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Summary

For zoologists, and especially primatologists, it has been a longstanding aim to
decipher the causes of individual variability. Phenotypes associated with the
hypothalamic-pituitary-adrenal (HPA)-axis, a central physiological pathway activated in
response to stress, have been in the focus of research on wild primates. Scientists working
on humans have gathered convincing evidence for a major role of genetics in explaining
individual variation in HPA-axis-related phenotypes. Up to 50 % and more of the
variation in levels of the end product of the HPA-axis (cortisol), aggression and social
behavior can be attributed to the underlying genotype. One non-synonymous substitution
in a catecholamine degrader has been particularly well studied with regard to human
aggression: Val'®®Met in the catechol-o-methyltransferase gene (COMT). Causing
different activities of the enzyme that is substantially involved in catabolizing dopamine
in the prefrontal cortex, the Val'®Met polymorphism has been repeatedly associated with
aggressive behavior and has been assumed to be unique to humans probably due to
species-specific cognitive abilities. Concerning the link between sociality and HPA-axis
activity, first evidence from human literature indicates that the attenuating effect of social
bonds on HPA-axis activity, a phenomenon called social buffering, is partly moderated by

genetic variation.

The overall aim of this thesis was to promote and shed more light on the
behavioral genetics of the primate HPA-axis under natural conditions. Studies linking
genotype data to behavioral patterns in the wild are generally scarce and progress in this
field has been hampered by a lack of convenient genetic high-throughput methods
applicable to low-quality DNA samples. Further shortcomings concern that studies on
non-human primates investigated only one or a few loci instead of screening several
HPA-related target regions, broad-scale interspecific contrasts in behavioral patterns
instead of actual observed individual behaviors and only one or two individuals of
different primate species to conclude the absence of a polymorphism — as in the case of
COMT Val'*®Met.

In this thesis, | specifically addressed how genetic variation contributes to a better
understanding of the following aspects of the primate HPA-axis: aggression rates (study

2), immunoreactive urinary cortisol levels, risk-taking, i.e. rate of initiating aggression,
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social bond strength, social bond maintenance and the social buffering effect (study 3). In
order to carry out these behavioral genetic association studies, I firstly designed a multi-
locus next-generation sequencing panel including 46 target regions in 21 HPA-axis genes
applicable to low-quality DNA samples (study 1).

I chose wild Assamese macaques (Macaca assamensis) as a study species, in
which variation in cortisol levels and aggression as well as causal effects of social bonds
have been previously demonstrated under natural selection pressures. In this species, the
strength of male bonds predicts coalition formation and recruitment during fights, which
in turn predict future social dominance relating to reproductive success. Data for this
thesis were collected from adult male and female Assamese macaques living in four
habituated groups in Phu Khieo Wildlife Sanctuary, Thailand. The non-invasive data
collection covered standardized behavioral observations as well as the collection of fecal
samples for DNA analyses and urine samples to quantify immunoreactive cortisol.
Specifically, | designed a multi-locus sequencing panel (46 target regions in 21 genes,
including COMT Val**®Met), genotyped all adults from four study groups (37 males, 39
females), collected focal animal behavioral data (5756 focal hours) and 366 urine samples

from 23 males for quantification of immunoreactive cortisol via enzyme immunoassays.

The results of study 1 are (i) the compilation of a list of presumably functional
target regions in genes that are involved in the HPA-axis, (ii) the design of a high-
throughput genotyping panel useful when investigating the factors contributing to HPA-
axis-related phenotypes, (iii) the demonstration that the panel is applicable to low-quality
DNA samples such as feces, which is often the only available sample material from wild
animal populations, and (iv) the demonstration that polymorphisms at purportedly
functional HPA-axis loci exist in a natural primate population. By targeting 46 target

regions in 21 genes 159 single nucleotide polymorphisms were detected.

Applying the genotyping panel designed in study 1, | identified the COMT
Val**®Met polymorphism and associated it with aggression rates of male and female
macaques in study 2. The results are that (i) the widely studied human COMT Val**®Met
polymorphism occurs in a non-human primate species with similar genotype frequencies
(14 Met/Met, 40 Val/Met, 22 Val/Val), (ii) macaques’ aggression rates increased with
dominance rank in Val/Val individuals, but decreased in individuals carrying other
genotypes, and (iii) when changing from a lower to a higher dominance rank position,
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Val/Val individuals decreased, whereas Met/Met individuals increased their aggression

rate.

In study 3, | focused on 15 non-synonymous polymorphisms detected among the
159 single nucleotide polymorphisms and calculated a genetic risk score as the proportion
of missense variants an individual carries. In the investigated males an increasing genetic
risk score was associated with (i) increasing levels of immunoreactive urinary cortisol,
(ii) decreasing risk-taking behavior, (iii) a decreasing social buffering effect, (iv) a trend
to have stronger social bonds, and (v) an increasing maintenance of close proximity with

strong partners.

These results contribute to our understanding of phenotypic consequences of
individual variation in HPA-axis genotypes. Study 1 served as the basic methodology
necessary to conduct study 2 and 3 and shall motivate field biologists to include multi-
locus genotype data in future studies on wild, non-model populations more frequently. As
COMT Val®™®Met is not unique to humans and yields similar behavioral phenotypes in
another primate species, follow-up studies on this polymorphism can be conducted in
several species to investigate the distribution of this polymorphism among taxa and help
to decipher its evolutionary roots and contribution to individual variation. The
investigation of the social buffering hypothesis revealed a significant interaction effect
between social bond strength and genetic risk on HPA-axis activity. The association
between strong social bonds and low cortisol levels seemed to diminish when moving
from low to high genetic risk, indicating that social buffering is in effect in individuals at
the lower, but not the higher end of genetic risk. These results depict that future studies
considering genotype as a mediator of social buffering in a wide range of animal taxa are
essential. However, as the study included potential relatives, further analyses including
relatedness data are necessary to decipher whether the associations between HPA-axis

genotypes and phenotypes remain in effect when controlling for kinship.

In conclusion, | have performed the first comprehensive analysis of behavioral
genetics associated with the HPA-axis in Assamese macaques. Combining ethological
and molecular methods, my thesis suggests that genetics is a significant source of
variability in a range of primate HPA-axis phenotypes. Thereby | was able to improve our
knowledge of factors contributing to individual variation in HPA-axis activity, aggression

rates, risk-taking, social bonding behavior and social buffering. Variation in the genetic
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constitution of macaques may allow individuals to adapt differently to social situations
and stressors. Over evolutionary times the balance of different traits may preserve

polymorphisms for different phenotypes in a population.

This thesis aids the advancement of multi-locus methods and the appreciation of
wild animal populations in behavioral genetics. It broadens the spectrum of behavioral
ecology and primatology in particular by addressing how inherent factors contribute to
individual patterns and social mechanisms of animals in the wild. The fact that
polymorphisms in HPA-axis genes cumulatively explain individual variation should have
strong implications for primatological studies which in large parts neglected the genetic
contribution to the investigated phenotypes. Primates can serve as valuable animal models
which help to shed light on some of the ambiguous findings from human behavioral
genetics by providing the chance to investigate naturalistic phenotypes using comparable
measures. The incorporation of genotype in field primatology contributes to the current
discussions about ambiguous findings in classical primatology and might have the

potential to resolve some of them in the future.




Zusammenfassung

Zusammenfassung

Das Zusammenspiel von HPA-Achsen-assoziierten  Verhalten,

Hormonen und Genen bei nicht-menschlichen Primaten

Fragen nach den Ursachen interindividueller Variabilitat beschaftigten haufig die
in der Zoologie und insbesondere der Primatologie forschenden Wissenschaftlerinnen.
Eines der zentralen Forschungsgebiete in wildlebenden Primaten ist die Untersuchung
von Phanotypen in Assoziation mit der Hypothalamus-Hypophysen-Nebennierenrinden-
Achse (HPA-Achse). Diese Achse stellt einen physiologischen Signalweg dar, der in
Reaktion auf einen Stressor aktiviert wird. In der Forschung an Menschen konnte gezeigt
werden, dass bis zu 50 % der individuellen Variabilitat des Endprodukts der HPA-Achse
(Cortisol), der Aggression und des sozialen Verhaltens durch genetische Faktoren erklart
werden konnen. Im Zusammenhang mit menschlichem Aggressionsverhalten ist
Val'*®Met, ein nicht-synonymer Polymorphismus im Catechol-O-Methyltransferase-Gen
(COMT), besonders grindlich untersucht worden. Die Aminosauresubstitution veréndert
die Enzymaktivitat des Proteins, das wesentlich zum Abbau von Dopamin im prafrontalen
Kortex beitragt. Bisher wurde angenommen, dass dieser Polymorphismus nur in
Menschen vorkommt. Bezlglich der Verbindung zwischen Sozialitat und HPA-Achsen-
Aktivitat, konnten bei Menschen die mildernden Effekte von sozialer Unterstltzung auf
HPA-Achsen-Aktivitat, die sogenannte soziale Abpufferung (,,social buffering®), mit
individueller genetischer Variation in Verbindung gebracht werden.

Die allgemeine Zielsetzung dieser Dissertation war es, das Verstandnis der
Verhaltensgenetik der HPA-Achse von Primaten in ihrem natirlichen Lebensraum zu
erweitern. Ein Grund dafir, dass Forschung in diesem Gebiet bisher weitgehend
vernachlassigt wurde, ist der Mangel an geeigneten genetischen Hochdurchsatzverfahren,
die fur DNA-Proben mit geringer Qualitdt anwendbar sind. Weitere bisherige
Schwachpunkte finden sich unter anderem darin, dass vorhergehende Studien sich auf
einige bzw. einige wenige Genorte beschrankten, anstatt mehrere HPA-Achsen-relevante
Genorte parallel zu untersuchen, dass sich Studien auf Unterschiede in den generellen
Verhaltensmustern zwischen Arten fokussierten, anstatt direkt beobachtetes Verhalten

von Individuen zu analysieren, sowie, dass nur wenige Individuen in unterschiedlichen
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Primatenarten untersucht wurden, um auf die Inexistenz von Polymorphismen zu
schlieRen, wie in dem Fall von COMT Val**®Met.

Spezifischer, beschaftigt sich diese Arbeit mit der Frage wie genetische
Variationen mit den folgenden Aspekten der HPA-Achse in Verbindung stehen:
Aggressionsrate (Studie 2), immunreaktiver Cortisolspiegel im Urin, risikoreiches
Verhalten, i.e. die Rate mit der Aggression initiiert wird, Starke und Aufrechterhaltung
von Sozialbeziehungen, sowie soziale Abpufferung (Studie 3). Um diese Studien
durchfihren zu  konnen, wurde zundchst ein  Multilocus-Next-Generation-

Sequenzierungs-Panel fir DNA-Proben mit geringer Qualitéat entwickelt (Studie 1).

Die Wahl der Spezies zur Untersuchung dieser Fragen fiel auf den Assam-
Makaken (Macaca assamensis), fur den in friheren Studien Variationen in Cortisollevel
und Aggression, sowie die kausalen Auswirkungen von Sozialbeziehungen bereits unter
natlrlichem Selektionsdruck gezeigt wurden. In dieser Spezies kann anhand der Starke
méannlicher Sozialbeziehungen die Koalitionsbildung sowie die Rekrutierung von
Unterstltzern bei Auseinandersetzungen, welche letztlich Einfluss auf sozialen Rang und
Reproduktionserfolg haben, vorhergesagt werden. Die fir diese Dissertation gesammelten
Daten stammen von adulten mannlichen und weiblichen Assam-Makaken aus vier
habituierten Gruppen im Phu Khieo Wildlife Sanctuary in Thailand. Die Datensammlung
war rein nicht-invasiv und involvierte standardisierte Verhaltensbeobachtungen sowie das
Sammeln von Kotproben fiir DNA-Analysen und Urinproben zur Quantifizierung von
immureaktivem Cortisol in Urin. Im Rahmen der Dissertation wurden ein Multilocus-
Next-Generation-Sequenzierungs-Panel (46 Zielregionen in 21 HPA-Achsen-Genen,
inklusive COMT Val®™®Met) entwickelt, alle adulten Tiere der vier Gruppen (37
Ménnchen, 39 Weibchen) genotypisiert, Verhaltensdaten gesammelt (5756
Beobachtungsstunden), sowie 366 Urinproben von 23 Ménnchen fiir die Quantifizierung

von immunreaktivem Cortisol mit Enzymassays gesammelt.

Die Ergebnisse der ersten Studie sind (i) die Zusammenstellung einer Liste von
Zielregionen in Genen, die mit der HPA-Achse assoziiert sind, (ii) die Entwicklung eines
Hochdurchsatz-Genotypisierungs-Panels fir die Untersuchung von HPA-Achsen-
assoziierten Phanotypen, (iii) der Nachweis, dass das entwickelte Panel auch fur DNA-
Proben mit geringer Qualitat, wie zum Beispiel Kotproben, anwendbar ist, sowie (iv) das
Aufzeigen von vermutlich funktionalen Polymorphismen in HPA-Achsen-Genen in einer

wildlebenden Primatenpopulation.
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Die Anwendung des in der ersten Studie entwickelten Genotypisierungs-Panels
zeigte, dass der COMT Val**®Met Polymorphismus in Assam-Makaken existiert. Die
Resultate der zweiten Studie sind, (i) dass der in Menschen intensiv untersuchte COMT
Val**®Met Polymorphismus auch in einer nicht-menschlichen Primatenspezies mit einer
ahnlichen Genotypfrequenz (14 Met/Met, 40 Val/Met, 22 Val/Val) vorkommt, (ii) dass
die Aggressionsrate in Val/Val-Individuen mit sozialem Rang zunahm, in Individuen mit
anderen Genotypen jedoch abnahm und, (iii) dass in Val/Val-Individuen beim Wechsel
von niedrigeren auf hohere Dominanzpositionen die Aggressionsrate abnahm, wobei

diese bei Met/Met-Individuen zunahm.

Die dritte Studie fokussierte sich auf 15 nicht-synonyme Polymorphismen, anhand
derer ein genetischer Risikowert als Proportion von Varianten die zu einem
Aminosdureaustausch fuhren, kalkuliert wurde. Fir die ménnlichen Makaken ergaben
sich Assoziationen von einem zunehmenden genetischen Risikowert mit (i) zunehmenden
immunreaktiven Cortisolspiegeln im Urin, (ii) abnehmendem risikoreichen Verhalten,
(iif) einem abnehmendem sozialen Abpufferungseffekt, (iv) einer Tendenz fur starkere
Sozialbeziehungen, sowie (v) zunehmende Aufrechterhaltung der rdumlichen Néhe zu

anderen Mannchen mit einer starken Sozialbeziehung.

Diese Ergebnisse tragen zum Verstandnis der Auswirkungen von individuellen
Variationen in HPA-Achsen-Genen auf phanotypische Auspragungen bei. Studie 1 stellte
die fur die Studien 2 und 3 notwendigen Methoden zur Verfligung und soll Feldbiologen
dazu motivieren zukiinftig haufiger Multilocus-Genotypisierung in
verhaltensokologischen Studien an freilebenden Populationen in Betracht zu ziehen. Da
nun gezeigt werden konnte, dass COMT Val'*®Met keine einzigartige Besonderheit der
Menschen ist, sondern auch in einer nicht-menschlichen Primatenart vorkommt und mit
ahnlichen Verhaltensphanotypen assoziiert ist, kann in Folgestudien an verschiedenen
Taxa dem Vorkommen und dem evolutiondren Ursprung dieses Polymorphismus, sowie
seinen Auswirkungen auf individuelle Variation nachgegangen werden. Die
Untersuchung zur sozialen Abpufferung zeigte einen signifikanten Interaktionseffekt von
der Stérke von Sozialbeziehungen und dem genetischen Risikowert auf die HPA-Achsen-
Aktivitdt. Die Assoziation zwischen starken Sozialbeziehungen und niedrigen
Cortisolwerten schien mit steigendem genetischen Risikowert schwacher zu werden und
schlieBlich zu verschwinden. Das deutet darauf hin, dass der soziale Abpufferungseffekt

in Individuen mit geringerem genetischen Risikowert in Kraft tritt, nicht aber in
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Individuen mit hoherem genetischen Risikowert. Diese Ergebnisse unterstreichen die
Relevanz, dass zukiinftige Studien den Genotyp als moderierenden Faktor in Studien zur
sozialen Abpufferung in verschiedenen Arten heranziehen. Um jedoch fundiertere
Ruckschlisse tber den Einfluss von Genotyp auf HPA-Achsen-assoziierte Phanotypen in
Assam-Makaken ziehen zu kdnnen, sind weitere Analysen, in denen zusétzlich auf die
Verwandtschaftsverhaltnisse untersucht wird, notwendig, da diese Studie potentiell

verwandte Individuen beinhaltete.

Die Forschungsresultate, welche sich im Rahmen dieser Dissertation ergaben,
stellen die erste umfassende Analyse von Verhaltensgenetik in Verbindung mit der HPA-
Achse in Assam-Makaken dar. Die Kombination von Methoden aus der
Verhaltungsforschung und der Molekularbiologie ermdglichte es in dieser Dissertation zu
zeigen, dass Genetik eine signifikante Quelle individueller Variabilitat in einer Reihe von
HPA-Achsen-assoziierten Phéanotypen bei Primaten ist. Dadurch konnten neue
Erkenntnisse zu HPA-Achsen-Aktivitat, Aggressionsraten, risikoreichem Verhalten,
Sozialbeziehungen, sowie sozialer Abpufferung gewonnen werden. Genetische
Variationen, die zu Variabilitat in der HPA-Achsen-Aktivitat in Makaken beitragen,
konnten es Individuen ermdglichen sich unterschiedlich an soziale Umstdande und
Stressoren anzupassen. Uber einen evolutionaren Zeitrahmen hinweg koénnte die
ausgleichende Selektion verschiedener Merkmale dazu fiihren, dass Polymorphismen, die

Individuen fur unterschiedliche Phénotypen pradestinieren, erhalten bleiben.

Uber den unmittelbaren Rahmen der Dissertation hinaus, unterstitzt diese Arbeit
die Weiterentwicklung von nicht-invasiven Multilocus-Genotypisierungs-Methoden und
die Anerkennung von wildlebenden Tierpopulationen in der Forschung zur
Verhaltensgenetik. Durch die Demonstration, dass inharente Faktoren zu individuellen
Mustern und sozialen Mechanismen in freilebenden Tieren beitragen, erweitert diese
Dissertation das klassische Spektrum der Verhaltensokologie und besonders der
Primatologie. Primaten stellen wichtige Tiermodelle dar in denen individuelle Variabilitat
unter nattrlichen Bedingungen standardisiert erhoben werden kann. Daher kann
verhaltensgenetische Forschung an wilden Primaten auch dazu beitragen die bisher wenig
verstandenen Ergebnisse bei Menschen besser zu verstehen. Eine engere Einbindung von
Genetik in der primatologischen Feldforschung hat grof3es Potential, um bei der
Aufklarung von gegenwartig zwiespéltigen Befunden in der klassischen Primatologie

mitzuwirken.
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General introduction

1.1 Preface

“One of the most dramatic developments in the behavioral sciences during the
past few decades is the increasing recognition and appreciation of the important
contribution of genetic factors to behavior” (Plomin et al., 2013, p. XVII). It is well
recognized that genetics contributes fundamentally to phenotypes in humans and model
organisms like mice. Popular examples come from various research fields, ranging from
medical genetics to psychology. Even beyond the scientific community, it is appreciated
that molecular advances contributed to e.g. prenatal diagnosis of genetic diseases
(Wieacker & Steinhard, 2010), the understanding of individual traits and the heritability
of disorders, personality and intelligence (Plomin et al., 2016). Much of the research has
been dedicated to examine the hypothalamic-pituitary-adrenal (HPA)-axis, a major
neuroendocrine system which is essential for the regulation of many bodily functions in
vertebrates (Charmandari et al., 2005; Munck et al., 1984). Variations in HPA-axis genes
have been repeatedly associated with phenotypic variation in cortisol levels, aggression,
sociality and mental disorders (e.g. Bolton et al., 2014; Bouma et al., 2012; Cases et al.,
1995; Gogos et al., 1998; Gotlib et al., 2018; Higham et al., 2011; Inoue-Murayama et al.,
2018; Jabbi et al., 2007; Papiol et al., 2007; Qayyum et al., 2015; Roy et al., 2010;
Schatzberg et al., 2014; Schwandt et al., 2011). Among these variations, the COMT
Val**®Met polymorphism has received particular attention for its role in aggressive
behavior and has been assumed to be unique to humans (Palmatier et al., 1999; Qayyum
etal., 2015).

Behavioral genetics is an advanced field concerning model organisms. Mice can
be genetically modified to develop virtually any symptom within specified time frames
(e.g. Brown et al., 1996; Bruder et al., 2004; Morgan et al., 1996). The vast amount of
evidence for genetic influences in model organisms might give the impression that
mankind has mastered the genetic building blocks. Moving away from rodents, however,
leads to a fast disillusionment: the genetic influences on phenotypic variation are not well
explored in non-model organisms, especially in the wild. The genetic underpinnings of
inter-individual differences are relatively understudied in field biology.
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One research area that particularly stands out due to long-term knowledge on
individual animals and a strong interest to explain inter-individual differences is
primatology. Among the main topics in research on our closest relatives is the
investigation of individual variation in HPA-axis parameters. In particular, several studies
have been devoted to decipher factors contributing to individuality in stress, aggression
and sociality (e.g. Abbott et al., 2003; Anestis, 2005; Massen & Koski, 2014; Morton et
al., 2015; Muller & Wrangham, 2004b; Rutberg & Greenberg, 1990; Seyfarth et al., 2012,
2014; Young et al., 2014a). Combining social measures and the HPA-axis, the social
buffering effect, whereby the presence of a close social partner attenuates stress responses
of the HPA-axis, is a well-studied phenomenon in a multitude of social species (Cohen &
Wills, 1985; Edgar et al., 2015; Hennessy et al., 2009; Hostinar et al., 2014; Kiyokawa &
Hennessy, 2018; Wittig et al., 2016; Young et al., 2014a). Interestingly, preliminary
evidence in humans indicates that genotype moderates the effectiveness of social bonds as

a protective buffer against increased HPA-axis activity (Chen et al., 2011a).

While a general genetic contribution to several phenotypes is not under debate
anymore, the consideration of genotypic predispositions to the primate HPA-axis and
behavior is still scarce. The question “whether” genetic variation in HPA-axis genes
contributes to phenotypes is settled in classical behavioral genetics and studies now focus
on the questions “how and how much” of the phenotype is explained by genetic variation.
In contrast, the “whether”-question has not yet been systematically implemented in many
of the main research areas of field primatology, including the HPA-axis, aggression and
social relationships. Currently there are fundamental gaps in our knowledge of whether
and how HPA-axis-related phenotypes are influenced by genotype in wild primate
populations because evidence is lacking or comes from studies on single gene variants in
captivity. Most studies focused on one variant at a time (e.g. Barr et al., 2004; Miller et
al., 2004; Newman et al., 2005; Pfluger et al., 2016), rather than screening several gene
loci related to HPA-axis functioning (e.g. Ferguson et al., 2012), although the need for
simultaneous investigations of multiple HPA-related genes has been voiced repeatedly
(e.g. Bouma et al., 2012; Ferguson et al., 2012; Jabbi et al., 2007). Because the effects of
single loci are likely to be small, studying genetic variants one at a time might lead to
non-findings even in large sample sizes. Investigating multiple variants in parallel allows
to cover multiple genes that are associated with a certain trait and integrate the small

effects of many loci into one cumulative effect (Belsky & Israel, 2014).
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This thesis sets out to give first insights about whether, how much of and how
observed HPA-axis-related phenotypes can be explained by variation in HPA-axis genes.
Focusing on this well-understood central physiological pathway, | investigated how
genetic predispositions shape the natural phenotypic variation in behavior and cortisol
levels in wild Assamese macaques (Macaca assamensis). Combining state-of-the-art
genotyping methods for fecal samples, the quantification of immunoreactive cortisol from
urine samples and detailed behavioral observations, in this thesis I specifically set out to:
1) contribute to methodological advances in this field via the design of a multi-locus
genotyping panel to identify variants at 46 target regions in 21 HPA-axis genes; 2) inquire
into the COMT Val**®Met polymorphism, its existence and association with aggression in
a non-human primate; 3) combine the multi-locus data from the genotyping panel into
one cumulative value, a so called genetic risk score, to predict individual HPA-axis
activity and risk-taking behavior and to elaborate on the approach that genotype

moderates the social buffering effect.

In the following introduction, | will present the general framework for my thesis
by describing the main concepts which form the foundation of my work, outlining
important findings but also shortcomings, and thereby explain the background and
starting point of my project. At the end of the general introduction, | will present my

study species, the Assamese macaque, and the general aims of my thesis and each study.
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1.2 The hypothalamic-pituitary-adrenal-axis

1.2.1 An evolutionary conserved pathway

The HPA-axis represents a central physiological pathway activated in response to
stressors and is highly conserved across vertebrates (Schulkin, 2011). The stimulation of
the HPA-axis initiates a cascade of neuroendocrine events, involving several signaling
molecules and their respective receptors. While the types of signaling molecules vary
among taxa, the physiological role of the HPA-axis in response to adverse stimuli is so
fundamental that similar signaling pathways can be traced back to our vertebrate
ancestors and even arthropods (Baker et al., 2007; Curran & Chalasani, 2012; Laudet et
al., 1992; Schulkin, 2011).

The anatomical structures of the HPA-axis are located in both the central nervous
system and peripheral tissues. In vertebrates, the main elements of the HPA-axis are the
hypothalamus, the pituitary gland and the adrenal glands. Hypophysiotropic neurons in
the paraventricular nucleus of the hypothalamus are responsible for the synthesis and
secretion of corticotropin-releasing hormone (CRH, Aguilera & Liu, 2012). Under
adverse circumstances they dispense CRH, which is released into the portal circulatory
system, by which it reaches its receptors on pituitary corticotropic cells (Bale et al., 2002;
Drouin, 2011; Smith et al., 1998). The pituitary then releases adrenocorticotropic
hormone (ACTH) into the bloodstream, which stimulates the synthesis and secretion of
glucocorticoids (GCs) from adrenocortical cells in the zona fasciculata of the adrenal
cortex (Mesiano & Jaffe, 1997; Simpson & Waterman, 1988; Smith & Vale, 2006).
Eventually, GCs inhibit the secretion of ACTH and CRH, thereby creating a regulatory
feedback loop of the HPA-axis (Axelrod & Reisine, 1984; Bamberger et al., 1996;
Charmandari et al., 2005; Everly & Lating, 2013; Nicolson, 2008). The released GCs
cause physiological effects when binding to their receptors, which are assumed to occur
in all nucleated types of cells (Munck et al., 1984; Smith & Vale, 2006). The
predominantly occurring GCs vary among taxa (primates and fish - cortisol; rodents,
birds, reptiles and amphibians - corticosterone), but all belong to the subclass of steroid
hormones (Del Rey et al., 2008; Smith & Vale, 2006).
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In addition to the corticoid pathway, whose main components are CRH (encoded
by the CRH gene) and its receptors (CRHR, CRHR1-2), GCs and their receptor (GCR,
NR3C1), the CRH binding protein (CRHBP, CRHBP), corticosteroid binding globulin
(CBG, SERPINAG), ACTH and its receptor (ACTHR, MC2R, Subbannayya et al., 2013),
two other metabolic circuits mainly contribute to the HPA-axis: the serotonin and the
catecholamine metabolism. Serotonin neurotransmission plays a role in the activation and
the feedback loop of the HPA-axis by stimulating CRH, ACTH and GC release and
increasing the negative feedback control of GCs (Fuller, 1995; O’hara et al., 2007; Porter
et al., 2004). The serotonin pathway involves serotonin (5-HT), its transporter (5-HTT,
SERT, SLC6A4) as well as its receptor (5-HTR, HTR1-7), tryptophanhydroxylase (TPH,
TPH1-2) and monoamino oxidase (MAO, MAOA-B, D’souza & Craig, 2006). In response
to activation by a stressor, neurons in the prefrontal cortex release catecholamines which
induce the expression and release of CRH (Smith & Vale, 2006). The catecholamine
circuit includes dopamine (DA), its receptors (DRD, DRD1-4) and transporter (DAT,
SLC6A3), and catechol-O-methyltransferase (COMT, COMT).

1.2.2 The end product cortisol

The activation of the HPA-axis culminates in the release of GCs (mainly cortisol
in primates) from the adrenal cortex. This discovery has only been made in the last
century. Cortisol (11B,17a,21-trihydroxypregn-4-ene-3,20-dione) was one of six
compounds that were isolated from adrenal glands in the 1930s by E. C. Kendall. Lacking
any further knowledge about the functionality of these compounds, they were given the
names A, B, C, D, E and F (later to be known as cortisol). Particularly compound E (later
to be known as cortisone) received special attention by E. C. Kendall, T. Reichstein and
P. S. Hench, who treated patients suffering from arthritis with this hormonally inactive
cortisol metabolite. Kendall, Reichstein and Hench were jointly awarded the Nobel Prize
in Physiology or Medicine in 1950 “for their discoveries relating to the hormones of the

adrenal cortex, their structure and biological effects” (Nobel Media AB, 2014).

Like all adrenocortical steroid hormones, cortisol is synthetized from progesterone
via three hydroxylation steps (H&ggstrom et al., 2014; Kanehisa et al., 2016, 2017;
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Pasqualini et al., 1968). It is a metabolic hormone, inhibiting physiological processes
which appear dispensable for an organism facing adverse situations (for example
digestion, growth, immunity and reproduction) and allocating energy (glucose) to be used
immediately (Charmandari et al., 2005; Munck et al., 1984; Nelson, 2011; Sapolsky et al.,
2000). Thereby cortisol enables an organism to adjust its metabolic functions to meet the

needs of the current situation in a changing environment (Nicolson, 2008).

The use of cortisol as a measure of HPA-axis activity is well established in human
studies, using standardized social stress tests to elicit endocrine HPA-axis responses (von
Dawans et al., 2011; Kirschbaum et al., 1993; Oldehinkel et al., 2011). Also in non-
human primates and other animals GCs and their metabolites can be measured with high
reliability, even from non-invasively collected samples and are therefore established
endocrine markers (fish: Scott & Ellis, 2007; birds: Goymann, 2005; rodents: Jansen et
al., 2010; Nemeth et al., 2016; ruminants: Mostl et al., 2002; Palme & Maostl, 1997; cats
and dogs: Accorsi et al., 2008; Schatz & Palme, 2001; primates: Bahr et al., 2000;
Heistermann, 2010; Ostner et al., 2008a; diverse: Wasser et al., 2000). As the end product
of the HPA-axis, cortisol is a promising candidate for a non-invasive and reliable measure

of phenotypic variation in the HPA-axis.
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1.3 Primate characteristics related to the HPA-axis

1.3.1 Aggression

Besides the mere determination of cortisol levels, studies on the HPA-axis often
also link HPA-axis activity to behavior, particularly aggression. The stimulation of brain
areas associated with aggression results in increased GC levels (Halasz et al., 2002; Kruk
et al., 2004; Soma et al., 2008). Besides these findings from laboratory conditions,
behavioral ecology studies have repeatedly associated aggression with GC levels in
several taxa (fish: @verli et al., 2002; birds: Carere et al., 2003; rodents: Huhman et al.,
1991; ruminants: Salas et al., 2016; cats and dogs: Finkler & Terkel, 2010; Rosado et al.,
2010; primates: Cavigelli, 1999; Honess & Marin, 2006; Ostner et al., 2008a). In wild
chimpanzees, for example, participation in a single aggressive interaction causes GC
levels to rise in both instigators and targets of aggression (Wittig et al., 2015).

Most aspects of aggression are currently adaptive or stem from strategies that
were adaptive at some point in evolution (Wrangham, 2018). In the broadest sense,
aggression serves the purpose to compete over and get access to certain resources, which
can differ in their kind. Competition for food, mating partners, social status and space are
among the most common scenarios (Buss & Duntley, 2006; Georgiev et al., 2013).
Therefore, aggression can be an important tool in intra- and intersexual as well as intra-
and interspecific competition. However, aggression is not a universally adaptive behavior.
Rather it is adaptive when used in certain contexts and conditions, namely when the
benefits of being aggressive outweigh its costs (Buss & Duntley, 2006; Georgiev et al.,
2013). The benefits of applying aggression to gain access to resources also depend on,
amongst others, the value, abundance, spatial distribution and monopolization potential of
the resources (Georgiev et al., 2013). Further, it has been suggested that genetic
variability for aggression has been maintained by frequency-dependent selection (Smith
et al., 1988). The simplest theoretical model that predicts genetic polymorphisms for
aggression is probably the hawk-dove game (Smith et al., 1988). Smith and colleagues
proposed three further game theory models (the war of attrition game, the size game and
the badges of dominance game, Smith, 1974; Smith & Brown, 1986, Smith et al., 1988),
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which also conclude that genetic variability for aggression could be maintained by

frequency-dependent selection.

