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Preface

Playing with sand is undoubtedly one of the favorite games of little kids, and of course,
I was not the exception. Spending hours of my summer holidays with my family at
the beach digging holes and piling sand for creating castles was certainly amusing
but exhausting. Indeed, I could have struggled less building the castles if I had ever
wondered how to transport the sand with minimal effort. In those days, I neither had the
idea that behind this question hides the beautiful and surprisingly rich mathematical
theory of optimal transport (OT), nor that it would become the basis for my thesis
almost thirty years later.

The origin of the OT theory dates back to 1781 when the French mathematician and
engineer Gaspard Monge investigated how to transport mass from one collection of
locations to another in the most economical manner. In his manuscript Mémoire sur la
théorie des déblais et des remblais, Monge defined the transport cost as the sum over
all transport paths of the mass travelled times their respective distance. Monge was
primarily interested in finding a solution for optimal transportation but he could not
give a satisfactory answer. Despite the work of Appell later in 1887, OT appeared to be
sinking into oblivion. In 1942, more than 150 years after Monge’s initial contributions,
the Soviet mathematician Leonid V. Kantorovich proposed a relaxation of Monge’s orig-
inal OT formulation. Kantorovich’s probabilistic perspective on OT, that later became
popular as the Monge-Kantorovich transportation problem, turned into a new upswing
in the mid-twentieth century, primarily due to OT’s practical relevance in economics.
OT was then investigated within a framework of what today is popular as a standard
linear program and indeed paved the way for the theory of general linear programming.
Significant contributors to the development were Tolstof, Hitchcock, Dantzig!, and
Koopman. The latter received the Nobel prize in economics together with Kantorovich
in 1975. Since then, an enormous and surprisingly rich OT theory has emerged, not

only giving a detailed and precise answer to Monge’s initial problem of finding optimal

"Vershik (2002) and Cottle et al. (2007) give a detailed historical account with special focus to the
contributions made by Kantorovich and Dantzig, respectively.
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solutions? but pushing OT even further and beyond a purely mathematical context.
Indeed, OT has quickly been realized to be related to various topics® and is recently
gaining increasing popularity in fields ranging from biology, economics, and social
science to machine learning, physics and statistics. However, despite OT’s conceptual
appeal, new challenges have arisen with the dawn of the big-data era. Solving OT
problems is tremendously time-consuming, even for small-size instances, questioning
its versatile use in applications. These difficulties have motivated a new line of research
on the computational side of OT, with perhaps the most prominent approach based on

entropy regularization.

The central theme of the thesis revolves around statistical aspects of OT and its entropy
regularized surrogates, and aims to contribute to a better understanding of empirical OT
and their related empirical entropy regularized surrogates. This thesis is a compilation
of the main results of the three articles Klatt et al. (2020a), Klatt et al. (2020b) and
Hundrieser et al. (2021c) found in the Addenda listed in A, B and C, respectively.
Chapter 1 contains a short account on the statistical framework inherent in all three
articles. The primary purpose hereby is to give necessary background and to set no-
tation. Further, the basic theory of OT, standard linear programming and the entropy
regularization approach is presented. Chapter 2 summarizes the main results from
Klatt et al. (2020a) and Klatt et al. (2020b) together with a detailed discussion and
background on related work. Chapter 3 follows an identical exposition and presents
the main results from Hundrieser et al. (2021c) and a thorough discussion including
related work.

The three articles focus on distributional limit laws for various empirical OT and empir-
ical entropy regularized OT quantities. Distributional limit laws capture the asymptotic
fluctuation of empirical estimators around their population quantities after proper stan-
dardization. They are essential for statistical data analysis, e.g., for hypothesis testing
and deriving asymptotic confidence bands. The presented articles are broadly charac-
terized in two categories: Distributional limit laws for empirical OT and probability
measures supported (1) on finite and (2) on more general spaces.

Category (1) involves the articles Klatt et al. (2020a) and Klatt et al. (2020b). In partic-
ular, Klatt et al. (2020a) investigates the OT between probability measures with finite

support and contains novel contributions on distributional limit laws for empirical OT

2The first answer to Monge’s problem appeard in Sudakov (1979). Some of the proof arguments were
later fixed by Evans and Gangbo (1999), and Ambrosio and Pratelli (2003).

3Important contributors in this regard were Zolotarev, Sudakov, Kellerer, Rachev, Riischendorf,
Brenier, Smith, Knott, McCann, Evans, Gangbo, Ambrosio. The list is far from being complete and
many more can be found, e.g., in the textbooks by Rachev and Riischendorf (1998), Villani (2009) and
Santambrogio (2015).
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plans. Indeed, the results are more general and focus on distributional limit laws for
empirical optimal solutions to random linear programs. Klatt et al. (2020b) explores the
entropy regularized OT between probability measures with finite support. Apart from
entropy regularization, the article considers more general regularization methods. The
main result subsumes central limit laws for the empirical entropy regularized OT plan
and its corresponding transport cost popularized as Sinkhorn divergence. The statistical
results are applied to colocalization analysis of protein interaction networks.

Hundrieser et al. (2021c¢), placed in category (2), investigates OT between probabil-
ity measures with support in general Polish spaces. The article provides a unifying
approach to distributional limit laws for the empirical OT cost. The main statement
implies well-known results, e.g., for probability measures with finite support or support
on the real line, but also contains novel extensions for the empirical OT cost between
probability measures supported on low-dimensional Euclidean or Polish spaces. In
particular, the article demonstrates the importance of two fundamental principles that
are present throughout this thesis and seamlessly integrate within a statistical context:
Duality for (in)finite dimensional linear programs and weak convergence of underlying

empirical processes.

Own Contributions

e Klatt et al. (2020a) (Addendum A) was written jointly with Y. Zemel and A.
Munk. Most of the statements were achieved during meetings and discussions in
Gottingen and Cambridge. Y. Zemel and I contributed equally, and we received

helpful comments and suggestions from A. Munk.

e Klatt et al. (2020b) (Addendum B) is mostly my own contribution. The applica-
tions of the statistical statements to colocalization analysis of protein interaction

networks is the result from a close collaboration with C. Tameling and A. Munk.

e Hundrieser et al. (2021c) (Addendum C) is the joint work of all authors. My
first attempt for a rigorous differentiability analysis of the OT functional was
corrected by S. Hundrieser. The central limit theorems for empirical OT costs
were achieved during joint meetings. The preparation of the manuscript was
distributed into equal parts between S. Hundrieser and me. Authors T. Staudt and

A. Munk made careful corrections and suggestions.
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CHAPTER 1

Introduction

Extracting relevant information from data while aiming for evidence is a challenging
task. Indeed, data is typically random that requires to deal with uncertainty — a major
topic of mathematical statistics. Consider the fundamental estimation problem con-
cerned with finding a plausible decision for some unknown quantity 6. Instead of access
to 6, only a collection of random variables' X, ..., X,, with values in a sample space is
available. Within the framework of a statistical model, these random variables follow
a distribution P, defined on some measurable space (X, A) and governed by 6. An
estimator or statistic for 6 is nothing but a measurable function 0, = 0.(X1,..., X))
of the random variables. Classical estimation theory is devoted to studying the qual-
ity of estimators such as their consistency and rates of convergence as more random
variables enter the estimation procedure. A refined analysis of estimators is provided
by a distributional limit law: If the number of random variables n and a sequence of
positive real values r, tend to infinity, then? r,(6, — 6) 2, Z with limiting random
variable Z following a specific distribution, also termed distributional limit law. For
sufficiently large sample size n, the fluctuation of the random quantity r,(6, — 0) is
thus approximated by the law of the limiting random variable Z. Often the quantity
of interest is ¢(#), for some known function ¢, and the plug-in estimator ¢(8,) is a
reasonable choice. If the estimator 8, meets a distributional limit law, then a related
statement involving the random quantity ¢(8,) also holds thanks to the delta method.

Under suitable differentiability assumptions on ¢, a distributional limit law of the form

ra (60) - 60) — ¢(2). (L.1)

"Implicit in the definition of a random variable is its measurability with respect to some probability
space. This thesis makes no attempt to restate all the necessary mathematical machinery underlying the
definitions. For the formalism please refer to the book by Billingsley (2008).

’The notation —— refers to convergence in distribution or weak convergence (Billingsley, 2013).
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remains valid as the sample size n tends to infinity. The limiting random variable ¢}(Z)
is equal to the derivative of ¢ at 6 evaluated at the weak limit of r,(8, — 6) (Shapiro,
1991; Diimbgen, 1993).

This thesis establishes distributional limit laws of the form (1.1) within the context
of optimal transport (OT). The general framework considers a complete, separable
metric space X, with P(X) the set of probability measures on X. A probability measure
u € P(X) plays the role of 6. The corresponding estimator §, is replaced by the
empirical measure [1, = ﬁ >, Ox, based on independently, identically distributed (i.i.d.)
random variables X, ..., X, ~ u. For a scaling rate r, = +/n, this replacement leads to
consider the empirical process \n({i, — p) and its weak convergence in some suitable
normed space (van der Vaart and Wellner, 1996). The function ¢ is motivated by OT
based quantities and their entropy regularized surrogates. Two particular examples for
¢ are the OT cost between two probability measures and the optimal solution of the
entropy regularized OT problem, both of which are defined below.

The primary purpose of the following sections is to briefly introduce OT and entropy
regularized OT based quantities more formally. For further reading, please refer to
the excellent monographs on OT by Rachev and Riischendorf (1998), Villani (2009)
and Santambrogio (2015) as well as the detailed textbooks on linear programming by
Luenberger and Ye (1984) and Bertsimas and Tsitsiklis (1997). The book by Peyré and

Cuturi (2019) contains a thorough discussion of entropy regularized OT.

1.1 Optimal Transport (OT)

Initial theoretical approaches for OT date back to Monge in 1781. His primary concerns
dealt with optimizing the acquisition of raw material for constructions. Monge’s
initial formulation might state within the Euclidean space R? equipped with Borel
o-algebra o(R) and two probability measures® u, v € P(RY). For a measurable map
T:RY — R? the quantity Tyu denotes the push-forward measure of u by T defined
as (Ty)(A) = u(T~'(A)) for every A € o-(R?). Additionally, the formulation involves
a measurable cost function c: R x RY — R, that describes with c(x,y) the cost of
transportation from location x to y. Then, OT as considered by Monge comprises the

optimization problem

inf f c(x,T(x)) du(x). (1.2)
R{i

Typ=v

3Within the framework of Monge’s seminal work Mémoire sur la théorie des déblais et des remblais,
the probability measure 4 € P(RY) corresponds to material extracted from the soil (déblais). The
probability measure v € P(R?) models a configuration the material is used for construction (remblais).
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Originally, the /; cost c(x,y) = ||x — y||; was the first that received Monge’s attention.
A feasible T in (1.2) defines a transport map determining for each particle located at x
its destination 7'(x). Existence statements for an optimal transport map 7 in (1.2) are
difficult to prove and generally fail to hold. For instance, if u = d,, is equal to a Dirac
measure, then (Tsu)(A) = 1 = v(A) for A = {T'(xp)} and a transport map only exists if v
is also a Dirac measure. Nonetheless, for transport from arbitrary v to u = J,,, the map
T(x) = xo 1s feasible for T4v = u and also optimal for any cost function. Overall, the
non-linear constraint Tyu = v makes the optimization (1.2) challenging, non-symmetric
in the measures and often infeasible. A sufficient condition guaranteeing the existence
of an OT map T for the cost c(x,y) = ||x — y||; involves the probability measure u to be
absolutely continuous with respect to Lebesgue measure (Ambrosio, 2003). A first proof
came with Sudakov (1979) more than 200 years after Monge’s initial contributions.
Some of Sudakov’s arguments were later fixed by Evans and Gangbo (1999), and
Ambrosio and Pratelli (2003). However, was the Russian mathematician Kantorovich
(1942) and his probabilistic perspective on Monge’s OT problem (1.2) who made these
achievements possible. In modern mathematical terms, Kantorovich’s formulation is
based on two complete, separable metric spaces X, Y equipped with respective Borel
o-algebras. For two probability measures u € P(X) and v € P(Y), and a measurable
cost function ¢: X X Y — R, the Monge-Kantorovich OT problem is stated as

nelrlrg,v) fx » c(x,y) dn(x, y). (1.3)
The set II(u,v) = {me P(XXY)| (px)s7m =, (py)s 7 = v} contains all transport
plans, where py and py are the respective coordinate projections. In the following, OT
in this thesis refers to the Monge-Kantorovich formulation (1.3). From a probabilistic
perspective, a transport plan 7 € I1(i, v) is equal to a coupling on the product space
X x Y with marginal distributions u and v, respectively®. Any transport plan 7 in
(1.3) describes for each pair (x,y) the amount of mass transported from location x
to destination y. Minimizing over transport plans in (1.3) rather than maps in (1.2)
enables mass splitting prohibited in Monge’s original proposal®. Mass splitting de-
signs OT more flexible and allows to consider transportation problems between general
probability measures. An illustration is given in Figure 1.1 for discrete-discrete (a),
discrete-continuous (semi-discrete) (b) and continuous-continuous OT (c). Apart from
the increased generality, OT in (1.3) is symmetric for symmetric cost functions and

mathematical analysis is alleviated. For instance, the problem of existence of optimal

“The OT in (1.3) might equivalently state as finding a joint law (X, Y) ~ 7 of the random variables
X ~ uand Y ~ v that minimizes the expectation E, [¢(X, Y)].
5By definition, any transport map 7 in (1.2) has to transport all mass at x to location 7'(x).
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(a) Discrete OT between two uniform distributions supported on ten points in red and blue,
respectively. The optimal solution corresponds to an optimal matching (see Footnote 8 on
p. 7 for details).

(b) Semi-discrete OT between a uniform distribution supported on eight points (red) and a
uniform distribution on [0, 1]%. The optimal solution corresponds to a Laguerre-Voronoi
tessellation of the ground space.

(c) Continuous OT between two absolutely continuous distributions with densities on the
real line. The optimal solution corresponds to a map 7.

Figure 1.1: Optimal Transport. The Monge-Kantorovich OT problem (1.3) with
squared Euclidean cost c(x,y) = ||x — y|.
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solutions is greatly simplified in this framework. First, the set of transport plans I1(u, v)
is non-empty as it contains at least the independence plan u ® v. Second, the existence
of a minimizer for (1.3) is a simple consequence of Weierstrass type arguments valid for
any non-negative and lower semi-continuous cost function (Villani, 2009, Thm. 4.1).
In general, OT in (1.3) is relaxed compared to Monge’s formulation (1.2). Any transport
map T: X — Y induces a transport plan 77 = (Id X T)4u with identical transport cost.
Indeed, under certain regularity assumptions on the probability measures and underlying
spaces, optimal objective values for (1.2) and (1.3) are equal (Santambrogio, 2015, Sec.
1.5). A particular example is given for squared Euclidean cost c(x,y) = ||x — y|I* on
RY. If u is absolutely continuous with respect to Lebesgue measure and y, v have
finite second moments, then there exists a Lebesgue almost surely unique OT map
which is the gradient of a convex function. This statement, popularized as Brenier’s
Theorem, was discovered independently by Brenier (1987), Smith and Knott (1987),
and Riischendorf and Rachev (1990).

Beyond the relaxed OT formulation (1.3), the perhaps most important contribution by

Kantorovich was a general duality statement. The dual OT problem is defined as

sp [ fedue+ [ gorav (14)
(f.9)®: JX Y

with @, = {(f, 2 eL'(WxL'(v)| f(x)+g() < clx,y)V(x,y) € (X X y)}. For a non-
negative and lower semi-continuous cost function, the maximization problem in (1.4)
attains the same optimal value as OT in (1.3) (Villani, 2009, Thm. 5.10). The equality of
optimal values is known as strong duality®. If additionally the cost function is continuous
and satisfies c(x,y) < cx(x) + cy(y) for two functions (cx, cy) € L'(u) x L'(v), then
maximizers for (1.4) exist (Villani, 2009, Thm. 5.10).

An alternative formulation for (1.4) is obtained employing the double convexification
trick. If (f, g) 1s feasible for (1.4), then also (f, f¢) with f(y) = inf,cx c(x,y) — f(x)
is feasible. The pair (f, f¢) attains an objective value in (1.4) at least as large as the
one attained by (f, g). Continuing this iteration with the feasible pair (f“‘, f¢) and
f(x) = 1nfey c(x,y) — f°(y) leads to another possible improvement of the objective
value for (1.4). Eventually, this process is stationary in the sense that f““(y) = f°(y).

®Kantorovich (1942) initially proved strong duality for metric costs c(x, y) = d(x, y). However, the
duality statement holds for more general cost functions and even beyond complete, separable metric
spaces (Ramachandran and Riischendorf, 1995).



6 Introduction

Consequently, the iteration generates the equivalent dual formulation

sup [ 04+ [ 00 (15)
feFe JX Y

The supremum is taken over ¥, the set of c-concave functions, i.e., for any f € 7.
there exists a function g: Y — R U {—oo} such that f = g¢ (Villani, 2009, Thm. 5.10).
Any function f € ¥, attaining the supremum in (1.5) is termed Kantorovich potential.
As a particular example, for X = Y and metric costs c(x,y) = d(x,y), the double

convexification trick leads to the Kantorovich-Rubinstein dual statement

sup f J() d(u = v)(x), (1.6)
JeLip;(X) JX

where the supremum is taken over Lipschitz functions with Lipschitz modulus bounded
by one (Villani, 2009, Part. Case 5.16). Duality goes far beyond the equality of optimal
values for (1.3) and (1.4) (resp. (1.5)) and also serves to characterize the support of an
OT plan related to the theory of c-cyclical monotonicity. Duality is then an important
tool for regularity and stability properties of optimal solutions. Most importantly for

this thesis, duality enables a suitable framework for a statistical analysis.

1.1.1 OT based Distances

Based on the Monge-Kantorovich OT problem (1.3), the OT cost

O7 (u,v) := inf f c(x,y)dnr(x,y) (1.7)
XxY

mell(u,v)

provides a notion of similarity between two probability measures y, v. In particular,
suppose that both probability measures u, v € $(X) are supported on the same complete,
separable metric space. Then, the smaller the OT cost, the less far, on average, mass has
to be transported from u to v. From a slightly different perspective, the transformation
from w into v is less costly and suggests a degree of similarity inherent to both probability
measures. A refined mathematical statement involves properties of the underlying cost
function. Indeed, for a cost function equal to the metric d on X and any p > 1, the OT

cost

1/p
W, (u,v) = { inf f d?(x,y)dn(x, y)} (1.8)
XxX

nell(u,v)

defines a finite metric on the space of probability measures

P,(X) = {,1 € PX)| fX dP(x, xo) du(x) < +oo},
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where the point xy € X is arbitrary (Villani, 2009, Sec. 6). The metric space
(Pp(z\’),‘W p) is commonly referred to as the p-Wasserstein space and ‘W, as the
p-Wasserstein metric’. If X is a Polish space, then the p-Wasserstein space is also
Polish. Convergence of probability measures in the Wasserstein space is equivalent
to weak convergence and convergence of their p-th metric moments (Villani, 2009,
Ch. 6). Such convergence properties are an attractive tool for statistical purposes
(Panaretos and Zemel, 2019). Further, the Wasserstein distance and related OT based
similarity measures provide a flexible notion to compare general probability measures
while incorporating the underlying ground metric structure. Notably, for two Dirac
measures u = 6, and v = d,, their p-Wasserstein distance is equal to W, (6, 6,) = d(x, ).
Therefore, these distances are well suited in applications where the importance of a
metric is prevalent. Overall, these observations explain the recent advent of OT based
similarity measures throughout various disciplines ranging from economics (Galichon,
2016) and finance (Rachev et al., 2011) to machine learning (Peyré and Cuturi, 2019)
and biology (Schiebinger et al., 2019; Tameling et al., 2021).

1.1.2 OT on Finite Spaces

If the ground space X = Y = {xy,..., xy} is finite, probability measures are identified
as elements of the probability simplex A(X) := {r eRY | Z?ﬁ (H(x) = 1}. For a cost
function ¢: X X X — R, and two probability measures r, s € A(X), the OT in (1.3)
takes the particular form®

M

”21{111}3[\4 Z c(x;, Xj)ﬂ(xi, Xj)
i,j=
M
sty wlx) =r(x), Y1<i<M, (1.9)
j=1
M

D aexp) = s(xp), V1< j<M.

i=1

"The name is dedicated to Vaserstein (1969). However, the metric has been rediscovered several
times, e.g., as Mallows distance (Mallows, 1972) in statistics or Earth Mover’s distance (Rubner et al.,
2000) in computer vision. As Vershik (2002) argues, a proper specification is Kantorovich metric.

8According to Birkhoff (1946), if r € A(X) and s € A(Y) are two uniform distributions on different
finite spaces X # Y of equal cardinality M, then OT is equivalent finding an optimal matching

—Hll

M eSy 4 ¢ (%isYoto)

NMg

where S, denotes the set of all possible permutations of a set with M elements. In particular, the Monge
formulation (1.2) and Monge-Kantorovich formulation (1.3) coincide.
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Any transport plan 7 in (1.9) is represented by a M X M transport matrix with non-
negative entries and row and column sums that match the probability measures r and s,
respectively. The set of all feasible transport plans  for (1.9) is denoted by I1(7, s). The

dual problem for (1.9) is simply the discrete analogue for (1.4) and reads as

M M
(x)r(x;) + (x;)s(x;)
fr,?ea@;fx ™ ;gx’sx’ (1.10)

s.t. f(x) +g(x)) < clxi,xj), Y1<i,j<M.

On finite spaces, the optimal objective values for (1.9) and (1.10) are always equal

(strong duality) and existence of minimizers and maximizers is guaranteed.

1.2 Linear Programming

The general theory of linear programming was motivated by findings for the discrete
formulation of OT in (1.9). Early contributions were given by Tolstoi (1930), Hitchcock
(1941), Kantorovich (1942), Dantzig (1949) and Koopmans (1951). For a finite space
X = {xi,..., xy} and two probability measures r, s € A(X) stacking the columns of a
transport matrix 7 € I1(r, s) on top of each other defines a vector of length M?. Further,
for right-hand side parameter b = (r, s)’ and A = (f, g)!, OT in (1.9) and its dual in
(1.10) are restated as the pair of primal (P) and dual (D) linear programs

min ¢’ 7 max b’ A
neRM? (P) AeR2M (D)
s.t.Amr=b,m >0, st.ATA<e,

respectively, with constraint matrix

17 @y .
]IM®]11€[

R2MM? (1.11)

In general, linear programming is concerned with optimization problems that exhibit a
linear objective and whose constraints are given by linear (in)equalities. The primal (P)
is a prototypical example of a standard linear program where the constraint matrix A is
assumed to be of full rank®. The primal feasible set M = {7 | Anr = b, 7 > 0} and dual
feasible set N := {/l | ATA < c} both define a polyhedron, respectively, that are assumed

The constraint matrix A in (1.11) underlying OT is not of full rank. Deletion of a row of A and the
corresponding entry in b leaves the polyhedron M = {n | Ar = b, 7 > 0} invariant and in particular does
not change the OT problem under considerations. For notational simplicity the discussion is based on the
reduced matrix A € REM-DXM* of fy]] rank.
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to be non-empty!?. For a general polyhedron P an element A € P is an extreme point if
there do not exist two elements 7,77 € P both different to A and a scalar ¢ € (0, 1) such
that A = t7 + (1 — ©)n. Owing to the full rank assumption on A, the optimal solution for
(P) (resp. (D)) is attained at an extreme point in M (resp. N). Fundamental to linear
programming is the identification of extreme points with bases. A basis I c {1,..., M?}
is an index set of cardinality 2M — 1 of the columns of A such that the basis matrix
A; € R®M=DXII formed by the columns from A indexed by I, is one-to-one!!. By full
rank assumption on A there always exists a basis / that induces a primal and dual basic

solution
n(l,b) = Aug, [(4)™' b| € RM A1) = (A;) Tc; € RM- (1.12)

respectively. In order to match dimensions, a solution for (P) has dimension M? instead
of 2M — 1, the linear operator Aug,: R2¥~! — RM" augments zeroes in the coordinates
that are not in /. A basis I determines the indices of possibly non-zero elements (basic
variables) in a primal basic solution 7(/, b), and the binding constraints'? for a dual
basic solution A(I). All feasible basic solutions induced by a basis as in (1.12) are
precisely the extreme points of the polyhedra M and N, respectively. Notably, while
the dual basic solution A(1) might be feasible (optimal), this might fail for the primal
basic solution 71(/, b) and vice versa. Although each basis I uniquely induces a basic
solution, several bases might lead to the same basic solution. The latter turns out
to be a consequence of degeneracy for linear programming. A primal feasible basic
solution 7(1, b) is degenerate if less than 2M — 1 of its coordinates are non-zero. A dual
feasible basic solution A() is degenerate if more than 2M — 1 of the M? inequalities in
ATA(I) < c are binding. Figure 1.2 illustrates all of the mentioned statements. As the
dual (D) is constrained to finitely many linear inequality, the cardinality of dual feasible
bases is finite. For fixed right-hand side b in (P), the collection of dual feasible bases

{1, ..., Iy} can be partitioned according to their primal feasibility into
(I, b) is feasible, 1 < k < K n(ly, b) is infeasible, K < k < N.

By strong duality, each basis I; with 1 < k < K induces optimal primal and dual basic
solutions in (1.12).

A nonempty, bounded polyhedron can be represented as the convex hull of its extreme

10If M and N are non-empty, then both (P) and (D) attain an optimal solution and by strong duality
their corresponding optimal objective values are equal.

Eor OT and measures r, s € P(X) with X = {x|,..., Xy}, a basis corresponds to a particular spanning
tree that is a subset of the complete bipartite graph on {1, ..., M} x {1,..., M}.

A constraint AT A < c; is said to be binding for A if it holds with equality AT = ¢;.
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M) = M)
= A(5)

{l | ATﬂSc}

(a) The dual feasible set N\ defines a polyhedron with extreme points (green, red and blue diamond
shaped). The objective is to maximize the value of z = b7 A for t = 1,2, 3. Each extreme point
is identified by a basis, e.g., A({1) is uniquely identified by I} = {i, j} and analogously for A(/)
with I, = {j, k}. The blue extreme point is degenerate and identified by three bases I3 = {k, [},
1y = {k, s} and Is = {[, s}.

pos(A) = {x | x=Anm, 7> 0}

(b) The cone pos(A) spanned by all positive linear combinations of the columns of A. The cone is
partitioned into sub-cones induced by the polar cones to feasible directions at dual extreme points.
These sub-cones are particular choices of a basis index set, e.g., I = {j, k} corresponds to the red
sub-cone spanned by column A; and A;. The right hand side parameter b, is contained in that
sub-cone and hence I, identifies the feasible basic solution (15, b).

Figure 1.2: The Geometry of Linear Programs. For a right-hand side parameter b,
the basis I; = {i, j} is primal and dual feasible since A(/;) is dual feasible (a) and b, falls
into the sub-cone spanned by {A;, A;} in (b). Hence, I; defines primal and dual optimal
basic solutions. Analogous statements hold for b, and basis I, = {}J, k}. For parameter
b3, the bases I3 = {k, [}, I, = {k, s} define primal and dual optimal basic solutions (a),
whereas I5 = {/, s} corresponds to a dual feasible but primal infeasible basis (b).
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points. If M is bounded, then the polyhedron of optimal solutions for (P) is also bounded
and equal to the convex hull of the optimal basic solutions'? {n(1,, b), ..., n(Ig, b)} in-
duced by {1,..., Ix}.

The correspondence between primal and dual basic solutions is at the heart of linear
programming algorithms. The popular simplex algorithm by Dantzig (1949) is designed
to move from one primal feasible basic solution to another, whilst improving the objec-
tive value and checking if the corresponding basis induces a dual feasible basic solution.
In the worst case, the simplex algorithm takes an exponential number of iterations (Klee
and Minty, 1972). However, the simplex algorithm is observed to have good practical
performance and Spielman and Teng (2004) proved polynomial smoothed complexity
for its average run-time if input data is randomly perturbed.

Apart from the simplex algorithm solving general linear programs, the particular linear
programming structure for OT allows employing a zoo'* of specialized solvers to com-
pute optimal solutions. Among those are the Hungarian method (Kuhn, 1955), network
flow solvers (Ford and Fulkerson, 1956), the transportation simplex (Luenberger and
Ye, 1984) or the Auction algorithm (Bertsekas and Castanon, 1989). Typically, the
computational complexity of these algorithms scales cubically in the support size of the
probability measures (Burkard and Cela, 1999) leading to a severe limitation of OT for

real-world applications.

1.3 Entropy Regularized Optimal Transport

With the recent dawn of the big-data era, solving OT for real-world instances is chal-
lenging as the high computational complexity hinders finding optimal solutions within
reasonable time. Pursuing more attractive computational approaches has encouraged the
development of various OT surrogates. Particular variants include the sliced (Bonnotte,
2013), tree-sliced (Le et al., 2019), minibatch (Fatras et al., 2021) or sampled OT
(Sommerfeld et al., 2019).

The most prominent surrogate, popularized by Cuturi (2013), is based on entropy regu-
larization. On a finite space X = {xi, ..., x)} and measures r, s € A(X), the negative

entropy of a transport plan 7 € I1(r, s) is defined as

M

E(r) = ) x(xi, %)) (log (w(x;, x))) = 1) + 1, (1.13)

ij=1

13This holds for any linear program in standard form and is trivially satisfied for OT.
'4The development of efficient algorithms solving OT problems is dedicated an entire research field
and more details are found in Peyré and Cuturi (2019).
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with the usual convention 0log(0) = 0. The negative entropy is strictly convex and
minimized among all transport plans in II(r, s) by the independence plan r ® s =
(r(x;)s(x J-))% (Kovacevi¢ et al., 2015). For some positive regularization parameter 4 > 0

and a cost function c: X x X — R, the entropy regularized OT" is defined as

M

min " (x;, x)m(x;, X)) + AE(x). (1.14)

nell(r,s)

i,j=1

The set of transport plans II(r, s) ¢ R**M is compact, and the objective function is
continuous and strictly convex. Hence, there exists a unique optimal solution 7 for
(1.14). For a regularization parameter tending to zero, the optimal solution 7! converges
to the optimal solution for OT in (1.9) with maximal negative entropy. For large 4, the
optimal solution tends to the independence plan r ® s. Figure 1.3 illustrates the effect of

entropy regularization.

Entropy regularization promotes non-sparse OT plans with optimal solutions attained in
the interior of the transportation simplex I1(r, s), in strong contrast to non-regularized
OT plans!®. Indeed, the first order condition of the Lagrangian for (1.14) implies that
the unique optimal solution is of the form

Salxi) + galx;)) — c(x;, x;)
A

nﬂ(x,-,xj):exp( ) VI<i,j<M (1.15)
for two unknown functions (vectors) f;, g, € RM. Together with the marginal require-
ment 7t € TI(r, 5), this leads to the Sinkhorn algorithm whose name is dedicated to
Sinkhorn (1964) who first proved the convergence. The algorithm iteratively scales the
—M) ~such that in each iteration either the row or column sum

A i,j
constraint is satisfied until convergence. Each iteration is of quadratic complexity and

kernel matrix K = (

roughly requires | A~2] iterations for reasonable approximation guarantees (Altschuler
et al., 2017). In total, the computational complexity demonstrates the superior per-
formance of the Sinkhorn algorithm compared to the cubic complexity inherent to
non-regularized OT solvers and advocates the use of the entropy regularization for large

scale applications.

Further, as a strictly convex optimization problem with linear equality constraints, the

15In this thesis, the entropy regularized OT on finite spaces is of particular importance. There exists a
formulation for general Polish spaces. For details please refer to (1.21) and Peyré and Cuturi (2019).

16There always exists an OT plan for (1.9) with at most 2M — 1 positive entries. A simple argument
employs the discussion on bases outlined in Section 1.2 and the fact that there exists an OT plan induced
by a basis / with cardinality |I| = 2M — 1.
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(a) Discrete entropy regularized OT between two uniform distributions supported on
ten points in red and blue, respectively. Thicker connections correspond to more mass
transportation. In contrast to Figure 1.1a, the optimal solution is not equal to a matching
and promotes mass transportation from every red to each blue point.

(b) Semi-discrete entropy regularized OT between a uniform distribution supported on
eight points (red) and a uniform distribution on [0, 1]>. Compared to Figure 1.1b, the
optimal solution is a blurry Laguerre-Voronoi tessellation of the ground space.

y .

(c) Continuous entropy OT between two absolutely continuous distributions with densities
on the real line. Different to Figure 1.1c, the optimal solution is far from being a map and
smears the transportation over the product space.

Figure 1.3: Entropy Optimal Transport. The Entropy regularized OT problem (1.14)
with squared Euclidean cost c(x, y) = ||x — y|*.
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entropy regularized OT in (1.14) admits the dual formulation

S feearen + Y gestey -1 (ex (f(x") 80y C(x"’xf)) _ 1)
fr’?g@ L X;)r(x; Z. 8(x;)s(x; “ P 1 .

(1.16)
For the unconstrained maximization problem (1.16) exists a unique (up to constant
shifts) pair of dual optimal solutions (f;, g,) and strong duality holds, i.e., the optimal
objective values for (1.14) and (1.16) are equal. In fact, the optimal pair (f;, g,) fulfills

(1.15) and the dual solutions are recovered from the Sinkhorn algorithm!’.

1.3.1 Entropy Regularized OT based Divergences

Entropy regularized OT defines an alternative notion to measure the similarity between
probability measures r, s € A(X) with X = {xy,..., x)}. The first approach is to employ
the optimal value for (1.14) and define

M
OT.a(r.s) = min 3" c(x x)m(x; x)) + AE(m). (L.17)

ij=1

Similarly, the Sinkhorn divergence is based on evaluation of the transport cost for the

optimal solution 7! for (1.14), i.e.,

M

SDea(r,s) = Y el x)m(x;, x)). (1.18)

i.j=1

Even if the cost function is induced from an underlying metric c(x;, x;) = d(x;, x;),
neither the optimal value O7 . ,(r, s) nor the Sinkhorn divergence SD. ,(r, s) define a
true notion of a distance on the set of probability measures A(X). In particular, for r = s
both quantities are not equal to zero. The recently proposed Sinkhorn /oss as introduced
by Genevay et al. (2018),

SLea(r,s) =0T ca(r, s) - % (OT ca(r,r) + OT ¢ a(s, 5)) (1.19)

accounts for the identity of indiscernible. Still, even for underlying metric costs, the
Sinkhorn loss does not fulfill the triangle inequality. However, the definitions (1.17),
(1.18) and (1.19) serve as a notion of divergence between probability measures and

converge to the OT cost in (1.7) as the regularization parameter tends to zero. Moreover,

17Optimization of the dual problem (1.16) might be carried out by a block coordinate ascent keeping
one variable fixed while optimizing over the other and vice versa. These iterations are equivalent to the
Sinkhorn algorithm.
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the computational accessibility together with differentiability properties shape these
divergences as noteworthy surrogates. Applications range from incorporation in varia-
tional OT problems such as OT barycenters (Cuturi and Doucet, 2014) to defining an
alternative loss function in machine learning (Genevay et al., 2018) and many more are
found in Peyré and Cuturi (2019).

The entropy regularized OT might be defined between probability measures u, v € P(X)
supported on general Polish spaces X. To this end, the entropy E(r) in (1.13) is
replaced by the Kullback-Leibler divergence (also known as mutual information or
relative entropy)'®

KL(ullv) =

Jilog (@) du(x) ifu <, (120)
+o00

else.

For a cost function c¢: X X X — R, and regularization parameter 4 > 0, the entropy

regularized OT is then defined as the strictly convex optimization problem

EOT . (u,v) = inf f c(x,y)dn(x,y) + AKL(r || u ® v). (1.21)
HGH(II,V) XxX

Under regularity assumption on the cost function and the probability measures, the

entropy regularized OT (1.21) admits the dual formulation (Chizat et al., 2018)

EOTa(,v) = sup f 09 du(o) + f ¢() dv(y)
feLi(w) JX X
geLi(v) (1.22)

2 f exp (f(X)+g(y)—C(x,y)) i) dv(y).
XxX

A

Analogously as to the finite setting in (1.14), any pair of dual optimal solutions for
(1.22) is denoted as (f3, g.2)-

18 Already for countable spaces X = {x1, X2, ...} and probability measures r, s € P(X), for any coupling
7 € I(7, s) its entropy E(r) is finite only if r and s have a finite entropy (Cover, 1999). In particular, the
optimization problem (1.14), if extended to countable spaces, is only finite on a particular subset of P(X).
Contrary, KL(rr || 7 ® ) is finite at least for 7 = r ® s € I1(r, ).
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CHAPTER 2

Limit Laws for Empirical (Regularized) OT

on Finite Spaces

This chapter deals with distributional limit laws for empirical OT and empirical entropy
regularized OT quantities defined on finite spaces. The main results presented in
Section 2.1 subsume the two articles Klatt et al. (2020a) and Klatt et al. (2020b).
To this end, let X = {xi,...,x)} be a finite discrete space equipped with a metric
d: X x X — R,. There exist two probability measures r, s € A(X) of full support
(possibly 7 = ) but only s is completely known'. The probability measure r is unknown
and needs to be estimated. Concerning the estimation of r, it is assumed that there
is access to a collection of independent and identically distributed (i.i.d.) X-valued
random variables X, ..., X, ~ r. The standard estimator for r is the empirical measure
Py = ﬁZ?zl dx,. By the strong law of large numbers and increasing sample size n,
the estimator 7, converges to r almost surely. A refined statement follows from the

multivariate central limit theorem
R D
\/ﬁ(rn_r)—>Gr’ (21)

as the sample size n tends to infinity. The limiting random variable G, follows a

M-dimensional centered Gaussian distribution Ny, (0, (7)) with covariance matrix

—r(x)r(x") if x # x/,
X(r) = (2.2)
r(x)(1 —r(x)) else.

Within this prescribed setup, the random quantities of interest in this chapter are plug-

in estimators for OT and entropy regularized OT based quantities as defined in the

ITo streamline the presentation of the two articles Klatt et al. (2020a,b), the main results are tailored
to the one-sample case, where r € A(X) is unknown while s € A(X) is assumed to be known. Both
articles also contain statements for the two-sample case in which both probability measures are unknown
and hence need to be estimated.
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Introduction:

e The empirical OT plans (Section 1.1.2):

M

f, € argmin > d(x;, x))m(x;, x;) (2.3)

nell(7y,s) i,j=1

The empirical entropy regularized OT plan (Section 1.3):

M
7} = argmin " d(x;, x))m(x;, x;) + AE() 2.4)

rell(ins) 721

The empirical objective value for entropy regularized OT in (1.17):

M
OT i 5) = min >~ d(xi, x))m(xi, X)) + AE(m) (2.5)
£

nell(Fy,s) &=
i,j=

The empirical Sinkhorn divergence in (1.18):

M
SDA(Fny ) = ) d(xiy X)) X)) (2.6)

ij=1

The empirical Sinkhorn loss in (1.19):

SLy(Fy, 8) = OT a(Fu, 5) — % (OT 2Py, ) + OT (s, 5)) 2.7)

The primary purpose of the two articles Klatt et al. (2020a,b) is to quantify the asymp-
totic fluctuation of the empirical plug-in estimators (2.3) — (2.7) around their respective
population quantities (after proper scaling) by a central limit theorem.

Some remarks concerning the presentation of the main results are in order: First, the
statistical results to follow remain valid (upto minor changes) if the metric d inherent in
(2.3) — (2.7) is replaced by a general cost function ¢: X X X — R,. Second, the article
Klatt et al. (2020a) contains more general results concerning distributional limit laws
for empirical solutions to linear programs in standard form. OT is nothing but a special
case of this theory (cf. Section 1.2). Third, the article Klatt et al. (2020b) considers
various regularization methods for OT. The statistical theory for entropy regularization
of OT is again a particular case. Lastly, and most importantly, some results require the
notion of a reduction. In particular, any probability measure r € A(X) is identified by

a vector of dimension M. The associated probability measure r; is equal to r except
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with the last coordinate removed, hence of dimension M — 1. The reduced perspective
r+ serves two important purposes: On the one hand, it removes the rank deficiency
inherent in the definition of OT couplings that now might equivalently be defined as M

dimensional vectors
(rs, 5) = {n e RM |AT7T = H , > 0} (2.8)
K

with constraint matrix A; of full rank (see Section 1.2 and Footnote 9 on p. 8). On
the other hand, the related central limit theorem in (2.1) for v/n (r}n - rf) i) G, ~
Ny-1(0,2(r+)) leads to an asymptotic centered Gaussian distribution that is absolutely
continuous with respect to Lebesgue measure. Both observations alleviate the underly-

ing proof techniques employed in the two articles.

