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Abstract

In recent years, advances in sequencing techniques resulted in an explosive increase in sequencing
data. By now, there are billions of generated protein sequences available in public databases to a
large extent without experimentally proven structure and function. Computational approaches and
bioinformatic analysis, like the ones presented here, complement and assist experimentally intensive
research efforts by processing, analyzing and interpreting the produced amounts of biological data
and by giving first forecasts to uncover hidden knowledge from the data and help answering funda-
mental biological questions.

Coiled-coil prediction software has an important role in one of the first steps of the structural an-
notation of newly generated protein sequences with unknown molecule structure. Unfortunately
established software have been shown to have a rather limited applicability especially in terms of
the prediction quality with regard to large-scale coiled-coil analyses. The web-application »Wag-
gawagga« was developed for the comparative visualization of coiled-coil predictions generated by
different software packages (Simm et al., 2015). As a basis for decision-making over a coiled-coil do-
main in question, the strength of the majority consensus of multiple and freely combinable prediction
tools builds the central aspect of this comparative approach to overcome the limitations of single ap-
plications. Supportive hints are provided by the specially developed SAH prediction algorithm, that
enables a discrimination between putative coiled coils and actual single a-helix domains (SAH) and
helps in the identification of real coiled-coil domains. The developed SAH prediction algorithm is
both part of the web-application and available as a stand-alone version for the command line, termed
»Waggawagga-CLI«. Its function has been tested and evaluated in detail in two studies that investi-
gated the distribution and evolution of predicted SAH domains in the myosin motor protein family
(Simm et al., 2017) and in two dozen eukaryotic organisms across the tree of life (Simm and Koll-
mar, 2018). The results revealed that SAH-domains occur in 0.5 to 3.5% of the protein-coding content
per investigated species and are particularly present in longer proteins supporting their function as
structural building block in multi-domain proteins. In addition, a large-scale in-depth prediction
analysis was performed by testing the most relevant softwares of the field against the most compre-
hensive reference data set available, the entire Protein Data Bank, and tracked down the results to
each amino acid and its secondary structure (Simm et al., 2021). Comparing the binary classifications
metrics with naïve coin-flip models suggests that the tested tools’ performance is close to random.
This implicates that the tools’ predictions have only limited informative value, should be treated very
cautiously and need to be supported and validated by experimental evidence.

Heterologous protein expression is often applied in the investigation of cellular functions, in ge-
netic circuit engineering, in overexpressing proteins for biopharmaceutical applications and struc-
tural biology research. One of the key factors for heterologous expression represents the degeneracy
of the genetic code, which enables a single protein to be encoded by a multitude of synonymous
gene sequences and simultaneously allows adjusting gene sequences without changing the protein
sequences, substantial uncertainty exists concerning the details of this phenomenon. With the de-
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velopment of the software »Odysseus«, we realized a new probabilistic approach that exploits this
particular genetic property to design typical genes for heterologous expression applications in com-
mon model organisms (Simm et. al, submitted). The Markov model based approach is highly con-
figurable and can be operated with pre-trained genome profiles to control protein expression levels
by the codon usage adaptation of genes. We evaluated the influence of the profiled codon usage
adaptation approach on protein expression levels in the eukaryotic model organism Saccharomyces
cerevisiae. Therefore, we selected green fluorescent protein (GFP) and human a-synuclein (aSyn) as
representatives for stable and intrinsically disordered proteins as representing a benchmark and a
challenging test case. GFP was expressed at high levels, and the toxic aSyn could be adapted to
endogenous, low-level expression. The new software is publicly available as a web-application for
performing host-specific protein adaptations to a set of the most commonly used model organisms.
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Preface

This dissertation is the result of my PhD project in the »Doctoral Program Computer Science (PCS)«
at the Georg-August-Universität Göttingen. It was developed under the supervision of Prof. Dr.
Stephan Waack and PD Dr. Martin Kollmar as a collaborative project in the research groups »The-
oretical Computer Science and Algorithmic Methods« of the Institute of Computer Science at the
University of Göttingen and »Systems Biology of Motor Proteins«, which was located in the De-
partment of NMR-based Structural Biology at the Max Planck Institute for Biophysical Chemistry in
Göttingen.
The research group »Theoretical Computer Science and Algorithmic Methods« focuses on research topics
in which basic theoretical algorithms and concepts, such as probabilistic models and information-
theoretic methods, can be applied and investigated. One of their core research topics is statistical
sequence analysis, which finds its application in bioinformatics.
The research group »Systems Biology of Motor Proteins« dealed with the elucidation of motor protein-
mediated processes in eukaryotic cells, which play an important role in muscle functions, neuronal
transport and cell division. To this end, in recent years the group has developed experimental meth-
ods to gain insight into the function of the dynein/dynactin motor protein complex at the atomic
level and computational methods to determine motor protein content in eukaryotes.
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1 Introduction

Over the last decades, the emergence of modern molecular genetics has continuously changed the
face of biology with far-reaching impact on numerous of its subfields. Especially, the rapid develop-
ment in the field of whole-genome sequencing contributed a lot to this change. It enabled for the first
time to get deep insights and an understanding of the organization and genetic composition of entire
genomes, function-encoding regions and the capability to compare sequenced genomes of different
organisms with each other. Major reasons for that advance are the considerable decrease in costs,
technological improvements and a significant increase in speed enabled by modern high-throughput
sequencing centers. As a consequence of this development, large-scale DNA-sequencing efforts from
genome and metagenome projects such as the Human Genome Project (Venter et al., 2001) or the
Molecular digitization of a botanical garden (Liu et al., 2019), to name only two exemplary projects,
are nowadays able to generate immense amounts of data. In case of the Human Genome an amount
of nearly 15-billion bp in DNA information were produced. The latter mentioned venture published
in the beginning of 2019 a broad dataset with 54 terabytes of high-depth whole-genome sequencing
data of 689 plant species and provides as a side-effect insight into the requirements of the next level,
the »planetary-scale« projects such as the 10.000 Plant Genomes Project (Cheng et al., 2018), the Earth
BioGenome Project (Lewin et al., 2018) or the 100.000 Genomes Project (Turnbull et al., 2018). The
tendency is obvious, the arising sequence information is exponentially increasing and has reached
an order of magnitude, where the demands for sophisticated analyses of biological sequence data
are getting higher and the research fields bioinformatics and computational molecular biology are
becoming more and more important.

But not only the field of sequencing technology has strongly evolved over time concerning capability
and affordability, also the counterpart the synthesis of physical sequences from virtual templates.
Research fields, that profit a lot from this advance are the synthetic biology and artificial gene syn-
thesis. The technological progress helped to overcome the consisting difficulty to read and write
long perfect DNA sequences, which limited previous applications to a rather small scale. In 2012 the
milestone of utilizing synthetic DNA as reliable storage of digital file information could be reached
enabled by next-generation synthesis. It became feasible to encode and store the information of small
computer files with capacities of around 700 kilobytes (Church et al., 2012; Goldman et al., 2013) in
DNA sequences including also the recovery step of the stored information by sequencing and de-
coding the artificial produced DNA. Designed as a feasibility study in summer of 2019, already the
whole Wikipedia text information with its nearly 16 gigabytes could be written into DNA strands
(Shankland, 2019) demonstrating the future potential of the technology and the fact, that the efficient
and reliable synthesis of virtual genes is no obstacle anymore.

The need for computational methods supporting these kinds of applications range from information
theoretical principles of modelling, over efficient structures and forms of data storage to biological
sequence analysis methods. Approaches to handle and process these types of biological data are
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1. Introduction

continuously being developed. Nowadays, state of the art techniques use powerful sequence anal-
ysis methods based on principles of probabilistic modelling. An important area of application is for
instance the annotation of genome assemblies. Tasks that need to be covered for this purpose reach
from the identification of distant members of sequence families, the determination of the significance
of sequence alignments, the inference of phylogenetic trees as well to the assignment of biological
functions by protein structure prediction, to name a few examples.

1.1. Motivation

The advances in the fields next-generation sequencing and synthetic biology formed the basis for
in-depth investigations to explain cellular processes, molecular structures and genetic relationships.
Concerning the process of protein expression, these methods contributed a lot to the understanding
of the relative roles of initiation, elongation, degradation and misfolding of synthesized molecules.
The mere availability of the sequenced genome data in digital form facilitates further research fields
to derive substantial knowledge and get deeper insights into the genetic information of an organism.
Computational methods and statistical analyses applied to this sort of data provide different routes
to uncover underlying characteristics and striking patterns. For example the special composition
of each genome, even each gene comprises, regarded with a focus on the smallest building blocks,
significant deeper information.

1.1.1. Heterologous gene expression

Heterologous expression of protein-coding genes is an important method in structural biology re-
search and pharmaceutics. Its diverse applications range from proving the homology of protein
functions up to biopharmaceutical studies on overexpression of proteins, improvement of design
principles for vaccine development or gene therapy. Profiting as well from the advances in next-
generation sequencing and synthetic biology, the approach is generally based on the close interaction
between bioinformatic concepts, computational methods and experimental techniques of molecular
biology such as molecular cloning. In addition to the experimental efforts, consisting among others
in the integration of the foreign gene into the DNA of an heterologous organism and the determina-
tion of the synthesised protein, the computational part for adapting the gene to the characteristics of
the expression system plays an essential role in the regulation of protein expression. Therefore, the
understanding of genetic key requirements and the development of appropriate computation-based
models is an important research topic in bioinformatics.

One central aspect is the codon usage distribution of a sequenced genome. It is common knowledge,
resulting from the redundant encoding of the 20 amino acids by 61 triplet nucleotide codons, that the
genetic code is degenerated and builds the basis of the codon usage. As a consequence, the degen-
eracy enables a single protein to be encoded by a multitude of synonymous gene sequences and has
an important role in regulating protein expression (Boël et al., 2016). The codon usage of a genome is
unique for each species and behaves like a fingerprint reflecting the effects of mutations, genetic drift
and evolutionary selection commonly known under the term »genome hypothesis« (Grantham et al.,
1980; Sharp et al., 1988). Due to these effects, the distribution of alternative synonymous codons for
each amino acid differs between distinct organisms, which means that the identity of more and less
frequent synonymous codons is unequal. This inequality among species is called the codon usage
bias (Hershberg and Petrov, 2008). But not only inter-species differences exist, also the frequencies of
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alternative codons across genes within a genome and even between sites in a gene are not generally
consistent.

Although originally presumed to be identical in function and neutral for protein folding, there ex-
ist two hypotheses explaining why certain synonymous codons are more favoured and increasingly
recognized to be influential for protein biogenesis (Hershberg and Petrov, 2009; Plotkin and Kudla,
2011). One focuses on accuracy and assumes that synonymous codons differ in their rate of mis-
translation, whereby the potential to synthesize misfolded molecules is lowered by incorporating
more accurately translated codons. The other hypothesis describes the selection with the translation
efficiency, a more systematic variation of the codon usage, meaning that synonymous codons are
translated with different speeds. In general, it can be stated that the use of efficient codons leads to
an increase of the translation elongation rate as well as the accuracy. But there are exceptions, rare
codons on the other hand result in a reduction of translational errors by slowing down the general
protein translation process, but this strongly depends on the respective gene or the part of the gene
(Brase and Ridge, 2019). For the design and expression of adapted genes this influence on the trans-
lation elongation rate in expression systems plays an important role, because the optimization of the
synonymous codon choice through minimization of rare codons leads often to significantly increased
protein yields, especially for single-domain proteins (Burgess-Brown et al., 2008; Gorochowski et al.,
2015). In the protein biosynthesis process, the simultaneous presence of two tRNAs in the A and P
positions of the ribosome is necessary for the formation of peptide bonds (Nierhaus et al., 1998; Stark
et al., 1997). Due to steric reasons not all combinations of codons and tRNAs are equally compatible
to the ribosome surface, which means that certain codon pairs are processed more efficiently than
others. The phenomenon of the non-random utilization of codon pairs is called the »codon context«
and is assumed in addition to correlate with the translation elongation rate in a way that rare codon
pairs decrease the rate (Coleman et al., 2008).

Former research from the literature has shown, that there are global and local factors that influence
the expression level of genes in heterologous hosts. The most important global factors are the differ-
ences in codon context, the codon usage and the GC contents in coding genes between species. On
this account the adaptation of the codon usage of the source gene to the global codon usage of the for-
eign host organism (expression system) or to a subset of highly expressed genes is assumed to play an
important role for the heterologous gene expression. The most important local variables decreasing
or abandoning the protein expression that need to be handled, are the mRNA secondary structures
close to translation initiation sites, internal repeats and patterns resembling ribosomal binding sites.
Some of these factors may lead to instable mRNAs or need to be concerned for practical reasons
like the cloning process (e.g. occurrence of restriction sites) and have to be removed in advance.
Currently available software for gene design use the most commonly used synonymous codons, so
called »major codons«, for the target gene and allow to exclude only a few of the local restraints.

1.1.2. Protein function and structure prediction

An important topic in the field of bioinformatics and computational molecular biology is the deter-
mination of protein structures and functions to contribute to the functional annotation of genomes.
Generated genome sequence assemblies consist on the level of their smallest components of »contigu-
ous blocks of millions of sequential nucleotides encompassing every chromosome of the sequenced
organisms« (Watson et al., 2014). But without any further processing these assemblies have no deeper

3



1. Introduction

meaning than randomly concatenated stretches of the genomic building blocks. One step in the an-
notation of genomes resolves this by the systematic identification and assignment of protein-coding
regions referred to as genes, its associated regulatory sequences and the locations of non-coding re-
gions. Being aware of the genes and their locations, makes it similarly possible to assign known or
rather potential functions by comparison with related model organisms or by prediction approaches
based on probabilistic models.

One of the most occurring and best understood structural motifs in proteins is the coiled coil. It
is involved in a broad palette of biological processes, that controls protein-protein-interactions for
example during the transcription or the remodelling of the membrane and reaches up to the medi-
ation of structure and stability in cells and tissues. Presumably it plays an important role in several
transcription factors and proteins, which participate in the transport of vesicles. Furthermore it is
assumed, that coiled coils function as well as structural spacers in protein complexes functioning as
stabilizing components and are therefore an essential structure to be identified.

1.2. Scope of the thesis

The present thesis contributes to the research field of bioinformatics and its applications in biological
sequence analysis. The general aim of this cumulative work lies in the development of algorithms
and probabilistic concepts with main focus on the principles of modelling and their practical suitabil-
ity. This is to be implemented and investigated on the basis of two interdisciplinary projects from the
fields of a classic domain of bioinformatics, the area of protein structure and function prediction and
the more experimental-oriented area, the heterologous gene expression. At first glance both fields
differ relatively strong in the nature of their application, one aims to predict functional or structural
regions in inspected biological sequences and the other attempts to figure out characteristic genetic
patterns and solutions to control the expression of specific proteins in foreign model organisms. But
from an informatics point of view, both research areas provide well suited circumstances for the
application and investigation of probabilistic models.

1.2.1. Comparative domain prediction of coiled coils and SAHs

The studies of the first project on protein structure and function prediction deal with the »compar-
ative domain prediction of coiled coils and SAHs«. High quality and reliable prediction of coiled
coils in protein sequences with the relevant available software packages remains a challenge. Diffi-
culties lie not only in the prediction of the correct sequence regions, but also in whether regions with
coiled-coils are recognized at all and, if so, are not mistaken for SAH domains. The result depends
significantly on the software being used, because these often give different, and in part contradic-
tory, prediction results. Here, we try to make a contribution for improvement by the development of
a comparative visualization software for coiled-coil predictions with an algorithm for SAH domain
detection, that is tested and investigated in two studies and by conducting an in-depth investigation
to clarify the »status quo« of coiled-coil prediction on a comprehensive structural reference dataset.
In summary, the research questions addressed are as follows:

• RQ 1.1: As a »proof of concept«, does the developed SAH prediction algorithm allow a reliable
determination of SAH domains?
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• RQ 1.2: Is the new SAH prediction algorithm in terms of quality and performance suitable for
genome-wide analyses?

• RQ 1.3: What is the current »status quo« of the established coiled-coil prediction software and
what relevance has this for the genome-wide annotation of this type of domain?

1.2.2. Design of typical genes for heterologous gene expression

The second project treats and evaluates the suitability of an information theory based approach for
the design of typical gene sequences aiming to improve the requirements in heterologous protein ex-
pression. In order to meet that objective, basically a generative probabilistic model, in form of highly
configurable Markov chain, has been developed that is capable to capture and simulate the genetic
and stochastic characteristics of a sequenced genome and provides an interface to re-design protein-
coding genes into host-typical DNA sequences. Originally being entitled »Information theory based
design of typical genes for heterologous gene expression and evaluation of experimental studies«,
the project covers, besides the conception and development of a software, the experimental evalua-
tion under laboratory conditions. This evaluation has been realized in close collaboration with the
Department for Molecular Microbiology. By being a computation-based approach with a stronger
focus on the biological application and usability, this process has been an essential part for the suc-
cess of the project. It enabled to test assumptions and predictions for the iterative improvement and
refinement of the software model during the development process as well as the general suitability
of the model for the chosen application scenario. The addressed research questions are as follows:

• RQ 2.1: Is the developed gene design model suitable for the generation of typical gene se-
quences and has influence on the experimental expression regulation?

• RQ 2.2: As a »proof of concept«, does the host-specific adaptation of genes allow to regulate the
expression level of a specific protein in the expression system in an intended way for instance
by increasing or decreasing the amounts of produced protein yields?

1.3. Impact

During the course of this cumulative work, intermediate results have been submitted and published
in the following peer reviewed journal articles:

• Dominic Simm, Klas Hatje and Martin Kollmar. (2015) "Waggawagga: comparative visualiza-
tion of coiled-coil predictions and detection of stable single a-helices (SAH domains)". Bioinfor-
matics, Volume 31 (5), 767-769. [Online]. Available: http://bioinformatics.oxfordjournals.
org/content/31/5/767.long

• Dominic Simm, Klas Hatje and Martin Kollmar. (2017) "Distribution and evolution of sta-
ble single a-helices (SAH domains) in myosin motor proteins". PLoS ONE, Volume 12 (4),
e0174639, 1-16. [Online]. Available: https://journals.plos.org/plosone/article?id=10.
1371/journal.pone.0174639

• Dominic Simm and Martin Kollmar. (2018) "Waggawagga-CLI: A command-line tool for pre-
dicting stable single a-helices (SAH-domains), and the SAH-domain distribution across eu-
karyotes". PLoS ONE, Volume 13 (2), e0191924, 1-19. [Online]. Available: https://journals.
plos.org/plosone/article?id=10.1371/journal.pone.0191924
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• Dominic Simm, Klas Hatje, Stephan Waack and Martin Kollmar. (2021) "Critical assessment of
coiled-coil predictions based on protein structure data". Scientific Reports, Volume 11 (12439),
1-18. [Online]. Available: https://www.nature.com/articles/s41598-021-91886-w

• Dominic Simm, Blagovesta Popova, Gerhard H. Braus, Stephan Waack and Martin Kollmar.
(2021) "Design of typical genes for heterologous gene expression". Submitted.

Furthermore, the author of this thesis has also contributed to the following papers:

• Martin Kollmar, Lotte Kollmar, Björn Hammesfahr and Dominic Simm. (2015) "diArk – the
database for eukaryotic genome and transcriptome assemblies in 2014". Nucleic Acids Research,
Volume 43 D1, D1107–D1112. [Online]. Available: https://academic.oup.com/nar/article/
43/D1/D1107/2439940

• Klas Hatje, Raza-Ur Rahman, Ramon O Vidal, Dominic Simm, Björn Hammesfahr, Vikas Bansal,
Ashish Rajput, Michel Edwar Mickael, Ting Sun, Stefan Bonn and Martin Kollmar. (2017) "The
landscape of human mutually exclusive splicing". Molecular Systems Biology, Volume 13 (12),
959. [Online]. Available: https://www.embopress.org/doi/full/10.15252/msb.20177728

• Martin Kollmar and Dominic Simm. (2018) "Identifying Sequenced Eukaryotic Genomes and
Transcriptomes with diArk". Eukaryotic Genomic Databases, Methods in Molecular Biology, Vol-
ume 1757, Chapter 1. [Online]. Available: https://link.springer.com/protocol/10.1007/
978-1-4939-7737-6_1

• Klas Hatje, Stefanie Mühlhausen, Dominic Simm and Martin Kollmar. (2019). "The Protein-
Coding Human Genome: Annotating High-Hanging Fruits". BioEssays, Volume 10 (19), 959.
[Online]. Available: https://doi.org/10.1002/bies.201900066

Finally, the following student projects and teaching courses were supervised and held during the
work on this thesis.

Student projects

• Fabian Meyer, "An evaluation of tRNA predictions over the eukaryotic genomes database di-
Ark". Student project, Institute of Computer Science, University of Goettingen. 2019.

• Ivana Gavrilova, "Literature research on new genome sequencing projects". Student project,
Institute of Computer Science, University of Goettingen. 2020.

• Gregor Sommer, "Development of Django import modules for satellite resources and web fron-
tend features for the Genometation project database" Student project, Institute of Computer
Science, University of Goettingen. 2020/21.

• Lotte Kollmar, "Database content development and curation of genomic data in the Genometa-
tion project database". Student project, Institute of Computer Science, University of Goettingen.
2021.

• Paul Gräve, "Development of web frontend features for the representation of tRNA gene pre-
dictions in the Genometation project database". Student project, Institute of Computer Science,
University of Goettingen. 2021.
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Teaching classes

• Supervised as PhD student at the Max Planck Institute for Biophysical Chemistry:

– Summer term 2014:
Methods course »Protein family analysis as basis for experiments and experimental data inter-
pretation« (PD Dr. Kollmar).

– Winter term 2014/15:
Methods courses »Protein family analysis as basis for experiments and experimental data inter-
pretation« and »Molecular Biology« (PD Dr. Kollmar).

• Supervised as PhD student at the University of Goettingen:

– Summer term 2015:
Exercises for lecture »Grundlagen der Informationstheorie« (Prof. Waack).

– Summer term 2016:
Exam for lecture »Datenbanken« (Prof. May).

– Summer term 2017:
Exercises for lecture »Theoretische Informatik« (Prof. Damm) and exam for lecture »Daten-
banken« (Prof. May).

– Winter term 2017/18:
Exercises for lecture »Betriebssysteme« (PD Dr. Brosenne) .

– Summer term 2018:
Exercises for lecture »Theoretische Informatik« (Prof. Damm), exam for lecture »Daten-
banken« (Prof. Damm) and practical course »Schwachstellenanalyse und Risikomanagement«
(PD Dr. Wiese).

– Winter term 2018/19:
Exercises for lecture »Betriebssysteme« and practical course »Datenbankanwendungsentwick-
lung« (PD Dr. Wiese).

– Summer term 2019:
Exercises for lecture »Theoretische Informatik« (Prof. Damm) and exam for lecture »Daten-
banken« (Prof. May).

1.4. Structure of the thesis

This dissertation is structured as follows. At first, the foundations and the theoretical background
are addressed. For this purpose, an overview of the related work of the two research fields treated in
this PhD project is given. In addition, the terminology and theoretical models that play an essential
role in this thesis are introduced. This includes basic terms from molecular, structural and synthetic
biology, probabilistic models from theoretical computer science, and computational methods from
bioinformatics. This is followed by Chapter 3, which presents the results of this cumulative work. It
consists of the four studies published on the »Comparative protein structure prediction of coiled-coil
and SAH domains« during this PhD project and the manuscript on »Heterologous Gene Expression«
recently submitted for publication. Furthermore, it includes four additional publications to which
the author of this work has contributed. Finally, the work is summarized in a brief conclusion.
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2 Foundations

This chapter gives an introduction into the scientific background, related work and the theoretical
foundations, that are assumed to be known in order to understand the studies of the main projects
treated in this PhD thesis. The central topics revolve around the two research fields of »structure
prediction« and »heterologous expression« of proteins. Both serve to gain biological insight and to
provide important contributions from different angles to elucidate the cellular functions and roles
of proteins. Therefore the foundations are divided into three sections, starting with the biological
part that recapitulates briefly essential information about these molecules. It ranges from the basics
of their genetic encoding and translation, over the composition, folding and structure, including the
specific structural domains of »Coiled Coils« and »stable single-alpha helices (SAHs)« up to sequence
modification and heterologous expression in technical model organisms. The following section on
bioinformatic methods treats probabilistic models with focus on Markov chains and approaches for
sequence analysis and structure prediction supporting the scientific progress in the mentioned re-
search fields. Finally an overview is given about the biological databases and technological methods,
that come into use in the developed applications of the performed PhD projects.

2.1. Background

Proteins are essential to life. Representing the molecular machines in cells, these complex molecules
enable practically all of the living functions of the known prokaryotic and eukaryotic organisms.
Due to the numerous different functions and properties, their areas of application are highly diverse.
Proteins can be both cause and solution in the treatment of pathological diseases such as Parkinson’s
or Alzheimer’s (Meade et al., 2019), act as genetic markers in expression studies (Zimmer, 2002) or
be used as DNA-editing enzymes in the modification of genomic information as for instance in the
revolutionary CRISPR/Cas method (Jinek et al., 2012). At the same time, they have as well a high
importance for other types of life science applications as catalytic enzymes in the production and
processing of food or in the degradation of rubbish and waste water. One of the major challenges in
biology is therefore to gain insight into the molecular structure, its mechanics and supported cellular
processes to achieve a deeper understanding of their functions and roles. The function of a protein
depends largely on the unique three-dimensional structure and the adopted shape is in turn closely
linked with its coding sequence. This multi-faceted relationship between »sequence, structure and
function« makes these molecules the subject of a wide variety of research fields, all of which try to
contribute to a better structural and functional understanding from different perspectives.

The sequencing of whole genomes, including the capture of protein-coding sequences, is no longer
a major challenge in the post-genomic era. Due to the rapid development of sequencing technolo-
gies in the last decades, there exist nowadays broad-equipped sequencing centres all over the world,
that generate masses of sequenced genomic data at high-throughput and massively parallelized. In
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the meantime, more than 20,000 officially published and sequenced organisms exist in the relevant
public genome databases. This enormous development is also reflected in the significantly increas-
ing amount of available protein sequence data, such as available in the UniProt/TrEMBL database
(UniProt Consortium, 2018) with currently over 200 million entries, see Figure 2.1 for more detailed
information. However, the field of experimental structure determination of sequenced proteins is
unable to keep pace with progress on this scale. As a result, the wide field of computational biology
has emerged and developed into an equally important field of research with its numerous subfields
to address this discrepancy for instance through computational structure prediction.
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Figure 2.1. | Growth of the protein sequence knowledge base. The diagram illustrates the development of known pro-
tein sequences stored in the UniProtKB/TrEMBL protein database of the European Molecular Biology Laboratory (EMBL)
from 1997 to 2021, one of the defacto standard resources for protein sequence and functional information. Shown here are
the new released and the total number of sequence entries available on an annually basis. The numbers were obtained
from the UniProt release statistics information pages (https://www.ebi.ac.uk/uniprot/TrEMBLstats).

In the context of this PhD thesis, the focus was placed on computational applications in the areas of
»structure prediction« and »heterologous expression« of proteins, with both coming from different
areas of the emerged field of computational biology. These two very distinct fields of research deal,
on the one side, with the predictability of structure and function solely on the basis of the underlying
protein sequence information, whereby the quality and reliability of prediction is of great interest. Es-
pecially since these applications are not only used for individual proteins, but also on a much larger
scale, for instance for the structural annotation of entire genomes. On the other side, the feasibility
of expressing computationally modified genes in different model organisms is being investigated.
For this purpose, the focus lies on analyzing the influence of synonymously varied protein-coding
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sequences on the regulation of heterologous protein expression. In both projects, besides the infor-
matics methods and models used, the influence of additional domain-specific biological knowledge
for structure prediction as well as the natural respectively typical modification of gene sequences are
at the centre of the investigations.

2.1.1. Protein structure and domain prediction

The research field of »protein structure prediction« gained lately a high amount of public attention.
Since a major milestone in this field has been reached recently by the publication of the breakthrough
structure prediction algorithm Alphafold (Jumper et al., 2021) and its associated protein structure
database (Tunyasuvunakool et al., 2021), that contains in its first release newly generated structural
predictions for the human proteome and a selection of key model organisms. The neural-network
based approach nearly solved the for more than 50 years open research problem to make accurate
computational predictions for the three-dimensional folding of single protein structures with almost
experimental quality solely based on its sequential information. A research problem, that was long
believed to have no predictable solution due to the sheer endless number of folding possibilities
(Levinthal’s paradox, Levinthal, 1969). One of the crucial key factors to the success of this approach
lies in the combination of large amounts of biological data information with the novel techniques of
deep learning to extract essential information, interpret correlations and apply the knowledge gained
for the prediction. For instance with regard to evolutionary relatedness on the basis of sequence-
structure families between known and new molecular structures. In the process, the approach has
clearly benefited from the numerous experimentally determined protein structures deposited in the
Protein Data Bank (wwPDB consortium, 2019) and the wide range of available sequenced genome
data sets generated by the rapidly advanced sequencing methods.

The relatively new and promising approach of deep learning has already been applied to one of
the subfields of structure prediction, the »coiled-coil domain prediction« by the authors of DeepCoil
(Ludwiczak et al., 2019). It is one of the latest developments in this field, but in contrast to the Al-
phafold approach it has been extensively trained mainly with structural information from the Protein
Data Bank (PDB). However, since this type of structure prediction is not only about domains within
a single protein, but to a large extent also about coiled-coil domains forming in complexes of several
interacting proteins, such as dimers, trimers and tetramers, the chosen approach relying solely on the
training of single structures unfortunately did not bring a comparable resounding success.

The prediction of coiled-coil domains using computational approaches has a long history that be-
gan in the early 1990s with the release of the COILS software (Lupas et al., 1991). Since then nu-
merous coiled-coil prediction softwares were developed and published, a progress that continues to
the present day. Each of the newly developed software has attempted to improve the quality of the
coiled coil predictions either by using more advanced probabilistic models and algorithms or by in-
corporating and exploiting increasing amounts of characteristic biological information. The derived
knowledge and rules build then the basis for the enhanced prediction approach. Unfortunately, each
of these developed softwares has been shown to have a rather limited applicability especially in terms
of the quality of predictions with regard to large-scale coiled-coil analyses, such as for genome-level
annotations. This is either due to technical limitations in the chosen underlying model or deficiencies
in the choice of reference data for training and fitting the model parameters. For this reason, the field
of coiled-coil domain detection providing accurate and reliable predictions remains a challenge.
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One of the both PhD projects treated in this thesis revolves around the topic of »coiled-coil domain
prediction« in proteins and addresses the mentioned challenge. The four studies carried out, deal
with the analysis and evaluation of the status quo of existing software packages as well as the deve-
lopment of approaches to improve the reliable coiled-coil domain detection.

2.1.2. Heterologous gene expression

Equally essential for a deeper understanding of the cellular functions of proteins are the underlying
mechanisms from the encoding and transcription of genetic information through biosynthetic pro-
duction by the ribosome to the correctly folded and functional protein.
An important method for analyzing these mechanisms and cell functions is »heterologous protein
expression«. This experimental approach attempts to produce, respectively express, a specific pro-
tein in a host organism that misses this gene in its own genome. In the process, the gene of interest is
first permanently inserted into the genome of the foreign host using recombinant DNA technologies.
The host organism, also termed as expression system, thus serves to produce the encoded protein
in a directed and controlled form of protein biosynthesis. Many of the common model organisms
can be used as expression systems, frequently used are E. coli and S. cerevisiae. But genetic differ-
ences between prokaryotes and eukaryotes, such as E. coli, lead to difficulties in the expression of
cloned genes e.g. originating from the human, which results in a need for strategies to cope with
them (Goodman, 2007). The systematic modification of the gene sequences to be integrated has been
shown to have a strong influence on the regulation of protein expression and is an important step
for homologous and heterologous protein expression studies (Brule and Grayhack, 2017; Gustafsson
et al., 2012; Hanson and Coller, 2018; Hershberg and Petrov, 2009; Nieuwkoop et al., 2020). Fur-
ther studies, that this method enables are to investigate functions of homologous proteins (Hia et al.,
2019), to synthetically construct genetic circuits (Hansen et al., 2014; Kato, 2019; Michalodimitrakis
and Isalan, 2009), or to overexpress proteins for biopharmaceutical applications (Mauro, 2018) and
structural biology research (Hedfalk, 2012).

At the DNA level, a protein-coding gene not only determines the specific amino acid sequence of the
resulting protein and thus its three-dimensional shape and function, but also decisively influences
the speed of protein biosynthesis and the produced amount of complete and functional proteins,
solely through the selection of different types of synonymous codons. An effect that is caused by
the »redundancy and degeneracy of the genetic code« enabling a single protein to be encoded by a
multitude of equivalent gene sequences. The specific distribution of amino acid-coding codons over
the entire genome is called the »codon usage«, it is a genomic key characteristic of organisms that
plays an important role in the systematic generation and modification of gene sequences.
Each used codon usually has a specific tRNA counterpart that is responsible for the incorporation of
the encoded amino acid. However, these tRNAs are present in the cell in different concentrations,
some occur very frequently, others in very low concentrations, which means that some codons can be
translated more efficiently than others. The different influx of tRNAs available for production slows
down or speeds up the process of biosynthesis of a protein on the ribosome. A phenomenon known
as ribosomal pausing, that has direct impact on the protein folding process and can therefore affect
the final shape. The tRNA concentrations vary between different organisms as well as between cell
types and developmental stages of cells and depend on several factors. One major factor is the copy
number of the tRNA-coding genes located in the genome, these influence the amount of available
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tRNAs on the production side. A higher number of gene duplicates usually automatically results in
a higher number of available tRNAs. These two factors of codon-usage and tRNA abundance are in
a way complementary to each other. If the organism-specific codon usage is adapted, for example
through systematic modification of the gene sequence to express, other tRNAs are needed to produce
the protein. If these are in turn present in different concentrations, this may lead to an increase or
decrease in the expression rate. A property that can be used for the controlled regulation of protein
biosynthesis. Thus, the genetic code used plays an essential role in heterologous protein expression.

The second main project on the "Design of typical genes for heterologous gene expression" (see Section
3.2) of this work examines the phenomenon of codon usage modification in heterologous expression
applications as described above. In this context we analyzed the influence of a profiled codon usage
adaptation approach, realized through a highly configurable Markov model, on the protein expres-
sion levels in the eukaryotic model organism Saccharomyces cerevisiae.
For experimental verification of the developed gene adaptation algorithm, a set of test proteins was
required to demonstrate that intended protein expression rates can be reached under real conditions
in an expression system. Requirements for this set contained the selection of proteins with significant
different structural characteristics. Thus representatives of the two main structure classes of stable
and intrinsically disordered proteins were chosen, due to the fact that the naturally unfolded human
a-synuclein (aSyn) was already predetermined by the research interest of our collaborating group
"Department for Molecular Microbiology". For the second class with contrary structural properties
the compact and stable folding green fluorescent protein (GFP) was selected, which is proven to be
reliable expressable in common model organisms. In the course of the project a public available web-
application has been developed for performing host-specific protein adaptations to a set of the most
commonly used model organisms.
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2.2. Biological foundations

This section recapitulates briefly the main biological basics building the fundamentals of the two
main projects on »coiled-coil domain prediction« and »heterologous expression« of proteins ranging
from their genetic encoding and translation over the composition, folding and structure, including
the specific structural domains of »Coiled Coils« and »SAHs«.

2.2.1. The genetic code

The genetic code is an essential part of the encoding of genetic information in DNA and represents
the translation table for nucleotide sequences into amino acid sequences. It is also referred to as
the central dogma of molecular biology. The code translates three nucleotides, so-called triplets or
codons, into one amino acid. With the four different nucleotides, there are 64 possible triplet com-
binations, but only 20 naturally occurring amino acids. Due to the much higher number of triplets
than amino acids, some amino acids are encoded by several synonymous codons. A maximum of up
to six triplets code for the same amino acid. The genetic code is thus highly redundant and in this
context we speak of the degeneracy of the genetic code (Figure 2.2). The details were already worked
out 50 years ago and therefore reference is made to textbooks for further reading.

second	position	

fir
st	
po
sit
ion

	(5
'	 e
nd
)	

	 U	 C	 A	 G	 	

third	position	 (3' 	 e nd) 	

U	
UUU	 Phe	UUC	

	

UUA	 Leu	UUG	
	

UCU	
Ser	UCC	

UCA	
UCG	

	

UAU	 Tyr	UAC	
	

UAA*	 stop	
	

UAG*	 stop	
	

UGU	 Cys	UGC	
	

UGA*	 stop	
	

UGG	 Trp	
	

U	
C	
A	
G	

C	
CUU	

Leu	CUC	
CUA	
CUG	

	

CCU	
Pro	CCC	

CAA	
CCG	

	

CAU	 His	CAC	
	

CAA	 Gln	CAG	
	

CGU	
Arg	CGC	

CGA	
CGG	

	

U	
C	
A	
G	

A	
AUU	

Ile	AUC	
AUA	

	

AUG+	 Met	
	

ACU	
Thr	ACC	

ACA	
ACG	

	

AAU	 Asn	AAC	
	

AAA	 Lys	AAG	
	

AGU	 Ser	AGC	
	

AGA	 Arg	AGG	
	

U	
C	
A	
G	

G	
GUU	

Val	GUC	
GUA	
GUG	

	

GCU	
Ala	GCC	

GCA	
GCG	

	

GAU	 Asp	GAC	
	

GAA	 Glu	GAG	
	

GGU	
Gly	GGC	

GGA	
GGG	

	

U	
C	
A	
G	
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2.2.2. Proteins

Proteins are essential to life. The complex macromolecules are responsible for the implementation of
practical all biological functions in living organisms. Like DNA, a protein is a long-chain biomolecule
but composed of 20 different building blocks. These monomers are amino acids that are linked and
strung together by peptide bonds. They are therefore also referred to as amino acid or polypeptide
chains. These polypeptide chains fold into a spatial structure that is determined by the sequence of
amino acids. At the same time, the folding determines the biological function of the protein. Factors
that influence folding are intramolecular interactions, for example in the form of hydrogen bonds
between peptide backbone elements or attractions between the side chains of amino acids.

sheets joined by main-chain hydrogen bonds. Either parallel or antiparallel
hydrogen-bonding patterns are possible, sometimes called parallel or anti-
parallel b-pleated sheets, respectively. In real proteins, various mixed
sheets are often found—rather than either strictly alternating strand direc-
tions or strictly unidirectional ones.

The tertiary structure of a protein refers to the usually compact, three-
dimensionally folded arrangement that the polypeptide chain adopts
under physiological conditions. Segments of the chain may be a helices
or b strands; the rest have less regular conformations (e.g., turns or loops
between secondary-structure elements that allow these elements to pack
tightly against each other). We will outline ways to describe and classify
possible tertiary structures in a subsequent section. Usually, the stabilities
of the secondary and tertiary structures of a polypeptide chain depend on
each other.

Many proteins are composed of more than one polypeptide chain: qua-
ternary structure refers to the way individual, folded chains associate with
each other. We can distinguish cases in which there are a defined number
of copies of a single type of polypeptide chain (generally called a “subunit”
in this context, or a “protomer”) and cases in which there are defined num-
bers of each of more than one type of subunit. In simple cases, the way
in which the subunits associate does not change how the individual
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F I G U R E 6-7 Levels of protein structure, illustrated by hemoglobin. “Primary structure”
refers to the sequence of amino acids in the polypeptide chain. The primary structure of a
segment of a hemoglobin subunit is shown in single-letter code. “Secondary structure” refers to
regular local structures, with repeated backbone hydrogen bonds. Shown here is a part of one of
the long a helices from the hemoglobin subunit. “Tertiary structure” refers to the folded structure
of an entire polypeptide chain (or of a single domain of amultidomain protein). The drawing shows
one of the four hemoglobin protein subunits. Dashed lines demarcate the segment of a helix cor-
responding to the primaryand secondary structures shown to the left. “Quaternary structure” refers
to the arrangement of multiple protein subunits in a larger complex. Hemoglobin is a tetramer of
two “a chains” and two “b chains,” but the two kinds of chain have very similar tertiary structures,
as can be seen in the drawing. (Modified from an illustration by Irving Geis. Rights owned by the
Howard Hughes Medical Institute.)

The Structure of Proteins 127

Figure 2.3. | The four structural levels of protein folding. Depicted are from left to right exemplary views of the pri-
mary, secondary, tertiary and quaternary structure as single structural states. (cf. Watson et al., 2014, p. 127)

The spatial structure of proteins can be divided into four observation levels: The primary structure
refers to the pure sequential order of individual amino acids in the polypeptide chain. The secondary
structure, the first form of the actual spatial arrangement, describes frequently occurring motifs, such
as a-helices, b-sheets and other forms such as bends, loops and turns. They derive directly from
the primary structure and are held together by interactions between amino acid residues such as
disulfide bridges, covalent and non-covalent bonds, or hydrophobic, ionic, and van der Waals forces.
The a-helices are right-handed twisted spirals with an average of 3.6 residues per helical turn. This
corresponds to a pitch of 54 nm (5.4 Å) for one turn. This spacing ensures that amino acids that
are three to four places apart in the primary structure are adjacent in the helix. A property of high
relevance for the formation of coiled coils, as described in the following section 2.2.3. The tertiary
structure describes the next higher structure stabilizing arrangement level, in which the secondary
structure motifs arrange spatially with respect to each other by their position in the sequence and
further interactions (Fig. 2.3). The last level, the quaternary structure of proteins, refers more to
an assembly of already prefolded tertiary subunits of (independent) polypeptides, that driven by
interaction forces form into a functional protein complex.
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(a) Green flourescent protein (GFP) (b) a-Synuclein (aSyn)

Figure 2.4. | Representatives of stable and intrinsically disordered proteins. Depicted are views of the 3-dimensional
structure of two proteins from both classes, namely the stable GFP (a) and the IDP a-Synuclein (b). Images were created
using Mol* (Sehnal et al., 2021) and NGL (Rose et al., 2018) and the structures of 1EMA and 1XQ8 retrieved from RCSB
PDB (wwPDB consortium, 2019).

But the individual characteristics of the structural levels provide only folding tendencies and do not
necessarily determine a fixed three-dimensional structure of the protein. Differences exist in the form
and stability of the folding proteins, which can be summarized into two classes. On the one hand,
there is the class of proteins with a native and predefined folding process, that have a stable structure
with a certain shape at the end of folding, such as the GFP. On the other hand, there is the class
of intrinsically disordered proteins (IDPs), that are missing a fixed and ordered three-dimensional
structure, either only in parts or concerning the whole protein. The reasons for this lie mostly in
the absence of interacting molecules, such as other proteins or RNA, that give external stability and
influence the adopted conformation of the structure. These fully or partially unstructured molecules
contain often randomly evolving domain structures such as coils as well as flexible loops and linkers.

Green fluorescent protein

A representative of the reliable and stable folding proteins is the green fluorescent protein (GFP), that
originally stems from the Pacific Northwest jellyfish Aequorea victoria. It belongs with its luminous
property to the class of fluorescent proteins and the ability that its cDNA is suitable for heterol-
ogous expression made it to one of the standard tools in cell and molecular biology applications
with a widespread use as reporter for gene expression and localization of gene products in living
cells (Chalfie et al., 1994; Tsien, 1998). The cellular location of GFP is revealed by the green fluores-
cence emission, when the protein is exposed to light from the blue or ultraviolet spectrum. Given
the protein is properly expressed in the host organism and is folded in its intact three-dimensional
shape. GFP can be expressed in a wide range of prokaryotic and eukaryotic cells and organisms,
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among others into bacteria (Escherichia coli), yeasts (Saccharomyces cerevisiae) and plants (Arabidopsis
thaliana). Therefore, its genetic information has to be introduced into the genome of the foreign or-
ganism through the use of transgenic techniques, where it remains and serves as blueprint for the
protein expression.

The natural wild-type molecule has a length of 238 amino acids, a molecular mass of approximate 30
kDa and consists of a proteolysis-resistant single chain. The three-dimensional structure is character-
ized by a compact and stable 11-stranded b-barrel with a coaxial helix in its interior. In the middle
of the molecule, it encloses the actual fluorescence emitting chromophore (or fluorophore), that is
attached to the through-barrel winding a-helix. An advantage of the luminous unit is, it functions
autonomously without additional external cofactors (Ormö et al., 1996; Zimmer, 2002), see for the
GFP structure Figure 2.4(a). In its typical function as gene expression marker for genetic tagging, the
GFP gene needs be fused to the gene of interest to monitor its expression under in vivo conditions.
Having free outstanding ends at the amino and carboxyl terminals, the GFP can be used to build
gene fusion complexes with the flexibility that GFP can be located either in front or behind the pro-
tein of interest as required. Therefore the coding DNA sequence of GFP needs to be cloned into an
expression vector construct, a vehicle that facilitates the incorporation into the target genome. As a
consequence of the gene fusion, the size and mass of the resulting protein complex increases and the
natural behavior and function of the actual target protein may be disturbed (Goodman, 2007).

Alpha-synuclein

The class of "intrinsically disordered proteins" is represented by the neuronal protein a-synuclein
(aSyn). The wild-type molecule has a length of 140 amino acids with a molecular mass of approxi-
mate 14 kDa and consists of seven 11-residue repeats and a hydrophilic tail dividing the single chain
in three subregions. Being a natively unstructured protein in solution, in interaction with phos-
pholipid membranes it shows a loose a-helical conformation in the head part of the protein. This
conformation, also predicted by sequence analysis, is composed of two interrupted a-helical regions
with a short loop in between (Weinreb et al., 1996), see Figure 2.4(b) for a structural view of aSyn.
The origin of a-synuclein lies in the genome of the Homo sapiens and is encoded by the SNCA gene.
It is also referred to as the precursor protein NACP, including the NAC fragment (non-Ab compo-
nent) that is known to be related with the Alzheimer disease (AD) amyloid protein. But due to the
unknown native structure, its function is also not yet completely understood. It is known that aSyn
has a high abundance in the human brain and occurs to a quite lower extend in other tissues like the
heart or in muscles. More precisely, aSyn was identified in detailed expression studies to be abun-
dant in the synaptic terminals of neurons. This and the relationship with the AD amyloid protein led
to the conclusion that it contributes to the pathogenesis of Parkinson’s and other neurodegenerative
diseases (Chandra et al., 2003; Meade et al., 2019; Xia et al., 2001).
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2.2.3. Coiled coils

a-Helical coiled coils (CCs) are a special form of protein structural domains, that belong to the tertiary
respectively quaternary level of protein structure, characterized by a strong regularity and stability.
The flexible composition of this domain type allows the formation of a variety of different assembled
structures. Due to their high structural diversity, coiled coils support a wide range of essential bi-
ological functions and interactions, such as forming mechanically rigid structures, the transduction
of conformational changes or the transport of molecules (Lupas et al., 2017). These properties make
them a research object of great interest, because the detailed understanding and reliable annotation
of this fold type is crucial for studies of protein structure and function (Newman et al., 2000), the
design and modelling of new structures (Wood and Woolfson, 2018) and systems for drug delivery
(McFarlane et al., 2009).

Canonical coiled coils are a-helical oligomers consisting of two or more helices with parallel or an-
tiparallel orientation, that stem from the same (homo) or from different polypeptide chains (hetero).
The constituent a-helices twist around each other and form left-handed supercoiled bundles, that are
stabilized through specific packing interactions, also known as "knobs-into-holes (KIH)" packing, in
detail first defined by Crick (Crick, 1953). Each of the participating helices is commonly referred to
as coiled-coil domain (CCD). The stability of these bundles results from the regular meshing of the
side chains, in which a residue from one helix (knob) packs into a space formed by the side-chains of
the facing helix (hole). The necessary regularity for this packing requires a recurrent structural motif
of seven residues along the helix interface. This motif is called a »heptad repeat« and its positions
are typically labelled with letters from a to g resulting in a sequence pattern of the form (abcde f g)n.
The core-oriented positions (a and d) of this motif are characterized by hydrophobic (H) residues,
like valine, leucine and isoleucine, that lie at the interface between the supercoiling a-helices. The
remaining positions (b, c, e, f and g) are occupied by charged and polar (P) amino acids at the outside
of the molecule (see Figure 2.5D), leading to the occupancy order HPPHPPP of the heptad repeat
(Lupas et al., 2017).

As a consequence of the above described heptad motif, the positions are arranged over two turns of
a helix, that have on average a distance of 3.5 residues per turn. A single a-helix has a periodicity of
3.63, so supercoiling helices need to bend around a central axis to reduce the periodicity difference
accordingly to be able to build the favored super-helical coiled-coil form. This bending of the partic-
ipating helices results in a left-handed supercoil with a hydrophobic seam of unpolar residues (H),
that winds along the surface of the actually right-handed single a-helices (Woolfson, 2017).
By their very nature, single a-helices are not really stable, but gain additional stability by winding
around each other and building left-handed coiled coils, in which the hydrophobic seam is enclosed
in the center of the molecule, an association additionally driven by the exclusion of water from the
hydrophobic core (Delorenzi and Speed, 2002). This is clearly visible in Figure 2.5A and 2.5B by re-
garding the red and green highlighted areas for position a and d in the course of the depicted example
of a classical, dimeric coiled-coil motif.

As mentioned at the beginning, coiled-coil assemblies can be composed of two or more a-helices
of parallel or anti-parallel orientation, that may be formed from the same (homo) or different (hetero)
helical sequences. These structural types are referred to as the oligomerization state (OS) of the coiled
coils, which can take several forms, as shown in Figure 2.6. The most common and structural sim-
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Figure 2.5. | Representations of a parallel dimeric coiled coil. (A) The coiled coil orthogonally seen from the side and
(B) down the axis. Helical backbones are represented by ribbons, side chains that make up KIH interactions as sticks and
the single heptad positions "a–g" coloured from red to violet, that highlights the hydrophobic core in "red" and "green".
(C) A single KIH interaction between a "hole" formed by four residues from one helix (left) and a "knob" from the other
(cf. Testa et al., 2009, p. D316 under CC BY 2.0). (D) Schematic representation in form of a "helical wheel" diagram. The
graph is looking down the helical axis from the N- to the C-terminus. Residues at the "a" and "d" positions create a hy-
drophobic core while "e" and "g" residues favour dimerization through formation of stabilizing ionic interactions e.g. salt
bridges (cf. Mahrenholz et al., 2010, p. 1 under CC BY 3.0).

plest states, that are known to occur in nature, are the classical dimer, which can occur in antiparallel
(A) and parallel (B) conformations, as well as the trimer (C) and the tetramer (D). By parallel and an-
tiparallel orientation is meant the orientation of the single a-helices involved. In the antiparallel case
A, the participating helices run in the opposite direction. These four oligomeric states cover about
90% of the known coiled-coil assemblies (Vincent et al., 2013).

Figure 2.6. | Oligomeric states of coiled coils: antiparallel dimer, parallel dimer, trimer and tetramer. The most com-
mon states known to occur in nature are the antiparallel dimer (A), parallel dimer (B), trimer (C) and tetramer (D).
Adopted with permission from Vincent et al. (2013, p. 1), Copyright 2021 Oxford University Press.
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In addition to the four classical oligomerization states mentioned above, further forms with higher
structural complexity exist. These complexes are documented and can be accessed in the CC+ database,
see Section 2.3.5, and are depicted in detail in Figure 2.7.

Figure 2.7. | The periodic table of coiled coils. Schematic overview of detected oligomerization states with higher order
assemblies. Depicted are along the x-axis the number of helices participating in a coiled-coil and down the y-axis the
increase in the order and complexity of the occurring assembly. Adopted and resized with permission from Moutevelis
and Woolfson (2009, p. 729), Copyright 2008 Elsevier Ltd.

One of the first protein structures identified to contain coiled coils are the motor proteins of eukary-
otic cells, such as in the myosin, kinesin or dynein families. These are classes of proteins that play
an essential role in processes of muscle function, neuronal transport and cell division. They are all
based on a similar structure, consisting of a head-forming motor domain and a long tail domain. In
myosin II families, coiled coils often form in the tail domain between the two long C-terminal chains,
where they wrap around each other. Later on, they were chosen to be part of the first reference sets
characterizing the key features of coiled coils in the early developed prediction algorithms.

Until today many studies have been undertaken that tried to determine the overall amount of coiled
coils at a genome-scale level, both for individual organisms and across related organism families. The
intention behind this is a deeper understanding of the functional roles of the coiled-coil motif and an
improvement of the global annotation state. For this the term "coilome" was chosen, it describes the
complete subset of an organisms proteome predicted to contain one or more coiled-coil regions (Bar-
bara et al., 2007). The resulting estimates for the coilomes on a single genome basis or whole genome
families vary relatively strongly. They range from 10% in eukaryotes to 4-5% coiled coils in prokary-
otes and Archaea based on predictions made with the program COILS (Liu and Rost, 2001). A newer
study that evaluated taxonomic superfamilies (SUPERFAM, including 1227 completely sequenced
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genomes) found an average coiled-coil proportion of 2.9% across all genomes (2.5% eukaryotes, 3.1%
bacteria, 1.9% Archaea and 4.3% human), it used SpiriCoil for the predictions (Rackham et al., 2010).
Besides the choice of the analysed single organism or superfamily, the used prediction method has
a strong impact on the obtained estimates. The studies and researches that investigate this topic in
detail are subject of this PhD work.

2.2.4. Stable single-alpha helices

Stable single-alpha helices (SAHs) are versatile structural elements acting in many prokaryotic and
eukaryotic proteins as semi-flexible linkers and constant force springs. A stable single-alpha helix,
as can be seen from Figure 2.3, initially describes one of the fundamental motifs of the secondary
structures of proteins. Added to this are the properties that these helices consist of a significantly
high proportion of charged amino acids and remain stable in shape in aqueous solution. Protein se-
quences forming this structure have a characteristic alteration of positive and negative charges, which
leads to short- and long-range electrostatic interactions that have a stabilizing effect. The SAHs ex-
hibit low structural complexity and are rich in these repetitive charged sequences. Amino acids that
are very common are aspartic acid (Asp, D), glutamic acid (Glu, E), arginine (Arg, R) and lysine (Lys,
K). Thus, SAHs structurally fall to some extent into the pattern of coiled coils, so that confusion in
the prediction of this type of domains is quite likely (Gáspári et al., 2012; Simm et al., 2017).

