COARSE COHOMOLOGY WITH
TWISTED COEFFICIENTS

Dissertation

zur Erlangung des mathematisch-naturwissenschaftlichen
Doktorgrades
"Doctor rerum naturalium'
der Georg-August-Universitiat Gottingen
im Promotionsprogramm Mathematical Science

der Georg-August University School of Science (GAUSS)

vorgelegt von

Elisa Hartmann

aus Greifswald

Gottingen, Dezember 2018



Betreuungsausschuss

Professor Dr. LAURENT BARTHOLDI,
Mathematisches Institut,
Georg-August-Universitdt Gottingen

Professor Dr. INGO WITT,

Mathematisches Institut,
Georg-August-Universitdt Gottingen
Mitglieder der Prifungskomission

Referent: Professor Dr. LAURENT BARTHOLDI
Korreferent: Professor Dr. INGO WITT

Weitere Mitglieder der Priifungskomission

Professor Dr. MAX WARDETZKY,
Institut fiir Numerische und Angewandte Mathematik,
Georg-August-Universitdt Gottingen

Professor Dr. MADELEINE JOTZ LEAN,
Mathematisches Institut,
Georg-August-Universitdt Gottingen

Professor Dr. GERLIND PLONKA-HOCH,
Institut fiir Numerische und Angewandte Mathematik,
Georg-August-Universitdt Gottingen

Dr. CHRISTOPHER WULFF,
Mathematisches Institut,

Georg-August-Universitdt Gottingen

Tag der miindlichen Prifung: 25.02.2019



Contents

(1.1  What is Coarse Geometry?| . . . . . . . . . ... . .
[1.2  Background and related Theories| . . . . . . . .. .. ... .. oL,
[1.2.1  Cohomology theories| . . . . . . .. ... .. ... o0
11.2.2  Boundaries| . . . . . . . . . ..

I1.3.1  Sheat Cohomology on Coarse Spaces| . . . . . . . ... .. ... .. ....
11.3.2  Space at Infinity| . . . . . . . ...

12

Coarse Cohomology with twisted Coefficients|

2.1 The Coarse Category|. . . . . . . . . . . . . o o i
2.1.1  Coarse Spaces|. . . . . . .« . e
2.1.2  Coarse Maps| . . . . . . . . .

2.2  Coentourages| . . . . . . . . . ...

2.2.2 A Discussion/ Useful to know|. . . . . . ... ... ... ...
23 OnMaps . ... ... . .
2.3 [imits and Colimitsl . . . . . . . . . . o .
2.3.1 The Forgettul Functor| . . . . . . .. ... ... . oL

2.4 Coarse Cohomology with twisted Coefhicients| . . . . . . . .. ... ... .. ...

2.4.3  Sheat Cohomology| . . . . . . . .. ... L
2.4.4  Mayer-Vietoris Principle] . . . . . . . .. ..o oo
2.4.5 Local Cohomology| . . . . . .. ... ... . ... ... ... .. ...,

Coarse Topology of Metric Spaces|

[3.1 Coarsely proper coarsely geodesic Metric Spaces| . . . .. .. ... ... .. ...
B.1.1 Coarsely Proper:]| . . . . . .. . . .
8.1.2  Coarsely Geodesic:| . . . . . . .. ... oo
B.1.3  Geodesification| . . . . . . ... oL
B.1.4 Coarse Rays|. . . . . . . . .

[3.2 Coarse Homotopy]. . . . . . . . . .« o
13.2.1  Asymptotic Product| . . . . . . ... ... oo
B.2.2 Definitionl . . . . . . .. L

S O or G

8
10
10
12

15
15
15
17
18
18
19
21
24
25
25
26
29
29
31
34
37
37

39
39
39
41
42



4 Computing Cohomology| 53

4.1 _Constant Coefficients|. . . . . . . . . . . . . ... Lo 53
EIT Numberof Endd . . . ... ... . 53
K412 Definitionl . . . . . . . . o 54
4.1.3  Acyclic Spaces| . . . . . ... 57
414 Computing Examples| . . . . ... ... ... ... .. ... L. 59

.2 twisted Version of controlled K-Theory| . . . . . . ... .. ... ... ... .. 60
421 Cosheavesl . . . . . . . . . . e e 60

4.2.2  Modified Roe-Algebra] . . . . . .. ... . o 0000 61

4.2.3  Computing Examples| . . . . .. .. .. oo oo 64

M3 Remarksl . . . . . . . . 66
[5Space of Ends| 67

bl Groundworkl. . . . . ..o 67
[p.1.1  Metric Spaces|. . . . . . . ... 67
.12 Totally Bounded Uniformity]. . . . . . . . . . . v it 69

B2 Main Partl . . . . o o o oo e 73
0.2.1  Definitionl . . . . . . . . . 73
9.2.2° Properties| . . . . . . .. 76
B23 SideNoted. . . . . . . . . 82

B3 Remarksl . . . . o . o oo 84



Chapter 1

Introduction

This work is intended to give a serious and reasonably complete study of Coarse Geometry via
Algebraic Geometry tools. The exposition serves as an introduction to the topic Coarse Geometry
and takes a topologist point of view on the subject. There is, nevertheless, also a section on tools
from Noncommutative Geometry.

1.1 What is Coarse Geometry?

The topic Coarse Geometry studies metric spaces from a large scale point of view. We want to
examine the global structure of metric spaces. One way to approach this problem is by forgetting
small scale structure. The coarse category consists of coarse spaces as objects and coarse maps
as morphisms.

Now coarse maps preserve the coarse structure of a space in the coarse category. A coarse
structure is made of entourages which are surroundings of the diagonal. For us metric spaces are
the main objects of study. If X is a metric space a subset £ C X2 is an entourage if

sup d(z,y) < co.
(z,y)eE

The exact opposite of a coarse space and Coarse Geometry of metric spaces are uniform spaces
and the Uniform Topology of a metric space. Like coarse spaces uniform spaces are defined via
surroundings of the diagonal. Uniform entourages get smaller though while coarse entourages
get larger the sharper the point of view.

Many algebraic properties of infinite finitely generated groups are hidden in the geometry
of their Cayley graph. To a finitely generated group is associated the word length with regard
to a generating set. Note that the metric of the group depends on the choice of generating set
while the coarse structure associated to the word length metric is independent of the choice
of generating set. Note that group homomorphisms are special cases of coarse maps between
groups and group isomorphisms are special cases of coarse equivalences between groups. It is
very fruitful to group theory to consider infinite finitely generated groups as coarse objects; these
will be a source of examples for us.

Note the examples R™ and Z™ both are coarse spaces induced by a metric, for R™ it is the
euclidean metric and for Z™ the metric is induced by the group (Z”,+). Now Z™ and R™ look
entirely different on small scale they are the same on large scale though. There is a coarse
equivalence Z™ — R™.



1.2 Background and related Theories

Nowadays it is hard to embrace all cohomology theory and other theories in the coarse category
because of the diversity of the toolsets used. Apart from the controlled K-theory and the Higson
corona, wich uses noncommutative tools there are also theories which are topological in nature.

1.2.1 Cohomology theories

A cohomology theory assigns an abelian group with a space, in a functorial manner. There are
classical examples like Cech cohomology, simplicial homology, ... etc. which all fit in a general
framework. The standard choice in the topological category are the Eilenberg-Steenrod axioms.
They consist of 5 conditions which characterize singular cohomology on topological spaces. A
generalized cohomology theory is a sequence of contravariant functors (H™),, from the category
of pairs of topological spaces (X, A) to the category of abelian groups equipped with natural
transformations
§: H"(A,0) — H" (X, A)

for n € N, such that

1. Homotopy: If f1, fa : (X, A) — (Y, B) are homotopic morphisms then they induce isomor-
phic maps in cohomology.

2. Excision: If (X, A) is a pair and U C A a subset such that U C A° then the inclusion
i:(X\UA\U) = (X,A)
induces an isomorphism in cohomology.
3. Dimension: The cohomology of the point is concentrated in degree 0.

4. Additivity: If X =| |, X, is a disjoint union of topological spaces then

H™(X,0) =[] H"(Xa,0).

5. Ezactness: Every pair of topological spaces (X, A) induces a long exact sequence in coho-
mology:

- s H™(X,A) —» H*(X,0) — H"(A,0)
—SH"(X,A) — -

We are interested in theories that are functors on coarse spaces and coarse maps. Let us first
recall the standard theories.

There are a number of cohomology theories in the coarse category we present two of them
which are the most commonly used ones. We first present the most basic facts about controlled
operator K-theory and Roe’s coarse cohomology.

We begin with a covariant invariant K,(C*(-)) on proper metric spaces called controlled K-
theory. Note that if a proper metric space B is bounded then it is compact. Then |1, Lemma 6.4.1]
shows

Ky (C*(B)) = {5 o
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There is a notion of flasque spaces for which controlled K-theory vanishes. An exemplary example
is Z4; in [1, Lemma 6.4.2] it is shown that

K.(C*(Z4)) = 0.
The above is used in order to compute the controlled K-theory of Z™:

Z p=n mod 2
0 p=n+1 mod?2

Kp(C*(2")) = {
which is [1, Theorem 6.4.10]. The notion of Mayer-Vietoris sequence is adapted to this setting:
If there are two subspaces A, B of a coarse space and if they satisfy the coarse excisive property
which is introduced in [2] then |2, Lemmas 1,2; Section 5] combine to a Mayer-Vietoris sequence
in controlled K-theory. There is a notion of homotopy for the coarse category which is established
in [3]. Then [3, Theorem 5.1] proves that controlled K-Theory is a coarse homotopy invariant.

Let us now consider coarse cohomology HX*(-; A) which for A an abelian group is a con-
travariant invariant on coarse spaces. The [4, Example 5.13] notes that if a coarse space B is
bounded then
A g=0
0 otherwise.

HX9(B;A) = {

Now the space Z" reappears as an example in [4, Example 5.20]:

0

R g=n
Whereas another example is interesting: the [4, Example 5.21] shows that if G is a finitely
generated group then there is an isomorphism

HX*(G;Z) = H*(G; Z[G)).

Here the right side denotes group cohomology. In order to compute coarse cohomology there
is one method: We denote by H*(X;A) the cohomology with compact supports of X as a
topological space. There is a character map

c: HXYX;A) —» HI(X; A)

By [4, Lemma 5.17] the character map c is injective if X is a proper coarse space which is
topologically path-connected. Now |4, Theorem 5.28] states: If R is a commutative ring and
X is a uniformly contractible proper coarse space the character map for R-coefficients is an
isomorphism.

In the course of this thesis we will design a new cohomology theory on coarse spaces. It has
all the pros of the existing coarse cohomology theories and can be compared with them. The
main purpose of this work is to design computational tools for the new theory and compute
cohomology of a few exemplary examples.

Our main tool will be sheaf cohomology theory, which we now recall. If X is a coarse space
then Sheaf(X) denotes the abelian category of sheaves of abelian groups on X. Note that
Sheaf(X) has enough injectives. Then the global sections functor

F—=T(X,F)

7



is a left exact functor between abelian categories Sheaf(X) and Ab, the category of abelian
groups. The right derived functors are the sheaf cohomology functors. If F is a sheaf on X then
H *(X, F) denotes coarse cohomology with twisted coefficients with values in F.

There are many ways to compute sheaf cohomology. One of them uses acyclic resolutions.
Now every sheaf F on a coarse space X has an injective resolution and injective sheaves are
acyclic. Thus there exists a resolution

0=F—=To—=1T1 =+Ig—---

with acyclics Z,, ¢ > 0. Then the sheaf cohomology groups H (X, F) are the cohomology groups
of the following complex of abelian groups

0—->Zo(X) > T1(X) > Ta(X) = ---.

We can also compute sheaf cohomology by means of Cech cohomology. If (U;);es is a coarse
cover of a subset U C X and F an abelian presheaf on X then the group of g-cochains is

C'{Ui = U}i, F) = II Fw,n---nu,)

(i07'“77"q)61q+1
The coboundary operator d? : C1({U; — U};, F) — CL({U; — U};, F) is defined by

q+1

(dqs)i0,~~-7iq+1 = Z<_1)V5i0 ..... I |i07"~yiq+l
v=0

Then C*({U; — U}y, F) is a complex and H*({U; — U}, F) is defined to be its cohomology.
Now sheaf cohomology can be computed:

HY(U,F)= lim H'({Ui - U}, F).

In good circumstances we can compute sheaf cohomology using an acyclic cover. If (U;);er is
a coarse cover of a coarse space X and F a sheaf on X and if for every nonempty {i1,...,4,} C I,
q > 0 we have that

HYU;, N---NU;,, F) =0

n’

then already 5 5

for every ¢ > 0.
Note that homotopy also plays an important part when computing sheaf cohomology.

1.2.2 Boundaries

There are quite number of notions for a boundary on a metric space. In this chapter we are going
to discuss properties for three of them. The first paragraph is denoted to the Higson corona,
in the second paragraph the space of ends is presented and in the last paragraph we study the
Gromov boundary.

First we present the Higson corona. If X is a proper metric space the Higson corona vX is
the boundary of the Higson compactification hX of X which is a compact topological space that
contains the underlying topological space of X as a dense open subset.
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If C'(X) denotes the bounded continuous functions on X then the so called Higson functions
are a subset of C(X). This subset determines a compactification which is called the Higson
compactification. By a comment on |4, p. 31] the Higson corona can be defined for any coarse
space. The same does not work for the Higson compactiﬁcationﬂ The [4, Proposition 2.41]
implies that the Higson corona is a covariant functor that sends coarse maps modulo closeness
to continuous maps. Thus v is a functor:

v : Coarse — Top

The topology of vX has been studied in [5]. It was shown in [5, Theorem 1] that for every o-
compact subset A C vX the closure A of A in vX is equivalent to the Stone-Cech compactification
of A. The topology of vX is quite complicated, especially if X is a metric space. It has been
noted in [4, Exercise 2.49] that the topology of ¥ X for X an unbounded proper metric space
is never second countable. In [6, Theorem 1.1] and [7, Theorem 7.2] it was shown that if the
asymptotic dimension asdim(X) of X is finite then

asdim(X) = dim(vX)

where the right side denotes the topological dimension of ¥vX. Note that one direction of the
proof uses the notion of coarse cover

Now we present the space of ends. If Y is a locally connected, connected and locally compact
Hausdorff space then the space of ends of Y is the boundary of the Freudenthal compactification
eY. It is totally disconnected and every other compactification of Y that is totally disconnected
factors uniquely through €Y by [8, Theorem 1]. The points of QY are called endpoints or ends.

Now [8, Theorem 5] shows that if Y is a connected locally finite countable CW-complex every
endpoint of Y can be represented by a proper map

a:R+—>Y.

Two proper maps a1, as : Ry — Y represent the same endpoint if they are connected by a proper
homotopy. Denote by pTop the category of topological spaces and proper continuous maps. Then
the association - is a functor:

Q : pTop — Top

If Y is a locally compact Hausdorff space then QY can be constructed using a proximity relation
which is a relation on the subsets of Y. See |9] for that one.

This section studies the Gromov boundary. If X is a proper Gromov hyperbolic metric
space then the Gromov boundary 0X consists of equivalence classes of sequences that converge
to infinity in X. The topology on 0X is generated by a basis of open neighborhoods. Loosely
speaking two points on the boundary are close if the sequences that represent them stay close
for a long time.

By |10, Proposition 2.14] the topological spaces 0X and 0X U X are compact and by [10,
Theorem 2.1] the topology on 90X is metrizable. If f : X — Y is a quasi-isometry between proper
Gromov hyperbolic groups then it extends to a homeomorphism

af : 0X — oY

by [10, Proposition 2.20]. In [11] is studied a notion of morphisms for which the Gromov boundary
is a functor: If f : X — Y is a visual function between proper Gromov hyperbolic metric spaces
then there is an induced map

of : 0X — Y

Lfor which the topology of X needs to be locally compact which is given if the metric is proper.
2but under a different name.



which is continuous by [11, Theorem 2.8].

Now is there a notion of boundary on metric space which is both a functor on coarse spaces
and coarse maps and has nice properties such as being Hausdorff and locally compact. As it
turns out there is one such functor which is going to be designed in the course of this thesis.

1.3 Main Contributions

The general idea of this work is to transfer toolsets from other topics like Algebraic Topology
and Algebraic Geometry and use them in the coarse category. The cohomology theory we are
aiming at has its roots in Algebraic Geometry. The space at infinity functor we are going to
design has its image in the category of uniform topological spaces.

1.3.1 Sheaf Cohomology on Coarse Spaces

The Chapters study sheaf cohomology on coarse spaces. They form the core of this thesis.
First let us note a few aspects which distinguishes the new theory.

There has been much effort in establishing axioms for cohomology theories in the coarse
category. In [12] has been proposed a choice of axioms for coarse cohomology theories. Now
we will test our theory against the Eilenberg-Steenrod axiom system. The new theory satisfies
similar properties which are going to be discussed in the following list

1. Homotopy: In Section[3.2]is designed a homotopy theory for coarse metric spaces. It can be
compared with other homotopy theories in the coarse category in that it sees more struc-
ture for metric spaces and is automatically reflexive/symmetric/transitive, an equivalence
relation on coarse maps. Sheaf cohomology on coarse spaces is a homotopy invariant. In
which ways other cohomology theories are homotopy invariant has not been studied yet.

2. Exzcision: Subsection [2.4.5] presents local cohomology in the coarse category.

3. Dimension: The space Z; can be understood as the coarse equivalent of a point. It is
acyclic for constant Z/2Z- coefficients. If the spaces Z™ are understood as representatives
for dimension then coarse cohomology with twisted coefficients sees dimension.

4. Additivity: Sheaf cohomology sees coproducts, see subsection

5. Fzactness: Subsection presents a coarse version of the Mayer-Vietoris sequence.

Now why are there so many powerful results is one of the most natural questions we can
ask. The main reason is, that typically sheaf cohomology is a powerful tool in a number of areas.
Examples are de Rham cohomology in differential geometry, singular cohomology for nice enough
spaces in algebraic topology and étale cohomology in algebraic geometry.

In Chapter |2 the new cohomology theory is introduced. This chapter is taken from [13|
Chapters 1-4]. A Grothendieck topology is the least amount of data needed to define sheaves
and sheaf cohomology. And that is where we start. We design the Grothendieck topology of
coarse covers associated to a coarse space in Definition Then we discover in Lemma [62] that
coarse maps give rise to a morphism of topologies. That is all the information that we need to
use the powerful machinery of sheaf cohomology.

Then we obtain the first important result: if two coarse maps are close then they induce
isomorphic maps in cohomology with twisted coefficients. This is Theorem

10
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Theorem A. Coarse cohomology with twisted coefficients is a functor on coarse spaces and
coarse maps modulo closeness.

Thus coarsely equivalent coarse spaces have the same cohomology.
The coarse equivalent of a trivial space is either the empty set or a bounded space or both.
If B is a bounded space then for every coefficient F on B:

H*(B,F)=0

which is a result of Example [64]

Some computional tools we recognize from algebraic topology can be adopted for our setting.
The Chapter[2.4.4] presents a coarse version of Mayer-Vietoris and Chapter[2.4.5]discusses relative
cohomology in the coarse category.