2.1 Main Results

Klatt et al. (2020a): The exposition of the main results starts with the article Klatt
et al. (2020a) and distributional limit laws for empirical OT plans (2.3). For fixed

probability measures 7, s € A(X), the set of optimal solutions is denoted by

M
I1*(r, 5) = {7 € T1(r, s) | 7w € argmin >~ d(xi, x,)m(xi, %) ¢ (2.9)
nell(r,s) ij=1
Suppose that [y, . .., I are all dual feasible bases that induce primal feasible and hence

optimal basic solutions (see Section 1.2 for details). For each 1 < k < K, denote by
DP, = {i € Iy | m(I;,[r+, s]) = 0} the collection of those indices in basis I for which
the particular basic variables are equal to zero. For each basis /; there exists a closed

and convex cone of feasible perturbations?
Hy = {v € R" ™| mili, [v,0]) 2 0V i € DPy}. (2.10)

More precisely, to each v € H; there exists a scalar ¢ > 0 such that the basis I; remains
primal and dual optimal for the standard linear program (P) with parameter b = (r;, 5)”
replaced by b = (r;, 5)T + ¢ (v,0))".

The main result in Klatt et al. (2020a) states the following distributional limit law for

the empirical OT plans in (2.3): There exists a random sequence (7)), C II* (7, s) of

2From a linear programming perspective the set DP; encodes degeneracy: The optimal primal basic
solution nr(Ii, [r+, s]) is degenerate if and only if the set DP; # 0. If n({y, [+, s]) is non-degenerate, then
DP; = 0 and the corresponding cone Hj in (2.10) is equal to R¥~!,
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optimal OT plans such that if the sample size n tends to infinity, then

Vi (7, - ) — M(G,,) = > 1 (o clterneern)] @ @7 (1 [ Onl) | 2.11)
K

The sum in the limiting random variable M (G,T) runs over non-empty subsets K of
{1,...,K}, with Hx = NpeqcH; and o is a random vector in the (essentially |K]-
dimensional)® unit simplex Ay = {r € RY [[lally = 1, o = 0¥ k ¢ K.
Based on the general distributional limit theorem in (2.11) and under certain non-
degeneracy assumptions, various simplifications of the limiting random variable follow.
A particular setting arises if the set of all dual basic solutions is non-degenerate. Within
the OT context, dual non-degeneracy is satisfied if and only if* for the dual optimal basic
solutions A;1, ..., dig (recall the notation A; = (f;, g)! for f, g dual optimal solutions
for (D)) it holds that

Ay # Ay, 1 < j<k <K (2.12)

Under assumption (2.12) the primal optimal basic solution is unique IT*(r, s) = {n*}.
Together with the absolute continuity of the limit law G, for the reduced multinomial
process \n(#, — r3), the corresponding distributional limit theorem in (2.11) simplifies

to

K
Vi (&, — %) =5 D - 7 (1 [Gr, Oyl (2.13)
k=1

A sufficient condition for dual non-degeneracy in (2.12) and therefore verification of
the statement in (2.13) is given in terms of the underlying metric: If for any / > 2 and
any family of points {(xik, X jk)} C X x X with all x;, and all x;, pairwise different it

holds that

1<k<l

l

!
Zd(xik,xjk) * Zd(x,-k,xjk_l), Xjy = Xjp, (2.14)

k=1 k=1
then every dual feasible basic solution is non-degenerate and (2.12) is satisfied. Condi-
tion (2.14) fails to hold if the underlying ground space X is sufficiently symmetric. A
prototypical example is a regular grid with underlying grid metric for which (2.14) is
usually never satisfied®.

If additionally to dual non-degeneracy (2.12), also the unique primal optimal basic

3The set of all dual feasible bases is assumed to be of cardinality N with K < N (see Section 1.2).

“For general linear programs, the characterization for non-degeneracy in terms of condition (2.12)
requires the set of optimal primal solutions to be non-empty and bounded. For OT this is trivially satisfied.

3If X c R is a finite subset on the real line, then the non-degeneracy condition (2.14) is satisfied for a
cost function c(x, y) = h(|x — y|) with A strictly convex or strictly concave and /4(0) = 0. It follows that
(2.12) holds for c(x,y) = |[x — y|P and p € (0, 00), p # 1.
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solution is non-degenerate, then primal and dual optimal solutions are unique and there
exists a unique basis /; that induces them. The distributional limit theorem for the

empirical OT plan then takes the simple form

Vit (fty = 7%) = (11, Gy, O] 2.15)

The limiting random variable in (2.15) is equal to the linear transformation (A-I- I )_1 with
unique basis /; of the augmented limiting random variable [G,., 0)]. The non-negative
entries jointly follow a centered Gaussian distribution with covariance matrix equal to
(AT)I_II (r+) (AT);IT- A sufficient condition for primal non-degeneracy is given in terms
of the probability measures r and s: If all proper subsets A, B ¢ X with A # B are

assigned different total mass

Z r(x) # Z s(x), (2.16)

x€eA xeB

then every primal feasible basic solution is non-degenerate (Klee and Witzgall, 1968).
Overall, distributional limit theorems for empirical OT plans on finite spaces are driven
by the geometry of the boundary of the underlying transportation simplex I1(7, s) and the
amount of degeneracy present in the primal (P) and dual (D) linear programs. The result
(2.11) holds generally and reflects the complex geometric and combinatorial nature
for degenerate linear programs. If dual optimal basic solutions are non-degenerate,
then the simplified statement (2.13) follows. Both results (2.11) and (2.13) hold for the
alternative r # s as well as for the null r = 5. These two different regimes are reflected
in the number of cones (2.10) and summands defining the limiting random variable.
The null r = s is the most challenging case since the primal optimal basic solution is

highly degenerate. More precisely, the transport plan 7 € R¥*M

is supported on the
diagonal with only M instead of 2M — 1 non-zero entries. For an illustration of the limit
law in such a case, please refer to Klatt et al. (2020b, Example 6.3).

In case all primal and dual optimal basic solutions are non-degenerate, the central
limit theorem (2.15) is valid. The corresponding non-negative entries jointly follow a
Gaussian law. Sufficient conditions for non-degeneracy are given in (2.14) for the dual
and in (2.16) for the primal and suggest certain non-regularity either in the probability
measures or in the underlying cost function. Under small perturbations of the metric
cost and the probability measures r, s € A(X), the conditions (2.14) and (2.16) are
usually satisfied (see Sommerfeld (2017); Klatt et al. (2020b) for details). Nonetheless,
degeneracy in linear programs is generic rather than the exception for most practical

situations (Bertsimas and Tsitsiklis, 1997).
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Klatt et al. (2020b): The article Klatt et al. (2020b) focuses on central limit theorems
for empirical entropy regularized OT quantities. The entropy regularized OT (1.14) is
a strictly convex optimization problem with a unique optimal solution 7* attained in
the interior of the transportation simplex II(r, s). An application of standard methods
from sensitivity and stability analysis in non-linear programming (Fiacco, 1983) proves
the solution ! = @,(r+, 5) to be implicitly parameterized by some smooth function ¢
defined on A(X):+ x A(X). The derivative of ¢ might be computed explicitly

Vooer = D (') A [Ar D (r!) AT] " e RMCYD (2.17)

with constraint matrix A+ in (2.8) and D(r!) € RM>*M” 3 diagonal matrix with diagonal®
equal to 7', Central limit theorems then follow as a consequence of the delta method:
For two probability measures r, s € A(X), the empirical entropy regularized transport

plan A% in (2.4), estimated from the empirical measure #,, meets the central limit theorem

Vit (8 = 1') =25 Zo ~ Ny (0.Z(r | 9)), (2.18)

as the sample size n tends to infinity. The limiting random variable Z,: follows a
M?-dimensional centered Gaussian distribution. The covariance matrix is equal to
2ar | s) = [Vl Z(rp) [V, )7 and specifically depends on the unique solution 7.
The central limit theorem (2.18) is valid and non-degenerate for the null r = s as well
as for the alternative r # s.

The general asymptotic analysis for the empirical entropy regularized OT plan in (2.18)
enables a straightforward investigation of central limit theorems for the corresponding
empirical entropy divergences in (2.5), (2.6) and (2.7). In particular, all divergences
are smooth functions of the empirical entropy regularized OT plan. Their asymptotic
statements follow by another application of the delta method. The scaling rate /n in
(2.18) is passed to the corresponding central limit theorems and the limiting random
variables always follow a certain centered Gaussian law.

The empirical Sinkhorn divergence SD,(7,, ) in (2.6) is a linear function of the empiri-
cal entropy regularized OT plan and hence the simplest random object in this regard.

The corresponding central limit theorem states that if the sample size n tends to infinity,

The article Klatt et al. (2020b) considers the entropy plan ! as a vector of dimension M? rather
than a matrix of dimension M X M. Moreover, the main results in the article consider general proper
regularization functions f replacing the entropy E in (1.14). Then, the diagonal matrix D (n’l) in (2.17)
is replaced by the inverse of the Hessian (V2 f)~! for the regularization function f. For entropy E, the
inverse of its Hessian is exactly of described diagonal form D(rr).
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then

VI (SD(Pas 5) = SD(r, 8) — (Zi,d) ~ N (0,5%(r | 5) (2.19)

with d the vectorized version of the underlying metric on X. The limiting random
variable (Z,., d) follows a centered Gaussian distribution with variance equal to O'ﬁ(r |
s) = d'2,(r | s)d’. The central limit law (2.19) holds for the null » = s and the
alternative r # 5. Notably, even for r = s the central limit theorem for the empirical
quantity SD,(7,, r) is not centered around zero as the optimal objective value SD,(r, r)
is strictly positive. A similar asymptotic behavior is obtained for the empirical objective

value O7 (7, s) in (2.5). If the sample size n tends to infinity, then

VI (OT (3, 8) = OTa(r, ) — (G 7Y ~ N (0.53(r | 9)). (2.20)

(r.)
r»Ja

limiting random variable G, from (2.1) and the optimal solution fj”) for the dual of

The limiting random variable <G > is equal to the scalar product between the
the entropy regularized OT (1.16). The asymptotic distribution is equal to a centered
Gaussian distribution with variance equal to 65(r | s) = Vary.,[ fl(r"") (X)]. The central
limit law (2.20) holds for the null r = s and the alternative r # s and degenerates to a
Dirac at zero if and only if f"** is constant’.

Analogous central limit laws for the empirical Sinkhorn loss (2.7) state for sample size

n tending to infinity that

2

1
Vi (S LR, 5) = SLi(r, 5) — <Gr, -+ g;”’))> . (221)

Compared to (2.20), the additional term 1( 1) 4 gl

) in the limiting random variable
accounts for the randomness in SL,(7,, 7,,) inherent in the definition of the empirical
Sinkhorn loss (2.7). The limiting random variable follows a centered Gaussian distri-
bution. The variance of the limit distribution is equal to Vary.,[ A(”) (X) - %( f;r’r)(X) -
g;”’)(X))]. Herein, fﬂ(”) is the dual optimal solution for O7 (r, s) and ( fj"”, g;"’)) is the
pair of dual optimal solutions for O7 ,(r, r). Under the null r = s, the central limit law
in (2.21) degenerates \n SL(7,,r) L 0o to a Dirac at zero and please refer to the
following section and (2.32) for a thorough discussion.

Overall, central limit theorems for empirical entropy regularized OT quantities de-
fined on finite spaces reveal limiting random variables following a centered Gaussian

limit law. In particular, these asymptotic results demonstrate a substantially different

"The variance Vary.-,[ fj”)(X)] is equal to zero if and only if fﬂ(”)(X) is constant. This is verified by
considerations of the covariance matrix Z(r) in (2.2) with kernel ker (2(#)) = (v e RM | v = aly;, a € R}.
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statistical behavior when compared to their non-regularized OT counterparts. At the
heart of this phenomenon is the entropy function that renders the optimization problem
(1.14) strictly convex and sufficiently smooth in contrast to the linear formulation of
OT in (1.9). Further, entropy regularization modifies the unique optimal solution 7*
non-degenerate in the sense that 7! belongs to the interior of the transportation simplex
I1(r, s) with all its coordinates strictly positive. From a statistical perspective and the
fact that the underlying multinomial process of empirical frequencies asymptotically
follows a Gaussian law (2.1), the smoothness translates via the delta method into Gaus-
sian limit laws. All central limit laws for empirical entropy OT quantities are usually
non-degenerate for both the null » = s and the alternative r # s, with the notable

exception of the empirical Sinkhorn loss under the null.

2.2 Discussion and Related Work

Klatt et al. (2020a): The asymptotic analysis of empirical OT plans is strongly related
to an analysis of linear programs with random parameters. Indeed, the latter is a topic
covered by a large body of literature. Shortly after Dantzig (1949) proposed the simplex
algorithm, the need to deal with random input data was inevitable. For a linear program
in standard form

min ¢’ x

reR! (2.22)

st.Ax=b, x>0,

the parameters (b, ¢) € R™ x R" usually model practical needs such as budget, prices or
capacities® that are often not available exactly but estimated. Early contributions dealing
with uncertain parameters are the work by Dantzig (1955), Beale (1955) Ferguson and
Dantzig (1956) concerned with feasible computational approaches.
The distribution problem (Wets, 1980) is among the first that concerns statistical ques-
tions relevant for this thesis. Herein, the standard linear program (2.22) is considered
as the function b — O(b) that maps the parameter b to its corresponding objective
value O(b) equal to the optimal value for (2.22). If b is a random variable following
some known distribution y, then the distribution problem seeks to characterize the
push-forward measure Oxu. Various contributions rely on so-called decision regions
from sensitivity analysis that is detailled below. In particular, a careful integration
over the collection of all these regions leads to a characterization of the cumulative
distribution function for the push-forward measure Oxu (see Ewbank et al. (1974) and

references therein).

8For OT, the parameter ¢ models the underlying transport cost, whereas the vector b = (r, s)" contains
the two probability distributions r, s € A(X).



2.2. Discussion and Related Work 25

Moreover, modeling uncertainty in linear programs has opened a wealth of approaches
subsumed in the theory of stochastic programming. Typical models deviate from the
standard linear program (2.22) with random parameters, but include chance constrained,
two- or multiple-stage linear programs (Shapiro et al., 2021). For instance, a simple

two stage linear recourse model considers the problem

min ¢’ x + B, [Q(x, )]
xeR" (2.23)
st.Ax=b, x >0,

where x = E, [Q(x, £)] denotes the recourse function defined as

Q(x.&) = inf {g(&)'z| W(&)z = d(©) + T@)x, 2 > 0}..

Herein, ¢ ~ u is a random vector with components (g(&), W(¢),d(€), T(£)) that are
componentwise either random matrices or vectors, respectively. The primary purpose
of such a model is to find an optimal decision x in a first stage such that the decision
minimizes the loss (maximizes the profit) E, [Q(x, £)] depending on a specific realiza-
tion of the random variable £ in a second stage. A classical example is the news vendor
problem (Birge and Louveaux, 2011). A statistical analysis of these models, among
those also central limit theorems for optimal objective values, is the subject of various
articles and books (see Ruszczynski and Shapiro (2003) and Eichhorn and Rémisch

(2007)° and references therein).

Further, the asymptotic analysis for empirical OT plans and the corresponding distri-
butional limit theorem in (2.11) are closely connected to the theory of (deterministic)
parametric programming for standard linear programs. Early pioneers!® developing the

theory for parametric programming considered standard linear programs of the form
min(c + nc’)’ x
xeR”

(2.24)
st.Ax=(b+6b), x>0,

for specified perturbations ¢’ € R" and »” € R™ and scalars 1,6 € R. For instance, the
work by Saaty and Gass (1954) deals with the case 6 = 0 and 7 € R in (2.24). In the

context of the bases-driven approach in Klatt et al. (2020a), their main results state that

Eichhorn and Rémisch (2007) prove central limit theorems for the empirical optimal objective value
of a two-stage stochastic mixed-integer linear programs if the probability measure u is estimated by its
empirical measure [i,,. Their proof technique shares much similarity to the approach taken by Hundrieser
et al. (2021c) discussed in Chapter 3.

10For a detailed historical account on parametric programming and sensitivity analysis please refer to
the book by Gal and Greenberg (2012).



26 Limit Laws for Empirical (Regularized) OT on Finite Spaces

there exists an interval (o, @) on the real line that is partitioned into critical regions
(intervals) Q; for k = 1,..., K such that for each n € € the basis I, remains primal and
dual optimal. Analogous statements for 7 = 0 and ¢ € R are contained in the article by
Manne (1953).

However, the nature of the asymptotic analysis for empirical OT plans requires a
more elaborate analysis based on random perturbations. Sensitivity analysis for linear
programs broadens the theory to more general perturbations (Bonnans and Shapiro,
2013). For finite dimensional linear programs such a sensitivity analysis may be
analysed from an intuitive geometric perspective related to the basis decomposition
theorem by Walkup and Wets (1969): If the standard linear program (2.22) is bounded,
then there exists a decomposition of the cone pos(A) = {y | y = Ax, x > 0} C R™ into
a finite closed polyhedral complex!' C whose elements are closed convex cones with
vertex at the origin and an one-to-one correspondence between the one-dimensional

cones of C and selected columns of the constraint matrix A, such that
(a) the closed m-dimensional elements of C cover pos(A),

(b) the m columns of A associated with the edges of a closed m-dimensional element

C of C constitute an optimal basis for all  in C.

As correctly noted by Walkup and Wets (1969), the polyhedral complex is not unique.

Non-uniqueness is related to degeneracy of the dual program for (2.22), i.e.,

maxb’ A
AeR2M (2.25)
s.t. ATa<e.

Figure 2.1a illustrates the basis decomposition theorem. Rather than working with the
elements of a particular complex C, the asymptotic analysis for the empirical OT plan in
Klatt et al. (2020a) employs the cones H; in (2.10) of feasible directions. To each cone
H, is attached a primal and dual feasible basis /;. In terms of the basis decomposition
theorem, the basis I; corresponds to a closed convex cone (decision region) C; spanned
by the columns of A;,. The cone Cy is an element of a particular polyhedral complex
C and H; is equal to all directions v € R™ for which there exists a + > 0 such that
b + tv remains in C;. In other words, for each v € H, the basis [; remains primal
and dual optimal for (2.22) with parameter b replaced by b + tv. Under degeneracy in
linear programs, there exist several polyhedral complexes and consequently the cones

of feasible directions might be included in each other. Figure 2.1b illustrates these cases.

A finite closed polyhedral complex C is a finite collection of closed convex cones such that: (a) If
C € C, then every closed face of C is an element in C. (b) If C;, C, are distinct cones in C, then either
they are disjoint or they intersect in a common face.
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Depending on the initial location of b in the cone pos(A), a small (random) perturbation
either leaves a basis optimal or induces a change from one basis to another. Under
degeneracy such a change is usually non-unique that complicates the sensitivity analysis
(see also Gal (1986); Jansen et al. (1997); Koltai and Terlaky (2000) for details)'?. The
limiting random variable in (2.11) is designed to take all possible bases changes into
account. Under primal or dual non-degeneracy the bases changes are less complicated
and consequently lead to distributional limit theorems with a simplified limiting random
variable in (2.13) and (2.15), respectively.

In modern mathematical formulations, the proof technique underlying the main result
(2.11) employs the fundamental observation that the convex polyhedron pos(A) allows
for a cone triangulation depending on the corresponding dual linear program (De Loera
et al., 2010)"*. The triangulation of pos(A) is not only crucial for distributional limit
theorems but has also recently been applied to describe the optimal solution minimizing

M

OT 4(r. M) = min min_ Z} d(x;, x)m(x;, X)), (2.26)
I,j=

the OT cost between a fixed probability measure r € A(X) and an algebraic variety M
inside the probability simplex A(X) (Sturmfels and Venturello, 2020). When restricted
to a particular cone C of a specified complex C, the inner minimization problem in
(2.26) is a simple linear function. Hence, finding an optimal solution s € M for (2.26)

amounts to minimize a piecewise linear function that simplifies exact computations.

Closely related to the asymptotic analysis for empirical OT plans is the work by
Sommerfeld and Munk (2018) proving limit laws for the empirical O7 ,4(7,, s) cost. The
distributional limit theorem in (2.11) recovers their main result'*. For I, ..., Ik optimal
primal and dual bases for the standard linear program O7 ,(r, s), it holds, for sample

size n tending to infinity, that
. D .
VI (OT 4(3 5) = OT u(r, ) — max (fi()), G, (2.27)

with f;(j) the dual optimal basic solution induced by basis /; with 1 < j < K. Indeed,

a simple application of the continuous mapping theorem with linear function (d, -)

2Tn terms of the primal and dual optimal bases I, ..., Ix, primal degeneracy leads to a discussion on
degeneracy graphs (Gal, 1985; Greenberg, 1986).

BIn terms of De Loera et al. (2010, Sec. 1.2) and with respect to Figure 2.1a, the collection of
sub-cones {C1, Cy, C3} is a cone triangulation of pos(A). Each individual sub-cone is simplicial since the
corresponding matrix is of full rank, e.g., for C; = {A;, Ax} with matrix [A}, A¢].

14“The central limit theorem for empirical O7 4(#,, s) cost is also of particular interest in Chapter 3 and
please refer to Section 3.2 for a detailed discussion.
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A Ay

pos(4) = {y| y =Ax,x > 0}

(a) The basis decomposition theorem: For a matrix with columns A = [A;, A}, Ar, Aj, Al
the set pos(A) is partitioned into closed convex cones spanned by C; = {A;,A;} (green),
Cy = {A;, A} (red), C3 = {Ar, A} (blue). The polyhedral complex is equal to C =
{C1,C2,C5,{Ai},{A ), {Ak}, {As}). Replacing the cone C3 = {Ag, Ay} (blue) with the two sub-
cones C4 = {Ay, A} and Cs = {A;, A} (yellow) leads to a different polyhedral complex. Notably,
the dual polyhedron has a degenerate basic solution (blue diamond point in framed figure).

H;

(b) The cones H, of feasible directions defined in (2.10): The vector b; + tv for any perturbation v
and small enough ¢ > 0 remains in the green cone in (a) and consequently H; = R?. The set of
feasible directions for b, is divided into two regions depending on the green and red cone in (a).
This leads to the two cones H, and H3. Owing to degeneracy, the situation for parameter b3 is
different. While for certain directions v the parameter b3 + tv belongs to the red cone in (a), there
exist directions ¥ such that b3 + ¢V belongs to two cones (blue and yellow).

Figure 2.1: The Sensitivity of Linear Programs. The right hand side parameter b; for
i = 1,2, 3 belongs to the cone pos(A) = {y | y = Ax, x > 0} in (a) that is partitioned
according to the basis decomposition theorem. Depending on the location of b, its set
of feasible perturbations is partitioned by cones H; in (b). For each direction v € H,
there exists a r > 0 such that the basis /; remains optimal for the linear program (2.22)
with right hand side b; + tv.
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to the main results (2.11) leads to the limit law in (2.27). A careful rewriting of the
corresponding limiting random variable employs duality. To each indicator function in
(2.11) is attached a dual feasible basic solution f;(j) induced by bases I; with 1 < j < K
and it holds that

(d,M(G,)) =1 EREPRIL (I (ONCA (2.28)
K

If G,, € {Hy \ UggacHy}, then any dual feasible basic solution f; (k) for k € K maximizes
the random linear objective (-, G,,) among all dual optimal basic solutions f;(j) with
1 < j < K. In particular, the limiting random variable in (2.27) is equal to the right hand
side in (2.28)"°. Similarly, the main result (2.11) allows for statements on the Hausdorff

distance

dy(I1*(r, s),I1*(?,,5)) = max min ||[A#—x| V max min |#—-n| (2.29)
rell* (#,,s) nell*(r,s) nell* (r,s) A€ll*(7,,s)
between the optimality set [T*(r, ) and its empirical counterpart IT*(7,, s). By the strong
law of large numbers ||?, — r|| = Op(n~"*) and from the method employed in Klatt et al.
(2020b) follows dy(IT*(r, 5), IT* (7, 5)) = Op(n~"?).

Apart from the statistical results on finite spaces, recent attention is given to the estima-
tion of OT maps

Ty € arg minf lx = T(x)|1* du(x) (2.30)
R4

THu=vy

between more general probability measures u,v € P(RY) with respect to squared
Euclidean cost (see Manole et al. (2021) and references therein). In contrast to the
finite dimensional linear program approach by Klatt et al. (2020a), at the heart of the
statistical analysis for suitable OT map estimators on Euclidean spaces is Brenier’s
Theorem'®. A reasonable estimator 1" for T} is obtained by solving (2.30) with u and
v replaced by suitable estimators derived from data. The work by Deb et al. (2021)
analyses estimators T',,, based on a barycentric projection of the empirical OT plan
between two empirical probability measures [, and ¥,,. Different to the rate n~"* for

finite spaces as deduced from Klatt et al. (2020a), the convergence rates in Deb et al.

5The arguments leading to the distributional limit law (2.27) for the empirical OT cost hold for more
general linear programs in standard form. A direct approach via Hadamard directional differentiability
of the optimal objective value function in conjunction with the delta method is included in the book by
Rubinstein and Shapiro (1993, Thm. 6.4.2).

161f 11 is absolutely continuous with respect to Lebesgue measure and y, v have finite second moments,
then there exists a Lebesgue almost surely unique OT map which is the gradient of a convex function (cf.
Section 1.1 in the Introduction).
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(2021) depend on the underlying dimension. If u, v € P(R¢) have compact support and
densities bounded away from zero and infinity, then for some constant C > 0 it holds
that

n '+ m' ifd=2,3,
E [ f I (x) = To()I* dftn(x)| < C{n"2log(1 + n) + m™2log(1 +m) ifd = 4,
Rd
nl 4 o ifd > 5.
2.31)

The rate of convergence is proven to be minimax under certain regularity conditions
(Hiitter and Rigollet, 2021). Besides Brenier’s Theorem, the proof technique for (2.31)
relies on stability estimates that lead to a supremum of an integral involving the empiri-
cal measure. The supremum might then be bounded by empirical process techniques
and Dudley’s entropy integral. For sample size n = m, the barycentric projection T, , is
equal to the empirical OT plan (see footnote 8 on p. 7). Then, linear smoothers and least
square estimators are employed to define an empirical OT map on the whole Euclidean
space. The rate of convergence for such estimators is analyzed by Manole et al. (2021)
with qualitatively similar results as in (2.31). Further, the OT map in (2.30) between two
Gaussian measures is linear and only depends on the underlying means and covariance
matrices of the Gaussian measures. If u = N(6,,%,) and v = N (6,, Z,) are Gaussian dis-
tributions on R, then the OT map transporting u optimally to v with respect to squared
Euclidean cost is equal to T(x) = 6, + A(x — 6,) with matrix A = X, *(Z,/%,52)x, "
(cf. formula (3.37)). This leads to estimators of linear OT maps in the Gaussian case

with dimension-free parametric convergence rates n~"? (Flamary et al., 2019).

Klatt et al. (2020b): Compared to empirical non-regularized OT, the statistical analy-
sis for empirical entropy regularized OT is still in its infancy. Parallel and indepedently
to Klatt et al. (2020b), contributions by Bigot et al. (2019) prove central limit theorems
for empirical entropy regularized OT quantities defined between probability measures
r, s € A(X) supported on a finite space X = {x, ..., xy}. Their purpose is to construct
test statistics for measuring differences in multivariate probability distributions based
on the empirical entropy regularized objective value O7 (7, s) in (2.5) and the empiri-
cal Sinkhorn loss SL,(#,, s) in (2.7). This approach is motivated from the respective
superior computational complexity when compared to non-regularized OT. The main
theoretical results in Bigot et al. (2019) state central limit theorems identical to the
statements in (2.20) and (2.21). Their proof technique is similar to Klatt et al. (2020b)
and relies on differentiability of the entropy regularized quantities, considered as func-
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tions defined on the probability simplex A(X). Together with an application of the delta
method, distributional limit results follow. Notably, the differentiability analysis of
the entropy regularized OT plan in Klatt et al. (2020b) is more general and implies
differentiability of the corresponding optimal value and the Sinkhorn loss (see also
Luise et al. (2018) for analogous differentiability statements).

The law of the limiting random variable in (2.20) degenerates to a Dirac at zero if

(r,5)
Pl

as is seen by considerations of the correspondence between primal and dual entropy

regularized optimizers in (1.15). From an algorithmic point of view, a constant f"*”
d(xix . .

—%)i’j by a diagonal matrix D

suffices, in order to ensure that their product KD fulfills (up to a constant) the marginal

and only if the dual solution is constant. Degeneracy is a rather exceptional case

implies that a right scaling of the kernel matrix K := (

constraints imposed by r and s. In particular, the Sinkhorn algorithm finds an exact
optimal solution after only one iteration (see Section 1.3). Similarly, the central limit
theorem for the Sinkhorn loss under the alternative r # s is non-degenerate.

An interesting case arises for the Sinkhorn loss under the null » = s. For this case,
SL,(r,r) = 0 and the gradient V,SL,(r, r) vanishes. This suggests the central limit
law for the empirical quantity SL,(7,, ) to be of second order. Indeed, Bigot et al.
(2019, Thm. 2.8) prove that for increasing sample size n, the empirical Sinkhorn loss

asymptotically follows a mixture of chi-squared distributed random variables

M
o 1
nSLiFnr) — 5 ) (D) (2.32)
2 i=1
with X%(l), .. ,Xﬁl(l) 1.i.d. chi-squared random variables of degree one and py, ..., oy

non-negative eigenvalues depending on the Hessian of the Sinkhorn loss.

Further, the entropy regularized OT quantities (1.17), (1.18) and (1.19) converge with
decreasing regularization parameter A > 0 to their respective non-regularized OT cost
(Weed, 2018; Genevay et al., 2019). From a statistical perspective, the central limit theo-
rems (2.19), (2.20) and (2.21) with decreasing regularization parameter A(n) depending
on the sample size n retrieve the central limit theorem in (2.27) for the empirical OT
cost. As a prototypical example consider the empirical Sinkhorn divergence SD,(7,, )
and the corresponding central limit theorem in (2.19). For a regularization parameter

A(n) = o(n~"*) and sample size n tending to infinity, it holds that

o D .
\/E(Sﬂﬂ(n)(rna S) - S@ﬂ(n)(r, S)) E— 1113}22({ <f(.])a Gr> (233)
with f(j) for j = 1,..., K the dual optimal basic solutions for the dual linear program

of OT 4(r, s). Statement (2.33) is valid for the null » = s as well as for the alternative
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r # s (Klatt et al., 2020b, Sec. 3.2). An analogous result for the Sinkhorn loss under the
alternative is included in Bigot et al. (2019, Thm. 2.11).

The work by Hundrieser et al. (2021a) extends the statistical analysis for empirical
entropy regularized OT quantities to countable spaces X = {xj, x»,...}. Indeed, the
central limit theorems for empirical entropy regularized OT quantitites remain valid for
probability measures with countable support. However and in contrast to finite spaces,
the weak convergence (2.1) for the multinomial process Vn(#, — r) towards a centered

Gaussian process G, in [!(X) requires the Borisov-Dudley-Durst'” condition

Z Vr(x) < +c0. (2.34)

xeX

If restricted to a bounded cost function sup, ., [c¢(x, x")| < +00 and probability measures
r,s € A(X) such that r satisfies condition (2.34), then the empirical optimal value

EOT . (74, 5) in (1.21) (after proper centering and standardization) weakly converges
V1 (EOT i $) = BOT (1, ) — (G, f2). (2.35)

as the sample size n tends to infinity. The limiting random variable in (2.35) follows
a centered Gaussian distribution with variance equal to Vary.,[ fjr"")(X)]. Herein, fﬂ(”)
denotes the dual solution for (1.22). Analogously to Klatt et al. (2020b), the main result
in Hundrieser et al. (2021a) states a weak limit for the empirical entropy regularized OT
plan '(?,, s) for (1.21). If r satisfies condition (2.34), then, for sample size n tending

to infinity, it holds that
Vi (14 Rar 5) = 71, 9)) = DL 7 (G, 0). (2.36)

The limiting random variable in (2.36) is equal to a suitable derivative of the entropy
regularized OT plan considered as a function over the probability simplex A(X) evalu-
ated at the weak limit G, for the multinomial empirical process. The derivative is linear
and hence the limiting random variable follows a centered Gaussian process inline
with results by Klatt et al. (2020b) for finite spaces. Extensions for the central limit
theorems in (2.35) and (2.36) to unbounded costs require a careful modification to a
weighted version of the Borisov-Dudley-Durst condition (2.34). The weights are linked
to an exponential penalty term appearing in the dual formulation in (1.22) and suitable

functions lower and upper bounding the cost function.

"The Borisov-Dudley-Durst condition (2.34) naturally appears in empirical process theory. It states
that for any probability measure r € A(N), the power set 2™ is r-Donsker if and only if condition (2.34)
holds (Dudley, 2014, Thm. 7.3.1). More details are included in Section 3.2.
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The results for empirical entropy regularized OT with probability measures defined on
finite and countable spaces leave open statements for more general spaces. However,
the literature on a related asymptotic analysis is still scarce and limited to particular
cases. For squared Euclidean cost c(x,y) = %le — y|I> and sub-Gaussian probability
measures u, v € P(R?Y), Mena and Niles-Weed (2019) analyze statistical properties for
the empirical entropy regularized value EOT . 2 1({1,, v) in (1.21). They prove the upper
bound
E, [|807T|.|\2,A(I:ln, V) = EOT |y a1, V)|] < Kgaon™”

with notably parametric rate n~"?

and constant K, ,, depending on the underlying
dimension d, regularization parameter A and sub-Gaussian parameter o (see Genevay
et al. (2019) for compactly supported measures)'®. Mena and Niles-Weed (2019) also

provide a central limit theorem. For sample size n increasing to infinity, it holds that

\/’;(807—”4?,/1(/%, v) - E, [807—“.”2,/1(/%, V)]) 2.z~ N(O, Vary., [fj“’”(X)])

(2.37)
and fl(” " the dual solution for (1.22). The central limit theorem (2.37) is the gener-
alization of statement (2.20) when restricted to finite spaces. A notable exception,
however, is the centering around E, [807'” (e, v)] in statement (2.37) rather than
the population quantity EOT .|z (i, v). The centering is a consequence of the proof
technique for (2.37) inspired by del Barrio and Loubes (2019) and based on the Efron-
Stein variance inequality'®. In fact, apart from finite and countable spaces, it remains
open if the random sequence Vn (807’” (A, v) = EOT . (1, v)) weakly converges

to a limiting random variable with non-degenerate limit law.

Different to the plug-in approach based on the empirical measure, Bercu and Bigot
(2021) propose an estimator EOT «.an Suitable for the semi-discrete setting with u €
PR?) and s € A(X) for a finite space X = {xi,...,xy} in (1.21). The estimator is
based on a stochastic Robbins-Monro algorithm with appropriate chosen algorithmic
parameters. Among a general stochastic analysis of the algorithm designed for entropy
regularized OT, Bercu and Bigot (2021) prove a distributional limit law. If the cost
function c fulfills

cx,y)du(x) < +00 ¥y e RY, (2.38)

R4

then, for n tending to infinity, the random sequence \/ﬁ((‘f)?' ean — EOT (1, s))

8This stands in stark contrast to convergence rates for non-regularized OT and please refer to
Section 3.2 and the upper bounds in (3.16) for further details.
19See also the discussion on p. 47 and the central limit theorem in (3.34) for further details.
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weakly converges towards a limiting random variable. The limit law is a centered
Gaussian distribution with an asymptotic variance equal to Vary., [ fj’l’s)(X )] with fﬂ(” %)
the semi-discrete dual solution for (1.22) and hence identical to (2.37) if restricted to

the semi-discrete setting.



CHAPTER 3

A Unifying Approach to Limit Laws for
Empirical OT

This chapter is based on the article Hundrieser et al. (2021c) presenting a unifying
approach to distributional limit laws for the empirical OT cost. The general setting
covers two Polish spaces X, M and a non-negative cost function that fulfills the following

assumption.

The cost c: X X Y — R, is continuous with ||c|| := sup|c(x, y)| < +oo. (C1)
Xy

For any two probability measures ¢ € P(X), v € P(Y) and a cost function satistying
assumption (C1), the O7 .(u, v) cost is finite and enjoys Kantorovich duality

OF c(u,v) = suPfxf(x)du(x)+fyfc(y)dv(y). (3.1

fefe

The function f°(y) = inf,cx f(x) — c(x,y) is the c-transform of f and the supremum is

taken over uniformly bounded c-concave functions on X (cf. Section 1.1) defined as

Feo = {f: X—>R|Elg: Y >R, -l <20, f(x) :igc(x,y)—g(y)}. (3.2)

There exists a Kantorovich potential f € ¥, (optimizer) attaining the supremum in the

dual formulation (3.1) and the set of all Kantorovich potentials is denoted as

Se(u,v) = {feﬁ OT c(u,v) = ff(X)dM(X)+ffC(y)dV(y)}~ (3.3)
X Yy

The Kantorovich duality (3.1) sets the O7 .(u, v) cost within a functional framework

suitable for a statistical analysis. Denote by [*(¥,.) the normed space of bounded

functionals from ¥, to the reals equipped with the uniform norm ||'P'||#, = sup fef. [Y(f)l
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and analogously for [*(Ff) with F¢ = {f° | f € F.}. A probability measure u €
P(X) (resp. v € P(Y)) defines an element in [*(F,) (resp. [*(FS)) by integration
u(f) = fx f(x) du(x). This perspective restates the OF . cost in (3.1) as the functional
OT .: P(X) X PY) CI®(F.) X I°(FS) = R, with

(1, v) = sup u(f) + v(f). (3.4

fefe

The functional (3.4) is Hadamard directionally differentiable at (u,v) € P(X) X P(Y).
The proof technique requires either one of the following assumptions on the cost

function and the underlying spaces’.

X compact; {c(-,y) | y € Y} equicontinuous on X. (C2a)
X, Y locally compact; {c(x,-) | x € X},{c(,y) | y € Y} equicontinuous.  (C2b)

Under assumption (C1) combined with either (C2a) or (C2b), the Hadamard directional
derivative for (3.4) is defined along directions (A,, A,) belonging to the product of the

Bouligand cones

/

{,u’ t—,u |t >0,y € P(supp(,u))} X {V t_ Y |t >0,V € P(supp(v))},

where the closure is defined in [*(%,) and [*(F ), respectively. The derivative turns out
to be equal to

(A Ay) = sup - A(f) + A(f). (3.5)
feSc(uy)

The Hadamard directional differentiability together with the weak convergence of an
underlying empirical process is at the heart of the main statistical results. Employing
the functional delta method (Romisch, 2004) then implies a distributional limit law for

the empirical OT cost after centering around the population quantity and proper scaling.

3.1 Main Results

Consider an i.i.d. sequence of random variables X;,...,X, ~ u and its associated
empirical measure [1, = % Y, Ox.. The empirical process \/n(i1 — u) defines a random

element in the normed space [“(¥,.). A function class 7, is termed u-Donsker if the

! Assumptions (C2a) and (C2b) allow for an application of a suitable version of the Arzeld-Ascoli
theorem to the function classes ¥, and ¢ to conclude for necessary compactness properties. This
simplifies the derivative to (3.5) for the OT functional in (3.4).
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empirical process weakly converges
. D
(i, — p) — Gy, (3.6)

as n tends to infinity, towards a tight random element G, in [*(¥.). By considerations of
the marginal distributions, the random element G,, turns out to be a mean-zero Gaussian

process indexed over ¥, with covariance for f;, f, € ¥, depending on u and equal to

B, [GL(f)Gu(f)] = (A f) — nCf)u(f). (3.7)

The main statement? of the article yields that if assumption (C1) and either (C2a) or
(C2b) hold and the function class 7, is u-Donsker, then a distributional limit law for

the empirical OT cost follows

N (OT (i, v) = OT (1, v) — swp Gu(f) (3.8)

The limiting random variable is equal to the supremum over the set of Kantorovich
potentials S (¢, v) in (3.3) of the mean-zero Gaussian process G, in [*(F,). Statement
(3.8) is a direct consequence of the functional delta method, together with the Hadamard
directional derivative (3.5) and the weak convergence of the empirical process (3.6).
Under further assumptions, the limiting random variable in (3.8) simplifies. Indeed, if

there exists a unique® Kantorovich potential £, then

N (OT (fin, V) = OT (1)) — Cu(f). (3.9)

The limiting random variable G,(f) follows a centered Gaussian distribution equal to
N (0, Vary_,[f (X)]). Provided that f is u-almost surely non-constant, a standardization
of the left hand side in (3.9) with the weakly consistent estimator Vary.; [f,(X)] with
fu € S (i1, v) for the asymptotic variance might be employed. This leads by Slutzky’s
Lemma to a pivotal limiting random variable following a standard Gaussian distribution.
A degenerate case arises if the unique Kantorovich potential is additionally trivial®.
Then, the limiting random variable G,(f) ~ d¢ in (3.9) follows a Dirac distribution at

zero. The article contains a thorough analysis on triviality for Kantorovich potentials.