Helices, which are not buried within certain globular or coiled-coil structures, usually need networks
of charge interactions for stabilization in water, so stand alone SAHs are usually rather atypical to
occur in proteins. However, it was discovered that predicted coiled-coil domains of some myosins
are in fact stable single-alpha helices (Peckham and Knight, 2009). Consequently, these proteins also
do not form coiled coils, as was previously assumed. Thus the assumption seems obvious, that SAHs
could be often misidentified as coiled-coil domains by the common prediction softwares.
Several indications for the case, when a putative coiled coil is in fact a stable SAH domain, exist.
Firstly, by comparing the occupied heptad positions with the position probabilities derived by an
analysis of a large coiled coil dataset, such as retrievable from the CC+ database (Testa et al., 2009,
see section 2.3.5). Furthermore, additional conclusions about the domain type can be drawn based
on the amino acid pattern with focus on the positional interactions in a heptad network. Such helix-
stabilizing forces are charged interactions (salt bridges) between residues at (i, i+3) and (i, i+4) spacing
and hydrogen-bonding interactions between polar/charged residues at (i, i+3) and (i, i+4). Addi-
tional stability is obtained through networks of oppositely charged residues in (i, i+3, i+6), (i, i+3,
i+7), (i, i+4, i+7), or (i, i+4, i+8) distances (Simm et al., 2017).

Such heptad networks are shown in Figure 2.8. Initially, the amino acid sequence under consid-
eration is mapped on the repeating heptad motif (abcde f g)n, which is aligned in the form of a mesh.
The actual network reflects an a-helix sliced along the central axis with its amino acids located on
the helix surface. The outer heptad position f is shown another time on the right side (f) of the mesh
(»cutting edge«) to represent left and downward oriented interactions. For better illustration, an axis
with degrees from 0° - 360° is plotted at the bottom of the graph. The sequence in the heptad mesh
runs in its sequential order from top to bottom and in rows from right to left. If there are a large num-
ber of repetitive positively and negatively charged amino acids in the sequence, as shown in Figure
2.8B, it is highly probable that the respective region does not participate in a coiled coil, but in fact
folds into a charged and stable SAH. In the opposite case (left, Figure 2.8A), charged amino acids can
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also occur and interact with each other, but there are significantly fewer of them and the positions a
and d are mainly occupied by non-polar amino acids. Such an occupancy, in which a hydrophobic
seam is formed (shown in gray), is assumed to be a coiled coil.

!

Figure 2.8. | Heptad net representation of a CC and a stable SAH. The figure shows two sequence regions in the hep-
tad net representation (A: Coiled Coil; B: SAH). Charged amino acids are coloured in red/blue. (A) Heptad positions a
and d are highlighted by circles and squares to illustrate the hydrophobic core. The solid connections between residues
represent strong intrahelical and the dotted lines weak interactions. Adopted with permission from Peckham and Knight
(2009, p. 2495), Copyright 2005 Royal Society of Chemistry.
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2.3. Bioinformatical foundations

2.3.1. Probabilistic models

In this section the basic probabilistic models and approaches will be discussed, that have been ap-
plied in each of the both PhD projects. Here we focus mainly on the Markov chain model, which
builds the core of the developed protein adaption approach to design host-specific and typical genes
for the heterologous expression in commonly used model organisms.

Markov chains

The classical model of Markov chains represents a consistent development of conditional probabili-
ties and plays a significant role in the statistical analysis of biological sequences. They are successfully
used as models to characterize the influence of restriction enzymes or DNA modification systems on
the composition of genomic DNA or to predict the location of genes (Merkl and Waack, 2003).
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Figure 2.9. | Illustration of the state graph of the Markovian adapter. The figure shows an excerpt of the state graph of
the Markovian adapter modelled for the design of typical genes. In the excerpt, only 8 of the actual 64 states are shown
for ease of illustration. All of them are fully interconnected by bi-directed transition edges. Besides the 61 codon repre-
senting states, part of the graph are the additional states SATG+ and the three stop-codon states STAA⇤ , STAG⇤ and STGA⇤

(depicted as combined end state), that model the start and end states of the gene-modifying Markov chain.

A first-order Markov chain is a stochastic process with values from a finite set of states, that can be rep-
resented as a state graph. Dependent on the modeled sequence type, each state can correspond for
instance to a particular nucleotide, amino acid residue or DNA codon, that are interconnected with
each other. These connections are directed edges between the state nodes in the graph.

Given the implemented Markov chain of the adaption approach for the design of typical genes, in
the following referred to as Markovian adapter (MA), the states of the adapter are the 64 possible
and freely combinable DNA codons, which means that each state is connected to all other states. A
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so called fully interconnected or complete digraph, illustrated as reduced excerpt in Figure 2.9. Each
node in the graph is assigned a stationary probability based on the underlying codon distribution. A
further probability parameter is associated with each connection in the graph, which determines the
probability of a certain codon following another codon. These probability parameters are called tran-
sition probabilities and are obtained like the stationary probabilities by trainings from entire genomes
of heterologous hosts. Let the transition probabilities be denoted by ast:

ast = P(xi = t|xi�1 = s).

At any time i the Markov chain is in a specific state xi and may change to a state xi+1 depending on
the transition probabilities. The probability of a sequence for any probabilistic model of sequences
can be written as:

P(x) = P(xL, xL�1, . . . , x1) (2.1)
= P(xL|xL�1, . . . , x1)P(xL�1|xL�2, . . . , x1) · · · P(x1). (2.2)

The key property of a Markov chain (of order 1) is its "memorylessness". It can only remember 1 state
transition in its history. This means the probability of each symbol xi depends only on the value of
the preceding symbol xi�1, not on the entire previous sequence, e.g. P(xi|xi�1, . . . , x1) = P(xi|xi�1) =
axi�1xi . Using the preceding equations a simplified form comes out, resulting in the general equation
for the probability of a specific sequence from any Markov chain (Durbin et al., 1998):

P(x) = P(xL|xL�1)P(xL�1|xL�2) · · · P(x2|x1)P(x1) (2.3)

= P(x1)
L

’
i=2

axi�1xi . (2.4)

For a better imagination, the stochastic process can be visualized by the extended state graph of the
Markov chain, see Figure 2.10. It is closely related to the simple state graph with the difference, that
the extended graph has for each time point t an own layer with all 64 codon states available. Between
these layers exist forward directed connections from each state in layer t � 1 to all states in layer t
making transitions possible. The probability of a specific generated codon sequence is then the prod-
uct of the start probability P(x1) and the transition probabilities axi�1xi of each hop between the layers
of the chosen codon states, as described by equation 2.4.

The training of the parameters provides an elegant way to adapt the model to the characteristics of
various expression systems simply by exchanging the model parameters with pre-computed values.
As an input parameter it takes the amino-acid sequence of the protein of interest and generates host-
adapted DNA proposals conditioned by the original sequence.
For the choice of the transition probabilities, several options are available. Concerning the biological
ribosome model with its neighboured "A" and "P" positions from the protein biosynthesis, the di-
codon-usage represents a good choice for the transitions between the codon-states. Because it reflects
two characteristics at a time, firstly the frequencies of the di-codons-pairs play with their natural
abundance an important role for the chosen "2-slot model" also with regard to ribosomal pausing and
secondly, the di-codon-usage provides natively through its higher level of detail still the characteristic
host-specific mono-codon-usage information.
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Figure 2.10. | Illustration of the extended state graph of the Markovian adapter. The figure represents an excerpt of the
extended state graph of the Markovian adapter with Z = {SAAA, SAAC, . . . , STTG, STTT} and t = 5. Shown are for each
time point t 4 of the 61 possible codon states.

2.3.2. Protein structure und function prediction

Proteins are essential to life and were among the first macromolecules to be sequenced and studied
in detail (Mount, 2004). A comprehensive knowledge about their structure is closely linked to the un-
derstanding of how they work and the uncovering of cellular functions. Different approaches have
been developed, that help to clarify the questions about the relationship between their structure and
function. The most accurate, but at the same time the one requiring the greatest efforts, are the ex-
perimental methods using elaborately prepared probes to resolve the physical structure of proteins
into 3-dimensional models. This way to uncover the structure at an atomic level is based on very
time- and resource-consuming methods. Among these fall techniques like crystal structure analysis,
NMR spectroscopy or electron microscopy to name only the most used, that have been applied for
structures provided in the Protein Data Bank (wwPDB consortium, 2019). Thereby should be noted
that each of these experimental methods has specific additional limitations, which affect and com-
plicate the structural resolution process. Dependent on the applied method, size-constraints exist
for example, so that molecules being larger than 33 kDa (about 300 amino acids) cannot be resolved
using the classic NMR-based techniques. All these factors combined ensure, of course depending on
the complexity of investigated proteins, that it can take months or even years to resolve the wanted
3-dimensional structures.

At the same time, more and more genomic data is accumulated each year due to the advances in
sequencing techniques. These developments led to an explosion in the amount of sequenced genome
data. By now, there are billions of known protein sequences available in public databases (UniProt,
cf. Figure 2.1), but the proportion for which an actual structure has been resolved is with a magnitude
of a around 180,000 molecules comparatively small (cf. size of the PDB from 2021/01 in Figure 2.15).
Thus the slow process of the experimental structure coverage represents a crucial bottleneck for the
overall progress in this field.

An efficient way to accelerate the structural discovery of proteins is the application of computational
approaches to generate structure predictions. The general idea behind these approaches is basically
the same. Assuming the clear link between sequence information and structure, the starting point of
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these methods is the amino acid sequence as sole 1-dimensional input. With these, the developed al-
gorithms and models attempt to make predictions about the structure as precise as possible. The used
methodology can be condensed on two complementary ways that focus either on modelling physical
interactions within the protein structures, which are responsible for the final folding or on the evo-
lutionary history of proteins, that allows to draw conclusions from homologous structures, that have
been already solved (Jumper et al., 2021). Whereby for both applies that the amount of additional
information, processed beforehand and integrated into the underlying models, has a significant in-
fluence on the accuracy and quality of the predictions. The major advantages of computation-based
approaches lie in the significantly reduced time required to produce these structure predictions and
the ability to easily scale to even large amounts of data as is necessary for large genome-wide stud-
ies. Limiting factors are mainly the access to sufficient amounts of computing and storage resources,
which are nowadays in the era of the prevalent cloud infrastructure solutions and HPC clusters eas-
ily accessible to the research community.

The term "protein structure prediction" subsumes several types of applications. Included algorithms
and models differ in the scope of the predicted structure, some are limited only to the prediction
of specific protein structure domains, such as coiled-coil regions or basic secondary structure types,
others try to predict the complete 3-dimensional protein structure at once, which is one of the hardest
computational problems due to the manifold possibilities of folding (Levinthal, 1969). Regardless of
the type of application, the resulting structure predictions in turn can then be used as a starting point
to guide experimental methods, whereby with this prior knowledge the complex experiments can
be significantly shortened and the entire process of the structural coverage accelerated. A procedure
that has been successfully applied many times. Such as in genome scale studies for example on the
evaluation of coiled-coils in the yeast genome (Newman et al., 2000), where the binding of proteins,
that have been predicted to be interacting over coiled-coil domains, was experimentally verified.

2.3.3. Coiled-coil prediction

As one of the direct subfields of protein structure prediction, the "coiled-coil prediction" focuses, as
its name implies, on the precise and reliable search for protein sequence regions playing a role in
the formation of coiled-coil domains. Coiled coils are one of the earliest and best understood pro-
tein folding types with the unique characteristics of a high regular nature and unlike other structural
types the ability to be computable by parametric equations. The periodic and repetitive pattern of
these structures allows their prediction to be so accurate that individual residues can be assigned to
the positions of the heptad repeat (see section 2.2.3). For this reason, coiled coils represent an ideal
model for the investigation of sequence-structure relationships, which opens the possibility to de-
velop computational methods for the prediction of their structural features solely based on sequence
information. The group of coiled-coil prediction methods can be classified in two main categories,
namely the "coiled-coil domain detection" and "coiled-coil oligomeric state prediction".

Being originally described in the literature in the beginning of the 1950s, the first computation-based
contributions to the research field "prediction of coiled coils" have been published starting in the year
1991 with the release of the software COILS (Lupas et al., 1991). Since then various follow-up studies
and improved prediction softwares were performed and published which lasts to the present day.
To this point, the most popular programs for the "coiled-coil domain detection" besides COILS are
PAIRCOIL (Berger et al., 1995), it improved COILS scoring method with pairwise correlation infor-
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mation, MultiCoil (Wolf et al., 1997), which extended PAIRCOIL by adding the first oligomeric state
classification and PCOILS (Gruber et al., 2005), a new version of COILS using profiles derived from
multiple sequence alignments for comparison. Further developments leading to updated versions
have been Paircoil2 (McDonnell et al., 2006) and Multicoil2 (Trigg et al., 2011). All of them make use
of similar concepts based on the PSSM approach, but added more informational input to improve
the prediction. In addition to mention is MARCOIL (Delorenzi and Speed, 2002), that introduced the
first window-less HMM-based approach for short coiled-coil domain detection, as well as DeepCoil
(Ludwiczak et al., 2019) and DeepCoil2, both neural network-based approaches trained with struc-
tural data from the PDB.

Representatives of the second category for the "oligomeric state prediction" are the programs SCORER
and its successor SCORER 2.0 (Armstrong et al., 2011; Woolfson and Alber, 1995), as already men-
tioned above the Multicoil programs but to a very limited extent, PrOCoil (Mahrenholz et al., 2010)
and LOGICOIL (Vincent et al., 2013).

Name / Reference Principle of coiled-coil 
prediction Prediction type optional settings window 

COILS Lupas et al. (1991) PSSM (MTK, MTIDK) CC un-, weighted (a+d = b,c,e,d,g),  
window-size, PSSM matrices 14, 21, 28 

PAIRCOIL Berger et al. (1995) 
PSSM (pairwise  

side chain correlations) 

CC pair-distances (default: 1, 2, 4) 21, 28 

Paircoil2 McDonnell et al. (2006) CC pair-distances (default: 1, 2, 4) 21, 28 

MultiCoil Wolf et al. (1997) CC, OS 
(dimer, trimer) 

pair-distances  
(dimer: 3, 4, 5, trimer:  2, 3, 4) 21, 28 

Multicoil2 Trigg et al. (2011) HMM (pairwise side  
chain correlations) 

CC, OS 
(dimer, trimer) - - 

MARCOIL Delorenzi and Speed 
(2002) HMM and PSSM CC HMM parameters, PSSM 

matrices (MTK, MTIDK) - 

PCOILS Gruber et al. (2005) PSSM (profile-profile) CC PSSM matrices (MTK, MTIDK) - 

SpiriCoil Rackham et al. (2010) HMM CC - - 

DeepCoil Ludwiczak et al. (2019) Neuronal network (CNN) CC - - 

DeepCoil2  CNN CC - - 

Scorer 2.0 Armstrong et al. (2011) log-likelihood for di- and 
trimer PSSM-profiles * OS (dimer, trimer) - - 

PrOCoil Mahrenholz et al. 
(2010) SVM * OS (dimer, trimer) - - 

LOGICOIL Vincent et al. (2013) 
Bayesian variable selection 

and multinomial probit 
regression * 

OS (parallel & antip. 
dimer, tri-, tetramer) - - 

Figure 2.11. | Overview of the available coiled-coil prediction programs. CC = coiled coil, OS = oligomeric state; with ⇤

marked tools depend as input on the CC predictions of further softwares.

Over the years, a variety of probabilistic models and algorithms have been implemented to im-
prove successively the prediction of coiled coils. The applied approaches range from position-specific
scoring matrix (PSSM) over a PSSM-variant extended by pairwise residue correlations to machine-
learning models like hidden Markov models (HMMs), support vector machines (SVMs) and recently
convolutional neural networks (CNNs). These methods are explained briefly in the following sec-
tions using respectively one application as illustrating example.
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Position-specific scoring matrix (PSSM)

The original method for coiled-coil detection in proteins was the "position-specific scoring matrix"-
based approach. It was first implemented by Andrei Lupas in 1991 in the program COILS (Lupas
et al., 1991) and is based on the prediction algorithm for coiled coils developed by David Parry (1982).
The approach described the analysis of amino acid types in the heptad motif of known coiled coils
and the usage of derived residue probabilities for the single heptad positions to predict coiled-coil
domains in other unknown proteins. In COILS, based on this procedure, new protein sequences are
compared with a database of known 2-stranded parallel coiled-coils by calculating a window-based
similarity score. This determined score is compared with a distribution of scores from globular and
coiled-coil proteins. Based on this, a probability is calculated that indicates whether the sequence
forms a coiled coil. The COILS program can be run with two different scoring matrices for the de-
tection of coiled-coil domains, the MTK and the MTIDK matrices. In the following, the MTK matrix
is presented as an example (see Table 2.12). The included position scores were trained with myosin,
tropomyosin and keratin sequences (intermediate filaments type I & II). The matrix has a score for
each of the 20 amino acids for each position of the heptad motif (a-g), reflecting their probability to
occur in the analyzed MTK sequences.

 a b c d e f g 
L 3.167 0.297 0.398 3.902 0.585 0.501 0.483 
I 2.597 0.098 0.345 0.894 0.514 0.471 0.431 
V 1.665 0.403 0.386 0.949 0.211 0.342 0.360 
M 2.240 0.37 0.480 1.409 0.541 0.772 0.663 
F 0.531 0.076 0.403 0.662 0.189 0.106 0.013 
Y 1.417 0.090 0.122 1.659 0.19 0.13 0.1550 
G 0.045 0.275 0.578 0.216 0.211 0.426 0.156 
A 1.297 1.551 1.084 2.612 0.377 1.248 0.877 
K 1.375 2.639 1.763 0.191 1.815 1.961 2.795 
R 0.659 1.163 1.210 0.031 1.358 1.937 1.798 
H 0.347 0.275 0.679 0.395 0.294 0.579 0.213 
E 0.262 3.496 3.108 0.998 5.685 2.494 3.048 
D 0.03 2.352 2.268 0.237 0.663 1.62 1.448 
Q 0.179 2.114 1.778 0.631 2.55 1.578 2.526 
N 0.835 1.475 1.534 0.039 1.722 2.456 2.280 
S 0.382 0.583 1.052 0.419 0.525 0.916 0.628 
T 0.169 0.702 0.955 0.654 0.791 0.843 0.647 
C 0.824 0.022 0.308 0.152 0.180 0.156 0.044 
W 0.24 0.0 0.0 0.456 0.019 0.0 0.0 
P 0.00 0.008 0.0 0.013 0.0 0.0 0.0 

 

(a) MTK matrix

 a b c d e f g 
L 2.998 0.269 0.367 3.852 0.510 0.514 0.562 
I 2.408 0.261 0.345 0.931 0.402 0.440 0.289 
V 1.525 0.479 0.350 0.887 0.286 0.350 0.362 
M 2.161 0.605 0.442 1.441 0.607 0.457 0.570 
F 0.490 0.075 0.391 0.639 0.125 0.081 0.038 
Y 1.319 0.064 0.081 1.526 0.204 0.118 0.096 
G 0.084 0.215 0.432 0.111 0.153 0.367 0.125 
A 1.283 1.364 1.077 2.219 0.490 1.265 0.903 
K 1.233 2.194 1.817 0.611 2.095 1.686 2.027 
R 1.014 1.476 1.771 0.114 1.667 2.006 1.844 
H 0.590 0.646 0.584 0.842 0.307 0.611 0.396 
E 0.281 3.351 2.998 0.789 4.868 2.735 3.812 
D 0.068 2.103 1.646 0.182 0.664 1.581 1.401 
Q 0.311 2.290 2.330 0.811 2.596 2.155 2.585 
N 1.231 1.683 2.157 0.197 1.653 2.430 2.065 
S 0.332 0.753 0.930 0.424 0.734 0.801 0.518 
T 0.197 0.543 0.647 0.680 0.905 0.643 0.808 
C 0.918 0.002 0.385 0.440 0.138 0.432 0.079 
W 0.066 0.064 0.065 0.747 0.006 0.115 0.014 
P 0.004 0.108 0.018 0.006 0.010 0.004 0.007 

 

(b) MTIDK matrix

Figure 2.12. | MTK and MTIDK matrices of the coiled coil prediction program COILS. Shown are the probabilities
(scores) of the 20 amino acids to occur at each specific position of the heptad motif.

The application supports different window sizes in the calculation of the score. Possible values are 14,
21 and 28, which are whole multiples of a a-helix with two turns (length: 7 amino acids). The choice
of the window size has a significant impact on the detection of coiled-coil domains. The greater win-
dow of length 28 usually gives clearer results, and is the default setting, being a compromise between
sensitivity and specificity.
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Pairwise residue correlations (extended PSSM-variant)

The second type of coiled-coil prediction programs is based on the method of pairwise residue cor-
relations of amino acids in the heptad motif. The application in which this method was first imple-
mented is PairCoil (Berger et al., 1995). The data basis of this method is again a database of known
coiled-coil sequences composed of myosins, tropomyosins, and intermediate filaments. From these
protein sequences, the propensity of occurrence (»frequency«) was calculated for each amino acid
pair for each positional combination in the heptad motif. These pairwise frequency values form the
coiled-coil database and are used to estimate the probability of a given amino acid pair for a specific
positional combination in the heptad repeat. The probabilities are used to calculate the score Sk for
an amino acid at position k, which is an indicator of whether that amino acid is in a coiled-coil.
To determine the score Sk, the maximum window score of all windows of length 30 in which the
kth amino acid occurs is selected. When calculating the window score, the maximum of the sum of
amino acid propensities over the seven possible heptad repeat positions in the window of 30 is se-
lected (see Figure 2.13). The propensity (⇡ slope, tendency; in terms of probability) of an amino acid
to a given heptad position involves the correlations between the amino acid under consideration and
the amino acids at the following structurally relevant positions with distances i = 1, i = 2, and i = 4.
The propensity for the k-th amino acid is given by the following equation (simplified):

P(k, k + 1)P(k, k + 2)P(k, k + 4)
P(k + 1)P(k + 2)P(k + 4)

.

The correlation positions that enter into the amino acid calculation are derived from the structure of
the a-helices. These have a length of 3.5 amino acids per turn, so that positions 1 and 4 are superim-
posed along the helix axis (slightly offset) and form a line. With respect to the heptad motif, positions
a and d are structurally related in this way. This arrangement, as already described in section 2.2.3, is
a prerequisite for the formation of coiled-coils.

+1 +2 +4 

                                    
                   2         3    k    4         5         6         7         8 
Seq.  910 CDQLIKTKIQLEAKIKEVTERAEDEEEINAELTAKKRKLEDECSELKKDIDDLELTLAKVEKEKHATENK 
Heptad-1  ..............<--abcdefgabcdefgabcdefgabcdefgab-->.................... 
Heptad-2  .............<--bcdefgabcdefgabcdefgabcdefgabc-->..................... 
Heptad-3  ............<--cdefgabcdefgabcdefgabcdefgabcd-->...................... 
Heptad-4  ...........<--defgabcdefgabcdefgabcdefgabcde-->....................... 
Heptad-5  .................<--efgabcdefgabcdefgabcdefgabcdef-->................. 
Heptad-6  ................<--fgabcdefgabcdefgabcdefgabcdefg-->.................. 
Heptad-7  ...............<--gabcdefgabcdefgabcdefgabcdefga-->................... 
 

Window-Score (30 AS) 

Figure 2.13. | Pairwise residue correlations: illustration of the maximum window score calculation. Displayed are
the scoring windows for the different heptad repeat positions used to calculate the maximum window score based on
the summed amino acid propensities. For clarification, a position k is marked with its structurally relevant positions
d = 1, 2, 4.

Hidden Markov model (HMM)

One of the first applications whose coiled-coil prediction algorithm in protein sequences is based
on a HMM is the program Marcoil (cf. Delorenzi and Speed, 2002). It was developed in 2001 by
the authors Mauro Delorenzi and Terry Speed. The strength of this method has been the prediction
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specifically of short CCDs and several related protein families, which could not be detected with
previous developed programs using PSSM approaches. One reason for this is that the underlying
HMM is more flexible, due to its window-less and state-based design. In contrast to the assessment
of amino acid sequences with a fixed-width scoring window, the advantage of HMMs is the ability to
evaluate protein sequences with dynamic lengths and more diverse patterns. The authors found that
previous methods such as "residue-based correlations" are too specific for the detection of general
as well as new coiled-coil classes because the window-based methods have due to their fixed-width
design two weaknesses. First, if the window is longer than the domain, neighboring amino acids that
do not belong to a coiled-coil domain will be included, resulting in a washed-out score, and second,
if it is shorter, not enough evidence can be reached for the considered region.

The software Marcoil makes use of an hidden Markov model consisting of 64 states, that are di-
vided into a background state "0" and 63 further states to model the behavior of being in a coiled-coil
domain. The coiled-coil states build nine groups numbered from "1-9" consisting of seven heptad
positions each, labeled with "a-g". The state "0" realizes the background or reference state, which
includes all sequence regions outside putative coiled-coil domains. The groups "1-4" model the first
four amino acids in a CCD and groups "6-9", the last four. Group "5" describes all CC amino acids
included in between. Analyzable sequences must have a minimum length of nine amino acids, since
each group must occur once, as well as begin and end again at state "0", which is not counted.

!

a! ! ! ! ! ! ! ! !!!!!!b!! ! ! ! ! !!!!!!!!!!!c! ! ! !

Figure 2.14. | Marcoil: representation of the HMM-based approach. Part (a) shows a simplified representation of the
HMM depicting the logical order at the group level. Parts (b) and (c) illustrate the possible transitions of the heptad states
to each other within and between the single heptad groups. Adopted with permission from Delorenzi and Speed (2002, p.
619 ff.), Copyright 2002 Oxford University Press.

Each of the shown heptad states of the groups "1-9" emits amino acids according to a state-specific
probability distribution. Individual "transitions" between these heptad states can be traced in the
right two Figures 2.14b and 2.14c. According to the principle shown, each state has specific transi-
tion probabilities with which it can move to its subsequent states either within the current group or
into the next group. Transitions following the predefined order of the heptad motif (transition u or
z: a!b, b!c, c!d, . . . ), which not necessarily need to start at heptad position a, are favored. Other
non-heptad transitions, represented by v or t, that would cause a jump in the motif have lower prob-
abilities. For a given amino acid sequence produced by the hidden Markov chain, to illustrate the
transitions over two heptad repeats of a putative coiled-coil domain, the associated state chain could

29



2. Foundations

have the following form: The sequence were to start at heptad position c, 0� 1c� 2d� 3e� 4 f � 5g�
5a � 5b � 5c � 5d � 5e � 6 f � 7g � 8a � 9b � 0. The joint probability for such a protein sequence a
with a given state chain p, representing the heptad occupancy, for this HMM is calculated as follows:

1. P[a, p] = t(0, p(1))
n

’
t=1

[e(p(t), a(t)) · t(p(t), p(t + 1))]

a(t) = Sequence at position t of length n (1  t  n)
p(t) = State chain at position t of length n + 2 (0  t  n + 1)

t(r, s) = Transition from state r ! s
e(s, a) = Emission probability for amino acid a in state s

2. P[p(t) = s|a] = P[a, p(t) = s]
P[a]

(conditional/posterior probability)

The actual parsing of a given protein sequence a to make a coiled coil prediction is based on poste-
rior probabilities with the forward-backward algorithm (Rabiner, 1989). If the calculated probability
for a single amino acid lies above a certain threshold, the software assigns it to putative coiled-coil
domain similar to the principle used in the PSSM approach.

2.3.4. Analysis software for secondary structure prediction

A kind of software to detect secondary structure domains and regions (e.g. a-helices, b-sheets, coiled
coils) in structural data of resolved protein molecules and that have been extensively used in the
course of this work include the following programs.

Database of secondary structure assignments (DSSP)

One application that can be used to extract protein secondary structures from PDB files is the tool
DSSP (Kabsch and Sander, 1983). Similar to the PDB database, the term DSSP is a database for which
there is an application of the same name. The program DSSP computes for a 3D structure of a given
PDB file the most likely applicable secondary structures. For this an algorithm is used, which recog-
nizes hydrogen bond patterns. For this purpose, DSSP calculates the possible hydrogen bonds from
all atoms of a protein and selects the best two from these for each atom. This structural information
is used to assign the best-fitting secondary structure class to each amino acid. The algorithm under-
lying the tool follows clear calculations and makes no predictions.
DSSP can distinguish between the following seven secondary structure classes:

• B = Amino acid in isolated b-bridge
• E = Extended b-strand, that is part of a b-sheet
• G = 3/10-helix
• H = a-helix
• I = 5p-helix
• S = Bend
• T = Hydrogen-bonded turn
• _ = Loop or irregularity
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SOCKET

The program "SOCKET" developed by Walshaw and Woolfson (2001) is an application designed to
find coiled-coil domains in structurally resolved proteins as collected and provided by the Protein
Data Bank. In the program, an algorithm is applied that searches for "knobs-into-holes" packing
interactions (KIH) in the 3D structural model of helical proteins, as described by Crick (1953). This
refers to a model in which a simplified form of the helix side chains is assumed, designated as knobs.
They are assigned the same shape and size for this purpose. The regions between the knobs are called
holes. If two helices form a simple coiled-coil, they wrap around each other so that the knobs fit exactly
into the holes and build a compact packing shape, for a more detailed description see section 2.2.3.
The algorithm is able to detect where and in what form the coiled-coil structures occur in the proteins
under investigation. Also part of the analysis is the determination of the oligomerization state. It
determines the number of helices with their orientation (parallel, anti-parallel) and the composition
of the coiled-coils with respect to the helical sequences involved (homomer or heteromer).
A prerequisite for the calculation of coiled-coils using SOCKET is the prepared secondary structure
analysis for a PDB file using the program DSSP, which was introduced in the previous section 2.3.4.
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2.3.5. Biological databases and exchange formats

The explosion in the amount of biological data, independent of the type, goes hand in hand with the
need to be accessible for all kinds of scientific research. For this reason there is a strong demand for
reliable solutions to collect, provide and exchange the generated masses of data to ensure the idea
of "open-access" and the FAIR principles for good scientific practice. The effortless usability helps
in further studies to evaluate the gained biological insights and to clarify with these fundamental
biological questions. In the following, relevant database resources and formats are addressed that
made the developments and analyses of this work possible in the first place.

Protein Data Bank

The PDB is the single global archive of experimentally determined 3-dimensional structure data of
biological macromolecules managed by the international wwPDB consortium. It exists in its infancy
since the early 1970s, provided formerly by the Brookhaven National Laboratory and the Research
Collaboratory for Structural Bioinformatics (RCSB), and was the first open-access resource for vali-
dated and biocurated structure data. Nowadays the PDB is one of the largest resources for structural
data of biological macromolecules, particularly structurally resolved proteins, and is essential for
biological and medical studies working on the deciphering of the functional roles of proteins. Struc-
tural data are usually obtained using experimental methods such as macromolecular crystallogra-
phy (MX), nuclear magnetic resonance spectroscopy (NMR), 3D electron microscopy (3DEM) and
electron tomography (ET) (Berman et al., 2000; wwPDB consortium, 2019). The database resource is
available to the general public both as a website and in the form of further web services and protocols
(e.g. SOAP, REST, FTP) over which the structural data can be obtained. The protein structures are
available in individual files that can be accessed via a unique (four-digit, alpha-numeric) identifier.
The database contains currently about 180,000 solved protein structures with increasing tendency
(State: 2021/01, see Figure 2.15 for detailed information).
As described in the publication of Simm et al. (2021), see section 3.1.4 on the "Critical assessment
of coiled-coil predictions based on protein structure data", the custom protein sequence and struc-
ture database of this work used as one part of the data basis a comprehensive set of all available
records deposited in the PDB, more precisely the parsed and selective processed information of the
individual PDB structures of this database resource.

PDB and PDBx/mmCIF

A file format with the same name exists for the PDB, in which the structural data of the proteins
can be exchanged. The original PDB file format (.pdb) is a text-based exchange format for struc-
turally solved macromolecules. In contrast to the FASTA or GenBank file format, there is a much
more complex specification for the structure of PDB files (cf. Atomic Coordinate Entry Format Descrip-
tion). Each of these files describes a molecule complex constructed from one or multiple protein
sequences (named chains) originating of the same or different interacting proteins. PDB files con-
tain in the header section annotating meta-information about the molecule, such as the name and
type of protein, a description of the analysis environment and molecule composition, the solution
method (NMR, X-Ray, etc.), the number of chains contained, the journal of publication and some
more. Furthermore, it contains the amino acid sequences for each of the included chains, as well as
the "accession numbers" of the databases where the sequences can be found with the related location
information (UniProt, SwissProt).
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Figure 2.15. | Growth of the RCSB Protein Data Bank. The diagram illustrates the amount of released structures stored
in the PDB of the Research Collaboratory for Structural Bioinformatics (RCSB) from 1976 to 2021. The shown information
are the number of structures released and the total number of entries available on annually basis. The numbers were
obtained from the PDB statistics information page (https://www.rcsb.org/stats/growth/growth-released-structures).

The important main component of the format is formed by position information of the atoms of
the protein molecule in the 3-dimensional space. In Table 2.16 some important format elements are
shown in extracts. In the upper part, the positions of the individual molecular atoms can be seen,
with the atoms of single amino acids listed from the amino to the carboxyl terminus. There is a sep-
arate section for each chain, identifiable by the column "CH". The column entries from left to right
have the following meaning: The first position shows the type of entry, position 2 represents a num-
bering for each "atom", column 3 gives the name of the atom, column 4 the amino acid residue to
which it is assigned, column 5 the numbering of the amino acids in the overall sequence, columns
6-8 give the coordinates in the three dimensions (x, y, z) measured in Å, the penultimate column
represents the temperature factor, and the last specifies the element type of the atom.
The section shown below indicates secondary structure elements identified in the molecule (a-helix,
b-sheet). Basically, both have a similar structure. Column 1 specifies the type of entry, column 2
contains a sequential position number, and in the case of the helix-section, it is now followed by two
blocks consisting of an amino acid, the chain, and a position in the sequence. The first block indicates
the start position and the second the end position of the helix. The last column represents the length
of the helix domain. In the sheets section, the strands involved in the b-fold are listed, again with start
and end blocks, a "sense" column indicating the orientation of the current strand in the fold, and in
the last two blocks, the positions over which the strands are related.

The constant technological improvement of the structure determination methods led over the years
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1 TYP AT -Nr NAME AA CH AA-Nr X Y Z TempFac EL
2 ATOM 1 N VAL A 3 23.607 44.559 142.863 1.00 65.12 N
3 ATOM 2 CA VAL A 3 22.448 44.382 143.759 1.00 63.91 C
4 ATOM 3 C VAL A 3 22.675 43.119 144.620 1.00 61.91 C
5 ATOM 4 O VAL A 3 22.190 43.110 145.783 1.00 63.90 O
6 ATOM 5 CB VAL A 3 21.099 44.302 143.002 1.00 64.88 C
7 ATOM 6 CG1 VAL A 3 20.910 45.344 141.894 1.00 63.70 C
8 ATOM 7 CG2 VAL A 3 20.792 42.904 142.442 1.00 64.23 C
9 ATOM 8 N GLN A 4 23.379 42.168 144.005 1.00 57.23 N

10 ATOM 9 CA GLN A 4 23.639 40.903 144.713 1.00 52.30 C
11 ATOM 10 C GLN A 4 25.083 40.778 145.190 1.00 48.05 C
12 ATOM 11 O GLN A 4 26.049 41.216 144.554 1.00 46.24 O
13 ATOM 12 CB GLN A 4 23.174 39.721 143.856 1.00 53.45 C
14 ATOM 13 N ALA A 5 25.158 40.150 146.360 1.00 42.50 N
15 [...]
16 TYP HLX -Nr [AA CH ST][AA CH END] LEN
17 HELIX 1 1 THR A 6 ASP A 9 5 4
18 HELIX 2 2 LEU A 15 GLY A 19 1 5
19 HELIX 3 3 ASP A 35 GLY A 47 1 13
20 HELIX 4 4 HIS A 54 VAL A 59 1 6
21 HELIX 5 5 ASP A 64 GLY A 83 1 20
22 HELIX 6 6 HIS A 96 LYS A 100 5 5
23 [...]
24 TYP STR -Nr CH ID[AA CH ST][AA CH END]SEN[AT AA CH POS][AT AA CH POS]
25 SHEET 1 A 4 GLY A 50 THR A 52 0
26 SHEET 2 A 4 PHE A 11 GLY A 14 1 O PHE A 11 N GLY A 50
27 SHEET 3 A 4 ARG A 289 PHE A 291 1 O ARG A 289 N SER A 12
28 SHEET 4 A 4 ASP A 245 LEU A 246 1 N LEU A 246 O HIS A 290
29 [...]

Figure 2.16. | Extracts from a PDB flat file.: Listed are the detailed atomic positions of the single sequence residues and
identified structures (e.g. a-helix, b-sheet) within the annotated macromolecule (PDB-ID: 9XIM).

to an increasing size of the solvable macromolecules with corresponding changes in the form of the
structural data, which was accompanied by equally increasing requirements for the PDB file format.
The basic type of the described format is called PDB flat file and is for this reason designed as a
continuously extensible data format. The need to be ongoing extendable, leads at the same time to
problems with the backward compatibility to former deposited structures. So that older versions of
the format need to be reprocessed and corrected to be compatible to the new standards of the file
format. To meet the new requirements, the same structural data can also be retrieved in alternative
formats such as PDBML (XML version) and the extensible PDBx/mmCIF master format.
These circumstances bring a certain potential for read and parsing errors of the structural flat files
with it, which indeed was a problem for the analyses in this work during the preparation of the rela-
tional structure database of the project holding a comprehensive copy of all deposited structures of
the PDB, as well as SOCKET and coiled-coil prediction data.

CC+ Database

The CC+ Database (Testa et al., 2009) represents a specialized and comprehensive resource for coiled-
coil structures and sequences. It has been developed with the aim to improve the understanding of
the sequence-to-structure relationships for this type of domain. The contained structures are based
on scans of the Protein Data Bank (wwPDB consortium, 2019) performed with the structure anal-
ysis program SOCKET (Walshaw and Woolfson, 2001), an algorithm that identifies coiled coils by
the detection of KIH packing interactions of side chains between a-helices in the deposited protein
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structural data. The analysis enabled a classification of numerous coiled-coil structures into a peri-
odic table of coiled-coil architectures according to their oligomeric states and thus provides profound
information about the assembling diversity of coiled coils (Moutevelis and Woolfson, 2009). Besides
the PDB, the CC+ database is an important resource for the collection of representative reference
sets for structural data-based studies, because it enabled due to its relational design efficient filtering
mechanisms and a rapid compilation of subsets of coiled-coil structures.

PaxDB

The PaxDb (Wang et al., 2015) stands for "Protein Abundances Across Organisms" and is a public
database resource for protein abundance information of the most common model organisms hosted
by the Swiss Institute of Bioinformatics. It provides whole-proteome datasets being captured with
different biophysical and mass spectrometry (MS) techniques, that originate from various unstruc-
tured online resources such as publication supplementals and custom data repositories. The neces-
sity of the database lies in the circumstances that data processing and its reuse in proteomics is a
challenging task due to the rapid technical advances in proteomics and the low requirements for
standardized comparable data. For this reason, the PaxDB offers access to reprocessed, unified and
quality-scored protein quantification data in one place. The normalized abundance data can be re-
trieved in the common text-file exchange formats CSV, TSV and JSON.

The provided datasets of the model organisms Saccharomyces cerevisiae, Escherichia coli and Arabidop-
sis thaliana build the data basis for the parameter training of the Markov model used in the project
on heterologous protein expression. The quantified proteomic data allowed the generation of model
profiles for different expression levels (e.g. low, mid and highly expressed proteins).

Figure 2.17. | Protein abundance histogram. The diagram illustrates the protein abundance distribution of the quan-
tified proteome for the model organism Saccharomyces cerevisiae. The abundance of each measured protein (in ppm) is
plotted against the number of proteins grouped in the respective abundance range. The numbers were obtained from the
PaxDB entry for S.cerevisiae (https://pax-db.org/dataset/4932/3).
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REBASE

The Restriction enzyme database (REBASE) (Roberts et al., 2010) is a comprehensive and manually
curated resource, that provides information about restriction enzymes and related proteins, such as
methylases, and the microorganisms from which they originate, dating back until the early 1950s
and is updated on a daily basis. For the listed enzymes detailed information about recognition se-
quences, cleavage sites, methylation specificity and the commercial availability can be retrieved. The
information can be accessed dynamically via a search interface or on file basis in the common text-file
exchange formats.
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2.4. Computational approaches

In this work, new approaches and analyses are presented to assess and improve the current state of
the structural annotation of »coiled-coil domains« in proteins as well as computational prerequisites
for experimental »protein expression« applications. The major goal behind these is to contribute to
the deciphering of mechanistic and cellular functions of proteins to enable biological insights and
a deeper understanding of living processes in the organisms of the tree of life. The performed ap-
proaches clearly profited from the ever increasing amount of sequential and structural protein data
available in the relevant resources. A development that made biological investigations with a statis-
tically profound and meaningful data basis possible in the first place, such as it was used in the study
on the »Critical assessment of coiled-coil predictions based on protein structure data« by the usage
of the comprehensive data set including all available protein structures deposited in the PDB, see
Simm et al. (2021). But not only protein data builds a central aspect of the performed work, also se-
quenced genome data enabling applications like the profiled codon usage adaptation approach, that
are based on capturing of whole genome characteristics are nowadays possible to be implemented.
The approaches, tools and results developed during the course of this work are made available for the
public as freely accessible and easy to use web-applications with plenty of interactive setting options.

The computational approaches developed were implemented on a broad basis of softwares, libraries
and frameworks. The different requirements of the both projects and changing technological capabil-
ities have led with Ruby, which was used for the whole development of »Waggawagga«, and Python
(»Odysseus«) to the usage of different programming languages over time. For the implementation
of the web-applications of both projects the web-frameworks Ruby on Rails and Flask came into use,
both providing necessary packages to realize fast and modern web-services with builtin API inter-
faces for external data access. The standalone version »Waggawagga-CLI« is implemented with the
portable Ruby environment (Traveling Ruby) and the mobile database SQLite to run the SAH pre-
diction software easy installable on the machines of end-users. The extensive coiled-coil prediction
dataset including the complete PDB protein structures of the Simm et al. (2021) study is stored in
a high performant relational PostgreSQL database, that constitutes the data backend. Extensively
used packages for PDB structure parsing and the visual inspection of the different coiled-coil predic-
tions on single PDB structures, are BioRuby and the Web-GL based PDB-viewer JSMol and Chem-
Doodle Web Components. RNA secondary structures and minimum folding energies are predicted
by RNAFold from the ViennaRNA package. Figures, plots and illustrations in Waggawagga and
Odysseus are realized with the embeddable XML-based SVG file format, gnuplot and ImageMagick.
The developed projects are realized as well as Docker images and containers for development and
production operations, ensuring the simple installation and long-term, low-maintenance availability
and operability. This enables operation on various operating systems such as Linux distributions,
macOS and Windows systems.

Nowadays, sophisticated and reliable computational approaches to process, analyse and interpret
the ever-increasing amounts of experimentally generated sequential and structural data build an es-
sential part in the investigation of biological questions by complementing the elaborate experiments
in the labs.
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3 Publications and Manuscripts

This chapter includes the publications and manuscripts, that have been authored in the context of the
PhD project, and presents them in thematic and chronological order. The conducted studies belong
to the both major topics »comparative protein structure prediction of coiled-coil and SAH domains«
and »heterologous gene expression« and are listed in the first two sections. These are followed by
additional works located in the fields of »genome annotation« and »genomic databases«, in which
minor contributions by the author were made.

The first section of this chapter comprises in multiple studies the development and evaluation of
new approaches to improve the reliable »prediction of coiled-coil domains« for individual cases and
on a large scale as for genome annotation purposes. In conclusion, it also presents an in-depth study
for the critical assessment of the current state of »protein structure prediction of coiled-coil domains«
performed and measured against one of the most comprehensive reference datasets for protein struc-
tural data based on the entire Protein Data Bank.

The second section includes the work on the design of typical genes for heterologous gene expression
and its functional evaluation carried out and validated by experimental studies. For this purpose a
configurable information theory based approach has been developed, that can be operated with pre-
trained genome profiles to control protein expression levels by codon usage adaptation.
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Abstract

Summary: Waggawagga is a web-based tool for the comparative visualization of coiled-coil predic-
tions and the detection of stable single a-helices (SAH domains). Overview schemes show the
predicted coiled-coil regions found in the query sequence and provide sliders, which can be used
to select segments for detailed helical wheel and helical net views. A window-based score has
been developed to predict SAH domains. Export to several bitmap and vector graphics formats is
supported.
Availability and implementation: http://waggawagga.motorprotein.de
Contact: mako@nmr.mpibpc.mpg.de

1 Introduction

Coiled coils are a-helical structural domains common to all domains

of life and present in 2–12% of the proteins of a proteome (Liu and

Rost, 2001). The classical coiled coils comprise dimerising long

a-helices that wind around each other forming superhelices (Crick,

1952) as found in structural proteins such as a-keratins, muscle

myosins and tropomyosin (KMTs). In the last years, this view has

shifted to defining coiled-coil segments based on the presence of

knobs-into-holes packing of side chains between a-helices resulting

in many different architectures and topologies (Moutevelis and

Woolfson, 2009). The basis for a coiled coil is an amino acid heptad

(‘abcdefg’), in which the ‘a’ and ‘d’ positions are occupied by hydro-

phobic residues.

Coiled coils were among the first structural domains to be pre-

dicted by algorithms (Lupas et al., 1991). In this method a query se-

quence is compared with a database of known coiled-coil sequences,

which were the KMTs available at that time. Subsequently, a simi-

larity score is computed and a probability to form a coiled-coil

calculated. In principle, this is an implementation of the basic ideas

already presented nine years before, that residues show an asymmet-

ric distribution within the heptad repeats and that this statistical

data can be used to predict coiled coils in other proteins (Parry,

1982). This position-specific scoring matrix (PSSM) approach has

been improved both on the database site and on the feature site try-

ing to disfavor the assignment of high coiled-coil probabilities to

hydrophilic sequences.

Another approach to predict coiled coils is based on the pairwise

residue probabilities as implemented in Paircoil (Berger et al., 1995)

and Paircoil2 (McDonnell et al., 2006). Here, pairwise frequencies

of heptad residues are calculated from known coiled-coil sequences

and the probability of a pair of amino acids in a given sequence for a

certain combination in the heptad is scored. With this approach bet-

ter predictions for long coiled-coil regions could be obtained com-

pared to PSSM predictions. Improvement of the prediction of short

coiled coils has been reached by using a hidden Markov model as in

Marcoil (Delorenzi and Speed, 2002), and, recently, Markov

Random Fields as used in Multicoil2 (Trigg et al., 2011). These gen-

eral coiled-coil prediction approaches have been extended by soft-

ware to predict different oligomerization states as Scorer

(Armstrong et al., 2011), PrOCoil (Mahrenholz et al., 2011), and

LOGICOIL (Vincent et al., 2013). However, all these approaches

provide different results and fail to distinguish between coiled coils

and stable single a-helices (SAH domains). A special case of SAH
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domains consisting of alternating repeats of four glutamic acid (E)

residues and four positively charged residues of either lysine (K) or

arginine (R) has been termed ER/K motif (Sivaramakrishnan et al.,

2008). SAH domains are in most cases mispredicted as coiled coils

but have been shown to form stable monomeric structures in aque-

ous solution (Knight et al., 2005; Süveges et al., 2009). SAHs

are highly enriched in E, Q, K and R residues, which stabilize the

a-helices through intrahelical salt bridges (Peckham and Knight,

2009).

Waggawagga is designed to provide a direct schematic compari-

son of many coiled-coil prediction tools. Users can inspect the pre-

dictions in classical helical wheel (Schiffer and Edmundson, 1967)

and helical net (Dunnill, 1968) representations. Visualization of the

coiled-coil predictions in helical wheel schemes provides the possi-

bility to fast and easily identify potential hydrophobic seams in ‘a’

and ‘d’ and oppositely charged residues in ‘e’ and ‘g’ positions, re-

spectively. In contrast, SAH domains have patterns of highly

charged residues only occasionally interrupted by hydrophobic or

hydrophilic amino acids. Therefore, charged residues are highly en-

riched in the ‘a’ and ‘d’ positions. The hydrogen-bonded and

charged interaction network in SAH domains is best seen in helical

net representations showing the potential interactions along the

helix. Waggawagga provides layouts that can easily be used in pres-

entations and manuscripts.

2 Features

Waggawagga allows the comparative analysis of six coiled-coil pre-

diction (Marcoil, Multicoil, Multicoil2, Ncoils, Paircoil, Paircoil2)

and three oligomerization state prediction programs (Scorer,

PrOCoil and LOGICOIL). In addition, Multicoil2 distinguishes

dimers, trimers and non-coiled-coil oligomerization states. These

tools can be run in any combination against single or multiple query

sequences.

2.1 Domain view
The interactive domain view (Fig. 1A) is the main control element

for setting the two analysis views, the helical wheel (Fig. 1B) and the

helical net views (Fig. 1C). Separate schemes are generated for each

of the results of the selected coiled-coil prediction programs visualiz-

ing the coiled-coil regions on top of the query sequence. For each re-

gion, the predicted oligomerization state is given depending on the

selected tools. In the selected domain scheme, any specific region

can be chosen by mouse clicks or by moving an interactive slider.

The respective region is shown in detail in the helical wheel and the

helical net views.

2.2 Helical wheel view
The exact sequence borders of the coiled-coil region and several dif-

ferent types of helix arrangements (parallel dimer, anti-parallel

dimer, trimer) can be set in the configuration panel. In the helical

wheel view, every a-helix is shown along the helix axis and the heli-

ces are arranged that the hydrophobic core is in the interface of the

two or three helices. Each helical wheel represents 10 helix turns.

2.3 Helical net view
Intra-helical interactions are displayed in the helical net view, which

is the representation of a helix split open along a line parallel to its

axis and laid flat. Solid and dashed lines mark strong and week

interactions, respectively. Strong and weak interactions are mainly

formed by oppositely charged residues from subsequent turns result-

ing in hydrogen-bonded networks in addition to charge interactions,

with the strength of the interaction given by the distance between

the residues and their relative orientation. Interaction networks lead

to extra stabilization in addition to that of the component pairs,

and hydrophobic seams favor helix association in contrast to single

helices. The so-called SAH-score is calculated as the sum of the
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interactions divided by the window-size resulting in values from 0 to

1. SAHs typically have values greater than 0.25.

2.4 Line plots and tables
Here, the prediction scores are presented as line plots and tables

(Fig. 1D). These are particularly useful to evaluate the relevance of

SAH regions.

2.5 Performance and limitations
The SAH prediction scheme and score have been developed and

tested against previously reported regions from human proteins

(Peckham and Knight, 2009), SwissProt proteins (Süveges et al.,

2009), and thousands of cytoskeletal and motor proteins from all

across the eukaryotes as available from CyMoBase (http://www.

cymobase.org). There are other proteins that are mispredicted as

coiled coils although forming monomeric a-helical structures, such

as stathmin, which, however, are not enriched in E, Q, K, and R

residues and do not form stable structures in solution (Honnappa

et al., 2006). These types of proteins do not contain SAH domains

according to their definition (Peckham and Knight, 2009; Süveges

et al., 2009), and are consequently not detected and characterized as

monomeric a-helical proteins in the current implementation of

Waggawagga.

3 Implementation

The web application framework is Ruby on Rails. In order to pre-

sent the user with a feature rich interface the site makes extensive

use of Ajax (Asynchronous JavaScript and XML) using jQuery

(http://jquery.com) and FancyBox (http://fancybox.net). Interactive

schemes are drawn as SVG and graphs are generated with the graph-

ical toolkit GnuPlot (http://www.gnuplot.info). Figure export is

done through an intermediary SVG file, which is converted into

various output formats using the Inkscape graphics package (http://

inkscape.org). User-uploaded data is stored temporary on the server

and deleted when leaving the application.
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Abstract
Stable single-alpha helices (SAHs) are versatile structural elements in many prokaryotic

and eukaryotic proteins acting as semi-flexible linkers and constant force springs. This way

SAH-domains function as part of the lever of many different myosins. Canonical myosin

levers consist of one or several IQ-motifs to which light chains such as calmodulin bind.

SAH-domains provide flexibility in length and stiffness to the myosin levers, and may be par-

ticularly suited for myosins working in crowded cellular environments. Although the function

of the SAH-domains in human class-6 and class-10 myosins has well been characterised,

the distribution of the SAH-domain in all myosin subfamilies and across the eukaryotic tree

of life remained elusive. Here, we analysed the largest available myosin sequence dataset

consisting of 7919 manually annotated myosin sequences from 938 species representing all

major eukaryotic branches using the SAH-prediction algorithm of Waggawagga, a recently

developed tool for the identification of SAH-domains. With this approach we identified SAH-

domains in more than one third of the supposed 79 myosin subfamilies. Depending on the

myosin class, the presence of SAH-domains can range from a few to almost all class mem-

bers indicating complex patterns of independent and taxon-specific SAH-domain gain and

loss.

Introduction

Helices, which are not buried within globular structures or coiled-coil helical dimers, usually
need networks of charge interactions for stabilization in water [1–5]. In the late 1980th and
early 1990th many studies have been performed using poly-alanine peptide models aiming to
resolve the conditions for helix formation and stabilization. Different amino acids (mainly
aspartic acid, glutamic acid, lysine and arginine, but in some cases also glutamine) were intro-
duced into these peptides alone and in all possible combinations at varying distances. The cor-
responding peptides were synthesised, their ċ-helicity experimentally determined by, for
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example, circular dichroism, and stabilization energies were obtained by fitting models to the
data. Although poly-alanine peptides adopt ċ-helical conformations when sparsely interrupted
by lysine [6], arginine [7] and glutamine residues [8], helices are especially stabilized by
charged interactions (salt bridges) between residues at (i, i+3) and (i, i+4) spacing [1–3] and
hydrogen-bonding interactions between polar/charged residues at (i, i+3) and (i, i+4) [4,5].
Additional stability is obtained through networks of oppositely charged residues in (i, i+3, i
+6), (i, i+3, i+7), (i, i+4, i+7), or (i, i+4, i+8) distances [9,10]. In addition to these poly-alanine
based peptides, studies have been performed on peptides with complex amino acid distribu-
tions [11,12]. However, each study used different combinations of residues and non-physio-
logical experimental conditions were applied (e.g. salt concentrations).