How aggression in measured differs according to research fields and the
investigated species. Whereas mirror tests, attacking a dummy conspecific or an intruder
are common ways to measure aggression particularly in captive animals (e.g. fish:
Balzarini et al., 2014; Barlow et al., 1986; mice: Parmigiani, 1986; Roubertoux et al.,
1999; macaques: Schwandt, et al., 2010), studies on humans often use questionnaires and
ratings (e.g. Buss & Durkee, 1957; Buss & Perry, 1992; Yudofsky et al., 1986). In wild
animal populations, natural aggressive behavioral patterns can be observed and
quantified. Bite, slap, push and pull, lunge, threat, stare and chase are some of the most
commonly included aggressive primate behaviors (e.g. Nelsen, 2017; Skinner & Lockard,
1979). Both aggression and submission are important aspects in the negotiation of
dominance hierarchies of primates (Deag, 1977; Nelsen, 2017) and other animal taxa.
However, initiating such aggressive behaviors can bear costs and is therefore risky. These
costs include physical (injury or death), physiological, psychological and energetic costs
as well as an increased risk of predation and damage to social relationships (reviewed in
Georgiev et al., 2013).

1.3.2 Social relationships

HPA-axis signaling is not only heavily involved in aggressive behavior but is also
linked to affiliative behaviors and social bonding, especially in primates. Social bonds are
formed when individuals bias affiliative interactions towards specific partners, leading to
heterogeneity in interactions (Silk, 2002). By definition, a social bond is an affiliative
relationship between two individuals, which is strong compared to other relationships in
the group, equitable in their exchange of services and long-lasting (Ostner & Schiilke,
2014). Such affiliative relationships are established by repeated interactions over time and
are a good predictor of future interactions (Cords, 1997; Seyfarth & Cheney, 2012).
Notably, studies on humans usually do not follow the above-mentioned definition of

social bonds. Rather, the term social relationship is used for a wide range of sociality
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measures, including social network positions, questionnaires or self-reported ratings on

social integration, loneliness and social support.

In contrast to human studies using questionnaires and reports to assess social
behavior, field biologists have the opportunity to calculate measures from observed real-
life interactions. In primates, grooming, fur-picking, or the manipulation of skin and hair
by hand and mouth, not only has the hygienic function to remove ectoparasites, but also
plays an important role in establishing and maintaining affiliative social bonds (Cooper &
Bernstein, 2000; Dunbar, 1991; Hutchins & Barash, 1976; Tinklepaugh, 1931). Further,
spatial proximity is one of the most widely used measures to quantify affiliative
relationships in social groups of animals, which also allows comparisons between species
(Whitehead & Dufault, 1999). Being close to each other can be the result of individual
partner preferences and increases the likelihood of social interactions (Altmann, 1965;
Carpenter, 1945; Rowell & Olson, 1983). The relative contributions of partners to the
maintenance of proximity with one another can be assessed using the Hinde-index, which
was originally invented to investigate mother-infant bonds (Hinde & Atkinson, 1970).
Several measures of affiliation can also be integrated into one value to assess specific
aspects of social bonds, like bond strength - using the dyadic composite sociality index
(Csl, Silk et al., 2003, 2006a).

Some non-human primate species form and maintain strong, equitable and stable
relationship with individuals of the same and the opposite sex (e.g. Haunhorst et al., 2016;
Kalbitz et al., 2016; Mitani, 2009; Ostner & Schlke, 2014; Silk et al., 2010a). Partially,
strong bonds can be explained by closeness in kinship, rank and age (e.g. Hamilton, 1964;
Kalbitz et al., 2016; Kalbitzer et al., 2017; Mitani, 2009; Seyfarth & Cheney, 2012; Silk
et al., 2006a, 2010a). These relationships are assumed to build the basis for coalition
formations in cooperative aggression, including recruitment for support from the audience
and the likelihood of joining when being solicited (Schilke et al., 2010; Young et al.,
2014b). Therefore, alliances, particularly in primates, are established before they are
actually needed in coalitionary support (Dunbar, 2012; Harcourt, 1992).

In humans, social relationships influence mortality risk and health (e.g. Berkman
& Syme, 1979; House et al., 1982; for reviews see Berkman et al., 2000; Cacioppo &
Cacioppo, 2014; Cohen, 1988; Holt-Lunstad et al., 2010; House et al., 1988; Seeman,
1996; Uchino, 2004, 2006). The discovery that our closest relatives have similar social
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relationships like friendship in humans (e.g. Seyfarth & Cheney, 2012; Silk, 2002),
launched a cascade of studies on the consequences of close social bonds on well-being
(Alberts, 2010), survival and longevity (Archie et al., 2014; Silk et al., 2010b; Thompson
& Cords, 2018), offspring survival (Silk et al., 2003, 2009), GC levels (Young et al.,
2014a) and coalitionary support (Schilke et al., 2010; Young et al., 2014b).

Social buffering, a phenomenon explaining the positive association between social
support and health, has been demonstrated in humans and other animals (Cohen & Wills,
1985; Hennessy et al., 2009; Hostinar et al., 2014; Kikusui et al., 2006). Using mainly
laboratory setups in humans and non-invasive methods under natural conditions in non-
human primates, the activation of the HPA-axis has been a core variable investigated in
conjunction with the social buffering hypothesis in both species (e.g. Chen et al., 20113;
Ditzen et al., 2007, 2008; Heinrichs et al., 2003; Kirschbaum et al., 1995; Wittig et al.,
2016; Young et al., 2014a). In particular, the social buffering framework predicts that
social bonds have a general attenuating effect on HPA-axis activity (main effect
hypothesis) or social bonds have attenuating effects on HPA-axis activity only during
stressful events (interaction effect hypothesis).

Social buffering probably depends on the adaptive value of a particular category
of social relationships (Kiyokawa & Hennessy, 2018), on the source and type of support
(Thoits, 2011), and/or the nature of the relationship (Hennessy et al., 2009). Initial
evidence for the functional importance of strong social bonds comes from the wild. In
macaques, the strength of male bonds predicts coalition formation and recruitment during
fights (Schilke et al., 2010; Young et al., 2014b). In turn, coalitions predict future social

dominance which relates to reproductive success (Schulke et al., 2010).

As genetic variation might modulate the effectiveness of social bonds as a
protective buffer against adverse effects (Chen et al., 2011a), it seems plausible that inter-
individual differences cause a significant variation in the social buffering effect. How
genetic predisposition contributes to observed inter-individual variation in HPA-axis
activity and the social buffering effect in non-human primates is still unknown. The
genetic component of social buffering is not well investigated although its awareness
could contribute to understand the underlying molecular mechanisms, divergent findings
and individuals’ health symptoms depending on differences in social support. Wild
primates, for whom the ecological relevance and adaptive value of social bonds have been

21



General introduction

demonstrated under natural selection pressures, constitute an ideal system to start

studying the behavioral genetics of social buffering.
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1.4 Sources of inter-individual differences: introducing the era of

behavioral genetics

In non-human primates, individual differences in GC levels and aggression have
been mainly associated with environmental factors, personality types, dominance rank
and availability of social support (Abbott et al., 2003; Goymann et al., 2004; Muller &
Wrangham, 2004a; Sapolsky, 2005; Seyfarth et al., 2012; Young et al., 2014a). For
example, female baboons show differences in their GC excretion levels and their social
behavior according to their personality types (Seyfarth et al., 2012), the strength of social
bonds influences the effects of cold stress and received aggression on GC levels (Young
et al., 2014a), and social status has been related to measures of HPA-axis physiology both
in a positive and negative way, including also non-findings (Abbott et al., 2003;
Goymann et al., 2004; Sapolsky, 2005). Studies investigating individual patterns also
reported inconsistent findings, with the potential effects of dominance rank probably
representing the most prominent example from the non-human primate literature
(Cavigelli & Caruso, 2015). Meta-analyses have suggested that the associations between
social status and GC levels might be resolved by incorporating the rate of being exposed
to stressors, rank instability, opportunities for social support and allostatic load indices for
individuals of high and low dominance rank, respectively (Abbott et al., 2003; Edes &
Crews, 2017; Goymann et al., 2004; Sapolsky, 1992, 2005).

The influence of an individual’s genetic setup has received only little attention in
studies aiming to explain individual variation in GC levels. Since we know from human
studies that approximately 50 % of the variation in cortisol levels and aggressive behavior
can be explained by genetic make-up (Brendgen et al., 2006; Ferguson, 2010; LinkowskKi
et al., 1993; Miles & Carey, 1997; Rhee & Waldman, 2002; Riese et al., 2009; Rietschel
et al., 2017; Tucker-Drob et al., 2017; Tuvblad & Baker, 2011; Young et al., 2000), this
lack of attention on HPA-axis genetics in non-human primates is surprising. Most of the
convincing evidence for the substantial effects of genotype on phenotypic variation was
generated by human psychologists reaching into the discipline of genetics, creating the
academic field of behavioral genetics. The most extensively studied topics in human
behavioral genetics cover socially and clinically relevant issues such as aggression, stress

and mental disorders, which are all tightly linked to the HPA-axis (e.g. Papiol et al., 2007;
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Varghese & Brown, 2001). Hence, a large body of literature has been dedicated to the
considerable genetic impacts on HPA-axis parameters to improve perspectives in clinical
applications. As a critical component of translational research, a recent study proposes
that social buffering works only in certain genotypes (Chen et al., 2011a). Performing
standard social stress tests (Trier Social Stress Test, Kirschbaum et al., 1993) with ~ 200
male participants and female supporters being present or absent, (Chen et al., 2011a)
found that salivary cortisol responses to stress were lower after social support only in
individuals carrying one or two copies of the G allele of the silent rs53576 polymorphism

in the oxytocin receptor gene.

Besides endocrine aspects of the HPA-axis, also aggression has received much
attention in behavioral genetics due to its relevance to society, including the risk to
commit suicide (e.g. Baldessarini & Hennen, 2004; Brent & Mann, 2005; reviewed in Zai
et al., 2012), domestic violence (e.g. Barnes et al., 2013), behavior of patients with
psychiatric diseases (e.g. Han et al., 2004; Lachman et al., 1998; Strous et al., 1997, 2003)
and criminality (e.g. Ferguson, 2010; Wasserman & Wachbroit, 2001). Aggression is
highly heritable, with up to 56 % of the variation being explained by genotype in humans
(Ferguson, 2010; Miles & Carey, 1997; Rhee & Waldman, 2002). In vervet monkeys
(Chlorocebus aethiops) 61 % of clear aggressive actions were attributed to genotype in a

study on a captive population (Fairbanks et al., 2004).

Research on model organisms under laboratory conditions was motivated by early
human findings in behavioral genetics, for example a case study of a Dutch family in
which men expressed extreme aggressive outbursts (Brunner et al., 1993). This behavior
has been linked to a deficiency of the MAOA gene, which is located on the X-
chromosome and thus affects preliminary males. Subsequently, MAOA knockout mice
were investigated to confirm the genetic effects on observed aggressive behavior (Cases
etal., 1995).

So far only a few studies on rhesus macaques (Macaca mulatta) linked HPA-axis-
related genes to physiological stress, aggression and sociality measures. In mostly
experimental studies on captive individuals, it has been shown that polymorphisms in
candidate genes such as the mu-opioid receptor (OPRM1), neuropeptide Y (NPY), CRH,
TPH2, SLC6A4 and MAOA are associated with aggression, HPA-axis responses to stress,
arousal during stress and grooming network parameters (Barr et al., 2004; Brent et al.,
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2013; Ferguson et al., 2012; Lindell et al., 2010; Miller et al., 2004; Newman et al., 2005;
Schwandt et al., 2011). Despite a body of research on the heritability of cortisol levels and
aggression in Homo sapiens, how wild primates’ genotypes contribute to HPA-axis
phenotypes has not yet received much attention. At the same time, understanding the
causes of large inter-individual variation has been one of the major goals of behavioral

ecology in general and primatology in particular.

1.4.1 Candidate genes and the single-locus approach: a focus on COMT

The candidate gene approach relies on existing knowledge about the physiological
role of gene products and biological mechanisms underlying phenotypes. It is commonly
applied in genetic studies on many organisms from plants to humans (Kwon & Goate,
2000; Pflieger et al., 2001; Tabor et al., 2002; Zhu & Zhao, 2007). The approach involves
the identification of candidate genes that are most likely involved in a specific phenotype,
the identification of variants within these genes, the genotyping of populations and the
subsequent statistics to correlate variants with phenotypes (Tabor et al., 2002). Consistent

replication can then be interpreted as a strong evidence of causality (Tabor et al., 2002).

Research has been successful in identifying genes involved in several phenotypic
characteristics (Tabor et al., 2002). Advantages of the candidate approach are that
genotyping is easy, relatively quick and inexpensive (Kwon & Goate, 2000). However,
this approach has been criticized due to non-replication and the impossibility to include
all possible causative genes (Tabor et al., 2002; Zhu & Zhao, 2007). It has also been
argued that this pessimism is too extreme and that non-replication is probably due to
differences in study designs, small effect sizes or real biological differences between

populations (Tabor et al., 2002).

Candidate gene approaches are often a single-locus analysis. In this case, a
promising candidate locus is selected and associated with the phenotype of interest, based
on its functionality or prior knowledge from other association studies. In 2003, the most
cited paper in the field of neuroscience was the first to demonstrate a gene-environment

interaction of a single locus (Caspi et al., 2003). Individuals carrying a short allele of the
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SLC6A4 gene had a higher risk to develop depression if they experienced adverse life
events (Caspi et al., 2003).

One of the most extensively studied candidate genes in human behavioral genetics
is the COMT gene, which was identified in 1958 (Axelrod & Tomchick, 1958; Dickinson
& Elvevag, 2009). Especially studies focusing on stress and aggression, two topics with
high societal relevance, often use COMT as a target region (Qayyum et al., 2015). COMT
belongs to the catecholamine circuit of the HPA-axis in which it functions as a catalyst of
catecholamines, such as dopamine (Axelrod & Tomchick, 1958; Mannistd & Kaakkola,
1999), for which it is the main degrader in the prefrontal cortex (Kéenmaki et al., 2010;
Karoum et al., 1994; Matsumoto et al., 2003; Sesack et al., 1998; Yavich et al., 2007). It
functions in two isoforms: as the membrane-bound (MB-COMT) and the soluble COMT
(S-COMT), with MB-COMT being predominant in the central nervous system (Hong et
al., 1998; Tenhunen et al., 1994).

High levels of catecholamines are associated with aggressive behavior (Coccaro et
al., 1991; Pucilowski et al., 1986; Ratey & Gordon, 1992; Tidey & Miczek, 1996).
Therefore, COMT, as a catecholamine catalyst, has been a major target in human studies
on aggression. It was first suggested by Kuperman and colleagues (1988) that COMT is
involved in aggressive behavior, when they correlated blood COMT levels of 31 men
who were hyperactive during their childhood with measures of hostility and
impulsiveness. Again, inspired by early findings from humans, a model organism was
used to confirm the genetic effects on observed behavior. Male COMT knockout mice
have higher levels of dopamine in the frontal cortex and are more aggressive (Gogos et
al., 1998).

One specific locus in the COMT gene has attracted researchers’ attention in
particular: the Val'®®Met polymorphism (rs4680), a non-synonymous single nucleotide
polymorphism (SNP) with a G to A base transition, causing an amino acid change from
valine (Val) to methionine (Met). It is located in codon 158 of exon 4 of the COMT gene
with the chromosome position 22911.2 (Grossman et al., 1992). The Met allele of this
polymorphism causes a 40 % reduced activity of the COMT enzyme at body temperature
(Chen et al., 2004), but up to three- to four-fold reduced activities have been reported
(Lotta et al., 1995). This functionality stems from the protein surface, where Met has a
lower hydrophoby than Val, thereby causing a lower enzyme stability (Chen et al., 2004;
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Liu & Wang, 2003; Machius et al., 2003; Vidgren et al., 1994; Zubieta et al., 2001). This
in turn leads to higher levels of dopamine in the prefrontal cortex of Met-carriers (Chen et
al., 2004).

Due to the dopamine hypothesis of several psychiatric diseases, schizophrenia,
attention-deficit hyperactivity disorder (ADHD) and borderline personality disorder have
been in the focus of direct COMT effects, with carrying a Met-allele being a main
predictor for the vulnerability to these mental disorders as well as aggression, homicide
and suicide in schizophrenia patients (Han et al., 2006; Kia-Keating et al., 2007;
Lazzaretti et al., 2013; Qayyum et al., 2015; Strous et al., 2003; Tadi¢ et al., 2009; Tosato
et al., 2011; Zai et al., 2012). The “warrior-worrier” model of the COMT Val'**®Met
polymorphism suggests the maintenance of both alleles across human populations due to
counterbalancing advantages and disadvantages in the Val-warriors and the Met-worriers
(Goldman et al., 2005; Stein et al., 2006). They were given this designation because the
warrior haplotype is associated with higher emotional resilience, higher stress resistance
and better handling of pain, whereas the worrier haplotype is associated with a higher
susceptibility to stress-related mental disorders, but also higher creativity and better
cognitive skills (Goldman et al., 2005; Stein et al., 2006). Particularly regarding
aggression, however, it has been suggested that the relationship between COMT
Val®®Met and phenotypic variation is not straightforward (Qayyum et al., 2015). Rather,
COMT Val**®Met has been studied as a moderator between environmental factors such as
stress and the severity of aggression (Hygen et al., 2015), impulsive aggression (Wagner
et al., 2010), antisocial behavior (Thapar et al., 2005) and depression (Hosang et al.,
2017).

In non-human primates, some polymorphisms orthologous to those in humans
(e.g. length polymorphisms in SLC6A4 and MAOA) have been detected and linked to
similar effects as in humans (Caspi et al.,, 2003; Inoue-Murayama, 2009; Inoue-
Murayama et al., 2010; Newman et al., 2005; Wendland et al., 2006). Investigations also
showed that not all corresponding regions are polymorphic in non-human primate species
(Inoue-Murayama et al., 2010; Kalbitzer et al., 2016). The existence of COMT Val'**Met,
one of the most extensively studied polymorphisms in human behavioral genetics, is still
assumed to be unique to humans, probably due to species-specific cognitive abilities
(Palmatier et al., 1999). This assumption is based on a study by Palmatier and colleagues
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(1999) who sequenced one gorilla, two chimpanzees, two bonobos and two orangutans,
identified only the Val allele and concluded that this represents the ancestral state of the
polymorphism which is not present in non-human primates. Today, a look at the NCBI
GenBank database reveals that some macaque species carry the Val (Macaca fascicularis
and nemestrina), whereas others carry the Met allele (Macaca mulatta and fuscata,
Pfluger et al., 2016). Sequencing more than only a few representatives of a species might

be necessary to detect genotypic variations.

1.4.2 The multi-locus approach: a focus on genetic risk scores

In contrast to single locus studies, the simultaneous investigation of multiple loci
offers new ways to handle genotype data. One promising option, that is also easily
adaptable to different approaches using small or large amounts of genotype information,
is the calculation of a genetic risk score (GRS). Belsky and Israel (2014) refer to this new
possibility as “the lowest hanging fruit and the most potentially disruptive to existing
research programs” (Belsky & Israel, 2014, p. 137).

GRSs are used in different sub-disciplines and have been referred to as genetic
prediction score (Zhao et al., 2014), polygenic risk score (e.g. Llewellyn et al., 2014;
Rietschel et al., 2017; Utge et al., 2018; Worley et al., 2015), allelic score (Spycher et al.,
2012), multi-locus genetic profile (Feurer et al., 2017; Nikolova et al., 2011), SNP score
(Vrieze et al., 2012), genotype score (Meigs et al., 2008) or genetic load (Ferguson et al.,
2012). Compared to single locus approaches, the application of GRSs goes one step
further and is a more sophisticated way to assess a dose-dependent relationship between
genetic polymorphisms and phenotype. GRSs have been calculated from small-scale and
large-scale genotype data, with a broad spectrum of the number of polymorphisms used
(e.g. 4 in Worley et al., 2015 and Di lorio et al., 2017; 6 in Utge et al., 2018; 7 in
Ferguson et al., 2012; 9 in Kathiresan et al., 2008; 10 in Chen et al., 2011b; 13 in Ripatti
et al., 2010; 116 in Morrison et al., 2007; thousands in e.g. Evans et al., 2009; Purcell et
al., 2009; Wray et al., 2007). However, in all cases “the defining characteristic of a

genetic risk score is that it provides a quantitative measure of genetic predisposition that
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is calculated using information from multiple genetic variants” (Belsky & Israel, 2014, p.
142).

GRSs are a measure that summarizes an identified set of genetic variants into one
cumulative value. This value can then be used to measure the aggregated influence of
genotype on heterogeneity among individuals. The GRS provides information about an
individual’s position on the continuum of genetic risk (Belsky & Israel, 2014). Because
several genetic variants, including rare ones, contribute to most phenotypes, it is not
possible to state where an individual lies on the continuum of genetic risk when knowing

only one locus variant (Belsky & Israel, 2014).

The application of GRSs has been given special attention in studies on humans
aiming to assess the genetic risk for several diseases and brain functions, many of them
calculating GRSs of the HPA-axis (e.g. diurnal cortisol levels: Utge et al., 2018;
depression: Feurer et al., 2017; cardiovascular disease: Kathiresan et al., 2008; coronary
heart disease: Morrison et al., 2007; Ripatti et al., 2010; obesity: Llewellyn et al., 2014;
diabetes: Meigs et al., 2008; psoriasis: Chen et al., 2011b; asthma: Spycher et al., 2012,
schizophrenia and bipolar disorder: Purcell et al., 2009; amygdala function: Di lorio et al.,
2017; ventral striatum reactivity: Nikolova et al., 2011; neurodevelopment: Worley et al.,
2015). In a recent review, Belsky and Israel (2014) call out for a more frequent use of
genetic approaches, especially GRSs, in studies on sociality. GRSs of HPA-axis
genotypes have been referred to as an important marker for stress reactivity (Feurer et al.,
2017). Ferguson and colleagues (2012) were among the first to investigate more than one
candidate locus simultaneously in a non-human primate model species, the rhesus
macaque. They calculated a cumulative risk value (genetic load) from three loci and
associated it with HPA-axis dysregulation in captive individuals. In a more recent study,
Madlon-Kay and colleagues (2018) found only weak effects of 12 SNPs in the oxytocin
and arginine vasopressin receptor genes on social behavior in a population of rhesus
macaques on Cayo Santiago island. In their study they focused on single variant
associations and did not calculate an integrated value from all detected polymorphisms.
Also, including variants from the broader gene network contributing to the complex
behaviors of interest might be necessary to detect the small effects of many loci that
cumulatively contribute to phenotypes. Regarding these examples from the literature, no
comparable studies have been conducted with primates living in their natural habitat so
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far. What is lacking in particular is a holistic approach combining polymorphisms in
genes coding for elements in all of the three HPA-axis metabolisms with naturally
occurring phenotypic variation under natural conditions. In this thesis | aimed to close
this gap using extensive genetic, behavioral and endocrine data collected from a wild

primate species, the Assamese macaque.
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1.5 Study species: the Assamese macaque (Macaca assamensis)

Kingdom Animalia
Phylum Chordata
Class Mammalia
Order Primates
Suborder Haplorrhini
Parvorder Catarrhini
Superfamily Cercopithecoidea
Family Cercopithecidae
Subfamily Cercopithecinae
Tribe Papionini

Genus Macaca

Species Macaca assamensis

3
a’»" '

Fibure 1.1: An adult male Assamese macaque in Phu Khieo Wildlife Sanctuary, Thailand. Picture by Daria
R. Gutleb.
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1.5.1 General background

Macaques (Macaca spp.) are monophyletic and diverged from a common ancestor
with humans approximately 25 - 28 million years ago (Kumar & Hedges, 1998; Morales
& Melnick, 1998; Rogers & Gibbs, 2014). The genus name Macaca derives from the
word “ma-kako”, meaning “monkey” in a Congolese Bantu language (‘macaca’, 2000).
Except for humans, macaques have the largest geographic range among primates and are
among the best-studied taxa (Thierry et al., 2004). Paleontological findings from the
Pleistocene show that macaques existed from North Africa, through Europe to Asia
(Abegg & Thierry, 2002; Delson, 1980; Eudey, 1980; Fa, 1989). Today, only one relict
species inhabits Northern Africa, the Barbary macaque (Macaca sylvanus), and the other
22 known macaque species all occur only in Asia. The present macaques can be divided
into seven species groups: sylvanus, silenus, Sulawesi macaques, sinica, fascicularis,

mulatta and arctoides (Zinner et al., 2013).

The study species in this thesis is the Assamese macaque (Macaca assamensis
McCLELLAND 1839, Figure 1.1) which is a member of the sinica group of macaques, next
to Macaca sinica, radiata and thibetana (Fooden, 1980; Zinner et al., 2013). Assamese
macaques can be divided into two sub-species, the Eastern (or Southeast Asian)
Assamese macaque (Macaca assamensis assamensis) and the Western (or sub-
Himalayan) Assamese macaque (Macaca assamensis pelops HoDGSON 1840). With a
currently decreasing population trend, both sub-species are classified as near threatened
according to The IUCN Red List of Threatened Species (The IUCN Red List of
Threatened Species, 2017). Habitat degradation and poachers constitute the main threat
(The ITUCN Red List of Threatened Species, 2017).

The population that was investigated in this thesis belongs to the Eastern
Assamese macaque, which occurs between 200 and 2750 m above sea level in China,
Tibet, India, Myanmar, Thailand, Laos and Vietnam (Brandon-Jones et al., 2004; Eudey,
2013; Fooden, 1982). This brownish colored macaque has habitats in subtropical and
tropical, evergreen and semi-evergreen, deciduous and mixed bamboo, wet and dry,
lowland and mountainous forests (Eudey, 2013). Assamese macaques are sexually

dimorphic, with males being larger (head-body 53 - 73 cm) and heavier (8 - 17 kg) than
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females (17 - 29 cm, 5 - 9 kg, Eudey, 2013; Fooden, 1982). They are mainly vegetarian,
but the diet also includes insects and small vertebrates such as lizards and squirrels
(Eudey, 2013; Kaoirala et al., 2017; Mitra, 2002; Schilke et al., 2011; Zhou et al., 2011).
Like in many macaque species, there exist groups that are provisioned, raid crops or beg
for food from tourists (Aggimarangsee, 1992; Chalise, 2003; Eudey, 2013; Fooden, 1982;
Kaewpanus et al., 2015; Sarkar, 2014b). In captivity this primate can reach the age of
approximately 28 years (Dathe, 1983; Eudey, 2013).

In the following section, I will describe those features of Assamese macaques
which appear relevant for the studies that I conducted in this thesis: their dominance
hierarchy, social behavior and seasonality. Afterwards, | will introduce the population of
Assamese macaques that has been studied for this thesis: four wild groups living in their
natural habitat in Phu Khieo Wildlife Sanctuary (PKWS) in Thailand.

1.5.2 Hierarchy, sociality and seasonality

Like all macaque species, Assamese macaques live in multimale-multifemale
groups with males being the dispersing sex (Thierry et al., 2004). Females usually stay
within their natal group lifelong, therefore matrilineal kin plays a particularly important
role in female social relationships (Thierry et al., 2004).

Macaques can be classified into four grades according to the strictness of the
female dominance hierarchy, aggression and conflict management (Thierry, 2000;
Thierry et al., 2008). Nepotism and the asymmetry of agonistic outcomes decline,
whereas reconciliatory behavior increases from grade 1 to 4. Assamese macaques are
classified as grade 2 macaques with a strict linear steep dominance hierarchy (Bernstein
& Cooper, 1999; Cooper & Bernstein, 2008; Macdonald et al., 2013; Ostner et al., 2008a,
2011). Female macaques acquire ranks close to their mothers, which is referred to as a
“classical nepotistic hierarchy” or a “classical matrilineal dominance structure” (Chapais,
2004). Therefore, a female’s rank position is quite stable and predictable from knowledge
on her kinship. Males disperse at the age of puberty, but can continue to migrate between

groups later in life (van Noordwijk & van Schaik, 2004; Thierry, 2007). Also, they can
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change their dominance rank position throughout their life (Schilke et al., 2010). To
acquire a higher rank, male-male coalitions are of particular importance (Schilke et al.,
2010). Males who have strong social bonds form coalitions, which in turn predict future
dominance and reproductive success (Schilke et al., 2010).

Assamese macaques may allocate up to almost a quarter (10 - 24 %) of their daily
time for social activities, depending on food availability (Chalise, 1999; Koirala et al.,
2017; Pandey & Chalise, 2015; Paudel & Chalise, 2017; Sarkar et al., 2012; Sarkar,
2014b, 2014a). Female Assamese macaques groom other females and juveniles more
often than males do (Cooper & Bernstein, 2000), and reconcile more often with strong
grooming partners (Cooper et al., 2005). Importantly, male Assamese macaques form
strong and stable social bonds with females (Haunhorst et al., 2016; Ostner et al., 2013),
but also males (Kalbitz et al., 2016, 2017). In primates, social bonds among males are
generally rare and male Assamese macaques stand out in this regard (Ostner & Schiilke,
2014).

Assamese macaques are seasonal breeders with a distinct birth/non-mating season
from March to September and a mating season from October to February (Fooden, 1971,
Furtbauer et al., 2010; Mitra & Alfred, 2007). The mating season is characterized by
distinct behavioral and physiological changes. Males show increased levels of aggression,
GCs and androgens (Ostner et al., 2008a, 2011). During the winter months, females have
concealed ovulations, synchronize mating, show distinct promiscuity and initiate 70 % of
all copulations (Furtbauer et al., 2010, 2011a, 2011b). Females gestate 5.5 months and
give birth every 1 to 2 years (Furtbauer et al., 2010). Due to the behavioral and hormonal
changes between the non-mating and the mating period, any study investigating long-term
data must take the season when data were collected into account.
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1.5.3 Assamese macaques in Phu Khieo Wildlife Sanctuary

The study population in PKWS ranges in the area of Huai Mai Sot Yai (16°5’-
35°N, 101°20°-55’E, 600 - 800 m above sea level) in the province of Chaiyaphum in Isan,
the north-eastern part of Thailand. With an 1543 km? area of predominantly undisturbed
dry evergreen and hill evergreen forest with bamboo patches, PKWS is a major part of the
6500 km? protected Western Isaan Forest Complex (Borries et al., 2002; Grassman et al.,
2005). The research field site in PKWS was established by A. Konig and C. Borries, who
firstly described the diurnal primate community in PKWS (Borries et al., 2002) and
studied the socio-ecology of Phayre's leaf monkeys (Trachypithecus phayrei, Borries et
al., 2004; Koenig et al., 2004a, 2004b). Besides Assamese macaques, the sanctuary
harbors the following seven primate species: white-handed gibbons (Hylobates lar),
Phayre’s and silvered leaf monkeys (Trachypithecus cristatus), slow loris (Nycticebus
coucang), stump-tailed (Macaca arctoides), pig-tailed (Macaca nemestrina) and rhesus

macaques (Borries et al., 2002).

Since 2005 research on the study population of wild Assamese macaques in their
natural habitat in PKWS is directed by J. Ostner and O. Schiilke. It began with the effort
to habituate first one, then two groups of Assamese macaques (AS and AO). The groups
split in 2012 and 2014, respectively, thus four groups have been observed since then
(ASM, ASS, AOM and AOS). Due to natural and frequent male migrations, groups
experience a natural genetic flow (in contrast to laboratory or semi-free groups of
primates). Also, one rare case of an immigrated female was observed. Only the
researchers within the long-term project and occasionally rangers have access to the study
groups, tourists are not allowed to enter the forest. Students continuously collect data
following standardized observation and sampling protocols to assure the usability of data
for long-term analysis. They do not interact with or feed the monkeys and try to keep a

minimum distance of 5 m to observe natural behavior without disturbance.