The presentation of the main results is tailored to the one-sample case concerned with sampling
out of u € P(X). The probabiltiy measure v € P(Y) is throughout assumed to be fixed. The article
Hundrieser et al. (2021c) also focuses on sampling out of v or the two-sample case.

3Uniqueness means that for all fi, f> € S.(u, v) their difference f; — f; is constant u-almost surely.
The article discusses various results concerning uniqueness statements for Kantorovich potentials.

*A Kantorovich potential f € S .(u, v) is trivial if f is constant y-almost surely.
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The main statement on triviality depends on the underlying topology of the measures’
support. In particular, if the cost function fulfills (C1) and either (C2a) or (C2b) with
X = Y, then trivial Kantorovich potentials exist if and only if there exists a transport
plan 7 € I1(w, v) such that all (x, y) € supp(rn) satisfy

c(x,y) = x,eilrllpi; w“ c(x',y). (3.10)

A prototypical example for which (3.10) is satisfied appears for u = v and cost
c(x,x) = 0 for all x € X. Notably, even if (3.10) holds, the set of Kantorovich
potentials is not necessarily a singleton. Indeed, if i has disconnected support, e.g.,
the support is equal to the union of two cost separated® subsets, then the set of all
Kantorovich potentials S .(u, ) is not a singleton. Consequently, the limit law for the

random sequence \n OT .(f1,, 1) in (3.8) is non-degenerate in such cases.

The perhaps simplest case leading to concrete results of the general statement (3.8)
deals with X = Y = {x1, x5, ...} countable discrete spaces and probability measures
r,s € A(X). Owing to the discrete topology, any bounded and non-negative cost
c: X x Y — R, fulfills assumption (C1) and (C2b). According to van der Vaart (2000,
Thm. 2.10.24) the function class ¥, is r-Donsker if

Z Vr(x) < +oo. (3.11)

xeX

In particular, for any non-negative, bounded cost function and probability measures
r, s € P(X) such that r fulfills the summability condition (3.11), the central limit theo-

rem (3.8) is valid.

For Euclidean spaces X = Y = RY, the necessary assumptions (C1) and either (C2a) or
(C2b) together with F. being u-Donsker translate into an interplay between sufficient
regularity of the cost function and the size of the underlying dimension d. On the real
line (d = 1) and for a bounded and («, L)-Ho6lder continuous cost function c: RXR — R,

with @ € (I/2,1] and some L > 0, i.e.,
le(x,y) —c(xX,y)N < L(x=X|"+y-y1"), VYx,x,y,)y €R, (3.12)

the function class 7. is a uniformly bounded subset of real-valued (a, L)-Holder func-

STwo subsets A, B C X are cost separated if inf e yep c(x,y) > 0.
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tions. A sufficient condition® for F, to be u-Donsker is that

Z VPX ek, k+ 1)) < +o0 (3.13)
kez
with a random variable X ~ u. In particular, in the univariate setting with a bounded
cost function that fulfills assumption (3.12) and a probability measure u such that the
tail condition (3.13) holds, the distributional limit law (3.8) for the empirical OT cost is
valid.
Distributional limit results extend to dimensions d = 2, 3. In these higher-dimensional
regimes, more regularity for the cost function is required. If the cost function is bounded
and L-Lipschitz and there exists some A > 0 such that for all k € Z¢ it holds that

Ax; € [k, k+ 1) s.t. ¢(-,y) — Al| - —xi|[3 is concave on [k,k + 1)V y € R, 14
dyi ek, k+1)s.t. clx,:) — Al - —ykllg is concave on [k, k + 1)V x € RY, .

then F. is equal to a subset of semi-concave and L-Lipschitz functions. Such a function

class is proven to be u-Donsker if

Y NPX €k k+1) < +oo (3.15)

kezd

with a d-dimensional random vector X ~ . In particular, on Euclidean spaces RY with
d = 2,3, for a bounded and L-Lipschitz cost function that fulfills assumption (3.14) and
a probability measure u satisfying the tail condition (3.15), the distributional limit law

(3.8) for the empirical OT cost is valid.

Beyond Euclidean spaces with dimension d < 3, the article contains distributional
limit results for the empirical OT cost as long as at least one probability measure u
or v has a discrete or low-dimensional Euclidean support (d < 3). This encompasses
distributional limit laws for the empirical semi-discrete OT cost. More generally, it
leads to statements for the empirical OT cost between a probability measure supported
on an Euclidean and a probability measure supported on a Polish space. In fact, these
asymmetric settings in the probability measures allow for concrete distributional limit
results thanks to the lower complexity adaptation — a recent observation that explains
the statistical complexity of the empirical OT cost to be driven by the less complex

probability measure.

SFor @ = 1, the function class 7, is a subset of bounded Lipschitz functions. In this setting, the
condition (3.13) is known to be necessary and sufficient for F. to be u-Donsker (Giné and Zinn, 1986).
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3.2 Discussion and Related Work

The analysis of the statistical performance of empirical OT plug-in estimators is a well-
established research area of statistical optimal transport. The most studied setting is
certainly the O7 . p (i, v) cost, popularized as Wasserstein distance (cf. Section 1.1.1),
and defined for probability measures u, v with support in a general separable Banach
spaces X with norm || - || and cost parameter 1 < p < oco. If u,v € P(X) have finite
p-th moments, then O7 . (1,, v) converges almost surely to its population quantity
OT . p (1, v) (Varadarajan, 1958; Bickel and Freedman, 1981). An analysis initiated
by Dudley (1969), followed up by more refined results on Euclidean spaces R from
Ajtai et al. (1984); Talagrand (1992); Dobri¢ and Yukich (1995), concerns the speed of
convergence. It is nowadays well understood that the rate of convergence for empirical
OT plug-in estimators depends on various factors, such as the underlying dimension of
the ground space, the smoothness of the cost function and the regularity properties of
the probability measures (see Weed and Bach (2019); Niles-Weed and Rigollet (2019);
Manole and Niles-Weed (2021) and references therein). In particular, for a probability
measure u € P(RY) with bounded support’, Fournier and Guillin (2015) prove tight

upper bounds of the form

n'h ifd < 2p,
Eﬂ [OT”.”P(/:!n’M)] <Cyin' log(n) ifd =2p, (3.16)
nl ifd > 2p,

for C, a constant depending on the dimension. Compared to the long-standing analysis
on upper bounds on the expectation, distributional limit laws for the empirical OT cost
have only recently gained increasing attention. Detailed analysis is usually carried out
within more concrete settings, such as on countable discrete space, the real line R or

high-dimensional Euclidean spaces R with squared Euclidean cost.

Countable and semi-discrete case: A remarkably complete, although not chrono-
logically first analysis is given for a countable discrete metric space X = {x, x2, ...}
and metric cost c(x,y) = d”(x,y) for some 1 < p < co (Sommerfeld and Munk, 2018;
Tameling et al., 2019). For a probability measure r € A(X) and some arbitrary xy € X

"For a probability measure u € P(RY) with unbounded support, the upper bounds (3.16) remain valid
provided u has sufficiently many finite moments le, [|x]|? du(x) < +oo and g > 2p if d < 2p, or for
q > 4pfw-p)if d > 2p.
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such that

Z dP(x, x0) Vr(x) < +0o, (3.17)

xeX

a distributional limit law for the empirical OT cost of the form

NROT 4o (P ) —  sup  (Gy, f) (3.18)
€S g (r,r)
holds. The limiting random variable depends on a centered infinite dimensional Gaus-
sian random vector G, defined on a weighted ' (X)-space and the set of Kantorovich
potentials S 4»(r, r) for the dual of OF 4 (r, r). The cost weighted summability condition
on the probability measure r in (3.17) guarantees weak convergence of the empirical
process /n(#, — r) towards G, in some weighted I'(X)-space as the sample size n
tends to infinity. Condition (3.17) is a weighted version of (3.11), the latter being the
celebrated Borisov-Dudley-Durst condition (see footnote 17 on p. 32). Suitable weights
in (3.11) do not appear as assumption (C1) requires bounded cost functions. The dis-
tribution of the limiting random variable in (3.18) might degenerate. A prototypical
example is given by a probability measure r € P(Q N [0, 1]) and squared Euclidean
cost c(x,y) = |x — y|*. Then, the set of Kantorovich potentials S |.p(r, r) is a singleton
(up to a constant shift) (Santambrogio, 2015, Prop. 7.18) and its unique element is
trivial (cf. (3.10) and surrounding discussion). Consequently, the limiting random
variable (G,, f) ~ ¢, follows a Dirac distribution at zero. In contrast, on finite spaces
X = {x1,...,xy}, as considered by Sommerfeld and Munk (2018), the limit law (3.18)
is always non-degenerate as the set S 4 (r, ) is never equal to a singleton. Notably,
condition (3.17) is vacuous in the finite case and weak convergence of the underlying
empirical process simply follows from the standard multivariate central limit theorem
for empirical multinomial frequencies®. A qualitatively different situation arises for
two different probability measures r # s. If the probability measure r fulfills the cost
weighted summability condition (3.17), then the main result in Tameling et al. (2019)
states that
Vi (OT (s ) = OT (1, 5)) — sup (G, f). (3.19)

JE€Sap(r,s)
The limit law is typically non-degenerate as trivial Kantorovich potentials usually do not
exist in this case. On finite spaces, linear programming provides sufficient conditions
for which the set of dual solutions S 4 (r, s) is a singleton (Klee and Witzgall, 1968)°.
Then, the limiting random variable in (3.19) follows a centered Gaussian distribution

8In the finite setting, the limiting random variable G, follows the M-dimensional centered Gaussian
distribution N (0, X(r)) (cf. (2.1) in Chapter 2).
9 A sufficient condition for dual uniqueness and hence Gaussian limiting random variables is (2.16).
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with variance Vary.,[ f(X)] and f the associated unique Kantorovich potential for the
dual formulation of O7 4 (r, ).

The work by del Barrio et al. (2021a) extends the previous results to the semi-discrete
setting. If the probability measures r € $(X) remains with finite support but s is
replaced by a general probability measure v € P(Y) with Y a Polish space, then for a

non-negative and v-integrable!® cost function, the distributional limit law

Vi (OT (7o) = OT (rv)) = sup (G, f) (3.20)

feSe(ry)
remains valid. Applied to countable spaces or the semi-discrete setting, the unifying
approach in (3.8) extends the results in (3.18), (3.19) and (3.20) to general but bounded

cost functions.

Real line R: Considerably earlier statements on distributional limit laws for the
empirical OT cost focus on the real line R with Euclidean cost c(x,y) = |x — y|” and

p > 1. In this setting, the OT cost is equal to the L,-norm

1
0‘7'|.|p(,u,v):f |F~'w) - G™'w)|” du (3.21)
0

between the quantile functions F~' and G™! for y and v, respectively. The work by del
Barrio et al. (1999) considers the cost c(x, y) = [x —y|. Applying Fubini’s theorem to the
explicit formula in (3.21) and p = 1, the OT |.|(, v) cost is nothing but the L;-distance

o7 . (1, v) = le(t) - G(1)| dt (3.22)
R

between the cumulative distribution functions F' and G for u and v, respectively. If
(1 = v, distributional limit laws for the empirical O7 . |({,, ;1) cost lead to considerations
of an underlying functional central limit statement involving the empirical cumulative
distribution function £,. A necessary and sufficient condition for the weak convergence
of Vn (F (- F (t)) 2, B(F(t)) with B(¢) a standard Brownian bridge in the Banach
space!! L'(R) is that

f F@) (1 - F(@))dt < +oo. (3.23)
R

Provided the cumulative distribution function F of u satisfies (3.23), an immediate

consequence of the weak convergence for vn (F W) — F (t)) and the explicit formula

10A cost function ¢ is v-integrable if fy c(x,y)dv(y) < +oo for all x € X.

""The weak convergence \/ﬁ(ﬁn(t) - F(t)) 2, B(F(¢)) in the Skorokhod space D(—oo, +00) is
known as Donsker’s Theorem and holds without any assumptions on F.
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(3.22) 1s the convergence in law of the empirical OT cost
. D
VaOT | (f, ) — fIB(F(t))I dr. (3.24)
R

On the converse, the random sequence vn OT |.((f,, w) is stochastically bounded only
if (3.23) holds (del Barrio et al., 1999, Thm. 2.1). Although the proof technique by del
Barrio et al. (1999) relies on the explicit formula (3.22) in terms of the L,-distance, the
unifying approach presented in this thesis puts statement (3.24) into a dual perspective.

First, the limiting random variable in (3.24) is equal in distribution to

D
fIB(F(t))I dr = sup Gy(f), (3.25)
R feLip;(R)
the right-hand side being exactly the limiting random variable in (3.8) for a cost function
c(x,y) = |x —y|. In particular, the class Lip,(R) of Lipschitz functions arises due to
Kantorovich-Rubinstein duality'?. Second, a necessary and sufficient condition for

Lip,(R) to be u-Donsker is given in terms of the tail condition

> APOXT> j) < +oo (3.26)

JEN

with a random variable X ~ u (Giné and Zinn, 1986, Thm. 1). In fact, condition
(3.26) is equivalent to (3.23) (del Barrio et al., 1999, Sec. 2). In other words, the
distributional limit law (3.24) is the statistical consequence of Kantorovich-Rubinstein
duality with respect to a Lipschitz function class, with (3.23) being the necessary and
sufficient condition for the underlying empirical process to weakly converge in the
Banach space [*(Lip,(R)). Owing to the necessary assumption (C1) of bounded costs,
for a probability measure ¢ € P(R) with bounded support, the unifying approach
(3.8) leads to the class BL;(R) of bounded Lipschitz functions. In this case, the tail
condition (3.13) on the probability measure u is necessary and sufficient for BL;(R)
to be u-Donsker (Giné and Zinn, 1986, Thm. 2). Condition (3.13) is well-known in
empirical process theory (van der Vaart and Wellner, 1996). A sufficient condition is

given in terms of finite moments

Z VP (X € [k, k+ 1)) < 22 VE(X] > k) < 2 \[E, [IX]*] Zk‘““””,

keZ keN keN

12Recall the Kantorovich-Rubinstein dual statement in (1.6). On the real line R and cost ¢(x, y) = |x—V|
it holds that
OT . ((u,v) = sup ff(x) d(u — v)(x).
R

feLip;(R)
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the right-hand side being finite'"* if B,, [lX |2+5] < +oo for some § > 0.

Still in the univariate setting but for p > 1, the asymptotic limit law for the empirical
OT . pp(f1,, p) cost in (3.8) usually degenerates. Suppose that the support of u € P(R) is
equal to a bounded and closed interval. Then, the corresponding Kantorovich potential
for the dual of O7 |.;»(u, ) is unique (Santambrogio, 2015, Prop. 7.18) and trivial
(cf. (3.10) and surrounding explanations). As a consequence, result (3.9) leads to the
degenerate statement \VnOT |. p({, 1) 2, Gu(f) ~ 69 and demonstrates the fluctuation
of OT|.p({t,, pt) around zero to be of smaller order than n~'2. Indeed, a refined analysis
by del Barrio et al. (2005) proves that

1
nOT . p ([, 1) —— f B2(u) du. (3.27)
0

Underlying statement (3.27) is the explicit representation (3.21) together with the weak
convergence of the empirical quantile process vn (F " Yw)-F ‘l(u)) towards By(u) =
Bw/r(F'w) with B(¢) a standard Brownian bridge in the Banach space L,(0, 1). The
latter weak convergence requires rather strong regularity conditions on the cumulative
distribution function F' (Csorgé and Horvéath, 1993), in contrast to the mild integrability
)4

assumptions (3.23) for statement (3.24)'* and p = 1. If u is supported on the interval

(a, b), then a sufficient condition for the distributional limit law (3.27) is

FOU=F) o
2T pw e 329

F(A-F(x))
fx)
(2019) considers asymptotic limit laws for 1 < p < 2 with n”2OT|.p(f1,, ) weakly

together with the integrability fR dx < +oco. The work by Berthet and Fort
converging to a limiting random variable following a non-degenerate limit law.

Qualitatively different distributional limit laws for the empirical OT cost on the real
line are obtained for u # v. The limiting random variable typically follows a centered
Gaussian distribution. The work by del Barrio et al. (2019) (see also Munk and Czado
(1998); Freitag et al. (2007) for contributions on an empirical trimmed OT cost) prove

that under sufficient regularity assumptions on the cumulative distributions functions F

3For Euclidean spaces R? with d > 2, condition (3.15) holds if E,, [||X||§f+5] < +oo0 for some § > 0.

!4In contrast to p = 1, even if u € P(R) is compactly supported, it requires additional assumption on y
for the random sequence n O7|.p({,, 1) to be stochastically bounded (Bobkov and Ledoux, 2019). For
general p > 1, a sufficient condition for n?O7|.» ({1, 1) to be stochastically bounded depends on the
cumulative distribution function F and density f of y, i.e.,

dr < +o0.

f [F(O)(1 - F(t)]"
R f(ort

For p > 1, the finiteness of the integral obviously requires further necessary assumptions on the density.
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and G for u and v, respectively, it holds that
Vi (OT (B v) = OT | p () = Z ~ N (0,0°(F, G)). (3.29)

The variance o*(F, G) of the limiting random variable Z is explicit and depends on the
derivative of the cost function and corresponding distribution and quantile functions. In

particular, the asymptotic variance in (3.29) is equal to

1 Fl(r) 1 ~FY(s) 2
o2(F,G) = 4 f [ f (s - G7'(F(s))) ds - f f (u- G (F(w) du ds] dr.
0 F 0 F

() ()
(3.30)
For u, v € P(R) with bounded support, the unifying approach (3.8) applies and yields,

within the same setup as considered in del Barrio et al. (2019), that
N D
Vi (OT . (s v) = OT 1.p (1. v)) — Gu(f) (331)

with f the unique Kantorovich potential for the dual of O7|.2(u,v). The limiting
random variable G, (f) is distributed according to the centered Gaussian distribution
N (0, Vary., [f(X )]). Notably, inherent in the assumed regularity conditions employed
by del Barrio et al. (2019) is a nonvanishing density for u inside the bounded, connected
interior of its support. This assumption imposes a unique Kantorovich potential f
(Santambrogio, 2015, Prop. 7.18) and consequentially a centered Gaussian limit law in
(3.31). A straightforward calculation!®> shows that the asymptotic variance o*(F, G) in
(3.29) is equal to Vary.,[f(X)]. In particular, statement (3.29) can also be obtained by
an application of the unifying approach leading to (3.31). This details the connection
between del Barrio et al. (2019) and the approach by Hundrieser et al. (2021c¢) presented
here. Similar are recent results by Berthet et al. (2020) who consider more general
good'¢ cost functions. In short, if u,v € P(R) are sufficiently different and their
corresponding quantile functions regular enough, then +n (07 .(i1,,v) — OT (u,v))
asymptotically follows a centered Gaussian law as n tends to infinity. The regularity
conditions again promote a unique Kantorovich potential and, in line with the unifying

approach, limiting random variables following a centered Gaussian distribution are

15 According to Santambrogio (2015, Sec. 1.3), if f is a Kantorovich potential for squared Euclidean
cost, then f’(xo) = h'(xo — yo) with h(x) = x? for all (xo, yo) in the support of an optimal transport plan.
Since T(x) = G™'(F(x)) is the unique OT map, it follows that 2 (s — G'(F(s))) = f'(s).

16 According to Berthet et al. (2020), any cost function is considered as good if it allows for an explicit
representation of the form

1
OT ) = [ e(F .67 w) du
0
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expected. Distributional limit laws for probability measures supported on the circle
with qualitatively similar results as outlined for the real line are the content of the work
by Hundrieser et al. (2021b).

Euclidean spaces RY, d > 2: Beyond the real line, distributional limit results for
the empirical OT cost between probability measures supported on high-dimensional
Euclidean spaces RY with d > 2 are much more involved. To witness the funda-
mental problem in high-dimensional Euclidean spaces, suppose that u is a uniform
distribution on the unit cube [0, 1]. As demonstrated by the unifying approach, weak
convergence for the empirical O7 . (f1,, 1) cost with p = 1 is strongly linked to p-
Donsker properties for BL;(R9) the class of bounded Lipschitz functions emerging via
Kantorovich-Rubinstein duality. As Strassen and Dudley (1969) point out, already for
d = 2, the class BL,(R?) is not even u-Pregaussian and hence the Donsker property
fails to hold (van der Vaart and Wellner, 1996, Sec. 2.1.2). Further, Ajtai et al. (1984)
(see Bobkov and Ledoux (2021) for slight generalizations) prove that for u the uniform
distribution on the unit square (d = 2) and with high probability

¢ (log(") (3.32)
n

/2 12
) < OT )y (ftns 1) < C(loi(n))
for ¢ and C two universal constants. The bound (3.32) proves that the random sequence
\VnOT . (fin, ) is not stochastically bounded and hence cannot converge weakly. Sim-
ilarly and for d > 3, the lower bound OT . (1) > n~"* by Dudley (1969)" im-
mediately implies the rate /n to be of wrong order to obtain some non-degenerate
limit law. Inherent to these observations is the by-now classical fact that the empiri-
cal OT cost suffers the curse of dimensionality. For d > 2p and under no additional
assumptions on u, the expected empirical OT cost does not converge faster to zero
than E, [OT . jp(ft, )] > n~"* (Fournier and Guillin, 2015; Weed and Bach, 2019).
Nonetheless, the empirical OT cost has excellent concentration properties around its ex-
pectation (Weed and Bach, 2019). Based on McDiarmid’s bounded difference inequality,
if u, v € P(RY) have support bounded on a set of diameter D, then it holds

P (‘OT”.HZ(ﬂm V) — E’IJ [07—”,”2(,&”, V)]' > t) < 2exp (—23—:_2) . (333)

The concentration inequality in (3.33) implies that the random sequence given by
\Vn (O’T” e, v) — B, [07' 1P s v)]) is stochastically bounded. A fundamental step
further has been taken by del Barrio and Loubes (2019). If u, v € P(R?) are probability

"The lower bound by Dudley (1969) does not require a probability statement and holds for any
measure u, concentrated on n points with n > n for some ny € N.
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measures with positive density in the interior of their convex support and have finite

moments of order 4 + 6§ for some 6 > 0, then it holds
. . D
Vi (OT . (s v) = By [OT .t v)|) — Gu(f) (3.34)

with f the unique Kantorovich potential for the dual of O7 . 2(u, v). The limiting ran-
dom variable follows the centered Gaussian distribution given by N (O, Vary, [ f (X)]).
The proof technique for statement (3.34) relies on the Efron-Stein variance inequality.
In particular, a suitable chosen linear functional, motivated by Kantorovich duality (3.1)
and based on the empirical measure, approximates the left hand side in (3.34) in L?. An
application of a standard central limit theorem applied to the linear functional concludes
the proof. This approach crucially depends on the uniqueness of the Kantorovich
potential that is enforced by the underlying regularity conditions on the probability
measures'®. Statement (3.34) is reminiscent to the main result in (3.9). Indeed, within
the framework considered by del Barrio and Loubes (2019), but for probability measures
with bounded support on R¢ and d = 2, 3, statement (3.34) is included by the unifying
approach. Notably, the central limit theorem in (3.9) is centered around the population
quantity O7 . 2(u, v), rather than the empirical expectation E,, [O‘T” (2 (s v)].

From a statistical perspective, centering around the population quantity is desirable
and raises the fundamental question of analogous statements in (3.9) for measures
u,v € P(R?) and d > 4 not covered by the unifying approach. However, for d = 4
and uniform measures on different unit balls centered around x # y € R*, Chizat et al.
(2020); Manole and Niles-Weed (2021) give upper and lower bounds on the bias

I’l_l/2 < Eﬂ [OTH-HZ(/:[H, V)] - OTH'HZ(#’ V) < log(n)n_l/z. (335)

From these bounds and the central limit law in (3.34), it follows that the random se-
quence Viu(OT . jp(fy, v) — OT .2 (i, v)) either is not stochastically bounded or asymp-
totically follows a non-centered Gaussian distribution. Further and for d > 5, the bias is

lower bounded by
E, [OT et V)| = OT et v) 2 7. (3.36)

This implies that the expectation of the empirical quantity in (3.34) can generally not
be replaced by the population quantity in dimensions d > 5.
For u = v, the limit law in (3.34) degenerates which is in line with the main theory

presented in this thesis. Indeed, under the required regularity conditions in del Barrio

18 A similar proof strategy was employed by Mena and Niles-Weed (2019) to obtain central limit
theorems for the empirical entropy regularized OT cost as discussed in Section 2.1 (see (2.37) for details).
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and Loubes (2019), the unique Kantorovich potential f is trivial. Hence, the limiting
random variable G,(f) ~ 0y follows a Dirac distribution at zero. Apart from the
squared Euclidean cost (p = 2), central limit theorems in the fashion of (3.34) with
empirical expectation as centering constant but for more general convex cost functions
are available in the work by del Barrio et al. (2021b). Overall, for Euclidean spaces
R¢ with dimension d = 1,2, 3 and equipped with sufficiently regular and bounded cost
function, an application of the unifying approach retrieves their main results with the
notable exception of centering around the population quantity. For dimension d > 5,
the random sequence n (O‘T” e, v) = OT e, v)) does not asymptotically follow
a non-degenerate limit law. Indeed, in high-dimensional Euclidean regimes the random
fluctuation of OT . 2 ({1, v) — OT . |p(u, v) around zero appears to be of different order

than n=">.

Extensions and alternative approaches: Beyond the plug-in approach based on
empirical probability measures, there exist explicit central limit distributions for the
empirical OT cost when employing different estimators. A particular case arises for
Gaussian measures (more generally for elliptical distributions) with support even on
high-dimensional Euclidean spaces and squared Euclidean cost. Crucial to these
asymptotic statements is an observations similar to the univariate case. There ex-
ists a closed formula related to the Bures metric between positive semi-definite matrices:
If u=N(@,%,) and v = N (6,,X,) are two Gaussian distributions on the Euclidean
space R?, then it holds

OT 1 (N TN (6,,5) = 116, — 0, + tr (zﬂ +3, -2 (zjzvzj )2) (3.37)

Rather than employing the empirical measure, the Gaussian measure is approximated
by a suitable estimator @m for the mean and ﬁ#,n for the covariance matrix, respectively.
Employing standard central limit theorems for these estimators combined with a delta

method, Rippl et al. (2016) prove the weak convergence of the random sequence
Vi (OT . (N @ 2un)- N (0, 2,)) = OT 112 (N6, 2. N (6,.%)))  (3.38)

to a certain limiting random variable as the sample size n tends to infinity. The limiting
random variable follows a centered Gaussian distribution. For Gaussian measures u = v,
the limit distribution is degenerate and equal to a Dirac at zero. When scaling with
rate n instead of +/n, the random sequence nO7 . (N (@W, ﬁ)ﬂ,n), N (9,1, 2#)) weakly
converges to a non-degenerate but also non-normal limit distribution.

Further, a recent trend aiming to overcome the curse of dimensionality for empirical OT
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based quantities employs smoothed and wavelet based estimators (Weed and Berthet,
2019; Deb et al., 2021). Different to the lower bound on the bias in (3.36), Manole
et al. (2021) prove that if i # v are probability measures in P([0, 1]¢) and absolutely
continuous with sufficiently regular density g and h, respectively, then the bias is of
order

E, [OT 2@ )| = OT o8, h) = 0 (n™"). (3.39)

The estimator 2, for the density g is a certain boundary corrected wavelet density
estimator. Together with the approach by del Barrio et al. (2019), based on the Efron-

Stein variance inequality, it concludes the central limit theorem
N D 2
Vi (OT .2 (8an 1) = OT (8. 1)) — Z ~ N (0.07). (3.40)

The variance of the asymptotic distribution is equal to o = Vary., [ f(X)] with f the
unique Kantorovich potential of the corresponding dual problem for O7 . 2(g, h). For
= v, the limit law for (3.40) degenerates and a more refined analysis remains open.

For usual Euclidean cost, p = 1 and i = v, a non-degenerate limit law is obtained for

the empirical Gaussian smoothed OT cost
OT . (ftns 1) = OT (1 = N(O, 1), p x N(O, 0°1))

and parameter o > 0 as defined by Goldfeld and Greenewald (2020). The work by
Sadhu et al. (2021) proves that if

D IKIVP (X € Tk, k + 1) < +oo (3.41)

kezd

for a random vector X ~ u, then the weak convergence for the empirical Gaussian
smoothed OT cost holds,

VROT Y (o i) = SUp_ G (f * 4o, (3.42)
feLip;(RY)

with ¢, the density of the isotropic d-dimensional Gaussian distribution with parameter
o > 0. The limiting random variable follows a non-degenerate limit law. The proof
technique is strongly reminiscent to the approach by Hundrieser et al. (2021c). Indeed,
assumption (3.41) on u, a weighted version of (3.15), guarantees the smooth function
class , = { f*ds | f€ Lipl(Rd)} appearing in the dual formulation of O7 7| (i, ) to
be u-Donsker. The weak convergence then follows by an application of the continuous
mapping theorem with limiting random variable equal to sup .+ |G,(f)| and G, a p-

Brownian bridge process defined on [*(F,). This is to be compared with statements
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(3.24) and (3.25) only valid on the real line (d = 1), while the Gaussian smoothing
allows for similar results in high-dimensional Euclidean spaces d > 1. The case u # v

is dealt with a functional delta method and leads to non-degenerate limit laws.

Conclusion: Distributional limit laws for the empirical OT cost are qualitatively dis-
tinguished between'® the null u = v and the alternative case u # v. For the latter,
the obtained limiting random variables often follow a centered Gaussian distribution.
The null x = v is more challenging and the limit laws usually degenerate to a Dirac at
zero. This observation is in line with the general theory presented in this thesis. Indeed,
for u = v degeneracy of the limit law follows from unique and trivial Kantorovich
potentials, whereas Gaussian limits for u # v appear as a consequence of unique but
non-trivial Kantorovich potentials. For bounded and sufficiently regular cost functions
the unifying approach (3.8) encompasses known distributional limit laws on countable
discrete spaces as well as on the real line. An interesting and novel statement is obtained
on Euclidean spaces R? with dimension d = 2, 3. While previous distributional limit
laws are centered around empirical expectations, the asymptotic statements obtained in
this thesis are centered around the population quantity. Beyond these low-dimensional
Euclidean settings, the distributional limit laws in (3.8) generally fail to hold when

employing empirical measures in high-dimensional Euclidean regimes (d > 5).

Overall, the unifying approach (3.8) presented in this thesis points towards two fun-
damental principles underlying all distributional limit laws for the empirical OT cost:
Kantorovich duality and weak convergence of underlying empirical processes. Indeed,
common to all central limit type results are certain assumptions on the probability mea-
sures. In view of the unifying approach, these assumption arise naturally from empirical
process theory to guarantee weak convergence of the empirical process vn(f, — u) in a
suitable normed space [*(F.). The function class ¥, stems from Kantorovich duality
that is the main machinery behind all proof techniques for distributional limit laws of
the empirical OT cost covered by the literature. Overall, there is a noteworthy trade-off
inherent in distributional limit laws for the empirical OT cost: Kantorovich duality
requires 7. to be sufficiently rich, while the empirical process only converges weakly if
¥ is not too complex. This phenomenon essentially restricts the asymptotic statements
to low-dimensional Euclidean spaces. The restriction is the analogue of the curse of
dimensionality in distributional limit laws for the empirical OT cost when centering

around the population quantity. Recently proposed alternatives employ different esti-

9Explicit limiting results also depend on the underlying sampling situation, e.g., the two-sample case
where simultaneously x4 and v are estimated by their respective empirical measures. Analogously to the
presentation of the main results, the discussion is tailored to the one-sample case.



3.2. Discussion and Related Work 51

mators for the probability measures or Gaussian smoothing leading to non-degenerate
asymptotic statements beyond low-dimensional Euclidean spaces. The unifying ap-
proach based on a functional delta method is able to cope with these approaches as long
as underlying empirical processes weakly converge in suitable normed spaces. Lastly,
it appears reasonable to conjecture the main result in (3.8) to also hold for unbounded

cost functions, although the presented theory leaves open a thorough treatment for this.
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Addenda

The following addenda contain the three articles A, B and C that form the basis of this

thesis. An introductory summary lists each article’s reference and abstract.

Limit Laws for Empirical Optimal Solutions in Random Linear Programs
Marcel Klatt, Yoav Zemel, and Axel Munk
preprint available, arXiv:2007.13473 (2020)

Abstract We consider a general linear program in standard form whose right-hand
side constraint vector is subject to random perturbations. For the corresponding random
linear program, we characterize under general assumptions the random fluctuations of
the empirical optimal solutions around their population quantities after standardization
by a distributional limit theorem. Our approach is geometric in nature and further relies
on duality and the collection of dual feasible basic solutions. The limiting random
variables are driven by the amount of degeneracy inherent in linear programming. In
particular, if the corresponding dual linear program is degenerate the asymptotic limit
law might not be unique and is determined from the way the empirical optimal solution
is chosen. Furthermore, we include consistency and convergence rates of the Hausdorff
distance between the empirical and the true optimality sets as well as a limit law for the
empirical optimal value involving the set of all dual optimal basic solutions.

Our analysis is motivated from statistical optimal transport that is of particular interest
here and follows by a simple application of our general theory. The corresponding limit
distribution is usually non-Gaussian which stands in strong contrast to recent finding

for empirical entropy regularized optimal transport solutions.

Empirical Regularized Optimal Transport: Statistical Theory and Applications
Marcel Klatt, Carla Tameling, and Axel Munk

SIAM Journal on Mathematics of Data Science 2(2):419 — 443 (2020)
https://epubs.siam.org/doi/pdf/10.1137/19M1278788
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Abstract We derive limit distributions for various empirical regularized optimal trans-
port quantities between probability distributions supported on a finite metric space and
show their bootstrap consistency. In particular, we prove that the empirical regularized
transport plan itself asymptotically follows a Gaussian law. The theory includes the
Boltzmann—Shannon entropy regularization and hence a limit law for the widely applied
Sinkhorn divergence. Our approach is based on parametric optimization techniques for
the regularized transport problem in conjunction with a statistical delta method. The
asymptotic results are investigated in Monte Carlo simulations. We further discuss
computational consequences and statistical applications, e.g., confidence bands for
colocalization analysis of protein interaction networks based on regularized optimal

transport.

A Unifying Approach to Central Limit Theorems for Optimal Transport
Shayan Hundrieser, Marcel Klatt, Thomas Staudt, and Axel Munk

in preparation

Abstract We provide a unifying approach to central limit theorems (CLTs) for empiri-
cal optimal transport (OT). At the heart of our theory is Kantorovich duality representing
OT as a supremum over a function class ¥, for an underlying sufficiently regular cost
function c. In this regard, OT is considered as a functional defined on [*(¥,) the Ba-
nach space of bounded functionals from ¥, to R. We prove its Hadamard directional
differentiability and conclude via a functional delta method that necessitates weak
convergence of an underlying empirical process in [*(F.). The latter can be dealt with
empirical process theory and requires ¥ . to be Donsker. We provide sufficient condi-
tions depending on the dimension of the ground space, the underlying cost function
and the probability measures under consideration such that a Donsker property holds.
Overall, our approach reveals a noteworthy trade-off inherent in CLTs for empirical OT:
Kantorovich duality requires 7. to be sufficiently rich, while the empirical processes
only converges weakly if 7. is not too complex. The limit distribution of the empirical
OT cost is characterized as a supremum of a Gaussian process. In particular, we discuss
when the limit distribution is centered normal or degenerates to a Dirac measure at zero.
Our approach covers the situation when at least one of the measures has discrete or low
dimensional support (d < 3). This encompasses well-known results for discrete and
semi-discrete transport. Moreover, in contrast to recent contributions on distributional
limit laws for empirical OT on Euclidean spaces which require centering around its
expectation, the CLT's obtained here are centered around the population quantity which

is well-suited for statistical applications.
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Limit Laws for Empirical Optimal Solutions in Random
Linear Programs

Marcel Klatt *  Yoav Zemel ' Axel Munk *

Abstract

We consider a general linear program in standard form whose right-hand side

constraint vector is subject to random perturbations. For the corresponding random
linear program, we characterize under general assumptions the random fluctuations of
the empirical optimal solutions around their population quantities after standardization
by a distributional limit theorem. Our approach is geometric in nature and further
relies on duality and the collection of dual feasible basic solutions. The limiting random
variables are driven by the amount of degeneracy inherent in linear programming. In
particular, if the corresponding dual linear program is degenerate the asymptotic limit
law might not be unique and is determined from the way the empirical optimal solution
is chosen. Furthermore, we include consistency and convergence rates of the Hausdorff
distance between the empirical and the true optimality sets as well as a limit law for
the empirical optimal value involving the set of all dual optimal basic solutions.
Our analysis is motivated from statistical optimal transport that is of particular interest
here and follows by a simple application of our general theory. The corresponding limit
distribution is usually non-Gaussian which stands in strong contrast to recent finding
for empirical entropy regularized optimal transport solutions.

Keywords: Limit law, Linear programming, Optimal transport, Sensitivity analysis
MSC 2020 subject classification 90C05, 90C15, 90C31, 62E20, 49N15

1 Introduction

Linear programs arise naturally in many applications and have become ubiquitous in
topics such as operations research, control theory, economics, physics, mathematics and
statistics (see the textbooks by Bertsimas & Tsitsiklis (1997), Luenberger & Ye (2008),
Dantzig (2016), Galichon (2018) and the references therein). Their solid mathematical
foundation dates back to the mid-twentieth century, to mention the seminal works of
Kantorovich (1939), Hitchcock (1941), Dantzig (1948) and Koopmans (1949), and its
algorithmic computation is an active topic of research until today'. A linear program in

standard form writes
v(b) =min ¢’z st. Az=0b,x>0, (Py)

zeRd

with (A,b,c) € R x R™ x R and matrix A of full rank m < d. For the purpose of the
paper, the lower subscript b in (P}) emphasizes the dependence on the vector b. Associated

*Institute for Mathematical Stochastics, University of Géttingen, Goldschmidtstrae 7, 37077 Gdttingen

fCentre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 OWB

#Max Planck Institute for Biophysical Chemistry, Am Fafiberg 11, 37077 Gottingen

'For a detailed historical account see Vershik (2002) and Cottle et al. (2007) with particular focus on
Kantorovich’s and Dantzig’s fundamental contributions to the field, respectively.
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with the primal program (P}) is its corresponding dual program

T T T

irelu%r)n( b' A st. ANMA<L . (Dy)
At the heart of linear programming and fundamental to our work is the observation that if
the primal program (P) attains a finite value, the optimum is attained at one of a finite set
of candidates termed basic solutions. Each basic solution (possibly infeasible) is identified
by a basis I c {1,...,d} indexing m linearly independent columns of the constraint matrix
A. The bases I also defines a basic solution for the dual (D;). In fact, the simplex algorithm
(Dantzig, 1948) is specifically designed to move from one primal feasible basic solution to
another while checking if the corresponding basis induces a dual feasible basic solution.
Shortly after first algorithmic approaches and theoretical results became available, the need
to incorporate uncertainty in the parameters has become apparent (see Dantzig (1955);
Beale (1955); Ferguson & Dantzig (1956) for early contributions). In fact, apart from
its relevance in numerical stability issues, in many applications the parameters reflect
practical needs (budget, prices or capacities) but are not available exactly. This has opened
a wealth of approaches to account for randomness in linear programs. Common to all
formulations is their general assumption that some parameters in (P}) are random and
follow a known probability distribution. Important contributions in this regard are chance
constrained linear programs, two- and multiple-stage programming as well as the theory of
stochastic linear programs (see Shapiro et al. (2021) for a general overview). Specifically
relevant to this paper is the so-called distribution problem characterizing the distribution
of the random variable v(X), where the right-hand side b (and possibly A and ¢) in (P)
is replaced by a random variable X following a specific law (Ewbank et al., 1974; Wets,
1980).
In this paper, we take a different route and focus on statistical aspects on the standard
linear program (P) if the right-hand side b is replaced by a consistent estimator b,, indexed
by n € N, e.g., based on n observations. Different to aforementioned attempts, we only
assume the random quantity r,(b, — b) to converge weakly (denoted by _ZZ,) to some limit
law G as n tends to infinity?. Our main goal is to characterize the asymptotic distributional
limit of the empirical optimal solution

2*(b,) € argmin ¢’z (1.1)
Ax=b,,, x>0
around its population quantities after proper standardization. For the sake of exposition,
suppose that #*(b) in (1.1) is unique®. The main results in Theorem 3.1 and Theorem 3.3
state that under suitable assumptions on (P) it holds, as n tends to infinity, that

v (2" (bn) - 27 (b)) 2> M(G), (1.2)

where M : R™ — R? is given in Theorem 3.1. The function M in (1.2) is possibly random,
and its explicit form is driven by the amount of degeneracy present in the primal and dual
optimal solutions. The simplest case occurs if 2*(b) is non-degenerate. The function M
is then a linear transformation depending on the corresponding unique optimal basis, so
that the limit law M (G) is Gaussian if G is Gaussian. If *(b) is degenerate but all dual
optimal (basic) solutions for (D;) are non-degenerate, then M is a sum of deterministic
linear transformations defined on closed and convex cones indexed by the collection of dual

2A prototypical example is the standard central limit theorem, whereby under suitable assumptions
rn, =+/n and G is a Gaussian random vector on R™.
3The main results in Theorem 3.1 and 3.3 hold more generally and beyond the uniqueness assumptions.
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optimal bases. Specifically, the number of summands in M is equal to the number of dual
optimal basic solutions for (D). A more complicated situation arises if both z*(b) and
some dual optimal basic solutions are degenerate. In this case, the function M is still a sum
of linear transformations defined on closed and convex cones, but these transformations
are potentially random and indexed by certain subsets of the set of optimal bases. The
latter setting reflects the complex geometric and combinatorial nature in linear programs
under degeneracy.