In Chapter [3] the homotopy theory is constructed. We present the notions coarsely proper
and coarsely geodesic in a chapter of their own, thereby demonstrating techniques which will be
useful later on. The Section Section are [13) Chapter 5, Chapter 6], respectively.

Before proceeding we design a coarse version of a product of spaces. The coarse version of
the point, Z, the positive integers, is unfortunately not a final object in the coarse category.
Nonetheless we look at the a pullback diagram of coarse spaces

Y

|

XH'Z+.

The pullback of this diagram exists if the spaces X, Y are nice enough as studied in Lemma [99]
Indeed we only need Y to be a coarsely proper coarsely geodesic metric space.

Equipped with this product we can define a coarse version of homotopy. The coarse version
of an interval is denoted by F'([0,1]). Then a coarse homotopy is defined to be a coarse map

H: X F([0,1]) = Y.

Here x is the coarse product and X,Y are coarse spaces. There is an equivalent definition of
coarse homotopy in Definition [107] using a parameter that varies. We prove in key Theorem [109
that coarse cohomology with twisted coefficients behaves well with regard to coarse homotopy.

Theorem B. Coarse cohomology with twisted coefficients is a coarse homotopy invariant.

Now we have enough computational tools to compute actual examples. Chapter [ applies the
new theory; in particular a number of acyclic spaces are constructed which aids in the computa-
tion of nontrivial examples. In light of the new cohomology theory we study controlled operator
K-theory and compute examples. The first part, Section is the same as |13 Chapter 6] and
the second part, Section [4.2is the whole of [14].

First let us note that Z, is imperfect as a coarse version of a point as it is not a final object
and does not have trivial cohomology. While H 9(Z4,A) = 0 for ¢ > 2 and every constant
coefficient A, the cohomology in degree 1,

ﬁl(z+7z) 7é 0

is nontrivial for Z-coefficients. If we take a locally finite group, as for example Z/2Z, as coefficient
then
HY(Z,,2/2Z)=0

for ¢ > 0. Thus for coefficients Z/2Z and more generally for locally finite coefficients the space
Z, is acyclic and can be used for computations.

11



Theorem C. We denote by Z/2Z the group with two elements. Then

. Z/2Z q=0
H%(2+,2/22) = {0 otherwise

In passing we produce other acyclic spaces in Theorem [124] Then Examples [T26]127][128|T31]
compute the coarse cohomology of some infinite finitely generated groups. Specifically the coho-

mology of the free abelian groups is
Z2/2Z23®2/2Z n=1,q=0
HY(Z",2/2Z) =< 2/2Z n>1,qg=n—-1,0

0 otherwise

for n € N. And the cohomology of the free groups is

(F,,z/2z) = { DnZ/22 =0
" 0 otherwise

for n > 2.

The study of sheaf cohomology on coarse spaces sets foundational frameworks on controlled
K-theory. We will study a new excision property for a Mayer-Vietoris exact sequence. By
modding out the operators with bounded support we obtain a modified Roe-algebra: If X is a
proper metric space then define

C*(X) == C*(X)/K(Hx)

where C*(X) denotes the Roe-algebra and K(Hx) denotes the compact operators of B(Hyx).
Then we prove the following theorem.

Theorem D. If Uy,Us coarsely cover a subset U of a proper metric space X then there is a
siz-term Mayer-Vietoris exact sequence

K1(C*(Uy N Us)) — K1 (C*(Uy)) @ K41 (C*(Us)) K, (C*(U))

T |

Ko(C*(U)) Ko(C*(Uh)) ® Ko(C* (Us)) =—— Ko(C* (U1 N U2)).

1.3.2 Space at Infinity

The second part and most of Chapter [5| prepares and studies the new definition of the space
of ends functor. In the course of this thesis we will define a functor that associates to every
coarse metric space a space at infinity which is a topological space. All this work can be found
in |15, Chapter 3].

Based on the observation that twisted coarse cohomology with Z/2Z-coefficients of Z™ is the
same as singular cohomology of S"~! with Z/2Z coefficients we considered notions of boundary
which reflect that observation.

In Definition we define a relation on subsets of a metric space. As it turns out this
relation is almost but not quite a proximity relation as noted in Remark [[62] The proof of
Proposition [I61] uses that X is a metric space, it does not work for general coarse spaces. That
is why we restrict our study to metric spaces.

12
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Note that while constructing the functor we presuppose which kind of spaces we want to
distinguish. Indeed there is a certain class of metric spaces for which the local structure looks
boring. The functor that we are going to define, the space of ends functor, is well suited for
metric spaces that are coarsely proper coarsely geodesic. That class includes all Riemannian
manifolds and finitely generated groups.

While the topology of the space at infinity is immediately defined using coarse covers there
are two choices of points which are both solid: If X is a metric space

(A): the endpoints of X are images of coarse maps Z, — X modulo finite Hausdorff' distance
or

(B): the points at infinity are subsets of X modulo finite Hausdorff distance.

Note that choice B has been implemented in [16]. The space at infinity with choice A contains
strictly less points than choice B. The Proposition [04] guarantees that for choice A there exists at
least one endpoint if the space X is coarsely proper coarsely geodesic. The proof of Proposition [94]
is similar to the one of Konigs Lemma in graph theory.

The space at infinity functor with choice B reflects isomorphisms by [17, Proposition 2.18]
and the space at infinity functor with choice A is representable.

In the course of this thesis and in Definition we use choice A, endpoints are images of
coarse maps Z — X. Then we define the topology of the space of ends, F(X), via surroundings
of the diagonal in Definition [174 The uniformity on E(X) is generated by a basis (Dy )y of
entourages over coarse covers U of X. If f: X — Y is a coarse map then it induces a uniformly
continuous map E(f) : E(X) — E(X) between spaces of ends. That way the space of ends E(-)
is a functor, we obtain the following result:

Theorem E. If mCoarse denotes the category of metric spaces and coarse maps modulo closeness
and Top the category of topological spaces and continuous maps then E is a functor

E : mCoarse — Top.

If Uniform denotes the category of uniform spaces and uniformly continuous maps then E is a
functor
E : mCoarse — Uniform.

It was nontrivial to show that a subspace in the domain category gives rise to a subspace in
the image category. Proposition [I84] shows if Z C Y is a subspace then the inclusion i : Z — Y
induces a uniform embedding E(i) : E(Z) — E(Y).

The functor E(-) preserves coproducts by Lemma m The uniformity on E(X) is totally
bounded by Lemma and separating by Proposition [191

Theorem F. If X is a metric space then E(X) is totally bounded and separating.

We still lack a good study including the most basic properties of the new space of ends functor
like compact and metrizable probably because the proofs are more difficult.
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Chapter 2

Coarse Cohomology with twisted
Coefficients

Coarse geometry studies coarse spaces up to coarse equivalence. Coarse invariants may help in
classifying them.

Our purpose is to pursue an algebraic geometry approach to coarse geometry. We present
sheaf cohomology on coarse spaces and study coarse spaces by coarse cohomology with twisted
coefficients. The method is based on the theory on Grothendieck topologies.

Note that sheaves on Grothendieck topologies and sheaf cohomology theory have been applied
in a number of areas and have lead to many breakthroughs on previously unsolved problems. As
stated in |18] one can understand a mathematical problem by

1. finding a mathematical world natural for the problem.
2. Expressing your problem cohomologically.
3. The cohomology of that world may solve your problem.

That way we can apply general theory on sheaf cohomology for tackling previously unsolved
problems and studying notions which are quite well known.

2.1 The Coarse Category

The following chapter introduces coarse spaces and coarse maps between coarse spaces. It has
been kept as short as possible, giving only the most basic definitions needed for understanding
this paper. All this information can be found in |4, Chapter 2].

2.1.1 Coarse Spaces

Definition 1. (inverse, product) Let X be a set and let E be a subset of X2. Then the
inverse E~1 is defined by
B ={(y,2)|(z,y) € E}.
A set E is called symmetric if E = E~1.
For two subsets E1, Eo C X2 the product E1 o Ey is given by

Eyo0Ey ={(x,2)|3y: (x,y) € E1, (y,2) € Ea2}.

15



Definition 2. (coarse structure) Let X be a set. A coarse structure on X is a collection of
subsets £ C X? which will be referred as entourages which follow the following axioms:

1. the diagonal Ax = {(z,z)|z € X} is an entourage;
2. if F is an entourage and F' C E a subset then F is an entourage;
3. if F, E are entourages then F'U FE is an entourage;
4. if E is an entourage then the inverse E~! is an entourage;
5. if E, Es are entourages then their product F; o Fs is an entourage.
The set X together with the coarse structure on X will be called a coarse space.
Definition 3. (connected) A coarse space X is connected if
6. for every points x,y € X the set {(z,y)} C X? is an entourage.
In the course of this paper all coarse spaces are assumed to be connected unless said otherwise.

Definition 4. (bounded set) Let X be a coarse space. A subset B C X is called bounded if
B? is an entourage.

Definition 5. Let X be a set and let X € X and F C X2 be subsets. One writes
EK)={z|3y € K : (z,y) € E}.
In case K is just a set containing one point p, we write E, for E[{p}] (called a section).
Lemma 6. Let X be a coarse space.
e If By, Bo C X are bounded then By X By is an entourage and By U Bs is bounded.
e For every bounded subset B C X and entourage E the set E[B] is bounded.

Proof. e Fix two points by € By and by € By then (b1,b2) is an entourage in X. Thus
B? o (by,by) 0o B3 = By x By
is an entourage. Now
(B1UBy)? = B?UB; x ByUBy x B UB3
is an entourage, thus By U By is bounded.

e Note that
FoB?>=FE[B]x B

is an entourage.

Remark 7. Note that an intersection of coarse structures is again a coarse structure.

e If X is a set and J a collection of subsets of X? then the smallest coarse structure ¢ that
contains each element of § is called the coarse structure that is generated by 6. Then ¢ is
called a subbase for €.
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e If ¢ is a coarse structure and &’ C ¢ a subset such that F € ¢ implies there is some E’ € &’
with E C E’ then €’ is called a base for ¢.

Example 8. If X is a set there are two trivial coarse structures on X:

1. the discrete coarse structure consists of subset of the diagonal and finitely many off-diagonal
points.

2. the mazimal coarse structure is generated by X2. Note that in this case each subset of X
and in particular X itself is bounded.

Example 9. If X is a metric space with metric d then the bounded coarse structure of X consists
of those subsets E C X2 for which

sup d(z,y) < 0.
(z,y)eE

A coarse space X is called metrizable if there is a metric d that can be defined on it such that
X carries the bounded coarse structure associated to d. Note that by [4, Theorem 2.55] a coarse
space is metrizable if and only if it has a countable base.

Example 10. If X is a paracompact and locally compact Hausdorff space and X a compact-
ification of X with boundary 0X then the topological coarse structure associated to the given
compactification consists of subsets £ C X2 such that

OENJX?\ Agx = 0.

If the compactification is second countable then by |4, Example 2.53] the topological coarse
structure on X is not metrizable.

2.1.2 Coarse Maps

Definition 11. (close) Let S be a set and let X a be coarse space. Two maps f,g: S — X are
called close if

{(£(s),9(s))|s € S} € X?

is an entourage.
Definition 12. (maps) Let f : X — Y be a map between coarse spaces. Then f is called

e coarsely proper if for every bounded set B in Y the inverse image f~!(B) is bounded in
X;

o coarsely uniform if every entourage E of X is mapped by f*2 = f x f : X2 = Y? to an
entourage f*?(E) of Y;
e a coarse map if it is both coarsely proper and coarsely uniform;

e a coarse embedding if f is coarsely uniform and for every entourage F C Y2 the inverse
image (f*2)71(F) is an entourage.

Definition 13. (coarsely equivalent)

e A coarse map f: X — Y between coarse spaces is a coarse equivalence if there is a coarse
map g : Y — X such that fog:Y — Y is close to the identity on Y and go f : X — X is
close to the identity on X.

e two coarse spaces X,Y are coarsely equivalent if there is a coarse equivalence f: X — Y.

Notation 14. We call Coarse the category with objects coarse spaces and morphisms coarse
maps modulo close. Then coarse equivalences are the isomorphisms in the coarse category.
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2.2 Coentourages

In this chapter coentourages are introduced. We study the dual characteristics of coentourages
to entourages.

2.2.1 Definition
This is a special case of [4, Definition 5.3, p. 71]:

Definition 15. Let X be a coarse space. A subset C' C X?2 is called a coentourage if for every
entourage E there is a bounded set B such that

CNEC B
The set of coentourages in X is called the cocoarse structure of X.
Lemma 16. The following properties hold:
1. Finite unions of coentourages are coentourages.
2. Subsets of coentourages are coentourages.

3. If f: X =Y is a coarse map between coarse spaces then for every coentourage D C Y?
the set (f*2)=Y(D) is a coentourage.

Proof. 1. Let C7,C5 be coentourages. Then for every entourage E there are bounded sets
B, Bs such that

(CLUCL)NE=C,NEUC,NE
gleBlungBg
C (By U By)2.

Now Bj U Bs is bounded because X is connected.

2. Let C be a coentourage and D C C' a subset. Then for every entourage F there is some
bounded set B such that

DNECCNE
C B
3. This is actually a special case of [4, Lemma 5.4]. For the convenience of the reader we

include the proof anyway.

Let E be an entourage in X. Then there is some bounded set B C Y such that

P U(D)NE) S DN fA(E)
C B2
But then

() HD)NEC () o fX2((f**) (D) N E)
(f**) (B

= fH(B)*

N 1N
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Example 17. In the coarse space Z one can see three examples:
e the even quadrants are a coentourage: {(x,y) : zy < 0}.

e For n € Z the set perpendicular to the diagonal with foot (n,n) is a coentourage: {(n —
z,n+zx):x€Z}

e There is another example: {(z,2x): x € Z} is a coentourage.
Example 18. Look at the infinite dihedral group which is defined by
Dy = {a,b:a®> =1, =1).

In D the set
{(ab)", (ab)"a : n € N} x {(ba)", (ba)"b : n € N}

is a coentourage.

2.2.2 A Discussion/ Useful to know

Lemma 19. Let X be a coarse space. Then for a subset B C X the set B? is a coentourage if
and only if B is bounded.

Proof. If B is bounded then it is easy to see that B? is a coentourage.
Conversely suppose B? is a coentourage. Then

Ax NB?C B?
and B? is the smallest squared subset of X? which contains
{(b,b) : b€ B}
which is Ax N B2. Thus B is bounded. O

Definition 20. (dual structure) If X is a coarse space let € and v be collections of subsets of
X?2. Call 3 the set of bounded sets. We say that

1. € detects ~ if for every D & ~ there is some E € ¢ such that DN E ¢ B? for every B € f3.
2. and € is dual to «y if € detects v and ~ detects €.

By definition the collection of coentourages is detected by the collection of entourages. If X is
a coarse space such that the cocoarse structure is dual to the coarse structure then X is called
coarsely normal.

Proposition 21. Let X be a coarse space with the bounded coarse structure of a metric spaCtﬂ
then X is coarsely normal.

Proof. Let F C X? be a subset which is not an entourage. Then for every entourage there is a
point in F' that is not in F. Now we have a countable basis for the coarse structure:

Ei,Bs,...,E,,...

1In what follows coarse spaces with the bounded coarse structure of a metric space will be refered to as metric
spaces.
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ordered by inclusion. Then there is also a sequence (;,y;); € X? with (z;,v;) € E; and
(x;,y;) € F. Denote this set of points by f. Then for every i the set

Enf

is a finite set of points, thus f is a coentourage. But F N f = f is not an entourage, specifically
it is not contained in B? if B is bounded. O

Proposition 22. Let X be a paracompact and locally compact Hausdorff space. Let X be a
compactification of X and equip X with the topological coarse structure associated to the given
compactification. Then

1. a subset C C X? is a coentourage if C' N Ayx is empty.
2. if U,V are subsets of X then U x V is a coentourage if OU N OV = (.
8. X 1is coarsely normal.
Proof. easy. O

Example 23. If G is an infinite countable group then there is a canonical coarse structure on
G: A subset E C G? is an entourage if the set

{g7'h: (g,h) € E}
is finite. If U,V C G are two subsets of G then U x V is a coentourage if
UnVyg
is finite for every g € G.

Lemma 24. Let X be a coarse space. If C C X? is a coentourage and E C X? an entourage
then C o E and E o C are coentourages.

Proof. Let F C X? be any entourage. Without loss of generality E is symmetric and contains
the diagonal. Now C being a coentourage implies that there is some bounded set B C X such
that

CNE'oFCB?

Then
EoCﬂFgEo(CﬁE_loF)
QEOB2
C (E[B]UB)?
O

Theorem 25. Now we are going to characterize coentourages axiomatically. Let vy be a collection
of subsets of X? such that

1. v is closed under taking subsets, finite unions and inverses;

2. we say a subset B C X is bounded if B x X € v and require

xX=|JB

Bep
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3. for every C' € ~y there is some bounded set B C X such that

CNAx C B

4. If E is detected by v and C € vy then Eo C € ~.
Then ~y detects a coarse structure.

Proof. Denote by [ the collection of bounded sets of X. Note that by points 1 and 2 the system
B is a bornology. Now we show that ~y detects a coarse structure by checking the axioms in
Definition

1. Point 3 guarantees that the diagonal is an entourage.
2. That is because (3 is a bornology.

3. Same.

4. By point 1 the inverse of an entourage is an entourage.

5. Suppose E,F C X? are detected by v. Without loss of generality F is symmetric and
contains the diagonal. Then there is some bounded set B such that

FNnE'oC C B2
But then

EoFNCCEo(FNE™'00)
CFEoB?
C (E[B]uB)?
and that is bounded because of the first point.
6. this works because of point 2.

O

Notation 26. (coarsely disjoint) If A, B C X are subsets of a coarse space then A is called
coarsely disjoint to B if
AxBCX?

is a coentourage. Being coarsely disjoint is a relation on subsets of X.

2.2.3 On Maps

Note that in this chapter every coarse space is assumed to be coarsely normal.

Lemma 27. Two coarse maps f,g : X — Y are close if and only if for every coentourage
D CY? the set (f x g)~*(D) is a coentourage.

Proof. Denote by 8 the collection of bounded sets. Suppose f,g are close. Let C C Y? be a
coentourage and E C X? an entourage. Set

S=(fxg) (C)NE.
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Then there is some bounded set B such that

(f xg)(S)=(fxg)o((f xg) "(C)NE)
(fxg)o(fxg) HC)N(f xg)(E)

Cn(fxg)(E)

B?.

N 1NN

But f and g are coarsely proper thus

SC(f " xg Hoe(fxg)(9)
f*l

C
CfYB)xg 1 (B)
is in B2.

Now for the reverse direction: Let C C Y2 be a coentourage. There is some bounded set
B C X2 such that
Ax N(f x g)_l(C) C B2

Then
(f x 9)(Ax)NC = (fxg9)(Ax) N (f x g)o(fxg)H(C)
= (fxg)(Ax N (f xg)"HC))
C (f x 9)(B?).
But f, g are coarsely uniform thus (f x g)(B?) € 5% O

Proposition 28. A map f: X — Y between coarse spaces is coarse if and only if
e for every bounded set B C X the image f(B) is bounded in'Y
e and for every coentourage C C Y2 the reverse image (f*?)71(C) is a coentourage in X

Proof. Suppose f is coarse. By Lemma [I6] point 3 the second point holds and by coarsely
uniformness the first point holds.