As partially described above, the study population exhibits a strong seasonality in
reproduction (Flrtbauer et al., 2010, 2013) and males react to the challenges of the
mating season with a pronounced increase in aggression rates and GC output (Ostner et

al. 2008a, 2011). Males can be ordered along a linear, relatively steep dominance
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hierarchy (Ostner et al. 2008a) and individual paternity success increases with increasing
dominance rank (Schiilke et al. 2010; Sukmak et al. 2014a). Further, previous studies on
the wild Assamese macaques in PKWS included research on their ecology (Schilke et al.,
2011), females’ mating synchrony and concealed fertility (Flrtbauer et al., 2011a, 2011b),
feeding competition (Heesen et al., 2013, 2014, 2015), immature development (Berghéanel
et al.,, 2015, 2016), molecular analyses of mitochondrial DNA, microsatellites and
adenoviruses from non-invasively collected fecal samples (Muller et al., 2014; Sukmak et
al., 2014b, 2017), male-male, male-female and male-infant relationships (Haunhorst et
al., 2016, 2017, Kalbitz et al., 2016, 2017; Minge et al., 2016; Ostner et al., 2013; Ostner
& Schilke, 2018) and other aspects of their sociality (Macdonald et al., 2013; Richter et
al., 2016; Schulke et al., 2010, 2014).

Regarding this range of research topics, the behavioral genetics approach in this
thesis is new not only regarding the lack of genetic studies on wild primate behavior, but
also a new approach in the long-term field project in PKWS. Considering that individual
variation in GC levels and aggression as well as the causal connection between male
social bonds and reproductive success have been previously demonstrated in this
population of Assamese macaques (Ostner et al., 2008a; Schulke et al., 2010), they serve
as ideal study animals to investigate the genetic underpinnings of behavior and hormones
associated with the primate HPA-axis. Due to research on wild primates living in a
protected area, all studies on the Assamese macaques of PKWS are of completely non-
invasive nature. For my studies, | therefore collected fecal samples for non-invasive
genetic analyses and urine samples for non-invasive hormone analyses from all four

currently observed groups.
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1.6 Aims and approaches: studying genetic influences on phenotypes
associated with the HPA-axis in a natural primate population

Inter-individual differences have been in the focus of research since the very
beginning of primatology. One source of the observed endocrine and behavioral variation
might be genotypic differences. To corroborate this hypothesis, studies investigating
whether and how wild primates’ HPA-axis activity, aggressive behavior and social
relationships are affected by genetic predispositions are necessary. By digging deeper into
the behavioral genetics and physiogenetics of wild animals, we will gain a better
understanding of the factors that contribute to variation within populations under natural
selection pressures and shed light on the proximate mechanisms affecting individuals’
physiological and behavioral states. The formation of strong social bonds and their causal
effects on reproductive success have been previously demonstrated in wild Assamese
macaques (Kalbitz et al., 2016; Schilke et al., 2010) in which it is possible to renounce
from experimental physiological and behavioral manipulations and directly observe and
quantify the natural range of social behavior and HPA-axis activity.

In this thesis, | investigated how genetic predispositions shape the behavior and
physiology of wild Assamese macaques. | focused on the effects of HPA-axis-related
genetic variants on aggression and HPA-axis activity. Although non-invasive molecular
techniques have been optimized over the past decades, the integration of genotype in
HPA-axis-related research on non-human primates and even more so on primates living
in their natural habitat with a natural level of genetic variation is still rare. Studies linking
genotype data, e.g. MAOA and SLC6A4, to behavioral patterns are scarce, often
investigate only single candidate genes rather than screening several gene loci related to
HPA-axis functioning (e.g. Miller et al., 2004; Schwandt et al., 2011) and use broad-scale
interspecific contrasts in behavioral patterns instead of actual observed individual
behaviors (Chakraborty et al., 2010; Wendland et al., 2006).

Using non-invasive genetic methods, | took the consequent next step following the
current state-of-the-art in research on inter-individual differences in aggression, HPA-axis
activity, social bonds and social buffering effects in wild non-human primates. | collected
behavioral and endocrine data across an entire year, thus including both a non-mating and

the subsequent mating period of this seasonal species. Combining detailed data on
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behavior with molecular analyses of cortisol and identification of genetic variants, |
aimed to provide new perspectives on the connections between HPA-axis-related
phenotypes and genetic make-up and how observed phenotypic variation can be
explained by inherent genetic predisposition. Variants in the genetic constitution of
macaques may allow individuals to adapt differently to social situations or constraint
them in their behavior, thereby causing the observed inter-individual variation that might

reflect different strategic approaches.

We lack methods to easily genotype individuals for several gene loci
simultaneously using low-quality fecal DNA samples. Therefore, the first study (chapter
2) of my thesis was dedicated to design a genotyping panel for a fast and simultaneous
identification of multiple HPA-axis gene loci. By reviewing the literature, 1 compiled a
list of candidate gene loci that were targeted in this study. The target loci included genes
coding for elements of all three metabolic circuits of the HPA-axis, thus including a key
set of proteins that are involved in HPA-axis-functioning. The designed genotyping panel
enabled me to determine the variation at 46 target regions in 21 HPA-axis-related genes
of all adult males and adult females in the study population and constitutes the basic

methodology for the further two studies that | conducted.

Applying the panel from study 1 (chapter 2), | found out that the extensively
studied COMT Val*®Met polymorphism also exists in the study population of wild
Assamese macaques. In study 2 (chapter 3), I report on the existence of the polymorphism
in a species other than the human and investigate the association between COMT
genotype and aggression in adult males and females, considering a moderating role of the

polymorphism between rates of aggressive behavior and dominance rank.

In study 3 (chapter 4), | simultaneously investigate all identified SNPs from the
genotyping panel in study 1 (chapter 2) and calculate a GRS as the proportion of missense
variants an individual carries. | test whether GRS of HPA-axis-related genes predicts
urinary immunoreactive cortisol levels, risk-taking behavior, i.e. initiating aggression,

social bonding and the main social buffering effect in adult male Assamese macaques.

| summarize the results from the chapters 2, 3 and 4 at the beginning of the
general discussion (chapter 5). Furthermore, | discuss the relevance of my studies and

give prospects for future research.
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Abstract

We designed a genotyping panel for the investigation of the genetic underpinnings
of inter-individual differences in aggression and the physiological stress response. The
panel builds on single nucleotide polymorphisms (SNPs) in genes involved in the three
subsystems of the hypothalamic-pituitary-adrenal (HPA)-axis: the catecholamine,
serotonin and corticoid metabolism. To promote the pipeline for use with wild animal
populations, we used non-invasively collected faecal samples from a wild population of
Assamese macaques (Macaca assamensis). We targeted loci of 46 previously reported
SNPs in 21 candidate genes coding for elements of the HPA-axis and amplified and
sequenced them using next-generation Illumina sequencing technology. We compared
multiple bioinformatics pipelines for variant calling and variant effect prediction. Based
on this strategy and the application of different quality thresholds, we identified up to 159
SNPs with different types of predicted functional effects among our natural study
population. This study provides a massively parallel sequencing panel that will facilitate
integrating large-scale SNP data into behavioural and physiological studies. Such a multi-
faceted approach will promote understanding of flexibility and constraints of animal

behaviour and hormone physiology.
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Introduction

Recent developments in molecular techniques enable researchers to include large-
scale investigations of genetic impacts on behavioural or endocrine variables at
reasonable costs (Ekblom & Galindo, 2011; Perry, 2014). In studies on humans, the
investigation of genotypic influences on phenotypic characteristics revealed that inter-
individual variation can be strongly affected by genotype (Craig & Halton, 2009; Pavlov
et al., 2012; Plomin et al., 2013). For example, genotypic variation is responsible for
approximately 50 % of inter-individual variation in physiological stress levels and
aggression (Linkowski et al., 1993; Miles & Carey, 1997). In animal studies, however,
the consideration of underlying genotype in behavioural and physiological studies is
relatively understudied. Especially regarding studies on wild, non-model populations,
several authors have called for a more frequent consideration of genetic impacts on
animal behaviour (Brent & Melin, 2014; Ekblom & Galindo, 2011; Tung et al., 2010). In
this study, we provide a multi-locus genotyping pipeline, based on non-invasively
sampled material from a population of wild primates, facilitating future research on social
and ecological factors driving variation in stress and aggression.

Modulation of the hypothalamic-pituitary-adrenal (HPA)-axis activity is an
effective mechanism mediating environmental effects on the organism including its
behavioural tendencies. The HPA-axis is a central physiological pathway activated in
response to stress and is conserved across vertebrates (Denver, 2009; Schulkin, 2011). In
behavioural ecological studies, aggressive behaviour is often linked to HPA-axis activity
via quantification of cortisol, the end product of this pathway (fish: @verli et al., 2002;
birds: Carere et al., 2003; rodents: Huhman et al., 1991; ruminants: Salas et al., 2016; cats
and dogs: Finkler & Terkel, 2010; Rosado et al., 2010; primates: Honess & Marin, 2006;
Ostner et al., 2008b). Links to behaviour have been established in rats where the
stimulation of brain areas responsible for aggression causes cortisol release, and similar
processes are proposed for other vertebrates, including humans (Halész et al., 2002; Kruk
et al.,, 2004). Behavioural ecological studies on aggression often assess how the
expression of aggressive behaviour is related to social dominance or affected by
characteristics of the competitive situation without conceptually integrating inter-

individual variation due to genetic variation.
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Three main metabolic circuits contribute to the HPA-axis: the serotonin, the
catecholamine and the corticoid. Genes associated with these metabolic circuits have been
repeatedly targeted in human clinical stress (Jabbi et al., 2007; Zhou et al., 2008) and
aggression (Craig, 2007; Pavlov et al., 2012; Qayyum et al., 2015) research. Functional
polymorphisms in the genes coding for the three subsystems may lead to dysregulations
in the HPA-axis pathway and a change in how the organism reacts to external stressors.
The serotonin pathway involves the serotonin transporter (SLC6A4), receptor (HTR),
tryptophan hydroxylase (TPH) and monoamine oxidase (D’souza & Craig, 2006). The
neuropeptide Y (NPY) is a neurochemical that plays a protective role in stress resilience
(Kormos & Gaszner, 2013; Zhou et al., 2008). The catecholamine circuit (e.g. dopamine:
DRD, SLC6A3, catechol-O-methyl transferase: COMT) causes general physiological
changes that prepare the body for physical activity (Molinoff & Axelrod, 1971). Main
components of the corticoid pathway are the corticotropin-releasing hormone (CRH),
CRH receptors (CRHR), the glucocorticoid receptor (NR3C1), CRH binding protein
(CRHBP), corticosteroid binding globulin (SERPINAG) and the corticotropin receptor
(MC2R, Subbannayya et al., 2013).

For human diagnostics in the field of behavioural genetics, studies acquire large
datasets via high-throughput methods such as massively parallel sequencing (i.e. next-
generation sequencing, Perry, 2014). Behavioural studies on natural animal populations,
however, commonly target one or a few gene loci associated with aggression and HPA-
axis activity (Garamszegi et al., 2014; Kalbitzer et al., 2016; Timm et al., 2015), whereas
high-throughput multi-locus approaches are rather rare (but see Bergey et al., 2016;
Ekblom & Galindo, 2011). Due to the high number of genes involved in physiological
pathways such as the HPA-axis, the simultaneous assessment of multiple loci known to
affect certain traits promises a much more comprehensive understanding of the
investigated physiological and behavioural parameters (Ferguson et al., 2012; Pearce et
al., 2017). The introduction of massively parallel sequencing technologies makes a multi-
locus approach also feasible in studies on non-model species. The generated data provide
high coverage of amplicons or genomes and a large and still growing body of different
bioinformatics applications helps to investigate multiple loci in a fast and parallel way
(e.g. Genome Analysis Toolkit — GATK, McKenna et al., 2010; SAMtools, Li et al., 2009
and UCSC genome browser, Kent et al., 2002).
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Here we report a massively parallel sequencing panel for the assessment of HPA-
related SNPs useful for studies investigating the genetics that underlie behavioural and
endocrine variation in aggression and the physiological stress response. For this purpose,
we targeted loci of previously reported SNPs in 21 candidate genes associated with the
HPA-axis. We provide detailed information on all steps from selection of target genes and
polymorphisms, via laboratory work to the subsequent bioinformatics analyses of
acquired massively parallel sequencing data. We additionally demonstrate the feasibility
of application to faecal samples from wild populations, where non-invasive sampling is

necessary.
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Materials and Methods

Ethical statement

The National Research Council of Thailand (NRCT) and the Department of
National Parks, Wildlife and Plant Conservation (DNP) approved (permit numbers:
0004.3/3618, 0002.3/2647, 0002/17, 0002/626, 0002/2424) the data collection at the
study site in Thailand and export to Germany as part of a long-term collaboration between
the University of Goettingen, the German Primate Center, the DNP and Kasetsart
University Bangkok under the agreement of benefit sharing. Faecal samples were
collected non-invasively. No animals were harmed or sacrificed for this study. Procedures
were in accordance with the American Society of Primatologists’ (ASP) principles for the
ethical treatment of non-human primates

(https://www.asp.org/society/resolutions/Ethical TreatmentOfNonHumanPrimates.cfm).

Sample collection and storage

Samples were collected at Phu Khieo Wildlife Sanctuary in north-eastern
Thailand. The sanctuary is part of the 6,500 km2 protected Western lIsaan Forest
Complex. Faecal samples were collected from four groups of fully habituated and
individually identifiable Assamese macaques. In total, we collected 478 faecal samples
from 38 adult males and 41 adult females (1-15 per individual, @ 6) over the course of the
long-term field project between June 2006 and January 2016. 58 % of the samples were
collected between March 2015 and January 2016. Adult males are involved in
reproduction, have fully developed testes and long canines. Females are considered as
adult in the mating season that they first conceive in, dating back from observations of
their first birth,

For genetic analyses ~ 5 g of faeces were collected immediately after defecation
from the surface of the faecal sample from an identified individual. We applied the two-
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step storage procedure, which included the collection of faecal samples into 50 ml tubes
(62.559.001, Sarstedt, Nimbrecht, North Rhine-Westphalia, Germany) containing 30 ml
of 97 % ethanol (Nsubuga et al., 2004). After storage for 24 to 36 hours, ethanol was
poured off and the faecal samples were dried and stored on 30 ml silica beads (112926-
00-2, Intereducation Supplies Co., Ltd., Bangkok, Thailand) in 50 ml tubes in the dark at
room temperature (Roeder et al., 2004). These samples were exported to Germany within

6 months and then stored at -20 °C until DNA extraction was performed.

SNP selection and amplicon primer design

Target regions were determined by searching the literature for SNPs in candidate
genes involved in stress and aggression. The majority of target regions were chosen from
literature on humans (for references see Supplementary Table S1.1), but we also targeted
macaque and pig SNPs (for full list see Supplementary Table S1.1). Further, we chose
only target regions located in protein-coding genes that code for receptors, enzymes and
transmitter molecules associated with the HPA-axis. Targets were located both in exonic
and intronic as well as untranslated regions. In total, we selected 46 target regions in 21
candidate genes. A summary about all genes that were included in the multi-locus
genotyping panel can be found in Table 2.1, for more details about the target regions,
including chromosomal position, SNPs, functional consequences and selected references

see Supplementary Table S1.1.

As genome data for our study species, the Assamese macaque (Macaca
assamensis), is not available, we designed primers according to the genome sequence of
the congeneric rhesus macaque (Macaca mulatta, v8.0.1). For detailed information about

amplicon sequences of Macaca mulatta and human see Supplementary Table S1.1.

Primers were designed using the online-software Primer3Plus (Untergasser et al.,
2012). Due to DNA degradation in faecal samples, primers were designed to amplify
short PCR products with a maximum of 380 bp (& 207 bp), with the target SNP being as
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Table 2.1: List of all genes included in the multi-locus genotyping panel

HGNC gene
symbol

Name

Information

AVPR1B

arginine vasopressin
receptor 1B

present in the brain as well as in the pituitary where it
stimulates ACTH release

responsible for mediating the effects of vasopressin on
ACTH release

inactivation reduces aggression

BDNF

brain-derived
neurotrophic factor

e associated with stress vulnerability

involved in emotion processing and cognition
‘neurotrophic hypothesis’ states that stress reduces BDNF
activity resulting in decreased function within limbic brain
regions

COMT

catechol-O-methyl
transferase

degrades catecholamines such as dopamine, epinephrine
and norepinephrine

due to its function in catecholamine degradation and
dopamine inactivation it plays a pivotal role in neuro-
cerebral stress processing

o essential neuropeptide for maintenance of homeostasis

functional gene variants associated with enzyme activity,
cortisol levels and aggression

CRH

corticotropin-releasing
hormone

plays a crucial role in the behavioural and neuroendocrine
stress response

dysregulations are linked to stress-related psychiatric
disorders

experimental manipulations demonstrated that naturally
occurring gene variants mediate individual variability in
behavioural and physiological traits, thus determining an
individual’s coping style

CRHBP

corticotropin releasing
hormone binding protein

o this high-affinity protein regulates CRH availability

widely distributed throughout the body

o variation in CRHBP expression influences the

effectiveness of CRH in stimulating ACTH to release
cortisol

CRHR1

corticotropin-releasing
hormone receptor 1

binds CRH

o important for endocrine and behavioural stress response

polymorphisms predict baseline cortisol and stress-related
psychotic disorders

CRHR2

corticotropin-releasing
hormone receptor 2

binds CRH in the membranes of hormone-sensitive cells

DRD3

dopamine receptor D3

o expressed in phylogenetically old regions of the brain

thus plays a role in cognitive and emotional functions

o allelic variants are associated with aggression and

personality

FKBPS

FK506 binding protein 5

is a co-chaperone of the glucocorticoid receptor
together they form a complex that modulates cortisol
binding affinity

thus, it modulates the HPA-axis via glucocorticoid
receptor sensitivity

gene variants associated with baseline cortisol

HTR1A

serotonin receptor 1 A

e binds serotonin

activation induces the secretion of hormones including
cortisol, corticosterone, ACTH and oxytocin

o important for stress-related information processing
o effects on the cortisol stress response which are explained

by differences in serotonin turnover
level of activation is associated with aggression
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HTR1B

serotonin receptor 1B

widely expressed in the central nervous system

o function depends on location, in frontal cortex:

postsynaptic receptor and inhibits dopamine release, in
ganglia and striatum: inhibits serotonin release

gene variants associated with vulnerability for depression
and anxiety

MAOA

monoamine oxidase A

breaks down serotonin, melatonin, noradrenaline and
adrenaline

therefore, it influences synaptic concentrations of these
neurotransmitters

marker for antisocial behaviour

¢ gene variants linked to aggression and impulsivity in

animals and humans

MC2R

ACTH receptor

binding of ACTH stimulates cortisol production
mutations cause familial glucocorticoid deficiency

NPY

neuropeptide Y

most abundant neuropeptide in the mammalian brain and
affects its activity

plays an important role in controlling physiological
processes associated with stress, especially via emotion
released in response to stress

referred to as a protective neurochemical that mediates
stress resilience

NR3C1

glucocorticoid receptor

cortisol and other glucocorticoids bind to this receptor
expressed in almost every cell of the body

regulates gene transcription

gene variants are associated with cortisol levels and
psychosocial stress and can cause hypersensitivity to
glucocorticoids and a poor feedback regulation of the
HPA-axis

OPRM1

opioid receptor mu 1

high affinity for enkephalins and beta-endorphin
exists mostly presynaptically

e gene variants associated with different endorphin affinities

in macaques a variant influences HPA-axis function in
response to a variety of stressors

OXTR

oxytocin receptor

presence in central nervous system

o modulates stress, anxiety, social memory and sexual,

aggressive and affiliative behaviours

SERPINAG

corticosteroid binding
globulin

e binding and transport of glucocorticoids in mammals

assumed that polymorphisms affect glucocorticoid
transport efficiency

SLC6A3

dopamine transporter

e actively removes neurotransmitters from the synaptic cleft

thereby regulates the synaptic availability of dopamine
and the duration of dopaminergic neurotransmission
in macaques a variant is associated with dominance rank

SLC6A4

serotonin transporter

regulates the serotonin re-uptake in the synaptic cleft
since effects of serotonin in the synapse are terminated by
re-uptake, it is a crucial protein to regulate serotonin
function in the brain

functional gene variants in humans and macaques have
been associated with several behavioural phenotypes

TPH2

tryptophan hydroxylase 2

it is the rate-limiting enzyme in the synthesis of serotonin
thus, responsible for the synthesis of serotonin in brain
areas

associated with plasma cortisol

Note: For more details about the target regions, including chromosomal position, SNPs, functional
consequences and selected references see Supplementary Table S1.1.
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central as possible. Primer annealing temperatures were between 54 and 60 °C, with a
maximum difference of 2 °C for each primer pair. Primer annealing temperature was
chosen as predicted by Netprimer (Premier Biosoft, Palo Alto, California, USA). Further
steps of the primer design included: (i) specificity check: Primer-Blast, NCBI, ‘nr’
database for Mammalia (Altschul et al., 1990), (ii) dimerization check: Netprimer
(Premier Biosoft, Palo Alto, California, USA), (iii) secondary structure check: The mfold
Web Server, DNA Folding Form (Zuker, 2003). The designed primers were ordered from
Metabion (Planegg/Steinkirchen, Bavaria, Germany). In total we designed 41 primer pairs

for 46 target loci (Supplementary Table S1.1).

Laboratory methods

DNA extraction was carried out with the First-DNA all-tissue Kit (D1002000,
GEN-IAL GmbH, Troisdorf, North Rhine-Westphalia, Germany), following the
manufacturer’s protocol for DNA extraction from faeces. The protocol included an
overnight incubation at 37 °C with lysis buffer 1, lysis buffer 2 and proteinase K. After
centrifugation, the supernatant was combined with lysis buffer 3, incubated at -20 °C for
5 minutes and centrifuged, followed by washing steps with 70 % ethanol stored at - 20
°C. Finally, DNA was eluted in 50 pl HPLC water (115333, Merck, Darmstadt, Hesse,
Germany) and stored at -20 °C until further processing. All steps of the protocol were
carried out with DNA LoBind Tubes (0030108051, Eppendorf AG, Hamburg, Germany).
Total genomic DNA concentration was measured with a NanoDrop Spectrophotometer
(ND-1000, PEQLAB Biotechnologie GmbH, Erlangen, Bavaria, Germany) and diluted to
a final concentration of 100 ng/pl. 78 % of the extracted faecal samples were collected
between March 2015 and January 2016.

Target regions were amplified in 96-well plates (AB0600, Thermo Fisher
Scientific, Waltham, Massachusetts, USA) with 1 U BioThermTaq DNA Polymerase
(GC-002-5000, Genecraft, Cologne, North-Rhine Westphalia, Germany) in a 30 ul PCR
mix (1 x reaction buffer, 0.16 mM for each ANTP, 0.33 uM for each primer, and 18 ng
BSA, 100 ng template DNA), with the following thermocycler (Labcycler, Sensoquest,

Gottingen, Lower Saxony, Germany) conditions: 2 minutes at 94°C, 60 cycles of 30
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seconds at 94°C, 30 seconds at the appropriate annealing temperature (see Supplementary
Table S1.1), 30 seconds at 72°C, and 5 minutes at 72°C. To check for PCR
contamination, we ran 3 to 7 non-template controls on each 96-well plate. After
amplification, aliquots were size-separated on 2 % agarose gels along with a size standard
(SM0241, Thermo Fisher Scientific, Waltham, Massachusetts, USA) to check for PCR
performance and correct amplicon size. PCR products were then purified with Solid
Phase Reverse Immobilization (SPRI) technology using 2.5x Ampure Beads (A63881,
Beckman Coulter, Brea, California, USA) and again subjected to 2 % agarose gel
electrophoresis to control for purification performance. DNA concentration was measured
with a Qubit 3.0 (Q32854, Thermo Fisher Scientific, Waltham, Massachusetts, USA). To
test if our primers are target-specific, all 41 SPRI-purified amplicons of two individuals,
acquired via PCR from faecal DNA extracts, were sequenced using Sanger technology.
Therefore, we applied both amplification primers (3.3 pmol) and the Big Dye Cycle
Sequencing Kit (433776452, Thermo Fisher Scientific, Waltham, Massachusetts, USA),
and ran the reactions on an ABI 3130xl genetic analyzer (Thermo Fisher Scientific,
Waltham, Massachusetts, USA). Sequence electropherograms were checked with DNA
Baser (DNA Sequence Assembler v4, 2013, Heracle Biosoft S.R.L, Mioveni, Arges,
Romania) and compared with the respective target sequences of rhesus macaque and

human.

For massively parallel sequencing, the amplicons from each individual were
pooled in equimolar amounts to a total of 120 ng. Sequencing libraries were generated
following the method described in Rohland et al. (2015) without uracil-DNA-glycosylase
treatment based on Meyer and Kircher (2010) and Kircher et al. (2012). To check for
performance of library preparation, we ran all libraries on an Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, California, USA) using the High Sensitivity DNA
chip (5067-4626). Libraries were then pooled to a library mix with a final concentration
of 10 nM. We added an additional step to control for quantity by running a gPCR with a
7500 Fast Real-Time PCR System (Thermo Fisher Scientific, Waltham, Massachusetts,
USA) using the Bio-Rad EvaGreen Supermix (1725211, Bio-Rad, Hercules, California,
USA) following the manufacturer’s recommendations and using three samples of the
library mix and the concentration standards (5 nM, 10 nM, 20 nM). Reactions were run
under the following conditions: 2 minutes at 50 °C, 10 minutes at 95 °C, 40 cycles of 30

seconds at 95 °C, 34 seconds at 60 °C and 30 seconds at 72 °C. Sequencing was
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conducted on an Illlumina MiSeq sequencer (paired-end 150 bp) at the Microarray and
Deep-Sequencing Core Facility, University Medical Center Goettingen, Lower Saxony,

Germany.

SNP calling

After Illumina sequencing, all produced FASTQ reads were quality-checked and
trimmed with FastQC (Andrews, 2010) and Trimmomatic v0.36 (Bolger et al., 2014). For
SNP calling, we used the GATK best practices pipeline for germline SNP discovery
(Auwera et al., 2013) as well as the SAMtools-bcftools-pipeline (Li et al., 2009). For both
pipelines, all quality-checked reads were mapped against the genome of Macaca mulatta
v8.0.1 using BWA MEM v0.7.12 (Li, 2013). We followed the GATK best practice
pipeline and did not mark duplicates in the bam-file, because it is not possible to
distinguish duplicate reads in amplicon sequencing where the major proportion of
sequences reads represents PCR duplicates (Ebbert et al., 2016; Tata et al., 2017). A first
variant call was carried out using GATK’s HaplotypeCaller. Recovered SNPs were
filtered using the hard-filtering procedures recommended by GATK's best practices
(VariantFiltration). The following quality filter expression was applied: quality by depth
smaller than 2.0 (QD < 2.0), mapping quality smaller than 40.0 (MQ < 40.0), Fisher
strand (Phred-scaled p-value using Fisher’s Exact Test) more than 60.0 (FS > 60.0),
mapping quality rank sum (the u-based z-approximation from the Mann-Whitney Rank
Sum Test for mapping qualities) smaller than -12.5 (MQRankSum < -12.5), and read
position rank sum (the u-based z-approximation from the Mann-Whitney Rank Sum Test
for the distance from the end of the read for reads with the alternate allele) smaller than -
8.0 (ReadPosRankSum < -8.0)50. Afterwards, Base Quality Score Recalibration (BQSR)
was performed twice using GATK's BaseRecalibrator and PrintReads. The final variant
calling process was conducted with GATK's HaplotypeCaller in GVCF mode. The
produced GVCF-files were merged using GATK’s GenotypeGVCFs.

SAMtools v1.4 mpileup was also used to generate raw variant calls using Macaca
mulatta v8.0.1 as reference genome. The following settings were used: -d (maximal per-
file depth) set to 250, -E (recalculate BAQ), --BCF (generate genotype likelihoods in
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BCF format), and --output-tags set to DP [to get the DP (number of filtered reads
covering the corresponding allele) tag in the output file]. Variant calling was done using
bcftools call v1.4 with the following settings: --multiallelic-caller (alternative model for
multiallelic and rare-variant calling) --variants-only (output variant sites only) -O v

(output type: ‘v’ uncompressed VCF, Li et al., 2009).

Only variants identified by both the GATK and the SAMtools pipeline lying
within the ranges of the genes of interest were used for subsequent analyses. Additionally,
we compared the number of variants called without a threshold for the Phred quality
(QUAL) score, with QUAL set to be > 30, and with QUAL set to be > 100. The Phred
quality score gives a logarithmically related prediction-value to the base-calling error.

The higher the quality score, the higher the base call accuracy (Ewing et al., 1998).

Variant annotation and effect prediction

SnpEff v4.3i (Cingolani et al., 2012) and Variant Effect Predictor v87 (VEP,
McLaren et al., 2016) were used for variant annotation and SNP effect prediction. We
compared two different applications because variant prediction software can differ in
their predicted effects (Wertz et al., 2016). With the VEP plugin ‘MaxEntScan’ it was
possible to compare scores of the reference and mutant splice sites using a maximum
entropy model and to predict splice site effects. Additionally, linkage disequilibrium
scores were calculated using vcftools v0.1.1458 with the option ‘geno-r2’. Subsequently,

all calculated annotations and effects were analysed in detail by hand.

Data accessibility

Massively parallel sequencing-data were submitted to the Sequence Read Archive
(SRA) available via NCBI with the accession number SRP116685. Additional data are

available in the Supplementary Information.
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Results

Sanger sequencing of the 41 amplicons from two macaque individuals revealed
that the applied primers are target-specific. From the 79 investigated macaque
individuals, we obtained a total of 3066 amplicons, with a minimum of 34 and a
maximum of 41 amplicons per individual (& 38.6). For 10 of the 79 individuals, the first
faecal DNA extracts (3 samples collected in 2007 and 7 samples collected in 2015) did
not yield any amplicons (probably due to inhibitors in faeces), however, amplicons were
successfully obtained from second extracts derived from other samples from the same

individuals in all cases.

After sequencing on Illumina’s MiSeq, we obtained a total of 23,604,930 reads.
Around 95 % of the reads exhibit a Phred score > 29. About 85 % of the reads could be
mapped against the reference genome of Macaca mulatta v8.0.1 with a mean depth of
3,219.81 and a mean mapping quality of 59.02. Detailed sequencing statistics can be
found in Supplementary Tables S1.2 and S1.3.

Variant calling

We compared different variant calling approaches in order to use only those
variants reproduced by multiple pipelines. Using the complete dataset of shared variants
without consideration of any filtering steps (QUAL, QD, MQ, FS, MQRankSum, and
ReadPosRankSum), 70.12 % of the variants called by SAMtools were also found with the
GATK pipeline, whereas only 28.31 % of the variants called by GATK were also found
by SAMtools (Supplementary Figure S1.1). In sum, SAMtools called 230 SNPs, whereas
GATK detected 373 SNPs. In total, 169 SNPs in 21 genes were verified using both
variant calling approaches. 10 out of the 169 SNPs showed homozygosity for the alternate
allele and thus represented simply a difference to the rhesus macaque genome, whereas

159 SNPs were identified as polymorphic sites within the study population. General

52



Study 1

descriptive statistics of the distribution of individuals being homozygous for the reference

or alternate allele, or heterozygous, can be found in Table 2.2.

Using the described filtering steps without consideration of the QUAL scores, the
number of detected variants by GATK decreased to 170 SNPs resulting in 144 SNPs in
20 genes shared by both callers. Using different QUAL scores as further selection steps,
the number of detected polymorphisms changed again. Extracting only those variants
with a QUAL score > 30, GATK still detected 170 SNPs, but SAMtools called only 194
SNPs (Supplementary Figure S1.1). Only 140 SNPs in 20 genes were shared by both
callers. With a QUAL score > 100, the number of variants decreased further to 124 shared
SNPs in 20 genes out of 170 SNPs detected with GATK and 162 SNPs detected with
SAMtools (Supplementary Figure S1.1).

Variant effect prediction

The variants detected by both the SAMtools and the GATK pipeline were used to
predict possible variant effects. For this purpose, we used two applications: VEP and
SnpEff. Comparing the results, almost all variants were classified as the same
consequence type in both applications. The only differences are two counts of ‘5’-UTR
premature start codon gain variant’ found with SnpEff, but not with VEP and 25
additional ‘intergenic variants’ found by SnpEff (Table 2.3). Consequently, the predicted
variant effects show a high similarity between both methods concerning their impact
(Table 2.4).

