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Abstract 

 

Thanks to the progress in the robotic and mechatronic fields, upper limb 

prostheses became more and more dexterous, getting closer to closing the gap 

between the natural limb and the medical device replacing it. However, the 

standard prosthesis controller spread on the market is still limited in the number 

of functions it can efficiently control and constitute a bottleneck in prosthesis 

use. Two leading solutions are currently under research to tackle this 

discrepancy: machine learning algorithms and autonomous controllers. Myo-

controllers based on machine learning algorithms enable the user to control a 

high but still limited number of functions directly. On the other hand, 

autonomous controllers are based on a diversification of the sensor modalities to 

integrate the context and the user's intention in control and automatise part of the 

grasping process, relieving the user from the physical and potentially cognitive 

workload associated with it. This thesis focuses on the impact of the combination 

of these two solutions. Therefore, two studies investigated the gain of 

performance gain and the range of applicability of an association of a semi-

autonomous system to a machine learning myo-controller for upper limb 

prostheses.  

This dissertation introduces first a method to preshape the prosthesis 

based on the prediction of the user’s intended grasping strategy. This method 

system supports the user in real-time by preshaping the prosthetic device's hand 

and wrist during a reaching phase of a prehensile action. This result is achieved 

by merging data from inertial measurement units, computer vision, and positions 

and pressure sensors to reproduce artificial proprioception, artificial 

exteroception, and short-term memory. The autonomous controller developed 

was designed to support the user in dynamic objects-crowded conditions. 

In a second phase, it has been assessed whether a semi-autonomous 

system associated with a machine learning myo-controller could improve the 
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performance compared to the same machine learning controller alone. To assess 

this system, eight able-bodied and two amputee participants performed a newly 

developed test featuring a sequence of re-localisation tasks in a scene with 

multiple objects. The two amputee participants completed a standard 

rehabilitation test as well. The results revealed that the semi-autonomous system 

increased the time performance and reduced the physical effort for the total 

duration of the trial, and more specifically, in the preshaping phase of the task. 

The semi-autonomous system also reduced the need to control the prosthetic 

wrist manually. 

Eventually, the last part of this dissertation focuses on the interactions 

between the autonomous controller and the user. It investigates the impact, 

through the addition of artificial error on the autonomous system output, of 

different shared control modalities which define the application, according to the 

user’s commands, of the decisions of the autonomous controller on the 

prosthesis. Ten able-bodied participants performed a dual-task combining a 

reach-and-grasp task and an auditory reaction task. Time performance, physical 

and cognitive workload were recorded. This test implemented different control-

sharing modalities at different levels of error. The results revealed that the shared 

control modalities significantly impact the task performance and the physical 

effort required to complete the task. The effect of the level of added errors on 

the three different outcomes varies between the control-sharing modalities. 

These results, therefore, provide valuable information to design and compare 

semi-autonomous upper limb prosthesis systems. 

In conclusion, by demonstrating the benefit of semi-autonomous systems 

and the investigation of their application conditions, this thesis advances the 

development of a new generation of prosthesis controllers that automatize parts 

of the actuation of the prosthesis. This research enlarges the current control 

bottleneck, which prevents prosthesis users from taking full advantage of their 

highly developed device. Therefore, it can contribute to increasing the support 

and the autonomy that upper limb prostheses can provide to their users in daily 

life.  
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1.Introduction 
 

 

 

 

 

 

Our hands are one of the most important tools we have to interact with the 

world. Within a (life-)long process, we learn and improve how to control and use them 

with increasing precision and accuracy. For this reason, losing one of them has a major 

impact on the motor system and the interaction abilities that one has with the objects 

surrounding us. It has been estimated that in 2005, 541.000 persons were living with 

an upper hand amputation in the United States [1]. Other countries such as Italy and 

the United Kingdom report 3500 and 5200 upper limb amputations every year [2]. The 

first cause of upper limb amputation is traumatism, followed by neoplasia and vascular 

and infectious diseases, as stated by [3] (Frontera & Silver, 2004 (cited in Cordella et 

al., 2016). 

Depending on the level of amputation, the individual can lose a different 

number of functionalities, summarised in Figure 1.1. When taking a hand model with 

19 Degrees of Freedom (DoFs) [4], a transradial amputation, depraving the individual 

from the limb below the elbow, leads to losing up to 22 natural DoFs.  

Such amputations have repercussions on the whole body. Patients do not only 

lose an excellent tool to interact with their environment, but they also suffer from the 

unbalance caused by the ablation of the upper limb extremity. Indeed, it has been 
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shown that Upper limb amputees have more Musculoskeletal complaints [5]. In 

unilateral amputation, the healthy arm can also get affected by overuse injuries due to 

over-reliance on it [6]–[8]. Similar impairments can also occur for people with a 

congenital hand deficiency, with an incidence of 5.25 per 10,000 live births [9]. 

 

Figure 1.1 Illustration of the different levels of amputations with the associated number of lost DoFs . 

Adapted with permission from [2] 
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1.1. Treatment solutions for upper hand deficiency  

The following section provides an overview of different approaches that have 

been developed, up to now, to provide help for people with upper limb deficiency to 

(re-)gain possibilities of self-reliant interaction abilities with their environments. 

1.1.1. Surgical treatment: Hand transplantation 

 

Figure 1.2 Illustration of a transplanted hand. A) shows a swelling and rash hand during an acute 

rejection. B) shows a hand from another patient after six weeks. Used with permission from [10] 

To provide a solution to improve the life of amputees, hand transplantation has 

been developed since 1998 [11]. During this procedure, a hand is taken from a 

compatible donor and grafted on the individual. The acceptance of the new hand by 

the patient’s body requires immunosuppressants for the rest of his/her life. A recent 

review [12] reports 113 transplants performed on 76 patients worldwide. The cost of 

such a procedure, the graft rejection rate of 9.5%, and the high risks associated with 

immunosuppression are the main reasons for the relatively low number of transplants 

compared to the number of amputations.  

The other way to help patients with a missing limb is to provide an artificial 

replacement, called a prosthesis. Already existing for at least 3000 years [13], 

prostheses have continued to develop and become more complex to resemble the 

appearance of the original limb and restore more of the lost functionality. With regard 

to the upper limb prostheses, several types of prostheses emerged according to their 

actuation. 
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I) Passive prostheses 

Esthetic prostheses, often called “cosmesis”, are passive prostheses mainly 

aiming to replace the visual appearance of the missing limb. While passive, some 

designs allow some functionalities using springs or bending materials to support the 

user. The knight hands with the famous example of the hand of Götz von Berlichingen 

[14], a Franconian imperial knight in the 16th century known to be able to hold his 

sword with his prosthesis thanks to metal slides acting as springs. Thus this prosthesis 

offered a thumb with one degree of freedom (DoF) mechanically actuated. Passive 

prostheses with mechanical actuation are still developed, such as the Delft Self-

Grasping Hand using the wrist angle to open and close the hand [15], which 

contributes to answering their apparent underdevelopment [16]. 

II) Body powered 

 

Figure 1.3 Illustration of a body-powered prosthesis , used with permission from [17] 
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Body-powered prostheses are active prostheses, able to perform some 

movements like opening-closing, entirely powered by the remaining muscles of the 

user, potentially dedicated to other functionalities of the body. They were greatly 

developed during the early 20th century [18]. A century later, they still equip 30 % of 

the upper limb deficient population [19]. The standard model uses a cable pulled 

between the shoulders to actuate the prosthesis [20]. Other models use the wrist or the 

elbow to control the aperture of the finger [21], [22], according to the joints available. 

While they appear technologically less developed than myoelectric prostheses, 

the feedback provided by the cable's tension and the simplicity of the device actuation 

make body-powered prostheses better in durability, training time, frequency of 

adjustment, maintenance, and feedback, according to [23]. It was also a body-powered 

prosthesis user who won the Cybathlon 2016, a competition comparing the completion 

time of different tasks reproducing daily life activities [24]. 

Despite these good performances, body-powered prostheses are being 

overlooked because of the better appearance of myoelectric prostheses, slower 

movement, insufficient grasp strength, increased mass, and energy 

expenditure/consumption for operation.  

III) Myoelectric 

 

Figure 1.4 Functioning of a myoelectric prosthesis, used with permission from [25]  



Chapter 1: Introduction 

6 

On the other hand, myoelectric prostheses are actuated by battery-operated 

motors. The support provided by the engine relieves the user of applying and 

maintaining tension to hold an object. The actuation of these prostheses is controlled 

by an interface allowing the interaction of the human and the prostheses (human-

machine Interface, HMI). The original HMI was based on detecting the contractions 

of the user’s remaining muscles using electromyogram signals to trigger the actuation 

of the prosthesis. The control of the prosthesis by muscle contractions is called myo-

control. These prostheses currently equip 36% of the upper limb prosthesis users 

population [19].Today, myoelectric hand prostheses are diversifying. The first models, 

such as those from Reinhold Reiter in 1948 [26], Alexander Kobrinski in 1960 [27], 

or Miodrag Rakic in 1957-1962 [28], had only one DoF actuating all the fingers 

together. To mimic the flexibility of the human hand, the number of different possible 

hand actuation was increased. Firstly, the thumb was given an extra DoF, thus 

diversifying the number of grasp types. Secondly, the fingers were independently 

actuated, increasing the number of grasps of the prosthetic hand to 20 in 2015 [29]. 

This increase in the number of grasps brings the dexterity of myoelectric prostheses 

closer to that of the human hand, which can perform 33 possible grasps [30].  

Another mechanical design offers independent fingers but with fewer 

actuators. This design, called underactuation, enables the fingers to adapt to the 

object's shape or even to the external constraints such as the table's surface when 

grasping the object [31], [32]. The trade-off of under-actuation is the reduced 

possibility to activate a specific finger scheme. 

Despite a high dexterity, a lack of wrist rotation causes compensatory 

movement, damaging the body in the long term [33], [34]. Therefore, in addition to 

the hand, active prosthetic wrists have been developed and are currently available. 

They provide either active rotation, flexion, or both [35]. 

Overall, the comparison between new prosthetic devices and a natural hand 

shows that, thanks to the improved technology, the capabilities of hand prostheses 

have come closer to the mechanical capabilities of a natural hand. The combination of 

the mechanical improvement with a particular focus on the most used grasps has 
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further increased the usability of the prostheses. However, this also shows that there 

is still room for improvement. 

1.2. The different myocontrol implementations 

1.2.1. The historical “two-channels control” 

 

Figure 1.5 Illustration of the 2-channel control. In blue are the remaining functionalities handled by the 

user. In orange is the replacing solution to actuate the missing limbs. The 2-channel control can be decomposed 

into three phases: EMG acquisition, signal processing, and motor activation 

Until recently, the control of myoelectric prostheses was nearly exclusively 

based on a similar paradigm implemented in the first myoelectric prostheses, namely, 

the “two-channels control”. This implementation bases the control on two electrodes 

placed on two antagonists’ muscles. These electrodes acquire the EMG signals 

produced by the muscular fibres when contracting. These signals are amplified and 

filtered to extract the signal's power, called “envelope of the signal”, before sending it 

to the controller. The role of this controller is to map the pattern of EMG signals 

produced by the user’s muscles to the desired prosthesis actuation. In the case of single 

DoF prostheses (often opening/closing), the controller has to determine three things: 

whether the prosthesis should move, in which direction the prosthesis should move, 

and at what speed, for prostheses allowing a regulated actuation. Hence, the prosthesis 

is actuated only if at least one of the envelopes exceeds the activation threshold. A 
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clinician determines this threshold to avoid unwanted prosthesis activation due to 

movement or noise in the signal. When an envelope is high enough, the direction of 

actuation is determined by comparing the two envelopes. Each electrode is associated 

with a direction of the movement. The electrode placed on the flexion muscle (wrist 

or fingers) is often associated with the hand's closing and the other electrode in the 

opposite direction. When the flexion muscle electrode signal is higher than the other 

envelope, the controller sends a closing command to the prosthesis. Otherwise, the 

controller sends an opening command. The strength of the signal then determines the 

speed of the actuation. The prosthesis moves at minimal speed when the envelope just 

reaches the activation threshold and moves at the maximal speed when the envelope 

is slightly below the Maximal Voluntary Contraction (MVC) recorded by a clinician. 

In the case of a multi-DoF prosthesis, the controller must, as a fourth task, 

select the DoF to be controlled. Hence, a state-machine is implemented. Each state 

corresponds to a DoF and behaves like the single DoF behaviour described above. The 

standard implementation requires the user to produce a cocontraction: a simultaneous, 

brief, and high contraction of the two muscles to switch from one state/DoF to another. 

To detect this cocontraction, the controller requires two windows of time without 

activations before and after a high-enough simultaneous activation of the two 

electrodes. The user needs to repeat this contraction pattern until reaching the desired 

DoF, with or without auditory feedback, to identify the new state of the controller at 

each change. The combination of the time window without activation and the time 

required by the cocontraction requires some time to select a specific DoF. This time 

required to select a DoF increases with the number of DoF proposed by the device and 

makes the control slow and unintuitive when controlling a multi-DoFs prosthesis [36]. 
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1.2.2. Pattern recognition-based myo-control 

 

Figure 1.6 Scheme of a Pattern recognition based myo-control. A Raw of electrodes is placed on the 

limb. Each of them acquires EMG signals. All the channels are then processed to be classified into one pattern 

associated with one functionality of the prosthesis. 

Another control type has been developed using more electrodes to acquire 

muscle pattern contractions to overcome this slow and complex DoF selection. Indeed, 

after an amputation or at the birth of limb-deficient children, some muscles controlling 

the different motions of the missing limb can remain. When attempting to perform 

specific movements with their missing limb, limb-deficient individuals contract the 

muscle or the set of muscles associated with this movement. Different movements are 

associated with different muscle activations and produce, therefore, different patterns 

of EMG signals. Pattern recognition based myo-control aims to recognise the pattern 

of muscle contraction associated with a specific movement and associate with it a 

specific prosthesis movement. This method requires a detailed acquisition of the EMG 

produced by the different muscle contractions. Therefore, most common 

implementations acquire the EMG signals through six to eight electrodes placed on 

the skin. For the same phantom movement, signals acquired by the electrodes may 

differ because of the noise caused by the skin, the cross-talk between muscles, and 

mainly because phantom movements are produced by a set of muscles potentially 

located differently for each limb-deficient individual. Therefore, pattern recognition 

myo-control requires machine learning (ML) algorithms to learn and adapt to each 

different anatomy and the current electrode state. 
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ML algorithms are algorithms using data to determine the rules by themselves. 

The most common ML myo-controller implementations use supervised algorithms 

and require a training phase before using the device. During the training phase, the 

user must perform several specific movements of the hand and the wrist to contract 

his muscles, potentially performed at varying levels of contractions to increase the 

diversity of the data. Subsequently, the computer splits the EMG data into time 

windows with a recommended duration of 150ms [37]. It computes the different 

descriptors for each of these time windows (Root Mean Square, Slope Sign Changes, 

Waveform Length, …[38], [39]). The machine learning algorithms build the model 

based on these descriptors and the a-priory knowledge of the data. 

Two categories ML algorithms are used to control upper limb prostheses. 

Classifiers associate the acquired pattern of muscle contraction (described by the 

descriptors) to the modelled movement producing the most similar EMG signals. At 

each time window, classifiers will associate the muscle contraction produced by the 

user to a single prosthesis functionality such as opening, closing, pronation, 

supination, etc. Examples of algorithms belonging to this category are algorithms such 

as linear discriminant analysis (LDA) [40], support vector machine [41], [42], or 

neural networks [43]–[45]. Compared to the two-channels myo-control, classifiers 

effectively remove the time required to switch between the different prosthesis’ 

functions [46], and consequently, significantly improve the capability of the user to 

perform activities of daily living (ADLs). On the other hand, regressors decompose 

the acquired pattern of muscle contraction, here also described by the descriptors into 

a combination of modelled movements. Regressors thus enable the user to manipulate 

several DoFs of the prosthesis by combining the trained patterns such as opening while 

pronating, see for example [47], [48]. 

However, some drawbacks still limit their use. First of all, the current myo-

control only relies on surface EMG (sEMG) electrodes. These suffer from many 

factors lowering the accuracy, such as muscle fatigue, electrode shifts, arm posture, 

learning/adaptation of user [49]. These factors are the main reason for the lack of 

robustness restraining the practical application of machine learning algorithms [46]. 

Furthermore, Li et al.[50] studied the number of classes usable in practice and obtained 

a drop of accuracy when classifying more than six classes with amputee participants 
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using six electrodes (the recommended number nowadays [39]). Additionally to the 

low average number of directly controllable DoFs, the generation of sufficiently 

distinct and reproducible muscles patterns is very variable between individuals [51], 

leaving some individuals unable to exploit the potential of their prosthesis. Finally, 

controllers based on machine learning algorithms are very sensitive to changes in the 

muscle patterns detected by the electrodes. They require, therefore, frequent 

recalibration of the contraction pattern model, which takes time for the user. These 

constraints on the usability of ML algorithm-controlled prostheses underline the 

importance of improving the HMI as it is currently a limiting component of the system. 

1.3. Technical solutions to improve manual control 

Several solutions have been developed to increase or compensate for pattern 

recognition algorithms' problematic accuracy and robustness. They aim to provide 

better quality signals through the intramuscular EMG acquisition, diversified sensors 

and use other channels to control the hand in parallel of the myocontrol. 

1.3.1. Intramuscular EMG acquisition 

Intramuscular electrodes are currently developed since most of the artefacts 

described above are caused by the distance between the electrodes and the muscles 

and by the skin separating them. Intramuscular EMGs can be obtained by either fixing 

an electrode in the muscle or the motor nerve addressing this muscle. Thus, the signal 

acquired is expected to be cleaner than signals obtained with sEMG electrodes. This 

signal can then be classified and enable fine control of the prosthesis [52]. Compared 

to surface electrodes, it showed better performance in terms of control quality and a 

better ability to maintain the desired muscle contraction pattern while showing similar 

performance in terms of throughput (tradeoff of speed and accuracy) and completion 

rate [53]. However, this method is still limited in practice. This technology requires a 

heavier medical procedure implying potential surgical risks, which is a big concern 

for the potential users [54]. It also requires a high power consumption and is sensitive 

to potential electrode drifts, which lower the quality of the signal and potentially 
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require a new surgical intervention [55]. Furthermore, this method does not answer all 

the drawbacks of pattern recognition myo-control as it has been shown that this 

method still suffers from limb position effects [56]. For these reasons, the application 

of intramuscular EMGs is still limited to a minimal amount of individuals with limb 

deficiencies.  