Suppose the above holds. Let £ C X? be an entourage. For every coentourage D C Y2 there
is some bounded set B such that

En(£%)~\(D) C B
Then
FE)ND = fAE)N 2o (f**)7H(D)
= [2EN(?)7H(D))
C f(B)*

Because of point 1 we have f*?(B) € 3. By point 2 the reverse image of every bounded set is
bounded. O

Definition 29. A map f : X — Y between coarse spaces is called coarsely surjective if one of
the following equivalent conditions applies:

e There is an entourage E C Y2 such that E[im f] =Y.
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e there is a map r : Y — im f such that

{(y,7(y)) 1y €Y}

is an entourage in Y.
e The inclusion im f — Y is a coarse equivalence.
We will refer to the above map 7 as the retract of Y to im f. Note that it is a coarse equivalence.
Lemma 30. Fvery coarse equivalence is coarsely surjective.

Proof. Let f : X — Y be a coarse equivalence and g : Y — X its inverse. Then fog:Y — im f
is the retract of Definition O

Lemma 31. Coarsely surjective coarse maps are epimorphisms in the category of coarse spaces
and coarse maps modulo close.

Proof. Suppose f : X — Y is a coarsely surjective coarse map between coarse spaces. Then
there is an entourage E C Y2 such that E[im f] = Y. We show f is an epimorphism. Let
g1,92 : Y — Z be two coarse maps to a coarse space such that g; o f, g3 o f are close. Then the
set

H:=giofxgsof(Ax)

is an entourage. Then
g1 % g2(Ay) C g{*(E) o H o g3 *(E7Y)

is an entourage. Thus g1, g2 are close. O

Definition 32. A map f: X — Y between coarse spaces is called coarsely injective if for every
coentourage C' C X2 the set

F*2(C)

is a coentourage.

Remark 33. Note that every coarsely injective coarse map is a coarse embedding and likewise
every coarse embedding is coarsely injective coarseﬂ

Lemma 34. Let f: X =Y be a coarse equivalence. Then f is coarsely injective.

Proof. Let g : Y — X be a coarse inverse of f. Then there is an entourage
F={(go f(2),2) ;2 € X}
in X. But then g o f is coarsely injective because for every coentourage C' C X? we have
go f**(C) S FoCoF™!
and F o C o F~! is again a coentourage by Lemma But
PAC) (g2 og*? o A(C)

is a coentourage, thus f is coarsely injective. O

2Although the latter term ’coarse embedding’ is in general use and describes the notion more appropriately
we will use the former term ’coarsely injective’ because adjectives are easier to handle.
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Lemma 35. Coarsely injective coarse maps are monomorphisms in the category of coarse spaces
and coarse maps modulo closeness.

Proof. Suppose f: X — Y is a coarsely injective coarse map between coarse spaces. We show f
is a monomorphism. Let g1, g2 : Z — X be two coarse maps such that fog;, fogs: Z — Y are
close. Then

H:=fogi x fog(Ayg)

is an entourage. Now
g1 % g2(Az) € (f**)7H(H)

is an entourage. Thus g1, g2 are close. O
Remark 36. Every coarse map can be factored into an epimorphism followed by a monomorphism.

Proposition 37. If a coarse map f: X — Y is coarsely surjective and coarsely injective then f
s a coarse equivalence.

Proof. We just need to construct the coarse inverse. Note that the map r : ¥ — im f from
the second point of Definition is a coarse equivalence which is surjective. Without loss of
generality we can replace f by f =ro f. Now define ¢g : im f — X by mapping y € im f to some
point in f ~L(y) where the choice is not important. Now we show:

1. g is a coarse map: Let E C (im f)? be an entourage. Then
g**(EB) < (f**)~U(E)
is an entourage. And if B C X is bounded then
9~ (B) C f(B)

is bounded.

A~

2. fog=idimy
3. g is coarsely injective: Let D C (im f)? be a coentourage. Then
g**(D) C (f**)7(D)
is a coentourage.

4. go f ~ idx: we have go f : X — img is coarsely injective and thus the retract of
Definition [29) with coarse inverse the inclusion i : img — X. But

go foi=idimg

2.3 Limits and Colimits

The category Top of topological spaces is both complete and cocomplete. In fact the forgetful
functor Top — Sets preserves all limits and colimits that is because it has both a right and left
adjoint. We do something similar for coarse spaces.

Note that the following notions generalize the existing notions of product and disjoint union
of coarse spaces.
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2.3.1 The Forgetful Functor

Definition 38. Denote the category of connected coarse spaces and coarsely uniform maps
between them by DCoarse.

Theorem 39. The forgetful functor n: DCoarse — Sets preserves all limits and colimits.

Proof. e There is a functor § : Sets — DCoarse that sends a set X to the coarse space X
with the discrete coarse structureﬂ Then every map of sets induces a coarsely uniform
map.

e There is a functor « : Sets — DCoarse which sends a set X to the coarse space X with
the maximal coarse structure. Again every map of sets induces a coarsely uniform map.

e Let X be a set and Y a coarse space. Then

HomSets (X7 77Y) = HomDCoarse (6X7 Y)

and
HomSets (nyv X) = HomDCoarse(Y; OéX)

Thus the forgetful functor is right adjoint to ¢ and left adjoint to a.

e An application of the |19, Adjoints and Limits Theorem 2.6.10] gives the result.

2.3.2 Limits
The following definition is a generalization of |20, Definition 1.21]:

Definition 40. Let X be a set and f; : X — Y; a family of maps to coarse spaces. The pullback
coarse structure of (fi); on X is generated by (,(f*?)"*(E;) for E; C Y; an entourage for every
i. That is, a subset E C X? is an entourage if for every 4 the set fiXQ(E) is an entourage in Y;.

Lemma 41. The pullback coarse structure is indeed a coarse structure; the maps f; : X —'Y;
are coarsely uniform.

Proof. 1. Ax C (f*)"'(Ay,) for every i.
2. easy

3. if By, By are entourages in X then for every i there are entourages Fy, Fy C Y;? such that
Ey C (f7%)~Y(Fy) and By C (f7*)~Y(F»). But then
EyUE, C ()71 () U (F%) 7 (F)
= ()N AUR)

(3

4. if F is an entourage in X then for every i there is an entourage F' in Y; such that E C
(f7*)~'(F). But then

K2

E71 g (fiXQ)fl(Ffl)
5. If Eq, Fy are as above then

Ey 0By C (f?)7 (Fy o Fy)

in which every entourage is the union of a subset of the diagonal and finitely many off-diagonal points

3
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6. If (z,y) € X then for every i
fiXQ(fUay) = (fi(2), fi(y))

is an entourage.
O

Remark 42. Note that it would be ideal if the pullback coarse structure is well-defined up to
coarse equivalence and if there is a universal property. We can not use naively the limit in Sets
and equip it with the pullback coarse structure as the following example shows:

Denote by ¢ : Z — Z the map that maps ¢ — 2¢ and by @ : Z — Z the map that maps
1+ 20+ 1. then both ¢, are isomorphisms in the coarse category. The pullback of

Z
|+
Z

is ) in Sets but should be an isomorphism if the diagram is supposed to be a pullback diagram
in Coarse. See Definition [97] for a sophisticated realization of a pullback diagram.

Z—>

¥

Proposition 43. Let X have the pullback coarse structure of (fi: X — Y;);. A subset C C X?>
s a coentourage if for every i the set fiXQ(C) s a coentourage in Y;. Note that the converse does
not hold in general.

Proof. Let C C X? have the above property. If ' C X?2 is a subset such that
S=CnNF
is not bounded then there is some 7 such that fiw(S ) is not bounded. Then
FFAC)N FF2(F) 2 fF2(C N F)

is not bounded but f;*?(C) is a coentourage in Y;. Thus f;**(F) is not an entourage in Y;, thus
F does not belong to the pullback coarse structure on X. Thus C is detected by the pullback
coarse structure. O

Example 44. (Product) The pullback coarse structure on products agrees with |20, Defini-
tion 1.32]: If X, Y are coarse spaces the product X x Y has the pullback coarse structure of the
two projection maps p1, pa:

e A subset E C (X x Y)? is an entourage if and only if p;?(E) is an entourage in X and
py2(F) is an entourage in Y.

e A subset C C (X x Y)? is a coentourage if and only if p}?(C) is a coentourage in X and
p32(0) is a coentourage in Y.
2.3.3 Colimits

Proposition 45. If f; : Y; = X is a finite family of injective maps from coarse spaces then the
subsets

2

S 'LX (Ez)
fori an index and E; C Y}? an entourage are a subbase for a coarse structure; the maps fi : Y; —
X are coarse maps.
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Proof. Suppose E; C Y2 is an entourage. Let C C X2 be an element of the pushout cocoarse

K3
structure. Denote
S=fE)NC.

Then

(fiXQ)_l(S) = (fz‘xz)_l o fz‘XQ(Ei) n (fixz)_l(c)
— BN (f7%)7(C)

implies that fiXZ(EZ-) is an entourage.
Now E C X? is an entourage if for every i

EN (im f;)?

is an entourage and if E N (|J,(im f;)?)¢ is bounded.
We show that this is indeed a coarse structure by checking the axioms of Definition [2}

1. We show the diagonal in X is an entourage. Let C' C X2 be a subset such that

(fF*)Ho) cy?

K2

is a coentourage. Denote

S=AxnNnC.
Then
(fi) M Ax N C) = (fF*) 1 Ax) N (£ 7HC)
= Ay, N (f7*)71(C)
C B
is bounded.
2. easy
3. easy
4. easy

5. If By, B> C X2 have the property that for every element C' C X?2 of the pushout cocoarse
structure and every i:

(fiXQ)_l(El) N (fixz)_l(c)
and

(7 E) N (F79)7HC)

are bounded in Y; we want to show that F; o E5 has the same property. Now without loss
of generality we can assume that there are ij such that Ey C (im f;)? and By C (im f;)?
the other cases being trivial or they can be reduced to that case. Then

E1 e} (EQ N (lm fi)2) g (1m fl)Q

and
(Ey N (im f;)?) 0 By C (im f;)?

are entourages and the other cases are empty.
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6. If (z1,72) € X? then for every i

(f72) (@1, 22)

is either one point or the empty set in Y;, both are entourages.
O

Definition 46. Let X be a set and f; : Y; — X a finite family of injective maps from coarse
spaces. Then define the pushout cocoarse structure on X to be those subsets C' of X2 such that
for every i the set

(fFH o) cy?

is a coentourage.

Example 47. Let A, B be coarse spaces and ALl B their disjoint union. The cocoarse structure
and the coarse structure of A LI B look like this:

e A subset D C (AU B)? is a coentourage if D N A? is a coentourage in A and DN B? is a
coentourage in B.

e A subset E C (AL B)? is an entourage if E N A? is an entourage of A and E N B? is an
entourage of B and EN(Ax BUB x A) is contained in S x TUT x S where S is bounded in
A and T is bounded in B. This definition actually agrees with |21}, Definition 2.12, p. 277].

Example 48. Let G be a countable group that acts on a set X. We require that for every
xz,y € X the set

{9eG:gr=y}

is finite. Then the pushout cocoarse structure of the orbit maps

i G— X
g g.x

for z € X is dual to the minimal connected G—invariant coarse structure of [4, Example 2.13].

Proof. Note that by the above requirement a subset B C X is bounded if and only if it is finite.
Fix an element z € X and denote by X’ C X the orbit of z.
For every C' C G? coentourage
EnNi%(0)

being bounded implies that

(%) HE)NC C (i) (ENnif*(C)

x

is bounded. Thus if E C X? is an entourage then (iX?)7!(E) is an entourage.
If (iX?)~}(E) is an entourage then E = iX? o (iX?)~}(E). For every C' C G? coentourage

(ix*)""(E)nC

being bounded implies that
ENni**(0)

x

is bounded. Thus FE is an entourage.

The iX2(E) for E C G? an entourage are a coarse structure on X’ because i, is surjective on
X/

If 2,y are in the same orbit X’ then i,, i, induce the same coarse structure on X'. O
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2.4 Coarse Cohomology with twisted Coefficients

We define a Grothendieck topology on coarse spaces and describe cohomology with twisted
coefficients on coarse spaces and coarse maps. We have a notion of Mayer-Vietoris and a notion
of relative cohomology.

2.4.1 Coarse Covers

Definition 49. Let X be a coarse space and let (U;); be a finite family of subspaces of X. It is
said to coarsely cover X if the complement of

e

is a coentourage.

Example 50. The coarse space Z is coarsely covered by Z_ and Z,. An example for a decom-
position that does not coarsely cover Zis {r € Z: z is even} U {x € Z : z is odd}.

Remark 51. The finiteness condition is important, otherwise ({z,y})s yex would coarsely cover
X, but if X is not bounded we don’t want X to be covered by bounded sets only.

Lemma 52. A nonbounded coarse space X is coarsely covered by one element U if and only if
X\ U is bounded.

Proof. By definition U coarsely covers X if and only if (U?)€ is a coentourage; now (U¢)? C (U?)¢
thus U° is bounded by Lemma
Conversely, if U¢ is bounded then

(U*) =X xU°UU* x X
is a coentourage, thus U coarsely covers X. O

Remark 53. If X is coarsely covered by (U;); and they cover X (as sets) then it is the colimit
(see Definition of them:
x=Ju;

as a coarse space.

This is going to be useful later:

Proposition 54. A finite family of subspaces (U;); coarsely covers a metric space X if and only
if for every entourage E C X? the set

E[Uf]N...NnE[U;]
is bounded.

Remark 55. This appeared already in [6, Definition 2.1]; wherein Uf,...,US is a finite system

n
of subsets of X that diverges.

Proof. We proceed by induction on the number i of pieces in the cover.
If there is one piece Uy, then by Lemma [52] one subset U; C X coarsely covers X if and only
if Uy is bounded. By this and Lemma |§| for every entourage E C X2 the set E[Uf] is bounded.
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Conversely if E[Uf] is bounded for every entourage E C X? then U5 itself is bounded which
implies that U; coarsely covers X.

Consider next the case of two subsets Uy, U;. We first claim that they form a coarse cover if
and only if U x US is a coentourage. Indeed X2\ (UZUU3) = Uf x USUUS x US, so X2\ (U2UU3)
is a coentourage if and only if both of Uf x U§ and U§ x Uf are coentourages. Let E C X2 be
an entourage. Now by Lemma this implies that U{ x E[US] is a coentourage, namely we have
that the set E[U] N E[US] is bounded.

Conversely from the assumption that E[Uf] N E[US] is bounded for every entourage F C X2,
we deduce E[Uf] NUS is a bounded set. This implies that Uf x U§ is a coentourage.

Now we consider the inductive step. Suppose n > 1. Subsets Uy,...,U,,U,V form a coarse
cover of X if and only if Uy,...,U,, U UV is a coarse cover of X and U,V is a coarse cover of
UUV. Let E C X2 be an entourage. Without loss of generality we can assume E is symetric
and contains the diagonal. By the induction hypothesis

ElUfIN---NE[USINE[(UUV)4]

is bounded. And
EUNVINEV NUINUUYV)

is bounded. Now

EU{IN---NEUSNEU INE[VY] =EU|N---NEUSNEU NEVNE[(UUV)
UE[U{IN---NEULNEUINEVINE[(UUV)°
CE[UIN---NEUNE[(UUV)]]
UE[UNVINEV NUINUUY)

is bounded. In the above calculation we use that
E[UINEVINE(UUV)) CE[UNVINEV NUIN{UUV)

by direct calculation.
O

Proposition 56. If r: X — Y is a surjective coarse equivalence then (V;); is a coarse cover of
Y if and only if (r—1(V;)); is a coarse cover of X.

Proof. Suppose (V;); is a coarse cover of X. then (|J, V;?)¢ is a coentourage in Y thus
Ut =" Uv

is a coentourage. Thus (f~1(V;)); is a coarse cover of X.
Conversely suppose (f~1(V;)); is a coarse cover of X then

(U‘/i)c:fX2 f><2 UV

i
is a coentourage in Y. O
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2.4.2 The Coarse Site

Notation 57. In what follows we define a Grothendieck topology on the category of subsets of
a coarse space X. What we call a Grothendieck topology is sometimes called a Grothendieck
pretopology. We stick to the notation of [22]. If C is a category a Grothendieck topology T on C
consists of

e the underlying category Cat(T) =C

e the set of coverings Cov(T') which consists of families of morphisms in C with a common
codomain. We write

where i stands for the index. They comply with the following rules:

1. Every isomorphism is a covering.

2. Local character: If {U; — U}, is a covering and for every i the family {V;; — U;}; is
a covering then the composition

is a covering.

3. Stability under base change: For every object U € Cat(T'), morphism V — U and
covering {U; — U}; all fibre products U; Xy V exist and the family

{Ul xyV — V}
is a covering.

In the course of this paper we will mostly (but not always) apply theory on Grothendieck topolo-
gies as portrayed in 23] parts I,II].

Definition 58. To a coarse space X is associated a Grothendieck topology X, where the

underlying category of X,; consists of subsets of X, there is an arrow U — V if U C V. A finite
family (U;); covers U if they coarsely cover U, that is, if

vrn(Jud)

is a coentourage in X.
Lemma 59. The construction X, is indeed a Grothendieck topology.
Proof. We check the axioms for a Grothendieck topology:

1. if U C X is a subset the identity {U — U} is a covering
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2. Let {U; — U}; be a covering and suppose for every i there is a covering {U;; — U}, then:

e v N
. —ﬂ U20ﬂU2°
_ﬂ U2mU2rwﬂU2° (U2 nuFEnUZ)
Cﬂ U2ﬁﬂU20 nu) ]
cUUQmﬂUQC uW?nu)
e ez owa o
i i “

Therefore U2 N (|, y Ui% ;)¢ 1s a finite union of coentourages, since the index set is finite; so
it is a coentourage by Lemma

3. Let {U; — U}, be a covering and let V' C U be an inclusion. Then

V2 N (U(V N Ui)2)c — V2 N ﬂ(v N Ui)QC

=V2nUuv™)
=Vin(U

*nJuodr

cvrn(Jud)

So {VNU; =V}, is a covering of X;.
O

Notation 60. If T, 7" are two Grothendieck topologies a functor f : Cat(T) — Cat(T") is called
a morphism of topologies if

1. if {; : U; = U}, is a covering in T then {f(v;) : f(U;) = f(U)}; is a covering in T".
2. if {U; = U}; € Cov(T) and V — U a morphism in Cat(T) then the canonical morphism
fWUi xu V) = f(Us) Xy (V)
is an isomorphism for every i.
Definition 61. Let f : X — Y be a coarse map between coarse spaces. Then we define a functor

71 Cat(Yy) = Cat(Xy)
U )
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Lemma 62. The functor f~! induces a morphism of Grothendieck topologies f~': Yy — X4.
Proof. We check the axioms for a morphism of Grothendieck topologies:

1. Let {U; — U}, be a covering in Y. Then
FrwpEa s oy =@ e a o)

is a coentourage. Thus {f~1(U;) — f~1(U)}; is a covering in X.
2. for every U,V subsets of X we have
FFAUnv) =1 O)n (V)

Notation 63. Let T be a Grothendieck topology.
o A presheaf on T with values in Cis defined as a contravariant functor F : Cat(T') — C.

o A morphism n : F — G of presheaves with values in C is a natural transformation of
contravariant functors.

o A presheaf is a sheaf on T if for every covering {U; — U} € Cov(T) the diagram
FU) = [[FW) =[] FWU xu U;)
i ij
is an equalizer diagram in C. Exactness at F(U) means that the first arrow s — (s|y,); is
injective (global aziom) and exactness at [ [, F(U;) means that the image of the first arrow

is equal to the kernel of the double arrow, hence consists of all (s;); such that s;|y, = s;|uv,
(gluing azxiom).

o A morphism of sheaves is a morphism of the underlying presheaves.