Let us mention at once that limiting distributions for the empirical optimal solution in the
form of (1.2) have been studied for a long time in a more general setting of (potentially)
non-linear optimisation problems; see for example Dupacova (1987); Dupacova & Wets
(1988); Shapiro (1991, 1993, 2000); King & Rockafellar (1993). Regularity assumptions such
as strong convexity of the objective function near the (unique) optimizer allow for either
explicit asymptotic expansions of optimal values and optimal solutions or applications of
implicit function theorems and generalizations thereof. These conditions usually do not
hold for the linear programs considered in this paper.

To the best of our knowledge, our results are the first that cover limit laws for empirical
optimal solutions to standard linear programs even beyond the non-degenerate case and
without assuming uniqueness of optimizers. However, our proof technique relies on well-
known concepts from parametric optimization and sensitivity analysis for linear programs
(Guddat et al., 1974; Greenberg, 1986; Ward & Wendell, 1990; Hadigheh & Terlaky, 2006).
Indeed, our approach is based on a careful study of the collection of dual optimal bases.
An early contribution in this regard is the basis decomposition theorem by Walkup & Wets
(1969a) analyzing the behavior of v(b) in (P;) as a function of b (see also Remark 3.2).
Each dual feasible basis defines a so called decision region over which the optimal value
v(b) is linear. The integration over the collection of all these regions yields closed form
expressions for the distribution problem (Bereanu, 1963; Ewbank et al., 1974). Further,
related stability results are also found in the work by Walkup & Wets (1967); Bohm
(1975); Bereanu (1976) and Robinson (1977). In algebraic geometry, decision regions are
closely related to cone-triangulations of the primal feasible optimization region (Sturmfels
& Thomas, 1997; De Loera et al., 2010). We emphasize that rather than working with
decision regions directly, our analysis is tailored to cones of feasible perturbations. In
particular, we are interested in regions capturing feasible directions as our problem settings
is based on the random perturbation \/n (b, —b). These regions turn out to be closed,
convex cones and appear as indicator functions in the (random) function M in (1.2).
Our proof technique allows to recover some related known results for random linear
programs (see Section 3). These include convergence of the optimality sets in Hausdorff
distance (Proposition 3.6), and a limit law for the optimal value

D
(b)) —v(®) = | omax GTA(D), (1.3)
basic solution for (Dy)

as n tends to infinity. Indeed, (1.3) is a simple consequence of general results in constrained
optimization (Shapiro, 2000; Bonnans & Shapiro, 2000), and the optimality set convergence
follows from Walkup & Wets (1969b).

Our statistical analysis for random linear programs in standard form is motivated by
recent findings in statistical optimal transport (OT). More precisely, while there exists a
thorough theory for limit laws on empirical OT costs on discrete spaces (Sommerfeld &
Munk, 2018; Tameling et al., 2019), related statements for their empirical OT solutions
remain open. An exception is Klatt et al. (2020), who provide limit laws for empirical
(entropy) reqularized OT solutions, thus modifying the underlying linear program to be
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strictly convex, non-linear and most importantly non-degenerate in the sense that every
regularized OT solution is strictly positive in each coordinate. Hence, an implicit function
theorem approach in conjunction with a delta method allows concluding for Gaussian
limits in this case. This stands in stark contrast to the non-reqularized OT considered
in this paper, where the degenerate case is generic rather than the exception for most
practical situations. Only if the OT solution is unique and non-degenerate, then we observe
a Gaussian fluctuation on the support set, i.e., on all entries with positive values. If the OT
solution is degenerate (or not unique), then the asymptotic limit law (1.2) is usually not
Gaussian anymore. Degeneracy in OT easily occurs as soon as certain subsets of demand
and supply sum up to the same quantity. In particular, we encounter the largest degree
of degeneracy if individual demand is equal to individual supply. Additionally, we obtain
necessary and sufficient conditions on the cost function in order for the dual OT to be
non-degenerate. These may be of independent interest, and allow to prove almost sure
uniqueness results for quite general cost functions.

Our distributional results can be viewed as a basis for uncertainty quantification and other
statistical inference procedures concerning solutions to linear programs. For brevity, we
mention such applications in passing and do not elaborate further on them, leaving a
detailed study of statistical consequences such as testing or confidence statements as an
important avenue for further research.

The outline of the paper is as follows. We recap basics for linear programming in Section 2
also introducing deterministic and stochastic assumptions for our general theory. Our main
results are summarized in Section 3, followed by their proofs in Section 4. The assumptions
are discussed in more detail in Section 5. Section 6 focuses on OT and gives limit laws for
empirical OT solutions.

2 Preliminaries and Assumptions

This section introduces notation and assumptions required to state the main results of the
paper. Along the way, we recall basic facts of linear programming and refer to Bertsimas
& Tsitsiklis (1997) and Luenberger & Ye (2008) for details.

Linear Programs and Duality. Let the columns of a matrix A e R™*? be enumerated
by the set [d] = {1,...,d}. Consider for a subset I ¢ [d] the sub-matrix A; € R™*/! formed
by the corresponding columns indexed by I. Similarly, x; € R/l denotes the coordinates of
z € R? corresponding to I. By full rank of A in (Dj), there always exists an index set I
with cardinality m such that A; € R"™™ is one-to-one. An index set I with that property
is termed basis and induces a primal and dual basic solution

2(1,b) = Aug; [(Ar)'b] eRY, A(I) = (A7) Ter e R™,

respectively. Herein, and in order to match dimensions (a solution for (Pj) has dimension
d instead of m < d) the linear operator Aug;:R™ — R? augments zeroes in the coordinates
that are not in I. If \(I) (resp. z(I,b)) is feasible for (D) (resp. (P})) then it constitutes
a dual (resp. primal) feasible basic solution with dual (resp. primal) feasible basis I.
Moreover, A\(I) (resp. x(I,b)) is termed dual (resp. primal) optimal basic solution if it
is feasible and optimal for (D) (resp. (Pp)). Indeed, as long as (D) admits a feasible
(optimal) solution then there exists a dual feasible (optimal) basic solution and vice versa
for (Py). At the heart of linear programming is the strong duality statement.

Fact 2.1. Consider the primal linear program (Py) and its dual (D).
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(i) If either of the linear programs (Py) or (Dy) has a finite optimal solution, so does
the other and the corresponding optimal values are the same.

(i1) If for a basis I c [d] the vector N(I) is dual feasible and x(I,b) is primal feasible,
then both are primal and dual optimal basic solutions, respectively.

(iii) If (Py) and (Dy) are feasible then there always exists a basis I € [d] such that x(I,b)
and \(I) are primal and dual optimal basic solutions, respectively.

We introduce the feasibility and optimality set for the primal (P;) by
P(b)={ze RY| Az =b,x> 0}, P*(b)= {a:* eP()| la* = ig(fb) ch}, (2.1)

respectively. Notably, in our theory to follow A and ¢ are generally assumed to be fixed
and only the dependence of these sets with respect to parameter b is emphasized. We
introduce our first assumption:

The set P*(b) is non-empty and bounded. (A1)

In view of the strong duality statement in Fact 2.1, solving a linear program might be
carried out focusing on the collection of all dual feasible bases. We partition this collection
into two subsets depending on their feasibility for the primal program.

Remark 2.2 (Splitting of the Bases Collection). Let Iy, ...,Ix enumerate all dual feasible
bases, and let 1 < K < N be such that

x(Ig,b) is feasible,1 <k < K; x(Ix,b) is infeasible, K <k < N.

Notably, by Fact 2.1 the primal basic solution x(I,b) is optimal for all £ < K. Recall that
the convex hull C (z1,...,zx) of a collection of points {z1,...,zx} c R? is the set of all
possible convex combinations of them.

Fact 2.3. Consider the primal linear program (P;) and assume (A1) holds. Then for any
right hand side b e R™ either one of the following statements is correct.

(i) The feasible set P(B) is empty.
(ii) The optimality set P* (5) 18 non-empty, bounded and equal to the convex hull

P* (l~)) =C ({a:([, b) | T primal and dual feasible basis for (P—g) and (DE)})

The restriction of the convex hull to basic solutions induced by primal and dual optimal
bases in Fact 2.3 is well-known. A straightforward argument is based on the simplex
method that if set up with appropriate pivoting rules always terminates. If (A1) holds
and there exists a unique basis (K =1) then the primal program attains a unique solution.
Uniqueness of solutions to linear programs is related to degeneracy of corresponding dual
solutions. A dual feasible basic solution A\(I) is degenerate if more than m of the d
inequalities A(I)TA < ¢! hold as equalities. Similarly, a primal feasible basic solution
x(I,b) is degenerate if less than m of its coordinates are nonzero.

Fact 2.4. Consider the linear program (P) and its dual (Dy).

(i) If (Py) (resp. (Dy)) has a non-degenerate optimal basic solution, then (Dy) (resp.
(Py)) has a unique solution.
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(ii) If (Py) (resp. (Dy)) has a unique non-degenerate optimal basic solution, then (D)
(resp. (Py)) has a unique non-degenerate optimal solution.

(iii) If (Py) (resp. (Dy)) has a unique degenerate optimal basic solution, then (Dy) (resp.
(Py)) has multiple solutions.

For a proof of Fact 2.4, we refer to Gal & Greenberg (2012, Lemma 6.2) in combination
with strict complementary slackness from Goldman & Tucker (1956, Corollary 2A) stating
that for feasible primal and dual linear program there exists a pair (x,\) of primal and
dual optimal solution such that either x; >0 or ATA]- <cj forall 1 <j<d. In addition to
uniqueness statements, many results in linear programming simplify when degeneracy is
excluded. Related to degeneracy but slightly weaker is the assumption

MI) £ AIk),  1<j<k<K. (A2)

Indeed, if P*(b) is non-empty and bounded assumption (A2) characterizes non-degeneracy
of all dual basic solution.

Lemma 2.5. Suppose assumption (A1) holds. Then assumption (A2) is equivalent to
non-degeneracy of all dual optimal basic solutions.

To see that (A1) is necessary, let D,, € R™™ with m > 2 be the identity matrix. Suppose
that A = (Dy,,—Dy,) € R™2™ ¢ e R¥™ is strictly positive except that ¢; = ¢y = 0,
and b =(1,0,0,...,0) € R™. Then there are K = 2™! optimal bases defining K distinct
(degenerate) dual solutions, so that assumption (A2) holds but dual degeneracy fails. Note
that P*(b) is unbounded and contains the optimal ray (b”,b7).

Random Linear Programs. Introducing randomness in problems (P;) and (D), we
suppose to have incomplete knowledge of b € R™, and replace it by a (consistent) estimator
bn, €.g., based on a sample of size n independently drawn from a distribution with mean b.
This defines empirical primal and dual counterparts (P, ) and (D, ), respectively. We allow
the more general case that only the first mg € {0,...,m} coordinates of b are unknown* and
assume the existence of a sequence of random vectors by, = (b7, [b];n_m,)? € R™0 x R™~m0
converging to b at rate r,;! — 0 as n tends to infinity

Gmo

m-mg

G = 1n(by-b) 2> G = (0 ) e R™ x R™™0,

(B1)

with G™° € R™° absolutely continuous,

where 2 denotes convergence is distribution. In a typical central limit theorem type
scenario, r, = y/n and G is a centred Gaussian random vector in R™°, assumed to have
a non-singular covariance matrix. Assumption (B1) implies that b, — b in probability. In
order to avoid pathological cases, we impose the last assumption that asymptotically an
optimal solution x*(by,) for the primal (P, ) exists

lim P (P* (by) # @) = 1. (B2)

Further discussions on the assumptions are deferred to Section 5.

4One may assume at first reading that mo = m; the additional generality will turn useful for the
one-sample case naturally arising in optimal transport in Section 6.
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3 Main Results

According to Fact 2.3, in presence of (A1) any optimal solution z*(b,) € P*(b,,) takes the
form
2 (by) = Y [N (T, bn) = o @ (I, bn),
kelC

where K is a non-empty subset of [N]:={1,..., N} and o/ € RY is a random vector in the
(essentially |K|-dimensional) unit simplex Ag = {a e RY | |af =1,a; =0 Vk ¢ K}. The
main result of the paper states the following asymptotic behaviour for the empirical optimal
solution.

Theorem 3.1. Suppose assumptions (A1), (B1), and (B2) hold, and let x*(b,) € P*(by,)
be any (measurable) choice of an optimal solution. Further, assume that for all non-empty
K c [K], the random vectors (a,’f, Gn) converge jointly in distribution as n tends to infinity
to (a’C,G) on Ay x R™. Then there exist closed convex cones H™,. .. HZ° <R™ and
random vectors Y, € P*(b) such that

* D
o (0n) = ¥2) > M(C) = T gracrgzons gy o) o © 20k, G) € B,
K

where the sum runs over non-empty subsets IC of [K] and H{™ = npexc H,™.

Remark 3.2. Underlying Theorem 5.1 is the well-known approach of partitioning R™ into
(closed convex) cones. Indeed, the union of the closed convex cones

Hi = {beR™: I} is an optimal basis for (Py) and (Dy)}, k=1,...,N,

is the feasibility set A, = {Az:x >0} € R™ and on each cone the optimal solution is an
affine function of b (e.g., Walkup & Wets, 1969a; Guddat et al., 1974). The cones H,
depend only on A and c. In contrast, our cones H,’C”O also depend on b and define directions
of perturbations of b that keep A\(Ix) optimal for the perturbed problem for a given k < K.
Assume for simplicity that mo = m and write Hy, instead of H,". Ifb=0, then K = N and
cones coincide Hy, = ﬁk, but otherwise Hy, is a strict super-set of ﬁk as the corresponding
representation (4.2) of H,, requires non-negativity on all coordinates. This is also in line
with the observation that there are fewer (K) cones Hj than there are ﬁk, namely N,
and the union of the Hy’s is a space that is at least as large as Ay (since b+ Ay € A,
because b € A, ), typically R™. As an extreme example, suppose that (Py) has a unique
non-degenerate optimal solution x(I1,b). Then K =1 and Hy = R™ but the Hy,’s are strict
subsets of R™ unless N = 1.

In Section 5, we discuss sufficient conditions for the joint distributional convergence of
the random vector (af, Gn). In short, if we use any linear program solver, such joint
distributional convergence appears to be reasonable. If the optimal basis is unique (K =1)
with 2*(b) = x(I1,b) non-degenerate, then A(I) is non-degenerate, and the proof shows
that H,"* = R™°. The distributional limit theorem then takes the simple form

rn(x*(bn) - -Tf*(b)) —Il) .’L'(Il, G) e R%.

In general, when K > 1, the number of summands in the limiting random variable in
Theorem 3.1 might grow exponentially in K. In between these two cases is the situation
that assumption (A2) holds, which implies all dual optimal basic solutions for (D) are
non-degenerate (see Lemma 2.5). The limiting random variable then simplifies, as the
subsets I must be singletons.
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Theorem 3.3. Suppose assumptions (A1), (A2), and (B2) hold, and that r,,(b,—b) 2 a.
Then any® (measurable) choice of x*(by,) € P*(by,) satisfies

K
. D
P (2 (ba) = Yn) = 2 Lgmoegroy, a0} @ (I G) € R
k=1 k J J

with the closed and convex cones H," as given in Theorem 3.1.

Remark 3.4. With respect to Theorem 3.1, assumption (B1) is weakened in Theorem
3.3 as absolute continuity of G (or G™°) is not required. Indeed, it can be arbitrary, and
Theorem 3.3 thus accommodates, e.g., Poisson limit distributions. The proof shows that if
G is absolutely continuous (i.e., mg =m) then the indicator functions of G € H}* \ uj<kH]m
simplify to G € Hi", because intersections H;" n H;" have Lebesgue measure zero. The
distributional limit theorem then reads as

K
* D
rn (@7 (bn) =Yn) = 30 Uigmepmy @ (Ir, G) € R,
k=1

We conclude this section by giving two further consequences of our proof techniques: a
limit law for the objective value v(b) for (P}), and convergence in probability of optimality
sets. Since the former is well-known and holds in more general, infinite-dimensional convex
programs, we omit the proof details and instead refer to Shapiro (2000); Bonnans & Shapiro
(2000) and results by Sommerfeld & Munk (2018); Tameling et al. (2019) tailored to OT.

Proposition 3.5. Under assumptions (A1), (B1), and (B2) it holds that
D T
n|V(bn) —v(b)] — max G* A(I}).
ral () = (8)] 2> o GTA(L)

Another consequence of our bases driven approach underlying the proof of Theorem 3.1 is
that the convergence of the Hausdorff distance

dg (P*(b,),P* (b)) =max{ sup inf |z-y|, sup inf |z-y
u (P (bn),P"(b)) {xep*(bn)yeP*(b) |z -yl xeP*(b)yE'P*(bn)H I

between P*(b,) and P*(b) is of order Op(r;!). A different and considerably shorter
argument relies on Walkup & Wets (1969b) and proves the following result.

Proposition 3.6. Suppose assumptions (A1) and (B2) hold. If |b, - b| = Op(r;'), then
it follows that dg (P*(by),P* (b)) = Op(r,;}).

We also refer to the work by Robinson (1977) for a similar result when the primal and dual
optimality sets are both bounded.

4 Proofs for the Main Results

To simplify the notation, we assume that all random vectors in the paper are defined on a
common generic probability space (£2, F,P). This is no loss of generality by the Skorokhod
representation theorem.

There is no need to assume joint distributional convergence of (o, G,) as in Theorem 3.1.
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Preliminary steps. Recall from Remark 2.2 that bases I1,...,Ix are feasible for (P)
and (D) and hence optimal. The bases Ix.1,..., Iy are only feasible for (D;) but not for
(Py). For a set K ¢ [N] define the events, i.e., subsets of the underlying probability space

ks P (@) 20 L
" AT)\(Ik)SC o
B - (I, bp(w)) 20 e rerlepn
" ATA(I) < ¢ o

By strong duality (Fact 2.1 (ii)), the set AX is the event that the bases indexed by K are

precisely those that are optimal for (Py, ) and (Dj,). We have AX ¢ BX and BF ¢ B
for all k € IC. We start with two important observations, the first stating that only subsets
of [ K] asymptotically matter.

Lemma 4.1. Suppose that b, LA b.

(i) It holds that P(B{") >0 as n — oo for all k> K.

(ii) If assumptions (A1) and (B2) hold, then with high probability P*(by,) is bounded
and non-empty.

Proof. For (i), observe that for k> K there exists an index i € [d] such that x;(I;,b) < 0.
The same inequality holds for b, if sufficiently close to b, which happens with high
probability. For (ii), non-emptiness with high probability follows from assumption (B2),
so we only prove boundedness. Indeed, assumption (A1) implies that the recession cone
{x>0] Az = 0,c"'x = 0} is trivial and equals {0}. This property does not depend on by,
which yields the result. O

The event A2 is equivalent to (P, ) being either infeasible or unbounded, and this has
probability o(1) by (B2). Combining this with the previous lemma and the sets (AX)x
forming a partition of the probability space {2, we deduce

2 ()= Y Lag(w)ay (W) ® eIk, ba(w)) +op(1),
@cKc[K]

where 1 4(w) denotes the usual indicator function of the set A. Defining the random vector

Yoz Y Lac(w)al(w)ex(lk,b)
ocke[K]

that lies in P*(b) (because K ¢ [K]), we obtain

ral27(bn) =Yl = Y Laxc(w) ol (w) ® x(Ix, Gn(w)) + op(1). (4.1)
@cKc[K]

We next investigate the indicator functions 1,c(w) appearing in (4.1). Omitting the
dependence of b, on w, we rewrite

BY = N N {zi(Tr,0,) 20} = () N {@i(Ik, Gn) > —rnai( i, b))

keK iely, keK ie[d]

At the last internal intersection in the above display we can, with high probability, restrict
to those i in the primal degeneracy set DPy = {i € I} | x;(I;,b) = 0}. Indeed, for i ¢ I, the
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inequality reads 0 > 0, whereas for ¢ € I, \ DP;, the right-hand side goes to —oo and the
left-hand side is bounded in probability. In other words P(BX) = o(1) +P(G" € nyec H,™),
where

HITO = {gmo eR™0: ['T(Ika (gm()»()m—mo)]DPk 2 0}' (4‘2)

For @ c K ¢ [K] define H{™ = npec H,™, and write

Av=|Br~ U BN U B,
ke[ K]NK k> K

where the union over k£ > K can be neglected by Lemma 4.1. Thus we conclude that

]lAg - ]]-{GzloeH)Tcno\UkE[K]\K H;gno} +OP(1)' (43)
With these preliminary statements at our disposal, we are ready to prove the main result.

Theorem 3.1. The goal is to replace G’ by G™° in the indicator function in (4.3) at the
limit as n tends to infinity. By the Portmanteau theorem (Billingsley, 1999, Theorem 2.1)
and elementary arguments® it suffices to show that the mg-dimensional boundary of each
leno has Lebesgue measure zero. This is indeed the case, as they are convex sets. Define
the function 7% : RI€I x R™ - RY by

K
T (a,v) = Z ]l{'U[mO]EH;CnO\Uke[K]\}C H;no}akx(fk,v).
kelC

This function is continuous for all @ € RX and all vectors v € R™ such that Vlmo] ¢
O[H " N Upek]ak Hy"°]. In particular, the continuity set is of full measure with respect to
(OéK, ). As there are finitely many possible subsets I denoted by K1, ..., Kpg, the function
T=(T5,... 7)) :REL K R o (RN defined by

T(aKl,...,a’CB,v) = (T’Cl(o/cl,v),...,T’CB(O/CB,U))

is continuous G-almost surely. The continuous mapping theorem together with the assumed
joint distributional convergence of the random vector (af, Gp) yield that

> TN(af.G) S Y TF(a,G)
@cKe[K] FcKe[ K]

which finishes the proof for Theorem 3.1. 0

Theorem 3.5. With high probability (A1) and (A2) hold for b, (by Lemma 4.1 for the
former and trivially for the latter), which implies that P*(b,,) is a singleton (Lemma 2.5
and Fact 2.4). Hence, regardless of the choice of o, it holds that 1 AK 2" (bn) = x(Imink, bn)-
In particular, we may assume without loss of generality that af are deterministic and do
not depend on n. Thus the joint convergence in Theorem 3.1 holds, and (4.1) simplifies to

rale*(bn) = Yol = Y. A (W) 2(Imink, Gn) + 0p(1) = 2(Ix (w0, Gn(w)) +op(1),
PcKe[K]

SLetting Ay = H™ and Bp = R™ \ Ay, it holds 0By = 0A; and thus O(Ngex A N Nke[ KK By) ¢
UK, 0Ay.

10
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where K(w) is the minimal £ < K such that BT{Lk} holds. Since Br{Lk} is asymptoti-
cally {G € H,"}, Theorem 3.3 follows. Let us now show that M(G) simplifies to
ZkK: 11 (Gery) x (I, G) if G is absolutely continuous. It suffices to show that intersec-
tions HJm N H;* with j <k < K have Lebesgue measure zero. If v € H]m N H;" then there
exists 1 > 0 such that z(I;,b+nv) >0 and x(Ix,b+nv) > 0. Since A\(I;) and A(I;) are dual
feasible, they must be optimal with respect to b+ nv. Thus it holds

0= %(bmv)T[A(Ik) = MI)] =0 (M) = ML)

By (A2) the vector A\(I;) — A(I;) is nonzero and hence v is contained in its orthogonal
complement, which indeed has Lebesgue measure zero. ]

Proposition 3.6. Let K =R and define the linear map 7: R? - R™! by 7(z) = (Az, c'z).
For each b such that the linear program is feasible, let v, € R be the optimal objective
value. If 7 is injective, then the optimality sets are singletons and the result holds trivially.
We thus assume that 7 is not injective, and observe that

Knr Y (bw)}={z20: Az =b,c'z = vy} = P*(b).

Since K is a polyhedron and 7 is neither identically zero (A has full rank) nor injective,
we can apply the main theorem of Walkup & Wets (1969b). We obtain

dr(P* (bn), P (0)) < BV/[b= b +[vp — 0y, P = Op(17"), B =B(A,¢) <o,

because the optimal values satisfy v, — vy, = O]p(’l“;bl) by Proposition 3.5. ]

5 On the Assumptions

We start collecting some well-known facts from parametric optimization (see Walkup &
Wets (1969a); Guddat et al. (1974) for details). To this end, denote the dual feasible
set by N = {)\ eR™| AT) < c}. Further, define the set of feasible parameters by M :=
{beR™| P(b) + @} and M* :={beR™| P*(b) + @} the solution set.

Lemma 5.1. If for some by € M the set P(by) is bounded (resp. unbounded) then P(b) is
bounded (resp. unbounded) for all b e M. Similarly, if for some by € M* the set P*(by)
is bounded (resp. unbounded) then P*(b) is bounded (resp. unbounded) for all b e M*.
Moreover, it holds that

(i) the set M is non-empty and equal to an m-dimensional convex cone.
(1) if the dual set N is non-empty then it holds that M = M*.
(111) if the dual set N is non-empty and bounded then M = M* = R™.

The following discussion on the assumptions is a consequence of Lemma 5.1. We first
collect sufficient conditions for assumption (A1).

Corollary 5.2 (Sufficiency for (A1)). The following statements hold.

(i) If N is non-empty and P(b) is bounded for some b € M then assumption (A1) holds
for all be M.

(i1) If N is non-empty, bounded and P*(b) is bounded for some b € R™ then assumption
(A1) holds for all be R™.

11
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Certainly, if P*(b) # @ then (A1) is equivalent to P*(b) being bounded. The latter
property is independent on b and equivalent to the set {J: e R? | Ax=0,2>0, clw = 0}
being empty. A sufficient condition for that is boundedness of P(b) that can be easily
checked in certain settings.

Lemma 5.3 (Sufficiency for P(b) bounded). Suppose that A has non-negative entries and
no column of A equals 0 € R™. Then P(b) is bounded (possibly infeasible) for all b e R™.

It is noteworthy that if the dual feasible set N is non-empty and bounded, then P*(b) + &
for all b e R™, but P(b) is necessarily unbounded (Clark, 1961). Thus, A is unbounded
under the conditions of Lemma 5.3. We emphasize that assumption (A2) is neither easy
to verify nor expected to hold for most structured linear programs. Indeed, under (A1)
assumption (A2) is equivalent to all dual basic solutions being non-degenerate (Lemma 2.5).
However, degeneracy in linear programs is often the case rather the exception (Bertsimas
& Tsitsiklis, 1997). Notably, if (A2) and (A1) are satisfied the set P*(b) is singleton.
The assumption (B1) has to be checked for each particular case and can usually be verified
by an application of the central limit theorem (for a particular example see Section 6).
Assumption (B2) is obviously necessary for the limiting distribution to exist. If the dual
feasible set N is non-empty and bounded and (B1) holds then (B2) is always satisfied. A
more refined statement is the following.

Lemma 5.4 (Sufficiency for (B2)). Consider the set P(by) assumed to be non-empty.
Then P(b) is non-empty for all b sufficiently close to by if

(i) the set P(by) contains a non-degenerate feasible basic solution.

(ii) Slater’s constraint qualification” holds.

In particular, if the dual feasible set N is non-empty and (B1) holds then both conditions
(i) and (ii) are sufficient for (B2).

Joint convergence. Our goal here is to state useful conditions such that the random
vector (047’?, Gn) jointly converges® in distribution to some limit random variable (o/c, G)
on the space Ay x R™. By assumption (B1), G, — G in distribution, and a necessary
condition for the joint distributional convergence of (X, G,,) is that X has a distributional
limit o/*. There is no reason to expect af and GG, to be independent, as discussed at the
end of this section. We give a weaker condition than independence that is formulated in
terms of the conditional distribution of af given G, (or, equivalently, given b,, = b+ G, [ry).
These conditions are natural in the sense that if b, = g, then the choice of solution z*(g),
as encapsulated by the ozf ’s, is determined by the specific linear program solver in use.
Treating conditional distributions rigorously requires some care and machinery. Let
z=zk- A x R™ and for ¢ : Z - R denote

zZ — zZ
ol =suplo(2)l, ol = sup [PED=9(z2)
z

Z1#22 Hzl —z2 “

We say that ¢ is bounded Lipschitz if it belongs to BL(Z) = {¢: Z - R|||¢|pL < 1}. The
bounded Lipschitz metric

BL(u ) = sy | [ e dtn ) () (5.1)

el =@l + l@lLip-

"The feasible set P(by) contains a positive element x € (0, 00)%.

8Recall that the o represent random weights (summing up to one) for each optimal basis I, k €
for the case that A occurs, i.e., that several bases yield primal optimal solutions and hence any convex
combination is also optimal.

12
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is well-known to metrize convergence in distribution of (probability) measures on Z (Dudley,
2002, Theorem 11.3.3). According to the disintegration theorem (see Kallenberg (1997,
Theorem 5.4), Dudley (2002, Section 10.2) or Chang & Pollard (1997) for details), we may
write the joint distribution of (af, bn) as an integral of conditional distributions uﬁg that
represent the distribution of af given that b, = g. More precisely, g — ,uﬁg is measurable
from R™ to the metric space of probability measures on A with the bounded Lipschitz
metric, so that for any ¢ € BL(Z) it holds that

Ep(alf,b) = Eun(b),  wn(o) = [ ol g)di (o)

where 1, : R™ - R is a measurable function. The joint distribution of (o, G,) is
determined by the collection of expectations

E‘P(QZS»GTL) = E¢n(Gn) = Et (10(bn = 1)) , ¢ € BL(2).

Our sufficient condition for joint convergence is given by the following lemma. It is
noteworthy that the spaces R™ and A can be replaced with arbitrary Polish spaces, and
even more general spaces, as long as the disintegration theorem is valid.

Lemma 5.5. Let {,uglc}geRm be a collection of probability measures on Ay such that the
map g+~ ,uglc is continuous at G-almost any g, and suppose that ,uﬁg - ,uglc uniformly with
respect to the bounded Lipschitz metric BL.. Then (af, Gr) converges in distribution to a
random vector (o, Q) satisfying

Eo(a®,G) =g [ o(a,G)d(a) = Bu(G)
K|
for any continuous bounded function p € BL(Z) (this determines the distribution of the
random vector (Oé’C,G) completely). Moreover, if L denotes the distribution of a random
vector, then the rate of convergence can be quantified as

BL(L[(ary, Ga)], L[, G)]) < sup BL(fty g 1y ) + (1+ L)BL(L[G,], £[G)),

where L =supgy, ., BL(ug,ugKQ)/H(gl - g2)| €[0,00]. The supremum with respect to g can
be replaced by an essential supremum.

The conditions of Lemma 5.5 (and hence the joint convergence in Theorem 3.1) will be
satisfied in many practical situations. For example, given b,, and an initial basis for the
simplex method, its output is determined by the pivoting rule (for a general overview
see Terlaky & Zhang (1993) and references therein). Deterministic pivoting rules lead to
degenerate conditional distributions of af given b, = g, whereas random pivoting rules
may lead to non-degenerate conditional distributions. In both cases these conditional
distributions do not depend on n at all, but only on the input vector g. In particular, the
uniform convergence in Lemma 5.5 is trivially fulfilled (the supremum is equal to zero).
It is reasonable to assume that these conditional distributions depend continuously on g
except for some boundary values that are contained in a lower-dimensional space (which
will have measure zero under the absolutely continuous random vector G).

6 Optimal Transport

Optimal transport (OT) dates back to the French mathematician and engineer Monge
(1781). Roughly speaking, it seeks to transport objects from one collection of locations to

13
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another in the most economical manner. Apart from the work of Appell (1887), much of
the progress of OT began in the mid-twentieth century, firstly due to its practical relevance
in economics. Indeed, much of the theory of linear programming including the simplex
algorithm has been motivated by findings for OT with early contributions by Hitchcock
(1941); Kantorovich (1942); Dantzig (1948) and Koopmans (1951). Since then a surprisingly
rich theory has emerged with important contributions by Kantorovich & Rubinstein (1958);
Zolotarev (1976); Sudakov (1979); Kellerer (1984); Rachev (1985); Brenier (1987); Smith
& Knott (1987); McCann (1997); Jordan et al. (1998); Ambrosio et al. (2008) and Lott &
Villani (2009), among many others. We also refer to the excellent monographs by Rachev
& Riischendorf (1998); Villani (2008) and Santambrogio (2015) for further details. In fact,
OT has recently gained renewed interest especially as computational progress paves the
way to explore novel fields of applications such as imaging (Rubner et al., 2000; Solomon
et al., 2015), machine learning (Frogner et al., 2015; Arjovsky et al., 2017; Peyré & Cuturi,
2019), and statistical data analysis (Chernozhukov et al., 2017; Sommerfeld & Munk, 2018;
del Barrio et al., 2019; Panaretos & Zemel, 2019).
On a finite space X = {z1,...,2y} equipped with some underlying cost c: X x X - R OT
between two probability measures r,s € Ay = {r € RN | 1]7:,7“ =1, r; >0} is equal to the
linear program
N
OT(r,s) = min Z CijTij, (0OT)
mell(r,s) ij=1

where ¢;; = ¢(z;,x;) and the set II(r,s) denotes all non-negative matrices with row and
column sum equal to r and s, respectively. OT comprises the challenge to find an optimal
solution termed OT coupling 7*(r,s) between r and s such that the integrated cost is
minimal among all possible couplings. We denote by IT*(r,s) the set of all OT couplings.
The dual problem is

ojrﬁl?]l?]\’ rTa+s'B st o+ Bj < ¢ij, Vi, je[N]. (DOT)
In our context reflecting many practical situations (?), the measures r and s are unknown
and need to be estimated from data. To this end, we assume to have access to independent
and identically distributed (i.i.d.) X-valued random variables Xi,..., X, ~ r, where
a reasonable proxy for the measure r is its empirical version 7, = %Z?zl 0x,. As an
illustration of our general theory, we focus on limit theorems that asymptotically (n — oo)
characterize the fluctuations of an estimated coupling 7* (7, s) around 7*(r,s). For the
sake of readability, we focus primarily on the one sample case, where only r is replaced by
7, but include a short account on the case that both measures are estimated.
A few words regarding the assumptions from Section 2 in the OT context are in order.
Assumption (A1) always holds, since II(r,s) c [0,1]V * is bounded and contains the
independence coupling s’ . Assumption (A2) that according to Lemma 2.5 is equivalent
to all dual feasible basic solutions for (DOT) being non-degenerate, however, does not
always hold. Sufficient conditions for (A2) to hold in OT are given in Subsection 6.1.
Concerning the probabilistic assumptions, we notice that (B2) always holds as for any
(possibly random) pair of measures (7,,s) the set II(7,,s) is non-empty and bounded.
Assumption (B1) is easily verified by an application of the multivariate central limit
theorem. Indeed, the multinomial process of empirical frequencies \/n(r — #,) converges

14
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weakly to a centered Gaussian random vector G(r) ~ N (0, X (r)) with covariance

ri(1-ry) —r179 . -rirN
2(r) = —r:17“2 ro(1-13) - —rger ' 6.1)
-rMryN —TrorN ?”N(I—T'N)

Notably, X(r) is singular and G(r) fails to be absolutely continuous with respect to
Lebesgue measure. A slight modification allows to circumvent this issue. The constraint
matrix in OT,
1T
N

A= e R2VN?, (6.2)

1y

Iy ... Iy

has rank 2N — 1. Letting ri = ry_q] € RM-1 denote the first N - 1 coordinates of r ¢ RY
and A; € REN-D<N? qenote A with its N-th row removed, it holds that

H(T,S)Z{T[’ERNzlATﬂ'Z|:TT:|,7T20}. (6.3)

S

The limiting random variable for \/n(ry - 7%, ), as n tends to infinity, is equal to G(r})
following an absolutely continuous distribution if and only if r+ > 0 and ||r¢[; < 1. Equiv-
alently, r is in the relative interior of Ay (denoted ri(Ay)), i.e., 0 <7 € Ayx. Under
this condition (A1), (B1) and (B2) hold and from the main result in Theorem 3.1 we
immediately deduce the limiting distribution of optimal OT couplings.

Theorem 6.1 (Distributional limit law for OT couplings). Consider the optimal transport
problem (OT) between two probability measures r,s € ri(Ay) and let 7y, = % Yiv10x, be the
empirical measure derived by i.i.d. random variables X1,..., X, ~r. If sample size n tends
to infinity, then there exists a sequence 7, (r,s) € II*(r,s) such that

VA () = 13009) B S gttt @ @ 7T 00,08 (60
with G(r4) = (G (r4),0). If further assumption (A2) holds, then IT*(r,s) = {m*(r,s)} and
K
Vi (" (ay8) — 7 (1, 5)) > 2 Lctr ey (I [G(7): OnD):

Remark 6.2. The two sample case presents an additional challenge. By the multivariate
central limit theorem we have for min(m,n) - oo and "= — A€ (0,1) that

([ R RO R e O

n+m Sm S

with Gl(rf) and G*(s) independent and the compound limit law following a centered
Gaussian distribution with block diagonal covariance matrix, where the two blocks are given
by (6.1), respectively. However, the limit law fails to be absolutely continuous. Nevertheless,
the distributional limit theorem for OT couplings remains valid in this case and there exists
a sequence T, ,,(r,s) € [I*(r,s) such that

nm

* A A * D ’C
n+m (7’[‘ (Tn,Sm) - ﬂ-n,m(rv S)) - IZC:]I{GA(T;‘J)GHIC\UM)CHI@} are® 7T(IIC’G'A (Tf’ S))

We provide further details in Appendiz B.
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We emphasize that once a limit law for the OT coupling is available, one can derive limit
laws for sufficiently smooth functionals thereof. As examples let us mention the OT curve
(Klatt et al., 2020) and OT geodesics (McCann, 1997). The details are omitted for brevity
and instead, we provide an illustration of the distributional limit theorem (Theorem 6.1).