Using the VEP plugin MaxEntScan, two SNPs were found to be associated with
different entropies at splice sites. These SNPs were located in the serotonin transporter
(SLC6A3) and the neuropeptide Y (NPY) genes and changed entropy from 0.40 to -4.66
and 9.38 to 9.43, respectively. These SNPs were identified as ‘splice_region variant’” and
‘intron_variant’ by VEP and SnpEff. However, not all identified ‘splice region variants’
caused differences in splice site entropy, as predicted by MaxEntScan. An analysis of
linkage disequilibrium using vcftools revealed that 64 SNPs were linked. Linkage r2
values ranged from 0.28 to 1 (& 0.91).
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Table 2.2: General descriptive statisics of the detected SNPs in the investigated population of Assamese

macagues
in percentage in the number of individuals

individuals minimun  maximum  mean star]da_lrd minimun  maximum  mean Sta'?de.lrd

deviation deviation
homozygous for 0.00 98.73 82.60 28.00 0.00 78.00 62.65 22.88
reference allele
heterozygous 0.00 56.96 10.28 15.29 0.00 45.00 7.83 11.82
homozygous for 0.00 100.00 7.12 20.10 0.00 7800  4.28 11.43

alternate allele

Table 2.3: Count and percent of consequence types of SNPs

predicted by VEP and SnpEff

Consequence type VEP SnpEft
Count Percent Count Percent
3_prime_UTR_variant 13 2.36% 13 2.23%
5_pr|me_UTR_.prema.ture_ 0 0% 2 0.34%
start_codon_gain_variant
5 prime_UTR_variant 6 1.09% 6 1.03%
downstream_gene_variant 20 3.62% 20 3.44%
frameshift_variant 0 0.00% 0 0.00%
intergenic_variant 11 1.99% 39 6.70%
intron_variant 260 47.10% 260 44.67%
missense_variant 62 11.23% 62 10.65%
splice_region_variant 19 3.44% 19 3.26%
synonymous_variant 105 19.02% 105 18.04%
upstream_gene_variant 56 10.14% 56 9.62%
total 552 100.00% 582  100.00%

Table 2.4: Count and percent of impact classes of SNPs

predicted by VEP and SnpEff

Consequence type VEP SnpEff
Count Percent Count Percent
moderate 122 22.89% 124 22.03%
low 62 11.63% 62 11.01%
modifier 349 65.48% 377 66.96%
total 533 100% 563 100.00%
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Discussion

Enhancing the approach of behavioural genetics and physiogenetics in wild
animals would extend our knowledge of the factors that contribute to the still not
completely understood variation within and between populations under natural selection
pressures (Brent & Melin, 2014). Behavioural studies often investigate the impacts of
personality, age, sex or external factors such as social environment, group size and
dominance hierarchy to explain inter-individual differences in HPA-axis related traits and
probably misrepresent the amount of variation to be explained by such factors because
they neglect genetic impacts (Baugh et al., 2017; Mell et al., 2016; Seyfarth et al., 2012;
Young et al., 2014a) or focus only on one or two gene variants (Garamszegi et al., 2014;
Kalbitzer et al., 2016; Timm et al., 2015; but see Bergey et al., 2016; Madlon-Kay et al.,
2018; Song et al., 2017). An extended integration of genotype information in wild
populations will facilitate a more comprehensive understanding of the observed
phenotypic variation. For example, variant information on multiple loci can be used to
generate cumulative genetic risk scores to predict individual variation (Belsky & Israel,
2014; Ferguson et al., 2012). Among the best-studied aspects of animal behaviour in the
wild are behavioural and physiological reactions to social and environmental stressors
(Reeder & Kramer, 2005). Behavioural and physiological responses are tightly linked to
the HPA-axis, the main physiological pathway activated in response to stressful stimuli
(Del Rey et al., 2008). Thus, genes coding for the components of the HPA-axis, which act
in concert to maintain homeostatic balance, are important targets for the investigation of

phenotypic variation in stress- and aggression-related traits.

We provide a SNP panel that may serve as a basic tool for future studies
investigating the genetics of stress and aggression in behavioural and ecological studies.
The offered panel and protocol enables field biologists teaming up with a laboratory to
screen entire wild animal populations for multiple highly interesting target regions in a
fast and parallel way. This study demonstrates that polymorphisms at purportedly
functional sites exist in HPA-linked genes in natural populations. Knowing the samples
from individually-recognized individuals, which is usually the case in long-term studies
on wild animal groups, allows to accurately determine population frequencies of SNPs.

Further, this application is transferable to other species. The HPA-axis is conserved
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among vertebrates (Denver, 2009; Schulkin, 2011) and orthologous gene regions can be
found easily for the species of interest e.g. via BLAST (Altschul et al., 1990), PSI-
BLAST (Altschul et al., 1997), BLAT (Kent, 2002), SSEARCH (Smith & Waterman,
1981, biology.wustl.edu/gcg/ssearch.ntml) or HMMER3 (hmmer.org) searches. For
application to other species, we recommend searching for the primer or amplicon
sequences (Supplementary Table S1.1) using the aforementioned software and choosing
the respective sequences to design taxon-specific primers. All subsequent steps can be
carried out as outlined in our protocol. With small PCR product sizes, as in our case,
allelic dropout is a marginal problem, but to further minimize the risk of allelic dropout
we recommend multiple PCRs per sample (Goodrich et al., 2014) or to perform replicates

from different samples of the same individual.

Given that acquired massively parallel sequencing data hold many opportunities
for further in-depth analyses, we provide detailed information on the applied
bioinformatics pipelines. For example, with the help of GATK (McKenna et al., 2010) or
SAMtools (Li et al.,, 2009) variants can be detected and used for subsequent high-
throughput analyses concerning their functionality and possible effects (e.g. VEP,
McLaren et al., 2016 and SnpEff, Cingolani et al., 2012). However, our analyses revealed
that GATK called more variants than SAMtools in all conditions of the different quality
thresholds and emphasize the importance of comparing pipelines and relying on
validated, intersecting sets of SNPs. Further analyses of, e.g. splice site entropy
(MaxEntScan) and linkage disequilibrium (vcftools), help to interpret the effects of

detected polymorphisms and their potential consequences on physiological pathways.

To promote this application for studies on wild populations of non-model
organisms, in which the consideration of genotype is particularly rare, we established our
methods based on faecal samples. Studies on protected, free-ranging animals are often
confined to the non-invasive collection of genetic material. DNA extracts from such low-
quality sources contain only small amounts of host DNA (Perry et al., 2010). The
dominance of exogeneous, non-host, e.g. microbiome or food DNA, rules out a massively
parallel sequencing-application on the pure DNA extracts, without prior amplification or
enrichment of target regions. Sequencing of amplicons with the traditional Sanger method
is time- and cost-intensive, particularly when encountering larger sets of target regions

and individuals (3066 amplicons in this study). Furthermore, when two SNPs are found in
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one amplicon, the haplotype structure remains unknown. When applying the classical
Sanger sequencing approach, elucidating haplotypes requires additional working steps,
such as cloning. Here we have shown that multiple target regions can be easily covered
with massively parallel amplicon sequencing from faecal DNA of larger numbers of
individuals. Alternatively, target regions could be captured using synthesized or self-
made capture probes (Maricic et al., 2010; Snyder-Mackler et al., 2016a). While such
methods may reach better sequencing uniformity, they are less target-specific and exhibit
lower average coverage than amplicon-based technologies (Samorodnitsky et al., 2015).
However, such methods could be applied to calculate additional background population
structure (Snyder-Mackler et al., 2016a). Another important aspect, especially for studies
on wild populations that are often limited to low-quality DNA samples, is that amplicon-
based massively parallel sequencing methods allow processing of low-input DNA
samples (Samorodnitsky et al., 2015). Further, due to the large amount of sequence reads
produced, the regions of interest (amplicons) exhibit high coverage reducing the detection
of false positive variants. A caveat of the study is that it is still ultimately a bottom-up
approach needing a priori information to select target regions. As technology will
improve in the future, top-down approaches will most likely also become an effective and
economical tool for low-quality samples making more data available. These top-down
approaches could be applied to generate haplotype data for a multitude of loci across the
genome in a fast and parallel way, to calculate relatedness and include kinship relations in
behavioural genetics approaches as well as to identify conserved genome regions or gene

segments with high mutation rates in the investigated populations.

Numerous field studies have established links between non-invasive measures of
HPA-axis activity and the behaviour of animals. Glucocorticoid metabolite levels, the end
products of the HPA-axis, increase during reproductive challenges (Ostner et al., 20083,
2008b), with increasing aggression given or received (Ostner et al., 2008a; Wittig et al.,
2015) and are often related to social status (Goymann et al., 2004). Mostly lab-based
studies have established links between HPA-axis activity and genetic variation at
individual loci. For example, a mu-opioid receptor polymorphism is associated with
cortisol and aggressive threat scores (Miller et al., 2004) and variation in the serotonin
transporter gene is associated with increased HPA-axis activity (Barr et al., 2004) in
captive primates. Progress is hampered by a lack of 1) integration of both research

streams to link genetic variation to HPA-axis activity and behaviour, and 2) studies
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screening multiple loci involved in HPA-axis regulation at the same time. We propose
that our panel can serve as a basis for general behavioural studies aiming to extend their
study design on a molecular level and step into the field of behavioural genetics. The
simultaneous investigation of genes and behaviour will help to achieve a more

comprehensive understanding of individual animal characteristics.
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Abstract

The COMT Val**®Met polymorphism is one of the most widely studied genetic
polymorphisms in humans implicated in aggression and the moderation of stressful life
event effects. We screened a wild primate population for polymorphisms at the COMT
Val™®Met site and phenotyped them for aggression to test whether the human
polymorphism exists and is associated with variation in aggressive behavior. Subjects
were all adults from four study groups (37 males, 40 females) of Assamese macaques
(Macaca assamensis) in their natural habitat (Phu Khieo Wildlife Sanctuary, Thailand).
We collected focal animal behavioral data (27 males, 36 females, 5 964 focal hours) and
fecal samples for non-invasive DNA analysis. We identified the human COMT Val'*®Met
polymorphism (14 Met/Met, 41 Val/Met, 22 Val/Val). Preliminary results suggest that
COMT genotype and dominance rank interact to influence aggression rates. Aggression
rates increased with rank in Val/Val, but decreased in Met/Met and Val/Met individuals,
with no significant main effect of COMT genotype on aggression. Further support for the
interaction effect comes from time series analyses revealing that when changing from
lower to hig"5her rank position Val/Val individuals decreased, whereas Met/Met
individuals increased their aggression rate. Contradicting the interpretation of earlier
studies, we show that the widely studied Val*>*®Met polymorphism in COMT is not unique
to humans and yields similar behavioral phenotypes in a non-human primate. This study
represents an important step towards understanding individual variation in aggression in a
wild primate population and may inform human behavioral geneticists about the

evolutionary roots of inter-individual variation in aggression.
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Introduction

Catechol-O-methyltransferase (COMT) is a key enzyme in the catecholamine
catabolism (Ménnisté & Kaakkola, 1999). It inactivates neurotransmitters in the brain,
including the catecholamines dopamine, adrenaline and noradrenaline (Axelrod &
Tomchick, 1958). The COMT enzyme is encoded by the COMT gene, which is 27.22 kb
in length and located on chromosome 22g11.2 in humans (Grossman et al., 1992). Since
its characterization in 1958 (Axelrod & Tomchick, 1958), COMT has been under
extensive investigation and has become one of the most studied candidate genes
(Dickinson & Elvevag, 2009), especially in human studies on stress and aggression
(Qayyum et al., 2015).

COMT is expressed throughout the brain (Hong et al., 1998) and occupies a
significant regulatory role particularly in the prefrontal cortex (PFC). COMT is not the
only protein linked to dopamine clearance, as dopamine transporters remove dopamine
from the synaptic cleft as well. However, due to the limited number of dopamine
transporters present in the PFC, COMT accounts for more than 60 % of dopamine
degradation in this brain region (Kdenméki et al., 2010; Karoum et al., 1994; Matsumoto
et al., 2003; Sesack et al., 1998; Yavich et al., 2007).

Variation in catecholamine levels have been associated with aggressive behavior
(Coccaro et al., 1991; Pucitowski et al., 1986; Ratey & Gordon, 1992). Dopamine levels
increase shortly before, during and after aggressive interactions in rats (Tidey & Miczek,
1996) and COMT-knockout mice exhibit increased levels of aggressive behavior (Gogos
et al., 1998). Catecholamine agonists elevate aggressive behavior (Volavka, 2002) and
specific dopaminergic antagonists are the most frequently applied pharmacotherapy in
human aggression prevention (de Almeida et al., 2005; Gualtieri & Schroeder, 1990;
McDougle et al., 1998; Yudofsky et al., 1984). COMT has been established as a
promising candidate gene for the regulation of neural processes leading to aggressive
behavior (Qayyum et al., 2015; Volavka et al., 2004; but see Vassos et al., 2014).

Within the COMT gene, one functional polymorphism has been repeatedly
associated with aggressive phenotypes in particular — the COMT Val**®*Met

polymorphism (dbSNP: rs4680; Qayyum et al., 2015). Val**®Met is a non-synonymous
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single nucleotide polymorphism (SNP), located in exon 4 of the COMT gene. Due to a G
to A transition, the amino acid valine (Val) is substituted by methionine (Met) at codon
158. This SNP influences the enzyme’s catabolizing function of synaptic dopamine
(Tunbridge, 2010; Witte & Floel, 2012). In contrast to the low-activity, thermolabile Met
variant, the Val variant is considered to be the gene variant with higher enzymatic activity
and heat-stability (Lotta et al., 1995). Carriers of the Met allele suffer from a ~40 %
reduced enzyme activity at physiological body temperature of 37 °C (Chen et al., 2004).
In turn, the Val genotype is associated with higher dopamine degradation and presumably

lower dopamine levels in the PFC.

The effects of the COMT Val'®®Met SNP have been studied extensively in
conjunction with environmental variables. For example the influence of Val*™>®Met on the
severity of aggression in children (Hygen et al., 2015), antisocial behavior in attention-
deficit hyperactivity disorder (ADHD, Thapar et al., 2005), impulsive aggression in
females (Wagner et al., 2010), adolescent aggressive behavioral problems (Brennan et al.,
2011), behavioral and emotional problems in children (Thompson et al., 2012),
depressive episodes (Hosang et al., 2017), and increased reactivity to stress as part of
vulnerability for psychosis (Stefanis et al., 2007; van Winkel et al., 2008) is moderated by
environmental risk factors such as prenatal stress, severe and stressful life events as well

as by environmental protective factors such as parental warmth.

It should be noted that studies on the influence of the COMT Val'*®Met
polymorphism on human aggression have mostly used various indirect measures of
aggression. Common methods are aggression score questionnaires, such as the Overt
Aggression Scale (OAS, Yudofsky et al., 1986, e.g. Han et al., 2004), the Risk
Assessment for Dangerousness (RAD, e.g. Strous et al., 1997), or the Buss-Durkee
Hostility Inventory (BDHI, Buss & Durkee, 1957, e.g. Wagner et al., 2010). Difficulties
with comparing and interpreting these results as well as in defining and measuring
aggression have been pointed out (Qayyum et al., 2015). Issues in human studies arise
from not differentiating between antisocial and aggressive behavior, questionnaire
heterogeneity and the use of self-reported ratings instead of data on the actual expression

of aggressive behavior (Qayyum et al., 2015).

In behavioral studies on non-human primates, aggression can be quantified

reliably via direct observation of aggressive interactions. The calculation of aggression

62



Study 2

rates enables a direct quantitative comparison between individuals and species.
Aggression is an integral part of primate social behavior (de Waal, 1992). Dyadic and
polyadic aggression serves to attain and maintain high social status (Chapais, 1995;
Schilke et al., 2010) and social status in turn affects health (Habig & Archie, 2015;
Sapolsky, 2005; Snyder-Mackler et al., 2016b) and Darwinian fitness (Majolo et al.,
2012). As a consequence, aggression is typically directed down the dominance hierarchy
(Ostner et al., 2008a; Rowell, 1971; Schino et al., 2005; Silk, 1982) and dominance also
affects patterning of affiliative behavior among group members (Schino, 2001; Seyfarth,
1977; Silk et al., 2006a, 2006b). Thus, any analysis of the drivers of individual aggressive
behavior in primates needs to consider that dominance rank and aggression may be tightly
linked.

While COMT Val**®Met has been studied extensively in humans, it is currently
unknown whether this polymorphism exists in non-human primates and whether or not it
is associated with similar behavioral phenotypes. In this study, we aimed at extending
previous findings on the role of the COMT gene and aggression by (1) identifying
existing COMT polymorphisms at the Val'®®Met site in a non-human primate, and (2)
assessing the effect of genotype on aggressive behavior using direct measures of
aggression rates. As the effects of COMT Val**®Met have been described as moderating
and aggression and dominance rank are interconnected in non-human primate societies,
we assessed a possible moderating effect of the polymorphism on the relationship
between dominance rank and rates of overt aggression. We studied wild Assamese
macaques (Macaca assamensis) living in large multimale-multifemale groups and
expressing a strictly linear steep dominance hierarchy (Bernstein & Cooper, 1999;
Macdonald et al., 2013; Ostner et al., 2008a, 2011). Aggressive social interactions are
ubiquitous and aggression frequencies peak during the mating season (Ostner et al.,
2008a, 2011).
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Materials and methods

Ethical statement

Behavioral data and fecal samples were collected non-invasively. Our research
adhered to the protocols approved by the Animal Welfare Body of the German Primate
Center (Deutsches Primatenzentrum, DPZ) in Germany and the American Society of
Primatologists (ASP) Principles for the ethical treatment of non-human primates
(https://www.asp.org/society/resolutions/Ethical TreatmentOfNonHumanPrimates.cfm).
The National Research Council of Thailand (NRCT) and the Department of National
Parks, Wildlife and Plant Conservation (DNP) authorized (permit numbers: 0004.3/3618,
0002.3/2647, 0002/17, 0002/626, 0002/2424) the data collection at the study site in
Thailand and the export of samples based on a benefit sharing agreement.

Study site and population

This study was conducted at Phu Khieo Wildlife Sanctuary (PKWS; 16°5"-35°N,
101°20°-55°E, 300-1300 m above sea level) in the province of Chaiyaphum, north-eastern
Thailand (Schiilke et al., 2011). The sanctuary is part of the 6 500 km? protected Western
Isaan Forest Complex, comprising eight protected areas (Grassman et al., 2005). The
study area includes dry and hill evergreen forest, dry dipterocarp forest, bamboo patches
(Borries et al., 2002) and is inhabited by a diverse community of large mammals and

predators suggesting low levels of habitat disturbance.

Our study population consisted of four fully habituated wild groups of Assamese
macaques ranging within their natural habitat in PKWS. The macaques have been
observed in a long-term field project since 2005 and all individuals were identified
reliably. Here, we focused on the adult individuals of the groups. Males are considered
adult when they have fully developed testes, adult male body length, long canines, are
involved in reproduction and outrank all adult females (Ostner et al., 2008a). Females
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were classified as adult from the beginning of the mating season they had first conceived

in, based on the observation of their first birth.

COMT genotyping

We collected fecal samples from all individuals that were adult at the beginning of
March 2015 (27 males, 36 females). For the analysis of genotype frequency, we included
samples collected since 2006 from adult males (n=10) and females (n=4) that had died or
emigrated. About 5 g of feces were removed immediately after defecation from the
surface of the sample from an identified individual and transferred into 50 ml falcon tubes
(62.559.001, Sarstedt, Nimbrecht, North Rhine-Westphalia, Germany) containing 30 ml
of 97 % ethanol (Nsubuga et al., 2004). Samples were handled using disposable gloves
and spoons. We applied the two-step storage procedure, which included the storage of
fecal samples in alcohol for 24 to 36 hours (Nsubuga et al., 2004). Ethanol was then
poured off and samples transferred into 50 ml falcon tubes containing silica (112926-00-
2, Intereducation Supplies Co., Ltd., Bangkok, Thailand, Roeder et al., 2004). Samples
were stored at room temperature in the dark until DNA extraction was performed. DNA
extraction was carried out with the First-DNA all-tissue Kit (D1002000, GEN-IAL
GmbH, Troisdorf, North Rhine-Westphalia, Germany), following the manufacturers
protocol for DNA extraction from feces. DNA concentration was measured with
NanoDrop (Spectrophotometer ND-1000, PEQLAB Biotechnologie GmbH, Erlangen,

Bavaria, Germany) and extracts diluted to a concentration of 100 ng/ul.

The target region was amplified with 1 U BioThermTag DNA Polymerase (GC-
002-5000, Genecraft, Cologne, North Rhine-Westphalia, Germany) in a 30 pul PCR mix (1
x reaction buffer, 0.16 mM for each ANTP, 0.33 uM for each primer, and 18 ng BSA, 100
ng DNA). PCR procedure was 94°C for 2 minutes, 60x (94°C for 30 seconds, 54°C for 30
seconds, 72°C for 30 seconds; Labcycler, Sensoquest, Gottingen, Lower Saxony,
Germany) including the following oligonucleotide primers: forward: 5°-
TACTCAGCTGTGCGCATG-3’, reverse: 5’-AATGAACGTGGTGTGAACC-3’. As
genome data were not available for Assamese macaques, we designed primers according

to the rhesus macaque (Macaca mulatta) genome sequence. Sanger sequencing (ABI
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3130xI genetic analyzer, Big Dye Cycle Sequencing Kit, Thermo Fisher Scientific,
Waltham, Massachusetts, USA) was applied to two samples to prove primer-specificity.
All amplicons were submitted to Illumina next-generation sequencing (NGS; MiSeq
paired-end 150 bp). The laboratory protocol included the preparation of sequencing
libraries following the methods described in Rohland et al. (2015) without uracil-DNA-
glycosylase treatment based on Meyer & Kircher (2010) and Kircher et al. (2012).

Behavioral observations

Assamese macaques are seasonal breeders, with a distinct non-mating season from
March to September and mating season from October to February (Flrtbauer et al., 2010).
All individuals that had reached the adult age at the beginning of this study in March
2015 were included in behavioral observations. We collected data from all adult males
(n=27) from March 1, 2015 to February 29, 2016 and all adult females (n=36) from
March 1, 2015 to February 28, 2017, thus including two entire non-mating and the

consecutive mating seasons.

The study groups were followed from dawn to dusk and from sleep tree to sleep
tree. During 40 minutes focal animal observations all agonistic, affiliative and sexual
interactions were recorded continuously (Martin & Bateson, 1993) to measure individual
rates of interaction. In addition, we collected ad libitum data on agonistic interactions for
the establishment of the dominance hierarchy. An effort was made to balance focal
animal protocols across individuals and time of day (mean + SD 98 + 24 hours/male, 95 £
27 hours/female, 5 964 hours total). Between the non-mating and the mating season 2015
(September 11 to October 20) five adult males changed groups. Therefore, this time

period was excluded from the male behavioral data analyses outlined below.
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Data analyses

Genetic analyses

The acquired Illumina reads were quality filtered using Trimmomatic v0.3668 and
mapped (BWA MEM v0.7.1269) against the genome of Macaca mulatta v8. The
polymorphism was identified by two different variant calling approaches (GATK,
McKenna et al., 2010, and SAMtools, Li et al., 2009). Protein structure analysis was
carried out with the freely available online tool PCI-Based Protein Secondary Structure
Site Prediction Server (PCI-SS, http://bioinf.sce.carleton.ca/PCISS/start.php, Green et al.,
2009; Green & Korenberg, 2006) using the protein sequence of Homo sapiens (Accession
Number: CAG30308.1) and Macaca mulatta (Accession number: NP_001247941.1). As
genomic data were not available for our study species, for comparative analyses on both
the DNA and the protein level, information available for the closely related rhesus

macaque was used.

Aggression rate

From focal animal protocols we calculated an hourly aggression rate for each
animal during the non-mating and the mating season. For females, data from two non-
mating and two mating seasons were combined for analysis. In our study population the
aggression rate, measured as being involved in a dyadic conflict and expressing
aggression (i.e. open-mouth, growl, stare, headbob, point and repeated growl/yell) per
hour, increases from the non-mating to the mating season (see Figure S2.1 and Ostner et
al., 2008a). For females, we subtracted the aggression directed towards the infants of the
respective year from their total aggression, because increased restraint of the infants by

mothers might be misinterpreted as increased aggression (Berghanel et al., 2016).
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Hierarchy

To calculate the dominance hierarchy, we used all decided dyadic agonistic
interactions from the continuous and the ad libitum data, where clear submissive behavior
(i.e. silent-bared teeth display, make room and unprovoked give ground) was observed
(e.g. Haunhorst et al., 2017). We calculated separate hierarchies for females and males,
and for males during the non-mating and the mating season (due to males changing
group) with the package DomiCalc (Schmid & de Vries, 2013). We used ‘Combil’
ordinal ranks, which represent a hierarchical combination of two DomiCalc indices (PD
and Dom-Sub) and then standardized rank within groups to scale between -1 (lowest
ranking) and 1 (highest ranking) to allow for comparisons between differently sized

groups.

Aggression and rank change

During our study period 22 males changed their rank positions between the non-
mating and the mating season. To assess within-individual effects of the genotype—
dominance rank interaction on aggression rate, we subtracted the aggression rate during
the period of being lower-ranking from that during the period of being higher-ranking for

each individual.

Statistics

Statistical analyses were conducted using R 3.1.2 (The R Foundation for
Statistical Computing, Vienna, Austria, http://www.r-project.org). To investigate the
impact of COMT genotype and rank on aggression, we ran a general linear model
(aggression rate-model). To achieve normal distribution of the response aggression rate, it

was square-root transformed. The aggression rate-model contained a two-way interaction
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between COMT genotype and rank as predictors. We included sex and season as control
variables, because males generally express higher levels of aggression and aggression
increases during the mating season in this and other macaque species (e.g. Berghdnel et
al., 2011; Eaton et al., 1981; Wilson & Boelkins, 1970). Group ID was included as a
control factor and animal ID as a random factor. For this model, we excluded four males
from whom very little behavioral data were available: two males who died due to
predation in May 2015 and two males who only stayed in the very periphery of the group
for approximately one month.

To investigate how aggression changes with rank in different COMT genotypes,
we ran a multiple linear regression model (rank change-model) with the change in
aggression rate (rate at high minus rate at low rank) as a response variable. The rank
change-model included the seasonal change (non-mating to mating season and vice versa)
as a control variable, because aggression is generally higher during the mating season (see

above). COMT genotype was included as a predictor and group ID as a control factor.

Both models were calculated with the package ‘ImerTest’ (Bates et al., 2015;
Kuznetsova et al., 2017) with alpha levels set to 0.05. Various model diagnostics were
applied to confirm model validity: visual inspection of distribution of residuals, qgplots,
residuals plotted against fitted values, assessing aggression rate-model stability using the
function ‘glmm stability’ written by Roger Mundry (MPI Evolutionary Anthropology,
Leipzig, Germany), assessing leverage and dfbetas for single samples and levels of the
random factor animal ID using the package ‘influence. ME’ (Niewenhuis et al., 2013), and
variance inflation factors for the aggression rate-model using the package ‘car’ (FOX &
Weisberg, 2011). None of the diagnostics suggested a violation of the model assumptions.
A comparison of the full models to the null models (excluding rank and COMT genotype
in the aggression rate-model and COMT genotype in the rank change-model) using a
likelihood ratio test with the R function ‘anova’, setting the argument to ‘Chisq’, revealed
a trend in significance (aggression rate-model p=0.082, rank change-model p=0.084).
This might be the case, because the control variables sex and season included in the null

model have a very high impact on aggression rates.
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Results

COMT genotype

We found the adult population of Assamese macaques at PKWS to exhibit the
same COMT Val**®Met polymorphism that is found in humans. DNA sequences were
submitted to the NCBI GenBank with the accession numbers MF356536 and MF356537
as well as to the Sequence Read Archive (SRA, SRP116685). In our sample of 77 adults
that resided in the study groups since 2005 the genotype frequency was 18.2 %
homozygous Met/Met, 53.2 % heterozygous Val/Met and 28.6 % homozygous Val/Val
(Table 3.1).

Protein structure was analyzed with PCI-SS using the protein sequence of Homo
sapiens and Macaca mulatta. Structures of human and rhesus macaque COMT are
similar. The human COMT protein is encoded by 271 amino acids and the COMT
Val®™®Met polymorphism is, as the name depicts, located at codon 158. The rhesus
macaque COMT protein is encoded by 270 amino acids and the identified COMT
polymorphism in the homologous region is located at codon 157. Thus, we refer to the
polymorphism detected in our macaque species, as the COMT Val*™®’Met polymorphism.
Both in humans and macaques the polymorphism lies within the random coil structure of

the protein.

Table 3.1: Genotype frequency of the COMT Val*®Met
polymorphism in wild Assamese macaques at PKWS

Genotype All Males Females
n % n % n %
Met/Met 14 18.2 7 189 7 175
Val/Met 41 532 21 56.8 20 50.0
Val/Val 22 286 9 243 13 325
Total 77 100 37 100 40 100
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Aggression rate

The mean aggression rate of males was 0.30 £ 0.14 acts per hour in the non-
mating season and 0.55 + 0.22 in the mating season (Wilcoxon signed-rank test: n=22,
p<0.001, z=-3.588; Figure S2.1). The mean aggression rate of females was much lower at
0.08 + 0.06 acts per hour in the non-mating season and 0.09 = 0.07 in the mating season
(Wilcoxon signed-rank test: n=36, p=0.212, z=-0.803).

The aggression rate-model revealed a significant influence of sex, with males
having higher aggression levels than females (t=13.15, p<0.001), and a significant
negative influence of the non-mating season compared to the mating season (t=-3.19,
p=0.002) on aggression rate (Table 3.2). The interaction term of COMT genotype and
rank significantly influenced aggression rates (Met/Met-Val/Val: t=-2.02, p=0.046,
Val/Met-Val/Val: t=-2.046, p=0.043, Table 3.2 and 3.3). Plotting the partial residuals of
the model revealed that aggression rates increased with dominance rank in Val/Val
individuals, but decreased in Met/Met and Val/Met (Figure 3.1). This result is supported
by running the same model, but exchanging the predictor of ‘COMT genotype’ with the
dichotomous variable ‘COMT carrier Met’ (R?=0.665, comparison to null model p=0.026,
see Table S2.1 and Figure S2.2). Individuals carrying at least one Met-allele increased
their aggression rate with increasing rank, whereas non-Met-carriers (= homozygous
Val/Val) decreased their aggression rate with increasing rank (t=2.397, p=0.018, for this
model please see Table S2.1 and Figure S2.2). The aggression rate-model explained 66 %

of the variation in aggression rates.

Table 3.2: Aggression rate-model with COMT genotype Met/Met set as reference

Fixed effect Estimate  Std. Error t-value p-value
Intercept 0.347 0.042 8.259 <0.001
COMT genotype Met/Val -0.017 0.036 -0.478 0.633
COMT genotype Val/Val -0.005 0.039 -0.127 0.899
Rank 0.082 0.046 1.786 0.077
Sex: male 0.353 0.027 13.147 <0.001
Season: non-mating -0.080 0.025 -3.190 0.002
COMT genotype Met/Val*rank 0.026 0.055 -0.471 0.638
COMT genotype Val/Val*rank -0.117 0.058 -2.017 0.046

n=117 data points for 59 individuals (23 males and 36 females) and two seasons
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Figure 3.1: Partial residuals of the response variable aggression rate per hour for the interaction term of
COMT genotype and rank in the aggression rate-model.

Table 3.3: Aggression rate-model releveled with COMT genotype Val/Met set as reference

Fixed effect Estimate Std. Error t-value p-value
Intercept 0.330 0.031 10.635 <0.001
COMT genotype Met/Met 0.017 0.036 0.478 0.633
COMT genotype Val/Val 0.012 0.029 0.412 0.681
Rank 0.056 0.028 1.999 0.048
Sex: male 0.353 0.027 13.147 <0.001
Season: non-mating -0.080 0.025 -3.190 0.002
COMT genotype Met/Met*rank 0.026 0.055 0.471 0.638
COMT genotype Val/Val*rank -0.091 0.044 -2.046 0.043

n=117 data points for 59 individuals (23 males and 36 females) and two seasons

Aggression and rank change

The mating season had a strong influence on changes in aggression rate in males
(t=4.065, p=0.001, Table 3.4). The model revealed that individuals with the COMT
genotype Val/Val exhibited decreased aggression rates when changing from a lower to a
higher rank position compared to Met/Met individuals (Met/Met-Val/Val: t=-2.204,

p=0.044, Table 3.4 and Figure 3.2) when controlling for the seasonal effect. On average,
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Val/Val individuals decreased their aggression rate by -0.15 (-1.88 %), whereas Met/Met
individuals increased their aggression rate by 0.08 (64.74 %) when changing from a lower
to a higher rank position. No significant difference between the heterozygous Val/Met
individuals and Val/Val and Met/Met individuals was observed (Val/Met-Met/Met:
t=1.554, p=0.141, Val/Met-Val/Val: t=-0.883, p=0.391, see Table S2.3). A comparison
between individuals of Met/Met and Val/Val genotypes revealed that the expected value
of the response variable ‘change in aggression rate per hour’ varies by -0.38 when
keeping all other control variables constant. The multiple R? of the rank change-model
was 0.611.
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Figure 3.2: Partial residuals of change in aggression rate associated with an increase in dominance rank
compared between COMT genotypes in the rank change-model. Coefficients are depicted as a horizontal
line for each genotype with Met/Met being the reference.

