six stars.

We also determined the distances to the systems using published optical and near-IR pho-
tometry (Skrutskie et al. 2006, Brown et al. 2011, Henden et al. 2012) and the bolo-
metric corrections provided by Girardi et al. (2002). Values of E(B − V) were obtained
by requiring agreement between the distances at optical and near-IR wavelengths, being
0.16±0.03 mag for KIC 5640750, 0.07±0.02 mag for KIC 8410637, and 0.16±0.03 mag
for KIC 9540226. We finally quote the distances determined from the 2MASS K-band
apparent magnitudes, as these are the least affected by uncertainties in the effective tem-
peratures and E(B−V) values. We conservatively doubled the uncertainties in these mea-
surement to account for some inconsistency in optical apparent magnitudes quoted by
different sources. Our distance estimates (see Tab. 2.3) are much more precise than those
from Gaia Data Release 1 (Gaia Collaboration et al. 2016a); future data releases from the
Gaia satellite will significantly improve the distance measurements to these three binary
systems.

KIC 5640750: We are the first to determine dynamical stellar parameters for this long-
period binary system. By using the first set of orbital parameters, denoted as SPD 1 in
Table 2.2, we obtained MB = 1.52 ± 0.03 M� and RB = 14.06 ± 0.12 R� for the red-giant
component in this system. The second orbital solution (SPD 2) provided significantly
lower stellar parameters with MB = 1.16 ± 0.01 M� and RB = 13.12 ± 0.09 R� for the
same red-giant star, which results in a relative difference of ∼ 0.4 M� in stellar mass and
∼ 0.9 R� in stellar radius, respectively.

KIC 8410637: We found that the velocity amplitudes were different at a 3σ level when
measured from the RVs compared to the results from spectral disentangling. Our adoption
of the velocity amplitudes from spectral disentangling means that we find significantly
lower masses for the two components of this system compared to those found by Frand-
sen et al. (2013) and Gaulme et al. (2016). However, the discrepancy between the results
found by Frandsen et al. (2013) and those from asteroseismic studies led us to investi-
gate this system further. As the dominant source of noise is pulsations in the light curve,
we investigated whether the measured radius of the giant was sensitive to which eclipses
were included in the analysis. We did this by obtaining eight best fits with each of the
eclipses (four primary and four secondary) omitted in turn. The standard deviation of the
RB values was 0.047, which is slightly smaller than the error estimate for this quantity in
Table 2.3. We therefore conclude that our measured RB is robust against the omission of
parts of the input data.

KIC 9540226: For this star our measurements of the system parameters can be compared
to those found by Gaulme et al. (2016), who worked with similar data and analysis codes.
We find that the agreement between the two sets of results is reasonable but not perfect.
Our value of RA and RB are larger by 2σ and 2.6σ, respectively, and the mass measure-
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Figure 2.6: Observed (in black) and best-fitting synthetic (in red) spectra for the giant
components in the binary systems in the wavelength range between 5 155−5 195 Å around
the Mg I triplet.

ments agree to within 1σ. Finally, the mass and the radius of the giant found by Brogaard
et al. (2016) are somewhat larger (by 2.4σ and 1.9σ respectively). In their most recent
study, Brogaard et al. (2018) re-analyzed this system and obtained considerably lower
values for both, the radius and the mass of the red giant. Compared to their latest mea-
surements, our values of MB and RB agree to within 1σ and 2σ respectively.

2.3.4 Atmospheric parameters
For the extraction of the atmospheric parameters we used the Grid Search in Stellar Pa-
rameters (gssp; Tkachenko 2015) software package to analyze the disentangled spectra
of the evolved components of each of the eclipsing binary systems. gssp is a LTE-based
software package that uses the synthv (Tsymbal 1996) radiative transfer code to compute
grids of synthetic spectra in an arbitrary wavelength range based on a precomputed grid
of plane-parallel atmosphere models from the llmodels code (Shulyak et al. 2004). The
atomic data were retrieved from the Vienna Atomic Lines Database (vald; Kupka et al.
2000). The optimisation was performed simultaneously for six atmospheric parameters:
effective temperature (Teff), surface gravity (log g; if not fixed to the value obtained from
the light curve solution), micro- and macro-turbulent velocities (vmicro, vmacro), projected
rotational velocity (v sin i), and global metallicity ([M/H]). The grid of synthetic spectra
was built from all possible combinations of the above-mentioned atmospheric parameters
and the best-fit solution was obtained by minimising the χ2 merit function. The 1σ er-
rors were derived from χ2 statistics taking into account possible correlations between the
parameters in question. In general, gssp allows for the analysis of single and binary star
spectra, where both composite and disentangled spectra can be analyzed for atmospheric
parameters and elemental abundances of the individual binary components in the latter
case. We refer the reader to Tkachenko (2015) for details on the method implemented
in gssp and for several methodology tests on the simulated and real spectra of single and
binary stars. In this work, we used the gssp-single module, where the spectra were treated
as those of single stars. By doing so we take advantage of the fact that the light dilution
effect could be corrected for based on the a priori knowledge of light factors from the light
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curve solution.

Figure 2.6 shows the best-fitting solutions to a short segment of each observed red-giant
spectrum. The atmospheric parameters for KIC 8410637, KIC 5640750, and KIC 9540226
are reported in Table 2.4 except for the dwarf component of KIC 9540226. Due to the
high noise level in the disentangled spectrum of this dwarf companion (see bottom panel
in Figs. 2.1 and 2.2), we are not able to obtain precise estimates of its atmospheric param-
eters from spectral fitting. From its mass and by assuming solar metallicity we can only
infer that it is a dwarf star of early to intermediate G spectral type.

KIC 5640750: We are the first to determine the atmospheric parameters of the binary
components of KIC 5640750. For the red-giant star we derived Teff = 4525 ± 75 K and
[M/H] = −0.29 ± 0.09 dex, and for its companion we obtained Teff = 6050 ± 350 K and
[M/H] = 0.08 ± 0.25 dex.

KIC 8410637: The atmospheric parameters for the stars in this binary system were also
determined by Frandsen et al. (2013) from the disentangled spectra of the components.
They used the Versatile Wavelength Analysis (vwa) package (Bruntt et al. 2004). The
effective temperatures that they determined for the giant and dwarf component, Teff =

4800 ± 80 K, and Teff = 6490 ± 160 K, respectively, agree with our results (Tab. 2.4)
at the 2σ, and 1σ confidence level. The somewhat worse agreement in the effective
temperature determinations could be explained as a metallicity effect. Whilst we found
almost solar metallicity for the red-giant component, Frandsen et al. determined [Fe/H]
= 0.24 ± 0.15 dex, which was based on numerous Fe I lines. Since in this temperature
range the metal lines become deeper for lower Teff both results could agree in case the
degeneracy between the Teff and metallicity can be lifted. This might also explain a better
agreement for the Teff of the dwarf companion. Frandsen et al. fixed the metallicity to
[Fe/H] = 0.1 dex, which is closer to the value we derived, although the uncertainties in the
determination of the Teff of the dwarf star are considerably larger than in the case of the
red-giant component, due to the faintness of the dwarf companion. The fractional light
dilution factor for the RG component is lRG = 0.9085, and 0.9080, from the light curve
analysis in Frandsen et al., and our present study, respectively. The light ratio used in both
studies could be another source of slight discrepancies, however it seems unlikely given
the small difference between these values.

KIC 9540226: For the red-giant component in this binary system, Gaulme et al. (2016)
determined the atmospheric parameters through spectroscopic analysis of Fe I and Fe II
lines. They used the MOOG spectral synthesis code (Sneden et al. 2012). It is not clear
how they deal with the dilution effect of the secondary component, yet with its contribu-
tion of barely ∼ 2 % its influence is very small if not negligible. Based on the ARCES
spectra they adopted the following principal atmospheric parameters as final results of
their work: Teff = 4692±65 K, log g = 2.2±0.2, and [Fe/H] = −0.33±0.04 dex. It is very
encouraging that the result from Gaulme et al. (2016) and the analysis in this work agree
within 1σ uncertainties. Brogaard et al. (2016) first announced preliminary spectroscopic
analysis results based mostly on previously published data, which was later on followed
by a revised analysis of the same system (Brogaard et al. 2018). In both studies, they
derived a lower metallicity ([Fe/H] = −0.21± 0.10 and [Fe/H]rev = −0.23± 0.10) for the
red-giant component. Moreover, their effective temperature measurements for the giant
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are considerably higher than ours with Teff = 4780± 55 K and Teff,rev = 4680± 80 K. This
may again be due to the Teff and metallicity degeneracy mentioned earlier.

The effective temperatures of the dwarf components were barely measurable during the
spectroscopic analysis due to the low S/N of the disentangled spectra. Thus as a further
test we obtained estimates by interpolating between theoretical spectra from the atlas9
model atmosphere code (Kurucz 1993) and using the passband response function of the
Kepler satellite4. We determined the effective temperatures of the synthetic spectra which
reproduced the central surface brightness ratios measured using jktebop versus synthetic
spectra for the effective temperatures of the giant stars. The formal uncertainties on these
parameters are similar to the uncertainties in the effective temperature measurements for
the giants. We instead quote a uniform uncertainty of ±200 K to account for system-
atic errors in this method such as dependence on theoretical calculations, the measured
Kepler passband response function, and the metallicities of the stars. We report the ef-
fective temperatures of each dwarf component of the three eclipsing binary systems in
Table 2.3. These results agree with Teff measurements from SPD for the dwarf compan-
ions of KIC 8410637 and KIC 5640750 albeit lower by ∼ 300 K and ∼ 200 K.

2.4 Stellar properties of oscillating red-giant stars from
asteroseismology

We complement the binary analysis with a comprehensive study of the stellar oscillations
of the systems’ red-giant components. For a star showing solar-like oscillations we can
infer its asteroseismic mass and radius and thus study consistencies between asteroseismic
and dynamical stellar parameters. The asteroseismic approach leads to a more complete
description of red giants by revealing their evolutionary stages and ages. In our study,
we use well-defined and consistent methods to obtain reliable seismic (νmax and ∆ν) and
stellar parameters (M,R, ρ̄, and log g) for the three stars under study, which we describe
here in detail.

2.4.1 Kepler corrected time series data
For the asteroseismic analysis we use Kepler datasets that have been prepared according
to Handberg and Lund (2014). During this procedure long-term variations, outliers, drifts,
and jumps were removed together with the primary and secondary eclipses. This is a nec-
essary step as the presence of eclipses would interfere with the study of the global oscilla-
tions. Figure 2.7 shows the corrected Kepler light curves of KIC 8410637, KIC 5640750,
and KIC 9540226. The light curve of KIC 9540226 contains large gaps due to its location
on a broken CCD module for three months every year. The Fourier spectra of pulsating
red-giant stars reveal a rich set of information consisting of both a granulation as well as
an oscillation signal.

4https://keplergo.arc.nasa.gov/kepler_response_hires1.txt

https://keplergo.arc.nasa.gov/kepler_response_hires1.txt
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Figure 2.7: Corrected concatenated Kepler light curves of the three red-giant stars. The
KIC numbers are indicated in each panel. The observations span 1470 days.

2.4.2 The background model
Some power in the red-giant Fourier spectrum originates from sources other than the pul-
sations, such as activity, granulation, and photon noise. These signals together form a
background on which the oscillations are superimposed. In order to fully exploit the os-
cillations, we first need to assemble a background model consisting of a constant white
noise level and granulation components. Here we use two granulation components with
different timescales and a fixed exponent of four. This was shown to be appropriate for de-
scribing the granulation background of red-giant stars and provides a global background
fit similar to model F proposed by Kallinger et al. (2014):

Pbg(ν) = wnoise + η(ν)2

 2∑
i=1

2
√

2
π

a2
i

bi

1 + (ν/bi)4

 . (2.1)

Here, wnoise describes the white noise contribution to model the photon noise, ai and bi

correspond to the root-mean-square (rms) amplitude and characteristic frequency of the
granulation background component. The stellar granulation and oscillation signals are

also influenced by an attenuation η = sinc
(
π
2

ν
νnyq

)
due to the integration of the intrinsic

signal over discrete time stamps, which increases with higher frequencies approaching
the Nyquist frequency νnyq.

We fitted the background model over a frequency range from 1 µHz up to 283 µHz, which
is the Nyquist frequency for Kepler long-cadence data. To avoid influences of the oscil-
lation modes, we excluded the frequency range of the oscillations during this procedure.
We note here that we also checked the background fit by taking the oscillations into ac-
count simultaneously with a Gaussian-shaped envelope, for which we found agreeing
results. To sample the parameter space of the variables given by equation 2.1 we used our
own implementation of a Bayesian Markov Chain Monte Carlo (MCMC) framework (e.g.
Handberg and Campante 2011, Davies et al. 2016, and references therein) that employs a
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Table 2.5: Ranges of uniform prior distributions used for the global background and Gaussian
parameters.

Parameter Ranges of the uniform priors

Noise wnoise < 10×mean power(0.75 × νnyq to νnyq)
Rms amplitude a1, a2 <

√
maximum power

Frequency b1, b2 1 to νnyq with b1 < b2

Height of Gaussian Λg < maximum power
Frequency νmax νmax,guess ± 1.5 × ∆νguess
Standard deviation σg 0.05 × νmax,guess to 0.5 × νmax,guess

Metropolis-Hastings algorithm. In this approach we draw random samples from a proba-
bilistic distribution by using a likelihood function and a proposal distribution (priors) for
each of the parameters of interest. We used the exponential log-likelihood introduced by
Duvall and Harvey (1986) that is suitable for describing the Fourier power density spec-
trum (PDS) of a solar-like oscillator that has a χ2 distribution with two degrees of freedom
(Appourchaux 2003). As priors we considered uniform distributions for the global back-
ground parameters that are given in the top part of Table 2.5. The Metropolis-Hastings
MCMC algorithm was run with multiple chains from different initial conditions. From
trace plots we assessed the initial burn-in period and we checked that the chains are well
mixed and that they explore the relevant parameter space. The initial values of the burn-in
phase were then discarded and we ran the algorithm for another 150 000 iterations before
we assessed the convergence of the chains to the posterior distributions. For each dis-
tribution we adopted the median as the best-fit parameter value and calculated its 68 %
credible interval (Tab. 2.6).

Figure 2.8 shows the global background fits to the Fourier power density spectra. The os-
cillation power excesses, distinct for pulsating red-giant stars, are clearly visible in each
spectrum. For illustrative purposes, we also present the background normalized spectra
in the lower panels, which reveal that after correcting for the background only the oscil-
lations are left in the spectra.

2.4.3 Solar-like oscillations

The Fourier spectrum of solar-like oscillators consists of several overtones of radial order
(n) and spherical degree (`) modes. A zoom of the individual oscillation modes is shown
in Figure 2.9. The dominant peaks are arranged in a well-defined sequence, which forms
in an asymptotic approximation a so-called universal pattern (Tassoul 1980, Mosser et al.
2011). This pattern reveals the structure of the radial and non-radial modes. In stellar
time series observations only low spherical degree modes (` ≤ 3) are observable. Due
to cancellation effects higher degree modes are not visible in observations of the whole
stellar disk.
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Figure 2.8: Fourier power density spectra of KIC 8410637 (top), KIC 5640750 (middle),
and KIC 9540226 (bottom) in black. The yellow solid lines represent the best global
background fits to the data. The granulation background components are indicated by
the red dashed lines, while the red horizontal dotted lines depict the constant white noise
components. The oscillation excesses are modelled by Gaussians (yellow dashed lines,
see eq. 2.2, Sec. 2.4.3). The smaller panels below each power density spectrum show the
background normalized spectra.
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Figure 2.9: Normalized (by background, see Sec. 2.4.2) Fourier power density spectrum
of KIC 8410637 centred around the frequency of maximum oscillation power. The large
frequency separation ∆ν and the small frequency separation δν02 are indicated for some
modes only. The dominant peaks represent modes of spherical degree ` = 0, 1, and 2, as
indicated.

2.4.3.1 The frequency of maximum oscillation power νmax

The oscillation region of red giants is visible as excess power in the PDS (e.g. for
KIC 8410637 at ∼ 45 µHz as shown in the top panel of Fig. 2.8). The centre of this
power excess is known as the frequency of maximum oscillation power νmax. This global
seismic parameter is one of the direct observables used for deriving the asteroseismic
mean density, mass, radius and surface gravity of the red giants that we study and thus
has to be obtained accurately. We derived νmax from a Gaussian fit to the power excess
according to:

Pg(ν) = Pbg(ν) + η(ν)2
[
Λg exp

(
−(ν − νmax)2

2σ2
g

)]
. (2.2)

Here, Λg and σg indicate the height and the standard deviation of the Gaussian. To
estimate the free parameters we applied the same Bayesian MCMC method including
Metropolis-Hastings sampling which we described before in Section 2.4.2. The ranges
for the uniform prior distributions of the Gaussian parameters are defined in the bottom
part of Table 2.5. We used the frequency peak with the highest amplitude in the oscillation
region as an initial guess for νmax (νmax,guess) and we computed a first estimate of the large
frequency separation (∆νguess, see Sec. 2.4.3.3) from the relation between the frequency of
maximum oscillation power and the large frequency spacing (Hekker et al. 2009, Stello
et al. 2009, Mosser et al. 2010). Since the global background was determined in a preced-
ing step, we kept the parameters of Pbg(ν) (eq. 2.1) in the Gaussian model (eq. 2.2) fixed.
The Gaussian fits to the power excesses of KIC 8410637, KIC 5640750, and KIC 9540226
are shown in Figure 2.8. These are based on the model parameters that are reported in
Table 2.6, as computed from the MCMC algorithm.
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Table 2.6: Median values and corresponding 68 % credible interval for the global background
(eq. 2.1) and Gaussian (eq. 2.2) parameters for the three red giants investigated here.

a1 [ppm] b1 [µHz] a2 [ppm] b2 [µHz] Λg [ppm2µHz−1] νmax [µHz] σg [µHz]

KIC 8410637
295 ± 6 11.3 ± 0.4 269 ± 7 43.5 ± 0.9 1743 ± 67 46.4 ± 0.3 7.1 ± 0.2

KIC 5640750
477 ± 22 6.5 ± 0.4 380 ± 36 24.7 ± 1.5 9732 ± 483 24.1 ± 0.2 3.6 ± 0.1

KIC 9540226
416 ± 17 8.2 ± 0.5 303 ± 30 32.1 ± 2.3 5806 ± 257 26.7 ± 0.2 4.6 ± 0.1

2.4.3.2 Determination of individual frequencies

Individual frequencies of oscillation modes contain valuable information about the stellar
properties and provide essential constraints for detailed stellar modelling. In asteroseis-
mology, the extraction of frequencies is often referred to as ‘peakbagging’ analysis. Our
aim is to extract all significant oscillation modes from the power density spectrum to
calculate the mean large frequency spacing, which in combination with νmax and Teff pro-
vides access to the stellar parameters of red-giant stars through so-called scaling relations
(Ulrich 1986, Brown et al. 1991, Kjeldsen and Bedding 1995). Since frequencies with
large power are found around the frequency of maximum oscillation power, we restricted
the peakbagging analysis to the frequency range covering νmax ± 4 ∆ν. In this region, we
used the asymptotic relation (Tassoul 1980, Mosser et al. 2011) to obtain the spherical
degree and initial frequencies of the modes. We only included the dominant peak of each
degree per (acoustic) radial order without incorporating mixed or rotationally-split modes
explicitly. These p-dominated mode frequencies are necessary to compute the mean large
and small frequency separations. The resulting set of modes were simultaneously fit with
Lorentzian profiles (e.g. Anderson et al. 1990, Corsaro et al. 2015a):

Ppeaks(ν) = Pbg(ν) + η(ν)2

 n∑
i=1

A2
i /(πΓi)

1 + 4( ν−νi
Γi

)2

 . (2.3)

Each Lorentzian i consists of a central mode frequency νi, mode amplitude Ai and mode
linewidth Γi. For the peakbagging we kept the global background parameters (eq. 2.1)
fixed and considered uniform prior distributions for the variables representing the Lorent-
zian profiles. By using Metropolis-Hastings sampling in our framework of a MCMC
simulation (see Sec. 2.4.2 for more details), we explored the parameter space of about
54 free parameters on average per star. Figure 2.10 shows the global peakbagging fits to
the frequency range of the oscillations as well as the spectral window functions and the
residuals of the fits. Unresolved frequency peaks were also excluded from this analysis
since Lorentzian profiles are not appropriate for fitting them. Due to low S/N, we also
omitted some of the outermost modes which achieved poor fits and ambiguous posterior
probability distributions for the sampled parameters. Median values for all significant
mode frequencies, mode widths and mode amplitudes (eq. 2.3) that were computed with
our fitting method are listed in Tables 2.14, 2.15, and 2.16 for the three red giants studied
here.
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Figure 2.10: Fourier power density spectra (in black) of KIC 8410637 (top), KIC 5640750
(middle), and KIC 9540226 (bottom) in the frequency range of the oscillations. The red
solid lines represent the fits to the modes. The spectral window functions are shown in
the insets in each panel. The smaller panels below each spectrum show the residuals of
the peakbagging fits.



78 Red giants in eclipsing binaries

2.4.3.3 Signatures derived from individual frequencies

In the current study, we use the individual mode frequencies to derive the mean large and
small frequency separations. The large frequency separation ∆νn,` is the spacing between
oscillation modes of the same spherical degree (`) and consecutive radial order (n). The
large frequency spacing is related to the sound travel time across the stellar diameter and
thus to the mean density of the star. We computed the global mean large frequency sep-
aration (∆ν) from a linear weighted fit to the frequencies of all fitted ` = 0 modes versus
radial order that are reported in Tables 2.14, 2.15, and 2.16. Each fit was weighted ac-
cording to the uncertainties of the individual frequencies as derived from the peakbagging
analysis. The slope of this linear fit corresponds to ∆ν and the intercept refers to the offset
ε in the asymptotic relation (Tassoul 1980) multiplied with ∆ν. Based on the central three
radial ` = 0 modes we also calculated local values of ∆νc and εc that can be used as an
indicator for the evolutionary stage of red-giant stars (see Sec. 2.4.4.1).

Other parameters of interest are the mean small frequency separations δν02, i.e. the fre-
quency difference between ` = 0 and ` = 2 modes, and δν01, i.e. the offset of the ` = 1
modes from the midpoint between consecutive ` = 0 modes. The small frequency spac-
ings have some sensitivity in the stellar core of main-sequence stars and possibly for red
giants they provide some information about their evolutionary state (e.g. Corsaro et al.
2012, Handberg et al. 2017). For each couple of modes we obtained estimates of these
frequency spacings by using all significant frequencies and we adopted the weighted mean
of these measurements as mean small frequency separations δν02 and δν01.

The large and small frequency separations change with evolution and can be used to infer
stellar properties of stars showing solar-like oscillations. We report the global seismic
parameters for KIC 8410637, KIC 5640750, and KIC 9540226 in Table 2.7. We note that
radial and non-radial modes are used to compute the small frequency separations, hence
these measurements can also be perturbed by mixed modes. With ∆ν known, we con-
structed so-called échelle diagrams (Grec et al. 1983), in which we detect three clear
ridges of ` = 0, 1, 2 modes and several detections of ` = 3 modes (see Appendix 2.8.2 and
Fig. 2.15). These diagrams are consistent with the mode identification of the asymptotic
relation.

In addition to the large frequency separation, which represents the first frequency differ-
ence, we also investigated the second frequency difference for acoustic glitch signatures
(see Appendix 2.8.3.1).

In Figure 2.11 we show the comparison between νmax and ∆ν derived from our analysis
procedures with the results from previous asteroseismic studies. For all three red giants
we observe small variations of the order of a few per cent in the derived parameter es-
timates, which are partly caused by different analysis procedures and different datasets.
We find the local mean large frequency separations (∆νc) to have a larger value than the
global mean large frequency separations (∆ν). The difference in their computations is
the frequency range that is used, which can cause a change in the ∆ν value and can be
linked to stellar structure changes that occur over longer scales (Hekker and Christensen-
Dalsgaard 2017). In Figure 2.11 we also show different ∆ν − νmax relations that were
observed for field and cluster giants (Hekker et al. 2011a). KIC 8410637, KIC 5640750,
and KIC 9540226 follow such relations and their stellar parameters are in line with the
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Table 2.7: Weighted mean ∆ν (global and local), small frequency separations, δν02 and δν01,
and local offset εc computed from the frequencies obtained from the peakbagging analysis (see
Sec. 2.4.3.2).

KIC ∆ν`=0 [µHz] δν02 [µHz] δν01 [µHz] ∆νc [µHz] εc

8410637 4.564 ± 0.004 0.583 ± 0.014 -0.109 ± 0.016 4.620 ± 0.008 1.02 ± 0.02
5640750 2.969 ± 0.006 0.429 ± 0.013 -0.098 ± 0.016 2.978 ± 0.015 0.90 ± 0.02
9540226 3.153 ± 0.006 0.517 ± 0.019 -0.095 ± 0.014 3.192 ± 0.010 1.01 ± 0.02

Figure 2.11: Global oscillation parameters νmax and ∆ν for KIC 8410637, KIC 5640750,
and KIC 9540226. Different symbols correspond to different asteroseismic studies that
were performed (see legend). The red and gold symbols correspond to estimates of the
global (∆ν) and local (∆νc) large frequency separation that we discuss in Section 2.4.3.3.
Different linestyles indicate the ∆ν − νmax relations derived by Hekker et al. (2011a)
for three open clusters with different masses (NGC 6791: dash, NGC 6819: dash dot,
NGC 6811: dash triple dot) and field stars (dotted line).

mass ranges observed for the cluster stars.

2.4.3.4 Comparison with other asteroseismic fitting methods

To check for consistency with other analysis methods, the three red giants under study
were independently fit by several co-authors and their respective methods. Since these
methods have been thoroughly tested on red-giant stars, they provide the means to probe
the fitting procedures that we used (see Sec. 2.4.3 for more details). The comparison
between the global seismic parameters reported in Tables 2.6 and 2.7 with those calculated
from the methods developed by Mosser and Appourchaux (2009), Kallinger et al. (2014),
Corsaro and De Ridder (2014), Corsaro et al. (2015a) are presented in Appendix 2.8.3
and Figure 2.16. In this Figure we show that the derived νmax and ∆ν values from different
methods are in line for the three red giants investigated here. In addition, we checked the
individual frequencies of oscillation modes (Tab. 2.14 – 2.16) that we obtained based on
the fitting algorithm described in Section 2.4.3.2 with independent sets of frequencies that
were extracted according to the methods developed by Kallinger et al. (2014), Corsaro
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and De Ridder (2014), Corsaro et al. (2015a). For each red-giant star we only report
frequencies that were independently detected by different analysis methods.

2.4.4 Derivation of the stellar parameters
2.4.4.1 Evolutionary state of red giants

Asteroseismology allows us to differentiate between red-giant branch and red-clump stars
by using different oscillation features (e.g. Mosser et al. 2011, Bedding et al. 2011,
Kallinger et al. 2012, Mosser et al. 2014, Elsworth et al. 2017) that are discussed here.