Example 6.3. We consider a ground space X = {x1 <xy<x3} ¢ R consisting of N =3
points with cost ¢ = (0, |xy — xo|, |x1 — 23|, |22 — 21|, 0, |22 — 23], |T3 — 21|, |23 — 22|, 0) € R? for
which OT then reads as

min 1 st Af7T=|:TZ:|,7T20

meR9

with constraint matriz A; € R>9. A basis I is a subset of cardinality five out of the column
index set {1,...,9} such that (A4)r is of full rank. For OT it is convenient to think of a
feasible solution in terms of a transport matriz © € R3*3 with m;ij encoding mass transport
from source i to destination j. For instance, the basis I = {1,2,3,5,9} corresponds to the
transport scheme

T5({1,2,3,59) = = [,

*

where each possible non-zero entry is marked by a star and specific values depend on the
measures v and s. In particular, to basis I corresponds the (possibly infeasible) basic
solution (I, (r,s)) = (Ay) ' (ry,s) that we illustrate in terms of its transport scheme by

81 S2—1T2 M +7T2—81— 89 S1 S2—T9 S83—7T3
7r(I, (rf,s)) = 79 = 9 ,
S§1+89+83—11—"T2 T3

where = (14,1 - |r¢|1) € R* and the second equality employs that r and s sum up to
one. Obviously, w(1,(ry,s)) is feasible if and only if sy > Ty and s3 >r3. Suppose that the
measures are equal v = s. Then the transport problem attains a unique solution supported
on the diagonal, i.c., all the mass remains at its current location. A straightforward
computation yields K = 8 primal and dual optimal bases

)) TS(IQ) = (: * *)7 TS(I3) = (i * )} TS(I4) = (* :);
*), TS(I5) = ( . ) TS(I7) - (* . ) TS(I5) - (* .

For example, the transport scheme T'S(Iy) corresponds to basis I = {1,2,5,8,9} and
induces an invertible matriz Ar,. Omitting the superscript mo =5 for clarity, the respective
closed convex cones Hy, for 1 <k < K as defined in (4.2) are

*

TS(I,) = (*

¥ % % X ¥

TS(I5) = (*

% x
¥
SN —

le{veRs | vl21}3,vl+v2£v3+v4}7 HQZ{UGRS | vlSvg,v1+v221)3+v4}7
ng{veR5 | v22v4,vl+02§v3+v4}, H4:{veR5 | ’U12U3,UQZU4},
H5:{UER5 | v2£v4,v1+v22v3+v4}, H6:{v6R5 | U1S’03,’02§’U4},
H7:{UGR5 | v1§v37vl+112§1)3+v4}, ng{veR5 | v12v37vl+v221}3+v4}.

Each of these cones is an intersection of two proper half-spaces, respectively. Some of
these cones exhibit non-trivial intersections and in particular (A2) fails to hold. Such
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cases arise for the pairs {Is,I7}, {Is, I7}, {14, I3} and {I5,Is}. The intersections of the
corresponding cones are given by

Hyn Hy={veR® | vy > vy, v1 +v2 <v3+04), HsnHy={veR® | vy <vs, v2 <4},

H5ﬁH8:{U€R5 | UQSU4,’U1+’UQ2’()34—’[)4}7 H4ﬁH8:{UER5 | U1 Z’Ug,UQZU4}.

The weak convergence in (6.5) and together with OT for p=1 and r = s then leads to the
distributional limit law for OT couplings

M(G) = Z ]]‘{GEH;C\Ukych} OZIC@Z‘(I]C?G)
Ke{{1}:{2}:{3,73,{6,7},{4,8},{5,8} }

Although K =38, there are only four distinct dual solutions: X(I1), A(I2), A(I7) and A(Ig).

6.1 Degeneracy and Uniqueness in Optimal Transport

This subsection provides sufficient conditions for assumption (A2) to hold. In view of
Lemma 2.5 and since for OT assumption (A1) is always satisfied, assumption (A2) is
equivalent to non-degeneracy of all dual optimal basic solutions. Notably, this implies
uniqueness of the OT coupling. Conversely, if for a given cost the OT coupling is unique for
all r,s € Ay, then (A2) holds. We begin with a sufficient criterion for (A2) only depending
on the cost.

Lemma 6.4. Suppose that the following holds for the cost function c. For any n > 2
and any family of indices {(ix, ji)}1<pen With all iy, pairwise different and all jj, pairwise
different it holds that

n n
Z Cirjr # Z Ciig-1> jD = ]n (66)
k=1 k=1

Then all dual basic solutions are non-degenerate. In particular, (A2) holds and the optimal
OT coupling is unique for any pair of measures r,s € An.

We are unaware of an explicit reference for condition (6.6) that is reminiscent to the well-
known cyclic monotonicity property (Riischendorf, 1996). Further, (6.6) can be thought of
as dual to the condition of Klee & Witzgall (1968) that for any proper subsets A, B c [IV]

not both empty

2. Ti* ) 5 (6.7)

€A jeB
that guarantees every primal basic solution to be non-degenerate. Notably, (6.6) is satisfied
for OT on the real line with cost ¢(x,y) = |x —y[P and measures with at least N = 3 support
points if and only if p >0 and p # 1. If the underlying space involves too many symmetries,
such as a regular grid with cost defined by the underlying grid structure, it typically fails
to hold. An alternative condition that ensures (A2) is the strict Monge condition that the
cost c¢ satisfies ) )

Cij+ci’j' <Cij'+ci'j’ Vi<i,j<7, (6.8)

possibly after relabelling the indices (Dubuc et al., 1999). This translates to easily
interpretable statements on the real line.

Lemma 6.5. Let X = {x1 <...<xznN} be a set of N distinct ordered points on the real
line. Suppose that the cost takes the form c(x,y) = f(|z —y|) with f: R, - R, such that
f£(0) =0 and either

(@) f is strictly convex, (ii) f is strictly concave.

Then assumption (A2) holds.
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The first statement follows by employing the Monge condition (see also McCann (1999,
Proposition A2) for an alternative approach). The second case is more delicate, and indeed,
the description of the unique optimal solution is more complicated (see Appendix B). In
fact, in both cases the unique transport coupling can be computed by the Northwest corner
algorithm (Hoffman, 1963). Typical costs covered by Lemma 6.5 are c¢(x,y) = |x — y[ for
any p >0 with p # 1. Indeed, for p =0 or p = 1, uniqueness often fails (see Remark 6.7). In
a general linear program (P;), the set of costs ¢ for which (A2) fails to hold has Lebesgue
measure zero (e.g., Bertsimas & Tsitsiklis, 1997). Here we provide a result in the same
flavour for OT.

Proposition 6.6. Let i and v be absolutely continuous on RY, with D > 2, and let
c(z,y) = ||z —y|h, where pe R~ {0} and g € (0,00] are such that if p=1 then q ¢ {1,00}.
For probability vectors r,s € Ay define the probability measures r(X) = ZkN:l rpdx, and
s(Y) = Z{C\il sidy, with two independent collections of i.i.d. RP-valued random variables
X1,.., Xy ~pandYi,...,.Yy ~v. Then (6.6) holds almost surely for the optimal transport
(OT). In particular, with probability one for any r,s € Ay and pair of marginals (X)) and
s(Y), the corresponding optimal transport coupling is unique.

See Wang et al. (2013) for a related result for p = ¢ = 2 and fized marginals r, s. Note that
Proposition (6.6) includes the Coulomb case (p = —1) that has applications in physics (Cotar
et al., 2013). As the proof details, the result is valid for piece-wise analytic (non-constant)
functions.

Remark 6.7 (Non-uniqueness). Let i be uniform on [0,1]1° and v be uniform on [1,2]" +
(2,0,0,...,0). Then, with probability one, all transport couplings bear the same cost if
p=0orifp=1and qge{l,00}. Thus, for N >2 uniqueness fails.
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A  Omitted Proofs

Lemma 2.5. Dual non-degeneracy obviously implies (A2), so we only show the converse
(in presence of (A1)). Suppose that A\(/;) is degenerate 1 < j < K. Then the index set L
of active constraints in the dual, i.e., the set of indices such that [AT(I;)A]; = ¢, is such
that I; ¢ L. Let Pos; ¢ I; be the set of positive entries of the optimal primal basic solution
x(1;,b). Then

L=I;uL~Ij=Posul;\PosulL~Ij.

Since the columns of Ay, form a basis of R™, each other column a, writes

a.= Yy yiai+ Y. ylas, zeLNIj. (A1)

i€ Pos selj\Pos

Suppose there exists some index z € L \ I; and s € I; \ Pos such that yZ # 0. Then we can
define a new basis I := I; \ {s} u{z} such that A(T) = \(I;) and as Pos; ¢ T we conclude
that 2(T,b) = x(I;,b). This contradicts (A2). Hence y? = 0 for all s € I; \ Pos; in (A.1).
Now suppose that y; > 0 for some i € Posj, so that iy € arg mini‘yizw ;—; is well defined and
the minimum is strictly positive. Expressing a;, as a linear combination of A Pos;~{io}>
we find that

b — — 1 y’Lz _ xiO xloyf _ ~
= QL Ti= ) @i+ Tig | e = ), orai| = et ) | @im =t fai = ), Tiai
i€Pos i€Pos Yiy icPos Yig 0 tePos Yiy iel

1#10 1#10 1#10

for some proper choice of Z;. By definition of 4y we find that 7; are non-negative, so that I
is a primal and dual optimal basis. Moreover, A(I) = A(I;) that again contradicts (A2).
We deduce for the representation in (A.1) that y7 < 0. Consider the vector

w = Aug{z}(l) - AUgPos(yz) ’

By definition w > 0, Aw = 0. and ¢’w = 0, so that w # 0 is a primal optimal ray, in
contradiction of (A1). In total we see that if any basis I; for 1 < j < K yields a degenerate
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dual basic solution we can modify basis I; to some I; with 7 # j and 1 < < K such that
A(Z;) = AM(I;)-

It is in principle possible that \(I;) is dual optimal K +1 <[ < N but x(I;,b) is not primal
optimal. Let us show that this cannot happen under assumption (A2). Consider any
optimal primal basic solution z(I;,b) for 1 <j < K and denote by Pos; its positivity set.
Optimality of A(;) implies that its active set L contains [; U Pos;. As I; is not a primal
optimal basis, it holds that Pos; ¢ I;, so that |L| > m and A(I;) is degenerate. But then
we can modify basis I; to some primal and dual optimal basis I; for 1 <7 < K such that
A(I;) = A(I)) is degenerate, in contradiction with (A2). Hence, any optimal dual basic
solution is non-degenerate and induced by some primal and dual optimal basis I. O

Lemma 5.5. We need to show that for any ¢ € BL(Z) we have that
[Elp(an, Gn)] - Elp(a”, G)]| = [En(Gn) - E(G)|

vanishes as n - oo. To bound the first term notice that for any fixed g it holds that
lov = ‘P(ayg)”BL(Am) < ||90||BL(Z) <1, s0

¥n(g) —1(g)| < <BL(uy . ).

« Kok «
S, POy =)

Hence, we find E[¢,(Gr) —9(Gn)| < sup, BL(uﬁg, u’;) that tends to zero by assumption.
Notice that the supremum can be an essential supremum, i.e., taken on set of full measure
with respect to both (G,,) and (G) instead of the whole of R™. For the second term
observe that ||t)|e < |¢]c and that

\w(gl)—w<g2>|=‘ S [tso) = elamdig @)+ [, lag)dlug, - 1)

K

K K
<lellLiplgr = g2l + BL(kgy, prg;)-

Hence, we conclude that

l¥lBL@m) < lelpLiz) + L <1+ L.

Dividing ¢ by its bounded Lipschitz norm, we find
El¢(Gn) = (G| < [¢]prL@m)BL(L(GR), L(G)) < (1 + L)BL(L(Gn), L(G))-

This completes the proof for the quantitative statement. Joint convergence still follows if
g ,uglc is only continuous G-almost surely (but not Lipschitz). In fact, v is still continuous
and bounded G-almost surely so that Ei(G,) - E¢(G). Therefore, Ep(aX,G,) —
Ep(a®,G) for all ¢ € BL(Z), which implies that (o, G,) - (¢, G) in distribution. [

B Optimal Transport

Theorem 6.1, two-sample. The only part where absolute continuity of G = (G'(r}), G*(s))
was required is when showing that the boundaries of the cones defined in (4.2) have
zero probability with respect to G. We shall show that this is still the case, despite the
singularity of G2(s).
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The cones under consideration take the form

H.= N {v € RQN_1| [7(Ig,v)]; 2 O}
i€DPy,

(where 7(I1,v) is viewed as an N2-dimensional vector), and their boundaries satisfy

8Hk c ' %{3 {U € RQN_” [W(Ik,v)]i = 0} c L_IJ {1) € RQN_l‘ [ﬂ([k,v)]i = 0}.

Let w = (U[N_l],— Zj]\iil Uj,’U{N’mgN_l}) € R?N be the augmented vector corresponding to
v. In view of Brualdi (2006, Corollary 8.1.4), there exist R;; ¢ {1,...,N} and S;; c
{N +1,...,2N}, not both empty, such that

_ + ZjERi,k vj = Zlesi,k vl—l) N ¢ Ri,k
=\~ ZjERi,k vj — zzesi,k vz_1) N eR; .

[W(Ik,v)]fi( 2. wi= Y w

jERi’k lESi’k

It suffices to show that for any pair of sets Rc {1,...,N -1} and Sc {1,..., N} that are
not both empty,

P(Z Gl(TT)l‘ =+ ZGQ(S)Z) =0.
jeR leS

Recall that G1(ry) is independent of G2(s) and admits a density on RV~1. Hence, when R
is non-empty, the above probability is indeed zero. If R is empty, then S is a non-empty
proper subset of [N]. Since s € ri(Ay), the kernel of X'(s) is the span of the vector of
ones. Hence the distribution of ¥ .5, G*(s)y is absolutely continuous, so it vanishes with
probability zero. This completes the proof. ]

Lemma 6.5. By elementary arguments the cost c(x;,z;) = f(|x; — x;|) satisfies the strict
Monge condition (6.8) when f is strictly convex. We thus only consider the case where f
is strictly concave. Since it was assumed non-negative, finite, and with f(0) =0, it must
be that f is continuous and strictly increasing. Clearly, the optimal cost between u and v
is finite. According to Gangbo & McCann (1996, Proposition 2.9), all the common mass
must stay in place. Hence, we may assume that ¢ and v are mutually singular. We prove
a more general result, from which Lemma 6.5 follows immediately. O

Lemma B.1. Let p and v be mutually singular and both supported on a finite union
of intervals. Let f be finite, strictly concave, and strictly increasing on the supports of
w and v. Then the optimal coupling between i and v with respect to the cost function

c(z,y) = f(lz - yl) is unique.

Remark B.2. If u and v have finite support, the assumption is satisfied. We believe that
the statement is true for an arbitrary pair of measures p and v, but the above formulation
1s sufficient as in the context of the present u and v are anyway finitely supported. For
example, the support could contain countably many intervals as long as there is “clear”
starting point ag below; but M could be infinite.

Proof. There is nothing to prove if y = v =0, so we assume p # v. It follows from the
assumptions that there exists a finite sequence of M + 1 > 3 real numbers

—oco<ag<ar<ag<azg<...<ap L0
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such that (interchanging p and v if necessary)

w([ag,a1]uag,ag]Ulag,as]u...)=1;
w([ar,az2]uas,aqs]Ulas,ag]u...)=1.

1

Let mo = p([ao, a1]) and suppose that mg < v([a1,a2]). Define the quantile
a* =inf{a:v[ai,a] > mo} € [a1,az].

We now claim that in any optimal coupling 7 between p and v, the p-mass of [ag, a;] must
go to [a1,a”]. Indeed, suppose that a positive p-mass from [ag, a;] goes strictly beyond
a*. Then some mass from the support of x but not in [ag,a1] has to go to [a1,a”]. Such a
coupling gives positive measure to the set

[ap,a1] x [a* +¢€,00) ([az, o0] x [a1,a”]

for some € > 0. Strict monotonicity of the cost function makes this sub-optimal, since this
coupling entails sending mass from x1 to y; and from xs to yo with x1 < y2 < min(x2,y1),
(see Gangbo & McCann (1996, Theorem 2.3) for a rigorous proof). Hence the claim is
proved. Let p1 be the restriction of p to [ag,a1] and vq be the restriction of v to [a1,a”]
with mass mg, namely 11 (B) = v(B) if B ¢ [a1,a"), vi({a*}) = mo - v([a1,a”)) and
v(B)=0if Bn[a1,a"] =@. By definition of a*, v is a measure (i.e., v1({a*}) > 0) and v,
and g1 have the same total mass mg. Each of these measures is supported on an interval
and these intervals are (almost) disjoint. Strict concavity of the cost function entails that
any optimal coupling between p; and v, must be non-increasing (in a set-valued sense).
Since there is only one such coupling, the coupling is unique.

By the preceding paragraph and the above claim, we know that = must be non-increasing
from [ag,a1] to [a1,a”], which determines 7 uniquely on that part. After this transport is
carried out, we are left with the measures v — vy and p — u1, where the latter is supported
on one less interval, namely the interval [ag, a;] disappears.

If instead po([ao,a1]) > v([a1,az2]), we can use the same construction with

a” =inf{a: p([ao, a] > v([a1,a2])} € [ag, a1],
and the interval [a1,aq] will disappear. We then merge [a*,a1] with [ag,as], that is

i — p1 is supported on [a”,a3] U [ag,a5]U. ..,

v — 1y is supported on [a3,a4] U [as,a6]U....

If u([ao,a1]) = v([a1,az2]) then both the intervals [ap,a;] and [a1,a2] disappear when
considering p — p1 and v —vq. In all three cases we can continue inductively and construct
7 in a unique way. Since there are finitely many intervals, the procedure is guaranteed to
terminate. Thus 7 is unique. O

Lemma 6.4. Let I be a dual feasible basis inducing a dual solution (a,3). Every such
basis induces a graph G(Ix) in the sense that if (i,7) € I} then the i-th support point of
the measure r is connected to the j-th support point of measure s, i.e., (i,7) € G(Ix). By
definition of dual feasible basis it holds that a; + 8; = ¢;;. In fact, such a basis induces a
tree structure between all support points of r and all support points of s (Peyré & Cuturi,
2019, Section 3.4).

In order to exclude that A(I;) = A(I;) for k # [ we proceed as follows. Since G(I) + G(I;),
there exists at least one edge (4,7) in G(I;) ~ G(I;). By definition if (&, J3) is the feasible
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dual solutions induced by I;, then @; + B} = ¢;5. To conclude \(Iy) = A(1;) it suffices to
prove that «; + 8 # ¢;j. To see this, notice that adding edge (,j) to G(Ij) creates a cycle.
In particular, after proper relabelling there exists a path of the form

(i:i17j17i27j27"’7in7jn :j)
such that (i;,7;) € G(Ix) as well as (i;41,7;) € G(Iy) for all 1 <l <n—1. Recall further that

by definition if edge (ig,ji) € G(I) then oy, + B}, = ¢, j,- By the summability assumtion
(6.6) it follows

n n n n
0% > Cirg = 2 Cingrr = 2 (@i + Bji) = - (0 + Bjiy) = cij = i+ B = cijy
=1 k=1 =1 k=2

that gives a; + 3; # ¢;j. O

Proposition 6.6. According to Lemma 6.4 all dual feasible basic solutions for (DOT) are
non-degenerate if there exists no family of indices {(ix, jx)} for n > 2 with all i} pairwise
different and all j; pairwise different such that
n n
z HXlk - Y]k Hg = Z HX% - Y}k—l ”gv YJ = Y]n : (B'l)
k=1 k=1
It suffices to prove that (B.1) holds with probability zero for fixed n. For the sake of nota-
tional simplicity, we choose the first n < N random locations (X,Y) = (X1,..., Xpn, Y1,...,Yy).

We denote by (x,y) = (21, ., Tn, Y1, -+, Yn) € (RD)% and define the set

2n n
A= {(XaY) e (RP) N Y ok = ynalf = low - wnllf = 0} '
k=1

We need to show that P((X,Y) € A) = 0. Set e; € RP to be the ith unit vector and consider
the closed set

2n
B= U {Gy)e®P)" [(zre) € {{yh-1, i), (Yo €)}s Yo = Yn } -
i€[D],ke[n]
Define the function f:(R”)?"\ B - R with f(x,y) = %0y |2k — ve-1 b = |7x — yrlh. We
can rewrite

P((X,Y)eAd) <P((X,Y)ef'(0)+P((X,Y)eB).

The second term on the right-hand side is zero since by independence and absolute continuity
the high-dimensional vector (X,Y) has a Lebesgue density and the set B lives in dimension
less than 2Dn. It remains to discuss P((X,Y) € f71(0)). The open set (R”)*" \ B on
which f is defined can be partitioned into finitely many (less than 6"”) open connected
components Uy, ..., Ur according to the signs of (zj — yx, ;) and (zx — yx-1,€;). On each
such component fiy, is analytic. It follows that IP’( (X,Y) € f@({O})) = 0 unless fjy, is
identically zero (Dang, 2015, Lemma 1.2). To exclude the latter possibility, consider for
any point (x,y) € U; and € € R the function

f|Ul(6) :f|Ul(x1+€e’iax27‘"7xn7y17"'7yn)

with derivative at € = 0 given by

9 gl —y1,|? ol =y, |2
[ =p(||a:1—y1g QM_ chl—yn\lf; QM 7 (B.2)
J€ |e=0 x1, —Y1,) 1, = Yn,)
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where x;; denotes the jth entry of the ith vector. If this derivative is nonzero, then clearly
f is not identically zero. If the derivative is zero then we shall show that there exists
another point in U; for which this derivative is nonzero. Since U; is open, we can add de;
to y, for small 0 and any 1< j < D. If p # ¢ then, taking j # ¢ (which is possible because
D > 2) only modifies the term |z; -y, | in (B.2), and for small § the derivative will not
be zero. If p = ¢ # 1 then the norms do not appear in (B.2) and taking j = ¢ would yield a
nonzero derivative. Hence, if p and ¢ are not both equal to one, f is not identically zero
on each piece U, which is what we needed to prove. A similar idea works in case g = oo
and p # 1.

The argument only depends on the positions of the random support points of the probability
measures = y;_; 7,0x, and s = Y7, sy, and hence is uniform in their probability weights.
Recall further Proposition 2.4 that if the dual problem admits a non-degenerate optimal
solution the primal optimal solution is unique. We conclude that almost surely the optimal
transport coupling is unique. O
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Empirical Regularized Optimal Transport: Statistical Theory
and Applications

Marcel Klatt * Carla Tameling * Axel Munk *f

Abstract

We derive limit distributions for various empirical regularized optimal transport
quantities between probability distributions supported on a finite metric space and
show their bootstrap consistency. In particular, we prove that the empirical regular-
ized transport plan itself asymptotically follows a Gaussian law. The theory includes
the Boltzmann—Shannon entropy regularization and hence a limit law for the widely
applied Sinkhorn divergence. Our approach is based on parametric optimization tech-
niques for the regularized transport problem in conjunction with a statistical delta
method. The asymptotic results are investigated in Monte Carlo simulations. We fur-
ther discuss computational consequences and statistical applications, e.g., confidence
bands for colocalization analysis of protein interaction networks based on regularized
optimal transport.

Keywords Bootstrap, limit law, protein networks, regularized optimal transport, sen-
sitivity analysis, Sinkhorn divergence

MSC 2010 subject classification Primary: 62E20, 62G20, 65C60 Secondary: 90C25,
90C31, 90C59

1 Introduction

The theory of optimal transport (OT) has a long history in physics, mathematics, eco-
nomics and related areas (Galichon, 2016; Kantorovich, 1942; Monge, 1781; Rachev &
Riischendorf, 1998; Villani, 2008). Recently, also OT based data analysis has become
popular in many areas of application, among others, in computer science (Balikas et al.,
2018; Schmitz et al., 2018), mathematical imaging (Adler et al., 2017; Ferradans et al.,
2014; Rubner et al., 2000), machine learning (Arjovsky et al., 2017; Lu et al., 2017; Som-
merfeld et al., 2019) and statistics (Chernozhukov et al., 2017; del Barrio et al., 1999;
Evans & Matsen, 2012; Munk & Czado, 1998; Panaretos & Zemel, 2018; Sommerfeld &
Munk, 2018).

This work focuses on certain statistical aspects of regularized optimal transport (ROT)
based data analysis. Throughout the following, let the ground space X = {x1,...,xx} be
finite (e.g. representing spatial locations) and equipped with a metric d: X x X — Rx,
where R>( denotes the non-negative and R>¢ (R<g) the positive (negative) reals. Each
probability distribution on X is represented as an element in Ay the N-dimensional
simplex of vectors 7 € RY such that Zf\;l r; = 1, r; > 0. For the sake of exposition, we
implicitly assume that r,s € Ay share the same support, in particular, are of the same
length. Moreover, for p > 1 the cost to transport one unit from z; to x; is represented in

*Institute for Mathematical Stochastics, University of Gottingen, Goldschmidtstrafe 7, 37077 Gottingen
fMax Planck Institute for Biophysical Chemistry, Am Fafiberg 11, 37077 Gottingen
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a vector ¢, € RM with entries Cp(i—1) = dP(x;,x;) defined by the underlying metric

N+j
d. These assumptions can be easily generalized (see Remark 2.5). Determining the OT
between the probability distributions r,s € Ax on X then amounts to solve the standard
linear program

min_ (¢, )

nERN?
X (1.1)
subject to  Amw = [s} ,m>0.
The coefficient matrix A = | Nx¥N®Lixv | RINXN * where ® denotes the Kronecker
LixN®INxN

product, encodes the marginal constraints for any transport plan = € RV * so0 that consid-
ered as a N x N matrix its row and column sums are equal to r and s, respectively. Besides
its non-negativity constraint, the linear program (1.1) consists of 2V linear equality con-
straints in N? unknowns. An optimal solution of (1.1) denoted as m,(r, s) (not necessarily
unique) is known as an optimal transport plan. The quantity Wy (r, s) = (cp, mp(r, s)>1 P
is referred to as OT distance, Kantorovich distance (Kantorovich, 1942; Vershik, 2013),
earth mover’s distance (Levina & Bickel, 2001), or p-th Wasserstein distance (Villani,
2008) between the probability distributions r and s.

Despite its conceptual appeal and practical success in various applications, the routine
use of OT based data analysis is still lacking as many real world applications suffer from
the computational burden to solve (1.1). The zoo of OT solvers is diverse and classical
examples include the Hungarian method (Kuhn, 1955), the auction algorithm (Bertsekas
& Castanon, 1989) or the transportation simplex (Luenberger et al., 1984). However, their
respective (average) runtime is still too demanding. For example, the auction algorithm
is known to require O(N3log(N)) elementary operations on average, which delimits its
use already for problems of intermediate size. There has been made certain progress to
overcome this numerical obstacle. For instance, exploiting properties of the [;-distance as
a specific instance for d, on a regular grid the OT problem (1.1) can be stated in only
O(N) unknowns as it suffices to consider transport between neighbouring grid points. This
results in an algorithm with average time complexity O(N?) (Ling & Okada, 2007). For
more general distances Gottschlich & Schuhmacher (2014) have introduced the shortlist
method, which has been shown empirically to have a runtime of magnitude O(N??).
Furthermore, multiscale approaches (Gerber & Maggioni, 2017), subsampling techniques
(Sommerfeld et al., 2019) and sparse approximate methods have recently been developed,
including Schmitzer (2016) who computes OT via a sequence of sparse problems. However,
solving already moderately sized problems in reasonable time is still a challenging issue,
e.g., in two or three-dimensional imaging, where N is of magnitude ~ 10%-10% (Schrieber
et al., 2017), and large scale problems, such as temporal-spatial image or network analysis
seem currently out of reach. This encouraged the development of various surrogates for the
OT distance which are computationally better accessible. We mention thresholding of the
full distance leading to graph sparsification (Pele & Werman, 2009), relaxation (Ferradans
et al., 2014) and regularized OT distances (Dessein et al., 2018; Essid & Solomon, 2018;
Lorenz et al., 2021). Among the most prominent proposals for the latter approach is
the entropy regularization of OT (Cuturi, 2013; Peyré et al., 2019). Instead of solving
the linear program (1.1), the entropy regularization approach asks to solve for a positive
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regularization parameter A\ > 0 the regularized OT (ROT) problem

min_ (cp, ) + Af(m)

TERN?2
, (1.2)
subject to Am = [J .
The function f: ]R]ZVS — R is the negative Boltzmann-Shannon entropy
N2
f(m) = Z milog(m;) —m + 1 (1.3)
i=1

with the convention 0log(0) = 0. The ROT problem (1.2) is a strictly convex optimization
program and hence has a unique optimal solution m, 5 ¢(r, s) denoted as entropy reqularized
optimal transport plan. Moreover and different to (1.1), the regularization in (1.2) avoids
the non-negativity constraint w > 0 as entropy regularization already enforces a dense
structure for the ROT plan, i.e., all its entries are positive. This property, long known
and favoured, for instance, in traffic prediction (Wilson, 1969) is key for our sensitivity
analysis for ROT (Theorem 2.3) that might be of independent interest. The entropy ROT
distance, also known as p-th Sinkhorn divergence (Cuturi, 2013), is then defined as

W (1, 8) = (cp, mpx £ (r, s))l/p . (1.4)

The major benefit of entropy regularization is of algorithmic nature. The entropy ROT
plan is approximated by the Sinkhorn-Knopp algorithm initially introduced by Sinkhorn
(1964) that has a linear convergence rate and only requires O(N?) operations in each
step (Altschuler et al., 2017; Cuturi, 2013). It has been argued that as the regularization
parameter A > 0 decreases to zero in (1.2) this approximates a solution of the initial OT
problem and hence serves as a good proxy. Nevertheless, high accuracy is computationally
hindered in small regularization regimes (Benamou et al., 2015; Schmitzer, 2019) as the
runtime of these algorithms scale with A=2 (Altschuler et al., 2017; Dvurechensky et al.,
2018).

Among others, the results of this paper complement these computational findings for
ROT. We will show a substantially different statistical behaviour of the regularized (A > 0)
compared to non-regularized OT (A = 0) when the probability distributions r and s are
estimated from data, hence randomly perturbed. To this end and as often typical in
applications, the underlying population distribution r (resp. s or both) is estimated from
given data by its empirical version

1 n 1 m
Tn:EZ5XZ, (Sm:mZ(SK) (15)
i=1 i=1
derived by a sample of X-valued random variables X1,..., X, il (Y1,....Yn, ik s).
We investigate the fluctuation of the estimated ROT plan 7\ ¢(7,,s) and its distance
Wpaf(7n,s) around their population version mp, y ¢(r,s) and W) ¢(r,s), respectively.
More precisely, we prove (with proper y/n-standardization) central limit theorems as the
sample size n approaches infinity. Our main result (Theorem 3.1) concerns the empirical

ROT plan itself. Denoting by 2, convergence in distribution, we find that for A > 0 and
sample size n approaching infinity

\/ﬁ{ﬂnk,f(fm ) — Tpaf(r,8)} -z, Nz (0, Epar(r]s)) (1.6)



100 Empirical Regularized OT: Statistical Theory and Applications

that is the limit in distribution is given by a N?-dimensional Gaussian law. The covariance
Ypf(r]s) (see (3.1) for details) depends on A, the Hessian of the regularization function
f and the probability distributions r and s. From this, central limit theorems for the ROT
distance are obtained (Theorem 3.2) whose empirical version properly centred and scaled
is approximated for n — oo by a centred Gaussian law

VAW Py 8) = Wyr (1, 8)} —5 N (0,025 4(r]5)) - (1.7)

The results hold true for r = s and r # s and are valid for a broad class of regularizers f
n (1.2). These will be denoted as proper regularizers (Definition 2.2) and subsume various
regularization methods of OT (Dessein et al., 2018) including the widely applied entropy
ROT in (1.3). In particular, our theory covers limit laws for the empirical entropy ROT
plan and consequentially for the empirical Sinkhorn divergence.

Parallel to our work, central limit theorems for the optimal value of entropy regular-
ization in (1.2) and variations of that, e.g., the Sinkhorn loss (Genevay et al., 2018), are
derived in Bigot et al. (2019) with a technique introduced in Sommerfeld & Munk (2018)
for (non-regularized) OT distances. More recently, Mena & Niles-Weed (2019) analysed
entropy ROT distances for general sub-Gaussian probability distributions on R?. They
obtained a central limit theorem for a continuous counterpart of the optimal value in (1.2).
In contrast to finite spaces as treated here, the centring constant for the sample law in
Mena & Niles-Weed (2019) is given by an unknown empirical constant which depends on
the underlying measure and makes it difficult for immediate use for data analysis. Notably,
their technique of proof is completely different to ours and based on the Efron-Stein in-
equality that already turned out to be useful for central limit theorems for non-regularized
OT distances for absolutely continuous distributions (Del Barrio et al., 2019). In contrast
to Bigot et al. (2019); Mena & Niles-Weed (2019), our work demonstrates that proper
regularization for OT on finite spaces allows for a general statistical analysis of the corre-
sponding ROT plan and not only for an optimal value. This paves the way to a statistical
analysis for general functionals of the ROT plan including the results by Bigot et al.
(2019) as a specific instance (see Remark 3.4). We argue in Section 7 that compared
to any single value OT based distance (regularized or not), the ROT plan encodes more
structural information across scales and hence can serve as a more informative tool for
spatial data analysis. This will provide the foundation for our colocalization analysis of
protein networks (see Section 7.1.2).

Our findings for the empirical ROT distance highlight a substantial difference to related
limit laws for non-regularized transport (Sommerfeld & Munk, 2018; Tameling et al., 2019).
More specifically, for = s the empirical (non-regularized) transport distance W, (7, )
does not follow asymptotically a Gaussian law, in contrast to (1.7) and for p > 1 it holds
that

I 1/p
nt/? Wy(tn,r) — {m%’X(G,u)} , (1.8)
ucd*

as n — 0o (Sommerfeld & Munk, 2018). Here, ®* is the set of optimal dual solutions for
(1.1) and G is a centred N-dimensional Gaussian random vector with covariance matrix

ri(l—rp) —717y . —TTN
—ToTr1 7"2(1 — 7“2) e —ToTN
(r) = : : . : . (1.9)
—TrNT1 —TNT9 TN(l —TN)

This different limit behaviour provides some insight into the above mentioned computa-
tional difficulties to approximate the non-regularized OT distance by the Sinkhorn diver-
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gence as A tends to zero (see Schmitzer (2019) for a discussion). In contrast to Sommerfeld
& Munk (2018); Tameling et al. (2019), our approach relies on a sensitivity analysis which
builts on parametric optimization techniques for the non-linear optimization problem (1.2)
and, in particular, is based on the linear independence constraint qualification (LICQ) in
combination with an application of the implicit function theorem (IFT). Let us finally
stress that the limit distribution for the ROT plan in (1.7) highlights another major dif-
ference to the non-regularized OT plan. Remarkably, such a result is entirely unknown
for the non-regularized OT plan, to the best of our knowledge.

The outline of this paper is as follows. As a prerequisite for our main methodology
and results we provide in Section 2 all necessary terminology from convex optimization.
We derive sensitivity results for ROT plans which might be of interest by itself as they
describe the stability of ROT plans when perturbing the boundary conditions given by r
and s. Parallel to our work, such a sensitivity result was partially obtained by Luise et al.
(2018). However, their proof is carried out on the dual formulation of (1.2) and is limited
to entropy regularization. Section 3 is dedicated to distributional limit results stated in
Theorem 3.1 and Theorem 3.2. Moreover, applying recent results by Weed (2018), we
obtain rates for the regularizer A(n) tending to zero and depending on the sample size in
order to recover asymptotically the limit laws for (non-regularized) OT (see Section 3.2).
Our proof for (1.6) and (1.7) is based on a statistical delta method, and as a byproduct we
obtain consistency of the n out of n bootstrap in Section 4. This is again in notable contrast
to the (non-regularized) empirical OT distance, where the n out of n bootstrap is known
to fail (Sommerfeld & Munk, 2018). In Section 5 we investigate in a Monte Carlo study the
approximation of the empirical Sinkhorn divergence sample distribution by its theoretical
limit law. In addition, we analyse the influence of the amount of regularization A to the
accuracy of the normal approximation, compare our results to asymptotic distributions
for the non-regularized OT distance and investigate the bootstrap empirically. Finally, in
Section 7 we apply our methodology to the statistical analysis of colocalization for protein
interaction networks in cells. To this end, we provide confidence bands (Theorem 7.1) for a
measure of protein proximity based on the estimated ROT plan between two such protein
distributions. Depending on a resampling method to reduce computational complexity,
we propose a protocol to analyse data sets that are beyond the scope of computational
feasibility of current state of the art solvers.

2 Sensitivity Analysis for Regularized Transport Plans

As a prerequisite for our statistical analysis of empirical ROT quantities, we provide in this
section a sensitivity analysis of (1.2). More precisely, we investigate how the corresponding
optimal solution, i.e., the ROT plan

£ £(1,8) = argmin (¢, m) + A f(m) (2.1)
well(r,s)

changes when perturbing the marginal constraints given by r,s € Ay, where the set of
feasible solutions is denoted as II(r, s) (see also Remark 2.1 below). Within the context of
parametric optimization, which accounts for (possibly) large deviations of certain param-
eters, our focus is on small (local) variations usually termed as sensitivity analysis (see
Bonnans & Shapiro (2013); Gal & Greenberg (2012) and references therein). Our approach
is based on replacing the optimization problem by equations characterizing necessary and
sufficient optimality conditions for the ROT plan. An application of the implicit function
theorem (IFT) then yields the desired result. For a general overview on such an approach
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we refer to Fiacco (1984) and the references therein. We start with an easy but important
observation.

Remark 2.1. The ROT formulation in (1.2) and (2.1) can be stated in terms of only
2N — 1 equality constraints instead of 2N. In fact, since the total supply equals the total

demand (r,s € Ayn) any one of the equality constraints is redundant. In the sequel, we
define for r,s € Ay the feasible set for ROT as

II(r, s) == {7‘(‘ € R]ZV; | Ay = [r, s*]T}

with coefficient matriz A, and vector s,. The subscript star denotes the deletion of the last
row of the matriz A and the last entry of the vector s € Ay, respectively. This reduction
allows for linearly independent constraints described by A, or equivalently full rank of AT
(Luenberger et al., 1984) but requires some caution as we treat r and s asymmetrically.

In our analysis we consider general regularizers f in (2.1) that are of Legendre type
(Rockafellar, 1970), which means that f is a closed proper convex function on RV that is
essentially smooth and strictly convex on the interior of its domain (Dessein et al., 2018).
Recall that a function f is essentially smooth if it is differentiable on the interior of its
domain and for every sequence (zj)ren C int(dom f) converging to a boundary point of
int(dom f) it holds that limg_,o ||V f(zk)|| = +o0.

Definition 2.2 (Proper regularizer). Let f: RN R U{+o0} be twice continuously
differentiable on the interior of its domain with positive definite Hessian V2 f. Moreover,
assume for f and its Fenchel conjugate f* that

1. f is of Legendre type, 3. (0, l)N2 C dom f,
2. RY; C dom f*, 4. dom f CRY;.

Then f is said to be a proper regularizer.

Examples for proper regularizers are discussed more carefully in the next subsection.
Notice that by strict convexity, for each proper regularizer f, regularization parameter
A >0 and p > 1 the ROT plan in (2.1) is unique.

Theorem 2.3 (Sensitivity for the ROT plan). For f a proper regularizer, ro,so € An and
A > 0 consider the ROT plan (2.1). Then there exists a neighbourhood U C An X (AN)x
of (10, 50+) and a unique continuously differentiable function ¢, f: U — RN such that
Op f(T0,504) = Tpa,£(70,50). Moreover, the ROT plan is parametrized by ¢p x ¢ for all
(r,s4) € U with derivative at (ro, Sox) given by

Vpos(ros s0.) = [V2F (mps(ro, 50))] AT [A* [V2f(7fp,x,f(7“o,80))]_1Aﬂ_l ,

a matriz of dimension N* x (2N —1).

Proof. The proof relies on the basic sensitivity theorem (Fiacco, 1984, Thm. 3.2.2) con-
sidering optimization problems of the form

min f(z,¢)

sit. gi(x,e) >0,i=1,...,m, (2.2)
hj(x,e)=0,j=1,...,p

6
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with parameter e € R¥ considered to be perturbed and associated Lagrangian for u € RP
and v € R™ given by L(z,u,v,€) = f(x,€) — 30_ pjhj(x,€) + 3312, vigi(x, €). Notice
that the ROT problem (1.2) can be restated as

min2 (cp, ) + Af(m)
TERN (23)
s.t. h(me)=0,

where € = (79, s0,) € R?Y =1 0 € R?N~1 denotes the zero vector and the linear function
h(m,€) = A,m — e’ encodes the marginal conditions. In particular, we do not need to con-
sider inequality constraints as non-negativity is already enforced by the proper regularizer
in the objective function. Hence, for u € R?V~1 the corresponding Lagrangian simplifies
to

L(m, p,€) = {cp, ) + M (1) — h(m,e) .

