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1. Introduction

1.1. Overview

The electromagnetic field is inherently stochastic, undergoing both thermal and quan-

tum fluctuations. In many cases these fluctuations do not contribute to measurements

simply because only the noise-average field is manipulated (for example in most op-

tics experiments), and thus the deterministic, or averaged, Maxwell’s equations [38]

are often enough to describe the experiments. There are, however, many interesting

phenomena which would not exist without fluctuations – the most prominent of them

being fluctuational forces (temperature-dependent forces between neutral objects) and

radiative heat transfer.

The theoretical description of these phenomena has historically evolved from very spe-

cific to more general systems. The fluctuational forces are often referred to as Casimir

forces after the first description of the force between two semi-infinite neutral perfectly

metallic plates, first given by Casimir in 1948 [19]. The theory was later generalized

by Lifshitz for plates with arbitrary dielectric properties [59]. Of the same origin is

also the force between two neutral particles, known as the Casimir-Polder (retarded

limit) [20] or van der Waals force [28, 14]. All these different forces share two simi-

larities: they are of electromagnetic origin (they depend on the dielectric rather than

chemical properties), and have an extremely short range as compared to the Coulomb

force. Famously, this is used by spiders and geckos to attach to any surface – their feet

are covered with extremely tiny hairs, which are able to get close enough to surfaces in

order to activate this force. For two similar surfaces in contact, the average separation

is normally limited by microscopic roughness.

The advancement of experimental methods for measuring forces [88, 56, 64, 15, 68]

and heat transfer [47, 76, 81, 69, 46], as well as the development of the micro-

electromechanical systems (MEMS) framework [34], has in turn lead to increased ef-

forts in the past decade to develop theoretical models for these experiments. Of par-

ticular use is fluctuational electrodynamics (FE), a family of theories which relates the

fluctuations of the electromagnetic field to the dielectric properties (for example reflec-

tion coefficients) in systems of arbitrary geometry. This can be accomplished with the

help of the fluctuation-dissipation theorem (FDT) [1, 53, 40], Rytov currents [77, 58],
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1. Introduction

or macroscopic quantum electrodynamics [62, 63]. The development of FE has lead

to a wide range of theoretical results for arbitrary systems, such as Casimir forces in

and out of equilibrium [5, 12], forces between moving objects [70], and radiative heat

transfer [77, 71, 29]. More recent advances have moved toward basis-free trace formu-

las [72, 51, 8, 9, 74, 65], allowing for a convenient description of relevant experimental

setups such as plate-sphere geometries.

While FE can be used, in principle, to calculate the forces and heat transfer between

bodies of arbitrary shape and dielectric properties, most results require the materials

to be purely linear. This assumption simplifies the calculations greatly, in large part

due to the superposition principle: the electromagnetic field can be separated into an

average and fluctuating part, which do not influence each other. However, doing this

leaves out a vast field of physics, namely that of nonlinear optics (NLO), with many

interesting effects such as frequency mixing, optical Kerr effect, and Raman/Brillouin

scattering, to name a few [80, 13]. The wider goal of this thesis is to incorporate the

physics of NLO into FE.

Because of the breakdown of the superposition principle, including NLO into FE

would possibly open an avenue into the interesting field of tunable Casimir forces

[73, 23, 4, 78, 97, 22, 90, 92, 17, 25]. While naturally occurring materials tend to exhibit

rather weakly nonlinear behavior, strong lasers can overcome this. This is sub-optimal

for our purposes, because of the low power of fluctuations at room temperature. The

rise of nonlinear metamaterials [42, 57, 10], however, gives a good platform for such

experiments due to the possibility of greatly enhanced nonlinear properties. Of partic-

ular interest are glasses infused with gold or silver nanoparticles [33, 36, 41], organic

metamaterials [18], and polymers [54]. Beside metamaterials, a promising class of

tunable and nonlinear systems include various saturating objects or materials, such as

quantum wells [2, 91, 75, 99, 100], two-level systems [7], and dipolar fluids [89].

The existing research into fluctuating nonlinear systems is sparse, especially for the

electromagnetic field. Early attempts concentrate on nonlinear Langevin equations

[96, 95, 49], yielding modified FDT relations. Nonlinearities are also encountered in

interacting field theories [21, 40], which are applied in the setting of critical Casimir

forces [50, 35]. Macroscopic quantum electrodynamics, probabilistic by nature, has

been extended for nonlinear dielectrics [27, 37, 79], but the theory lacks the versatility

of FE and has not yet been applied to the Casimir effect.

Regarding fluctuational forces in nonlinear systems, there have been studies of the

van der Waals force between nonlinear polarizable particles [55, 61, 84]. From a field-

theoretical perspective, fluctuations near nonlinear boundary conditions [32], as well

as the Casimir force in the presence of a nonlinear medium [45], have been considered.

Heat radiation of nonlinear systems is even less explored. The only applications con-
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1.2. Thesis outline

cern optical cavities, which are laser resonator setups built around a nonlinear crystal.

Refs. [43, 44], using coupled mode theory (essentially a Langevin equation), obtain a

modified FDT relation similar to Refs. [96, 95, 49] as well as modified heat radiation

spectra. It is not clear, however, how to generalize these results beyond the specific

setup of an optical resonator.

To the author’s knowledge, no analogue to FE exists in scientific literature for nonlinear

materials besides Refs. [83, 85, 86].

1.2. Thesis outline

As the foundation for the rest of the thesis, the objective of Chapter 2 is to intro-

duce the formalism of fluctuational electrodynamics and nonlinear optics necessary

for later chapters. We start from the macroscopic Maxwell’s equations, introduce

the fluctuation-dissipation theorem (FDT), and obtain the linear stochastic Helmholtz

equation. After a short introduction into the mathematics of nonlinear optics, the non-

linear polarizability will be added to thewave equation, resulting in a so-called stochas-

tic nonlinear Helmholtz equation (SNHE). We demonstrate further how the average

electric field obeys a similar (but deterministic) effective nonlinearHelmholtz equation

(ENHE). The chapter is concluded by applying a basic perturbative analysis, leading

to simpler forms of the SNHE and ENHE, which will be applied in specific cases over

the course of the subsequent three chapters: in equilibrium (Chapter 3), in systems

out of thermal equilibrium (Chapter 4), and in systems with a strong external field

(Chapter 5).

Chapter 3 takes the equations obtained at the end of Chapter 2, the SNHE and ENHE,

and evaluates them in equilibrium with the help of the FDT. We determine both the

equilibrium noise currents and fluctuations and show that our use of the FDT is in

agreement with the so-called Rytov theory of Ref. [58]. Using these, we determine the

effective dielectric function or electromagnetic potential, which governs the behavior

of the average electromagnetic field (and therefore linear response and optics). We use

these results in a practical example: to calculate the force between two semi-infinite

parallel plates, also known as the Casimir force.

In Chapter 4, the system is taken out of equilibrium by assigning the noise in differ-

ent objects different temperatures, but leaving it otherwise unchanged. This is called

the local thermal equilibrium approximation: the temperatures are equalized locally

(within objects) but not globally (between objects). This gives a robust way of cal-

culating both the non-equilibrium fluctuations and heat transfer between the objects.

The changing fluctuations also affect the effective dielectric function, with the interest-

ing consequence that it is possible for a passive material to start behaving like a gain

3



1. Introduction

medium. The effective dielectric function is used to give an explicit formula for the heat

radiation a single nonlinear nanosphere. In the extreme case where the sphere has no

absorption in equilibrium, we find that the net heat flow will always be away from the

sphere, even if it is colder than the environment.

Adding strong external forces into the system in Chapter 5, we analyze how many de-

grees of freedom does the FDT remove from a simple scalar model (as opposed to full

electromagnetic theory)without any further assumptions. Wewill see that without ex-

tra information (for example from a microscopic theory) or assumptions, the behavior

of noise, and therefore field fluctuations, can not be uniquely determined. Neverthe-

less, the noise-fluctuation dualism offers a useful framework to apply and study further

assumptions. The simplest case is also applied to calculate the field dependence of the

fluctuations in a strong external field.

We conclude in Chapter 6 with a short summary of results and open questions, as well

as an outlook to evaluate where and how the results of this thesis could be applied or

developed further.

Regarding work carried out before doctoral studies

This project began during my Master’s studies, so there is some seeming overlap with

my previous thesis [83] in Chapter 3. However, the first paper on the subject [85],

published more than half a year later, includes new numerical results and insights.

The derivation for equilibrium was furthermore reworked, with the introduction of

effective quantities, in Ref. [86]. Therefore a full account of the topic is given here, as

it also forms the basis for later chapters.

4



2. Combining electromagnetic

fluctuations and nonlinear optics

The objective of this chapter is to introduce the general framework and mathematical

apparatus of both fluctuational electrodynamics and nonlinear optics. This will set a

starting point for the rest of the thesis, where specific aspects of the combination of

these theories are presented and explored.

The first section covers basic macroscopic electromagnetic theory and the fluctuation-

dissipation theorem (FDT), thus laying out the formalism of linear fluctuational elec-

trodynamics, while Section 2.2 introduces nonlinear optics.

In the second half of the chapter, these ideas are combined into nonlinear fluctuational

electrodynamics. In Section 2.3, the noise is formally added to the equations of nonlin-

ear electrodynamics generally. A perturbative expansion in the nonlinear susceptibility

is then made in Section 2.4. We obtain equations of motion for the stochastic electro-

magnetic field, however only in terms of as yet unknown noise. The lack of predictive

power will be addressed later in equilibrium (Chapter 3), for objects with different

temperatures (Chapter 4), and in the presence of an external field (Chapter 5).

2.1. From Maxwell’s equations to linear fluctuational

electrodynamics

2.1.1. The wave equation in Fourier space

Thewell-knownMaxwell’s equations give amicroscopic description of the electromag-

netic field. They relate the electric (E) and magnetic (B) fields to charges (ρ) and

currents (J) [38].

∇×E (r, t) = −∂tB (r, t) , (2.1)

∇×B (r, t) = ε0µ0∂tE (r, t) + µ0J (r, t) , (2.2)

∇ ·E (r, t) =
ρ (r, t)

ε0
, (2.3)

∇ ·B (r, t) = 0, (2.4)

5



2. Combining electromagnetic fluctuations and nonlinear optics

where ∂t ≡
∂
∂t
. Note that we are using SI units throughout the thesis, so ε0 and µ0 are

the permittivity and permeability of free space, respectively. r is the spatial coordinate

and t time, as usual. We will only write these arguments explicitly, if necessary for

clarity, but leave them out otherwise for brevity.

The beauty of these equations is that they are exact, if it is possible to take all the charges

and currents into account, until quantum effects become important. This is too much

detail for everyday applications involving matter interacting with the electromagnetic

field (such as light refracting through glass), however, because the number of individ-

ual charges is of the order of 1024 (number molecules in one mole). In most cases it

is possible to coarse grain (average) the interaction with matter, replacing the bound,

microscopic charges by so-called auxiliary fields, which correspond to the electromag-

netic field generated by matter in response to outside field. The fields then obey the

so-called macroscopic Maxwell’s equations [67],

∇×E = −∂tB, (2.5)

∇×H = ∂tD+ Jf , (2.6)

∇ ·D = ρf , (2.7)

∇ ·B = 0, (2.8)

where Jf and ρf are the free (as opposed to bound) current and charge densities,

respectively. The auxiliary fields D and H are defined through the polarization,

P = P (E), and magnetization, M = (B), as follows:

D (r, t) = ε0E (r, t) +P (r, t) , (2.9)

H (r, t) =
1

µ0
B (r, t)−M (r, t) . (2.10)

Throughout the thesis we will deal with nonmagnetic materials, so we can setM = 0.

One can then obtain the following equation for the electric field,

∇×∇×E+ µ0ε0∂
2
tE = −µ0∂

2
tP− µ0∂tJf . (2.11)

This is the electromagnetic wave equation or Helmholtz equation1, which will be the

main object of study in this thesis.

1A vector Helmholtz equation conventionally has a Laplacian instead of a double curl, while the latter
is often referred to by the same name [72]. We only use the double curl version in this thesis so there
should not be any confusion.
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2.1. From Maxwell’s equations to linear fluctuational electrodynamics

Fourier space

It is much more convenient to treat Eq. (2.11) in frequency space. That is because the

differential operators in time transform into multiplications by frequency. Therefore,

instead of a partial differential equation in time, we have a system of equations in fre-

quencies. This is especially useful in the linear case, because the equations for different

frequencies are not coupled and can be solved individually.

We will use the Fourier transform in the same form as Ref. [67],

f (t) =

ˆ ∞

−∞
dω e−iωtf̂ (ω) , (2.12)

f̂ (ω) =
1

2π

ˆ ∞

−∞
dt eiωtf (t) . (2.13)

The spectral representation of the Helmholtz equation is then

∇×∇×E (r, ω)−
ω2

c2
E (r, ω) =

1

ε0

ω2

c2
P (r, ω) + iωµ0Jf (r, ω) , (2.14)

where we used the speed of light in vacuum, c =
√

1
ε0µ0

. We use the same symbols

for spectral and time-domain fields, because time and frequency domain quantities do

not appear in the same equation. We will also be using the spectral representation

exclusively in the rest of the thesis and thus leave out the frequency argument, if it is

clear from context.

Constitutive relations – linear case

The constitutive relations describe howamaterial responds to the electromagneticfield,

giving the polarization and magnetization field as functions of the electric and mag-

netic field respectively. Since we work with non-magnetic materials, we only need

P (E).

In local linear materials2 this is given as

Pi (r, ω) = ε0χ
(1)
ij (r;−ω, ω)Ej (r, ω) , (2.15)

where χ
(1)
ij (r;−ω, ω) is called the linear susceptibility and summation is implied over

repeated indices (also known as the Einstein summation). It depends on r even for

2These are materials where the polarization P (r) depends linearly on the electric field at the same po-
sition r at times t′ ≤ t. More generally it could have a nonlinear dependence on the field, leading to
nonlinear optics (see Section 2.2), or on the field at different points r′ 6= r, which we shall not address.

7



2. Combining electromagnetic fluctuations and nonlinear optics

homogeneous objects, in which case it is a step function across the boundary. Similar

to fields, we leave the explicit arguments out unless necessary.

2.1.2. Linear Helmholtz equation in operator notation

Operator notation and the free Green’s function

Operators, written in blackboard script, are similar to vector fields. As an example,

they can be an outer (or tensor) product of two vector fields,

Oij

(
r, r′

)
= Ai (r)⊗Bj

(
r′
)
. (2.16)

When written next to a vector field, the operator is applied by summing/integrating

over corresponding indices/coordinates, giving a new vector field.

OA = B ⇐⇒ Bi (r) = Oij

(
r, r′

)
Aj

(
r′
)
. (2.17)

Similarly, an operator can be applied on another operator, resulting in a new operator.

This allows for much clearer notation, especially whenmore than a few operators need

to be applied together.

One example of an operator we use a lot is the dyadic electromagnetic Green’s function

in free space, G0. It is the solution to the equation

∇×∇×G0 −
ω2

c2
G0 = I, (2.18)

where the identity operator I = δijδ
(3) (r− r′) is on the right hand side. The solution

to this equation can be written explicitly as [72]

G0

(
ω; r, r′

)
=

(

I−
c2

ω2
∇r ⊗∇r′

)
ei

ω
c
|r−r′|

4π |r− r′|
. (2.19)

Even though we do not need the explicit form of G0, it is useful, because it behaves as

an inverse to the free Helmholtz operator,

H0 = ∇×∇×−
ω2

c2
I. (2.20)

By introducing also the dielectric potential operator [72, 52] (we will mostly call it just

the “potential”)

Vij

(
r, r′, ω

)
=

ω2

c2
χ
(1)
ij (r;−ω, ω) δ

(
r− r′

)
, (2.21)

8



2.1. From Maxwell’s equations to linear fluctuational electrodynamics

we can rewrite the Helmholtz equation [Eq. (2.14)] as

(H0 − V)E = iωµ0Jf . (2.22)

The incoming field and the deterministic linear Helmholtz equation

Using the dyadic Green’s function,

G = (H0 − V)−1 , (2.23)

the solution to Eq 2.22 can be written symbolically as

E = E0 + iωµ0GJf , (2.24)

where E0 is the homogeneous (Jf = 0) solution. The second term represents then the

fields generated by the sources Jf and scattered by the potential V.

If the sources are very far away from any objects, they can be represented as an incom-

ing field,

Ein = iωµ0G0Jf . (2.25)

These are sources that generate the field Ein in vacuum. The scattered field is then

E−E0 = GG
−1
0 Ein = (I−G0V)

−1
Ein. (2.26)

The inverse operator (I−G0V)
−1 can be expanded to yield the Lippmann-Schwinger

series [60],

E−E0 = Ein +G0VEin +G0VG0VEin + . . . . (2.27)

Each successive element in the series represents a term with higher order scattering.

This can be used to approximate the full Green’s function, if the scattering cross-section

is low.

With the addition of the incoming field, we arrive at the final form of the deterministic

linear Helmholtz equation [Eq. 2.22],

(H0 − V)E = H0Ein . (2.28)

This represents the relation between the total electric field E and the incoming or ex-

ternal field Ein.
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2. Combining electromagnetic fluctuations and nonlinear optics

The linear response

Now we can calculate formally the (in this case fully linear) response of the field E to

the incoming fieldEin. This is most clearly defined through a functional derivative (see

Appendix (A)). The electric field (later, its average) is a function of an incoming field,

E = E (Ein) (for example as per Eq. 2.28). The derivative of E with respect to Ein is

A = δE
δEin

, such that

A (f) = lim
ǫ→0

E (Ein)−E (Ein + ǫf)

ǫ
∀ f . (2.29)

From Eq. (2.26), we see that it is actually the linear operatorGG
−1
0 . This can be seen by

taking the derivative δEin
of both sides of the Helmholtz equation [Eq. (2.28)],

δEin
[(H0 − V)E] = δEin

[H0Ein] (2.30)

(H0 − V) δEin
E = H0 δEin

Ein
︸ ︷︷ ︸

=I

. (2.31)

Multiply from left by G = (H0 − V)−1 : (2.32)

δEin
E = GH0 = GG

−1
0 . (2.33)

Thesemanipulations are compact, but hide a lot of very tediousmathematics, especially

when treating nonlinear equations further in the thesis. In order to save space, this

formalism shall be used extensively.

2.1.3. Fluctuations of the electromagnetic field

Fluctuations and ensemble averaging

The electromagnetic field is not deterministic, but rather it exhibits both quantum and

thermal fluctuations. This means that instead of a specific solution for the field E in

Eq. (2.28), a whole ensemble of fields need to be considered, with each possible field

having probability of being realized. Therefore, we need to distinguish between a par-

ticular realization E of a field and its average value 〈E〉, with the fluctuations (from

mean) defined as

δE = E− 〈E〉 . (2.34)

In particular, we consider here the ensemble average (rather than time average). In

equilibrium, for example, the realizations are weighed by the difference of their energy

H [E] from the free energy F = 〈H [E]〉 [1],

〈E〉eq =
1

Z

ˆ

De
F−H[E]

kBT E. (2.35)

10



2.1. From Maxwell’s equations to linear fluctuational electrodynamics

Here
´

D represents integration over all possible realizations of E, Z =
´

De
F−Ĥ
kBT is

the partition function, T is the temperature, and kB is the Boltzmann constant. This

includes quantum effects, if discrete energy levels in the Hamiltonian H are taken into

account.

In order to describe the electromagnetic field in this way, a correct Hamiltonian needs

to be defined in order to obtain the macroscopic Maxwell’s equations (2.7). This is

a feasible approach to fluctuational electrodynamics, especially to calculate Casimir

force as a derivative of the free energy with respect to distance as in Ref. [72]. For

other applications, especially to extend the theory out of equilibrium for heat transfer

calculations, it is more convenient to work directly with fields (as in Refs. [52, 51] and

indeed in the current work).

Fluctuation-dissipation theorem for the electromagnetic field

An extremely important result, which is can be proven from the form of the ensem-

ble average [53, 1, 29], is the fluctuation-dissipation theorem (FDT), which relates the

strength of the fluctuations in equilibrium to the linear response of the average field

close to equilibrium. In units used in this thesis, it can be written as

〈δEω ⊗ δE∗
ω′〉

eq = δ
(
ω − ω′) b (ω)

2i
G̃AH . (2.36)

G̃AH = G̃ − G̃
† is the anti-Hermitian part3 of the linear response (a tilde is used to

denote that this can be different from the Green’s function G = (H0 − V)−1),

G̃ = lim
Ein→0

δ 〈E〉

δEin
G0 . (2.37)

For a symmetric response (always true for linear systems [29]), the anti-Hermitian part

is equivalent to the imaginary part 1
2i G̃AH = ImG̃. This is can be viewed as the absorp-

tion in the system. Since the fluctuating currents on the left hand side of Eq. (2.36)

represent emission, the FDT in the electromagnetic case is a form of the Kirchhoff’s law

of radiation.

Temperature T is included in Eq. (2.36) through the coefficient

b (ω) =
~

πε0

ω2

c2
1

1− e
− ~ω

kBT

, (2.38)

3The “dagger” represents Hermitian conjugation, O†
ij (r, r

′) = O
∗
ji (r

′, r).

11



2. Combining electromagnetic fluctuations and nonlinear optics

where beside familiar constants the reduced Planck constant ~ appears, denoting the

inclusion of quantum fluctuations. Depending on literature source, a different coeffi-

cient

a (ω) = b (ω)− b (−ω) =
~

πε0

ω2

c2
coth

(
~ω

2kBT

)

, (2.39)

might appear (e.g. in [52]). This is dependent on how the negative frequency com-

ponents are treated. In this thesis, generally the negative frequencies are included in

ω-integrals, so b (ω) as defined Eq. (2.38) will be used more often.

The significance of this theorem as a cornerstone of fluctuational electrodynamics can-

not be overstated: the second moment of the equilibrium fluctuations can be deter-

mined purely by the response of the average field to an infinitesimal probing field Ein.

Since the former gives the Casimir force and (out of equilibrium) radiative heat trans-

fer, two easily measurable effects, either side of Eq. (2.36) (the FDT) represents the

results of two different experiments. In other words, it is the backbone that enables

the prediction of the Casimir force and heat radiation based purely on the measured

dielectric properties of the objects.

On the other hand, the FDT does not give a full description of the stochastic quantity

δE. First, it is only valid strictly in equilibrium, whereas out of equilibrium properties

need to be obtained with clever extensions or approximations (e.g. in Chapter 4 a lo-

cal equilibrium, but global non-equilibrium, is assumed). Second, the first (〈δE〉 = 0

by definition) and second moments of a fluctuating quantity determine the stochastic

variable only if it is Gaussian and therefore Isserlis’ theorem4 can be used to express any

moment in terms of second moments. In the general case, the higher moments can be

independent. Since the probability distribution of a stochastic variable is represented

as a series of these higher moments5, the FDT is not enough to determine this.

Fluctuations induced by random sources in linear systems

The Helmholtz equation in Eq. (2.28) does not support thermal and quantum fluctu-

ations, if the incoming field is deterministic. This can be seen easily by taking the av-

erage and separating the equations for the average field E = 〈E〉 and the fluctuations

4It is also known as Wick’s theorem or the Furutsu-Novikov formula depending on the area of physics
or mathematics.

5This is called a Kramers-Moyal expansion. It is a general form of the Focker-Planck equation, which
only includes the first and second moments from the series.
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2.1. From Maxwell’s equations to linear fluctuational electrodynamics

δE = E− 〈E〉:

(H0 − V)E = H0Ein, (2.40)

(H0 − V)E = H0Ein, (2.41)

(H0 − V) δE = 0. (2.42)

The solution is E = E, δE = 0. This could be expected, since Eq. (2.28) contains only

deterministic sources and coefficients.

The problem is that the above equations are in conflict with physical reality, the ex-

istence of fluctuations can be easily measured. Mathematically, since the linear re-

sponse is nonzero, limEin→0
δE
δEin

G0 = (H0 − V)−1, without fluctuations the FDT from

Eq. (2.36) is not fulfilled. In the theory of Langevin equations, the solution is to add

a random force or noise to the deterministic equation. More generally, they are also

called the “fictitious forces” [1]. In the electromagnetic case, the natural way is to in-

clude random sources into Eq. (2.28), which are called Rytov currents [58].

As per Eq. (2.22), we will include the Rytov currents as

iωµ0JRytov = F. (2.43)

We shall use the terms “Rytov currents” and “noise” interchangeably to refer to either

JRytov or F. The stochastic Helmholtz equation can now be written as

(H0 − V)E = H0Ein + F . (2.44)

The noise must be chosen such that the FDT holds, but otherwise it has no restrictions.

