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Preface 

This dissertation follows the form of a cumulative dissertation. The first of the included 
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dissertation: 

Lippold, M., Schulz-Hardt, S., & Schultze, T. (2021). G-I transfer in multicue judgment tasks: 

Discussion improves group members’ knowledge about target relations. Journal of 

Experimental Psychology: Learning, Memory, and Cognition, 47(3), 532–

545. https://doi.org/10.1037/xlm0000947  

Lippold, M., Schultze, T., & Schulz-Hardt, S. (2021). The benefit of collaboration: 

Disentangling the sources of synergy in group judgments. Unpublished Manuscript. 

  

https://psycnet.apa.org/doi/10.1037/xlm0000947
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1 Introduction 

Human beings often form groups to conduct all kinds of tasks. Therefore, group 

structures can be found in almost any human organization. Governing bodies of industrial 

companies, supervisory boards in universities, panels of sports associations, or juries in court 

systems, there are countless examples for permanent implementations of groups. The presence 

of so many different groups might indicate that there is, in general, a strong faith in the quality 

of group performance (Larson, 2010). In other words, groups are often considered to have a 

superior performance in comparison to individuals (e.g., Gigone & Hastie, 1997), presumably 

because groups can rely on the experience and expertise of all of their members, and they 

have the potential to integrate their unique contributions. Accordingly, group researchers have 

focused intensively on the evaluation of group performances in various tasks. Some work on 

group performance even belongs to the earliest inquiries in the field of psychology (e.g., 

Ringelmann, 1913). While group performance seems to be highly regarded, research on this 

matter shows, in general, a rather poor record of groups. In many tasks, groups are unable to 

reach their full potential (for a review see Kerr & Tindale, 2004) and there are even loud 

voices calling for the avoidance of interacting groups (Armstrong, 2006). Nevertheless, there 

is hope for proponents of groups. Recent research points to one particular task domain, where 

group performance might justify the implementation of groups: quantitative judgments (e.g., 

Minson, Mueller, & Larrick, 2018; Schultze, Mojzisch, & Schulz-Hardt, 2012; Sniezek & 

Henry, 1989).  

Quantitative judgment tasks are not only omnipresent in our daily lives, but our daily 

lives also depend heavily on the accuracy of these judgments. For example, the newest 

climate prognoses by scientists, the daily weather forecasts on the radio, and the newest stock 

market predictions can all have a strong influence on individual, group, and governmental 

decisions. Groups rather than individuals make many important quantitative judgments in our 
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society. Therefore, the importance of group performance in quantitative judgment tasks 

cannot be rated highly enough. Nevertheless, how can group performance in quantitative 

judgments be evaluated? How big is the performance benefit that groups presumably have 

over individuals in quantitative judgments? What are the group specific mechanisms leading 

to this effect? The current dissertation tries to answer these questions from a group 

researcher’s point of view by relying on the empirical work from the two included 

manuscripts. First, I will provide a short overview about how group researchers assess the 

performances of small groups in general. Second, I will explain how group performance can 

be evaluated in the specific case of quantitative judgment tasks. Third, I will describe the 

group mechanisms affecting group judgments, how they can be explored, and what is already 

known about these mechanisms. Then, I will lead to the summary of the two manuscript and 

close with a discussion of their empirical findings.  

1.1 Evaluating group performance 

Group performance does not stand on its own but is subject to the same task 

restrictions as the performance of individuals. The nature of a specific task and human 

performance boundaries are important factors to consider for performance evaluation. When 

Steiner (1966), one of the most influential group researcher, conceptualized group 

performance, he had this in mind and considered group performance as a function or fit of the 

resources of the group members, the specific task demands, and the process. In this 

framework, the resources of the group members are their capabilities. They are comprised of 

the relevant skills, abilities, and knowledge for the specific task possessed by the individual 

group members. The task demands include the required resources and the corresponding 

utilization pattern needed to reach the optimal performance for a specific task. Note that if a 

group lacks the required resources demanded by a task, they will perform poorly on this task 

or even fail to complete it. For example, you would not expect a group of toddlers to solve a 
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complex mathematical problem as the group members lack the skills to conduct this type of 

task. Finally, the process consists of the actual behavior of the group members working on the 

task. This includes all interpersonal and individual actions that form the group outcome by 

relying on the resources of the group members. In this view, not the absolute group product 

on its own is the decisive factor for the evaluation of the group performance, but the focus is 

on the group process in the light of the resources of the group members and the task demands. 

Based on the resources of the group members and the tasks demands, the potential 

productivity of the group can be inferred and compared to the actual group performance. This 

allows for the evaluation of the group process. In order to do that, a meaningful baseline 

needs to be determined.  

It is not enough, to compare the performance of a group to the performance of one 

single individual person given that in many cases, the superior number of individuals working 

in the groups almost guarantees a higher performance on the side of the groups. Following the 

terminology of Steiner, a group of three people has simply more resources than a single 

individual does. For example, the fact that a group of three people is able to move a household 

faster than a single person would not be surprising at all. Instead, the performances of an N-

person-group needs to be compared to the performances of N independent individuals 

working alone whose individual contributions are then combined in a meaningful way to form 

the analog of a group performance. These groups consisting of non-interacting individuals are 

often named nominal groups. Their combined performance marks the group’s potential 

productivity and is referred to as group potential (Steiner, 1972). Steiner defines the group 

potential as the case when the group members perform at their full potential and these 

individual contributions are combined in a meaningful way. When groups perform below the 

level of their group potential, that is making not the best use of their own available resources, 

they suffer from process losses. 
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The way the individual performances should be combined – e.g., the group potential is 

formed – depends on the specific task (Steiner, 1972)1. Steiner differentiates between 

additive, conjunctive, disjunctive, and discretionary tasks. As the name suggests, the group 

potential in additive tasks can be calculated by simple summing up the individual 

performances of the nominal group members. For example, in a brainstorming task, the 

number of ideas generated by each individual can be added to form the group potential. In 

conjunctive tasks, the group potential is determined by the performance of the weakest group 

member. The common example for this type of task is hill climbing. The task is only 

successfully completed whenever the entire team, including the slowest group member, has 

reached the peak of the mountain. On the other side of the spectrum are disjunctive tasks, in 

which the group potential is determined by the performance of the best - most capable - group 

member. For example, in a problem solving task, the most capable group member might be 

able to solve the problem on his own and can demonstrate the right solution to the other group 

members. The last task type described by Steiner is a discretionary task. In these tasks, there 

is no fixed rule for the group potential. The groups can decide freely on how the individual 

contributions of the group members are combined for the group product. Note that 

quantitative judgment tasks fall under this category as the group might decide to follow the 

judgment of one particular member, to weight the articulated opinions of their members 

equally or in any other constellation. How to form a meaningful group potential in 

quantitative judgments will be discussed in detail in the next chapter. 

In the eyes of Steiner (1972), these different group potentials mark the optimal group 

performance. In his view, when groups perform at its absolute best, the group reaches only its 

                                                

1 Steiner (1972) classified tasks based on three dimensions. In the following, only the Interdependence 

dimension, which describes the relation between the individual contributions of the group members and the 

group potential, is explained. Another dimension differentiates between tasks that can be subdivided and unitary 

tasks that cannot. Either way, the group members must work on the same main task all the time, or different 

group members are able to work on subtasks in parallel. The presented research focuses only on unitary tasks. 

Steiner also differentiates between tasks, where the criterion of success is focused on the quantity (maximization 

tasks) outcome or the quality (optimization tasks) of the outcome.  
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expected potential. When the group outcome is below the optimal performance, the group is 

considered to suffer from process loss. In other words, Steiner describes the group process as 

detrimental to the group’s performance. Framing the issue of group performance in this way 

might have contributed to the negative view on groups and might have led group researchers 

to focus mainly on the weaknesses of groups rather than on their strengths 2(Wang & 

Thompson, 2006). 

Contrary to the relatively negative view on groups, some researchers also considered 

the possibility that groups outperform their potential, which has also been coined process 

gains (Hackman & Morris, 1975) or synergy (Larson, 2010). I will use both terms 

synonymously in this dissertation. Whereas Steiner (1972) defined the group potential as the 

ideal combination of the group members’ resources, Larson (2010) set direct criteria for 

synergy. In particular, he defined synergy as a gain in performance that is attributable in some 

way to group interaction. When a group is able to do something collectively that could not 

have been reasonably achieved by any simple combination of their members’ individual effort 

(Larson, 2010, p. 4).3 

When evaluating group performance in quantitative judgments, I will consider the 

possibility of process losses and process gains. Therefore, it is important to define a group 

potential that takes into account which combination of individual efforts can be classified as 

reasonable. How the specific group potential should be defined in quantitative judgments, 

will be explained in the next section. 

  

                                                

2 Note that the general way of thinking about psychological research at that time might have also contributed to 

the focus on weaknesses of groups due to the fact that researcher from other areas of psychology also tended to 

concentrate their efforts primarily on weaknesses. For example, the focus on cognitive biases and irrational 

behavior (Tversky & Kahneman, 1974) led to many research programs pointing out the weaknesses of individual 

decision makers. 

3 In his framework, Larson (2010) differentiates between weak and strong synergy. Weak synergy is reached if 

the group outperforms the expectations based on the performance of the average group member. Strong synergy 

is reached if the group outperforms the expectations based on the performance of the group’s best member.  
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1.2 Group potential in quantitative judgments 

In a quantitative judgment task, participants have to guess a numerical value of interest 

that corresponds to present or future facts. A quantitative judgment task is an optimization 

task, where the quality of the judgment is the criterion for the performance. Specifically, no or 

just a small deviation between a judgment and the underlining true value would be an 

indicator of high performance or high judgment accuracy. It is not straightforward how a 

group should combine their members’ resources to come to the best possible group judgment. 

Consider for example forecasting tasks; in these tasks, participants have to estimate a future 

value of an event that has not happened yet. How can they know, which group member has 

made the best individual judgment? What would be a reasonable baseline for the individual 

performance in this case? 

There are several potential baselines that can and have been considered for the group 

performance in quantitative judgment tasks (Einhorn, Hogarth, & Klempner, 1977; Gigone & 

Hastie, 1997) but not all of them are theoretically or practically meaningful or represent a 

reasonable baseline from the group researcher’s perspective. For example, one could select 

the best individual judgment made by any nominal group member as the relevant benchmark 

on any given task. In other words, the most accurate individual judgment made by any 

member of the nominal group would mark the criterion for the group. Accordingly, this model 

has been named accuracy model (Bonner, Sillito, & Baumann, 2007). However, this level of 

accuracy is not something that a group can reasonably accomplish, because the accuracy 

model highly capitalizes on chance (Gigone & Hastie, 1997). Specifically, beating this model, 

groups would have to recognize – with certainty – if a relatively weak member makes the best 

estimate by chance. Therefore, this model needs to be disregarded as a realistic benchmark for 

a group. 
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One alternative idea is to evaluate the performance of groups in quantitative judgment 

tasks by relying on the members’ relative individual performance. For example, it is 

theoretically possible to rank order the overall individual performances of the members of the 

nominal group and then compare the group performance to the performances of these 

individuals. The important benchmark, in this regard, is the best performing member, which 

was introduced earlier as the relevant group potential in disjunctive tasks such as problem-

solving tasks. The best member model represents an important benchmark that can easily be 

compared to other task types and has been used to evaluate group performance in quantitative 

judgments (e.g., Bonner & Baumann, 2008; Einhorn et al., 1977; Laughlin, Gonzalez, & 

Sommer, 2003; Sniezek & Henry, 1989). There are, however, some arguments against the use 

of the best member model as the criterion for synergy in quantitative judgment tasks. First, the 

process of identifying the best individual might already require a group process. Specifically, 

to determine the relative expertise of the group members and to find the best member, group 

interaction of some sort does need to take place. Second, similar to the accuracy model, the 

best member model does also, however to a lesser degree, benefit from chance. By selecting 

the person based on the best performance, it is likely that the performance of this person will 

deteriorate in the future due to regression to the mean. While the degree of this effect depends 

on the number of observations, it still overstates the accuracy of the group’s potential. 

It is also not advisable to go back to the comparison between the group performance 

and the performance of a single individual. Einhorn and colleagues (1977) showed that group 

judgments are more accurate than randomly selected individual judgments. Considering the 

ideas of Steiner (1966), this is not surprising. As it is the case for other unitary tasks, the pure 

size advantage of a group in comparison to an individual might already lead to an advantage 

of the group. In the particular case of quantitative judgment tasks, a statistical effect plays into 

the hand of the group, which does not require any group process. When aggregating 

individual judgments, for example, by building the average, this aggregation can be highly 
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accurate due to statistical error cancellation (e.g., Soll & Larrick, 2009). This effect, first 

observed over more than 100 years ago by Galton (1907)4, is also commonly known as 

Wisdom of the Crowd (Surowiecki, 2004). There is a vast literature showing the benefit of 

averaging (e.g., see for an overview Mannes, Larrick, & Soll, 2012). Averaging is quite often 

the most accurate solution in many forecasting tasks (Merkle, Saw, & Davis-Stober, 2020). 

However, averaging does not represent a real group effect (Stroop, 1932), because it does not 

require a group to form the average of independent individual judgments. Therefore, the 

average of a comparable number of independent individual judgments is often considered the 

relevant individual criterion for synergy (Minson et al., 2018; Schultze, et al., 2012).  

I will consider the average as the main criterion or synergy because the average model 

represents a theoretical and reasonable alternative to group work. When the group members 

are unable to agree on a common solution through group discussion, they might just meet in 

the middle and form the average. In this sense, forming the average can be seen as a substitute 

for a group judgment process, without any interaction or exchange of arguments. In fact, there 

is accumulating evidence that groups are able to surpass the average of a comparable number 

of independent individual judgments and thereby achieving synergy (e.g., Keck & Tang, 

2019; Schultze et al., 2012; Sniezek & Henry, 1989). 

While I have discussed the group potential for the evaluation of group performances in 

quantitative judgments in the current section, I will introduce mechanisms affecting the 

performance of groups in quantitative judgment tasks in the next section. 

1.3 Group mechanisms affecting group performance 

The performance of a group depends on the individual contributions of the group 

members as well as group specific components resulting from group work. The mechanisms, 

                                                

4 Galton (1907) reported the median.  
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leading to process gains or process losses, can take place on these different dimensions. 

Hackman and Morris (1975) identified three levels where group mechanisms can affect the 

group performance: group members’ individual effort/motivation, group members’ 

capability/resources, and the groups’ tasks performance strategy (coordination).  

While participating in a group can potentially have an influence on the group 

members’ motivation5, there is no evidence that motivational factors play a major role for 

quantitative group judgments. The outcome of quantitative judgment tasks is evaluated by its 

quality as quantitative judgment tasks can be categorized as optimization tasks. These tasks 

do not require much effort to be performed and increased motivation might not necessarily 

lead directly to better outcomes as in additive tasks6. The empirical results from Stern, 

Schultze, and Schulz-Hardt (2017) provide no empirical evidence that changes in the 

individual motivation of the group members affect their individual performance leading to 

synergy. In particular, group members did not show individual performance changes due to 

group members’ awareness that they are part of a group. Stern and colleagues compared the 

individual performance between trials, in which the group members worked alone, and their 

individual performance in their first group trial prior to the first group interaction. While the 

group members were aware that they were part of a group, the individual performance did not 

decrease or increase. Therefore, lower or higher individual motivation due to group 

membership seem to have no measurable effect on the individual performances. Against this 

background, changes in motivation of group members are not considered in this dissertation.  

                                                

5 Group members might be more motivated to perform the tasks and therefore might have a higher individual 

performance leading to a better group performance. For example, participants in a swim relay, who have late 

starting positions in their team, do show improved individual performance resulting from motivation gains due to 

their participation in a team (Hüffmeier & Hertel, 2011). Processes losses due to motivation can also occur. For 

example, group members are less motivated to do a task if their individual contribution on the final group 

product is not identifiable (Latané et al., 1979). 

6 This is especially true for general knowledge questions, which are primarily used as quantitative judgment 

tasks. The group performance in more complex quantitative judgments tasks, such as multicue judgments tasks, 

might have a higher potential to be affected by motivational factors. 
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The second level concerns the individual capabilities of the group members. 

Participation in a group can potentially change the individual capabilities of its members, 

which in turn can affect the group performance. Examples are cognitive stimulation or 

cognitive restriction. In a brainstorming task, group members might provide new information 

during the group interaction. This might either help other group members to generate more 

ideas individually or hinder them in their thought process, which in turn might lead to fewer 

individually generated ideas (e.g., Nijstad, Stroebe, & Lodewijkx, 2002). The mechanism I 

will focus on is group-to-individual transfer (hereafter, G-I transfer). G-I transfer is 

concerned with the individual improvement of the group members’ task performance as a 

result of the group members’ participation in prior group work (Brodbeck & Greitemeyer, 

2000). G-I transfer plays an important role in quantitative judgment tasks. In particular, group 

members are able to reduce their individual judgment errors because of their participation in 

the group (Schultze et al., 2012; Stern et al., 2017). In these group interactions, more 

knowledgeable group members can share information unknown to the other group members 

or explain their effective judgment policy to the other group members. Consequently, the 

improved individual knowledge of the group members can then lead to an improved group 

performance.  

Finally, the last level concerns the group performance strategy or coordination. In 

other words, how group members combine their resources effectively. Coordination does 

necessarily take place on the group level. In many tasks, only process losses and not process 

gains due to coordination are possible, because often the group potential already implies a 

perfect coordination of the group members’ contributions (Drewes, Schultze, & Schulz-Hardt 

2021). One example for process loss may be within an additive task such as physical rope 

pulling (Latané et al., 1979). Within this task, the group potential is defined as the sum of the 

group members’ individual strength to pull a rope. Pulling a rope together as a group can only 

lead to process loss due to imperfect synchronization of the group members’ efforts. 



16 

 

Unlike in such additive tasks, coordination gains can potentially be detected in 

discretionary tasks like quantitative judgments. In fact, synergy in quantitative judgments has 

long been primarily attributed to effective coordination. The corresponding mechanism is 

named differential weighting (e.g., Bonner et al., 2007; Sniezek & Henry, 1989). Differential 

weighting is concerned with how group members combine their individual members’ inputs 

to come up with a consensus group judgment. Groups can benefit from differential weighting 

in quantitative judgments if the group members are able to weight the more accurate 

individual judgments of their group members stronger when forming the groups’ consensus 

judgment. On the one hand, groups could identify the most capable group member and weight 

their input stronger (expertise-based weighting). One the other hand, groups might also be 

able to assign greater weight to the most accurate judgment – irrespective of which member 

made it – on a trial-by-trial basis (accuracy-based weighting; Bonner et al., 2007). Both 

weighting strategies can potentially lead to an enhanced group judgment accuracy. In fact, 

differential weighting can surpass the accuracy of an unweighted average of the group 

members’ judgments (see Bednarik & Schultze, 2015).  

1.4 Disentangling G-I transfer and differential weighting 

On a theoretical level, G-I transfer and differential weighting can easily be 

distinguished. However, to do this empirically, an experimental design needs to be used 

which is able to capture the individual contributions of the individual group members and 

which allows for a disentanglement of different group mechanisms (Schultze et al., 2012; 

Lippold, Schultze, & Schulz-Hardt, 2021). The so-called alternating-individual-group design 

(aI-G design; Schultze et al., 2012) fulfills this criterion.  

The aI-G design is commonly conducted with an interacting group condition/real 

group condition, where the group members are able to discuss the tasks, as well as a nominal 

condition, where the same number of individuals perform the tasks alone. To assess the 
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individual capabilities of the group members before the group interaction, the design is 

subdivided into two phases, a Practice Phase and a Group Phase (see Figure 1). The practice 

phase is the same for the real group condition and the nominal group condition. In this phase, 

all participants work on a series of judgment tasks alone without any interaction. In the 

following group phase, the procedure differs for the real und nominal group conditions. For 

each trial, all group members of the real group first make an initial individual judgment alone 

without any group interaction. After the initial individual judgment, the group members talk 

to each other to come up with a group consensus judgment. This allows to capture changes in 

the individual performance of the group members over all trials in the group phase. In 

addition, the individual group members’ contributions for every trial can be determined. 

