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Notation

Numbers and Sets

N, N0 natural numbers and natural numbers explicitly including zero

R, R real numbers and extended real numbers R := R ∪ {∞}

C, C complex numbers and extended complex numbers C := C ∪ {∞}

M,N matrix dimensions, always assuming M,N ≥ 2

Matrices and Vectors

I = IN identity matrix of size N ×N

J = JN counter-identity matrix of size N ×N , see (1.10)

ek k-th vector of the standard basis ek =
(
δk−1,j

)N−1

j=0
, k = 1, . . . , N , with

the Kronecker delta δkj =
{

1, j=k
0, j 6=k

A initial matrix of size (M ×N) for the approximation problems

Aᵀ,A∗, zᵀ, z∗ transpose, and complex conjugate and transpose of a matrix or vector

A = UΣV∗ singular value decomposotion of the matrix A, see De�nition 1.1

H = HM,N Hankel matrix of size M ×N , see De�nition 1.10

ẑ = ẑN (z) structured vector ẑN (z) =
(

1 z z2 zN−1
)ᵀ
∈ CN , see (2.1)

z = zN (z) normalized structured vector z = ẑ/‖ẑ‖2 ∈ CN , see (2.5)

P block-diagonal Hankel projection matrix, see (1.6)
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Notation

Norms and Operators

‖·‖F Frobenius norm for matrices, see De�nition 1.5

‖·‖2 Euclidean vector norm or matrix spectral norm, see De�nition 1.6

‖·‖∞ elementwise maximum norm of a vector or matrix, see De�nition 1.7∑′ summation where terms of the form 0
0 are omitted, see Chapter 4

vec(A) vectorization of a matrix along its columns

diagvec(A) vectorization of a matrix along its counter-diagonals, see (1.8)

S general structure speci�cation map, see Chapter 5

PS orthogonal projection onto the a�ne space of S-structured matrices

H = HM,N speci�cation map for Hankel structure of size M ×N , see (5.1)

P orthogonal projection onto the linear space of Hankel matrices

Abbreviations

LRA low-rank approximation

SLRA structured low-rank approximation

r1H rank-1 Hankel approximation

RMP rank minimization problem

AAK theory theory of Adamjan, Arov, and Kreı̆n

SVD singular value decomposotion

RE relative error

MRE mean relative error (9.3)

MAD mean absolute deviation from optimum (9.4)

MSD mean squared deviation from optimum (9.5)

xvii





Introduction

The world is full of data and has been long before big data became a slogan, ages before

computers were even invented. Yet without numerical processing, the data were used in the

form of generation-spanning experience. Our ancestors knew when to seed and when to

harvest their crop, just to name one example.

With the invention and further development of computers, scientists are able to acquire

and store ever larger data sets. Examples are bio-medical or �nancial data, or data arising in

social studies or engineering. Because of the immense amount and complexity of the data,

mere experience does not su�ce to gain an insight from them. Mathematical models are

necessary to outline, analyze, and explain the data. Only then can they serve a purpose,

such as drawing a conclusion or making a prediction.

It is common consensus—often entitled Occam’s razor—that among all available models

analyzing a data set for the same purpose, the simplest one should be used.

“Everything should be made as simple as possible, but no simpler.”

—Albert Einstein.

There are di�erent kinds of mathematical models; one popular example is the linear model.

Linear models are described by linear operators which—in �nite dimensions—can be repre-

sented by matrices. Often the complexity of a model is related to the rank of this matrix: a

simple model corresponds to a matrix with low rank. Thus, �tting a simple model to given

data amounts to low-rank approximation (LRA) of a matrix constructed from the data. Some

even believe that

“behind every linear data modeling problem there is a (hidden) low-rank ap-

proximation problem”

—Ivan Markovsky [Mar08].
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Introduction

While simple unstructured LRA is equivalent to �tting a linear static model to the data,

other models may impose further requirements on the matrix. For example, non-linear or

dynamic models lead to structured low-rank approximation (SLRA) of the data matrix. That

is, the data matrix is to be approximated by a low-rank matrix that additionally exhibits a

certain structure.

Among all matrix structures, the Hankel structure is especially relevant because of its

connection to dynamic linear time-invariant models. Such models—and therefore Hankel

structured low-rank approximations—are widely used in areas like system theory, signal

processing, computer algebra, or machine learning. Concrete applications include:

• errors-in-variables identi�cation [Mar08; MWV+05],

• frequency estimation [AAK71; AC11a; AC19; PP19],

• approximation by �nite-rate-of-innovation signals [MV05; VMB02], and

• �nding approximate common divisors of polynomials [CFP03].

Hankel structured low-rank approximation also occurs in Prony’s method [PT14; Pot17],

and its modi�cations [BM86; OS95; ZP19] which are used for the recovery of structured

functions [Kel21] or sparse phase retrieval in one dimension [BP17].

General Problem Formulation

We state the structured low-rank approximation (SLRA) problem. Given an initial matrix

A ∈ CM×N with M,N ≥ 2, �nd

min‖A−H‖ such that rank H ≤ r,

and H has a certain structure,
(1)

where the norm is usually a (weighted) Frobenius norm, and sometimes the spectral norm.

With r < min{M,N} we specify an upper bound for the desired rank of the approximating

matrix H. The SLRA problem may also be termed structured rank-r approximation problem

when explicit information about the rank is desired. In this dissertation, we will always

consider the SLRA problem with Hankel structure.

Within problem (1) there are two subproblems, namely unstructured rank-r approxima-

tion (LRA) and structured approximation without rank constraint. It is a well-known fact

that the solution of the unstructured LRA problem can be given in terms of the singular

value decomposition (SVD) of A. However, the low-rank approximation is in general not

structured; it usually does not even inherit any potential structure from A. The structured

2
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approximation problem without the rank constraint is convex and the solution can easily be

obtained. In case of Hankel structure this is done by an averaging procedure. In contrast, the

above minimization problem (1) with both constraints combined is not convex and highly

non-trivial, especially for the spectral norm.

Related Solution Approaches

A very simple approach to �nd an approximate solution to problem (1) is Cadzow’s algorithm

[Cad88; Gil10], and its modi�cations presented in [AC13; CFP03]. Cadzow’s algorithm is

based on alternating projections between the subspace of structured matrices and the set of

low-rank matrices, and can be applied for the Frobenius and the spectral norm. Alternating

projection methods are widely popular because of their simplicity and broad applicability.

Despite its common use, there are no results on convergence of Cadzow’s algorithm known

to the author that can reliably be applied to the general low-rank Hankel approximation

setting (see also Chapter 7).

Unlike Cadzow’s algorithm, the following methods engage in solving the SLRA problem

exclusively for the (weighted) Frobenius norm and real matrices A ∈ RM×N .

One such approach relies on local optimization techniques. For the (weighted) Frobenius

norm, problem (1) can be written as a non-linear eigenvalue problem, see [BM86; OS95;

ZP19]. In addition, there are a wide variety of publications treating (1) as a non-linear

structured least squares problem [IUM14; ZG20], or a structured total least squares problem,

see [DeM94; DeM93; GZ11; LMV00; LV01; MVP05; MWV+05].

Another approach is to reformulate problem (1) as polynomial or rational function opti-

mization. Details can be found in [OSS14; UM12].

A completely di�erent approach to the SLRA problem is the concept of convex relaxation.

The optimization problem (1) is not convex due to the non-convexity of the rank constraint.

Therefore, a straightforward convex relaxation is achieved by replacing the rank by the

nuclear norm [Faz02; FPS+13]. Going further, one can minimize the convex envelope of the

Frobenius norm and the rank constraint [AC19; ACO17; GRG18; GG18; LO16] instead of

solving problem (1). Additionally connected to convex relaxations, there are subspace based

and hybrid methods [LV10; VD96].

Yet another attempt to solve problem (1) involves randomized alternating projections and

backtracking. Such an algorithm is proposed by [GZ15; GZ13]. In [GZ15], the authors even

claim guaranteed convergence to the optimal solution. Unfortunately, the corresponding

3
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software could not be located on the web for comparison.

As can be perceived by the above summary, there are a variety of methods designed for

the Frobenius norm. Regarding the SLRA problem in the spectral norm in contrast, the

literature is scarce. It was formulated in [Ant98] but almost no related work is to be found.

Two exceptions are given by [Ant97; Rum03a] for the following special problems.

For regular real (N ×N) matrices, the minimal spectral norm distance to a singular (i.e.,

rank-de�cient) structured matrix is studied in [Rum03a]. (The same topic is considered

for the Frobenius norm in [Rum03b].) A result in [Rum03a] can indeed be exploited to

construct a rank-(N−1) Hankel approximation for a given full-rank Hankel matrix which is

optimal with regard to the spectral norm. Unfortunately, this approach cannot be extended

to construct Hankel approximations of lower (than N − 1) rank.

In [Ant97] rank-1 Hankel approximation in the spectral norm is considered for real

initial matrices with Hankel structure. More precisely, the existence of a rank-1 Hankel

approximation that achieves the same error as the unstructured low-rank approximation is

investigated.

The theory of Adamjan, Arov, and Kreı̆n (AAK theory) should also be mentioned in the

context of SLRA. It is not exactly concerned with problem (1) but with a similar in�nite
problem. The AAK theory deals with low-rank Hankel approximation with respect to the

`2-operator norm, where the initial matrix A is an in�nite Hankel matrix whose entries

obey a certain decay property. The main theorem states that the in�nite low-rank Hankel

approximation always attains the same error as the in�nite unstructured low-rank approxi-

mation. Optimal in�nite low-rank Hankel approximations can be computed numerically

[BM05; PP16] and have been used to compute adaptive Fourier series with exponential decay

for large classes of functions [PP19]. Unfortunately, the AAK theory cannot be transferred

to �nite matrices, see [BM05].

Contributions of this Work

In this dissertation, we consider a special case of SLRA, namely the rank-1 Hankel approxi-

mation (r1H) problem

min‖A−H‖ such that rank H = 1,

and H has Hankel structure
(2)

for a given initial matrix A of size M ×N .

4
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The vast majority of related approaches only achieves approximate solutions to the SLRA

problem with respect to the Frobenius norm. We are interested in provably optimal solutions

of the r1H problem (2) for both the Frobenius and the spectral norm. Optimal solution

is meant in the sense that there exists no better solution, that is, with smaller error and

ful�lling both constraints. Note that all our results can easily be transferred to the Toeplitz

structure as outlined in Chapter 1.

In the formulation of (2) we require the rank of the approximating matrix H to be equal to

one instead of the smaller or equal we used to describe the general SLRA problem (1). This

is because the only matrix with rank smaller than one is the trivial zero matrix. Therefore,

we exclude it from our considerations.

Our key idea to solve the r1H problem (2) is analytically reformulating it. This reformula-

tion enables us not only to prove the characterization of an optimal solution, but also allows

us to develop a numerical algorithm for its computation.

For the Frobenius norm, our results hold for any initial matrix A ∈ CM×N . Then the

optimal solution itself is a complex Hankel matrix H ∈ CM×N of rank one. In this case, we

characterize the optimal solution by a maximization problem for a rational function.

With respect to the spectral norm, problem (2) is much more delicate. Paying tribute to

this fact, we restrict our research to real symmetric initial matrices A ∈ RN×N . Also in this

case, we characterize the optimal rank-1 Hankel approximation by a maximization problem

for a rational function. This rational function is however of a completely di�erent structure

than the one for the Frobenius norm.

Thus, it is not surprising that the optimal rank-1 Hankel approximations for the Frobenius

norm and the spectral norm usually di�er. They only coincide in the trivial case, when the

generically unstructured rank-1 approximation happens to have Hankel structure.

Furthermore, we not only identify optimal solutions to the r1H problem (2), we also

assess them in comparison to the unstructured rank-1 approximation. More precisely, we

give necessary and su�cient conditions identifying initial matrices A for which the rank-1

Hankel approximation error is as small as the unstructured rank-1 approximation error. In

the case of the spectral norm, we thereby extend the work in [Ant97].

In contrast to the methods described as related approaches, our characterizations provide

guaranteed optimal solutions and we can compute them numerically. Our optimal solutions

can therefore serve as benchmarks for di�erent methods engaging in the r1H problem.

While benchmarking di�erent methods for rank-1 Hankel approximation, we also deal

with Cadzow’s algorithm. There are only partial convergence results for Cadzow’s algorithm

5
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in the SLRA setting [ZG17]. For the special case of rank-1 Hankel approximation, we give

a complete proof for the convergence of Cadzow’s algorithm. The resulting limit point

however does not usually coincide with the optimal solution of the r1H problem (2)—neither

for the Frobenius norm nor for the spectral norm.

Our main publication [KPP21a] is a consequence of the results summarized above. Addi-

tional examples complementing [KPP21a] are published in [KPP21b]. In this dissertation,

we also present further results extending [KPP21a], of which some are published in [Kni21].

These manuscripts were issued prior to the composition of this thesis. Thus naturally, some

sections of this thesis will be largely very similar to parts of them. This will always be

explicitly stated at the beginning of the concerned sections.

Organization of this Dissertation

This thesis is split into two main parts. In Part I, we develop analytical characterizations

and numerical algorithms for computation of optimal rank-1 Hankel approximations in

the Frobenius and the spectral norm. Then in Part II, we use these optimal solutions as

benchmarks for the comparison of di�erent SLRA methods.

We begin Part I with some basic de�nitions and concepts presented in Chapter 1. Chapter 2

is devoted to the characterization of Hankel matrices depending on their rank. Using the

characterization of rank-1 Hankel matrices, we analytically reformulate problem (2) with

respect to the Frobenius and the spectral norm in Chapters 3 and 4, respectively. Based on

these reformulations, we develop algorithms to compute the optimal solutions to problem (2)

numerically.

Part II is dedicated to the benchmarking of di�erent methods from the literature against

our optimal solutions from Part I. In order to understand these methods, we give a character-

ization of general structured matrices in Chapter 5. The methods themselves are presented

in Chapters 6 to 8. They are based on local optimization (Chapter 6), alternating projections

(Chapter 7), and convex relaxation (Chapter 8). In Chapter 7 we also give a new proof

of convergence for the special r1H setting. The benchmarking is done by means of small

examples and on a broader basis in Chapter 9.

Finally, we draw conclusions and give an outlook on possible topics for future research.

6







I Optimal Rank-1
Hankel Approximation

The structured low-rank approximation (SLRA) problem is generally accepted to be an

important and interesting one. Nevertheless, the methods that are usually used to solve it

only do so approximately (in the case of local optimization techniques or convex relaxations),

or do not have guaranteed convergence, let alone to the optimal solution (in the case of

Cadzow’s algorithm). For the special case of the rank-1 Hankel approximation (r1H) problem,

min‖A−H‖ such that rank H = 1,

and H has Hankel structure,

we are able to characterize and exactly compute optimal solutions both with respect to the

Frobenius norm and the spectral norm.

For a deeper understanding of the problem, we give some basic de�nitions and notions in

Chapter 1. In Sections 1.2 and 1.3, we also summarize the long solved individual problems of

unstructured low-rank approximation and Hankel structured approximation without rank

constraint.

Our approach to the r1H problem crucially depends on the special structure of Hankel

matrices of low rank that we explain in Chapter 2. Thus, more important is Section 2.1,

where we characterize Hankel matrices of rank one. Nevertheless, with Section 2.2, we give

an excursus to Hankel matrices of higher rank.

9



Optimal Rank-1 Hankel Approximation

In Chapters 3 and 4, we solve the r1H problem for the Frobenius norm and the spectral

norm, respectively. In Chapter 3, we develop a reformulation of the r1H problem as rational

function maximization. This formulation enables us to identify and compute the optimal

solution. First, we deal with very general initial matrices A ∈ CM×N in Section 3.1. For

such, the optimal solution will be a complex Hankel matrix H ∈ CM×N of rank one. In

Section 3.2, some special results are added for real initial matrices A ∈ RM×N and their

real rank-1 Hankel approximations H ∈ RM×N .

Due to the more complicated nature of the spectral norm, in Chapter 4, we restrict our-

selves to real symmetric initial matrices A and real rank-1 Hankel approxiations. The key to

the optimal solution of the r1H problem with respect to the spectral norm is the interdepen-

dence of optimal approximation and optimal approximation error. Therefore, we examine

the optimal error more closely in Section 4.2. One must di�erentiate if the by modulus

largest eigenvalue of the initial matrix A is isolated or occurs with higher multiplicity.

In both cases, we can again characterize the optimal rank-1 Hankel approximation by a

maximization problem for a rational function. This rational function depends on the optimal

approximation error as opposed to the rational function found for the Frobenius norm. In

Section 4.3, we translate our theoretical results to executable algorithms for computation of

the optimal rank-1 Hankel approximation in the spectral norm.

When comparing the characterizations of the optimal rank-1 Hankel approximation for

the Frobenius and the spectral norm, we observe that they are di�erent. In fact, the optimal

solutions to the r1H problem are usually not the same for the Frobenius and the spectral

norm. They only coincide in the trivial case, when the generically unstructured rank-1

approximation does, by chance, have Hankel structure.

For both the Frobenius norm and the spectral norm, we also give necessary and su�cient

conditions to ensure that the optimal rank-1 Hankel approximation achieves the same error

as the unstructured rank-1 approximation. For the spectral norm, we thereby extend the

result from [Ant97].

Moreover, we illustrate our results by small but insightful examples.

10



1 Matrix Approximations

In this chapter we revisit some basics that are essential throughout this thesis.

In Section 1.1, we introduce the singular value decomposition (SVD) and the rank of a

matrix. The latter is needed to understand the concept of low-rank approximation. Further-

more, we give formal de�nitions of di�erent matrix norms, which will be used to measure

the approximation error.

In Sections 1.2 and 1.3, we explicitly introduce the subproblems related to low-rank Hankel

approximation, namely the unstructured low-rank approximation (LRA) problem and the

Hankel structured approximation problem without rank constraint.

First, let us �x the notation a∗ := aᵀ for the conjugate transpose of a vector or a matrix.

1.1 Matrix Rank and Matrix Norms

Any matrix A ∈ CM×N can be decomposed into one diagonal matrix Σ and two unitary

matrices U and V.

Definition 1.1 (Singular value decomposition) Let A ∈ CM×N and assume M ≤ N . We

de�ne an economic version of the singular value decomposition (SVD) as the factorization

A = UΣV∗,

where U ∈ CM×M and V ∈ CN×M have orthonormal columns, that is, U∗U = V∗V =

IM . The columns uj of U and vj of V, j = 0, . . . ,M − 1, are also called left and right

11



1 Matrix Approximations

singular vectors of A, respectively. The matrix Σ = diag(σ0, . . . , σM−1) ∈ RM×M is a

diagonal matrix containing the singular values of A. Note that the singular values are

uniquely determined by the matrix A, and we may assume them to be ordered σ0 ≥ σ1 ≥
· · · ≥ σM−1 ≥ 0 largest to smallest. The tuple {σj ,uj ,vj} is also called j-th singular triple

of A.

Remark 1.2 1. In the usual de�nition of the SVD, the matrix V is an (N ×N) unitary

matrix, and the diagonal matrix Σ is padded with zeros to an (M ×N) matrix.

2. For a real matrix A ∈ RM×N , U and V can be guaranteed to be real orthogonal

matrices.

3. The SVD of A is connected to the eigendecompositions of A∗A and AA∗ by

A∗ ·A = VΣ∗U∗ ·UΣV∗ = V · (Σ∗Σ) ·V∗

and

A ·A∗ = UΣV∗ ·VΣ∗U∗ = U · (ΣΣ∗) ·U∗,

respectively. Thus, the non-zero singular values of A are the square roots of the non-zero

eigenvalues of A∗A or AA∗. In particular, if A ∈ RN×N is a real symmetric matrix with

eigenvalues λ0, . . . , λN−1, then we have the relation |λj | = σj , j = 0, . . . , N − 1, between

eigenvalues and singular values.

One fundamental characteristic of a matrix is its rank, which is de�ned as follows. Besides

De�nition 1.3, it can also be expressed via the SVD, see Lemma 1.4 (5).

Definition 1.3 (Rank of a matrix) The column rank of a matrix A ∈ CM×N is the

dimension of the column space of A, which is the same as the number of linearly independent

column vectors in A. Analogously, the row rank of A is the dimension of the row space of

A, that is, the number of linearly independent row vectors in A.

It is a well-known elementary result in linear algebra that row rank and column rank are

always equal. This number is simply called the rank of A.

We list some useful essential characterizations and properties of the rank in the following

lemma. All of them can be found in [HJ13, Chap. 0].

Lemma 1.4 Let A ∈ CM×N be an arbitrary matrix.

(1) The rank of A is always smaller than or equal to the smaller one of the matrix dimensions:
rank A ≤ min{M,N}.

12



1.1 Matrix Rank and Matrix Norms

(2) The rank is subadditive: Let B ∈ CM×N be a second matrix of the same size as A. Then
we have rank(A + B) ≤ rank A + rank B.

(3) The rank of A plus the dimension of its kernel equals the number of columns of A.
Therefore, we can express rank A = N − dim(ker A). This fact is known as the
rank-nullity theorem.

(4) The rank of A is the smallest number r such that A can be written as the product
A = PL of two matrices P ∈ CM×r and L ∈ Cr×N .

(5) Let A = UΣV∗ be the singular value decomposition (SVD) of A. Then the rank of A is
equal to the number of its non-zero singular values.

Next, we give the formal de�nitions of the Frobenius norm and the spectral norm, which

are used to measure the approximation error in our matrix approximations. Moreover, we

provide alternative representations of these norms, which will be of use later on.

Definition 1.5 (Frobenius norm) The Frobenius norm—named after the German mathe-

matician Ferdinand Georg Frobenius (1849-1917)—is a matrix norm related to the Euclidean

vector norm. For a matrix A ∈ CM×N , the Frobenius norm is given by

‖A‖F :=

(
M−1∑
j=0

N−1∑
k=0

|ajk|2
)1/2

= ‖vec A‖2,

where vec A ∈ CMN is a vectorization of A. Di�erent representations of the Frobenius

norm involve the singular values of A or the diagonal elements of A∗A:

‖A‖F =

(
r−1∑
j=0

σ2
j

)1/2

= tr(A∗A)
1/2,

where r = rank(A) and tr(A∗A) =
∑N−1

j=0 (A∗A)jj is the trace (sum of diagonal entries)

of the positive semide�nite Hermitian matrix A∗A.

Definition 1.6 (Spectral norm) The spectral norm is the operator norm induced by the

Euclidean vector norm. For a matrix A ∈ CM×N , the spectral norm is de�ned as

‖A‖2 := max
x∈CN
x 6=0

‖Ax‖2
‖x‖2

= max
x∈CN
‖x‖2=1

‖Ax‖2.

13



1 Matrix Approximations

The name of spectral norm originates from the fact that it is the same as the spectral radius

(largest eigenvalue) of the positive semide�nite Hermitian matrix A∗A,

‖A‖22 = λ0(A∗A) = σ2
0(A).

The spectral radius λ0(A∗A), in turn, is the squared largest singular value of A, see

Remark 1.2. In the case where A admits an eigendecomposition, the spectral norm is equal

to the largest absolute value of its eigenvalues, ‖A‖2 = |λ0(A)|.

There is the well-known inequality ‖A‖2 ≤ ‖A‖F between Frobenius and spectral norm.

This inequality is clear by inspecting the respective second representations of the two norms.

Furthermore, both the Frobenius and the spectral norm are unitarily invariant. This means

that ‖A‖ = ‖U ·A ·V‖ for all matrices A and for all unitary matrices U and V with

UU∗ = IM and VV∗ = IN , and can easily be seen from the representations of the norms

using the singular values of A.

The following norm is not used to measure the approximation error in this thesis. Never-

theless, it plays an important role in the crucial lemma of Chapter 7.

Definition 1.7 (Elementwise maximum norm) For a matrix A ∈ CM×N with entries

A =
(
ajk
)M−1,N−1

j,k=0
we de�ne the elementwise maximum norm as

‖A‖∞ := max
0≤j≤M−1
0≤k≤N−1

|ajk|.

It is identical to the vector maximum norm of the vectorized matrix, ‖A‖∞ = ‖vec A‖∞.

1.2 Low-Rank Approximation

Given A ∈ CM×N , we state the low-rank approximation (LRA) problem

min‖A−B‖ such that rank B ≤ r, (1.1)

where the norm can be either the Frobenius norm or the spectral norm.

This problem can be solved by truncating the singular value decomposition of A in the

manner of the following theorem.
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1.2 Low-Rank Approximation

Theorem 1.8 (Eckart-Young-Mirsky [EY36]) Let A ∈ CM×N and let A = UΣV∗ be
its SVD. Recall that the singular values are ordered σ0 ≥ σ1 ≥ · · · ≥ σM−1 ≥ 0 largest to
smallest.

Then the best rank-r approximation of A with respect to the Frobenius norm and the spectral
norm is given by

Ar := UrΣrV
∗
r :=

r−1∑
j=0

σj · ujv∗j ,

where uj and vj are the j-th columns of U and V, respectively. The truncated matrices
Ur :=

(
u0 ur−1

)
and Vr :=

(
v0 vr−1

)
consist of the �rst r left and right

singular vectors, respectively. Finally, Σr := diag(σ0, . . . , σr−1) is the diagonal matrix
containing the r largest singular values of A.

The resulting minimal approximation errors are given by

‖A−Ar‖2F =

∥∥∥∥∥
M−1∑
j=r

σj · ujv∗j

∥∥∥∥∥
2

F

=

M−1∑
j=r

σ2
j

in the Frobenius norm, and by

‖A−Ar‖22 =

∥∥∥∥∥
M−1∑
j=r

σj · ujv∗j

∥∥∥∥∥
2

2

= σ2
r

in the spectral norm.

Remark 1.9 1. Note that for the Frobenius norm, the rank-r approximation Ar obtained

by truncating the SVD is unique if and only if σr−1 > σr. For the spectral norm, the best

rank-r approximation usually is not unique even if σr−1 > σr, see [Mar19, Thm. 4.5 and

Rem. 4.7].

2. The Eckart-Young-Mirsky theorem does not only hold for the Frobenius and the

spectral norm. Rather it holds for any unitarily invariant matrix norm, see [VWD05; Mar19,

Rem. 4.6].

Speci�cally, for the rank-1 approximation problem

min‖A−B‖ such that rank B = 1,

the Eckart-Young-Mirsky Theorem provides the solution B = A1 = σ0 · u0v
∗
0.

15



1 Matrix Approximations

The resulting minimal approximation errors are

min
rankB=1

‖A−B‖2F = ‖A− σ0 · u0v
∗
0‖

2
F =

M−1∑
j=1

σ2
j (1.2)

for the Frobenius norm, and

min
rankB=1

‖A−B‖22 = ‖A− σ0 · u0v
∗
0‖

2
2 = σ2

1 (1.3)

for the spectral norm.

Clearly, these optimal rank-1 approximation errors cannot be undercut by the solution of

a structured rank-1 approximation problem. Therefore we will compare our solutions of the

r1H problem (2) to these errors of the unstructured rank-1 approximation problem. We will

refer to (1.2) and (1.3) as optimal error bounds.

1.3 Hankel Structured Approximation

Hankel structured matrices are especially important for mathematical modeling because

of their connection to linear time-invariant systems. In this section we rigorously de�ne

Hankel matrices. Furthermore, we state the Hankel structured approximation problem and

explain how to solve it.

Definition 1.10 (Hankel matrix) An (M ×N) matrix H is called a Hankel matrix if it

is constant along each of its counter-diagonals. Phrased di�erently, the entries of H only

depend on the sum of their indices. A generic Hankel matrix is given by

H =
(
hj,k
)M−1,N−1

j,k=0
=
(
hj+k

)M−1,N−1

j,k=0

=



h0 h1 h2 hM−1 hM hN−1

h1 h2 hN

h2

hM−1 hM hN−1 hN hM+N−2


, (1.4)

where for the second line, we have assumed that M ≤ N . This type of structured matrices

is named after the German mathematician Hermann Hankel (1839-1873).
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1.3 Hankel Structured Approximation

For a matrix A ∈ CM×N , we have the Hankel structured approximation problem

min‖A−H‖ such that H has Hankel structure, (1.5)

where we consider either the Frobenius norm or the spectral norm.

The set of Hankel matrices is a linear subspace of CM×N . Thus, there exists an orthogonal

projection P onto this subspace with respect to the Frobenius inner product, which is the

standard inner product of vectorized matrices. This orthogonal projection onto the subspace

of Hankel matrices can be stated explicitly as follows, see also [Buc94; GNZ01]. For a general

matrix A =
(
ajk
)M−1,N−1

j,k=0
∈ CM×N , this projection is obtained by averaging the matrix

elements along its counter-diagonals. Assuming M ≤ N , we have

P(A) :=
(
hj+k

)M−1,N−1

j,k=0
∈ CM×N (1.6)

with

hk :=



1

k + 1
·
k∑
j=0

aj,k−j for k = 0, . . . ,M − 1,

1

M
·
M−1∑
j=0

aj,k−j for k = M, . . . , N − 1,

1

M +N − 1− k
·

M−1∑
j=k+1−N

aj,k−j for k = N, . . . ,M +N − 2.

(1.7)

For M > N we simply take the transpose twice; namely, P(A) = P(Aᵀ)ᵀ.

The Hankel approximation problem (1.5) in the Frobenius norm is solved by this projection.

More precisely, we have

min
H Hankel

‖A−H‖F = ‖A− P(A)‖F

This solution to problem (1.5) is unique since, as a linear subspace, the set of rank one Hankel

matrices is in fact convex.

In Lemma 7.2, we will see that P is a projection also with respect to the spectral norm,

albeit without the notion of orthogonality.

The Hankel projection P(A) in (1.6) and (1.7) can also be written as a linear mapping

of the vector associated to the matrix A. We de�ne the vectorization of a matrix along its
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1 Matrix Approximations

counter-diagonals as follows. For A =
(
ajk
)M−1,N−1

j,k=0
∈ CM×N with M ≤ N , let

diagvec(A) :=
(
a0,0

(
aj,1−j

)1
j=0

(
aj,2−j

)2
j=0

aM−1,N−1

)ᵀ
, (1.8)

which is a vector in CMN .

Further, let P be the block-diagonal matrix

P =



1
1
212

1
M 1M

1
M 1M

1
212

1



∈ CMN×MN , (1.9)

where the block 1
M 1M occurs N − M + 1 times. Here, 1n :=

(
1
)n−1

j,k=0
is an (n × n)

matrix containing all ones. The empty spaces in the block-diagonal matrix P stand for the

appropriate number of zeros.

Then the Hankel projection P(A) can be expressed as the matrix-vector multiplication

diagvec
(
P(A)

)
= P · diagvec(A).

We will make use of this representation of the Hankel projection in Chapter 7.

Closely related to the Hankel structure are the so-called Toeplitz matrices.

Definition 1.11 (Toeplitz matrix) An (M × N) matrix T is called a Toeplitz matrix if

it is constant along its diagonals; that is, its entries only depend on the di�erence of their

indices. We have

T =
(
tj,k
)M−1,N−1

j,k=0
=
(
tj−k

)M−1,N−1

j,k=0
.
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1.3 Hankel Structured Approximation

Assuming M ≤ N we can write explicitly

T =


t0 t−1 tM−N t−N+1

t1

tM−1 t1 t0 t−1 tM−N

.

Toeplitz matrices are named after the German-jewish mathematician Otto Toeplitz (1881-

1940).

The close relation between Hankel and Toeplitz matrices is manifested via the counter-

identity matrix

JN :=


0 0 1

0

0

1 0 0

 ∈ RN×N . (1.10)

Any Toeplitz matrix T ∈ CM×N can be represented by a Hankel matrix H of the same size

as

T = H · JN .

For the individual entries we have tj = hj+N−1, j = −N + 1, . . . ,M − 1, when indexed

as in De�nitions 1.10 and 1.11.

With this relation we can write the Toeplitz structured approximation of A as a Hankel

structured approximation of A · JN :

min‖A−T‖2 such that T has Toeplitz structure

= min‖A−H · JN‖2 such that H has Hankel structure

= min‖A · JN −H‖2 such that H has Hankel structure,

where the norm can either be the Frobenius or the spectral norm. The last equality holds

since both the Frobenius and the spectral norm are invariant under unitary transformations.

The rank of a matrix (such as T or H) is not touched when multiplied with an invertible

matrix (such as JN ). Thus, the above equalities also hold for the Toeplitz and Hankel SLRA

problems (1). Therefore, while we will always consider Hankel structured approximations,

all our results can easily be transferred to the Toeplitz structure.
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2
Characterization

of Hankel Matrices
Depending on Their Rank

2.1 Rank-1 Hankel Matrices

Befor considering rank-r Hankel matrices very generally in Section 2.2, we �rst study the

simplest case of rank-1 Hankel matrices individually and in a very detailed manner. With

these considerations, we lay the foundation for our main results, which follow in Chapters 3

and 4.

For any number z ∈ C, we de�ne the structured vector

ẑN (z) :=
(
zk
)N−1

k=0
=
(

1 z z2 zN−1
)ᵀ
∈ CN . (2.1)

When there is no risk of confusion about the speci�c parameter z or the dimension N , we

will omit these speci�cations and write ẑN or ẑ instead of ẑN (z).

With the de�nition of the structured vector (2.1), we can now characterize Hankel matrices

of rank one.

Lemma 2.1 A complex (possibly rectangular) rank-1 matrix H ∈ CM×N has Hankel
structure if and only if it is either of the form

H = c · ẑM ẑᵀN = c ·
(
zj+k

)M−1,N−1

j,k=0
(2.2)

21



2 Characterization of Hankel Matrices Depending on Their Rank

or

H = c · eMeᵀN =

(
0 0

0 c

)
, (2.3)

where c ∈ C \ {0}, z ∈ C, and eN is the N -th vector of the standard basis in CN .

The idea of a parametric representation of a Hankel matrix of rank one has already been

studied. It has appeared for example in [Ant97], where however the sparse rank-1 Hankel

matrix (2.3) was omitted. Nevertheless, we give a proof for the sake of completeness.

Proof. Obviously, the two matrices H = c · ẑM ẑᵀN and H = c · eMeᵀN are rank-1 matrices

with Hankel structure.

To prove the converse, recall that by Lemma 1.4 (4), any rank-1 matrix of size (M ×N)

can be represented as the outer product abᵀ of two vectors a =
(
a0 aM−1

)ᵀ
∈ CM

and b =
(
b0 bN−1

)ᵀ
∈ CN . Then, the Hankel structure imposed on a rank-1 matrix

implies the conditions

aj · bk = am · bn, for j + k = m+ n, (2.4)

where j,m = 0, . . . ,M − 1 and k, n = 0, . . . , N − 1.

Assuming that h0 = a0b0 6= 0, we can de�ne z := a1/a0. It follows from (2.4) with

j + k = 1 (i.e., from a0 · b1 = a1 · b0), that also b1/b0 = z. Thus we have a1 = z · a0 and

b1 = z · b0.

We will show

aj = zj · a0, for j = 1, . . . ,M − 1

and

bj = zj · b0, for j = 1, . . . , N − 1

by induction. For 0 < j < M − 1, we obtain from (2.4) that

aj+1 · b0 = aj · b1 = (zj · a0) · (z · b0) = zj+1 · a0 · b0.

Since b0 6= 0, this implies aj = zj ·a0 for j = 1, . . . ,M−1. Analogously, for 0 < j < N−1,

we have

a0 · bj+1 = a1 · bj = (z · a0) · (zj · b0) = zj+1 · a0 · b0,
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2.1 Rank-1 Hankel Matrices

which, since a0 6= 0, implies bj = zj · b0 for j = 1, . . . , N − 1. Thus, H has the desired

structure (2.2) with z = a1/a0 and c = a0 · b0.

If now h0 = a0 · b0 = 0, then either a0 = 0 or b0 = 0. Consequently, either the complete

�rst row or the complete �rst column of H = abᵀ contains only zeros. Obeying the Hankel

structure we inductively obtain that all the entries of abᵀ are zero except for the last one.