Separating again the equation for E and δE, we get simply

(H0 − V)E = H0Ein, (2.45)

(H0 − V) δE = F. (2.46)

This is a consequence of the superposition principle in linear systems: the noise F is

a source for the fluctuations δE, while the deterministic sources (the incoming field)

create an average field. So the fluctuations δE and E are uncoupled. This means that,

conveniently, we can represent the total field correlator in linear systems as

〈E⊗E∗〉 = 〈δE ⊗ δE∗〉eq +E⊗E
∗
. (2.47)

This has a consequence for the electromagnetic pressure (see Appendix C) in linear

systems: it is simply the sum of the Casimir effect in equilibrium and pressure due to

the deterministic average field. We will see that in the nonlinear case the situation be-
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2. Combining electromagnetic fluctuations and nonlinear optics

comesmore complicated, largely because the fluctuations and the average field become

coupled.

Because of the superposition principle, adding noise to a linear system has no effect on

the linear response,

G̃lin = lim
Ein→0

δ 〈E〉

δEin
G0 = (H0 − V)−1 . (2.48)

Taking the average of Eq. (2.46) gives the mean of the Rytov currents,

〈F〉 = (H0 −V) 〈δE〉 = 0, (2.49)

and the (equilibrium) second moment of F can be obtained directly from

Eqs. (2.36) and 2.46,

〈Fω ⊗ F∗
ω′〉eq = 〈[(H0 − V) δE]ω ⊗ [(H0 −V) δE]∗ω′〉

eq

= (H0 − V) 〈[δE]ω ⊗ δE∗
ω′〉

eq (H0 − V)†

= −δ
(
ω − ω′) b (ω) Im (H0 − V) , (2.50)

where we used the fact that in equilibrium V is symmetric. Note that this correlator

is completely local (see the discussion at the end of Section (3.1.2)), therefore Rytov

currents at different points in space must be uncorrelated. The noise at any point is

given directly by the imaginary part of the dielectric function, the absorption. Since in

linear systems the fluctuations and therefore noise can be assumed to be Gaussian [29],

Eqs. (2.49) and (2.50) give a complete description of the Rytov currents F in equilib-

rium.

One might wonder, what is the purpose of all the trouble of adding noise to the

Helmholtz equation and calculating its first and second moments if all the interesting

(and measurable) effects are already contained in the fluctuations 〈δE ⊗ δE∗〉, which

we know from the FDT by Eq. (2.36) already. There are two big reasons.

First, by making the Helmholtz equation explicitly stochastic, it gives a more complete

description of the fluctuating field. This will be important in the nonlinear case, where

it is important to keep track of assumptions and keep the theory self-consistent.

Second, because of the locality of the Rytov currents and their semi-physical nature

(they representmacroscopic currents), reasonable assumptions can be made to extend

the theory out of equilibrium. In Chapter 4, for example, the temperature of these

currents will be changed while keeping the statistics otherwise the same. This gives

a very accurate description of heat radiation, otherwise unobtainable purely from the

FDT, which remains valid in equilibrium only.
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2.2. Nonlinear optics

2.2. Nonlinear optics

Nonlinear optics or electrodynamics is a very wide and well-studied field of physics,

which encompassesmany different effects and processes [13]. This leads to widely dif-

ferent approximations and theoretical approaches, especially if only a particular (type

of) nonlinear effect is of interest.

Our goal is to include the physics of optically nonlinear materials as generally as fea-

sible. In order not to complicate calculations unnecessarily, only local effects will be

considered, just like in the linear case. Most prominently, this leaves out the nonlinear

optical properties of plasmas, which are inherently non-local [93]. The extension of

this work to non-local response is expected to be straightforward, if tedious.

2.2.1. The nonlinear polarizability

In order to describe processes beyond the linear Helmholtz equation, Eq. (2.28), which

was obtained by assuming that thematerial respondspurely linearly to the electromag-

netic field in Eq. (2.15), nonlinear terms in the electric fieldmust be included. Themost

straightforward, and physical, way to do that is to add the possibility for the material

to respond in an arbitrary fashion to the electric field, not just linearly as per Eq. (2.15).

In particular, the polarization fieldP in Eq. (2.9) will be allowed to depend in a general

way on the electric field (leaving out linear and nonlinear magnetization).

Time domain response functions as susceptibilities in Fourier space

The polarization field P describes the field generated by a material as a response to

the electric field E. This response can be represented as a power series around E =

0 [13]. For “normal” field strengths, which shall be considered in this thesis, this series

converges very fast (see Ref. [13] as well as the discussion in Section 2.4).
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2. Combining electromagnetic fluctuations and nonlinear optics

In timedomain, thepolarization field can bewritten in terms of the response functions6,

Pi (t) = ε0

∞∑

n=1





n∏

m=1

∞̂

−∞

dτmEjm (t− τm)



R
(n)
ij1..jn

(τ1, .., τn) (2.51)

= ε0

∞̂

−∞

dτR
(1)
ij (τ)Ej (t− τ)

+ ε0

∞̂

−∞

dτ1

∞̂

−∞

dτ2R
(2)
ij1j2

(τ1, τ2)Ej1 (t− τ1)Ej2 (t− τ2)

+ . . . .

Note that even though we integrate over positive and negative time differences τ (to

facilitate the Fourier transform), causality requires that the fields only at times t′ < t

affect P (t), therefore

R(n) (τ1, .., τn) ∝
n∏

m=1

Θ(τm) . (2.52)

The susceptibilities are defined as the Fourier components of the responses,

χ
(n)
ij1..jn

(−ωσ;ω1, .., ωn) =





n∏

m=1

∞̂

−∞

dτm eiωmτm



R
(n)
ij1..jn

(τ1, .., τn) , (2.53)

where the “extra” argument is the sum of frequencies, ωσ =
∑n

m=1 ωm, and appears

because the response functions only depend on time differences. This is included by

convention and denotes the frequency of an incoming wave.

Nonlinear polarization in frequency space

Applying
(
∏n

m=1

´∞
−∞ dωm e−iωmτ ′m

)

to both sides and using
´∞
−∞ dωeiωt = 2πδ (t)

yields the inverse transform,

R
(n)
ij1..jn

(τ1, .., τn) = (2π)−n





n∏

m=1

∞̂

−∞

dωm e−iωmτm



χ
(n)
ij1..jn

(−ωσ;ω1, .., ωn) . (2.54)

6The response functions R
(n)
ij1..jn

(τ1, .., τn) are also known as memory kernels, since they show how
much P (t) depends on the electric field at times t − τn. It represents therefore the “memory” of the
material.
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2.2. Nonlinear optics

Note that the (2π)−n is in the inverse Fourier transform, opposite from Eqs. (2.12)

and (2.13). This is necessary to end up with the correct equation in frequency space.

Eq. (2.51) can now be transformed,

Pi (ω) = ε0

∞∑

n=1





n∏

m=1

∞̂

−∞

dωmEjm (ωm)



χ
(n)
ij1..jn

(−ωσ;ω1, .., ωn) δ (ωσ − ω) , (2.55)

which is the nonlinear counterpart of Eq. (2.15), as can be seen from the first few terms,

Pi (ω) = ε0 Ej (ω)χ
(1)
ij (−ω;ω) (2.56)

+ ε0

∞̂

−∞

dω1

∞̂

−∞

dω2 δ (ωσ − ω)χ
(2)
ij1j2

(−ω;ω1, ω2)Ej1 (ω1)Ej2 (ω2)

+ . . . .

Therefore all (local) nonlinear material properties are taken into account with the

higher order susceptibilities.

2.2.2. Properties of the nonlinear susceptibilities

Before using the nonlinear polarizability to define a nonlinear Helmholtz equation, it

is useful to discuss some properties of the nonlinear susceptibilities. These open up

some very significant simplifications and approximations later in the thesis.

It turns out that the components of the susceptibilities χ
(n)
ij1..jn

(−ωσ;ω1, .., ωn) defined

above are not completely independent. Rather, theymust adhere to certain symmetries

as a result of how they are defined and what they represent physically. These are very

well covered in Ref. [13] and a quick overview is given here.

Intrinsic symmetry

The most basic symmetry, holding for the susceptibilities and responses of any ma-

terial, stems from their definition in Eqs. (2.51) and (2.55) through a single field

which commutes with itself. By rearranging the field terms and changing the inte-

gration/summation variables, it is clear that any pair of index-frequency pairs (ja, ωa)

can be exchanged simultaneously. This can also be seen as a consequence of the fact

that the susceptibilities are in essence derivatives (see the end of Appendix A)

E.g for third order we have

χ
(3)
ijkl (−ωσ, ω1, ω2, ω3) = χ

(3)
ikjl (−ωσ, ω2, ω1, ω3) = χ

(3)
ilkj (−ωσ, ω3, ω2, ω1) . (2.57)
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2. Combining electromagnetic fluctuations and nonlinear optics

Note that this does not apply to the very first pair of arguments (i,−ωσ) unless the

material is lossless, in which case the susceptibilities can be shown to be derivatives of

the internal energy.

Causality

Causality is the principle that the polarization field P (t) can not depend on the val-

ues of the electric field at future times t′ > t. From Eq. (2.51), this sets the following

condition on the response functions,

R
(n)
ij1..jn

(τ1, .., τn) =
n∏

m=1

Θ(τn) , (2.58)

where the Heaviside functions are defined as Θ(τn > 0) = 1, Θ(τn < 0) = 0. The

susceptibilities in Eq. (2.53) are therefore defined as integrals over positive times,

χ
(n)
ij1..jn

(−ωσ;ω1, .., ωn) =





n∏

m=1

∞̂

0

dτm eiωmτm



R
(n)
ij1..jn

(τ1, .., τn) . (2.59)

By letting the frequencies be complex, it can be seen that the expression converges if

Imωm ≥ 0 for all ωm. The susceptibilities can therefore be extended into the upper com-

plex plane. This is very useful in expressions with integrals over frequencies [e.g. the

Lifshitz formula, Eq. (C.13)] as these can be performed over the positive imaginary

axis instead (this is called Wick’s rotation or Matsubara summation), which is often

both theoretically and numerically easier as oscillating functions become decaying ex-

ponential functions instead.

Of special importance is the third susceptibility of the form χ
(3)
ijkl (−ω;ω, ω′,−ω′), be-

cause it appears in the effective Helmholtz equation (2.129). While it converges for

Imω > 0, it diverges for all Imω′ 6= 0. Therefore a Wick’s rotation in ω′ is not possible
for expressions with χ

(3)
ijkl (−ω;ω, ω′,−ω′) and the integration over ω′ has to be done

over the real line, which can be computationally challenging.

Reality of responses

The responsesR
(n)
ij1..jn

(τ1, .., τn) relate real fields to real fields by Eq (2.51), so they have

to be real as well. For susceptibilities, this has the consequence that the real part must

be symmetric and imaginary part antisymmetric in frequencies,

χ
(n)
ij1..jn

(−ωσ;ω1, .., ωn) =
[

χ
(n)
ij1..jn

(ωσ;−ω1, ..,−ωn)
]∗

. (2.60)
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2.2. Nonlinear optics

Spatial symmetries

The symmetries of the medium (for example crystal group symmetries) are also re-

flected in the susceptibilities. For example, a wide range of materials are isotropic (full

rotational symmetry). Of the 9 elements of the first order susceptibility tensor only

three equal ones remain:

χ
(1)
ij = χ(1)δij . (2.61)

The second order susceptibility vanishes completely for isotropic materials, while the

third order has three independent components:

χ
(3)
ijkl = χ

(3)
1122δijδkl + χ

(3)
1212δikδjl + χ

(3)
1221δilδjk. (2.62)

2.2.3. The nonlinear Helmholtz equation

With the nonlinear polarization vector defined in Fourier space through nonlinear sus-

ceptibilities [Eq. (2.55)], we are in a position to derive a nonlinear version of the deter-

ministic Helmholtz equation [Eq. (2.28)]. Noise will be added in Sections 2.3 and 2.4.

The nonlinear potential operators

It is convenient to introduce operator notation for the nonlinear susceptibilities in

Eq. (2.55), similar to V in Eq. (2.21). Since most of the thesis will consider nonlinear

effects up to third order (with the exception of Sections 2.3 and 5.2), two new operators

M and N will be introduced,

(M [A⊗B])i
(
r, r′;ω

)
= δ

(
r− r′

) ω2

c2

ˆ

dω1dω2δ (ω − ωσ) (2.63)

× χ
(2)
ijk (−ωσ, ω1, ω2)Aj (r, ω1)Bk (r, ω2) ,

(N [A⊗B⊗C])i
(
r, r′;ω

)
= δ

(
r− r′

) ω2

c2

ˆ

dω1dω2dω3δ (ω − ωσ) (2.64)

× χ
(3)
ijkl (−ωσ, ω1, ω2, ω3)Aj (r, ω1)Bk (r, ω2)Cl (r, ω3) .

As can be seen, unlike V, these operators map tensor fields onto vector fields. Like V,

these are local operators and also linear (in whole tensors, not the components of the

outer product). These operators have two nice properties that will be useful in the rest

of the thesis.
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2. Combining electromagnetic fluctuations and nonlinear optics

First, the intrinsic symmetries of the nonlinear susceptibilities carries over very simply,

M [A⊗B] = M [B⊗A] , (2.65)

N [A⊗B⊗C] = [B⊗A⊗C] = N [A⊗C⊗B] . (2.66)

This means that they only operate on the symmetric part of the tensors.

Second, by applying these operators to lower rank tensors, they themselves increase in

rank. For example, mathematically the entities

M [A] ≡ M [A⊗ ·] , (2.67)

N [A⊗B] ≡ N [A⊗B⊗ ·] , (2.68)

are operators of the same type as V, because they map vectors fields onto vector fields,

M [A]E ≡ M [A⊗E] , (2.69)

N [A⊗B]E ≡ N [A⊗B⊗E] . (2.70)

This notation style is admittedly unusual, but allows for very easy and clear manipu-

lation throughout the thesis.

The nonlinear Helmholtz equation and nonlinear response

Using the nonlinear potential operators and stopping at the third order, the nonlinear

variant of the Helmholtz equation (2.28) can be written as

(H0 − V)E−M [E⊗E]−N [E⊗E⊗E] = H0Ein . (2.71)

If the susceptibilities χ(1,2,3) are known, this equation gives a complete description of

(local) nonlinear optics up to third order.

A big part of nonlinear optics research concerns itself with either predicting the nonlin-

ear susceptibilities from theory or measuring them experimentally. We consider these

as input to the theory of nonlinear fluctuational electrodynamics as developed in this

thesis. And while modeling χ(2) and χ(3) is anything but easy, we can relate them di-

rectly to nonlinear scattering measurements, just like the linear potential V can be re-

lated to the linear scattering experiment by Eq. (2.26).

For example, by taking successive functional derivatives of Eq. (2.71) (see also Ap-

pendix A) with respect to Ein, and recalling the symmetries of the nonlinear potential

operators, the operator M (operator form of the second order susceptibility χ(2)) can
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2.3. The general stochastic nonlinear Helmholtz equation

be obtained,

δEin
E = (H0 − V− 2M [E]− 3N [E⊗E])−1

H0, (2.72)

lim
Ein→0

δEin
E = (H0 − V)−1

H0, (2.73)

δ2Ein
E = (δEin

E)G0 (2M+ 6N [E]) (δEin
E)2 , (2.74)

lim
Ein→0

δ2Ein
E = 2 (H0 − V)−1 M (H0 − V)−1

H0 (H0 − V)−1
H0, (2.75)

M =
1

2
(H0 − V)

(

lim
Ein→0

δ2Ein
E

)

G0 (H0 − V)G0 (H0 − V) . (2.76)

ForN , which is the operator form of the third order susceptibility χ(3), the expression

gets even more complicated, but can be obtained through the third derivative, V, and

M. For a general discussion see Appendix A.

2.3. The general stochastic nonlinear Helmholtz equation

2.3.1. Nonlinear optics with noise

As we showed in the previous chapter, the nonlinear Helmholtz equation,

(H0 −V)E−M [E⊗E]−N [E⊗E⊗E] = 0, (2.71)

can be used to describe well the experiments of nonlinear optics. We will return to this,

but to start, we will consider a generally nonlinear Helmholtz equation, by introducing

a general polarization operator,

P [E] = P(0) + P(1)E+ P(2) [E⊗E] + P(3) [E⊗E⊗E] + . . . , (2.77)

and the nonlinear Helmholtz operator,

H [E] = H0E− P [E] . (2.78)

There is a clear correspondence with the previous notation,

P(1) = V, (2.79)

P(2) = M, (2.80)

P(3) = N . (2.81)

The zeroth component, P(0), could include any possible free current densities. We will

assume P(0) = 0 and include any free currents explicitly as sources of the probing (or
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2. Combining electromagnetic fluctuations and nonlinear optics

external) field. It makes no difference physically.

As in the linear case, without noise the nonlinear Helmholtz equation is in violation of

the FDT [Eq. (2.36)]. Without noise (and free charges) the system would relax to the

trivial solution E = 0, even though the linear response is nonzero. Therefore, as in the

linear case, we need to add a source of noise, the so-called Rytov currents F.

In addition to noise, we add the deterministic probing source H0Ein into Eq. (2.71)

(as in Section 2.1.2) in order to measure the response of the system, giving finally the

stochastic nonlinear Helmholtz equation,

H [E] = F+H0Ein. (2.82)

Notice that without noise or any objects (P = 0), the solution would be E = Ein. So

the source term, placed far away, describes incoming radiation. Alternatively, one can

picture this as creating a field Ein in vacuum and then placing objects described by the

linear (V) and nonlinear (e.g. N ) potentials into this field.

2.3.2. The nonlinear response operator

Eq. (2.82) describes amodel, which is onlymeaningful, if it can be connected tophysical

measurements. The most straightforward experiment that can be performed on an

optical system is a response measurement, where the average field is measured as a

function of (technically the source of) the incoming field,

R [H0Ein] = 〈E〉 . (2.83)

The functional derivatives of the response operatorR describe the system experimen-

tally and are assumed to be known. As before, we can represent it as a series,

R [a] = R(0) +R(1)a+R(2) [a⊗ a] +R(3) [a⊗ a⊗ a] + ... (2.84)

Note that the coefficients (operators) are obtained from the Ein → 0 limit (near equi-

librium),

R(n) =
1

n
lim

Ein→0

δn 〈E〉

δEn
in

. (2.85)

For example, the equilibrium field is given by 〈E〉eq = R(0) and the equilibrium linear

response [recall as the quantity entering the FDT in Eq. (2.36)] by

R′ [0] = R(1) =

(
δ 〈E〉

δEin

)eq

G0. (2.86)
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2.3. The general stochastic nonlinear Helmholtz equation

In order to have a self-consistent theory, we need away tomapR andP onto each other.

We can extract implicitly the average field 〈E〉 from Eqs. (2.82) and (2.78) by applying

the free Green’s function and reorganizing. This gives us a “scattering picture” of the

response measurement,

R [H0Ein] = 〈E〉 = Ein +G0 〈F〉+G0 〈P [E]〉 . (2.87)

There are two important aspects of this equation:

1. If there are nonlinear objects in the system, the last term, which can be thought

of as “normal” scattering, depends on (different order) correlations of the field,

〈P [E]〉 = P(0) + P(1) 〈E〉+ P(2) [〈E⊗E〉] + P(3) [〈E⊗E⊗E〉] + ... (2.88)

Since the correlations depend on the noise, the scattered field also depends on

noise in the system. Additional information (the FDT) is required to determine

these andwewill see below how this can be taken into accountwith an “effective”

or renormalized polarizability, albeit in a perturbative manner.

2. Sincewehaven’t fixedF, it is not really obviouswhichpart (if any) of the scattered

field should be attributed to the response of Rytov currents. In fact, we will see in

Chapter 5 that this question cannot be answeredwith equilibriummeasurements

and FDT alone.

For this and the next chapter, we will assume 〈F〉 = 0 and concentrate on the effects of

correlations on the response function through the G0 〈P [E]〉 term in Eq. (2.87). This

was the approach we took in Refs. [85, 86] mostly because of practical reasons – it does

not contradict with anything as far as we know, it is the “simplest” choice7, and is also

assumed in the linear case allowing for easier comparison. Sections 5.2 and 5.3 explore

some alternatives and their effects.

Since the responseof a nonlinear systemdependson the correlations of the field (unlike

in the linear case), it can be seen that applying the FDT will not be trivial. This is

because the FDT, Eq (2.36), is no longer an explicit but rather an implicit equation for

determining the correlations.

2.3.3. The effective nonlinear Helmholtz equation

Before turning to the noise and correlations, there is one more missing but very useful

piece. This is the deterministic pair of Eq. (2.82), which describes not the propagation

7Simplicity as a criterium comes up often in field theoretical approaches [3], because one can oftenmake
a theory more and more complex (with the added degrees of freedom), but not more and more sim-
ple without reaching contradictions. This can, however, be subjective and depend on the particular
derivation.
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2. Combining electromagnetic fluctuations and nonlinear optics

of the full field, but its average instead. We will call it the effective nonlinear Helmholtz

equation,

H0 〈E〉 − P̃ [〈E〉] = H0Ein. (2.89)

This is essentially the noiseless (bare) Helmholtz equation, except that the effective

polarization operator P̃ is connected directly to the inverse of the response operator,

P̃ [〈E〉] = H0 〈E〉 − R−1 [〈E〉] . (2.90)

It should be noted that the existence of Eq. (2.89) and P̃ is essentially a postulation

of the fact that the inverse of the response operator R exists. In the linear case, this

is generally a safe assumption (the inverse can be given as a series), but it is not as

trivial in the nonlinear case. This is, however, a very useful approximation and we will

motivate it below with an explicit calculation.

We assume here that the zeroth order of P̃ is zero, meaning 〈E〉eq = 0 and P̃ [0] = 0.8

To calculate the first few components of the effective polarization operator, we can take

successive functional derivatives of Eq. (2.89). For the first one, we take the functional

derivative δEin
of both sides (note the chain rule), giving us

H0δEin
〈E〉 − P̃ ′ [〈E〉] δEin

〈E〉 = H0. (2.91)

From here we can express either the first derivative of the effective polarization or the

linear response,

P̃ ′ [〈E〉] = H0

[

I− (δEin
〈E〉)−1

]

, (2.92)

δEin
〈E〉 =

(

I−G0P̃
′ [〈E〉]

)−1
. (2.93)

Notice that inserting either one into the other will yield a trivial identity. From the first

equation we get the first coefficient, the effective linear polarizability or the effective

potential Ṽ,

Ṽ = P̃ ′ [0] = H0

[

I− (δEin
〈E〉)−1

]eq
. (2.94)

We can see that this exists if and only if the equilibrium linear response

limEin→0 (δEin
〈E〉)−1 is invertible. This is true for any well-behaving system.

By applying δEin
to Eq. (2.92), we can generate the next order term as before,

P̃ ′′ [〈E〉] = −H0 (δEin
〈E〉)−2 δ2Ein

〈E〉 (δEin
〈E〉)−1 , (2.95)

8The extension to a nonzero equilibrium field is trivial, however. One would need to expand around this
field instead of zero. For the sake of simplicity, we use Ein → 0 ⇐⇒ 〈E〉 → 0.
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2.3. The general stochastic nonlinear Helmholtz equation

with the effective second order potential given as

M̃ = P̃ ′′ [0] = −H0

[

(δEin
〈E〉)−2 δ2Ein

〈E〉 (δEin
〈E〉)−1

]eq
. (2.96)

As can be seen, this is getting complicated quickly. It is important to note, how-

ever, that as in the case of Ṽ, M̃ exists if and only if the equilibrium linear response

limEin→0 (δEin
〈E〉)−1 is invertible.

Even though the calculation of higher order terms of P̃ gets impractical, the pattern

stays the same andwe canmake a general statement. If the equilibrium linear response

is invertible, there exists an effective nonlinearHelmholtz equation for the average elec-

tric field in the form of Eq. (2.89), where the effective polarizability P̃ is determined by

the response operatorR.

With the availability of the effective polarization operator, it is also possible to give

an alternative form to Eq. (2.87), which defines a connection between the scattering

experiment (response operatorR) and material properties (polarization operator P).

Subtracting the effective nonlinear Helmholtz equation [Eq. (2.89)] from the average

of the stochastic nonlinear Helmholtz equation [Eq. (2.82)], we obtain the following:

P̃ [〈E〉] = 〈P [E]〉+ 〈F〉 . (2.97)

Note that using this in Eq. (2.87) yields again a trivial identity, they are essentially the

same equation.

2.3.4. Fluctuations and noise

We have seen that when connecting the material properties to responsemeasurements

directly [Eq. (2.87)] or through the effective polarization operator [Eq. (2.97)], we en-

counter the average of the noise 〈F〉 and the average polarization 〈P [E]〉. At the end

of Section 2.3.2 we argued that 〈F〉 = 0 is a sensible choice, but that still leaves us with

the correlations.