1.3.2. Diversifying the sensor modalities 

Alternative modalities to EMGs are currently under investigation to provide 

sensors that, when placed in contact with the skin, could provide better information of 

the contraction of the muscles and be less influenced by the factors usually decreasing 

the accuracy of EMG electrodes. These sensors can then be combined or replace the 

traditional EMG interface. The techniques that associate data from diverse modalities 

are called sensor fusion techniques [57], [58]. Diversifying modalities can bring a 

context to interpret the standard EMG data better or acquire the same physical process 

while not being sensitive to the same noise as EMG signals and therefore complete 

them.  

Bioimpedance [59], [60], near-infrared spectroscopy [61], and ultrasound 

have, for example, been used alone or in combination with EMG to improve the 

accuracy of the classification of muscle patterns[62], [63]. 

Another well-studied sensor combined with EMG sensors is the inertial motion 

unit (IMU). As the arm moves through space, the angle of the elbow and the effect of 

gravity change. These changes affect the position of the forearm muscles relative to 

each other and the skin. This effect, called the limb position effect, is one of the main 

causes of muscle contraction pattern misclassification. IMUs are sensors gathering 

accelerometers and gyroscopes providing orientation data. Fixed on the user's forearm, 

IMUs act as proprioception sensors by acquiring the forearm's position, orientation, 

and movement. This artificial proprioception could bring valuable information to 

reduce the limb position effect. The combination of acceleration data with EMG data 

can be done in several ways, as studied by Fougner and colleagues in 2011. The 

authors compared four different controllers. The first controller was a baseline made 

of a single classifier trained with EMG data on a single limb position representing the 

classical training. The second controller was a single classifier trained with EMG data 
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on multiple limb positions representing an advanced training that would aim to reduce 

the limb position effect while still a pure EMG-based HMI. The third controller 

combined several classifiers trained with EMG data, each on a different limb position. 

A second classifier, trained with acceleration data, continuously estimated which 

EMG classifier has been trained at the closest limb position to the current one. 

Eventually, the fourth controller was a single multimodal classifier combining EMG 

and acceleration data on multiple limb positions. Results show that the best accuracy 

is obtained with the fourth controller when using a multimodal classifier. The 

combination of several EMG classifiers with the acceleration classifier comes at 

second place and the multi-position classifier at the third one [64]. The use of IMUs 

has been further researched 1) by using non-linear classifiers [65] to avoid the 

assumption that the limb position has a linear effect on the EMG signals and 2) by 

using the angular velocity and the magnetic field in addition to the acceleration [66].  

These solutions aim to improve the accuracy of ML classifiers but are still 

sensitive to the temporal variability of EMG signals. They also require the user to 

control the whole prosthesis through his/her muscle contraction. Doing so, the user is 

still constraint by a limited number of controllable DoF, which he or she has to control 

sequentially. 

1.3.3. Using other modalities to control the prosthesis 

Rather than applying diverse sensors only to acquire and interpret muscle 

contraction patterns, other modalities can be used to directly control the prosthesis 

with myo-control. This addition of a new channel to the standard myo-control 

interface aims to enlarge the bottleneck of the control of the prosthesis.  
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Figure 1.7 Illustration of the use of another modality to control one functionality of the prosthesis. Here 

the aperture and grasp type is control through a pattern recognition myocontrol, whereas the rotation of the wrist 

is controlled through the elevation of the shoulder 

Investigating the use of the shoulder elevation to control the wrist rotation, 

Bennett and Goldfarb (2018) proposed a direct control of the speed and direction of 

the rotation of the wrist through the elevation of the shoulder [67]. This method splits 

the control of the different DoFs of the prosthesis over several modalities. The system 

has been compared to a classical two-channels control and has been shown to be 33% 

faster to complete the standard tests.  

The tongue's position in the mouth has been used to select the grasp type to be 

used [68]. While intrusive, this system was faster than a traditional two-channel 

control since the user does have to rotate through the activation mode with 

Cocontraction. 
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[69]. A movement of the forearm triggered the system. Then the user waited for the 

electrodes to stimulate the pattern associated with the grasp type he/she wanted to use 

and then reach the object. Once this reaching movement was detected through the 

accelerometers, the hand prosthesis was preshaped, and the user just had to close the 

prosthesis through 2-channels control. The performance obtained was similar to the 

two channels control alone but could be extended to propose the selection of more 

functionalities. 

Arguing that vision has a preponderant role in the prehension process, 

Controzzi et al., in 2013, designed a system using the movement of the user's eyes to 

select the good grasp type [70]. The user had to follow the target object's shape with 

the eyes, while his gaze was followed through electrooculography. Assuming that the 

different forms of the objects would give the different patterns, the EoGs were then 

classified to select the grasp type to be used with the object. The study concluded with 

the feasibility of such a system without measuring the performance or the workload. 

Relatively close to other HMIs, which include autonomous controllers. (see section 

1.5.1) , this system proves that information about the targeted object can be obtained 

through “vision” and can increase the time performance of the grasp. However, this 

system still uses the user as the motor of the artificial exteroception and requires 

him/her to perform an additional step when grasping an object. 

The different modalities exploited to control the prosthesis increases the 

diversity of the input from the user that can be used to control the device. While the 

potential benefits of this method need further investigation, the limitations of myo-

control are again only partially addressed. New modalities at the charge of the user 

induce a new cognitive load to activate muscles that are not on the path of the natural 

prehension process. Consequently, the user will need to learn and adapt to use the hand 

prosthesis and include new movements to the prehension process to control a few 

additional DoFs compared to standard myo-control. 
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1.4. The limitations of manual control 

 

Figure 1.8 Illustration of the limitations of Manual control. Some functionalities usually handled by the 

individual are lost through amputation (light blue). This results in the increased used of the remaining sense to 

close the control loop. The modified anatomy of the arm also impacts muscle activation. The artificial path to 

actuate the prosthesis’s functionalities relies on less stable and accurate signals. 

The evolution of hand prostheses has provided them with a high number of 

joints, which has increased their dexterity. However, the control provided to the user 

has not followed this evolution. The myocontrol is limited to fewer functionalities than 

the healthy limb due to the state and the number of remaining muscles and the 

accuracy, resolution, and number of electrodes. The robustness of the myo-control is 

also impacted. The number of directly and simultaneously controllable DoFs, which 

is lower than the devices' capabilities, constitute a bottleneck in the human-machine 

interface due to the limited bandwidth of the myocontrol. This limited bandwidth 

prevents the user from benefiting from the latest mechanical development in hand 

prostheses. 

The previously described technical solutions either achieve a more robust 

control by diversifying the sensors used for the muscle contraction classification, or 

increase the number of directly controllable DoFs. However, while definitively 

extending the capabilities of the myo-control, these techniques do not offer enough 

control modalities or classification outputs to control all the DoFs of the modern hand 

prostheses directly. For example, the relatively high number of different movements 

classified using ultrasound in [62] (15 movements including combinations of wrist 
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and finger movements) is not high enough to offer direct control of the 20 grasps types 

proposed by the most dexterous prosthesis currently available nor the 33 human grasps 

types. This lack of direct control gets even larger when adding the control of the wrist 

to reduce the compensatory movements. Therefore, the user is still limited in the 

dexterity with which he or she can control the hand prosthesis. 

In addition to the limited and unnatural control, prosthesis users have to adapt 

to a new limb with different motions or missing natural DoF (prosthetic wrists are 

rarely active in all the directions), replacing a fully functional hand. These mechanical 

differences are accompanied by the loss of proprioception and sense of touch, enabling 

the individual to embody and control the limb. The proprioception missing, the 

individual has to rely on memory and visual attention to know the current position of 

the prosthetic limb. This affects the visual behaviour of prosthetic users who look at 

their prosthetic hand much longer during reach and grasp action at the expense of 

lower visual attention given to the object to grasp and the preparation of the following 

action [71]. 

1.5. The semi-autonomous control  

Modern devices significantly increased the level of autonomy with which they 

perform the task they are dedicated to. From the coffee machine preparing the 

beverage at a suitable temperature and potentially at a good time to the cars 

autonomously following the car in front, the diversification and the multiplication of 

the embedded sensors offered the capability of replacing the human agent for several 

subtasks. These sensors also increased the capabilities of the human itself, enabling, 

for example, delicate surgical operations. Insensitive to this trend, the standard manual 

control of upper limb prostheses still completely relies on the user for each movement 

without supporting or relieving obvious parts of the control. As a result, the manual 

control for upper-limb prostheses is still limited and fails to offer complete and 

intuitive control of modern prostheses. The automation of some control parts to 

support the user has already been implemented in other rehabilitation fields. The 

adaptation of some gait parameters according to the terrain was implemented for lower 
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limb prostheses [72], and partly autonomous driving wheelchairs enable physically or 

mentally disabled persons to still move [73], [74]. The following section will provide 

an overview of autonomous controllers with their functioning. 

 

Figure 1.9 Scheme of functioning of a semi-autonomous system. The autonomous controller (green) 

reproduces the natural grasping process by gathering information through several modalities, emulating the 

natural touch, vision and proprioception, predicting the user's intent, and eventually preshaping the prosthesis 

using embedded sensors again. The commands from the user and the autonomous controller are combined 

according to the shared control modality. 

Amputation or limb deficiency deprives the individual of the natural actuation 

channel and the feedback loop necessary for reasonable control. Standard control 

provides a replacement but with a limited number of inputs that disable the full 

recovery of capabilities. The goal of autonomous hand prosthesis controllers is to 

artificially reproduce the proprioception and/or the exteroception of the user to predict 

his/her intention and support the action by automating part of the necessary actuation. 
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control is ruled by the shared controlled modality. The combination of the manual and 

the autonomous controller results in a semi-autonomous (SA) system where the action 

of the autonomous controller is conditioned by the user’s decision and manual inputs. 

The automation of the hand can handle all the DoFs of the device 

simultaneously without requiring direct supervision of the user. It can relieve the user 

of unnatural movement planning and adjust the actuation through artificial 

proprioception. It is also independent of the accuracy and robustness of the myocontrol 

and is therefore not affected when the accuracy of myocontrol is lowered. These 

qualities give autonomous controllers the potential to go beyond the current limitation 

of manual control, namely the limited number of directly controllable DoF and the 

associated cognitive workload. 

1.5.1. Intention prediction and associated automation 

The intention detection, the core of the autonomous controller, provides the goal 

to be achieved by the system. The following automation is a direct consequence of the 

amount of information predicted by the system. Several technologies have been 

studied, and their feasibility has been demonstrated. These diverse methods used to 

predict the user's intention provided either information on the object targeted by the 

user, on the specific grasping strategy intended by the user, or both, and at different 

time points of the reach-and-grasp action. This section will provide a quick overview 

of the solutions researched, which can be classified into prediction before the 

movement, during the grasp and the whole movement. 

I) Prediction before the movement 

Correctly preshaping all the joints of the prosthesis to give the user maximum 

support when grasping an object is a challenge. The more information the autonomous 

system has, the more accurate the predicted solution will be. For an autonomous 

system to provide a natural-looking movement and provide the best time performance 

when grasping an object, the time point of the prediction and, therefore, of the solution 

computation is fundamental, the earlier being the better. Therefore, the challenge is to 

gather all the information and predict the intention in the shortest time after the user’s 

decision. Hence, several methods using computer vision have been proposed. 
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Computer vision is the processing of data acquired by an optical sensor such as a 

camera providing colours (RGB) or colours and depth (RGB-D) to extract information 

from the context and the object of interest. The selection of the object of interest in the 

scene is the first issue the autonomous controller has to answer.  

The first method to select the object before starting the movement is to give an 

active role to the user in selecting the object. Several systems proposed to do so by 

requiring the user to present the object to the camera. The object’s selection in the 

camera’s field of view is either done by selecting the closest object in the centre of the 

field of view [75], [76] or requires the object to be the only one in front of the camera 

[77], [78]. Thus, for the system to support the grasp of the right object, the user needs 

to pay attention to the camera's field of view according to where the camera is placed.  

When the camera is placed in the hand prosthesis, such as in [32], [76], [77], 

[79], [80], the user is required to point to the object with the hand. Without feedback 

on the width of the field of view, it may be necessary to train the user to perform this 

movement [77]. When the camera is placed on the head, the user needs to orient the 

head to strictly face the object [75], [81]. This focus on the object requires visual 

attention and deprives the user of gaze flexibility, especially in a scene with many 

objects. Augmented reality has been used to help the user to select the correct object 

[75]. In both placements of the camera, the studies that tested the users required them 

to trigger or confirm the object selection, and the computed prosthesis preshape by a 

pattern of muscle contractions. 

A second method to select the object without requiring an additional active step 

during the prehension process of an object is to predict the grasping intention from 

physiological information such as the gaze. Gaze tracking enables the system to gather 

data on the visual attention of the user. Once the camera captures the scene, objects 

are segmented and localised in the user's field of view. A fixed gaze on a specific 

object selects it. The trigger starting the preshape is then either the activation of the 

myocontrol [82], [83], the start of a reach movement [84], or a specific 

electroencephalogram pattern [85]. 

Once the object has been selected, the autonomous system can compute the 

pose of the prosthesis, providing more support to the user for grasping the object. Once 
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the object has been selected, the autonomous system can compute the pose of the 

prosthesis, providing more support to the user for grasping the object. Humans grasp 

objects according to their shape and the experience they have with the object. It is, 

therefore, a combination of a-priory knowledge and situational information. The grasp 

of a milk carton can illustrate this. The shape is very regular and provides a good grasp 

from several sides. The grasping strategy may be different between 1) a situation 

where the individual wants a fast grasp to relocate the object, probably grasping the 

side of the carton, 2) a situation where the individual plans to put the carton in the 

refrigerator door, potentially grasping the top of the carton to avoid any disturbance in 

this crowded situation, or 3) a situation where the user wants to check the expiration 

date of the milk, grasping the side of the carton with a fully pronated forearm to 

anticipate the manipulation (end-state comfort [86], [87]). Three methods have been 

proposed in the literature: object recognition, object classification and object analysis. 

a) Object recognition 

A-priory knowledge can be provided to the system by associating 

the most used grasp to the object of interest. Therefore, the autonomous 

system uses computer vision to recognise the object by associating a 

correspondence from the training database. Once the match is found, the 

database provides the grasp strategy associated with the recognised object. 

The computing power and the size/resolution of the camera are two key 

factors impacting these algorithms' accuracy and robustness. Object 

recognition has been done in the upper limb prosthesis field with a low-

resolution camera embedded into the hand [79] and a processor embedded 

into the hand [88]. The computation can also be distributed, as it has been 

done, on the user's smartphone [79] or a remote server [89]. 

The use of embedded hardware shows the technical feasibility of 

systems independent from computers. However, these studies only assessed 

the accuracy of the object recognition in this particular condition. The 

integration of this automatisation in an HMI and assessing performance gain 

had not been done yet.  
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The object recognition method comes with two difficulties. The first 

one is that any object not belonging to the training dataset is not recognised 

or wrongly associated and therefore does not carry any a-priory 

information. The size of the dataset is therefore critical. Furthermore, any 

new entry in the dataset requires the algorithm to be retrained, which 

consumes and requires consequent computational power. The second 

difficulty is the fixed grasp strategy per object, which does not consider the 

context, such as surrounding obstacles or the manipulation planned by the 

user. 

b) Object classification 

Algorithms of computer vision made some progress in 

understanding and classifying objects. Instead of recognising an object 

previously trained as the methods described previously, several studies 

proposed directly classifying the object of interest to associate an 

appropriate grasp strategy. This method enables to preshape the hand when 

facing an object that does not belong to the training set. Using an RGB 

camera placed on the table to classify objects into four grasp strategies 

obtained 88% success rate classification when assessed with prosthesis 

users [78]. Unfortunately, the gain of performance when using the system 

has not been assessed. Using an RGB-D camera, a latter placed on the table 

implemented a neural network to classify the object into four grasp 

strategies. Compared to the previous one, the object classification accuracy 

improved for the object belonging to the training dataset and classified with 

93.9% accuracy objects not belonging to the training dataset, demonstrating 

the flexibility of the method. 

Object classification answers one of the weaknesses of the object 

recognition method by not being restrained to the training dataset, which 

potentially enables a more extensive diversity of correctly handled objects. 

However, it shares the single grasp strategy per object with the object 

recognition method, including the user's exact intention. 
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c) Object analysis 

Focusing on the context, such as the shape of the object and its 

current orientation, several methods are proposed to analyse the target 

object right after its selection to compute the prosthesis’ pose required to 

grasp the object. 

The first implementation combined an RGB camera fixed on the 

wrist with a laser sensor acquiring the distance to the object [80]. The 

object's size in the camera’s field of view was thus combined with its 

distance to obtain the width of the object’s side facing the camera and 

consequently the hand. Based on this width, the system preshaped the 

fingers and the wrist of the prosthesis. 

Placing the cameras on the user's head, a second implementation 

used stereo vision to acquire the shape of the object and its orientation [75]. 

The thinnest side of the object was prioritised, and the prosthesis was 

preshaped, consequently adjusting the grasp type, the aperture of the 

fingers, and the hand's rotation when triggered by the user. This method to 

determine the grasp type and the aperture of the fingers has been assessed 

against the standard two-channel control and demonstrated better time 

performance [81]. The experimental setup was limited to a reach-and-grasp 

task with one single object on the table. 

The weakness of these methods is that no a-priory knowledge is 

provided on the object, meaning that the cup's body and handle will be 

considered in the same way.  