Studies on natural proteins known to contain stable single ċ-helices (SAHs) have shown that
the respective sequence regions mainly consist of repeated patterns of negatively and positively
charged residues [13–18]. In congruence with the results of the poly-alanine based analyses,
repeats of four negatively and four positively charged residues form the most stable ċ-helices,
while peptides with repeats of two residues do not show helical content [15,19]. Genome-wide
searches for SAH-domains revealed their presence in bacteria, archaea, and eukaryotes, with
the largest number of potential SAH-domains identified in mammals [17,20]. Predictions of
SAH-domains in human proteins range from 0.25% to 0.4% [20,21], of which many belong to
the cytoskeletal and motor proteins.

Myosins are a diverse protein family characterised by a large motor domain, which in most
subfamilies contains an ATP-hydrolysis and an actin-binding site, and extended so-called tail
domains located both N- and C-terminal to the motor domain [22]. Many myosins contain
regions with one or multiple IQ-motifs C-terminal to the motor domain for binding calmodu-
lin-family proteins that together act as a lever to transmit the power of the working stroke into
displacement of the tail alongside the actin-filaments. Mammalian myosins from the class-6
and class-10 subfamilies have experimentally been shown to contain SAH-domains subse-
quent to the IQ-motif regions functioning as extended levers and constant force springs
[14,17,23,24]. However, myosin tail architectures are very divergent even within subfamilies
and a comprehensive analysis of SAH-domains in myosins based on deep taxonomic sampling
across the supposed 79 subfamilies is still missing. Here, we analysed the largest available myo-
sin dataset and identified putative SAH-domains in more than one third of all subfamilies.
Depending on the myosin class, the presence of SAH-domains can range from a few to almost
all class members indicating complex patterns of independent and taxon-specific SAH-domain
gain and loss.

Results and discussion

Composition of the SAH-score

Because of the different combinations of residues and experimental conditions used in studies
determining peptide stabilization energies, it is difficult to obtain and tabulate experimentally
validated stabilization energies for all possible combinations of amino acids in all positions.
We tried to develop a score reflecting the stability of a single ċ-helix compared to random coils
and helices stabilized by interactions with other structural elements (e.g. within a protein
structure or by binding to another protein via a coiled-coil motif). To this end, published stabi-
lization energies [1–5,10] were compiled and set into relation to define stabilization values for
all types of salt bridges and hydrogen-bonding interactions. We distinguish three types of sta-
bilizations, weak, medium and strong, and classified all possible amino acid interactions
accordingly (S1 Fig). In addition to binary interactions, an additional stabilization value is
added for networks of at least three residues of oppositely charged residues in (i, i+3, i+6), (i, i

Single Į-helices in myosins
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+3, i+7), (i, i+4, i+7), or (i, i+4, i+8) distances. In contrast, networks of hydrophobic residues
at distances (i, i+3, i+7) would provide a hydrophobic seam around the helix and might cause
dimerisation by coiled-coil formation. Such hydrophobic networks are thought to be destabiliz-
ing and are accounted for by negative stabilization values. In addition to these values describing
interactions, we assign alanines positive stabilization and glycines and prolines negative stabili-
zation values, according to their helix promoting and helix braking characteristics, respectively.
All stabilization values within a given sequence window are summed up and the sum is subse-
quently normalized against an idealised SAH-domain containing only strong interactions to
compute an SAH-score for the central amino acid of the sequence window [25].

For comparison, we computed SAH-scores for four different window sizes, specifically 14,
21, 28, and 49 (about half a pitch of a two-stranded coiled-coil [26,27]). Small window sizes
allow detection of relatively short SAH-domains (down to roughly four helix turns) but in these
cases single or few residues can have large effects on the SAH-score both in terms of detecting
false positives (coiled-coil regions often contain stretches with high percentages of charged resi-
dues) and missing true positives (one or few hydrophobic residues are well accommodated in
stable single ċ-helices although they do not contribute to the SAH-score as defined above).
With the largest window (49 amino acids, around 14 helical turns) the effect of single or few res-
idues on the SAH-score is diminished but short SAH-domains might not be detected. These
SAH-scores considerably fluctuate from residue to residue. Independent of score fluctuations,
SAH-domains as structural entities are uninterrupted helices. However, similar to coiled-coil
regions SAH-domains do not have distinct borders such as globular protein domains and
might have any length. Therefore, specifying SAH-domain start and end positions as well as the
transition point from non-SAH-domain to SAH-domain are a matter of definition.

Determining SAH-domains in myosins

We obtained 7919 manually annotated myosin sequences from 938 species from CyMoBase
(Kollmar and Mühlhausen, submitted), of which 7675 sequences contain tail regions with vary-
ing degree of completeness (6744 tails are complete, in 531 tails short sequence regions are miss-
ing, 490 tails are fragmented). The minimum length of a SAH-domain was set to 14 amino
acids (around four helical turns). Every residue within a SAH-domain should have a SAH-score
above a given threshold (here: 0.25). Known coiled-coil regions from muscle myosin heavy
chain proteins, tropomyosins, and keratins clearly have lower SAH-scores, while known SAH-
domains such as those from class-6 and class-10 myosins, GCP60, M4K4, INCENP, and Caldes-
mon-1 [13,14,16,18] have considerably higher SAH-scores. Therefore, a threshold of 0.25 for
the SAH-score seemed reasonable. We allowed 20 percent of the scores of a putative SAH-
domain to be below the threshold to avoid multiple successive regions interrupted by just one
or two residues. Such residues within SAH-domains with SAH-scores below the threshold are,
however, rare. Only 247 (1.2%) of 20449 [‘high’ SAH-domain-score cut-off] / 580 (1.7%) of
35002 [‘low’ SAH-domain-score cut-off] residues (numbers based on computing SAH-scores
with a 14 amino acid window) within proposed SAH-domains have SAH-scores below the
threshold.

To obtain comparable scores for entire SAH-domains but to avoid bias by peak values, we
define the SAH-domain-score as the highest average of the SAH-scores of any 14 neighbouring
amino acids within each SAH-domain. The SAH-domain-score is dependent on the size of the
sequence window for computing each amino acid’s SAH-score (Fig 1A, S1 Table). The distri-
bution of the SAH-domain-scores does not indicate a clear distinction between SAH-domains
and non-SAH-regions. This is the result of the low sequence and structural complexity of sta-
ble single ċ-helices, which allows all types of possible combinations of SAH-score-contributing

Single Į-helices in myosins
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amino acids at distances allowing charged and polar interactions. However, there is a clear
region indicating unambiguous SAH-domains, and a large area indicating the absence of
SAH-domains (Fig 1A). Sequences in the twilight zone might represent regions with high con-
tent of charged residues but nevertheless buried in tertiary and quaternary structures, or short
single ċ-helices with atypically low numbers of charged and polar residues. It has been demon-
strated that single amino acid mutations can cause small domains to switch between ċ-helix
and Č-sheet structures [28,29], and also cause coiled-coil segments to switch between different
oligomeric states [30,31]. Accordingly, experimental evidence is needed to finally reveal the in
vivo oligomeric state of the putative SAH-domains in the twilight zone. For further analyses,
we use those SAH-domain-scores as cut-off, at which the changes in the increase of the score
are highest (S2 Fig; ‘high’ SAH-domain-score cut-off). Applying these cut-offs, about 260
SAH-domains are detected for all window sizes of 14, 21, 28 and 49 amino acids (Fig 1B). The
beginning of the twilight zone is defined by the first major change in the increase of the score
(S2 Fig; ‘low’ SAH-domain-score cut-off).

Distribution of SAH-domains across myosin classes

SAH-domains were identified in 265 myosins (window size of 14 amino acids) from 25 myosin
classes (32% of all classes). We also identified SAH-domains in 18 orphan myosins (Fig 2). The
evaluation of the percentage of myosins with SAH-domain per class shows a tripartite distribu-
tion: A) A group of four classes, where most members contain SAH-domains, B) a group of
about five classes with 15–40% of the myosins containing SAH-domains, and C) the remaining
classes, of which only a small percentage or none of the class members contain SAH-domains
(Fig 2). The classes with predominantly myosins with SAH-domains comprise the holozoan
class-6, the opisthokont class-10, the stramenopiles class-38, and the amoebozoan class-45.
The class-10 and the class-45 myosins are the only myosins where all members have SAH-
domains (some class-10 SAH-domains have scores shortly below the high SAH-domain-score
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Fig 1. SAH-domains in myosins. A) For each myosin sequence, we determined the region with the highest SAH-domain-score, which is the
average of the SAH-scores of 14 neighbouring amino acids. For comparison, we used SAH-scores computed for four different amino acid window
sizes for SAH-domain-score determination. SAH-domain-score cut-offs were derived by sorting all sequences by SAH-domain-scores and
determining the largest change in SAH-domain-score differences between two neighbouring sequences using kernel-regression (S2 Fig). B) Number
of putative SAH-domains with minimum length of 14 amino acids in dependence of amino acid window sizes used to determine SAH-scores.
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cut-off, and for some the respective regions comprising the SAH-domains are missing in
the genome assemblies, Fig 3). Comparison of the SAH-domain predictions based on the 14
and 49 amino acid window sizes shows that most of the SAH-domains are long and detected
with both window sizes (e.g. those of the class-6, class-10 and class-45 myosins), while in
some classes such as the class-16, class-38, class-56, and class-58 the SAH-domains are par-
ticularly short (Fig 2 and S3 Fig). In contrast to the results obtained with other algorithms
[20], SAH-domains in homologous myosins of closely related species (e.g. all mammals)
were consistently detected.

Gain and loss of SAH-domains in myosin classes

The current myosin data indicate that the last eukaryotic common ancestor only contained a
class-1 myosin, of which members are present in almost all extant eukaryotes (the major
exceptions are the plants and alveolates), and a second myosin of unknown class, which most
probably had been the ancestor of all other classes [22]. The phylogenetic distribution of the
classes with myosins containing SAH-domains implicates that the SAH-domains have been
added to the tail domain architectures independently of each other. Within class-1 myosins,
SAH-domains were detected in members of the Excavata and Stramenopiles taxa, also indicat-
ing independent gain. In the other, taxon-restricted classes, both independent gain in late-
diverging branches and secondary loss were observed. Examples for independent gain are the
SAH-domains in frog and fish Myo9B subtypes and the acorn worm Saccoglossus kowalevskii
Myo9, examples for secondary SAH-domain loss events are the absence of SAH-domains in
Platyhelminthes and many nematode class-6 myosins (Fig 3 and S4 and S5 Figs).

Characteristics of SAH-domains in myosins

The SAH-domains are on average 37–54 (low SAH-domain-score cut-off) / 62–81 (high SAH-
domain-score cut-off) amino acids long, depending on the window size for SAH-score compu-
tation (Fig 4A). There is no preference for a certain SAH-domain length, and the number of
myosins with SAH-domain lengths up to 80 amino acids is relatively constant. However,
SAH-domains longer than 80 amino acids are rare. The longest SAH-domains of about 200
residues have been identified in cryptosporidian class-26 myosins. The lengths of the corre-
sponding uninterrupted regular ċ-helices would be about 300 Å. Thus, the myosin SAH-
domains have on average two-third of the mean-length of the average SAH-domains of all pro-
teins, which are supposed to be about 75 residues long (according to protein sequences avail-
able in SwissProt and UniProt in 2012 [20]), although the distribution of number of sequences
versus SAH-domain lengths is very similar [20].

The proposed SAH-domains contain only amino acids with high helical propensity [32],
supporting that we identified only regions forming uninterrupted ċ-helices (Fig 4B). About
76% of the residues comprise charged amino acids with equal numbers of residues with posi-
tive and negative character, which is similar to the distribution of charged residues in a set of
47 proteins with supposed SAH-domains derived from SwissProt [16]. The percentage of
charged residues is more than twice as high as observed in coiled-coil domains [21]. Compared
to the amino acid distribution in ċ-helices in general [32] and coiled-coil regions in particular
[16], hydrophobic residues are highly under-represented (only about 9.6% in the detected

with SAH-domains is indicated at the bottom for each class. Note, that the taxa represent the first occurrence of respective myosins with SAH-domain,
which is not always identical to the first occurrence of the respective myosin class. Subsequently, the SAH-domains were independently lost in many
subtaxa so that the respective myosin motor domain and SAH-domain combination is not present in every extant species. For comparison, the
distribution of SAH-domains with respect to myosin classes using the low SAH-domain-score cut-off is shown in S3 Fig.

https://doi.org/10.1371/journal.pone.0174639.g002
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SAH-domains). These findings strongly support that the predicted SAH-domains are not able
to oligomerize but instead comprise real stable single ċ-helices. A few hydrophobic residues
might well be accommodated within SAH-domains through hydrophobic interactions with
the hydrophobic parts of the arginine and lysine side chains [33].

Functional implications

The importance of the SAH-domains as functional modules providing stiffness and modulat-
ing length of the lever in myosins has already been discussed in detail [16,20,21,23,34–36]. Our
data show that the presence of SAH-domains in myosins is not myosin class-dependent but
the result of a complex history of taxon- and species-specific gain and loss events. The only
exceptions are the class-10 and class-45 myosins, of which all homologs identified to date con-
tain SAH-domains. In all other cases, the myosins of interest have to be inspected manually.
The data available in S1 Table and presented in S4 and S5 Figs could help in the evaluation.
The SAH-domain-score cut-offs used throughout this study are rather conservative. Thus,
although there might be few exceptions the SAH-domains with scores above these cut-offs can
be regarded as veritable SAH-domains. This does not inevitably mean that the respective myo-
sins are monomers. Dimerisation might happen through additional coiled-coil regions or
other dimer-promoting domains. At least, coiled-coil predictions overlapping the SAH-
domains as presented in the S1 Table can be regarded as mis-predictions caused by the intrin-
sic problems of all available coiled-coil prediction software to distinguish coiled-coils from
SAH-domains [25].

Examples for SAH-domains and twilight cases

In the following, we present examples for veritable SAH-domains and twilight-zone cases (Fig
5). The Acanthamoeba class-22 myosins contain the most ideal SAH-domains with dense net-
works of potential charged interactions only sporadically interrupted by small (e.g. alanines)
and hydrophobic (e.g. isoleucines and leucines) residues (Fig 5A). A few hydrophobic residues
can well be accommodated in SAH-domains through hydrophobic interaction with the hydro-
phobic parts of lysine and arginine residues [33].

The Kinetoplastid class-1 myosins contain unique tail architectures consisting of, from N-
to C-terminus, an IQ motif, a WW, a MyTH1, a FYVE, and a subsequent short SAH-domain.
This short SAH-domain is around 28 residues long (Fig 5B) and its function is most probably
the spatial separation of the FYVE domain from a short C-terminal domain or protein interac-
tion motif.

A short region in the tails of the mammalian Mhc14 class-2 myosins (MYH14, non-muscle
myosin 2C) represents a twilight case (Fig 5C). This region is not present in other vertebrate
Mhc14 orthologs and has evolved in the ancient mammalian Mhc14 (S6 Fig). The SAH-
domain-score of this region is slightly below our conservative cut-off. Such a putative short
SAH-domain within an extended coiled-coil domain is supposed to have a different function
then causing monomerization. Rather, its function could be to open up and interrupt the
coiled-coil region allowing local unwinding or bending of the ċ-helices similar to the unstable
coiled-coil region of the N-terminal S2 (subfragment-2) domains of the skeletal muscle myo-
sins [37]. This hypothesis is supported by the presence of many residues with strong helix-
breaking propensity such as glycines and serines directly C-terminal to the putative SAH-

orientation. The phylogenetic distribution of all SAH-domains sorted by classes is shown in S4 and S5 Figs (window
sizes of 14 and 49 amino acids, respectively, for computing the SAH-score).

https://doi.org/10.1371/journal.pone.0174639.g003
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https://doi.org/10.1371/journal.pone.0174639.g004
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Fig 5. Examples of SAH-domains, and regions probably not containing SAH-domains. A) SAH-domain of Acanthamoeba healyi Myo22C, which is
among the SAH-domains with the highest SAH-domain-scores. B) Example for a short SAH-domain, which is only detected with the 14, 21, and 28 amino
acid window sizes for computing SAH-scores. This short SAH-domain is located C-terminal to the class-1 myosin-specific MyTH1 domain and therefore not
part of the lever. Its putative function is to spatially separate the MyTH1 domain from another small domain or protein interaction motif of unknown function at
the C-terminus. C) Example for a short SAH-domain with a SAH-domain-score in the twilight zone. This highly charged region is unique to mammalian
Mhc14 class-2 myosins (MYH14, non-muscle myosin 2C; S6 Fig) and interrupts the long coiled-coil filament-forming region of the muscle myosins. The
subsequent C-terminal sequence contains a large number of amino acids with high helix-breaking propensity such as glycines and serines. The putative

Single Į-helices in myosins

PLOS ONE | https://doi.org/10.1371/journal.pone.0174639 April 3, 2017 10 / 16

3. Publications and Manuscripts

53



domain (S6 Fig). The corresponding regions in the other mammalian muscle myosin homo-
logs contain a conserved tryptophan at a “d” position (S6 Fig). This is one of the two conserved
tryptophans in the muscle myosin rod region that were shown to be appreciably exposed to
solvent and to be located in the least stable parts of the fibrous region [38–40]. Introducing a
highly charged region in mammalian Mhc14 myosins could be an alternative solution to desta-
bilize this part of the coiled-coil region.

The monomeric nature of the Drosophila Myo7A myosin in vitro [41,42] and the accumula-
tion of charged residues in the region subsequent to the IQ motifs suggested this region also
representing a SAH-domain [36]. However, we only observed veritable SAH-domains in cni-
darian and placozoan class-7 myosins, and the short putative SAH-domains in Drosophila
Myo7B myosins represent twilight cases (S1 Table, S4 and S5 Figs). The highest SAH-scores
determined in all other class-7 myosins including Drosophila and human Myo7A are far below
the upper SAH-domain-score cut-offs. The regions C-terminal to the IQ-motif region in class-
7 myosins clearly do not contain hydrophobic residues ordered in a heptad pattern needed for
coiled-coil formation (Fig 5D). However, these regions also do not have the extended and
dense networks of charged amino acids characteristic of SAH-domains. These regions might
therefore represent divergent types of SAH-domains not described and detected with current
methods, or be part of a larger domain such as a helical bundle.

Myosins with unusual lever architectures

In class-38 myosins, we identified alternating IQ-motif regions and SAH-domains (Fig 6A).
Multiple SAH-domains have also been determined in many other myosins (Fig 4C, S1 Table)
supporting that IQ-motifs and SAH-domains are structural building blocks, which can be
used in any order and number to adjust the lever length of myosins. Usually, myosins have at
least a single IQ-motif C-terminal to the motor domains acting as canonical lever. Here, we
detected a few myosins not containing a single IQ-motif but having SAH-domains directly fol-
lowing the motor domain, for example in the Stramenopiles Aplanochytrium Myo31A myosin
(Fig 6B) and in an orphan myosin from the cryptophyte Guillardia theta.

Methods

Determination of SAH-domains in myosins

7919 Myosin sequences were obtained from CyMoBase (www.cymobase.org, [43]), release 19th

December 2016, and sorted by class and taxonomy. SAH-domain prediction was performed by
querying the Waggawagga API [25]. The prediction provides an SAH-score for each amino acid
within a certain window. Here, we used windows with lengths of 14, 21, 28, and 49 amino acids,
and computed SAH-scores for each amino acid in each myosin sequence. Although there is no
clear distinction between SAH-domains and multimeric ċ-helical structures (already a point
mutation might lead to a switch between these two states), tests with known cases have shown
that SAH-regions have scores above 0.25 [25]. We used this rather conservative value to distin-
guish amino acids within (SAH-score> = 0.25) and outside (SAH-score< 0.25) SAH-regions.

Determination of SAH-domain-scores

SAH-domains are stretches of continuous amino acids with SAH-scores above 0.25. The crite-
rion for a SAH-domain was to have at least 14 amino acids (around four helical turns). To not

function of the short SAH-domain and the following glycine-rich region might be to open up the coiled-coil. D) Example of a region rich in charged amino
acids but with an SAH-domain-score in the range of non-SAH-domains.

https://doi.org/10.1371/journal.pone.0174639.g005
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Fig 6. Examples of myosins with unusual lever architectures. A) Tail region of the Phytophthora ramorum Myo38 myosin containing
alternating IQ-motifs and SAH-domains. For better orientation only the core motifs of the IQ-regions are indicated. For the SAH-
domains, the predictions based on the 14 amino acid window were used (S1 Table). B) Tail region of the Aplanochytrium kerguelense
Myo31A representing the neck region between the motor domain and the C-terminal PH domain. This myosin does not contain any IQ-
motif.

https://doi.org/10.1371/journal.pone.0174639.g006
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obtain regions with multiple predicted SAH-domains interrupted by only one or two residues
with SAH-scores below the threshold, we allowed for 20 percent of the SAH-scores of a SAH-
domain to be below the threshold. These lower scores were, however, not allowed to be at the
start or at the end of the SAH-domain. To provide a score for each SAH-domain but not have
peak values dominate the analysis, we defined the SAH-domain-score as the highest average
value of the SAH-scores of 14 neighbouring amino acids. The SAH-domain-score depends on
the window size used to compute the individual SAH-scores.

For SAH-domain-score based analyses we determined SAH-domain-score cut-offs by sort-
ing the SAH-domain-scores in increasing order, estimating a kernel-regression function to
smooth noisy scores, and then determining the cut-off by choosing the SAH-domain-score of
the maximum slope change position (the maximum change in the difference between two sub-
sequent SAH-domain-scores).

Supporting information

S1 Table. Lists of predicted SAH-domains. One subtable for each of the four window sizes
for computing SAH-scores. In all tables, a SAH length cut-off of 14 amino acids has been
applied. One additional subtable for window size of 14 with an SAH length cut-off of ten resi-
dues was added for comparison. All subtables contain the name of the myosin sequence, the
SAH-domain-score, the SAH-domain sequence, the sequence start and end position of the
SAH-domain, the SAH-scores for all residues within the SAH-domains, and the full taxonomy
of the species according to NCBI.
(XLS)

S1 Fig. Composition of the SAH-score. Helical net view of a SAH-domain region. Some
strong and weak interactions are indicated by arrows. The table lists the score of each interac-
tion taken for computing the SAH-score.
(PDF)

S2 Fig. Kernel-regression plots to determine SAH-domain-score cut-offs. A separate plot is
shown for each window size, with the corresponding SAH-domain-score cut-off.
(PDF)

S3 Fig. Distribution of SAH-domains with respect to myosin classes. In contrast to Fig 2,
this plot is based on the low SAH-domain-score cut-off for accepting SAH-domains (see S2
Fig). The total number of myosins with SAH-domain is shown for each class. The taxonomic
distribution of the myosins with SAH-domains is indicated at the bottom for each class. Note,
that the taxons represent the first occurrence of respective myosins with putative SAH-domain,
which is not always identical to the first occurrence of the respective myosin class. Subsequently,
the SAH-domains were independently lost in many subtaxa so that the respective myosin
motor domain and SAH-domain combination is not present in every extant species.
(PDF)

S4 Fig. Phylogenetic distribution of the myosins. This figure is similar to Fig 3 but contains
the results of all myosin classes. Shortly, all myosins were sorted by taxonomy, and the highest
SAH-domain-score for each myosin plotted class by class. The 14 amino acid window size was
taken for computing the SAH-score. Major taxa are indicated by colour for better orientation.
(PDF)

S5 Fig. Phylogenetic distribution of the myosins. This figure is similar to S4 Fig except that
the 49 amino acid window size was taken for computing the SAH-score. Major taxa are
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indicated by colour for better orientation.
(PDF)

S6 Fig. Example for a putative short SAH-domain in class-2 myosins. Alignment of part of
the tail region of all human class-2 myosins focusing on the region comprising a predicted
short SAH-domain in HsMhc14. For comparison, further mammalian and some other verte-
brate Mhc14 homologs are shown indicating that the respective region has evolved after sepa-
ration of the mammals.
(PDF)
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Abstract
Stable single-alpha helices (SAH-domains) function as rigid connectors and constant force

springs between structural domains, and can provide contact surfaces for protein-protein

and protein-RNA interactions. SAH-domains mainly consist of charged amino acids and are

monomeric and stable in polar solutions, characteristics which distinguish them from coiled-

coil domains and intrinsically disordered regions. Although the number of reported SAH-

domains is steadily increasing, genome-wide analyses of SAH-domains in eukaryotic

genomes are still missing. Here, we present Waggawagga-CLI, a command-line tool for pre-

dicting and analysing SAH-domains in protein sequence datasets. Using Waggawagga-CLI

we predicted SAH-domains in 24 datasets from eukaryotes across the tree of life. SAH-

domains were predicted in 0.5 to 3.5% of the protein-coding content per species. SAH-

domains are particularly present in longer proteins supporting their function as structural

building block in multi-domain proteins. In human, SAH-domains are mainly used as alterna-

tive building blocks not being present in all transcripts of a gene. Gene ontology analysis

showed that yeast proteins with SAH-domains are particular enriched in macromolecular

complex subunit organization, cellular component biogenesis and RNA metabolic pro-

cesses, and that they have a strong nuclear and ribonucleoprotein complex localization and

function in ribosome and nucleic acid binding. Human proteins with SAH-domains have

roles in all types of RNA processing and cytoskeleton organization, and are predicted to

function in RNA binding, protein binding involved in cell and cell-cell adhesion, and cytoskel-

etal protein binding. Waggawagga-CLI allows the user to adjust the stabilizing and destabi-

lizing contribution of amino acid interactions in i,i+3 and i,i+4 spacings, and provides

extensive flexibility for user-designed analyses.
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Introduction

Stable single ċ-helices (SAHs) are extended helices that are not buried within globular struc-
tures or coiled-coil helical dimers [1–8]. Their most common function is to serve as rigid con-
nectors or constant force springs between structural domains [1–5,7,9,10], but they also
provide contact surfaces for protein-protein and protein-RNA interactions [7,8]. The latter
function has been found for the inner centromere protein INCENP and for many regions of
spliceosomal proteins in various complexes formed during the pre-mRNA splicing cycle. Inde-
pendent of any tertiary interactions, SAH-domains are stable and monomeric in polar sol-
vents. These features distinguish SAH-domains from other proteins that fold into ċ-helices
only in the presence of binding partners such as stathmin which is an intrinsically disordered
protein lacking any stable fold in the absence of binding partners, but forms an extended ċ-
helix when binding to tubulin dimers [11,12].

SAH-domains are extremely rich in glutamate (E), lysine (K) and arginine (R) [4,6,13,14],
which have been shown to stabilize poly-alanine peptides by charge interactions along the
helix [15–20]. Although aspartate (D) can also form stabilizing interactions with K/R [21,22],
aspartates occur less often than isoleucine, leucine, methionine, alanine and glutamine in pre-
dicted, highly likely SAH-domains [13,14]. Especially repeated patterns of four E followed by
four K/R seem to stabilize ċ-helices, while peptides with repeats of two residues do not show
helical content [3,17,23]. The specific (E4(R/K)4)n pattern has therefore been termed ER/K
motif [6] but this is sometimes mixed up with the term EK/R ċ-helix (e.g. [8]), which had been
introduced as alternative term to SAH [3]. Another term introduced in the field is charged sin-
gle ċ-helix (CSAH) [4] but SAH-domains must not have an overall net charge. Protein regions
with stable single ċ-helices must also not be uninterrupted helices but might include short
breaks leading to multiple successive SAHs behaving as a worm-like chain [10]. To exclude
misunderstandings because of term usage and to include all special cases, we will refer to these
protein regions as SAH-domains from now on.

The experimental identification of SAH-domains first in caldesmon and then L9 ribosomal
protein and class-10 myosin has fostered the idea that SAH-domains might be common struc-
tural motifs and be present in many other proteins. In first analyses with BLAST using the EK/
R motif [3] and the SAH-domain of class-10 myosin [13], 123 distinct proteins in 137 archaea
and eukaryotes and 36 human proteins, respectively, have been identified. In a more exhaus-
tive search against UniProt using two newly developed software tools and requiring a mini-
mum of 40 amino acids for an SAH-domain to be detected, SAH-domains were identified in
all three kingdoms of life and it was estimated that their abundance is less than 0.2% of all pro-
teins of a species [24]. This, however, was a very conservative approach and less stringent crite-
ria might inevitably yield more SAH-domains. Interestingly, the most SAH-domains were
found in the human proteome (165 proteins).

Waggawagga was developed as a web application to visually compare coiled-coil predictions
from various tools using helical-wheel and helical-net representations [25]. These representa-
tions also allow distinguishing between predicted coiled-coils and SAH-domains. A score
summarizing stabilizing and destabilizing interactions was introduced to discriminate SAH-
domains from non-SAH-domains. Although most SAH-domains and non-SAH-domains can
clearly be discriminated, a large-scale analysis of more than 7900 myosin sequences across all
eukaryotes revealed a twilight-zone between the two extremes [14]. Sequences with SAH-
domain-scores within this twilight-zone likely need experimental confirmation to demonstrate
their SAH or non-SAH appearance. Here, we present a new version of Waggawagga, termed
Waggawagga-CLI, intended for the command-line usage to investigate small- and large-scale
protein sequence data.

Single Į-helices across eukaryotes
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Results and discussion

Waggawagga-CLI is the command-line version of the web application Waggawagga. It was
developed to provide a tool for large-scale SAH-domain prediction and analysis and should, in
principle, be able to manage protein sequence datasets of any size. Waggawagga-CLI has not
been optimized for speed, but an SAH-domain prediction is likely to be performed only once
for each dataset. The SAH-domain predictions are stored in a mobile database thus allowing
repeated analyses in case the default parameters need to be adjusted. In contrast to the web
application which predicts SAH-domains based on the heptad-repeat assignments of coiled-
coil prediction tools, Waggawagga-CLI assumes each protein sequence to be a continuous ċ-
helix and predicts SAH-domains in these.

The Waggawagga-CLI version contains all required secondary software libraries and a
lightweight database, SQLite, and therefore does not require any further software installations
by the user. The SQLite database is used for storing analysed sequence data during runtime,
and can be queried by the advanced user afterwards in multiple ways. Waggawagga-CLI pre-
dicts SAH-domains for each of the sequences in the file and subsequently filters the hits by two
cut-offs, the minimum SAH-score for each amino acid to be included in an SAH-domain
(default: 0.25) and the minimum SAH-domain-score, which depends on the length of the
SAH-domain window (default windows: 14, 21, 28, and 49 amino acids). Accordingly, the
window size sets the minimum length of an SAH-domain to be detected. The default SAH-
domain-scores are based on the results of a comprehensive analysis of more than 7900 myosin
sequences across all eukaryotes [14] and range from 0.25 (window 49 aa) to 0.35 (window 14
aa). The results of a Waggawagga-CLI run are provided in text format (and optional gnuplot
SVG images) for each sequence containing a predicted SAH-domain, and in summary tables,
for each SAH-domain window separately. The summary tables comprise an SAH amino acid
distribution analysis, a list of the predicted SAHs by length of SAH-domains, and a detailed
list of all SAH-domains with amino acid sequences and SAH-scores for each amino acid.

To demonstrate the application of Waggawagga-CLI on large-scale datasets such as protein
sequence datasets generated by whole-genome annotations, we selected protein annotation
datasets from species across the eukaryotic tree of life (Table 1). The datasets were obtained
from Ensembl Genomes release 87 [26]. The overall runtime per dataset ranged from a few
hours to seven days depending on dataset size. The average runtime for single sequences ran-
ged from 4.6 to 23.3 seconds. Across all datasets, the average runtime is 8.3 seconds per
sequence which corresponds to 252 aa per second.

SAH-domain distribution in eukaryotes

SAH-domain validation depends on the length of the sequence window for supposed SAH-
domains [14]. Short SAH-domains are not (or considerably less) detected using a large win-
dow (e.g. 49 amino acids), and long but less characteristic SAH-domains are often below the
cut-off when using a short window (e.g. 14 amino acids). Therefore, by default Waggawagga-
CLI determines SAH-domains with four windows, 14, 21, 28, and 49 amino acids. The num-
bers of detected SAH-domains in the analysed eukaryotic genomes are summarized in Table 2.
The lowest total numbers of SAH-domains were found in Cyanidioschyzon merolae (28 SAH-
domains, 21 aa window), and Schizosaccharomyces pombe (34 SAH-domains, 21 aa window),
but these species also have the lowest gene numbers (Table 1). In contrast, Plasmodium falcipa-
rum with only a slightly higher number of genes contains six times more SAH-domains
(Table 2). With respect to the percentage of SAH-domains found per dataset, and the percent-
age of sequences containing SAH-domains per dataset, these species represent the lower
(0.5%) and upper (3.5%) limits of the range of SAH-domains per species (Fig 1). The total

Single Į-helices across eukaryotes
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number of SAH-domains and the number of sequences with SAH-domains are very similar
for each dataset indicating that most sequences contain a single SAH-domain. While the data-
sets of the unicellular species contain one transcript per gene, the ab initio and all datasets also
contain alternative transcripts. These transcripts contain identical, overlapping and indepen-
dent SAH-domains (see section below). As a rough estimate, the total number of unique SAH-
domains per genome is the total number of SAH-domains per datasets divided by the average
number of transcripts per gene. In general, we identified less SAH-domains in the ab initio
datasets than in the all datasets (Table 2), except for Oryza sativa and Mus musculus, where the
total numbers of SAH-domains in the all and ab initio datasets are likely strongly under- and
overestimated, respectively (Fig 1). Compared to the only other available genome-wide analy-
sis of SAH-domains [24] we find two to six times more SAH-domains per genome. Given that
about 1.5% of all genes of a species contain an SAH-domain, the SAH-domain is not a rare but
a widely distributed and used building block for proteins.

The number of protein sequences with multiple SAH-domains linearly depends on the
total number of sequences with SAH-domains (Fig 2). Thus, species-independent about 15%
of the sequences with an SAH-domain contain at least one further SAH-domain. Only flower-
ing plants, Cyanidioschyzon merolae, and Saccharomyces cerevisiae have considerably less genes
with multiple SAH-domains.

Table 1. Number of sequences and runtime per protein dataset. All datasets were downloaded from Ensembl Genomes. According to the specifications at Ensembl,
datasets specified by “all” represent the super-set of all translations resulting from Ensembl known or novel gene predictions, while datasets specified by “ab initio” include
translations resulting from ab initio gene prediction software tools. Such ab initio predictions are based solely on the genomic sequence and not any other experimental evi-
dence, and, therefore, not all predictions represent biologically real proteins. The sequences listed as Seqs valid represent the part of all sequences which meet the necessary
conditions for processing (e.g. minimum length of sequence).

Organism Seqs total Seqs valid # AA CPU hrs. Time/Seq [sec]

Arabidopsis thaliana [ab initio] 20579 20517 42948060 46,5 8,16

Arabidopsis thaliana [all] 48321 47952 83278520 82,3 6,17

Caenorhabditis elegans 31574 31191 58037112 60,0 6,93

Chlamydomonas reinhardtii 14489 14473 26291352 25,9 6,43

Cyanidioschyzon merolae 4998 4963 10046308 9,7 7,00

Danio rerio [ab initio] 36087 35675 71517964 75,7 7,64

Danio rerio [all] 45336 44759 91282168 93,6 7,53

Dictyostelium discoideum 13267 13025 28052304 29,4 8,13

Drosophila melanogaster [ab initio] 36155 36056 66438088 75,2 7,50

Drosophila melanogaster [all] 30362 30194 80128800 110,1 13,13

Gallus gallus [ab initio] 50996 49017 85316640 88,5 6,50

Gallus gallus [all] 30252 30196 61283944 69,6 8,30

Giardia lamblia 7364 6730 12906580 43,5 23,28

Homo sapiens [ab initio] 50890 50200 84319768 92,8 6,66

Homo sapiens [all] 102915 97110 153405460 181,7 6,74

Leishmania major 8308 8307 20934752 21,2 9,18

Mus musculus [ab initio] 57111 56142 82405740 86,2 5,53

Mus musculus [all] 61440 59075 105206872 118,8 7,24

Oryza sativa [ab initio] 63510 63219 124444320 126,5 7,20

Oryza sativa [all] 42132 41596 55154072 52,8 4,57

Plasmodium falciparum 5352 5350 16345344 17,3 11,67

Saccharomyces cerevisiae 6692 6573 12023708 11,6 6,34

Schizosaccharomyces pombe 5146 5126 9548000 9,2 6,49

Tetrahymena thermophila 24725 24266 64078484 67,8 10,06

https://doi.org/10.1371/journal.pone.0191924.t001
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SAH-domains in human alternative transcripts and evolution

SAH-domains are structural entities in proteins, and it seems likely that extended, combined,
and altered SAH-domains might be obtained as result of alternative splicing. More simply,
SAH-domains might either be present or absent in protein variants of a gene. A previous anal-
ysis of SAH-domains across human and mouse transcripts identified nine and seven cases,
respectively, where the SAH-domains are either present or absent in alternative transcripts
[24]. For a single human gene, AFDN (protein: afadin), transcripts resulting in SAH-domains
of different length were found. Because the human genome annotation is likely the most com-
plete comprising extensive alternative transcripts we used the human dataset “all” to analyse
the role of SAH-domains as structural building block. We distinguish three cases of SAH-
domains resulting from a single gene (presence/absence, including, overlapping; Fig 3), and all
can happen at the same time if a gene is spliced in more than two alternative transcripts, or is
spliced in two alternative transcripts and encodes multiple SAH-domains.

The human dataset “all” contains 97110 transcripts (Table 1) which are derived from 22622
genes. We identified 1262 SAH-domains (14 aa window, Table 2), of which 447 are unique
with respect to genes. Of the 22622 genes, 5577 code for a single and 17045 code for multiple
transcripts. 31 (0.55%) of the single and 265 (1.55%) of the multiple transcript genes encode 51
and 396 unique SAH-domains, respectively. 77 unique SAH-domains are present in all tran-
scripts of the multiple transcript genes while 319 (80.6%) unique SAH-domains are absent in
at least one of the transcripts (Fig 3). 116 unique SAH-domains are present in only a single

Table 2. Number of predicted SAH-domains per protein dataset. SAH-domains were filtered by score for windows of 14, 21, 28, and 49 amino acids. Higher numbers
for SAH-domains per dataset than sequences with SAH-domains per dataset indicate that some sequences contain multiple independent SAH-domains.

14 21 28 49

Organism #SAH #Seq #SAH #Seq #SAH #Seq #SAH #Seq

Arabidopsis thaliana [ab initio] 151 138 185 173 132 123 86 81

Arabidopsis thaliana [all] 306 270 384 352 272 244 181 165

Caenorhabditis elegans 633 506 698 558 562 460 407 325

Chlamydomonas reinhardtii 119 100 133 113 95 83 63 55

Cyanidioschyzon merolae 22 21 28 27 9 9 5 5

Danio rerio [ab initio] 751 479 770 544 537 392 377 279

Danio rerio [all] 877 747 963 821 687 604 474 415

Dictyostelium discoideum 408 318 437 339 331 273 227 197

Drosophila melanogaster [ab initio] 383 330 432 360 289 249 168 148

Drosophila melanogaster [all] 620 546 694 592 456 398 302 266

Gallus gallus [ab initio] 546 462 619 515 456 391 305 280

Gallus gallus [all] 549 482 639 557 435 383 263 243

Giardia lamblia 36 30 47 39 27 23 17 16

Homo sapiens [ab initio] 887 694 962 767 663 562 441 379

Homo sapiens [all] 1262 1044 1412 1181 969 829 621 539

Leishmania major 70 57 93 71 56 41 42 29

Mus musculus [ab initio] 3403 2931 3591 3108 2780 2522 1847 1722

Mus musculus [all] 844 734 960 804 655 589 450 399

Oryza sativa [ab initio] 487 475 672 655 423 417 387 383

Oryza sativa [all] 161 156 184 180 126 123 77 75

Plasmodium falciparum 167 142 217 183 148 130 130 112

Saccharomyces cerevisiae 49 46 57 55 34 34 21 21

Schizosaccharomyces pombe 31 26 34 30 19 17 11 11

Tetrahymena thermophila 352 306 406 350 266 240 174 158

https://doi.org/10.1371/journal.pone.0191924.t002
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from up to 24 transcripts. We identified only eight cases where unique SAH-domains are
completely part of larger SAH-domains in other transcripts (case including). 28 unique SAH-
domains overlap with unique SAH-domains of other transcripts of the same gene (case over-
lapping; minimum number of overlapping amino acids: 5).

The presence of an SAH-domain region in all transcripts of a gene indicates that the respec-
tive region is an essential structural entity in all resulting proteins. Our analysis shows that
SAH-domains are indispensable in transcripts of only 19.4% of the genes. In the majority of
the cases, SAH-domains are differentially included building blocks and add to the diversity of
protein isoforms. Modulation of the SAH-domain lengths (cases including and overlapping)
happens but is currently rare.

If SAH-domains represent structural building blocks similar to any other structural domain
they should appear in transcripts of orthologous and paralogous proteins. If SAH-domains are
part of exon shuffling processes they might appear in unrelated proteins. Because of the low
amino acid and structural complexity in SAH-domains few mutations could turn these motifs
into intrinsically disordered regions (which still might fold into ċ-helices upon interaction
with binding partners) or ċ-helices that aggregate or even form coiled-coil structures. Thus,
sequence homology based methods likely do not provide any specific relations. Instead, we
searched for identical sequences of unique SAH-domains across all genes. Of the 447 human
SAH-domains, 383 are unique with respect to the human genome. 30 SAH-domains are pres-
ent in identical sequence in two to seven different genes. Most of these belong to gene paralogs
such as multiple golgin A6 family and golgin A8 family genes, tropomyosin 3 and tropomyosin 4,
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https://doi.org/10.1371/journal.pone.0191924.g001
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and the calcium channel subunits CACNA1H and CACNA1I. In addition to these identical
SAH-domains we identified 68 cases where a unique SAH-domain from one protein is part of
a longer SAH-domain in another protein (case including).

Characteristics of SAH-domains

SAH-domains are regions with low sequence homology and low amino acid diversity, and
their comparison is therefore restricted to some basic metrics. In all species analysed SAH-
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Fig 2. SAH-domains in eukaryotic genomes. The plot contrasts the total number of SAH-domains per dataset with the total number of sequences
containing at least a single SAH-domain. Each diamond represents a dataset. The number of sequences with multiple SAH-domains is not a
characteristic of certain species but depends on the total number of sequences with SAH-domains per species. The more sequences contain SAH-
domains, the more sequences with multiple SAH-domains will be found. For orientation, labels were given for likely the best annotated dataset, human
[all], the most extreme case mouse [ab initio], and the two datasets with the largest deviation from the line, danio [ab initio] and rice [ab initio]. The
datasets with SAH-domains identified with a window size of 14 amino acids were taken. Abbreviations: Dr, Danio rerio; Hs, Homo sapiens; Mm, Mus
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https://doi.org/10.1371/journal.pone.0191924.g002
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domains are enriched in longer proteins (Fig 4). This is consistent with their main function as
connectors between other protein domains, although they might also function as direct bind-
ing site for other proteins. Because of their limited structural and amino acid diversity, direct
protein-protein and protein-RNA binding via the SAH-domains is likely very rare. Mostly,
SAH-domains are anchored to additional domains such as those in myosins [2,5], the Inner
Centromere Protein (INCENP) [7], and in the spliceosomal proteins MFAP1 and Snu23 [8].
Because of this combination with other domains, which has also been found in an earlier anal-
ysis [24], it is evident that SAH-domains are rather found in longer protein sequences.
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Fig 3. Presence of SAH-domains in alternative human transcripts. All predicted SAH-domains from the human “all”
dataset were compared across transcripts from the same gene and combined to unique SAH-domains in case of
identical sequences. For each unique SAH-domain its presence or absence in all annotated transcripts of the gene was
determined. The histogram represents the fraction of unique SAH-domains present in alternative transcripts, with each
bin combining values of a range of 5%. The dataset also contains a few cases where a unique SAH-domain is completely
part of a larger unique SAH-domain of another transcript and where unique SAH-domains from different transcripts
overlap.

https://doi.org/10.1371/journal.pone.0191924.g003
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Another characteristic of SAH-domains distinguishing them from any other domain is their
amino acid distribution with up to 80% of the residues being (� . DQG 5 [4,13,24]. Of the
various possibilities to build salt bridges, (!5 was shown in short peptides to be more ċ-helix
stabilizing than (!. [27], and both are more stabilizing than the reverse salt bridges 5!( and
.!(. (!5 salt bridges are also the most favourable for the speed of folding [22]. However,
comparison of long repeats of $(((;;;with X being either . or 5 showed, that such peptides
aggregated when two or three of the X were R [28]. A repeat including one arginine, however,
was more helical and stable than a repeat with only lysines. Repeats with three or five alanines
per heptad also aggregated [28]. Thus, it seems that a certain percentage of charged amino acids
and a mixture of arginines and lysines are the most favourable to stabilize single ċ-helices.

The analysis of the amino acid distribution in the predicted SAH-domains across the eukary-
otes shows that aspartate is rarely used in SAH-domains and that glutamate is the dominating
negatively charged amino acid (Fig 5). This is consistent with earlier extrapolations from few
data [4,13,24] and in agreement with studies on short peptides showing considerably less stabiliz-
ing effects of '!. and '!5 salt bridges compared to their glutamate homologs [21,23]. Across
the eukaryotes there are strong differences for the preference of the positively charged amino
acid (Fig 5). In plants, green and red algae, diplomonads, kinetoplastids, and metazoans, argi-
nines are preferred to lysines, while lysines are strongly preferred in alveolates, amoebae, and
yeasts. The finding of twice as many arginines than lysines in red algae, diplomonads, and kineto-
plastids seems to contract the findings of aggregating peptides with similar arginine to lysine pro-
portions [28]. However, these peptides were based on repeats of three negatively and three
positively charged amino acids, and natural peptides might form stabile single ċ-helices if the
same salt bridges were randomly distributed and not present in such ordered three-to-three
repeats. In total, about 80% of the supposed heptad positions are occupied by charged residues or
asparagine and glutamine, which corresponds to about 5,5 heptad positions (Fig 6). Species with,
in total, less (�.�5 have more aspartates, asparagines or glutamines. This also corresponds with
the results obtained from the $(((;;; repeats that showed that peptides aggregated if three or
more positions of the heptads are occupied by alanines [28]. Alanines show the widest distribu-
tion from all uncharged amino acids found to be present in SAH-domains (Fig 5), with the high-
est fractions found in green and red algae, diplomonads, and kinetoplastids. In contrast, alanines
are rarely present in Plasmodium falciparum and Dictyostelium discoideum SAH-domains.

Next we were interested in identifying the most common patterns in natural SAH-domains
(Fig 7). Compared to total numbers of SAH-domains and lengths of SAH-domains the most
common heptad repeats are rather rare within each species. For example, the most common
heptad pattern in human SAH-domains, 5(5(5(5, is present in only 3.6% of the sequences
with SAH-domains and accounts for only 0.7% of the amino acids of all SAH-domains. This
indicates that SAH-domains do not have certain, common patterns but instead are highly vari-
able with respect to their sequences. The most common patterns across most species contain
duplets of oppositely charged amino acids, ['�(][.�5]. To our knowledge, such repeats have
not extensively been studied experimentally yet. Repeats of ((.)n were shown to be at least
partially helical [23], but it is not known whether these are monomeric or aggregate, or even
form stable single ċ-helices at all. However, only a minor fraction of the SAH-domains

Fig 4. Distribution of SAH-domains with respect to protein sequence length. As examples for comparing the
lengths of protein sequences in general with the presence of SAH-domains in proteins, the proteins from the
Plasmodium falciparum, Saccharomyces cerevisiae and human [all] datasets were plotted. The latter proteins comprise
the translations of all annotated gene transcripts. Proteins were combined in bins of 50 amino acids for better
visualization, and proteins with length>3000 aa were omitted. All SAH-domains identified with the 14 aa window are
counted and shown.

https://doi.org/10.1371/journal.pone.0191924.g004
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exclusively consists of such ['�(][.�5] repeats. In most cases, such repeats are part of pre-
dicted SAH-domains with variable sequence such as the SAH-domain in human Myo10, “$(.
5(4((...4((((...5((((5(5(5(55($(/5$44(((75.44(/($/4.64.($(/”
(ENSP00000421280). We suspect that these ['�(][.�5] repeats are enriched in the analysis
because of their very simple pattern. If regions exclusively consisting of ['�(][.�5] repeats do
not form stable single ċ-helices, a small fraction of false-positive predictions might be present
in a Waggawagga analysis.
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https://doi.org/10.1371/journal.pone.0191924.g005
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Other common heptad patterns contain alanines and glutamines (Fig 7) and resemble the
widely studied peptides based on poly-alanine backbones onto which oppositely charged
amino acids were placed in all possible spacings. Heptad patterns based on oppositely charged
amino acid triplets such as �$(�>.�5@��Q [28] were not found. Octad patterns with quadru-
plets of glutamates and arginines/lysines ((�>.�5@�), which have systematically been studied
experimentally [3,23], are extremely rare in natural SAH-domains of eukaryotes. Also, they are
not present in repeated patterns indicating that these octad patterns appeared by chance but
are in fact part of heptad patterns. If clusters of identical amino acids were found, then these
appear in repeated heptad patterns from triplets and quadruplets (Fig 7, see patterns of Arabi-
dopsis thaliana and Saccharomyces cerevisiae, for example).

Although heptad patterns are shown in Fig 7, most of these patterns are built from even-
numbered smaller motifs. Heptad repeats tend to form supra-molecular structures because the
repeat moves around the helix axis, as is evident from coiled-coil structures, where hydropho-
bic residues form a left-handed helical seam along the surface of the right-handed ċ-helix
which is buried in the centre of the dimer. In contrast, patterns of even-numbered motifs are
supposed to form straight ċ-helices and to rather aggregate in stacks, if at all, than in inter-
twined supra-molecular helices.

Functional analysis of SAH-domains in Saccharomyces cerevisiaeand
human

To determine whether proteins with SAH-domains are particularly involved in certain cellular
processes, localizations and molecular functions, we performed gene ontology enrichment
analyses of the Saccharomyces cerevisiae and human datasets. Yeast (Saccharomyces cerevisiae)
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proteins with SAH-domains have not been analysed at a whole-genome level yet, because yeast
was not among the species with highest numbers of SAH-domain containing proteins in an
UniProt analysis [24]. Yeast proteins with SAH-domains are particularly enriched in the GO
terms macromolecular complex subunit organization, cellular component biogenesis and
RNA metabolic processes. Enriched GO terms also include nuclear and ribonucleoprotein
complex localization, and function in ribosome and nucleic acid binding. Cytoskeleton associ-
ated processes and functions were not among the enriched terms for the yeast proteins. The
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Fig 7. The ten most common heptad repeats found in SAH-domains per species. For each dataset of SAH-domains predicted using the 14 amino acid window all
possible heptads were determined and ranked by frequency, given as numbers next to each heptad sequence.

https://doi.org/10.1371/journal.pone.0191924.g007
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recent discovery of a few spliceosomal proteins with potential SAH-domains [8] is consistent
with the observed enrichment of the yeast proteins.

The human proteins with SAH-domains have roles in all types of RNA processing (mRNA
processing, mRNA metabolic processes, RNA splicing) and cytoskeleton organization. They
are enriched in cytoskeleton and adherens junction localization terms, and are predicted to
function in RNA binding, protein binding involved in cell and cell-cell adhesion, and cytoskel-
etal protein binding. In contrast to earlier analyses based on considerably smaller datasets of
human proteins with SAH-domains that showed a wide distribution of cellular localizations
and functions [4,13,24], the analysis of our extended whole-genome based dataset demon-
strates a strong enrichment in RNA- and cytoskeleton-related processes and localizations.

Customized usage of Waggawagga-CLI

SAH-predictions are based on scoring statistics. In our previous analysis of almost 8000 myo-
sins from species across all eukaryotes we showed that the scores from SAH-predictions were
scoring-window-dependent and could be placed on a continuously increasing line [14]. The
exponential shape of the curve allowed defining a lower and an upper cut-off, below which
and above which the probability to not-have and to have, respectively, identified an SAH-
domain is high. The scores between these cut-offs, in the so-called “twilight”-zone, do not
allow a simple “is” or “is not” decision. To provide full flexibility to the prediction and analysis
of SAH-domains, Waggawagga-CLI allows adjusting the scoring matrices and the cut-offs for
result filtering. There are two amino acid matrix files, one each for amino acids in (i, i+3) and
in (i, i+4) spacings, where stabilizing and destabilizing interaction scores can be defined for
every amino acid combination. Modifying these files allows, for example, fine-tuning the
search for specific sub-types of SAH-domains or adapting to species- or lineage-specific
parameters such as general amino acid usage. Waggawagga-CLI also allows separating the
steps of SAH-domain prediction and analyses so that users experienced in database interaction
can easily design additional analyses.

Conclusions

Waggawagga-CLI is a complementary tool to predict functional domains in whole genome
annotations. Our predictions included all previously proposed SAH-domains as far as they
were particularly named such as the 36 human proteins identified by BLAST [13]. While
BLAST is based on sequence homology, Waggawagga-CLI uses a dedicated scoring scheme for
potential i,i+3 and i,i+4 interactions along the sequence and we were, therefore, able to predict
more than ten times more SAH-domains. Waggawagga-CLI is thus similar to other SAH-
domain prediction software such as SCAN4CSAH and FT_CHARGE [24] but, in contrast to
these, allows users to modify the scoring schemes and to adjust cut-off parameters to individ-
ual analysis needs. Several proteins from spliceosomal complexes have recently been suggested
to contain SAH-domains [8] but most of these rather represent isolated ċ-helical segments
that folded upon binding to other proteins. In MFAP1, the regions with considerable SAH-
score are shorter than the minimum window of 14 amino acids that we used in our analysis.
There were few potential charged interactions along the ċ-helix of MFAP1 [8] and similar
numbers of potential charged interactions are found for most predicted coiled-coil regions.
We suppose that by altering Waggawagga’s scoring scheme to include MFAP1 and similar pro-
teins many false positive coiled-coil proteins will also appear in the list. Adjusting the scoring
scheme might, however, be useful if subsets of proteins are analysed that likely do not contain
any coiled-coil proteins.