Example 64. Let B be a space with the indiscrete (maximal) coarse structure. Then B is
already covered by the empty covering. But then the equalizer diagram for that covering is

FB)=1[=11
1] 0

Thus every sheaf on B vanishes.

Proposition 65. (Sheaf of Functions) If XY are coarse spaces then the assignment U C
X — (coarse maps U =Y modulo closeness) is a sheaf on Xct.

Proof. We check the sheaf axioms:

1. global axiom: Let f,g: U — Y be two coarse maps and suppose U is coarsely covered by
U1, Us and fly, ~ gly, and flu, ~ glu,. Then

[ xg(Av) = f x g(Au,) U f x g(Ap,) U f x g(Au @ uu))

The first two terms of the union are entourages because f, g are close on U; and U,. The
last term is a entourage because U \ (Uy U Uz) is bounded. Therefore (f x g)(Ay) is a
union of three entourages, so is itself an entourage. Thus f, g are close on U.
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2. gluing axiom: Suppose U C X is coarsely covered by U;,Us and f1 : Uy — Y and f5 :
Us; — Y are coarse maps such that

filo, ~ folu,-

Then there is a global map f: U — Y defined in the following way:

fi(z) =z e U,
f(@) =4 f2(z) z €U\ Ui,
D xe U\ (U Uly).

Here p denotes some point in Y. Now we show f is a coarse map:
We show f is coarsely uniform: If E C U? is an entourage then
(a) f*2(ENU?) = f73(ENU}) is an entourage;
(b)
fxg(E N (Ul N UQ) X (UQ \ Ul)) = f1 x f2(E N (Ul N U2) X (UQ \ Ul))
C fi x f2(Avyw,) 0 [52(EN (U N U2) x (U2 \ Uh))
is an entourage;
(¢) fXAUEN (U \U1)?) = f52(EN (Uy \ Up)?) is an entourage;

(d) ENUf x US and ENUS x Ui are already bounded. Now f maps bounded sets to
bounded sets because fi, fo and the constant map to p do.

Since
U? =Uf U (Ui NUs) x (U2 \U1) U(Uz \ Up) x (U1 NU2) U (U \ U1)? U (U \ (U1 UU))?

the set f*?(E) is a finite union of entourages and therefore itself an entourage. Thus f is
coarsely uniform.

We show f is coarsely proper: If B C Y is bounded then
FUB) S I B)U (B U U\ (U1 UD))

is bounded.

Thus we showed f is a coarse map.

2.4.3 Sheaf Cohomology

Sheaves on the Grothendieck topology X; give rise to a cohomology theory on coarse spaces and
coarse maps:

Notation 66. If T is a Grothendieck topology denote by Presheaf(T) the category of abelian
presheaves on T and by Sheaf(T') the category of abelian sheaves on T'. The category Sheaf (7)) is
a full subcategory of Presheaf(7T'), denote by i : Sheaf(T) — Presheaf(T) the inclusion functor.
The functor i is left exact by [23| Theorem 1.3.2.1]. If U € Cat(T) then denote by I'(U,) :
Presheaf(7) — Ab the section functor which is an exact functor by [23 Proposition 1.2.1.1].
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Then T'(U,-) o ¢ is additive and a composition of a left exact functor and an exact functor
and therefore left exact. The category Sheaf(T') is an abelian category with enough injectives
therefore the right derived functor

H(U, F) = RI(D(U, ) 0)(F)
exists for F an abelian sheaf on T'. See (23, Definition 1.3.3.1].

Remark 67. (coarse cohomology with twisted coefficients) Let F be a sheaf of abelian
groups on a coarse space X, let U C X be a subset and let ¢ > 0 be a number. Then the gth
coarse cohomology group of U with values in F is

YU, F),

the gth sheaf cohomology of U in X.; with coefficient F.

Remark 68. (functoriality) Let f : X — Y be a coarse map between coarse space. There is a
direct image functor

[« : Sheaf(X,;) — Sheaf(Yy)
F = fuF

where
FFV)=F(f1(V))

for every V C Y. The left adjoint functor to f. exists by |23, Proposition 1.3.6.2] and is denoted
inverse image functor
f* : Ssheaf(Y) — Sheaf(X).

Note that f* is exact. Then there is an edge homomorphism of the Leray spectral sequenceﬁ of
f« which will also be denoted by f.: let U C Y be a subset and let F be a sheaf on X; then
there is a homomorphism

fo: H(f~'U, F) = H*(U, f.F).

Notation 69. Let T be a Grothendieck topology. By |23, Theorem 1.3.1.1] the adjoint to the
inclusion functor i : Sheaf(T) — Presheaf(T) exists and is denoted by #. If F is a presheaf
then F# is the sheaf associated to the presheaf F, also called the sheafification of F.

Define for an abelian presheaf F on T

_ : 0((77.
FU) = {UiaUl}lirrelCov(T)H (Ui = U}, 7)

for U € Cat(T). Here the right side, the term H°({U; — U}, F), denotes the Oth Chech
cohomology associated to the covering {U; — U}; with values in F. The functor F' is a presheaf
and

F# = (Fh
is the sheaf associated to the presheaf F.

Lemma 70. Let X be a coarse space and denote by p : X x {0,1} — X the projection to the
first factor. Then
qu* =0
for ¢ > 0.
4This is |23, Theorem 1.3.7.6, p. 71]
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Proof. In a general setting if F is a sheaf on a coarse space denote by H?(F) the presheaf
U~ HYU,F).
Then [23] Proposition 1.3.4.3] says that
HUF)T =0

for ¢ > 0.
Now [23| Proposition 1.3.7.1] implies that for every coarse map f: X — Y and sheaf F on X

RIf(F) = (fHYF))*.
Define
H = {((z,1), (x,0)) : (z,i) € X x {0,1}} C (X x {0,1})?

as a subset of X x {0,1} which is an entourage. We identify X x 0 with X. Then (U;); coarsely
covers U C X if and only if (H[U;]); coarsely covers H[U].
Let V1, V5 be a coarse cover of U x {0,1}. Write

Vi=V2xouV! x1
and

Vo=V x0UVy x 1.
Note that

Ve = (VO 0)° 0 (V! x 1)

= (V) x0u (Vi) x 1

for s = 1,2. But then
(VU (V1)) x () U (V2)°)
is a coentourage in U. Thus
(V2 V) x {0, 1, (V) N V) x {0,1}

is a coarse cover that refines Vi, V5.
We show that p, and # commute for presheaves G on X: Let U C X be a subset then

{7y — : 0frT .
(rG)"(U) {Uﬁylﬁf?cme {Ui = U}, pi9)

= li H°({H[U;] — H[U]Y,
PR LR ({H[Ui] — H[U}:,9)

= li H°({V; = H[U]}
(Vims H{U 1 €C0u(X % {0,1}) (Vi = H[Ul}:,9)

= G'(H[V))
= p*gjf(U)
O

Remark 71. Note that two coarse maps f,g: X — Y are close if the map h: X x {0,1} = Y
agreeing with f on X x 0 and with g on X x 1 is a coarse map.
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Proof. Suppose h is a coarse map we show f, g are close. The set

fxg(Ax) ={f(z),9(x): z € X}
= {h(($70)7 (.T, 1)) HEES X}
=h*3(Ax x {0,1})

is an entourage in Y.
O

Theorem 72. (close maps) If two coarse maps f,g: X — Y are close the induced homomor-
phisms f«, g« of coarse cohomology with twisted coefficients are isomorphic.

Proof. Define a coarse map
h:X x{0,1} =Y

by hlxxo = f and h|xx1 = ¢g. But the inclusions 45 : X x 0 - X x {0,1} and i; : X x 1 —
X x {0, 1} are both sections of the projection p : X x {0,1} — X which by Lemma |70 induces
an isomorphism in coarse cohomology with twisted coefficients. Hence the maps f = h o iy and
g = h oy induce maps f, = hs o ig. and g, = h, o i1, which is the same map followed by
isomorphisms. O

Corollary 73. (coarse equivalence) Let f : X — Y be a coarse equivalence. Then f induces
an isomorphism in coarse cohomology with twisted coefficients.

2.4.4 Mayer-Vietoris Principle

In [24] Section 4.4, p. 24] a Mayer-Vietoris principle for sheaf cohomology on topological spaces
is described. it can be translated directly to a Mayer-Vietoris principle for coarse spaces.

Let X be a coarse space and A, B two subsets that coarsely cover X. If F is a flabby sheaf
on X the sequence

0— F(AUB) — F(A) x F(B) & F(ANB) = 0

is an exact sequence. Here ¢ sends a pair (s1,82) to s1|ans — S2|anp- Thus if G is an arbitrary
sheaf on X there is an exact sequence of flabby resolutions of G(AUB),G(A) xG(B) and G(ANDB).
And thus there is an exact sequence in cohomology:

Theorem 74. (Mayer- Vietoris) For two subsets A, B C X that coarsely cover X there is an
exact sequence in cohomology

- > H"YANB,F)— H(AUB,F) —» H'(A,F) x H(B, F)
— H(ANB,F) — -

for every sheaf F on X.

2.4.5 Local Cohomology

Let us define a version of relative cohomology for twisted coarse cohomology. There is already
a similar notion for sheaf cohomology on topological spaces described in 25| chapter 1] which is
called local cohomology. We do something similar:
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Definition 75. (support of a section) Let s € F(U) be a section. Then the support of s is
contained in V C U if

slyenu =0

Let X be a coarse space and Z C X a subspace. Then
Tz(F):Uw ker(F(U) = FUNZ°)
is a sheaf on X.

Lemma 76. Let Z C X be a subspace of a coarse space and let Y = X \ Z. Then there is a
long exact sequence

0— HYU,Tz(F)) = H(U,F) - H'(U, Fly) - H (U,T2(F)) — -
for every subset U C X and every sheaf F on X.
Proof. First we have an exact sequence
0—=>Tz(F)—=F = Fly

and if F is flabby we can write 0 on the right.
Let Z=0— F — Iy — I; — --- be an injective resolution of F. Note that every injective
sheaf is flabby. Then there is an exact sequence of complexes

0-T2(Z)-Z—Ily =0

which shows what we wanted to show. ]
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Chapter 3

Coarse Topology of Metric Spaces

We have seen that the new notion coarse cover serves as a Grothendieck topology for defining
sheaves and sheaf cohomology. And it also serves as an excision property for a Mayer-Vietoris
sequence. There is a third application: coarse covers define a uniformity for a space at infinity.
In this Chapter we will make use of the predicted duality between Coarse Geometry and
Uniform Topology. We will call what we do Coarse Topology.
The Proposition only works for metric spaces not for general coarse spaces. That is why
we restrict our attention to metric spaces only.

3.1 Coarsely proper coarsely geodesic Metric Spaces

This Chapter is denoted to the boring part. We develop the technical preliminaries needed for
this and the following studies. We introduce coarsely geodesic coarsely proper metric spaces.

3.1.1 Coarsely Proper:
Notation 77. If X is a metric space we write
B(p,r)={z € X : d(z,p) <r}
for a point p € X and r > 0. If we did not specify a coarse space we write
E(Y,r)={(z,y) € Y? : d(z,y) <7}
for Y a metric space and r > 0.
This is [26, Definition 3.D.10]:

Definition 78. (coarsely proper) A metric space X is called coarsely proper if there is some
Ry > 0 such that for every bounded subset B C X the cover

U B(l‘7 Ro)

z€EB
of B has a finite subcover.

Remark 79. (proper)
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e A metric space X is proper if the map

’I"pZX—>R+
x — d(x,p)

is a proper E| continuous map for every p € X.

e Every proper metric space is coarsely proper. A coarsely proper metric space is proper if
it is complete.

e If X has a proper metric then the topology of X is locally compact.

Lemma 80. o If f: X =Y is a coarse map between metric spaces and X' C X a coarsely

proper subspace then
JXHcy

is coarsely proper.
e being coarsely proper is a coarse invariant.

Proof. e Suppose Ry > 0 is such that every bounded subset of X’ can be covered by finitely
many Rp-balls. Because f is a coarsely uniform map there is some Sy > 0 such that
d(xz,y) < Ry implies d(f(x), f(y)) < Sp. We show that f(X’) is coarsely proper with
regard to Sy.

Let B C f(X’) be a bounded subset. Then f~!(B) is bounded in X thus there is a finite

subcover of | J, .5 B(x, Ro) which is

f~YB) = B(x1,Ro) U--- U B(xp, Ry).
But then

B=fof (B)

(B(Sﬂl, Ro) J---uU B(l’n,Ro))

(B(x1, Ro)) U -+ U f(B(wn, Ro))
(

(f(z1),S0) U+~ UB(f(zn),So)

is a finite cover of B with Sy-balls.

N
o= =

e Suppose f: X — Y is a coarsely surjective coarse map between metric spaces and that X
is coarsely proper. We show that Y is coarsely proper:

By point 1 the subset im f C Y is coarsely proper. Suppose im f is coarsely proper with
regard to Ry > 0 and suppose K > 0 is such that E(Y, K)[im f] =Y, we show that Y is
coarsely proper with regard to Ry + K.

Let B CY be a bounded set. Then there are xy,...,x, such that

and then
B C B(l’l,Ro+K)U'~~UB(xn,R0+K).

Example 81. Note that every countable group is a proper metric space.
1

as in the reverse image of compact sets is compact
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3.1.2 Coarsely Geodesic:
The following definition can also be found on |26, p. 10]:
Definition 82. (coarsely connected) Let X be a metric space.

e Let z,y € X be two points. A finite sequence of points ag,...,a, in X is called a c—path
joining x to y if x = ag,y = a, and d(a;,a;+1) < c for every i.

e then X is called c-coarsely connected if for every two points z,y € X there is a c—path
between them

e the space X is called coarsely connected if there is some ¢ > 0 such that X is c—coarsely
connected.

Example 83. Not an example:

Lemma 84. Being coarsely connected is invariant by coarse equivalence.

Proof. Note that this is |26, Proposition 3.B.7]. The argument for the proof can be found
in |26, Proposition 3.B.4]. For the convenience of the reader we recall it:

If f: X = Y is a coarsely surjective coarse map and X is coarsely connected we will show
that Y is coarsely connected. Suppose X is c-coarsely connected. Let y,y’ be two points in Y.
Note that by coarse surjectivity of f there is some K > 0 such that E(Y, K)[im f] =Y. And by
coarseness of f there is some d > 0 such that f?(E(X,c)) C E(Y,d). Now denote by

e = max(K,d).

Choose points z,z’ € X such that d(y, f(z)) < K and d(y', f(2')) < K and a c-path z =
ag, a1, ...,a, =x'. Then

yaf(‘r)’ f(al)a e .,f(x'),y’

is an e-path in Y joining y to ¢'. Thus Y is e-coarsely connected which implies that Y is coarsely
connected. O

Example 85. By |26 Proposition 4.B.8] a countable group is coarsely connected if and only if
it is finitely generated.

This one is [26, Definition 3.B.1(b)]:
Definition 86. (coarsely geodesic) A metric space X

e is called c—coarsely geodesic if it is c-coarsely connected and there is a function
®(X,c): Ry — N

(called the upper control) such that for every z,y € X there is a c—path z = ag,...,a, =y
such that
n+1<®(X,c)d(z,y)).

e the space X is called coarsely geodesic if there is some ¢ > 0 such that X is c—coarsely
geodesic.

Lemma 87. Being coarsely geodesic is a coarse invariant.
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Proof. Suppose that f : X — Y is a coarse equivalence between metric spaces and that X is
c—coarsely geodesic. We proceed as in the proof of Lemma using the same notation:

1. There is a constant K > 0 such that E(Y, K)[im f] =Y;

2. there is a constant d > 0 such that f*?(E(X,c)) C E(Y,d). By the proof of Lemma
the space Y is e = max (K, ¢)—coarsely connected.

3. For every r > 0 there is some s > 0 such that
(f**) N EY,r) C E(X,s)
we store the association 7 — s in the map ¢ : R4 — R,
Define
®(Y,e) :Ry — N
ri— ®(X,c)op(r+2K)+ 2.

Then ®(Y, e) is an upper bound for Y: Let y,3’ € Y be two points. Consider the same e—path
y, f(z),a1,..., f(2'),y as in the proof of Lemma [84] with the additional condition that n + 1 <
®(X,c). Then d(y,y’) < r implies that d(f(x), f(z’)) < r + 2K which implies d(z,2") < p(r +
2K).

Thus Y is e—coarsely geodesic which implies that Y is coarsely geodesic. O

Example 88. Note that by [26, Proposition 1.A.1] every finitely generated group is coarsely
geodesic.

3.1.3 Geodesification

Lemma 89. If X is a coarsely proper metric space then there exists a countable R-discrete for
some R > 0 subset (x;); € X such that the inclusion (x;); — X is a coarse equivalence.

Proof. Suppose X is Ry-coarsely proper. Fix a point zg € X. Then
X =JB(x,1)
i

is a countable union of bounded sets. Now for every i there are z;1, ..., %, such that

B(l’o,i) Q B(l‘il,Ro) U---u B(xml,Ro)

enough then we can inductively choose a subset S C (x;;);; that is e-discrete and the inclusion
S — X is Ry + e-coarsely surjective. O

Then (z;;);; € X is countable and the inclusion (x;;),; is Ro-coarsely surjective. If ¢ > 0 small

This is a variation of |26, Definition 3.B.5]:

Definition 90. (c—geodesification) Let X be a coarsely proper c—coarsely connected metric
space. By Lemma [89 we can assume X is countable. Define a total order < on the points in
X. We define the c—geodesification X9 of X to be the geometric realization of the following
simplicial 1—complex:

e X consists of every x € X.
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o X; : there is an edge e(z,y) if d(z,y) < cand z < y.

Note that X9 is another name for the 1—skeleton of the c—Rips simplicial complex Rips’(X) of
X.

Lemma 91. If X is a coarsely proper c-coarsely connected metric space
e the map
Ve X9 X

x d(t,x) <d(t,y)
Leely) {y d(t,y) < d(t,=

s a coarsely surjective coarse map.
o If X is a c—coarsely geodesic metric space then p. is a coarse equivalence

Proof. e We show ¢, is coarsely surjective coarse: The map ¢, is surjective hence varphi, is
coarsely surjective.

Now we show ¢, is coarsely uniform: let n € N be a number. Then for every t,s € X9
the relation d(¢,s) < n implies that for the two adjacent vertices x,y (d(z,t) < 1/2 and
d(y,s) < 1/2) the relation d(x,y) < n -+ 1 holds in XJ. But that means there is a c—path
of length n + 1 in X joining z to y. Thus

d(pe(t), pe(s)) = d(z,y)
<(n+1)c

in X.