Physically, noise is the source of fluctuations, but not the other way around. In equi-

librium, however, it can be easier to determine the fluctuations (e.g. through the FDT)

and then find the corresponding noise. In the next two chapters we will see that it will

make more sense to make assumptions about the noise and determine the generated

fluctuations.
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2. Combining electromagnetic fluctuations and nonlinear optics

Relation between noise and fluctuations

If we subtract from the fieldE its average 〈E〉, we obtain the fluctuations. Even though

the terms “noise” and “fluctuations” are sometimes used interchangeably in literature,

we will stick with the strict terms here: noise refers to the stochastic source term in a

Helmholtz equation and fluctuations are defined by

δE = E− 〈E〉 . (2.98)

Notice that fluctuations have a strictly zero mean,

〈δE〉 = 0, (2.99)

whereas the same cannot be necessarily said about the noise F. Nevertheless, both the

fluctuations and noise have in general nonzero correlations.

Using Eqs. (2.82) and (2.83), we can show explicitly the “dual” nature of the noise and

fluctuations,

δE = H−1 [H0Ein + F]−R [H0Ein] , (2.100)

F = H [〈E〉+ δE]−R−1 [〈E〉] . (2.101)

If we know one, we can in principle calculate the other. The only difficulty lies in in-

verting the Helmholtz and response operatorsH and R.

Alternatively, using the effective nonlinear Helmholtz equation [Eq. (2.89)], we can

write down a wave equation for the fluctuations,

H0δE −Q〈E〉 [δE] = F, (2.102)

Q〈E〉 [δE] = P [〈E〉+ δE]− P̃ [〈E〉] . (2.103)

We include a subscript in the Q operator to signify that the dynamics of δE depend

(explicitly) on 〈E〉.

Notice that, for a linear system (Plin = P̃lin = Qlin), Eq. (2.102) reduces to the

Helmholtz equation, meaning the fluctuations and the average field are independent.

This is not surprising, because due to the superposition principle, we can always sep-

arate the field and sources into corresponding sums. This is not true in the nonlinear

case. Eq. (2.102) shows clearly that the dynamics of the fluctuations depend on the

average field, and Eq. (2.89) shows the opposite case.9

9It is not a trivial coupling, however. The dynamics of 〈E〉 do not depend directly on δE (otherwise it
would also be fluctuating). Rather, the average depends on the distribution (that is, the correlations

26



2.3. The general stochastic nonlinear Helmholtz equation

Fluctuations and their correlations

The correlations of the electric field can be written as

〈E⊗E〉 = 〈δE ⊗ δE〉+ 〈E〉 ⊗ 〈E〉 . (2.104)

The deterministic part, 〈E〉 ⊗ 〈E〉, is not particularly interesting for us, because a) we

assume the full response and therefore this tensor product is known, and b) without

free charges or currents this contribution disappears in equilibrium,

〈E⊗E〉eq = 〈δE⊗ δE〉eq . (2.105)

This can be obtained relatively easily from the FDT using the equilibrium linear

response [Eq. (2.36)], but what about higher moments that appear in Eqs. (2.97)

and (2.87)?

For linear systems, one can assume that the fluctuations are Gaussian. This is because

the electromagnetic action is quadratic, leading necessarily to Gaussian fluctuations.

In that case, one can use the Isserlis’ theorem to represent higher order moments in

terms of two-point correlators. The theorem is more general, but for four (zero-mean)

Gaussian variables10 we have

〈ABCD〉Gaussian = 〈AB〉 〈CD〉+ 〈AC〉 〈BD〉+ 〈AD〉 〈BC〉 , (2.106)

while all products with odd number of terms are zero. For any stochastic variable,

knowing all its moments is equivalent to knowing its distribution. This means, for

Gaussian fluctuations, the second moment contains all the information. The FDT is

therefore enough to fully characterize the fluctuations in equilibrium.

In the nonlinear case, the fluctuations are generally not Gaussian, however, because

the distribution function (action) is not quadratic anymore. This has interesting conse-

quences. Since Isserlis’ theorem no longer applies, there is no straightforward connec-

tion between lower and higher order correlations. Therefore, the FDT in the form of

Eq. (2.36) is not enough to fully characterize the fluctuations, even in equilibrium. The

highermomentswould then remain as free parameters representingeithermicroscopic

detail or our lack of knowledge regarding a higher order FDT. This case is discussed in

more detail in Chapter 5.

〈δEn〉) ofE. Both of them, however, are set by three things: temperature, material properties, and the
external field Ein.

10In general for an average of a product of 2n terms, there will be (2n)!
2nn!

terms in the sum, while odd

products will be zero. In our case the moments will all appear under the P(n) operators [Eq. (2.77)],
which are symmetric, because the individual components P(n) are defined as components of a series

(or derivatives). This means that all the terms will be identical and instead a factor (2n)!
2nn!

appears.
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2. Combining electromagnetic fluctuations and nonlinear optics

In general, we can say that theHelmholtz equationdescribes the dynamics of the system,

but not the distribution of fluctuations. The latter must be obtained by other means,

such as the FDT. In the nonlinear case we face two problems: the FDT is in general

not sufficient to determine the fluctuations, and the fluctuations become coupled with

dynamics through Eq. (2.97). To our advantage, however, it will turn out that these

“beyond-FDT” contributions do not contribute in a perturbative model, because the

higher order moments only appear in nonlinear terms.

2.3.5. Summary

In this sectionwe derived important generic equations that act as a basis for this chapter

and the following. Most importantly, we have the three nonlinear Helmholtz equations

given by Eqs. (2.82), (2.89), and (2.102),

H0E− P [E] = H0Ein + F, (2.107)

H0 〈E〉 − P̃ [〈E〉] = H0Ein, (2.108)

H0δE−Q〈E〉 [δE] = F. (2.109)

Notice that in the current formulation, the nonlinear polarization P describes the re-

sponse of the underlying physical material and does not change. By contrast, the effec-

tive polarization P̃ depends explicitly, and Q implicitly, on the different order correla-

tions of the noise F, which is unknown. These were given in Eqs. (2.97) and (2.103),

P̃ [〈E〉] = 〈P [E]〉+ 〈F〉 , (2.110)

Q〈E〉 [δE] = P [〈E〉+ δE]− P̃ [〈E〉] . (2.111)

The crucial point is that the effective polarization or potential can additionally be mea-

sured experimentally, as in Eq. (2.90),

P̃ [〈E〉] = H0 〈E〉 − R−1 [〈E〉] . (2.112)

This reduces the degrees of freedom in the theory, but not completely.11

The statistical properties of the noise F (meaning all the moments) remain unknown,

mostly because there exists no analogue of the Isserlis’ theorem for non-Gaussian vari-

ables nor even an FDT for higher ordermoments. Therefore we also miss the moments

of E, specifically the second moment 〈E⊗E∗〉, which determines the Casimir effect

(or general forces in the system) and energy transfer. These are both of great practi-

cal importance and interest. To sidestep these issues, we will continue by treating the

11It creates, in effect, a condition between the average noise 〈F〉 and its correlations. See Chapter 5.
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2.4. Perturbative treatment

nonlinearities perturbatively, starting from equilibrium, for which the regular FDT to-

gether with some additional assumptions for the noise Fwill be sufficient for practical

predictions.

2.4. Perturbative treatment

We saw in Sec. 2.3, that for materials with an arbitrary response, P [E], we reach a

seeming dead end, since it is not clear how to determine higher order moments of the

noise. The FDT gives only the second moment of the field in equilibrium in terms

of the linear response of the first moment. It is therefore pertinent to turn towards

approximations that could give us a leading order departure from the linear theory.

Conveniently, thematerials encountered in optics are by far very weakly nonlinear. The

linear response of the material almost always dominates over any nonlinear effects.

For example, resonator cavities need to be used in order to achieve reasonably efficient

frequency mixing (including second/third harmonic generation). On the other hand,

all materials are inherently nonlinear. Even vacuum becomes a nonlinear medium if

the field strength (energy density) is high enough. In practical cases, the nonlinear

effects are barely noticeable, which is why linear optics works so well in the first place.

The idea is to utilize this smallness of the nonlinear response to calculate first order

effects. This is of course a double-edged sword, since the deviations from the linear

theory are bound to be small, if fields (or temperature for noise strength) are kept

small enough such that the approximation is still valid.

2.4.1. Approximating the nonlinear Helmholtz equation

The first step is to limit the series of the functional P [E]. As above, we assume it can

be written in a formal series

P [E] =

∞∑

n=1

P(n)



E⊗ ...⊗E
︸ ︷︷ ︸

n terms



 . (2.113)

Since E has units, we divide the fields by some characteristic field strength E0, giving

us

P [E] =

∞∑

n=1

P(n)En
0







E

E0
⊗ ...⊗

E

E0
︸ ︷︷ ︸

n terms






. (2.114)
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2. Combining electromagnetic fluctuations and nonlinear optics

Assuming the factor in the brackets is of the order unity or smaller, we would need

P(n)En
0 to decrease rapidly with increasing n. And this is indeed the case, as we know

from practice and theory (see Ref. [13]).

As an example, consider one of the most highly nonlinear metamaterial, glass infused

with gold or silver nanospheres. Near the plasmonic resonance of the spheres, the

electric field is concentrated to very high intensities, which then probes nonlinear in-

teractions in glass. The order of magnitude for the third order susceptibility (second

order is negligible due to symmetries) is about
∣
∣χ(3)

∣
∣ ∼ 10−16 m2

V2 , while the linear sus-

ceptibility is of the order of unity. This means the series becomes divergent roughly at

fields reaching |E| ∼ 108 V
m , which is only slightly below the breakdown voltage of air

at 3× 106 V
m . On the other hand, in glass we have

∣
∣χ(3)

∣
∣ ∼ 10−22 m2

V2 , which corresponds

to fields as high as |E| ∼ 1011 V
m . This is nearing the atomic electric field strength (see

Ref. [13]), which would cause ionization and therefore conduction. We will assume

that the field strengths are well below that.

In conclusion, for practical situations, the series for the polarization field converges very

quickly and it is enough to consider only the first few terms. Beingmindful that the sec-

ond order susceptibility is zero for a very large group of materials due to symmetries,

we will consider up to third order susceptibility of the material,

P [E] ≈ VE+M [E⊗E] +N [E⊗E⊗E] . (2.115)

Furthermore, in the calculations belowwewill encounter termswhich contain products

of these quantities. In those cases we will only be keeping the leading order terms.

In effect this corresponds to treating E0 appearing in Eq. (2.114) as a pseudo-small

parameter (since it has units). By neglecting all terms containing P(2)P(2), P(2)P(3),

P(3)P(3), or any higher combination, all results will be approximate to the order of E3
0 .

In fact, keeping such terms would be misleading since then one would need to include

fourth and higher order susceptibilities, because their contributionswould be of similar

significance.

In summary, we approximate the polarization operator by Eq. (2.115) and obtain the

truncated form of the stochastic nonlinear Helmholtz equation (2.82),

(H0 − V)E−M [E⊗E]−N [E⊗E⊗E] = H0Ein + F . (2.116)

We also disregard or discard all terms which have more than one factor of eitherM or

N .
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2.4.2. The effective nonlinear Helmholtz equation

Eq. (2.116) gives the equation for the stochastic electric field. In order to use the FDT,

however, we need to know how the average field E = 〈E〉 responds to the incoming

field. This is given by the effective nonlinear Helmholtz equation [Eq. (2.89)],

H0E− P̃
[
E
]
= H0Ein. (2.117)

The effective polarization is now given by Eq. (2.97). Including the truncated P [E] of

Eq. (2.115) and E = E+ δE, we get

P̃
[
E
]
= 〈P [E]〉+ 〈F〉

= V 〈E〉+M [〈E⊗E〉] +N [〈E⊗E⊗E〉] + 〈F〉

= VE+ 〈F〉

+M
[
E⊗E

]
+M [〈δE ⊗ δE〉]

+N
[
E⊗E⊗E

]
+ 3N

[
〈δE ⊗ δE〉 ⊗E

]
+N [〈δE ⊗ δE⊗ δE〉] . (2.118)

In the last line we used the symmetric properties ofN (see Section 2.2.1), whereby

N
[
〈δE⊗ δE〉 ⊗E

]
= N

[
E⊗ 〈δE ⊗ δE〉

]
= N

[〈
δE⊗E⊗ δE

〉]
. (2.119)

Next we use again the approximation that we can neglect terms that are “doubly non-

linear”. This means that, to leading order in χ(2) and χ(3), it is possible to use the cor-

relator of the linear fluctuations 〈δE ⊗ δE〉 under the nonlinear operators M and N .

Crucially, they are independent of the average field E, as shown in Section 2.1.3. Lin-

ear fluctuations are also Gaussian, so the third moment vanishes, 〈δE ⊗ δE ⊗ δE〉 = 0.

Thismeanswe can collect the orders ofE in the effective nonlinearHelmholtz equation,

with the exception of 〈F〉,

(H0 − V− 3N [〈δE⊗ δE〉])E−M
[
E⊗E

]
−N

[
E⊗E⊗E

]

= H0Ein + 〈F〉+M [〈δE ⊗ δE〉] . (2.120)

All terms in this equation depend explicitly on E with the possible exception of 〈F〉.

As mentioned above, theE-dependence of 〈F〉 can not be determined exactly from our

current approach. Nonzero 〈F〉 in equilibrium would clash with the “no free charges”

assertion, giving a nonzeromean field asEin → 0. Nonzero response to the electric field

is more difficult to rule out on physical grounds. However, any possibleE-dependence

can at least mathematically be absorbed into the bare susceptibilities, leaving us with

〈F〉 = 0.

31



2. Combining electromagnetic fluctuations and nonlinear optics

In stationary systems the time-domain correlators can only depend on time differences

[53]. In Fourier space, therefore, the correlatorsmust be delta-correlated in frequencies

(similar to the Fourier transform of the time domain responses as seen in Section 2.2.1),

〈δEω ⊗ δEω′〉 = δ
(
ω + ω′) 〈δE ⊗ δE〉ω . (2.121)

The last source term in Eq. (2.120) then vanishes:

M [〈δE ⊗ δE〉] (r, ω)i = δ (ω)
ω2

c2

∞̂

−∞

dω′ χ(2)
ijk

(
r; 0, ω′,−ω′) 〈δEj (r) δEk (r)〉ω′ = 0,

(2.122)

because the integral over ω′ is independent of ω, and δ (ω) ω2

c2
=0.12

With these considerations, the effective Helmholtz equation can be written in its final

form,

(H0 − V− 3N [〈δE ⊗ δE〉])E−M
[
E⊗E

]
−N

[
E⊗E⊗E

]
= H0Ein . (2.123)

This is the effective counterpart to Eq. (2.116). The nonlinear coefficients are the same

due to retaining only leading order terms in χ(2) and χ(3). As opposed to the linear case

[see Eqs. (2.44) and (2.45)], the linear terms in effective and bare equations are differ-

ent. As mentioned in Section 2.3, this signifies the breakdown of the superposition

principle and gives meaning to the term “effective” Helmholtz equation – the average

field E feels different (effective or renormalized) dielectric properties compared to the

stochastic field E.

2.4.3. The effective potential and dielectric function

Using Eq. (2.121), the operator N [〈δE⊗ δE〉] (see Section 2.2.3) in Eq. (2.123) can be

written explicitly as

N [〈δE⊗ δE〉]
(
r, r′, ω

)

ij
= δ

(
r− r′

) ω2

c2

∞̂

−∞

dω′ χ(3)
ijkl

(
r;−ω, ω, ω′,−ω′)

× 〈δEk (r) δEl (r)〉ω′ . (2.124)

As can be seen, this is no longer an operator over frequencies. Rather, it is exactly the

same typeof operator as the dielectric potentialV. Therefore,we can define the effective

12In any case the Helmholtz equation is not a very convenient description in the static case.
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potential as

Ṽ = V+ N, (2.125)

N = 3N [〈δE⊗ δE〉] . (2.126)

As in the linear case (see Eq. (2.21)), we can also define a corresponding effective di-

electric function

ε̃ij (r, ω) = εij (r, ω) +Nij (r, ω) , (2.127)

Nij (r, ω) = 3

∞̂

−∞

dω′χ(3)
ijkl

(
r;−ω, ω, ω′,−ω′) 〈δEk (r)⊗ δEl (r)〉ω′ , (2.128)

which is sometimes easier to work with than the full potential operator.

Using the effective dielectric potential (2.125), the effective nonlinear Helmholtz equa-

tion can be written as,

(

H0 − Ṽ

)

E−M
[
E⊗E

]
−N

[
E⊗E⊗E

]
= H0Ein. (2.129)

This is the equation that determines the results of optical (including linear and nonlin-

ear scattering) measurements.

2.4.4. The linear response

The linear response can be determined directly from Eq. (2.129),

δE

δEin
G0 =

(

H0 − Ṽ− 2M
[
E
]
− 3N

[
E⊗E

])−1

= G̃+ 2G̃M
[
E
]
G̃+ 3G̃N

[
E⊗E

]
G̃, (2.130)

G̃ = lim
Ein→0

(
δE

δEin
G0

)

=
(

H0 − Ṽ

)−1

= G+ 3GN [〈δE ⊗ δE〉]G. (2.131)

Notice that we use the Green’s functionG instead of the linear response G̃ in the second

term of Eq. (2.131). This holds since one can neglect higher order terms in χ(3).
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2. Combining electromagnetic fluctuations and nonlinear optics

2.5. Summary

By introducing fluctuations into the equations of nonlinear optics, we saw that the

wave equations for the stochastic field and average field differ more than by an ad-

ditional source term. Indeed, the whole equation must change, because the superpo-

sition principle no longer applies. Thus we obtained the effective and stochastic (or

bare) Helmholtz equation describing the dynamics of the average and the fluctuating

field, respectively.

In the perturbative case, keeping only the leading order terms of the second and third

order susceptibilities and using zero-mean noise, the higher order terms remain the

same. The difference between the effective and bare electromagnetic potential, how-

ever, depends on the fluctuations themselves,

Ṽ = V+ 3N [〈δE ⊗ δE〉] . (2.132)

This will be the main object of study, together with the fluctuations and noise them-

selves, in Chapters 3 and 4, where we apply the formalism developed in this chapter to

systems in equilibrium and out of thermal equilibrium, respectively.

It is important to stress, however, that these results rely quite heavily on the assump-

tion that in the bare Helmholtz equation [Eq. (2.116)] the noise F has a zero mean

even out of equilibrium. This condition is relaxed and investigatedmore thoroughly in

Chapter 5.
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3. Fluctuational electrodynamics for

nonlinear materials in equilibrium

In this chapter we study optically nonlinear systems at rest, in the absence of unbound

charges or external fields, and with the whole system at the same temperature. While a

lot of interesting effects of nonlinear optics only manifest at high field intensities or in-

teraction lengths (such as optical fibers), it is just a fact of nature thatmostmaterials are

only weakly nonlinear. Nevertheless, this dependence on the magnitude of the exter-

nal field is what separates linear and nonlinear materials. It might therefore seem odd

to look at systems where no external fields are present to push the system into a non-

linear regime. However, we can never completely remove fluctuations, which will be

probing both the linear and nonlinear properties of the system, even when the system

is at rest (and even at zero temperature due to quantum fluctuations). Furthermore,

in this chapter and the next, we will make extensive use of the fact that the nonlinear

contribution is small. This allows us to treat the problem perturbatively, keeping only

the leading order terms.

We start from the stochastic and effective nonlinear Helmholtz equations (SNHE and

ENHE) obtained at the end of Chapter 2 [Eqs. (2.116) and (2.129)] and the effective

electromagnetic potential given in Eq. (2.125). These equations are generally valid, if

one can supply or determine the correct noise F or fluctuations δE. In this chapter we

study the system in equilibrium and can therefore directly use the FDT to determine

the fluctuations. We do need to use 〈F〉 = 0, however.

These fluctuations together with the nonlinear response give rise to an effective (noise-

dependent) electromagnetic potential or dielectric function. We explore both its behav-

ior in Section 3.2 for a static system and also for systems consisting of multiple objects

that can move relative to each other. The latter case leads to nonlinear contributions to

the so-called combination formula of the linear responses of individual objects.

We finish with a practical example in Section 3.3: the equilibrium Casimir force.
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3. Fluctuational electrodynamics for nonlinear materials in equilibrium

3.1. Electromagnetic fluctuations and noise in equilibrium

3.1.1. Equilibrium fluctuations

The equilibrium fluctuations are given directly by the FDT [Eq. (2.36)] and the equi-

librium linear response [Eq. (2.131)],

〈δEω ⊗ δE∗
ω′〉

eq = δ
(
ω − ω′) b (ω)

2i

(

H0 − Ṽ
eq
)−1

AH
, (3.1)

= δ
(
ω − ω′) b (ω)

2i
(H0 − V− 3N [〈δE ⊗ δE〉eq])−1

AH ,

where we used zero-mean noise 〈F〉 = 0. The superscript in Ṽ
eq denotes that the ex-

pression in Eq. (2.125) is evaluated in equilibrium.

As can be seen, this is an implicit equation for the fluctuations. However, because

within a perturbative expansion only leading order terms in χ(3) need to be kept, this

equation can be closed by using linear fluctuations on the right hand side. This will be

discussed in more detail in Section 3.2.

3.1.2. Equilibrium noise – equivalence of Rytov theory and the FDT

By setting Ein = E = 0 in Eq. (2.116), we can directly extract the equilibrium noise,

which are also known as Rytov currents,

Feq = (H0 − V) δEeq −M [δEeq ⊗ δEeq]−N [δEeq ⊗ δEeq ⊗ δEeq] . (3.2)

Note that 〈Feq〉 = 0 to leading order in M and N (see discussion before Eq. (2.129)

whyM [〈δE ⊗ δE〉eq] = 0).

From the above equation we can determine the equilibrium correlator of the noise by

keeping only leading order terms,

〈Fω ⊗ F∗
ω′〉

eq = (H0 −V)ω 〈δEω ⊗ δE∗
ω′〉

eq (H0 − V)†ω′

− (H0 − V)ω 〈δEω ⊗M [δE ⊗ δE]∗ω′〉
eq

− (H0 − V)ω 〈δEω ⊗N [δE⊗ δE ⊗ δE]∗ω′〉
eq

− 〈M [δE⊗ δE]ω ⊗ δE∗
ω′〉

eq (H0 − V)†ω′

− 〈N [δE ⊗ δE ⊗ δE]ω ⊗ δE∗
ω′〉

eq (H0 − V)†ω′ . (3.3)

Note that we can write (Ov)∗ = v∗
O

†. For the terms involving M and N , we can as-

sume that δE is Gaussian, because any non-Gaussianitywould give higher than leading
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3.1. Electromagnetic fluctuations and noise in equilibrium

order contributions in χ(2) and χ(3). The third moment of a zero-mean Gaussian vari-

able is zero, and the fourth moment is given by the Isserlis’ theorem, Eq. (2.106). Since

the N operator is symmetric (see Section 2.2), we have

〈N [δE ⊗ δE ⊗ δE]ω ⊗ δE∗
ω′〉

eq = 3N [〈δE ⊗ δE〉eq]ω 〈δEω ⊗ δE∗
ω′〉

eq . (3.4)

Making use of the equilibrium effective potential from Eq. (2.125), the equilibrium

noise correlator can therefore be written as

〈Fω ⊗ F∗
ω′〉

eq =
(

H0 − Ṽ
eq
)

ω
〈δEω ⊗ δE∗

ω′〉
eq
(

H0 − Ṽ
eq
)†

ω′
. (3.5)

Using the equilibrium fluctuations [Eq. (3.1)], this can be further simplified as

〈Fω ⊗ F∗
ω′〉

eq = −δ
(
ω − ω′) b (ω)

2i

(

H0 − Ṽ
eq
)

AH
. (3.6)

Eq. (3.6) can be considered the “noise-form” or Rytov form of the FDT [compare with

Eq. (3.1)].

Vacuum fluctuations

Notice that the operator

H0 = ∇×∇×−
ω2

c2
I, (3.7)

in Eq. (3.6) is formally real and symmetric, so one might wonder: how can it have an

anti-Hermitian (or imaginary) part? It turns out that the imaginary part of the free

Green’s function G0 = H
−1
0 is indeed zero except in the following limit,

lim
r→r′

ImG0

(
r, r′

)

ij
=

1

6π

ω

c
δij. (3.8)

This is a well known result for the vacuum absorption (also known as the environment

dust, see Ref. [29] and the bulk calculation in Section B.3). It is called “dust”, because

the contribution is infinitesimal compared to regular matter. This can be seen by com-

paring Eq. (3.8)with the definition of the potential operator in Eq. (2.21) – the potential

diverges at equal points whereas the dust is finite. They are, however, both important

since vacuum has infinite volume.