Table 3.4: Rank change-model of aggression (within individuals changing from a lower to
a higher rank position) with COMT genotype Met/Met set as reference

Effect Estimate  Std. Error t-value p-value
Intercept -0.240 0.139 -1.725 0.105
COMT genotype Met/Val -0.246 0.158 -1.554 0.141
COMT genotype Val/Val -0.378 0.171 -2.204 0.044
Season change: non-mating to mating 0.496 0.122 4.065 0.001
n=22 males
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Discussion

The COMT Val®™®®Met polymorphism is one of the most studied functional
candidate polymorphisms in human behavioral genetics. We identified this SNP, which
had not been known to exist in other species besides humans, in a wild macaque
population. Studies on the human COMT Val**®Met polymorphism cite Palmatier et al.
(1999) for showing that the COMT Val**®Met polymorphism does not exist in non-human
primates and that the high activity Val-allele, and not the low activity Met-allele,
represents the ancestral state. Provided that the allelic frequency of COMT Val**®Met has
a wide range (0.01 to 0.62) in human populations, sample sizes for non-human primates
(1-2 individuals of 4 species in Palmatier et al., 1999) may have been too low to warrant
these conclusions. From publically available DNA sequences85 today it is known that
both the Val and the Met allele occur in one or the other macaque species (M. mulatta, M.
fuscata: Met, M. fascicularis, M. nemestrina: Val, Pfluger et al., 2016). This study is the
first to identify this polymorphism in a non-human primate species and to link the

genotypic variation to behavior.

Our results show that the interaction of the COMT Val**’Met polymorphism and
dominance rank is associated with aggression in Assamese macaques. Most human
studies revealed Met-individuals as the ‘worrier’ type, compared to the ‘warrior’ type of
Val-individuals (Goldman et al., 2005; Stein et al., 2006). The warrior-worrier model is
an explanation for the maintenance of both COMT alleles due to counterbalancing effects
in stress resilience, anxiety and cognition (Goldman et al., 2005). The Met-allele
represents the low activity variant of the COMT protein (Chen et al., 2004; Lotta et al.,
1995) which presumably leads to a reduced clearance of catecholamines, such as
dopamine, in the brain. Increased dopamine levels are generally associated with increased

levels of aggression (e.g. Tidey & Miczek, 1996).

We did not find a direct link between the COMT genotype and aggression. Rather,
aggression rates were predicted by an interaction of COMT genotype and a salient social
condition in these primates — their dominance rank position. Met/Met- and Val/Met-
individuals exhibited a positive relationship between aggression rate and dominance rank.

The higher-ranking individuals were, the more aggression they expressed. Val/Val-
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individuals had an inverse relationship between rank and aggression rates; the higher-
ranking Val/Val individuals were, the less aggression they expressed. After we detected
this overall genotype—dominance rank interaction effect in our first model, we
investigated how individuals with different genotypes altered their aggression rate when
changing dominance rank position in a within-individual analysis. In the subset of
individuals that changed their dominance rank during our study period, Val/Val-
individuals indeed had lower aggression rates in a higher compared to a lower rank
position. We conclude that the COMT Val®®'Met polymorphism moderates the link
between dominance rank and aggression. Future studies are needed to replicate these
results with much larger sample sizes in which small effects of single loci can be detected
with higher certainty. The size of the interaction effect on aggression rate is small
compared to the main effects of sex and mating season. This is important regarding the
effects of single loci on behavior, compared to other environmental and sex effects. The
simultaneous assessment of multiple loci might explain a larger proportion of the

observed phenotypic variation.

In macaque societies dominance rank plays a pivotal role in everyday life and
affects how individuals interact with their social environment (e.g. Sueur & Petit, 2008;
Thierry, 2000; Varley & Symmes, 1966). Dominance rank may restrict or open up certain
possibilities for how to interact with others and thus represents a salient social condition
for macaques. The dominance hierarchy of Assamese macaque is steep and linear
(Bernstein & Cooper, 1999; Macdonald et al., 2013; Ostner et al., 2008a, 2011) and rank
is acquired via aggressive coalitions in males (Schulke et al., 2010) and matrilinear
support in females. Higher-ranking individuals occupy more central positions within the
group and have privileged access to food resources and mating partners (e.g. Heesen et
al., 2014, 2015; Ostner et al., 2011; Sukmak et al. 2014a). Levels of counter-aggression
are low (Macdonald et al., 2013) and overall, aggression is directed down the hierarchy
(Ostner et al. 2008a). The observation that depending on genotype some low ranking
adults express higher aggression rates than some higher ranking ones may be explained

by the redirection of aggression to immatures.

That aggression rates vary with dominance rank dependent on the genotype is
suggestive of an underlying gene—environment interaction, with different social

environments causing different behavioral outcomes in individuals with differing
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genotypes. In studies with humans, genotypic effects on aggression have also been
investigated as moderating factors of life circumstances (e.g. Conway et al., 2012;
Gallardo-Pujol et al., 2013; Reif et al., 2007; Simons et al., 2011; Wagner et al., 2010). It
has been previously suggested that the relationship between COMT Val*®Met and
aggression may not be straightforward and the consideration of gene—environment
interactions could help to elucidate variation in aggression (Qayyum et al., 2015).
Particularly, the interplay of social environment, genes, and aggression in humans has
been emphasized with regard to the ‘differential susceptibility perspective’ (Belsky, 1997;
Belsky et al., 2007; Belsky & Pluess, 2009a, 2009b; Simons et al., 2011). In support of
this perspective the SNP moderates the effect between serious life events and aggression
as well as parenting and alcohol use, with slopes of the different genotypes crossing over
(Hygen et al., 2015; Laucht et al., 2012). Similarly, the regression lines crossover in our
results on non-human primates, with the slopes reflecting contrastive effects. Both COMT
alleles might act as a risk factor or advantage in different environmental conditions
(Goldman et al., 2005; Weeland et al., 2015).

Additional evidence for the functional similarity of COMT in humans and non-
human primates comes from a study targeting the region surrounding the COMT
Val**®Met polymorphism in a population of Japanese macaques (Macaca fuscata). These
macaques do not carry the candidate SNP, but a polymorphic putative splice site forming
three haplotypes (HT1, HT2, HT3), which are associated with physiological stress levels
during the mating season (Pflliger et al., 2016). Similar associations between COMT
variants and physiological stress have been found in humans (Armbruster et al., 2012;
Bouma et al., 2012; Jabbi et al., 2007; Walder et al., 2010). Pfliger and colleagues (2016)
found no association between different COMT haplotypes and aggression in Japanese
macaques. Behavioral measures of aggression differ between the two studies, as in the
Pfluger et al. (2016) study aggression data were collected ad libitum, were restricted to
interactions among adult males during the mating season, and were expressed as the
proportion of initiated aggression relative to other male-male behavior. Thus, it remains
to be tested to what extent COMT Val'®’Met and the other three detected haplotypes lead

to similar effects in non-human primates.

Among others, the COMT gene is conserved in humans, non-human primates,

dogs, cows, rats, chicken and frogs (HomoloGene: 30982, NCBI Resource Coordinators,
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2017). The mechanism leading to a ~40% reduced enzyme activity of the COMT Met-
variant is located on the surface of the COMT protein (Vidgren et al., 1994; Zubieta et al.,
2001). Enzyme stability is higher if the protein surface is more hydrophobic (Liu &
Wang, 2003; Machius et al., 2003). Thus, it has been proposed that due to the higher
hydrophoby of Val compared to Met, it is more stable (Chen et al., 2004). Due to the high
conservation of COMT between macaques and humans, it is very likely that the same
mechanism applies also in this species. Future studies have to validate this functionality,
because our study on a wild population in a protected area had to be strictly non-invasive.

Genetic factors explain up to 50 % of variation in aggressive behavior in humans
(Brendgen et al., 2006; Miles & Carey, 1997; Rhee & Waldman, 2002). COMT is one of
the most studied candidate genes and has been extensively studied regarding aggression,
yet other genes are also involved in aggressive behavior, e.g. monoamine oxidase A
(MAOA), which is involved in catecholamine degradation, and serotonin pathway genes
(e.g. Bouma et al., 2012; Buckholtz & Meyer-Lindenberg, 2008; Cases et al., 1995;
Holmes et al., 2002; Lesch & Merschdorf, 2000; Zammit et al., 2004). Future studies
might also consider the simultaneous investigation of more than one candidate gene. This
approach combined with an increased consideration of wild animal populations for the
investigation of behavioral genetics will help to further elucidate mechanisms
determining individual phenotypic variation. A crucial step is to include natural behavior
measurements as well as environmental mediators to understand the implications of gene

variants involved in aggression for individuals living in social groups.
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Abstract

Different aspects of the social environment are associated with variation in health
and fitness in animals and humans. Integrating adverse and beneficial effects of sociality,
the social buffering hypothesis proposes that strong affiliative social bonds ameliorate the
negative effects of environmental disturbances like overt conspecific aggression by
attenuating the activity of the hypothalamic-pituitary-adrenal (HPA) axis. Social
buffering effects are widespread across animals but the sources of within species variation
in efficacy remain understudied. We assessed the modulating effect of natural genetic
variation by combining behavioral (2511 focal hours), endocrine (366 urine samples) and
genetic data (46 target regions in 21 HPA axis genes) from wild male Assamese
macaques. A genetic risk score, calculated as the proportion of missense alleles an
individual carried, was positively associated with average immunoreactive urinary
cortisol levels, negatively with individual risk-taking behavior, and positively with social
bond strength and bond maintenance behavior. Crucially, genetic risk modulated the
social buffering effect on cortisol levels. The fact that social buffering cannot be put into
effect at high genetic risk despite the high levels of affiliation observed among high risk
individuals, suggests either that the salubrious effects of social bonds exceed the tight
regulation of the HPA axis or that activation of the HPA axis is the trigger for support
seeking behavior. Our study highlights that the physiological effects of affiliation vary
between individuals, which may also affect the efficacy of social contact as a medical

intervention.
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Introduction

Over the past decades evidence has mounted for social variables proximately
affecting  physiological processes including neuroendocrine, endocrine and
immunological responses (Balasubramaniam et al., 2016; Cohen et al., 2007; Stephens &
Wallen, 2013; Uchino, 2006). Consequently, altered health outcomes ultimately affect
longevity and reproduction which determine evolutionary fitness (Hawkley & Capitanio,
2015; Holt-Lunstad et al., 2010; Ostner & Schiilke, 2018). One well-studied phenomenon
is the social buffering effect whereby the presence of a close social partner attenuates
stress responses of the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic
nervous system (Cohen & Wills, 1985). Despite its wide distribution across animal taxa
and humans (Edgar et al., 2015; Hennessy et al., 2009; Hostinar et al., 2014; Kiyokawa &
Hennessy, 2018), social buffering is not ubiquitous among or within species. Whether a
stress response can be attenuated will depend on the adaptive value of a particular type of
partner when facing a particular type and intensity of stressor (Kiyokawa & Hennessy,
2018). Yet, even field studies under ecologically valid conditions with tangible partner
value leave unexplained a fair part of the variance in individual stress responses (Seyfarth
et al., 2012; Wittig et al., 2016; Young et al., 2014a). Building on previous functional
genetic work, we explore genetic variation of the HPA axis to explain more fully the
individual variation in social buffering effects using wild male Assamese macaques

(Macaca assamensis) as a model.

In wild Assamese and Barbary macaques (M. sylvanus), the strength of dyadic
male social bonds predicts coalition formation and recruitment during fights (Schilke et
al., 2010; Young et al., 2014b). These rather stable alliances (Kalbitz et al., 2016) serve in
the acquisition and maintenance of high social status (Ostner et al., 2014; Schiilke et al.,
2010) which in turn predicts mating and reproductive success (Sukmak et al., 2014a;
Young et al.,, 2013). Thus, maintaining a few close affiliative relationships provides
functional support in aggressive conflicts and consequently male-male bonds attenuate
the HPA axis response in Barbary macaques when faced with high rates of within-group
aggression (Young et al., 2014a). Such social buffering effects can be modulated by

single mutations in humans (Chen et al., 2011a) but the extent to which broader genetic
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variation explains parts of the variation in individual HPA axis activity remains

unexplored.

We have developed a genetic panel of 46 regions in 21 genes known to be
implicated in HPA axis functioning from work on humans and model organisms and
designed primers for amplification and subsequent sequencing from non-invasive samples
originating from field projects (Gutleb et al., 2018a, chapter 2). We identified 159 single
nucleotide polymorphisms (SNPs) in a population of Assamese macaques and applied
variant effect prediction to generate a genetic risk score (GRS, Belsky & lIsrael, 2014;
Worley et al., 2015) from 15 missense variants. The GRS is the proportion of an
individual’s alleles predicted to cause an amino acid change in the encoded protein
(Gutleb et al., 2018a, chapter 2) and therefore likely to generate an altered phenotype.
Here we combine this genetic work with behavioral and endocrine data on wild male
Assamese macaques to assess how genetic risk modulates behavior and social buffering

effects.
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Results

We built five linear regression models with GRS as one of the predictors which
varied from 0 to 40 % in all genotyped adult male and female individuals and from O to
17 % in the adult males of this study (Figure 4.1A). We controlled for male dominance
rank and used a data point per male for the mating and the non-mating season each,
because responses and predictors vary between reproductive seasons and with male
dominance rank (Kalbitz et al., 2016; Ostner et al., 2008a). In a simple model, mean
immunoreactive urinary cortisol (iUC) levels across 8.6 £ 2.6 samples per male in the
non-mating and 7.6 = 2.9 samples per male in the mating season rose with increasing
cumulative genetic risk (t=2.664, p=0.011, Table 4.1A, Figure 4.1C). A 17 %-increase of

the GRS was associated with a 20.5 % increase of the response variable iUC.

Male risk-taking behavior was assayed as the rate of initiating within-group
aggression and differed between seasons from 1.06 + 0.45 acts in the non-mating to 1.69
+ 0.69 acts in the mating season (Wilcoxon signed-rank test: n=22, p<0.001, z=-3.180).
Risk-taking decreased with increasing GRS after controlling for season and dominance
rank (t=-2.513, p=0.016, Table 4.1B, Figure 4.1B). With a 17 %-increase of the GRS
male risk-taking was reduced by 30.4 %. The relative rate of initiating and terminating
close spatial proximity (1.5 m) with one’s top two male partners was summarized in the
Hinde index. The index was positively associated with GRS (t=2.772, p=0.011, Table
4.1C, Figure 4.1D) suggesting that the more risk alleles a male carried the more
responsible he was for maintaining the social bonds with his top partners. A 17 %-
increase of the GRS predicted a 306.8 % increase in the relative investment into
maintaining close proximity. The strengths of a male’s social bonds with his top male
partners assayed as the sum of his top two dyadic composite sociality index values (CSI
after Schulke et al. 2010) tended to be (p<0.1) positively associated with GRS (t=1.750,
p=0.095, Table 4.1D, Figure 4.1F). A 17 %-increase of the GRS was associated with a

28.6 % increase of the response variable CSI.

To investigate whether GRS influenced the effect of social bonds on HPA axis
activity, we built the buffering-model predicting mean iUC levels per male from the

strength of his top two social bonds, his GRS, and the interaction of bond strength and
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GRS. The interaction between bond strength and GRS was significantly associated with
iUC levels (t=2.705, p=0.011, Table 4.1C). At the low end of genetic risk increasing CSI
values were associated with decreasing HPA axis activation (iUC) suggestive of a social
buffering effect. Yet, the higher the GRS was, the weaker was the social buffering effect
(Figure 4.1E). These results and those of the maintenance model were robust against
changing the number of top partners considered in calculating the sum of male’s CSI

values from two to three (Supplementary Table S3.1).

Table 4.1: Linear regression models

Fixed effect Estimate Std. Error  t-value  p-value

(i) iUC-model with log-transformed mean iUC levels as response. n=45 data
points for 23 individuals and two seasons, significant difference to null model
p=0.006, R=71.10 %

Intercept 4.061 0.191 21.248 <0.001
Genetic risk 0.049 0.019 2.664 0.011
Dominance rank -0.077 0.115 -0.672 0.506
Season: mating 1.608 0.162 9.928 <0.001

(if) Risk-taking-model with square-root transformed rate of initiating
aggression as response. n=45 data points for 23 individuals and two seasons,
significant difference to null model p=0.009, R?=39.60 %

Intercept 1.119 0.083 13.489 <0.001
Genetic risk -0.020 0.008 -2.513 0.016
Dominance rank 0.097 0.050 1.938 0.060
Season: mating 0.281 0.070 4.002 <0.001

(iif) Maintenance-model with Hinde index as response. n=88 data points for 23
individuals, two top partners and two seasons, significant difference to null
model p=0.015, R?=21.76 %

Intercept -8.977 6.471 -1.387 0.175
Genetic risk 1.620 0.585 2.772 0.011
Rank difference 1.985 4.342 0.457 0.649
Season: mating -2.335 4.344 -0.538 0.593

(iv) Social bonding-model with square-root transformed sum of CSI with the
top two male partners as response. n=44 data points for 23 individuals and two
seasons, trend for a difference to null model p=0.059, R?=45.28 %

Intercept 1.667 0.159  10.478 <0.001
Genetic risk 0.028 0.016 1.750 0.095
Dominance rank 0.202 0.090 2.244 0.031
Season: mating 0.011 0.110 0.097 0.924

v) Buffering-model with log-transformed mean iUC levels as response. n=44
data points for 23 individuals and two seasons, significant difference to null
model p=0.002, R?=83.36 %

Intercept 4.426 0.167 26.471  <0.001
Genetic risk 0.336 0.099 3.397 0.003
Sum of CSI -0.320 0.103 -3.110 0.004
Dominance rank -0.023 0.124 -0.188 0.852
Season: mating 1.540 0.136  11.329 <0.001
Genetic risk: sum of CSls 0.302 0.111 2.705 0.011
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Figure 4.1: (A) Occurrence and distribution of the GRS among all genotyped adult male
and female individuals and among adult males in this study. Increasing GRS of the HPA
axis was associated in males with (C) increasing immunoreactive urinary cortisol levels
(iUC), (B) decreasing risk-taking behavior that is lowered rates of initiating aggression,
(D) increasing responsibility for maintaining proximity with the top two male partners
that is the Hinde index and (F) increasing CSI with the top two male partners. (E) GRS
interacts with CSI of the top two male partners to predict iUC levels; the effect that
stronger bonds attenuate HPA axis activity is strongest at minimal GRS and wanes as
GRS increases. Data points reflect partial residuals.

85



Study 3

Discussion

Functional genetic studies link DNA sequence variation in a number of genes
from the serotonergic (Goodyer et al., 2009), catecholamine/dopaminergic (Bouma et al.,
2012) and corticoid pathways (Mahon et al., 2013) to the activation and regulation of the
HPA axis. The effects of such genetic variation concern gene regulation (Chen & Miller,
2012), receptor functioning (Wedemeyer et al., 2007), enzyme activity (Chen et al., 2004)
and effectively the production and secretion of cortisol (Velders et al., 2011). Variation in
these individual genes has also been associated with behavioral phenotypes concerning
anxiety (Lesch et al., 1996), risk-taking (Mata et al., 2012), aggression (Gutleb et al.,
2018b, chapter 3), emotion (Pagliaccio et al., 2015) and social perception (Skuse &
Gallagher, 2011). Here we combine multi-locus genotyping of the natural variation in
HPA axis related genes, variant effect prediction, non-invasive measures of HPA axis

activity and behavioral phenotyping in a wild mammal.

The naturally occurring SNP variants were predicted to cause amino acid
substitutions in the glucocorticoid receptor, catechol-O-methyl transferase, brain-derived
neurotrophic factor, dopamine transporter, serotonin receptor, opioid receptor and
neuropeptide Y. Amongst others, these products are responsible for information
processing, neurotransmitter degradation, removal and inactivation and have been
associated with HPA axis functioning, cortisol levels and stress vulnerability (Gutleb et
al., 2018a, chapter 2). As a proof of principle, we show with our small sample of male
macaques that a cumulative risk score in these genes is associated with levels of cortisol,
the end product of the HPA axis. The relationship between GRS and iUC seems to be
driven by the invariably positive residual iUC levels of individuals with GRS > 10 %
equivalent to three or more alleles predicted to cause amino acid changes. Similarly, all
associations between GRS and risk-taking, bond maintenance and bond strength were
driven by behavior of males with GRS > 10 %. At low to no risk in HPA related genes all
responses varied more widely, suggesting that other factors besides genetic risk were also

at play.

Factors driving variation in HPA axis activity and behavior include the social and

the ecological environment, with food abundance, reproductive season and dominance
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rank being the most prominent examples in primates (Beehner & Bergman, 2017;
Goymann et al., 2004; Pride, 2005; Sapolsky, 2005). In line with previous studies
(Beehner & Bergman, 2017; Ostner et al., 2008a; Young et al., 2014a), HPA axis activity
and risk-taking behavior increased during the mating season. Reproductive season did not
influence proximity maintenance and the top social bond strength though, because strong
bonds in Assamese macaque males and other primates are characterized by their stability
over time (Silk et al., 2010b). The relationship between dominance and HPA activity is
highly variable across and within primate species (Cavigelli & Caruso, 2015), possibly as
a function of variation in allostatic load associated with attaining and maintaining high
dominance status (Goymann et al., 2004; Sapolsky, 2005) and was not significant here.
Since we statistically controlled for the effects of dominance rank and season, these
factors cannot explain the pronounced variation in HPA activity at low to no genetic risk.

The social buffering framework (Cohen & Wills, 1985) provides a potential
explanation for such residual variation. Accordingly, the presence of or affiliative
interaction with an important social partner attenuates HPA axis activity in general or in
response to stressful events (Kiyokawa & Hennessy, 2018). In wild and captive group-
living primates these salubrious effects of bonding are provided not only by a mother to
her offspring (Sanchez et al., 2015) but also by strongly bonded same or opposite sex
social partners (Galvao-Coelho et al., 2012; Gunnar et al., 1980; Winslow et al., 2003;
Wittig et al., 2016; Young et al. 2014a).

In line with a previous study showing that a single SNP can influence the effect of
social support on the HPA axis response in humans (Chen et al., 2011a), we demonstrate
that the buffering effect of social bonds disappears with increasing GRS. Put the other
way around, the pronounced variation in iUC and behavior at low to no genetic risk was
explained by individual variation in social bonding and the resulting social buffering of
the HPA axis.

If at high GRS social buffering is hampered due to an altered HPA axis regulation,
why would high risk individuals establish relatively strong social ties and invest even
more heavily in maintaining contact with their closest partner than individuals with a
lower genetic risk? On the physiological level, social bonds attenuate not only the HPA
axis activation but can also affect cardiovascular, neural and immune reactions to

stressors (Balasubramaniam et al., 2016; Lutgendorf et al., 2000; McCowan et al., 2016;
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Pressman et al., 2005; Uchino, 2006). If these effects are not fully mediated via HPA
regulation, individuals with altered HPA axis genes may still benefit from social
buffering on other systems. Additionally, if the tendency to form close social bonds
evolved in response to the ubiquitous competition that is inherent in group living, strong
social bonds may convey functional support via agonistic aid in actual conflicts
(Berghanel et al., 2011; Mitani et al., 2000; Schino, 2007), tolerance in competition for
resources (Haunhorst et al., 2017; Tiddi et al., 2011) and safety from predators (Josephs et
al., 2016; Ostner & Schiilke, 2018) regardless of the social buffering function of bonding.

We are left to explain why increasing GRS is also associated with increasing
responsibility for maintaining close proximity with the strongest partners, as all males
regardless of GRS should invest in social bonds. In human children, contact with a
bonded partner after stress-induced HPA axis activation accelerates the return to baseline
(Seltzer et al., 2010). If support seeking as a coping strategy (Taylor et al., 2000) is
triggered by elevated cortisol levels, high GRS leading to high iUC levels might drive
individuals to seek contact with their bonded partners more than low GRS males because
this contact does not help to downregulate cortisol either. This relationship is not found in
female chacma baboons (Papio ursinus) where a personality dimension (‘loner’) is
positively associated with fecal glucocorticoid metabolite levels similar to the GRS in our
study (Seyfarth et al., 2012). Yet the personality dimension is negatively associated with
the strength of a female’s closest bonds, indicating that those with high cortisol levels do
not seek more contact perhaps because of constraints to supportive social bonding in a
group where most competition is among group members (Ostner & Schiilke, 2014).
Experimentally, both attenuated HPA axis responses and accelerated returns to baseline
cortisol levels have been demonstrated (Gunnar & Hostinar, 2015; Kiyokawa &
Hennessy, 2018). The relative importance of both mechanisms will depend on the
temporal patterning of the stressor (immediate short aggressive interaction versus lasting
variation in competition for access to resources leading to energetic stress) and the spatio-

temporal association with the supporter (always close before or during exposure or not).

Similar to our findings on the variation in social bonding and risk-taking behavior,
natural genetic variation in other macaque species has been associated with social
network position (Brent et al., 2013), vigilance to threat (Watson et al., 2015), rates of
aggression (Gutleb et al., 2018b, chapter 3), timing of natal dispersal (Krawczak et al.,
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2005; Trefilov et al., 2000) and personality traits (Brent et al., 2014) suggesting a
significant portion of individual variation in social behavior to be independent from
external ecological and social factors. Apart from DNA sequence variation also gene
expression patterns of macaques have been linked with (experimentally manipulated)
dominance rank (Tung et al., 2012) and grooming behavior (Snyder-Mackler et al.,
2016b) with effects being partly mediated by cortisol signaling (Tung et al., 2012) and
with important consequences for immune regulation and responses to infection (Snyder-
Mackler et al., 2016b).

Social buffering of the stress response is a widespread phenomenon in humans,
non-human primates and other animals with the potential to fully mitigate adverse effects
of overly high or exceedingly long stress responses (Gunnar et al., 1980; Levine et al.,
1985; Tzeng et al., 2018). Social buffering is not ubiquitous though. Whether the effect of
a particular stressor can be buffered by a specific type of partner depends on whether such
partners provide adaptive benefits under ecologically valid conditions (Gunnar &
Hostinar, 2015; Kiyokawa & Hennessy, 2018). Yet even if the adaptive value of social
support is given, natural genetic variation might modulate social buffering effects leading
also to variation in social behavior. Our findings suggest that the genetic make-up in HPA
axis related genes explains a significant part of the variation seen in the effect of social
bonding on individuals’ stress responsiveness. If the same applies to humans, we foresee
that the effectiveness of social coping mechanisms to stress varies with the genetic
background of the individual. This should be taken into account when judging the value
of specific behavioral therapies aiming to help people in coping with stressful events

using mechanisms of social support.
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Materials and methods

Ethics statement

Behavioral observations as well as feces and urine collection were conducted non-
invasively. We followed the American Society of Primatologists principles for the ethical
treatment of non-human primates and the guidelines of the Animal Welfare Body of the
German Primate Center. The Department of National Parks, Wildlife and Plant
Conservation and the National Research Council of Thailand authorized the data
collection and sample-export with a benefit sharing agreement (permit numbers:
0004.3/3618, 0002.3/2647, 0002/17, 0002/626, 0002/2424).

Study population

This study was conducted at the Phu Khieo Wildlife Sanctuary in Thailand
(Schiilke et al., 2011). It is part of the 6500 km? protected Western Isaan Forest Complex
and provides a variety of terrestrial ecoregions for a diverse community of large
mammals and predators (Borries et al., 2002; Grassman et al., 2005). We followed four
habituated groups of Assamese macaques and selected all 25 adult males present in these
groups as study subjects. Relatedness among males was unknown but expected to be low
because all males disperse from their natal group before reaching sexual maturity and
repeatedly change groups thereafter. The area was densely populated with additional

unhabituated groups serving as targets and sources of male migration.

At the beginning of our study period group sizes were 55 with 9 adult males and
13 adult females (ASM), 28 with 3 adult males and 9 adult females (ASS), 41 with 9
adult males and 10 adult females (AOM) and 21 with 4 adult males and 6 adult females
(AQS). Two adult males from AOM died after two months and five adult males changed
groups between the non-mating and the mating season (11" of September to 20" of
October). This time period and the two deceased males were excluded from data analyses.
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Data collection

About 5 g of feces were collected directly after defecation into 50 ml tubes
(62.559.001, Sarstedt, Nimbrecht, North Rhine-Westphalia, Germany) containing 30 ml
of 97 % ethanol. After storage for 24 to 36 hours the solid material was transferred into
another 50 ml tube containing 30 ml of silica beads for dark cool storage until export to
Germany (Nsubuga et al., 2004; Roeder et al., 2004). Following arrival at the laboratory,
samples were frozen at -20°C until DNA extraction was performed at the Primate

Genetics Laboratory at the German Primate Center.

Samples for iUC quantification were collected immediately after urination from
25 individually known adult males between March 2015 and February 2016. On average
we analyzed 8.6 £ 2.6 (2-14) urine samples per male during the non-mating season
(March-September, n=198) and 7.6 + 2.9 (2-13) samples during the mating season
(October-February, n=168). Urine was collected using salivettes designed for the use in
salivary cortisol analysis (51.1534.500, Sarstedt AG & Co., Numbrecht, North Rhine-
Westphalia, Germany). The method has been recently validated for non-invasive urine
sampling from free-ranging animals (Danish et al., 2015) and has been used successfully
for the measurements of various physiological markers in other macaque species (Danish
et al., 2015; Miiller et al., 2017). To collect urine, disposable gloves were used and one
end of the salivette swab was dipped into urine drops on leaves or the forest floor to soak
them up (Danish et al., 2015). Only urine uncontaminated with fecal matter was taken.
Upon return to the laboratory of the field station, the urine was recovered from the
collection device by centrifuging the salivettes at 6000 rpm for 5 minutes. The recovered
urine was subsequently transferred to 2 ml polypropylene tubes (0030120094, Eppendorf
AG, Hamburg, Germany) prior to freezing at -20 °C. All urine samples were shipped to
the Endocrinology Laboratory at the German Primate Center on dry ice and stored frozen
at -20 °C until analysis.

We collected behavioral data from 25 adult males between March 2015 and
February 2016, thus including an entire non-mating (March to September) and the
consecutive mating season (October to February, Furtbauer et al., 2010). During 40

minutes focal animal observations, conducted between dawn and dusk, all affiliative,
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agonistic and sexual interactions were recorded continuously (Martin & Bateson, 1993).
We made an effort to balance focal animal protocols across different males and the time
of day (mean = SD 98 £ 24 hours/male, total = 2511 hours). To establish the dominance

hierarchy additional ad libitum data were collected on agonistic interactions.

Data analyses

After DNA extraction of fecal samples collected from all 38 adult males and 41
adult females in the field project (including deceased and emigrated individuals) using the
First-DNA all-tissue Kit (D1002000, GEN-IAL GmbH, Troisdorf, North Rhine-
Westphalia, Germany), we applied our HPA axis genotyping panel that was described in
detail elsewhere (Gutleb et al., 2018a, chapter 2, Sequence Read Archive SRP116685).
The genotyping panel contains 46 target regions in 21 genes: AVPRI1B arginine
vasopressin receptor 1B, BDNF brain-derived neurotrophic factor, COMT catechol-O-
methyl transferase, CRH corticotropin-releasing hormone, CRHBP corticotropin releasing
hormone binding protein, CRHR1 corticotropin-releasing hormone receptor 1, CRHR2
corticotropin-releasing hormone receptor 2, DRD3 dopamine receptor D3, FKBP5 FK506
binding protein 5, HTR1A serotonin receptor 1A, HTR1B serotonin receptor 1B, MAOA
monoamine oxidase A, MC2R adrenocorticotropic hormone receptor, NPY neuropeptide
Y, NR3C1 glucocorticoid receptor, OPRM1 opioid receptor mu 1, OXTR oxytocin
receptor, SERPINA6 corticosteroid binding globulin, SLC6A3 dopamine transporter,
SLC6A4 serotonin transporter and TPH2 tryptophan hydroxylase 2 (see Gutleb et al.,
2018a for references and detailed information on PCR setup, primers and cycling

conditions).