Now we show the map ¢, is coarsely proper: If B C X is bounded there are x € X and
R > 0 such that B C B(z, R). Choose some n such that nc > R. Then

¢ (B) C B(a,n+1/2).
is bounded in X9.

o We show ¢, is coarsely injective: Let & > 0 be a number. Then d(x,y) < k implies that
there is a c-path joining z to y with length at most ®(X, ¢)(k). Then for any s € p_1(x),t €
- (y) the relation

d(s,t) < ®(X,e)(k)+1

holds.

3.1.4 Coarse Rays

In [27] every metric space that is coarsely equivalent to Z is called a coarse ray. We keep with
that notation:

Definition 92. (coarse ray) If X is a metric space a sequence (x;); C X is called a coarse ray
in X if there is a coarsely injective coarse map p : Z; — X such that z; = p(¢) for every i.
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Lemma 93. If X is a c—coarsely geodesic metric space, (x;); a sequence in X and if for every
i < j the sequence
Liyensy Ty

is a c—path such that ®(X,c)(d(z;,x;)) > |i — j| + 1 then the association
LT

defines a coarsely injective coarse map p:Z4y — X.

Proof. We show that p is coarsely injective coarse:

1. p is coarsely uniform: Let n € N be a number. Then for every 4,5 € Z, if |i — j| < n then
d(z;,zj) < cn.

2. p is coarsely injective: Let k > 0 be a number. Then d(z;,z;) < k implies |i — j| <
d(X,c)(k) — 1 for every ij.

O
Proposition 94. If X is a coarsely geodesic coarsely proper metric space and
e if X is not bounded then there is at least one coarse ray in X.

o in fact if (z;); is a sequence in X that is not bounded then there is a subsequence (z;, )k
that is not bounded, a coarse ray (r;); and an entourage E C X? such that

(@i )k C E[(ri)a]-

Remark 95. Point 1 is the same as [27, Lemma 4]. The proof is quite different though.

Proof. Suppose X is coarsely proper with regard to Ry and c—coarsely geodesic. We will deter-
mine a sequence (V;); of subsets of X and a sequence (r;); of points in X.

Define ry = zg and V; = X.

Then define for every y € X the number dy(y) to be the minimal length of a ¢—path joining
zg to y.

We define a relation on the points of X: y < z if do(y) < do(z) and y lies on a c-path of
minimal length joining xo to z. This makes (X, <) a partially ordered set.

for every ¢ € N do:

Denote by

C;={x e X :do(z) =i}.

There are yi,...,ymn € X such that
Ci = B(yl,Ro) U--- UB(ym,Ro).

Now (x;); N V;_1 is not bounded and V;_; is coarsely geodesic. Thus for every n € N there is
some T, € Vi1 with do(zp,) > n+1i.

Then there is one of j = 1,...,m such that for infinitely many n € N: there is y € B(y;, Ro)
such that y < x,,,. Then define

Vi:={z e Vi1 :3y € B(yj,Ro) : y < x}.

Note that V; is coarsely geodesic and that V; N (z;); is not bounded.
Define r; := y;.
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We show that (r;); and E = E(X, Ry) have the desired properties:
The set (r;); is a coarse ray: for every ¢ the sequence

roy...,T;

is Rg-close to a c—path of minimal length which implies that every subsequence is Ry-close to a
c—path of minimal length.
The set
P = U ‘/; N Oi
1

contains infinitely many of the (z;); and (r;); is Ro-coarsely dense in P. Thus the result. O

3.2 Coarse Homotopy

In this chapter we define coarse homotopy. Our coarse cohomology with twisted coefficients is
invariant under coarse homotopy.
3.2.1 Asymptotic Product
Lemma 96. If X is a metric space, fix a point p € X, then
Tp: X — Z+
x> |d(z,p)]
is a coarse map.

Proof. 1. r, is coarsely uniform: Let k& > 0. Then for every (z,y) € X? with d(x,y) < k:

|Ld(z, p)] — [d(y,p)]| < d(z,y) +2
<k+2.

2. rp is coarsely proper: Let B C Z, be a bounded set. Then there is some [ > 0 such that
B C B(1,0). Then r, '(B(l,0)) = B(l,p) is a bounded set which contains r,!(B).
O

Definition 97. (asymptotic product) If X is a metric space and Y a coarsely geodesic coarsely
proper metric space then the asymptotic product E| X xY of X and Y is a subspace of X x Ylﬂ

e fix points p € X and ¢ € Y and a constant R > 0 large enough.

o then (z,y) € X Y if
|dx (z,p) —dy(y,q)| < R.

We define the projection px : X *Y — X by (z,y) — = and the projection py : X *Y — Y by
(x,y) — y. Note that the projections are coarse maps.

Lemma 98. The asymptotic product X xY of two metric spaces where Y is coarsely geodesic
coarsely proper is well defined. Another choice of points p' € X,q' € Y and constant R' > 0
large enough gives a coarsely equivalent space.

2We guess this notion first appeared in |7, chapter 3] and kept with the notation.
3with the pullback coarse structure defined in Definition
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Proof. Suppose Y is c—coarsely geodesic.
We can rephrase Definition [97] by defining coarse maps

t: X — Z+
and
s:Y — Z+
y = dy(y,q)

and an entourage

E=A{(zy): |z -yl <R}
czi.

Then
X+Y = (t xs)"H(B).
Another choice of points p’ € X, ¢’ € Y and constant R’ > 0 defines coarse maps t' : X — Z
and s’ : Y — Z, and an entourage £’ C Z% in much the same way.
Define
R"=d(p,p') +d(q.q') + R

If (z,y) € (t x s)"}(E) then

ld(p',z) —d(d',y)| < |d(p', =) — d(p,z)| + |d(p, x) — d(q,y)| + |d(q,y) — d(¢', y)|
<d(p,p') + R+d(q,q)
— R/I

If E” C Z2 is associated to R” then (z,y) € (s’ x t')"'(E"). Thus we have shown that X =Y is
independent of the choice of points if X *Y is independent of the choice of constant. The second
we are going to show now.

Now we can assume R is larger than R’ but not by much. Explicitely we require R < 2R'—c—2.
We show that the inclusion

i (txs)"Y(E) = (t x s)"Y(B)

is a coarse equivalence. It is a coarsely injective coarse map obviously.

We show i is coarsely surjective. Assume the opposite: there is a sequence (z;,y;); C (s X
t)~Y(E) such that (z;,y;); is coarsely disjoint to (s x t)~1(E’). By Proposition [94] there is a
coarsely injective coarse map p : Zy — Y, a number S > 0 and subsequences (i) C N, (Ix)r C
Z, such that

d(yimp(lk)) cs

for every k. Without loss of generality we can assume that p(0) = g and d(q, p(k)) = kc for every
k. Now for every k:

|d(yik7q) - d(‘rik7p)| < R.

Then there is some z € Z such that |d(y;,,q) — zx] < R’ and |d(x;,,p) — zx] < R’ —c. Then
for every k there is some ji such that

ld(p(jk),q) — zk| < c.
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Now

d(p(jr), (k) = |d(p(jk), @) — d(p(lk), )]
< |d(p(jr), q) — 2| + |2k — d(p(lk), )]
<c+R +8

for every k. And

[d(p(jr), a) — d(ziy, p)| < |d(p(Jk), @) — 2| + |d(zi,, p) — 2]
<c¢c+R —c¢
=R.

Thus (p(jk), zi,)x € (t x s)"H(E') and d((p(jk), %i,), (Yir> Ti,)) < ¢+ R+ 28 for every k a
contradiction to the assumption. O

Lemma 99. Let X be a metric space and Y a coarsely geodesic coarsely proper metric space.
Then

Xxy 2 oy

le \Ld(-,q)
X

_
d(-,p)
is a limit diagram in Coarse. Note that we only need the diagram to commute up to closeness.

Proof. Suppose X *Y has constant Q). Let f: Z — X and g: Z — Y be two coarse maps from
a coarse space Z such that there is some R > 0 such that

|d(f(2),p) = d(9(2),¢)| < R.
Assume for a moment there exists a K > 0 such that for every z € Z there is g(z) € Y with
L [d(f(2),p) —d(g(2),q)| < ¢
2. d(g(2),9(2)) < K
Then define

(fr9): Z—=X=Y
2 (f(2),9(2))-

This map is a coarse map:

e (f,g) is coarsely uniform: If E C Z2 is an entourage then f*2?(E) C X2 ¢g*%(E) C Y?
are entourages. Since g is close to g the set g*2(F) is an entourage. Then (f,g)*?(E) C
f*2(E) x g*?(E) is an entourage.

e (f,g) is coarsely proper: If B C X Y is bounded then p;(B), p2(B) are bounded. Then
(f,9)"'(B)C fopi(B)Ug ' opa(B)
is bounded since f, g and thus g are coarsely proper.

47



Also px o (f,g) = f and py o (f,g) ~ g.
Suppose there is another coarse map h : Z — X % Y with the property that px o h ~ f and

py oh ~ g. Then

<fag> ~ <pXOh7pYOh>
=h

are close.

Now we prove the above assumption by assuming the opposite: There does not exist a K > 0
such that for every z € Z there is g(z) with 1. and 2. satisfied. Then there exists an unbounded
sequence (z;); € Z such that (f(z),9(zi))i € X x Y is coarsely disjoint to X % Y. Since
(f(zi),9(z;:))q is a subset of X «Y with constant R > @ and by Lemma [98| the inclusion of X Y
with constant @) to X Y with constant R is coarsely surjective this leads to a contradiction. [

Lemma 100. For every metric space X there is a coarse equivalence
X —>X=xZ,.

Proof. easy. O

Lemma 101. If X, Y are proper metric spaces and Y is coarsely geodesic then X xY is a proper
metric space.

Proof. We show that X x Y is a proper metric space. If B C X x Y is bounded then the
projections Bx of B to X and By of B to Y are bounded. But X,Y are proper thus Bx, By
are relatively compact. Then

B - BX X BY

is relatively compact. Thus X x Y is proper. But X «Y C X x Y is a closed subspace. O

3.2.2 Definition
Definition 102. Let T be a metric space then

F(T)=TxZ2Z4
is a metric space with metric
d((x,1), (y,5)) = Vi® + 2 = (2 — dr(z,9)?)ij.

Note that we impose that Z; does not contain 0 thus d is a well defined metric.

Remark 103. A countable subset ((x;,n;), (yi,m;)); C F(T)? is an entourage if
1. the set (n;,m;); is an entourage in Z
2. and if n; — oo then there is some constant ¢ > 0 such that d(z;,y;) < ¢/n;

Definition 104. (coarse homotopy) Denote by [0,1] the unit interval with the standard
euclidean metric djg 1. Let X be a metric space and Y a coarse space.

e Let f,g: X — Y be two coarse maps. They are said to be coarsely homotopic if there is a
coarse map h : X x F([0,1]) — Y such that f is the restriction of h to X * F'(0) and g is
the restriction of h to X  F(1).
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e A coarse map f : X — Y is a coarse homotopy equivalence if there is a coarse map
g :Y — X such that f o g is coarsely homotopic to idy and g o f is coarsely homotopic to
idx.

e Two coarse spaces X, Y are called coarsely homotopy equivalent if there is a coarse homotopy
equivalence f: X — Y.

Remark 105. There are other notions of homotopy in Coarse but they differ from that one.

Lemma 106. If two coarse maps f,g : X — Y between metric spaces are close then they are
coarsely homotopic.

Proof. We define a homotopy h : X % F'([0,1]) = Y between f and g by
h(z, (0,7)) = f(x)

and for 1 >t > 0:
h(z, (t,i)) = g(z).

We show that h is a coarse map:

1. h is coarsely uniform: if ¢; — 0 in [0, 1] such that d(¢;,0) < 1/i and (x;); € X a sequence

of points then
h((zlv (ti7 7’))7 (Ilv (Ov Z)) = {(f(xl)a g(xz)) : Z}
is an entourage.
2. h is coarsely proper because f, g are.

O

Definition 107. (coarse homotopy 2) Let X,Y be coarsely geodesic coarsely proper metric
spaces.

e A coarse homotopy is a family of coarse maps (h; : X — Y); indexed by [0, 1] with the
property that if (¢;); C [0, 1] converges to t € [0, 1] such that there is a constant ¢ > 0 such
that |t — t;| < ¢/i then for every coarsely injective coarse map p: Z; — X the set

{(he; 0 p(i), by o p(i)) 1 i € Z4 }
is an entourage in Y.

e two coarse maps f,g : X — Y are coarsely homotopic if there is a coarse homotopy
(hy : X = Y); such that f = hg and g = hy.

Proposition 108. If X is a coarsely geodesic coarsely proper metric space then Definition
of coarse homotopy agrees with Definition [I0) of coarse homotopy.

Proof. Let there be a coarse map h : X  F([0,1]) — Y. First of all for every z € X choose some
iz such that (z, (¢,i,)) € X * F([0,1]). Then we define

ht<$) = h(-T7 (tvia:»

for every t € [0,1]. Note that h; is a coarse map because it is a restriction of h to a subspace
and h is a coarse map. Now suppose (¢;); C [0, 1] converges to ¢ € [0, 1] such that |t; —t| < 1/i
and ¢ : Z; — X is a coarse map. Then

i ly =2y
17— iw(i)
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is a coarse map. But
((p(2), (tir p(i)))s (0(0), (8 (1)) )i

is an entourage and h is a coarse map. Thus (h; : X — Y); is a coarse homotopy.
Let there be a family of coarse maps (h; : X — Y'); with the above properties. Then

h:X*F([0,1]) =Y
(z, (t,9)) — ()
is a coarse map: h is coarsely uniform:
Let (@, tn,in)s (Yn, Snydn))n C (X % F(]0,1]))? be a countable entourage. That means both

(s Yn)n € X2 and ((tn,in), (Sn,dn))n € F([0,1])? are entourages.
Assume the opposite. Then there is a subsequence (ny ) such that

h‘Q((xTLk b) tnk b ink)v (ynk ) Snk b jnk))k
is an unbounded coentourage. By Proposition [94] there are coarsely injective coarse maps p, o :
Z, — X and subsequences (mg)r C (ng)r and (Ix)r € N such that z,,, = p(lk), Ym, = o(lk)
and

(p(lk), o (1)) k

is an entourage in X. Note that

hXQ((p(lk), t7 mk)a (O-(lk)a t: mk))

is an entourage in Y.
Now there is some constant ¢ > 0 and ¢ € [0,1] such that |t; — ¢| < ¢/i for every 7. Thus by
Definition [I07 the set

W2 ((p(U) sty i) (p(11) b )
is an entourage in Y. Similarly there is some constant d > 0 such that |s; — ¢| < d/i for every i.
Then
hxz((a(lk)7 t imk)? (U(lk)7 Smy. ka))k
is an entourage in Y.
Combining the two previous arguments the set

hX2((p(lk)vtmk7imk)v (J(lk)v smk7imk))k

is an unbounded entourage in Y. This is a contradiction to the assumption.
h is coarsely proper:
If B CY is bounded then

hH(B) = J(h H(B) = (t x Z.))
t
we show J, h; '(B) is bounded:

Assume the opposite. Then there is an unbounded sequence (b;,); C |J, h; *(B), here b, €
hy, ! (B) for every t;. We can assume that every bounded subsequence is finite. By Proposition
there is a coarsely injective coarse map p : Z; — X and subsequences (ng)g, (mi)r € N such
that b;, = p(my) for every k.

Now there is a subsequence (Ix)x C (ng)r and some constant ¢ > 0 such that (¢, ), converges
to ¢ € [0,1] and |t;, — t| < ¢/k. By Definition [L07] the set

(he,, © p(mu), by © p(m) )i

is an entourage. Then ht(btlk) is not bounded which is a contradiction to the assumption. O
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Theorem 109. (coarse homotopy invariance) Let f,g : X — Y be two coarse maps which
are coarsely homotopic. Then they induce the same map in coarse cohomology with twisted
coefficients.

Proof. Tt suffices to show that if p : X x F'([0,1]) — X is the projection to the first factor then
Rip = 0 for ¢ > 0. We will proceed as in the proof of Lemma [70] Thus we just need to check
that if U C X is a subset and p~*(U) = U * F([0, 1]) is coarsely covered by Vi, V5 then there are
Uy, Uy C X such that p~1(Uy),p~1(Us) is a coarse cover that refines Vi, Vo. We write

U Vi (t x Zy)

t€[0,1]
and
U Vy* (t x Zy).
te[0,1]
We see that
ve= 0 = ex24)
= U (VI x (¢t x Z4).
But then

is a coentourage in X. Which implies that

Ui F((0,1]) x [ (V)" + F ([0, 1])

t

is a coentourage. Thus U * F'([0, 1]) is coarsely covered by
ﬂv1 ) * F(]0,1]) ﬂv2 « F([0,1]).

O

Corollary 110. If f : X — Y is a coarse homotopy equivalence then it induces an isomorphism
in coarse cohomology with twisted coefficients.
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Chapter 4

Computing Cohomology

This Chapter is dedicated to computing cohomology.

Already coarse cohomology with constant coefficients sees a lot of structure. Using coarse
homotopy we will compute acyclic spaces. We will compute cohomology for free abelian groups
of finite type and for free groups of finite type using acyclic covers.

4.1 Constant Coeflicients

Now it is time for examples. We compute coarse cohomology with constant coefficients for a few
exemplary examples.

4.1.1 Number of Ends

If a space is the coarse disjoint union of two subspaces we have a special case of a coarse cover.
In 28] the number of ends of a group were studied; this notion can be generalized in an obvious
way to coarse spaces.

Definition 111. A coarse space X is called oneended if for every coarse disjoint union X = | |, U;
all but one of the U; are bounded.

Lemma 112. The coarse space Z is oneended.

Proof. Suppose Z is the union of U,V and U,V are not bounded. Without loss of generality
we can assume U,V are a disjoint union. Now (n)nen is a sequence where (n)pen N U is not
bounded and (n),en NV is not bounded.

For every N € N there is a smallest n € U such that n > N and there is a smallest m € V such
that m > N. Without loss of generality n is greater than m, then (n,n—1) e U x VN E(Z4,1).
Here E(Z4,1) denotes the set of all pairs (z,y) € Z3 with d(z,y) < 1. This is an entourage.
That way there is an infinite number of elements in

(UPUVA*NEZ,1)=(UxVUV xU)NE(Z,,1)
which implies that U, V' are not coarsely disjoint. O

Definition 113. Let X be a coarse space. Its number of ends e(X) is at least n > 0 if there is
a coarse cover (U;); of X such that X is the coarse disjoint union of the U; and n of the U; are
not bounded.

53



Lemma 114. If A, B are two coarse spaces and X = AU B their coarse disjoint union then
e(X) =e(A) +e(B).

Proof. Suppose e(A) = n and e(B) = m. Then there are coarse disjoint unions A = A; U...UA,
and B = By U...U B, with nonboundeds. But then

is a coarse disjoint union with nonboundeds. Thus e(X) > e(A) + e(B).