 

Eventually, a solution replacing computer vision with oculometry was 

explored by Controzzi et al. in 2013 [70]. The user was required to follow the object's 

shape with their gaze, producing electrooculographic signals classified into prosthesis 

preshape. The visual attention required to use the system places the individual at the 

core of the intention prediction.  
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II) Automation during the grasp 

One of the primary use of myoelectric prostheses is to hold objects or to 

support the manipulation [90]. While better control of the wrist and the fingers during 

the reaching phase may make the affected side more active, supporting the grasping 

phase already impacts the current use of the prosthesis. Support can be brought 

automatically through tactile sensors embedded in the prosthesis to gather data about 

the object and its situation. 

Relatively early, tactile sensors embedded in the prosthesis have been used to 

detect a slip of the object [91]. After detection, several strategies have been developed 

to counter the object's fall, such as increasing the force exerted by the prosthesis’ 

fingers [92], [93]. The force increased the fingers’ friction on the object and therefore 

stopped it from falling. However, it also led to a deformation of the object. Another 

method to stop the object's fall consists of automatically rotating the wrist of the 

prosthesis to better counter gravity [94]. 

Eventually, a method using tactile sensors embedded in the prosthesis enables 

determining the best finger configuration to fit the object's shape [95]. A deep-learning 

algorithm determines the adjustment of each finger to grasp the object optimally. This 

method includes a myocontrol with a high number of possible classes provided by 

high-density electrodes to condition the application of the computed solution to the 

similarity of this solution with the manual command. In discordant control, the 

myocontrol commands have priority, and the autonomous solution is not applied. This 

method has not been assessed with a real prosthesis but in virtual reality. Such 

prosthesis exists as a prototype [96]. In contrast with the previous methods, this 

method focuses on the very end of the reach-and-grasp movement by adjusting the 

grasp. Therefore, it does not determine the targeted object nor the rotation of the wrist. 

III) Prediction during the whole movement 

In the goal of relieving the user from any active input to predict the object and 

the grasp strategy, information from the reaching movement has been included by 

several studies.  
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A first solution studied the feasibility of combining the information from the 

gaze in the scene and the information from the forearm’s movement [97]. Hence, the 

subject's gaze was tracked, and two cameras were fixed on the head and wrist. 

Crossing the head-mounted camera with gaze tracking enables one to determine an 

area of interest. Combined with the movement of the images acquired by the wrist-

mounted camera, it was possible to determine both the type of movement of the hand 

(reach, rotary, linear, and retreat) and the object of interest of the subject while taking 

into account the discrete behaviour of the gaze fixation. 

It is also possible to combine gaze tracking information with EMG data from 

the arm to estimate the final position of the hand [84]. Associated with information on 

the surrounding objects, it would enable selecting the object and determining the side 

of the object that the user wants to grasp. The method proposed predicts the position 

first through gaze information then updates the prediction through EMG data to follow 

the movement of the arm. This enables to take the gaze very early into account and 

relieve the user from forced visual attention later in the movement. 

The possibility of completely removing the gaze tracking and using only the 

camera fixed on the wrist to predict the object of interest has also been demonstrated 

[98]. The authors propose to analyse the objects when the hand is far enough from the 

table to have all the objects of the scene present in the image. Then the movement of 

the image during the reaching movement would select the object through a deep-

learning algorithm. Similar to the previous methods exposed, the prediction accuracy 

increases during the reaching movement to reach a maximum at the object’s vicinity. 

The timing to preshape the prosthesis in the flight would need to be attentively studied 

to combine an actuation of the prosthesis early enough to be in position at the end of 

the reaching movement while still ensuring a stable goal. It should be noted that the 

studies previously cited did not assess the performance during clinical trials.  

On the other hand, several studies proposed to predict the wrist’s rotation only 

based on the orientation of the user's arms, acquired through inertial motion units 

(IMUs). Synergy was first reported between the wrist rotation and the shoulder 

adduction/abduction during natural reach-and-grasp actions [99]. The authors 

proposed to use this synergy to automatise the wrist rotation to improve the fluency 
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and skill of amputees but did not present a concrete implementation. This synergy has 

been used in two studies.  

The first study proposed to detect and reduce compensatory movement of the 

shoulder elevation[81]. Indeed, limb-deficient individuals rely more on the shoulder 

joint to compensate for their lack of forearm pronation/supination [100]. The system 

monitored the orientation of the upper arm from the affected side and answered to a 

high shoulder abduction by rotating the wrist to complete the movement. This method 

was assessed through a clinical trial and demonstrated a gain of time performance 

compared to the standard two-channels control. 

The second study used the rotation of the unaffected side and the relative 

movement of the two hands to determine the current action during the bi-manual task 

[101]. Actions were then classified as idle, unilateral if the affected side is the only 

one moving, bi-manual asynchronous if the two hands move toward each other, and 

bi-manual synchronous if the two hands move in the same direction. This enabled the 

system to assist the user by automating the rotation of the wrist of the prosthesis. 

During unilateral actions, the wrist's rotation could be controlled through the shoulder 

abduction/adduction. During bi-manual asynchronous actions, the controller rotated 

the wrist so that the two palms faced each other. Eventually, during bi-manual 

synchronous actions, the controller mirrored the rotation of the sound forearm with 

the prosthetic wrist. This method also showed a gain of time performance compared 

to a standard 2-channel control. 

1.5.2. The rules governing the semi-autonomous system 

operation  

The rules for distributing the control of the same DoFs of the device to two 

different agents are critical for the task's performance and success rate. This is why 

collaborative control is a very studied field in robotics and rehabilitation [74], [102], 

[103]. The distinction is made between traded control, where the user and the 

autonomous controller have the control sequentially but never simultaneously, and 

shared control, where the two agents can control the device simultaneously. The 

distinction is also made between the different agents' roles, such as supervision when 
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planning the movement and operating the device's actuation [104]. In some of the 

systems previously presented, both the user and the autonomous system had both roles. 

The user targeted the object and potentially planned the reach-and-grasp movement 

required (supervision), but also moved the forearm and controlled the prosthesis 

through myocontrol to adjust or close the fingers (operation). The autonomous system 

automatised the preshape of the hand by actuating some of the DoF of the hand 

(operation), but also determined alone which grasp strategy to apply to the target 

object (supervision). 

This collaborative aspect has not been studied explicitly in upper limb 

prosthesis implementations. Several designs have been implemented without being 

compared, and their specific impact on the qualitative and quantitative outcomes is 

still unknown. Some designs implemented a traded control where the user had to 

trigger the punctual support of the autonomous system [75], [78], some others 

implemented a traded control where the autonomous system operates the prosthesis as 

long as the user does not control the prosthesis [101]. Shared control has been 

proposed through the conditioning of the application of the computed solution to 

similar myo-control commands [95]. The autonomous controller completes the 

actuation intended and partially actuated by the user. Another shared control method 

implements the prediction of the target position of the prosthesis during the actuation 

of one of the DoFs. The other DoF is then adjusted to reach the predicted position 

following the manually controlled joint [105]. 

1.5.3. Current limitations of semi-autonomous systems 

The human grasp has been frequently studied in an attempt to describe and 

predict it. Given a specific object, a study showed that 96% of the subjects tended to 

grasp it by its thinner side [106]. This same study shows that the size of the object and 

its weight influence the choice of grasp type to grasp it. Another study involving 

manipulations showed that the “precision prismatic” and “power prismatic” grasps are 

more likely to be used when grasping an object [107]. These results encouraged the 

development of autonomous controllers associating one grasp type per object. 

However, these two studies also show no strict correlation between the object and the 

grasp type used. Indeed, the grasp type used for a specific object is also subject 
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dependant [106] and task dependant [87]. This leads to the fact that associating a grasp 

type per object can lead to discrepancies between the user’s intention and the 

prosthesis’ automation. It can also require an adaptation of the user to the automation. 

In order to predict the grasping strategy intended by the user, more information has to 

be observed. Only a few studies, such as [81], [101], proposed such grasping strategy 

predictions, but they limited the prediction to the rotation of the wrist.  

The methods based on computer vision can enable the actuation of the entire 

hand prosthesis, offering the preshape of both the grasp type and the wrist, bringing 

the prosthesis control at the level of its mechanical advancement. However, their 

application has been poorly tested. The protocols assessing the SA systems’ benefits 

have been indeed limited to sparsely distributed objects on a table [75], [77], [85], 

[108], with the manipulation of a single object per trial. 

Despite the numerous studies developing autonomous systems, the benefit of 

each of these systems in a clinical application context has been very little investigated. 

As cited earlier, several studies [77], [78], [88], [108] have highlighted the feasibility 

of designs of autonomous controllers but did not assess the interaction with the user 

within a SA system or the impact on the performance compared to myo-control. For 

the studies that compared the performance against myo-control, the comparison has 

been made against the standard commercial two-channel control [83], [103], 

nowadays outdated by machine learning algorithms already used in commercial 

systems. The increase of time performance and the decrease of physical and cognitive 

efforts due to using a SA system are still unknown. 

ML-based controllers have been developed to enable the user to control several 

DoFs directly and it has already improved the intuitiveness and the time performance 

compared to the historical myo-control. The expected benefits of SA controllers also 

target the prosthesis's ease of use and time performance. The studies so far have shown 

that the SA is better than the two-channel [81], [101], but it is still unknown if the 

improvements brought by a SA system remain significant when combined with a more 

advanced myocontrol such as a muscle contraction pattern recognition. This lack of 

investigation prevents from justifying the development of SA systems over a solution, 

the advanced ML-myocontrol, which combines flexibility and proved benefits. 



Chapter 1: Introduction 

29 

Finally, SA systems induce a plurality of agents controlling the prosthesis. In 

these systems, two agents control the actuation of the prosthesis: the autonomous 

controller and the user. The shared control modality between the two agents has not 

been studied explicitly in the upper limb prosthesis field, where the user controls the 

entire forearm’s movements and participates in the actuation of the prosthesis. 

1.6. Goal of this thesis 

The aim of this dissertation was to study how an intelligent controller that 

predicts and autonomously reacts to the user’s intentions affects the user’s 

performance and workload when it is combined with the state-of-the-art machine 

learning myocontrol (pattern recognition) and used to control an active 4-DoF 

prosthesis during the reach-to-grasp manipulation tasks. More specifically, this thesis 

has developed a method extending semi-autonomous systems' capabilities using 

computer vision and several sensor modalities. The improvement of the performance 

and the muscle usage of the combination of an autonomous controller with a pattern 

recognition myo-controller has been assessed. Eventually, a focus has been given on 

the shared control modalities' impact on the performances. 

The rest of this dissertation is structured as follows:  

- In chapter 2, a method answering some current limitations of autonomous 

controllers is developed. The design of a novel autonomous controller for 4-

DoF hand prosthesis  (2-DoF in wrist and 2-DoF in hand)  is exposed, 

implementing both artificial proprioception, exteroception, and short-term 

memory.  

- In chapter 3, the potential improvement of the performance when associating 

a pattern recognition myo-controller with the autonomous controller 

developed in the previous chapter is examined. To this goal, the performances 

of able-bodied and amputee participants were recorded during clinical tasks, 

and several outcome measurements were analysed to provide a better 
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understanding of how the novel autonomous system impacts the baseline 

performance of the myocontrol. 

- In the light of the knowledge on the interactions between the user and the 

system acquired in the previous chapters, the rules that coordinate the 

autonomous and the manual controls were considered to impact the 

performance. Therefore, chapter 4 focuses on the impact on the performance 

of the shared control design when the goals of the two control agents differ. 

Hence, an autonomous controller and a pattern recognition controller were 

reproduced in a controlled environment. The measures of ten able-bodied 

participants using different shared control modalities under different levels of 

discrepancies were recorded and analysed.   
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As exposed in the introduction, the know benefits of the semi-autonomous 

systems to control an upper limb prosthesis are limited for several factors. First, the 

benefits of semi-autonomous systems are only known in the frame of the historical 

two-channel control [81], [101]. Second, autonomous controllers developed until now 

predict the object of interest and propose a single solution, ignoring the grasping 

strategy intended by the user. Lastly, while SA systems can potentially offer the 

control of all the available DoFs if the prosthesis and therefore solve the limited 

bandwidth of manual control, existing systems only actuate the wrist rotation when 

the wrist is handled. 

From the existing technologies used to develop autonomous controllers, only 

those based on computer vision offer the potential of preshaping every DoFs of the 

wrist and the fingers to adapt to the grasp intended by the user. Existing systems based 

on pressure sensors need contact with the object to support the grasp and therefore 
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cannot assist the preshaping of the wrist. Existing systems based on the movement 

analysis through IMUs only assist one DoF of the prosthetic wrist. However, the 

existing systems based on computer vision have not been assessed in challenging 

environments such as 1) in a cluttered scene where several objects are present and in 

contact with each other, 2) dynamic scenes where objects are moved during the trial, 

or 3) standard tests. Therefore, the benefit of SA systems based on computer vision in 

terms of time performance and physical effort compared to SoA ML algorithms is not 

known in those specific conditions.  

The method presented in this section aims to achieve the preshape of all the 

DoFs of the prosthesis by proposing several grasping types and including a two-DoFs 

active wrist based on the user’s intention to support a reach-and-grasp task. This 

intention, combining object selection and grasp strategy, is therefore predicted by the 

position of the prosthesis placed by the user during a natural reaching movement. The 

preshaping support is designed to adjust the hand in real-time in the object vicinity 

and relieve the user from the necessity of an extra command or action to trigger the 

autonomous controller. Furthermore, the method presented aims to offer support to 

the user in complex scenes reproducing situations from everyday life comprising 

moving objects and crowded scenes.  

2.1. Architecture 

The system developed aims to support the user by predicting the intended grasp 

strategy and the target object. The proposed method combines the position of the hand 

and scene modelling to select the object of interest among the present ones and propose 

a grasp strategy enabling its grasp in the current position of the hand. Therefore, this 

solution requires acquiring the scene and modelling the different graspable objects 

present, which reproduces part of the human exteroception and tracks the movement 

of the prosthesis, which reproduces part of the human proprioception. The context, 

including scene and prosthesis, needs to be gathered to determine the user’s intention 

and compute the consequent preshape. 
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The method proposed can be decomposed into several modules in charge of 

the different tasks just described. The artificial proprioception module tracks the 

position of the forearm, combining computer vision and IMU. The artificial 

exteroception of the module processes the scene in front of the user to obtain the 

position, shape, and size of the graspable objects through computer vision. The scene 

generating module combines the output of the two previous modules to reconstruct 

the situation in a game engine (Unity) and filter them, thus offering the ground for the 

user estimation module to predict the user's intention. Eventually, the preshape 

calculation module determines the placement of the prosthesis to grasp the previously 

selected object. In addition, the AR feedback module displays the processed scene,  

status and the autonomous controller's current decision through an augmented reality 

head-mounted display. 

The implemented automation aims to actuate every DoF from the left-handed 

Michelangelo prosthesis (Ottobock, Duderstadt, Germany). This one has an active 

wrist with two DoFs (flexion/extension and pronation/supination) and a rotating 

thumb allowing two different grasp types (palmar and lateral). 
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2.1.1. Artificial proprioception 

 

Figure 2.1 Photography of the material used with highlight of the components used for the artificial 

proprioception module. Those were the RGB-D camera, the sensors embedded in the prosthesis, the IR Markers 

placed on the socket, and the IMU fixed on the socket. 

The artificial proprioception module first fixed the referential for the other 

sensors. Provided by the RealSense SDK, the camera's position was continuously 

given as its displacement compared to the first frame taken by the camera, a Creative 

SR300 (Intel Realsense, Santa Clara, California) illustrated in Figure 2.1. This 

displacement was translated into the camera's position by fixing the first frame as the 

origin of the generated scene.  

To acquire the prosthesis position, the system used the three infrared markers 

fixed to the prosthesis. Since these markers are highly reflective for infrared light, a 

threshold was applied on the infrared data stream to detect highly reflective points in 



Chapter 2: Automatization of the wrist and the hand based on the prediction 

of the intended object's grasped side 

35 

the infrared stream of the camera (the threshold was fixed at 40% of the maximum 

detectable intensity). The binary picture (represented as black and white) was then 

filtered through a simple blob detection from the OpenCV library to detect the scene's 

round and highly reflective object. A set of filters were applied to remove noisy 

reflections:  

- the area of the reflection had to be between 4 and 1000 pixels,  

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
4𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)2 (2-1) 

 

- the circularity had to be higher than 0.15, with 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 the area of the blob (round 

reflection) and 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 its perimeter 

 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

 
(2-2) 

- the inertia ration had to be higher than 0.5, with 𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 the length of the 

shortest side of the blob and 𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 its longest side 

 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
 (2-3) 

- the convexity had to be higher than 0.5, with 𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 the area of the 

smallest convex shape containing the blob. 

The 2D position of the detected blobs was then translated into a 3D position 

thanks to the depth data. The new reflections' position was then associated with the 

markers from the previous frame through the Hungarian algorithm [109]. This 

algorithm takes the previous positions of the markers and the new detected points and 

proposes pairs of new detection/old markers that minimise the distances between the 

positions of each iteration. 

The average position of the three markers was then taken as the position of the 

prosthesis. Since edges of different lengths formed the triangle, the orientation of the 

retroreflective markers constellation in the camera's coordinate system has a single 
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solution based on the position of the three corners. This orientation was later used to 

compute the relationship between the coordinate systems of the IMU of the generated 

scene. 

The prosthesis orientation was driven by the IMU (MTw Awinda, XSens, 

Enschede, Netherland), fixed on the sockets. The IMU was calibrated independently 

from the system at each new start to set its internal reference based on the gravity 

vector and magnetic north. The orientation of the forearm thus transmitted to Unity 

was related to this internal world coordinate system. The relationship between this 

internal world coordinate system and the coordinate system of the generated scene was 

required to include the forearm orientation into the generated scene.  