All non-radial modes in red giants are mixed pressure-gravity modes, which carry infor-
mation of the outer layers of the star as well as from the core (e.g. Beck et al. 2011, Mosser
et al. 2012b). These mixed modes can be used to distinguish between less evolved red-
giant branch and more evolved red-clump stars through a study of their period spacings.
Mosser et al. (2011) and Bedding et al. (2011) considered observed (bumped) period
spacings of mixed dipole (` = 1) modes which give an estimate of the spacings of the
g-dominated modes. For hydrogen-shell burning stars on the red-giant branch they ob-
served period spacings of the order of about 50 s, while typical spacings of red-clump stars
reached values around 100 to 300 s. The observed period spacing is generally smaller than
the so-called asymptotic period spacing which is directly related to the core size of the
star. In more recent studies, Mosser et al. (2014, 2015) and Vrard et al. (2016) developed
a method to measure this asymptotic period spacing and they found values of about 40 to
100 s for red-giant branch stars and of roughly 200 to 350 s for more evolved stars in the
red clump. Based on the technique described by Mosser et al. (2015) and implemented by
Vrard et al. (2016), we derived asymptotic period spacings of 58±3 s and 55±5 s for two
of the red giants under study, KIC 5640750 and KIC 9540226, which suggests that these
stars belong to the red-giant branch.

A clear advantage of this method is that it does not require individual frequencies of g-
dominated mixed modes. For the three red giants investigated here only the p-dominated
non-radial modes are pronounced. Gaulme et al. (2014) found red-giant components in
close binary systems where tidal interactions caused extra mode damping and even com-
plete mode suppression. In our red giants, the lack of distinct mixed modes can also be an
indication for some binary influence. In a preliminary study we investigated the presence
of only p-dominated mixed modes in a small number of known red giants in binary sys-
tems as well as in a larger number of stars from the APOKASC (Pinsonneault et al. 2014)
sample. We observed mainly p-dominated mixed modes in a large fraction of known bi-
naries, while we detected the same feature in a significantly smaller fraction of red giants
in the APOKASC sample (Themeßl et al. 2017).

For stars without distinct g-dominated mixed modes, Kallinger et al. (2012) proposed an-
other method to determine their evolutionary stage, which is based on the local offset (εc)
of the asymptotic relation. By plotting the local large frequency separation (∆νc) against
this offset, non-helium (red-giant branch) and helium-burning (clump) stellar populations
occupy two different parts in this ∆νc versus εc space as shown in Figure 4 of Kallinger
et al. (2012). The theoretical explanation for this relation was provided by Christensen-
Dalsgaard et al. (2014) and additional observational evidence was found by Vrard et al.
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Table 2.8: Stellar parameters obtained from asteroseismic scaling relations. Whenever the solar
symbol is shown, we used solar values derived in this work and presented in Section 2.4.4.2.

KIC M [M�] R [R�] ρ̄ [ρ̄� × 10−3] log g (cgs)

Scaling relations (SR) + νmax,ref = νmax,� and ∆νref = ∆ν� (SRa)

8410637 1.74 ± 0.06 11.53 ± 0.15 1.136 ± 0.006 2.555 ± 0.005
5640750 1.33 ± 0.05 14.02 ± 0.20 0.481 ± 0.003 2.267 ± 0.005
9540226 1.45 ± 0.06 13.87 ± 0.20 0.542 ± 0.003 2.314 ± 0.006

SR + νmax,ref = νmax,� and ∆νref from Gug16 (SRb)

8410637 1.62 ± 0.06 11.12 ± 0.13 1.178 ± 0.002 2.555 ± 0.005
5640750 1.19 ± 0.05 13.31 ± 0.17 0.506 ± 0.002 2.267 ± 0.005
9540226 1.31 ± 0.05 13.22 ± 0.18 0.569 ± 0.002 2.314 ± 0.006

SR + νmax,ref = νmax,� and ∆νref from Gug17 (SRc)

8410637 1.61 ± 0.06 11.08 ± 0.13 1.182 ± 0.002 2.555 ± 0.005
5640750 1.17 ± 0.04 13.20 ± 0.17 0.511 ± 0.002 2.267 ± 0.005
9540226 1.30 ± 0.05 13.14 ± 0.17 0.572 ± 0.002 2.314 ± 0.006

SR + νmax,ref = νmax,� and ∆νref = ∆νref,emp ∼ 131 µHz (SRemp, Sec. 2.5.2)

8410637 1.51 ± 0.07 10.75 ± 0.20 1.218 ± 0.018 2.555 ± 0.005
5640750 1.15 ± 0.06 13.08 ± 0.26 0.515 ± 0.008 2.267 ± 0.005
9540226 1.26 ± 0.06 12.94 ± 0.25 0.581 ± 0.009 2.314 ± 0.006

(2015) based on the study of the acoustic glitches due to the second-helium ionization.
They both note that the separation between red-giant branch and red-clump stars does not
only relate to the different structures in their cores. The differences in the cores also cause
a change in the outer stellar layers. The observed effect of this is a shift in the acoustic
glitch of the helium second ionization zone that affects the oscillations. According to the
∆νc − εc diagram, the three red-giant stars KIC 8410637, KIC 5640750, and KIC 9540226
are located on the red-giant branch. For KIC 9540226, the identification of the evolution-
ary state, from both mixed modes and the local offset of the asymptotic relation, agrees
with the findings of Beck et al. (2014). They found that nearly all heartbeat stars in their
sample are unambiguously hydrogen-shell burning stars. Therefore they identified this
as a selection effect through stellar evolution as those systems are likely to undergo a
common-envelope phase and eventually eject the outer envelope before they can reach
the tip of the red-giant branch.

2.4.4.2 Asteroseismology: Direct method

To apply asteroseismic methods to calculate the stellar parameters of a solar-like oscillat-
ing star, we need to know the star’s effective temperature and metallicity. In Section 2.3.4
we accurately estimated these parameters from the analysis of the disentangled spectra.
The effective temperatures and metallicities for the red-giant components are summarized
in Table 2.4.

The frequency of maximum oscillation power is proportional to the acoustic cut-off fre-
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quency with νmax defined as (Brown et al. 1991, Kjeldsen and Bedding 1995):

νmax '
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(R/R�)2
√
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νmax,ref

'
g/g�√
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νmax,ref .

(2.4)

The large frequency separation scales with the sound travel time across the stellar diameter
and is therefore a measure of the mean density of the star (Ulrich 1986):
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(2.5)

These equations represent the well-known asteroseismic scaling relations. Parameters
M, R, g, and ρ̄ are given in solar units and ‘ref’ refers to a reference value. By combining
these two relations (eq. 2.4 and 2.5) we can compute an estimate of the asteroseismic
stellar parameters: (
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(2.6)

For these relations the Sun is often used as reference star. To obtain solar values in a
consistent way we determined the global seismic parameters of the Sun with the same
procedures as applied to the stellar data (see Sec. 2.4.2 and 2.4.3). The only difference
was the number of granulation background components that were used for the solar back-
ground model. We find a better fit to the Fourier spectrum of the Sun if we include a third
granulation component. We used full-disk integrated light measurements of the Sun from
the VIRGO experiment (Fröhlich et al. 1995) onboard the ESA/NASA Solar and Helio-
spheric Observatory (SOHO). To analyze the oscillations of the Sun, we used red and
green data from 12 years of continuous solar observations with a cadence of one minute.
The time span of these observations covers a whole solar cycle during which the p-mode
parameters are known to vary with the solar activity (e.g. Libbrecht and Woodard 1990,
Jiménez et al. 2002). We divided the data into subsets of four years with a one year step
to mimic the observation time span of the nominal Kepler mission. Then, we analyzed
each subset separately. From the results of all subsets we computed the following mean
solar values of νmax,� = 3166 ± 6 µHz and ∆ν� = 135.4 ± 0.3 µHz. In terms of spectro-
scopic measurements of the Sun, we make use of the nominal solar effective temperature
ofT N

eff,�
= 5771.8±0.7 K (Mamajek et al. 2015, Prša et al. 2016). Using these solar values

as a reference, we directly determined the stellar parameters of our three red-giant stars
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(eq. 2.6, SRa in Tab. 2.8). By using a single star as a reference it is implicitly assumed
that the internal properties of stars change in a homologous way with stellar evolution
for all stars of different masses and metallicities (Belkacem et al. 2011, 2013). However,
from theoretical predictions and observations we know that many structural changes oc-
cur in stars when they pass through different evolutionary stages during their lives and
hence the assumption of homology does not strictly hold. Due to these known difficulties
connected with the asteroseismic scaling relations, many studies (e.g. White et al. 2011,
Miglio et al. 2012, Mosser et al. 2013, Hekker et al. 2013b, Guggenberger et al. 2016,
Sharma et al. 2016, Rodrigues et al. 2017, Viani et al. 2017, Guggenberger et al. 2017)
tried to improve the results obtained from these relations. Gaulme et al. (2016) tested dif-
ferent scaling-relation corrections for their study of 10 red-giant stars in eclipsing binary
systems and found that they lead to similar results. Guggenberger et al. (2016, hereafter
Gug16) derived a metallicity and effective temperature dependent reference function ap-
plicable to red-giant branch stars in the mass and νmax range that we are investigating here.
They showed that their reference improves the precision of mass and radius estimates by
a factor of two, which translates to an accuracy of 5 % in mass and 2 % in radius. In
Guggenberger et al. (2017, hereafter Gug17), they expanded their method by including a
mass dependence in their formulation of the ∆ν reference. We adopted both of their meth-
ods to calculate the stellar parameters for KIC 8410637, KIC 5640750, and KIC 9540226,
which we present in Table 2.8 (SRb and SRc).

2.4.4.3 Asteroseismology: Grid-based modelling

Interpolation through a precomputed grid of stellar models and finding the best fit to the
observational data is another method by which stellar parameters can be determined (grid-
based modelling, see Gai et al. 2011). For the grid-based modelling (GBM) we used the
canonical BASTI grid5 (Pietrinferni et al. 2004), which spans masses from 0.5 M� to
3.5 M� in steps of 0.05 M� and metallicities of Z = 0.0001, 0.0003, 0.0006, 0.001,
0.002, 0.004, 0.008, 0.01, 0.0198, 0.03, and 0.04. (The corresponding helium abundances
are Y = 0.245, 0.245, 0.246, 0.246, 0.248, 0.251, 0.256, 0.259, 0.2734, 0.288, and 0.303.)
The BASTI grid includes models from the zero-age main sequence all the way to the
asymptotic giant branch phase. The models were computed using an updated version of
the code described by Cassisi and Salaris (1997) and Salaris and Cassisi (1998).

We extracted stellar parameters for the stars under study from this grid using an indepen-
dent implementation of the likelihood method described by Basu et al. (2010). In short,
the likelihood of each model was computed given the values of some chosen set of ob-
served parameters, in this case νmax, ∆ν, Teff , and [M/H]. To obtain a reliable uncertainty
for the derived parameters a Monte Carlo analysis was performed, in which the observed
values were perturbed within their uncertainties and a new likelihood was determined.
The final answer was derived from the centre and width of a Gaussian fit through the total
likelihood distribution of 1 000 perturbations. Furthermore, we used the temperature and
metallicity dependent reference function developed by Gug16 for the ∆ν scaling relation
(eq. 2.5). Additionally, we included the fractional solar uncertainties on ∆ν and νmax in
the uncertainties of the ∆ν and νmax values derived for the three giants investigated here to

5http://albione.oa-teramo.inaf.it/

http://albione.oa-teramo.inaf.it/
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Table 2.9: Asteroseismic stellar parameters obtained from grid-based modelling. Whenever the
solar symbol is shown, we used solar values derived in this work and presented in Section 2.4.4.2.

KIC M [M�] R [R�] ρ̄ [ρ̄� × 10−3] log g (cgs) age [Gyr]

Grid-based modelling + νmax,ref = νmax,� and ∆νref from Gug16 (GBM)

8410637 1.91 ± 0.06 11.83 ± 0.19 1.148 ± 0.003 2.571 ± 0.003 1.2 ± 0.6
5640750 1.39 ± 0.05 14.10 ± 0.53 0.496 ± 0.005 2.282 ± 0.005 2.8 ± 0.8
9540226 1.52 ± 0.06 14.03 ± 0.42 0.557 ± 0.006 2.329 ± 0.005 2.1 ± 0.8

Grid-based modelling + νmax,ref = νmax,� & ∆νref = ∆νref,emp ∼ 131 µHz (GBMemp, Sec. 2.5.2)

8410637 1.48 ± 0.06 10.65 ± 0.52 1.223 ± 0.035 2.555 ± 0.010 2.8 ± 1.2
5640750 1.22 ± 0.10 13.31 ± 0.85 0.515 ± 0.016 2.274 ± 0.011 4.6 ± 1.9
9540226 1.32 ± 0.10 13.14 ± 0.88 0.581 ± 0.017 2.321 ± 0.011 3.5 ± 1.6

account for uncertainties in the reference values. The grid-based modelling was carried
out twice once using only models on the red-giant branch and once using models in the
helium-core burning phase. We only report here the results from the red-giant branch
models as this is the evolutionary stage of the stars according to the present asteroseismic
analysis (see Sec. 2.4.4.1).

For the grid-based modelling we used the effective temperatures given in Table 2.4, which
were derived from the atmospheric analysis of the disentangled spectra. The resulting
stellar parameters are listed in Table 2.9 and shown in Figure 2.12. One advantage of
grid-based modelling is that it also provides age estimates for the stars. According to
our grid-based analysis KIC 8410637, KIC 5640750, and KIC 9540226 have approximate
ages of 1.2 ± 0.6, 2.8 ± 0.8, and 2.1 ± 0.8 Gyr, respectively.

2.5 Comparison between asteroseismic and dynamical
stellar parameters

The aim of this complementary study is to explore consistencies between stellar parame-
ters derived from asteroseismology, i.e. the asteroseismic scaling relations and grid-based
modelling, and from binary analyses.

2.5.1 Comparison
We first consider the mass, radius, mean density, and logarithmic surface gravity val-
ues obtained from the binary analyses. The results are shown as the shaded boxes in
Figure 2.12. The size of the box is given by the 1σ uncertainties of the individual pa-
rameters. For KIC 8410637 we note agreement between the different estimates with the
exception of the mass and the mean density from the current study which is lower than
the other values. As previously indicated, for KIC 5640750 there are two possible binary
solutions at inconsistent values of the parameters. This ambiguity can be attributed to in-
sufficient phase coverage of the spectroscopic observations (Sec. 2.3.2.3). We will shortly
use the asteroseismic values to guide us in making a choice between these two options.
For KIC 9540226 there is agreement within 1σ for the stellar masses and within 2σ for
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the stellar radii. Differences in these results can partly be attributed to the use of different
datasets, analysis methods and possibly some signal that is still left in the orbital phase.

We now consider the asteroseismic results that are shown as the open boxes in Figure 2.12.
Results from grid-based modelling (GBM) and the application of scaling laws (SR) are
shown. Because of underlying physical principles used to compute asteroseismic esti-
mates of mass and radius, mass and radius are correlated and the use of different ∆ν
values naturally leads to the obvious trends seen in the left panels of Figure 2.12. We
note that the uncertainties in ρ̄ and log g for the asteroseismic results are smaller than the
corresponding uncertainties of the values that are computed directly from the derived dy-
namical masses and radii.

From GBM we obtained larger values for the stellar masses and radii than the parameter
estimates calculated from the asteroseismic scaling relations. Tayar et al. (2017) pointed
out that GBM may modify the inferred effective temperatures in order to find a better
match between observed parameters and stellar models. This is the case here. We were
not able to find a matching model for the Teff derived from the binary analyses (Tab. 2.4).
Instead, GBM favoured models with ∼ 200 K higher effective temperatures. As a con-
sequence, we find larger values for the logarithmic surface gravities as well as stellar
masses and radii from GBM. We note that these results have relatively large uncertain-
ties, because their computations also take metallicities with uncertainties into account.
Furthermore, we obtained lower stellar masses and radii and larger mean densities when
using asteroseismic scaling relations that also take the metallicity, temperature and mass
dependence of the stars into account (SRc).

For KIC 5640750 we now compare the dynamical stellar parameters from both orbital
solutions with the asteroseismic values. We see that the second option (denoted as BA2)
with MB = 1.158 ± 0.014 M�, RB = 13.119 ± 0.090 R� and log gB = 2.266 ± 0.006 (cgs)
is in line with what we observe for the other two red giants where the dynamical masses
and radii are lower than the asteroseismic values. Despite the fact that the statistical sig-
nificance of both binary solutions is almost the same, we can now give more weight to
the second option which suits the overall picture of the three red giants studied here. In
the further analysis, we consider only the second set of dynamical stellar parameters for
KIC 5640750.

In Figure 2.12, in addition to the metallicity-independent mass-radius correlation already
alluded to, we see that there is a lack of agreement between the asteroseismic and dy-
namical stellar parameters for the three red giants under study. To investigate these dis-
crepancies further, we examine the influence of different asteroseismic observables and
the asteroseismic scaling relations since these are important for inferring the stellar prop-
erties. Among the parameters of interest are the global seismic parameters (νmax, ∆ν) as
well as the reference values (νmax,ref, ∆νref).

2.5.2 Empirically derived ∆νref,emp

Following the determination of the asteroseismic stellar parameters in Section 2.4.4.2, we
now reverse the scaling relations (eq. 2.4–2.5) to obtain estimates for the global seismic
parameters (νmax,∆ν) and for the reference values (νmax,ref ,∆νref) to check for coherency.
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In both cases we use the dynamical stellar masses and radii and the spectroscopic effective
temperatures as input.

In combination with the observed reference values, i.e. from the Sun, we calculated the
global seismic parameters, which for all three red-giant stars agree with the observed
values within uncertainties. We subsequently computed the reference values by using
the observed global seismic parameters of the red-giant stars together with the dynamical
M, R, and Teff. We obtained consistent reference values for the frequency of maximum
oscillation power with a mean value of 3137 ± 45 µHz which agrees with the observed
solar reference reported in Section 2.4.4.2.

Based on the same approach we calculated ∆νref for the three red giants investigated here.
We consistently derived lower values around a mean value of ∆νref,emp = 130.8± 0.9 µHz,
which is inconsistent with the observed solar value of 135.4 ± 0.3 µHz (Sec. 2.4.4.2).

We now consider the different ∆νref references that we used throughout our asteroseismic
analysis. We adopted either the observed solar value of ∼ 135 µHz or we included the
temperature, mass, and metallicity dependence of the stars using corrections based on
models. This latter approach led to a ∆νref ∼ 132 µHz based on the formulations provided
by Guggenberger et al. (2017). In the latter reference, the so-called surface effect (e.g.
Ball and Gizon 2017) is not included, yet it is present in the models on which the ∆νref

is based. This effect arises due to improper modelling of the near surface layers and it
causes a shift in the p-mode frequencies which then also changes the value of the mean
large frequency separation.

In short, if we consider a star with one solar mass, an effective temperature of 5772 K and
[Fe/H] = 0.0, i.e. the Sun, we would derive a large frequency separation of about 136 µHz
from a solar model. The reason why this is different from the observed solar value of
about 135 µHz is due to the surface effect. Thus, we may still have to decrease ∆νref

from Gug17 by ∼ 1 µHz, i.e. ∼ 1 %, because we would expect a shift of this magnitude
for the reference value. This would then be very close to our empirically determined
∆νref,emp value. A detailed analysis of the scale of the surface effect in KIC 8410637,
KIC 5640750, and KIC 9540226 is presented in Ball et al. (2018). It is worth noting that
due to the surface effect a shift in frequency between ∼ 0.1 and 0.3 µHz at νmax is observed
for the three red-giant stars studied here, which show oscillations in the range between
∼ 24 and 46 µHz. The magnitude of these frequency differences is similar to the 1 % that
was found for the model of the Sun.

Most recently, Brogaard et al. (2018) also reported consistencies between asteroseismic
and dynamical stellar parameters when using a model-dependent theoretical correction
factor that was proposed by Rodrigues et al. (2017) instead of the usual solar reference
values. Their correction of ∆νref is of the same order of magnitude as the one that we
present in the current study.

From the combined asteroseismic and binary analysis we derived an empirical ∆νref,emp

reference that seems to be more appropriate for these three specific red-giant stars instead
of the commonly used solar reference. We used this in the asteroseismic scaling relations
(eq. 2.6) and determined revised stellar parameters for KIC 8410637, KIC 5640750, and
KIC 9540226. The asteroseismic stellar masses and radii from both the scaling relations
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Table 2.10: Relative differences in per cent of the asteroseismic stellar parameters
(Sec. 2.4.4.2 and 2.4.4.3) with respect to the binary solution (Sec. 2.3.3). In the case of
KIC 5640750 we compare the dynamical stellar parameters that are based on the second
binary solution.

Method KIC 8410637 KIC 5640750 KIC 9540226

M R ρ̄ log g M R ρ̄ log g M R ρ̄ log g
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

SRa 18 9 8 < 1 15 7 6 < 1 4 3 6 < 1
SRb 10 5 5 < 1 3 2 1 < 1 6 2 < 1 < 1
SRc 9 5 4 < 1 1 < 1 < 1 < 1 7 2 < 1 < 1
SRemp 3 2 2 < 1 < 1 < 1 < 1 < 1 9 4 1 < 1

GBM 30 12 7 < 1 20 8 3 1 9 5 3 < 1
GBMemp < 1 < 1 1 < 1 5 2 < 1 < 1 5 2 1 < 1

and GBM are lower and they are now in line with the dynamical stellar parameters. We
show the revised stellar parameters with dotted boxes in Figure 2.12. The uncertainties
for these stellar parameters are larger due to a larger uncertainty in the ∆νref,emp reference.
In the GBM analysis, these lower masses have an impact on the ages of these red-giant
stars which are now on average 1.5 Gyr older (Tab. 2.9). In addition we note that our
conclusions do not change when using slightly different ∆ν values (such as the ones given
in Fig. 2.16) for the determination of the stellar parameters of the three red giants studied
here.

2.5.2.1 Consistency check with a larger sample of red giants

To further test the empirically derived reference value, we applied it to a number of known
oscillating red-giant-branch components in eclipsing binary systems. By using published
νmax,∆ν and Teff we recomputed the asteroseismic stellar parameters for nine stars that
show solar-like oscillations in the range between ∼ 20 and ∼ 77 µHz, i.e. KIC 9540226
(Beck et al. 2014, Gaulme et al. 2016, Brogaard et al. 2018), KIC 8410637 (Frandsen
et al. 2013), KIC 4663623, KIC 9970396, KIC 7037405, KIC 5786154, KIC 10001167,
KIC 7377422 and KIC 8430105 (Gaulme et al. 2016).

Although we find consistencies between the derived asteroseismic and published dynam-
ical stellar parameters, we see some scatter in the results (see Fig. 2.13). This scatter is
partly caused by combining global seismic parameters, effective temperatures, RVs and/or
disentangled spectra that were obtained from different methods and specific calibrations.
The systematics and biases that are introduced by asteroseismic techniques have been
thoroughly discussed in literature (e.g. Hekker et al. 2011b, Verner et al. 2011, Hekker
et al. 2012, Kallinger et al. 2014).

The observed scatter in the asteroseismic results is larger than the quoted uncertainties of
the dynamical stellar parameters. This shows the importance of a homogeneous analysis
for all stars under study, which is expected to increase the consistency between the aster-
oseismic and dynamical stellar parameters. We note that Kallinger et al. (2018) present
a careful study where they test the scaling relations with dynamical stellar parameters of
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Figure 2.12: Stellar mass versus radius (left) and mean density versus logarithmic surface
gravity (right) for KIC 8410637 (top), KIC 5640750 (middle), and KIC 9540226 (bottom)
derived from binary orbit analyses (filled boxes) and from asteroseismology (open boxes).
Results from the current analysis are shown with solid and dotted lines. The latter refers to
stellar parameters determined on the basis of an empirical ∆νref,emp reference (Sec. 2.5.2).
Dashed lines represent already published values of the stellar parameters (Frandsen et al.
(2013, F13dyn), Gaulme et al. (2016, G16dyn;seis), Brogaard et al. (2018, B18dyn)). For
different colours see legend and Tables 2.3, 2.8, and 2.9.
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Figure 2.13: Asteroseismic versus dynamical masses (left) and radii (right) for nine RGB
components in known eclipsing binary systems with KIC numbers indicated. Asteroseis-
mic stellar parameters (SRemp) were determined by using ∆νref,emp ∼ 131 µHz (Sec. 2.5.2).

eclipsing binary systems and they only found six stars, for which the stellar properties are
known with sufficient precision for solid conclusions.

Despite these issues we determined a consistent mean value for the ∆ν reference (al-
beit with large uncertainties) when using the published properties of these nine red-giant
branch stars, which cover a larger stellar parameter space than our original sample. This
is a further indication that a ∆νref,emp of about 131 µHz is appropriate for stars on the
red-giant branch.

2.6 Conclusions
We find agreement between the stellar parameters determined using asteroseismic scaling
relations and eclipse modelling only when using a ∆ν reference that we derived empiri-
cally and that can be justified by known physical parameters such as mass, effective tem-
perature, metallicity, and the surface effect. In Table 2.10 we show the relative differences
of the asteroseismic stellar parameters for the red-giant components of KIC 8410637,
KIC 5640750, and KIC 9540226 with respect to the binary solutions. As we look at a
small sample of stars here, we cannot investigate the global differences between the aster-
oseismic scaling relations and orbital parameters. Yet, we performed a careful in-depth
observational analysis for each of the red giants and we found consistent results for the
three systems.

Calculations of detailed stellar models of the three red giants studied here are on the way.
The highly-precise and accurate Kepler data can be used to fit oscillation frequencies in
a large number of red-giant stars, which provide additional information for stellar mod-
els. The oscillation frequencies, however, have to be corrected for surface effects before
they can be compared to modelled frequencies (e.g. Ball and Gizon 2017). The surface
effects in red giants are not yet fully understood, even though three-dimensional simula-
tions are insightful (Sonoi et al. 2015, for instance). The results from detailed modelling
of the surface effects of these three red giants in eclipsing binary systems using individual
frequencies is presented in Ball et al. (2018). We note however that for the red giants in-
vestigated here we require a lower ∆ν reference value of the order of 131 µHz when mass,
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temperature, and metallicity dependence, as well as surface effect are taken into account.
This supports the idea of using ∆νref,emp = 130.8 ± 0.9 µHz which in our case provides
consistencies between asteroseismic and dynamical stellar parameters for KIC 8410637,
KIC 5640750, and KIC 9540226 which are all located close to the red-giant branch bump.

The current study shows the importance of ∆νref in the asteroseismic scaling relations.
Ideally, we would extend this work to more pulsating red-giant stars in eclipsing binary
systems that cover a wide range in stellar parameters. In future, stars with different prop-
erties of mass, metallicity, and evolutionary stages (e.g. red-giant components in eclipsing
binaries that are in the red clump phase) need to be studied in order to identify appropriate
reference values and to investigate the presence of other sources that could influence the
stellar parameter measurements.

2.7 Appendix A: RVs for KIC 8410637, KIC 5640750,
and KIC 9540226

We applied the CCF method to all available spectra of KIC 8410637, KIC 5640750 and
KIC 9540226 to determine the radial velocities of the giants and their corresponding un-
certainties, which are given in Tables 2.11, 2.12, and 2.13. For completeness, we also
report the RVs for the dwarf components of these systems, which were obtained by pre-
vious studies.