Sequencing libraries were prepared following previously described methods
(Rohland et al., 2015) without uracil-DNA-glycosylase treatment based on Meyer and
Kircher (2010) and Kircher et al. (2012). After samples were submitted to Illumina NGS
(MiSeq paired-end 150 bp), the bioinformatics analyses of the acquired NGS-data
included an improved pipeline, ensuring that polymorphisms are identified by two
different variant calling approaches (GATK and SAMtools, Li et al., 2009; McKenna et

al., 2010) and classified according to their impact by two different variant effect
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prediction pipelines (VEP and SnpEff, Cingolani et al., 2012; McLaren et al., 2016). With
the rhesus macaque genome (rheMac8) as reference we identified 159 SNPs among the
79 adult Assamese macaques, for which both VEP and SnpEff predicted the same variant
consequences/impact classes (Gutleb et al., 2018a, chapter 2). We called the 15 SNPs of
the ‘moderate impact’ class ‘risk SNPs’. All of them were missense variants and
classified to cause moderate effects according to the rhesus macaque genome (Table 4.2)
and were the rarer alleles in our study population. We calculated a GRS for each
individual as the proportion of alleles that were risk alleles at the 13-15 loci genotyped
per individual (@ 14.8).

Table 4.2: Gene affiliation, location and missense variants of SNPs in the GRS

Gene Position Codons and amino acids
dopamine transporter gGal/gAa
(SLC6BA3) 1332856 glycine/glutamic acid
brain-derived neurotrophic factor gGt/gAt
(BDNF) 38305600 glycine/aspartic acid
catechol-O-methyl transferase Atg/Gtg
(COMT) 61692389 methionine/valine
serotonin receptor 1B Ggag/Agg
(HTR1B) 75621679 glycine/arginine
Ccc/Gcec
75621805 proline/alanine
neuropeptide Y gAc/gGc
(NPY) 83926991 aspartic acid/glycine
g3g27111 2CCRAC
serine/asparagine
opioid receptor mu 1 tG/ttC
(OPRM1) 112074108 leucine/phenylalanine
112074125 CIUAGL
glycine/serine
112074164 CCC/CCC
alanine/proline
glucocorticoid receptor Aca/Tca
(NR3C1) 141200981 threonine/serine
141200090 CoVTet
proline/serine
141202027 2CYATL
threonine/isoleucine
141202066 2AVAGL
asparagine/serine
141202114 SCCCTC

proline/leucine

Note: Position refers to the chromosome location in the rhesus macaque
genome rheMac8. Capital letters in the codons mark the SNPs.
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Immunoreactive urinary cortisol (iUC) concentrations were determined by
microtiter plate enzyme immunoassays using an antiserum against cortisol-3-CMO:BSA
and biotinylated cortisol as enzyme conjugate (Palme & Mdstl, 1997). Prior to analysis,
urine samples were diluted 1:10 to 1:10.000 (depending on concentration) in assay buffer
and duplicate 50ul aliquots of diluted samples and cortisol standard (50 pl, 0.6 - 40
pg/50ul) were combined with labelled cortisol (50 ul) and antiserum (50 pl) and
incubated overnight at 4 °C. After incubation, the plates were washed four times, 150 pl
(~7 ng) of streptavidin-peroxidase (S5512; Sigma-Aldrich Chemie GmbH, Bavaria,
Germany) in assay buffer was added to each well and the plates incubated at room
temperature in the dark for 60 min and then washed again four times. TMB substrate
solution (100 ul; 1-Step Ultra TMB, Thermo Fisher Scientific Inc., Rockford, USA) was
subsequently added and the plates incubated at room temperature in the dark for another
45 - 60 min. The enzyme reaction was finally stopped by adding 50 ul of 2 M H2SO4 to
each well and absorbance measured at 450 nm (reference 630 nm) in a
spectrophotometer. Sensitivity of the assay at 90 % binding was 0.5 pg. Serial dilutions of
urine from different males showed displacement curves parallel to the cortisol standard
curve with no differences in slopes (test for equality of slopes: F1g = 0.0585-0.3590; all
p>0.5). Intraassay coefficients of variation of high and low value quality controls were
5.8 % and 8.4 %, respectively, while respective figures for interassay variation were 9.7
% and 12.5 %. To adjust for variations in the dilution of the voided urine, iUC
concentrations were indexed against urinary creatinine (Cr), measured as described by
Bahr et al. (2000) and expressed as ng iUC/mg Cr. For the statistical analyses we
calculated a mean iUC value for each individual during the non-mating and the mating

season each.

From focal animal protocols we measured risk-taking as the hourly rate of
initiating aggression for each individual during the non-mating and the mating season.
We counted every observation of the focal animal starting an aggressive interaction with
any other group member (i.e. bite, chase, check-look, choose-position, growl, ground-
slap, head-bob, lunge, open-mouth, peer, pretend-grab, point, push-pull, repeated

growl/scream/yell, slap and stare).

All decided dyadic agonistic interactions from the continuous and the ad libitum
data, where clear submissive behavior (i.e. silent-bared teeth display, make room and

unprovoked give ground) was observed only by one male in a conflict were used to create
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a hierarchy matrix (Gutleb et al., 2018b, chapter 3; Haunhorst et al., 2017, Supplementary
Table S3.2). We calculated hierarchies separately for the non-mating and the mating
season (due to males changing group) with the package DomiCalc (Schmid & de Vries,
2013). <«Combil’ ordinal ranks (a combination of two DomiCalc indices, PD and Dom-
Sub) were standardized to scale between -1 (lowest-ranking) and 1 (highest-ranking) to

allow a comparison between differently sized groups.

We calculated a composite sociality index (CSI) to measure the strength of
affiliative relationships between two males relative to the average male-male relationship
in each group separately for the non-mating and the mating season (Silk et al. 2006a). We
included both the duration and the frequency of three behaviors: being in close (1.5 m)
proximity, body contact, and grooming for each dyad (Supplementary material). The
duration of grooming was subtracted from the duration of body contact and the duration
of body contact was subtracted from the duration of close proximity, because they are
nested into each other (Haunhorst et al., 2016; Kalbitz et al., 2016). All behaviors were
positively correlated to each other in row-wise matrix correlations at p < 0.05 and an
average rho of 0.61 (0.32 - 0.89).

We calculated the Hinde index (Hinde & Atkinson, 1970) of approaches into and
departures from a radius of 1.5 m to measure responsibility for the maintenance of close

spatial proximity (Supplementary material).

Statistical analyses were conducted using R 3.1.2 (The R Foundation for
Statistical Computing, Vienna, Austria, http://www.r-project.org). For all analyses, we
ran general linear models including season and social group as control factors and animal
ID as a random factor. We included season, because it has previously been shown that
glucocorticoid hormones and aggression increase during the mating season (Gutleb et al.,
2018b, chapter 3; Ostner et al., 2008a). Dominance rank was included as an additional
control variable in the iUC-, the risk-taking and the social bonding-model and absolute
dominance rank difference as an additional control variable in the maintenance-model. To
achieve normal distribution, iUC was log-transformed and the rate of initiating aggression
and sum of CSI with top two male partners was square-root transformed. In the buffering-

model the GRS and the CSI-sum were z-transformed.
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All models were calculated with the package <lmerTest’ with alpha levels set to
0.05 (Bates et al., 2015; Kuznetsova et al., 2017). VVarious model diagnostics were applied
to confirm model validity: visual inspection of distribution of residuals, ggplots, residuals
plotted against fitted values, assessing model stability using the function ‘glmm stability’
written by Roger Mundry (MPI Evolutionary Anthropology, Leipzig, Germany),
assessing leverage and dfbetas for single samples and levels of the random factor animal
ID using the package ‘influence. ME’ (Niewenhuis et al., 2013), and variance inflation
factors using the package ‘car’ (Fox & Weisberg, 2011). None of the diagnostics
suggested a violation of the model assumptions. All variance inflation factors were below

two, indicating that collinearity between predictors did not affect the results.

The full models were significantly different from the null models (excluding GRS
and CSI in the buffering-model and GRS in all other models; likelihood ratio test with the
R function <anova’, setting the argument to ‘Chisq’) in all but the social bonding-model in
which 0.1<p<0.05.
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In chapter 1, | gave a general introduction to the topic and background of my
thesis. In chapter 2 (study 1), | designed a genotyping panel useful for research on the
genetics of stress and aggression. In chapter 3 (study 2), | demonstrated that the widely
studied human COMT Val'*®Met polymorphism is not unique to humans and that it can
be associated with similar phenotypes in a non-human primate. In chapter 4 (study 3), |
integrated information from all missense variants detected in HPA-axis-related genes to
calculate a GRS for each adult male and combined it with detailed endocrine and
behavioral data. In the general discussion, I will first summarize the main results of the

three preceding chapters, then discuss the results and provide avenues for future research.

5.1 Summary of the results

The results of the methodological study in chapter 2 are (i) the compilation of a
list of presumably functional target regions in genes that are involved in the HPA-axis,
(ii) the design of a high-throughput genotyping panel suitable for investigating the factors
contributing to HPA-axis-related phenotypes, (iii) the demonstration that the panel is
applicable to low-quality DNA, such as that obtained from fecal samples, which are often
the only available sample material from wild animal populations and (iv) the
demonstration that polymorphisms at purportedly functional HPA-axis loci exist in a
natural primate population. Study 1 (chapter 2) describes the methods to include
genotypic information by applying state-of-the-art sequencing technologies to fecal DNA
samples. It served as the basic methodology necessary to conduct study 2 and 3 (chapter 3
and 4) and should motivate field biologists to include multi-locus genotype data in studies

on wild, non-model populations more frequently.

The results of chapter 3 (study 2) are that (i) the widely studied human COMT
Val®™®Met polymorphism occurs in a non-human primate species with genotype
frequencies comparable to human populations, (ii) macaques’ aggression rates increased
with dominance rank in Val/Val individuals, but decreased in individuals carrying other
genotypes and (iii) when changing from a lower to a higher dominance rank position,

Val/Val individuals decreased, whereas Met/Met individuals increased their aggression
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rate. Now that | demonstrated that the COMT Val'*®Met polymorphism is not unique to
humans and predicts similar behavioral phenotypes in another species, follow-up studies
on this polymorphism in several species are called for to investigate the distribution of
this polymorphism among taxa and help to decipher its evolutionary roots and

contribution to individual variation in aggressive behavior.

The results of chapter 4 (study 3) are that an increasing GRS, measured as the
proportion of missense variants detected with the method described in chapter 2 (study 1),
was associated with (i) increasing HPA-axis activity, (ii) decreasing risk-taking behavior,
i.e. initiating aggression, (iii) a decreasing main social buffering effect, (iv) a trend to
have stronger social bonds and (v) an increasing maintenance of close proximity with
strong partners. These results suggest that significant proportions of the observed inter-
individual variation can be assigned to underlying genotypic variation in the HPA-axis
system. The investigation of the main effect hypothesis of social buffering revealed a
significant interaction effect between social bond strength and GRS on HPA-axis activity.
The association between strong social bonds and low cortisol levels seems to diminish
when moving from low GRS to high GRS, indicating that social buffering is in effect in
individuals at the lower end of genetic risk, but not at the higher end of genetic risk. The
results of chapter 4 (study 3) indicate that male macaques follow different social
strategies and build a basis for future research considering genotype as a mediator of
variation in HPA-axis activity including social buffering in a wide range of animal taxa.
However, the results are preliminary, as relatedness among the study animals could
account for the detected associations but was not yet included in the models. Further
analyses are necessary to clarify whether the detected associations are due to variation in

HPA-axis genes or other genome-wide similarities among kin.
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5.2 Limitations of the studies and the need for technological advances

Applying a novel approach to investigate the effects of HPA-axis-related genotype
on behavioral and endocrine phenotypes in wild primates and using only non-invasively
collected samples for molecular analyses causes some inherent limitations for the studies.
| demonstrated that genotype has sizeable effects on phenotypic variation in a non-model
population living under natural selection pressures and suggest that such genotypic
influences should be taken into account in future studies investigating the causes of
individual variation. Nevertheless, some of the findings are preliminary and should be
interpreted with caution. With the studies of this thesis | hope to stimulate a more
frequent consideration of genotype in biological field studies, especially in the field of

primatology, but future studies pursuing this strategy may improve some aspects.

5.2.1 Limitations

First, the sample size was rather small for a behavioral genetics study, as such
studies typically have sample sizes ranging from a few dozens to tens of thousands.
Human studies often have access to big data and can use large data sets which are not
available to field behavioral biologists. In scientific disciplines, where research is
experimental, hypothesis-driven and detailed data are necessary, sample sizes in
behavioral genetic studies tend to be smaller than in the often hypothesis-neutral, data-
driven big data applications (e.g. Mazzocchi, 2015; Plomin et al., 2016). The detailed data
collection in this thesis was strictly non-invasive and included four habituated groups of
Assamese macaques resulting in a medium to large sample size for a field study in wild
primates. Therefore, an increase of the sample size will be hard to accomplish also in
future studies, at least regarding wild primates. As studies with small sample sizes are at
risk to detect false positives, replication studies are highly valued particularly in the field
of behavioral genetics (Plomin et al., 2016). Regarding the sample size of the selected
target regions, the approach cannot keep up with whole-genome approaches, but the

number of targeted regions and the amount of SNPs that entered the GRS are comparable
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to some human studies (e.g. 4 in Worley et al., 2015 and Di lorio et al., 2017; 6 in Utge et
al., 2018; 7 in Ferguson et al., 2012; 9 in Kathiresan et al., 2008; 10 in Chen et al., 2011b;
13 in Ripatti et al., 2010; 116 in Morrison et al., 2007). There is no access to high-quality
DNA samples that could be used for whole-genome sequencing from several wild animal
populations, therefore the approach to combine several candidate genes in an NGS-panel
to include several gene loci presumably contributing to the phenotypes of interest

represents an important first step to study behavioral genetics in the wild.

Second, in this thesis I did not control for kinship, although putative relatives were
included in the sample. Population relatedness that is not accounted for could create false
associations between genetic variation and phenotypic outcome. As close relatives will
have more similar genotypes not only at the target loci, but also genome-wide, it is
possible that associations between genotype and HPA-axis activity and behavior are due
to genetic differences in other parts of the genome that are shared among relatives. Due to
the matrilineal structure of the macaques, controlling for kinship would be of particular
interest when working with data on females. Due to male migration, this concern might
be negligible when working with data on males, but to find out whether the results
withstand, it is essential to control for relatedness structure in the future. This could be
accomplished by other molecular methods applicable to low-quality DNA samples, e.g.
microsatellite markers or capture-based genome-wide sequencing (Queller et al., 1993;
Snyder-Mackler et al., 2016a; Sukmak et al., 2014b). This would allow to run so-called
statistical “animal models”, in which relatedness can be controlled for (Kruuk, 2004). The
animal model is a type of mixed model (linear regression with fixed and random effects)
in which a kinship matrix can enter the model additionally. In this case, the random effect
of the individual is not treated as independent but uses the knowledge from the kinship
matrix to account for relatedness. When genotype then enters the model as a fixed effect,

the relatedness among all individual dyads is taken into account.

Third, GRSs are based on the assumption that genetic effects are additive. This
assumption might introduce an error due to neglecting i) that some SNPs might have
opposing effects on physiology whereby their impacts are cancelled out and ii) the
interaction between loci, called epistasis (Belsky & Israel, 2014; Zuk et al., 2012). There
is still little understanding about epistatic interactions, so it has been recommended to

ignore their effects in the calculation of GRSs so far, unless interactions are known
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(Belsky & Israel, 2014). If identified in the future, they can be incorporated into the
GRSs. However, research on epistasis is still in its infancy and a reasonable application to

non-model species will therefore still take some time.

Fourth, considering only the DNA sequence level may not be enough to draw
conclusions about genotypic effects on phenotypes. On a functional level, studies of
genomics are followed by transcriptomics and proteomics. Every discipline has a value
on its own and the combination of them has the potential to increase our knowledge of
molecular mechanisms, processes and pathways (Manzoni et al., 2018). Currently,
research on genes, transcripts and proteins is represented by fragmented niche groups
working on these topics, which probably hinders a proactive information flow among
scientists of the different disciplines (Manzoni et al., 2018). Researchers might tend to
focus on the strengths of their own discipline and the pitfalls of the others. In this regard,
transcriptomicists might argue that transcript information is necessary besides data on the
DNA sequence level and proteomicists might argue that protein information is necessary
besides transcript information and data on the DNA sequence level to allow for valid
statements about the functionality of the protein in question. The important roles that also
gene expression and/or protein levels play in the emergence of phenotypes should be
acknowledged, but regarding the confinement to non-invasive samples in this thesis,
transcript and protein analyses are hardly feasible at the current state of the art. Regarding
the general neglect of genotypic data in studies on wild animal populations, the studies in
this thesis represent an important first step to a better understanding of factors shaping
inter-individual differences. Moreover, the field of genomics entails many advantages
when working with rather small sample sizes and wild animals: the DNA sequence is the
same across tissues, without any circadian, seasonal or age changes. This is a major
concern in the two other molecular disciplines and would require a further separation of
the already small sample size (Belsky & Israel, 2014). DNA is an outstanding biomarker,
especially due to three of its characteristics: its primacy (being determined already before
birth), its stability (through time and space) and its scope of influence (DNA variation is
associated with numerous phenotypic aspects, e.g. the first law of behavioral genetics - all
human traits show significant and substantial genetic influence, Belsky & lIsrael, 2014,
Plomin et al., 2016; Plomin & Deary, 2015; Turkheimer, 2000; Turkheimer & Gottesman,
1991).
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Despite these caveats, the results of this thesis give first insights into the genetic
predisposition of a range of HPA-axis-related phenotypic characteristics in wild
Assamese macaques. Urinary cortisol levels, aggression rates, the strength and
maintenance of social bonds and the attenuating effect of social bonds on HPA-axis

activity seem to be at least partly determined by individuals’ genetic constitutions.

5.2.2 A brief comment on the need for technological advances

The improvement of our knowledge of factors influencing individual HPA-axis
phenotypes is constrained by available methods. Particularly, effective non-invasive
genotyping methods have the potential to broaden the scope of application of behavioral
genetics in basic research. Therefore, there is a constant need to keep developing broadly
applicable state-of-the-art genotyping methods to investigate individual variation on the

DNA sequence level.

The possibilities to apply high-throughput genotyping methodologies to non-
invasive samples are advancing. Recently, Snyder-Mackler and colleagues (2016a)
presented a capture-based method to generate genome-wide sequencing data from baboon
fecal samples. As the method works with genotype probabilities, which can be an
efficient way to decipher relatedness, the low coverage of certain gene regions makes it
unfortunately a rather unsuitable tool for behavioral genetics. This thesis aimed at
providing a novel genotyping panel, applicable to low-quality DNA samples and useful
for HPA-axis related research. | applied next-generation amplicon sequencing instead of
the common mtDNA-NGS and whole genome sequencing, using non-invasively collected
fecal samples that can be stored easily and for a long time in the field. Whereas the
capture-based method for fecal samples has the drawbacks of low coverage and working
with genotype probabilities, the application of whole-genome sequencing would result in
unevenly distributed gene regions covered in the individuals. Therefore, we conducted
amplicon NGS to have a high coverage of the same gene regions and especially the

regions of interest in all individuals.
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The HPA axis is a complex cascade with a multitude of molecules involved.
Functional problems at any stage could alter the phenotypic outcome. In the future,
studies on captive animals, from whom blood samples are available, could help to
decipher the specific functional significance of each polymorphism. This information can
then be used to make predictions for animals living under natural selection pressures in
the wild. Further, genotyping panels, like the one presented in this thesis, can be
constantly modified, updated and extended. In this manner, the panel could be updated
according to upcoming publications on HPA-axis associations or extended to more target

regions also including physiological pathways other than the HPA-axis.

The lack of replicability is still a growing problem existing in parallel to the
longstanding aim to decipher the sets of genes involved in the emergence of complex
phenotypic traits. In personality research, candidate genes did not withstand meta-
analyses and it has been suggested that more likely a large number of genetic variants,
each having a small effect on its own, cumulatively explain a substantial part of the
observed variation (Penke & Jokela, 2016). Even if the effects of single polymorphisms
are rather small, collectively combined in a polygenic analysis with cumulative effect
sizes and greater predictive power they constitute an important element to understand
phenotypic variation. Analyzing SNPs jointly, genetic risk scores can associate with
phenotypes even in the absence of single SNP associations (Traylor et al., 2016).
Therefore, multi-locus approaches appear more promising as an effective tool to explain
individual variation. In this approach, GRSs can be used to summarize the large number
of small effects into one cumulative value. As Belsky and Israel (2014) pointed out, the
now possible generation of high-throughput genetic data will probably lead to a spread of
GRSs, especially in the field of social sciences. | suggest that this is also true for field
behavioral biology, where large samples of whole genome data cannot be easily

generated yet, but the use of multi-locus approaches invites to apply GRSs.

The results of this thesis add to a small but growing body of research that
exemplifies the potential of behavioral genetics research to broaden our understanding of
the variation observed in non-human primate populations (Di Fiore, 2003). Increasing the
application of multi-locus genetic analyses in studies in the wild and identifying how
much variation can be explained by genetic predisposition in natural, non-model

populations, constitutes a major step in improving our understanding of animal
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characteristics (Brent & Melin, 2014; Ekblom & Galindo, 2011; Di Fiore, 2003; Tung et
al., 2010). Steady methodological advancements are necessary to secure a further gain of
knowledge in many areas of behavioral genetics, including the relationship between

social bonds, individual stress levels, health, survival and fitness.
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5.3 Effects of genotype on hormones and behavior in Assamese

macaques

The results of the studies in this thesis are summarized in chapter 5.1. In the
following section I review possible interpretations of these results in light of the lives of
Assamese macaques and discuss how genetic variants might be maintained in the

population.

5.3.1. How genetic variation shapes inter-individual differences

Intra-specific differences in individuals’ behavior and hormonal states are a
compelling aspect of primate biology. Within the last years behavioral genetics targeting
this inter-individual variation started to be implemented in non-human primates, with the
majority of studies performed under laboratory conditions (Rogers, 2018). Functional
genetic studies have been mainly conducted in captivity and test the genetic effects on
responses to novel objects, to novel conspecifics and to social challenges (Rogers, 2018;
Tung et al., 2010). Studies looking at the natural range of phenotypic variation in the wild

are still scarce.

In this thesis, | applied two approaches to increase our knowledge on the genetic
influences on phenotypes in wild Assamese macaques. After designing a sequencing
panel suitable for the identification of gene variants from low-quality DNA samples, |
followed i) a classical single variant candidate gene approach to elaborate on the
extensively studied human COMT Val*®®Met polymorphism and ii) a multi-locus
approach with the focus on the calculation of a GRS from missense variants in a number
of HPA-axis genes. Both approaches revealed significant genetic influences on the
investigated parameters and thus provide new results on how genetic predisposition

shapes inter-individual differences in Assamese macaques.

Recent findings suggest that genotypes interact with the environmental context to

impact the probability of an individual expressing particular behaviors, including
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aggression (Conway et al., 2012; Gallardo-Pujol et al., 2013; Reif et al., 2007; Rutter et
al.,, 2006; Shanahan & Hofer, 2011; Simons et al., 2011). Concluding that some
individuals are genetically predisposed to react differently to the same environmental
conditions, this led to a strong increase in research on gene-environment effects in the
human literature. One prominent candidate gene in such studies is COMT (Qayyum et al.,
2015; Wagner et al., 2010). Consequently, I considered a moderating role of COMT
Val®®®Met on aggression dependent on differences in a salient social environmental
condition of these primates — their dominance rank position. Indeed, in study 2 (chapter 3)
I found that aggression rates vary with dominance rank dependent on the COMT
Val'*®Met genotype, which is suggestive of an underlying gene-environment interaction,
with different social environments causing different behavioral outcomes dependent on
the individual’s genotype. Using individuals from a population living in their natural
habitat, it was also possible to minimize further inter-individual variation of non-social

environmental influences, which is difficult to control for in global human studies.

Based on the current findings of this thesis, | suggest two possible scenarios on
how COMT genotype and rank contribute to individual aggression levels in Assamese
macaques, which are not mutually exclusive. The first builds upon the assumption that
being in a high rank position is more stressful or risky than being in a low rank position
and probably bears a higher allostatic load (e.g. Goymann et al., 2004). In male Assamese
macaques dominance rank is positively associated with paternity success and aggression
is important to attain and maintain high social status (Schiilke et al., 2010; Sukmak et al.,
2014a). Low-ranking individuals benefit from ascending the hierarchy, so increased
aggression may allow an individual to be perceived as present and involved in the group
and thus to rise in rank by winning conflicts. According to the “warrior-worrier” model of
the COMT Val**®Met polymorphism (Goldman et al., 2005; Stein et al., 2006), when
being in a low rank position, the rather stress-resistant “warrior” Val/Val individuals
might be able to afford expressing high aggression rates. However, when being in a high
rank position already, further ascension is limited and thus a high aggression rate cannot
lead to a further increase in rank. Aggression is then lower in Val/Val-individuals when
being in a high rank compared to a low rank position. For the rather stress-sensitive
“worrier” Met-carrying individuals the scenario would be the other way around. Met-
individuals in a high rank position, and thus more stressful or risky situation, might be

physiologically restricted and thus show high levels of aggression. While this explanation
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fits well for males, it remains puzzling for female macaques, in which dominance
positions are usually determined by inheritance from the mother and thus less flexible
than in males, making alliances less important for rank attainment and maintenance
(Chapais, 2004; Thierry et al., 2004).

The second scenario builds on the assumption that both COMT alleles can act as a
risk factor in different environmental conditions (Goldman et al., 2005; Weeland et al.,
2015). Genotype might modulate individuals’ differential susceptibility to contexts
(Simons et al., 2011). The favorable social environment for individuals carrying allele X
can be the adverse social environment for individuals carrying allele Y. Taking another
step towards speculation in Assamese macaques, an individual’s allostatic load might
partly depend on its genotype. In this sense, it is probably more stressful for Met-carriers
to be in a higher-ranking position, in which they increase their aggression rate, than to be
in a lower-ranking position. On the other hand, this would be the other way around in
Val-carriers whose adverse social environment would be a low-ranking position in which
they express higher aggression rates than in higher-ranking positions. This explanation
fits well for both sexes.

However, any further clarification of these scenarios will require future studies
with specific research questions on more fine-graded effects of COMT Val'*®Met. These
could include detailed data on coalition formations and relatedness, as females of the
same matriline are generally more likely to end up in similar rank positions (Thierry et
al., 2004). If this polymorphism is detected also in other macaque species with captive
individuals available, further experimental testing of arousal and other responses to
different social environmental conditions could also contribute to our understanding of
gene-environment interactions between rank and Val'*®Met. Such laboratory studies in
which dominance ranks can also be experimentally influenced (Kohn et al., 2016; Snyder-
Mackler et al., 2016b, 2016c), could also verify different COMT enzyme activities and

investigate how dopamine levels relate to aggression under different conditions.

Study 3 (chapter 4) demonstrated that strong social bonds have a buffering effect
on HPA-axis activity, but not in all individuals. Specifically, a main buffering effect was
not observed in male Assamese macaques towards the high end of the GRS, who carry
the rarer alleles putatively causing amino acid exchanges in HPA-axis genes. The

buffering effect of strong social bonds on HPA-axis activity seemed to decrease and even
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disappear when moving from individuals at the low end of GRS to the high end of GRS.
Probably, the attenuating effects of social bonds on HPA-axis activity cannot be put into
effect due to an altered HPA-axis regulation and the adaptive benefits of social bonds are
not observable as a cortisol downregulation in all individuals. However, even at high
GRS, male Assamese macaques might still benefit from buffering effects on health
symptoms other than HPA-axis activity, as the benefits of social bonds might go beyond
that on a physiological level, including cardiovascular, neural and immune functions
(Uchino, 2006), and on a behavioral level, including social support in coalitions and
access to resources (Sabbatini et al., 2012; Schilke et al., 2010; Tiddi et al., 2011; Young
et al., 2014b). In Assamese macaques, the strength of social bonds with adult males
predicts agonistic support in immatures, adult females and adult males (Haunhorst et al.,
2017; Minge et al., 2016; Schilke et al., 2010). Female Assamese macaques also benefit
from strong social bonds with males in the form of increased co-feeding tolerance and
food intake rates (Haunhorst et al., 2017). Due to the multidimensionality of the effects of
social bonds, more studies investigating the potentially more nuanced benefits on
variables decoupled from HPA-axis activity are needed.

As risk-taking behavior declined with increasing GRS, male Assamese macaques
probably follow the strategy to refrain from initiating fights, as aggressive interactions are
not only costly with regard to injury risk, but also in terms of cortisol elevation causing
impaired immune functions (Cole et al., 2009; Elenkov & Chrousos, 1999; Godbout &
Glaser, 2006; Padgett & Glaser, 2003; Wittig et al., 2015). Aggressive behavior is linked
to cortisol release (Halasz et al., 2002; Kruk et al., 2004; Wittig et al., 2015). When
already suffering from elevated cortisol levels or an altered HPA-axis regulation, males
can probably not downregulate their physiological stress response as efficiently as others.
Therefore, these males might attempt to avoid situations likely to increase cortisol levels
and thus refrain from initiating aggressive interactions. Dominance rank did not
significantly predict behavioral or endocrine variation in any of the analyses, but showed
a statistical trend to increase risk-taking. This seems plausible, as the actual risks
associated with starting a fight may indeed be lower in higher ranking individuals. To
better identify the different strategies of male Assamese macaques, lifetime data on their
careers will be needed in the wild. These long-term approaches will allow to investigate

whether males with different GRSs have fundamentally different social and reproductive
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strategies and whether mismatches between genotype and reproductive strategy lead to

detrimental outcomes.

Probably, low GRS individuals take more risks and initiate fights to attain higher
social status while benefitting from social buffering by their close bonds, whereas high
GRS individuals are less risk-taking, do not benefit from a social buffering effect on
cortisol levels and might rather cue for dominance. The observed phenotype of males
with high GRS might thus reflect an alternative strategy in which they constantly keep
cortisol levels high and energy mobilized. This rather permanent state of arousal might go
hand in hand with increased social maintenance. These male Assamese macaques might
be more passive in agonistic behavior and rank attainment but take a more active role in
bond maintenance. Alternatively, regarding that at low to no risk in HPA-axis-related
genes the residuals of all responses in study 3 varied more widely than at GRS > 10 %, it
could be hypothesized that male Assamese macaques with low genetic risk are more
flexible in their social engagements and thus show more variation in their behavioral
strategies than individuals with a higher genetic risk, who are probably more constrained.
Lifespan data on male coalitions, reproduction, survival, rank attainment and maintenance
will reveal how individual strategies are shaped by genetic predisposition under natural

selection pressures and how rare alleles are maintained in the wild.

In Assamese macaques male dominance rank, which is predicted by coalition
formation, is positively correlated with reproductive success (Schiilke et al., 2010). On
the one hand, male Assamese macaques with a high GRS probably rather queue for
dominance than to engage in coalitionary aggression to attain a higher rank. On the other
hand, there might exist alternative strategies to increase reproductive success besides
being active in forming alliances or queuing to rise in rank. As female reproductive
synchrony is high and alpha male paternity is relatively low in Assamese macaques (29 %
in PKWS, Sukmak et al., 2014a), a high dominance rank might not be the only way to
increase reproductive success. Probably, the less risk-taking individuals with a higher
GRS invest more in gaining benefits from heterosexual associations. There is support for
the “friends with benefits” hypothesis in Assamese macaques, as male-female association
during the mating season predicts male mating success (Ostner et al., 2013). The
formation of same- and opposite-sex social bonds, low alpha paternity and female
reproductive synchrony in this species builds a basis for different male strategies, that
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could have at least partial genetic predisposition. These predictions need further testing in
the future, including lifetime social and paternity data of males to decipher potentially

different careers.