That last entry then has to be non-zero, c := aM−1 · bN−1 6= 0, since otherwise H would

be the zero matrix with rank zero, and thereby violate the rank-1 condition. Hence, in this

case, we have H as in (2.3).

Remark 2.2 Similarly to (2.1), we de�ne the reversed structured vector

ŵN (z) :=
(
zN−1−k)N−1

k=0
=
(
zN−1 zN−2 z 1

)ᵀ
∈ CN .

Then, analogously to Lemma 2.1, we can show that a rank-1 Hankel matrix H ∈ CM×N is

of the form

H = c · ŵMŵᵀ
N or H = c · e1e

ᵀ
1.

Note that, here, we slightly abuse notation and write e1 for the �rst vector of the standard

basis in both CM and CN .

This characterization of rank-1 Hankel matrices is equivalent to the previous one given

in Lemma 2.1. Indeed, using the counter-identity matrix JN from (1.10), for z 6= 0, we have

the connection

ẑN (z) = JN · ŵN (z) = zN−1 · ŵN (1/z)

between the structured vectors ẑN and ŵN . For the sparse rank-1 Hankel matrix (2.3) in

Lemma 2.1 we have c · eMeᵀN = c · ŵM (0) · ŵN (0)ᵀ.

In the following, we strive to harmonize Remark 2.2 and Lemma 2.1. To this end, we

consider the normalized structured vectors

zN (z) :=
ẑN (z)

‖ẑN (z)‖2
=

(
N−1∑
k=0

|z|2k
)−1/2

·
(

1 z z2 zN−1
)ᵀ

, (2.5)

and wN (z) := ŵN (z)/‖ŵN (z)‖2 de�ned analogously. Note that this normalization is

always possible since ‖ẑN (z)‖2 ≥ 1 for all z ∈ C; for z = 0 we invoke the convention

00 = 1. Again, we will only write zN or z instead of zN (z) when we do not risk confusion

about the parameters.
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2 Characterization of Hankel Matrices Depending on Their Rank

We �nd that zN (z) = wN (1/z). In particular for real z, we obtain the �rst and last vector

of the standard basis as limit cases

e1 = zN (0) = lim
z→∞

wN (z) and eN = wN (0) = lim
z→∞

zN (z)

for z →∞. For complex z, we understand z →∞ as |z| → ∞ and Im(z)→ 0 and use the

limits introduced above in the same way.

With this notion we do not have to deal with the sparse rank-1 Hankel matrix (2.3)

separately. Instead we allow the structure parameter z to assume the value in�nity. Thus,

we can reformulate Lemma 2.1 as follows.

Lemma 2.3 A complex rank-1 matrix H ∈ CM×N has Hankel structure if and only if it is
of the form

H =
c

‖ẑM‖2‖ẑN‖2
· ẑM ẑᵀN ,= c · zMzᵀN , (2.6)

where c ∈ C \ {0} and z ∈ C := C ∪ {∞}.

As another consequence of allowing z ∈ C, we do not need to distinguish between the

structured vector z and the reversed structured vector w anymore.

Lemma 2.3 is in accordance with the model for rank-r Hankel matrices from [HR84], see

also the next section.

2.2 Hankel Matrices of Higher Rank

This section is an excursus to Hankel matrices of higher rank. Analogously to Section 2.1,

we establish a complete characterization of rank-r Hankel matrices. Thereby we build upon

the model from [HR84].

If any (M ×N) matrix has rank r, it must possess exactly r linearly independent rows or

columns, see De�nition 1.3. Throughout this section assume that M ≤ N . Since the rank is

smaller than or equal to the smaller matrix dimension (i.e., r ≤M ), we will work with rows
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2.2 Hankel Matrices of Higher Rank

rather than columns. Now, consider a Hankel matrix

H =



h0 h1 h2 hM−1 hM hN−1

h1 h2 hN

h2

hM−1 hM hN−1 hN hM+N−2


as in (1.4) and suppose rank H = r.

Assume for the moment that already the first r rows of H are linearly independent.
Then the (r + 1)-st row must be a linear combination of the �rst r rows. Denoting the r-th

row
(
hr−1 hr+N−2

)
of H by hr−1, we thus obtain

hr = a1hr−1 + a2hr−2 + · · ·+ arh0

for some coe�cients a1, . . . , ar. Due to the Hankel structure of H, the same relation can

be stated for the entries of H instead of the columns. Furthermore, it remains true for all

indices larger than or equal to r. We obtain

hn = a1hn−1 + a2hn−2 + · · ·+ arhn−r

⇔ 0 = hn − a1hn−1 − a2hn−2 − · · · − arhn−r (2.7)

for n = r, . . . ,M +N −2 and the same coe�cients a1, . . . , ar as above. In other words, the

entries of H must satisfy the homogeneous linear recurrence relation of order r described

by (2.7). Without loss of generality, we assume here ar 6= 0, otherwise the order of the

recurrence would be smaller than r.

Obviously, the recurrence (2.7) is trivially solved by the zero-sequence, hk = 0 for all k.

This trivial solution is not important for us since the matrix whose entries are all zero has

rank zero instead of r. It is only mentioned here for completeness’ sake.

There is extensive literature on recurrence relations and their solutions, see [AN07; Ber86;

GKP94; KP11; Wil06] just to name a few examples. We proceed here according to [Ber86].

Associated to the recurrence relation (2.7), there is the characteristic polynomial

π(x) = xr − a1x
r−1 − · · · − ar−1x− ar,
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2 Characterization of Hankel Matrices Depending on Their Rank

whose degree r matches the order of the recurrence. The coe�cients a1, . . . , ar are the

same as in (2.7). Recall that ar 6= 0 by assumption; consequently, zero cannot be a root of

the characteristic polynomial. Let thus z1, . . . , zm 6= 0 be the distinct complex roots of π(x)

with corresponding multiplicities r1, . . . , rm satisfying r1 + · · ·+ rm = r. More formally,

we have

π(x) =
m∏
µ=1

(x− zµ)rµ ,

where zµ 6= 0 and r1 + · · ·+ rm = r.

Remark 2.4 Since C is algebraically closed, the respective roots’ multiplicities always add

up to the polynomial degree.

Having the characteristic polynomial and its roots set up, we can now state the following

theorem, which provides the general solution to (2.7).

Theorem 2.5 ([Ber86, Thms. 1.1 & 1.2]) Let z1, z2, . . . , zm be the roots of the characteristic
polynomial of a homogeneous linear recurrence relation (2.7) of order r. Furthermore, let
r1, r2, . . . , rm be their corresponding multiplicities, satisfying r1 + r2 + · · ·+ rm = r. Then
the general solution of the recurrence is given by

hn =
m∑
µ=1

rµ−1∑
ν=0

cµ,ν ·
(
n

ν

)
· znµ (2.8)

for n ≥ r. Every particular solution of (2.7) can be written in the form (2.8) with appropriate
coe�cients cµ,ν , which are determined by the initial values h0, h1, . . . , hr−1. Moreover, there
are no further solutions than the ones mentioned in (2.8).

Due to the close connection between Hankel matrices of rank r and homogeneous linear

recurrence relations of order r, the entries of a rank-r Hankel matrix can be of the form (2.8)

for some coe�cients cµ,ν . As can be seen by (2.8), the structure of the entries hn crucially

depends on the multiplicities rµ of the roots zµ of the characteristic polynomial. Indeed, the

entries’ structure fundamentally di�ers depending on the multiplicities of the roots as the

following example illustrates.

Example 2.6 Consider on the one hand a characteristic polynomial of degree two with

distinct roots z1 and z2, namely, π(x) = (x− z1) · (x− z2). The corresponding (N ×N)
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2.2 Hankel Matrices of Higher Rank

Hankel matrix of rank two is given by
c1 + c2 c1z1 + c2z2 c1z

N−1
1 + c2z

N−1
2

c1z1 + c2z2

c1z
N−1
1 + c2z

N−1
2 c1z

2N−2
1 + c2z

2N−2
2

,

which can be decomposed into the sum of two rank-1 Hankel matrices

= c1 ·


1 z1 zN−1

1

z1

zN−1
1 z2N−2

1

+ c2 ·


1 z2 zN−1

2

z2

zN−1
2 z2N−2

2

.

Both of these rank-1 Hankel matrices have the same structure as seen in (2.2). Due to the

simple form of the characteristic polynomial, we always have ν = 0 in the solution (2.8). For

better readability, we have omitted this index in the coe�cients and only write cµ,0 = cµ,

µ = 1, 2, in the above equation.

On the other hand, assume the characteristic polynomial has only one root z with multi-

plicity two, namely, π(x) = (x− z)2. Then the corresponding rank-2 Hankel matrix of size

(N ×N) is of a di�erent structure. Speci�cally, it is given by

c0 (c0 + c1)z (c0 + 2c1)z2 (c0 + (N − 1)c1)zN−1

(c0 + c1)z (c0 + 2c1)z2

(c0 + 2c1)z2 ∗

∗
(c0 + (N − 1)c1)zN−1 ∗ ∗ (c0 + (2N − 2)c1)z2N−2


and can be decomposed into

= c0 ·


1 z zN−1

z

zN−1 z2N−2

+ c1 ·


0 z (N − 1)zN−1

z

(N − 1)zN−1 (2N − 2)z2N−2

.
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2 Characterization of Hankel Matrices Depending on Their Rank

Here, we have µ = 1. Therefore, we drop this index and write c1,ν = cν , ν = 0, 1, for short.

Note that c1 has a di�erent meaning in the two example matrices.

For the second example matrix, the structure of the second summand di�ers notably from

the one of the �rst summand. Indeed, the second summand already is of rank two, and

adding the �rst summand (a rank-1 matrix as in (2.2)) does not alter the overall rank.

There is a slightly di�erent representation of (2.8), see for example [Mar16]. They suggest

hn =
m∑
µ=1

rµ−1∑
ν=0

cµ,ν ·
(
n

ν

)
· znµ =

m∑
µ=1

rµ−1∑
ν=0

c′µ,ν · ν! ·
(
n

ν

)
· zn−νµ , (2.9)

with modi�ed constants c′µ,ν = cµ,ν ·
zνµ
ν! . The advantage of this representation is its

connection to the derivatives of the polynomial entries of the structured vector ẑN (z)

de�ned in (2.1). Following [HR84], we de�ne

lrN (z) :=

(
r! ·
(
k

r

)
· zk−r

)N−1

k=0

=

(
dr

dzr
zk
)N−1

k=0

∈ CN (2.10)

for r = 0, . . . , N − 1 and z ∈ C \ {0}. The binomial coe�cient is
(
k
r

)
= 0 whenever k < r

by convention. Similarly as before in Section 2.1, we omit the index and write lr(z) = lrN (z)

when there is no risk of confusing the dimensions. Note that for r = 0, we obtain exactly

l0N (z) =
(
zk
)N−1

k=0
= ẑN (z), the structured vector from (2.1).

In order to further investigate rank-r Hankel matrices, consider the matrix corresponding

to one single summand in (2.9). Such a Hankel matrix is given by

HM,N

(
lrM+N−2(z)

)
=

(
r! ·
(
k + `

r

)
· zk+`−r

)M−1,N−1

k,`=0

=

(
dr

dzr
zk+`

)M−1,N−1

k,`=0

(2.11)

and is called elementary Hankel matrix by [HR84]. The operator HM,N forms a Hankel

matrix of size (M × N) from a parameter vector p ∈ CM+N−2 of di�erent entries, see

the formal introduction thereof in Chapter 5. Whenever the dimensions are clear from the

context, we may writeHlr(z) instead ofHM,N

(
lrM+N−2(z)

)
.

Remark 2.7 For r = 0, we obtain the rank-1 Hankel matrix HM,N l
0
M+N−2(z) = ẑM ẑᵀN

as in (2.2) analogously to Section 2.1. However, for r ≥ 1, the elementary Hankel matrix

HM,N l
r
M+N−2(z) cannot be written as the outer product of lrM (z) and lrN (z).
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2.2 Hankel Matrices of Higher Rank

Theorem 2.5 establishes all the solutions of a homogeneous linear recurrence relation

of order r. Nevertheless, there are more rank-r Hankel matrices than those based on

superpositions of (2.9) as the following example clari�es. The reason for this fact is the

�niteness of the matrices.

Example 2.8 Consider (3× 3) Hankel matrices of rank two. For the sake of simplicity, we

set all coe�cients cµ,ν = 1. The two Hankel structures that �t into the framework of linear

recurrence relations are given by

1. z1 6= z2, z1, z2 ∈ C \ {0,∞} resulting in H =

(
1+1 z1+z2 z21+z22
z1+z2 z21+z22 z

3
1+z32

z21+z22 z
3
1+z32 z

4
1+z42

)
and

2. z1 = z2 = z ∈ C \ {0,∞} resulting in H =

(
1 2z 3z2

2z 3z2 4z3

3z2 4z3 5z4

)
,

compare also Example 2.6.

However, there are more Hankel matrices that are clearly of rank two but do not �t into

the recurrence framework. These are precisely

3. H =

(
1+1 z1 z21
z1 z21 z

3
1

z21 z31 z
4
1

)
, which we will shortly see as the limit case z1 ∈ C\{0,∞}, z2 = 0,

4. H =

(
1 z1 z21
z1 z21 z31
z21 z

3
1 z

4
1+1

)
, which will correspond to z1 ∈ C \ {0,∞}, z2 =∞,

5. H =

(
1 1 0
1 0 0
0 0 0

)
, corresponding to z1 = z2 = 0,

6. H =

(
1 0 0
0 0 0
0 0 1

)
, corresponding to z1 = 0 and z2 =∞, and �nally

7. H =

(
0 0 0
0 0 1
0 1 1

)
, corresponding to z1 = z2 =∞.

By means of Example 2.8, we have demonstrated that not all possible rank-r Hankel

matrices are based on superpositions of the elementary Hankel matrices (2.11). In the

following, we analyze the special cases in items 3 to 7 more closely.

29



2 Characterization of Hankel Matrices Depending on Their Rank

We examine the case when the (r+1)-st row of H is not a linear combination of the
r preceding ones. Consider the double triangular matrix with constant counter-diagonals

Hsparse =



s0 sp−1

sp−1

s′q−1

s′q−1 s′0


∈ CM×N , (2.12)

where the empty spaces in the matrix stand for the appropriate number of zeros. We assume

sp−1 6= 0 and s′q−1 6= 0, and p + q ≤ M . Then clearly, this is a Hankel matrix with

rank Hsparse = p+ q. But it does not �t into the framework of recurrence relations of order

r = p+ q as de�ned before.

However, if we allow z = 0 in (2.10) and (2.11), we obtain additional elementary matrices.

First, consider the analogue of (2.10) with z = 0. Since the binomial coe�cient is
(
k
r

)
= 0

for k < r, this is

lrN (0) =

(
r! ·
(
k

r

)
· zk−r

∣∣∣∣
z=0

)N−1

k=0

=

(
dr

dzr
zk
∣∣∣∣
z=0

)N−1

k=0

=
(
δkr
)N−1

k=0
= er+1,

the (r + 1)-st vector of the standard basis. For the elementwise representation of the latter

we use the Kronecker delta δkr =
{

1, k=r
0, k 6=r . Note that this is in accordance with Section 2.1,

where for r = 0 we have l0(0) = ẑ(0) = e1.

The elementary Hankel matrix corresponding to lr(0) is

HM,N

(
lrM+N−2(0)

)
=
(
δk+`,r

)M−1,N−1

k,`=0
=


1

1

,

the (r + 1)-st counter-diagonal matrix (starting to count in the upper right corner). The

empty spaces in this matrix stand for the appropriate number of zeros.

Recall that in Section 2.1, we interpreted the last vector of the standard basis as structured

vector indexed by z =∞, more precisely, eN =
(

0 0 1
)ᵀ

= ẑN (∞). In analogy,
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2.2 Hankel Matrices of Higher Rank

the authors of [HR84] de�ne

lrN (∞) :=
(
δN−1−k,r

)N−1

k=0
= eN−r,

which is the (r + 1)-st-to-last vector of the standard basis.

Correspondingly, the elementary Hankel matrix

HM,N

(
lrM+N−2(∞)

)
=
(
δN−1−(k+`),r

)M−1,N−1

k,`=0
=

 1

1


is the (r+1)-st-to-last counter-diagonal matrix. We will refer toHlr(z) with z ∈ {0,∞} as

sparse elementary matrices. Thereby we distinguish them from the rather dense elementary

matricesHlr(z) with z ∈ C \ {0}.

Remark 2.9 In Section 2.1, we were able to interpret the structured vector ẑ(∞) = l0(∞)

as the limit limz→∞ z(z) of the normalized structured vector z = ẑ/‖ẑ‖2. A similar inter-

pretation of lr(∞) as the limit of the normalized vector lr(z)/‖lr(z)‖ as z → ∞ is not

possible for larger r ≥ 1.

Proceeding from the elementary Hankel matrices Hlr(z) with z ∈ C, the authors in

[HR84] de�ne the canonical representation of a Hankel matrix.

Definition 2.10 ([HR84, Def. 8.1]) A representation of an (M ×N) Hankel matrix H of

the form

H =
m∑
µ=1

rµ−1∑
ν=0

cµ,ν · HM,N

(
lνM+N−2(zµ)

)
, (2.13)

where zµ ∈ C, cµ,ν ∈ C and cµ,rµ−1 6= 0, is called canonical representation of H. A simple
canonical representation is given by (2.13) if rµ = 1 and zµ 6=∞ for all µ = 1, . . . ,m.

The number ρ :=
∑m

µ=1 rµ is called rank of the representation.

Remark 2.11 1. Compare the general solution of a homogeneous linear recurrence re-

lation (2.9) and the canonical representation of a Hankel matrix (2.13). They correspond

exactly, except that in (2.13) also zµ ∈ {0,∞} is allowed.
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2 Characterization of Hankel Matrices Depending on Their Rank

2. The canonical representation of a Hankel matrix is not unique. One and the same

Hankel matrix may even have up to in�nitely many canonical representations, see [HR84,

Thm. 8.1] and Example 2.12.

3. The rank of the representation ρ as in De�nition 2.10 is not to be confused with the

rank of the matrix from De�nition 1.3. In fact, ρ can be strictly larger than the rank of the

represented Hankel matrix, see Example 2.12. In representations (2.13) of minimal rank ρ,

both ranks coincide.

In the upcoming example we illustrate the existence of canonical representations whose

rank ρ exceeds not only the rank of the matrix but even its dimensions.

Example 2.12 Consider the following (3× 3) Hankel matrix

H =

0 0 0

0 0 6

0 6 24z


with z ∈ C. This matrix has a representation as a single elementary matrix. Namely,

H = Hl3(z) since
d3

dz3
z3 = 6 and

d3

dz3
z4 = 24z,

compare (2.11). This is not a simple canonical representation, let alone a representation of

minimal rank. In fact, the canonical representation using onlyHl3(z) is given by (2.13) with

m = 1, ρ = 4, and c1,ν = 0, for ν = 0, 1, 2 and c1,3 = 1. So the rank of the representation is

ρ = 4 while the matrix dimensions are only M = N = 3, and clearly, we have rank H = 2.

The canonical representation of minimal rank is given by

H = 24z ·

0 0 0

0 0 0

0 0 1

+ 6 ·

0 0 0

0 0 1

0 1 0

 = 24z · Hl0(∞) + 6 · Hl1(∞).

In terms of (2.13), we have m = 2, rµ = 1 for µ = 1, 2, c1,0 = 24z and c2,0 = 6. So for this

representation we actually have ρ = 2 = rank H.

Canonical representations of singular Hankel matrices are useful for Hankel SLRA prob-

lems. In this case, that is, when rank H = r < M , the canonical representation of minimal

rank ρ is unique, and we have rank H = r = ρ < M , see [HR84, Cor. 8.1]. Hence, rank-r
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2.2 Hankel Matrices of Higher Rank

Hankel matrices for r < M are characterized by their canonical representation of minimal

rank ρ.

We slightly reformulate the canonical representation (2.13) and state the following theo-

rem, which is a combination of several statements from [HR84].

Theorem 2.13 A Hankel matrix H ∈ CM×N of rank r < M is completely characterized
by its canonical representation of minimal rank. This characterization is given by

H =

r0−1∑
ν=0

c0,ν · Hlν(0) +

m∑
µ=1

rµ−1∑
ν=0

cµ,ν · Hlν(zµ) +

r∞−1∑
ν=0

c∞,ν · Hlν(∞),

with m, rµ ∈ N0, and non-zero coe�cients cµ,rµ−1 6= 0 for µ = 0, 1, . . . ,m,∞. For the rank
constraint we require ρ =

∑
µ rµ = r.

Now that we have found a characterization of rank-r Hankel matrices, we want to answer

the following question.

How many di�erent types of rank-r Hankel matrices are there for fixed r? In order

to answer this question, we will count through all the possibilities of di�erent canonical

representations from Theorem 2.13 of rank ρ = r < M . Before starting to count, recall

that the vectors lr(0) and lr(∞) do not satisfy a homogeneous linear recurrence relation.

Therefore, the elementary Hankel matrices with z = 0 and z =∞ take a special position,

as indicated by Theorem 2.13, and are treated separately in the sequel.

We �rst consider the sparse Hankel matrices of size (M ×N)

Hsparse :=

r0−1∑
ν=0

c0,ν · Hlν(0) +

r∞−1∑
ν=0

c∞,ν · Hlν(∞)

as in (2.12). For �xed rank r < M , there are r+ 1 possibilities to distribute non-zero entries

between z = 0 and z =∞, that is, between upper left and lower right corner of the matrix.

Next we examine dense (M ×N) Hankel matrices of rank r. They are of the form

Hdense :=

m∑
µ=1

rµ−1∑
ν=0

cµ,ν · Hlν(zµ),

where
∑m

µ=1 rµ = r. As seen in Example 2.6, the structure of a dense rank-r Hankel matrix

crucially depends on the partition of the rank r into the summands rµ, µ = 1, . . . ,m. The

33



2 Characterization of Hankel Matrices Depending on Their Rank

number of possibilities to partition a number r into positive integer summands is given by

the partition function p(r), see [AS92, Sec. 24.2.1].

Now we have to combine sparse and dense Hankel matrices to a generic Hankel matrix

of rank r. We count the number of di�erently structured rank-r Hankel matrices

# {H Hankel and rank H = r} =
r∑

k=0

p(r − k) · (k + 1). (2.14)

In this equation, p(r − k) is the number of di�erently structured dense Hankel matrices of

rank r − k; and k + 1 is the number of possibilities to split the remaining rank k between

upper left and lower right corner of a sparse Hankel matrix.

Although there is no closed form of the partition function p(r) known, there are approx-

imation formulas for large r [HR18; Rad37]. In particular, the number of digits of p(r) is

approximately proportional to
√
r for large r. This illustrates how fast the partition function

alone grows with its argument. In addition to its fast growth, in (2.14) the partition function

is summed over all lower ranks.

Example 2.14 We calculate the number of di�erent structures for a few exemplary ranks.

For a rank-2 Hankel matrix there are

p(2) · 1 + p(1) · 2 + p(0) · 3 = 7

di�erent structures possible. See Example 2.8 for an explicit list of these structures.

For higher ranks, say r = 5 and r = 10 for example, we obtain

5∑
k=0

p(5− k) · (k + 1) = 45 and
10∑
k=0

p(10− k) · (k + 1) = 432,

respectively. These examples demonstrate the enormous increase in the number of possible

types of Hankel matrices even for moderate rank.

Remark 2.15 When counting the number of di�erent possible rank-r Hankel structures, we

treated the sparse Hankel matrices separately. This makes sense not only because of their

exceptional behavior with respect to recurrence relations. Besides, there are computational

reasons to consider z = 0 and z =∞ individually. Especially zµ =∞ is di�cult to handle

in numerical computations.

34



2.2 Hankel Matrices of Higher Rank

Even if we didn’t count the sparse Hankel matrices separately in (2.14), we would end up

with p(r) di�erent rank-r Hankel structures, which grows fast enough on its own.

In Chapters 3 and 4, we �nd optimal rank-1 Hankel approximations by identifying the

optimal parameters c and z from Section 2.1. The exact same procedure for rank-r Hankel

approximation quickly becomes infeasible due to the enormous number (2.14) of di�erent

rank-r Hankel structures, compare Example 2.8. On the other hand, those Hankel structures

that cannot be written as a sum of rank-1 Hankel matrices can be viewed as limit cases of

the latter, where some of the structure parameters tend toward each other, or to zero or

in�nity. Heuristically, it is easy to accept that these limit cases only take up a small part in

the set of rank-r Hankel matrices. In [AC11a; AC11b], the notion of a thin set is employed

to describe this small part and to argue that it may be disregarded when solving the Hankel

SLRA problem.
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3
Optimal

Rank-1 Hankel Approximation
in the Frobenius Norm

In this chapter we examine the rank-1 Hankel approximation (r1H) problem (2) in the

Frobenius norm, namely,

min‖A−H‖F such that rank H = 1,

and H has Hankel structure

for an initial matrix A ∈ CM×N .

We analytically reformulate the r1H problem such that numerical computation of its

optimal solution feasible. This chapter is mostly based on and is in parts identical with our

paper [KPP21a, Sec. 3]. In Section 3.2 we give some additional results that are not contained

in [KPP21a] and have not been published otherwise yet.

Using the structure of a rank-1 Hankel matrix from Lemma 2.3 we can formulate the

minimization problem above as

min
z∈C

c∈C\{0}

∥∥A− c · zMzᵀN
∥∥
F
. (3.1)

This means, we need to �nd coe�cients c ∈ C \ {0} and z ∈ C = C ∪ {∞} such that

the error
∥∥A− c · zMzᵀN

∥∥
F

in the Frobenius norm is minimized. In this context we will,

without loss of generality, assume |a0,0| ≥ |aM−1,N−1| for the top left and bottom right
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3 Optimal Rank-1 Hankel Approximation in the Frobenius Norm

entry of the matrix A =
(
ajk
)M−1,N−1

j,k=0
∈ CM×N . This assumption implies the relation

‖A− c · zM (∞)zN (∞)ᵀ‖2F =
∥∥A− c · eMeᵀN

∥∥2

F

≥ ‖A− c · e1e
ᵀ
1‖

2
F = ‖A− c · zM (0)zN (0)ᵀ‖2F

for all c ∈ C. The vectors e1 and eM or eN are the �rst and last vectors of the standard

basis in CM or CN , respectively. We use the notation e1 for the �rst vector of the standard

basis of both CM and CN as in Chapter 2.

As a consequence of the above inequality, the parameter z = ∞ will not generate the

(only) desired optimal rank-1 Hankel approximation of A and can therefore be disregarded.

The fact that there is no need to deal with the value z =∞ makes up the advantage of the

assumption |a0,0| ≥ |aM−1,N−1|. Furthermore, it does not pose any restriction on A since

it can simply be replaced by the �ipped matrix JMAJN .

3.1 Complex Rank-1 Hankel Approximation

First, we consider the minimization problem (3.1) in full generality for complex matrices

A and complex parameters c and z. In Section 3.2 we will examine the special case of

real matrices A more closely. The main results of this chapter are stated in the upcoming

Theorem 3.1 and in Theorem 3.4.

Theorem 3.1 Let A =
(
ajk
)M−1,N−1

j,k=0
∈ CM×N with |a0,0| ≥ |aM−1,N−1|, and assume

rank A ≥ 1. Then an optimal rank-1 Hankel approximation c̃ · z̃M z̃ᵀN of A is determined by

z̃ ∈ argmax
z∈C

|z∗MAzN | and c̃ := z̃∗MAz̃N , (3.2)

where the vectors z̃M and z̃N are the normalized structured vectors de�ned by the parameter z̃
via (2.5).

Proof. Using De�nition 1.5 of the Frobenius norm, we obtain∥∥A− c · zMzᵀN
∥∥2

F
= tr

((
A− c · zMzᵀN

)∗ · (A− c · zMzᵀN
))

= tr
(
A∗A− c ·A∗ · zMzᵀN − c · zNz∗M ·A + |c|2 · zNz∗M · zMzᵀN

)
= ‖A‖2F − c · z

ᵀ
MAzN − c · z∗MAzN + |c|2. (3.3)
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3.1 Complex Rank-1 Hankel Approximation

Here we have used that the trace of the outer product of two vectors equals their inner

product (i.e., tr(baᵀ) = aᵀb), and that the vectors zM and zN are normalized.

In order to solve the minimization problem (3.1), we �rst assume z to be �xed. For �xed z,

we consider the derivatives of (3.3) with respect to the real and imaginary parts of c. More

precisely, we form the partial derivatives with respect to c1 and c2, where c = c1 + ic2 and

c1, c2 ∈ R. Thereby we obtain the necessary conditions

∂

∂c1

∥∥A− c · zMzᵀN
∥∥2

F
= −2 ·Re(z∗MAzN ) + 2c1 = 0,

∂

∂c2

∥∥A− c · zMzᵀN
∥∥2

F
= −2 · Im(z∗MAzN ) + 2c2 = 0

for the optimal parameter c̃ = c̃1 + ic̃2. These put together yield c̃ = z∗MAzN . After

substituting this c̃ into (3.3), it remains to solve

min
z∈C

(
‖A‖2F − 2 · |z∗MAzN |2 + |z∗MAzN |2

)
= min

z∈C

(
‖A‖2F − |z

∗
MAzN |2

)
.

Thus, we obtain

z̃ ∈ argmax
z∈C

|z∗MAzN |2 = argmax
z∈C

|zᵀMAzN |

as claimed.

Remark 3.2 1. The optimal structure parameter z̃ in (3.2) may not be unique; that is,

the maximum maxz∈C|F (z)| may be attained for several di�erent values z̃. If for example

the initial matrix A =
(
ajk
)M−1,N−1

j,k=0
∈ CM×N has itself Hankel structure, with ajk = 0

whenever j+k is odd, then z̃ ∈ argmaxz∈C|F (z)| implies that also−z̃ ∈ argmaxz∈C|F (z)|.
Any of the values z̃ ∈ argmaxz∈C|F (z)| leads to an optimal rank-1 Hankel approximation,

see also Example 3.8 for an explicit precedent.

2. By Theorem 3.1, the computation of the optimal rank-1 Hankel approximation reduces

to �nding a position z ∈ C where the maximum of the complex function |F (z)| with

F (z) := zᵀMAzN

is attained. Since ‖zM‖2 = ‖zN‖2 = 1 for all z ∈ C, the function F (z) has no poles.

The absolute value |F (z)| is bounded by ‖A‖2 which follows from the proof of the next

theorem. If additionally A ∈ RN×N is symmetric or A ∈ CN×N is Hermitian, then F (z)

is a Rayleigh quotient. Hence λN−1 ≤ F (z) ≤ λ0, where λN−1 and λ0 are the smallest and
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3 Optimal Rank-1 Hankel Approximation in the Frobenius Norm

largest eigenvalue of A, respectively, see [HJ13, Sec. 4.2].

3. For the function F (z), we observe that

F (z) = zᵀMAzN =

M+N−2∑̀
=0

( ∑
j+k=`

ajk

)
· z`(

M−1∑
j=0
|z|2j

)1/2

·
(
N−1∑
j=0
|z|2j

)1/2
,

where A =
(
ajk
)M−1,N−1

j,k=0
. Therefore, without loss of generality, A can be replaced by the

Hankel matrix P(A) from (1.6).

The numerator of F ,
M+N−2∑
`=0

( ∑
j+k=`

aj,k
)
· z`,

does not change if the Hankel matrix P(A) is reshaped into a Hankel matrix of size 2×
(M +N − 2) with entries h` =

∑
j+k=` ajk, ` = 0, . . . ,M +N − 2, as in De�nition 1.10.

This observation gives the link to the rational function approach in [UM12]. Note that such

reshaping of a rank-1 Hankel matrix into the size 2× (M +N − 2) does not alter its rank,

see [HR84]. However, it does change the solution of (3.1) since the denominator of F ,(
M−1∑
j=0

|z|2j
)1/2

·

(
N−1∑
j=0

|z|2j
)1/2

,

strongly depends on the shape of the Hankel matrix.

4. In [CGM+11; KL98], a similar rational approximation problem as (3.2) appears in the

context of �nding an approximate greatest common divisor. The denominator there has

exactly the same structure as the denominator of F if M = N . In [CGM+11], a subdivision

method on squares in the complex plane is proposed to solve that problem.

With Theorem 3.1 we �nd an optimal approximation in the space of rank-1 Hankel

matrices. We want to compare its error to the optimal error bound (1.2) from the unstructured

rank-1 approximation.

Recall from Section 1.2 that the optimal unstructured rank-1 approximation is given by the

matrix σ0 ·u0v
∗
0 formed from the �rst singular triple of A. Thereby, σ0 is the largest singular

value of A. The corresponding left and right singular vectors u0 and v0 are characterized
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3.1 Complex Rank-1 Hankel Approximation

by the following set of equations (see also Remark 1.2.3)

AA∗ ·u0 = σ0 ·u0, A∗A·v0 = σ0 ·v0 and u0 =
1

σ0
·Av0, v0 =

1

σ0
·A∗u0. (3.4)

The following theorem answers the question in which cases the optimal solution to the

r1H problem is as good as the unstructured rank-1 approximation, that is, in which cases

the optimal error bound is attained. It turns out that the optimal error bound (1.2) can only

be attained if the rank-1 approximation σ0 ·u0v
∗
0 already happens to have Hankel structure.

Theorem 3.3 Let A =
(
ajk
)M−1,N−1

j,k=0
∈ CM×N with |a0,0| ≥ |aM−1,N−1|. The optimal

rank-1 Hankel approximation c̃ · z̃M z̃ᵀN from Theorem 3.1 attains the optimal error bound (1.2),
or in other words, satis�es the following equation

∥∥A− c̃ · z̃M z̃ᵀN
∥∥2

F
=

N−1∑
j=1

σ2
j = ‖A‖2F − ‖A‖

2
2, (3.5)

if and only if the singular vectors u0 and v0 of A corresponding to the largest singular value
σ0 are of the structured form (2.5); more precisely, if we have u0 = z̃M and v0 = z̃N for some
z̃ ∈ C.

Proof. Truncating the SVD of A, we obtain an optimal unstructured rank-1 approximation

σ0 · u0v
∗
0 by Theorem 1.8. The corresponding error is given by

‖A− σ0 · u0v
∗
0‖

2
F =

N−1∑
j=1

σ2
j = ‖A‖2F − σ

2
0,

which we named optimal error bound (1.2) in Section 1.2.

Assume now that u0 = z̃M and v0 = z̃N are structured with zM , zN as in (2.5). With

c̃ = z̃∗MAz̃N from Theorem 3.1, it follows that

c̃ · z̃M z̃ᵀN = z̃∗MAz̃N · z̃M z̃ᵀN = u∗0Av0 · u0v
∗
0 = σ0 · u0v

∗
0,

that is, the unstructured and the structured rank-1 approximation coincide.

For the converse, assume that the optimal structured rank-1 approximation c̃ · z̃M z̃ᵀN
attains the optimal error bound; i.e., satis�es (3.5). According to equation (3.3) from the
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3 Optimal Rank-1 Hankel Approximation in the Frobenius Norm

proof of Theorem 3.1, we have∥∥A− c̃ · z̃M z̃ᵀN
∥∥2

F
= ‖A‖2F − |z̃

∗
MAz̃N |2.

From this equation and (3.5) we conclude, on the one hand, the relation

σ2
0 = ‖A‖22 = |z̃∗MAz̃N |2.

On the other hand, the Theorem of Rayleigh-Ritz (see [HJ13, Sec. 4.2]) implies∣∣z̃∗MAz̃N
∣∣2 ≤ ∥∥z̃N z̃ᵀN

∥∥
2
· ‖A∗z̃M‖22 = ‖A∗z̃M‖22 ≤ ‖A‖

2
2.

Here, the �rst inequality is tight if and only if A∗z̃M is an eigenvector of the matrix z̃N z̃ᵀN
to its non-zero eigenvalue ‖z̃N‖22. The second inequality is tight if moreover z̃M is an

eigenvector of AA∗ to the largest eigenvalue σ2
0 = ‖A‖22. The assertion now follows from

comparison with (3.4).