Table 2.11: Radial velocity measurements of the two components of KIC 8410637. These are the
measurements used in the analysis in Section 2.3.3. They were not used in the determination of the
physical properties of the system (which was done with the velocity amplitudes from the spectral
disentangling analysis). The RVs in this table are those used by co-author JS in his analysis in
Section 2.3.3 and also in Frandsen et al. (2013). However, it was retrospectively discovered that
they are not the same as those published in Frandsen et al. (2013), and source of the discrepancy
has resisted our attempts to find it (S. Frandsen, 2015, priv. comm.). In future we advise that
analyses of this binary system use the results from spectral disentangling, or as a second choice
the RVs published in Frandsen et al. (2013). We report the RVs in this table only for completeness.

KIC 8410637

HJD-2450000 Giant RV [ km s−1] Dwarf RV [ km s−1] Source

5660.7131 -54.69 ± 0.05 -30.68 ± 2.59 fies

5660.7362 -54.69 ± 0.04 -30.23 ± 2.31 fies

5733.6205 -60.91 ± 0.05 -27.79 ± 0.76 fies

5749.5119 -62.18 ± 0.05 -27.39 ± 0.74 fies

5762.6434 -62.98 ± 0.06 -26.92 ± 0.88 fies

5795.4991 -56.90 ± 0.05 -29.78 ± 1.04 fies

5810.4756 -28.70 ± 0.05 -64.60 ± 1.38 fies

5825.3478 -11.75 ± 0.05 -85.47 ± 1.21 fies

5828.3417 -12.90 ± 0.05 -84.60 ± 1.30 fies

5834.4285 -16.01 ± 0.06 -81.75 ± 1.21 fies
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5844.3966 -21.13 ± 0.05 -76.04 ± 1.79 fies

5855.3398 -25.64 ± 0.05 -68.46 ± 1.59 fies

5886.3003 -34.33 ± 0.05 -58.98 ± 1.15 fies

5903.3175 -37.68 ± 0.06 -58.22 ± 1.18 fies

5903.3444 -37.80 ± 0.07 -57.31 ± 1.55 fies

5700.4998 -58.00 ± 0.05 -29.28 ± 1.14 ces

5726.4642 -60.47 ± 0.06 -28.01 ± 1.27 ces

5734.4230 -60.87 ± 0.06 -26.41 ± 2.28 ces

5734.5069 -60.84 ± 0.07 -27.56 ± 1.29 ces

5754.4370 -62.55 ± 0.06 -26.19 ± 1.19 ces

5793.3535 -58.62 ± 0.05 -29.30 ± 1.48 ces

5799.4801 -53.04 ± 0.10 -30.89 ± 1.52 ces

5810.4495 -28.76 ± 0.06 -66.44 ± 2.19 ces

5817.3353 -14.40 ± 0.08 -83.10 ± 1.85 ces

5850.3024 -23.98 ± 0.06 -76.39 ± 2.48 ces

5852.2713 -24.85 ± 0.06 -76.17 ± 3.31 ces

5880.2040 -33.14 ± 0.05 -59.91 ± 1.48 ces

5334.5342 -61.94 ± 0.04 -27.85 ± 0.82 hermes

5334.6737 -61.53 ± 0.05 -27.59 ± 0.84 hermes

5335.5792 -61.90 ± 0.04 -27.90 ± 0.74 hermes

5335.6967 -61.58 ± 0.05 -27.48 ± 0.88 hermes

5336.5676 -61.88 ± 0.05 -27.69 ± 0.78 hermes

5336.7291 -61.47 ± 0.05 -27.26 ± 1.04 hermes

5609.7553 -50.64 ± 0.04 -30.81 ± 1.69 hermes

5715.4610 -59.72 ± 0.05 -28.80 ± 1.68 hermes

5765.4437 -63.07 ± 0.05 -26.82 ± 0.98 hermes

5779.4483 -63.58 ± 0.04 -27.28 ± 0.88 hermes

5801.4416 -49.85 ± 0.05 -41.61 ± 2.13 hermes

5835.3802 -16.82 ± 0.05 -82.05 ± 1.41 hermes

5871.3083 -30.75 ± 0.05 -62.92 ± 1.61 hermes

5888.3093 -35.35 ± 0.05 -58.77 ± 1.00 hermes

5888.3273 -34.80 ± 0.05 -59.05 ± 1.21 hermes

5965.7723 -45.72 ± 0.05 -34.82 ± 1.41 hermes

Table 2.12: Radial velocity measurements of the red-giant component of KIC 5640750
derived with the cross-correlation method (CCF) from hermes spectra.

KIC 5640750

HJD-2450000 Giant RV [ km s−1] S/N (Mg I triplet) Source

5623.7602 -23.34 ± 0.04 41.80 hermes

5765.5211 -27.56 ± 0.03 32.00 hermes

5778.6673 -28.13 ± 0.03 31.10 hermes

5835.4160 -30.93 ± 0.03 32.00 hermes

5867.3840 -32.67 ± 0.03 26.20 hermes

5870.3324 -32.83 ± 0.03 27.10 hermes

6011.7324 -43.42 ± 0.04 29.30 hermes

6101.5477 -50.77 ± 0.03 37.00 hermes

6101.5691 -50.76 ± 0.03 38.10 hermes
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6119.4962 -51.43 ± 0.04 36.80 hermes

6119.5199 -51.43 ± 0.04 37.50 hermes

6138.4671 -51.53 ± 0.03 25.70 hermes

6138.4908 -51.53 ± 0.04 24.90 hermes

6176.4195 -49.03 ± 0.03 33.90 hermes

6182.4333 -48.36 ± 0.03 35.70 hermes

6183.4953 -48.24 ± 0.03 38.70 hermes

6183.5190 -48.22 ± 0.04 37.50 hermes

6196.5769 -46.42 ± 0.03 26.80 hermes

6215.3964 -43.59 ± 0.04 38.30 hermes

6479.6168 -22.34 ± 0.03 20.10 hermes

6484.4643 -22.42 ± 0.04 20.80 hermes

6488.5134 -22.32 ± 0.04 20.30 hermes

Table 2.13: Radial velocity measurements of the red-giant component of KIC 9540226
derived with CCF from hermes spectra.

KIC 9540226

HJD-2450000 Giant RV [ km s−1] S/N (Mg I triplet) Source

5765.4977 -25.85 ± 0.03 29.60 hermes

5783.5060 -22.50 ± 0.03 32.80 hermes

5872.3865 -12.13 ± 0.04 27.10 hermes

5884.3425 -19.18 ± 0.04 21.80 hermes

5884.3570 -19.19 ± 0.05 19.90 hermes

5889.3317 -21.16 ± 0.05 16.70 hermes

5889.3459 -21.30 ± 0.04 10.90 hermes

5889.3662 -21.18 ± 0.04 18.40 hermes

5990.7423 -5.01 ± 0.04 22.90 hermes

6106.4950 -26.43 ± 0.03 25.40 hermes

6106.5165 -26.41 ± 0.04 26.90 hermes

6126.6582 -24.17 ± 0.04 24.40 hermes

6126.6796 -24.22 ± 0.03 24.10 hermes

6132.5252 -22.91 ± 0.04 27.60 hermes

6132.5471 -22.84 ± 0.04 25.60 hermes

6136.6113 -21.65 ± 0.03 32.20 hermes

6136.6327 -21.61 ± 0.03 31.70 hermes

6139.4500 -21.00 ± 0.04 31.50 hermes

6148.5050 -17.38 ± 0.04 32.10 hermes

6148.5264 -17.36 ± 0.04 32.10 hermes

6158.4969 -11.59 ± 0.04 34.20 hermes

6158.5183 -11.58 ± 0.04 35.00 hermes

6176.4456 6.03 ± 0.04 30.10 hermes

6182.4104 13.44 ± 0.04 33.40 hermes

6184.5669 15.87 ± 0.03 31.40 hermes

6184.5895 15.92 ± 0.03 29.50 hermes

6195.5294 18.81 ± 0.04 30.60 hermes

6506.4110 -13.52 ± 0.03 21.90 hermes

6506.4324 -13.55 ± 0.04 20.70 hermes
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6510.5030 -10.81 ± 0.03 16.50 hermes

6518.3925 -4.06 ± 0.04 26.10 hermes

6519.4668 -2.94 ± 0.04 26.70 hermes

2.8 Appendix B: Frequencies

2.8.1 Peakbagging results

Based on the methods described in Section 2.4.3.2, we extracted all the significant fre-
quencies from the oscillation spectra of the three stars. The complete list of central mode
frequencies, amplitudes, and linewidths are reported in Tables 2.14, 2.15, and 2.16. In ad-
dition, we show the linewidths of all significant ` = 0 and ` = 2 modes in Figure 2.14. It is
clear that the extracted non-radial modes incorporate contributions from unresolved mixed
and rotationally-split modes. For KIC 8410637, KIC 5640750 and KIC 9540226 we de-
rived linewidths of the same order of magnitude as reported by Corsaro et al. (2015a).
They performed an extensive peakbagging analysis of 19 red-giant stars and they pointed
out a linewidth depression close to the frequency of maximum oscillation power which is
also visible in Figure 2.14.

2.8.2 Échelle diagrams

Échelle diagrams (Grec et al. 1983) present an alternative technique to identify modes
of different spherical degree `. To construct such a diagram the Fourier power density
spectrum is divided into segments of equal lengths (∆ν). Then these segments are stacked
on top of each other. The modes of the same spherical degree line up as near vertical ridges
in the diagram. Figure 2.15 shows the échelle diagrams for KIC 8410637, KIC 5640750,
and KIC 9540226. Three ridges are clearly visible, which correspond to spherical degrees
` = 0, 1, 2. The strongest mode frequencies that were extracted through the peakbagging
analysis are marked with symbols.

2.8.3 Differences between asteroseismic methods

The global oscillation parameters and frequencies of oscillation modes were derived in-
dependently from several co-authors using different approaches. We refer the interested
reader to Mosser and Appourchaux (2009) (EACF, hereafter M09), Kallinger et al. (2014)
(hereafter K14) and Corsaro and De Ridder (2014), Corsaro et al. (2015a) (Diamonds,
hereafter C14), for detailed descriptions of these methods. Figure 2.16 shows that the
seismic parameter estimates, νmax and ∆ν, are of the same order of magnitude and that
the use of different procedures does not substantially affect the results. Based on our
analysis (Sec. 2.4.3.3) we determined local (∆νc) and global (∆ν) mean large frequency
separations, which are shown in the same Figure.
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Table 2.14: Median values and 68 % confidence interval for central mode frequencies, mode
amplitudes, and mode heights for KIC 8410637.

KIC 8410637

n ` ν [µHz] A [ppm] Γ [µHz]

5 2 32.13±0.05 47.6±6.3 0.43±0.11
6 0 32.79±0.02 40.6±3.6 0.08±0.03
6 1 35.16±0.04 52.1±4.9 0.45±0.11
6 2 36.56±0.03 66.7±7.1 0.38±0.09
7 0 37.18±0.02 46.1±5.4 0.14±0.05
6 3 37.70±0.09 12.3±6.4 0.33±0.13
7 1 39.44±0.02 87.4±6.8 0.23±0.04
7 2 41.02±0.01 62.5±6.2 0.10±0.03
8 0 41.62±0.01 88.0±5.6 0.09±0.02
8 1 44.06±0.02 90.4±6.3 0.26±0.04
8 2 45.69±0.01 87.4±5.0 0.14±0.03
9 0 46.28±0.02 94.5±6.3 0.13±0.03
8 3 47.19±0.01 29.6±4.2 0.07±0.03
9 1 48.70±0.02 93.3±5.7 0.21±0.03
9 2 50.31±0.02 96.4±7.1 0.14±0.03
10 0 50.85±0.01 87.3±5.0 0.11±0.03
9 3 51.71±0.06 37.2±5.1 0.48±0.13
10 1 53.32±0.02 81.4±4.0 0.30±0.04
10 2 55.06±0.04 75.1±8.6 0.48±0.11
11 0 55.54±0.03 61.4±7.7 0.24±0.05
11 1 58.04±0.04 64.5±3.7 0.46±0.04
11 2 59.74±0.05 47.6±8.4 0.44±0.16
12 0 60.28±0.05 62.0±7.0 0.44±0.05
12 1 62.95±0.02 82.7±4.6 0.50±0.01

Figure 2.14: Mode linewidths of significant frequencies of KIC 8410637 (left),
KIC 5640750 (middle), and KIC 9540226 (right). Red circles and blue squares represent
` = 0 and ` = 2 modes, respectively.
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Table 2.15: Same as Table 2.14 for KIC 5640750.

KIC 5640750

n ` ν [µHz] A [ppm] Γ [µHz]

3 2 14.47±0.06 18.9±17.0 0.09±0.05
4 0 14.86±0.06 48.1±19.1 0.08±0.05
4 1 16.46±0.03 86.2±11.9 0.10±0.06
4 2 17.29±0.03 53.5±11.8 0.12±0.08
5 0 17.76±0.02 75.1±12.7 0.09±0.04
5 1 19.27±0.01 142.2±14.9 0.06±0.03
5 2 20.09±0.01 107.6±11.1 0.14±0.04
6 0 20.52±0.02 99.8±08.4 0.16±0.04
5 3 20.94±0.07 51.8±14.6 0.06±0.02
6 1 22.12±0.01 140.6±12.0 0.12±0.03
6 2 23.09±0.01 141.1±15.7 0.04±0.01
7 0 23.52±0.01 187.4±16.1 0.04±0.01
6 3 24.02±0.02 57.4±10.7 0.13±0.06
7 1 25.09±0.01 182.4±11.7 0.15±0.02
7 2 26.06±0.02 178.5±12.1 0.15±0.04
8 0 26.47±0.02 128.8±13.2 0.09±0.04
8 1 28.02±0.02 147.2±10.3 0.19±0.03
8 2 29.07±0.03 127.2±24.2 0.33±0.14
9 0 29.43±0.08 99.9±23.3 0.47±0.09
9 1 31.08±0.04 93.1±07.1 0.38±0.09
9 2 32.21±0.05 70.0±13.4 0.46±0.11
10 0 32.72±0.06 66.9±12.8 0.48±0.12
10 1 34.23±0.06 58.4±06.7 0.42±0.07
10 2 35.36±0.08 60.3±06.2 0.43±0.05
11 0 35.99±0.05 64.4±11.5 0.49±0.03

Figure 2.15: Échelle diagrams for KIC 8410637 (left), KIC 5640750 (middle), and
KIC 9540226 (right). Darker blue tones correspond to higher power. Extracted mode
frequencies are indicated by symbols (square: ` = 0, triangle: ` = 2, diamond: ` = 1,
plus: ` = 3) and the horizontal dotted lines show measured νmax values.
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Table 2.16: Same as Table 2.14 for KIC 9540226.

KIC 9540226

n ` ν [µHz] A [ppm] Γ [µHz]

5 0 19.24±0.02 66.1±10.2 0.06±0.03
5 1 20.90±0.04 140.8±09.0 0.47±0.09
5 2 21.88±0.04 38.3±10.1 0.12±0.09
6 0 22.27±0.02 97.3±09.5 0.20±0.04
6 1 23.84±0.02 130.6±09.1 0.23±0.06
6 2 24.83±0.03 129.7±08.7 0.37±0.09
7 0 25.36±0.01 99.8±11.8 0.06±0.02
7 1 27.09±0.01 172.0±12.2 0.11±0.03
7 2 28.19±0.02 135.6±12.6 0.12±0.05
8 0 28.58±0.01 144.1±13.0 0.13±0.04
8 1 30.24±0.01 154.8±10.9 0.17±0.03
8 2 31.32±0.04 97.2±14.8 0.22±0.10
9 0 31.71±0.02 127.2±13.2 0.21±0.04
9 1 33.46±0.03 111.7±05.9 0.48±0.06
9 2 34.69±0.05 53.4±09.7 0.41±0.08
10 0 35.21±0.04 83.5±10.3 0.45±0.04

Figure 2.16: Estimates of the global oscillation parameters from different methods for
KIC 8410637 (left), KIC 5640750 (middle), and KIC 9540226 (right). The red and gold
star symbols represent the global (∆ν) and local (∆νc) mean large frequency separations
that were used to determine the stellar parameters and evolutionary stages of the red gi-
ants. The KIC number is indicated in each panel.
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2.8.3.1 Second frequency differences and acoustic glitches

In addition to the first frequency difference i.e. the large frequency separation ∆νn,` which
is given by:

∆νn,` ≡ νn+1,` − νn,`, (2.7)

we also computed the second frequency difference ∆2νn,` (Gough 1990):

∆2νn,` ≡ ∆νn,` − ∆νn−1,` = νn−1,` − 2νn,` + νn+1,`. (2.8)

In both equations (2.7–2.8) νn,` represents the frequency of a mode with given radial order
n and spherical degree `. The first and second frequency differences of the radial (` = 0)
modes for KIC 8410637, KIC 5640750, and KIC 9540226 are shown in Figure 2.17. The
uncertainties in ∆νn,` and ∆2νn,` were derived from a standard error propagation of the
uncertainties of the individual mode frequencies. The oscillatory signal which is visible in
the second frequency difference is caused by a so-called acoustic glitch. This observable
feature appears due to changes in the stellar interior that occur at scales shorter than
the local wavelengths of the oscillations. In red giants, such a change is caused by the
helium second ionization zone. Recently, acoustic glitch signatures could be examined
in modelled and observed oscillation frequencies of stars exhibiting solar-like oscillations
(e.g. Miglio et al. 2010, Mazumdar et al. 2014, Broomhall et al. 2014, Corsaro et al.
2015b, Vrard et al. 2015, Pérez Hernández et al. 2016).

In the current analysis we show that it is possible to perform a basic study of the acoustic
glitches of two of the red giants (KIC 8410637 and KIC 5640750) for which we have 4
years of nearly uninterrupted Kepler data without any larger gaps available. Since this
periodic signature caused by the helium second ionization zone is observable in pure p
modes (e.g. Vorontsov 1988, Gough 1990), we can measure the acoustic depth and width
of the helium second ionization zone (Hekker et al. 2013a) through the analysis of the
second frequency differences of ` = 0 modes. The modulation due to the glitch can be
described by the following model (Houdek and Gough 2007):

∆2ωn,` = Aoscωn,` exp (−2b2
oscω

2
n,`) cos [2(τHeIIωn,` + φ)] + c, (2.9)

where ωn,` and ∆2ωn,` define the angular versions of νn,` and ∆2νn,`:

ωn,` ≡ 2πνn,`,∆2ωn,` ≡ 2π∆2νn,`. (2.10)

This model is composed of a dimensionless amplitude Aosc, an acoustic depth τHeII and
characteristic width bosc of the second ionization zone, a constant phase shift φ and an off-
set c. Based on the Bayesian MCMC method with Metropolis-Hastings sampling which
is described in more detail in Section 2.4.2, we estimated the model parameters in equa-
tion 2.9 and their 68 % credible intervals. In this case we assumed that the parameters
follow a Gaussian distribution and therefore used a normal likelihood function. We did
not account for correlations between the individual second frequency differences. For
the free parameters, we chose uniform priors and a strict constraint on the period τHeII

with the convention that at least two measurements of the second frequency differences
should cover one period of the acoustic glitch. The bottom panels in Figure 2.17 show
a fit of the acoustic glitch model to the second frequency differences of KIC 8410637



98 Red giants in eclipsing binaries

Figure 2.17: First (top panels, eq. 2.7) and second (bottom panels, eq. 2.8) frequency dif-
ferences for KIC 8410637, KIC 5640750, and KIC 9540226. The red solid lines indicate
the fits of the acoustic glitches (eq. 2.9 and Tab. 2.17) to the second differences. Uncer-
tainties are shown on all points. In some cases the error bars are smaller than the symbol
size.
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Table 2.17: Median values and corresponding 68 % credible interval as derived for the fit param-
eters of the glitch model (eq. 2.9) using the Metropolis-Hastings MCMC algorithm.

KIC Aosc τHeII [s] bosc [s] φ [rad] c [µHz]

8410637 0.041 ± 0.003 40437 ± 16 3875 ± 23 2.33 ± 0.01 0.06 ± 0.01
5640750 0.020 ± 0.007 62901 ± 4281 4118 ± 656 1.08 ± 0.67 0.09 ± 0.04

and KIC 5640750, and are based on the best-fit parameters presented in Table 2.17. Due
to a low number of available second frequency differences (less than five) we omitted
KIC 9540226 (Fig. 2.17) from this part of the analysis.
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3 Red giants in open clusters

This chapter reproduces an article in preparation Ages of oscillating red-giant stars in
NGC 6791 and NGC 6819: The impact of stellar physics on asteroseismic age determina-
tions by N. Themeßl, S. Hekker, A. Garcı́a Saravia Ortiz de Montellano, A. Mints et al.,
which will be submitted to a journal in the future.

3.1 Summary
The common formation history puts tight constraints on stars in open clusters. These
constraints make oscillating cluster giants excellent test-beds to verify asteroseismic tech-
niques. We tested asteroseismic ages of red-giant stars with cluster isochrones and we
explored the influence of metallicity constraints on these age estimates. In addition, we
investigated the impact of different mass-loss rates for stellar models on the derived ages.
From the oscillation spectra of red-giant stars it is possible to deduce their stellar pa-
rameters (asteroseismology), while at the same time these properties can be determined
independently through isochrones fitted to all cluster members simultaneously. For the
two open clusters, NGC 6791 and NGC 6819, we obtained age and metallicity estimates
from isochrone fitting to the clusters’ observed colour-magnitude diagrams. We used
these global cluster parameters to verify independently determined asteroseismic masses
and ages for about 60 oscillating red giants in both clusters. These masses and ages were
derived based on Kepler long-cadence data and atmospheric parameters (Teff,[M/H]) from
the SDSS/APOGEE spectrograph using an asteroseismic grid-based modelling approach.
For a homogeneous analysis we used the same grids of isochrones for both, the astero-
seismic study and the isochrone fitting. For red-giant stars in each cluster, we obtained
more consistent results between the asteroseismic ages and isochrones when using the
global metallicities of NGC 6791 and NGC 6819 as constraints for grid-based modelling
instead of the measured values for individual stars. This shows that the metallicity plays
an important role for asteroseismic age determinations. Moreover, we found that using
grids of isochrones that incorporate different mass loss rates (η = 0.0, 0.2 and 0.4) have a
small impact on the derived ages.

3.2 Introduction
Galactic open clusters comprise hundreds to a few thousands of stars that are assumed
to be born from the same molecular cloud. Their common origin puts tight constraints
on the age, metallicity, and distance of cluster stars. Some studies found considerable
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discrepancies in the age estimates when derived for individual members in an open clus-
ter. This is in contradiction with a coeval stellar population, which is expected from open
cluster formation theories (e.g. Lada and Lada 1991, Friel 1995, Elmegreen et al. 2000,
Lada 2010).

In the current study, we investigate consistencies between stellar ages of red-giant stars
that belong to the same open cluster. Our aim is to investigate which parameters are
important for asteroseismic age determinations and how accurately they need to be de-
termined to obtain consistencies between the asteroseismic ages of individual stars and
the global cluster ages from isochrones. Here, we focus on red giants in NGC 6791 and
NGC 6819. The global physical properties of both clusters are known due to several
surveys and dedicated photometric and spectroscopic campaigns from the ground (e.g.
Kinman 1965, Burkhead 1971, Montgomery et al. 1994, Kalirai et al. 2001, Stetson et al.
2003, 2005, Carraro et al. 2006, Grundahl et al. 2008, Hole et al. 2009, Jeffries et al. 2013,
An et al. 2015, Ak et al. 2016, and references therein). Different analyses of cluster data
have led to a broad range in age, distance, interstellar reddening, and metallicity for each
cluster. NGC 6791 is among the oldest galactic open clusters with an age around 7−9 Gyr
and a global metallicity of about 0.3 − 0.4 dex. NGC 6819 is a younger open cluster with
near-solar metallicity and an age of about 2−3 Gyr. In Table 3.1 we summarize the global
physical properties of NGC 6791 and NGC 6819 that were recently derived by An et al.
(2015) and Ak et al. (2016), which are broadly consistent with earlier studies.

For some of the more luminous stars in NGC 6791 and NGC 6819, the nominal Ke-
pler space mission (e.g Borucki et al. 2010) provided photometric time series data from
2009 − 2013 that were complemented with spectra from the Apache Point Observatory
Galactic Evolution Experiment (APOGEE; Majewski et al. 2017). The observed stars are
in the red-giant phase of stellar evolution and they show solar-like oscillations that we
can detect. We can probe the interior structure and evolution of red giants through studies
of the observed oscillation modes by using an analysis method called asteroseismology.
As these stars are members of open clusters, their assumed similar ages and metallicities
provide more stringent constraints for testing theories of stellar structure and evolution
than field stars. This makes cluster stars very important astrophysical laboratories.

Several studies emerged from the asteroseismic analysis of different subsets of the clus-
ter data of NGC 6791 and NGC 6819, such as the determination of global seismic and
stellar parameters (e.g. Stello et al. 2010, Hekker et al. 2011a, Corsaro et al. 2012, Wu
et al. 2014b), the asteroseismic cluster membership probability (e.g. Stello et al. 2011),
asteroseismic ages for red-giant branch stars in both open cluster (Basu et al. 2011), the
analysis of mass loss of cluster stars (e.g. Miglio et al. 2012, Handberg et al. 2017), cluster
distance moduli (e.g. Wu et al. 2014a), and the effect of metallicity on the granulation ac-
tivity in cluster stars (Corsaro et al. 2017). Basu et al. (2011) was first to study individual
asteroseismic ages of cluster stars in NGC 6791 and NGC 6819 based on seven months
of Kepler data. By using asteroseismic constraints, they explored the global astrophysical
properties of the two open clusters and computed stellar parameters from stellar models
for a sample of stars on the red-giant branch. Basu et al. derived age estimates with
relatively large uncertainties due to the length of the datasets present at the time of the
study. Since then, the observations of the cluster stars were continued up to the end of
the nominal Kepler space mission. With more data available at present, we are able to re-
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duce the uncertainties in the asteroseismic and stellar parameters. Thus, we can perform a
comprehensive investigation of the derived asteroseismic ages of individual cluster giants
that are in different evolutionary stages, i.e. on the red-giant branch, in the red clump, and
on the asymptotic giant branch. Moreover, Miglio et al. (2012) constrained the red-giant
branch (RGB) mass loss for both open clusters through comparisons between the average
mass of stars in the red clump with stars on the low-luminosity red-giant branch. For
NGC 6791, they found an average mass difference of 0.09 ± 0.03 M�, which was in line
with isochrones that were computed by using a mass-loss efficiency parameter between
0.1 and 0.3. In the case of NGC 6819, Miglio et al. could derive less stringent constraints
on the RGB mass-loss rate, because of the lower mass-loss rate for stars in this cluster.
In the current study, we used three grids of isochrones that were generated with different
mass-loss rates to explore their impact on the resulting age estimates for individual cluster
giants.

For about 60 stars in NGC 6791 and NGC 6819 we extracted oscillation frequencies and
identified their corresponding spherical degrees. By using published effective tempera-
tures and metallicities from APOGEE, we computed a set of asteroseismic stellar param-
eters, i.e. masses, ages, radii, mean densities, luminosities, and surface gravities, of the
red-giant stars from grid-based modelling by using asteroseismic observables. We stud-
ied the age and mass distributions of the red-giant populations in the two open clusters
and investigated how different choices of initial constraints such as the metallicity of the
cluster affect the asteroseismic age and mass determinations. Although the clusters’ ages
and metallicities are well constrained from literature studies, we redid the isochrone fit-
ting to the publicly available colour-magnitude data (Stetson et al. 2005, An et al. 2015)
to assure a homogeneous analysis by using the same set of stellar isochrones (PARSEC)
for the asteroseismic grid-based analyses of individual red-giant stars.

