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„Feed evaluation in its practical sense is and always will be a compromise between the need for 
simplicity, speed and low cost on the one hand, and the great complexity of feedstuffs and of the living 

organisms on the other.” 
Low (1990) 1 

 
  

                                                
1 Low, A.G. (1990): Protein Evaluation in Pigs and Poultry.  

In: Feedstuff Evaluation (Eds.: J. Wiseman and D. J. A. Cole), Butterworths. ISBN: 0-408-04971-5 
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Summary 

The sufficient supply of nutrients, in particular of protein and amino acids, for monogastric 

animals in organic farming is challenging. For one thing, some feedstuffs that are rich in 

crude protein and contain large amounts of valuable amino acids are not available in organic 

quality. Additionally, the use of synthetic amino acids to compensate imbalances of amino 

acids is not allowed according to EU regulations. To improve the situation in organic 

farming, efforts are made in animal breeding and husbandry as well as in plant breeding. 

Furthermore, alternative protein feedstuffs are studied with regard to their use in 

monogastric animal feeding. Besides the supply of amino acids, the supply of B vitamins is 

potentially challenging. Riboflavin supplements are primarily produced using fermentation. 

Thus, the market availability of GMO-free riboflavin supplements is inadequate. The 

knowledge on native contents of B vitamins in feedstuffs is scarce. Consequently, it is 

important to characterise commonly used feedstuffs. Since organic farming aims for a local 

production, cereals and grain legumes are frequently used as feedstuffs. The aim of this 

study was, therefore, to characterise organically produced cereal and grain legume seeds 

based on their contents of crude nutrients, amino acids, thiamine, and riboflavin considering 

influences of variety and environmental conditions. 

For this purpose, more than 800 samples were derived in three years from organic variety 

trials, which were conducted by the German Chambers of Agriculture as well as the German 

experimental stations, and analysed for the aforementioned ingredients. Furthermore, the 

crude protein and amino acid digestibility in young broiler chicken was assessed in vivo and 

in vitro. The precaecal digestibility of the crude protein and the amino acids of a field bean 

and a field pea variety, which are commonly used in organic farming, was determined in 

vivo in 21-day-old broiler chicken. To predict the praecaecal digestibility of the crude protein 

and the amino acids of feedstuffs for broiler chicken, a multi-enzyme assay was adapted. 

The in vitro digestibility of the crude protein and amino acids of cereals and grain legumes 

was then determined using the adapted assay. The effect of variety and environment on the 

contents of crude nutrients, amino acids, thiamine and riboflavin, as well as on the in vitro 

digestibility of the crude protein and the amino acids in cereals and grain legumes was 

studied with generalised linear models. In addition, native contents of thiamine and 

riboflavin of exemplary diets for monogastric animals in organic farming were calculated. 

As reported earlier in the literature, wide variations of the nutrient composition were also 

observed in the present study. However, the crude protein and amino acid contents of 

cereals and grain legumes were often lower and the starch content was often higher than 

reported in feed value tables. 

The precaecal digestibility of crude protein of organic field beans and field peas was 

comparable to reported digestibility coefficients with 84% and 81%, respectively. Lysine, 
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methionine, arginine, histidine and glutamic acid were highly digestible at the terminal ileum, 

while cystine and tryptophan were less digestible. The in vitro crude protein disappearance 

that was determined with the adapted multi-enzyme assay was highly correlated to the 

precaecal crude protein and the amino acid digestibility that was determined in preceding 

animal trials. The in vitro digestibility coefficients differed by more than 0.1 within a cultivar. 

They were mostly comparable to reported values in tables or digestibility studies. However, 

a comparison was difficult due to wide variations between table values and results of other 

studies. Since the number of samples with known precaecal crude protein and amino acid 

digestibility was small, further validation of the in vitro assay is recommended. 

The composition and the in vitro crude protein and amino acid digestibility of the cereal and 

grain legume cultivars were significantly affected by variety and by environmental 

conditions. In most cases, the influence of the environmental conditions was stronger. 

However, the extent and the direction of the influence of these factors were not consistent 

and may be depending on interactions and the choice of the sample set. It was observed 

for all cultivars that variations of the crude protein content were accompanied by an altered 

amino acid profile. The content of essential amino acids, including lysine, methionine, and 

threonine, in the crude protein were often negatively correlated with the crude protein 

content. A positive correlation with the crude protein content was observed for glutamic 

acid, phenylalanine, and proline in the crude protein of different cereal grains as well as for 

arginine in the crude protein of grain legumes. This is most likely due to shifts in the relation 

of the protein fractions of the crops. Consequently, the crude protein quality tended to 

decrease with increasing crude protein contents of the feedstuffs. 

Although the analysed amounts of thiamine in cereals and grain legumes were low 

compared to table values, calculated cereal-based diets contained sufficient amounts of 

native thiamine to meet current feeding recommendations. However, it must be noticed that 

the availability of thiamine was not taken into account. The native riboflavin contents of the 

exemplary diets were lower than the recommended amounts. Thus, it is necessary to use 

riboflavin supplements or feedstuffs rich in riboflavin to prevent deficiencies. 

In conclusion, the observed wide variations of the nutrient contents as well as of the crude 

protein and amino acid digestibility of organically cultivated cereals and grain legumes must 

be considered in diet formulation. While amino acid contents can already be predicted with 

equations based on the crude protein content of the feedstuff, rapid and cheap analysis 

methods are needed to determine crude nutrient and possibly even B vitamin contents of 

each batch of a feedstuff. Consequently, the contribution of cereals and grain legumes to 

closing the amino acid gap in organic farming would be further improved. Moreover, their 

native thiamine and riboflavin content adds to the B vitamin supply.  
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Zusammenfassung 

Die adäquate Versorgung monogastrischer Nutztiere mit Nährstoffen, vor allem mit Protein 

und Aminosäuren, ist im Ökologischen Landbau eine Herausforderung. Einerseits sind 

einige proteinreiche Futtermittel mit hohen Gehalten an essentiellen Aminosäuren nicht 

verfügbar, andererseits ist der Einsatz synthetischer Aminosäuren zum Ausgleich von 

Aminosäurenimbalancen laut EU Gesetzgebung nicht erlaubt. Um diese Situation zu 

verbessern, gibt es Bemühungen in der Pflanzen- und Tierzucht, sowie in der Tierhaltung, 

und es wird aktiv nach alternativen Proteinfuttermitteln gesucht. Neben der 

Aminosäurenversorgung stellt auch die Versorgung mit B-Vitaminen potentiell ein Problem 

dar. Vor allem bei vorrangig fermentativ produzierten B-Vitaminen, wie Riboflavin, sind 

GMO-freie Supplemente nicht verfügbar. Das Wissen über native B-Vitamingehalte in 

Futtermitteln ist lückenhaft. Daher ist es notwendig, auch häufig eingesetzte Futtermittel zu 

charakterisieren. Da im Ökologischen Landbau eine regionale Erzeugung angestrebt wird, 

haben Getreide und heimische Körnerleguminosen eine große Bedeutung. Das Ziel dieser 

Arbeit war folglich die Charakterisierung von Getreide und Körnerleguminosen aus 

ökologischer Erzeugung anhand ihres Rohnährstoff-, Aminosäuren-, Thiamin- und 

Riboflavingehalts unter Beachtung von Sorten- und Umwelteinflüssen. 

Zu diesem Zweck wurden über 800 Proben aus drei Anbaujahren aus Öko-

Sortenversuchen der deutschen Landwirtschaftskammern und Landesversuchsanstalten 

auf die Gehalte der oben genannten Inhaltsstoffe analysiert. Zudem wurde die praecaecale 

Verdaulichkeit des Rohproteins und der Aminosäuren bei 21 Tage alten Broilern 

exemplarisch an einer Öko-Futtererbse und einer Öko-Ackerbohne untersucht. Um die 

praecaecale Rohprotein- und Aminosäurenverdaulichkeit für Broiler zu schätzen, wurde 

eine Multi-Enzym-Methode adaptiert. Mit Hilfe der adaptierten Methode ist die in vitro 

Verdaulichkeit des Rohproteins und der Aminosäuren verschiedener Getreide- und 

Körnerleguminosenarten überprüft worden. Des Weiteren wurden der Einfluss von Sorte 

und Umwelt auf die Gehalte an Rohnährstoffen, Aminosäuren, Thiamin und Riboflavin 

sowie auf die in vitro Verdaulichkeit des Rohproteins und der Aminosäuren in Getreide und 

Körnerleguminosen mittels generalisierter linearer Modelle bestimmt und der native Gehalt 

an Thiamin und Riboflavin in Beispielrationen für monogastrische Nutztiere berechnet. 

Wie erwartet, schwankte die Nährstoffzusammensetzung stark. Zudem waren die Gehalte 

an Rohprotein- und vielen Aminosäuren häufig geringer und die Stärkegehalte in Getreide 

und Körnerleguminosen höher als tabellierte Werte. 

Das in Erbsen und Ackerbohnen enthaltene Rohprotein war zu 84 und 81% praecaecal 

verdaulich. Dies war vergleichbar mit Ergebnissen anderer Studien. Lysin, Methionin, 

Arginin, Histidin und Glutamin waren hoch verdaulich. Die praecaecale Verdaulichkeit von 

Cystin und Tryptophan war jedoch geringer. Mit der adaptierten Multienzymmethode 
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wurden Rohproteinverschwindensraten bestimmt, die stark mit der praecaecalen 

Verdaulichkeit des Rohproteins und der Aminosäuren, die in vorangegangenen Studien 

bestimmt wurde, korreliert waren. Die in vitro Verdaulichkeitskoeffizienten unterschieden 

sich zum Teil um mehr als 0,1 innerhalb einer Kultur. Insgesamt waren sie häufig 

vergleichbar mit Literaturangaben zur praecaecalen Rohproteinverdaulichkeit in Getreide 

und Körnerleguminosen. Ein Vergleich war aufgrund großer Unterschiede zwischen den 

Tabellenwerten und Literaturergebnissen jedoch schwierig. Da die Grundlage an in vivo 

Ergebnissen gering war, wird eine weitere Validierung der Methode empfohlen. 

Die Nährstoffzusammensetzung und die in vitro Rohprotein- und Aminosäuren-

verdaulichkeit von Getreide und Körnerleguminosen wurden signifikant von der Sorte und 

den Umweltbedingungen beeinflusst, wobei in den meisten Fällen der Einfluss der 

Umweltbedingungen überwog. Das Ausmaß und die Richtung dieser Effekte waren jedoch 

nicht konsistent. Wechselwirkungen und die Auswahl der Proben können Gründe dafür 

gewesen sein. Für alle Kulturen wurde beobachtet, dass eine Veränderung des 

Rohproteingehaltes ein verändertes Aminosäurenmuster zur Folge hatte. Die Gehalte an 

essentiellen Aminosäuren, wie Lysin, Methionin oder Threonin, im Rohprotein waren oft 

negativ mit dem Rohproteingehalt korreliert. In Getreide stieg die Konzentration an 

Glutamin, Phenylalanin und/oder Prolin mit steigenden Rohproteingehalten, in 

Körnerleguminosen stieg vor allem die Konzentration an Arginin im Rohprotein. Der Grund 

dafür war wahrscheinlich eine Veränderung im Verhältnis der Proteinfraktionen zueinander. 

Diese kann zu einer veränderten Proteinqualität führen. 

Getreidebasierte Beispielrationen enthielten ausreichende Mengen an Thiamin, um aktuelle 

Bedarfsempfehlungen zu decken, obwohl die Thiamingehalte in Getreide und 

Körnerleguminosen meist geringer waren als in der Literatur beschrieben. Es ist jedoch zu 

beachten, dass die Verfügbarkeit des Thiamins nicht berücksichtigt worden ist.  

Die nativen Riboflavingehalte in den Beispielrationen reichten nicht aus, um den Bedarf zu 

decken. Um Mangelerscheinungen zu vermeiden, ist es daher notwendig, Riboflavin zu 

supplementieren oder riboflavinreiche Futtermittel einzusetzen. 

Zusammenfassend kann aus der vorliegenden Arbeit die Empfehlung abgeleitet werden, 

dass die starken Schwankungen der Nährstoffgehalte und der in vitro Verdaulichkeit des 

Rohproteins und der Aminosäuren in Öko-Getreide und -Körnerleguminosen in der Rations-

gestaltung berücksichtigt werden müssen. Während für die Aminosäurengehalte bereits 

zufriedenstellende Schätzgleichungen auf Basis des Rohproteingehalts existieren, werden 

zur Bestimmung der Rohnährstoff- und B-Vitamingehalte in Futtermittelchargen noch 

schnelle und günstige Analysemethoden benötigt. Dadurch könnten Getreide und 

Körnerleguminosen noch besser zur Schließung der Aminosäurenlücke im Ökologischen 

Landbau beitragen. Auch ihr nativer Gehalt an Thiamin und Riboflavin kann einen Beitrag 

zur bedarfsgerechten Versorgung monogastrischer Nutztiere leisten. 
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General Introduction 

1 Feeding monogastric animals in organic farming 

Challenges 

Organic production is subject to strict regulations, the purpose of which is to ensure 

sustainable agricultural production2. As a consequence, some of these regulations largely 

affect monogastric animal feeding. For instance, it is not allowed to use feedstuffs produced 

with solvents, such as extraction meals, which are important protein feedstuffs in 

conventional agriculture. Extraction meals are rich in crude protein (CP) and often contain 

considerable amounts of limiting amino acids (AA) (DLG 2006-2010, 2014). Furthermore, 

genetically modified organisms (GMO) are banned in organic farming. Most existing 

soybean varieties are genetically modified (Bachteler 2015) and, therefore, cannot be used. 

Due to production techniques that include fermentation with GMO (Ikeda 2003), the use of 

synthetically produced AA, a supplement commonly fed in conventional farming, is 

forbidden in organic farming. Since B vitamins, like riboflavin, are also often produced by 

fermentation with GMO (Stahmann et al. 2000, Schwechheimer et al. 2016), it is desired to 

supply sufficient amounts of B vitamins in the diet with native contents in the feedstuffs. 

Thiamine, for example, is supposedly contained in cereals in large amounts (Sauvant et al. 

2004). Thus, cereal-based diets might contain sufficient amounts of thiamine (GfE 1999, 

2006), while other B vitamins, like riboflavin, are more likely to be deficient. To avoid 

deficiencies, it is currently allowed to use some B vitamin supplements in diets for farm 

animals in organic farming. In addition, organic farming aims for 100% organic feeding. 

Thus, limitations in cultivation techniques further decrease the availability of valuable 

feedstuffs. For example, rapeseed, which is an oil seed with high amounts of sulphur-

containing AA (SAA), is difficult to cultivate in organic farming due to pests (Velicka et al. 

2016). The lack of some feedstuffs and of good alternatives makes it more difficult to meet 

the nutrient requirements of monogastric animals. Thus, it can be necessary to exceed the 

required amounts of crude protein of the diet to attain the needed amount of essential AA 

(EAA). This practice can lead to an imbalance of amino acids in the diets (Jongbloed & 

Lenis 1992, Chalova et al. 2016) and, consequently, to excessive N-excretions (Canh et al. 

1998, Le Bellego & Noblet 2002, Wecke & Liebert 2013b, Chalova et al. 2016), which can 

burden the metabolism, the environment, and the staff working in the stalls. Moreover, 

unbalanced diets can cause a decreased performance (Sundrum et al. 2000) as well as a 

higher probability of cannibalism, feather pecking (Kjaer & Sørensen 2002, Van Krimpen et 

al. 2005), stunted growth, and health problems (Jongbloed & Lenis 1992, Nagaraj 2006, 

                                                
2 Framework can be found in Council Regulation (EC) No 834/2007 and associated Commission Regulations 
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Oviedo-Rondón et al. 2006, Heo et al. 2009). In organic farming, the sufficient supply of AA 

is challenging in both swine and poultry. However, according to Weißmann & Bussemas 

(2014), it is most problematic in broiler and turkey nutrition. Furthermore, since the extent 

of poultry production is expanding, while the one of pig production is stagnating (Eurostat 

2018, Moewius et al. 2018), the topic is more pressing for poultry. 

Potential solutions 

Negative effects of AA deficient diets on the health of monogastric animals in organic 

farming are to be avoided. Thus, their diet is currently allowed to contain 5% conventionally 

produced protein feedstuffs per year. Due to their high CP content and a favourable AA 

profile, potato protein (esp. for swine) and maize gluten (esp. for poultry) from conventional 

farming are commonly used to enhance the nutritive value of diets for monogastric animals 

(Hovi et al. 2003, Eriksson et al. 2009). Regarding 100% organic feeding, it seems obvious 

to replace the conventional protein isolates with organic ones. However, they are a by-

product of starch production. Since the demand for organic potato and maize starch is low, 

protein isolates in organic quality are not available in sufficient amounts (Witten & Paulsen 

2014). Consequently, other potential solutions are needed to close the amino acid gap for 

100% organic feeding. Some farmers have found individual ways to feed their animals with 

100% organic feed. However, it is not possible to use their concepts nationwide for all 

monogastric animals as they often depend on local producers of special feedstuffs (like 

organic potato protein). Thus, further endeavours have to be made to provide enough 

valuable protein feedstuffs for all monogastric animals. Since there is not one 

comprehensive solution, different strategies are discussed. It is likely that a combination of 

those approaches is needed to implement 100% organic feeding (Witten & Paulsen 2014). 

The first approach is to use possibilities of the animals’ genetics and metabolism. 

Monogastric animal breeding could adjust poultry for low protein diets in organic farming 

(Elwinger et al. 2008). The breeding of robust, modest, and efficient new turkey and dual-

purpose chicken races would contribute to solving the problem. However, breeding of pigs 

for organic farming is difficult due to a small population and the lack of specialised breeders 

(Weißmann 2017). Berk & Weißmann (2012) suggested the use of compensatory growth 

for pigs. They found out that a decreased growth of piglets due to less crude protein in the 

diet can be compensated later on. Additionally, this strategy has the potential to be used in 

chicken feeding (Zhan et al. 2007). Another option would be to decrease the energy density 

of the feedstuff, which leads to an increased feed intake in poultry and therefore to an 

improved protein and AA intake (Bellof & Schmidt 2007). However, young poultry would 

have to be adapted to high feed intake (Baumann 2004, Joost Meyer zu Bakum 2004). 
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The second approach is to support plant breeding and cultivation. It is well known that due 

to genetic factors varieties of cultivated crops can differ in many characteristics, like yield 

quantity and stability, pest resistances, and even nutrient composition (Francis & 

Kannenberg 1978, Blumenthal et al. 1991, Khush 1995, Snape et al. 2007). Commonly 

used plants, like cereals, maize, peas, field beans, sweet lupins, sunflowers, canola, or 

soybeans, could be further improved and adapted for new environmental conditions and 

nutritional needs. Moreover, less popular plants, like vetch, millet, or buckwheat, could be 

further developed. Therefore, it is possible that plant breeding strategies can contribute to 

a regional 100% organic feeding. However, due to the priority of other breeding aims, like 

pest resistances or high yield, and the small purchase volume in organic farming, this 

approach is rather to be seen as a long-term solution. 

The third approach is the use of alternative protein feedstuffs. Possible alternatives include 

insect protein, unsuitable meat from slaughtering, microorganisms (like bacteria, yeast, and 

algae), fish or mussel meal, milk products, egg products, treated legumes, or oil cakes. 

Unfortunately, the mentioned feedstuffs can yet not be used, are only available in small 

amounts, and/or are very expensive (Witten & Paulsen 2014). In addition, germinated grains 

(Schwediauer et al. 2017) and grassland-derived products (Wüstholz et al. 2017a, Wüstholz 

et al. 2017b) can be used as alternative protein feedstuffs to improve the amino acid supply 

of a diet. 

The fourth approach is to improve feed evaluation and ration formulation. Organic farms 

often cultivate their own single feedstuffs to minimise nutrient input into the farm (Zollitsch 

2007). Cereal grains and grain legumes are, therefore, major components of diets. The 

general nutrient composition of fodder crops is mainly known and summarised in different 

feed value tables (e. g., Ajinomoto Animal Nutrition Group 2003-2013, DLG 2006-2010, 

Agroscope 2011-2016, Evonik 2016, INRA-CIRAD-AFZ 2018). However, the nutrient 

composition of crops can vary widely due to genetic and environmental factors (Canbolat 

et al. 2007, Shewry et al. 2011, Urbatzka et al. 2011). Thus, there is a lack of knowledge 

regarding the nutrient composition of batches of single feedstuffs produced on a local level. 

Laboratory analyses can generate specific information on each feedstuff. 

Feed evaluation and ration formulation are important in addressing the above-described 

challenges regardless of the additional solutions pursued. Thus, the topic of the next 

chapter is the characterisation of feedstuffs.  
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2 Characterisation of feedstuffs 

Since feed evaluation can add to animal health, animal performance, and nutrient 

conservation, it contributes to making animal feeding more sustainable and efficient (Le 

Bellego & Noblet 2002). It is, therefore, of special importance in agricultural production. This 

chapter provides an overview of selected feed ingredients and focuses on amino acids and 

their digestibility. 

Crude nutrients 

For the evaluation of feed quality on the basis of its nutrient composition, fractions consisting 

mostly of the nutrients that are important for feed quality are analysed with Weende analysis 

as a first step. Since those fractions also contain traces of foreign substances, they are 

called crude nutrients (CN). CP, for example, is calculated from the N content of the 

feedstuff. Thus, it contains also non-protein N compounds, like nucleic acids, and some 

secondary plant metabolites. The other CN fractions are crude fat (ether extract, EE), crude 

fibre (CF), crude ash (CA), and nitrogen-free extracts (NfE). The minerals are mostly 

contained in the CA fraction. CF and NfE can be further characterised by the amount of 

sugar, starch, neutral detergent fibre, acid detergent fibre, and acid detergent lignin (Van 

Soest 1967). CN contents can also be used to calculate the energy content of different 

feedstuffs. 

All CN fractions contain vital compounds. However, this chapter focuses on a more detailed 

description of the composition and digestion of CP because its sufficient supply for 

monogastric animals is a challenging task in organic farming. 

Amino acids 

Monogastric animals require the AA, which are contained in the CP fraction, to build 

structural proteins and hormones. Of 21 proteinogenic AA, 20 AA are the canonical ones 

and, therefore, are encoded by the universal genetic code. Non-essential AA can be built 

de novo by the organism when nitrogen (N) is present in sufficient amounts. However, 

animals are not capable of building all AA. Essential AA (EAA) must be included in the diet 

in sufficient amounts, whereas semi-essential AA are either essential in specific metabolic 

states (like growth) or can be derived from essential AA. Thus, monogastric animals require 

semi-essential and essential AAs as well as AA building components (like N) or non-

essential AA (Wu et al. 2013) in amounts depending on species, breed, age, and metabolic 

state (like maintenance, growth, gestation, lactation) of the animal (Fuller 2004). To build 

proteins (like tissues or animal products), animals require AA in a specific profile. 

Consequently, the use of excess AA by the metabolism is limited when one of the EAA is 

not supplied sufficiently. While lysine (Lys) is limiting the protein utilisation in common 

cereal-based diets for swine, the SAA, methionine (Met) and cystine (Cys), are limiting in 
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most diets for poultry. Besides Lys and the SAA, threonine (Thr) and tryptophan (Trp) are 

considered as limiting AA in common cereal-based diets for monogastric animals (Fuller 

2004). Although the absolute amount of required AA is dependent on many factors, their 

optimal ratio is relatively stable (Baker et al. 2002, Baker 2003). Based on this knowledge, 

the quality of the dietary protein is measured using the ideal amino acid ratio (IAAR), which 

describes the required ratio of AA in relation to a reference AA (Table 1). 

Table 1: Canonical proteinogenic amino acids and the ideal amino acid ratio in relation to 

lysine for fattening pig and growing chicken 

Amino Acid  Essentiality Class Fattening 
pig1 

Growing 
chicken2 

Lysine Lys e Basic 100 100 
Methionine Met e Sulphur-containing  40 
Cyst(e)ine Cys s Sulphur-containing 60* 74* 
Threonine Thr e Aliphatic 65 66 
Tryptophan Trp e Aromatic 18 16 
Isoleucine Ile e Aliphatic 60 69 
Leucine Leu e Aliphatic 100 110 
Valine Val e Aliphatic 68 80 
Arginine Arg s/e# Basic 42 105 
Histidine His e Basic 32 34 
Phenylalanine Phe e Aromatic  66 
Tyrosine Tyr s Aromatic 95** 120** 

Alanine Ala n Aliphatic   
Glycine Gly n/s+ Aliphatic   
Serine Ser n/s+ Aliphatic   
Proline Pro n Cyclic   
Asparagine Asn n Acidic Amid   
Aspartic acid Asp n Acidic   
Glutamine Gln n Acidic Amid   
Glutamic acid Glu n Acidic   

e=essential; s=semi-essential; n=non-essential; 1Chung & Baker (1992); 2Wecke & Liebert (2013a); * Met+Cys; 
** Phe+Tyr; # Arginine is essential for poultry because of the lack of ornithine cycle (Fuller 2004); + semi-
essentiel in fast-growing poultry (Jeroch et al. 2012) 

Lys is commonly applied as reference AA since it is often first-limiting and used mainly in 

the formation of body proteins (Baker et al. 2002). However, the Lys requirement, which 

must be known, depends on characteristics of the animal (Wecke et al. 2016). The IAAR 

concept aims to supply each AA in accordance with the rendered performance of the animal. 

The composition of dietary protein is ideal when neither an increased nor a decreased 

supply of an AA leads to an enhanced performance. The concept is used in swine and 

poultry nutrition (NRC 1994, GfE 1999, 2006, NRC 2012) to increase the efficiency and 

sustainability due to a decreased need for protein without a diminished performance (Mack 

et al. 1999). Since a decreased N uptake relieves the metabolism and decreases the N 

content of animal manure, the environment and the animal health benefit from the IAAR (Le 

Bellego & Noblet 2002, Boisen 2007b). Thus, it is of advantage for nutritionists to know the 

content of the AA in the diet. However, the animal is not able to digest the dietary protein 

entirely (Recoules et al. 2017). Thus, only dietary AA that can be digested and absorbed 

are potentially metabolically available for the animal. 

https://de.wikipedia.org/wiki/Essentielle_Aminos%C3%A4ure
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Digestion of protein 

In the digestive tract of monogastric animals, enzymes are used to split proteins into 

peptides and AA, which can then be absorbed, mostly in the small intestine, and used as 

building blocks of tissues, enzymes, and hormones. In this chapter, the digestion of protein 

is described specifically for chicken. As shown by Table 2, the transit time, the amount and 

composition of secretions, as well as the pH value of the digestive tract vary depending on 

characteristics of the animal and the ingested material (Farner 1943, Kokas et al. 1971, 

Shires et al. 1987, Fuller 2004, Denbow 2015). In chicken, the ingested feed is initially 

stored and soaked in the crop in a fluid of mucus and saliva. The pH depends on the 

characteristics and contribution of the feed and can vary widely (Shafey et al. 1991, Richter 

et al. 1992, Hinton et al. 2000, Józefiak et al. 2007, Jiménez-Moreno et al. 2009). Although 

no enzymes are secreted from the crop tissue, enzymes of the plant feedstuff itself (Harvey 

& Oaks 1974, Morita et al. 1994, Fahmy et al. 2004) and of microorganisms (Champ et al. 

1983) can hydrolyse parts of the nutrients in the crop. However, the crop is mainly a storage 

organ (Denbow 2015). The feed is continuously released from the crop to be further 

digested. 

Table 2: Transit time, pH value, and dry matter content of the digesta in the digestive tract 
of chicken* 

Section Transit Time [min] pH Dry matter content [%] 

Crop 31 - 360 4.5 - 6.6 about 34 - 38 
Glandular stomach1 1 4.3 - 4.8  
Muscular stomach2 33 - 135 2.4 - 2.8 about 14 - 30 
Duodenum  4.8 - 6.5  
Jejunum 136 - 191 5.8 - 6.6 about 14 - 20 
Ileum  6.2 - 7.2  
Large intestine ca. 180 5.5 - 7.0  
Pancreatic secretions  6.4 - 6.8  

*Farner (1942b), Herpol (1966), Barnes (1979), Mehner & Hartfield (1983), Hesselman & Åman (1986), Bedford 
et al. (1991), Petterson et al. (1991), Richter et al. (1992), Kadim & Moughan (1997), Hetland & Svihus 
(2001), Weurding et al. (2001), Engberg et al. (2002), Pang & Applegate (2007), Liu et al. (2014), Denbow 
(2015), Valentim et al. (2017); 1Herpol (1966) found the pH in the glandular stomach to be averagely 1.4; 
2Mabelebele et al. (2014) found the pH in the muscular stomach to be averagely 3.5 

The oxynticopeptic cells in the glandular stomach secrete pepsinogen and hydrochloric acid 

(HCl). Pepsinogen is the proenzyme of the protein-hydrolysing enzyme pepsin, activated 

by HCl. Long (1967) observed a basal gastric secretory rate of 15.4 ml per hour with 93 mEq 

pepsin per litre. The optimal operating pH of pepsin is in the acidic range. Due to the low 

pH in the muscular stomach (Table 2), the structure of the dietary protein is altered, which 

enables pepsin to break it down into smaller peptides. The muscular stomach contains grit, 

which is supplied with the diet and assists in grinding the feed particles during the digestion 

with HCl and pepsin. A large amount of protein is released from the stomach in form of 

small peptides (Recoules et al. 2017). 

In the small intestine, luminal digestion and digestion at the brush border membrane take 

place. Enzymes of the brush border membrane are aminopeptidases, cytosolic 

dipeptidases, and tripeptidases. Recoules et al. (2017) identified the proteins in the 
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digestive tract of broilers and found a variety of enzymes. The highest enzyme activity can 

be observed in the jejunum. However, little is known about the control mechanisms of 

intestinal secretions (Denbow 2015). Pancreatic secretions are the main factor accountable 

of protein digestion in the small intestine. They consist of an aqueous phase, which contains 

water and bicarbonate ions, and an enzymatic phase, which includes 10% trypsinogen, 

20% chymotrypsinogen, and 30% procarboxipeptidase (Pubols 1991). The secretory rate 

is affected by characteristics of feedstuff and starvation time (Kokue & Hayama 1972, 1976) 

and is in part controlled by autonomic nerves and gastrointestinal hormones (gastrin, 

secretin, and cholecystokinin) (Burhol 1982, Polak & Bloom 1982). Pancreatic secretions 

are secreted into the distal duodenum. However, since there is a tailback of digesta, they 

can be found even in the proximal duodenum (Denbow 2015). The pH, therefore, increases 

between the proximal and distal duodenum and further in the jejunum and ileum (Table 2). 

AA absorption can be observed in the crop and the stomach. AA as well as small peptides 

are absorbed along the duodenum, jejunum, and ileum (Matthews 1972, Denbow 2015). 

When digesta has left the small intestine, it is subject to microbial digestion in the large 

intestine. The absorption of some AA (Met in the rectum and Pro, Leu, Phe, Met, Val in the 

caeca) has been observed in the large intestine of hens. However, the small intestine is 

presumed to be the main site of AA and peptide absorption (Moretó & Planas 1989, Fuller 

2004). 

Since AA must be absorbed to become available for metabolic use, the digestibility of the 

protein of a feedstuff is used as an indicator for the bioavailability of CP and AA. Therefore, 

knowledge on the CP and AA digestibility gained in importance in diet formulation (Dalibard 

& Paillard 1995, Perttilä et al. 2002). Microbial fermentation in the caeca of poultry modifies 

the CP content as well as the AA profile of their digesta (Ravindran et al. 1999). Therefore, 

there is a large difference between total tract digestibility and metabolic availability of CP 

and AA. Thus, the precaecal (pc) digestibility of CP and AA is used in diet formulation. 

Predicting crude protein and amino acid digestibility 

By now, the pc digestibility of most nutrients, including CP and some AA, is summarised in 

tables (Hess & Lemme 2018). However, table values vary widely dependent on 

characteristics of the assay methodology (Bryden et al. 2009) and are not able to display 

variations that occur between different batches of the same feedstuffs (Short et al. 1999, 

Rodehutscord & Kluth 2003, Wiseman et al. 2003). Anti-nutritive factors (ANF) and fibre 

contents of the diet affect nutrient digestibility. A treatment of a feedstuff, for example with 

heat or steam, can also alter the CP and AA digestibility (Toghyani et al. 2015, Hejdysz et 

al. 2016). To determine the apparent or true (corrected for endogenous losses) pc 

digestibility of CP and AA in vivo assays can be used. Furthermore, in vitro assays are able 

to estimate the pc CP and AA digestibility. 
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In vivo prediction of crude protein and amino acid digestibility in poultry 

A selection of different assays exists to determine the digestibility of CP and AA in chicken. 

Some methods, like the surgical installation of an ileal cannula (Johns et al. 1986) are not 

commonly used. The digestibility of nutrients in feedstuffs for poultry is by now commonly 

determined using the excreta of cecectomised roosters or the ileal chyme of young broiler 

chicken (Doeschate et al. 1993, Ravindran & Bryden 1999, Kadim et al. 2002). 

A cecectomy is usually conducted on adult animals and is fairly expensive. Therefore, 

operated animals are used for more than one study and repetitions are made continuingly 

with the same animal. Total excreta collection or a marker can be used in this method. 

However, since the gastro-intestinal-tract and its microflora develops continually until 

adulthood, the CP and AA digestibility can vary as well (Batal & Parsons 2002, Ravindran 

& Hendriks 2004). Thus, the results of rooster assays are not applicable for juvenile chicken. 

Broiler chicken in organic farming are fattened for about eight weeks. Thus the critical time 

regarding the sufficient supply of AA is during the juvenile phase. To determine the pc 

digestibility of younger animals at a specific age, ileal digesta samples are taken from killed 

animals after rearing them for a specific time-span. This methods require a marker to adjust 

for the passage rate of the digesta. Furthermore, this method requires more animals to gain 

enough digesta for the nutrient analyses and to ensure enough repetitions. A specific age 

is displayed and the influence of the individual is obliterated. 

There are various effects of the method, like feeding technique (Kadim & Moughan 1997), 

sampling time after ingestion (Kadim & Moughan 1997) or sampling technique (Parsons 

1985, Johns et al. 1986, Kadim et al. 2002) on the determined pc digestibility. Furthermore, 

effects of the animal, like age (Batal & Parsons 2002, Ravindran & Hendriks 2004), sex 

(Doeschate et al. 1993, Siriwan et al. 1993), or breed (Doeschate et al. 1993) were reported. 

Thus, it can be misleading to compare results obtained from different methods and to make 

a statement for animals in another metabolic state or age. To determine true or standardised 

pc digestibility of CP and AA, endogenous losses must be quantified (Karakas et al. 2001, 

de Coca-Sinova et al. 2008, Kim et al. 2011b, Adedokun et al. 2014). However, there is no 

standardised method to quantify endogenous losses (Donkoh & Moughan 1999, Cremers 

2002, Jansman et al. 2002). The benefit of a regression approach, as used in different 

studies (Short et al. 1999, Kluth et al. 2005b), is that no correction for basal endogenous 

losses is necessary (Rodehutscord et al. 2004). The slope of the linear regression accounts 

practically for the standardised pc digestibility of the CP or the AA. 

Consequently, Kluth & Rodehutscord (2009) suggested the use of a standardised method. 

They invented a method to measure the standardised pc digestibility of CP and AA in 

chicken (Kluth et al. 2005a, Kluth et al. 2009) with a linear regression approach 
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(Rodehutscord et al. 2004) using the amounts of nutrient intake and of nutrient residuals at 

the terminal ileum. This method was also used in the present study. 

The advantage of animal experiments is that the animals’ metabolism is naturally part of the 

study. Distinct statements regarding the pc digestibility of the observed nutrients in the used 

animals can be made after such an experiment. The difficulty is that the animals’ ability to 

digest the nutrients is depending on their enzyme reaction. It is affected by genetic and 

environmental factors and can therefore differ in diverse experiments (Fuller et al. 1994). 

Changes in substrate intake lead to an adaption of the digestive enzymes and can therefore 

modify the digestive capacity (Eggum et al. 1989, Savoie et al. 1989). Even ANF can 

influence enzyme secretion (Mehanso et al. 1987). Lectins increase cellular turnover and 

protein secretion of the enterocytes (Pusztai 1989) and, therefore, endogenous losses. 

Fibre can lead to anatomical changes in the digestive tract (Eggum & Boisen 1991), reduce 

luminal enzyme activity, and protect proteins against degradation (Boisen et al. 1985). 

Furthermore, the gastro-intestinal microflora can influence digestion even in the stomach 

and small intestine, for example by degrading and synthesising individual AA (Mason 1984). 

Even genetic and environmental factors strongly affect feed utilization. In a study conducted 

by Elbers et al. (1989), the same diet had a varying organic matter digestibility when fed to 

pigs on different farms. This observation might be transferable to other nutrients and 

animals. Consequently, results of in vivo digestibility studies do not necessarily display the 

net absorbed AA. Another disadvantage of in vivo studies is that they are time-consuming 

and costly and that animals need to be operated or killed to generate results. Thus, in vitro 

methods can be of interest for a replicable, rapid, and cheap characterisation of feedstuffs. 

In vitro prediction of crude protein and amino acid digestibility 

In vitro assays for the estimation of CP and AA digestibility should be rapid, cheap, and 

robust. Regarding the described variations, which occur due to feed- and animal-related 

factors, respectively, as well as interactions between those factors, in vivo conditions cannot 

be replicated by in vitro assays. Thus, in vitro studies characterise feedstuffs mostly 

independent of the animal-related effects. Nevertheless, their applicability is dependent on 

a high correlation with results of in vivo studies (Butts et al. 2012). In the last decades, 

different assays were developed to predict the digestibility of nutrients for monogastric 

animals in vitro. A selection is described in the following text. 

A simple approach is based on the assumption that the solubility of CP in different media, 

like water, NaCl, or KOH, is related to its digestibility. This method is usually applied to 

examine the success of a heat treatment, for example in soybeans. A lesser solubility of 

samples indicates protein destruction and, therefore, a decreased digestibility of the CP, 

while an increased solubility can indicate an increased digestibility (Parsons et al. 1991, 

Carbonaro et al. 1997, Pastuszewska et al. 2003). 
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There are two methods, which are based on an assumed correlation between the initial rate 

of peptide release and protein digestibility. Since cleaved peptide bonds release protons 

during proteolysis, the pH in a suspension declines. The pH-drop method measures the 

decrease in pH, while the pH-stat method measures the amount of NaOH, which is needed 

to keep pH constant (Hsu et al. 1977). In particular the pH-stat method seems to be valid, 

reliable, and repeatable to predict protein digestibility of highly digestible proteins in pigs 

(Boisen & Eggum 1991). 

The dialysis cell method considers that end-products of digestion can supress enzyme 

activity (Gauthier et al. 1986, Savoie & Gauthier 1986). Since low-molecular-weight 

products are continuously removed by dialyses during a pepsin-pancreatin digestion, an 

end-product inhibition is prevented and affecting factors can be studied. Furthermore, 

protein degradation in the small intestine as well as AA availability can be predicted 

(Galibois et al. 1989). However, the procedure is time-consuming and needs complex 

equipment. Similarly, computer-controlled systems to simulate the digestive tract of animals 

or humans were introduced by Minekus et al. (1995) and Wickham et al. (2009). Those 

complex systems require maintenance and are expensive. Therefore, they do not meet the 

requirements for a simple and cheap assay. 

Furthermore, there are filtration methods to predict nutrient digestibility. Feed samples are 

incubated with enzymes. The insoluble residue is filtrated (or centrifuged) and analysed for 

residual CP and/or AA. Since in vitro solubility is expected to be correlated with in vivo 

digestibility, a prediction of the digestibility is possible. Studies have compared the in vitro 

rate of CP disappearance with the total tract digestibility of CP. However, since no microbial 

digestion of the hindgut is simulated, it can be expected that a better correlation can be 

reached in a comparison with the pc digestibility of CP. One-, two-, or multi-enzyme systems 

can be performed. One-step methods with only one enzyme (for example pepsin or 

pronase, Büchmann 1979a, Rochell et al. 2013) can be misleading since enzymes are 

highly specific (Sibbald 1987). The incubation in intestinal fluids (duodenal fluid, ileal fluid, 

or faeces extract) is a multi-enzyme method with only one step (Goering & Van Soest 1970, 

Ehle et al. 1982, Löwgren et al. 1989). There are two-step multi-enzyme methods, where 

incubation with pepsin is followed by incubation for example with trypsin (Saunders et al. 

1973), jejunal fluid (Furuya et al. 1979, Clunies & Leeson 1984), or pancreatin (Büchmann 

1979a, Asp et al. 1983, Boisen & Fernández 1991). Boisen & Fernández (1991, 1995) and 

Boisen (2007a) invented a multi-enzyme method to determine the digestibility of different 

nutrients for swine. The assay of Boisen & Fernández (1995) was used in various studies 

to predict the standardised digestibility of CP and AA for pigs. Good correlations between 

the in vitro rate of disappearance with the apparent ileal digestibility of CP and AA in broiler 

chicken were also reported (de Coca-Sinova et al. 2008). These findings suggest that the 
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multi-enzyme assay of Boisen & Fernández (1995) is a promising and simple in vitro 

approach. Therefore, it was part of the present study. 

Besides the CN and the AA other nutrients are important in animal feeding. It is, for example, 

possible that B vitamin deficiencies of mixed feeds occur, when B vitamin contents are not 

well regarded in ration formulation. 

B vitamins: Thiamine (vitamin B1) and riboflavin (vitamin B2) 

B vitamins are water-soluble vitamins. They are numbered in the order of their discovery. 

The first two B vitamins, thiamine and riboflavin, are considered in this work. Thiamine and 

riboflavin are continuously excreted in the urine of healthy individuals. Although animals 

continuously require a supply of B vitamins, they are not capable of synthesising these 

vitamins themselves (Squires 2011). In contrast, bacteria, plants, and fungi are capable of 

synthesising thiamine (Webb et al. 2007, Begley et al. 2008) and riboflavin (Bacher et al. 

2000, Kemter 2002). B vitamins are also synthesised by some hindgut bacteria (Coates et 

al. 1968). However, the produced amounts are insufficient and not readily available for 

poultry and swine. Since the small intestine is the main site of absorption of thiamine and 

riboflavin, the majority of B vitamins that are synthesised by hindgut bacteria is excreted 

with the faeces. Thus, thiamine and riboflavin are primarily available for animals that 

practice coprophagy (Luckey et al. 1955). Therefore, they are dietary essential nutrients 

and must be supplied with the diet. Excess of thiamine and riboflavin in feedstuff is not a 

cause for concern since no negative consequences have been observed (Bates 2007, Rivlin 

2007). However, since thiamine and riboflavin deficiencies can lead to severe health 

problems and decreased performance, they are often supplemented in feedstuffs to ensure 

a sufficient supply. Although a general supplementation is declared, information on the 

contained amount of specific B vitamins in mixed feed is often lacking. Even in organic 

farming, their application is allowed to prevent deficiencies.  

Thiamine supplements are commonly produced via chemical synthesis (Revuelta et al. 

2016). Although riboflavin can be produced using chemical synthesis, it is currently obtained 

mostly using biotechnological approaches that involve different microorganisms 

(Schwechheimer et al. 2016, Revuelta et al. 2017). These supplements are used regularly 

in feedstuffs for farm animals in conventional and organic farming in amounts that ensure a 

sufficient supply. 
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Objectives 

The aim of the study was to characterise organically cultivated cereals and grain legumes 

as commonly used feedstuffs for monogastric animals. Emphasis was laid on the contents 

of the crude nutrients, amino acids, thiamine, and riboflavin as well as on the precaecal 

digestibility of the crude protein and amino acids for broiler chicken. The gathered 

information can be helpful in achieving 100% organic feeding. 

 

The following questions were posed: 

1. How can the nutrient composition of organically produced cereals and grain 

legumes be described and to what extent does the nutrient composition of 

organically cultivated cereals and grain legumes vary? 

2. Is it possible to predict amino acid contents of organically cultivated cereals 

and grain legumes from crude protein content using equations? 

3. What effect do the variety and the environmental conditions have on the 

nutrient contents of organically cultivated cereal grains and grain legumes? 

4. What amount of crude protein and amino acids of commonly used field peas 

and field beans in organic farming is digestible at the terminal ileum of 

young broiler chicken? 

5. Is it possible to use an adapted multi-enzyme-method to compare the 

precaecal digestibility of crude protein and amino acids in single feedstuffs 

for broiler chicken? 

6. What effect do the variety and the environmental conditions have on the in 

vitro digestibility of crude protein and amino acids of cereals and grain 

legumes? 

