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1 General introduction 
 

1.1 Gut microbiome and the gastrointestinal tract 
 

The bodies of animals are colonized inside and outside by trillions of microbial cells 

and viruses, and are collectively known as the microbiome or microbiota (Whitman, 

Coleman and Wiebe, 1998; Clemente et al., 2012; McKenney, Koelle, et al., 2018). 

The microbiome colonizes all body sites in connection with the external environment 

such as, skin, eyes, vagina, respiratory tract, and the gastrointestinal tract (Clemente 

et al., 2012; Huttenhower et al., 2012; Janiak et al., 2021). More recently, body sites 

previously thought to be sterile have associated microbiome as well, like the bladder 

and the placenta (Aagaard et al., 2014; Olaniyi et al., 2020; Perez-Carrasco et al., 

2021). Depending on the body site, the microorganisms may include bacteria, archaea, 

viruses, fungi, helminths, and protozoa (Caporaso et al., 2011; Lukeš et al., 2015; 

Laforest-Lapointe and Arrieta, 2018; McKenney, Koelle, et al., 2018).  

The gut microbiome are the prokaryotic and eukaryotic communities inhabiting the 

gastrointestinal tract of an animal (Clemente et al., 2012). The composition and 

diversity of the endosymbiotic community differs depending on the site of the 

gastrointestinal tract due to differences in physicochemical and nutritional conditions 

(Gu et al., 2013; Yasuda et al., 2015; Pereira and Berry, 2017). The small or proximal 

intestine is characterized by low levels of easily degradable nutrients, low pH and 

higher levels of oxygen. It is mostly colonized by facultative anaerobes (He et al., 1999; 

Zoetendal et al., 2012). Conversely, the large or distal intestine has lower oxygen 

levels, higher pH and less bile salts, promoting organisms that are strict anaerobes but 

contributing to higher cell density and diversity compared to the proximal intestine (Gu 

et al., 2013; Pereira and Berry, 2017). The intestinal mucosa and the lumen differ as 

well (Figure 2) (Yasuda et al., 2015). The secretion of mucus by the epithelial tissue 

produces the intestinal mucosa, thereby providing particular nutrients for bacteria and 

allowing the generation of low diversity biofilms (Eckburg et al., 2005; De Weirdt and 

Van De Wiele, 2015). Phages can also be found in the intestinal mucosa (Barr et al., 

2013; Muniesa and Jofre, 2014). Invaginations of the epithelium produce the crypts 

which have a different partial oxygen pressure and higher concentrations of host 
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glycans, like mucins (Pédron et al., 2012; Lee et al., 2013). The lumen, delimited by 

the mucus layer, has a greater bacterial diversity than the crypts, and the other 

members of the microbiome such as protozoa, helminths, fungi, viruses, phages and 

archaea are localized here (Drudy et al., 2004; Lukeš et al., 2015; Nash et al., 2017; 

Nkamga, Henrissat and Drancourt, 2017; Shkoporov et al., 2019). Investigating the 

microbiome from fecal samples reflects the microbiome of the mucosa and lumen from 

the colon (Zoetendal et al., 2012; Gu et al., 2013; Yasuda et al., 2015). 

 

Figure 1. Structure of the colon and the inhabiting microbiome. Created with 

BioRender.com. 

Complex interactions occur in the gut microbiome between the microorganisms 

composing the community, with the host and with microorganisms outside the host. 

This results in highly dynamic systems and variation between individuals and within-

individuals over time (Parfrey, Walters and Knight, 2011; Miller, Svanbäck and 

Bohannan, 2018; Björk et al., 2019). Furthermore, the gut microbiome is highly host-

specific, for example it varies between species, and even between individuals of the 

same species living in difference geographical regions (Ley et al., 2008; Yatsunenko 

et al., 2012; Amato et al., 2013, 2019). The factors shaping these microbial 
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communities are not fully understood, thus this research avenue needs to be further 

followed (Clemente et al., 2012; Falony et al., 2016; Miller, Svanbäck and Bohannan, 

2018). 

1.2 Importance of the gut microbiome 
 
The effect of the gut microbiome on the health of the host is so relevant that the gut 

microbiome has been called the “forgotten organ” (O’Hara and Shanahan, 2006; 

Clemente et al., 2012). The term dysbiosis meaning an imbalance, disturbance or 

dysfunction of the gut microbiota is used to try to understand the relationship between 

changes in gut microbiome composition and/or functionality and disease. However, 

defining what is a “healthy” or “normal” gut microbiome is challenging because of the 

inherent dynamics of the community (Hooks and O’Malley, 2017; Wei et al., 2021). 

Most of the understanding of the importance of the gut microbiome and its impact on 

the health of the host comes from data collected in experimental studies in laboratory 

animals or human research (Stothart, Palme and Newman, 2019). Thus, this section 

summarizes this research to build-up the relevance of investigating the gut 

microbiome. 

1.2.1 Resistance to infection 

The gut microbiome protects against infections by promoting the healthy development 

of the intestinal epithelium and the gut-associated lymphoid tissues, and by providing 

a barrier to infection (Round and Mazmanian, 2009; McKenney, Koelle, et al., 2018). 

For instance, mice without gut microbiome (germ-free) have structural deficiencies of 

the intestinal epithelium affecting cell turnover and its immunological functions, such 

as production of cytokines and expression of the major histocompatibility complex 

(Abrams, Bauer and Sprinz, 1963). Furthermore, germ-free mice have reduced levels 

of secretory immunoglobulin A (sIgA), defective gut-associated lymphoid tissues, and 

mesenteric lymph nodes leading to a higher susceptibility to infection by bacterial, viral 

and parasitic pathogens (Falk et al., 1998; Bouskra et al., 2008; Round and 

Mazmanian, 2009; Clemente et al., 2012). Additionally, the gut bacterial communities 

provide a barrier to infection or “colonization resistance” by competing for resources, 

binding sites, producing antibiotics, immune activation and increasing tightening of the 

junctions between epithelial cells (Maier and Hentges, 1972; Zachar and Savage, 

1979; Bansal et al., 2010; Estrela, Whiteley and Brown, 2015). For instance, it was 



Chapter 1: General introduction 

4 
 

shown in rodents that protists can protect against bacterial infection through immune 

activation (Chudnovskiy et al., 2016). 

1.2.2 Programming of the immune response 

The gut microbiome is essential for the early development of the innate and adaptive 

immune responses for distinguishing between self- and non-self-molecules 

determining proper immune response activation (Chu and Mazmanian, 2013; Arrieta 

et al., 2014). The innate immune response can identify microorganisms through 

microbe-associated molecular patterns (MAMPs) using Toll-like receptors (TLRs) and 

elicit inflammatory responses to prevent infections (Chu and Mazmanian, 2013). The 

MAMPs of the gut microbiome train TLRs to discern between commensal and 

pathogenic microorganisms, thus promoting tolerance to commensal microorganisms 

and avoiding inflammatory responses (O’Hara and Shanahan, 2006; Round and 

Mazmanian, 2009). Similarly, the commensal microbiota trains the T cell populations 

from the adaptive immune response to discriminate between self- and non-self-

molecules in order to be capable to determine when to elicit an immune response (Lee 

and Mazmanian, 2010; Lathrop et al., 2011; van Tilburg Bernardes et al., 2020). The 

relevance of these interactions between the gut microbiome and the immune system 

are further sustained by inflammatory bowel diseases in humans (Clemente et al., 

2012; Arrieta et al., 2014).  For instance, conditions like Crohn’s disease and ulcerative 

colitis have been linked to dysregulation of the immune response acting on particular 

members of the gut microbiome and shifts in the microbial communities (Round and 

Mazmanian, 2009; Morgan et al., 2012; Gevers et al., 2014; Hoarau et al., 2016; Sokol 

et al., 2017; van Tilburg Bernardes et al., 2020). Moreover, early exposure of the 

immune system to certain members of the gut microbiome or metabolites produced by 

the gut microbiome could play a role in the prevention of allergic diseases (Arrieta et 

al., 2014; Fujimura et al., 2016). This is emphasized when comparing industrialized 

and non-industrialized countries, where higher sanitation standards, antibiotic and 

antiparasitic treatments were shown to affect the gut microbiome and associate with a 

higher prevalence of asthma and allergies (Ege et al., 2011; Graham-Rowe, 2011; 

Fujimura et al., 2016).  The hygiene hypothesis states that the lack of exposure to 

helminths and protozoa impacts the proper development of the immune response, 

which results in increasing the incidence of immunological disorders in industrialized 

countries (Parfrey, Walters and Knight, 2011; Chabé, Lokmer and Ségurel, 2017; 
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Laforest-Lapointe and Arrieta, 2018). Additionally, germ-free mice showed an increase 

of T cell populations associated with allergies (Smith and Garrett, 2011). Furthermore, 

some autoimmune disorders have been linked to interactions between the immune 

response and the gut microbiome, such as diabetes type 1, multiple sclerosis, and 

rheumatoid arthritis (Lee and Mazmanian, 2010; Clemente et al., 2012). 

1.2.3 Nutrition and metabolism 

The gut microbiome is essential for the digestion of diet, energy harvest and the 

production of essential metabolites. These processes are taking place through trophic 

interactions (Bäckhed et al., 2005; Gill et al., 2006; A. J. Johnson et al., 2019). 

Enzymes for the digestion of complex polysaccharides, such as fiber and resistant 

starch, are absent in an animal’s body but are provided by the members of the gut 

microbiome (McKenney, Koelle, et al., 2018). Bacterial enzymes hydrolyze 

polysaccharides, oligosaccharides, and disaccharides to their constituent sugars, 

which are then fermented for energy uptake by microorganisms. The short-chain fatty 

acids (SCFAs) propionate, acetate, and butyrate, which are products of these 

fermentations, are absorbed by the host to produce energy and contribute to a healthy 

function of the intestinal epithelium (Topping and Clifton, 2001; Gill et al., 2006; Qin et 

al., 2010). Archaea use the H2 from fermentations for methanogenesis and remove the 

end product, which affects the efficiency of polysaccharide digestion (Stams, 1994; 

Rychlik and May, 2000; Gill et al., 2006). Additionally, the gut microbiome produces 

essential vitamins for the host, such as A, C, K and the B-vitamins (Qin et al., 2010; 

McKenney, Koelle, et al., 2018). Moreover, bacteria degrade dietary and host-derived 

amino acids, and urea into ammonia which is used by the bacteria and the host for 

protein synthesis (McKenney, Koelle, et al., 2018; McKenney, O’Connell, et al., 2018). 

Finally, the gut microbiome plays a major role in processing xenobiotics, like diet-

derived bioactive compounds protecting the host. In addition, therapeutic drugs can 

also be processed, which might affect the effects of pharmaceuticals (Gill et al., 2006; 

Spanogiannopoulos et al., 2016). Less is known about protists and helminths, but 

flagellates can help digest cellulose in termites and ciliates are essential for digestion 

in the rumen (Parfrey, Walters and Knight, 2011). Moreover, anaerobic gut fungi from 

the phylum Neocallimastigomycota, are important symbionts from the gut of ruminants 

and other herbivores for the degradation of plant fibers to obtain nutrients from diet 

(Gruninger et al., 2014; Wang et al., 2019). Further indications of the impact of the gut 
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microbiome on metabolism are the changes observed when sub-therapeutic doses of 

antibiotics are given as early life promoters in animal husbandry to increase adiposity 

(Cho et al., 2012; Economou and Gousia, 2015). Conversely, microbiome immaturity 

has been linked to undernutrition in children and a new area of research investigates 

how to treat acute malnutrition with microbiota-directed complementary food (Blanton 

et al., 2016; Gehrig et al., 2019).  

1.2.4 Gut-brain axis 

The gut-brain axis is the bidirectional communication between the gastrointestinal tract 

and the brain and is involved in the etiology of several psychiatric disorders (Cryan et 

al., 2019). The brain communicates with the gut through neural signals with the vagal 

and spinal nerve pathways, neurotransmitters, and endocrinologically through the 

hypothalamic-pituitary-adrenal (HPA) axis. In turn, the gut communicates with the brain 

through SCFAs, gut peptides, immunomodulatory signals, cytokines, the HPA axis and 

neuromodulatory metabolites (Figure 2) (Rogers et al., 2016; Cryan et al., 2019). It has 

been shown that the gut microbiome plays a key role in the communication with the 

brain. For instance, studies in germ-free mice showed that colonization by the gut 

microbiome is essential for early life neurodevelopment because these mice have an 

exaggerated stress response to mild stressors, increased motor activity, reduced 

anxiety, abnormal social behaviors, issues with non-spatial memory, and affected pain 

signaling (Sudo et al., 2004; Amaral et al., 2008; Diaz Heijtz et al., 2011; Gareau et al., 

2011; Desbonnet et al., 2014). SCFAs, metabolites produced by bacteria, have a 

myriad of effects on the brain (Cryan et al., 2019). They induce the innate immune 

system by altering the levels of cytokines which can affect the brain (Macfarlane and 

Macfarlane, 2003). Their immunomodulatory properties are so relevant that germ-free 

mice have altered immune responses in the central nervous system (Erny et al., 2015). 

Furthermore, SCFAs can interact with nerve cells, or cross the blood brain barrier and 

access the brain, modulating behavior and brain development (MacFabe et al., 2007; 

Kimura et al., 2011; MacFabe, 2012). Moreover, SCFAs regulate the production of gut 

peptides by the enteroendocrine cells, thus altering the gut-brain hormonal 

communication (Wren and Bloom, 2007; Schéle et al., 2013). The gut microbiome can 

also produce neuromodulatory metabolites like histamine, acetylcholine, 

catecholamines, and GABA (γ-aminobutyric acid) (Stephenson and Rowatt, 1947; 

Barrett et al., 2012; Thomas et al., 2012; Schretter et al., 2018; Sudo, 2019). It plays a 



Chapter 1: General introduction 

7 
 

major role in the regulation of the tryptophan metabolism, a diet-derived amino acid 

essential for the synthesis of serotonin (5-HT) (Rogers et al., 2016). The gut 

microbiome utilizes tryptophan for growth, thereby affecting its availability, but also 

alters host enzymes involved in its degradation (Milligan et al., 1978; Clarke et al., 

2013). Serotonin has vast effects in the body, and variations in its levels have been 

implicated in psychiatric disorders and depressive symptoms (Yano et al., 2015; 

Rogers et al., 2016; Cryan et al., 2019). 

 

Figure 2. Interacting pathways between the gut microbiome and the brain conforming 

the gut-brain axis. Taken from (Rogers et al., 2016) 

The hypothalamic-pituitary-adrenal (HPA) axis is the non-neuronal major player of the 

microbiota-gut-brain axis and coordinates the response to stress (Cryan et al., 2019). 

Stress is any acute threat to the homeostasis of an organism, these threats may be 

physical or psychological, and arise from inside or outside the body. Thus, the HPA 

axis aims to defend the stability or homeostasis of the environment (Mayer, 2000). 

Homeostatic changes induce the release of corticotrophin releasing factor (CRF) from 

the hypothalamus, which in turn activates the anterior pituitary gland to secrete 

adrenocorticotrophic hormone (ACTH), then ACTH promotes the production of 
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glucocorticoids by the adrenal glands (Figure 3). Glucocorticoids suppress the immune 

response, increase blood sugar, and enhanced fat and protein metabolism to prepare 

the body to the “fight or flight” response (Mayer, 2000; Coutinho and Chapman, 2011; 

Cryan et al., 2019; Frankiensztajn, Elliott and Koren, 2020). The effects of the gut 

microbiome on the HPA axis are due to the induction of inflammation or as side effects 

of the regulation of serotine metabolism, which also regulates the HPA axis (Cryan et 

al., 2019; Frankiensztajn, Elliott and Koren, 2020). For example, the increase of gut 

permeability due to the action of glucocorticoids, allows the translocation of gut bacteria 

beyond the intestinal lumen, paradoxically inducing pro-inflammatory cytokines and 

activating the HPA axis (Demaude et al., 2006; Frankiensztajn, Elliott and Koren, 

2020). Mice exposed to immobilization stress presented changes in gut microbiota 

composition with higher abundances of Proteobacteriota and gut inflammation (Jang 

et al., 2018). Furthermore, mice submitted to maternal separation to induce stress 

exhibit enhance HPA axis activity, but after treatment with probiotics glucocorticoid 

induced changes were prevented (Fukui et al., 2018). However, the direct effects of 

the gut microbiome on HPA axis need to be further investigated, although the close 

relationship between the brain, the immune response and the HPA axis makes them 

difficult to disentangle. 

 

Figure 3. Scheme of the hypothalamic-pituitary-adrenal (HPA) axis. Created with 

BioRender.com. 
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1.3 Identifying the members of the gut microbiome 
 

Many of the microorganisms that are forming the gut microbiome are difficult to 

cultivate but advent of high-throughput sequencing technologies made it possible to 

investigate them (Clemente et al., 2012; Knight et al., 2018). Depending on the aim of 

the study, different sequencing techniques can be applied which in turn provide diverse 

types of information regarding the community and its members (Knight et al., 2018). 

Marker gene analysis, the method used for this study, provides a broad overview of 

the microbiome. In this approach, primers are designed to target a domain conserved 

gene, which has a region of high variability that allows phylogenetic identification 

(Knight, 2016; Knight et al., 2018). The gold standard for investigating gut bacterial and 

archaeal communities is the amplification of the 16S rRNA gene encoding for the 30S 

ribosomal subunit, which is unique to prokaryotes, has several hypervariable regions 

providing specificity for species resolution and is relatively short (Arrieta et al., 2014; 

Fukuda et al., 2016). It is recommended to use separate set of primers for analyzing 

bacteria and archaea to increase detection capacity and resolution (Bahram et al., 

2019). In turn, marker gene analysis of the gut protozoa and helminths is performed 

by amplifying  the 18S rRNA gene from the small ribosomal subunit, which have 

several alternating hypervariable (V1 – V9) and conserved regions (Stoeck et al., 2010; 

Bradley, Ian M; Pinto, Ameet; Guest, 2016; Gogarten et al., 2020). The V4 and the V9 

regions are the most frequently used ones (Stoeck et al., 2010; Choi and Park, 2020). 

The internal transcribed spacer (ITS) region of the nuclear ribosomal RNA is used for 

the study of the gut fungal communities or the gut mycobiome (Toju et al., 2012; 

Nilsson et al., 2019). The ITS region is relatively long, thus two subregions can be 

amplified ITS1 and ITS2. The ITS2 is preferred because it has more universal primer 

sites and lower length variation (Tedersoo et al., 2015). One common bias for all 

marker genes is that the selected gene region for the amplification and the primers 

used can predispose the detection of certain taxa, thus primer choice should be made 

cautiously, and data interpretations should consider this inherit bias of the method 

(Klindworth et al., 2013; Arrieta et al., 2014; Tedersoo et al., 2015; J. S. Johnson et al., 

2019).  

The entire community is investigated by amplifying the marker gene directly from 

extracted DNA, thus named DNA-based marker gene analysis (Arrieta et al., 2014; 

Knight, 2016). In RNA-based marker gene analyses the potential active community is 
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investigated by performing RNA extraction from the sample, reverse transcribing the 

RNA to cDNA, and amplifying the marker gene from the generated cDNA (Figure 4). 

This approach studies the community which is actively replicating thus avoiding biases 

from the amplification of dormant or dead cells and reducing the effect of differences 

in the numbers of 16S rRNA operon and copy variants (Větrovský and Baldrian, 2013; 

Berkelmann et al., 2018; De Vrieze et al., 2018; J. S. Johnson et al., 2019).  

 

Figure 4. Schematic overview of the differences in the sample processing for DNA-

based marker gene (entire community) and RNA-based marker gene (active 

community) analysis. Created with BioRender.com. 

The microbiome can be investigated through determining its variation with alpha and 

beta diversity measures and/or studying the differentially abundant taxa (Knight et al., 

2018). Alpha diversity quantifies taxa diversity within a sample, whereas beta diversity 

evaluates differences between samples (Xia, Sun and Chen, 2018). Differences in 

taxon abundances and composition can be investigated at any taxonomical level, from 

phylum to species, even to the level of amplicon sequence variants (ASVs) (Knight et 

al., 2018). An amplicon sequence variant is the exact nucleotide sequence amplified 

and sequenced during marker gene analysis (Callahan, McMurdie and Holmes, 2017; 

Knight et al., 2018; Nearing et al., 2018). ASVs enables the detection of single 

nucleotide differences in the sequence allowing to determine strain-level differences in 

a species (Callahan, McMurdie and Holmes, 2017). Other omic-methods investigating 

nucleotide sequences are shotgun metagenomics and metatranscriptomics. In 

metagenomics, all microbial genomes in a sample are sequenced thus providing 

information regarding gene content and allowing the construction of metagenome 

assembled genomes (Quince et al., 2017; Pasolli et al., 2019). Metatranscriptomics is 
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used to assess the functional community by sequencing the RNA transcripts present 

in the sample (Heintz-Buschart and Wilmes, 2018).  

1.4 Factors shaping the gut microbiome 
 

The complex interplay between the gut microbiome and the host also means that host 

intrinsic and extrinsic factors shape the diversity and composition of the microbial 

community. This section summarizes the literature regarding the drivers of the gut 

microbiome. 

1.4.1 Phylogeny 

Phylogeny studies the evolutionary history of species (Choudhuri, 2014). Host 

phylogeny is one of the major drivers of gut microbiota composition and diversity, 

where conspecifics hosts have more similar microbiomes than those from different host 

species while hosts from the same taxonomic order have more similar gut microbiome 

(Ley et al., 2008; Nishida and Ochman, 2018; Amato et al., 2019; Youngblut et al., 

2019; Gogarten et al., 2021). Even in conspecific hosts living separately, such as 

humans from different geographical regions or animals either captive or in the wild, the 

gut microbiome is more similar between conspecifics (Ley et al., 2008).  At high 

taxonomic levels (family or genus) very few bacteria are shared between non-

conspecifics, thus suggesting they are constrained to specific host clades (Groussin et 

al., 2017; Youngblut et al., 2019). This phylogenetic signal between gut microbiome 

and host phylogeny is stronger in mammals than in non-mammals, particularly for the 

order Artiodactyla, possibly due to the evolution of complex forestomachs (Nishida and 

Ochman, 2018; Youngblut et al., 2019). In vertebrates, host phylogeny only predicts 

composition but not alpha and beta diversity therefore its proposed that host phylogeny 

has a greatest impact on microbial taxa prevalence. But in mammalians clades, 

variations in microbial diversity and composition according to host phylogeny were 

detected (Youngblut et al., 2019). Furthermore, it has been determined that in 

mammals the influence of phylogenetic signal is greater than the one from diet as more 

closely related species possess more similar gut communities despite having different 

diets (Nishida and Ochman, 2018). These concordances between gut microbiome 

similarity and phylogenetic relatedness has been termed phylosymbiosis, and has 

been detected in many hosts (Brooks et al., 2017; Kartzinel et al., 2019; Rojas et al., 

2021). An exception are bats and flying birds where only weak correlations between 
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host phylogeny and gut microbiome were detected, also in birds, bacterial taxa are 

broadly shared between hosts. It was proposed that this apparent loss of host gut 

microbiome specificity compared to other vertebrates is due to physiological changes 

associated with flying (Song et al., 2020). 

1.4.2 Diet 

So far, diet is the second most important predictor of gut microbiota composition and 

diversity (Ley et al., 2008; Nishida and Ochman, 2018; Zmora, Suez and Elinav, 2018; 

Kartzinel et al., 2019; Youngblut et al., 2019). Dietary changes have driven the 

evolution of new vertebrate species by producing physiological adaptations for energy 

harvesting from diet. For instance, the change to a plant-based diet meant the 

enlarging of the foregut or the hindgut to lengthen gut retention times allowing bacteria 

to ferment complex plant polysaccharides (Ley et al., 2008; Clauss, Hume and 

Hummel, 2010; Rojas et al., 2021). These physiological and dietary changes caused 

adaptive challenges for the gut microbial communities as well. The gut microbiome 

interacts directly with dietary nutrients that might promote or inhibit their growth, and 

the capacity to use a specific nutrient as energy source provides competitive 

advantages in the community (Zmora, Suez and Elinav, 2018). For instance, microbial 

taxa able to hydrolyze complex polysaccharides harbor the required functions to 

colonize the gut of herbivores (Youngblut et al., 2019). Carnivores, omnivores and 

herbivores have different gut microbial community composition and diversity, and 

herbivores have the highest genus level richness of the three (Ley et al., 2008; Nishida 

and Ochman, 2018). It has been detected that diet is a stronger predictor of alpha and 

beta diversity than composition. Thus, diet affects microbial diversity by determining 

the functional guilds required for digestion of specific food types (Youngblut et al., 

2019). Although, the gut microbiome of animals can converge according to diet 

category, this only happens at lower taxonomic levels (phylum) (Groussin et al., 2017; 

Nishida and Ochman, 2018). An exception is the gut microbiome of flying birds and 

bats, which shows little or no correlation to diet, and it is suggested that this is due to 

physiological changes associated to flying (Song et al., 2020). Notable differences are 

also detected between individuals and within individuals of the same species following 

dietary changes. For example, in humans differences have been detected between 

individuals eating plant-based or animal-based diets (David et al., 2014). In addition, 

humans from rural settings consuming more fiber-rich diets have higher alpha diversity 
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and different microbial taxa compared to individuals from industrialized countries with 

a fat-rich diet (De Filippo et al., 2010; Yatsunenko et al., 2012; Schnorr et al., 2014; 

Clemente et al., 2015; Martínez et al., 2015). In non-human primates seasonal 

fluctuations affecting food availability and feeding behaviors associate to changes in 

gut microbiome diversity and composition (Amato et al., 2014; Ren et al., 2016; Jagsi 

et al., 2017; Hicks et al., 2018). Finally, lower alpha diversity and differences in 

microbial taxa have been detected in captive animals compared to their wild 

counterparts, which is partly explained by the access to different diets (Uenishi et al., 

2007; Clayton et al., 2016).   

1.4.3 Immune response 

The immune response maintains the homeostasis and mutualistic relationship 

between the host and the gut microbiome by balancing the tolerance to the 

microorganisms and preventing their overexploitation of resources and translocation 

from the intestinal lumen to tissues (Chu and Mazmanian, 2013; Zheng, Liwinski and 

Elinav, 2020). In healthy individuals, the immune response to the gut microbiome is 

localized at the mucosal surface (Figure 1). The mucus layer separates the 

microorganisms from the intestinal epithelium and induces tolerance of immune cells 

towards commensals (Belkaid and Naik, 2013; Shan et al., 2013). Additionally, 

intestinal and pancreatic secretory cells secrete antimicrobial peptides that also 

mobilize immune cells, all contributing to the control of the microbial populations 

(Biragyn et al., 2002; Ahuja et al., 2017; Ehmann et al., 2019). Recognition of microbial 

signals through pattern recognition receptors by the innate immune response, such as 

TLRs, shape the gut microbiome, prevent inflammation by regulating microbial 

abundances or may induce anti-inflammatory mechanisms for tolerance (Fulde et al., 

2018; Erturk-Hasdemir et al., 2019; Zheng, Liwinski and Elinav, 2020). Production of 

IgA by B cells during the adaptive immune response maintains a diverse and balance 

microbiota (Suzuki et al., 2004). For instance, IgA preferentially coats bacteria which 

can induce colitis (Palm et al., 2014). These are just a few examples of the 

mechanisms how the immune response maintains homeostasis with the gut 

microbiome and many more remain to be investigated. 
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1.4.4 Heritability 

The study of heritability of the gut microbiome aims to determine the impact of the 

host’s genetic variation on the microbial community composition and diversity 

attempting to link changes in microbial taxa to the host health and fitness (Grieneisen 

et al., 2021; Kurilshikov et al., 2021). In humans, very few heritable microbial taxa have 

been detected having low and varying estimates of heritability, and no heritability of 

alpha diversity has been identified (Goodrich et al., 2014; Turpin et al., 2016; 

Kurilshikov et al., 2021). Genes that were shown to be linked to microbial heritability, 

were associated to the host’s nutritional preferences as well as metabolic, 

immunological, and psychiatric traits (Blekhman et al., 2015; Kurilshikov et al., 2021). 

Conversely, in yellow baboons (Papio cynocephalus) 97% of single-taxon, alpha and 

beta diversity phenotypes are heritable with low and varying heritability estimates 

(Grieneisen et al., 2021). The discrepancies found between hosts arise from different 

study designs, since the research performed in baboons was longitudinal, which made 

it feasible to identify a masking of the effect by age, season, and diet (Grieneisen et 

al., 2021). 

1.4.5 Social relationships 

Dispersal processes happen in the gut microbiome connecting the gut communities 

from other different hosts directly or indirectly through social relationships (Miller, 

Svanbäck and Bohannan, 2018; Sarkar et al., 2020). Group living facilitates social 

transmission of microorganisms through interactions such as grooming, kissing, 

mating, hugging, sleeping together, cohabitation, and food sharing (Sarkar et al., 

2020). For example, humans sharing or having shared a household have more similar 

gut microbiomes than related individuals who never cohabited (Rothschild et al., 2018). 

Moreover, it was determined that the gut microbiome of twins becomes more dissimilar 

when they live apart (Xie et al., 2016). Co-housing of laboratory mice makes their gut 

microbiome composition and diversity more similar, whereas mice from the same strain 

but located in different cages have more different gut microbiomes (Rogers et al., 2014; 

Hoy et al., 2015; Caruso et al., 2019). In wild primates, group membership is a predictor 

of gut microbiome similarity in yellow baboons, Verreaux’s sifakas (Propithecus 

verreauxi), ring-tailed lemurs (Lemur catta), black howler monkeys (Alouatta pigra), 

white-faced capuchins (Cebus capucinus), mangabeys (Cercocebus atys atys), 

chimpanzees (Pan troglodytes schweinfurthii) and redbellied lemurs (Eulemur 
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rubriventer) (Degnan et al., 2012; Bennett et al., 2016; Amato et al., 2017; Grieneisen 

et al., 2017; Raulo et al., 2017; Springer et al., 2017; Gogarten et al., 2018; Orkin, 

Webb and Melin, 2019). Also, in black-and-white colobus monkeys (Colobus 

vellerosus) the gut microbiome of individuals in different groups became more 

dissimilar after a group fission event (Goodfellow et al., 2019). Social networks or 

duration in body contact shaped gut microbiome similarity in yellow baboons, 

chimpanzees, Verreaux’s sifakas, Welsh mountain ponies (Equus ferus caballus) and 

wild mice (Apodemus sylvaticus) (Tung et al., 2015; Moeller et al., 2016; Amato et al., 

2017; Perofsky et al., 2017; Antwis et al., 2018; Raulo et al., 2021). Furthermore, 

female to male gut microbiome transmission and increase similarity was detected in 

marmosets (Callithrix jacchus) after pairing (Zhu et al., 2020). Effects have also been 

identified in non-mammals, for instance changes in alpha diversity of the cloacal 

microbiota from rufous-collared sparrows (Zonotrichia capensis) and barn swallows 

(Hirundo rustica) have been detected during the breeding season and with increased 

social contacts, respectively (Levin et al., 2016; Escallón, Belden and Moore, 2019). 

Moreover, social bees and bumblebees possess different bacterial taxa than solitary 

bees, and social transmission of commensal bacteria can protect or reduced their 

susceptibility to pathogens (Koch and Schmid-Hempel, 2011; Martinson et al., 2011; 

Schwarz, Moran and Evans, 2016). Social relationships may also impact gut 

microbiome indirectly through their positive and negative influence on the host’s 

physiological and immune response (Kappeler, Cremer and Nunn, 2015). For instance, 

social support can help buffer the impact of stressful events whereas social isolation 

and social status are stress loads for an individual (Cohen et al., 1992; Ostner, 

Kappeler and Heistermann, 2008; Young et al., 2014; Snyder-Mackler et al., 2016; 

Wittig et al., 2016a). In contrast, group living increases the risk of infection by parasites 

and individuals with more social contacts have a higher infection risk (MacIntosh et al., 

2012; Kappeler, Cremer and Nunn, 2015; Rimbach et al., 2015; Springer et al., 2016). 

The impact of social behaviors on host’s health and parasite transmission was further 

investigated in this thesis (chapter 4). 

1.4.6 Age 

Host age differences in gut microbiome composition and diversity have been reported 

at early and late stages of life. Research performed in humans determined colonization 

by bacteria start in utero and that, the meconium, an infant’s first fecal sample, already 
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has a low bacterial diversity (Breitbart et al., 2008; Koenig et al., 2011). After delivery, 

infants are colonized by the vaginal microbiota and this event has an impact on the 

development of the immune response and the intestinal epithelium (Bouskra et al., 

2008; Arrieta et al., 2014).  Due to the exposure to breast milk, solid food, contact with 

the mother’s skin, contact with other individuals, and the environment, the gut 

microbiome further changes (Arrieta et al., 2014; Wampach et al., 2017; Guevarra et 

al., 2019; Petrullo et al., 2019). In humans, the bacterial community of children under 

3 years of age is highly fluctuating, has a lower alpha diversity compared to adults, and 

varies widely between individuals (De Filippo et al., 2010; Koenig et al., 2011; 

Yatsunenko et al., 2012). Furthermore, the microeukaryotic community presents more 

intra- and inter-variability than the prokaryotic counterpart (Wampach et al., 2017; 

Ward et al., 2018). In animals, it remains to be determined at which age the gut 

microbiome of an infant stabilizes, although it is known from piglets (Sus domesticus) 

and calves (Bos taurus) that weaning has major effects on the future development of 

the gut microbiome (Malmuthuge and Guan, 2017; Guevarra et al., 2019). In Rhesus 

macaques (Macaca mulatta) the gut microbiome of infants <1 year of age is 

significantly different from the one of adults suggesting a faster maturation of the gut 

microbiome in non-human primates (Rhoades et al., 2019; Janiak et al., 2021). In 

humans, it has been detected that the gut microbiome of individuals becomes more 

unique with age, and uniqueness associated to better health outcomes (Wilmanski et 

al., 2021). Conversely, other studies identified lower alpha diversity and a higher 

variability in composition possibly due to an increase in pathobionts (Claesson et al., 

2011; Jackson et al., 2016). The effect of host’s age has been difficult to determine in 

wild animals. Differences in composition and diversity according to age categories 

were reported in rufous mouse lemurs (Microcebus rufus), ring-tailed lemurs, Rhesus 

macaques, African buffalos (Syncerus caffer), chinstrap penguins (Pygoscelis 

antarctica) and spotted hyenas (Crocuta crocuta) (Aivelo, Laakkonen and Jernvall, 

2016; Barbosa et al., 2016; Bennett et al., 2016; Heitlinger et al., 2017; Janiak et al., 

2021). In western lowland gorillas, differences between age classes were detected 

only during the dry season (Pafčo et al., 2019). Conversely, in chimpanzees and 

redbellied lemurs no effect of age class was detected (Degnan et al., 2012; Raulo et 

al., 2017). 
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1.4.7 The HPA axis 

The hypothalamic-pituitary-adrenal axis produces glucocorticoids as a physiological 

response to overcome stressors (Heistermann, Palme and Ganswindt, 2006; Tetel et 

al., 2018; Lu et al., 2019). This response can alter the gut barrier, motility and suppress 

immune activation consequently affecting the gut microbiome (Heistermann, Palme 

and Ganswindt, 2006; Bailey et al., 2011; Tetel et al., 2018; Lu et al., 2019). For 

example, this exposure has been associated to a decrease in bacterial richness and 

diversity and to changes in the abundances of certain bacterial taxa in mice (Bailey et 

al., 2011). Also, increase intestinal permeability allows the translocation of bacteria 

from the lumen to other tissues activating inflammatory responses and increasing 

susceptibility to infections by pathogens (Bailey et al., 2010, 2011; Vlčková et al., 

2018).  