3.3 Isochrone ages and metallicities for NGC 6791 and
NGC 6819

Fitting stellar isochrones to the observed colour-magnitude diagram of a cluster is a well-
known method to determine the cluster’s age and metallicity. This technique requires
photometric measurements in different bands for many cluster members as well as a suit-
able grid of stellar isochrones, i.e. constant age and metallicity tracks, that can describe
the stellar properties of the observed stars in the cluster. Although studies in the litera-
ture obtained matching isochrones for NGC 6791 and NGC 6819, we reapplied isochrone
fitting to both open clusters to avoid biases from models in the comparison with our as-
teroseismic results.

3.3.1 Ground-based BVI photometric data
NGC 6791 and NGC 6819 are among the most-well studied open clusters with absolute
magnitudes V ∼ 14 − 17 mag (e.g. Stetson et al. 2003, 2005) and V ∼ 12 − 14 mag (e.g.
Hole et al. 2009, Ak et al. 2016), respectively.
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Table 3.1: Astrophysical parameters of NGC 6791 and NGC 6819 as determined by An et al.
(2015) and Ak et al. (2016), respectively.

NGC 6791 NGC 6819

E(B − V) [mag] 0.105 ± 0.014 0.130 ± 0.035
[Fe/H] (dex) +0.42 ± 0.07 +0.051 ± 0.020
µV [mag] 13.04 ± 0.08 12.22 ± 0.10
d [pc] 6918 ± 240 2309 ± 106
τ [Gyr] 9.5 ± 0.3 2.4 ± 0.2

In the current study, we used broadband BVI photometry1 for NGC 6791 that were ob-
tained from an extensive campaign including the analysis of 1 764 individual CCD images
with additional data obtained more recently (e.g. Stetson et al. 2003, 2005). Furthermore,
Platais et al. (2011) determined the membership probability for many stars in the open
cluster by using proper motion measurements. Based on the colour-magnitude data pro-
vided by Stetson et al. (2005), An et al. (2015) determined the global cluster properties
including reddening E(B − V), metallicity [Fe/H], distance modulus µV and distance d
from main-sequence fitting, and age τ, which we report in Table 3.1.

For NGC 6819 we used UBV measurements2 from a dedicated ground-based photometric
survey by Ak et al. (2016). Based on astrometric measurements, Ak et al. derived the
membership probability of the observed stars and obtained a set of astrophysical parame-
ters of the cluster (see Tab. 3.1).

As a further note, Choi et al. (2018) used the recent Gaia Data Release 2 (e.g. Gaia
Collaboration et al. 2018) to investigate star clusters among which were NGC 6791 and
NGC 6819. Choi et al. estimated the distance moduli for both clusters and obtained
µ6791 ≈ 13.03 − 13.45 mag and µ6819 ≈ 12.22 mag, respectively. These values are consis-
tent with determinations previously presented in the literature.

3.3.2 Stellar isochrones
A further prerequisite for determining cluster ages and metallicities is a homogeneous
grid of stellar isochrones that covers the observed stellar properties of the stars in the
cluster. Among the modern stellar evolution codes that can be used to generate stellar
isochrones, is the PAdova and TRieste Stellar Evolution Code (Bressan et al. 2012). The
isochrones extend from the lower main sequence up to the asymptotic giant branch with
a mass range 0.1 ≤ M ≤ 12 M� and metallicities ranging from −1.49 ≤ [M/H] ≤ +0.78
(0.0005 ≤ Z ≤ 0.07). On the red-giant branch mass loss is included in the models by using
the empirical formulation by Reimers (1975). Along each isochrone a set of theoretical
stellar parameters is provided including mass, effective temperature, luminosity, radius,
surface gravity, and evolutionary phase. A description of the input physics of the PARSEC
models, such as the solar distribution of heavy elements, opacities, equation of state,
nuclear reaction rates, neutrino losses, convective overshoot, and diffusion can be found
in Bressan et al. (2012).

1http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/PASP/115/413
2http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/other/ApSS/361.126

http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/PASP/115/413
http://vizier.u-strasbg.fr/viz-bin/VizieR?-source=J/other/ApSS/361.126
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Figure 3.1: Colour-magnitude diagrams of the the open clusters NGC 6791 (left) and
NGC 6819 (right) based on data obtained by Stetson et al. (2003, 2005) and Ak et al.
(2016). Matching stellar isochrones are shown in blue, which were determined through
isochrone fitting by using the grids of models where mass loss was included with an
efficiency parameter of η = 0.2 (see Sec. 3.3 and 3.3.2).

In total, each grid of isochrones comprises 71 unique metallicities with −1.49 ≤ [M/H] ≤
+0.78 at varying step sizes of 0.026−0.067 dex depending on the metallicity. Due to larger
observational uncertainties, we adopted a larger interval for lower metallicites. Stellar
ages range from ∼ 4 Myr to ∼ 12.8 Gyr (6.61 ≤ log τ ≤ 10.11), which adds up to 176
unique ages with an average step size of 0.02 dex in log τ. To include different mass-loss
rates on the red-giant branch, we generated three different versions of the grid for each
cluster by using efficiency parameters of 0.0, 0.2, and 0.4 in Reimer’s empirical law. We
obtained our grids of isochrones through the CMD web interface at OAPD3. We note that
in order to obtain magnitudes and colours in the Johnson photometric system along the
isochrones, it is necessary to provide the interstellar extinction of each cluster, which we
computed based on the interstellar reddening values given in Table 3.1.

3.3.3 Isochrone fitting
The principle of isochrone fitting is to derive a cluster’s age and metallicity by placing all
observed stars in a cluster simultaneously on the same isochrone in a colour-magnitude

3http://stev.oapd.inaf.it/cgi-bin/cmd_2.7

http://stev.oapd.inaf.it/cgi-bin/cmd_2.7
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diagram. Due to the absolute magnitudes (corrected for extinction) provided by the stel-
lar isochrones, we first converted the apparent magnitudes of the observed cluster stars
into absolute magnitudes by using the distance modulus. The distances to both clusters
are well constrained by several surveys and here we used the values from recent studies
as listed in Table 3.1. To find a match between the observed cluster data and our set
of stellar isochrones we used a statistical maximum-likelihood approach similar to the
near point estimator method, which was first proposed by Flannery and Johnson (1982).
In this approach, the likelihood of each isochrone is computed based on the separation
between each observed data point to the isochrone through minimization of a χ2 statis-
tics. So inherently, one of the assumptions of this method is that models are uniformly
distributed along the isochrone. In addition, we included Gaussian weighting in the like-
lihood function in order to take the membership probability of each observed star into
account. In the end, we obtained an age and metallicity estimate for the cluster from
the isochrone with the lowest χ2 value and we obtained uncertainties for the derived pa-
rameters from the elements of the covariance matrix. In Figure 3.1 we show the colour-
magnitude diagrams of NGC 6791 (left) and NGC 6819 (right). For each cluster, we show
the isochrone fit (in blue) to the observed data based on the grids of models, in which mass
loss was included with an efficiency parameter of η = 0.2. The cluster isochrones pro-
vided τ = 8.3±0.5 Gyr and [M/H] = 0.29±0.03 dex for NGC 6791, and τ = 2.3±0.2 Gyr
and [M/H] = 0.07± 0.03 dex for NGC 6819. These estimates are broadly consistent with
values present in the literature.

3.4 Determination of asteroseismic stellar parameters

NGC 6791 and NGC 6819 are both present in the Kepler field of view. As both open
clusters are rather faint, photometric data could only be obtained for the brightest cluster
members. The observed stars are in the red-giant phase of stellar evolution, at which
point their luminosities are high and it is easier to observe them than less luminous sub-
giant and main-sequence stars. Through an analysis of the solar-like oscillations we aim
to derive the stellar properties of the cluster giants in NGC 6791 and NGC 6819. We
used the asteroseismic observables together with spectroscopic effective temperatures and
metallicities from APOGEE in a grid-based approach to model the observed stars.

3.4.1 Kepler light curves

We used Kepler photometric time series data that were obtained during the 4-year nom-
inal mission with a cadence of about 29.4 min. The concatenated corrected light curves
(Handberg and Lund 2014) are available for about 60 cluster giants. It is worth noting
that the light curves for stars in the open cluster NGC 6819 contain large gaps every three
months per year due to their location on a broken CCD, in which case no data could be
stored. We removed all gaps that were longer than ten days in the light curves and merged
the datasets together. For a star that shows solar-like oscillations this approach was shown
to provide a cleaner Fourier spectrum that is less affected by the window function (Hekker
et al. 2010c).
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3.4.2 Fourier spectrum analysis
The global asteroseismic parameters that we use in this study are the frequency of maxi-
mum oscillation power νmax and the mean large frequency separation ∆ν, i.e. the spacing
between modes of the same spherical degree (`) and consecutive radial order (n). They
can be derived from the Fourier power density spectrum (PDS), which for a pulsating
red-giant star consists of a stellar oscillation signal that is superimposed on a global back-
ground signal dominated by granulation power. We obtained νmax from a global model fit
to the PDS by using a formulation similar to model F from Kallinger et al. (2014):

PPDS(ν) = nwh + η(ν)2

 3∑
i=1

Ai

1 + (ν/bi)4 + Pg(ν)

 , (3.1)

where:

Pg(ν) = Λg exp
(
−(ν − νmax)2

2σ2
g

)
. (3.2)

The global background model comprises a white noise component nwh and three granu-
lation background components where each Lorentzian-like component is defined by an
amplitude Ai and frequency bi. We describe the power envelope with a Gaussian function
that is characterized by a height Λg, standard deviation σg, and νmax. The granulation
and oscillation signals are further affected by discrete time-sampling, which is accounted
for with η = sinc(πνnyq/2ν), where νnyq represents the Nyquist frequency (Kallinger et al.
2014).

To sample the parameter space of equation 3.1, we applied a Bayesian Markov Chain
Monte Carlo (MCMC) method with affine invariant sampling, known as the emcee algo-
rithm4. After an initial burn-in phase and chain convergence, we retained all parameter
values in order to generate the posterior probability distributions. From the final distribu-
tions we used the medians as expectation parameters and their 16th and 84th percentiles
as uncertainties. We report the results from the global model fit (eq. 3.1) for all stars
in NGC 6791 and NGC 6819 under study in Table 3.3 in the appendix. Estimates of the
frequency of maximum oscillation power νmax for each red giant are listed in Table 3.2.

3.4.2.1 Frequencies of oscillation modes

After normalizing the PDS by the global background model, we derived an initial set of
significant peaks by using the continuous-wavelet pattern-matching algorithm introduced
by Garcı́a Saravia Ortiz de Montellano et al. (2018). This method employs a Mexican
hat wavelet that is suitable for the automated detection of resolved modes that can be
approximated by Lorentzian functions as well as any unresolved peaks that can be fitted
with sinc functions. For the cluster giants, we applied the algorithm and selected signals
with a signal-to-noise threshold of 1.5, an Akaike Information Criterion (AIC) above 0,
and a number of false-positive peak detections below 1. Each peak is then assigned with a
probability of it being due to real signal. Based on these definitions, we obtained an initial
set of frequencies including their amplitudes (heights) and linewidths. To obtain reliable

4emcee: The MCMC Hammer, http://dfm.io/emcee/

http://dfm.io/emcee/
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Figure 3.2: Background-removed power density spectrum (in black) including the peak-
bagging fits to the oscillation modes (in red) for three red giants in NGC 6791. The lower
panels below each fit show the residuals of the fit.
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oscillation frequencies, we used a final maximum-likelihood estimation (MLE) fit to op-
timize all model parameters simultaneously. In Figure 3.2 we show the final peakbagging
fits to three red-giant stars over the frequency range of the observed oscillations. Only
noise is left in the residuals of the fits that are shown below each PDS.

We applied the asymptotic relation (Tassoul 1980) to our final set of oscillation frequen-
cies to determine the spherical degrees ` of the modes. From the pure radial p modes
(` = 0), we calculated the mean large frequency separation ∆ν from a linear fit to the fre-
quencies versus radial orders n. In this fit, the slope represents the mean large frequency
separation and the intersection is related to the dimensionless phase term ε. The derived
∆ν values for red giants in NGC 6791 and NGC 6819 are reported in Table 3.2. Moreover,
for all stars in our sample we provide the ` = 0 oscillation frequencies, their amplitudes,
and linewidths in Tables 3.7 (NGC 6791) and 3.8 (NGC 6819) in the appendix.

3.4.3 Asteroseismic ages and masses from stellar models
We can determine the asteroseismic stellar parameters based on a combination of astero-
seismic (νmax,∆ν) and spectroscopic (Teff, [M/H]) observables in a grid-based modelling
approach.

3.4.3.1 Teff and [M/H] from APOGEE

The asteroseismic data were complemented with spectroscopic parameters derived from
high-resolution (∼ 22 500) high signal-to-noise (> 100) near-infrared spectra provided by
the Apache Point Observatory Galactic Evolution Experiment (APOGEE; Majewski et al.
2017) as part of the Sloan Digital Sky Survey III (SDSS-III). In Table 3.2 we provide the
effective temperatures Teff and metallicities [M/H] for the red giants investigated here.

3.4.3.2 Asteroseismic grid-based modelling

In the asteroseimic grid-based modelling (GBM) approach (Gai et al. 2011) we search for
the best match between a precomputed grid of stellar isochrones and the observational
data, in this case νmax,∆ν,Teff , and [M/H]. We used the same grid of PARSEC isochrones
as for the isochrone fitting (Sec. 3.3.3) in order to ensure a homogeneous comparison. In
order to calculate the stellar parameters for the red giants, we used an independent imple-
mentation of the likelihood method (Basu et al. 2010) where the likelihood of each model
was evaluated based on our set of observed parameters. For the computation of the global
seismic parameters of the models, we used the asteroseismic scaling relations (e.g. Ulrich
1986, Brown et al. 1991, Kjeldsen and Bedding 1995) with empirically derived reference
values (Themeßl et al. 2018). In addition to stellar masses and ages, the GBM approach
provides an indication of the evolutionary stage of the red-giant stars (Hekker et al. 2017).

We performed the GBM analysis six times by applying different constraints to the stellar
models and by using grids of isochrones, where different mass-loss rates are included.
In the first attempt, we determined the stellar parameters without any further constraints
except for the asteroseismic and spectroscopic input parameters. These results are re-
ported in the appendix (Tab. 3.4-3.6) and shown in Figure 3.3. Then, we used additional
information about the metallicity of each cluster to further constrain the stellar models.
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We applied a Gaussian weight on the GBM results with the isochrone metallicity as the
mean and a width of 3σ uncertainty on the isochrone metallicity. The resulting stellar
mass and age estimates for red giants in each cluster are presented in Table 3.2 and in
Figure 3.4. Moreover, Figure 3.5 shows the Gaussian distributions of the input metallic-
ities of the stars in each cluster in comparison to the computed metallicity distributions,
when the global clusters’ metallicities are used as constraints for GBM. For a final consis-
tency check, we used both the global cluster ages and metallicities to constrain the grids
of isochrones and obtained similar results (see Fig. 3.6, Tab. 3.4-3.6).

3.5 Results

In the following, we discuss the asteroseismic mass and age estimates that were derived
from GBM, and which are shown in Figures 3.3 and 3.4. For both open clusters, we found
a slightly younger average age for the red-giant population when models with larger mass-
loss rates (η = 0.4) were used, while the stellar masses remained constant (Figs. 3.8-3.7
and Tab. 3.4-3.6). This is expected, since more mass loss indicates that the stars were more
massive and thus they are younger. In the GBM approach, the mass is well-constraint by
∆ν and νmax, and these values were not changed. When GBM was carried out without
including any constraints from the global cluster properties, we obtained masses between
about 0.9 and 1.3 M� and ages ranging 9.70 ≤ log τ ≤ 10.1 (∼ 5 − 12 Gyr) for red giants
in NGC 6791 (Fig. 3.3). In NGC 6819 we found red giants with larger masses between
about 1.2 and 1.7 M� and younger ages between 9.3 ≤ log τ ≤ 9.8 (∼ 2.1− 6.3 Gyr). For
NGC 6791, we observed that RGB stars were more massive with an average mass around
∼ 1.15 M� compared to more evolved red clump and asymptotic giant branch stars, which
were lined up around ∼ 1.0 M�. In the case of NGC 6819, the mass and age estimates for
red-giant stars with different evolutionary stages were more scattered without showing a
mass difference between red-giant branch and more evolved clump stars independent of
the constraints and models with different mass-loss rates that were used.

The current study will be continued with further investigations of different mass-loss rates
and the impact of metallicity constraints on the derived asteroseismic ages and masses for
the red-giant stars in both open clusters.

3.6 Appendix: Ensemble asteroseismic results

3.6.1 Global granulation background fits

Each red giant was fitted with a global background model comprising three granulation
background components, one white noise component, and a Gaussian fit to the power
excess. In Table 3.3 we provide the results from the global background fitting of all stars
that were investigated here.
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No additional constraints

No additional constraints

Figure 3.3: Stellar masses and logarithmic ages derived for NGC 6791 (top) and
NGC 6819 (bottom) from GBM using ∆ν, νmax,Teff , and [M/H] determined for the in-
dividual stars, without any additional constraints from the cluster. Here, grids of models
with a mass-loss rate according to η = 0.2 were used. The colours represent different evo-
lutionary stages for the red giants (orange: red-giant branch stars, red: red clump stars,
yellow: asymptotic giant branch stars). The dashed lines indicate computed cluster ages
from isochrone fitting (including their 3σ uncertainties shown with dotted lines). The
right panels provide marginalized distributions of the age and mass estimates based on
the results for the red-giant stars that are shown in the left panels.
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Additional metallicity constraint

Additional metallicity constraint

Figure 3.4: Same as Figure 3.3, now with metallicity constraints from the cluster
isochrones.
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Figure 3.5: Histograms of the individual input and combined output metallicity distribu-
tions for red giants in NGC 6791 (top) and NGC 6819 (bottom). Red colours show the
computed metallicity distributions when the clusters’ metallicities were adopted as con-
straints for GBM. The line styles represent grids of isochrones with different mass-loss
rates (solid: η = 0.0, dotted: η = 0.2, dashed: η = 0.4). The grey Gaussian fits repre-
sent the input metallicity distributions for the individual stars in each cluster, which were
generated by using [M/H] values (Tab. 3.2) as the mean and their 3σ uncertainties as the
width of the Gaussian functions.

3.6.2 Derived asteroseismic masses and ages from different
grid-based modelling runs

We provide the results based on different grids of isochrones (mass-loss rates with η =

0.0, 0.2, and 0.4) and by using different constraints for GBM (Sec. 3.4.3.2, Tab. 3.4-3.6).

3.6.3 Radial (` = 0) oscillation frequencies
For each red-giant star we extracted the frequencies, amplitudes, and linewidths in the
background-normalized PDS by using the method developed by Garcı́a Saravia Ortiz de
Montellano et al. (2018). In addition, we determined the spherical degree ` of the oscil-
lation modes by using the asymptotic relation (Tassoul 1980). In Tables 3.7 and 3.8 we
provide frequencies that were identified as ` = 0 modes, and which we used for the deter-
mination of ∆ν in Section 3.4.2.1. A list of all detected frequencies for different spherical
degrees (` = 0, 1, 2, and 3) is available upon request from the first author.
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Table 3.4: Asteroseismic masses, ages, and evolutionary stages for red giants in NGC 6791 and
NGC 6819 from GBM by using models with η = 0.0.

Without additional constraints Metallicity and age constraints

KIC M [M�] log(τ/yr) M [M�] log(τ/yr) Evo.

NGC 6791

2297793 1.11 ± 0.15 9.855 ± 0.192 1.13 ± 0.12 9.932 ± 0.126 RGB
2297825 1.00 ± 0.05 10.055 ± 0.029 1.01 ± 0.05 10.054 ± 0.032 RC
2435987 1.03 ± 0.07 10.032 ± 0.074 1.07 ± 0.07 10.032 ± 0.051 RGB
2436209 1.00 ± 0.05 10.045 ± 0.033 1.00 ± 0.05 10.045 ± 0.034 RGB
2436417 1.03 ± 0.04 10.049 ± 0.032 1.03 ± 0.04 10.049 ± 0.034 RC
2436688 1.07 ± 0.09 9.944 ± 0.177 1.06 ± 0.07 9.995 ± 0.055 RGB
2436900 1.09 ± 0.07 9.957 ± 0.163 1.10 ± 0.07 9.940 ± 0.166 RGB
2437040 1.19 ± 0.11 9.867 ± 0.130 1.18 ± 0.10 9.884 ± 0.118 RGB
2437340 1.06 ± 0.05 10.035 ± 0.045 1.06 ± 0.05 10.035 ± 0.043 AGB
2437353 1.05 ± 0.05 10.036 ± 0.054 1.05 ± 0.05 10.035 ± 0.044 RC
2437496 1.10 ± 0.08 10.012 ± 0.064 1.08 ± 0.12 10.000 ± 0.071 AGB
2437507 1.26 ± 0.12 9.746 ± 0.151 1.25 ± 0.13 9.759 ± 0.173 RGB
2437564 1.09 ± 0.06 10.003 ± 0.103 1.09 ± 0.06 10.005 ± 0.097 RC
2437804 1.07 ± 0.04 10.032 ± 0.039 1.07 ± 0.04 10.041 ± 0.037 RC
2437816 1.18 ± 0.12 9.856 ± 0.132 1.17 ± 0.11 9.865 ± 0.115 RGB
2437965 1.02 ± 0.07 10.032 ± 0.039 1.04 ± 0.05 10.034 ± 0.038 AGB
2438051 1.07 ± 0.12 9.990 ± 0.065 1.06 ± 0.11 9.988 ± 0.064 RC
2438333 1.01 ± 0.05 10.050 ± 0.031 1.02 ± 0.04 10.055 ± 0.031 RGB
2568654 1.12 ± 0.08 9.965 ± 0.139 1.16 ± 0.09 9.905 ± 0.149 RC
2569055 0.98 ± 0.04 10.069 ± 0.024 1.01 ± 0.03 10.071 ± 0.023 RC
2569078 1.23 ± 0.11 9.779 ± 0.155 1.24 ± 0.11 9.791 ± 0.130 RGB

NGC 6819

4936335 0.91 ± 0.08 10.011 ± 0.060 0.99 ± 0.06 10.025 ± 0.043 AGB
4937257 1.00 ± 0.09 9.904 ± 0.137 0.99 ± 0.07 10.008 ± 0.082 RGB
4937576 1.36 ± 0.15 9.692 ± 0.149 1.42 ± 0.15 9.549 ± 0.191 RC
5023732 1.51 ± 0.15 9.396 ± 0.138 1.47 ± 0.15 9.473 ± 0.154 RGB
5024043 1.27 ± 0.12 9.574 ± 0.152 1.31 ± 0.10 9.629 ± 0.108 RGB
5024143 1.54 ± 0.14 9.398 ± 0.122 1.55 ± 0.13 9.414 ± 0.103 RGB
5024750 1.50 ± 0.16 9.451 ± 0.150 1.49 ± 0.19 9.482 ± 0.158 AGB
5111949 1.38 ± 0.12 9.478 ± 0.125 1.33 ± 0.12 9.606 ± 0.195 RGB
5112072 1.46 ± 0.17 9.418 ± 0.148 1.45 ± 0.15 9.478 ± 0.143 RGB
5112288 1.66 ± 0.06 9.332 ± 0.051 1.69 ± 0.05 9.335 ± 0.042 RC
5112361 1.64 ± 0.16 9.321 ± 0.116 1.62 ± 0.16 9.358 ± 0.139 RGB
5112373 1.31 ± 0.12 9.539 ± 0.131 1.22 ± 0.11 9.722 ± 0.116 RGB
5112387 1.34 ± 0.12 9.493 ± 0.120 1.26 ± 0.11 9.691 ± 0.132 RGB
5112401 1.24 ± 0.10 9.697 ± 0.095 1.25 ± 0.09 9.703 ± 0.087 RC
5112730 1.58 ± 0.05 9.380 ± 0.050 1.58 ± 0.04 9.404 ± 0.043 RC
5112938 1.37 ± 0.11 9.453 ± 0.115 1.36 ± 0.14 9.566 ± 0.177 RGB
5112948 1.56 ± 0.10 9.467 ± 0.072 1.55 ± 0.10 9.461 ± 0.072 RC
5112950 1.49 ± 0.06 9.461 ± 0.048 1.49 ± 0.06 9.474 ± 0.046 RC
5112974 1.44 ± 0.07 9.483 ± 0.063 1.43 ± 0.06 9.498 ± 0.043 RC
5113041 1.38 ± 0.11 9.614 ± 0.115 1.37 ± 0.12 9.614 ± 0.099 RC
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5113061 1.42 ± 0.22 9.550 ± 0.190 1.43 ± 0.23 9.561 ± 0.191 AGB
5023889 1.30 ± 0.11 9.649 ± 0.104 1.30 ± 0.10 9.641 ± 0.110 RGB
5023953 1.67 ± 0.08 9.326 ± 0.049 1.69 ± 0.07 9.340 ± 0.048 RC
5112786 1.65 ± 0.21 9.343 ± 0.132 1.67 ± 0.20 9.338 ± 0.131 RGB
5112481 1.36 ± 0.19 9.552 ± 0.199 1.37 ± 0.18 9.578 ± 0.185 RGB
5112880 1.69 ± 0.15 9.247 ± 0.104 1.70 ± 0.14 9.262 ± 0.111 RGB
5112467 1.33 ± 0.11 9.532 ± 0.133 1.25 ± 0.10 9.686 ± 0.124 RGB
5112744 1.59 ± 0.07 9.432 ± 0.053 1.57 ± 0.08 9.419 ± 0.049 RC

Table 3.5: Same as Table 3.4, now for models with η = 0.2.

Without additional constraints Metallicity and age constraints

KIC M [M�] log(τ/yr) M [M�] log(τ/yr) Evo.