In the remainder of this chapter, we derive further properties of the optimal parameter z̃

in (3.2). Thereby we aim at �nding an e�cient algorithm providing optimal parameters c̃

and z̃. First, we consider the possible range of z̃.

Theorem 3.4 Let A ∈ CM×N with rank A ≥ 1. For z ∈ C de�ne

F (z) := z∗MAzN and G(z) := z∗MJMAJNzN ,

with the counter-identity matrix JN as in (1.10). Denote by Fmax := max|z|≤1|F (z)| and
Gmax := max|z|≤1|G(z)| the absolute maxima of the functions F and G, respectively. Then
the optimal structure parameter z̃ leading to an optimal rank-1 Hankel approximation c̃ · z̃M z̃ᵀN
of A is determined by

z̃ ∈

 argmax|z|≤1|F (z)| if Fmax ≥ Gmax,(
argmax|z|<1|G(z)|

)−1
if Fmax < Gmax.

Proof. The proof is based on the fact that G(z) = F (1/z). Once this is established, the

assertion follows from Theorem 3.1.
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3.2 Real Rank-1 Hankel Approximation

Recall from Section 2.1 that we have the relation

JN · zN (z) = zN (1/z)

for z ∈ C \ {0}. For z ∈ {0,∞} the structured vector zN (z) is the �rst, respectively last

vector of the standard basis, and the above relation indeed holds for all z ∈ C. Thus, we

conclude that

G(z) = (JMzM (z))∗ ·A · (JNzN (z)) = zM (1/z)∗ ·A · zN (1/z) = F (1/z).

Now Theorem 3.1 yields the assertion.

Remark 3.5 Using Theorem 3.4 and the two functions F and G, we can restrict the search

for an optimal parameter z̃ to the unit disc {z : |z| ≤ 1}. This elegantly spares us the rather

uncomfortable handling of z =∞ without invoking the assumption |a0,0| ≥ |aM−1,N−1|.

3.2 Real Rank-1 Hankel Approximation

In the following, we consider real matrices A ∈ RM×N and their real optimal rank-1 Hankel

approximations; that is, we restrict our search to real coe�cients c̃ ∈ R \ {0} and structure

parameters z̃ ∈ R = R ∪ {∞}. In this case we can derive additional conditions on z̃ that

simplify its computation. A similar approach for approximation in a weighted Frobenius

norm has been presented in [DeM94].

Theorem 3.6 Let A =
(
ajk
)M−1,N−1

j,k=0
∈ RM×N be a matrix with |a0,0| ≥ |aM−1,N−1|,

and rank A ≥ 1. If c̃ · z̃z̃ᵀ is an optimal rank-1 Hankel approximation of A, then

Q(z̃) := a′(z̃) · p(z̃)− a(z̃) · p′(z̃) = 0,

where a(z) and p(z) are the functions

a(z) :=
M−1∑
j=0

N−1∑
k=0

ajk · zj+k and p(z) :=

(
M−1∑
j=0

z2j

)1/2

·

(
N−1∑
j=0

z2j

)1/2

≥ 1.

Besides, a′(z) and p′(z) denote the �rst derivatives of a(z) and p(z), respectively.

43



3 Optimal Rank-1 Hankel Approximation in the Frobenius Norm

Proof. Employing Theorem 3.1 we obtain the optimal structure parameter z̃ as

z̃ ∈ argmax
z∈R

|F (z)| with F (z) = zᵀMAzN =
a(z)

p(z)
,

compare also Remark 3.2.3. In other words, F (z̃) is an extremal value of F and as such has

vanishing �rst derivative. The �rst derivative of F is given by

F ′(z) =
a′(z) · p(z)− a(z) · p′(z)

p(z)2
.

Since p(z) ≥ 1 for all z ∈ R, we obtain the necessary condition

a′(z̃) · p(z̃)− a(z̃) · p′(z̃) = 0

on the optimal parameter z̃ as claimed.

Considering the monomial representation of the polynomial

a(z) =
M−1∑
j=0

N−1∑
k=0

ajkz
j+k =:

M+N−1∑
`=0

h`z
` (3.6)

with h` =
∑

j+k=` ajk, ` = 0, . . . ,M +N − 1, as in Remark 3.2.3, we can conclude even

more.

Corollary 3.7 Let A ∈ RM×N with with |a0,0| ≥ |aM−1,N−1|, and rank A ≥ 1. Further,
let a(z) be given as in (3.6), and let

z̃ ∈ argmax
z∈R

(
zᵀMAzN

)2
= argmax

z∈R

(
a(z)

p(z)

)2

denote an optimal structure paramater for the approxmation of A.

(1) If h` ≥ 0 for ` = 0, . . . ,M + N − 2 and h0 ≥ hM+N−2, then there exists a non-
negative optimal parameter z̃ ≥ 0.

(2) If h` ≥ 0 for ` even and h` ≤ 0 for ` odd, then there exists a non-positive optimal
parameter z̃ ≤ 0.

Proof. The �rst assertion follows directly from the observation that a(z) ≥ a(−z) for z ≥ 0,
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3.2 Real Rank-1 Hankel Approximation

while p(z) = p(−z) is an even function. In the second case, we have a(−z) ≥ a(z) for all

z ≥ 0, and the assertion follows similarly.

We illustrate the application of Theorem 3.1 together with the above results of Theorem 3.6

and Corollary 3.7 in the following small example.

Example 3.8 Consider the matrix

A =

 1 0 1/2

0 1/2 0

1/2 0 1


with correspponding polynomials

a(z) = 1 + 3/2 · z2 + z4 and p(z) = 1 + z2 + z4.

Inspecting a(z) in light of Corollary 3.7, it is immediately clear that there is a non-negative

optimal structure parameter.

In order to �nd precise optimal rank-1 Hankel approximations, we employ Theorems 3.1

and 3.6. First we form

Q(z) = a′(z) · p(z)− a(z) · p′(z)

= (3z + 4z3) · (1 + z2 + z4)− (1 + 3/2 · z2 + z4) · (2z + 4z3)

= z − z5 = z · (1− z4),

whose roots we have to �nd according to Theorem 3.6. We identify the real roots z = 0,

z = 1, z = −1 as candidates for optimal structure parameters.

By Theorem 3.1, the optimal structure parameters must satisfy z̃ ∈ argmaxz∈C a(z)/p(z),

see also Corollary 3.7. So by

a(z)

p(z)
=

1 + 3/2 · z2 + z4

1 + z2 + z4
=

 1, z = 0

7/6, z = ±1

we obtain z̃ = ±1 as optimal structure parameters. Note that the existence of a negative

optimal parameter z̃ < 0 does not contradict Corollary 3.7.

Finally, the optimal coe�cient is given by c̃ = a(z̃)/p(z̃) = 7/6 for both z̃ = 1 and
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3 Optimal Rank-1 Hankel Approximation in the Frobenius Norm

z̃ = −1. Thus we get the two real optimal approximation matrices

7/6·z̃(1)z̃(1)ᵀ =
7

18
·

1 1 1

1 1 1

1 1 1

 and 7/6·z̃(−1)z̃(−1)ᵀ =
7

18
·

 1 −1 1

−1 1 −1

1 −1 1

.
The approximation error for both is

‖A− c̃ · z̃z̃ᵀ‖F =

∥∥∥∥∥∥∥
1

18
·

11 ±7 2

±7 2 ±7

2 ±7 11


∥∥∥∥∥∥∥
F

=

√
450

18
≈ 1.1785,

which is rounded to four digits.

For a comparison of Example 3.8 with the optimal rank-1 Hankel approximation with

respect to the spectral norm see Section 9.1.

We a�liate some further results on special cases of the real r1H problem. In fact, often

we have the case that A ∈ RN×N is a real square matrix with non-negative components. If

the coe�cients h` of the corresponding polynomial a(z) from (3.6) are non-negative and

monotonically decreasing, then we �nd the structure parameter z̃—and thus generate the

optimal rank-1 Hankel approximation—very easily.

Theorem 3.9 Let A ∈ RN×N with rank A ≥ 1. Let a(z) be given as in (3.6) with non-
negative coe�cients hj ≥ 0 for j = 0, . . . , 2N − 2. Assume that the two sequences

(
h2j

)N−1

j=0

and
(
h2j+1

)N−2

j=0
are monotonically decreasing with h0 > h2N−2 and h1 > 0.

Then there is an optimal structure parameter z̃ ∈ argmaxz∈R|F (z)| located in the open
interval (0, 1). Moreover, this z̃ ∈ (0, 1) is the only positive root of Q(z) = a′(z)p(z) −
a(z)p′(z). Note that here p(z) = zᵀNzN =

∑N−1
j=0 z2j is a polynomial.

Proof. By Theorem 3.6 the desired value z̃ is a root of the polynomial Q(z). Corollary 3.7

yields the existence of z̃ ≥ 0 maximizing the function
(
a(z)
p(z)

)2
. To prove this theorem, it

therefore su�ces to show that Q(z) possesses only one non-negative root, which is, more

precisely, located in (0, 1).

First, we observe that

Q(0) = a′(0)p(0)− a(0)p′(0) = h1 > 0
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3.2 Real Rank-1 Hankel Approximation

since p(0) = 1 and p′(0) = 0 as well as h1 > 0 by assumption.

Further, with p(1) = N and p′(1) = N(N − 1), we have

Q(1) = a′(1)p(1)− a(1)p′(1)

=

2N−2∑
j=0

jhj ·N −
2N−2∑
j=0

hj ·N(N − 1)

= N ·
2N−2∑
j=0

(j −N + 1) · hj

= N ·
N−1∑
j=0

j · (hN−1+j − hN−1−j) < 0,

where we have used that both sequences
(
h2j

)N−1

j=0
and

(
h2j+1

)N−2

j=0
are monotonically

decreasing by assumption. Furthermore, we have exploited the assumption that h0 > h2N−2.

Thus, Q(z) has at least one root inside the open interval (0, 1).

In the next step, we show that Q(z) possesses only this one positive root and no further

ones. For this purpose, we will consider the polynomial R(z) := Q(z) ·
(
1− z2

)2.

Note that by the formula for the geometric partial sum, for any z ∈ (0, 1), we have

p(z) =
N−1∑
j=0

z2j =
1− z2N

1− z2
,

and

p′(z) =
(2N − 2) · z2N+1 − 2N · z2N−1 + 2z

(1− z2)2

by the quotient rule. Thus, we obtain

R(z) = Q(z) ·
(
1− z2

)2
=
(
a′(z)p(z)− a(z)p′(z)

)
·
(
1− z2

)2
=

2N−2∑
j=0

jhj · zj−1 ·
(
1− z2N

)
·
(
1− z2

)
−

2N−2∑
j=0

hj · zj ·
(

(2N − 2) · z2N+1 − 2N · z2N−1 + 2z
)
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3 Optimal Rank-1 Hankel Approximation in the Frobenius Norm

=
2N−2∑
j=0

(
jhj · zj−1 − (j + 2) · hj · zj+1 + (2N − j) · hj · z2N−1+j

− (2N − 2− j) · hj · z2N+1+j
)
.

An index shift j′ = j + 2 in some of the summands yields

R(z) =

2N−2∑
j=0

(
jhj · zj−1 + (2N − j) · hj · z2N−1+j

)
−

2N∑
j′=2

(
j′hj′−2 · zj

′−1 − (2N − j′) · hj′−2 · z2N−1+j′
)

=

2N−2∑
j=2

(
j · (hj − hj−2) · zj−1

)
+ h1 − (2N − 1) · h2N−3 · z2N−2 − 2N · h2N−2 · z2N−1

+

2N−2∑
j=2

(
(2N − j) · (hj − hj−2) · z2N−1+j

)
+ 2N · h0 · z2N−1 + (2N − 1) · h1 · z2N + h2N−3 · z4N−2

= h1 · z0 +
2N−2∑
j=2

(
j · (hj − hj−2) · zj−1

)
− (2N − 1) · h2N−3 · z2N−2

+ 2N · (h0 − h2N−2) · z2N−1 + (2N − 1) · h1 · z2N

+
2N−2∑
j=2

(
(2N − j) · (hj − hj−2) · z2N−1+j

)
− h2N−3 · z4N−2,

where �nally, the summands are ordered according to the exponent of z.

By the assumptions on the polynomial coe�cients hj , we have h1 > 0, h2N−3 ≥ 0, and

(h0 − h2N−2) > 0, as well as (hj − hj−2) ≤ 0 for j = 0, . . . , 2N − 2. Thus, the sequence

of coe�cients of the polynomial R(z) = Q(z) ·
(
1− z2

)2 exhibits exactly three changes of

sign. In this case, the rule of Descartes [Hen74, Sec. 6.2] implies that R(z) has either one

or three positive real roots (counted according to their multiplicity). Since the polynomial

factor
(
1− z2

)2 already has the positive root 1 with multiplicity two, we conclude that

Q(z) has exactly one positive real root. By the considerations in the beginning of this proof,

this root is contained in the interval (0, 1), and the proof is complete.
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3.2 Real Rank-1 Hankel Approximation

Remark 3.10 In the special case where Theorem 3.9 applies, the optimal parameter z̃ can

be found e�ciently by employing a Newton type method, for example with starting value

z0 = 0.5.

A result similar to the one of Theorem 3.9 is obtained for increasing sequences of polyno-

mial coe�cients.

Corollary 3.11 Let A ∈ RN×N with rank A ≥ 1. Let a(z) be given as in (3.6) with
h` ≥ 0 for ` = 0, . . . , 2N − 2. Assume that the two sequences

(
h2`

)N−1

`=0
and

(
h2`+1

)N−2

`=0
are

monotonically increasing with h0 < h2N−2 and h2N−3 > 0.
Then there is an optimal structure parameter z̃ ∈ argmaxz∈R|F (z)| located in the interval

(1,∞). Moreover z̃ is the only positive root of Q(z) = a′(z)p(z)− a(z)p′(z).

Proof. For z ∈ (1,∞) we observe that

a (1/z)

p (1/z)
=

a (1/z)

z−2N+2 · p(z)
=

1

p(z)
·

2N−2∑
j=0

hjz
2N−2−j =:

â(z)

p(z)
,

where the polynomial â(z) has the coe�cients ĥj := h2N−2−j , j = 0, . . . , 2N − 2. These

are the same coe�cients as the ones of a(z) but in reverse order.

Thus, the newly de�ned sequences
(
ĥ2j

)N−1

j=0
and

(
ĥ2j+1

)N−2

j=0
are monotonically decreas-

ing, and we have additionally ĥ0 > ĥ2N−2 and ĥ1 = h2N−3 > 0. The assertion now follows

from Theorem 3.9 applied to the polynomial â(z).

It is also possible to locate unique negative optimal parameters z̃ < 0 in the fashion

of Theorem 3.9 and Corollary 3.11. However, in order to achieve the upcoming results,

the assumptions on the sequences of polynomial coe�cients have to be slightly more

complicated.

Corollary 3.12 Let A ∈ RN×N with rank A ≥ 1. Let a(z) be given as in (3.6). Further, let
Q(z) be given as in Theorem 3.6.

(1) Assume that
(
h2j

)N−1

j=0
is a non-negative, monotonically decreasing sequence with h0 >

h2N−2 ≥ 0, and
(
h2j+1

)N−2

j=0
is a non-positive, monotonically increasing sequence

with h0 < 0. Then there exists z̃ ∈ (−1, 0) generating an optimal rank-1 Hankel
approximation of A. Moreover, this is the only negative root of Q(z).
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3 Optimal Rank-1 Hankel Approximation in the Frobenius Norm

(2) Assume that
(
h2j

)N−1

j=0
is a non-positive, monotonically decreasing sequence with 0 ≥

h0 > h2N−2, and
(
h2j+1

)N−2

j=0
is a non-negative, monotonically increasing sequence

with h2N−3 > 0. Then there is z̃ ∈ (−∞,−1) generating an optimal rank-1 Hankel
approximation of A. Moreover, this is the only negative root of Q(z).

Proof. The idea is to apply Theorem 3.9 in order to prove the �rst assertion. To this end,

de�ne the auxiliary coe�cients ĥ2j+1 := −h2j+1 for j = 0, . . . , N − 2. Then
(
ĥ2j+1

)N−1

j=0

is a non-negative, monotonically decreasing sequence with ĥ1 > 0. Now, we can write

a(z) = a0(z) + a1(z) with a0(z) =
N−1∑
j=0

h2jz
2j , a1(z) =

N−2∑
j=0

h2j+1z
2j+1

and introduce

â(z) := a0(z)− a1(z) =

N−1∑
j=0

h2jz
2j −

N−2∑
j=0

h2j+1z
2j+1 =

N−1∑
j=0

h2jz
2j +

N−2∑
j=0

ĥ2j+1z
2j+1.

Further, let Q̂(z) := â′(z)p(z) − â(z)p′(z). By Theorem 3.9, Q̂(z) possesses only one

positive real root which is located in (0, 1). For the polynomial Q(z), it follows that

Q(z) = a′(z) · p(z)− a(z) · p′(z)

=
(
a′0(z) + a′1(z)

)
· p(z)−

(
a0(z) + a1(z)

)
· p′(z)

=
(
−a′0(−z) + a′1(−z)

)
· p(−z)−

(
a0(−z)− a1(−z)

)
·
(
−p′(−z)

)
= −â′(−z) · p(−z) + â(−z) · p′(−z)

= −Q̂(−z),

since both a0(z) and p(z) are even polynomials while a1(z) is odd. Thus, the polynomial

Q(z) has exactly one negative root, which is located in (−1, 0).

The second assertion follows analogously from Corollary 3.11.

We conclude this chapter by drawing a line back to complex rank-1 Hankel approximation

with the following question: Given a real matrix A, can we always restrict the search for

the optimal parameters c̃ and z̃ to real numbers, or is it possible to achieve better results

by allowing complex parameters? The following example shows that indeed complex

parameters may provide better approximations.
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3.2 Real Rank-1 Hankel Approximation

Example 3.13 We want to �nd an optimal rank-1 Hankel approximation with respect to

the Frobenius norm for the initial matrix

A =

 1 −1/2 −1

−1/2 −1 −1/2

−1 −1/2 1

.
Using Theorem 3.6 we �nd the solution for the optimal real parameters c̃real ≈ 1.0635 and

z̃real ≈ −0.1291. The resulting Frobenius norm error is
∥∥A− c̃real · z̃realz̃

ᵀ
real

∥∥
F
≈ 2.2066.

Allowing complex values, the somewhat nicely chosen parameters ccomplex = 5/3 and

zcomplex = ±i yield the smaller error
∥∥A− ccomplex · zcomplexz

ᵀ
complex

∥∥
F

=
√

261/9 ≈ 1.7951.

Actually, with an implementation of Theorem 3.4 we �nd two optimal pairs of complex

parameters c̃complex ≈ 1.5312 ± 0.8472 i and z̃complex ≈ 0.2500 ± 0.9682 i to produce the

minimal approximation error
∥∥A − c̃complex · z̃complexz̃

ᵀ
complex

∥∥
F
≈ 1.7139. All parameter

values and errors have been rounded to four digits.

We also run the comparison between real and complex rank-1 Hankel approximation on a

broader basis. For this purpose, we randomly generate ten real initial matrices A ∈ R10×10

with entries in [−50, 50]. (The same matrices will be used for the comparison of di�erent

r1H methods in Section 9.2.)

For each of these initial matrices we solve the r1H problem once for real parameters c and

z, and once allowing them to be complex. Then we compute the relative approximation error

RE := ‖A−H‖F /‖A‖F for each initial matrix and both (real and complex) approximations.

These relative approximation errors are depicted in Figure 3.1 for each initial matrix. We

conclude that Example 3.13 is not an isolated case. Indeed, the complex rank-1 Hankel

approximation frequently outperforms the purely real one.
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Figure 3.1 Optimal r1H errors for only real and allowing complex parameters.

51



3 Optimal Rank-1 Hankel Approximation in the Frobenius Norm

Remark 3.14 For matrices A with non-negative entries satisfying a0,0 ≥ aM−1,N−1 there

is always an optimal rank-1 Hankel approximation with real non-negative parameters c̃

and z̃. Consider the polynomial a(z) from (3.6), which, in this case, has only non-negative

coe�cients h`. Thus, we obtain

∣∣zᵀMAzN
∣∣ =
|a(z)|
p(|z|)

=

∣∣∑M+N−2
`=0 h`z

`
∣∣

p(|z|)
≤
∑M+N−2

`=0 h`|z|`

p(|z|)

with p(z) as in Theorem 3.6. This term can be maximized by a real value z̃ ≥ 0. The optimal

coe�cient c̃ = z̃ᵀMAz̃N is consequently also real and non-negative.
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4
Optimal

Rank-1 Hankel Approximation
in the Spectral Norm

In this chapter we deal with the rank-1 Hankel approximation (r1H) problem (2) in the

spectral norm:

min‖A−H‖2 such that rank H = 1,

and H has Hankel structure.

Unless indicated otherwise, this chapter is based on our paper [KPP21a, Sec. 4] and is in

parts similar with the representations therein.

By De�nition 1.6 it is apparent that the spectral norm of a matrix usually cannot be

expressed in terms of the matrix’ entries. This makes the minimization problem (2) for the

spectral norm much more delicate than for the Frobenius norm. In order to still obtain some

results for the spectral norm, we restrict our considerations to real symmetric matrices and

their real optimal rank-1 Hankel approximations.

Lemma 2.3 suggests that for a symmetric matrix A ∈ RN×N we can equivalently write

the real r1H problem as

min
z∈R

c∈R\{0}

‖A− c · zzᵀ‖2, (4.1)

with R = R ∪ {∞} and z = zN (z) as in (2.5).

As a real symmetric matrix, A possesses an eigendecomposition A = VΛVᵀ. In this

decomposition, V =
(
v0 vN−1

)
is the orthogonal matrix whose columns vj are
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4 Optimal Rank-1 Hankel Approximation in the Spectral Norm

the normalized eigenvectors of A. The diagonal matrix Λ = diag(λ0, . . . , λN−1) contains

the corresponding eigenvalues of A, which are ordered by absolute value |λ0| ≥ |λ1| ≥
· · · ≥ |λN−1| ≥ 0 largest to smallest. Without loss of generality, we assume λ0 = |λ0| > 0.

We have the correspondence Avj = λjvj , for j = 0, . . . , N − 1, between eigenvalues and

eigenvectors.

With the matrix V we can transfer the r1H problem (4.1) into the eigenbasis of A. To

this end let µ(z) := Vᵀz(z) =
(
µ0 µN−1

)ᵀ
. In other words,

z(z) = Vµ(z) =

N−1∑
j=0

µjvj , with µj = vᵀ
j z, j = 0, . . . , N − 1,

is the representation of z(z) in the orthogonal eigenbasis
{
v0,v1, . . . ,vN−1

}
of A. We

simply write µ instead of µ(z) when no confusion about the structure parameter z is risked.

With µ introduced, now problem (4.1) can be rewritten as

min
z∈R

c∈R\{0}

‖A− c · zzᵀ‖2 = min
z∈R

c∈R\{0}

‖VᵀAV − c ·VᵀzzᵀV‖2

= min
z∈R

c∈R\{0}

‖Λ− c · µµᵀ‖2. (4.2)

The �rst equality of the above is true because the spectral norm is invariant under orthogonal

transformation.

Our goal is to �nd necessary and su�cient conditions for optimal parameters c̃ and z̃

such that the matrix c̃ · z̃z̃ᵀ solves the minimization problem (4.1), respectively (4.2). For

the following considerations, we assume that such a minimizer exists. The minimizer will

however not always be unique. Let now c̃ · z̃z̃ᵀ denote such an optimal solution and let

λ̃ := λ̃c̃,z̃ := ‖A− c̃ · z̃z̃ᵀ‖2 = ‖Λ− c̃ · µ̃µ̃ᵀ‖2 (4.3)

denote the corresponding optimal approximation error. Here, µ̃ = Vᵀz̃ is the transformed

structured vector corresponding to the optimal parameter z̃.

Recall that the spectral norm of a real symmetric matrix is equal to the modulus of its

largest eigenvalue, see also De�nition 1.6. Therefore, by (4.3) either λ̃ is the largest or −λ̃ is

the smallest eigenvalue of the di�erence matrix A− c̃ · z̃z̃ᵀ, respectively Λ− c̃ · µ̃µ̃ᵀ. Note

that the largest eigenvalue of the di�erence matrix strongly depends on the parameters c̃
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4 Optimal Rank-1 Hankel Approximation in the Spectral Norm

and z̃. This is indicated by the subscript in the above de�nition (4.3) of λ̃. We tend to omit

the subscript since usually there is no risk of confusion.

Note that we can shift the eigenvalues of a symmetric matrix by adding a multiple of the

identity. This can be seen by

Vᵀ(A + λI)V = VᵀAV + λVᵀV = Λ + λI = diag(λ0 + λ, . . . , λN−1 + λ).

In light of this fact we introduce the two auxiliary matrices

M1(λ, c, z) := λI−Λ + c · µ(z)µ(z)ᵀ (4.4a)

and

M2(λ, c, z) := λI + Λ− c · µ(z)µ(z)ᵀ. (4.4b)

These are exactly the di�erence matrix Λ− c · µµᵀ where −λI and λI have been added,

respectively. In the case of M1(λ, c, z), the shifted di�erence matrix has additionally been

multiplied by −1.

Of special interest for us is the case when the optimal di�erence matrix in (4.3) is shifted

by its largest eigenvalue λ̃. More precisely, we are especially interested in the matrices

M1(λ̃) := M1(λ̃, c̃, z̃) = λ̃I−Λ + c̃ · µ̃µ̃ᵀ (4.5a)

and

M2(λ̃) := M2(λ̃, c̃, z̃) = λ̃I + Λ− c̃ · µ̃µ̃ᵀ. (4.5b)

For simplicity we usually omit the optimal parameters c̃ and z̃ when referring to M1(λ̃, c̃, z̃)

and M2(λ̃, c̃, z̃). Nevertheless, keep in mind that the optimal error λ̃ = λ̃c̃,z̃ depends on the

optimal parameters. Thus the auxiliary matrices M1(λ̃) and M2(λ̃) depend on the optimal

parameters c̃ and z̃ through λ̃.

Since λ̃ is the modulus of the largest eigenvalue of the di�erence matrix Λ− c̃ · µ̃µ̃ᵀ, both

M1(λ̃) and M2(λ̃) are positive semide�nite. If λ̃ is the largest eigenvalue of the di�erence

matrix, then M1(λ̃) actually possesses the eigenvalue zero. On the other hand, if −λ̃ is the

smallest eigenvalue of the di�erence matrix, then the smallest eigenvalue of M2(λ̃) is zero.

By construction (4.3) at least one of these cases occurs. Therefore, (4.3) is equivalent to both

M1(λ̃) and M2(λ̃) being positive semide�nite and at least one of them actually possessing

the eigenvalue zero.
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Note that the auxiliary matrices M1 and M2 have a special structure; namely, they can

be decomposed into the sum of a diagonal matrix and a symmetric rank-1 matrix. For this

reason we will investigate conditions for the de�niteness of such matrices in detail in the

next section.

4.1 Definiteness of Diagonal-Plus-Rank-1 Matrices

For this section, let B be the sum of a diagonal matrix D = diag(d0, . . . , dN−1) ∈ RN×N

and a symmetric rank-1 matrix; that is, let

B := D + c · bbᵀ,

where b =
(
b0 bN−1

)ᵀ
∈ RN and c ∈ R.

Before diving deeper into the de�niteness of B, we start by giving the following observa-

tion on its determinant.

Lemma 4.1 The determinant of the matrix B = D + c · bbᵀ is given by

det B = det D + c ·
N−1∑
j=0

b2j ·

 N−1∏
k=0
k 6=j

dk

.
If, additionally, the diagonal matrix D is invertible, we have

det B = det D ·

(
1 + c ·

N−1∑
j=0

b2j
dj

)
.

Proof. We employ the rule for computing determinants of block matrices [Sil00],

det

(
D −b

c · bᵀ 1

)
= det

(
1 ·D + c · bbᵀ) = det B.

Then we expand the determinant on the left with respect to the last column in order to

obtain the claimed formula. For the case where D is invertible, see also [Dem97].

Remark 4.2 The above lemma also works if the rank-1 matrix is not symmetric. Let

B = D + c · abᵀ, with a =
(
a0 aN−1

)ᵀ
∈ RN , and b =

(
b0 bN−1

)ᵀ
∈ RN
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as before. In this case, we have

det B = det D + c ·
N−1∑
j=0

ajbj ·

 N−1∏
k=0
k 6=j

dk

.
Recall that we are interested in the two auxiliary matrices M1(λ̃) and M2(λ̃) from (4.5).

Their diagonal parts are

λ̃I−Λ and λ̃I + Λ,

respectively. As will become clear later in Proposition 4.6, there are exactly two di�erent

types of these diagonal matrices. Either

• the diagonal part is positive semide�nite, i.e., D has only non-negative entries, or

• the diagonal part has exactly one negative entry while all the other entries are non-

negative.

Therefore, we examine positive de�niteness of the matrix B = D + c ·bbᵀ for exactly these

two types of diagonal parts. For each of the two cases, we give necessary and su�cient

conditions on c and b such that the matrix B is positive semide�nite, see Lemmas 4.3 and 4.4

correspondingly.

We need to �x some notation �rst. For the remainder of this chapter, in the case bj =

dj = 0, we just omit the term b2j/dj whenever it would appear. This omission is consistent

with the widely used convention 0
0 = 0. To remind the reader that such terms may occur in

a sum, we will use the notation
∑′ instead of

∑
.

Lemma 4.3 Let c > 0 and assume that D has exactly one negative eigenvalue, say d0 < 0

and d1, . . . , dN−1 ≥ 0. Then the matrix B = D + c · bbᵀ is positive semide�nite if and only
if the vector b and coe�cient c satisfy

N−1∑′

j=0

b2j
(−dj)

≥ 1

c
, (4.6)

where bj = 0 whenever dj = 0. Moreover, if dj > 0 for j = 1, . . . , N − 1, and the
inequality (4.6) is strict, then B is in fact positive de�nite.

Proof. According to [Pru86], a matrix is positive semide�nite if and only if all its principal

minors (i.e., the determinants of all possible (r× r) principal submatrices for r = 1, . . . , N )
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are non-negative. We observe that all the principal submatrices of B are of the same form

as B itself.

Now consider the (2× 2) submatrices B{0,j} obtained from the rows and columns of B

with indices 0 and j, where the corresponding dj = 0. By Lemma 4.1, and accounting for all

the vanishing terms (or by direct computation), its determinant is given by

det B{0,j} = det

(
d0 + c · b20 c · b0bj
c · b0bj c · b2j

)
= c · b2j · d0.

Since d0 < 0, this determinant is negative as long as bj 6= 0. Hence, it is imperative that

bj = 0 for all indices j with dj = 0 in order for B to be positive semide�nite.

Let J be the index set containing all indices corresponding to non-zero entries of D.

Observe that J is non-empty because 0 ∈ J since d0 < 0 by assumption. Denote by BJ

and DJ the corresponding principal submatrices of B and D, respectively. By Lemma 4.1,

we have

det BJ = det DJ ·

(
1 + c ·

∑
j∈J

b2j
dj

)
,

where det DJ < 0. Thus, det BJ being non-negative is equivalent to(
1 + c ·

∑
j∈J

b2j
dj

)
≤ 0 ⇔

∑
j∈J

b2j
(−dj)

≥ 1

c
.

Clearly, these conditions are already su�cient for all principal minors of B corresponding

to subsets of J to be non-negative. By adding the zero terms corresponding to indices not

in J to the above inequality, the �rst claim follows.

If dj > 0 for j = 1, . . . , N − 1, and the above inequality for J = {0, 1, . . . , N − 1} is

strict, then already all leading principal minors of B are strictly positive. It is a well-known

fact that this is equivalent to B being positive de�nite.

Lemma 4.4 Let c > 0, and assume that D is positive semide�nite with at least one strictly
positive eigenvalue, say d0 > 0 and d1, . . . , dN−1 ≥ 0. Then the matrix B = D− c · bbᵀ is
positive semide�nite if and only if the vector b and coe�cient c satisfy

N−1∑′

j=0

b2j
dj
≤ 1

c
, (4.7)
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where bj = 0 whenever dj = 0. Moreover, if dj > 0 for all j = 0, . . . , N − 1 and the
inequality (4.7) is strict, then B is in fact positive de�nite.

Proof. Similarly as in the proof of Lemma 4.3, we consider the principal minors [Pru86] of

B. First, we examine at the (2× 2) submatrices B{0,j} obtained from the rows and columns

of B with indices 0 and j, where the corresponding dj = 0. By Lemma 4.1, and accounting

for all the vanishing terms (or by direct computation), its determinant is given by

det B{0,j} = det

(
d0 − c · b20 −c · b0bj
−c · b0bj −c · b2j

)
= −c · b2j · d0,

which is negative unless bj = 0. Hence, we conclude as before, that necessarily bj = 0

whenever dj = 0.

Let again J be the index set containing all indices corresponding to non-zero entries of D,

and denote by BJ and DJ the corresponding principal submatrices of B and D, respectively.

By Lemma 4.1, we have

det BJ = det DJ ·

(
1− c ·

∑
j∈J

b2j
dj

)
,

where det DJ > 0. Thus, det BJ being non-negative is equivalent to(
1− c ·

∑
j∈J

b2j
dj

)
≥ 0 ⇔

∑
j∈J

b2j
dj
≤ 1

c
.

These conditions are already su�cient for all principal minors of B to be non-negative. By

adding the zero terms corresponding to indices not in J to the above inequality, the �rst

claim follows.

If dj > 0 for all j = 0, dots,N − 1 and the above inequality is strict, then all leading

principal minors are positive and thus B is positive de�nite.

With these Lemmas we can now come back to our original problem, namely, optimal

rank-1 Hankel approximation in the spectral norm. In the next section we closely examine

the optimal approximation error. Ensuing from there, we derive conditions on the optimal

parameters c̃ and z̃.
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4.2 The Optimal Approximation Error

The optimal parameters with respect to the Frobenius norm from Chapter 3 can be calculated

independently of the approximation error, see Theorem 3.1. In contrast, the spectral norm

error is very much interlinked with the parameters c and z constituting a rank-1 Hankel

approximation. As a consequence, the optimal parameters c̃ and z̃ with respect to the

spectral norm cannot be calculated without computing the optimal approximation error

λ̃ at the same time. Therefore, we examine the optimal spectral norm error more closely.

Only the precise understanding of its behavior enables us to �nd conditions on the optimal

parameters c̃ and z̃.

First, in Section 4.2.1, we assume that the by modulus largest eigenvalue of A is strictly

larger than the by modulus second largest eigenvalue. The case where several eigenvalues

have maximal absolute value is treated seperately in Section 4.2.2.

4.2.1 Isolated Largest Eigenvalue

In this section, let A ∈ RN×N have an isolated largest eigenvalue; that is, we assume

λ0 = ‖A‖2 > |λ1|. Recall that, without loss of generality, we assume λ0 > 0 for all of this

chapter. When the largest eigenvalue is isolated, then we will see that we can always �nd

an optimal rank-1 Hankel approximation of A with respect to the spectral norm.

We start by presenting upper and lower bounds for the resulting optimal approximation

error. For the proof of these bounds we need the following lemma.

Lemma 4.5 Let some values λ > 0, c ∈ R \ {0}, and z ∈ R be given. If both auxiliary
matrices M1(λ, c, z) and M2(λ, c, z) from (4.4) are positive de�nite, then λ is larger than the
spectral norm of the di�erence matrix Λ− c · µµᵀ; that is, we have λ > ‖Λ− c · µµᵀ‖2.

Proof. Denote the eigenvalues of the di�erence matrix Λ− c ·µµᵀ by ηi, i = 0, . . . , N − 1,

ordered by absolute value. Thus, we have |η0| = ‖Λ− c · µµᵀ‖2.