Suppose e(X) = n. Then there is a coarse disjoint cover (U;);=1,... , with nonboundeds of X.
Thus (U; N A); is a coarse disjoint union of A and (U; N B); is a coarse disjoint union of B. Then
for every i one of U; N A and U; N B is not bounded. Thus

e(X) <e(A) + e(B).

Example 115. ¢(Z) = 2.

Theorem 116. Let f: X — Y be a coarsely surjective coarse map and suppose e(Y') is finite.
Then
e(X) > e(Y).

Proof. First we show that e(X) > e(im f): Regard f as a surjective coarse map X — im f.
Suppose that e(im f) = n. Then im f is coarsely covered by a coarse disjoint union (U;);=1,...n
where none of the U; are bounded. But then (f~1(U;)); is a coarse disjoint union of X and
because f is a surjective coarse map none of the f~!(U;) are bounded.

Now we show that e(Y) = e(im f): Note that there is a surjective coarse equivalence r : ¥ —
im f. By Proposition [56| a finite family of subsets (U;); is a coarse cover of im f if and only if
(r=1(U;)); is a coarse cover of Y. if (U;); is a coarse disjoint union so is (r=(U;));. O

Corollary 117. The number e(-) is a coarse invariant.

4.1.2 Definition

Definition 118. Let X be a coarse space and A an abelian group. Then Ax (or just A if the
space X is clear) is the sheafification of the constant presheaf which associates to every subspace
U C X the group A.

Lemma 119. A coarse disjoint union X = U UV of two coarse spaces U,V is a coproduct in
Coarse.

Proof. Denote by 47 : U — X and i5 : V — X the inclusions. We check the universal property:
Let Y be a coarse space and f1 : U = Y and fy : V — Y coarse maps. But U,V are a coarse
cover of X such that U NV is bounded. Now we checked that already in Proposition The
existence of a map f : X — Y with the desired properties would be the gluing axiom and the
uniqueness modulo closeness would be the global axiom. O

Theorem 120. Let X be a coarse space and A an abelian group. If X has finitely many ends
then
A(X) = A0
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and if X has infinitely many ends then

Here A(X) means the evaluation of the constant sheaf A on X at X.

Proof. By the equalizer diagram for sheaves a sheaf naturally converts finite coproducts into
finite products. If X is oneended and U,V a coarse cover of X with nonboundeds then U,V
intersect nontrivially. Thus A(X) = A in this case. If X has infinitely many ends then there is
a directed system

=0 U ulU, U U U U1 —

in the dual category of Zx which is the category of coarse covers of X. Here the U; are non-
bounded and constitute a coarse disjoint union in X. Now we use |23, Definition 2.2.5] by
which
H°(X, A) = lim H°((Uy)s, A).
(Ui)i

Then we take the direct limit of the system
C AT AL A2

Thus the result.

Lemma 121. If a subset U C Z, is oneended then the inclusion
iU — Z+
is coarsely surjective.

Proof. If the inclusion i : U — Z is not coarsely surjective then there is an increasing sequence
(vi); € Z4 such that for every u € U:

lu —v;| > .

Now define
A::{UGUZU2i<U<U2i+1,iEN}

and
B .= {UE U:’U2i+1 <u < vg,t € N}

Then for every a € A,b € B there is some j such that a < v; < b. Then

la— b = la—v;| +[b— vy
> 25,

If i € N then |a — b| < 7 implies a,b < v; Thus A, B are a coarsely disjoint decomposition of
U. O

Not for all constant coefficients on Z, the cohomology is concentrated in degree 0. For
example the constant sheaf Z on Z, has nontrivial cohomology in dimension 1.
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Theorem 122. If A is a locally finite abelian group then

. A i=0
Hz(ZJraA): {0 i>0

Proof. We will determine a distinguished coarse cover V1, V5 of Z; and a subset U C Z with
trivial cohomology. Then we show there is a coarse homotopy equivalence U — V; and U — Va.
And then we use the Mayer-Vietoris sequence of the coarse cover Vi, V5 of Z to determine the
cohomology of Z, .

At first follows a description of Vi, Va: Define increasing sequences (ay, )n, (bn)n, (¢n)n, (dn)n C
Z, such that b, — ¢, = n,d,, — apy1 = n and ¢py1 — dyy, = nyap4+1 — by = n for every n € N.

Now define
‘/1 - U[ana bn]

n

and

Vo = U[Cna dn]

n

Then Vi, V5 are a coarse cover. Note that

Vl N ‘/2 = U[Cna bn} U U[an-‘rla dn]

n n

Define U = (ay)n- Note that the constant sheaf A on U is flabby. Thus

.. A 1=0
H(U,A) = !
0 ¢>0.
The maps
p:Vi—=U
2 € [an,by] = an
and
i:U—)Vl
Zz

are coarse maps. There is a coarse homotopy joining idy, to i o p:

H:Vi x F([0,1]) = Vi
(2, (t,1)) = (1 — t)z + tay |

where z € [an,c,]. In the same way there is a coarse homotopy equivalence Vo — U and
V1 n V2 —U.
Thus there is a Mayer-Vietoris long exact sequence

0— H(Zy, A) —» H'(Wi, A) & H(Va, A) — HO(Vi N Va, A)
— HY(Z,,A) =0
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It suffices to show that

d°: HO(Vy, A) @ HO(Va, A) — HO(Vi N Vs, A)

(81,52) — 51|V2 - 52|v1

is surjective. Let t € f[o(Vl N V3, A) be a section. Omitting a bounded set we can assume ¢ is
a function taking finitely many values t7,¢5 on the chunks [c,, by], [ant1,dn], n € N. We will
construct s; € HO(Vy,Z/2Z) as a function taking finitely many values s} on chunks [a,, b,] and
sy € HO(Vy,Z/2Z) as a function taking finitely many values s on chunks [¢,,d,] such that
do(Sl, 82) =t.

Inductively start at [c1, b1]. Both chunks [ay, b1] and [e1, d1] restrict to [c1, b1]. Define st := ¢}
and s3 := 0. Now start at [ag,d;]. Both chunks [ag,bs] and [c1,d1] restrict to [ag,d;]. Define
s2 =1t}

Let n € N. Suppose si,...,s} and si,..., sg_l have been constructed. Then both chunks
[an,bs] and [c,, d;,] restrict to [c,, by]. Define

n._ .n n
Sg =81 — 7.

Now suppose si,...,s" " and s},...,s5" have been constructed. Then both chunks [ay,, b,]
and [¢,—1, d,—1] restrict to [ay,,d,—1]. Define

n._ 4n—1 n—1
S1 =1y T+ 8y

We now check that s1, s indeed define cochains. It suffices to show that they take finitely many
values. Now, by our hypothesis, the ¢! and ¢} take finitely many values, say in a finite set S.
Then, by our hypothesis that A is locally finite, the group generated by S is also finite and
the s7, s take values in (S). We have thus found s, € HO(V;, A),sy € HO(Vy, A) such that
do(sl, 82) =t. O
4.1.3 Acyclic Spaces

There is a notion of flasque spaces for which most coarse cohomology theories vanish. Let us
translate |29, Definition 3.6] into coarse structure notation:

Definition 123. A coarse space X is called flasque if there is a coarse map ¢ : X — X such
that

e ¢ is close to the identity on X;

e for every bounded set B C X there is some Np € N such that
P"(X)NB =1

for every n > Np.
e For every entourage E the set |J, (¢")?(E) is an entourage.
Theorem 124. If X is a flasque space then there is a coarse homotopy equivalence
b X xZ, =X

(z,7) = ¢'(2).

Here ¢° denotes the identity on X.
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Proof. We show that the coarse homotopy inverse to & is
g X > X x2Z4
x> (2,0).

Now @Oio = idx.
We show that ig o @ and idxxz, are coarsely homotopic: Define a map

h: (X xZy)xF([0,1]) - X xZ4
((2,), (t,5)) = (61 (2), [(1 = 1)i]).
We show that h is a coarse map:

1. h is coarsely uniform: let E C ((X x Z,) % F([0,1]))? be an entourage. Denote by px :
XxZy — Xandpz, : X xZ; — Z, the projections to X,Z, both px,pz, are coarsely
uniform maps. We show pX? o h*?(E) is an entourage and péf o h*2(E) is an entourage.
Note:

pi? o (B) € | J(6"(E)
is an entourage. If i, € Z, ¢, s € [0,1] then
LA =8)i] = [(A=s)j)[ <A —t)i— (1 —s)j|+2
<|li—j]+2
Thus p§f o h*2(E) is an entourage.
2. h is coarsely proper: Let B C X x Z, be a bounded subset. We write
B=JBixi
which is a finite union. Then for every i there is some N; such that
P"(X)NB; =0
for every n > N;. We show px o h~*(B) and pz, o h~*(B) is bounded Then
h™H(B) € (px o h™(B) x pz, o h™'(B)) * F([0,1])
is bounded in (X x Z,) x F'([0, 1]). Now

pxoh™ (B) € J6 (B -+ U™ (B)

is bounded in X. If j € pz, o h~!(B) then [tj| < N; for at least one i. Thus

7 < max N;
1

therefore pz, o h™*(B) is bounded in Z.

Example 125. Note that Z, is flasque by
(b : Z+ — Z+
n—n+1.
Thus there is a coarse homotopy equivalence Zi — Z. Now for every n the space Z'} is flasque.

As a result Z"! is coarsely homotopy equivalent to Z for every n.
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4.1.4 Computing Examples

Example 126. (Z) Now Z is acyclic for constant coefficients Z/2Z and Z is the coarse disjoint
union of two copies of it. Thus

HY(Z,2/2Z) = H (Z4,2/2Z) ® H (Z,Z/2Z)
=Z/2Z®Z/2Z.

Example 127. (Z%) We cover the space Z* with five copies of Z2 such that they meet at (0,0)
and have nontrivial overlaps (like a cake). Then this gives us a coarse cover of Z? with acyclics.
Then it is easy to calculate

z/2Z i=0,1

H'(Z%,2/2Z) = ,
0 otherwise.

Example 128. (Z") For n > 2 we can cover Z" with copies of Z" in much the same way as in
Example [I27] But that is a coarse cover of Z"™ with acyclics with which we can compute

iz, zj0z) = { 2% 1= 0=l
’ 0 otherwise.

for n > 2.

Lemma 129. Let G be a group and H < G a subgroup with finite index. Then the inclusion
i: H — G is a coarse equivalence.

Proof. There are only finitely many right cosets Hg1,..., Hg,. Then define the coarse inverse
to i to be

r:G—H
g+ gg; " if g€ Hy;.

Proposition 130. Note the following facts:

1. If Fs is the free group with two generators then for n < 3 the free group with n generators,
F,,, is a subgroup of Fy with finite indez.

2. If Do, is the infinite dihedral group (Z/22Z) x (Z/2Z) then it contains Z as a subgroup with
finite index.

3. The modular group Ze*Z3 contains ZxZ, the free group with two generators, as a subgroup
with finite index.

Proof. 1. This is explained in |30} section 20, chapter 2].
2. easy.

3. This is mentioned in |30} section 22, chapter 2].
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Example 131. (F,) Note that F5 has infinitely many ends. In fact it is a countable coarse
disjoint union of copies of Z,. By Proposition we have

H(F,,2/2Z) = P H'(Z+,2/22)
N

[®nz/2z i=0
o

otherwise.

for n > 2.

Remark 132. Suppose there is a notion of boundary of a coarse space such that
e the boundary of Z" is §7~!
e the boundary of F), is a Cantor set

Then one could try to prove that the singular cohomology of the boundary as a topological space
equals local coarse cohomology.

4.2 A twisted Version of controlled K-Theory

Controlled operator K —theory is one of the most popular homological invariants on coarse metric
spaces. Meanwhile a new cohomological invariant on coarse spaces recently appeared in [13].

The paper [13] studies sheaf cohomology on coarse spaces. Note that cohomology theories
that are derived functors are immensely more powerful than those that do not.

In this paper we study the controlled K —theory of a proper metric space X which is intro-
duced in [1, Chapter 6.3]. Note that this theory does not appear as a derived functor as far as
we know.

The Theorem shows if X is a proper metric space a modified version of the Roe-algebra
C*(X) is a cosheaf on X. This result gives rise to new computational tools one of which is a
new Mayer-Vietoris six-term exact sequence which is Corollary

Note that in a general setting cosheaves with values in Ab do not give rise to a derived
functor. In [31] is explained that the dual version of sheafification, cosheafification, does not
work in general.

4.2.1 Cosheaves
We recall [13, Definition 45]:

Definition 133. (coarse cover) If X is a coarse space and U C X a subset a finite family of
subsets Uy, ...,U, C U is said to coarsely cover U if for every entourage E C U? the set

E[Uf]N---NE[US)

is bounded in U. Coarse covers on X determine a Grothendieck topology X.; on X.

Definition 134. (precosheaf) A precosheaf on X4 with values in a category C is a covariant
functor Cat(X.) — C.
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Definition 135. (cosheaf) Let C be a category with finite limits and colimits. A precosheaf F
on X.; with values in C is a cosheaf on Xt with values in C if for every coarse cover {U; — U};
there is a coequalizer diagram:

P ruinv) =P FU) — FU)

Here the two arrows on the left side relate to the following 2 diagrams:

@i,j FUNU;) —= D, F(U)

and

F(UsNUj) ——— F(Uj)
where @ denotes the coproduct over the index set.
Notation 136. If we write
e > .a; € @, F(U;) then q; is supposed to be in F(U;)
e > . bij € D,;; F(UiNUj) then by; is supposed to be in F(U; UUj)

Proposition 137. If F is a precosheaf on X with values in a category C with finite limits and
colimits and for every coarse cover {U; — U},

1. and every a € F(U) there is some ), a; € @, F(U;) such that Y. a;ilv = a

2. and for every >, a; € @, F(U;) such that 3, ai|ly = 0 there is some 3, bij € @,; F(UiN
Uj) such that (3 ; bij — bji)|u, = ai for every i.

then F is a cosheaf.

Proof. easy. O

Remark 138. Denote by CStar the category of C*-algebras. According to [32] all finite limits
and finite colimits exist in CStar.

4.2.2 Modified Roe-Algebra
Lemma 139. If X is a proper metric space and Y C X is a closed subspace then
o the subset I(Y) ={f € Co(X) : fly =0} is an ideal of Co(X) and we have
Co(Y) = Co(X)/I(Y)
e we can restrict the non-degenerate representation px : Co(X) — B(Hx) to a representation
py : Co(Y) — B(Hy)

in a natural way.
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e the inclusion iy : Hy — Hx covers the inclusion i : Y — X.
Proof. e This one follows by Gelfand duality.
o We define Hyy) = px(I(Y))Hx. Then
Hx =Hiy) @ Hipy
is the direct sum of reducing subspaces for px (Cp(X)). We define
Hy = Hipy)
and a representation of Cy(Y) on Hy by

py ([a]) = px (a)lry
for every [a] € Cy(Y'). Note that px(-)|3, annihilates I(Y") so this is well defined.
e Note that the support of iy is

supp(iy) = Ay
CXxY

O

Remark 140. Note that we can not conclude the following: If the representation px : Co(X) —
B(Hx) is ample and Y C X is a closed subspace then the induced representation py : Co(Y) —
B(Hy) is ample. There are counterexamples to this claim.

Lemma 141. If X is a proper metric space, B C X a compact subset and T € C*(X) an
operator with
suppT C B?

then T is a compact operator.

Proof. Suppose there is a non-degenerate representation p : Co(X) — B(Hx). For every
f € Co(B°),g € Co(X) the equations p(f)Tp(g) = 0 and p(g)Tp(f) = 0 hold. This implies
T(I(B)) =0and imT NI(B) =0. Thus T : Hp — Hp is the same map. Thus T € C*(B)
already. Now T is locally compact, B is compact thus 7" is a compact operator. O

Definition 142. (modified Roe-algebra) Let X be a proper metric space then
C*(X) = C*(X) /K(Hx)
where K(H x ) denotes the compact operators of B(Hx) is called the modified Roe-algebra of X.

Remark 143. If U C X is a subset of a proper metric space then U is coarsely dense in U. We
define . o
c*(U) :=C*(U)

Note that makes sense because if Uy, Us is a coarse cover of U then Uy, Us is a coarse cover of U
also.

Lemma 144. If Y C X is a closed subspace and iy : Hy — Hx the inclusion operator of
Lemma then
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e the operator

Ad(iy) : C*(Y) = C*(X)
T — iy Ti%

is well defined and maps compact operators to compact operators.

e Then the induced operator on quotients
Ad(iy) : C*(Y) = C*(X)
is the dual version of a restriction map.

Proof. e iy covers the inclusion the other statement is obvious.

® easy.

Theorem 145. If X is a proper metric space then the assignment
U~ C*(U)

for every subspace U C X is a cosheaf with values in CStar.

Flisa Hartmann

Proof. Let U;,Uy C U be subsets that coarsely cover U C X and V; : Hy, — Hy and Vs :

Hy, — Hy the corresponding inclusion operators.

1. Let T € C*(U) be a locally compact controlled operator. We need to construct T} €

C*(U1), Tz € C*(Uz) such that
ViV + VaToVy =T

modulo compacts. Denote by

E = supp(T)
the support of T in U. Define

T :=VTWV;
and

Ty := V5TV,

then it is easy to check that 77,75 are locally compact and controlled operators, thus
elements in C*(Uy), C*(Us). Now supp(ViTiVy*) = U? N E and supp(VoToVy') = U2 N E.

Thus

supp(ViT\ Vi + VoToVy — T) = En (U UUZ)©

cpB?
where B is bounded. This implies 71|y + Toly =T
2. Suppose there are Ty € C*(Uy), T € C*(Us) such that

ViV + VoTaVy =0
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modulo compacts. That implies that supp(V1T1V;*) € (U; N Usz)? modulo bounded sets
and supp(VaT2V5) C (U; N Uz)? modulo bounded sets. Also ViTiVy* = —VoTa Vs modulo
compacts. Denote by Vi, : Hy,nu, — Hu, the inclusion for i = 1,2. Define

T = V5T Vi
Then
V112 Tho V112* = V112 V112* Ty V112 V112*
= Tl
Then V; o Vi, = V5 0 Vi3 implies
V122 Tho V122* = V2* Va V122 Tho V122* Vz* Vs
= Vo ViVL T VS ViV,
= VoV vi'vs
= —T2

modulo compacts.

4.2.3 Computing Examples

Corollary 146. If Uy,Usy coarsely cover a subset U of a proper metric space X then there is a
siz-term Mayer-Vietoris exact sequence

K (C*(Uy N U)) — K1 (C*(Th)) @ K1 (C*(Us)) K1 (C*(U))

T |

Ko(C*(U)) Ko(C*(U1)) ® Ko(C*(Uz)) =— Ko(C* (U1 N Ua))

Proof. By Theorem there is a pullback diagram of C*—algebras and *-homomorphisms
é*(Ul n UQ) —_— é*(Ug)
C*(U) —C*(U)
The result is an application of [1], Exercise 4.10.22]. O

Remark 147. Note that Corollary [I40]is applicable if the property ample is preserved by restrict-
ing the representation of U to the representations of Uy, Us.