NGC 6791

2297793 1.11 ± 0.16 9.855 ± 0.202 1.13 ± 0.08 9.918 ± 0.076 RGB
2297825 0.93 ± 0.04 10.050 ± 0.034 1.00 ± 0.06 9.997 ± 0.066 RC
2435987 1.03 ± 0.08 10.035 ± 0.054 1.11 ± 0.05 9.950 ± 0.077 RGB
2436209 0.99 ± 0.05 10.050 ± 0.031 1.07 ± 0.05 9.997 ± 0.066 RGB
2436417 0.97 ± 0.04 10.044 ± 0.038 1.01 ± 0.06 9.987 ± 0.074 RC
2436688 1.08 ± 0.09 9.931 ± 0.186 1.10 ± 0.07 9.976 ± 0.086 RGB
2436900 1.09 ± 0.08 9.945 ± 0.166 1.13 ± 0.07 9.879 ± 0.083 RGB
2437040 1.19 ± 0.10 9.857 ± 0.130 1.15 ± 0.08 9.892 ± 0.071 RGB
2437340 1.04 ± 0.08 9.968 ± 0.092 1.05 ± 0.07 9.941 ± 0.073 AGB
2437353 1.03 ± 0.08 9.956 ± 0.074 1.06 ± 0.06 9.933 ± 0.060 RC
2437496 1.03 ± 0.12 9.968 ± 0.128 1.10 ± 0.08 9.910 ± 0.091 AGB
2437507 1.25 ± 0.13 9.743 ± 0.162 1.19 ± 0.07 9.854 ± 0.088 RGB
2437564 1.08 ± 0.08 9.908 ± 0.091 1.09 ± 0.07 9.909 ± 0.072 RC
2437804 0.97 ± 0.07 10.033 ± 0.044 1.02 ± 0.06 9.988 ± 0.084 RC
2437816 1.18 ± 0.12 9.832 ± 0.144 1.15 ± 0.07 9.885 ± 0.076 RGB
2437965 0.95 ± 0.07 10.035 ± 0.038 1.00 ± 0.08 10.004 ± 0.081 AGB
2438051 1.00 ± 0.13 9.978 ± 0.076 1.07 ± 0.09 9.935 ± 0.101 RC
2438333 1.01 ± 0.06 10.050 ± 0.031 1.07 ± 0.05 10.030 ± 0.079 RGB
2568654 1.11 ± 0.11 9.849 ± 0.114 1.12 ± 0.09 9.838 ± 0.076 RC
2569055 0.91 ± 0.04 10.065 ± 0.025 0.97 ± 0.05 10.039 ± 0.067 RC
2569078 1.24 ± 0.11 9.775 ± 0.154 1.19 ± 0.09 9.849 ± 0.098 RGB

NGC 6819

4936335 0.85 ± 0.09 10.009 ± 0.091 1.28 ± 0.07 9.598 ± 0.072 AGB
4937257 1.00 ± 0.09 9.899 ± 0.138 1.29 ± 0.09 9.586 ± 0.074 RGB
4937576 1.36 ± 0.14 9.662 ± 0.130 1.51 ± 0.10 9.438 ± 0.080 RC
5023732 1.53 ± 0.15 9.410 ± 0.142 1.54 ± 0.13 9.398 ± 0.102 RGB
5024043 1.28 ± 0.12 9.574 ± 0.153 1.39 ± 0.07 9.528 ± 0.083 RGB
5024143 1.54 ± 0.14 9.401 ± 0.121 1.57 ± 0.11 9.391 ± 0.085 RGB
5024750 1.48 ± 0.18 9.443 ± 0.154 1.58 ± 0.14 9.404 ± 0.102 AGB
5111949 1.37 ± 0.12 9.462 ± 0.123 1.48 ± 0.13 9.445 ± 0.101 RGB
5112072 1.47 ± 0.17 9.414 ± 0.149 1.52 ± 0.14 9.417 ± 0.115 RGB
5112288 1.65 ± 0.06 9.327 ± 0.049 1.67 ± 0.05 9.352 ± 0.045 RC
5112361 1.63 ± 0.16 9.304 ± 0.157 1.63 ± 0.15 9.353 ± 0.120 RGB
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5112373 1.31 ± 0.10 9.534 ± 0.126 1.41 ± 0.10 9.496 ± 0.092 RGB
5112387 1.34 ± 0.10 9.499 ± 0.103 1.43 ± 0.11 9.467 ± 0.086 RGB
5112401 1.25 ± 0.10 9.645 ± 0.088 1.34 ± 0.10 9.553 ± 0.093 RC
5112730 1.58 ± 0.05 9.384 ± 0.049 1.58 ± 0.04 9.403 ± 0.044 RC
5112938 1.37 ± 0.11 9.444 ± 0.104 1.46 ± 0.10 9.448 ± 0.100 RGB
5112948 1.56 ± 0.10 9.443 ± 0.074 1.57 ± 0.10 9.425 ± 0.068 RC
5112950 1.49 ± 0.06 9.452 ± 0.053 1.50 ± 0.06 9.456 ± 0.049 RC
5112974 1.45 ± 0.07 9.462 ± 0.051 1.44 ± 0.08 9.476 ± 0.043 RC
5113041 1.36 ± 0.11 9.592 ± 0.103 1.46 ± 0.11 9.508 ± 0.094 RC
5113061 1.43 ± 0.21 9.484 ± 0.192 1.56 ± 0.18 9.408 ± 0.129 RGB
5023889 1.31 ± 0.11 9.648 ± 0.104 1.43 ± 0.09 9.535 ± 0.103 RGB
5023953 1.67 ± 0.07 9.326 ± 0.046 1.69 ± 0.06 9.340 ± 0.044 RC
5112786 1.65 ± 0.19 9.346 ± 0.136 1.67 ± 0.17 9.334 ± 0.110 RGB
5112481 1.36 ± 0.20 9.542 ± 0.199 1.55 ± 0.15 9.424 ± 0.120 RGB
5112880 1.69 ± 0.15 9.250 ± 0.104 1.69 ± 0.12 9.281 ± 0.105 RGB
5112467 1.33 ± 0.11 9.528 ± 0.131 1.40 ± 0.10 9.526 ± 0.097 RGB
5112744 1.59 ± 0.07 9.428 ± 0.056 1.58 ± 0.08 9.413 ± 0.050 RC

Table 3.6: Same as Table 3.4, now for models with η = 0.4.

Without additional constraints Metallicity and age constraints

KIC M [M�] log(τ/yr) M [M�] log(τ/yr) Evo.

NGC 6791

2297793 1.11 ± 0.17 9.853 ± 0.212 1.11 ± 0.14 9.947 ± 0.142 RGB
2297825 0.91 ± 0.08 9.975 ± 0.078 0.92 ± 0.08 9.973 ± 0.075 RC
2435987 1.03 ± 0.05 10.033 ± 0.055 1.06 ± 0.07 10.033 ± 0.052 RGB
2436209 0.99 ± 0.04 10.045 ± 0.033 1.01 ± 0.06 10.047 ± 0.032 RGB
2436417 0.92 ± 0.08 10.001 ± 0.077 0.92 ± 0.08 9.986 ± 0.079 RC
2436688 1.08 ± 0.09 9.930 ± 0.185 1.05 ± 0.07 9.997 ± 0.054 RGB
2436900 1.10 ± 0.08 9.943 ± 0.166 1.10 ± 0.08 9.933 ± 0.159 RGB
2437040 1.19 ± 0.10 9.855 ± 0.130 1.18 ± 0.10 9.862 ± 0.118 RGB
2437340 1.04 ± 0.08 9.884 ± 0.086 1.03 ± 0.08 9.897 ± 0.094 AGB
2437353 1.03 ± 0.08 9.867 ± 0.083 1.04 ± 0.07 9.869 ± 0.068 RC
2437496 1.02 ± 0.14 9.887 ± 0.119 1.03 ± 0.12 9.880 ± 0.101 AGB
2437507 1.26 ± 0.12 9.737 ± 0.161 1.25 ± 0.13 9.746 ± 0.171 RGB
2437564 1.08 ± 0.08 9.821 ± 0.072 1.09 ± 0.08 9.821 ± 0.068 RC
2437804 0.94 ± 0.08 9.988 ± 0.087 0.93 ± 0.08 9.992 ± 0.084 RC
2437816 1.19 ± 0.13 9.843 ± 0.146 1.19 ± 0.12 9.834 ± 0.134 RGB
2437965 0.89 ± 0.08 10.025 ± 0.062 0.90 ± 0.07 10.028 ± 0.057 AGB
2438051 0.97 ± 0.15 9.959 ± 0.122 0.95 ± 0.15 9.975 ± 0.107 RC
2438333 1.01 ± 0.05 10.052 ± 0.030 1.02 ± 0.04 10.057 ± 0.030 RGB
2568654 1.10 ± 0.10 9.919 ± 0.153 1.12 ± 0.09 9.942 ± 0.108 RGB
2569055 0.85 ± 0.04 10.057 ± 0.035 0.85 ± 0.04 10.057 ± 0.031 RC
2569078 1.23 ± 0.11 9.774 ± 0.137 1.24 ± 0.10 9.784 ± 0.124 RGB

NGC 6819

4936335 0.85 ± 0.11 9.886 ± 0.138 0.82 ± 0.11 10.008 ± 0.073 AGB
4937257 0.99 ± 0.09 9.917 ± 0.139 0.99 ± 0.06 10.013 ± 0.066 RGB
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4937576 1.47 ± 0.12 9.409 ± 0.103 1.48 ± 0.13 9.438 ± 0.144 RGB
5023732 1.50 ± 0.16 9.398 ± 0.137 1.48 ± 0.16 9.466 ± 0.151 RGB
5024043 1.27 ± 0.12 9.568 ± 0.150 1.31 ± 0.10 9.620 ± 0.110 RGB
5024143 1.54 ± 0.14 9.397 ± 0.121 1.56 ± 0.12 9.413 ± 0.104 RGB
5024750 1.49 ± 0.19 9.432 ± 0.140 1.49 ± 0.21 9.439 ± 0.116 AGB
5111949 1.38 ± 0.11 9.462 ± 0.123 1.34 ± 0.12 9.600 ± 0.194 RGB
5112072 1.47 ± 0.17 9.415 ± 0.148 1.47 ± 0.15 9.477 ± 0.145 RGB
5112288 1.66 ± 0.06 9.325 ± 0.047 1.69 ± 0.05 9.346 ± 0.047 RC
5112361 1.63 ± 0.17 9.307 ± 0.148 1.64 ± 0.16 9.348 ± 0.146 RGB
5112373 1.32 ± 0.11 9.523 ± 0.127 1.23 ± 0.10 9.718 ± 0.114 RGB
5112387 1.34 ± 0.10 9.478 ± 0.101 1.25 ± 0.11 9.703 ± 0.120 RGB
5112401 1.25 ± 0.08 9.610 ± 0.101 1.25 ± 0.08 9.649 ± 0.077 RC
5112730 1.59 ± 0.05 9.374 ± 0.047 1.58 ± 0.05 9.391 ± 0.042 RC
5112938 1.37 ± 0.12 9.453 ± 0.114 1.36 ± 0.14 9.585 ± 0.177 RGB
5112948 1.56 ± 0.09 9.448 ± 0.072 1.55 ± 0.10 9.440 ± 0.068 RC
5112950 1.49 ± 0.06 9.438 ± 0.059 1.49 ± 0.06 9.455 ± 0.053 RC
5112974 1.44 ± 0.07 9.435 ± 0.047 1.43 ± 0.07 9.489 ± 0.049 RC
5113041 1.36 ± 0.11 9.576 ± 0.091 1.36 ± 0.12 9.550 ± 0.082 RC
5113061 1.43 ± 0.21 9.484 ± 0.188 1.43 ± 0.22 9.519 ± 0.191 RGB
5023889 1.30 ± 0.10 9.647 ± 0.104 1.30 ± 0.10 9.648 ± 0.105 RGB
5023953 1.67 ± 0.07 9.320 ± 0.047 1.69 ± 0.06 9.335 ± 0.044 RC
5112786 1.65 ± 0.20 9.345 ± 0.132 1.67 ± 0.19 9.343 ± 0.134 RGB
5112481 1.37 ± 0.20 9.518 ± 0.192 1.37 ± 0.20 9.569 ± 0.197 RGB
5112880 1.69 ± 0.15 9.230 ± 0.119 1.69 ± 0.14 9.270 ± 0.113 RGB
5112467 1.32 ± 0.11 9.530 ± 0.132 1.25 ± 0.10 9.678 ± 0.121 RGB
5112744 1.58 ± 0.08 9.420 ± 0.053 1.57 ± 0.08 9.422 ± 0.050 RC

Table 3.7: Detected radial (` = 0) oscillation modes for red giants in NGC 6791. Frequen-
cies, linewidths, and amplitudes were derived by using a maximum-likelihood estimation method
(Sec. 3.4.2.1). For the star marked with an asterisks, the modes were fitted with sinc functions.
Thus, no linewidths are given in that case. As a further note, a full set of frequencies for all
detected ` = 0, 1, 2, and 3 modes are available upon request from the first author.

KIC n ` Frequency [µHz] Linewidth [µHz] Amplitude [a.u.] Height [a.u.] AIC

2297793* 5 0 3.665 ± 0.002 − 0.727 ± 0.341 21.23 24
6 0 4.447 ± 0.002 − 0.841 ± 0.421 28.38 28

2297825 5 0 18.871 ± 0.094 0.249 ± 0.126 0.830 ± 0.135 0.88 18
7 0 22.635 ± 0.021 0.076 ± 0.034 0.990 ± 0.119 4.09 77
8 0 26.155 ± 0.023 0.108 ± 0.037 1.631 ± 0.150 7.86 192
9 0 29.903 ± 0.011 0.045 ± 0.013 1.893 ± 0.183 25.57 375
10 0 33.790 ± 0.020 0.113 ± 0.025 2.265 ± 0.154 14.49 525
11 0 37.576 ± 0.024 0.113 ± 0.030 1.621 ± 0.133 7.38 204
12 0 41.556 ± 0.049 0.259 ± 0.081 1.467 ± 0.132 2.65 133

2435987 6 0 25.574 ± 0.005 0.009 ± 0.008 0.580 ± 0.148 12.02 19
7 0 29.617 ± 0.019 0.077 ± 0.023 1.499 ± 0.141 9.27 164
8 0 33.564 ± 0.008 0.030 ± 0.009 2.082 ± 0.229 45.46 484
10 0 37.814 ± 0.008 0.031 ± 0.009 2.784 ± 0.294 79.98 925
11 0 41.989 ± 0.011 0.051 ± 0.013 2.487 ± 0.218 38.49 565
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12 0 46.337 ± 0.018 0.066 ± 0.021 1.338 ± 0.140 8.64 120
13 0 50.639 ± 0.025 0.069 ± 0.030 0.829 ± 0.116 3.16 38

2436209 8 0 41.022 ± 0.018 0.048 ± 0.019 0.929 ± 0.123 5.70 51
9 0 46.409 ± 0.018 0.076 ± 0.023 1.314 ± 0.122 7.28 166
10 0 51.984 ± 0.013 0.056 ± 0.015 1.543 ± 0.141 13.60 285
11 0 57.774 ± 0.012 0.053 ± 0.014 2.027 ± 0.175 24.54 551
12 0 63.447 ± 0.024 0.118 ± 0.033 1.537 ± 0.126 6.34 185
13 0 69.368 ± 0.021 0.077 ± 0.024 1.148 ± 0.116 5.43 110

2436417 6 0 20.287 ± 0.025 0.082 ± 0.041 0.889 ± 0.120 3.08 23
7 0 23.447 ± 0.014 0.054 ± 0.019 1.256 ± 0.132 9.28 44
8 0 26.827 ± 0.017 0.088 ± 0.021 2.001 ± 0.151 14.50 331
10 0 30.312 ± 0.014 0.062 ± 0.017 1.867 ± 0.162 17.99 323
11 0 33.738 ± 0.036 0.175 ± 0.053 1.681 ± 0.147 5.13 81
12 0 37.349 ± 0.039 0.135 ± 0.057 1.016 ± 0.128 2.43 30

2436688 9 0 59.368 ± 0.043 0.087 ± 0.033 0.679 ± 0.101 1.69 22
10 0 66.203 ± 0.024 0.075 ± 0.024 0.919 ± 0.103 3.58 69
11 0 73.465 ± 0.013 0.034 ± 0.023 1.019 ± 0.177 9.86 37
12 0 80.665 ± 0.013 0.051 ± 0.014 1.298 ± 0.127 10.55 215
13 0 87.933 ± 0.072 0.186 ± 0.072 0.821 ± 0.113 1.15 23
14 0 95.538 ± 0.009 0.016 ± 0.015 0.481 ± 0.117 4.70 17

2436900 6 0 24.576 ± 0.006 0.008 ± 0.010 0.426 ± 0.132 7.30 16
7 0 28.461 ± 0.010 0.026 ± 0.009 0.996 ± 0.131 12.12 131
8 0 32.305 ± 0.007 0.024 ± 0.008 1.458 ± 0.181 28.12 342
9 0 36.396 ± 0.007 0.023 ± 0.007 1.792 ± 0.223 45.13 532
10 0 40.380 ± 0.013 0.047 ± 0.013 1.359 ± 0.135 12.41 226
11 0 44.557 ± 0.037 0.086 ± 0.038 0.749 ± 0.114 2.08 25

2437040 6 0 18.398 ± 0.005 0.008 ± 0.006 0.520 ± 0.127 10.84 32
7 0 21.225 ± 0.009 0.028 ± 0.011 1.040 ± 0.135 12.35 134
8 0 24.275 ± 0.008 0.030 ± 0.010 1.768 ± 0.198 33.19 459
9 0 27.342 ± 0.010 0.038 ± 0.011 1.892 ± 0.190 29.67 453
10 0 30.420 ± 0.015 0.049 ± 0.018 1.166 ± 0.134 8.79 108
11 0 33.585 ± 0.031 0.068 ± 0.026 0.881 ± 0.127 3.65 33

2437340 6 0 7.735 ± 0.007 0.016 ± 0.007 0.980 ± 0.163 19.68 106
7 0 9.119 ± 0.006 0.013 ± 0.006 0.979 ± 0.171 23.67 124
8 0 10.463 ± 0.009 0.020 ± 0.008 0.854 ± 0.135 11.51 72
9 0 11.911 ± 0.015 0.020 ± 0.018 0.451 ± 0.125 3.26 5

2437353 7 0 26.308 ± 0.024 0.093 ± 0.029 1.159 ± 0.114 4.61 107
8 0 30.042 ± 0.012 0.046 ± 0.013 1.589 ± 0.158 17.44 270
9 0 33.927 ± 0.014 0.069 ± 0.017 1.890 ± 0.152 16.37 455
11 0 37.689 ± 0.024 0.108 ± 0.026 1.721 ± 0.137 8.73 228
12 0 41.666 ± 0.036 0.138 ± 0.050 1.085 ± 0.119 2.72 70

2437496 4 0 3.160 ± 0.008 0.008 ± 0.008 0.345 ± 0.105 4.50 5
5 0 3.992 ± 0.005 0.009 ± 0.005 0.709 ± 0.151 17.81 68
6 0 4.796 ± 0.011 0.018 ± 0.010 0.564 ± 0.115 5.72 22
7 0 5.666 ± 0.012 0.025 ± 0.013 0.719 ± 0.123 6.64 42
8 0 6.475 ± 0.031 0.067 ± 0.026 0.678 ± 0.101 2.17 25

2437507 6 0 15.525 ± 0.010 0.023 ± 0.013 0.701 ± 0.118 6.79 50
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7 0 17.902 ± 0.010 0.036 ± 0.012 1.260 ± 0.143 14.07 200
8 0 20.548 ± 0.008 0.029 ± 0.009 2.112 ± 0.233 48.49 656
9 0 23.118 ± 0.013 0.054 ± 0.016 1.742 ± 0.162 17.93 317
10 0 25.821 ± 0.020 0.071 ± 0.023 1.145 ± 0.121 5.85 103
11 0 28.570 ± 0.032 0.078 ± 0.035 0.826 ± 0.124 2.79 31

2437564 6 0 22.812 ± 0.026 0.071 ± 0.032 0.767 ± 0.106 2.64 39
7 0 26.470 ± 0.017 0.052 ± 0.023 0.904 ± 0.117 5.01 66
8 0 30.212 ± 0.021 0.101 ± 0.024 1.595 ± 0.124 8.04 254
9 0 34.128 ± 0.017 0.073 ± 0.019 1.640 ± 0.145 11.80 218
10 0 37.914 ± 0.018 0.056 ± 0.023 1.076 ± 0.135 6.63 72
12 0 41.995 ± 0.013 0.031 ± 0.015 0.809 ± 0.130 6.81 46

2437804 6 0 19.854 ± 0.023 0.057 ± 0.024 0.708 ± 0.104 2.82 32
7 0 22.968 ± 0.013 0.043 ± 0.015 1.137 ± 0.129 9.59 133
8 0 26.348 ± 0.018 0.066 ± 0.016 1.382 ± 0.127 9.27 191
10 0 29.739 ± 0.013 0.046 ± 0.014 1.302 ± 0.138 11.66 178
11 0 33.140 ± 0.026 0.083 ± 0.029 1.081 ± 0.118 4.46 84

2437816 6 0 13.934 ± 0.007 0.017 ± 0.009 0.790 ± 0.132 11.50 77
7 0 16.081 ± 0.006 0.016 ± 0.007 1.376 ± 0.204 36.64 306
8 0 18.498 ± 0.005 0.015 ± 0.005 1.855 ± 0.282 75.26 531
9 0 20.817 ± 0.007 0.018 ± 0.007 1.299 ± 0.193 30.28 187
10 0 23.223 ± 0.021 0.063 ± 0.024 0.983 ± 0.124 4.92 56

2437965 6 0 7.242 ± 0.008 0.021 ± 0.008 1.060 ± 0.150 16.65 145
7 0 8.581 ± 0.009 0.024 ± 0.010 0.996 ± 0.141 13.20 110

2438051 5 0 18.409 ± 0.026 0.074 ± 0.043 0.807 ± 0.120 2.79 38
7 0 21.918 ± 0.036 0.121 ± 0.061 0.900 ± 0.126 2.13 26
8 0 25.339 ± 0.012 0.046 ± 0.017 1.284 ± 0.139 11.39 149
9 0 28.963 ± 0.012 0.055 ± 0.014 1.811 ± 0.159 18.83 385
10 0 32.734 ± 0.036 0.156 ± 0.043 1.614 ± 0.143 5.30 75
11 0 36.422 ± 0.035 0.153 ± 0.056 1.265 ± 0.133 3.33 80
12 0 40.313 ± 0.054 0.215 ± 0.077 1.266 ± 0.137 2.38 58
13 0 44.045 ± 0.093 0.312 ± 0.174 0.993 ± 0.165 1.01 19
14 0 48.091 ± 0.027 0.050 ± 0.049 0.479 ± 0.130 1.47 4

2438333 7 0 37.762 ± 0.123 0.222 ± 0.226 0.725 ± 0.194 0.75 10
8 0 43.665 ± 0.044 0.117 ± 0.089 0.763 ± 0.150 1.59 20
9 0 49.407 ± 0.017 0.049 ± 0.030 0.844 ± 0.128 4.59 53
10 0 55.278 ± 0.009 0.032 ± 0.010 1.614 ± 0.176 25.75 394
11 0 61.387 ± 0.009 0.034 ± 0.009 2.077 ± 0.212 40.56 729
12 0 67.437 ± 0.020 0.106 ± 0.024 1.645 ± 0.121 8.12 305
13 0 73.610 ± 0.078 0.217 ± 0.089 0.836 ± 0.119 1.03 24
14 0 80.050 ± 0.056 0.110 ± 0.058 0.604 ± 0.114 1.06 10

2568654 6 0 12.139 ± 0.008 0.024 ± 0.009 1.009 ± 0.138 13.71 136
7 0 14.132 ± 0.009 0.030 ± 0.010 1.208 ± 0.147 15.71 184
8 0 16.231 ± 0.006 0.014 ± 0.006 1.333 ± 0.217 39.55 181
9 0 18.391 ± 0.026 0.069 ± 0.028 0.817 ± 0.114 3.08 37
10 0 20.417 ± 0.041 0.088 ± 0.042 0.728 ± 0.115 1.92 22

2569055 6 0 18.651 ± 0.059 0.163 ± 0.085 0.796 ± 0.132 1.24 16
7 0 22.152 ± 0.025 0.089 ± 0.029 1.146 ± 0.122 4.72 73
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8 0 25.560 ± 0.034 0.186 ± 0.049 1.948 ± 0.150 6.48 207
9 0 29.218 ± 0.013 0.060 ± 0.016 1.898 ± 0.166 19.26 335
10 0 33.071 ± 0.019 0.089 ± 0.025 1.892 ± 0.159 12.83 259
11 0 36.762 ± 0.031 0.206 ± 0.038 2.501 ± 0.143 9.68 569
12 0 40.594 ± 0.034 0.167 ± 0.040 1.570 ± 0.123 4.70 161

2569078 7 0 20.188 ± 0.015 0.045 ± 0.019 1.266 ± 0.172 11.42 122
8 0 23.125 ± 0.007 0.016 ± 0.008 1.872 ± 0.352 67.87 343
9 0 26.010 ± 0.015 0.043 ± 0.016 1.782 ± 0.234 23.54 174
10 0 28.981 ± 0.025 0.090 ± 0.031 1.515 ± 0.163 8.11 142

2569137 6 0 4.826 ± 0.031 0.054 ± 0.027 0.764 ± 0.137 3.47 21
7 0 5.601 ± 0.048 0.049 ± 0.029 0.547 ± 0.139 1.96 3

2569360 6 0 16.414 ± 0.013 0.032 ± 0.014 0.719 ± 0.108 5.15 47
7 0 18.920 ± 0.009 0.031 ± 0.011 1.260 ± 0.148 16.37 222
8 0 21.700 ± 0.006 0.018 ± 0.006 2.173 ± 0.297 83.55 797
9 0 24.404 ± 0.016 0.066 ± 0.020 1.562 ± 0.144 11.73 230
10 0 27.218 ± 0.022 0.088 ± 0.029 1.239 ± 0.125 5.53 118
11 0 30.070 ± 0.042 0.106 ± 0.043 0.766 ± 0.110 1.76 27

2569618 8 0 40.586 ± 0.018 0.046 ± 0.030 0.687 ± 0.119 3.23 28
9 0 45.884 ± 0.018 0.083 ± 0.025 1.436 ± 0.126 7.90 203
10 0 51.482 ± 0.009 0.035 ± 0.011 1.794 ± 0.188 29.66 404
11 0 57.159 ± 0.010 0.044 ± 0.012 2.083 ± 0.194 31.42 588
12 0 62.760 ± 0.012 0.047 ± 0.015 1.469 ± 0.148 14.56 238
13 0 68.591 ± 0.053 0.135 ± 0.065 0.844 ± 0.124 1.68 27
14 0 74.445 ± 0.018 0.031 ± 0.029 0.461 ± 0.122 2.19 6

2569935 5 0 4.688 ± 0.006 0.011 ± 0.008 0.664 ± 0.137 12.50 53
6 0 5.610 ± 0.008 0.021 ± 0.011 0.879 ± 0.135 11.56 92
7 0 6.665 ± 0.007 0.016 ± 0.008 0.877 ± 0.150 15.44 81

2569945 6 0 22.607 ± 0.031 0.086 ± 0.071 0.714 ± 0.144 1.89 9
8 0 26.191 ± 0.018 0.092 ± 0.029 1.598 ± 0.133 8.85 106
9 0 29.869 ± 0.021 0.130 ± 0.035 2.051 ± 0.142 10.27 29
10 0 33.797 ± 0.022 0.115 ± 0.034 1.751 ± 0.141 8.50 89
11 0 37.609 ± 0.044 0.259 ± 0.071 1.921 ± 0.150 4.54 4
12 0 41.545 ± 0.036 0.126 ± 0.048 1.099 ± 0.126 3.06 4

2570172 9 0 64.427 ± 0.011 0.026 ± 0.014 0.658 ± 0.110 5.25 40
10 0 71.543 ± 0.011 0.037 ± 0.013 1.151 ± 0.131 11.31 176
11 0 78.545 ± 0.018 0.079 ± 0.021 1.374 ± 0.117 7.56 223
12 0 85.669 ± 0.034 0.088 ± 0.039 0.806 ± 0.109 2.35 41

2570214 7 0 24.428 ± 0.032 0.131 ± 0.041 1.175 ± 0.111 3.37 59
8 0 27.951 ± 0.026 0.116 ± 0.027 1.403 ± 0.110 5.40 192
9 0 31.617 ± 0.031 0.176 ± 0.038 1.701 ± 0.113 5.24 264
10 0 35.142 ± 0.046 0.235 ± 0.056 1.596 ± 0.113 3.44 126
12 0 38.922 ± 0.044 0.184 ± 0.051 1.196 ± 0.108 2.47 78
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Consistency check with age and metallicity constraints

Consistency check with metallicity and age constraints

Figure 3.6: Stellar masses and logarithmic ages derived from GBM by using models with
η = 0.2 and by adopting the clusters’ metallicities and ages as additional constraints for
NGC 6791 (top) and NGC 6819 (bottom). The dashed lines indicate computed cluster
ages from isochrone fitting (including their 3σ uncertainties; dotted lines). The right
panels provide the histograms of the calculated masses and ages for the red giants shown
in the left panels.
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models with η = 0.0

models with η = 0.4

Figure 3.7: Stellar masses and logarithmic ages for stars in NGC 6791 derived from
GBM with metallicity constraints from the cluster isochrones by using stellar models
with η = 0.0 (top) and 0.4 (bottom). The dashed lines indicate computed cluster ages
from isochrone fitting (including their 3σ uncertainties; dotted lines). The right panels
provide the histograms of the calculated masses and ages for the red giants shown in the
left panels.
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models with η = 0.0

models with η = 0.4

Figure 3.8: Same as Figure 3.7, now for red giants in NGC 6819.
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Table 3.8: Same as Table 3.7 but for red giants in NGC 6819.