To illustrate this, we give Eq. (3.6) explicitly for vacuum (Ṽ = Ṽ
eq = 0) and non-

vacuum. Being strict, we let Vna denote the space where no absorption is present (prac-
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3. Fluctuational electrodynamics for nonlinear materials in equilibrium

tically, this could denote vacuum if the objects have finite size),

1

2i

[

ε̃
eq
ij (r ∈ Vna)

]

AH
= 0. (3.9)

The noise can then be separated as

〈
Fω (r ∈ Vna)⊗ F∗

ω′

(
r′ ∈ Vna

)〉eq

ij
=

{

−δ (ω − ω′) b (ω) 6π c
ω
δij , r = r′,

0, otherwise,
(3.10)

〈
Fω (r /∈ Vna)⊗ F∗

ω′

(
r′ /∈ Vna

)〉eq

ij
= δ

(
ω − ω′) δ

(
r− r′

)
b (ω)

1

2i

[

ε̃
eq
ij (r)

]

AH
. (3.11)

Note that the vacuum dust does not affect the non-vacuumfluctuations, since the delta-

function is divergent at r = r′.

3.2. The effective dielectric function in equilibrium

As can be seen from Eqs. (2.129) and (3.1), in most cases, e.g. for optics (response

measurements) and the Casimir effect, the influence of nonlinear effects can be taken

into account with an effective potential [Eq. (2.125)],

Ṽ
eq = V+ 3N [〈δE ⊗ δE〉eq] , (3.12)

the effective linear response [Eq. (2.131)],

G̃ =
(

H0 − Ṽ
eq
)−1

= G+ 3GN [〈δE⊗ δE〉eq]G, (3.13)

(no superscript necessary, because G̃ is already defined in equilibrium), or the effective

dielectric function [Eq. (2.127)],

ε̃
eq
ij (r, ω) = εij (r, ω) +N

eq
ij (r, ω) , (3.14)

N
eq
ij (r, ω) = 3

∞̂

−∞

dω′χ(3)
ijkl

(
r;−ω, ω, ω′,−ω′) 〈δEk (r)⊗ δEl (r)〉

eq
ω′ . (3.15)

The equilibrium fluctuations are given by Eq. (3.1), but since only leading order terms

in χ(3) are kept, it is sufficient for nonlinear terms to use

〈δEω ⊗ δE∗
ω′〉eq = δ

(
ω − ω′) b (ω) ImG (ω) +O

(

χ(3)
)

. (3.16)

Notice also that the electric field is real-valued, so in Fourier space δE∗
ω′ = δE−ω′ . Ad-
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3.2. The effective dielectric function in equilibrium

ditionally, we used G = G
T above. This is true because for linear systems in equi-

librium the response must be symmetric, as there are no mechanisms to break micro-

reversibility.

With these considerations, the following expression for the effective dielectric function

in equilibrium can be obtained,

N
eq
ij (r, ω) = 3

∞̂

−∞

dω′χ(3)
ijkl

(
r;−ω, ω, ω′,−ω′) b

(
ω′) ImGkl

(
r, r;ω′) . (3.17)

The effective potential and linear response can be expressed through this,

V
eq = V+N

eq, (3.18)

G̃ = G+GN
eq
G, (3.19)

N
eq
ij

(
r, r′, ω

)
= δ

(
r− r′

)
N

eq
ij (r, ω) . (3.20)

Therefore it is often sufficient to consider the properties of N
eq
ij (r, ω).

Integrating over positive frequencies

Considering Eq. (3.17), it is often more convenient (for example for sign analysis or

numerical integration) to integrate over positive frequencies only. This can be easily

accomplished by noting three properties of the terms in this expression:

1. G = G
T due to micro-reversibility,

2. ImG (ω) = −ImG (−ω), because it represents a real quantity (the correlations of

δE) in time domain,

3. χ
(3)
ijkl (r;−ω, ω, ω′,−ω′) = χ

(3)
ijlk (r;−ω, ω,−ω′, ω′) due to the intrinsic symmetry

discussed in Section 2.2.

Putting these together, the integral in Eq. (3.17) can be written as

N
eq
ij (r, ω) = 3

∞̂

0

dω′χ(3)
ijkl

(
r;−ω, ω, ω′,−ω′)a

(
ω′) ImGkl

(
r, r;ω′) , (3.21)

a (ω) = b (ω)− b (−ω)

=
~

πε0

ω2

c2
coth

(
~ω

2kBT

)

. (3.22)

a (ω) is now the familiar coefficient from Refs. [52, 51]. Both forms are used in the

thesis. Mostly the negative frequencies are kept, but for final force and heat radiation
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3. Fluctuational electrodynamics for nonlinear materials in equilibrium

formulas it is useful to consider positive frequencies for sign analysis.

Divergence of ImGkl (r, r;ω
′)

One can see in Eq. (3.17) the appearance of the local part of ImG. It is well known that

the imaginary part of the Green’s function G diverges as r′ → r for absorbing media

[38] (see also the bulk calculation in Appendix B); this problem arises generally in field

theories [40]. For example, Ref. [62] makes use of a rigid sphere approximation for the

delta function (thus “smearing out” the singularity), which ultimately has the same

effect as introducing an ultraviolet cut-off to classical field theories. In essence, this

reflects the breakdown of the field theory at distances much smaller than the coarse

graining length.

There are, however, some ways around this issue that do not necessitate a direct eval-

uation of this singularity. The most simple is to just consider non-absorbing materials.

This is of course a very significant simplification and we will only use it to evaluate

N
eq
ij (r, ω) directly for a planar surface below.

More commonly, the absolute numerical values of N eq are not interesting by them-

selves. Instead, often differences Nα − Nβ can be considered. For example in order

to calculate the Casimir force (see Section 3.3), the relevant quantity is N (d = d1) −

N (d = d2), where d is the distance between plates. In the next chapter, on the other

hand,N (∆T = 0)−N (∆T ) is interesting, where∆T is the temperature difference be-

tween two objects. In both of these cases, it turns out that the singular part of N does

not change with those variables, so they cancel out.

3.2.1. ε̃
eq for a planar surface – shape dependence

One of the more intriguing properties of Eq. (3.17) is the fact that, through ImG (r, r),

the effective dielectric function of a homogeneous object is in fact inhomogeneous, un-

less the whole system is homogeneous (no objects nor boundaries).

To picture this, consider the fluctuations in a linear system,

〈E⊗E∗〉linω = b (ω)G (ImV)G∗. (3.23)

This means the fluctuations at any point r are due to sources at all other points

ImV (r′, r′), which are propagated with the Green’s function G (r, r′). So if there is a

boundary or absorption between the two points, considering different points r would

give very different fluctuations without changing the noise sources. Since the effec-

tive dielectric function depends on these fluctuations through Eq. (3.14), ε̃ becomes

inhomogeneous inside objects, if ε and χ(3) are homogeneous.
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3.2. The effective dielectric function in equilibrium

For a single flat surface, ImG (r, r) is given in Section B.1 and is plotted in Figures 3.1a,

and 3.1b for the (linearly) non-absorbing and absorbing case, respectively. Mathemat-

ically, of course, subtracting the homogeneous (bulk) solution is problematic in the

absorbing case, because it heals the singularities everywhere inside the object, except

at the surface. In fact, for frequency-independent materials, we will show below in

Section 3.2.4 that this divergence is due to a power law close to the surface.

Figures 3.1 show that, through ImG (r, r), ε̃ depends on the shape of objects, mean-

ing the effective dielectric function at a particular point depends on the location of

boundaries. However, it is not expected for the interference pattern to survive, unless

χ(3) (−ω, ω, ω′,−ω′) has a strong resonance peak at some particular frequency. This can

occur, for example, in glasses doped with gold or silver nanospheres, because χ(3) has

a strong relation to the plasmon resonance [33, 36].

3.2.2. ε̃
eq for separated objects – combination formulas

Quite often in physics, predicting something in the absolute sense is difficult and in-

stead it is useful to calculate differences from some reference. This is also true for the ef-

fective dielectric function. Specifically, considering a systemof separated objects, it will

be shown that once ε̃ is determined for the isolated components (for example through

linear responsemeasurements), it is possible to give a well-behaved expression for the

effective properties of the full system in terms of the individual measurements. For

example, while determining the inhomogeneity of ε̃ as predicted by Eq. (3.17) and Fig-

ure 3.1a could be experimentally challenging, determining a change due to separation

proves more viable.

It is important to be clear exactly what is happening theoretically and physically when

these measurements in isolation are done (objects moved far from each other). Cru-

cially, it needs to be clarified what properties remain constant, either the bare ε or the

effective ε̃. It should be noted that the calculation until now did not really address or

depend on this, nor was this information required, since the system was considered

to be static. Throughout the thesis (and in all the previous work in Refs. [83, 85, 86])

we will consider the bare coefficients χ(n) to describe the “immutable” properties of a

particular material or medium. This choice was also implicit in considering the bare

coefficients to be homogeneous. It should be understood that this is a physical choice,

not a mathematical one, because, barring a microscopic model (not available to us),

there is no way to prove one assumption or the other theoretically. In the end, only an

experiment can identify a correct choice.

Mathematically, this argument is encoded in the so-called combination formulas. These

give away to express the linear response and potential operators of a system in terms of
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3. Fluctuational electrodynamics for nonlinear materials in equilibrium

(a)

(b)

Figure 3.1.: Inhomogeneity of the effective dielectric function near a surface of a homo-
geneous isotropic plate for the non-absorbing [ε (ω′) = 4, top] and absorb-
ing [ε (ω′) = 4 + i, bottom] case. By Eq. (3.17), the space-dependence is
contained in

∑

k ImGkk (r, r), if the nonlinear susceptibility is of the sym-

metric form χ
(3)
ijkl = χ(3)δijδkl.
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3.2. The effective dielectric function in equilibrium

Figure 3.2.: Separation of the bare susceptibilities between spatially separated objects.

the linear responses or potentials of its constituents in isolation. This is important both

theoretically, because it gives a way to determine the response of complicated systems,

and experimentally, because measuring the response directly might not be practical or

even possible (like the effective Fresnel coefficients of a plate when another plate is 10

nanometers away). From the theoretical side, consider the sphere-plate system. The

Green’s function for a sphere can be conveniently expressed in a partial wave basis [51],

while the Green’s function for a plate is usually given in plane wave basis with Fresnel

coefficients like inAppendixB. For the combined system,with a sphere close to a planar

surface, the solution is generally hard to find. A big advantage of FE is the ability to

combine together Green’s functions of arbitrary systems and perform calculations in a

basis-free manner.

Separation of the bare properties of different objects

As a first step, consider N separated non-overlapping objects, as in Figure 3.2. The

region of space occupied by each of them is denoted as Vn and the space without any

objects as V0. Therefore the union V0∪V1∪ ..∪VN is the whole space of position vectors

R
3. The linear and nonlinear susceptibilities of these objects can now be written as

χ(m)
n (r) =

{

χ(m) (r) r ∈ Vn,

0 otherwise.
(3.24)
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3. Fluctuational electrodynamics for nonlinear materials in equilibrium

The total susceptibility can be recovered by simple summation,

χ(m) =

∞∑

n=1

χ(m)
n , (3.25)

and the bare dielectric functions are simply εn = 1 + χ
(1)
n . The bare potential operator

V can be also separated,

V =

N∑

n=1

Vn, (3.26)

Vn

(
r, r′

)

ij
= δ

(
r− r′

)
χ(1)
n (r) . (3.27)

The same holds for the following nonlinear quantities [Eqs. (2.64), (3.20), and (3.17)]:

N =

N∑

n=1

Nn, (3.28)

N =

N∑

n=1

Nn, (3.29)

N =
N∑

n=1

Nn, (3.30)

where the index n denotes that χ
(3)
n must be used.

The combination of effective potentials and dielectric functions

For effective potentials, things are slightly more difficult, because the effective poten-

tials are no longer simply additive. Let Ṽ
eq
n be the effective potential of object n and Ṽ

eq

the full effective potential as per Eq. (3.18),

Ṽn = Vn + Nn, (3.31)

Ṽ = V+ N. (3.32)
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3.2. The effective dielectric function in equilibrium

Figure 3.3.: An illustration showing the difference between the naive (Ṽ′) and full (Ṽ)
effective potentials of the combined object in terms of the effective poten-
tials of its parts (Ṽ1 and Ṽ2), as per Eq. 3.33.

By simple substitution, the effective potential of the combined system can be expressed

in terms of Ṽn:

Ṽ
eq =

N∑

n=1

(
Vn + N

eq
n

)
+

(

N
eq −

N∑

n=1

N
eq
n

)

= Ṽ
′ + N

′, (3.33)

N
′ = N

eq −
N∑

n=1

N
eq
n , (3.34)

Ṽ
′ =

N∑

n=1

Ṽ
eq
n . (3.35)

The quantity on the last line could be called the “naive” effective potential: it is the

full potential one would expect, if the nonlinear objects were assumed to be linear (see

Figure 3.3). The operator N′ could be called the combination correction operator.

As per Eq. (3.20), the analogous equations can be written for the effective dielectric
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3. Fluctuational electrodynamics for nonlinear materials in equilibrium

function,

ε̃eq = ε̃′ +N ′, (3.36)

ε̃′ =
N∑

n=1

(
ε̃
eq
n − 1

)
+ 1, (3.37)

N ′ = N eq −
N∑

n=1

N
eq
n . (3.38)

Using the explicit form forN eq from Eq. (3.17), and noticing that at any particular coor-

dinate only oneN
eq
n of the sum contributes, the combination correction to the effective

dielectric function N ′ becomes

N ′
ij (r ∈ Vn, ω) = 3

∞̂

−∞

dω′χ(3)
ijkl

(
r;−ω, ω, ω′,−ω′) b

(
ω′) Im [G−Gn]kl

(
r, r;ω′) ,

(3.39)

where Gn = (H0 −Vn)
−1 is the Green’s function with only object n present. Note that

since they appear alongside χ(3), the linear responses G̃ and G̃n could be used just as

well.

There are three big benefits to using the effective dielectric function (same applies to the

potential operator Ṽ) defined through the combination formulas Eqs. (3.36) and (3.39)

as opposed to the definitions from bare quantities Eqs. (3.14) and (3.17):

1. The effective dielectric function at a point r ∈ Vn given in Eq. 3.36 is completely

specified by measurable quantities: the dielectric function measured in isolation

(ε̃n) and the difference between full and isolated absorption, Im
[

G̃− G̃n

]

(r, r).

2. The difference Im
[

G̃− G̃n

]

(r, r) removes the divergence that was discussed

above in Section 3.2. This means we can treat absorbing materials with ease.1

3. Since ε̃′ is defined through isolated measurements, all distance dependencemust

be contained inN ′ (or, equivalently, N′). This will be used to calculate deviations

from the Lifshitz formula below.

The only downside is that this method cannot be applied to determine to ε̃eq of a single

absorbing surface (see Figure 3.1a).

1Thismust also be the case as a consequence of the first point: Eqs. (3.33) and (3.36) relate only physically
observable quantities, which must be finite.
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3.2. The effective dielectric function in equilibrium

Figure 3.4.: Experimental configurations for linear responsemeasurements. For objects
with a nonlinear response, the known combination formula Eq. (3.43) does
not give the correct linear response of the combined system.

The combination of linear responses

More important for calculations in FE, is the combination formula for linear responses.

The Green’s function corresponding to the naive potential in Eq. 3.35 is

G̃
′ =

(

H0 − Ṽ
′
)−1

. (3.40)

This is the linear response one expects if the system is assumed to be linear and the

potentials of individual objects are measured. The full linear response is

G̃ = G̃
′ + G̃

′
N
′
G̃

′, (3.41)

where the combination correction N
′ is given by Eq. (3.34) above.

Since we are mostly interested in the combination of the linear responses of two objects

(or groups of objects), for example moving one object while keeping the rest fixed,

we calculate this case explicitly. The two bodies have potentials Ṽ1 and Ṽ2 with linear

responses G̃1 and G̃2 (measured in isolation), as illustrated in Figure 3.4. The naive
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3. Fluctuational electrodynamics for nonlinear materials in equilibrium

Figure 3.5.: A system of semi-infinite parallel plates, separated by vacuum (2). Plate 1
is considered fixed while the position of plate 3 is varied.

combination formula would be

Ṽ
′ = Ṽ

eq
1 + Ṽ

eq
2 , (3.42)

G̃
′ =G̃2

(

G̃1 + G̃2 + G̃1G
−1
0 G̃2

)−1
G̃1. (3.43)

The last formula is very widely used in linear FE [51] and is in fact the basis for the

Lifshitz equation (C.13), while the first is considered trivial. The full potential and

response of the combined system are, however, different for nonlinear systems,

Ṽ = Ṽ
′
n + N

′, (3.44)

G̃ = G̃
′ + G̃

′
N
′
G̃

′, (3.45)

N
′ =

(
N− N

eq
1 − N

eq
2

)
. (3.46)

3.2.3. ε̃
eq for two parallel surfaces – distance dependence

Using Eq. (3.39) for separated objects, it is no longer necessary to restrict the calcu-

lations to real (non-absorbing) ε. Instead of considering the full effective dielectric

function ε̃, it is possible study the dependence of the effective properties on the sepa-

ration of the objects, which is more convenient and interesting, because this behavior

is absent for objects with purely linear dielectric properties.

A simple example to consider is the case of two parallel semi-infinite surfaces separated

by distance d (see Figure 3.5). The effective dielectric function inside slab 1 (which is
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3.2. The effective dielectric function in equilibrium

kept in place) can be written with the help of Eqs. (3.36) and (3.39),

ε̃eq (d) = ε̃eq (d → ∞) +N ′ (d) , (3.47)

N ′
ij (r, ω, d) = 3

∞̂

−∞

dω′χ(3)
ijkl

(
r;−ω, ω, ω′,−ω′) b

(
ω′) (3.48)

×
[
ImGkl

(
d; r, r;ω′)− ImGkl

(
d → ∞; r, r;ω′)] .

If the plate is homogeneous, meaning ε and χ(3) are constant inside the plate, then the

r and d dependence is contained completely in ImG (r, r), as for the case of the single

plate in Section 3.2.1.

Numerical results for ImG (d, r, r) − ImG (d → ∞, r, r) for non-absorbing (ε = 4) and

absorbing (ε = 4 + i) cases are shown in Figures 3.6a and 3.6b, respectively. Note that

they exhibit a similar interference pattern as the single slab case in Figures 3.1, which

now undergoes a phase shift with d. For the non-absorbing case this pattern persists

throughout the material, while in the absorbing case the bulk value is approached be-

yond the skin depth. As before, only the ω′ = 2πc
400nm component is shown, so unless

χ(3) has a strong resonance, the interference at different frequencies would cancel.

By design, ε̃eq (d) at large separations would approach the single plate result. On the

other hand, the distance dependence at small d affects directly the Casimir force as

given in Refs. [83, 85], as we will see in the next section. In particular, the well-known

distance power laws of the Lifshitz formula must be modified for nonlinear objects.

3.2.4. Bulk, surface, and distance contributions for homogeneous

objects

While Eq. (3.47) is useful on its own, this method can be used to identify and investi-

gate all the separate contributions to the effective dielectric function. Consider again the

situation of two parallel plates as in Figure 3.5, but let the plates consist of the same, ho-

mogeneousmaterial. The dielectric function in plate 1 is given by Eqs. (3.14) and (3.17)

(using the coordinate z = ẑ · r, because of translation invariance in the xy-plane),

ε̃
eq
ij (d, z > 0, ω) = εij (ω) +N

eq
ij (d, z, ω) , (3.49)

N
eq
ij (d, z, ω) = 3

∞̂

−∞

dω′χ(3)
ijkl

(
−ω, ω, ω′,−ω′) b

(
ω′) ImGkl

(
d; r, r;ω′) . (3.50)

By setting up the experiment at different distances, we can identify different contribu-

tions.
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3. Fluctuational electrodynamics for nonlinear materials in equilibrium

(a)

(b)

Figure 3.6.: Dependence of the effective dielectric function on the distance between two
homogeneous isotropic plates, for the non-absorbing [ε (ω′) = 4, top] and
absorbing [ε (ω′) = 4 + i, bottom] case. These plots are calculated for
ω′ = 2πc

600 nm , which corresponds to a resonance in the optical region and
determines the decay length into the material (skin depth).
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3.2. The effective dielectric function in equilibrium

Bulk properties

At d → 0, we must obtain a homogeneous effective epsilon for a bulk material

ε̃bulkij (ω) = εij (ω) +N eq (d → 0, ω) . (3.51)

As mentioned in Section 3.2 and calculated in Section (B.3), the equal point Green’s

function in N eq (d → 0) diverges if there is absorption. However, being a result of ex-

periment, ε̃bulkij (ω)must be finite (it is very common to renormalize bulk terms in field

theories [40]). Therefore terms relative to ε̃bulk will be considered, which sidesteps this

problem. Measuring the bare ε experimentally is in any case not possible.

Surface contributions

In the limit d → ∞, we obtain the effective dielectric function for an isolated plate,

ε̃
single
ij (z, ω) = εij (ω) +N eq (d → ∞, z, ω)

= ε̃bulkij (ω) +N surface (z, ω) , (3.52)

N surface (z, ω) = ε̃
single
ij (z, ω)− ε̃bulkij (ω)

= N eq (d → ∞)−N eq (d → 0)

= 3

∞̂

−∞

dω′χ(3)
ijkl

(
−ω, ω, ω′,−ω′) b

(
ω′)

× Im
[
Gkl

(
d → ∞; r, r;ω′)−Gkl

(
d → 0, r, r;ω′)] . (3.53)

As mentioned above, ε̃eq diverges for a single plate at the surface if there is any absorp-

tion, but we can also show this explicitly.

Appendix B contains an explicit calculation for the imaginary part of the difference of

Green’s functions [Eq. (B.18)]. Expanding the hyperbolic cotangents at high and low

temperatures,

coth

(
1

z

~ω

2kBT

)

≈ 1 +O
(
T−1

)
, (3.54)

coth

(
1

z

~ω

2kBT

)

≈ 2z
kBT

~ω
+O

(
T 2
)
, (3.55)

and assuming no further ω-dependence in χ(1) or χ(3), we can obtain the following
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3. Fluctuational electrodynamics for nonlinear materials in equilibrium

power laws in the corresponding limits,

N surface
ij (r, ω, T → 0) =

1

z4
3~

16π2ε0
χ
(3)
ijkl (r)Re

∞̂

0

dω′ω
′2

c2

ˆ ∞

0
dq‖ e

2ip′1
q‖
p′1

×








F ′s
12 −Fp′

12
p′21
k′21

0 0

0 F ′s
12 −F ′p

12
p′21
k′21

0

0 0 2
(
F ′p
12 − 1

) q2
‖

k′21








kl

, (3.56)

(3.57)

N surface
ij (r, ω, T → ∞) =

1

z3
3kBT

8π2ε0c
χ
(3)
ijkl (r)Re

∞̂

0

dω′ω
′

c

ˆ ∞

0
dq‖ e

2ip′1
q‖
p′1

×








F ′s
12 −Fp′

12
p′21
k′21

0 0

0 F ′s
12 −F ′p

12
p′21
k′21

0

0 0 2
(
F ′p
12 − 1

) q2
‖

k′21








kl

, (3.58)

where the various quantities are defined in Appendix B. It can be seen that the quan-

tum and thermal limits of the surface contributions obey the power laws z−4 and z−3,

respectively. This is a sign of the breakdown of the field theory, which does not hold

close to or lower than atomic scales (or the scale of building blocks for metamaterials).

A common remedy is to introduce an ultraviolet cutoff of the frequencies. In our case

we recognize that even though N surface obeys a power law for large z, it must be finite

near z → 0 due to physical considerations.

Compare this result with the Figure 3.1: a wide band χ(3) leads to a power law, but a

resonant χ(3) gives oscillations.

Distance dependence

Finally, the effective dielectric function with both plates present can be written as

ε̃doubleij (d, z, ω) = εij (ω) +N
eq
ij (d, z, ω)

= ε̃
single
ij (z, ω) +Ndist (d, z, ω)

= ε̃bulkij (ω) +N surface (z, ω) +Ndist (d, z, ω) , (3.59)
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3.3. Example – equilibrium Casimir force

where the distance contribution is already familiar from Eq. (3.48),

Ndist (d, z, ω) = ε̃
eq
ij (d, z > 0, ω)

= N
eq
ij (d, z, ω)−N eq (d → ∞) . (3.60)

In the next chapter this description will be amended with a term taking into account

temperature differences [see Eq. (4.27)].

3.3. Example – equilibrium Casimir force

With the effective dielectric function at hand, one could think of calculating the Casimir

directly from the famous Lifshitz formula [59] (given in Eq. C.13). The problem is that

the classic Lifshitz equation assumes that the plates are homogeneous, taking only a

single, frequency-dependent dielectric function as a parameter, whereas we found in-

stead that the effective dielectric function is inhomogeneous inside otherwise homoge-

neous objects.