When the retroreflective markers’ constellation was entirely observed in the 

camera, the forearm orientation could be acquired from two sources: the orientation 

of the constellation in the camera’s coordinate system and the orientation of the IMU 

in its own internal world coordinate system. The following equations give the relation 

between those two, given: 

- 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , the rotation of the prosthesis in the coordinate system of the 

generated scene, 

- 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, the rotation of the camera in the coordinate system of the generated 

scene provided by the Ego-motion mentioned earlier, 

- 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, the rotation of the constellation in the coordinate system of the 

camera provided by the processing of the infrared stream of the camera 

described earlier, 

- 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ, the rotation of the prosthesis in the coordinate system of the 

marker’s constellation measured on the prosthesis, 

- 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼 , the rotation of the reference of the IMU in the coordinate 

system of the generated scene, which we want to know, 

- 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼 , the rotation of the IMU in its referential, transmitted by the XSens 

software, 

- 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ, the rotation of the Prosthesis in the coordinate system of the IMU 

measured on the prosthesis. 
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 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ (2-4) 

 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼 ∗ 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼 ∗ 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ (2-5) 

The combination of the equations (2-4) and (2-5) leads to the following 

equation (2-6) used to calibrate the system: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ 𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ

∗ 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼−1 ∗ 𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ−1  

(2-6) 

Based on the IR markers constellation’s centre and the forearm’s orientation, 

the prosthesis model was placed and moved in the virtual space, providing the position 

of each component at any time for the prediction of the user’s intention. 

2.1.2. Artificial exteroception 

The artificial exteroception module aimed to exploit the depth stream of the 

RGB-D camera to extract the graspable objects standing in the camera's field of view 

from the scene. Frames were extracted at a frame rate of around two Hz. In order to 

avoid noise caused by an image moving too fast, the image acquisition was 

conditioned by a low translation speed (below 10 cm.s-1) and rotation speed (below 30 

deg.s-1) of the camera fixed on the head. The point cloud processing was split into two 

sequential threads and used the point cloud library (PCL) [110]. PCL is an open-source 

library focusing on processing point cloud data and comprising state-of-the-art 

methods to segment and model the data. These threads could be executed in parallel 

to double the frame rate.  
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Figure 2.2 Scheme of the computer vision processing. The segmenting and the modelling threads are 

analysing the point cloud acquired from the RGB-D camera at 2Hz. The segmenting one 1) grabs the data from 

the camera, 2) filters the point cloud to remove the table, other big planes, and remaining single voxels, and 3) 

segments the remaining points using LCCP on supervoxels. Then a second thread 4) attributes to each segment 

the best fitting primitive using RANSAC, 5) filters the ungraspable models and sends it to Unity to 6) associate the 

model of this frame to the previous scene 

The first thread focused on the initial processing of the data and the 

segmentation. A distance filter was implemented to remove points too far away or too 

close to the camera, based on the hypothesis that the grasp actions are happening at a 

maximal range of the extended arm of the user. The point cloud was then filtered to 

remove the outliers. The rotation of the camera was placing the table at the centre of 

the field of view. To isolate the graspable object, the best fitting planar surface was fit 

through random sample consensus (RANSAC) [111] to be removed from the scene 

and sent to the scene generation module. RANSAC is a brute force method that fits a 

pre-defined model such as a plane to random points in the point cloud. This operation 
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is done a large number of times, and the model that collides with the highest number 

of points (best quality) is retained. This method requires a relatively high amount of 

computational power, but this computational power is fixed and always results in a 

solution with its associated quality. Therefore, this algorithm has the advantage of not 

being affected by the scene's complexity and lets the choice to accept or not the 

proposed solution based on its quality. With a second iteration, the eventual part of 

the wall was removed if it occupied more than 30% of the remaining points. 

Depending on the position of the prosthesis, the voxels included in a cuboid centred 

on the socket and sharing the orientation of the prosthesis in the coordinate system of 

the camera were removed from the point cloud in order to avoid processing and 

modelling the prosthesis itself. 

Once the point cloud was filtered, objects were segmented. To decompose 

objects in several parts to model each of these parts into independent primitives and 

separate different objects from each other, each cluster of remaining points was 

segmented into convex parts. Consequently, the supervoxel method Voxel Cloud 

Connectivity Segmentation (VCCS) [112] was applied on the whole filtered cloud to 

reduce the computing power. This method over-segments the point cloud in a regular 

manner in the 3D space and is considered state-of-the-art while being open-source 

[113]. The centroids of the supervoxels are placed on a regular grid in space. The 

affiliation of each voxel to one of these supervoxels is done from close to close via a 

connectivity graph and via a distance calculation taking into account the position, 

colour, and characteristics of the voxel’s surface. This ensures a continuous over-

segmentation, respecting the boundaries of the objects and requiring relatively little 

computational power. The locally convex connected patches (LCCP) method [114] is 

then applied to segment the different clusters into convex shapes. This method goes 

through every supervoxels to classify the connections with each of their neighbours as 

convex, concave or singular, according to their positions and their normal surface 

vectors. The labelling of each segment is then gradually spread to each supervoxel 

sharing a convex connection, and its voxels. The segments are therefore contained by 

concave or singular boundaries. This method relies on the supervoxels to respect the 

objects’ boundaries and limits its need for computer power, making the combination 
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of the two methods usable online. It also has the advantage of splitting objects into 

graspable (convex) parts. 

Each segment was modelled consecutively in the second thread by the different 

primitives using the RANSAC algorithm: plane, cube, sphere, and cylinder. The 

model with the best quality (ratio between the points included in the model and the 

total number of voxels in the segment) was retained. The primitive shapes were 

defined as: 

- Plane: Standard plane detection, either perpendicular or parallel to the table. 

This primitive was used to filter out remaining parts of the wall and other 

ungraspable flat objects of the room, 

- Cube: modelled by two to three planar surfaces perpendicular to each other 

and either perpendicular or parallel to the table. 

- Sphere: standard sphere detection, with a minimum size of 3cm diameter and 

a maximum size of 7cm. 

- Cylinder: modelled by a tube whose axis was either parallel or perpendicular 

to the table and a planar surface perpendicular to the axis of the tube. 
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2.1.3. Scene generation: short-term memory 

 

Real scene placed on the table in front 

of the user 

 

Virtual scene modelled by the scene 

generation module 

Figure 2.3 Comparison between the real scene and the generated scene. The camera is modelled as a 

white parallelogram, and the distance information hove above the objects. Both distance information, the modelled 

camera, and the modelled table were invisible to the user 

The scene generating module gathered the information sent to the unit to place 

the different elements in the generated scene. Whereas the prosthesis, the camera and 

the table were single and continuously updated objects, the primitives transmitted by 

the artificial exteroception submodule at each frame were independent of the previous 

ones. Each new primitive modelled by the artificial exteroception module was 

associated with a possible existing model from the generated scene.  

The system was designed to work in cluttered scenarios where different objects 

or different parts of objects were touching each other, implying potential modelling 

and association errors from one frame to the other. The different scenarios are 

presented in Figure 2.4. Due to errors from the sensor or poor modelling, future 

primitives and existing models may be missing when only some objects are correctly 

modelled or incorrect when the model does not represent any object in the real scene. 

In order to provide a stable and most accurate scene for the intention detection module 

to work with, the scene-generating module integrated median filtering over time. 
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An algorithm illustrated in Figure 2.5 has been designed to associate the new 

primitive with the existing models and apply a median filter to answer this issue. This 

algorithm was based on the elections of representatives. Each object of the generated 

scene was associated with a working group. This working group contained the 

primitives associated with this object received during the ten last updates. At the end 

of each update, each working group computed the variance and the mean using 

Mahalanobis distance [115] of the variables of the primitives that it contained 

(position, dimensions, shape, orientation), weighted by their quality (the quality with 

which the RANSAC algorithm fitted the primitive to the point cloud segment). The 

primitive of the working groups closest to the calculated one was thus elected as the 

representative. The representatives of the working groups containing more than two 

primitives were visible in the generated world and taken into account during the 

intention detection. 
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The working groups were updated with each new image of the artificial 

exteroception submodule. The association algorithm aimed to associate the primitives 

and the working groups per pair, creating new groups for isolated new primitives. As 

such, the collisions between the new primitives and the primitives of each working 

group already present in the scene were first checked based on their coordinates and 

shape. If at least one collision was detected, the new primitive was added to the list of 

candidates of each working group with which it collided. The primitives which 

collided with only one working group were called single collision candidates, while 

the primitives which collided with several working groups were called multi-collisions 

candidates. 

At each new frame primitives from the artificial exteroception submodule were 

checked for collisions, each working group selected the new primitive to integrate 

among its candidates, starting with the working groups with single collision 

candidates. 

- If no collision was detected, a working group was created to gather the 

information for the newly detected object.  

- When no candidate collided with the working group, an empty primitive was 

added to the group to report a missing update. After six misses in the ten last 

updates, the working group and all the models it contained were removed from 

the generated scene. 

- When one or more new primitives collided with the group, the selection 

process started. 

o If only one single collision candidate applied to this working group 

(situation illustrated in Figure 2.4 by the cases E, F, H, and I and by the 

cube of case A), this candidate was directly selected and was included 

in the “working group”. If multi-collisions candidates had also collided 

with the working group, their number of collisions was reduced by one. 

If this reduction made them single collision candidates in another 

working group, the selection process of this other working group was 

launched. This process enabled to solve chains of conflictual 
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associations (see the conflictual association with sequential resolution 

in Figure 2.5) 

o If several single collision candidates only applied to this working 

group (situations D and G), the distance between them and the 

representative of the working group was computed through 

Mahalanobis distance, and the closest one was integrated into the 

working group. 

o If only multi-collision candidates applied to the working group, 

illustrated in situation B from Figure 2.4, a recursive process first 

gathered all the working groups and multi-collisions candidates 

involved in the chain. Then the Hungarian algorithm [109] was applied 

to associate the candidates and the working groups per pair. 

Eventually, new working groups were created for each remaining primitive. 
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2.1.4. Intention detection and preshaping 

Based on the data provided by the scene-generating module, the intention 

detection module aimed to detect a grasping intention and determine which object was 

targeted by the user. This process was done by comparing the hand position with the 

representatives’ position present in the generated scene. Only the representatives 

closer than 20cm from the hand and not at more than 10cm on the left of the prosthesis 

were considered. The grasping intention was triggered if a representative met these 

conditions while the hand had low speed (lower than 0.2m/s). If only one 

representative met the conditions, it was selected directly. If several objects met these 

conditions, the selection was based on the position of the prosthesis grasping point as 

illustrated in Figure 2.6: 

- If two objects were detected as stacked, only the object at the same height as 

the grasping point was considered 

- In the other case, a coefficient (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ) was computed inversely 

proportional to the distance between the grasping point and each 

representative involved, according to equation (2-7). The representative 

getting the highest coefficient was selected. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∗ (1 −
𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐻𝐻𝐻𝐻

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
) (2-7) 

In this equation, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶is the  𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝐻𝐻𝐻𝐻 is the distance from the hand to 

the object, 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀  the maximum distance to be selected (here 20 cm), 

𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 a hysteresis coefficient increasing if the object was previously selected. On 

the same model, 𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  increases the maximum distance to get selected by two 

centimetres if the object was previously selected while being null otherwise. This 

method allows a stable and real-time selection of the object of interest among a scene. 
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Figure 2.6. Illustration of the selection’s areas. Selected objects are in yellow, unselected ones are blue. 

In the close objects’ selection, the blue area represents the vicinity of each object. In both selections, the yellow 

area shows this vicinity increase by the hysteresis coefficient to stabilise the selection and avoid a flickering 

between two selection areas. 

Once the intention of grasping was detected and the virtual object selected, the 

autonomous preshaping module computed and adjusted the orientation of the 

prosthetic wrist and fingers. Three grasp strategies were employed according to the 

hand's position relative to the object and the object's dimensions. The lateral grasp was 

employed if the object's face facing the user was smaller than three centimetres. The 

wrist then aimed to keep the hand parallel with the table. A variable of adjustment was 

added to the wrist’s DoFs and adjusted each subject individually, mainly to 

compensate. The wrist flexion 𝜃𝜃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 and wrist rotation 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 were computed according 

to equations (2-8) and (2-9). 

 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = �𝜃𝜃�𝑂𝑂𝑢𝑢𝑢𝑢 �⃖��������,𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡�⃖��������������� − 90° +  𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡−𝑟𝑟𝑟𝑟𝑟𝑟 (2-8) 

 𝜃𝜃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 90° − �𝜃𝜃�𝑂𝑂𝑢𝑢𝑢𝑢�⃖�������,𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�⃖��������������� + 𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  (2-9) 

In these equations, 𝜃𝜃�𝑂𝑂𝑢𝑢𝑢𝑢 �⃖��������,𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡�⃖�������������� and 𝜃𝜃�𝑂𝑂𝑢𝑢𝑢𝑢�⃖�������,𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�⃖�������������� are the angles between the 

vertical vector of the object's coordinate system and the right and forward vectors of 

the forearm. The variables  𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡−𝑟𝑟𝑟𝑟𝑟𝑟  and 𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 are respectively the offsets 

for correction of rotation and flexion. 
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If the grasping point of the prosthesis was above the object, the top grasp 

strategy was selected, and the wrist aimed to keep the hand parallel to the table in the 

same way as the lateral grasp strategy. Lastly, in the remaining cases, the side grasp 

strategy was selected. The system oriented the wrist to place the palm perpendicular 

to the hand-object vector following these equations (2-10) and (2-11): 

 𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟 = |𝜃𝜃𝑂𝑂𝑢𝑢𝑢𝑢,�⃖��������𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡�⃖�������������| − 90° + 40° + 𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑟𝑟𝑟𝑟𝑟𝑟  + 0.12

∗ |𝜃𝜃�𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�⃖�������������,𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻−𝑂𝑂�⃖�����������������| 

(2-10) 

 𝜃𝜃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 0.8 ∗ |𝜃𝜃�𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�⃖�������������,𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻−𝑂𝑂�⃖�����������������| − 90° + 20°

+ 𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 

(2-11) 

In these equations 𝜃𝜃�𝑃𝑃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�⃖�������������,𝑉𝑉𝑉𝑉𝑉𝑉𝐻𝐻−𝑂𝑂�⃖����������������� is the angle between the forearm’s forward vector 

and the vector going from the hand to the object. The variables 𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑟𝑟𝑟𝑟𝑟𝑟  and 

𝜃𝜃𝐶𝐶𝐶𝐶𝐶𝐶𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠−𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  are the offsets for correction of the rotation and the flexion, adjusted 

for each subject individually (-10°,10°). The proportional gains of 0.12 and 0.8 in 

equations (4) and (5) were determined heuristically.   
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2.2. Performances 

2.2.1. Performance of the hand tracking  

The quality of the object selection and the preshape computation relied on the 

accuracy of the position of the prosthesis grasping point relative to the object of 

interest. Due to the design, previous exposed, of the hand tracking module, two factors 

needed to be considered: the accuracy of the distance between the reference point for 

the prosthesis tracking and the object or interest, and the accuracy of the orientation 

of the prosthesis adaptor used to compute the position of the prosthesis grasping point. 

According to Dr. Carfagni et al. (2017) [116], the camera SR300 enables to measure 

a distance of 39.5 cm with an accuracy of 6.05 mm in its working volume. Considering 

that the distance between the prosthesis grasping point and the prosthesis reference 

point was 29.5 cm, the accuracy previously measured was appliable in the context of 

the autonomous controller implemented. An IMU MTw Awinda acquired the 

orientation of the prosthesis adaptor. The specifications of this sensor [117] claim an 

accuracy of 1.5 deg. The accuracy of the position of the prosthesis grasping point in 

relation to the object was then 14 mm, given by (2-12): 

𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ sin(𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)

= 6 + 295 ∗ sin(1.5) = 14 𝑚𝑚𝑚𝑚 

(2-12) 

In this equation, 𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  is the accuracy of the position of the 

prosthesis grasping point in relation to the object, 𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇  is the accuracy of 

the distance between the reference point of the prosthesis tracking and the object of 

interest, 𝐷𝐷𝑅𝑅𝑅𝑅𝑅𝑅−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑝𝑝𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, is the distance between the reference point and the grasping 

point of the prosthesis, and 𝐴𝐴𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑛𝑛 is the accuracy of the orientation of the 

prosthesis adaptor. 

2.2.2. Performance of the object modelling  

The performance of the object modelling has been assessed through two 

measurements: the stability of the object's position and the accuracy of its size. These 

variables have been measured during a static test of 30 seconds during which five 
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objects (two CD boxes, one small box, one sphere and one tee box) were placed in 

front of the camera spread in the working area of the autonomous controller (see 

Figure 2.7). 

 

Figure 2.7 Acquired objects position during the assessment of the object modelling module 

performances.  The objects were placed on a table. The point of view of the graph would be above on the right of 

the camera. 

The deviation of the position of each object is given in Figure 2.8. The furthest 

object from the camera, the small box had the highest median deviation of 1.7 mm and 

the highest maximal deviation of 6.0 mm. 
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Figure 2.8 Deviation to the average position for different objects at five different positions. 

Last, the measured size of the modelled objects is illustrated in X. The worst accuracy 

has been measured for the first CD box with a median error of 8.0 mm. 

 

Figure 2.9 Acquired objects size during the assessment of the object modelling module. 
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2.3. Conclusion 

The method developed in this chapter enables the autonomous preshaping of 

the hand when performing and reach-to-grasp task. Its design aims to answer the main 

limitations affecting the autonomous systems presented in the literature. 

Based on the hand’s position relative to the part of the object rather than its 

shape to predict the user's intention, the developed autonomous system follows the 

grasp strategy that the user implements. The object segmentation into convex parts 

enables the target of the particular part of the object close to the hand, allowing the 

user to grasp the body as the handle according to the object's disposition. The 

automation resulting from the prediction includes the two grasp-types from the hand 

and actuates the two DoFs of the wrist. 

Because the automation of the hand is only conditioned by the proximity of the 

hand to a graspable object and the low speed of the hand, it does not require an 

additional action when performing a reach-and-grasp task. On the other hand, once in 

the vicinity of the object, the prosthesis's automatic preshaping follows the user's 

movement in real-time, adapting to the new predicted object or new predicted side. 