KIC n ` Frequency [µHz] Linewidth [µHz] Amplitude [a.u.] Height [a.u.] AIC

4936335 5 0 6.980 ± 0.008 0.018 ± 0.009 0.987 ± 0.169 17.44 107
7 0 8.349 ± 0.011 0.027 ± 0.010 1.091 ± 0.157 14.23 117
8 0 9.881 ± 0.015 0.040 ± 0.018 0.982 ± 0.140 7.68 61

4937257 7 0 28.810 ± 0.087 0.500 ± 0.264 1.743 ± 0.231 1.93 3
8 0 32.816 ± 0.024 0.138 ± 0.033 2.151 ± 0.152 10.67 303
10 0 37.057 ± 0.016 0.074 ± 0.020 2.072 ± 0.178 18.51 364
11 0 41.163 ± 0.022 0.099 ± 0.023 1.895 ± 0.154 11.61 253
12 0 45.469 ± 0.043 0.153 ± 0.053 1.189 ± 0.133 2.95 56
13 0 49.673 ± 0.119 0.336 ± 0.261 0.897 ± 0.200 0.76 1

4937576 8 0 28.207 ± 0.010 0.037 ± 0.012 1.975 ± 0.222 33.36 388
9 0 31.764 ± 0.017 0.078 ± 0.022 2.186 ± 0.191 19.50 342
10 0 35.289 ± 0.013 0.053 ± 0.014 2.554 ± 0.245 39.09 473
11 0 38.916 ± 0.014 0.048 ± 0.018 1.591 ± 0.189 16.91 134
12 0 42.488 ± 0.029 0.101 ± 0.039 1.299 ± 0.152 5.33 81

5023732 7 0 21.670 ± 0.016 0.036 ± 0.020 0.738 ± 0.124 4.87 36
8 0 24.562 ± 0.014 0.043 ± 0.015 1.250 ± 0.150 11.65 139
9 0 27.711 ± 0.011 0.041 ± 0.014 1.773 ± 0.197 24.33 307
10 0 30.795 ± 0.018 0.061 ± 0.020 1.478 ± 0.161 11.40 128
11 0 33.996 ± 0.021 0.077 ± 0.024 1.349 ± 0.138 7.49 123
12 0 37.215 ± 0.039 0.064 ± 0.034 0.672 ± 0.136 2.26 9

5023889 7 0 38.398 ± 0.018 0.032 ± 0.022 0.561 ± 0.118 3.15 15
8 0 43.451 ± 0.013 0.035 ± 0.017 0.871 ± 0.129 6.84 64
9 0 48.751 ± 0.014 0.055 ± 0.015 1.702 ± 0.166 16.71 323
10 0 54.082 ± 0.013 0.058 ± 0.014 2.599 ± 0.231 36.97 716
11 0 59.436 ± 0.011 0.045 ± 0.012 2.453 ± 0.243 42.30 653
12 0 64.934 ± 0.023 0.098 ± 0.024 1.648 ± 0.141 8.87 205
13 0 70.403 ± 0.038 0.176 ± 0.050 1.499 ± 0.131 4.06 109
14 0 75.879 ± 0.014 0.027 ± 0.031 0.569 ± 0.147 3.86 17

5023953 9 0 42.492 ± 0.021 0.088 ± 0.025 1.488 ± 0.134 8.01 202
9 0 47.295 ± 0.017 0.074 ± 0.020 1.777 ± 0.157 13.61 321
10 0 52.075 ± 0.016 0.068 ± 0.017 2.107 ± 0.184 20.73 441
11 0 56.815 ± 0.020 0.081 ± 0.025 1.552 ± 0.146 9.44 215
12 0 61.484 ± 0.053 0.275 ± 0.059 1.665 ± 0.118 3.22 181

5024043 8 0 45.350 ± 0.024 0.067 ± 0.028 0.981 ± 0.125 4.59 65
9 0 50.906 ± 0.013 0.051 ± 0.014 1.832 ± 0.181 20.99 392
10 0 56.492 ± 0.009 0.035 ± 0.010 2.786 ± 0.305 70.42 969
11 0 62.099 ± 0.016 0.067 ± 0.017 1.917 ± 0.173 17.48 332
12 0 67.846 ± 0.024 0.088 ± 0.026 1.357 ± 0.136 6.67 122

5024143 10 0 98.684 ± 0.032 0.073 ± 0.033 0.734 ± 0.114 2.35 25
11 0 108.180 ± 0.017 0.057 ± 0.017 1.271 ± 0.134 9.02 162
12 0 117.875 ± 0.015 0.059 ± 0.018 1.486 ± 0.149 12.00 229
13 0 127.470 ± 0.014 0.054 ± 0.016 1.556 ± 0.158 14.35 265
14 0 137.239 ± 0.017 0.034 ± 0.026 0.658 ± 0.130 4.01 21
15 0 147.187 ± 0.049 0.093 ± 0.059 0.598 ± 0.127 1.23 8
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5024750 6 0 10.457 ± 0.017 0.043 ± 0.022 0.909 ± 0.130 6.16 66
7 0 12.140 ± 0.011 0.025 ± 0.015 0.864 ± 0.146 9.39 59
8 0 13.981 ± 0.015 0.055 ± 0.017 1.456 ± 0.154 12.29 196
9 0 15.760 ± 0.023 0.087 ± 0.025 1.558 ± 0.153 8.92 158

5111949 7 0 33.884 ± 0.027 0.047 ± 0.022 0.640 ± 0.112 2.76 18
8 0 38.481 ± 0.028 0.124 ± 0.043 1.401 ± 0.133 5.02 89
9 0 43.145 ± 0.014 0.055 ± 0.018 1.608 ± 0.164 14.85 235
10 0 48.038 ± 0.018 0.084 ± 0.020 2.106 ± 0.169 16.90 441
11 0 52.896 ± 0.024 0.124 ± 0.034 1.886 ± 0.149 9.17 281
12 0 57.772 ± 0.030 0.147 ± 0.036 1.712 ± 0.133 6.35 190

5112072 10 0 102.761 ± 0.016 0.042 ± 0.017 1.008 ± 0.132 7.74 92
11 0 112.653 ± 0.017 0.057 ± 0.017 1.234 ± 0.133 8.54 143
12 0 122.729 ± 0.017 0.070 ± 0.017 1.625 ± 0.148 12.02 275
13 0 132.732 ± 0.015 0.064 ± 0.020 1.595 ± 0.154 12.68 253
14 0 142.878 ± 0.032 0.098 ± 0.044 0.999 ± 0.125 3.23 61

5112288 8 0 38.263 ± 0.021 0.046 ± 0.021 0.743 ± 0.122 3.80 26
9 0 42.774 ± 0.016 0.071 ± 0.018 1.887 ± 0.164 15.95 351
10 0 47.658 ± 0.015 0.070 ± 0.018 2.160 ± 0.184 21.08 446
11 0 52.374 ± 0.020 0.085 ± 0.022 1.690 ± 0.150 10.66 240
12 0 57.201 ± 0.026 0.120 ± 0.030 1.665 ± 0.136 7.35 194

5112361 9 0 56.179 ± 0.021 0.062 ± 0.024 0.936 ± 0.119 4.52 60
10 0 62.216 ± 0.013 0.052 ± 0.016 1.638 ± 0.167 16.50 279
10 0 68.425 ± 0.012 0.050 ± 0.013 2.073 ± 0.201 27.41 519
11 0 74.549 ± 0.023 0.121 ± 0.028 2.021 ± 0.149 10.79 370
12 0 80.793 ± 0.017 0.061 ± 0.019 1.354 ± 0.141 9.60 161
13 0 87.055 ± 0.032 0.108 ± 0.036 1.126 ± 0.124 3.73 58

5112373 8 0 36.732 ± 0.045 0.253 ± 0.057 1.781 ± 0.122 3.98 224
9 0 41.357 ± 0.012 0.050 ± 0.013 2.373 ± 0.226 35.80 683
10 0 46.096 ± 0.014 0.052 ± 0.016 1.961 ± 0.198 23.42 316
11 0 50.658 ± 0.019 0.093 ± 0.026 1.921 ± 0.161 12.67 320
12 0 55.354 ± 0.029 0.119 ± 0.042 1.277 ± 0.129 4.37 112
13 0 60.214 ± 0.030 0.060 ± 0.034 0.661 ± 0.125 2.33 14

5112387 8 0 37.549 ± 0.025 0.105 ± 0.035 1.415 ± 0.138 6.04 134
9 0 42.163 ± 0.016 0.076 ± 0.019 2.131 ± 0.176 19.07 524
10 0 46.911 ± 0.017 0.070 ± 0.019 1.786 ± 0.164 14.49 285
11 0 51.588 ± 0.019 0.084 ± 0.025 1.837 ± 0.163 12.77 268
12 0 56.375 ± 0.033 0.169 ± 0.045 1.783 ± 0.139 5.97 211
13 0 61.293 ± 0.057 0.133 ± 0.057 0.875 ± 0.134 1.83 24

5112401 7 0 28.144 ± 0.019 0.065 ± 0.021 1.203 ± 0.131 7.11 105
8 0 31.833 ± 0.039 0.145 ± 0.051 1.685 ± 0.171 6.24 84
9 0 35.988 ± 0.018 0.081 ± 0.025 2.142 ± 0.189 18.13 297
10 0 40.081 ± 0.028 0.161 ± 0.037 2.324 ± 0.163 10.69 468
11 0 44.125 ± 0.029 0.130 ± 0.040 1.666 ± 0.153 6.79 197

5112467 9 0 42.569 ± 0.017 0.060 ± 0.018 1.366 ± 0.145 9.93 148
10 0 47.466 ± 0.024 0.090 ± 0.039 1.201 ± 0.142 5.11 84
11 0 52.212 ± 0.011 0.017 ± 0.025 0.580 ± 0.194 6.32 7
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5112481 5 0 5.107 ± 0.012 0.025 ± 0.013 0.759 ± 0.133 7.44 42
6 0 6.028 ± 0.016 0.035 ± 0.017 0.866 ± 0.144 6.85 42
7 0 6.945 ± 0.018 0.029 ± 0.017 0.582 ± 0.123 3.70 14

5112730 7 0 32.078 ± 0.018 0.036 ± 0.023 0.766 ± 0.129 5.13 43
8 0 36.384 ± 0.034 0.150 ± 0.050 1.329 ± 0.129 3.75 96
9 0 40.817 ± 0.015 0.066 ± 0.017 2.030 ± 0.179 19.88 382
10 0 45.484 ± 0.015 0.072 ± 0.020 2.017 ± 0.174 17.92 421
11 0 49.975 ± 0.028 0.145 ± 0.035 1.989 ± 0.147 8.68 232
12 0 54.689 ± 0.027 0.132 ± 0.034 1.656 ± 0.132 6.63 170

5112744 8 0 35.485 ± 0.011 0.031 ± 0.012 1.075 ± 0.146 11.81 118
9 0 39.775 ± 0.012 0.040 ± 0.012 1.571 ± 0.176 19.57 272
10 0 44.218 ± 0.016 0.063 ± 0.017 1.790 ± 0.168 16.14 301
10 0 48.629 ± 0.017 0.068 ± 0.019 1.739 ± 0.165 14.16 240
11 0 53.191 ± 0.019 0.061 ± 0.023 1.190 ± 0.141 7.33 92
13 0 62.247 ± 0.051 0.086 ± 0.036 0.660 ± 0.114 1.62 13

5112786 5 0 6.613 ± 0.007 0.010 ± 0.006 0.685 ± 0.158 14.49 38
6 0 7.767 ± 0.008 0.014 ± 0.008 0.797 ± 0.162 14.69 55
7 0 8.916 ± 0.012 0.025 ± 0.019 0.863 ± 0.171 9.52 32

5112880 7 0 22.077 ± 0.021 0.082 ± 0.026 1.513 ± 0.153 8.92 152
8 0 24.930 ± 0.009 0.023 ± 0.012 1.327 ± 0.214 24.40 90
9 0 27.718 ± 0.012 0.044 ± 0.015 2.053 ± 0.227 30.57 281

5112938 7 0 33.302 ± 0.012 0.031 ± 0.017 0.839 ± 0.134 7.34 59
8 0 37.828 ± 0.016 0.055 ± 0.019 1.299 ± 0.146 9.84 140
9 0 42.409 ± 0.013 0.049 ± 0.014 1.861 ± 0.191 22.65 335
10 0 47.217 ± 0.016 0.072 ± 0.017 2.175 ± 0.187 21.01 416
11 0 52.005 ± 0.031 0.173 ± 0.039 2.006 ± 0.141 7.40 301
12 0 56.817 ± 0.036 0.095 ± 0.041 0.967 ± 0.142 3.14 32

5112948 8 0 34.455 ± 0.012 0.030 ± 0.015 0.864 ± 0.135 7.94 63
9 0 38.628 ± 0.015 0.054 ± 0.016 1.452 ± 0.152 12.43 201
10 0 42.956 ± 0.012 0.049 ± 0.012 2.256 ± 0.219 32.99 597
10 0 47.222 ± 0.009 0.028 ± 0.010 1.756 ± 0.225 34.69 342

5112950 7 0 30.564 ± 0.017 0.057 ± 0.023 1.097 ± 0.131 6.67 104
8 0 34.641 ± 0.029 0.120 ± 0.050 1.331 ± 0.146 4.70 92
9 0 38.874 ± 0.022 0.086 ± 0.025 1.469 ± 0.142 8.01 158
10 0 43.384 ± 0.020 0.096 ± 0.025 2.067 ± 0.166 14.13 371
11 0 47.683 ± 0.011 0.037 ± 0.013 1.615 ± 0.192 22.39 241
12 0 52.189 ± 0.048 0.176 ± 0.052 1.243 ± 0.125 2.79 78

5112974 7 0 30.286 ± 0.016 0.041 ± 0.017 0.893 ± 0.126 6.18 59
8 0 34.354 ± 0.016 0.064 ± 0.020 1.570 ± 0.153 12.21 220
9 0 38.635 ± 0.016 0.072 ± 0.021 2.047 ± 0.180 18.65 355
10 0 43.043 ± 0.023 0.123 ± 0.029 2.278 ± 0.168 13.42 444
11 0 47.416 ± 0.021 0.084 ± 0.025 1.514 ± 0.143 8.73 176
12 0 51.807 ± 0.047 0.181 ± 0.066 1.333 ± 0.143 3.13 48

5113041 7 0 28.111 ± 0.039 0.067 ± 0.030 0.647 ± 0.111 1.99 15
8 0 31.864 ± 0.027 0.099 ± 0.030 1.208 ± 0.123 4.71 100
9 0 35.805 ± 0.011 0.045 ± 0.012 2.184 ± 0.219 33.71 598
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10 0 39.779 ± 0.015 0.060 ± 0.016 1.950 ± 0.185 20.27 326
11 0 43.708 ± 0.057 0.201 ± 0.051 1.599 ± 0.150 4.04 71
12 0 47.935 ± 0.021 0.070 ± 0.025 1.166 ± 0.130 6.15 105

5113061 5 0 4.590 ± 0.029 0.076 ± 0.027 0.857 ± 0.112 3.09 43
6 0 5.452 ± 0.023 0.044 ± 0.018 0.713 ± 0.113 3.65 28
7 0 6.350 ± 0.017 0.040 ± 0.019 0.748 ± 0.120 4.50 36
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4 KIC 2568888: To be or not to be a
binary

This chapter reproduces the article KIC 2568888: To be or not to be a binary by N.
Themeßl, S. Hekker, A. Mints, R. A. Garcı́a, A. Garcı́a Saravia Ortiz de Montellano, P.
B. Stetson and J. De Ridder, published in the Astrophysical Journal, Volume 868, Issue 2,
article id. 103, 10 pp. (2018), DOI: 10.3847/1538-4357/aae8461.

4.1 Summary

In cases where both components of a binary system show oscillations, asteroseismology
has been proposed as a method to identify the system. For KIC 2568888, observed with
Kepler, we detect oscillation modes for two red giants in a single power density spectrum.
Through an asteroseismic study we investigate if the stars have similar properties, which
could be an indication that they are physically bound into a binary system. While one
star lies on the red-giant branch (RGB), the other, more evolved star, is either a RGB
or asymptotic giant branch star. We found similar ages for the red giants and a mass
ratio close to 1. Based on these asteroseismic results we propose KIC 2568888 as a rare
candidate binary system (∼ 0.1% chance). However, when combining the asteroseismic
data with ground-based BVI photometry we estimated different distances for the stars,
which we cross-checked with Gaia DR2. From Gaia we obtained for one object a distance
between and broadly consistent with the distances from BVI photometry. For the other
object we have a negative parallax with a not yet reliable Gaia distance solution. The
derived distances challenge a binary interpretation and may either point to a triple system,
which could explain the visible magnitudes, or, to a rare chance alignment (∼ 0.05%
chance based on stellar magnitudes). This probability would even be smaller, if calculated
for close pairs of stars with a mass ratio close to unity in addition to similar magnitudes,
which may indeed indicate that a binary scenario is more favourable.

1Contribution statement: NT performed research, analyzed data, and wrote the paper. SH carried out
grid-based modelling and provided useful advice and comments on the research and the manuscript. AM
generated grids of ischrones and performed the UniDAM analysis. RAG checked the light curve with an
independent code. AGSOM developed automated peakbagging algorithm. PBS provided ground-based
BVI measurements. JDR contributed Bayesian distance measurements from Gaia.
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4.2 Introduction

The Kepler space mission (Borucki et al. 2010) obtained high-precision photometric time
series data for thousands of red giants that show solar-like oscillations. In many Kepler
light curves eclipses were present due to the passage or occultation of a companion star
or planet. These data have led to the detection of a number of eclipsing binary systems
with an oscillating red-giant component (e.g. Hekker et al. 2010c, Gaulme et al. 2013).
From theoretical predictions we expect more red giants with observable oscillation modes
to belong to binary star systems (Miglio et al. 2014). The detection of these non-eclipsing
binary systems requires different measures because they lack the distinct dips in flux in
the light curves. A new class of eccentric non-eclipsing binary systems has already been
detected with Kepler data (e.g. Beck et al. 2014, 2015). These binaries show ellipsoidal
modulations due to strong gravitational distortions and heating that take place during pe-
riastron passage, which become visible as ‘heartbeat’ effects in their light curves. Their
detection offered a new way of studying binary interactions, as well as the evolution of
such eccentric systems.

Moreover, Miglio et al. (2014) suggested using asteroseismology to find potential binary
systems that consist of two oscillating solar-type and/or red-giant stars. This method is
applicable to high-precision long-term photometric data and independent of the inclina-
tion, separation, and velocities of the binary components. Based on simulations of binary
populations in the Kepler field of view, Miglio et al. performed a study to predict the
asteroseismic detectability of two solar-like oscillators that are gravitationally bound in a
single light curve. According to their predictions there should be 200 or more so-called
asteroseismic binaries detectable in Kepler long-cadence data. When considering a total
number of about 200 000 long-cadence targets, we obtain a ∼ 0.1 % chance of finding an
asteroseismic binary. Additionally, the components should have a mass ratio near unity,
which favours oscillations that overlap in frequency.

So far, there are only three published cases of asteroseismic binaries that are not in eclips-
ing systems, and that were detected in a single Kepler light curve. Appourchaux et al.
(2015) reported the double-star system KIC 7510397 (or HIP 93511, or HD 177412),
which shows two separated oscillation-mode envelopes of two solar-like stars with typical
frequencies of the oscillations at about 1 200 and 2 200 µHz. Using speckle interferome-
try, Appourchaux et al. constrained the binary orbit and determined the stellar properties
of both components from asteroseismic methods. More recently, White et al. (2017) pre-
sented an asteroseismic study of the binary system HD 176465, including the detection
of individual mode frequencies for two solar-like oscillating stars that are on the main
sequence. The stellar oscillations of both components cover the same range in frequency
from ∼ 2 000 to ∼ 4 500 µHz. Based on the derived stellar parameters, White et al. clas-
sified them as two young physically-similar solar analogues. Furthermore, Beck et al.
(2018) reported the detection of an eccentric binary system that consists of a sub-Nyquist
and a super-Nyquist oscillating red-giant star with stellar oscillations present at around
120 − 250 µHz. The two binary components were found to be low-luminosity red gi-
ants of similar mass that are in the early and advanced stages of the first dredge-up event
on the red-giant branch. Another interesting system was found by Rawls et al. (2016).
KIC 9246715 is a double red giant eclipsing binary, where both components have very
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Figure 4.1: A 30× 30 arcsecond postage stamp (stack of 10 images with 0′′.69 < seeing <
0′′.82) from Stetson et al. (2003, 2005) centred on our pair of red-giant stars, which have a
spatial separation of ∼ 1′′.6. The numbers are the sequential catalogue identifications for
the two stars as listed in Table 4.1.

similar masses and radii. They measured one main set of solar-like oscillations with
lower amplitudes and larger oscillation mode linewidths than expected, while a second
set of oscillations was only marginally detectable. Rawls et al. interpreted this as being
due to stellar activity and tidal forces weakening the oscillations of both stars.

These recent studies show the great potential of asteroseismology for binary systems
where oscillations of the components can be detected. Here, we analyze the Kepler target
KIC 2568888, which was originally proposed to be observed in the framework of a study
of the open cluster NGC 6791. Based on asteroseismic stellar properties, Gaia parallaxes
and supplementary ground- and space-based photometric measurements, we investigate
if KIC 2568888 is a rare candidate binary system with two oscillating red-giant stars.

4.3 Data
In the following, we provide an overview of the data that we used for the analysis of
KIC 2568888.

4.3.1 Kepler light curve
The basis for our asteroseismic analysis is the Kepler photometric time series of the re-
spective stars. During each Kepler observation, pixel files were acquired for any given
target star. The pixels contained within a predefined mask were then added up to cre-
ate light curves (Thompson et al. 2016). When two stars are spatially coincident, as is
the case here, they are observed as a single Kepler time series. To check if an optimal
aperture mask was applied to derive this light curve, we inspected the individual target
pixels of KIC 2568888. We found that all pixels with stellar signals include the flux of
both stars, which makes the extraction of individual light curves impossible. We also per-
formed the aperture photometry with the KADACS software (Garcı́a et al. 2011) with the
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same result.

For the asteroseismic study we used the concatenated corrected light curve (Handberg and
Lund 2014) that was created from 860 days of observations during the nominal Kepler
space mission with one exposure taken every ∼ 29.4 min (long-cadence mode). From
these light-curve data we determined the asteroseismic stellar parameters for both red-
giant stars, which we describe in Section 4.5.

4.3.2 APOGEE spectra
As further constraints we took the effective temperature and metallicity that were pub-
lished by the 14th data release of the Sloan Digital Sky Survey (SDSS; e.g. Blanton et al.
2017, Abolfathi et al. 2018): Teff = 4378 ± 76 K and [M/H] = −0.005 ± 0.023 dex.
These atmospheric parameters were derived from APOGEE spectra by using an auto-
mated pipeline and under the assumption that KIC 2568888 is a single stellar object with
coordinates α = 290◦.09354± 0◦.00460 and δ = 37◦.86151± 0◦.00440. APOGEE visited
the system twice, with the observations being 16 days apart. The mean measured radial
velocity with respect to the barycentre is −58.90 km s−1, with a radial velocity scatter of
0.18 km s−1. Only the spectral lines of a single component were visible in the spectra.
Whenever we used Teff and [M/H] in the asteroseismic stellar parameter determination
(Sec. 4.5), we adopted uncertainties of ± 200 K and ± 0.3 dex, respectively. The impact
of the unknown individual temperatures in particular is marginal, since red giants cover a
very narrow range in Teff, which lies within the adopted uncertainties.

4.3.3 Ground-based BVI photometry
One of the photometric measurements in which the candidate binary is resolved is shown
in Figure 4.1, where we see two stars with similar visual magnitudes in the region around
KIC 2568888. These data were obtained during the original photometric survey of the
open cluster NGC 6791 (Stetson et al. 2003, 2005) with additional measurements that
were acquired more recently. We analyzed the BVI photometry of the two stars by using
the methodology discussed in Stetson (2000) and Stetson et al. (2003, 2005). The posi-
tional and photometric measurements for both stars are given in Table 4.1. We used these
magnitudes to estimate the distances in Section 4.5.3.

4.3.4 (Near-)infrared photometry
In the Two Micron All Sky Survey (2MASS; e.g. Skrutskie et al. 2006), the two stars
are unresolved and thus observed as a single source. We report the combined J−band,
H−band, and Ks−band magnitude in Table 4.1, which we used to investigate the distances
(see Sec. 4.5.3).

We further note that the Wide-field Infrared Survey Explorer (WISE; e.g. Wright et al.
2010) provides combined fluxes for the pair of stars in four bands, which are all similar.
We do not find any noticeable features such as infrared excess emission, which in the
case of a binary star would be the circumbinary dust that is commonly observed in post-
asymptotic giant branch systems (e.g. Dermine et al. 2013). However, in case of a pole-on



136 KIC 2568888: To be or not to be a binary

system, the dust disk may be outside the photometric mask that was selected for obtaining
the photometry.

4.3.5 Gaia DR2 parameters
The second Gaia data release (DR2; Gaia Collaboration et al. 2018) provided new data
on the two stars that are identified as KIC 2568888, which we report in Table 4.1. The
astrometric and photometric measurements were derived from a 22 month time span of
observations. With an effective angular resolution of about 0′′.5, Gaia could resolve the
two sources. Due to the astrometric precision of 4 × 10−5 arcsec, we can update their
angular separation to be ∼ 1′′.5765 (Fig. 4.2).