These effects have been mostly studied in humans and laboratory animals, but few 

studies exist for wild animals. The measurement of glucocorticoid metabolites in feces 

(fGCM)  is an approach to determine the effects of HPA axis activation due to stressors 

on the gut microbiome of wild populations (Heistermann, Palme and Ganswindt, 2006; 

Stothart et al., 2016; Vlčková et al., 2018). Until now, no covariation of fGCM levels 

with alpha or beta diversity has been detected in eastern grey squirrels or western 

lowland gorillas (Vlčková et al., 2018; Stothart, Palme and Newman, 2019). However, 

positive correlations were observed with specific taxa in gorillas (Vlčková et al., 2018). 

Furthermore, long-term effects of stressors were detected from hair cortisol 

measurements in squirrels and yellow-legged gull chicks (Larus michahellis) implanted 

with corticosterone who had a lower alpha diversity and different predominant bacterial 

taxa compared to controls (Stothart et al., 2016; Noguera et al., 2018).  

1.4.8 Sex 

Differences in gut microbiome composition and diversity associated to sex may arise 

from the effect of gonadal hormones and sexual dimorphic immunity (Elderman, de 

Vos and Faas, 2018; Tetel et al., 2018). For example, castration of mice decreased 

sex differences in gut microbiome, administration of testosterone propionate to 

newborn female rats decreased alpha diversity and ovariectomy of adult female rats 

shifted the Firmicutes-to-Bacteroidetes ratio (Yurkovetskiy et al., 2013; Moreno-Indias 

et al., 2016). Moreover, in several animal species, the innate and adaptive immune 
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response is lower in males than in females. This sexual dimorphic immunity is an effect 

of the X chromosome having many genes regulating the immune response and the 

mediation of the immune function by androgens, oestradiol and progesterone (Klein 

and Flanagan, 2016). Clear distinctions in microbiome composition and diversity have 

been found in laboratory animals, although these signatures vary between genotype 

and diet (Bolnick et al., 2014; Xiao et al., 2015; Org et al., 2016; Sheng et al., 2017). 

Differing results have been found in humans. Some studies reported a considerable 

effect of sex, while others detected none or a modest effect (Dominianni et al., 2015; 

Falony et al., 2016; Haro et al., 2016). Similar differences have been reported in wild 

animals. In western lowland gorillas sex differences were only detected for immature 

individuals during the wet season, and those detected in chimpanzees could also be 

attributed to dietary changes (Degnan et al., 2012; Pafčo et al., 2019). However, no 

effect of sex was detected in redbellied lemurs, Rhesus macaques and eastern grey 

squirrels (Sciurus carolinensis) (Stothart et al., 2016; Raulo et al., 2017; Janiak et al., 

2021). Only in rufous mouse lemurs host sex was an important variable although they 

discussed that variations in home range size or social contacts between sexes could 

have impacted the gut microbiome (Aivelo and Norberg, 2017). The close interplay 

between age, diet, body mass index, genotype and reproductive condition increase the 

difficulty to detect sexual dimorphism in the gut microbiome (Elderman, de Vos and 

Faas, 2018).  

1.4.9 Environment and seasonality 

Dispersal processes between the environment and the host’s gut microbiome are also 

taking place, although they have been difficult to estimate thus far (Miller, Svanbäck 

and Bohannan, 2018). The impact of the environment on the gut microbiome can either 

be measured by detecting transmission of microorganisms from the environment to the 

host or by environmental changes of the host habitat, e.g., seasonality. For instance, 

for wild animals, seasonal shifts impact available food and water sources, thus 

suggesting seasonality as a predictor for differences in gut microbiome composition 

and diversity as observed before in wild mice, Tibetan macaques (Macaca thibetana) 

and pandas (Ailuropoda melanoleuca) (Maurice et al., 2015; Sun et al., 2016; Wu et 

al., 2017). However, in other cases in which correlations with dietary shifts were 

detected, an impact of seasonality was also distinguished i.e. in black howler monkeys, 

white faced capuchins, and Verreaux’s sifakas (Amato et al., 2014; Springer et al., 
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2017; Orkin et al., 2019). Similarly, longitudinal studies in great apes (Gorilla gorilla 

gorilla, Gorilla beringei beringei and Pan troglodytes troglodytes), geladas 

(Theropithecus geladas) and yellow baboons detected an effect of environmental 

factors such as rainfall, and temperature (Ren et al., 2016; Hicks et al., 2018; Baniel et 

al., 2021). Other research does signal a direct uptake of microorganisms from the 

environment. In laboratory animals, most of the variance of the gut microbiome is 

explained by the location in different cages, despite having the same conditions, 

materials and diet (Hufeldt et al., 2010; Hoy et al., 2015; van Tilburg Bernardes et al., 

2020). Furthermore, an influence of habitat type on gut microbiome has been reported 

for black howler monkeys, ring-tailed lemurs and Eulemur spp. (Amato et al., 2013; 

Bennett et al., 2016; Umanets et al., 2018). In yellow and anubis baboons (Papio 

anubis) inhabiting a hybrid zone in Kenya, host environments explained most of the 

variation, and microbial population differences were predicted by soil chemical 

properties and site geology (Grieneisen et al., 2019). Furthermore, in the gut 

microbiome of Weddell’s saddleback tamarins (Leontopithecus weddelli) soil dwelling 

bacteria was detected according to functional predictions (Garber et al., 2019). Finally 

in humans, genetically unrelated individuals sharing a household have significant 

microbiota similarity (Rothschild et al., 2018). Nevertheless, it is complicated to 

disentangle the effect of microbes present in the environment compared to shared diets 

or lifestyles between study subjects which might be driving these differences. These 

relationships can only be studied in higher detail when investigating the microbial 

communities of the host’s environment. 

1.4.10 Interactions between members of the gut microbiota 

Interactions such as competition for resources, trophic chains, predation, and 

mutualism are happening between the prokaryotes (bacteria and archaea), 

microeukaryotes (fungi and protozoa), macroeukaryotes (helminths), and viruses 

comprising the gut microbiome (Parfrey, Walters and Knight, 2011; Laforest-Lapointe 

and Arrieta, 2018; McKenney, Koelle, et al., 2018; Cortés et al., 2019). For the aim of 

this study, only literature regarding interactions between prokaryotes and eukaryotes 

was reviewed. In mice, gut fungi can benefit from the presence of certain bacteria 

whereas they can also antagonize the growth of other bacterial taxa, and in human 

infants, inverse correlations between fungal and bacterial alpha diversity were detected 

(Fujimura et al., 2016; van Tilburg Bernardes et al., 2020). SCFAs produced by gut 
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bacteria can inhibit the growth of the yeast, Candida albicans (Noverr and Huffnagle, 

2004). Furthermore, through mechanisms yet undescribed, co-colonization with fungi 

and bacteria of germ-free mice associate to a higher colitis severity (van Tilburg 

Bernardes et al., 2020). Investigations in humans and laboratory animals detected 

associations between helminthic and protist parasites and changes in diversity, 

composition and bacterial taxa in the gut (Glendinning et al., 2014; Cortés et al., 2019; 

Berry et al., 2020). Blasytocystis sp. is a highly prevalent protozoa in industrialized 

(0.5-30%) and non-industrialized (30-100%) countries, which has been associated to 

higher bacterial alpha diversity and changes in bacterial taxa composition (Audebert et 

al., 2016; Beghini et al., 2017; Laforest-Lapointe and Arrieta, 2018). It is proposed that 

Blasytocystis sp. may alter the bacterial communities by predation of bacteria 

(Laforest-Lapointe and Arrieta, 2018). Furthermore, dogs infected with Giardia had 

significant shifts in bacteria composition and taxa abundances (Berry et al., 2020). In 

wild animals, these associations have also been reported in yellow-necked mice 

(Apodemus flavicolis), western chimpanzees, western lowland gorillas, rufous mouse 

lemurs, and Eulemur spp. with varying results regarding the correlations with alpha 

diversity, beta diversity and bacterial taxa (Kreisinger et al., 2015; Aivelo and Norberg, 

2017; Vlčková et al., 2018; Renelies-Hamilton et al., 2019; de Winter et al., 2020). 

Moreover, comparative research of the gut microbiome from nonhuman primates 

detected positive correlations between bacterial and eukaryotic diversity (Mann et al., 

2020). 

1.5 Redfronted lemurs (Eulemur rufifrons) 
 

Redfronted lemurs (Eulemur rufifrons), also known as redfronted brown lemurs or 

Bennet’s brown lemur, are cathemeral and arboreal primates found in western and 

eastern Madagascar (Pereira et al., 1990; Donati et al., 2001; Johnson et al., 2020). 

They live in small multimale-multifemale groups that are socially tolerant but with one 

dominant male, who monopolizes social interactions with females, and several 

subordinate males (Pereira et al., 1990; Ostner and Kappeler, 1999; Fichtel, Schnoell 

and Kappeler, 2017). They experience periods of social instability with immigration, 

emigration, and eviction of group members. For instance, females can be aggressively 

evicted during the mating (May - June) and/or birth (September - October) seasons 

(Ostner, Kappeler and Heistermann, 2008; Kappeler and Fichtel, 2012b). Additionally, 
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males can perform group takeovers, and the dominant male in the group sires most of 

the infants (Kappeler and Port, 2008; Port, Clough and Kappeler, 2009). These periods 

of instability are social stressors activating the HPA axis and possibly impacting the 

gut microbiome (Ostner and Kappeler, 1999; Ostner, Kappeler and Heistermann, 

2002, 2008; Kappeler and Fichtel, 2012b). They perform auto- and allogrooming, 

including their anogenital regions, with a buccal structure named the toothcomb 

(Barton, 1987). This mechanism can promote the uptake of microorganisms from the 

fur of other individuals and thus contribute to the dispersal of gut microbial communities 

between individuals (Clough, 2010; Perofsky et al., 2017). Their guts are inhabited by 

a diverse eukaryotic community including helminths and protozoa prevalent over the 

entire year, thus complex interactions between prokaryotes and eukaryotes are 

happening in their guts (Clough, 2010; Peckre et al., 2018; Gogarten et al., 2020). 

Redfronted lemurs are mainly frugivorous, they may also feed on flowers, leaves, fungi, 

and/or insects according to the seasonal changes in food availability (Ostner, Kappeler 

and Heistermann, 2008; Schnoell and Fichtel, 2013). Furthermore, these periods of 

lower food availability pose adaptative challenges activating the physiological stress 

response that may impact the gut microbiome (Ostner, Kappeler and Heistermann, 

2008; Koch et al., 2017). Their more common predators are raptors, the fossa 

(Cryptoprocta ferox), and dogs, however they also suffer from poaching events by 

humans (Fichtel and Kappeler, 2002). Altogether, these lemurs provide a unique 

opportunity to study the impact of social relationships on the gut microbiome while 

studying the influence of interactions with the host, the relationships between gut 

members and interaction with ecological determinants. 

1.6 Aim of the study 

Social individuals live in groups with conspecifics in spatial proximity interacting 

through social behaviors such as, grooming, mating, breeding, competition, and 

aggression. Group-living provides benefits and disadvantages to an individual, which 

can impact their health (Kappeler, Cremer and Nunn, 2015). Reduced predation risk, 

access to resources, social support, social learning, and contact immunity through 

exposure to low doses of pathogens, are some of the assets from group-living (Ugelvig 

and Cremer, 2007; Ezenwa et al., 2016; Wittig et al., 2016b; Peckre et al., 2018). Social 

bonds, regular positive interactions, and associations between parties, may help 

individuals to deal with stressors and reduce HPA axis activation (Young et al., 2014). 
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Conversely, individuals living in groups may have to compete for food, mates, and 

social status (Kappeler, Cremer and Nunn, 2015). These factors impact caloric intake 

and may produce chronic activation of the HPA axis decreasing the immune function 

(Ceacero et al., 2012; Cavigelli and Caruso, 2015). Moreover, group-living increases 

the exposure to transmissible diseases and the susceptibility to infection when 

members are genetically related (Ezenwa et al., 2016). However, members of the gut 

microbiome may also be transmitted through social relationships, thus making them 

essential for the individual’s development of the gut microbial community (Tung et al., 

2015; Sarkar et al., 2020). 

The main aim of this study was to determine the drivers of gut microbiome composition 

and diversity in wild redfronted lemurs focusing on the impact of social relationships. 

Their influence was investigated directly through determining the possibility of 

transmission of the gut microbiome, and indirectly by addressing the influence of HPA 

axis activation due to social stressors. These was achieved through three studies. 

1) Dietary shifts and social interactions drive temporal fluctuations of the gut 

microbiome from wild redfronted lemurs (Chapter 2). 

In this study, first the members of the gut microbiome of redfronted lemurs including 

the bacteria, archaea, fungi, protists, and helminths present and their temporal 

fluctuations over one year were analyzed. Additionally, the potential active bacterial 

community was investigated and was compared to the entire bacterial community. 

Moreover, the seasonal associated factors such as diet, affiliative interactions, and 

precipitation, which could correlate to the shifts in the bacterial entire and active 

community, were determined 

2) Multiscale study of temporal drivers of gut microbiome composition from wild 

redfronted lemurs (Chapter 3). 

In this project the drivers of gut microbiome were studied following concepts from 

metacommunity theory Thus, interactions between the host and the microbiota, among 

members of the microbiota, and between microorganisms from other conspecifics 

through social interactions were explored. 

3) Parasites in a social world – Lessons from primates (Chapter 4). 
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Most of the knowledge about the impact of social relationships on the transmission of 

microorganisms derives from investigating the transfer of pathogens or parasites 

through social interactions. Therefore, this study is a literature review regarding the 

social transmission of parasites and the impact of social behaviors on non-human 

primates, to further understand the link between social behaviors and their influence 

on the gut microbiome and the host. 

1.7 Experimental design 

The four groups, A (n= 5 - 8), B (n= 5 - 10), F (n= 6 - 7) and J (n= 11), of redfronted 

lemurs investigated live in Kirindy Forest, Western Madagascar (44° 39′ E, 20° 03′ S). 

Here, the German Primate Center operates a research field station since 1993 within 

a forestry concession managed by the Centre National de Formation, d’Etudes et de 

Recherche en Environnement et Foresterie (CNFEREF) from Madagascar. The 

redfronted lemurs’ groups have been investigated since 1996 through population 

censuses and daily behavioral observations, additionally individuals are captured 

regularly to mark them with identifying collars and one female from each group is 

marked with a radio collar for localization. This long-term data collection allows the 

knowledge of group members age (Kappeler and Fichtel, 2012a).  

Behavioral and fecal sample collection was performed for one year, from May 2018 

until April 2019 to follow the temporal fluctuations of the gut microbiome. This time 

encompasses the dry season from May 2018 until October 2018, followed by the rainy 

season from November 2018 until March 2019, and April 2019 which is the transition 

and beginning of the next dry season (Kappeler and Fichtel, 2012a). Also, it considered 

the mating season from May until June and the birth season from September until 

October (Ostner and Heistermann, 2003; Ostner, Kappeler and Heistermann, 2008; 

Kappeler and Fichtel, 2012b). Only two births happened during the study period, one 

individual in group A and another in group B, the latter disappeared in a lapse of two 

months. To determine social and feeding behaviors continuous focal observations for 

30 minutes were collected in the morning from 7:30 – 11: 00 and in the afternoon from 

14:00 – 17:00. Furthermore, daily collection of precipitation data was performed for 

assessing environmental changes and available water sources. Fecal samples were 

collected only during the mornings from 7:30 until 11:00 for studying the members of 

the gut microbiome and measuring levels of fecal glucocorticoids from the same 

sample. Marker gene analysis was used to identify the bacteria (16S rRNA), archaea 
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(16S rRNA), fungi (ITS2), protists (18S rRNA), and helminths (18S rRNA) present 

using MiSeq Ilumina sequencing and an in-house developed amplicon pipeline 

(Berkelmann et al., 2020). Levels of fecal glucocorticoid metabolites (fGCM) were 

measured using a standardized enzyme immunoassay (Heistermann, Palme and 

Ganswindt, 2006; Ostner, Kappeler and Heistermann, 2008). All data and statistical 

analyses were performed in R. 
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Animals living in highly seasonal environments adapt their diets accordingly to changes in food availability. The gut microbiome as
an active participant in the metabolization of the host’s diet should adapt and change with temporal diet fluctuations, but dietary
shifts can be short-term and, hence, difficult to detect in cross-sectional studies. Therefore, we performed a longitudinal study
combining repeated sampling of fecal samples with observations of feeding behavior in wild redfronted lemurs. We amplified
taxonomical marker genes for assessing the bacteria, archaea, protozoa, helminths, and fungi, as well as the active bacterial
community inhabiting their gut. We found that the most abundant protozoans were Trichostomatia and Trichomonadida, and the
most abundant helminths were Chromadorea. We detected known members of the gut mycobiome from humans but in low
abundances. The archaeal community is composed only of members of Methanomethylophilaceae. The predominant phyla in the
entire bacterial community were Bacteroidota and Firmicutes while the most abundant genera harbor so far unknown bacteria.
Temporal fluctuations at the entire community level were driven by consumption of fruits and flowers, and affiliative interactions.
Changes in alpha diversity correlated only with the consumption of flowers and leaves. The composition of the entire and active
bacterial community was not significantly different, but the most abundant taxa differed. Our study revealed that monthly changes
in the bacterial community composition were linked to fruit and flower consumption and affiliative interactions. Thus, portraying
the importance of longitudinal studies for understanding the adaptations and alterations of the gut microbiome to temporal
fluctuations.

ISME Communications; https://doi.org/10.1038/s43705-021-00086-0

INTRODUCTION
The gut microbiome is a complex fluctuating microbial
ecosystem comprising prokaryotic and eukaryotic microorgan-
isms playing a pivotal role in immunity, physiology, metabolism,
and susceptibility to disease of the host [1, 2]. Investigations of
factors driving these fluctuations help to understand how this
ecosystem adapts to the changing conditions, and the potential
effects these variations have on the health and fitness of their
hosts [2–4].
Essential nutrient cycling processes of the gut ecosystem occur

between the host diet, the microorganisms, and the host itself
[1, 2, 4]. Bacteria catalyze the fermentation of dietary fiber and
starch into short-chain fatty acids and monosaccharides taken up
by the host and other microorganisms [1, 2]. They also provide
ammonia for protein synthesis by metabolizing essential and non-
essential amino acids [2]. The host diet shapes the microbial gut
communities and the presence of certain microorganisms is
crucial for proper degradation and uptake of nutrients from diet
and the resilience of the gut ecosystem [1, 2, 4]. Therefore, the gut
microbial ecosystem of wild animals living in highly seasonal
environments should be capable of adapting to dietary changes
following fluctuations in food availability and seasonality [3–5].
Research in wild mice (Apodemus sylvaticus), Tibetan macaques

(Macaca thibetana) and pandas (Ailuropoda melanoleuca) found
marked seasonal variations in the gut microbiome composition
and diversity associated with environmental fluctuations affecting
food availability [5–7]. Furthermore, cross-sectional studies in
black howler monkeys (Alouatta pigra), white faced capuchins
(Cebus capucinus), and Verreaux’s sifakas (Propithecus verreauxi)
determined these fluctuations correlate with changes in foraging
and feeding behaviors [8–10]. Nonetheless, by sampling only
representative months of each season, short-term dietary and gut
microbiome shifts might be undetected [4]. In the Hadza hunter-
gatherers, a seasonal cycling of the gut microbiome following
seasonal changes in their diets between fruit foraging and
hunting was detected [11]. Longitudinal studies in great apes
(Gorilla gorilla gorilla, Gorilla beringei beringei and Pan troglodytes
troglodytes) and geladas (Theropithecus geladas) determined
seasonal fluctuations of the gut microbiome correlate with
rainfall, temperature, and food availability [12, 13]. While a time
series study in baboons (Papio cynocephalus) detected a highly
dynamic gut microbiome varying according to the group’s diet,
rainfall, and the quality of the water sources [14]. Thus,
enhancing the importance of time series analysis in wild animals
to determine how the gut microbial communities adapt to
seasonal changes [4, 8, 12, 14].
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To our knowledge, all taxonomic profiling studies in wild animals
focus on the amplification of 16 S rRNA gene from DNA, hence
studying the entire community. This approach can be biased by the
number of 16 S rRNA operons and the presence of dormant or dead
cells in the sample [15]. Conversely, when amplifying the 16 S rRNA
transcripts, only the bacterial community that is actively replicating
is investigated, providing insights into the potentially active
community [16]. This approach can provide better proxies into the
functional metabolic changes that the gut microbiome undergoes
as a response to seasonality [2, 4].
We performed a longitudinal analysis of the entire and active gut

bacterial community in a wild primate, the redfronted lemur
(Eulemur rufifrons). Their habitat, Kirindy Forest in Madagascar, is
highly seasonal having a cold dry season from April to October and a
warm rainy season from November to March [17, 18]. These
environmental conditions cause changes in the availability of food
and water sources, posing adaptive challenges for these animals [19–
21]. Redfronted lemurs are mainly frugivorous but consume leaves,
and flowers following seasonal fluctuations, and adjust their drinking
behavior according to the available water sources [20, 21]. Hence,
these redfronted lemurs are a suitable study system to characterize
temporal fluctuations in the gut microbiome composition. Moreover,
they possess a high eukaryotic parasite richness with variations in
their monthly prevalence as detected from morphological studies,
suggesting complex prokaryotic and eukaryotic interactions occur in
their guts [18, 22, 23]. However, their gut mycobiome is still
unexplored despite its potential metabolic importance [24, 25].
For 1 year, we collected up to three fecal samples per month for

each individual and conducted regular animal focal observations
to determine their dietary composition and affiliative interactions.
Since previous research suggested that social group and home
range can also impact the gut microbiome [10, 26], we studied
only one group consisting of five individuals to control for these
potential confounding factors. To characterize the microbiome
composition, we assessed the entire and active bacterial commu-
nity as well as other inhabitants of the gut, including Protozoa,
helminths, Fungi, and Archaea. We hypothesize that by using a
longitudinal approach, we [1] determine temporal fluctuations in
composition and diversity of the bacterial entire and active
community correlate to monthly changes in diet and affiliative
interactions, [2] find no significant differences between the entire
and the active bacterial communities, and [3] detect temporal
changes in the abundances of the eukaryotic community.

METHODS
Sample, behavioral, and environmental data collection
This study was conducted at the research station of the German Primate
Center in Kirindy Forest, Western Madagascar (44°39′E, 20°03′S) from May
2018 to April 2019 [17]. Samples and data were collected over 1 year from
five redfronted lemurs belonging to the same group; three adult females
(FLucF, FTorF, and FMayF), one juvenile female (FBonF) and one adult male
(FCaiM) (Supplementary Table S1). Fecal samples were collected in
RNAlater (Thermofisher Scientific, Massachusetts, USA) from the forest
floor immediately after defecation between 7:30 and 11:00, stored at −20 °
C in the field station and later at −80 °C in Germany. A total of 142 samples
were collected, with an average of two samples per individual per month
(Supplementary Table S1). Behavioral data was collected by continuous
focal observations for 30min in the morning (7:30–11:00) and afternoon
(14:00–17:00). Feeding behaviors were recorded by protocolling their
duration and the ingested food item (leaves, flowers, or fruits). For
affiliative interactions, we protocolled the duration of grooming and body
contact behavior. Environmental data (daily temperature and precipitation)
were collected at the field station with a Tropos data logger (Lambrecht
meteo, Göttingen, Germany).

DNA extraction and amplification of taxonomic marker genes
DNA extractions were performed with the PowerSoil DNA isolation kit
(Qiagen, Hilden, Germany) using 150mg fecal sample following the

manufacturer´s instructions but including a bead beating step of 6.5 m/s
and 24 × 2 for 20 s using FastPrep-24TM5G (MP Biomedicals, California,
USA). PCR reactions for all taxonomical marker genes were performed in
triplicates with the primers and thermocycling protocols listed in the
Supplementary Table S2 and included a negative control without DNA
template and a positive control [27–32]. Triplicates per sample were
pooled equimolar, purified, and sequenced as in [33].

RNA extraction and cDNA synthesis
RNA was extracted from 250mg fecal sample using the RNeasy Power
Microbiome kit (Qiagen) following the manufacturer´s instructions, and
according to the protocol from [33].

Bioinformatic processing of amplicon data
Paired-end reads were quality-filtered with Fastp0.20.0 [34] using default
settings with the addition of an increased per base phred score of 20, base
pair corrections by overlap (-c), as well as 5′- and 3′-end read-trimming with a
sliding window of 4, a mean quality of 20 and minimum sequence length of
50 bp. Quality-controlled reads were merged with PEARv0.9.11 [35] and
primer-clipping was performed with cutadapt2.5 [36] with default settings.
VSEARCH2.14.1 [37] was used for size-sorting, size-filtering (16 S rRNA ≥ 300
bp; 18 S rRNA ≥ 250 bp; ITS2≥ 140 bp) and dereplication. The sequences
were denoised with UNOISE3 [38] using default settings and chimeras were
removed with UCHIME3 (de novo followed by reference-based) [39] leading
to the final set of amplicon sequence variants (ASVs). Then all reads were
mapped against the ASVs and taxonomy was assigned with a minimum
identity of 90% using BLAST2.9.0+ [40] against different databases according
to the taxonomical marker gene. The databases were SILVA SSU 138 NR [41]
for 16 S rRNA, PR2 SSU rRNA [42] for 18 S rRNA and UNITE 8.2 [43] for ITS2.
Best hits were only accepted if

�%identityþ%coverage
2

� � 93 following the
recommendation of SILVA database [41]. Best blastn hit identity for bacterial
species <98.7% or genus <94.5% were corrected to unclassified [44].
Functional predictions were performed using Faprotax1.2.3 [45] for the
bacterial 16 S rRNA gene data after beforementioned filters were applied. All
sequencing statistics are presented in Supplementary Table S3.

Data visualization and statistical analysis
Data visualization and statistical analysis were performed using Rv3.6.2 [46]
and RStudiov1.20.5033 [47] by using the packages ampvis2 [48], ape [49],
stringr [50], reshape2 [51], viridis, data.table [52], tidyverse [53], and
ggplot2 [54]. Datasets for barcharts, heatmaps, and linecharts were
normalized using GMPR [55], whereas data was rarefied for diversity and
multivariate analysis (Supplementary Table S3). A phylogenetic tree was
generated by aligning all sequences with MAFFTv7.407-1 [56] at 100
iterations, calculated using FastTreeMPv2.1.7 [57] and midpoint-rooted
using FigTree v1.4.4 [58] for estimating Faith´s phylogenetic diversity (PD)
with the package picante [59].
For the 18 S rRNA gene amplicon analysis of eukaryotic parasites and

symbionts, samples with <9000 reads were excluded leaving 115 samples.
ASVs from the kingdoms previously reported as inhabitants of the
gastrointestinal tract of animals: Cercozoa, Ciliophora, Metazoa, Apicom-
plexa, Lobosa, Conosa, and Metamonada were analyzed [23, 60]. For the
ITS2 dataset samples with <7000 reads after quality-filtering samples were
removed leaving 125 samples for analysis.

ANCOM analysis to estimate differential taxa between seasons. To
determine bacterial genera with significant different relative abundances
between seasons, we used ANCOM 2.1 [61] and the packages exac-
tRankTests [62], nlme [63], compositions [64], and readr [65] by using the
repeated measures model with season as main variable and individual as
random effect, and 0.7 as threshold of the W statistic.

Multivariate analysis to study temporal changes in β-diversity. Principal
coordinate analyses (PCoA) using weighted UniFrac distances (WUnifrac)
[66, 67] were calculated in ampvis2 [48]. To test for correlations of the
behavioral and environmental variables an environmental fit with 999
permutations was calculated and corrected for repeated sampling by using
strata as individual with vegan [66]. A PERMANOVA test was calculated
with the adonis function from the vegan package to test for significant
differences between individual β-diversity calculated as WUnifrac. Mantel
tests using Spearman correlations were calculated with the vegan package
to estimate correlations between β-diversity from WUniFrac distances and
time between sample collection.
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Linear mixed model for estimating the effects on bacterial composition. The
effects of feeding behaviors and affiliative interactions on the bacterial
composition of the entire bacterial community were tested by fitting a
Linear Mixed Model (LMM) with lme4 [68]. The model included monthly
feeding rates (min/h) on fruits, leaves, or flowers, and affiliative interactions
(min/h) per individual as test predictors, and mean monthly precipitation
(mm) as control predictor. Taxa with abundances <0.5% in a sample were
removed to account for index hopping during sequencing [69]. To deal
with data compositionality, the microbial proportions of each sample were
centered log-ratio transformed [70]. The random intercepts effects of
individual, taxon, sample, and taxon nested within individual (taxon-
individual) were included, the latter to account for individual specific
microbial compositions. Random slopes for all predictors in taxon,
individual, and taxon-individual were included, excluding flower feeding
rates for taxon-individual [71]. Parameters for the correlations between
random intercepts and slopes within taxon and taxon-individual were
included [71] but not within individual because they were unidentifiable
[72]. Assumptions of normally distributed and homogeneous residuals
were checked visually with QQ-plots of residuals and residuals plotted
against fitted values which revealed no obvious deviations. No issues of
collinearity were detected by calculating Variance Inflation Factors using
car [73] on a model lacking the random effects (maximum: 1.203). The
crucial terms in this model were the random slopes within taxon
representing the taxon-specific effects of the test predictors and were
tested with a permutation test by shuffling the labels of taxa within sample
[74, 75]. As a test statistic, we used the difference between the log
likelihoods of the full model and simpler models. One of the simpler
models lacked all random slopes within the sample except that of
precipitation allowing a full-null model comparison by testing the
combined effects of all test predictors. The others lacked the individual
random slopes (except precipitation) within taxon allowing to test their
individual contribution. A total of 1000 permutations including the original
data as one permutation were conducted, and p-values were calculated as
the proportion of permutations that revealed a test statistic at least as
large as that of the original data. If an individual random slope effect was
significant, then the effect of the respective predictor differs between taxa.
The 20 taxa differing most from the average effect across all taxa, meaning
they had the largest absolute values of the respective Best Linear Unbiased
Predictors (BLUPs), were inspected [76]. Model stability was assessed by
dropping individuals one at time, fitting the full model to each of the
subsets, and then comparing the estimates derived with those obtained
for the full model revealing it was acceptable. Residuals for each
combination of taxon and predictor were plotted verifying the presence
of linear trends.

Linear mixed models for estimating effects on alpha diversity. The effects of
feeding behaviors and affiliative interactions on alpha diversity for the
entire and active bacterial community were estimated by fitting a LMM
using lme4 [68], MuMIn [77], and visualized with sjPlot [78]. The response
variable was PD, which was log-transformed for the model of the active
community. Affiliative interactions were log-transformed to achieve a
more symmetrical distribution and avoid influential cases, and all
predictors were z-transformed to facilitate model convergence. We
included individual identity as a random intercept effect and the random
slopes of all fixed effects into individual identity to keep the type I error at
the nominal level of 5% [71]. For estimating the significance of the test
predictors, a null model excluding the test predictors was calculated and
then compared to the full model using a likelihood ratio test. We
determined the effect of single fixed effects using likelihood ratio tests
comparing the full model with reduced models removing one fixed effect
at a time [71]. Model assumptions and collinearity (DNA: 1.203; RNA:
1.205) were checked as in the LMM for bacterial composition with no
obvious deviations from these assumptions. Model stability was assessed
as described above.

Procrustes analysis. Procrustes analysis and significance testing with
protest were performed using vegan [66] to test for correlations between
the plant material detected from the 18 S rRNA gene amplicons and the
entire bacterial community from calculated PCoAs of Bray Curtis
dissimilarity matrices in ampvis2 [48]. Only those samples with >1000
reads for Archaeplastida were analyzed, leaving 97 samples after
rarefaction. The same test was used to determine significant differences
between the composition of the entire and active bacterial community
from the PCoAs from WUnifrac distances. A summary of all statistical
results is depicted in Supplementary Table S4.

Gene alignments and phylogenetic tree from eukaryotic data
Sequence alignments were done with MUSCLE [79] with UPGMA and
default settings. Phylogenetic trees were calculated with the Maximum
Likelihood method, Tamura-Nei model, and 1000 bootstrap in MEGA X
[80]. The 18S rRNA gene and ITS2 sequences from representative
nematodes and Fungi were retrieved from GenBank database [81].

Data deposition
The 16 S rRNA gene and transcripts, 18 S rRNA gene, and ITS2, paired-end
raw reads were deposited in the National Center for Biotechnology
Information Sequence Read Archive (SRA) under the Bioproject
PRJNA694983. SRA numbers are in Supplementary Table S1.

RESULTS
Composition of the redfronted lemur gut microbiome
The most abundant bacterial phyla in the five redfronted lemurs
were constant throughout the sampling period with varying
relative abundances; these were Bacteroidota (30.6% ± 7.6),
Firmicutes (30.0% ± 8.2), Proteobacteria (12.3% ± 6.5), Spirochaetota
(8.7% ± 2.5) and Verrucomicrobiota (6.3% ± 2.2) (Fig. 1A and
Supplementary Table S5). These were consistent for all individuals
exempting an increase of Firmicutes (55.7%) and Proteobacteria in
February for FBonF, and an increase of Fusobacteriota (9.9%) in
January for FLucF.
The taxa detected from the amplification of the 18 S

rRNA gene were Metazoa (56.9% ± 22.7), Streptophyta (21.3% ±
13.2), Fungi (6.6% ± 6.1), Ciliophora (9.6% ± 7.2), and Metamo-
nada (1.9% ± 1.5) with a total of 3.1% ± 2.9 unclassified reads
(Fig. 1B and Supplementary Table S6). The most abundant
orders previously reported as eukaryotic parasites detected
were Chromadorea, Trichostomatia, and Trichomonadida (Fig. 1C).
Chromadorea highest abundances were in October (94.4%) and
lowest in February (40.0%). While Trichostomatia increased in
February (53.6%), and Trichomonadida in May (7.3%). Overall,
ASVs classified as Chromadorea showed high diversity, indicat-
ing a diverse nematode community (Supplementary Fig. S1).
To study fungal gut communities, we analyzed the ITS2 region.