In order to obtain sensitivity statements for the optimal solution of (2.3), i.e., the ROT
plan 7, 5 ¢, when perturbing e, it remains to check the assumptions in Fiacco (1984, Thm.
3.2.2) in case of convex optimization problems with linear equality constraints. For the
sake of readability these assumptions are recalled for the general problem (2.2) with linear
equality constraints only and then checked for the reformulation (2.3) of the ROT.

(i) Linear independence constraint qualification (LICQ) (Fiacco, 1984, p.24 (CQS3)):
The LICQ condition is fulfilled at the optimal solution x for (2.2) if V hj(x,¢€) for
all j are linearly independent.

Notice that V, h(m e) = A, and recall Remark 2.1 that by full rank of A, implies
LICQ to hold at any feasible solution, in particular, at the ROT plan 7, ) ;.

(ii) Second order sufficiency condition (Fiacco, 1984, Lem. 3.2.1): If the functions
defining problem (2.2) are twice continuously differentiable in a neighbourhood of the
optimal solution x, then the second order sufficiency conditions is satisfied at x if
there exists a vector u € RP such that the first-order Karush-Kuhn-Tucker conditions

hold, i.e.,

Vaol(x,p,e) =0
hj(x,e)=0,j=1,...,p

and further, if 2TV2L(z,p,€)2 > 0 for all vectors z # 0 such that Vh;(z,€)z = 0
forj=1,...p.

By definition of a proper regularizer the unique ROT plan m, 5 ¢ for € = (ro, So,) is
contained in the positive orthant Rgg (see Dessein et al. (2018) for details). The
objective and the constraint function h defining problem (2.3) are at least twice
continuously differentiable at (7, ) r,€). Moreover, Slater’s qualification constraint
(Fiacco, 1984, p.24 (CQ2)), i.e., the function h is (affine) linear and the ROT problem
is feasible, is fulfilled. For convex optimization problems with linear equality con-
straints this implies the existence of a vector p such that m, \ ¢ fulfils the first-order
Karush-Kuhn-Tucker conditions

VL (T(p,)\,fa H, 6) =0,
h(mpaf,€) =0.
Further, notice that for all vectors z # 0 it holds that 27 V2L (7, u, €)z = \zTV2 fz >

0 as by assumption on the regularizer V2 f is positive definite and A > 0. Hence, the
second order sufficiency condition is satisfied for the ROT.
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An application of Fiacco (1984, Thm. 3.2.2) based on the IFT to the first-order Karush-
Kuhn-Tucker conditions yields the statement of our claim. More precisely, there exists a
neighbourhood U around (rg, sg,) and a continuously differentiable function y: U — RY %
R2V=1 with y(r, s4) = (¢paf (7, 54)s Yprs (7, 8x)). In particular, the function ¢,y f: U —
RN parametrizes the ROT plan for all (r,s,) € U. It remains to compute the derivative
of ¢pa r at € = (10, 504). It holds that

B _ -1
vt = [0 = [V3L(rpa g, 0] AT [Ad V3L 5 )] AT

= _ -1
V'Yp,)\7f(€) - [A* [vic(ﬁp,k,fv 22 6)] ! AZ]

where we applied Fiacco (1984, equalities (4.2.8)) in the second equality. Notice again

that V2£ = AV2 f which finishes the proof. O]

Remark 2.4 (Sensitivity for non-regularized OT plans). Besides the uniqueness issue
in (non-regularized) OT, a similar strategy for OT plans (A = 0) does not work. Our
approach relies on the LICQ assumption that for (non-regularized) OT requires additional
knowledge about all binding constraints in the non-negativity constraints w > 0 for the
OT plan. In particular, the LICQ assumption fails to hold under degeneracy in linear
programming (Luenberger et al., 1984), i.e., if my(r, s) contains more than 2N — 1 zeroes,
e.g., forr =s.

Remark 2.5 (General cost, varying number of support points). In the course of this
paper, we typically assume that the cost comes from the underlying metric of the ground
space. However, Theorem 2.3 holds for any cost vector ¢ and formally also the subsequent
statistical analysis in Theorem 3.1 and Theorem 3.2. Nevertheless, in order to exclude
degeneracy of the limit, e.g., if the cost is given by a constant, we have specified the
theorems to ¢ coming from a distance. Further, the result implicitly covers different number
of support points of the probability distributions r and s, e.g., the probability distribution
r does not need to have full support. In such a case, we simply delete the zero entries and
our sensitivity result holds for the reduced problem.

Remark 2.6 (Influence curve). The result from Theorem 2.3 allows for a general analysis
to quantify the specific influence of a particular point and its mass to the ROT plan or the
corresponding divergence in (1.4). For the latter quantity denoted by ¢(r, s) = Wg/\’f (r,s),
we might in particular be interested in the rate of change that is caused along a perturbation
in direction 6,, —r. Here, we abuse notation and consider d,, as the i-th canonical unit
vector with entry equal to one at index 1. More precisely, we can calculate the influence
curve (see Rieder (2012); Van der Vaart (2000) for a concrete definition and applications
in robust statistics) given by

d d
¢,(5$i —7,8) = @hzong,f((l —t)r + toa,, 8) = &‘t:o (¢p, 7rp,>\,f(r —t(r —0g,),5))

-1 -1 -1
= o [V2 (s ()] AT [AL V2 (s )] AT] (= 6, 0)T
where 0 indicates the zero vector of dimension N — 1.

Remark 2.7 (Limitation to finite spaces). Our method of proof of Theorem 2.3 does not
extend to the countable nor to the continuous formulation of ROT. Already for the count-
able case existence and uniqueness of a ROT plan is not straightforward. For example,
the optimal value of ROT (1.2) can easily be infinity if the marginals are not restricted
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to have finite p-th moment and finite entropy (Kovacevié et al., 2015). Further, our ap-
proach in Tameling et al. (2019) for the treatment of OT distance on countable spaces is
not applicable as entropy is not differentiable in this case.

2.1 Proper Regularizers

The class of proper regularizers in Definition 2.2 is rather rich and some common ones are
the negative Boltzmann-Shannon entropy (1.3) or I, quasi norms (0 < p < 1) defined as
N2

f(m) =31, 7 for m € R>p, among others. For further examples that have also been the

focus of recent research (Dessein et al., 2018) we refer to Appendix A.
Example 2.8 (Sinkhorn divergence and optimal value function). For f the negative Boltz-
mann-Shannon entropy, p > 1 and X > 0 in (1.2), the gradient of the parametrization for
the entropy ROT plan wx(r,s) (we suppress additional indexing by p and f here) is given
by
-1
Vismalr,s) = DAL [A.DAT] |

where D € RVXN? 4 ¢ diagonal matriz with diagonal given by the entropy ROT plan
7(r, s). Further, let us denote by

Sx(r, s) = (cp, mA(r, 8)) + Nf(maA(r, 8)) (2.4)

the optimal value of the ROT problem (1.2). The gradient V(. oS\ has recently gained
quite some popularity (see e.g. Bigot et al. (2019); Feydy et al. (2019); Luise et al.
(2018)). Notice that Sx(r,s) = Sx(ma(r,s)) and hence by our result in Theorem 2.3 and
an application of the multivariate chain rule we obtain V(. ¢S precisely. For this, we
denote by

N,N—1

(f ) € ammar o)+ t) 3 Y (o (252 1) 29)

(X7B)€RN><RN71 Z,]:l

optimal dual solutions for the corresponding dual problem (Peyré et al., 2019) of (1.2).
In fact, the entropy ROT plan can be recovered from optimal dual solutions by

]‘ r,s r,s T
(T, 8) = exp ()\ <<ag’ ),B/(\’ )) A, — cp)>

(Peyré et al., 2019, Prop. 4.4), where exp (and log in the following) is meant to be
coordinate-wise. Recall the lower subscript star as we delete the last constraint in (1.2)
(Remark 2.1). Differentiation of the objective function (2.4) with respect to m and applying
the previous display yields

(r,s)  p(r,s) T
VeSa(malr, ) = ¢ + Mog(ma(r,5)) = (o, 80°7) " 4,
We conclude that
Virs)Sa(r,s) = V2 Sx(ma(r, 5)) V() maA(r, 8)
T

= (o, 80)" ADAT [ADAT] T = (o, ﬂg’*s))T .

We would like to stress that not all common regularizers for OT are proper regularizers.

Example 2.9 (A counterexample). For f the l, norm 1 < p < 400, Theorem 2.3 does
not hold. In fact, f is not a proper reqularizer and allows for a sparse ROT plan (Blondel
et al., 2018). In particular, we cannot guarantee that its corresponding ROT satisfies the
linear independence constraint qualification (see discussion after Theorem 2.3). Hence,
our proof strategy for l, (p > 1) ROT plans fails.
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3 Distributional Limits

For two probability distributions r, s € Ay, parameter A > 0, p > 1 and proper regularizer
[ an estimator for 7, » (7, s) in (2.1) is given by its empirical counterpart my, » (7, s) with
7, the empirical distribution of the i.i.d. sample Xi,...,X,, in (1.5). The next theorem
states a Gaussian limit distribution for the empirical ROT plan. Since the sensitivity
result in Theorem 2.3 holds regardless of r = s or r # s and as the ROT plan is always
dense, we do not derive any substantially difference regarding statistical limit behaviour
in either of these cases.

Theorem 3.1. Let r,s € Ay be two probability distributions on the finite metric space

(X,d) and let 7, be the empirical version given in (1.5) derived by Xi,..., X, v
Then, as n — oo, it holds that
. D
Vndmpa p(Fn, ) — mpa (1, 8)F — N2 (0,5, 5 7(7s))
with covariance matrix
Spoaf(r]s) = Vi b (1, ) S(r) [Vr dpr g (r, 8] (3.1)

where X(r) is defined in (1.9) and V, ¢p x ¢(7, 5x) are the partial derivatives of ¢p x ¢ with
respect to r as given in Theorem 2.5.

Proof. Since the vector n#, follows a multinomial distribution with probability vector r,

the multivariate central limit theorem yields \/n (7, —7) LN ~N(0,%(r)). The multivariate
delta method in conjunction with the previous sensitivity analysis for regularized transport
plans concludes the statement. More precisely, we obtain that

VAT f(Fr, 8) — A p (1, 8)} = Ve A{dpr £ (Prs $x) — dpa,r (7, s6)}
L N2 (0, Vs dpr 1 (1, 50) S(1) [V b5 (1, 8)]T) -
Il ]

Based on Theorem 3.1 it is easy to conclude limit distributions for the empirical coun-
terpart of the ROT distance (1.4). Here, s (which might be equal to r) plays the role
of a fixed reference probability distribution to be compared empirically with the prob-
ability distribution r. We again do not derive any substantially different distributional
limit behaviour between the cases r = s and r # s. This is in notably contrast to the
non-regularized OT (see the discussion in Section 1 and Section 3.2).

Theorem 3.2. Under the assumptions of Theorem 3.1, as n — oo, it holds that

VAW Py 8) = Wy (1, 8)} 5 Ny (0,02 5 4(r]s)) (3.2)

with variance
oo s (rls) =7 Spas(rls) v, (3.3)

where v is the gradient of the function m — (cp, 7r>1/ ? evaluated at the regularized transport
plan 7y x ¢(r,8), and Xy, 5 £(r]s) is the covariance matrixz from Theorem 3.1. Standardizing
the Lh.s. in (3.2) by the square root of the empirical variance 0’27/\7‘)"(7%”’8) results in a
standard normal limit distribution.

10
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Proof. Let G ~ Ny2(0,3 ¢(r]s)) be an N?-dimensional Gaussian random vector accord-
ing to the limit distribution in Theorem 3.1. The multivariate delta method yields

1 1

\/ﬁ {Wpa)vf(fn? S) - Wp,)\7f(r> 5)} = \/ﬁ {<Cv 7Tp,/\7f(fm 5)>E - <C7 7Tp7)\,f(’l“, 5)>5} £> ’VT G.

The variance of the random variable v7 G is 0137/\7f(7']5) = IS, 1 f(r|s)y. In partic-
ular, X, 5 r(r|s) is continuous in r. Consequently, by the strong law of large numbers
7 2% r and the continuous mapping theorem we have that 027)\7]0(7%\5) L5 037/\7f(r|5)
which together with Slutzky’s theorem (Van der Vaart, 2000, Lemma 2.8) concludes the
statement. O

As a corollary, we immediately obtain limit distributions for the empirical entropy
ROT plan and the empirical Sinkhorn divergence.

Corollary 3.3 (Sinkhorn transport and Sinkhorn divergence). Consider the negative
Boltzmann-Shannon entropy f in (1.3). Then the statements in Theorem 3.1 and Theo-
rem 3.2 remain valid. Note, that the gradient in the corresponding covariance matriz (3.1)
s given by Example 2.8.

Remark 3.4 (Smooth ROT functionals). From Theorem 3.1 we easily derive asymptotic
distributions for other sufficiently smooth functionals of the ROT plan. For instance, as-
sume A > 0 and p > 1 to be fired and let f be the Boltzmann-Shannon entropy. For
notational convenience we suppress the dependence on p and f here. Consider the corre-
sponding ROT problem (1.2) and its optimal objective value Sx(r,s) in (2.4). In conjunc-
tion with the sensitivity analysis from Ezample 2.8 and an application of the statistical
delta method we conclude for sample size n — oo that

Vi {Sa(n, 8) — Sa(r, 5)} 2 <G,a§“>> ,

where G ~ Ny (0,3(r)) and ag\r’s) in (2.5). This result has been obtained independently
in Bigot et al. (2019). An identical argument for the case r # s can be applied to obtain
limit laws for the Sinkhorn loss (Genevay et al., 2018) defined by

Ly(r,s) == Sx\(r,s) — % {Sx(r,r) — Si(s,s)} . (3.4)

It then follows for sample size n — oo that

R r,5 1 rr rr
VALAGne) = D9} 2 (G = 3 (7 4 57 )

with B/(\T’T) augmented from RN=1 to RN by a coordinate set to be zero (the augmentation
is due to deletion of the last constraint as discussed in Remark 2.1). An interesting case
arises for the Sinkhorn loss Ly(r,s) andr = s € Ayn. As detailly explained by Bigot et al.
(2019), it holds that VLy(r,r) = 0. A first-order expansion yields that \/nLy(y,r) con-
verges to a point mass at zero, i.e., a degenerate limit law useless for statistical inference.
However, a second-order expansion based on a perturbation analysis for the dual solutions
provides a non degenerate asymptotic limit of nLy(7y,r). This can be represented as a
weighted sum of independent x3 random variables. The weights of this sum are then given
by the eigenvalues of the Hessian V?Ly(r,r) (Bigot et al., 2019, Thm. 2.8).

11
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3.1 Estimating Both Probability Distributions

Theorem 3.1 and Theorem 3.2 also hold true if we estimate both distributions r and s by

their empirical versions 7, and §,, in (1.5) derived by two collections of X-valued random

variables X1,..., X, M and independently Yi,...,Y,, i s, respectively. Note that

we treat r and s asymmetrically (see Remark 2.1). Hence, the underlying multinomial
process is based on the reduced multinomial vector (r, s.) rather than (r,s). The scaling
rate is given by /?m/n+m such that n A m — +o00 and ™/ntm — ¢ € (0,1). For instance,
the limit distribution for the empirical ROT plan with parameters A > 0, p > 1 and proper
regularizer f then reads as

nm

. D
T {mpnf(Pr, 8m) — mpap(r,8)} — N2 (0,55 (7, 5)) -

The variance X, 5 f(r, s) is different to X, 5 ¢(7]s) from Theorem 3.1. More precisely, given
dX(r) 0

the covariance matrix of the reduced multinomial process (4, 7, s4) = 0 (1-6)S(s0) | 2

we find that
Ep,)\,f(r, S) = V(ﬁp,)\,f (Tv 5*) 2(5, r, 5*) v¢p,)x,f(h 5*)T . (3'5)

Similar the limit distribution for the empirical ROT distance now reads as

nm

D
- ——— Wy r 5 (Pny 8m) — Wpa p(r,8)} — M (0,J£7A7f(T, s)) )

The variance 012) A f(r,8) is again different to o? o/ (7ls) from Theorem 3.2 and given by
012)7/\,f (r,8) =T S, 4(r, 8) 7, where we recall the definition of v from Theorem 3.2.

3.2 Comparison to (non-regularized) Optimal Transport

The ROT distance approximates the OT distance as A > 0 tends to zero (Dessein et al.,
2018). Especially for Boltzmann-Shannon entropy regularization, the speed of convergence
has been the topic of quite some work dating back at least to Cominetti & San Martin
(1994) (see Weed (2018) for a recent contribution and further references). In fact, for
general regularizers f such that Rﬁé C dom(f) a similar argument as in Weed (2018,
Prop. 1) yields that B

W;)\,f(’r’ S) - W;]))(Ta S) < )‘Rf(rv S)

with Ry(r, s) == max, zer(rs) f(m) — f(7) the general regularization radius of II(r, s), the
set of all feasible OT plans between marginals r and s. For finite spaces with N points
Ry can usually be bounded by a quantity independent of r,s. For instance, for f the
Boltzmann-Shannon entropy we obtain Ry < 2log(/N) and hence that

sup | W 4(r,) ~ WE(r s)‘ < 2X\log(N). (3.6)
rSEAN

By a similar argument as in Bigot et al. (2019, Theorem 2.10) we decompose

Vn {Wixn), (Frs8) = Wy . (1 3)}

_\F{ D s (rn,s)—W(rn, )}+\F{ b (1, s) — Wﬁmn),f(?"’s)} (3.7)
+ VWL (P, s) — WE(r,s)} .

12
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For A(n) = o (n_l/Q) the first two terms converge to zero by (3.6) while the third term
asymptotically follows the limit law for the (non-regularized) OT distance (Sommerfeld
& Munk, 2018). Hence, the limit law of the empirical Sinkhorn divergence in (3.7) is the
same as for its non-regularized counterpart. Note that this holds for W and in fact
fails for W), 5  in the case r = s. Our numerical analysis indicates that for the Sinkhorn
divergence even much slower rates for A > 0 to zero are sufficient to approximate the limit
law for the OT distance (for some selective numerical results see Figure 2 in Section 5). In
fact, for fixed marginals r and s exponentially fast convergence is possible (Weed, 2018).
Nevertheless, as our analysis requires uniformity in the marginals the sub-optimality gap
appears as a constant which can be arbitrarily small, in general.

4 Bootstrap

The (non-regularized) OT distance on finite spaces defines a functional that is only direc-
tionally Hadamard differentiable, i.e., has a non-linear derivative with respect to r and s.
Hence, the (naive) n out of n bootstrap method to approximate the distributional limits for
the (non-regularized) empirical OT distance fails (Sommerfeld & Munk, 2018). However,
our arguments underlying the proof of Theorem 3.1 for ROT are based on the usual delta
method for linear derivatives. As a byproduct we obtain that for the ROT plan and for
the ROT distance the n out of n bootstrap is consistent. More precisely, conditionally on
the data Xi,..., Xy, the law of the multinomial empirical bootstrap process \/n{7; — 7}
is an asymptotically consistent estimator of the law for the multinomial empirical process
Vn{fy, —r} (Van der Vaart & Wellner, 1996, Theorem 3.6.1). Here, 7 = 257 | oxy is

the empirical bootstrap estimator for 7, derived by a sample X7,..., X} s Tn. Such
conditional weak convergence can be formulated in terms of the bounded Lipschitz metric,
that is

sup  |E[a(vn{r), — P} X1, o, Xo] = E[R(Vn{Fn — 7})]] (4.1)

he€BL1 (RY)

converges to zero in probability, where

BL; (RY) == {fr RY 5 R| sup [f(z)| < 1, |f(z1) — f(z2)| < [z —962\\}

xeRN

is the set of all bounded functions with Lipschitz constant at most one. Combined with
the consistency of the delta method for the bootstrap (Van der Vaart & Wellner, 1996,
Theorem 3.9.11), this proves the consistency for the empirical bootstrap ROT plan. The
statements again hold true for r = s and r # s.

Theorem 4.1 (n out of n bootstrap). Under the assumptions of Theorem 3.1 the n out
of n bootstrap for the regqularized optimal transport plan is consistent, that is

sup  |E[h(vn{mprp(Pr,8) — Tpaf(Fny8)} X1, -, Xy
heBLl(RNZ)

. P
— E[h(Vn{mp, s (Pny 8) = Tpp(r8)})]] — 0.
This holds as well for the reqularized optimal transport distance

sup \E[h(\/ﬁ{WP,A7f(f;, S) — Wp’)\7f(f’n, S)} |X1, . ,Xn]
heBL1 (R)

— E[A(1 AWy £ (s 8) — W 5 (r, 8)})]| — 0.

13



110 Empirical Regularized OT: Statistical Theory and Applications

Analogously, the bootstrap consistency is valid if Y*,..., Y} i 5y, independently to
X7, X b 7 (see Section 3). Identical arguments can be applied to show that the

n out of n bootstrap for the Sinkhorn loss Ly(r,s) in (3.4) for r # s € Ay is consistent.

4.1 The m out of n Bootstrap for the Sinkhorn Loss

It is well known that the n out of n bootstrap usually fails for vanishing first-order deriva-
tives (see Chen & Fang (2019); Rippl et al. (2016); Shao (1994) and references therein).
This case arises for the Sinkhorn loss Ly(r,s) in (3.4) for r = s € Ayx (see Remark 3.4).
A potential remedy is the so called Babu-Bootstrap correction (Babu, 1984) as suggested
by Bigot et al. (2019). However, although the empirical performance of the Babu Boot-
strap for the Sinkhorn loss is well investigated, it still misses theoretical guarantees. We
like to propose an alternative bootstrap procedure. In fact, the m out of n bootstrap for
m = m(n) such that m/n — 0 remains consistent for the Sinkhorn loss under first order
degeneracy. The proof immediately follows from Shao (1994, Thm. 1).

Theorem 4.2 (m out of n bootstrap). Under the assumptions of Theorem 3.1 and the
case r = s € Ay the m out of n bootstrap is consistent for the Sinkhorn loss (3.4). More
precisely, for m = m(n) such that m = o(n) as n — oo it holds that

sup ‘E[h(n {LA(7r,,7m) — LaA(Tn, ™) DI X1, - o, Xn] — E[h(RLA(Tp, 7“))” 0.
he€BL1 (R)

5 Simulations

We illustrate our distributional limit results in Monte Carlo simulations. As an illustrative
example, we investigate the speed of convergence for the empirical Sinkhorn divergence
(p = 1) to its limit distribution (Corollary 3.3) in the one-sample case in both settings
r = s and r # s. As the Sinkhorn divergence approximates the (non-regularized) OT
distance, we also compare for small regularization parameters the finite sample distribution
of the Sinkhorn divergence with the limit laws for the (non-regularized) optimal transport
distance (OT distance) in (1.8). All simulations were performed using R (R Core Team,
2016). The Sinkhorn divergences are calculated with the R-package Barycenter (Klatt,
2018).

Remark 5.1 (Computation of (empirical) variances). For p = 1 it holds that O’%’A (rls) =

'S 4(rls)cr. According to Ezample 2.8 and Corollary 5.3, the computation of the
variance involves the computation of

S (rls) = Viedra (7, 50) B(r) [Vedrap(r, 50)]"

=D AT [A.DAT]

-1
Y(r) [A. D AT] e A D

where the subscript notation [1 : N| ([N : 1]) denotes the first N columns (rows) of the
corresponding matriz. Recall that D is equal to a diagonal matriz with diagonal given by
the entropy ROT plan w1 » ¢(r,s) and A, is the coefficient matriz in (1.1) reduced by its
last row. Besides calculating the entropy ROT plan, the computation of the variance faces

matriz inversion. However, the matriz A, D AT is symmetric and positive definite by full
R 1II
rank of A,. Moreover, it posses a block structure given by A, D AT = nr, tsif ] , where

I1; 5 r denotes the matriz version of the entropy ROT plan reduced by its last column, and

14
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we set R = diag(r) and Sy = diag(sy). Hence, we can apply a block wise inversion and
obtain

L [R — Iy SO, f}

[A,DA]] 1 =
* [1:N] _ -
—S (R Tg SotmT |

-1

We consider the finite metric space X to be an equidistant two-dimensional L x L grid
on [0,1] x [0, 1] and the cost ¢ € R consisting of the euclidean distance (p = 1) between
the pixels on the grid. Note that different grid sizes for fixed regularization parameter A
correspond to different amounts of regularization. As recommended by Cuturi (2013), we
let the amount of regularization depend on the median distance gs(c) between the pixels
on the grid. More precisely, we define the regularization parameter by

A= Ao gs0(c), (5.1)

where \g > 0 is a parameter that we vary for different simulations. The probability
distributions r, s € A;2 on X are generated as two independent realizations of a Dirichlet
random variable Dir(a) with concentration parameter a = (a, ..., a) € RE*L. The choice
o =1 corresponds to a uniform distribution on the probability simplex Aja.

5.1 Speed of Convergence

We first generate for grid size L. = 10 probability distributions » on X as independent
realizations of a Dir(1) random variable. Given such a distribution, we fix the amount of
regularization to A = 2 ¢s0(c), that is A\g = 2 in (5.1). We then sample n = 25 observations
according to this probability distribution r and compute

n

— o Wi (Pn, 1) = Wi p(rr) ),
Ui)\J'(Tn ’ T) f\Un f

referred to as a Sinkhorn sample. This is repeated 20, 000 times and simulates the scenario
when the data generating probability distribution r coincides with the probability distri-
bution to be compared. Similarly, we consider the same set up in the case r # s when
we simulate independently a second distribution s ~ Dir(1). The finite sample distribu-
tions are then compared to their theoretical limit distributions which by Theorem 3.2 are
standard normal distributions.

We demonstrate the results by kernel density estimators and corresponding Q-Q-plots
in the first row of Figure 1 (a) and (b). We observe that the finite sample distribution
is already well approximated for small sample size (n = 25) by the theoretical limit
distribution. However, the amount of entropy regularization (A\g = 2) added to OT is
rather large. We find that for sample size n = 25 the smaller the regularization Ag the
worse the approximation by the theoretical Gaussian limit law. This is depicted in the
second row of Figure 1 (a) and (b) where we analyse for small regularization parameters
the Kolmogorov-Smirnov distance (maximum absolute difference between empirical cdf
and cdf of the limit law). Note, that the theoretical limit law approximates the finite
sample distribution slightly better in the case r # s.

We additionally investigate the speed of convergence of the finite sample distribution
in the small regularization regime when the sample size is large (n > 25). The approxi-
mation is clearly driven by the amount of regularization. This is illustrated for different
regularization parameters A\g and large sample size in Appendix B. As a benchmark, for
Ag = 0.2 we already require n = 5,000 samples to observe an accurate approximation by
the limit distribution from Theorem 3.2.
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Figure 1: (a) Finite sample accuracy of the limit law in the one sample case for r =s. First
row: Finite sample density (dashed line) of the empirical Sinkhorn divergence for n = 25 on a regular grid
of size L = 10 with regularization parameter Ao = 2 compared to its limit law (standard Gaussian, solid
line). The finite sample density has been estimated with a kernel density estimator with Gaussian kernel
and Silverman’s rule to select bandwidth. On the right the corresponding Q-Q-plot, where perfect fit is
indicated by the red solid line. Second row: L.h.s. same setting as above, Ao = 0.6. R.h.s. Finite sample
accuracy in dependence on Ap: The Kolmogorov-Smirnov distance on a logarithmic scale averaged over
five realizations of a Dir(1) distribution between the finite sample distribution (n = 25) of the empirical
Sinkhorn divergence and the standard normal distribution as a function of the regularization Ao.

(b) Finite sample accuracy of the limit law in the one sample case for r # s. Same scenario as in
(a) whereas here the probability distribution r to be sampled is not equal to the fixed reference probability
distribution s.
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Motivated by the inaccurate approximation for small sample size in the small regular-
ization regime and the fact that the Sinkhorn divergence converges to the OT distance
as Ao \( 0, we compare the finite sample distribution to the (non-regularized) OT limit
law by Sommerfeld & Munk (2018) for the case r = s. From Figure 2 we see that the
finite sample distribution for A\g = 0.1 and Ao = 0.05 and small sample size (n = 25) is
approximated by the OT limit law in (1.8).

Finally, we simulate the (naive) n out of n plug-in bootstrap approximation from Sec-
tion 4. In fact, the finite bootstrap sample distribution is a good approximation of the
finite sample distribution. However, as before, the speed of convergence to the corre-
sponding limit distribution is driven by the amount of regularization. Further details and
illustrations for the bootstrap approximation are deferred to Appendix B.

167 167

~

OT Limit Quantiles
OT Limit Quantiles

o
©
o
®

04
04 08 12 04 08 12 16 04 08 12 04 08 12 16
Sinkhorn Quantiles Sinkhorn Quantiles

(a) Ao = 0.1 (b) Ao = 0.05

Figure 2: Comparison to OT limit law in the one-sample case for r = s. Comparison of the finite
sample distribution (n = 25) of the empirical Sinkhorn divergence on an equidistant grid of size L = 10 for
regularization parameter Ao = 0.1 (a) and Ag = 0.05 (b) to the OT limit law in (1.8) (Sommerfeld & Munk,
2018, Theorem 1). Kernel density estimator for the Sinkhorn sample (dotted line) and the OT sample
(solid line) with corresponding Q-Q-plot on the right. The OT distance limit distribution is approximated
by a sample of size 20,000 implemented in the R-package otinference (Sommerfeld, 2017).

In summary, the finite sample distribution converges to its theoretical limit law. The
accuracy of the approximation is driven by the regularization parameter \y. For large
regularization added to OT, the limit law serves as a good approximation to the finite
sample distribution, already for small sample sizes and independent of the size of the
ground space. As Ay decreases, accuracy of approximation decreases which is consistent
with our theoretical findings in Section 3.2.

6 Reducing Computational Complexity by Resampling

Dvurechensky et al. (2018) analyse algorithms to compute the entropy ROT that yield
e-approximates to the OT distance, i.e. W), +(r,s) < Wi(r,s) + e. These methods are
usually based on matrix scaling of the underlying N x N distance matrix in order to find
the entropy ROT plan 7y 5 ¢(r,s) in (2.1). With increasing number of support points N
of the underlying distributions, matrix scaling becomes computational infeasible mainly
because of the high memory demand to store and scale the distance matrix.

In order to maintain computational feasibility, we modify an idea introduced by Som-
merfeld et al. (2019), i.e. we use a resampling scheme of the underlying probability dis-
tribution. The subsequent data example in Section 7 requires to deal with probability
distributions with support on up to N = 300,000 points (images represented by nor-
malized gray scale pixel intensities). This requires storing a distance matrix with entries
300,000%2 = 9 - 10'? which is far beyond the storage capacity of any standard laptop.
In order to stay within the scope of computational feasibility, we resample from these
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probability distributions n = 50,000 data points which reduces the required storage to
50,000? = 2.5-10? entries. Note that while the number of support points of the resampled
probability distributions decreases just by a sixth, the memory demand for the correspond-
ing distance matrix is reduced by three orders of magnitude. This is crucial as it keeps
matrix scaling feasible.

7 Colocalization Analysis

Complex protein interaction networks are at the core of almost all cellular processes.
To gain insight into this interaction a valuable tool is colocalization analysis of images
generated by fluorescence microscopy aiming to quantify the spatial proximity of proteins
(Adler & Parmryd, 2010; Wang et al., 2019; Zinchuk & Grossenbacher-Zinchuk, 2014).
With the advent of super-resolution microscopy (nanoscopy) nowadays protein structures
at a size of a single protein can be discerned. This challenges conventional colocalization
methods, e.g., based on pixel intensity correlation as there is no spatial overlap due to
blurring anymore (Xu et al., 2016). The aim of this section is to highlight the benefit of
our theory for colocalization in nanoscopy. To this end, we introduce a certain functional
of the regularized transport plan as a novel measure for spatial proximity, particularly
suited for highly localized image structures as obtained from super resolution microscopy.
In the following, we provide a brief illustration. A full analysis on various biological images
and a comparison with existing methods is beyond the scope of this paper and will be
published separately.

In Figure 3 2-colour-STED (see Hell (2007); Sahl et al. (2017) for more background on
this super resolution technique) images (recorded at Jakobs’ lab, Department of NanoBio-
photonics, Max-Planck Institute for Biophysical Chemistry, Gottingen) are displayed for
illustrative purposes. These are generated by inserting two different fluorophore markers
which emit photons at different wavelength (two colours) and reading them out, after ex-
citation, with a stimulated emission depletion (STED) laser beam (Hell, 2007). Figure 3
(a) shows 2-colour-STED images which were generated by attaching the two markers to
the protein ATP Synthase. Figure 3 (b) displays the second case in which the markers are
attached to two different proteins ATP Synthase and MIC60.

We aim to quantify the spatial proximity of ATP Synthase and MIC60 (Figure 3 (b))
and to set this in relation with the highest empirically possible colocalization represented
by the double staining of the protein ATP Synthase (Figure 3 (a)). The overlay of the
channels from setting 2 in Figure 3 (b) already indicates that ATP Synthase and MIC60
are located in different regions as there are only small areas which are yellow. In contrast,
and as expected for the highest empirically possible colocalization, the yellow areas in the
overlay of the two channels from the double staining in Figure 3 (a) are more pronounced.
In the following, we illustrate that the ROT plan (2.1) provides a useful tool to measure
colocalization in super-resolution images as it describes the (regularized) optimal matching
between the two protein intensity distributions. We stress that the idea to use OT for
image comparison (Rubner et al., 2000) and for colocalization is not new, however, previous
attempts (Zaritsky et al., 2017) focus on the one-dimensional pixel intensity distribution
of grey values which does not capture the spatial information.

The set of pixels define the ground space X = {z1,...,2ny} with N = N, - N, where
N, N, are the number of pixels in z- and y- direction, respectively. The pixels colour
intensities are understood (after normalization) as discrete probability distributions r, s €
Ap on an equidistant grid in [0, N - [] x [0, N, - ], where [ is the pixel size. The cost to
transport pixel intensities from one pixel to the other is given by the squared euclidean
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(a) Setting 1: Double staining of the protein ATP Synthase.

(b) Setting 2: Staining of the proteins ATP Synthase (green) and MIC60 (red).
Figure 3: STED images for colocalization analysis. Exemplary STED images of the two colocaliza-

tion scenarios. Left: Images of a green and a red channel. Image size 666 x 666 pixels, pixel size = 15nm.
Middle: Zoom ins (128 x 128 pixels). Right: Overlay of zoomed in images.
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distance ci_yn4; = |z — xjH2 and cpax = diam(X) is the maximal distance on the
ground space X. We introduce the regularized colocalization measure RCol which is based
on the ROT plan 7, 5 (7, s) and defined for t € [0, cmax] by

N2
RCol := RCol(mpx £ (r, 8))(t) = D mprs(rys),1{c;i < t}. (7.1)
=1

Intuitively, RCol(mp x ¢(r,s))(t) is the proportion of pixel intensities which is transported
on scales smaller or equal to ¢ in the (regularized) optimal matching of the two intensity
distributions with respect to some amount of regularization specified by A. In contrast to
the ROT distance (which is just a real value) the RCol-curves provide insight on how much
mass on each spatial scale has to be moved in order to match the protein structures. This
is biologically relevant, as proteins to be matched above a certain scale will not undergo
a chemical reaction. The function RCol(7) constitutes an element in D[0, cmax] the space
of all cadlag functions (Billingsley, 2013) on [0, cmax| equipped with the supremum norm

[flloo =" sup [f(t)].

t€[070max}
Theorem 7.1. Let RCol, := RCol(mp 5 ¢ (7, s)) be the empirical reqularized colocalization.
Under the assumptions of Theorem 3.1, as n — oo it holds that

NG {R/C\oln - RCoz} Dy Reol(@),

where G is the centred Gaussian random variable in RN” with covariance Yo f(r]s) given
in (3.1).

Proof. The map m — RCol(7) is linear and 1-Lipschitz. Hence, according to Theorem 3.1,
the continuous mapping theorem (Van der Vaart, 2000, Theorem 18.11) and

N {fTCFln - Rcol} = RCl(v/n {mpr s (s 8) — Ty s (ry 5)})
the assertion follows. O

This result provides approzimate uniform confidence bands (CBs) for the regularized
colocalization. For a € (0,1), let u;_, be the 1 — « quantile from the distribution of
IRCol(G)||o- Hence,

up— — ur_— —
I, = [— =% | RCol,, —=2 + RCol, (7.2)
n

vn vn
is a 1 — a approximate uniform CB for the regularized colocalization RCol. More precisely,
it holds that lim, _, P(RCol € Z,,) = 1 — . In our subsequent data example we require
to estimate both probability distributions r,s € Ay (see Section 3.1). The confidence
band (7.2) naturally extends to this case. Defining for n,m € N the two sample empirical

version of the regularized colocalization PTC\oln,m = RCol(mp x #(7n, 5m)), we have, as the
sample size n A m — +oo and m/ntm — 6 € (0,1), that

nm — D
1/ i {RColn,m - RCOI} — RCol(G) . (7.3)

Now, the random variable G is centred Gaussian with covariance matrix 3, \ ¢(r, s) given
in (3.5). In particular, for equal sample size n = m the corresponding two sample CB

reads as
U _ — U1 o
A _@ + RColy, p, @ +RColpn| , (7'4)
\/FL ’ n ’

vn

with uj_, according to the supremum of the r.h.s. of (7.3).

)
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7.1 Bootstrap Confidence Bands for Colocalization

We denote by I@Zn a bootstrap version of the regularized colocalization based on the

empirical bootstrap estimators 7, and ), derived by bootstrapping from the empirical dis-
tributions 7, and §,, (see Section 4). Recall that RCol is Lipschitz and therefore, according
to Theorem 4.1 and an application of the continuous mapping theorem for the bootstrap
(Kosorok, 2008, Proposition 10.7), we deduce that

E [h (H /Fp{fﬁ;n . ffc\olm}H )\Xl, X Y ,Yn]
[ee]

- o - ne )] o

Hence, the quantile u;_, is consistently approximated by its bootstrap analogue, say uj_,,.
This yields a bootstrap approximation of the CB in (7.4).

sup
heBL1 (R)

Remark 7.2 (Reducing Computational Complexity by Resampling). The evaluation of
RCol relies on the computation of the corresponding ROT plan. Algorithms for the ROT
plan are usually based on matriz scaling of the underlying N x N distance matriz (see
Peyré et al. (2019) and references therein). For increasing number of support points
N of the underlying probability distributions r, s these algorithms become computationally
challenging. Resampling from the distributions r and s (see also Sommerfeld et al. (2019))
alleviates this problem. For instance, the subsequent data example requires to deal with
probability distributions supported on up to N = 300,000 points (images represented by
normalized gray scale pizel intensities). Matrix scaling requires a storage capacity for
300,000% = 9-10'2 entries which is far beyond the storage capacity of standard computers.
In contrast, resampling n = 50,000 data points only demands storage for 2.5 -10° entries
which is available on any standard laptop. Notice that while the number of support points
1s only decreased by a sizth, the memory demand is reduced by three orders of magnitude
and consequently keeps matrix scaling feasible.

7.1.1 Validation of Bootstrap and Resampling on Real Data

The goal of the following analysis is to investigate the validity of the bootstrap CBs
in combination with the resampling scheme (see Remark 7.2). To this end, we consider
different pairs of zoom ins (128 x 128 sections) of the STED images in Figure 3 including the
pairs depicted in the middle of each setting. For these instances we are still able to calculate
the full regularized colocalization RCol without resampling. Our goal is to validate that
RCol is covered by the bootstrap confidence bands. Statistically speaking after fixing a
significance level «, we are interested how close the empirical coverage probability is to the
claimed nominal coverage of 1 — .. The regularizer f is the entropy (1.3) with amount of
regularization given by (5.1) for specified A\g > 0. We resample n = 2000 times according to
the intensity distribution of the 128 x 128 image, calculate B = 100 bootstrap replications
and set the significance level for the CBs in (7.4) to a = 0.05. As an illustrative example,
Figure 4 (a) demonstrates a case where RCol is covered by the bootstrap CB.