Therefore, G-I transfer and differential weighting can be accounted for. As the nominal 

condition functions as the individual baseline condition, the individuals in the nominal 

condition work on the same tasks but without any interaction. In particular, participants in the 

nominal group condition also make two judgments in the group phase; however, both 

judgments are made alone. All experiments included in this dissertation were conducted with 

the aI-G design. 

Previous experiments conducted with the aI-G design showed strong support for G-I 

transfer (Schultze et al., 2012, 2021; Stern et al., 2017) while only one experiment - under 

favoring conditions - showed support for differential weighting. In particular, differential 

weighting did only occur in a task with a population bias, where the judges overestimated the 

weight of small items presented in front of them (Stern et al., 2017). Therefore, the current 

state of the literature implies that the reduction of the group members’ individual judgment 

errors through G-I transfer might be the main driver for synergy in group judgments.  

  



18 

 

 

Figure 1. Display of the al-G design for the interacting group condition, adapted from Lippold 

et al. (2021). 

1.5 Understanding G-I transfer 

Follow up research on G-I transfer in quantitative judgment tasks investigated what is 

learned during the group discussions. To do that, Stern and colleagues (2017) relied on the 

taxonomy by Brown and Siegler (1993). Brown and Siegler decompose judgments into two 

separate knowledge dimensions: metric and mapping. The metric dimension focusses on basic 

distributional properties of the underlining criterion, for example the mean, the median, or the 

range of judgments. When the judge is wrongfully calibrated on the criterion, she commits 

metric errors by systematically over- or underestimating all entities from one category. For 

example, in one of the studies by Stern and colleagues, participants had to estimate the weight 

of small items (e.g., hammer or umbrella) by only looking at the items and not being allowed 

to touch or lift them. Most judges overestimated the weights of all of these items because they 

might have relied on a false frame of reference. In particular, they might have wrongfully 

considered the weight of a pencil to be 100 grams (true value approximately below 10 grams) 

and adjusted the weight of the other small items in accordance to this reference. Metric errors 

can only be measured when many judgments are considered, thereby allowing random errors 
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to cancel each other out. Metric errors can be measured by calculating the mean error over all 

judgments. 

The mapping component is, in general, concerned with the relation between entities in 

one domain. In other words, not the overall accuracy of the single judgment is important for 

this component but rather the correct ranking of the individual items within a domain. 

Mapping errors are committed when the relative size of an item is not taken into account. In 

the example of weight judgments, a mapping error is committed when a judge assume that a 

pencil has a higher weight than a hammer. Mapping errors are measured indirectly. Not the 

error itself is measured but the mapping can be determined by taking the inverse of the 

Spearman’s rank correlation over the items into question. This correlation index refers 

directly to the correspondence of the order of the judgments to the order of the actual 

underlying true values. Mapping and metric are both important error terms. Theoretically, 

they can be independent from each other. While one person might have knowledge or a 

correct intuition about the order of items in a domain (i.e., low mapping errors), the same 

person might conduct high metric errors as she overestimates the values of the items in 

general. 

The findings from Stern and colleagues (2017) indicate that group members are able to 

reduce their individual metric errors via G-I transfer by recalibrating their individual metric, 

leading to an improved individual judgment accuracy. In other words, group members 

improved their individual metric knowledge by adjusting their belief about what constitutes a 

plausible range. Nevertheless, an improvement of the individual mapping knowledge was not 

detected in this study. Therefore, it is unknown if G-I transfer might also lead to an enhanced 

individual mapping knowledge. 
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1.6 Current research 

Quantitative judgments seem to be one of the few tasks, where groups are able to 

reach synergy. In particular, there is recent evidence suggesting that group judgments are 

more accurate than the average of a comparable number of independent individual judgments 

(e.g., Keck & Tang, 2019; Minson et al., 2018; Schultze et al., 2012; Sniezek & Henry, 1989; 

Stern et al., 2017). Two mechanisms, G-I transfer, the improvement of the individual group 

members capabilities due to their participation in the group, and differential weighting, the 

group’s ability to weight their members’ input effectively, were identified as the main 

mechanism for this synergetic effect. While differential weighting (e.g., Bonner et al., 2007) 

was the first proposed mechanism, recent experiments indicate that the synergetic process can 

be mainly explained by G-I transfer (Schultze et al., 2012). The majority of experiments 

designed to disentangle both mechanisms show in most cases no evidence for differential 

weighting, when G-I transfer is controlled for (Schultze et al., 2012; Stern et al., 2017). 

Further analyses by Stern and colleagues on G-I transfer suggest that group members seem to 

learn only about the distributional properties of the quantitative judgment tasks (metric 

knowledge) but are unable to learn about the underlying relational properties in the domain of 

interest (mapping knowledge). This indicates that G-I transfer in quantitative judgments might 

only be based on the transfer of information, such as the general range, which is relatively 

easy to learn. Bonner and colleagues (2007) demonstrated that individuals could improve their 

metric knowledge, when they were provided with little extra information. Learning about the 

relational properties in a domain is in some cases crucial for the judgment accuracy. 

Therefore, it is important to know, whether G-I transfer generalizes to mapping knowledge. 

Against this background, the empirical studies in the first manuscript investigate whether 

group members are able to improve their mapping knowledge via G-I transfer.  
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While the first manuscript focuses on a specific mechanism, G-I transfer, the second 

manuscript takes a meta-analytic approach to investigate the performance of groups in 

quantitative judgments. As outlined above, there is recent evidence for groups’ judgments to 

be more accurate than the average of a comparable number of independent individual 

judgments. However, the extent of the group advantage over the statistical aggregate of 

individual judgments is still up for debate. Previous systematic reviews were not completely 

convinced of such synergy in group judgments. Hastie (1986), for example, assumed that if 

there would be an advantage of group judgments over the average of individual judgments, 

this advantage would only be small. The latest review on group judgments by Gigone and 

Hastie (1997) stated that in previous research, the accuracy of the group judgments was on the 

same level as the average of individual judgments, but not surpassing it. However, due to the 

methodological differences of the group judgment studies, the computation of meta-analyses 

was impossible. Accordingly, several meta-analyses were conducted in the second 

manuscript. In addition, to gain a better understanding of synergy in quantitative judgments, 

the second manuscripts also takes an in-depth analysis of the different components behind this 

synergetic effect. 

2 Summary of Manuscript 1: G-I transfer in multicue judgment tasks: 

Discussion improves group members’ knowledge about target relations 

The main goal of the first manuscript was to investigate whether mapping knowledge 

can be transferred in quantitative judgments by examining what group members are able to 

learn during group interactions. To do that, the current work relied on the judgment error 

decomposition by Brown and Siegler (1993), which is based on metric and mapping errors. 

Up to this dissertation, G-I transfer in quantitative judgments tasks was only associated with 

the reduction of the group members’ individual metric errors (Stern et al., 2017). However, 

metric knowledge is relatively easy to learn as it does rely only on a few pieces of 
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information, such as the range or the median. In fact, group discussions might not even be 

necessary for the transfer of metric knowledge to occur. The improvement of one’s mapping 

knowledge, on the other hand, might be more difficult and might take more time due to the 

fact that the exact relation between cues and target values needs to be learned. Therefore, it is 

important to evaluate if G-I transfer can also improve the transfer of mapping knowledge. 

While the only two previous experiments conducted on this subject by Stern and 

colleagues (2017) did not reveal any evidence for the transfer of mapping knowledge, we 

cannot conclude that G-I transfer of mapping knowledge does not exist. Although the two 

experiments by Stern and colleagues were conducted with the previously introduced al-G 

design (Schultze et al., 2012), some procedural choices made them less suited for the 

detection of a potential transfer of mapping knowledge. In particular, the relatively low 

number of group trials in these experiments (Stern and colleagues reported 10 group trials in 

their two experiments) might not have been sufficient for the group members to improve their 

mapping knowledge given that learning about cue target relations takes more time than 

learning about the metric properties of a specific task. This leads to a second problem 

affecting the measurement of mapping knowledge. When measuring the individual mapping 

knowledge of participants, it is important that knowledge transfer has been completed as 

mapping knowledge is measured via a correlation coefficient over consecutive trials. 

Calculating this mapping knowledge based on mixed trials, where in some of them the group 

members might have still relied on their previous inferior mapping knowledge, whereas in 

other (later) trials, they might already have used their updated and improved mapping 

knowledge, might lead to an underestimation of the group members’ actual mapping 

knowledge. To tackle these problems and to conclusively test whether participating in a group 

discussion could also reduce individual mapping errors, we used a modified version of the aI-

G design as well as a new multicue judgment tasks with an increased number of trials. In 

particular, the modified design consisted of three phases with 30 multicue judgment tasks in 
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each phase. In addition to a practice and a group phase, which followed the above described 

procedure, the modified version of the al-G design contained an additional individual phase at 

the end of the experiment (post phase). The post phase mirrored the practice phase, thereby 

allowing for a calculation of the individual mapping knowledge of the group members for the 

practice and the final phase without bias. 

The results of the first experiment showed G-I transfer in the form of an improved 

overall individual accuracy in the real group condition in comparison to the nominal 

condition. In particular, members of the interacting group condition reduced their error while 

members of the nominal condition did not. However, with regard to mapping, the results were 

not as clear. In the real group condition, participants’ individual mapping knowledge was 

greater in the post phase than in the practice phase while in the nominal group condition, 

participants’ individual mapping knowledge did not differ between post phase and practice 

phase. Nevertheless, the predicted interaction of these two factors could not be confirmed. 

Specifically, we could not confirm that participants’ individual mapping knowledge increased 

more from the practice phase to the post phase in the real group condition as compared to the 

nominal group condition. An additional analysis revealed a baseline problem: In the practice 

phase, the mapping knowledge in the nominal groups was already higher than the mapping 

knowledge of the real groups. In other words, our randomization procedure might have not 

worked properly. Therefore, the differences in the improvements between nominal and real 

group condition could be due to differences in the baseline in Phase 1 (i.e., real group 

members’ mapping knowledge improved because they had more potential to learn in the first 

place). Accordingly, in the second experiment, we were able to replicate the findings of the 

first experiment and experimentally controlled for baseline differences in individual mapping 

knowledge by using parallelization instead of randomization.  

The results of this second experiment could confirm G-I transfer on all error types. 

Participants who worked in the real groups outperformed participants who worked 
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individually in the nominal groups with regard to the overall accuracy and the metric. With 

regard to mapping, we could confirm that participants’ individual mapping knowledge 

increased more in the real group condition as compared to the nominal group condition. 

Furthermore, an additional analysis showed that the real groups’ judgments in the group phase 

were more accurate than the average of the individual judgments in the nominal groups. In 

other words, the groups achieved synergy by outperforming the nominal groups. Interestingly, 

the groups’ judgment showed also less mapping errors than the average models of the 

nominal groups. In sum, these two experiments showed that G-I transfer does generalize to 

multicue judgment tasks. Furthermore, it suggests that G-I transfer is not just restricted to the 

improvement of individual metric knowledge, but can also lead to an increase in individual 

mapping knowledge. These results emphasize G-I transfer as an important benefit of tasking 

groups with quantitative judgments.  

3 Summary Manuscript 2: The benefit of collaboration: Disentangling the 

sources of synergy in group judgments 

The main goal of the second manuscript was to investigate systematically to what 

degree groups are able to achieve synergy in quantitative judgments and to disentangle the 

underlining sources of synergy. For this purpose, multiple meta-analyses based on altogether 

eleven experiments conducted with the al-G design (Schultze et al., 2012) were computed. 

Only experiments from our lab in Göttingen were included in these analyses due to the fact 

that we were unable to find any other studies with the particular experimental design required 

to differentiate between the two relevant mechanisms, namely G-I transfer and differential 

weighting. The tasks in these experiments included a wide range of quantitative judgments 

such as distance estimates, forecasting tasks, and multicue judgment tasks. In a first step, 

several meta-analyses were conducted to compare the accuracy of groups with meaningful 

individual benchmarks. 
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Following the rationale outlined in section 1.2, group performance exceeding the 

average of judgments made by a comparable number of individuals working alone indicates 

synergy in group judgments (e.g., Minson et al., 2018; Schultze et al., 2012; Stern et al., 

2017). The corresponding meta-analysis on eight experiments showed that group judgments 

were more accurate than this baseline. The meta-analysis revealed a moderate effect size 

(d = 0.62), which provides substantial evidence that groups are able to achieve synergy in 

quantitative judgment tasks. Notably, in two additional meta-analyses, we were able to show 

that the groups also outperformed the average model with regard to the mapping and metric 

error components.  

In addition to the average model, meta-analyses on the best member model (e.g., 

Bonner & Baumann, 2008) were conducted to gain more insights into the extend of the group 

performance. As the name suggests, the best member model refers to the best individual of a 

nominal group. To calculate the best member model, the member with the best performance 

during the group phase needs to be identified, and her performance is then selected as the best 

member model. The corresponding meta-analysis showed that the groups’ judgments were as 

accurate as the judgments of the best members of the nominal group. Note that in many tasks, 

groups do not even reach the level of the best group member (Larson, 2010). Therefore, this 

result highlights the high standing of group performance in quantitative judgments in 

comparison to the group performance in other tasks. Based on this finding, it might seem 

reasonable not to rely on groups and use the best member of the nominal group instead. 

However, as indicated in the introduction, the best member model is solely of theoretical 

value. In practice, there is no group phase to identify the best member. Either the practitioner 

must be able to fortune tell the future or she has to rely on previous performances to estimate 

the expertise of each individual group member.   

There is an alternative to the best member model that does, indeed, have the potential 

to be practically applied, and that was also considered in the second manuscript: the initial 
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best member model. When group members complete tasks individually prior to the group 

work, their performance can be evaluated. Based on these performances, the initial best 

member can be identified. All experiments considered employed a practice phase, which 

allowed for the identification of the initial best member. Therefore, another meta-analysis was 

conducted, which revealed that the group judgments were more accurate than the judgments 

of the nominal groups’ initial best members. Hence, this finding suggests that performance 

wise, groups may not be substituted by the best individual without loss of judgment accuracy.  

While the previous meta-analyses clearly showed a performance advantage of group 

judgment over the statistical aggregation of individual judgments, we also examined the 

mechanisms leading to these synergetic gains. Further analyses could clearly provide meta-

analytic evidence for the two proposed mechanisms: G-I transfer and differential weighting. 

Previous findings of G-I transfer could be reproduced (Lippold, Schulz-Hardt, Schultze, 2021; 

Schultze et al., 2012; Stern et al., 2017), that is individuals working in groups increased their 

individual accuracy as a consequence of this collaboration. Again, we relied on the taxonomy 

by Brown and Siegler (1993) and decomposed the judgment errors into their mapping and 

metric components. As indicated by previous research, G-I transfer was mainly the result of 

an improved metric component. While a meta-analysis showed that group members improved 

their individual metric knowledge from the practice to the group phase, group members did, 

on average, not seem to improve their individual mapping knowledge during the group phase. 

However, as we have described in the first manuscript, the transfer of mapping knowledge 

might take longer than the transfer of metric knowledge. Therefore, we also conducted meta-

analyses on those experiments, which were specifically designed to capture a transfer of 

mapping knowledge. These four experiments had an additional post phase, which was added 

to obtain an unbiased measure of the individual mapping knowledge (as explained in the first 

manuscript). The corresponding meta-analysis showed that group members significantly 

improved their individual mapping knowledge because of working together.  
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So far, the focus was on the improvement of the individual capabilities of the group 

members, but we also looked into group coordination. In particular, across several meta-

analyses, we investigated differential weighting, i.e., groups’ ability to weight their members’ 

input effectively. As has been outlined before, when controlling for G-I transfer, most 

previous studies did not find evidence for differential weighting (Lippold et al., 2021; Stern et 

al., 2017). Contrary to these previous findings, our meta-analysis revealed a small but 

significant overall effect for differential weighting. In other words, there was evidence for 

coordination gains in groups. Given that the effect size was relatively small, we assumed that 

the power within most individual experiments was too small to detect an effect of differential 

weighting. Based on our meta-analysis, however, we can conclude that groups are able to 

weight their members’ input based on expertise. That is, groups benefited from coordination 

in the group. We further explored the resulting question of how groups weight their members’ 

input effectively.  

There are two possible weighting strategies, which are in line with our analyses. We 

did find that the group judgments were as accurate as the judgments of the best members of 

the groups. Therefore, the groups might have been able to identify their best member and then 

only rely on the input of this particular member. While this strategy is in line with the data, 

we argue that the assumption that groups actually use this strategy might not be very realistic. 

In the absence of any feedback, groups might struggle to identify their best member (Kurverts 

et al., 2019). Additionally, other motives such as fairness concerns (Mahmoodi et al., 2015) 

might play a role and may prevent a group from solely relying on one group member’s input. 

Alternatively, we proposed another potential adjustment strategy based on the detailed 

analysis of error decomposition. In fact, the benefit of the group judgments over the average 

model of their members’ individual estimates was mostly due to improvements in the 

mapping error component. Based on this finding, we propose a mapping error monitoring 

strategy, assuming that the group members weight their members’ input based on centrality 
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by weighting individual judgments closer to the average stronger (as postulated earlier by 

Bonner and Baumann, 2012). At the same time, the group members monitor if a group 

judgment would be consistent with the rank order of the previous judgments. When forming 

the average would lead to an incorrect order compared to the previous judgments, the group 

would adjust their judgment accordingly. 

In sum, the meta-analyses conducted in the second manuscript demonstrate that groups 

are able to outperform a comparable number of individuals in quantitative judgments. This 

effect is the result of both G-I transfer and differential weighting, and it affects both the metric 

and the mapping component of their judgments.  

4 General Discussion 

In the two manuscripts presented in this dissertation, group judgments were 

systematically analyzed by examining the underlying group judgment error structures and 

disentangling different group mechanisms. While the first manuscript investigated G-I 

transfer of mapping knowledge in depth, the second manuscript provided a more 

comprehensive view on the comparison between group judgment accuracy and individual 

accuracy by conducting meta-analyses based on multiple experiments from our lab. Both 

manuscripts suggest that groups can benefit from information exchange in quantitative 

judgments.  

The first manuscript demonstrated that, in addition to group members improving their 

metric knowledge (Stern et al., 2017), they are also able to boost their mapping knowledge 

through group discussion. In other words, group members do not only learn simple metrical 

information about a specific domain during the group discussions, but are also able to learn 

more complex cue target relations, which indicates a substantial knowledge transfer. This 

finding contributes to the research on group learning by demonstrating the extent of G-I 

transfer in quantitative judgments. Note that G-I transfer is not restricted to quantitative 
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judgment tasks as it has also been observed in a variety of other tasks. In particular, G-I 

transfer has been previously identified in groups working on collective induction tasks 

(Brodbeck & Greitemeyer, 2000), in groups solving reasoning tasks (Laughlin, Carey, & 

Kerr, 2008), and most recently in groups controlling dynamic systems (Schultze, Drewes, & 

Schulz-Hardt, 2021). Therefore, relying on interacting groups in organizations is an effective 

way to enhance the individual capabilities of the workforce. 

The second manuscript emphasizes the performance advantage of interacting groups 

over nominal groups in quantitative judgments by demonstrating unequivocal meta-analytic 

evidence that groups are able to and systematically do reach synergy in this type of task. In 

particular, groups reached synergy as their judgments were more accurate than the average 

based on a comparable number of independent judgments from individuals working alone. 

While in many areas of group research, interacting groups usually do not outperform nominal 

groups and group performance falls even short of their groups’ potential (e.g., Kerr & 

Tindale, 2004; Steiner, 1972), our results are in line with more recent findings of synergy in 

quantitative judgments (e.g., Keck & Tang, 2019; Minson et al., 2018; Schultze et al., 2012). 

Based on this, we can infer that in practice professionals should use interacting groups over 

simply averaging independent individual judgments if their aim is to ensure high judgment 

accuracy. While forming the average of independent individual judgments might not be the 

common choice for tackling quantitative judgment tasks in practice, we also evaluated another 

alternative. In particular, professionals might also consider tasking the person with the best-

known capabilities to perform judgment tasks. However, when we compared the groups’ 

accuracy with the accuracy of the initial best member from the nominal groups, the groups 

were again more accurate. In other words, the initial best individual cannot substitute the 

group without risking accuracy losses. 