A total of 71% ± 16.8 of sequences were unclassified to Kingdom,
thus demonstrating a lack of information from Malagasy fungal
organisms in databases (Fig. 1D and Supplementary Table S7).
When studying the gut mycobiome the separation between
symbionts and environmental fungi using metagenomic
approaches is challenging [24, 82]. Especially in redfronted lemurs,
who feed on Fungi and plants, which potentially harbor fungal
pathogens. Thus, we extracted only those fungal genera described
before as gut symbionts [24]. We detected these genera in relative
abundances <1%: Cryptococcus, Agaricus, Candida, Saccharomyces,
Malassezia, and Clavispora whereas other genera like Cladospor-
ium, Aspergillus, Fusarium, and Penicillium were present in relative
abundances >1%. In a phylogenetic analysis calculated from the
20 most abundant unclassified ASVs against ITS2 sequences from
some of the fungal genera described as inhabitants of the gut
mycobiome only one ASV was phylogenetically related to
Cladosporium (Fig. 1E). Also, no similar sequences were detected
in the NCBI database.
The archaeal community was assessed with 16 S rRNA gene

analysis in a smaller set of samples using two different sets of
primers aiming to recover sequences of different lineages. In both
cases, only Methanomethylophilaceae was identified (Supplemen-
tary Tables 8 and 9). Thus, the archaeal community has a low
diversity and comprises members also known from the gut of
great apes and humans [83, 84].

Temporal variations of the entire gut bacterial community
composition
The five most abundant genera comprise mostly novel organisms
for which only classification at the family level was possible
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(Fig. 2A). These genera belong to the four families of Prevotellaceae
(14.6% ± 7.4), Spirochaetaceae (8.9% ± 3.1), Rikenellaceae (5.7% ±
4.1) and Kiritimatiellae (5.1% ± 2.4). The fifth most abundant genus
was Sutterella (3.9% ± 2.3). All showed monthly fluctuations in their
abundances, which were not always consistent among individuals

(Supplementary Fig. S2). The top 20 most abundant genera also
presented monthly and individual differences in their relative
abundances (Supplementary Fig. S3). A PERMANOVA test con-
firmed the β-dissimilarities were significantly different between
individuals (p < 0.002).

Fig. 1 Prokaryotic and eukaryotic communities from the gut of redfronted lemurs during the study period from May 2018 until April
2019. A Monthly relative abundances of bacterial phyla for the five studied individuals as determined from 16 S rRNA gene sequencing. Bar
charts depict relative abundances of bacterial phyla from normalized counts for each individual per month. All phyla with abundances <2%
were grouped as rare taxa. B Eukaryotic organisms detected in the fecal samples through 18 S rRNA gene sequencing. Bar charts show
monthly relative abundances of eukaryotic classes from normalized counts. All phyla with abundances <2% were grouped as rare taxa.
C Monthly fluctuations in the relative abundances of Chromadorea, Trichostomatia, and Trichomonadida. Linecharts depict relative abundances
of normalized counts of the detected eukaryotic parasites or endosymbionts in the fecal samples. D Fungal organisms detected in the fecal
samples through ITS2 sequencing. Barcharts display monthly relative abundances of fungal orders from normalized counts. All taxa with
abundances <2% were unified as rare taxa. EMaximum likelihood phylogenetic tree of the unclassified ITS2 ASVs against representative Fungi.
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Seasons were defined following previous publications [17],
however, during our study rainfall increased at the end of the
dry season (Fig. 2B), and feeding behaviors varied across
months (Fig. 2C). Alpha diversity increased during the dry
season with a maximum between August and October (Fig. 2D).
The PD value fluctuated during the whole rainy season and
was lower compared to the dry season. Monthly alpha diversity
changes followed the same pattern in all individuals (Supple-
mentary Fig. S4).
ANCOM analysis revealed that 75 genera showed significant

differential abundance between dry and rainy seasons (Supple-
mentary Fig. S5). We focused on taxa classified with relative
abundances ≥1% (Fig. 3A).
Mean monthly precipitation, consumption of fruits, leaves, and/

or flowers and the rate of affiliative interactions correlated to the
temporal variations in β-diversity. Samples from the dry season
clustered together unlike the samples from the rainy season
(Fig. 3B), and season (p= 0.001), precipitation (p= 0.001), feeding

on fruits (p= 0.003), leaves (p= 0.044), flowers (p= 0.001), and
affiliative interactions (p= 0.006).
The LMM detected taxon-specific effects (full-null model compar-

ison; permutation test: p= 0.001) of flower (p= 0.001) and fruit
feeding (p= 0.001), and affiliative interactions (p= 0.043) on the
overall bacterial community composition (Supplementary Table S10)
the following: exhibited significant correlations. We thus inspected
the 20 taxa for which the taxon-specific effect deviated most from
the average effect across all taxa for each significant predictor
(Fig. 3C and Supplementary Fig. S6–9).

A time series analysis of WUnifrac distances against time
between sample collection confirmed temporal variations on
individual level (Supplementary Fig. S10 and Supplementary
Table S11). Thus, the longer the timespan between the samples,
the more dissimilar were the gut bacterial communities.
The LMM for the alpha diversity (full-null model comparison: p=

0.003) detected an effect of feeding on leaves (p= 0.055, Fig. 4B)
which correlated with an increase in PD, while the rates of flower

Fig. 2 Monthly fluctuations in most abundant bacterial genera and alpha diversity detected in fecal samples from redfronted lemurs
from May 2018 to April 2019. A Top 5 most abundant bacterial genera and their monthly changes for all studied individuals. Line charts
display relative abundances from normalized counts. B Mean monthly precipitation calculated from records of daily precipitation and seasons
from the study period. C Monthly feeding rates on fruits, leaves, and flowers determined through behavioral focal observations. D Monthly
variations in alpha diversity measured by Faith’s Phylogenetic Diversity Index of all studied individuals.

T. Murillo et al.

5

ISME Communications 30



consumption and mean monthly precipitation correlated negatively
with PD (flowers: p= 0.002; Fig. 4A; monthly rainfall: p= 0.039,
Fig. 4C, Supplementary Table S12). An effect of dietary changes on
bacterial community composition was further confirmed by
significant correlations from the plant diet deduced from the 18 S
rRNA gene analysis (Supplementary Fig. S11A) to the fluctuations of
the bacterial community (Supplementary Fig. S11B) (p= 0.001;
Supplementary Fig. S11C).

Potential active bacterial community in the redfronted
lemur gut
The potentially active bacterial communities were analyzed from
one sample per individual per month. The five most abundant phyla
detected in the active community were Firmicutes (56.1% ± 13.1),
Bacteroidota (16.5% ± 6.1), Actinobacteriota (9.9% ± 4.4), Proteobac-
teria (5.2% ± 2.2), and Spirochaetota (4.9% ± 2.2) (Supplementary
Fig. S12A). The five most abundant genera were Colidextribacter

Fig. 3 Seasonal variations of bacterial genera, beta diversity, and composition of the entire gut bacterial community of redfronted
lemurs from May 2018 until April 2019. A Log2f fold changes in the mean abundances of bacterial genera between dry and rainy season as
detected with ANCOM 2.1. B PCoA based on weighted Unifrac of the bacterial community and environmental fit analysis depicting significant
correlations between temporal fluctuations in beta diversity and the environmental, diet and social factors investigated. C Heatmap showing
the 20 bacterial genera for which taxon-specific effects differed most from the average across all taxa as detected in a LMM estimating the
effects of diet and affiliative interactions on community composition. The image displays the test predictors for which an effect was detected,
feeding on flowers and fruits, and affiliation rates. Precipitation was included as the control predictor. Positive effects are depicted with
orange, whereas negative effects are colored in purple.

Fig. 4 Environmental and dietary factors driving the monthly fluctuations in alpha diversity of the entire bacterial community measured
with the Faith’s Phylogenetic Diversity index. A Monthly rates of flower consumption (min/h) correlate negatively with alpha diversity.
BMonthly rates of leaves feeding (min/h) correlate positively with a higher alpha diversity. CMean monthly precipitation correlates negatively
with alpha diversity. The effects of diet, affiliation rates and precipitation were determined with a LMM.
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(11.5%± 8.1), Prevotellaceae—Unclassified (8.8%± 4.8), Collinsella
(6.7% ± 3.4), Spirochaetaceae—Unclassified (4.8% ± 2.8), and Oribac-
terium (4.5%± 4.6) (Fig. 5A and Supplementary Fig. S12A). The top
20 most abundant genera were also investigated, which presented
monthly and individual differences in their relative abundances
(Supplementary Fig. S13).
The ANCOM analysis revealed that 40 genera exhibited

significantly different relative abundances between seasons. Most
exhibited abundances <1% or were only classifiable to order level
(Supplementary Fig. S14) leaving only Bacteroidales group RF16

with lower abundances in the rainy season, whereas Lachnospir-
aceae group XPB1014 and Fusobacterium had higher abundances
in the rainy season. PD was higher during the dry season and
more variable during the months of the rainy season, like at the
entire community level (Fig. 5B). The PCoA did not show seasonal
clustering (Fig. 5C). However, the environmental fit analysis
detected correlations of season (p= 0.007), feeding on flowers
(p= 0.003) and precipitation (p= 0.013) with the monthly
alterations of the bacterial community (Fig. 5C). Mantel correlation
tests of the β-dissimilarities and the timespan between sample

Fig. 5 Monthly fluctuations in the bacterial composition and alpha diversity of the active bacterial community in fecal samples from
redfronted lemurs from May 2018 to April 2019. A Top five most abundant bacterial genera and their monthly changes for all studied
individuals. Line charts display relative abundances from normalized counts. B Monthly variations in alpha diversity measured by Faith’s
Phylogenetic Diversity Index in all studied individuals. C PCoA from WUnifrac of the bacterial community and environmental fit analysis
depicting significant correlations between temporal fluctuations in beta diversity and the environmental, diet and social factors investigated.
D Monthly rates of flower consumption (min/h) correlate negatively with alpha diversity. The effects of diet, affiliation rates and precipitation
on alpha diversity were determined with an LMM.
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collection for each individual were significant (Supplementary
Table 13). Only feeding on flowers (p= 0.002) was associated with
an effect in alpha diversity correlating with a decrease (Fig. 5D,
Supplementary Table S14).
For comparison of entire with active communities a PCoA from

WUnifrac with the reduced sample size was calculated also at
entire community level. Precipitation (p= 0.003) and feeding on
fruits (p= 0.056) and flowers (p= 0.002) were significantly
correlated (Supplementary Fig. S15A). The comparison between
the PCoAs from the entire and active community with the protest
test from the Procrustes analysis detected significant correlations
(p= 0.001). Thus, they were not significantly different (Supple-
mentary Fig. S15B).
Functional predictions performed for the active community

assigned 51.7% of the ASVs to an entry of the Faprotax database.
Chemoheterotrophy (21.6% ± 3.6) and fermentation (21.3 ± 3.7)
were the most abundant metabolisms, with a peak during the
rainy season from October to January coinciding with an increase
in fruit feeding (Fig. 2C and Supplementary Fig. S16).

DISCUSSION
Our longitudinal approach coupled with a dense sampling regime
and behavioral data allowed us to detect in detail the temporal
fluctuations of the gut microbial communities from redfronted
lemurs. We determined the entire bacterial community changed
accordingly to a higher consumption of fruits and flowers, and
variations in affiliative interactions. Hence, the bacterial commu-
nity quickly adapted to monthly changes in the diet but also to
the host social behavior. Moreover, we characterized the
potentially active bacterial community, which also underwent
temporal fluctuations that correlated but only to flower consump-
tion. The overall composition of the entire and the active bacterial
communities were not significantly different, but the most
abundant genera differed. The eukaryotic communities also
presented temporal fluctuations and includes undescribed
organisms.

Unknown genera inhabit the gut microbiome of redfronted
lemurs
The most abundant bacterial phyla identified were Bacteroidota
and Firmicutes similarly to other primates and humans [12, 85, 86].
Spirochaetota was also detected in high abundances, coinciding
with previous reports from other primates and a cross-sectional
study from the same species [86, 87]. A previous study in the same
lemur species detected only low abundances of treponemes but
higher abundances of Cyanobacteria and Firmicutes [87]. However,
in this study, samples were not placed in preservation solution for
a time span of 12 h, which might have altered the bacterial
community [87].
The impossibility to classify the most abundant bacteria to

taxonomic resolutions below family level highlights the presence
of yet unclassified microorganisms in the gut of redfronted lemurs,
as described in other non-human primates [86]. While the
classifiable taxa are reported inhabitants of the gut from humans
and other non-human primates [8, 11, 13, 86, 88]. Genera from
Prevotellaceae and Spirochaetaceae, have been associated to plant-
based diets providing pathways for their metabolization
[11, 85, 86]. Rikenellaceae ferments carbohydrates and proteins
[89]. Taxa from Verrucomicrobiota have been reported as mucin-
utilizers [11]. Less is known about the metabolic role of Sutterella, a
common inhabitant of the human gut [90].

The potential active bacterial community has a lower alpha
diversity and differs in the most abundant taxa
The potential active community had higher relative abundances of
Firmicutes and a lower alpha diversity compared to the entire
community. There are several possible explanations for the lower

alpha diversity detected. First, redundancy of metabolisms in the
bacterial community due to a pool of phylogenetically different
community members capable to degrade the same substrates,
which are not all active at the same time [2, 16, 91]. Second,
community resilience, with other members in dormant stages that
allow further functional adaptations when the environmental
conditions change [16, 91]. Third, differences in the copy numbers
of 16 S rRNA genes between taxa, inflating the abundance of a
taxa but not portraying the actual functional scenario [15, 16, 91].
However, the entire and active community are not significantly
different and follow similar temporal fluctuations. Therefore, study-
ing only the entire community provides insights into the temporal
fluctuations of the gut microbiome, but studying the active
community indicated functionally important active taxa can go
unnoticed because of their lower abundances at entire community
level. Regarding the most abundant genera detected differing from
the entire community, there is no information about the metabolism
of Colidextribacter, while Collinsella and Oribacterium are polysac-
charide degraders coinciding with the lemurs’ diet [92–94].
The functional predictions from the active community indicated

an increase in fermentation and chemoheterotrophy during the
rainy season possibly associated to the higher consumption of
fruits and flowers [8, 9, 12, 14]. However, we did not detect an
augmentation of cellulolytic metabolism correlating with leaf
consumption during the dry season. Since we performed
metabolic predictions from taxonomy, we consider this is caused
by the limited and biased metabolic information for certain taxa.

Dietary changes have an effect in the temporal fluctuations of
the gut microbiome
The collection of behavioral data and the dietary assessment
performed with the 18 S rRNA gene data allowed us to confirm
temporal fluctuations of the gut microbiome correlate to dietary
changes. We detected differentially abundant taxa for the rainy
season, correlations of flower and fruit consumption to the
temporal variations in β-diversity, and taxon-specific effects of
flower and fruit consumption in bacterial composition. Flowers
and fruits are high in non-structural polysaccharides like mono-
and disaccharides, but flowers contain more protein whereas fruits
have a higher lipid content [95–97]. The positively affected taxa by
the consumption of these plant parts coincide with these
observations, since they are reported fermenters of mono- and
disaccharides, like Succinivibrio, Oscillospiraceae, and Prevotella-
ceae, while Anaerovibrio, metabolizes glycolipids [85, 98–100].
Furthermore, Succinivibrio and Anaerovibrio produce succinate
from their fermentations which in turn is the energy source of
Phascolarctobacterium, another positively affected taxon
[98, 99, 101]. The correlation of flower consumption with a lower
alpha diversity suggests that a diverse gut microbial community is
not needed for the digestion of flowers, coinciding with their less
complex biochemical composition [96, 97].
Against our expectations, consumption of leaves only correlated

to β-diversity changes from the dry season but did not influence
the overall bacterial composition. However, leaf consumption
correlated to higher alpha diversities, also reported in the Hadza
community and baboons [11, 14]. As leaves have complex
structural polysaccharides like hemicellulose, cellulose, and lignin,
this indicates that a more diverse bacterial community is needed
for the processing of the structural polysaccharides from a leaf
diet [97].

Social interactions have an effect in the temporal fluctuations
of the gut microbiome
Affiliative interactions correlated to the changes in β-diversity and
influenced the overall gut microbiome composition. Lemurs use their
toothcomb to groom themselves and others, by doing so, they can
uptake microorganisms present on their furs and anogenital regions
[102]. Rikenellaceae, Alloprevotella, Kiritimatiellae—WCHB1–41, and
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Spirochaetaceae were positively affected by affiliative interactions,
indicating that they are transmitted via affiliative interactions. Social
interactions correlated with β-diversity fluctuations in the dry season
as well. During this period, social behaviors like mating, birth, and
social thermoregulation to cope with the low temperatures occur,
increasing microbe transmission [19, 103]. Nonetheless, there were
no births during our study period suggesting social thermoregulation
played a more important role [19].

Correlations between precipitation and temporal fluctuations
of the gut microbiome
Precipitation correlated with the fluctuations in β-diversity and a
lower alpha diversity during the rainy season. Redfronted lemurs
drink from waterholes and temporary ponds during the rainy
season, whereas in the dry season, they drink from partially dry
water holes in the river having higher microbial loads [20]. Higher
precipitation resulting in water sources with lower microbial loads
decreased alpha diversity and correlated to changes in β-diversity.
Thus, taxa with higher abundances in the dry season could be
ingested from drinking at the river waterholes like Kiritimatiellae—
WCHB1–41, which was impacted negatively by higher precipita-
tion and has been previously isolated from environmental water
suggesting transmission from water sources [104].

Gut of redfronted lemurs is inhabited by a great diversity of
molecularly uncharacterized helminths and protozoa
The gut of all individuals harbored helminth and protozoan
organisms over the entire year. These were classified only at the
order level because they had high identity but low coverage to
parasites of humans or livestock at higher taxonomical resolution. We
detected a high prevalence of the Chromadorea and suspect most
are from Lemuricola vauceli or Callistoura of Oxyuridae; however,
genetical information from the V4 region of these organisms is
absent in databases [18, 22]. This high prevalence has been
previously detected morphologically but not in other metabarcoding
studies [18, 22, 23]. Furthermore, our phylogenetic analysis detected
other families like Trichuridae and Strongyloididae confirming a great
diversity of nematodes inhabiting these lemurs [22].
The sequences detected from Trichostomatia possibly belong to

Balantidium, following previous microscopical reports of this lemur
species [22, 23]. Moreover, the identified Trichomonadida, possibly
a novel organism, was not detected before in microscopical
studies, only in amplicon-based reports [22, 23]. The differences in
the taxa detected between this study and a previous metabarcod-
ing report might be due to the amplification of different regions of
the 18 S rRNA gene, we used the V4 while in other studies the V3-
V4 and V3-V5 were investigated [23, 31].

The gut mycobiome of redfronted lemurs is comprised by
novel fungi
We detected in low relative abundances fungal genera described as
human gut symbionts, suggesting the gut mycobiome of redfronted
lemurs has low abundances and diversity, as reported in humans
[24]. The majority of the ASVs were unclassifiable, even after
performing a phylogenetic analysis of the most abundant sequences
against representative fungi, confirming the deficiency in genomic
information from fungal organisms found in Madagascar and the
gut of wild-living animals [24, 82]. The observed variation of the
unclassified taxa between months could portray changes in the gut
mycobiome. Nonetheless, it should be considered that some of the
detected taxa might derive from diet, as redfronted lemurs fed on
fungi or fungal plant pathogens [25, 82].

CONCLUSION
Fruit and flower consumption, affiliative interactions and water
sources are important drivers of the temporal fluctuations of
the gut bacterial communities from redfronted lemurs. Thus,

displaying how this bacterial community adapts to the host diet
and behavior following temporal changes. Eukaryotic gut com-
munities also fluctuate monthly and are very diverse. Our results
affirm intricate host-microbiome interactions in the gut of
redfronted lemurs are affected by the host diet, precipitation,
and social behavior. To our knowledge, this is the first 1-year study
combining thorough sampling and individual behavioral data
collection allowing the detection of direct links between temporal
fluctuations of bacterial taxa and consumption of specific food
items and social behavior. Longitudinal studies as the one
performed here capture better the effects of seasonality on the
fluctuations of the gut microbiome, diet, and social behaviors than
cross-sectional approaches.
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Supplemental Figure S1. Maximum likelihood phylogenetic tree of the ASVs classified as 

Chromadorea including representative parasitic nematodes of humans and animals. Sequences 

were aligned with MUSCLE with UPGMA and default settings, and the phylogenetic tree was 

generated in MEGA X with the Tamura-Nei model and 1 000 bootstrap. 18S rRNA gene 

sequences from representative parasitic nematodes of humans and animals were retrieved from 

the NCBI database. 
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Supplemental Figure S2. Monthly fluctuations of the five most abundant bacterial genera in each 

individual. Linecharts depict relative abundances of bacterial genera from normalized counts.  
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Supplemental Figure S3. Heatmap of the 20 most abundant bacterial genera averaged per 

month for each individual during the study period. Relative abundances were estimated from 

normalized counts. 
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Supplemental Figure S4. Monthly individual fluctuations in alpha diversity measured as Faith’s 

Phylogenetic diversity index. 
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Supplemental Figure S5. Log2fold changes of mean abundances of bacterial genera between 

dry and rainy season as detected with ANCOM 2.1. 
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Supplemental Figure S6. Effects of flower consumption rates on the 20 bacterial taxa for which 

the taxon-specific effect differed most from the average effect across all taxa. LMMs were 

calculated including the random intercept of individual, taxon, sample, and taxon nested within 

individual (taxon-individual) and the random slope and fixed effect of monthly rates of flower 

feeding. A significant effect of flower feeding on community composition was determined by 

comparing the log likelihoods of the full model to one lacking the random slopes of all test 

predictors within taxon, and another one without flower feeding rates within taxon. Additionally, 1 

000 permutations were performed by shuffling the labels of taxa within sample to detect a specific 

effect of flower feeding in a bacterial taxon. Significance was determined as the proportion of 

permutations where the test statistic was at least as large as the original data. 
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Supplemental Figure S7. Effects of fruit consumption rates on the 20 bacterial taxa for which the 

taxon-specific effect differed most from the average effect across all taxa. LMMs were calculated 

including the random intercept of individual, taxon, sample, and taxon nested within individual 

(taxon-individual) and the random slope and fixed effect of monthly rates of fruit feeding. A 

significant effect of fruit feeding on community composition was determined by comparing the log 

likelihoods of the full model to one lacking the random slopes of all test predictors within taxon, 

and another one without fruit feeding rates within taxon. Additionally, 1 000 permutations were 

performed by shuffling the labels of taxa within sample to detect a specific effect of fruit feeding in 

a bacterial taxon. Significance was determined as the proportion of permutations where the test 

statistic was at least as large as the original data. 
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Supplemental Figure S8. Effects of affiliation rates on the 20 bacterial taxa for which the taxon-

specific effect differed most from the average effect across all taxa. LMMs were calculated 

including the random intercept of individual, taxon, sample, and taxon nested within individual 

(taxon-individual) and the random slope and fixed effect of monthly affiliation rates. A significant 

effect of affiliation rates on community composition was determined by comparing the log 

likelihoods of the full model to one lacking the random slopes of all test predictors within, and 

another one without affiliation rates within taxon. Additionally, 1 000 permutations were performed 

by shuffling the labels of taxa within sample to detect a specific effect of affiliation rates in a 

bacterial taxon. Significance was determined as the proportion of permutations where the test 

statistic was at least as large as the original data. 
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Supplemental Figure S9. Effects of mean precipitation on the 20 bacterial taxa for which the 

taxon-specific effect differed most from the average effect across all taxa. LMMs were calculated 

including the random intercept of individual, taxon, sample, and taxon nested within individual 

(taxon-individual) and the random slope and fixed effects of the test predictors: feeding rates of 

flowers, fruits and leaves, and affiliation rates. Precipitation was included as a control predictor, 

thus taxon-specific were not tested for significance. 
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Supplemental Figure S10. Time decay plots of β-dissimilarities against the time span between 

sample collection for each individual. Wunifrac distance matrices for each individual were 

calculated and compared to matrices accounting for the days between sample collection. Mantel 

tests were used to determine correlations between sample dissimilarities and sampling interval. 
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Supplemental Figure S11. Comparison between the monthly variations in gut microbiome 

composition and dietary items. A. PCoA from Bray Curtis dissimilarity distance of the dietary items 

detected from the 18S rRNA amplicon sequencing. B. PCoA from Bray Curtis dissimilarity 

distances of the entire bacterial community and its temporal variations. C. Procrustes comparison 

of the ordination analysis for the bacteria and dietary items identified. 
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Supplemental Figure S12. Comparison of the bacterial composition to phyla level and the five 

most abundant genera for the A. active community and B. entire community and their monthly 

fluctuations from May 2018 to April 2019. Barcharts to phylum level and linecharts to genus level 

display relative abundances from normalized counts. 
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Supplemental Figure S13. Heatmap of the 20 most abundant bacterial genera in the potential 

active community and their monthly fluctuations in their relative abundances in each individual. 

Relative abundances were estimated from normalized counts.  
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Supplemental Figure S14. Log2fold changes in the mean abundances of bacterial genera 

between dry and rainy season in the potential active community as detected with ANCOM 2.1. 
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Supplemental Figure S15. Comparison between the entire and the active bacterial community. 

A. PCoA from WUnifrac of the reduced entire community and the dietary and environmental fit 

analysis depicting significant correlations between temporal fluctuations and the environmental, 

diet and social factors investigated. B.  Results from the Procrustes comparison of the PCoAs 

from Wunifrac for the bacteria potential active and entire community. 
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Supplemental Figure S16. Functional predictions for the active bacterial community using 

Faprotax.  
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Supplementary Tables 

Supplementary Table S1. Fecal sample list with metadata and respective marker 

genes analyzed. The table is deposited on the enclosed CD under 

\Chapter2_Supplementary_material\ 

Supplementary Table S2. Primers and PCR protocols for all the studied taxonomical 

marker genes. The table is deposited on the enclosed CD under 

\Chapter2_Supplementary_material\  

Supplementary Table S3. Sequencing statistics for all taxonomical marker genes. 

 

 

 

 

 

 

 

Taxonomical 
marker gene 

Number 
of 

samples 

Reads after 
quality 
filtering 

Number 
of ASVs 

Mean 
amplicon 

length (bp) 

Number of 
unclassified 

reads 
Reads for 
rarefaction 

Bacteria 16S 
rRNA 141 7 068 908 2 675 417 3.5 % ± 1.5 18 794 

Bacteria 16S 
rRNA (active) 56 1 285 188 2 437 417 1.5 % ± 0.6 9 032 
Bacteria 16S 
rRNA (entire) 56 3 086 712 2 583 417 4.0 % ± 1.8 18 794 

Eukaryota 18S 
rRNA 115 5 790 790 3 275 380 3.1 % ± 2.9 NA 

Plants 18S rRNA 113 1 072 667 269 379 NA 1 000 
Fungi ITS2 125 6 145 213 6 637 320 71.0 % ± 16.8 NA 

Archaea 16S 
rRNA (Porat & 

Gantner) 5 238 045 60 408 0.7 % ± 0.4 NA 
Archaea 16S 

rRNA (Bahram) 5 288 572 72 403 0.4 % ± 0.5 NA 
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Supplementary Table S4. p-values and correlation coefficients from statistical tests. 

     p-value r2 
Permanova individual differences entire community 0.002 0.055 
      
Environmental fit from PCoA of Wunifrac entire community     
Season 0.001 0.281 
Mean precipitation 0.001 0.266 
Rates of fruit feeding 0.003 0.112 
Rates of feeding on leaves 0.044 0.045 
Rates of flower feeding 0.001 0.266 
Rates of affiliative interactions 0.006 0.099 
      
Protest test from Procrustes comparison of entire and plant diet from 18S 
data 0.001 0.654 
      
Environmental fit from PCoA from Wunifrac active community     
Season 0.007 0.095 
Precipitation 0.013 0.149 
Feeding fruits 0.102 0.080 
Feeding leaves 0.230 0.052 
Feeding flowers 0.003 0.220 
Affiliation 0.507 0.026 
      
Environmental fit from PCoA from Wunifrac reduced entire community     
Precipitation 0.003 0.200 
Feeding fruits 0.056 0.109 
Feeding leaves 0.830 0.083 
Feeding flowers 0.002 0.299 
Affiliation 0.200 0.055 
      
Protest test from Procrustes comparison of entire and active community 0.001 0.769 

Supplementary Table S5. File from the ASV table of the bacterial 16S rRNA gene 

and transcript data. The table is deposited on the enclosed CD under 

\Chapter2_Supplementary_material\ 

Supplementary Table S6. File from the raw ASV table of eukaryotic 18S rRNA data. 

The table is deposited on the enclosed CD under \Chapter2_Supplementary_material\ 

Supplementary Table S7. File from the raw ASV table of eukaryotic ITS2 data. The 

table is deposited on the enclosed CD under \Chapter2_Supplementary_material\ 
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Supplementary Table S8. File from the raw ASV table of the Archaea 16S rRNA data 

analyzed with the primer set from Porat et al., 2010 and Gantner et al, 2011. The table 

is deposited on the enclosed CD under \Chapter2_Supplementary_material\ 

Supplementary Table S9. File from the raw ASV table of the Archaea 16S rRNA data 

analyzed with the primer set from Bahram et al., 2019. The table is deposited on the 

enclosed CD under \Chapter2_Supplementary_material\ 

Supplementary Table S10. Estimates for the linear mixed model of the feeding and 

social behaviors affecting the overall composition of the entire bacterial community. 

The table is deposited on the enclosed CD under \Chapter2_Supplementary_material\ 

Supplementary Table S11. Mantel correlation tests of the time series analysis for the 

entire bacterial community. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Individual  Mantel r statistics p value 

Bonacca 0.627 0.001 

Caicos 0.567 0.001 

Lucia 0.611 0.001 

Mayaguana 0.603 0.001 

Tortuga 0.537 0.001 
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Supplementary Table S12. Estimates for the linear mixed model of the changes in 

alpha diversity in the entire bacterial community. 

 

Model test 
Value 
obtained         

Full-null model 
comparison 

p-value= 
0.003         

AIC 898.500         
R2m 0.360         
R2C 0.480         
          
Term Estimate SE Lower CI Upper CI x2 df p  min  max 
Intercept 41.679 0.655 40.404 43       41.38 42.453 
Precipitation -1.616 0.603 -2.83 -0.468 4.277 1 0.039 -2.255 -1.367 
Feeding fruit -0.867 0.833 -2.484 0.728 1.013 1 0.314 -1.776 -0.656 
Feeding leaves 1.338 0.499 0.254 2.319 3.685 1 0.055 0.29 1.621 
Feeding 
flowers -2.836 0.484 -3.798 -1.826 9.271 1 0.002 -4.54 -2.51 
Affiliative 
interactions 1.454 0.841 -0.169 3.298 2.152 1 0.142 0.572 2.231 

 

Supplementary Table S13. Mantel correlation tests of the time series analysis for the 

active bacterial community. 

 

 

 

 

 

 

 

 

 

Individual Mantel r statistic p value 

Bonacca 0.463 0.002 

Caicos 0.261 0.041 

Lucia 0.262 0.025 

Mayaguana 0.421 0.001 

Tortuga 0.652 0.001 
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Supplementary Table S14. Estimates for the linear mixed model of the changes in 

alpha diversity in the active bacterial community. 

Model test 
Value 
obtained         

Full-null model 
comparison 

p-value= 
0.012         

AIC 35.510         
R2m 0.320         
R2C 0.380         
          
Term Estimate SE Lower CI Upper CI x2 df p  min  max 
Intercept 3.576 0.018 3.542 3.615       3.569 3.599 
Precipitation -0.022 0.018 -0.061 0.011 -45.521 1 0.221 -0.028 -0.013 
Feeding fruit -0.006 0.019 -0.044 0.033 -46.919 1 0.755 -0.02 0.005 
Feeding 
leaves 0.031 0.018 -0.004 0.066 -44.975 1 0.153 0.015 0.043 
Feeding 
flowers -0.073 0.017 -0.105 -0.037 -37.079 1 0.002 -0.083 -0.068 
Affiliative 
interactions 0.017 0.025 -0.032 0.064 -46.614 1 0.525 0.002 0.05 
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Abstract  

Background 

The gut microbiome influences host’s immunity, development, and metabolism and 

participates in the gut-brain axis, thus impacting the health of the host. It is a dynamic 

community varying between individuals and within individuals at different time points. 

Hence, determining the factors causing this variability may elucidate their impact on 

host’s health. However, understanding the drivers of variation has proven difficult 

particularly as multiple interactions occur simultaneously in the gut microbiome.  

Results 

We performed a longitudinal study to determine the temporal drivers of the gut 

microbiome in a wild primate, the redfronted lemur. Focal behavioral data and fecal 

samples were collected for one year in four groups of redfronted lemurs to determine 

individual social and feeding behaviors. We assessed bacteria, protozoa, and 

helminths through marker gene analysis. In addition, we measured fecal glucocorticoid 

metabolites (fGCM) concentrations, to investigate the impact of physiological stress. 

Higher consumption of leaves and fGCM concentrations correlated with higher alpha 

diversity, which also differed among groups. The major drivers of variation in beta 

diversity were group membership, precipitation and fGCM concentrations. We found 

positive and negative associations between bacterial genera and almost all studied 
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factors. Correlations between bacterial indicator networks and social networks indicate 

transmission of bacteria through social interactions.  

Conclusions 

Processes occurring inside and outside the host drive the temporal fluctuations of the 

gut microbiome of redfronted lemurs. Activation of the host’s HPA axis, dietary 

changes, fluctuations in water availability and prokaryotic-eukaryotic interactions 

altering the gut environment impacted the gut bacterial communities. Coupled to 

dispersal processes of bacteria between hosts through social interactions, and the 

acquisition of microorganisms from environmental water sources.  