The findings in this thesis demonstrate that the incorporation of genotype has the
potential to elucidate previously not recognizable patterns in social bonds, proximity
maintenance and the main social buffering effect in wild male Assamese macaques.
Perhaps, the consideration of underlying genotypic effects would also uncover new trends
in previous behavioral ecology studies including also non-findings. For example, mate-
guarding has not been associated with energetic costs in male Assamese macaques
(Schulke et al., 2014), but genetic risk could moderate the effects of mate-guarding and
correlated variables on GC output. Genotype could also influence within-group spatial
position (Heesen et al., 2015), for example if male Assamese macaques are more risk-
taking with decreasing GRS and thus more likely to end up in rather peripheral positions.
Regarding male dominance and aggression, a previous study has demonstrated that GC
levels during the mating season are negatively related with dominance rank and positively
with the amount of aggression received in adult male Assamese macaques, but not in
large subadult males, who are also involved in reproductive behavior (Ostner et al.,
2008a). Also, adult males showed significantly higher GC levels than large subadult
males during the mating season (Ostner et al., 2008a). Hypothetically, a non-random
distribution of functional genetic variants influencing GC levels between the six adult and
the six large subadult males included in that study could have caused these findings to be
interpreted as an age effect. This line of thought gives another example for the importance

of including or at least controlling for genotype.

Regarding the compelling evidence for genotypic contribution to HPA-axis
activity and social behavior in humans, rodents and other model organisms (e.g. Anholt &
Mackay, 2012; Ising & Holsboer, 2006; Maxson et al., 2001; Wasserman et al., 2010), the
general patterns detected in this thesis are unlikely to be limited to Assamese macaques.
The HPA-axis is an evolutionary conserved pathway which is fundamental for many main
body functions in vertebrates (Charmandari et al., 2005; Munck et al., 1984; Schulkin,
2011). With a high probability, polymorphisms in HPA-axis genes can be linked to
similar patterns in other macaque species and probably also in other social mammalian

taxa. Moreover, social buffering is not limited to mammals and studies suggest a shared
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evolutionary origin in vertebrates (birds: Edgar et al., 2015; fish: Faustino et al., 2017).
The impact of genotype on social buffering is likely not unique to Assamese macaques
but constitutes a more universal phenomenon repeatedly observable across the animal
kingdom. The population of Assamese macaques residing in PKWS were ideal to start
studying the genetic influences on social buffering in a free-ranging animal species
because males form strong social bonds with each other (Kalbitz et al., 2016) and the
adaptive value of these social bonds have been previously demonstrated in this population
(Schulke et al., 2010). In addition, samples for molecular analyses could be obtained from
individually identifiable animals in the long-term field project. As a next step, similar
approaches could be tested in macaque species with different social styles in the other

grade classes of macaques (Thierry, 2000; Thierry et al., 2008).

The results in this thesis indicate that variation in the patterns of affiliation and
HPA-axis activity might result from variation in genotype. Consequently, social support
might not have beneficial effects on well-being in all individuals, which could constitute a
relevant informative function in health assessment. To understand how genetic and social
factors interact to influence individual factors that contribute to a broad scope of health
symptoms is crucial to advance clinical applications (Chen et al., 2011a). The processing
of emotions and the susceptibility to disorders are coupled to a variety of neurobiological
processes. A thorough investigation of the genetic basis of neurotransmitter variations
will help to understand these processes (Hill et al., 2018).

5.3.2. An evolutionary scenario

Why do seemingly detrimental alleles still exist within populations? Probably,
because they only appear detrimental by first impression, because (i) we miss some
aspects of the animals’ lives in which certain characteristics would actually be beneficial,
(i) we investigate only a limited time interval with certain physical and social
environmental conditions such as levels of predation risk, food availability, stable or
instable hierarchies, intra- and interspecific competition. Therefore, the data can reflect
only a snapshot of a specific timeframe rather than evolutionary processes. In years,

decades, centuries or millennia some of these environmental aspects may change and
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those individuals who seem “‘genetically vulnerable” at the time point of investigation,
might benefit from their phenotypic characteristics under different circumstances. This
could work in different ways, for example increased vigilance could help during periods
with high predation risk or in the face of high competition (Dobson & Brent, 2013).

Over evolutionary times the balance of different traits may preserve
polymorphisms for different phenotypes in a population. This would cause different
strategies for individuals, depending on the underlying genotype. This evolutionary
phenomenon is called balancing selection, acting for example when there is
environmental heterogeneity over time. As the result of repeated adaptation processes,
balancing selection is considered to be the main mechanism maintaining genetic diversity
(Charlesworth, 2006; Schaschl et al., 2015). Interestingly, a comparison between three
selection scenarios (selective neutrality, mutation-selection balance and balancing
selection) that could explain the genetic variation in personality also revealed that
balancing selection is the evolutionary genetic mechanisms that explains genetic variance
in personality traits best (Penke et al., 2007; Penke & Jokela, 2016).

In the multi-male, multi-female gregarious Assamese macaque living in seasonal
rainforests, fluctuating conditions, including the physical and social environment, such as
climate, food availability, predation pressure, intra- and inter-specific competition,
population density, group size and composition, might impact reproductive success.
Additionally, genotype might play an important mediating role in how individuals react to
these changing circumstances. Genetic variation influencing male Assamese macaques’
HPA-axis activity might cause periodical changes in reproductive success. This might be
caused by differential stress vulnerability, sensitivity to competition (Dobson & Brent,
2013), the availability of partners to form social bonds with and risk-taking behavior.
Risk-taking could be beneficial under circumstances of low or medium predation, low
food-availability and female-biased group compositions, whereas risk avoidance and
hypervigilance could bear advantages during times of high competition and predation
(Dobson & Brent, 2013). Vice versa for example, risk avoidance such as hypervigilance
demands unnecessary energy during times of low or medium predation (Dobson & Brent,
2013). It is also conceivable that a certain age-dependency moderates the pros and cons of
each genotype over the lifetime of Assamese macaques, e.g. factors such as risk-taking

and exploring unfamiliar terrain that could influence infant or juvenile mortality
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(although low in Assamese macaques) as well as male dispersal and reproductive activity.
In male rhesus macaques, the SHTTLPR polymorphism in the serotonin transporter gene
is related to the timing of natal dispersal and reproductive success (Krawczak et al., 2005;
Trefilov et al., 2000). Heterozygous males are more reproductive than homozygous males
at an intermediate age, whereas they are less reproductive at a younger and an older age.
thereby causing the polymorphism to appear selectively neutral because over the males’
lifetimes there is no difference in the total reproductive output (Krawczak et al., 2005).
Similar age-dependent influences of HPA-axis gene variants on reproductive success
could apply also to male Assamese macaques. If increasing GRS leads to generally less
risk-taking behavior, this could lead to later emigration, probably causing them to initiate
reproduction already in their natal group. Additionally, future studies could test how
genotype influences the frequency and nature (alone or in company) of both natal and
secondary dispersal and the integration process after changing into a new social group. A
genotype predisposing for risk-taking could be beneficial in terms of initiating social

interactions with unfamiliar individuals.

Regarding the differentiated formation of social bonds and individuals’ positions
within the friendship network, there is preliminary evidence from human studies
depicting that genetic make-up, including variation in HPA-axis genes, impacts the
clustering or separation of individuals within the social network (Fowler et al., 2009,
2011). These correlated genotypes in social networks indicate that homophily or
heterophily obtain on a genetic level (Fowler et al., 2011). This could result in variation in
the alliances an Assamese macaque forms depending on e.g. the genotypes, personalities
and behavior of the potential partners available in the group, moderated by an individual’s
own genotype. For example, individuals might prefer to invest in relationships with
individuals who have favorable genotypes (Ostner & Schiilke, 2018). In this context, also
indirect genetic effects, where genetic variations in conspecific group members influence
an individual’s phenotype leading to complicated and sometimes non-intuitive
evolutionary consequences, can come into play (Montiglio et al., 2013; Moore et al.,
1997; Wilson et al., 2009; Wolf et al., 1998). Variation in the resulting coalitions could
lead to differences in reproductive success in Assamese macaques (Schulke et al., 2010).
Genotype might thus influence reproductive success in intervals in a positive or negative
way, balancing out the genotypic benefits and drawbacks over an individual’s life time,

generations or millennia leading to similar genotype frequencies.
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Balancing selection is also assumed to be the major mechanism maintaining both
alleles of COMT Val**®Met in humans (Goldman et al., 2009). The counterbalancing
benefits and drawbacks of carrying the Met or the Val allele, including susceptibility to
stress, pain and mental disorders (higher in Met), creativity (higher in Met) and cognitive
performance (better in Met), are summarized in the warrior-worrier balancing selection
model (Goldman et al., 2005; Stein et al., 2006). Regarding heterozygous individuals,
both intermediate phenotypes as well as advantages over both other homozygotes have
been reported, for e.g. working memory and protection from schizophrenia (Costas et al.,
2011; Gosso et al., 2008). Therefore, COMT Val**®Met might also be maintained by
heterozygote advantage, a sub-type of balancing selection. However, another sub-type,
namely negative frequency-dependent selection, has also been proposed to be the
evolutionary mechanism behind the maintenance of this common polymorphism
(Goldman, 2014). This is also one of the most plausible mechanisms proposed for the
maintenance of different personality traits and levels of aggression (Smith et al., 1988;
Smith, 1982; Penke et al., 2007). Considering that the environmental conditions of a
diverse rainforest are very likely to change over centuries and the fact that the genotype
frequencies of COMT Val**®Met in the Assamese macaque population of this thesis were
similar to those observed in human populations, the results might be an indicator that
balancing selection is also the main mechanism maintaining the polymorphism in this

primate species.

Both direct and interaction effects have been attributed to COMT Val'*Met.
Recently, a study on this polymorphism focused on the U-shaped curve of dopamine
activity with both low or high levels being maladaptive (Goldman-Rakic et al., 2000; Hill
et al., 2018; Vijayraghavan et al., 2007). Hill and colleagues (2018) propose more
nuanced relationships for COMT than the dichotomous warrior-worrier model. The
maintenance of genetic variation over time is probably not easy to explain and several
genotypic effects not easy to detect, because they have a more complex mediating role on
phenotypic variation and/or are context-dependent.
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5.4 Behavioral genetics of the HPA-axis

5.4.1 The heterogeneity of defining and measuring HPA-axis activity and

social behavior

The first study on the heritability of hair cortisol was conducted with a non-human
primate, the vervet monkey (Fairbanks et al., 2011). A heritability estimate of 30 % was
recorded during periods of both high and low environmental stress. A review on the
heritability of human cortisol levels reports estimates of up to 84 %, with a high variation
and a median of 52 % (Bartels et al., 2003). A meta-analysis of comparable studies,
however, revealed a heritability of 62 % (Bartels et al., 2003). The 84 % heritability have
been reported for cortisol levels in response to a CRH stimulation (Kirschbaum et al.,
1992). 40 - 69 % have been reported for salivary cortisol under different conditions (e.g.
morning, evening, circadian rhythm, after playing computer games, van Hulle et al.,
2012; Riese et al., 2009; Steptoe et al., 2009; Young et al., 2000) and 65 - 72 % for hair
cortisol (Rietschel et al., 2017; Tucker-Drob et al., 2017). Another interesting case of
heritability of the HPA-axis response was described in an experiment by Federenko et al.
(2004). They measured salivary and blood cortisol, ACTH levels and heart rate of twins
in response to three repetitions of the Trier Social Stress Test (Kirschbaum et al., 1993).
They found that the heritability of all measures was significant and increased from the
first exposure to the stress test (heritability of 8 - 32 %) to the third (all heritability
estimates greater than 97 %). From these results they concluded context-dependent
genetic influences, with higher heritability in low-anxiety, compared to new, anxiety-

evoking situations.

Working with different model systems, conditions and sampling material is
subject to differences in defining and measuring variables. The application of various
methods of measurements in human studies, resulted in different effect sizes and
variances that can be explained by genotype. In study 3, | was able to demonstrate that a
17 %-increase of the GRS was associated with a 20.5 % increase of the response variable
immunoreactive urinary cortisol level. Prospectively, further research on this topic might

reveal higher or lower effect sizes depending on sampling material (e.g. urine, feces,
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saliva, hair, blood), protocols, time and frequency (Bartels et al., 2003). This thesis
contributes to the general understanding of an underlying genetic basis, which can be

elaborated on in future studies, e.g. by testing more situation-specific setups.

Differences in the study design and the measurements of aggression have also
been discussed as a weakness in meta-analyses on the heritability of aggression, which
yield estimates between 40 and 56 % in humans (Ferguson, 2010; Miles & Carey, 1997,
Rhee & Waldman, 2002). Issues might emerge from the inconsistencies of the applied
questionnaires and a neglect of the difference between aggression and antisocial behavior
(Qayyum et al., 2015). Antisocial behavior is by definition always aggressive, but not
vice versa. To classify as an antisocial behavior, an action must be out of proportion to a
complex or provoking stimulus and the affected individuals must suffer from a
disadvantage due to a violation of social norms (Baron & Richardson, 1994; Ferguson,
2010; Qayyum et al., 2015). Further, it has been criticized that aggression is treated as a
single behavior (e.g. Wrangham, 2018). Aggression can be divided into several
subclasses, with reactive and proactive aggression being a commonly used distinction.
Proactive aggression refers to a planned attack with a purpose to reach some kind of goal,
whereas reactive aggression is an reaction to a frustrating or threatening event
(Wrangham, 2018). The division between proactive and reactive aggression is supported
by data indicating different neural bases between those two aggression subtypes
(Dambacher et al., 2014, 2015). A moderate heritability for both types of aggression has
been reported, for example 27 - 42 % for reactive and 39 - 45 % for proactive aggression
in humans (Paquin et al., 2014). Another longitudinal study found a 48 % estimate for
reactive and a 85 % estimate for proactive aggression (Tuvblad et al., 2009). In non-
human primates it is assumed that proactive (e.g. infanticide) is rare compared to reactive
aggression (e.g. most agonistic interactions that arise for example from mate or food
competition, Lukas & Huchard, 2014; Wrangham, 2018). A recent study, however,
demonstrated the importance of social environment, e.g. rank and sex, for the propensity
of Barbary macaques to employ reactive or proactive aggression (Paschek et al., in press).
If of interest, the distinction between reactive and proactive aggression could also be

emphasized in future studies on the genetic foundations of aggression in wild macaques.

A split picture for the effects on phenotypic variation also emerged for the human
COMT Val**®Met polymorphism. On the one hand, some of the associations have been
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replicated (e.g. Bouma et al., 2012; Quednow et al., 2009; Strous et al., 2003) and two
meta-analyses found an overall effect of COMT Val'*Met on schizophrenia and suicide
(Bhakta et al., 2012; Kia-Keating et al., 2007; Singh et al., 2012). In a neurological meta-
analysis COMT Val**®Met explained 12 % of the variance in tests of prefrontal activation
(Mier et al., 2010). In response to adverse stimuli, COMT Val'*®Met explains 13 - 38 %
of the variation of prefrontal cortex reactivity as a single polymorphism (Drabant et al.,
2006; Smolka et al., 2005). Considering the usually rather small effect sizes for single
loci, COMT Val'*®Met appears to play an exceptional role in the emergence of certain
phenotypic characteristics. On the other hand, the SNP did not withstand a meta-analysis
on violent and aggressive behavior (Vassos et al., 2014). In a recent review on aggression
and COMT Val'*®Met, Qayyum et al. (2015) point out that inconsistent findings and
meta-analyses are not surprising considering the differences in assessing aggression as

well as differing age and sex ratios of participants in these studies.

In addition to cortisol and aggression, genetic influences on personality and social
behavior have also gained attention in behavioral genetics and approximately 50 % of the
variation of certain traits are explained by genotype (Barban et al., 2016; Ebstein et al.,
2010; Ferguson, 2010; Mills & Tropf, 2015; Plomin et al., 2016; Robinson et al., 2008).
For example 56 % of human antisocial personality and behavior can be explained by
genetic influences (Ferguson, 2010). Further, most aspects of relationships between
parents and offspring, siblings, friends and spouses underlie substantial genetic influences
(Plomin, 1994; Plomin et al., 2013; Ulbricht & Neiderhiser, 2009). This also holds true
for the types of friends individuals choose (Beaver et al., 2009; lervolino et al., 2002;
Plomin et al., 2013). Notably, these findings on family, peer and romantic relationships
are mainly based on self-, parent- and/or peer-reports and questionnaires designed to
measure specific relationship aspects such as satisfaction with the relationship, closeness,
passion, relationship quality, habits of their friends, attachment, involvement and peer
preferences. Regarding the genetic underpinnings of sociality, social science has mainly
focused on factors in criminology, demography, education, intelligence and topics in
social psychology. The influence of genotype on day-to-day social interactions is not well
explored, neither in humans nor in non-human primates. In humans social bonds are
measured mainly on an emotional and not a behavioral level. Besides questionnaire-based
studies, some cases applied social network analysis and reported correlated genotypes in

friendship networks (Fowler et al., 2011) and genotypic influences on social network
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positions in social and agonistic networks of humans and macaques (Brent et al., 2013;
Fowler et al., 2009; Lea et al., 2010). Research on sociality in laboratory rodent models is
mostly limited to quick experimental assays like test batteries (Kaidanovich-Beilin et al.,
2011; Silverman et al., 2010; but see Konig et al., 2015). In wild primate studies measures
are not generated from ratings or questionnaires but derive from direct observation of pre-

defined naturally occurring behaviors in the group.

Such direct measurements of HPA-axis activity and aggression were applied in
the studies 2 and 3 (chapter 3 and 4). In this thesis, the cortisol levels reflect the natural
range and not responses to artificial tests or hormone administrations. Social behavior
was recorded based on standardized protocols and pre-defined variables from an
ethogram. The results demonstrate the effects of genotype on naturally occurring HPA-

axis activity behavioral variation.

The mentioned differences between studies, including non-standardized age and
context-control, might explain the mixed findings in behavioral genetic approaches. This
applies to heritability measures as well as to single and multi-locus approaches.
Regarding the frequent behavioral genetics approach to investigate the heritability of
traits in humans, it must be pointed out that it has demonstrated the importance of genetic
impacts, but it allows only to identify a general genetic basis, and not which genes are
involved in certain traits in particular. Of the numerous polymorphisms occurring across
the genome, the majority is benign, some are advantageous, protecting individuals under
adverse conditions, and some are malign because they directly impair phenotypic traits,
cause diseases or increase the susceptibility for certain conditions (Manolio et al., 2009;
Manzoni et al., 2018; Williams, 2006). It has been a longstanding aim to decipher the sets
of genes that are involved in the emergence of complex phenotypic traits like stress
resilience and social behavior. This thesis contributes to that by identifying new
putatively functional polymorphisms in HPA-axis genes and associating them with
cortisol levels, aggression rates, social bonds as well as their maintenance and buffering
effects. However, especially candidate gene associations rely heavily on repeated
associations, which is why the results presented here should be confirmed by replication.
Regarding the direct measures resulting from quantification of behavior and hormones in
non-human primate studies, replication studies could be conducted relatively easy and be
a major contribution to a clearer picture of genotype-phenotype associations. When
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behavioral genetics approaches increase in wild primate studies, this might help to
forestall a replication crisis. With respect to the significant impact of the COMT
Val*®Met polymorphism, its detection and linkage to a similar phenotype in a non-human
primate (chapter 3), this thesis represents an important step towards understanding
individual variation in aggression and may substantiate future studies on the evolutionary

roots of inter-individual variation in human aggression.

5.4.2 The effects of social bonds

Besides the issues with defining and measuring aggression and HPA-axis activity
(chapter 5.4.1), there also exist differences in how social bonds and social buffering are
measured. Already in the early days of the social buffering hypothesis, Cohen and McKay
(1984) pointed out that despite the large body of research on the social buffering
hypothesis, the results are inconclusive, probably due to methodological inconsistencies.
In the literature on social support and health, important sources of the mixed findings are
also the measurement and conceptualization of social support (Uchino et al., 1996). These
measures range from being structural (e.g. network analyses) to functional (e.g. emotional
reporting, Uchino et al., 1996), can be direct or indirect (Ostner & Schiilke, 2018) and
include perceived or real support (Holt-Lunstad et al., 2010).

In captivity, studies can investigate interaction effects and often focus on the
negative impacts of social isolation by stressing individuals with their close social
partners being present or absent (Cacioppo et al., 2015; Cole et al., 2015; Hawkley et al.,
2012). In the wild, studies primarily focus on the positive impacts of the presence of
social partners (Wittig et al., 2016; Young et al., 2014a) and socio-positive behavior as a
mechanism to cope with stressors (Cheney & Seyfarth, 2009; Crockford et al., 2008;
Wittig et al., 2008). In this thesis, | investigated genetic contribution to the main buffering
effect with regard to male-male social bond strengths and average cortisol levels
reflecting everyday stressors in a wild primate population. No interaction effect was
tested because it was not feasible to track variation in a relevant stressor and the HPA-
axis response on a fine-enough temporal scale. This would be, however, possible under

experimental conditions or in other species in which endocrine samples can be assigned
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to single stressful events (e.g. Preis et al., 2018; Wittig et al., 2015). The combination of
using objective measures of social behavior in wild animal studies, like proximity, body
contact and grooming in the CSlI, and the application of genotyping might help to clarify
the inconsistencies in the current literature and extend our knowledge on mechanisms
behind social phenomena like the formation of long-lasting strong social bonds and social

buffering.

Currently, it is generally assumed that having social bonds can reduce stress and
promote health (Hennessy et al., 2009). Early studies on the link between sociality and
fitness in female baboons, demonstrated that social bonds enhance longevity and
offspring survival (Archie et al., 2014; McFarland et al., 2017; Silk et al., 2003, 20009,
2010b). Up to now, the mechanisms linking sociality to fitness are not yet completely
understood, but partly this phenomenon has been explained by agonistic support assisting
in rank acquisition and protection from harassment, social buffering and mitigated
physiological stress, increased access to resources, reduction of predation risk and
thermoregulation (Campbell et al., 2018; Ostner & Schulke, 2018). Thermoregulative
effects include lower energy expenditure in wild Barbary macaques with more social
partners that form larger huddles (Campbell et al., 2018), higher homeothermy and lower
hypothermy in vervet monkey with a greater number of social partners (McFarland et al.,
2015), increasing stress-alleviating effects of the strongest social bond with decreasing
daily temperatures in wild male Barbary macaques (Young et al., 2014a) or greater
survival of individuals with many grooming partners in cold winters (Lehmann et al.,
2016).

Hitherto, it has been assumed that strong social bonds have positive effects on
fitness, but recent findings suggest that strong social bonds do not necessarily increase
fitness in all gregarious primates and can even be costly under certain circumstances
(Thompson & Cords, 2018). Therefore, the effects of social bonds are probably not as
simple and unidirectional as previously assumed. In humans, the effects of social
relationships might be additionally mediated by negative feelings like anxiety, loneliness
and depression (Lee & Robbins, 1998, 2000; Williams & Galliher, 2006). Some aspects
of social relationships might even be sources of stress, which balance out the ameliorative
effects of social support (Thoits, 2011). In a study on blue monkeys (Cercopithecus mitis
stuhlmanni), Thompson and Cords (2018) argue that the effects of social bonds on

121



General discussion

longevity are context-dependent and can even lead to increased mortality risk under
certain circumstances in this species. This happens to be the case when top partners
change and are not consistent over time (Thompson & Cords, 2018). Seyfarth et al.
(2012) also speculated that a generally high social activity without a strong discrimination
might carries costs for female baboons (Papio hamadryas ursinus). In capuchins (Cebus
capucinus imitator), infants of highly social females are at a greater risk of dying during
alpha male rank changes than infants of less social females, whereas the offspring of
highly social females has a higher survival probability during stable periods (Kalbitzer et
al.,, 2017). Further, the findings of a recent study on female baboons (Papio
cynocephalus) challenge the causal connections between sociality and longevity (Tung et
al., 2016). In their study, Tung and colleagues (2016) demonstrate that adversity during
early lifetime predicts both later social integration and longevity. Therefore, social bonds
might not increase longevity directly, but rather could be a signal of a common
underlying driver of sociality and longevity. Besides such early environmental influences
on later sociality, additional mechanisms, like underlying genetic constitution, might also
impact the patterns of social bond formation. In the future we need to determine whether
genetic make-up acts similarly in affecting both adult sociality and fitness outcomes to
generate a pseudo-correlation between the two variables. The results of this thesis
contribute to our understanding that a significant proportion of sociality is probably the
outcome of DNA variation, something existent in individuals even before the actual
formation of social bonds. In this sense individuals might match their social activities to

their genotype.

To my knowledge, this is the first study to look at the effects of social bonds in a
behavioral genetics approach in wild non-human primates. Social support is a
multidimensional construct (Uchino et al., 1996) and the results of this thesis also support
the notion that examining the impacts on different levels is seminal for a further
clarification in this research field. Probably, an individual’s genetic constitution
influences the effectiveness of strong social bonds as a buffer against adverse effects of
stress. Furthermore, genotype might influence which benefits of social bonds can or
cannot come into effect. Physiologically, cortisol levels might not be ameliorated,
whereas other potential bonding effects on adrenaline, oxytocin or arginine vasopressin
(Crockford et al., 2017; Kikusui et al., 2006; Koolhaas et al., 2017; Takahashi et al.,

2015) might not be altered. Genetic aspects are commonly not a part of reviews on social
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buffering (e.g. Hennessy et al., 2009; Kikusui et al., 2006; Kiyokawa & Hennessy, 2018),
but this should change in the future and genotype mentioned as a potential source of

variation.
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5.5 Mammalian model organisms for the study of behavioral genetics

5.5.1 From mice to men

The mouse is probably the main mammalian model organisms and a prototype of
behavioral genetics (Lindzey & Thiessen, 1970). In particular, mice are highly valued for
helping to identify genes and polymorphisms as well as understanding their functionality
(Plomin et al., 2013). Studies on COMT and MAOA knockout mice were conducted
following first evidence for a functionality from variation in these genes in humans
(Cases et al., 1995; Gogos et al., 1998). Besides target knockout mice, studies on inbred
strains are also common. Thousands of mice strains are available to researchers, who can
choose between different databases to find strains with requested genotypes and
phenotypic differences in e.g. anxiety, cognition and stress-reactivity (e.g. Mouse
Phenome Database, Flint, 2011; International Mouse Strain Resource, Eppig et al., 2015).
Recent technological advances like the gene-editing tool CRISPR are promising that in
the future genotype modifications will be realized in living organisms (Hess et al., 2017;
Murugan et al., 2017; Sternberg & Doudna, 2015). While the standardized studies on
genotyped mice of course offer an immense research potential, their application is usually
restricted to laboratory-reared, experimental conditions and invasive methods, and only

partly help to understand genotypic effects on naturally occurring behaviors in the wild.

Besides mice, humans are among the best-studied vertebrate species in behavioral
genetics. The human and the mouse genome are of similar size: 3500 MB, which would
equal 3000 books of 500 pages each (Plomin et al., 2013). Both were sequenced around
the turn of the century (2001 and 2002, Chinwalla et al., 2002; International Human
Genome Sequencing Consortium, 2001; Venter et al., 2001) and around 90 % of the
mouse genes have orthologues in the human genome (Gibbs et al., 2004). However, the
mouse fails to mimic several aspects of primate — including human — physiology and
behavior like immunity, metabolism, reproduction and complex sociality (Elsea & Lucas,
2002; Ezran et al., 2017).
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Mice are investigated under laboratory conditions. Human subjects live in their
present-day natural habitat, but the measures entering the statistical models are usually
the results of experimental tests, ratings and questionnaires and not objective quantitative
measures of how individuals really behave in their daily live. Human behavioral genetics
is particularly sophisticated in research on the general heritability of traits, but there are
still many unresolved issues concerning which gene variants determine phenotypic
variation in which way. In humans it is difficult to get at daily face-to-face interactions
and social relationships are additionally linked to emotion and culture (Fletcher et al.,
2015). The ability to measure the occurrence of natural behavior in everyday life is one of
the outstanding characteristics of primatology. Long-term field studies on habituated
primates that can be individually identified facilitate data collection to combine
phenotypic and genotypic variation. Oddly, in non-human primates it is seemingly better
investigated how behavior predicts gene structure than how genetic variation predicts
behavior (e.g. Altmann et al., 1996; Kalbitzer et al., 2016; Kopp et al., 2015).

As we learn more about behavioral genetics in natural animal populations, we are
also learning more about shared biological processes with humans and ancestral and
derived characters of human traits. Looking at the phylogenetic tree, numerous species
exist between mice and humans, but have not received much attention in behavioral
genetics yet. There appears a huge gap of targeted and well-studied species. Even our
closest relatives, the non-human primates have been relatively understudied in this field.
With this dissertation, | started to partly close this gap by introducing the application of
behavioral genetics to wild groups of macaques expressing natural behavior in their
undisturbed habitat. | provide evidence for the genetic basis of natural primate behavior
and hormone levels, which is essential to understand the emergence of individual

phenotypic patterns.

5.5.2 The genus Macaca in the lab and the wild

Macaques share similarities in their development, immunology, neuroanatomy,

behavior and genes with humans and have the potential to be superior animal models
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(Geyer et al., 2000; Gibbs et al., 2007; Kalin et al., 2007). The study of non-human
primates, especially macaques, is an important aspect of the broader field of behavioral
genetics, but has been particularly highlighted with regard to stress-related research
(Ferguson et al., 2012; Meyer & Hamel, 2014; Phillips et al., 2014; Vallender & Miller,
2013). The macaque genome includes polymorphisms orthologous to the human gene
variants implicated in HPA-axis regulation, including variants in COMT (chapter 3),
MAOA (Newman et al., 2005; Wendland et al., 2006), OPRM1 (Miller et al., 2004) and
SLC6A4 (Bennett et al., 2002). However, most trans-species polymorphisms between
humans and non-human primates have been detected in immunological genes (Cagliani et
al., 2008, 2010, 2012). The number of detected trans-species polymorphisms across non-
human primate species is higher, probably due to less clear taxonomic demarcations (e.g.
Macaca: Higashino et al., 2012; Li et al., 2009; Satkoski-Trask et al., 2013; Street et al.,
2007; Papio: Charpentier et al., 2012; Keller et al., 2010; Zinner et al., 2013).

So far, the COMT Val*®®Met polymorphism has not been regarded as a trans-
species polymorphism, but as a unique feature of humans (Palmatier et al., 1999; Chen et
al., 2004), although investigating only one to two individuals per species cannot exclude
the existence of a polymorphism. This thesis now demonstrates that in fact the SNP is not
unique to humans, but also present in Assamese macaques, which is suggestive of the
presence of the polymorphism in further macaque species. How variations in individual
genes in macaques mimic that seen in humans advance the utility of macaques as model
organisms in human-related research (Vallender & Miller, 2013). Future studies
investigating this locus in several other species will contribute to a broader understanding
of the taxonomic distribution of this polymorphism and give insights about the

evolutionary roots of this genetic variation.

Investigating more than one HPA-axis-related locus in parallel, a previous study
gave important first insights about genetic predispositions of HPA-axis dysregulation by
showing that certain risk genotypes explain the extreme values of adrenocorticotropic
hormone suppression in response to dexamethasone administration in captive male rhesus
macaques (Ferguson et al., 2012). In addition, this thesis extends the current knowledge
by (i) investigating the natural variation of cortisol instead of responses to a
dexamethasone suppression test, (ii) demonstrating genetic predisposition in a wild

population with a natural combination of individual genotypes, (iii) including all
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individuals, not just those at the extreme ends of the hormone range, (iv) adding the
investigation of risk-taking, social buffering and proximity maintenance. To get at
cortisol levels typically experienced by individuals when faced with everyday stressors,
we collected and averaged several urinary cortisol samples. By including all individuals
and not only the extremes we covered the full breadth of naturally occurring phenotypes
and demonstrate that genotype contributes also to normal variation and not only
abnormalities or extremes (Plomin et al., 2013). Nevertheless, compared to laboratory
colonies our study has limitations due to smaller sample size and, as discussed before, the

potential confounding variable of relatedness.