This problem was explored extensively in Ref. [83], with a relatively convenient form

for the nonlinear contribution [Eq. (C.14)] given in Ref. [85] a year later. We refrain

from carrying out this derivation again here and rather concentrate on the basis of this

calculation and the insights from the analysis in Ref. [85].

3.3.1. Modified power laws for frequency-independent materials

Simplifications and geometry

The exact distance dependence of the nonlinear Casimir force is complicated, not

least because it depends on the generally unknown functional forms of ε (ω) and

χ(3) (−ω, ω, ω′,−ω′). This applies to both the linear andnonlinear parts. However, since

the Casimir force is a wide-band effect (all frequencies contribute in principle), a good

qualitative result can be obtained by considering frequency-independent materials, as in

Section 3.2.4.

For the sake of simplicity, it is further assumed that the materials are non-absorbing

(so both ε and χ(3) are real) and isotropic (see Section 2.2.1). In the simplest case, the

material properties can be written as

εij (ω) = δijε, (3.61)

χ
(3)
ijkl

(
−ω, ω, ω′,−ω′) = (δijδkl + δikδjl + δilδjk)χ

(3). (3.62)
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3. Fluctuational electrodynamics for nonlinear materials in equilibrium

Figure 3.7.: System of one nonlinear (1) and one linear (3) plate, separated by vacuum
(2). Due to working in leading order in χ(3), it is sufficient to consider only
a single nonlinear plate at a time for calculating the Casimir force. The
nonlinear contributions from either plate are additive.

As per Figure 3.7, the plate at z < −d is characterized by the dielectric constant εlin and

the plate at z > 0 by εnl and χ(3). Note that it is trivial to make both plates nonlinear,

since the contributions are additive.

Scaling argument and power laws

With these simplifications, it is relatively easy to obtain the distance power laws from

Eqs. (C.13) and (C.14). The key is to scale the integration by distance, such that

ω, ω′, q, q′ → ω
d
, ω′

d
, q
d
, q′

d
. Together with the expansion of the hyperbolic cotangents at

high and low temperatures, coth
(
1
d

~ω
2kBT

)

≈ 1 and coth
(
1
d

~ω
2kBT

)

≈ 2dkBT
~ω

, respectively,

the following expressions can be obtained,

P T→0 =
~c

d4
IT→0
lin +

χ(3)

ε0

(
~c

d4

)2

IT→0
nl , (3.63)

P T→∞ =
kBT

d3
IT→∞
lin +

χ(3)

ε0

(
kBT

d3

)2

IT→∞
nl , (3.64)

where the different I represent the remaining dimensionless integrals, which are inde-

pendent of distance or temperature (similar to Eqs. (3.56) and (3.58)). While 1
d3

and
1
d4

are the well-known power laws of the Casimir force in the quantum and thermal

limits, the 1
d6

and 1
d8

forces are new. They are caused by the distance dependence of the

effective dielectric function of the nonlinear plate (see Eq. (3.48)).

These integrals I are shown in Figures 3.8a and 3.8b for various combinations of the

dielectric constants of either plate. Note that the dielectric constant of the linear plate,
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3.3. Example – equilibrium Casimir force

(a)

(b)

Figure 3.8.: Casimir force in the thermal (T → ∞) and quantum (T → 0) limit as per
Eqs. 3.63 and 3.64 as a function of the dielectric constant εnl of the nonlinear
plate (see Figure 3.7). The main graphs show the nonlinear contributions
(IT→0

nl and IT→∞
nl )while the insets show the linear parts (IT→0

lin and IT→∞
lin ).

55



3. Fluctuational electrodynamics for nonlinear materials in equilibrium

Figure 3.9.: Casimir force between a perfectmirror and a nonlinear slabwith a dielectric

constant εnl as labeled and nonlinear susceptibility χ(3) = 2 × 10−16 m2

V2

(corresponding roughly to glass infused with silver nanoparticles).

εlin, can be increased to infinity (the case of a perfect mirror), while the same is not true

for the corresponding property of the nonlinear plate εnl. Increasing the latter will still

increase of the conventional 1
d3

and 1
d4

forces, but decrease the 1
d6

and 1
d8

forces. In fact

the maximum “nonlinear” pressure is obtained if εlin → ∞ and εnl → 1. That way no

light is “lost” through transmission in the linear plate, or through internal and external

reflection from the nonlinear plate. In the limit εnl → 1, the nonlinear contribution

vanishes, because all the fluctuations from the other plate can no longer penetrate the

surface and undergo nonlinear interactions.

Crossover

Figure 3.9 shows the Casimir force in the quantum limit given by Eq. (3.63) for the case

εlin → ∞ (a perfect mirror). As expected, the pressure has the well-known 1
d4

behavior

for large separations and crosses over to 1
d8

for small separations.

An optimistic nonlinear susceptibility χ(3) = 2× 10−16 m2

V2 was used, corresponding to

off-resonant nonlinearity of glass fused with silver nanoparticles [41]. Nevertheless

the crossover occurs at around 5 − 10nm for realistic materials with εnl ∼ 2, which is

very small, but potentially achievable with current experimental methods.

By reducing εnl, the crossover distance can potentially be increased to infinity. While

this seems hard to achieve, the same effect (reducing the linear contribution) could be

reached with index-matched materials or coating [87, 16, 98].
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3.4. Summary

3.3.2. Force between an invisible plate and a perfect mirror

Based on Figure 3.9, it is interesting to consider the limit where the linear contributions

vanish. Thus we consider a plate that is invisible (in isolation no light is reflected) in

front of a perfect mirror. The linear contribution to the force [Eq. (C.13)] vanishes,

while Eq. (C.14) simplifies to

P =
3

28π4
ε0Re

˘ ∞

0
dωdω′dqdq′χ(3)

(
−ω, ω, ω′,−ω′)

× a (ω) a
(
ω′)
[

e2i(p+p′)d

(p+ p′) p′
+

e2i(p−p′∗)d

(p− p′∗) p′

]

×
qq′

k2k′2
[
k2
(
4k′2 − 3q′2

)
− q2

(
6k′2 − 7q′2

)]
, (3.65)

where k = ω
c
and p =

√

k2 − q2.

The “invisibility” condition for the nonlinear plate is required in isolation,

ε̃nl (d → ∞) = 1. A nonzero force will still be observed, because the previously in-

visible plate becomes reflecting near the mirror due to Eq. (3.47). It should also be

noted that the condition ε̃nl (d → ∞) = 1 is far from innocuous and cannot be achieved

with homogeneous media (see Eqs. (3.52) and (3.56)).

3.4. Summary

By taking the stochastic and effective Helmholtz equations obtained in the previous

chapter and applying the FDT in equilibrium, the noise and fluctuations could be deter-

mined explicitly. We also confirmed that the calculation agrees with the Rytov theory,

provided the effective potential or dielectric function is used.

The effective dielectric function ε̃was investigated in great detail, as a quantity directly

affected by fluctuations. Since the latter depend greatly on the rest of the system, so too

does ε̃ become “aware” of the surroundings (as opposed to linear systems, where the

dielectric function is purely a local property). We saw that ε̃ becomes inhomogeneous

for otherwise homogeneous objects, because it depends on the distance to the surfaces

(vacuum fluctuations for example limited by the skin depth). This dependence is a

power law for frequency-independent materials or results in an interference pattern if

the nonlinear susceptibility χ(3) is highly resonant.

The results were also applied to the classic problem of the Casimir force between paral-

lel plates. Specifically, we saw that at very close distances the ordinary d−4 (d−3) power
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3. Fluctuational electrodynamics for nonlinear materials in equilibrium

law crosses over to d−8 (d−6) for the T → 0 (T → ∞) limit. For experimental detection,

the linear component can be minimized by considering a plate that in isolation has a

nonlinear, but no linear response.
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4. Thermal imbalance in nonlinear

systems and radiative heat transfer

In the previous chapter we investigated electromagnetic fluctuations in equilibrium

systems, and, even though some assumptions were needed (that 〈F〉 = 0 and that the

bare electromagnetic potentialV is constant), the theory is still well grounded through

the FDT. In this chapter we will consider a non-equilibrium scenario in which case the

FDT no longer applies. Specifically, in order to treat heat radiation and transfer, regions

of the system (usually separate objects)must be allowed to have different temperatures

from each other. By assuming that the individual objects reach or are kept at a specific

temperature in a much shorter timescale than reaching a global equilibrium, one can

use the “equilibrium” noise in these objects, just with different temperatures.

This so-called local thermal equilibrium (LTE) approximation has been very success-

fully employed in the linear case [52, 51]. We will see that this approach works very

well in the nonlinear case as well and proceed to determine the non-equilibrium fluc-

tuations in Section 4.1. With these fluctuations at hand, we continue by determining

the effective electromagnetic potential or dielectric function in Section 4.2, just like for

the equilibrium case in Section 3.2.

A general heat transfer formula is given in Appendix D, which will be applied to the

case of a nanosphere in Section 4.3. The case of the plate is instructive to discuss Kirch-

hoff’s law of radiation. The heat radiation of a nanosphere is interesting, because it is

not necessary to consider the full space-dependent effective dielectric function. Rather,

the effective properties can be taken into account as an effective polarizability. Since this

is a single (frequency-dependent) number, we get a concise but explicit formula for the

heat radiation, which allows us to discuss interesting qualitative properties of the heat

radiation of nonlinear nanoparticles. An intriguing case we consider is the radiation of

a purely nonlinear particle – we find that such a particle would always radiate energy

away, even if it is colder than the environment.
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4. Thermal imbalance in nonlinear systems and radiative heat transfer

4.1. Fluctuations in the local thermal equilibrium

approximation

4.1.1. Non-equilibrium Rytov currents in the LTE approximation

TheLTEapproximation ismade by assuming that the statistics of noisewill locally retain

the form of Eq. 4.3, even if the temperature is not the same everywhere in space. This

is physically best motivated, if the noise relaxes to (local) equilibrium at much faster

time scales compared to the complete system. In particular, we will consider separated

objects with different temperatures, but with every point inside any particular object at

the same temperature. The assumption is therefore that these objects reach equilibrium

within themselves much faster (for example through heat conduction) than it takes to

transfer non-negligible amounts of energy between the different objects through the

electromagnetic field (radiative heat transfer).

Space-dependent temperature

The equilibrium Rytov currents are given by Eq. (3.6), the noise-form of the FDT. Be-

cause the free Green’s function is symmetric, it can be written as

〈Fω ⊗ F∗
ω′〉

eq = −δ
(
ω − ω′) b (ω)

(

ImG
−1
0 −

1

2i
Ṽ
eq
AH

)

, (4.1)

where, as a reminder, the subscript “AH” denotes the anti-Hermitian part, OAH = O−

O
†. Temperature enters through the coefficient b (ω) [see Eq. (2.38)],

b (ω) =
~

πε0

ω2

c2
1

1− e
− ~ω

kBT

. (4.2)

Unlike the correlator for fluctuations in Eq. (3.1),
〈
Fω ⊗ F∗

ω′

〉eq
is a local operator, de-

pending actually on one spatial coordinate. This means the coefficient b (ω) in Eq. (4.1)

really describes the temperature at the particular point r. Letting the temperature be

non-constant in space with T → T (r) and b (ω) → b (r, ω), the “equilibrium” (con-

stant) temperatures will be denoted as T eq (r) = T and beq (r, ω) = b (ω). The noise

correlator can be written more explicitly as

〈
Fω (r)⊗ F∗

ω′

(
r′
)〉eq

ij
= −δ

(
ω − ω′) beq (r, ω) (4.3)

×

[

ImG
−1
0

(
r, r′

)

ij
−

1

2i

[

ε̃
eq
ij (r)

]

AH
δ
(
r− r′

)
]

. (4.4)
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4.1. Fluctuations in the local thermal equilibrium approximation

Where we remember that the first term in the brackets represents the infinitesimal vac-

uum dust [see Eq. (3.10)], which is non-zero only in the limit r → r′, while the second

term gives noise in objects.

LTE approximation for separated objects

We follow the same procedure as in Section 3.2.2 and considerN separated continuous

objects (see Figure 3.2), giving us (see Eq. (3.24))

χ(m) =

∞∑

n=1

χ(m)
n , (4.5)

V =
N∑

n=1

Vn. (4.6)

As opposed to Section 3.2.2, however, the effective properties will not be considered to

be determined in isolation; rather they are separated geometrically into pieces like the

bare quantities. Thus the dielectric function ε̃ from Eq. (2.127) is written as

ε̃ = 1 +

N∑

n=1

(ε̃n − 1) , (4.7)

ε̃n = εn +Nn, (4.8)

Nn (r, ω)ij = 3

∞̂

−∞

dω′χ(3)
n,ijkl

(
r;−ω, ω, ω′,−ω′) 〈δEk (r)⊗ δEl (r)〉ω′ . (4.9)

The effective potential Ṽ is obtained from Eq. (2.125) or directly from the effective di-

electric function above,

Ṽ =
N∑

n=1

Ṽn, (4.10)

Ṽn

(
r, r′

)

ij
= δ

(
r− r′

)
[ε̃n (r)− 1]

= Vn + 3Nn [〈δE ⊗ δE〉] (4.11)

Note again that, unlike for combination formulas in Section 3.2.2, the individual ε̃n and

Ṽn do not correspond to the effective quantities of the object n in the absence of other

objects. This is purely a spatial separation.

Finally, we assign the temperature Tn to each object and the temperature T0 to vacuum,

with the corresponding coefficients bn (ω), as illustrated in Figure 4.1. The Rytov cur-
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Figure 4.1.: Separationof the bare susceptibilities (potentialsVn) between spatially sep-
arated objects with different temperatures Tn.

rents (noise) of Eq. (4.3) can now be written in the LTE approximation for separated

objects,

〈
Fω (r)⊗ F∗

ω′

(
r′
)〉LTE

= δ
(
ω − ω′)

[

−b0 (ω) ImG
−1
0

(
r, r′

)

ij
+

N∑

n=1

bn (ω)

2i

(

Ṽ
LTE
n

)

AH

]

.

(4.12)

The superscript “LTE” means that all the averages in the effective quantities must be

evaluated using the LTE noise.

By introducing a potential operator for the vacuum dust,

Ṽ
LTE
0 = V0 = −G

−1
0 , (4.13)

we can write the fluctuations even more briefly as

〈
Fω (r)⊗ F∗

ω′

(
r′
)〉LTE

= δ
(
ω − ω′)

N∑

n=0

bn (ω)

2i

(

Ṽ
LTE
n

)

AH
. (4.14)

This is the final form for the noise correlator in the LTE approximation.
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4.1.2. Non-equilibrium fluctuations in the LTE approximation

The fluctuations from non-equilibrium Rytov currents

The system in the LTE is out of equilibrium, therefore we can not use the FDT

[Eq. (2.36)] to obtain the fluctuations. Nevertheless, we remain in the limit of zero

external field, so Ein = E = 0. We can therefore use the same reasoning from the

previous chapter, starting from Eq. (2.36), to obtain an analogue of Eq. 3.5,

〈Fω ⊗ F∗
ω′〉

LTE =
(

H0 − Ṽ
LTE
)

ω
〈δEω ⊗ δE∗

ω′〉
LTE
(

H0 − Ṽ
LTE
)†

ω′
. (4.15)

The correlator for the fluctuations can be obtained by simply applying G̃
LTE =

(

H0 − Ṽ
LTE
)−1

from the left and G̃
LTE† from the right,

〈δEω ⊗ δE∗
ω′〉

LTE = G̃
LTE 〈Fω ⊗ F∗

ω′〉
LTE

G̃
LTE†. (4.16)

Using the noise correlator from Eq. (4.14), the above equation can be written as,

〈δEω ⊗ δE∗
ω′〉LTE = δ

(
ω − ω′)

N∑

n=0

bn (ω)

2i

(

G̃ṼnG̃
†
)LTE

AH
, (4.17)

where we used the easily provable identity ABAHA
† =

(
ABA

†)
AH

. This is the final

form for correlator of fluctuations in the LTE limit.

Closing the system with a perturbative effective potential ṼLTE
n

As in the previous chapter, by keeping only leading order terms in χ(3), the potentials

Ṽ
LTE
n defined by Eq. (4.11) can be written simply as

Ṽ
LTE
n = Vn + 3Nn

[

〈δE ⊗ δE〉LTE
]

, (4.18)

Nn

[

〈δE⊗ δE〉LTE
] (

r, r′;ω
)

ij
= δ

(
r− r′

)
∞̂

−∞

dω′χ(3)
n,ijkl

(
r;−ω, ω, ω′,−ω′)

×
N∑

n=0

bn
(
ω′) Im

(

GVnG
†
) (

r, r;ω′)
kl
. (4.19)

We will investigate the behavior of this quantity in the form of the effective dielectric

function in more detail in the next section.
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4. Thermal imbalance in nonlinear systems and radiative heat transfer

Figure 4.2.: Diagram showing the relations between equations for the non-equilibrium
fluctuations with arrows corresponding to the “flow” of solution.

Figure 4.2 shows the interdependencebetween the various equations introduced in this

chapter. In equilibrium the fluctuations are given by the FDT, and all other quantities,

including the Rytov currents, follow from that. It is curious that in this case, how-

ever, the non-equilibriumRytov currentswere first fixed and only then the fluctuations,

which no longer follow the FDT, could be determined.

It should also be noted that, just like in equilibrium (see Section 3.2.2), a choice needs

to be made regarding which quantities remain constant under temperature change –

Vn or ṼLTE
n . Eq. (4.18) gives only the difference. As before, we will use immutable

(and homogeneous) bare susceptibilities χ(1), whereas the effective quantities become

temperature-dependent and inhomogeneous.

4.2. The effective dielectric function out of thermal

equilibrium

4.2.1. The effective dielectric function in the LTE approximation

From Eq. (4.17) we see that the effects of the nonlinear susceptibility can be taken into

account with an effective electromagnetic potential or dielectric function, just like in

Chapter 3. Substituting the field correlator from Eq. (4.17) into Eq. (2.127), we can
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4.2. The effective dielectric function out of thermal equilibrium

obtain a closed expression for the effective dielectric function,

ε̃LTEij (r, ω) = εij (r, ω) +NLTE (r, ω)ij , (4.20)

NLTE (r, ω)ij = 3

∞̂

−∞

dω′χ(3)
ijkl

(
r;−ω, ω, ω′,−ω′) (4.21)

×
N∑

m=0

bm
(
ω′) Im

(

GVmG
†
) (

r, r;ω′)
kl
.

Notice that the equilibrium expression from Eq. (3.17) is recovered if all temperatures

Tm are equal since
∑N

m=0 Im
(
GVmG

†) = ImG̃.

As discussed in Section 3.2, Eq. (4.21) can be written equivalently as an integral over

positive frequencies as well,

NLTE (r, ω)ij = 3

∞̂

0

dω′χ(3)
ijkl

(
r;−ω, ω, ω′,−ω′)

×
N∑

m=0

am
(
ω′) Im

(

GVmG
†
) (

r, r;ω′)
kl
, (4.22)

am (ω) = bm (ω)− bm (−ω)

=
~

πε0

ω2

c2
coth

(
~ω

2kBTm

)

. (4.23)

4.2.2. The non-equilibrium part to the effective dielectric function

In order to distinguish and highlight the non-equilibrium properties of ṼLTE and ε̃LTE,

it is useful to look at the difference of these quantities to their equilibrium counterparts,

Ṽ
eq and ε̃eq. We will denote this difference with the superscript “∆T” to signify that it

is the contribution due to temperature differences,

N
∆T
(
r, r′;ω

)

ij
= δ

(
r− r′

)
N∆T (r, ω)ij , (4.24)

N
∆T = Ṽ

LTE − Ṽ
eq

= 3N
[

〈δE ⊗ δE〉LTE − 〈δE ⊗ δE〉eq
]

, (4.25)

N∆T = ε̃LTE − ε̃eq. (4.26)

The last expression can be evaluated directly using Eqs. (4.21) and (3.17). Practically,

however, it is easier to use the expression for ε̃LTE and set the temperatures equal. It is

important, however, to choose a particular temperature for ε̃eq. Our choice is to consider
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4. Thermal imbalance in nonlinear systems and radiative heat transfer

the “reference temperature” to be the temperature of the object that the position vector

r is in. That is, if r ∈ Vn, then in ε̃eq we choose b (ω) = bn (ω). We therefore obtain the

following expression,

N∆T (r ∈ Vn, ω)ij = 3

∞̂

−∞

dω′χ(3)
ijkl

(
r;−ω, ω, ω′,−ω′)

×
N∑

m=0

[
bm
(
ω′)− bn

(
ω′)] Im

(

GVmG
†
) (

r, r;ω′)
kl
. (4.27)

One can see now directly that N∆T becomes zero in object n if the temperature of all

other objects is the same.

We can also see fromEq. (4.27) that the effective dielectric function of a particular object

starts to directly depend on the temperatures of other objects. While local temperature-

dependence of epsilon is well known (for example, ordinary thermal expansion leads

to changes in the dielectric function), the dependence on the temperature at other lo-

cations and even other objects is a novel prediction.

Furthermore, Eq. (4.27) is neat since it shows that really only objects which have differ-

ent temperatures contribute, while the terms for objects n andm with Tn = Tm will be

zero. Most importantly, that includes the contribution from the same bodym = n. That

means in all non-zero terms of Eq. (4.27) the two Green’s functions will only connect

points in different objects, therefore avoiding the divergence ImG (r, r) as discussed

in the previous chapter in Section 3.2. The divergence is still there, in ε̃eq, but we can

proceed to study the physically relevant part N∆T without problems, exactly like the

distance dependent part of the effective potential in Section 3.2.3.

4.2.3. One object in vacuum – passive gain media

Aspecial case to consider is a single object at temperatureTobj in vacuumat temperature

Tenv. In that case Eq. (4.27) can be written explicitly as

N∆T
single (r, ω)ij = −18π

∞̂

−∞

dω′ c
ω′χ

(3)
ijkl

(
r;−ω, ω, ω′,−ω′)

×
N∑

m=0

[
benv

(
ω′)− bobj

(
ω′)] 1

V0

ˆ

V0

dr′Gkm

(
r, r′;ω′)G∗

lm

(
r, r′;ω′) .

(4.28)
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4.2. The effective dielectric function out of thermal equilibrium

where we used Eq. (3.8) for the environment dust. Remember that V0 is the volume

of all space except for (absorbing) objects. This volume is infinite, but the integral
1
V0

´

V0
dr′ is nevertheless finite.

As an illustration, the space and temperaturedependenceofN∆T for the case of a single

planar interface with homogeneous (and temperature independent) bare coefficients

is shown in Figures 4.3a and 4.3b. It shows clearly how the effective dielectric function

depends on the temperature of external objects (in this case, the environment). As

mentioned above, this is a purely nonlinear effect, absent for linear materials.

Kirchhoff’s law of radiation

FromEq. (4.28) and also Figure 4.3b, we canmake an interesting observation regarding

the Kirchhoff’s law of radiation. While this law applies strictly only in equilibrium, it is

valid in the LTE approximation as well. However, care must be taken if nonlinear ma-

terials are present, since the effective dielectric properties depend on the temperatures

of all the objects. For example, comparing the absorption in equilibrium and emissiv-

ity after lowering the temperature of the environment to zero will seemingly violate

the Kirchhoff’s law. All measurements must be performed at equal conditions (same

temperatures and locations of objects).

Passive gain media

Eq. (4.28) is interesting, because even though it is hard to predict the sign of N∆T
single

due to the integration and the unknown sign of χ(3), it is clear that the N∆T
single changes

sign if Tenv and Tobj are switched (because b (ω) is monotonic in temperature). This

has some very pertinent consequences for the imaginary part of ε̃, which is generally

positive for passive media, which can only dissipate passing light but not amplify it.

Materials with negative Imε̃ are called gain media and normally require some energy

source in order to achieve this.

We can see from Eq. (4.28), however, that passive (meaning Imε, Imε̃ > 0 ,Imχ(3) <

0) but nonlinear materials can become gain media in some cases. Specifically, this

could happen in scenario where for some frequencies and temperatures |Imε̃eq (ω)| <
∣
∣ImN∆T (ω)

∣
∣. Since ImN∆T (ω) depends on the sign of Tenv − Tobj, this must happen

either when Tenv > Tobj or Tenv < Tobj. This change in sign will also have a further very

interesting effect on the heat radiation, which we will discuss below.
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4. Thermal imbalance in nonlinear systems and radiative heat transfer

(a)

(b)

Figure 4.3.: Dependence of the effective dielectric function of an isotropic dielectric slab
at a fixed temperature Tobj = 300K on the temperature Tenv of the environ-
ment, for the non-absorbing [ε (ω′) = 4, top] and absorbing [ε (ω′) = 4+ i,
bottom] case. Theseplots are calculated forω′ = 2πc

50µm , which sets the decay
length into the material (skin depth). Compare with Figures 3.1 and 3.6.
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4.3. Heat radiation and transfer in nonlinear systems

In Appendix D a general heat transfer formula (D.5) is derived. Interestingly, it retains

the same form for linear and nonlinear objects, as long as the correct effective dielectric

properties are used.