Keywords: gut microbiome, lemur, wild primate, HPA axis, social relationships, 

parasites, metacommunity 

Background  

The gut microbiome are the prokaryotic and eukaryotic communities inhabiting the 

host’s gastrointestinal tract which play a pivotal role in the health of the host (1–3). This 

community is dynamic, varying between individuals, and within an individual at different 

time points (4, 5). Hence, identifying the drivers of gut microbiome variability will help 

to understand how its fluctuations may associate with health outcomes (5, 6). However, 

detecting these drivers has proven difficult as few studies recognize the gut 

microbiome as an ecological system (7). Furthermore, longitudinal studies capturing 

the temporal dynamics of the gut microbiome are rare or used few individuals resulting 

in limited data (5). The metacommunity concept recognizes the gut microbiome as an 

ecological system in which multiple interactions occur simultaneously, thereby 

providing a framework for determining the drivers of the gut microbiome (6, 7). The 

metacommunity concept states that the local community assemblage is shaped by the 

dispersal of species between spaces, genetic diversification of its members, 

environmental selection by the niche, and ecological drift (6, 8, 9). Here, we 

investigated the temporal drivers of the gut microbiome in a wild primate applying the 

metacommunity concept focusing on dispersal mechanisms of bacteria and 

environmental selection in the gut. 

In gut microbiome research, dispersal processes of the microorganisms between hosts 

and the environment can be assessed through social interactions and habitat sharing 

(5, 10). Group membership in wild non-human primates and cohabitation in humans 
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are predictors of gut microbiome similarity (11–16). Furthermore, the host’s social 

behaviors can also predict gut microbiome similarity (17–20). Environmental selection 

for gut communities occurs in the intestinal niche through feedbacks between the host 

and the microorganisms and amongst microorganisms (6, 7). Host-associated factors 

such as, age, sex, and physiological stress, i.e., hypothalamic-pituitary-adrenal (HPA) 

axis activation, may influence immunity and intestinal physiology altering the gut 

microbiome (2, 3, 21). Furthermore, shifts in the host’s diet impact gut bacterial 

communities as they alter nutrient availability (22–25). Gut inhabitants interact between 

themselves through trophic chains, predation and competition for resources (1, 26). 

For instance, in non-human primates, higher bacterial alpha diversity correlates to 

higher eukaryotic diversity (27). Therefore, the presence of helminths and/or protozoa 

may impact the abundances of bacterial taxa (28–30). Despite being challenging, 

research on wild animals provide an exceptional possibility to apply metacommunity 

concepts for investigating the temporal drivers of the gut microbiome in undisturbed 

scenarios (5, 9). 

We examined the temporal drivers of the gut microbiome applying metacommunity 

concepts in a longitudinal setup in wild redfronted lemurs in Kirindy Forest, 

Madagascar. These lemurs live in small multifemale-multimale groups consisting of 

individuals of different ages allowing to estimate the potential impact of sex and age 

(31, 32). Kirindy Forest is a highly seasonal environment with a cold dry season with 

almost no precipitation (April-October) and a short warm rainy season (November-

March) (33). These seasonal changes affect food availability, meaning redfronted 

lemurs must shift their diets (25, 34). Moreover, fluctuations in precipitation reduce the 

availability of drinking water  (35, 36). HPA axis activation due to exposure to stressors 

has been previously investigated in these redfronted lemurs through standardized 

measurement of fecal glucocorticoid metabolites (fGCM) (37–39). For instance, during 

the dry season and in periods of social instability such as the mating (May-June) and 

the birth (September-October) season they have higher fGCM concentrations 

indicating an activation of their HPA axis (38, 40, 41). Furthermore, these lemurs 

harbor diverse protozoa and helminths in their guts, which can be assessed through 

marker gene analysis to investigate microbe-microbe interactions (25, 42, 43). Finally, 

behavioral observations of wild primates provide the opportunity to estimate effects of 

direct and indirect social contacts in dispersal processes of microbes within a group 

(10). Particularly, in redfronted lemurs that perform auto- and allogrooming with a 
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buccal structure, i.e., the toothcomb (44). Oral grooming may increase the possibility 

of up taking microorganisms from their own fur and the fur from other individuals in 

comparison to manual grooming which is exhibited in anthropoid primates (37). 

Altogether, these lemurs provide a unique possibility to study the drivers of the gut 

microbiome at multiple scales in a wildlife setting. 

We investigated the temporal drivers of the gut microbiome from redfronted lemurs at 

the scales of a) the interactions between the host and the microorganisms, b) the 

interplay between gut prokaryotes and eukaryotes and c) dispersal processes of 

bacteria within and between groups in a longitudinal study using a dense sampling 

regime. Focal behavioral data and monthly fecal samples (N=799) were collected 

during one year from all individuals (N=35) belonging to four groups. Bacteria, 

protozoa, and helminths were identified with marker gene analysis and fGCM 

measurements were performed to determine HPA axis activation. Furthermore, 

precipitation was measured as a proxy for changes in available water sources. We 

hypothesized that 1) host intrinsic factors such as sex, age, and fGCM concentrations 

as well as extrinsic factors such as precipitation, and diet impact gut microbiome 

composition and diversity, 2) protist and helminth richness correlate with changes in 

bacterial diversity and composition, 3) group membership influences bacterial diversity 

and composition and 4) bacterial indicator networks of amplicon sequence variants 

(ASVs) correlate to social networks indicating bacterial transmission through social 

interactions. 

Methods 

Sample, behavioral, and environmental data collection 

This study was conducted at the research station of the German Primate Center in 

Kirindy Forest, Western Madagascar (44° 39′ E, 20° 03′ S) from May 2018 to April 2019 

(40). Samples and data were collected over one year from 35 redfronted lemurs 

belonging to four groups (A, B, F and J) (Supplementary Table S1). 799 fecal samples 

were collected in RNAlater (Thermofisher Scientific, Massachusetts, USA) from the 

forest floor immediately after defecation between 7:30 and 11:00, stored at -20°C in 

the field station and later at -80°C in Germany (Supplementary Table S1). 641 of these 

samples were splitted and feces were placed in 5mL of 80% ethanol for measuring 

fGCM concentrations using validated methodologies (see below). Behavioral data was 

collected by continuous focal observations for 30 minutes in the morning (7:30-11:00) 
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and afternoon (14:00-17:00). Feeding behaviors were recorded by protocolling the 

duration and the ingested food item (leaves, flowers, or fruits). For social interactions, 

we protocolled the duration of grooming and body contact, and the interacting partners. 

Precipitation was collected with a Tropos data logger (Lambrecht meteo, Göttingen, 

Germany) and we calculated the mean precipitation 30 days prior to sample collection 

according to previous publications (22). 

Behavioral data analysis 

For each fecal sample we estimated the following behaviors 30 days prior to collection 

(17): a) the proportion of time the individual spent feeding on fruits, flowers and/or 

leaves, and b) a social interaction diversity index: 

(𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) for each 

individual, accounting for the number of interacting partners and duration of these 

interactions. This index increases with the average dyadic interaction time and when 

the interactions are more evenly distributed among dyads. 

DNA extraction and amplification of taxonomic marker genes 

DNA extractions were performed from 150 mg fecal sample following the 

manufacturer´s instructions but including a bead beating step of 6.5m/s and 24x2 for 

20s using FastPrep-24TM5G (MP Biomedicals, California, USA) with the PowerSoil 

DNA isolation kit (Qiagen, Hilden, Germany). For amplification of the 16S rRNA gene 

(Supplementary Table S1), each sample was amplified separately, whereas for the 

18S rRNA gene monthly samples were pooled together before amplification 

(Supplementary Table S2). PCR reactions for both taxonomical marker genes were 

performed in triplicates with the primers and thermocycling protocols listed in the 

Supplementary Table S3 and included a negative control without DNA template and a 

positive control (45, 46). Triplicates per sample were pooled equimolar, purified, and 

sequenced as in (47).  

Bioinformatic processing of amplicon data 

Paired-end reads were quality-filtered with fastp v0.20.0 using default settings plus an 

increased per base phred score of 20, base pair corrections by overlap (-c), as well as 

5′- and 3′-end read-trimming with a sliding window of 4, a mean quality of 20 and 

minimum sequence length of 50 bp. Quality-controlled reads were merged with PEAR 

v0.9.11 and primer-clipping was performed with cutadapt v2.5 with default settings. 



Chapter 3: Multiscale study of temporal drivers of the gut microbiome 

64 
 

VSEARCH 2.14.1 was used for size-sorting, size-filtering (16S rRNA ≥300bp; 18S 

rRNA ≥250bp) and dereplication. The sequences were denoised with UNOISE3 using 

default settings and chimeras were removed with UCHIME3 (de novo followed by 

reference-based) leading to the final set of amplicon sequence variants (ASVs). 16S 

rRNA were mapped against the ASVs and taxonomy was assigned with a minimum 

identity of 70% using BLAST 2.9.0+ against the SILVA SSU 138.1 NR (48). Best hits 

were only accepted if coverage ≥90 and blastn hit identities were corrected to 

unclassified according to the thresholds proposed by (49). 18S RNA reads were 

assigned using BLAST 2.9.0+ against the PR2 database (50) and taxonomy was 

determined with the Bayesian LCA-based Taxonomic Classification Method (BLCA) 

using a confidence score threshold of 0.80 (51). To control for spurious reads and 

index hopping, ASVs with <0.25% reads were removed before analysis (52). All 

sequencing statistics are in Supplementary Table S4. 

Measurement of fecal glucocorticoid metabolites 

Glucocorticoid metabolites (fGCM) were extracted from the fecal samples directly at 

the field site using a validated method (53) previously used for lemurs (54, 55). Extracts 

were stored in the field at ambient temperature in the dark and at -20°C in Germany. 

FGCM concentrations were determined using an enzyme immunoassay (EIA) for the 

analysis of immunoreactive 11-oxoetiocholanolone, a group-specific measurement of 

cortisol metabolites in primates (39). The EIA, carried out as described in (38), has 

been validated for tracking HPA axis activity in redfronted lemurs (37, 38). Inter- and 

intra-assay coefficients of variations (CVs) of high- and low-value quality controls were 

10.9% (high, n=52) and 9.7% (low, n=52) and 6.8% (high, n=17) and 8.2% (low, n=17), 

respectively. FGCM values are expressed as mass per gram of wet fecal weight (ng/g). 

Data analysis and statistics 

Data visualization and statistical analysis were performed using R v4.1.0 and RStudio 

v1.4.1717 with ampvis2, ape, stringr, reshape2, viridis, data.table, tidyverse, and 

ggplot2. All data for alpha and beta diversity analysis was rarefied to the lowest read 

counts whereas for barcharts, linecharts, and network estimation it was normalized 

using GMPR (Supplementary Table S4). Bacterial alpha diversity was calculated as 

Faith´s phylogenetic diversity (PD) with picante using a phylogenetic tree generated 

by aligning all sequences with MAFFT v7.407-1 at 100 iterations, calculated using 

FastTreeMP v2.1.7 and midpoint-rooted using FigTreev 1.4.4.  
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Analysis of gut protozoa and helminth 

ASVs from previously reported gut protozoa and helminth were extracted from the 18S 

rRNA gene data to remove environmental contaminants. The analyzed taxa were 

Trichostomatia, Nematoda, Metamonada, Coccidiomorphea, and Cestoda (27, 42, 56). 

Samples were merged per individual per month and parasite richness was estimated 

as the number of observed ASVs. A Jaccard matrix was calculated to investigate 

changes in parasite beta diversity and visualized with a Principal Coordinate Analysis 

(PCoA) in ampvis2. A PERMANOVA test to estimate beta diversity variation due to 

group, sex, age, and season was calculated with the adonis function from the vegan 

package using individual as strata to account for repeated sampling, 10,000 

permutations and Benjamini-Hochberg FDR correction. 

Testing the factors affecting bacterial alpha diversity 

The effects of group, sex, age, social interactions, parasite richness, feeding on fruits, 

flower or leaves, and precipitation on PD were tested by fitting a Linear Mixed Model 

(LMM) with lme4. To ease model converged, PD was Box-Cox transformed. Test 

predictors were group, sex, age, social interactions, and parasite richness, whereas 

diet, and precipitation were control predictors. Age was log-transformed to achieve a 

more symmetrical distribution and avoid influential cases, and all predictors were z-

transformed to facilitate model convergence. Individual identity was included as 

random intercept effect and the random slopes for all fixed effects (except for group 

and sex) into individual identity were included to keep the type I error at the nominal 

level of 5% (57). Correlations between random intercepts and random slopes were 

included. The significance of the test predictors was determined by calculating a null 

model excluding all test predictors and comparing it to the full model using a likelihood 

ratio test. The effects of single fixed effects were determined with the package 

lmerTest. Homogeneous and assumptions of normally distribution of residuals were 

checked visually with QQ-plots of residuals and plotted against fitted values revealing 

no obvious deviations. Calculation of Variance Inflation Factors using car was done on 

a model lacking all random effects and no issues of collinearity were detected 

(maximum:1.433). Model stability was determined by dropping predictors one at a time, 

fitting a full model from each of the subsets and comparing the estimates of these 

models to those obtained for the initial full model revealing it was acceptable. The same 

model was calculated for those samples having fGCM measurements by adding log-
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transformed fGCM values as a test predictor. No collinearity was detected 

(maximum:1.404) and model stability was also acceptable. 

Drivers of bacterial beta diversity dissimilarities 

Weighted UniFrac matrices (WUnifrac) were calculated in ampvis2 and visualized with 

PCoA. To estimate the drivers of beta diversity variation, PERMANOVA tests were 

calculated from WUnifrac as discussed before. Three different datasets were tested: 

a) diet and social interactions (n=773), b) parasite richness (n=682) and c) fGCM levels 

(n=547) as for some samples either behavioral or parasite data was missing and 

PERMANOVA cannot be calculated in samples with missing data points. Group, sex, 

age, and precipitation were tested in all datasets.  

Associations between bacterial genera and all covariates 

Associations of group, sex, age, social interactions, diet, precipitation and fGCM 

concentrations to bacterial genera were determined using the package MaAsLin2. Two 

models with the random effect of individual were calculated: a) all factors without fGCM 

levels (n=799) and b) all factors including fGCM concentrations (n=641). ASV counts 

were centered-log ratio transformed. 

Bacterial indicator and social network analysis 

Bacterial indicator networks were calculated with indicspecies to identify correlations 

between ASVs abundances and individuals (58). multipatt was used to determine the 

phi coefficient of association and the association strength between an ASV and an 

individual using 999 permutations. Networks were visualized in Cytoscape v3.8.2 using 

the individuals and their associated bacterial taxa as nodes, whereas edges correlation 

coefficients p<0.05 between nodes. The networks had an edge-weighted spring 

embedded layout, taxon node size was adjusted according to taxa abundance, edge 

width represents association strength to target, and all nodes and edges were bundled. 

Undirected weighted social networks for each group were calculated using the Dyadic 

Sociality Index (DSI) including proportion of grooming, and body contact behaviors 

during the whole study, and visualized with igraph (59). Previously, correlations 

between both behaviors were determined with Mantel correlations tests. For group F 

and J, no correlations were detected, but for uniformity the DSI was also used. 

Correlations of the number of shared indicative ASV and the DSI between individuals 

were estimated with Mantel tests. 
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Availability of data and material 

Raw reads were deposited in the NCBI Sequence Read Archive under the Bioproject 

PRJNA694983 (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA694983) 

(Supplementary Table S1 and Supplementary Table S2). The datasets generated and 

analyzed during the current study are available in figshare: 

https://figshare.com/projects/Multiscale_study_of_temporal_drivers_of_gut_microbio

me_composition_in_wild_redfronted_lemurs/126316. All R scripts can be found in 

https://github.com/tmurillocorrales/Redfrontedlemurs_gutmicrobiome. 

Results 

Bacterial, protozoan, and helminthic communities of redfronted lemurs 

The five most abundant bacterial phyla showed consistent relative abundances in all 

four groups: Bacteroidota (35.49% ± 3.24), Firmicutes (30.01% ± 4.60), Proteobacteria 

(9.83% ± 3.00), Spirochaetota (9.41% ± 1.43) and Verrucomicrobiota (7.02% ± 1.01) 

(Fig.1A, Supplementary Table S5). On genus level the five most abundant bacteria 

were also consistent among all groups with variations in their abundances during the 

sampling period (Fig.1B). Although four genera could not be classified at genus level, 

they belong to the families Prevotellaceae (16.26% ± 5.75), Spirochaetaceae (9.33% 

± 3.20), Rikenellaceae (6.62% ± 3.53) and Kiritimatiellae (5.44% ± 2.66) while the fifth 

most abundant genus was Sutterella (3.64% ± 2.62). Bacterial alpha diversity 

calculated as Faith’s Phylogenetic diversity index (PD) had similar monthly trends in 

all groups (Fig.1C). Lower PD was detected in April for all groups towards the transition 

between rainy and dry season (A: 42.14 ± 5.67; B: 43.31 ± 4.44; F: 30.19 ± 7.33; J: 

40.92 ± 8.24) whereas higher PD was observed in October in the transition from dry to 

rainy season (A: 50.40 ± 0.91; B: 50.49 ± 0.93; F: 48.96 ± 0.72; J: 50.18 ± 1.63). 

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA694983
https://figshare.com/projects/Multiscale_study_of_temporal_drivers_of_gut_microbiome_composition_in_wild_redfronted_lemurs/126316
https://figshare.com/projects/Multiscale_study_of_temporal_drivers_of_gut_microbiome_composition_in_wild_redfronted_lemurs/126316
https://github.com/tmurillocorrales/Redfrontedlemurs_gutmicrobiome
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Figure 1. Overview of the temporal fluctuations of bacterial communities, bacterial 

alpha diversity, eukaryote parasite richness and fGCM concentrations for each lemur 

group. Box plots are color coded to indicate the dry (brown) and rainy (green) season. 

A. Monthly averaged relative abundances of bacterial phyla per lemur group. B. Top 5 

most abundant bacterial genera and their monthly changes. C. Monthly variations in 

alpha diversity measured as Faith’s Phylogenetic Diversity Index. D. Monthly changes 
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in parasite richness. E. Concentrations of fGCM measured as ng/g of wet feces 

aggregated per month. 

Helminthic and protozoan gut communities were studied by amplifying the V4 region 

from the 18S rRNA gene. All amplified taxa were Metazoa including Nematoda 

(48.40% ± 10.69), Craniata (5.53% ± 4.22) and Arthropoda (2.98% ± 2.63), 

Streptophyta: Embryophyceae (21.86% ± 6.25), Fungi: Ascomycota (1.44% ± 1.07) 

and Basidiomycota (3.85% ± 6.59), Ciliophora: Litostomatea (9.50% ± 6.44) and 

Metamonada: Trichomonadea (1.24% ± 0.72) with a total of 4.04% ± 2.40 unclassified 

reads (Supplemental Figure S1A, Supplementary Table S6). Further on, only 

eukaryote orders formerly reported as inhabitants of the gut of humans or animals were 

analyzed. The orders detected were Chromadorea; Nematoda (A: 79.38% ± 17.04; B: 

78.02% ± 22.00; F: 73.55% ± 28.44; J: 79.22% ± 21.37), Trichostomatia; Litostomatea 

(A: 19.49% ± 15.92; B: 15.95% ± 17.63; F: 16.82% ± 21.87; J: 18.59% ± 20.68), and 

Trichomonadida; Trichomonadea (A: 1.13% ± 2.80; B: 6.02% ± 16.28; F: 9.61% ± 

21.33; J: 2.17% ± 4.43) present in all individuals (Supplemental Figure S1B). Except 

for Litostomatea, which was not detected in one individual from August until October. 

Subsequently, we determined the number of observed ASVs for the same taxa as a 

measure of parasite richness. Parasite richness showed variations between groups, 

individuals, and months (mean ± SD number of ASVs: group A: 71.44 ± 24.95; group 

B: 45.43 ± 26.27; group F: 27.44 ± 13.14; group J: 49.51 ± 26.44) (Fig.1D). A 

PERMANOVA based on Jaccard matrix showed that most of the variance on parasite 

richness was explained by season (r2= 0.011, p=0.001) (Supplemental Figure S1C & 

Supplementary table S7). Parasite richness differed between groups and season. 

The highest concentrations of fGCM were detected in August for group A (571.9ng/g 

± 412.65), and in June in all other groups (B: 447.00ng/g ± 373.13; F: 706.33ng/g ± 

177.87; J: 463.23ng/g ± 337.29) (Fig. 1E). Consumption of leaves, fruits and flowers 

varied across months and between groups (Supplementary figure S2A). December 

and January were the months with highest precipitation (Supplementary figure S2B). 

Factors driving changes of bacterial alpha diversity 

We analyzed the effects of sex, age, group membership, social interactions, parasite 

richness, dietary changes, and precipitation on alpha diversity measured as PD. The 

model (full-null model comparison: p=0.008, Supplementary table S8) detected an 

effect of group membership, with group F having a lower alpha diversity compared to 
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the other groups (p=0.009, Fig.2A). Additionally, feeding on leaves correlated 

positively with alpha diversity (p=0.000, Fig.2B). The second model for alpha diversity 

used a reduced dataset (see methods) including fGCM concentrations. Similarly, an 

effect of group membership for group F and feeding on leaves was detected (full-null 

model comparison: p=0.038; Supplementary table S9). FGCM concentrations 

correlated positively with alpha diversity (p=0.027, Fig.2C) with higher fGCM 

concentration resulting in a higher alpha diversity. No effects of sex, age, social 

interaction diversity index, or parasite richness were detected. 

 

Figure 2. Effects of group membership, consumption of leaves and concentrations of 

fGCM on bacterial alpha diversity measured as PD. A. Group membership. B. 
Proportion of time feeding on leaves 30 days prior to sampling. C. Log-transformed 

fGCM concentrations given in ng/g feces. 

Factors leading to dissimilarities between gut bacterial communities 

To estimate the drivers of variance on beta diversity, PERMANOVA based on WUnifrac 

matrices on three different datasets were calculated due to missing data points (see 

methods). The factors tested in the first dataset explained 8.9% of the variance (Fig.3A-

B), with group (r2=0.035, p<0.000) and precipitation (r2=0.021, p<0.000) being the 

strongest predictors (Supplementary table S10). In the second dataset (Supplementary 

Table S11) including the parasite data, the total variance explained was 10.4% with 

group (r2=0.041, p<0.000) and precipitation (r2=0.024, p<0.000) as strongest 

predictors. Finally in the dataset including fGCM concentrations (Supplementary Table 

S12) 14.5% of the variance was explained with fGCM (r2=0.028, p<0.000), group 

(r2=0.052, p<0.000) and precipitation (r2=0.022, p<0.000) as strongest predictors. 
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Figure 3. PCoA from Weighted Unifrac matrices WUnifrac of the bacterial community 

denoting beta diversity changes. A. Data points color coded to the different study 

months to depict monthly changes in beta diversity. B. Data points color coded to sex. 

Groups are depicted in A and B by symbols. 

Associations of social interactions, parasite richness, fGCM concentrations, diet, and 

precipitation to bacterial genera composition 

A total of 50 bacterial genera associated with group, social interaction diversity index, 

feeding on flowers, leaves or fruits, parasite richness, age, and precipitation in the full 

dataset (Fig.4A & Supplementary table S13). Precipitation and diet had the most 

associated taxa, with 33 and 36 genera, respectively. Dispersal processes attributed 

to group membership and social interactions had 27 and 2 associated taxa, 

respectively. Parasite richness exhibited 12 associated taxa. In the subsetted dataset 

including fGCM concentrations, 50 genera associated with at least one of the studied 

covariates (Fig.4B & Supplementary table S14). Twenty taxa associated with fGCM 

levels, whereas slight variations were detected for the other covariates: precipitation 

(26), diet (24), group (28), social interactions (2), and parasite richness (5). In both 

datasets, no genus associations with sex and age were detected. 
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Figure 4. Top 50 most abundant bacterial genera associated with group, social 

interactions, age, sex, parasite richness, diet, and precipitation. Association directions 

are color coded positive (red) and negative (blue). A. Full dataset. B. Reduced dataset 

including fGCM concentrations. Group A was the reference category for group 

comparisons. 

Correlation between social networks and bacteria indicator networks  

To determine if sharing of bacterial ASVs between individuals correlates to an 

individual’s social network, bacterial indicator networks were calculated. These 

networks were determined based on ASVs to identify bacterial ASVs whose relative 

abundance significantly correlate within and between individuals. Thus, suggesting 

that sharing of ASVs indicates microbe dispersal through social interactions. 

Correlations between bacterial indicator ASVs and social networks were detected for 

group A (r2=0.536, p=0.002, Supplementary table S15 & S16), and B (r2=0.399, 

p=0.013, Supplementary table S17 & S18), but not group F (r2=0.502, p=0.089, 

Supplementary table S19 & S20) and J (r2=0.235, p=0.060, Supplementary table S21 

& S22) (Fig.5G & Fig.5H). Furthermore, individuals who emigrated from groups: A 

(AAmoM; Fig.5A & Fig.5B), B (BTilM; Fig.5C & Fig.5D), and F (FGozM; Fig.5E & 

Fig.5F) had less strong social relationships and a more differentiated bacterial indicator 

network profile than individuals that remained in the groups. One individual, BTilM, 

immigrated to group A, thus showing fewer connections in the social network, and 

sharing less ASVs with other group members.  
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Figure 5. Indicative networks and social networks for the individuals of each group 

based on ASVs. Networks were colored by individual; nodes are shaped in the social 

network according to adult (circle) or juvenile/infant (square). Bacterial indicator ASV 
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network and social network of group A (A and B), group B (C and D), group F (E and 

F) and group J (G and H).  

Discussion 

Our longitudinal study revealed that host-microbe interactions, the interplay between 

bacteria and parasite richness, and dispersal processes of bacteria through social 

relationships impact temporal fluctuations of the gut microbiome. From the investigated 

host-associated factors, the HPA axis measured through fGCM concentrations 

revealed the strongest impact. Higher fGCM levels correlated to higher alpha diversity 

and associated with changes in bacterial abundances. Conversely, no impact of age 

and sex was identified. Interactions between eukaryotes and bacteria were detected 

as parasite richness explained a small amount of variance in beta diversity and 

impacted both, positively but also negatively, the abundances of specific bacterial 

genera. Dispersal processes of bacteria between hosts were estimated from social 

interactions and group membership. Group explained 3-5% of the variance in beta 

diversity, groups had different alpha diversity, and each group had its own associated 

bacterial genera. Diversity of social interactions explained only low variance in beta 

diversity but impacted the abundances of certain bacteria. An individual’s social 

network correlated to its sharing of significantly associated bacterial ASVs with other 

individuals in two of the four groups, suggesting transmission of taxa through social 

interactions. 

The HPA axis is an important driver of gut microbiome variation in wild lemurs 

Higher fGCM concentrations, indicating HPA axis activation, correlated to increased 

bacterial alpha diversity. The highest mean fGCMs values for three of the four groups 

were detected during June indicating an influence of the mating season on HPA axis 

activity (40, 60). However, for one group the highest fGCM values were in August, a 

period when redfronted lemurs are exposed to environmental stressors due to reduced 

food and water available (33, 34, 38). Even though environmental stressors could have 

increase fGCM levels, we suspect that social stressors had a greater influence, as 

reported before in these lemurs (38). Our longitudinal approach aimed to capture these 

periods when redfronted lemurs experience social and environmental challenges made 

it possible to detect this impact (33, 34, 38). Previous studies detected no correlations 

or negative correlations between glucocorticoids and alpha diversity (61–64). We 

speculate that higher fGCM levels leading to higher bacterial alpha diversity might be 
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due to the down regulation of the immune response controlling the gut microbiome by 

glucocorticoids, thus allowing the colonization by other taxa (65, 66). Consumption of 

leaves during the dry season also correlated with higher alpha diversity which may 

contribute to a certain degree to the positive correlation between fGCM concentrations 

and alpha diversity. However, redfronted lemurs fed more on leaves in 

September/October, whereas fGCM concentrations peaked in June/August, indicating 

that feeding on leaves and fGCMs influence separately alpha diversity. fGCM 

concentrations was one of the covariates explaining most variation in beta diversity, 

indicating that fGCM concentrations drive differences in beta diversity. Positive 

associations were detected only to three genera from Rikenellaceae, Rhodospirillales 

and Clostridia. Higher abundances in genera from Clostridia have been reported in 

mice exposed to social stressors and western lowland gorillas with high fGCM 

measurements (62, 64). Fourteen genera were impacted negatively by fGCM, 

including genera from Prevotellaceae, Spirochaetaceae and Sutterella, some of the 

most abundant taxa detected in redfronted lemurs (25). A negative association to a 

genus from Helicobacteraceae, a potential pathogen, was also detected in yellow-

legged gull (67). The activation of the HPA axis and its production of glucocorticoids 

can influence the gut microbiome through the increase of gut permeability allowing the 

translocation of bacteria from the lumen to other tissues (61). Also, HPA axis activation 

can reduce immune activation and increase susceptibility to infections by pathogens 

(61, 68, 69). Our results indicate that social stressors from the mating season like 

reproductive competition and female evictions can activate the HPA axis impacting the 

gut microbiome (40, 70). 

Diversity of gut protozoa and helminth impact the bacterial community 

Helminths and protozoa were prevalent all year in almost all individuals, and the orders 

detected coincide with our previous study (25). Variations in eukaryotic communities 

between samples were explained by season. Our results support previous reports from 

redfronted lemurs that detected seasonal differences in the abundances of 

Chromadorea, and protozoa diversity (71). Parasite richness only explained very low 

variation in bacterial beta diversity but associated positively but also negatively with 

certain bacterial taxa, supporting other studies from non-human primates (28–30). 

Positive associations with Succinivibrio and Verrucomicrobiota have been reported in 

humans as well (72, 73). Also, negative associations of genera from Lachnospiraceae 
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such as Syntrophococcus and XPB-1014 group, have been detected in humans with 

helminthic and helminthic-protozoan infections (72–74). Other negatively associated 

taxa like Collinsella, Colidextribacter, Tannerellaceae and Erysipelotrichaceae are gut 

bacteria with no association to parasites reported so far (75–77). Each parasite can 

have specific effects on the gut niche, thus explaining that parasite richness explains 

only a low amount of beta diversity since all parasites were investigated together (1, 

78, 79). Also, it was not possible to compare infected vs. uninfected individuals, as 

parasites were prevalent in almost all individuals all year. We investigated only 

presence and absence of parasites, as abundance estimations from 18S RNA should 

be taken cautiously (43). Parasites can impact bacteria positively or negatively through 

trophic chains, predation, competition, and immunomodulation (1, 26, 78). These are 

all processes that could be occurring in redfronted lemurs due to their diverse 

eukaryotic communities. 

Dispersal processes between hosts are drivers of gut microbiome community 

composition  

Group membership, diversity of social interactions and social networks were used to 

estimate bacterial dispersal through social behaviors. Group membership was one of 

the covariates explaining the highest variance in beta diversity and having the most 

associated taxa, indicating that each group has a specific bacterial community despite 

temporal fluctuations of the microbiome. Group differences in the gut microbiome can 

be due to sharing of microorganisms through social interactions between group 

members, as it has been proposed previously (12–16, 80). Differences in bacterial 

communities can also be explained by habitat use, but all studied groups have 

overlapping home ranges with at least one group (81) However, group F, occupies a 

home range more distant to a river traversing the study area, which may affect the 

habitat quality and could explain the differences in alpha diversity (33, 35, 82). Kinship 

may also influence group differences but not all group members were related thus, we 

suppose that it may have a lower impact (17, 40). Diversity of social interactions only 

explained very low variance in beta diversity, but it had negatively associated taxa. 

Succinivibrio, a starch degrader, was impacted negatively indicating that social 

interactions can impact genera carrying out relevant metabolic functions (83). 

Correlations between bacterial indicator ASVs and social networks indicate that at 

least some of these indicator taxa are shared through affiliative interactions. Hence, 



Chapter 3: Multiscale study of temporal drivers of the gut microbiome 

77 
 

individuals exhibiting strong social relationships, share bacterial ASVs through their 

affiliative behaviors influencing bacterial presence and abundances. The fact that no 

correlations were detected for groups F and J indicate that this signal is harder to detect 

in groups with less differentiated social relationships. Less ASVs were shared by group 

members that emigrated or immigrated the groups possibly due to their short residency 

in the group as reported baboons (80, 84). Correlations between social networks and 

gut microbiome similarity have been reported in other wild primates (17, 19), but this 

study is the first to analyze the impact of social networks on bacterial taxon level. 

Ecological determinants of variations in gut bacterial communities 

Feeding on flowers, fruits, or leaves, and precipitation correlated to changes in beta 

diversity and had positive and negative associated taxa with each of them. Consistent 

with a previous study from these lemurs and other research, feeding on leaves 

correlated with a higher alpha diversity (22, 23, 25) Changes in precipitation had the 

most associated taxa. Precipitation affects the availability of water sources in the 

habitat of redfronted lemurs between dry and rainy season (33). During the rainy 

season redfronted lemurs drink water from temporal puddles, tree holes or the river, 

whereas during dry season only water ponds in the river remain (35, 85). We speculate 

that the changes in water intake due to reduced water availability may impact gut 

microbiome by influencing gut transit times, thus affecting clearance of microorganisms 

during excretion, and determining the availability of nutrients and water in the gut 

habitat (35, 86). In humans stool consistency is the strongest predictor of gut 

microbiome composition and it is relevant as it indicates differences in water availability 

and activity in the colon influencing the gut niche (86, 87). However, it is also possible 

that the lemurs ingest bacteria from water sources, and this uptake fluctuates 

according to the water sources available (22, 85). The type of food item consumed is 

another important driver of bacterial community composition as they are also their main 

energy source (88, 89). The capacity of the gut microbiome to adapt to dietary changes 

is essential for the acquisition of nutrients from food by the host (9). This effect was 

detected when shifting from a diet based on leaves, which is composed of complex 

polysaccharides, to a diet based on flowers and/or fruits, which is rich in mono- and 

disaccharides (25, 90). 
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Conclusion 

The gut microbiome of wild redfronted lemurs is shaped by group membership, social 

interactions, fGCM levels, diet, precipitation, and parasite richness at different 

intensities. Thus, bacterial dispersal processes between hosts and the environment, 

plus selection by the gut niche through prokaryotic-eukaryotic interactions, changes in 

water availability, diet fluctuations, and the host’s HPA axis activation impact the gut 

microbiome. Our results demonstrate the importance of longitudinal studies with dense 

sampling regimes to capture the drivers of gut microbiome variation within populations. 