  



References – General Introduction 

 

18 

References – General Introduction 

Adedokun, S.A., Jaynes, P., El-Hack, M.E.A., Payne, R.L. and Applegate, T.J. (2014). Standardized Ileal Amino 
Acid Digestibility of Meat and Bone Meal and Soybean Meal in Laying Hens and Broilers. Poult Sci 93, 
420-428. DOI: 10.3382/ps.2013-03495 

Agroscope (2011-2016). Feedbase - the Swiss Feed Database, https://www.feedbase.ch/, University of Zurich, 
Agroscope. Last Access 25th of June 2018. 

Ajinomoto Animal Nutrition Group (2003-2013). Ajinomoto Heartland (since April 2018 Ajinomoto Animal 
Nutrition North America) Amino Acid Database, http://aaa.lysine.com/, Last Access 25th June 2018. 

Asp, N.G., Johansson, C.G., Hallmer, H. and Siljestroem, M. (1983). Rapid Enzymic Assay of Insoluble and 
Soluble Dietary Fiber. J Agric Food Chem 31, 476-482. DOI: 10.1021/jf00117a003 

Bacher, A., Eberhardt, S., Fischer, M., Kis, K. and Richter, G. (2000). Biosynthesis of Vitamin B2 (Riboflavin). 
Ann Rev Nutr 20, 153-167. DOI: 10.1146/annurev.nutr.20.1.153 

Bachteler, K. (2015). Sojabohnen mit Streifen-Schnelltests auf Gentechnik prüfen?, Taifun Sojainfo. 

Baker, D.H. (2003). Ideal Dietary Amino Acid Patterns for Broiler Chickens, In: D'Mello (Ed.), Amino Acids in 
Animal Nutrition, CABI Publishing, Wallingford, pp. 223-235.  

Baker, D.H., Batal, A.B., Parr, T.M., Augspurger, N.R. and Parsons, C.M. (2002). Ideal Ratio (Relative to Lysine) 
of Tryptophan, Threonine, Isoleucine, and Valine for Chicks During the Second and Third Weeks 
Posthatch. Poult Sci 81. DOI: 10.1093/ps/81.4.485 

Barnes, E.M. (1979). The Intestinal Microflora of Poultry and Game Birds During Life and after Storage. J Appl 
Bacteriol 46, 407-419. DOI: 10.1111/j.1365-2672.1979.tb00838.x 

Batal, A.B. and Parsons, C.M. (2002). Effects of Age on Nutrient Digestibility in Chicks Fed Different Diets. Poult 
Sci 81, 400-407. DOI: 10.1093/ps/81.3.400 

Bates, C.J. (2007). Chapter 8: Thiamine, In: Zempleni, J., Rucker, R.B., McCormick, D.B. and Suttie, J.W. (Eds.), 
Handbook of Vitamins, CRC Press, Taylor & Francis Group, pp. 253 - 288. ISBN-10: 0-8493-4022-5 

Baumann, W. (2004). Biofutterrationen für Aufzucht- und Legehennen [Organic Diets for Rearing and Laying 
Hens], Internationale Geflügeltagung, Gerolfingen, Germany. 

Bedford, M., Classen, H.L. and Campbell, G.L. (1991). The Effect of Pelleting, Salt, and Pentosanase on the 
Viscosity of Intestinal Contents and the Performance of Broilers Fed Rye. Poult Sci 70, 1571-1577. 

Begley, T.P., Chatterjee, A., Hanes, J.W., Hazra, A. and Ealick, S.E. (2008). Cofactor Biosynthesis—Still 
Yielding Fascinating New Biological Chemistry. Curr Opin Chem Biol 12, 118-125.  
DOI: 10.1016/j.cbpa.2008.02.006 

Bellof, G. and Schmidt, E. (2007). Ökologische Geflügelmast - Lösungsmöglichkeiten für eine 100 % Bio-
Fütterung [Poultry Fattening in Orgainc Farming - Possible Solutions for 100% Organic Feeding], 
Schriftenreihe der Bayerischen Landesanstalt für Landwirtschaft (LfL) - Angewandte Forschung und 
Beratung für den ökologischen Landbau in Bayern, Wiesinger, K., Freising, pp. 23-33. 

Berk, A. and Weißmann, F. (2012). Can Compensatory Growth Contribute to Reduce the So-Called Protein 
Gap in Organic Pig Fattening? Landbauforschung - vTI Agriculture and Forestry Research 3, 117-128.  

Blumenthal, C., Bekes, F., Batey, I., Wrigley, C., Moss, H., Mares, D. and Barlow, E. (1991). Interpretation of 
Grain Quality Results from Wheat Variety Trials with Reference to High Temperature Stress. Aust J 
Agric Res 42, 325-334. DOI: 10.1071/AR9910325 

Boisen, S. (2007a). In Vitro Analyses for Predicting Standardised Ileal Digestibility of Protein and Amino Acids 

in Actual Batches of Feedstuffs and Diets for Pigs. Livest Sci 109, 182-185.  
DOI 10.1016/j.livsci.2007.01.141 

Boisen, S. (2007b). A New Concept for Practical Feed Evaluation Systems. Faculty of Agricultural Sciences, 
University of Aarhus, Tjele. ISBN 87-91949-18-1 

Boisen, S., Agergaard, N., Rotenberg, S. and Kragelund, Z. (1985). Effects of Gut Flora on Intestinal Activities 
of Trypsin, Chymotrypsin, Elastase and Amylase in Growing Rats Fed Purified Diets with Cellulose, 
Pectin or Sand. Zeitschrift für Tierphysiologie Tierernährung und Futtermittelkunde 53, 245-254.  
DOI: 10.1111/j.1439-0396.1985.tb00029.x 

Boisen, S. and Eggum, B.O. (1991). Critical Evaluation of in Vitro Methods for Estimating Digestibility in Simple-
Stomach Animals. Nutr Res Reviews 4, 141-162. DOI: 10.1079/NRR19910012 

Boisen, S. and Fernández, J.A. (1991). In Vitro Digestibility of Energy and Amino Acids in Pig Feeds, In: 
Verstegen, M.W.A., Huisman, J. and Den Hartog, L.A. (Eds.), Symposium on Digestive Physiology in 
Pigs, Pudoc Wageningen EAAP, Wageningen Doorwerth, Netherlands. 

Boisen, S. and Fernández, J.A. (1995). Prediction of the Apparent Ileal Digestibility of Protein and Amino Acids 
in Feedstuffs and Feed Mixtures for Pigs by in Vitro Analyses. Anim Feed Sci Tech 51, 29-43.  
DOI: 10.1016/0377-8401(94)00686-4 



References – General Introduction 

 

19 

Bryden, W.L., Li, X., Ravindran, G., Hew, L.I. and Ravindran, V. (2009). Ileal Digestible Amino Acid Values in 
Feedstuffs for Poultry. Rural Industries Research and Development Corporation. ISBN: 1 74151 870 9 

Büchmann, N.B. (1979a). In Vitro Digestibility of Protein from Barley and Other Cereals. J Sci Food Agr 30, 583-
589. DOI: 10.1002/jsfa.2740300606 

Burhol, P.G. (1982). Regulation of Gastric Secretion in the Chicken. Scand J Gastroent 17, 321-323.  
DOI: 10.3109/00365528209182061 

Butts, C.A., Monro, J.A. and Moughan, P.J. (2012). In Vitro Determination of Dietary Protein and Amino Acid 
Digestibility for Humans. Br J Nutr 108, S282-S287. DOI:10.1017/S0007114512002310 

Canbolat, O., Tamer, E. and Acikgoz, E. (2007). Chemical Composition, Metabolizable Energy and Digestibility 
in Pea Seeds of Differing Testa and Flower Colors. J Biol Environ Sci 1, 59-65.  

Canh, T.T., Aarnink, A.J.A., Schutte, J.B., Sutton, A., Langhout, D.J. and Verstegen, M.W.A. (1998). Dietary 
Protein Affects Nitrogen Excretion and Ammonia Emission from Slurry of Growing-Finishing Pigs. 
Livest Prod Sci 56, 181-191. DOI: 10.1016/S0301-6226(98)00156-0 

Carbonaro, M., Cappelloni, M., Nicoli, S., Lucarini, M. and Carnovale, E. (1997). Solubility-Digestibility 
Relationship of Legume Proteins. J Agr Food Chem 45, 3387-3394. DOI: 10.1021/Jf970070y 

Chalova, V.I., Kim, J., Patterson, P.H., Ricke, S.C. and Kim, W.K. (2016). Reduction of Nitrogen Excretion and 
Emission in Poultry: A Review for Organic Poultry. J Environ Sci Health, Part B 51, 230-235.  
DOI: 10.1080/03601234.2015.1120616 

Champ, M., Szylit, O., Raibaud, P. and Aïut‐Abdelkader, N. (1983). Amylase Production by Three Lactobacillus 
Strains Isolated from Chicken Crop. J Appl Bacteriol 55, 487-493.  
DOI: 10.1111/j.1365-2672.1983.tb01689.x 

Chung, T.K. and Baker, D.H. (1992). Ideal Amino Acid Pattern for 10-Kilogram Pigs. Anim Sci 70, 3102-3111.  
DOI: 10.2527/1992.70103102x 

Clunies, M. and Leeson, S. (1984). In Vitro Estimation of Dry Matter and Crude Protein Digestibility. Poult Sci 
63, 89-96. DOI: 10.3382/ps.0630089 

Coates, M.E., Ford, J.E. and Harrison, G.F. (1968). Intestinal Synthesis of Vitamins of the B Complex in Chicks. 
Br J Nutr 22, 493-500. DOI: 10.1079/BJN19680057 

Cremers, S. (2002). Untersuchungen Zur  Scheinbaren Und Wahren Ilealen Protein- Und 
Aminosäurenverdaulichkeit Von Fleisch-Knochen-Mehlen Beim Wachsenden Huhn Und 
Methodenvergleich Zur Bestimmung Der Endogenen Aminosäurenverluste, University of Gießen. 

Dalibard, P. and Paillard, E. (1995). Use of the Digestible Amino Acid Concept in Formulating Diets for Poultry. 
Anim Feed Sci Tech 53, 189-204. DOI: 10.1016/0377-8401(95)02010-W 

de Coca-Sinova, A., Valencia, D.G., Jiménez-Moreno, E., Lázaro, R. and Mateos, G.G. (2008). Apparent Ileal 
Digestibility of Energy, Nitrogen, and Amino Acids of Soybean Meals of Different Origin in Broilers. 
Poult Sci 87, 2613-2623. DOI: 10.3382/ps.2008-00182 

Denbow, D.M. (2015). Chapter 14 - Gastrointestinal Anatomy and Physiology A2 - Scanes, Colin G, In: Whittow, 
G.C. (Ed.), Sturkie's Avian Physiology (Sixth Edition), Academic Press, San Diego, pp. 337-366. 978-
0-12-747605-6 

DLG (2006-2010). DLG-Datenbank Futtermittel [DLG-Database for Feedstuffs], Deutsche Landwirtschafts-
Gesellschaft e.V. http://datenbank.futtermittel.net, last access 11th July 2018. 

DLG (2014). Dlg-Futterwerttabellen Schwein [Dlg-Feed Value Tables for Swine]. DLG-Verlag.  

Doeschate, R.A.H.M.T., Scheele, C.W., Schreurs, V.V.A.M. and Van Der Klis, J.D. (1993). Digestibility Studies 
in Broiler Chickens: Influence of Genotype, Age, Sex and Method of Determination. Br Poult Sci 34, 
131-146. DOI: 10.1080/00071669308417569 

Donkoh, A. and Moughan, P.J. (1999). Endogenous Ileal Nitrogen and Amino Acid Flows in the Growing Pig 
Receiving a Protein-Free Diet and Diets Containing Enzymically Hydrolysed Casein or Graded Levels 
of Meat and Bone Meal. Anim Sci 68, 511-518. DOI: 10.1017/S1357729800050530 

Eggum, B.O. and Boisen, S. (1991). In Vitro Techniques of Measuring Digestion, In: Verstegen, M.W.A., 
Huisman, J. and Den Hartog, L.A. (Eds.), Digestive Physiology of Pigs, Wageningen, pp. 213-225. 

Eggum, B.O., Hansen, I. and Larsen, T. (1989). Protein Quality and Digestible Energy of Selected Foods 
Determined in Balance Trials with Rats. Plant Food Hum Nutr 39, 13-21. DOI: 10.1007/bf01092397 

Ehle, F.R., Jeraci, J.L., Robertson, J.B. and Van Soest, P.J. (1982). The Influence of Dietary Fiber on 
Digestibility, Rate of Passage and Gastrointestinal Fermentation in Pigs. J Anim Sci 55, 1071-1081. 
DOI: 10.2527/jas1982.5551071x 

Elbers, A.R.W., Den Hartog, L.A., Verstegen, M.W.A. and Zandstra, T. (1989). Between- and within-Herd 
Variation in the Digestibility of Feed for Growing-Finishing Pigs. Livest Prod Sci 23, 183-193.  
DOI: 10.1016/0301-6226(89)90013-4 



References – General Introduction 

 

20 

Elwinger, K., Tufvesson, M., Lagerkvist, G. and Tauson, R. (2008). Feeding Layers of Different Genotypes in 
Organic Feed Environments. Br Poult Sci 49, 654-665. DOI: 10.1080/00071660802491519 

Engberg, R.M., Hedemann, M.S. und Jensen, B.B. (2002) The influence of grinding and pelleting of feed on the 
microbial composition and activity in the digestive tract of broiler chickens. Br Poult Sci 43:4; 569-579,  
DOI: 10.1080/0007166022000004480 

Eriksson, M., Waldenstedt, L., Engström, B. and Elwinger, K. (2009). Protein Supply in Organic Broiler Diets. 
Acta Agr Scand a-An 59, 211-219. DOI: 10.1080/09064700903358256 

Eurostat (2018). Organic Production of Animal Products (from 2012 Onwards) and Organic Livestock of Animals 
(from 2012 Onwards), https://ec.europa.eu/eurostat/data/database, Last Access 26th of June 2018. 

Evonik (2016). Evonik Nutrition & Care Gmbh. Aminodat 5.0, Version 1.03. 

Fahmy, A.S., Ali, A.A. and Mohamed, S.A. (2004). Characterization of a Cysteine Protease from Wheat Triticum 
Aestivum (Cv. Giza 164). Biores Technol 91, 297-304. DOI: 10.1016/S0960-8524(03)00193-7 

Farner, D.S. (1942b). The Hydrogen Ion Concentration in Avian Digestive Tracts. Poult Sci 21, 445-450.  
DOI: 10.3382/ps.0210445 

Farner, D.S. (1943). The Effect of Certain Dietary Factors on Gastric Hydrogen Ion Concentration and Acidity 
in the Domestic Fowl. Poult Sci 22, 295-298. DOI: 10.3382/ps.0220295 

Francis, T.R. and Kannenberg, L.W. (1978). Yield Stability Studies in Short-Season Maize. I. A Descriptive 
Method for Grouping Genotypes. Can J Plant Sci 58, 1029-1034. DOI: 10.4141/cjps78-157 

Fuller, M.F. (2004). The Encyclopedia of Farm Animal Nutrition. CABI. ISBN: 0 85199 369 9 

Fuller, M.F., Darcy-Vrillon, B., Laplace, J.P., Picard, M., Cadenhead, A., Jung, J., Brown, D. and Franklin, M.F. 
(1994). The Measurement of Dietary Amino Acid Digestibility in Pigs, Rats and Chickens: A 
Comparison of Methodologies. Anim Feed Sci Tech 48, 305-324.  
DOI: 10.1016/0377-8401(94)90180-5 

Furuya, S., Sakamoto, K. and Takahashi, S. (1979). A New in Vitro Method for the Estimation of Digestibility 
Using the Intestinal Fluid of the Pig. Br J Nutr 41, 511-520. DOI: 10.1079/BJN19790066 

Galibois, I., Savoie, L., Simoes Nunes, C. and Rérat, A. (1989). Relation between in Vitro and in Vivo 
Assessment of Amino Acid Availability. Reprod Nutr Dev 29, 495-507.  

Gauthier, S.F., Vachon, C. and Savoie, L. (1986). Enzymatic Conditions of an in Vitro Method to Study Protein 
Digestion. J Food Sci 51, 960-964. DOI: 10.1111/j.1365-2621.1986.tb11208.x 

GfE (1999). Empfehlungen Zur Energie- und Nährstoffversorgung der Legehennen und Masthühner (Broiler) 
[Recommendations for the Energy and Nutrient Supply for Layers and Broilers]. DLG Verlag, Frankfurt 
a. M., Germany.  

GfE (2006). Empfehlungen Zur Energie- und Nährstoffversorgung von Schweinen [Recommendations for the 
Energy and Nutrient Supply for Swine]. DLG Verlag, Frankfurt a. M., Germany.  

Goering, H.K. and Van Soest, P.J. (1970). Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some 
Applications). Agriculture Handbook, No. 379. Washington DC: Agricultural Research Service, US 
Department of Agriculture.  

Harvey, B.M.R. and Oaks, A. (1974). Characteristics of an Acid Protease from Maize Endosperm. Plant Phsiol 
53, 449-452. DOI: 10.1104/pp.53.3.449 

Hejdysz, M., Kaczmarek, S.A. and Rutkowski, A. (2016). Extrusion Cooking Improves the Metabolisable Energy 
of Faba Beans and the Amino Acid Digestibility in Broilers. Anim Feed Sci Tech 212, 100-111.  
DOI: 10.1016/j.anifeedsci.2015.12.008 

Heo, J.M., Kim, J.C., Hansen, C.F., Mullan, B.P., Hampson, D.J. and Pluske, J.R. (2009). Feeding a Diet with 
Decreased Protein Content Reduces Indices of Protein Fermentation and the Incidence of 
Postweaning Diarrhea in Weaned Pigs Challenged with an Enterotoxigenic Strain of Escherichia Coli1. 
J Anim Sci 87, 2833-2843. DOI: 10.2527/jas.2008-1274 

Herpol, C. (1966). Influence De L'age Sur Le Ph Dans Le Tube Digestif De Gallus Domesticus [Does Age 
Influence the Ph in the Digestive Tract of Gallus Domesticus?]. Ann Biol Anim Biochem Biophys 6, 
495-502.  

Hess, V. and Lemme, A. (2018). Arguments Supporting the Use of Standardised Ileal Amino Acid Digestibility 
in Broilers. In EPC 2006-12th European Poultry Conference, Verona, Italy, 10-14 September, 2006. 
World's Poultry Science Association (WPSA). 

Hesselman, K. und Åman, P. (1986) The effect of beta-glucanase on the utilization of starch and nitrogen by 
broiler chickens fed on barley of low or high-viscosity. Anim Feed Sci Tech 15, 83-93. 

Hetland, H. und Svihus, B. (2001) Effect of oat hulls on performance, gut capacity and feed passage time in 
broiler chickens. Br Poult Sci 42:3, 354-361, DOI: 10.1080/00071660120055331 



References – General Introduction 

 

21 

Hinton, J.A., Buhr, R.J. and Ingram, K.D. (2000). Physical, Chemical, and Microbiological Changes in the Crop 
of Broiler Chickens Subjected to Incremental Feed Withdrawal. Poult Sci 79, 212-218.  
DOI: 10.1093/ps/79.2.212 

Hovi, M., Sundrum, A. and Thamsborg, S.M. (2003). Animal Health and Welfare in Organic Livestock Production 
in Europe: Current State and Future Challenges. Livest Prod Sci 80, 41-53.  
DOI: 10.1016/S0301-6226(02)00320-2 

Hsu, H.W., Vavak, D.L., Satterlee, L.D. and Miller, G.A. (1977). A Multienzyme Technique for Estimating Protein 
Digestibility. J Food Sci 42, 1269-1273. DOI: 10.1111/j.1365-2621.1977.tb14476.x 

Ikeda, M. (2003). Amino Acid Production Processes, In: Faurie, R., Thommel, J., Bathe, B., Debabov, V.G., 
Huebner, S., Ikeda, M., Kimura, E., Marx, A., Möckel, B., Mueller, U. and Pfefferle, W. (Eds.), Microbial 
Production of L-Amino Acids, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1-35. DOI: 10.1007/3-
540-45989-8_1 

INRA-CIRAD-AFZ (2018). INRA-CIRAD-AFZ Feed Tables - Composition and Nutritive Values of Feeds for 
Cattle, Sheep, Goats, Pigs, Poultry, Rabbits, Horses and Salmonids, https://feedtables.com/, Last 
Access 1st August 2018. 

Jansman, A.J.M., Smink, W., van Leeuwen, P. and Rademacher, M. (2002). Evaluation through Literature Data 
of the Amount and Amino Acid Composition of Basal Endogenous Crude Protein at the Terminal Ileum 
of Pigs. Anim Feed Sci Tech 98, 49-60. DOI: 10.1016/S0377-8401(02)00015-9 

Jeroch, H., Simon, A. and Zentek, J. (2012). Geflügelernährung [Poultry Nutrition]. Ulmer. ISBN: 978-3-8001-
7869-8 

Jiménez-Moreno, E., González-Alvarado, J.M., de Coca-Sinova, A., Lázaro, R. and Mateos, G.G. (2009). 
Effects of Source of Fibre on the Development and Ph of the Gastrointestinal Tract of Broilers. Anim 
Feed Sci Tech 154, 93-101. DOI: 10.1016/j.anifeedsci.2009.06.020 

Johns, D.C., Low, C.K. and James, K.A.C. (1986). Comparison of Amino Acid Digestibility Using the Ileal Digesta 
from Growing Chickens and Cannulated Adult Cockerels. Br Poult Sci 27, 679-685.  
DOI: 10.1080/00071668608416927 

Jongbloed, A.W. and Lenis, N.P. (1992). Alteration of Nutrition as a Means to Reduce Environmental Pollution 
by Pigs. Livest Prod Sci 31, 75-94. DOI: 10.1016/0301-6226(92)90057-B 

Joost Meyer zu Bakum, R. (2004). Futter Selber Erzeugen Und Mischen [Produce and Mix Feedstuffs Yourself], 
International Poultry Conference, Gerolfingen, Germany. 

Józefiak, D., Rutkowski, A., Jensen, B.B. and Engberg, R.M. (2007). Effects of Dietary Inclusion of Triticale, Rye 
and Wheat and Xylanase Supplementation on Growth Performance of Broiler Chickens and 
Fermentation in the Gastrointestinal Tract. Anim Feed Sci Tech 132, 79-93.  
DOI: 10.1016/j.anifeedsci.2006.03.011 

Kadim, I.T. and Moughan, P.J. (1997). Development of an Ileal Amino Acid Digestibility Assay for the Growing 
Chicken—Effects of Time after Feeding and Site of Sampling. Br Poult Sci 38, 89-95.  
DOI: 10.1080/00071669708417946 

Kadim, I.T., Moughan, P.J. and Ravindran, V. (2002). Ileal Amino Acid Digestibility Assay for the Growing Meat 
Chicken--Comparison of Ileal and Excreta Amino Acid Digestibility in the Chicken. Br Poult Sci 43, 588-
597. DOI: 10.1080/0007166022000004507 

Karakas, P., Versteegh, H.A.J., van der Honing, Y., Kogut, J. and Jongbloed, A.W. (2001). Nutritive Value of 
the Meat and Bone Meals from Cattle or Pigs in Broiler Diets. Poult Sci 80, 1180-1189.  
DOI: 10.1093/ps/80.8.1180 

Kemter, K. (2002). Untersuchungen Zur Riboflavin Synthase Und Flavokinase Aus Verschiedenen Organismen 
[Studies on Riboflavin Synthase and Flavokinase from Different Organisms]. Dissertation, University 
of Munich, Universität München. 

Khush, G.S. (1995). Modern Varieties — Their Real Contribution to Food Supply and Equity. GeoJournal 35, 
275-284. DOI: 10.1007/BF00989135 

Kim, E.J., Utterback, P.L. and Parsons, C.M. (2011b). Development of a Precision-Fed Ileal Amino Acid 
Digestibility Assay Using 3-Week-Old Broiler Chicks. Poult Sci 90, 396-401.  
DOI: 10.3382/ps.2010-01088 

Kjaer, J.B. and Sørensen, P. (2002). Feather Pecking and Cannibalism in Free-Range Laying Hens as Affected 
by Genotype, Dietary Level of Methionine + Cystine, Light Intensity During Rearing and Age at First 
Access to the Range Area. Appl Anim Behav Sci 76, 21-39. DOI: 10.1016/S0168-1591(01)00209-X 

Kluth, H., Fricke, M. and Rodehutscord, M. (2009). Precaecal Amino Acid Digestibility of Different Wheat 
Cultivars in Broilers. Arch Geflugelk 73, 80-86. ISSN 0003-9098 

Kluth, H., Mantei, M., Elwert, C. and Rodehutscord, M. (2005a). Variation in Precaecal Amino Acid and Energy 
Digestibility between Pea (Pisum Sativum) Cultivars Determined Using a Linear Regression Approach. 
Br Poult Sci 46, 325-332. DOI: 10.1080/00071660500127415 



References – General Introduction 

 

22 

Kluth, H., Mehlhorn, K. and Rodehutscord, M. (2005b). Studies on the Intestine Section to Be Sampled in Broiler 
Studies on Precaecal Amino Acid Digestibility. Arch Anim Nutr 59, 271-279.  
DOI: 10.1080/17450390500217058 

Kluth, H. and Rodehutscord, M. (2009). Standardisierte Futterbewertung auf der Basis der 
Aminosäurenverdaulichkeit beim Geflügel [Standardised Feed Evaluation on the Basis of the Amino 
Acid Digestibility in Poultry]. Uebers Tierern 37, 1.26.  

Kokas, E., Kaufman, S.H. and Long, J.C. (1971). Effect of Glucagon on Gastric and Duodenal Secretion in 
Chickens. Z Vergl Physiol 74, 315-325. DOI: 10.1007/bf00297731 

Kokue, E.-i. and Hayama, T. (1972). Effects of Starvation and Feeding on the Exocrine Pancreas of the Chicken. 
Poult Sci 51, 1366-1370. DOI: 10.3382/ps.0511366 

Kokue, E.-i. and Hayama, T. (1976). The Endogenous Secretin in Chicken: Minor Physiological Role in Exocrine 
Pancreatic Secretion. Jap J Physiol 26, 1-8. DOI: 10.2170/jjphysiol.26.1 

Le Bellego, L. and Noblet, J. (2002). Performance and Utilization of Dietary Energy and Amino Acids in Piglets 
Fed Low Protein Diets. Livest Prod Sci 76, 45-58. DOI: 10.1016/S0301-6226(02)00008-8 

Liu, S.Y., Selle, P.H., Khoddami, A., Roberts, T.H. and Cowieson, A.J. (2014). Graded Inclusions of Sodium 
Metabisulphite in Sorghum-Based Diets: Ii. Modification of Starch Pasting Properties in Vitro and 
Beneficial Impacts on Starch Digestion Dynamics in Broiler Chickens. Anim Feed Sci Tech 190, 68-
78. DOI: 10.1016/j.anifeedsci.2013.12.016 

Long, J.F. (1967). Gastric Secretion in Unanesthetized Chickens. Am J Physiol 212, 1303-1307.  
DOI: 10.1152/ajplegacy.1967.212.6.1303 

Löwgren, W., Graham, H. and Åman, P. (1989). An in Vitro Method for Studying Digestion in the Pig. Br J Nutr 
61, 673-687. DOI:10.1079/BJN19890154 

Luckey, T.D., Pleasants, J.R. and Reyniers, J.A. (1955). Germfree Chicken Nutrition Ii. Vitamin 
Interrelationships: Two Figures. J Nutr 55. DOI: 10.1093/jn/55.1.105 

Mabelebele, M., Alabi, O.J., Ng'ambi, J.W., Norris, D. and Ginindza, M.M. (2014). Comparison of 
Gastrointestinal Tracts and Ph Values of Digestive Organs of Ross 308 Broiler and Indigenous Venda 
Chicken Fed the Same Diet. Asian J Anim Vet Adv 9, 71-76. DOI: 10.3923/ajava.2014.71.76 

Mack, S., Bercovici, D., De Groote, G., Leclercq, B., Lippens, M., Pack, M., Schutte, J.B. and Van 
Cauwenberghe, S. (1999). Ideal Amino Acid Profile and Dietary Lysine Specification for Broiler 
Chickens of 20 to 40 Days of Age. Br Poult Sci 40, 257-265. DOI: 10.1080/00071669987683 

Mason, V.C. (1984). Metabolism of Nitrogenous Compounds in the Large Gut. Proc Nutr Soc 43, 45-53. 
DOI:10.1079/PNS19840026 

Matthews, D.M. (1972). Intestinal Absorption of Amino Acids and Peptides. Proc Nutr Soc 31, 171-177.  
DOI: 10.1079/PNS19720033 

Mehanso, H., Butler, L.G. and Carlson, D.M. (1987). Dietary Tannins and Salivary Proline-Rich Proteins: 
Interactions, Induction, and Defense Mechanisms. Ann Rev Nutr 7, 423-440.  

Mehner, A. and Hartfield, W. (1983). Handbuch Der Geflügelphysiologie, Teil Ii [Handbook of Avian Physiology, 
Part Ii]. Karger. ISBN: 3-8055-3738-7 

Minekus, M., Marteau, P., Havenaar, R. and Huis in 't Veld, J.H.J. (1995). A Multicompartmental Dynamic 
Computer-Controlled Model Simulating the Stomach and Small-Intestine. Altern Lab Anim 23, 197-
209. ISSN: 0261-1929 

Moewius, J., Röhrig, P., Schaack, D., Rampold, C., Brzukalla, H.-J., Gottwald, F., Stein-Bachinger, K., Wolter, 
M. and Sanders, J. (2018). Zahlen • Daten • Fakten - Die Bio-Branche 2018, BOELW (Bund 
Ökologische Lebensmittelwirtschaft e. V.), Berlin, Germany. 

Moretó, M. and Planas, J.M. (1989). Sugar and Amino Acid Transport Properties of the Chicken Ceca. J Exp 
Zool 252, 111-116. DOI: 10.1002/jez.1402520518 

Morita, S., Fukase, M., Hoshino, K., Fukuda, Y., Yamaguchi, M. and Morita, Y. (1994). A Serine Protease in 
Soybean Seeds That Acts Specifically on the Native Α Subunit of Β-Conglycinin. Plant Cell Physiol 35, 
1049-1056. DOI: 10.1093/oxfordjournals.pcp.a078693 

Nagaraj, M. (2006). Evaluation of Nutrition and Management Factors Inthe Etiology of Pododermatitis in Broiler 
Chickens. Master's Thesis, Auburn University. 

NRC (1994). (National Research Council) Nutrient Requirements of Poultry, 9th Revised Edition, In: Nutrition, 
S.o.P., Nutrition, C.o.A. and Council, N.R. (Eds.), National Academie Press, Washington DC, 
Washington D.C. 

NRC (2012). (National Research Council) Nutrient Requirements of Swine, 11th Revised Edition. The National 
Academies Press, Washington DC. ISBN: 9780309059930 



References – General Introduction 

 

23 

Oviedo-Rondón, E.O., Ferket, P.R. and Havestein, G.B. (2006). Nutritional Factors That Affect Leg Problems in 
Broilers and Turkeys. Avian and Poultry Biology Reviews 17, 89-103.  
DOI: 10.3184/147020606783437921 

Pang, Y. and Applegate, T.J. (2007). Effects of Dietary Copper Supplementation and Copper Source on Digesta 
Ph, Calcium, Zinc, and Copper Complex Size in the Gastrointestinal Tract of the Broiler Chicken. Poult 
Sci 86, 531-537. DOI: 10.1093/ps/86.3.531 

Parsons, C.M. (1985). Influence of Caecectomy on Digestibility of Amino Acids by Roosters Fed Distillers' Dried 
Grains with Solubles. J Agric Sci 104, 469-472. DOI:10.1017/S0021859600044178 

Parsons, C.M., Hashimoto, K., Wedekind, K.J. and Baker, D.H. (1991). Soybean Protein Solubility in Potassium 
Hydroxide: An in Vitro Test of in Vivo Protein Quality. Anim Sci 69, 2918-2924.  
DOI: 10.2527/1991.6972918x 

Pastuszewska, B., Jablecki, G., Buraczewska, L., Dakowski, P., Taciak, M., Matyjek, R. and Ochtabinska, A. 
(2003). The Protein Value of Differently Processed Rapeseed Solvent Meal and Cake Assessed by in 
Vitro Methods and in Tests with Rats. Anim Feed Sci Tech 106, 175-188. DOI: 10.1016/s0377-
8401(03)00005-1 

Perttilä, S., Valaja, J., Partanen, K., Jalava, T. and Venäläinen, E. (2002). Apparent Ileal Digestibility of Amino 
Acids in Protein Feedstuffs and Diet Formulation Based on Total Vs Digestible Lysine for Poultry. Anim 
Feed Sci Tech 98, 203-218. DOI: 10.1016/S0377-8401(02)00031-7 

Pettersson, D., Graham, H. and Åman, P. (1991). The Nutritive Value for Broiler Chickens of Pelleting and 
Enzyme Supplementation of a Diet Containing Barley, Wheat and Rye. Anim Feed Sci Tech 33, 1-14. 
DOI: 10.1016/0377-8401(91)90041-P 

Polak, J.M. and Bloom, S.R. (1982). Localization of Regulatory Peptides in the Gut. Br Med Bull 38, 303-308.  
DOI: 10.1093/oxfordjournals.bmb.a071777 

Pubols, M.H. (1991). Ratio of Digestive Enzymes in the Chick Pancreas. Poult Sci 70, 337-342.  
DOI: 10.3382/ps.0700337 

Pusztai, A. (1989). Biological Effects of Lectins, In: Huisman, J., Van der Poel, A.F.B. and Liener, I.E. (Eds.), 
Recent Advances of Research in Antinutritional Factors in Legume Seeds, Wageningen, Wageningen, 
pp. 17-29.  

Ravindran, V. and Bryden, W.L. (1999). Amino Acid Availability in Poultry - in Vitro and in Vivo Measurements. 
Aust J Agric Res 50, 889-908. DOI: 10.1071/Ar98174 

Ravindran, V. and Hendriks, W.H. (2004). Recovery and Composition of Endogenous Protein Collected at the 
Terminal Ileum as Influenced by the Age of Broiler Chickens. Aust J Agric Res 55, 705-709.  
DOI: 10.1071/Ar04008 

Ravindran, V., Hew, L.I., Ravindran, G. and Bryden, W.L. (1999). A Comparison of Ileal Digesta and Excreta 
Analysis for the Determination of Amino Acid Digestibility in Food Ingredients for Poultry. Br Poult Sci 
40, 266-274. DOI: 10.1080/00071669987692 

Recoules, E., Sabboh-Jourdan, H., Narcy, A., Lessire, M., Harichaux, G., Labas, V., Duclos, M.J. and Réhault-
Godbert, S. (2017). Exploring the in Vivo Digestion of Plant Proteins in Broiler Chickens. Poult Sci 96, 
1735-1747. DOI: 10.3382/ps/pew444 

Revuelta, J.L., Buey, R.M., Ledesma-Amaro, R. and Vandamme, E.J. (2016). Microbial Biotechnology for the 
Synthesis of (Pro)Vitamins, Biopigments and Antioxidants: Challenges and Opportunities. Microb 
Biotechnol 9, 564-567. DOI: 10.1111/1751-7915.12379 

Revuelta, J.L., Ledesma-Amaro, R., Lozano-Martinez, P., Díaz-Fernández, D., Buey, R.M. and Jiménez, A. 
(2017). Bioproduction of Riboflavin: A Bright Yellow History. J Ind Microbiol Biot 44, 659-665.  
DOI: 10.1007/s10295-016-1842-7 

Richter, W., Werner, E., Bähr, H. and van den Weghe, H. (1992). Grundwerte der Tiergesundheit und Haltung 
[Basic Values of Animal Health and Husbandry]. 3rd Edition. Gustav Fischer Verlag Jena/Stuttgart. 
ISBN: 3-334-60384-9 

Rivlin, R.S. (2007). Chapter 7: Riboflavin (Vitamin B2), In: Zempleni, J., Rucker, R.B., McCormick, D.B. and 
Suttie, J.W. (Eds.), Handbook of Vitamins, CRC Press, Taylor & Francis Group, pp. 233 - 252. ISBN-
10: 0-8493-4022-5 

Rochell, S.J., Kuhlers, D.L. and Dozier, W.A. (2013). Relationship between in Vitro Assays and Standardized 
Ileal Amino Acid Digestibility of Animal Protein Meals in Broilers. Poult Sci 92, 158-170.  
DOI: 10.3382/ps.2012-02365 

Rodehutscord, M., Kapocius, M., Timmler, R. and Dieckmann, A. (2004). Linear Regression Approach to Study 
Amino Acid Digestibility in Broiler Chickens. Br Poult Sci 45, 85-92.  
DOI: 10.1080/00071660410001668905 

Rodehutscord, M. and Kluth, H. (2003). Aminosäurenverdaulichkeit als ein Futterwertkriterium in der 
Geflügelfütterung: Methodische Aspekte zur Messung [Amino Acid Digestibility as a Feed Value 
Criterion in Poultry Feeding: Methodological Aspects of Measurement], Lohmann Information, pp. 1-8. 



References – General Introduction 

 

24 

Saunders, R.M., Connor, M.A., Booth, A.N., Bickoff, E.M. and Kohler, G.O. (1973). Measurement of Digestibility 
of Alfalfa Protein Concentrates by in Vivo and in Vitro Methods. J Nutr 103, 530-535.  
DOI: 10.1093/jn/103.4.530 

Sauvant, D., Perez, J.-M., Tran, G., Bontems, V., Chapoutot, P., Doreau, B., Jeondreville, C., Kaushik, S.J., 
Lessire, M., Martin-Rosset, W., Meschy, F., Noblet, J., Peyraud, J.-L., Rulquin, H. and Sève, B. (2004). 
Tables of Composition and Nutritional Value of Feed Materials: Pigs, Poultry, Cattle, Sheep, Goats, 
Rabbits, Horses and Fish. Wageningen Academic Publishers, INRA, Wageningen & Paris.  
ISBN 2-7380-1158-6 

Savoie, L., Charbonneau, R. and Parent, G. (1989). In Vitro Amino Acid Digestibility of Food Proteins as 
Measured by the Digestion Cell Technique. Plant Food Hum Nutr 39, 93-107.  
DOI: 10.1007/BF01092406 

Savoie, L. and Gauthier, S.F. (1986). Dialysis Cell for the in Vitro Measurement of Protein Digestibility. J Food 
Sci 51, 494-498. DOI: 10.1111/j.1365-2621.1986.tb11164.x 

Schwechheimer, S.K., Park, E.Y., Revuelta, J.L., Becker, J. and Wittmann, C. (2016). Biotechnology of 
Riboflavin. Appl Microbiol Biot 100, 2107-2119. DOI: 10.1007/s00253-015-7256-z 

Schwediauer, P., Hagmüller, W. and Zollitsch, W. (2017). Germination of Faba Beans (Vicia Faba L.) for Organic 
Weaning Piglets. Org Agr. DOI: 10.1007/s13165-017-0195-5 

Shafey, T.M., McDonald, M.W. and Dingle, J.G. (1991). Effects of Dietary Calcium and Available Phosphorus 
Concentration on Digesta Ph and on the Availability of Calcium, Iron, Magnesium and Zinc from the 
Intestinal Contents of Meat Chickens. Br Poult Sci 32, 185-194. DOI: 10.1080/00071669108417339 

Shewry, P.R., Van Schaik, F., Ravel, C., Charmet, G., Rakszegi, M., Bedo, Z. and Ward, J.L. (2011). Genotype 
and Environment Effects on the Contents of Vitamins B1, B2, B3, and B6 in Wheat Grain. J Agr Food 
Chem 59, 10564-10571. DOI: 10.1021/jf202762b 

Shires, A., Thompson, J.R., Turner, B.V., Kennedy, P.M. and Goh, Y.K. (1987). Rate of Passage of Corn-Canola 
Meal and Corn-Soybean Meal Diets through the Gastrointestinal Tract of Broiler and White Leghorn 
Chickens. Poult Sci 66, 289-298. DOI: 10.3382/ps.0660289 

Short, F.J., Wiseman, J. and Boorman, K.N. (1999). Application of a Method to Determine Ileal Digestibility in 
Broilers of Amino Acids in Wheat. Anim Feed Sci Tech 79, 195-209.  
DOI: 10.1016/S0377-8401(99)00022-X 

Sibbald, I.R. (1987). Estimation of Bioavailable Amino-Acids in Feedingstuffs for Poultry and Pigs - a Review 
with Emphasis on Balance Experiments. Can J Anim Sci 67, 221-301. ISSN: 0800-3984 

Siriwan, P., Bryden, W.L., Mollah, Y. and Annison, E.F. (1993). Measurement of Endogenous Amino Acid 
Losses in Poultry. Br Poult Sci 34, 939-949. DOI: 10.1080/00071669308417654 

Snape, J.W., Foulkes, M.J., Simmonds, J., Leverington, M., Fish, L.J., Wang, Y. and Ciavarrella, M. (2007). 
Dissecting Gene × environmental Effects on Wheat Yields Via Qtl and Physiological Analysis. 
Euphytica 154, 401-408. DOI: 10.1007/s10681-006-9208-2 

Squires, V.R. (2011). The Role of Food, Agriculture, Forestry and Fisheries in Human Nutrition - Volume Iv. S. 
125. ISBN: 9781848261952 

Stahmann, K.P., Revuelta, J.L. and Seulberger, H. (2000). Three Biotechnical Processes Using Ashbya 
Gossypii, Candida Famata, or Bacillus Subtilis Compete with Chemical Riboflavin Production. Appl 
Microbiol Biotechnol 53, 509-516. DOI: 10.1007/s002530051649 

Sundrum, A., Butfering, L., Henning, M. and Hoppenbrock, K.H. (2000). Effects of on-Farm Diets for Organic 
Pig Production on Performance and Carcass Quality. Anim Sci 78, 1199-1205.  

Toghyani, M., Rodgers, N., Iji, P.A. and Swick, R.A. (2015). Standardized Ileal Amino Acid Digestibility of 
Expeller-Extracted Canola Meal Subjected to Different Processing Conditions for Starter and Grower 
Broiler Chickens. Poult Sci 94, 992-1002. DOI: 10.3382/ps/pev047 

Urbatzka, P., Graß, R., Haase, T., Schüler, C., Trautz, D. and Heß, J. (2011). Grain Yield and Quality 
Characteristics of Different Genotypes of Winter Pea in Comparison to Spring Pea for Organic Farming 
in Pure and Mixed Stands. Org Agr, 187-202. DOI: 10.1007/s13165-011-0015-2 

Valentim, J.K., de Paula, K.L.C., Geraldo, A., Miranda, D.A., Antunes, H.C.F., Lemke, S.S.R., Gonzaga, 
P.R.d.N. and Chaves, C.A.R. (2017). Usage of Probiotic in Country-Type Broiler's Chicken Diet and Its 
Effects over the Carcass Yield, Morphology and the Gastrointestinal Ph. Rev bras saúde prod anim 
18, 530-541. DOI: 10.1590/s1519-99402017000400004  

Van Krimpen, M.M., Kwakkel, R.P., Reuvekamp, B.F.J., Van Der Peet-Schwering, C.M.C., Den Hartog, L.A. 
and Verstegen, M.W.A. (2005). Impact of Feeding Management on Feather Pecking in Laying Hens. 
World Poult Sci J 61, 663-686. DOI:10.1079/WPS200478 

Van Soest, P.J. (1967). Development of a Comprehensive System of Feed Analyses and Its Application to 
Forages. Anim Sci 26, 119-128. DOI: 10.2527/jas1967.261119x 



References – General Introduction 

 

25 

Velicka, R., Marcinkeviciene, A., Pupaliene, R., Butkeviciene, L.M., Kosteckas, R., Cekanauskas, S. and 
Kriauciuniene, Z. (2016). Winter Oilseed Rape and Weed Competition in Organic Farming Using Non-
Chemical Weed Control. Zemdirbyste 103, 11-20. DOI: 10.13080/z-a.2016.103.002 

Webb, M.E., Marquet, A., Mendel, R.R., Rebeille, F. and Smith, A.G. (2007). Elucidating Biosynthetic Pathways 
for Vitamins and Cofactors. Nat Prod Rep 24, 988-1008. DOI: 10.1039/b703105j 

Wecke, C. and Liebert, F. (2013a). Improving the Reliability of Optimal in-Feed Amino Acid Ratios Based on 
Individual Amino Acid Efficiency Data from N Balance Studies in Growing Chicken. Animals 3, 558-
573. DOI: 10.3390/ani3030558 

Wecke, C. and Liebert, F. (2013b). Umweltverträgliche Protein- und Aminosäuren-Versorgung von Geflügel und 
Schwein nach dem Konzept des Idealproteins [Environmentally Compatible Protein and Amino Acid 
Supply of Poultry and Pigs According to the Concept of the Ideal Protein], In: Ebertseder, P.D.T., 
Danier, J., Killermann, D.B., Nätscher, D.L., Severin, D.K., Südekum, P.D.K.-H., Trenkle, D.A. and 
Wiesler, P.D.F. (Eds.), Vdlufa-Schriftenreihe Band 69/2014, Verband Deutscher Landwirtschaftlicher 
Untersuchungs- und Forschungsanstalten, ISBN 978-3-941273-15-3, Berlin, p. 695.  