In addition to evaluating the overall extent of synergy in quantitative group judgments, 

the second manuscript also explored the mechanisms leading to synergy. As suggested by 
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previous research (Schultze et al., 2012; Stern et al., 2017), synergy in quantitative group 

judgments was the result of G-I transfer. The achieved synergy can be attributed to an 

improvement of the individual capabilities of the group members. Noteworthy, we also found 

meta-analytic evidence that groups were able to engage in beneficial coordination by 

weighting their members’ inputs effectively. Specifically, we can now assume that synergy in 

group judgments might not only be the result of group members’ improvement due to their 

participation in group discussion, but also due to effective coordination within the group.  

Overall, the findings of this dissertation highlight the benefits of collaboration in 

quantitative judgment. I will briefly outline implications, limitations and future research in the 

next sections.  

4.1 Implications 

Based on the presented findings, some general implication for group research can be 

derived. It needs to be emphasized that changes in the group members’ individual capabilities 

might play an important role for the group performance and potential synergy. The presented 

empirical results of this dissertation and previous findings (Schultze et al., 2012; Stern et al., 

2017) indicate that improvements of the individual capabilities of the group members can lead 

to synergy in quantitative judgments. Apart from these findings, only research on 

brainstorming tasks has emphasized the relation between changes in individual capabilities 

due to group work and group performance7. Despite this crucial role of individual capabilities 

for group outcomes in these two task types, the link between changes in the individual 

capabilities of the group members and the group performance seem to be understudied. One 

reason might be that it is in general difficult to track the individual capabilities during 

experiments. Only complex research designs like the al-G design (Schultze et al., 2012) make 

                                                

7 In particular, group discussion can affect the group member’s ability to generate ideas through cognitive 

stimulation or cognitive restriction (Nijstad, Stroebe, & Lodewijkx, 2002). 
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it possible to closely monitor the capabilities of the group members in more sophisticated 

tasks. Such complex designs, where participants switch constantly between working 

individually and working in a group, however, are not often used in group performance 

research. 

In addition, numerous studies on the improvement of the individual capabilities of the 

group members, G-I transfer, were conducted on disjunctive tasks such as problem solving 

(e.g., Laughlin & Ellis, 1986). This line of research focused on G-I transfer and created ideal 

conditions for knowledge transfer between stronger and weaker groups. In these tasks, more 

knowledgeable group members are able to demonstrate the correct solution to the other group 

members, which constitutes G-I transfer. However, the performance of the best member 

defines the group potential in these tasks. The best member herself has the slightest chance of 

performance improvement. Therefore, it is quite difficult to find synergy due to G-I transfer in 

this type of task, masking the potential relation between the changes in individual capabilities 

and the group performance. In general, changes in the individual capabilities might play a 

more important role in understanding group performance and should be warranted a stronger 

consideration in the future.  

Further thoughts should be given to the potential strengths of groups. In the past, 

group researchers have shown a rather pessimistic view on group performance and focused 

their research primarily on the weaknesses of groups (Wang & Thompson, 2006). As it has 

been outlined in section 1.1, the highly influential work by Steiner (1972) defined the group 

potential in a way that only process losses due to group interaction were possible. This way of 

argumentation had a tremendous influence on many group researchers. Accordingly, group 

research has systematically investigated the weaknesses of groups since the 70s. There are 

still many critiques of group work and group performances (e.g., Armstrong, 2006), however, 

the findings of this dissertation join recent research in identifying strengths of group work. 

For example, participating in a group can lead to motivation gains benefitting the overall 
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group performance (Hüffmeier & Hertel, 2011). These motivation gains do often even offset 

potential motivation losses in field research (Hüffmeier et al., 2021). Groups can even 

outperform their best members in some problem solving tasks (e.g., Laughlin et al., 2003). 

The strengths of groups in quantitative judgment tasks as presented in this dissertation should 

also be clear. All of these findings might help to improve the bad reputation of group work by 

highlighting the benefits of collaboration.  

In order to identify further benefits of groups, small group research on interacting 

groups is necessary and must still play an important role in social psychological. However, 

group research on interacting groups seems to be on the decline. Due to the replication crisis 

in Psychology (Open Science Collaboration, 2015), there is a general trend in social 

psychological to focus on research designs which allow for higher sample sizes and as a result 

higher statistical power. Accordingly, research in social psychology has shifted its focus away 

from interacting groups to online studies, vignette studies, and studies, which primarily use 

self-report measures (Sassenberg & Ditrich, 2019). These research approaches do not require 

as much resources per participant as studies with actual groups do. While it is reasonable and 

necessary to rely on higher sample sizes, the shift away from actual human interaction and 

away from actual behavior might hinder the progress of group research. Most online studies in 

social psychology tend to focus on the individual perception of specific interdependent 

situations and not on the collaboration of individuals. Although, these vignette studies can be 

useful for some areas, they might only be able to approximate a group member’s actual 

behavior. Note that the correlation between self-measures and actual behavior tends to be 

rather weak (Baumeister, Vohs, & Funder, 2007), reducing the external validity of the 

conducted research. Field studies and observations might represent an intriguing alternative 

for group researchers, nevertheless, they often come with the high burden of insufficient 

experimental control. In contrast, group experiments with the focus on real interacting groups 

and actual group performance, which can be measured, evaluated, and compared to an 
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individual’s performance, provide valuable, reliable data for the research community. 

Therefore, it is important to preserve group research in experimental settings. 

4.2 Limitations and future research 

The research conducted for this dissertation was set out to systematically analyze 

group judgment accuracy and to investigate two important mechanisms that can contribute to 

the improvement of this accuracy, namely G-I transfer and differential weighting. Exploring 

other potential moderators affecting the group performance and the mechanism was outside of 

the scope of this dissertation. Nevertheless, in practice, several other factors may have an 

impact on group judgment accuracy and the underlining group mechanisms and should be 

further investigated in future research.  

The first factors concerns group size. All experiments reported in the two manuscripts 

where exclusively conducted with groups consisting of three individuals. Hence, it remains 

unclear whether our results may also generalize to groups of different sizes. A study by 

Minson and colleagues (2018) revealed that interacting dyads can be more accurate than the 

average based on two independent individual judgments, which by our definition does 

indicate synergy. Nevertheless, there is limited knowledge on group performance of 

interacting groups with more than three group members. On the one hand, having more 

people in a group might increase the potential for synergy, as the additional group members 

might have extra individual knowledge, which may help improve group performance. On the 

other hand, the criterion for synergy - the average model - may be harder to pass given that 

the statistical benefit of averaging in the form of error cancelation does increase with the 

number of included independent judgments (e.g., Einhorn et al., 1977). In addition, with a 

higher group size the chance of a particular group member to contribute actively to the group 

might decrease. Therefore, it will be interesting for future research to investigate whether 
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interacting groups consisting of more than three individuals are also able to outperform the 

corresponding nominal groups with the same number of individuals. 

Another potential overlooked factor arises from the fact that different organizations 

rely on different group decision-making structures. For example, in some organizations, the 

members of the governing board make all decisions based on the principle one person one 

vote while in others, the votes of the shareholders count in relation to their company shares. 

There are also many organizations, which rely on a decision-making structure with a sole 

individual having the power to make all decisions on her own. Empirically, there is some 

evidence suggesting that groups with one member being given the full decisional power (with 

the other members only advising this member) might have a higher judgment accuracy than 

groups who are asked to find a democratic consensus judgment (Keck & Tang, 2019). 

However, the used experimental design within this research does not allow for the 

disentanglement between G-I transfer and differential weighting. Therefore, it remains 

unclear whether a change in decision-making structure leads to an extended G-I transfer or to 

more effective coordination in the group. In order to fill this gap, future research should 

replicate this finding using the al-G design. 

The last limitation concerns the external validity of the findings presented in this 

dissertation. In the tasks used in our experiments, we mostly relied on general world 

knowledge judgments with known true values. However, the most important quantitative 

judgment task groups face outside of the laboratory are forecasting tasks. The defining feature 

of realistic forecasting tasks is uncertainty. For example, the economic forecasts on the world 

economy made in 2019 turned out to be all wrong as the repercussions of the ongoing Corona 

crisis of 2020/21 affected the worldwide economic outlook in an unexpected way. While it is 

literally impossible even for groups to make accurate forecasts under unpredictable conditions 

of an uncertain world, future research can compare the adaptability of groups and nominal 

groups to changing environments in quantitative judgment tasks. For example, groups and 
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nominal groups could be tasked with predicting the value of an artificial stock index. In such 

an experiment, all participants would be provided with some predictor variables affecting the 

stock index and constant time-delayed feedback about the market rate of this stock. Based on 

the feedback, the participants can learn the relationship between the predictors and the stock 

index. However, in the course of the experiment, the initial relationship between the 

predictors and the stock index could change, forcing the participants to adapt their learned 

belief about the relation between the predictors and the stock index. Within such a design, it 

would be interesting to see whether groups are able to alter their judgment policy faster than 

nominal groups and to explore additional benefits of collaboration.  

5 Conclusion 

There is still a lot of skepticism towards the use of groups with regard to their 

performance. Nevertheless, calls for the avoidance of interacting groups may have been 

premature. The findings of the current dissertation highlight the benefits of group work in 

quantitative judgments. Tasking groups with quantitative judgments leads to high 

performance as groups do outperform the same number of individuals. The benefits of 

collaboration are not only restricted to the group performance. Being part of a group can also 

have positive effects on the individual group members with their individual capabilities 

increasing due to their participation in a group. Therefore, this work might help in convincing 

critics that the use of groups can still be worthwhile. 
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Abstract 

One benefit of working in groups is that group members can learn from each other 

how to perform the task, a phenomenon called group-to-individual transfer (G-I transfer). In 

the context of quantitative judgments, G-I transfer means that group members improve their 

individual accuracy as a consequence of exchanging task-relevant information. This improved 

individual accuracy allows groups to outperform the average of a comparable number of 

individuals, that is, G-I transfer leads to synergy. While there is mounting evidence that group 

members benefit from G-I transfer in quantitative judgment tasks, we still know rather little 

about what exactly group members learn from each other during this transfer. Here, we build 

on the distinction between metric knowledge (knowing what constitutes a plausible range of 

values) and mapping knowledge (knowing the relative magnitude of the targets) to gain 

further insights into the nature of G-I transfer. Whereas previous research found evidence that 

G-I transfer improves group members’ metric knowledge, there is, so far, no evidence that 

group discussion also improves mapping knowledge. Using a multi-cue judgment task, we 

tested whether group members would benefit from G-I-transfer and, if so, whether this G-I 

transfer would manifest in the form of improved mapping knowledge. The results of two 

experiments suggest that this is the case. Participants who worked in real interacting groups 

outperformed participants who worked individually, and this increase in accuracy was 

accompanied not only by improved metric, but also by increased mapping knowledge. 

Keywords: group judgment, group performance, group-to-individual transfer, 

quantitative estimates, group learning  



G-I TRANSFER IN MULTI-CUE JUDGMENT TASKS  3 

G-I transfer in multi-cue judgment tasks:  

Discussion improves group members’ knowledge about target relations 

Quantitative judgments play a fundamental role in most people’s lives. These 

judgments include seemingly trivial instances such as estimating the amount of food needed 

for the next family dinner. On the other hand, judgments can also have far-reaching 

consequences because they form the basis for many important political, entrepreneurial, or 

medical decisions. Groups are often consulted with judgment tasks because they produce – on 

average – more accurate judgments than individuals (Gigone & Hastie, 1997). This is not 

surprising because groups benefit from statistical aggregation of their members individual 

judgments, which leads to error cancellation. This increase in accuracy due to statistical 

aggregation is commonly known as the wisdom-of-the-crowds-effect (Surowiecki, 2005). 

Importantly, groups benefit from discussion beyond the aggregation of their members’ 

judgments. There is mounting evidence that group judgments are more accurate than the 

simple average of a comparable number of individual judgments, that is, group interaction 

leads to synergy in quantitative group judgment (e.g. Minson, Mueller, & Larrick, 2017; 

Schultze, Mojzisch, & Schulz-Hardt, 2012; Sniezek & Henry, 1989; Stern, Schultze, & 

Schulz-Hardt, 2017). Recent research suggests that the main process driving the superiority of 

group judgments is group-to-individual transfer (G-I transfer), a group-specific learning effect 

that denotes increases in group members’ individual accuracy due to exchanging task relevant 

information during discussion (Schultze et al., 2012; Stern et al., 2017).  

While it is confirmed that group members do learn from each other, we still know 

rather little about what they learn. In general, we can decompose the relevant knowledge in 

quantitative judgment tasks into two components: metric knowledge and mapping knowledge 

(Brown & Siegler, 1993). Metric knowledge refers to knowledge about the scale a target is 

measured on and, in particular, what constitutes a plausible range of values. For example, a 

person with good metric knowledge of car prices in Germany might know that used compact 
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cars have a plausible price range of €4,000 to €30,000. Mapping knowledge, in contrast, 

refers to knowledge about the position of specific targets on a scale. For example, a person 

with good mapping knowledge about car prices will know that a used car from a premium car 

manufacturer is more expensive than a used car from a high-volume manufacturer. Metric 

knowledge is based on relatively simple information that is easy to learn, such as the range of 

the target values, or plausible frames of reference. G-I transfer of metric knowledge can also 

be substituted easily by providing individual decision-makers with frames of reference 

(Bonner, Baumann, & Sillito, 2007). In contrast, improving one’s mapping knowledge is 

more difficult, and likely takes longer, as it requires an improved understanding of the 

relationship between cue characteristics and target values (Brown, 2002). Thus, if group 

interaction also improved group members’ mapping knowledge, one could make an even 

stronger case for employing interacting groups rather than relying on the wisdom of non-

interacting crowds when aiming to maximize judgmental accuracy.  

To the best of our knowledge, only one previous study investigated G-I transfer with 

regard to mapping and metric knowledge (Stern et al., 2017). The results of this study showed 

that group members improved their metric knowledge during discussion, but found no 

evidence of improvements in mapping knowledge. However, as we will point out below, the 

tasks employed in this particular study as well as the study design may have been not 

particularly well suited to detect G-I transfer of mapping knowledge. Accordingly, the main 

goal of the present research is to provide a conclusive test of group members’ ability to 

increase their mapping knowledge as a function of group discussion.  

The sources of synergy in quantitative group judgment 

Group judgments are often more accurate than the average of a comparable number of 

individual judgments (e.g., Bonner & Baumann, 2012; Schultze et al., 2012; Stern et al, 

2017). There are currently two explanations for this synergy in group judgments: differential 

weighting (e.g., Bonner et al. 2007; Sniezek & Henry, 1989) and the above-mentioned G-I 
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transfer (Schultze et al., 2012; Stern et al., 2017). Differential weighting connotes that the 

group members assign more weight to judgments that are more accurate. For example, groups 

could identify the member with the best overall performance and weigh this member’s input 

more (expertise-based weighting), or they might assign more weight to the most accurate 

individual judgment for a specific trial, irrespective of which member suggested it (accuracy-

based weighting; Bonner et al., 2007). If groups succeed at identifying their experts and/or the 

most accurate judgments, differential weighting can outperform an unweighted average of 

group members’ input (see Bednarik & Schultze, 2015, for a formal analysis).  

G-I transfer, on the other hand, refers to the improvement of group members’ 

individual accuracy due to group interaction (Brodbeck & Greitemeyer, 2000). In the context 

of group judgments, this means that, after a group discussion, group members’ individual 

accuracy increases beyond mere practice effects due to the exchange of task-relevant 

information (Schultze et al. 2012; Stern et al., 2017). For example, the most capable group 

member could explain important underlying principles that the weaker group members then 

use to enhance their judgment accuracy. Note that differential weighting and G-I transfer are 

not mutually exclusive phenomena; they can rather have additive effects on group judgment 

accuracy. That is, even if the weaker group members` individual capability to perform the 

task increases due to G-I transfer, group members’ individual pre-discussion estimates might 

still differ to some extent, leaving the group with the opportunity to weight these individual 

judgments by (perceived) accuracy or expertise. 

 Experiments conducted with the so-called aI-G design (alternating-individual group 

design) can differentiate between differential weighting and G-I transfer (Schultze et al., 

2012). In the group condition of an aI-G design, individual and group judgments alternate, 

that is, for each task, the group judgment is formed directly after the group members’ 

individual judgments. Therefore, this design can measure an improvement of participants’ 

individual accuracy in the group condition by focusing on the individual estimates. Schultze 
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and colleagues (2012) showed that, while members of real and nominal groups initially 

performed equally well, individual accuracy increased in the real groups but not the nominal 

groups, that is, real group members benefited from G-I-transfer whereas nominal ones did not. 

At the same time, Schultze and colleagues (2012) did not find evidence for differential 

weighting when controlling for G-I transfer. In particular, they compared the accuracy of real 

group judgments to the average of the real group members’ corresponding individual pre-

discussion judgments. In general, experiments conducted with this aI-G design showed 

continuous support for G-I transfer (Schultze et al., 2012; Stern et al., 2017). In contrast, 

differential weighting only occurred under specific circumstances, and only with a rather low 

effect size (Stern et al., 2017). Therefore, G-I transfer plays an important role in explaining 

the effectiveness of groups in group judgments. However, it remains unclear how G-I transfer 

works and what kind of individual knowledge is transferred in groups.  

Understanding G-I transfer 

 To investigate what is learned via G-I transfer in quantitative judgment tasks, we 

follow the approach set forth by Stern et al. (2017), namely to decompose the overall 

judgment error. This approach draws from the taxonomy of Brown and Siegler (1993) we 

introduced earlier. However, rather than measuring the extent of metric and mapping 

knowledge, the idea is to focus on the lack of this knowledge, which manifests as specific 

kinds of judgment errors, namely metric and mapping errors. Since metric knowledge 

comprises distributional attributes of the criterion, such as the mean, median, range, or the 

underlying form of the distributional function, metric errors are made when a judge is 

incorrectly calibrated on the criterion, leading to a systematic over- or underestimation of 

entities from the same category. Metric errors can be measured via the mean error based on all 

judgments (Stern et. al., 2017). This measure indicates the degree of systematic error. Positive 

[negative] values indicate a tendency to overestimate [underestimate] the targets, on average. 

When overestimations and underestimations of the true values fully cancel each other out 
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across multiple judgments, the metric error is zero. In contrast, mapping knowledge pertains 

to the relation between targets in a domain. Accordingly, a mapping error is committed when 

the relative magnitude of the targets is determined incorrectly. Mapping can be measured 

using the Spearman`s rank correlation between the estimated and the true values, which 

indicates the correctness of the order of the judgments. A correlation of 1 indicates that a 

person is able to rank order all targets by magnitude without error. A value of zero means that 

a person has virtually no idea about which targets are relatively large and which are small.  

Stern and colleagues (2017) did not find evidence for transfer of mapping knowledge; 

G-I transfer was mostly the result of a reduction of metric errors in their study. This pattern 

was observed with two different experimental tasks. In their first experiment, participants had 

to estimate the distances between European cities, whereas in their second experiment, 

participants estimated the weights of objects. In both experiments, the observed G-I transfer 

of metric knowledge required only one single group interaction, with the individual 

improvement in accuracy being stable over the subsequent trials that did not involve any 

further social interaction. Hence, brief social interaction seems to be sufficient for the transfer 

of metric knowledge.  

However, the absence of evidence for any transfer of mapping knowledge in the study 

by Stern et al. (2017) need not necessarily indicate a general inability of group members to 

learn mapping knowledge during group interaction. Instead, it is possible that the Stern et al. 

(2017) experiments were not ideally suited to test for transfer of mapping knowledge. 

Arguably, mapping knowledge is more difficult to learn than metric knowledge, and doing so 

may require more time. Specifically, the exact relation between cues and targets might only 

be learned during multiple subsequent trials. It is difficult to say, a priori, how many trials of 

group interaction are necessary to produce a noticeable increase in group members’ mapping 

knowledge, and how long it takes for this type of G-I transfer to be complete. Given that the 
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experiments reported by Stern et al. (2017) contained relatively few group trials1, it is 

conceivable that there might have been somewhat insufficient opportunities for group 

members to improve their mapping knowledge.  