We prove this lemma by contraposition. Assume that |η0| ≥ λ. In the eigenbasis of the

di�erence matrix, Λ−c ·µµᵀ, the auxiliary matrix M1(λ, c, z) = λI−Λ+c ·µµᵀ becomes

λI−diag(ηi)
N−1
i=0 . Analogously, M2(λ, c, z) = λI+Λ−c ·µµᵀ becomes λI+diag(ηi)

N−1
i=0 .

Now we distinguish two cases based on the sign of η0. If η0 > 0, then λ− η0 ≤ 0 and

thus M1(λ, c, z) is not positive de�nite. On the other hand, if η0 < 0, then λ+ η0 ≤ 0 and

thus M2(λ, c, z) is not positive de�nite. This proves the claim.

60



4.2 The Optimal Approximation Error

Proposition 4.6 Let λ̃ = ‖A− c̃ · z̃z̃ᵀ‖2 be the optimal r1H error (4.3). Then we have

|λ1| ≤ λ̃ < λ0,

where λ0 and λ1 are the largest and (by modulus) second largest eigenvalue of A, respectively.

Proof. By the Eckart-Young-Mirsky Theorem (Theorem 1.8), the lower bound |λ1| ≤ λ̃

follows immediately.

Consider now some λ ≥ λ0. We show that we can always �nd parameters c and z

such that both M1(λ, c, z) and M2(λ, c, z) in (4.4) are strictly positive de�nite. Then, by

combining Lemma 4.5 and the de�nition (4.3) of the optimal approximation error λ̃, we

obtain λ̃ ≤ ‖Λ− c · µµᵀ‖2 < λ.

For instance, choose some z ∈ R such that µ0 = vᵀ
0z 6= 0. Further set c = λ−|λ1|

2 > 0.

Then, on the one hand, both the diagonal part λI−Λ and the rank-1 part c · µµᵀ of the

�rst auxiliary matrix M1(λ) are positive semide�nite. As a sum of two positive semide�nite

matrices, M1(λ) is itself positive semide�nite. Further, Lemma 4.1 yields

det M1(λ) = det
(

diag
(
λ− λj

)N−1

j=0

)
+ c ·

N−1∑
j=0

µ2
j ·

 N−1∏
k=0
k 6=j

(λ− λk)


≥ 0 + c · µ2

0 ·
N−1∏
k=1

(λ− λk) > 0,

thus M1(λ) is indeed strictly positive de�nite.

On the other hand, the diagonal part λI + Λ of the second auxiliary matrix M2(λ) is

positive de�nite with smallest possible eigenvalue λ− |λ1| > 0. Since λ− |λ1| ≤ λ+ λj

for all j = 0, . . . , N − 1, we �nd

N−1∑′

j=0

µ2
j

λ+ λj
≤
(
λ− |λ1|

)−1 ·
N−1∑
j=0

µ2
j =

‖µ‖22
λ− |λ1|

<
2

λ− |λ1|
=

1

c
,

where the last inequality holds because ‖µ‖2 = ‖z‖2 = 1. Thus by Lemma 4.4, the second

auxiliary matrix M1(λ) is strictly positive de�nite, too.

Hence, the optimal error λ̃ is bounded from below and above by |λ1| ≤ λ̃ < λ0.

Remark 4.7 In the above proposition, for λ ≥ λ0 and z ∈ R satisfying µ0 = vᵀ
0z 6= 0,
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4 Optimal Rank-1 Hankel Approximation in the Spectral Norm

the coe�cient c can in fact be chosen such that 0 < c <
(∑N−1

j=0

µ2j
λ+λj

)−1
. This range is

su�cient to ensure that both M1(λ) and M2(λ) are strictly positive de�nite according to

Lemmas 4.1 and 4.4.

In order to state the main theorem of this chapter, we introduce the following function.

Recalling that limz→∞ z(z) = z(∞) = eN , let

f(z, λ2) :=

N−1∑′

j=0

(vᵀ
j z)2

λ2
j − λ2

=

N−1∑′

j=0

µ2
j

λ2
j − λ2

(4.8)

for z ∈ R and λ2 ∈
[
λ2

1, λ
2
0

)
. The range of λ2 is chosen according to Proposition 4.6.

Note that for λ2 = λ2
1 the function f in (4.8) is only well-de�ned if vᵀ

j z = µj = 0 for all

j with λ2
j = λ2

1. This is in analogy to Lemmas 4.3 and 4.4, and we keep using the notation∑′ introduced in Section 4.1.

Remark 4.8 As stated above, for any �xed z ∈ R,

f(z, λ2
1) = lim

λ2→λ21
f(z, λ2)

is bounded if and only if vᵀ
j z = µj = 0 for all j with λ2

j = λ2
1. Similarly, for any �xed

z ∈ R,

f(z, λ2
0) = lim

λ2→λ20
f(z, λ2)

is bounded if and only if vᵀ
0z = µ0 = 0. The conditions for boundedness of f(z, λ2

1) and

f(z, λ2
0) are satis�ed in our setting. So we can extend the domain of f to the closed interval

λ2 ∈
[
λ2

1, λ
2
0

]
, using the convention 0

0 = 0 and the notation
∑′ as before.

In the case when λ is con�ned to the open interval λ2 ∈
(
λ2

1, λ
2
0

)
we can give explicit

upper and lower bounds for the value of f . First, note that for λ2 ∈
(
λ2

1, λ
2
0

)
, the matrix

A2 − λ2I is invertible, and its inverse has the same eigenvectors as A and reciprocal

eigenvalues, in formulas that is, (A2 − λ2I)−1 · vj = (λ2
j − λ2)−1 · vj . Recalling the

representation z =
∑N−1

j=0 µj · vj in the basis of eigenvectors, we �nd

f(z, λ2) =
N−1∑
j=0

µ2
j

λ2
j − λ2

= zᵀ ·
(
A2 − λ2I

)−1 · z,

that means f can be seen as a Rayleigh quotient for the matrix (A2 − λ2I)−1. Therefore, f
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4.2 The Optimal Approximation Error

is bounded by the largest and smallest eigenvalue of (A2 − λ2I)−1

min
{

(λ2 − λ2
N−1)−1, (λ2

0 − λ2)−1
}
≤ f(z, λ2) ≤ max

{
(λ2 − λ2

N−1)−1, (λ2
0 − λ2)−1

}
,

see [HJ13, Sec. 4.2].

The upcoming main theorem consists of two parts. In the �rst part we specify necessary

and su�cient conditions to ensure that the optimal rank-1 Hankel approximation achieves

the same error as the unstructured rank-1 approximation. By Theorem 1.8 and Proposi-

tion 4.6, this optimal error bound is given by |λ1|, see also (1.3).

On that account, part (1) of Theorem 4.9 constitutes a generalization of the result from

[Ant97]. The statement from [Ant97] is exactly Theorem 4.9 (1) but with the assumption

that A be a real Hankel matrix whose largest and second largest eigenvalue occur with

multiplicity one. We relax these assumptions to A being a more general real symmetric

matrix whose largest eigenvalue only is restricted in its multiplicity. The latter restriction

can even be lifted, see Theorem 4.15.

The second part of the theorem deals with the case when the optimal error bound |λ1|
from (1.3) cannot be attained. We characterize the parameters that constitute the optimal

rank-1 Hankel approximation in this case as well.

Theorem 4.9 enables us to develop an algorithm to compute an optimal rank-1 Hankel

approximation numerically, see Section 4.3 and the algorithms therein.

Theorem 4.9 Let A ∈ RN×N be symmetric with rank(A) > 1. Assume that λ0 = ‖A‖2 >
|λ1|. Let c̃ · z̃z̃ᵀ be an optimal rank-1 Hankel approximation of A in the spectral norm. Further,
let f be de�ned as in (4.8).

(1) The optimal error bound ‖A− c̃ · z̃z̃ᵀ‖22 = λ2
1 is attained if and only if there is z̃ ∈ R

such that

vᵀ
j z̃ = 0 for all j with |λj | = |λ1| and f(z̃, λ2

1) ≥ 0, (4.9)

and if moreover c̃ is chosen such that

N−1∑′

j=0

(vᵀ
j z̃)2

λj + |λ1|
≤ 1

c̃
≤
N−1∑′

j=0

(vᵀ
j z̃)2

λj − |λ1|
. (4.10)
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4 Optimal Rank-1 Hankel Approximation in the Spectral Norm

(2) If there is no z̃ ∈ R satisfying (4.9), the best approximation error that can be achieved
by a rank-1 Hankel matrix is the minimal value λ̃ in

(
|λ1|, λ0

)
satisfying the relation

max
z∈R

f(z, λ̃2) = 0. (4.11)

In this case we have

z̃ ∈ argmax
z∈R

f(z, λ̃2) and c̃ =

(
N−1∑
j=0

(vᵀ
j z̃)2

λj − λ̃

)−1

> 0. (4.12)

Proof. Throughout this proof let

λ̃ = ‖A− c̃ · z̃z̃ᵀ‖2

denote the optimal approximation error; in other words, the parameters c̃ and z̃ generate

an optimal rank-1 Hankel approximation of A. Recall from the beginning of this chapter

that this holds if and only if the symmetric matrices M1(λ̃) and M2(λ̃) from (4.5) are both

positive semide�nite and at least one of them actually possesses the eigenvalue zero.

First note that, the optimal parameter z̃ necessarily satis�es µ̃0 = vᵀ
0 z̃ 6= 0. Otherwise,

if µ0 = 0, we would �nd (A − c̃ · z̃z̃ᵀ) · v0 = A · v0 = λ0 · v0, and therefore λ̃ =

‖A− c̃ · z̃z̃ᵀ‖2 ≥ λ0. This contradicts the upper bound λ̃ < λ0 from Proposition 4.6.

Furthermore, we �nd the necessary condition c̃ > 0. Otherwise, for c ≤ 0, we would add

a positive semide�nite matrix to A, thereby enlarging the spectral norm

‖A− c · z̃z̃ᵀ‖2 = max
‖v‖=1

|vᵀ (A− c · z̃z̃ᵀ) v|

≥ vᵀ
0Av0 − c · (vᵀ

0 z̃)
2

= λ0 + |c| · (vᵀ
0 z̃)

2 ≥ λ0.

This would again contradict the upper bound from Proposition 4.6.

We derive necessary and su�cient conditions on the optimal parameters c̃ > 0 and z̃ ∈ R,

and the optimal approximation error λ̃ ∈
[
|λ1|, λ0

)
by inspecting the matrices M1(λ̃) and

M2(λ̃). Thereby we prove part (1) of the theorem.

Note that for the entries of the diagonal part λ̃I−Λ of the �rst auxiliary matrix M1(λ̃)

we have λ̃− λ0 < 0 while λ̃− λj ≥ 0 for j = 1, . . . , N − 1. Thus, we can apply Lemma 4.3
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4.2 The Optimal Approximation Error

to M1(λ̃). The diagonal part λ̃I + Λ of the second auxiliary matrix M2(λ̃) is positive

semide�nite. In fact, we have λ̃+ λj ≥ 0 for all j = 0, . . . , N − 1, and actually λ̃+ λ0 > 0.

So, M2(λ̃) meets the prerequisites of Lemma 4.4. From Lemmas 4.3 and 4.4, it follows that

M1(λ̃) and M2(λ̃) are simultaneously positive semide�nite if and only if

N−1∑′

j=0

µ2
j

λj + λ̃
≤ 1

c̃
≤
N−1∑′

j=0

µ2
j

λj − λ̃
(4.13)

and if in case of λ̃ = |λ1| moreover µj = vᵀ
j z̃ = 0 holds for all j with |λj | = |λ1| = λ̃.

Obviously, such a parameter c̃ can only exist if

N−1∑′

j=0

µ2
j

λj + λ̃
−
N−1∑′

j=0

µ2
j

λj − λ̃
= 2λ̃ ·

N−1∑′

j=0

µ2
j

λ2
j − λ̃2

= 2λ̃ · f(z̃, λ̃2) ≥ 0,

with f(z̃, λ̃2) as in (4.8). Observe that λ̃ ≥ |λ1| > 0 since we have assumed rank A > 1.

Hence, the condition f(z̃, λ̃2) ≥ 0 follows, and we conclude (4.9) and (4.10) for λ̃ = |λ1|.
In order to prove part (2) of the theorem, assume that the condition (4.9) is not satis�ed

for any z ∈ R; that is, assume λ̃ > |λ1|. Inspecting the two sums in (4.13) we observe that

the left-hand sum increases for decreasing λ̃ while the sum on the right-hand side decreases

with λ̃. Thus, (4.13) implies the equalities

N−1∑′

j=0

µ2
j

λj + λ̃
=

1

c̃
=

N−1∑′

j=0

µ2
j

λj − λ̃
(4.14)

for the minimal error λ̃. Otherwise, we could �nd a parameter c̃ such that both inequalities

in (4.13) are strict. Then, Lemmas 4.3 and 4.4 yield that the two auxiliary matrices M1(λ̃) and

M2(λ̃) are strictly positive de�nite. This implies that there is some λwith |λ1| ≤ λ < λ̃ such

that M1(λ) and M2(λ) are still positive semide�nite. The existence of such λ contradicts

our assumption (4.3) on the optimality of λ̃. The expression for c̃ thus follows from (4.14).

Further, we conclude

N−1∑
j=0

µ2
j

λj + λ̃
−
N−1∑
j=0

µ2
j

λj − λ̃
= 2λ̃ ·

N−1∑
j=0

µ2
j

λ2
j − λ̃2

= 2λ̃ · f(z̃, λ̃2) = 0.

Since λ̃ > |λ1| > 0, this shows that f(z̃, λ̃2) = 0.
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4 Optimal Rank-1 Hankel Approximation in the Spectral Norm

Finally, for the �xed optimal error λ̃, we consider f(z, λ̃2) as a polynomial in z. We

show that f(z, λ̃) ≤ 0 for all z ∈ R. Assume to the contrary that there is some z with

f(z, λ̃) > 0. With the same arguments as before, we obtain a range for the choice of c̃. But

then c̃ can be taken such that the two matrices M1(λ̃) and M2(λ̃) are both strictly positive

de�nite. In that case, λ̃ is no longer the optimal error, contradicting our assumption. Thus,

we have shown the assertion (4.11) and the characterization of z̃ in (4.12), which completes

the proof.

Remark 4.10 1. The conditions (4.9) in Theorem 4.9 are particularly satis�ed if the

eigenvector v0 corresponding to the largest eigenvalue λ0 already is of the form v0 = z̃ for

some z̃ ∈ R. In this case, since vᵀ
j z̃ = vᵀ

jv0 = 0 for j = 1, . . . , N − 1, the non-negativity

condition on f simpli�es to

f(z, λ2
1) =

(vᵀ
0 z̃)2

λ2
0 − λ2

1

=
‖z̃‖2

λ2
0 − λ2

1

=
1

λ2
0 − λ2

1

≥ 0.

This is certainly satis�ed since λ2
0 − λ2

1 > 0 by assumption.

2. The optimal parameters c̃ and z̃ determining the optimal rank-1 Hankel approximation

with respect to the spectral norm need not be unique. If the optimal error bound |λ1| from

(1.3) is attained and the inequalities (4.10) are strict, then there are multiple possible choices

for the optimal coe�cient c̃, see Example 4.11. But still, if the optimal error bound cannot

be attained (i.e., λ̃ > |λ1|) and c̃ is determined uniquely by (4.12), it may happen that

z̃ ∈ argmaxz∈R f(z, λ̃2) is not unique, see Example 4.12.

3. The relation (4.14) in the proof of Theorem 4.9 directly implies that det M1(λ̃) =

det M2(λ̃) = 0. Equivalently, both λ̃ and −λ̃ are eigenvalues of the di�erence matrix

A− c̃ · z̃z̃ᵀ.

We give two small examples to illustrate Theorem 4.9. In the �rst one, the optimal

error bound λ̃ = |λ1| from (1.3) is attained and non-uniqueness of the optimal solution is

impressively demonstrated. It has been published almost identically in our conference paper

[KPP21b].

Example 4.11 Consider the symmetric matrix

A =

12 0 0

0 3 4

0 4 9

,
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4.2 The Optimal Approximation Error

its eigenvalues λ0 = 12, λ1 = 11, and λ2 = 1 and corresponding normalized eigenvectors

v0 =

1

0

0

, v1 =
1√
5

0

1

2

, v2 =
1√
5

 0

−2

1

.
Following part (1) of Theorem 4.9, we �rst search for structured vectors z ∈ R3 that are

orthogonal to the second eigenvector v1 by solving the equation

vᵀ
1z = 0 ⇔ z + 2z2 = z · (1 + 2z) = 0.

We obtain the solutions z = 0 and z = −1/2, which provide the normalized structured

vectors z(0) =
(

1 0 0
)ᵀ

and z(−1/2) = 4√
21
·
(

1 −1/2 1/4

)ᵀ
. Note that the structured

vector z(∞) =
(

0 0 1
)ᵀ

is not a solution to vᵀ
1z = 0.

For each solution we check the non-negativity condition f(z, λ2
1) ≥ 0, according to (4.9).

We obtain

f(0, 112) =
1

122 − 112
+ 0 =

1

144− 121
=

1

23
≥ 0

and

f(−1/2, 112) =
16/21 · 1

122 − 112
+

1/5 · 16/21 · (1 + 1/4)2

12 − 112
≈ 0.03 ≥ 0.

So both z̃ = 0 and z̃ = −1/2 are optimal structure parameters.

Thus, we obtain two di�erent optimal rank-1 Hankel approximation matrices

c̃ · z̃(0)z̃(0)ᵀ = c̃ ·

1 0 0

0 0 0

0 0 0


and

c̃ · z̃(−1/2)z̃(−1/2)ᵀ = c̃ ·

 1 −1/2 1/4

−1/2 1/4 −1/8

1/4 −1/8 1/16

,
where the coe�cients c̃ lie within the range

1

23
=

1

12 + 11
≤ 1

c̃
≤ 1

12− 11
= 1 ⇔ 1 ≤ c̃ ≤ 23 for z̃ = 0,
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4 Optimal Rank-1 Hankel Approximation in the Spectral Norm

and analogously

1.355 ≈ 42

31
≤ c̃ ≤ 5796

307
≈ 18.880 for z̃ = −1/2,

according to (4.10). For any such approximation, the error ‖A− c̃ · z̃z̃ᵀ‖2 = λ1 = 11 is

exactly the optimal error bound. Especially consider the boundaries of c̃ for z̃ = 0

‖A− 1 · z̃(0)z̃(0)ᵀ‖2 =

∥∥∥∥∥∥∥
11 0 0

0 3 4

0 4 9


∥∥∥∥∥∥∥

2

= 11

and

‖A− 23 · z̃(0)z̃(0)ᵀ‖2 =

∥∥∥∥∥∥∥
−11 0 0

0 3 4

0 4 9


∥∥∥∥∥∥∥

2

= 11.

In this particular example we easily see that for c̃ = 1 and c̃ = 23 the by modulus largest

eigenvalue λ̃ = |±11| of the di�erence matrix occurs with multiplicity two. All values

1 < c̃ < 23 in between cause one of these two eigenvalues to decrease in absolute value,

while the other one remains untouched.

Next, we consider an example for which the optimal error bound (1.3) cannot be attained

(i.e., λ̃ > |λ1|). We �nd the optimal rank-1 Hankel approximation by applying part (2)

of Theorem 4.9. In this particular case, the optimal solution can, in fact, be calculated

completely analytically.

Example 4.12 Consider the symmetric matrix

A =

 1 0 1/2

0 1/2 0

1/2 0 1


with normalized eigenvectors

v0 =
1√
2

1

0

1

, v1 =

0

1

0

, v2 =
1√
2

 1

0

−1

,
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4.2 The Optimal Approximation Error

and corresponding eigenvaluesλ0 = 3/2 andλ1 = λ2 = 1/2. Thus the optimal approximation

error λ̃ lies within the interval [1/2, 3/2). Since the system of equations

vᵀ
1z = 0 ⇔ z = 0

vᵀ
2z = 0 ⇔ 1− z2 = 0

does not have a common root in R, the optimal error bound cannot be attained. This means,

we have λ̃ > |λ1| = 1/2. Therefore, we need to �nd λ̃ ∈ (1/2, 3/2) and z̃ such that f(z̃, λ̃2)

satis�es (4.11), namely, maxz∈R f(z, λ̃2) = 0 and z̃ ∈ argmaxz∈R f(z, λ̃2). Filling in the

respective eigenvalues in (4.8), we obtain

f(z, λ2) =
(vᵀ

0z)2

9/4− λ2
+

(vᵀ
1z)2

1/4− λ2
+

(vᵀ
2z)2

1/4− λ2
.

Multiplying with the normalization factor (1 + z + z2) of the structured vector, this

results in

(
1 + z2 + z4

)
· f(z, λ2)

=
1/2 + z2 + z4/2

9/4− λ2
+

z2

1/4− λ2
+

1/2− z2 + z4/2

1/4− λ2

=
1

(9/4− λ2) (1/4− λ2)
·
((

5/4− λ2
)
z4 +

(
1/4− λ2

)
z2 +

(
5/4− λ2

))
=

5/4− λ2

(9/4− λ2) (1/4− λ2)
·

((
z2 − λ2 − 1/4

2 · (5/4− λ2)

)2

+ 1−
(

λ2 − 1/4

2 · (5/4− λ2)

)2
)
,

where in the last line we assume λ2 6= 5/4. A direct inspection of the last expression provides

that maxz∈R f(z, λ̃2) = 0 if and only if

1−
(

λ2 − 1/4

2 · (5/4− λ2)

)2

= 0,

that is, if λ̃2 = 11/12.

We then obtain the optimal parameters from (4.12) as

z̃2 =
λ̃2 − 1/4

2 ·
(

5/4− λ̃2
) =

11/12− 1/4

2 · (5/4− 11/12)
= 1 ⇒ z̃ = ±1
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and

c̃ =

(
2/3

3/2−
√

11/12
+

1/3

1/2−
√

11/12
+ 0

)−1

= 2.

Taking the normalization of z̃ into account, we obtain for the approximation error∥∥∥∥∥∥∥A− 2 · 1

3

 1 ±1 1

±1 1 ±1

1 ±1 1


∥∥∥∥∥∥∥

2

=

∥∥∥∥∥∥∥
1

6

 2 ±4 −1

±4 −1 ±4

−1 ±4 2


∥∥∥∥∥∥∥

2

=

√
11

12
≈ 0.9574,

rounded to four digits.

The same matrix as in Example 4.12 has been approximated in Example 3.8 for the

Frobenius norm. For a comparison of the results see Section 9.1. Especially Table 9.1 provides

a neat arrangement of the respective optimal parameters and optimal approximation errors.

In most examples, especially ones of larger dimensions, the optimal error may not be

deduced directly by inspection of the function f(z, λ2) as in Example 4.12. The optimal

rank-1 Hankel approximation can still be computed numerically in those cases, see the

bisection procedure in Section 4.3 for this purpose.

4.2.2 Multiple Largest Eigenvalue

Now let the by modulus largest eigenvalue of A ∈ RN×N occur with higher multiplicity;

that is, we have λ0 = ‖A‖2 = |λ1|. In this case, an optimal Hankel structured approximation

of true rank one does not always exist as can be deduced from Proposition 4.13. In fact,

either there is no solution to problem (4.1) or the optimal error bound (1.3) is attained. In

Theorem 4.15, we give necessary and su�cient conditions for the latter case to occur.

Partial results and examples from this section have appeared in our main publication

[KPP21a] and in compressed form in [Kni21].

We start this section with an adaptation of Proposition 4.6 to matrices A with multiple

largest eigenvalue.

Proposition 4.13 Assume that the largest eigenvalue of A occurs with higher multiplicity
λ0 = ‖A‖2 = |λ1|, without loss of generality λ0 > 0. Then any number λ strictly larger than
the largest eigenvalue λ0 of A cannot be the optimal approximation error for rank-1 Hankel
approximation in the spectral norm.
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4.2 The Optimal Approximation Error

Proof. Similarly to the proof of Proposition 4.6, we �nd that for λ > λ0 there are parameters

z ∈ R and c ∈ R \ {0} such that both M1(λ, c, z) and M2(λ, c, z) are strictly positive

de�nite.

First, note that for λ > λ0 both the diagonal parts λI−Λ and λI + Λ are strictly positive

de�nite. Choose any z ∈ R and set c = λ−λ0
2 . Then, for these parameters, M1(λ, c, z) is

strictly positive de�nite since it is the sum of a positive de�nite and a positive semide�nite

matrix. The second auxiliary matrix M2(λ, c, z) is strictly positive de�nite by the same

arguments as in the proof of Proposition 4.6.

Note that by the Eckart-Young-Mirsky Theorem (Theorem 1.8) the error of a rank-1

approximation cannot be smaller than |λ1| = λ0. So, for a matrix with multiple largest

absolute eigenvalue, two situations can occur. Either the optimal error bound λ0 is attained

by the optimal rank-1 Hankel approximation, or there exists no Hankel matrix of true rank

one optimally approximating the matrix A. In the latter case, the r1H problem (4.1) does

not have a solution. When relaxing (4.1) slightly to

min‖A−H‖2 such that rank H ≤ 1,

and H has Hankel structure

= min
z∈R
c∈R

‖A− c · zzᵀ‖2,
(4.15)

allowing the rank of the approximating matrix to be smaller than or equal to one, we only

obtain the trivial solution of a zero matrix (i.e., c = 0). See Example 4.18 for an illustration

of this incidence.

Remark 4.14 Of course, the optimal error bound λ0 is always attained for c = 0. However

with c = 0 the matrix c · zzᵀ is not a rank-1 matrix but the zero matrix. Therefore, this case

is deliberately excluded.

In the upcoming theorem, we give necessary and su�cient conditions under which the

optimal error bound λ̃ = λ0 = |λ1| from (1.3) is attained for a Hankel matrix of true rank

one.

Theorem 4.15 Let A ∈ RN×N be symmetric with rank A > 1. Assume that the largest
eigenvalue occurs with higher multiplicity λ0 = ‖A‖2 = |λ1|, without loss of generality
λ0 > 0. The optimal error bound ‖A− c̃ · z̃z̃ᵀ‖2 = |λ1| = λ0 can be attained by a rank-1
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4 Optimal Rank-1 Hankel Approximation in the Spectral Norm

Hankel matrix c̃ · z̃z̃ᵀ if and only if z̃ ∈ R satis�es either

vᵀ
j z̃ = 0 for all j with λj = −λ0, (4.16a)

or

vᵀ
j z̃ = 0 for all j with λj = λ0. (4.16b)

Then c̃ chosen as

c̃ =

(N−1∑′

j=0

(vᵀ
j z̃)2

λ0 + λj

)−1

> 0 in the �rst case (4.16a), (4.17a)

respectively

c̃ =

(
−
N−1∑′

j=0

(vᵀ
j z̃)2

λ0 − λj

)−1

< 0 in the second case (4.16b) (4.17b)

ensures that the optimal error bound λ0 is attained by c̃ · z̃z̃ᵀ.

Proof. First, assume that z does not satisfy (4.16); that is, z satis�es neither (4.16a) nor (4.16b).

This means that there are indices j1 and j2 contradicting (4.16a) and (4.16b), respectively.

More precisely, we have λj1 = −λ0 and vᵀ
j1

z = µj1 6= 0, as well as λj2 = λ0 and

vᵀ
j2

z = µj2 6= 0. We show that for such z, the two auxiliary matrices M1(λ0, c, z) and

M2(λ0, c, z) cannot both be positive semide�nite. Thus z as assumed cannot be an optimal

parameter attaining the optimal error λ0.

In order to examine the de�niteness of M1(λ0, c, z) and M2(λ0, c, z), de�ne the vectors

x1 :=
(
δj1,j

)N−1

j=0
and x2 :=

(
δj2,j

)N−1

j=0
. Therein, δj,k denotes the Kronecker symbol; that

is, xj1 and xj2 are the only non-zero entries of x1 and x2, respectively. Consider, on the one

hand,

xᵀ
1 ·M2(λ0, c, z) ·x1 = (λ0 +λj1) ·xj1 − c · (xj1 ·µj1)2 = −c · (xj1 ·µj1)2 < 0 for c > 0.

Thus, we need c < 0 in order for M2(λ0, c, z) to possibly be positive semide�nite. On the

other hand, we have

xᵀ
2 ·M1(λ0, c, z) · x2 = (λ0 − λj2) · xj2 + c · (xj2 · µj2) = c · (xj2 · µj2) < 0 for c < 0.

All in all, for z not satisfying (4.16), there exists no c 6= 0 such that both M1(λ0, c, z) and
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4.2 The Optimal Approximation Error

M2(λ0, c, z) are simultaneously positive semide�nite.

Second, let z̃ ∈ R such that vᵀ
j z̃ = 0 for all j with λj = −λ0 and c̃ chosen accordingly

(i.e., c̃ as in (4.17a)). Then, M1(λ0, c̃, z̃) is positive semide�nite as a sum of two positive

semide�nite matrices. Furthermore, M2(λ0, c̃, z̃) is positive semide�nite by Lemma 4.4. The

choice of c̃ ensures that it has zero as an eigenvalue.

The argument is analogous for z̃ ∈ R such that vᵀ
j z̃ = 0 for all j with λj = λ0 and c̃ as in

(4.17b). In this case, M2(λ0) is the sum of two positive semide�nite matrices and therefore

positive semide�nite. Replacing c by −c in Lemma 4.4, we �nd that M1(λ0) is also positive

semide�nite with eigenvalue zero. Hence, ‖A− c̃ · z̃z̃ᵀ‖2 = λ0 = |λ1| in both cases.

Remark 4.16 The precise choices of c̃ in (4.17) are su�cient for the optimal error bound

but not necessary. The optimal error bound being attained only implies that the optimal

coe�cient c̃ is contained in a suitable interval. If we have ‖A− c̃ · z̃z̃ᵀ‖2 = λ0 = |λ1|, then

either

vᵀ
j z̃ = 0 for all j with λj = −λ0, and 0 < c̃ ≤

(N−1∑′

j=0

(vᵀ
j z̃)2

λ0 + λj

)−1

, (4.18a)

or

vᵀ
j z̃ = 0 for all j with λj = λ0, and 0 > c̃ ≥

(
−
N−1∑′

j=0

(vᵀ
j z̃)2

λ0 − λj

)−1

. (4.18b)

This is because, from the prerequisites of Theorem 4.15, we cannot determine whether the

matrix M1(λ0) in the case (4.16a), or M2(λ0) in the case (4.16b) possesses the eigenvalue

zero or is in fact strictly positive de�nite. More precisely, if for example the positive largest

eigenvalue +λ0 is a single one (i.e., λj 6= λ0 for j = 1, . . . , N − 1), we have no means of

knowing whether M1(λ0) has a zero-eigenvalue or not.

However, if for example the positive largest eigenvalue occurs with higher multiplicity

itself (i.e., λ0 = λ1 > 0), then M1(λ0) does have the eigenvalue zero and we may choose

c̃ in the range (4.18b). The analogue holds for the negative largest eigenvalue −λ0 and

M2(λ0). See also the proof of Corollary 4.19 on that matter.

Remark 4.17 Of course, the condition (4.16a) (respectively (4.16b)) is ful�lled for a structured

vector z̃ belonging to the eigenspace spanned by those vj with λj = −λ0 (respectively

λj = λ0). But this is not necessary as opposed to the case with isolated largest eigenvalue,

compare Theorem 4.9.
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4 Optimal Rank-1 Hankel Approximation in the Spectral Norm

The requirements (4.16) can be viewed as a set of polynomial equations in the variable z.

It might happen that neither the set of polynomial equations corresponding to (4.16a) nor

the one corresponding to (4.16b) has a joint solution in R. In this case, problem (4.1) does

not have a solution and the relaxed problem (4.15) is only solved by the zero matrix. We

now give an example of this phenomenon.

Example 4.18 Consider the following symmetric matrix

A =


0 0 0 0 −1

0 0 0 −1 0

0 0 1 0 0

0 −1 0 0 0

−1 0 0 0 0

 ∈ R5×5.

This matrix only has two distinct eigenvalues, namely λ0 = λ1 = λ2 = 1 and λ3 =

λ4 = −1, which additionally have the same absolute value. The corresponding normalized

eigenvectors are

v0 =
1√
2


1

0

0

0

−1

, v1 =
1√
2


0

1

0

−1

0

, v2 =


0

0

1

0

0

, v3 =
1√
2


0

1

0

1

0

, v4 =
1√
2


1

0

0

0

1

,

respectively.

We check for the conditions (4.16) from Theorem 4.15. For z ∈ R, neither of the two

systems of equations

vᵀ
3z = 0 ⇔ z + z3 = 0

vᵀ
4z = 0 ⇔ 1 + z4 = 0

and

vᵀ
0z = 0 ⇔ 1− z4 = 0

vᵀ
1z = 0 ⇔ z − z3 = 0

vᵀ
2z = 0 ⇔ z2 = 0

corresponding to (4.16a) and (4.16b), respectively, has a joint solution. Further note that

z(∞) =
(

0 0 0 0 1
)ᵀ

is not a solution to either of the systems. Thus, for this

matrix A, a solution to problem (4.1) of true rank one does not exist. The only solution to

the relaxed problem (4.15) is the zero matrix.

74



4.2 The Optimal Approximation Error

Example 4.18 demonstrates that, for some initial matrices, the condition (4.16) from

Theorem 4.15 are impossible to ful�ll. However, they are especially satis�ed if the largest

eigenvalues all occur with the same sign.

Corollary 4.19 Let A ∈ RN×N be symmetric with rank A > 1. Assume that the largest
eigenvalue occurs with higher multiplicity λ0 = ‖A‖2 = |λ1|. Further suppose that all by
modulus largest eigenvalues of A, |λj | = ‖A‖2 = |λ0|, actually have the same sign, without
loss of generality, let λ0 = λ1 = · · · > 0.

Then every rank-1 Hankel matrix c̃ · z̃z̃ᵀ with arbitrary z̃ ∈ R and c̃ chosen in the range

0 < c̃ ≤

(
N−1∑
j=0

(vᵀ
j z̃)2

λ0 + λj

)−1

solves the r1H problem (4.1). Thereby the optimal error bound

‖A− c̃ · z̃z̃ᵀ‖2 = ‖A‖2 = λ0 = λ1

is always attained.

Proof. Additionally to the proof of Theorem 4.15, we have to show that the auxiliary

matrix M1(λ0, c̃, z̃) already has the eigenvalue zero. Then we do not need to ensure that

M2(λ0, c̃, z̃) has zero as an eigenvalue, which was done by choosing c̃ as in (4.17a) in

Theorem 4.15. For M2(λ0, c̃, z̃) to be positive semide�nite, it is su�cient to choose c̃ in the

range given in the corollary, see also Remark 4.16.

Consider the determinant of M1(λ0, c̃, z̃). By Lemma 4.1 we have

det M1(λ0, c̃, z̃) = det(λ0I−Λ) + c̃ ·
N−1∑
j=0

(vᵀ
j z̃)2 ·

 N−1∏
k=0
k 6=j

(λ0 − λk)

 = 0,

where clearly det(λ0I − Λ) = 0. Furthermore, by the assumption λ0 = λ1, the product

is zero in every summand. Therefore, both M1(λ0, c̃, z̃) and M2(λ0, c̃, z̃) are positive

semide�nite for c̃ in the given range and in any case M1(λ0, c̃, z̃) has eigenvalue zero. This

yields the claim.

We end this section with a small example where Corollary 4.19 is applicable.
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4 Optimal Rank-1 Hankel Approximation in the Spectral Norm

Example 4.20 Consider the following symmetric matrix and its eigenvectors

A =

11 0 0

0 3 4

0 4 9

, v0 =

1

0

0

, v1 =
1√
5

0

1

2

, v2 =
1√
5

 0

−2

1

.
Its eigenvalues are λ0 = 11, λ1 = 11, and λ2 = 1, so both of the by modulus largest

eigenvalues λ0 = λ1 = 11 have the same sign. Hence, according to Corollary 4.19, for any

z̃ ∈ R we can choose c̃ anywhere in the range

0 < c̃ ≤

(
1

1 + z̃2 + z̃4
·

(
1

11 + 11
+

1
5 ·
(
z̃ + 2z̃2

)2
11 + 11

+
1
5 ·
(
−2z̃ + z̃2

)2
11 + 1

))−1

in order to obtain an optimal pair of parameters (c̃, z̃).