Wecke, C., Pastor, A. and Liebert, F. (2016). Validation of the Lysine Requirement as Reference Amino Acid 
for Ideal in-Feed Amino Acid Ratios in Modern Fast Growing Meat-Type Chickens. Open J Anim Sci 
6, 10. DOI: 10.4236/ojas.2016.63024 

Weißmann, F. (2017). Personal Communication of Dr. Friedrich Weißmann in the Context of the Discussion on 
"Organic Farming - Looking Forwards" Strategy Towards Greater Sustainability in Germany , Thünen-
Institute of Organic Farming, Germany.  

Weißmann, F. and Bussemas, R. (2014). Praktische Möglichkeiten zur Verbesserung der Eiweißversorgung der 
Monogastrier im Ökologischen Landbau [Protein Supply of Monogastric Animals in Organic Farming], 
Praxisbefragung zur Aminosäurelücke und praktische Möglichkeiten zur Verbesserung der 
Eiweißversorgung der Monogastrier in der Fütterung im Ökologischen Landbau, Thünen Working 
Paper 23. 

Weurding, R.E., Veldman, A., Veen, W.A.G., van der Aar, P.J. and Verstegen, M.W.A. (2001). Starch Digestion 
Rate in the Small Intestine of Broiler Chicken Differs among Feedstuffs. J Nutr 131, 2329-2335.  
DOI: 10.1093/jn/131.9.2329 

Wickham, M., Faulks, R. and Mills, C. (2009). In Vitro Digestion Methods for Assessing the Effect of Food 
Structure on Allergen Breakdown. Mol Nutr Food Res 53, 952-958. DOI:10.1002/mnfr.200800193 

Wiseman, J., Al-Mazooqi, W., Welham, T. and Domoney, C. (2003). The Apparent Ileal Digestibility, Determined 
with Young Broilers, of Amino Acids in near-Isogenic Lines of Peas (Pisum Sativum L) Differing in 
Trypsin Inhibitor Activity. J Sci Food Agric 83, 644-651. DOI: 10.1002/jsfa.1340 

Witten, S. and Paulsen, H.M. (2014). Recherche Zum Praxisstand der Versorgung mit Eiweißfuttermitteln zur 
Deckung von Aminosäurelücken in der Fütterung der Monogastrier im Ökologischen Landbau 
(Praxisbefragung zur Aminosäurelücke) [Survey on Practice of the Use and Availability of Protein 
Sources to Close Amino Acid Gaps in Feeding Monogastric Animals in Organic Farming], 
Praxisbefragung zur Aminosäurelücke und praktische Möglichkeiten zur Verbesserung der 
Eiweißversorgung der Monogastrier in der Fütterung im Ökologischen Landbau, Thünen Working 
Paper 23. 

Wu, G., Wu, Z., Dai, Z., Yang, Y., Wang, W., Liu, C., Wang, B., Wang, J. and Yin, Y. (2013). Dietary 
Requirements of “Nutritionally Non-Essential Amino Acids” by Animals and Humans. Amino Acids 44. 
DOI: 10.1007/s00726-012-1444-2 

Wüstholz, J., Carrasco, S., Berger, U., Sundrum, A. and Bellof, G. (2017a). Fattening and Slaughtering 
Performance of Growing Pigs Consuming High Levels of Alfalfa Silage (Medicago Sativa) in Organic 
Pig Production. Livest Sci 200, 46-52. DOI: 10.1016/j.livsci.2017.04.004 

Wüstholz, J., Carrasco, S., Berger, U., Sundrum, A. and Bellof, G. (2017b). Silage of Young Harvested Alfalfa 
(Medicago Sativa) as Home-Grown Protein Feed in the Organic Feeding of Laying Hens. Org Agr 7, 
153-163. DOI: 10.1007/s13165-016-0151-9 

Zhan, X.A., Wang, M., Ren, H., Zhao, R.Q., Li, J.X. and Tan, Z.L. (2007). Effect of Early Feed Restriction on 
Metabolic Programming and Compensatory Growth in Broiler Chickens. Poult Sci 86, 654-660.  
DOI: 10.1093/ps/86.4.654 

Zollitsch, W. (2007). Challenges in the Nutrition of Organic Pigs. J Sci Food Agr 87, 2747-2750.  

DOI: 10.1002/Jsfa.3003 





Chapter l 

 

27 

Chapter l 

 

 

 

Effect of variety and environment on the contents of crude nutrients 

and amino acids in organically produced cereal and legume grains 

Einfluss von Sorte und Umwelt auf die Rohnährstoff- und Aminosäurengehalte 

in ökologisch erzeugten Getreide- und Leguminosenkörnern 

 

 

 

 

Stephanie Witten, Herwart Böhm, Karen Aulrich 

Johann Heinrich von Thünen-Institute of Organic Farming, Trenthorst 32, 23847 

Westerau, Germany 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Witten, S., Böhm, H., Aulrich, K.: Effect of variety and environment on the 

contents of crude nutrients and amino acids in organically produced cereal and 

legume grains.  

Preprint: Submitted to the Journal of Organic Agriculture 

  



Chapter l 

 

28 

  



Chapter l 

 

29 

Abstract 

Cereals and home-grown grain legumes are main feedstuffs for monogastric animals. Thus, 

knowledge on variations of their crude nutrient and amino acid composition is of great 

interest in animal nutrition. Genetic and environmental factors are known to be able to affect 

the nutrient composition of crops. Thus, the aim of the study was to analyse a selection of 

grains of organic cereal and grain legume cultivars for their crude nutrient and amino acid 

contents and to determine the effect of variety and environmental conditions on the 

variations. Furthermore, it was tested, if equations can be used to predict amino acid 

contents from the crude protein content of cereals and grain legumes. 

The content of the crude nutrients and 18 amino acids of 835 samples of ten different cereal 

and grain legume cultivars was analysed. Selected nutrients were subjected to correlation 

analyses. Furthermore, generalised linear models with multiple comparisons were 

conducted to assess the effect of cultivar as well as of variety, harvest site, and harvest 

year on the analysed ingredients. 

Known differences in the nutrient composition between cultivars were confirmed. The 

contents of all crude nutrients and amino acids varied depending on the cultivar and the 

considered nutrient. The lowest variation coefficients (1.3 – 2.6% in cereals and 3.1, 3.5, 

and 6.8% in field peas, field beans, and blue lupins, respectively) were observed for the 

contents of nitrogen-free extracts. The crude protein contents varied widely, specifically in 

winter rye (Coefficient of variation: CV = 17.4%). However, compared to table values, the 

cereals and grain legumes of the present study tended to contain low amounts of crude 

protein and high amounts of starch. Due to the wide variations, there is no distinct 

consistency between table values and the results of this study.  

High negative correlations between starch and crude protein contents were observed in 

eight cultivars. Furthermore, the amino acid profile of cereals and grain legumes varied 

depending on the crude protein contents. Higher crude protein contents were often related 

to lower contents of several essential amino acids in favour of glutamine/glutamic acid, 

proline, and phenylalanine in cereals as well as of arginine in grain legumes. Furthermore, 

variety, harvest site, and harvest year affected the contents of the analysed ingredients 

depending on the cultivar. However, the environmental factors had a greater influence than 

the variety. The observed variations must be regarded in diet formulation. Equations can be 

used to predict the amino acid contents of cereals and grain legumes from their crude 

protein content. However, additional analysis results are needed to improve the 

predictability with equations. 

Keywords  

organic farming, harvest site, cultivation year  
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Zusammenfassung 

Getreide und heimische Körnerleguminosen sind wichtige Futtermittel für monogastrische 

Nutztiere. Daher ist das Wissen über Schwankungen ihrer Nährstoffzusammensetzung von 

großem Interesse für die Tierernährung. Neben den Rohnährstoffen haben Aminosäuren 

als wichtige Bausteine für körpereigene Proteine in den letzten Jahrzehnten an Bedeutung 

in der Rationsgestaltung gewonnen. Genetische und umweltbedingte Faktoren können die 

Nährstoffzusammensetzung von Ernteprodukten beeinflussen. Daher war das Ziel dieser 

Studie, eine Auswahl von Getreide- und Körnerleguminosen aus ökologischer Erzeugung 

auf ihre Gehalte an Rohnährstoffen und Aminosäuren zu analysieren, die Schwankungen 

abzubilden und den Einfluss von Sorte und Umweltbedingungen zu beschreiben. Zudem 

wurde geprüft, ob die Aminosäurengehalte zufriedenstellend aus dem Rohproteingehalt 

geschätzt werden können. 

Zu diesem Zweck wurden die Gehalte an Rohnährstoffen und 18 Aminosäuren in 835 

Proben von Körnern zehn verschiedener Getreide- und Körnerleguminosenkulturen 

analysiert und kulturartenweise Korrelationsanalysen unterzogen. Multiple 

Mittelwertvergleiche wurden zudem durchgeführt, um den Effekt der Kultur sowie von Sorte, 

Anbauort und Anbaujahr auf die Inhaltsstoffgehalte zu bestimmen. 

Bekannte Unterschiede der Nährstoffzusammensetzung zwischen den Kulturen wurden 

bestätigt. Abweichungen der Aminosäurengehalte von Tabellenwerten waren nicht 

konsistent für alle Kulturen. Die Gehalte aller untersuchten Inhaltsstoffe schwankten 

abhängig von der betrachteten Kultur und dem Inhaltsstoff stark. Die geringsten 

Variationskoeffizienten (1.3 – 2.6% in Getreide, 3.1, 3.5, und 6.8% in Erbsen, Ackerbohnen 

und blauen Lupinen) wurden für N-freie Extraktstoffe beobachtet. Die Rohproteingehalte 

variierten jedoch stark zwischen den Proben, vor allem bei Roggen (CV = 17.4%). Im 

Vergleich zu Tabellenwerten wurden geringere Rohprotein- und höhere Stärkegehalte 

beobachtet. Das Verhältnis von Rohprotein- und Stärkegehalten war auch in einer starken 

negativen Korrelation dieser Nährstoffe zu sehen. Zudem veränderte sich das 

Aminosäurenprofil zugunsten von Glutamin/-säure, Prolin und Phenylalanin in Getreide 

bzw. von Arginin in Körnerleguminosen bei steigendem Rohproteingehalt. Dabei wurden 

sinkende Gehalte einiger limitierenden Aminosäuren beobachtet. Die beobachteten 

Schwankungen, die auch von Sorte, Anbauort und Anbaujahr beeinflusst werden, müssen 

in der Rationsgestaltung Beachtung finden. Der Einsatz von Gleichungen zur Schätzung 

der Aminosäurengehalte aus dem Rohproteingehalt ist dabei möglich. 

Schlüsselworte  

Ökolandbau, Anbauort, Anbaujahr  
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Introduction 

Comprehensive knowledge on the nutrient composition of feedstuffs is essential in modern 

animal feeding. For this reason, several institutions summarised data on feed composition 

in various feed value tables (e. g., Ajinomoto Animal Nutrition Group 2003-2013, DLG 2006-

2010, Agroscope 2011-2016, Evonik 2016). The reported values indicate wide variations of 

the nutrient contents of plant feedstuffs. It is challenging to formulate diets with an optimal 

nutrient composition using self-cultivated crops considering the variability of the contents of 

valuable ingredients. A dependence of this variability on genetic and environmental factors, 

like variety, weather conditions, soil characteristics, and cultivation management (Burstin et 

al. 2011, Shewry et al. 2011, Gronle 2014, Rodehutscord et al. 2016), has been reported. 

Besides crude nutrient (CN) contents, further components are valuable in describing a 

feedstuff. To further characterise the crude protein (CP) of feedstuffs, amino acid (AA) 

contents are of special importance in animal nutrition. It is especially challenging to achieve 

the sufficient supply of some essential AA in organic farming (Zollitsch & Baumung 2004, 

Weißmann & Bussemas 2014). 

Diets for monogastric animals are often cereal-based. Cereals have high starch contents 

and are, therefore, an important energy supplier. They can be cultivated on any farm with 

comparatively low costs. Therefore, they also contribute to the intended circular ecology of 

organic farms. Cereal grains contain only about 10% CP. However, common diets for 

monogastric animals often have high inclusion rates of cereal grains. Thus, the dietary AA 

supply and profile are affected by the CP originating from cereals. Cereal protein has 

relatively low amounts of lysine (Lys) and threonine (Thr) but high amounts of the sulphur-

containing amino acids (SAA) methionine (Met) and cystine (Cys) (Boisen et al. 2000).  

In addition to cereals, different feedstuffs can be used, for example, to increase the supply 

of CP and AA and to adjust the relation between the essential AA in the diet. Due to legal 

regulations in organic farming, several protein feedstuffs are not allowed to be fed (EC 2007, 

2008, EU 2014). Grain legumes, like soybeans, beans, peas, and lupins, which contain 

large amounts of CP and Lys, are important protein feedstuffs not only in organic but also 

in conventional farming (Jezierny et al. 2010). Many of them can even be cultivated on a 

local scale. Furthermore, they are beneficial in crop rotation through N-fixation and positive 

effects on soil fertility and yield potential of succeeding crops (Stockdale et al. 2006, Watson 

et al. 2006, Peoples et al. 2009). However, the cultivation of GMO-free soybeans is rare 

due to possible benefits of genetically modified soybeans (Brookes & Barfoot 2018a, b). 

Furthermore, there is a demand for soybeans, and specifically GMO-free soybeans, in 

human nutrition (Teuscher et al. 2005, Würschum et al. 2018). Consequently, the relevance 

of the other grain legumes is further increased in animal nutrition. 
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The objective of the study was, therefore, to determine the variation of the CN, starch, and 

AA contents in a selection of organic cereals and grain legumes and to evaluate effects of 

the variety and environmental conditions on the contents of CN, starch, and AA. Another 

aim of the study was to evaluate the value of regression equations to predict AA contents 

from the CP content of the studied cereals and grain legumes. 

Materials and Methods 

Sample Set 

A selection of harvest samples of cereals and grain legumes from organically managed field 

trials was collected in the years 2011, 2012, and 2013. The sample set (Table l 1) was the 

same as in an earlier study by Witten & Aulrich (2018) and was equally adjusted. 

Table l 1: Total number of samples (n total), number of samples considered for further 
statistical analyses (n subset), and number of factor manifestations for each 
cultivar 

  n total n subset varieties years sites areas1 

Cereals       

Winter wheat (Triticum aestivum L.) 106 70 3 3  5 
Spring wheat (Triticum aestivum L.) 45 25 4 3  3 
Winter rye (Secale cereale L.) 1062 81 5 3 7  
Winter triticale (Triticosecale) 1073 92 7 3  5 
Winter barley (Hordeum vulgare L.) 30 15 3 2 5  
Spring barley (Hordeum vulgare L.) 66 47 4 3  4 
Oats (Avena sativa L.) 1054 80 7 3 6  

Grain legumes       

Spring field pea (Pisum sativum L.) 87 41 6 3 4  

Spring field bean (Vicia faba L.) 73 59 6 2  3 
Blue lupin (Lupinus angustifolius L.) 110 31 5 3 3  

Total 835  541     
1cultivation areas with homogenous climatic conditions according to JKI (2018); 
2tryptophan n = 19; 3tryptophan n = 25; 4tryptophan n = 18 

Laboratory analyses 

Immediately after harvesting, the samples were sent to the laboratory of the Thünen 

Institute of Organic Farming. Subsequently, samples were dried at 40°C and either ground 

to pass through a 1.0 mm sieve for CN analyses or through a 0.5 mm sieve for AA analysis. 

The analysis of CN and starch contents was performed according to the official VDLUFA 

methods (VDLUFA 2012). 

Contents of amino acids in cereals and grain legumes were analysed according to Directive 

(EC) No 152/2009 (EC 2009). The analysis was modified regarding derivatisation, 

separation, and detection of the hydrolysate AA according to Cohen & Michaud (1993). 

Therefore, after oxidation and/or acidic hydrolysis or base hydrolysis for tryptophan, the pH 

of the sample was adjusted with sodium hydroxide to 10.5 – 11.5. 

An Agilent 1260 Infinity HPLC system equipped with an FLD (Waldbronn, Germany) was 

used for analytical HPLC separations. Reversed-phase chromatography was performed 

using a Gemini® 3 µm NX-C18 column (150 x 4.6 mm, Phenomenex, Aschaffenburg, 
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Germany). A volume of 2 µl of the prepared sample was injected. The system was run with 

a gradient as shown in Table l 2. The FLD operated at an excitation wavelength of 250 nm 

and an emission wavelength of 400 nm. Standard solutions were obtained from Merck. 

Table l 2: Chromatographic gradient conditions for the analysis of amino acids 
HPLC after hydrolyses  HPLC after oxidation and hydrolyses 

Time (min) Eluent A1a (%) Eluent B2 

(%) 
 Time (min) Eluent A1b (%) Eluent B2 

(%) 

 100 0   90 10 

0.1 90 10  0.1 90 10 

14 86 14  14 86 14 

18 83.4 16.6  18 83.4 16.6 

33 63 37  25 73.9 26.1 

34 0 100  26 0 100 

35.5 38 62  27 0 100 

37 90 10  31 90 10 

39 100 0     
10.14 M Na-acetate, 0.0173 M triethylamine, 0.8 mM EDTA; apH 5.41; b pH 5.15; 60% acetonitrile 

Statistics 

For each cultivar, means, standard deviations, minima and maxima (ranges) as well as the 

coefficient of variation (CV) of the CN, starch, and AA were determined using the complete 

data set (n total in Table 1). The AA content in g/16g N and the relation of each AA to lysine 

(Lys) were calculated. 

Further statistical analyses were conducted using R 3.4.0 (R Core Team 2017). 

Relationships between CP, EE, CF, and starch as well as between CP and AA were tested 

using Spearman correlation analyses (package PerformanceAnalytics; Peterson & Carl 

(2014). Correlation coefficients higher than r = 0.5 were considered as marker for strong 

relations. Linear models (lm) were used to determine equations for each cultivar to estimate 

AA contents from the CP content. 

The CN and AA contents in the cultivars were compared using generalised linear models 

(glm) with cultivar as factor, a following analysis of variance (Anova) and multiple 

comparisons (see below). Glm were also implemented on the adjusted data sets (n subset) 

to assess the influences of the main factors variety, year, and site or area (Table l 1). 

Interactions could not be tested due to unbalanced data and the absence of field replicates. 

The package glmulti (Calcagno 2013) was used to evaluate best-fitted models with only 

main factors by Akaike’s Information Criterion with correction for sample size (AICc). 

Residuals of glm were checked for normal distribution with Shapiro-Wilk-Tests. If 

necessary, a model transformation was added for a better fit. However, small data sets 

(winter barley, spring wheat, spring barley, and blue lupin) were not transformed. 

Furthermore, influencing data points were viewed to find outliers, which were not excluded.  
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Nevertheless, to validate the robustness of the model, it was tested whether a deletion of 

influencing data points in a model effectively altered the outcome of the following Anova 

and the multiple comparisons. Multiple comparisons were calculated using the multcomp 

package (Hothorn et al. 2008) with lsmeans (Lenth 2016) and Bonferroni-Holm adjustment. 

Since the assumptions were not met in all cases, the package sandwich (Zeileis 2004) was 

included regularly for a heteroscedasticity and autocorrelation consistent estimation of 

covariance with robust standard errors (vcovHAC). Due to the inclusion of this feature, 

differences between factor manifestations are not found in some cases although the factor 

is significantly influencing in the glm. Differences between lsmeans were considered 

significant if p-values were lower than 0.05. 

Results 

The CN contents in cereals and grain legumes varied widely. Cereals contained significantly 

more starch but less CP, and CA than grain legumes. CF and EE contents were the highest 

in oats and blue lupins (Table l 3). 

Within the cereal cultivars, the highest CP content was observed in wheat (p<0.05) with a 

maximum of 15.4 g/kg DM. The lowest CP content was determined in rye (6.1 g/kg DM), 

which differed significantly from oats. Oats contained the lowest amounts of NfE and starch, 

but the highest amounts of EE, CA, and CF (p<0.05). While the contents of CA and CF in 

winter triticale were equal to those in wheat, the contents of CP, EE, and NfE were 

comparable to the ones in rye. The starch content was different in all tested cultivars, while 

the NfE content in wheat and barley was lower than that in triticale and rye. The spring 

varieties were observed to have lower CF contents than the winter varieties. The starch and 

NfE contents were higher in spring barley than in winter barley. However, in wheat, the 

spring and winter varieties did not have different NfE content, and the starch content was 

lower in spring wheat than in winter wheat. 

Of the grain legume cultivars, blue lupins had the highest contents of CP, EE, CA, and CF. 

The contents of starch and NfE were very low in blue lupins and high in field peas. The CP 

content varied by 14% DM in blue lupins, by 10.5% DM in field peas, and by 7.8% DM in 

field beans. 
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Of the cereal cultivars, winter rye showed the widest variation of the CP content with a 

coefficient of variation (CV) of 17.4%, followed by winter barley and winter triticale. While 

the variation coefficient for the CP content in wheat and oats was about 10%, the CP content 

of spring barley varied less (CV = 8.5%). The widest variation of the EE content was 

observed in winter triticale (CV = 12.0%), while the lowest variation occurred in spring barley 

(CV = 5.3%). For the CA contents, variation coefficients of 4.6%, 6.6%, and about 9-11% 

were determined for winter triticale, winter rye, and the other cereal cultivars, respectively. 

Even CF contents varied widely (CV = 8-12%). With the exception of oats (CV = 7.5%) and 

winter barley (CV = 5.0%), the variations of the starch content were small (CV = 2.5% or 

lower). 

In grain legumes, field beans (CV = 5.5%) showed a low variation of the CP content in 

comparison to field peas and blue lupins (CV = 10-11%). However, the EE, CA, and CF 

contents in field beans varied widely (CV = 11.4, 11.4, and 7.7%). Although blue lupins 

contained low amounts of starch, the variation of the starch content was wide (CV = 13.1%). 

The content of the AA in the DM differed significantly between cereal cultivars as well as 

between grain legume cultivars (Table l 4). 

Although wheat was the cereal cultivar that contained the highest amount of CP in the DM, 

its lysine (Lys) and asparagine/aspartic acid (Asp) contents were low. Spring wheat had 

significantly higher threonine (Thr) and serine (Ser) contents than winter wheat, and spring 

barley had high Asp content when compared to winter barley (p<0.05). In contrast to the 

CP content, the Lys content in blue lupins was significantly lower than the one of the other 

grain legumes. 

Wide variations of the contents of different AA were observed (CV = 8 – 26%). The CV were 

lower in wheat, spring barley, and oats than in the other cereal cultivars. Furthermore, wider 

variations were determined for the contents of proline (Pro), glutamine/glutamic acid (Glu), 

and phenylalanine (Phe) than for the other AA. 

The AA contents in grain legumes mostly varied less widely than those in cereals. 

Furthermore, the variations of the AA contents were generally low in field beans, and the 

widest variations were determined for cystine (Cys, CV = 15.3%) and arginine (Arg, 

CV = 9.8%). In blue lupins and field peas, wide variations were observed for the content of 

Arg (CV = 15.7 and 15.1%) and histidine (His; CV = 22.3 and 22.2%). 

The contents of Lys, Thr, leucine (Leu), isoleucine (Ile), His, Arg, tyrosine (Tyr), Ser, and 

Asp were higher in the CP of grain legumes compared to the CP of cereals. While the 

glycine (Gly) content did not differ, the content of Met, Cys, tryptophan (Trp), valine (Val), 

Phe, alanine (Ala), Pro, and Glu was higher in the CP of cereals compared to the CP of 

grain legumes (Table l 5).  
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The Glu content in the CP of wheat was significantly higher than that in the other cereal 

cultivars; however, wheat had the lowest Lys and Thr contents in the CP. Spring wheat had 

significantly higher contents of Thr and Asp in the CP than winter wheat. The CP of spring 

barley contained significantly higher amounts of Lys, Ile, Leu, Val, Arg, and Asp when 

compared to winter barley, wheat, rye, and triticale. Pro and Glu accounted for high contents 

of all other AA in oats. The widest variation of Lys content in the CP was observed in winter 

rye (CV = 13.2%). While the variation coefficient ranged between 4 – 8% for most AA in 

cereals and grain legumes, His varied wider in wheat, barley, oats, field peas, and blue 

lupins, Met and Cys varied wider in grain legumes and winter cereals, Glu and Pro varied 

wider in winter rye, winter triticale, and winter barley, and Lys varied wider in spring wheat 

and winter rye. 

The CP in field peas contained high amounts of all amino acids (except for Arg and His) in 

comparison to the other grain legumes. However, due to the high Lys contents in field peas, 

the ratio of all AA to Lys was lower than in blue lupins and cereals. Only the ratio of Met to 

Lys content was higher in field peas than in field beans (Table l 6). While the amino acid 

profile in the CP did not differ between winter and spring wheat, the ratios of Tyr and Gly to 

Lys were higher in winter barley than in spring barley. Overall, the ratio of the AA to Lys 

varied widely among and within the cultivars. In cereals, the highest variation coefficient of 

the ratio to Lys was determined for His and Cys in winter and spring wheat (CV for His = 

14.6 and 15.7%, CV for Cys = 12.0 and 10.1%), for Pro, Glu and Phe in winter rye (CV = 

22.5, 19,1, and 25.9%), for Pro and Glu in winter triticale (CV = 11.0 and 12.4%), for His in 

oats (CV = 9.5%), and in winter and spring barley for Cys (CV = 10.5 and 11.9%), Pro (CV 

= 17.0 and 11.1%), and Glu (CV = 13.6 and 8.5%). In general, field peas had the widest 

variations of the AA ratio to Lys. The ratio of Arg and His to Lys varied widely in grain 

legumes. Furthermore, the variation coefficient was specifically high for the relation of Trp 

to Lys in field peas (CV = 18.2%), Cys to Lys in field beans (CV = 11.8%), and Met and Cys 

to Lys in blue lupins (CV = 15.4 and 14.7%). 

With the exception of oats and spring wheat, the starch content of all cultivars was highly 

negatively correlated with the CP content (r = -0.63 – -0.91, p<0.05). Furthermore, the NfE 

content in all cultivars was negatively correlated with the CP content (r = -0.4 in oats, r = -

0.80 – -0.90 in the other cultivars, p<0.05) and with the exception of spring wheat positively 

correlated with the starch content. In blue lupins and winter barley, the EE content was 

negatively correlated with the CP content (r = -0.62 and -0.63, p<0.05) and positively with 

the starch content (r = 0.55 and 0.75, p<0.05). In oats, the CF content was negatively 

correlated with the content of starch (r = -0.75, p<0.05). Furthermore, the EE content of 

spring wheat was positively correlated with its CP content (r = 0.63, p<0.05).  
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In cereals and grain legumes, the contents of some AA (in g/16 N) were correlated with the 

CP content (Table l 7). In all cereals, except for oats, the contents of Glu and Pro and in 

some cases Phe (in g/16 g N) were positively correlated with the CP content. Furthermore, 

in winter barley, Trp increased significantly in the CP with increasing CP contents. In the 

CP of grain legumes, the contents of Arg and of His in blue lupins increased with increasing 

CP contents. In oats, a moderate negative correlation between the CP content and the 

content of Cys and Gly in the CP was found, while no correlations with the other AA were 

observed. In the other cereal cultivars, in field beans and in blue lupins, the Lys content of 

the CP decreased with increasing CP contents. With the exception of spring barley and 

oats, all cultivars had decreasing Met contents of the CP when CP contents increased. 

Further negative correlations were found mainly with Val, Arg, Ala, Gly, and Asp in cereals. 

Table l 7: Spearman correlation coefficients of the amino acids (g/16 g N) and crude protein 
(% DM) 

 WW SW WR WT WB SB O FP FB BL 

n 106 45 106 107 30 66 105 87 73 110 

Lys -0.73* -0.77* -0.80* -0.60* -0.76* -0.77* -0.36* -0.18 -0.42* -0.55* 

Met -0.48* -0.41* -0.61* -0.58* -0.64* -0.10 -0.22* -0.48* -0.47* -0.57* 

Cys -0.44* -0.25 -0.53* -0.29* -0.45* -0.16 -0.47* -0.28* -0.44* -0.58* 

Thr -0.34* -0.46* -0.89 -0.33* -0.84* -0.30* -0.25* -0.60* -0.38* -0.46* 

Trp† -0.31* -0.32* -0.94 -0.60*  0.47* -0.17 -0.10 -0.21 -0.27* -0.48* 

Ile -0.21* -0.36* -0.34* -0.38*  0.17 -0.27*  0.13 -0.24* -0.38* -0.25* 

Leu -0.33* -0.29 -0.39  0.16 -0.02 -0.44*  0.00 -0.01 -0.37* -0.58* 

Val -0.55* -0.56* -0.57* -0.25* -0.54* -0.37*  0.00 -0.28* -0.32* -0.55* 

Arg -0.54* -0.56* -0.84* -0.27* -0.74* -0.53*  0.01  0.49*  0.49*  0.73* 

His  0.00  0.00 -0.25*  0.10  0.21  0.00 -0.11  0.05 -0.30*  0.49* 

Phe  0.13  0.00  0.53*  0.46*  0.81*  0.50*  0.23*  0.00 -0.51* -0.15 

Tyr  0.00  0.00 -0.72*  0.00  0.00 -0.29* -0.07 -0.17 -0.41* -0.10 

Ala -0.60* -0.54* -0.90* -0.54* -0.91* -0.67* -0.35* -0.58* -0.35* -0.59* 

Gly -0.46* -0.40* -0.90* -0.43* -0.82* -0.69* -0.43* -0.40* -0.31* -0.33* 

Ser -0.18  0.14 -0.21*  0.00 -0.65* -0.41* -0.18  0.00 -0.40*  0.00 

Pro  0.48*  0.25  0.84  0.68*  0.85*  0.51* -0.24* -0.40* -0.42*  0.00 

Asp -0.56* -0.25 -0.90* -0.39* -0.91* -0.62*  0.00 -0.17 -0.29* -0.26* 

Glu  0.64*  0.58*  0.81*  0.71*  0.83*  0.64*  0.00  0.00 -0.26*  0.13 

WW = winter wheat; SW = spring wheat; WR = winter rye; WT = winter triticale; WB = winter barley; SB = spring 
barley; O = oats; FP = field pea; FB = field bean; BL = blue lupin; * = p<0.05; †n = 19, 25, and 18 for winter 
rye, winter triticale, and oats 

Equations were calculated to predict AA contents from CP content in each cultivar. Most of 

the equations had a satisfying coefficient of determination (R2>0.5). All equations to predict 

the AA contents in winter triticale were suitable. However, Cys contents in barley, rye, and 

oats and the contents of all SAA in grain legumes, could not be estimated with the equations 

from this study. Lys, the SAA, and His in wheat, except for spring wheat, could also not be 

predicted satisfyingly (R2<0.5). Furthermore, the equations to estimate Lys and Trp contents 

of field peas were inappropriate. In field beans, only the equations to predict Trp and Arg 

contents from the CP contents can be used. 
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The following equations can be used to predict AA content from CP content (% DM): 

Wheat    Barley   
Lys = 0.014*CP+0.190 R2 = 0.37  Lys = 0.029*CP+0.118 R2 = 0.74 

Met = 0.008*CP+0.104 R2 = 0.17  Met = 0.015*CP+0.028 R2 = 0.51 

Cys = 0.013*CP+0.134 R2 = 0.19  Cys = 0.019*CP+0.052 R2 = 0.35 

CysMet = 0.021*CP+0.238 R2 = 0.19  CysMet = 0.035*CP+0.074 R2 = 0.45 

Thr = 0.024*CP+0.050 R2 = 0.66  Thr = 0.027*CP+0.065 R2 = 0.76 

Trp = 0.008*CP+0.038 R2 = 0.45  Trp = 0.013*CP-0.003 R2 = 0.82 

Arg = 0.034*CP+0.158 R2 = 0.64  Ile = 0.036*CP-0.016 R2 = 0.88 

Ile = 0.030*CP+0.030 R2 = 0.87  Leu = 0.067*CP+0.030 R2 = 0.89 

Leu = 0.060*CP+0.073 R2 = 0.88  Val = 0.046*CP+0.031 R2 = 0.88 

Val = 0.034*CP+0.091 R2 = 0.83  Arg = 0.044*CP+0.068 R2 = 0.84 

His = 0.025*CP+0.003 R2 = 0.42  His = 0.027*CP-0.031 R2 = 0.68 

Phe = 0.047*CP-0.015 R2 = 0.83  Phe = 0.061*CP-0.131 R2 = 0.96 

Tyr = 0.028*CP+0.001 R2 = 0.80  Tyr = 0.028*CP+0.016 R2 = 0.91 

Gly = 0.033*CP+0.093 R2 = 0.74  Gly = 0.029*CP+0.124 R2 = 0.82 

Ser = 0.044*CP+0.001 R2 = 0.70  Ser = 0.037*CP+0.050 R2 = 0.83 

Pro = 0.108*CP-0.183 R2 = 0.89  Pro = 0.144*CP-0.489 R2 = 0.88 

Ala = 0.026*CP+0.110 R2 = 0.74  Ala = 0.030*CP+0.121 R2 = 0.79 

Asp = 0.038*CP+0.134 R2 = 0.65  Asp = 0.046*CP+0.173 R2 = 0.68 

Glu = 0.362*CP-0.925 R2 = 0.93  Glu = 0.303*CP-0.840 R2 = 0.96 

Winter wheat    Winter barley   
Lys = 0.015*CP+0.173 R2 = 0.49  Lys = 0.029*CP+0.101 R2 = 0.92 

Met = 0.006*CP+0.129 R2 = 0.07  Met = 0.012*CP+0.050 R2 = 0.67 

Cys = 0.009*CP+0.182 R2 = 0.07  Cys = 0.013*CP+0.095 R2 = 0.44 

CysMet = 0.015*CP+0.309 R2 = 0.07  CysMet = 0.024*CP+0.144 R2 = 0.67 

Thr = 0.022*CP+0.065 R2 = 0.65  Thr = 0.024*CP+0.087 R2 = 0.95 

Trp = 0.008*CP+0.040 R2 = 0.41  Trp = 0.015*CP-0.018 R2 = 0.91 

Arg = 0.033*CP+0.157 R2 = 0.69  Arg = 0.042*CP+0.078 R2 = 0.94 

Ile = 0.030*CP+0.025 R2 = 0.90  Ile = 0.035*CP-0.020 R2 = 0.96 

Leu = 0.059*CP+0.079 R2 = 0.91  Leu = 0.066*CP+0.013 R2 = 0.97 

Val = 0.034*CP+0.094 R2 = 0.87  Val = 0.043*CP+0.043 R2 = 0.95 

His = 0.028*CP-0.028 R2 = 0.48  His = 0.026*CP-0.025 R2 = 0.82 

Phe = 0.046*CP-0.013 R2 = 0.85  Phe = 0.067*CP-0.178 R2 = 0.98 

Tyr = 0.027*CP+0.011 R2 = 0.8  Tyr = 0.030*CP+0.003 R2 = 0.95 

Gly = 0.031*CP+0.105 R2 = 0.74  Gly = 0.030*CP+0.113 R2 = 0.93 

Ser = 0.041*CP+0.040 R2 = 0.67  Ser = 0.037*CP+0.041 R2 = 0.97 

Pro = 0.112*CP-0.226 R2 = 0.93  Pro = 0.167*CP-0.653 R2 = 0.97 

Ala = 0.025*CP+0.120 R2 = 0.77  Ala = 0.028*CP+0.128 R2 = 0.96 

Asp = 0.034*CP+0.171 R2 = 0.74  Asp = 0.040*CP+0.195 R2 = 0.94 

Glu = 0.362*CP-0.925 R2 = 0.93  Glu = 0.332*CP-1.069 R2 = 0.99 

Spring wheat    Spring barley   

Lys = 0.008*CP+0.278 R2 = 0.14  Lys = 0.021*CP+0.212 R2 = 0.60 

Met = 0.012*CP+0.063 R2 = 0.60  Met = 0.015*CP+0.033 R2 = 0.38 

Cys = 0.020*CP+0.045 R2 = 0.71  Cys = 0.020*CP+0.047 R2 = 0.25 

CysMet = 0.031*CP+0.115 R2 = 0.69  CysMet = 0.037*CP+0.069 R2 = 0.33 

Thr = 0.023*CP+0.082 R2 = 0.83  Thr = 0.028*CP+0.052 R2 = 0.61 

Trp = 0.009*CP+0.033 R2 = 0.54  Trp = 0.011*CP+0.014 R2 = 0.67 

Arg = 0.030*CP+0.223 R2 = 0.53  Arg = 0.041*CP+0.111 R2 = 0.74 

Ile = 0.028*CP+0.067 R2 = 0.81  Ile = 0.031*CP+0.039 R2 = 0.85 

Leu = 0.058*CP+0.105 R2 = 0.84  Leu = 0.058*CP+0.120 R2 = 0.81 

Val = 0.032*CP+0.134 R2 = 0.80  Val = 0.043*CP+0.074 R2 = 0.83 

His = 0.021*CP+0.044 R2 = 0.31  His = 0.026*CP-0.021 R2 = 0.51 

Phe = 0.045*CP+0.020 R2 = 0.79  Phe = 0.055*CP-0.072 R2 = 0.93 

Tyr = 0.028*CP+0.009 R2 = 0.79  Tyr = 0.027*CP+0.031 R2 = 0.83 

Gly = 0.032*CP+0.117 R2 = 0.76  Gly = 0.025*CP+0.172 R2 = 0.66 

Ser = 0.048*CP-0.033 R2 = 0.74  Ser = 0.032*CP+0.101 R2 = 0.66 

Pro = 0.102*CP-0.115 R2 = 0.83  Pro = 0.133*CP-0.396 R2 = 0.83 

Ala = 0.025*CP+0.138 R2 = 0.74  Ala = 0.025*CP+0.176 R2 = 0.72 

Asp = 0.039*CP+0.156 R2 = 0.62  Asp = 0.037*CP+0.276 R2 = 0.58 

Glu = 0.364*CP-0.953 R2 = 0.90  Glu = 0.279*CP-0.626 R2 = 0.93 
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Winter rye    Oats   
Lys = 0.018*CP+0.213 R2 = 0.51  Lys = 0.039*CP+0.059 R2 = 0.80 

Met = 0.013*CP+0.044 R2 = 0.69  Met = 0.015*CP+0.025 R2 = 0.69 

Cys = 0.017*CP+0.073 R2 = 0.48  Cys = 0.017*CP+0.150 R2 = 0.34 

CysMet = 0.030*CP+0.114 R2 = 0.60  CysMet = 0.032*CP+0.178 R2 = 0.53 

Thr = 0.023*CP+0.099 R2 = 0.93  Thr = 0.031*CP+0.042 R2 = 0.80 

Trp = 0.007*CP+0.033 R2 = 0.84  Trp = 0.013*CP+0.011 R2 = 0.90 

Ile = 0.029*CP+0.027 R2 = 0.89  Ile = 0.038*CP-0.018 R2 = 0.77 

Leu = 0.056*CP+0.052 R2 = 0.94  Leu = 0.071*CP+0.004 R2 = 0.83 

Val = 0.038*CP+0.069 R2 = 0.90  Val = 0.048*CP+0.009 R2 = 0.76 

Arg = 0.036*CP+0.152 R2 = 0.91  Arg = 0.065*CP+0.012 R2 = 0.76 

His = 0.024*CP+0.018 R2 = 0.82  His = 0.023*CP+0.048 R2 = 0.42 

Phe = 0.054*CP-0.079 R2 = 0.95  Phe = 0.055*CP-0.058 R2 = 0.79 

Tyr = 0.020*CP+0.049 R2 = 0.92  Tyr = 0.031*CP+0.015 R2 = 0.78 

Gly = 0.030*CP+0.129 R2 = 0.94  Gly = 0.038*CP+0.126 R2 = 0.73 

Ser = 0.041*CP+0.015 R2 = 0.92  Ser = 0.043*CP+0.048 R2 = 0.72 

Pro = 0.140*CP-0.470 R2 = 0.94  Pro = 0.040*CP+0.119 R2 = 0.60 

Ala = 0.028*CP+0.144 R2 = 0.91  Ala = 0.040*CP+0.084 R2 = 0.79 

Asp = 0.041*CP+0.294 R2 = 0.87  Asp = 0.082*CP+0.001 R2 = 0.80 

Glu = 0.321*CP-0.905 R2 = 0.95  Glu = 0.203*CP-0.071 R2 = 0.76 

Winter triticale    Field pea   
Lys = 0.026*CP+0.122 R2 = 0.72  Lys = 0.068*CP+0.297 R2 = 0.49 

Met = 0.012*CP+0.054 R2 = 0.65  Met = 0.006*CP+0.096 R2 = 0.34 

Cys = 0.019*CP+0.046 R2 = 0.57  Cys = 0.010*CP+0.076 R2 = 0.23 

CysMet = 0.030*CP+0.106 R2 = 0.62  CysMet = 0.016*CP+0.175 R2 = 0.29 

Thr = 0.026*CP+0.067 R2 = 0.78  Thr = 0.032*CP+0.166 R2 = 0.88 

Trp = 0.008*CP+0.031 R2 = 0.73  Trp = 0.008*CP+0.029 R2 = 0.48 

Ile = 0.024*CP+0.082 R2 = 0.69  Ile = 0.036*CP+0.128 R2 = 0.81 

Leu = 0.067*CP-0.011 R2 = 0.85  Leu = 0.067*CP+0.107 R2 = 0.87 

Val = 0.040*CP+0.051 R2 = 0.88  Val = 0.041*CP+0.124 R2 = 0.85 

Arg = 0.044*CP+0.079 R2 = 0.83  Arg = 0.104*CP-0.580 R2 = 0.82 

His = 0.027*CP-0.007 R2 = 0.80  His = 0.041*CP-0.179 R2 = 0.32 

Phe = 0.052*CP-0.066 R2 = 0.90  Phe = 0.049*CP+0.017 R2 = 0.79 

Tyr = 0.028*CP+0.005 R2 = 0.85  Tyr = 0.030*CP+0.039 R2 = 0.80 

Gly = 0.035*CP+0.089 R2 = 0.81  Gly = 0.039*CP+0.145 R2 = 0.88 

Ser = 0.043*CP+0.024 R2 = 0.83  Ser = 0.046*CP+0.038 R2 = 0.79 

Pro = 0.120*CP-0.294 R2 = 0.90  Pro = 0.033*CP+0.206 R2 = 0.74 

Ala = 0.030*CP+0.119 R2 = 0.78  Ala = 0.036*CP+0.189 R2 = 0.90 

Asp = 0.050*CP+0.157 R2 = 0.76  Asp = 0.109*CP+0.234 R2 = 0.74 

Glu = 0.354*CP-1.03 R2 = 0.90  Glu = 0.167*CP-0.001 R2 = 0.88 

Field bean    Blue lupin   
Lys = 0.023*CP+1.206 R2 = 0.12  Lys = 0.032*CP+0.607 R2 = 0.67 

Met = ns   Met = ns  
Cys = ns   Cys = ns  
CysMet = ns   CysMet = ns  
Thr = 0.020*CP+0.416 R2 = 0.20  Thr = 0.025*CP+0.357 R2 = 0.58 

Trp = 0.006*CP+0.060 R2 = 0.52  Trp = 0.005*CP+0.105 R2 = 0.53 

Ile = 0.026*CP+0.369 R2 = 0.45  Ile = 0.037*CP+0.090 R2 = 0.90 

Leu = 0.047*CP+0.702 R2 = 0.43  Leu = 0.053*CP+0.498 R2 = 0.88 

Val = 0.030*CP+0.393 R2 = 0.45  Val = 0.029*CP+0.327 R2 = 0.82 

Arg = 0.131*CP-1.305 R2 = 0.72  Arg = 0.149*CP-1.404 R2 = 0.94 

His = 0.018*CP+0.342 R2 = 0.21  His = 0.066*CP-0.887 R2 = 0.68 

Phe = 0.019*CP+0.667 R2 = 0.14  Phe = 0.038*CP+0.081 R2 = 0.84 

Tyr = 0.019*CP+0.300 R2 = 0.31  Tyr = 0.032*CP+0.050 R2 = 0.82 

Gly = 0.030*CP+0.336 R2 = 0.49  Gly = 0.036*CP+0.209 R2 = 0.86 

Ser = 0.027*CP+0.512 R2 = 0.27  Ser = 0.049*CP+0.001 R2 = 0.85 

Pro = 0.021*CP+0.544 R2 = 0.26  Pro = 0.040*CP+0.093 R2 = 0.80 

Ala = 0.025*CP+0.413 R2 = 0.44  Ala = 0.021*CP+0.434 R2 = 0.66 

Asp = 0.065*CP+1.204 R2 = 0.39  Asp = 0.091*CP+0.384 R2 = 0.84 

Glu = 0.102*CP+1.696 R2 = 0.38  Glu = 0.223*CP-0.258 R2 = 0.88 
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The factors variety, harvest year, and harvest site or area affected the nutrient composition 

of the cultivars differently (Table l 8). There was only one model with variety as the only 

factor (Phe in spring wheat). Tyr, Arg, and His contents of spring wheat as well as CF and 

EE contents of winter barley were not affected by the test factors. Information on the F- and 

p-values of the anova for each model and on the lsmeans and standard errors of factor 

manifestations can be found in the Appendix (Tables A l 1-25). 