4.3.1. A single arbitrary object – anomalous modes

Considering only a single object, Eq. (D.5) reduces to

H = −
1

8πµ0

∞̂

−∞

dω
1

ω

[
bobj (ω)− benv (ω)

]

× Tr
[(

Ṽ

)

AH
G̃

(

Ṽ0

)

AH
G̃

†
]

. (4.29)

If we make the rather significant simplification that the material is isotropic, ε̃ij = δij ε̃

(see Section 2.2.1 for the conditions on χ(3)), then we can further reduce this to

H = −
1

8πµ0

∞̂

−∞

dω
1

ω

[
bobj (ω)− benv (ω)

]

×
1

Venv

ˆ

r1∈Vobj

r2∈Venv

dr1dr2 Imε̃ (r1, ω) Imε̃ (r2, ω)
∑

ij

∣
∣
∣G̃ij (r1, r2;ω)

∣
∣
∣

2
. (4.30)

In general, this expression involvesmany additional nonlinear terms due to the product

of three effective quantities.

Most interesting, however, is the possibility of so-called anomalous modes or phases,

where heat radiation is in the wrong direction. That is because, as we discussed below

Eq. (4.28), the imaginary part of ε̃ can become negative for some combination of tem-

peratures and positive if the temperatures are switched. Since Eq. (4.30) contains also

the factor, bobj (ω) − benv (ω), the direction of heat flow (for that particular frequency)

remains unchanged, thus flowing in the wrong direction, from a cold body to the hot

environment; hence the name “anomalous modes”.

Reversing the heat direction of some frequency ranges is not necessarily a problem, if

the total heat still flows from hot to cold regions. This can correspond, for example, to

nonlinear processes which absorb in a wide range of frequencies but emit in a narrow

range. Note that this is not possible in the linear case, because different frequencies are

uncoupled.
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4. Thermal imbalance in nonlinear systems and radiative heat transfer

4.3.2. Example a nonlinear nanosphere

The effective dielectric function

A useful and simple example system for studying heat radiation is a single nanosphere

in vacuum. In the limit where its radius is much smaller than the thermal wavelength

λT = ~c
kBT

and the skin depth δ = 1
Im

√
εµ

c
ω
, the (linear) Green’s function connecting

points inside and outside the nanosphere can be approximated [51] as

Gsphere =
3

ε+ 2
G0. (4.31)

The thermal part of the effective dielectric function can then be almost directly calcu-

lated from Eq. 4.27. First, using Vm = −G
−1
0 (remembering to exclude the volume of

the sphere), we have

N∆T
sphere (r;ω)ij = −3

∞̂

−∞

dω′χ(3)
ijkl

(
r;−ω, ω, ω′,−ω′)

×
[
benv

(
ω′)− bobj

(
ω′)]

[

GIm
(
−G

−1
0

)
G

†
] (

r, r;ω′)
kl
. (4.32)

The Green’s functions in GIm
(
−G

−1
0

)
G

† connect only points in the sphere with those

outside, sowe can use the approximation in Eq. (4.31). Since the volume of the sphere is

negligible (meaning the properties are the same everywhere inside), we obtain simply

GIm
(
−G

−1
0

)
G

† =

∣
∣
∣
∣

3

ε+ 2

∣
∣
∣
∣

2

ImG0. (4.33)

Using Eq. (3.8), the thermal part of the effective dielectric function becomes

N∆T
sphere (ω)ij = −

1

2π

∞̂

−∞

dω′χ(3)
ijkk

(
−ω, ω, ω′,−ω′)

×
ω′

c

∣
∣
∣
∣

3

ε (ω′) + 2

∣
∣
∣
∣

2
[
benv

(
ω′)− bobj

(
ω′)] , (4.34)

which will be used to calculate the thermal contribution to the equilibrium polarizabil-

ity below.
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The effective polarizability and heat radiation

The polarizability of a nanosphere is defined as

α̃ ≡
ε̃− 1

ε̃+ 2
R3. (4.35)

Using Eq. (4.34), we can determine the effective polarizability with respect to the equi-

librium value,

α̃LTE = α̃eq

[

1 +
3

(ε− 1) (ε+ 2)
N∆T

sphere

]

. (4.36)

The polarizability governs the radiation of small spheres [11],

H =
4ε0
π2c

∞̂

−∞

dω ω2
[
bobj (ω)− benv (ω)

]
Imα̃LTE (ω) . (4.37)

Since there is no problem with an inhomogeneous effective dielectric function in the

case of a nanosphere, the known formula can be applied directly.

The non-absorbing nanosphere

As an intriguing example, we consider an extreme case – a nanosphere that is non-

absorbing in equilibrium,

Imε̃eq = Imα̃eq = 0. (4.38)

By Eqs. (4.36) and (4.37), the sphere can only emit or absorb energy through a finite

Imχ(3). Explicitly, the heat radiation is

H = −54
ε0

π3c3

∞̂

−∞

dω

∞̂

−∞

dω′ ω2ω′Imχ(3)
(
−ω, ω, ω′,−ω′)

×

[
bobj (ω)− benv (ω)

] [
bobj (ω

′)− benv (ω
′)
]

[ε (ω) + 2]2 [ε (ω′) + 2]2
. (4.39)

In this case, the heat radiation remains completely unchanged if the temperatures of

the sphere and environment are interchanged. Since Imχ(3) < 0 in passive media [13],

Eq. (4.39) yieldsH > 0 for all temperatures, which would violate the laws of thermo-

dynamics.
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4.4. Summary

By applying the LTE approximation on the results obtained in the previous chapter, we

obtained the noise and fluctuations in a (nonlinear) system,where bodies can have dif-

ferent temperatures. This gave a yet another (generally inhomogeneous) contribution

to the effective dielectric function.

Surprisingly, however, this contribution changes signs if the temperatures of two bod-

ies were swapped. This paves way for the possibility of pseudo-gain media: otherwise

passive media where waves of some frequency range experience gain instead of ab-

sorption due to “leeching” energy from fluctuations.

The results for radiative heat transfer were even more interesting, since these pseudo-

gain regimes also tend to reverse the direction of heat flow (in a particular frequency

range). This example was taken to the extreme with the radiation of a (linearly) non-

absorbing nanosphere: such an object would always radiate away more heat than ab-

sorb from the environment, even if it is at a lower temperature.
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of external fields

Moving even further away from equilibrium, the goal of the this chapter is to investi-

gate the influence of external fields on the fluctuations and Rytov currents. While in the

linear case the fluctuations are decoupled from the incoming field due to the superpo-

sition principle, in nonlinear systems the fluctuations are expected to depend directly

on the external field. We will find that, unlike in equilibrium, the FDT does not contain

enough information to completely fix this dependence. Even more assumptions need

to be made to predict non-equilibrium behavior.

After a short example of an exact calculation, the van der Waals force in a constant ex-

ternal field in Section 5.1, we turn our attention to the general case. Based on arbitrarily

nonlinear scalar model in Section 5.2, wemap the conditions that the noise has to follow

in either the effective (with coefficients corresponding to response measurements) or

bare (corresponding more to the model used in Chapters 3 and 4) equation of motion.

While the general conditions are theoretically pleasing, they are better illustrated in a

perturbative case with third order nonlinearities in Section 5.3, which corresponds also

more closelywith previous chapters. While the noise and fluctuations cannot be unam-

biguously determined, a useful framework is developed for testing different assump-

tions on noise. The non-equilibrium fluctuations for two specific cases are compared

explicitly, which give two clearly different predictions that could be tested experimen-

tally.

The chapter is concluded by bringing the story back to electromagnetic fluctuations in

Section 5.4, where we use the simplest noise that still obeys the necessary conditions:

a constant one. Nevertheless, a rich and explicit field dependence of the fluctuations is

still obtained.

5.1. Introductory example – van der Waals force in a

constant field

In Ref. [84], we studied a very particular systemof nonlinear polarizable particles, con-

nected through regular dipole-dipole interaction, in a static electric field. Since it is a
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5. Nonlinear fluctuations in the presence of external fields

Figure 5.1.: Casimir force between two saturating particles in an external electric field

E. The angle between the field and the vectorR is ϕ = arccos
(

1√
3

)

.

classicalmodelwith a fixed,microscopicHamiltonian [14, 24, 26], all calculations could

be carried out directly. There was no need to introduce noise by hand or use the FDT.

Compared to regular harmonic dipoles, able to respond in a limitless fashion to an

electric field, these particles were given a hard limit to their maximum dipole moment

in order to make them nonlinear (a bit like an opposite of a muffin tin potential). They

behave like harmonic dipoles, if there is a small or no electric field, but within higher

fields theybecome harder andharder to polarize – thus exhibiting a nonlinear response.

We were interested in the force between these particles. Under general conditions,

putting polarizable particles in an electric field induces average dipolemoments, which

dominates the force between them at long distances. This deterministic force can be at-

tractive or repulsive, however. By carefully choosing the direction of the electric field,

as in Figure 5.1, this contribution could be canceled altogether.

Figure 5.1 shows that the force vanishes at very high fields. This is because the dom-

inant contribution at high fields originates from the interaction of a strong induced

dipole and a dipole with a negligible effective polarizability. If the dipole is strongly sat-

urated, there is very little “room” for fluctuations. This effective polarizability would

represent the effective dielectric function in the case of nonlinear fluctuational electro-

dynamics. It is the goal in this chapter to step closer to calculating the Casimir force

and also heat transfer in the presence of strong external fields, by seeking to calculate

the non-equilibrium fluctuations.
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5.2. Stochastic scalar model – general approach

In order to avoid some peculiarities of the Helmholtz equation, nonlinear fluctuations

(or rather, fluctuations in nonlinear systems) will be investigated here in a simplified

manner. We treat here a scalar model and ignore the complexities arising fromdifferen-

tial operators. More generally, one would have to look at the problem in Fourier space

(time derivatives) and/or employ a Green’s function formalism (which was done for

the EM).

5.2.1. The phenomenological model

We are interested in the fluctuating field or observable x in a system which is being

driven by an external deterministic source a. As opposed to the approach of Chapter 2,

we do not yet fix the dynamics that this observable has to obey, but would rather aim to

obtain this from measurements. The same goes for any fluctuations or noise sources.

An interesting aspect of fluctuating systems is that the observable x by itself is not

strictly speaking a “measurable quantity”. The reason for this is that the values at dif-

ferent times are by definition random and therefore repeating the experiment can and

will yield different results. Rather one must consider different kinds of averages like

〈x〉 and
〈
x2
〉
to describe experiments. In equilibrium it is sufficient to average the val-

ues of an observable at different times. However, when the system is driven out of

equilibrium (in this case by the external source a), the probability distribution of the

fluctuating quantity becomes generally time-dependent. Therefore the averages must

be considered to be ensemble averages or averages over many realizations of the fluc-

tuating quantities (see Section 2.1.3).

By measuring 〈x〉 for different driving sources a, the effective response function can be

obtained,

g̃ (a) = 〈x〉 . (5.1)

This function could be linear or nonlinear, and would need to be determined for all

possible values of a. Since that is not usually feasible experimentally, different kinds of

models are used, such that only a small number of parameters would need to be deter-

mined. However, usually the model is given for the inverse h̃ of the response function1

(if it exists), such that

h̃ (〈x〉) = a. (5.2)

1The model could be for example h̃ (v) =
(

d

dt
+ γ0

)

v in the case of underdamped Brownian motion or

h̃ (E) =
(

∇×∇− ω2

c2

)

E for electrodynamics in vacuum. Note that these examples are linear in the

field, which does not have to be the case.
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As in the previous chapters, the functionswith tildes are called the “effective” response

(g̃) and model (h̃) for the averaged quantity 〈x〉, in contrast to the “intrinsic” or bare

response and model for the fluctuating quantity x itself, which are as of yet unknown.

For the following, it is useful to represent Eqs. (5.1) and (5.1) as a power series,

g̃ (a) =

∞∑

m=0

g̃(m)am, (5.3)

h̃ (〈x〉) =
∞∑

m=0

h̃(m) 〈x〉m , (5.4)

which also more closely mimics the description of the nonlinear electromagnetic field

as given in Section 2.2.

5.2.2. The fluctuations and effective noise

Knowing the effective response (5.1) or themodel (5.2) determines the dynamics of 〈x〉

for any external source, which is useful if the fluctuations do not play a role. In cases

where the fluctuations are absent (〈x〉 = x), the knowledgeof g̃ and h̃ is enough to fully

describe the system. As we have seen already for the electromagnetic case, however,

not only the mean of the observable x but also the higher moments 〈xn〉 are important,

giving rise to the Casimir effect and heat radiation, for example. The response function

itself does not give that information directly.

Fluctuations are defined as the deviation from the mean,

δx = x− 〈x〉 . (5.5)

By the above definition, fluctuations themselves must always have a zero mean, 〈δx〉 =

0. The goal is to determine the higher moments 〈δxn〉 (equivalently, the probability

distribution). Then any moment of x can be represented in terms of 〈x〉 (which we get

from the response) and the moments of the fluctuations by straightforward binomial

expansion,

〈xn〉 =
n∑

m=0

(
m

n−m

)

〈x〉n−m 〈δxm〉 . (5.6)

Note that if the fluctuations are Gaussian, then only
〈
δx2
〉
is needed, with higher mo-

ments given by Isserlis’ theorem (see Section 2.3.4). This is often assumed if the system

is linear, but is generally not true for nonlinear systems.
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We can add fluctuations directly to Eqs. (5.1) and (5.2) by substituting 〈x〉 → 〈x〉+ δx,

h̃ (x) = a+ ñ, (5.7)

g̃ (a+ ñ) = x, (5.8)

where stochastic source,

ñ = h̃ (〈x〉+ δx)− h̃ (〈x〉) , (5.9)

appears. These sources, which we call the effective noise, are chosen such that they

produce the correct field x from Eq. (5.7) (that is, obeying the FDT and all other re-

strictions). A tilde is used to denote the noise that produces the correct field from the

effective response and model, which governs the behavior of 〈x〉. This is necessary be-

cause we will see that there are cases where it is useful to absorb deterministic parts of

the noise into the model due to physical considerations (e.g. Chapters 3 and 4).

An important thing to note is that even though we defined the noise source, no new

information was included. The noise and fluctuations are at this point just two sides of

the same quantity,

δx =
∞∑

n=0

∞∑

k=1

g̃(n+k)

(
n+ k

n

)

anñk, (5.10)

ñ =
∞∑

n=0

∞∑

k=1

h̃(n+k)

(
n+ k

n

)

〈x〉n δxk. (5.11)

Knowing one, the other can be determined directly by above equations. This is partic-

ularly obvious, to the point where the terms are used interchangeably, if the response

and model are linear. Then the above equations simplify significantly, giving

δx = g̃(1)ñ, (5.12)

ñ = h̃(1)δx. (5.13)

This also shows that in the linear case the noise and fluctuations are independent of

a – the fluctuations are induced purely by noise (see also Section 2.1.3). By contrast,

the fluctuations in nonlinear systems depend on the external source. Also note that the

average effective noise must be zero for linear systems.

5.2.3. The statistical properties of the effective noise

The statistical properties (the probability distribution) of the fluctuations and noise are

encoded into their moments 〈δxm〉 and 〈ñm〉. If the stochastic variables are Gaussian, it
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is enough to know the secondmoments (see Section 2.3.4), but this cannot be assumed

for nonlinear systems.

Since δx and ñ are directly related, conditions on one of them affects directly the other.

So far, the only restriction is that the mean of the fluctuations is zero by definition,

〈δx〉 = 0. The corresponding condition for ñ is obtained from Eq. (5.10),

〈g̃ (a+ ñ)〉 = g̃ (a) , (5.14)

This equation can also be interpreted as a condition that, for any particular input a, the

added effective noise ñ must leave output 〈x〉 unchanged. Notice that the mean 〈ñ〉 is

still not known, since it depends on the higher moments of δx through Eq. (5.11).

To seemore clearly the free parameters that are left, themoments of noise can bewritten

in a formal power series as

〈ñm〉 =
∞∑

k=0

K̃m
k ak, (5.15)

with K̃0
0 = 1 and K̃0

k>0 = 0, because we must have
〈
ñ0
〉
= 1. Combining this with

Eq. (5.14) results in the following condition,

∞∑

m=0

g̃(m)
m∑

k=0

(
m

k

)〈

ñk
〉

am−k =

∞∑

m=0

g̃(m)am. (5.16)

Since this must be valid for any a, the following system of equations can be obtained:

g̃(p) = g̃(p) +

p
∑

m=0

∞∑

n=1

g̃(n+m)

(
n+m

n

)

K̃n
p−m. (5.17)

Therefore, for every p ≥ 0,

p
∑

m=0

∞∑

n=1

g̃(n+m)

(
n+m

n

)

K̃n
p−m = 0. (5.18)

Herewe have explicitly a relation between themeasured quantities g̃(m) (which are just

numbers in the scalar model) and the unknown quantities, which are elements of the

matrix K̃.

Noticing that the sumoverm goes to p, allures to a recursive relation. Indeed, Eq. (5.18)
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5.2. Stochastic scalar model – general approach

can be given in a very useful recursive form. For every p ≥ 1, we have

∞∑

n=1

g̃(n)K̃n
p = −

p
∑

m=1

∞∑

n=1

g̃(n+m)

(
n+m

n

)

K̃n
p−m

= −

p−1
∑

m=0

∞∑

n=1

[

g̃(n+p−m)

(
n+ p−m

n

)]

K̃n
m. (5.19)

The key takeaway is that the system of equations constitutes a necessary, but not a

sufficient condition on noise. There are simply more unknowns in K̃ than there are

equations. Furthermore, knowing the moments of noise (of which the FDT fixes the

second moment) in equilibrium determines only one row of K̃ ,

〈ñm〉eq = K̃m
0 . (5.20)

This means that even knowing everything in equilibrium, as well as Eq. (5.17), is not

enough to fully determine the noise moments (and thus fluctuations) out of equilib-

rium. This is separate from the issue of distinction between the bare and effective quan-

tities outlined in Section 2.3, which shall be investigated next.

5.2.4. Zero-mean noise: the bare model

The relation between bare and effective models

The average of the effective noise ñ is generally nonzero by Eqs. (5.7) and (5.11),

〈ñ〉 =
〈

h̃ (x)
〉

− h̃ (〈x〉)

=

∞∑

n=0

∞∑

k=1

h̃(n+k)

(
n+ k

n

)

〈x〉n
〈

δxk
〉

. (5.21)

As an average, 〈ñ〉 is not itself stochastic (fluctuating). As we saw in Chapters 2 to 4,

however, it was useful to consider the noise to have a zero mean and include this de-

terministic part implicitly in the so-called bare susceptibilities χ(n). Using similar no-

tation and terminology, we can define the following “bare” model as an alternative to

Eq. (5.7),

h (x) = a+ n, (5.22)

g (a+ n) = x, (5.23)

〈n〉 = 0, (5.24)
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5. Nonlinear fluctuations in the presence of external fields

Eq. (5.22) is the equivalent to the stochastic nonlinear Helmholtz equation, Eq. (2.116),

where the new coefficients are related to the effective ones via

〈h (x)〉 = a = h̃ (〈x〉) , (5.25)

0 =
∞∑

n=0

〈x〉n
[

h̃(n) −
∞∑

k=0

h(n+k)

(
n+ k

n

)〈

δxk
〉
]

. (5.26)

The expression in the square brackets is in general not zero for each n, however, because

the moments
〈
δxk
〉
can also depend on 〈x〉. Making a similar expansion to Eq. (5.15),

we write
〈

δxk
〉

=

∞∑

m=0

Dk
m 〈x〉m , (5.27)

whereD0
0 = 1,D0

k>0 = 0,D1
k = 0. The previous condition can then be written explicitly

as

h̃(p) =

p
∑

n=0

∞∑

k=0

h(n+k)

(
n+ k

n

)

Dk
p−n

= h(p) +

p
∑

n=0

∞∑

k=2

h(n+k)

(
n+ k

n

)

Dk
p−n. (5.28)

In general, the relation between the effective and bare equations depends on how the

moments
〈
δxk
〉
depend on 〈x〉 or, equivalently, a.

The pseudo-effective model

From Eq. (5.26), one can formally obtain the effective coefficients as

h̃′(p) =
∞∑

k=0

h(p+k)

(
p+ k

p

)〈

δxk
〉

=

∞∑

k=0

h(p+k)

(
p+ k

p

) ∞∑

n=0

Dk
n 〈x〉

n , (5.29)
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5.2. Stochastic scalar model – general approach

where the coefficients h̃′(n) are themselves understood to be be dependent on 〈x〉. The

first few coefficients are

h̃′(0) =
∞∑

k=0

h(k)
〈

δxk
〉

(5.30)

= h(0) + h(2)
〈
δx2
〉
+ . . . ,

h̃′(1) =
∞∑

k=0

h(k+1) (k + 1)
〈

δxk
〉

(5.31)

= h(1) + 3h(3)
〈
δx2
〉
+ . . . .

These are already familiar from Section 2.4.

Note that the response function itself remains correct, but only if it is applied to the

mean,

h̃′ (y) =
∞∑

n=0

h̃′(n)yn =

∞∑

n=0

[ ∞∑

k=0

h(n+k)

(
n+ k

n

)〈

δxk
〉

〈x〉=y
yn

]

=

∞∑

n=0

h̃(n)yn = h̃ (y) . (5.32)

This is just a different representation of h̃, where it is important to keep in mind that

the primed coefficients depend on 〈x〉. For example, while h̃(1) represents the full linear

response, the primed h̃′(1) in general does not, since the lower orders can include linear

terms in 〈x〉 (such as h(2)
〈
δx2
〉
in h̃′(0) above).

The bare noise n

Using Eq. (5.22), the bare noise n can be written as

n = n− 〈n〉 = h (x)− 〈h (x)〉 , (5.33)

which in series form is

n =

∞∑

n=0

〈x〉n
∞∑

k=0

h(n+k)

(
n+ k

n

)[

δxk −
〈

δxk
〉]

. (5.34)

And similar to Eq. (5.10), there exists a dual relation for the fluctuations

δx =
∞∑

n=0

∞∑

k=0

g(n+k)

(
n+ k

n

)

an
[

nk −
〈

nk
〉]

. (5.35)
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5. Nonlinear fluctuations in the presence of external fields

Writing it this way, the condition 〈δx〉 = 0 is trivially true. However, it does give an

alternative to Eq. (5.28).

Introducing a power series for the moments of n as as an analogue to Eq. (5.15),

〈nm〉 =
∞∑

k=0

Km
k ak, (5.36)

whereK0
0 = 1,K0

k>0 = 0,K1
k = 0, the condition 〈g (a+ n)〉 = 〈x〉 = g̃ (a) can be written

as

∞∑

p=0

g̃(p)ap =
∞∑

n=0

∞∑

k=0

g(n+k)

(
n+ k

n

)

an
〈

nk
〉

, (5.37)

g̃(p) = g(n) +

∞∑

n=0

∞∑

k=2

g(n+k)

(
n+ k

n

)

Kk
p−n. (5.38)

Which is the mirror relation to Eq. (5.28).

5.2.5. Summary and discussion about assumptions

The three models

These models all give different descriptions of the same system:

1. By measuring the average 〈x〉 of a stochastic variable for various inputs a, a phe-

nomenological model g̃ is built with an inverse h̃ [Eqs. (5.2) and (5.1)],

h̃ (〈x〉) = a, (5.39)

g̃ (a) = 〈x〉 . (5.40)

2. By adding δx = x−〈x〉 to the phenomenological equations the stochastic effective

equations are obtained [Eqs (5.7) and (5.8)],

h̃ (x) = a+ ñ, (5.41)

g̃ (a+ ñ) = x. (5.42)

3. Since 〈ñ〉 6= 0, a further bare model [Eqs (5.22) and (5.23)] can be postulated,

h (x) = a+ n, (5.43)

g (a+ n) = x, (5.44)

〈n〉 = 0. (5.45)
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5.2. Stochastic scalar model – general approach

Note that it is just as easy to start from the bare equations with 〈n〉 = 0 and obtain the

stochastic and non-stochastic effective models, which is the route selected in Chapter 2.

Translation between the models

The difference between the effective and bare models is given by Eqs. (5.28) and (5.38),

h̃(p) = h(p) +

p
∑

n=0

∞∑

k=2

h(n+k)

(
n+ k

n

)

Dk
p−n, (5.46)

g̃(p) = g(p) +

∞∑

n=0

∞∑

k=2

g(n+k)

(
n+ k

n

)

Kk
p−n, (5.47)

where the non-equilibrium properties of the noise and fluctuations can be represented

generally as [Eqs. (5.36) and (5.27)]

〈

δxk
〉

=

∞∑

m=0

Dk
m 〈x〉m , (5.48)

〈nm〉 =
∞∑

k=0

Km
k ak. (5.49)

An important point is that while for every bare model h (x) there corresponds in prin-

ciple an effective model h̃ (〈x〉), then the reverse is not necessarily true.