The relation between z̃ and matching c̃ is depicted in Figure 4.1 for z̃ ∈ [−100, 100]. Any

pair of parameters in the colored area of Figure 4.1 constitutes an optimal rank-1 Hankel

approximation attaining the optimal error bound ‖A− c̃ · z̃z̃ᵀ‖2 = 11.
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0
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Figure 4.1 Dark red line: upper bound on the optimal coe�cient c̃ depending on the structure
parameter z̃. Light grey area: admissible pairs (c̃, z̃) generating optimal rank-1
Hankel approximations c̃ · z̃z̃ᵀ of A from Example 4.20.

Note that the upper bound on c̃ depends continuously on the optimal z̃. In particular, we

obtain

0 < c̃ ≤

(
0 +

1
5 · 2

2

11 + 11
+

1
5 · 1

11 + 1

)−1

=
132

7
≈ 18.8571,

for the limit z̃(∞) =
(

0 0 0 0 1
)ᵀ

. This value �ts nicely with the margins of Fig-

ure 4.1 (dark red line).
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4.3 Computation of the Optimal Approximation

4.3 Computation of the Optimal Approximation

Theorems 4.9 and 4.15 can be exploited to implement an algorithm for the numerical

computation of the optimal rank-1 Hankel approximation with respect to the spectral norm.

The parts of this section concerning the optimal rank-1 Hankel approximation when the

largest eigenvalue is isolated follow closely along the lines of the respective subsection of

our paper [KPP21a, Sec. 4.3]. The remaining ones for multiple largest eigenvalue are new.

The natural �rst step in Algorithm 4.1 is to determine whether the largest eigenvalue is

isolated or occurs with higher multiplicity. Depending on which is the case, the decision on

the further procedure is made.

Algorithm 4.1 Optimal rank-1 Hankel approximation w.r.t. the spectral norm

Input: Symmetric matrix A ∈ RN×N .
Compute the eigendecomposition of A to obtain the eigenvalues
λ0 ≥ |λ1| ≥ · · · ≥ |λN−1| ≥ 0 and the corresponding normalized eigenvectors
v0,v1, . . . ,vN−1;

if the largest eigenvalue is isolated, then
compute the optimal rank-1 Hankel approximation according to Theorem 4.9, see

Algorithm 4.2;

if the largest eigenvalue is not isolated, then
compute the optimal rank-1 Hankel approximation according to Theorem 4.15, see

Algorithm 4.3.
Output: Parameters c̃ and z̃ generating an optimal rank-1 Hankel approximation of A

with the optimal approximation error λ̃ in the spectral norm.

In case of isolated largest eigenvalue, we have to verify whether the conditions (4.9)

from part (1) of Theorem 4.9 can be satis�ed. If this is the case for some z̃ ∈ R, we

choose c̃ according to (4.10). Keep in mind that we have to check for the structured vector

z =
(

0 0 1
)ᵀ

indexed by z =∞ separately. This can be easily done by examining

the last entry of the eigenvectors vj corresponding to the eigenvalues λj with |λj | = |λ1|.
Only if all of these last entries are zero, the structured vector z =

(
0 0 1

)ᵀ
is

orthogonal to all the vj in question, as demanded by (4.9).

If (4.9) cannot be satis�ed, then we have to employ the relations (4.11) and (4.12) from

part (2) of Theorem 4.9 to determine the optimal parameters c̃ and z̃. To this end, we make
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4 Optimal Rank-1 Hankel Approximation in the Spectral Norm

an important observation about the function f from (4.8). Recall the de�nition

f(z, λ2) :=

N−1∑′

j=0

(vᵀ
j z)2

λ2
j − λ2

=

N−1∑′

j=0

µ2
j

λ2
j − λ2

(4.19)

for z ∈ R and λ2 ∈
[
λ2

1, λ
2
0

)
.

For �xed z ∈ R, the function f(z, λ2) is strictly monotonically increasing in λ2. This

fact can be used to track down the optimal error λ̃ in (4.3) when part (2) of Theorem 4.9

applies (i.e., when λ̃ ∈ (|λ1|, λ0)). For any �xed λ2 ∈
(
λ2

1, λ
2
0

)
, de�ne fλ(·) := f(·, λ2).

Then relation (4.11) and the monotonicity of f(z, λ2) for �xed z imply

• if maxz∈R fλ(z) > 0, then the optimal error satis�es λ̃2 < λ2,

• if maxz∈R fλ(z) < 0, then the optimal error satis�es λ̃2 > λ2,

• if maxz∈R fλ(z) = 0, then the optimal error satis�es λ̃2 = λ2, and the optimal rank-1

Hankel approximation is generated by z̃ ∈ argmaxz∈R f(z, λ) and the corresponding

coe�cient c̃ from (4.12).

Therefore, a bisection iteration on λ ∈
(
|λ1|, λ0

)
can be used to �nd the optimal approxi-

mation error λ̃. At each step of the bisection iteration we have to determine the sign of the

maximum of fλ.

In order to �nd a simpler range for z in which to �nd that maximum, we apply an idea

similar to the one used in Theorem 3.4 for the Frobenius norm. Let

gλ(z) :=

N−1∑
j=0

(
vᵀ
j · Jz

)2
λ2
j − λ2

, (4.20)

where J = JN denotes the counter-identity matrix (1.10). Because of z(1/z) = Jz(z), we

have

fλ (1/z) =
N−1∑
j=0

(
vᵀ
j · z(1/z)

)2
λ2
j − λ2

=
N−1∑
j=0

(
vᵀ
j · Jz(z)

)2
λ2
j − λ2

= gλ(z)

for z 6= 0. Moreover, we have gλ(0) = limz→∞ fλ(z). Thus, in order to �nd the maximum

of fλ(z), we can split our search between fλ and gλ. We search for the maximum of fλ(z)

merely inside the interval [−1, 1]. To account for the rest of the extended real numbers

R \ [−1, 1], we search for the maximum of gλ(z) inside the open interval (−1, 1).
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4.3 Computation of the Optimal Approximation

Algorithm 4.2 Optimal rank-1 Hankel approximation w.r.t. the spectral norm for
isolated largest eigenvalue
Input: Eigenvalues λ0 > |λ1| ≥ · · · ≥ |λN−1| ≥ 0 and the corresponding normalized

eigenvectors v0,v1, . . . ,vN−1, threshold ε > 0.
Compute the set Σ of joint real roots of the polynomials vj(z) = vᵀ

j z corresponding
to the eigenvalues λj with |λj | = |λ1|, and with z as in (2.5);

for z ∈ Σ do
compute

fλ1(z) = f(z, λ2
1) =

N−1∑′

j=0

(vᵀ
j z)2

λ2
j − λ2

1

if fλ1(z) ≥ 0, then set

λ̃ = |λ1|, z̃ = z, c̃ =

(N−1∑′

j=0

(vᵀ
j z)2

λj − |λ1|

)−1

add
(
λ̃, c̃, z̃

)
to Solution;

if Σ = ∅ or fλ1(z) < 0 for all z ∈ Σ, then
apply the following bisection iteration: set a = |λ1| and b = λ0,
while b− a > ε do

compute λ = a+b
2 , and �nd the maximal value

W = max

{
max

z∈[−1,1]
fλ(z), max

z∈(−1,1)
gλ(z)

}
,

with fλ and gλ de�ned in (4.19) and (4.20), respectively,
if W > 0, then set b = λ,
if W < 0, then set a = λ,
if W = 0, then we have found the optimal error λ̃ = λ, set a = b

if W was the maximum of fλ̃ at zf ∈ [−1, 1], then set z̃ = zf ,
else if W was the maximum of gλ̃ at zg ∈ (−1, 1), then set z̃ = 1/zg
compute

c̃ =

(
N−1∑
j=0

(vᵀ
j z̃)2

λj − λ̃

)−1

add
(
λ̃, c̃, z̃

)
to Solution;

return Solution.
Output: Optimal approximating error λ̃ and parameters c̃ and z̃ generating an optimal

rank-1 Hankel approximation of A.
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Depending on the sign of the larger maximum

W := max

{
max

z∈[−1,1]
fλ(z), max

z∈(−1,1)
gλ(z)

}
,

we narrow down the range in which to search for the optimal error λ̃. The bisection

procedure stops when W = 0 for a certain λ, or when a su�cient accuracy for λ is reached.

Upon termination, we have to distinguish which one of the functions f and g contributes

the overall maximum W . If W = maxz∈[−1,1] fλ(z) =: fλ(zf ), we set z̃ = zf . If however

W = maxz∈(−1,1) gλ(z) =: gλ(zg), then we have to proceed with the reciprocal of its

maximizer z̃ = 1/zg . In the latter case, we have to check if zg = 0 and if necessary manually

set z̃ =∞ instead of z̃ = 1/zg. Besides the smaller range, the use of both functions f and

g has the advantage that z̃ =∞ does not have to be found as a maximizer by the built-in

functions. Instead, z̃ =∞ is equivalent to zg = 0.

We summarize our deductions in Algorithm 4.2.

When the largest eigenvalue is not isolated, we invoke Theorem 4.15. We have to

�nd structured vectors z that are orthogonal to the eigenspace of −λ0 or +λ0. We do

so by interpreting the inner product vᵀ
j z as a polynomial vj(·) in z. The joint real roots

of the set of polynomials corresponding to either −λ0 or +λ0 are the optimal structure

parameters z̃. Again, z =∞ can be an optimal structure parameter and has to be accounted

for individually. As before, when checking condition (4.9), this can be done via the last

entry of the eigenvectors. The structure parameter z = ∞ generates an optimal rank-1

Hankel approximation if and only if the last entry of all eigenvectors corresponding to −λ0

(respectively +λ0) are zero.

Once an optimal structure parameter z̃ is determined, the corresponding optimal coe�-

cient c̃ is computed according to (4.17), depending on which eigenspace z̃ is orthogonal to.

Algorithm 4.3 summarizes the computation of the optimal rank-1 Hankel approximation in

case of multiple largest eigenvalue.

Remark 4.21 Obviously, the optimal rank-1 Hankel approximation in the spectral norm de-

pends on the distribution of all eigenvalues of A, as well as the structure of its eigenvectors.

In particular, the optimal parameters c̃ and z̃ generating the optimal rank-1 Hankel approxi-

mation with respect to the spectral norm usually do not coincide with those parameters

found for the Frobenius norm. This fact can be seen by means of Examples 3.8 and 4.12. See
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4.3 Computation of the Optimal Approximation

Table 9.1 for a neat overview of the respective optimal parameters.

Remark 4.22 The theory of Adamjan, Arov, and Kreı̆n (AAK theory) deals with the struc-

tured low-rank approximation problem for in�nite matrices. From this theory, we learn

that the optimal parameter z̃ should be a root of the so-called Laurent series obtained from

the in�nite singular vector corresponding to the second largest singular value σ1, see for

example [BM05; Pot17]. This is similar to what we do when checking whether the optimal

error bound can be achieved: we inspect all roots of v1(z) = vᵀ
1z, which can be interpreted

as the �nite Laurent polynomial corresponding to the second singular vector.

Algorithm 4.3 Optimal rank-1 Hankel approximation w.r.t. the spectral norm for
multiple largest eigenvalue
Input: Eigenvalues λ0 = |λ1| ≥ · · · ≥ |λN−1| ≥ 0 and the corresponding normalized

eigenvectors v0,v1, . . . ,vN−1, threshold ε > 0.
Compute the set Σ− of joint real roots z̃ of the polynomials vj(z) = vᵀ

j z = 0 for all j
with λj = −λ0;

for z̃ ∈ Σ− do
compute

c̃ =

(N−1∑′

j=0

(vᵀ
j z̃)2

λ0 + λj

)−1

> 0

add
(
λ̃ = |λ0|, c̃, z̃

)
to Solution;

compute the set Σ+ of joint real roots of the polynomials vj(z) = vᵀ
j z = 0 for all j

with λj = +λ0;
for z̃ ∈ Σ+ do

compute

c̃ = −

(N−1∑′

j=0

(vᵀ
j z̃)2

λ0 − λj

)−1

< 0

add
(
λ̃ = |λ0|, c̃, z̃

)
to Solution;

return Solution.
Output: List of tuples, each containing the optimal approximation error λ̃ = |λ0| and

parameters c̃ and z̃ generating an optimal rank-1 Hankel approximation of the
matrix A,
empty when there is no optimal solution of true rank one, only the zero
matrix.
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II
Benchmarking

Structured Low-Rank
Approximation Methods

There are a variety of di�erent optimization approaches that engage in the structured

low-rank approximation (SlRA) problem for

“Di�erent methods for solving the problem can be obtained by choosing di�erent

combinations of rank representation and optimization method”

—Ivan Markovsky [Mar19].

This part is to compare rank-1 Hankel approximations produced by di�erent SLRA methods

found in the literature. Thereby, the optimal solutions to the r1H problem with respect to

the Frobenius and the spectral norm serve as benchmarks.

Before we come to the major comparison, we review three main approaches to deal with

the structured low-rank approximation problem. These are

• approaches based on local optimization in a neighborhood of an initial value,

• Cadzow’s method, which is a heuristic application of alternating projections, and

• convex relaxation of the low-rank constraint achieved by the nuclear norm.

These methods are more universally applicable—both in terms of structure and desired rank

of the approximation—than the ones presented in Part I of this thesis.
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Benchmarking Structured Low-Rank Approximation Methods

However, they exclusively �nd real structured approximations for real initial matrices.

Methods explicitly suited for complex structured low-rank approximation of complex (or

even real) matrices are unknown to the author. Therefore, complex approximations are

excluded from this part.

Except for Cadzow’s method, which does not change for di�erent norms (see Remark 7.3),

all of the aforementioned focus on approximation with respect to the (weighted) Frobenius

norm. Hence, the comparison of approximations in the spectral norm only takes up a small

portion of this part.

Furthermore, in most cases, the relaxed rank constraint rank H ≤ r is used in order to

circumvent the issue of non-existence of a solution with �xed rank H = r, see [CFP03]. For

the relaxed rank constraint and linear matrix structures, the feasible set is non-empty and

closed, thus a solution always exists.

In Chapter 5, we introduce a general representation of structured matrices. This rep-

resentation will enable us to understand the SLRA methods in the subsequent chapters.

Chapters 6 to 8 each discuss one of the three main approaches—local optimization, alternat-

ing projections, and convex relaxation. Chapter 6 actually contains two methods that are

both based on local optimization but use di�erent ways of expressing the rank constraint,

see Sections 6.1 and 6.2.

We adapt all methods mentioned above to explicitly �t the r1H problem. This adaption is

straightforward for the local optimization approaches (Chapter 6) and Cadzow’s method

(Chapter 7). For Cadzow’s method, besides the mere adaption, we give a new convergence

result in the setting of rank-1 Hankel approximation, see Section 7.2. The modi�cation

of the convex relaxation method for rank-1 Hankel approximation in Chapter 8 is more

involved than for the other methods. It turns out that it is less suited to the task, too.

At the end of each chapter, we a�liate small examples by which we compare the method

at hand to the optimal one.

Finally, Chapter 9 is dedicated to overall comparisons. In Section 9.1, we again summarize

the small examples encountered throughout this dissertation. In Section 9.2, we run both

more and larger-scale comparisons of the methods from Chapters 6 to 8. Our optimal rank-1

Hankel approximations from Part I always serve as benchmarks.
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5 General Affine
Matrix Structure

The methods we are about to present and compare in this part are designed to deal with a

vast variety of a�ne matrix structures. In order to be able to handle general a�ne matrix

structures, we need the following de�nition from [Mar19] (earlier versions in [MVP05;

MWV+06]). Proceeding from this general de�nition, we will always come back to Hankel

structured matrices.

From now on in this part, we always assume that 2 ≤M ≤ N without loss of generality.

Otherwise we can consider the transpose of the matrix.

Definition 5.1 An a�ne matrix structure is given by the structure speci�cation map S
from a parameter space Rnp to the space of a�nely structured matrices in RM×N . The

structure speci�cation map is de�ned by

S : Rnp → RM×N , S(p) = Sa�ne +

np−1∑
k=0

pk · Sk,

where pk denotes the k-th entry of the parameter vector p. The matrices Sa�ne and Sk,

k = 0, . . . , np − 1, are (M ×N) matrices and form a basis of the structure in question. The

number of parameters np is required to be minimal, where minimal is meant in the sense

that imageS = {S(p) : p ∈ Rnp} cannot be represented with fewer than np parameters.

The Hankel structure can be represented in form of a structure speci�cation map as

introduced in De�nition 5.1. This rather abstract de�nition becomes clearer when we
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5 General A�ine Matrix Structure

formulate it speci�cally for a Hankel matrix

H =


h0 hM−1 hN−1

hM−1 hN−1 hM+N−2

 ∈ RM×N .

Any Hankel matrix H is completely determined by the entries of its �rst row and last column.

Thus, our parameter vector

p :=
(
h0 h1 hM+N−2

)ᵀ
∈ Rnp ,

is the vector of generically di�erent entries of H. Consequently, the dimension of the

parameter space is given by np = M +N − 1. Furthermore, the Hankel structure depends

linearly on the parameters, so that we have Sa�ne = 0. The matrices Sk , k = 0, . . . , np − 1

are taken as a basis for the space of Hankel matrices. More precisely, each Sk is the matrix

with ones on the k-th counter-diagonal (starting to count by zero in the top left corner

of the matrix), see (5.1). Together we obtain the explicit Hankel structure speci�cation

H := HM,N := SHankel of size M ×N as the mapH : Rnp → RM×N ,

H(p) = h0 ·


1 0 0

0 0

0

+h1 ·


0 1 0

1 0

0

+h1 ·


0 0 1

0 1

1

+ · · · = H, (5.1)

where the empty spaces in the matrices stand for the appropriate number of zeros.

Let vec A be the vectorization of a matrix obtained by stacking its columns on top of

each other. It is convenient to de�ne the structure speci�cation matrix

S :=
(

vec S0 vec S1 vec Snp−1

)
∈ RMN×np .

Then, the structure speci�cation map S can also be written as a multiplication of the

parameter vector with the structure speci�cation matrix S, namely

vecS(p) = vec Sa�ne + S · p, respectively S(p) = Sa�ne + vec−1(S · p). (5.2)

Remark 5.2 The minimimality of np (see De�nition 5.1) is necessary and su�cient for S
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5 General A�ine Matrix Structure

having full column rank. In the case of Hankel structure, the matrix S moreover consists

only of zeros and ones, and there is at most one non-zero element in each row of S. This

means that any one entry of the Hankel matrixH(p) corresponds to at most one entry of

the parameter vector p.

The structure speci�cation matrix S is also useful to express the projection onto the space

of structured matrices as the following lemma from [IUM14] shows.

Lemma 5.3 ([IUM14, Lemma 2.1]) For a structure speci�cation S whose structure speci�ca-
tion matrix S has at most one non-zero element in each row, the orthogonal projection PS(A)

of a matrix A onto imageS is given by

PS(A) = S(S† · vec A),

where S† := (SᵀS)−1Sᵀ is the Moore-Penrose pseudoinverse of S.

Remark 5.4 1. The above lemma can be interpreted as follows: Multiplying the vector-

ized version of an arbitrary matrix A by the pseudoinverse S† extracts the parameter vector

of its projection onto the structured subspace. More precisely, we have S† · vec A = pA if

and only if PS(A) = S(pA) for some parameter vector pA ∈ Rnp .

2. Combining (5.2) and Lemma 5.3 we also have

vec(PS(A)) = vec Sa�ne + ΠS · vec A,

where ΠS = S ·S† = S · (SᵀS)−1Sᵀ is the orthogonal projector onto the image of S. Thus,

ΠS is related to the Hankel projection matrix P from (1.9), except that for the de�nition of

P we have used a di�erent diagonalization pattern, see Section 1.3.

With the representation of structured matrices introduced in De�nition 5.1, it makes

sense to consider the structured low-rank approximation (SLRA) problem entirely in terms

of the parameter vectors. Unfortunately, in terms of the parameter vectors, we can only

express (weighted) norms that are calculated from the matrix (or vector) entries, such as the

Frobenius norm. The spectral norm is not accessible that way.

Nonetheless, we state the SLRA problem (1) with respect to some weighted norm as

follows. For a structured initial matrix A := S(pA), �nd

min
p∈Rnp

‖pA − p‖2W subject to rankS(p) ≤ r. (5.3)
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5 General A�ine Matrix Structure

Note that with this problem formulation, only structured matrices can be approximated as

opposed to the general matrix A from Chapter 3. This is not a limitation, however, because

we can replace a general unstructured matrix A with its Hankel projection P(A) in a

preprocessing step and de�ne pA := S† ·vec A, see Remark 5.4. As observed in Remark 3.2 3,

it does not change the optimal solution from Chapter 3 whether we approximate an arbitrary

matrix A or its Hankel projection P(A).

In (5.3), ‖·‖W is the weighted norm

‖p‖2W := pᵀ ·W · p,

where W ∈ Rnp×np is a positive de�nite weight matrix.

We �nd the following connection between the weighted norm of the parameter vectors

and the Frobenius norm of the structured matrices

‖S(pA)− S(p)‖2F = ‖S · (pA − p)‖22 = (pA − p)ᵀSᵀ · S(pA − p) = ‖pA − p‖2W ,

where in the last step we take W = SᵀS. Since S has full column rank (see Remark 5.2),

thus de�ned W is indeed positive de�nite. In particular, the Frobenius norm of a Hankel

matrixHM,N (p) ∈ RM×N is calculated with the diagonal weight matrix

W = diag(1, 2, . . . ,M, . . . ,M, . . . , 2, 1) ∈ Rnp×np , (5.4)

where the term M occurs N −M + 1 times.

The rank-1 Hankel approximation (r1H) problem (3.1) with respect to the Frobenius

norm can thus equivalently be formulated as follows. For an initial Hankel matrix A =

HM,N (pA) ∈ RM×N , �nd

min
p∈Rnp

‖pA − p‖2W subject to rankHM,N (p) = 1, (5.5)

with the Hankel structure speci�cation (5.1) and weight matrix (5.4).

Remark 5.5 Employing the structure speci�cation from De�nition 5.1, various structures

other than the Hankel structure can be expressed. Among those, Toeplitz matrices readily

come to mind. However, much more complex matrix structures also belong to that pattern,

including block Hankel, block Toeplitz, and mosaic Hankel structures. The interested reader

may be referred to [Hei95; UM14].
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6 Local Optimization

We consider the structured low-rank approximation (SLRA) problem with respect to the

(weighted) Frobenius norm. Here, only real structured initial matrices A are approximated

by real matrices H of the same structure and lower rank. Recall in contrast Section 3.1,

where we dealt with arbitrary complex initial matrices and their complex rank-1 Hankel

approximations.

In this chapter, we address two di�erent approaches to solve the real SLRA problem,

which are both based on local optimization techniques. The main di�erence lies in their

respective manner of expressing the low-rank constraint. This is also how this chapter splits

into sections.

As mentioned earlier, the methods in this chapter exhibit great variability in terms of

the targeted rank, matrix structure, and norm weight. Besides, they can deal with missing

elements in the data as well as �xed elements in the approximating matrix, see [IUM14;

UM14; UM19]. We will, however, concentrate on plain rank-1 Hankel approximation with

respect to the Frobenius norm in order to enable a useful comparison with our results from

Chapter 3.

6.1 Kernel Representation of the Rank Constraint

This section is based on [Mar19; UM14]. The elaborations therein are summarized and

simpli�ed for scalar matrix structures (opposed to block/mosaic matrix structures). For the

examples we used the implementations [MU14; UM19] in MATLAB.
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6 Local Optimization

In this section, we use the following representation of the low-rank constraint. As

introduced in Lemma 1.4 part (3), we have the equivalence

rank H ≤ r ⇔ R ·H = 0 for some matrix R ∈ Rd×M with full row rank,

where d := M − r is the rank reduction, and H ∈ RM×N with 2 ≤ M ≤ N . This

formulation is called the kernel representation of the rank constraint.

For future reference, the local optimization method using the kernel representation of

the rank constraint, which we present here, will also simply be called kernel method. This

abbreviation is done in order to ease both notation and readability.

Using the kernel representation and the notations from Chapter 5, the SLRA problem (5.3)

reads
min

p∈Rnp
R∈Rd×M

‖pA − p‖2W subject to rank R = d

and R · S(p) = 0,
(6.1)

where r = M − d is the desired rank of the approximation.

Problem (6.1) can equivalently be written as a double minimization problem

min
R∈Rd×M

f(R) subject to rank R = d, (6.2a)

f(R) =

(
min

p∈Rnp
‖pA − p‖2W subject to R · S(p) = 0

)
, (6.2b)

where (6.2a) is called the outer minimization and (6.2b) is called inner minimization.

With a change of variables, the inner minimization problem (6.2b) can be rewritten as a

so-called least-norm problem with respect to the Euclidean vector norm. We introduce as a

new variable the weighted di�erence vector

∆p := W
1/2 · (pA − p). (6.3)

For diagonal weight matrices, W1/2 is de�ned as the diagonal matrix of square roots of the

original entries. If the weight matrix is a more general positive de�nite matrix, W1/2 shall

denote a Cholesky factor of the weight matrix W ∈ Rnp×np . Summarized we can say W1/2

is a matrix satisfying W =
(
W1/2

)ᵀ ·W1/2.

With (6.3) the weighted norm of the di�erence between the parameter vectors becomes

‖pA − p‖2W = (pA − p)ᵀ ·W ·(pA−p) = (pA − p)ᵀ
(
W

1/2
)ᵀ
·W1/2(pA−p) = ‖∆p‖22,
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6.1 Kernel Representation of the Rank Constraint

the ordinary Euclidean vector norm of ∆p.

For an (m×n) matrix A =
(
ajk
)m−1,n−1

j,k=0
and a (p× q) matrix B, the Kronecker product

is de�ned as the (mp× nq) block matrix

A⊗B =


a0,0 ·B a0,n−1 ·B

am−1,0 ·B am−1,n−1 ·B

.
With this de�nition, we further de�ne

s := s(R) := vec (R · S(pA)) = (IN ⊗R) · vecS(pA) ∈ RdN

and

G := G(R) := (IN ⊗R) · S ·W−1/2

=
(

vec(R · S0) vec(R · Snp−1)
)
·W−1/2 ∈ RdN×np ,

where W−1/2 denotes the inverse of W1/2. This inverse exists since W is positive de�nite.

Now the inner minimization problem (6.2b) can be rewritten as

min
∆p∈Rnp

‖∆p‖22 subject to G ·∆p = s. (6.4)

This is a least-norm problem in standard form [BV04, Chap. 6]. As such, it has an analytic

closed-form solution.

If the matrix G = G(R) has full row rank, then

Γ := Γ(R) := G(R) ·G(R)ᵀ ∈ RdN×dN

is invertible, and the solution of the inner problem (6.2b) is given by

∆pker := Gᵀ · Γ−1 · s (6.5)

and

f(R) = ‖∆pker‖22 = sᵀ · Γ−1 · s. (6.6)

Therein, the solution to problem (6.1), pker = pker(R), is de�ned in terms of R since the

matrices G, Γ, and the vector s depend on R. More precisely, the solution parameter vector
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is given by

pker := pA −W−1/2 ·∆pker = pA −W−1/2 ·Gᵀ · Γ−1 · s

via (6.3) and (6.5).

Thus, the variable p (respectively ∆p) is eliminated from problem (6.1). As a consequence,

the double minimization problem (6.2) reduces to a problem in the matrix variable R only:

min
R∈Rd×M

f(R) subject to rank R = d, (6.7)

where f(R) is given by (6.6). For more details on the equivalence of problems (5.3), (6.1),

and (6.7) see [MWV+06, Chap. 4; Mar19, Chap. 4; UM14].

The reduced outer problem (6.7) can now be solved by standard local optimization methods

such as MATLAB’s fmincon. All local optimization methods need an initial point to begin

with. In the software presented in [MU14; UM19], the unstructured low-rank approximation

Ar of A from Theorem 1.8 is used as a starting point. The resulting initial value for R is a

full row rank matrix Rlra ∈ Rd×M such that Rlra ·Ar = 0. By default, the full row rank

condition on R is imposed as the constraint R ·Rᵀ = Id, see [MU14].

In our case, namely the case of the r1H problem, the rank reduction d = M − 1 is very

large. Hence, we have np = M +N −1 ≤ dN forM > 2, which implies that G ∈ RdN×np

cannot have full row rank. Consequently, Γ is not invertible. If in that case the least-norm

problem (6.4) is feasible nevertheless, it still has an analytic solution. This solution is given

by replacing the inverse of Γ in (6.5) and (6.6) by its Moore-Penrose pseudoinverse Γ†, see

[UM14].

However, the implementation presented in [MU14; UM19] requires Γ to actually be

invertible. In [MU14, Note 3], it is explicitly noted that for Hankel structured low-rank

approximation, the rank reduction d can be at most one. In Examples 6.1 and 6.2 we

perform rank-1 Hankel approximation on full rank matrices of sizes (4× 4) and (3× 3),

respectively. So in both cases, we clearly have d ≥ 2 for the rank reduction. Indeed, when

running the unaltered MATLAB code [MU14; UM19] on our example matrices, it returns

approximation matrices with entries about 10−14 for Example 6.1; and even 10−16 for

Example 6.2. This order of magnitud is so close to zero that we cannot consider the rank-1

Hankel approximation successful.

The restriction that the rank reduction d for Hankel matrices can be at most one, is

quite severe. A workaround to overcome this limitation is given by [HR84, Prop. 5.4]. For
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r < M ≤ N and np = M +N − 1, the equivalence

rankHM,N (p) ≤ r ⇔ rankHr+1,np−r(p) ≤ r

follows from said proposition.

Thus, the rank constraint of any Hankel structured low-rank approximation can be recast

into an equivalent constraint on a reshaped Hankel matrix of size (r + 1) × (np − r).

Thereby, the rank reduction is reduced to d = 1. The r1H problem in the Frobenius norm

with reshaped rank constraint is

min
p∈Rnp

‖pA − p‖2W subject to rankH2,np−1(p) = 1. (6.8)

Here, the norm weight remains W = diag(1, 2, . . . ,M, . . . ,M, . . . , 2, 1) from (5.4) with

the term M occurring N −M + 1 times. This is the weight matrix corresponding to the

Frobenius norm of the Hankel matrix HM,N in the original shape. Leaving the weight

matrix unchanged with respect to the original problem (5.5) is essential in order to maintain

equivalence of (6.8) and the original problem. Now, in the formulation (6.8), the r1H problem

can be solved by the MATLAB code [MU14; UM19].

We conclude this section with two small examples illustrating the accuracy of the rank-1

Hankel approximation in the Frobenius norm obtained by the kernel method.

The approximation errors from these examples are again summarized in Tables 9.2 and 9.4

in Chapter 9. There, they are compared to the errors produced by the approximation methods

presented in Section 6.2 and Chapters 7 and 8. As benchmarks, the minimal approximation

errors with respect to the Frobenius norm from Chapter 3 are shown in that comparison as

well.

Example 6.1 Consider the following Hankel matrix and its corresponding parameter vector

A =


3 2 1 1

2 1 1 2

1 1 2 5

1 2 5 2

 and pA =
(

3 2 1 1 2 5 2
)ᵀ
.

We use the MATLAB implementation [MU14; UM19]. At that, we impose the rank constraint

on the reshaped Hankel matrixH2,6(p) instead ofH4,4(p).
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The resulting output is the parameter vector

pker ≈
(

1.02 1.25 1.53 1.88 2.30 2.82 3.46
)ᵀ
,

from which we form the Hankel matrix

Hker = H4,4(pker) ≈


1.02 1.25 1.53 1.88

1.25 1.53 1.88 2.30

1.53 1.88 2.30 2.82

1.88 2.30 2.82 3.46


as solution of the r1H problem (6.8). The entries of the solution vector and matrix have been

rounded to two decimal digits. The rank of the solution matrix is indeed rank Hker = 1.

We �nd that this solution is very close to the optimal one found by the method we

developed in Chapter 3. Indeed, a closer examination reveals that the maximal elementwise

deviation of pker from the optimal parameter vector p̃ := S† · vec(c̃ · z̃M z̃ᵀN ) only lies in

the sixth decimal digit, in fact, ‖pker − p̃‖∞ ≈ 10−6.

The approximation errors produced by the kernel method are ‖pA − pker‖2 ≈ 3.5355 in

terms the of parameter vectors, and ‖A−Hker‖F ≈ 4.5685 in the Frobenius norm. The

respective relative approximation errors are given by ‖pA − pker‖2/‖pA‖2 ≈ 0.5103 and

‖A−Hker‖F /‖A‖F ≈ 0.4816. All errors have been rounded to four decimal digits and

are thus indistiguishable from the minimal errors, see Table 9.4.

Example 6.2 Consider the matrix known from Examples 3.8 and 4.12 and its corresponding

parameter vector

A =

 1 0 1/2

0 1/2 0

1/2 0 1

 and pA =
(

1 0 1/2 0 1
)ᵀ
.

With [MU14; UM19] we obtain the parameter vector and corresponding approximation

matrix

pker =
(

1 0 0 0 0
)ᵀ

and Hker = H3,3(pker) =

1 0 0

0 0 0

0 0 0

.
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Of course, the approximation matrix Hker is of rank one.

Let us compare the above parameter vector pker to the optimal parameter vector p̃ =

S† · vec(c̃ · z̃M z̃ᵀN ) = 7/18 ·
(

1 1 1 1 1
)ᵀ

from Example 3.8. The structural di�erence

is quite pronounced even at �rst glance. More rigorously, the deviation ‖pker − p̃‖∞ =

7/18 ≈ 0.3889 is substantially larger than in Example 6.1.

The approximation errors (rounded to four digits) are ‖pA − pker‖2 ≈ 1.1180 in terms of

parameter vectors and ‖A−Hker‖F ≈ 1.3229 in the Frobenius norm. The respective rela-

tive approximation errors (also rounded to four digits) are given by ‖pA − pker‖2/‖pA‖2 ≈
0.7454 and ‖A−Hker‖F /‖A‖F ≈ 0.7977.

The absolute and relative approximation errors of both examples can also be found in

Tables 9.2 and 9.4. There, they are arranged in order to facilitate the comparison to the

approximation errors produced by the other approximation methods presented in the sequel.

6.2 Image Representation of the Rank Constraint

In this section, another formulation of the rank constraint is used. It is given by Lemma 1.4

part (4) as follows. For H ∈ RM×N , we have the equivalence

rank H ≤ r ⇔ H = P · L for some matrices P ∈ RM×r, L ∈ Rr×N .

The factorization of a low-rank matrix into a product of two matrices with smaller dimensions

is called image representation of the low-rank constraint. It is widely used in methods

for unstructured low-rank approximation, see for example [FXG18; Gol65; HC03; Ste99].

However, adopting it to structured low-rank approximation is not easy [CFP03]. The main

di�culty is to impose the structure via the factors P and L.

Using the image representation of the rank constraint, the SLRA problem (5.3) reads

min
P∈RM×r
L∈Rr×N

‖A−PL‖2F subject to PL = S(p) (6.9)

for some parameter vector p ∈ Rnp .

Problem (6.9) is addressed in [IUM14], where the image representation of the rank con-

straint is also termed matrix factorization approach. In the remainder of this thesis, we will

also call it the image method for short. With this name, we distiguish it from the kernel

method presented in Section 6.1.
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Remark 6.3 In the factorization of the low-rank matrix, the image representation approach

is similar to our approach using the structured vectors zM and zN , compare Chapters 2

and 3. The striking di�erence, however, is that here, the structure is not directly encoded in

the matrix factors but left as a constraint.

Now, we will summarize the factorization approach (or image method) given in [IUM14]

and apply it to rank-1 Hankel approximation. The proposal is to use regularized minimization

in order to iteratively satisfy both the low-rank and the structure constraint. One of the

constraints (i.e., low-rank or structure) is imposed directly and is thus satis�ed at each

iteration step. The deviation from the remaining requirement is included in the problem as

regularization term. This requirement will be achieved only upon convergence.