Table l 8: Factors affecting the content (g/kg DM) of crude nutrients and amino acids in 
selected cereals and grain legumes 

  WW SW WR WT WB SB O FP FB BL 

n 70 25 81 92 15 47 80 41 57 31 

CP (A) VY SY AY S VA VSY SY VA(Y) VSY 
EE VY Y VY VY  (A) VS VSY V(Y) VSY 
CA Y Y VY VAY S AY SY S(Y) VA S 
CF VAY (A) VY VA  A SY SY VAY VY 
NfE VY VY SY A S VA SY VSY VA VSY 
Starch VY V(A)Y VSY VAY S A(Y) SY VS VAY VS 

Lys VAY (Y) VSY VAY S VAY VS SY VY S 
Met (Y) Y SY VAY S AY VS S VY Y 
Cys (A)Y VY SY VAY S VAY VSY SY AY Y 
Thr VY Y SY AY S AY VSY S(Y) VY S 
Trp Y VY * * S A * SY VY S 
Ile VY VY SY AY S VA VSY SY VAY VS 
Leu VY VY SY VAY S VA VSY SY VAY VS 
Val VY VY SY VAY S VA VS S(Y) VAY VS 
Arg VAY  SY VAY S VA VSY SY VA VS 
His VY  SY VAY S AY VSY SY A(Y) V(Y) 
Phe Y V SY AY S VA VSY S AY S 
Tyr VY  VSY VAY S VA VS S AY VS 

Ala VY Y SY AY S VA VSY VSY VY S 
Gly V(A)Y Y VSY VAY S VA VS VSY VA S 
Ser VAY Y SY AY S VA VSY S VA VS 
Pro Y VY VSY AY S VA VS VSY VAY S 
Asp Y Y VSY AY S VAY VS SY VA(Y) VS 
Glu Y VY VSY AY S VA VSY S(Y) VAY VS 

WW = winter wheat; SW = Spring wheat; WR = winter rye; WT = winter triticale; WB = winter barley; SB = Spring 
barley; O = Oats; FP = field pea; FB = field bean; BL = blue lupin; CP = crude protein; EE = ether extract; 
CA = crude ash; CF = crude fibre; Lys = lysine; Thr = threonine; Met = methionine; Cys = Cystine;  
Trp = tryptophan; Ile = isoleucine; Leu = leucine; Val = valine; His = histidine; Phe = phenylalanine;  
Tyr = tyrosine; Arg = arginine; Ala = alanine; Gly = glycine; Ser = serine; Pro = proline; Asp = aspartic 
acid; Glu = glutamic acid; A = area; V = variety; S = harvest site; Y = year; factors illustrated in brackets 
were part of the glm although their effects were not statistically significant; *number of samples too small 
to be subjected to statistics 

The CN and AA contents of cereals and grain legumes were mainly affected by the factors 

year and site or area. However, the variety was the main factor affecting EE contents in 

spring barley and oats and CF contents in winter wheat, winter rye, and winter triticale. 

Furthermore, it mainly affected Arg contents in winter wheat, spring barley, and field beans, 

Ala and Val contents in spring barley, Leu, Ile, Phe, and Pro contents in spring wheat, and 

Ala, Asp, and Glu contents in field beans. 

Generally, CP and starch or NfE contents were affected inversely. Although the CP content 

of winter wheat was not affected by the variety, harvest area, or harvest year, the content 

of some AA was affected. Naturastar had significantly higher Lys, Thr, Leu, Val, Arg, His, 

Tyr, Ala, Gly, and Ser contents than the other two winter wheat varieties. Furthermore, the 

Lys content of winter wheat was lower in samples taken in area 2 than in area 3. In spring 
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wheat, the variety and year had an impact on the content of CP and simultaneously on 

several AA. In winter rye and winter triticale, the variety had no influence on the CP content. 

However, the effect of the variety on the contents of some AA, including Lys, was observed. 

The winter rye variety Palazzo contained low amounts of Lys, Tyr, Gly, Ser, Asp, and Glu. 

The winter triticale variety Cosinus had high contents of Lys, Met, Cys, Leu, Arg, His, Tyr, 

and Gly. Harvest year and site affected the contents of CP, NfE, starch, and all AA in winter 

rye, while the variety and year affected EE, CA, and CF contents. The variety had no effect 

on the nutrient composition of winter barley. However, the cultivation environment affected 

the contents of CP, CA, NfE, starch, and all AA. The spring barley varieties Grace and 

Marthe contained low amounts of NfE but high amounts of CP and AA. In 2011, high 

contents of the SAA, Thr, His, and Asp were observed in these two cultivars. In addition, 

the effect of the area was small. The oat variety Ivory contained high amounts of CP and 

AA. Although the effect of the year was small in oats, in 2012 Cys contents were higher and 

contents of Leu, Arg, His, Phe, and Ser were lower than in the other two years. The samples 

harvested on two sites in area 1 contained significant amounts of CP and AA. While 

environmental conditions affected the content of all nutrients in field peas, variety had no 

effect on the contents of CP, CA, CF, and most of the AA. In 2012, starch and His contents 

in field peas were low, while CP, Lys, Cys, and Ile contents were high. In field beans, the 

variety did not affect all AA contents. However, there were shifts in the ranking of the AA 

contents between the varieties. In blue lupine, the contents of the CP and the affected AA 

(Table A l 25) were high in the variety Probor. The SAA were contained in higher amounts 

in samples harvested in 2011 than in 2012. The other AA contents were affected by the 

harvest site. 

Discussion 

In the present study, the contents of all nutrients varied widely in all cultivars (Table l 3-6). 

Wide variations of the CN and AA contents have already been described for conventionally 

and organically produced cereals (DLG 2006-2010, Rodehutscord et al. 2016) and grain 

legumes (DLG 2006-2010, Jezierny et al. 2011, Kyntäjä et al. 2014). They can be seen 

when comparing different feed value tables (e. g., Ajinomoto Animal Nutrition Group 2003-

2013, DLG 2006-2010, Bryden et al. 2009, Agroscope 2011-2016, Ajinomoto Animal 

Nutrition Group 2014, DLG 2014, Kyntäjä et al. 2014, Evonik 2016, Blok & Dekker 2017, 

INRA-CIRAD-AFZ 2018). Depending on the origin and the size of the sample set, the mean 

content as well as the minimum and maximum content of a nutrient can differ between feed 

value tables. In an overall comparison, the contents of EE, CA, and CF determined in the 

present study were within the range of the existing table values. However, the minimum 

content of CP in rye, spring barley, and winter triticale was about 1.7, 0.1, and 1.0% lower 

than the minimum content reported by Evonik (2016), who reported the lowest and highest 
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contents, respectively. Additionally, the maximum starch contents of winter triticale and 

spring wheat were about 1.2 and 0.7% higher than reported by Evonik (2016). While the 

mean CF and EE contents of most cultivars were comparable to the table values, blue lupins 

and field peas contained high amounts of CF, while the EE content of oats was low 

compared to INRA-CIRAD-AFZ (2018), Evonik (2016) and Agroscope (2011-2016). 

Furthermore, the mean CP contents of the cereals, field peas, and blue lupins tended to be 

lower than table values, while mean starch contents tended to be higher in those cultivars 

with the exception of wheat (e. g., (Agroscope 2011-2016, Evonik 2016, Rodehutscord et 

al. 2016). A connection between starch and CP contents, which has been previously 

described by Kim et al. (2003), can be due to nutrient shifts during ripening or can be 

genetically determined (Hughes et al. 2001). Dangour et al. (2009) conducted a meta-

analysis with 42 studies and found that N contents were on average 6.7% lower in 

organically than in conventionally produced foodstuffs. However, they did not observe 

systematic differences in specific proteins or carbohydrates. 

It is striking that in most feed tables winter and spring forms of the cultivars are not declared, 

although the present study showed differences. Similarly to the tables provided by Evonik 

(2016), higher CP and starch contents as well as lower CF contents were determined for 

spring barley in the present study. However, DLG (2014) conversely reported lower CP 

contents and higher CF contents in spring barley varieties. The values of the DLG (2014) 

feed tables specified also the differences between spring and winter forms of wheat. 

Although DLG (2014) reported higher CP and lower starch contents, the EE, CA, and CF 

contents and the direction of the deviations between spring and winter wheat were 

comparable to the present findings. 

There are table values that report the AA content of single feedstuffs and AA contents in 

the CP of single feedstuffs (e. g., Ajinomoto Animal Nutrition Group 2003-2013, Bryden et 

al. 2009, Agroscope 2011-2016, Evonik 2016, Blok & Dekker 2017, INRA-CIRAD-AFZ 

2018). Evonik (2016) also reported mean ratios of the essential AA to Lys. The AA contents 

of all samples of winter wheat and oats were within reported ranges (Ajinomoto Animal 

Nutrition Group 2003-2013, Agroscope 2011-2016, Evonik 2016, INRA-CIRAD-AFZ 2018). 

However, the minimum content of all AA in winter rye and winter triticale and of most amino 

acids in barley and field peas of the present study was below the minimum table values. 

The minimum content of Cys and Thr in field beans and the minimum content of Trp and Ile 

in blue lupins was lower than the minimum content of these AA reported in feed tables. 

Furthermore, their maximum His content exceeded the maximum content described in feed 

tables. The mean His content of wheat, winter rye, oats, and the grain legume cultivars was 

higher than reported in feed tables. In barley, the contents of all AA and in winter triticale 

the contents of all AA except for His were lower than reported in feed tables. Although Lys 
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and Met contents in the other cultivars were comparable to the contents reported in feed 

tables, the contents of the several AA, essential and non-essential, were lower in the sample 

set of the present study. 

The concentration of the AA in the crude protein of the organic cereals and grain legumes 

of the present study varied wider than values reported in feed tables (Ajinomoto Animal 

Nutrition Group 2003-2013, Agroscope 2011-2016, Evonik 2016, INRA-CIRAD-AFZ 2018). 

The mean concentration of the AA in the CP were mostly similar in the present study and 

in feed tables. However, high concentrations of Lys and His led in most cereals and grain 

legumes to a high ratio of His and a low ratio of most of the other AA to Lys, when compared 

to Evonik (2016). Compared to ratios reported in feed tables, the ratio of the sulphur-

containing amino acids that are reported to be limiting in common diets for monogastric 

animals in organic farming was higher in wheat and comparable or slightly lower in the other 

cultivars.  

The AA composition in crops can vary widely and depends on the occurrence of various 

protein fractions (e. g., albumins, globulins, glutenins, and gliadins), which are specific for 

each cultivar. The proportion of protein fractions can differ between grain samples 

depending on the environmental conditions of the year (Casey & Short 1981, Casey et al. 

1982, Hanell et al. 2004) and variety (O'Kane et al. 2006). For example, albumins and 

globulins are low in Pro and Glu but high in Arg, Lys, and Asp, while prolamins or the storage 

proteins gliadin and glutenin are high in Pro and Glu but low in Lys, Thr, and Trp (Draper 

1973, Simpson 2001, Shewry & Halford 2002, Shewry 2007). Legumin is a storage protein 

fraction in grain legumes and contains large amounts of amides, including Arg, Asp, and 

Glu (Derbyshire et al. 1976). Vicillin contains high levels of Ile, Leu, and Lys (Jackson et al. 

1969, Rubio et al. 2013). The correlations between AA and CP contents that were observed 

in the present study can be a result of shifts between protein fractions. The CP content of 

cereals was positively correlated with Glu and Pro contents in the CP indicating that more 

prolamins are contained in the CP. In grain legumes, the Arg content increased with 

increasing protein contents in the grain indicating that legumin contents were enhanced and 

vicillin fractions diminished. This was in accordance with findings of Gueguen & Barbot 

(1988) and Casey et al. (1982), who found Met and Cys contents of peas rising when the 

legumin:vicillin ratio increased. The increase and decrease of specific proteins led to an 

altered AA profile of the CP. Thus, the AA ratio of the feedstuff was also affected. This must 

be considered in diet formulation along with the fact that the dietary CP level and the AA 

balance can affect the optimal Lys level for performance (Abdel-Maksoud et al. 2010). 

Most of the equations derived from regression analyses had a high coefficient of 

determination indicating that they can be used to predict the AA contents on the basis of 

the result of CP analysis. This practice is already common in practical feed evaluation in 
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Germany. The German Agricultural Analytic and Research Institutes (VDLUFA) provide 

information on the AA contents in different feedstuffs obtained using the available equations 

provided by Evonik (2016). Despite some deviations where AA contents would be slightly 

overestimated, the results obtained using the currently available equations (Evonik 2016) 

were generally comparable to the values calculated with the equations derived from the 

present sample set (example in Figure l 1). Thus, equations are valuable tools, which can 

be used to calculate approximate AA contents, when the CP content of cereals and grain 

legumes is known. 

 
Figure l 1: Contents of lysine and threonine in field peas (left) and barley (right) determined 

by HPLC and predicted by the equations developed in the present study 
(_predict) and AminoDat 5.0 (_Evonik, Evonik 2016) 

The AA composition of field beans cannot be predicted using the equations from the present 

study. However, the equations from Evonik (2016) provided satisfying coefficients of 

determinations (157 samples) and thus can be used to predict it, although the goodness of 

the prediction is better in the equations for the other grain legumes as well as in the 

equations for cereals. The SAA amounts contained in blue lupins, field beans, and field 

peas cannot be predicted satisfactorily as yet. A less accurate prediction of Lys, like in 

wheat, field peas, and rye in the present study, can have consequences in diet formulation 

when the IAAR (ideal amino acid ratio) concept with Lys as the reference AA is applied. 

Additionally, since the SAA are often limiting in common organic diets (Sundrum 2001, Blair 
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2008), their prediction should be improved as well. The decreased predictability might be 

due to wider variations in the crops or to less accurate analysis results for the SAA (Rubio 

et al. 2013). 

Several studies found an effect of the variety and the environmental conditions during 

cultivation and storage on the nutrient composition of grains of different cereal and grain 

legume cultivars. Environmental conditions can include cultivation management, which can 

substantially differ between cultivation sites and years. For example, Gronle (2014) reported 

that the crop stand as well as the cultivation technique had an influence on the CN 

composition of field peas. Climate and soil conditions can also add to the environmental 

effect. Nikolopoulou et al. (2007) concluded that these two factors are the main reason for 

differences in the nutrient composition of field peas. The variety and site can also affect the 

NfE composition of wheat (Longstaff & McNab 1986, Shewry et al. 2010). The effect of the 

harvest year on the nutrient composition of cereals and grain legumes was strong in the 

present study. This was also reported by (Kim et al. 2003), who found the nutrient 

composition of wheat to be affected by the variety and harvest year and concluded that the 

annual precipitation level can be a major influence. Metayer et al. (1993) analysed the 

nutrient composition of a selection of cereals and found that the harvest site and year 

affected the nutrient composition of their cereals. 

Even the AA contents were affected by the variety and environmental conditions. The 

influence of the environment, i. e. the cultivation management and climate conditions, was 

described in earlier studies. Nitrogen fertilisation does for example have an impact on the 

AA composition of different barley varieties (Jørgensen et al. 1999) and the AA composition 

in field beans can vary not only between harvest years but also between varieties (Kotlarz 

et al. 2011). The effect of the factor variety can be due to the fact that high CP yield is a 

major breeding aim. Varieties that have the potential to have high CP yields most likely differ 

in their CP composition from varieties without this characteristic. Wheat that is bred for 

human or animal nutrition, respectively, is one example for systematic differences between 

breeding lines. Although every wheat variety can be used as a feedstuff, varieties with good 

baking qualities often contain more glutenin and less albumin and globulin, which are 

contained in varieties cultivated for animal feeding (Krejčířová et al. 2006, Krejčířová et al. 

2007). The winter varieties that were analysed and compared in the present study are wheat 

varieties with good baking quality. They did not differ in their CP content. However, the high-

quality variety Naturastar had significantly lower contents of Lys, Thr, Leu, Arg, His, Tyr, 

Ala, Gly, and Ser than the elite-quality varieties Butaro and Capo. This result is in general 

accordance with the above reported results. 

When compared to reported concentrations of AA in the CP of organically produced cereals 

and grain legumes from Germany, UK and Finland (DLG 2006-2010, Kyntäjä et al. 2014) , 
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it became obvious that the environmental conditions have effects within the production 

system.  

The reported genetic variability obviously depends on the choice of varieties and on 

genotype-environment interactions. The effects of the harvest year and site are most likely 

a combination of weather conditions, soil conditions, and cultivation management. This was 

also observed in the present study. In most cases, the occurrence of differences in the 

nutrient composition seemed to be random. That is partly because of a lack of knowledge 

with regard to the underlying cultivation conditions and partly because the interactions 

between genetic and environmental factors are often difficult to comprehend. In general, 

the environmental conditions had a larger impact on the nutrient content than the variety 

(Appendix Table A l 1-5). Yet, CF contents of wheat, rye, and triticale and EE contents of 

oats were largely affected by the variety. Thus, breeding progress could have had an effect 

and can probably lead to further alterations of the content of the named nutrients (Murphy 

et al. 2009). 

Conclusions 

The contents of CN and AA in organically produced cereals and grain legumes vary widely 

and depend on the variety and environmental conditions. When comparing table values that 

describe the nutrient composition of feedstuffs, it becomes clear that a comparison of mean 

values is deceptive and the use of table values in animal nutrition is misleading. Many tables 

contain the minimum and maximum values for nutrient contents. This practice allows a 

general characterisation of feedstuffs. However, it is not possible to predict the amount of 

CN in feedstuffs even when the variety, the cultivation site, and the harvest year are known. 

Since variations in the CN and AA composition must be considered in diet formulation, it is 

recommended to analyse the CN composition of each batch of a feedstuff. 

Changes in the CP contents of cereals and grain legumes are accompanied by an altered 

AA profile. The content of Glu, Pro, and Phe in cereals and Arg in grain legumes increase 

with increasing CP contents. Thus, the prediction of the AA contents from the CP content 

is considered a suitable technique and can be applied in practical diet formulation. However, 

the equations for the prediction need to be further improved using additional analysis 

results. 

  



Chapter l 

 

51 

References 

Abdel-Maksoud, A., Yan, F., Cerrato, S., Coto, C., Wang, Z.L. and Waldroup, P.W. (2010). Effect of Dietary 
Crude Protein, Lysine Level and Amino Acid Balance on Performance of Broilers 0 to 18 Days of Age. Int 
J Poult Sci 9, 21-27. ISSN: 1682-8356 

Agroscope (2011-2016). Feedbase - the Swiss Feed Database, https://www.feedbase.ch/, University of Zurich, 
Agroscope. Last access 25th of June 2018. 

Ajinomoto Animal Nutrition Group (2003-2013). Ajinomoto Heartland (since April 2018 Ajinomoto Animal 
Nutrition North America) Amino Acid Database, http://aaa.lysine.com/, Last Acces 25th June 2018. 

Ajinomoto Animal Nutrition Group (2014). Ajinomoto Eurolysine S.A.S. Laboratory Analysis Database, 
http://ajinomoto-eurolysine.com/feedstuffs-amino-acid-database.html, Last Access 25th of June 2018. 

Blair, R. (2008). Nutrition and Feeding of Organic Poultry. CABI. ISBN: 978 1 84593 406 4 

Blok, M.C. and Dekker, R.A. (2017). Table ‘Standardized Ileal Digestibility of Amino Acids in Feedstuffs for 
Poultry’. Wageningen Livestock Research. DOI: 10.18174/426333 

Boisen, S., Hvelplund, T. and Weisbjerg, M.R. (2000). Ideal Amino Acid Profiles as a Basis for Feed Protein 
Evaluation. Livest Prod Sci 64, 239-251. DOI: 10.1016/S0301-6226(99)00146-3 

Brookes, G. and Barfoot, P. (2018a). Environmental Impacts of Genetically Modified (GM) Crop Use 1996–
2016: Impacts on Pesticide Use and Carbon Emissions. GM Crops & Food, 1-69.  
DOI: 10.1080/21645698.2018.1476792 

Brookes, G. and Barfoot, P. (2018b). Farm Income and Production Impacts of Using Gm Crop Technology 
1996–2016. GM Crops & Food 9, 59-89. DOI: 10.1080/21645698.2018.1464866 

Bryden, W.L., Li, X., Ravindran, G., Hew, L.I. and Ravindran, V. (2009). Ileal Digestible Amino Acid Values in 
Feedstuffs for Poultry. Rural Industries Research and Development Corporation. ISBN: 1 74151 870 9 

Burstin, J., Gallardo, K., Mir, R.R., Varshney, R.K. and Duc, G. (2011). Improving Protein Content and Nutrition 
Quality, In: Pratap, A. (Ed.), Biology and Breeding of Food Legumes, International Crops Research 
Institutes of the Semi-Arid Tropics. 

Calcagno, V. (2013). Glmulti: Model Selection and Multimodel Inference Made Easy. R Package Version 1.0.7. 
https://cran.R-project.org/package=glmulti. 

Casey, R., Sharman, J.E., Wright, D.J., Bacon, J.R. and Guldager, P. (1982). Quantitative Variability in Pisum 
Seed Globulins: Its Assessment and Significance. Plant Food Hum Nutr 31, 333-346.  
DOI: 10.1007/BF01094045 

Casey, R. and Short, M.N. (1981). Variation in Amino Acid Composition of Legumin from Pisum. Phytochemistry 
20, 21-23. DOI: 10.1016/0031-9422(81)85210-7 

Cohen, S.A. and Michaud, D.P. (1993). Synthesis of a Fluorescent Derivatizing Reagent, 6-Aminoquinolyl-N-
Hydroxysuccinimidyl Carbamate, and Its Application for the Analysis of Hydrolysate Amino Acids Via High-
Performance Liquid Chromatography. Anal Biochem 211, 279-287. DOI: 10.1006/abio.1993.1270 

Dangour, A.D., Dodhia, S.K., Hayter, A., Allen, E., Lock, K. and Uauy, R. (2009). Nutritional Quality of Organic 
Foods: A Systematic Review. Am J Clin Nutr 90, 680-685. DOI: 10.3945/ajcn.2009.28041 

Derbyshire, E., Wright, D.J. and Boulter, D. (1976). Legumin and Vicilin, Storage Proteins of Legume Seeds. 
Phytochemistry 15, 3-24. DOI: 10.1016/S0031-9422(00)89046-9 

DLG (2006-2010). DLG-Datenbank Futtermittel [DLG-Database for Feedstuffs], Deutsche Landwirtschafts-
Gesellschaft e.V. http://datenbank.futtermittel.net, last access 11th July 2018. 

DLG (2014). DLG-Futterwerttabellen Schwein [DLG-Feed Value Tables for Swine]. DLG-Verlag.  

Draper, S.R. (1973). Amino Acid Profiles of Chemical and Anatomical Fractions of Oat Grains. J Sci Food Agr 
24, 1241-1250. DOI:10.1002/jsfa.2740241013 

EC (2007). Council Regulation (EC) No 834/2007 of 28 June 2007 on Organic Production and Labelling of 
Organic Products and Repealing Regulation (EEC) No 2092/91. 

EC (2008). Commission Regulation (EC) No 889/2008 of 5 September 2008 Laying Down Detailed Rules for 
the Implementation of Council Regulation (EC) No 834/2007 on Organic Production and Labelling of 
Organic Products with Regard to Organic Production, Labelling and Control. 

EC (2009). Commission Regulation (EC) No 152/2009 of 27 January 2009 Laying Down the Methods of 
Sampling and Analysis for the Official Control of Feed. 

 

 



Chapter l 

 

52 

EU (2014). Commision Implementing Regulation (EU) No 836/2014 of 31 July 2014 Amending Regulation (EC) 
No 889/2008 Laying Down Detailed Rules for the Implementation of  Council Regulation (EC) No 834/2007 
on Organic Production and Labelling of Organic Products with Regard to Organic Production, Labelling and 
Control. 

Evonik (2016). Evonik Nutrition & Care Gmbh. Aminodat 5.0, Version 1.03. 

Gronle, A. (2014). Agronomic Aspects of Intercropping Spring or Winter Peas and Cereals as Influenced by 
Ploughing System. Dissertation, University of Kassel. 

Gueguen, J. and Barbot, J. (1988). Quantitative and Qualitative Variability of Pea (Pisum Sativum L.) Protein 
Composition. J Sci Food Agr 42, 209-224. DOI:10.1002/jsfa.2740420304 

Hanell, U., L-baeckström, G. and Svensson, G. (2004). Quality Studies on Wheat Grown in Different Cropping 
Systems: A Holistic Perspective. Acta Agric Scand, Sec B — Soil & Plant Sci 54, 254-263. DOI: 
10.1080/09064710410030302 

Hothorn, T., Bretz, F. and Westfall, P. (2008). Simultaneous Inference in General Parametric Models. Biom J 
50, 346-363. DOI: 10.1002/bimj.200810425 

Hughes, R.K., Desforges, N., Selwood, C., Smith, R., Speirs, C.I., Sinnaeve, G., Gorton, P.G., Wiseman, J., 
Jumel, K., Harding, S.E., Hill, S.E., Street, V., Wang, T.L. and Hedley, C.L. (2001). Genes Affecting Starch 
Biosynthesis Exert Pleiotropic Effects on the Protein Content and Composition of Pea Seeds. J Sci Food 
Agr 81, 877-882. DOI: 10.1002/jsfa.856 

INRA-CIRAD-AFZ (2018). INRA-CIRAD-AFZ Feed Tables - Composition and Nutritive Values of Feeds for 
Cattle, Sheep, Goats, Pigs, Poultry, Rabbits, Horses and Salmonids, https://feedtables.com/, Last Access 
1st August 2018. 

Jackson, P., Boulter, D. and Thurman, D.A. (1969). A Comparison of Some Properties of Vicilin and Legumin 
Isolated from Seeds of Pisum Sativum, Vicia Faba and Cicer Arietinum. New Phytologist 68, 25-33.   
DOI:10.1111/j.1469-8137.1969.tb06416.x 

Jezierny, D., Mosenthin, R. and Bauer, E. (2010). The Use of Grain Legumes as a Protein Source in Pig 
Nutrition: A Review. Anim Feed Sci Tech 157, 111-128. DOI: 10.1016/j.anifeedsci.2010.03.001 

Jezierny, D., Mosenthin, R., Sauer, N., Roth, S., Piepho, H.P., Rademacher, M. and Eklund, M. (2011). Chemical 
Composition and Standardised Ileal Digestibilities of Crude Protein and Amino Acids in Grain Legumes for 
Growing Pigs. Livest Sci 138, 229-243. DOI: 10.1016/j.livsci.2010.12.024 

JKI (2018). Julius-Kühn-Institute, Geoportal, http://geoportal.julius-kuehn.de/map?app=oeko. Last Access: 1st 
of August 2018. 

Jørgensen, H., Gabert, V.M. and Fernández, J.A. (1999). Influence of Nitrogen Fertilization on the Nutritional 
Value of High-Lysine Barley Determined in Growing Pigs. Anim Feed Sci Tech 79, 79-91.  
DOI: 10.1016/S0377-8401(99)00011-5 

Kim, J.C., Mullan, B.P., Simmins, P.H. and Pluske, J.R. (2003). Variation in the Chemical Composition of Wheats 
Grown in Western Australia as Influenced by Variety, Growing Region, Season, and Post-Harvest Storage. 
Aust J Agr Res 54, 541-550. DOI: 10.1071/Ar02183 

Kotlarz, A., Sujak, A., Strobel, W. and Grzesiak, W. (2011). Chemical Composition and Nutritive Value of Protein 
of the Pea Seeds - Effect of Harvesting Year and Variety. Veg Crop Res Bul 75, 57-69.  
DOI: 10.2478/v10032-011-0018-2 

Krejčířová, L., Capouchová, I., Petr, J., Bicanová, E. and Faměra, O. (2007). The Effect of Organic and 
Conventional Growing Systems on Quality and Storage Protein Composition of Winter Wheat. Plant Soil 
Environ 53, 499-505. DOI: 10.17221/2304-Pse 

Krejčířová, L., Capouchová, I., Petr, J., Bicanová, E. and Kvapil, R. (2006). Protein Composition of Winter Wheat 
from Organic and Conventional Farming. Zemdirbyste 93, 285-296. ISSN: 1392-3196 

Kyntäjä, A., Partanen, K., Siljander-Rasi, H. and Jalava, T. (2014). Tables of Composition and Nutritional Values 
of Organically Produced Feed Materials for Pigs and Poultry. . MTT Report 164. ISBN: 978-952-487-571-4 

Lenth, R.V. (2016). Least-Squares Means: The R Package Lsmeans. J Stat Softw 69, 1-33.  
DOI: 10.18637/jss.v069.i01 

Longstaff, M. and McNab, J.M. (1986). Influence of Site and Variety on Starch, Hemicellulose and Cellulose 
Composition of Wheats and Their Digestibilities by Adult Cockerels. Br Poult Sci 27, 435-449.  
DOI: 10.1080/00071668608416901 

Metayer, J.P., Grosjean, F. and Castaing, J. (1993). Study of Variability in French Cereals. Anim Feed Sci Tech 
43, 87-108. DOI: 10.1016/0377-8401(93)90145-A 

Murphy, K.M., Hoagland, L.A., Reeves, P.G., Baik, B.-K. and Jones, S.S. (2009). Nutritional and Quality 
Characteristics Expressed in 31 Perennial Wheat Breeding Lines. Renew Agr Food Syst 24, 285-292.  
DOI: 10.1017/S1742170509990159 



Chapter l 

 

53 

Nikolopoulou, D., Grigorakis, K., Stasini, M., Alexis, M.N. and Iliadis, K. (2007). Differences in Chemical 
Composition of Field Pea (Pisum Sativum) Cultivars: Effects of Cultivation Area and Year. Food Chem 103, 
847-852. DOI: 10.1016/j.foodchem.2006.09.035 

O'Kane, F.E., Vereijken, J.M., Gruppen, H. and Boekel, M.A.J.S. (2006). Gelation Behavior of Protein Isolates 
Extracted from 5 Cultivars of Pisum Sativum L. J Food Sci 70, C132-C137.  
DOI: 10.1111/j.1365-2621.2005.tb07073.x 

Peoples, M.B., Brockwell, J., Herridge, D.F., Rochester, I.J., Alves, B.J.R., Urquiaga, S., Boddey, R.M., Dakora, 
F.D., Bhattarai, S., Maskey, S.L., Sampet, C., Rerkasem, B., Khan, D.F., Hauggaard-Nielsen, H. and 
Jensen, E.S. (2009). The Contributions of Nitrogen-Fixing Crop Legumes to the Productivity of Agricultural 
Systems. Symbiosis 48, 1-17. DOI: 10.1007/bf03179980 

Peterson, B.G. and Carl, P. (2014). Performanceanalytics: Econometric  Tools for Performance and Risk 
Analysis. R Package Version 1.4.3541. 

R Core Team (2017). R: A Language and Environment for Statistical Computing, Version 3.4.0. http://www.R-
project.org/, R Foundation for Statistical Computing, Vienna, Austria. 

Rodehutscord, M., Rückert, C., Maurer, H.P., Schenkel, H., Schipprack, W., Bach Knudsen, K.E., 
Schollenberger, M., Laux, M., Eklund, M., Siegert, W. and Mosenthin, R. (2016). Variation in Chemical 
Composition and Physical Characteristics of Cereal Grains from Different Genotypes. Arch Anim Nutr 70, 
87-107. DOI: 10.1080/1745039X.2015.1133111 

Rubio, L.A., Pérez, A., Ruiz, R., Guzmán, M.Á., Aranda-Olmedo, I. and Clemente, A. (2013). Characterization 
of Pea (Pisum Sativum) Seed Protein Fractions. J Sci Food Agr 94, 280-287. DOI:10.1002/jsfa.6250 

Shewry, P.R. (2007). Improving the Protein Content and Composition of Cereal Grain. J Cereal Sci 46, 239-
250. DOI: 10.1016/j.jcs.2007.06.006 

Shewry, P.R. and Halford, N.G. (2002). Cereal Seed Storage Proteins: Structures, Properties and Role in Grain 
Utilization. J Exp Bot 53, 947-958. DOI: 10.1093/jexbot/53.370.947 

Shewry, P.R., Piironen, V., Lampi, A.-M., Edelmann, M., Kariluoto, S., Nurmi, T., Fernandez-Orozco, R., 
Andersson, A.A.M., Åman, P., Fraś, A., Boros, D., Gebruers, K., Dornez, E., Courtin, C.M., Delcour, J.A., 
Ravel, C., Charmet, G., Rakszegi, M., Bedo, Z. and Ward, J.L. (2010). Effects of Genotype and Environment 
on the Content and Composition of Phytochemicals and Dietary Fiber Components in Rye in the Healthgrain 
Diversity Screen. J Agric Food Chem 58, 9372-9383. DOI: 10.1021/jf100053d 

Shewry, P.R., Van Schaik, F., Ravel, C., Charmet, G., Rakszegi, M., Bedo, Z. and Ward, J.L. (2011). Genotype 
and Environment Effects on the Contents of Vitamins B1, B2, B3, and B6 in Wheat Grain. J Agr Food Chem 
59, 10564-10571. DOI: 10.1021/jf202762b 

Simpson, D.J. (2001). Proteolytic Degradation of Cereal Prolamins—the Problem with Proline. Plant Science 
161, 825-838. DOI: 10.1016/S0168-9452(01)00482-4 

Stockdale, E.A., Shepherd, M.A., Fortune, S. and Cuttle, S.P. (2006). Soil Fertility in Organic Farming Systems 
– Fundamentally Different? Soil Use Manage 18, 301-308. DOI: 10.1111/j.1475-2743.2002.tb00272.x 

Sundrum, A. (2001). Managing Amino Acids in Organic Pig Diets, Proceedings of the 4th NAHWOA-Workshop, 
24–27.03.2001, Wageningen, NL (2001), pp. 181-191. 

Teuscher, P., Grüninger, B. and Ferdinand, N. (2005). Risk Management in Sustainable Supply Chain 
Management (SSCM): Lessons Learnt from the Case of Gmo-Free Soybeans. Corp Soc Responsib Environ 
Mgmt 13, 1-10. DOI: 10.1002/csr.81 

VDLUFA (2012). VDLUFA Methodenbuch Band III Die Chemische Untersuchung von Futtermitteln einschl. 1.-
8. Ergänzungslieferung [VDLUFA Method Book Volume III The Chemical Analyses of Feedstuffs incl. 1st-
8th Supplemental Delivery], VDLUFA Verlag, Darmstadt.  

Watson, C.A., Atkinson, D., Gosling, P., Jackson, L.R. and Rayns, F.W. (2006). Managing Soil Fertility in 
Organic Farming Systems. Soil Use Manage 18, 239-247. DOI: 10.1111/j.1475-2743.2002.tb00265.x 

Weißmann, F. and Bussemas, R. (2014). Praktische Möglichkeiten Zur Verbesserung der Eiweißversorgung 
der Monogastrier im Ökologischen Landbau [Possibilities to Improve the Protein Supply of Monogastric 
Animals in Organic Farming]. In: Praxisbefragung zur Aminosäurelücke und praktische Möglichkeiten zur 
Verbesserung der Eiweißversorgung der Monogastrier in der Fütterung im Ökologischen Landbau [Survey 
on the Amino Acid Aap and Possibilities to Improve the Protein Supply of Monogastric Animals in Organic 
Farming], Thünen Working Paper 23. 

Witten, S. and Aulrich, K. (2018). Effect of Variety and Environment on the Amount of Thiamine and Riboflavin 
in Cereals and Grain Legumes. Anim Feed Sci Tech 238, 39-46. DOI: 10.1016/j.anifeedsci.2018.01.022 

Würschum, T., Leiser, W.L., Jähne, F., Bachteler, K., Miersch, M. and Hahn, V. (2018). The Soybean 
Experiment ‘1000 Gardens’: A Case Study of Citizen Science for Research, Education, and Beyond. Theor 
Appl Genet. DOI: 10.1007/s00122-018-3134-2 



Chapter l 

 

54 

Zeileis, A. (2004). Econometric Computing with HC and HAC Covariance Matrix Estimators. J Stat Softw 11, 1-
17. DOI: 10.18637/jss.v011.i10 

Zollitsch, W. and Baumung, R. (2004). Protein Supply for Organic Poultry: Options and Shortcomings, 2nd 
SAFO Workshop - Organic livestock farming: potential and limitations of husbandary practice to secure 
animal health and welfare and food quality, Hovi, M., Sundrum, A., Padel, S., Witzenhausen, Germany, pp. 
153-160.



Chapter ll 

 

55 

Chapter ll 

 

 

 

Short Communication 

Precaecal digestibility of crude protein and amino acids of a field bean  

(Vicia faba L.) and a field pea (Pisum sativum L.) variety for broilers 

Ileale Rohprotein- und Aminosäurenverdaulichkeit von je einer ökologisch 

erzeugten Ackerbohnen- (Vicia faba L.) und Futtererbsensorte  

(Pisum sativum L.) bei Broilern 

 

 

Stephanie Witten1, Michael A. Grashorn2, Karen Aulrich1 

1Johann Heinrich von Thünen-Institute of Organic Farming, Trenthorst 32, 23847 

Westerau, Germany 

2 Work Group Poultry, Department Population Genomics, Institute of Animal Science, 

University of Hohenheim, 70593 Stuttgart, Germany 

 

 

 

 

 

 

 

 

 

 

 

 

 

Witten, S., Grashorn, M. A., Aulrich, K. 2018: Precaecal digestibility of crude 

protein and amino acids of a field bean (Vicia faba L.) and a field pea (Pisum 

sativum L.) variety for broilers. Anim Feed Sci Tech 243, 35-40.  

DOI: 10.1016/j.anifeedsci.2018.07.001  

https://doi.org/10.1016/j.anifeedsci.2018.07.001


Chapter ll 

 

56 

  



Chapter ll 

 

57 

Abstract 

A linear regression approach was used to determine the precaecal digestibility of organic 

field beans and field peas in young broiler chickens. Diets with field beans of the variety 

Taifun (283 g crude protein/kg DM) and field peas of the variety Alvesta (173 g crude 

protein/kg DM) in three inclusion rates (30, 50, and 70 %) were fed ad libitum to 15- to 21-

day-old broiler chickens. Digesta was sampled pen-wise and obtained from the gastro-

intestinal tract between Meckel’s diverticulum and 2 cm anterior to the ileo-caeco-colonic 

junction. Despite the high inclusion rates of the test feedstuffs, all diets were accepted by 

the birds. Feed intake and body mass gain, as well as precaecal crude protein and amino 

acid digestibility, were higher in chickens fed field bean diets than field pea diets. The 

precaecal crude protein digestibility of the tested field beans and field peas was 0.84 and 

0.81, respectively. In comparison to lysine, methionine, histidine, and arginine, which were 

highly digestible at the terminal ileum, tryptophan was less digestible. The precaecal 

digestibility of crude protein and amino acids of the tested organic field beans and field peas 

is comparable to literature values for non-organic samples. In conclusion, compared to the 

literature the test results indicate that systematic differences between organic and non-

organic samples do not exist. Field beans and field peas can serve as a suitable crude 

protein and amino acids source for broilers. 

Keywords  

ileal, organic farming, poultry, chicken 
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Zusammenfassung 

Die praecaecale Verdaulichkeit des Rohproteins und der Aminosäuren von Ackerbohnen 

und Futtererbsen aus ökologischer Erzeugung bei 21 Tage alten Masthühnern wurde mit 

Hilfe eines linear regressiven Ansatzes ermittelt. Rationen mit Ackerbohnen der Sorte 

Taifun (138 – 234 g Rohprotein/kg T) und Futtererbsen der Sorte Alvesta (108 – 166 g 

Rohprotein/kg T) in drei Inklusionsraten (30, 50 und 70%) wurden zwischen dem 15. und 

dem 21. Lebenstag ad libitum an Masthühner verfüttert. Trotz der hohen Inklusionsraten 

der Testfuttermittel war die Akzeptanz der Diäten gut. Am 21. Lebenstag wurde der Chymus 

aus dem Gastrointestinaltrakt zwischen dem Meckel‘schen Divertikel bis 2 cm vor 

Einmündung in die Blinddarmsäcke buchtenweise gesammelt. Die Futteraufnahme und die 

Lebendmassezunahme sowie die praecaecalen Rohprotein- und Aminosäuren-

verdaulichkeiten waren höher in den Ackerbohnendiäten als in den Futtererbsendiäten. Die 

praecaecale Verdaulichkeit des Rohproteins betrug 0,84 bei Ackerbohnen und 0,81 bei 

Futtererbsen. Lysin, Methionin, Histidin und Arginin waren hoch verdaulich, während 

Cystein und Tryptophan eine geringere praecaecale Verdaulichkeit aufwiesen. Die 

praecaecale Rohprotein- und Aminosäurenverdaulichkeit der geprüften ökologisch 

erzeugten Futtermittel war vergleichbar mit Ergebnissen aus Studien mit konventionell 

erzeugten Proben. Es sind keine systematischen Unterschiede zwischen ökologisch und 

konventionell erzeugten Futtererbsen und Ackerbohnen hinsichtlich ihrer praecaecalen 

Rohprotein- und Aminosäurenverdaulichkeit zu beobachten. Ökologisch erzeugte 

Ackerbohnen und Futtererbsen sind daher eine gute Quelle für Rohprotein und 

Aminosäuren in der Fütterung von jungen Masthühnern. 

Schlüsselworte  

ileal, Ökologischer Landbau, Geflügel, Masthühner 
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Introduction 

High amounts of specific essential amino acids (AA) must be available for poultry (Zollitsch 

et al. 2004). Thus, the precaecal (pc) digestibility of crude protein (CP) and AA has become 

an important descriptor in feed evaluation for chickens (Ravindran et al. 1999). Since the 

estimation of endogenous losses is inaccurate (Donkoh & Moughan 1999), it is more 

favourable to use approaches without a separate determination of endogenous losses for 

the evaluation of test feedstuffs. Linear regression approaches fulfil this condition and can 

be applied when at least three inclusion rates of the test feedstuffs to a basal diet are used 

(Short et al. 1999, Rodehutscord et al. 2004). Home-grown grain legumes, like field beans 

and field peas, can supply CP and some of the required AA for poultry. They are also 

advantageous in view of supporting regional agricultural production. This is important in 

organic farming, especially, where the sufficient supply with AA is difficult due to legal 

restrictions. The composition of field beans and field peas varies depending on variety and 

cultivation environment (Witten et al. 2015). Thus, even their pc digestibility may vary (Kluth 

et al. 2005a).  

This study aimed to determine the pc CP and AA digestibility of a field bean variety and a 

field pea variety, commonly used in organic farming, in three-week-old broiler chickens. 

Materials and Methods 

The animal trial was carried out at the Research Farm for Agriculture “Unterer Lindenhof” 

of the University of Hohenheim (Stuttgart, Germany) according to the European Directive 

EU (2010) and approved by local authorities. 