The relatively low number of trials entails a second problem that may have masked 

possible increases in participants’ mapping knowledge: As already outlined, the measure of 

mapping knowledge is the rank correlation of a participant’s estimates, on the one hand, and 

the true values, on the other hand. Ideally, one would compute one correlation coefficient 

prior to any opportunity to learn from the other group members (i.e., a baseline measure of 

mapping knowledge), and a second one once group members have exchanged all relevant 

knowledge (i.e., after possible G-I transfer of mapping knowledge is complete). However, 

computing the second correlation may be difficult when there are not enough data points, for 

example, because mapping knowledge increased relatively late (e.g., after the 8th out of 10 

trials). Computing mapping knowledge based on only a few trials is ill advised, because it 

would produce highly unreliable estimates. Computing mapping knowledge across all 10 

trials is not a solution either, because it will produce biased estimates. When some of the 

judgments are based on group members’ original (and inferior) mapping while the others 

already benefit from improved mapping knowledge, the inconsistencies between these two 

sets of judgments will artificially lead to lower rank order correlations.  

Detecting Transfer of Mapping Knowledge 

A conclusive test of G-I transfer with regard to mapping knowledge requires some 

changes to the experimental aI-G design described above. Specifically, we argue that such a 

modified design must meet two criteria. First, in addition to the individual practice phase and 

the group phase, it should entail a third phase where participants work individually again (i.e., 

                                                           
1 20 group trials in Experiment 1, and 10 group trials in Experiment 2.  
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a post-group phase). Adding this post-group phase allows measuring individual mapping 

knowledge after the group phase without bias.  

Second, the design needs to include a sufficient number of trials per phase for two 

reasons. On the one hand, the reliability of the measurement for mapping knowledge increases 

the more trials are included (Brown, 1910; Spearman, 1910). On the other hand, since we do 

not know a priori how many trials are necessary for the transfer of mapping knowledge to 

take place, having more trials increases the chances for detecting such transfer. However, we 

also need to take into account that the more trials participants need to work on, the more they 

might become bored with the task. Thus, in an attempt to balance these costs and benefits, we 

decided for 30 trials per phase.  

An informative test of G-I transfer with regard to mapping knowledge also requires a 

judgment task that meets two criteria. First, G-I transfer requires stable differences in 

expertise. The idea of weaker members learning from stronger members makes sense only if 

there are differences in group members’ ability to perform the task (Bonner & Baumann, 

2004). By the same logic, improvements in group members’ mapping knowledge should be 

contingent on stable differences between group members’ mapping knowledge. Second, in the 

chosen task, mapping knowledge must be learnable in principle. That is, at least if participants 

work on the task under optimal conditions for learning, namely with immediate feedback after 

each trial, their mapping should improve.2  

  The aim of the present study was to test for G-I transfer of mapping knowledge using 

such an informative design and a task that meets these criteria. To this end, we conducted two 

pre-registered experiments, in which participants worked on a set of multi-cue judgment 

tasks, either in real groups or in nominal groups of three members.  

Experiment 1 

                                                           
2 Brown and Siegler (1993) show that such improvements in individuals’ mapping knowledge under ideal 

conditions are possible, in principle. 
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Experiment 1 aimed to provide a first conclusive test of G-I transfer of mapping 

knowledge. To this end, participants worked on a multi-cue judgment task in three phases of 

thirty trials each. All participants worked on the task individually in Phases 1 and 3, while in 

Phase 2 they worked on the task in either real or nominal groups. Since previous studies on G-

I transfer in quantitative group judgment exclusively used general knowledge tasks (Schultze 

et al., 2012; Stern et al., 2017), the first question of interest is whether G-I transfer generalizes 

to multi-cue judgments tasks. On the one hand, finding evidence of G-I-transfer is the 

prerequisite for our main goal, namely testing whether it (also) manifests on the level of 

mapping knowledge. In addition, testing for G-I transfer allows making some statements 

about the generalizability of the effect that has already been found in previous studies. 

Therefore, we proposed the following hypothesis:  

 Hypothesis 1: Participants’ individual accuracy increases more from Phase 1 to Phase 

3 in the real group condition as compared to the nominal group condition.  

 While we treat Hypothesis 1 as the comparison of a difference measure (the increase 

in individual accuracy) between two groups, it is, conceptually, the test of an interaction of 

time and group type. Thus, we further specified the exact nature of this interaction by 

postulating two additional hypotheses. Specifically, we predicted that this interaction is due to 

an increase in participants’ individual accuracy in the real groups (Hypothesis 1a) and no 

increase in the nominal groups (Hypothesis 1b).  

In case that the data support Hypothesis 1 as well as Hypotheses 1a and 1b, the crucial 

question is whether G-I transfer manifests as improved mapping knowledge, leading us to 

postulate the following hypothesis. 

 Hypothesis 2: Participants’ individual mapping knowledge increases more in the real 

groups from Phase 1 to Phase 3 as compared to the nominal groups.  

As with Hypothesis 1, Hypothesis 2 conceptually represents an interaction effect. 

Therefore, we again specified the nature of this interaction, predicting an increase in 
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participants’ individual mapping knowledge in the real groups (Hypothesis 2a) and no 

increase in the nominal groups (Hypothesis 2b). 

We did not specify hypotheses about G-I transfer with regard to metric knowledge 

because the task we used placed some restrictions on the range of possible values, which 

somewhat limits the occurrence of metric errors and, thus, the potential for G-I transfer of 

metric knowledge. However, we report exploratory analyses testing whether participants’ 

individual metric knowledge increased more in the real groups from Phase 1 to Phase 3 as 

compared to the nominal groups. Experiment 1 was pre-registered at the Open Science 

Framework (https://osf.io/mpfbu). 

Method 

Procedure. We invited up to 12 participants to each session and randomly assigned 

them to three-person groups. The groups, in turn, were randomly assigned to one of two 

conditions: the real group and the nominal group condition. In cases where the number of 

participants who showed up could not be divided by three, the remaining participants were 

allocated to the nominal group condition. Participants were placed in separate rooms (i.e., one 

room per real group/nominal group) and seated at individual computers at different ends of 

the same table. The experiment was programmed in the open source software Alfred 

(Treffenstaedt & Wiemann, 2018). Prior to the beginning of the experiment, participants were 

asked to provide informed consent on the computer screen. In the consent form, the 

participants were informed that they might be filmed.  

For our multi-cue judgment task, we asked participants to estimate the prices of used 

cars from a specific German car manufacturer as accurately as possible based on several cues. 

To this end, we retrieved publicly available data on 90 used cars from a German car search-

engine website, treating the displayed car prices as the true values, and information on a 

number of car features as cues. The following cues were available to the participants: the car’s 

type (exact model), information on the year of the car’s initial registration, the driven 

https://osf.io/mpfbu
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kilometers, the horse power, the gear type (manual vs. automatic), fuel type (gasoline vs. 

diesel), and fuel consumption (represented in the German standard: liters per 100 kilometers). 

We then formed three relatively similar subsets of 30 used cars each. All participants worked 

on all three sets, but the order of the sets and the order of stimuli within each set was 

randomized for each group (i.e., the same order of stimuli was applied to all persons taking 

part in the same group). On each trial, participants were asked to provide their best estimate of 

the price of the automobile. Note that all numeric estimates in all phases were restricted to 

values between 100 Euro and 200,000 Euro to prevent extreme outliers. Participants were also 

asked to rate their confidence in the accuracy of their estimate on a 7-point Likert scale 

ranging from 1 (‘not at all confident) to 7 (‘very confident’). 

 

Figure 1. Display of an example trial (translated to English). This example shows an 

individual-level trial as presented to participants in Phases 1 and 3 of the experiments. 
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Across both conditions, participants started by working on 30 judgment tasks on their 

own in an individual practice phase (Phase 1). In the group phase (Phase 2), the procedure 

differed according to the assigned condition. In the real group condition, participants worked 

on the 30 tasks in the aI-G design. On each trial, all group members first submitted an 

individual initial estimate of the price of the used car, again accompanied by a confidence 

rating. Once all group members had provided their individual judgments, the group discussion 

started. The initial judgments of all group members were displayed on each group member’s 

computer, and group members were asked to consult with their fellow group members to 

come up with a consensus estimate and a joint confidence judgment of their group estimate. 

Once all group members had entered the consensus judgment and confidence rating on their 

computers, the next trial started. In the nominal group condition, participants worked on all 30 

estimates individually. In order to avoid a confound between the experimental condition and 

the number of judgments per trial, nominal group participants had to provide two estimates 

per trial. After their first estimate, participants were asked to estimate the price of the same 

car once more, with their initial judgment being displayed on screen. The second estimate was 

also accompanied by a confidence rating. Note that we videotaped each group in both 

conditions in Phase 2. Because we were only interested in the group discussions, we only kept 

the recordings for the groups in the real group condition.3 

Regardless of the experimental condition, all participants worked on another 30 trials 

on their own in Phase 3. Following Phase 3, all participants filled in a final questionnaire. 

This questionnaire contained questions regarding participants’ demographics (age, gender), a 

suspicion check (“What do you think was the purpose of this study?”, open answer format), 

and a question asking participants whether they had worked on the task in a serious manner 

                                                           
3 We conducted qualitative and quantitative analyses of the videos from Experiment 2. The aim of these analyses 

was to test for possible links between aspects of the group discussions and the amount of G-I-transfer. The 

analyses did, however, not reveal sufficiently reliable insights. Therefore, we do not report them here, but instead 

added them as an online supplement (https://osf.io/7e8w5/).  

https://osf.io/7e8w5/
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(‘yes’ vs. ‘no’). For exploratory purposes only, and depending on the condition, participants 

were asked open-ended questions about their strategies in Phase 2. In particular, members of 

the real group condition were asked how they came up with their group judgments. Members 

of the nominal group condition were asked to provide details on how they came up with their 

individual judgments in general terms.  

Participants’ payment for taking part in the study consisted of a fixed reimbursement 

of €10 for completing the study and a performance-based bonus payment of up to €9. The 

bonus was determined as follows: Participants made 30 individual estimates in Phase 1, 30 

individual/initial estimates and 30 group/revised estimates in Phase 2, and 30 individual 

estimates in Phase 3. The computer program randomly drew one estimate from each phase. 

For each of the three estimates that deviated less than 10% from the true value, the participant 

received €3 (for a maximum bonus of 3 × €3 = €9). This payoff scheme was explained to 

participants in the initial instructions. 

Dependent Variables. The dependent variables of interest are variables at the level of 

individual (nominal) group members. However, due to interaction and interdependence in the 

real group, data of real group members are not statistically independent. To account for this 

interdependence, we aggregated all indices on the (nominal) group level.  

Accuracy. We measured the overall accuracy using the mean absolute percentage error 

(MAPE), which is defined as follows: 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑖 −𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑖| 

𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑖

𝑛

𝑖=1
∗ 100  (1) 

Individual Accuracy Gain. We computed the differences between participants’ 

individual MAPE scores in Phase 1 and their individual MAPE scores in Phases 3. Positive 

values indicate an increase in individual accuracy. 
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Mapping Knowledge. As the indicator of mapping knowledge, we calculated Fisher-z-

transformed Spearman's rank correlations between the true values and the respective estimates 

within each phase of the experiment.  

Individual Mapping Knowledge Gain. We computed the differences between 

participants’ mapping knowledge in Phase 3 and their mapping knowledge in Phase 1. 

Positive values indicate an increase in individual mapping knowledge. 

Metric knowledge. For exploratory reasons, we also calculated participants’ metric 

error as the mean percentage error (MPE) as well as the individual metric knowledge gain, 

defined as the difference between participants’ metric error in Phase 1 and that of Phase 3 

(again, positive values indicate an increase in metric knowledge). 4 

𝑀𝑃𝐸 =
1

𝑛
∑

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑖 −𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑖 

𝑡𝑟𝑢𝑒 𝑣𝑎𝑙𝑢𝑒𝑖

𝑛

𝑖=1
∗ 100  (2) 

Pretest. For our experimental task, a pretest revealed that it fulfilled the above-

mentioned requirements. Similar to the main experiment, the pretest consisted of three phases, 

each comprising 30 trials of the multi-cue judgment task. We grouped the 90 trials of 

judgment task into three sets of 30 trials each, so that items were roughly similar between sets 

in terms of difficulty as well as in terms of variety of used cars. The item sets were presented 

in randomized order. The order of the 30 items within each set was also randomized. In 

Phases 1 and 3, participants worked on the 30 trials without any form of feedback. In Phase 2, 

feedback in the form of the true values was provided to the participants. A comparison 

between Phase 3 and Phase 1 allowed us to evaluate the ability to learn when performing the 

task under optimal feedback. The pretest showed that there was sufficient variability with 

regard to participants’ mapping knowledge (median: 0.72; range: 0.45-0.93), overall accuracy 

(median: 57.88; range: 21.35-281.68) and metric knowledge (median: 29.76; range: 0.38-

                                                           
4 Note that metric error can also be measured by using the median overall deviation (MOD), which is the average 

difference between the median of all judgments and the median of the corresponding true values (Brown & 

Siegler, 1993).  
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280.93) in Phase 1 of the pretest. Second, a one-tailed t-test revealed that participants were 

able to improve their mapping knowledge from Phase 1 (M = 0.98, SD = 0.29,  = 0.75) to 

Phase 3 (M = 1.10, SD = 0.36,  = 0.80), t(49) = 2.18, p = .017, d = 0.31. Another one-tailed 

t-test revealed a reduction of the overall error from Phase 1 (M = 74.24, SD = 55.46) to Phase 

3 (M = 57.61, SD = 35.85), t(49) = 1.83, p = .037, d = 0.26). Additionally, a one-tailed t-test 

revealed that participants were able to improve their metric knowledge from Phase 1 (M = 

50.61, SD = 63.65) to Phase 3 (M = 29.97, SD = 39.07), t(49) = 1.93, p = .030, d = 0.27. That 

is, it is generally possible for participants to acquire better mapping knowledge in this task.5  

Sample size and stopping rule. We applied Bayesian sequential testing (Schönbrodt 

et al., 2017). Accordingly, we relied on the Bayes factor of the alternative hypothesis (BF10) 

as our inference criterion. The BF10 is an odds ratio indicating how likely the alternative 

hypothesis is relative to the null hypothesis given the observed data. We considered Bayes 

factors greater than 3 or smaller than 0.33 to be sufficient evidence for our alternative or the 

corresponding null hypothesis. As we predicted directional effects between the group and 

nominal condition, we defined the null hypothesis for the Bayes Factor as an interval from d = 

–∞ to d = 0.20 (Morey & Rouder, 2011) to conduct an appropriate one-tailed test. We began 

by initially testing 30 groups per condition (180 participants). In accordance with our pre-

registration, data collection would continue past this initial sample until a) both of the two 

BF10 for Hypotheses 1 and 2 showed evidence for the null hypothesis (BF10 < 0.33) or 

evidence in favor of the alternative hypothesis (BF10 > 3) or b) we hit a sample size of 51 

groups per condition (upper boundary reflecting our budgetary constraints). 

We deviated from the original plan and stopped collecting data after testing 30 groups 

per condition because the first inspection of the data revealed that the randomization of 

                                                           
5 One reviewer pointed out that an improvement in individual mapping knowledge as observed in our pre-test 

might be an interesting finding in its own right, because previous evidence for individuals improving in mapping 

knowledge is still largely lacking. Therefore, we have made the full data of the pretest as well as our analysis 

code publicly available at the Open Science Framework (https://osf.io/hujr6/). 

https://osf.io/hujr6/
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experimental conditions was not sufficiently effective. Specifically, we observed differences 

in mapping between real group and nominal group members in Phase 1 that make the 

interpretation of the results concerning Hypotheses 1 and 2 difficult (see results). Despite 

these baseline differences, the data are not entirely uninformative, and some tests pertaining to 

our hypotheses are still feasible. Thus, we proceeded with the planned data analysis, but we 

also decided to run a second study to provide a clear test of our hypotheses. 

Data exclusion. We excluded participants from the analysis based on the following 

pre-registered criteria: First, if they reported in the final questionnaire that they did not work 

on the task seriously; second, if they failed to comply with the instructions concerning the 

discussion of tasks (i.e., nominal group members discussed the target values, real group 

members discussed their individual pre-discussion estimates, or real group members discussed 

their individual estimates in Phases 1 or 3). Exclusion of one participant in the real group 

condition necessitated excluding the whole group from the data analysis. Participants/groups 

excluded along these lines were replaced to ensure the aspired sample size. Furthermore, we 

excluded outlier judgments on a trial-by-trial basis. All individual judgments which deviated 

by more than five standard deviations from the average individual judgment for that specific 

task were excluded.  

Since there were some participants with a substantial number of excluded trials (in 

some cases we had to exclude more than twenty trials in one phase), we had to implement an 

additional exclusion criterion. Thus, other than specified in the pre-registration, we removed 

participants from the final analyses if more than seven of their estimates (i.e., more than 25%) 

had to be excluded in one of the three phases. We had to implement this criterion to guarantee 

the precision of our mapping measure. Note that the results would not change if we used 

fewer trials as a criterion.  

 Participants. Our final sample comprised 180 German-speaking undergraduate and 

graduate students (117 women, 62 male and 1 other) of different faculties from the University 
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of Goettingen, with a median age of 23 years (range: 18-56). They were recruited via the 

participant database ORSEE (Greiner, 2015).  

Results 

We conducted all analyses with the statistical software R (Version 3.5.1; R Core 

Team, 2018). The reported Bayesian t-tests (Rouder et al., 2009) were calculated using the 

BayesFactor package (Morey & Rouder, 2015).  

Phase 1 individual performance. As mentioned above, we observed some 

unexpected baseline differences between real and nominal groups. We investigated these 

differences using two Bayesian t-tests for independent samples. We used the then default prior 

for the effect size, namely the JZS prior (Rouder, 2009) with the default scaling factor of r = 

1.6 Since we were interested in testing whether the baseline performances were about equal, 

we used two-tailed Bayesian t-tests with a point null hypothesis. With regard to overall 

accuracy, there were no baseline differences between real (M = 59.51, SD = 11.29) and 

nominal groups (M = 59.87, SD = 23.75), t(41.48) = 0.07, p = .942, BF10 = 0.19, d = 0.02, 

allowing us to conclude that initial accuracy did not differ systematically between conditions. 

However, an analysis of participants’ Phase 1 mapping knowledge indicated a substantial 

problem: We detected descriptive baseline differences between the real (M = 0.96, SD = 0.25, 

 = 0.74) and the nominal groups (M = 1.09, SD = 0.22,  = 0.80). In particular, the respective 

Bayesian t-test could not confirm that the individual mapping knowledge was similar in the 

nominal and real groups, t(58) = 1.97, p = .053, BF10 = 1.09, d = 0.51. Since the experimental 

procedure in the two conditions did not differ in Phase 1 (the experimental manipulation of 

group type took place after Phase 1 and prior to Phase 2), a possible baseline difference would 

indicate an ineffective randomization. That is, unfortunately, the random assignment of 

                                                           
6 Note that the default scaling factor in the BayesFactor package was recently changed to r = 0.707. Thus, we 

refer to the default at the time we pre-registered Experiment 1. 
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participants to the two group conditions led to an imbalance regarding participants’ mapping 

knowledge.  

Individual accuracy gains. We compared participants’ individual accuracy gains 

between the two conditions (real groups, nominal groups) using Bayesian t-test for 

independent samples, with the default JZS prior and a scaling factor of r = 1. We applied a 

one-tailed version of the test by defining the null interval between d = –∞ and d = 0.20. The 

individual accuracy gains in the real group condition (M = 6.15, SD = 14.29) were higher than 

the individual accuracy gains in the nominal group condition (M = 0.30, SD = 12.90), t(58) = 

1.63, p = .051 , BF10 = 4.45, d = 0.43. Having found substantial evidence in favor of 

Hypothesis 1, as indicated by the BF10 exceeding 3, we next tested Hypotheses 1a and 1b to 

determine the exact nature of the observed difference. Separate paired-sample t-tests revealed 

that group members’ individual accuracy in the real groups improved from Phase 1 to Phase 

3, t(29) = 2.36, p = .013, BF10 = 8.60, d = 0.46, while the accuracy in the nominal groups 

remained unchanged, t(29) = 0.13, p = .449, BF10 = 0.24, d = 0.01. These results confirm both 

Hypothesis 1a and Hypothesis 1b. A detailed overview of participants’ individual accuracy is 

displayed in the upper panel of Figure 1.  