With the regularized formulation, the constrained minimization problem (5.3), respectively

(6.9), becomes an unconstrained problem. As such, for each �xed regularization parameter

γ the problem can be solved easily. But solvability comes at the cost of one constraint being

satis�ed only approximately.

There are two possibilities as of which constraint to regularize:

• penalize the deviation from the desired structure by solving

min
P∈RM×r
L∈Rr×N

‖A−PL‖2F + γ · ‖PL− PS(PL)‖2F , (6.10)

where the iterate PL is always of the desired rank, while the structure is achieved

gradually as γ increases, or

• penalize the deviation from the low-rank requirement by

min
P∈RM×r
L∈Rr×N

‖A− PS(PL)‖2F + γ · ‖PS(PL)−PL‖2F , (6.11)

where the iteratePS(PL) possesses the desired structure in each step but the low-rank

constraint is satis�ed only upon convergence as γ increases.

Note that what is considered the current iterate di�ers between (6.10) and (6.11).

With PS , we denote the projection onto the a�ne space of structured matrices, where

the structure is given by the speci�cation S , see De�nition 5.1. The coe�cient γ is a

regularization parameter (or penalization parameter) which is increased for higher iterations
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6.2 Image Representation of the Rank Constraint

in order to have both requirements (approximately) ful�lled. Particularly, for γ = ∞
the regularization term ‖PL− PS(PL)‖2F has to be zero and problems (6.9)–(6.11) are

equivalent. The speci�c choice of γ throughout the iterations is discussed below.

Assume now that A = S(pA) is itself a structured matrix, or that A has been projected

onto the space of structured matrices in a preprocessing step, that is, pA = S† · vec A, see

Lemma 5.3 and Remark 5.4. Then problem (6.11) can equivalently be formulated only using

parameter vectors

min
P∈RM×r
L∈Rr×N

∥∥∥pA − S† · vec(PL)
∥∥∥2

W
+ γ · ‖PL− PS(PL)‖2F , (6.12)

where for the weight matrix we have W = SᵀS; for example, choose W as in (5.4) for

Hankel matrices.

Remark 6.4 Originally, the regularized factorization approach [IUM14] was proposed for a

more general weighted matrix norm ‖A‖2W = vec A ·WM ·vec A, where WM is a positive

de�nite weight matrix. But we are only interested in the Frobenius norm which coincides

with the weighted norm for WM = I.

Equivalence of (6.10) and a vectorized version such as (6.12) only holds if the weight matrix

satis�es WM =
(
S†
)ᵀ ·W ·S†. This is not the case for the Frobenius norm (WM = I), see

[IUM14] for more details.

In contrast, equivalence of (6.11) and its vectorized version (6.12) holds for any weighted

vectorized matrix norm as long as WM and W comply with the relation W = Sᵀ ·WM ·S.

That is why, from now on, we focus on (6.11), respectively (6.12).

The key element in the approach [IUM14] is to alternatingly improve the approximations

for L and P while the respective other one remains �xed. More precisely, one has to solve

the following two optimization problems.

For �xed P solve

min
L∈Rr×N

∥∥∥pA − S† · vec(PL)
∥∥∥2

W
+ γ · ‖PL− PS(PL)‖2F (6.13a)

and for �xed L solve

min
P∈RM×r

∥∥∥pA − S† · vec(PL)
∥∥∥2

W
+ γ · ‖PL− PS(PL)‖2F . (6.13b)
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These minimization problems in one variable are equivalent to least squares problems in

standard Euclidean norm as the next lemma demonstrates.

Lemma 6.5 ([IUM14, Lemma 4.1]) The minimization problems (6.13) are equivalent to the
least squares problems

(6.13a)⇔ min
L∈Rr×N

∥∥∥∥∥
(

W1/2 · S†
√
γ ·ΠS⊥

)
(IN ⊗P) · vec(L)−

(
W1/2 · pA

√
γ · vec(Sa�ne)

)∥∥∥∥∥
2

2

, (6.14a)

(6.13b)⇔ min
P∈RM×r

∥∥∥∥∥
(

W1/2 · S†
√
γ ·ΠS⊥

)
(Lᵀ ⊗ IM ) · vec(P)−

(
W1/2 · pA

√
γ · vec(Sa�ne)

)∥∥∥∥∥
2

2

, (6.14b)

where ⊗ denotes the Kronecker product. The matrix ΠS⊥ := IMN − SS† is the orthogonal
projector onto the left kernel of S. As before in Section 6.1, W1/2 ∈ Rnp×np denotes a matrix
satisfying W =

(
W1/2

)ᵀ ·W1/2.

For the proof see [IUM14].

The advantage of formulating (6.13) as the least squares problems (6.14) is that the latter

have closed-form solutions. This results in the double iteration that is summarized in

Algorithm 6.1. An implementation can be found in [UM19].

Algorithm 6.1 Structured low-rank approximation by factorization
Input: Parameter vector pA ∈ Rnp of an initial Hankel matrix A, desired structure S ,

desired rank r, initial value P0 ∈ RM×r for the left factor P.
Set P = P0, γ1 = 1;
for j = 1, 2, . . . until a stopping criterion is satis�ed do

for k = 1, 2, . . . until a stopping criterion is satis�ed do
update L from (6.14a),
update P from (6.14b).

Set γj+1 such that γj+1 > γj .

Output: Factors P ∈ RM×r and L ∈ Rr×N corresponding to a structured rank-r
approximation of A.

As any local optimization method, Algorithm 6.1 needs an initial value. Per default

[UM19], the matrix consisting of the �rst r left singular values of A is used as initial value

P0. More precisely, if UrΣrV
ᵀ
r is the optimal unstructured rank-r approximation of A

given by Theorem 1.8, then P0 := Ur is taken as initialization. This is a sensible choice since
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6.2 Image Representation of the Rank Constraint

for γ = 0 problems (6.11) and (6.12) are equivalent to the unstructured LRA problem (1.1).

For the latter, the truncated SVD provides a globally optimal solution.

Recall that for the theoretical value γ = ∞, problem (6.12) is exactly the SLRA prob-

lem (5.3), respectively (6.9). Practically we can �x γ to a large value and obtain a solution

PS(PL) that is approximately a low-rank matrix. But since �xed large values of γ may

lead to numerical issues, an adaptive updating scheme for γ is applied. Roughly, it operates

as follows: If the inner loop in Algorithm 6.1 has been expensive to carry out, increase γ

only moderately. If, on the other hand, carrying out the inner loop has been cheap, increase

γ more ambitiously. For more theoretical details see [IUM14; NW06], and [UM19] for the

practical implementation.

In the adaptive updating scheme for γ we start with a small regularization parameter.

Then each further iteration is initialized with the solution of the previous iteration. This

procedure provides a good initial value for each step.

Concerning the stopping criteria, the iteration of the inner loop in Algorithm 6.1 is

terminated and γ increased when there is only little change in the column space of P. The

outer loop is stopped when γ reaches a speci�ed large threshold. See [IUM14; UM19] for

more details.

Remark 6.6 Unlike the kernel method from Section 6.1, the factorization approach presented

here should not have issues with a small target rank (or large rank reduction). In fact, in

[IUM14] it is claimed that the proposed factorization approach is even more e�cient for

problems with small target rank r. We assess this claim by means of the two small examples

that we used already in Section 6.1.

Example 6.7 Consider the following Hankel matrix and its corresponding parameter vector

A =


3 2 1 1

2 1 1 2

1 1 2 5

1 2 5 2

 and pA =
(

3 2 1 1 2 5 2
)ᵀ
.

We use the MATLAB implementation [UM19] with Hankel structure, desired rank r = 1

and the default initialization for P given by the truncated SVD.

As solution we obtain the parameter vector

pim ≈
(

1.01 1.24 1.52 1.87 2.30 2.83 3.48
)ᵀ
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and, consequently, the rank-1 Hankel matrix

Him = H(pim) ≈


1.01 1.24 1.52 1.87

1.24 1.52 1.87 2.30

1.52 1.87 2.30 2.83

1.87 2.30 2.83 3.48

,

rounded to two decimal digits.

Similarly as in Example 6.1, this result is quite close to the optimal parameter vector from

Chapter 3. However, with a deviation from the optimal parameter vector of ‖p̃− pim‖∞ ≈
0.0224 it is not as close. This is also noticeable in the approximation errors, which are larger

than for the kernel method, see also Table 9.4.

The approximation errros produced by the image method are ‖pA − pim‖2 ≈ 3.5460 in

terms of the parameter vectors and ‖A−Him‖F ≈ 4.5687 in the Frobenius norm. The cor-

responding relative errors are ‖pA − pim‖2/‖pA‖2 ≈ 0.5118 and ‖A−Him‖F /‖A‖F ≈
0.4816. All errors have been rounded to four digits.

Example 6.8 Now also consider again the matrix

A =

 1 0 1/2

0 1/2 0

1/2 0 1

 with pA =
(

1 0 1/2 0 1
)ᵀ
.

Applying the implementation [UM19], we obtain the parameter vector

pim ≈ 10−12 ·
(

0.5 0 0.3 0 0.5
)ᵀ
≈ 0.

Thus, the approximating matrix is practically the zero matrix with rank Him ≈ 0.

Naturally, the approximation errors are just ‖pA − pim‖2 = ‖pA‖2 = 1.5 along with

‖A−Him‖F = ‖A‖F ≈ 1.6583, which is rounded to four digits.

As explained in [CFP03], in some cases, the best approximation is given by a matrix with

rank smaller than the desired rank. However, this is not the case here as Table 9.2 shows.

The approximation errors computed in the above examples are again tabled in Section 9.1.

Tables 9.2 and 9.4 enable an easy comparison of the di�erent r1H methods presented in this

part of the thesis.
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6.2 Image Representation of the Rank Constraint

Remark 6.9 Recall that in Remark 6.6, we cited the claim from [IUM14] that the image

method is especially suited for approximations with small target rank. Now we can inspect

this in light of Examples 6.7 and 6.8. We realize that these examples do not con�rm that

claim. To the contrary, compared to the results in Examples 6.1 and 6.2 from Section 6.1

the above examples exhibit notably worse approximation errors, compare also Tables 9.2

and 9.4.
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7 Alternating Projections

It is a well known fact that a point in the intersection of two closed and convex sets can be

found by alternatingly projecting �rst onto one set and then onto the other—starting from

an initial point. This alternating projections method is popular because of its simplicity. It

has been rediscovered repeatedly for di�erent applications, see [BB96] and the references

therein for an overview. Moreover, it ignites ongoing interest, see for example the recent

publication [WCW+21].

The simplest example of closed convex sets are a�ne spaces. Alternating projections

onto such were analyzed in [vNeu49; vNeu50]. In this case, the alternating projections onto

the respective sets converge to the orthogonal projection onto their intersection (assuming

that it is non-empty). In other words, for any given initial point, the closest point in the

intersection of two a�ne spaces can be found by alternatingly projecting onto the respective

sets separately.

One advantage of closed convex (and especially a�ne) constraint sets is that the separate

projection subproblems are easy to solve. Any point has a unique nearest point in a closed

convex set, in other words, the projection onto this set is well-de�ned. Moreover, usually this

projection is computationally manageable. For its computational and conceptual simplicity,

the method of alternating projections undoubtedly has an intuitive appeal.

Therefore, it is tempting to use the analogous idea also for non-convex constraint sets.

The �rst proposal to apply alternating projections to non-convex sets—and speci�cally to

the set of low-rank matrices—is attributed to James A. Cadzow [Cad88]. For this reason, the

alternating projections method is also often called Cadzow algorithm or Cadzow’s method
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in the context of signal processing.

Let us consider the low-rank Hankel approximation problem in the light of alternating

projections. While the Hankel structure—as well as any other matrix structure covered by

Chapter 5—constitutes an a�ne subspace of CM×N , this is not the case for the low-rank

constraint. For one, the set of matrices with rank equal to r might be open, see [CFP03].

While this de�ciency can be easily overcome by considering the closed set of matrices with

rank smaller than or equal to r, still it is certainly not convex. Nonetheless, a closest rank-r

approximation to a given matrix is readily computed via the singular value decomposition,

see Theorem 1.8. Thus, the premise of easily solved subproblems is satis�ed.

Cadzow’s method for general structured low-rank approximation is summarized in Algo-

rithm 7.1, and in Algorithm 7.2 distinctly for rank-1 Hankel approximation. Thereby, we

use the notation from Chapters 1 and 5.

Algorithm 7.1 Cadzow’s algorithm for general structured low-rank approximation

Input: Matrix A ∈ CM×N , target rank r, and a structure speci�cation S .
Initialize A(0) = A;
for j = 0, 1, 2, . . . until a stopping criterion is reached do

compute the optimal (unstructured) rank-r approximation A
(j)
r via truncated SVD;

compute the projection onto the space of structured matrices A(j) = PS(A
(j)
r ).

Output: A structured low-rank approximation A(∞) of A.

Remark 7.1 1. As a stopping criterion, the relative change in the iterate can be used,

see [WCW+21]. Accordingly, the algorithm terminates when
∥∥A(j+1) −A(j)

∥∥/∥∥A(j)
∥∥ is

small enough.

2. It may happen that the rank-r approximation A
(j)
r in Algorithm 7.1 is not unique, see

also Remark 1.9. In that case we just take any such approximation that is given by the �rst

r singular vectors as ordered by the SVD procedure employed. Note that �oating point

precision errors in numerical algorithms usually prevent such occasions.

3. Also note that there might be a di�erence in the resulting approximation depending

on whether we start Algorithm 7.1 with the one or the other projection, see [Cad88]. We

decided to work with the succession of approximations as indicated in Algorithms 7.1 and 7.2

for comparability reasons. The methods from both Chapters 6 and 8 will unquestionably

produce Hankel matrices. In the setup of Algorithms 7.1 and 7.2, Cadzow’s method does

the same. While the limit itself may depend on which approximation is applied �rst, our
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convergence result from Section 7.2 does not.

Although Cadzow’s algorithm seems to converge in applications, no theoretical con-

vergence results are given in [Cad88]. This gap was partly bridged by [AC13; LM08] for

alternating projections on manifolds. However, these results cannot be applied to the case

of low-rank Hankel approximation, see also Remark 7.14. Thus, the alternating projections

method remains a heuristic approach to solve the Hankel SLRA problem for general low

rank. For the r1H problem, however, we will give a complete proof of convergence in the

course of this chapter.

We consider Cadzow’s alternating projection method as detailed in Algorithm 7.2, that is,

expressly for the r1H problem. In this speci�c setting, we can show that the sequence of

alternating projections always converges to a �xed point. This is a new result that has been

published in [KPP21a, Sec. 5]. This whole chapter is based on our paper [KPP21a, Sec. 5]

and is partly similar with the derivations therein.

Algorithm 7.2 Cadzow’s algorithm for rank-1 Hankel approximation

Input: Matrix A ∈ CM×N with single largest singular value.
Initialize H(0) = A;
for j = 0, 1, 2, . . . until a stopping criterion is reached do

compute the optimal rank-1 approximation of H(j) =
M−1∑
k=0

σ
(j)
k · u

(j)
k

(
v

(j)
k

)∗,
A(j) := σ

(j)
0 · u

(j)
0

(
v

(j)
0

)∗
,

where σ(j)
0 is the largest singular value of H(j) with corresponding normalized

singular vectors u
(j)
0 and v

(j)
0 ;

compute the optimal Hankel approximation

H(j+1) := P(A(j))

of A(j), where P is given in (1.6).

Output: H(∞) = 0 if σ := limj→∞ σ
(j)
0 = 0, or

H(∞) = σ · uv∗ with uv∗ := limj→∞ u
(j)
0

(
v

(j)
0

)∗ if σ := limj→∞ σ
(j)
0 > 0.

Having stated Algorithm 7.2, we make some basic observations thereon in Section 7.1.

Then, in Section 7.2, we show a series of lemmas that will enable us to prove that—at least

for rank-1 Hankel approximation—Cadzow’s algorithm always converges, see Theorem 7.12.
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It usually does not, however, converge to the optimal solution neither with respect to the

Frobenius nor the spectral norm. This is in accordance with earlier results [CFP03; DeM94].

On that point, see the comparisons with the optimal results from Chapters 3 and 4 in

Chapter 9.

7.1 Basic Observations

In this section we lay the groundwork for this chapters’s main theorem by making some

basic observations on Algorithm 7.2. We start with the following general result on the

Hankel projection.

Lemma 7.2 Let 2 ≤ M ≤ N and A ∈ CM×N . Then the Hankel projection P in (1.6)

satis�es
‖P(A)‖F ≤ ‖A‖F ,

and equality holds if and only if A already is a Hankel matrix.

Moreover, if A is a rank-1 matrix A = ab∗ with a ∈ CM and b ∈ CN , then we even have

‖P(ab∗)‖2 ≤ ‖P(ab∗)‖F ≤ ‖ab∗‖F = ‖ab∗‖2 = ‖a‖2 · ‖b‖2.

The equalities ‖P(ab∗)‖F = ‖ab∗‖F and ‖P(ab∗)‖2 = ‖ab∗‖2 hold if and only if there is
z ∈ C = C ∪ {∞} such that a = zM and b = zN are structured vectors as given in (2.5).

Proof. Recall the representation of the Hankel projection as matrix-vector multiplication

diagvecP(A) = P · diagvec(A),

where diagvec(A) ∈ CMN is the vectorization of A along its counter-diagonals as de�ned

in (1.8), and P is the block-diagonal projection matrix

P = diag

(
1,

1

2
12, . . . ,

1

M
1M , . . . ,

1

M
1M , . . . ,

1

2
12, 1

)
∈ CMN×MN ,

which was de�ned in (1.9). Note that each block 1
n1n, n = 1, . . . ,M , of the matrix P has

the eigenvalues one with multiplicity one and zero with multiplicity n − 1. Hence, the

Hankel projection matrix P possesses the same eigenvalues, with multiplicity M +N − 1

106



7.1 Basic Observations

andMN −M −N + 1, respectively, and thus operator norm ‖P‖2 = 1. Therefore we have

‖P(A)‖F = ‖P · diagvec(A)‖2 ≤ ‖P‖2 · ‖diagvec(A)‖2 = ‖A‖F ,

by consistency of the operator norm. The equalities hold by De�nitions 1.5 and 1.6 of

the Frobenius and spectral norm, respectively. The above inequality is tight if only if

diagvec(A) = P · diagvec(A), that is, if A has Hankel structure.

If A = ab∗, then Lemma 2.3 states that ab∗ has Hankel structure if and only if a = zM

and b = zN for some z ∈ C. The equalities ‖ab∗‖F = ‖ab∗‖2 = ‖a‖2 · ‖b‖2 are

obvious by the characterization of the Frobenius and spectral norm via singular values, see

De�nitions 1.5 and 1.6.

Remark 7.3 Restricted to rank-1 matrices, the operator P is a projection also with respect

to the spectral norm since clearly P2 = P and ‖P(ab∗)‖2 ≤ ‖ab∗‖2 by Lemma 7.2. Hence,

the two components of Algorithm 7.2 are irrespective of the norm. The operator P performs

a projection onto the space of Hankel matrices, and the truncated SVD provides an optimal

rank-1 approximation for both the Frobenius and the spectral norm. Therefore, it lies in

the nature of Cadzow’s method for the r1H problem (Algorithm 7.2) to be indi�erent of the

norm in which the approximation error is measured.

Recall that the projection matrix P ∈ CMN×MN (1.9) used in Lemma 7.2 has only

two distinct eigenvalues (zero and one). Moreover, it is real and symmetric, so any two

eigenvectors corresponding to di�erent eigenvalues are orthogonal. Consequently, any

vector w ∈ CMN can be decomposed into the direct sum w = w0 ⊕w1, where P ·w0 = 0

and P ·w1 = w1, and w∗0w1 = 0. In other words, w0 and w1 belong to the orthogonal

eigenspaces of P corresponding to the eigenvalue zero and one, respectively.

The following observations make use of this decomposition and will form the basis for

the proof of Theorem 7.12. We begin by inspecting the second part of the iteration in

Algorithm 7.2, that is, the projection onto the space of Hankel matrices. For simplicity, we

usually consider only the outer product matrix u
(j)
0

(
v

(j)
0

)∗ without the factor σ(j)
0 instead

of the whole matrix A(j) = σ
(j)
0 · u

(j)
0

(
v

(j)
0

)∗.
We de�ne diagvec

(
u

(j)
0

(
v

(j)
0

)∗)
=: w(j) ∈ CMN , which is decomposed into the direct

sum w(j) = w
(j)
0 ⊕ w

(j)
1 with P · w(j)

0 = 0, P · w(j)
1 = w

(j)
1 , and

(
w

(j)
0

)∗
w

(j)
1 = 0 as
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explained above. Then, for each j ∈ N we �nd

diagvecP
(
u

(j)
0

(
v

(j)
0

)∗)
= P ·

(
w

(j)
0 ⊕w

(j)
1

)
= w

(j)
1 .

Furthermore, we specify the distance

δj :=
∥∥∥u(j)

0

(
v

(j)
0

)∗ − P (u
(j)
0

(
v

(j)
0

)∗)∥∥∥
F

=
∥∥∥w(j) −w

(j)
1

∥∥∥
2

=
∥∥∥w(j)

0

∥∥∥
2
. (7.1)

This can be seen as the distance between the current iterate matrix A(j) and its Hankel

projection H(j+1) divided by the factor σ(j)
0 > 0. In the case σ(j)

0 = 0, this interpretation is

neither valid nor interesting.

With the δj speci�ed in (7.1), we obtain∥∥∥P (u
(j)
0

(
v

(j)
0

)∗)∥∥∥2

F
=
∥∥∥w(j)

1

∥∥∥2

2
= 1− δ2

j , (7.2)

where we have used that 1 =
∥∥u(j)

0

(
v

(j)
0

)∗∥∥2

F
=
∥∥w(j)

∥∥2

2
=
∥∥w(j)

0

∥∥2

2
+
∥∥w(j)

1

∥∥2

2
. It will later

become clear that δj is decreasing with limj→∞ δj = 0 as a consequence of the convergent

sequence of Frobenius norms limj→∞
∥∥P(u(j)

0

(
v

(j)
0

)∗)∥∥
F

= 1, see Corollary 7.7.

Next, we consider the �rst part of the subsequent iteration of Algorithm 7.2. More

precisely, we consider the singular value decomposition

P
(
σ

(j)
0 · u

(j)
0

(
v

(j)
0

)∗)
= H(j+1) =

M−1∑
k=0

σ
(j+1)
k · u(j+1)

k

(
v

(j+1)
k

)∗
. (7.3)

We assume σ(j)
0 > 0 for the largest singular value of H(j) from the previous iteration

step. Dividing both sides of the above equation (7.3) by this value, we obtain

P
(
u

(j)
0

(
v

(j)
0

)∗)
=

M−1∑
k=0

σ
(j+1)
k

σ
(j)
0

· u(j+1)
k

(
v

(j+1)
k

)∗
=:

M−1∑
k=0

s
(j+1)
k · u(j+1)

k

(
v

(j+1)
k

)∗
,

where s(j+1)
k := σ

(j+1)
k /σ(j)

0 . On the one hand, equation (7.2) gives us

M−1∑
k=0

(
s

(j+1)
k

)2
=
∥∥∥P (u

(j)
0

(
v

(j)
0

)∗)∥∥∥2

F
= 1− δ2

j . (7.4)

108



7.2 Our New Convergence Result

On the other hand, the Eckart-Young-Mirsky Theorem 1.8 yields

M−1∑
k=1

(
s

(j+1)
k

)2
=
∥∥∥P(u

(j)
0

(
v

(j)
0

)∗)− s(j+1)
0 · u(j+1)

0

(
v

(j+1)
0

)∗∥∥∥2

F

<
∥∥∥P(u

(j)
0

(
v

(j)
0

)∗)− u
(j)
0

(
v

(j)
0

)∗∥∥∥2

F
= δ2

j (7.5)

since s(j+1)
0 · u(j+1)

0

(
v

(j+1)
0

)∗ is the optimal rank-1 approximation of P
(
u

(j)
0

(
v

(j)
0

)∗). Note

that the above is an estimate for the distance between the current Hankel matrix H(j+1)

and its rank-1 approximation A(j+1) divided by the largest singular value of the previous

iteration step, σ(j)
0 > 0. In the case σ(j)

0 = 0, we do not need to consider the above

derivations in order to obtain a convergence result, see the proof of Theorem 7.12.

Combining equations (7.4) and (7.5), we �nd

1− 2 · δ2
j <

(
s

(j+1)
0

)2 ≤ 1− δ2
j . (7.6)

Remark 7.4 As a follow-up to Remark 7.1.2, we note that the ambiguity in the largest eigen-

values does not occur in the later course of Algorithm 7.2. More precisely, the inequality (7.6)

together with limj→∞ δj = 0 (see Corollary 7.7) implies the existence of some j0 ∈ N such

that for all j > j0 the value σ(j) < σ(j0) is small enough to ensure that the largest singular

value s(j+1)
0 of P

(
u

(j)
0

(
v

(j)
0

)∗) is isolated.

7.2 Our New Convergence Result

In the course of this section, we will show that the Cadzow’s algorithm for rank-1 Hankel

approximation (Algorithm 7.2) always converges to a unique �xed point. This �xed point

usually is a rank-1 Hankel approximation of A. But it may also happen that it is the zero

matrix, and thus not a rank-1 Hankel approximation, see Example 7.15. Either way, we will

show that the sequence of matrices A(j) = σ
(j)
0 · u

(j)
0

(
v

(j)
0

)∗ generated by Algorithm 7.2

converges to a Hankel matrix (zero or rank-1). So upon convergence, the last Hankel

projection step in Algorithm 7.2 is redundant.

In order to rigorously analyze the convergence properties of Algorithm 7.2 we start with

a series of lemmas.

Lemma 7.5 Let A ∈ CM×N with 2 ≤M ≤ N and rank A ≥ 1. The sequence
(
σ

(j)
0

)
j∈N

of from Algorithm 7.2 converges, and we de�ne the limit point σ := limj→∞ σ
(j)
0 .
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Proof. If the �rst singular vectors u0 = u
(0)
0 and v0 = v

(0)
0 of A are of the structured

form zM (z) and zN (z) from (2.5) for some z ∈ C, respectively, then the optimal rank-1

approximation σ0 · u0v
∗
0 of A already has Hankel structure. Therefore, by de�nition of P ,

we �nd that
(
σ

(j)
0

)
j∈N ≡

(
σ0

)
j∈N is a constant sequence.

Assume now that A(0) = σ0 · u0v
∗
0 does not have Hankel structure. Then by Lemma 7.2,

we �nd for any j ∈ N0 we that

σ
(j+1)
0 =

∥∥∥P (σ(j)
0 · u

(j)
0

(
v

(j)
0

)∗)∥∥∥
2
≤ σ(j)

0 ·
∥∥∥u(j)

0

(
v

(j)
0

)∗∥∥∥
2

= σ
(j)
0 . (7.7)

For the last equality, we have used that the singular vectors are normalized.

This inequality is strict as long as the rank-1 matrix u
(j)
0

(
v

(j)
0

)∗ does not have Hankel

structure, see Lemma 7.2. In particular, we have σ(1)
0 < σ

(0)
0 for j = 0 by assumption.

Thus, the sequence of singular values
(
σ

(j)
0

)
j∈N is monotonically decreasing. Since σ(j)

0

is bounded from below for all j, convergence follows and we write σ := limj→∞ σ
(j)
0 .

Combining Lemmas 7.2 and 7.5, we obtain convergence of the norms
∥∥P(u(j)

0

(
v

(j)
0

)∗)∥∥
F

and
∥∥P(u(j)

0

(
v

(j)
0

)∗)∥∥
2

for positive limit σ.

Corollary 7.6 Let A ∈ CM×N with 2 ≤ M ≤ N and rank A ≥ 1. Assume that the
limiting singular value from Algorithm 7.2 is positive (i.e., σ = limj→∞ σ

(j)
0 > 0). Consider

the Hankel matrices P
(
u

(j)
0

(
v

(j)
0

)∗), j ∈ N, where the vectors u
(j)
0 and v

(j)
0 are generated by

Algorithm 7.2.
Then both the sequence of their Frobenius norms and the sequence of their spectral norms

converge to one, that is, we have

lim
j→∞

∥∥∥P (u
(j)
0

(
v

(j)
0

)∗)∥∥∥
2

= lim
j→∞

∥∥∥P (u
(j)
0

(
v

(j)
0

)∗)∥∥∥
F

= 1.

Proof. For the spectral norm, we have

σ = lim
j→∞

σ
(j+1)
0 = lim

j→∞

∥∥∥P (σ(j)
0 · u

(j)
0

(
v

(j)
0

)∗)∥∥∥
2

= lim
j→∞

σ
(j)
0 · lim

j→∞

∥∥∥P (u
(j)
0

(
v

(j)
0

)∗)∥∥∥
2
.

Dividing this by σ = limj→∞ σ
(j)
0 on both ends, we obtain

lim
j→∞

∥∥∥P (u
(j)
0

(
v

(j)
0

)∗)∥∥∥
2

= 1.
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From Lemma 7.2, we have for any j ∈ N

σ
(j+1)
0 =

∥∥∥P(σ(j)
0 · u

(j)
0

(
v

(j)
0

)∗)∥∥∥
2

≤
∥∥∥P (σ(j)

0 · u
(j)
0

(
v

(j)
0

)∗)∥∥∥
F

≤
∥∥∥σ(j)

0 · u
(j)
0

(
v

(j)
0

)∗∥∥∥
2

= σ
(j)
0 .

Taking the limit and dividing all parts of this inequality by σ = limj→∞ σ
(j)
0 we also obtain

lim
j→∞

∥∥∥P (u
(j)
0

(
v

(j)
0

)∗)∥∥∥
F

= 1

in the Frobenius norm, as was claimed.

Note that convergence of the norms as shown in Corollary 7.6 does not imply convergence

of the sequence of matrices. But, we obtain another convergence result, namely convergence

of the distance δj de�ned in (7.1).

Corollary 7.7 Consider the distance δj from (7.1), and assume that σ = limj→∞ σj > 0.
Then the sequence

(
δj
)
j∈N decreases to zero, we have limj→∞ δj = 0.

Proof. The assertion follows directly by combining the observation (7.2) from Section 7.1

and Corollary 7.6.

The next lemma yields a convergent subsequence of
(
u

(j)
0

(
v

(j)
0

)∗)
j∈N.

Lemma 7.8 Let A ∈ CM×N with 2 ≤M ≤ N and rank A ≥ 1. Assume that the limiting
singular value from Algorithm 7.2 is positive (i.e., σ = limj→∞ σ

(j)
0 > 0).

Then there is a subsequence
(
u

(jk)
0

(
v

(jk)
0

)∗)
k∈N of

(
u

(j)
0

(
v

(j)
0

)∗)
j∈N from Algorithm 7.2

that converges to a limit uv∗. Furthermore, this limit uv∗ is a rank-1 Hankel matrix; this
means, there is z ∈ C such that

uv∗ = lim
k→∞

u
(jk)
0

(
v

(jk)
0

)∗
= zM (z)zN (z)ᵀ,

where zM and zN are the normalized structured vectors from (2.5).

Proof. If the �rst singular vectors of A are structured, that is, u0 = zM (z) and v0 = zN (z),

then the optimal rank-1 approximation of A already has Hankel structure. In that case,
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we have σ(j)
0 ≡ σ0 and u

(j)
0

(
v

(j)
0

)∗ ≡ u0v
∗
0 for all j ∈ N; in other words

(
σ

(j)
0

)
j∈N and(

u
(j)
0

(
v

(j)
0

)∗)
j∈N are constant sequences and there is nothing left to prove.

Assume now that u0v
∗
0 does not have Hankel structure. Recall that

lim
j→∞

∥∥∥P (u
(j)
0

(
v

(j)
0

)∗)∥∥∥
2

= 1

by Corollary 7.6. Since the vectors u
(j)
0 and v

(j)
0 are normalized, the sequence of matrices(

u
(j)
0

(
v

(j)
0

)∗)
j∈N is bounded. More precisely,

∥∥u(j)
0

(
v

(j)
0

)∗∥∥
2

= 1 for all j ∈ N.

We conclude that there exists a subsequence
(
u

(jk)
0

(
v

(jk)
0

)∗)
k∈N that converges to an

accumulation point uv∗. By Lemma 7.2 and Corollary 7.6 this point is a �xed point of the

Cadzow algorithm (i.e., P(uv∗) = uv∗) and thus a rank-1 Hankel matrix.

Remark 7.9 Note that in [ZG20] a similar result has been shown for low-rank Hankel

approximation by Cadzow’s algorithm. What was not studied in [ZG20] is the question

whether the partial sequence indeed converges to a matrix with the desired rank.

With Theorem 7.12, we will prove that in fact the full sequence
(
u

(j)
0

(
v

(j)
0

)∗)
j∈N in

Algorithm 7.2 converges to the �xed point uv∗ found in Lemma 7.8. The proof essentially

relies on the observation that a rank-1 matrix ab∗ ∈ CM×N , which is close to the space of

Hankel matrices, is also close to the set of rank-1 Hankel matrices.

Lemma 7.10 For vectors a =
(
aj
)M−1

j=0
∈ CM and b =

(
bj
)N−1

j=0
∈ CN with ‖a‖2 =

‖b‖2 = 1, assume that their outer product is elementwisely close to some Hankel matrix; in
rigorous terms, assume

‖ab∗ − P(ab∗)‖∞ ≤ δ (7.8)

with δ small enough, e.g. δ < 1
6
√
MN

. The norm ‖·‖∞ denotes the elementwise maximum as
given in De�nition 1.7.

Then the outer product ab∗ is also close to a rank-1 Hankel matrix in the Frobenius norm,

min
c∈C, z∈C

∥∥ab∗ − c · zMzᵀN
∥∥
F
< C · δ, (7.9)

where the constant C only depends on the dimensions M and N .

Proof. Let aµ and bν denote the by modulus largest entries of a and b, respectively. Then,

since a and b are normalized, we have |aµ| ≥ 1√
M

and |bν | ≥ 1√
N

. Without loss of
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generality, assume that µ < M − 1. Otherwise consider the �ipped matrix JM · ab∗ · JN
instead of ab∗, where JN is the counter-identity matrix of size N from (1.10).

Choose z :=
aµ+1

aµ
. Using the Hankel structure of P(ab∗) and the assumption (7.8), we

obtain for any ` = 1, . . . , N − 1

aµb` = aµ+1b`−1 + δµ,` = z · aµb`−1 + δµ,`,

with some correction term δµ,`. This correction term is bounded by |δµ,`| ≤ 2δ for ` =

0, . . . , N − 1 because of assumption (7.8).

By rearranging the above equality we obtain

b` = b`−1 · z +
δµ,`
aµ

, (7.10)

and inductively

b` = b0 · z` +
1

aµ
·
`−1∑
j=0

δµ,`−j · zj

for ` = 1, . . . , N − 1. In fact, this relation remains true for ` = 0 if the sum over an empty

index set is assigned the value zero. This assignment is common practice.

Note that the �rst summands, b0 · z` for ` = 0, . . . , N − 1, are exactly the entries of

b0 · ẑN (z), where ẑN (z) is the non-normalized structured vector from (2.1). Thus, it follows

that

∥∥b− b0 · ẑN (z)
∥∥
∞ = max

`=0,...,N−1

∣∣∣∣∣ 1

aµ
·
`−1∑
j=0

δµ,`−j · zj
∣∣∣∣∣ ≤ 2 ·

√
MN · δ. (7.11)

For the inequality, we used that |z| ≤ 1 by the choice of z, as well as the aforementioned

estimates |aµ| ≤ 1√
M

for the by modulus largest entry of a and |δµ,`−j | ≤ 2δ for the

correction term.