Single Į-helices across eukaryotes

PLOS ONE | https://doi.org/10.1371/journal.pone.0191924 February 14, 2018 14 / 19

3. Publications and Manuscripts

74



Materials and methods

Implementation

Waggawagga-CLI is available for the main operating systems Linux (arch. x86 and 64-Bit) and
macOS (10.10 or higher) [and Windows]. It comes in precompiled system-specific packages
with a portable Ruby environment (Traveling-Ruby) and a mobile SQLite-database, where the
analysed sequence data are stored for direct or later use. Waggawagga-CLI runs out of the box,
not requiring any further installations after downloading and extracting the tarball.

In general, to be fully functional the software requires Ruby version 1.9 or later, and the fol-
lowing gems: Active-Record (> 4.0.x), BioRuby (1.5.0) [29], and SQLite3 (1.3.9). Besides the
textual result files, full-sequence prediction score graphs (depicted along the full sequences)
are additionally available as SVG, if the graphical toolkit GnuPlot (http://www.gnuplot.info) is
pre-installed on the user’s system.

Waggawagga-CLI in contrast to webserver Waggawagga

The focus of Waggawagga-CLI is explicitly on the SAH-domain prediction in large protein
sequence datasets (instead of just one at a time). The CLI-version analysis workflow separates
prediction and analysis. Sequences are parsed, scored and imported in a single step and can be
evaluated with different parameter preferences later-on. The scoring process itself can be
adjusted as well, by modifying the pre-installed scoring matrices. The application should run
with FASTA-files of any size, although it was tested with only the datasets presented here. The
prediction result files are strictly organized in subfolders in the results directory named by the
working title parameter (‘id’). Only results with scores above the initial cut-off are kept for
later inspection by the user.

SAH scoring algorithm

The SAH prediction is based on the classical helical net diagram which is the representation of
a single ċ-helix opened along a line parallel to its axis and laid flat [30]. Each sequence is con-
sidered as a continuous right-handed ċ-helix and each position in the helix is assumed to be
repeated every eighth amino acid. Thus, each sequence can be depicted as a repeat of heptads
in the helical net diagram. The amino acid positions within each heptad are formalized as let-
ters a-g and the first amino acid of each sequence is set to position a of the first heptad. This is
an important difference to the Waggawagga-webinterface version, where the positions of the
amino acids within the heptads are derived from the coiled-coil prediction tools and accord-
ingly allow for gaps and any other pattern within the helical net diagram. According to the clas-
sical representation the ċ-helix in the helical net diagram is opened along the f column. In
contrast to the classical representation, which is read from bottom to top, we adopted the view
introduced for SAH-domains in which SAH sequences are depicted from top to bottom [2,13]
and which seems to be used by most if not all in the SAH community.

For each position in the helical net amino acid interactions between interacting residues in
i,i+3 and i,i+4 distance are drawn. These interactions are classified into strong, medium and
weak stabilizing types, a helix-supporting type and types of destabilizing interactions. But this
is only a linguistic differentiation; the interactions can be assigned every possible score. In
Waggawagga-CLI, the values for possible amino acid interactions are taken from customizable
scoring matrices. The standard scoring files are located in the config-directory, are named
‘scoring_matrix_i_3.csv’ (for interactions in i,i+3 distance) and ‘scoring_matrix_i_4.csv’ (for
interactions in i,i+4 distance; S1 Fig), and can freely be edited. In addition to these binary
amino acid interactions, we consider two types of interaction networks: i) Subsequent
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hydrophobic amino acids (V, I, L, M, F, Y) in i,i+3,i+6, i,i+3,i+7, i,i+4,i+7 and i,i+4,i+8 dis-
tance are regarded as destabilizing (because of potentially stabilizing hydrophobic seams in
coiled-coil dimers) and contribute a negative network-score. ii) Subsequent oppositely charged
amino acids in i,i+3,i+6, i,i+3,i+7, i,i+4,i+7 and i,i+4,i+8 distance are known to stabilize ċ-
helices more than the sum of the respective binary interactions, and thus contribute an addi-
tional positive network-score. These network-scores can be adjusted in the config-file. In con-
trast to the SCAN4CSH algorithm, we did not consider interactions of identically charged
residues in i,i+3 and i,i+4 distance, and of oppositely charged amino acids in i,i+1 and i,i+2
distance, which were regarded as destabilizing [4]. Because such interactions are present in
most patterns that are regarded as exemplary SAH-domains, e.g. ((((..., we suspect that
inclusion of these interactions does not help in distinguishing between SAH-domains and
non-SAH-domains.

Computing the SAH-score

For computing an SAH-score, all amino acid interaction scores in a helical net representation
of a certain sequence window are summed up. By default, Waggawagga-CLI computes SAH-
scores for windows of 14, 21, 28 or 49 amino acids. Because we consider the protein query
sequence to be a continuous ċ-helix there are also interactions to and from amino acids at the
first and the last helical turn within the scoring window. By definition we include all amino
acid interactions from residues of the last helical turn of the window (positions d-g) to amino
acids of the next heptad in the SAH-score. The sum of the interaction scores of each window is
then normalized with respect to the highest possible score for the respective window, which is
obtained by summing all interactions of an EEEEKKK repeat and which is set to “1”. If indi-
vidual interaction scores are changed in the scoring matrices (see above), the highest possible
scores for each window need to be adjusted accordingly. This is done in the config-file. The
user needs to keep in mind that the heptad repeat pattern that will result in the highest possible
score, might also change when the scoring matrices change. This interplay between individual
interaction scores and accordingly unlimited possibilities for the pattern resulting in the high-
est possible score is the reason why we keep the window sizes for computing SAH-scores fixed.
The SAH-score for the respective window is then assigned to the central amino acid (windows
21 and 49) or amino acids 8 and 15 (windows 14 and 28) of the window, respectively. Scores
for the first and last 7, 10, 14 and 24 amino acids (depending on window size) of the protein
sequences are calculated by filling the window with dummy amino acids at the N- or C-termi-
nus. By definition, these dummy residues are strictly neutral and do not have interactions with
other amino acids. The computed SAH-scores vary considerably from amino acid to amino
acid along the sequence depending on how many interactions are lost and gained on each side
of the amino acid window. To term a protein sequence region an SAH-domain, the scores of
all amino acids within this region need to be above a user-defined SAH-score cut-off (default:
0.25).

Computing the SAH-domain-score

To be able to compare and rank SAH-domains, we developed the SAH-domain-score. By defi-
nition, SAH-domains have a minimum length of 14 amino acids with SAH-scores for each of
the 14 amino acids above the SAH-score cut-off. 20% of the amino acids within the full SAH-
domain are allowed to have SAH-scores below the cut-off to avoid splitting long SAH-domains
into multiple short SAH-domains separated by just one or a few amino acids. However, SAH-
domains need to start and to end with amino acids having SAH-scores above the cut-off
(default: 0.25). Taking the average of all SAH-scores within an SAH-domain as SAH-domain-
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score would introduce strong bias by peak values and therefore strongly influence a compari-
son of short with long SAH-domains. To allow length-independent comparison of SAH-
domains we thus developed a score based on a certain amino acid window. Accordingly, the
SAH-domain-score is the maximum of the scores computed as the average of SAH-scores
within a window of neighbouring amino acids (default: 14 amino acids). For example, given
an SAH-domain of 20 amino acids (scores of all 20 aa above the 0.25 score cut-off) six SAH-
domain-scores (each possible 14 aa window) are calculated and the highest of these scores is
taken as SAH-domain-score for the respective SAH-domain. The length of the window for
determining SAH-domain-scores can be adjusted (Advanced Mode parameter).

Data sources and analyses

The following protein sequence files were downloaded from Ensembl release-87 (ftp://ftp.
ensembl.org/pub/release-87/): Arabidopsis_thaliana.TAIR10.pep.abinitio, Arabidopsis_thali-
ana.TAIR10.pep.all, Caenorhabditis_elegans.WBcel235.pep.all, Chlamydomonas_reinhardtii.
v3.1.pep.all, Cyanidioschyzon_merolae.ASM9120v1.pep.all, Danio_rerio.GRCz10.pep.abini-
tio, Danio_rerio.GRCz10.pep.all, Dictyostelium_discoideum.dicty_2.7.pep.all, Drosophila_-
melanogaster.BDGP6.pep.abinitio, Drosophila_melanogaster.BDGP6.pep.all, Gallus_gallus.
Gallus_gallus-5.0.pep.abinitio, Gallus_gallus.Gallus_gallus-5.0.pep.all, Giardia_lamblia.
GCA_000002435.1.pep.all, Homo_sapiens.GRCh38.pep.abinitio, Homo_sapiens.GRCh38.
pep.all, Leishmania_major.ASM272v2.pep.all, Mus_musculus.GRCm38.pep.abinitio, Mus_-
musculus.GRCm38.pep.all, Oryza_sativa.IRGSP-1.0.pep.abinitio, Oryza_sativa.IRGSP-1.0.
pep.all, Plasmodium_falciparum.ASM276v1.pep.all, Saccharomyces_cerevisiae.R64-1-1.pep.
all, Schizosaccharomyces_pombe.ASM294v2.pep.all, Tetrahymena_thermophila.JCVI-TTA1-
2.2.pep.all. The SAH-domain predictions presented and analysed in this study were produced
with the latest Waggawagga-CLI version using default parameters.

Gene Ontology enrichment analysis

Gene Ontology enrichment analyses were done with WebGestalt [31]. The lists of unique
genes in gene symbol format were uploaded to WebGestalt and the GO Enrichment Analysis
selected. The entire Saccharomyces cerevisiae and human genome annotations, respectively,
were set as background and 0.05 as threshold for the p-value for the significance test using the
default statistical method "hypergeometric”.

Software and data availability

Waggawagga-CLI is available for download from http://waggawagga.motorprotein.de. The
software and all results from data analysis as presented in this study (SAH-domain predictions
and GO analyses) are also available from figshare (doi: 10.6084/m9.figshare.5435947).

Supporting information

S1 Fig. Composition of the SAH-score. The figure shows publications and the respective
peptides and amino acid interactions analysed. From the reported observed helicities and
measured energies of side chain interactions we build the scoring scheme shown in the
table at the bottom. The table lists the score of each interaction taken for computing the
SAH-score.
(PDF)
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������ǡ������������Ǧ������������Ǥ������������������������������������Ƥ����������������������������������
��Ã�������Ǧƪ�������������������������������������������������������������ƥ�����ǡ�������������������
�������������������������������������������ǡ�������������������������������ǯ�������������������������
������Ǥ�������������������������������ǯ������������������������������������������������Ǥ�������Ǧ�����
���������������������������������������������������������������������������Ǧ�������������������������
����������Ǥ�������������������������������������������������������������������������������������������
���������������������������������������������������Ǥ

Coiled coils consist of two or more α-helices that twist around each other and give rise to a multitude of super-
coiled quaternary  structures1,2. Coiled-coil regions are characterised by hydrophobic residues at the interface 
between the supercoiled α-helices and by charged and polar amino acids at the outside. "is pattern is usually 
found in heptads (with the amino acids marked as abcdefg) where the hydrophobic residues are located in a 
and d positions, but slightly di#erent patterns from hendecad and pentadecad repeats are also  observed3–7. 
"e coordinates of the smallest building block, two closely packing α-helices, can be calculated from paramet-
ric  equations8. "is might explain why the coiled-coil dimer was likely the $rst structural element, for which 
a sequence—structure—function relationship could be  established9,10. Accordingly, one of the $rst tools for 
predicting protein structure was COILS, which allowed the identi$cation of coiled-coil regions from protein 
sequences  alone11. Coiled-coil structures are claimed to be better understood than those of any other  fold12,13 
and are increasingly used as building blocks in the emerging $elds of synthetic biology and de novo protein 
 design14–18. "e most advanced design case so far is likely a coiled coil that can switch between pentameric and 
hexameric states upon pH-change19. "us, it seems well possible now to design amino acid sequences forming 
coiled-coil structures with dedicated oligomeric states.

"e complementary problem of detecting coiled-coil regions in amino acid sequences is considered to have 
been solved as well given the deep biochemical understanding of this structural motif. Even if the oligomeric 
state is not predicted correctly, it is expected that at least the presence and position of the coiled coil is properly 
recognized. Multiple prediction programs have been developed using di#erent approaches.  COILS11 and its suc-
cessor NCOILS (COILS2.2)20 match sequences against a $xed length position-speci$c scoring matrix derived 
from frequencies at heptad positions.  PairCoil21 and  MultiCoil22 expand this concept by adding pairwise residue 
correlations to the matrix. PairCoil2 is similar to PairCoil but trained with more coiled-coil  sequences23. Using a 
di#erent approach, Marcoil calculates posterior probabilities from a windowless hidden Markov model (HMM)24. 
MultiCoil2 is an advancement to MultiCoil and combines the pairwise correlations with a HMM into a Markov 
Random  Field25. SOSUIcoil uses a unique concept by discriminating coiled-coil regions from other types of 
regions applying the canonical discriminant  analysis26.  PCOILS27 is an alternative to NCOILS substituting the 
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sequence-pro$le comparison with a pro$le-pro$le comparison. "e tools  CCHMM28 and CCHMM-PROF29 also 
use HMMs, trained with sequences and pro$les, respectively. "e latest development, DeepCoil, uses a neural 
network-based  method30. SpiriCoil does not really predict coiled-coil regions, but scores query sequences against 
protein pro$les of the SUPERFAMILY database, which is thought to represent all proteins of known  structure31, 
and passes SUPERFAMILY’s coiled-coil assignments to the new  sequence32. Some tools can also predict oligo-
meric states of coiled coils, such as LOGICOIL, PrOCoil, Scorer, and RFCoil, but predicting the oligomeric state is 
still error prone because of the low number of available protein structures with complex coiled-coil arrangements 
for training the  algorithms33–36. In contrast to these many coiled-coil prediction tools, there is a single so%ware, 
termed SOCKET, that detects knobs-into-holes packing in protein  structures37.

Given the many available prediction tools, there are multiple studies indicating high sensitivity and speci$city 
in comparative  analyses32,38,39. "e benchmark data used, however, were limited by restriction to a selection of 
SCOP protein families containing coiled-coil regions (SCOP = Structural Classi$cation of Proteins database)40,41, 
or intersections of SCOP and SOCKET hits. "ese approaches assessed the sensitivity and speci$city against 
highly restricted data sets and, therefore, strongly overestimated the proportion of true positive coiled-coil 
predictions. "ese results do not allow to even estimate the number of false negative cases (no prediction where 
a coiled coil is present) and false positive predictions (prediction of a coiled coil where there is none) in a rep-
resentative proteome.

Coiled-coil predictions are part of the standard tool box for in-silico functional genome annotation. In the 
most extensive comparative study available today, SpiriCoil was used to predict coiled coils in the proteomes 
of more than 1200 sequenced genomes suggesting that 0.33 to 6.53% of a species’ proteins contain at least one 
coiled-coil  region32. A proteome-wide prediction with NCOILS suggested similar  proportions42. Because most of 
the proteins predicted to contain coiled coils do not belong to the protein families with known extended coiled-
coil regions such as muscle myosin heavy chain and intermediate $lament proteins, we wondered how many 
of these proteins really contain true coiled-coil domains. "e most promising approach to evaluate coiled-coil 
predictions is to compare the predictions with known protein structures. "erefore, we assessed the current 
status of coiled-coil prediction accuracy by running most of the available coiled-coil prediction tools against all 
sequences, for which protein structures are known: the entire PDB. Each so%ware was used with default param-
eters as recommended by the developers and as commonly done in genome annotation pipelines.

�������
��������������������������������������������������������������������Ǥ� To create a ground truth to 
rely on and compare against, we used  SOCKET37, the de facto standard to detect coiled-coil regions within PDB 
structures. Instead of using SOCKET data generated by the CC +  database43, the Periodic Table of Coiled  Coils44 
or the Atlas of Coiled  Coils45 we generated our own reference to include the latest PDB release possible and for 
easier integration with the other prediction data generated. "e number of coiled coils that SOCKET might 
miss is expected to be relatively small compared to the size of the PDB. Such cases could be NMR structures 
with which SOCKET sometimes has trouble dealing  with32. Within 144,270 PDB $les (PDB status 12/2018), 
SOCKET detected 59,693 components (27,803 coiled coils) in 10,684 (7.4%) PDB $les (Fig. 1A; Supplementary 
Table S1). "is means that most PDB $les with SOCKET hits contain multiple coiled-coil domains, in di#erent 
copies of the same biological unit, in di#erent regions of the same protein, or in di#erent proteins if biological 
units consist of multiple di#erent proteins. From all PDB $les we extracted 187,021 unique sequences, meaning 
that exact copies of the same sequence were removed independent of whether they were present in the same or 
a di#erent PDB $le, while slightly di#erent sequences (e.g. longer N- or C-terminus, insertions) remained. With 
respect to these unique 187,021 sequences, there are 14,117 (7.5%) distinct coiled-coil sequences (components) 
as found by SOCKET. "is occurrence is similar to that of predicted coiled coils in reported analyses of genome 
 annotations32.

To assess the accuracy of coiled-coil predictions from sequences alone, we compared the SOCKET reference 
set with the results from NCOILS (COILS2.2), PairCoil, PairCoil2, MultiCoil, MultiCoil2, and Marcoil. We did 
not include SOSUIcoil because it is not accessible anymore. "e tools CCHMM and CCHMM-PROF were also 
excluded. A short test for prediction performance of CCHMM-PROF using the globular and coiled-coil free 
myosin motor domain resulted in many predicted coiled-coil regions, which are obviously not correct (Sup-
plementary Fig. S1A). CCHMM-PROF requires protein pro$les as input. SpiriCoil is also only available via a 
web interface, caused server errors when used, and was therefore excluded. We also refrained from using the 
tool PCOILS, the successor of NCOILS, because it runs very slowly and is thus not applicable for the amount of 
data to be analysed. "e latter problem is likely the reason why NCOILS is the tool commonly used in genome 
annotation projects. In addition, PCOILS was found to be less accurate than  Marcoil38 and showed the highest 
overlap with predictions of intrinsically disordered  regions46. We did not include DeepCoil because running of 
the so%ware available at the time of performing this analysis (December 2019) was not possible without execu-
tion errors. In addition, DeepCoil is limited to sequence lengths of 500 amino acids, which is only slightly larger 
than the median eukaryotic protein length and much shorter than the length of classical coiled-coil contain-
ing proteins such as myosins and kinesins. A test for the prediction performance using a 500 aa region of the 
myosin-X motor  protein47 via the DeepCoil web server resulted in mis-prediction of a coiled-coil region at the 
$rst IQ motif, which is a calmodulin binding-site, and mis-prediction of a coiled-coil region, where these class-
10 myosins contain extended SAH (single α-helix)  domains48 (Supplementary Fig. 1B). "e 500 aa query limit 
is removed in DeepCoil2 (v. 2.0.1., 30 Nov 2020), but the available (and maybe not completely $nished) version 
of DeepCoil2 does not predict any coiled-coil region in mouse MyoX (Supplementary Fig. 1B; in sharp contrast 
to DeepCoil “v.1”) and no coiled-coil regions in many of the classical coiled-coil proteins such as the muscle and 
non-muscle myosin heavy chain proteins (Supplementary Fig. 2). While DeepCoil2 might perform very well 
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on PDB data (it was trained on 90% of all SOCKET hits from the July-2020 version of PDB), DeepCoil2 fails 
on the tested non-PDB sequences from myosins. In its current status, DeepCoil2 is not a fair competitor in an 
exclusively PDB-based benchmark study.

To best simulate a common functional protein annotation, we used default parameters for each tool as rec-
ommended by the developers, except for setting 21 amino acids as sliding window in all tools for comparability 
(21 is default in NCOILS).

���������� ������Ǧ����� ������������ ������� ���� Ƥ���Ǥ� Before investigating the performance of the 
coiled-coil prediction tools we wanted to get a $rst glimpse on whether the tools predict coiled coils in the same 
structures or in di#erent structures. "is should result in all possible intersections of reference and prediction 
tools. "erefore, we analyzed whether coiled coils are found by SOCKET and the prediction tools in sequences of 
the same PDB $le. For this question, only part of a coiled coil (e.g. only one of the sequences in a heterodimeric 
coiled coil) needs to be identi$ed to classify a PDB $le as “coiled coil present”. In addition, this approach ignores 
whether coiled-coil predictions overlap between tools and the SOCKET reference, and whether sequences con-
tain one or more coiled-coil regions. Accordingly, by this very simpli$ed approach the intersection between 
reference and predictions is highly overestimated (the tools look better than there results are). In this scenario, 
there are 10,684 PDB $les containing at least one coiled coil found by SOCKET. Surprisingly, the various tools 
predict coiled coils in strikingly di#erent total numbers of PDB $les with PairCoil predicting coiled coils in few-
est (1307) and NCOILS in most PDB $les (37,177; Fig. 1B and Supplementary Table S1). 33.1% (PairCoil) to 
80.9% (NCOILS) of the tools’ predictions were found in PDB $les where SOCKET did not $nd any hit. SOCKET 
hits are exclusive in 3401 PDB $les (31.8% of all SOCKET hits).

Ignoring PairCoil, with which by far the fewest coiled coils were predicted, the minimum overlap of PDB 
$les with coiled-coil predictions from any two tools is 2048 (overlap of MultiCoil2 and PairCoil2 predictions; 
Fig. 1B). Although this number suggests considerable overlap of predictions in the same PDB $les, the opposite 
is found (Fig. 1C, Supplementary Fig. S3). "e predictions overlap by only 11.6% (PairCoil) to 66.6% (NCOILS) 
with the PDB $les containing SOCKET hits (Fig. 1B) indicating that the tools did not predict any coiled-coil 
regions in the vast majority of the PDB $les where SOCKET identi$ed coiled coils. "e intersection of PDB $les 
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Figure 1.  Coiled-coil regions identi$ed by SOCKET and predicted with the respective tools at the level of 
PDB $les. (A) Of the 144,270 PDB $les 10,684 contain a coiled coil according to SOCKET (P = positives; the 
remaining 133,586 PDB $les represent the negatives = N). Based on the overlap with these SOCKET hits, 
the coiled-coil predictions of the tools were categorized into four classes: true positives (TP = predictions in 
same PDB $les as SOCKET hits), false positives (FP = predicted coiled coils in PDB $les where SOCKET did 
not detect any), true negatives (TN = no prediction and no SOCKET hit in PDB $les), and false negatives 
(FN = no prediction in PDB $le in which SOCKET identi$ed a coiled coil). (B) "e tools predicted coiled 
coils in 1307 (PairCoil) to 37,177 PDB $les (NCOILS; le% column). "e numbers in the matrix denote the 
overlap between SOCKET and every tool, and between any two tools, at the level of hits within the same PDB 
$le (upper part: total numbers; lower triangle: percentage overlap with respect to SOCKET or tool). (C) "e 
7-way Venn diagram shows the subsets of PDB $les with SOCKET hits and predicted coiled coils found by the 
respective combinations of tools colored by number in intersection. "e intersection of PDB $les with coiled 
coils predicted by all tools is 714 PDB $les, and 1210 PDB $les when ignoring PairCoil, the tool with the least 
predictions.
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with SOCKET hits and coiled coils predicted by all tools is only 714 PDB $les. "is number increases to 1210 
PDB $les if PairCoil, the tool with the fewest predictions, is ignored. All tools predicted coiled coils in 230 PDB 
$les (648 when ignoring PairCoil) where SOCKET did not identify any, potentially indicating structures outside 
SOCKET’s default cut-o# and structures di'cult to resolve by SOCKET (e.g. some NMR structures). 9399 PDB 
$les contained coiled coils predicted by at least two tools but did not contain SOCKET hits. "is number is 
considerably higher than that of SOCKET hits overlapping with at least one of the tools (7283 PDB $les). While 
almost all PairCoil and Marcoil predictions overlapped with SOCKET hits or predictions of at least one other 
tool, PairCoil2, MultiCoil, MultiCoil2, and NCOILS exclusively predicted coiled-coil regions in 41 (0.9% of 
PairCoil2 predictions), 887 (6.4%), 24 (0.8%), and 20,682 (55.6%) PDB $les, respectively (Fig. 1C). Irrespective 
of the individual performance of each coiled-coil prediction tool, these intersection data demonstrate that the 
tools predict coiled-coils in very di#erent sequences.

����ơ�������������������������������������������Ƥ��������������Ǥ� To evaluate the performance 
of the coiled-coil prediction tools, we analysed their overlap with SOCKET hits. Of the 187,021 unique sequences 
in the PDB $les, 14,117 contain SOCKET hits, which are de$ned as positives here. For simplicity, we required a 
single amino acid overlap between SOCKET hit and coiled-coil prediction for the prediction to be classi$ed as 
“true positive”. Redundancy in the data is only a problem, if it does not apply to all binary classi$cation categories 
similarly. "erefore, every $lter based on a user-de$ned criterion, for example selecting proteins whose SCOP 
family contains coiled-coils, excluding all-beta-strand proteins, or preferentially selecting coiled-coil containing 
proteins from clusters of otherwise similar proteins, would introduce a bias on the data set taking e#ect on only 
the positives or the negatives. Previous comparative analyses used such $lters and it has not been investigated 
whether these $lters in(uenced the performance metrics (Supplementary Notes). To exclude that sequence 
redundancy in the PDB in(uences coiled-coil tool evaluation we reduced the redundancy of the 187,021 unique 
sequences with CD-HIT49 applying 90%, 70% and 50% sequence identity cut-o#s resulting in 49,311, 39,394 and 
30,397 unique sequences, respectively. "e drastic reduction by 74% in sequence space from no redundancy to 
90% sequence identity nevertheless did not result in considerable changes in the performance of the binary clas-
si$cation (Fig. 2, Supplementary Table S2). "e sensitivity of the prediction tools increased by two to $ve percent 
and the corresponding miss rates decreased by the same numbers. All other metrics are almost identical. Most 
notably, there is no change in any of the performance metrics if the sequence redundancy is further decreased 
from the 90% to 70% and 50% sequence identity. Although values over 90% for several metrics such as speci$city 
and accuracy indicate strong performance of the coiled-coil prediction tools (except for NCOILS), a close look 
at other metrics demonstrates that the overall performance is instead close to random and might even strongly 
misguide interpretation of bioinformatics analyses and biological experiments.

�������������������������Ǧ���������������������Ǥ� All described performance metrics measure the clas-
si$cation quality of either of true and false positives and negatives, and all rely on the characteristics of the data 
set, i.e. the proportion of positives and negatives. Because the benchmark data set is the entire PDB and all its 
unique sequences, the number of negatives is much higher than the number of positives (6.2% positives at 90% 
sequence identity, 7.6% at 100% identity). Accordingly, the speci$city and accuracy of the tools are very high, 
while sensitivity and precision are rather low. It is obvious that the performance of the tools cannot be evaluated 
just based on these metrics. In case of imbalanced data, the Matthews Correlation Coe'cient (MCC) repre-
sents the best overall measure to evaluate the performance of binary classi$ers. "e MCC score ranges from − 1 
(totally wrong classi$cation, or perfect classi$cation of the opposite) to 0 (random classi$cation) to + 1 (perfect 
classi$cation)50. Here, requiring overlap of only a single amino acid between SOCKET hit and coiled-coil predic-
tion, the MCC indicates random prediction in case of NCOILS (MCC of 0.02) and close to random prediction 
for all other tools (MCC of 0.22 for MultiCoil2 being the highest value; Fig. 2). It is important to note that also 
the MCCs are independent of sequence redundancy reduction.

While random prediction, by wording, suggests a (ipped coin chance to have a coiled coil in a sequence when 
tools predict one, there are two other metrics very important for the experimental biologist. "e false discovery 
rates (FDR), which denote the percentage of false predictions compared to all predictions, show that the actual 
percentage of false predictions is considerably higher than random, with 83% for MultiCoil and 91% for NCOILS 
(Fig. 2). For the other coiled-coil prediction tools, the chance of having predicted a true coiled coil is slightly bet-
ter than (ipping a coin (precision of 36–54%, Fig. 2). For the experimental biologist this means that the chance 
is higher that a coiled coil predicted with one of the many available NCOILS web server is in fact not a coiled 
coil than the chance that the predicted coiled coil might really be present in the protein. "e other important 
metric is the miss rate, which denotes the percentage of elements in the reference data that were not predicted. 
"e analysis shows that the prediction tools missed from 59 to 63% (NCOILS; range across the redundancy 
reduced data sets) to 92–93% (PairCoil) of the SOCKET reference coiled coils. For the experimental biologist 
this means that chances are considerably higher than (ipping a coin that a coiled coil is present in a sequence of 
interest where the prediction tools did not predict any.

�������������������������Ǧ������������������������������������Ã���������Ǥ� Because values over 
90% for some of the performance metrics such as speci$city and accuracy indicate good performance we com-
pared these with the results of three naïve classi$cation models (Fig. 3). First, we calculated the same metrics 
assuming that all sequence is classi$ed as coiled coil. Second, we used a coin (ip model where half of the cases 
are coiled coils and the others are not. "ird, we assumed that we know the proportion of true coiled coils in 
the data and randomly predict coiled coils with the same proportion. While the $rst model assumes an extreme 
case and the second would provide a reasonable baseline for a balanced data set, the third model provides a good 
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Figure 2.  Performance of coiled-coil prediction tools in dependence of PDB sequence redundancy. "e performance was analysed 
for four data sets with decreasing levels of sequence redundancy. With respect to these data sets, the sequences containing a coiled 
coil according to SOCKET are classi$ed as positives while the remaining sequences represent the negatives. Based on the minimum 
requirement for overlap with these SOCKET hits (a single amino acid overlap), the coiled-coil predictions of the tools were categorized 
into four classes: true positives (TP = predictions overlap SOCKET hits), false positives (FP = predicted coiled coils do not overlap 
SOCKET hits), true negatives (TN = no prediction and no SOCKET hit in sequence), and false negatives (FN = no prediction in 
sequence region where SOCKET identi$ed a coiled coil). "e plots show the performance of the coiled-coil prediction tools based on 
commonly used statistical measures. A Matthews correlation coe'cient (MCC) of + 1 indicates a perfect prediction, predictions with 
MCCs around 0 are no better than random, and a MCC of − 1 represents total disagreement between prediction and reference.
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baseline for the coiled-coil prediction tools. "erefore, the base level to estimate the performance of each predic-
tion tool would be the performance obtained if the identical proportion were predicted randomly. Compared to 
this naïve model, the sensitivity of all prediction tools is slightly, but not considerably better (Fig. 3A). "e speci-
$city is almost exactly identical to the speci$city obtained if the same number of coiled coils were predicted ran-
domly (Fig. 3B). "e accuracy of Marcoil, MultiCoil2, PairCoil and PairCoil2 is lower than in the naïve model, 
while that of MultiCoil and NCOILS is slightly higher (Fig. 3C). "e precision of the tools is highest for the tools 
with the lowest number of predictions (Fig. 3D). "e precision of all tools is considerably better than the naïve 
model, except for NCOILS, which is considerably worse. From all these metrics it is clear that the coiled-coil 
prediction tools do not signi$cantly outperform the naïve model of predicting the same proportion randomly.

�ơ�������������������Ǧ�ơ�Ƥ��������������Ǧ���������������������������Ǥ� Because SOCKET might 
identify considerably more short coiled coils than prediction tools do, two sequence length cut-o#s were applied 
and reference SOCKET hits and coiled-coil predictions shorter than 14 amino acids and 21 amino acids were 
excluded from each data set (Supplementary Fig. S4, Supplementary Table S2). As discussed above, this is not 
a scienti$c decision based on data that show that short coiled coils do not exist but a subjective decision based 
on the observation that coiled-coil prediction tools perform bad in predicting these types of coiled coils. With 
respect to reducing redundancy of the PDB sequence space the two cut-o#s don’t have any e#ect. At each cut-o#, 
the tools show the same performance for the 100, 90, 70 and 50% sequence identity data sets (Supplementary 
Fig. S4), indicating again that reducing redundancy is not necessary for evaluating benchmark studies based on 
PDB sequence data. However, the prediction tools show increasing performance when applying the 14 and then 
the 21 amino acid cut-o#s compared to no length cut-o# (Supplementary Fig. S4). "e sensitivities increase 
considerably, and this is the main reason for the increased MCCs, although the values are below 0.4 for all tools 
and all cut-o#s. "e increase in sensitivity is a direct consequence of the cut-o#s excluding the short coiled coils 
that the tools rarely predict. NCOILS highly overpredicts coiled coils, and therefore shows the highest speci$city 
and lowest miss rate. "e miss rates for the other tools are still above 50% in case of the 14 amino acid cut-o#, 
and decrease to 34% (MultiCoil) to 71% (PairCoil) for the 21 amino acid cut-o# (Supplementary Fig. S4). "e 
increase in sensitivity comes to the cost of precision, which decreases by 5–17%. Accordingly, the false discovery 
rates increase by the same numbers. "is analysis demonstrates that sequence redundancy in the PDB does not 
matter, but, of course, applying a cut-o# or $lter on the positives does. "e results show the performance of the 
tools with respect to predicting long coiled-coils, and not with respect to predicting coiled coils in general.

�������������������������������������������Ǧ��������������������������������Ǥ� In contrast to 
simple absence/presence counting, evaluation of overlap is getting more di'cult the shorter the regions and 
peptide segments are and the more complex the overlapping patterns become. Overlap patterns such as length 
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Figure 3.  Performance of coiled-coil prediction tools compared to three naïve models."e plots present 
statistical measures based on three naïve models as described in the legend. "e respective performance of the 
coiled-coil prediction tools based on the unreduced data is plotted for comparison.
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and/or contiguity of the predictions depend on prediction tools and parameters. "erefore, considerable care 
must be taken that the scoring scheme for evaluation does not prefer one over the other pattern. For example, the 
muscle myosin heavy chain proteins are well known to assemble into homo-dimers based on their long, coiled 
coil forming tail domains. Coiled-coil predictions on a human adult skeletal muscle myosin heavy chain protein 
sequence result in di#erent sets of coiled-coil regions with di#erent start and end positions, di#erent switches 
in the predicted heptad registers, and di#erent predictions of oligomerisation state from dimer and trimer to 
tetramer (Supplementary Fig. S5). It is obvious that predictions of long, uninterrupted coiled-coil regions should 
be preferred, and that breaks in these very extended coiled-coil regions might be attributed to over- and under-
winding of the twisted α-helices. "is is very di#erent in the opposite case, for example α-actinin, which forms 
intra-sequence coiled coils by folding into helix-loop-helix segments. "ere, the prediction of interrupted coiled 
coils would be highly preferred over single long, uninterrupted coiled coils. Coiled-coil prediction tools cannot 
distinguish between intra-sequence and inter-sequence coiled coils.

A method to evaluate very short patterns is the segment overlap score (SOV) that has been developed to 
compare known and predicted secondary structural  elements51–53. In contrast to a per-residue score, which judges 
the percentage of individual overlapping positions, the SOV positively weights contiguous longer overlapping seg-
ments and reduces the in(uence of considered less signi$cant features such as slightly di#erent segment lengths 
and/or positions. In the current version from  199952, contiguous segments are rated higher than multiple shorter 
segments when compared to a long reference segment even if the total number of positions is considerably lower, 
compared to the initial version from  199451. However, it is not clear why there is a strong di#erence in weighting 
between the case where the reference consists of multiple segments and the prediction is contiguous and the case 
where the reference is contiguous and the predictions are multiple segments, why additional splits in overlapping 
segments do not contribute linearly to down weighting (and why they contribute di#erently with respect to a 
contiguous reference or prediction), and why false positives of di#erent features (e.g. α-helix versus β-strand) 
are less disfavoured than false positives of no feature. Because coiled coils are intermediate between single large 
features and (potentially) multiple short segments, we decided to apply a percentage overlap to each coiled coil. 
"is approach slightly favors the coiled coil predictions, which are usually longer than the reference because of 
the window-based prediction algorithms, and does not average coiled-coil evaluations in case sequences contain 
multiple reference coiled coils and/or predictions.

Considering possible tool-dependent bias in determining start and end positions of the predictions we deter-
mined the number of predictions overlapping SOCKET hits in dependence of reference (either SOCKET or 
tool) and degree of overlap (Fig. 4, Supplementary Fig. S6, and Supplementary Table S3). At least, each predicted 
coiled-coil sequence should overlap with a single amino acid of a SOCKET region. At that minimum level only 
19,036 (26.7%) of the 71,393 coiled-coil regions predicted by NCOILS and found by SOCKET in the same PDB 
$les overlap. "is indicates that the majority of the NCOILS predicted coiled coils do not overlap with SOCKET 
hits, although SOCKET hits and predicted coiled coils were found in the same PDB $le. "e percentage of over-
lapping regions (single amino acid criterion) is highest for MultiCoil2 and SOCKET hits (5590 of 8346 regions, 
67.0%; Fig. 4 and Supplementary Fig. S6). Taking the prediction tools as reference and requiring overlap of at least 
50% of their predicted sequence regions with SOCKET hit regions, only 13.4% (MultiCoil) to 34.0% (PairCoil) 
of the tools’ predictions match this criterion. When requiring at least 80% overlap between predicted coiled-
coil and SOCKET hit regions, the fraction of overlapping regions decreases further to 5.4% (NCOILS) to 17.5% 
(PairCoil). When taking SOCKET hits as reference, 23.6% (NCOILS) to 65.0% (MultiCoil2) of the predictions 
overlap with at least 50% of respective SOCKET hit regions. "e percentages of overlapped SOCKET hit regions 
only slightly decrease with increasing size of overlap when using SOCKET hits as reference. "is shows that 
predicted coiled-coil regions are in general considerably longer than SOCKET hit regions and therefore reach 
into protein structural regions without knobs-into-holes packing indicative of coiled-coil helix-helix interactions.

���������� ����� �������� �������� ���������� ���� ����������� ���������� ����������� ������Ǧ
�����Ǥ� In the performance analyses shown so far, only a single amino acid overlap was required. By this 
minimum requirement, many predictions matching unrelated structural regions were also considered true posi-
tives although they are, by inspecting the structures, in fact false positives. Because SOCKET hits are usually 
shorter than coiled-coil predictions, using the SOCKET hits as reference for the comparison of the overlap will 
result in better performance metrics for the prediction tools. Accordingly, we increased the required overlap in 
steps of 5% for all data sets described before, the four data sets with decreased sequence redundancy and the data 
sets with additional coiled-coil length cut-o#. With respect to reducing redundancy of the PDB sequence space 
changing the required overlap shows a marginally e#ect on the performance metrics (Supplementary Figs. S7 
and S8; Supplementary Table S4). At each overlap proportion, the tools show almost the same performance for 
the 100, 90, 70 and 50% sequence identity data sets. However, the performance decreases when increasing the 
required overlap (Supplementary Fig. S8).

������������������Ǧ����������������Ǥ� "e heptad pattern characteristic for almost all coiled-coil regions 
is found in all SOCKET regions (Fig. 5 and Supplementary Fig. S9). "ere is a clear preference for leucines in d 
positions compared to a positions, and increased propensity for isoleucines and valines in a positions compared 
to d positions. "ere is strong discrimination against glutamates in a positions and lysines and arginines in both 
a and d positions. However, there are signi$cantly more leucines in e and g positions than in b, c, and f positions, 
and there is no discrimination against glutamates in d positions (Fig. 5). SOCKET might also detect knobs-into-
holes packed α-helices buried within e.g. globular structures, which might not be detected by coiled-coil predic-
tion tools. However, the amino acid distributions at heptad positions were almost identical between SOCKET 
hits, which overlap regions where tools also predict coiled coils, and SOCKET hits where tools did not identify 
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Figure 4.  Overlap of coiled-coil predictions with SOCKET hit regions. (A) Schematic drawing of a coiled-coil prediction 
overlapping a SOCKET hit. "e ratio of overlap between prediction and SOCKET hit is di#erent depending on whether 
the prediction or the SOCKET hit is taken as reference. (B) "e plot shows the total number of coiled-coil predictions in 
dependence of the degree of overlap with the SOCKET hits. "e values at the le% side indicate the number of PDB sequences 
containing both a SOCKET hit and a coiled-coil prediction. For each tool, the number of overlapping hits is counted once 
with taking the coiled-coil prediction as reference (solid lines) and once with the SOCKET hits as reference (dashed lines). 
(C) "is plot is similar to (B) but shows the percentage of overlapping regions with respect to the overlap ratio. "e number 
of sequences containing both a coiled-coil prediction and a SOCKET hit is set to 100% for each tool. A similar plot with the 
number of predictions overlapping a SOCKET hit with at least a single amino acid set to 100% is shown in Supplementary 
Fig. S4.
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any (Fig. 5 and Supplementary Fig. S9). "e strongest di#erence between the two patterns is the slightly lower 
preference for leucines and less discrimination against charged residues. "is comparison indicates that from 
the perspective of amino acid distribution at heptad positions the SOCKET-determined coiled coils in the 3401 
PDB $les, where the tools did not predict any coiled coil, are not very di#erent from the SOCKET hits overlap-
ping coiled-coil predictions. "e patterns of the predicted coiled-coil regions are very similar with respect to 
each other and to the SOCKET pattern although more discriminating against glutamates and lysines in a and d 
positions (Fig. 5).

"e di#erent curve shapes for SOCKET hits overlapping predictions and predictions overlapping SOCKET 
hits (Fig. 4) already showed that coiled-coil predictions are longer regions than SOCKET hits. "is is supported 
by the length distributions of the coiled-coil regions (Fig. 6). Most SOCKET hits are 10 to 19 amino acids long, 
while most Marcoil, MultiCoil and NCOILS regions are 20 to 29 amino acids long, and most PairCoil and 
PairCoil2 regions are 30 to 39 residues long. MultiCoil2 regions show a very di#erent length distribution with 
no speci$c preference for a certain length. Instead, MultiCoil2 seems to combine consecutive helices, e.g. the 
repeat regions of helical bundle forming proteins such as spectrin and α-actinin, into single super-long coiled-
coil regions.

������Ǧ������������������������������������������������������������������Ǥ� "e considerably devi-
ating matchings of SOCKET-determined coiled-coil regions and predicted coiled coils with respect to the PDB 
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structures prompted us to look at the secondary structural elements of matched regions. As ground truth for the 
secondary structure we relied on DSSP (De$ne Secondary Structure of Proteins)54,55. DSSP assigns secondary 
structure elements to amino acids based on hydrogen-bonded and geometrical features extracted from X-ray 
coordinates and is the standard tool at the Protein Data Bank (RCSB PDB) for assigning secondary structures. 
As expected by SOCKET’s algorithm, which selects α-helical regions assigned by DSSP and uses these to detect 
knobs-into-holes packing in the protein structures, 99.994% of the amino acids within SOCKET hits match to 
α-helical regions (H in DSSP notation) while the remaining 0.006% match to loops (“blank “; Fig. 7A and Sup-
plementary Table S5). In contrast, 20.8% (Marcoil) to 31.5% (NCOILS) of the regions predicted to be coiled coils 
do not fall into α-helices, and considerable parts of MultiCoil (2.6%), MultiCoil2 (2.6%), and NCOILS (5.0%) 
predictions match to β-strands (Fig. 7A and Supplementary Table S5). To allow visual inspection of these rather 
surprising results and detection of potential mis-assignments or systematic deviations we implemented a web-
interface to the analysis database providing a search interface, a structure viewer, and sequence-based represen-
tations of all predictions in comparison. "e web-interface can freely be accessed at https:// wagga wagga. motor 
prote in. de/ pdbcc viewer.

��������� ���� ������������� ������� �����ǡ� ���� ����������� ������Ǥ� Coiled coils can have parallel and 
antiparallel arrangements of the α-helices and take part in many di#erent oligomeric  assemblies44. "e “clas-
sical” coiled coil is a parallel homodimer, and accordingly the protein training data of the $rst prediction tools 
consisted of parallel homo- and heterodimers such as myosins, tropomyosins, kinesins, and intermediate $la-
ment proteins. In the PDB by far the most detected arrangement is the antiparallel 2-stranded coiled coil (72.1%) 
followed by the parallel 2-stranded coiled coil (14.1%; Fig. 7B). NCOILS’ predictions have the largest overlap 
with SOCKET hits and thus the most similar distribution of arrangements with SOCKET. PairCoil shows the 
strongest bias of all prediction tools for detecting parallel 2-stranded coiled coils. Marcoil, MultiCoil, Multi-
Coil2, and PairCoil2 all have similar distributions with bias towards parallel 2-stranded and 3-stranded coiled 
coils (Fig. 7B). "ese data show that the prediction algorithms do not exclude certain arrangements, be it the 
direction or the number of involved α-helices.

������������������������Ǥ� It has been suggested that (Q/N)-rich prions and polyQ-expanded proteins 
form coiled-coil structures based on the polyQ and neighbouring  regions56. "ere are 23 structures now in the 
PDB containing stretches of at least six glutamines (Table 1). In only one of these structures, 3PJS, the polyQ 
region is the α-helical extension of a tetrameric coiled-coil structure, while in the others these regions do not 
take part in any oligomerisation. In 3PJS, the polyQ region is part of an α-helix, but this region does not interact 
with any neighbouring region. "e polyQ region is therefore not part of a coiled coil but part of a single α-helix 
(SAH). In addition, the polyQ region is not present in any natural sequence of this protein class but the result of 
multiple mutations to facilitate structural and biochemical analyses. In $ve structures, the polyQ region is the 
C-terminal end and extends as SAH domain into the solvent. In the remaining structures, the $rst two to four 
glutamines succeeding an extended α-helix o%en extend this α-helix while the remaining glutamines are mostly 
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(exible and not visible in the crystal structures. "us, there is no structural support for polyQ-regions forming 
coiled coils yet.

In the initial report of (Q/N)-rich and polyQ regions in human proteins forming coiled-coil structures 
in vitro, the coiled-coil propensities of these regions were predicted with COILS and  PairCoil256. However, it 
has already been reported in 1995 and was described as major intention to develop a new algorithm, that COILS 
predicts coiled coils in homopolymers of charged amino  acids21. "is did not change with the second and cur-
rent COILS version, NCOILS. NCOILS predicts coiled coils in homopolymeric polyK, polyE, polyN, and polyQ 
peptides, and in polyR and polyA peptides if additional amino acids are inserted somewhere in the homopolymer. 
A single leucine within polyR is enough to turn this homopolymer into a “coiled coil”, and for polyA to become 
a “coiled coil” two glutamates or a glutamate and a lysine are needed. "e latter polyA[+ 2E/EK] is also predicted 
to be a “coiled coil” by Multicoil. Marcoil also predicts “coiled coils” for homopolymeric polyK, polyE, and polyQ 
peptides. "ese predictions can easily be reproduced by the reader using Waggawagga, a webserver for the com-
parative analysis and visualisation of coiled-coil predictions of the most common coiled-coil prediction so%ware 
 packages57. "us, the prediction of coiled coils for such homopolymers is rather an artefact of these so%ware. 
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Figure 7.  SOCKET hits and coiled-coil predictions matching protein structures. (A) "e plots represent the 
matching of all SOCKET hits and all coiled-coil predictions with secondary structure elements as determined by 
DSSP. "e secondary structure assignment for each amino acid was read from the DSSP output, the assignments 
summed up for each element, and the distribution of elements determined for each tool in percent. (B) Coiled-
coil predictions on sequence alone are not biased for certain oligomeric states. As reference, the distribution 
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α-helices separated. For each coiled-coil prediction tool, only those predictions were selected that overlap at least 
50% of a SOCKET hit, and the oligomeric state assignments of the respective matched hits were collected.
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Inspection of stretches of at least six consecutive aspartates and glutamates in protein structures supports this 
conclusion (Table 1). Homopolymers of at least six asparagines are not present in the PDB.

While polyK, polyE, polyQ, and polyN regions might transiently fold into partially α-helical structures, it is 
extremely unlikely that these cause speci$c protein interactions or form coiled coils. Even if such regions formed 
an α-helix, the helix surface would be indistinguishable and would lead to uncontrolled aggregation in all direc-
tions. However, organisms with massive homopolymeric regions such as Dictyostelium discoideum58 do not 
show more protein aggregation than any other species, which in turn suggests that these homopolymeric regions 
rather form single α-helices and not aggregates. "erefore, we suggest using the term “coiled coil” exclusively in 
the original sense coined by Francis Crick for two or more α-helices in a dedicated structural packing, and not 
for any stretch of amino acids that might partially fold into α-helices and aggregate. In this sense, polyK, polyE, 
polyQ, and polyN (and polyR and polyA) regions do not form coiled coils.

����������
Coiled coils consist of a minimum building block of just an α-helix and can be designed on a drawing board based 
on a poly-alanine backbone and subsequently substituting alanines by hydrophobic, charged, and polar amino 
acids to obtain structures with certain characteristics, mainly a certain length and  topology14,15. "e simplicity 
in design should, in principle, allow a relatively accurate and precise prediction of these motifs in real-world 
sequences. For the evaluation of the performance of coiled-coil predictions in the context of a functional genome 
annotation the reference data set should be large and diverse, should contain only a few percent sequences with 
coiled-coil regions, and should allow structural veri$cation. To our knowledge the protein structure databank 
(PDB) represents the most comprehensive reference data set given the broad sampling of species, protein families 
and protein folds. As ground truth and reference we used the coiled coils detected by SOCKET, which identi$es 
knobs-into-hole packings of α-helices within protein structures. We evaluated the performance of coiled-coil 
prediction tools against all unique sequences within the PDB using all common binary classi$cation metrics. 
"e speci$city and accuracy of all prediction tools is very high, which is a natural result from the large propor-
tion of true negatives within the data set. In contrast, the sensitivity and precision are rather low. "is is, in part, 
due to the lower total numbers of predictions compared to the number of SOCKET hits (however, NCOILS 
predicted about four times more coiled coils), but more importantly the result of the large proportion of false 
positive predictions (predicted coiled coils where SOCKET did not $nd any). Coiled coils were predicted in 
31,040 PDB $les where no SOCKET hits were found, and thousands of coiled coils were detected within PDB 
$les that do not overlap with SOCKET hits. "e structures for which SOCKET might fail explain some dozens 
of these predicted coiled coils and even a few hundreds, but not the thousands of false positive predictions. It is 

Table 1.  Crystal structures of proteins containing stretches of at least six glutamines, aspartates or glutamates.

PDB id Poly“X” stretch Observed structure
1U6F QLQQLQ6 Turn, bend
2DMS Q7 Turn, bend
2NB1, 4A9Z Q6HQ Helical, SAH
2OTU, 2OTW Q10G Turn, bend
1QB3 Q16HQTQ No structure

3IO4, 3IO6, 3IOR, 3IOT, 3IOU, 3IOV, 3IOW Q17
Multiple conformations, mainly turn and bend, partially 
helical

3PJS QEQ6 Helical, SAH
5LTY, 6ES2, 6ES3 Q6 Helical, SAH
4FE8, 4FEB, 4FEC, 4FED, 4WTH Q7HQHQHQ27 Helical, turn, β-hairpin
1QBK ED6EID4 Disordered, turn, helical, SAH
2WGO D6 Disordered
5GAP, 5GAN DIDEVD6 Turn, beta-bridge
5GRQ D6ND Bend, disordered
1AP0, 1GUW E6 Turn, disordered
1L0L, 1NTK E8 Helical, SAH
1MHS EDDEDEDID,  E6 Bend, disordered
2MKF, 2MKG, 2RR9 QE6 Helical, SAH

2XZE EDE6
Helical, coiled coil with oppositely charged (multiple K) 
α-helix

6EYC, 3JA8, 5BK4, 3JC5, 3JC7, 5XF8, 5H7I, 5U8S, 5U8T, 
6F0L, 6HV9 E6 Helical, orthogonal to another helix

5A6C NE6D Turn
5E26 E6 Helical, SAH
5IY6, 5IY7, 5IY8, 5IY9, 5IVW DKDE6 Turn, disordered
5XIS, 5XIT, 5YDK E6 Helical, SAH
5XTE E8 Helical, SAH
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highly unlikely that SOCKET missed many “classical coiled coils”, which are the supposed primary target of the 
prediction tools. Without having inspected all predictions manually, we suspect that it is more likely that most 
of these predictions are in fact false positive hits. Very obvious cases of false positive hits include the prediction 
of coiled coils in polyQ regions, which are not supported by structural data, and the prediction of coiled-coil 
regions in sequences that form β-strands, loops and other non-α-helical structures.

"e low sensitivity of the prediction tools comes with a high number of false negatives (SOCKET-detected 
coiled coils that were not predicted). In 3401 PDB $les coiled coils were exclusively found by SOCKET. At $rst 
instance, the most likely explanation for these cases is that the coiled-coil prediction tools are thought to be 
speci$c for solvent-exposed, le%-handed coiled-coil dimers, and are not expected to detect types of coiled-coil 
α-helices buried within globular domains or as part of transmembrane structures. And because most coiled-coil 
prediction tools were developed before next-generation sequencing boosted sequence databases, the relatively 
low number of training data for tool development could have also been limiting in detecting more divergent 
coiled-coil types. However, the false negative rates (1—sensitivity; also called miss rate) of the individual tools at 
the sequence level are in the range of 63.5% (NCOILS) to 93.4% (PairCoil) indicating that the majority of even 
the classical coiled coils are not detected. Our analysis also shows that the amino acid patterns at the heptad 
positions of SOCKET hits overlapping and not overlapping with predictions are very similar. "is implies that 
classical coiled coils and coiled coils within globular structures have similar amino acid distributions suggesting 
that most of the SOCKET hits in the 3401 PDB $les could have been identi$ed by coiled-coil prediction tools 
just as well as those that were detected.