Remark 148. Now for every proper metric space there is a short exact sequence
0— K(Hx) = C*(X) = C*(X) =0

which induces a 6-term sequence in K-theoy:
Ko(K(Hx)) — Ko(C*(X)) — Ko(C*(X))
K1 (C7(X)) =—— K1(C* (X)) =—— K1(K(Hx))
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If X is flasque then

Remark 149. If X is a Riemannian manifold then L?(X) is a Hilbert space. In Example
Example we will use the canonical representations of type Co(X) — B(L?*(X)) on R,R? and
certain subspaces of them without mentioning it.

Example 150. (R) Now R is the coarse disjoint union of two copies of Ry which is a flasque
space. By Corollary there is an isomorphism

R

Then it is a result of Remark that there is an isomorphism
0 2=0
K;(C*(R)) =
(©(R) {Z .
no surprise.
Example 151. (R?) We coarsely cover R? with
V1:R+XRURXR+

and
Vo=R_XRURXR_.

then again V7 is coarsely covered by
U1 = R+ x R

and
U2 == R X R+

and V5 is coarsely covered in a similar fashion. We first compute modified controlled K-theory
of Vi and then of R?. Note that the inclusion U; N Uy — U; is split by

r:Ry xR—= R
(@,y) = (=, ]yl)
Thus using Corollary [T46] we conclude that

for j = 1,2. Then again using Corollary and that the inclusion Ri — V; is split we can
compute

Translating back we get that

This one also fits previous computations.
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4.3 Remarks

The starting point of this research was the idea to define sheaves on coarse spaces as presented
in [33]. And then we noticed that cocontrolled subsets of X? which have first been studied in [4]
have some topological features.

Finally, after defining coarse covers which depend on the notion of coentourages, we came
up with the methods of this paper. Note that coarse cohomology with twisted coefficients is
basically just sheaf cohomology on the Grothendieck topology determined by coarse covers.

It would be possible, conversely, after a more thorough examination that coarse (co-)homology
theories which are standard tools can be computed using sheaf cohomology tools. As of now a
modified version of controlled K —theory serves as cosheaf homology and coarse cohomology in
dimension 2 is a sheaf on coarse spaces.

We wonder if this result will be of any help with understanding coarse spaces. Note that
Remark gave rise to the studies in [15].

However, as of yet, we do not know if coarse covers as defined in this paper are the most
natural topology for other classes of spaces than proper geodesic metric spaces.
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Chapter 5

Space of Ends

Coarse Geometry of metric spaces studies the large scale properties of a metric space. Meanwhile
uniformity of metric spaces is about small scale properties.

Our purpose is to pursue a new version of duality between the coarse geometry of metric
spaces and uniform spaces. We present a notion of boundary on coarse metric spaces which is a
totally bounded separating uniform space. The methods are very basic and do not require any
deep theory.

Note that the topology of metric spaces is well understood and there are a number of topo-
logical tools that can be applied on coarse metric spaces which have not been used before. The
new discovery may lead to new insight on the topic of coarse geometry.

5.1 Groundwork

5.1.1 Metric Spaces
Definition 152. Let (X, d) be a metric space.

e Then the bounded coarse structure associated to d on X consists of those subsets £ C X?
for which
sup d(z,y) < oo.
(zy)EE

We call an element of the coarse structure entourage.
e The bounded cocoarse structure associated to d on X consists of those subsets C' C X2 such
that every sequence (x;,y;); in C is either bounded (which means both of the sequences

(z;); and (y;); are bounded) or d(z;,y;); is not bounded. for i — oco. We call an element
of the cocoarse structure coentourage.

e In what follows we assume the metric d to be finite for every (z,y) € X2.

Remark 153. Note that there is a more general notion of coarse spaces. By [4, Theorem 2.55] a
coarse structure on a coarse space X is the bounded coarse structure associated to some metric
d on X if and only if the coarse structure has a countable base.

Definition 154. If X is a metric space a subset B C X is bounded if the set B? is an entourage
in X.
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Remark 155. Note the following duality:

e A subset F C X2 is an entourage if and only if for every coentourage C' C X? there is a
bounded set A C X such that

FnCcC A2

e A subset D C X? is a coentourage if and only if for every entourage £ C X? there is a
bounded set B such that

ENnDC B2

Definition 156. A map f: X — Y between metric spaces is called coarse if
e E C X? being an entourage implies that f*?E is an entourage (coarsely uniform);
e and if A CY is bounded then f~1(A) is bounded (coarsely proper).
Or equivalently
e B C X being bounded implies that f(B) is bounded;
e and if D C Y? is a coentourage then (f*2)~1(D) is a coentourage.
Two maps f,g: X — Y between metric spaces are called close if
fxg(Ax)
is an entourage in Y. Here Ax denotes the diagonal in X.
Notation 157. A map f: X — Y between metric spaces is called
o coarsely surjective if there is an entourage £ C Y2 such that

Elimf]=Y

e coarsely injective if

1. for every entourage F' C Y2 the set (f*2)~1(F) is an entourage in X.

2. or equivalently if for ever coentourage C' C X2 the set f*2(C) is a coentourage in Y.
e two subsets A, B C X are called coarsely disjoint if A x B is a coentourage.

Remark 158. We study metric spaces up to coarse equivalence. A coarse map f: X — Y isa
coarse equivalence if

e There is a coarse map ¢ : Y — X such that f o g is close to idy and g o f is close to idx.
e or equivalently if f is both coarsely injective and coarsely surjective.
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5.1.2 Totally Bounded Uniformity

Definition 159. (close relation) Let X be a coarse space. Two subsets A, B C X are called
close if they are not coarsely disjoint. We write

A X B.

Then A is a relation on the subsets of X.
Lemma 160. In every metric space X :

1. if B is bounded, B LA for every A C X

2. UAXV implies V AU

3 UAXNWVUW) ifand only if U AV or U AW
Proof. 1. easy.

2. easy.

3. easy.
O

Proposition 161. Let X be a metric space. Then for every subspaces A, B C X with A XB
there are subsets C, D C X such that CND =0 and A Y(X\C), B XX\ D.

Proof. Note this is the same as |17, Proposition 4.5] where the same statement was proven in a
similar fashion. Let Fy C E3 C --- be a symmetric basis for the coarse structure of X. Then
for every x € A°N B¢ there is a least number n;(z) such that x € E,, (,)[A] and a least number
na(x) such that x € E,,,)[B]. Define:

Vi={zx e A°NB°:ni(z) <na(x)}

and
Vo = AN B\ V1.

Now for every n
E,[Vi]N B C Es,[A]N B

because for every z € V4, if x € E,[B] then x € E,[A]. Now define
C=AuW
and
D=BUV,.
O
Remark 162. Compare A with the notion of proximity relation [34, chapter 40, pp. 266]. By

Lemma[160] and Proposition [L61] the close relation satisfies [34, P-1),P-3)-P-5) of Definition 40.1]
but not P-2).

Remark 163. If f : X — Y is a coarse map then whenever A A B in X then f(A) A f(B)inY.
We recall |13 Definition 45]:
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Definition 164. (coarse cover) If X is a metric space and U C X a subset a finite family of
subsets Uy, ...,U, C U is said to coarsely cover U if

vrn(Jupe

is a coentourage in X.

Remark 165. Note that coarse covers determine a Grothendieck topology on X. If f : X - Y
is a coarse map between metric spaces and (V;); a coarse cover of V C Y then (f~1(V;)); is a
coarse cover of f~H(V) C X.

Lemma 166. Let X be a metric space. A finite family U = {U, : o € A} is a coarse cover if
and only if there is a finite cover V = {V, : a € A} of X as a set such that V,, XUE for every a.

Proof. Suppose U is a coarse cover of X. We proceed by induction on the index of U:
e n = 1: a subset U coarsely covers X if and only if U is bounded if and only if U¢ X X.

e two subsets U, Us coarsely cover X if and only if UY XUs. Now by Proposition there
are C, D C X with C°U D¢ = X and C°¢ XU{ and D¢ KU5. Define Vi = C¢, V5 = D°.

e n+1— n—+2: Subsets U,V,Uy,...,U, coarsely cover X if and only if U,V coarsely cover
UuVand UUV,Uy,...,U, coarsely cover X at the same time.

Suppose U, V,Uq,...,U, coarsely cover X. By induction hypothesis there is a cover of sets
Vi, V4 of UUV such that V{ XU°NV and Vi XV°NU and there is a cover of sets W, V1, ..., V,
such that W (U U V)¢ and V; XUf for every i. Then Vi NW XU, Vg NW AV¢. Now

B:=UUV)nW

is bounded. Then
Vinw,vgnw,vy,...,V, UB

is a finite cover of X with the desired properties.

Suppose (V,)a cover X as sets and V,, XUS for every a. Let E C X2 be an entourage. Then
E[US] NV, is bounded for every a. Then

N EWS = EWn(JVa)
= U(Voe N ﬂE[Uﬁ])
a B

is bounded. O

Remark 167. The [34, Theorem 40.15] states that every proximity relation on a set is induced
by some totally bounded uniformity on it. Note that a coarse cover on a metric space X does
not precisely need to cover X as a set. Except for that the collection of all coarse covers of a
metric space satisfies |34} a),b) of Theorem 36.2]. We can compare coarse covers of X with a base
for a totally bounded uniformity on X: the collection of all sets | J; U? for (U;); a coarse cover
satisfies |34, b)-e) of Definition 35.2] but not a). Note that by [34} Definition 39.7] a diagonal
uniformity is totally bounded if it has a base consisting of finite covers.

70



CHAPTER 5. SPACE OF ENDS FElisa Hartmann

Lemma 168. (separation cover) If Uy, Us coarsely cover a metric space X (or equivalently if
Uf,US are coarsely disjoint) then there exists a coarse cover Vi, Vo of X such that Vi YUY and
Va KUs.

Proof. By Proposition there are subsets C,D C X such that CN D = (§, Uf AC® and
Us AD¢. Thus Uy, C is a coarse cover of X such that C' XU5S.

By Proposition there are subsets A, B C X such that AN B =), A° XUy and B¢ XC°.
Then B, C are a coarse cover of X such that B XUY.

Then Vi = B and V5 = C have the desired properties. O

Notation 169. (coarse star refinement) Let U = (U;);cs be a coarse cover of a metric space
X.

1. If S C X is a subset then
cst(S,U) = | J{Ui : S A U}

is called the coarse star of S.

2. A coarse cover V = (V}) ey of X is called a coarse barycentric refinement of U if for every
j1,-..,Jkx € J such that there is an entourage E C X? such that

(M EVi]
k
is not bounded then there is some i € I and entourage F' C X? such that

Uvi. € FIvi).

3. A coarse cover V = (V;)jes of X is called a coarse star refinement of U if for every j € J
there is some 7 € I and entourage £ C X 2 such that

cst(V;, V) C E[U].
Lemma 170. IfV = (V;); is a coarse star refinement of a coarse cover U = (U;); of a metric
space X then

o if S C X is a subset then there is an entourage E C X2 such that
cst(cst(S, V), V) C Elest(S,U));

o if f: X =Y is a coarse map between metric spaces, (U;); a coarse cover of Y and S C X
a subset then

Flest(S, fHU))) € est(f(S). U).
Proof. e Suppose E C X? is an entourage such that for every V; there is an U; such that
cst(V;,V) C U;. Note that S A V; implies S A U; in that case. Then
cst(est(S, V), V) = cst(U{% Vi L SHY)
= U cst(Vi, V)
ViAS

c | eyl

SAU;
= Elcst(S,U)).
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Flest(S, F7H @) = J{f o £ (W) - S A F7HU)}
CUlFor M WU)  £(S) A fo fHUN}

(Ui f(9) 2 U}
= cst(f(9),U).

O

Lemma 171. If U is a coarse cover of a metric space X then there exists a coarse cover V of
X that coarsely star refines U.

Proof. There are three steps:

If V = (V}); is a coarse barycentric refinement of & and W = (W), is a coarse barycentric
refinement of V then W is a coarse star refinement of U:

fix Wi, and denote J = {j : Wi A W;}.

Then for every j € J there is some V; and entourage F; C X? such that Wy, UW,; C E;[V}].

Define E'= J; £;. Then (; E[V;] 2 Wj. Thus there is some U; and entourage I C X? such
that |J; V; € F[U3).

For every j € J:

W; € E[Vj]
C Eo FUy.

Thus cst(Wy, W) C E o F[U,].

We show there is a coarse barycentric refinement V = (V;); of U: First we show if Uy, Us is a
coarse cover of X then there is a coarse barycentric refinement V1, Vo, V3 of Uy, Us:

By Lemma there is a coarse cover Wi, Wy of X such that Wy XUY and Wy LUS.

Then WY, U; and Wy, Us are coarse covers of X.

By Proposition there are C, D C X such that C N D = (), D¢ LUS, C¢ Ws.

Also there are A, B C X such that AN B =0, A° U§, B¢ fW;.

Then

Vi=W,Va=CnNB,V3=W,

has the desired properties:
(Vi); is a coarse cover:
Note that by B¢ XW; and W{ KW the sets Wy, B are a coarse cover of X.
Note that by C¢ Y Ws and Wi YW the sets Wy, C coarsely cover X.
Note that (W7 N Ws) X(C° U B€). Then, combining items i,ii, we get that

Wi, We,BNC

is a coarse cover as required.

(V)i is a coarse barycentric refinement of Uy, Us:

There is some entourage £ C X? such that V3 U Va C E[U;]: For W we use that Wy XUf.
For C N B we use that A° XUf and B C A°.

There is an entourage £ C X2 such that Vo U V3 C E[Us]: For Wy we use that W XUS. For
C' N B we use that D¢ XUS and C C D¢.

Vi KV3: We use W AW5.
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Now we show the general case: Suppose U; C X are subsets such that U = (U;);. We show
there is a coarse barycentric refinement V of U. o
For every i the sets Uj, ;. Uj coarsely cover X. By Lemma there are subsets W}, Wi

that coarsely cover X such that Wi YUF and Wi KU,z Uj)e.
Then there is a coarse barycentric refinement Vi, Vi, Vi of Wi, Wi for every i.

Then we define
v:mwmm

here o (i) € {1,2,3} is all possible permutations.

We show V is a coarse cover of X that is a coarse barycentric refinement of U:

V is a coarse cover: by design.

V is a coarse barycentric reﬁnement of U: Suppose there is an entourage £ C X? and a
subindex (o) such that (N, E[N,, V;, ;] is not bounded. Then

M EWV.
1,0k

is not bounded. Then there is an entourage F' C X2 such that for every i:
U oty S FIWE]

where [; is one of 1,2. Then

UNve.o cNUY.

oK 1 i Ok

c ﬂF[Wf;]

if I; = 1 for one i then we are done. Otherwise

UMY <1503

oK 1
and F[W4] K(U;»; Uj)° implies

ﬁFW2 L JJuy)e

i jFi
which implies that (), F[W4] is bounded, a contradiction. O

5.2 Main Part

5.2.1 Definition

We introduce the space of ends of a coarse space which is a functor £ from the category of coarse
metric spaces to the category of uniform spaces.

Definition 172. (endpoint) Let X be a metric space,

e two coarse maps ¢, : Zy — X are said to represent the same endpoint in X if there is an
entourage £ C X 2 such that

EW(Z4)] = ¢(Z4).
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e if Y = (U;); is a coarse cover of X and p, ¢ are two endpoints in X which are represented
by ¢,¢ : Zy — X. Then ¢ is said to be in a U —neighborhood of p, denoted ¢ € U[p], if
there is an entourage £ C X? such that

Elest(¢(Z4),U)] 2 9(Z4)

and
Elest(¥(Z4),U)] 2 ¢(Z).

Lemma 173. IfV < U is a refinement of a coarse cover of a metric space X then for every two
endpoints p,q of X the relation q € V[p] implies the relation q € U]p].

Proof. Suppose V = (V;); and U = (U;);. If p, q are represented by ¢, : Z, — X then

cst(p(Z4),V) = U{V1 1 o(Z4) AV}
Ui 0(Zy) £ U}
= cst((Z+),U)

in the same way cst(v(Zy), V) C cst(¥(Zy),U). Then if ¢ € V[p] there is some entourage E C X2
such that

$(Z.) C Blest(8(Z4), V)]
C Blest(9(Z4),U)]

and ¢(Z1) C Elest(yv(Z4),U)]. Thus q € U[p]. O

Definition 174. (space of ends) Let X be a metric space. As a set the space of ends E(X)
of X counsists of the endpoints in X. A subset U C E(X) is open if for every p € U there is a
coarse cover U of X such that

Ulp] CU.
This defines a topology on E(X).

Remark 175. The topology on the set of endpoints F(X) is generated by a uniformity: If ¢/ is a
coarse cover of X then

Dy = {(p,q) : ¢ € U[p]}

is the entourage associated to U. Then (Dyy)y over coarse covers U of X are a base for a diagonal
uniformity on E(X).

Lemma 176. If X is a metric space then E(X) is indeed a uniform space. Coarse covers of X
give rise to a base for the uniform structure.

Proof. We check that (Dy )y over coarse covers are a base for a uniformity on E(X):
1. If U is a coarse cover of X then A C Dy, where A = {(p,p) : p € E(X)}: p € U[p].

2. If U,V are coarse covers of X then Dy, N Dy is an entourage: Suppose U = (U;);, V = (V;);
then define

uny = (Ul N ij)”

74



CHAPTER 5. SPACE OF ENDS FElisa Hartmann

Suppose p, q are represented by ¢, 1 : Z, — X. Then ¢ € (U NV)[p] implies
$(Z4) € Elest(6(Z4),UN V)]
=B J{UinVi: ¢(Z1) AU NV}
c U EWInEW

UinV; Ap(Z4)
c( U ewhnC U EM)
Uihd(Z4) Vike(Z4)

= Elcst(o(Z4),U)] N Elest(¢(Z4), V)]

In the same way ¢(Z1) C Elest(¥(Z4),U)] N Elcst(y(Z4),V)]. Thus ¢ € U[p] N V[p]. This

way we have proven:
Dyry € Dy N Dy.

3. If U is a coarse cover of X then there is a coarse cover V of X such that Dy o Dy, C Dy,:
By Lemma there is a coarse star refinement V of #{. And by Lemma [I83] item 2 the
uniform cover (V[p]), star refines the uniform cover (U[p]), thus the result.

4. If U is a coarse cover then Dy = Dljl.

A subset D C E(X)? is an entourage of the uniform structure of E(X) if there is a coarse cover
U of X such that
Dy C D.

Theorem 177. If f : X — Y is a coarse map between metric spaces then the induced map

E(f): E(X) = E(Y)
[p] = [fog]

is a continuous map between topological spaces.

Proof. We show E(f) is well defined: if ¢, : Z, — X represent the same endpoint in X then
there is some entourage E C X? such that E[1)(Z,)] = ¢(Z,). But then

FHE)f o p(Z4)] 2 F(ERH(Z4)])
= fod(Zy).

Thus f o ¢, f o1 represent the same endpoint in Y.

We show E(f) continuous: For that we show that the reverse image of an open set is an open
set.

Let U C E(Y) be open and p € E(f)~1(U) be a point. Suppose that p is represented by
a coarse map ¢ : Zy — X. Then f o ¢ represents E(f)(p) € U. Now there is a coarse cover
U = (U;); of Y such that U[E(f)(p)] C U. Then f~1(U) = (f~1(U;)); is a coarse cover of X.