As test feedstuffs, the field bean variety Taifun and the field pea variety Alvesta were 

cultivated in 2015 in Southern Germany (Hohenkammer GmbH, Gut Eichethof) according 

to current eco-directives (Table ll 1). In poultry feeding, varieties that are used are presumed 

to contain low contents of anti-nutritive factors. Taifun is a field bean variety that is 

advertised as tannin-free and is available in organic quality. The field pea variety Alvesta, 

which is high-yielding and used throughout Germany, is white-flowering and, therefore, also 

low in tannin. 
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Table ll 1: Analysed amounts of crude nutrients and amino acids (g/kg DM) in the test 
feedstuffs 

 Field bean (Vicia faba L.) Field pea (Pisum sativum L.) 

Variety Taifun Alvesta 

Crude protein 283.3 173.5 

Crude ash 57.3 33.3 

Ether extract 18.6 22.6 

Crude fibre 81.3 54.5 
   

Lysine 18.73 13.96 

Methionine 2.34 2.23 

Cystine 3.87 3.49 

Threonine 9.92 7.48 

Tryptophan 2.06 1.42 

Leucine 20.37 12.66 

Isoleucine 10.97 7.33 

Valine 12.21 8.26 

Arginine 25.82 12.41 

Histidine 8.77 5.14 

Phenylalanine 12.08 8.87 

Tyrosine 8.55 5.73 

Alanine 11.56 8.06 

Glycine 11.74 7.72 

Serine 13.36 8.24 

Proline 12.00 7.78 

Aspartic acid 30.56 20.94 

Glutamic acid 46.39 29.27 

Animals and housing 

Day-old Hubbard ISA JA 757 mixed-sex broilers, which are commonly used in organic 

farming, were obtained from Couvoirs de L’Est hatchery in France. The chicks were 

randomly allocated to cleaned and disinfected pens and housed in groups on wood 

shavings. The size of the pens was 2.25 m2 permitting a maximum of 5 kg body mass per 

m2 and 0.125 m2 floor space per broiler at day 21. The room was thermostatically controlled 

with an initial temperature of 32°C that was decreased continually to 26°C on day 21. For 

the first three days, the room was illuminated all day using artificial LED light with a light 

intensity of more than 20 Lux. From day four, eight hours of darkness and 16 hours of 

illumination time were applied. The chicks were vaccinated against Newcastle disease via 

drinking water and controlled twice daily. Feed and water were provided ad libitum. Prior to 

the trial period, which began on day 14, birds were fed with a starter diet (Table ll 2). The 

diet was formulated to meet nutrient requirements according to GfE (1999). 

On day 14, broilers were weighed and, if necessary, exchanged between pens to achieve 

similar average body mass across all pens. The overall initial body mass was 352.8 g. 

Groups were then assigned to trial diets. Each trial diet was fed to 17 or 18 birds in six 

replicate pens for one week from day 15 to day 21 of life. Feed intake was determined. On 

day 21, all broilers were killed pen-wise by asphyxiation with carbon dioxide. To ensure gut 

fill, birds were fed for a minimum of 30 minutes prior to killing. After killing, the carcasses 

were weighed, and the ileal section of the gut was immediately gathered and examined for 
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anomalies. The terminal two-thirds of the ileal section between Meckel’s diverticulum and 

2 cm anterior to the ileo-caeco-colonic junction were excised (Kluth et al. 2005b) and cut 

into short segments. The digesta was flushed out gently with distilled water and pooled pen-

wise. 

Table ll 2: Ingredients and calculated composition of the starter diet 
Ingredients g/kg DM  Composition g/kg DM 

Soybeans* 399.90  Crude protein 205.0 

Wheat* 389.90  Crude fibre 44.7 

Maize* 109.95  Ether extract 86.9 

Alfalfa green meal 50.00  Methionine 4.1 

Wheat gluten 5.00  Lysine 11.0 

Sunflower oil* 0.50  Threonine 7.4 

Limestone 14.00  Tryptophan 2.6 

Mono-Ca-Phosphate 20.00    

Sodium-Bicarbonate 2.50  AMEN (MJ/kg DM)3 12.2 

Salt 2.00    

Mineral-Premix1 0.80    

Vitamin-Premix2 2.00    

DL-Methionine 1.20    

L-Lysine 1.10    

Choline chloride 1.00    

Antioxidans 0.15    

*Organically produced; 1Trace elements (mg/kg): Fe 81, Mn 108, Zn 72, Cu 14, J 1.44, Se 0.45; 2Vitamin premix 
(/kg): A 12,600 IU, D3 3,150 IU, E 41 mg, K 3 mg, B1 3 mg, B2 6 mg, B12 32 μg, niacin 53 mg, pantothenic 
acid 13 mg, folic acid 1050 μg, biotin 105 μg; 3WPSA (1984) 

Trial diets 

All diets were manufactured at the Research Farm for Agriculture “Unterer Lindenhof”, 

pelleted, and stored at ambient temperature. The basal diet contained titanium dioxide as 

an inert marker, soybeans and wheat gluten as protein feedstuffs, sunflower oil to provide 

a low-dust feedstuff, minerals, vitamins, and maize starch. It was supplemented with 

methionine, lysine, and threonine to cover the birds’ requirements according to GfE (1999). 

Each test feedstuff was added at inclusion rates of 30, 50, and 70% in exchange for maize 

starch (40, 20, and 0%; Table ll 3). 

Chemical Analysis 

The diets and the test feedstuffs were analysed for their dry matter and crude nutrient 

contents, including starch, according to VDLUFA official methods (VDLUFA 2012). Digesta 

samples were frozen immediately, freeze-dried, ground to pass a 0.5 mm sieve, and stored 

at -18°C until CP (N*6.25) and AA analyses were performed. Contents of AA in test 

feedstuffs, diets, and in the digesta of birds were analysed according to Directive (EC) No 

152/2009 (EC 2009); however, the analysis was modified according to Cohen & Michaud 

(1993) regarding derivation, separation, and detection of the hydrolysate amino acids. The 

inert marker titanium dioxide was determined photometrically (Brandt & Allam 1987). 
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Table ll 3: Ingredients and analysed composition (g/kg DM) of the diets with the test 
feedstuffs bean (Vicia faba L.) and pea (Pisum sativum L.) 

Ingredients  Bean    Pea  

Bean/Pea 300 500 700  300 500 700 

Maize starch 400 200 0  400 200 0 

Soybeans*  170    170  

Wheat gluten*  64    64  

Sunflower oil  10    10  

Limestone  13    13  

Mono-Ca-Phosphate  23    23  

Sodium-Bicarbonate  10.2    10.2  

Choline chloride  1.0    1.0  

Salt  2.2    2.2  

Mineral-Premix1  0.8    0.8  

Vitamin-Premix2  2.0    2.0  

DL-Methionine  2.8    2.8  

L-Lysine  2.8    2.8  

L-Threonine  1.8    1.8  

L-Tryptophan  0.4    0.4  

TiO2  5.0    5.0  
        

Composition        

ME (MJ) 14.5 13.7 13.0  14.5 13.9 13.1 

Crude protein 206.5 259.9 316.1  169.8 207.1 239.2 

Crude fibre 30.7 37.4 68.3  20.2 34.1 45.0 

Ether extract 71.9 71.7 73.6  66.4 68.7 72.3 

Methionine 4.7 5.4 5.7  5.4 6.0 6.5 

Lysine 13.4 17.1 20.5  11.6 15.3 17.7 

Threonine 7.8 9.9 12.8  7.5 9.4 11.7 

Tryptophan 2.3 2.7 3.2  2.0 2.5 2.7 

*organically produced; 1Trace elements (mg/kg): Fe 81, Mn 108, Zn 72, Cu 14, J 1,44, Se 0,45 2Vitamin premix 
(/kg): A 12,600 IU, D3 3,150 IU, E 41 mg, K 3 mg, B1 3 mg, B2 6 mg, B12 32 μg, niacin 53 mg, panthotenic 
acid 13 mg, folic acid 1050 μg, biotine 105 μg  

Calculations and Statistics 

Apparent pc digestibility coefficients (pcADC) of CP and AA of the diets were calculated 

pen-wise using the following equation: 

𝑝𝑐𝐴𝐷𝐶 𝑎𝑎 = 1 −  
𝑎𝑎 𝑑𝑖𝑔∗ 𝑇𝑖𝑂2 𝑓𝑒𝑒𝑑

𝑇𝑖𝑂2 𝑑𝑖𝑔 ∗ 𝑎𝑎𝑓𝑒𝑒𝑑
 , 

where aadig represents the content of the AA or CP in the digesta, aafeed represents the 

content of the AA or CP in the treatment diet, TiO2dig represents the TiO2 content in the 

digesta, and TiO2feed represents the TiO2 content in the treatment diet. 

A one-way anova was used to test the effect of the diet. The standardised pc digestibility 

coefficients (pcSDC) of AA and CP of the test feedstuffs were determined according to 

Rodehutscord et al. (2004) by linear regression analyses (procedure lm, R Core Team 

2017). The intake of the AA or CP was related to the apparently precaecally digestible 

amount of the test AA or CP, (intake*pcADC). Since the test feedstuffs are the sole sources 

of additional protein and AA in the trial diets, the CP and AA content of the basal diet, as 

well as basal endogenous CP and AA losses, are reflected in the estimate of the intercept. 

Therefore, the estimated slope is unaffected by these factors (Rodehutscord et al. 2004). 
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The linearity was tested with scatter plots, and the slope of the regression was taken as a 

measure of the pcSDC (Rodehutscord et al. 2004, Kluth et al. 2009). 

Results 

The bird performance was similar to previous experiments conducted at the farm. 

Depending on the test feedstuff inclusion rate of 30, 50, and 70%, the broiler chickens 

increased their initial body mass to 607, 623, and 615 g with the test diets containing field 

beans, and to 571, 596, and 609 g with the test diets containing field peas, respectively. We 

observed average gain/feed ratios of 0.70, 0.76, and 0.73 for field bean diets and 0.60, 0.67, 

and 0.69 for field pea diets. 

The pcADCs of the diets, which were used for the regression analyses, are shown in Table 

ll 4. They did not differ significantly for AA and CP of diets with different inclusion rates of a 

test feedstuff. 

Table ll 4: Coefficients of apparent precaecal digestibility (pcADC) of crude protein and 
amino acids in trial diets containing organically cultivated field beans (Vicia faba 
L.) and field peas (Pisum sativum L.) at three inclusion levels (g/kg DM) 
determined in 21-day-old broiler chickens 

  Bean     Pea   

Inclusion rate 300 500 700   300 500 700  

 pcADC pcADC pcADC SE  pcADC pcADC pcADC SE 

Crude protein 0.81 0.81 0.81 0.007  0.79 0.81 0.79 0.007 

Lysine 0.84 0.85 0.85 0.010  0.81 0.85 0.84 0.009 

Methionine 0.86 0.87 0.87 0.010  0.89 0.89 0.88 0.007 

Cystine 0.60 0.64 0.66 0.023  0.72 0.72 0.71 0.009 

Threonine 0.75 0.77 0.79 0.014  0.73 0.78 0.77 0.011 

Tryptophan 0.80 0.81 0.81 0.010  0.75 0.78 0.74 0.010 

Leucine 0.83 0.83 0.83 0.009  0.78 0.81 0.79 0.008 

Isoleucine 0.80 0.81 0.82 0.010  0.76 0.80 0.77 0.009 

Valine 0.78 0.80 0.82 0.010  0.73 0.78 0.75 0.010 

Arginine 0.87 0.89 0.90 0.007  0.81 0.85 0.83 0.008 

Histidine 0.82 0.85 0.86 0.009  0.80 0.84 0.83 0.008 

Phenylalanine 0.84 0.84 0.84 0.009  0.82 0.83 0.82 0.007 

Tyrosine 0.80 0.80 0.83 0.009  0.78 0.80 0.78 0.008 

Alanine 0.77 0.79 0.80 0.010  0.73 0.77 0.75 0.011 

Glycine 0.73 0.75 0.76 0.011  0.71 0.75 0.74 0.010 

Serine 0.76 0.78 0.79 0.012  0.74 0.77 0.75 0.009 

Proline 0.85 0.86 0.86 0.006  0.84 0.85 0.84 0.006 

Aspartic acid 0.76 0.80 0.80 0.008  0.71 0.75 0.73 0.009 

Glutamic acid 0.90 0.91 0.91 0.004  0.89 0.90 0.88 0.005 

Amino acids 0.83 0.83 0.85 0.008  0.80 0.83 0.81 0.007 

The relation between ingested and digested amounts was linear for all AA and for CP in 

field peas and field beans. The pcSDC of CP was 0.84 and 0.81 for the beans and the peas, 

respectively (Table ll 5). 
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Table ll 5: Coefficients of standardised precaecal digestibility (pcSDC) of crude protein and 
amino acids in organically cultivated field beans (Vicia faba L.) and field peas 
(Pisum sativum L.) determined with a linear regression approach in 21-day-old 
broiler chickens 

 Bean    Pea   

 pcSDC SE r2  pcSID SE r2 

Crude protein 0.84 0.048 0.95  0.81 0.050 0.94 

Lysine 0.90 0.050 0.95  0.91 0.042 0.97 

Methionine 0.97 0.096 0.85  0.90 0.078 0.89 

Cystine 0.80 0.099 0.81  0.70 0.053 0.91 

Threonine 0.88 0.058 0.93  0.87 0.050 0.95 

Tryptophan 0.81 0.081 0.86  0.78 0.071 0.88 

Leucine 0.87 0.048 0.95  0.83 0.050 0.94 

Isoleucine 0.86 0.050 0.95  0.82 0.050 0.94 

Valine 0.86 0.051 0.95  0.81 0.054 0.93 

Arginine 0.93 0.024 0.99  0.89 0.040 0.97 

Histidine 0.93 0.034 0.98  0.90 0.039 0.97 

Phenylalanine 0.87 0.048 0.95  0.82 0.043 0.96 

Tyrosine 0.86 0.047 0.95  0.82 0.049 0.94 

Alanine 0.86 0.050 0.95  0.82 0.057 0.92 

Glycine 0.83 0.055 0.93  0.80 0.051 0.94 

Serine 0.86 0.060 0.92  0.79 0.054 0.93 

Proline 0.89 0.041 0.97  0.86 0.045 0.96 

Aspartic acid 0.86 0.033 0.98  0.77 0.044 0.94 

Glutamic acid 0.92 0.029 0.99  0.89 0.036 0.97 

Amino acids 0.90 0.042 0.97  0.84 0.045 0.95 

Methionine, lysine, histidine, and arginine were well digestible in both test feedstuffs. 

Tryptophan and cystine were less digestible. 

Discussion 

Both test feedstuffs (Table 1) contained low amounts of CP and AA compared to literature 

values (Partanen et al. 2001, Kluth et al. 2005a). However, the CP and AA concentrations 

fell within the range of earlier reports of organic field beans and field peas (Kyntäjä et al. 

2014, Witten et al. 2015). The methionine content was high in both test feedstuffs but similar 

to table values (Kyntäjä et al. 2014). 

High inclusion rates of grain legumes can be detrimental in poultry. Yet, Masey O’Neill et 

al. (2012) and Gabriel et al. (2008) formulated diets containing more than 70% field peas or 

field beans to determine nutrient digestibility. In our study, high inclusion rates of grain 

legumes did not lead to health problems or feed refusal. This observation was probably 

related to the short feeding period of the diets or to low concentrations of anti-nutritive 

factors (ANF) of the chosen varieties of the test feedstuffs. 

The pcSDCs of the CP and AA of field beans and field peas of the present study were either 

comparable with or higher than compared to values reported in the literature (Simon 2004, 

Kluth et al. 2005a, Masey O’Neill et al. 2012, Blok & Dekker 2017). Arginine, glutamic acid, 

methionine, and lysine of field peas were highly digestible, while cystine and tryptophan 

were less digestible. Contrary to literature results, histidine of field beans and field peas was 
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highly digestible in our study. The findings for the field pea variety Alvesta were similar to 

the results reported by Kluth et al. (2005a). Low contents of ANF might be responsible for 

the high pcSDCs of the AA (Brufau et al. 1998, Crépon et al. 2010). However, ANF contents 

were not analysed. 

Conclusions 

We were able to show that the pc digestibility of CP and AA of organic field peas and field 

beans is not inferior to the one of non-organic ones tested in other studies. Field bean and 

field pea varieties are valuable sources of CP and AA in broiler feeding during the starter 

period. Moreover, the use of these legumes can reduce the deficit of amino acids in organic 

broiler feed. 
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Abstract 

The knowledge of the precaecal digestibility of crude protein and amino acids has gained 

importance over the last decades. However, since animal welfare is given high priority, 

animal digestibility experiments are not recommended unless unavoidable. Thus, in vitro 

approaches to predict the precaecal digestibility of dietary crude protein and amino acids 

are of interest for feed evaluation. The present study aimed for an adaption of a promising 

and simple multi-enzyme assay, which uses pepsin and pancreatin to predict the true and 

standardised precaecal digestibility of crude protein and amino acids in feedstuffs for swine. 

The adapted in vitro assay should predict the standardised precaecal digestibility of crude 

protein and amino acids in feedstuffs for broiler chicken. The adaptation of the approach as 

well as arising complications were described in this chapter.  

The conditions of the gastro-intestinal tract of chicken were simulated in three steps, 

representing the crop, the stomach, and the small intestine. In the adapted in vitro assay, 

samples are incubated at 41°C for 30 minutes in a buffer solution at pH 6.0, for 135 minutes 

with pepsin at pH 2.6 and for 120 minutes with pancreatin at pH 6.4. The in vitro rate of 

crude protein disappearance of sixteen different feedstuffs was correlated to their 

standardised precaecal crude protein and amino acid digestibility in broiler chicken. 

Regressions between the in vitro rate of crude protein disappearance and the precaecal 

digestibility of crude protein for 42-day old broiler chicken had high coefficients of 

determination (R2 = 0.94). Furthermore, the precaecal amino acid digestibility could be 

estimated on the basis of the in vitro rate of crude protein disappearance (R2 >0.70). 

The adapted method can be used to predict the precaecal digestibility of crude protein and 

amino acids in feedstuffs for young broiler chicken. An extension of the calibration with 

further samples of single and mixed feed with known precaecal digestibility of crude protein 

and amino acids is recommended. 

Keywords  

pepsin, pancreatin, ileal 
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Zusammenfassung 

Das Wissen über die praecaecale Verdaulichkeit des Rohproteins und der Aminosäuren 

von Futtermitteln für monogastrische Nutztiere hat in den letzten Jahrzehnten an Bedeutung 

in der Geflügelernährung gewonnen. Da dem Tierwohl aber auch eine wachsende 

Bedeutung zukommt, sollten Versuche mit lebenden Tieren möglichst vermieden werden. 

Daher sind in vitro Ansätze zur Verdaulichkeitsschätzung von Interesse. Das Ziel dieser 

Studie war es, eine vielversprechende und einfach umsetzbare in vitro Multienzymmethode 

zur Bestimmung der Rohprotein- und Aminosäurenverdaulichkeit von Futtermitteln für 

Schweine so zu adaptieren, dass die praecaecale Verdaulichkeit des Rohproteins und der 

Aminosäuren für junge Broiler schnell geschätzt werden kann. Das Vorgehen sowie einige 

aufgetretene Komplikationen während des Adaptationsprozesses werden in diesem Kapitel 

beschrieben. 

Die Bedingungen des Verdauungstraktes von Broilern wurden in drei Schritten, die den 

Kropf, den Magen und den Dünndarm simulieren, nachgestellt. In der adaptierten Methode 

werden die Proben bei 41°C zunächst 30 Minuten in einem Puffer mit pH 6,0 eingeweicht 

und danach für 135 Minuten bei pH 2,6 mit Pepsin und für 120 Minuten bei pH 6,4 mit 

Pankreatin inkubiert. Die in vitro Verschwindensrate des Rohproteins von 16 

unterschiedlichen Einzelfuttermitteln war mit ihrer bekannten praecaecalen Verdaulichkeit 

des Rohproteins und der Aminosäuren für junge Broiler korreliert. Das Bestimmtheitsmaß 

der Regressionen für die Schätzung der praecaecalen Verdaulichkeit sowohl des 

Rohproteins  (R2 = 0.94) als auch der Aminosäuren (R2 > 0.70) in 42 Tage alten Broilern 

aus der in vitro Verschwindensrate des Rohproteins war zufriedenstellend. 

Die modifizierte und gekürzte Methode kann daher zur Schätzung der praecaecalen 

Verdaulichkeit des Rohproteins und der Aminosäuren in Futtermitteln für junge Broiler 

eingesetzt werden. Eine Erweiterung der Kalibration mit Einzel- und Mischfuttermitteln wird 

empfohlen. 

Schlüsselworte  

Pepsin, Pancreatin, ileal 
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Introduction 

Over the last decades, the digestibility of crude protein (CP) and amino acids (AA) has 

gained importance in feed evaluation for monogastric animals (Dalibard & Paillard 1995, 

Ravindran & Bryden 1999, Perttilä et al. 2002). Thus, results of animal trials were used to 

derive table values that are applied in ration formulation (Ajinomoto Animal Nutrition Group 

2003-2013, Agroscope 2011-2016, Evonik 2016, INRA-CIRAD-AFZ 2018). However, the 

digestibility of CP and AA can differ between batches of feedstuffs (Masey O’Neill et al. 

2012, Zuber et al. 2016a, Zuber et al. 2016b, Zuber & Rodehutscord 2016). Furthermore, 

in vivo approaches are diverse and their outcome depends on many factors. Characteristics 

of the animal, like age, race, or sex, and of trial characteristics, like management (e. g., 

feeding technique or temperature management) or sampling method and site (ileal digesta 

or excreta from intact or cecaectomised animals) can affect the trial results (Ravindran et 

al. 2017). In addition, such trials are time-consuming, costly, and problematic in terms of 

animal welfare, which is currently of special and growing importance (BMEL 2017). To 

improve the prediction of the pc CP and AA digestibility of different batches of feedstuffs 

without the need for animal trials, various in vitro approaches have been introduced. The 

most realistic in vitro assays use digestive enzymes to illustrate the processes of the 

digestive tract. Such assays are not supposed to duplicate the in vivo digestion, which is a 

very complex process. However, the results of the simplified simulation of the digestion 

must be replicable and correlated with the in vivo digestibility (Sibbald 1987, Butts et al. 

2012) to be valuable. 

Boisen & Fernández (1991, 1995) introduced a multi-enzyme method to predict the pc CP 

and AA digestibility in swine. They used pepsin and pancreatin to simulate the digestion of 

CP and AA in the stomach and in the small intestine, respectively. Their approach is used 

in scientific projects in its original or in modified forms (Pastuszewska et al. 2004, Jezierny 

et al. 2010b, Aarhus University 2015, Hoischen-Taubner et al. 2016), because it is simple 

and realistic. Furthermore, de Coca-Sinova et al. (2008) found the apparent digestibility of 

soybean meal in broiler chicks to be correlated to the in vitro digestibility, which was 

determined with the method of Boisen & Fernández (1995). This makes the approach 

promising in terms of the prediction of the pc CP and AA digestibility for broiler chicken. 

However, the original method is rather time-consuming for a minimum of four days is 

needed to obtain the results. 

The aim of the present study was to adapt the in vitro approach of Boisen & Fernández 

(1995) to predict the pc CP and AA digestibility of feedstuffs for broiler chicken and to 

shorten the analysis time. In this chapter, information on the effects and the complications 

of the adaptation process are outlined. Furthermore, the adapted method is described. 
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Materials and Methods 

Sample set 

For the calibration of the approach, 16 samples (Table lll 1) with known pc digestibility of 

CP and AA in broiler chicken were available from prior studies, in which the linear regression 

approach of Rodehutscord et al. (2004) was used. On the one hand, samples of 14 different 

organic feedstuffs of a completed project, which dealt with the pc digestibility of CP and AA 

in 21- and 42-day old broiler chicken, were available (Ritteser 2015). Furthermore, samples 

of an organic field pea variety and an organic field bean variety, which were used to 

determine the pc digestibility of CP and AA in 21-day old broiler chicken (Witten et al. 2018, 

chapter ll), were also available. 

Table lll 1: Content of crude protein (CP) and amino acids of feedstuffs available for the 
calibration of the in vitro method (% DM) 

  BW M NB NO S SB WR WT WW MKS FP FB LR AL CS CSe 

CP 14.6 13.3 13.8 14.0 15.1 11.6 7.9 10.9 13.8 10.8 17.4 28.3 28.4 21.3 23.6 23.4 

Lys 0.81 0.21 0.49 0.57 0.41 0.46 0.32 0.37 0.34 0.26 1.40 1.87 1.56 1.09 1.08 1.12 

Met 0.23 0.33 0.17 0.23 0.20 0.21 0.12 0.16 0.18 0.20 0.22 0.23 0.23 0.33 0.33 0.33 

Cys 0.32 0.20 0.23 0.40 0.30 0.30 0.17 0.23 0.28 0.21 0.35 0.39 0.28 0.20 0.19 0.18 

Thr 0.52 0.40 0.46 0.48 0.44 0.42 0.26 0.33 0.37 0.37 0.75 0.99 0.89 0.91 0.96 0.95 

Trp 0.19 0.19 0.17 0.19 0.16 0.13 0.09 0.10 0.14 0.07 0.21 0.14 0.23 0.35 0.27 0.25 

Ile 0.51 0.52 0.46 0.50 0.48 0.39 0.24 0.32 0.40 0.37 0.73 1.10 0.99 0.81 0.98 0.94 

Leu 0.87 1.67 0.92 1.00 0.95 0.76 0.45 0.64 0.83 1.43 1.27 2.04 1.78 1.49 1.69 1.63 

Val 0.66 0.62 0.66 0.68 0.62 0.56 0.35 0.45 0.52 0.51 0.83 1.22 1.16 1.03 1.29 1.25 

Arg 1.27 0.44 0.67 0.93 0.64 0.57 0.40 0.51 0.59 0.39 1.24 2.58 1.94 0.99 0.61 0.71 

His 0.44 0.31 0.37 0.38 0.43 0.38 0.22 0.29 0.37 0.31 0.51 0.88 0.84 0.58 0.52 0.51 

Phe 0.62 0.75 0.71 0.70 0.66 0.55 0.31 0.44 0.58 0.55 0.89 1.21 1.19 1.00 1.04 0.92 

Tyr 0.39 0.49 0.41 0.47 0.40 0.34 0.19 0.28 0.36 0.41 0.57 0.85 0.71 0.66 0.51 0.62 

Ala 0.59 1.41 0.54 0.65 0.52 0.52 0.34 0.41 0.44 0.83 0.81 1.16 1.03 1.08 1.30 1.39 

Gly 0.80 0.30 0.54 0.68 0.61 0.55 0.35 0.43 0.52 0.36 0.77 1.17 1.03 0.98 1.02 1.01 

Ser 0.67 0.83 0.56 0.66 0.75 0.68 0.32 0.44 0.61 0.49 0.82 1.34 1.16 0.88 0.93 0.90 

Pro 0.54 0.96 1.42 0.76 1.40 1.02 0.53 0.88 1.26 1.00 0.78 1.20 1.19 1.07 1.23 1.25 

Asp 1.30 0.82 0.80 1.16 0.79 0.81 0.58 0.63 0.63 0.67 2.09 3.06 2.92 2.35 2.66 2.60 

Glu 2.35 2.95 3.27 2.88 4.10 2.41 1.44 2.43 3.80 2.00 2.93 4.64 4.41 2.13 1.88 2.02 

BW = buck wheat; M = millet; NB = naked barley; NO = naked oats; S = spelt; SB = spring barley;  
WR = winter rye; WT = winter triticale; WW = winter wheat; MKS = maize kernel silage; FP = field pea; 
FB = field bean; LR = lentil rest; AL = alfalfa leaves; CS = clover silage; e = expanded 

Laboratory analyses of crude protein and amino acids 

To calculate the in vitro rate of the CP and AA disappearance, the CP and AA contents 

were determined in the original samples and the residuals. The CP analyses were 

conducted according to Dumas (vario MAX CUBE, Elementar Analysensysteme GmbH, 

Hanau, Germany; N*6.25). Contents of AA were analysed according to Directive (EC) No 

152/2009 (EC 2009) regarding sample preparation via oxidation and hydrolysis. The 

subsequent derivatisation and chromatography were performed according to Cohen & 

Michaud (1993). See Chapter l for further details on AA analysis. 
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In vitro method development 

We based our experiments on a multi-enzyme assay to predict the CP and AA digestibility 

of feedstuffs for pigs. The assay was introduced by Boisen & Fernández (1995). In the 

assay, 1 g sample material (ground to pass a 1 mm sieve) is incubated at 39°C with pepsin 

(2000 FIP U/g; Merck No 7190) at pH 2.0 for six hours and afterwards at pH 6.8 with 

pancreatin (Sigma No P-1750) for 18 hours. The residual of the sample is filtrated and the 

content of CP (Kjeldahl N*6.25) and 18 AA is determined. The rate of CP and AA 

disappearance is correlated to the CP and AA digestibility in swine. Equations are used to 

calculate true digestible CP and AA, specific endogenous losses of CP and AA, and 

standardised digestible CP and AA. 

There were, however, some difficulties in the practical implementation of the original 

method. 

It must be ensured that the incubation temperature is constant over time for all samples. A 

heating chamber was not available in the experimental setup. Thus, the use of a drying 

cabinet as an incubator (Jezierny et al. 2010b) was tested. However, it was difficult to insert 

a stirring plate into the cabinet (kelvitron®, Heraeus Holding GmbH, Hanau, Germany) 

without damaging the cable. Furthermore, to add chemicals and enzymes to each sample, 

the samples must be removed from the drying cabinet. The incubation temperature cannot 

be held constant while the samples are handled at room temperature. As an alternative, a 

shaking water bath (1083, GFL Gesellschaft für Labortechnik mbH, Burgwedel, Germany) 

and a stirring water bath (UNITHERM WAM 15, UniEquip Laborgerätebau- und Vertriebs 

GmbH, Planegg, Germany) with a circulation thermostat (Corio c, Julabo, Seelbach, 

Germany) were tested. The samples tended to agglutinate in the vessels when the shaking 

water bath was used. In this case, they were not soaked with the fluid containing the 

enzymes, and the results varied widely. The application of the stirring water bath turned out 

to be suitable to establish a consistent movement of the whole sample in the fluid at a 

constant incubation temperature. Furthermore, the application of the ANKOM 2000 

Automated Fiber Analyzer (ANKOM Technology, Macedon, NY, USA) was tested. In this 

system, filter bags containing the weighed sample are incubated in a moving strainer, which 

is placed in a tempered water pot. The handling of the samples and the incubation 

conditions was simple and accurate in this system. 

However, the separation of the residual from the fluid with filters turned out to be difficult as 

well. The residuals clogged the filters, and, consequently, filtration was stopped. Thus, 

different filters (filter papers, filter syringes, and glass sample tubes with frits) were tested 

with and without applying a vacuum. No filter variant was applicable for the filtration of the 

residuals. In addition, the samples could not be cleanly removed from the filters after drying. 

This included the filter bags used in the ANKOM system. During the separation of the filter 
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and the sample, filter fibres contaminated the sample, which distorted the results of the CP 

analyses of the residuals. Moreover, centrifugation was tested to separate the residual from 

the fluid. The separation of the samples from the fluid was satisfactory when centrifuged at 

4000 rotations/s (equivalent to 3321*g; Multifuge 1S-R with swing-out rotor Sorvall®, 

Heraeus Holding GmbH, Hanau, Germany). The fluid could then be decanted, and the 

centrifuge tubes containing the samples could be dried in a drying cabinet prior to further 

analyses. Since their weight was more stable than the weight of polypropylene tubes and 

the sample could be cleanly removed, glass centrifuge tubes (45 ml) were used. Another 

advantage of using glass centrifuge tubes was that they could be inserted into the stirring 

water bath. Thus, there was no need to transfer the sample into another vessel until the CP 

and AA analyses of the residuals. After those first difficulties were solved, the adaption of 

the assay got started. 

To represent the digestive tract of the chicken, a methodological step was added that 

embodied the crop. A phosphate buffer (0.1M, pH 6.0) was tested against a citrate buffer 

(0.1M, pH 4.5) by soaking different samples for 30 minutes. No difference between the 

buffer solutions in terms of the rate of CP disappearance was found when both were used 

at body temperature (41°C). Jezierny et al. (2010b) reported using the incubation 

temperature of 40°C. In the present study, increasing the incubation temperature in all steps 

from 39°C to 41°C tended to increase the in vitro rate of CP disappearance. 

Further, adaptations were conducted regarding the pH value and the DM content of the 

“digesta”, and the duration of the analyses were adapted to meet the conditions of the 

digestive tract of the broiler chicken. 

The literature on the pH as well as on the retention time of digesta in the gastro-intestinal 

tract of broiler chicken shows wide variations. The pH and retention time in chicken are 

feedstuff- and animal-dependent (Rougière & Carré 2010, Recoules et al. 2017). Slight 

changes of the pH did not affect the outcome of the analysis. Although a shortening of the 

incubation time did decrease the rate of CP disappearance, it did not have a negative effect 

on its variability and reliability. However, an addition of fluid, which altered the DM content 

of the sample, led repeatedly to increased rates of disappearance. Thus, it is of importance 

to accurately regulate the supply of sample DM and fluid. Consequently, the fluid supply 

was adapted on the basis of information on the DM content in the digesta in chicken 

(Bedford et al. 1991, Pettersson et al. 1991). 

The enzymes in the digestive tract of broiler chicken are assumed to be roughly the same 

as in the digestive tract of swine (Recoules et al. 2017), although differences in the pH range 

and the rate of destruction have been reported between pig and chicken pepsin (Crevieu-

Gabriel et al. 1999). Furthermore, enzyme secretion is depending on the feedstuff (Kokas 

et al. 1971). However, little is known about avian digestive enzymes, their specifications, 
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and their activity. Due to the lack of availability of avian enzymes, porcine pepsin (Merck No 

7190) and pancreatin (Sigma No P-1750) were used as in the original method. 

Pancreatin can be dispersed in demineralised water or in phosphate buffer with pH 6.0 or 

6.8. There were no differences between these fluids regarding solubility or functionality. 

However, pancreatin was not fully dispersed in either fluid and particles were floating in the 

solution. When pancreatin was filtrated through a coarse filter (tea filter), particles were 

removed and the variation between the rate of CP disappearance of the sample replications 

was decreased. 

Additionally, the effect of the omission of chloramphenicol, the particle size of the sample, 

and the amount of sample on the outcome of the in vitro analyses was examined. 

The omission of chloramphenicol, which was used in the original method to prevent result 

variations due to bacterial growth, did not affect the in vitro rate of CP disappearance or its 

variability. It could be used to test feedstuffs with a high natural stock of bacteria. However, 

it has been reported that the digestive tract including the crop is highly populated by bacteria 

(Guan et al. 2003, Abbas Hilmi et al. 2007). Bacteria which occur naturally on plant 

feedstuffs could contribute to the CP digestibility in vivo. Due to their role in digestion, the 

elimination of bacteria with antibiotics can be detrimental in the in vitro assay. 

Löwgren et al. (1989) reported that larger particles need more time to be digested. In the 

present study, the use of a sample that was ground to pass a 0.5 mm sieve instead of a 

1.0 mm sieve also decreased the variation of the rate of CP disappearance between the 

replications of a sample. 

Boisen & Eggum (1991) found larger sample sizes to be more reliable and suggested to 

use a minimum of 0.5 g. Although Boisen & Fernández (1995) used 1.0 g of the test sample, 

the official method protocol (Aarhus University 2006) instructs the user to use 0.5 g. In the 

tests of the present study, the low weight of the test sample led to unstable results due to 

an increased error probability. Thus, tests were conducted to determine the effect of the 

amount of the test sample on the rate of CP disappearance. Increasing amounts of the 

weighed sample decreased its CP disappearance rate (Figure lll 1). The error possibility 

and variability of the rate of CP disappearance was also decreased with increasing sample 

weight. To improve the reliability on the analysis results, the weight of the test sample was 

increased to 1.5 g. Hoischen-Taubner et al. (2016) did also increase the weight of the test 

sample in their analyses and simultaneously increased the amount of enzyme. However, 

since according to Parsons et al. (1997) and Johnston & Coon (1979) excessive addition of 

digestive enzymes in in vitro processes can lead to difficulties in assessing differences of 

the CP degradation rate between samples, the amount of enzyme per sample was not 

adapted. 
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Figure lll 1: In vitro rate of crude protein disappearance as a function of sample weight for 
one field pea sample 

 

Implementation of the final adapted in vitro assay 

Based on a selection of literature reports on retention times in the digestive tract of chicken 

e. g., (Farner 1942a, Richter et al. 1992, Pang & Applegate 2007, Denbow 2015, Valentim 

et al. 2017), the simulation of the crop lasted 30 minutes, the one of the stomach 135 

minutes and the one of the small intestine 120 minutes in the adapted assay. An increase 

of the retention time by 60 minutes in step two or three of the simulated digestive tract did 

not lead to a smaller variation of the rate of disappearance between repetitions or to an 

alteration in the sample ranking. 

In the adapted method, the incubation temperature was 41.0°C. The water bath was 

tempered to 41.3°C to ensure a sample temperature of 41.0°C. To simulate the environment 

of the crop for 30 minutes (20% DM), 7.5 ml phosphate buffer (1M, pH 6.0) were added to 

the sample. Afterwards, 1.5 ml HCl (0.2M) containing 0.015 g pepsin were added to simulate 

the environment of the stomach with a pH of 2.6 and a retention time of 120 minutes 

(16% DM). Finally, 0.0375 ml NaOH (0.6M) plus 1.5 ml phosphate buffer (2M, pH 6.8) 

containing 0.075 g pancreatin were added to simulate the environment of the small intestine 

with a pH of 6.4 for 135 minutes (14% DM). 

Two stirring water baths with 15 slots each and tubes (45 ml) with 20 mm agitator sticks 

were used to analyse the in vitro rate of CP and AA disappearance (Figure lll 2). 
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Figure lll 2: Stirring water baths with circulation thermostats 

Since each transfer of the sample material from one vessel to another increases the 

probability of sample loss, glass centrifuge tubes (45 ml) were used for the entire analysis. 

Gloves were worn to handle the tubes in order to avoid electrostatic charging, which would 

affect the outcome of the weighing and thus the result of the analysis. For the same reason, 

a de-ioniser was used during weighing. To ensure replicable results, buffer solutions must 

be disposed and renewed after one week if they have not been used and enzyme solutions 

must be prepared directly before their application in the analysis. 

Wheat was used as a standard in each water bath during each series to evaluate and 

monitor the quality of the analysis. When the rate of CP disappearance in the standard 

sample deviated more than 0.01 from the observed results the analysis of the day was 

repeated as a whole. Blanks did not differ in various tests. Thus, they were not included 

regularly in the analyses. However, when a new batch of an enzyme was opened, blanks 

were tested again to ensure the repeatability of the analysis. Since outliers can occur, a 

minimum of three replicates (four for field beans and five for grassland-derived products) 

was weighed in for each sample. Another replicate, which was not included in further 

analyses was used to adjust the pH value during the analyses. 

Following centrifugation (3321*g in a swing-out rotor as described above), the residuals 

were gently dried at 40°C until weight constancy was reached. To further shorten the 

procedure, a vacuum oven (Vacutherm, Thermo Fisher Scientific Inc., Waltham, MA, USA) 

was used to dry the residuals. A drying cabinet can be used alternatively. However, instead 

of about 12 hours (depending on the sample material) in the vacuum oven, the residuals 

must be dried for two days in the drying cabinet to reach weight constancy. 

Once replicable results (N disappearance rate ±0.01) were achieved with the adapted 

method, we calibrated it using the samples with known pc CP and AA digestibility. A mixed 

sample consisting of the replicates was used to analyse CP and AA in the residual of the 
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test feedstuffs. The in vitro rate of disappearance of CP (CPd), and analogous for AA (AAd), 

was calculated using the following equation: 

CPd = 1 – (CP in residual (g)/CP in sample (g)) 

Regression analyses to calculate in vitro digestibility coefficients 

The calibration of the in vitro method was conducted by regression analyses. The in vitro 

rate of CP disappearance was related to the in vivo pc CP and AA digestibility of feedstuffs 

in 21- and 42-day old broiler chicken (Figure lll 3). Furthermore, for each AA, the in vitro 

rate of its disappearance as well as the in vitro rate of CP disappearance was related to its 

in vivo pc digestibility. 

Cereals    Grain legumes    Fodder legumes    Maize corn silage  x not used 

a)  

b)  
Figure lll 3: Relation of the rate of crude protein (CP) disappearance in vitro with the in vivo 

precaecal (pc) digestibility coefficient of CP in a) 21-day old and b) 42-day old 

broiler chicken  

The in vitro rate of CP and AA disappearance of naked barley could not be determined 

reliably since the residual could not be separated from the fluid during centrifugation. 
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Therefore, naked barley was excluded from the regression analyses. Furthermore, the in 

vitro rate of CP disappearance would suggest a lower pc digestibility of alfalfa leaf CP. The 

CP of the alfalfa leaf sample was highly digestible in the animal trials, but the feed intake 

and the daily weight gain were reduced (Ritteser 2015). Thus, a possible explanation for 

this finding is that decreased contents of AA in the diet led to an increased absorptive 

capacity and thus to high digestibility coefficients (Corzo et al. 2011). However, for the 

estimation of the pc digestibility of the CP for 21- and 42-day old broiler chicken (d21 and 

d42), alfalfa leaves were also removed from the equation. Moreover, the in vitro rate of CP 

disappearance of winter rye for d21 and d42 and spelt for d21 did not fit into the equations. 

The R2 of the regression slope (pc digestibility) was low for winter rye for d21 and d42-day 

and for spelt and naked oats for d21. That might be due to the intake of wood shavings by 

chickens that were fed diets containing winter rye and spelt (Ritteser 2015). Consequently, 

these values were also removed. Although higher deviations of the in vitro rates of 

disappearance were observed for silages (clover and corn), they were included into the 

equations. 

For d21, the pc digestibility of the CP and AA was known for only three grain legumes and 

for d42 for only one grain legume. Thus, equations for grain legumes only were not 

expedient to predict the pc CP and AA digestibility. Nevertheless, ten cereal grains with 

known pc CP and AA digestibility were available, of which five could be used for the 

prediction of the pc CP and AA digestibility for d21 and seven for the prediction of the pc 

CP and AA digestibility for d42. The coefficient of determination was high for the pc CP 

digestibility for d21 (y=1.3586x+0.6593, R2 = 0.84) and even higher for the pc CP 

digestibility for d42 (y=0.8009x+0.2539, R2 = 0.96). 

The same samples were also used in regression analyses to estimate the pc digestibility of 

the AA. For single AA, the coefficient of determination was higher when the rate of its 

disappearance was used. However, the rate of N disappearance was highly correlated with 

the pc digestibility of all AA. Since the present study aimed for a short time-span of the 

analysis, it was suitable to use the rate of N disappearance as the basis for all estimations. 

However, shifts in the ranking of the pc digestibility of single AA cannot be illustrated 

sufficiently by this calculation. When only cereals were used to relate the in vitro rate of 

disappearance to the in vivo pc digestibility of CP and AA in d42, the use of the in vitro rate 

of AA disappearance improved the coefficient of determination. Thus, further calibration 

with samples derived from different categories (cereals, grain legumes, forages) can 

improve the assay. Still, the modified multi-enzyme method is already suitable for the 

estimation of the standardised pc digestibility of CP and AA in d21 and d42.  
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Method protocol 

1. Purpose: 

Determination of the in vitro crude protein and amino acid digestibility of feedstuffs 

for broiler chicken. 

2. Principle: 

The feed sample is incubated at 41°C with a phosphate buffer (30 minutes, pH 6.0), 

pepsin (135 minutes, pH 2.6), and pancreatin (120 minutes, pH 6.4). The sample 

residual is separated from the fluid using centrifugation. Its dry matter and crude 

protein content is then determined. 

3. Materials: 

1. Scale with four decimal places 

2. Crucibles for dry matter determination 

3. Glass centrifuge tubes with screw caps (45 ml) 

4. Magnetic stirring rods (20 mm) 

5. Water bath with a magnetic stirrer and circulation thermostat (Julabo Corio C) 

6. Pipette 

7. Beakers 

8. pH meter and electrode 

9. Magnetic stick 

10. Freezer (run at -18°C) 

11. Centrifuge (Heraeus Multifuge 1S-R with swing-out rotor Sorvall®) 

12. Drying cabinet (Heraeus kelvitron® t) 

13. Vacuum oven (ThermoScientific Vacutherm) 

14. Desiccator 

15. Mortar 

4. Reagents: 

 All chemicals used are of analytical grade. 

1. Phosphate buffer A (PPA), pH 6.0 (0.1 M): 

 12.1 g NaH2PO4H2O and 1.732 g Na2HPO4 are dissolved in ca. 750 ml H2O demin. 

using a magnetic stirrer. The pH-value is adjusted with 5 M NaOH or 5 M HCl. The 

solution is then filled up to 1000 ml with H2O demin. 