Noise, fluctuations, and assumptions

The fluctuations and noise can be written formally in terms of each other,

δx =

∞∑

n=0

∞∑

k=1

g̃(n+k)

(
n+ k

n

)

anñk, (5.50)

ñ =

∞∑

n=0

∞∑

k=1

h̃(n+k)

(
n+ k

n

)

〈x〉n δxk, (5.51)

δx =

∞∑

n=0

∞∑

k=0

g(n+k)

(
n+ k

n

)

an
[

nk −
〈

nk
〉]

, (5.52)

n =

∞∑

n=0

∞∑

k=0

h(n+k)

(
n+ k

n

)

〈x〉n
[

δxk −
〈

δxk
〉]

. (5.53)

83



5. Nonlinear fluctuations in the presence of external fields

They are, however, unknown in general, besides conditions stemming from their defi-

nitions (〈δx〉 = 〈x− 〈x〉〉 = 0, 〈n〉 = 0):

〈δx〉 = 0, (5.54)

〈n〉 = 0, (5.55)

〈g̃ (a+ ñ)〉 = g̃ (a) , (5.56)

〈g (a+ n)〉 = g̃ (a) . (5.57)

The last two equations [for series forms see Eqs. (5.18) and (5.19)] are a necessary, but

not a sufficient condition to determine either n or ñ, even if themoments in equilibrium

are known (the coefficientsKn
0 , K̃

n
0 ). Higher moments 〈δxm〉, which can be expressed

in terms of these by Eqs. (5.50) and (5.52), are necessary to unambiguously describe

the stochastic phenomena in the presence of a strong external field.

Therefore, in applying these equations, either additional information needs to be ob-

tained or reasonable assumptions need to be made. These fall into two separate cate-

gories:

1. Reactive noise or reactive effective properties?

This is mostly a physical problem. Eq. (5.38) gives the difference between the

effective and bare properties, but does not say if h or h̃ should depend on fluc-

tuations. The question is, which stochastic model corresponds to the underlying

microscopic theory? In the context of EMfield, it is the choice ofwhether the bare

or effective properties remain unchanged if parts of the system are investigated

in isolation (see Section 3.2.2). Since this choice affects physical properties, either

case could be ruled out by experiment.

2. What happens to noise out of equilibrium?

This is a mathematical problem: fixing either δx, n, or ñ in equilibrium (for ex-

ample with the FDT) does not reduce the degrees of freedom enough to make

definitive predictions out of equilibrium. The options include using a particular

model for the a-dependence of the noise (the route taken in Refs. [43, 44]) or

use the noise from equilibrium (either n = neq or ñ = ñeq) to approximate out

of equilibrium fluctuations (which must depend on the external field through

Eqs. (5.50) and (5.52)).

Nevertheless, some cases can be ruled out purely by Eqs. (5.56) and (5.57). For example

Gaussian noise can be ruled out already in the perturbative analysis below.
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5.3. Stochastic scalar model – perturbative approach

5.3. Stochastic scalar model – perturbative approach

The general case above is useful for general discussion and gives a good insight into

what can be calculated and what assumptions must be made. However, more intuitive

understanding can be obtained through explicit calculation in simplified cases.

5.3.1. Perturbative models

The truncated response

Mirroring Section 2.4, we limit the response to third order nonlinear terms,

h̃ (x) =
(

h0 − χ̃(1)
)

x− χ̃(3)x3, (5.58)

h (x) =
(

h0 − χ(1)
)

x− χ(3)x3, (5.59)

and give leading order results. Here h0 mimics the free Helmholtz operator H0, and

χ̃(1), χ̃(3) the effective susceptibilities. As per the program, all calculations are given to

leading order in χ(3) (we anticipate that the effective χ̃(3) and bare χ(3) are equal). This

means the inverses of the above equations can be easily found as,

g̃ (a) =
(

h0 − χ̃(1)
)−1

a+ χ̃(3)
(

h0 − χ̃(1)
)−4

a3, (5.60)

g (a) =
(

h0 − χ(1)
)−1

a+ χ(3)
(

h0 − χ(1)
)−4

a3. (5.61)

The three models

With explicit forms for the functions h̃ (x), h (x), g̃ (a), and g (a), the three models from

the previous section can be written as follows:

1. The phenomenological model [Eqs. (5.2) and (5.1)],

(

h0 − χ̃(1)
)

〈x〉 − χ̃(3) 〈x〉3 = a, (5.62)
(

h0 − χ̃(1)
)−1

a+ χ(3)
(

h0 − χ̃(1)
)−4

a3 = 〈x〉 . (5.63)

Notice that this supports three “equilibrium” (a → 0) solutions: the trivial

〈x〉eq = 0, but also ±
√

χ(3)

h0−χ̃(1) . We choose the solution where the system re-

laxes to zero with 〈x〉eq = 0. Otherwise a zeroth order term would also need to

be included in Eqs. (5.60) and (5.61).
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2. The effective model [Eqs (5.7) and (5.8)],

(

h0 − χ̃(1)
)

x− χ̃(3)x3 = a+ ñ, (5.64)
(

h0 − χ̃(1)
)−1

(a+ ñ) + χ̃(3)
(

h0 − χ̃(1)
)−4

(a+ ñ)3 = x. (5.65)

3. The bare model [Eqs (5.22) and (5.23)]

(

h0 − χ(1)
)

x− χ(3)x3 = a+ n, (5.66)
(

h0 − χ(1)
)−1

(a+ n) + χ(3)
(

h0 − χ(1)
)−4

(a+ n)3 = x, (5.67)

〈n〉 = 0. (5.68)

These equations must all hold true at the same time, but are useful in different con-

texts. The phenomenological model is used to relate the theory to linear and nonlinear

response measurements. The effective or bare model are each useful depending on

which is considered more “fundamental”. For example, in the previous chapters we

considered the bare coefficients to be immutable, which leads to a change in the effec-

tive coefficients.

Translation equations

The difference between the effective and bare models can be obtained directly from

Eqs. (5.28) and (5.38),

h̃(1) = h(1) + 3h(3)D2
0 + h(3)D3

1, (5.69)

h̃(3) = h(3) + 3h(3)D2
2 + h(3)D3

3, (5.70)

g̃(1) = g(1) + 3g(3)K2
0 + g(3)K3

1 , (5.71)

g̃(3) = g(3) + 3g(3)K2
2 + g(3)K3

3 . (5.72)

Now we keep only leading order terms in χ(3). In that case the fluctuations and noise

can be assumed to be Gaussian in linear order, meaning
〈
δx2
〉
=
〈
δx2
〉

〈x〉=0
+O

(
χ(3)

)

and
〈
δx3
〉
= O

(
χ(3)

)
. With this approximation, the above equations simplify to

χ̃(1) = χ(1) + 3χ(3)
〈
δx2
〉

〈x〉=0
, (5.73)

χ̃(3) = χ(3), (5.74)

g̃(1) = g(1) + 3g(3)
〈
n2
〉

a=0
, (5.75)

g̃(3) = g(3). (5.76)
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Since the effective and bare third order coefficients are equal, the tildes can be dropped

from them. For the linear order, however, we keep them separated, because only the

difference is known.

5.3.2. Perturbative noise and fluctuations

The noise and fluctuations are given by Eqs. (5.50) to (5.53),

δx =
(

g̃(1) + 3g̃(3)a2
)

ñ+ 3g(3)añ2 + g(3)ñ3, (5.77)

ñ =
(

h̃(1) + 3h(3) 〈x〉2
)

δx+ 3h(3) 〈x〉 δx2 + h(3)δx3, (5.78)

δx =
(

g(1) + 3g(3)a2
)

n+ 3g(3)a
[
n2 −

〈
n2
〉]

+ g(3)
[
n3 −

〈
n3
〉]

, (5.79)

n =
(

h(1) + 3h(3) 〈x〉2
)

δx+ 3h(3) 〈x〉
[
δx2 −

〈
δx2
〉]

+ h(3)
[
δx3 −

〈
δx3
〉]

. (5.80)

These quantities are, however, unknown in general.

Relation between effective and bare noise

Subtracting the effective model, Eq. (5.64), from the bare model, Eq. (5.66), we also

obtain the relation between the bare and effective noise,

n = ñ+ 3χ(3)
〈
δx2
〉
x,

= ñ+ χ(3) 3a
〈
ñ2
〉
+ 3

〈
ñ2
〉
ñ

(
h0 − χ̃(1)

)3 . (5.81)

The physical significance is that, as with the effective susceptibilities χ̃(1) and χ(1), we

only know the difference between ñ and n, since in the nonlinear term either one could

be used (the change would be of order
(
χ(3)

)2
). Fixing one of them, for example by

some microscopic motivation, completely determines the other. Furthermore, we can

see that both of them cannot be independent of the external source a at the same time.

This equation has a couple of interesting consequences. First, the average of ñ can be

obtained easily,

〈ñ〉 = −3χ(3)
〈
δx2
〉

〈x〉=0
〈x〉 . (5.82)

Secondly, the zero-mean part of the effective noise, δñ = ñ − 〈ñ〉, is not equal to the

bare noise,

n = δñ + 3χ(3)
〈
δx2
〉

〈x〉=0
δx. (5.83)
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This is shows that it was prudent not to take the tempting path of forcing the baremodel

as

h′ (x) = h̃ (x)− 〈ñ〉 = a+ δñ, (5.84)

because the bare noise n is different from δñ.

Condition on effective noise

Aswe saw in the general case, one of the few pieces of information regarding the noise

is contained in the fact that 〈δx〉 = 0. The general conditions, Eqs. (5.18) and (5.19),

can be written in the perturbative case, taking into account that only g̃(1) and g̃(3) are

nonzero, as

g̃(1)K̃1
p + g̃(3)K̃3

p = −3g̃(3)
(

K̃2
p−1 + K̃1

p−2

)

, (5.85)

where any K̃n
m<0 = 0. Taking into account that K̃1

n, K̃
3
n = O

(
χ(3)

)
, this expression

shortens to

g̃(1)K̃1
p = −3g̃(3)K̃2

p−1. (5.86)

As an example, the first few terms would be

g̃(1)K̃1
0 = 0, (5.87)

g̃(1)K̃1
1 = 3g̃(3)K̃2

0 , (5.88)

g̃(1)K̃1
2 = 3g̃(3)K̃2

1 . (5.89)

It can be seen that these expressions relate 〈ñ〉 to
〈
ñ2
〉
,

g̃(1) 〈ñ〉 = 3g̃(3)
〈
ñ2
〉
a. (5.90)

This equation is equivalent to the condition in Eq. (5.82) above. Note that for self-

consistency, we must have
〈
ñ2
〉
=
〈
ñ2
〉

a=0
+O

(
χ(3)

)
.
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General form of the perturbative stochastic scalar model

Based on above, it is now possible to write down a “general” form of the perturbative

model,

(

h0 − χ̃(1) + 3χ̃(3)

〈
n2
〉

(
h0 − χ(1)

)2

)

x− χ̃(3)x3 = a+ n, (5.91)

(

h0 − χ̃(1)
)

〈x〉 − χ̃(3) 〈x〉3 = a, (5.92)

〈n〉 = 0, (5.93)

where the “bare” noise appears. Besideshaving a zeromean, the highermoments of the

noise n can depend in an arbitrary fashion on the external field, as long as it isO
(
χ(3)

)
.

The only other requirementwould be adherence to the FDT (see Section (2.1.3)), which

pertains to equilibrium (a = 0) only.

This justifies the choice 〈F〉 = 0 in Chapters 2 to 4, as in equilibrium (or in local equilib-

rium for unequal temperatures) further field dependenceof the noise does not enter (in

the nonlinear term one uses
〈
n2
〉
=
〈
n2
〉

a=0
+O

(
χ(3)

)
). The question of whether the

bare (χ(1)) or effective (χ̃(1)) susceptibility remains unchanged can not be addressed

from this analysis either, however. We obtain only the difference.

Second and fourth moments of δx and Gaussianity

As seen in the previous chapters, the interesting quantities are not necessarily the

stochastic fields or quantities themselves, but rather theirmoments
〈
x2
〉
= 〈x〉2+

〈
δx2
〉
.

From Eq. (5.79), the fluctuations can be written as

δx =
n

(
h0 − χ̃(1)

) + χ(3)3a
2n− 3

〈
n2
〉
n+ 3a

[
n2 −

〈
n2
〉]

+
[
n3 −

〈
n3
〉]

(
h0 − χ̃(1)

)4 . (5.94)

We are interested in the second, third, and fourth moments. To leading order in χ(3),

these are

〈
δx2
〉
=

〈
n2
〉

(
h0 − χ̃(1)

)2 + 6χ(3) a2
〈
n2
〉

(
h0 − χ̃(1)

)5 , (5.95)

〈
δx3
〉
=

〈
n3
〉

(
h0 − χ̃(1)

)3 − 9χ(3) a
〈
n2
〉2

(
h0 − χ̃(1)

)6 , (5.96)

〈
δx4
〉
=

〈
n4
〉

(
h0 − χ̃(1)

)4 + 36χ(3) a2
〈
n2
〉2

(
h0 − χ̃(1)

)7 + 24χ(3)

〈
n2
〉3

(
h0 − χ̃(1)

)7 , (5.97)
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where the Isserlis’ theorem (
〈
n4
〉
=
〈
n2
〉2

+O
(
χ(3)

)
) was used in the nonlinear terms.

It is interesting to note that these fluctuations cannot be Gaussian. This can be seen

trivially from the third moment for non-zero a, but it is also true in equilibrium. To see

that, we can calculate the “non-Gaussianity” as

〈
δx4
〉
− 3

〈
δx2
〉2

=

〈
n4
〉
− 3

〈
n2
〉2

(
h0 − χ̃(1)

)4 + 24χ(3)

〈
n2
〉3

(
h0 − χ̃(1)

)7 . (5.98)

If the fluctuations and noise were Gaussian, then
〈
δx4
〉
− 3

〈
δx2
〉2

= 0 and
〈
n4
〉
−

3
〈
n2
〉2

= 0. Since the last term does not disappear, however, we must conclude that

either δx or n (or both) must be non-Gaussian or
〈
n2
〉
= O

(
χ(3)

)
, which is generally

not true because of the FDT.

One should remember that these expressions do not show the complete a-dependence

explicitly. While the second moment can be determined in equilibrium from FDT, the
〈
nk
〉
can depend arbitrarily on the external force. Possible choices for modelling the

noise are given in the next section.

5.3.3. Modelling non-equilibrium noise

Without further assumptions, the behavior of noise and fluctuations out of equilibrium

still has a lot of freedom. For the third order case, the following condition holds for the

average effective noise [Eq. (5.82)],

〈ñ〉 = −3χ(3)
〈
δx2
〉

〈x〉=0
〈x〉 . (5.99)

Alternatively, the bare noise nwith a vanishing mean can be used in Eq. (5.91).

In this section we are not particularly interested in the equilibrium fluctuations, which

can be fixed through the FDT to some degree (limited to second moment), but rather

on how noise or fluctuations depend on the external force a or average field 〈x〉.

The kinetic form

Owing to a microscopic description of gas particles, the distribution function is some-

times approximated as being quadratic in momenta [48, 49]. This is also the route

taken in Ref. [43]. This assumption can be leveraged through Focker-Planck equation

analysis with the noise taking the following form,

ñ1 = n0,1

(
1 +Ax2

)
, (5.100)
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where n0,1 is an independent zero-mean Gaussian noise source. Using Eqs. (5.82)

and (5.64), the unknown coefficient A can be solved for. First, setting a = 〈x〉 = 0,

n0 can be expressed through equilibrium δx from the effective stochastic equation as

[(

h0 − χ̃(1)
)

δx− χ̃(3)δx3
]

a=0
= n0,1. (5.101)

Through the condition on the average of the noise, and keeping only leading order

terms in χ(3), we get

〈ñ1〉 = A
〈
n0,1x

2
〉

= 2A 〈x〉
〈
δx2
〉

〈x〉=0

[

h0 − χ̃(1) − 3χ̃(3)
〈
δx2
〉]

= −3χ(3)
〈
δx2
〉

〈x〉=0
〈x〉 , (5.102)

A = −
3

2

χ(3)

(
h0 − χ̃(1)

) . (5.103)

This noise then becomes

ñ1 = n0,1

(

1−
3

2
χ̃(3) x2

h0 − χ̃(1)

)

, (5.104)

and the corresponding non-equilibrium fluctuations can be obtained from Eq. (5.77)

as

δx =
n0,1

h0 − χ̃(1)
−

1

2
χ̃(3)

n3
0,1

(
h0 − χ̃(1)

)4 −
1

2
χ̃(3) a2n0,1

(
h0 − χ̃(1)

)4 . (5.105)

Note that since neither n0,1 nor χ̃(1) depend on a, this is the complete dependence,

from which one can calculate explicitly the non-equilibrium second, third, and fourth

moments as

〈
δx2
〉
=

〈
n2
0,1

〉

(
h0 − χ̃(1)

)2 − χ̃(3)
a2
〈
n2
0,1

〉
+ 3

〈
n2
0,1

〉2

(
h0 − χ̃(1)

)5 ,

〈
δx3
〉
= 0,

〈
δx4
〉
=

〈
n4
0,1

〉

(
h0 + χ̃(1)

)4 − 6χ̃(3)
a2
〈
n2
0,1

〉2

(
h0 + χ̃(1)

)7 − 30χ̃(3)

〈
n2
0,1

〉3

(
h0 + χ̃(1)

)7 .

91



5. Nonlinear fluctuations in the presence of external fields

The minimal form

As a contrasting case, let’s take the n in Eq. (5.91) as a completely independent source

of noise. As shown above, we have the equation

(

h0 − χ̃(1) + 3χ̃(3)

〈
n2
0,2

〉

(
h0 + χ̃(1)

)2

)

x− χ̃(3)x3 = a+ n0,2. (5.106)

This corresponds to an effective noise

ñ2 = n0,2 − 3χ̃(3)
〈
δx2
〉
x. (5.107)

Compared to the “kinetic” formof the effective noise ñ1 in Eq. 5.104, ñ2 has a linear term

in x, as opposed to a quadratic one. The corresponding non-equilibrium fluctuations

can be obtained from Eq. (5.77) as

δx =
n0,2

h0 − χ̃(1)
+

χ̃(3)

(
h0 − χ̃(1)

)4

(
3a2n0,2 + 3an2

0,2 − 3a
〈
n2
0,2

〉
− 3

〈
n2
0,2

〉
n0,2 + n3

0,2

)
.

(5.108)

The second, third, and fourth moments are then

〈
δx2
〉
=

〈
n2
0,2

〉

(
h0 − χ̃(1)

)2 + 6χ(3)
a2
〈
n2
0,2

〉

(
h0 − χ̃(1)

)5 , (5.109)

〈
δx3
〉
= −9χ(3)

a
〈
n2
0,2

〉2

(
h0 − χ̃(1)

)6 , (5.110)

〈
δx4
〉
=

〈
n4
0,2

〉

(
h0 − χ̃(1)

)4 + 36χ(3)
a2
〈
n2
0,2

〉2

(
h0 − χ̃(1)

)7 + 24χ(3)

〈
n2
0,2

〉3

(
h0 − χ̃(1)

)7 . (5.111)

Comparison and remarks

Comparing the fluctuations obtained from these two models, obvious differences can

be seen. Due to FDT, the equilibrium second moment
〈
δx2
〉

〈x〉=0
must be equal for

both (the equilibrium linear response is given by χ̃(1), which is the same). This gives a

relation between the second moments of n0,1 and n0,2,

〈
n2
0,1

〉
=
〈
n2
0,2

〉
+ χ(3)

3
〈
n2
0,2

〉2

(
h0 − χ̃(1)

)3 , (5.112)

〈
n2
0,2

〉
=
〈
n2
0,1

〉
− χ(3)

3
〈
n2
0,1

〉2

(
h0 − χ̃(1)

)3 . (5.113)
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Note that this difference is of order χ(3). The non-equilibrium second moments
〈
δx2
〉

can now be compared directly,

〈
δx21
〉
−
〈
δx22
〉
= 7χ(3)

a2
〈
n2
0,1

〉

(
h0 − χ̃(1)

)5 . (5.114)

The second moments of the fluctuations are equal in equilibrium by design (it is given

by the linear response, which must be same for identical systems), but the two models

predict a different behavior out of equilibrium. Comparing higher moments is more

difficult, because n0,1 and n0,2 are not necessarily Gaussian, which means the relation

between
〈
n4
0,1

〉
and

〈
n4
0,2

〉
is unknown. (A possible route is to enforce the equality of

all moments in equilibrium.)

On one hand, the different results obtained from these models reflects a lack of predic-

tive power. On the other hand, this framework lends itself nicely to making informed

assumptions about the underlying physics. The exact form of the noise depends, at

least on this level, on unknown microscopic details. The conditions obtained here and

in the previous section must nevertheless be fulfilled, even if the underlying physics is

clarified or better theoretical tools developed.

5.4. Nonlinear fluctuational electrodynamics with external

fields

As seen in Sections 5.2 and 5.3, the non-equilibrium behavior of the fluctuations cannot

be determined without further assumptions on how the noise depends on the external

field. The goal of this section is to show how the fluctuations depend on the external

field for a particular choice of this dependence, that still obeys the restrictions outlined

above (particularly Eq. (5.14)).

Since in equilibriumwe studied the case of 〈F〉 = 0 (see Section 2.4), a natural extension

out of equilibrium is similar to the “minimal form” in Eq. (5.107). The analogue for

(5.106) is the bare equation 2.116,

(H0 −V)E−M [E⊗E]−N [E⊗E⊗E] = H0Ein + F, (5.115)

where the noise in equilibrium is given by Eq. 3.6 as

〈Fω ⊗ F∗
ω′〉

eq = −δ
(
ω − ω′) b (ω)

2i

(

H0 − Ṽ
eq
)

AH
. (5.116)

In order tomake theminimal extension into non-equilibrium, we assume that the noise

correlator does not depend on the field, that the noise F is the analogue of n0,2 in
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(5.106).

By subtracting its own average from Eq. (5.115), we obtain an expression for the fluc-

tuations δE = E−E as

(H0 − V) δE = F (5.117)

+M [δE⊗ δE − 〈δE ⊗ δE〉]

+N [δE ⊗ δE ⊗ δE − 〈δE⊗ δE ⊗ δE〉]

+N
[
3E⊗E⊗ δE

]

+M
[
2E ⊗ δE

]
+N

[
3E⊗ δE ⊗ δE − 3E⊗ 〈δE ⊗ δE〉

]
.

Keeping only first order terms in χ(2) and χ(3), as before, and using

F = (H0 − V) δE +O
(

χ(2)
)

+O
(

χ(3)
)

, (5.118)

we obtain

(H0 − V) 〈δE ⊗ δE∗〉 (H0 − V)† = 〈F⊗ F∗〉 (5.119)

+ 3N [〈δE ⊗ δE〉] 〈δE⊗ δE∗〉 (H0 − V)†

+ 3
〈

N
[
E⊗E

]
〈δE ⊗ δE∗〉 (H0 − V)†

〉

+ 2
〈

M
[
E
]
〈δE⊗ δE∗〉 (H0 − V)†

〉

+ 3 (H0 − V) 〈δE ⊗ δE∗〉N [〈δE⊗ δE〉]†

+ 3 (H0 − V) 〈δE ⊗ δE∗〉N
[
E⊗E

]†

+ 2 (H0 − V) 〈δE ⊗ δE∗〉M
[
E
]†
.

It can be seen that 〈δE ⊗ δE〉 = 〈δE ⊗ δE〉eq +O
(
χ(2)

)
+O

(
χ(3)

)
. The above relation

can then be rearranged as

(

H0 − ṼE

)

〈δE⊗ δE∗〉
(

H0 − ṼE

)†
= 〈F⊗ F∗〉 , (5.120)

where the effective non-equilibrium potential appears,

ṼE = V+ 3N [〈δE⊗ δE〉eq] + 2M
[
E
]
+ 3N

[
E⊗E

]
. (5.121)

This quantity can be viewed as a potential, because the effective Helmholtz equation

[Eq. (2.123)] can be written as

(

H0 − ṼE

)

E = H0Ein. (5.122)
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It represents the linear response at a finite average field. In equilibrium the known

effective potential [see Eq. (3.12)] is recovered, ṼE→0 = Ṽ
eq.