Individual mapping knowledge gains. We compared participants’ individual 

mapping knowledge gains between the two conditions (real groups, nominal groups), again 

using the same one-tailed Bayesian t-test for independent samples (JZS prior with a scaling 

factor of r = 1, null interval between d = –∞ and d = 0.20). The individual mapping gains in 

the real group condition (M = 0.08, SD = 0.25, Phase 1 = 0.74, Phase 3 = 0.78) were not 

substantially higher than the individual mapping gains in the nominal group condition (M = 

0.01, SD = 0.26, Phase 1 = 0.80, Phase 3 = 0.80), t(58) = 1.08; p = .142 ; BF10 = 1.80, d = 0.28. 

Since the BF10 neither exceeded 3 nor fell below 0.33, the results of this test remain 

inconclusive, that is, we can neither accept nor reject Hypothesis 2. Yet, separate paired-
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sample t-tests revealed that the individual mapping knowledge in the real groups improved 

from Phase 1 to Phase 3, t(29) = 1.78, p = .043, BF10 = 3.40, d = 0.33, while mapping 

knowledge in the nominal groups remained more or less unchanged, t(29) = 0.24, p = .408, 

BF10 = 0.29, d = 0.04, supporting Hypotheses 2a and 2b. A detailed overview of participants’ 

individual mapping knowledge is displayed in the lower panel of Figure 2. 

 

Figure 2: Individual Accuracy (upper panel) and individual mapping knowledge (lower panel) 

by phase and condition. In the upper panel, the overall accuracy in the form of the mean 

absolute percentage error is displayed. In the lower graph, mapping knowledge measured via 

fisher z transformed Spearman`s rank correlation is shown. Note that the points represent the 
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data points, the bold horizontal black lines represent the means, and the colored rectangles 

represent the 95% highest density intervals. The beans indicate the distribution of the data, 

with their width corresponding to the estimated density at the respective level of the y-axis. 

Discussion  

Interpreting the results of Experiment 1 is somewhat difficult because of the 

suboptimal randomization which led to baseline differences in participants’ mapping 

knowledge. While this baseline difference limits the interpretability of some results, we can 

still make a number of valid inferences. First, the results indicate that G-I transfer generalizes 

to multi-cue judgment tasks. In particular, individuals who had worked in real groups 

increased their overall accuracy, whereas members of nominal groups did not. Second, we 

were able to confirm that participants’ individual mapping knowledge in the real group 

condition was greater in Phase 3 than in Phase 1, whereas participants’ individual mapping 

knowledge in the nominal group condition did not differ between these phases. Although this 

pattern fits our postulated hypotheses regarding the increase in mapping knowledge, we could 

not confirm that the increase in mapping knowledge actually differed between conditions. 

Yet, the differences in individual mapping that we observed between group types in Phase 1 

were no longer evident in Phase 3. However, there are two possible interpretations. One is 

that, due to G-I transfer of mapping knowledge, real group members could catch up with the 

initially more knowledgeable nominal group members. Nevertheless, it is also possible that 

greater increases in real group members’ individual accuracy reflected their greater potential 

to improve rather than genuine group processes. Put differently, a ceiling effect may have 

prevented nominal but not real group members from improving their mapping knowledge, 

thus artificially creating the observed results. 

 In sum, based on the results of the first experiment, it remains unclear to which extent 

group interaction is beneficial with regard to reducing individual mapping errors. Against this 

background, we replicated Experiment 1. However, this time we experimentally controlled for 
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baseline differences in individual mapping knowledge in Phase 1 by using parallelization 

instead of randomization. 

Experiment 2 

The aim of Experiment 2 was to test the same hypotheses as in Experiment 1, but 

without the risk of baseline differences between conditions. In addition to using 

parallelization in Experiment 2, we also made an additional prediction regarding participants’ 

Phase 3 mapping knowledge. Assuming that there would be no baseline differences in 

mapping knowledge between conditions, and given that we would find G-I transfer of 

mapping knowledge, the logical conclusion would be that former real group members should 

possess better mapping knowledge than former nominal group members in Phase 3. We added 

this prediction as a third hypothesis. As with Experiment 1, Experiment 2 was also pre-

registered at the Open Science Framework (https://osf.io/zkbpg). 

 Hypothesis 3: Participants’ individual Phase 3 mapping knowledge is greater among 

participants who were members of real groups in Phase 2 as compared to nominal group 

members.  

Procedure. The procedure was similar to that of Experiment 1 with the following 

exception: to prevent baseline differences between the real and the nominal groups, we 

allocated the participants to the two conditions based on their mapping errors in Phase 1. In 

particular, the experimenter tracked participants’ Phase 1 mapping errors on the fly via a 

computer stream programmed with the open source experimental software Alfred 

(Treffenstaedt & Wiemann, 2018). Based on this information, the experimenter balanced the 

individual mapping of the groups between the two conditions. In addition, we used the 

knowledge about participants’ Phase 1 mapping errors to create heterogeneous groups with 

regard to mapping knowledge. Weaker group members were paired with stronger group 

members, which should facilitate learning effects in the real group condition (Bonner & 

Baumann, 2004). Note that to allow for parallelization, this time we also had to change the 

https://osf.io/zkbpg


G-I TRANSFER IN MULTI-CUE JUDGMENT TASKS  23 

randomization of the stimuli. All participants in one session (as opposed to all participants in 

one real/nominal group) received the same order of items. From Phase 2 onwards, Experiment 

2 was identical to Experiment 1.  

Sample size and stopping rule. As in Experiment 1, we used Bayesian sequential 

testing. However, we included the Bayes Factor of Hypothesis 3 in the stopping rule for 

Experiment 2. That is, we started by collecting 30 groups per condition and planned to gather 

data until all three of the focal BF10 showed either evidence in favor of the null hypothesis 

(BF10 < 0.33) or evidence in favor of the alternative hypothesis (BF10 > 3). 

Data exclusion. The criteria for excluding participants were identical to Experiment 1 

with one addition: Participants were excluded if we had to exclude more than five of their 

estimates in at least one of the three phases.  

Participants. In Experiment 2, 180 German-speaking undergraduate and graduate 

students (108 women, 71 male, and 1 other) from different faculties of the University of 

Goettingen with a median age of 25 years (range: 18-55) made up the final sample of the 

study. 

Results 

Phase 1 individual performance. We compared participants’ Phase 1 mapping 

knowledge using a Bayesian t-test for independent samples with the default JZS prior and a 

scaling factor of r = 1. We used a two-tailed Bayesian t-test with a point null hypothesis. This 

test showed that the change from randomization to parallelization was successful in 

preventing baseline differences. Specifically, with regard to mapping knowledge, there were 

no baseline differences between real (M = 0.99, SD = 0.16,  = 0.76) and nominal groups (M 

= 0.98, SD = 0.14,  = 0.75), t(58) = 0.32, p = .748 , BF10 = 0.20, d = 0.08. Furthermore, with 

regard to the overall accuracy, there were also no baseline differences between real (M = 

63.62, SD = 22.97) and nominal groups (M = 66.72, SD = 19.63), t(58) = 0.56, p = .576, BF10 

= 0.22, d = 0.15.  
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Individual accuracy gains. As in Experiment 1, we compared participants’ individual 

accuracy gains between real groups and nominal groups. We conducted the same Bayesian t-

test for independent samples as in Experiment 1 (JZS prior with a scaling factor of r = 1, null 

interval between d = –∞ and d = 0.20). Individual accuracy gains in the real group condition 

(M = 15.47, SD = 17.78) were substantially greater than in the nominal group condition (M =  

-1.85, SD = 15.56), t(58) = 4.02, p < .001 , BF10 > 100, d = 1.04. This finding supports 

Hypothesis 1. Paired sample t-tests comparing Phase 1 accuracy to Phase 3 accuracy revealed 

that individual accuracy improved from Phase 1 to Phase 3 in the real groups, t(29) = 4.77, p 

< .001 , BF10 > 100, d = 0.81, but not in the nominal groups, t(29) = -0.65, p = .521, BF10 = 

0.05, d = -0.01, confirming Hypotheses 1a and 1b, respectively. A detailed overview of 

participants’ individual accuracy is displayed in the upper panel of Figure 3. 

Individual mapping knowledge gains. We compared participants’ individual 

mapping knowledge gains between the two conditions (real groups, nominal groups), again 

using the same one-tailed Bayesian t-test for independent samples. Individual mapping gains 

in the real group condition (M = 0.16, SD = 0.22, Phase 1 = 0.75, Phase 3 = 0.82) were higher 

than in the nominal group condition (M = 0.02, SD = 0.14, Phase 1 = 0.75, Phase 3 = 0.76), t(58) 

= 3.00, p = .002, BF10 = 53.16, d = 0.78, supporting Hypothesis 2. A paired sample t-test 

comparing Phase 1 and Phase 3 mapping knowledge showed a strong increase in real group 

members’ mapping knowledge, t(58) = 4.05, p < .001 , BF10 > 100, d = 0.74, confirming 

Hypothesis 2a. A similar test in the nominal group condition yielded some evidence that the 

mapping knowledge did not differ between Phases 1 and 3, t(29) = 0.65, p = .260 ; BF10 = 

0.58, d = 0.12. However, since the BF10 did not fall below 0.33, this test remains inconclusive, 

and we can neither accept nor reject Hypothesis 2b. Again, a detailed overview of 

participants’ individual mapping knowledge is displayed in the lower panel of Figure 2. 

Individual metric knowledge gains. Our first exploratory analysis of Experiment 2 

concerns participants’ metric knowledge. We computed participants’ improvement in metric 
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knowledge from Phase 1 to 3. The results of a two-tailed Bayesian t-test with a point null 

hypothesis revealed that the improvement of metric knowledge was greater in the real groups 

(M = 14.49, SD = 22.39) than in the nominal groups (M = -1.21, SD = 17.84), t(58) = 3.00, p 

= .004 , BF10 = 9.25, d = 0.78. Furthermore, separate two-tailed t-tests for paired samples 

confirmed that individuals in the real groups improved their metric knowledge, t(29) = 3.54, p 

= .001 , BF10 = 22.64, d = 0.68, while those in the nominal groups did not, t(29) = -0.37, p 

= .713 , BF10 = 0.15, d = -0.05. 

Phase 3 individual performance. The one-tailed Bayesian t-test showed that 

participants’ individual mapping knowledge in the real groups (M = 1.15, SD = 0.22,  = 

0.82) was higher than the mapping knowledge of participants in the nominal groups (M = 

1.00, SD = 0.20,  = 0.76), t(58) = 2.81, p = .003, BF10 = 35.27, d = 0.73, confirming 

Hypothesis 3. We also ran exploratory analyses of participants’ Phase 3 accuracy and metric 

knowledge using two-tailed Bayesian t-tests with a point null hypothesis. The individual 

accuracy of participants in the real groups (M = 48.15, SD = 14.24) was higher than in the 

nominal groups (M = 68.57, SD = 17.58), t(58) = 4.94, p < .001 , BF10 > 100, d = 1.28. 

Additionally, the individual metric knowledge of participants in the real groups (M = 30.76, 

SD = 17.2) was higher than in the nominal groups (M = 48.02, SD = 21.42), t(58) = 3.44, p 

= .001 , BF10 = 28, d = 0.89.  
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Figure 3: Individual Accuracy (upper panel) and individual mapping knowledge (lower 

panel) by phase and condition. In the upper panel, the overall accuracy in the form of the 

mean absolute percentage error is displayed. In the lower graph, mapping knowledge 

measured via fisher z transformed Spearman`s rank correlation is shown. Note, that the points 

represent the data points, the bold horizontal black lines represent the means, and the colored 

rectangles represent the 95% highest density intervals. The beans indicate the distribution of 

the data, with their width corresponding to the estimated density at the respective level of the 

y-axis. 
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Learning gains by group member ability. If the improvements in individual 

accuracy, mapping, and metric knowledge we observed are, in fact, the result of G-I-transfer, 

we would expect the initially weaker group members to benefit more than the initially 

stronger members. We tested this possibility in a series of exploratory analyses. First, we 

determined the best, medium, and worst member per group separately for overall accuracy, 

mapping knowledge, and metric knowledge in the practice phase. Then, we tested for 

differences in the magnitude of the accuracy or knowledge gains using Bayesian ANOVAs 

with the default settings of the Bayes factor package (Morey & Rouder, 2015), treating group 

member as a within-subjects factor (best vs. medium vs. worst).  

The analysis of accuracy gains revealed a significant effect of group member, F (2, 58) 

= 16.07, p < .001, 𝜂𝑔
2= 0.27, BF10 > 100. Post hoc comparisons showed that the worst 

members (M = 40.16, SD = 48.86) improved more than the best members (M = -1.14, SD = 

12.41), t(29) = 4.44, p < .001 , BF10 > 100, d = 0.81, and the medium members (M = 7.38, SD 

= 13.51), t(29) = 3.67, p < .001 , BF10 = 33.57, d = 0.67. Descriptively, the medium members 

(M = 7.38, SD = 13.51) also improved somewhat more than the best members (M = -1.14, SD 

= 12.41), t(29) = 2.43, p = .022 , BF10 = 2.36, d = 0.44, but the statistical tests yielded an 

inconclusive result. Consistent with this pattern, separate one-sample Bayesian t-tests against 

zero revealed an improvement in individual accuracy among the worst members, t(29) = 4.50, 

p < .001 , BF10 > 100, d = 0.82, and the medium members, t(29) = 2.99, p = .006 , BF10 = 

7.40, d = 0.55, whereas the best members’ accuracy remained largely unchanged, t(29) = 

0.50, p = .819 , BF10 = 0.21, d = 0.09. This pattern of results is displayed in the left panel of 

Figure 4. 

Next, we analyzed the improvement in mapping knowledge. The analysis revealed a 

significant effect of group member, F(2, 58) = 14.50, p < .001, 𝜂𝑔
2= 0.18, BF10 > 100. Post 

hoc comparisons revealed that the worst members’ (M = 0.33, SD = 0.28) mapping 

knowledge improved more than that of the best members (M = 0.01, SD = 0.30), t(29) = 5.59, 
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p < .001 , BF10 > 100, d = 1.02, and the medium members (M = 0.14, SD = 0.27), t(29) = 3.00, 

p = .005 , BF10 = 7.50, d = 0.55. The comparison of the medium members (M = 0.14, SD = 

0.27) and the best members (M = 0.01, SD = 0.30) yielded an inconclusive result, t(29) = 1.95, 

p = .061 , BF10 = 1.02, d = 0.36. One-sample Bayesian t-tests against zero showed 

improvements in mapping knowledge for the worst and the medium members, t(29) = 6.36, p 

< .001 , BF10 > 100, d = 1.16, and t(29) = 2.78, p = .010 , BF10 = 4.70, d = 0.51, respectively, 

whereas the mapping knowledge of the best members remained, more or less, stable, t(29) = 

0.19, p = .854 , BF10 = 0.20, d = 0.03. This pattern of results is displayed in the middle panel 

of Figure 4. 

Finally, we analyzed the improvements in metric knowledge in relation to the group 

members. Again, there was an effect of group member, F(2, 58) = 22.78, p < .001, 𝜂𝑔
2 = 0.32, 

BF10 > 100. Post hoc comparisons revealed that the worst members (M = 46.99, SD = 56.81) 

improved their individual metric knowledge more than the best members (M = -9.97, SD = 

17.17), t(29) = 5.36, p < .001 , BF10 > 100, d = 0.98, and the medium members (M = 6.44, SD 

= 15.66), t(29) = 4.17, p < .001 , BF10 > 100, d = 0.76. The medium members (M = 6.44, SD = 

15.66) did improve more than the best members (M = -9.97, SD = 17.17), t(29) = 4.81, p 

< .001 , BF10 > 100, d = 0.88. Separate one-sample Bayesian t-tests against zero revealed an 

improvement in individual metric knowledge for the worst members, t(29) = 4.53, p < .001 , 

BF10 > 100, d = 0.83. Medium members’ metric knowledge improved descriptively, but the 

test against zero yielded an inconclusive result, t(29) = 2.25, p = .032 , BF10 = 1.71, d = 0.41. 

Finally, the members’ metric knowledge declined slightly, t(29) = -3.18, p = .003 , BF10 = 

11.10, d = -0.58. The results are displayed in the right panel of Figure 4.  

We conclude this exploratory analysis with an interesting observation. As outlined in 

the paragraphs above, we did find differential performance gains separately for overall 

accuracy, mapping knowledge, and metric knowledge. Not surprisingly, group members’ 

relative mapping knowledge and their relative overall accuracy prior to the group discussions 
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(each expressed as group members’ rank within the group) were correlated, 𝑥 2(4) = 19.80, p 

< .001, BF10 > 100. The same was true for group members’ initial relative metric knowledge 

and relative accuracy, 𝑥2(4) = 45.60, p < .001, BF10 > 100. However, group members’ relative 

mapping and metric knowledge were largely uncorrelated a priori, 𝑥2(4) = 4.60, p = .331, 

BF10 = 0.16. R These results indicate that group members who had superior knowledge in 

mapping were often not the same participants who had superior metric knowledge. As we 

found for both types of knowledge that the weaker group members improved, we consider it 

likely that different group members can learn different things from the group discussions, 

which constitutes a strong potential for synergy. Since we could not provide a more direct test 

of this interesting possibility, we return to it in the general discussion.  
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Figure 4: Individual accuracy (left panel), mapping knowledge (middle panel) and metric 

knowledge (right panel) by phase and group member. The points represent the average 

performance of the specific type of group members.  

Group performance. So far, our analyses show that real group members benefitted 

from substantial G-I transfer in terms of increased overall individual accuracy, and that this 

transfer was due to both increased mapping and increased metric knowledge. Given that G-I 

transfer is one of the sources of synergy in quantitative group judgment, we would expect real 

groups to outperform nominal groups in Phase 2. To test whether this was the case, we 

compared the accuracy of the real group judgments with the average of the nominal group 
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members’ individual judgments during this second phase. Remember that the nominal group 

performance benefits from statistical aggregation but lacks potential benefits of social 

interaction and interdependence. A two-tailed independent samples Bayesian t-test with a 

point null hypothesis revealed that the group judgments (M = 43.92, SD = 21.92) were much 

more accurate than the averaged judgments in the nominal groups (M = 70.81, SD = 38.76), 

t(45.83) = 3.31, p = .002 , BF10 = 19.82, d = 0.85. This result indicates substantial synergy due 

to interaction in real groups.  

Furthermore, we compared the group judgments to the judgments of the nominal 

groups’ best members. To determine nominal groups’ best members, we first computed the 

MAPE scores of nominal group members’ second estimates in the group phase and then chose 

the person with the lowest MAPE. A two-tailed independent samples Bayesian t-test with a 

point null hypothesis revealed that the group judgments (M = 43.92, SD = 21.92) were as 

accurate as the judgments of the nominal groups’ best members (M = 45.65, SD = 10.43), 

t(41.49) = 0.39, p = .700 , BF10 = 0.21, d = 0.10.  

Group mapping knowledge. Similar to the main analysis of the G-I transfer, we 

compared the mapping knowledge of real groups to that of the nominal groups. To this end, 

we computed nominal group’s mapping knowledge based on the average of the three nominal 

group members’ judgments. A two-tailed independent samples Bayesian t-test with a point 

null hypothesis revealed that real group judgments (M = 1.44, SD = 0.29,  = 0.89) reflected 

higher mapping knowledge than nominal group judgments (M = 1.04, SD = 0.45,  = 0.78), 

t(49.43) = 4.05, p < .001 , BF10 > 100, d = 1.05.  

We also compared real group’s mapping knowledge to that of the nominal groups’ 

most knowledgeable members in terms of mapping knowledge. To determine the most 

knowledgeable member, we computed nominal group members’ mapping knowledge based 

on their second estimates in the group phase and chose the person with the highest rank 

correlation per group. A two-tailed independent samples t-test with a point null hypothesis 
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revealed that the real groups’ mapping knowledge (M = 1.44, SD = 0.29,  = 0.89) surpassed 

that of the nominal groups members with the highest mapping knowledge (M = 1.24, SD = 

0.26,  = 0.84), t(58) = 2.79, p = .007, BF10 = 5.63, d = 0.72.  