To investigate how well the empirical coverage probability approximates the nominal
coverage probability of 1 — a = 0.95, we repeat our approach 100 times and report how
often RCol is covered by the bootstrap CB. The result is given in Table 1. For bootstrap
replications B = 100 and rather large amount of regularization Ao € {0.5, 1, 2} we are
close to the nominal coverage probability. For small regularization Ay = 0.01 we obtain a
slightly smaller empirical coverage probability than desired. This observation is consistent
with our empirical simulations for the ROT distance in Section 5.
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Figure 4: Entropy regularized colocalization analysis. (a) Setting two: Staining of ATP
Synthase and MIC60 for the zoom in (128 x 128 image). The sampled regularized colocalization
(Mo = 0.01) (solid blue line, resampling n = 2000) with bootstrap confidence bands (gray area between
dashed blue lines) based on the n out of n bootstrap with B = 100 replications and a = 0.05. Red
solid line: Population regularized colocalization. (b) Resampled colocalization analysis. Sampled
regularized (Ao = 0.01) colocalization (double staining of ATP Synthase, blue solid line; staining of ATP
Synthase and MIC60, red solid line; resampling n = 50,000) based on the images on the left in Figure 3
together with their difference (solid green line) with bootstrap confidence band (gray area between dashed
green lines, n out of n bootstrap, & = 0.05, B = 100 bootstrap replications).

Table 1: Validation of the bootstrap confidence bands. Empirical coverage probability. Resampling
n = 2000, bootstrap replications B = 100, regularization Ao and nominal coverage 1 — o = 0.95.

Regularization \g Empirical coverage probability
2 0.98
1 0.97
0.5 0.93
0.01 0.88

7.1.2 Empirical Colocalization Analysis of the STED Data

We apply our resampling scheme on the full sized images (666 x 666 pixels) to evaluate the
spatial proximity for each of the two settings, i.e., double staining of ATPS (Figure 3 (a))
and staining of ATPS and MIC60 (Figure 3 (b)). We expect the regularized colocalization
for setting one (double staining of ATP Synthase), say RCole®" to be large in small
distance regimes as most of the transport of pixel intensities should be carried out on
small distances. For the regularized colocalization in setting two (staining of ATP Synthase
and MIC60), say RCol“®| we should observe that there is a significant amount of pixel
intensities transported over larger distances resulting in a colocalization that is rather
small in the small distance regimes.

Recall that in our validation setup we resampled n = 2000 times out of pixel intensities
represented by 128 x 128 images. To achieve comparable accuracy, we require here for 666 x
666 pixel images a resampling scheme based on n = 50,000 resamples of the underlying
pixel intensity distributions. We then calculate their sampled regularized colocalization,

—double ——Cross .
denoted as RCol,, ,,  and RCol,, ,, , respectively. In order to compare them, we propose

—double ——Cross

——diff
to check their difference RColntn = RCol,,,, — RCol

’ especially in the small distance
regime. As before, we obtain CBs by bootstrapping.

n,n
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The results are presented in Figure 4 (b). We observe that the sampled regularized
colocalization RColnf);Ll ‘ (solid blue line) is larger than RCO]:;:;SS (solid red line). Consid-

ering their difference P@iﬁi (solid green line) together with the bootstrap CB for the
difference (gray area between dashed green lines, o = 0.05) demonstrates that the differ-
ence is significantly positive at all spatial scales below 1000nm. In fact, our resampling
approach for the regularized colocalization analysis reveals that double staining of ATP
Synthase is significantly more colocalized than staining of ATP Synthase and MIC60 on
all relevant spatial scales as biologically expected.
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A Proper Regularizers

Various examples for proper regularizers that have also been the focus of recent research,
e.g. by Dessein et al. (2018), can be found in Table 2. Moreover, we give their Hessians
which are required for the sensitivity analysis (Theorem 2.3 in the main paper).
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Table 2: Proper regularizers.

Regularizer f dom f/f* V2f

Boltzmann-Shannon entropy

ZzN=21 log(m;)m —m; +1 Rgg/RNQ diag(2)

Burg entropy
>V — log(m) = 1 RY;/(—oc, )V diag()
Fermi-Dirac entropy

S log(m)m + (1= mi)log(1—m) 0,1 /RN diag (=7 )

B-potentials (0 < 5 < 1)
2 2 N2 . —
s S —Bm+ -1 RY/(—o0, 25) diag(w#~?)

l, quasi norms (0 < p < 1)

N2 2 2 . —_
DI 4 R, /RY, p(1 — p)diag(m?~2)

B Simulations

We demonstrate that the approximation of the finite sample distribution by the limit law
is driven by the amount of regularization A > 0 added to OT. Recall that A :== Ay g50(c),
where \g > 0 is a parameter that we vary for different simulations and gso(c) is the
median distance between the pixels on the grid. As illustrated in Figure 5, we observe
in our simulations good approximation results for rather large regularization whereas for
small regularization the approximation accuracy decreases. This can only be compensated
if the sample size n severely increases to several thousands. In general, the approximation
is better for r # s as for the case of equal distributions r = s.

We simulate the (naive) n out of n plug-in bootstrap approximation from Section 4 in
the one-sample case for r = s. For a grid with L = 10 and cost given by the euclidean
distance as before, we simulate r ~ Dir(1) and generate 20,000 realizations

VAW f (Fn, ) = Win g (r,r)} (B.1)

where we set the sample size n = 100 and as before vary Ao (see (5.1) in the main text).
Moreover, for fixed empirical distribution 7, and each Ay we generate B = 500 bootstrap
replications

VAW p (7, 7) = Wi g (Fns ) } (B.2)

by drawing independently with replacement n = 100 times according to 7,. We then
compare the finite sample distributions again by kernel density estimators. The results
are depicted in Figure 6.

As already explained in the main text, the finite bootstrap sample distribution is a
good approximation of the finite sample distribution. However, as before, the speed of con-
vergence to the corresponding limit distribution is driven by the amount of regularization.
Similar results hold for the two-sample case (not displayed).
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Figure 5: Kolmogorov-Smirnov distance in the one-sample case for r =s (a) and r #s (b).
The Kolmogorov-Smirnov distance between the finite Sinkhorn divergence sample distribution and its
theoretical normal distribution for » = s (left) and r # s (right) as a function of the sample size n €
{25, 50, 100, 1000, 5000} for different grid sizes L x L and different regularization parameters Ag. The
distances are averaged over five pairs of realizations of a Dir(1) distribution. The axes are given on a
logarithmic scale.
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Figure 6: Bootstrap in the one-sample case for » = s. Illustration of the (naive) n out of n plug-in
bootstrap approximation (n = 100) for different regularization parameters Ao on a grid of size L = 10.
The density in blue (resp. red) is obtained by a kernel density estimator (Gaussian kernel with bandwidth
given by Silverman’s rule) of a Sinkhorn divergence sample (20,000 realizations) (B.1) (resp. bootstrap
sample (B.2), B = 500 replications). The density of the corresponding Gaussian limit is depicted in black.
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Abstract

We provide a unifying approach to central limit theorems (CLTs) for empirical

optimal transport (OT). At the heart of our theory is Kantorovich duality representing
OT as a supremum over a function class F. for an underlying sufficiently regular cost
function c¢. In this regard, OT is considered as a functional defined on ¢*° (F.) the
Banach space of bounded functionals from F. to R. We prove its Hadamard directional
differentiability and conclude via a functional delta method that necessitates weak
convergence of an underlying empirical process in £*° (F.). The latter can be dealt
with empirical process theory and requires F. to be Donsker. We provide sufficient
conditions depending on the dimension of the ground space, the underlying cost function
and the probability measures under consideration such that a Donsker property holds.
Overall, our approach reveals a noteworthy trade-off inherent in CLTs for empirical OT:
Kantorovich duality requires F. to be sufficiently rich, while the empirical processes
only converges weakly if F, is not too complex.
The limit distribution of the empirical OT cost is characterized as a supremum of a
Gaussian process. In particular, we discuss when the limit distribution is centered
normal or degenerates to a Dirac measure at zero. Our approach covers the situation
when at least one of the measures has discrete or low dimensional support (d < 3). This
encompasses well-known results for discrete and semi-discrete transport. Moreover,
in contrast to recent contributions on distributional limit laws for empirical OT on
Euclidean spaces which require centering around its expectation, the CLTs obtained
here are centered around the population quantity which is well-suited for statistical
applications.

Keywords:  Central limit theorem, optimal transport, regularity theory, empirical
processes, bootstrap, dual potential

MSC 2020 subject classification Primary: 60B12, 60F05, 60G15, 62FE20, 62F40;
Secondary: 90C08, 90C25, 90C31

1 Introduction

Comparing probability distributions is a fundamental task in statistics, probability theory,
machine learning, data analysis and related fields. From this viewpoint, in addition
to longstanding mathematical interest, optimal transport (OT) based metrics recently
achieved great attention. A major reason is that OT metrics and related similarity measures
not only allow comparing general probability distributions, but can also be designed to
respect the metric structure of the underlying ground space. This often results in visually
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appealing and well interpretable outcomes which explains the advancement of OT based
data analysis throughout various disciplines, ranging from economics (Galichon, 2016) to
statistics (Panaretos & Zemel, 2019), machine learning (Peyré & Cuturi, 2019), signal and
image processing (Bonneel et al., 2011; Kolouri et al., 2017) and biology (Schiebinger et al.,
2019; Tameling et al., 2021), among others.

In the following, we consider Polish spaces X and ) and denote the set of probability
measures thereon by P(X') and P()), respectively. Given some non-negative measurable
cost function ¢: X x ) - R, the OT cost between p € P(X) and v € P()) is defined as

OTe(pv)i= it clay)dn(r.y). (1.1)

The set IT(u,v) denotes the collection of probability measures on X x ) such that their
marginal distributions coincide with p and v, respectively. Loosely speaking, OT in (1.1)
comprises the challenge to transform the measure p into the measure v in a cost optimal
way. Under mild assumptions on the cost function, OT. in (1.1) enjoys the dual formulation

OTC(/W)=;gj}gﬂfxf(x)dﬂ(x)+fyfc(y)dV(y) (1.2)

formally known as Kantorovich duality. The function class F. depends on the underlying
cost and f¢(y) = infzex c(x,y) — f(x) is the c-conjugate for any f € F.. Any function f
attaining the supremum in (1.2) is termed Kantorovich potential and the set

Sc(p,v) = {f e F,

OT(un) = [ f@du@)+ [ Frmavm) @3

denotes the collection of all Kantorovich potentials. We refer to the monographs by Rachev
& Riischendorf (1998a,b), Villani (2003, 2008), and Santambrogio (2015) for comprehensive
treatment, and to Section 2 for further details. In a statistical application the measures
p and v are estimated from data. We therefore assume to have access to realizations
of independent and identically distributed (i.i.d.) random variables Xi,..., X, ~ u and
the empirical measure fi, = %27{;1 dx, serves as a proxy for p. The population quantity
OT.(p,v) is then estimated by its empirical plug-in estimator OT.(fin,v) and poses the
question of its statistical performance.

To this end, central limit theorems (CLTs) for empirical OT are fundamental as they capture
the asymptotic fluctuation of the plug-in estimators around their population quantities
after proper standardization. General results in the literature can be broadly distinguished
between the null p = v and the alternative p + v. A well studied setting in this regard
is the p-th order Wasserstein distance' OT;/” (u,v) on R? that arises by choosing the
cost ¢(z,y) = |z — y|P and probability measures with finite p-th moments in (1.1). First
analyses have been devoted to the real line (d = 1) for which the p-th order Wasserstein
distance is equal the L? distance between the quantile functions of the measures. Under
the null 4 = v and p = 1, early contributions by del Barrio et al. (1999) (see also Mason
2016) provide necessary and sufficient conditions on the probability measures such that
the random quantity \/nOT1(fi,, ) weakly converges towards an integral of a suitable
Brownian bridge (see Example 5.3). A weak limit for p = 2 is included in Munk & Czado
(1998) and del Barrio et al. (2005). The regime p € (1,2) was analyzed only recently by

1To alleviate notation, we write OT, (s, ) for probability measures p, v € P(R?) supported on Euclidean
spaces and cost function equal to ¢(z,y) = |z — y||? for some p > 1. The Wasserstein distance, commonly
denoted by Wp,(u,v), is then equal to OT;/” (p,v). Analogously, the set of Kantorovich potentials in (1.3)
is denoted by Sp(u,v) in this case.
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Berthet & Fort (2019). For p > 2, central limit theorems are not immediately available but
the work by Bobkov & Ledoux (2019) indicates that similar results can be obtained from
general quantile process theory (Csorgd & Horvéath, 1993). Under the alternative p # v
for p > 1, the random quantity \/n(OT,(fin,v) — OTp(1,v)) often asymptotically follows
a centered Gaussian distribution (Munk & Czado, 1998; Berthet et al., 2020; del Barrio
et al., 2019; Berthet & Fort, 2019). Similar in spirit are recent contributions by Hundrieser
et al. (2021a) for measures supported on the circle.
A unifying analysis by Sommerfeld & Munk (2018); Tameling et al. (2019) is given for
discrete metric spaces X = {z1,z9,...} with metric cost ¢(z;, ;) = d”(z;, z;) and probability
measures p, v € P(X) which could be seen as a starting point for this paper. Based on a
functional delta method the limiting random variable is specifically characterized in terms
of a supremum over (infinite dimensional) Gaussian random vectors G, ~ N (0, 2(x)),
namely

VA (O (jin,v) = OTe(,v)) == sup (Gy f), (14)

feSc(pw)

where the supremum is taken over S,(u,v) the set of optimal Kantorovich potentials in
(1.3). Recently, del Barrio et al. (2021a) extended this to semi-discrete OT for which (1.4)
remains valid even if the discrete measure v is replaced by a general probability measure
supported on some Polish space, e.g., absolutely continuous with respect to Lebesgue
measure on RY. Notably, v is assumed to be fixed and only the discrete measure p € P(X)
is allowed to be replaced by its empirical counterpart.
Beyond the countable, one-dimensional and semi-discrete case, the asymptotic distributional
behaviour for empirical OT becomes much more involved. Already for d = 2, precise CLTs
remain elusive as highlighted by Ajtai et al. (1984) and Bobkov & Ledoux (2021) stating
that the uniform distribution g on the unit square fulfills OT;(jin, 1) = (log(n)/n)'/?
with high probability. On higher dimensions d > 3, it is well known that any absolutely
continuous measure g with compact support on R? fulfills OT; (fin, 1) 2 n~ /¢ (Dudley,
1969; Dobri¢ & Yukich, 1995) which implies \/nOT1 (fin, 1) to diverge. Indeed, and for
general p > 1, the literature on the convergence of empirical OT is vast and we therefore
only give a selective view on recent papers biased towards our main results. Overall,
slow convergence rates in the high-dimensional regime seem inevitable as the Wasserstein
distances of any order p > 1 suffers the curse of dimensionality E [OT[I,/p(ﬂn, M)] < p~1/d

whenever d > 2p and pu is Lebesgue absolutely continuous (Boissard & Le Gouic, 2014;
Fournier & Guillin, 2015; Weed & Bach, 2019). This indicates the scaling rate /n in (1.4)
to be typically of wrong order in higher dimensional (Euclidean) spaces. However, when
centering with the empirical expectation, concentration results demonstrate the random
quantity /n (OT2(fin,v) — E[OT2(fin,v)]) to be tight (Weed & Bach, 2019; Chizat et al.,
2020). A fundamental step further has been taken by del Barrio & Loubes (2019) who
obtain for probability measures with 4 + § finite moments (6 > 0) and positive density in
the interior of their convex support that

V1 (OTa(fin, ) ~ E[OTs(jin, »)]) — N (0, Var, [ £ (X)]). (1.5)

The asymptotic variance Var,[ f(X)] is equal to the variance of the random variable f(X)
with X ~ p and f the unique Kantorovich potential for (1.2). Under the null p = v, the
asymptotic variance is equal to zero and the CLT in (1.5) degenerates, in contrast to
the alternative p # v that usually leads to a non-degenerate limit law. The approach by
del Barrio & Loubes (2019) relies on approximating the empirical OT cost via (1.2) as a
linear functional involving a unique Kantorovich potential for which a CLT immediately
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follows. Based on the Efron-Stein inequality this functional is shown to serve as a good
L2-approximizer for the random quantity v/ (OTa(fin, ) — E[OT2(jts,v)]) which allows
to conclude. These results have recently been extended by del Barrio et al. (2021b) to
more general convex cost functions, including a CLT similar to (1.5) for OT),, under p > 1.
Notably, the regularity conditions on the measures impose the Kantorovich potential to
be unique and it remains unclear how to generalize their approach under non-uniqueness.
More crucially, the statement requires centering around the empirical expectation which
hinders its immediate use for statistical applications. It might be tempting to replace
E[OT2(fin, v)] by its population counterpart OTs(u, ) in (1.5). On the real line (d = 1) and
under sufficient regularity assumptions, this is possible (del Barrio et al., 2019). However,
it remains a delicate issue for d > 2. By an observation in Manole & Niles-Weed (2021,
Proof of Proposition 21), if 4 and v are uniform measures on two different balls of equal
radius the bias is lower bounded by E[OTy(fin,v)] - OTa(p, ) 2 n~*%. This demonstrates
the replacement of the centering with the population quantity in (1.5) to be invalid for
d > 5. Nevertheless, employing a different estimator may allow for faster convergence
rates for the bias in higher dimensions. Indeed, for probability measures p, v on the unit
cube [0,1]¢ with sufficiently smooth densities Manole et al. (2021) propose a suitable
wavelet estimator fi,, and prove the bias to be of order |E[OT2(fin,v)] - OT2(p,v)| =
o(n~'?). Combined with a strategy as outlined by del Barrio et al. (2019), the random
quantity /n(OTs(jin,)—OT2(u,r)) is shown to asymptotically follow a centered Gaussian
distribution analogous to (1.5), which also degenerates under the null x = v. Despite this
being an interesting result, CLTs for empirical OT costs based on general cost functions
and centered around the population quantity remain largely open.

In this work, we provide a unifying approach to obtain CLTs for empirical OT that include
certain aforementioned settings but go far beyond. In particular, our approach does
not rely on discrete spaces, neither on explicit formulas involving quantiles (d = 1) nor
unique Kantorovich potentials (d > 2). Our limit laws are reminiscent of the discrete
case (1.4) but hold for considerably more general cost functions and probability measures.
The limiting random variables are characterized as suprema of Gaussian processes (¢, in
0°° (F.) indexed in Kantorovich potentials from S.(u,v) in (1.3). The CLTs are centered
around the population quantity. Our main result (Theorem 2.2 in Section 2) states under
certain assumptions that

Vi (OTelfin,v) = OTo(,v)) —— sup Gu(f). (1.6)
feSc(p,v)

The distributional limit law (1.6) is valid whenever F, in (1.7) (below) is pu-Donsker and
Assumption (A)

(A) The cost c: X x Y — R, is continuous and bounded by |c],, = sup, , [c(x,y)| < oo,
combined with Assumption (B1) or (B2)
(B1) The space X is compact and {c(-,y) | y € Y} is equicontinuous® on X,

(B2) The spaces & and ) are locally compact and {c(-,y) |y € Y} and {c(z,-) | z € X'} are
equicontinuous” on X and ), respectively,

are satisfied. In particular, under Assumption (A) the function class F. used in (1.2) is
chosen as a uniformly bounded class of c-concave functions on X' (Villani, 2003, Remark

2 Equicontinuity refers to a common modulus of continuity for the function classes {c(-, y) |y e y} and
{c(m, Y|z e X} with respect to a continuous metric on X and ).

4
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1.13)
Fom {FX >R3¢V >R -lelw < g <0, (@) = inf () - g() | (L)
yey

Moreover, G, in (1.6) is a tight centred Gaussian process and represents the weak limit
of the empirical process \/n(fi, — p) in £ (F.), the Banach space of bounded functionals
from F. to R. The covariance of G, specifically depends on p and is equal to

E[Gu(fl)Gu(fz)]:/Xflf2dﬂ_/xf1d/i/;(f2dﬂ (1.8)

for two functions fi, fo € F.. If instead v is estimated by its empirical version, then under
the same conditions on the cost and the spaces, and if FS, the set of all c-conjugate
functions from F., is v-Donsker, the CLT reads as

Vi (OT (1, 0m) = OT (1, v)) —  sup G (f°), (1.9)
feSe(u,v)

where G, is a centered Gaussian process in the Banach space £ (F¢) with similar covariance
as in (1.8) corresponding to the weak limit of \/n(, - v).

Our proof technique relies on Kantorovich duality that represents the OT.(:,-) cost as a
functional from £°° (F.) x £ (F¢) to the reals. We take upon this approach in Section 2
and prove that OT.(-,-) is Hadamard directionally differentiable. An application of a
general functional delta method (Diimbgen, 1993; Romisch, 2004) allows to conclude our
main results on CLTs for empirical OT. This necessitates the empirical process \/n (i, — i)
to converge weakly to some tight random element G, in £*° (F.). The latter can be dealt
with empirical process theory and requires the function class F. to be u-Donsker. Our
results naturally extend to the two sample case where both measures are estimated by
their empirical versions, simultaneously. We further characterize normality (Theorem 3.2
in Section 3) and degeneracy (Theorem 4.2 in Section 4), i.e., when the limit law is
equal to a Dirac measure which results from unique and trivial (almost surely constant)
Kantorovich potentials, respectively. We emphasize that even if u = v, the CLTs might be
non-degenerate, e.g., if © has disconnected support, as for the discrete case in (1.4), where
limit laws usually do not degenerate to a Dirac at zero (Tameling et al., 2019).

In light of the general CLT statement in (1.6), we discuss concrete settings for which
the assumptions on the cost are satisfied and F. is p-Donsker (Section 5). The latter
manifests itself in the complexity of F. measured in terms of covering numbers (Van der
Vaart & Wellner, 1996) as well as tail conditions on the measure pu. The covering numbers
depend on properties of the cost and the underlying dimension of the ground space (see
also Gangbo & McCann 1996; Chizat et al. 2020; Hundrieser et al. 2021b). The simplest
case appears on finite spaces where F, is even universal Donsker. On countable discrete
spaces it requires the popular Borisov-Dudley-Durst summability condition on the measure
p. This is in line with the aforementioned results by Sommerfeld & Munk (2018) and
Tameling et al. (2019), respectively (Corollary 5.1). Beyond discrete spaces, we employ
well-known results in empirical process theory. More precisely and tailored to Euclidean
spaces R? with d < 3, if the cost satisfies certain regularity conditions, then F, is y-Donsker
provided the measure u € P(R?) satisfies

Y Vi (lk k+1)) < oo.
kezd

This implies CLT's for empirical OT on the real line and general costs (Theorem 5.2) but
also novel statements for dimension d = 2,3 (Theorem 5.4). We highlight that the CLTs
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in (1.6) remain valid provided only one of the probability measures is supported on some
low-dimensional compact Euclidean subset (Theorem 5.8). This is related to recent findings
by Hundrieser et al. (2021b) discovering the lower complezity adaptation phenomenon that
the convergence rate of the empirical OT cost under different population measures adapts
to the measure with lower-dimensional support. Based on this observation, our CLTs in
Theorem 5.8 encompass recent findings for the semi-discrete OT considered by del Barrio
et al. (2021a). Nonetheless and contrary to their results, the CLT in (1.9) remains valid,
even if y € P(X) is fixed with finite support and the more general measure v € P(})) is
replaced by its empirical counterpart. Apart from the proof of the main result, we postpone
further technical proofs and auxiliary results on Kantorovich potentials to Appendix A.

Notation. The set of non-negative real numbers is R,. For a,b € R the inequality a S b
means that up to a constant depending on « the quantity a is larger than b. The class
of real-valued continuous functions defined on a metric space X is denoted by C(X). A
real-valued function f defined on some convex subset A c X' is A-semi-concave if there
exists some constant A > 0 such that f(x) - A|z|3 is concave. Furthermore, f is said to
be (a, L)-Holder continuous if there exist positive constants a € (0,1] and L > 0 such that
|f(x) - f(2")| < L|jx —2"|* for all x,2" in the domain of f. If « = 1, then f is L-Lipschitz.
For a function class F on X denote by | f - g| ., the uniform norm | f|,, =supgcx |f(2)|.
Let £*° (F) be the Banach space of real-valued bounded functionals on F with respect to
uniform norm ||¢|| 7 = sup ez [0(f)|- For (F,d) a subset of some metric space and € > 0,
the covering number N (e, F,d) is the minimal number of balls {g | d(f,g) <&} of radius ¢
such that their union contains F. The metric entropy of F is the logarithm of the covering
number log (N (g, F,d)).

2 Central Limit Theorem for Empirical Optimal Transport

Throughout this section, we consider Polish spaces & and ) and a non-negative cost
function ¢: X x Y - R, such that Assumption (A) is fulfilled. Under this assumption the
OT cost in (1.1) is finite for any two probability measures € P(X), v € P()) and enjoys
Kantorovich duality (1.2). The set F., over which the dual is optimized, is the collection
of uniformly bounded c-concave functions on X defined as in (1.7) (for details see Villani
2003, Remark 1.13 and Appendix A.2). The supremum in (1.2) over F, is attained, i.e.,
there exists a Kantorovich potential f € F., where we recall the set S.(u,v) in (1.3) of all
Kantorovich potentials. Notably, as the cost function is continuous, any function f € F,.
and its c-conjugate f¢ are upper semi-continuous and thus measurable on the Polish spaces
X and Y, respectively.

More general structural properties for c-concave functions F, and its c-transformed class
F&={f°| f € F.} are intrinsically linked to the cost function and the underlying Polish
space. Hence, to guarantee (minimal) regularity properties of the set of Kantorovich
potentials we impose Assumption (B1) or (B2). Under either of these conditions the
Kantorovich potentials S. (1, v) and SE(p, ) are continuous as well (Lemma A.1). Moreover,
under compactness or local compactness of the underlying ground spaces X and ) as well
as the equicontinuity condition of the cost function, we are able to employ a version of the
Arzela-Ascoli theorem (see proof of Theorem 2.2 and in particular Step 3) to the classes
Fe and Fy.

Examples of locally compact spaces are Polish spaces but also include finite and countable
spaces equipped with discrete topology. Assumptions (A) and (B2) are then fulfilled if
the cost function ¢: X x Y — R is uniformly bounded. Furthermore and for compact subsets
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X,Y c R? the Assumptions (A) and (B1) are fulfilled for costs ¢(z,y) = |z - y|” with
p > 1 inherent in the popular Wasserstein distance. More examples in this regard are
detailed in Section 5.

2.1 Main Result

In the following, the empirical process \/n(ji, — ) is considered as a random element in
the Banach space (% (F.).

Definition 2.1 (Van Der Vaart 1996). A function class F of measurable, pointwise-
bounded functions on X is called p-Donsker, if the empirical process \/n(ji, — ) weakly
converges to a tight random element G,, in ¢*°(F). Furthermore, F is universal Donsker
if for any probability measure p € P(X) the function class F is y-Donsker.

In case F. is p-Donsker, the weak limit G, is a mean-zero Gaussian process indexed over
F. with covariance for fi, fo € F. as in (1.8). We now state our main result on the central
limit laws for the empirical OT cost.

Theorem 2.2. Consider Polish spaces X and Y and a cost function c: X xY — R satisfying
Assumption (A) combined with (B1) or (B2). For two probability measures p € P(X),
veP(Y), i.i.d. random variables X1,..., X, ~ p and independently to that i.i.d. random
variables Y1,..., Y ~ v with n,m € N denote the empirical measures by fin := % Yic10x,
and Uy, = % im0y,

(i) (One-sample from p) Suppose that F. is p-Donsker. Then, for n — oo,

Vi (OTe(fin,v) = OTo(,v)) == sup Gu(f). (2.1a)
feSc(p,v)

(it) (One-sample from v) Suppose that F¢ is v-Donsker. Then, for m — oo,

C

I (OTo(pt,0m) = OTe(1, 1)) —=  sup Gy (). (2.1b)
feSe(p,v)

(i7i) (Two-sample) Suppose that F. is u-Donsker and that F¢ is v-Donsker. Then, for
n,m — oo with m/(n+m) — § € (0,1),

nm

(OTc(fin, Um) = OTe(p,v)) 2, sup (\/gGu(f) +V1- (5Gy(fc)) . (2.1¢)

n+m feSe(pw)

Proof. Our proof is based on the Hadamard directional differentiability of the OT cost
on the set of probability measures P(X') x P()) with respect to the topology induced by
0%° (Fe) x £%° (F¢) (see the subsequent Theorem 2.5). Then, the statements in Theorem 2.2
follow from the functional delta method (Roémisch, 2004, Theorem 1). More precisely,
under settings (7) and (i7) it holds for n — oo and m — oo that

Vi~ 1) 2 Gy i €% (Fo), /im0 —v) — Gy n £ (),

respectively. For setting (#i¢) it holds by Van der Vaart & Wellner (1996, Example 1.4.6)
that the empirical processes converge jointly

nm

(fin = 1, m = 1) = (V0B VI=0Gy ) in £ (Fo) x 0 (FY)

n+m
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with m/(n+m) - ¢ € (0,1). Moreover, Theorem 2.5 below asserts that OT.:P(X) x
P(Y) - R is Hadamard directionally differentiable at (u,v) with respect to £%° (F.) x
0% (F¢) tangentially to P(X) x P(Y) with X' = supp(p) and Y = supp(v) and 7,(P(X)) =
Cl{“’T_“ for t >0, € 73(22')} and analogously for 7,,(P())). Portmanteau’s Theorem for
closed sets (Van der Vaart & Wellner, 1996, Theorem 1.3.4 (iii)) proves that

P(Gy € Tu(P(X))) 2 limsupP (v (fin - 1) € Tu(P(X))) = 1 (2:2)

since supp( i, ) € supp(u), and analogously for G,,. The assertions in (2.1) now immediately
follow by the functional delta method. O

We investigate specific settings that yield novel distributional limit results in Section 5. At
this stage, we like to highlight that Theorem 2.2 links CLTs for the empirical OT cost to
the study of the function classes F. and F{ being Donsker, respectively.

Remark 2.3. Even if Assumptions (B1) and (B2) fail to hold, the first step in the
proof of Theorem 2.5 still asserts Hadamard directional differentiability of the OT cost.
However, in this case the derivative rather depends on the set of e-approximate optimizer
Se(p,v,e) = {feFe | p(f)+v(f°) 20T.(p,v)—¢} instead of the set of Kantorovich
potentials S.(u,v). Hence, employing a functional delta method (Rémisch, 2004, Theorem
1), we obtain that, as long as F, is u-Donsker, a CLT of the form

N D ..
Vi(OTe(fin, v) = OTe(p,v)) == lim  sup  Gu(f)
e fESC(,U'vyva)

is valid. Assumptions (B1) and (B2) therefore serve to simplify Theorem 2.2 as the limit
in € vanishes. For more details we refer to Section 2.2.

Remark 2.4 (Bootstrap consistency). It is well-known that the naive n-out-of-n bootstrap
fails to be consistent if the functional is not linearly Hadamard differentiable (Diimbgen,
1993; Fang & Santos, 2019). Instead, under Hadamard directional differentiability the
work by Diimbgen (1993, Proposition 2) asserts consistency of the m-out-of-n bootstrap
for m = o(n) which has immediate consequences for the approximation of quantiles for the
empirical OT cost. We formalize this principle exemplary for the one-sample case. For
n,m € N, consider i.i.d. samples X1,...,X,, ~ u with empirical measure f,, = %Z?ﬂ Ox;,
and consider i.i.d. bootstrap samples X{,..., X ~ fi, with corresponding (bootstrap)
empirical measure fi;, ; = % YFO x:. Then, it follows for n,k — oo with k = o(n) that

sup ‘E[h(\/E(OTC(ﬂ;k,y)—OTC(ﬂn,u)))‘Xl,...,Xn]
heBL; (R)

~E[A(Vi(OTe(jin, v) - OTe(1,)))] | — 0.

Herein, P, denotes convergence in outer probability (see Van der Vaart & Wellner 1996)
and BL;(R) is the set of real-valued functions on R which are absolutely bounded by one
and Lipschitz with modulus one.

2.2 Hadamard Directional Differentiability

Based on Kantorovich duality (1.2), we consider the OT cost as an optimization problem over
the set of c-concave functions mapping from the set of probability measures P(X') x P(Y)
into the reals. For a pair of probability measures € P(X),v € P()), we prove Hadamard
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directional differentiability of the OT cost at (u,v) with respect to the Banach spaces
0%° (Fe) x £ (FE). For a definition of this notion of differentiability, we refer to Romisch
(2004). Moreover, since the support of empirical measures is always contained in the
support of the underlying measure, we focus in the following only on differentiability
tangentially to the set of probability measures whose support is contained in the support of
u and v, respectively. This means that only those perturbations for y and v are considered
which do not lead to an enlargement of the support. The corresponding derivative for the
OT cost turns out to depend on the set of Kantorovich potentials S.(u,v) in (1.3).

Theorem 2.5 (Hadamard directional differentiability of OT cost). Suppose that for two
Polish spaces X, Y and the cost function c:X xY — R, the Assumption (A) combined with
(B1) or (B2) are satisfied. Consider the function class F. in (1.7) and two probability

measures (p,v) € P(X)xP(Y) with their respective support X := supp(u) and Y := supp(v).
Then, the OT cost functional

OTaP(X) x PY) € (°(F) x (2(F)) = By (o) o sup (u(1) 405D (2:)

is Hadamard_directionally differentiable at (i, v) tangentially to the set of probability
measures P(X) x P(Y). The derivative is equal to

D OTe T (P(X)) x T (P(V)) = R, (A4, 4)) = sup  (Au(f)+A(f)). (2.4)
feSe(p,v)

Herein, the contingent Bouligand cone T, (73()?)) to P(X) at p is given by the topological
closure Cl{”’—t_ﬁ fort>0,pu € 77(2?)} c (> (F.) and analogously for T, (77()7))

Proof. The proof is inspired by Romisch (2004, Proposition 1) and Cércamo et al. (2020,
Theorem 2.1 and Corollary 2.2). Compared to their setting, the proof is specifically tailored
to the OT cost in (1.2) and exploits properties of the function class F.. We divide the
proof into four steps. The first two essentially prove the main result, whereas the last two
are concerned with more technical details.

Step 1. Hadamard directional differentiability.
Let (tn)nen be a positive sequence with ¢, ~ 0 and consider sequences (A, ., Ay ) €
0°°(Fe) x £2°(F¢) such that for all n e N holds

Un = Qo+ 75nAM,n € lp("%)? Up=V+ tnAVv” € P(‘)})’

with (Aun, Avn) = (Au, AY) €Ty (77(2?)) x T, (73(37)) for n — oo in the space £*°(F;) x
02 (FS). The representation of the Bouligand cone as a topological closure follows by an
observation of Romisch (2004) since P(X) and P()) are convex sets. For i, i, and v, v,
considered as bounded functionals on F. and F, respectively, it follows along the lines of
Romisch (2004, Proposition 1) that the OT cost is Hadamard directionally differentiable
with

li = (OTe(ns ) = OTelp ) =l sup (4u(1) + Au(%))

n—oo ty, 30 feS. (pve)

and the set of € approximizers

Se(u,vye) ={f e Fe | p(f) +v(f°) 2 OTc(p,v) - €}
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Step 2. Simplifying the derivative.
It remains to show that

lim  sup  (Au(f)+A(f)) = sup (Au(f)+ Au(f)). (2.5)
ExU feSe(uve) feSc(p.w)

The left hand side in (2.5) is greater or equal to the right hand side since S¢(p,v) € S.(u, v, )
for all £ > 0. For the converse, take a positive decreasing sequence (€, )neny With €, N 0 and
a sequence (fn)nen € Fe with f,, € Sc(p, v, ep,) for which

sup (Au(f)+AV(fc))_5n3Au(fn)+AV(f1§)-

feSe(u,ven)

Suppose momentarily that there exists a subsequence (fy, )reny such that f,, and fg
converge pointwise for k& — oo on supp(u) and supp(v) to functions h + a and h¢ - a,
respectively, for h € S.(u,v) and a € R. Once we show that

m (Au(fur) + Au(f5)) = (Bu(h) + AL (h°)) (2.6)

li
k—)oo
the equality (2.5) follows from

lim  sup (Au(f)+AV(fc))Sl}i_)rloloﬂu(fnk)+Ay(fﬁk)

EN0 feSe(pvie)
=(Au(h) + Ay(R%)) < sup  (Au(f) + Au(f9)).
fGSc(/J,,l/)

To verify (2.6), let 6 > 0 and select M € N such that |A, - A, m|x < 0/4. Pointwise
convergence of fy,, on supp(u) to h+a combined with the uniform bound on F. asserts by
dominated convergence for pps, i by supp(par) € supp(p) existence of K € N with

lunt (o = (h+ )|+ |[(fop — (B +@))| < 0tar/2 V> K.

Hence, for all k£ > K it follows that

1A (fry) = Au(M) < 2| Ay = Apmi 7, +1Apna (fry) = Apnr (7))
=24, - AM,M”fC +tj/} ‘(,UM _,U)(fnk - h)‘
=2 HA;A - Au,MH]:C 'Hﬁ/} ‘(NM _N)(fnk- ~(h- a))‘ <4,

where we use in the second equality the definition of A, s and in the last equality that
(= par)(a) = 0. Repeating the argument for [A, (f, ) — A, (h°)] yields (2.6).

Step 3. Existence of converging subsequence with Arzela-Ascoli.

We prove existence of a subsequence of (f,, f5;) that converges uniformly on compact sets
to a pair of continuous functions (f, g). Uniform convergence on compact sets of continuous
functions on X is induced by the compact-open topology which is metrizable since X is a
locally compact Polish space (McCoy & Ntantu, 1988, page 68). To verify existence of a
converging subsequence of f,, we show that F. is relatively compact in the compact-open
topology by means of a general version of the Arzela-Ascoli theorem.

Theorem 2.6 (McCoy & Ntantu 1988, Theorem 3.2.6). If X' is locally compact,
then a set of continuous real-valued functions on X is compact in the compact-open
topology if and only if it is closed, pointwise bounded and equicontinuous.

Since {c(-,y) | y € Y} is equicontinuous, so is F. and its closure C1(F,) in the compact-open

10
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topology is as well. Moreover, since F. is uniformly bounded by a constant, Theorem 2.6
asserts existence of a subsequence of f,, that converges uniformly on compact sets to a
function f e CI(F.) which is also continuous. By restricting to a subsequence, we assume
that f,, uniformly converges on compact sets to f. Under Assumption (B1), this asserts
that f,, uniformly converges on X to f and thus f; uniformly converges on Y to f¢. Under
setting (B2), we cannot argue analogously and instead repeat the above argument and
assume by local compactness of ) and equicontinuity of {¢(z,-) | z € X'} that fS uniformly
converges on compact sets of ) to some continuous function g € CI(FY).

Step 4. Structural properties of limits with general OT theory.

It remains to show that there exists a c-concave function h € S.(u,v) and some a € R
such that f = h+a on supp(p) and g = h° —a on supp(v). For this purpose, note that
uniform convergence on compact sets implies pointwise convergence. Since f,, f, f., g are
all absolutely bounded by |c|,, there exists by dominated convergence for any § > 0 some
Ny e N such that |u(f)—p(fu)l+v(g) -v(f5)| < /2 for all n > N;. Further, there is N € N
with ey, < /2. Hence, for n > max(Ny, No) it follows from f, € Sc(u,v,en) € Se(u,v,6/2)
that

p(f)+v(g) 2 pu(fn) +v(fy) —0/2 20T (u,v) -4,

which yields by choosing § > 0 arbitrarily small that u(f) +v(g) > OT(u,v). Moreover, for
(z,y) € X x )Y we find that

f(@) +g(y) = lim fo(z) + lim fo(y) = lim fu(2z) + fr(y) < c(2,y), (2.7)

which asserts by the dual formulation for the OT cost (Villani, 2008, Theorem 5.9)
that pu(f) +v(g) = OT:(u,v). Upon defining h := g°, we therefore obtain from (2.7) the
inequalities f < h on X and g < h¢ on ). Hence, it holds that

OTe(p,v) = u(f) +v(g) < p(h) +v(g) < pu(h) +v(h) < OT(p,v),

where the last inequality follows from h(z) + he(y) < c¢(x,y) for all (z,y) € X x Y. We
conclude that f = h holds p-almost surely and f€ = h¢ holds v-almost surely, and continuity
asserts equality on the whole support of ¢ and v, respectively. Finally, we note by Villani
(2003, Remark 1.13) that any c-concave Kantorovich potential & can be suitably shifted
by a constant a € R such that 0 < h(z) - a < |¢|,, for all z € X and —|c|, < (h-a)*(y) =
he(y) +a <0 for all y € Y. In particular, the function h := h — a lies in S,(u, ) and fulfills
the asserted properties. O

Remark 2.7. The only setting for which the function h in step four might not be contained
in Sc(u,v) occurs when the function g does not fulfill - |c|, < ¢ <0. This could happen
since c-conjugate potentials f¢ for f € F. do not necessarily satisfy — |||, < f¢<0.