The accuracy of the estimation of the position of the prosthesis grasping point in 

relation to the object of interest is high enough to accurately determine a suitable 

preshaping position when the hand is at a small distance from the object. The offset of 

1.5 cm added on the aperture of the hand prosthesis compensate for the median error 

of the object size estimation. 

By including the input of the hand's position in regard to the object provided 

by the user, the autonomous controller aims to adapt to the grasping strategy of the 

user rather than to require the user to use one single solution. The autonomous 

controller handles the selection of the grasp type, the adjustment of the opening, and 

the two DoFs of the wrist to preshape the entire prosthesis. 
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2.3.1. Current technical limitation 

While the prototype developed for this project answers the technical 

limitations previously identified, it still comprises elements limiting its usability. 

Firstly, the system is still difficult and uncomfortable to wear. The Creative 

SR300 camera, a core component of the system, is relatively large and heavy. This 

component is relatively old in regard to the progress of technology and already has 

new versions providing better resolution [118] for smaller weight and better comfort.  

Secondly, the range of applicable situations remains limited. The IR camera is 

sensitive to changes in lighting and sudden over-exposure due to direct sun exposure 

of the object to sunlight. All tests and applications were carried out under controlled 

lighting conditions to stabilise the performance of the autonomous controller. The 

technology chosen for camera tracking and its relatively low performance limits the 

use of this system to a small area around the calibration frame. This could potentially 

be improved by resetting the ego-motion periodically. The computer may also be 

replaced by using cloud computing and wireless transmission, which has already been 

implemented in similar projects [79], [89], [119], [120]. 

The understanding of the scene is also limited. Due to the camera's resolution, 

the objects or parts of objects smaller than one cm3 are not modelled. This may be 

solved in the future by embedding a better camera. The modelling of the objects is 

based on single frames obtained from the RGB-D camera and are therefore point 

clouds projected from a single point of view. This process can be sensitive to noise 

and requires post-processing like the median filter applied in this system. It also affects 

objects particularly sensitive to single projections, such as highly concave objects. The 

body of cups may be segmented into two different parts: the front and the back parts 

of the tube. It might be interesting to change the technology to a point cloud-building 

simultaneous localisation and mapping (SLAM) algorithm such as ORBSlam [121], 

[122], which would both enable better camera tracking over a much larger area and 

provide a point cloud from different camera positions. Such a point cloud would 

enable a finer segmentation and understanding of objects, for example [123]. 
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Finally, the computation of the hand preshape currently only includes data on 

the orientation and the size of the object, with no prior knowledge associated with it. 

This solution adapts to the user’s grasping strategy to benefit from their knowledge of 

the object. Typically, the method proposed here does not differentiate between the 

function of the head and the hammer's body. This is not a critical issue because it is 

the user's role to place the hand in a graspable position to grasp the hammer's handle. 

This implementation allows the prosthesis to grasp the head if it is the intention of the 

user. However, the inclusion of the body part function could increase the probability 

of targeting the handle in case of uncertain prediction. In addition, adding information 

or “experience” to a body part can also enable specific grasping strategies to be forced 

when selected. This could facilitate the following manipulation: grasping a mug by 

the handle may require a particular shape of the finger, such as lateral grasping instead 

of a palmar grasping by default selected if the handle is on the side of the mug (and 

not in front of it). Ideally, these specific grasps should be individualised.   
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Several studies have already assessed the ability of an autonomous controller 

to support the user during specific tasks. However, as we have seen previously, the 

autonomous controller was not always integrated into an SA system allowing the user 

to interact with the prosthesis during the task. Moreover, no SA system has been 

compared to an advanced myo-control giving the user more flexibility to control all 

the DoF of the prosthesis. 

Therefore, this chapter aims to investigate if the support of an autonomous 

controller can improve the performance of a prosthesis user using an ML myo-

controller during a task including reach-and grasp actions. Since the SA system 

relieves the user of actuating the prosthesis’ DoFs during the preshaping phase of the 

movement, reduced use of the myo-controller interface is expected. Finally, since the 

autonomous controller is only involved during the preshaping phase, this specific 

phase should have a shorter duration and lower use of myo-control from the user. 
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To assess these hypotheses, the autonomous controller previously developed 

has been embedded into a human-machine interface comprising a pattern recognition 

myo-controller and a feedback module to improve the symbiosis between the two 

agents in control of the prosthesis. The outcomes obtained using this SA system have 

been compared with the ones obtained using only the myo-controller. Those outcomes 

were obtained through two different experiments, the custom clustered scene 

interaction (CSI) and the standard functional outcomes measurement SHAP, assessing 

the system under different conditions reproducing more complex ADLs than the ones 

used to assess the previous SA systems.  

3.1. Implemented Human Machine Interface 

In order to combine the autonomous controller with the manual controller so 

that the user can control the prosthesis, the autonomous controller needs to be 

integrated into an SA system. This system comprises the autonomous controller 

previously developed, a myo-controller, a shared control module responsible for the 

distribution of the control of the prosthesis, and finally, a feedback module aiming to 

improve the symbiosis between the user and the autonomous controller. 
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3.1.1. Myo-control 

 

Figure 3.1 Photography of the material used during the experiment with the highlight of the electrodes. 

Eight DC electrodes were used to acquire the EMG signals around the forearm of the participant. 

During the whole task, the user could control the prosthesis using muscle 

contractions. The signals provided by the eight electrodes were processed in Simulink. 

Eight EMG channels were acquired by the eight DC electrodes illustrated in Figure 

3.1. The signal acquired were sampled at 100Hz and classified through an LDA 

algorithm into either seven classes for the able-body subjects (close lateral, close 

palmar, open, pronation, supination, flexion, and extension), or four classes for the 

amputee subjects not able to perform seven different muscle patterns. Those amputee 

participants could switch from wrist control to finger control thanks to a short 

contraction in specific channels selected during the training session. This way, even 

being limited by the number of muscle contraction patterns they could produce, 

amputees could directly control the grasp or the wrist.  
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3.1.2. Shared control modality 

 

Figure 3.2 Scheme of the control part of the SA system. The autonomous and the manual controllers’ 

outputs are merged in the shared control module to command the prosthesis 

The shared control module selected the source of the control commands sent 

to the prosthesis through a sequential shared control modality (traded control) to merge 

the manual and the autonomous controller signals. The user’s commands had priority 

over any commands from the autonomous preshape module in order to remain a 

support device and to ensure the direct application of the user’s will. When a muscular 

contraction was detected, the command output of the LDA classifier was sent to the 

prosthesis, and the commands from the autonomous preshape module were ignored. 

After a window of inactivity from the user (one second), the commands from the 

autonomous preshape module were retaken into account. The same behaviour is 

produced as long as one object is grasped to ensure the user's total control of the hand. 
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This sequential control enabled to lock off the autonomous control when 

movements of the hand were too dangerous, such as when the hand was too close to 

several objects, or to ensure that the current pose of the prosthesis enabling the grasp 

does not change during the last centimetres of the reaching phase. 

3.1.3. Feedback Module 

 

Figure 3.3 Photography of the components used with highlight of the AR Glasses. Those were connected 

to the computer through an HDMI cable 

To provide information from the system to the user, the feedback interface 

displayed visual information through the AR Glasses illustrated in Figure 3.3. The 

virtual objects detected by the system were superposed to the user's vision at their 

computed positions. The colour of these objects indicated the selection and the 

decision taken by the system. While the shapes were modelled blue when the system 

planned no interaction, the objects were coloured yellow if selected. According to the 

grasping decision of the autonomous preshaping module, a green indication appeared 

on the object.  
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- If a top-grasp intention was detected, the top side of it turned green.  

- If the decision was a lateral grasp, a green vertical band surrounded the object.  

- If the decision was a side grasp, a green horizontal band surrounded the object.  

Icons were displayed in the corners to indicate to the user the state of the 

system. A blue 2D box icon in the left top corner indicated that the scene modelling 

module is active. In the right top corner, two icons indicated the decision state:  

- a yellow circle indicated that the system was selecting an object and adapting 

the prosthesis to grasp it,  

- a green hand indicated that the system was off because of manual commands 

detected or because of an object in the hand.  

- No icon appeared if the hand was too far away from any object of the modelled 

scene. 

An example of a reach, grasp, and relocation action is given in Figure 3.4 with 

the user's vision through the AR glasses. 

 

Figure 3.4 Illustration of the process of a grasp with detail of the different phases and representation of 

the feedback provided to the user through AR glasses , from [124] 
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3.2. Experimentation 

Several standard protocols exist in upper-limb rehabilitation to assess the 

dexterity of individuals using a prosthesis [125]. In order to answer the hypotheses, 

the experiment was required to comprise an object-crowded scene, a sequence of 

manipulation, a diversity of objects, and ADLs. As no functional outcome 

measurement embedding all these requirements was found, the first experiment, called 

clustered scene interaction (CSI), was developed to confront the participant with a 

scene comprising a relatively high density of objects placed on a table. The task was 

to perform a relocation sequence designed to require a variety of grasps. The second 

experiment was a part of the standard and popular Southampton hand assessment 

protocol SHAP [126]. This protocol is divided into two parts: the abstract objects, 

requiring the participant to replace six objects of different forms and weights, and the 

ADLs reproducing fourteen manipulations from a daily life routine. This protocol has 

the benefit of combining different objects’ shapes supposed to represent the variety of 

shapes present in everyday life and grasp strategies conditioned by the following 

manipulation. 

The performance was expected to be highly impacted by the learning curve 

because of the novelty of the different components for the user to adapt. In order to 

reduce the effect of this learning curve and fatigue, the CSI experiment was conducted 

in three sessions consisting of a two-hour training session and one session for each 

condition in random order. The training session introduced the able-body and the 

amputee subjects to the myo-control, the autonomous controller, and the task. 

3.2.1. System Initialisation 

Before each session, the system was calibrated. First, the myoelectric interface 

was calibrated in two different arm positions (shoulder 20° extended and elbow 70° 

flexed, shoulder 75° extended, and elbow fully extended). Three steps were necessary 

for the calibration: 1) measurement of the isometric maximal voluntary contraction 

(MVC), 2) collection of the data for the training of the classifier, done by asking the 

subject to perform the movement at two contraction levels (40% and 80% of the MVC) 

and 3) the fine-tuning of each threshold and each gain to regulate the class detection. 
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At the end of this process, amputee subjects were first tested on their ability to produce 

six different muscle patterns. If they were not satisfied with the prosthesis 

controllability, they tested the four-class control. 

The calibration of the SA system required the calibration of the AR glasses, 

the IMU, and the adaptation of the autonomous preshapes. Next, the IMU was 

calibrated by placing the three IR markers in the camera's field of view to compute the 

orientation of the constellation and the relation between the coordinate system of the 

IMU and the camera, as developed in section 2.1.2. Last but not least, the autonomous 

preshapes were fine-tuned by slowly adjusting the parameters, whereas the participant 

put their hand in the grasping condition. 

3.2.2. Protocol of the tasks 

Eight male right-handed non-disabled participants (from 23 to 30 years old) 

and two amputee subjects using transradial myoelectric prostheses (59 and 61 years 

old) participated in the experimentations. All the participants signed a written consent 

form approved by the Ethical Committee of the University Medical Centre Göttingen 

(22/04/16). Three non-disabled subjects had previous experience in myoelectric 

control. Both amputees regularly used transradial myoelectric prostheses. 

The first test, CSI, performed by the amputee and the able body participants, 

has been designed based on the “abstract object” of the SHAP, requiring the 

participant to relocate sequentially different objects. To get closer to a daily life 

situation and to assess the performance of the system in challenging conditions, the 

CSI extended it by placing several objects on the table during the whole task. Those 

included two cd boxes (130x20x130 mm), two tea boxes (130x65x80 mm), one can 

(117mm height, 65mm diameter) and one plastic peach (around 75mm diameter). The 

CSI also extended the SHAP by requiring an uninterrupted sequence of action to the 

subject. The purpose of this sequence was to assess the potential benefits of the SA 

system in a changing scene. The participants performed the task standing, which 

allowed them to utilise a wider variety of motions and body postures. As illustrated 

by Figure 3.5, the sequence of relocation was fixed. The participant had to put the two 

CD boxes on the left, then move the can and the peach on top of it on the marked 
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position on the right. For the fourth manipulation, the participant had to turn the tea 

box of 90°, then put the peach on it. Eventually, the last tea box was placed vertically 

close to the first one. Due to the limited field of view of the AR glasses, this sequence 

of manipulation required the user to orient the head to follow the object and therefore 

move the camera. The participants were also encouraged to grasp the objects as they 

preferred, which required the autonomous control to react to the possibly inconsistent 

behaviour of each participant. An oral countdown was given to start the trial, and the 

release of the last object was marking the end.  

 

Figure 3.5 Overview of the Cluttered scene interaction test (CSI) from [124]. The experimental setup and 

the task sequence are here represented. (A) the initial position of the user and the objects. The elastic is fixed to a 

pulley allowing left/right movements and compensate for the weight of the prosthesis (B) repositioning of the 2 CD 

boxes (1, 2) and of the objects-set (3) {tin can, peach}. (C) Rotation of the first tee box (4), translation of the peach 

from the top of the tin can to the top of the tee box (5), and transfer of the second tee box (6). (D) Final position of 

the objects at the end of the trial. 

To extend the assessment to more complex objects used in daily living, 

seventeen out of twenty-five tasks of the SHAP test were carried out by the amputee 

participants. These included every abstract object's relocation and the daily life 
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activities such as “Jar Lid”, “Glass Jug Pouring”, “Carton Pouring”, “Lifting a Heavy 

Object”, and “Lifting a Light Object”. The remaining seven tasks were excluded 

because of the incompatibility with the current setup (small object sizes, highly 

reflective objects, …). Following the official instruction, the trial started and ended 

with the participant's push-button activation.  

Participants completed ten trials per condition during the CSI test. Following 

the manual, the tasks from the SHAP test were not repeated. No time limit was set, 

but participants were instructed to perform it as fast as possible while at the same time 

avoiding excessive compensatory movements. No instructions were given regarding 

how to grasp or manipulate the objects. The experimenter observed the task execution, 

and the trial was repeated  

1) if, when using the SA system, the subject continuously used manual 

commands, which prevents the autonomous system from sending any 

command,  

2) if the user performed excessive compensatory movements;  

3) if the subject dropped an object while performing the trial;  

4) if hardware stopped functioning (e.g., the camera froze), before 5% of the trials 

had happened.  

3.2.3. Data Analysis 

The time required to complete the two experimental tasks (total time) was 

compared between the two conditions (the SA system versus. LDA) to assess the 

hypothesised increase of performance in accomplishing the tasks using the SA system 

compared to LDA. Therefore, this time measured from the start of the trial until its 

completion was the primary outcome measure in the CSI and SHAP test. 

As it was also hypothesised that the SA system also decreases the overall use 

of myo-control, the time during which the user-generated myoelectric inputs to control 

the prosthesis was recorded (myo-control time) and then compared as a secondary 

outcome measure. The myo-control duration was the cumulation of all the intervals in 

which the user-generated myoelectric control inputs in any trial phase. This time was 

again divided into hand (i.e., aperture) and wrist control (flexion and rotation). 
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Again, it was expected that the SA system would only impact the grasp 

preparation duration (preparation time) without affecting the manipulation duration 

(manipulation time). Indeed, the system was not active during this last phase. 

Therefore, the evolution of the two outcome measurements in each phase was 

compared between the two conditions. The manipulation time was the time interval 

between the grasping of the object and the subsequent object release. Since the 

autonomous system supported the preshaping of the prosthesis before the grasp, we 

expected a decrease in grasp preparation time with an unchanged manipulation time 

when using the proposed system. 

For the CSI test, the mean values of each outcome measure were compared 

between the interfaces (the SA system versus LDA). For the SHAP test, task durations 

passed the Kolmogorov-Smirnov normality test and were therefore compared with a 

paired t-test. The rest of the variables did not pass the Kolmogorov-Smirnov normality 

test. Therefore, the non-parametric Wilcoxon signed-ranks test was used to evaluate 

statistically significant differences. The results of the CSI test are reported as median 

(inter-quartile range); those of the SHAPs tests are reported as cumulative duration of 

the tasks. The significance level was set at p < 0.05.  

3.3. Results 

One hundred and sixty trials (2 control methods x 10 trials x 8 subjects) were 

performed during the CSI, test by non-disabled and 32 (2 control methods x 8 trials x 

2 subjects) by amputee subjects. Only the last six trials were used to minimise the 

influence of training on the performance outcomes. All subjects successfully 

performed the tasks in both the SA system and LDA conditions.  
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Figure 3.6 Trial time decomposition for the cluttered scene interaction (CSI) test performed by both able 

participants (A) and by amputee participants (B). The trial execution time and the total time spent using myo-

control are decomposed in preparation and manipulation phases. The indications above the asterisks stand 

respectively for a significant difference (p < 0.05) in the total amount of time (Tot), the time spent controlling the 

prosthesis manually (Myo), and the time spent controlling the wrist manually (Wrist) for each phase of the task.). 

From [124] 

Concerning the able-body group, the total trial time was significantly longer 

for LDA (63.3 [23.4] seconds) than for the SA system (50.5 [7.2] seconds), indicating 

a better overall task performance with the SA system. In detail, only the preparation 

time was significantly different, reducing from 38.0[16.8] seconds when using LDA 

to 32.9 [4.2] seconds when using the SA system. The time spent by the subjects 

generating myo-control activities also reduced significantly with a total reduction of 

the myo-control time from 34.6 [18.3] seconds using LDA to 22.6 [6.7] seconds using 

the SA system. This significant difference was found in the preparation phase, where 

subjects reduced myo-control time from 17.9 [13.2] seconds with LDA to 9.1 [2.9] 

seconds with the SA system. Concerning the target of the control, the time spent on 

the wrist control was significantly smaller for the SA system during both grasp 

preparation time and total trial time, while no significant difference was observed for 

the aperture control. The interquartile range for the total duration time was reduced 

from 23.5 seconds for LDA to 7.2 seconds for the SA system  
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Figure 3.7 Performance of the two amputee subjects during the SHAP tests. The cumulative duration of 

the test and the total time spent using myo-control are decomposed in the preparation and manipulation phase. 