Group metric knowledge. For the sake of completeness, we also compared the metric 

knowledge of the real groups to that of the nominal groups in Phase 2. Again, we computed 

the latter based on the average of nominal group members’ individual judgments. A two-

tailed independent samples Bayesian t-test with a point null hypothesis revealed that the 

metric errors of group judgments (M = 31.04, SD = 24.09) were somewhat lower than the 

metric errors of nominal group judgments (M = 44.65. SD = 41.39), but this difference was 

rather small, and the respective t-test test yielded an inconclusive result, t(46.62) = 1.56, p 

= .126 , BF10 = 0.58, d = 0.40.  

We also compared real groups’ metric knowledge to that of the nominal groups’ most 

knowledgeable members in terms of metric knowledge. The nominal groups’ most 

knowledgeable member in terms of metric was the member with the lowest metric errors 

across the second individual judgments of Phase 2. Descriptively, the metric errors of real 

groups (M = 31.04, SD = 24.09) were higher than the metric errors of the nominal groups’ 

most knowledgeable members (M = 20.75, SD = 14.96), but a two-tailed independent samples 

Bayesian t-test with a point null hypothesis yielded an inconclusive result, t(48.47) = 1.99 , p 

= .052 , BF10 = 1.12, d = 0.51. .  

Differential weighting. Our final analysis concerns the possibility that real groups 

achieved synergy (also) by weighting their more expert members or more accurate individual 

judgments more strongly when forming the consensus estimates (differential weighting). To 

test for this possibility, we compared the accuracy of real group judgments to the average of 

the real group members’ corresponding individual pre-discussion judgments (i.e., the average 

model). We excluded the first trial of the group phase from this comparison because, whereas 

the first group judgment may already benefit from G-I transfer, the individual pre-discussion 
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judgments for the first trial of the group phase cannot (they were provided prior to any group 

interaction). Thus, retaining the first trial of the group phase in the analysis might artificially 

create the impression that groups engaged in differential weighting (see Schultze et al., 2012). 

A two-tailed paired sample t-test with a point null hypothesis revealed that the overall 

accuracy of the group judgments (M = 44.23, SD = 22.67) was almost identical to that of the 

average model (M = 44.15, SD = 19.10), t(29) = 0.07, p = .947, BF10 = 0.14, d = 0.00. Hence, 

there was no evidence of differential weighting. 

Discussion 

The results of Experiment 2 confirmed all of our hypotheses. First, we again replicated 

the generalizability of G-I transfer to multi-cue judgment tasks. Second, and most 

importantly, we found very strong evidence for G-I transfer of mapping knowledge: Whereas 

nominal group members’ mapping knowledge remained largely unchanged, real group 

members benefited from group interaction and increased their individual mapping knowledge 

substantially. Consequentially, the individual mapping knowledge of former real group 

members exceeded that of former nominal group members in Phase 3. Since we made sure – 

via parallelization – that there were no initial differences in mapping knowledge or general 

accuracy between conditions, the only viable explanation for the observed results is G-I 

transfer. Furthermore, group members were able to improve their metric knowledge via group 

interaction, thereby replicating previous findings (Stern et al., 2017). In an exploratory 

analysis, we further replicated synergy through real group interaction, that is, real groups 

outperformed nominal groups. Since there was no indication at all in our exploratory analyses 

that group judgments benefitted from differential weighting by expertise or accuracy, we 

attribute this synergy fully to G-I transfer. Additional exploratory analyses showed that G-I 

transfer differed in relation to the member’s initial performance. In particular, initially weaker 

group members realized the strongest G-I transfers.  

General Discussion 
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The main goal of the present research was to test whether working on quantitative 

judgment tasks in interacting groups leads to increases in group members’ individual mapping 

knowledge. We hypothesized that real group members’ individual mapping knowledge would 

increase due to group discussion, whereas the mapping knowledge of nominal group members 

should remain constant. As a prerequisite for the transfer of mapping knowledge in real 

groups, we also investigated whether the individual judgment accuracy of real group members 

benefited from G-I transfer.  

In line with our assumptions, the results of our two experiments showed that 

participants who worked in real (i.e., interacting) groups improved their individual judgment 

accuracy due to group discussions, while participants who worked alone (i.e., as members of 

nominal groups) did not. With regard to the transfer of mapping knowledge, we observed a 

similar pattern. In the two experiments, group members improved their individual mapping 

knowledge as a consequence of group discussion, while the individual mapping knowledge of 

participants working alone did not improve over time. Because of baseline differences 

between the real and nominal groups in terms of mapping knowledge, the results of 

Experiment 1 were not entirely conclusive regarding the transfer of mapping knowledge. 

However, the methodologically improved Experiment 2 showed strong evidence of the 

predicted transfer of mapping knowledge. Furthermore, in Experiment 2, group judgments 

were more accurate than the average of a comparable number of individual judgments in the 

nominal condition. This synergy effect could be fully attributed to G-I transfer, as we did not 

detect any evidence of differential weighting.  

To the best of our knowledge, our experiments provide the first conclusive evidence 

for G-I transfer of mapping knowledge: group members can increase their individual mapping 

knowledge due to group interaction. In other words, group discussion enables group members 

to gain an improved understanding of the relationship between cue characteristics on the one 

hand, and target values on the other hand. In line with previous findings (Stern et al., 2017), 
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group members were also able to reduce their metric errors via group interaction, and weaker 

group members benefited the most from the group discussions. 

Our results further indicate that previous findings of G-I transfer also generalize to 

multi-cue judgments tasks. Previous research detected G-I transfer in collective induction 

(Brodbeck & Greitemeyer, 2000), reasoning tasks (Laughlin, Carey, & Kerr, 2008), 

mathematical problems (Laughlin & Ellis, 1986), and simple judgment tasks pertaining to 

general knowledge (Schultze et al. 2012, Stern et al. 2017). Thus, by showing that G-I transfer 

also occurs in multi-cue judgment, our findings highlight the relevance of this learning 

process for group performance. Nevertheless, we would like to point out an important 

difference between multi-cue judgments and simple general world knowledge judgments that 

highlight the relevance of our current findings: Multi-cue judgments possess a great deal of 

practical relevance. In most real-world judgment tasks, such as climate change predictions or 

financial prognoses, the forecasters have knowledge of all relevant cues, but must (learn to) 

use these cues correctly to make the most accurate prediction. Experiments 1 and 2 showed 

that group members improved their individual accuracy and mapping knowledge under these 

exact conditions. In other words, our findings suggest that G-I transfer in quantitative 

judgment is not restricted to simple general knowledge questions (where, in practice, one 

would hardly need groups to solve them), but can also occur under more realistic task settings. 

The results of Experiment 2 also showed synergy through real group interaction, that 

is, real groups outperformed nominal groups in terms of overall accuracy. This adds to 

previous research showing synergy in group judgment (e.g., Bonner & Baumann, 2012; 

Minson et al., 2017; Schultze et al., 2012; Sniezek & Henry, 1989). In the present study, this 

synergy can be fully explained by G-I transfer, as we did not find any evidence of differential 

weighting. We can even go one step further and attribute synergy to G-I transfer of both 

metric and mapping knowledge. Finally, the results of Experiment 2 indicate that groups 
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outperform even the most knowledgeable members of the nominal groups with regard to 

mapping. 

Practical implications 

 Practitioners often need to decide whether they should rely on groups to perform a 

particular task. In many cases, group performance is considered superior to individual 

performance. However, research on group performance shows that groups often fall short on 

these expectations and do not exceed reasonable baselines based on the combination of 

individual contributions (e.g., Steiner ,1972; Kerr & Tindale, 2004). Even under conditions 

that might seem optimal for developing synergy, groups often fail to realize this potential 

(Schulz-Hardt & Mojzisch, 2012). One of the few exceptions where the implementation of 

groups seems to be highly beneficial are quantitative judgments (e.g., Schultze et al., 2012). 

Based on our finding that interacting groups substantially outperformed the average of a 

comparable number of individuals, we can now make an even stronger case for having groups 

work on quantitative judgments.   

Discussing and deciding on quantitative judgments in a group also increases group 

members’ individual ability to perform the task. On the one hand, this implies that 

organizations may use group work as a means to train forecasters effectively. On the other 

hand, combining group and individual work in an appropriate manner could help to exploit 

the benefits of group interactions without having to bear its full costs. One could first have 

forecasters work in interacting groups to reap the benefits of G-I transfer. Once G-I transfer is 

complete, one could then disband the groups, have former group members work on the task 

individually, and then combine their estimates by averaging them (similar to a nominal 

group). Because we did not find evidence of differential weighting, we can assume that, over 

time, the average of individual judgments of former group member might become as accurate 

as the group judgments themselves, and that additional group work is not necessary from this 

point on.  
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So far, our focus was on judgmental accuracy. However, accuracy is not always the 

sole determinant of judgment quality. Specifically, there may be situations in which the 

mapping of judgments is of even greater importance than the overall accuracy. An example 

for such a situation is the selection of employees: Usually, the suitability of candidates for a 

certain position is rated based on various cues such as test scores, previous education, past 

performance, and letters of recommendations. As organizations want to hire the person who is 

best suited for the job, the goal of personnel selection is to sort all candidates by suitability 

(i.e., the best candidate receives the highest score, the second-best candidate receives the 

second highest score, etc.). In this situation, even large metric errors might be 

inconsequential, that is, a hiring committee might underestimate all candidates or judge all of 

them too harshly, but – despite lacking in overall accuracy – still end up with the correct order 

of applicants. As an added benefit, the mapping of judgments (but not necessarily their 

calibration in terms of metric) ensures the fairness of the procedure (e.g., Conway, Jako, & 

Goodman, 1995). Our data suggest that groups may be particularly useful in such contexts. 

Finding that groups’ mapping knowledge exceeded even that of the best members of nominal 

groups implies that their judgments are not only accurate but also highly consistent. 

Limitations and directions for future research 

There are some limitations worth addressing. The first set of limitations concerns the 

task and the experimental design we used. Since we applied the same multi-cue judgment task 

in both experiments, we cannot rule out that our results are somewhat task-specific and do not 

necessarily generalize to other multi-cue judgment tasks. Additionally, our experimental 

procedure did not include any form of feedback. However, in many real-world tasks such 

feedback is available, either immediately or with delay. For example, in forecasting tasks the 

true value will be known eventually. It is conceivable that feedback in multi-cue judgement 

tasks might already be sufficient to elevate individual decision-makers’ mapping knowledge 

to a level where there is little room for additional increases due to G-I transfer. If so, it might 
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still be possible that groups are better at interpreting feedback, thus enabling to learn target-

cue relations faster. Accordingly, G-I transfer might not manifest in greater individual 

mapping knowledge but, rather, in reduced time to obtain it. Therefore, future research is 

needed to test the generalizability of our findings, especially in multi-cue judgement tasks 

with (time-delayed) feedback. 

The second set of limitations is concerned with the specific conditions relevant to G-I 

transfer of mapping knowledge. Hence, it remains to be clarified under what conditions 

mapping knowledge can be transferred between group members. In our experiments, we 

created ideal conditions for this type of transfer. In particular, we choose a task where 

mapping can be learned, and we implemented heterogeneous groups to facilitate learning. 

Future research should investigate the influence of specific task features, as well as the effect 

of group composition on the transfer of mapping knowledge, because they might yield 

important insights into the psychological mechanisms involved in G-I transfer. For example, 

the general individual mapping knowledge prior to group discussion was already relatively 

high in our task. This may have created a situation with high task demonstrability and 

sophisticated discussion of the cue-target relations, which might be a prerequisite for G-I 

transfer of mapping knowledge. Therefore, it is important to investigate the extent of general 

individual mapping knowledge necessary for having an improvement in mapping knowledge. 

Likewise, we assigned participants to the groups so that groups were heterogeneous with 

regard to their mapping knowledge. Future research could investigate whether there is an 

optimal ability difference between the best and weakest member of a group for the 

improvement of the individual mapping knowledge. 

A final point we consider worth noting here is that group members with the best 

mapping knowledge were not necessarily also the ones with the best metric knowledge. In 

fact, one of our exploratory analyses found evidence for the null hypothesis that group 

members’ relative expertise in metric and mapping knowledge was unrelated. The fact that we 
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still found substantial G-I transfer in both knowledge domains suggests that groups were 

rather good at leveraging their members’ specific strengths by integrating their unique 

knowledge. Unfortunately, our data did not allow for more detailed tests of this exciting 

possibility. Therefore, future research should investigate how well, or under which 

circumstances, groups can realize their potential for synergy in when the relevant metric and 

mapping knowledge is distributed among group members.  

 

Conclusion 

Groups working on multi-cue judgment tasks benefit from G-I transfer, that is, they 

can outperform a comparable number of individuals because their members’ individual ability 

to perform the task increases due to group discussion. The current study shows that this 

increase in group members’ accuracy has two components. On the one hand, group members 

can correct their erroneous metric knowledge, that is, they develop a better understanding of 

what constitutes a possible range of target values. On the other hand, they also gain a deeper 

understanding of how different target values relate to each other. Our study highlights the 

importance of studying group performance as a dynamic construct that is subject to group 

learning. 
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Abstract

Whereas recent research on the wisdom of the crowd effect questioned the importance of group

interaction by showing that, in many cases, simple aggregations of independent judgments are

already highly accurate, we present extensive meta-analytic evidence that interacting groups

continuously outperform such aggregations with regard to accuracy in multiple consecutive

judgments and, thereby, achieve synergy. In particular, we show that group judgments are more

accurate than the average of a comparable number of individual judgments, and that group

judgments can be as accurate as the judgments of the best individual member of the nominal

groups (i.e., the person with the lowest judgment error). Additionally, our meta-analytic results

substantiate two different mechanisms that lead to synergy in quantitative group judgment. On

the one hand, group members can learn from each other and, thereby, increase their individual

accuracy (G-I transfer). On the other hand, when controlling for G-I transfer, group members

are also able to identify the more accurate judgments and assign more weight to them

(differential weighting).

Keywords: group judgment, group processes, wisdom of the crowd
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The benefit of collaboration: Disentangling the sources of synergy in group judgment

Quantitative judgments such as forecasts and prognoses form the basis for many

important political, entrepreneurial, and medical decisions. The quality of those decisions

crucially rests on the accuracy of the underlying judgments. For example, medical teams will

usually only decide in favor of a particular medical intervention if the forecasted chances of

success are high. Accordingly, the accuracy of quantitative judgments has been of broad

scientific interest to diverse disciplines, including social psychology, cognitive science,

economics, and management science. Often, decision-makers appoint groups rather than

individuals to make important quantitative judgments (Gigone & Hastie, 1997), presumably

because groups have greater cognitive capacities, possess more information, and can integrate

their members’ unique knowledge in order to achieve higher accuracy. Hence, a fundamental

research question in group judgment is whether groups are, indeed, more accurate judges than

individuals (e.g., Gigone & Hastie, 1997, p. 149). Even in the absence of beneficial group

processes, group judgments will (at least on average) be more accurate than individual

judgments, because averaging a number of independent judgments usually leads to increases in

accuracy. This happens due to statistical error cancellation (e.g., Herzog & Hertwig, 2009; Soll

& Larrick, 2009) and is (among others) labeled as the “wisdom of the crowds” effect

(Surowiecki, 2005). It has been known for a long time that these kinds of accuracy gains do not

represent a real group process (Stroop, 1932). Therefore, we can only speak of a benefit of

collaboration or synergy (Larson, 2010) if group judgments are not just more accurate than

individual judgments, but if groups are rather able to make more accurate judgments than the

aggregation of individual judgments. Earlier reviews on group judgments were somewhat

skeptical about the existence of such synergy in group judgments. For example, Hastie (1986)

stated that the advantage of the group over the average of individual judgments is only small.

Gigone and Hastie (1997) summarized that, according to previous studies, group judgments

were just as accurate as the average of individual judgments. However, they also criticized that

previous studies did rely on different baselines for analyzing group judgment accuracy and,

therefore, a meaningful meta-analytic test was not conducted in their review. In the meantime, a

number of studies has provided solid evidence that group judgments can, indeed, be more
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accurate than the average of a comparable number of individual judgments (e.g., Keck & Tang,

2018; Lippold, Schulz-Hardt, & Schultze, 2020; Minson, Mueller, & Larrick, 2017; Sniezek &

Henry, 1989, Schultze, Mojzisch, & Schulz-Hardt, 2012; Stern, Schultze, & Schulz-Hardt,

2017). In the present research, we will conduct several meta-analyses to determine the extent of

the benefit of group judgments over a statistical aggregation of individual judgments.

Furthermore, a central aim of our paper is to disentangle different components of these

synergetic gains, in order to learn more about their nature, and to identify the mechanisms that

lead to these gains. We will address this in two ways: First, we will investigate what type of

judgment errors become smaller in groups compared to statistical individual aggregates, in order

to learn what groups are particularly good at. Second, we will investigate the mechanisms that

help groups achieve these gains: Are these gains due to an improvement of group members’

individual capabilities, or are they the result of beneficial coordination in the group, or both?

Overall, we aim at presenting a comprehensive analysis of synergy in group judgment.

Synergy in group judgment

As already outlined, even in the absence of any group processes, statistical aggregation

will benefit judgment accuracy. As a consequence, comparing the accuracy of a group with the

accuracy of a single individual working alone is only of limited value when it comes to

evaluating the performance of groups. Specifically, if we want to know whether group processes

benefit judgment accuracy - that is, whether groups achieve synergy - we have to compare group

judgment accuracy with the accuracy that is achieved without group processes, but in the

presence of statistical aggregation. In other words, we have to compare the judgments of

N-person-groups with the average judgments of N independent individuals or, as this

comparison is often framed, we have to compare groups with the average model. Calculating

the average constitutes a baseline for group judgment accuracy that is both theoretically and

practically meaningful. Theoretically, as we have outlined, forming the average of independent

judgments leads to statistical error cancellation (e.g., Soll & Larrick, 2009). Hence, whenever

there is unsystematic error in members’ individual judgments, the average model is more

accurate than the average individual judgment, and this advantage increases with increasing
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group size. Such statistical error cancellation can be powerful, as the literature on the wisdom of

the crowds indicates (Surowiecki, 2005). Therefore, beating the average model (i.e., achieving

synergy) is quite an achievement. In line with these theoretical considerations, the average

model has often been used as the baseline for the detection of synergy in judgment tasks (e.g.,

Minson et al., 2017; Schultze et al., 2012; Stern et al., 2017). Apart from this, the average

model can also be practically meaningful. For example, in cases where groups are unable to use

the individual knowledge of the members, or are unable to reach a consensus through

communication, the average of all members’ judgments constitutes a reasonable alternative for

achieving a group result. On top of that, decision makers might decide to save the effort of

bringing people together in a group and have them discuss, but to exploit the statistical

advantage of error cancellation by eliciting several individual judgments and averaging them

afterwards. Therefore, the average model can be a practical alternative to the group work itself.

Whereas we will consider the average model as the baseline for the detection of synergy in

group judgment, we will also take an additional benchmark into account which can help to

determine and better understand the accuracy of group judgments. This additional benchmark is

obtained by identifying the best member of the group, or the best individual member of a group

of individuals working alone, often termed the best member model. If the group can outperform

the best member model, we can assume that no member can be better than the group as a whole.