This setup enabled to detect the time periods when each of the factors impacted the 

gut microbiome asserting that both processes outside and inside the host influence its 

temporal dynamics. 

List of abbreviations 

ASVs: amplicon sequence variants 

fCGM: fecal glucocorticoid metabolites 

PCoA: principal coordinate analysis 

PD: Faith’s Phylogenetic Diversity index 

LMM: linear mixed model 

WUnifrac: weighted unifrac 

DSI: dyadic sociality index 

Declarations 

Ethical Approval and Consent to participate 

Research permits were granted by the Malagasy Ministère de l’Environnement et des 

Eaux et Forêts, the University of Antananarivo, and the Centre National de Formation, 

d’Etudes et de Recherche en Environnement et Foresterie. 

Consent for publication 

Not applicable 

Competing interests 

The authors declare no competing interests. 



Chapter 3: Multiscale study of temporal drivers of the gut microbiome 

79 
 

Availability of data and materials 

Raw reads were deposited in the NCBI Sequence Read Archive under the Bioproject 

PRJNA694983 (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA694983). The 

datasets generated and analyzed during the current study are available in figshare: 

https://figshare.com/projects/Multiscale_study_of_temporal_drivers_of_gut_microbio

me_composition_in_wild_redfronted_lemurs/126316. All R scripts can be found in 

https://github.com/tmurillocorrales/Redfrontedlemurs_gutmicrobiome. 

Funding 

This project was funded by the Deutsche Forschungsgemeinschaft (FI 929/7-2, DA 

374/13-2) from the research unit “Sociality and Health in Primates” (SoHaPi). 

Authors’ contributions 

C.F. and R.D. designed the study and obtained the funding. TM conducted the sample 

and data collection in the field and the laboratory work on the gut microbiome. M.H. 

conducted glucocorticoid analysis. T.M. and D.S. analyzed and visualized the data. TM 

wrote the first draft of the manuscript. All authors interpreted the results, reviewed, and 

revised the manuscript.  

Acknowledgements 

For support in sample and data collection we thank Jean-Pierre Tolojanahary, Mamy 

Razafindrasamba, Tianasoa Andrianjanahary, Judit Stolla, Luise Waldow, and 

Alexandra Michiels. We thank Dr. Anja Poehlein, Melanie Heinemann, and Sarah 

Schüßler for amplicon sequencing. We are grateful to Christina Glaschke for helping 

with hormone measurements. For scientific discussion and statistical advice, we thank 

Dr. Roger Mundry, Dr. Louise Peckre, Dr. Dirk Berkelmann and Lea Prox.  

Author’s information 

Not applicable 

References 

1.  Parfrey LW, Walters WA, Knight R. 2011. Microbial eukaryotes in the human 
microbiome: Ecology, evolution, and future directions. Front Microbiol 2:1–6. 

2.  Clemente JC, Ursell LK, Parfrey LW, Knight R. 2012. The impact of the gut 
microbiota on human health: An integrative view. Cell 148:1258–1270. 

https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA694983
https://figshare.com/projects/Multiscale_study_of_temporal_drivers_of_gut_microbiome_composition_in_wild_redfronted_lemurs/126316
https://figshare.com/projects/Multiscale_study_of_temporal_drivers_of_gut_microbiome_composition_in_wild_redfronted_lemurs/126316
https://github.com/tmurillocorrales/Redfrontedlemurs_gutmicrobiome


Chapter 3: Multiscale study of temporal drivers of the gut microbiome 

80 
 

3.  Cryan JF, O’riordan KJ, Cowan CSM, Sandhu K V., Bastiaanssen TFS, Boehme 
M, Codagnone MG, Cussotto S, Fulling C, Golubeva A V., Guzzetta KE, Jaggar 
M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli 
E, Morillas E, O’connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, 
Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, 
Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. 2019. The microbiota-
gut-brain axis. Physiol Rev 99:1877–2013. 

4.  Caporaso JG, Lauber CL, Costello EK, Berg-Lyons D, Gonzalez A, Stombaugh 
J, Knights D, Gajer P, Ravel J, Fierer N, Gordon JI, Knight R. 2011. Moving 
pictures of the human microbiome. Genome Biol 12:R50 

5.  Björk JR, Dasari M, Grieneisen L, Archie EA. 2019. Primate microbiomes over 
time: Longitudinal answers to standing questions in microbiome research. Am J 
Primatol 81:1–23. 

6.  Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. 2012. The 
application of ecological theory toward an understanding of the human 
microbiome. Science 336:1255–1262. 

7.  Miller ET, Svanbäck R, Bohannan BJM. 2018. Microbiomes as 
metacommunities: understanding host-associated microbes through 
metacommunity ecology. Trends Ecol Evol 33:926–935. 

8.  Koskella B, Hall LJ, Metcalf CJE. 2017. The microbiome beyond the horizon of 
ecological and evolutionary theory. Nat Ecol Evol 1:1606–1615. 

9.  McKenney EA, Koelle K, Dunn RR, Yoder AD. 2018. The ecosystem services of 
animal microbiomes. Mol Ecol 27:2164–2172. 

10.  Sarkar A, Harty S, Johnson KVA, Moeller AH, Archie EA, Schell LD, Carmody 
RN, Clutton-Brock TH, Dunbar RIM, Burnet PWJ. 2020. Microbial transmission 
in animal social networks and the social microbiome. Nat Ecol Evol 4:1020–
1035. 

11.  Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D, Costea 
PI, Godneva A, Kalka IN, Bar N, Shilo S, Lador D, Vila AV, Zmora N, Pevsner-
Fischer M, Israeli D, Kosower N, Malka G, Wolf BC, Avnit-Sagi T, Lotan-Pompan 
M, Weinberger A, Halpern Z, Carmi S, Fu J, Wijmenga C, Zhernakova A, Elinav 
E, Segal E. 2018. Environment dominates over host genetics in shaping human 
gut microbiota. Nature 555:210–215. 

12.  Degnan PH, Pusey AE, Lonsdorf E V., Goodall J, Wroblewski EE, Wilson ML, 
Rudicell RS, Hahn BH, Ochman H. 2012. Factors associated with the 
diversification of the gut microbial communities within chimpanzees from Gombe 
National Park. Proc Natl Acad Sci U S A 109:13034–13039. 

13.  Bennett G, Malone M, Sauther ML, Cuozzo FP, White B, Nelson KE, Stumpf RM, 
Knight R, Leigh SR, Amato KR. 2016. Host age, social group, and habitat type 
influence the gut microbiota of wild ring-tailed lemurs (Lemur catta). Am J 
Primatol 78:883–892. 

14.  Amato KR, Van Belle S, Di Fiore A, Estrada A, Stumpf R, White B, Nelson KE, 
Knight R, Leigh SR. 2017. Patterns in gut microbiota similarity associated with 
degree of sociality among sex classes of a neotropical primate. Microb Ecol 



Chapter 3: Multiscale study of temporal drivers of the gut microbiome 

81 
 

74:250–258. 

 

15.  Raulo A, Ruokolainen L, Lane A, Amato K, Knight R, Leigh S, Stumpf R, White 
B, Nelson KE, Baden AL, Tecot SR. 2017. Social behaviour and gut microbiota 
in red-bellied lemurs (Eulemur rubriventer): In search of the role of immunity in 
the evolution of sociality. J Anim Ecol 388–399. 

16.  Springer A, Fichtel C, Al-Ghalith GA, Koch F, Amato KR, Clayton JB, Knights D, 
Kappeler PM. 2017. Patterns of seasonality and group membership characterize 
the gut microbiota in a longitudinal study of wild Verreaux’s sifakas (Propithecus 
verreauxi). Ecol Evol 7:5732–5745. 

17.  Tung J, Barreiro LB, Burns MB, Grenier JC, Lynch J, Grieneisen LE, Altmann J, 
Alberts SC, Blekhman R, Archie EA. 2015. Social networks predict gut 
microbiome composition in wild baboons. Elife 2015:1–18. 

18.  Moeller AH, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H. 2016. 
Social behavior shapes the chimpanzee pan-microbiome. Sci Adv 2. 

19.  Perofsky AC, Lewis RJ, Abondano LA, Di Fiore A, Meyers LA. 2017. Hierarchical 
social networks shape gut microbial composition in wild Verreaux’s sifaka. Proc 
R Soc B Biol Sci 284:20172274. 

20.  Raulo A, Allen BE, Troitsky T, Husby A, Firth JA, Coulson T, Knowles SCL. 2021. 
Social networks strongly predict the gut microbiota of wild mice. ISME J 
https://doi.org/10.1038/s41396-021-00949-3. 

21.  Arrieta MC, Stiemsma LT, Amenyogbe N, Brown E, Finlay B. 2014. The intestinal 
microbiome in early life: Health and disease. Front Immunol 5:1–18. 

22.  Ren T, Grieneisen LE, Alberts SC, Archie EA, Wu M. 2016. Development, diet 
and dynamism: longitudinal and cross-sectional predictors of gut microbial 
communities in wild baboons. Environ Microbiol 18:1312–1325. 

23.  Jagsi R, Jiang J, Momoh AO, Alderman A, Giordano SH, Buchholz TA, Pierce 
LJ, Kronowitz SJ, Smith BD. 2017. Seasonal cycling in the gut microbiome of the 
Hadza Hunter-Gatherers of Tanzania. Science 357:802–806. 

24.  Hicks AL, Lee KJ, Couto-Rodriguez M, Patel J, Sinha R, Guo C, Olson SH, 
Seimon A, Seimon TA, Ondzie AU, Karesh WB, Reed P, Cameron KN, Lipkin 
WI, Williams BL. 2018. Gut microbiomes of wild great apes fluctuate seasonally 
in response to diet. Nat Commun 9:1786. 

25.  Murillo T, Schneider D, Fichtel C, Daniel R. 2022. Dietary shifts and social 
interactions drive temporal fluctuations of the gut microbiome from wild 
redfronted lemurs. ISME Commun 2:3. 

26.  Laforest-Lapointe I, Arrieta M-C. 2018. Microbial eukaryotes: a missing link in 
gut microbiome studies. mSystems 3. 

27.  Mann AE, Mazel F, Lemay MA, Morien E, Billy V, Kowalewski M, Di Fiore A, Link 
A, Goldberg TL, Tecot S, Baden AL, Gomez A, Sauther ML, Cuozzo FP, Rice 
GAO, Dominy NJ, Stumpf R, Lewis RJ, Swedell L, Amato K, Wegener Parfrey L. 
2020. Biodiversity of protists and nematodes in the wild nonhuman primate gut. 
ISME J 14:609–622. 



Chapter 3: Multiscale study of temporal drivers of the gut microbiome 

82 
 

 

 

28.  Vlčková K, Pafčo B, Petrželková KJ, Modrý D, Todd A, Yeoman CJ, Torralba M, 
Wilson BA, Stumpf RM, White BA, Nelson KE, Leigh SR, Gomez A. 2018. 
Relationships between gastrointestinal parasite infections and the fecal 
microbiome in free-ranging western lowland gorillas. Front Microbiol 9:1–12. 

29.  Renelies-Hamilton J, Noguera-Julian M, Parera M, Paredes R, Pacheco L, Dacal 
E, Saugar JM, Rubio JM, Poulsen M, Köster PC, Carmena D. 2019. Exploring 
interactions between Blastocystis sp., Strongyloides spp. and the gut 
microbiomes of wild chimpanzees in Senegal. Infect Genet Evol 74:104010. 

30.  Martínez‐Mota R, Righini N, Mallott EK, Gillespie TR, Amato KR. 2021. The 
relationship between pinworm (Trypanoxyuris) infection and gut bacteria in wild 
black howler monkeys (Alouatta pigra). Am J Primatol 83. 

31.  Pereira ME, Kaufman R, Kappeler PM, Overdoff DJ. 1990. Female dominance 
does not characterize all of the lemuridae. Folia Primatol 55:96–103. 

32.  Ostner J, Kappeler PM. 1999. Central males instead of multiple pairs in 
redfronted lemurs, Eulemur fulvus rufus (Primates, Lemuridae)? Anim Behav 
58:1069–1078. 

33.  Kappeler PM, Fichtel C. 2012. A 15-year perspective on the social organization 
and life history of sifaka in Kirindy Forest, p. 101–121. In Long-Term Field 
Studies of Primates. Springer Berlin Heidelberg, Berlin, Heidelberg. 

34.  Koch F, Ganzhorn JU, Rothman JM, Chapman CA, Fichtel C. 2017. Sex and 
seasonal differences in diet and nutrient intake in Verreaux’s sifakas 
(Propithecus verreauxi). Am J Primatol 79:1–10. 

35.  Scholz F, Kappeler PM. 2004. Effects of seasonal water scarcity on the ranging 
behavior of Eulemur fulvus rufus. Int J Primatol 25:599–613. 

36.  Amoroso CR, Kappeler PM, Fichtel C, Nunn CL. 2020. Water availability impacts 
habitat use by red-fronted lemurs (Eulemur rufifrons): An experimental and 
observational study. Int J Primatol 41:61–80. 

37.  Clough D, Heistermann M, Kappeler PM. 2010. Host intrinsic determinants and 
potential consequences of parasite infection in free-ranging red-fronted lemurs 
(Eulemur fulvus rufus). Am J Phys Anthropol 142:441–452. 

38.  Ostner J, Kappeler P, Heistermann M. 2008. Androgen and glucocorticoid levels 
reflect seasonally occurring social challenges in male redfronted lemurs 
(Eulemur fulvus rufus). Behav Ecol Sociobiol 62:627–638. 

39.  Heistermann M, Palme R, Ganswindt A. 2006. Comparison of different 
enzymeimmunoassays for assessment of adrenocortical activity in primates 
based on fecal analysis. Am J Primatol 68:257–273. 

40.  Kappeler PM, Fichtel C. 2012. Female reproductive competition in Eulemur 
rufifrons: Eviction and reproductive restraint in a plurally breeding Malagasy 
primate. Mol Ecol 21:685–698. 

41.  Ostner J, Kappeler PM, Heistermann M. 2002. Seasonal variation and social 



Chapter 3: Multiscale study of temporal drivers of the gut microbiome 

83 
 

correlates of androgen excretion in male redfronted lemurs (Eulemur fulvus 
rufus). Behav Ecol Sociobiol 52:485–495. 

 

42.  Clough D. 2010. Gastro-intestinal parasites of red-fronted lemurs in Kirindy 
Forest, western Madagascar. J Parasitol 96:245–251. 

43.  Gogarten JF, Calvignac-Spencer S, Nunn CL, Ulrich M, Saiepour N, Nielsen HV, 
Deschner T, Fichtel C, Kappeler PM, Knauf S, Müller-Klein N, Ostner J, Robbins 
MM, Sangmaneedet S, Schülke O, Surbeck M, Wittig RM, Sliwa A, Strube C, 
Leendertz FH, Roos C, Noll A. 2020. Metabarcoding of eukaryotic parasite 
communities describes diverse parasite assemblages spanning the primate 
phylogeny. Mol Ecol Resour 20:204–215. 

44.  Barton RA. 1987. Allogrooming as mutualism in diurnal lemurs. Primates 
28:539–542. 

45.  Stoeck T, Bass D, Nebel M, Christen R, Jones MDM, Breiner H-W, Richards TA. 
2010. Multiple marker parallel tag environmental DNA sequencing reveals a 
highly complex eukaryotic community in marine anoxic water. Mol Ecol 19:21–
31. 

46.  Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. 
2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical 
and next-generation sequencing-based diversity studies. Nucleic Acids Res 
41:1–11. 

47.  Berkelmann D, Schneider D, Hennings N, Meryandini A, Daniel R. 2020. Soil 
bacterial community structures in relation to different oil palm management 
practices. Sci Data 7:1–7. 

48.  Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, 
Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: Improved 
data processing and web-based tools. Nucleic Acids Res 41:590–596. 

49.  Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer KH, Whitman 
WB, Euzéby J, Amann R, Rosselló-Móra R. 2014. Uniting the classification of 
cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. 
Nat Rev Microbiol 12:635–645. 

50.  Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, 
De Vargas C, Decelle J, Del Campo J, Dolan JR, Dunthorn M, Edvardsen B, 
Holzmann M, Kooistra WHCF, Lara E, Le Bescot N, Logares R, Mahé F, 
Massana R, Montresor M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet 
AL, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R. 2013. The Protist 
Ribosomal Reference database (PR2): A catalog of unicellular eukaryote small 
sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:597–
604. 

51.  Gao X, Lin H, Revanna K, Dong Q. 2017. A Bayesian taxonomic classification 
method for 16S rRNA gene sequences with improved species-level accuracy. 
BMC Bioinformatics 18:1–10. 

52.  Reitmeier S, Hitch TCA, Treichel N, Fikas N, Hausmann B, Ramer-Tait AE, 
Neuhaus K, Berry D, Haller D, Lagkouvardos I, Clavel T. 2021. Handling of 



Chapter 3: Multiscale study of temporal drivers of the gut microbiome 

84 
 

spurious sequences affects the outcome of high-throughput 16S rRNA gene 
amplicon profiling. ISME Commun 1. 

 

53.  Shutt K, Setchell JM, Heistermann M. 2012. Non-invasive monitoring of 
physiological stress in the Western lowland gorilla (Gorilla gorilla gorilla): 
Validation of a fecal glucocorticoid assay and methods for practical application 
in the field. Gen Comp Endocrinol 179:167–177. 

54.  Hämäläinen A, Heistermann M, Fenosoa ZSE, Kraus C. 2014. Evaluating 
capture stress in wild gray mouse lemurs via repeated fecal sampling: Method 
validation and the influence of prior experience and handling protocols on stress 
responses. Gen Comp Endocrinol 195:68–79. 

55.  Rudolph K, Fichtel C, Heistermann M, Kappeler PM. 2020. Dynamics and 
determinants of glucocorticoid metabolite concentrations in wild Verreaux’s 
sifakas. Horm Behav 124:104760. 

56.  Heitlinger E, Ferreira SCM, Thierer D, Hofer H, East ML. 2017. The intestinal 
eukaryotic and bacterial biome of spotted hyenas: the impact of social status and 
age on diversity and composition. Front Cell Infect Microbiol 7. 

57.  Barr DJ, Levy R, Scheepers C, Tily HJ. 2013. Random effects structure for 
confirmatory hypothesis testing: Keep it maximal. J Mem Lang 68:255–278. 

58.  De Cáceres M, Legendre P, Moretti M. 2010. Improving indicator species 
analysis by combining groups of sites. Oikos 119:1674–1684. 

59.  Silk J, Cheney D, Seyfarth R. 2013. A practical guide to the study of social 
relationships. Evol Anthropol 22:213–225. 

60.  Ostner J, Nunn CL, Schülke O. 2008. Female reproductive synchrony predicts 
skewed paternity across primates. Behav Ecol 19:1150–1158. 

61.  Bailey MT, Dowd SE, Parry NMA, Galley JD, Schauer DB, Lyte M. 2010. 
Stressor exposure disrupts commensal microbial populations in the intestines 
and leads to increased colonization by Citrobacter rodentium. Infect Immun 
78:1509–1519. 

62.  Bailey MT, Dowd SE, Galley JD, Hufnagle AR, Allen RG, Lyte M. 2011. Exposure 
to a social stressor alters the structure of the intestinal microbiota: Implications 
for stressor-induced immunomodulation. Brain Behav Immun 25:397–407. 

63.  Stothart MR, Bobbie CB, Schulte-Hostedde AI, Boonstra R, Palme R, Mykytczuk 
NCS, Newman AEM. 2016. Stress and the microbiome: Linking glucocorticoids 
to bacterial community dynamics in wild red squirrels. Biol Lett 12. 

64.  Vlčková K, Shutt-Phillip K, Heisterman M, Pafčo B, Petrželkov KJ, Todd A, Modrý 
D, Nelson KE, Wilson BA, Stumpf RM, White BA, Leigh SR, Gomez A. 2018. 
Impact of stress on the gut microbiome of free-ranging western lowland gorillas. 
Microbiol (United Kingdom) 164:40–44. 

65.  Chu H, Mazmanian SK. 2013. Innate immune recognition of the microbiota 
promotes host-microbial symbiosis. Nat Immunol 14:668–675. 

66.  Zheng D, Liwinski T, Elinav E. 2020. Interaction between microbiota and 



Chapter 3: Multiscale study of temporal drivers of the gut microbiome 

85 
 

immunity in health and disease. Cell Res 30:492–506. 

67.  Noguera JC, Aira M, Pérez-Losada M, Domínguez J, Velando A. 2018. 
Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R Soc Open 
Sci 5. 

68.  Round JL, Mazmanian SK. 2009. The gut microbiota shapes intestinal immune 
responses during health and disease. Nat Rev Immunol 9:313–323. 

69.  Maltz RM, Keirsey J, Kim SC, Mackos AR, Gharaibeh RZ, Moore CC, Xu J, 
Bakthavatchalu V, Somogyi A, Bailey MT. 2018. Prolonged restraint stressor 
exposure in outbred CD-1 mice impacts microbiota, colonic inflammation, and 
short chain fatty acids. PLoS One 13:1–19. 

70.  Ostner J, Heistermann M. 2003. Endocrine characterization of female 
reproductive status in wild redfronted lemurs (Eulemur fulvus rufus). Gen Comp 
Endocrinol 131:274–283. 

71.  Peckre LR, Defolie C, Kappeler PM, Fichtel C. 2018. Potential self-medication 
using millipede secretions in red-fronted lemurs: combining anointment and 
ingestion for a joint action against gastrointestinal parasites? Primates 59:483–
494. 

72.  Jenkins TP, Rathnayaka Y, Perera PK, Peachey LE, Nolan MJ, Krause L, 
Rajakaruna RS, Cantacessi C. 2017. Infections by human gastrointestinal 
helminths are associated with changes in faecal microbiota diversity and 
composition. PLoS One 12:1–18. 

73.  Rosa BA, Supali T, Gankpala L, Djuardi Y, Sartono E, Zhou Y, Fischer K, Martin 
J, Tyagi R, Bolay FK, Fischer PU, Yazdanbakhsh M, Mitreva M. 2018. Differential 
human gut microbiome assemblages during soil-transmitted helminth infections 
in Indonesia and Liberia. Microbiome 6:1–19. 

74.  Toro-Londono MA, Bedoya-Urrego K, Garcia-Montoya GM, Galvan-Diaz AL, 
Alzate JF. 2019. Intestinal parasitic infection alters bacterial gut microbiota in 
children. PeerJ 2019:1–24. 

75.  Kaakoush NO. 2015. Insights into the role of Erysipelotrichaceae in the human 
host. Front Cell Infect Microbiol 5:1–4. 

76.  Ricaboni D, Mailhe M, Cadoret F, Vitton V, Fournier PE, Raoult D. 2017. 
‘Colidextribacter massiliensis’ gen. nov., sp. nov., isolated from human right 
colon. New Microbes New Infect 17:27–29. 

77.  Qin P, Zou Y, Dai Y, Luo G, Zhang X, Xiao L. 2019. Characterization a novel 
butyric acid-producing bacterium Collinsella aerofaciens subsp. shenzhenensis 
subsp. nov. Microorganisms 7. 

78.  Reynolds LA, Finlay BB, Maizels RM. 2015. Cohabitation in the intestine: 
interactions among helminth parasites, bacterial microbiota, and host immunity. 
J Immunol 195:4059–4066. 

79.  Wei Y, Gao J, Kou Y, Meng L, Zheng X, Liang M, Sun H, Liu Z, Wanga Y. 2020. 
Commensal bacteria impact a protozoan’s integration into the murine gut 
microbiota in a dietary nutrient-dependent manner. Appl Environ Microbiol 86. 

 



Chapter 3: Multiscale study of temporal drivers of the gut microbiome 

86 
 

80.  Perofsky AC, Ancel Meyers L, Abondano LA, Di Fiore A, Lewis RJ. 2021. Social 
groups constrain the spatiotemporal dynamics of wild sifaka gut microbiomes. 
Mol Ecol 30:6759–6775. 

81.  Pyritz L, Kappeler PM, Fichtel C. 2011. Coordination of group movements in wild 
red-fronted lemurs (Eulemur rufifrons): Processes and influence of ecological 
and reproductive seasonality. Int J Primatol 32:1325–1347. 

82.  Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, Rex Gaskins 
H, Stumpf RM, Yildirim S, Torralba M, Gillis M, Wilson BA, Nelson KE, White BA, 
Leigh SR. 2013. Habitat degradation impacts black howler monkey (Alouatta 
pigra) gastrointestinal microbiomes. ISME J 7:1344–1353. 

83.  Hippe H, Hagelstein A, Kramer I, Swiderski J, Stackebrandt E. 1999. 
Phylogenetic analysis of Formivibrio citricus, Propionivibrio dicarboxylicus, 
Anaerobiospirillum thomasii, Succinirnonas amylolytica and Succinivibrio 
dextrinosolvens and proposal of Succinivibrionaceae fam. nov. Int J Syst Evol 
Microbiol 49:779–782. 

84.  Grieneisen LE, Livermore J, Alberts S, Tung J, Archie EA. 2017. Group living 
and male dispersal predict the core gut microbiome in wild baboons. Integr Comp 
Biol 57:770–785. 

85.  Amoroso CR, Kappeler PM, Fichtel C, Nunn CL. 2019. Fecal contamination, 
parasite risk, and waterhole use by wild animals in a dry deciduous forest. Behav 
Ecol Sociobiol 73. 

86.  Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. 2016. 
Stool consistency is strongly associated with gut microbiota richness and 
composition, enterotypes and bacterial growth rates. Gut 65:57–62. 

87.  Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, 
Bonder MJ, Valles-Colomer M, Vandeputte D, Tito RY, Chaffron S, Rymenans 
L, Verspecht C, Sutter L De, Lima-Mendez G, D’hoe K, Jonckheere K, Homola 
D, Garcia R, Tigchelaar EF, Eeckhaudt L, Fu J, Henckaerts L, Zhernakova A, 
Wijmenga C, Raes J. 2016. Population-level analysis of gut microbiome 
variation. Science 352:560–564. 

88.  Sonnenburg JL, Bäckhed F. 2016. Diet-microbiota interactions as moderators of 
human metabolism. Nature 535:56–64. 

89.  Zmora N, Suez J, Elinav E. 2018. You are what you eat: diet, health and the gut 
microbiota. Nat Rev Gastroenterol Hepatol 16. 

90.  Ortmann S, Bradley BJ, Stolter C, Ganzhorn JU. 2006. Estimating the quality 
and composition of wild animal diets – a critical survey of methods, p. 395–418. 
In Hohmann, G, Robbins, M, Boesch, C (eds.), Feeding ecology in apes and 
other primates. ecological, physical, and behavioral aspects. Cambridge 
University Press, Cambridge. 



Chapter 3: Multiscale study of temporal drivers of the gut microbiome 

87 
 

SUPPLEMENTAL MATERIAL 
FIGURES 

 
Supplemental Figure S1. Eukaryotic organisms detected in redfronted lemurs fecal 

samples by using 18S rRNA gene sequencing. A. Monthly relative abundances of the 

eukaryotic organisms detected per lemur group. B. Monthly fluctuations in the relative 

abundances of the previously reported parasites of redfronted lemurs: Chromadorea, 

Trichostomatia and Trichomonadida. C. PCoA based on Jaccard distance matrix of 

eukaryotic endoparasites detected in redfronted lemurs with data points color coded to 

season. D. PCoA based on Jaccard distance matrix of eukaryotic endoparasites 

detected in redfronted lemurs with data points color coded to group. 
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Supplemental Figure S2. Food items consumed by redfronted lemurs and daily 

precipitation in Kirindy Forest recorded during the study period from May 2018 until 

April 2019. A. Monthly feeding proportions on fruits, leaves and flowers 30 days prior 

to sampling for each group. B. Daily precipitation measured in mm during the study 

period. Color coded panels indicate the dry (brown) and rainy (green) season. 

TABLES 

Supplementary Table 1. Fecal sample list for 16S rRNA analysis with metadata. The 

table is deposited on the enclosed CD under \Chapter3_Supplementary_material\. 

Supplementary Table 2. Fecal sample list for 18S rRNA analysis. The table is 

deposited on the enclosed CD under \Chapter3_Supplementary_material\. 
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Supplementary Table 3. Primers and PCR protocols for the studied taxonomical marker genes. 

Taxonomical marker gene Bacteria 16S rRNA Eukaryota 18S rRNA 

Name - Primer Forward S-D-Bact-0341-b-S-17 Reuk454FWD1 

Sequence - Primer Forward 5´-CCTACGGGNGGCWGCAG-3´ 5´-CCAGCASCYGCGGTAATTCC-3´ 

Miseq Adapter - Forward 5´-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-
3´ 5´-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3´ 

Name - Primer Reverse S-D-Bact-0785-a-A-21 TAReukREV3 

Sequence - Primer reverse 5´-GACTACHVGGGTATCTAATCC-3´ 5´-ACTTTCGTTCTTGATYRA-3´ 

Miseq Adapter - Reverse 5´-
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3´ 

5´-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-
3´ 

PCR protocol 

Final volume of 50 µl containing 10 µl of 5x GC Buffer 
(Thermo Scientific, Waltham, MA, USA), 5% DMSO, 0.2 
mM of forward and reverse primer, 200 µM dNTPs, 0.2 
mM MgCl2, 1 U Phusion High-Fidelity DNA polymerase 
(Thermo Scientific, Waltham, MA, USA) and 20–25 ng 

template DNA 

Final volume of 50 µl containing 10 µl of 5x GC Buffer 
(Thermo Scientific, Waltham, MA, USA), 5% DMSO, 0.2 
mM of forward and reverse primer, 200 µM dNTPs, 0.2 
mM MgCl2, 1 U Phusion High-Fidelity DNA polymerase 

(Thermo Scientific, Waltham, MA, USA) and 50 ng 
template DNA 

Thermocycling program 
Denaturation 1 min at 98 °C, 25 cycles at 98 °C for 45 s, 
45 s at 55 °C, and 30 s at 72 °C, and final extension at 

72 °C for 5 min. 

Denaturation 1 min at 98 °C, 25 cycles at 98 °C for 45 s, 
45 s at 47 °C, and 30 s at 72 °C, and final extension at 72 

°C for 5 min. 
References Klindworth et al., 2013 Stoeck et al., 2010 

Positive control Escherichia coli Aspergillus nidulans 
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Supplementary Table 4. Sequencing statistics for 16S rRNA and 18S rRNA. 

Taxonomical marker gene Bacteria 16S rRNA Eukaryota 18S rRNA 
Number of samples 799 380 
Reads after quality 

filtering 35 801 327 21 949 694 

Number of ASVs 7 213 6 245 
Mean amplicon length 

(bp) 416.44 380.81 

Reads after 0.25% filtering 32 343 875 21 430 144 
Number of ASVs after 

0.25% filtering 1 028 783 

Unclassified reads after 
0.25% filtering 0.03% ± 0.4 3.22% ± 2.10 

Reads for rarefaction 8 236 6 222 
 

Supplementary Table 5. ASVs obtained for the 16S rRNA amplicon sequencing. The 

table is deposited on the enclosed CD under \Chapter3_Supplementary_material\. 

Supplementary Table 6. ASVs obtained for the 18S rRNA amplicon sequencing. The 

table is deposited on the enclosed CD under \Chapter3_Supplementary_material\. 

Supplementary Table 7. Results PERMANOVA test of Jaccard distance matrix for 

parasites. 

 Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) BH 
group 3 3.905 1.302 4.025 0.038 0.001 0.002 
sex 1 0.289 0.289 0.893 0.003 0.621 0.621 
age_months 1 0.663 0.663 2.051 0.007 0.004 0.005 
season 1 2.757 2.757 8.525 0.027 0.001 0.002 
Residuals 291 94.104 0.323 NA 0.925 NA NA 
Total 297 101.718 NA NA 1 NA NA 
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Supplementary Table 8. Estimates LMM alpha diversity of the full dataset. 

Model 
comparison AIC logLik Chisq Df p value 
Null 5188.386 2552.193 NA NA NA 
Full 5183.373 -2542.69 19.0134 7 0.008145 

      

 Estimate 
Std. 
Error df t value Pr(>|t|) 

(Intercept) 26.017 1.760 32.650 14.783 0.000 
sexmale 1.184 0.926 98.538 1.279 0.204 
groupB -0.650 1.861 32.334 -0.349 0.729 
groupF -5.358 1.960 46.604 -2.735 0.009 
groupJ -2.122 1.809 32.484 -1.173 0.249 
z.log.age_months -0.055 0.466 160.782 -0.117 0.907 
z.soc.int 0.869 0.487 11.429 1.786 0.101 
ffr.prop -5.335 4.528 29.254 -1.178 0.248 
fle.prop 67.495 12.385 65.573 5.450 0.000 
rain -1.760 0.982 6.645 -1.793 0.118 
ffl.prop -4.492 16.226 11.323 -0.277 0.787 
z.richness.para -1.017 0.647 23.165 -1.573 0.129 
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Supplementary Table 9. Estimates LMM alpha diversity of the dataset including fGCM 

values. 

Model comparison AIC logLik Chisq Df p value 

Null 4201.814 
-

2049.907 NA NA NA 

Full 4201.562 
-

2041.781 16.252 8 0.039 

      

 Estimate 
Std. 
Error df t value Pr(>|t|) 

(Intercept) 26.786 1.506 31.021 17.782 0.000 
sexmale 0.801 0.997 197.154 0.804 0.423 
groupB 0.074 1.728 31.751 0.043 0.966 
groupF -5.210 1.907 53.987 -2.733 0.008 
groupJ -1.777 1.711 34.705 -1.038 0.306 
z.log.age_months -0.001 0.510 204.977 -0.002 0.999 
z.soc.int 0.613 0.618 8.713 0.992 0.348 
z.rain 0.751 0.720 19.765 1.043 0.310 
z.fle.prop 2.205 0.556 28.125 3.969 0.000 
z.ffr.prop -0.440 0.580 27.561 -0.757 0.455 
z.ffl.prop -0.700 0.560 6.979 -1.250 0.252 
z.log.fgc 1.216 0.532 45.259 2.285 0.027 
z.richness.para -0.871 0.653 28.834 -1.334 0.193 

 

Supplementary Table 10. Results PERMANOVA test of Wunifrac matrix for dataset 

with feeding and social interaction data. 

 Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) BH 
group 3 0.305 0.102 9.641 0.035 0.000 0.000 
soc_int 1 0.037 0.037 3.553 0.004 0.012 0.014 
sex 1 0.047 0.047 4.442 0.005 0.000 0.000 
age_months 1 0.017 0.017 1.576 0.002 0.074 0.074 
rain 1 0.186 0.186 17.695 0.021 0.000 0.000 
fle_prop 1 0.041 0.041 3.866 0.005 0.002 0.003 
ffl_prop 1 0.073 0.073 6.934 0.008 0.000 0.000 
ffr_prop 1 0.076 0.076 7.192 0.009 0.000 0.000 
Residuals 762 8.025 0.011 NA 0.911 NA NA 
Total 772 8.806 NA NA 1 NA NA 
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Supplementary Table 11. Results PERMANOVA test of Wunifrac matrix for dataset 

including parasite richness. 

  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) BH 
group 3 0.295 0.098 10.161 0.041 0.000 0.000 
soc_int 1 0.040 0.040 4.152 0.006 0.004 0.004 
sex 1 0.036 0.036 3.754 0.005 0.000 0.000 
age_months 1 0.014 0.014 1.438 0.002 0.004 0.004 
richness_para 1 0.046 0.046 4.715 0.006 0.000 0.000 
rain 1 0.177 0.177 18.306 0.024 0.000 0.000 
fle_prop 1 0.037 0.037 3.790 0.005 0.002 0.002 
ffl_prop 1 0.040 0.040 4.123 0.006 0.000 0.000 
ffr_prop 1 0.066 0.066 6.824 0.009 0.000 0.000 
Residuals 670 6.483 0.010 NA 0.896 NA NA 
Total 681 7.234 NA NA 1 NA NA 

 

Supplementary Table 12. Results PERMANOVA test of Wunifrac matrix for dataset 

including fGCM values. 

  Df SumsOfSqs MeanSqs F.Model R2 Pr(>F) BH 
group 3 0.310 0.103 10.853 0.052 0.000 0.000 
soc_int 1 0.031 0.031 3.238 0.005 0.021 0.021 
sex 1 0.040 0.040 4.199 0.007 0.000 0.000 
age_months 1 0.018 0.018 1.876 0.003 0.001 0.001 
n11oxo_CM_wet_feces 1 0.167 0.167 17.513 0.028 0.000 0.000 
rain 1 0.134 0.134 14.044 0.022 0.000 0.000 
richness_para 1 0.033 0.033 3.449 0.006 0.000 0.000 
fle_prop 1 0.024 0.024 2.494 0.004 0.012 0.013 
ffl_prop 1 0.036 0.036 3.762 0.006 0.001 0.001 
ffr_prop 1 0.072 0.072 7.558 0.012 0.000 0.000 
Residuals 534 5.078 0.010 NA 0.855 NA NA 
Total 546 5.941 NA NA 1 NA NA 

 
Supplementary Table 13. Results from MaAsLin2 analysis detecting associations 

between bacterial genera and group membership, social interactions, parasite 

richness, sex, age, diet, and precipitation. The table is deposited on the enclosed CD 

under \Chapter3_Supplementary_material\. 

Supplementary Table 14. Results from MaAsLin2 analysis detecting associations 

between bacterial genera and group membership, social interactions, parasite 

richness, sex, age, fGCM levels, diet, and precipitation. The table is deposited on the 

enclosed CD under \Chapter3_Supplementary_material\. 



Chapter 3: Multiscale study of temporal drivers of the gut microbiome 

94 
 

 

Supplementary Table 15. Results indicative species analysis for the individuals of 

group A. The table is deposited on the enclosed CD under 

\Chapter3_Supplementary_material\. 

Supplementary Table 16. DSI for the individuals of group A. 

  Amorgos Isabella Kea Lefkada Luzon Paros Thassos Tilos 
Amorgos NA 0.2010 0.0000 0.0176 0.4132 0.0000 0.0470 0.0000 
Isabella 0.2010 NA 1.0000 0.4242 0.9361 0.4426 0.5532 0.0979 

Kea 0.0000 1.0000 NA 0.1232 0.1194 0.0000 0.1110 0.3244 
Lefkada 0.0176 0.4242 0.1232 NA 0.4757 0.2087 0.6823 0.0079 
Luzon 0.4132 0.9361 0.1194 0.4757 NA 0.1571 0.3201 0.0014 
Paros 0.0000 0.4426 0.0000 0.2087 0.1571 NA 0.0775 0.0000 

Thassos 0.0470 0.5532 0.1110 0.6823 0.3201 0.0775 NA 0.1547 
Tilos 0.0000 0.0979 0.3244 0.0079 0.0014 0.0000 0.1547 NA 

 

Supplementary Table 17. Results indicative species analysis for the individuals of 

group B. The table is deposited on the enclosed CD under 

\Chapter3_Supplementary_material\. 
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Supplementary Table 18. DSI for the individuals of group B.  

  Adonara Aloha Bangladesh Bora Buru Jaco Latalata Oman Rinca Tilos 
Adonara NA 0.4048 0.1202 0.1436 0.0564 0.0402 0.2427 0.2386 1.0000 0.0353 

Aloha 0.4048 NA 0.1470 0.1322 0.0054 0.3834 0.4534 0.3077 0.0489 0.0579 
Bangladesh 0.1202 0.1470 NA 0.2953 0.0169 0.1352 0.4607 0.5225 0.2010 0.0417 

Bora 0.1436 0.1322 0.2953 NA 0.0626 0.2230 0.6261 0.5161 0.2155 0.1856 
Buru 0.0564 0.0054 0.0169 0.0626 NA 0.0331 0.2438 0.1426 0.1304 0.2499 
Jaco 0.0402 0.3834 0.1352 0.2230 0.0331 NA 0.5213 0.2382 0.1793 0.2037 

Latalata 0.2427 0.4534 0.4607 0.6261 0.2438 0.5213 NA 0.9415 0.4400 0.1001 
Oman 0.2386 0.3077 0.5225 0.5161 0.1426 0.2382 0.9415 NA 0.3416 0.3332 
Rinca 1.0000 0.0489 0.2010 0.2155 0.1304 0.1793 0.4400 0.3416 NA 0.0810 
Tilos 0.0353 0.0579 0.0417 0.1856 0.2499 0.2037 0.1001 0.3332 0.0810 NA 
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Supplementary Table 19. Results indicative species analysis for the individuals of 

group F. The table is deposited on the enclosed CD under 

\Chapter3_Supplementary_material\. 

Supplementary Table 20. DSI for the individuals of group F. 

  Bonacca Caicos Gozo Lucia Mayaguana Pinos Tortuga 
Bonacca NA 0.1999 0.1165 0.8183 0.3858 0.4174 1.0000 
Caicos 0.1999 NA 0.1373 0.6796 0.2393 0.8149 0.2270 
Gozo 0.1165 0.1373 NA 0.1745 0.1257 0.1583 0.2246 
Lucia 0.8183 0.6796 0.1745 NA 0.3382 0.3439 0.6008 

Mayaguana 0.3858 0.2393 0.1257 0.3382 NA 0.2460 0.3943 
Pinos 0.4174 0.8149 0.1583 0.3439 0.2460 NA 0.4919 

Tortuga 1.0000 0.2270 0.2246 0.6008 0.3943 0.4919 NA 
 

Supplementary Table 21. Results indicative species analysis for the individuals of 

group J. The table is deposited on the enclosed CD under 

\Chapter3_Supplementary_material\. 
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Supplementary Table 22. DSI for the individuals of group J. 

  Afganistan Armenia Bahrain Cambodia Colanta Kasachstan Kuwait Mongolei Pakistan Syria Taji 
Afganistan NA 0.0925 0.0735 0.1543 0.0868 0.1617 0.2804 0.0809 0.1722 0.7911 0.2681 

Armenia 0.0925 NA 0.2752 0.0696 1.0000 0.1305 0.0917 0.0832 0.2946 0.3067 0.0975 
Bahrain 0.0735 0.2752 NA 0.4200 0.2820 0.5363 0.7211 0.5393 0.3814 0.1897 0.2137 

Cambodia 0.1543 0.0696 0.4200 NA 0.3508 0.3440 0.3376 0.2530 0.1743 0.0977 0.0520 
Colanta 0.0868 1.0000 0.2820 0.3508 NA 0.1211 0.6606 0.4099 0.4449 0.3987 0.3518 

Kasachstan 0.1617 0.1305 0.5363 0.3440 0.1211 NA 0.2490 0.3939 0.4639 0.0077 0.2036 
Kuwait 0.2804 0.0917 0.7211 0.3376 0.6606 0.2490 NA 0.2811 0.6428 0.1841 0.2314 

Mongolei 0.0809 0.0832 0.5393 0.2530 0.4099 0.3939 0.2811 NA 0.2257 0.1461 0.1788 
Pakistan 0.1722 0.2946 0.3814 0.1743 0.4449 0.4639 0.6428 0.2257 NA 0.1220 0.0870 

Syria 0.7911 0.3067 0.1897 0.0977 0.3987 0.0077 0.1841 0.1461 0.1220 NA 0.2662 
Taji 0.2681 0.0975 0.2137 0.0520 0.3518 0.2036 0.2314 0.1788 0.0870 0.2662 NA 
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Abstract 

 

Social behavior and parasitism interconnect at all levels of sociality—from the 

community to the population and from the group down to the individual. This chapter 

explores key findings on the parasite-related costs and benefits of sociality, focusing 

on primates. The research spans across social networks, dominance and affiliative 

relationships, and individual behavior and physiology—highlighting established links 

between primate sociality and parasitism and identifying important gaps for future 

research. Given the use of nuanced conceptual frameworks and new analytical 

methods, combined with experimental studies and growing empirical data from long-

term field projects, primates are a particularly exciting and helpful taxon for studying 

sociality-parasite interactions. 

 

Keywords: social behavior, disease ecology, social structure, anti-parasite behavior, 

social network, glucocorticoids, exposure, susceptibility, transmission, health 

 

4.1 Introduction 
 

Across the animal kingdom, species display marked variation in sociality (see Box 1 

for glossary). Some solitary animals rarely interact with conspecifics (except during 

reproduction), while other animals are social—from facultative, short-term associations 

and loose aggregations based on shared needs, to living in permanent groups with 

differentiated social relationships1,2. The transition from solitary to social living3 has 

resulted in far-reaching consequences—both costly and beneficial—for hosts and their 

parasites. 

 

The repeated emergence of sociality suggests that the benefits of group living (e.g., 

increased vigilance and protection against out-group threats and predators) outweigh 

the costs (e.g., intragroup competition, infanticide). However, the risk of exposure to 

parasites or pathogens (these terms are used interchangeably to mean all disease-

causing organisms) is considered a looming threat for group members, limiting close 

or frequent contact among individuals4,5. While a positive correlation between group 

size and infection risk was initially postulated as a major cost of group living several 
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decades ago6,7, a growing body of research suggests that links between sociality and 

infectious diseases are more complex, with mixed outcomes for the transmission of 

and susceptibility to pathogens8,9. Consequently, studying the parasite-related costs 

and benefits of sociality is an increasingly active focal area in behavioral and 

evolutionary ecology. 

 

Box 1. Glossary 

 

Despotic: opposite of tolerant. Despotic dominance translates into higher aggression 

and lower rates of affiliation compared to more tolerant relationships, with low 

(sometimes absent) rates of peaceful post-conflict interactions. Dominance is clearly 

established. 

Grooming: behavior by which animals clean or maintain their bodies or appearance. 

Allogrooming is the cleaning of a conspecific partner's skin or fur. In primates, 

allogrooming serves both hygienic (ectoparasite removal) and social (strengthens 

bonds between partners) functions. 

Modular social network: a network divided into subgroups interacting more within 

than between subgroups. Network modularity increases as more highly cohesive 

subgroups are formed. 

Multilevel societies: subgroups of animals from the same species formed at three or 

four levels. The first level of organization is the one-male-unit (semi-permanent 

reproductive units consisting of one leader male, sometimes a follower male, multiple 

females, and their offspring). One-male-units can associate in teams (second level), 

with sometimes solitary males or all-male-units (units composed exclusively of males). 

Teams associate in bands (third level) which associate in herds (fourth level). Also see 

Box 2. 

 

Multi-male-multi-female groups: groups composed of multiple adult males and adult 

females, and their offspring. 
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One-male-multi-female groups: groups composed of one adult male, multiple adult 

females, and their offspring. 

 

One-female-multi-male groups: groups composed of one adult female, multiple adult 

males, and their offspring. 

 

Pair-living: groups composed of one adult male and female and their offspring. 

Self-medication: utilization of plant or animal parts containing secondary compounds 

or other non-nutritional substances to prevent, combat, or control disease. 

Social buffering: refers to availability of social support, assumed to mediate the 

negative relationship between perceived stress and health. Candidate physiological 

systems underlying social buffering effects include neural (e.g., prefrontal cortex, limbic 

system), endocrine (e.g., hypothalamic-pituitary-adrenal axis, oxytocin), and immune 

functions. 

Social immunization: transfer of low doses of an infectious agent or pathogen during 

social interactions which activates the immune system, decreases susceptibility, and 

limits reinfection risk. Behavioral or chemical cues of sickness emitted by infected 

conspecifics may also elicit preventive activation of the immune system. 

Social network: a social structure described by nodes (i.e., individuals) and the ties 

(i.e., connections) between these nodes. In primate studies, connections are often 

based on interactions (e.g., proximity, mating, grooming, or aggressive interactions). 

In an epidemiological network, parasites can spread along ties between nodes, 

representing individuals, groups, or even communities. 

Sociality: tendency of groups and individuals to develop social bonds and live in 

communities. 

Solitary vs group living: solitary animals spend a majority of their lives alone, with 

possible exceptions for mating and raising young. Conversely, group living is defined 

as individuals of the same species (conspecifics) maintaining spatial proximity to one 

another over time via social mechanisms. 
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Spillover: an event characterized by a pathogen spreading from a reservoir population 

with high pathogen prevalence to a novel recipient host population. 

Tolerant: opposite of despotic. Tolerant dominance translates into more symmetrical 

relationships among dyads, less severe aggressive interactions, and higher rates of 

affiliation and post-conflict interactions. 

 

Sociality impacts parasite transmission at multiple levels of interaction—from inter-

specific communities, to the group level, and down to the individual—via two distinct 

mechanisms: exposure and susceptibility10. While exposure, especially to directly or 

environmentally transmitted pathogens, depends on direct contact, shared space, or 

resource use4,10,11, susceptibility depends on individual genetics, physiology, and 

immuno-competence. Although environmental factors (e.g., rainfall, humidity) and 

individual immune and genetic profiles affect parasite transmission and susceptibility, 

this chapter focuses primarily on the sociality-parasite link. Non-human primates 

(hereafter primates) provide excellent study systems to investigate links between 

sociality and parasites given their exceptional diversity and remarkable within species 

and inter-individual variation in social systems and social behaviors, respectively (Box 

2). The positive link between sociality and fitness in wild primates12 also provides real-

world study systems to explore these mechanisms. Additionally, wild primates are well-

studied, with detailed data on individual behaviors and life histories across a range of 

long-term study populations worldwide (Figure 1). Primates also harbor diverse 

parasite communities (i.e., micro and macro-parasites: bacteria, viruses, protozoa, 

fungi, helminths, and arthropods) with various transmission routes13. Finally, given a 

shared evolutionary history with humans, primate species are a key model for 

establishing bridges between field research and biomedical research on physiology 

and disease, evolutionary medicine, and public health policies. 

 

This chapter highlights significant contributions from primate research in advancing our 

understanding of the links between sociality and parasitism. First, we address 

mechanisms at the group level, which primarily influence exposure to parasites. Next, 

we move to a finer scale of sociality by discussing how positive or negative interactions 
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alter susceptibility. We also explore how individual behaviors may further mitigate 

parasite risk. Finally, we identify promising research tools and questions that can help 

advance our ability to manage the parasite-related costs and benefits of sociality in 

primates. 

 

Figure 1. Several representatives of the Order Primate. From left to right, top to 

bottom. Red-fronted lemur (Eulemur rufifrons), credit Tatiana Murillo; sifakas 

(Propithecus verreauxi), credit Hasina Malalaharivony; chimpanzees (Pan 

troglodytes), credit Liran Samuni, Taï chimpanzee project; grey mouse lemurs 

(Microcebus murinus), credit Johanna Henke-von der Malsburg; coppery titi-monkeys 

(Plecturocebus cupreus), credit Sofya Dolotovskaya; Assamese macaques (Macaca 

assamensis), credit Simone Anzà; baboons (Papio anubis), credit Doris Wu. 
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Box 2. Diversity of primate social systems. 

 

Figure 1. The components and diversity of social systems in primates. Figure created 

using BioRender. 
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In mammals, only 23% of all species live in groups, with 9% being pair-living14. 

Primates deviate from this general pattern, with ~66% of genera living in permanent 

mixed-sex groups1, and 29% of species being pair-living14. Primate social systems are 

characterized by three complementary, but distinct components found in multiple 

combinations: social organization, social structure, and mating system1 (Figure 1). 

 

Social organization refers to the number and composition, as well as cohesion, of a 

social unit. Five types of social units have been described in primates, with varied sex-

age composition and levels of relatedness. There are solitary species (e.g., Bornean 

orangutans Pongo pygmaeus), pair-living species (e.g., coppery titi monkeys 

Plecturocebus cupreus); one-male-multi-female groups (e.g., patas monkeys 

Erythrocebus patas); one-female-multi-male groups (e.g., facultative in many 

Callitrichidae); and multi-male-multi-female groups (e.g., Assamese macaques 

Macaca assamensis, red-fronted lemurs Eulemur rufifrons). These units can remain 

cohesive (most social primates), split into subgroups with changing size and 

composition over time (fission-fusion societies, e.g., chimpanzees Pan troglodytes), or 

be organized around nested levels forming multilevel societies (e.g., geladas 

Theropithecus gelada). 

 

Social structure refers to the distribution, quality, and dynamics of relationships 

between group members. Social relationships may form preferentially between certain 

partners, with dominance interactions that vary from despotic (e.g., chimpanzees, 

rhesus macaques M. mulatta) to tolerant (e.g., red-fronted lemurs, tonkean macaques 

M. tonkeana); that are stable or unstable; and inherited or contested. Primates exhibit 

marked flexibility in social structure, showing variation both within and between 

species. 

 

Mating system refers to sexual interactions. In primates, these interactions range from 

monogamous (e.g., coppery titi monkey) to polygynous (e.g., geladas), polyandrous 

(e.g., many Callitrichidae), and polygamous (e.g., chimpanzees). 
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4.2 Group level effects of sociality on parasitism 
 

Socio-ecological models of primate sociality provide an integrated picture of the 

influence of food distribution, predation pressure, female-female tolerance, and male 

competition for monopolization and access to fertile females in shaping group living1. 

These spatiotemporal associations and interactions between individuals, in turn, 

impact parasite transmission15. At the group level, parasite-related costs and benefits 

of sociality are mediated by two important demographic features: group size and social 
network organization15–18. 

 

4.2.1 Group size and parasitism 

 

The first readily and easily accessible demographic parameter of any study population 

is group size. In mammals, strong evidence indicates that the intensity of infection with 

directly and environmentally transmitted parasites (e.g., fleas, helminths) increases 

with host group size16,19,20. This is attributed to more frequent direct (body-to-body) and 

indirect (via environmental contamination with feces) contacts in larger groups 

promoting the transmission of infectious organisms. In primates, both empirical data 

and computer simulations lend support for a positive association between parasitism—

measured either as parasite load or prevalence—and host group size4,11. For example, 

a long-term study of yellow baboons (Papio cynocephalus) found that larger groups 

had higher counts of helminth eggs21. A comparative study of two sympatric mouse 

lemur species (Microcebus spp.), a taxon displaying high variation in social 

organization with social units ranging from solitary to multi-male-multi-female 

sleeping associations, found that species with larger nest associations had increased 

lice prevalence22. With lice utilizing host-body contact for transmission, temporary 

associations at nests created parasite-related costs for larger sleeping groups. 

 

Nevertheless, increasing group size has not been invariably linked to increased 

parasitism, especially in primate studies15,23. First, group size can actually reduce 

parasitism through an encounter-dilution effect24 for mobile parasites exhibiting a 

constant attack rate or targeting one host at a time. As the same number of parasites 

is distributed among more available hosts, greater host densities drive a lower per-
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individual infection risk24. For example, in chimpanzees (Pan troglodytes), sleeping in 

groups may minimize individual exposure to biting insects25. Second, group size 

interacts with other ecological variables (specifically predation pressure and food 

distribution) that may alter the host’s ability to cope with parasitism. Helminth infections 

in a population of wild ungulates resulted in anorexia, but only for parasitized 

individuals living in smaller groups, suggesting that individuals living in larger groups 

cope better with infection26. Larger social groups may secure access to higher quality 

food patches and reduce time invested in anti-predator vigilance per individual, 

allowing members to allocate more energy towards reproduction and immune function. 

It would be compelling to investigate to what extent the benefits of a larger group size 

could offset competition within groups1—particularly as primates are exposed to 

seasonal changes in food availability and exhibit diverse feeding regimes from grazing 

to fruit-based diets with meat supplementation. Finally, although early case studies 

found that larger groups may harbor more diverse parasite communities7, several 

meta-analyses in primates and other vertebrates showed no consistent relationship 

between host group size and parasite richness13,19,23. This suggests that species-

specific movement patterns, contact rates21, habitat use27, or density13 can prevail over 

group size in predicting parasite richness. 

 

Although group size is a simple measurement, and thus the most extensively studied 

aspect of sociality23, large groups of rarely interacting individuals can be wrongly 

considered highly social, while small cohesive groups can be erroneously seen as 

weakly social. Additionally, including group size as the sole proxy of sociality assumes 

that individuals in groups interact with each other at a constant rate, disregarding social 

dynamics and finer scale social interactions (i.e., the social structure of a group, see 

Box 2). Therefore, group size is often insufficient to fully explain the link between 

sociality and parasite infections23,28. 

 

4.2.2 Social network properties and parasitism 

 

Parasite transmission is also influenced by substructure within and between social 

groups. For instance, the fragmentation of a population into subpopulations with limited 

movement of individuals among them create a natural barrier against the spread of 
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pathogens29. Within groups, animal networks are often modular, with interactions 

unevenly distributed across group members and tending to occur preferentially within 

subgroups23,28,30. Modularity has a non-linear effect on disease transmission31,32. The 

cost of increased disease transmission within subgroups first offsets the benefit of 

decreased transmission between subgroups. Above a certain threshold, highly 

modular social contact networks with cohesive subgroups effectively restrict infection 

to a few subgroups31 (Figure 2A). Parasites are ‘trapped’ within subgroups resulting in 

smaller, or at least delayed, disease outbreaks depending on parasite 

transmissibility15,30,33,34. Interestingly, comparative studies based on empirical data 

suggest that modularity increases with group size in primates15,30,31 (but see32). The 

positive relationship between group size and parasitism, group size and modularity, 

and negative relationship between modularity and parasitism suggest a possible 

inverted-U relationship between group size and parasitism in real world networks31, 

with parasite spread being highest at intermediate group sizes. These results highlight 

the necessity of considering social structure (see Box 2) to better understand and 

predict parasite transmission dynamics in social species. 

 

Individuals are exposed to heterogeneous parasite risks depending on network 

structure and their respective positions in groups9,18 (see also Mistrick et al.35 in this 

volume for a extensive review of animal networks and pathogen transmission). In 

primates, higher infection risk of helminth, protozoan, and possibly also viral36 

parasites, is associated with shared habitat use11,37, increasing body contact, higher 

numbers of grooming partners, and centrality in grooming networks28,37–39. Consistent 

with patterns described in primates, a recent meta-analysis found that more central 

individuals in a network face higher parasitism18 although, results also indicate wide 

heterogeneity in the strength and direction of associations. These differences may be 

expected based on parasite transmission modes and social behaviors measured38. 

Indeed, hygienic behaviors bringing individuals into close contact may help fight certain 

infectious agents, while also increasing exposure to others. For example, being central 

in a grooming network could lower lice infestation via removal from the partners' fur40, 

while simultaneously increasing the risk of gastro-intestinal parasites as nematode 

eggs are ingested during grooming bouts37,38. To date, support for such theoretical 

predictions is ambiguous38,40,41 stressing the necessity to incorporate other factors, 
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such as parasite life cycle relative to how exposure is measured, when applying 

network analyses to empirical systems. Furthermore, predictions about individual 

parasitism likely depend on interactions between group-level organization, an 

individual's position within the network, and other traits. To illustrate, a study on captive 

rhesus macaques (Macaca mulatta) found links between individual network position 

and Shigella infection in two groups, but not in a third, due to differences in sex-age 

composition41. The spread of directly transmitted parasites may also be hampered 

when the progressive acquisition of resistance among group members increases the 

chance that transmission chains will be broken before reaching susceptible individuals. 

Central individuals in the group, often considered to be “superspreaders,” may 

conversely be exceptionally efficient at slowing disease spread once they have 

acquired immunity9,42 (Figure 2C).  

 

In summary, group-level costs and benefits of sociality on parasitism are better 

understood in the context of multivariate factors5,27. Since group size oversimplifies 

sociodynamics, focusing on group structure and dynamics, rather than group size 

alone, can offer a more nuanced approach for understanding the vulnerability of social 

groups to parasites17,23,38 and the costs and benefits of group living15,33. Nevertheless, 

the evidence presented so far in this chapter focuses on the impact of quantitative 

social measures, derived from the number of partners or the number or frequency of 

contacts, on parasitism. As shown in the next section, the quality of social interactions 

(whether positive or negative) also influences exposure and susceptibility to parasites. 



Chapter 4: Parasites in a social world – Lessons from primates 
 

110 

 

 

Figure 2. Social network structure influences infection risk in primates. All networks 

shown have the same number of nodes (individual primates) and edges (connection 

between the nodes). The spread of infectious diseases from an infected node (red 

circle) will depend on network properties, such as (A) modularity, which is the extent 

to which a network is divided into subgroups that interact more within than between 

subgroups. The lower network has both strong (full link) and weak (dashed link) 

connections, resulting in higher modularity than in the corresponding upper network. If 

infection leads to withdrawal from the group or avoidance of group members (B), 

network dynamics will further decrease infection risk (lower network, dashed lines vs. 

upper network full lines). Finally, the resistance of a network to disease spread may 

result from the combined effect of (C) a node’s position and attributes. Immune nodes 

(green circle) with a central position (lower network) may be more efficient at slowing 

the spread of diseases than more peripheral ones (upper network). Figure created 

using BioRender. 
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4.3 Social interactions, susceptibility, and exposure to parasites 
 

Social interactions inside a group are not random but tend to follow a set of rules with 

preferential interactions defining a social structure. Competitive and affiliative 

interactions are part of social living and influence susceptibility and exposure to 

parasites. 

 

4.3.1 Competition and dominance 

 

As individuals compete for access to food and mating partners, both within and 

between social groups, success depends on competitive abilities and/or alliances. 

Depending on the degree of tolerance, individuals face different social and 

environmental adversities. However, both social and environmental stressors activate 

the hypothalamic-pituitary-adrenal (HPA) axis, triggering a neuroendocrine cascade 

producing glucocorticoids. Glucocorticoids have immunomodulatory effects, especially 

if chronically elevated, and can result in reduced immunocompetence and increased 

parasite susceptibility43–45. For example, in wild olive baboons (P. anubis), females 

harassed more often by aggressive males were also more immunocompromised46. 

The effects of such adversity on health and parasitism may vary according to the 

intensity of competition and inequality between group members. Inequality within 

groups is often studied through the lens of dominance hierarchies and individual 

rank5,44.  

In despotic hierarchies, dominant positions are obtained and maintained through 

physical aggression or threats, leading to more skewed access to resources. Several 

studies on wild and captive primates show a relationship between dominance rank and 

specific physiological profiles related to stress and immune function44,47–49. For 

example, being low-ranking in a despotic hierarchy can be associated with higher 

glucocorticoids levels44, fewer circulating lymphocytes44,46 and higher susceptibility to 

viral infections43. Moreover, there is increasing evidence of rank-related effects on 

immune function directly translating into increased susceptibility to specific pathogens. 

Using experimental manipulation of social rank in female rhesus macaques, Snyder-

Mackler et al. (2016)48 found various immune-gene expression patterns causally linked 
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to dominance rank, with high-ranking individuals expressing a more antiviral immune 

phenotype, and low-ranking individuals showing a pro-inflammatory immune profile 

more reactive against bacterial infections. 

 

Besides providing evidence of a link between low rank and pro-inflammatory 

responses known to be associated with several diseases43,50, the work from macaques 

suggests that dominance rank may prime the immune system towards specific types 

of parasites, possibly as a result of dominance-associated biases in exposure. In partial 

support of this theory, results from a recent meta-analysis on the relationship between 

dominance rank and parasitism across several vertebrate clades showed that high-

ranking males display greater parasitism than lower-ranking males, and revealed a 

similar, although non-significant, trend in females (restricted to primates only)51. The 

two best supporting explanations for this pattern are that high rank increases parasite 

exposure via priority access to food and trade-offs between reproduction and immune 

investment. However, drawing further conclusions about how infection risk for different 

parasites—and more generally, how parasite exposure and susceptibility—differ by 

rank, requires studying more diverse social and mating systems51. For example, in 

primates, the relationship between dominance, health, and parasitism has focused on 

strongly despotic systems, with a dearth of data on more tolerant dominance styles. 

In the latter, networks of interactions tend to be less modular; individuals’ positions in 

the dominance hierarchy do not necessarily predict access to food resources, 

interactions with social partners, or risk of injuries, and offspring may be handled by 

both relatives and non-relatives, possibly increasing exposure. Conversely, individuals 

in a despotic system exposed to fierce competition may be more inclined to conceal 

symptoms, which may exacerbate pathogen spread. Finally, social instability in a group 

can further complicate the picture: during socially unstable times, high-ranking 

individuals can temporarily experience higher psychological and physical stress, 

display impaired HPA-axis activity44, and develop stress-related diseases faster than 

low-ranking individuals44. When hierarchies stabilize, being low-ranking is once again 

associated with greater physiological indices of stress44. 
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4.3.2 Social support and social learning 

 

Relationships within groups also include a range of positive interactions between group 

members. Close preferential relationships provide individuals with social support (e.g., 

tolerance at feeding sites, coalition partners during agonistic interactions) that may 

mitigate infection through several mechanisms. First, social support reduces 

susceptibility to pathogens on a physiological level by buffering social stress. Past 

experimental work found that social support enhances immune function in captive 

primates52, decreases the probability of acquiring influenza in humans53, and reduces 

glucocorticoids levels associated with negative social experiences in wild primates54,55. 

All these mechanisms could also explain the relationship between social support and 

lower mortality risk in humans56. The protective effect of social support against infection 

may be particularly valuable to those with heightened stress. Both rhesus macaques 

with uncertain status in their group and human patients reporting high levels of social 

tension in their daily lives showed a substantial decrease in infection risk attributed to 

social support41,53. As the definition of social support varies between studies12, the 

specific components of sociality relevant to the buffering effect against disease need 

further characterization52. For example in Barbary macaques (M. sylvanus), strong 

opposite-sex bonds but not same-sex bonds were found to have a protective effect 

against contracting gastro-intestinal nematodes37, although the mechanisms 

explaining this difference remain unclear. Refining the concept of close friends in 

primatology to include reciprocity, predictability, and stability of interactions over time 

will help disentangle the different aspects of social support that contribute to social 
buffering effects. 

 

Another form of social support occurs through (social) learning of anti-parasite 

behaviors. Some primates actively fight parasitism using natural resources—a 

phenomenon called self-medication57. First observed in wild African great apes, 

growing evidence has revealed that self-medication is widespread across the primate 

order57. A well-established example of self-medication in great apes is leaf-swallowing 

to fight internal parasites through properties of anthelmintic phytochemicals and 

trapping worms in leaf folds57. To fight external parasites, wedge-capped capuchins 

(Cebus olivaceus58) and red-fronted lemurs (Eulemur rufifrons59) perform fur rubbing, 
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using toxic secretions of millipedes as a repellant and even sharing millipedes with 

social partners. In these situations, knowledgeable group members may serve as role 

models for social learning. For example, young chimpanzees acquire knowledge of the 

curative properties of toxic plants by watching adults60. In contrast, when adults do not 

tolerate close proximity during feeding time, as in western lowland gorillas (Gorilla 

gorilla gorilla), young individuals learn curative behaviors by observing kin of similar 

age60. 

 

In summary, sociality is best understood if we go beyond group size and organization 

and also acknowledge the diversity of inter-individual relationships between group 

members. Primates navigate complex social worlds by mitigating the costs of 

competition and forming social bonds that in turn, have far-reaching consequences for 

parasitism and health. 

 

4.4 Individual behaviors and parasite risk 

 

Prior sections of this chapter describe how group composition and structure shape 

exposure and susceptibility to parasites at higher levels of sociality. The focus was on 

understanding how social dynamics within and between groups, as well as competitive 

and affiliative interactions, may enhance or impair exposure and susceptibility to 

parasites in primates. However, despite the overarching effects of such constraints at 

the species or group level, individuals can still adjust their behaviors in response to 

parasitism. Thus, to fully capture how sociality interacts with parasitism we must also 

consider social behaviors that flexibly respond to parasitism (e.g. avoidance behaviors, 

social immunization; Figure 3) and how larger scales of social organization shape 

these behaviors themselves. 

 
4.4.1 Avoidance behavior 

 

Depending on the mating system, risk of parasite exposure can be heightened in one 

sex (e.g., polygyny and polyandry) or equally distributed among males and females 

(e.g., polygamy and monogamy)61. In primates, there is evidence of a link between 

copulation rate and prevalence of sexually transmitted diseases61: in a group of olive 
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baboons (polygamous), females were found to avoid mating with males showing signs 

of infection with a sexually transmitted disease similar to syphilis (Treponema pallidum 

pertenue)62. Infected females also accepted fewer copulations, and all females mated 

with fewer partners (compared to olive baboons from uninfected populations), despite 

the large pool of males available62. Thus, when faced with a heightened risk of 

infection, sexual behaviors were modified, lowering exposure (Figure 3), and reducing 

mating success for infected individuals, with major implications for disease 

transmission. Sexual behaviors, which are rarely considered in primate social network 

studies, could be used to investigate how flexibility of sexual networks may limit 

pathogen spread. 

 

Beyond sexual interactions, individuals appear to modulate their overall social 

connectedness in response to disease outbreaks, or in the presence of infected 

individuals, by adjusting their interactions to minimize risk36,37,63–65 (Figure 2B). 