The indications above the asterisks stand respectively for a significant difference (p < 0.05) in the total amount of 

time (Tot), the time spent controlling the whole prosthesis manually (Myo), and time spent controlling the wrist 

manually (Wrist) for each phase of the task. Adapted from [124] 

Concerning the amputee group, the first amputee performed significantly faster 

with the SA system (from 66.8 [9.1] seconds to 57.0 [6.7] seconds), while no 

significant difference was observed for the total trial time for the second amputee. The 

first amputee significantly reduced the duration of the preparation phase, while the 

second one reduced the duration of the manipulation phases significantly. Both 

decreased the myo-control time during the whole experiment and, more specifically, 

during the preparation phase. The second amputee also decreased the myo-control 

time during the manipulation phase. 

The SHAP was executed for a total of four repetitions (two control methods x 

two subjects). Both subjects successfully performed the tasks in both the SA system 

and LDA conditions. When using the SA system, both amputees obtained a reduction 
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of the total time, the preparation time, the total myo-control time, and the wrist control 

time for the whole experiment and the preparation phase specifically. No significant 

difference was observed during the manipulation phase. 

3.4. Conclusion 

These experiments were designed to assess the benefits in terms of time 

performance of an SA system for hand prosthesis in a realistic environment. 

The first experiment reproduced a sequence of tasks constantly affecting the 

pose of the prosthesis, the position of the objects in the scene, and reducing the 

possible mental preparation between each manipulation. The results of the able-body 

participants showed a significant reduction of the total time required to perform the 

sequence, confirming that the novel man-machine interface significantly improved the 

time performances compared to the state-of-the-art myo-control. Moreover, the 

detailed analysis showed that only the preshaping phase of the movement was affected 

with a significant time reduction as well, which was consistent with the hypothesis 

that the system only affects this specific phase since it was only active during this 

phase. The myo-control time and, more specifically, the time used to control the wrist 

was also significantly decreased, confirming our last hypothesis for the able body 

participants. Interestingly, the interquartile range of the trial’s duration was also 

significantly reduced, indicating a consistent performance. This uniformity of 

performance combined with a better average performance lead to the conclusion that 

the SA system’s performance is less sensitive to the user's skill and offers better 

control to anyone with potentially less time required for the user to train to operate the 

prosthesis. 

The number of amputee participants did not enable a generalisation of the 

results for the amputee population. Nevertheless, those two case studies showed both 

the benefits of the novel SA prosthesis. One of the two amputee participants showed 

the same pattern as the able-body group, significantly reducing the wrist control time 

during the preshaping phase of the movement. This reduction of the wrist control time 
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significantly reduced the myo-control usage time for the same phase. This also 

decreased the global trial duration. The second amputee showed another behaviour 

during this experiment. Both movement phases significantly reduced the time used to 

control the prosthesis and, more specifically, to control the wrist. However, whereas 

the preshaping phase seemed unaffected by the SA system with no significant time 

difference observed, the manipulation time was significantly reduced. This behaviour 

can be explained by the use of compensatory movement to grasp the objects. The 

instructions given to the subjects were intentionally unspecific regarding the grasp 

strategy to allow natural grasps and natural behaviours. Therefore, the results suggest 

that the second amputee used a suboptimal grasp during the pure myo-control trials, 

enabling him to grasp the object faster at the cost of longer manipulation. The 

significant reduction of the manipulation phase duration and the myo-control usage 

duration supported this interpretation. Indeed, the control of the prosthesis was 

reduced to pure myo-control in the two scenarios. The significant difference could 

thus only be explained by a difference in the amount of required wrist manipulation 

caused by a difference of prosthesis pose at the grasp of the object each after the grasps 

performed using the pure-myo-control. The reduction of myo-control usage during the 

preshaping phase of the movement confirmed that the participant used the SA system 

interface to take over the preshaping manipulation during this phase. The SA system 

interface enabled the participant to preshape the prosthesis in a similar amount of time 

than his performance during the pure myo-control scenario, leading to better hand 

position when considering the manipulations to be performed afterwards. 

On the other hand, the SHAP results clearly answer the initial hypotheses for 

both amputee participants. Indeed, the SA system interface condition shows a 

significant improvement of the time performance, linked to a significant reduction of 

the preshaping phase duration and the reduction of the myo-control usage and wrist 

control time. The relatively small manual control of the wrist required by the SHAP, 

as observed in the results, highlights the benefits of the SA interface. 

3.4.1. Limitations 

As previously mentioned, the amputee population participating in these tests 

(two amputee individuals) does not draw general conclusions related to the end-users 
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application of the semi-autonomous system. The two case studies show an 

improvement in the total performance in the two experiments. However, the behaviour 

is inconsistent in the CSI experiment, which shows that further investigations are 

needed to assert the benefits of semi-autonomous systems for amputee individuals. 

The results obtained have been impacted by the limitations of the autonomous 

controller discussed in the previous chapter, but also by the AR Glasses added to 

improve the interaction between the user and the autonomous system by limiting the 

incomprehension of an un-intuitive automatic actuation. The pure myo-control 

condition was performed without the AR glasses. Those limit the user's field of view, 

while their weight can lead to higher fatigue. This low wearability of the semi-

autonomous system might have decreased the benefits it provided. In the future, the 

AR glasses might be replaced by a newer version with a larger field of view [127], or 

even when the reduction of the occasional failures and delays makes the system more 

intuitive. Also, due to the limitations of the autonomous controller, the SHAP could 

not be used in its entirety. Indeed, some objects were too small or too reflective to be 

correctly acquired by the artificial exteroception module. This impacts the 

characteristic of the SHAP of representing the variety of objects and manipulation 

present in everyday life. 

The experiment duration required distributing the participant's training and the 

measurement of the conditions on different sessions. Because of the temporal 

variability of the EMG signals, the quality of the myo-control may have differed 

between the different experiment sessions. The pseudo-randomisation of the sequence 

of the conditions aimed to handle the effect of this variability. 

Eventually, the myo-control proposed to the amputee participants included a 

co-contraction to switch between the different controllable DoFs. In the standard two-

channel control frame, this switch has already been criticised for its potential un-

intuitiveness and reduced performance when controlling a multi-functional prosthesis 

[36]. The myo-control implemented for the amputee participants does not enable a 

direct control for all the DoFs at the same time but answers the low number of distinct 

muscle contraction patterns that the two amputee participants were able to produce. In 

a study produced by Li et al. in 2020 [50], a drop of accuracy was observed when 
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classifying more than six different muscle contraction patterns performed by amputee 

subjects. This number is not high enough to directly handle all the DoFs of the 

prosthesis used in this experiment, which justifies using an alternative design and 

encourages the development of semi-autonomous systems, reducing the need to 

control the DoFs of the wrist.  
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The previous chapter demonstrated the benefits of the SA system compared 

with the single use of an ML myo-controllers to control a multifunction prosthesis in 

terms of time performance and the reduction of physical effort of using a SA system 

to automate part of the preshaping actuation necessary to grasp the intended object.  

While the applicability of an SA prosthesis controller to a challenging scenario 

and its demonstrated potential benefit for the user motivates the development of an 

autonomous controller, it also raises the issue of the interaction between the user and 

the autonomous agent. The impact of the shared control modality on the benefits of a 

SA system should be studied to both integrate it in the design of future systems and 

understand the user's interaction with such a system.  

Many studies in recent years developed autonomous grasping systems and 

assessed the accuracy with which they reproduced the expected behaviour but did not 

implement HMI, enabling to merge them with the myo-control of a user (for example 
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[77], [78], [80], [88]). This can be seen as a consequence of the novelty of such 

systems, which contrasts with robotics [128] or other rehabilitation fields (e.g., 

wheelchair control [129]) where different SA control modalities are already well 

established. For the few studies from the upper limb prosthesis field which 

implemented SA interfaces, several designs of shared control modalities have already 

been implemented, such as 1) triggered, where the user actively triggers an automatic 

set of actions computed by the autonomous system with no possible interaction with 

it [75], [85]; 2) sequential, where there is a strict alternation between the control 

coming from the user and the autonomous system [101]; or 3) simultaneous, where 

the two agents control different DoFs at the same time [105]. However, the effect of 

the sharing modality on the performance and the user's interactions with the device 

remains unknown. 

The study presented in this chapter investigates if different modalities of shared 

control, in the context of a hand prosthesis user supported by an autonomous 

controller, impact the time performance, physical and cognitive effort. It was expected 

that the accuracy of the autonomous controller interacts with the shared control 

modality used and therefore has a significant impact on the performance. Therefore, 

the chapter investigates the effect on the performance, the physical and the cognitive 

workload of different combinations of shared control modalities, and the error level 

added on the autonomous controller. Standard functional outcomes measurements do 

not measure all these outcomes. Most of them focus on time performance. To measure 

the effects on the performance, the physical and the cognitive workload, a new 

assessment has been developed. The participants performed a dual-task comprising a 

standard reach-and-grasp task from different objects and from a different side, which 

enabled them to measure the time performance and the physical workload associated 

with error level and shared control modality. They also had to perform a reaction task 

simultaneously by pressing a button in reaction to an auditory tone to measure the 

cognitive workload on the model of the detection response task [130]. 

To assess these impacts, an SA system was implemented in a sensor-abundant 

environment implementing a “Wizard of Oz” concept, a concept already used to study 

the effect of SA systems in rehabilitation [131]. Thus, while not directly 
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implementable with wearable technology, the SA system developed in this study 

enabled to measure the interaction between the user and the system accurately. 

4.1.  A “Wizard-of-Oz” study design 

In the previous chapter, the system developed with off-the-shelf components 

provided support to the user in a relatively challenging context. The presented results 

proved the feasibility of developing wearable SA systems in an object-crowded 

environment and supporting the user during a continuous sequence of tasks requiring 

a continuous update of the scene understanding. It proved the benefits of time 

performance and muscle usage brought by the system in these conditions. However, 

these systems suffer from the lack of accuracy of the sensors on which they rely. For 

example, systems relying on computer vision to build an artificial exteroception suffer 

from factors lowering the performances of RGB-D cameras, such as lighting 

conditions and the speed of user's movement [132]–[134]. Similarly, myo-control also 

suffers from factors lowering the accuracy of the muscle contraction pattern 

recognitions. These non-controllable factors may influence the interaction between the 

user and the autonomous system.  

In order not to be affected by the technical issues such as sensors' accuracy and 

sensitivity to light or noise, and to focus the study on the shared control modality in a 

controlled environment, a “Wizard of Oz” [74], [135] study design was implemented. 

This study design replaces the unreliable sensors with more steady solutions to 

eliminate or significantly reduce the effect of instability and ensure that the results 

reflect the effect of the shared control modality and the difference of targeted final 

prosthesis’ pose.  

The system developed in this study enabled the two agents (the user and the 

autonomous controller) to interact with the 3.5DoF prosthesis previously used to study 

the effects of the shared control implementation. The shared control module ruled this 

interaction, and both agents aimed to grasp an object placed in front of the user on the 

table at a known position. As in the study presented in the previous chapter, the left-
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hand prosthesis (Michelangelo, Ottobock, Duderstadt Germany) used in this study had 

3.5 DoFs, including a two DoFs active wrist with flexion/extension and 

supination/pronation and two grasp types, palmar and lateral (only the palmar grasp 

was used here).  

The system replicated the SA system developed in the last chapters with some 

differences. The design of the intention detection implemented in the previous 

chapters requires the system to wait until the hand reaches the vicinity of the object, 

some centimetres before the final grasping hand position. While innovative and 

allowing a prediction of the grasping strategy, this design only enables a relatively late 

prediction and preshaping of the hand prosthesis by the autonomous controller. The 

window of interaction between the two control agents is highly reduced. Moreover, 

this design does not reproduce a natural preshaping timing, which set the draft position 

of the wrist during the flight of the forearm and potentially adjusts the wrist at the 

vicinity of the object [136], [137], but suddenly preshapes simultaneously every DoFs 

of the hand nearby the objects. Methods for predicting the intended final hand position 

earlier in the movement exist in the literature [84], [97]. These suggest that a stable 

and accurate prediction of the intention of the grasping strategy is realistic, whether it 

will be combining the prediction of the final position of the hand in relation to the 

object or predicting the final orientation of the hand directly. In the “Wizard of Oz” 

study design implemented, the prediction of the grasping strategy and the object is 

replaced by given instruction, ensuring that both agents know the final position of the 

hand. This early “prediction” enables the autonomous controller to reproduce a more 

natural actuation of the wrist by preshaping the prosthesis during the flight of the 

forearm.  

The commands emitted by the two agents were then integrated by the control 

fusion module, which implemented the three different shared control modalities, 

simultaneous, continuous, and sequential.  

Figure 4.1 illustrates the SA system implemented in this study. 
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Figure 4.1 Schema of the SA system replicated in a controlled environment . The two controllers, the 

autonomous system and the myo-controller, compute the prosthesis's actuation based on the inputs they receive. 

The two outputs are merged in the control fusion module, which builds the command sent to the prosthesis. 

4.1.1. Volitional control module 

This module replicated the HMI provided by an SoA 6 classes classifier by 

implementing a proportional three DoF prosthesis control associating particular 

movements of the wrist or the fingers to each DoF of the prosthesis. The SoA approach 

involves acquiring the EMG via several electrodes placed on the forearm and 

classifying the muscle contraction pattern. Instead, the system implemented in this 

study detected the movements of the wrist and the fingers mechanically. Hence, the 

module comprised two main components illustrated in Figure 4.2.  
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Sensory

 

Figure 4.2 Sensorized prosthesis adaptor. The 3D-printed adaptor at the centre of the pictures is fixed 

to the left forearm of the user and holds the left-hand prosthesis, Michelangelo. Push buttons surround the hand 

to detect movements of the fingers to associate them to functions of the hand. The armband placed at 5cm of the 

elbow records the intensity of the muscle contraction. The reflective markers constellation fixed on the adaptor 

enables the mocap system to track it in space. 

First, a custom-made mechanical adapter held the hand prosthesis and was 

attached to the forearm, surrounding the hand of the able-body user. Push buttons were 

embedded inside, associated with each DoF of the prosthesis. This way, movements 

of the wrist and the fingers were detected and selected the associated DoF. In case of 

conflict caused by several buttons pressed, DoFs were given different priorities to 

ensure that only one prosthesis function could be triggered. The pushbuttons were 

connected to an Arduino board that streamed their states to the host PC through a 

Bluetooth connection at 100 Hz. Second, a myoelectric armband containing eight 

electrodes was placed on the forearm at five centimetres from the elbow. This armband 

acquired the EMGs of the forearm as an SoA myo-control HMI does. These eight 

EMG channels streamed the data at 200Hz to the host PC via Bluetooth connection. 

The data was passed through a Root-Mean-Squared (RMS) filter with a window of 

150ms and an offset between consecutive time windows of 10ms. The mean of the 

eight channels represented the intensity of the contraction of the user, which, once 
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normalised between the intensity of the minimum and 80% of the maximum voluntary 

contraction, enabled the user to proportionally control the speed and strength of the 

actuation of the device.  

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =

𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −  𝑚𝑚𝑚𝑚𝑚𝑚
0.80 ∗ 𝑀𝑀𝑀𝑀𝑀𝑀 −  𝑚𝑚𝑚𝑚𝑚𝑚

 
(4-1) 

 
𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = � 𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

8

𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=1

= � �
1

300
� 𝐸𝐸𝐸𝐸𝐸𝐸(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)2
𝑇𝑇+300

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠=𝑇𝑇

8

𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎=1

 

(4-2) 

In these equations, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  is the velocity command sent to the 

prosthesis, 𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑀𝑀𝑀𝑀𝑀𝑀 are respectively the minimal and the maximal voluntary 

contraction levels while 𝐿𝐿𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  is the current contraction level. 

𝑅𝑅𝑅𝑅𝑅𝑅(𝐶𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎) is the value given by the RMS filter, and EMG is the value acquired 

and streamed by the electrode of the armband. This data filtering induced a delay of 

around 80ms, below the critical delay of 100ms [138]. 

4.1.2. Autonomous module 

The second agent was the ideal autonomous controller designed to preshape 

the prosthesis during the flight to reach the instructed grasping position once it arrived 

in the object vicinity. This module received the position and the orientation of the 

prosthesis tracked via a motion tracking system (Qualisys Ltd., Gothenburg, Sweden) 

at 100Hz and the rotation of the two DoFs of the wrist and fingers via the encoders 

embedded in the prosthesis. This data constituted the artificial proprioception of the 

system. The module received the position of the target object as well, which 

constituted the artificial exteroception of the system. 

During each trial, the autonomous system aimed to reach the desired grasping 

configuration associated with the grasping side instructed to the user. This desired 

grasping configuration was calibrated according to the user preference at the 

beginning of each session. The forearm position was tracked and expressed into the 
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percentage of the movement according to equation (4-3) to follow the user's forearm 

movement and enslave the wrist movement.  

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑔𝑔𝑒𝑒 =
𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
 (4-3) 

In this equation, the 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 is the distance between the hand prosthesis 

(extracted from the position and the orientation of the forearm) and the rest area, the 

𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is the distance between the hand prosthesis and the object, and 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 is the percentage of the carried out movement. In case of missing data, 

the hand prosthesis position was linearly interpolated from the speed and direction of 

the movement of the last two seconds where the forearm was still tracked.  

 

Figure 4.3 Decomposition of the different phases of the automatic preshaping. The phases are related to 

the position of the forearm 

Thanks to this percentage, the movement was split into three phases illustrated 

in Figure 4.3. In the first one, below 15% of the movement, the hand remained in 

starting pose. In the second one, between 15% and 75% of the movement, the wrist 

actuation followed the speed of the forearm to bring the wrist into the final position, 

calibrated at the start of the session. Hence, the remaining time for the forearm to 

arrive in the object vicinity (the last 75% of the trajectory) was computed according 

to equation (4-4). 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

=
�0.75 ∗ (𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟)� − 𝐷𝐷𝐷𝐷𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 

(4-4) 

In this equation,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the average speed computed on the last 

200ms tracking position data and 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 the time remaining for the hand 

prosthesis to arrive at the vicinity of the object. Once the remaining time was 

computed, the DoF actuation speed of the prosthesis was calculated as the ratio 

between the angular distance between the final and the current position and the 

remaining time (equation (4-5)). This implementation of the wrist actuation provided 

the speed curves during the movement similar to the one observed by Dr. Jeannerod 

during natural prehension movements [136]. 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
 (4-5) 

In this equation, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷 is the computed speed at which the specific DoF of 

the prosthesis had to be actuated to reach the targeted position when the prosthesis 

entered the object vicinity. This speed was given in degrees per second before being 

normalised according to the specifications of the device. 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝐷𝐷 is the distance 

the DoF still has to travel before arriving at the target position. 