Therefore, the best member model constitutes an important benchmark for the group

performance. In research on quantitative judgment tasks, groups have often been compared with

the best member models, but the corresponding analyses yielded mixed results. While Gigone

and Hastie (1997) stated in their review that group judgments were, on average, less accurate

than the best members, more recent studies indicate that groups might be able to perform on a

similar level as the best members in quantitative judgments (e.g. Bonner & Baumann, 2008;

Laughlin, Gonzalez & Sommer, 2003). Performance wise, the best member model does not

have an advantage over the average model, or vice versa. Rather, depending on the environment,

the best member’s estimate might be more or less accurate than the average model (e.g.,

Einhorn, Hogarth, & Klempner, 1977). There are, however, important theoretical and practical

differences between these models: In theoretical terms, the average model can be seen as the
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group judgment that would be obtained in the absence of group processes (Steiner, 1966). The

same cannot be said for the best member model, because identifying the best member does, in

itself, require a group process. Furthermore, the best member model is hardly a model that can

be practically applied (in terms of having the best member rather than the group perform the

task), because identifying the best member is only possible after all judgments have been made

(and feedback has been obtained). There is, however, a variant of the best member model that

could, under certain conditions, also be practically applied: Whereas the best member model is

usually calculated on the basis of the performance of the group members during the group phase

(which, of course, requires the measurement of individual performance during the group phase),

having an individual phase before the group gets together allows for a measurement of initial

group member performance. Based on these measurements, an initial best member can be

determined, and the performance of this initial best member during the (later) group phase can

also constitute a baseline against which the actual group accuracy can be compared. We will

term this the initial best member model. Similar to the average model, the initial best member

model would constitute a practically meaningful baseline. For example, a company either can

delegate a task to the person considered to be best for the job or rely on a group including this

member. However, the best member prior to the group interaction does not necessarily have to

be the best member during the group interaction. In particular, the performance of the

presumable best member will most likely decline within further trials, due to regression to the

mean (e.g., Hertel, Kerr, & Messe, 2000). In addition, the individual group members might

benefit to different degrees from the group interaction, which might change the

performance-related rank order of the individual group members. In spite of these limitations of

the best member model and the initial best member model, we consider both to be important

additional benchmarks on top of the average model, helping to better evaluate the actual

accuracy of groups in judgment tasks. Therefore, we will include both of these models into our

meta-analyses, that is, we will compare group accuracy not only with the average model, but

also with both best member models. We have now introduced three possible ways to create

benchmarks for real group performance in quantitative judgment tasks, namely one primary

benchmark for synergy (the average model) and two additional benchmarks that compare
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groups with their best members. By regarding all of them, we hope to obtain a rather complete

picture of how groups perform and, hence, to successfully address our first research question:

Research Question 1: Do groups systematically achieve synergy in quantitative

judgments tasks, that is, do they systematically beat the average model? If so, how large is this

synergetic advantage of group work? And how accurate are groups compared to the two best

member models outlined above?

By answering this (threefold) question, we will know whether and, if so, to what extent

groups manage to outperform different aggregates of individual judgments. However, at this

point we will not yet know why they do so. To gain insights with regard to this latter question,

we will, on the one hand, disentangle two fundamental types of errors that groups and

individuals commit. On the other hand, we will differentiate between two different basic

mechanisms that can lead to increased accuracy in groups.

Disentangling Error Components

It is a common approach to disentangle judgment error to further understand group

judgments (e.g., Gigone & Hastie, 1997). In the current research, we will rely on the taxonomy

by Brown and Siegler (1993). By differentiating between the two dimensions of metric errors,

on the one hand, and mapping errors, on the other hand, the Brown and Siegler taxonomy can

help us to better understand the errors that groups and individuals make and, hence, the types of

improvements that groups can achieve over individuals. Metric knowledge is concerned with

the distributional attributes of the criterion, such as the mean, median, and plausible range.

Hence, metric errors are made when a judge is incorrectly calibrated on the criterion, leading to

a systematic over- or underestimation of entities from the same category. In other words, metric

errors relate to the bias of the judge (Einhorn, Hogarth, & Klempner, 1977). For example, one

judge might overestimate distances between European cities as she relies on a false reference

frame to make her judgments. Her frame of reference might be the distance between the

southern and the northern border of Germany. She might erroneously consider this distance to

be 5000 kilometers. When she then has to estimate the distance between Copenhagen and
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Vienna, she might know that Copenhagen is located north of Germany, and that Vienna is

located south of Germany. Therefore, she considers the distance between from Copenhagen to

Vienna to be more than 5000 kilometers. Accordingly, she would overestimate many distances

between major European cities. The metric error can be measured by calculating the mean error

based on all judgments, thereby allowing over- and underestimations to cancel out each other

(Stern et al., 2017). Mapping knowledge is concerned with the relation between targets in a

domain. In other words, mapping relates to the order of targets. Mapping errors are made if the

relative magnitude of the target is determined incorrectly. For example, a judge might

erroneously consider the distance between Hamburg and Berlin to be longer than the distance

between Copenhagen and Vienna. Mapping can be measured using Spearman’s rank correlation

between the estimated and the true values. This correlation index indicates to which extent the

order of the judgments corresponds with the order of the underlying true values. Differentiating

between mapping and metric errors gives us insights into the group judgment processes,

particularly with regard to what exactly groups are better at when being compared with the

different individual baselines. Previous research on group judgment in relation to metric and

mapping is sparse. To the best of our knowledge, only one study did compare group judgments

and individuals’ baselines with regard to mapping (Lippold et al., 2020). This study showed that

groups made smaller mapping errors than the average and best member models. With regard to

the metric error component, Lippold and colleagues could not find evidence for an advantage of

the group. Gigone and Hastie (1997) did also report no difference between the average model

and actual groups with regard to metric errors . However, some research indicates that groups

discuss a smaller range of possible values and commit fewer extreme errors as individuals do

(Minson et al. 2017), which indicates that the groups might have better metric than individuals.

As both judgment error dimensions are important to understand the accuracy of group

judgments, we will compare group judgments and the individual benchmarks with regard to

both of these error dimensions.

Research Question 2: Do groups systematically achieve synergy with regard to metric

errors? And how do their metric errors compare with their best members’ metric errors?

Research Question 3: Do groups systematically achieve synergy with regard to the
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mapping? And how do their mapping errors compare with their best members’ mapping errors?

Disentangling group mechanisms

Two mechanisms have been postulated to explain synergy in group judgments: G-I

transfer (e.g., Schultze et al., 2012; Stern et al., 2017) and differential weighting (e.g., Bonner et

al., 2007; Sniezek & Henry, 1989). G-I transfer refers to group members’ individually

improving their task performance as a consequence of prior group interaction (Brodbeck &

Greitemeyer, 2000). In group judgments, individual group members can increase their

individual accuracy due to previous participation in a group, where task-relevant information

has been exchanged between the group members (Schultze et al., 2012; Stern et al., 2017). For

instance, the most knowledgeable group member could demonstrate her thought processes to

the weaker group members and, thereby, highlight relevant underlying principles. G-I transfer

has been shown to occur quite frequently in cognitive tasks, such as collective induction

(Brodbeck & Greitemeyer, 2000), or mathematical problems (Laughlin & Ellis, 1986). In

multiple judgment tasks, the members’ individual performance has a direct influence on group

performance (Sniezek & Henry, 1990). Therefore, G-I transfer plays a crucial role in

quantitative judgment tasks. In fact, several studies already found evidence for G-I transfer in

quantitative judgment tasks (Lippold et al., 2020; Schultze et al., 2012; Stern et al., 2017). Note

that group members can, on the one hand, increase their judgment accuracy by adjusting their

individual metric and, thereby, reducing their individual metric errors (Stern et al., 2017). One

the other hand, group members can also learn specific cue-target relations during group

discussion and, thereby, become able to reduce their individual mapping errors (Lippold et al.,

2020). Differential weighting leaves group members’ individual task-related capabilities

unaffected but, instead, takes place at the level of how the group coordinates its members’

inputs. Synergy due to differential weighting occurs if group members give more weight to

more accurate judgments when forming their consensus group judgment. For example, groups

might be able to identify more capable members and weight their input stronger. On the other

hand, groups might be able to identify the most accurate individual judgment for a specific

judgment task through group discussion and weight these judgments stronger. Note that both
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phenomena, G-I transfer and differential weighting, are not mutually exclusive. Rather, both

processes play a role in group judgment accuracy. Despite that G-I transfer and differential

weighting can be easily distinguished on the conceptual level, disentangling them at the

empirical level is more challenging. The majority of (earlier) group judgment studies did use

the so-called I-G design, which does not allow for the differentiation between the two

mechanisms. In the I-G design, all group members provide all of their individual judgments

blockwise before the first group discussion takes place. In a subsequent second block, the group

members meet and work on the same tasks as they have done before individually. If, using this

design, one finds that the accuracy of the group judgments is higher than the members’ averaged

individual judgments from the first phase, the superiority of the group cannot not be fully

attributed to either differential weighting or G-I transfer. The reason for this is that no individual

judgments are elicited during the group phase, meaning that the researcher does not know

whether group members’ had already improved their capabilities before the second, third, fourth

etc. group judgment are made. Because differentiating between the mechanisms that (can) lead

to synergy in group judgment lies at the heart of our paper, we will restrict our analysis to

studies using the so-called alternating-individual-group design (aI-G design; Schultze et al.,

2012). This design, illustrated in Figure 1, consists of, at least, two phases: an individual

practice phase and a subsequent group phase. In the practice phase, all participants work alone.

In the group phase, individual and group judgments alternate. This means that for each task, the

group judgments directly follow the group members’ individual judgments. Hence, the

individual contribution of each member can be identified during this process, allowing for an

assessment of the individual judgment accuracy within each trial and, hence, for changes in

individual accuracy as a consequence of previous group interaction. Therefore, this alternating

design allows us to differentiate between the G-I transfer and differential weighting.

Using the al-G design, previous studies found evidence that the group member benefit

from G-I transfer in judgment task, but at the same time groups often did not benefit from

differential weighing (Lippold et al., 2020; Schultze et al., 2012). In particular, when

controlling for G-I transfer, most of the time group judgments were not more accurate than the

average of the initial group members’ judgments right before the corresponding group
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Figure 1. Display of the aI-G design.

discussions. Only under favoring circumstances did some differential weighting occur (Stern et

al., 2017). Particularly, differential weighting was detected in tasks where the participants

systematically overestimated the weight of objects. In other words, in these tasks the

participants had high metric errors, resulting in an overall population bias. In contrast, if the

participants had no systematic errors (but rather only random errors), no evidence for

differential weighting was found. Hence, in comparison with differential weighting, G-I transfer

seems to be the stronger process so far, but this evidence is based on a few studies and, hence,

far from being conclusive. Against this background, we will investigate the extent of G-I

transfer and differential weighting in judgment tasks:

Research Question 4: To what extent do group members benefit from G-I transfer in

quantitative judgment tasks?

Research Question 5: To what extent do groups benefit from differential weighting in

quantitative judgment tasks?

Methods

To answer our research questions, we reanalyzed data of altogehter 11 experiments with

855 groups and 2565 participants in total. All of these experiments have been conducted in our

own lab, because we know of no other studies on group judgment accuracy that have used the

aI-G design (or an alternative design allowing for the identification of G-I transfer
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vs. differential weighting, so far.) The experiments are highly similar in nature. The group sizes

of the included experiments are identical for all real interacting and nominal groups, containing

three members each. Note that three experiments did not include a nominal condition and that

we dropped extra conditions which were also implemented in some of the experiments. Further

details about each study are provided in Table 1. Based on these experiments, we will conduct a

comprehensive analysis of synergy in group judgment. First, we will introduce the calculations

of our accuracy measures and the relevant judgment errors. Second, we will present

meta-analyses on the comparison between groups and nominal groups with regard to the

previously discussed baselines and specific error terms. Then, we will provide meta-analyses on

G-I transfer. Finally, we will present meta-analytic comparisons between the group performance

and the performance of their members right before the group discussions, which will allow us to

investigate differential weighting.

Judgment Error

We based our meta-analyses on three different accuracy measures. Apart from the overall

accuracy, we also calculated mapping and metric errors. The criteria were calculated as follows:

Overall accuracy. The overall accuracy was measured depending on the specific

experiment. The overall accuracy was measured using the mean absolute percentage error

(hereafter, MAPE). Note that the MAPE does control for the fact that larger errors are

committed at higher true values.

Mapping errors. As our indicator of mapping error, we calculated

Fisher-z-transformed Spearman’s rank correlations between true values and the respective

estimates. Note that this correlation represents the mapping knowledge rather than the mapping

error. High values indicate low errors and low values indicate high values.

Metric errors. As the indicator of metric error, we calculated participants’ mean

percentage error (MPE).
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Synergy (group vs. nominal group)

Our meta-analyses comparing group judgments with the baselines from non-interacting

nominal groups were conducted on the basis of the raw data from each study. For each

experiment, we first computed the judgment errors of interest for the groups and the

corresponding baseline models of the nominal groups. Then we computed the differences

between the groups and the baseline models of the nominal groups using d, a version of

Cohen‘s standard d statistic. We then conducted standard random effects meta-analyses using

REML with the metafor package (Viechtbauer,2010).

In this section, we compare the accuracy of real interacting groups with non-interacting

nominal groups. Figure 2 displays the results of the corresponding meta-analyses. First, we

compared the accuracy of the real group judgments with our criterion for synergy -the average

of the nominal group members’ individual judgments- during the group phase for each

experiment. The corresponding meta-analysis revealed that the groups were more accurate than

the average of the individual judgments (d = 0.62, CI = [0.44 - 0.80], z = 6.74, p < .001). The

effect size is moderate and substantially larger as previously assumed (Hastie, 1986). The results

show that groups systematically outperform the average model and, thereby, achieve synergy.

In addition, we also compared the group judgments with the judgments of the best

members of the nominal groups. Note that we determined the best members based on the

performance during the group phase. The results revealed that the group judgments were as

accurate as the judgments of the nominal groups’ best members (d = -0.09, CI = [-0.36 - 0.19], z

= -0.62, p = .536). In addition, we compared the group performance with the performance of

the initial best member. For this purpose, we selected the member with the highest overall

accuracy in the practice phase for each nominal group. We then determined the overall accuracy

in the group phase for this person. The groups performed slightly better in comparison to the

nominal groups’ initial best members (d = 0.23, CI = [0 - 0.45], z = 1.99, p = .047). Note that

the resulting effect size is about one third of the comparison between group and average model.

To gain a better understanding about what kind of judgment errors groups commit in
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Figure 2. Results of the random-effects meta-analyses of the comparisons of overall accuracy

between the groups and the different types of nominal baseline models.

comparision to individuals, we conducted meta-analyses over the mapping and metric error

components. First, we compared the mapping errors of real groups to nominal groups (see

Figure 3). To this end, we computed nominal groups’ mapping errors based on the average of

the three nominal group members’ judgments(average model), based on the estimates of the

nominal groups’ members with the lowest mapping errors in the group phase(best member) and

based on the estimates of the nominal groups’ members who had the lowest mapping errors in

the practice phase(initial best member). The three meta-analyses revealed roughly similar

results as those for the overall accuracy. The groups outperformed the average of the

individuals’ judgments (d = 0.57, CI = [0.32 - 0.82], z = 4.42, p < .001). The groups were as

accurate as the best members of the nominal groups (d = -0.01, CI = [-0.29 - 0.27], z = -0.08,

p = .936), and they outperformed the nominal groups’ initial best members (d = 0.54, CI =

[0.36 - 0.72], z = 5.94, p < .001).
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Figure 3. Results of the random-effects meta-analyses of the comparisons of mapping between

the groups and the different types of nominal baseline models.

Furthermore, we compared the metric errors of real groups to the metric errors of the

nominal groups (see Figure 4). To this end, we computed the three baseline models based on the

nominal groups’ metric errors. For the best member model, we determined the scores based on

the members with lowest metric error in the group phase. For the initial best member model, we

selected the members with the lowest metric error in the practice phase. The groups

outperformed the average of the individuals’ judgments (d = 0.32, CI = [0.11 - 0.53], z = 2.95,

p = .003). Note that the effect size is about one half of the comparison between group and

average model on the overall accuracy. Additonally, the group judgments were less accurate as

the judgments of the nominal groups’ best members (d = -0.40, CI = [-0.68 - -0.12], z = -2.76,

p = .006), and as accurate as the nominal groups’ initial best members (d = -0.04, CI = [-0.28 -

0.21], z = -0.29, p = .769).
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Figure 4. Results of the random-effects meta-analyses of the comparisons of metric between the

groups and the different types of nominal baseline models.

Individual Learning (G-I transfer)

To investigate the extent to which group members benefit from G-I transfer, we conducted

three meta-analyses. We calculated G-I transfer as the differences between participants’

individual scores in the practice phase and their individual scores in the group phase. Positive

values indicate an increase in individual capability. For each experiment, we compared the

average individual performance increase in the real groups with the average increase in the

nominal groups. In order to learn from the other group members, group members must have

previously engaged in group work. Hence, we excluded the first trial of the group phase for

each experiment, because the individual measures in this trial were taken before any group

interaction had taken place.

First, we investigated G-I transfer with respect to the overall accuracy (see Figure 5). The

meta-analysis showed that the individual overall accuracy increases more in the real groups than
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Figure 5. Results of the random-effects meta-analyses of G-I transfer based on the different

error components.

in the nominal groups (d = 0.61, CI = [0.27 - 0.95], z = 3.53, p < .001). In another

meta-analysis, we also found an increase in the individual metric in the real groups in

comparision to the nominal groups (d = 0.72, CI = [0.33 - 1.10], z = 3.64, p < .001). Note that

the resulting effect size was slighly larger than the effect size of the G-I transfer for the overall

accuracy. In contrast, the meta-analysis with regard to the transfer of mapping knowledge did

not show support for G-I transfer with regard to this error component (d = 0.10, CI = [-0.16 -

0.36], z = 0.74, p = .462). However, as Lippold and colleagues (2020) have pointed out, group

members’ individual improvements in mapping knowledge might be difficult to detect in the

group phase of the al-G design. Mapping knowledge is measured via Spearman’s rank

correlation, which assesses the right order of all included stimuli. Therefore, it is important that

the learning process is finished before the mapping knowledge is measured. In contrast to the

transfer of metric knowledge, the transfer of mapping knowledge might take longer. Hence, it is

unclear which individual trials in the group phase should be used to determine the mapping
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knowledge. Therefore, Lippold et al. (2020) assessed the increase in individual mapping with

the help of an additional individual phase after the group phase. They calculated G-I transfer

with regard to mapping knowledge on the basis of an increase between the practice phase and

this additional individual judgment phase. Therefore, we conducted another meta-analysis and

included only those four experiments which had such an additional individual phase. We then

compared the individual increase of mapping knowledge from the practice to the additional

individual phase between the groups and nominal groups. This analysis showed support for the

transfer of mapping knowledge (d = 0.45, CI = [0.06 - 0.84], z = 2.28, p = .023). Note the

transfer of mapping knowledge was accompanied by an higher increase in overall accuracy (d =

0.59, CI = [0.26 - 0.92], z = 3.46, p = .001) and a transfer of metric knowledge (d = 0.53, CI =

[0.27 - 0.78], z = 4.05, p =< .001). Note that the corresponding effect sizes seem all to be on a

similar level.
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Figure 6. Results of the random-effects meta-analyses of the pairwise comparisons of overall

accuracy between the groups and the different types of ingroup baseline models.
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Differential weighting (group vs. group members)

The following analyses are concerned with the comparison between the accuracy of the

group judgments and the accuracy of the aggregates of the group members’ initial judgments.

These initial individual judgments were made immediately prior to the group judgments on each

trial in the aI-G design. By comparing the group judgments with the aggregates of these

pre-discussion judgments of the group members, we can detect synergy as a consequence of

effective differential weighting. That is, real groups would achieve synergy by weighting their

more expert members or more accurate individual judgments more strongly when forming the

consensus estimates. In contrast to the comparison with the nominal groups, we are now able to

include all studies conducted, as all of them included a group condition in the al-G design.

To disentangle G-I transfer and differential weighting, we excluded the first trial of the

group phase for each experiment from the following comparisons because the first group

judgment may already have benefitted from G-I transfer, whereas the individual pre-discussion

judgments for the first trial of the group phase cannot benefit from G-I transfer (they were

provided prior to any group interaction; see Schultze et al., 2012). We compared the accuracy of

real group judgments to the average of the real group members’ corresponding individual

pre-discussion judgments. The corresponding meta-analysis revealed that the overall accuracy

of the group judgments was higher than the overall accuracy of the average of the group

members’s pre-discussion judgments (d = 0.27, CI = [0.09 - 0.44], z = 3, p = .003). In other

words, synergy due to differential weighting took place. As with the previous analyses, we also

compared group judgment accuracy with the best performing group members. In particular, we

determined the best members and the initial best members based on the individual performance

of the group members per group. While the groups performed on the level of their most accurate

members based on the group phase (d = -0.14, CI = [-0.33 - 0.05], z = -1.41, p = .158), the

groups exceeded their most accurate initial members (d = 0.39, CI = [0.23 - 0.55], z = 4.82,

p < .001). The results of these three meta-analyses can be found in Figure 7.