For both red giants parallaxes are provided, although for one of the stars the parallax value
is negative. This is a result of the measurement process in cases where a model is fitted to
noisy observations. About one-quarter of all published parallaxes in Gaia DR2 are nega-
tive (Bailer-Jones et al. 2018). If a negative parallax is used to estimate the distance, it is
important to treat its derivation as an inference problem by using a full Bayesian analysis,
because the likelihood is not informative enough and the influence of the prior is signif-
icant. Following this approach, we found different distances for the two red giants with
∼ 5.6 kpc and ∼ 14.7 kpc, respectively. It is worth noting that binarity was not taken into
account in Gaia DR2. The source model that was used to derive the astrometric parame-
ters is representative of a single star with the assumption of a uniform and rectilinear space
motion relative to the solar system barycentre (Luri et al. 2018). This model describes the
typical helix movement for the apparent motion of a star on the sky. Binarity can dis-
rupt this movement and may alter the distance estimates and proper motions of the binary
components significantly. Moreover, the pair of stars that we study is very close and they
have similar visible magnitudes (see Tab. 4.1). This can lead to some further confusion
during the analysis process, in which blending and decontamination from nearby sources
are not included.

In Table 4.1 we also provide the ‘astrometric excess noise’ (ε), which quantifies how
well the astrometric five-parameter model fits the observations. A large value of ε would
show that the astrometric fitting was problematic. In order to evaluate the statistical sig-
nificance of this parameter, we can use the dimensionless ‘astrometric excess noise sig’
quantity (D). In cases where D ≤ 2, the astrometric excess noise is considered statistically
insignificant. For both stars investigated here, the provided D values are larger. This indi-
cates that the Gaia astrometric pipeline did indeed encounter some problems when fitting
the astrometric model, in particular for the source 2051291674955780992, in which case
a negative parallax measurement was provided. Due to these possible complications we
are not able to make any firm conclusions on the physical relation between the two stars
based on the recently published Gaia data.

We further note that the resolution of the Gaia G−band is of the order of ∼ 0′′.3 − 0′′.5,
thus individual values for each star could be retrieved and they are of the same order of
magnitude as the ground-based V measurements. The mean red- (GRP) and blue-band
(GBP) magnitudes are given for one object only. As these bands have a lower resolution
of ∼ 2′′. , which exceeds the angular separation of our pair of stars, it is likely that the
published GBP and GRP values represent the combined flux of both sources.
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…808

…992

Figure 4.2: Position of the two stars in the Gaia view, with the numbers indicating the
last three digits of their source names, as listed in Table 4.1.

At this moment no radial velocity data are provided by Gaia for our pair of stars.

4.4 Fourier spectrum analysis
The typical feature of a star showing solar-like oscillations is a well-defined power excess
that is visible in the Fourier power density spectrum (PDS). For KIC 2568888 we observe
excess power at ∼ 7 µHz (star A) and ∼ 16 µHz (star B), respectively, which can be
attributed to two different red-giant stars. Through the analysis of individual oscillation
modes we aim to get a picture of the interior structure of both stars.

4.4.1 The global background model

The oscillation modes are superimposed on a granulation background, which we need
to define before studying the oscillations. We chose a model similar to the descriptions
used by Kallinger et al. (2014), with the contribution of three granulation background
components:

Pbg(ν) = nwh + η(ν)2

 3∑
i=1

Ai

1 + (ν/bi)4

 . (4.1)

Here, nwh represents the white noise. Each granulation component is defined by a Lorent-
zian-like function with a characteristic amplitude Ai, frequency bi, and a fixed exponent
of 4. The stellar granulation is further influenced by an attenuation η, which arises due to
discrete time sampling of the flux measurements.

As a parameter estimation method we employed a Bayesian Markov Chain Monte Carlo
(MCMC) framework with affine-invariant ensemble sampling, as implemented in the em-
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Figure 4.3: (a) Power density spectrum (PDS; in black) of KIC 2568888 showing three
granulation components (blue dashed lines), one noise component (blue dotted line), and
the global background fit (in red). The νmax values for stars A and B are indicated by
arrows. (b) Background-normalized PDS covering the oscillation modes of the two red-
giant stars with the final fit to the detected oscillation modes in red and the residuals in
panel (c).

cee2 routine (Foreman-Mackey et al. 2013), to explore the parameter space of the granu-
lation background components (eq. 4.1). After convergence, we used the MCMC chains
to estimate the posterior probability density functions for each parameter. We adopted the
medians of these distributions as an estimate of the expectation values for the parameters
and their 16th and 84th percentiles as standard uncertainties. In panel (a) of Figure 4.3
we show the PDS of KIC 2568888 and the global background fit. The oscillation regions
of the two red-giant stars are marginally overlapping at the edges. The parameter νmax

represents the frequency of maximum oscillation power, which we define as the centre of
the oscillation power envelope. In order to determine νmax for each red giant, we first cor-
rected the PDS by the global background and then we fitted a model with two Gaussian
functions to the normalized PDS. The global background parameters and νmax values are
listed in Table 4.2. We further note that the amplitudes of the power excesses are on the
lower edge of the empirical νmax-amplitude relation (e.g. Huber et al. 2011, Kjeldsen and
Bedding 2011, Stello et al. 2011, Mosser et al. 2012a). Although that does not provide
decisive information about our pair of stars, it shows that the presence of two stars pro-
vides a ‘diluted’ light curve, which results in the observation of decreased amplitudes of
the oscillations.

4.4.2 Oscillations
Another asteroseismic parameter of interest is the mean large frequency separation ∆ν,
i.e. the frequency spacing between pressure (p) modes of the same spherical degree ` and

2emcee: The MCMC Hammer, http://dfm.io/emcee/

http://dfm.io/emcee/
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consecutive radial order n. Here, we used the continuous wavelet transform-based peak
detection method developed by Garcı́a Saravia Ortiz de Montellano et al. (2018) to search
for all significant Lorentzian-like peaks in the background-normalized PDS. In the cur-
rent analysis, we applied this automated peak detection algorithm with a signal-to-noise
threshold of 1.5. As a measure of the statistical significance of each peak we compared
the Akaike Information Criterion (AIC; Akaike 1998) of a PDS model including the peak
and a model without it. The AIC difference between the two models is similar to a log-
likelihood difference with a penalisation for the number of degrees of freedom. The model
with a lower AIC value is preferred. For more details about the peak detection we refer
the interested reader to Garcı́a Saravia Ortiz de Montellano et al. (2018). In addition to
the frequencies of the peaks, the algorithm provided initial values for their amplitudes and
linewidths. Based on these estimates we used a maximum-likelihood method (MLE) to
optimize all variable parameters simultaneously. From this final MLE fit we estimated the
values for the frequencies, amplitudes, and linewidths of the oscillation modes, as well
as their uncertainties, which we report in Table 4.4. We note that the mode amplitudes
are given in units of the background-normalized power density spectrum. In panel (b)
of Figure 4.3 we present the background-normalized PDS, including the model fit. The
residuals in panel (c) show that only noise is left in the PDS after the fit. In the following,
we assigned the spherical degree and the acoustic radial order to the set of detected fre-
quencies by using the asymptotic relation (Tassoul 1980). For both stars in KIC 2568888
we detected several radial orders of ` = 0, 1, and 2 modes and two ` = 3 modes (Tab. 4.4)
that are visible as vertical ridges in the échelle diagrams (Grec et al. 1983) in Figure 4.4.
As a further note, no clear evidence of mixed modes was present in the power density
spectrum. Therefore, no evolutionary stage determination based on period spacings was
possible for either red-giant star (e.g. Mosser et al. 2011, Stello et al. 2013). A preliminary
study by Themeßl et al. (2017) showed that about 50 % of red giants in detached eclipsing
binaries show only p-dominated mixed modes compared to about 4 % of red giants not
known to be in binary systems. This may hint at a binary scenario for KIC 2568888.

For each red giant, we computed the mean large frequency spacing ∆ν from a linear
fit through the set of four central ` = 0 modes (marked with asterisks in Tab. 4.4 and
with filled symbols in Fig. 4.4) that were unambiguously assigned to the respective star.
According to the asymptotic relation for ` = 0 modes, the slope parameter of each
fit represents ∆ν and the intercept is related to the phase term ε. We report the mean
large frequency spacings for stars A and B in Table 4.2. In addition, we derived lo-
cal values (∆νc, εc) as these are proposed to provide information about the evolutionary
stage of red giants (Kallinger et al. 2012). Based on ∆νc,star B = 2.168 ± 0.021 µHz and
εc,star B = 0.85±0.01, star B is a red-giant branch (RGB) star. Star A is a more evolved red
giant that may be in the asymptotic giant (AGB) phase of stellar evolution with measured
∆νc,star A = 1.202 ± 0.012 µHz and εc,star A = 0.10 ± 0.02.

4.5 Determination of stellar parameters
We measured the global seismic parameters (νmax and ∆ν) to derive the stellar properties
of stars A and B by using different asteroseismic methods. Here, we use the stellar pa-
rameters to investigate if the two red giants under study could potentially be physically
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Table 4.2: Global background, and asteroseismic, and stellar parameters from scaling relations
(sr) for both stars present in the light curve of KIC 2568888.

Parameter Star A Star B

nwh [ppm2µHz−1] 156 +1
−1

A1 [ppm2µHz−1] 103 617 +16 732
−15 981

b1 [µHz] 2.0 +0.3
−0.2

A2 [ppm2µHz−1] 22 301 +13 405
−12 446

b2 [µHz] 6.2 +1.9
−2.6

A3 [ppm2µHz−1] 3 590 +1 684
−1 235

b3 [µHz] 18.8 +1.9
−1.7

νmax [µHz] 7.82 ± 0.23 16.98 ± 0.41
∆ν [µHz] 1.210 ± 0.008 2.177 ± 0.011
Evolutionary state AGB/RGB RGB

Msr [M�] 1.36 ± 0.09 1.32 ± 0.09
Rsr [R�] 25.11 ± 0.68 16.84 ± 0.45
ρ̄sr [ρ̄� × 10−3] 0.086 ± 0.002 0.277 ± 0.005
log gsr (cgs) 1.770 ± 0.008 2.107 ± 0.009

Figure 4.4: Échelle diagrams for stars A (left) and B (right) with extracted mode frequen-
cies (A: circles; B: squares) that form vertical ridges corresponding to different spherical
degrees `. The filled symbols show frequencies that were used to determine ∆ν and hori-
zontal dotted lines represent νmax values.



142 KIC 2568888: To be or not to be a binary

Table 4.3: Stellar parameters from grid-based modelling (gbm) by using PARSEC isochrones for
both stars. We note that for star A we also find a matching RGB model, which is less likely than
the AGB model.

Parameter Star A Star B

Mgbm [M�] 1.35 ± 0.20 1.37 ± 0.18 1.37 ± 0.21
Rgbm [R�] 25.07 ± 1.26 25.20 ± 1.24 17.05 ± 1.01
ρ̄gbm [ρ̄� × 10−3] 0.086 ± 0.004 0.086 ± 0.004 0.277 ± 0.010
log ggbm (cgs) 1.770 ± 0.019 1.770 ± 0.019 2.112 ± 0.026
log(L/L�)gbm 2.30 ± 0.12 2.29 ± 0.10 1.99 ± 0.11
Teff,gbm [K] 4324 ± 188 4301 ± 161 4419 ± 182
agegbm [Gyr] 3.6 ± 1.5 3.2 ± 1.2 3.7 ± 1.7
Evolutionary state AGB RGB RGB

bound in a binary system.

4.5.1 Asteroseismic scaling relations
One method to determine the stellar parameters of red giants is based on the asteroseis-
mic scaling relations (SR; Ulrich 1986, Brown et al. 1991, Kjeldsen and Bedding 1995).
These equations require reference values often taken from the Sun and thus it is implicitly
assumed that the internal stellar structure is similar for all stars of different masses, metal-
licities, and evolutionary stages. From observations and theoretical predictions we know
that this is not the case. Different studies have pointed out discrepancies in the derived
asteroseismic stellar parameters of red-giant stars (e.g. Huber et al. 2010, Gaulme et al.
2016, Themeßl et al. 2018) even though several modifications to the scaling relations were
proposed in order to improve the precision of these parameter estimates (e.g. White et al.
2011, Miglio et al. 2012, Hekker et al. 2013b, Mosser et al. 2013, Guggenberger et al.
2016, Sharma et al. 2016, Guggenberger et al. 2017, Rodrigues et al. 2017, Viani et al.
2017, Themeßl et al. 2018).

In the current study, we employ empirical reference values (νmax,ref = 3137 ± 45 µHz,
∆νref = 130.8 ± 0.9 µHz) that were derived from a combined asteroseismic and binary
analysis of three RGB stars (Themeßl et al. 2018). By using these reference values the
metallicity, temperature, and mass dependence of stars, as well as surface effects, are in-
corporated in the SR. Based on the global seismic parameters, the spectroscopic effective
temperature and metallicity from APOGEE spectra, and the empirical reference values,
we computed the asteroseismic stellar parameters for both stars. We note that the formal
uncertainties in the derived stellar parameters are larger due to our adopted uncertainty of
±200 K in temperature since we lack individual Teff values for stars A and B. The stellar
parameters are reported in Table 4.2.

4.5.2 Grid-based modelling
In addition to the determination of stellar parameters through SR, one can also use a
precomputed grid of stellar isochrones to find the best-fit model to the observational
data. For our grid-based modelling (GBM; Gai et al. 2011) approach we computed a
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set of stellar isochrones with the PAdova and TRieste Stellar Evolution Code (PARSEC;
Bressan et al. 2012). These isochrones extend from the lower main sequence up to the
asymptotic giant branch for stars between 0.1 M� and 12 M� with ages ranging from
∼ 4 Myr to 13.2 Gyr and metallicities in the range 0.0005 ≤ Z ≤ 0.07 (corresponding to
−1.49 ≤ [M/H] ≤ +0.78). For low-mass stars, mass loss due to stellar winds is incorpo-
rated during the RGB phase according to the empirical formula by Reimers (1975), with
an efficiency factor of 0.2. We obtained this grid of stellar models through the CMD web
interface at OAPD3.

The stellar parameters were extracted from this grid using an independent implementa-
tion of the likelihood method described by Basu et al. (2010), where the likelihood of
each model was computed from a given set of observed parameters. In this case, we used
νmax and ∆ν from the asteroseismic analysis and atmospheric parameters (Teff , [M/H])
provided by APOGEE to search for matching stellar models. For the computation of ∆ν
and νmax for the models, we employed the scaling relations with the empirical reference
values as stated in the previous section. Based on a Monte Carlo method, we obtained
the stellar parameters and their uncertainties for each star from the centre and width of
a Gaussian fit through the total likelihood distribution of 1 000 perturbations, which we
report in Table 4.3. We note that the uncertainties of the GBM results are larger due to the
lack of individual Teff and [M/H] measurements for our pair of stars.

In addition to the individual ages of the two red-giant stars, the GBM approach provides
an indication of which evolutionary state is favoured (Hekker et al. 2017). For star A
we found two solutions in different evolutionary stages that matched the observations, a
red-giant branch and a more evolved AGB model (Tab. 4.3). Based on our optimization
method, we obtained a marginally higher statistical significance for the solution on the
asymptotic giant branch. For both stars, we found the same evolutionary stages from stel-
lar models and from the study of the local phase terms (Sec. 4.4.2). To check the results
from PARSEC, we repeated the GBM analysis with stellar isochrones from the BaSTI4

(Pietrinferni et al. 2004) code and obtained consistent results.

4.5.3 UniDAM
UniDAM (Mints and Hekker 2017, 2018) is a Bayesian isochrone fitting tool that can
use different combinations of measured physical parameters (e.g. R,Teff, log g, [M/H]) as
well as Gaia parallaxes as inputs to determine stellar masses, ages, and distances. We
used this tool for a further test to constrain the age and the distance of each star inde-
pendently by comparing our final R and log g values from SR (Tab. 4.2) together with
the BVI photometry (Tab. 4.1) with PARSEC models (the same set of isochrones as de-
scribed in Sec. 4.5.2). Since it is not known which photometric component corresponds
to which asteroseismic signal (stars A and B), we employed both possible combinations
of magnitudes with rather similar results. As a reference, we chose the result with the
better fit to the photometry with a χ2 probability close to 1. Based on this approach, we
derived age estimates for both stars that were consistent with those derived from the as-
teroseismic analysis, while the apparent distance moduli turned out to be different with

3http://stev.oapd.inaf.it/cmd/
4http://albione.oa-teramo.inaf.it/

http://stev.oapd.inaf.it/cmd/
http://albione.oa-teramo.inaf.it/
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µd,A = 14m.63 ± 0.12 and µd,B = 13m.96 ± 0.15.

In Figure 4.5 we show the Gaia DR2 parallax probability distribution function (PDF) for
the star with the positive Gaia parallax measurement and the parallax PDFs as derived
by UniDAM from BVI photometry for both stars. From UniDAM, we computed a lower
parallax value for star A and a higher parallax value for star B, while the positive Gaia
parallax value lies in between, with its uncertainties covering the individual PDFs of both
stars.

The discrepancies in the distance estimates is not surprising due to the fact that the appar-
ent magnitudes are very similar, while we detected two power excesses with different νmax

values and thus expect the two stars to have different radii (see Tab. 4.2 and 4.3). With
similar effective temperatures, which can be assumed given the similar observed colors,
different radii should lead to different absolute luminosities and thus absolute magnitudes.
In our analysis, this difference is on the order of 0m.65 which can only partly be explained
by the uncertainties in the models, the photometric calibration, and the extinction model
that were used.

In addition, we can test if we find solutions for the two stars, assuming that they are in
a binary system. In this case, we took as a constraint the combined apparent magnitude
for KIC 2568888 from 2MASS (Tab. 4.1), where the pair of stars could not be spatially
resolved. The combined magnitude should then match the predicted magnitudes from the
best-fitting models for both stars. We selected a pair of models such that the following
conditions are fulfilled: (1) metallicity and age (as computed from GBM) are the same
within the uncertainties for both models; (2) R and log g are within the 4σ uncertainties
from values derived from the asteroseismic analysis; and (3) BVI photometry for each
model and combined JHK photometry match the observed values. Based on these crite-
ria, we found solutions that give an age of ∼ 3.4 Gyr, a metallicity of ∼ −0.06 dex, and a
distance modulus of ∼ 14m.4 or ∼ 7.5 kpc. We note, however, that the χ2 probability for
this model pair is rather low, on the order of 10−9.

4.6 Discussion and conclusions
In the Kepler light curve of KIC 2568888 we detected the asteroseismic signals of two red
giants. An asteroseismic analysis leads us to the following conclusions:

1. The similar ages (∼ 3.6 and ∼ 3.7 Gyr) for stars A and B, and a mass ratio close
to unity, support a possible binary scenario, where KIC 2568888 is comprised of
either two RGB components or an RGB/AGB combination.

2. If KIC 2568888 is indeed an asteroseismic binary system, then this would be a very
interesting and rare candidate binary according to Miglio et al. (2014), who pointed
out that the detection of a binary system in this configuration is possible, yet not
that common. According to their study, the overall probability of detecting two
solar-like oscillating binaries in a single Kepler time series is of the order of 0.1 %.

3. If the derived ages of stars A and B are accurate, then it is unlikely that the two
stars belong to the old (∼ 8 Gyr) open cluster NGC 6791 (e.g. Martinez-Medina
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Figure 4.5: Parallax probability distribution functions (PDFs) for the observed parallax
measurement for source 2051291674950663808 from Gaia DR2 (in black) and astero-
seismic stars A (in blue) and B (in red) as derived from UniDAM (Sec. 4.5.3). For star
A we show the PDFs for models in both evolutionary stages (RGB: solid, AGB: dashed).
The upper and lower panels represent different combinations of asteroseismic R and log g
values and ground-based BVI photometry, since we are not able to match the asteroseis-
mic components with their photometric counterparts. In both cases the results are similar.
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et al. 2018), as a member of which KIC 2568888 was proposed for observations.
Moreover, the provided APOGEE radial velocity for the system (about −58 km s−1)
is not in line with either the radial velocity of the cluster (−47.40 ± 0.13 km s−1;
Tofflemire et al. 2014) or published APOGEE radial velocities of known red-giant
cluster members ranging from about −43 to about −50 km s−1.

In addition, we computed distance estimates for the two stars that challenge a binary inter-
pretation. From ground-based BVI photometry that we combined with the asteroseismic
radii and logarithmic surface gravities, we obtained different distance moduli for both
stars with µd,A = 14m.63 ± 0.12 and µd,B = 13m.96 ± 0.15, respectively. Comparing this
with recently published Gaia data, we found a consistent distance estimate for the star
with the positive Gaia parallax measurement, while for the other star a negative parallax
is provided that results in a different distance measurement. Even though this distance
may be correct, we do not consider it reliable due to the strong influence of the chosen
prior in the Bayesian analysis, as well as the Gaia ‘astrometric excess noise’ flag, which
indicates that the astrometric fitting of this source in particular was ambiguous. This leads
us to the conclusion that:

1. If the discrepancy in the distances is true, then this could indicate that the pair of
stars is not gravitationally bound and a chance alignment.

To calculate the probability (pchance) of such a close pair happening as a chance align-
ment, we selected all stars in the observed region of NGC 6791 with mB > 16m.1, which
corresponds to the apparent magnitude of the fainter of the two components. We found
164 stars that are spread over 0.07 square degrees. The probability of having a chance
companion for a star at an angular separation of s ≈ 1′′.6 ≈ 0◦.00044, as derived from the
coordinates of the two components of KIC 2568888, is given by pchance = s2ρ, where ρ is
the number density of stars on the sky. We have ρ = 164/0.07 ≈ 2 300 stars per square
degree, thus we calculated pchance to be 4.6 × 10−4 or about 0.05 %. This value marks the
upper limit of the chance alignment probability, which would decrease further if we use
a mass ratio close to 1 as an additional constraint for the pairs of stars that are considered
in the calculation. We also note that we obtained a similar result when computing ρ from
2MASS stars in the same area. This brings us to the final conclusions that:

1. If the stars of KIC 2568888 are not components of a binary system, then it would
be a very rare case of an optical double system. Based on the observed magnitudes,
there is a ∼ 0.05 % chance that this is the case.

2. If the stellar radii of stars A and B are accurate and these stars are gravitationally
bound, then there might be a third star to account for the excess flux. Additional
radial velocity measurements from APOGEE and Gaia could potentially provide a
test if either of the two stars is itself a binary. This would explain the visual magni-
tudes of the two observed oscillating red-giant stars, and thus the discrepancies in
the distance estimates.

In any case, it will be interesting to see the Gaia end of mission products for this pair of
stars. With a more complete set of astrometric and photometric parameters at hand, e.g.
reliable proper motions and parallaxes for each component, the Gaia final data release
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may provide the only possibility of solving this issue in the near future. Since binarity
will be taken into account in the prospective Gaia data analysis, we propose KIC 2568888
as a strong candidate for further binary investigation.

4.7 Appendix: List of detected frequencies for
KIC 2568888

We provide a list of extracted frequencies of oscillation modes, and their amplitudes, and
linewidths in Table 4.4.
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Table 4.4: Extracted frequencies, amplitudes, and linewidths of modes that were fitted with
Lorentzian (resolved peaks) or sinc functions (unresolved peaks). In the latter case, the linewidth
is not given. Modes marked with asterisks were used to determine ∆ν (Sec. 4.4.2). We indicate
more than one spherical degree ` and radial order n in cases where two modes are overlapping
such that they could not be fitted individually.

Star n ` Frequency [µHz] Amplitude [a.u.] Linewidth [µHz] AIC

A 5 1 5.60 ± 0.02 1.53 ± 0.23 0.08 ± 0.06 158.56
5 2 5.87 ± 0.01 0.99 ± 0.48 - 6.09
6 0* 6.13 ± 0.01 1.30 ± 0.53 - 22.66
6 1 6.77 ± 0.01 1.43 ± 0.31 0.01 ± 0.01 162.13
6 2 7.10 ± 0.01 1.39 ± 0.25 0.02 ± 0.02 90.58
7 0* 7.33 ± 0.02 1.31 ± 0.20 0.05 ± 0.03 78.16
7 1 8.08 ± 0.01 1.59 ± 0.25 0.03 ± 0.02 162.95
8 0* 8.54 ± 0.03 1.35 ± 0.16 0.09 ± 0.04 75.73
8 1/2 9.36 ± 0.02 1.65 ± 0.17 0.10 ± 0.03 156.83
9 0* 9.78 ± 0.03 0.57 ± 0.20 0.03 ± 0.03 10.14

9/10 2/0 11.11 ± 0.06 0.97 ± 0.17 0.15 ± 0.08 22.81

B 5 1 11.81 ± 0.03 0.86 ± 0.15 0.07 ± 0.05 21.16
5/6 2/0 12.53 ± 0.06 0.63 ± 0.18 0.09 ± 0.07 2.71
6 1 13.89 ± 0.03 1.24 ± 0.15 0.11 ± 0.05 71.53
6 2 14.49 ± 0.02 0.79 ± 0.16 0.04 ± 0.03 15.35
7 0* 14.86 ± 0.02 1.07 ± 0.16 0.06 ± 0.03 51.34
7 1 15.99 ± 0.01 1.83 ± 0.23 0.04 ± 0.02 281.66
7 2 16.75 ± 0.03 1.13 ± 0.17 0.07 ± 0.03 50.88
8 0* 17.03 ± 0.01 1.55 ± 0.29 0.02 ± 0.01 157.77
8 1 18.18 ± 0.02 1.37 ± 0.16 0.07 ± 0.02 118.12
8 2 18.90 ± 0.02 0.83 ± 0.16 0.04 ± 0.02 21.82
9 0* 19.20 ± 0.04 0.89 ± 0.15 0.09 ± 0.04 22.34
8 3 19.59 ± 0.01 0.52 ± 0.17 0.01 ± 0.01 9.87
9 1 20.37 ± 0.02 1.15 ± 0.15 0.07 ± 0.03 74.80
9 2 21.07 ± 0.02 0.83 ± 0.15 0.03 ± 0.02 29.84

10 0* 21.39 ± 0.02 0.78 ± 0.15 0.05 ± 0.03 21.51
9 3 21.81 ± 0.03 0.61 ± 0.15 0.04 ± 0.03 8.16

10 1 22.57 ± 0.01 0.70 ± 0.16 0.03 ± 0.02 20.60
10/11 2/0 23.43 ± 0.09 0.98 ± 0.14 0.21 ± 0.08 24.70
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5 Discussion and future prospects

Stars are the building blocks of the universe. By studying stars with a wide range of
stellar properties and stars in different stages of stellar evolution one can explore the past,
present, and future of the universe. The astrophysical potential of stars is very large due to
the great number and diversity of stellar objects that have been discovered, analyzed, and
modelled so far. This thesis shows that asteroseismology is a powerful analysis method
for the study of oscillating stars with the ability to derive reliable stellar parameters for
red giants in eclipsing binary systems and open clusters. Due to stringent constraints on
age, chemical composition, and distance, stars in these associations are ideal candidates
for validating asteroseismic methods and for testing the accuracy of the asteroseismic re-
sults. The scientific breakthroughs in red-giant asteroseismology have been facilitated by
the unprecedented quality and quantity of photometric data that were provided by space-
borne missions over the past ∼ 15 years. Further advances in data analysis techniques
have led to a new era of the interpretation of asteroseismic signals. The analysis of 4
years of Kepler data showed that it is possible to derive accurate asteroseismic stellar
parameters for red-giant stars in eclipsing binary systems and open clusters. To achieve
this, additional knowledge about the effective temperature and the metallicity of the stars
is important, since these parameters provide useful constraints for asteroseismic analysis
methods. In the larger context, obtaining accurate stellar parameter estimates does not
only play a crucial role for stellar studies. It is also contributing to the understanding of
extra-solar planetary systems, in which case the accuracy of planet parameters depends on
the proper characterization of their host stars. Another powerful application of asteroseis-
mology is Galactic archaeology, which focuses on studying the structure and evolution of
our own Galaxy, the Milky Way, including its formation history and chemical evolution.