The investigation of wild primates, particularly in long-term field projects, holds
the potential to expand the knowledge on their natural ecology and behavior and to
simultaneously gain new insights into the evolutionary history of humans, current
differences and similarities with non-human primates. This can help for example to
elucidate the evolutionary origins of technical skills, tool use, culture, complex
vocalization, stress-related drawbacks or benefits, the nature of long-lasting social
relationships, the necessity of close bonds and other aspects of human social evolution
(e.g. Byrne, 2007; Haunhorst, 2017; de Waal, 2009). In all probability, the here reported
effects are not unique to Assamese macaques but apply to macaques in general. Going
one step further, similar patterns could probably be detected in many other mammalian

species living in social groups.

| expect the results in this thesis, together with continuative future work, to
contribute to a reinforcement of the macaque animal model in behavioral genetics. In this
respect, data collection from long-term field projects, which exist for different macaque
species, will provide insights into the genetic foundations of the natural behavioral range
and physiological phenomena like social buffering. Regarding the linkage between
neuropsychiatric diseases and HPA-axis dysfunction in humans (e.g. alcoholism, major
depressive disorder, posttraumatic stress disorder, schizophrenia, Carroll et al., 1976;
Goeders, 2003; Goodyer et al., 2009; de Kloet et al., 2005; Walker et al., 2008; Yehuda,
1997), the study to understand these traits will require standardized environmental
conditions with the possibility to investigate responses to fine-tuned changes. Therefore,
research on non-human primates in captivity, in order to understand the development of

disorders (e.g. alcoholism in rhesus macaques, Phillips et al., 2014; Schwandt et al.,
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2010), is also necessary, besides the investigation of naturally occurring, wild

populations.
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5.6 Conclusions and future directions

This thesis advanced the current state of the art by (i) introducing a novel
genotyping panel useful for the investigation of stress and aggression, (ii) demonstrating
that one of the most widely studied human polymorphisms also exists and has similar
effects in other species, (iii) responding to recent requests and assessing multiple genes
known to affect HPA dysregulation simultaneously instead of the standard procedure of
only one or few, (iv) linking HPA-axis-related genetic variation to natural cortisol levels
and behavioral patterns instead of psychological disorders or questionnaire-based studies
in the case of humans, (v) providing first insights into the genetic influences on social
buffering effects in non-human primates and (vi) narrowing the research gap between

mice and humans in behavioral genetics and physiogenetics.

Integrating state-of-the-art, non-invasive, molecular methods in research on inter-
individual differences in a wild primate population, | took the consequent next step
following the current standard of knowledge to provide new perspectives on the
connections between HPA-axis genotype and phenotype in field studies. The preceding
chapters demonstrate that genetic factors account for sizable proportions of individual
variation. By considering the influence of genetic variation on physiology and behavior in
wild animal populations, we can begin to close important gaps in our current
understanding of phenotypic variation. For example, variants in the genetic constitution
of macaques may allow individuals to realize different behavioral strategies depending on
the context. Certain allelic combinations may provide protection against, or increase
sensitivity to stress (Craig, 2007). Genotype is a potent contributor to phenotypic
heterogeneity. It is of interest to figure out how and how much of individual variation is
explained by variation in gene loci, even if this information is further only used to
estimate which explanatory proportion we are missing when ignoring it, or rather how

much of the variation is left to be explained by environmental factors.

Finally, | want to give some ideas for prospective studies by which future research

could contribute to our current understanding.

First, it is necessary to additionally acquire kinship data to investigate whether the

detected genotype-phenotype associations, particularly those in in study 3 (chapter 4),

129



General discussion

withstand controlling for relatedness. As outlined before in the limitations section,
accounting for population structure will allow for a more valid interpretation of the data.
It is possible that including kinship relations could devour the variation in the GRS, as
related individuals may share the same variants in HPA-axis genes. Therefore, the next
intended step is to get at dyadic relatedness data and reanalyze the genotype-phenotype
associations. Microsatellite markers are currently being analyzed in the Assamese

macaques of PKWS and will allow to control for relatedness in the near future.

Second, | would suggest applying the genotyping panel to another species. The
next step for this approach would probably be the application to another macaque species.
The panel could be applied to macaque species from the other phylogenetical species
groups and to more egalitarian and despotic species to detect possible differences in
HPA-axis genes between them and compare it with behavioral traits. This might shed
light on the underlying causes of differences in social styles in macaques. Further, the
panel could also be applied to the sister clade of the macaques, the baboons, and later also
to other taxa. Some DNA bases might differ, but mismatches can easily be checked for
and new primers designed rapidly. Considering that the genotyping panel was designed
for rhesus macaques, but worked for the Assamese macaque study species, it is very

likely that the panel is also applicable to other macaque species in its present form.

Third, the approach could also be extended to fully include female and juvenile
individuals. Age and sex effects can play important roles in behavioral genetics,
behavioral biology and endocrinology including HPA-axis activity (Herman et al., 2016;
Kudielka et al., 2004, 2005; Mitchell, 1979; Perry, 2013; Seeman et al., 2001; van der
Voorn et al., 2017). In Assamese macaques, for example, females express lower rates of
aggression than males (Gutleb et al., 2018b, chapter 3) and large subadult males have
lower GC levels than adult males during the mating season (Ostner et al., 2008a). It will
be interesting to decipher the impact of biologically relevant age classes with distinct
changes in physiology and behavior on the correlation between genotypic and phenotypic
variation. In humans some traits like personality and aggression are stronger correlated
with genotype during younger age, while individuals sharing genotypic variants become
more similar to each other in e.g. their cognitive abilities at an older age (Ferguson, 2010;
Plomin et al., 2013, 2016; Plomin & Deary, 2015; Tucker-Drob et al., 2013). The

incorporation of age might also aid in better understanding the social buffering
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phenomenon, as age-specific changes in the ability of female opposite-sex conspecifics to
ameliorate HPA-axis responses during stress exposure have been reported (e.g. in guinea
pigs, Hennessy et al., 2006). Regarding that many of the behavioral genetics findings
have been specific to a certain sex and age class, their consideration in future studies
might help to generate more standardized and replicable results and to decipher which

genotypic effects are generalizable and which ones are sex- or age-specific.

Fourth, the genotype-related investigation of the social buffering phenomenon
could be extended by investigating also the interaction effect hypothesis, which predicts
that social bonds have attenuating effects on HPA-axis activity only during stressful
events. This thesis focused exclusively on the social buffering main effect, which predicts
that social bonds have a general attenuating effect on HPA-axis activity. The genetic
contribution to the interaction effect could be investigated with another study design
using acute stressors. Probably, another study species which urinates more often and
where single stressful interactions can be assigned to certain urine samples, e.g. as it is the
case in chimpanzees (Preis et al., 2018; Wittig et al., 2015), could be used for this
approach. There is evidence for both the main and the interaction effect hypotheses and
they do not have to be mutually exclusive (Cohen & Wills, 1985). Probably, each effect
underlies a different mechanism and by more fine-graded experiments we could extend
our knowledge on what the general benefits of social bonds are and which benefits come
into complete effect only during stress.

Fifth, an individual’s genetic constitution probably influences with whom it has
strong social bonds and its responsibility for the maintenance of these bonds. With this
respect, an individual’s social relationships might correlate with its genotype. An
important factor for the maintenance of strong relationships is time investment (Dunbar,
2018; Roberts, 2010; Roberts et al., 2009). Individuals have only a certain time budget
which they can allocate to affiliative behaviors. Therefore, individuals are probably
limited in how many strong relationships they can maintain. Regarding the constraints in
how an animal can allocate its time to different activities, the question arises in whom
individuals invest their social time and with whom they form social bonds with. Kinship,
age and rank relationships do not explain all of the observed variance in bonding patterns.
So far, genotype data has mainly been included to investigate effects of relatedness on
bond strength. The consideration of genotype in the study of social relationships might
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reveal alternative scenarios to explain social data (Reiss, 2010), but how wild primates’
genotypes contribute to partner relationship and partner choice in a broader sense is not
known. In this regard it will be interesting to investigate possible moderating effects of
HPA-axis genotype on the formation of social bonds taking into account the available
partners and partner features such as genotype and dominance rank. Probably closeness in
the social network (Fowler et al., 2011) or friendly behavior towards higher ranking
individuals (Seyfarth et al., 2012) reflect specific preferences or social strategies. With
the time constraint in mind, the investigation with whom individuals spent time with and
if this can be explained by an underlying genetic component will reveal new insights into
the mechanisms behind social bonding. Investigating this in the wild will constitute a
challenge due to the necessity of large amounts of long-term data reflecting different
environmental conditions and it is most likely more feasible to elaborate on these
hypotheses under experimental conditions manipulating individual’s social environment

(e.g. Snyder-Mackler et al., 2016b; Tung et al., 2012).

Sixth, personality could be assessed additionally for the species of interest to
investigate how personality and genotype can explain individual variation in combination
or in isolation. In conjunction, personality and genotype might explain a larger proportion
of the individual variation. Genotype could also be a main predictor of personality and
lead to different personality types directly, or by interaction with experience in times of
personality development. An HPA-axis candidate locus in AVPR1A has been associated
with personality in chimpanzees (Wilson et al., 2017) and a recent study including loci in
AVPR1A, OPRM1 and SLC6A3 in captive common marmosets (Callithrix jacchus) found
associations with hair cortisol levels and personality domains, but calculated associations
for each SNP separately (Inoue-Murayama et al., 2018). The application of an integrated
multi-locus approach might therefore also be promising to gain more insights into the

relationships between genes, personality as well as behavioral and endocrine phenotypes.

Seventh, long-term data are good, life-time data are better. Coming back to
classical primatology studies on social bonds, survival, fitness and longevity (e.g. Cheney
et al., 2016; Schilke et al., 2010; Silk et al., 2010b; Tung et al., 2016) individual life-time
data could be combined with genotype and social data. Variation in an HPA-axis gene
(DRDA4) has been associated with longevity in mice and humans (Grady et al., 2013). The
DRD4 7R allele is cumulated in humans aging 90 or older. In accordance, DRD4
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knockout mice have a 7 - 9.7 % decreased lifespan. It is assumed that the effect is
mediated by DRD4 affecting responses to the environment and health-related habits like
physical activity, thereby indirectly affecting longevity (Grady et al., 2013). This could
also be true for social bonds, if being an outcome of underlying genotype, then
influencing fitness and/or longevity indirectly. Lifespan data on male reproduction,
survival, coalitions, rank attainment and maintenance will reveal how individual
strategies are shaped by genetic predisposition under natural selection pressures and how

rare alleles are maintained in the wild.

Eight, other pathways than the HPA-axis could be set in the focus of research.
Depending on the phenotypes of interest, which could range from infant behavior and
maternal care to health markers and aging, corresponding genes could be scrutinized. The
genotyping panel in this thesis could be extended accordingly or completely new panels
could be designed. For example, opioids might also play a role in social buffering
(Kikusui et al., 2006) and more genes coding for respective receptors and the endogenous
peptides themselves could be added to the genotyping panel. The integration of more and
more gene loci could lead to a better predictability of individuals’ phenotypic aspects.
Regarding novelty seeking, maternal care and the formation of social relationships,
opioid, oxytocin and dopaminergic pathways are highly interesting (Higham et al., 2011,
Pearce et al., 2017). These pathways are also promising due to the conservation of the
neuropeptide system in vertebrate sociality (Donaldson & Young, 2008).

My ninth and last suggestion is probably the easiest to conduct: replicate! Unlike
in many other research disciplines, replication studies are highly valued and well
publishable in the field of behavioral genetics. Thus, the results from this thesis could be
replicated in the future to investigate how stable the results are. In a few years’ time, new
macaques will grow adult and some of the physical and social environmental conditions
might have changed or stayed the same. Reproduced results will help to make clearer

statements about stable effect sizes and the implications for future studies.

It would also be interesting to look at long-term cortisol in hair samples and
validate the functionality of the COMT Val**®Met and other polymorphisms. Considering
the difficulties in hair sample collection, validation and that there is currently no
knowledge about hair growth patterns in Assamese macaques, and the lack of sufficient

captive Assamese macaques from whom invasive samples from all genotypes could be
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collected, there is still some way to go before these approaches can be implemented. In
this sense, working with wild animal populations involves several constraints, but offers
the possibility to gain a comprehensive understanding of naturally occurring genotypic
and phenotypic patterns.

As a closing remark, | would like to emphasize that often genetic and socio-
ecological approaches both have a shared objective: the explanation of individual
variation. The debate about nature or nurture is over, today we know that genes and
environment act in concert to influence individual variation, while the respective impacts
vary across traits. Studies in behavioral ecology can make use of Tinbergen’s four levels
of analysis (ultimate: adaptation and evolution, proximate: causation and development,
Tinbergen, 1963) to gain an integrative understanding of behavior. Future research is best
advised to include the complementary proximate and ultimate categories to explain larger
proportions of individual variation and elucidate previously unidentified patterns in social
phenomena and strategies. To say it with the words of Jeffrey Rogers: “My own view is
that the field of NHP [non-human primate] behavioral genetics is a vibrant and
productive aspect of primatology, and that it has outstanding potential for significant

discoveries and advances in the near future” (Rogers, 2018, p. 33).
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Study 1

(h) GATK
l SAMtools
(d) GATK

dtools

Figure S1.1: Sum and overlap of called variants using GATK and SAMtools pipeline (a) without any
filtering, (b) with GATK-filtering, (c) with GATK-filtering and Phred score (QUAL) quality filter > 30, (d)
with GATK-filtering and QUAL > 100.
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Table S1.2 Statistics of the next-generation sequencing

# Raw reads Average quality of raw reads # Quality trimmed reads Average Quality of quality trimmed reads % Reads of Average
. # Reads Average .

Library raw reads Stdev mapping Stdev

forward  reverse forward Stdev reverse Stdev forward  reverse  forward  Stdev  reverse  Stdev  Mapped mapped depth quality
1.00 147970 147970 37.24 317 36.93 3.19 131325 131325 37.55 3.16 3744 316 130467 88.17 359059 2624.13 59.25 5.62
2.00 145994 145994 3728 3.18 36.05 3.11 136746 136746 37.65 3.17 36.93 3.13 136196 93.29 3560.17 2782.03 59.49 458
3.00 135725 135725 37.32 319 36.70 3.17 122236 122236 37.74 317 3735 315 122053 89.93 3017.96 2583.07 59.09 6.10
4.00 148135 148135 37.39 318 36.69 3.17 116775 116775 37.81 3.17 3736 314 116706 7878 293578 2563.26 59.20 6.55
5.00 159115 159115 37.24 317 36.97 3.17 145722 145722 37.54 3.16 37.46 3.17 145054 91.16 3961.50 2738.63 59.68 4.23
6.00 179069 179069 37.28 320 36.64 3.19 169642 169642 37.63 3.18 3718 316 166888 9320 3663.64 2837.66 58.38 839
7.00 128607 128607 37.31 322 36.87 3.18 107646 107646 37.68 3.22 37.40 3.16 96158 7477 2650.97 2604.67 52.58 18.81
8.00 179757 179757 3749 319 3594 3.07 149507 149507 37.89 3.18 36.65 3.10 149351 83.08 3500.47 2676.28 59.30 4.95
9.00 197181 197181 37.46 318 3591 3.13 161805 161805 37.90 3.18 36.77 312 161023 81.66 358577 2871.33 5935 4.94
10.00 132420 132420 3743 319 36.87 3.15 111624 111624 37.79 3.19 37.43 3.14 111473 84.18 3168.96 2550.15 58.84 598
11.00 153373 153373 3745 324 37.04 316 125638 125638 37.79 3.23 3753 316 124509 81.18 342433 2501.10 59.43 5384
12.00 161244 161244 3750 3.18 36.97 3.16 153808 153808 37.83 3.18 3741 315 15379 95.38 327424 2517.92 59.95 163
13.00 126499 126499 37.34 318 3556 3.07 106951 106951 37.82 3.17 36.55 3.10 106793 84.42 2471.86 2365.31 58.39 7.05
1400 108165 108165 37.40 3.20 36.83 3.25 91012 91012 37.78 317 3738 320 90965 84.10 2584.88 2375.65 59.66 3.54
15.00 196348 196348 37.60 3.22 37.34 320 186478 186478 37.88 3.19 3772  3.18 186433 9495 3557.31 2696.52 59.84 255
16.00 203164 203164 3750 3.20 36.67 3.15 144119 144119 37.87 3.18 37.29 3.15 140717 69.26 2954.15 2762.15 5849 9.22
17.00 170053 170053 37.50 3.20 36.66 3.18 122226 122226 37.85 3.18 3730 315 122021 7175 316134 2786.15 59.77 3.33
18.00 133547 133547 3743 319 36.79 3.18 113472 113472 37.87 3.19 37.44 3.15 113269 84.82 3185.02 2485.95 59.71 3.20
19.00 163172 163172 37.47 322 36,57 3.13 147963 147963 37.87 3.19 37.13 3.13 147936 90.66 3573.16 2622.12 59.64 3.35
20.00 132784 132784 37.54 320 36.93 325 125185 125185 37.88 3.18 3741 322 124733 9394 2819.85 2694.12 59.70 3.87
21.00 136210 136210 37.26 3.21 36.75 3.16 88489 88489 37.79 3.17 37.45 3.16 88472 64.95 2129.47 2443.10 59.74 314
22.00 145910 145910 37.48 3.18 3640 3.12 136132 136132 37.84 319 37.02 313 135149 92.62 3397.82 274171 59.01 6.09
2300 113759 113759 37.47 319 36.75 321 105388 105388 37.83 3.18 3727 320 105328 9259 3031.15 2491.93 59.93 175
24.00 169325 169325 37.46 321 36.88 3.19 149656 149656 37.80 3.19 37.39 3.16 148745 87.85 3614.41 2832.48 59.25 531
25.00 138301 138301 37.37 323 36.34 3.11 115228 115228 37.76 3.23 37.06 312 114143 82.53 3161.48 254331 5893 6.63
26.00 118662 118662 37.39 319 36.74 3.23 105811 105811 37.75 3.19 37.31 3.19 105142 88.61 3004.90 2459.61 59.55 497
27.00 129041 129041 3745 320 36.89 3.17 108883 108883 37.84 3.19 37.45 3.16 108676 84.22 2974.93 2513.75 59.81 3.02
28.00 147664 147664 37.23 3.17 36.55 3.12 121259 121259 37.60 317 3712 313 120324 81.48 3112.06 2520.65 57.90 8.33
29.00 126427 126427 3738 319 36.75 3.17 100412 100412 37.78 3.17 37.38 3.16 95911 75.86 2616.23 2429.36 56.92 12.74
30.00 176566 176566 37.39 3.23 37.17 3.19 163713 163713 37.72 3.23 37.61 3.17 163494 92.60 3364.44 2549.70 59.52 4.03
31.00 135656 135656 37.33 3.23 35.81 3.08 111048 111048 37.80 3.24 36.68 3.10 110843 8171 3052.85 2619.88 59.82 297
32.00 152543 152543 37.46 319 37.13 3.19 133713 133713 37.81 3.18 37.61 3.17 131395 86.14 3521.01 2758.09 58.74 8.29
33.00 164721 164721 37.43 319 37.10 3.19 152620 152620 37.75 317 3754 317 152568 92.62 3643.89 2770.60 59.82 3.07
34.00 142473 142473 3740 320 36.24 311 124161 124161 37.87 3.18 36.93 312 123756 86.86 2976.56 2641.82 59.32 5.26
35.00 148933 148933 37.33 3.18 3552 3.08 128144 128144 37.79 3.19 36.51 3.10 127555 85.65 3575.55 2675.39 59.13 5.40
36.00 137793 137793 37.46 3.19 36.99 3.19 122230 122230 37.81 319 3750 317 122193 88.68 3287.79 2460.95 59.93 2.03
37.00 114613 114613 3752 320 36.44 313 108375 108375 37.87 3.19 36.98 3.13 108248 9445 2831.11 2567.99 59.85 2.59
38.00 178353 178353 3752 321 36.92 3.16 158054 158054 37.84 3.18 37.43 3.16 157343 88.22 3592.10 2638.15 59.16 6.42
39.00 132153 132153 37.46 3.19 36.83 3.24 114489 114489 37.84 3.19 3740 320 113647 86.00 3109.55 2503.59 5895 6.23
40.00 123710 123710 3749 319 36.90 3.18 114879 114879 37.82 3.19 37.44 3.16 114849 92.84 3225.58 2530.27 59.93 1.86
4100 191872 191872 37.39 3.18 37.17 320 156347 156347 37.69 317 3762 318 155926 8127 3588.02 2819.99 59.75 343
42.00 148470 148470 37.51 320 36.78 3.16 134864 134864 37.83 3.18 3731 316 131357 88.47 313312 273749 5822 9.82
43.00 121515 121515 3745 3.18 36.89 3.20 113078 113078 37.79 3.17 37.39 3.17 113027 93.01 2943.66 2676.79 59.95 1.67
44.00 159759 159759 37.39 323 36.48 3.12 137126 137126 37.79 3.23 37.13 313 136114 85.20 3423.84 2686.67 58.22 6.90
45.00 120832 120832 3741 320 3570 3.06 103662 103662 37.82 3.17 36.68 3.09 101890 84.32 2779.96 2442.00 57.92 10.46
46.00 127201 127201 3743 320 36.47 314 107679 107679 37.86 3.18 37.14 3.14 107648 84.63 2717.95 2590.50 59.18 6.89
47.00 157432 157432 3749 321 36.83 3.19 134841 134841 37.87 3.18 37.38 3.16 134141 85.21 3409.95 2602.16 59.33 5.11
48.00 165895 165895 37.44 320 37.11 3.20 152035 152035 37.80 3.18 37.61 3.17 151779 91.49 3382.58 2595.83 59.69 3.36
49.00 124221 124221 3748 320 36.75 3.23 118376 118376 37.82 3.17 37.23 3.20 118356 95.28 2860.26 2372.55 59.87 2.36
50.00 155948 155948 3751 320 37.01 3.18 135315 135315 37.84 3.18 37.52 3.16 122119 78.31 3443.55 2582.67 54.01 17.86
51.00 91108 91108 37.31 3.18 3588 3.12 82100 82100 37.70 3.16 36.82 3.12 82082 90.09 2171.53 1931.28 59.73 351
52.00 162035 162035 37.58 3.21 36.73 3.13 145706 145706 37.92 3.19 3722 313 144926 89.44 411724 249046  59.28 5.29
53.00 114559 114559 37.51 319 36.92 3.16 106965 106965 37.84 3.19 3744 315 106905 93.32 3197.46 2363.38 59.92 201
54.00 253791 253791 3746 322 3711 321 212865 212865 37.87 3.18 37.65 3.17 212536 83.74 3910.03 2886.00 59.07 5.33
55.00 168003 168003 37.41 3.19 36.58 3.19 143034 143034 37.79 3.18 37.17 319 142746 84.97 365358 2600.18 59.74 3.38
56.00 126210 126210 37.31 323 36.76 3.23 106926 106926 37.71 3.23 37.34 3.19 106476 84.36 3217.34 2469.21 59.71 4.16
57.00 155544 155544 3750 3.19 36.37 311 123701 123701 37.88 3.19 37.00 3.12 122487 78.75 3592.76 2394.38 58.14 7.64
58.00 158158 158158 37.31 3.24 36.69 3.19 138165 138165 37.80 3.19 3738 316 137237 86.77 3766.74 2675.88 59.52 524
59.00 171344 171344 3744 319 3640 3.10 148190 148190 37.85 3.19 37.02 3.12 147059 85.83  3432.30 2767.70 5942 554
60.00 109671 109671 3729 3.23 36.21 3.15 101845 101845 37.69 3.22 36.86 3.17 101019 92.11 3077.65 2543.13 58.10 7.36
61.00 159067 159067 37.37 3.18 36.00 3.10 130665 130665 37.76 3.18 36.87 311 127816 80.35 320591 2443.67 57.06 12.10
62.00 148607 148607 37.44 317 36.79 3.14 128077 128077 37.80 3.17 37.32 3.15 126028 84.81 3055.91 2667.39 57.80 10.12
63.00 163680 163680 37.43 3.18 36.62 3.16 149199 149199 37.82 317 37.24 315 149191 91.15 354175 2620.18 59.90 1.90
64.00 182463 182463 37.46 3.20 36.84 3.17 152414 152414 37.83 3.19 3745 315 151983 8330 3763.62 2772.60 59.60 391
65.00 150424 150424 3742 324 36.88 3.16 115813 115813 37.77 3.24 37.43 3.16 115762 76.96 3040.86 2630.40 58.90 7.76
66.00 140989 140989 37.45 319 3585 3.08 115032 115032 37.90 3.19 36.71 311 114955 8153 3029.87 2436.77 59.15 5.93
67.00 175165 175165 37.35 3.23 36.82 3.18 141476 141476 37.74 3.23 37.45 3.15 141206 80.61 3479.75 2571.27 59.75 3.66
68.00 126525 126525 37.47 318 36.09 3.11 109513 109513 37.84 3.18 36.88 3.11 107609 85.05 2773.26 2394.78 58.46 8.26
69.00 177643 177643 3754 319 3712 3.17 150943 150943 37.87 3.18 37.58 3.16 150555 84.75 3217.36 2443.40 59.27 5.97
70.00 165003 165003 3741 319 36.10 3.10 131961 131961 37.84 3.18 36.98 3.12 128966 78.16 3291.10 2515.47 57.40 11.14
71.00 127068 127068 37.43 320 36.88 3.23 116070 116070 37.80 3.18 3742 320 116030 91.31 284353 2449.32 59.96 1.36
72.00 138847 138847 37.42 320 36.86 3.16 104331 104331 37.81 3.17 3746 315 104155 75.01 285326 2622.76 59.75 3.08
73.00 139112 139112 3741 323 36,55 3.11 125434 125434 37.80 3.24 37.10 3.12 118443 85.14 3470.30 2709.25 56.61 13.82
74.00 138744 138744 37.34 319 3658 3.15 119574 119574 37.74 3.17 37.23 3.15 118115 85.13 308245 2562.54 59.05 6.88
75.00 185374 185374 37.37 317 3570 311 134998 134998 37.85 3.17 36.67 3.10 134852 7275 3160.02 2479.13 58.81 6.82
76.00 138696 138696 37.39 324 36.96 3.16 108229 108229 37.77 3.24 37.54 3.15 108183 78.00 3133.95 2636.24 58.71 7.99
77.00 134229 134229 3750 3.19 37.02 3.16 119384 119384 37.83 319 3752 316 118894 88.58 3081.90 2651.62 59.73 3.97
78.00 124752 124752 3748 319 36.36 3.14 113533 113533 37.85 3.18 37.05 3.12 113187 90.73  3066.81 2505.02 5941 5.02
79.00 167374 167374 3750 319 36.61 3.14 152720 152720 37.85 3.19 37.19 3.13 152409 91.06 3589.11 2858.33 59.85 2.93

total 11802465 11802465 10154750 10154750 10068490 85.31 3219.81 59.02
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Study 2
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Figure S2.1: Change in aggression rate (per hour) of 22 adult male Assamese macaques from the non-

mating to the mating season. Aggression rate is significantly higher during the mating season (Wilcoxon
signed-rank test: N=22, p<0.001, z=-3.588).
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Figure S2.2: Partial residuals of the response variable aggression rate per hour for the interaction term of
COMT carrier Met and rank in the aggression rate-model.
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Table S2.1: Full aggression rate-model with COMT non-carrier Met set as reference

Fixed effect Estimate  Std. Error t-value p-value
Intercept 0.341 0.033 10.331 <0.001
COMT carrier Met -0.007 0.028 -0.255 0.800
Rank -0.034 0.034 -1.000 0.320
Sex: male 0.356 0.026 13.622 <0.001
Season: non-mating -0.081 0.025 -3.238 0.002
Group: MST -0.055 0.031 -1.755 0.082
Group: SOT 0.013 0.037 0.346 0.730
Group: SST -0.046 0.039 -1.189 0.237
COMT carrier Met*rank 0.099 0.041 2.397 0.018

The same model diagnostics as outlined in the original paper were applied. A
comparison of the full model to the null model revealed p=0.026. R? of this model is
0.665. N=117 data points for 59 individuals in two seasons

Table S2.2: Full aggression rate-model with COMT genotype Met/Met set as reference

Fixed effect Estimate Std. Error t-value p-value
Intercept 0.347 0.042 8.259 <0.001
COMT genotype Met/Val -0.017 0.036 -0.478 0.633
COMT genotype Val/Val -0.005 0.039 -0.127 0.899
Rank 0.082 0.046 1.786 0.077
Sex: male 0.353 0.027 13.147 <0.001
Season: non-mating -0.080 0.025 -3.190 0.002
Group: MST -0.055 0.032 -1.726 0.087
Group: SOT 0.014 0.037 0.388 0.699
Group: SST -0.054 0.041 -1.328 0.187
COMT genotype Met/Val*rank 0.026 0.055 -0.471 0.638
COMT genotype Val/Val*rank -0.117 0.058 -2.017 0.046

N=117 data points for 59 individuals in two seasons

Table S2.3: Full rank change-model of aggression (within individuals from the perspective of
changing from a lower to a higher rank position) with COMT genotype Val/Met set as reference

Effect Estimate  Std. Error t-value p-value
Intercept -0.240 0.139 -1.725 0.105
COMT genotype Met/Met 0.245 0.158 1.554 0.141
COMT genotype Val/Val -0.132 0.150 -0.883 0.391
Season change: non-mating to mating 0.496 0.122 4.065 0.001
Group: MST 0.217 0.151 1.437 0.171
Group: SOT 0.203 0.155 1.308 0.211
Group: SST 0.024 0.310 0.078 0.939
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Study 3

Top three male partners

We also calculated the maintenance- and the buffering-model considering males’

top three strongest social bonds instead of males’ top two strongest social bonds as in the

main manuscript. The results are very similar to the models with top two partners and are

shown in Table S3.1.

Table S3.1: Linear regression models considering males’ top three

strongest social bonds

(i) Maintenance-model with Hinde index as response. n=129 data points
for 23 individuals and two seasons, significant difference to null model

p=0.003, R?=9.31 %

Intercept
Genetic risk
Rank difference
Season: mating

-3.632

1.443
-1.488
-1.510

4.731
0.425
3.478
3.588

-0.768

3.395
-0.428
-0.421

0.444
0.001
0.670
0.675

(ii) Buffering-model with log-transformed mean iUC levels as response.
n=41 data points for 22 individuals and two seasons, significant difference
to null model p=0.002, R?>=83.27 %

Intercept

Genetic risk

Sum of CSlI

Dominance rank
Season: mating

Genetic risk:sum of CSlI

4.419
0.310
-0.310
-0.019
1.518
0.270

0.172
0.105
0.099
0.134
0.138
0.099

25.674
2.954
-3.132
-0.143
10.999
2.716

<0.001
0.009
0.004
0.887
<0.001
0.011
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Dyadic composite sociality index (CSI)

The CSI was calculated as follows:

b ; 4

ixy , %ixy

z : ( fi T )
i=1

CSlyy = —

, Wwhere b denotes the number of behaviors contributing to

the CSI, fixy the frequency of behavior i for the dyad xy, fi the mean frequency of behavior
of all male-male dyads, dixy the duration of behavior i for the dyad xy and d; the mean
duration of behavior i for all male-male dyads. The average CSI is always one and the
higher the value the stronger the relationship relative to the mean in the group at that time
(Silk et al., 2006a). For the statistical analyses, we calculated the sum of a male’s two
strongest social bonds per reproductive season. The CSI ranged from 0.10 to 8.04, the
median was 0.74 and only 34.9 % (90) of the dyads had a CSI above the average of 1.

Hinde index

The Hinde index was calculated as follows:

Hinde index = 100 X (a——d—) where ax denotes how often individual x
ax+ay dx+dy

approached individual y, ay how often individual y approached individual x, dx how often
individual x departed individual y, dy how often individual y departed individual x. The
Hinde index assesses the extent of symmetry in social interactions and ranges from -100
to 100, with high values indicating that the individual x is mainly responsible for
maintaining close proximity with individual y. For the statistical analyses, we included

the two Hinde indices with the top two male partners for each reproductive season.
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Table S3.2: Dominance hierarchy characteristics

season non-mating mating

social group ASM ASS AOM AOS ASM ASS AOM AOS
# conflicts 230 34 175 90 193 2 289 103
# dyads 36 3 21 6 21 1 21 21
# unknown rel. 4 0 1 0 1 0 0 3
# two-way rel. 4 0 2 2 2 0 4 1
winning 0.80-1 1 0.83-1 0.83-1 0.88-1 1 0.88-1 0.9-1
proportion (2 0.99) (20.98) (20.96) (©0.99) (20.99) (©0.99)
DCI 0.90 1 0.98 0.93 0.98 1 0.96 0.98

Note: # conflicts =number of decided dyadic conflicts, rel. = relationships, DCI = directional consistency index
(van Hooff & Wensing, 1987), ASS in the mating season was excluded in the maintenance-, social bonding- and
buffering-model in which males’ top two or top three partners were considered
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