To understand why and how the groups were able to weight their members’ judgments

effectively, we disentangled the underlying judgment errors further. In particular, we conducted
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additional meta-analyses with the mapping and metric error terms as dependent variables. We

compared the mapping errors of group estimates to that of the baseline models based on the

individual contributions of the group members (see Figure 8). To this end, we computed the

individual mapping scores based on the average of the three group members’ individual

judgments, based on the groups’ most knowledgeable members in terms of mapping knowledge

in the group phase, and based on the groups’ most knowledgeable members in terms of mapping

knowledge in the practice phase. The groups outperformed the average of the individual

judgments (d = 0.34, CI = [0.23 - 0.44], z = 6.44, p < .001). The group judgments were on a

similar level as the judgments of their best members (d = 0.19, CI = [-0.04 - 0.42], z = 1.59,

p = .111), but outperformed the their initial best members (d = 0.88, CI = [0.63 - 1.13], z = 6.84,

p < .001). Note that the effect sizes for these mapping effects are considerable larger than the

effect sizes for the similar comparisons based on the overall accuracy (see previous paragraph).
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Figure 7. Results of the random-effects meta-analyses of the pairwise comparisons of mapping

between the groups and the different types of ingroup baseline models.

Furthermore, we also compared the metric errors of real groups to the averaged metric
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errors of their members prior to discussion (see Figure 9). To this end, we computed group

members’ metric errors based on the average of the three individual members’ judgments, based

on the groups’ most knowledgeable members in terms of metric knowledge in the group phase,

and based on the groups’ most knowledgeable members in terms of metric knowledge in the

practice phase. While the groups outperformed the average of the individual judgments (d =

-0.01, CI = [-0.20 - 0.17], z = -0.15, p = .882), the group judgments had larger metric errors as

the judgments of their groups’ best members (d = -0.88, CI = [-1.02 - -0.74], z = -11.92,

p < .001), and also larger metric errors as their groups’ initial best members (d = -0.30, CI =

[-0.43 - -0.17], z = -4.52, p < .001).
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Figure 8. Results of the random-effects meta-analyses of the pairwise comparisons of metric

between the groups and the different types of ingroup baseline models.

Discussion

In the present research, we investigated the judgment accuracy of interacting groups in

quantitative judgments, with a particular focus on synergy in group judgment, and identified

different mechanisms affecting group judgment accuracy. For this purpose, we meta-analyzed
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group performance in quantitative judgment tasks from 11 different experiments conducted in

our lab. We would have been happy to also include studies conducted in other labs but, as

outlined in the beginning, for the purposes of our research question it was essential that the

studies used the aI-G design (or any other design that allows for a measurement of individual

performance gains in the group phase), and we did not find studies from other labs that fulfilled

this precondition. The experiments that went into our meta-analyses included a wide range of

quantitative judgments tasks, such as distance and weight estimates, as well as multi-cue

judgment tasks.

First, we tested whether and, if so, to what extent groups achieve synergy. To this end, we

compared group judgments to the average of a comparable number of individual judgments in

the nominal conditions of the corresponding experiments. We chose this baseline, because

forming the average of independent judgments made by individuals in the nominal groups does

already enhance the judgment accuracy over the accuracy of individual judgments, due to

statistical error cancelation. However, this statistical benefit of averaging does not reflect a real

group process. Hence, to determine genuine group processes, group judgments need to be more

accurate than the average of individuals working alone. The result of the corresponding

meta-analysis, which was based on altogether eight experiments, confirmed that groups

systematically outperformed the average of individuals working alone. This indicates a

considerable advantage of (interacting) groups over nominal groups in quantitative judgment

tasks. Against the backdrop of studies from very different fields of group research, this finding

shows quantitative judgment tasks to be one of the few cases where the benefits of group work

have been successfully demonstrated. In particular, in many other areas of group research,

groups usually do not outperform nominal groups; they even often underperform relative to their

group’s potential (e.g., Kerr & Tindale, 2004; Steiner, 1972). For example, in the seminal

experiments by Ringelmann (1913), where groups and individuals conducted physical tasks, or

in brainstorming experiments (e.g., Mullen, Johnson, & Salas, 1991), groups predominantly

exhibit processes losses (i.e., performance below the group potential). And even under very

favorable conditions, when the individual group members possess unique knowledge, which

would theoretically allow them to make a superior decision compared to what the members
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would decide individually, groups often do not make use of their inherent advantages

(Schulz-Hardt & Mojzisch, 2012). In contrast to these other fields of group research, we have

now systematic evidence that groups are able to achieve synergy in quantitative judgment tasks.

We will next discuss our results with regard to the specific mechanisms underlying this synergy

in group judgments, namely G-I transfer and differential weighting.

Group mechanisms affecting accuracy

The first proposed mechanisms leading to synergy in group judgments is G-I transfer

(Schultze et al., 2012), that is, an increase in individual task-related capabilities due to

collaboratively working on a task in groups. Our results indicate that previous findings of G-I

transfer in quantitative group judgment tasks are robust (Lippold et al., 2020; Schultze et al.,

2012; Stern et al., 2017). Indeed, our analyses showed that group members were able to

improve their individual accuracy due to their participation in a group. To further understand the

particular content of this individual learning, we relied on the taxonomy by Brown and Siegler

(1993) and decomposed the judgment errors into their metric and mapping components. We

were able to confirm previous findings that group members primarily improve their metric

during the group discussion (Lippold et al., 2020; Stern et al., 2017), as the meta-analytic effect

size of the metric improvement was even slightly larger than the corresponding effect size of the

overall G-I transfer (i.e., the improvement of the overall accuracy).

With regard to mapping, the main meta-analyses revealed no evidence that group

participation led to a systematic improvement from the practice to the group phase. However,

those four experiments that were specifically designed to test for a possible transfer of mapping

knowledge by means of an additional individual post phase did, indeed, show an improvement

of overall accuracy, metric knowledge, and - most importantly - also mapping knowledge from

the practice to the additional post phase. The additional individual post phase was added in

those experiments to ensure an unbiased measurement of the individual mapping knowledge.

Mapping knowledge is measured across multiple trials. It is, therefore, necessary that the

learning process has ended before the individual mapping knowledge is assessed. While it is

unknown after how many group trials the transfer of mapping knowledge is completed in the
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group phase, no further learning can occur in the additional individual post phase. In the

meta-analysis of these four experiments, the corresponding effect size of the improvement of

mapping knowledge proved to be slightly smaller than the effect sizes for the overall accuracy

improvement and the improvement of metric knowledge. It seems that, via group discussions,

members’ metric-related judgment errors are corrected somewhat more than mapping-related

judgment errors. Presumably, only few pieces of information about the metric need to be

exchanged in order to instigate such improvements. For example, the exchange of reference

values during the group discussion might help participants to adjust their metric (see Stern et al.,

2017, for a similar argument). In sum, group members can improve their individual metric and

mapping knowledge during group discussion, which results in a higher overall group accuracy.

While G-I transfer is a mechanism that affects the capabilities of the individual group

members, we will now focus on the group‘s ability to coordinate within the group by combining

their individual members input, as differentially weighting their members’ inputs in accordance

with their accuracy or the members’ competence is the second proposed mechanism leading to

synergy. When controlling for G-I transfer, previous research was mostly unable to detect an

improvement of group judgment accuracy due to differential weighting (Lippold et al., 2020;

Schultze et al., 2012). Only under specific circumstances, namely when participants

systematically overestimated the target values, it could be demonstrated that groups weighted

their individual pre-discussion judgments more effectively than by just averaging them (Stern et

al., 2017, Exp. 2). In contrast to most single studies, we found a small, but nevertheless

significant overall effect for differential weighting in our meta-analysis. In particular, group

members seem to decide on a more accurate consensus group judgment than their average

model would, indicating that they were able to give more weight to more accurate individual

judgments (or more accurate members) in the group judgment process. As the estimated

average effect size was d = 0.27, the magnitude of this effect may simply have been too small to

be detected in the previous single studies1.At the same time, when evaluating the size of the

differential weighting effect, we have to take into consideration that its magnitude might have

1 Additionally, the differential weighting effect was stronger in the more recent studies. These studies had more

trials in the group phase, which might have led to stronger effect sizes due to higher reliability of measurement.
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been limited by the strong G-I transfer that we observed. Because of this transfer, the variability

of the members’ initial judgments was reduced, as initially weaker members benefit more from

G-I transfer than initially stronger members. This should make it harder for the group members

to differentiate between their initial individual judgments and weight them based on their

members’ competence. Hence, contrary to the majority of previous findings, we can assume

that the accuracy of group judgments is not only the result of an improvement of individual

task-related capabilities, but also the result of coordination within the group, in the form of

effective weighting. This leads to the question of how a group is able to weight their members’

input effectively.

Functional weighting in groups

Based on our fine-grained analyses, we have identified two weighting strategies which

could potentially account for the effective weighting that we observed in the groups. The first

strategy involves the identification of the group’s most accurate member and relying solely on

her input. While it is difficult for a group to be more accurate than the average of their initial

judgments, relying solely on the input of the best group member (i.e., the group member who’s

judgments are most accurate in the group phase) has the potential to be a successful weighting

strategy. Averaging is most effective if the included judgments are independent or even

negatively correlated (Davis-Stober et al., 2014), given that under these conditions averaging

leads to a high degree of statistical error cancelation. Dependencies in the form of information

exchange between group members reduce this known benefit of averaging (Lorenz et al., 2011).

Hence, while the accuracy of the group members’ individual pre-discussion judgments benefited

from G-I transfer, the benefit of statistical error reduction should have been reduced due to

group discussion. Supporting this idea, in our studies, the best group members were more

accurate than the average of the group members’ initial individual judgments. Importantly,

groups weighted their members’ initial judgments as effectively as if they were able to identify

their best member during the group phase, and then give full weight to this member’s judgments.

Therefore, a possible group strategy of fully relying on the best members’ input is in line with

our meta-analytic results.
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However, for two reasons we are not convinced that the groups did actually follow this

best-member strategy. On the one hand, it is difficult for a group to identify their best member

without corresponding feedback (Kurverts et al., 2020). Even an omniscient authority would

only be able determine the best group member in hindsight, when the tasks are completed, and

the individual capabilities of all members are known. On the other hand, other motives might

prevent groups from solely relying on the performance of one particular group member. For

example, there is some evidence that groups might weight their members’ judgments in

accordance with fairness concerns (Mahmoodi et al., 2015). Similarly, Bonner and Baumann

(2012) found that groups weight their members input primarily based on centrality by giving

more weight to judgments that are closer to the average of their members’ initial judgment.

Therefore, we find it more plausible that the groups followed a different weighting scheme that

we will describe in the following.

This second weighting strategy relates to our empirical finding that the effective

differential weighting effect could be attributed more or less entirely to mapping. Groups

weighted their individual judgments in a way that fewer mapping errors occurred compared to

what would have happened if they had averaged their initial judgments. Notably, this effect was

even larger than the overall differential weighting effect. In other words, groups weighted their

initial members’ judgments in a way that substantially reduces inconsistencies over trials,

leading to an enhanced mapping of the resulting consensus group judgments. Therefore, we

propose that the groups follow what we call a mapping error monitoring strategy. We assume

that the group members primarily weight their members’ input based on centrality (meaning

that outliers are discounted) but, at the same time, specifically check whether a judgment would

be inconsistent with the rank-order of the objects that have already been judged. Consider, for

example, a group estimating distances between German cities. Let us assume that this group

already made two group judgments. The group estimated the distance between Hamburg and

Berlin to be 300 kilometers and the distance between Stuttgart and Hannover to be 600

kilometers. In the third trial, the group now has to judge the distance between Leipzig and

Berlin. The three group members make the following initial judgments: 250, 360, and 500

kilometers (the true distance is about 200 kilometers). The average of their judgments would
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indicate an estimate of 370 kilometers. However, one group member mentions that both Leipzig

and Berlin are located in the eastern part of Germany and that, in comparison to the distance

between Hamburg and Berlin, the distance between Leipzig and Berlin therefore should be

smaller. As a consequence, the group might agree on a consensus group judgment of 280

kilometers, which is more accurate and more in line with the true rank-order than the average in

this case.

This proposed strategy is consistent with previous research emphasizing the role of

demonstrability for in-group weighting (Bonner & Baumann, 2012). In particular, Bonner and

Baumann showed that only under conditions of high demonstrability, whenever the right

solution can be clearly demonstrated, do groups weight their members’ input based on accuracy.

As it is easier to judge and explain the relation between two objects than to judge and explain a

specific value for an object (e.g., Hsee, 1996; Hsee & Zang, 2010), mapping errors are relatively

well demonstrable in consecutive judgment tasks. Therefore, by bringing up previous judgments

and by appealing on the mapping knowledge of the other group members, a group member

might be able to demonstrate a superior solution to the other group members, as illustrated in

our example above. Note that groups can bring together the unique knowledge and skills of its

members within this weighting scheme, which is a prime example for synergy. For instance, one

group member might have superior mapping knowledge and might be able to identify the

correct rank-order of the objects in question. However, in order to do that, she needs to be aware

of the previously made group judgments. While she might not have a sufficient recollection of

all earlier made group judgments, another group member with better memory capabilities might

be able to provide these in the group discussion. This contribution by the other group member

would enable the group member with the best mapping knowledge to demonstrate possible

mapping errors, which would then enhance the accuracy of the group judgments and, as a result,

lead to synergy. Our mapping error monitoring strategy seems to be a plausible and effective

weighting strategy that groups might apply in consecutive judgment tasks. However, in

comparison to the best member model, this strategy in its current form does not allow for a

direct test with our current data, as we cannot infer specific point predictions. Therefore, we

have to postpone firm conclusions about weighting strategies in group judgments until specified
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versions of this general strategy have been formulated and empirically tested.

A plea for groups in quantitative judgments

Practitioners often have to decide whether to assign judgment tasks to a group, to an

individual, or to several independent individuals. Based on the results of our meta-analyses, we

can recommend the choice of groups for quantitative judgments. Our research shows that

groups outperform all baselines that could realistically be applied in practice. The first practical

baseline would be to rely on the particular person who is expected to make the most accurate

judgments. Note that in companies or organizations, tasks are often allocated based on the

assumed competences of the individual members, which are usually inferred from previous task

performances. Accordingly, when calculating this baseline, we determined the initial best

member based on the members’ individual performance before the formation of the groups, and

we found that the group judgments were slightly more accurate than the initial best members of

the nominal groups were. This suggests that, in group judgment tasks, even the most skilled

individuals, identified prior to the task, do not fully reach the performance that interacting

groups may achieve. In other words, the individual best member may not substitute a group.

Similarly, the group judgments were more accurate than the average of a comparable number of

individuals, indicating that the group cannot be substituted (without losses) by simply averaging

independent individual judgments - a substitution which the literature on wisdom of the crowds

might have suggested (e.g., Armstrong, 2006). In addition to the higher group judgment

accuracy, as we have consistently shown, group discussions increase the group members’

capabilities to perform the judgment tasks individually. This training function of groups is

meaningful as organizations can, for example, use groups as a tool to increase the accuracy of

forecasters. On these grounds, we infer that organizations may use group work to generate

accurate judgments, and to train individual members of the organization for quantitative

judgment tasks.

While the above-mentioned arguments already make a strong case for the implementation

of groups for quantitative judgment tasks, our findings indicate that groups have another ace up

their sleeves: Groups perform exceptional well with regard to the mapping error dimension.
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According to our meta-analyses, groups commit fewer mapping errors than both the average

model of the nominal groups and the initial best member model do. Note that mapping itself is

highly relevant for judgment quality, and we can think of various circumstances under which the

correct mapping of judgments might be even more important than the overall accuracy of these

judgments (cf., Lippold et al., 2020). Consider, for example, the case of organ donation. For

each patient, doctors have to judge the severity of the patient’s condition and the likelihood of a

successful transplantation. Based on these ratings, patients are placed on an overall list. To

ensure that the right person will receive the next available organ, the order of the patients on this

list is crucial. Metric errors and the overall accuracy do only play a subordinate role in this

situation. The doctors might overestimate or underestimate the severity of each patient’s

illnesses and by that commit extremely large overall judgment errors; however, they might still

come up with the right order of patients on the list, and this is what will (and has to) determine

subsequent action. And this is just one of many examples where the priorities lie on the correct

rank-ordering of the objects in question, like personnel selection decisions, picking players in

the NFL draft, or selecting financial funds for investing corporate or private money. As outlined

above, our meta-analytic results suggest that groups should particularly be used in these

situations.

Limitations and future research

Some limitations of the current research need to be addressed here. The first caveat

concerns the al-G design with which all our experiments included in the meta-analyses were

conducted. By using this design, we were able to disentangle G-I transfer and differential

weighting. However, with this design, all group members necessarily form and report

independent individual estimates prior to the beginning of each trial of the group discussions.

Therefore, this measurement might already constitute a (mild) form of intervention, as all group

members must, by means of providing these estimates to the other group members, contribute to

the group outcome in this design. In practice, not all group members might contribute to the

group in this way. In particular, it might be even the case that some group members do not form

an individual estimate at all, and that they might simply “free-ride” during discussion. By
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artificially forcing all individuals to contribute, the group discussions might be more thorough

and elaborate than discussions without such a prior individual estimate. In fact, one recent study

suggests that group judgments might be more accurate when the individual members form

independent judgments prior to discussion as compared to group judgments made without this

kind of intervention (e.g., Minson et al., 2017). Therefore, the accuracy of the group judgments

in the meta-analyses might be somewhat exaggerated, and the resulting effect sizes might have a

small bias.

Another potential limitation arises from the fact that all experiments included in the

meta-analyses solely relied on ad-hoc groups from student samples, working on quantitative

judgment tasks that were particularly suitable for the use in the laboratory. This might restrict

the external validity of our findings. The groups in the included experiments were formed

ad-hoc, meaning the group members did not know each other and only met once in the

laboratory for a short time period. In practice, however, working groups might meet on a regular

basis and their group members often have a personal history with each other. Therefore, the

group interactions in our ad-hoc groups might be different from the group interactions occurring

in real working groups. For example, real working groups might be aware of their group

members’ specific strength and weaknesses. This might allow real working groups to weight

their members’ inputs more effectively than the ad-hoc groups in our experiments. Additionally,

the used tasks in the experiments included in our meta-analyses might not be the most typical

quantitative judgment tasks that groups are assigned to outside of the laboratory. In practice,

groups are primarily confronted with forecasting tasks, where the events to be judged have not

happened yet and the true values cannot be known beforehand, such as predicting the next

quarterly figures for a company. The tasks in our experiments, however, mainly consisted of

simple general world knowledge judgments and multi cue judgments, and we do not yet know

whether our findings hold in the case of, for example, forecasting tasks under uncertainty.

Therefore, future research should address the effectiveness of small groups by tasking groups

with predictions of real future events. For example, groups and nominal groups can be tasked

with the estimation of the value of specific stocks or with the estimation of the final scores of

upcoming football games.
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Finally, we have to address another limitation. In our analyses, we compared group

performance with three baseline models, namely the average model and two different best

member models. There are, however, other potential baselines based on the aggregate of

independent individual performances that could be taken into account, and that we have not

analyzed here. For example, according to the so-called “confidence heuristic” (Thomas &

McFadyen, 1995), groups weight their members’ input dependent on their individual confidence

for each trial. Another example is based on a more sophisticated algorithm like pivoting (Palley

& Sol, 2019). Pivoting is an aggregation technique that can potentially capitalize on the

differentiation of shared and unshared knowledge of individual judges. For this technique, all

judges do not only provide their best judgments, but also have to make a guess about the

average individual judgments made by other judges. By analyzing the deviations between these

two types of responses, it is possible to create aggregates that can be highly accurate. While the

confidence heuristic and pivoting have both the potential to be more accurate than our used

baselines and, therefore, might represent higher hurdles for the groups, their formation relies on

supplementary information. The acquisition of extra information and the forming of these

aggregates (for example, by a third person) would lead to extra costs in practice. Therefore,

these baselines might not be as practically applicable as relying on the known best individual or

as forming the average is. Furthermore, it might be argued that gaining the additional

information needed for these more sophisticated baselines is, in itself, a social interactive

process - meaning that such baselines would not work as theoretical indicators of what could be

achieved in the absence of group processes. Still, future research might want to compare the

accuracy of interacting groups with additional baselines to learn more about the effectiveness of

groups.

Conclusion

Groups working on judgment tasks are highly accurate. The results of the meta-analyses

show that groups outperform a comparable number of individuals, thereby, achieving synergy.

This synergetic effect can be attributed to G-I transfer and differential weighting. Our findings

highlight the benefits of relying on groups to perform judgment tasks.
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