"e discussed metrics depend on the proportion of true and false positives and negatives in the benchmark 
data set. As discussed, if the fraction of true positives (coiled coils) is low compared to true negatives (no coiled 
coil), speci$city and accuracy will automatically be high, if only 50% of the predictions are correct (Fig. 1). If the 
fraction of true positives is high compared to true negatives, the sensitivity will automatically be high. Fortunately, 
there is a metric termed the “Matthews correlation coe'cient” (MCC) that is insensitive to the proportion of 
true positives (coiled coils) in the data set and that gives a balanced assessment of the  performance50. According 
to this metric, the performance of the coiled-coil prediction tools at the PDB $le level was rather poor (MCCs 
between − 0.05 and 0.19 when requiring only the overlap of a single amino acid between SOCKET hits and 
coiled-coil predictions) and did not signi$cantly change at the sequence level (MCCs between 0.02 and 0.22). 
"e MCCs do not considerably increase if the 3401 PDB $les with exclusive SOCKET hits are regarded as true 
negatives (no coiled coils to be detected by prediction tools) and if the 230 PDB $les with coiled coils predicted by 
all tools but not detected by SOCKET are regarded as true positives. Requiring only a single amino acid overlap 
is a rather weak criterion and balances possible biasing e#ects from so%ware parameters such as the SOCKET 
packing-cuto# and window sizes or cuto#s from prediction tools. When requiring a more realistic overlap of at 
least 50% of predictions and SOCKET hits the quality of the prediction tools is no better than random, based 
on the MCCs (Supplementary Fig. S8). Independent of whether comparisons and analyses of coiled-coil predic-
tion tools report high sensitivities, speci$cities, accuracies, and precisions, this analysis of the entire PDB using 
the MCC as a balanced measure demonstrates that it is random whether a predicted coiled coil in an unknown 
sequence is a coiled coil or not. In fact, the performance of the tools is very similar to a naïve model assuming 
that the prediction is random but knows and reproduces the proportion of the reference category in the data set.

"e $nding that coiled-coil prediction tools show low performance when benchmarked with sequences from 
heterogeneous protein structures is not completely new. A comparison of SpiriCoil, Marcoil, and PairCoil2 
revealed a similar low absolute performance, with SpiriCoil, the supposed best performing coiled-coil prediction 
tool in this comparison, displaying a sensitivity of 41.7% and an FDR of 84.6% at the level of  sequences32. In this 
comparison, 2.7% of the sequences in the test data contained coiled coils, which is slightly lower than the percent-
age of likely coiled-coil regions in our data set (7.4% of 144,270 PDB $les contained SOCKET hits). However, 
SpiriCoil just passes the coiled-coil assignment from SUPERFAMILY protein pro$les on query sequences based 
on global sequence comparisons without ever verifying the presence of a coiled coil. "is approach therefore 
ignores domain gain, loss, and rearrangement processes, which are very common in eukaryotic genomes. In 
contrast, the latest comparison showing good sensitivity and speci$city of the prediction tools was based on a 
highly biased sequence data set with 63.4% of the 1643 test sequences containing coiled coils, and each of these 
sequences containing 2.09 coiled-coil regions on  average39. Already an even and random assignment of coiled 
coils to sequences of this data set would result in sensitivity and speci$city of 79% and 100%, respectively. Because 
of the biased benchmark dataset, the implied quality of the coiled-coil prediction tools based on the excellent 
values for the metrics is completely misleading. In addition to these general shortcomings in approach and data 
set, in both previous studies the precise location of the coiled coils with respect to reference SOCKET hits and 
secondary structural elements was not determined.

Given this analysis and the application of the evaluated prediction tools, especially NCOILS, in the functional 
annotation of genomes it is highly questionable that many of the proteins with predicted regions really contain 
coiled-coil domains. In addition it is highly likely that coiled-coil domains have been missed in many proteins. 
Given the broad application of coiled-coil prediction tools, as citation rates suggest, and the high interest in this 
structural motif, as publication numbers suggest, we see a high demand for accurate coiled-coil prediction. We 
suggest improving the tools’ performance against unbiased and not pre-selected data and to use approaches that 
combine sequence pro$les and secondary structure assignments, or that discriminate against certain atypical 
features. Secondary structure information, for example, was included in WDSP, a pipeline to predict WD40 
repeats and  domains59. WD40 repeats have very low sequence homology, are therefore notoriously di'cult to 
detect, and are usually present in a chain of seven repeats folding into a  domain60,61. In WDSP, protein sequences 
are $ltered by selecting fragments with β-sheets according to  PSIPRED62. Subsequently, WD40 repeats are 
detected using a pro$le generated by aligning repeats by secondary structure elements and not global similar-
ity, and $nally WD40 domains are assigned when chains of at least six WD40 repeats are present. As another 
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example, Waggawagga uses the discriminative approach to detect stable single α-helices (SAH domains), which 
coiled-coil prediction tools mis-predict as coiled  coils57,63,64. Waggawagga searches for networks of oppositely 
charged residues and discriminates against helix-breaking residues, networks of residues with identical charge, 
and networks of hydrophobic residues as found in the hydrophobic seams of coiled coils. Approaches similar to 
those used by WDSP and Waggawagga could be implemented to improve coiled-coil predictions. For example, 
protein sequence regions could be pre-$ltered and/or coiled-coil predictions could be post-$ltered by second-
ary structure predictions. A selection $lter for potentially coiled-coil domain containing regions could also be 
the detection by at least two tools. Training the prediction tools against unbiased data such as the entire PDB 
could also improve tools’ performance. "e evaluation of multiple tools to predict the pathogenicity of  SNPs65 
and protein  stability66 also demonstrated low performance (low to medium MCCs), but the results stimulated 
substantial tool improvement with respect to the benchmark data sets.

In conclusion, at best, the evaluated tools predict coiled-coil regions in well described and well analysed 
coiled-coil forming proteins with reasonable accuracy. For predicting coiled coils in large data sets with balanced 
proportion of all protein folds, such as present in gene prediction datasets, the tested tools have only limited 
applicability. One possibility to reduce the number of false predictions in such functional genome annotations 
would be to only accept coiled-coils regions if predicted by multiple prediction tools and to only predict coiled 
coils in regions not already covered by other protein domain predictions.

�������
�����������������Ǥ� To benchmark the performance of coiled-coil prediction so%ware as fairly and reli-
ably as possible, we created a copy set of the current state (15/12/2018) of all available 147,073 PDB structures 
from the RCSB Protein Data  Bank67. "e (at$les were downloaded, stored locally and parsed with BioRuby 
v.1.5.168. Removing nucleotide-only structures and some PDB-$les with handling issues reduced the number 
of usable structures to 144,270. Main reasons for handling issues were unavailability (moved/renamed/discon-
tinued) at the RCSB servers (761 $les), and BioRuby parsing issues with some of the structures in the PDBx 
format, some early structures from last century, and structures with non-natural amino-acids. We refrained 
from any attempt to manually remove PDB $les, which could be part of the training data of some of the tools. 
All six tools benchmarked used mainly collections which are known to contain coiled-coil sequences, such as 
intermediate $lament proteins, muscle myosins, kinesins, tropomyosins, dyneins (for an extended list  see23), 
and, if at all, only a few sequences derived from the PDB. Given the number of sequences used in this bench-
mark here, the e#ect of the few PDB sequences already present in the training data of some of the tools should 
be marginal. In any case, the performance of the tools might look slightly better in the benchmark than is in 
practice. "e information from PDB $les and all additional data generated were stored in a PostgreSQL database. 
To facilitate data handling and analysis of the PDB, DSSP, SOCKET, and coiled-coil prediction information a 
relational database scheme was designed, which stores the relevant data for the evaluation with low redundancy 
and depicts each data type into its assigned classes (Supplementary Fig. S10). Protein sequences were extracted 
from the ATOM records of the PDB $les. Identical sequences (from start to end including identity of possible 
gaps) were removed independent of whether they were present in the same or di#erent PDB $les. "is means 
that sequences di#ering by a single amino acid at, for example, the N- or C-terminus because of their presence 
in di#erent structures or independent molecules within the asymmetric unit are treated as di#erent sequences. 
"e remaining sequences break down to 187,776 unique sequences. In order to create a broad, representative 
data set, these unique sequences remained unreduced in terms of similarity or other criteria, even very short 
sequences were le% in the data set. Only the 755 sequences containing amino acids labeled “unknown”, one-letter 
code “X”, which are handled very di#erently by the coiled-coil prediction tools, were removed from the analysis. 
"e remaining 187,021 sequences were used as reference for all analyses. Accordingly, the secondary structure 
for every single amino acid within the reference sequences is known. "e overall size of the database for the 
current PDB structure data set amounts to 2.9 GB, the (at$les in combination with the predictions sum up to 
around 159 GB in 2.8 million $les.

��������������Ǧ�������������Ǥ� "e SOCKET algorithm detects knobs-into-holes packed α-helices based 
on secondary structure assignments from DSSP v.2.0.4 (De$ne Secondary Structure of Proteins)54,55, which we 
generated according to the so%ware documentation. DSSP only needs speci$cation of an input and an output 
$le. For the determination of coiled-coil regions  SOCKET37 was run with the recommended parameter settings, 
especially the packing-cuto# was le% at the default 7 Å as described in the documentation. "e coiled coils were, 
according to the database model, split into their superordinate structure and building/participating components, 
which contain registers, sequences and position information. To prevent mis-assignment of any amino acid due 
to sequence gaps or other unexpected shi%s, the register assigned sequence of each SOCKET-determined coiled-
coil component is searched in the respective PDB sequence and a potential o#set is added to the component 
database entry.

Each coiled-coil prediction so%ware was run with its recommended default settings and a search window of 
21 amino acids, except for Marcoil and MultiCoil2, which are implemented to run without a respective window 
setting. Accordingly, quite conservative thresholds were set for coiled-coil selections. For Marcoil a lower limit 
of 90.0 (minimum) was chosen (HMM training $le 9FAM, with default transition and emission parameters). For 
MultiCoil and MultiCoil2, the “CoiledCoil-"reshold” was set to 0.25 (minimum). For NCOILS, the “CoiledCoil-
"reshold” was 0.5 (minimum), and the latest provided MTIDK-matrix was used. For PairCoil and PairCoil2, 
the “CoiledCoil-"reshold” was 0.84 (minimum) and 0.025 (maximum), respectively. Because the reference 
sequences do not contain the gap information as present in protein structures, coiled-coil prediction tools handle 
all sequences as continuous entities. "is might a#ect the length of some predicted coiled coils.
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��������������Ǥ� For generating data sets with reduced sequence redundancy, the PostgreSQL database was 
copied three times and the unique sequences were subjected to CD-hit49 applying 90%, 70% and 50% sequence 
identity cut-o#s, respectively. Each of the now four databases were copied another two times and region length 
cut-o#s of 14 and 21 amino acids were applied to the stored reference SOCKET regions and the coiled-coil 
predictions.

������������ �������� �������� ������������ ���� �����������Ǥ� Assigning SOCKET hits, DSSP 
assignments, and coiled-coil predictions globally to PDB $les and chains is trivial. However, precisely determin-
ing overlapping regions within sequences is more challenging because amino acid numbering schemes change 
with data parsing and gaps in structures. Numbering of amino acids in DSSP features and SOCKET hits follows 
the numbering of the amino acids in the structures, which either start with the $rst amino acid of the protein 
construct, the $rst amino acid of the sequence of interest (excluding any terminal amino acids from protein 
expression plasmids), or follow the numbering of the analysed protein with respect to the numbering in the 
gene or transcript. "e numbering of amino acids in the structures is usually aware of gaps. When extracting 
sequences from PDB $les all position-wise numbering information including gaps is discarded, only start- and 
end-positions in PDB numbering are retained. Sequences themselves are stored plain without any numbering 
in the database, meaning a sequential numbering starting with “1” when referred to from other tools. Instead of 
$tting the results from the prediction tools to the complex numbering in the structure $les, the numbering of the 
initial register sequences of the SOCKET hits was shi%ed to the position-independent numbering as described. 
Accordingly, the matching between SOCKET hits and coiled-coil predictions is independent of any peculiarities 
in structure numbering and independent of any gaps in the structures. Similarly, the sequences corresponding to 
every contiguous DSSP feature in a structure are located in the number-less sequences and the DSSP features are 
subsequently numbered according to the matching. A problem with this approach could be that very short DSSP 
features (1–3 amino acids), which are surrounded by sequence without feature (“loop”), might match to more 
than one position. However, these very short DSSP features are very likely not part of SOCKET hits or coiled-coil 
predictions so that the matching of DSSP and SOCKET/coiled-coil prediction is not a#ected.

�����������ƥ����������Ǥ� "ere are a few cases which cannot be resolved consistently without introduc-
ing multiple subcategories, which in turn would considerably detract from the main message without adding 
additional understanding. One of these problems is handling cases of overlapping SOCKET hits and coiled-coil 
prediction when one overlaps multiple of the other. In such cases we treated every overlap independently. For 
example, a long coiled-coil prediction could overlap with a SOCKET hit in its N-terminal half and another 
SOCKET hit in its C-terminal half. Such cases were treated as two independent overlap instances.

"e actual data categories and assigned categories (true and false positives and negatives) for computing the 
Matthews correlation coe'cient at the level of PDB $les are clearly de$ned. It is, however, di'cult to de$ne the 
same categories (true and false positives and negatives) in case of evaluating the cases of overlapping SOCKET 
hits and coiled-coil predictions. "e problem is that multiple hits were found in many PDB $les, and those 
hits can be overlapping and non-overlapping. As a rough approximation for an upper bound we computed for 
each tool the percentage of overlapping hits within PDB $les, and applied this percentage onto the number of 
overlapping PDB $les. With this approach we rather overestimate the number of true overlapping hits, because 
for most tools there are more non-overlapping than overlapping hits in PDB $les with both SOCKET hits and 
coiled-coil predictions, and the false positive PDB $les contain, to some extent, multiple coiled-coil predictions 
whose contribution is ignored.

������������������������������������������������Ǥ� For visual inspection of SOCKET hits and coiled-
coil predictions, a simpli$ed search interface to the analysis database and a 3D molecule viewer were integrated 
into the coiled-coil project site Waggawagga. Structures can be searched by PDB ID and results are displayed for 
each structure on a single page. "e result page presents the structure in JSmol, a JavaScript—only version of 
 Jmol69, for interactive viewing, some general information about the PDB $le, and all SOCKET hits and coiled-
coil predictions if found. "e SOCKET hits and coiled-coil predictions are shown in the sequence-based and 
interactive Waggawagga  format57 providing access to all information down to the amino acid level. SOCKET hits 
and coiled-coil predictions can be loaded and combined into the JSmol viewer by simple selection. Intersect-
ing regions between SOCKET hits and predictions are marked separately allowing the structure-based visual 
inspection of coiled-coil assignment by SOCKET versus prediction tools.

���������������������������������������������Ƥ���Ǥ� Having $nished the entire benchmarking study 
we were made aware by a reviewer comment that we might have missed a substantial part of coiled coils because 
we did not include multimers, which are not present in the PDB $les. PDB $les contain the coordinates of the 
molecules present in the asymmetric units. In few cases, a biologically relevant multimer might be present in 
the crystal structure, of which only a monomer is present in the asymmetric unit. "ese multimers can be 
reconstructed using the transformation matrices present in the BIOMT part of the PDB $les. To reconstruct all 
possible multimers we used the tool MakeMultimer.py (http:// watcut. uwate rloo. ca/ tools/ makem ultim er/ index). 
7180 PDB $les were missing BIOMT information. 760 PDB $les generated a “__main__.PdbError: invalid pdb 
code “ error, 675 generated a “list index out of range” error, and 10 generated key or value errors. Subsequently, 
DSSP and SOCKET were run on all multimers. DSSP failed on 2081 of the generated multimer PDB $les. 875 
PDB $les were obtained that contain coiled coils that were not present in the initial data set. Of these, 9 are not 
based on multimers but the result of various bugs in the SOCKET output that we were not aware of when check-
ing the SOCKET output $les of the benchmark data. In contrast, 487 coiled coils are only present in the initial 
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dataset and not in the makeMultimer.py generated dataset due to the missing BIOMT data and the error mes-
sages described above. "e total number of missed coiled coils is small compared to the number of coiled coils 
in the benchmark data, and the coiled coils likely distribute on true positives and false negatives similar to the 
benchmark data. A few false positives might turn to true positives, but most of the missed coiled soils (SOCKET) 
will add to the false negatives (no coiled coil predicted), thus numbers of the predictions will mainly shi% from 
true negatives to false negatives. For an example see Supplementary Fig. S11. Given the low number of PDB $les 
with coiled coils, which were predicted by all tools but are not present in the SOCKET reference dataset (see 
Venn diagram in Fig. 1C, only presence in same PDB $le was tested but not overlap) the missed coiled coils will 
show a similar distribution for true positives and false negatives for each prediction tool as show the coiled coils 
in the analysed data set.

�����������������
"e data are freely available at $gshare https:// doi. org/ 10. 6084/ m9. $gsh are. 99947 06.
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Abstract

Heterologous protein expression is an important method for analysing cellular functions of proteins,
in genetic circuit engineering and in overexpressing proteins for biopharmaceutical applications and
structural biology research. The degeneracy of the genetic code, which enables a single protein to be
encoded by a multitude of synonymous gene sequences, plays an important role in regulating protein
expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we
analyse the influence of a profiled codon usage adaptation approach on protein expression levels in
the eukaryotic model organism Saccharomyces cerevisiae. We selected green fluorescent protein (GFP)
and human a-synuclein (aSyn) as representatives for stable and intrinsically disordered proteins and
representing a benchmark and a challenging test case. A new approach was implemented to design
typical genes resembling the codon usage of any subset of endogenous genes. Using this approach,
synthetic genes for GFP and aSyn were generated, heterologously expressed and evaluated in yeast.
We demonstrate that GFP is expressed at high levels, and that the toxic aSyn can be adapted to
endogenous, low-level expression. The new software is publically available as a web-application for
performing host-specific protein adaptations to a set of the most commonly used model organisms
(https://odysseus.motorprotein.de).

Introduction

Modifying gene sequence is an important step when generating sequences for homologous and het-
erologous protein expression (Brule and Grayhack, 2017; Gustafsson et al., 2012; Hanson and Coller,
2018; Hershberg and Petrov, 2009; Nieuwkoop et al., 2020). This allows, for example, to investigate
functions of homologous proteins (Hia et al., 2019), to synthetically construct genetic circuits (Hansen
et al., 2014; Kato, 2019; Michalodimitrakis and Isalan, 2009), or to overexpress proteins for biophar-
maceutical applications (Mauro, 2018) and structural biology research (Hedfalk, 2012). These types
of experiments have on the one hand highly profited from the exponentially accumulating sequence
information from genome and transcriptome sequencing projects. On the other hand, the consider-
able increase in speed and decrease in costs for synthetic gene synthesis provides a convenient way
to obtain physical genes encoding the desired proteins.

The genetic code redundancy allows adjusting gene sequences without changing the protein se-
quences. This principle is used for a long time for practical aspects such as facilitating cloning by
adding or removing restriction sites or by removing internal Shine-Dalgarno consensus sequences.
Here, just one or a few codons are altered. Adjusting all codons of a gene to a certain codon usage
frequency is often referred to as codon optimization (Gould et al., 2014; Welch et al., 2009). In syn-
thetic biology the optimization goal is mostly increased protein expression, whereas in many other
biological applications overexpressed proteins might generate unwanted effects and adjustment to
the codon usage frequency of lowly expressed proteins might be preferred. Most gene design tools
optimize the codon adaptation index (CAI) (Sharp and Li, 1987), which is the deviation of a protein
coding sequence from a set of reference genes and ranges from 0 to 1. Very simply, the CAI of a gene
is optimized to perfection if only the most used codons of the reference gene sets are used. For most
applications the reference gene sets just consist of a few to a few dozen genes, of which most encode
ribosomal proteins (Jansen et al., 2003; Sharp and Li, 1987).

Instead of this rather statistical approach that evaluates gene sequences by codon counting, gene
design can be driven by biochemical observations and deeper understanding of the ribosomal trans-
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lation. In the protein biosynthesis process, the simultaneous presence of two tRNAs in the A and
P positions of the ribosome is necessary for the formation of a peptide bond (Nierhaus et al., 1998;
Rodnina, 2018; Stark et al., 1997). Due to steric reasons not all combinations of codons and tRNAs
are equally compatible to the ribosome surface, which means that certain codon pairs are processed
more efficiently than others. If this were the case it would be expected that the observed frequency
of occurrence of a codon pair would significantly deviate from its statistically predicted mean value.
Analysing 237 protein coding genes from E. coli demonstrated that some codon pairs were overrep-
resented while others were underrepresented in comparison with the theoretical predicted means
(Gutman and Hatfield, 1989). This study has later been extended to all protein coding genes of the
E. coli genome (Boycheva et al., 2003) and also to several hundred organisms from all three domains
of life (Tats et al., 2008). The phenomenon of the non-random utilization of codon pairs is called the
"codon context" and is assumed to correlate with the translation elongation rate in a way that rare
codon pairs decrease the rate (Coleman et al., 2008). Only few gene design software use codon con-
text information (Gaspar et al., 2012; Lanza et al., 2014; Taneda and Asai, 2020).

Here, we developed a software to design "typical genes". Typical genes are not optimized against
parameters such as CAI or codon usage but are intended to show a similar codon distribution as
compared to a reference gene set, which can be a selection of highly or lowly expressed genes or a
selection of genes having a similar cellular context such as transmembrane or cytoskeletal proteins.
Because many studies showed that heterologous proteins can strongly be overexpressed although
they have a counterintuitively wrong codon usage, we developed a formalism to invert a selected
codon usage. The new design algorithm was tested by designing typical genes for green fluorescent
protein (GFP, Zimmer, 2002) and human a-synuclein (aSyn, Meade et al., 2019) and evaluating their
expression in the unicellular budding yeast Saccharomyces cerevisiae.

Materials and Methods

Model for generating typical genes

Given a protein sequence a set of typical genes is generated using a Markov chain model. The
Markov chain is built by using the relative synonymous di-codon usage frequencies (RSdCU) for
the transition/emission probabilities (Figure 3.1). The relative codon usage refers to the usage of a
codon with respect to all 61 sense codons, the relative synonymous codon usage refers to the usage of
a codon within the set of codons coding for the same amino acid. The relative di-codon usage refers
to the frequency of each set of two neighbouring codons. The RSdCU is defined here as the relative
synonymous codon usage of the second codon of a di-codon with respect to all codons coding for the
same second amino acid. All frequencies are normalized within each codon box. The reference for
all the codon usage metrics is the codon usage within a set of genes. Usually, for heterologous gene
expression the set of genes is taken from the host organism, to which the gene sequence obtained
from another species should be adapted. But in principle any set of genes can be chosen. By allow-
ing the user to define a selection of genes, the gene of interest can be adapted to the codon usage
of any subset of genes of a host organism, e.g. the most highly expressed genes, genes involved in
metabolism, or genes coding for transmembrane proteins. To speed up the process of generating the
RSdCU matrices, the RSdCU is pre-calculated from data for a number of pre-defined subsets of genes
such as the selection of the highest expressed yeast genes.
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M D G E

    GAC  GAT

ATG 0.90 0.10

RSdCU

    GGA  GGC  GGG  GGT

GAC 0.10 0.27 0.51 0.12

GAT 0.13 0.15 0.63 0.09

RSdCU

...

...

Figure 3.1. | Example of a Markov chain. For a protein sequence starting with M-D-G-E a typical gene sequence will
be designed. The RSdCU frequencies are computed based on the set of selected sequences, which could be all genes
of a species, the sub-section of the 10% most highly expressed genes of a species, the selection of all genes coding for
trans-membrane proteins of a species, or any other user-specified set of genes. All frequencies are normalized within each
codon box. The Markov chain is built by using the RSdCU for the transition/emission probabilities.

Collecting and processing codon usage and protein abundance data

Protein abundance datasets were obtained from the publicly available PaxDB database (Wang et al.,
2015). PaxDB provides unified protein quantification data with proteome-wide coverage derived
from biophysical and mass spectrometry studies for a broad range of organisms. The associated
coding sequences (CDS) were collected via the Entrez-API (NCBI Resource Coordinators, 2018) from
the National Center of Biotechnology Information (NCBI) in May 2018. The downloaded sequences
were checked, and partial and invalid gene sequences as well as sequences with obvious problems
(i.e. discontinued genes, internal reading-frame shifts, in-frame stop codons) were removed.

The protein abundance data allows sampling of the proteins by cellular protein abundance levels.
The abundance is given in "ppm" (parts per million) and varies over several powers of ten. This
means that by simply counting the corresponding codons in every subset of proteins the correspond-
ing codons of the lowest expressed proteins would get the same weight as the corresponding codons
of the highest expressed proteins, although their expression level varies considerably. To accomplish
for the different abundance level of the proteins, each codon is therefore multiplied with the protein
abundance resulting in the weighted codon-usage parameter-set weighted-RSdCU.

The annotation of the sequence data (e.g. cellular localization, biomolecular function) and the ref-
erence to the protein abundance data (from PaxDB) allows the generation of organism-specific and
gene set-specific RSdCU computations for the Markov chain model. For example, based on the pro-
tein abundance information just the 50 highest expressed proteins of an organism could be selected,
or the 2,000 least expressed proteins. In other use cases, for example, the ATPases, membrane pro-
teins, or cytoskeletal proteins of an organism could be selected to generate the RSdCU matrix. This
approach allows the flexible computation of the RSdCU for a diverse set of organisms as target hosts,
for a set of proteins with similar expression level, and for a selected set of proteins with similar cel-
lular function.
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Inverting the codon usage

While we compared the codon usage of many non-yeast genes with the codon usage of yeast, we
observed that the codon usage of the non-yeast genes is often different, different not by showing a
random different codon usage but by kind of "inverting" the difference of the codon usage of the
highly expressed yeast genes compared to the yeast codon usage. For example, let the yeast codon
usage of CAA and CAG be 0.68 and 0.32, respectively. Selecting only the highest expressed genes the
codon usage of CAA and CAG were 0.93 and 0.07, respectively. Thus, in highly expressed genes, the
codon usage of CAA is increased by 0.25 while the codon usage of CAG decreases by 0.25. "Switch-
ing" the codon usage would result in a dramatic change of the codon usage to 0.07 for CAA and
0.93 for CAG, which is not observed. Rather, the codon usage of the non-yeast genes resembles a
scheme, where the difference of 0.25 between highly expressed genes and yeast codon usage is in-
verted, resulting in codon usage of 0.43 and 0.57 for CAA and CAG, respectively. Therefore, we here
coin the term "inverted codon usage" for codon usages, which are generated by reversing the codon
usage frequencies within each set of synonymous codons with respect to a reference codon usage.
As reference, we here used the genome-wide frequency of each codon as described in the example
above. With this reference the inversion of the codon usage results in patterns of typical codon fre-
quency distributions, and not in rather artificial codon usages as generated by "switching" the codon
usage within synonymous codons. The inversion thus represents kind of a mirror operation on the
values of the genome-wide frequencies used as reference. To make the computation of the inversion
fail-safe, the inverted codon usage of the respective codon is set to 0.05 or 0.95, respectively, in case
the inversion would result in a negative RCU or an RCU bigger than 1 (this can only happen when
extremely rare codons in the reference are the most prevalent in the set of selected sequences and
vice versa). The difference between the computed inverted codon usage and the 0.05 or 0.95 setting
is then proportionally subtracted from or added to the frequencies of the other codons of the codon
box. For generating the RSdCU matrix, the RCUs for each codon box are inverted in both dimensions
of the matrix, e.g. first inverting the codon usage of the first codon of the di-codon and then inverting
the codon usage of the second codon of the di-codon (Supplementary Figure A.16).

Post-processing and filtering the initial set of typical genes

The generated sequences might contain patterns unfavourable for subsequent experimental work
(e.g. presence of enzyme restriction sites) and/or patterns unfavourable for translation initiation
(e.g. strong base pairing at the 5’-end of the mRNAs). Such patterns are determined in several post-
processing steps. Instead of modifying the respective sequences to remove the patterns, which would
lead to local deviations from the RSdCU, sequences containing the patterns are removed and further
typical sequences generated. To allow filtering for restriction sites wanted or eliminated for cloning
and control the respective sequence pattern information has been collected from the Restriction En-
zyme Database (REBASE, Roberts et al., 2015). To allow filtering for unfavourable base pairings,
RNAfold from the ViennaRNA Package (Lorenz et al., 2011) was integrated for prediction of mRNA
stability.

Software implementation

The gene reconstruction algorithm is written in Python 2.7 and available as software termed Odysseus
(Figure 3.2). The software can be used via a web interface at https://odysseus.motorprotein.de,
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and obtained from GitHub at https://github.com/dsimm/Odysseus for local installation and use.
Odysseus requires input of a protein or cDNA sequence, the latter being translated subsequently.
Next, the web interface allows selecting a host-organism and adjusting model-parameters such as se-
lection of subsets of proteins. Typical genes are then generated using pre-computed or dynamically
assembled codon-usage profiles. Pre-computed profiles are available for multiple organisms based
on various expression level ranges, which were termed "Low", "Mid" and "High". If the user filters
proteins for their cellular function or through a systematic selection using the annotated PaxDB ex-
pression information the profile-dataset is computed dynamically. This is the more time-consuming
option and should only be considered, if there is need for a more specific adaptation of the model
parameters of the Markov chain to characteristic protein groups of the targeted host organism.

Odysseus 
database

NCBI
genome

CDS data

PaxDB
organism
datasets

NCBI
protein
dataREBASE

FASTA input
(protein) sequence

DNA or AA
sequence data?

translate 

host organism
selection

DNA

codon usage (CU)
selection?

sequence data
validity check

AA

AA

adaptive codon
usage calculation

YES

Markov-chain
sequence generation 

Opt.1: most 
abundant proteins 

Opt.2: abundance 
range of proteins 

Opt.3: Genbank 
protein classes

heterologous
DNA sequences 

NO

pre-calculated
genome-CU

quality control filter
restriction site filtering
MFE-stability check

RNAFold

Figure 3.2. | Odysseus flowchart. The input for the process (top of the scheme) are a sequence (protein or DNA) in
FASTA format and the selection of the host organism for which the gene will be designed. The resulting DNA sequence is
the output of the process (bottom of the scheme). Computations during the process are represented by boxes, databases
by cylinders, decisions by diamonds and the direction of data flow by arrows. Data input from external databases and
computations with external software are represented by dotted lines.
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Plasmid construction, Yeast Strains, Transformation and Growth Conditions

Plasmids and Saccharomyces cerevisiae strains are listed in Tables 1 and 2. DNA coding sequences
were synthesized by Life Technologies, Darmstadt, Germany. The synthetic DNA fragments were
cloned into the SmaI site of the integrative plasmid pRS306 using GENEART Seamless cloning and
assembly kit (Life Technologies, Darmstadt, Germany). All constructs were verified by DNA se-
quencing. The GAL1-SNCA or GAL1-GFP sequences were integrated into the mutated ura3-1 or trp1-
1 locus of S. cerevisiae W303-1A strain using an intact URA3 or TRP1 gene on the corresponding
integrative plasmid for selection. The number of the integrated copies was determined by Southern
hybridization as described previously (Petroi et al., 2012).

S. cerevisiae strain W303-1A was used for transformations performed by standard lithium acetate pro-
tocol (Gietz et al., 1992). All strains were grown in Synthetic complete (SC) medium (Guthrie and
Fink, 1991) lacking the corresponding marker and supplemented with 2% raffinose or 2% glucose.
aSyn or GFP expression was induced by shifting yeast cells cultivated overnight in raffinose to 2%
galactose-containing medium (OD600 = 0.1).

Spotting Assay

For growth test on solid medium, yeast cells were pre-grown in SC-selection medium containing
2% raffinose to mid-log phase. Cells were normalized to equal densities, serially diluted 10-fold
starting with an OD600 of 0.1, and spotted on SC-plates containing either 2% glucose or 2% galactose.
After three days incubation the plates were photographed.

Immunoblotting

Yeast cells harboring aSyn or GFP-encoding genes were pre-grown at 30°C in SC-selection medium
containing 2% raffinose. Cells were transferred to SC medium containing 2% galactose at OD600 = 0.1
to induce the GAL1 promoter for 6 h. Total protein extracts were prepared as described (Knop et al.,
1999) and the protein concentrations were determined with a Bradford assay. Equal amounts from
each protein sample were subjected to 12% SDS-polyacrylamide gel electrophoresis and transferred
to a nitrocellulose membrane. Membranes were probed with aSyn rabbit polyclonal antibody (Santa
Cruz Biotechnology, USA) or GFP rat monoclonal antibody (Chromotek, Germany). GAPDH mouse
monoclonal antibody (Thermo Fisher Scientific, USA) was used as loading controls. Pixel density
values for Western quantification were obtained from TIFF files generated from digitized X-ray films
(KODAK) and analyzed with the ImageJ software (NIH, Bethesda, USA). Before comparison, sample
density values were normalized to the corresponding loading control.

Fluorescence microscopy and quantifications

Yeast cells harboring GFP were grown in SC-selective medium containing 2% raffinose overnight,
and transferred to 2% galactose containing medium for induction of GFP expression for 6 h. Fluo-
rescent images were obtained with Zeiss Observer. The Z1 microscope (Zeiss) was equipped with
a CSU-X1 A1 confocal scanner unit (YOKOGAWA), QuantEM:512SC digital camera (Photometrics)
and SlideBook 6.0 software package (Intelligent Imaging Innovations). At least 100 cells were mea-
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sured per strain and per experiment for quantification of fluorescent intensities.

RNA isolation and quantitative real-time PCR

Total RNA was isolated using the "High Pure RNA Isolation Kit" (Roche Diagnostics GmbH, Mannheim,
Germany) from yeast cells that were grown in SC-selective medium containing 2% galactose for in-
duction of GAL1 promoter for 6 hours. cDNA synthesis was performed in duplicates for each sample
using 0.8 µg RNA and the QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany) accord-
ing to the manufacturer’s instructions. Amplification was performed with CFX Connect Real-Time
System (Bio-Rad) with MESA GREEN qPCR MasterMix Plus for SYBR Assay (Eurogentec) and ana-
lyzed in three technical repeats. The expression of Histone h2A was used as reference.

Figure 3.3. | Plasmids used in this study.
Plasmid Description Source

pRS306 pRS306-GAL1-Promoter, CYC1-Terminator, URA3, integrative,
pUC origin, AmpR (36)

pME4859 pRS306-GFP (low-expression-weighted; gene1) This study
pME4860 pRS306-GFP (high-expression-weighted; gene2) This study
pME4861 pRS306-GFP (high-expression-weighted-inverted; gene3) This study
pME4853 pRS306-SCNA (low expression; gene4) This study
pME4854 pRS306-SCNA (middle expression; gene5) This study
pME4855 pRS306-SCNA (high expression; gene6) This study
pME4856 pRS306-SCNA (low-expression-weighted; gene7) This study
pME4857 pRS306-SCNA (high-expression-weighted; gene8) This study
pME4858 pRS306-SCNA (high-expression-weighted-inverted; gene9) This study

Figure 3.4. | Yeast strains used in this study.
Strain Genotype Source
W303-1A MATa; ura3-1; trp1-1; leu2-3_112; his3-11; ade2-1; can1-100 EUROSCARF

RH3771 W303 containing 1 genomic copy GAL1::GFP (low expression-
weighted; gene1) in ura3 locus This study

RH3772 W303 containing 2 genomic copy GAL1::GFP (low expression-
weighted; gene1) in ura3 locus This study

RH3773 W303 containing 3 genomic copy GAL1::GFP (low expression-
weighted; gene1) in ura3 locus This study

RH3774 W303 containing 1 genomic copy GAL1::GFP (high expression-
weighted; gene2) in ura3 locus This study

RH3775 W303 containing 2 genomic copy GAL1::GFP (high expression-
weighted; gene2) in ura3 locus This study

RH3776 W303 containing 3 genomic copy GAL1::GFP (high expression-
weighted; gene2) in ura3 locus This study
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RH3777 W303 containing 1 genomic copy GAL1::GFP (high expression-
weighted-inverted; gene3) in ura3 locus This study

RH3778 W303 containing 2 genomic copy GAL1::GFP (high expression-
weighted-inverted; gene3) in ura3 locus This study

RH3779 W303 containing 3 genomic copy GAL1::GFP (high expression-
weighted-inverted; gene3) in ura3 locus This study

RH3756 W303 containing 1 genomic copy GAL1::SNCA (low expression;
gene4) in ura3 locus This study

RH3757 W303 containing 2 genomic copy GAL1::SNCA (low expression;
gene4) in ura3 locus This study

RH3758 W303 containing 1 genomic copy GAL1::SNCA (middle expres-
sion; gene5) in ura3 locus This study

RH3759 W303 containing 2 genomic copy GAL1::SNCA (middle expres-
sion; gene5) in ura3 locus This study

RH3760 W303 containing 1 genomic copy GAL1::SNCA (high expression;
gene6) in ura3 locus This study

RH3761 W303 containing 2 genomic copy GAL1::SNCA (high expression;
gene6) in ura3 locus This study

RH3762 W303 containing 1 genomic copy GAL1::SNCA (low expression-
weighted; gene7) in ura3 locus This study

RH3763 W303 containing 2 genomic copy GAL1::SNCA (low expression-
weighted; gene7) in ura3 locus This study

RH3764 W303 containing 3 genomic copy GAL1::SNCA (low expression-
weighted; gene7) in ura3 locus This study

RH3765 W303 containing 1 genomic copy GAL1::SNCA (high expression-
weighted; gene8) in ura3 locus This study

RH3766 W303 containing 2 genomic copy GAL1::SNCA (high expression-
weighted; gene8) in ura3 locus This study

RH3767 W303 containing 3 genomic copy GAL1::SNCA (high expression-
weighted; gene8) in ura3 locus This study

RH3768 W303 containing 1 genomic copy GAL1::SNCA (high expression-
weighted-inverted; gene9) in ura3 locus This study

RH3769 W303 containing 2 genomic copy GAL1::SNCA (high expression-
weighted-inverted; gene9) in ura3 locus This study

RH3770 W303 containing 3 genomic copy GAL1::SNCA (high expression-
weighted-inverted; gene9) in ura3 locus This study

RH3780 W303 containing 1 genomic copies GAL1::SNCA (human) in
trp1 locus This study

RH3781 W303 containing 2 genomic copies GAL1::SNCA (human) in
trp1 locus This study

RH3465 W303 containing 1 genomic copy GAL1::GFP in ura3 locus (32)
RH3466
RH3467

W303 containing 1/2 genomic copy GAL1::SNCA (human)-GFP
in ura3 locus (32)
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Results and Discussion

Most approaches to computationally reconstruct genes from heterologous protein sequences con-
centrate on optimizing the usage of so-called preferred codons (also called more frequent codons,
optimal codons, or major codons) with preference usually being regarded as present in highly ex-
pressed proteins. Because there is no definition for highly expressed protein and the set of most
strongly expressed proteins likely differs from species to species, multiple ways have been suggested
to derive the subset of preferred codons. According to one of the earliest approaches developed in
the 1980s the preferred codon is assigned to that codon of a codon box that is most frequently used
across ribosomal genes. At that time this was likely the best approach given the limit in available
sequences and expression data. However, while highly expressed and translated, ribosomal proteins
are not representative for the cellular proteome. In another method, the overall codon bias of each
gene is determined and those codons, whose frequencies within the gene most significantly posi-
tively correlate with the bias, are assigned as preferred codons (Hershberg and Petrov, 2009).

tRNA abundance does not correlate with codon usage in many codon boxes

In another approach, a codon is termed preferred codon if it is recognized by the tRNA that has
either the highest copy number in the genome or the highest cellular expression level. This method
of course does not work for synonymous codons that are recognized by tRNAs with equal copy num-
bers. In addition, decoding is highly redundant and wobble decoding is often as efficient as decod-
ing of cognate codons (Johansson et al., 2008; Kollmar and Mühlhausen, 2017a; Rojas et al., 2018). In
many codon boxes that codon, for which there are the most tRNA gene copies, is more used in highly
expressed genes than any of the other synonymous codons of the box. In contrast, the usage of the
wobble decoded GGU- and UGU-codons, for which cognate tRNAs are absent in all yeast genomes
available to date, are more frequently used across all S. cerevisiae genes than the corresponding
synonymous codons with the high-copy cognate tRNAs (Mühlhausen et al., 2018), is considerably
increased in the highly expressed yeast genes. Also the frequency of, for example, the AUC-, ACC-,
and GUC-codons, for which cognate tRNAs also do not exist, increases more strongly in those genes
whose products are detectably present in the proteomes compared to the usage frequency of syn-
onymous codons with cognate tRNAs. Similarly, the usage frequency of UUG triplicates in highly
expressed genes while the frequency of UUA decreases although the number of cognate tRNAs is
very similar (ten cognate tRNAs compared to seven, respectively). Thus, total tRNA abundance does
not correlate in all codon boxes with codon usage in highly expressed genes. We therefore refrained
from designing genes based on tRNA presence and abundance data.

Protein abundance as reference for codon usage bias

All these approaches are confined by extrapolation of limited data or assumptions on codon evo-
lution models. To overcome these limitations, we suggest using the term preferred codon only for
codons in genes whose protein products have the highest measured abundance in the cell. As a
first and rough estimation available DNA microarray data can be used (Lanza et al., 2014). Even
more, quantitative protein abundance data are available at PaxDB for many organisms and can be
segmented by absolute or relative criteria. The difference between the codon usage derived from the
genome versus that present in a selected proteome can best be visualized in GPome-plots (genome
versus proteome plots; 3.5), which have been introduced recently (Mühlhausen et al., 2018). Proteins
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with the highest abundance in S. cerevisiae show the largest codon usage bias, and genes with no
detectable translation have a correspondingly inverted codon usage. The analysis also shows that
several codons are almost not used at all, similar to the so-called [RIL]-codons in E. coli bacteria, but
that there is not a single codon box, in which one of the synonymous codons is used exclusively
(except for the trivial one-codon one-amino acid boxes). Accordingly, selecting only the preferred
codons for heterologous gene design will cause highly biased and atypical codon usage patterns.
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Figure 3.5. | GPome-plots (genome versus proteome plots). The plots show the relative codon usage (RCU) of the 50
most expressed proteins ("highly expressed"), the following 250 proteins with medium expression, and the 2500 least
expressed proteins of S. cerevisiae plotted against the RCU of all predicted yeast genes (x-axis). For comparison, the RCUs
of the highly expressed proteins are shown unweighted and weighted. Weighting means that each gene is multiplied by
its absolute abundance as given by the PaxDB data.
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The protein abundance does not decrease in steps but exponentially across all proteins (see PaxDB
for data). Of course, the abundance is not a function of codon usage alone. In order to reflect the very
different abundance across large sets of proteins (e.g. the 50 or 250 most highly expressed proteins),
we introduced a weighting scheme. While in the unweighted RCU each codon of each gene in the
selected set of proteins is counted once, in the weighted RCU each codon of each gene is multiplied
with the abundance of the protein according to the PaxDB data (Figure 3.5).

Typical genes for every purpose

For synthetic biology applications there is not only need for protein production (e.g. highest pro-
tein expression) but also for functional studies at expression levels comparable to that of endogenous
proteins, or at low levels to avoid toxic effects to name a few. Thus, it would be favourable to generate
heterologous DNA sequences for every expression level or expression purpose. We suggest terming
such heterologous sequences "typical genes" as they are intended to resemble other genes with a
similar expression level. To generate such typical gene sequences we developed Odysseus, which
is available online at http://odysseus.motorprotein.de. Its core feature is the adaptation of coding
sequences to the characteristics of a pre-selected reference gene set of a host organism to increase or
decrease the expression rates of the designed proteins. This is done by using a probabilistic model in
form of a Markov chain with the RCU as stationary probabilities and the RSdCU as transition prob-
abilities, both trained with host-specific codon-usage information. Odysseus does not generate a
single, perfectly optimized gene but provides multiple genes that are all equally typical with respect
to the selected reference gene set. The initial set of typical genes is subsequently filtered by exclud-
ing candidate genes containing user-defined features such as unwanted enzyme restriction sites. We
think that excluding entire genes (and re-generating more typical genes in case all candidates con-
tain unwanted enzyme restriction sites, for example) is the better solution compared to changing a
typical gene sequence (to remove unwanted enzyme restriction sites, for example), because the latter
might change the di-codon usage to non-typical patterns. In principle, any additional local feature
could be implemented to be filtered at this stage as well, such as patterns resembling Shine-Dalgarno
consensus sequences, premature poly(A) translation termination sites, CpG islands, cryptic splice
sites, dyad repeat sequences or RNase E cleavage sites. The filtered sequences are subjected to RNA
secondary structure prediction and the final set of typical genes is presented in a comparative view.
Here, the user can inspect the characteristics of each sequence (e.g. RNA secondary structure, restric-
tion sites) and select sequences for DNA synthesis. For validation of the new approach, we choose a
highly structured protein, GFP, and an intrinsically disordered protein, human aSyn.

Expression of typical genes encoding GFP in S. cerevisiae

GFP is a compact, stable beta-barrel forming protein derived from the jellyfish Aequorea victoria that
can be expressed in almost every organism (Tsien, 1998). Therefore, it is used as a gold standard for
testing gene design algorithms and analysing protein expression characteristics such as translational
efficiency and accuracy. To test the Odysseus algorithm, we generated genes based on the codon us-
age of the 5024 lowest expressed (abundance-threshold 88.8 ppm) and of the 308 highest expressed
proteins (abundance-threshold 663.0 ppm) in S. cerevisiae as determined by PaxDB data (dataset 4932-
WHOLE_ORGANISM-integrated.txt; weighted average of all S. cerevisiae WHOLE_ORGANISM data-
sets). In both cases we used the weighting scheme as described above.
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For precise comparison of the protein levels, we avoided the typical plasmid-borne expression of
the designed genes that might reflect variations in the plasmid copy number in different cell pop-
ulations. Therefore, yeast strains were generated with genomically integrated either one, two or
three copies of the designed GFP-encoding genes, driven by the inducible GAL1 promoter (Figure
3.6, Supplementary Figures A.12 and A.13). As control, we analysed the original A. victoria GFP gene
without any nucleotide changes. Expression of GFP was induced for 6 h and the protein levels were
analysed by Western blot analysis (Figure 3.6A and 3.6B; Supplementary Figure A.14). The results of
these expression test support our initial idea of generating typical genes for typical protein expres-
sion ranges. The expression of the gene based on the codon usage of the lowest expressed proteins
(gene1) is considerably lower than the expression of the gene based on the codon usage of the highest
expressed proteins (gene2). The expression of both proteins considerably increases when increasing
genomic copy numbers. The expression level of the control is similar to the expression level of the
gene based on the highest expressed proteins. Additionally, live-cell fluorescence microscopy was
performed with cells, expressing GFP from different genes. Quantification of the GFP fluorescence
intensity corroborated the results from the Western blot analysis and revealed similar differences in
the GFP fluorescence depending on the codon context (Figure 3.6C and 3.6D).

If our experiments represented typical lowly and highly expressed genes, then genes N-terminally
fused with GFP-tag would also represent highly or lowly expressed genes, depending on the GFP
sequence. The first 30-50 codons at the 5’ end are thought to determine the expression efficiency and
protein level (also called ramp sequence) Tuller and Zur (2015) implying that the expression level
of 3’-fused genes will be similar to that of GFP alone. These data might explain the observation
that the expression of GFP-fused genes often depends on whether the genes are fused to the 5’ or 3’
end. Instead of supposed folding problems of the fused proteins, the difference in expression level
might mainly depend on whether the fused gene resembles a typical lowly of highly expressed gene.
Our experiments suggest that the designed GFP resembling lowly expressed genes could be used
for studies of cellular protein expression if the expression level needs to resemble endogenous low
levels.

Expression of human a-synuclein in S. cerevisiae

Intrinsically disordered proteins play important function in cellular signalling and regulation path-
ways (Wright and Dyson, 2015). As a test case for an intrinsically disordered protein, we choose
human aSyn. The protein aSyn has a central role in the pathogenesis of Parkinson’s disease (PD).
Accumulation of this highly soluble protein leads to aggregation and proteotoxicity in several neu-
rodegenerative diseases (Wong and Krainc, 2017). Expression of human aSyn in yeast faithfully
reproduces the molecular mechanisms that results in aggregation and cellular toxicity (Popova et al.,
2015; Tenreiro et al., 2017). Importantly, the toxicity is dose-dependent and directly correlates with
aSyn expression level Outeiro (2003); Petroi et al. (2012).We used the advantages of this humanized
yeast model, where the toxic effects depend on aSyn gene expression and assessed, whether the tox-
icity can be rescued by codon adaptation. First, we designed three genes based on subsets of the
5024 lowest expressed proteins in yeast (according to PaxDB; gene4), 1013 proteins with medium
expression level (gene5), and the 308 highest expressed proteins (gene6; Figure 3.7). As reference
we expressed aSyn from the human coding SNCA gene sequence. Yeast strains were generated with
genomically integrated one or two copies of the designed aSyn-encoding genes, driven by GAL1 pro-
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Figure 3.6. | Steady-state protein levels of GFP. Three types of gene design were tested in combination with one to
three gene copies. All designed genes are based on the weighting scheme, by which each codon of a subset of genes is
multiplied with its expression level as provided by PaxDB data. Gene 1 is based on the subset of the 2,500 least expressed
genes, gene 2 is based on the 250 highest expressed genes, and gene 3 is based on the inversion of the codon usage of the
highest expressed genes. A. Western blot analysis of crude protein extracts from yeast strains, expressing GAL1-driven
GFP from one, two and three copies. Protein expression was induced for 6 h in galactose-containing medium, crude pro-
tein extracts were prepared and equal protein amounts from all samples were used for Western blotting. The membrane
was probed with anti-GFP antibody. GAPDH antibody was used as a loading control. The full-sized blots are available
in Supplementary Figure A.13. B. Quantification of the protein levels of GFP. Densitometric analysis of the immunode-
tection of GFP, relative to GAPDH loading control. The significance of the differences was calculated with a One-way
Anova-test (**, p = 0.002; ****, p < 0.0001; n = 3). C. Life-cell fluorescence microscopy of yeast cells, expressing GFP from
three copies. Scale bar: 5 µm. D. Quantification of the fluorescence intensity of GFP-expressing cells with different copy
numbers and coding sequences. The mean fluorescence intensities were quantified using SlideBook6 software pack-
age (n=100 per strain, except n=200 for the control). The significance of the differences was calculated with a One-way
Anova-test (*****, p = 0.0).

moter (Supplementary Figure S1). Expression of aSyn was induced for 6 h and the protein levels were
analysed by Western blot analysis (Figure 3.7A and 3.7B). Surprisingly, the designed genes showed
considerably lower expression compared to the human reference, although their codon composition
had been adapted to the yeast host organism. Even more surprisingly, the expression level decreased
from the gene based on the lowest expressed proteins to the gene based on the highest expressed pro-
teins. This indicates that adaptation of the codon usage of a gene of interest to the highest expressed
proteins of a species does not always yield highest expression, which is consistent with observations
of researchers trying to boost expression levels, e.g. for structural biology.

Expression of human a-synuclein in S. cerevisiae using weighted codon usages

To exclude that our observation depends on not having used the weighting of the protein abun-
dance levels, we designed genes based on the lowest and highest expressed proteins, respectively,
using the weighting scheme (gene7 and gene8, respectively; Figure 3.7C and 3.7D; Supplementary
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Figure A.15). Again, for precise comparison of aSyn protein levels strains with one, two or three
copies of the designed genes were generated. Western blot analysis revealed significantly lower pro-
tein levels than the human reference gene, similar to the results with genes 4 - 6. Next, we assessed
whether the differences in aSyn expression level are mediated by an impact of the codon usage on
transcription. Comparison of the mRNA levels in these strains showed similar gene expression of
the designed genes and the human gene (Figure 3.7E). This suggest that the effect of different codon
usage for aSyn is mainly due to its impacts on translation.

Expression of GFP and a-synuclein using an inverted codon usage pattern

To identify potential abnormalities within the human reference aSyn gene with respect to the de-
signed yeast genes, we compared their codon usage. The human reference gene does not include
many of the codons, which are preferentially used in the highest expressed genes, nor does it include
many of the rare codons (Figure 3.8). Instead, it appears that the human aSyn gene resembles an
inverted codon usage scheme of the highest expressed yeast genes. With inverted scheme it is not
meant that the codon usage is switched (e.g. if the codon usage of CAA and CAG were 0.93 and 0.17,
respectively, switching would mean 0.17 and 0.93 for CAA and CAG; Figure 3.8), but that the codon
usage is inverted at the values of the genomic codon usage (e.g. if the genomic codon usage of CAA
and CAG were 0.68 and 0.32 and the codon usage of these codons across the highest expressed genes
were 0.93 and 0.07, respectively, inverting the codon usage would result in codon usage of 0.43 and
0.57 for CAA and CAG, respectively; Figure 3.8; Supplementary Figure A.16). To test whether genes
designed with such an inverted codon usage scheme still resemble typical genes, we designed and
tested a GFP gene with inverted codon usage (gene3; Figure 3.6). The protein expression level of this
GFP gene rather resembled that of the gene based on the highest expressed yeast proteins than that
of the gene based on the lowest expressed proteins. The designed aSyn gene based on the inverted
codon usage did not result in higher expression, however, compared to the genes without inverting
the codon usage (Figure 3.7C and 3.7D). These two test cases demonstrate that genes based on an
inverted codon usage can well be expressed. This way rare codons are used more often, although not
exclusively. The comparable expression levels of GFP based on the inverted and the highly expressed
genes imply that tRNA abundance, which is commonly assumed to be lower for the rare codons, does
not determine expression level. However, more tests with more types of genes are needed to fully
assess, in which cases the inverted codon usage pattern might be preferable to other patterns.

Finally, we assessed whether the observed low protein levels affect aSyn induced toxicity, reflected
as growth retardation. Growth assays were performed with aSyn, expressed from different gene
copy numbers and codon context. Expression of aSyn from three copies of gene8 did not reveal toxic
phenotype in contrast to its human counterpart that is toxic in yeast (Figure 3.7F) (Petroi et al., 2012).
These results demonstrate that we could successfully implement the newly developed design algo-
rithm for reducing the expression level of a toxic proteins in yeast, exemplified by the use of aSyn.