2. Pepsin solution (0.01 g/ml) for 30 places: 

 20 ml HCl (32%) are dissolved in H2O demin. and filled up to 1000 ml (HCl, 0.2 M). 

 Immediately before use, 1.05 g pepsin (Merck No 7190) are dissolved with a 

magnetic stirrer (200 rotations/min) in 52.5 ml 0.2 M HCl. 
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3. HCl solution (5 M): 

100 ml HCl (32%) are dissolved in H2O demin. and filled up to 200 ml with H2O 

demin. 

4. NaOH solution (5 M): 

40.0 g NaOH are dissolved in H2O demin. in a beaker and filled up to 200 ml. 

5. Pancreatin solution (0.05 g/ml) for 30 places: 

7.04 g NaH2PO4 H2O and 6.96 g Na2HPO4 are dissolved in ca. 200 ml H2O demin. 

in a beaker using a magnetic stirrer. The pH-value is adjusted with 5 M NaOH or 

5 M HCl. The solution is then filled up to 250 ml with H2O demin. (phosphate buffer 

B (PPB), pH 6.8, 0.2 M). 

 Immediately before use, 2.625 g pancreatin (Sigma No P-1750) are dissolved with 

a magnetic stirrer (200 rotations/min) in 52.5 ml PPB for 15 minutes and filtered 

through a tea filter. 

6. NaOH solution (0.6 M): 

 24.0 g NaOH are dissolved in H2O demin. in a beaker and filled up to 1000 ml. 

Procedure: 

1. For a double determination of the dry matter ca. 2 g of the sample (3.1., 3.2.) are 

weighed. They are dried at 105°C (3.12.) for at least four hours or until weight 

constancy, cooled in a desiccator (3.14.), and weighed again (3.1.) afterwards. 

2. 1.50 g of a sample with known crude protein and dry matter contents are weighed 

(3.1.) in centrifuge tubes (3.3.) for a fourfold determination of the in vitro digestibility. 

A magnetic stirring rod (3.4.) is inserted into each tube. A standard sample is 

weighed for each series and each water bath in a fourfold determination. 

3. The tubes are inserted into a preheated (41.3°C  41.0°C sample temperature) 

water bath (3.5.) and 7.5 ml PPA (4.1.) are immediately added to each sample using 

a pipette (3.6.). The samples are then gently stirred (200 rotations/min). 

4. The centrifuge tubes are closed with screw caps and incubated at 41°C under 

constant stirring for 30 minutes. 

5. Pepsin solution (4.2.) is freshly prepared in a beaker (3.7.). 

6. 1.5 ml pepsin solution are added to one selected replicate of each sample. The pH 

value of the selected replicates is adjusted to 2.6 with HCL (4.3.) and NaOH (4.4.) 

by using a pH meter (3.8). 0.0375 ml H2O demin. are used to rinse the electrode. 

The same amount of HCl or NaOH that was used in the adjusted sample is now 

added to the other repetitions of the sample. 0.0375 ml H2O demin. and 1.5 ml 

pepsin solution are also added to the other repetitions of the sample. 

7. The centrifuge tubes are closed with screw caps and incubated at 41°C under 

constant stirring for 135 minutes. 

8. Pancreatin solution (4.5.) is freshly prepared in a beaker (3.7.). 
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9. 0.0375 ml NaOH (4.6., 0.6 M) and 1.5 ml are added to the selected repetition of 

each sample. The pH value of those samples is adjusted to 6.4 with HCL (4.3.) and 

NaOH (4.4.) by using a pH meter (3.8.). H2O demin. is used to rinse the electrode. 

The same amount of HCl or NaOH that was used in the adjusted sample is now 

added to the other repetitions of the sample. 0.0375 ml NaOH (0.6 M) and 1.5 ml 

pancreatin solution are also added to the other repetitions of the sample. 

10. The centrifuge tubes are closed with screw caps and incubated at 41°C under 

constant stirring for 120 minutes. 

11. The stirring rods are removed with the magnetic stick (3.9.) and samples are chilled 

(3.10.) until centrifugation. 

12. The samples are centrifuged for 10 minutes at 4°C at 3321 *g (4000 rotations/min 

in a swing-out rotor; 3.11). The fluid is decanted. 

13. The samples are dried in a drying cabinet (3.12.) or vacuum oven (3.13.) at 40°C 

until weight constancy is reached and cooled in a desiccator (3.14.) 

14. The centrifuge tubes with the samples are weighed and the rate of DM 

disappearance (DMd) is checked for uniformity among replicates. The selected 

sample for pH adjustment is disposed if its DMd deviates. 

15. When DMd is satisfactory (SD<0.01), the dried sample residuals are transferred into 

a suitable vessel and finely ground with a mortar (3.15.) for further analysis. 

16. The crude protein content in the residuals is determined. 

 

Calculations: 

1. Dry matter (DM): 

DM = weight of the dried sample (g)/weight of the initial sample (g) 

2. Rate of DM disappearance (DMd): 

DMd = 1 - (weight of the residual (g)/weight of the initial sample (g in DM)) 

3. CP in weight of the initial sample (CPi in g): 

CPi = CP concentration (%) * weight of the initial sample (g in DM) 

4. CP in the undigested residual (CPr in g): 

CPr = CP concentration (%) * weight of the residual (g in DM) 

5. Rate of CP disappearance in vitro (CPd):  

CPd = 1 - (CPr/CPi) 
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The following equations are used to estimate the pc CP and AA digestibility in broiler 

chicken at 21 (d21) and 42 (d42) days of age (x = CPd): 

d21    
 d42   

CP: y = 0.7973x + 0.2954,  R2 = 0.87  
 CP: y = 0.8289x + 0.2532,  R2 = 0.94 

Lys:  y = 1.0824x + 0.1431,  R² = 0.84  
 Lys:  y = 0.9315x + 0.1828,  R² = 0.92 

Met: y = 1.0207x + 0.2020,  R² = 0.90  
 Met:  y = 0.8886x + 0.2769,  R² = 0.97 

Cys:  y = 1.8210x - 0.4764,  R² = 0.77  
 Cys:   y = 1.1389x - 0.0529,  R² = 0.95 

Thr:  y = 0.8211x + 0.2911,  R² = 0.73  
 Thr:  y = 0.7672x + 0.2611,  R² = 0.90 

Trp: y = 0.9902x + 0.1487, R² = 0.91  
 Trp: y = 1.1215x + 0.0210, R² = 0.90 

Ile:  y = 0.5051x + 0.5139,  R² = 0.63  
 Ile:  y = 0.9657x + 0.1322,  R² = 0.94 

Leu:  y = 0.5480x + 0.4877,  R² = 0.54  
 Leu:  y = 0.7222x + 0.3485,  R² = 0.92 

Val:  y = 0.6237x + 0.4281,  R² = 0.64  
 Val:  y = 0.8340x + 0.2496,  R² = 0.89 

Arg:  y = 1.0815x + 0.1596,  R² = 0.78  
 Arg:  y = 0.9917x + 0.1487,  R² = 0.91 

His:  y = 1.0977x + 0.1244,  R² = 0.76  
 His:  y = 1.3203x - 0.1245,  R² = 0.93 

Phe:  y = 0.8367x + 0.2672,  R² = 0.72  
 Phe:  y = 0.8589x + 0.2319,  R² = 0.94 

Tyr:  y = 0.7226x + 0.3718,  R² = 0.75  
 Tyr:  y = 0.7974x + 0.2641,  R² = 0.90 

Ala:  y = 0.5873x + 0.4439,  R² = 0.58  
 Ala:  y = 0.4962x + 0.4746,  R² = 0.85 

Gly:  y = 0.9472x + 0.1802,  R² = 0.79  
 Gly:  y = 0.9577x + 0.1027,  R² = 0.96 

Ser:  y = 0.8574x + 0.2582,  R² = 0.80  
 Ser:  y = 0.7791x + 0.2846,  R² = 0.97 

Pro:  y = 0.7022x + 0.3721,  R² = 0.78  
 Pro:  y = 0.8654x + 0.2433,  R² = 0.95 

Asp:  y = 0.5678x + 0.4719,  R² = 0.67  
 Asp:  y = 0.5072x + 0.4168,  R² = 0.73 

Glu: y = 1.0137x + 0.1789,  R² = 0.83  
 Glu:  y = 0.7334x + 0.3605,  R² = 0.93 
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Abstract 

Since the small intestine is the main site of amino acid absorption, dietary crude protein and 

amino acids that are precaecally digested, can possibly be used in the metabolism of 

chicken. Thus, the knowledge on the precaecal crude protein and amino acid digestibility of 

feedstuffs is of interest in ration formulation. Due to variations of the nutrient composition of 

cereals and grain legumes depending on genetic and environmental factors, the digestibility 

of crude protein and amino acids can also vary. The aim of the study was to use an adapted 

in vitro multi-enzyme assay to evaluate the variation of the in vitro crude protein and amino 

acid digestibility of selected cereals and grain legumes as feedstuffs for broiler chicken. 

Additionally, the effect of variety, harvest year, and harvest site on the in vitro digestibility 

of crude protein and amino acids was determined.  

The in vitro crude protein and amino acid digestibility of samples of organically produced 

barley (54), wheat (43), rye (50), triticale (48), field peas (37) and field beans (44) was 

determined using a multi-enzyme assay with pepsin and pancreatin. The effect of variety, 

year, and/or site/area was evaluated with generalised linear models.  

Although variety only affected the in vitro crude protein and amino acid digestibility of winter 

rye, year and site/area affected the in vitro digestibility of crude protein and amino acids in 

all cultivars. 

The results indicate that wide variations of the precaecal crude protein and amino acid 

digestibility of cereals and grain legumes occur. Furthermore, they indicate that the 

precaecal crude protein and amino acid digestibility is more strongly affected by 

environmental factors than by the variety. 

The in vitro crude protein and amino acid digestibility of all cultivars varied widely and was 

plausible, when compared to table values and literature results. Thus, the assay has the 

potential to be used in the prediction of the crude protein and amino acid digestibility of 

cereals and grain legumes. However, the prediction of the in vitro crude protein and amino 

acid digestibility must be further validated with combined in vivo and in vitro studies. 

Keywords 

variety, site, year, ileal 
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Zusammenfassung 

Der Hauptabsorptionsort von Aminosäuren und Peptiden ist der Dünndarm. Die Nutzung 

von Rohprotein und Aminosäuren aus dem Futter im Stoffwechsel von Geflügel ist daher 

nur dann möglich, wenn sie dünndarmverfügbar sind. Aus diesem Grund wird die Kenntnis 

der praecaecalen Verdaulichkeit des Rohproteins und der Aminosäuren von Futtermitteln 

in der Rationsgestaltung eingesetzt. Durch die starken Schwankungen der 

Nährstoffzusammensetzung von Getreide und Körnerleguminosen in Abhängigkeit von 

genetischen und umweltbedingten Faktoren kann auch die praecaecale Verdaulichkeit des 

Rohproteins und der Aminosäuren variieren. Das Ziel dieser Untersuchung war daher, die 

Variation der in vitro Verdaulichkeit des Rohproteins und der Aminosäuren von 

ausgewählten Getreide- und Körnerleguminosenarten zu bestimmen und den Einfluss von 

Sorte, Anbauort und Anbaujahr auf die in vitro Verdaulichkeit des Rohproteins und der 

Aminosäuren zu ermitteln. 

Die in vitro Verdaulichkeit des Rohproteins und der Aminosäuren von 54 Gersten-, 43 

Weizen-, 50 Roggen-, 48 Triticale-, 37 Futtererbsen- und 44 Ackerbohnenproben aus 

ökologischer Erzeugung wurden mittels einer Multienzymmethode analysiert. Die Effekte 

von Sorte, Anbauort und Anbaujahr wurden mit generalisierten linearen Modellen bestimmt. 

Die Sorte hatte nur bei Winterroggen einen signifikanten Effekt, aber die 

Umweltbedingungen beeinflussten die in vitro Verdaulichkeit des Rohproteins und der 

Aminosäuren in allen Kulturen. 

Die Ergebnisse weisen darauf hin, dass starke Schwankungen der praecaecalen 

Verdaulichkeit des Rohproteins und der Aminosäuren bei den ausgewählten Kulturen 

auftreten. Diese Schwankungen sind bei der zur Verfügung stehenden Stichprobe eher 

durch das Anbaumanagement und die Umweltbedingungen beeinflussbar als durch 

genetische Faktoren der Sorte. Die in vitro Methode hat Potential, zur Schätzung der 

Rohprotein- und Aminosäurenverdaulichkeit von Getreide und Körnerleguminosen 

eingesetzt zu werden. Die Schätzung der Verdaulichkeit des Rohproteins und der 

Aminosäuren muss jedoch mit kombinierten in vivo und in vitro Studien weiter validiert 

werden. 

Schlüsselworte  

Sorte, Anbauort, Jahr, praecaecal 
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Introduction 

Knowledge of the precaecal (pc) crude protein (CP) and amino acid (AA) digestibility of 

feedstuffs for monogastric animals is of benefit for an optimised diet formulation (Hoehler 

et al. 2005, Kluth & Rodehutscord 2009). Thus, in vivo studies are repeatedly performed to 

assess the pc CP and AA digestibility. However, animal trials are time-consuming, costly, 

and problematic with regard to animal welfare. Due to these properties of animal trials, the 

number of studied feedstuffs is generally low. Mostly, direct comparisons of a small number 

of feedstuffs are conducted. Since the results are influenced not only by the feedstuffs but 

also by the chosen method (Kadim & Moughan 1997, Kadim et al. 2002, Kim et al. 2011), 

characteristics of the used animals (Huang et al. 2005, Huang et al. 2006, Kim & Corzo 

2012, Ritteser 2015), and environmental conditions during the trials (Wallis & Balnave 1984, 

Elbers et al. 1989), comparisons between studies are difficult. Consequently, in vitro 

techniques designed to estimate the pc digestibility of CP and AA are valuable tools in 

analysing larger sample sets and performing comparisons over time. However, to be useful 

predictors for the pc CP and AA digestibility, the results obtained with in vitro techniques 

need to have a high correlation with the actual pc digestibility determined in animal trials 

(Sibbald 1987, Jezierny et al. 2010). A method with high correlation coefficients is described 

in Chapter lll. 

Since the nutrient composition of feedstuffs varies widely (Rodehutscord et al. 2016) and 

thus affects ration formulation for farm animals, it can be assumed that the pc digestibility 

of the CP and the AA can also vary. Furthermore, it is known that variety and environmental 

conditions during cultivation and storage can affect the nutrient composition (see Chapter 

l) and the nutrient digestibility of feedstuffs (e. g., Rosenfelder et al. 2015, Strang et al. 2016, 

Zhang et al. 2017). 

The aim of the study was to evaluate the application of an adapted in vitro assay and to 

assess the variation of the in vitro digestibility of CP and AA of selected feedstuffs for young 

broiler chicken. Furthermore, the effect of variety, harvest year and harvest site on the in 

vitro digestibility of CP and AA of selected feedstuffs for young broiler chicken was 

determined. 

Materials and Methods 

Sample set 

In total, 835 samples of organic cereal grains and grain legumes with known contents of CP 

and AA were available. The samples were cultivated in various variety field trials throughout 

Germany in the years 2011, 2012, and 2013 (Witten & Aulrich 2018). Thus, the possible 

influencing factors known were variety, harvest year, and harvest site. The harvest sites 

could be aggregated into homogenous climatic areas according to JKI (2018) for further 
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statistical analyses. Since the sample set was too extensive to be analysed wholly, it had 

to be reduced.  

The following criteria were applied to select samples in order to evaluate the influence of 

variety, harvest year, and harvest site: 

1. The sample amount should be sufficient to be homogenised and analysed thrice. 

2. Factor level manifestations were not taken into consideration when less than three 

repetitions were available. 

3. The repetitions of a factor (variety, harvest year, and harvest site or area; JKI 2018) 

had to include a minimum of two manifestations of the other two factors. 

The reduced sample set contained 54 barley, 50 winter rye, 48 winter triticale, 43 winter 

wheat, 44 field bean, and 37 field pea samples (Table lV 1). 

Table lV 1: Number of samples considered for statistical analyses (n), crude protein contents 
(CP in % DM, N*6.25), and number of manifestations of the factors (variety, year, 
and site or area) for each cultivar 

  n CP varieties years sites areas1 

Cereals       

Winter wheat (Triticum aestivum L.) 43 8.9 - 15.4 3 3 8  

Winter rye (Secale cereale L.) 50 6.1 - 12.4 5 3 4  

Winter triticale (Triticosecale) 48 7.0 – 13.0 3 3 9  

Winter barley (Hordeum vulgare L.) 15 7.4 - 11.8 3 2 5  

Spring barley (Hordeum vulgare L.) 39 7.3 - 11.7 3 3  4 

Grain legumes       

Spring field pea (Pisum sativum L.) 37 14.8 - 24.9 5 3 5  

Spring field bean (Vicia faba L.) 44 27.3 - 33.5 4 2  3 

Total 276      
1cultivation areas with homogenous climatic conditions according to JKI (2018) 

Laboratory analyses 

The in vitro digestibility was analysed according to the method described in Chapter lll. 

Statistics 

R 3.4.0 (R Core Team 2017) was used for all statistical analyses. The in vitro digestibility of 

CP and AA in different cultivars was compared using generalised linear models (glm). Glm 

were also implemented to assess influences of the main factors variety, harvest year, and 

harvest site or area. The aggregated factor area was used for the cultivars spring barley 

and field bean due to their distribution of harvest sites. The package glmulti (Calcagno 2013) 

was used to evaluate best-fitted models by Akaike’s Information Criterion with correction for 

sample size (AICc). 

Multiple comparisons were calculated using multcomp package (Hothorn et al. 2008) with 

lsmeans (Lenth 2016) and Bonferroni-Holm adjustment. The package sandwich (Zeileis 

2004) was included for a heteroscedasticity and autocorrelation consistent estimation of 

covariance with robust standard errors (vcovHAC). Due to the inclusion of this feature 
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differences between factor manifestations were not found in some cases although the factor 

was significantly influencing in the glm. Differences between lsmeans were considered 

significant if p-values were lower than 0.05. 

Results 

Wide variations of the in vitro digestibility of all cultivars were observed. The in vitro 

digestibility of arginine and methionine predicted in winter wheat as feedstuff for 21-day old 

broiler chicken (Table lV 2) was high and reached 100% for one sample. 

Table lV 2: In vitro crude protein (CP) and amino acid digestibility coefficients* of selected 
cereals and grain legumes as feedstuffs for 21-day old broiler chicken 

 
Winter wheat 

(43) 
Winter rye 

(50) 
Winter 

triticale (48) 
Winter 

barley (15) 
Spring 

barley (39) 
Field pea 

(37) 
Field bean 

(44) 

 
Triticum 

aestivum L. 
Secale 

cereale L. 
Triticosecale 

Hordeum 
vulgare L. 

Hordeum 
vulgare L. 

Pisum 
sativum L. 

Vicia faba L. 

CP 0.88 ± 0.02 e 0.83 ± 0.03 c 0.85 ± 0.02 d 0.80 ± 0.03 b 0.78 ± 0.02 a 0.84 ± 0.04 cd 0.77 ± 0.03 a 
 0.82 - 0.92 0.78 - 0.87 0.82 - 0.91 0.75 - 0.85 0.74 - 0.84 0.76 - 0.90 0.70 - 0.87 

Lys 0.94 ± 0.03 0.86 ± 0.03 0.90 ± 0.03 0.83 ± 0.04 0.80 ± 0.03 0.89 ± 0.05 0.79 ± 0.04 
 0.86 - 0.99 0.80 - 0.93 0.85 - 0.98 0.76 - 0.90 0.75 - 0.88 0.77 - 0.96 0.70 - 0.92 

Met 0.95 ± 0.03 0.88 ± 0.03 0.91 ± 0.02 0.85 ± 0.04 0.82 ± 0.03 0.90 ± 0.05 0.81 ± 0.03 

 0.88 – 1.00 0.82 - 0.94 0.87 - 0.99 0.78 - 0.91 0.77 - 0.90 0.79 - 0.97 0.72 - 0.94 

Cys 0.86 ± 0.06 0.74 ± 0.06 0.80 ± 0.04 0.68 ± 0.07 0.63 ± 0.05 0.77 ± 0.09 0.62 ± 0.06 
 0.73 - 0.95 0.62 - 0.85 0.72 - 0.92 0.56 - 0.79 0.54 - 0.77 0.58 - 0.90 0.45 - 0.84 

Thr 0.90 ± 0.03 0.84 ± 0.03 0.86 ± 0.02 0.81 ± 0.03 0.79 ± 0.02 0.85 ± 0.04 0.78 ± 0.03 
 0.84 - 0.93 0.79 - 0.89 0.83 - 0.92 0.76 - 0.86 0.75 - 0.85 0.77 - 0.91 0.71 - 0.88 

Trp 0.88 ± 0.03 0.81 ± 0.03 0.84 ± 0.02 0.78 ± 0.04 0.75 ± 0.03 0.83 ± 0.19 0.75 ± 0.03 

 0.81 - 0.92 0.75 - 0.87 0.80 - 0.91 0.71 - 0.84 0.70 - 0.83 0.72 - 0.90 0.65 - 0.86 

Ile 0.89 ± 0.02 0.85 ± 0.02 0.87 ± 0.01 0.83 ± 0.02 0.82 ± 0.02 0.86 ± 0.02 0.82 ± 0.02 
 0.85 - 0.91 0.82 - 0.88 0.85 - 0.90 0.80 - 0.86 0.80 - 0.86 0.81 - 0.89 0.77 - 0.88 

Leu 0.89 ± 0.02 0.85 ± 0.02 0.87 ± 0.01 0.84 ± 0.02 0.82 ± 0.02 0.86 ± 0.03 0.82 ± 0.02 
 0.85 - 0.92 0.82 - 0.89 0.85 - 0.91 0.80 - 0.87 0.79 - 0.86 0.81 - 0.90 0.77 - 0.88 

Val 0.89 ± 0.02 0.84 ± 0.02 0.86 ± 0.02 0.82 ± 0.02 0.81 ± 0.02 0.86 ± 0.03 0.80 ± 0.02 
 0.84 - 0.92 0.81 - 0.88 0.84 - 0.91 0.78 - 0.86 0.78 - 0.85 0.79 - 0.90 0.75 - 0.88 

Arg 0.96 ± 0.03 0.88 ± 0.03 0.91 ± 0.03 0.85 ± 0.04 0.82 ± 0.03 0.90 ± 0.05 0.81 ± 0.04 
 0.88 – 1.00 0.81 - 0.94 0.87 - 0.99 0.77 - 0.91 0.76 - 0.90 0.79 - 0.97 0.71 - 0.94 

His 0.93 ± 0.03 0.86 ± 0.03 0.89 ± 0.03 0.82 ± 0.04 0.79 ± 0.03 0.88 ± 0.05 0.78 ± 0.04 
 0.85 - 0.98 0.79 - 0.92 0.84 - 0.97 0.75 - 0.89 0.74 - 0.87 0.76 - 0.95 0.68 - 0.92 

Phe 0.88 ± 0.03 0.83 ± 0.03 0.85 ± 0.02 0.80 ± 0.03 0.77 ± 0.03 0.84 ± 0.04 0.77 ± 0.03 
 0.82 - 0.92 0.77 - 0.87 0.82 - 0.91 0.74 - 0.85 0.73 - 0.84 0.75 - 0.90 0.69 - 0.87 

Tyr 0.90 ± 0.02 0.85 ± 0.02 0.88 ± 0.02 0.83 ± 0.03 0.81 ± 0.02 0.87 ± 0.03 0.81 ± 0.02 
 0.85 - 0.94 0.81 - 0.90 0.85 - 0.93 0.78 - 0.87 0.77 - 0.87 0.79 - 0.92 0.74 - 0.89 

Ala 0.88 ± 0.02 0.84 ± 0.02 0.85 ± 0.01 0.82 ± 0.02 0.80 ± 0.02 0.85 ± 0.03 0.80 ± 0.02 
 0.83 - 0.90 0.80 - 0.87 0.83 - 0.90 0.78 - 0.85 0.77 - 0.85 0.78 - 0.89 0.74 - 0.87 

Gly 0.88 ± 0.03 0.81 ± 0.03 0.84 ± 0.02 0.78 ± 0.04 0.75 ± 0.03 0.83 ± 0.04 0.75 ± 0.03 
 0.81 - 0.92 0.75 - 0.87 0.80 - 0.91 0.72 - 0.84 0.71 - 0.83 0.73 - 0.89 0.66 - 0.86 

Ser 0.89 ± 0.03 0.83 ± 0.03 0.86 ± 0.02 0.80 ± 0.03 0.78 ± 0.03 0.85 ± 0.04 0.77 ± 0.03 
 0.83 - 0.93 0.78 - 0.88 0.82 - 0.92 0.75 - 0.85 0.74 - 0.84 0.76 - 0.90 0.70 - 0.88 

Pro 0.89 ± 0.02 0.84 ± 0.02 0.86 ± 0.02 0.82 ± 0.03 0.80 ± 0.02 0.86 ± 0.03 0.79 ± 0.02 
 0.84 - 0.92 0.80 - 0.88 0.83 - 0.91 0.77 - 0.86 0.76 - 0.85 0.78 - 0.90 0.73 - 0.88 

Asp 0.89 ± 0.02 0.85 ± 0.02 0.87 ± 0.01 0.83 ± 0.02 0.82 ± 0.02 0.86 ± 0.03 0.81 ± 0.02 
 0.85 - 0.92 0.82 - 0.88 0.84 - 0.91 0.79 - 0.87 0.79 - 0.86 0.80 - 0.90 0.76 - 0.88 

Glu 0.92 ± 0.03 0.85 ± 0.03 0.89 ± 0.02 0.82 ± 0.04 0.79 ± 0.03 0.83 ± 0.04 0.79 ± 0.03 
 0.85 - 0.97 0.79 - 0.91 0.84 - 0.96 0.75 - 0.88 0.74 - 0.87 0.76 - 0.89 0.70 - 0.91 

*means and standard deviations as well as ranges; superscripts mark significant differences between columns 
(p<0.05) and are analogous for CP and all amino acids 

Since the equations to estimate the in vitro AA digestibility were based on the rate of in vitro 

CP disappearance, variations of all AA digestibility coefficients were analogous to the ones 
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of the in vitro CP digestibility coefficient. The in vitro digestibility equations, which were used 

to predict the pc digestibility of CP and AA in 21-day old broiler chicken, yielded higher 

digestibility coefficients than the equations for 42-day old broiler chicken. Thus, the 

coefficients of the in vitro CP and AA digestibility in all cultivars were lower for 42-day old 

broiler chicken than the ones for 21-day old broiler chicken (Table lV 3). 

Table lV 3: In vitro crude protein (CP) and amino acid digestibility coefficients* of selected 
cereals and grain legumes as feedstuffs for 42-day old broiler chicken 

 
Winter wheat 
(43) 

Winter  
rye (50) 

Winter 
triticale (48) 

Winter 
barley (15) 

Spring 
barley (39) 

Field  
pea (37) 

Field  
bean (44) 

 
Triticum 
aestivum L. 

Secale  
cereale L. 

Triticosecale 
Hordeum 
vulgare L. 

Hordeum 
vulgare L. 

Pisum  
sativum L. 

Vicia faba L. 

CP 0.86 ± 0.03 e 0.81 ± 0.03 c 0.83 ± 0.02 d 0.78 ± 0.03 b 0.76 ± 0.02 a 0.82 ± 0.04 cd 0.75 ± 0.03 a 
 0.80 - 0.90 0.75 - 0.85 0.80 - 0.89 0.72 - 0.83 0.71 - 0.82 0.73 - 0.88 0.68 - 0.85 

Lys 0.87 ± 0.03 0.80 ± 0.03 0.83 ± 0.02 0.77 ± 0.04 0.75 ± 0.03 0.82 ± 0.04 0.74 ± 0.03 
 0.80 - 0.91 0.75 - 0.86 0.79 - 0.90 0.71 - 0.83 0.70 - 0.82 0.72 - 0.88 0.66 - 0.85 

Met 0.93 ± 0.03 0.87 ± 0.03 0.90 ± 0.02 0.84 ± 0.03 0.82 ± 0.03 0.89 ± 0.04 0.81 ± 0.03 

 0.87 - 0.97 0.81 - 0.92 0.86 - 0.96 0.78 - 0.89 0.77 - 0.88 0.79 - 0.95 0.73 - 0.92 

Cys 0.79 ± 0.04 0.71 ± 0.04 0.74 ± 0.03 0.67 ± 0.04 0.64 ± 0.03 0.73 ± 0.05 0.63 ± 0.04 
 0.70 - 0.84 0.64 - 0.77 0.69 - 0.82 0.59 - 0.74 0.58 - 0.72 0.61 - 0.81 0.53 - 0.77 

Thr 0.83 ± 0.02 0.77 ± 0.02 0.80 ± 0.02 0.75 ± 0.03 0.73 ± 0.02 0.79 ± 0.04 0.72 ± 0.03 
 0.77 - 0.86 0.72 - 0.82 0.76 - 0.85 0.70 - 0.79 0.69 - 0.79 0.71 - 0.84 0.65 - 0.81 

Trp 0.85 ± 0.04 0.77 ± 0.04 0.80 ± 0.03 0.73 ± 0.04 0.70 ± 0.03 0.79 ± 0.07 0.70 ± 0.04 

 0.77 - 0.90 0.70 - 0.84 0.76 - 0.88 0.66 - 0.80 0.65 - 0.79 0.67 - 0.87 0.59 - 0.83 

Ile 0.84 ± 0.03 0.78 ± 0.03 0.81 ± 0.02 0.74 ± 0.04 0.72 ± 0.03 0.79 ± 0.05 0.71 ± 0.03 
 0.77 - 0.89 0.72 - 0.83 0.77 - 0.88 0.68 - 0.80 0.67 - 0.79 0.69 - 0.86 0.62 - 0.83 

Leu 0.88 ± 0.02 0.83 ± 0.02 0.85 ± 0.02 0.81 ± 0.03 0.79 ± 0.02 0.84 ± 0.03 0.78 ± 0.02 
 0.83 - 0.91 0.79 - 0.87 0.82 - 0.90 0.76 - 0.85 0.75 - 0.84 0.77 - 0.89 0.72 - 0.87 

Val 0.86 ± 0.03 0.81 ± 0.03 0.83 ± 0.02 0.78 ± 0.03 0.76 ± 0.02 0.82 ± 0.04 0.75 ± 0.03 
 0.80 - 0.90 0.75 - 0.86 0.80 - 0.89 0.72 - 0.83 0.71 - 0.82 0.73 - 0.88 0.68 - 0.85 

Arg 0.88 ± 0.03 0.81 ± 0.03 0.84 ± 0.02 0.78 ± 0.04 0.75 ± 0.03 0.83 ± 0.05 0.74 ± 0.03 
 0.81 - 0.92 0.75 - 0.87 0.80 - 0.91 0.71 - 0.84 0.70 - 0.83 0.72 - 0.90 0.65 - 0.86 

His 0.85 ± 0.04 0.76 ± 0.04 0.80 ± 0.03 0.71 ± 0.05 0.68 ± 0.04 0.78 ± 0.06 0.67 ± 0.04 
 0.75 - 0.91 0.67 - 0.83 0.74 - 0.89 0.63 - 0.79 0.61 - 0.78 0.64 - 0.87 0.55 - 0.83 

Phe 0.86 ± 0.03 0.80 ± 0.03 0.83 ± 0.02 0.78 ± 0.03 0.75 ± 0.03 0.82 ± 0.04 0.75 ± 0.03 
 0.80 - 0.90 0.75 - 0.86 0.80 - 0.89 0.72 - 0.83 0.71 - 0.82 0.73 - 0.88 0.67 - 0.85 

Tyr 0.85 ± 0.02 0.80 ± 0.03 0.82 ± 0.02 0.77 ± 0.03 0.75 ± 0.02 0.81 ± 0.04 0.74 ± 0.03 
 0.79 - 0.89 0.75 - 0.84 0.79 - 0.88 0.72 - 0.82 0.71 - 0.81 0.73 - 0.87 0.67 - 0.84 

Ala 0.81 ± 0.01 0.78 ± 0.01 0.80 ± 0.01 0.77 ± 0.02 0.75 ± 0.01 0.79 ± 0.02 0.75 ± 0.02 
 0.78 - 0.84 0.75 - 0.81 0.78 - 0.83 0.74 - 0.80 0.73 - 0.79 0.74 - 0.82 0.71 - 0.81 

Gly 0.81 ± 0.03 0.74 ± 0.03 0.77 ± 0.02 0.71 ± 0.04 0.68 ± 0.03 0.76 ± 0.05 0.68 ± 0.03 
 0.74 - 0.85 0.68 - 0.80 0.73 - 0.84 0.65 - 0.77 0.64 - 0.76 0.66 - 0.82 0.59 - 0.79 

Ser 0.86 ± 0.02 0.80 ± 0.02 0.83 ± 0.02 0.78 ± 0.03 0.76 ± 0.02 0.82 ± 0.04 0.75 ± 0.03 
 0.80 - 0.89 0.76 - 0.85 0.80 - 0.88 0.73 - 0.83 0.72 - 0.82 0.74 - 0.87 0.68 - 0.85 

Pro 0.88 ± 0.03 0.82 ± 0.03 0.85 ± 0.02 0.79 ± 0.03 0.77 ± 0.03 0.84 ± 0.04 0.76 ± 0.03 
 0.82 - 0.92 0.77 - 0.87 0.81 - 0.91 0.73 - 0.84 0.73 - 0.83 0.74 - 0.90 0.68 - 0.87 

Asp 0.79 ± 0.02 0.75 ± 0.02 0.77 ± 0.01 0.74 ± 0.02 0.72 ± 0.02 0.76 ± 0.02 0.72 ± 0.02 
 0.75 - 0.81 0.72 - 0.79 0.75 - 0.81 0.70 - 0.77 0.70 - 0.76 0.71 - 0.80 0.68 - 0.78 

Glu 0.90 ± 0.02 0.85 ± 0.02 0.87 ± 0.02 0.83 ± 0.03 0.81 ± 0.02 0.86 ± 0.03 0.80 ± 0.02 

  0.85 - 0.93 0.80 - 0.89 0.84 - 0.92 0.78 - 0.87 0.77 - 0.86 0.79 - 0.91 0.73 - 0.89 

*means and standard deviations as well as ranges; superscripts mark significant differences between columns 
(p<0.05) and are analogous for CP and all amino acids 

The differences between the cultivars were analogous to the ones described for 21-day old 

broiler chicken. In winter wheat and similarly in winter triticale, CP and AA were highly 

digestible. Winter rye and field peas had also a high in vitro CP and AA digestibility. 

However, it varied somewhat more and its minimum was lower. The in vitro digestibility of 
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CP and AA was the lowest in spring barley and field beans (statistically significant, p<0.05). 

Furthermore, the widest variation was observed for field beans (0.17). 

The variety had a significant effect on the in vitro CP and AA digestibility exclusively in winter 

rye. However, the factor harvest site or area affected the in vitro digestibility of CP and AA 

of all cultivars. The factor year was included in the glm for winter wheat, winter rye, spring 

barley, and field pea. However, the effect of the factor year was not always significant in 

these cultivars (Table lV 4). The effects were the same for the in vitro digestibility of each 

AA. They differed only slightly by their p- and F-values. 

Table lV 4: F- and p-values (in italics) of main factors in models describing varietal and 
environmental impact on the in vitro crude protein digestibility of selected 
cultivars for 21- and 42-day old broiler chicken 

    n df* 21-day old 42-day old 
        variety year site/area variety year site/area 

Cereals          
Winter wheat F-Value 43 2;2;7  8.317 4.0652  8.229 4.096 
Triticum aestivum L. p-Value    0.003 0.007  0.002 0.007 
Winter rye F-Value 50 4;2;3 3.183 44.234 3.0121 3.175 44.594 3.1184 
Secale cereale L. p-Value   0.023 0.001 0.041 0.234 0.001 0.037 
Winter triticale F-Value 48 2;2;8   2.992   3.047 
Triticosecale p-Value     0.010   0.009 

Winter barley F-Value 15 2;;4   8.313   8.283 
Hordeum vulgare L. p-Value     0.003   0.003 
Spring barley F-Value 39 2;2;3  3.021 3.840  3.006 3.861 
Hordeum vulgare L. p-Value    0.062 0.018  0.063 0.018 

Grain legumes          
Field pea F-Value 37 3;2;4  6.182 14.528  3.1246 14.372 
Pisum sativum L. p-Value       0.056 0.001   0.058 0.001 

Field bean F-Value 44 3;1;2   4.433   4.396 
Vicia faba L. p-Value     0.018   0.019 

*variety;year;site/area 

A statistically significant effect of the harvest site or area, respectively, on the in vitro 

digestibility coefficients of CP was found for all cultivars (Figure lV 1). Although differences 

of the in vitro CP and AA digestibility were observed between the harvest years (winter 

wheat) and the harvest site or area (all cultivars), there was no consistent pattern between 

the cultivars (Appendix Table A lV 1). 

The in vitro CP digestibility coefficient of spring barley and field beans was statistically 

significantly different between the areas by up to 0.03. A large variability of the in vitro 

digestibility coefficient of CP of up to 0.09 between two sites was determined in field peas. 

In winter wheat, winter triticale, and winter barley, the in vitro CP digestibility coefficient 

differed by 0.05 - 0.07 between two sites, which were both located in the same area. The 

differences of the in vitro digestibility of all AA between factor manifestations were 

analogous to the ones of the in vitro CP digestibility. 
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Figure lV 1: In vitro crude protein digestibility coefficient of selected cereals and grain 
legumes in 42-day old broiler chicken. Bars illustrate factor manifestations of 
variety, year, and harvest site or area with the minimum and maximum contents 
(lsmeans and standard errors), *mark significant differences (p<0.05). See 
Appendix for more detailed information. 

Discussion 

When compared to feed tables (Ajinomoto Animal Nutrition Group 2003-2013, Agroscope 

2011-2016, Evonik 2016, INRA-CIRAD-AFZ 2018), the ranking of the CP digestibility 

among cultivars was as it would be expected. The in vitro digestibility coefficients varied 

widely in each cultivar and especially in the grain legume cultivars. This was probably due 

to a large number of samples from different varieties, harvest sites, and harvest years with 

varying concentrations of nutrients (Chapter l) and possibly also anti-nutrients (Guillamón 

et al. 2008). However, wide variations of the pc CP and AA digestibility can also be observed 

within and among table values and different studies. 

When the equations were used that predict the standardised pc digestibility of CP and AA 

for 21-day old broiler chicken, the in vitro digestibility coefficients were very high. The 

prediction of the standardised pc digestibility of CP and AA in 42-day old broiler chicken 

was more realistic in comparison to table values. Thus, the in vitro digestibility of CP and 

AA for 42-day old broiler chicken is further discussed in this chapter. 

Wheat showed the highest digestibility coefficients followed by triticale. Most of the in vitro 

CP and AA digestibility coefficients for these cultivars were comparable to the digestibility 

coefficients reported by Lemme et al. (2004), Bandegan et al. (2011), Ajinomoto Animal 

Nutrition Group (2003-2013), Evonik (2016), and INRA-CIRAD-AFZ (2018). Nevertheless, 

the pc digestibility of some AA, including Lys and Arg, in wheat and triticale might be 

overestimated by the in vitro assay. The variability was high between the 47 wheat samples 

used in the present study. However, Owens et al. (2009), who studied 61 wheat samples, 
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and Bryden et al. (2009), who studied 27 wheat samples, reported even wider variations of 

the apparent pc digestibility of CP. The apparent pc digestibility coefficients of Met differed 

by up to 0.22 in wheat samples described by Bryden et al. (2009). 

The in vitro CP and Lys digestibility of barley was in accordance with the standardised pc 

digestibility of CP and AA of five barley samples from a study conducted by Bandegan et 

al. (2011). Furthermore, the in vitro CP and AA digestibility was comparable to reported 

digestibility coefficients of Ajinomoto Animal Nutrition Group (2003-2013), but lower than 

the standardised pc digestibility of AA of barley reported by Evonik (2016) and INRA-

CIRAD-AFZ (2018). Since there is no information on the difference between winter and 

spring varieties regarding their CP and AA digestibility, the statistically significant difference 

between winter and spring barley cannot be extensively discussed. It is surprising that the 

in vitro CP and AA digestibility coefficients of winter barley were higher, since the content 

of crude fibre was also significantly higher in winter barley (Chapter l) and crude fibre was 

reported to have a detrimental effect on the nutrient digestibility (Jørgensen et al. 1996). 

However, cereal proteins consist of different protein fractions of which some are less 

digestible than others (Carbonaro et al. 2000, Rubio et al. 2013). Significantly lower 

amounts of Arg, Asp, Lys, Leu, Ile, and Val in the CP of winter barley in comparison to 

spring barley (see Chapter l) indicate an altered protein composition, which might have 

affected the in vitro CP digestibility. In accordance with the results of the present study, 

Büchmann (1979) observed wide variations of the in vitro digestibility in 321 spring barley 

lines, which depended on fertilisation and, to a lesser extent, on genetic and environmental 

differences. 

Little information is given on the pc digestibility of rye. The standardised pc digestibility of 

the essential AA of winter rye reported in Evonik (2016) was in accordance with the in vitro 

digestibility of the essential AA. However, Blok & Dekker (2017) reported a lower pc 

digestibility of all AA except Met in winter rye (n = 2) than predicted in vitro in the present 

study and Zuber et al. (2016b) found the apparent pc digestibility of the AA of rye to be very 

low in hens. This might be due to non-starch polysaccharides (NSP) and pentosans, which 

can negatively affect the nutrient absorption due to a viscous chyme (Almirall et al. 1995). 

However, the in vitro rate of disappearance would not necessarily be affected by these 

compounds (Moughan 1999). The rye sample, for which the pc CP and AA digestibility was 

known, could not be used in the calibration of the in vitro method (Chapter lll). Due to the 

results of the present follow-up study, the assay cannot be recommended to be used with 

rye samples as yet. The in vitro digestibility coefficient can be used, nevertheless, to rank 

winter rye samples according to their possibly digestible CP and AA at the terminal ileum. 

The assay might be further adaptable when more rye samples with known in vivo pc 

digestibility of CP and AA are available. 
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The field bean sample used for the calibration of the in vitro method had surprisingly higher 

digestible CP and AA contents than the field pea sample (Chapter ll). Conversely, as was 

expected (Masey O’Neill et al. 2012, Koivunen et al. 2016), the mean of the sample set 

showed that field beans contained a lower proportion of in vitro digestible CP and AA than 

field peas. This finding shows the potential of the in vitro assay for the prediction of the pc 

CP and AA digestibility of grain legumes. However, with the exception of Lys and Arg (and 

His in field peas), the in vitro CP and AA digestibility coefficients of field beans and field 

peas were comparable to the pc digestibility coefficients of seven field bean and six field 

pea varieties studied by Masey O’Neill et al. (2012), although they observed somewhat less 

variation. Nevertheless, the variation of the digestibility coefficients of CP and Lys varied by 

up to 0.16 and 0.20, respectively, in the tables of Bryden et al. (2009). It could be suggested 

that the sample selection and the number of samples account for these differences. This 

makes a comparison with mean values difficult. When compared to mean values of the 

present study, positive and negative deviations from the mean in vitro AA digestibility 

coefficients can be observed for the pc digestibility of the AA of field beans and field peas 

reported by Evonik (2016). Ajinomoto Animal Nutrition Group (2003-2013) and INRA (2018) 

reported higher AA digestibility coefficients except for Met. 

Differences of the CP and AA digestibility in swine and poultry between genotypes of cereals 

are known (Crépon et al. 2010, Rosenfelder et al. 2015, Spindler et al. 2016, Zuber et al. 

2016, Zuber & Rodehutscord 2016). In the sample set of the present study, winter rye was 

the only cultivar, in which the in vitro digestibility of CP and AA differed between varieties. 

However, the sample set of winter rye included the largest number of different varieties, 

was most balanced and the samples were grown in only four different harvest sites. These 

characteristics of the sample set might be the cause for observing effects of all three tested 

factors, but a small effect of the harvest site. Masey O’Neill et al. (2012) observed that 

variety only affected the standardised pc digestibility of Leu in field peas and of CP in field 

beans. Koivunen et al. (2016) also found only occasional varietal differences. 

This leads to the assumption that the selection and the number of varieties was the reason 

for the absence of an effect of the variety in most studied cultivars. The test varieties were 

of equal value in cultivation and feeding. Consequently, the differences were small. A test 

with more varieties with differing characteristics might show an effect of this factor. 