5.1 Importance for current and future space missions
Testing the accuracy of stellar parameters determined through asteroseismology is of im-
portance because of the wealth of data that is already available and will become available
in the (near) future. The recently launched Transiting Exoplanet Survey Satellite (TESS)
and the upcoming Planetary Transits and Oscillations of stars (PLATO 2.0) mission are
referred to as legacy missions for stellar and galactic physics. They will monitor an un-
precedented number of stars, which will increase the field of asteroseismology even more.
Major breakthroughs are expected in terms of asteroseismic characterization of stellar en-
sembles including the detection of a significant number of binary systems. Along with
distances, effective temperatures, and absolute luminosities provided by Gaia (e.g. Gaia
Collaboration et al. 2016b, 2018), the analysis of the new data will provide a unique
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database for Galactic structure studies, which will comprise accurate stellar parameters,
including ages, for an unprecedented number of stars of various masses and chemical
compositions in many galactic directions.

The Transiting Exoplanet Survey Satellite (TESS) was launched on April 18th, 2018
for its 2-year prime mission and started its science operation on July 25th, 2018. TESS
aims at searching for exoplanets outside of our solar system that may support life. One
of the key features of the mission is that it is a near all-sky survey, which will monitor
the brightest (∼ 4 − 13 mag) nearby stars in different directions of the Galaxy. TESS will
provide 2 min cadence observations for ∼ 200 000 − 400 000 selected stars and 30 min
cadence observations for all objects in the fields of view adding up to ∼ 423 000 000
observed stars as reported in the TESS input catalogue (Stassun et al. 2018). The photo-
metric precision of the brightness measurements will be very suitable for asteroseismic
studies of red giants. Depending on the location of the target on the sky, continuous ob-
servations will be taken for 27 (around ecliptic equator), 70, and 351 (around ecliptic
poles) days with the frequency resolution of the measurements increasing with longer ob-
servation periods. TESS will be very important for investigating the history of the Milky
Way by providing reliable estimates of the stellar mass, age, radius, and thus distance,
for many thousands of stars at different distances in many galactic directions. More in-
formation about the mission design and the science program can be found in Ricker et al.
(2016) and references therein.

The PLAnetary Transits and Oscillations of stars (PLATO 2.0) mission is targeted
for launch in ∼ 2026 with a nominal science operation of 6 years. PLATO will be dedi-
cated to detecting and characterizing terrestrial planets in the habitable zone in extra-solar
planetary systems around bright (∼ 4−16 mag) solar-type stars. The mission will provide
observations for about 1 000 000 stars in different galactic directions covering about 50 %
of the sky with a cadence of 25 and 2.5 seconds. The planned observing strategy will
comprise two long continuous pointings (first one with 2 − 3 years and second one with
2 years) and a ‘step-and-stare’ phase of different fields (1 − 2 years in total with obser-
vations between 2 to 5 months). The former is useful for exploring small planets out to
the habitable zone, while the latter is useful for the detection of planets with shorter pe-
riods. The primary aim of the mission is to determine precise planetary radii with ∼ 3 %
accuracy as well as planetary masses with ∼ 10 % accuracy by using complementary
spectroscopic ground-based follow-up observations. Asteroseismology is also among the
core science of PLATO. To support the exoplanet science, asteroseismology is expected
to provide stellar masses, radii, and ages for about 85 000 stars with an accuracy of bet-
ter than 10 %, 1-2 %, and 10 %, respectively. Thus, PLATO will provide ages for many
planetary systems through asteroseismology. Since planet formation occurs on short time
scales, the age of the exoplanet and the host star can be assumed to be similar. More about
the PLATO 2.0 mission is provided by Rauer et al. (2016) and references therein.
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5.2 Additional aspects of asteroseismic stellar
parameter determination

For the study of oscillating red-giant stars in eclipsing binary systems and open clusters I
used powerful asteroseismic diagnostics to derive their stellar parameters. In the follow-
ing, I will discuss some further aspects that play an important role for the asteroseismic
parameter determination and I will point out future science prospects with regard to each
topic.

5.2.1 Presence of mixed modes in red giants in binaries
For the three red-giant stars in eclipsing binary systems (Chapter 2) we found that the
g-dominated mixed modes are not pronounced (see Sec. 1.2.4). These modes are key to
understanding the physical conditions in the stellar core and are thus important for the
determination of the evolutionary state of red-giant stars. To investigate if the presence of
only p-dominated mixed modes is specific for binary systems, we compared the fraction
of stars with only p-dominated mixed modes in binaries and in a larger set of stars from
the APOKASC sample. The work presented in this Section was originally published in
Themeßl et al. (2017).

For a sample of 18 confirmed red giants in binary or triple-star systems (Gaulme et al.
2013, Beck et al. 2014, Gaulme et al. 2014, 2016), we used the unweighted power den-
sity spectra of the corrected and concatenated time series based on Kepler long-cadence
observations provided by KASOC (Handberg and Lund 2014). In addition, we used the
corrected light curves for 6 604 red giants from the APOKASC (Pinsonneault et al. 2014)
sample that are available as a data bundle. For those APOKASC stars that could not be
classified by Elsworth et al. (2017), we performed a visual inspection of the dipole ` = 1
modes in the oscillation region around the frequency of maximum oscillation power in the
range νmax ± 2.5 ∆ν. Each dipole mode comprises a central most p-dominated mode and
several mixed modes that have a more g-dominated character. Based on the computed
power density spectra we classified the red giants into three different classes: (a) stars
where g-dominated mixed modes are clearly present, (b) stars that show only p-dominated
dipole modes, and (c) stars exhibiting non-radial mode suppression. An example of the
three categories is shown in Figure 5.1. For 284 APOKASC stars a categorization was
not possible due to either very low signal-to-noise spectra, oscillation regions that were
too close to the Nyquist frequency or the absence of solar-like oscillations. In Table 5.1
we present the results with the percentage of red giants according to the three different
types that we defined.

About 50 % of the red giants in known detached binary systems show mainly p-dominated
dipole modes compared to about 4 % in the larger APOKASC sample. This could indi-
cate that this phenomenon is tightly related to binarity and that the binary fraction in the
APOKASC sample is about 8 %. For the latter case, Elsworth et al. (2017) detected dis-
tinct mixed modes in a large fraction of these stars, while we inspected the remaining
4 % to either have suppressed or only p-dominated dipole modes. The fraction of stars
that show suppressed dipole modes is of the same order of magnitude for both samples.
As we used a statistically insignificant number of known binaries, we were not able to
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Figure 5.1: The frequency range of oscillations around the frequency of maximum os-
cillation power. Panel a) shows KIC 7955301 which exhibits clear mixed modes. Panel
b) shows KIC 8410637 where only the p-dominated non-radial modes are distinct. Panel
c) shows KIC 2720096, a red-giant star with suppressed dipole modes. This Figure was
originally published in Themeßl et al. (2017).

Table 5.1: The percentage of stars in the different categories. This Table was originally published
in Themeßl et al. (2017).

Number Mixed P-dominated Suppressed Unidentified
of stars modes modes modes

Binaries 18 ∼ 39 % ∼ 50 % ∼ 11 % 0 %

APOKASC 6 604 ∼ 85 % ∼ 4 % ∼ 7 % ∼ 4 %

draw any firm conclusions from this. We could however speculate that the binary nature
does not seem to be the cause for mode suppression. Yet, binarity appears to have some
influence on the g-dominated mixed modes. If we take this one step further, saying that
the presence of mainly p-dominated mixed modes only appears in about half the binaries,
this would mean that the binary fraction in the APOKASC sample would be ∼ 8 %.

Future prospects: To further investigate the presence of g-dominated mixed modes of
red-giant components in multiple star systems, it is necessary to extend the stellar sample
size. Only about two dozens of systems could be detected based on Kepler data. Long
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and continuous photometric observations are required for mixed modes to be resolved
in the Fourier power density spectrum. These requirements can be achieved by TESS,
in particular for targets that are located in the continuous viewing zone, as well as by
the upcoming PLATO mission. They are both expected to detect many more binary and
multiple star systems that contain oscillating components.

5.2.2 Expected oscillation parameters from dynamical masses and
radii

Chapter 2 was dedicated to the determination of stellar parameters of red-giant compo-
nents in eclipsing binary systems. Based on the measured oscillation features (νmax and
∆ν) and effective temperatures, their masses and radii could be determined by using the
well-known asteroseismic scaling relations (Brown et al. 1991, Kjeldsen and Bedding
1995) that were introduced in Section 1.3.8.

In a pilot study originally published in Themeßl and Hekker (2017), we performed a test
to predict the oscillation parameters for a sample of known double-lined spectroscopic
binaries with red-giant components (Gaulme et al. 2016, Themeßl et al. 2018). For these
binary systems, dynamical masses and radii were measured from binary analyses using
Kepler’s laws. We used these measurements together with effective temperatures in equa-
tions 1.24 and 1.26 to compute the oscillation parameters of a sample of 11 stars. For the
calculations we varied the solar reference values in the ranges 134.9 ≤ ∆ν� ≤ 135.2 µHz
and 3025 ≤ νmax,� ≤ 3175 µHz, with step sizes of 0.1 µHz and 25 µHz, respectively.
Based on this approach, we derived a set of ∆ν and νmax values for each star. Figure 5.2
shows how νmax varies for one of the red-giant stars under study. The ratios between the
oscillation parameters determined from the scaling relations and those directly measured
from the asteroseismic signal are shown in the left panel of Figure 5.3. We found that
the predicted νmax (∆ν) values are lower (higher) than the asteroseismically determined
values, with a clear correlation. The right panel of Figure 5.3 shows the ∆ν ratio as a
function of temperature with the metallicity colour-coded. By using only 11 red-giant
stars we did not recover the trend in effective temperature and global metallicity that was
found in stellar models (Guggenberger et al. 2016).

In this study, we showed that the use of the solar reference values in the asteroseismic
scaling relations introduces biases in the mass and radius estimates of red-giant stars. We
found that the ∆ν and νmax scaling relations both add to the observed discrepancies be-
tween the dynamical and asteroseismic masses and radii, when the Sun is used as the
reference star. This issue can be solved by using a corrected reference value as shown by
the work presented in Chapter 2.

Future prospects: A study that can probe the applicability of the asteroseismic scaling
relations and find possible corrections to the reference values requires a larger sample
of binary star systems with oscillating red-giant components. The stars should cover a
wide range of stellar parameters and different evolutionary stages. With Kepler data, only
11 systems were reported so far, where the global oscillation parameters and dynamical
masses and radii were derived with sufficient precision in order to perform this study.
The TESS and PLATO missions are expected to increase the sample size of known red-
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Figure 5.2: Power density spectrum (in black) of KIC 8410637 centred around νmax. The
range of predicted νmax (νmax,calc) values for this red giant is indicated by the red arrow.
The corresponding Gaussian fits (multiplied by a factor for visual purposes) are shown in
red. No inconsistencies between the predicted and measured values for νmax are apparent.
This Figure and caption were originally published in Themeßl and Hekker (2017).

Figure 5.3: The ratio of predicted ∆ν (∆νcalc) to the seismically determined ∆ν (∆νseis) as
a function of the ratio of predicted νmax (νmax,calc) over observed νmax (νmax,seis), left, and
as a function of effective temperature Teff , right. The left panel shows all results for the
different solar values (see colourbar) and the right panel shows results using a single solar
value (∆ν� = 135.1 µHz) with the points colour-coded for metallicity (see colourbar).
This Figure and caption were originally published in Themeßl and Hekker (2017).
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giant components in binary systems in the future. The analysis of their data will then
provide observables with the level of accuracy that is required to compare asteroseismic
and dynamical stellar parameters for a statistically significant number of red-giant stars.

5.2.3 Surface effects on the red-giant branch

For the three red-giant branch stars in double-lined eclipsing binaries (Chapter 2) several
orders of ` = 0, 1, and 2 modes could be extracted. We used the observed oscillation
frequencies to study the magnitude of the surface effect in these evolved stars, which was
published in Ball et al. (2018).

Fitting stellar models to observed oscillation frequencies is a challenging task partly be-
cause of the influence of the surface effect (see Sec. 1.3.8 for an introduction). This effect
causes a systematic frequency difference between modelled and observed frequencies,
and needs to be accounted for. So far, corrections of the surface effect were developed
and tested for main-sequence and subgiant stars. We extended this work to more evolved
stars to probe if the same formulations hold for red giants.

The observed frequencies of the red-giant branch stars under study contained one mode
per acoustic radial order and per angular degree without the presence of g-dominated
mixed modes. Thus in our approach, we suppressed g modes in the core in order for the
stellar model to comprise pure p modes. In addition, for all non-radial modes that have
a mixed character, we only considered the most p-dominated modes. As initial input pa-
rameters for stellar modelling, we used the effective temperature, the surface metallicity,
and the individual mode frequencies of the three stars, which were determined by The-
meßl et al. (2018) (see Chapter 2). The stars coincidently fall all at roughly the red giant
bump. For each star, we searched for the best-fitting models before and after the red-giant
branch bump by applying once the one-term (cubic) surface correction and then the two-
term surface correction, which were both proposed by Ball and Gizon (2014). Besides
the fiducial fit, the model-fitting procedure was carried out using the dynamical masses
and radii of the stars as further constraints for the models and by fixing the mixing-length
parameter to a solar-calibrated value of 1.66. Each model fit provided a set of derived pa-
rameters for each star including mass, initial helium abundance, initial metallicity, mixing
length parameter, age, and surface term coefficients.

For most choices of initial model parameters we found equally good models before and
after the red-giant branch bump. For KIC 8410637 and KIC 9540226 the pre- and post-
bump models were of the same quality, which is not surprising, since stars before and
after the bump have similar p-mode spectra, surface gravities, and mean densities. In ad-
dition, with our approach we lack any information of the g modes and thus the core of
the stars. In the case of KIC 5640750 the post-bump model seemed to fit the data better,
which could be an indication that this star has evolved past the red-giant branch bump.

The scale of the surface corrections was consistent for all the models before and after the
red-giant branch bump that used the one-term (cubic) fit and also similar to predictions
reported by Sonoi et al. (2015). The two-term (combined) fit provided a larger surface
correction for all three stars. The scale was the same for the pre- and post-bump models
for the two stars, while for the one star with the preferred post-bump model the scale dif-
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Figure 5.4: Frequency differences before and after applying a surface correction as a
function of observed frequency for best-fitting models of KIC 8410637. The four panels
are for the fiducial fit (top left), the fit with solar-calibrated mixing-length (top right),
the fit using the two-term surface correction (bottom left), and the fit using the orbital
mass and radius as observable constraints (bottom right). For each fit, we have plotted
the frequency difference before (uncorrected) and after correction (corrected) for both the
pre- and post-RGB bump models. The post-RGB bump frequencies are shifted right by
0.3 µHz for clarity. The solid grey bars indicate the surface correction predicted by eq.
(10) of Sonoi et al. (2015). The error bars represent the observed uncertainties. This
Figure and caption were originally published in Ball et al. (2018).
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Figure 5.5: Top: Fourier power density of the red-giant star KIC 2437507. Middle: Simu-
lated power density spectrum by using a Gaussian fit (eq. 1.11) to approximate the power
excess. Bottom: Simulated power density spectrum based on the results from fitting of
individual oscillation peaks (eq. 1.19).

fered.

For all three red-giant branch stars, the inferred masses and radii from the best-fitting
stellar models were more massive and larger than the dynamical masses and radii derived
from the binary analysis, when the models were not constrained and when the mixing-
length parameter was fixed to the solar-calibrated value. The discrepancy was about 15
and 5 % in mass and radius, which is of the same order as reported by Gaulme et al. (2016)
and Themeßl et al. (2018) in cases where the asteroseismic scaling relations were not cor-
rected for the mass, effective temperature, metallicity dependence, and the surface effect
of the stars. For KIC 8410637, KIC 5640226, and KIC 9540750 the modelled frequen-
cies showed a decrease of ∼ 0.1 − 0.3 µHz around the frequency of maximum oscillation
power due to the surface effect. Figure 5.4 shows the differences between observed and
modelled frequencies for one of the red giants under study before and after the surface
effect was corrected. This study shows that the surface effect for p modes in red-giant
branch stars is of the same order of magnitude as in main-sequence and subgiant stars and
that the same formulations can be used to describe it.

Future prospects: The red-giant branch stars investigated here cover a very narrow
range in stellar evolution close to the RGB bump. For further investigations of the scale
of the surface effect this study should be extended to other parts of the RGB (e.g. above
the bump) as well as more evolved clump stars. To perform this analysis a set of individual
frequencies must be available for the stars, which requires dedicated peakbagging efforts.
An additional challenge is the increasing number of mixed modes that are detectable for
more evolved stars. This makes the comparison between observed and modelled frequen-
cies even more challenging.
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5.2.4 Definition of the typical frequency of the oscillations
Accurate estimates of the global oscillation parameters are important for the determi-
nation of asteroseismic masses and radii of red-giant stars. While the large frequency
separation ∆ν represents the frequency difference between p modes of the same spherical
degree ` and consecutive radial order n, there is no distinct definition for the frequency
of maximum oscillation power νmax. The latter is commonly measured as the centre of a
Gaussian fit to the power excess, the peak of the power excess in the smoothed Fourier
power spectrum, or the first moment of the area under the smoothed power envelope (see
Hekker and Christensen-Dalsgaard 2017, and references therein). Comparisons between
νmax values derived from these slightly different methods showed that the spread in the re-
sults is of the order of a few per cent by using 4 months (Hekker et al. 2011a) and 7 months
(Verner et al. 2011) of Kepler data. However, with 4-years worth of Kepler observations,
the oscillation parameters can be determined more precisely and thus it is important to
investigate the influence of different νmax estimates on the asteroseismic stellar parameter
determinations.

The basis of this study are simulated Fourier power density spectra of oscillating red-giant
stars, which were generated by using the global background fitting results for the cluster
giants that were analyzed in Chapter 3. Each global model fit comprised three granulation
background components, one white noise component and a Gaussian fit to approximate
the oscillation power excess. Following the formulations presented by Gizon and Solanki
(2003), the theoretical power density spectra Psim(ν) can be calculated according to:

Psim(ν) = − ln(Uj) × PPDS(ν). (5.1)

Here, Uj represents a uniform distribution in the interval [0,1] and PPDS(ν) is the global
model fit (eq. 1.9) that can be used for fitting the red-giant Fourier power density spec-
trum. Red-giant stars in the sample under study oscillate in a broad range of frequency
covering a range of stellar properties and two distinct metallicities. For this sample, two
different sets of theoretical power density spectra were created. The first one used the
global model with the Gaussian parameters as input values (eq. 1.9), while the second
one substituted the Gaussian fit Pgauss(ν) with the peakbagging parameters Ppeaks(ν) de-
scribed by equation 1.19. Figure 5.5 shows the observed Fourier power density spectrum
(top panel) of a red-giant star together with the simulated power density spectrum based
on the Gaussian fit (middle panel) and by using the peak-bagged frequencies (bottom
panel). Additionally, for each model star the theoretical power density spectra were pro-
duced for varying slope parameters (c) of the granulation background components in the
range 3.5 ≤ c ≤ 4.5 with a step size of 0.1 (see eq. 1.10). This slope parameter defines
the curvature of the granulation background component and thus can influence the deter-
mination of νmax.

In the next step, the global model (eq. 1.9 with c = 4) was fitted to the theoretical power
density spectra in order to recover νmax,sim for the sample of modelled red-giant stars. Dur-
ing the fitting process, the frequency data points were arranged in a total number of 300
bins in order to reduce the computation time for the background fitting, which was de-
scribed in Chapter 3. The derived νmax,sim values are shown in Figure 5.6. While for many
stars the spread is of the order of a few per cents, there are some red giants that show a
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Figure 5.6: Ratio between simulated νmax,sim and observed νmax as a function of νmax,sim.
Different colours represent different slope parameters that were used for describing the
granulation background components.

difference of up to about 15 % in νmax,sim. The latter case will lead to large discrepancies
in the stellar mass and radius estimates based on the asteroseismic scaling relations and
from grid-based modelling.

Future prospects: A next step is to use a larger sample of red giants with a wider
range of stellar properties than the ∼ 60 model stars with two distinct metallicities that
are currently used. A suitable stellar ensemble would be the APOKASC sample, which
contains about 6 660 red-giant stars. With a larger number of model stars, influences
on the νmax determinations due to potential differences in the slope parameters in the
observations and fitting, as well as different binnings that are applied during the fitting
procedures can be investigated.
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? Zwintz, K.; Moravveji, E.; Pápics, P. I.; Tkachenko, A.; Przybilla, N.; Nieva, M.-
F.; Kuschnig, R.; Antoci, V.; Lorenz, D.; Themeßl, N.; Fossati, L.; Barnes, T.
G.: A comprehensive study of young B stars in NGC 2264. I. Space photometry
and asteroseismology, Astronomy & Astrophysics, Volume 601, id.A101, 19 pp.,
05/2017

? Anders, F.; Chiappini, C.; Rodrigues, T. S.; Miglio, A.; Montalbán, J.; Mosser, B.;
Girardi, L.; Valentini, M.; Noels, A.; Morel, T.; Johnson, J. A.; Schultheis, M.;
Baudin, F.; de Assis Peralta, R.; Hekker, S.; Themeßl, N. et al.: Galactic archae-
ology with asteroseismology and spectroscopy: Red giants observed by CoRoT and
APOGEE, Astronomy & Astrophysics, Volume 597, id.A30, 27 pp., 01/2017

? Chiappini, C.; Anders, F.; Rodrigues, T. S.; Miglio, A.; Montalbán, J.; Mosser,
B.; Girardi, L.; Valentini, M.; Noels, A.; Morel, T.; Minchev, I.; Steinmetz, M.;
Santiago, B. X.; Schultheis, M.; Martig, M.; da Costa, L. N.; Maia, M. A. G.;
Allende Prieto, C.; de Assis Peralta, R.; Hekker, S.; Themeßl, N. et al.: Young
[α/Fe]–enhanced stars discovered by CoRoT and APOGEE: What is their origin?,
Astronomy & Astrophysics, Volume 576, id.L12, 7 pp., 04/2015

? Schmid, V. S.; Themeßl, N.; Breger, M.; Degroote, P.; Aerts, C.; Beck, P. G.;
Tkachenko, A.; Van Reeth, T.; Bloemen, S.; Debosscher, J.; Castanheira, B. G.;
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Açores, Portugal, July 2016

? Poster, Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun (Cool
Stars 19), Uppsala, Sweden, June 2016

? Talk, Red-giant workshop series, Meudon, France, November 2015



182 Publications

? Talk, Space Asteroseismology: The next generation (KASC8/TASC1 workshop),
Aarhus, Denmark, June 2015

? Joint project, Stars, Planets and Life in the Universe Stellar Astrophysics Centre
Summer School, Aarhus, Denmark, July–August 2014

? Poster, The Space Photometry Revolution, Toulouse, France, July 2014





184 Acknowledgements

First of all, I would like to thank my daily supervisor Saskia Hekker for her mentoring,
patience, and advice during the course of my PhD. I am very grateful to my TAC commit-
tee as well as the coordinator of the International Max Planck Research School for Solar
System Science at the University of Göttingen for their support and guidance.

I would like to thank the members of my defence committee for agreeing to be part
of it and for taking the time to read my thesis. In addition, I thank all SAGE members for
the great working atmosphere, countless scientific discussions, and times spent outside of
MPS during the past years.

I would like to thank all the IMPRS students for the great activities, get-togethers, and
laughs that we shared. In addition, I want to thank all the people that I met at MPS. I feel
very fortunate to have got to know you.

A special thanks to Emanuele, George, and Thomas for reading parts of the thesis and
for providing me with very useful suggestions as well as discussions about red-giant stars.

Moreover, I would like to thank the people involved in administrative tasks at MPS as
well as the IT department, who were always there when help was needed.

Last but not least, I would like to say thank you to my family and closest friends for
their invaluable support!


	Summary
	Zusammenfassung
	Introduction
	Stellar evolution (in a nutshell)
	Evolution of low-mass stars
	Overview of stellar structure
	Stellar modelling

	Stellar oscillations
	A description of oscillations in stars
	Driving mechanisms
	Stellar oscillations across the Hertzsprung-Russell diagram
	Asteroseismology of red-giant stars

	Accurate stellar parameters of red-giant stars
	Motivation
	From helio- to asteroseismology
	The Kepler space mission
	Stellar intensity observations
	Characteristics of the red-giant power density spectrum
	Global asteroseismic diagnostics from the oscillation spectrum
	Parameter estimation in the Fourier power density spectrum
	Determination of asteroseismic stellar parameters
	Stellar parameters from `classical' methods
	Scope of this thesis


	Red giants in eclipsing binaries
	Summary
	Introduction
	Physical properties of the systems from light curves and radial velocity time series
	Kepler light curves and ground-based spectroscopic data
	Spectroscopic orbital elements from cross-correlation function and spectral disentangling
	Eclipse modelling
	Atmospheric parameters

	Stellar properties of oscillating red-giant stars from asteroseismology
	Kepler corrected time series data
	The background model
	Solar-like oscillations
	Derivation of the stellar parameters

	Comparison between asteroseismic and dynamical stellar parameters
	Comparison
	Empirically derived ref, emp

	Conclusions
	Appendix A: RVs for KIC8410637, KIC5640750, and KIC9540226
	Appendix B: Frequencies
	Peakbagging results
	Échelle diagrams
	Differences between asteroseismic methods


	Red giants in open clusters
	Summary
	Introduction
	Isochrone ages and metallicities for NGC6791 and NGC6819
	Ground-based BVI photometric data
	Stellar isochrones
	Isochrone fitting

	Determination of asteroseismic stellar parameters
	Kepler light curves
	Fourier spectrum analysis
	Asteroseismic ages and masses from stellar models

	Results
	Appendix: Ensemble asteroseismic results
	Global granulation background fits
	Derived asteroseismic masses and ages from different grid-based modelling runs
	Radial (=0) oscillation frequencies


	KIC2568888: To be or not to be a binary
	Summary
	Introduction
	Data
	Kepler light curve
	APOGEE spectra
	Ground-based BVI photometry
	(Near-)infrared photometry
	Gaia DR2 parameters

	Fourier spectrum analysis
	The global background model
	Oscillations

	Determination of stellar parameters
	Asteroseismic scaling relations
	Grid-based modelling
	UniDAM

	Discussion and conclusions
	Appendix: List of detected frequencies for KIC2568888

	Discussion and future prospects
	Importance for current and future space missions
	Additional aspects of asteroseismic stellar parameter determination
	Presence of mixed modes in red giants in binaries
	Expected oscillation parameters from dynamical masses and radii
	Surface effects on the red-giant branch
	Definition of the typical frequency of the oscillations


	Bibliography
	Publications
	Acknowledgements