Comparison to other software

There are multiple services for adapting gene sequences to heterologous hosts or for designing gene
sequences from scratch. For example, the TISIGNER software has been developed to adjust trans-
lation initiation sites by optimizing mRNA accessibility (reducing mRNA secondary structures) and
can thus be used to optimize the 5’-end of a gene (Bhandari et al., 2021). TISIGNER requires at least
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Figure 3.7. | Expression of designed and human a-synuclein. A. Western blot analysis for determination of the protein
level of aSyn. Protein expression was induced for 6 h, crude protein extracts were prepared and the protein concen-
trations were determined with a Bradford assay. 160 µg crude protein extract from samples gene 4 (L), gene 5 (M) and
gene 6 (H), and 40 µg from samples "human" were used for Western blotting. The membrane was probed with anti aSyn
antibody. GAPDH antibody was used as a loading control. The full-sized blots are available in Supplementary Figure
A.14. B. Quantification of the protein levels of aSyn. Densitometric analysis of the immunodetection of aSyn, relative to
GAPDH loading control. The significance of the differences was calculated with a One-way Anova-test (*, p = 0.0107; ***,
p = 0.00014; n = 3). C. Western blot analysis of crude protein extracts from yeast strains, expressing GAL1-driven aSyn
from one, two and three copies. Protein expression was induced for 6 h, crude protein extracts were prepared and the
protein concentrations were determined with a Bradford assay. 160 µg crude protein extract from samples gene 7, gene 8
and gene 9, and 40 µg from samples "human" were used for Western blotting. The membrane was probed with anti-aSyn
antibody. GAPDH antibody was used as a loading control. The full-sized blots are available in Supplementary Figure
A.15. D. Quantification of the steady-state protein level of aSyn. Densitometric analysis of the immunodetection of aSyn,
relative to GAPDH loading control (n=3). The significance of the differences was calculated with a One-way Anova-test
(*, p = 0.038; -, p = 0.41; ***, p = 0.00034; n = 3). E. Quantification of SNCA gene expression. RNA was prepared from
yeast strains after 6 h induction of aSyn expression. Relative aSyn mRNA levels were determined by qRT-PCR and
normalized against H2A. Expression values represent the mean of three replicates ± standard error. F. Growth analysis
of yeast cells expressing aSyn from one, two and three gene copies, driven by the inducible GAL1-promoter on non-
inducing ("OFF": glucose) and inducing ("ON": galactose) SC-URA medium after 3 days. Yeast cells expressing GFP from
the same promoter were used as a control.

part of the 5’-UTR as input in addition to the gene sequence. As discussed above, most software
to design entire gene sequences optimize the CAI. However, the used codon usage tables most of-
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Figure 3.8. | The "inverted" codon usage. The schematic view at the top demonstrates the generation of an inverted
codon usage compared to that of a switched codon usage. The plots at the bottom show the relative codon usage of the
308 highest expressed proteins, when weighted and inverted (left plot), and the relative codon usage of human aSyn
(right plot).

ten do not refer to the codon usage of only the highly expressed genes but that of all genes, which
rather resembles the usage of the lowly expressed genes. For example, the Gene Designer v1 soft-
ware (the algorithm of v2 is not published and could be different) uses the frequency distribution for
each codon box based on a codon usage table, which according to the online documentation does not
correspond to the usage of the highly expressed genes in yeast (Villalobos et al., 2006). The tool OP-
TIMIZER allows the upload of a user-provided codon usage table and selection of always the most
used codon, random selection by frequency distribution or manual selection of codons (Puigbò et al.,
2007). In a very recent approach, ChimeraUGEM, a target gene is designed by comparing its protein
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sequences by a longest substring approach to a set of reference sequences assuming that longer repet-
itive substrings became more optimized to the hosts translation machinery (Diament et al., 2019). The
algorithm has been used for predicting gene expression levels, and has also been shown to be suc-
cessful in increasing expression of a synthetic gene in green algae. The ChimeraUGEM approach
seems to be most related to our typical gene approach, although ChimeraUGEM designs the genes
substring by substring (not overlapping) and does not explicitly aim to optimize di-codons.

Limitations of the Odysseus implementation

It is well known that there is additional information in the coding sequence of a gene beyond the
genetic code for translating nucleotide triplets (codons). For example, the UGA stop codon is trans-
lated to selenocysteine if a so-called SECIS pattern is present (Mariotti et al., 2013; Peng et al., 2021).
There is also a process termed programmed ribosomal frameshifting by which the ribosome shifts
the reading frame by one or two nucleotides in either the + or the – direction (Caliskan et al., 2015).
The patterns of these two examples, selenocysteine decoding and ribosomal frameshifting, dictate
the protein sequence. These patterns are not implemented yet. The Odysseus tool does also not al-
low to adjust the gene sequence to other genetic codes than the standard genetic code which could
be a useful extension. It is recommended that users select one of those suggested typical genes, that
do not contain the reassigned codon (e.g. does not contain a CTG codon if protein expression in
Candida albicans is wanted). However, the designed genes might not be typical anymore in species
that heavily use the reassigned codons such as several ciliates, that decode stop codons by glutamine
(Kollmar and Mühlhausen, 2017b). In addition to codes leading to different protein sequences, there
are also various regulatory signals on top of the coding region that affect the gene expression and
protein translation levels (Bergman and Tuller, 2020). Odysseus is not aware of these signals and the
designed genes might miss important signals (if wanted) or by chance introduce unwanted signals.
As far as those signals or sequence patterns are known a user could manually detect this and select
another of the set of typical genes that Odysseus generates.

Conclusions

Odysseus is a new software tool to design typical genes for heterologous protein expression. In
contrast to most other tools, which intend to optimize the codon usage by selecting only codons from
a few highly expressed proteins or by selecting only the codon with the highest relative codon usage
from each codon box, Odysseus generates genes resembling the codon usage of a selected group of
proteins. Such groups can be the highest or lowest expressed proteins of a species (with the cut-off
free to choose), or even a subset of proteins with a certain function. We tested the new system by
generating synthetic genes of the non-toxic, highly structured protein GFP and by evaluating their
expression level. The expression level strongly increased from the gene based on the lowest expressed
proteins to the gene based on the highest expressed proteins. This supports the general finding
that protein expression is stronger when adapting a heterologous gene to the most used codons.
Such a strong expression is, however, often not wanted and disfavoured when trying to express a
toxic protein. To test our software for its use for expressing proteins at low endogenous protein
expression levels, we designed synthetic genes for the toxic, non-structured protein a-synuclein and
showed that human aSyn can be adapted to low expression levels. Although further tests with more
proteins are needed our results suggest that Odysseus is a valuable tool for designing typical genes
for heterologous protein expression.
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Data Availability

The software can be used via a web interface at http://odysseus.motorprotein.de, and obtained from
GitHub at https://github.com/dsimm/Odysseus for local installation and use.
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ABSTRACT

Eukaryotic genomes are the basis for understanding
the complexity of life from populations to the molecu-
lar level. Recent technological innovations have rev-
olutionized the speed of data generation enabling the
sequencing of eukaryotic genomes and transcrip-
tomes within days. The database diArk (http://www.
diark.org) has been developed with the aim to provide
access to all available assembled genomes and tran-
scriptomes. In September 2014, diArk contains about
2600 eukaryotes with 6000 genome and transcrip-
tome assemblies, of which 22% are not available via
NCBI/ENA/DDBJ. Several indicators for the quality
of the assemblies are provided to facilitate their com-
parison for selecting the most appropriate dataset for
further studies. diArk has a user-friendly web inter-
face with extensive options for filtering and browsing
the sequenced eukaryotes. In this new version of the
database we have also integrated species, for which
transcriptome assemblies are available, and we pro-
vide more analyses of assemblies.

INTRODUCTION

Eukaryotic genome research enormously bene!ts from the
increasing number of sequenced organisms. Whereas in
the time of Sanger-sequencing single-species analyses and
small-scale comparative projects dominated, the through-
put of the Illumina technology allowed initiating and con-
ducting the sequencing of thousands of species. Examples
are the Genome 10K project (1), the i5k project (2) and the
959 Nematodes project (3) intending to provide the genome
sequences of a broad range of species, and the 1001 Ara-
bidopsis project (4), the 1000 bull project (5) and the 3000
rice project (6) aiming to reveal phenotypic and genetic dif-
ferences of breeds and varieties of economically important
animals and plants. Usually, genome assemblies are gener-
ated for new species, whereas in population studies the se-
quencing reads are mapped against reference genomes with-
out producing independent genome assemblies.

NCBI/ENA/DDBJ are the central repositories for se-
quence read archives (SRAs), the ‘raw data’ for generat-
ing assemblies, but publishers and funding agencies often
do not require assemblies to also be stored there. Thus,
most large-scale sequencing centers like The Broad Insti-
tute of MIT and Harvard (Cambridge, MA, USA), the DOE
Joint Genome Institute (Walnut Creek, CA, USA) and The
Wellcome Trust Sanger Institute (Cambridge, UK) estab-
lished own species- and taxa-dedicated databases such as
Phytozome for plants (7) and the Fungal Genome Initiative
project pages (8). Powered by research community efforts,
there are also excellent databases dedicated to single species
such as FlyBase (9), WormBase (10) and dictyBase (11), or
repositories for species of certain taxonomic branches such
as EuPathDB (12), VectorBase (13) and FungiDB (14). Al-
though these databases only comprise model species and re-
lated organisms, they are well known far beyond their re-
search communities. In contrast, dedicated databases have
been set up for many of the newly sequenced species that are
only known to small communities. In addition, for many
species it takes years from the !rst release of a draft as-
sembly to the publication of the genome analysis (e.g. the
Babesia bigemina genome is available since 2003 but was
published in 2014; the Callithrix jacchus genome has been
made available in 2007 but published in 2014). Therefore, it
is necessary to have a database to identify and access all the
available data.

The two major manually curated genome project
databases are GOLD (15) and diArk (16). Whereas GOLD
is mainly focused on microbial genomes, we developed di-
Ark as a central hub for all eukaryotes, for which large-
scale transcriptome or genome assembly data have been
produced and are available to the public. diArk provides
measures and analyses of these assemblies, as well as links
to the data generator repositories. Currently, diArk com-
prises 2577 eukaryotes and provides access to almost 6000
transcriptome and genome assemblies.

*To whom correspondence should be addressed. Tel: +49 551 201 2260; Fax: +49 551 201 2202; Email: mako@nmr.mpibpc.mpg.de

C© The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
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permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
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DIARK

Search options and data !ltering

diArk provides three main options to search for sequenced
eukaryotes. The most straight-forward way to search for a
speci!c species is to use the autocompletion form at diArk’s
entry page, which is also available in the menu bar and as
a browser search plugin. A FastSearch allows !ltering for
taxa, genome type (genome assemblies, EST data, RNA-
seq data) and sequencing status (complete and incomplete
assemblies), and is currently the most frequently used en-
try point to diArk. An extended Search form provides six
search modules that can be combined in any way to search
and !lter diArk’s content. The most widely used modules
are the Taxonomy module with taxa/species selection inte-
grated into an expandable phylogenetic tree and the Genome
Files module that provides options to !lter for sequencing
and assembly methods, genome type, GC content, sequenc-
ing coverage and assembly release date. Search options and
!lters for the new data types generated in the last 3 years
have been integrated into the existing modules.

Result views and statistics

The !ltered species can be analysed and compared using
seven Result tabs. The most frequently used are the pre-
selected Species tab, the Genome Files and the Sequenc-
ing Stats tab. The Species tab provides an overview about
species-related information such as alternative, common
and anamorph (for many fungi) names, a full taxonomy,
a list of all external sources providing access to respective
sequence data, and all publications related to the respec-
tive species’ sequencing. In the Genome Files view, exten-
sive analyses of all assembly !les are shown with clickable
icons to inspect P50 and A50 plots, CGRs with resolution
up to k = 10, and details of the used sequencing and as-
sembly methods. All genome assemblies for a given species
are listed below each other for fast comparison. While the
other Result tabs list data species wise, the Sequencing Stats
view offers many comparisons of the whole selected/!ltered
species (16).

CURRENT STATUS OF THE DATABASE

diArk’s growth re"ects the exponentially increasing avail-
ability of sequenced eukaryotes, now (September 5, 2014)
comprising 2577 species (806 in 2011, 415 in 2007). For 1999
of these species (613 in 2011, 209 in 2007) whole genome as-
sembly data are available, and for 429 species transcriptome
shotgun assemblies (TSAs; Figure 1), of which the !rst be-
came available end of 2012. Assembly data for 2017 (78.3%)
of the eukaryotes are available at NCBI/ENA/DDBJ
meaning that data for 560 (21.7%) species can currently
only be accessed at other resources.The data for these 560
species have not yet been or might never be submitted to
NCBI/ENA/DDBJ. These species include, for example, the
recently published !sh Electrophorus electricus (17) and the
stick insect Timema cristinae (18), of which only the SRA
data but not the genome assemblies have been deposited at
NCBI/ENA/DDBJ, several species such as the snake Boa
constrictor constrictor, whose genome assemblies are only

available at (Giga)nDB database (19), and species whose
genome assemblies are only available at the sequencing cen-
ters such as 31 nematode and 22 Platyhelminth genomes
recently !nished by The Wellcome Trust Sanger Institute.
These examples underline the unique value of diArk for the
eukaryote sequencing and research community in providing
a central hub integrating data available from single species
repositories to large-scale sequencing centers. In the last 3
years, RNA-Seq based transcriptome assemblies have es-
sentially replaced EST and cDNA sequencing efforts. Due
to the lower costs and faster accessibility, TSAs have al-
most passed EST/cDNA data in diArk (423 TSAs versus
654 EST/cDNA projects; Figure 1).

diArk links publications of sequence assemblies to
species (Figure 1). At NCBI, there is a master record
for each assembly to access the respective data, and to
which respective publications are linked. Currently, these
publication links (784 links) only comprise 79.6% of the
publication links included in diArk (985 links). Exam-
ples for species, whose genomes have long been published
but are still not linked to the NCBI genome entries, in-
clude Ciona savignii (submitted to NCBI in 2003, pub-
lished 2007), Filobasidiella neoformans B-3501A (submit-
ted 2004, published 2005), Pristionchus paci!cus (submitted
and published 2008), Culex pipiens quinquefasciatus (sub-
mitted 2007, published 2010) and Uncinocarpus reesii (sub-
mitted 2005, published 2009). Instead, the genome assem-
blies of these 200 species are marked as ‘unpublished’. Pub-
lished and unpublished genomes are important resources
for the community but it is also important that data genera-
tors get credits for their efforts. On the other hand, embargo
rules for unpublished data should inde!nitely not prohibit
speci!c analyses (20). At diArk, researchers !nd the most
complete list of references to genome assemblies for proper
citation or for selection of appropriate subsets of published
species to avoid data usage issues.

In the last years, most of the available genomes have been
sequenced with Illumina machines. However, the Sanger
method is still used to assist in scaffold and chromosome as-
sembling (Figure 1). Roche’s 454 sequencing method is cur-
rently the most widely used method for transcriptome shot-
gun sequencing. Other methods such as SOLiD, PacBio or
IonTorrent are still rarely used to generate de novo genome
or transcriptome assemblies.

NEW DEVELOPMENTS

diArk hosts and analyses whole-genome and transcriptome
assemblies. Currently, the about 6000 assemblies comprise
mitochondrial, chloroplast, apicoplast, nucleolar and nu-
clear genomic DNA and are made available to other services
such as the gene reconstruction software WebScipio (21).
The quality of genome assemblies can vary signi!cantly
(22). However, approaches resulting in excellent genomes
for one species might not produce assemblies of similar
quality in other cases. Therefore, diArk provides access to
alternative assemblies and several measures for direct com-
parison such as number of contigs, genome size (larger =
better), N50 value (higher = better), N50 length (higher =
better), contig length distributions (A50 and N50 plots),
sequencing coverage (higher = better), sequencing meth-
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Figure 1. Representation of the nonredundant species (i.e. one strain per species) in diArk with their sequencing type and method. For comparison, all
species are marked, for which transcriptome data and/or genome assemblies are available via NCBI/ENA/DDBJ. Nine hundred and eighty !ve of the
assemblies have been published but only 784 of them are linked to the genome assemblies at NCBI.
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Number of non-redundant species over the years

Figure 2. Evolution of the fraction of nonredundant species compared to all sequenced species over time.

ods and used assembly software. Not only the number of
alternative assemblies increased in the last years, but also
the number of redundant species in terms of species diver-
sity (Figure 2) increased. Redundant species include, for
example, different strains of the same fungal species, dif-
ferent breeds of animals, different varieties of plants and
different isolates of protozoa. Within diArk, the respective
genome and transcriptome assemblies can directly be com-
pared and the most suitable for a certain research hypothe-
sis be identi!ed. diArk also provides chaos game represen-
tations (CGRs), which are !ngerprints of genomes, and fre-
quency chaos game representations (FCGRs) at different
resolutions, which can be used, for example, for phyloge-
netic reconstructions (23).

Integration of RNA-seq data

The most noticeable innovation from v.2 to v.3 is diArk’s
integration of RNA-seq data. The !rst nonhuman tran-
scriptome assemblies have been submitted to and released
by NCBI in late 2012. Since then, not only the diversity
of sequenced species has increased rapidly (Figure 3) but
also the number of species with transcriptome assemblies
generated for different developmental stages and/or or-
gans. Given the low costs of transcriptome compared to
genome sequencing, the number of species with available
transcriptome assemblies will pass the number of species
with sequenced genomes in the near future. Several large-
scale projects have already been announced and are ex-

pected to release their data this or next year, such as The
1000 plants (oneKP or 1KP) initiative (https://sites.google.
com/a/ualberta.ca/onekp/), the Marine Microbial Eukary-
ote Transcriptome Sequencing project (24) and the Fish-
T1K project (http://www.!sht1k.org/). Interestingly, there is
not much overlap between species with transcriptome and
genome assemblies (Figure 3). One reason is, that RNA-seq
data is still rarely generated for species, for which genome
assemblies have been produced, and if generated, the RNA-
seq data had been used to assist in genome annotation or
to generate expression pro!les but not to produce indepen-
dent transcriptome assemblies. In addition, many scienti!c
questions can be answered suf!ciently and faster with tran-
scriptome data.

CONCLUSIONS

Herein, we present an updated version of diArk, which
is a central hub for all sequenced eukaryotes, for which
either genome or transcriptome assemblies, or large-scale
EST/cDNA data are available. diArk is unique in provid-
ing direct access to most of the sequenced eukaryotes, whose
number has more than tripled compared to the previous ver-
sion. The number of analysed genome and transcriptome
assemblies now reaches 6000.
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Figure 3. Distribution of species, for which EST/cDNA data, genome assemblies and transcriptome assemblies are available. For each sequencing type,
the pie charts show the percentage of sequenced species for selected taxa.
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Abstract

Mutually exclusive splicing of exons is a mechanism of functional
gene and protein diversification with pivotal roles in organismal
development and diseases such as Timothy syndrome, cardiomyo-
pathy and cancer in humans. In order to obtain a first genomewide
estimate of the extent and biological role of mutually exclusive
splicing in humans, we predicted and subsequently validated
mutually exclusive exons (MXEs) using 515 publically available
RNA-Seq datasets. Here, we provide evidence for the expression of
over 855 MXEs, 42% of which represent novel exons, increasing the
annotated human mutually exclusive exome more than fivefold.
The data provide strong evidence for the existence of large and
multi-cluster MXEs in higher vertebrates and offer new insights
into MXE evolution. More than 82% of the MXE clusters are
conserved in mammals, and five clusters have homologous clusters
in Drosophila. Finally, MXEs are significantly enriched in pathogenic
mutations and their spatio-temporal expression might predict
human disease pathology.
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Introduction

Alternative splicing of pre-messenger RNAs is a mechanism

common to almost all eukaryotes to generate a plethora of protein

variants out of a limited number of genes (Matlin et al, 2005; Nilsen

& Graveley, 2010; Lee & Rio, 2015). High-throughput studies

suggested that not only 95–100% of all multi-exon genes in human

are affected (Pan et al, 2008; Wang et al, 2008; Gerstein et al, 2014)

but also that alternative splicing patterns strongly diverged between

vertebrate lineages implying a pronounced role in the evolution of

phenotypic complexity (Barbosa-Morais et al, 2012; Merkin et al,

2012). Five types of alternative splicing have been identified to

contribute to most mRNA isoforms, which are differential exon

inclusion (exon skipping), intron retention, alternative 50 and 30

exon splicing, and mutually exclusive splicing (Blencowe, 2006; Pan

et al, 2008; Wang et al, 2008; Nilsen & Graveley, 2010). Mutually

exclusive splicing generates alternative isoforms by retaining only

one exon of a cluster of neighbouring internal exons in the mature

transcript and is a sophisticated way to modulate protein function

(Letunic et al, 2002; Meijers et al, 2007; Pohl et al, 2013; Tress

et al, 2017a). The most extreme cases known so far are the arthro-

pod DSCAM genes, for which up to 99 mutually exclusive exons

(MXEs) spread into four clusters were identified (Schmucker et al,

2000; Lee et al, 2010; Pillmann et al, 2011).

Opposed to arthropods, current evidence suggests that vertebrate

MXEs only occur in pairs (Matlin et al, 2005; Gerstein et al, 2014;

Abascal et al, 2015a), and genomewide estimates in human range

from 118 (Suyama, 2013) to at most 167 cases (Wang et al, 2008).

Despite these relatively few reported cases, mutually exclusive splic-

ing might be far more frequent in humans than currently antici-

pated, as has been recently revealed in the model organism

Drosophila melanogaster (Hatje & Kollmar, 2013). Apart from their

low number, MXEs have been described in many crucial and essen-

tial human genes such as in the a-subunits of six of the 10 voltage-

gated sodium channels (SCN genes) (Copley, 2004), in each of the

glutamate receptor subunits 1–4 (GluR1-4) where the MXEs are

called flip and flop (Sommer et al, 1990), and in SNAP-25 as part of
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the neuroexocytosis machinery (Johansson et al, 2008). Although

MXEs within a cluster often share high similarity at the sequence

level, they are usually not functionally redundant, as their inclusion

in the mRNAs is tightly regulated. Thus, mutations in MXEs have

been shown to cause diseases such as Timothy syndrome (missense

mutation in the CACNA1C gene) (Splawski et al, 2004, 2005),

cardiomyopathy (defect of the mitochondrial phosphate carrier

SLC25A3) (Mayr et al, 2011) or cancer (mutations in, e.g., the pyru-

vate kinase PKM and the zinc transporter SLC39A14) (David et al,

2010).

Despite the implications of mutually exclusive splicing in organ-

ismal development and disease, current knowledge on the magni-

tude of MXE usage and its relevance in biological processes is far

from complete. In order to obtain a genomewide, unbiased estimate

of the extent and biological role of mutually exclusive splicing in

humans, a set of 6,541 MXE candidates was compiled from anno-

tated and novel predicted exons, and rigorously validated using over

15 billion reads from 515 RNA-Seq datasets.

Results

The human genome contains 855 high-confidence MXEs

Compared to other splicing mechanisms, mutually exclusive splicing

in humans seems to be a rare event. MXEs are characterized by

genomic vicinity, splice-site compatibility and mutually exclusive

presence in protein isoforms. Accordingly, the human genome

annotation (GenBank v. 37.3) contains only 158 MXEs in 79

protein-coding genes (Appendix Figs S1–S3). MXEs are often

phrased “homologous exons” in the literature because they likely

originated from the same ancestral exon. We refrain from using this

term throughout our analysis, because several MXEs present in the

genome annotation do not show any sequence homology and many

neighbouring exons with high sequence similarity are not spliced in

a mutually exclusive manner.

In a first attempt to chart an atlas of genomewide mutually exclu-

sive splicing in humans, we decided to predict potential MXE candi-

dates and validate those using published RNA-Seq data. In a first

step, we generated a set of MXE candidates in the human genome

(v. 37.3) from all annotated protein-coding exons and from novel

exons predicted in intronic regions including only internal exons in

the candidate list (Fig 1A, Appendix Figs S1–S4). From the anno-

tated exons, we selected those that appeared mutually exclusive in

transcripts, and neighbouring exons that show sequence similarity

and are translated in the same reading frame. To generate novel

exon candidates, we predicted exonic regions in neighbouring

introns of annotated exons based on sequence similarity and similar

lengths (Pillmann et al, 2011). We did not consider potential MXEs

containing in-frame stop codons such as the neonatal-specific MXE

reported for the sodium channel SCN8A (Zubovi!c et al, 2012), and

exons overlapping annotated terminal exons (Appendix Fig S2). The

reconstruction resulted in a set of 6,541 MXE candidates in 1,542

protein-coding genes, including 1,058 (68.6%) genes for which we

predicted 1,722 completely novel exons in previously intronic

regions (Fig 1B). Most introns in human genes are extremely long

necessitating careful and strict validation of the MXE candidates to

exclude false-positive predictions (Lee & Rio, 2015).

To validate the predicted MXE candidates, we made use of over

15 billion publically available RNA-Seq reads, selecting 515 samples

comprising 31 tissues and organs, 12 cell lines and seven develop-

mental stages (Barbosa-Morais et al, 2012; Djebali et al, 2012;

Tilgner et al, 2012; Xue et al, 2013; Yan et al, 2013; Fagerberg et al,

2014; Dataset EV1). The data were chosen to encompass common

and rare potential splice events in a broad range of tissues, cell types

and embryonic stages. Accordingly, the transcription of 6,466

(99%) of the MXE candidates is supported by RNA-Seq reads

mapped to the genome (Appendix Fig S3A). To be validated as true

mutually exclusive splicing event, each MXE of a cluster needed to

exhibit splice junction (SJ) reads from every MXE to up- or down-

stream gene regions bridging the other MXE(s) of the cluster

(Fig 1A). In addition, MXEs should not exhibit any SJ reads to

another MXE except when the combined inclusion causes a frame

shift and therefore a premature stop codon (Fig 1A, Appendix Figs

S3A and D, S5, and S6). These stringent criteria define a high-confi-

dence set of MXEs, requiring three constraints for a cluster of two

MXEs and already 18 constraints for a cluster of five MXEs

(Appendix Fig S7). In case of clusters with more than two MXE

candidates, the validation criteria were applied to the cluster includ-

ing all MXE candidates as well as to all possible sub-clusters to

▸Figure 1. The human genome contains 1,399 high-confidence MXEs.

A Schematic representation of the various annotated and predicted exon types included in the MXE candidate list. For MXE validation, at least three restraints must be
fulfilled: the absence of an MXE-joining read (R1), except for those leading to frame shift, and the presence of two MXE-bridging SJ reads (R2 and R3).

B Prediction and validation of 1,399 1SJ (855 3SJ) human MXEs. Top: Dataset of 6,541 MXE candidates from annotated and predicted exons. Bottom left: MXE candidates
for which splice junction data are currently missing hindering their annotation as MXE or other splice variant. Bottom right: Validation of the MXE candidates using
over 15 billion RNA-Seq reads. The outer circles represent the validation based on at least a single read for each of the validation criteria (1SJ), while the validation
shown in the inner circles required at least three reads (3SJ).

C MXE saturation analysis. Whereas increasing amounts of RNA-Seq reads should lead to the confirmation of further MXE candidates, more RNA-Seq reads might also
result in the rejection of previously validated MXEs. The green curves show the number of validated MXEs in relation to the percentage of total RNA-Seq reads used
for validation. The orange curves indicate the number of initially “validated MXEs” that were rejected with increasing amounts of reads. Grey dashed lines indicate
the point of saturation, which is defined as the point where a twofold increase in reads leads to rejection of less than 1% of the validated MXEs. Of note, whereas the
rejection of validated MXEs saturates with 20% of the data, the amount of novel MXE validations is still rapidly increasing.

D Distribution of validated MXEs in two-exon and multi-exon clusters.
E Size and distribution of multi-cluster MXEs.
F The CUX1 gene (cut-like homeobox 1) contains two interleaved clusters of MXEs (clusters 1 and 2) and two standard clusters each with two MXEs (clusters 3 and 4).

The exon 3 and exon 4 variants each are orthologous exons. The exon 4 variants are mutually exclusive (cluster 2). Exon 3a is a differentially included exon and only
spliced together with exon 4a. The exons 3b, 3c, 3d and 3e are part of a cluster of four MXEs (cluster 1) and are only spliced together with exon 4b (Appendix Figs S16
and S17). Novel exons are labelled with an asterisk.
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identify the largest cluster fulfilling all MXE criteria. According to

these criteria, 1,399 MXEs were verified with at least one SJ read

per exon (1SJ), supported by 2.2 million exon mapping and

34 million SJ reads, increasing the total count of human MXEs by

almost an order of magnitude (158–1,399) (Fig 1B, Dataset EV2);

855 MXEs were found to be supported by at least three splice junc-

tion reads per exon (3SJ) validated by 1.5 million exon mapping

and 27 million SJ reads (Appendix Figs S3B and C, S8–S10). The
1,399 (855, numbers in brackets refer to the 3SJ validation) verified

MXEs include 122 (112) annotated MXEs (Fig 1B “annotated

MXE”), 623 (388) exons that were previously annotated as constitu-

tive or differentially included (“annotated other splicing”) and 654

(358) exons newly predicted in intronic regions (“novel exon”). Our

analysis also showed that 29 of the 158 annotated MXEs are in fact

not mutually exclusively spliced but represent constitutively spliced

exons or other types of alternative splicing (Appendix Figs S2 and

S3E). Finally, 1,741 (2,336) MXE candidates including 1,090 (1,402)

newly predicted exons and 17 (29) of the annotated MXEs are

supported by 0.5 million exon and 13 million SJ matching reads but

still have to be regarded as MXE candidates because not all annota-

tion criteria were fulfilled (Appendix Fig S3A and E).

To estimate the dependence of MXE confirmation and rejection on

data quantity, we cross-validated the MXE gain (validation) and loss

(rejection) events for several subsets of the total RNA-Seq data

(Fig 1C, Appendix Fig S11, Materials and Methods “Saturation analy-

sis”). The course of the curves provides strong evidence for the valid-

ity of the MXEs because a single exon-joining read would already be

sufficient to reject an MXE cluster while at least two SJ reads are

needed to validate one. Whereas even 15 billion RNA-Seq reads do

not achieve saturation for the amount of validated MXEs, the gain in

rejected MXE candidates is virtually saturated using 25% of the data.

To further validate the list of MXEs, we compared MXE clusters

that contained two “annotated other splicing” exons to splicing

information from GTEx portal (https://www.gtexportal.org/home/).

Although GTEx portal uses an alternative aligner and different align-

ment settings, all MXEs that we compared showed mutually exclu-

sive behaviour in GTEx portal (Appendix Fig S12), substantiating

our results. Lastly, we selected six brain-expressed novel MXEs for

qPCR validation in human brain total RNA. All assayed MXEs

showed perfect coherence with the alignment results, confirming

mutually exclusive splicing of all assayed novel MXEs in human

brain (Appendix Fig S13, Dataset EV3).

Many of the 1,399 (855) MXEs have roles in the cardiac and

muscle function and development, while cassette exons are

enriched for microtubule- and organelle localization-related terms

(Appendix Fig S14).

In summary, the high-confidence set of 1,399 (855) MXEs

extends current knowledge of human MXE usage by an order of

magnitude, (re)-annotating over a thousand existing and predicted

exons and isoforms, while suggesting the existence of further

human MXEs.

The human genome contains large cluster and multi-
cluster MXEs

In general, mutually exclusive splicing can be quite complex. This is

best demonstrated by genes in arthropods that contain both multiple

MXE clusters (“multi-cluster”) and large clusters with up to 53 MXEs

such as in the Drosophila Dscam genes (Graveley et al, 2004;

Pillmann et al, 2011). This is in strong contrast to mutually exclusive

splicing in vertebrates as there is to date no evidence of multi-cluster

or higher order MXE clusters (Matlin et al, 2005; Pan et al, 2008;

Wang et al, 2008; Gerstein et al, 2014; Abascal et al, 2015a,b).

The analysis of the 1,399 validated human MXEs provides first

evidence for clusters of multiple MXEs in the human genome

(Fig 1D, Appendix Fig S15). While most MXEs are present in clus-

ters of two exons (1,116 MXEs), a surprisingly high number of clus-

ters have three to 10 MXEs (283 MXEs in 71 clusters).

Interestingly, although a large part of the verified MXEs contain a

single MXE cluster (554 genes, Fig 1E), we could also provide

evidence for human genes containing multiple MXE clusters. Thus,

TCF3, NEB, ANKRD36C and MTHFD1L contain three clusters and

TTN, CAMK2D and CUX1 four clusters of MXEs. A very interesting

case of complex interleaved mutually exclusive splicing can be seen

for CUX1, the transcription factor cut-like homeobox 1. It contains a

cluster of MXEs (exons 3b–3e) that is differentially included into a

set of two exons (exon 3 and exon 4), and the two sets are them-

selves mutually exclusive (Fig 1F, Appendix Figs S16 and S17). The

identification of large clusters with multiple MXEs and many genes

with multiple clusters shows that complex mutually exclusive splic-

ing is not restricted to arthropods (Schmucker et al, 2000; Graveley,

2005; Lee et al, 2010; Hatje & Kollmar, 2013) but might be present

in all bilateria.

Mutually exclusive presence of coding exons in functionally
active transcripts

To understand which splicing mechanisms might be primarily

responsible for the regulation of mutually exclusive splicing in

humans, we investigated several mechanisms that were shown to act

in some specific cases and were proposed to coordinate mutually

exclusive splicing in general (Fig 2A; Letunic et al, 2002; Smith,

2005). We identified five cases (0.79% of all clusters) of U2 and U12

splice acceptor incompatibility (Appendix Fig S18) and 57 (9%) cases

of potential steric interference, a too short distance between splice

donor sites and branch points (< 50 bp; Fig 2B and Appendix Fig

S19). Although 377 (60%) of the MXE clusters contain exons with

exon lengths not divisible by three which would result in non-

functional transcripts in case of combined inclusion, MXE-joining

reads were found for only 83 (22%) of these clusters (Fig 2B;

Appendix Figs S3B and D, and S20). Surprisingly, the majority of the

annotated MXEs are of this type (91 of 122; 75%) as well as many

exons previously annotated as other splice types (44 of 662), but only

few of the novel MXEs predicted in intronic regions (25 of 615;

Appendix Fig S3A and D). These numbers suggest that splicing of the

remaining 484 MXE clusters is tightly regulated by other mechanisms

(Fig 2B) such as RNA–protein interactions, interactions between

small nuclear ribonucleoproteins and splicing factors (Lee & Rio,

2015), and competitive RNA secondary structural elements (Graveley,

2005; Yang et al, 2012; Lee & Rio, 2015). Competing RNA secondary

structures are, however, usually not conserved across long evolution-

ary distances. A potential case of a docker site and selector sequences

downstream of each exon variant was identified for the cluster of four

MXEs in the CD55 gene (Appendix Fig S21).

In contrast to cassette exons and micro-exons, which tend to be

located in surface loops and intrinsically disordered regions instead
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of folded domains (Buljan et al, 2012; Ellis et al, 2012; Irimia et al,

2014), all MXEs, whose protein structures have been analysed, are

embedded within folded structural domains as has been shown for,

for example, DSCAM (Meijers et al, 2007), H2AFY (Kustatscher

et al, 2005), the myosin motor domain (Kollmar & Hatje, 2014) and

SLC25A3 (Tress et al, 2017a). As we have shown in the beginning,

there is also a subset of 73 MXEs not showing any sequence homol-

ogy (“annotated no similarity”). It is unlikely that the encoded
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Figure 2. MXE presence is regulated at the RNA and protein folding level.

A Schematic representation of MXE splicing regulation via splice-site incompatibility, branch point proximity and translational frame shift leading to NMD.
B Observed usage of MXE splicing regulation in 629 MXE clusters.
C By mutually exclusive inclusion into transcripts, MXEs of a cluster are supposed to encode the same region of a protein structure. If the respective regions of the

protein structures are embedded within secondary structural elements (the ends of the exon-encoded peptides are part of a-helices and/or b-strands), it is highly
unlikely that the translation of a transcript will result in a folded protein in case the respective exon is missing (skipped exon). If the MXEs have highly similar
sequences and do not encode repeat regions, it seems unlikely that either could be present in tandem or absent at all in a folded protein. Here, we have combined
protein structure features (colours) with splicing regulation information (symbols). Accordingly, 87% of the MXE-encoded protein regions are embedded in secondary
structural elements (orange and green symbols), and most of the remaining MXEs can only be spliced mutually exclusive because splicing as differentially included
exons would lead to frame shifts (blue circles). As examples, we labelled many MXE clusters distinguishing annotated MXEs (purple letters), known exons that we
validated as MXEs (orange letters), and clusters containing novel exons (dark-grey letters).
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peptides account for identical secondary structural elements. Rather,

if the MXEs of this subset are true MXEs, there is a small subset

(about 5%) of MXEs whose mutual inclusion leads to considerably

altered protein folds or affects surface loops and disordered regions

similar to cassette exons.

Because MXEs are supposed to modulate protein functions

through variations and not alterations in specific restricted parts of

the structure, we thought it could be possible to distinguish MXEs

from cassette exons at a protein structural level. Such an analysis

could provide complementary evidence for the validation as MXE in

contrast to two (or more) neighbouring cassette exons. While one

and only one of the exons of a cluster of MXEs has to be included in

the transcript, the defining feature of a cassette exon is that it can

either be present or absent. If MXEs were mis-classified and in fact

neighbouring cassette exons, it would therefore be possible that all

exons of the cluster were present or absent from the transcript, and

accordingly the protein structure. These differences between MXEs

and cassette exons impose three restrictions on their localization

within protein folds (Appendix Fig S22). Thus, (i) if one or both

ends of the MXE-encoded peptide end within a secondary structural

element, it seems impossible that the respective peptide could be

absent from the protein because this would break up multiple

spatial interactions. This suggests that respective protein regions

cannot be encoded by cassette exons. (ii) High sequence similarity

between MXEs suggests important conserved structural interactions

even if the peptide ends are not part of secondary structural

elements. For example, it seems highly unlikely that a cluster of two

exons encoding transmembrane helices could be spliced as cassette

exons because absence or presence of both exons would switch the

membrane site of all subsequent sequence. (iii) In case of cassette

exons and absence of the exons, it must be possible that the remain-

ing sequence still folds correctly. This can be assessed if a protein

structure is available with the respective exon-encoded region

present. Supposing the respective region was absent, the remaining

ends would need to be joined to result in a correctly folded domain,

which seems extremely unlikely if the peptide ends are far apart.

Such regions are also more likely encoded by MXEs. To assess this

model, we mapped the validated MXEs against the PDB database

(Fig 2C, Appendix Fig S22, Dataset EV4; Rose et al, 2015). Of the

1,399 MXEs, 273 MXEs (20%) from 233 MXE clusters (37%)

matched to human or mammalian protein structures (Appendix Fig

S22). For 87% of these MXEs, at least one of the exon termini is

embedded within a secondary structural element, suggesting that

these exons are in fact true MXEs and not mis-classified cassette

exons (Fig 2C, yellow and green coloured symbols). This high level

of structural conservation also strongly supports the hypothesis that

MXEs modulate but do not considerably alter protein functions

(Letunic et al, 2002; Yura et al, 2006; Abascal et al, 2015a; Tress

et al, 2017a). Of the remaining 13% (Fig 2C, blue coloured

symbols), many MXEs would lead to frame shifts if they were

spliced as cassette exons (both exons present or absent in the tran-

script, blue circles), and in multiple cases (e.g. COL9A3, COL24A1

and COL13A1), the peptide ends are far apart indicating strong fold-

ing problems in case the respective exons were absent in the tran-

scripts. In total, there are only a handful cases such as the MXE

cluster in ARL15 (Fig 2C) whose mutually exclusive presence in

proteins cannot be explained by the analysed splicing restrictions,

by NMD targeting, or by folding constraints.

MXEs mainly consist of one ubiquitous exon and otherwise
regulated exons

To modulate gene functionality, mutually exclusive splicing would

need spatial and temporal splicing regulation and expression. To

understand the expression patterns of MXEs, we conducted a

differential inclusion analysis using the Human Protein Atlas

(Fagerberg et al, 2014), Embryonic Development (Yan et al, 2013)

and ENCODE datasets (Djebali et al, 2012). Of the 1,399 MXEs, 608

MXEs (345 unique genes), 573 MXEs (389 unique genes) and 552

MXEs (330 unique genes) are differentially expressed, respectively

(adjusted P-value < 0.05; Fig 3A, Appendix Figs S23–S26, Dataset

EV5 and EV6). Most notably, the differentially included MXEs

comprise 43.5, 40.9 and 39.5% of all MXEs indicating that MXEs are

to a very large extent tissue- and developmental stage-specifically

expressed.

The comparison of the genes containing differentially expressed

MXEs from these three projects shows that 519 (88.7%) of all 585

MXE cluster containing genes have at least a single MXE differen-

tially expressed in one of the covered tissues, cell types or develop-

mental stages (Fig 3B). The 519 genes contain 942 differentially

expressed MXEs (67% of the total 1,399 MXEs; Fig 3C). This

number is in agreement with earlier analyses on small sets of MXEs

(66 and 57%) (Wang et al, 2008; Abascal et al, 2015a). Expectedly,

the expression of novel MXEs seems to be considerably more tissue

specific than the expression of annotated MXEs and cassette exons

(Appendix Fig S23). Lastly, 208 MXEs from 113 genes are preferen-

tially expressed during embryonic development indicating that

many MXEs are specific to certain developmental stages (Fig 3B

and C).

The analysis of MXE specificity reveals that in many clusters one

MXE dominates expression, whereas other MXEs are expressed at

selected developmental time points and in specific tissues (Fig 3,

Appendix Figs S23–S26). This modulation suggests crucial spatio-

temporal functional roles for MXEs and can in many cases not be

observed at the gene level, as gene counts can remain largely invari-

ant. A well-known case for similar expression of MXEs in newborn

heart but expression of only one MXE variant in adult heart is the

ion channel CACNA1C (Diebold et al, 1992), an example for the

switch of expression are the MXEs of the SLC25A3 gene (Wang et al,

2008). We surmise that the observed specificity in combination with

a generally lower expression could also explain the discovery of 654

(358) novel exons that have so far eluded annotation efforts

(Fig 1A, Appendix Fig S23). In conclusion, the tight developmental

and tissue-specific regulation of MXE expression suggests that

changes in MXE function or expression might cause aberrant devel-

opment and human disease (Xiong et al, 2015). Pathogenic muta-

tions in MXEs are known to cause Timothy syndrome,

cardiomyopathy, cancer and kidney disease (Kaplan et al, 2000;

Splawski et al, 2004, 2005; David et al, 2010; Mayr et al, 2011).

MXEs are high-susceptibility loci for pathogenic mutations

To obtain a comprehensive overview of MXE-mediated diseases, we

annotated all MXEs with pathogenic SNPs from ClinVar (Landrum

et al, 2016), resulting in 35 MXEs (eight newly predicted exons)

with 82 pathogenic SNPs (Fig 4A, Dataset EV7). Disease-associated

MXEs show tight developmental and tissue-specific expression with
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prominent selective expression in heart and brain, and cancer cell

lines (Fig 4B and C, Dataset EV7). Interestingly, the percentage of

pathogenic SNP-carrying MXEs is twofold higher than the percent-

age of all pathogenic SNP-carrying exons (Fisher’s exact test,

P-value = 3 × 10!11). A similar enrichment can be found for

cassette exons (Fisher’s exact test, P-value = 2.2 × 10!16) suggest-

ing that in general alternative splicing-associated exons are suscepti-

bility loci for pathogenic mutations. The genes with MXEs carrying

pathogenic SNPs are predominantly associated with neurological

disease (10), neuromuscular disorders (7), cardiomyopathies (6)

and cancer (3) and are enriched in voltage-gated cation channels

(e.g. CACNA1C and CACNA1D), muscle contractile fibre genes (e.g.

TPM1), and transmembrane receptors (e.g. FGFR1-3; Fig 4,

Appendix Fig S27, Dataset EV7).

Disease-associated MXEs have high amino-acid identity (average

49.1%, SD 23.1%), reaching up to 89% in ACTN4 (Appendix Fig

S28), suggesting similar functional roles and in consequence similar

pathogenic potential for many MXE pairs (Fig 4C, Appendix Fig

S29). Four of all SNP-containing MXE clusters contain mutations in

both MXEs (FHL1, MAPT, CACNA1C and CACNA1D), whereas 31

currently have pathogenic SNPs in only one MXE. The MXE expres-

sion analysis shows that many SNP-carrying MXEs are highly

MXEs

ENCODE
Human Protein Atlas
Embryonic Development

−1 0
A

1
expression of specific >
1.5 x ubiquitous exon

0 20

normalized delta PSI
[specific - ubiquitous]

placenta
thyroid
pancreas
stomach
lung
kidney
salivarygland
colon
smallintestine
gallbladder
bladder
esophagus
skin
endometrium
prostate
adipose
appendix
spleen
lymphnode
testes
ovary
adrenal
liver
bonemarrow
duodenum
blood_B−lymphocyte

liver_carcinoma
HeLa
breast_cancer
colorectal_carcinoma
keratinocytes
skeletal_muscle_myotubes
skeletal_muscle_myoblasts
lung_fibroblast
umbilical_cord
stem_cells_hESC
zygote
2−cell
oocyte
4−cell
hESC−passage
late−blastocyst
morulae
8−cell
ES−p0
brain
heart

blood_lymphoblast

GenesB

186

ENCODE
(552)

Human
Protein Atlas

(608)

Embryonic Development
(573)

208

71

240

55 70

112

Embryonic Development
(389)

ENCODE
(330)

Human
Protein Atlas

(345)

18 30
187

43 46

82

113

C

Figure 3. MXE expression is tightly regulated across tissues and development.

A Heatmap showing all differentially expressed MXE clusters with at least three RPKM. Here, we used the Gini coefficient, which is a measure of the inequality among
values of a frequency distribution (Ceriani & Verme, 2012) and has successfully been used to determine tissue-enriched gene sets (Zhang et al, 2017), to determine
highly tissue-specific MXEs (maximum normalized Gini index of cluster) and MXEs with a broad tissue expression distribution (minimum Gini index). For each MXE
cluster, the per cent-spliced-in (PSI) value of the ubiquitous MXE (minimum Gini index) is subtracted from the PSI value of the specific MXE (maximum Gini index of
cluster) (delta PSI value) and scaled between !1 (broad tissue distribution) and 1 (highly tissue specific). Each column represents an MXE pair, and each row
represents MXE expression in a tissue, cell type or at a developmental time point. The bar graph summarizes counts where the specific MXE is 1.5-fold more spliced in
than the ubiquitous MXE.

B Overview of differentially expressed genes for the Embryonic Development, ENCODE and Human Protein Atlas datasets.
C Overview of differentially expressed MXEs for the Embryonic Development, ENCODE and Human Protein Atlas datasets.
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expressed, especially in disease-associated tissues where the

respective non-SNP-carrying MXEs are not or barely expressed

(Fig 4B and C, Appendix Fig S29). Examples include ACTN4,

TPM1 and SLC25A3 (Appendix Figs S28, S30, and S31). Moreover,

MXEs with pathogenic SNPs are usually not or non-exclusively

expressed at early developmental stages (Appendix Fig S28–S31),
while high and exclusive expression could lead to early embryonic

death or severe multi-organ phenotypes (e.g. FAR1, Appendix Fig

S32). Conversely, several non-SNP-carrying MXEs are highly

expressed in early development and are otherwise mainly

expressed at equal and lower levels compared to the SNP-carrying

MXEs (Appendix Figs S29E–S31). The absence of pathogenic SNPs

in these MXEs suggests functional compensation of the pathogenic

SNP-carrying MXEs or early lethality, both of which would result

in no observable phenotype.

Of the 35 MXE clusters with pathogenic mutations eight contain

novel exons (Fig 4C, Dataset EV7). A mutation in exon 9a

(p.Asp365Gly) of FAR1, a gene of the plasmalogen–biosynthesis
pathway, causes rhizomelic chondrodysplasia punctata (RCDP), a

disease that is characterized by severe intellectual disability with

cataracts, epilepsy and growth retardation (Buchert et al, 2014).

Novel MXE 9b is expressed in the same tissues but at eightfold

lower levels suggesting partial functional compensation of the MXE

9a mutation, which might be responsible for the “milder” form of

RCDP as compared to pathogenic mutations in other genes of the

pathway (PEX7, GNPAT and AGPS) (Appendix Fig S32). A tissue-

specific compensation mechanism had already been proposed but a

reasonable explanation could not be given because FAR2 expression

shows a different tissue profile and individuals with deficits in

peroxisomal b-oxidation, a potential alternative supply for fatty

alcohols, have normal plasmalogen levels (Buchert et al, 2014).

Because of the young age of the affected children, it is not known

yet whether a mutation in constitutive exon 4 (p.Glu165_Pro169de-

linsAsp), which could not be compensated in a similar way as the

exon 9a mutation, leads to a strong RCDP-like phenotype (no

survival of the first decade of life) or to a milder form such as the

one caused by the exon 9a mutation.

In conclusion, it is tempting to speculate that MXE pathogenicity

might be governed by high or exclusive expression in affected target

tissues that is usually absent from early developmental processes, a

pattern of expression that seems at least partially inversed for MXEs

without pathogenic SNP annotations. To assess whether MXE

pathogenicity follows observable rules, we trained a machine

learner on MXE expression data and predicted the affected target

tissue (Fig 4D, Dataset EV8). To obtain at least 10 observations per

category with an expression > 3 RPKM, diseases were grouped into

cardio-neuromuscular (n = 10) and other diseases (n = 14) and

predicted using leave-one-out cross-validation with a Random

Forest. Cardiac-neuromuscular diseases could be predicted with an

accuracy of 83% (P-value < 0.01), a specificity of 79%, a sensitivity

of 90% and an area under the ROC curve (AUC) of 85% (Fig 4D,

Dataset EV8, Appendix Fig S29). Conversely, cardiac-neuromuscular

disease could be predicted with an AUC of 72% using RPKM-based

gene expression values (Fig 4D). Although based on only 24 obser-

vations, our data suggest that MXE expression might predict disease

pathogenicity in space and potentially also in time.

Evolutionary dynamics of MXEs in mammals and bilaterians

While tissue-specific gene expression is conserved between birds

and mammals, the alternative splicing of cassette exons is

conserved only in brain, heart and muscles and is mainly lineage-

specific (Barbosa-Morais et al, 2012; Merkin et al, 2012). Accord-

ingly, a core set of only ~500 exons was found with conserved alter-

native splicing in mammals and high sequence conservation, which

was a small subset of the thousands of cassette exons identified in

total. In contrast, although the total number was considerably

smaller, most of the known human MXEs have been shown to be

highly conserved throughout mammals if not even vertebrates

(Letunic et al, 2002; Copley, 2004; Abascal et al, 2015b). In order to

assess the conservation of human MXEs across mammals, we identi-

fied orthologous proteins in 18 representative species from all major

sub-branches spanning 180 million years of evolution and predicted

MXEs therein (Fig 5, Appendix Fig S33, Dataset EV9). Based on a

◀ Figure 4. MXE-ratio expression predicts disease pathology.

A Thirty-five MXE clusters contain 82 pathogenic mutations causing neurologic (10), neuromuscular (7), cardiac (6), cancer (3) or other diseases (9).
B Sashimi plots showing exon as well as splice junction reads (including number of reads) in kidney and heart for SLC25A3.
C Heatmap showing the delta PSI values (PSI value of the non-SNP-containing MXE subtracted from the PSI value of the SNP-containing MXE) of MXE clusters

containing pathogenic SNPs scaled between !1 and 1 (blue = high expression non-SNP-containing MXE, red = high expression SNP-containing MXE). Columns
represent MXE clusters and rows tissues, cell types and developmental stages. The column bar graph summarizes counts where the SNP-containing MXE is 1.5-fold
more expressed than the non-SNP-containing MXE, whereas the row bar graph shows this for each tissue, cell type and developmental stage.

D Receiver-operating characteristic (ROC) curve showing true- and false-positive rates for cardiomyopathy-neuromuscular disease prediction based on spatio-temporal
MXE (coloured lines and black text) and RPKM-based gene (grey lines and text) expression (delta PSI values).

▸Figure 5. Evolutionary dynamics of MXEs in mammalian evolution.

Clusters of validatedMXEwere sorted by chromosome and chromosomal position. The names of the corresponding genes and the cluster-IDs are given in the outermost circle,
and the presence of the respective MXEs (MXE clusters) in other annotations andmammals is indicated by coloured bars. Because the generation of the set of MXE candidates
was based on the GenBank annotation, we analysed the presence of the validated MXEs in complementary annotations. Thus, the outer circles show whether the validated
MXEs are also annotated as MXEs in Ensembl and Aceview, and whether the validated MXEs are present at all as exons in the Ensembl annotation as indicated by the legend.
The lengths of the bars denote the percentage of matching exons for each cluster. For comparison, we show the annotation as MXE in two different Ensembl versions
highlighting the dynamics of exon annotations over time. The comparison of the GenBank with the latest Ensembl annotation (v. 37.75) showed considerably less exons
annotated as MXEs (58) in Ensembl although these include six of the “novel exons” (Appendix Fig S1). The presence of the respective validated MXEs in each of the analysed 18
mammals is shown by coloured bars. The 18 mammals, their phylogenetic relation and the total numbers of MXEs shared with human are presented at the bottom. The
innermost circle represents the number of exons within each cluster of MXEs.
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simple model expecting each shared cluster to be already present in

the last common ancestor of the respective species, we identified a

core set of at least 173 (28%) of the human MXE clusters conserved

throughout mammals (Fig 5, Appendix Fig S33). Other 122 MXE

clusters were most likely present in the last common ancestor of the

eutherians (16 species, placental mammals). The core set of

mammalian MXE clusters includes 83 clusters shared between at

least 16 of the species and 61 clusters shared between 17 species

suggesting that their spurious absence in single mammals is likely

due to genome assembly gaps or problems in identifying the correct

orthologous genes. The remaining 29 MXE clusters of the core set

have a scattered distribution across the 18 mammals indicating

multiple independent branch- and species-specific cluster loss

events. Such taxon-specific loss events include the MXE clusters in

the SRPK1 and PQBP1 genes, which are absent in Glires (including

mouse and pika), the cluster of 10 MXEs in ABI3BP that has been

lost in the ancestor of mouse and rat, and the MXEs in OSTF1 and

PTPRS, which are absent in Afrotheria. The MXE clusters in IKZF3,

MBD1 and ATP10B, for example, are present in all Eutheria but not

in Metatheria (marsupials). The MXE cluster gain rate within euthe-

rian evolution towards human is relatively constant over time with

about 23 clusters per 10 million years. Interestingly, each of the 16

eutherian species also lost a similar number of MXE clusters (127

clusters on average, Appendix Fig S33). In total, 82% of the human

clusters containing validated MXEs are found in at least one further

mammal (Fig 5). In summary, the large core set of mammalian

MXEs and the overall conservation of MXE clusters suggest that

MXEs are considerably more conserved than cassette exons. This

observation supports expectations from considering the encoded

protein structures where MXEs are supposed to provide alternative

sequences for conserved secondary structural elements, while

cassette exons are on average considerably shorter and add flexibil-

ity to surface loops (Buljan et al, 2012; Ellis et al, 2012; Irimia et al,

2014).