In the third and last phase, after 75% of the movement, the system aimed to 

make the final adjustment, such as finishing the preshaping if still needed and 

compensating for a different forearm orientation. The object proximity required to 

actuate the wrist at the maximum speed authorised by the prosthesis. The 

compensation for the possible different forearm orientation reproduced the previous 

system [124]. It also had the advantage of reducing the use of a compensatory forearm 

rotation from the participant since this movement is not available for many prosthesis 

users. The hand's orientation was first computed in the world reference frame from the 

orientation of the forearm obtained from the motion capture system and the position 

command controlling the wrist of the prosthesis (equation (4-6)). 

 𝑂𝑂𝑉𝑉ℎ𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑂𝑂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ (𝑂𝑂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑂𝑂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
−1 ) (4-6) 
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In this equation 𝑂𝑂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 is the orientation of the forearm of the participant in 

the world coordinate system and 𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟  is the rotation commanded to the 

prosthetic wrist. The term (𝑂𝑂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟 ∗ 𝑂𝑂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
−1 ) represents, therefore, 

the expression of the instructed wrist rotation in the world coordinate system. Finally, 

𝑂𝑂𝑉𝑉ℎ𝑎𝑎𝑎𝑎𝑎𝑎  is the orientation in the world coordinate system of a virtual hand prosthesis 

representing the hand prosthesis after the instructed rotation. Quaternions were used 

in the model instead of rotation matrices to reduce the quantity of data transferred. The 

hand's orientation in the world coordinates can then compute the possible 

compensatory movements (equation (4-7)). 

 𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ (𝑂𝑂𝑉𝑉ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑂𝑂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑂𝑂𝑉𝑉ℎ𝑎𝑎𝑎𝑎𝑎𝑎
−1) (4-7) 

In this equation, 𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 the rotation and flexion instruction calibrated for the 

current grasp side. Since the forearm orientation was calibrated to be aligned with the 

origin when grasping an object, the term (𝑂𝑂𝑉𝑉ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝑂𝑂𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 ∗ 𝑂𝑂𝑉𝑉ℎ𝑎𝑎𝑎𝑎𝑎𝑎
−1)  is the 

expression of the difference of orientation of the forearm with the calibrated position 

in the virtual hand coordinate system. This way, the difference of orientation of the 

forearm with the calibrated position was retrieved from the position instruction. 

Finally, 𝑂𝑂𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  is the system's final orientation of the hand target, 

compensating for potential over-rotation of the participant's forearm. The final 

orientation was then expressed in Euler angles to extract the rotation and flexion 

commands to the control fusion module. 
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4.2.  Implementation of the different shared control 

modalities 

Once the shared control module received the commands emitted by the two 

agents, it composed the final command to send to the prosthesis according to the 

shared control modality of the trial. As listed earlier, the three possible modalities of 

the study were sequential, simultaneous, and continuous, illustrated in Figure 4.4. In 

the manual-baseline condition, the control fusion module retained any command 

emitted by the autonomous controller. 

 

Figure 4.4 Scheme of the different shared control modalities implemented. They are here represented 

according to their behaviour regarding the myo-control inputs 

In the sequential SA modality, the autonomous controller controlled all the 

DoF of the hand under the condition that the user was not actuating the prosthesis 

through myo-control. In that case, the commands sent by the autonomous controller 

were ignored to let the user be the only agent in control. After any myo-control input, 

a window of 1.5 seconds of inactivity was observed before resuming the autonomous 
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system actuation. This window acted as a temporal filter for the potentially 

intermittent myo-control. 

In the simultaneous SA modality, the autonomous controller was only active 

during the actuation of one of the DoFs by the user via myo-control. In this case, it 

actuated the DoF that the user did not currently control. The prosthesis was therefore 

not actuated when the user did not produce any muscle contraction. 

Finally, in the continuous SA modality, the autonomous controller controlled 

all the DoFs of the prosthesis not presently actuated by the user. A window of 1.5 

seconds was observed before handling back to the autonomous controller a previously 

manually actuated DoFs. In this modality, the autonomous controller was in charge of 

several DoFs regardless of the user’s interaction with the myo-control. 
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4.3. Experimentation 

The experiments were performed in ten non-disabled subjects (five females 

and five males), from 24 to 55 years old, all right-handed. The goal of the study and 

the manual control of the prosthesis and all three SA control modalities were explained 

to each participant. All subjects signed a written consent form approved by the Ethical 

Committee of the University Medical Centre Göttingen (22/04/16).  

 

Figure 4.5 Illustration of the experimental setup. The participant started the trial with his forearm on the 

rest area platform (blue circle). In front of him, on the table, two objects stand in three possible positions (blue 

rectangles). On the right, a push button (orange circle) enabled the participant to react to the auditory task emitted 

by the high speakers (green rectangles). The instructions were displayed on the monitor (orange rectangle): 1) the 

targeted object and grasp side, 2) the position of the objects at the end of the manipulation, 3) the countdown, and 

4) the currently implemented shared control modality. 

4.3.1. Experimental setup 

The effect of the three modalities on the three outcomes, time performance, 

physical and cognitive efforts, have been assessed through a dual-task combining a 

reach and grasp task and an auditory reaction task. Therefore, the subject was standing 

in front of a table on which two objects, a box (130x65x80 mm) and a cylinder 

(117mm height,65mm diameter), were standing on two of the three spots marked with 

tape. The height of the table was adjusted to the height of the participant so that the 

objects were graspable by the user with a horizontal forearm. On the user’s left was 

placed a platform with foam to place the below part of the adapter between each trial. 

This platform was called the resting area and marked the starting position of the 
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movement. On the user's right, a push-button enabled the user to react to the auditory 

task. Finally, two high speakers emitted the auditory cues to which the participant had 

to react. The instruction and the countdown were visually provided on the screen 

standing in front of the participant. 

4.3.2. Experimental protocol 

Each experiment session started with the calibration and training of the 

participant. The participant was first explained the goal and the process of the study 

as well as the functioning of the myo-control, then equipped with the armband and 

prosthesis adapter. The maximal and minimal voluntary contractions were acquired 

by the mean of three high and low muscle contractions for each of the six functions of 

the prosthesis. These values were then used to normalise the contraction level to 

control the prosthesis speed of actuation proportionally. The participant was then 

trained through a series of specific actions of the prosthesis and of object grasps. Once 

the four different grasp sides had been practised, the preferred grasping position of the 

wrist and forearm orientation were calibrated for each of them. 

Once this was done, the measurement session started. At each trial, the 

participant was asked to keep the forearm on the rest area platform. The prosthesis 

was there preshaped in a pseudo-random position. This pseudo-random position was 

always at 80° from the expected final position to ensure the same amount of required 

actuation of the prosthesis for each trial. At the end of the three seconds countdown, 

the participant was asked to reach the instructed object and grasp it according to the 

instructed grasp side. The object had to be re-located on the previously free spot, 

ensuring a relative diversity of object position. The grasp of the object triggered the 

end of the measurement. This grasp was defined and detected as a none null force 

exerted by the fingers and none fully closed fingers. Once the re-localisation was done, 

the participant was required to put back the forearm on the rest area platform and wait 

for the subsequent trial. Starting at the end of the three countdowns, the auditory task 

started as well. Auditory signals were emitted and lasted until the reaction of the 

participant on the push button. After the reaction, a quiet window of either 0.8 or 1.6 

seconds was imposed before the next signal. The auditory task stopped with the 

participant's reaction to the last signal emitted before the grasp of the object. 
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To study the impact of the shared control modalities on the outcomes regarding 

the error level, three error conditions were implemented: no error, moderate error, and 

high error. The no error condition does not affect the commands of the autonomous 

controller. The moderate and large error conditions were added respectively 30° and 

60° on each wrist DoF with a pseudo-random direction. If the addition of the error to 

the autonomous controller’s decision was outside of the prosthesis’ range of motion, 

then the direction of the error was reversed.  

Once the calibrations and training were done, the dual-task was performed. 

The ten reach-and-grasp conditions comprising the manual baseline and the nine 

combinations of three shared control modalities and three error conditions were 

performed through two groups of ten trials. To confirm the validity of the auditory 

task, a pure auditory task baseline condition was added through four groups of ten 

trials. The twenty-four groups were then performed in random order. At the start of 

each group of trials, the shared control modality was communicated to the participant. 

Fifteen-minute breaks were observed after every 60 trials. 

4.3.3. Outcome measures and data analysis 

The effect of the control-sharing modalities was measured through three 

outcome measures. The duration of the trial was associated with the time performance. 

The myo-control duration accounting for the time the participant used myo-control to 

actuate the prosthesis was associated with the physical effort required to perform the 

trial. Finally, the delay of reaction, which was the maximal time of the trial needed by 

the participant to press the push button after the auditory signal, was associated with 

the cognitive workload caused by using the prosthesis in the specific condition.  

Each participant performed 240 trials decomposed into twenty-four groups of 

ten trials. The two first trials of each group were removed from the analysis to avoid 

adapting to the new modality on the measures. For each participant, the average values 

of the outcome variables were computed per condition. None of the outcome variables 

passed the Kolmogorov-Smirnov test. Consequently, in the case of a significant 

Friedman test, the differences between conditions were assessed using the Wilcoxon 
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signed-rank test, which considered the dependence between outcomes from the same 

individual. The obtained p values were corrected using a Bonferroni-Holm correction. 

4.4. Results 

Three outcomes were measured to quantify the impact of the shared control 

modality, which will be detailed here in sequence. 

4.4.1. Trial Duration 

 

Figure 4.6 Outcomes of the duration of the trial during the different conditions. The depicted values are 

the medians [interquartile ranges] of the calculated averages for all participants in the respective condition. The 

colour scale is normalised to the minimal and maximal values of the table. Statistical differences with a p-value 

lower than 0.05 are marked with a ‘*’. 

As illustrated by Figure 4.6, the increase of error led to the increase of the time 

necessary to complete the task. Thus, the performance of the three SA modalities 

decreased, as shown by the significant increases in the trial duration for each modality 

between the no error condition and the moderate error condition. The second step of 
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added error also increased the trial duration using the simultaneous SA modality and 

the continuous SA modality. Still, no significant difference was observed for the 

sequential SA modality.  

When errors were added, the decrease in performance shown by the SA 

modalities also affected the comparison with the manual condition. Compared to the 

manual condition, all SA modalities significantly reduced the trial duration in the no 

error condition. In the moderate error condition, the time performance of the 

continuous and sequential SA modalities was similar to the baseline (no statistical 

differences observed). In contrast, the simultaneous SA modality led to a significant 

increase in the trial’s duration. During the large error condition, participants performed 

significantly faster during the manual conditions than the conditions featuring any of 

the three SA modalities. 

Finally, the differences between the trial’s duration obtained using the different 

SA modalities remained similar among the different error conditions. Using the 

sequential SA modality led to a shorter trial duration compared to the simultaneous 

SA modality during the three error conditions and compared to the continuous SA 

modality during the moderate and large error conditions.  
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4.4.2. Myo-control usage duration 

 

Figure 4.7 Outcomes of the duration of the myocontrol usage during the different conditions. The 

depicted values are the medians [interquartile ranges] of the calculated averages for all participants in the 

respective condition. The colour scale is normalised to the minimal and maximal values of the table. Statistical 

differences with a p-value lower than 0.05 are marked with a ‘*’. 

A similar pattern was observed for the duration of the myo-control usage. 

Again, the increase of error led to an increase in the usage of myo-control, shown in 

Figure 4.7. This increase of the myo-control usage’s duration was significant for each 

modality between the no error and the moderate error conditions and between the 

moderate and the large error conditions. 

In a similar pattern to the trial duration, the increase of the myo-control usage 

duration related to the addition of error affected the comparison with the manual 

condition. The three SA modalities reduced the myo-control usage compared to the 

trial performed under the manual condition during the no error condition. 

Nevertheless, with moderate errors, only the use of the sequential SA modality 

reduced the myo-control usage duration. In contrast, the continuous and the 

simultaneous SA modalities led to a similar performance to the manual condition (no 

statistical differences observed). With large errors, the participants required more 
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myo-control usage when using the simultaneous and continuous SA modalities than 

pure manual conditions. Only the sequential SA modality remained similar to a 

manual, with no statistical difference observed. 

Finally, the difference between the myo-control duration obtained using the different 

SA modalities evolved over the different error conditions. Under the no error and the 

moderate errors conditions, the simultaneous SA modality required significantly more 

myo-control than the two other SA modalities. Under the large error condition, the 

simultaneous and continuous SA modalities exhibited similar myo-control duration. 

Both exhibited a significantly higher myo-control duration than the sequential SA 

modality. 
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4.4.3. Reaction delay to the auditory task 

 

Figure 4.8 Outcomes of the reaction delay during the different conditions. The depicted values are the 

medians [interquartile ranges] of the calculated averages for all participants in the respective condition. The 

colour scale is normalised to the minimal and maximal values of the table. Statistical differences with a p-value 

lower than 0.05 are marked with a ‘*’. 

Illustrated in Figure 4.8, the reaction delay was significantly longer when using 

the continuous and sequential SA modalities between the no error and moderate error 

conditions and the continuous and simultaneous SA modalities between moderate and 

large error conditions. No statistical differences were observed between the manual 

condition and the three SA modalities under the no error and the moderate error 

conditions. Under the large error condition, the simultaneous and the continuous SA 

modalities showed a significantly longer reaction delay than under the pure manual 

condition. When using the sequential SA modality, participants had faster reactions 

than when using the continuous SA modality under the moderate error condition and 

faster reactions than when using either the continuous or the simultaneous SA 

modalities under the large error condition. 
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4.5. Representative examples of user’s behaviour in 

continuous, simultaneous, and sequential SA-

modalities 

During the experiment, different behaviours appeared according to the 

condition and the user. Some conditions appeared to have similar behaviours, and it is 

essential to review them in parallel with the median outcomes obtained per condition. 

They can provide inputs to explain the outcomes of the different conditions. 

 

Figure 4.9 Examples of the behaviour of the pose of the three DoFs of the prosthesis under manual 

condition. The three different DoFs (aperture, rotation, flexion) are represented by one colour each (blue, 

orange, green), either dark when the movement was due to commands from the volitional controller or light 

when the autonomous controller was the origin of the actuation. The different phases of the reaching movement 

are marked by vertical bars: the resting phase (R) from 0% to 15% of the trajectory, the flight (F) from 15% to 

75% of the trajectory, and the object’s vicinity (V) after 75% of the trajectory. 

As illustrated in Figure 4.9, the user had to control every DoFs sequentially to 

grasp the object from the required side in the manual condition. When the user 

conditioned the movement (in manual and simultaneous SA modality conditions), the 

actuation of the prosthesis starts most often in the vicinity of the object. When no error 

was added to the autonomous controller (Figure 4.10), the continuous and the 

sequential shared control modalities produced similar pose profiles with the 

autonomous controller preshaping the prosthesis until a graspable position and the user 

grasping at the end. The simultaneous shared control condition required the user to be 
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active earlier to preshape the prosthesis. When 30° of error were added to the 

autonomous controller (Figure 4.11), a minor correction was often observed to place 

one of the DoF over- or under-actuated by the autonomous controller. The sequential 

shared control modality transforms the SA system into a pure myo-control system 

when the user intervenes (Figure 4.11.C and Figure 4.12.C). On the other hand, the 

simultaneous and the continuous shared control modalities sometimes led to 

conflictual situations during the large error conditions (Figure 4.12 A adn B). Indeed, 

the autonomous controller positioned back a DoF previously corrected by the user 

while this one corrected a second DoF. This led to cycles of corrections delaying the 

grasp of the object. 
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Figure 4.10 Examples of the behaviour of the pose of the three DoFs of the prosthesis under the no error 

condition for the three shared control modalities. The three different DoFs (aperture, rotation, flexion) are 

represented by one colour each (blue, orange, green), either dark when the movement was due to commands from 

the volitional controller or light when the autonomous controller was the origin of the actuation. The different 

phases of the reaching movement are marked by vertical bars: the resting area from 0% to 15% of the trajectory, 

the flight from 15% to 75% of the trajectory, and the object’s vicinity after 75% of the trajectory. 
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Figure 4.11 Examples of the pose behaviour of the prosthesis's three DoFs under the 30° error condition 

for the three shared control modalities. The three different DoFs (aperture, rotation, flexion) are represented by 

one colour each (blue, orange, green), either dark when the movement was due to commands from the volitional 

controller or light when the autonomous controller was the origin of the actuation. The different phases of the 

reaching movement are marked by vertical bars: the resting area from 0% to 15% of the trajectory, the flight from 

15% to 75% of the trajectory, and the object’s vicinity after 75% of the trajectory. 
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Figure 4.12 Examples of the pose behaviour of the prosthesis's three DoFs under the 60° error condition 

for the three shared control modalities. The three different DoFs (aperture, rotation, flexion) are represented by 

one colour each (blue, orange, green), either dark when the movement was due to commands from the volitional 

controller or light when the autonomous controller was the origin of the actuation. The different phases of the 

reaching movement are marked by vertical bars: the resting area from 0% to 15% of the trajectory, the flight from 

15% to 75% of the trajectory, and the object’s vicinity after 75% of the trajectory. 
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4.6. Summary of the findings 

This chapter aimed to assess the impact of shared control modalities on the 

performance, the physical, and the cognitive workload. Therefore, ten participants 

performed the same reach-and-grasp task under different error conditions and different 

SA modalities.  