3 Normal Limits under Unique Kantorovich Potentials

The set of Kantorovich potentials S.(u,r) in (1.3) and its c-conjugates SS(u,v) play a
defining role for the limiting random variables in (2.1a), (2.1b), (2.1¢) in Theorem 2.2.
A particular setting arises if Kantorovich potentials are uniquely determined. Since any
f €Sc(u,v) can be shifted arbitrarily and f +a for a € R is still a c-concave function that
solves (1.2), uniqueness refers to S.(u,v) being a singleton up to an additive constant.
Furthermore, for the purpose of this section, it suffices if uniqueness holds almost surely.

11
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Definition 3.1 (Unique Kantorovich potentials). The set of Kantorovich potentials
Se(p,v) in (1.3) is said to be almost surely unique if the difference f; — fo for all
fi, fo € Sc(p,v) is constant p-almost surely.

We like to mention that for a continuous cost function this notion of uniqueness is equivalent
to v-almost sure uniqueness (up to constant shifts) of c-conjugate Kantorovich potentials on
the space ) (Staudt et al., 2021, Lemma 5). Under almost sure uniqueness of Kantorovich
potentials all weak limits from (2.1) simplify to centered normal distributions.

Theorem 3.2 (Normal limits). Consider Polish spaces X and Y and a cost function
X xY - R, satisfying Assumption (A) combined with (B1) or (B2). Assume that the
set S.(p,v) of Kantorovich potentials for p € P(X) and v e P(Y) is almost surely unique.
Then, for any f € Sc(u,v) and empirical measures fin, Uy, the following CLT is valid.

(i) (One-sample from p) Suppose that F. is p-Donsker. Then, for n — oo,
. D
V1 (OTe(fin,v) - OTe(p,v)) — N(0, Var,[f(X)]), X ~p. (3.1a)
(i7) (One-sample from v) Suppose that F¢ is v-Donsker. Then, for n — oo,

11 (OTe(pt, ) = OTe(p1, 1)) —2 N(0, Var, [f4(Y)]), Y ~w. (3.1b)

(i7i) (Two-sample) Suppose that F. is pu-Donsker and that F¢ is v-Donsker. Then, for
n,m — oo with m/(n+m) — 6 € (0,1),

/nn+mm (OTe(fins V) = OTe(p,v)) (3 10)
2 N (0,8Var, [£(X)] + (1= 6)Var, [fS(V)]), X ~p Y ~w.

Proof. Under almost sure uniqueness of Kantorovich potentials on X, we conclude by
Staudt et al. (2021, Lemma 5) almost sure uniqueness on ). By Lemma A.1 the Kan-
torovich potentials are continuous on the supports of i and v. We therefore conclude that
the set of Kantorovich potentials S.(u,v) and its c-conjugate counterparts SS(u,v) are
(deterministically) unique up to a constant shift on the support of u and v, respectively.
Following along the lines of step two of the proof for Theorem 2.5, we conclude that
the directional Hadamard derivative is linear. Hence, by the functional delta method
(Romisch, 2004) the weak limit for the empirical OT cost is normal with variance as stated
in (3.1). O

A useful statistical application of Theorem 3.2 arises when the limit variance Var,[ f(X)]
is consistently estimated from i.i.d. data. Indeed, under Assumptions (A) combined with
(B1) or (B2) this holds, leading to the following pivotal limits.

Corollary 3.3 (Pivotal limit). Suppose the setting of Theorem 3.2. Then, for any measures

p e P(X) and v € P(Y) such that the p-almost surely unique Kantorovich potential

feSc(p,v) is not u-almost surely constant, it follows for n — oo and any f, € Sc(fin,v)

that

OTC(IaTH 1/) — OTC(ﬂa V) D
Varg, [ (X)]

Analogous statements hold for the weak limits in (3.1b), if €€ SS(u,v) is not v-almost
surely constant and in (3.1c) if at least f or f¢ is not almost surely constant.

vn

N(0,1). (3.2)

12
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Proof of Corollary 3.3. We only show the claim for (3.2), the corresponding pivotal limits
for (3.1b) and (3.1c) follow analogously. In view of Theorem 3.2 and Slutzky’s lemma
it suffices to show for f, € Sc(fin,v) that Var, [f,(X)] converges almost surely for
n — oo to Var,[f(X)] > 0 for f e Sc(u,v). Note that Sc(jin,v) € Sc(p, v, 2 | fin — p] £.)
where | i, — p| 7 tends to zero almost surely since F. is y-Donsker. Hence, following
along steps three and four of the proof for Theorem 2.5, it follows that there exists a
subsequence ( fn, )ren such that (f,, fy, ) converges pointwise for k — oo to (h+a,h®-a)
for some h € S.(u,v) and some a € R. Since F. is uniformly bounded by |c|.,, and
since F, as well as the element-wise squared function class F2 = {f% f € F.} are both
p-Donsker (Van der Vaart & Wellner, 1996, Theorem 2.10.6), we therefore conclude
that Varg, [fn,(X)] - Var,[h(X)] for k - co. Finally, by almost sure uniqueness of
Kantorovich potentials it holds that Var,[h(X)] = Var,[f(X)]. O

Uniqueness of Kantorovich potentials We close this section with a discussion on
uniqueness of Kantorovich potentials as required in Theorem 3.2 and Corollary 3.3, an
issue which has obtained less attention in the literature compared to the related questions
of uniqueness for optimal transport plans.

On Euclidean spaces, Kantorovich potentials are unique when the cost function is differen-
tiable and the probability measures have bounded support equal to the closure of a bounded
open connected set (Santambrogio, 2015, Proposition 7.18). Generalizations for probability
measures with unbounded support and strictly convex costs were obtained by del Barrio
et al. (2021b, Theorem 2.4) and Bernton et al. (2021, Theorem B.2) relying on absolute
continuity of the underlying measures together with connected support and negligible
boundary. In such setting, one exploits the fact that the gradient of a Kantorovich potential
at some point x is determined by the gradient of ¢(-,y) at = for any (z,y) € supp(n),
where 7 is an optimal transport plan (see Santambrogio 2015, Proposition 1.15). Under a
connected support of u, uniqueness of the gradient then implies uniqueness of the potential.
In discrete settings, the theory of linear programming asserts uniqueness of dual optimizers
if the measures are non-degenerate, i.e., if OT cannot be divided into separate sub-problems
(Klee & Witzgall, 1968; Hung et al., 1986). The recent work by Staudt et al. (2021) elevates
these uniqueness results to probability measures on Polish spaces with disconnected support
and additionally outlines uniqueness guarantees on smooth manifolds.

4 Degenerate Limits under Trivial Kantorovich Potentials

An important special case for our CLTs emerges if Kantorovich potentials are not only
almost surely unique but also constant. The asymptotic variance in Theorem 3.2 then
is equal to zero and the limit law degenerates. For our theory it suffices if Kantorovich
potentials are constant in an almost sure sense.

Definition 4.1 (Trivial Kantorovich potentials). A Kantorovich potential f € S.(u,v) is
called trivial if f is constant p-almost surely. The set of Kantorovich potentials S,.(pu,v) is
said to be trivial if all Kantorovich potentials are trivial. Likewise, the same definition
applies for conjugated potentials f¢ related to v and the set SS(u,v).

Simple examples for trivial Kantorovich potentials occur if one of the measures p or v is a
Dirac measure or if the cost function is itself constant. More interesting examples will be
discussed below.

13
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Theorem 4.2 (Degenerate limits). Consider Polish spaces X and Y and a cost function
X xY - R, satisfying Assumption (A) combined with (B1) or (B2). Let € P(X)
and v € P(Y) be probability measures.

(i) Suppose that F. is p-Donsker. Then, the limit law (2.1a) degenerates to a Dirac
measure at zero if and only if Sc(u,v) is trivial.

(it) Suppose that F¢ is v-Donsker. Then, the limit law (2.1b) degenerates to a Dirac

(4
measure at zero if and only if SS(u,v) is trivial.

(i7i) Suppose that F. and FS are p- and v-Donsker, respectively. Then, the limit law
(2.1c) degenerates to a Dirac measure at zero if and only if Sc(u,v) and SS(p,v) are

trivial.

In contrast to almost sure uniqueness of Kantorovich potentials, triviality of f e S.(u,v)
does not imply the triviality of ¢, meaning that an almost surely constant f can (and often
will) have a c-conjugate f¢ that is not almost surely constant (see also Remark 4.7). As it
turns out, the existence of constant Kantorovich potentials f is intimately related to the
existence of transport plans that act as projections onto the support of u. To highlight the
underlying geometric intuition, we introduce the following notion of projected measures.

Definition 4.3 (Projected measures). For probability measures e P(X) and v e P(Y),
the probability measure p is a v-projected measure (with respect to c) denoted as u € P.(v),
if there exists a coupling 7 € IT(u,v) such that all (x,y) € supp(7) satisfy

c(z,y)= inf c(2',y). (4.1)
x'esupp(p)

Analog definitions apply for u-projected measures v € P.(u).

It is evident that the coupling 7 in the definition above solves the OT problem in (1.1)
between p and v. In fact, the proof of Theorem 4.4 shows that an equivalent way to
characterize v-projected measures is the equality

OTc(p,v) = inf  c(z,y)dv(y).
Y zesupp(p)

Intuitively, a v-projected measure is any measure i that can be formed by projecting all

points of supp(v) to some subset of X with respect to the cost function c¢. For example,

p € P.(v) always holds if p = pyv for a cost projection p: ) — X that satisfies

p(y) € argmin c(z,y). (4.2)
xesupp(p)

An illustration for such a setting is given in Figure 1(a).

Theorem 4.4 (Existence of trivial Kantorovich potentials). Consider Polish spaces X
and Y and a cost function ¢:X x Y — R, satisfying Assumption (A) combined with (B1)
or (B2). Then, for two probability measures p € P(X) and v € P(Y) trivial Kantorovich
potentials f € Sc(u,v) exist if and only if pe P.(v).

Based on this characterization, we formulate several necessary and sufficient criteria for
the existence of trivial Kantorovich potentials.

Corollary 4.5. Under the assumptions of Theorem /.4 trivial Kantorovich potentials
feSc(p,v) exist, if one of the following conditions is satisfied.
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v = Unif By
1 =p,v =Unif 0By

. supp pt j"’é‘ Y

OBy =supp
(a) (b)

Figure 1: Trivial Kantorovich potentials. In (a), p is equal to the projection of v onto the
set X = OBs, the boundary of an Euclidean ball. According to Corollary 4.5 (i1), there exists a
Kantorovich potential f that is constant on dBy. Furthermore, due to Staudt et al. (2021, Theorem
2), the constant potential is also unique. In (b), the projection X*** of all points y € supp(v) onto
the support of p under Euclidean costs is marked by black segments that are part of the boundary
of supp(u). Since supp() is not contained in X*¥, Corollary 4.6 (iii) states that there cannot be
a Kantorovich potential f that is constant on supp(u).

(i) p=v and c(x,z) =0 holds for all x € X,
(i) p=pyv for any well-defined c-projection p:supp(v) — X onto a closed set X c X.

Corollary 4.6. Under the assumptions of Theorem ./ the set S¢(u,v) does not contain
trivial Kantorovich potentials if one of the following conditions is satisfied.

(i) p# v while supp(v) c supp(p) with c(x,z) =0 and c(x,y) >0 for all x # vy,

(i7) int(supp(p)) € supp(v) for subsets X, c V of a normed linear space (V.| -|) with
cost c(x,y) = h(|z —y|) for strictly increasing h,

(i11) supp(u) is not equal to the topological closure Xt ¢ X of the set

argmin c(z,y).
yesupp(v) xesupp(p)

In each of these settings the limit law (2.1a) in Theorem 2.2 is non-degenerate.

Exchanging the roles of p and v, Theorem 4.4 as well as Corollaries 4.5 and 4.6 can
equally be applied to f¢. Examples illustrating Corollary 4.5 (ii) and Corollary 4.6 (iii)
in Euclidean settings are provided in Figure 1. In particular, Figure 1(a) highlights that
there is a crucial difference between demanding constant Kantorovich potentials on all of X
(which is not true for X = R? in this case) and only demanding them to be constant almost
surely. This setting also serves as an example where y # v and where every Kantorovich
potential f e S.(u,v) is trivial while f¢ is not.

Remark 4.7 (Bi-triviality). OT problems where both f € S.(u,v) and its conjugate f¢
are trivial have a special underlying geometry. If f is constant on supp(u) and f€ is
constant on supp(v), then the optimality condition f(z) + f¢(y) = ¢(z,y) for points (x,y)
on the support of any optimal transport plan 7 implies that ¢ is constant on supp(r), i.e.,

15
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all points are transported with the same cost. For an example of bi-triviality consider
squared Euclidean costs and uniform distributions on centered spheres of positive radius.
In particular, for different radii the measures are different and both Kantorovich potentials
are trivial.

5 Examples

Elaborating the main result in Theorem 2.2, we focus in this section on concrete settings.
The general setup requires Assumption (A) combined with (B1) or (B2) to hold. It then
remains to verify the Donsker properties for the function classes . and F{ which then
leads to CLTs for empirical OT.

5.1 Empirical Optimal Transport on Countable Discrete Spaces

Our general theory leads to a thorough analysis on CLTs for the OT cost on countable
discrete spaces X and ) equipped with discrete topology. More precisely, for a non-negative
cost function ¢: X x ) - R, bounded by some constant |¢|« < oo, the Assumptions (A)
and (B2) hold trivially (recall Section 2). To prove that the function class F, is y-Donsker,
we define F.1, as the restriction of F. to a fixed element x € X. Notably, each element in
the latter function class is bounded by |¢|. and we obtain

E[IVn (i~ 1) | 70, ] Sjefo Vi(2).
According to Van der Vaart & Wellner (1996, Theorem 2.10.24), we deduce that the

function class F. is pu-Donsker if
3 Vi) < o0 (5.1)
TeX

which is the celebrated Borisov-Dudley-Durst property (Dudley, 2014). Similarly, the
function class F¢ is v-Donsker if 3y \/v(y) < oo.

Corollary 5.1 (Countable discrete spaces, Tameling et al. 2019). Let X and Y be countable
discrete spaces and c¢: X x Y — R, a bounded cost function. Consider probability measures
weP(X) and v e P(Y). If u fulfills the Borisov-Dudley-Durst condition (5.1), then the
CLT in (2.1a) is valid. If v fulfills (5.1), then (2.1b) holds. In case both p and v fulfill
(5.1), then (2.1c¢) holds.

5.2 Empirical Optimal Transport on Euclidean Spaces

From Theorem 2.2 we immediately derive CLTs for the empirical OT cost between prob-
ability measures supported on low dimensional Euclidean spaces X =) = R¢ with d < 3
and sufficiently regular cost function. The proofs require the notion of covering and metric
entropy for a real-valued function class F defined on X as introduced in the notation.
Based on metric entropy bounds, empirical process theory provides tools to assess if a
given function class is p-Donsker or even universal Donsker (Van der Vaart & Wellner,
1996, Section 2.5). We first focus on the real line.

Theorem 5.2 (d = 1). Consider the Euclidean space R with cost c:R xR — R, assumed to
be bounded and (o, L)-Hoélder for ac€ (1/2,1], i.e.,

‘C(l‘,y) - c(m',y')| <L (‘x - az"a + |y - y"a) Va, 2’ y,y e R. (5.2)
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If the probability measure € P(R) fulfills

ki ik 1)) < o, (5.3)

then the CLT in (2.1a) is valid. If v e P(R) fulfills (5.3), then (2.1b) holds. In case both
p and v fulfill (5.3), then (2.1c) holds.

Proof. By the assumptions imposed on the cost and since the setting focuses on the
real line R, the Assumptions (A) and (B2) hold. Based on the main Theorem 2.2, it
remains to prove the Donsker properties of the function classes F. and F¢ in this case.
By Lemma A.2 (i), the function classes F. and F¢ are both contained in the class of real
valued (a, L)-Holder functions defined on R with a € (1/2,1]. According to Van der Vaart
& Wellner (1996, Example 2.10.25) with My, = L for all k € Z this class is p-Donsker if (5.3)

is fulfilled. O

Example 5.3 (Kantorovich-Rubinstein limit law). For a probability measure p € P(R)
with bounded support and Euclidean cost ¢(z,y) = |« — y|, Theorem 5.2 states that

~ D
VnOT1(fin, p) —  sup  Gu(f). (5.4)
fesl(ﬂaﬂ)

By Kantorovich-Rubinstein duality the set of Kantorovich potentials S (p, ) = BLj¢_ (R)
is equal to the set of Lipschitz functions uniformly bounded by |c|. . In particular, the
limit law (5.4) does not degenerate (unless of course u is a Dirac measure). Notably,
condition (5.3) is necessary and sufficient for BLj.)_(R) to be u-Donsker (Giné & Zinn,
1986, Theorem 1). A refined statement, including probability measures with unbounded
support, is given by del Barrio et al. (1999) (see also Mason 2016). If F,, denotes the
cumulative distribution function of y such that

f: VE (L= Fu()) dt < oo, (5.5)

then, for B, (t) = B(F,(t)) with B(¢) a standard Brownian bridge, a CLT of the form

VAOT (o) = [ "B (1)t (5.6)

is valid. The approach presented here yields a dual perspective on (5.6). Indeed, by suitably
coupling the Gaussian processes G, and B, and approximating the respective random
element in terms of an unsigned measure, an application of Fubini’s theorem shows that

[TBu0Idt s Gu(6). (5.7)

feLip(R

The set Lip(R) arises due to Kantorovich-Rubinstein duality. Assumption (5.5) is necessary
and sufficient for Lip(R) to be u-Donsker®. In other words, the CLT (5.6) reflects the
statistical consequences of Kantorovich-Rubinstein duality with respect to a Lipschitz
function class. A similar statement holds for the circle and distributional limit derived
thereon (Hundrieser et al., 2021a).

Theorem 2.2 also characterizes the limit law for the empirical OT cost beyond the real line.
For Euclidean spaces with dimension d = 2,3 we obtain the following novel results.

3Indeed, assumption (5.5) is equivalent to Y21 VP(X]|>j) < oo for X ~ p and well-known to be
necessary and sufficient for Lip(R) to be u-Donsker (Giné & Zinn, 1986, Theorem 2).
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Theorem 5.4 (d = 2,3). Consider the Buclidean space R? for d = 2,3 with cost c: RYxRY —
R, assumed to be bounded and L-Lipschitz'. Further, suppose there exists some A >0 such
that for all k € Z% there exist x,yy, € [k,k+1) such that

c(y)-Al- - :L'kH% is concave on [k, k+1) for all y e RY, (5.8)
o(x,) = A|-—yrl3 is concave on [k, k+1) for all x e RY. '

If the probability measure € P(R?) fulfills

S Vi ([k, k+1)) < oo, (5.9)

keZd

then the CLT in (2.1a) is valid. If v e P(RY) fulfills (5.9), then (2.1b) holds. In case both
w and v fulfill (5.9), then (2.1c) holds.

Proof. By the assumptions imposed on the cost and since the setting focuses on the
Euclidean space R? with d < 2,3, the Assumptions (A) and (B2) hold. Based on the main
Theorem 2.2, it remains to prove the Donsker properties of the function classes F. and F;
in this case. For a convex bounded set 2 ¢ R? and constants K, L > 0, let BL‘}?HL‘:(Q) be
the class of concave L-Lipschitz functions which are absolutely bounded by K. In order
to prove that F. is pu-Donsker if (5.9) holds, we employ Van der Vaart & Wellner (1996,
Theorem 2.10.24). To this end, consider a partition R? = Uycza[k, k + 1) and define the
function class Fe = Fcl pe1). We first verify that each class F, is p-Donsker. First
note for k € Z¢ and any element f ¢ F. that f(-) - A|- - 2|3 is bounded, Lipschitz and
concave on [k,k + 1) (see Lemma A.2 (ii)). More precisely, for any f € F. and since
xy € [k, k+1) it follows

(FO) = Al = 218) gy € B (U 4 1))

with x := (||c| o, + Ad) and [ := (L + 2Ad). According to Bronshtein (1976, Theorem 6)°, we
conclude for € > 0 sufficiently small

log (N (. Fer ) < Yo (N (e, BEST ([ + 1), |-l o)) ) St &2

Note that the function class F.j has envelope function Fi(-) = |c[ o Lz k+1)(+)- Further-
more, an ¢ ||c|-covering {f1,..., fx} of F with respect to ||, defines for any finitely
supported probability measure v € P(R?) with HFck H2 > 0an e HFCkH2 7—covering for F. 1
with respect to ||, .. Indeed, for f e F.j pick f; such that If = fillo < € I/, which yields

o

2
1= Ao 53] [y 2161 41 el VATER D) =2 ol

Hence, we conclude for any finitely supported ~ € P(Rd) with HFckHQ > 0 and sufficiently
small € that

10g (N(€ HFC’kHZ'Y 7fC,k7 H

2)) <108 (N (e g s Fes |o0)) S 2.

“In particular, the cost satisfies (5.2) for a = 1 and Euclidean norm.
®Bronshtein (1976) provides metric entropy bounds for convex bounded Lipschitz functions on a cube
but of course they remain valid for concave functions.
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After taking square roots the latter bound is integrable around zero for d = 2,3 which yields
the p-Donsker property for F.j (Van Der Vaart, 1996, Theorem 2.5.2). The p-Donsker
property of the whole F. now follows if

sup ZE[H\/_(un w5 ] (5.10)

neN keZd

By standard chaining arguments each individual summand can be bounded by

1
E[an —mHm] </, sup \/ L+ log (N (e Fenll,. » Fers I2,) ) de | Bz,

1
g/O- \/1+10g(./\[(5”c”°o7-Fc,k7“'”oo))dEHFCkaZ,/L
1
Seta [ €| Furly, Sa [Ferl,,, = leloo VT k+ ).

Herein, the supremum runs over all finitely supported probability measures over R¢ which
leads to the claimed upper bound by our previous arguments. Summing over k € Z% yields
(5.10) provided g fulfills the summability condition (5.9). O

The summability constraints (5.3) and (5.9) are reminiscent to the Borisov-Dudley-Durst
condition (5.1). Indeed, they naturally appear by partitioning the Euclidean space R? =
Ugezalk, k + 1) and controlling the empirical process indexed over the respective function
class restricted to individual partitions (Van der Vaart & Wellner, 1996, Theorem 2.10.24).
For the latter, the proof of Theorem 5.4 exploits well-known metric entropy bounds for the
class of a-Hdélder and concave, Lipschitz functions, respectively. Notably, crucial to CLTs
for dimension d = 2,3 is condition (5.8) that enables suitable upper bounds for the metric
entropy of F. and Fy.

Remark 5.5 (On the assumptions). A few words regarding the required assumptions for
our CLTs are in order.

(i) The partition of R? = Uy.za[k, k+1) by regular cubes is arbitrary and any partition of
convex, bounded sets I}, ¢ R? with non-empty interior such that sup, diam(1;) < oo
serves to derive the same conclusion.

(i7) Condition (5.8) is fulfilled if the cost function is twice continuously differentiable in
both components with a uniform bound K > 0 on the Eigenvalues of its Hessian. In
this setting the bound from (5.8) is valid for A = K/2.

(i7) The summability constraints (5.3) and (5.9) are well-known in the context of empirical
process theory (Van der Vaart & Wellner, 1996, Section 2.10.4). A sufficient condition

is given in terms of moments E [HX ||2d+6] < oo for some ¢ > 0 since

S V(b k+1)) s2° i \/nQd_QP(HX”OO >n) < 2¢ [|XH2d+5] Z ~(1+6/2),
n=1

keZd

where the latter inequality follows by Markov’s inequality. Notably, for compactly
supported measures the condition is vacuous.

Example 5.6 (R?, d < 3, p > 2). On Euclidean spaces R? with d < 3 and any p > 2,
the CLTs under the null p = v for probability measures with bounded support lead to a
degenerate limit law

VIOTy(fin, 1) — 0, (5.11)
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whenever the support of u is equal the closure of some connected open set. Indeed, under
these conditions the set Sp,(pu,p) is trivial (see discussion at the end of Section 3 and
Corollary 4.5) which asserts a degenerate limit law. For d =1 and p = 2, it is known that
the fluctuation of OTy(fin, 1) is of smaller order than n~"/>. Then, it holds by del Barrio
et al. (2005) under additional regularity assumptions including p having connected support
that

“ D 1 2
nOTs(fin, 1) —2 [O B2 (u) du, (5.12)

where B, = IB%(u)/fu(Fljl(u)) with B a standard Brownian bridge, f,, the density and Fljl
the quantile function of u, respectively. If instead the support of u is disconnected, then
non-trivial Kantorovich potentials exist (see Staudt et al. 2021, Lemma 11) and hence for
p > 2 the distributional limits for \/nOTp(fin, 1) do not degenerate. Moreover, under the
alternative p # v € P(Rd) with bounded support, non-degenerate limit laws

VI(OTy(fin,v) = OTy(i,v)) = sup Gu(f) (5.13)
feSp(p,v)

for p > 2 are generic rather than the exception. While uniqueness of Kantorovich potentials
often holds (see Section 3), their triviality is linked to the underlying geometry of the
corresponding measures’ supports (Theorem 4.4) and appears limited to exotic settings.

Example 5.7 (d > 4). Beyond the low dimensional setting d < 3 as covered by our unifying
approach, already for d = 4 and uniform measure supported on different unit balls around
z #y € R Chizat et al. (2020); Manole & Niles-Weed (2021) prove that

Y2 <E[OTy(fin, )] - OTo (1, v) < n" 2 log(n). (5.14)

Combined with the CLT by del Barrio & Loubes (2019) in (1.5) this indicates either the
random sequence /n(OTy(fin,v) — OT2(u,v)) to be not tight or at best to asymptotically
follow a non-centered limit law. For d > 5, the asymptotic fluctuation of OTs(f,v) —
OTs(p,v) around zero is generally of different order than n~"2 and we refer to the
discussion in the introduction for details. An exception occurs for different probability
measures when one is supported on a low dimensional space as detailed in the following
subsection.

5.3 Empirical Optimal Transport under Lower Complexity Adaptation

We highlight our CLTs for empirical OT in the realm of the lower complezity adaptation.
This phenomenon, recently discovered by Hundrieser et al. (2021b), states that statistical
rates to estimate the empirical OT cost between two probability measures is typically
driven by the less complex measure, e.g., the one with lower dimensional support. In
light of this principle, we emphasize that our CLTs extend beyond the low-dimensional
Fuclidean case provided that at least one measure has some low-dimensional compact
support. The main result relies on the observation that the uniform metric entropies for
F. and F¢ coincide in such settings (Hundrieser et al., 2021b, Theorem 3.4). Hence, under
suitable bounds on the uniform metric entropy for only one of the function classes F.
or F¢, it follows that both are universal Donsker (Definition 2.1). The following result
makes use of this observation and is specifically tailored to settings where the complexity
of Kantorovich potentials on X can be suitably controlled such that a universal Donsker
property holds.

Theorem 5.8. Let X and Y be Polish spaces and suppose the cost c: X x) — R is bounded
and continuous. Further, assume one of the following three settings.
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(i) The set X ={x1,...,xx} is finite and equipped with discrete topology.

(i) The set X CR is a compact interval and there exist o€ (1/2,1] and L >0 such that
c(+,y) is (a, L)-Holder for all y e Y.

(iii) The set X ¢ R? for d = 2,3 is compact and convex, and there exist L >0 and A >0
such that c(-,y) is L-Lipschitz and c(-,y) — A HH% is concave for all y € ).

Then, for arbitrary probability measures p € P(X),v € P(Y) the weak limits from (2.1)
hold.

Proof. For the proof of Theorem 5.8, we make use of the following relationship between
the covering numbers of the function class F, in (1.7) and its c-conjugate F¢.

Lemma 5.9 (Hundrieser et al. 2021b, Theorem 2.4). Let X,) be Polish spaces and
consider a bounded cost function c¢: X x Y — R. Suppose that N (&, Fe,|| - |o0) < 00 for
€ > 0 sufficiently small. Then, it holds that

N(&, Fe, |- loo) =N (&, FEs | - lloo)-
Continuing with the proof of Theorem 5.8, Assumptions (A) and (B1) are fulfilled for all

three settings. For setting (i), note that F. ¢ [-|c|, , |l ]?¥, which implies for all € > 0
that

log N (&, Fer ||+ o) <108 N (&, [= el s Ielo0 ™ | - o) Si1 el log ([e7]) -

For setting (i7), Lemma A.2 (i) asserts that any f € F. is also («, L)-Holder on X. Hence,
it follows by Van der Vaart & Wellner (1996, Theorem 2.7.1) for sufficiently small € > 0
that

log (N (g, Fe, | loo)) S oo €7

For setting (i), note by Lemma A.2 (i) that F. - A3 ¢ BL(X) for k = ([ e[ + Ad)
and [ = (L +2Ad). Hence, invoking the upper bound by Bronshtein (1976, Theorem 6)°
yields for sufficiently small € > 0 that

log (M (e, e || =) = log (N (&, Fe = A3, - )

i (5.15)
<log (N (&, BLLT(X), | lo0)) Sanr.x ] € 42,

By Lemma 5.9 identical bounds on the uniform metric entropy of F¢ hold for all three
settings. Since for all settings the square root of the uniform metric entropy is integrable
with respect to € around zero, it follows by Van der Vaart & Wellner (1996, Theorem 2.5.2)
that both F. and F¢ are universal Donsker. We thus conclude from Theorem 2.2 the CLT's
for empirical OT (2.1) for arbitrary probability measures € P(X),v e P(Y) . O

We emphasize that in contrast to previous CLTs from Subsections 5.1 and 5.2, no summa-
bility conditions are necessary for p and v. Furthermore, no additional assumptions
are imposed on the Polish space ). For instance, Y can be equal to a high- or even
infinite-dimensional Polish vector space.

5The uniform metric entropy bound by Bronshtein (1976) is actually formulated only for convex
Lipschitz functions defined on a cube. Nevertheless, since any convex, Lipschitz function on a bounded
convex domain set can be extended to a convex function with identical Lipschitz modulus on a cube
containing the initial domain (Yan, 2014, Theorem 4.1), the last inequality in (5.15) remains valid at the
cost of a possibly larger constant independent of e.
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Remark 5.10 (Semi-discrete OT). Statement (i) in Theorem 5.8 covers CLTs for semi-
discrete OT (Aurenhammer et al., 1998; Mérigot, 2011; Hartmann & Schuhmacher, 2020),
where one of the probability measures is assumed to be finitely supported. In particular, for
Polish spaces X and ), consider a finitely supported probability measure p = ngl [iOg; €
P(X) and an arbitrary probability measure v € P()). For a possibly unbounded continuous
cost function, del Barrio et al. (2021a) recently derived a CLT for the one-sample case when
the discrete measure p is replaced by its empirical counterpart fi,,. Our theory complements
their result insofar that we require the cost function to be bounded, but additionally allow
sampling from the general measure v and still obtain the results in Theorem 2.2. In
particular, when the support of v is connected, then Kantorovich potentials are almost
surely unique (Staudt et al., 2021, Example 3). Hence, in this setting the corresponding
weak limit is always centered normal, although the limit variance may degenerate to zero
(recall Section 4). Even if the support of v is not connected, under a suitable non-degeneracy
condition of the optimal transport plan Kantorovich potentials still can be shown to be
unique (Staudt et al., 2021, Theorem 1).

Remark 5.11 (CLTs for Wasserstein distance in high-dimensional spaces). As a conse-
quence of Theorem 5.8, we obtain CLTs for the empirical Wasserstein distance on R? even
beyond d < 3 as long as both probability measures p and v have bounded support and one
of them exhibits a sufficiently low dimensional support. More precisely, if 1 is supported
on a finite set of points or a bounded line in R? with p > 1 or in case it is supported on an
affine sub-vector space of dimension d’ < 3 with p > 2, our asymptotic results from (2.1)
remain valid. Notably, for the latter case the asymptotic results still hold for p € [1,2) if
supp(v) is disjoint from the convex hull of supp(u) since the cost function || - —y|”, then is
semi-concave on the latter set.

Remark 5.12 (Degeneracy of limit laws). We like to comment on degeneracy of our limit
laws in case of Euclidean spaces R? with d > 3 and costs of the form c(x,y) = h(||z - y||) for
h strictly increasing. Indeed, for probability measures u, v € P(Rd) with bounded support,
where the support of v has non-empty interior while y is concentrated on a sufficiently
low-dimensional affine subspace, it follows by Corollary 4.6 (ii) that SS(u,r) cannot be
trivial. Hence, when replacing the measure v by its empirical measure 7, the limit laws
do not degenerate. When instead sampling from p, the limit law could indeed degenerate
although this is rather the exception than the rule (see Theorem 4.4). We recall Figure 1(a),
for an example where all Kantorovich potentials S.(u,v) are trivial, whereas SS(u,v) is
not.
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A Omitted Proofs and Auxiliary Results

A.1 Proofs for Section 4

Proof of Theorem /.4. Let f be an almost surely constant Kantorovich potential. By
Lemma A.1 the Kantorovich potential f is continuous and since Kantorovich potentials
are conserved under constant shifts, we can without loss of generality assume that f =0
on supp(u). According to Villani (2008, Theorem 5.19), we find that f coincides on
supp(p) with a Kantorovich potential f: supp(p) = R for the same transport problem
but with the space X replaced by supp(x). In particular, f = 0 is the zero function
and f°(y) = infequpp(p) €(,y) for y € Y is its c-conjugate (which is measurable since c is
continuous). Again by Villani (2008, Theorem 5.19), we conclude that

OT.(u,v =/ d +/ Cduz[ fd +[~Cd1/:f inf  e(x,y) dv(y).
()= | Jdux | f wop(y? T y sk @) dv(y)
Conversely, assume that condition (4.1) holds. We first show that the set

A:=J argmin c¢(z,y) = {:U e supp(p) | Jy, € Y such that ¢(x,y,) = inf c(i:,yw)}
yeY wesupp(1) zesupp(p)

is dense in supp(p). Suppose the contrary, then there exists an zp € supp(p) and a

neighbourhood U c supp(u) of zo such that for all (z,y) € U x Y we have ¢(z,y) >

infzequpp(u) ¢(Z,y). Since pu(U) > 0 as a neighbourhood of the support point xo, it follows

that

fUXyc(az,y) dn(z,y) > [U inf )c(m,y) dv(y)

xY zesupp(p

for any optimal transport plan 7, which can be used to contradict (4.1). Next, we define
the potential f: X > RuU{-o00} via

r3 _ {07 lf T € Supp(:“’)?

—oo, else.

We note that f°(y) = infzex ¢(z,y) — f(z) = inf

wesupp(p) ¢(Z,y) and thus find
Fd +/~Cdy:_[ inf  e(x,y) dv=0T.(u,v
fX S Y / wesupp () (@) ()

by condition (4.1). Therefore, f is an optimal dual solution. It remains to show that the
corresponding Kantorovich potential f, defined as f°¢, is indeed constant on the support
of . For z € A, we observe

f(a:)=1nf (c(a:,y)— inf C(jvy)) SC(J},yl«)— inf C(£‘7ym)=07
yey Fesupp(u) Fesupp(u)
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where y, is chosen as in the definition of A. From the first equality, we also note that
f(z) >0, thus f =0 on A. Since f is c-conjugate and therefore continuous, the density of
the set A c supp(u) implies f =0 on the full support. O

Proof of Corollary 4.5. By Lemma A.1 all Kantorovich potentials are continuous so that
statements holding p- or v-almost surely, in fact, hold for each point in the respective
supports. Under condition (i), we find OTc(y,v) =0 and argmingeg,pp(,) ¢(,y) = 0 for
each y € supp(v), such that (4.1) holds. If condition (iz) holds, then 7 = (p,id).v € I (u,v)
is a transport plan. Due to the projection property, it must also be optimal and (4.1)
follows. O

Proof of Corollary /.0. If ¢ is a positive definite cost and p # v, we find that OT.(u,v) > 0.
At the same time, supp(v) c supp(p) implies that the right hand side of (4.1) vanishes, so
there cannot exist constant potentials under condition (7). To show that (ii) also leads to
non-degeneracy, let U := int (supp(u)) \ supp(v), which is non-empty by assumption and
open since supp(v) is closed. For any coupling 7 € IT(u,v), it holds that 7(U x supp(v)) =
u(U) >0 (since U contains points in the support of ), and so we always find x € U and
y € supp(v) such that (z,y) € supp(w). Let u=2—y. As U is open, we find £ > 0 small
enough that z’ := x —ewu € U c supp(v) as well. Then, employing the strict monotonicity
of h,

(@', y) = (2" - yl) = (A=) |z -y|) < h(|z - y]) = c(z,y) (A1)

for (z,y) € supp(w) and 2’ € supp(u), so u ¢ P.(v) follows by Definition 4.3. Applying
Theorem 4.4 yields the claim. Finally, the fact that supp(u) equals the set X£"" if (4.1)
holds has been established in the proof of Proposition 4.4, which proves (7i7). ]

A.2 Regularity of Kantorovich Potentials

Assumptions imposed on the cost function ¢: X x Y — R, translate to properties on the
function class F. and its c-conjugate F:. A trivial observation is boundedness for any
f € F. as long as the cost is non-negative and bounded. Indeed, for any f € F. it holds that

= el < infe(z,y) = el < f(2) < Inf e(z,y) < ] o
yey yey

and analogously for any f € .. We summarize additional findings in this regard in the
following two statements (see also Gangbo & McCann (1996); Villani (2008); Santambrogio
(2015); Staudt et al. (2021) for further details).

Lemma A.1 (Continuity of Kantorovich potentials). Consider Polish spaces X and Y
and a cost function ¢:X x ) — R, satisfying Assumption (A) combined with (B2) or
(B2). Then, Kantorovich potentials S.(u,v) and SS(p,v) are continuous on X and Y,
respectively.

Proof. Existence of Kantorovich potentials is guaranteed by Assumption (A). Note that
equicontinuity of the partially evaluated costs implies continuity of Kantorovich potentials
since the modulus of continuity of a function class is preserved under pointwise infima
or suprema (see Santambrogio 2015, Section 1.2 for details). This implies continuity of
Kantorovich potentials on X under Assumption (B1), whereas under Assumption (B2)
continuity holds on both X and ). Moreover, under Assumption (B1) the space X is
compact and hence by continuity of the costs, Staudt et al. (2021, Lemma 2) asserts that
the Kantorovich potentials on ) are also continuous on the support of v. O
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As particular instances where structural properties of the cost function are inherited to
Kantorovich potentials, we focus on the setting of Holder smoothness and semi-concavity.

Lemma A.2. Let X and Y be normed spaces.

(i) If for some o € (0,1] and L > 0 the cost c(-,y) is (a,L)-Hélder continuous as a
function in x for all y €Y, then any f € F. is (a, L)-Holder continuous.

(ii) If for some \ >0 the cost c(-,y) is A\-semi-concave as a function in x for all y € ),
then any f € F. is A-semi-concave.

Note that reversing the roles of x and y leads to analogous results for the c-conjugate
function class F¢ if {¢(z,-) | € X'} is uniformly Hélder smooth or semi-concave.

Proof. Suppose c(+,y) is («, L)-Holder continuous for any y € ). Then, it follows that
f(2) = b e(z.y") ~9(y') < e(x.y) - 9(y) < e(,y) - g(w) + Lz — 2"
Taking the infimum on the right hand side with respect to y yields
f(@) < f(@")+ L]z —a'|".

Changing the roles of z and 2’ proves that |f(z) - f(2')|] < L|z — z||* for any f € F..
Suppose that c(-,7) is A-semi-concave, i.e., c(-,y) = A| - |? is concave for all y € ) as a
function of x. It then follows that

fltz+ (1 -t)z") = Mtz + (1 -t)z|?
>t (inf (o) = Al = 9(0) ) + (1) (imf (@', ) - M| = 9
= t(f(@) = Nal?) + (1=0) (F) - Ala'?).

Hence, any f € F, is itself a A-semi-concave function. O
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