Evidence of social distancing in species as phylogenetically distant as arthropods and 

primates, points towards multiple independent emergence of a similar behavioral 

strategy29. Although sick individuals may decrease their social interactions as a result 

of lethargy and fever resulting from infection, true social distancing involves the 

expression of specific behaviors that reduce the transmission of pathogens by 

increasing spatial distance among conspecifics29. For example, mandrills (Mandrillus 

sphinx) interact with healthy social partners but avoid group members infected with 

fecally transmitted gastro-intestinal parasites63. However, avoidance mechanisms may 

not always be effective if, for example, individuals disregard cues of infection or try to 

conceal sickness. Mandrills also do not avoid sick kin, suggesting that kinship 

interferes with avoidance66. However, testing whether social distancing is effective in 

the wild remains challenging since conducting controlled experiments is nearly 

impossible. Sanctuaries with semi-free ranging populations may provide a semi-natural 

setting where such studies can be done. 

 

4.4.2 Social immunization and the gut microbiome 

 

While the benefits associated with avoiding infected individuals are well-known, the 

potential benefits resulting from gradual exposure to parasites in building immunity 
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remain mostly untested8. A lack of immune challenges and acquired immunity during 

early life can significantly affect resilience to infection with aging67. Therefore, the 

possibility that sharing parasitic agents (e.g., from parents to offspring or between 

individuals during play) may contribute to acquired immunity and partially offset certain 

future costs associated with socially transmitted parasites needs to be considered. This 

phenomenon of social immunization (Figure 3) through low dose exposure68 has not 

yet been investigated in primates, although primate-helminth systems, characterized 

by high species-specificity69, offer an exciting potential model. In addition to providing 

gradual exposure to parasites, social interactions through physical contact, close 

proximity and movement between groups also facilitates the acquisition of beneficial 

microbes composing the gut microbiome70. This community of bacteria, eukaryotes, 

archaea, fungi, and viruses inhabiting the gastro-intestinal tract of primates plays an 

essential role in food digestion and the production of metabolites and vitamins, 

prevents colonization by opportunistic pathogens, participates in the development of 

the hosts' immune response, and the metabolism of toxic compounds—all of which 

help reduce host susceptibility to infection70,71. Recent evidence suggests that the gut 

microbiome may affect host social behavior to promote its own transmission by 

affecting an individual's olfactory signaling and influencing conspecific recognition and 

bonding or group-specific scent marks71. These findings raise new questions about 

how microbial commensals influence social networks and the evolution of sociality70,71. 

Finally, evidence that early-life microbiome composition influences parasite 

susceptibility in adult frogs72 provides a starting point for testing how an individual’s 

past and present social life interact to shape its infection status (Figure 3). 



Chapter 4: Parasites in a social world – Lessons from primates 
 

117 

 

 

Figure 3. Primate sociality: parasite-related costs and benefits. Illustrated summary of 

the evidence linking sociality and parasitism in primates. Correlates of sociality 

increase (red arrows) or decrease (green arrows) parasitism by modulating exposure 

and susceptibility to parasites. Correlates of sociality with established links to 

parasitism in primates are depicted with full arrows. Key social drivers of parasitism in 

other taxa of special interest for primates are depicted with dashed arrows. Evidence 

gathered from primates highlight that exposure and susceptibility are not determined 

at one level of sociality, but by the interplay of group and individual attributes. 

Individuals modulate parasitic risks exerted by group size and connectedness with 

avoidance behaviors. Understanding the consequence of social attributes such as rank 

on infection risk, requires accounting for increased exposure, engagement in social 

interactions inducing physiological stress, and access to support from close partners 

providing social buffering. Ultimately, the consequences of infection depend on 

individual susceptibility, shaped by immune tradeoffs, protection acquired from social 

immunization or modulated by physiological systems such as the gut microbiome or 

the use of self-medication. Figure created using BioRender. 
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Freeland first depicted primate groups as homogeneous biological islands7 whose 

parasite diversity is mainly governed by group size and ecology (e.g., diet, habitat use). 

However, building on these concepts has made room for more fluid and fine-tuned 

connections between the different levels of sociality. Importantly, the original emphasis 

on the costs of parasite transmission shaping sociality has been enriched by a better 

understanding of within-group drivers of parasitism. By including more complex levels 

of sociality, we expand our understanding on how social networks and individual 

behaviors are linked to overall health (Figure 3). A growing body of research has also 

allowed us to draw a more nuanced picture of assumed benefits of hygienic behaviors 

(e.g., grooming), while documenting more cases of rare behaviors (e.g., self-

medication). Several bold concepts, including social immunization described in other 

animal phyla and postulated in primates, remain largely untested; while a recent focus 

on microbiomes has added a new dimension in understanding links between sociality 

and parasitism. 

 

4.5 Future directions and conclusions 
 

4.5.1 Perspectives: important directions for future research on sociality and parasitism 

in primates 

 

Social network analysis has greatly contributed towards our understanding of how 

social structure relates to parasite risk. However, most studies to date rely on networks 

in which all connections between individuals represent the same type of interaction 

(using a single or combining multiple behaviors to produce a single aggregate 

measure). Such static networks conceal important social dynamics; in contrast, 

multilayer networks can incorporate multiple sets of relationships, with each layer 

representing a distinct form of connection (e.g., aggression vs affiliation)73. Static 

networks also fail to capture spatiotemporally dynamic environments that can 

destabilize or alter network ties (Box 3). Furthermore, given the interdependencies 

between hosts and parasites, multilayer networks allow researchers to address 

questions related to temporally dynamic factors, such as testing the resilience of 

networks to novel pathogens in comparison to endemic pathogens5,9,74. In addition, 

multilayer networks can be used not to only compare similar sets of individuals (within 
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species), but also interconnected systems. For example, Gomez et al. (2016)20 

modelled pathogen transmission on networks where nodes represented species rather 

than individuals, and found that primate species infected with parasites infecting many 

other primate species were also more likely to harbor pathogens similar to those 

identified as emerging diseases in humans.  

At the individual level, physiological and social mediators of susceptibility to infection 

are still poorly understood. Although the role of glucocorticoids in response to stress, 

social isolation, and social buffering50 makes them ideal candidates linking sociality 

and parasitism, recent meta-analyses suggest that parasitism itself causes an 

elevation in glucocorticoids, rather than vice versa45,75. The search for physiological 

mediators between social adversity and susceptibility to parasitism continues. Other 

possible suspects tying sociality and parasite transmission also require more 

exploration. This could include flexible behavioral defenses to avoid parasite infections, 

differences in cognitive capacities to learn anti-parasitic behaviors, and the importance 

of social interactions in the acquisition of beneficial microorganisms to build up the 

immune response and compete against pathogens. 

 

Box 3. Case study: Dynamic vs. static social networks in models of parasite 
transmission: predicting Cryptosporidium spread in wild lemurs 
 
Social networks are used to assess how pathogens spread among a population, 

group, or between individuals. However, most network models are static and discount 

temporal fluctuations, such as seasonal changes. This tends to result in networks with 

high density, as ties accumulate over time, but in which tie strength, averaged over the 

study period, likely underestimates the maximal strength between nodes. Springer et 

al. (2017)34 predicted that short-term changes in the distribution of network ties would 

influence pathogen spread and outbreak size, which could only be successfully 

modeled by dynamic networks. They created an epidemiological model in which 

individuals were either susceptible, exposed, infected, recovered, or deceased to test 

how the pathogen Cryptosporidium spread between adjacent groups of wild Verreaux’s 

sifakas (Propithecus verreauxi) in two three-month seasons. In their model, individuals 
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could become infected by body contact with an infectious conspecific (direct contact 

transmission) or by ranging over a contaminated area (environmental transmission). 

The probability of becoming infected in the modeled network was estimated using 

empirical data from behavioral observations and GPS tracking. The study explored 

three different transmission routes of the parasite: 1) both environmental and direct 

contact, 2) direct contact only, and 3) environmental only. For each season, static 

versions of networks for intergroup body contact and ranging overlap were created. 

Additionally, dynamic versions of the model were developed by updating networks of 

intergroup body contacts and ranging overlap every two weeks (Figure 1). 

 

The dynamic and static models converged in predicting larger outbreaks when taking 

into account both social and environmental transmission. However, the static network 

model predicted a smaller outbreak size than the dynamic model in the dry season, 

due to the rapid increase in intergroup range overlap at the end of the dry season that 

was only adequately captured by the dynamic model. As a consequence, conclusions 

about the influence of seasonality on outbreak size (whether larger in the wet or dry 

season) entirely depended on the choice of network (i.e., dynamic vs. static). By 

comparing outbreak sizes across seasons in both dynamic and static networks, it 

becomes apparent that static models may simplify and limit certain predictions 

regarding disease dynamics. 
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Figure 1. Dynamic (a-e) and static (f) networks calculated from behavioral 

observations of 8 groups of Verreaux’s sifakas during the dry season. Tie strength is 

proportional to body contact rates calculated over bi-weekly intervals for the dynamic 

model, or the entire dry season for the static model. D = density, Q = modularity. 

Modified with permission from Springer et al. (2017)34. 

To further understand which aspects of network dynamics may influence outbreak size, 

the authors generated random networks on four social groups with different patterns 

of intergroup connections. Model predictions on pathogen spread were compared 

between a set of dynamic networks (updated every two weeks) and the corresponding 

static networks (generated over the cumulated period considered), for varying 

probability of infection and recovery. Dynamic networks with a low probability of 
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infection and slow recovery produced larger mean outbreak sizes, especially when the 

strength of interactions between nodes varied greatly over time. Thus, short-term 

strong connections detected by dynamic models have a larger influence on outbreak 

size than averaged connections from static networks—particularly in cases where 

transmission is low and with long recovery periods. 

 

The importance of short-term bond formation in facilitating parasite transmission raises 

the possibility that the disappearance of short-term bonds might, conversely, be a 

major mechanism reducing transmission in social groups. Low probability of infection 

may provide social individuals with an opportunity to adapt their behavior to reduce 

infection risk before the pathogens have spread through most of the network. 

Considering these types of host feedback mechanisms between behavior and parasite 

transmission is critical for accurately predicting pathogen spread76. For example, a 

decrease in ranging behavior during the clinical phase of the infection, or transient 

social distancing between two closely bonded partners, may not be captured by static 

networks averaged over months of observation—and yet these factors strongly 

influence disease spread. Implications of these results go beyond the study of 

protozoan parasites in primates and influence predictions about the spread of other 

diseases (e.g. bacteria, viruses) with low transmissibility, such as tuberculosis or latent 

viral infections. 

 

4.5.2 Conclusions: the relevance of studying host sociality and parasitism in primates 

 

Over the past few decades, the field of primate disease ecology has made great strides 

towards understanding how group size and composition, social structure, and mating 

systems relate to parasitism. The level of detail gathered on the interactions and 

relationships between individually identified primates and their parasites has allowed 

the field to go beyond the analysis of ecological parameters influencing exposure and 

susceptibility to identify specific aspects of social life linked to parasitism. In addition, 

results from empirical studies have contributed to a broader effort of revisiting the links 

between group living and parasitism by documenting the benefits of sociality against 

parasitism8. 
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Although there is growing understanding of the influence of social behavior on parasite 

risk, it remains unclear how, and to which degree, parasite infections alter the social 

behaviors of both infected hosts and their uninfected conspecifics. A perfect example 

is the recent global social distancing by humans in response to COVID-1976,77, which 

illustrates how host social behavior can both respond to parasitism and influence it. 

Such bidirectional relationships between host social behavior and parasites have 

important implications for epidemiological dynamics and the evolution of sociality76,77. 

Understanding these types of interactions will contribute answering essential questions 

around the costs and benefits of animal sociality, and illuminate how these behaviors 

may contribute to pathogen emergence, spread, and evolution. Importantly, wild 

primates, with long-term data collection ongoing in several species worldwide, offer the 

possibility to explore questions that incorporate the complexities of host social behavior 

and the role it plays in the transmission of infectious diseases. Such studies in primates 

have increasing relevance for both public health and conservation.  

In terms of public health, studies linking socio-ecological mechanisms involved in 

parasite transmission in primates may provide information on ‘best pathogen 

candidates’ for transmission and dissemination in humans78. Primates are the source 

of two of the deadliest modern day epidemics in human, HIV-1 (the virus responsible 

for AIDS) stemming from chimpanzees lentivirus79, and Plasmodium falciparum (which 

causes malaria) from a strain infecting gorillas80. Yet, much uncertainty remains around 

the social interactions that facilitated zoonotic transmission81. Primates also represent 

sentinels for monitoring diseases like anthrax82 and Ebola virus outbreaks83 that 

threaten both wildlife and humans. Although spillover events are rare, episodic 

transmission of extremely severe infections (e.g. Ebola83, cercopithecine herpesvirus 

B78) is of serious concern at the growing human-primate interface78,84.  

Likewise, a better understanding of species’ social structure and response to infections 

can help inform conservation measures20,42. An illustration is given by efforts to control 

tuberculosis in badger populations in the UK. Culling interventions targeting males 

disturbed territorial defense behaviors and increased migrations between groups, 

resulting in greater disease spread85,86. Similarly, detailed understanding of the 

influence of sex, rank, or age on social position gathered from behavioral studies will 

be critical to implement conservation strategies in primates42 as 60% of primates 
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species are threatened with extinction84. The increase in infectious diseases in 

primates is considered a consequence of deforestation, agriculture expansion, habitat 

fragmentation, mining, hunting, and climate change, all of which are associated with 

declines among primate populations84,85. Understanding the anthropogenic impact on 

the socio-ecological systems of primates and the consequences in those affected 

populations can contribute to an inclusive one health approach by reducing the 

infection risk for all primate species, including humans78,85. Only through long-term 

monitoring, health surveillance systems for researchers, their study species, as well as 

sentinel populations of neighboring primates can we detect emerging diseases and 

study the impact of pathogens on populations.78,79 
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5 General discussion 

In this study, the temporal fluctuations of the gut microbiome from wild redfronted 

lemurs were investigated and the factors shaping the entire and potential active 

bacterial communities determined. We aimed at understanding the impact of social 

relationships on gut microbiome composition and diversity. Furthermore, the influence 

of sociality on parasite transmission was investigated as the gut microbiome can be 

transmitted and affected by similar mechanisms in group-living individuals.  

5.1 Gut microbial communities from wild redfronted lemurs and 

their temporal dynamics 

5.1.1 Entire and potential active bacterial community differ in most abundant 

organisms but not in overall composition 

The entire and active bacterial community were investigated and compared in chapter 

2. The most abundant phyla in the entire bacterial community identified were 

Bacteroidota, Firmicutes, Proteobacteriota, Spirochaetota, Verrucomicrobiota, and 

Actinobacteriota. The same taxa have been detected in humans (Pasolli et al., 2019) 

and non-human primates, such as lemurs (Springer et al., 2017; Greene et al., 2020), 

great apes (Degnan et al., 2012; Gogarten et al., 2018; Hicks et al., 2018), geladas 

(Baniel et al., 2021), free-ranging Rhesus macaques (Janiak et al., 2021), white-faced 

capuchins (Orkin et al., 2019) and colobus monkeys (Gogarten et al., 2018). These 

results were consistent in the four studied groups, but their abundances varied slightly 

during the study, Firmicutes and Bacteroidota were the most abundant. These two 

phyla are reported as the most abundant in the gut microbiome of several non-human 

primates with the exception of white-faced capuchins (Orkin et al., 2019), and yellow 

baboons (Ren et al., 2016).   

The most abundant bacterial genera found are undescribed organisms belonging to 

the families Prevotellaceae, Spirochaetaceae, and Rikenellaceae, and the order 

Kiritimatiellae>WCHB1-41. This supports the notion that the gut microbiome of non-

human primates harbors many unexplored bacterial species (Manara et al., 2019). In 

humans, Prevotellaceae and Spirochaetaceae have been linked to plant-rich diets, and 
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are more abundant in people living in rural settings with traditional lifestyles (Jagsi et 

al., 2017). Prevotella members degrade plant polysaccharides (Accetto and Avguštin, 

2015; Ley, 2016), which is possibly the function of the undescribed genus detected in 

the gut of redfronted lemurs. However, strains from Prevotella exhibit a high level of 

genomic diversity making it difficult to predict its function and thus highlighting the 

importance of characterizing these undescribed bacteria to assess their activity in the 

gut (Ley, 2016). Furthermore, different ASVs were classified as undescribed 

Prevotellaceae suggesting that different strains thrive in the gut of lemurs. High 

abundances of Prevotella or an unclassified genus from Prevotellaceae have been 

also reported in lemurs (Springer et al., 2017; Manara et al., 2019; Greene et al., 2020) 

and great apes (Degnan et al., 2012; Hicks et al., 2018). Although an apparent increase 

of Prevotellaceae during the rainy season was observed for all groups, no significant 

differences in its abundances between seasons were detected. We could not classify 

the most abundant Spirochaetaceae to genus level, but our results coincide with 

reports of Treponema being highly prevalent in non-human primates (Manara et al., 

2019), and in humans from non-industrialized countries (Jagsi et al., 2017). A 

comparative metagenomics study from non-human primates showed that these 

treponemes are host-specific and provide the host with pathways for the metabolism 

of sucrose, glycerolipid, glycerophospholipid, sulfur and methane, and the biosynthesis 

of amino acids (Manara et al., 2019). From the undescribed genera, Kiritimatiellae 

WCHB1-41 belonging to the Verrucomicrobiota is the least described. The member of 

the class Kiritimatiellae or the phylum Verrucomicrobiota have been identified in the 

gut microbiota of baboons (Ren et al., 2016), geladas (Baniel et al., 2021) and lemurs 

(Greene et al., 2020). Verrucomicrobiota were detected in humans from industrialized 

countries where the members have been identified as a mucin-utilizing (Jagsi et al., 

2017). Rikenellaceae has been reported in lemurs (Greene et al., 2020), Rhesus 

macaques (Janiak et al., 2021), geladas (Baniel et al., 2021), yellow baboons (Ren et 

al., 2016) and humans (Schnorr et al., 2014). Genera from Rikenellaceae can ferment 

carbohydrates or proteins and have been associated to high-fat diets in mice (Daniel 

et al., 2014; Su et al., 2014). Thus, the most abundant genera detected are important 

for the digestion of a plant-based diet as the one from redfronted lemurs. 

Firmicutes were more abundant and the predominant phyla in the potential active 

community compared to the entire community. Hence, indicating that despite 
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Bacteroidota and Firmicutes having similar relative abundances at the entire 

community level, Firmicutes are more actively replicating and possibly carrying out 

more functions. The relative abundances of Actinobacteriota are also higher in the 

active community compared to the entire community. Furthermore, some of the most 

abundant genera differ as well. Colidextribacter and Collinsella, genera belonging to 

Firmicutes and Actinobacteriota. respectively, are highly abundant in the active 

community. Even though a species from Colidextribacter was isolated from a human, 

it has not been genomically or metabolically characterized (Ricaboni et al., 2017). 

Furthermore, this genus was significantly more abundant during the dry season. The 

second most abundant genus, Collinsella, can metabolize different types of 

polysaccharides producing different types of acids, such as acetic, formic, lactic and 

butyric acid (Kageyama and Benno, 2000; Qin et al., 2019). Collinsella has been 

reported in several non-human primates including white-faced capuchins (Orkin et al., 

2019), western lowland gorillas (Gomez et al., 2015), mantled howler monkeys 

(Clayton et al., 2016), Rhesus macaques (Janiak et al., 2021), yellow baboons 

(Grieneisen et al., 2021), captive marmosets (Zhu et al., 2020) and black-and-white 

ruffed lemur (Varecia variegata) (McKenney, O’Connell, et al., 2018). In humans, this 

genus correlates negatively to fiber intake and associates to several pathologies 

(Gomez-Arango et al., 2018; Astbury et al., 2020; Zheng, Liwinski and Elinav, 2020). 

In contrast to humans, this bacterial genus in non-human primates should associate to 

plant-based diets, as these are their main dietary items. Therefore, these bacteria 

found in non-human primates should be further investigated to determine their function 

as it might differ from what has been described so far in humans or laboratory animals. 

Despite the disparities between the most abundant taxa in the entire and the active 

communities, their composition was not significantly different. Hence, studying the 

entire community does provide insights into the gut microbiome, which is satisfactory 

as DNA-based marker gene analysis is more widely use thus allowing comparative 

studies (Knight et al., 2018). Although, in chapter 2 we showed it is possible to perform 

RNA-based marker gene analysis in field research. However, the differences detected 

in bacterial relative abundances do highlight the importance of studying the functional 

counterpart of the gut microbiome to understand the activities and roles in this 

ecosystem (Heintz-Buschart and Wilmes, 2018). Furthermore, DNA-based marker 

gene analysis may be biased by the amplification of nucleic acids from dormant cells, 
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not functionally active bacteria, or dead cells (De Vrieze et al., 2018). Nonetheless, is 

also important to consider that marker gene analysis is impacted by 16S rRNA gene 

copy numbers, particularly RNA-based marker gene analysis (Louca, Doebeli and 

Parfrey, 2018). For instance, the genomes from Firmicutes can have 5.8 ± 2.8 copies, 

a number varying within the phylum (Větrovský and Baldrian, 2013). Therefore, a 

higher number of 16S rRNA copy number could inflate the relative abundances of 

Firmicutes, as detected in the potential active community. To conclude, investigating 

the entire bacterial community does portrait the composition of the gut microbiome but 

to determine the major functional bacteria RNA methods should be attempted. 

Bacterial alpha diversity presented monthly fluctuations in all groups in chapter 3, and 

in both the entire and the active community in chapter 2. The highest values were 

detected at the end of the dry season (September 2018-October 2018) and the 

beginning of the next rainy season (November 2018), as detected in previous 

longitudinal studies in humans (Jagsi et al., 2017) and yellow baboons (Ren et al., 

2016), and Verreaux’s sifakas (Springer et al., 2017) living in the same forest. 

Furthermore, during the rainy season (December 2018-March 2019) and the transition 

to the next dry season (April 2019), alpha diversity measurements varied more 

compared to the dry season. The potential active community had a lower alpha 

diversity than at the entire community level.This indicates metabolic redundancy in the 

bacterial community meaning that several members can perform the same metabolic 

function, thus not all of them are all actively replicating at the same time or enter 

dormant states (De Vrieze et al., 2018; Heintz-Buschart and Wilmes, 2018). Overall, 

these results imply that there is resilience in the gut microbiome because if there are 

perturbations in the taxonomic structure of the community other members can perform 

the same function thereby maintaining stability of the system (Heintz-Buschart and 

Wilmes, 2018). 

In chapter 2 the temporal dynamics of the entire and active bacterial communities were 

detected in a time series analysis because the gut microbiome composition became 

more different the longer the timespan between samples. Similar observations were 

obtained in humans (Caporaso et al., 2011; Jagsi et al., 2017) and yellow baboons 

(Ren et al., 2016). A longer-term study could help determine if samples from the same 

season but from different years are more similar between them, thus showing a cycling 



Chapter 5: General discussion 

135 

 

of the gut microbiome. Similarly, to reports from the Hadza hunter-gatherers (Jagsi et 

al., 2017), a rural tribe whose diet varies according to seasonality, and in wild mice 

(Maurice et al., 2015). Additionally, the PCoA analysis (Fig.3B, chapter 2) showed that 

samples from the dry season clustered together, whereas sample from the rainy 

season did not. Thus, the bacterial community fluctuates more during the rainy season, 

which could be due to dietary changes or higher availability of water sources, which 

will be discussed in the section 5.2. Similar patterns were reported in Tibetan 

macaques (Sun et al., 2016).  

5.1.2 Only one archaeon family is part of the gut microbiome 

The archaeal community was assessed with two different sets of primers designed for 

archaeal aiming to recover sequences of different lineages. The first set of primers was 

a combination of those published by Porat et al., 2010 and Gantner et al., 2011 (Porat 

et al., 2010; Gantner et al., 2011), and the second were proposed by Bahram et al., 

2019 (Bahram et al., 2019). However, only the family Methanomethylophilaceae was 

detected. Similar to humans, the archaeal community of the gut of redfronted lemurs 

has a low diversity (Koskinen et al., 2017; Nkamga, Henrissat and Drancourt, 2017). 

Methanomethylophilaceae has been found in the gut microbiome of humans, and the 

order Methanomassilicoccales has been detected in great apes (Koskinen et al., 2017; 

Raymann et al., 2017). The role of these methanogens in the human gut is to transform 

the excess H2 to methane improving digestion and conversion of toxic metals and 

metalloids (Koskinen et al., 2017; Nkamga, Henrissat and Drancourt, 2017). 

5.1.3 Diverse helminths and protists from the gut of redfronted lemurs 

This research supports previous morphological studies from redfronted lemurs in which 

high diversity of protist and helminths was detected (Clough, 2010; Clough, 

Heistermann and Kappeler, 2010). Helminths were more abundant and more diverse 

than protists and had higher abundances at the end of the dry season (October2018). 

However, one major difficulty was the lack of information in databases which did not 

allow to classify with a taxonomic resolution higher than order level. Many of the 

sequences in the databases derive from eukaryotic organisms parasitizing humans or 

laboratory animals or model organisms (e.g., Caenorhabditis elegans), thus providing 

a hint but these classifications should be taken cautiously (Marzano et al., 2017; 
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Coghlan et al., 2019; McVeigh, 2020). For example, most of the ASVs from Oxyuridae 

were classified initially as the pinworm Enterobius vermicularis, a human parasite 

(Coghlan et al., 2019; Taghipour et al., 2020). However, the pinworms reported in 

redfronted lemurs are Lemuricola vauceli and Callistoura sp. (Clough, 2010). In the 

NCBI database there are no entries in the databases for Callistoura sp. while for L. 

vauceli there is one entry for the 28S rRNA gene and none for the 18S rRNA gene, the 

marker gene used in this study (Stoeck et al., 2010; NCBI Resource Coordinators, 

2018; Frias et al., 2019). A misclassification as E. vermicularis may suggest the risk of 

zoonosis or transmission from humans to animals as transmission of E. vermicularis is 

relatively simple through ingestion or inhalation of the eggs, which could occur by fecal 

contamination (Taghipour et al., 2020). Due to the difficulties to identify the helminths 

at higher taxonomic levels, another marker gene was investigated, the cytochrome C 

oxidase (cox1/COI) (Folmer et al., 1994; Derycke et al., 2010). This project was 

performed as part of a bachelor thesis where the student standardized the PCR 

protocol base from a study of pinworms parasitizing orangutans (Foitová et al., 2014; 

Wiegräbe, 2020). This alternative protocol made it possible to identify the ASVs as 

Lemuricola sp. but only in few samples while many ASVs remained unclassified and 

the positive control, Plectus velox, was misclassified (Figure 1) (Wiegräbe, 2020). 

Thus, it was only possible to improve the classification of few ASVs. Another reported 

disadvantage from using of cox1/COI as marker gene is that the binding sites for 

primers are not highly conserved as in the 18S gene (Deagle et al., 2014). Therefore, 

18S rRNA marker gene analysis continues to be the better approach to investigate the 

eukaryotic community. 
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Figure 1. Heatmap showing the taxonomical classification to genus levels of ASVs 

obtained through cox1/COI marker gene analysis. P. velox was used as a positive 

control while the other samples are from redfronted lemurs. Modified from Wiegräbe, 

2020 (Wiegräbe, 2020). 

Similarly, to the helminths, the ASVs belonging to protists were classified only to order 

level. The most abundant protists were from Trichostomatia, which increased during 

the months of January and February. Accordingly, to previous morphological reports, 

the detect protist might be Balantidium coli (Clough, 2010). However, it might also be 

possible that they belong to a new undescribed protist. The second order of protist 

detected was Trichomonadida, which has been reported in these lemurs from marker 

gene analysis but not morphological studies previously (Clough, 2010; Gogarten et al., 

2020). Trichomonads are frequent inhabitants of the gut of animals, but they are 

difficult to detect via microscopical analysis (Li et al., 2015, 2020). These results 

highlight the importance of molecular or metagenomic methods for increasing the 

detection capacity of microeukaryotes present in the gut (Tanaka et al., 2014; Marzano 

et al., 2017).  

The number of ASVs obtained for helminths and protists were used to determine 

monthly parasite richness for each individual, however it is important to note that it is 

not possible to determine if the detected eukaryotes are pathogens or endosymbionts 

(Clough, Heistermann and Kappeler, 2010; Tanaka et al., 2014). Additionally, in some 

cases where number of parasite richness was very high, it should be considered that 

helminths and protozoa may have multiple copies of the 18S gene and these copies 
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may vary between them, thus increasing diversity estimates (Větrovský and Baldrian, 

2013; Coghlan et al., 2019).  

Studies including repeated sampling of individuals, such as this one, increase the 

detection capacity of parasites, particularly of helminths, whose release of eggs is not 

constant thus limiting the sensitivity of any analysis (Gillespie, 2006; Clough, 

Heistermann and Kappeler, 2010). Further research of the protist and helminths of 

redfronted lemurs should attempt their morphological and genomic characterization to 

provide more insights into their impact on the health of the host. As these lemurs 

provide an interesting study system to determine how the carriage of diverse 

eukaryotes impact health. 

5.1.4 The unexplored gut fungi from redfronted lemurs 

Although fungal organisms were only detected in low abundances, there is a gut fungal 

community that needs to be explored further. This study showed that there are many 

fungal organisms from Madagascar that remain to be characterized (Chapter 2). 

Second, some researchers sustained it is difficult to determine if the fungi detected in 

fecal samples originated from diet or the outer environment, for example coming from 

the inhalation of spores or as pathogens on food items (Lai, Tan and Pavelka, 2019; 

Nilsson et al., 2019). A way to solve this issue is to focus on ASVs from previous 

identified gut fungi, as in this project. Another possibility is to perform a metagenomic 

investigation of the environment or diet jointly with the analysis of fecal samples, as 

done for lemurs who feed on soil (geophagic) (Borruso et al., 2021) and mice (Iliev et 

al., 2012). Additionally, other researchers recommend cultivation of the organisms from 

the fecal samples as an indication for gut symbionts (Hamad et al., 2014; Auchtung et 

al., 2018). Third, previous reports from humans state fungi abundances in the gut are 

relatively low compared to bacteria, hence possibly environmental contaminants will 

be most of the amplified and sequenced material (Auchtung et al., 2018; Laforest-

Lapointe and Arrieta, 2018; Nilsson et al., 2019). Perhaps, including a lyticase 

treatment to degrade the fungal cell wall during DNA extraction can increase the 

amount of material without altering the bacterial community (Pierre et al., 2021). 

Fusarium, Penicillium, Cladosporium and Aspergillus, fungi detected in abundances 

>1% in this study, have been identified in the feces of indri (Indri indri) lemurs (Borruso 
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et al., 2021), Tibetan macaques, humans and mice (Li et al., 2018; Sun et al., 2018; 

Borruso et al., 2021). These fungi have enzymes for the degradation of plant 

polysaccharides, thus aiding in the processing of the host’s diet (Liao et al., 2014). 

Yeasts previously reported as gut symbionts from humans and mice such as 

Malassezia, Saccharomyces, Candida and Cryptococcus were detected in very low 

abundances but these could portray their low abundances in the gut of lemurs (Nash 

et al., 2017; Li et al., 2018). However, in the case of Candida it has been proposed that 

they are members of the oral microbiota and are therefore detected in fecal samples, 

which should be taken into consideration (Auchtung et al., 2018). Nevertheless, this 

study supports that there are gut fungi in non-human primates despite a previous report 

suggesting the opposite, which used the 18S rRNA gene instead of the recommended 

ITS region (Mann et al., 2020). 

5.2 Drivers of gut microbiome composition and diversity in wild 

redfronted lemurs 

This study demonstrated that social relationships, HPA axis activation, diet, 

precipitation, and parasite richness impact the gut microbiome of wild redfronted 

lemurs, whereas no influence of sex and age were detected. This was investigated by 

a thorough study design including the time series collection of fecal samples coupled 

with behavioral and environmental data to investigate gut microbiome community 

structure and temporal variability of community composition and the drivers of 

alteration.   

5.2.1 Social relationships and their impact on the gut microbiome 

The influence of social interactions on gut microbiome composition was assessed as 

monthly rates of affiliative interactions (chapter 2) and as diversity of social interactions 

and correlations between social networks and bacterial indicator networks (chapter 3). 

In chapter 2, monthly rates of affiliative interactions were used to determine how 

temporal changes in social behaviors can impact gut microbiome structure and 

diversity. Affiliative interactions correlated to changes in beta diversity during the 

months of the dry season (June-August, figure2). This time coincides with the lowest 

temperatures during the study period which increases behaviors of social 
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thermoregulations such as huddling (Ostner, 2002). Furthermore, the rate of affiliative 

interactions influenced microbiome composition and taxon-specific effects (chapter 2). 

Thus, monthly changes in social behaviors influenced temporal shifts in gut 

microbiome diversity and composition.  

 

Figure 2. Alteration of preferred food items of redfronted lemurs and precipitation in 

Kirindy Forest from May 2018 until April 2019, and time delimitation of the 

environmental (dry - rainy) and behavioral (mating - breeding) seasons as defined by 

previous studies. Created with BioRender.com 

Previous studies have used group size as a proxy for determining correlations between 

higher number of interacting partners and higher bacterial alpha diversity (Grieneisen 

et al., 2017). As determined in this study (chapter 4) investigating only group size might 

provide information about the pool of available microorganisms within a population but 

it disregards the social dynamics within a group and assumes constant interactions 

rates between individuals (Patterson and Ruckstuhl, 2013; Briard and Ezenwa, 2021). 

Furthermore, it does not consider the different transmission routes of microorganisms 

(Briard and Ezenwa, 2021).  Therefore, to investigate if a higher number of partners or 

interactions influenced bacterial alpha diversity a social interaction diversity index was 

calculated in this study (chapter 3). This index estimated the number of interacting 

partners of an individual, the duration and how distributed were these interactions 

between the dyad. To determine if a higher number of interacting partners and longer 

interactions increased bacterial alpha diversity, however no effects were detected. 

Diversity of social interactions had a low impact on beta diversity and a small number 

of bacterial taxa associated negatively to this factor. The smaller impact detected for 

diversity of social interactions could be caused by the temporal distribution of fecal 
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samples or variations in behaviors between groups reducing the capacity to detect 

stronger effects (Ren et al., 2016).   

In this study (chapter 3), social networks were used to predict sharing of bacterial ASVs 

between individuals. Social network analysis can be applied to understand the 

transmission of the gut microbiome through social interactions, as it has been done for 

parasites (chapter 4). Research from yellow baboons (Tung et al., 2015), Verreaux’s  

sifakas (Perofsky et al., 2017) and wild mice (Raulo et al., 2021) have shown that social 

networks predict gut microbiome similarity. These previous reports compared social 

networks with microbiome dissimilarity matrices (Bray-Curtis or Weighted Unifrac) 

(Tung et al., 2015; Perofsky et al., 2017; Raulo et al., 2021). In contrast, a novel 

approach was used in this study because social networks were compared to bacterial 

indicator networks to ASV level. Correlations between indicator ASVs and social 

networks were detected in three of the four groups, thus suggesting transmission of 

bacteria through social interactions (Fig.5, chapter 3). Previous longitudinal studies 

have not achieved to detect these effects due to the temporal distribution of samples 

obscuring them (Ren et al., 2016).  