First of all, it can be noted that the results obtained with the three SA modalities 

during the no error condition show that the SA supports the user in terms of time 

performance, which joins conclusions from previous studies [81], [101], as well as the 

previous chapter. This benefit of SA could be explained by the fact that the SA system 

actuated several DoFs of the prosthesis simultaneously while the user was limited to 

one. It is to be expected that the more DoFs are controlled by the SA system, the 

greater the performance gain. It was also shown that the performance difference was 

very low between the three shared control modalities when no error was applied. This 

result may contribute to enable the comparison between different SA systems 

implementing different shared control modalities. It should also be noted that the 

simultaneous SA modality required more myo-control usage than the other shared 

control modalities. This result was also expected since, by design, the SA system was 

only activated when using myo-control. The significant difference between the 

sequential and the simultaneous SA modalities shows that activation reduces the 

benefit of time performance brought by the SA system. The continuous and sequential 

SA modalities have similar performances, explained by the fact that both share the 

same advantage of starting the SA support from the beginning of the movement 

without waiting for the activation from the user. In both cases, the hand was already 

preshaped at the end of the reaching movement. The user only had to close the hand 

with no activation from the SA since the hand was already at the final position. 

However, as the error increased, the continuous modality moved away from 

the sequential shared control modality and towards the simultaneous one. These 

results can be fathered to the simultaneity of the control between the two agents. This 

simultaneity can lead to a situation of a fight between the two agents where the SA 

brings back one DoF that the user just corrected. This opposition leads to a sharp 

decrease of the time performance and increase of the physical and cognitive effort as 
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demonstrated by the significant difference with the sequential modality, which 

excludes this simultaneity of control. This fighting situation can be dangerous for any 

system authorising simultaneity, such as [105]. One possibility to avoid this situation 

is to condition the support of the SA system by a concordance of the actuation of the 

two agents. If the commands are relatively similar, then the SA is allowed to complete 

the myo-control from the user [95] 

On the other side, the sequential modality seemed to reach a plateau when the 

error increased. As the results show, the sequential shared control SA modality 

obtained similar time performance and cognitive workload outcomes between the 

moderate and large error conditions. One interpretation is that when the user detected 

the error from the SA system, they switched to manual control by using myo-control 

and performed the whole preshaping task manually. According to this interpretation, 

the small significant increase of trial duration for the sequential shared control 

modality under the large error condition compared to manual baseline would be due 

to the time for the participant to realise the error from the SA system. Although 

requiring greater cognitive effort than without error, the sequential shared control 

modality in the large error condition still shows a similar reaction delay to the auditory 

task than the manual baseline. 

Overall, in the setup implemented here, the sequential modality seems to stand 

above the other SA modalities because it does not require an action from the user to 

activate it, reducing the physical effort required and increasing the time performance. 

It also allows the user to have complete control over the prosthesis if errors appear in 

the system. This modality has already been used in at least one recent SA system [101].  

The sequential modality is similar to a triggered system since those conditions 

the activation of the autonomous controller by an action or a signal emitted by the user 

and do not allow simultaneous control from the two agents. Trigger systems use, for 

example, muscle contraction[75], [82], or EEG [85] to condition the support provided 

by the autonomous controller. In this perspective, the sequential modality conditions 

the activation of the autonomous controller by the absence of a user signal, which does 

not require a specific action from the user. This constitutes, therefore, a transparent 

trigger condition.  
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4.6.1. Limitations 

The “Wizard of Oz” study design enabled limiting the effect of the inaccuracy 

of sensors or the myo-control in the interaction between the user and the autonomous 

controller. It enabled to study more precisely the effect of the difference of target 

prosthesis’ pose when the autonomous controller and the user collaborate to preshape 

the prosthesis. Each technological improvement makes this setup more realistic. 

However, the lower accuracy and robustness of the SoA myo-control and autonomous 

system does not allow the conclusion of this chapter to be directly transposed to 

current semi-autonomous configurations. As a matter of fact, the volitional control 

implemented here impacted the effort required to actuate the prosthesis and the 

confidence the participant could place in their control. This may impact the incentive 

for the user to rely on one controller or the other. 

The results presented in this chapter exclude amputee participants. The 

experience that the prosthesis end-users gather in their everyday life on the control of 

their prosthesis may influence the impacts of the shared control modality on the three 

outcomes collected. The choice of the shared control modality may also be made 

considering other outcomes such as the impact on the embodiment of the prosthesis. 

Indeed, the embodiment is an essential factor for the acceptance of the prosthesis, and 

the addition of a second agent controlling the hand may interfere with the feeling of 

ownership and agency that the prosthesis’ user usually has with his limb’s replacement 

device. It might be necessary to condition the actuation of the hand with a muscle 

contraction to ensure the feeling of agency. In the study [139], the authors Tsakiris 

and Haggard claim that the movement does not have to be congruent with the intent 

of the individual to produce a feeling of agency but needs to be simultaneous. This 

would then justify the use of a simultaneous shared control modality. 

Finally, the experiment proposes a short task with a few seconds of preparation 

during which the participant can plan the actuation necessary to complete the task. 

This may influence the impact of the SA system on the performances. While forearm 

movement remains natural because it is not affected by the limb deficiency condition 

and therefore can be good support for intention detection, the exact actuation of the 

wrist may require some cognitive workload. The difference in cognitive workload can 
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be more significant if the user does not have the time to plan the actuation before. This 

would require either a sequence of movements like in the previous chapter or to show 

the initial prosthesis pose and the instructions to the user only at the start of the trial.  



Chapter 5: Discussion of the dissertation 

101 

 

 

 

5.Discussion of the dissertation 
 

 

 

 

 

 

At the beginning of this thesis, the prosthetic devices state and the current myo-

control interfaces were exposed. The gap between the increasing number of actionable 

prostheses DoFs and the limited bandwidth of the myo-control commands was 

presented to conclude that the myo-control bottleneck prevents the full use of 

dexterous prostheses and their active wrist. The two solutions currently developed 

(pattern recognition algorithms and multi-modalities controllers) were described. 

Since these solutions have been developed separately, a substantial lack of knowledge 

on the impact of their combination was identified. Therefore, in the further progress 

of this thesis, two studies were dedicated to investigating this matter by the mean of 

newly developed semi-autonomous systems. 
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5.1. Summary of the findings 

The first chapter proposed a method to preshape the prosthesis based on its 

position in the scene. The goal was to study the applicability of an autonomous 

controller in a dynamically changing, object-crowded scene. Hence, an autonomous 

controller was developed, comprising several innovations such as the whole scene 

modelling and the preshaping of the hand based on its position. Its functioning is based 

on the fusion of several modalities, including computer vision, inertial measurement 

units, pressure sensors, position encoders, while providing feedback to the user 

through augmented reality glasses. This diversity of sensors enables the system to 

perform a full scene analysis using a SLAM algorithm. In contrast to other studies, 

which associate a single grasp strategy to the recognised or analysed object [75], [77], 

[78], [80], [88], [98], [108], the developed SA system adapts the grasp strategy to the 

intention of the user, through real-time tracking of the forearm and of the surrounding, 

and a continuous update of the preshape fitting to the context. This continuous support 

provides the preshape of a two DoFs active wrist, while most autonomous controllers 

developed until now only preshape one wrist DoF, if any. 

The second chapter aimed to determine if using an SA controller combining a 

semi-autonomous controller with an established state-of-the-art machine learning 

myo-control could provide better performance than using this myo-control alone. An 

SA interface (the SA system) was designed by associating the autonomous controller 

developed in the previous chapter with an LDA myo-controller. This collaboration 

between the two controllers was ruled through a sequential shared control (traded 

control) and supported by visual feedback through an augmented reality display. This 

SA system has been assessed in clinical tests where no other SA systems have been 

tested before to confirm the range of application of the autonomous controller 

developed previously. It performed thus, in a standard test known for reproducing 

ADLs, in a scene where objects were numerous and touching each other, which 

challenges the computer vision and the intention detection programs, and were re-

located. Eight able-bodied and two amputee subjects participated in this study. A 

detailed analysis enabled to demonstrate 1) the increase of performance compared to 

the SoA ML controller alone due to faster preshaping, potentially partly explained by 
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the simultaneity of the movements performed by the autonomous controller, 2) a 

reduction of the physical effort required to perform the task since the muscle 

contraction was not anymore necessary to preshape the prosthesis, 3) a reduction of 

the wrist control, leading to a reduction of the number of different actuation required 

to perform the task which is a step in the direction of a simplified control, 4) a 

reduction of the variance of the performance, bringing the users to a similar level less 

impacted by their original skills. These results motivate the development of active 

wrists and more advanced SA systems, which could enlarge the benefit observed in 

this study to more detailed object interaction or through a system more comfortable to 

wear for the user. 

Finally, the third chapter focused on the impact of the design of the shared 

control modality of SA controllers for prosthetic hands. Hence, a review was done on 

the shared control modalities implemented in the different SA systems from the 

literature. This review concluded by establishing a lack of knowledge regarding the 

impact of the shared control implementation, both about its effect on the performance 

and the overall user interaction with the prosthesis, and the lack of consideration of 

these effects when assessing the developed SA interface. To contribute to answering 

to this lack of knowledge, the detailed effects of three different shared control 

modalities on the time performance, the physical and cognitive efforts have been 

assessed. The interaction with the accuracy of the autonomous controller has also been 

investigated through the addition of errors on the autonomous controller decisions. 

Therefore, an SA system has been implemented in a controlled environment, 

reproducing a realistic myo-control and realistic hand tracking with almost flawless 

accuracy. The controlled environment enabled 1) to implement a system capable of 

preshaping the prosthesis in flight, 2) to implement an errorless intention detection, 

and 3) to accurately control the error added on the decision of the SA controller. The 

data of ten participants, who performed a dual-task combining a reach-and-grasp task 

with an auditory reaction task, has been recorded. The results show that the time 

performance and the physical workload are impacted by the shared control modality 

implemented. This impact changes and increases when the level of added error 

increases. The benefits of adding a SA system over a pattern recognition system were 

impacted as well. The design of the sequential SA modality, assimilable to a traded 
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control, seemed more advantageous than the two other modalities thanks to its 

flexibility and its performance. It offered the support of the autonomous controller 

when this one made sense and limited its impact when the support was not possible 

nor desired. These results stressed the importance of implementing and the clinical 

tests when studying SA systems since the same implementation obtained different 

outcomes according to the chosen shared control modality. It also illustrated the risk 

of fixing one grasp strategy per object, leading to conflicts between an autonomous 

controller with a single grasp solution and a user who naturally has several grasp 

solutions. 

5.2. Implications of the findings 

Overall, this dissertation has shown that combining an autonomous controller 

to an ML myo-control can improve the performance when performing a reach and 

grasp task by increasing the time performance and reducing the required physical 

effort. It also shows that these results apply to a more extensive range of scenarios 

than previously tested, such as an object-crowded scene or a standard rehabilitation 

test with complex object shapes. The possible interactions also evolved by enabling a 

sequence of manipulation without re-initialising the system and continuous support in 

synergy with the user, without requiring extra steps in the prehensile process. It also 

demonstrated that performance and physical workload benefits partly depend on 

implementing the shared control modality ruling the interaction between the user and 

the autonomous controller. 

The performance improvement brought by the addition of autonomy in the 

frame of an advanced pattern recognition myocontrol extends previous studies. 

Indeed, the increase of performance brought by the addition of autonomy has been 

previously demonstrated in the frame of the historical and most basic two-channel 

control, during a simple manipulation (reach and grasp task of a single object) [81], 

[108], or during more complex bi-manual manipulation with an upgraded two-channel 

control with control of the wrist rotation through elevation of the shoulder [101]. 

However, improved myo-controllers use pattern recognition algorithms to answer the 
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task performance and the amount of muscle contraction needed to actuate the 

prosthesis manually. The better performances obtained when associating an 

autonomous controller shows that there is still a marge for improvement of the manual 

control before reaching the mechanical limitation of the device and that this marge can 

be partially covered through the automation of the hand. The significant improvements 

in the total duration of the test performed by the participant also show that systems 

focusing on the preshaping of the hand can still significantly improve the global 

performances. It might be interesting to examine the daily use of the hands to search 

for other sub-task repetitive and frequent enough to bring significant improvements 

through automation. Eventually, the gain of performances obtained by a semi-

autonomous system relying on wearable sensors in a complex setup shows that the 

technology is mature enough to propose a semi-autonomous system performing in 

real-life conditions. 

The benefits brought by the pattern recognitions myocontrol providing direct 

control over several DoFs did not seem sufficient to answer the complexity of the 

control of a multi-function prosthesis since this complexity still encouraged the 

development of under-actuated mechanical solutions. These under-actuated solutions 

deprave the dexterity of the prosthesis to simplify the control of the device for the user 

drastically. The significant reduction of the wrist control during the manipulation 

obtained during this dissertation compared to the advanced myocontrol alone tends to 

indicate a simplification of the control while preserving the diversity of functionality 

offered by the medical device. The reduction of the variability across subjects when 

using the SA system also shows a reduced learning time since the autonomy provided 

by the system covers the potential lack of skills from the user. Overall, SA systems 

should not only be considered as a solution to simplify the interaction between the 

user and its prosthesis anymore but as a complement of the most advanced myocontrol 

to simultaneously facilitate the full use of the prosthesis by the user and increase the 

task performances in everyday life conditions.  

In addition to the justification of the further development of SA systems, this 

dissertation brought precise elements to improve the design of future SA systems. 

While different implementations of shared control modalities are already proposed to 

include the developed autonomous controllers into SA systems such as sequential, 
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simultaneous, or continuous, this dissertation investigated their effects to understand 

better the impacts of some design components of this element of any SA interface. 

Thus, the effect of these modalities on the performances, cognitive workload and 

muscle usage has been studied, demonstrating their similarity at the best level of 

accuracy of the autonomous controller but highlighting the danger of conflicts 

between the user and its own hand replacement when the accuracy of the autonomous 

controller degrades. By highlighting the impacts of the control sharing modality on 

the performances, future studies are encouraged to pay particular attention when 

designing and describing the SA systems but also when comparing them to the systems 

previously developed ones. Finally, the results obtained encourage using a traded 

control modality design for upper limb rehabilitation devices to disable involuntary 

movements of the limb replacement and warns for the risk of associating single 

grasping solutions to the object of interest, potentially leading to conflicts. 

5.3. Future Development 

The results obtained in this dissertation demonstrated that SA systems can 

already benefit the user. On this basis, it seems promising to improve SA systems 

based on a more substantial inclusion of interdisciplinary findings. For example, 

studies providing a better understanding of human grasps such as joint synergies [99], 

[140], finger synergies [141], object-oriented grasps [142], [143] may be used to 

benefit the prosthesis control through SA systems. Instead of leading to conflicts, 

unsure intention prediction could therefore lead to a preshape of the prosthesis based 

on other information such as the most common finger pose when grasping this type of 

object or a base position of the fingers and the palm leading to the shortest path for all 

the probable grasp strategies associated to a given object. 

Additionally, the benefit of using an autonomous controller with an ML myo-

controller does not reduce the interest in improving advanced myo-control. As a matter 

of fact, advanced pattern recognition algorithms may give more inputs for the SA 

system to predict the user's intention. When based on the same sensors on which the 

SA system is relying, such as IMUs, sensor fusion can improve the accuracy and the 
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robustness of the myo-control [64]–[66]. Based on the same sensors, synergy could be 

implemented between the two controls. In such a synergy, the lack of accuracy and 

robustness of the myo-control could be detected and corrected by the solution provided 

by the autonomous controller when high uncertainty is detected. On the other hand, 

the output of the myocontrol could be integrated into the intention prediction to 

provide a better understanding of the user's plans and better support them. 

SA systems provide the automatic actuation of several DoFs of the prosthesis 

and therefore aim to reduce the physical and cognitive workload associated with the 

task. As demonstrated in this dissertation, this can have immediate benefits for the 

user. However, it adds a second agent which controls the device.  

The first goal of prosthetic devices is to replace a missing limb, which heavily 

impacts the relationship between the patient and the prosthesis. This enables, for 

example, the treatment of phantom limb pain through the presence or the use of the 

prosthesis [144]. The addition of a second agent may induce an issue for the user's 

acceptance and embodiment of the prosthesis. 

The sense of embodiment is the recognition of something as part of the 

biological body and can be broken down into several components [144]: ownership, 

location, and agency. Probably less impacted in the case of the addition of a SA 

system, the sense of self-location corresponds to a determined volume of space where 

the user feels situated [145]. The sense of agency is the sensation of global motor 

control, including the subjective experience of action, control, intention motor 

selection, and the conscious experience of will [146]. Eventually, the sense of 

ownership refers to the self-attribution of a body [147]. Upper-limb prostheses do not 

provide feedback usually, and therefore the user does not have a proprioceptive input 

from the movement that the limb replacement device produces. This can perturbate 

the feeling of ownership of the user for its prosthesis and justify several studies to 

tackle this issue [148]–[150]. It seems, however, that this lack of direct proprioceptive 

feedback and the failure of the usual rubber hand experiment usually used to assess 

the sense of ownership do not prevent the embodiment of the prosthesis by the user 

[151]. On the other hand, the feeling of agency was until now preserved since the 

different myocontrols, historical or more advanced, enable direct control over the 
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prosthesis joints. By producing movement of the prosthesis not explicitly intended by 

the user, these movements may interfere with the sense of agency. It is already known 

that the movement's intention does not need to be congruent with the final actuation 

of the limb [152], but the temporality of the movement plays a significant role [153].  

Considering its role in the acceptance of the prosthesis by the patient and its 

importance to alleviate phantom limb pain, embodiment could be considered one of 

the key metrics when assessing prosthesis controllers. While standard myo-control is 

limited in bandwidth and can be frustrating, SA systems can actuate every joint of the 

prosthesis simultaneously, which reproduce the natural movement of a hand. 

Therefore, it might be essential to study the other conditions under which a SA system 

can still participate in the embodiment of the device by the user to provide them back 

the feeling of having a natural hand.  
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