Similarly, if ν < N − 1, we �nd for all ` = 1, . . . ,M − 1

a`bν = a`−1bν+1 + δν,` = a`−1 ·
(
bν · z +

δµ,ν+1

aµ

)
+ δν,`,

where, in the second step, we have replaced bν+1 by the expression in (7.10). For the

occurring correction term we have again |δν,`| ≤ 2δ by assumption (7.8).
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Rearranging this equation yields

a` = a`−1 · z +
δµ,ν+1 · a`−1

aµbν
+
δν,`

bν
= a`−1 · z +

δ̃µ,ν+1

bν
+
δν,`

bν
, (7.12)

with a modi�ed correction term δ̃µ,ν+1 :=
a`−1

aµ
· δµ,ν+1. This modi�ed correction term is

again bounded by |δ̃µ,ν+1| ≤ 2δ since |a`−1

aµ
| ≤ 1 by construction. As before, we obtain

inductively

a` = a0 · z` +
δ̃µ,ν+1

bν
·
`−1∑
j=0

zj +
1

bν
·
`−1∑
j=0

δν,`−j · zj

for ` = 0, 1, . . . ,M − 1.

Now, a0 · z`, ` = 0, · · · ,M − 1, are the entries of a0 · ẑM (z) with ẑM (z) from (2.1).

Hence, analogously to (7.11) we obtain

‖a− a0 · ẑM (z)‖∞ ≤ 4 ·M
√
N · δ, (7.13)

where we have used the estimates |z| ≤ 1, |δ̃µ,N−1| ≤ 2δ, |δN−2,`−j | ≤ 2δ, and |bν | ≥ 1√
N

.

If ν = N − 1, meaning that bN−1 is the by modulus largest entry of b, we cannot carry

out the above steps to obtain (7.13). But, we can use the assumption (7.8) to show that

|bN−2| ≥ 1
N . Then we can replace bν by bN−2 in the expression (7.12) for a` in order to

obtain a similar estimate as (7.13) for su�ciently small δ.

To see this in more detail, consider

aµbN−1 = aµ+1bN−2 + δµ,N−1.

Note that aµ+1 does exist since we have assumed that µ < M − 1 without loss of generality.

This equation is equivalent to

aµ+1bN−2 = aµbN−1 − δµ,N−1,

where we have again used the correction term δµ,N−1 with |δµ,N−1| ≤ 2δ.

Thus, we obtain the estimate∣∣aµ+1bN−2

∣∣ =
∣∣aµbN−1 − δµ,N−1

∣∣ ≥ ∣∣aµbN−1

∣∣− 2δ.
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We divide this inequality by |aµ|, and since |aµ+1|
|aµ| ≤ 1, it follows that

|bN−2| ≥
∣∣aµ+1bN−2

∣∣
|aµ|

≥
∣∣aµbN−1

∣∣− 2δ

|aµ|
= |bN−1| −

2δ

|aµ|
.

Using the bounds |aµ| ≥ 1√
M

and |bν | = |bN−1| ≥ 1√
N

on the largest entries of a and b,

respectively, we can further estimate

|bN−2| ≥ |bN−1| −
2δ

|aµ|
≥ 1√

N
− 2δ ·

√
M.

With δ small enough, e.g. δ < 1
6
√
MN

, we obtain

|bN−2| ≥
1√
N
− 2δ ·

√
M ≥ 1√

N
− 2 · 1

6
√
MN

·
√
M =

1√
N
− 1

3N
≥ 1

N
,

where the last inequality holds since N ≥ 2.

Now, replacing ν by N − 2 in (7.12), we obtain a similar expression. Namely

a` = a`−1 · z +
δ̃µ,N−1

bN−2

+
δN−2,`

bN−2

,

from which inductively follows

a` = a0 · z` +
δ̃µ,N−1

bN−2

·
`−1∑
j=0

zj +
1

bN−2

·
`−1∑
j=0

δN−2,`−j · zj .

Recall that a0 · z` are the entries of a0 · ẑM (z) with the structured vector ẑM (z) from

(2.1). Thus, we conclude a similar estimate as (7.13)

‖a− a0 · ẑM (z)‖∞ ≤ 4 ·MN · δ, (7.14)

where we have used the same estimates as for (7.13) except for |bν | ≥ 1√
N

which is replaced

by |bN−2| ≥ 1
N .

The claim (7.9) now follows with the ensuing chain of inequalities. Note that (7.11) and

(7.13) can further be bounded by 4 ·MN · δ like (7.14). In line 3 we use this bound 4 ·MN · δ
on (7.11), (7.13), and (7.14), and in line 4 we use the original bound (7.11). Furthermore, we
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employ the fact that a and b are normalized. Altogether, we have

∥∥ab∗ − a0b0 · ẑM ẑᵀN
∥∥2

F
=

M−1∑
j=0

N−1∑
k=0

∣∣ajbk − a0b0z
j+k
∣∣2

=

M−1∑
j=0

N−1∑
k=0

∣∣∣aj · (bk − b0zk)+ b0z
k ·
(
aj − a0z

j
)∣∣∣2

≤ (4 ·MN · δ)2 ·
M−1∑
j=0

N−1∑
k=0

(
|aj |+

∣∣b0zk∣∣)2

≤ (4 ·MN · δ)2 ·
M−1∑
j=0

N−1∑
k=0

(
|aj |+ |bk|+ 2 ·

√
MN · δ

)2

≤ (4 ·MN · δ)2 ·
M−1∑
j=0

N−1∑
k=0

3 ·
(
|aj |2 + |bk|2 +

(
2 ·
√
MN · δ

)2)
≤ 3 · (4 ·MN · δ)2 ·

(
M +N + 4 ·M2N3 · δ2

)
≤ 48 · (MN)2 ·

(
M +N + 4 ·M2N3

)
· δ2.

The last inequality holds for δ ≤ 1 which is clearly satis�ed. Thus, the constant C may be

chosen as

C < 48 · (MN)2 ·
(
M +N + 4 ·M2N3

)
,

which only depends on the dimensions M and N . Then the assertion (7.9) is valid for

z =
aµ+1

aµ
as chosen in the beginning of this proof and c = a0b0 · (‖ẑM‖2 · ‖ẑN‖2).

Remark 7.11 The estimates derived in the above proof of Lemma 7.10 are very coarse and

could presumably be re�ned in several places. Nevertheless, they su�ce for our purpuses.

With these preliminaries, we can now show this chapter’s main theorem on the conver-

gence of Cadzow’s rank-1 Hankel approximation to one �xed point. Part (1) of Theorem 7.12

covers the case when the limiting singular value σ is zero and is quite trivial. The case when

the limiting singular value σ is positive is dealt with in part (2).

The proof of Theorem 7.12 is done by applying the lemmas and observations of this and

the previous section in the right way. The idea of the proof can be summarized as follows:

First, we apply Lemma 7.10 to establish the distance between the rank-1 matrix u
(j)
0

(
v

(j)
0

)∗
and some rank-1 Hankel matrix. Second, we show that all further rank-1 iterates lie within
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the same distance of the rank-1 Hankel matrix established in the �rst step. We conclude

that the limit uv∗ of the subsequence from Lemma 7.8 has to lie inside the ball around this

rank-1 Hankel matrix, too. The proof is completed by invoking Corollary 7.7, which states

that the radius of this ball tends to zero as the iteration advances.

Theorem 7.12 Let A ∈ CM×N with 2 ≤M ≤ N and rank A ≥ 1.

(1) If σ = limj→∞ σ
(j)
0 = 0, then the sequence of matrices

(
σ

(j)
0 · u

(j)
0

(
v

(j)
0

)∗)
j∈N

from

Algorithm 7.2 converges to the zero matrix.

(2) If σ = limj→∞ σ
(j)
0 > 0, then the sequence of matrices

(
σ

(j)
0 · u

(j)
0

(
v

(j)
0

)∗)
j∈N

from

Algorithm 7.2 converges to a rank-1 matrix σ · uv∗.

Moreover, there exists z ∈ C such that

uv∗ := lim
j→∞

ujv
∗
j = zMzᵀN ,

with zM = zM (z) and zN = zN (z) structured as in (2.5). This means that Algorithm 7.2
provides the rank-1 Hankel approximation σ · uv∗.

Remark 7.13 Theorem 7.12 states that Cadzow’s algorithm converges to a rank-1 Hankel

approximation of A if σ > 0. This does not mean that Cadzow’s algorithm converges to the

optimal solution of the r1H problem.

Proof. As shown in Lemma 7.5, the sequence of largest singular values produced by Algo-

rithm 7.2 always converges to a limit σ ≥ 0. The singular vectors u
(j)
0 and v

(j)
0 are normed

for all j ∈ N, thus the sequence of their outer products
(
u

(j)
0

(
v

(j)
0

)∗)
j∈N is bounded.

If now σ = limj→∞ σ
(j)
0 = 0, then the sequence

(
σ

(j)
0 · u

(j)
0

(
v

(j)
0

)∗)
j∈N converges to

the zero matrix. In this case the outer products u
(j)
0

(
v

(j)
0

)∗ may or may not converge to a

matrix of Hankel structure. This concludes the proof of part (1) of the theorem.

For part (2), assume σ = limj→∞ σ
(j)
0 > 0. Combining the distance δj de�ned in (7.1)

and Lemma 7.10, there exist cj ∈ C and zj ∈ C such that∥∥∥u(j)
0

(
v

(j)
0

)∗ − cj · zM (zj)zN (zj)
ᵀ
∥∥∥
F
< C · δj ,

where the constant C only depends on the dimensions M and N . Since all the vectors in

this inequality are normalized and thus
∥∥u(j)

0

(
v

(j)
0

)∗∥∥
F

=
∥∥zM (zj)zN (zj)

ᵀ
∥∥
F

= 1, we
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obtain |1− |cj || < C · δj . It follows that the parameters zj chosen above satisfy∥∥∥u(j)
0

(
v

(j)
0

)∗ − zM (zj)zN (zj)
ᵀ
∥∥∥
F
< 2C · δj (7.15)

for each j ∈ N.

Recall that we have convergence limj→∞ δj = 0 by Corollary 7.7. Thus, we may choose

δj as small as we like. Proceeding from there, we show that all further iteration matrices

u
(k)
0

(
v

(k)
0

)∗, for k > j, also ful�ll the estimate (7.15). In other words, all matrices u
(k)
0

(
v

(k)
0

)∗,
for k > j, are contained in the ball of radius 2C · δj around zM (zj)zN (zj)

ᵀ.

It is su�cient to show that the ensuing iterate satis�es (7.15). The argument can then be

repeated for any k > j + 1. We want to show∥∥∥u(j+1)
0

(
v

(j+1)
0

)∗ − zM (zj)zN (zj)
ᵀ
∥∥∥
F
< 2C · δj .

Observe that the Frobenius norm can be expressed via the trace (see De�nition 1.5) as follows∥∥∥u(j)
0

(
v

(j)
0

)∗ − zM (zj)zN (zj)
ᵀ
∥∥∥2

F

= tr
((

u
(j)
0

(
v

(j)
0

)∗ − zMzᵀN

)∗
·
(
u

(j)
0

(
v

(j)
0

)∗ − zMzᵀN

))
= tr

(
v

(j)
0

(
v

(j)
0

)∗
+ zNzᵀN −

(
u

(j)
0

)∗
zM · v(j)

0 zᵀN − z∗Mu
(j)
0 · zN

(
v

(j)
0

)∗)
= 2− 2 ·Re

((
u

(j)
0

)∗
zM ·

(
v

(j)
0

)ᵀ
zN

)
, (7.16)

where from the second line on we have omitted the argument zj in the structured vectors

zM = zM (zj) and zN = zN (zj).

With this expression, (7.15) is equivalent to

Re
((

u
(j)
0

)∗
zM ·

(
v

(j)
0

)ᵀ
zN

)
> 1− 2 · (Cδj)2

and we strive to show that also

Re
((

u
(j+1)
0

)∗
zM ·

(
v

(j+1)
0

)ᵀ
zN

)
> 1− 2 · (Cδj)2. (7.17)

We consider the distance between the current outer product u
(j)
0

(
v

(j)
0

)∗ and the rank-1

Hankel matrix zM (zj)zN (zj)
ᵀ, compare Lemma 7.10. Therefore, recall the decomposition

diagvec
(
u

(j)
0

(
v

(j)
0

)∗)
= w(j) = w

(j)
0 ⊕w

(j)
1 into a direct sum according to the eigenvalues
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of the block-diagonal projection matrix P from (1.9), see Section 7.1. Using the projection

property P · diagvec
(
zM (zj)zN (zj)

ᵀ
)

= diagvec
(
zM (zj)zN (zj)

ᵀ
)
, we conclude∥∥∥u(j)

0

(
v

(j)
0

)∗ − zM (zj)zN (zj)
ᵀ
∥∥∥2

F

=
∥∥∥diagvec

(
u

(j)
0

(
v

(j)
0

)∗)− diagvec
(
zM (zj)zN (zj)

ᵀ)∥∥∥2

2

=
∥∥∥P · (w

(j)
1 − diagvec

(
zM (zj)zN (zj)

ᵀ))⊕w
(j)
0

∥∥∥2

2

=
∥∥∥P ·w(j)

1 − diagvec
(
zM (zj)zN (zj)

ᵀ)∥∥∥2

2
+
∥∥∥w(j)

0

∥∥∥2

2

=
∥∥∥P (u

(j)
0

(
v

(j)
0

)∗)− zM (zj)zN (zj)
ᵀ
∥∥∥2

F
+ δ2

j .

The distance δj =
∥∥w(j)

0

∥∥
2

has been de�ned in (7.1).

Taking (7.15) into account, we obtain∥∥∥P (u
(j)
0

(
v

(j)
0

)∗)− zM (zj)zN (zj)
ᵀ
∥∥∥2

F
< (2C · δj)2 − δ2

j . (7.18)

Let the SVD of P
(
u

(j)
0

(
v

(j)
0

)∗) be given by

P
(
u

(j)
0

(
v

(j)
0

)∗)
=

M−1∑
k=0

s
(j+1)
k · u(j+1)

k

(
v

(j+1)
k

)∗
as in (7.3) with s(j+1)

k = σ
(j+1)
k /σ(j)

0 . We use the orthogonal matrices
(
u

(j+1)
0 u

(j+1)
M−1

)
and

(
v

(j+1)
0 v

(j+1)
N−1

)
occurring in this SVD to transform the normalized structured

vectors zM (zj) and zN (zj) into

α := α(zj) :=
((

u
(j+1)
0

)∗
zM (zj)

(
u

(j+1)
M−1

)∗
zM (zj)

)ᵀ

and

β := β(zj) :=
((

v
(j+1)
0

)∗
zN (zj)

(
v

(j+1)
M−1

)∗
zN (zj)

)ᵀ
.

In particular, this basis transform does not a�ect the normalization (i.e., ‖α‖2 = ‖β‖2 = 1).

The �rst entries of α and β are of special interest for us as Re(α0β0) occurs in (7.17).

The same orthogonal transform by
(
u

(j+1)
0 u

(j+1)
M−1

)
and

(
v

(j+1)
0 v

(j+1)
N−1

)
can be applied to the norm in (7.18) because of the orthogonal invariance of the Frobenius
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norm. We obtain

(2C · δj)2 − δ2
j >

∥∥∥P (u
(j)
0

(
v

(j)
0

)∗)− zM (zj)zN (zj)
ᵀ
∥∥∥2

F

=

∥∥∥∥diag
(
s

(j+1)
k

)M−1

k=0
−α(zj)β(zj)

∗
∥∥∥∥2

F

= 1 +

M−1∑
k=0

(
s

(j+1)
k

)2 − 2 ·
M−1∑
k=0

s
(j+1)
k ·Re

(
αk(zj)βk(zj)

)
,

where s(j+1)
k = σ

(j+1)
k /σ(j)

0 are the the singular values of P
(
u

(j)
0

(
v

(j)
0

)∗), compare (7.3).

From Section 7.1, recall the observation (7.4), namely
∑M−1

k=0

(
s

(j+1)
k

)2
= 1− δ2

j . Using

this observation while rearranging the last inequality, we have

M−1∑
k=0

s
(j+1)
k ·Re

(
αk(zj)βk(zj)

)
> 1− 2 · (Cδj)2. (7.19)

By Hölder’s inequality,

M−1∑
k=0

∣∣∣Re
(
αk(zj)βk(zj)

)∣∣∣ ≤ M−1∑
k=0

∣∣∣αk(zj)βk(zj)∣∣∣ ≤ ‖α(zj)‖2 · ‖β(zj)‖2 = 1,

and (7.5), it follows that

M−1∑
k=1

∣∣∣s(j+1)
k ·Re

(
αk(zj)βk(zj)

)∣∣∣ ≤ (M−1∑
j=1

(
s

(j+1)
k

)2)1/2

·
(M−1∑
k=1

Re
(
αk(zj)βk(zj)

))1/2

< δj ·
M−1∑
k=1

∣∣Re
(
αk(zj)βk(zj)

)∣∣
≤ δj ·

(
1−Re

(
α0(zj)β0(zj)

))
.

Thus, (7.19) implies that

1− 2 · (Cδj)2 <
M−1∑
k=0

s
(j+1)
k ·Re

(
αk(zj)βk(zj)

)
= s

(j+1)
0 ·Re

(
α0(zj)β0(zj)

)
+
M−1∑
k=1

s
(j+1)
k ·Re

(
αk(zj)βk(zj)

)
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≤ s(j+1)
0 ·Re

(
α0(zj)β0(zj)

)
+ δj ·

(
1−Re

(
α0(zj)β0(zj)

))
= (s

(j+1)
0 − δj) ·Re

(
α0(zj)β0(zj)

)
+ δj ,

and �nally

Re
(
α0(zj)β0(zj)

)
>

1− 2 · (Cδj)2 − δj
s

(j+1)
0 − δj

≥ 1− 2 · (Cδj)2 − δj
1− δ2j/2− δj

> 1− 2 · (Cδj)2

as desired, compare (7.17). In the above line of inequalities, we have used the estimate

s
(j+1)
0 ≤

√
1− δ2

j ≤ 1− δ2j/2 from (7.6). The last inequality holds for δj small enough and

can be veri�ed by an easy calculation.

This shows that the (j + 1)-st iterate is close the rank-1 Hankel matrix zM (zj)zN (zj)
ᵀ,

more precisely, ∥∥∥u(j+1)
0

(
v

(j+1)
0

)∗ − zM (zj)zN (zj)
ᵀ
∥∥∥
F
< 2C · δj

because of (7.16).

As �nal step of this proof, we recall the limit uv∗ = limk→∞ u
(jk)
0

(
v

(jk)
0

)∗ of the sub-

sequence from Lemma 7.8. We conclude that this limit uv∗ also has to lie inside the ball

around zM (zj)zN (zj)
ᵀ with radius 2C · δj for any j and thus∥∥∥u(j)

0

(
v

(j)
0

)∗ − uv∗
∥∥∥
F
< 4C · δj .

Now, since limj→∞ δj = 0 by Corollary 7.7, we have convergence of u
(j)
0

(
v

(j)
0

)∗ to uv∗

and the proof is complete.

Remark 7.14 There are several attempts in the literature to show convergence of Cadzow’s

algorithm in broad generality. However, to our understanding, none of them are really

reliable. For example, note that the results from [LM08] cannot be applied to our setting since

the manifolds in question do not satisfy the required so-called transversality condition. In

[AC11b; AC13], the transversality condition is relaxed and replaced by the weaker condition

of existence of non-tangential intersection points. The convergence results then rely on the

assumption that the angle in these intersection points between the considered manifolds is

bounded away from zero, or equivalently, that the value σ(A) in [AC13, Def. 3.1] is smaller

than one. This assumption is not easy to show in the setting of rank-1 Hankel approximation

and possibly not even satis�ed.
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7 Alternating Projections

We give an example, that can be calculated analytically by hand. It con�rms that indeed

there are initial matrices for which Cadzow’s method converges to the zero matrix despite

the existence of an optimal solution of true rank one, compare Examples 3.8 and 4.12. We

also refer to the summary in Table 9.2.

Example 7.15 Consider again the example matrix

A =

 1 0 1/2

0 1/2 0

1/2 0 1


with eigenvalues λ0 = λ

(0)
0 = 3/2 and λ1 = λ

(0)
1 = λ2 = λ

(0)
2 = 1/2 and corresponding

normalized eigenvectors

v0 = v
(0)
0 =

1√
2

1

0

1

, v1 = v
(0)
1 =

0

1

0

, v2 = v
(0)
2 =

1√
2

 1

0

−1

.
Since A is real symmetric we use the eigendecomposition instead of the SVD in this example.

Otherwise following Algorithm 7.2, we �nd the unstructured rank-1 approximation of A

from the largest eigenvalue λ0 and corresponding eigenvector v0

A(0) = λ0 · v0v
ᵀ
0 =

3

2
· 1

2

1 0 1

0 0 0

1 0 1

.
Averaging along the counter-diagonals, we obtain the �rst Hankel matrix of the iteration

H(1) = P(A(0)) =
3

2
· 1

2

 1 0 2/3

0 2/3 0

2/3 0 1

 =
3

2
·

1/2 0 1/3

0 1/3 0

1/3 0 1/2

 = λ0 · P (v0v
ᵀ
0) .

Now, v
(1)
0 = 1√

2

(
1 0 1

)ᵀ
= v

(0)
0 is the eigenvector of P(v0v

ᵀ
0) corresponding to its

largest eigenvalue λ(1)
0 = 5/6.
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Further iterations yield

v
(j)
0 =

1√
2

1

0

1

 and λ
(j)
0 =

3

2
·
(

5

6

)j

Obviously, the sequence of largest eigenvectors,
(
v

(j)
0

)
j∈N, is constant, and the largest

eigenvalues λ(j)
0 , j ∈ N form a null sequence, limj→∞ λ

(j)
0 = 0. In other words, the Cadzow

algorithm fails to converge to a rank-1 matrix.

Example 7.15 demonstrates that Cadzow’s Algorithm 7.2 may converge to the zero matrix.

Even if this is not the case and the Cadzow iteration converges to a rank-1 Hankel matrix,

this is usually not the optimal solution to the r1H problem. For both the Frobenius and the

spectral norm, we usually see signi�cant gaps between Cadzow’s r1H error and the minimal

one, compare Chapter 9, especially Figures 9.2 and 9.6. This behavior con�rms previous

results on alternating projection algorithms for the r1H setting, see e.g. [CFP03; DeM94].

7.3 Numerical Assessment of Convergence

Recall Remark 7.1.1 on the stopping criterion for Algorithm 7.1. In Theorem 7.12, we have

proven convergence of Cadzow’s algorithm for rank-1 Hankel approximation. So instead of

the relative change mentioned in Remark 7.1.1, we can simply use convergence as stopping

criterion for Algorithm 7.2. That is, the algorithm does not terminate until for some j the

rank-1 matrix A(j) has Hankel structure and the last step H(j+1) = P(A(j)) is redundant.

In this section, we want to numerically investigate the number of iterations that is needed

until convergence. In order to do so, we generate ten parameter vectors pA ∈ Rnp with

np = 19 and entries between −50 and 50. (Actually, we use the same parameter vectors

pA ∈ R19 as in Section 9.2.) From each parameter vector we assemble the Hankel matrices

HM,N (pA), see Chapter 5, of di�erent shapes M ×N while M +N = np + 1 = 20 is �xed.

Then for each shape, we average the number of iterations needed until convergence over

the ten di�erent parameter vectors. Our �ndings are depicted in Figure 7.1.

Contemplating Figure 7.1, we notice that for square and “moderately rectangular” input

matrices, Cadzow’s algorithm is relatively e�cient. The mean number of iterations needed

for M = 10, 9, 8, 7 is well below 100 (actually it is around 65).
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Figure 7.1 Average number of iterations needed for convergence of Algorithm 7.2 for de-
creasing number of rows M while M +N = np + 1 = 20 remains constant.

For greater di�erences between M and N however, the iteration count increases dras-

tically. In the extreme case, when approximating matrices of size (2× 18), Algorithm 7.2

converges after an average of 848.3 iterations.

We draw the conclusion that Algorithm 7.2 does not only converge in theory, but also

always converges in practical applications. However, it makes sense to maintain a stopping

criterion based on the relative change in the iterate as in Remark 7.1. This will still lead

to very good results while not exhausting the number of iterations. Furthermore, one

might want to use a more e�cient implementation of Cadzow’s algorithm, as for example

[WCW+21], instead of the rather naive one we used here.

As a sidenote, we remark that convergence to a zero matrix does not happen in any of

the examples considered for Figure 7.1.

The development of the r1H error in the Frobenius norm for decreasing number of

rows with �xed np = 19 is assessed in Section 9.2.1. From Figure 9.4 we observe that

Cadzow’s mean relative error (MRE, see (9.3)) largely mimics the behavior of the optimal

MRE. Cadzow’s MRE is noticeably larger than the optimal one, but the di�erence between

them approximately remains the same for the di�erent matrix shapes.
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8 Convex Relaxation

The rank of a matrix is not a convex function. This is the main reason why structured

low-rank approximation problems are so di�cult to solve exactly. Another heuristic method

to tackle this obstacle—besides Cadzow’s algorithm from Chapter 7—is based on convex

relaxation of the rank.

One way to characterize the rank of a matrix is via its singular values. The rank of a matrix

is equal to the number of its non-zero singular values, see Lemma 1.4 part (5). Let A ∈ CM×N

have the singular value decomposition A = UΣV∗, where Σ = diag(σ0, . . . , σM−1).

Denote by σ =
(
σ0 σM−1

)ᵀ
the vector of singular values. Then the rank of A can

be expressed as

rank A = r = #{j : σj 6= 0} =: ‖σ‖0,

where ‖·‖0 is called the `0-quasi-norm. It should be emphasized that this is not a true vector

norm because it is not homogeneous.

The notion of `0-quasi-norm is often used in the context of compressed sensing, signal

processing, and harmonic analysis where sparse approximations (i.e., with low `0-quasi-

norm) of vectors are of interest. However, the problem of minimizing the `0-quasi-norm of

a vector is not convex.

Therefore, when trying to �nd the sparsest vector, often its `1-norm is minimized instead,

see for example [CDS01; Don06a; Don06b]. The convex relaxation of the `0-quasi-norm by

the `1-norm is known to be an e�cient heuristic actually yielding sparse solutions [Don06a;

Don06b]. This fact calls for a similar approach in terms of matrix (quasi-)norms.
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8 Convex Relaxation

Definition 8.1 (Nuclear norm) Let A ∈ CM×N , M ≤ N , be a matrix with singular value

decomposition A = UΣV∗, where Σ = diagσ = diag(σ0, . . . , σM−1). The nuclear norm

of A is de�ned as

‖A‖∗ :=

M−1∑
j=0

σj = ‖σ‖1,

the sum of its singular values. The nuclear norm belongs to the Ky-Fan-norms, a family of

matrix norms named after the Chinese-American mathematician Ky Fan.

Remark 8.2 1. Unlike the `0-quasi-norm for vectors, the nuclear norm is indeed a matrix

norm, see [HJ13, Sec. 7.4].

2. The nuclear norm is the dual of the spectral norm, that is,

‖A‖∗ = sup
{

tr(BᵀA) : ‖B‖2 ≤ 1
}
.

3. For symmetric and positive semide�nite matrices, the nuclear norm is equal to the

trace (sum of diagonal elements) of the matrix [FHB01; Faz02].

4. The nuclear norm constitutes a convex envelope for the rank of a matrix, see [Faz02;

FHB04].

The nuclear norm was introduced in [FHB01; Faz02] as a convex heuristic for the rank

minimization problem (RMP),

min rank(A) subject to A ∈ C, (8.1)

where C is a convex set of constraints.

In engineering and computational sciences, often the simplest model that satis�es certain

constraints is of interest. Since the rank can be a measure for model complexity, it is not

surprising that the RMP has a wide range of applications in its own right, see [Faz02; FHB04;

RFP10]. However, it is non-convex, indeed it is NP-hard in general [VB96].

Instead of problem (8.1), in [FHB01] it was proposed to solve

min‖A‖∗ subject to A ∈ C, (8.2)

which is in fact convex and can therefore be easily solved. For example, problem (8.2) can

be formulated as semide�nite program and solved by general convex optimization methods

[FHB01; Faz02; FHB04; LV10]. Based on interior-point methods, an e�cient implementation
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8 Convex Relaxation

has been developed in [LV10] by exploiting the particular problem structure of (8.2). The

corresponding software is available as part of the cvxopt-package [ADV21] for Python.

Similar to `1-norm minimization, which often yields sparse solutions, problem (8.2) often

has solutions of low rank. A theoretical characterization of circumstances when the nuclear

norm heuristic produces a solution of minimal rank is given in [RFP10].

Although loosely related, the RMP (8.1) is quite di�erent from our r1H problem (2). We are

interested in the (optimal) approximation of a given matrix A by a Hankel matrix H that is

forced to possess rank one. By contrast, in (8.1) the rank is to be minimized subject to some

convex set of constraints. The convex relaxation (8.2) does not diminish this discrepancy.

Thus unfortunately, the heuristic (8.2) is not directly applicable to our problem (2).

The key ideas for conciliating problems (2) and (8.2) have been introduced in Chapters 5

and 6. We fall back on the parameter vectors p ∈ Rnp , and then

• impose the Hankel structure directly with H = H(p), and

• regularize the deviation from the input matrix A in terms of the parameter vectors

‖pA − p‖2W ,

where ‖·‖W is the weighted vector norm introduced in Chapter 5. Usually, the occurring

weight matrix W ∈ Rnp×np is either the identity matrix corresponding to the Euclidean

norm of the parameter vectors, or the positive de�nite matrix de�ned in (5.4) corresponding

to the Frobenius norm of Hankel matrices.

The spectral norm cannot be expressed while using the problem representation with

parameter vectors p ∈ Rnp . Furthermore, the initial matrix A needs to have Hankel

structure itself or it has to be replaced by its Hankel projection P(A), as mentioned earlier

in Chapter 5.

Using the above ideas, our aim is to solve the regularized nuclear norm minimization

problem

min
(
‖H(p)‖∗ + γ · ‖pA − p‖2W

)
, (8.3)

as a convex relaxation for the regularized rank minimization problem

min
(

rankH(p) + γ · ‖pA − p‖2W
)
,

where the regularization parameter γ admits the following interpretation: For γ = 0, the

approximation condition is dropped and the resulting Hankel matrix with minimial nuclear
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8 Convex Relaxation

norm (or minimial rank) is the zero matrix. On the opposite side, for γ =∞, the variable p

has to be equal to the parameter vector pA, andH(p) = A is generically not of low rank,

let alone rank one.

In this respect, the regularized optimization problem (8.3) is di�erent from the regularized

optimization in Section 6.2 where in the limit γ →∞ the desired solution is reached. Here,

a good balance has to be found between the rank minimization and the approximation

property of the parameter vector p.

We seek for this balance by solving problem (8.3) with di�erent values for the regulariza-

tion parameter. For the resulting set of solutions we plot the trade-o� curve between the

approximation error and the actual rank of the Hankel matrix H(p). A generic trade-o�

curve is shown in Figure 8.1. Since the rank always is a natural number, this plot results in

a step function. From the trade-o� curve, the smallest approximation error for which the

solution is indeed a rank-1 matrix can be determined.

approximation error
0

1

2

3

ra
nk

Figure 8.1 A generic trade-o� curve between the approximation error ‖pA − p‖2W and the
rank of the approximating Hankel matrix rankH(p). The approximation error is
small on the left-hand side of the horizontal axis and grows to the right.

In order to be able to test the nuclear norm heuristic for rank-1 Hankel approximation,

we have a closer look at the implementation [ADV21; LV10]. The software is designed to

solve the more general nuclear norm minimization problem

min
(
‖S(p)‖∗ + 1/2 · pᵀBp + dᵀp

)
,

where S is the structure speci�cation map from De�nition 5.1. We set B := 2γ ·W and

d := −2γ ·W · pA, where W is the weight matrix corresponding to the norm used (either

the identity or given in (5.4)). Then, the above is equivalent to our regularized nuclear norm

approximation problem (8.3).
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8 Convex Relaxation

We test the software [ADV21] on the same examples that we considered before in Chap-

ters 6 and 7. The errors produced by the convex relaxation method from this chapter are

compared to the other results in Section 9.1, see Tables 9.2 and 9.4.

Example 8.3 Consider again the matrix

A =


3 2 1 1

2 1 1 2

1 1 2 5

1 2 5 2

.

For this example, let W = I, which corresponds to the Euclidean norm of the parameter

vectors ‖pA − p‖W = ‖pA − p‖2.

We run the software [ADV21] to solve problem (8.3) for di�erent regularization parameters

γ. At �rst we let 0 ≤ γ < 1 with 0.05 as step size. For each such γ we plot the approximation

error and nuclear norm of the resulting approximation matrix H(p) in Figure 8.2. It is

apparent that the rank indeed decreases as a by-product of nuclear norm minimization.
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Figure 8.2 Trade-o� curve between the approximation error ‖pA − p‖2 and rank (dark grey
line), respectively nuclear norm (light red line) of H(p) for Example 8.3. The
regularization parameters used are γ ∈ [0, 1) with 0.05 as step size.

In Figure 8.2, we also see that no Hankel matrix of rank one was computed for the adopted

set of regularization parameters. In order to learn how to better choose γ, we also plot

rankH(p) for each regularization parameter, see Figure 8.3.

An inspection thereof suggests that we re�ne the step size of the regularization parameters

in the area between γ = 0.1 and γ = 0.15. Figure 8.4 shows rankH(p) for γ in this range

and with the smaller step size of 0.005. The corresponding trade-o� curve is plotted in

Figure 8.5.
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Figure 8.3 Rank of the solution matrixH(p) for di�erent regularization parameters γ ∈ [0, 1)
with step size 0.05 in Example 8.3.
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Figure 8.4 Rank of the solution matrix H(p) for regularization parameters γ ∈ [0.1, 0.15)
with the re�ned step size of 0.005 in Example 8.3.
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Figure 8.5 Trade-o� curve between the approximation error ‖pA − p‖2 and the rank of
H(p) in Example 8.3. Calculations are made for γ in the range [0.1, 0.15) with
re�ned stepsize 0.005. The smallest error ‖pA − pnuc‖2 ≈ 6.3776 is achieved for
γ = 0.135.
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Indeed “zooming in” on the regularization parameter like this, reveals several points

where the solutionH(p) of problem (8.3) has rank one. Among those, we select the rank-1

Hankel approximation Hnuc := H(pnuc) with the smallest approximation error. It is given

by

pnuc =
(

0.1518 0.1933 0.2461 0.3133 0.3990 0.5080 0.6468
)ᵀ

and is the solution of (8.3) for γ = 0.135.

The approximation errors achieved by this parameter vector pnuc are ‖pA − pnuc‖2 ≈
6.3776 in terms of the parameter vectors, and ‖A−Hnuc‖F ≈ 8.6885 in the Frobenius

norm. The respective relative approximation errors ‖pA − pnuc‖2/‖pA‖2 ≈ 0.9205 and

‖A−Hnuc‖F /‖A‖F ≈ 0.9158 arise as a result. All errors as well as the parameter vector

pnuc have been rounded to four digits.

Remark 8.4 1. The Figures 8.4 and 8.5 do not exhibit the expected monotonicity, as for

example Figure 8.1 does. This is because in (8.3), the nuclear norm is minimized instead of

the rank. The nuclear norm is in fact monotonically decreasing in the approximation error

and monotonically increasing in the regularization parameter as expected. However, small

nuclear norms may still correspond to higher values of the rank when there are several

small but non-zero singular values.

2. As is evident in Figure 8.4, several distinct regularization parameters γ may lead to

Hankel matricesH(p) of rank one. Among those, the largest regularization parameter places

the most emphasis on the approximation error ‖pA − p‖2W . Thus, this one contributes the

best approximate solution to the r1H problem.

Example 8.5 For this example we stick with the same matrix A as in Example 8.3 and

perform the same procedure again. The di�erence is that, this time, we use the non-trivial

weight matrix W from (5.4). Then the nuclear norm minimization problem (8.3) features

the Frobenius norm ‖A−H(p)‖F as regularization term.

We directly jump to the interesting range of regularization parameters. The resulting

trade-o� curve for γ between 0 and 0.1 with a step size of 0.005 is shown in Figure 8.6.