Letting 〈F⊗ F∗〉 = 〈F⊗ F∗〉eq from Eq. (5.116) as intended, the non-equilibrium fluc-

tuations can be obtained explicitly:

〈δE⊗ δE∗〉 = −δ
(
ω − ω′) b (ω)

2i

(

H0 − ṼE

)−1 (

H0 − Ṽ
eq
)

AH

(

H0 − ṼE

)−1†

= δ
(
ω − ω′) b (ω)

2i

[

G̃AH

]

+ δ
(
ω − ω′) b (ω)

2i

[

G̃
(
2M

[
E
]
+ 3N

[
E⊗E

])
G̃

]

AH

− δ
(
ω − ω′) b (ω)

2i

[

G̃
(
2M

[
E
]
+ 3N

[
E⊗E

])

AH
G̃

†
]

= δ
(
ω − ω′) b (ω)

2i

[

A
E
G̃AHA

†
E

]

, (5.123)

AE = I+ 2G̃M
[
E
]
+ 3G̃N

[
E⊗E

]
, (5.124)

where G̃ =
(

H0 − Ṽ
eq
)−1

. As can be seen, the nonlinear fluctuations grow with the

external field. However, since the full field correlator is 〈E⊗E∗〉 = 〈δE⊗ δE∗〉+E⊗E
∗
,

the deterministic part cannot be overcome through an increase in the scale ofE. Instead

experimental situations should be considered, where the deterministic effects vanish.

An example of this is the dipole-field configuration in Figure 5.1. Another example

could be field-modified heat radiation spectra, in the spirit of Ref. [43], for general

systems.

5.5. Summary

This chapter was light on physical predictions and focused more on carefully peeling

off as many degrees of freedom from the noise. What we end upwith, is quite a robust

framework for studying different kinds of physical constraints (for example due to mi-

croscopic detail) or assumptions on the noise, while keeping the theory self-consistent

and at the same time grounded in measurable quantities (the response of the mean to

an external force).

To test the formalism, we applied two different assumptions on how the noise could de-

pend on the stochastic variable (linear or quadratic), one motivated from the work on

electrodynamics and the other fromnonlinear Brownianmotion. Both are valid choices

from the viewpoint of this chapter, but they give different fluctuations out of equilib-

rium. On the bright side, this gives a tool for comparing both of these assumptions

directly with the experiment.
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As a proof of concept, we demonstrated how the findings can be generalized for the

electromagnetic field. The simplest noise, which can be determined completely from

equilibrium, leads to very clear field dependence of the fluctuations. This result can

be used to calculate the Casimir force or, with the addition of the LTE approximation,

radiative heat transfer. Therefore this assumption can also be tested directly from ex-

periment.
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6.1. Results and conclusions

This project started four years ago with a deceptively simple goal: to develop fluctua-

tional electrodynamics for nonlinear materials, with “tunable” Casimir forces and heat

radiation in mind. We only had two tools, the nonlinear Helmholtz equation (albeit

with an unknown noise term) and the FDT. By using the FDT as a foundation, the

theory was always focused strictly on measurable quantities: the linear response, cor-

responding to a scattering experiment, and the field correlator, corresponding to the

Casimir force and heat radiation. In this sense, almost all of the results given in this

thesis correspond to directly observable quantities from experiments.

In order tomake predictions, assumptions generally have to bemadewithin anymodel.

As we saw in Chapter 5, the FDT on its own leaves quite a lot of freedom in themodel if

no other restrictions apply. It is visible through Chapters 3, 4, and 5, that as we go from

equilibrium, out of thermal equilibrium, to full non-equilibrium case, the more egre-

gious the necessary assumptions become, since the theory moves farther and farther

away from the FDT. Nevertheless, reasonable choices were suggested and correspond-

ing predictions obtained. In the end, the ultimate test of the validity of our assumptions

(and thus the value of this part of the theory) can only come from experiments.

The formula for the equilibrium Casimir force between parallel nonlinear plates (the

most well-known and easily measurable effect) obtained in the Master’s thesis [83]

forms the basis of a refined equilibrium fluctuational electrodynamics for nonlinear

materials, which was consolidated in Ref. [85] and outlined here in Chapter 3. It was

shown that the interesting properties (the linear response and field correlator) de-

pend on an effective dielectric function, which, in turn, depends on fluctuations. Since

all parts of a system are sources for fluctuations, the effective dielectric function de-

pends on boundaries (becoming inhomogeneous near them) as well as the locations

and properties of other objects. It is this dependence on relative locations that causes

the crossovers from well-known power laws of the Casimir force between nonlinear

parallel plates.

The step to break equilibrium in Chapter 4 within the local equilibrium approximation

was a small one, following the same line of thought familiar from linear FEwhile taking
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care of the effective properties. As expected, since the non-equilibrium fluctuations

change (the FDT no longer holds), so too does the effective dielectric function. In fact, it

depends on the temperature difference between all other objects. Surprisingly, though,

this contribution turned out to change its sign under the change of temperatures if a

single object was considered. This makes it possible for a passive medium to become

pseudo-active, at least for some frequency range, amplifying fields at those frequencies

propagating through the material. This curiosity was demonstrated to have an even

more surprising effect on the heat radiation of a nanosphere that is non-absorbing in

equilibrium: it could never absorb more heat than it radiates away, thus cooling even

if it is at a lower temperature than the environment.

Incorporating external fields, with the end goal of tunable Casimir forces and heat ra-

diation, was tackled in Chapter 5. This turned out to be quite challenging due to a lack

of information regarding non-equilibrium behavior in the FDT itself. Using a scalar

model for simplicity, it was shown how the noise in an effective model cannot be com-

pletely freely chosen. In a perturbative treatment this condition gives a non-zero mean

of the effective noise, which can be incorporated into the bare coefficients (as was done

in previous chapters implicitly). While this does not fix completely the second mo-

ment of the noise, which is necessary to predict the non-equilibrium Casimir effect or

heat radiation, it does create a useful framework for additional physically motivated

conditions on the noise. Two of these were compared for the scalar model: the kinetic

model (effective noise is quadratic in field) and the minimal model (effective noise is

linear in field, but bare noise remains independent), which lead to different field de-

pendence out of equilibrium. For the latter case, we also gave an expression for the

field-dependent electromagnetic fluctuations.

6.2. Open questions

The nature of this work is inherently exploratory – nonlinear fluctuational electrody-

namics is niche topic (no prior research) and there are no preexisting experimental

results to guide theoretical frameworks. Therefore, together with predictions for ex-

periments, this thesis also raises a lot of new questionswhich remain beyond the scope

of this work.

One of these questions is the distinction between the bare and effective quantities and

which one should remain constant. This could be tested through linear response mea-

surements under changing conditions: either a two-object system with variable dis-

tance or a single object at constant temperature with variable environmental tempera-

ture. A change in themeasured dielectric function in either casewould indicate that the

bare properties remain constant. This question could also be answered by considering
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microscopic theories.

Another problem concerns higher order moments of the noise and field. The standard

FDT gives directly only the second moment, and while this is enough for perturbative

treatment (Gaussianity can be assumed in nonlinear terms where the higher moments

appear), extending the theory to higher orders in terms of the nonlinear susceptibilities

would further necessitate a way of calculating higher order moments.

Furthermore, while some restriction on the dependence of noise on the external field

was established, notably the first moment in perturbative case, the behavior of higher

order moments remains unknown in general. Whether these conditions can be nar-

rowed through general theoretical considerations or microscopic detail is unclear.

However, the formalism allows for straightforward comparison of different assump-

tions with experiment or microscopic calculations.

6.3. Outlook

Besides clarifying the remaining questions above, there are very clear paths for future

research that would benefit from and extend the current results. This is especially rele-

vant in the context of increased interest in the nature of non-equilibrium fluctuations in

nonlinear systems. Furthermore, due to the weakness of optical nonlinearities in cur-

rently available materials, it would be of great interest to isolate effects that are absent

in purely linear systems.

Most prominently, while the formalismwas applied for the Casimir force and heat radi-

ation in simple geometries as examples, different setups and effects present an attractive

avenue for future work. For viable short range measurements, for example, it is nec-

essary to give results for the sphere-plate geometry (representing the tip of an atomic

force microscope and the substrate). Other configurations could be of interest to elim-

inate or minimize linear or deterministic effects, in the spirit of the “magic angle” of

Figure 5.1.

In addition to differentgeometries, effects besideCasimir force andheat radiation could

be of interest. This would include quantum friction that particles moving near surfaces

experience [66] as well as extending the studies to tunable (field-dependent) heat ra-

diation and Casimir force. Furthermore, the emergence of effective gain media and

possible effective non-reciprocity induced by thermal imbalance (see Chapter 4) could

have very interesting experimental applications [6, 94, 82].

The formalism can also be extended to include non-local effects by allowing the sus-

ceptibilities depend on not only frequencies but also the k-vector. Most notably, this
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would allow for the treatment of plasmas, which are strongly nonlinear, but inherently

non-local [93, 31, 30]. This is also possibly a viable system to model microscopically.

While the list of open questions and research ideas looks daunting, the author hopes

that future years will shed more light on the many as of yet unexplored aspects of

electromagnetic fluctuations in nonlinear systems. Especially with the ever advanc-

ing experimental capabilities, it is a field of great potential to both theory as well as

application.
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A. Functional derivatives

A general functional derivative is defined as

δA (B)

δB
= δBA = A′, (A.1)

A′ (F) = lim
ǫ→0

A (B+ εF)−A (B)

ǫ
∀ F, (A.2)

whereA orB could be any vector or tensor or field. For example ifA (B) ,B ∈ R, then

we recover the regular definition of a derivative. On the other hand, an action would

be F [φ (r)] ∈ R, where the arguments are functions themselves, φ ∈ {R → R}. In that

case, we recover the well known formula [3],

δφF [f (r)] =

ˆ

R

drδφF (r) f (r) = lim
ǫ→0

F [φ (r) + ǫf (r)]−F [φ (r)]

ǫ
. (A.3)

This is, however, not enough for the purposes of this thesis. A needs to be a function

mapping tensor fields and operators to tensor fields or operators, because we want to

study how the electric field (or composed tensors such as E ⊗ E) change under small

changes of the external field. A generic notation is useful, because quite often it is not

necessary to use Eq. (A.2) directly. Instead, analogues to regular derivative rules (such

as the chain rule) often apply in more complicated cases with no or minor differences

[3].

Representing a functional as a series

We define a vector field A, with components Ai → Ai (r, ω) which include the direc-

tional indices {1, 2, 3}, the spatial coordinate r and frequency ω. We consider it to be a

function of a similar vector field B,

Ai (B) = A
(0)
i +A

(1)
ij Bj +A

(2)
ijkBjBk +A

(3)
ijklBjBkBl + ...

=

∞∑

n=0

A
(n)
ij1..jn

n∏

m=1

Bjm. (A.4)
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Notice that since the components Bj commute, the coefficients A
(n)
ij1..jn

can be consid-

ered symmetric under the exchange of any two jk indices. The first functional deriva-

tive is then

(
δA

δB

)

ij

fj = lim
ǫ→0

∑∞
n=0A

(n)
ij1..jn

∏n
m=1 (Bjm + ǫfjm)−

∑∞
n=0A

(n)
ij1..jn

∏n
m=1Bjm

ǫ
. (A.5)

In the denominator only terms linear in ǫ survive. Taking also into account the sym-

metry in A
(n)
i0..in

, we arrive at

(
δA

δB

)

ij

fj = A
(1)
ij1

nfj1 +

∞∑

n=2

A
(n)
ij1..jn

nfj1

n∏

m=2

Bjm

=

(

A
(1)
ij1

+
∞∑

n=2

nA
(n)
ij1..jn

n∏

m=2

Bjm

)

fi1 . (A.6)

Therefore, explicitly, the first derivative is

(
δA

δB

)

ij

= A
(1)
ij +

∞∑

n=2

nA
(n)
ijj2..jn

n∏

m=2

Bjm. (A.7)

This can be easily continued to obtain

(
δkA

δBk

)

ij1..jk

= k!A
(k)
ij1..jk

+

∞∑

n=k+1

n!

(n− k)!
A

(n)
ij1j2..jn

n∏

m=k

Bjm. (A.8)

Just as in the regular Taylor series analysis, the coefficient tensors of A are directly

related to the same order functional derivatives in the limit B → 0.
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B. Green’s functions for multilayer

structures

B.1. Green’s function for two parallel surfaces

Using the geometry shown in Figure 3.5, with both points inside plate 1 and the other

plate (3) a distance d away in the z-direction, the Green’s function is given as [39]

G
(
rl=1 > r′l′=1

)
=

i

2

∑

σ

ˆ

d2q‖

(2π)2
1

p1
eiq

+
1 ·rσ̂+

1

⊗

[

e−iq+
1 ·r′ σ̂+

1 +

[
Fσ
12e

−ip2d + Fσ
23e

ip2d
]

[e−ip2d + Fσ
12F

σ
23e

ip2d]
e−iq−

1 ·r′ σ̂−
1

]

−
ẑ⊗ ẑ

k2l
δ(3)

(
r− r′

)
. (B.1)

This is for the case z > z′, which does not matter, because we are interested in the limit

r → r′. The various quantities are

pl =
√

k2l − q2‖, (B.2)

k2l =
ω2

v2l
= εl

ω2

c2
, (B.3)

qτ
l = q‖ + τplẑ =

(
q‖ cosφq, q‖ sinφq, τpl

)
, (B.4)

q̂τ
l =

qτ
l

kl
, (B.5)

ŝτl =
ẑ× q̂τ

l∣
∣ẑ× q̂τ

l

∣
∣
= (− sinφq, cosφq, 0) , (B.6)

p̂τ
l = ŝτl × q̂τ

l =
1

kl

(
τpl cosφq, τpl sinφq,−q‖

)
, (B.7)

q̂τ
l × ŝτl = −p̂τ

l , (B.8)

q̂τ
l × p̂τ

l = ŝτl . (B.9)
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B. Green’s functions for multilayer structures

This is a very useful basis since it is diagonal when integrated in the xy-plane.

ˆ 2π

0
dφqŝ

± ⊗ ŝ± = 2π






1
2 0 0

0 1
2 0

0 0 0




 , (B.10)

ˆ 2π

0
dφqp̂

+
l ⊗ p̂±

l = 2π
p2l
k2l







±1
2 0 0

0 ±1
2 0

0 0
q2
‖

p2
l







. (B.11)

The Fresnel coefficients are given as

Fs
ln →

p1 − p2
p1 + p2

=
1−

√
ε2
ε1

1 +
√

ε2
ε1

, (B.12)

Fp
ln →

ε2p1 − ε1p2
ε2p1 + ε1p2

=
ε2 − ε1

√
ε2
ε1

ε2 + ε1
√

ε2
ε1

. (B.13)

And the bulk or single-surface Green’s functions are recovered by setting either both

or one of the Fresnel coefficients (Fσ
12, F

σ
23), zero.

B.2. ImG (r, r) in bulk

The δ(3) (r− r′) contribution disappears, because it is real. For the imaginary part, we

have

ImGbulk

(
rl=1 = r′l′=1

)
= Re

1

2

∑

σ

ˆ

d2q‖

(2π)2
1

p1
σ̂+
1 ⊗ σ̂+

1

= Re
1

8π2

∑

σ

ˆ ∞

0
dq‖

q‖
p1

ˆ 2π

0
dφqσ̂

+
1 ⊗ σ̂+

1

= Re
1

8π

1

k21

ˆ ∞

0
dq‖

q‖
√

k21 − q2‖






2k21 − q2‖ 0 0

0 2k21 − q2‖ 0

0 0 2q2‖




 .

(B.14)

The integrals
´∞
0 dq‖

q‖
√

k21−q2
‖

and
´∞
0 dq‖

q3
‖

√

k21−q2
‖

are in general infinite and the above

expression diverges.
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B.3. ImG (r, r) for a single surface

If ε1 is real, however, the integrand is real only for q‖ < k1. Then it is enough to integrate

in the finite range, and we get the finite results
´ k1
0 dq‖

q‖
√

k21−q2
‖

= k1,
´∞
0 dq‖

q3
‖

√

k21−q2
‖

=

2
3k

3
1. We thus obtain

ImG
(
rl=1 = r′l′=1

)
=

1

6π
k1. (B.15)

In vacuum, with ε1 = 1, we recover the well-known environment dust,

lim
r→r′

ImG0

(
r, r′

)

ij
=

1

6π

ω

c
δij . (B.16)

B.3. ImG (r, r) for a single surface

Herewe give the difference between a single surface and homogeneous case (start from

two touching plates, then move one very far away). Letting the Fresnel coefficients

F12 = F23 = 0 go to zero for the homogeneous case, and F23 = 0 for a single plate in

Eq. (B.1) yields

Im
[
Gplate −Gbulk

]
(r, r) = Re

1

2

∑

σ

ˆ

d2q‖

(2π)2
1

p1
eiq

+
1 ·rσ̂+

1

⊗
[

e−iq+
1 ·rσ̂+

1 + Fσ
12e

−iq−
1 ·rσ̂−

1

]

− Re
i

2

∑

σ

ˆ

d2q‖

(2π)2
1

p1
eiq

+
1 ·rσ̂+

1

⊗
[

e−iq+
1 ·rσ̂+

1 + e−iq−
1 ·rσ̂−

1

]

= Re
1

2

ˆ ∞

0
dq‖ q‖

1

(2π)2
1

p1
e2ip1z

∑

σ

(Fσ
12 − 1)

ˆ 2π

0
dϕ σ̂+

1 ⊗ σ̂−
1 ,

(B.17)

Im
[
Gbulk −Gplate

]
(r, r) = Re

1

16π

ˆ ∞

0
dq‖ e

2ip1z
q‖
p1

(B.18)

×








Fs
12 −Fp

12
p21
k21

0 0

0 Fs
12 −Fp

12
p21
k21

0

0 0 2 (Fp
12 − 1)

q2
‖

k21








.
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C. Casimir force and the Lifshitz formula

C.1. General Casimir force

The electromagnetic stress tensor is given as

σij = ε0EiEj +
1

µ0
BiBj −

1

2

(

ε0E
2 +

1

µ0
B2

)

δij, (C.1)

and the force on an object is simply the surface integral around it,

F =

˛

σ · dn. (C.2)

Taking a geometry shown in Figure C.1, the force on either of these plates due to the

other can be written as

PA→B =
〈
σAB
zz

〉
−
〈
σB0
zz

〉
, (C.3)

PB→A =
〈
σ0A
zz

〉
−
〈
σAB
zz

〉
. (C.4)

The Casimir pressure is then

PAB = 2
〈
σAB
zz

〉
−
〈
σ0A
zz

〉
−
〈
σB0
zz

〉
. (C.5)

B
(linear)

A
(nonlinear)

Figure C.1.: Parallel plate geometry.
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C. Casimir force and the Lifshitz formula

The 〈σzz〉 can be written as

〈σzz〉 =
~

2π

∞̂

0

dω
ω2

c2
coth

(
~ω

2kBT

)

ImGω, (C.6)

where

Gω = F

[

Gω +
c2

ω2
[∇r ×∇r′ ×Gω]

]

r=r′=0+

, (C.7)

F [X] = Xzz −Xxx − Xyy. (C.8)

The full force is then

PAB = 2
〈
σAB
zz

〉
−
〈
σ0B
zz

〉
−
〈
σA0
zz

〉

=
~

2π

∞̂

0

dω
ω2

c2
coth

(
~ω

2kBT

)

ℑGω, (C.9)

Gω = F

[

Gω +
c2

ω2
[∇r ×∇r′ ×Gω]

]

r=r′=0+

, (C.10)

G = 2GAB −G
0A −G

B0. (C.11)

C.2. Nonlinear Lifshitz formula

(From the supplementary material of Ref. [85].)

Considering the experimental setup shown in Figure 3.7. For linear materials, the

Casimir pressure (Plin) is given by the well known Lifshitz formula, and we provide

here the additional term due to nonlinearities (Pnl). The pressure is a sum,

P = Plin + Pnl, (C.12)
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C.2. Nonlinear Lifshitz formula

where [85]

Plin = −
1

2π
ε0Re

¨

dωdq a (ω)
qp2
k22

∑

σ∈{s,p}

Fσ
21F

σ
23e

2ip2d

1−Fσ
21F

σ
23e

2ip2d
, (C.13)

Pnl =
3

28π4
ε0Re

˘

dωdω′dqdq′ χ(3)
(
−ω, ω, ω′,−ω′) (C.14)

×a (ω) a
(
ω′)
[

Sω,ω′

q,q′ (d) + Pω,ω′

q,q′ (d)
]

, (C.15)

Sω,ω′

q,q′ (d) = qq′
p22
p21

Fs
23

(
1−Fs

21

1−Fs
21F

s
23e

2ip2d

)2

×

[

e2i(p2+p′2)d

(p1 + p′1) p
′
1

Mx

(
ω′, q′, d

)
+

e2i(p2−p′∗2 )d

(p1 − p′∗1 ) p
′∗
1

M∗
x

(
ω′, q′, d

)

]

, (C.16)

Pω,ω′

q,q′ (d) = qq′
p22
p21

Fp
23

(
1−Fp

21

1−Fp
21F

p
23e

2ip2d

)2

×

[

q2

k22

[

e2i(p2+p′2)d

(p1 + p′1) p
′
1

Mz

(
ω′, q′, d

)
+

e2i(p2−p′∗2 )d

(p1 − p′∗1 ) p
′∗
1

M∗
z

(
ω′, q′, d

)

]

−
p21
k22

[

e2i(p2+p′2)d

(p1 + p′1) p
′
1

Mx

(
ω′, q′, d

)
+

e2i(p2−p′∗2 )d

(p1 − p′∗1 ) p
′∗
1

M∗
x

(
ω′, q′, d

)

]]

,(C.17)

Mx

(
ω′, q′, d

)
= 2

(
Fs′
23 −Fs′

21F
s′
21F

s′
23

1−Fs′
21F

s′
23e

2ip′2d

)

+

(

3
q′2

k′21
− 2

)(
Fp′
23 −Fp′

21F
p′
21F

p′
23

1−Fp′
21F

p′
23e

2ip′2d

)

, (C.18)

Mz

(
ω′, q′, d

)
=

(
Fs′
23 −Fs′

21F
s′
21F

s′
23

1−Fs′
21F

s′
23e

2ip′2d

)

+

(

4
q′2

k′21
− 1

)(
Fp′
23 −Fp′

21F
p′
21F

p′
23

1−Fp′
21F

p′
23e

2ip′2d

)

, (C.19)

where the various quantities are given in Section B.1. The quantities p′n, k
′
n, F

s′
ln, and

Fp′
ln are defined in the same way, but using ω′ and q′. The integration ranges are from

zero to infinity with a (ω) = ~

πε0
ω2

c2
coth

(
~ω

2kBT

)

.
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D. Heat transfer formula

We give here the short derivation of the general heat transfer formula from the ap-

pendix of Ref. [86], which applies to linear, non-linear, and even non-reciprocal mate-

rials.

The total energy transmitted across a surface Σn surrounding object n is given by

Hn =

˛

Σn

da 〈S〉 · n, (D.1)

where 〈S〉 = 〈E×H〉 is the time-average of the Poynting vector andn is a normal vector

on Σn. The former can be expressed as,

〈S〉 =

ˆ

dω

2π
Re 〈E×H∗〉ω . (D.2)

Using the divergence theorem, Eq. (D.1) can be rewritten as

Hn =

ˆ

dω

2π

ˆ

Vn

dVRe 〈∇ · (Eω ×H∗
ω)〉 . (D.3)

For nonmagnetic materials (µ = 1), it becomes

Hn =
1

µ0

ˆ

dω

2π

1

ω

ˆ

Vn

dV Im 〈E · (∇×∇×E)∗〉ω

= −
1

µ0

ˆ

dω

2π

1

ω
TrnIm

[
G

−1
0 〈E⊗E∗〉ω

]
, (D.4)

where Trn denotes a trace, which is restricted to volume Vn. It can be shown that, even

without micro-reversibility, there is no heat transfer if the temperatures are equal.

Using Eq. (4.17) for the correlator with unequal temperatures and subtracting the con-

tribution of a pseudo-system,where all bodies are at a temperatureTn (therefore giving

no contribution to heat transfer), the final general form of the heat radiation equation
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D. Heat transfer formula

can be obtained,

Hn = −
1

4µ0

N∑

m=0

ˆ

dω

2π

1

ω
[bn (ω)− bm (ω)]

× Tr
[(

Ṽn

)

AH
G̃

(

Ṽm

)

AH
G̃

†
]

. (D.5)

Note that the terms with Tm = Tn (including m = n) explicitly do not contribute

to heat radiation. Furthermore, if Ṽ and therefore G̃ are symmetric (implying micro-

reversibility [29]), then Eq. (D.5) can be further simplified,

Hn =
1

µ0

N∑

m=0

ˆ

dω

2π

1

ω
[bm (ω)− bn (ω)]

× Tr
(

Im
[

Ṽn

]

G̃Im
[

Ṽm

]

G̃
∗
)

. (D.6)
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