To get a first glimpse on mutually exclusive splicing evolution

across bilaterians, we identified a set of 44 orthologous genes from

genes containing MXEs in Drosophila (Hatje & Kollmar, 2013) and

human genes containing MXE candidates (Appendix Fig S34,

Dataset EV10). Of these orthologous genes, 28 contain validated

MXEs in human, nine were validated to be spliced differently in

human, and seven could not be validated in human because read

mapping data are still missing; 20 (71%) of the genes containing

validated MXEs represent cases of incompatible reading frames lead-

ing to NMD in case of joined inclusion, and for 18 of these MXE

clusters multiple MXE-joining reads were found (Appendix Figs S34

and S35). We further analysed the 28 orthologous genes with vali-

dated MXEs and found five genes with homologous MXE clusters

(identical position in gene, identical exon phase), 13 genes with

MXE clusters in human that have homologous exons in Drosophila

and eight genes with MXEs in human where the corresponding

sequence regions in the orthologous Drosophila genes are part of

larger exons (Appendix Figs S35 and S36). The presence of ortholo-

gous MXE clusters has been attributed to convergent evolution

(Copley, 2004), although the respective analysis was in part based

on the comparison of non-orthologous genes (e.g. comparing

human sodium channel genes [e.g. SCN1A] with the Drosophila

calcium channel cac gene and not the orthologous sodium channel

para gene). At least for muscle myosin heavy chain genes it could

be demonstrated that Drosophila already lost several MXE clusters

compared to, for example, Daphnia pulex (crustacean) and

lophotrochozoans (Kollmar & Hatje, 2014) and that the evolutionary

history of the MXEs within each cluster is remarkably complex with

multiple independent exon duplications and losses (Odronitz &

Kollmar, 2008). Thus, detailed studies including more bilaterian and

non-bilaterian taxa would be necessary to finally conclude conver-

gent or divergent evolution for each of the human and Drosophila

MXE clusters. Although the overlap of MXEs in orthologous genes

of human and Drosophila is very low, the MXE gain and loss rates

are very similar (Hatje & Kollmar, 2013) indicating a conserved role

of tandem exon duplication in bilaterians. Gene structures can be

highly conserved between kingdoms (Rogozin et al, 2003), and

certain exons therefore seem to be predisposed to undergo duplica-

tion. In summary, these findings provide strong evidence for many

MXE gain and loss events during mammalian evolution, suggesting

a pronounced role of these processes in speciation and establishing

phenotypic differences.

Discussion

Using stringent criteria, including sequence similarity, reading frame

conservation and similar lengths, and billions of RNA-Seq reads, we

generated a strongly validated atlas of 1,399 human MXEs providing

insights into mutually exclusive splicing mechanics, specific expres-

sion patterns, susceptibility for pathogenic mutations and deep

evolutionary conservation across 18 mammals. The presented

increase in human MXEs by an order of magnitude lifts MXEs into

the present-day dimension of other human alternative splice types

(Pan et al, 2008; Wang et al, 2008; Gerstein et al, 2014). Saturation

analysis and the existence of 1,816 expressed but unconfirmed MXE

candidates suggest a potential 27% increase in the MXE-ome with a

twofold increase in data. Although alternative splice variants are

abundant at the transcriptome level, recent mass spectrometry anal-

yses suggested only small numbers of alternative transcripts to be

translated (Abascal et al, 2015a; Ezkurdia et al, 2015; Blencowe,

2017; Tress et al, 2017a,b). Interestingly, MXEs were particularly

enriched in the translated alternative transcripts, compared to other

splice variants. However, ribosome profiling data showed high

frequencies of ribosome engagement of cassette exons indicating

that these isoforms are likely translated (Weatheritt et al, 2016).

Similar results have been obtained through polyribosome profiling

(Sterne-Weiler et al, 2013; Floor & Doudna, 2016). These observa-

tions suggest that most of the MXEs evaluated at the transcript level

will also be found in the proteome.

About half (47%) of the 1,399 MXEs represent novel exons,

which are often expressed at low levels and whose expression is

restricted to few tissues and cell types, possibly explaining their

absence from current genome annotations. Extrapolating these

observations to all splice types and genes suggests the existence of

thousands yet unannotated exons in introns. This estimation is in

accordance with a recent analysis of more than 20,000 human RNA-

Seq datasets that revealed over 55,000 junctions not present in

annotations (Nellore et al, 2016). In this analysis, junctions found

in at least 20 reads across all samples were termed “confidently

called”. Although the total number of reads required for MXE vali-

dation in our analysis is lower (≥ 2 SJ reads in the 1SJ case, ≥ 6 SJ
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simple model expecting each shared cluster to be already present in

the last common ancestor of the respective species, we identified a

core set of at least 173 (28%) of the human MXE clusters conserved

throughout mammals (Fig 5, Appendix Fig S33). Other 122 MXE

clusters were most likely present in the last common ancestor of the

eutherians (16 species, placental mammals). The core set of

mammalian MXE clusters includes 83 clusters shared between at

least 16 of the species and 61 clusters shared between 17 species

suggesting that their spurious absence in single mammals is likely

due to genome assembly gaps or problems in identifying the correct

orthologous genes. The remaining 29 MXE clusters of the core set

have a scattered distribution across the 18 mammals indicating

multiple independent branch- and species-specific cluster loss

events. Such taxon-specific loss events include the MXE clusters in

the SRPK1 and PQBP1 genes, which are absent in Glires (including

mouse and pika), the cluster of 10 MXEs in ABI3BP that has been

lost in the ancestor of mouse and rat, and the MXEs in OSTF1 and

PTPRS, which are absent in Afrotheria. The MXE clusters in IKZF3,

MBD1 and ATP10B, for example, are present in all Eutheria but not

in Metatheria (marsupials). The MXE cluster gain rate within euthe-

rian evolution towards human is relatively constant over time with

about 23 clusters per 10 million years. Interestingly, each of the 16

eutherian species also lost a similar number of MXE clusters (127

clusters on average, Appendix Fig S33). In total, 82% of the human

clusters containing validated MXEs are found in at least one further

mammal (Fig 5). In summary, the large core set of mammalian

MXEs and the overall conservation of MXE clusters suggest that

MXEs are considerably more conserved than cassette exons. This

observation supports expectations from considering the encoded

protein structures where MXEs are supposed to provide alternative

sequences for conserved secondary structural elements, while

cassette exons are on average considerably shorter and add flexibil-

ity to surface loops (Buljan et al, 2012; Ellis et al, 2012; Irimia et al,

2014).

To get a first glimpse on mutually exclusive splicing evolution

across bilaterians, we identified a set of 44 orthologous genes from

genes containing MXEs in Drosophila (Hatje & Kollmar, 2013) and

human genes containing MXE candidates (Appendix Fig S34,

Dataset EV10). Of these orthologous genes, 28 contain validated

MXEs in human, nine were validated to be spliced differently in

human, and seven could not be validated in human because read

mapping data are still missing; 20 (71%) of the genes containing

validated MXEs represent cases of incompatible reading frames lead-

ing to NMD in case of joined inclusion, and for 18 of these MXE

clusters multiple MXE-joining reads were found (Appendix Figs S34

and S35). We further analysed the 28 orthologous genes with vali-

dated MXEs and found five genes with homologous MXE clusters

(identical position in gene, identical exon phase), 13 genes with

MXE clusters in human that have homologous exons in Drosophila

and eight genes with MXEs in human where the corresponding

sequence regions in the orthologous Drosophila genes are part of

larger exons (Appendix Figs S35 and S36). The presence of ortholo-

gous MXE clusters has been attributed to convergent evolution

(Copley, 2004), although the respective analysis was in part based

on the comparison of non-orthologous genes (e.g. comparing

human sodium channel genes [e.g. SCN1A] with the Drosophila

calcium channel cac gene and not the orthologous sodium channel

para gene). At least for muscle myosin heavy chain genes it could

be demonstrated that Drosophila already lost several MXE clusters

compared to, for example, Daphnia pulex (crustacean) and

lophotrochozoans (Kollmar & Hatje, 2014) and that the evolutionary

history of the MXEs within each cluster is remarkably complex with

multiple independent exon duplications and losses (Odronitz &

Kollmar, 2008). Thus, detailed studies including more bilaterian and

non-bilaterian taxa would be necessary to finally conclude conver-

gent or divergent evolution for each of the human and Drosophila

MXE clusters. Although the overlap of MXEs in orthologous genes

of human and Drosophila is very low, the MXE gain and loss rates

are very similar (Hatje & Kollmar, 2013) indicating a conserved role

of tandem exon duplication in bilaterians. Gene structures can be

highly conserved between kingdoms (Rogozin et al, 2003), and

certain exons therefore seem to be predisposed to undergo duplica-

tion. In summary, these findings provide strong evidence for many

MXE gain and loss events during mammalian evolution, suggesting

a pronounced role of these processes in speciation and establishing

phenotypic differences.

Discussion

Using stringent criteria, including sequence similarity, reading frame

conservation and similar lengths, and billions of RNA-Seq reads, we

generated a strongly validated atlas of 1,399 human MXEs providing

insights into mutually exclusive splicing mechanics, specific expres-

sion patterns, susceptibility for pathogenic mutations and deep

evolutionary conservation across 18 mammals. The presented

increase in human MXEs by an order of magnitude lifts MXEs into

the present-day dimension of other human alternative splice types

(Pan et al, 2008; Wang et al, 2008; Gerstein et al, 2014). Saturation

analysis and the existence of 1,816 expressed but unconfirmed MXE

candidates suggest a potential 27% increase in the MXE-ome with a

twofold increase in data. Although alternative splice variants are

abundant at the transcriptome level, recent mass spectrometry anal-

yses suggested only small numbers of alternative transcripts to be

translated (Abascal et al, 2015a; Ezkurdia et al, 2015; Blencowe,

2017; Tress et al, 2017a,b). Interestingly, MXEs were particularly

enriched in the translated alternative transcripts, compared to other

splice variants. However, ribosome profiling data showed high

frequencies of ribosome engagement of cassette exons indicating

that these isoforms are likely translated (Weatheritt et al, 2016).

Similar results have been obtained through polyribosome profiling

(Sterne-Weiler et al, 2013; Floor & Doudna, 2016). These observa-

tions suggest that most of the MXEs evaluated at the transcript level

will also be found in the proteome.

About half (47%) of the 1,399 MXEs represent novel exons,

which are often expressed at low levels and whose expression is

restricted to few tissues and cell types, possibly explaining their

absence from current genome annotations. Extrapolating these

observations to all splice types and genes suggests the existence of

thousands yet unannotated exons in introns. This estimation is in

accordance with a recent analysis of more than 20,000 human RNA-

Seq datasets that revealed over 55,000 junctions not present in

annotations (Nellore et al, 2016). In this analysis, junctions found

in at least 20 reads across all samples were termed “confidently

called”. Although the total number of reads required for MXE vali-

dation in our analysis is lower (≥ 2 SJ reads in the 1SJ case, ≥ 6 SJ
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reads in the 3SJ case), the numbers seem more conservative given

that we used 40 times less data for the validation.

The almost 10-fold increase in the human MXE-ome supports

recent suggestions that mutually exclusive splicing might play a

much more frequent role than anticipated (Pan et al, 2008; Wang

et al, 2008; Ezkurdia et al, 2012; Abascal et al, 2015a). By compar-

ing differentially expressed MXEs across cell types, tissue types and

development, we could show that 14% of all genes with MXE clus-

ters are shared between the three data sources, and 39% between

any two. Most notably, however, it is almost always a different

MXE from the same cluster that is differentially expressed, and only

3.3% of the MXEs are differentially expressed in all three data

sources. We believe that this indicates a high spatio-temporal regu-

lation of all MXEs in two-exon and multi-exon clusters. We rarely

observed switch-like expression with only one of the MXEs of each

cluster present in each cell- or tissue type or developmental stage.

Rather, one of the MXEs (“default MXE”) of each cluster was

present in most or all samples and the other MXEs were expressed

in several selected tissues and developmental stages (“regulated

MXEs”) in addition to the default MXE. Although the “regulated

MXE” is usually expressed at lower level compared to the “default

MXE”, there is almost always at least a single tissue or developmen-

tal stage where it is expressed at higher level. This supports previ-

ous assertions on the modulatory and compensatory effects of the

regulated MXE on the enzymatic, structural or protein interaction

functions of the affected protein domains (Letunic et al, 2002; Tress

et al, 2017a).

The concerted annotation and splicing analysis of novel exons

have deep implications for the detection and interpretation of

human disease (Bamshad et al, 2011; Gonzaga-Jauregui et al, 2012;

Xiong et al, 2015; Bowdin et al, 2016). For one, exome and panel

sequencing remains the method of choice for the detection of

genetic diseases and both methods rely on current exon annotations

(Chong et al, 2015). Furthermore, our data suggest that MXE

expression might reflect disease pathogenesis that could allow for

the prediction of the affected organ(s). It is intriguing to speculate

that the observed expression–disease association is a general

dogma, which could be used to predict yet unseen diseases from

published expression data, potentially bringing about a paradig-

matic shift in (computational) disease research.

Materials and Methods

Data sources

The human genome assembly and annotated proteins (all isoforms)

were obtained from GenBank (v. 37.3) (Benson et al, 2013). For MXE

candidate validation, we selected data from 515 publically available

samples comprising 31 tissues and organs, 12 cell lines and seven

developmental stages (Barbosa-Morais et al, 2012; Djebali et al,

2012; Tilgner et al, 2012; Xue et al, 2013; Yan et al, 2013; Fagerberg

et al, 2014) amounting to over 15 billion RNA-Seq reads. The data

were chosen to encompass common and rare potential splice events

in a broad range of tissues, cell types and embryonic stages. These

RNA-Seq data were obtained from either GEO (NCBI) or ENA (EBI)

databases (Dataset EV1). The description of the respective tissues and

developmental stages is also listed in Dataset EV1.

Reconstruction of gene structures

The gene structures for the annotated proteins were reconstructed

with Scipio (Keller et al, 2008; Hatje et al, 2013) using standard

parameters except –max_mismatch=7, –region_size=20000,
–single_target_hits, –max_move_exon=10, –gap_
to_close=0, –blat_oneoff=false, –blat_score=15,
–blat_identity=54, –exhaust_align_size=20000, and

–exhaust_gap_size=50. We let Scipio start with blat_
tilesize=7 and, if the entire gene structure could not be recon-

structed, reduced the blat_tilesize step by step to 4. All

parameters are less stringent than default parameters to increase the

chance to reconstruct all genes automatically.

Predicting mutually exclusive spliced exons

The human genome annotation does not contain specific attributes

for alternative splice variants and thus does not allow extracting

or obtaining lists for specific splice types. As mutually exclusive

spliced exons (MXEs), we regarded those neighbouring exons of a

gene locus that are present in only one of the annotated splice

variants. These MXEs were termed “annotated MXEs”. However,

exons appearing mutually exclusive are not necessarily spliced as

MXEs. Terminal exons, for example, are included in transcripts by

alternative promoter usage and by alternative cleavage and

polyadenylation. MXEs were predicted in the reconstructed genes

using the algorithm implemented in WebScipio (Pillmann et al,

2011). The minimal exon length was set to 10 aa (–min_exon_
length=10). WebScipio determines the length of each exon

(“search exon”) and generates a list of potential exonic regions

with identical lengths (to preserve the reading frame) within the

neighbouring up- and downstream introns. To account for poten-

tial insertions, we allowed length differences between search exon

length and potential new exonic region of up to 60 nucleotides in

steps of three nucleotides [–length_difference=20 (given in

aa)], thus obtaining a list of “exon candidates”. WebScipio then

translates all exon candidates in the same reading frame as the

search exon and removes all sequences that contain an in-frame

stop codon. In case of overlapping exonic candidate regions, we

modified the original WebScipio algorithm to favour exonic regions

with GT–AG splice junctions over other possible splice sites (GC–
AG and GG–AG). The translations of the exon candidates are then

compared to the translations of the search exons, and candidates

with an amino-acid similarity score of more than 10 (–min_
score=10) are included in the final list of MXE candidates.

Because the exon candidate scoring is done at the amino acid

level, WebScipio expects candidates for 50 exons of genes to start

with a methionine, and candidates for 30 exons of genes to end

with a stop codon. This minor limitation is due to WebScipio’s

original development as gene reconstruction software. MXE candi-

dates for terminal exons were only searched in direction to the

next/previous internal exon. The reason for looking for MXE

candidates of annotated terminal exons is that we cannot exclude

that further up- and downstream exons are missing in the annota-

tion, which would turn the new MXE candidates to internal exons.

Because of the described minor limitation, however, we can only

propose MXE candidates if supposed additional up- and down-

stream exons are non-coding exons. Because terminal exons are
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reads in the 3SJ case), the numbers seem more conservative given

that we used 40 times less data for the validation.

The almost 10-fold increase in the human MXE-ome supports

recent suggestions that mutually exclusive splicing might play a

much more frequent role than anticipated (Pan et al, 2008; Wang

et al, 2008; Ezkurdia et al, 2012; Abascal et al, 2015a). By compar-

ing differentially expressed MXEs across cell types, tissue types and

development, we could show that 14% of all genes with MXE clus-

ters are shared between the three data sources, and 39% between

any two. Most notably, however, it is almost always a different

MXE from the same cluster that is differentially expressed, and only

3.3% of the MXEs are differentially expressed in all three data

sources. We believe that this indicates a high spatio-temporal regu-

lation of all MXEs in two-exon and multi-exon clusters. We rarely

observed switch-like expression with only one of the MXEs of each

cluster present in each cell- or tissue type or developmental stage.

Rather, one of the MXEs (“default MXE”) of each cluster was

present in most or all samples and the other MXEs were expressed

in several selected tissues and developmental stages (“regulated

MXEs”) in addition to the default MXE. Although the “regulated

MXE” is usually expressed at lower level compared to the “default

MXE”, there is almost always at least a single tissue or developmen-

tal stage where it is expressed at higher level. This supports previ-

ous assertions on the modulatory and compensatory effects of the

regulated MXE on the enzymatic, structural or protein interaction

functions of the affected protein domains (Letunic et al, 2002; Tress

et al, 2017a).

The concerted annotation and splicing analysis of novel exons

have deep implications for the detection and interpretation of

human disease (Bamshad et al, 2011; Gonzaga-Jauregui et al, 2012;

Xiong et al, 2015; Bowdin et al, 2016). For one, exome and panel

sequencing remains the method of choice for the detection of

genetic diseases and both methods rely on current exon annotations

(Chong et al, 2015). Furthermore, our data suggest that MXE

expression might reflect disease pathogenesis that could allow for

the prediction of the affected organ(s). It is intriguing to speculate

that the observed expression–disease association is a general

dogma, which could be used to predict yet unseen diseases from

published expression data, potentially bringing about a paradig-

matic shift in (computational) disease research.

Materials and Methods

Data sources

The human genome assembly and annotated proteins (all isoforms)

were obtained from GenBank (v. 37.3) (Benson et al, 2013). For MXE

candidate validation, we selected data from 515 publically available

samples comprising 31 tissues and organs, 12 cell lines and seven

developmental stages (Barbosa-Morais et al, 2012; Djebali et al,

2012; Tilgner et al, 2012; Xue et al, 2013; Yan et al, 2013; Fagerberg

et al, 2014) amounting to over 15 billion RNA-Seq reads. The data

were chosen to encompass common and rare potential splice events

in a broad range of tissues, cell types and embryonic stages. These

RNA-Seq data were obtained from either GEO (NCBI) or ENA (EBI)

databases (Dataset EV1). The description of the respective tissues and

developmental stages is also listed in Dataset EV1.

Reconstruction of gene structures

The gene structures for the annotated proteins were reconstructed

with Scipio (Keller et al, 2008; Hatje et al, 2013) using standard

parameters except –max_mismatch=7, –region_size=20000,
–single_target_hits, –max_move_exon=10, –gap_
to_close=0, –blat_oneoff=false, –blat_score=15,
–blat_identity=54, –exhaust_align_size=20000, and

–exhaust_gap_size=50. We let Scipio start with blat_
tilesize=7 and, if the entire gene structure could not be recon-

structed, reduced the blat_tilesize step by step to 4. All

parameters are less stringent than default parameters to increase the

chance to reconstruct all genes automatically.

Predicting mutually exclusive spliced exons

The human genome annotation does not contain specific attributes

for alternative splice variants and thus does not allow extracting

or obtaining lists for specific splice types. As mutually exclusive

spliced exons (MXEs), we regarded those neighbouring exons of a

gene locus that are present in only one of the annotated splice

variants. These MXEs were termed “annotated MXEs”. However,

exons appearing mutually exclusive are not necessarily spliced as

MXEs. Terminal exons, for example, are included in transcripts by

alternative promoter usage and by alternative cleavage and

polyadenylation. MXEs were predicted in the reconstructed genes

using the algorithm implemented in WebScipio (Pillmann et al,

2011). The minimal exon length was set to 10 aa (–min_exon_
length=10). WebScipio determines the length of each exon

(“search exon”) and generates a list of potential exonic regions

with identical lengths (to preserve the reading frame) within the

neighbouring up- and downstream introns. To account for poten-

tial insertions, we allowed length differences between search exon

length and potential new exonic region of up to 60 nucleotides in

steps of three nucleotides [–length_difference=20 (given in

aa)], thus obtaining a list of “exon candidates”. WebScipio then

translates all exon candidates in the same reading frame as the

search exon and removes all sequences that contain an in-frame

stop codon. In case of overlapping exonic candidate regions, we

modified the original WebScipio algorithm to favour exonic regions

with GT–AG splice junctions over other possible splice sites (GC–
AG and GG–AG). The translations of the exon candidates are then

compared to the translations of the search exons, and candidates

with an amino-acid similarity score of more than 10 (–min_
score=10) are included in the final list of MXE candidates.

Because the exon candidate scoring is done at the amino acid

level, WebScipio expects candidates for 50 exons of genes to start

with a methionine, and candidates for 30 exons of genes to end

with a stop codon. This minor limitation is due to WebScipio’s

original development as gene reconstruction software. MXE candi-

dates for terminal exons were only searched in direction to the

next/previous internal exon. The reason for looking for MXE

candidates of annotated terminal exons is that we cannot exclude

that further up- and downstream exons are missing in the annota-

tion, which would turn the new MXE candidates to internal exons.

Because of the described minor limitation, however, we can only

propose MXE candidates if supposed additional up- and down-

stream exons are non-coding exons. Because terminal exons are
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included in transcripts by alternative promoter usage and by alter-

native cleavage and polyadenylation, we treated the list of terminal

exon candidates separately (Appendix Fig S4). This list might be

of interest for further investigation for other researchers. Except

for this Appendix Fig S4, we entirely focused on internal MXE

candidates.

Definition of criteria for RNA-Seq evaluation of the
MXE candidates

While the sole mapping of RNA-Seq reads reveals the transcription

of the respective genomic region, it does not prove the inclusion into

functional transcripts. The mutually exclusive inclusion of the MXE

candidates into functional transcripts requires at least the following

splice junction (SJ) reads (Appendix Fig S5): (i) There must be SJ

reads matching from every MXE to up- or downstream gene regions

bridging the other MXEs of the cluster. The latter criterion takes into

account that the annotated exons neighbouring the clusters of MXEs

might not themselves be constitutive but alternative exons as, for

example, in NCX1 (Appendix Fig S6). (ii) SJ reads mapping from

one to another MXE candidate lead to MXE candidate rejection

except for those MXEs leading to a frame shift. Without this

constraint, which has not been set in earlier analyses (Wang et al,

2008), MXEs cannot be distinguished from neighbouring differen-

tially included exons, which are quite common in human (data not

shown; see e.g. Hammesfahr & Kollmar, 2012 and Appendix Fig

S6). Thus, there are three constraints for a cluster of two MXEs

while clusters of three and five MXEs, for example, already require

seven and 18 constraints, respectively (Appendix Figs S5 and S7).

Under more stringent conditions, also SJ reads from MXEs to the

neighbouring annotated exons independent of their splice type

would be required giving rise to five constraints for a cluster of two

MXEs (Appendix Fig S5).

Note that as a matter of principle the read coverage of MXEs and

other alternative splicing events is considerably lower than that of

constitutive exons due to their mutually exclusive inclusion in the

transcripts. For example, each of the exons of a cluster of three

MXEs is expected to only have, on average, one-third the coverage

of the constitutive exons of the same gene. The number of predicted

exons, of which both sites are supported by splice junction reads, is

also considerably lower than the total number of supported MXE

candidates (Appendix Fig S3), which we think is due to the general

low coverage of the exons and not due to read mapping and exon

border prediction problems (Appendix Fig S3).

Validation of the MXE candidates by RNA-Seq mapping

SRA files were converted to FASTQ files using fastq-dump soft-

ware (v. 2.1.18). FASTQ files were mapped onto the human refer-

ence genome (hg19) using the STAR aligner (v_2.3.0e_r291)

(Dobin et al, 2013). To this end, we first generated a reference

genome index with –sjdbGTFfeatureExon, –sjdbGTFtagEx
onParentTranscript, a splice junction overhang size of

99 (–sjdbOverhang) and GTF annotation files containing all

transcripts and all MXE candidates. The MXE candidate GTF file

was extracted from Kassiopeia database and is available for down-

load there (Hatje & Kollmar, 2014). The mapping was done for

each sample separately. We allowed a rather stringent maximum

mismatch of 2 (–outFilterMismatchNmax 2; STAR default is

10) and the output was forced to SAM format (–outStd SAM).
Otherwise, default settings were used. The resulting files with the

mapped reads were sorted, converted to BAM format and

indexed with SAMtools (sort -n) for further processing (Li et al,

2009).

Distinguishing MXEs from other splice variants

For the analysis of the read mapping data, we disassembled clusters

with more than two MXE candidates into all possible sub-clusters.

For example, a cluster with four MXE candidates [1,2,3,4] was frac-

tionated into the following sub-cluster: [1,2], [2,3], [3,4], [1,2,3],

[2,3,4], [1,2,3,4]. Each of these sub-clusters was analysed indepen-

dently according to the validation criteria (splice junction reads

present, exon-joining reads absent). If all criteria were satisfied for

one of the sub-clusters, all MXE candidates of the respective sub-

cluster were labelled “verified”. In a second analysis, each cluster of

MXE candidates was analysed for exon-joining reads, which denote

constitutive splicing or splicing as differentially included exons.

However, MXE candidates of clusters and sub-clusters with exon-

joining reads but exon lengths not divisible by three were also

flagged as “verified” because their combined inclusion would lead

to a frame shift in the translation of the transcript.

Limits of the MXE dataset

Similar to every genome annotation dataset, also the current dataset

of RNA-Seq validated MXEs has some limitations. Some are inherent

to the still incomplete human genome annotation that was used as

basis for generating the list of MXE candidates. As mentioned above

and shown in Appendix Fig S2C, there are genes with mis-annotated

terminal exons overlapping MXEs. Also, there are “transcripts” in

the GenBank dataset that combine exons from (now) different

genes. The presence of these “transcripts” in the genome annotation

might be the result of mis-interpreting cDNA data as coding

sequence although these might be the result of some level of mis-

splicing.

Similarly, mis-splicing might be an important reason for validat-

ing true MXEs as “non-MXEs”. A single exon-joining read turns

MXE candidates into non-MXEs, whose mutually exclusive splicing

might otherwise be supported by thousands of MXE-bridging SJ

reads. Given these limitations, we expect that many of the exons,

that we currently tag as constitutive or other alternative splicing,

might in fact be MXEs. On the other hand, our MXE dataset might

also contain some exons that are in fact non-MXEs. This is well

demonstrated in the saturation analysis (Fig 1C) showing that

although more data will lead to the validation of many more exons

as MXEs, for which SJ reads are currently missing, there will be

clusters that will be rejected as soon as more data include exon-

joining reads. In addition, some MXEs with only a few supporting SJ

reads might in fact be pseudoexons. However, we also did not

observe any SJ reads for about 15% of the annotated exons, which

are nevertheless not regarded as pseudoexons (Fig 1B, Appendix Fig

S3). Finally, some MXEs determined from transcripts showing

complex splicing might in fact be mutually exclusive in transcripts,

but not in the sense of a cluster of uninterrupted neighbouring

exons.
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Saturation analysis

Theoretically, increasing the number of samples should also

increase the number of validated MXEs, as the total increase in read

number for different observed or novel tissues should increase the

read evidence for the predicted MXEs. At the same time, increasing

the number of reads also heighten the chance of rejecting an MXE

candidate. This raises the question of what the expected number of

validated and rejected MXEs for increasing numbers of samples is.

Additionally, it would be interesting to obtain the theoretical point

of saturation, the maximum expected number of MXEs in the

human genome.

To obtain this information, sub-samples of STAR-aligned RNA-

Seq splice junction (SJ) reads were used to estimate the expected

recall and false-positive rate (Fig 1C, Appendix Fig S11). The

number of verified MXEs was calculated using SJ reads for different

percentages of the data. Similarly, the number of rejected MXEs was

obtained. To reduce the bias from data sampling, datasets were

chosen randomly and the saturation analysis was performed in 30

independent runs. To calculate the mean of validated and rejected

MXEs at respective percentages of the total RNA-Seq data used for

validation, we used the respective numbers from the 30 independent

runs.

To estimate the potential increase in MXEs given more sequenc-

ing data, we fit the sub-sampling data to the number of expected

MXEs f(x) using Matlab and the optimal fits were obtained for a

power function

fðxÞ ¼ a % xb þ c

with the linear coefficient a, the exponential coefficient b and the

error term c (Appendix Fig S11B). Given a twofold increase in the

number of reads, the expected number of validated MXEs (1SJ) is

1,769 ' 47 (95% confidence interval), validated MXEs (3SJ) is

1,081 ' 12, rejected MXEs (1SJ) is 227 ' 9, and the number of

rejected MXEs (3SJ) is 95 ' 5 (Appendix Fig S11B). While the

number of validated MXEs is far from saturation (a 100%

increase in data results in 27% increase in the number of valida-

tions), the number of rejected MXEs seems to be saturated (a

100% increase in data results in 2% increase in the number of

rejections).

qPCR validation of MXE candidates

Total RNA was purified from healthy human brain tissue (substantia

nigra) using Trizol kit (Tri Reagent, Sigma T9424) following manu-

facturer’s instructions. RNA was further purified using the RNA

Clean & Concentrator © TM -5 kit (Zymo Research, cat. R1013). The

RNA quality was investigated using the 6000 nano assay on a Bio-

analyzer 2100 (Agilent Technologies). Reverse transcription was

carried out using the iScript © cDNA Synthesis kit (cat# 1708890,

Bio-Rad) using approximately 500 ng of total RNA in a volume of

20 ll.
Relative expression levels of the genes of interest as well as one

housekeeping gene (glyceraldehyde 3-phosphate dehydrogenase

[Gapdh]) were determined by qPCR using a LightCycler! 480. All

qPCR experiments were performed in duplicates using SYBRTM

Green PCR Master Mix (cat # 4309155). For each PCR, 20 ng cDNA

was used and negative controls contained no cDNA. The qPCR was

run under the following conditions: pre-incubation at 95°C for

5 min, denaturation at 95°C for 10 s, annealing 60°C for 15 s, exten-

sion at 72°C for 10 s repeated for 40 cycles (Sybr green standard

protocol II). Detailed information on the primers and qPCR results

can be found in Dataset EV3.

Analysis of the splice mechanism

To determine the distance between intron donor site and branch

point, we analysed all introns smaller than 500 bp using the stan-

dalone version of SVM-BPfinder (beta) (Corvelo et al, 2010) to

predict branch point locations. Longer introns harbour high

numbers of branch point candidates, and the accuracy of the branch

point prediction considerably decreases. Longer introns also often

contain multiple branch points with different splicing kinetics

(Corvelo et al, 2010) so that a steric hindrance criterion for splicing

multiple MXEs into the same transcript might not apply anymore.

Branch points are usually located in the 30 regions of the introns and

it seems highly unlikely to identify only a single potential branch

point within an, for example, > 2,000-bp intron, which would in

addition be located within the 50 50 bps. Thus, the highest-scoring

location within the < 500-bp introns was taken as best guess for the

branch point and the distance to the intron donor site determined.

In order to identify U12-type introns, we analysed all donor

splice sites of the introns preceding the clusters of MXEs and those

subsequent to all MXEs using the consensus pattern described by

Sharp and Burge (Sharp & Burge, 1997). The acceptor splice sites of

U12-type introns do not show conserved patterns and were there-

fore not used here for verification.

Binding windows for competing intron RNA secondary structures

were predicted for all candidate clusters of MXEs using the SeqAn

package (Döring et al, 2008). The identified binding windows of all

homologous genes were aligned using MUSCLE (Edgar, 2004) and

the RNA secondary structures predicted by RNAalifold (ViennaRNA

package) (Lorenz et al, 2011).

Mapping MXE sequences onto protein structures

To identify the best structural models for the sequences encoded by

the MXEs, we mapped the protein sequences of the respective genes

against available protein structure data. To this end, we made use of

a recently developed database, called Allora (http://allora.motorpro

tein.de), in which genomic information is mapped onto protein

structures. Allora currently contains 94,148 PDB entries (derived

from the RCSB Protein Data Bank, http://www.rcsb.org, Rose et al,

2015) with 247,959 chains, of which 120,665 represent unique

sequences. Based on the database references in the PDB entries, the

full-length proteins were fetched from UniProt KB (UniProt Consor-

tium, 2015) or GenBank (Benson et al, 2013) and the corresponding

gene structures of the eukaryotic proteins reconstructed with

WebScipio (Hatje et al, 2013). In Allora, all PDBs belonging to the

same UniProt or GenBank entries are connected. BLAST+ (Camacho

et al, 2009) was used to search for the most similar UniProt/

GenBank protein sequence compared to the human proteins

containing MXEs. The hit with the lowest E-value was taken, and

the associated PDB chains were aligned to the human protein using

m-coffee (Wallace et al, 2006). The MXE part of the alignment was
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extracted for further analysis (=> “MXE structure”). As “intron

distances”, we determined the distances between the CA atoms of

the first and the last residues of the MXE structures.

Evaluating the differential inclusion of MXEs into transcripts

Splice junction read counts were extracted from STAR output

“SJ.out.tab” files. For each MXE in a cluster, the per cent-spliced-in

(PSI) value was calculated by dividing the number of junction reads

of the MXE by the sum of junction reads for all MXEs in the same

cluster. Differential inclusion analysis on the Human Protein Atlas,

Embryonic Development and ENCODE datasets was performed

using a Kruskal–Wallis rank sum test with a Benjamini–Hochberg
(BH) multiple testing correction. Values were computed using the

“kruskal.test” and “p.adjust” functions in R. For each project, we

created a design matrix with sample name and experimental condi-

tion and replicate numbers. The results of the differential inclusion

analysis are summarized in Dataset EV5.

Differential expression of pairs of annotated and novel MXEs

For each sample (tissue, cell type and developmental stage), we

calculated the median RPKM (reads per kilobase of transcript per

million mapped reads) from the replicates for each MXE. To compile

a set of MXEs with significant expression, only pairs of MXEs were

selected of which either the annotated or the novel exon had a

median expression of more than 3. The number of MXEs for this

analysis would not considerably decrease if a cut-off of 30 were

chosen (252 MXEs at a cut-off of 3 versus 240 MXEs at a cut-off of

30). For each pair of MXEs, we subtracted the PSI value of the ubiq-

uitous/known/non-SNP-containing MXE from the PSI value of the

respective specific/novel/SNP-containing MXE (delta PSI values)

and scaled those values between !1 (high PSI for ubiquitous/

known/non-SNP-containing MXE) and 1 (high PSI for specific/

novel/SNP-containing MXE) (see also Figs 3A and 4C, Appendix Fig

S23). In case an MXE pair was not expressed in a certain tissues

(NA or 0), the value was set to 0.

Inequality analysis

The mean PSI values of each MXE were calculated for each tissue in

the Human Protein Atlas project, each developmental stage in the

embryonic development (Peking University) project, and each cell

type in the ENCODE (Caltech) project. For each MXE, the Gini index

(Ceriani & Verme, 2012) was calculated independently for each

project based on the mean PSI values using the Gini function with

standard parameters from the ineq R package version 0.2-13 (Achim

Zeileis, Christian Kleiber, https://CRAN.R-project.org/package=ine

q; Cowell, 2011). For the analysis of MXE clusters, only those clus-

ters were taken into account that include at least two MXEs with an

RPKM ≥ 10 in at least one dataset within each project. Furthermore,

we excluded clusters where all MXEs have “NA” PSI values within

each project (244, 96 and 225 clusters, respectively).

Identification of pathogenic SNPs in MXEs

To identify potentially pathogenic SNPs in MXEs, the MXEs were

compared to the ClinVar SNP database (ClinVar VCF file

downloaded on 11 Aug 2016, version updated at 30 Jun 2016,

Landrum et al, 2016). The ClinVar variant summary file (VCF file)

was converted into a BED file keeping all original information. Posi-

tions overlapping between MXEs and ClinVar-SNPs were accessed

using the BEDTools feature intersection software (Quinlan & Hall,

2010). SNPs are classified as pathogenic or non-pathogenic accord-

ing to ClinVar’s “ClinicalSignificance” field annotation. All entries

containing “benign” and all structural variations were removed. All

ClinVar-SNPs overlapping with MXEs were manually verified in

order to keep only potentially pathogenic variations.

To access the statistical significance of disease enrichment in

MXEs and cassette exons, we compared the amount of pathogenic

SNP-containing to non-SNP-containing exons. Of 615,410 annotated

exons, 21,030 (3.4%) contain pathogenic SNPs; of 1,399 MXEs, 99

(7.1%) contain pathogenic SNPs; and of 31,745 cassette exons,

2,143 (6.8%) contain pathogenic SNPs. The ~2-fold enrichment of

alternative splicing-associated exons (MXEs and cassette exons) is

highly significant (Fisher’s exact test, P-value MXE = 3 × 10!11,

P-value cassette = 2.2 × 10!16).

Disease prediction using pathogenic SNPs in MXEs

In order to predict disease from MXE expression, we first filtered

for MXEs that had a minimal RPKM value of 3 and then subtracted

the expression of the non-SNP-containing MXE from the SNP-

containing MXE for all MXE pairs with mutations, across all devel-

opmental stages, tissues and cell types (49 features per MXE pair).

Delta PSI values (PSI for SNP-containing MXE—PSI for non-SNP-

containing MXE) were subsequently scaled and centred, and the

MXE pairs were annotated to two disease classes, cardiomyopathy-

neuromuscular disease (n = 10) or other diseases (n = 14). We

regrouped genes into these categories to obtain relatively balanced

categories while keeping a minimum of 10 observations per

category.

Classification with limited observations needs careful execution,

as over-fitting (high variance) and under-fitting (high bias) are

common problems. To avoid high variance or bias, several crucial

steps were taken. First, we did not optimize hyperparameters, using

a Random Forest with 250 trees and a maximum tree depth of 16

(number of predictors/3). Second, we used leave-one-out cross-vali-

dation to avoid sampling bias and model instability. Third, diseases

were grouped into two categories of relatively even size (see above).

Models were built using the R packages caret (Kuhn, 2008) and

randomForest, and ROC curves were generated with ROCR (Sing

et al, 2005).

Of note, models trained on PSI values (considering only the PSI

value of the SNP-containing MXE, data not shown) or RPKM values

(Appendix Fig S29) obtained similar accuracies as the model trained

on delta PSI values, indicating the stability of the prediction across

slight variations in feature pre-processing.

Gene ontology enrichment analysis

We used WebGestalt for Gene Ontology enrichment analyses (Wang

et al, 2013). The lists of unique genes in gene symbol format were

uploaded to WebGestalt and the GO Enrichment Analysis selected.

The entire human genome annotation was set as background and

0.05 as threshold for the P-value for the significance test using the

ª 2017 The Authors Molecular Systems Biology 13: 959 | 2017

Klas Hatje et al Human mutually exclusive splicing Molecular Systems Biology

15

Published online: December 14, 2017 

3. Publications and Manuscripts

145



default statistical method “hypergeometric”. Categorical enrichment

of MXEs and cassette exons was summarized in a heatmap.

Protein–protein interaction analysis

The protein–protein interaction network was built by using Gene-

MANIA webservice (Warde-Farley et al, 2010). The list of unique

genes containing a pathogen SNP was submitted to GeneMANIA’s

webservice, and we downloaded the resulting network in SVG

format and manually included disease and ontology information.

Assessing the dynamics of MXE annotations over time

MXEs might have already been annotated/described although not

been included in the NCBI reference dataset. This might especially

account for newer annotations based on the recently published

ENCODE project data. Therefore, we obtained alternative protein

sequence datasets from Aceview (Thierry-Mieg & Thierry-Mieg,

2006) and Ensembl (Yates et al, 2016). Further datasets like the

VEGA and GENCODE annotations are continuously integrated into

Ensembl and were therefore not considered separately. The Aceview

database has been built in the year 2000 to represent comprehensive

and non-redundant sequences of all public mRNA sequences. The

human dataset has last been updated in November 2011, thus

before the availability of the ENCODE data.

To assess the novelty of our MXE assignments with respect to

the timely updates and changes of the human annotations, we

compared our data with that of Aceview and with the latest annota-

tion from Ensembl (Fig 5, Appendix Fig S1). As at the beginning of

the project, only a few MXEs are annotated as such in other data-

bases. Surprisingly, however, many of the previously annotated

exons (independent of their splicing status) were removed from the

latest Ensembl annotation, although our RNA-Seq mapping not only

strongly supports their inclusion into transcripts but also their splic-

ing as MXEs. This shows that further collaborative efforts are

needed to reveal a stable and persistent human gene annotation.

Ab initio exon prediction

Exon prediction by ab initio gene finding software is another means

of generating a database of potential coding sequences. Ab initio

exon prediction was done with AUGUSTUS (Stanke & Waack, 2003)

using default parameters to find alternative splice forms and the

feature set for Homo sapiens.

Identifying orthologous proteins in 18 mammals

Cross-species searches in 18 mammals (Dataset EV9) were done

with WebScipio (Hatje et al, 2013) with same parameters as for

gene reconstructions except –min_identity=60, –max_mis-
match=0 (allowing any number of mismatches), –gap_to_-
close=10, –min_intron_length=35, –blat_tilesize=6
and –blat_oneoff=true. MXE candidates in cross-species gene

reconstructions were searched with –length_difference=20,
–min_score=15 and –min_exon_length=15, for all exons in

all introns but not in up- and downstream regions. Reasons for not

detecting clusters of MXEs might be gene and MXE loss events,

sequence divergence precluding ortholog identification, and

assembly gaps. For determining the origin of a conserved MXE clus-

ter, we used a simple model expecting each shared cluster to be

already present in the last common ancestor of the respective

species. This approach is equivalent to inferring ancestral character

states with Dollo parsimony (Farris, 1977).

Comparing human genes with MXEs to orthologous genes in
Drosophila melanogaster

Orthologous genes in D. melanogaster for all human genes

containing MXE candidates were obtained with the Ensemble

BioMart service (Yates et al, 2016). This list of orthologous genes

was filtered with the list of D. melanogaster genes containing

MXEs, which was obtained from Hatje and Kollmar (2013), to

obtain a list of genes with both types of exons, (i) MXEs in human

and MXEs in D. melanogaster, and (ii) MXE candidates in human

but validated to be spliced differently and MXEs in

D. melanogaster. Several of the human and D. melanogaster genes

contain multiple clusters of MXEs. Thus, we compared all genes

manually to determine whether MXEs are orthologous in both

species, whether MXEs in human have orthologous exons in

D. melanogaster, and whether MXEs in human do not correspond

to exons in D. melanogaster genes.

Data availability

All generated data can be searched, filtered and browsed at Kassio-

peia (www.motorprotein.de/kassiopeia; Hatje & Kollmar, 2014).

The primary RNA-Seq datasets used in this study are available in

the following databases:

http://www.ebi.ac.uk/ena/data/view/ERP003613

http://www.ebi.ac.uk/ena/data/view/ERP000546

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36552

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44183

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33480

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30567

Expanded View for this article is available online.
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default statistical method “hypergeometric”. Categorical enrichment

of MXEs and cassette exons was summarized in a heatmap.

Protein–protein interaction analysis

The protein–protein interaction network was built by using Gene-

MANIA webservice (Warde-Farley et al, 2010). The list of unique

genes containing a pathogen SNP was submitted to GeneMANIA’s

webservice, and we downloaded the resulting network in SVG

format and manually included disease and ontology information.

Assessing the dynamics of MXE annotations over time

MXEs might have already been annotated/described although not

been included in the NCBI reference dataset. This might especially

account for newer annotations based on the recently published

ENCODE project data. Therefore, we obtained alternative protein

sequence datasets from Aceview (Thierry-Mieg & Thierry-Mieg,

2006) and Ensembl (Yates et al, 2016). Further datasets like the

VEGA and GENCODE annotations are continuously integrated into

Ensembl and were therefore not considered separately. The Aceview

database has been built in the year 2000 to represent comprehensive

and non-redundant sequences of all public mRNA sequences. The

human dataset has last been updated in November 2011, thus

before the availability of the ENCODE data.

To assess the novelty of our MXE assignments with respect to

the timely updates and changes of the human annotations, we

compared our data with that of Aceview and with the latest annota-

tion from Ensembl (Fig 5, Appendix Fig S1). As at the beginning of

the project, only a few MXEs are annotated as such in other data-

bases. Surprisingly, however, many of the previously annotated

exons (independent of their splicing status) were removed from the

latest Ensembl annotation, although our RNA-Seq mapping not only

strongly supports their inclusion into transcripts but also their splic-

ing as MXEs. This shows that further collaborative efforts are

needed to reveal a stable and persistent human gene annotation.

Ab initio exon prediction

Exon prediction by ab initio gene finding software is another means

of generating a database of potential coding sequences. Ab initio

exon prediction was done with AUGUSTUS (Stanke & Waack, 2003)

using default parameters to find alternative splice forms and the

feature set for Homo sapiens.

Identifying orthologous proteins in 18 mammals

Cross-species searches in 18 mammals (Dataset EV9) were done

with WebScipio (Hatje et al, 2013) with same parameters as for

gene reconstructions except –min_identity=60, –max_mis-
match=0 (allowing any number of mismatches), –gap_to_-
close=10, –min_intron_length=35, –blat_tilesize=6
and –blat_oneoff=true. MXE candidates in cross-species gene

reconstructions were searched with –length_difference=20,
–min_score=15 and –min_exon_length=15, for all exons in

all introns but not in up- and downstream regions. Reasons for not

detecting clusters of MXEs might be gene and MXE loss events,

sequence divergence precluding ortholog identification, and

assembly gaps. For determining the origin of a conserved MXE clus-

ter, we used a simple model expecting each shared cluster to be

already present in the last common ancestor of the respective

species. This approach is equivalent to inferring ancestral character

states with Dollo parsimony (Farris, 1977).

Comparing human genes with MXEs to orthologous genes in
Drosophila melanogaster

Orthologous genes in D. melanogaster for all human genes

containing MXE candidates were obtained with the Ensemble

BioMart service (Yates et al, 2016). This list of orthologous genes

was filtered with the list of D. melanogaster genes containing

MXEs, which was obtained from Hatje and Kollmar (2013), to

obtain a list of genes with both types of exons, (i) MXEs in human

and MXEs in D. melanogaster, and (ii) MXE candidates in human

but validated to be spliced differently and MXEs in

D. melanogaster. Several of the human and D. melanogaster genes

contain multiple clusters of MXEs. Thus, we compared all genes

manually to determine whether MXEs are orthologous in both

species, whether MXEs in human have orthologous exons in

D. melanogaster, and whether MXEs in human do not correspond

to exons in D. melanogaster genes.

Data availability

All generated data can be searched, filtered and browsed at Kassio-

peia (www.motorprotein.de/kassiopeia; Hatje & Kollmar, 2014).

The primary RNA-Seq datasets used in this study are available in

the following databases:

http://www.ebi.ac.uk/ena/data/view/ERP003613

http://www.ebi.ac.uk/ena/data/view/ERP000546

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36552

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE44183

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE33480

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE30567

Expanded View for this article is available online.
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Chapter 1

Identifying Sequenced Eukaryotic Genomes 
and Transcriptomes with diArk

Martin Kollmar and Dominic Simm

Abstract

The diArk Eukaryotic Genome Database is a manually curated and updated repository of available eukary-
otic genome and transcriptome assemblies. diArk is a key resource for researchers interested in comparative 
eukaryotic genomics, and the entry point to browsing sequenced eukaryotes in general and to find the 
most closely related species to the own organism of interest in particular. The exponentially increasing 
number of sequenced species demands sophisticated search and data presentation tools. In this chapter we 
describe how to navigate the diArk database keeping a first-time user in mind.

Key words Eukaryotes, Sequenced genomes, Genome assembly, Transcriptome assembly

1 Introduction

The diArk Eukaryotic Genome Database (http://www.diark.org) 
was started in 2005 as a central repository for eukaryotes with 
genome assembly data available [1]. The species comprised human, 
the most widely used model organisms such as Drosophila melano-
gaster, Caenorhabditis elegans, and Arabidopsis thaliana, and mul-
tiple fungi. While dedicated databases were available for most of 
these species connecting the genomes with additional data and 
analyses, diArk filled the gap as central entry point allowing browsing 
through the sequenced eukaryotome and providing links to species 
databases and primary data repositories. Given the progress in 
sequencing strategy and technology development it was clear that 
genome assemblies will become available with increasing pace. 
Several genome sequencing initiatives had been started aiming to 
obtain genome assemblies of multiple related species. Large scale 
at that time meant the sequencing of 12 Drosophila species [2] or 
the sequencing of 29 low- and high-coverage mammalian genomes 
[3]. Soon after, size and speed of the projects increased by two 
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orders of magnitude. Current large scale projects cover all major 
branches of eukaryotic life and new genomes are released on a daily 
basis. The most important ongoing whole-genome sequencing 
projects are the sequencing of vertebrates within Genome 10K [4], 
the sequencing of all 10,500 bird species within B10K [5], the 
sequencing of 5,000 arthropods (i5k) [6], the 959 Nematodes 
project [7, 8], the 1000 Fungal Genomes Project (1FKG; 
http://1000.fungalgenomes.org), and the sequencing of 1000 
yeasts (y1000+; https://y1000plus.wei.wisc.edu/). In addition, 
transcriptomes have been sequenced and assembled from 1000 
plants (1KP project) [9], more than 1200 insects (1KITE project; 
http://www.1kite.org), and hundreds of marine microorganisms 
within MMETSP (Marine Microbial Eukaryote Transcriptome 
Sequencing Project) [10]. Pilot data have been obtained for two 
further ambitious projects, the 1000 Plant & Animal Reference 
Genomes Project and Fish-T1K [11], but it is not clear whether 
these projects still continue. Most recently, plans to sequence the 
genomes of at least 10,000 plants have been announced (10KP) 
[12]. In addition to these massive sequencing efforts, there are 
dozens of small-scale sequencing projects dedicated to a few spe-
cies, and hundreds of groups generate genome and transcriptome 
assemblies of just single species. Because most journals require 
only the raw sequencing data to be submitted to NCBI/ENA/
DDBJ, genome and transcriptome assemblies and annotations are 
often stored at university servers or digital repositories.

At diArk, we manually track the availability of genome and 
transcriptome assemblies by browsing publications, genome data-
bases of species and taxa from large-scale efforts and small research 
communities, and the NCBI genome assembly database [13]. 
While diArk includes almost all available genome assemblies, man-
ually keeping track with the pace of transcriptome assembly gen-
eration is more difficult. In case of the 1KP and MMETSP projects 
hundreds of transcriptome assemblies were made available at once, 
and these assemblies have not yet been integrated into diArk. At 
diArk, we not only provide links to assembly data but also provide 
the genome and transcriptome data directly [14, 15]. For many 
species, updated and/or alternative genome assemblies are avail-
able. Alternative genome assemblies have been generated by using 
different software on the same sequencing read data, or by inde-
pendent sequencing and assembling efforts. diArk provides meta-
data for each assembly such as date of generation, version, 
sequencing method, and assembly software used, and reports sim-
ple statistics such as number of entries (contigs, supercontigs, etc.), 
total sequence length, GC content, and N50. This chapter explains 
how to use diArk’s search and filter tools, and how genome and 
transcriptome data are displayed.
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2 Methods

diArk’s home page offers several entry points to search for 
sequenced genomes and transcriptomes (Fig. 1). The main access 
to tools and information is via the dark-grey menu bar near the top 
of the page which is present on all diArk pages and facilitates quick 
navigation to the search tools, to extensive statistical analyses of the 
data, to help pages and other information. In addition to the menu 
items, the website provides two autocompletion search forms. An 
autocompletion search box, which can be added to the search 
plugins of the Firefox browser, is located on the right site of the 
menu bar and provides quick access to species summary pages 
(Fig. 1A; see Subheading 2.2). Right in the middle of the website 
is an autocompletion search field by which a search using the Fast 
Search functionalities is started (Fig. 1B; see Subheading 2.3). The 
home page also includes a quick view on a randomly selected spe-
cies, a short list of the latest species and their genome/transcriptome 
assembly data added to diArk, a short list of the most recent pub-
lications about species’ genome/transcriptome analyses, and a 
small box to the right with some metrics of diArk’s content 
(Fig. 1C). More statistics can be obtained by clicking the info-icon 
in the header of this box, and by browsing the statistics subpage, 
which is accessible from the menu bar.