Furthermore, environmental conditions could be overlapping with differences between 

varieties. The cultivation environment and management can largely affect the nutrient 

composition of crops (Longstaff & McNab 1986, Zebarth et al. 1992, Metayer et al. 1993, 

Witten & Aulrich 2018). For example is it possible that soil or weather, as well as the 

occurrence of pests and diseases during growth, affect the grain composition of crops 

(Shewfelt 1990, Gutiérrez-Alamo et al. 2008). Thus, it is plausible that digestibility can also 
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be affected by environmental conditions. However, studies on this topic are scarce. Gehring 

et al. (2012) and Ravindran et al. (2014) reported that the source of corn or soybean meal, 

respectively, is an important influencing factor on the ileal nutrient digestibility. Simon (2004) 

studied the effects of two harvest sites and two varieties of field beans and blue lupins on 

the pc CP and AA digestibility and found wide variations (up to 0.07). However, no 

significant differences of the pc CP and AA digestibility between varieties or sites were 

observed in field beans while statistically significant differences between lupin varieties 

were detected. In other studies, the cultivation environment is not mentioned. For example, 

the wide variation of the pc CP digestibility as well as the effect of the variety on the pc CP 

digestibility of three wheat varieties (0.78-0.88, Kluth et al. 2009) might have been affected 

by environmental conditions. The environmental conditions, including pests and diseases, 

during plant maturation have an impact on the actual formation of plant ingredients. In the 

present study, the harvest site or area had an even stronger impact on the in vitro CP and 

AA digestibility than the harvest year. Furthermore, the in vitro digestibility differed between 

harvest sites even when they were located in the same area of homogenous climatic 

conditions. This result indicates that characteristics of the site, including the cultivation 

management, not only affect the nutrient composition but also the CP and AA digestibility 

of cereals and grain legumes. Since varieties can adapt to production systems (Murphy et 

al. 2007), this effects might have been even stronger due to organic cultivation 

management. 

Conclusions 

This study confirms that the digestibility of CP and AA varies widely and is affected by the 

cultivar, the variety, and the environmental conditions. However, variations are largely 

depending on characteristics of the sample set. Since animal performance and health can 

be affected by these wide variations, valid predictions of the pc digestibility can be 

beneficial. The modified multi-enzyme assay to predict the pc CP and AA digestibility of 

feedstuffs for young broiler chicken led in many cases to plausible results. However, it is 

recommended to further improve the validity of the multi-enzyme assay for the prediction of 

the pc digestibility of CP and especially of AA using combined in vitro and in vivo studies. 
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Abstract 

Comprehensive information on B vitamin contents in cereals and grain legumes used for 

animal feeding is scarce. Thus, the objective of this study was to determine the contents of 

thiamine and riboflavin uniformly in a selection of cereals and grain legumes. Additionally, 

the evaluation of varietal and environmental effects on the amounts of both B vitamins was 

targeted. We analysed contents of thiamine and riboflavin with HPLC in 855 samples of 

different organically cultivated cereal and grain legume cultivars. Since the sample set was 

unbalanced, it had to be adapted for further statistical analyses. Data of 541 samples of ten 

cereal and grain legume cultivars was used to assess the influence of variety and 

environment with generalised linear models. Cereal grains contained 1.27 - 3.53 mg 

thiamine and 0.62 - 1.58 mg riboflavin/kg DM, which was less than expected from table 

values. Thiamine and riboflavin contents of grain legumes were mostly comparable with 

table values. Their thiamine contents ranged from 2.55 to 8.97 mg and their riboflavin 

contents from 1.00 to 3.84 mg/kg DM. Furthermore, variety, harvest site, and/or year 

affected B vitamin contents in all cultivars of our sample set. Due to wide variations of the 

contents of thiamine and riboflavin, we recommend to express values in food- and feed 

tables as ranges and to mention the number of underlying analysed samples. It must be 

considered that thiamine contents of cereal grains might be lower than expected from food- 

and feed tables.  

Keywords  

Organic farming, Vitamin B1, Vitamin B2 
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Zusammenfassung 

Umfassende Informationen zu den B-Vitamingehalten von Getreide und 

Körnerleguminosen für die Fütterung landwirtschaftlicher Nutztiere sind rar. Daher war das 

Ziel dieser Untersuchung, die nativen Gehalte an Thiamin und Riboflavin in einer Auswahl 

von Getreide und Körnerleguminosen einheitlich zu bestimmen. Zusätzlich sollten Sorten- 

und Umwelteffekte auf die Thiamin- und Riboflavingehalte untersucht werden. Zu diesem 

Zweck wurden 855 Proben von verschiedenen Getreide- und Körnerleguminosenarten 

mittels HPLC auf ihre Gehalte an Thiamin und Riboflavin untersucht. Da die Stichprobe 

stark unbalanciert war, musste sie für die weitere Auswertung angepasst werden. 

Ergebnisse von 541 Proben von 10 Getreide- und Körnerleguminosenkulturen wurden 

genutzt, um den Einfluss von Sorte und Umwelt mit generalisierten linearen Modellen zu 

untersuchen. Getreidekörner enthielten 1,27 – 3,53 mg Thiamin und 0,62 – 1,58 mg 

Riboflavin/kg T und unterschritten damit die Tabellenwerte. Die Gehalte beider B-Vitamine 

in den Körnerleguminosen waren vergleichbar mit Tabellenwerten und schwankten für 

Thiamin zwischen 2,55 und 8,97 mg und für Riboflavin zwischen 1,00 und 3,84 mg/kg T. 

Die B-Vitamingehalte aller Kulturarten wurden durch die Sorte und die Umwelt beeinflusst. 

Da sehr starke Schwankungen der Gehalte beobachtet werden konnten, wird empfohlen, 

Tabellenwerte unter der Angabe der zugrundeliegenden Probenzahl als 

Schwankungsbreiten und nicht als Mittelwerte anzugeben. Zudem muss in Betracht 

gezogen werden, dass die Thiamingehalte von Getreidekörnern geringer sein könnten, als 

erwartet. 

Schlüsselworte  

Ökologischer Landbau, Vitamin B1, Vitamin B2 
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Introduction 

Providing water-soluble vitamins with cereal-based diets for monogastric animals is 

challenging. Thiamine and riboflavin are important coenzymes in energy metabolism 

(Depeint et al. 2006, Fattal-Valevski 2011). Thus, deficiencies lead to decreased enzyme 

activity and therefore to health issues with specific symptoms, including decreased 

performance and even death (Blair & Newsome 1985, Balk et al. 2016). Since the capacity 

of monogastric animals to store B vitamins in the organism and to microbially synthesise 

them in the digestive tract is low, B vitamins must be fed continuously to prevent deficiencies 

(McDowell 2000). 

However, comprehensive information on contents of thiamine and riboflavin in cereals and 

grain legumes used for animal feeding is scarce. Since B vitamin analyses are relatively 

expensive, native amounts in the feed are usually not determined. Most values used even 

in food and feed tables (Sauvant et al. 2004, Souci et al. 2008, USDA 2016) originate from 

early studies. There have not been representative analyses of B-vitamins in cereal and 

legume grains for a long time. Furthermore, underlying laboratory methods are often 

unknown. Various methods used to determine B vitamins can lead to different results 

(Hollman et al. 1993). Besides differences arising from analytical methods, environmental 

and genetic factors might also affect the actual contents of B vitamins in plant material 

(Bognar & Kellermann 1993, Shewry et al. 2011). Moreover, storage conditions (Bayfield & 

O'Donnell 1945, Finglas 2003) or further processing (Gołda et al. 2004, Lebiedzińska & 

Szefer 2006) can alter the amounts of B vitamins.  

The objective of this study was to determine the contents of thiamine and riboflavin uniformly 

in a selection of cereals and grain legumes. We also wanted to evaluate varietal and 

environmental (harvest year and harvest site) effects on the contents of B vitamins in some 

cereals and grain legumes. 

Materials and Methods 

Sample set 

Organically managed variety field trials of cereals and grain legumes are undertaken 

throughout Germany by independent institutions. Those institutions collected a selection of 

855 available harvest samples of cereals and grain legumes from trials in the years 2011 

2012, and 2013.  

Laboratory analyses 

Immediately after harvesting samples were sent to the laboratory of the Institute of Organic 

Farming. Impure samples were cleaned using an air separator. We did not further process 

them before they were dried at 40°C, ground to pass a 0.5 mm sieve, and stored in the dark 
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at 8°C. Contents of thiamine and riboflavin were analysed using high-performance liquid 

chromatography methods (HPLC) with fluorescence detection (FLD) according to EN14122 

(2014) and EN14152 (2014). Oxidation of thiamine to thiochrome was necessary for FLD. 

We used the pre-column derivatisation for thiamine. 

An Agilent 1260 Infinity HPLC system equipped with an FLD (Waldbronn, Germany) was 

used for analytical HPLC separations. Reversed-phase chromatography was performed 

using a SecurityGuard™Standard Gemini-NX C18 pre-column (Phenomenex, 

Aschaffenburg, Germany) and a Kinetex 5.0 µm C18 column (150 x 4.6 mm, Phenomenex, 

Aschaffenburg, Germany). A volume of 20 µl was injected.  

Thiochrome separation was performed at a column temperature of 25°C and a flow rate of 

0.8 ml/min. The mobile phase consisted of methanol and 0.5 M sodium acetate (30/70, v/v, 

isocratic conditions, pH 5.2). The FLD operated at an excitation wavelength of 366 nm and 

an emission wavelength of 435 nm. The results were expressed as the total thiamine using 

the factor 0.787 for conversion from thiamine hydrochloride to thiamine. 

Riboflavin was analysed at a flow rate of 1 ml/min at 35°C. The mobile phase consisted of 

a phosphate buffer (5 mM potassium dihydrogen phosphate, 10 mM sodium 

heptanesulfonate, 36 mM trimethylamine, pH 3.0) and 60% methanol. We ran the system 

with a binary gradient as shown in Table V 1. The FLD operated at an excitation wavelength 

of 468 nm and an emission wavelength of 520 nm. 

Table V 1: Chromatographic gradient conditions for the analysis of riboflavin 
Time (min) Eluent A1 Eluent B2 

0 95 5 
3 95 5 
12 53 47 
12.1 2 98 
17 2 98 
17.1 95 5 
25 95 5 

110 mM sodium heptanesulfonate; 5 mM potassium dihydrogenphosphate; 36 mM triethylamine pH 3.0; 260% 
methanol 

Statistics 

All statistical analyses were conducted using R 3.4.0 (R Core Team 2017). For each cultivar, 

mean, standard deviation, minimum and maximum (range) were determined using the 

complete dataset (n total in Table V 2). The relationships between B vitamins were tested 

using Pearson correlation analyses (package PerformanceAnalytics) (Peterson & Carl 

2014). 

We used Wilcoxon rank sum tests to compare B vitamin contents in cereals with contents 

in grain legumes. Residuals of a combined data set containing all grain legume samples for 

a comparison between cultivars were not normally distributed. Thus, Wilcoxon rank sum 

tests were also used to compare the B vitamin contents of grain legume cultivars. 
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Generalised linear models (glm) were used to identify the effects of cultivar on thiamine and 

riboflavin contents in cereals.  

An uneven availability of samples resulted in an unbalanced sample set for each cultivar. 

For our analysis, we used variety, site, and harvest year as factors. The following 

adjustments of the dataset were necessary to enable further analyses regarding the 

influence of variety, year, and site on the contents of B vitamins: 

 When cultivars were harvested on many different sites with few repetitions, the 

sites were aggregated into areas with homogenous climatic conditions in 

Germany according to JKI (2018). This aggregation was used for winter triticale, 

winter wheat, spring barley, spring wheat, and spring field bean. 

 Factor level manifestations were not taken into consideration when less than four 

repetitions were present.  

 The repetitions of a factor (variety, year, and site/area) had to include a minimum 

of two manifestations of the other two factors. 

Steps two and three reduced our sample set to a subset containing the factors variety, year, 

and harvest site or area (Table V 2). In contrast to all other cultivars, for winter barley only 

variety and site were used as factors, because three varieties were available from five 

different trials (harvest site*year) in a balanced dataset. 

Glm were implemented on the adjusted data sets (n subset) to assess influences of the 

main factors variety, year, and site or area. Interactions could not be tested due to the 

unbalanced data and the absence of field replicates. The package glmulti (Calcagno 2013) 

was used to evaluate the best fitting models with only main factors by Akaike’s Information 

Criterion with correction for sample size (AICc). Residuals of glm were checked for normal 

distribution with Shapiro-Wilk-Tests. When necessary, a model transformation was added 

for a better fit. Furthermore, influential data points were viewed to find outliers. To assess 

the stability of a model, it was tested whether a deletion of influential data points in the 

model effectively altered the outcome of the following analyses of variance.  
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Table V 2: Total number of samples (n total), number of samples considered for further 
statistical analyses (n subset), and number of factor manifestations for each 
cultivar 
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Cereals       

Winter wheat (Triticum aestivum L.) 106 70 3 3  5 
Spring wheat (Triticum aestivum L.) 45 25 4 3  3 
Winter rye (Secale cereale L.) 106 81 5 3 7  
Winter triticale (Triticosecale) 107 92 7 3  5 
Spring triticale (Triticosecale) 3 -     
Winter barley (Hordeum vulgare L.) 30 15 3 2 5  
Spring barley (Hordeum vulgare L.) 66 47 4 3  4 
Oats (Avena sativa L.) 105 80 7 3 6  

Naked barley (Hordeum vulgare L., var nudum) 1 -     

Naked oats (Avena sativa L., var nuda) 1 -     
       

Grain legumes       

Spring field pea (Pisum sativum L.) 87 41 6 3 4  

Spring field bean (Vicia faba L.) 73/82* 57/59* 6 2  3 
Blue lupin (Lupinus angustifolius L.) 110 31 5 3 3  

Yellow lupin (Lupinus luteus L.) 4 -     

Winter field pea (Pisum sativum L.) 1 -     

Winter field bean (Vicia faba L.) 1 -     

Total 846/855* 539/541*     

*thiamine/riboflavin 

Multiple comparisons were calculated using multcomp package (Hothorn et al. 2008) with 

least square means (lsmeans; Lenth 2016) and Bonferroni-Holm adjustment. The package 

sandwich (Zeileis 2004) was included for a heteroscedasticity and autocorrelation 

consistent estimation of covariance with robust standard errors (vcovHAC). We also 

calculated the maximum differences in thiamine and riboflavin contents between the factor 

manifestations for each cultivar. 

Results 

Vitamin contents in cereals and grain legumes 

Grain legumes exceeded cereal grains significantly regarding thiamine and riboflavin 

contents. In cereal grains, winter rye and winter wheat had the lowest amounts of thiamine 

and riboflavin, respectively (Table V 3). 

Oats contained high amounts of both B vitamins, but rye had the highest content of 

riboflavin. In grain legumes, the thiamine content was significantly higher in field peas than 

in field beans and blue lupins. The riboflavin content was significantly higher in field beans 

than in blue lupins and field peas. Ranges of B vitamin contents were wide within most of 

the cultivars and especially within grain legume cultivars. Contents of thiamine and riboflavin 

in single samples of naked barley, winter field peas, winter field beans, and yellow lupins 

were in the same range as the ones of barley, spring field peas, spring field beans, and blue 

lupins, while naked oats had high contents of both B vitamins (Table A V 1 in the appendix). 
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The amount of thiamine was positively correlated with the amount of riboflavin in blue lupins 

(R2=0.48, n=110, p=1.051e-07) and winter barley (R2=0.44, n=30, p=0.016). 

Table V 3: Contents of thiamine and riboflavin in different cereal and legume grains  
[mg/kg DM] 

   n Thiamine Riboflavin 

Cereals     

Winter wheat Mean ± SD 
106 

2.31 ± 0.27c 0.74 ± 0.06a 
Triticum aestivum L. Range 1.61 - 2.96 0.62 - 0.89 
     

Spring wheat Mean ± SD 
45 

2.22 ± 0.27bc 0.85 ± 0.12b 
Triticum aestivum L. Range 1.58 - 2.80 0.69 - 1.19 
     

Winter rye Mean ± SD 
106 

1.76 ± 0.3a 1.06 ± 0.10d 
Secale cereale L. Range 1.16 - 2.35 0.84 - 1.28 
     

Winter triticale Mean ± SD 
107 

1.83 ± 0.24a 0.91 ± 0.11bc 
Triticosecale Range 1.27 - 2.38 0.65 - 1.17 
     

Winter barley Mean ± SD 
30 

2.21 ± 0.30bc 0.80 ± 0.11abc 
Hordeum vulgare L. Range 1.76 - 3.01 0.65 - 1.06 
     

Spring barley Mean ± SD 
66 

2.05 ± 0.31ab 0.94 ± 0.10c 
Hordeum vulgare L. Range 1.27 - 2.64 0.79 - 1.22 
     

Oats Mean ± SD 
105 

2.71 ± 0.39d 1.00 ± 0.15cd 
Avena sativa L. Range 1.87 - 3.53 0.71 - 1.54 

     

Grain legumes     

Spring field pea Mean ± SD 
87 

5.82 ± 1.31b 1.73 ± 0.22a 
Pisum sativum L. Range 2.66 - 9.56 1.00 - 2.28 
     

Spring field bean Mean ± SD 
73/82* 

4.97 ± 1.19a 2.75 ± 0.36c 
Vicia faba L. Range 2.55 - 7.37 2.13 - 3.84 
     

Blue lupin Mean ± SD 
110 

4.91 ± 1.00a 2.39 ± 0.25b 
Lupinus angustifolius L. Range 2.81 - 8.97 1.94 - 3.05 

*thiamine/riboflavin; superscripts mark significant differences in columns (P<0.05) 

Effect of variety, harvest site, and harvest year 

Variety statistically affected B vitamin contents in cereals and grain legumes with some 

exceptions (Table V 4). In barley, field peas, and blue lupins the thiamine content did not 

differ between the observed varieties. The content of riboflavin was not affected by variety 

in winter barley, oats, and blue lupins. The environmental conditions, which were 

represented by harvest site/area and year, had an effect on all observed cultivars. Further 

detailed information can be found in the supplements (Tables A V 2 – 12 in the Appendix). 
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Cereal grains 

The thiamine content differed between varieties of winter wheat, spring wheat, winter rye, 

and oats, respectively, by about 0.4 mg/kg DM (Figure V 1). Differences of about 0.2 mg 

thiamine/kg DM were observed between winter triticale varieties. Although statistically 

significant, the differences between the amounts of riboflavin in varieties of winter wheat, 

winter rye, winter triticale, and spring barley were rather low (0.04 – 0.12 mg/kg DM). In the 

spring wheat variety Granny, the riboflavin contents were about 0.2 mg/kg DM higher than 

in the other observed varieties. 

 

 

Figure V 1: Content of thiamine and riboflavin in cereal grains; Bars illustrate factor 
manifestations of variety, year, and harvest site or area with the minimum and 
maximum contents. See supplements for more detailed information 

The amount of thiamine in winter triticale and winter barley did not differ between the years. 

However, there were maximum differences between the years of 0.2 mg thiamine/kg DM in 

winter wheat, spring wheat, and winter rye, of 0.4 mg/kg DM in oats and of 0.5 mg/kg DM 

in spring barley. The riboflavin content of the winter variants was lowest in 2012, while the 

spring variants had the lowest riboflavin contents in 2013. The observed differences varied 

between 0.06 and 0.17 mg/kg DM.  

While thiamine contents of spring wheat and spring barley were not affected by the harvest 

area, they differed by a maximum of 0.2 and 0.3 mg/kg DM in winter wheat and winter 

triticale, respectively. We found wider variations of the thiamine content of winter rye and 

oats when harvest sites were compared. There was no impact of the harvest area on 
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riboflavin contents of wheat. In winter triticale and spring barley as well as in winter rye was 

a difference of 0.1 mg riboflavin/kg DM between harvest areas as well as harvest sites.  

Grain legumes 

We found wider variations of thiamine in grain legumes than in cereal grains (Figure V 2). 

 

Figure V 2: Content of thiamine and riboflavin in grain legumes; Bars illustrate factor 
manifestations of variety, year, and harvest site or area with the minimum and 
maximum contents. See supplements for more detailed information 

Our field peas for this evaluation were all semi-leafless, white-flowering varieties with 

smooth yellow seeds. Their thiamine content did not differ between varieties. However, 

there were differences of riboflavin content of up to 0.1 mg/kg DM between varieties. While 

variety affected the contents of both B vitamins strongly in field beans, it had no effect in 

blue lupins. With 3.3 mg/kg DM, high amounts of riboflavin were found in the field bean 

variety Alexia, while Divine contained only 2.4 mg riboflavin/kg DM. 

In field peas, there were differences between the years of up to 1.7 and 0.5 mg thiamine 

and riboflavin per kg DM, respectively. In our study, the thiamine content of field beans was 

predominantly affected by harvest year. Years differed by up to 2.3 mg thiamine /kg DM. In 

blue lupins year only affected the riboflavin content. However, when one influential measure 

was removed from the model for blue lupins, the factor year became nonsignificant. 

While the thiamine content of field peas and field beans differed by up to 2.0 and 0.9 mg/kg 

DM, respectively, between harvest sites, the riboflavin content differed by less than 0.2 

mg/kg DM. Blue lupins were primarily affected by harvest site. 

Discussion 

Due to the lack of knowledge about the origins of samples used for obtaining table values 

of B vitamins as well as the utilised preparation procedures and analysis methods, 

comparisons of our results with table values can be deceptive. Differences between 

analysed B vitamin contents could arise due to many factors, such as varietal effects or 

environmental influences (Shewry et al. 2011) as well as varying methods used for analysis 
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(Hollman et al. 1993). The most common analysing methods for B vitamins are 

microbiological assays and HPLC methods. Except for winter rye, our results showed 

slightly lower levels of thiamine in cereal grains than the findings of Buchholz et al. (2012), 

who themselves found comparably low thiamine contents in cereals. Sauvant et al. (2004) 

collected table values for feedstuffs and reported higher contents of both B vitamins in 

cereals. However, thiamine contents of the three grain legumes and riboflavin contents of 

field peas and field beans matched our results (Table 3). In the food tables of the USDA 

(2016), the amounts of both B vitamins in cereal grains were mostly higher than our findings. 

Only the thiamine contents of grain legumes as well as the riboflavin contents of field beans 

and oats equalled our results. Although table values of Sauvant et al. (2004) for blue lupins 

where higher, our riboflavin content was in accordance with the results of Olkowski (2008), 

who found 2.24 mg/kg DM. Piironen et al. (2009) reviewed even wider variations of B 

vitamins in wheat grains. Overall, we found rather low mean amounts of both B vitamins in 

cereal grains and grain legumes. However, we expressed our thiamine results as thiamine. 

We do not know if other authors stated their results as thiamine chloride hydrochloride, as 

thiamine chloride (thiamine chloride hydrochloride * 0.892), or also as thiamine (thiamine 

chloride hydrochloride * 0.787). Thus, it is possible that our results are underestimated 

compared to the reviewed literature. 

The variety and environmental conditions both affected B vitamin contents in cereals and 

grain legumes (Table 4). Differences were often rather small between factor manifestations 

and therefore lacked practical significance. However, results are dependent on the selected 

varieties and environments. Moreover, interactions of the factors are highly possible. 

Unfortunately, we were not able to test interactions within our data. 

We could confirm results of O'Donnell (1943) as well as Nordgren & Andrews (1941), who 

found that variety and environment affect thiamine content in wheat. Similarly to Conner & 

Straub (1941), we observed that environment had a smaller effect on the riboflavin content 

in wheat than on its thiamine content. Although absolute measures differed greatly, our 

findings regarding the influence of variety and environment on wheat grains are also in 

accordance with Shewry et al. (2011). They found a larger genotypic variance of thiamine 

than riboflavin in wheat lines.  

An effect of the harvest year on B vitamin contents in wheat and rye has previously been 

reported by Bognar & Kellermann (1993). We could confirm this effect in our sample set in 

the years 2011-2013. Since high contents of thiamine and riboflavin in rye are located in the 

germ (Ihde & Schuette 1941), varietal variations of grain size might have affected the 

amounts of B vitamins. We found that rye variety Helltop, which has a very high corn mass, 

had a very high thiamine content, while its riboflavin content was similar to other varieties.  
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In contrast to Michela & Lorenz (1976), we found the B vitamin contents of winter triticale to 

be only roughly comparable to wheat and rye. However, the analysed results showed a 

considerably wide variation. Differences in B vitamin contents between sites in the same 

area as we found it in the case of oats can depend on local influences like cultivation 

management or weather. Since thiamine contents are known to decrease with an increasing 

degree of ripeness (Buchholz et al. 2012), harvest time can be one of the influencing factors. 

Moreover, mineral deficiencies are known to decrease riboflavin content in the leaves and 

tops of immature oat plants (Watson & Noggle 1947). Thus, it can be suspected that mineral 

supply also affects the amount of riboflavin in oats and maybe even in other cereal grains.  

Investigations of varietal differences of B vitamin contents in legumes are scarce. We did 

not find relevant information on field beans, field peas, and blue lupins. However, 

Burkholder & McVeigh (1945) found varietal differences in soybeans and mung beans. In 

our sample set, we also found that the variety specifically influences the thiamine contents 

in field beans. Very high differences between the thiamine contents of field bean varieties 

lead to the assumption that breeding could alter them.  

In blue lupins, growth type (determinate vs. indeterminate) did not have an influence on B 

vitamin contents. Variations of thiamine and riboflavin contents between the harvest sites 

might be primarily due to the differences in soil and weather. 

Conclusions 

We determined the contents of thiamine and riboflavin uniformly in a selection of cereals 

and grain legumes. Compared with food- and feed tables, we found rather low thiamine and 

riboflavin contents especially in cereal grains. It might be of interest to assess if thiamine 

contents in cereal grains are generally lower than would be expected. We observed an 

influence of variety, harvest year, and cultivation site on thiamine and riboflavin in cereals 

and grain legumes. Due to wide variations, it is difficult to estimate the amounts of both B 

vitamins in samples of cereals and grain legumes. Thus, the use of mean values can be 

deceptive. It is recommended to express table values as ranges under the mention of the 

number of underlying samples and to make further analyses. Our data can be used to 

update existing food- and feed tables. 
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Abstract 

B vitamins, such as thiamine and riboflavin, are often supplemented in diets for farm animals 

to prevent deficiencies. However, information on the content of these two B vitamins in 

organic feedstuffs is scarce. Recently, up-to-date information was published by our group. 

The objective of this work was to use present data to determine the native contents of 

thiamine and riboflavin in diets used for monogastric animal feeding in organic farming.  

We used the results of our recent study on the native thiamine and riboflavin contents of 

organic wheat (Triticum aestivum L.), rye (Secale cereale L.), triticale (Triticosecale), barley 

(Hordeum vulgare L.), oats (Avena sativa L.), field peas (Pisum sativum L.), field beans 

(Vicia faba L.), and blue lupins (Lupinus angustifolius L.) from various variety field trials, 

which were conducted throughout Germany over three years, to calculate the minimum and 

maximum native amounts of thiamine and riboflavin in exemplary practical diets for swine 

and poultry. 

We found that exemplary common cereal-based diets in organic farming exceeded the 

thiamine recommendations for swine and poultry. However, riboflavin was deficient in most 

exemplary diets. To increase native riboflavin contents in the diet (e. g., for 100% organic 

diets), feedstuffs other than cereals and home-grown grain legumes are needed in 

monogastric animal feeding. In organic farming, roughage plays an important role. The 

inclusion of grass-clover silage has the potential to increase the native riboflavin contents 

in the diet. Evaluation of the use of grassland-derived or other products as suppliers of B 

vitamins, especially for monogastric animal feeding in organic farming, seems promising to 

improve riboflavin supply. 

Keywords 

grain legumes, cereals, swine, poultry 
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Zusammenfassung 

B-Vitamine, wie Thiamin und Riboflavin, werden in Rationen für Nutztiere häufig zugesetzt, 

um Mangelsituationen zu verhindern. Die Mengen, in denen diese B-Vitamine in ökologisch 

erzeugten Futtermitteln enthalten sind, sind jedoch nicht hinreichend bekannt. Daher war 

das Ziel dieser Studie, die nativen Gehalte an Thiamin und Riboflavin in Rationen für 

Monogastrier im Ökologischen Landbau zu ermitteln. 

Um die minimalen und maximalen nativen Gehalte an Thiamin und Riboflavin in praktischen 

Beispielrationen für Schweine und Geflügel zu berechnen, wurden Ergebnisse aus einer 

Untersuchung zu den nativen Gehalten an Thiamin und Riboflavin in Winterweizen (Triticum 

aestivum L.), Winterroggen (Secale cereale L.), Wintertriticale (Triticosecale), Wintergerste 

(Hordeum vulgare L.), Hafer (Avena sativa L.), Futtererbsen (Pisum sativum L.), 

Ackerbohnen (Vicia faba L.) und blauen Lupinen (Lupinus angustifolius L.) aus 

ökologischen Sortenversuchen, die in drei Jahren an verschiedenen Standorten in 

Deutschland durchgeführt wurden, genutzt. 

Getreidebasierte Beispielrationen, die in der Praxis im Ökologischen Landbau eingesetzt 

werden können, hatten sehr hohe native Thiamingehalte, die die aktuellen Empfehlungen 

für Schweine und Geflügel überschreiten. Jedoch war Riboflavin in den meisten 

Beispielrationen im Mangel. Um die nativen Riboflavingehalte zu erhöhen (zum Beispiel für 

eine 100%-Biofütterung), müssen alternative Futtermittel genutzt werden. Im Ökologischen 

Landbau spielen Grün- und Raufutter eine wichtige Rolle. Der Einsatz von Kleegrassilage 

hat das Potential, die nativen Riboflavingehalte in der Ration zu erhöhen. Es wird eine 

Evaluation von Futtermitteln vom Grünland oder aus Ackerfutterbau sowie von anderen 

Produkten, die Riboflavin liefern können, empfohlen. 

Schlüsselworte 

Vitamin B1, Vitamin B2, Körnerleguminosen, Getreide, Schweine, Geflügel 

  



Chapter Vl 

 

123 

Introduction 

Information on native amounts of thiamine and riboflavin in single feedstuffs and in mixed 

feed is scarce. New data was provided recently by Witten & Aulrich (2018). Native thiamine 

and riboflavin contents were analysed in more than 800 samples of organically cultivated 

cereals and grain legumes. Consequently, the supply situation for monogastric animals in 

organic farming should be evaluated on the basis of this new data. It is known that the 

content of B vitamins in plant feedstuffs can vary depending on genetic and environmental 

factors (Shewry et al. 2011, Witten & Aulrich 2018) and can change during storage (Finglas 

2003) and processing (Gołda et al. 2004, Lebiedzińska & Szefer 2006). Cereal-based diets 

are suspected to contain low amounts of riboflavin but sufficient amounts of thiamine (GfE 

2006, Jeroch et al. 2008). Nevertheless, since B vitamins are important coenzymes 

(Depeint et al. 2006, Fattal-Valevski 2011) and their deficiencies can cause severe health 

and performance problems (Blair & Newsome 1985). Thus, even in organic farming, both B 

vitamins are regularly supplemented in mixed feed in amounts that cover animal 

requirements with an additional safety margin. Knowledge of the amounts of native thiamine 

and riboflavin in organic diets can help to assess the additional need for these vitamins. 

This need can be addressed in diet formulation and covered using feedstuffs with high 

amounts of thiamine and/or riboflavin or supplements. 

B vitamins for supplements can be produced using chemical synthesis (McDowell 2000, 

Albers et al. 2002) or fermentation (Burgess et al. 2009, Capozzi et al. 2012). While thiamine 

is generally chemically synthesised (Revuelta et al. 2016), the use of fermentation in 

producing riboflavin has replaced the use of chemical synthesis in the last decades 

(Schwechheimer et al. 2016, Revuelta et al. 2017). Microorganisms used for the 

fermentation of vitamins are often genetically modified organisms (GMOs). However, 

GMOs, as well as their products, are banned in organic farming (EC 2007, 2008). Thus, 

feedstuffs must provide sufficient amounts of B vitamins without GMO-based supplements. 

Pasture and roughage are encouraged to be used in organic farming and are assumed to 

have the potential to enhance the supply of B vitamins. Depending on temperature, age, 

and performance, diets for pigs and poultry can contain 6-20% of grassland-derived silage 

(Edwards 2003, Crawley 2015b, a). Thus, the potential of grassland-derived feedstuffs as 

GMO-free suppliers of B vitamins for monogastric animals is of interest, especially in 

organic farming. 

The objective of this study was to determine how variations of thiamine and riboflavin 

contents in cereals and grain legumes affect the total thiamine and riboflavin content in diets 

for monogastric animals. We also aimed to determine the gap between the recommended 

and the actual native supply of thiamine and riboflavin for monogastric animals in organic 
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farming as well as the potential of grass-clover silage as a supplier of riboflavin. Among 

other things, this knowledge is necessary to support 100% organic feeding. 

Materials and Methods 

Data on thiamine and riboflavin contents in cereals and grain legumes from an earlier study 

(Witten & Aulrich 2018) were used to calculate native thiamine and riboflavin contents in 

organic diets for monogastric animals. Additionally, three samples of organically produced 

grass-red clover silage, which was harvested in May 2016 (first cut) and is used for swine 

feeding on our experimental farm in northern Germany, were additionally taken out of round 

bales, freeze-dried and analysed for their amounts of riboflavin. 

Exemplary cereal-based organic diets for swine and poultry in Germany were selected from 

articles and reports. For further evaluation, we chose diets for sows, growing pigs, and 

fattening pigs (Table Vl 1), as well as for poultry of different use (Table Vl 2), which 

contained 

 a minimum proportion of 70% (with exceptions for growing pigs and broiler 

chicken) of cereals and grain legumes for which samples had been analysed 

(Witten and Aulrich 2018; winter wheat (Triticum aestivum L.), winter rye 

(Secale cereale L.), winter triticale (Triticosecale), winter barley (Hordeum 

vulgare L.), oats (Avena sativa L.), field peas (Pisum sativum L.), field beans 

(Vicia faba L.), and blue lupins (Lupinus angustifolius L.) from various variety 

field trials, which were conducted throughout Germany over three years), and 

 additional feedstuffs, for which thiamine and riboflavin contents were available 

in the feed composition tables of Sauvant et al. (2004). 

Subsequently, the minimum and maximum of our analysis results for thiamine and riboflavin 

contents were used to calculate the minimum and maximum amounts of thiamine and 

riboflavin originating from cereals and grain legumes in the diets. The amounts of thiamine 

and riboflavin originating from other feedstuffs were estimated using the table values 

published by Sauvant et al. (2004). The sum of both values equals the total content of 

thiamine and riboflavin, respectively, in the diets. 

Furthermore, we tested the effect of an inclusion of 10% grass-red clover silage in the dry 

matter (DM) of each diet on the riboflavin content. All other feedstuffs were reduced 

simultaneously. 
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Table Vl 2: Exemplary diets for poultry in organic farming [g/kg DM] 
   Starter  Laying Hens  Broiler  

 Diet  1  2 3 4 5 6  7 8  

C
e

re
a

ls
 &

 L
e
g

u
m

e
s
 Triticale     300 200 300 300     

Rye      200  200     
Wheat  460  350 350     350 200  
Barley    50   100   100 200  
Oats    100   200   100 103  
Blue lupin      200  200     
Field peas  200  150 200  150   70 120  
Field beans  80  60  50    150   
Grass-clover-silage     50 50 50 50     

 Sum  740  710 900 700 800 750  770 623  

O
th

e
rs

 

Corn      190 100 180   180  
Linseed      10       
Soybean meal     100  100 50   100  
Sunflower meal           30  
Linseed meal        20   30  
Maize gluten  170  120      100   
Brewer's yeast  20  20      30   
Green meal    30      50   
Maize gluten feed      100       
B vitamin-free  70  120      50 37  

 Reference  a  a b b b b  a c  

aDeerberg (2000); bSteinhöfel & Lippmann (2005); cBellof et al. (2005); B vitamin-free = oil and minerals;  

Cereals & Legumes = cereals and legumes (own results available); Other = feedstuffs other than cereals 
and grain legumes (no own results) 

We compared thiamine and riboflavin recommendations (NRC 1994, GfE 1999, GfE 2006, 

NRC 2012) with thiamine and riboflavin contents in all exemplary diets for swine and poultry. 

Results 

The contents of both B vitamins varied widely in our sample set (Table Vl 3). 

Table Vl 3: Contents of thiamine and riboflavin in different cereals and legumes [mg/kg DM] 
 n Thiamine Riboflavin 

Cereals    

Winter wheat (Triticum aestivum L.) 106 1.61 - 2.96 0.62 - 0.89 
Winter rye (Secale cereale L.) 106 1.16 - 2.35 0.84 - 1.28 
Winter triticale (Triticosecale) 107 1.27 - 2.38 0.65 - 1.17 
Winter barley (Hordeum vulgare L.) 30 1.76 - 3.01 0.65 - 1.06 
Oats (Avena sativa L.) 105 1.87 - 3.53 0.71 - 1.54 

Legumes    

Spring field pea (Pisum sativum L.) 87 2.66 - 9.56 1.00 - 2.28 
Spring field bean (Vicia faba L.) 73/82* 2.55 - 7.37 2.13 - 3.84 
Blue lupin (Lupinus angustifolius L.) 110 2.81 - 8.97 1.94 - 3.05 
Grass-red clover silage 3  5.37 - 7.61 

*thiamine/riboflavin; adapted from Witten & Aulrich (2018) 
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Diets for swine 

The total thiamine content in all exemplary diets for swine exceeded the recommendations 

of GfE (2006) and NRC (2012). The amount of thiamine originating from cereals and grain 

legumes without considering thiamine in additional feedstuffs met the NRC (2012) 

recommendations in all diets for sows (Table Vl 4) and fattening pigs (Table Vl 5), as well 

as in five out of six diets for growing pigs (Table Vl 4) weighing more than 5 kg and even 

GfE (2006) recommendations could be met. 

The riboflavin recommendations for sows and fattening pigs of GfE (2006) and NRC (2012) 

are comparable. However, for growing pigs weighing more than 10 kg, NRC (2012) 

recommends lower amounts of riboflavin, which decrease with increasing age/weight. Due 

to high required amounts, no diet for gestating and lactating sows could meet the official 

recommendations for riboflavin (GfE 2006, NRC 2012). However, in diets 6 and 7 for 

lactating sows, the inclusion of 100 g milk powder and either 50 g green meal or soybeans 

per kg DM led to considerably higher riboflavin contents than in the other diets for sows. 

Diets 10, 12, 13, and 14 for growing pigs, diets 16, 17, and 19 for pre-fattening pigs, and 

diets 23, 25, and 26 for fattening pigs, which only contained oilseed meals as additional 

feedstuffs, were also not able to cover the recommendations. While 50 g green meal and 

20 g soybeans contained just enough riboflavin to possibly lead to sufficient amounts in 

diets 22 and 27 for fattening pigs, diets 11 and 15 for growing pigs, diet 18 for pre-fattening 

pigs, and diets 20, 21, and 24 for fattening pigs covered the official recommendations of 

both GfE (2006) and NRC (2012). Those diets contained milk products, green meal, and/or 

soybeans. Only diet 14 for growing pigs could not meet the minimum recommendation of 

NRC (2012).  

A replacement of a part of the diet with grass-clover silage increased its riboflavin supply. 

When 10% grass-clover silage were included, diets 6 and 7 for lactating sows, diet 12 for 

growing pigs weighing more than 10 kg, diet 16 and 17 for pre-fattening pigs, as well as 

diets 23 and 25 for fattening pigs could cover the riboflavin recommendations of GfE (2006), 

when single feedstuffs with high native riboflavin contents were used. 
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Diets for poultry 

Recommendations for the supply of thiamine in poultry diets vary, with GfE 

recommendations being higher than those of the NRC. While all poultry diets met the NRC 

recommendations, the minimum thiamine content of diet 8 for broilers did not meet GfE 

recommendations when only single feedstuffs with minimum amounts of thiamine were 

used (Table Vl 6). 

Like in diets for swine, riboflavin was often deficient in poultry diets. GfE (1999) and NRC 

(1994) recommend similar amounts of riboflavin. Only diet 7 for broiler chicken and diet 2 

for laying hens, which contained brewer’s yeast and green meal, provided the 

recommended amount of riboflavin when the riboflavin content of the single feedstuffs was 

high. The other diets contained mostly corn and oilseed meals in addition to cereals and 

grain legumes.  

The inclusion of grass-clover silage led to an increased total amount of riboflavin in all diets. 

However, most of the diets still did not meet the recommended amount of riboflavin. 

Table Vl 6: Recommended and actual contents of B vitamins in exemplary diets for poultry 
in organic farming [mg/kg DM] 

  Starter  Laying Hens  Broiler  

  1  2 3 4 5 6  7 8  

Thiamine             

GfE (1999)  1.9  1.7 1.7 1.7 1.7 1.7  2.8 2.8  

NRC (1994)    0.8 0.8 0.8 0.8 0.8  2.0 2.0  
C&GL  1.5-3.9  1.4-3.4 1.5-3.7 1.2-3.1 1.3-3.1 1.2-3.0  1.4-3.4 1.1-2.6  

Other  1.8  2.0 0.3 1.1 0.8 1.1  3.0 1.4  

Total  3.3-5.7  3.4-5.4 1.8-4.0 2.3-4.3 2.1-3.9 2.3-4.1  4.4-6.4 2.5-4.0  

Riboflavin             

GfE (1999)  3.3  2.8 2.8 2.8 2.8 2.8  3.1-3.7* 3.1-3.7*  

NRC (1994)    2.8 2.8 2.8 2.8 2.8  3.0-3.6* 3.0-3.6*  
C&GL  0.7-1.2  0.6-1.1 0.9-1.4 1.1-1.6 0.9-1.4 1.1-1.5  0.8-1.3 0.5-0.9  

Other  1.2  1.7 0.4 0.5 0.5 0.5  2.5 0.8  

Total  1.9-2.4  2.3-2.8 1.3-1.8 1.6-2.1 1.4-1.9 1.6-2.0  3.3-3.8 1.3-1.7  

+10%GCS  2.2-2.9  2.6-3.3 1.7-2.3 2.0-2.7 1.8-2.5 2.0-2.6  3.4-4.2 1.7-2.3  

Reference  a 
 

a b b b b 
 

a c  

C & GL = only from cereals and grain legumes (calculated with own results); Other = feedstuffs other than 
cereals and grain legumes (calculated with values of Sauvant et al. (2004)); Total = total content of the diet 
(C & GL + Other (see Table 3)); + 10% GCS = 10% of the diet DM replaced by grass-clover silage (Table 
3); aDeerberg (2000); bSteinhöfel and Lippmann (2005); cBellof et al. (2005); *decreasing with increasing 
age 

Discussion 

Recommendations for the supply of thiamine and riboflavin are ambiguous, and research 

in this field is encouraged. There have been only a few investigations on this subject and 

most were conducted decades ago (GfE 2006, McDowell & Ward 2008, de Lange 2013). 

More recent investigations tend to recommend higher amounts of thiamine and riboflavin 

for poultry (summarised in Jeroch et al. 2011, Jeroch et al. 2012). Furthermore, 

requirements depend on the performance of the animal. In organic farming, animal 

husbandry is normally less intensive (Hovi et al. 2003), and especially for poultry, strains 

with less rapid growth are often used (Blair 2008). Husbandry systems including pasture 
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and outdoor areas affect animal performance and energy needs (Edwards 2003). Since 

thiamine and riboflavin are needed in energy metabolism, the dietary B vitamin needs of 

monogastric animals in organic farming could also be affected. For example, the 

environmental temperature can affect the daily weight gain and feed intake and 

consequently also the thiamine requirements of pigs (Peng & Heitman 1974). However, 

although knowing that further investigations and possibly revisions are needed, we used 

official German and American recommendations to determine if the native thiamine and 

riboflavin content of the mixed feed would be sufficient for swine and chicken. 

Thiamine 

Since our results suggest that the supply of native thiamine in cereal-based diets for 

monogastric animals in organic farming is usually sufficient, thiamine supplementation for 

organic cereal-based diets does not seem necessary. However, supplementation might be 

required, when thiamine availability is poor. Thiamine can be inhibited by antagonists or 

destroyed due to heat (McDowell & Ward 2008). Thus, heat treatment and pelleting can 

reduce its availability. 