The smallest errors obtained by a rank-1 Hankel matrix are ‖A−H(pnuc)‖F ≈ 8.0818

and ‖pA − pnuc‖2 ≈ 5.9672 with corresponding relative errors ‖A−H(pnuc)‖F /‖A‖F ≈
0.8519 and ‖pA − pnuc‖2/‖pA‖2 ≈ 0.8613.

The parameter vector producing these errors is

pnuc ≈
(

0.3745 0.4590 0.5625 0.6894 0.8450 1.0356 1.2692
)ᵀ

,
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which is computed for γ = 0.075. Errors and parameter vector are rounded to four decimal

digits.
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Figure 8.6 Trade-o� curve between the Frobenius norm error ‖A−H(p)‖F and the rank
of H(p) for Example 8.5. The curve is shown for regularization parameters
γ ∈ [0, 0.1) with 0.005 as step size.

Comparing the results from Examples 8.3 and 8.5 we observe that in the latter both errors

are smaller. In Example 8.3 the vector norm ‖pA − pnuc‖2 is minimized besides the nuclear

norm, whereas in Example 8.5 the Frobenius norm ‖A−H(pnuc)‖F is included in the

regularized minimization problem (8.3). Therefore, the described behavior is expected for

the Frobenius norm error ‖A−H(pnuc)‖F , the contrary is anticipated for the vector norm

error ‖pA − pnuc‖2.

A possible explanation is that the solution of (8.3) highly depends on the regularization

parameter. It might be possible to �nd an equally good solution in Example 8.3 when further

re�ning the step size for the regularization parameter. We refrain from trying so since in

both examples the step size has been the same, and thus results should be comparable. More

importantly, we are mostly interested in the Frobenius norm error after all. For this reason,

we only include the results from Example 8.5 for comparison in Table 9.4.

Finally we come to the second example matrix that is always invoked in this part of the

thesis.

Example 8.6 As in the previous chapters we also consider the matrix

A =

 1 0 1/2

0 1/2 0

1/2 0 1

 with parameter vector pA =
(

1 0 1/2 0 1
)ᵀ
.
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Figure 8.7 Trade-o� curve between the approximation error ‖pA − p‖W = ‖A−H(p)‖F
and the rank of H(p) for Example 8.6. The regularization parameters γ are in
[0.3, 0.4) with 0.01 as step size.

For this example we directly use the Frobenius norm in the penalization term of (8.3); that

is, we use W from (5.4). Furthermore, we immediately jump to the interesting range of

regularization parameters. With γ between 0.3 and 0.4 with step size 0.01 we obtain the

trade-o� curve depicted in Figure 8.7.

At �rst glance, this trade-o� curve might look like expected, compare Figure 8.1. We have

to observe, however, that the approximation errors are all given in the order of ‖pA − p‖W ≈
1.6583 + 10−8. This means that the approximation errors are suspiciously close (deviation

only in the eighth decimal digit) to the norm of the input matrix ‖A‖F ≈ 1.6583.

Nevertheless, we consider the output with smallest approximation error. It is calculated

by [ADV21] for γ = 0.33, and is given by

pnuc ≈
(

1.252 · 10−8 9.298 · 10−25 1.220 · 10−8 4.565 · 10−24 1.252 · 10−8
)ᵀ

.

Here, we display only three signi�cant places due to space limitation.

Sure enough, this parameter vector is almost zero. The approximation errors are given by

‖A−Hnuc‖F ≈ ‖A‖F − 2.4592 · 10−8 in the Frobenius norm, and ‖pA − pnuc‖2 ≈ 1.5−
2.0606 · 10−8 in the Euclidean norm. Of course, the relative errors only di�er very slightly

from one: ‖A−Hnuc‖F /‖A‖F ≈ 1−1.4830 ·10−8 ≈ 1.0000 and ‖pA − pnuc‖2/‖pA‖2 ≈
1− 1.3737 · 10−8 ≈ 1.0000. We display four signi�cant digits of the errors.

In Table 9.2, the errors are given less accurately than here. This is due to reasons of better

comparability with the errors produced by other methods.
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Remark 8.7 Note that we always have to compute the rank numerically. The numerical

rank is the number of singular values that are larger than a certain threshold (compare

Lemma 1.4). In Python and MATLAB, this threshold defaults to

tol := σ0 ·max{M,N} · eps,

where eps is the machine precision. It is approximately given by eps ≈ 2.22 · 10−16 for

standard �oating point arithmetic in Python and MATLAB, see also [Hig02; PTV+07]. The

threshold also depends on the scale of the matrix via its largest singular value σ0 and its

dimensions M and N .

This default threshold is too sensitive for our purposes here. Using it, we do not obtain a

single rank-1 matrix for any regularization parameter. For all three examples in this chapter,

the solution to problem (8.3) would be either a full rank matrix or the zero matrix.

Hence, we have to set a custom threshold, below which the singular values are considered

zero. In the examples in this chapter, this threshold is set to 10−8 by trial and error. Setting

the threshold smaller than 10−8 yields parameter vectors in the order of 10−10 which have to

be considered zero. A larger threshold is not favourable since it would lead to very inaccurate

numerical ranks. However, one might expect that a larger threshold in Example 8.6 might

lead to a more useful parameter vector. This is not the case. To the contrary, even a really

large threshold of 10−3 does not lead to a rank-1 Hankel approximation for Example 8.6

that is comparable to the optimal solution from Chapter 3.
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So far in this part, we have reviewed a variety of di�erent methods that can be used for

rank-1 Hankel approximation. Finally, we want to compare the approximation accuracy of

these methods. The minimal error achieved by an optimal approximation from Part I shall

always serve as benchmark.

The majority of the methods from this part, as well as the optimal rank-1 Hankel approxi-

mation in the spectral norm, only deal with real input matrices and their real approximations.

Therefore, we limit our comparisons to real rank-1 Hankel approximation of real matrices.

For a comparison between real and complex optimal approximations with respect to the

Frobenius norm, see Figure 3.1.

The methods based on local optimization (Chapter 6) and convex relaxation (Chapter 8)

make extensive use of the concept of parameter vector introduced in Chapter 5. This is

why these methods can only be used to approximate matrices that already feature Hankel

structure. Consequently, in this chapter we only approximate Hankel matrices and compare

the resulting approximation errors.

9.1 Revisiting Some Examples

In this section, we take up two of the small example matrices that we have encountered

repeatedly throughout this thesis. For these matrices, we exemplarily contrast the optimal

rank-1 Hankel approximations with respect to the Frobenius and the spectral norm obtained

by the methods from Chapters 3 and 4.
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Furthermore, we compare the Frobenius norm errors produced by the di�erent SLRA

approximation methods from Chapters 6 to 8 by means of these examples. The errors are

compared to the minimal error computed by our method from Chapter 3.

The matrix most o�en used as an illustrative example is

A =

 1 0 1/2

0 1/2 0

1/2 0 1

, (9.1)

wich is known from Examples 3.8, 4.12, 6.2, 6.8 and 7.15.

First, we compare the optimal rank-1 Hankel approximations that we obtain for the

Frobenius and the spectral norm. For this simple matrix the optimal solutions have been

calculated analytically by hand, see Examples 3.8 and 4.12. We list the respective optimal

coe�cients c̃ and optimal structure parameters z̃ in Table 9.1. Besides, we also register the

resulting approximation errors in both the Frobenius and the spectral norm.

Optimal approximation optimal c̃ optimal z̃ ‖A− c̃ · z̃z̃ᵀ‖2 ‖A− c̃ · z̃z̃ᵀ‖F
for the Frobenius norm 7/6 ±1 1.0458 1.1785
for the spectral norm 2 ±1 0.9574 1.4434

Table 9.1 Optimal parameters constituting optimal rank-1 Hankel approximations with re-
spect to the Frobenius norm (Example 3.8) and the spectral norm (Example 4.12).
The errors are rounded to four decimal digits and minimal errors are displayed in
boldface.

In this particular example, the optimal structure parameter for the approximation with

respect to the Frobenius norm and the one for the spectral norm coincide. This is usually

not the case, see for example Table 9.3. Nonetheless, it is apparent from the di�erent values

of c̃, that the optimal solutions for Frobenius and spectral norm di�er.

Note that the spectral norm of a matrix is always smaller than its Frobenius norm. In

order to �nd the minimal r1H error, we have to compare the errors within the same column

of Table 9.1. We see that for both norms the approximation error is signi�cantly smaller

when the approximation method is speci�cally designed for the respective norm.

Remark 9.1 As all the entries in the matrix (9.1) are real and non-negative, there is an

optimal rank-1 Hankel approximation with respect to the Frobenius norm that is also real,

136



9.1 Revisiting Some Examples

see Remark 3.14. Thus, there is no need to search for complex optimal parameters c̃ and z̃

for the Frobenius norm. The same holds true for the second example matrix (9.2) considered

in this section.

The matrix A in (9.1) has been approximated by a rank-1 Hankel matrix using each of

the introduced methods, see Examples 3.8, 4.12, 6.2, 6.8 and 7.15. The respective resulting

approximation errors in the Frobenius norm are listed in Table 9.2.

As mentioned before, the rank-1 Hankel approximation for the matrix (9.1) has also been

computed with respect to the spectral norm. However, since most of the methods presented

in Part II are designed for the (weighted) Frobenius norm only, it makes little sense to

compare the errors in the spectral norm. This is why it does not occur in Table 9.2.

In the table, the method “optimal” refers to the optimal rank-1 Hankel approximation in

the Frobenius norm from Chapter 3. The terms “kernel” and “image” are short notation for

the local optimization methods using the kernel and the image representation of the rank

constraint from Sections 6.1 and 6.2, respectively. “Cadzow” naturally stands for Cadzow’s

algorithm from Chapter 7. Note that the result for Cadzow’s algorithm has been calculated

analytically such that the respective values in the bottom three rows of Table 9.2 are exact.

The convex relaxation heuristic using the nuclear norm from Chapter 8 is abbreviated by

“nucnorm” in Table 9.2. These notations will be used throughout this chapter.

Method optimal kernel image Cadzow nucnorm

‖A−H(p)‖F 1.1785 1.3229 1.6583 1.6583 1.6583

‖pA − p‖2 1.0304 1.1180 1.5000 1.5 1.5000

‖A−H(p)‖F /‖A‖F 0.7107 0.7977 1.0000 1 1.0000

‖pA − p‖2/‖pA‖2 0.6869 0.7454 1.0000 1 1.0000

Table 9.2 Absolute and relative approximation errors rounded to four digits in the Frobenius
norm and the Euclidean norm of parameter vectors for Examples 3.8, 6.2, 6.8 and 7.15.
The di�erent columns correspond to di�erent SLRA methods. The minimal errors
are displayed in boldface.

This is a peculiar example since for three of the methods (the image method, Cadzow’s

algorithm, and the nuclear norm heuristic) the approximation error is just the norm of the

matrix A itself. This implies that these methods only return the zero matrix rather than a

matrix of true rank one. In contrast, even compared to the optimal errors, the kernel method

yields quite good results.
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The second example matrix we want to examine more closely is

A =


3 2 1 1

2 1 1 2

1 1 2 5

1 2 5 2

, (9.2)

see also Examples 6.1, 6.7 and 8.5.

We compute the optimal rank-1 Hankel approximations of this matrix with respect to

the Frobenius norm and the spectral norm via the methods established in Chapters 3 and 4,

respectively. The respective optimal parameters and resulting approximation errors are

listed in Table 9.3. In this example, the optimal solutions for the Frobenius and the spectral

norm di�er in both the optimal coe�cient c̃ and the optimal structure parameter z̃. This

behavior, in contrast to the �rst example matrix (9.1), is expected and is the more generic

one.

Optimal approximation optimal c̃ optimal z̃ ‖A− c̃ · z̃z̃ᵀ‖2 ‖A− c̃ · z̃z̃ᵀ‖F
for the Frobenius norm 8.3144 1.2256 3.2085 4.5685
for the spectral norm 9.9621 1.1431 3.1595 4.9325

Table 9.3 Optimal parameters constituting optimal rank-1 Hankel approximations of the
matrix (9.2) with respect to the Frobenius norm and the spectral norm. The errors
are rounded to four decimal digits. Minimal errors are displayed in boldface.

Rank-1 Hankel approximations of the matrix (9.2) have been calculated using local op-

timization techniques and the nuclear norm heuristic in Examples 6.1, 6.7 and 8.5. The

resulting approximation errors are summarized in Table 9.4. Although not calculated in a

speci�c example, we have also added the error produced by Cadzow’s algorithm. Besides,

we have of course included the optimal result from Chapter 3.

The matrix (9.2) turns out to be much more benign than the one in (9.1) as all of the

relative approximation errors are well below one. In other words, none of the methods

employed returns the zero matrix. The kernel method even yields a solution that is hardly

distinguishable from the optimum, see Example 6.1 for more details. The image method, too,

generates very good results in this case. Its relative approximation error in the Frobenius

norm is as small as the optimal error in the displayed precision of four decimal digits.

Recall that approximating the matrix (9.1), the nuclear norm heuristic from Chapter 8 fails
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Method optimal kernel image Cadzow nucnorm

‖A−H(p)‖F 4.5685 4.5685 4.5687 4.5748 8.0818

‖pA − p‖2 3.5355 3.5355 3.5460 3.6099 5.9672

‖A−H(p)‖F /‖A‖F 0.4816 0.4816 0.4816 0.4822 0.8519

‖pA − p‖2/‖pA‖2 0.5103 0.5103 0.5118 0.5210 0.8613

Table 9.4 Absolute and relative approximation errors rounded to four digits in the Frobenius
norm and the Euclidean norm of parameter vectors for di�erent SLRA methods, see
Examples 6.1, 6.7 and 8.5. The minimal value for each error is displayed in boldface.

to deliver a Hankel approximation of true rank one. Admittedly, so do Cadzow’s algorithm

and the image method for that peculiar example. But from Table 9.4, we see that also for the

matrix (9.2) the nuclear norm heuristic yields decidedly worse results than the other methods.

We conclude that it is not really suited for the r1H problem after all. Additionally, �nding

the critical range, where the regularization parameter provides a good balance involves a lot

of manual work, compare Examples 8.3 and 8.6. For these reasons we exclude the nuclear

norm heuristic from the broader comparisons that we conduct in the next section.

9.2 More Comparisons

In this section, we want to compare the di�erent methods applied to the r1H problem on a

broader basis. To this end, we generate ten matrices A(i), i = 1, . . . , 10, containing random

entries in the interval [−50, 50]. Given this wide range of entries, the norms of the input

matrices
∥∥A(i)

∥∥may vary greatly. Thus, the absolute approximation errors
∥∥A(i)−H

(i)
method

∥∥
are not comparable. This is why in this section, we only use the relative errors

RE(i)
method :=

∥∥A(i) −H
(i)
method

∥∥∥∥A(i)
∥∥ , i = 1, . . . , 10

to compare the di�erent methods’ approximation accuracies. The relative errors are, by

nature, contained in the interval [0, 1] and therefore much more useful for comparison. Here

Hmethod is the rank-1 Hankel matrix obtained by the respective method (optimal, kernel,

image, or Cadzow).

In addition to the individual relative approximation errors RE(i), we also evaluate the
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mean

MREmethod :=
1

10
·

10∑
i=1

∥∥A(i) −H
(i)
method

∥∥∥∥A(i)
∥∥ =

1

10
·

10∑
i=1

RE(i)
method (9.3)

over all ten relative approximation errors.

In order to better assess the approximation accuracies of the methods from Part II, we

furthermore determine mean deviations from the respective optimal relative approximation

error. More precisely, we calculate the mean absolute deviation (MAD) from the optimal

relative error

MADmethod :=
1

10
·

10∑
i=1

∣∣RE(i)
opt − RE(i)

method

∣∣, (9.4)

and the mean squared deviation (MSD) from the optimal relative error

MSDmethod :=
1

10

10∑
i=1

(
RE(i)

opt − RE(i)
method

)2
. (9.5)

In these de�nitions, RE(i)
opt is the minimal relative approximation error obtained by the optimal

methods from Chapters 3 and 4. Correspondingly, RE(i)
method is the relative approximation

error produced by one of the methods (kernel, image, Cadzow) from Part II.

First, we compare approximation errors resulting from di�erent r1H methods in the

Frobenius norm in Section 9.2.1. Then, in Section 9.2.2, we add comparisons of approximation

errors in the spectral norm.

9.2.1 Approximation with Respect to the Frobenius Norm

All of the methods presented in Part II of this thesis can be used to solve the r1H problem

in the Frobenius norm. However, these methods are known to yield only approximative

solutions. In this section, we want to compare the approximation accuracies of kernel,

image, and Cadzow’s method to the optimal rank-1 Hankel approximation with respect

to the Frobenius norm from Chapter 3. Using each of the aforementioned methods, we

compute rank-1 Hankel approximations for matrices of di�erent sizes. Ensuing, we compare

the resulting individual relative approximation errors as well as the mean errors (9.3)–(9.5).

For reasons explained in the end of Section 9.1, the rank-1 Hankel approximation via

nuclear norm minimization does not appear here.
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For the first comparison, we use ten randomly generated (4× 4) Hankel matrices
with entries in the interval [−50, 50]. Speci�cally, we randomly generate ten parameter

vectors pA ∈ Rnp with np = 7. From these parameter vectors we assemble ten (4 × 4)

Hankel matrices according to (5.1). We use Hankel matrices to begin with because the

approximation methods based on local optimization from Chapter 6 can only deal with

structured input. This does not constitute a severe restriction because of the special structure

of the optimal rank-1 Hankel approximation, see Remark 3.2, and the intrinsic nature of

Cadzow’s method, see Algorithm 7.2.

Figure 9.1 shows the relative approximation errors REmethod = ‖A−Hmethod‖F /‖A‖F ,

for rank-1 approximation of each method and each input matrix. The methods compared are

the optimal one, the local optimization techniques using kernel and image representation of

the rank constraint, and Cadzow’s method.

In most of the depicted examples, the errors lie relatively close together. Nevertheless, we

see that the local optimization methods (kernel and image) rarely produce a visibly larger

error than the optimal solution. Cadzow’s method does sometimes provide notably worse

approximations than the others. The errors contributed by Cadzow’s, kernel and image

method are larger than the optimal errors in all cases.
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Figure 9.1 Relative rank-1 Hankel approximation errors in the Frobenius norm obtained by
di�erent methods for ten randomly generated (4×4) Hankel matrices with entries
in [−50, 50].

This is re�ected in Table 9.5 where the mean relative approximation errors (MREs) (9.3) in

the Frobenius norm are listed for each method. The optimal rank-1 Hankel approximation

clearly produces the smallest MRE. The next best approximations on average are achieved

by the image method, followed by the kernel method and �nally Cadzow’s algorithm. The

mean absolute deviations (MADs) from the minimal error (9.4) validate this ranking of the

methods. As a consequence of the overall very similar approximation errors, the mean

squared deviations (MSDs) are inconclusive in this example.
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Method optimal kernel image Cadzow

mean relative error 0.7264 0.7346 0.7315 0.7379

mean absolute deviation 0.0081 0.0051 0.0115

mean squared deviation 0.0004 0.0003 0.0004

Table 9.5 Mean relative errors (9.3) in the Frobenius norm, and mean absolute and squared
deviations from the minimal relative error (9.4) and (9.5) for di�erent methods.
Input matrices are the same ten randomly generated (4× 4) Hankel matrices with
entries in [−50, 50] as used for Figure 9.1. All values are rounded to four decimal
digits.

Next, we want to test the methods on larger matrices. We generate ten parameter

vectors pA ∈ Rnp with np = 19 and random entries between −50 and 50. From these

parameter vectors we synthesize ten (10× 10) Hankel matrices. For these we conduct the

same comparison as before for the (4× 4) matrices.

Table 9.6 lists the mean relative error (9.3) for each method as well as the mean deviations

(9.4) and (9.5) from the minimal relative error. Our optimal solution provides the smallest

MRE.

As before, we derive a ranking of the remaining methods according to their MREs. This

ranking is the same as for the (4× 4) matrices. More explicitly, the image method yields the

second best mean relative error after the optimal solution. Next in line is the kernel method,

and Cadzow’s iteration comes last. Note that the di�erences between the methods in both

MRE and mean deviations from the optimal error are more noticeable than in Table 9.5.

Method optimal kernel image Cadzow

mean relative error 0.8839 0.9021 0.8932 0.9130

mean absolute deviation 0.0181 0.0092 0.0291

mean squared deviation 0.0012 0.0005 0.0019

Table 9.6 Mean relative errors in the Frobenius norm, and mean absolute and squared devia-
tions from the minimal relative error. Input matrices are ten randomly generated
(10× 10) Hankel matrices with entries in [−50, 50]. All values are rounded to four
decimal digits.

The same impression is also gained when considering the relative approximation errors

for each random matrix individually. We depict the relative approximation error for each
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method and each random matrix in Figure 9.2. The marks for the errors of the di�erent

methods are wide-spread compared to Figure 9.1. This supports the conclusion that the

optimal approximation from Chapter 3 can deal better with larger matrices than the other

methods.
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Figure 9.2 Relative rank-1 Hankel approximation errors obtained by di�erent methods for
ten randomly generated (10× 10) Hankel matrices with entries in [−50, 50]. The
same initial matrices are at the basis of Table 9.6.

Besides the relative approximation errors, we also want to inspect the actual ranks of

the supposed rank-1 Hankel approximations. Here, we are confronted with the problem

of numerical rank computation. Similarly as in Chapter 8 (see especially Remark 8.7), the

default threshold (used in both Python and MATLAB) of

tol = σ0 ·max{M,N} · eps

with eps ≈ 2.22 · 10−16 seems too sensitive for the local optimization methods. Using this

default threshold, we obtain approximation matrices with a numerical rank of around four

and up to eight for the kernel method. For the image method, we even obtain approximation

matrices of full numerical rank.

For these two methods, we choose to replace the default by the signi�cantly larger

thresholds of tolker = 10−12 for the kernel method and tolimg = 10−10 for the image

method. The resulting numerical ranks are shown in Figure 9.3. Computed with the custom

threshold of tolker = 10−12, the kernel method actually produces rank-1 Hankel matrices

as demanded. The image method, however, still repeatedly contributes matrices of rank two

or three although computed with the larger threshold tolimg = 10−10.

This information on the actual ranks puts the good approximation results (Tables 9.5

and 9.6 and Figures 9.1 and 9.2) of the image method into a di�erent perspective. While

granting really good approximation errors, it repeatedly does not obey the rank-1 constraint.
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This fact also contradicts the claim cited in Remark 6.6, compare also Remark 6.9. Thus, the

image method is not as well suited for rank-1 Hankel approximation after all.
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Figure 9.3 Actual ranks of the Hankel matrices approximating the same (10× 10) Hankel
matrices from Figure 9.2. The ranks are computed using the following thresholds:
tolker = 10−12 for the kernel method, tolimg = 10−10 for the image method,
and the default threshold tol for Cadzow’s algorithm and the optimal solution.

Now, we also examine the approximation behavior on rectangular matrices since

so far, we have only considered the approximation of square matrices. We reuse the same

entries, that is, the same ten parameter vectors pA ∈ [−50, 50]19 generated for the (10×10)

matrices. Now we assemble them to Hankel matrices of di�erent shapes. In other words,

we apply the Hankel structure operatorHM,N from (5.1) to the ten parameter vectors for

di�erent values of M and N such that M +N − 1 = np = 19 and M ≤ N .

For each shape and each approximation method, we compute the MRE over ten input

matrices. Its development for decreasing number of rows M and constant number of

parameters np = 19 is depicted in Figure 9.4.
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Figure 9.4 Development of the mean relative approximation errors for increasing di�erence
between M and N while np = 19 remains constant.
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We perceive that the optimal error decreases slightly for decreasing number of rows. This

is not surprising since for decreasing number of rows M , the rank of the initial matrix,

rank A ≤M , necessarily decreases, too. Thus, the rank reduction becomes less severe and

smaller relative errors can be expected for decreasing M .

Among the non-optimal low-rank approximation methods, only Cadzow’s algorithm

seems to exhibit this decaying behavior. The methods based on local optimization both

feature an increase in the mean relative approximation error before eventually decreasing.

We briefly study the numerical complexity of the di�erent SLRA methods. Recall

the necessary condition for an optimal real rank-1 Hankel approximation of a real initial

matrix A =
(
ajk
)M−1,N−1

j,k=0
from Theorem 3.6. More precisely, if z̃ is an optimal structure

parameter, then we must have

Q(z̃) = a′(z̃) · p(z̃)− a(z̃) · p′(z̃) = 0,

where a(z) and p(z) are the functions

a(z) =

M−1∑
j=0

N−1∑
k=0

ajk · zj+k and p(z) =

(
M−1∑
j=0

z2j

)1/2

·

(
N−1∑
j=0

z2j

)1/2

.

In the case when the initial matrix A is square (i.e., M = N ), both functions a(z) and p(z)

are polynomials of degree 2N − 2. Consequently, Q(z) is a polynomial of degree 4N − 5.

Candidates for optimal structure parameters z̃ can now be found by computing the roots

of Q(z). For rectangular initial matrices (i.e., M 6= N ), similar arguments reduce the r1H

problem to �nding the roots of a polynomial of degree 3M + 3N − 1. We then have to

determine which roots correspond to the maximum of the function |F (z)| = |a(z)|
p(z) .

The root �nding can be done via an eigendecomposition of the (4N − 5) × (4N − 5)

companion matrix of Q(z), which comes at the cost of roughly O
(
(M +N)3

)
operations,

see [HJ13, Sec. 3.3; Dem97, Sec. 4.5]. Clearly, the computation of the roots is the dominating

step in terms of numerical complexity.

With M ≤ N , one iteration step of the kernel method has a numerical complexity

of O
(
(M − r)3 · N3

)
, and the numerical complexity of the image method is given by

O
(
M · N3 · r2

)
per iteration, see [IUM14]. For r = 1, these complexities simplify to

O
(
(M − 1)3 ·N3

)
= O

(
M3 ·N3

)
for the kernel method and to O

(
M ·N3

)
for the image
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method.

Taking the special problem structure into account, the complexity for the kernel method

has been improved to aboutO
(
(M − r)3 ·MN

)
in [UM14]. For rank-1 approximation, this

becomes O
(
M4 ·N

)
.

In terms of numerical complexity, Cadzow’s algorithm is dominated by the SVD, which

has to be performed in each iteration. The numerical cost of performing one SVD is about

O
(
N3
)
, see [Dem97, Sec. 5.4]. According to [WCW+21], the complexity of Cadzow’s

algorithm can be reduced toO
(
(M+N) ·r2 +(M+N) ·r · log(M+N)+r3

)
per iteration.

This gives O
(
(M +N) · log(M +N)

)
in the considered rank-1 setting.

We summarize all method’s numerical complexities and their improved versions (if

available) in Table 9.7.

Method optimal kernel image Cadzow

cost/iteration ∗O
(
(M +N)3

)
O
(
M3 ·N3

)
O
(
M ·N3

)
O
(
N3
)

improved O
(
M4 ·N

)
O
(
(M +N) · log(M +N)

)
Table 9.7 Numerical complexities per iteration for each method in the setting of rank-1

Hankel approximation. *Our optimal method is not an iterative procedure and its
total cost is displayed.

As a conclusion, we may say that the local optimization methods, kernel and image, come

at the highest numerical cost per iteration. Perhaps, this is because of their versatility in

terms of the structure and desired rank r. We observe that the kernel method is better suited

for rectangular matrices while the image method is cheaper for (nearly) square matrices.

Taking the more general complexities for the rank-r Hankel approximation problem

into account, we see that the kernel method is essentially better for large target ranks. In

contrast, the image method (compare Remark 6.6) and Cadzow’s algorithm come at lower

numerical cost for small target ranks. In general, the complexity of Cadzow’s algorithm

from [WCW+21] is surprisingly low. It will depend on the number of iterations needed if it

is in fact cheaper to perform than our method from Chapter 3, since our method computes

an optimal rank-1 Hankel approximation in a single step.

In our (10× 10) examples, the kernel method needed 10.7 iterations on average with a

minimum of 5 and a maximum of 17 iterations. The image method takes at least 14 and at

most 29 iterations with an average of 18 iterations. In the same examples, Cadzow’s method

needs a number of iterations between 30 and 86 until convergence yielding an average of
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65.8 iterations. Note that, as the stopping criterion for Cadzow’s algorithm, we have used

convergence to a rank-1 Hankel matrix, where the numerical rank is computed with the

sensitive default threshold tol. With a less sensitive threshold, the number of iterations can

be reduced. However, still more than double the iterations of the kernel or image method are

needed when using the larger threshold tolimg = 10−10. Hence, at least in the examples

considered here, the optimal method is cheaper than Cadzow’s algorithm.

9.2.2 Approximation with Respect to the Spectral Norm

Recall that opposed to the local optimization techniques, Cadzow’s Algorithm 7.1 is not

designed speci�cally for the Frobenius norm. To the contrary, it consists of the very same

steps when computing a structured low-rank approximation with respect to the spectral

norm, see also Remark 7.3. Thus it makes sense to compare the results of Cadzow’s method

to the optimal solutions in the spectral norm.

We take up the same randomly generated Hankel matrices of sizes (4× 4) and (10× 10)

that we have used for comparison of the r1H errors in the Frobenius norm. For these matrices

we compute both the optimal rank-1 Hankel approximations from Chapter 4 and Cadzow’s

approximations from Chapter 7.

The resulting relative approximation errors are depicted in Figures 9.5 and 9.6, respectively.

Both of them con�rm what we expect. Cadzow’s method yields acceptable rank-1 Hankel

approximations, but it does not achieve the minimal error.

(4× 4) matrices (10× 10) matrices

Method optimal Cadzow optimal Cadzow

mean relative error 0.7411 0.7638 0.8155 0.8379

mean absolute deviation 0.0227 0.0223

mean squared deviation 0.0013 0.0010

Table 9.8 Mean relative errors in the spectral norm, and mean absolute and squared devia-
tions from the minimal relative error. Initial matrices are the same ten randomly
generated (4× 4) and (10× 10) Hankel matrices with entries in [−50, 50] as used
for the Frobenius norm, see Tables 9.5 and 9.6. All values are rounded to four
decimal digits.

Recall that for the Frobenius norm, the di�erences in the approximation accuracies are

more pronounced for larger matrices. Comparing Figures 9.5 and 9.6, we cannot say the
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same for the spectral norm. Therefore, we list the mean relative errors and deviations of

Cadzow’s error from the minimal errors in Table 9.8. Indeed, MAD and MSD di�er only

slightly for (4× 4) and (10× 10) initial matrices. This suggests that Cadzow’s method is

not sensitive to the size of the initial matrix when we measure the r1H error in the spectral

norm.
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Figure 9.5 Relative errors in the spectral norm for rank-1 Hankel approximation using Cad-
zow’s and the optimal method. Input matrices are the same (4×4) Hankel matrices
as in Figure 9.1.
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Figure 9.6 Relative errors in the spectral norm for rank-1 Hankel approximation using Cad-
zow’s and the optimal method. Approximated are the same ten (10× 10) Hankel
matrices as used for Figure 9.2.

Remark 9.2 The optimal rank-1 Hankel approximation in the spectral norm has been

derived for real symmetric matrices only. Therefore, we cannot consider the development

of the mean relative approximation error for changing numbers of rows and columns as

was done in Section 9.2.1.
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In this dissertation, we have dealt with the rank-1 Hankel approximation (r1H) problem

min‖A−H‖ such that rank H = 1,

and H has Hankel structure
(2)

with respect to the Frobenius norm and the spectral norm. This problem is a special case of

the structured low-rank approximation (SLRA) problem (1).

Conclusion

Part I of this dissertation is dedicated to characterizing the optimal solutions of the r1H

problem (2). This characterization of the optimal solutions is based on the characterization

of rank-1 Hankel matrices given in Chapter 2. Depending on the considered norm, the

optimal solutions are of di�erent nature. Therefore, we have devoted Chapters 3 and 4 to

optimally solving the r1H problem with regard to the Frobenius norm and the spectral norm,

respectively.

For each norm, we analytically transform the r1H problem (2) to a maximization problem

of a rational function. Using this transformation, we are able to develop an algorithm for

the numerical computation of an optimal solution for each norm. For the Frobenius norm,

we observe that an optimal solution to the r1H problem always exists. For the spectral

norm, however, this is not the case, see Example 4.18. In general, the optimal approximation

matrices for the Frobenius norm and the spectral norm usually di�er.
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We also assess the minimal r1H errors in comparison with the optimal error bounds

(1.2) and (1.3) given by the unstructured rank-1 approximation. For the Frobenius norm,

the optimal error bound (1.2) is only attained if the rank-1 matrix formed by the �rst

singular triple of A already has Hankel structure, see Theorem 3.3. For the spectral norm,

the conditions for achievement of the optimal error bound (1.3) are less restrictive, see

Theorems 4.9 and 4.15.

Part II contains summaries of four SLRA methods from three categories: two methods

based on local optimization, an alternating projections procedure called Cadzow’s algorithm,

and a convex relaxation heuristic based on the nuclear norm.

In the case of Cadzow’s method, we devise a thorough proof of convergence in the r1H

setting. Its limit point, however, is usually not the optimal solution—neither for the Frobenius

norm nor for the spectral norm. We conjecture that Cadzow’s limit point and the optimal

solution only coincide in the trivial case; namely, when the �rst singular triple of the initial

matrix already forms a Hankel matrix.

All of the aforementioned methods have been adapted to the r1H problem. Then their

resulting rank-1 Hankel approximations and errors are compared by means of small examples.

In Chapter 9, we conduct comparisons on more, randomly generated initial matrices. The

comparisons con�rm our theoretical results: our methods from Chapters 3 and 4 indeed

always lead to smaller approximation errors than the methods reviewed in Part II. Thus, our

optimal solutions to the r1H problem serve as benchmarks for the other methods.

Furthermore, we explain the numerical complexity of our method for real rank-1 Hankel

approximation in the Frobenius norm. Then, we compare our method, the two local opti-

mization methods, and Cadzow’s algorithm in terms of numerical complexity. Our optimal

method and Cadzow’s algorithm are signi�cantly more e�cient than the local optimization

methods. The comparison between Cadzow’s and our optimal method depends on how

many iterations Cadzow’s method needs until convergence.

Outlook

A �rst extension of our work could be to evaluate the numerical complexity of our method

for the spectral norm. Moreover, it might be interesting to see if it is possible to improve the

numerical complexity of our methods from Chapters 3 and 4.

Our approach to solve the r1H problem is based on the characterization of rank-1 Hankel

matrices from Chapter 2. One aspect of future research could be to extend this approach to
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more general matrix structures, such as Sylvester or block Hankel structures.

Another extension of our work could be to investigate analytical characterizations of

the solutions to the rank-r Hankel approximation problem for r > 1. Unfortunately, for

increasing target rank r, the number of di�erent types of Hankel matrices increases greatly,

see Section 2.2. However, there is one generic type of a rank-r Hankel matrix; namely, the

sum of r rank-1 Hankel matrices; the remaining types may be viewed as limit cases, see also

Section 2.2. Even when disregarding the limit cases, optimal rank-r Hankel approximation in

the Frobenius norm leads to the optimization of multivariate polynomials, see [OSS14], and

therefore to high numerical complexity. For the spectral norm, an analytical transformation

to a manageable problem is not yet known for higher rank.

In order to obtain a Hankel structured approximation of rank-r, another idea could be to

iteratively apply our optimal r1H method. While brie�y checking this idea, we realized that

this strategy does not work out because the iterative application of optimal rank-1 Hankel

approximations leads to worse approximations than any SLRA method described in Part II.

This is even the case if the initial matrix can be decomposed into the sum of r rank-1 Hankel

matrices; that is, if the initial matrix already has the desired structure and rank. Heuristically

speaking, the �rst optimal rank-1 Hankel approximation already incorporates too much of

the information that should be encoded in the subsequent ones. It would be interesting to

investigate whether an adaptive iterative application of our method can overcome this issue.
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