Group membership was one of the strongest predictors of gut microbiome diversity 

and composition, indicating transmission of microorganisms between group members 

and showing that each group had a distinct gut microbiome (Degnan et al., 2012; 

Bennett et al., 2016; Amato et al., 2017; Grieneisen et al., 2017; Raulo et al., 2017; 

Springer et al., 2017; Gogarten et al., 2018). However, kin relationships or distinctive 

home ranges could also influence group differences in gut microbiome composition 

and diversity, as previously reported (Amato et al., 2013; Tung et al., 2015; Springer 

et al., 2017; Grieneisen et al., 2021). Nonetheless, an overall impact of social 

interactions through diverse social measurements was detected. 

As investigated in the third study (chapter 4), social interactions may also be important 

to potentiate social immunity through the exposure to low doses of a pathogen or 

sharing beneficial microorganisms (Kappeler, Cremer and Nunn, 2015; Ezenwa et al., 

2016). For instance, the gut microbiome is essential for the proper development of the 

immune response thus certain essential microorganisms could be acquired at a young 

age through social relationships (Round and Mazmanian, 2009; Clemente et al., 2012; 
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Laforest-Lapointe and Arrieta, 2017). Furthermore, acquisition of gut microbiome 

through social interactions can protect against pathogens through colonization 

resistance (Bansal et al., 2010; Estrela, Whiteley and Brown, 2015; McKenney, Koelle, 

et al., 2018). For example, social interactions in bumble bees (Bombus terrestris) 

protect them against the parasite Crithidia bombi (Koch and Schmid-Hempel, 2011). 

Group-living can provide other advantages for acquisition of the gut microbiome 

(chapter 4). Social learning of behaviors such as, coprophagy (feeding on feces), or 

consumption of specific food items, and social support through food-sharing might be 

important for the development of the gut microbiome (Sarkar et al., 2020). Coprophagy 

has been observed in mammals as a mechanism for acquiring nutrients, however 

microorganisms from the fecal sample are also ingested (Overdorff, 1993; McKenney, 

Koelle, et al., 2018; Caruso et al., 2019; Raulo et al., 2021). For instance, cohousing 

laboratory mice is used as a mean for normalization of the microbial communities 

through coprophagy (Caruso et al., 2019). Furthermore, in Brandt’s voles (Microtus 

brandti), prevention of coprophagy produced changes in the composition and diversity 

of the gut microbiome (Bo et al., 2020). As an example of social support, koala 

(Phascolarctos cinereus) mothers provide their juveniles during weaning with a pap, a 

special form of their feces. In this way, the bacteria necessary for the digestion of 

eucalyptus are transferred (Osawa, Blanshard and Callaghan, 1993). 

5.2.2 Short-term dietary changes impact the gut microbiome 

It is well established that diet impacts the gut microbiome, but most studies in wild 

animals determined these effects indirectly through detecting seasonal changes or 

measuring fluctuations in food availability (David et al., 2014; Sun et al., 2016; Hicks 

et al., 2018; Baniel et al., 2021). The few studies that performed behavioral 

observations of feeding behaviors were cross-sectional, thus missing some dietary 

changes or are based on data from group scans (Amato et al., 2014; Ren et al., 2016; 

Springer et al., 2017; Orkin et al., 2019).  In this project, focal feeding behaviors were 

recorded and their monthly fluctuations were determined as shown in figure 2. A direct 

influence of consumption of leaves, fruits, and flowers on the gut microbiome through 

coupling focal data with fecal samples was detected. We detected a stronger impact 

of feeding behaviors on alpha and beta diversity because the study in chapter 2 
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focused on one group thereby removing the confounding factor of group membership. 

In addition, this group was sampled more regularly, thus increasing thereby the 

statistical robustness of the data (Degnan et al., 2012; Grieneisen et al., 2017; Björk et 

al., 2019). Nevertheless, feeding on leaves correlated with lower bacterial alpha 

diversity in both studies. Furthermore, some of the bacterial genera positively 

associated to changes in fruit feeding such as Succinivibrio, Phascolarctobacterium, 

Succinivibrionaceae and Prevotellaceae coincide in both studies. However, some 

other positively associated taxa differ between studies, such as Anaerovibrio and 

Bacteroides. Also, in the second study (chapter 3) taxa positively and negatively 

associated to feeding on leaves were detected that were not identified in the first one. 

Discrepancies between the associated taxa for each food item can occur due to the 

use of different statistical methods for the determination of taxon-specific effects. In the 

first study (chapter 2), a linear mixed model which tested the effects of the covariates 

in the random effect of taxon was generated (Sweeny et al., 2020). This model could 

not be used for the second study (chapter 3) with more data points due to 

computational limitations associated to the complexity and heterogeneity of 

metagenomic datasets, so the linear mixed models from MaAsLin2 (Microbiome 

Multivariable Associations with Linear Models) were used (Mallick et al., 2021). 

MaAsLin2 is the improved version from MaAsLin for longitudinal metagenomic studies 

with the possibility to control for repeated sampling (Mallick et al., 2021). MaAsLin 

calculates multivariate linear models associating the covariates with each taxon 

independently, and any covariate selected in at least 1% of the iterations is tested for 

significance in a standardized generalized linear mixed model (Morgan et al., 2012, 

2015). Furthermore, discrepancies between the differentially abundant taxa might be 

due to individual differences in feeding behaviors, which may have a greater impact in 

the second study including more individuals. Thus, also showing that extrapolating the 

dietary changes of the whole group from individual feeding behaviors is not precise 

enough. Also, monthly group differences in preferred food items were detected in the 

chapter 3 showing that alterations in food availability do not necessary represent what 

the animals are feeding on. All data considered, we detected bacteria relevant for the 

digestion of specific food items, and short-term dietary changes such as, consumption 

of fruits and flowers impact gut microbiome composition and diversity. Further 

functional investigations from the differentially abundant bacteria using other omics 



Chapter 5: General discussion 

144 

 

methods will provide more information on their role in the gastrointestinal metabolism 

(Heintz-Buschart and Wilmes, 2018). 

5.2.3 HPA axis activation influences diversity and composition of the gut microbiome 

In the second study (chapter 3) it was determined that social stressors increase 

bacterial alpha diversity, explain variation in beta diversity and associate to 

differentially abundant taxa. The mean highest fGCM levels were detected in June 

during the mating season (figure 2) for three of the four groups suggesting that social 

stressors associated to an increase in bacterial alpha diversity during this period. 

Accordingly, previous research from males of this population identified a significant 

increase in fGCM levels during the mating season (Ostner, Kappeler and Heistermann, 

2008). Reported behaviors such as mate-guarding and male-male aggressions during 

the mating season could increase fGCM levels (Ostner and Heistermann, 2003). 

Females are also expose to stressful situations, which might increase fGCM levels 

during this time, since there is reproductive competition and the risk of eviction by other 

females (Kappeler and Fichtel, 2012b). Although in this previous study the higher 

fGCM levels detected in males redfronted lemurs were not explained by rank 

differences, incremented aggressions between group members or a surge in 

intergroup encounters (Ostner, Kappeler and Heistermann, 2008). Significant 

differences in fGCM levels between the dominant and the subordinate males of the 

same group were identified suggesting that either individual or subtle factors not 

related to rank influence fGCM levels (Ostner, Kappeler and Heistermann, 2008). This 

previous study and the results from chapters 3 and 4 indicate that the mating season 

is a period of social unrest possibly for all group members influencing HPA axis 

activation and increasing bacterial alpha diversity. Furthermore, fGCM levels were 

strong predictors of variance in beta diversity and 17 bacterial genera associated 

positively or negatively to them (discussed in detail in chapter 3). Most of the research 

on the microbiome-gut-brain axis focuses on the impact of the microorganisms on the 

brain and metabolism, and has been associated to diverse pathologies such as, 

psychiatric disorders, obesity, diabetes, and inflammatory bowel syndrome (Rogers et 

al., 2016; Gérard and Vidal, 2019; Martin et al., 2019). However, less is known on how 

host mechanisms like HPA axis impact the gut microbiome. Immunomodulation by 

glucocorticoids could alter the homeostatic control of the gut microbiome by the 
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immune response (Chu and Mazmanian, 2013). Furthermore, activation of 

gluconeogenesis by glucocorticoids could also be implicated, as SCFAs produced by 

intestinal bacteria are substrates for this mechanism (Gérard and Vidal, 2019; Martin 

et al., 2019). Investigating the direct links of these two processes might provide clearer 

explanations of how the HPA axis influences the gut microbiome. 

5.2.4 Environmental changes due to precipitation explain most of the variance in 

diversity and composition 

The impact of fluctuations in precipitation on the gut microbiome of wild primates has 

been widely studied, and its influence has been frequently associated to changes in 

food availability given that diet is such a strong predictor of gut microbiome composition 

and diversity (Ren et al., 2016; Hicks et al., 2018; Baniel et al., 2021). However, more 

direct links between environmental precipitation and gut microbiome have not been 

investigated. In this project daily precipitation was recorded (figure 2) and investigated 

separately from diet or seasonal effects. In both studies (chapters 2 and 3) higher 

precipitation correlated to a decrease on bacterial alpha diversity. Precipitation 

changes also explained variation in beta diversity and had the highest number of 

negatively and positively associated taxa. Although, there are differences of the 

associated bacterial genera to precipitation between studies, as mentioned before this 

could be due to the use of two different statistical tools for the identification of these 

relationships (Sweeny et al., 2020; Mallick et al., 2021). Also, the second study 

(chapter 3) had a higher number of samples and included more individuals, thus 

accounting for individual or group differences regarding its impact. Nevertheless, 

associated genera between studies were shared. For example, negative associations 

to Alloprevotella, Tannerallaceae, Syntrophococcus, and Erysipelotrichaceae were 

detected, whereas Prevotellaceae and Synergistaceae were positively associated. 

Precipitation can influence the gut microbiome by changing water availability, reducing 

water intake, decreasing gut transit time and impacting the gut-niche (Vandeputte et 

al., 2016). Higher precipitation translates into more available water drinking sources 

and is indicative of lower stool consistency and higher gut transit times (Vandeputte et 

al., 2016). Coincidentally, in the first study (chapter 2) higher precipitation correlated to 

lower alpha diversity possible due to an increase in water intake which influences gut 

transit times. Moreover, animals could uptake microorganisms from water sources and 
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if these sources change due to precipitation, then the ingestion and availability of these 

microorganisms in the gut will also be affected (Ren et al., 2016; Browne et al., 2017). 

Further clarification of the direct links between precipitation and the gut microbiome 

could be achieved by 1) investigating drinking behaviors and stool consistency and 2) 

determining the microbial communities from these water sources to investigate 

correlations indicating transmission of microorganisms from water. 

5.2.5 Assessment of transkingdom interactions between bacteria and eukaryotic 

parasites 

Parasite richness had a small impact on the variability in beta diversity and did not 

influence bacterial alpha diversity (Chapter 3). Previous studies have found that the 

impact of eukaryotic parasites on bacterial alpha diversity varies according to the 

parasite species (Reynolds, Finlay and Maizels, 2015; Yang et al., 2017; Wei et al., 

2020).  Thus, it is possible that no correlations between parasite richness and bacterial 

alpha diversity were detected as all detected protozoa and helminths were analyzed 

together. Furthermore, it was not feasible to determine differences in bacterial alpha 

diversity associated to presence/absence of parasites between or within individuals, 

as all identified parasites were prevalent over the entire year. Thus, it was not feasible 

to compare infected vs. uninfected individuals as done in other studies. Moreover, no 

investigations between fluctuations in the abundances of a particular parasite and the 

gut microbiome were performed, as values from 18S rRNA do not portray reliably the 

abundances of each parasite in the gut (Gogarten et al., 2020). Likewise, parasite 

richness only explained a low amount of variance in beta diversity possibly due to the 

same reasons as for alpha diversity. However, positive, and negative associations 

were detected to specific bacterial genera. Positive associations could indicate 

mutualistic or symbiotic interactions between parasite and bacteria, such as trophic 

chains or predation of stronger bacterial competitors by parasites allowing weaker 

competitors to thrive (Laforest-Lapointe and Arrieta, 2018). The negatively associated 

bacteria could be affected by competition for resources, predation or the secretion of 

antibacterial molecules by parasites (Cotton et al., 2012; Laforest-Lapointe and Arrieta, 

2018; Coghlan et al., 2019). For example, Tritrichomonas musculis, a trichomonad 

symbiont of mice, competes for dietary fiber with gut bacteria (Wei et al., 2020). 

Protozoa and helminths can also influence gut bacteria indirectly through their 
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interactions with the immune response or by changing the gut niche (Reynolds, Finlay 

and Maizels, 2015). For instance, parasitic nematodes use excretory-secretory 

products to immunomodulate inducing regulatory T cells, blocking pro-inflammatory 

responses, and activating Th2 immunity (Harnett, 2014; Afrin et al., 2019). Infections 

with Enterobius vermicularis, a nematode parasitizing humans, are associated with 

decreased levels of secretory immunoglobulin A (SIgA) essential for controlling the gut 

bacteria and protect against bacterial pathogens (Macpherson, Geuking and McCoy, 

2005; Palm et al., 2014; Taghipour et al., 2020). Conversely, they can also increase 

antibacterial defenses, as reported in T. musculis, which activates the immune 

response of intestinal epithelial cells (Chudnovskiy et al., 2016). Parasites can also 

damage intestinal epithelial junctions allowing translocation of bacteria from the lumen 

to other tissues increasing the risk of sepsis (Afrin et al., 2019). Additionally, they 

stimulate mucus production that can promote mucin-utilizing bacteria (Reynolds, Finlay 

and Maizels, 2015). Mucin production from the activation of Th2 immune responses 

during mice infections with the nematode Trichuris muris favor the growth of 

Clostridiales inhibiting colonization by Bacteroides vulgatus, a proinflammatory species 

(Ramanan et al., 2016). Likewise, increase mucus production in Rhesus macaques 

infected with the nematode Trichurus trichiura decrease the attachment of pro-

inflammatory bacteria decreasing gut inflammation (Broadhurst et al., 2012). In 

conclusion, it is important to note that eukaryotic-prokaryotic interactions are 

microorganism-specific as parasites have wide impacts in the gut niche. They are also 

parasite – bacteria species specific as seen in T. musculis for which competitive, and 

cooperative interactions to different species of Bifidobacterium were detected (Wei et 

al., 2020). In this study, some of the bacterial genera impacted by the parasitic 

consortium were identified. The next steps should attempt to identified parasite species 

specific interactions with bacteria and the underlying mechanisms. This could be 

performed by combining 16S and 18S rRNA marker gene analysis with parasite 

morphological studies and non-invasive immunological markers (Reynolds, Finlay and 

Maizels, 2015; Heitlinger et al., 2017). 

5.2.6 Small influence of host age and sex on the gut microbiome 

Age only explained a small amount of variance on beta diversity and one bacteria 

genus associated to this variable (chapter 3). Age differences in gut microbiome 
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composition and diversity are mostly detected during infancy (Arrieta et al., 2014). It is 

feasible that no large effects of age were identified as the infants were sampled 

relatively late, starting from six months of age, and only during their lasts six months of 

infancy. With twelve months they are already juveniles (Kappeler and Fichtel, 2012b). 

Furthermore, there were only six infants during the study period reducing the statistical 

power (Björk et al., 2019). Despite the low number of individuals investigated, this study 

suggests age-related differences in gut microbiome occur during beginning of infancy 

(<6 months of age) in redfronted lemurs. Moreover, it indicates that the gut microbiome 

of redfronted lemur juveniles does not differ from the one of adults, as seen in Rhesus 

macaques (Rhoades et al., 2019; Janiak et al., 2021). Nonetheless, Roseburia was 

negatively associated to age. This genus degrades β-mannans producing butyrate, 

which is the main energy source for colonic cells, has anti-inflammatory effects and 

possess barrier protective properties thus, it relates to gut health (La Rosa et al., 2019). 

In addition, apparent effects of older age on the gut microbiome were not detected. 

Possibly, this was because these lemurs in the wild do not reach an age where this 

effect can be identified due to predation and other pressures (Fichtel and Kappeler, 

2002). For instance, in humans this impact is distinguished in elder individuals (>60 

years) (Claesson et al., 2011; Jackson et al., 2016). So far, an effect of age on the gut 

microbiome of wild animals, has been difficult to detect, or is only identified when 

investigating age categories and not age as a continuous variable, as done in this study 

(Degnan et al., 2012; Bennett et al., 2016; Heitlinger et al., 2017; Raulo et al., 2017; 

Pafčo et al., 2019; Janiak et al., 2021). In the second study (chapter 3), host sex only 

explained a small amount of variance on beta diversity. Host sex differences in gut 

microbiome composition and diversity have been difficult to detect in previous studies, 

although they should be expected as sexual dimorphic immunity could impact the 

interaction between the immune response with gut members (Elderman, de Vos and 

Faas, 2018). These difficulties suggest that the effect is not strong and therefore hard 

to detect with other confounding factors. For example, in gorillas host’s sex effects on 

the gut microbiome were identified only during a particular season (Pafčo et al., 2019), 

and the impact detected in chimpanzees could not be distinguished from dietary effects 

(Degnan et al., 2012). However, an effect due to the gonadal hormones has been seen 

in interventional studies in laboratory animals and rufous mouse lemurs (Yurkovetskiy 

et al., 2013; Moreno-Indias et al., 2016; Aivelo and Norberg, 2017). Perhaps future 
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attempts to identify sex differences in wild animals should be cross-sectional and focus 

on times of elevated estrogen, progesterone or androgen production, such as the 

mating or birth season in redfronted lemurs, to detect their impact on the gut microbiota 

(Ostner, Kappeler and Heistermann, 2002; Ostner and Heistermann, 2003). 

5.3 Future directions: does the gut microbiome influences social 

behaviors? 

Due to the wide known effects of the gut microbiome on the health of the host a new 

avenue of research is to determine if microbial mechanisms affect or even manipulate 

the host’s social behaviors for the sake of their own transmission and survival (Sherwin 

et al., 2019). Some studies already indicated that they do impact social behaviors (Wu 

et al., 2021). For instance, esters and volatile fatty acids (VFA) for olfactory 

communication in hyenas and meerkats (Suricata suricata) are produced as bacterial 

metabolites (Theis et al., 2013; Leclaire et al., 2017).  The paste used in olfactory 

signaling by hyenas is more variable between individuals and has a higher bacterial 

richness in the highly sociable spotted hyenas (Crocuta crocuta) compared to the more 

solitary striped hyena (Hyena hyena), indicating that a more complex signaling is 

necessary in contexts with more intricate social interactions (Theis et al., 2013). In wild 

meerkats, the chemical composition of the anal pouch covaried with its bacterial 

communities, and the bacterial communities differed between dominant and 

subordinate males indicating a participation of bacteria on communicating rank 

information (Leclaire et al., 2017). Also, in invertebrates presence of specific bacterial 

genera or pheromones produced by gut bacteria promote the aggregation of 

conspecifics (Wada-Katsumata et al., 2015; Sherwin et al., 2019). Human 

neuropsychiatric disorders associated with deficits in social behaviors like autism 

spectrum disorder, social anxiety, depression, and schizophrenia can associate to 

perturbations in the gut microbiome (Cryan et al., 2019). These changes include lower 

bacterial diversity, absence of beneficial taxa and presence of inflammation inducing 

bacteria (Rogers et al., 2016). These results suggest that the gut microbiome could 

impact social behaviors in humans, although diet, and genotype are confounding 

factors limiting the explanatory power (Sherwin et al., 2019). Furthermore, the gut 

microbiome impacts the availability of serotonin, which can also influence social 
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behaviors (Yano et al., 2015; Martin et al., 2019; Sherwin et al., 2019). Laboratory 

animals with impaired function of the microglia present aberrant social behaviors which 

could be link to changes in the gut microbiome as it influences the proper development 

of the immune function of the microglia (Colonna and Butovsky, 2017; Sherwin et al., 

2019). Germ-free and antibiotic treated mice present aberrant social behaviors 

mediated by HPA axis activation, which can be restored by colonization of 

Enterococcus faecalis (Wu et al., 2021). Thus, a complex gut microbiome and specific 

bacterial species dampens HPA axis activation influencing social behaviors (Wu et al., 

2021). Moreover, it has been speculated that social relationships could be particularly 

important for acquiring the microorganisms necessary for herbivorous diets, which 

require, compared to carnivorous diets, more diverse bacterial communities capable 

to degrade complex polysaccharides (Ley et al., 2008; Nishida and Ochman, 2018; 

Sherwin et al., 2019). 

Hence, previous research indicate that the gut microbiome impacts sociality. It would 

be interesting to compare differences in composition and diversity between different 

types of social organization structures. In this regard, non-human primates provide 

unique study subjects to compare between social organization having solitary to multi-

level societies and with a variety of dominant interactions, from tolerant to despotic. 

Perhaps even providing information regarding the influence of the gut microbiome on 

the evolution of sociality (Biedermann et al., 2021). Most research on this topic has 

focused so far in hymenopteran and isopteran insects limiting the understanding of the 

evolution of sociality in other animal taxa (Biedermann et al., 2021).  Therefore, 

comparative studies from wild non-human primates may provide a distinct answer. 

Future research should aim to translate results obtained from laboratory animals and 

invertebrates into wild primates. For example, searching for microbial molecules or 

genes associated to social behaviors in other study systems in non-human primate gut 

microbiomes could be investigated. 

5.4 Conclusion 

Social relationships impact the temporal fluctuations of the gut microbiome from wild 

redfronted lemurs. Social relationships influence the diversity and composition of the 

gut microbiome directly through affiliative behaviors, which promote the transmission 
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of bacteria between individuals. These results indicate that there is a pool of gut 

bacteria that is shared within a group explaining at least partially the strong impact of 

group membership on gut microbiome composition and diversity. Social relationships 

also affect the gut microbiome indirectly through the activation of the HPA axis by social 

stressors inducing the release of glucocorticoids and provoking changes in the gut 

physiology and immunity. However, precipitation and dietary changes are the strongest 

drivers of temporal fluctuations in the gut microbiome. The members of the gut of 

redfronted lemurs include a great diversity of protozoa and helminths, fungi in low 

abundances and bacterial phyla, i.e. Firmicutes, Bacteroidota and Spirochaetota. 

Comparisons between the entire and potential active bacterial community indicate that 

to further understand the impact of these drivers, the functional pathways of these gut 

microorganisms should be investigated. 
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6 Appendix 
6.1 Summary figure 

 

 
 
Summary figure 1. Factors shaping the temporal dynamic of the gut microbiome from wild 
redfronted lemurs. The host and its gut microbiome are in constant feedback loops between each 
other. A. Research from humans and laboratory animals has determined that the gut microbiome 
impacts the health of the host. (B-E) Conversely, the host and its environment influence the composition 
and diversity of the gut microbiome. B. In wild redfronted lemurs, correlations between social networks 
and bacterial indicator taxa determined sharing of bacteria through social interactions. C. Bacterial alpha 
diversity increases when feeding on leaves and higher fecal glucocorticoid metabolites, whereas 
decreases when feeding on flowers, higher precipitation and was lowered in one of the studied groups. 
D. Variation in beta diversity is explained by several factors being the strongest ones group membership, 
fecal glucocorticoid metabolites and precipitation. E. Specific bacterial taxa are positively or negatively 
associated to all the studied factors in this thesis, but group membership, diet and precipitation had the 
highest number of associated taxa. The temporal dynamics of the gut microbiome from wild redfronted 
lemurs are shaped by processes taking place inside the host’s intestinal tract and through interactions 
with microbial communities outside the host. Created with BioRender.com. 
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6.2 Summary 

The gut microbiome consists of the prokaryotic and eukaryotic communities inhabiting 

the gastrointestinal tract of an animal and plays a pivotal role in the health of the host. 

This microbial community is highly dynamic and the factors driving these fluctuations 

remain to be determined. This thesis presents a longitudinal study investigating the 

factors that shape the gut microbiome of wild redfronted lemurs aiming to detect an 

impact from social relationships. Social relationships can influence the gut microbiome 

directly through transmission of microorganisms during social interactions, or indirectly 

through activation of the hypothalamic-pituitary-adrenal (HPA) axis due to social 

stressors.  

In Chapter 2 the temporal variations in the diverse microbial communities of redfronted 

lemurs were analyzed. The study showed that fluctuations in diet, affiliative 

interactions, and precipitation impact the bacterial entire and active community. 

Temporal variations in bacterial diversity were driven by swift changes in the food items 

consumed (fruits, flowers, and leaves), affiliative interactions and precipitation. 

Feeding on leaves increased bacterial alpha diversity whereas feeding on flowers and 

higher precipitation decreased bacterial diversity. Feeding on flowers and fruits and 

affiliative interactions affected the gut microbiome composition. Specific bacterial 

genera associated to feeding on flowers and fruits, affiliative interactions, and 

precipitation were detected. Fermenters of polysaccharides and glycolipids like 

Succinivibrio, Oscillospiraceae, Prevotellaceae, and Anaerovibrio were positively 

affected with consumption of flowers and fruits. Rikenellaceae, Alloprevotella, 

Kiritimatiellae, and Spirochaetaceae were positively affected by affiliative interactions. 

Higher precipitation had a negative impact on Kiritimatiellae, suggesting that this order 

is acquired from other water sources only present during the dry season. Thus, 

showing that the investigated factors shape the longitudinal dynamics of the gut 

microbiome.  

Chapter 3 focused on the investigation of environmental selection in the gut niche due 

to host’s sex, age, HPA axis activation, parasite richness, diet and water intake. 

Additionally, dispersal processes of microorganisms between hosts through social 

interactions and with environmental water were examined. Bacterial alpha diversity 
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increased with higher fecal glucocorticoid metabolite (fGCM) measurements, 

consumption on leaves, while being significantly lower in one group. Group 

membership, fGCM levels and precipitation explained the highest amount of variation 

in beta diversity. Associations between bacterial genera and all studied factors were 

detected, excluding host’s sex. For instance, Tyzzerella associated with higher fGCM 

concentrations whereas genera from Helicobacteraceae and Mycoplasmataceae 

presented negative associations. Parasite richness associated to changes in 

abundances of bacterial genera but had a small impact on bacterial beta diversity. As 

reported in humans, Succinivibrio and Verrucomicrobiota associated positively with 

parasite richness while genera from Lachnospiraceae had negative associations. 

Correlations between bacterial indicator taxa and social networks were detected, 

suggesting transmission of bacteria through social interactions. Thus, environmental 

selection at the gut niche and dispersal processes of microorganisms between hosts 

and the environment influenced the gut microbiome at different intensities.  

Finally, Chapter 4 reviews the impact of social behaviors in primates and their influence 

on parasite transmission and susceptibility to disease. Group-living provides 

advantages for an individual but also increases exposure to parasites. The same 

processes associated to parasite transmission and susceptibility can be important 

drivers of the gut microbiome. Thus, this knowledge and methods used in these 

investigations can be applicable to the study of the gut microbiome.  

In conclusion, this project demonstrates that social relationships impact the gut 

microbiome directly through social interactions, group membership and indirectly 

through HPA axis activation. Diet and precipitation are important drivers of the temporal 

variations in the gut microbiome. Parasite richness impacted the abundance of 

bacterial genera but not diversity, possibly because bacteria-parasite interactions are 

species specific. The detection of the temporal variations of the gut microbiome of wild 

redfronted lemurs and its drivers was possible due to the longitudinal setup with a 

dense sampling regime coupled with the collection of focal behavioral data and 

environmental records. Thus, the temporal dynamics of the gut microbiome of wild 

redfronted lemurs are shaped by factors inside and outside the hosts, including the 

dispersal processes of bacteria between hosts through social interactions. 
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6.3 Zusammenfassung 

Das Darm Mikrobiom besteht aus den prokaryotischen und eukaryotischen 

Gemeinschaften, die den Magen-Darmtrakt eines Tieres bewohnen und spielen eine 

ausschlaggebende Rolle für die Gesundheit des Wirts. Diese mikrobielle 

Gemeinschaft ist hoch dynamisch und die Faktoren, die diese Fluktuationen 

beeinflussen, sind nicht vollständig erforscht. Diese Dissertation präsentiert eine 

Verlaufsstudie mit dem Ziel, die Faktoren, welche das Darm Mikrobiom von 

Rotstirnmakis formen, zu bestimmen und einen möglichen Einfluss sozialer 

Beziehungen zu untersuchen. Sozialbeziehungen können das Darm Mikrobiom durch 

direkte Transmission von Mikroorganismen durch soziale Interaktionen, oder indirekt 

durch Aktivierung der Hypothalamus-Hypophysen-Nebennierenrinden-Achse (HPA) 

beeinflussen. 

In Kapitel 2 wurden die temporalen Variationen in den diversen mikrobiellen 

Gemeinschaften von Rotstirnmakis analysiert. Diese Studie zeigte, dass Fluktuationen 

der Ernährung, affiliative Interaktionen, sowie Niederschlag die gesamten und aktiven 

bakteriellen Gemeinschaften beeinflussen. Temporale Variationen der bakteriellen 

Diversität wurden durch Veränderungen der Nahrungsquelle (Früchte, Blüten oder 

Blätter), affiliative Interaktionen und Niederschlag beeinflusst. Eine auf Blättern 

basierte Ernährung erhöhte die bakterielle Diversität, während eine Blüten-basierte 

Ernährung und höherer Niederschlag die bakterielle Diversität verringerten. Der 

Verzehr von Blüten und Früchten, sowie affiliative Interaktionen beeinflussten 

ebenfalls die Komposition der mikrobiellen Gemeinschaft. Es wurden spezifische 

bakterielle Genera identifiziert, die mit diesen Faktoren, sowie Niederschlag assoziiert 

werden konnten. Polysaccharide und Glycolipide fermentierende Organismen wie 

Succinivibrio, Oscillospiraceae, Prevotellaceae, und Anaerovibrio korrelierten mit der 

Aufnahme von Blüten und Früchten. Rikenellaceae, Alloprevotella, Kiritimatiellae, und 

Spirochaetaceae wurden durch affiliative Interaktionen positiv beeinflusst. 

Kiritimatiellae zeigten eine negative Korrelation mit erhöhtem Niederschlag, was eine 

Aufnahme durch andere Wasserquellen während der Trockenzeit vermuten lässt. Dies 

zeigt, dass die analysierten Faktoren die longitudinale Dynamik des Magen-Darm 

Mikrobioms beeinflussen. 
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Kapitel 3 konzentrierte sich auf die Untersuchung von möglicher Selektion durch 

äußere Einflüsse wie das Geschlecht des Wirts, Alter, HPA Aktivierung, 

Parasitenvorkommen, Ernährung und Wasseraufnahme in Bezug auf die ökologische 

Nische im Magen-Darmtrakt. Zusätzlich wurde die Verbreitung von Mikroorganismen 

zwischen Wirten durch soziale Interaktionen und Wasserkontakt untersucht. Die 

bakterielle Alpha Diversität stieg mit höheren fäkal Glucocorticoid-Messungen (fGCM), 

sowie dem Verzehr von Blättern, während in einer der untersuchten Gruppen hingegen 

eine Verminderung beobachtet wurde. Gruppenzugehörigkeit, fGCM Werte und 

Niederschlag erklärten den größten Teil der Beta-Diversität Varianz. Es wurden 

Assoziationen zwischen bakteriellen Genera und allen miteinbezogenen Faktoren bis 

auf das Geschlecht des Wirts detektiert. Tyzzerella konnten mit höheren fGCM 

Konzentrationen assoziiert werden, während die Genera Helicobacteraceae und 

Mycoplasmataceae negative Assoziationen zeigten. Eine hohe Vielfalt an Parasiten 

konnte mit Abundanz-veränderungen bestimmter bakterieller Genera in Verbindung 

gebracht werden, zeigte aber nur geringen Einfluss auf bakterielle Beta-Diversität. Wie 

bereits in Menschen gezeigt, waren Succinivibrio and Verrucomicrobiota mit 

parasitärer Vielfalt assoziiert, während Lachnospiraceae eine negative Korrelation 

zeigten. Korrelationen zwischen bakterieller Indikator-Spezies und sozialen 

Netzwerken suggerieren eine Übertragung von Bakterien durch soziale Strukturen, 

dadurch einen selektiven Einfluss der Umwelt auf die ökologische Nische des Magen-

Darmtrakts, Ausbreitungsprozesse von Mikroorganismen zwischen Wirt und der 

Umwelt und demonstrieren somit einen Einfluss der Umwelt auf das Mikrobiom des 

Magen-Darmtrakts. 

Kapitel 4 diskutiert den Einfluss sozialen Verhaltens von Primaten auf Transmission 

von Parasiten. Das Leben in einer Gruppe bietet Vorteile für das Individuum, erhöht 

aber auch die Exposition zu Parasiten. Diese Prozesse können ebenfalls wichtige 

Faktoren für das Mikrobiom des Magen-Darmtrakts sein. Die Erkenntnisse und 

Methoden aus dieser Studie könne daher bei der weiteren Erforschung des Darm-

Mikrobioms Verwendung finden. 

Dieses Projekt zeigt, dass soziale Beziehungen und Gruppenzugehörigkeit einen 

direkten und HPA Aktivierung einen indirekten Einfluss auf das Mikrobiom des Magen-

Darmtrakts ausüben. Ernährung und Niederschlag sind wichtige Faktoren der 
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temporalen Variationen des Mikrobioms. Parasitäre Vielfalt beeinflusste die Abundanz 

bakterieller Genera, nicht aber die bakterielle Diversität. Möglicherweise durch 

spezifische Interaktionen zwischen Bakterien und Parasiten. Die Detektion temporaler 

Veränderungen des Mikrobioms im Magen-Darmtrakt von Rotstirnmakis und dessen 

beeinflussende Faktoren wurden durch ein longitudinales Studiendesign mit 

engmaschiger Beprobung und der Erhebung verhaltensspezifischer und abiotischer 

Daten ermöglicht. Daher lässt sich sagen, dass die Dynamik des Mikrobioms der 

Rotstirnmakis durch verschiedene Faktoren in und außerhalb des Wirts beeinflusst 

wird und mit Übertragungsprozessen zwischen Wirten durch soziale Interaktionen in 

Verbindung steht. 
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