Riboflavin 

Skinner et al. (1992) fed a diet based on corn and soybean meal with 50 g/kg fish meal 

analogue as a protein source without B vitamin supplementation to broilers and found no 

effect on health or performance. However, this dietary composition is hardly comparable to 

common European cereal-based diets. In most of our cereal-based diets, the amounts of 

riboflavin were lower than recommended. Only an inclusion of other feedstuffs could 

possibly lead to a sufficient supply. It should also be considered that riboflavin is not stable 

under the exposure to light McDowell & Ward (2008) and its availability must be taken into 

account. Cereal-based diets in organic farming should, therefore, contain specific feedstuffs 

with high amounts of riboflavin (Oehen et al. 2011). In the absence of our own analysis 

results for those feedstuffs, we used table values to calculate the total content of thiamine 

and riboflavin in the exemplary diets. However, those values cannot display the variability 

of the composition. Soybeans supposedly contain about 11 mg riboflavin/kg DM (Sauvant 

et al. 2004). They might, therefore, contribute to the supply of riboflavin. Yet, since we found 

wide variations of the riboflavin content in home-grown grain legumes, it is quite possible 

that there are also wide variations of the riboflavin content in soybeans. Milk products 

contain high amounts of riboflavin (Marconi & Panfili 1998, USDA 2016). Whey powder or 

milk powder are often used in diets for piglets and lactating sows but are not as common in 

diets for other adult pigs or for poultry. Brewer’s yeast is known to contain high amounts of 

B vitamins, including thiamine with 91 mg/kg DM and riboflavin with 43 mg/kg DM (Sauvant 

et al. 2004), and other favourable components (Yamada & Sgarbieri 2005). Thus, the 

inclusion of small amounts of brewer’s yeast strongly increased B vitamin supply of our 
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exemplary diets. Provided that brewer’s yeast can be obtained for feed production, its use 

can be recommended.  

Grassland-derived products like green meals from grass, alfalfa, and/or clover can also 

improve riboflavin supply. However, data on the contents are scarce. Moreover, roughage 

and pasture, which are already used in organic farming (Crawley 2015b, a), can contribute 

to the supply of B vitamins. Grass-clover silage has proved to be promising to increase the 

supply of riboflavin. In our study, we included 10% grass-clover silage in the diets. It can be 

assumed that pigs would take up even more silage on top of their normal feed intake 

(Carlson et al. 1999). 

In addition to the use of those feedstuffs, it might be possible to improve the riboflavin 

content of cereals and grain legumes. Since germination of grains from cereals and 

legumes is known to increase riboflavin contents (Prodanov et al. 1997, Sierra & Vidal-

Valverde 1999, Flamme et al. 2003), germination of those grains might also help to close 

the gap in riboflavin supply. However, further investigations on this topic would help to 

evaluate the benefit. 

Conclusions 

Variations of thiamine and riboflavin in single feedstuffs strongly affect their contents in 

exemplary diets for monogastric animals. Average cereal-based diets mostly exceed the 

thiamine requirements of monogastric farm animals. Thus, no gap between the 

recommended and the actual native supply was observed. It should be noted, however, that 

thiamine availability could not be taken into account. The amount of riboflavin, on the other 

hand, was found to be insufficient in most of our exemplary diets. Therefore, 

supplementation is recommended. The extent of the deficiency depends on the amount of 

cereals and grain legumes in the diet, animal performance, and the recommendations used. 

In our example, the extent of the deficiency is the highest for gestating sows with up to 3.3 

mg riboflavin/kg DM in a diet consisting only of cereals and home-grown grain legumes and 

for broiler chicken with up to 2.4 mg/kg DM. The addition of alternative feedstuffs to meet 

riboflavin requirements in monogastric animal feeding can reduce the need for 

supplementation and, therefore, contribute to 100% organic feeding. Further research on 

products derived from grassland or other alternative products, like germinated seeds, as 

suppliers of riboflavin is needed. Moreover, thiamine and riboflavin recommendations 

should be verified under the consideration of advances in animal production for 

conventional and organic farming. 
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General Discussion 

The optimisation of diets for farm animals contributes to the improvement of their health and 

performance and also allows to use resources more effectively (Le Bellego & Noblet 2002). 

However, the nutrient composition of single feedstuffs must be known to formulate optimal 

diets that prevent nutrient deficiencies and also enhance the efficiency of nutrient utilisation 

due to the adjustment of their composition. Thus, the sample set of the present study was 

used to give an overview of the nutrient composition of organic cereals and grain legumes 

from across Germany. Organic farming aims for 100% organic feeding. Thus, the needs of 

animals should be met with the native nutrient contents of the feedstuffs. This makes the 

results of the characterisation of commonly used feedstuffs on the basis of their nutrient 

composition very important. 

In addition, protein evaluation can contribute to a more efficient and sustainable animal 

feeding. An adjustment of the AA supply allows to reduce the CP concentrations in the diet 

and, therefore, preserves the environment and relieve the animal metabolism due to lower 

nitrogen loads. Due to the AA gap being a major concern in organic farming, the focus is 

often laid on protein evaluation. Furthermore, to describe the quality of a feed protein, the 

amount of bioavailable AA contained in the feedstuff is of interest (Kong & Adeola 2014). 

For practical feeding, CP and AA digestibility coefficients are used to estimate the amount 

of potentially bioavailable CP and AA (Stein et al. 2007, Fuller 2012), although the metabolic 

availability of CP and AA is not only determined by their digestibility but, for example, also 

by factors limiting their absorption. However, for diet formulation, the CP and AA 

digestibility, which benefits from its additivity (Angkanaporn et al. 1996, Stein et al. 2005), 

is a good approximation.  

Nutrient digestibility can be determined in vivo. However, the in vivo determination of the 

CP and AA digestibility is costly, time-consuming, and problematic regarding animal 

welfare. Since the digestibility and the availability of CP and AA can vary widely within and 

among feedstuffs (Jezierny et al. 2011), the use of an in vitro assay to rapidly and accurately 

predict the CP and AA digestibility is desirable. However, the quality of the results derived 

from the underlying in vivo studies is a determinant for the quality of an in vitro assay. 

In the present study, the prediction of the precaecal (pc) digestibility was preferred to the 

prediction of the total tract digestibility because microbial digestion in the caeca as well as 

endogenous losses in the large intestine alter the amount and composition of the excreted 

protein (Parsons 1984, Sibbald 1987). Therefore, the calculated digestibility coefficient for 

the total tract digestibility is a less accurate predictor of the available CP and AA than the 

calculated digestibility coefficient for the pc digestibility. Furthermore, when digestibility is 

studied, a decision must be made regarding the use of apparent, standardised, or true 



General Discussion 

 

136 

digestibility. The apparent pc digestibility is, for example, summarised in feed value tables 

of Bryden et al. (2009). Due to the correction for basal endogenous losses (Stein et al. 

2007), standardised pc digestibility coefficients were described as more accurate in diet 

formulation than apparent pc digestibility coefficients (Kong & Adeola 2014). In addition to 

basal endogenous losses, specific endogenous losses, which depend on characteristics of 

the test feedstuff (Sklan & Hurwitz 1980, Golian et al. 2008) and can therefore increase with 

increasing proportions of the test feedstuff (Figure 1), are considered in the true pc 

digestibility (Stein et al. 2007).  

 

Figure 1: Origin of excreted nitrogen 

(adapted from McDonald et al. 2002) 

Thus, the difference between standardised and true pc digestibility of the CP and AA 

contained by the test feedstuff depend on the inclusion rate of the test feedstuff as well as 

its ability to increase endogenous losses. High dietary fibre contents can increase the 

secretion of digestive enzymes (Parsons et al. 1983, Angkanaporn et al. 1997). In addition, 

specific endogenous losses can be caused by the protein source (Angkanaporn et al. 1997) 

or increased due to high concentrations of starch and sugar (Kong & Adeola 2013) or 

antinutritive factors (Cowieson & Ravindran 2007, Cowieson et al. 2008). Thus, it is difficult 

to make reliable corrections for specific endogenous losses. 

A major problem is that it is often not clearly stated which digestibility - apparent, true, 

standardised, or real total tract or pc digestibility - is displayed in tables and whether it was 

determined using ileal chyme or excreta (of cecectomised animals). Since the table values 

are descriptors for different measures, they cannot be easily subjected to comparison. Even 

if it is known which kind of digestibility is shown, the underlying assay that was used for the 

determination could have affected the displayed values. There are diverse reports regarding 

the comparability of the results of various in vivo studies on poultry of different origin and 

performance. Although some studies did not find significant differences, for example 
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between three in vivo assays with chicks and roosters (Kim 2010), differences between 

assay methods were observed in other studies (Huang et al. 2006, Ravindran et al. 2017). 

As a consequence, Ravindran et al. (2017) stated the importance of the implementation of 

a standard method. To exclude a possible effect of different assay methods and to ensure 

that a prediction of the digestibility is possible using an in vitro assay, one underlying in vivo 

method was used for all tested feedstuffs of the present study. 

In the linear regression approach that was deployed to determine the pc digestibility of the 

calibration samples (Rodehutscord et al. 2004), the CP or AA intake of broiler chicken fed 

three diets containing different proportions of the test feedstuff is related to the amount of 

residual CP or AA at the terminal ileum via regression analysis. The slope of the regression 

is equivalent to the pc digestibility, which is already corrected for basal endogenous losses 

but includes specific endogenous losses as an important determinant of nutritive protein 

quality (hereafter pc digestibility). The majority of the test feedstuffs used in the present 

study contained high amounts of at least one of these ingredients, indicating high specific 

endogenous losses, which affected the digestibility coefficients. 

Altogether, the capabilities of in vitro assays to predict the in vivo digestibility of nutrients 

are limited because the digestibility of the nutrients is not only dependent on the feedstuff 

but also on the animal and its housing environment. There are many interactions between 

the feedstuff and the animal. A feedstuff can, for example, affect the microflora of the 

digestive tract, the viscosity of the digesta, and, consequently, the performance of the chick 

(Saki et al. 2010). However, this can also be an asset of the method because predictions 

that are independent of the animal are better descriptors of the feedstuff itself. Thus, in vitro 

methods can be used as an indicator of in vivo measures and give valuable predictions for 

diet formulation. 

In vitro assays typically cannot be used to simulate endogenous losses or microbial 

digestion. Due to this fact, they are also used to predict the bioavailability of CP and AA 

(Galibois et al. 1989). Moreover, as a consequence of the inability of in vitro assays to 

simulate endogenous losses and microbial digestion in vitro rates of disappearance display 

the true pc CP and AA digestibility rather than the apparent one. The in vitro rate of CP 

disappearance in the present study was used to predict the pc CP and AA digestibility, 

which is comparable to the standardised CP and AA digestibility because it is corrected for 

basal endogenous losses (Kong & Adeola 2014). The prediction was accurate although 

high specific endogenous losses can be assumed for the majority of the tested feedstuffs. 

The adaption of the multi-enzyme assay of Boisen & Fernández (1995) showed that the 

lack of robustness can be a difficulty in the in vitro prediction of the digestibility of CP and 

AA of plant feedstuffs. Yet, robustness is a major requirement for laboratory analyses (Butts 

et al. 2012). Thus, measures must be taken to make the analysis results replicable and 
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valid. In the present study, the use of centrifuge tubes during the whole analysis and the 

increase in the amount of finely ground sample material contributed to an enhanced 

robustness. This can also contribute to the comparability of results from different 

laboratories. 

By now, the equations used to predict the CP and AA digestibility in the described in vitro 

assay were based on a regression including in vivo results of eleven different feedstuffs. 

Although the regressions had satisfying coefficients of determination, it is recommended to 

expand the number of feedstuffs used for method calibration to increase its validity. 

Furthermore, it would be of interest to relate the in vitro rate of CP and AA disappearance 

to the pc digestibility of a selection of samples originating from the same type of feedstuff 

to validate the method. The need for calculations with a selection of samples originating 

from the same type of feedstuff became specifically apparent, as wide variations have been 

reported in the literature and differences among literature/table values were large. Thus, a 

comparison with the in vitro CP and AA digestibility, which also varied widely, was difficult. 

Since rapid, cheap, and simple analyses are required, it is desirable to use the in vitro CP 

disappearance also to predict the AA digestibility, as it is currently done within the described 

in vitro assay. However, a further characterisation of the in vitro disappearance of the AA 

could be suitable to develop better predictions of the pc digestibility of the AA in broiler 

chicken. 

 

Even though it is generally known, it must be mentioned that the analysis method and the 

laboratory where analyses are conducted largely affect the results. The same plant 

feedstuffs were analysed for their CN and AA contents in a study by Ritteser (2015) and in 

the present study. However, the analysis results differed. This must be considered when 

results are to be compared or used in the same equation. Consequently, for animal trials or 

in vitro analyses, the feedstuffs and the digesta/residuals must be analysed in the same 

laboratory. All samples of the present study were analysed in the same laboratory and using 

the same methods. They are, therefore, comparable with each other. When compared with 

values reported in the literature, the effect of the analysis method and the laboratory must 

be considered. 

Although it is commonly assumed that organically produced crops differ in their nutrient 

composition from conventionally produced crops (Strobel et al. 2001, Rossi et al. 2006, 

Böhm et al. 2007), little evidence for regular differences of the CN and AA composition can 

be found in the literature (Dangour et al. 2009). Some studies were conducted on foods 

used in human nutrition. Meta-studies report the tendency of lower CP and nitrate 

concentrations in organically produced crops (Bourn & Prescott 2002, Magkos et al. 2003, 
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Rossi et al. 2006, Brandt et al. 2011). Additionally, a better protein quality as measured by 

its concentration of essential AA (specifically lysine) was reported (Wolfson & Shearer 1981, 

Worthington 2001, Winter & Davis 2006). This observation is most likely due to differences 

in the fertilisation management (Brandt et al. 2011) Nitrogen excess has been reported to 

result in an enhanced CP synthesis, a decreased carbohydrate synthesis, and an increased 

deposition of nitrate (Worthington 2001). The present study did not aim to compare 

production forms but rather to characterise organic cereals and grain legumes as feedstuffs 

for monogastric animals in organic farming. Due to the large selection of organically 

produced crops that were analysed for their CN, AA, thiamine, and riboflavin concentrations, 

the present study had the potential to describe organically produced cereal and grain 

legume seeds comprehensively. Nevertheless, the available information on the composition 

and nutrient digestibility of feedstuffs is either mostly derived from conventionally cultivated 

crops or information on their underlying production is lacking. Thus, a comparison with table 

values is often most likely a comparison with values derived from conventionally produced 

crops. Such a comparison with the tables provided by INRA-CIRAD-AFZ (2018) and Evonik 

(2016) showed that the minimum CP and AA content of the sample set was in some cases 

lower than the minimum values in feed value tables and vice versa for starch contents. This 

could also be observed for the mean values. The Lys concentration in the CP of oats, peas 

and blue lupins, as well as the His concentration of all cultivars except for barley, were 

higher than the table values. However, the shifts in the AA composition strongly depended 

on the cultivar and the CP level. The observed ranges of the other CN contents of cereals 

and grain legumes were in accordance with the existing table values (Evonik 2016, INRA-

CIRAD-AFZ 2018). The results were in agreement with the above-described tendencies for 

differences between organic and conventional plant foods. 

Due to their high contents of starch, cereals are important energy suppliers. They are major 

components of mixed feed because large amounts are available in good quality for a 

reasonable price. Furthermore, high proportions can be applied in the diet without 

detrimental effects. However, variations of the CN and AA composition can make it difficult 

to formulate a diet. For example, in the present study, CP, starch and NfE contents varied 

by about 6% of the DM in each cereal cultivar. Furthermore, in the present study, wheat 

had the highest mean CP contents. Its CP contained low amounts of EAA, Ala, Gly, and 

Asp but high amounts of Pro and Glu and was therefore not of high quality. Winter rye and 

winter barley had the lowest CP content. However, the CP contained more Lys and Met and 

less Glu than the CP of wheat. Wide variations of the AA contents in the CP of all cereals 

are most likely due to shifts in the proportion of different protein fractions that differ in their 

AA composition (Casey et al. 1982, Shewry 2007, Carbonaro et al. 2015). They lead also 

to widely varying amino acid ratios (AAR) of the protein, which can be problematic in 
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practical feed formulation based on the ideal AAR (IAAR). Altogether, cereals contribute 

greatly to the supply of SAA, which is of special importance in organic agriculture. The in 

vitro CP digestibility, which predicts the standardised pc CP digestibility in 42-day old broiler 

chicken, was with 0.71 - 0.83 the lowest for barley and with 0.80 – 0.90 the highest for winter 

wheat. These results were comparable with reports of Bandegan et al. (2011), who 

determined a standardised pc CP digestibility of five barley samples between 0.74 – 0.83 

and of five wheat samples between 0.86 – 0.89. Altogether, the CP and AA digestibility 

coefficients reported in the literature vary widely. A comparison with table values is 

specifically difficult as often only mean values (or even a single value) are reported. The 

variations of the nutrient content and the CP digestibility make it even more difficult to predict 

the nutritive value of different batches of cereals for monogastric animal feeding cereals can 

be of great value not only as the energy supplier but also as the supplier of other nutrients 

including such AA as the SAA, Thr, and Trp. However, to be used precisely in diet 

optimisation, analysis or good predictions of the nutrient composition and the pc CP and AA 

digestibility are required. 

The amino acid gap has been extensively discussed in the last two decades and is a 

persisting problem in monogastric animal feeding in organic farming (Weißmann et al. 2005, 

Zeltner & Maurer 2009, Smith et al. 2014). The allowance to feed some conventionally 

produced protein feedstuffs is a compromise that was made to ensure animal health and 

welfare. Legumes are valuable crops regarding their ecological and agricultural benefits (e. 

g., soil fertility, biodiversity)(Stockdale et al. 2006, Watson et al. 2006, Köpke & Nemecek 

2010) as well as in terms of their nutritional quality (Fernández et al. 1996, Urbano et al. 

2005, Sujak et al. 2006, Koivunen 2016). Due to high CP contents with large amounts of 

Lys, they can enhance the CP content of the diet and compensate for low Lys contents in 

cereals. Thus, they can be beneficial in closing the AA gap. Home-grown grain legumes 

can partially replace soybean meal in diets for monogastric animals (Koivunen et al. 2016). 

However, like in other crops, the CN and AA composition as well as the pc digestibility of 

CP and AA can vary widely in grain legumes. In the present study, the CP content of blue 

lupins varied by 14% of the DM, their NfE content by 13%, and their starch content by 6% 

of the DM. Similar variations were observed in peas and beans. The CP content of peas 

varied by 10.5% of the DM. Some pea samples had CP contents that were comparable to 

the ones of winter wheat. Evonik (2016) reported a mean CP content of field peas of 

23.6% DM, which is nearly 9% higher than the lowest content and more than 2% higher 

than the mean content determined in the present study. These wide variations were 

mirrored in the AA composition of the CP and in the in vitro CP and AA digestibility 

coefficients. They make diet formulation particularly challenging and nutrient analyses or 

predictions necessary. 
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The ability of practical diets to meet the IAAR, which depends on the animal species and a 

variety of further factors (e. g., age and performance), is limited. Still, the knowledge of the 

AA contents can improve diet formulation to achieve effective use of N and, thus, decrease 

its excretion and improve animal performance, health, and welfare (Jongbloed & Lenis 

1992, Van Krimpen et al. 2005, Rodenburg et al. 2008, Chalova et al. 2016) also in organic 

farming. However, when CP contents of the diet are deliberately decreased, it is important 

to consider not only the effect on performance and overall health but also on animal welfare. 

Diets with low CP levels can for example decrease broiler performance and lead to hunger 

reactions, like feather eating and feed spillage, although it need not affect the immune 

reaction of broiler chicken negatively (Eriksson et al. 2009). An improved AA profile of a low 

CP diet has the potential to reduce these reactions and is known to prevent growth 

depression and other deficiency symptoms in piglets (Le Bellego & Noblet 2002). Since AA 

analyses are quite expensive, the prediction of their contents from the CP content of a 

feedstuff by equations is common in agricultural practice (e. g., Evonik 2016, Ajinomoto 

Animal Nutrition Group 2014). Although the values obtained by using equations can deviate 

from the results obtained via analysis, they can be used to predict an approximate AA 

composition of cereals and grain legumes and are supported by the results of the present 

study. 

In farm animal feeding in organic farming, another compromise is made with regard to the 

B vitamin supply. B vitamins are water-soluble, readily excreted, and thus not stored in the 

body. Therefore, the dietary oversupply is continuously excreted with urine (Roth-Maier et 

al. 1999) despite the constant requirement for B vitamins in metabolism (McDowell 2006). 

This makes their continuous dietary supply necessary. Since B vitamin deficiencies have 

strong negative effects on animal health, some supplements are allowed to be used in 

organic farming but native contents must be considered, nevertheless. The thiamine and 

riboflavin contents in cereals determined in the present study were mostly lower than 

expected from table values, while grain legumes contained also low but more similar 

amount of both B vitamins (Sauvant et al. 2004, USDA 2016). However, comparably low 

contents have been repeatedly reported in the literature (Olkowski 2008, Buchholz et al. 

2012). The differences between the studies might be related to the used analysis method 

(Hollman et al. 1993), the storage time and conditions (Finglas 2003), or different cultivation 

conditions (Shewry et al. 2011). However, the value of cereals and grain legumes as 

suppliers of thiamine and riboflavin was confirmed in the present study. 

It was shown in this study that recommended amounts of thiamine are usually supplied 

without any supplementation in exemplary diets for pigs and chicken in organic farming. 

However, it is important to consider the bioavailability of thiamine. The availability of 

thiamine in the diet can be affected by naturally occurring antagonists. The enzyme 
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thiaminase can be found in raw fish, in some plants, fungi, and microorganisms (Kawasaki 

& Ono 1968, Plitt 1995). Plants can also contain antagonistic hydroxypolyphenols, like 

caffeic acid, chlorogenic acid, and tannic acid, which are heat-stable and render the 

thiamine unable to be absorbed (Baker 1995, McDowell 2000). Additionally, plant 

flavonoids, like quercetin and rutin, can be antagonistic to thiamine (Murata et al. 1974, 

Murata et al. 1976) and thiamine analogues can affect thiamine availability (Hemming & 

Gubler 1980). Furthermore, metabolic rate (i.e. age, body size, health status) affect thiamine 

requirement (McDowell 2000). Thiamine contents in feedstuffs can decrease due to 

suboptimal storage conditions, since thiamine is heat labile at neutral pH and freely water-

soluble (Prodanov et al. 2004). In addition, it is unstable under alkaline conditions (Finglas 

2003, Combs Jr. & McClung 2017). However, the stability of thiamine in compounds can be 

different (Baker 1995). Shurson et al. (2011) reported a decrease of thiamine concentration 

in premixes during storage at ambient temperature. Nevertheless, thiamine deficiency 

appears rather unlikely when healthy animals are fed a cereal-based diet that was stored 

under dry and cool conditions. Pc digestibility coefficients of 0.94 for barley thiamine, 0.89 

for wheat thiamine, and 0.84 for rye thiamine were reported (Roth-Maier et al. 1999, Roth-

Maier & Paulicks 2003). Due to the above-described factors, a thiamin deficiency can occur. 

However, it is rather unlikely, when the feedstuffs are carefully handled and processed and 

are not stored over a long period of time. 

Considering the results of the present study, riboflavin is likely to be deficient in diets for 

monogastric animals in organic farming. This is rather problematic because riboflavin 

supplements are generally produced via fermentation with GMO (Stahmann et al. 2000, 

Schwechheimer et al. 2016, Revuelta et al. 2017), which are banned in organic farming. 

Furthermore, it must be considered that the riboflavin content in feedstuffs can decrease 

during storage and processing. Extrusion was reported to decrease the amount of available 

thiamine and riboflavin in peas (Frias et al. 2011). Storage conditions must therefore be well 

monitored. Although riboflavin remains stable when exposed to heat and oxygen and is only 

moderately soluble in water and ethanol, it is sensitive to sunlight (Choe et al. 2005) and 

unstable under alkaline conditions and irradiation as well as in the presence of metals and 

reducing agents (Finglas 2003, Combs Jr. & McClung 2017). It is of benefit to choose a 

storing place in consideration of these conditions and store feedstuffs in a dark and dry 

place. In addition, it must be considered that some antagonists and analogues diminish the 

bioavailability of riboflavin (Mack & Grill 2006, Combs Jr. & McClung 2017). As a 

consequence, the native riboflavin contents should be considered in diet formulation with 

caution. It is necessary to find ways to improve the supply of riboflavin, although it has been 

reported that riboflavin supply 18% below the recommendations does not necessarily impair 

the growth performance of broiler chicken (Roth-Maier & Kirchgeßner 1997 in Roth-Maier 
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& Paulicks 2002). In cereals, riboflavin is contained by the germ and the hulls (Batifoulier et 

al. 2006). Since cereal refining for animal feeding is not common, maximum contents of 

riboflavin are contained in feed cereals. The only way to improve the riboflavin content in 

cereals and grain legumes seem to be germination (Bau et al. 1997, Prodanov et al. 1997, 

Sierra & Vidal-Valverde 1999, Mehta et al. 2007). Germination is also known to decrease 

the contents of some anti-nutritive factors (Gefrom et al. 2013). However, Schwediauer et 

al. (2017) concluded that germination of faba beans is not suitable in terms of nutrients and 

acceptance. Since riboflavin can mainly be found in milk products, eggs, meat, and green 

vegetables (Batifoulier et al. 2006), the use of egg or milk powder seems to be another 

promising solution. However, animal products are not primarily supposed to be used in farm 

animal nutrition. Furthermore, the present study confirmed the value of grass-land derived 

products in the contribution of riboflavin. Since pasture and roughage are commonly used 

in organic farming, their contribution to the riboflavin (and thiamine) supply should be further 

evaluated. An inclusion of yeast in diets for farm animals can also be beneficial in feedstuffs 

for monogastric animals. Yeast can be added in small amounts, but it contains large 

amounts of CP (58% DM), minerals, and vitamins, including riboflavin (7.2 mg/100g DM) 

and thiamine (5.6 mg/100g DM; (USDA 2018). When native contents of dietary riboflavin 

are not sufficient after all, supplements could be produced by chemical synthesis (Bretzel 

et al. 1999). Due to the growing consumer demand for GMO-free foods, the production of 

riboflavin by chemical synthesis might increase again. In conclusion, a sufficient supply of 

riboflavin remains a major issue in organic farming. 

For practical ration formulation, it would be useful to have a tool to approximately predict 

the nutrient composition of the single feedstuffs. Both the results of the present study and 

reports in the literature showed that variety and environmental conditions can strongly affect 

nutrient composition (Kim et al. 2003, Murphy et al. 2009, Shewry et al. 2010, Rodehutscord 

et al. 2016) and nutrient digestibility (Ravindran et al. 2014, Rosenfelder et al. 2015, 

Spindler et al. 2016, Zuber et al. 2016). However, a large number of influencing factors as 

well as interactions between variety and environmental conditions prevent the prediction of 

the nutrient composition based on variety and environmental conditions. Balanced studies, 

repeatedly conducted under the same conditions with the same varieties, could provide 

information that is more accurate. Yet, the environmental conditions cannot be held 

constant in the field, and breeding programs continually provide new varieties. Due to 

repeatedly conducted variety trials, some studies of the plant breeding companies, and 

some research experiments (e. g., Daveby et al. 1993, Jørgensen et al. 1999, Kim et al. 

2003, Gutiérrez-Alamo et al. 2008, Hornick 2009, Kotlarz et al. 2011, Shewry et al. 2011), 

several regularities of effects are known. For example, it is known that the time and intensity 

of rainfall alter the CN and vitamin concentrations, that the ripening state at harvest affects 
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nutrient content and is crucial for the relation between starch and CP content, and that 

specific varieties contain low amounts of ANF or high amounts of CP with a specific 

composition. The present study confirmed the existence of varietal and environmental 

effects on the concentration of CN, starch, thiamine, and riboflavin as well as on the in vitro 

digestibility of CP and AA. However, it does not allow to draw conclusions on the direction 

and extent of the varietal and environmental effects on the nutrient composition and 

digestibility of specific samples. It is unlikely that it will be possible to precisely predict the 

nutrient composition of crops in the future. 
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Conclusions 

The results of the present study confirmed wide variations of the crude nutrient, amino acid, 

thiamine, and riboflavin contents of organic cereals and grain legumes. In comparison to 

table values, the crude protein, thiamine, and riboflavin content of cereal and grain legumes 

tended to be lower and the starch content tended to be higher. Additionally, the amino acid 

profile of the crude protein differed from literature values. Decreasing crude protein contents 

were associated with decreasing concentrations of the amino acids phenylalanine, proline, 

and glutamine/glutamic acid in the crude protein of cereals and arginine in the crude protein 

of grain legumes, while the concentration of some other amino acids, including lysine, 

methionine, threonine, and tryptophan, increased. In terms of the amino acid gap in organic 

farming, which is foremost based on the lack of sulphur-containing amino acids in diets for 

monogastric animals, the results indicated a better protein quality in cereals and grain 

legumes with low crude protein contents. Low crude protein contents of organically 

cultivated crops could therefore have an advantage in the formulation of diets with 

decreased levels of crude protein. However, low crude protein, amino acid, and riboflavin 

contents of cereals and grain legumes, which are commonly used feedstuffs for 

monogastric animals, could also add to already existing shortcomings. 

Either way, the nutrient composition of single feedstuffs must be known to optimise a diet. 

The enormous variability of the nutrient contents and the strong but unpredictable effects of 

genetic and especially environmental factors on the nutrient composition of cereals and 

grain legumes make it difficult to predict it. Furthermore, the use of table values becomes 

deceptive, when wide variations of the tabulated nutrients occur unpredictably. However, 

crude protein analysis can be conducted with quick and cheap methods. When the crude 

protein content of a sample is known, the contents of the amino acids of cereals and grain 

legumes can be satisfactorily predicted using equations, which were provided by the 

present study. An accurate estimation of the amino acid contents can also give information 

on the amino acid profile of the dietary protein. 

Furthermore, the content of digestible amino acids in single feedstuffs is commonly used in 

diet formulation for monogastric animals. As observed in the present study, the precaecal 

crude protein and amino acid digestibility of organically cultivated grain legumes in broiler 

chicken can be high. Nevertheless, wide variations of the precaecal crude protein and 

amino acid digestibility were reported in the literature. Data tables that provide information 

on the precaecal crude protein and amino acid digestibility of cereals and grain legumes 

are less extensive than tables providing information on the nutrient composition. Thus, it is 

crucial to improve the data situation. The adapted in vitro assay of the present study can be 

used to predict the precaecal crude protein and amino acid digestibility in feedstuffs for 
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broiler chicken and thus to enhance the data basis with little impact on animal welfare. 

However, the standardisation of the underlying in vivo method is recommended. The effect 

of the environmental conditions on the in vitro crude protein and amino acid digestibility was 

high. An optimised cultivation management might be more important for improving the 

precaecal crude protein and amino acid digestibility and the nutrient composition of cereals 

and grain legumes than the choice of variety. Further validation of the assay using combined 

in vivo and in vitro studies are recommended to improve the applicability of the introduced 

assay. 

The supply of B vitamins, especially riboflavin, and the supply of precaecally digestible 

essential AA remains a complex topic. Since animal health and welfare are of utmost 

importance in animal keeping per se, the sufficient dietary supply of nutrients must be 

ensured by supplementing critical nutrients if necessary. To enable 100% organic feeding, 

it is of interest to study the composition and applicability of feedstuffs with high contents of 

limiting amino acids as well as riboflavin. Furthermore, an improved applicability of simple 

predictions for the nutrient composition and digestibility can be beneficial in 100% organic 

feeding. 
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Table A V 1: Contents of thiamine and riboflavin in selected cereals and grain legumes 
[mg/kg DM] 

  Variety Thiamine Riboflavin 

Cereals    

Spring triticale Dublet 2.05 0.98 

Triticosecale Kulula 2.01 0.94 

 Nagano 1.90 0.86 

Naked barley Nora 1.90 1.03 

Hordeum vulgare L., var nudum    

Naked oats Nihao 3.51 1.58 

Avena sativa L., var nuda    

Legumes    

Winter field pea James 6.23 1.64 

Pisum sativum L.    

Winter field bean Hiverna  2.42 

Vicia faba L.    

Yellow lupin Mister (n=2) 6.67/7.76 2.55/2.70 

Lupinus luteus L. Taper (n=2) 6.21/6.97 2.68/2.76 

 

Table A V 2: Maximum differences of thiamine and riboflavin contents between factor 
manifestations of cereals and grain legumes [mg/kg DM] – absolute as well as 
relative to mean content 

    Thiamine       Riboflavin     
 n variety year site/area  variety year site/area  

Cereals          

Winter wheat 
70 

0.38 
16.5% 

0.18 
7.8% 

0.23 
10.0% 

 
0.04 
5.4% 

0.06 
8.1% 

-  
Triticum aestivum L. 

Spring wheat 
25 

0.43 
19.4% 

0.22 
9.9% 

-  
0.21 

24.7% 
0.16 

18.8% 
-  

Triticum aestivum L. 

Winter rye 
81 

0.42 
23.9% 

0.23 
13.1% 

0.46 
26.1% 

 
0.06 
5.7% 

0.17 
16.0% 

0.09 
8.5% 

 
Secale cereale L. 

Winter triticale 
92 

0.24 
13.1% 

- 
0.28 

15.3% 
 

0.12 
13.2% 

0.11 
12.1% 

0.12 
13.2% 

 
Triticosecale 

Winter barley 
15 - - 

0.74 
33.5% 

 - - 
0.27 

33.8% 
 

Hordeum vulgare L. 

Spring barley 
47 - 

0.54 
26.3% 

-  
0.08 
8.5% 

0.12 
12.8% 

0.10 
10.6% 

 
Hordeum vulgare L. 

Oats 
80 

0.35 
12.9% 

0.44 
16.2% 

0.47 
17.3% 

 - 
0.14 

14.0% 
0.25 

25.0% 
 

Avena sativa L. 

Grain legumes          

Spring field pea 
41 - 

1.68 
28.9% 

1.97 
33.9% 

 
0.14 
8.1% 

0.51 
29.5% 

0.18 
10.1% 

 
Pisum sativum L. 

Spring field bean 
57/59* 

1.25 
25.2% 

2.30 
46.3% 

0.94 
18.9% 

 
0.94 

34.2% 
- 

0.15 
5.3% 

 
Vicia faba L. 

Blue lupin 
31 - - 

1.90 
38.7% 

 - 
0.16 
6.7% 

0.31 
13.0% 

 
Lupinus angustifolius L. 

*Thiamine/Riboflavin 
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Table A V 3: Thiamine and riboflavin contents (LSMean and SE) of winter wheat samples 
(Triticum aestivum L.) from different varieties, harvest years, and harvest areas 
in mg/kg DM 

Manifestation n Thiamine Riboflavin 

Variety               
Butaro 24 2.45 0.036 b 0.76 0.007 b 

Capo 26 2.07 0.036 a 0.77 0.010 b 

Naturastar 20 2.38 0.042 b 0.73 0.011 a 

Year               
2011 16 2.28 0.042 ab 0.76 0.017 ab 
2012 22 2.40 0.053 b 0.72 0.010 a 
2013 32 2.22 0.052 a 0.78 0.013 b 

Area1        
1 8 2.20 0.080 ab    
2 17 2.21 0.033 a    
3 23 2.43 0.058 b    
4 10 2.32 0.063 ab    
6 12 2.37 0.075 ab       

1 JKI (2018); superscript letters mark significant differences in columns with P<0.05 
 

Table A V 4: Thiamine and riboflavin contents (LSMean and SE) of spring wheat samples 
(Triticum aestivum L.) from different varieties, harvest years, and harvest areas 
in mg/kg DM 

Manifestation n Thiamine Riboflavin 

Variety        
Eminent  8 2.10 0.098 a 0.82 0.027 a 
Granny  4 2.29 0.151 ab 1.03 0.043 b 
KWS Chamsin 4 2.53 0.162 ab 0.83 0.032 a 
KWS Scirocco 9 2.42 0.072 b 0.84 0.021 a 

Year               
2011 8 2.13 0.124  0.88 0.031 ab 
2012 8 2.42 0.085  0.96 0.024 b 
2013 9 2.45 0.101   0.80 0.025 a 

Area1        
1 5       
2 12       
3 8             

1 JKI (2018); superscript letters mark significant differences in columns with P<0.05 
  

Table A V 5: Thiamine and riboflavin contents (LSMean and SE) of winter rye samples 
(Secale cereale L.) from different varieties, harvest years, and harvest sites in 
mg/kg DM 

Manifestation n Thiamine Riboflavin 

Variety               
Conduct 18 1.80 0.043 b 1.07 0.011 abc 
Dukato 18 1.76 0.041 b 1.08 0.015 abc 
Helltop 17 1.99 0.055 c 1.04 0.013 ab 
Likoro 10 1.76 0.057 b 1.09 0.015 c 
Palazzo 18 1.57 0.060 a 1.03 0.011 a 

Year               
2011 16 1.66 0.089 a 1.14 0.025 c 
2012 33 1.77 0.039 a 0.97 0.013 a 
2013 32 1.89 0.029 b 1.08 0.010 b 

Site/Area1        
7/1 14 1.71 0.064 ab 1.07 0.027 ab 
45/1 14 1.53 0.035 a 1.03 0.006 a 
4/2 13 1.99 0.035 c 1.11 0.015 b 
53/2 10 1.77 0.055 bc 1.08 0.018 b 
5/3 10 1.80 0.039 b 1.02 0.013 a 
46/4 7 1.95 0.035 c 1.08 0.013 b 
1/6 13 1.70 0.087 abc 1.05 0.023 ab 

thiamine: intervals are back-transformed; 1 JKI (2018); superscript letters mark significant differences in columns 
with P<0.05 
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Table A V 6: Thiamine and riboflavin contents (LSMean and SE) of winter triticale samples 
(Triticosecale) from different varieties, harvest years, and harvest areas in 
mg/kg DM 

Manifestation n Thiamine Riboflavin 

Variety               
Benetto 21 1.92 0.043 bc 0.96 0.020 bc 

Cosinus 19 1.75 0.050 a 0.88 0.015 a 

Moderato 8 1.84 0.070 abc 0.92 0.021 ab 

Sequenz 18 1.99 0.038 c 0.90 0.014 ab 

Tarzan 9 1.89 0.062 abc 1.00 0.027 c 

Tulus 17 1.86 0.018 ab 0.88 0.022 ab 

Year        
2011 23    0.99 0.017  
2012 35    0.88 0.018  
2013 34       0.91 0.014  

Area1        
1 32 1.72 0.046 a 0.87 0.020 a 

2 24 1.96 0.049 b 0.98 0.016 b 

3 15 2.00 0.054 b 0.94 0.026 ab 

4 10 1.84 0.105 ab 0.94 0.027 ab 

6 11 1.86 0.068 ab 0.89 0.024 ab 

riboflavin: intervals are back-transformed; 1 JKI (2018); superscript letters mark significant differences in 
columns with P<0.05 

 

Table A V 7: Thiamine and riboflavin contents (LSMean and SE) of winter barley samples 
(Hordeum vulgare L.) from different harvest sites in mg/kg DM 

Site/Area1 Year n Thiamine Riboflavin 

4/2 2012 3 2.31 0.062 b 0.72 0.019 a 
9/3 2012 3 2.05 0.052 a 0.70 0.033 a 
3/3 2013 3 2.23 0.023 b 0.97 0.044 b 
5/3 2013 3 1.99 0.045 a 0.90 0.009 b 
54/3 2013 3 2.73 0.060 c 0.92 0.014 b 

1 JKI (2018); superscript letters mark significant differences in columns with P<0.05 
  

Table A V 8: Thiamine and riboflavin contents (LSMean and SE) of spring barley samples 
(Hordeum vulgare L.) from different varieties, harvest years, and harvest areas 
in mg/kg DM 

Manifestation n Thiamine Riboflavin 

Variety               
Catamaran 12    0.92 0.023 ab 

Grace 13    0.98 0.017 b 

Marthe 14    0.91 0.022 a 

Zeppelin 8    0.99 0.031 b 

Year               
2011 5 1.77 0.068 a 0.99 0.041 b 
2012 19 2.31 0.045 b 0.99 0.026 b 
2013 23 1.99 0.037 a 0.87 0.018 a 

Area1        

1 10    0.93 0.017 ab 
3 11    0.98 0.021 ab 
4 11    0.89 0.018 a 
6 15       0.99 0.023 b 

1 JKI (2018); superscript letters mark significant differences in columns with P<0.05 
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Table A V 9: Thiamine and riboflavin contents (LSMean and SE) of oat samples (Avena sativa 
L.) from different varieties, harvest years, and harvest sites in mg/kg DM 

Manifestation n Thiamine Riboflavin 

Variety               
Flämingsgold 6 2.67 0.133 abc    
Flocke 15 2.77 0.070 c    
Gabriel 9 2.49 0.042 a    
Ivory 14 2.54 0.058 a    
Max 15 2.58 0.060 ab    
Scorpion 10 2.72 0.079 bc    
Simon 11 2.84 0.080 c       

Year        
2011 23 2.45 0.117 a 1.06 0.038 b 
2012 30 2.68 0.091 ab 0.99 0.035 ab 
2013 27 2.89 0.070 b 0.92 0.016 a 

Site/Area1               
7/1 16 2.70 0.140 ab 0.94 0.039 a 
45/1 16 2.66 0.095 ab 1.16 0.033 b 
4/2 18 2.34 0.106 a 0.91 0.042 a 
54/3 10 2.81 0.066  b 0.96 0.063 ab 
55/3 10 2.72 0.091 ab 0.98 0.077 ab 
46/4 10 2.78 0.116 ab 1.01 0.060 ab 

thiamine, riboflavin: Intervals are back-transformed; 1 JKI (2018); superscript letters mark significant differences 
in columns with P<0.05 

 

Table A V 10: Thiamine and riboflavin contents (LSMean and SE) of field pea samples (Pisum 
sativum L.) from different varieties, harvest years, and harvest sites in mg/kg 
DM 

Manifestation n Thiamine Riboflavin 

Variety        
Alvesta 9    1.78 0.035 bcd 
Auckland 6    1.67 0.020 a 
Casablanca 5    1.65 0.050 abc 
KWS La Manscha 5    1.75 0.022 cd 
Navarro 8    1.66 0.032 ab 
Salamanca 8    1.80 0.029 d 

Year         
2011 12 4.53 0.231 a 1.57 0.021 a 
2012 12 6.02 0.335 b 2.05 0.043 b 
2013 17 6.21 0.221 b 1.54 0.027 a 

Site/Area1        
7/1 9 4.54 0.187 a 1.79 0.024 c 
4/2 16 6.51 0.220 c 1.78 0.033 bc 
5/3 8 5.61 0.223 b 1.69 0.034 ab 
54/3 8 5.69 0.490 abc 1.61 0.032 a 

1 JKI (2018); superscript letters mark significant differences in columns with P<0.05 
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Table A V 11: Thiamine and riboflavin contents (LSMean and SE) of field bean samples (Vicia 
faba L.) from different varieties, harvest years, and harvest areas in mg/kg DM 

Manifestation n Thiamine Riboflavin 

Variety               
Alexia 7 4.34 0.189 ab 3.29 0.082 d 
Bioro 9 4.54 0.104 bc 2.77 0.048 bc 
Divine 9 5.14 0.163 d 2.35 0.062 a 
Fuego 13 3.87 0.145 a 2.83 0.028 c 
Isabell 13 4.69 0.158 bc 2.46 0.029 a 
Julia 8 4.86 0.127 cd 2.64 0.047 b 

Year               
2012 22 3.55 0.179 a    
2013 37 5.85 0.098 b       

Area1        
2 12 4.16 0.074 a 2.56 0.055 a 
3 32 4.46 0.175 b 2.67 0.022 a 
6 15 5.10 0.125 c 2.81 0.053 b 

all intervals are back-transformed; 1 JKI (2018); superscript letters mark significant differences in columns with 
P<0.05 

 

Table A V 12: Thiamine and riboflavin contents (LSMean and SE) of blue lupin samples 
(Lupinus angustifolius L.) from different varieties, harvest years, and harvest 
areas in mg/kg DM 

Manifestation n Thiamine Riboflavin 

Variety         

Boregine 7       

Borlu 7       

Boruta 6       

Haags Blaue 4       

Probor 7       

Year               
2011 10    2.28 0.045 ab 

2012 8    2.21 0.060 a 

2013 13       2.37 0.021 b 

Site/Area1        

7/1 13 4.12 0.210 a 2.20 0.040 a 
45/1 9 3.67 0.150 a 2.18 0.033 a 
59/2 9 5.57 0.365 b 2.49 0.076 b 

1 JKI (2018); superscript letters mark significant differences in columns with P<0.05 
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