If ¢ € f~Y(U)[p] we show that E(f)(q) € U[E(f)(p)]: Suppose that g is represented by a
coarse map 1 : Z, — X. Then there is some entourage F' C X? such that

Flest(¢(Z4), 1 (U))] 2 ¥(Z4)
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and
Flest(y(Z4), fHU))] 2 (Z4).
By Lemma

FAE)[est(f o 6(Z4),U)] 2 fA(F)[f(est(o(Z4), fH(WU)))])
2 f(Plest(o(Z4), f71(U))])

2 fo(Zy)
and
PP est(f o (Z4),U)) 2 f2(F)[f(est(¥(Z4), [~ WU)))D)
2 f(Flest(y(Z4), f~HW))))
2 fod(Zy).
Now f o4 represents E(f)(¢g) which by the above is in U[E(f)(p)]. O

Remark 178. The proof of Theorem [177] uses the following: if f : X — Y is a coarse map
and Dy the entourage of E(Y') associated to a coarse cover U of Y then there is an entourage
D1y of E(X) associated to the coarse cover f~1(U) of X such that (p,q) € Dy-1¢,) implies
(E(f)(p), E(f)(q)) € Dy. Thus E(f) is a uniformly continuous map between uniform spaces
E(X) and E(Y).

Lemma 179. If two coarse maps f,g: X — Y are close then E(f) = E(g).

Proof. Let p € E(X) be a point that is represented by ¢. Now f, g are close thus H := f x g(Ax)
is an entourage. But then

Hlgow(Zy)] D fow(Zy)
thus E(f)(p) = E(9)(p). .

Corollary 180. If f is a coarse equivalence then E(f) is a homeomorphism between topological
spaces E(X) and E(Y). In fact E(f) is a uniform isomorphism between uniform spaces E(X)
and E(Y).

Corollary 181. If mCoarse denotes the category of metric spaces and coarse maps modulo
closeness and Top the category of topological spaces and continuous maps then E is a functor

E : mCoarse — Top.

If Uniform denotes the category of uniform spaces and uniformly continuous maps then E is a
functor
E : mCoarse — Uniform.

Example 182. E(Z,) is a point.

5.2.2 Properties

Lemma 183. If X is a metric space

e and V is a coarse star refinement of a coarse cover U of X then q € V[p] and r € V[q]
implies r € Ulp).
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o if V coarsely star refines U then (V[p]), star refines (U[p]),

Proof. e Suppose p is represented by ¢ : Zy — X, ¢ is represented by ¢ : Zy — X and
r is represented by p : Z, — X. Then E[cst(¢(Z1),V) 2 ¥(Z1) and Elcst((Z4),V) D

#(Z4), Elest(p(Z4),V) 2 ¥(Z4) and Elest(¢(Z4),V) 2 p(Z4). By Lemma [170] there is
an entourage F' C X2 such that cst(cst(¢p(Z4),V),V) C Flest(¢(Z),U)]. Then

E°® o Flest(¢(Z1),U)] 2 E**[cst(cst(¢(Z+), V), V)]
2 Elest(¥(Z4), V)]
2 p(Z4)

the other direction works the same way.

e Fix p € E(X). Then
st(VIpl, (VIp))p) < Ulp]

because if ¢ € V[p| and ¢ € V[r] then r € U[p] by Item 1
O

Proposition 184. Ifi: Z — Y is an inclusion of metric spaces then E(i): E(Z) — E(Y) is a
uniform embedding.

Proof. That E(i) is injective is easy to see.
Define a map

We show @ is a uniformly continuous map:

If U = (U;); is a coarse cover of Z we show there is a coarse cover V of Y such that for every
p,q € E(Z): the relation E(i)(q) € V[E(:)(p)] implies q € U]p].

Note that for every ¢ the sets Uf )((U#l Uj )¢ are coarsely disjoint in Y. By Lemmathere
are subsets Wi, Wi C Y that coarsely cover Y and W} YUf and W3 KU,z Uj)°. Now define

:(mW

with (i) € {1,2} all possible permutations. Note that there is some entourage E C Z? such
that for every o there is some U; such that

ﬂ Wi NZ C EU;).
Let p,q € E(Z) such that E(i)(q) € V[E(¢)(p)]. Suppose p, q are represented by ¢, : Z, —

Z. Then there is some entourage F' C Y2 such that

Flest(¢(Z+),V)] 2 ¥(Z+)

and
Flest(¥(Z4), V)] 2 6(Z4).

7



Then

F o Elest(6(Z,),U)] 2 Flest(6(Z+), V) 1 Z]
2 P(Z4)
The other direction works the same way.
Then g € U[p] as we wanted to show. O

Remark 185. By Proposition [I84] and Corollary [I80] every coarsely injective coarse map f : X —
Y induces a uniform embedding. We identify E(X) with its image E(f)(E(X)) in E(Y).

Example 186. There is a coarsely surjective coarse map w : Zy — Z2. Now FE(w) : E(Zy) —
E(Z?) is not a surjective map obviously.

Lemma 187. If f : X — Y is a coarse map between metric spaces, Y is a coarsely geodesic
coarsely proper metric and E(f) : E(X) — E(Y) is surjective then f is already coarsely surjec-
tive.

Proof. Assume the opposite. Then (im f)¢ C Y contains a countable subset (s;); that is coarsely
disjoint to im f. Then by [13, Proposition 93] there is a coarse ray p : Zy — Y such that there
is an unbounded subsequence (s;, )r and an entourage E C Y2 such that

(s )k € Elp(Z+)]

Now p represents a point r € E(Y) and E(f) is surjective. Thus there is some p € E(X) such
that E(f)(p) = r. Suppose p is represented by ¢ : Z; — X then f o ¢ represents r and has
image in im f. Thus there is an entourage F' C Y2 such that p(Z,) C F[im f]. Then

(Sik)k CFEo F[lmf]
a contradiction to the assumption. O
Remark 188. Note that the coarse map

Z, 27,
ni= [V

is not coarsely injective. since every map E(Z;) — E(Z;) is an isomorphism we cannot conclude
that the functor E(-) reflects isomorphisms.

Lemma 189. If two subsets U,V coarsely cover a metric space X then
EUNV)=EU)NEV).

Proof. The inclusion E(UNV) C E(U)N E(V) is obvious.
We show the reverse inclusion: if p € E(U) N E(V) then it is represented by ¢ : Zy — U in
E(U) and ¢ : Z, — V in E(V). Then there is an entourage E C X? such that

E[p(Z4)] = o(Z4).
Note that £ NV x U° is bounded. Denote by F' the set of indices i, j for which
EN((i),¥(5)) SV xU"

Now we construct a coarse map ¢ : Zy — U NV: for every i € N\ F do:
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1. if ¢(i) € V then define (i) := ¢(4);
2. if ¢(i) € V° then define (i) := (7).

Fix a point zyp € U NV then for every i € F define: ¢(i) = xg. Then ¢ represents p in
E{UNV). O

Lemma 190. The functor E(-) preserves finite coproducts.

Proof. Let X = AU B be a coarse disjoint union of metric spaces. Without loss of generality we
assume that A, B cover X as sets. Fix a point g € X. Then there is a coarse map

r.: X —>2

dz,xzg) x€A
x
—d(z,z9) z € B.

Note that E(Z) = {—1,1} is a space which consists of two points with the discrete uniformity.
Then E(r)(E(A)) = 1 and E(r)(E(B)) = —1. Thus E(X) is the uniform disjoint union of
E(A), E(B). O

Proposition 191. Let X be a metric space. The uniformity E(X) is separated.
Proof. If p # q are two points in E(X) we show there is a coarse cover U such that
q & Ulp]-

Suppose p is represented by ¢ : Z, — X and ¢ is represented by ¢ : Zy — X. Now there is
one of two cases:

1. there is a subsequence (i) C N such that ¢(ig)r LV(Z4).
2. there is a subsequence (jx)r € N such that ¥(jr)r XH(Z4).

Without loss of generality we can assume the first case holds. By Lemma [I6§] there is a coarse
cover U = {Uy,Us} of X such that Uy Ko (ix)r and Uz Xi(Z4). Then g & Ulp].
Now

q & U[p]
= st(p, (U[r]),)-

Thus the result. O
Lemma 192. If X is a metric space,
o U = (U;)ier s a coarse cover of X and p € E(X) is represented by ¢ : Z, — X then define
I(p) :={iel:9(Zy) LU}
If S C I is a subset then define

US)={pe E(X):6(Z+) C E[U Uil}
ics

here ¢ : Z, — X represents p and E C X? is an entourage. If ¢ € E(X) then q € U[p] if
and only if ¢ € U(I(p)) and p € U(I(q)).

79



e Define
US)={peEX):peU(S),I(p) 2S5}

Then q € U[p] if and only if there is some S C I such that p,q € U(S). The uniform cover
(U(S))scr
associated to Dy is a finite cover.
e The uniform space E(X) is totally bounded.
Proof. e easy.

e We just need to show: if ¢ € U[p] then p € U(I(p) N I(q)). For that it is sufficient to
show if ¢ : Z, — X represents p then there is an entourage E C X? such that ¢(Z,) C
ElU;er(q) Uil- Assume the opposite: there is some subsequence (ix)r € Z4 such that

e X | U
i€l(p)NI(q)

Now ¢(Z+) X U,;gr(p) Ui thus

o) X | Unu( | ).

i€l(p)NI(q) iZ1(p)
And thus ¢(ix)r £ U;er(q Ui @ contradiction to the assumption.

e easy

Notation 193. If A, B C X are two subsets of a metric space

e and xg € X a point then define

xa,B:N— Ry

if A KB then x4 p is a coarse map. There is a bound
xa,5(i) < 2i.
e Now A A B if and only if x 4,5 is bounded.
o If A1, As C X are subsets with A; = E[As] then
i [xa,,8(1) = Xa,,8(1)]
is bounded.

o If Yy € R_'\,‘_ is a coarse map then the class m(x) of x is at least f € RT_ if

x(i) = f(i) + ¢

where ¢ < 0 is a constant. If two coarse maps x1,x2 € R[\ﬁ are close then they have the
same class.
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Proof. e casy.
e See |17), Proposition 4.4].
o casy.

® casy.
O

Definition 194. Let X be a metric space. If two endpoints p,q € E(X) are represented by
coarse maps ¢, : Z, — X then the distance of p to ¢ is at least f € Rﬂ, written d(p,q) > f, if
there is a subsequence (i) C Z such that one of the following holds

L. o(Z4) Kib(in)r and m(Xg(z ), (in)) = 1

2. P(Z4) Lo(in)k and m(xy(z,),6(ix)i) = f-
We define d(p,q) = 0 if and only if p = q.

Lemma 195. If X is a metric space and U a coarse cover of X then there is a function f € R_'f_
with m(f) # 0 such that for every two endpoints p,q € E(X) the relation q & U[p] implies

d(p,q) > f.

Proof. By Lemma the uniform space F(X) is totally bounded. Without loss of generality
we can fix an endpoint p € E(X) and study the endpoints ¢ € E(X) for which g & U[p].

We will define a function f € R[\ﬁ as the minimum of a finite collection fo,...,f, > 0 of
numbers.

If ¢ & U[p] there are 2 cases:

1. p € U(I(q)): There is a subset (ix)r C Z such that
sin) X | U
i€l(q)

Now for every S C I if p € U(S): then there is some subset (ix)r C Z; such that
d(ir)k X Ujes Ui- Thus if I(q) = S then d(p, q) > m(x,,), U v,)- Define

Uies
Js = m(X‘b(ik)kangS U'L)

in this case.

2. ¢ €U(I(p)): There is some (iy)r C Z4 such that
ik £ |J Ui
i€1(p)
Now ¢(ix)i C Uigr(p Ui and ¢(Z4) XU, g1 () Ui- Then define

Fo=mozp\,,,, v

i#1(p)
Then
f = min(fs. f;)
has the desired properties. O

Proposition 196. If X is a metric space then the uniformity on E(X) is coarser than the
uniformity 74, induced by d.

Proof. By Lemma every entourage in E(X) is a neighborhood of an entourage of 74 on
E(X). O
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5.2.3 Side Notes

Remark 197. (large-scale category) Large-scale geometryﬂ (LargeScale) studies metric spaces
and large-scale maps modulo closeness. Note the following facts:

1.
2.

Every large-scale map is already coarsely uniform.
Isomorphisms in LargeScale are called quasi-isometries.

A metric space is coarsely geodesic if and only if it is coarsely equivalent to a geodesic
metric space.

A metric space is large-scale geodesic if and only if it is quasi-isometric to a geodesic metric
space.

A coarse map f: X — Y between large-scale geodesic metric spaces is already large-scale.

A coarse equivalence f : X — Y between large-scale geodesic metric spaces is already a
quasi-isometry.

Proof. 1. easy.

2

3

4.
D.
6.

Definition.

. See |26, Lemma 3.B.6,(5)];

see [26, Lemma 3.B.6,(6)];
see [26, Proposition 3.B.9,(1)];

see [26, Proposition 3.B.9,(2)].
O

Lemma 198. (Higson corona) If X is a metric space then the C*-algebra that determines the
Higson corona is a sheaf. That means exactly that the association

U CwU) = Bi(U)/Bo(U)

for every subset U C X is a sheaf with values in CStar. By a sheaf we mean a sheaf on the
Grothendieck topology determined by coarse covers on subsets of a coarse space.

Proof. We recall a few definitions which can be found in [4, p.29,30].

e The algebra of bounded functions that satisfy the Higson condition is denoted by By,.

e A bounded function f : X — C satisfies the Higson condition if for every entourage E C X2

the function

dflg : E—C
(z,y) = f(y) — (=)

tends to 0 at infinity.

e the ideal of bounded functions that tend to 0 at infinity is called By.

IThe notation is from [26]
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e A function f : X — C tends to 0 at infinity if for every € > 0 there is a bounded subset
B C X such that |f(z)| > € implies « € B.

We check the sheaf axioms:

1. global axiom: if Uy, Us coarsely cover a subset U C X and f € Bp(X) such that f|y, €
By(Uy) and f|u, € Bo(Uz) we show that f € Bo(U) already. Let £ > 0 be a number. Then
there are bounded subsets By C U; and By C U; such that |f|y,(x)] > € implies « € B;
for i = 1,2. Now

B:=BiUByU (Ul @] Ug)c
is a bounded subset of U. Then |f(z)| > ¢ implies « € B. Thus f € By(U).
2. gluing axiom: if Uy, Uy coarsely cover a subset U C X and f1 € By(Uy), fo € Bir(Us) are
functions such that
filv, = folo, +9

where g € By(Uy NUs). We show there is a function f € Bj(U) which restricts to f; on
Uy and fy + g on Us. Define:

f:U—=C
fl((E) zel;

X — fz(l’)-‘rQ xz el
0 otherwise

then f is a bounded function. We show f satisfies the Higson condition: Let E C U?
be an entourage and £ > 0 be a number. Then there are bounded subsets By C U; and
By C Uy such that |dfi|gnp2(z,y)| > € implies « € B; for ¢ = 1,2. There is a bounded
subset B3 C U such that '
En(UUU3*NU? C B3
Define
B := Bl @] B2 @] B3

then |df|g(z)| > ¢ implies € B. Thus f has the desired properties.
O

Lemma 199. If X is a proper geodesic metric space denote by ~ the relation on E(X) of
belonging to the same uniform connection component in E(X) then there is a continuous bijection

B(X)/ ~— Q(X)
where the right side denotes the space of ends of X as a topological space.

Proof. There are several different definitions for the space of ends of a topological space. We
use |35 Definition 8.27].

An end in X is represented by a proper continuous map r : [0,00) — X. Two such maps
r1, 7o represent the same end if for every compact subset C' C X there is some N € N such that
r1[N,00),r2[N, 00) are contained in the same path component of X \ C.

If r : [0,00) — X is an end then there is a coarse map ¢ : Z, — X and an entourage £ C X2
such that

E[r[0,00)] = o(Z4).

We construct ¢ inductively:
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1. ¢(0) :=r(0)

2. if (i — 1) = r(t;—1) is already defined then ¢; := min{t > t;_1 : d(p(ti—1),p(t)) = 1}. Set
(i) == r(t:).

By the above construction ¢ is coarsely uniform. The map ¢ is coarsely proper because r is
proper and X is proper.

Note that every geodesic space is also a length space. If for some compact subset C' C X
the space X \ C has two path components X7, X5 then for every x1 € Xi,25 € X5 a path (in
particular the shortest) joining z1 to z2 contains a point ¢ € C. Thus

d(x1,m0) = Cigg(d(xl,c) + d(z2,¢))

Then X is the coarse disjoint union of X7, X5. On the other hand if X is the coarse disjoint
union of subspaces X1, X5 then there is a bounded and in particular because X is proper compact
subset C C X such that

X\C=XjUXj}

is a path disjoint union and X C X1, X} C X, differ only by bounded sets.

Now we show the association is continuous:

We use [35, Lemma 8.28] in which G,,(X) denotes the set of geodesic rays issuing from
zo € X. Then [35, Lemma 8.28] states that the canonical map

Guy — QUX)

is surjective. Fix r € G;,. Then v, C Ga, denotes the set of proper rays v’ : Ry — X such that
r'(n,00), r(n,00) lie in the same path component of X \ B(xg,n). Now [35, Lemma 8.28] states
the sets (V,, = {[] : ' € V;,})», form a neighborhood base for [r] € Q(X).

Now to every n we denote by UJ* the path component of X \ B(zg,n) that contains r(R4)
and we define Uy := X \ U. For every n € N the sets Uj*, U} are a coarse cover of X.

Suppose p : Z; — X is a coarse map associated to r and represents 7 € F(X). If s € Gy
suppose o : Z, — X is the coarse map associated to s and represents § € E(X). If [s] € V,, then
o(Zy) XU, This implies § & {U}*, U3}

Thus for every n € N there is an inclusion {Uj*, U3 }[7]/ ~C V,, by the association. O

5.3 Remarks

The starting point of this research was an observation in the studies of [13|: coarse cohomology
with twisted coefficients looked like singular cohomology on some kind of boundary. We tried to
find a functor from the coarse category to the category of topological spaces that would reflect
that observation.

And then we noticed that two concepts play an important role: One is the choice of topology
on the space of ends and one is the choice of points. The points were designed such that

e coarse maps are mapped by the functor to maps of sets
e and the space Z is mapped to a point

If the metric space is Gromov hyperbolic then coarse rays represent the points of the Gromov
boundary, thus the Gromov boundary is a subset of the space of ends. The topology was trickier
to find. We looked for the following properties:
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e coarse maps are mapped to continuous maps
e coarse embeddings are mapped to topological embeddings

Now a proximity relation on subsets of a topological space helps constructing the topology on
the space of ends of Freudenthal. We discovered that coarse covers on metric spaces give rise to
a totally bounded uniformity and thus used that a uniformity on a space gives rise to a topology.

Finally, after a lucky guess, we came up with the uniformity on the set of endpoints. In which
way does the space of ends functor reflect isomorphism classes will be studied in a paper that
follows.

It would be possible, conversely, after a more thorough examination to find more applications.
Coarse properties on metric spaces may give rise to topological properties on metrizable uniform
spaces.

We wonder if this result will be of any help with classifying coarse spaces up to coarse
equivalence. However, as of yet, the duality has not been studied in that much detail.
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