Because many species (especially fungi and yeasts) are known 
under multiple, synonymously used scientific names, and because 
many species were renamed recently because of better classification 
based on now available whole-genome data, we adhered to a few 
conventions from the beginning of the diArk project. First, diArk’s 
reference scientific species names are the main species entries as 
given in the NCBI-Taxonomy database [16]. There is no notifica-
tion by NCBI-Taxonomy, and thus we only adjust names as soon 
as we observe changes. Second, as an exception to this convention, 
we consistently use the fungi’s teleomorph names as diArk’s scien-
tific reference names. Teleomorph and anamorph are the sexual 
and asexual states, respectively, of fungi, and both states were often 
given different scientific names in times of pure morphological 
classification. Many of these states were later shown to belong to 
the same holomorph (the whole fungus, including anamorph and 
teleomorph) but all scientific names remained in use. NCBI- 
Taxonomy does not have, to our knowledge, a convention on how 
to assign a main species name to these fungi. In most cases, the 
name of the most widely analysed state seems to be taken. 
Accordingly, in case the anamorph is the main experimental 
research state for a fungus, the corresponding genome/transcrip-
tome assemblies at diArk refer to the less used teleomorph name. 
Third, different sequenced strains/breeds/cultivars/isolates of the 
same species (summarized as “strains” from here on) get different 

2.1 diArk Website 
Navigation

How to Use diArk
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entries in diArk to facilitate distinguishing multiple genome/
transcriptome assemblies of the same species. Sometimes, this 
information cannot be revealed and the respective assemblies are 
combined under a common species entry without strain informa-
tion. These assemblies (and also multiple assemblies of identical 
strains) are numbered consecutively.

To facilitate the search for sequenced genomes/transcriptomes 
in case researchers only know a common name but not the scien-
tific name (or one of the multiple used scientific names) the species 

Fig. 1 diArk home page. The dark-grey menu bar below the page header can be used to quickly navigate to 
search tools, statistical representations of sequenced genome/transcriptome data, help pages and more. (A) 
Use the autocompletion search box to access species summary pages. The menu bar and the search box are 
visible from all diArk pages. (B) Entering a search text in the autocompletion search form and selecting a spe-
cies from the list of hits starts the Fast Search. (C) Some metrics on diArk’s content are shown in the right box. 
More numbers will be shown upon clicking the info-icon
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are tagged by “alternative” and synonymously used scientific names 
and by common names, which are all fully available for the key-
word search.

Species summary pages provide the most basic information about 
available genome and transcriptome assembly data. These pages 
are accessed by using the autocompletion search box in the menu 
bar which is present on all diArk pages (Fig. 1A). The query is 
automatically performed in all species name categories, diArk’s 
main scientific names, alternative/synonymous scientific names, 
names of anamorphs, and common names. The search box can be 
added to the list of search plugins of the Firefox browser by click-
ing on the Firefox browser icon on the right site of the search box. 
This allows accessing diArk’s species summary pages from 
anywhere.

 1. To access a species summary page, first open the diArk home 
page (http://www.diark.org) (Fig. 1). Locate the autocomple-
tion search box in the right top corner of the page.

 2. To find a sequenced eukaryote of interest, start typing your 
query into the search box (e.g., type “dict”). The autocomple-
tion function will list the first 10 hits for your query string in 
alphabetical order and summarize the remaining if more hits 
were found. Direct matches of the query string to diArk’s main 
species names are shown in bold. In case the query string 
matched to a common name, a name of an anamorph or an 
alternative scientific name, diArk’s main species name is shown 
in the list (e.g., type “dolphin,” “chicken,” or “duck”).

 3. Move the mouse to the name of your eukaryote of interest. For 
faster orientation, the currently activated species name is high-
lighted in yellow. Click on the name of the eukaryote of interest 
to open the species summary page (e.g., click on “Dictyostelium 
discoideum AX4”).

 4. On top of the species summary page is a header with diArk’s 
main species name in bold and a brief taxonomic overview with 
the three most ancient and the three most recent taxa (Fig. 2A). 
The page lists species-related information such as full taxonomy, 
alternative and common species names, comments about spe-
cific strains sequenced, and provides links to NCBI taxonomy 
and Encyclopedia of Life pages (Fig. 2B). The project-related 
part of the page lists the type of data (genomic DNA or tran-
scribed DNA) and the sequencing centers where the data have 
been obtained from (Fig. 2C). Via the links you can directly go 
to the sequencing centers’ reference pages for the respective 
species. The projects also list and provide links to community- 
driven species home pages such as dictyBase, XenBase, or 
ZFIN. Using these links you can directly access more 

2.2 The Fastest 
Access to Sequenced 
Genome 
and Transcriptome 
Data
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Fig. 2 Species summary page. (A) Header with species name and basic taxonomy. (B) Complete species infor-
mation including full taxonomy and alternative scientific, common and anamorph names. (C) List of all external 
resources that provide access to genome/transcriptome assembly data for the particular species. 
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7

 species- related data and analysis tools. If the genome and/or 
transcriptiome assemblies of the species have already been pub-
lished, these data are listed in the Publications section.

 5. The lower part of the species summary page contains the 
Genome files section which is sorted by projects (Fig. 2D). For 
each project the sequence data available is tabulated. The table 
provides a quick overview about assembly version, assembly 
release date, genome assembly completeness, sequencing cover-
age (if known), GC content, assembly size, contig number, 
presence of illegal characters in the data (not being g/G, a/A, 
t/T, c/C, or n/N), and the N50 of the dataset. These data 
allow an easy comparison if multiple versions of the same data, 
different assembly states (e.g., contigs vs. supercontigs vs. chro-
mosome; Table 1), and alternative assemblies (indicated by “_
assembly”) are available. In addition, the Genome files tables 
contain icons that can be clicked for more detailed information. 
Click on the info-icon in the contigs column to view N50 (con-
tigs sorted by lengths) and A50 (cumulated assembly length by 
contig number) plots (Fig. 3A). Clicking the Chaos Game 
Representation (CGR) fingerprint icon provides the CGR of 
the assembly and Frequency Chaos Game Representations 
(FCGRs) of the data in all resolutions up to 1024 × 1024 
(Fig. 3B). Click the arrow-down button in the Acc column to 
see accession numbers, if available. The chromosome icon in 
the File column allows access to the assembly data in archived 
fasta format. Click the Seq info icon to get further information 
about the sequencing method (e.g., Sanger, Roche/454, 
Illumina, and PacBio) and the assembly software. The back-
ground color of the Seq info icon indicates the sequencing 
method with, for example, blue being used for Sanger, red for 
Roche/454, and yellow for Illumina sequencing.

 6. In case multiple strains have been sequenced for the same spe-
cies, only one can be selected from the search box list. The 
Genome files sections are collapsed if multiple species are 
shown, but can be opened by clicking Show genomes. If you 
want to get a quick overview about all sequenced strains, use 
the Taxonomy Search Module (see Subheading 2.4).

The Fast Search is enabled by using the autocompletion search 
field in the middle of the home page or by selecting Search Database 
from the menu bar. The autocompletion function in the search 

2.3 The Fast Search

Fig. 2 (continued) Some of these external resources provide extensive additional data and multiple analyses 
tools. (D) List of assembly files available at diArk sorted by project. In case several projects host exactly the 
same data, these data are linked. The table contains multiple metrics for comparing different assemblies and 
evaluating the quality of each assembly. Multiple icons provide further detailed information and plots upon 
clicking
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Table 1 
Genome and transcriptome assembly file types

Chromosome Every fasta-entry in this file is a chromosome. There are a 
few exceptions where chromosomes are split in two or 
more fasta-entries.

Uchromosome These files contain contigs/supercontigs which could not 
be mapped to any (unknown chr.) or anchored (random 
chr.) to a certain chromosome.

Supercontigs Every fasta-entry represents a supercontig which consists of 
sorted contigs separated by estimated or fixed numbers of 
“N” bases.

Usupercontigs These files contain contigs which could not be mapped to 
supercontigs.

Ultracontigs Every fasta-entry represents a number of supercontigs 
assembled to an ultracontig.

Contigs Contigs (from “contiguous sequence”) are the smallest 
pieces of an assembly and consist of overlapping sequence 
reads.

Ureads These files contain the unplaced reads, reads that could not 
be assembled to contigs. These files are especially 
important for low-coverage genomes that in most cases 
end up with very short contigs. In these cases, small 
proteins or some exons can be reconstructed from the 
ureads-files.

Apicoplast These files contain the apicoplast DNA. The apicoplast is a 
relict, nonphotosynthetic plastid found in Apicomplexa. 
It is proposed that it evolved via secondary 
endosymbiosis. The apicoplast is surrounded by four 
membranes within the outermost part of the 
endomembrane system.

Chloroplast These files contain the chloroplast DNA. Chloroplasts are 
organelles found in plant cells and eukaryotic algae that 
conduct photosynthesis.

Kinetoplast These files contain the kinetoplast DNA. A Kinetoplast is a 
disk-shaped mass of circular DNAs inside a large 
mitochondrion that contains many copies of the 
mitochondrial genome. Kinetoplasts are only found in 
protozoa of the class kinetoplastea. Kinetoplasts are 
usually adjacent to the organisms’ flagellar basal body 
leading to the thought that they are tightly bound to the 
cytoskeleton.

Plastid These files contain plastid DNA. Plastids are major double-
membrane organelles found in the cells of plants, algae, 
and some other eukaryotic organisms.

(continued)
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Table 1
(continued)

Mito These files contain the mitochondrial DNA. Mitochondria 
are membrane-enclosed organelles found in most 
eukaryotic cells.

Nucleomorph These files contain nucleomorph DNA. Nucleomorphs are 
small, vestigial eukaryotic nuclei found between the inner 
and outer pairs of membranes in certain plastids. So far, 
nucleomorphs have only been identified in 
cryptomonads, which belong to the Chromista 
supergroup, and in chlorarachniophytes, which are a 
subphylum of Rhizaria.

TSA Transcriptome shotgun assembly.

_assembly This extension is used to distinguish multiple assemblies of 
the same strain/breed/cultivar/isolate. Different 
assemblies can be based on using the same sequencing 
data but different assembly software and protocols, or are 
the result of sequencing and assembling the same strain/
breed/cultivar/isolate multiple times.

_haploid This extension to an assembly type indicates that the data 
(e.g., contigs, supercontigs) have been merged to 
generate an assembly representing a haploid state.

_diploid This extension to an assembly type indicates that both 
alleles were assembled independently.

Fig. 3 Genome assembly analyses. (A) By clicking the info-icon in the Contigs column of the Genome files sec-
tion of the species summary page, the user can inspect N50 and A50 plots of the assemblies. (B) A Chaos 
Game Representation (CGR) is a unique fingerprint for each genome dataset and the number of pixels in the 
graph is exactly the number of nucleotides in the dataset. Therefore, for comparing CGRs usually Frequency 
Chaos Game Representations (FCGRs) are taken, in which the pixels in a certain resolution-dependent section 
of the graph are summed

How to Use diArk
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field works similar to that in the autocompletion search box in the 
menu bar (see Subheading 2.2). However, small pictures of the 
species, if available, allow easier identification of the species of 
interest, and additional information is provided for each species in 
terms of linked project pages and available genome assembly files. 
In contrast to the species summary pages, the Fast Search allows 
easy extension or filtering of the search space by selecting/dese-
lecting species, and the Results tabs provide full information about 
species and assembly file related data.

 1. Go to diArk’s home page and enter “dict” in the autocomple-
tion search field in the middle of the page.

 2. Use the up- and down-keys and press enter, or use the mouse 
to select “Dictyostelium discoideum AX4 | Dd” and start the 
Fast Search.

 3. The Fast Search contains a headline summarizing filter param-
eters (Fig. 4), which were preselected and combined from the 
extended Search Modules from the complex search (see 
Subheading 2.4). Below the headline are short sections separating 
filter for species names, several taxa and model organisms, and a 
few options to filter by sequencing type, completeness of 
sequencing, and availability of genome assembly files for down-
load in diArk (Fig. 4A). The small exclamation mark icons next 
to model organism names indicate, that genome/transcriptome 
assemblies are available for multiple strains/breeds/cultivars/
isolates and that only the most commonly used is selected (e.g., 
in the case of Caenorhabditis elegans the Bristol N2 strains, and 
for Saccharomyces cerevisiae the S288c strain). The Sequencing 
type filter allows selecting those species for which only EST, 
genome or RNAseq data or for which multiple data types are 
available.

 4. Move further down the page to inspect the Search Results 
which are organized in multiple tabs (Fig. 4B). By default the 
Species result view is opened summarizing species related 
information, links to species sequencing centers and other 
resources with assembly data, and publications. This result tab 
is organized species by species. The Projects result view is 
organized by sequencing center allowing a resource-centric 
view on the data in case multiple species were selected. The 
Publications result view summarizes all publications related to 
the selected species. The Genome Stats result view provides a 

Fig. 4 (continued) Below the species selection section there are three options to select certain sequencing 
types (genome, EST, transcriptome, and combinations of these), complete or incomplete genomes, and genome 
data available for download at diArk. (B) Data for the selected species can be browsed in seven Result tabs. 
By default, the Species result tab is opened which is identical to the species section on the species summary 
page (see Fig. 2B). Here, the References result tab is opened providing information about available analysis 
tools and data types at species home pages and repositories
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Fig. 4 The Fast Search. (A) The Fast Search offers a collection of the most commonly used search options. 
Species can be searched using an autocompletion search field and are selected by pressing the enter key 
or the left mouse button. Species and taxa can also be selected from the list of model organisms and taxa. 
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quick overview about chromosome numbers (if known), 
genome assembly size, GC content, and contig numbers. This 
view is especially useful for comparing multiple strains or closely 
related species. By default, the analysis data for the suspected 
most complete assembly (size of the largest available assembly) 
are shown. The Genome Files result view provides the same 
information as the Genome files section of the species summary 
pages (Fig. 2D). The References result view provides further 
information about the availability of genome map viewers 
(GBrowse or JBrowse) and BLAST servers (TBLASTN and 
BLASTP, which also indicates availability of protein annota-
tions), and the possibility to obtain cDNA clones for further 
research (Fig. 4C). The Sequencing Stats result view provides 
multiple plots, which are obviously only available and useful if 
multiple species were selected.

 5. Move up the page again and reset the Fast Search by clicking on 
“Fast search” in the menu bar. Select “Mammalia” from the 
taxa. Automatically, “Primates” and “Rodentia” are also 
selected, as well as human and mouse from the Model 
Organisms. Dashes in the selection fields from “Metazoa” and 
“Chordata” indicate selection of a subset of the respective taxa. 
At the bottom of the Search section, the number of selected 
species and related publications/projects are given. Select/
deselect “Primates” and/or “Rodentia” to see the interplay 
between the various selection fields and the influence on the 
filtered results. In the default Species result view, the selected 
species are sorted by “Taxonomy.” The order can be changed 
to sorting by “Name” and the number of visible species 
adjusted. Browse through the other Result tabs to see how the 
information is organized in case multiple species are selected. 
Go to the Genome Stats tab to compare the genome assembly 
sizes (Fig. 5).

 6. Move up again to the Search for species input field, enter 
“danio” and select the “Brachydanio rerio str. Tuebingen” for 
comparison.

In the extended search, available by Search Database and then 
Search from the menu bar, the database is searched using modules 
that can be combined in any order. These modules work as selec-
tion baskets, meaning that by default nothing is selected when 
choosing a search module. Users are usually interested in only a 
small subset of the data, and this is faster to select from the avail-
able options than to deselect the rest. There are five different mod-
ules each providing specific options: a module for the full-text 
search in all species names, a taxonomy search module, a publica-
tion search module, a module to search sequencing project related 
data, and a module to filter by parameters related to 
genome/transcriptome assembly files. A search operation can con-
sist of any combination of modules and their options. By adding 

2.4 Complex 
Searches 
by Combining Search 
Modules
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Fig. 5 The Genome Stats result view. The Genome Stats result view shows the genome size and GC content for 
the selected species, here all mammals. To better evaluate these metrics the number of contigs for the under-
lying dataset is given. In most cases the sizes of the contig datasets are bigger than those of supercontigs and 
chromosomes because the latter do not contain those contigs that cannot be ordered into supercontigs or 
mapped to chromosomes

mako@nmr.mpibpc.mpg.de

3. Publications and Manuscripts

164



14

further search modules the user can successively refine the search 
and narrow down the result list. For each module the resulting set 
of species, projects and publications is shown below the modules, 
providing additional context. When a new module is added the 
options available are restricted by the selection from the previous 
module(s). At any time, the search options for every module can 
be changed and modifications are propagated down the chain 
reapplying previous user actions.

 1. Click on Search Database and then Search in the menu bar 
to move to the extended search by Search Modules (Fig. 6). 
By default, all data in the database are selected and can be 
browsed using the Search Result tabs as described above (see 
Subheading 2.3).

 2. The Species Names search module is identical to the species 
autocompletion search field available in the Fast Search 
(Fig. 4A). Click on the Taxonomy search module picture. The 
headline contains a search module icon and the search module 
name on the left, and a number of icons on the right (Fig. 7A). 

Fig. 6 Search modules for the extended search. The extended search allows any combination of the available 
five search modules to select specific subsets of the species and to filter for certain assembly characteristics. 
When opening the search from the menu bar, all species are selected by default. By selecting any search 
module all previous data (either all or the selection from previous search modules) are blocked. By selecting 
species/publications/projects from the search modules these data immediately become available in the Result 
views

Fig. 7 (continued) contracting the module (arrow-up/arrow-down icon). (B) Section of the Taxonomy search 
module that allows selecting any combination of species from a full taxonomic tree. Here, “Dictyostelium 
discoideum AX4” was searched and selected in the autocompletion field, which opened the corresponding part 
of the tree up to the searched species. Species connected to internal nodes are automatically shown. The tree 
can be expanded and contracted using the arrow-down/arrow-up icons, and species and taxa are selected 
using the check boxes
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Fig. 7 The Taxonomy search module. (A) The header of the Taxonomy search module. The icons in the right top 
corner of the header are available in all search modules and allow removing the module (minus icon), getting 
explanations for the search options (help icon), activating/deactivating the module (check box), and expanding/ 
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By clicking the minus icon, the respective search module and 
the respective applied search filter can be removed. The ques-
tion mark icon allows opening a short help as separate window 
on top of the webinterface. The checkbox allows deselecting/
selecting the respective search module from the list of filters 
while the selected options within the search module remain 
unchanged. The arrow-up/arrow-down icon to the right allows 
closing and opening, respectively, of the search module view.

 3. You should be familiar with the Taxa and Model Organism selec-
tion sections (Fig. 4A; see Subheading 2.3). Below these sec-
tions, you can browse the entire eukaryotic taxonomic tree to 
select any combination of species (Fig. 7B). On top of the tree 
representation, there are two autocompletion input fields, one 
for taxa and one for species names. As usual, the species name 
input field accepts all different types of names, the scientific 
names, the alternatively used names, common names, and the 
anamorphs, while it selects the scientific reference name. After 
submission of the taxon/species name search, the taxonomy tree 
is reloaded with the specific branch(es) containing the selected 
taxon/species opened. Instead of searching for taxa or species 
names, taxa and species can be browsed and selected by expand-
ing/collapsing and including/excluding subsections of the tree.

 ! Use the checkboxes to select/deselect single species, or all 
species within a taxon.

 ! Clicking the double arrow-down icon will expand the respec-
tive subsection of the tree by up to 5 nodes (levels). On 
mouse- over the icon the number of subtaxa and species will 
be given.

 ! Clicking the arrow-down icon will expand the tree by 1 
taxon.

 ! Clicking the arrow-up icon will collapse the subtree.
 ! On mouse-over a species name an image of the species will 

be shown.
 ! It is important to know that by selecting a taxon you will 

select the complete subtree and all species included. Thus 
you will also select all taxa/species that are not shown based 
on restrictions in previous modules. The rationale is that 
you might want to change your restrictions in a previous 
module but still want to keep your taxonomic selection. 
For example, if you restricted your search to genomic 
sequences in the Projects module and selected the 
Arthropoda you will only see Arthropoda species with 
sequenced genomes. If you then change your selection in 
the Projects module to also include the cDNA/EST proj-
ects, your species selection will automatically expand to 
include all Arthropoda for which genomic sequences and/
or cDNA/EST data are available.
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 4. Go to the header of the Taxonomy search module and click 
the minus icon to remove it from the current search, or click 
the Search menu item to reset the search. From the Search 
Modules select the Publications search module. The publica-
tions related to the species and sequencing projects can be 
searched in several ways. Full-text searches are provided for 
titles, authors, abstracts, and journals. In addition, the jour-
nal search input field is supplemented with an autocomple-
tion function. Searches can be restricted by dates. By default, 
searches are unrestricted and include the full time span of 
publication dates. The option to select “All Publications” is 
useful as filter for selecting only species with published 
genome/transcriptome because unpublished genome data 
are often under embargo and should be used with respect to 
data sharing policies [17].

 5. Remove the Publications search module and select the 
Projects search module. Here, you can select all species 
sequenced by a certain sequencing center or available from a 
specific species home page. The selection of species can be 
filtered by Sequencing type (see Subheading 2.3) and by anal-
ysis tools available at species home pages and data reposito-
ries, e.g., only those data resources can be selected which 
provide access to a BLASTP server or which allow ordering 
cDNA clones. Further down in the search module, there is a 
section to select one or more specific references. Reference is 
referred to sequencing centers, data repositories, and species 
home pages, in diArk. For example, the Joint Genome 
Institute is a sequencing center (= reference in diArk) and 
hosts many species-dedicated websites (=projects in diArk). 
Selection of a certain option in the table at the top of the 
module will automatically disable those references that do 
not provide the selected data and tools. If you are particularly 
interested in for example filtering for a certain Sequencing 
type, select the respective type and select “All Projects.” Keep 
in mind that all search modules work as selection baskets. 
Thus, whatever filter you apply from the table at the top of 
the module, you have to “select” one (or all) of the references 
to include any data.

6. Reset the search, or close the Projects search module, and click 
on the Genome Files search module picture (Fig. 8). The 
Genome File search module allows filtering for assembly- related 
metadata and metrics. By default, all assemblies are included. By 
restricting the time span of the assembly release dates, for exam-
ple, only assemblies of the current year can be selected. For 
several assemblies, release dates could not be revealed, and these 
assemblies can either be included or excluded in total. The data 
can further be filtered by assembly completeness, presence or 
absence of illegal characters, sequencing coverage, GC-content, 
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Fig. 8 The Genome Files search module. The Genome Files search module allows filtering the genome/tran-
scriptome data for release dates, complete/incomplete sequencing, sequencing coverage, and GC content. 
These parameters can only restrict the space of selectable genome/transcriptome assembly files. Thus, either 
“all genome types” or at least one of the listed genome types need to be selected to inspect the respective 
genome/transcriptome assembly data via the Result views

genome type, sequencing method, and assembly software. In 
the Genome File search module, selection of any data is done 
via choosing one or more genome types. Thus, whatever filter 
you apply from the other options, you have to “select” one (or 
all) of the genome types.

 7. Browse through the result tabs as explained above (see 
Subheading 2.3).
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The Protein-Coding Human Genome: Annotating
High-Hanging Fruits

Klas Hatje, Stefanie Mühlhausen, Dominic Simm, and Martin Kollmar*

The major transcript variants of human protein-coding genes are annotated to
a certain degree of accuracy combining manual curation, transcript data, and
proteomics evidence. However, there is considerable disagreement on the
annotation of about 2000 genes—they can be protein-coding, noncoding, or
pseudogenes—and on the annotation of most of the predicted alternative
transcripts. Pure transcriptome mapping approaches seem to be limited in
discriminating functional expression from noise. These limitations have
partially been overcome by dedicated algorithms to detect alternative spliced
micro-exons and wobble splice variants. Recently, knowledge about splice
mechanism and protein structure are incorporated into an algorithm to
predict neighboring homologous exons, often spliced in a mutually exclusive
manner. Predicted exons are evaluated by transcript data, structural
compatibility, and evolutionary conservation, revealing hundreds of novel
coding exons and splice mechanism re-assignments. The emerging human
pan-genome is necessitating distinctive annotations incorporating differences
between individuals and between populations.

1. Introduction

Accuracy of human genome annotation significantly impacts
whole genome, transcriptome, and exome sequencing studies
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and is therefore of high impact for bi-
ological and medical interpretation of
experimental results. Usually, the more
complete the gene annotation is, the more
accurate are downstream analyses, such
as short read mapping for spliced reads[1]

or identification of genetic variations from
whole genome sequencing studies.[2] In
contrast, overestimated numbers of an-
notated exons and transcripts lead to less
robust gene abundance and differential
gene expression estimates.[3,4] Gene anno-
tation impacts the choice of genetic regions
included in exome sequencing, targeted se-
quencing approaches, and precise genome
editing utilizing CRISPR/Cas9. Genomic
experiments are more and more applied in
clinical practice and, therefore, the accuracy
of these methods is highly relevant for di-
agnosis and treatment of patients. Accurate
annotation of genes also has an enormous
influence on drug discovery. Gene therapies

already allow direct manipulation of the genome, transcripts can
be targeted with oligonucleotides, and exon splicing events can
be adjusted by small molecules.[5,6]

In contrast to the centralized worldwide effort to assemble the
human reference genome led by the Genome Reference Consor-
tium (GRC), efforts to annotate the human genome are split be-
tween several major consortia and innumerable smaller groups.
Consequently, after decades of identifying human genes a consis-
tent and standardized catalogue of human protein-coding genes
is still missing. In addition, many human multi-exon genes un-
dergo alternative splicing and differences between annotated iso-
forms are even larger between databases. In this review, we will
report on recent studies that performed human gene, transcript,
and protein identification, while focusing on efforts to investigate
those exonic regions that are difficult to detect.

2. Do Current Approaches Annotate Functional
Regions, Junk, or Both?

Annotating a genome comprises all efforts to assign biological
functions, mechanistic and structural roles, and observations
linked to genomic positions to every nucleotide in the genome.
Thus, a set of publications reporting on the final data from the
Encyclopedia of DNA Elements project (ENCODE) and claiming
that most of the human genome consists of functional regions[7]

initiated a lively, highly controversial and ongoing debate about
“function” versus “junk.”[8–16] In short, ENCODE generated
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Box 1
What is a gene?

At the time when the word “gene” was coined, the term was
looked at from the phenotype perspective as a distinct region,
a “locus,” on a chromosome explainingmechanisms of hered-
ity, development, and physiological function. Later, with the
discovery of DNA and the publication of the “Central Dogma”
of molecular biology, a gene became a physical entity that
is transcribed and finally translated into protein. While the
phenotype-based view (also called functionalist approach) did
not substantially change over time, the genocentric view and
molecular understanding was significantly refined including
RNA-genes, “genes in pieces,” and regulatory aspects. When
the human genome sequence became finished, the gene still
was a genomic region with clear structural boundaries. How-
ever, alternative splicing already challenged the genotype-
phenotype relationship, because it generates different protein
isoforms implying different physiological functions derived
from the same gene. Subsequent further discoveries seem to
have completely dissolved this relationship. While “gene” is
one of the major terms in biology, there is no unifying defi-
nition for different purposes and disciplines.[121] The “instru-
mental gene” comprises the concept in which a phenotype
(a disease, a Mendelian trait or another observable character-
istic) is related to a locus that is not necessarily a molecular
gene but could be any other functional DNA element. While
being clear on the phenotype, this concept remains vague
on the genotype. In contrast, the “nominal gene” describes
the molecular entity encoded by DNA and transcribed into
RNA. This concept constitutes the definition used by the En-
cyclopedia of DNA Elements project (ENCODE) project: “A
gene is a union of genomic sequences encoding a coherent

set of potentially overlapping functional products.”[19] While
this clearly defines a genotype, it is completely oblivious of
physiological consequence. The ENCODE definition is more
restricted than a previous definition by the Sequence Ontol-
ogy consortium: “A locatable region of genomic sequence,
corresponding to a unit of inheritance, which is associated
with regulatory regions, transcribed regions, and/or other
functional sequence regions.”[122] Although both concepts
are highly used and especially the molecular gene is a crit-
ical practical tool for communication between bioscientists,
both concepts did not keep pace with the data generated and
knowledge acquired in the past 15 years. Given the transcrip-
tion of almost the entire genome, genes hardly have defined
boundaries,[123] exons from different genes can be part of
the same transcript,[124] some microbial genomes contain
thousands of scrambled genes that need to be decrypted dur-
ing development,[125] the functional status of a gene can be
passed down to a daughter cell, and at least mammals and
plants can rewrite their DNA based on RNA inherited from
past generations.[126] Accordingly, the traditional reductionist
way of thinking is continuously changing toward a more sys-
temic concept, which is summarized by a so-called “relational
or systemic gene” or “postgenomics gene.”[127–129] Advancing
current human genome annotation to such a holistic view will
be an enormous step forward allowing the readout of DNA/
RNA/protein sequences based on biological questions and
not predefined computational categories. In such a system,
pieces of DNA, for example, could be assembled independent
of their (current) status (exon, regulatory, protein-binding,
etc.) and their (current) assignment to a dedicated gene.

massive data from high-throughput RNA-sequencing,
transcription-factor-binding, chromatin structure, and his-
tone modification experiments and concluded that 80.4% of
the genome shows some sort of biochemical activity. Their con-
clusion that this activity is completely functional was strongly
criticized for ignoring the “affirming the consequent”[11] and for
showing only “causal role” but no “selected-effect” functionality
of the respective genomic regions. According to the critique,
only those regions showing “selected-effect” functionality should
be termed functional, and regions having a “causal role” should
better be described to have an “effect,” “role,” “consequence,” or
“activity.” This and most other points of critique such as the size
of detected regions and the missing explanation of the C-value
paradox[17] boiled down to the question what function is and
what it is not. It has been argued that this is not a semantic
question because the answer would extend deeply into many
biological disciplines, such as biochemistry, molecular and evo-
lutionary biology, and genetics.[10,18] While ENCODE provided a
very detailed definition of the term “gene”[19]—which is another
fundamental concept with changing meaning across disciplines
and time (Box 1)—ENCODE missed to explain their use of the
term “function.”[14,18,20]

Unfortunately, currently available guidelines such as
those outlined in the “evolutionary classification of genomic
function”[15] are unsuitable when it comes to such complex
problems as human genome annotations. For example, many
genes are nonessential, about 75% of yeast genes,[21,22] and while
the exact number is impossible to be determined for humans,
a good estimate might be that at least 6% of genes are non-
functional in a small part of the Iceland population.[23] Should
the nonessential genes be annotated, therefore, as “indifferent
DNA […] whose main function is being there, but whose exact
sequence is not important?”[15] Should the same loci, that are
nonfunctional in the Iceland population, be termed “junk DNA”
(the suggested term for pseudogenes) in Icelander genomes, but
functional, “literal DNA” in genomes of other populations?
To resolve the complexity of the concept “function” with re-

spect to genome annotation we suggest using the term in combi-
nation with the respective annotation layer. For example, accord-
ing to the latest Ensembl genome annotation, 41.56% of the hu-
man genome ismade up of protein-coding genes (40.78%accord-
ing to NCBI). Therefore, at the layer of “genes,” 41.56%of the hu-
man genome is functional. However, only 1.15% of the genome
represents protein-coding sequence (sum of all constitutive and
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Figure 1. History of the prediction of the number of human genes. Early estimates of the number of human genes in the 1940s to 1960s were based
on extrapolations of the few known genetic markers and sequence lengths. In 1990, the U. S. Human Genome Project proposed a range of 50 000
to 100 000 human genes without specifying the data underlying this estimation. Subsequent numbers were derived by various experimental methods
and the numbers reported in the publications of the draft genome assemblies were derived from ab initio gene predictions. The latter numbers were
subsequently refined by mapping extensive experimental data.

alternative exons; 1.17%according to NCBI) and thus determines
the functional genome at the layer of protein-coding nucleotides.
Similarly, at the resolution of the assays employed by ENCODE,
80.4% of the human genome might be considered “biochemi-
cally functional,” while at the resolution of nucleotides, the num-
ber is much lower. In case of the chromatin immunoprecipita-
tion assay, for example, the resolution of the assay with about 600
nucleotides results in 8.5% of the human genome representing
transcription factor binding sites, while at the layer of nucleotides
(transcription factor binding sites are usually not longer than
3 to 15 nucleotides), in fact only about 0.14% might bind tran-
scription factors.[11] To be consistent with the “selected-effect”
functionality concept, only annotations at the nucleotide level
could be termed functional (still, there is the population prob-
lem), while annotations at all other layers could be termed “role”
or “activity.” This would, however, not be consistent with the use
of the term “function” in genetics, cell biology, andmost other bi-
ological disciplines.[24] The various functional annotations of the
human genome are usually available as separate data tracks in
genome browsers and gene reference entries.

3. The Number of Human Protein-Coding Genes
Went Up and Down in the Pre-Genome Era

Estimating the number of human genes dates back to the 1940s
when the genetic code and even the structure of DNA were un-

known. In 1948, James N. Spuhler estimated the number of
genes a) to 42 000 by assuming human genes occupying the same
mean chromosomal length than fruit fly genes and b) to 19 890–
30 420 by extrapolating the number of loci in the nonhomol-
ogous segment of the sex chromosome derived from X-linked
lethal mutations (Figure 1 and Box 2).[25] At about the same time,
Hermann J. Muller estimated the frequency of mutations in hu-
mans resulting in 5000 to 20 000 human genes,[26] which is, on
the upper limit, very close to the numbers discussed today. Later,
Friedrich Vogel for the first time used physical entities estimat-
ing the number of genes based on the weight of genes of average
length extrapolated to the weight of one human haploid chromo-
some set.[27] He calculated two numbers: one number he based
on the length of haemoglobin genes resulting in 6.7 Mio genes,
which he already dismissed as disturbingly high. Unfortunately,
this number was nevertheless presented by Pertea and Salzberg
as Vogel’s number of genes,[28] which likely caused others to later
cite this wrong number as well.[11,29] The number Friedrich Vo-
gel considered more reliable, 60 000 human genes, he derived by
dividing the length of the human genome by the gene-length of
50 000 nucleotides inferred from the length of genes in Dipteran
giant chromosomes.[27] In 1966, Muller revised his earlier esti-
mate to “not much more than 30 000” genes.[30] These early es-
timates of 20 000–40 000 human genes based on genetic load ar-
guments became the reference in textbooks and publications for
the next 25 years, although the respective primary publications
did not receive the citations they would have deserved.
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Box 2
Early estimates of the number of human protein-coding genes

At the time when Spuhler andMuller first estimated the num-
ber of human genes,[25,26] the entity “gene” was thought to
be a certain part, a “locus”, on the physical chromosome that
harbors a trait that is affected by mutations. Muller estimated
not only the number of human genes close to today’s values
(5000–20 000 genes), but, interestingly, he also estimated the
number of Drosophila genes to a minimum of 5000–10 000
in the same article, which is also very close to the number of
genes known nowadays from genome sequence analysis. The
discovery of the genetic code and the amino acid sequences
of the ↵- and �-chains of human hemoglobin allowed Vogel
in 1964 to first estimate the number of human genes based
on physical entities.[27] However, the number of genes based
on the lengths of these proteins was disturbingly high (6.7
Mio genes). Vogel thus calculated another number based on
gene lengths in Diptera, which he regarded more reliable
(60 000 human genes). Although introns and repetitive re-
gions were not known at that time, it was already well estab-
lished that the amount of DNA in closely related species, with
likely very similar numbers of genes, can differ by two orders
of magnitude,[130] and that, at least in bacteria, parts of gene
material work as regulators of other gene material[131] pro-
viding reasonable explanations for genes being longer than
their actual coding sequences. Shortly thereafter, Muller re-
vised his earlier estimate to “not much more than 30 000”
genes based on newer data on spontaneousmutations and fre-
quencies of X-ray induced mutations.[30] Geneticists referred
to these numbers, 30 000 genes and an upper limit of 40 000,
in the following 25 years albeit without properly citing the
original studies. In 1990, the U. S. Human Genome Project
proclaimed to sequence the human genome and to locate
the suspected 50 000–100 000 human genes without provid-
ing any data or reference for this estimate.[31] Fast progress in

sequencing genomic DNA led to human gene lengths bridg-
ing more than three orders of magnitude, and, depending
on the methods applied to generating an average, the ex-
trapolated number of human genes ranged from 20 000[35]

to 71 000.[33] Application of high-throughput techniques pro-
vided further numbers, including 20 000–40 000 genes im-
plied by the measurement of RNA re-association kinetics,[132]

80 000 genes implied by determining and extrapolating CpG
island coverage,[32] and 64 000 genes implied by expressed
sequence tag (EST) sequencing followed by clustering and
extrapolation.[33] From today’s perspective, it seems weird that
the authors of the CpG island-based estimate (80 000 genes)
strongly insisted against reduction of their estimate to 67 000
genes by others.[33,133] In 1996, a first human gene map was
constructed to complement the human genetic map by map-
ping gene-based sequence tagged site markers resulting in
16 354 distinct loci.[134] The authors of this study did not
present an own estimate of the total number of human genes,
as referenced and repeated by others (e.g., [28,29]), but re-
peated the expectation from the announcement of the Hu-
man Genome Project. The publication of the human draft
genomes in early 2001 did not stop speculations on higher
gene numbers. Extrapolation of RT-PCR data of chromosome
22 predicted 41 000–45 000 genes[135] and mapping of avail-
able cDNA, EST, and protein data combined with gene predic-
tions suggested 65 000–75 000 genes.[136] Still in 2003, when
the “completion” of the human genome sequence was an-
nounced, researchers predicted 29 000–36 000 genes based
on the extrapolation of a refined annotation of chromosome
22[137] and up to 40 000 protein-coding genes based on anal-
ysis of conserved sequence elements between human and
mouse.[138]

In 1990, the U. S. HumanGenome Project proclaimed 50 000–
100 000 human genes,[31] a number without any basis but which
subsequently became the cited reference (Figure 1). The dis-
ruptive success of sequencing and high-throughput technologies
soon superimposed the older genetic load-based estimates and it
became more popular to estimate higher numbers. Accordingly,
research groups generating large-scale CpG island coverage and
expressed sequence tag (EST) data predicted 64 000–87 983 hu-
man genes.[32–34] All these estimates were, however, extrapola-
tions from nonexhaustive data or data from single chromosomes
and there were always groups favoring more conservative as-
sumptions. Different assumptions about average gene length
and subsequent extrapolation of gene density, for example, re-
sulted in 14 000–20 000[35] and 71 000 human genes[33] (Figure 1).
While approaching the release of the first draft of the human

genome, researchers from The Institute for Genomic Research
(TIGR) predicted 110 000 to 134 000 genes made available in the
TIGR Gene Index based on massive EST data[36] (erroneously,
this estimate has been referenced as “57 000” genes in later

reviews[28,29]). In the same journal issue, other researchers
predicted 33 630 and 34 700 genes based on similar EST data[37]

and 28 000–34 000 genes by comparison with pufferfish[38] (Fig-
ure 1). The latter estimates were close to the ranges predicted
from the draft genome assemblies, 26 588–38 588 genes[39] and
30 000–40 000 genes.[40] Still, in the following months and years,
many scientists betted for considerably higher numbers of up
to 312 278 genes with a mean of 67 006 in the GeneSweep
gene guessing game.[41,42] Accordingly, the number of predicted
genes became cited as “surprisingly low” in the introduction
of almost every subsequent paper, despite the many previous
studies presenting similar numbers and multiple further ar-
guments that the genome-based numbers were not surprising
at all.[43] Today, the exact number of human protein-coding
genes is still unknown and given as 17 694 in neXtProt re-
lease 01/2019, 19 033 in Consensus Coding Sequence [CCDS]
database release 22 (06/2018), 19 975 in GENCODE release 31
(06/2019), 20 203 in NCBI Homo sapiens Annotation Release
109 (03/2018), and 20 465 in Ensembl release 96 (04/2019).
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All efforts differ by the criteria used for gene counting and
annotation.

4. Evidence for Protein-Coding Genes Comes from
Multiple Sources

A genome annotation is usually performed in two steps termed
as structural and functional annotations. Structural annota-
tion comprises the identification of protein-coding genes, RNA-
coding genes, regulatory regions, protein-binding sequences,
pseudogenes, noncoding RNA, transposons, and other repeats,
while functional annotation assigns specific functions to each of
the identified regions. Inmany eukaryotes, especially in humans,
another level of complexity is reached through alternative combi-
nation of genomic regions (“alternative splicing”) leading to dif-
ferent and overlapping transcripts that encode for proteins with
often at least slightly different functions. In essence, a genome
annotation does not prove the function of a genomic region, but
is a structured collection of predictions and observations that can
be used as reference.
There are multiple layers of evidence for genes, transcripts,

and exons and support can be inferred from computational and
experimental data. In a most basic approach an initial gene an-
notation is derived from genomic sequence alone using (gen-
eralized) hidden Markov models, conditional random fields, or
support vector machines.[44] This approach is based on simple
assumptions such as “protein-coding genes should contain start
and stop codons” and “protein-coding genes should consist of
concatenated exons without internal stop codons.” Coding re-
gions are then identified based on sequence patterns distinctive
for exons, introns, and intergenic sequences. These statistical
features are enhanced by specific, probabilistic patterns for, e.g.,
transcript splice sites and polyadenylation sequences.[45] Pure ab
initio gene predictions are of little use for the identification of
novel human genes and transcripts, because human genome an-
notation is one of the best genome annotations available. Still,
unguided gene predictions have a use in evaluating the predictive
power of sequence motifs for gene encoding. Used as such, un-
guided transcript reconstructions yield valid isoforms for about
41% of expressed genes including both completely and partially
overlapping transcripts.[46]

Considerably better gene annotations are obtained if gene pre-
diction software is supported by transcript data for feature train-
ing and gene model evaluation. Extensive evaluation of available
gene prediction software and protocols on human gene annota-
tion within RGASP (RNA-seq Genome Annotation Assessment
Project) demonstrated that there is, at least currently, an upper
limit of about 20% to 40% completely recovered transcripts plus
an additional 20% to 30% transcripts recovered missing one
exon.[46] Unfortunately, the fraction of false positive exon and
transcript predictions (i.e., the number of predicted exons that are
highly likely to be noncoding) has not extensively been evaluated
yet. In a small-scale attempt, only 3.2% of a selection of 221 com-
putationally predicted exons could experimentally be validated.[47]

Information from transcript data alone, from ESTs in ear-
lier times to high-throughput RNA-sequencing (RNA-seq) today
(Box 3), is used to both identify and evaluate transcribed re-
gions and to refine annotation models.[48–50] More sequencing

data also means more transcriptional noise and, therefore, var-
ious types of filters (e.g., presence of reads from multiple indi-
viduals and different tissues) are applied to collect transcripts
of strong evidence only. Although protein-coding genes have,
in general, specific nucleotide patterns and transcripts of these
genes have polyadenylation tails allowing their physical enrich-
ment for EST/cDNA data generation, there is also a low level of
pseudo-gene transcription.[51,52] For many candidate genes their
status as protein-coding gene or non-coding RNA gene is not re-
solved yet.[53–55] At this level, proteogenomics provides protein-
level evidence combining genomics data andmass spectrometry-
based proteomics. In these experiments, gene predictions and
translations of transcript data are combined into protein se-
quence databases, which are used to compute theoretical peptide
mass spectra, which in turn are compared to the experimental
mass spectra for peptide identification.[54,56–60] The proteomics
approach unfolds its full potential when tissue-specific transcript
data are available allowing to prepare tissue-specific sequence
databases to avoidmis-assignment of spectra.[60–63] Complement-
ing direct evidence from transcriptional and translational data,
comparative genomics allows finding functional genomic ele-
ments that are conserved between species. Genes, exons, and
other DNA elements under natural selection are often highly con-
served between close relatives and the core set of human genes
are conserved in all bilateria.[64–67]

5. The Genome Is Annotated at Multiple
Overlapping Layers

Functional annotations can be derived by in silico predictions
from sequence alone or through comparison with knowledge
bases. The latter means transferring functional assignments
such as a protein domain or a tRNA isoacceptor type from
homologous regions of one protein/RNA to another, which is
essentially a prediction by homology. Functional annotations are
done at multiple layers. Single nucleotides varying in a popula-
tion are annotated as single nucleotide polymorphisms (SNPs)
and receive a functional annotation through association with
phenotypic characteristics or dysfunction as found in genetic
diseases. If nucleotides happen to be part of a continuous stretch
they might get a common function or role assignment as part
of a larger region (global assignment; regions may overlap) and
at the same time a functional assignment as single nucleotide (a
local assignment). For example, the adenine nucleotide involved
in lariat formation during eukaryotic transcript splicing is part
of the branchpoint (local assignment), which is an essential part
of a spliceosomal intron (first level global assignment). This, in
turn, is part of a eukaryotic multi-exon gene (second level global
assignment), which again might contribute to a phenotype-
associated locus (third level global assignment). However, in the
human genome, the vast majority of nucleotides do not have a lo-
cal function but only a role as part of larger genomic regions. This
is the case, for example, for most of the nucleotides within the ex-
tended inter- and intragenic regions. Their global role is, among
others, being a spacer (or “ballast”)[68] between genic and regula-
tory regions or having impact on chromosome structure, while
the actual number and specific order of those nucleotides do not
matter. Naturally, the density of nucleotides with local function
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Box 3
Technological improvements impacting human genome annotation

The first generation of sequencing technologies utilizing
Sanger’s method[139,140] provided expressed sequence tags
(ESTs), which are short cDNA snippets representing re-
gions of expressed mRNA. EST data expanded the ab
initio gene predictions with genome-wide transcriptional
information.[141–143] ESTs were not only used to identify ex-
pressed regions in the genome, but also to determine exact
splice junctions that define exons and provide information on
how these are concatenated to transcripts.[144] Similarly, short
reads from second generation sequencers yielded deep sam-
pling information across the whole genome and are used to
evaluate gene annotation models. The major technology ad-
vancements were introduced by the 454, SOLiD, and Illumina
sequencing platforms[140,145] leading to a massive increase in
RNA sequence information. These data had high impact on

the accuracy of genome annotations, although there seems
to be a limit upon which accuracy and precision cannot be
further improved with current methods.[46] The main chal-
lenge in genome annotation thus shifted from identifying ex-
pressed regions with high sensitivity to annotating functional
genes, alternative transcripts, and exons with high precision.
In contrast to the EST/cDNA data, the short read data pro-
vides evidence for short exons and exon junctions only. Here,
high-throughput long read sequencing allows to sequence
transcripts in full-length and to validate combinations of al-
ternative exons. Two technologies are most established for
this purpose, Pacific Biosciences[146,147] and Nanopore[148–150]

Isoform expression can nowadays also be analyzed at single-
cell level[151] using and combining short reads and long-read
sequencing methods.[149,152]

highly correlates with the size of a genome, meaning genomes
having less and shorter inter- and intragenic regions show higher
density.

6. Is There Consensus on the Low-Hanging Fruits?

Twomajor databases, NCBI (RefSeq) and Ensembl (GENCODE),
dominated human gene annotations since release of the initial
human genome assembly. While both efforts (and any other ini-
tiative) agreed on using the assembly provided by the GRC as ref-
erence, every annotation effort had and continues to have its own
rules and definitions and these rules and definitions even change
over time.[69,70] Even for the term “gene” no definition has agreed
on (Box 1) so that not only numbers of named categories highly
disagree but also categories and subcategories themselves. For
this reason, the CCDS project started in 2005 to generate a re-
liable set of consensus sequences as reference for the scientific
community. In its first release, this set contained 12 950 protein-
coding genes (Figure 2). “Consensus” was defined as “protein-
coding regions that agree at the start codon, stop codon, and
splice junctions and for which the predictionmeets quality assur-
ance benchmarks.”[71] The consensus increased rapidly to 18 407
protein-coding genes in 2011 (CCDS version 8) and reached
19 033 genes in the current version (v. 22). Although both the Ref-
Seq and the GENCODE annotations heavily rely on manual gene
annotation efforts, there is still a gap of 1200 and 950 genes com-
paring CCDS to RefSeq and GENCODE, respectively (Figure 2).
In 2011, the Human Proteome Project (HPP) started to

map the entire human proteome in a systematic effort.[72] The
two main efforts within HPP, neXtProt, and PeptideAtlas, try
to match proteomics data with available gene and transcript
datasets. They differ mainly in neXtProt including not only
evidence from mass spectrometry data but also from Edman
sequencing, biochemical studies, posttranslational modifica-
tions, protein*protein interactions, antibody-based techniques,
3D structures, and disease mutations.[73] The current releases

of neXtProt and PeptideAtlas claim to contain unambiguous
evidence for 17 694 and 15 798 proteins, respectively. Although
both approaches steadily close the gap to the number of human
genes known from transcript data, gene prediction, and evolu-
tionary conservation, they are technically limited in detecting
low-abundance proteins, sequences lacking proteolytic cleavage
sites and proteins expressed in tissues unavailable for studies.
In summary, major annotation databases currently reach

a consensus on about 94% of all protein-coding genes and
agree that about 86% of these genes are in fact translated and
present in at least one human tissue. These numbers are also
in accordance with The Human Protein Atlas project, which
combines antibody-based imaging, mass spectrometry-based
proteomics, transcriptomics, and systems biology. Currently,
these data support 18 899 protein-coding genes in human.[61]

Given this wealth of evidence, claims that “one in five human
genes still have unresolved coding status”[55] and might rather
be noncoding genes or pseudogenes than protein-coding genes
seem rather exaggerated.
Apart from consortia-guided gene annotation efforts, there

are a few small-scale efforts that have provided impressive
results. In one project, ab initio gene prediction was used to
generate a set of 8 million candidate transcripts. Subsequent
filtering and validation by 26 RNA-seq data sets and shotgun
proteomics revealed 36 novel proteins and more than 31 000
new transcripts.[74] For generating the intropolis resource, this
approach was taken even further.[48] There, 21 504 RNA-seq
samples from the SRA archive were aligned against the human
genome. About 57 000 new exon junctions have been identi-
fied that are present in at least 1000 samples.[48] In another
approach, unstranded and stranded RNA-seq data were not
directly mapped to the human genome but first assembled into
transcript assemblies and subsequently improved by predicting
the orientation of unstranded reads and by integrating infor-
mation about transcription start, cleavage, and polyadenylation
sites.[75] With this pipeline, called CAFE, the BIGTranscriptome
dataset was generated adding thousands of potential transcripts
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Figure 2. Efforts to annotate the human protein-coding genes. The scheme compiles the number of protein-coding genes as given by the respective
data releases of the largest human genome annotation efforts. Numbers are different because definitions of terms and categories vary from effort to
effort and even from time to time within efforts. New releases not only contain novel protein-coding genes but also drop genes. Thus, more genes from
one release to the next are not directly related to the addition of the respective number of genes and likewise fewer genes do not represent the number
of genes removed. The Consensus Coding Sequence project (CCDS) is an effort to mark all protein-coding genes with identical genomic coordinates
in both the Ensembl and the NCBI annotations and contains 19 033 genes in the latest release. As example for a state-of-the-art analysis integrating
transcriptomics and MS data, a recent tissue-specific expression study by Wang et al. detected 18 072 transcripts and 13 640 proteins.[60] Abbreviations
of genome annotation efforts and resources: VEGA (The Vertebrate Genome Annotation), CHESS (Comprehensive Human Expressed SequenceS), and
APPRIS (annotation of principal and alternative splice isoforms).

to GENCODE and RefSeq annotations (Figure 3). Similarly, in
the most recent effort termed CHESS (Comprehensive Human
Expressed Sequences), 9795 RNA-seq data sets generated by
the genotype-tissue expression (GTEx) consortium were as-
sembled resulting in 224 novel protein-coding genes and more
than 116 000 novel transcripts (protein-coding and noncoding;
Figure 3).[50] Many of the novel protein-coding genes were
shown to be conserved in other mammals adding evolutionary
evidence. Remarkably, 30 million of the assembled transcripts
were annotated as nonfunctional and transcriptional noise.[50]

In summary, the number of protein-coding genes with sup-
port at protein, transcript, and homology level seems to stabilize
around 20 000.[73,76] In addition, there are about 500 candidate
genes whose existence or classification is unclear. While the

uncertainty about the number of genes strongly decreased in
the past 20 years (compare Figure 1 and Figure 2), the number
of generated transcripts remains largely unclear (Figure 3B). It
steadily increased in RefSeq, GENCODE, and other databases
over the past ten years, from about 60 000 in 2009 to 210 000
in 2018, but it is not clear yet, to which extent these transcripts
result from erroneous splicing[50,77–80] or are translated to a
significant level, if at all.[62,81–85]

7. Finding All Protein-Coding Segments Remains
Difficult

Alternative processing of primary RNA transcripts has been
found across all eukaryotes and is a characteristic ranging back
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to the last eukaryotic common ancestor. It is used to increase
proteome diversity and has been shown to be highly regulated
in many species. There are many different types of alternative
splicing such as differential inclusion of exons, intron reten-
tion, or alternative 5’- and 3’-splicing of exons. A particularly
interesting case is mutually exclusive splicing, in which neigh-
boring exons are spliced in a mutually exclusive manner into the
mature transcript.

7.1. Micro-Exons

Micro-exons are very short coding exons and therefore difficult to
detect. Themaximum length ofmicro-exons differs between pub-
lications, further complicating systematic comparison:[86] Vol-
fovsky et al. defined micro-exons by a maximum length of 25
nucleotides,[87] Wen et al. looked for short alternative splicing
events of maximal 51 nucleotides,[88] Irimia et al. characterized
micro-exons with lengths of 3–27 nucleotides[89] and Li et al. re-
ferred to a length between six and 51 nucleotides.[90] The lat-
ter, most exhaustive approach detected unknownmicro-exons by
mapping RNA-seq data from diverse datasets to the human ref-
erence transcriptome from Ensembl.[90] Mapped reads were fil-
tered for insertions, which were defined as short, additional RNA
stretches with amaximum length of 51 nucleotides. When occur-
ring at the exon boundaries of a transcript, such insertions were
considered candidate micro-exons. Subsequently, corresponding
introns were scanned for the canonical splice site pattern GT–
AG. Candidate micro-exons were approved if their sequences ex-
actly matched the intronic sequences between AG and GT.[90]

With this approach, 310 predicted novel micro-exons were added
to the 12 835 Ensembl-annotated micro-exons.[90]

Micro-exons are considered to preserve the reading frame and,
if alternatively spliced, to modulate protein structure. Interest-
ingly, micro-exons are highly enriched in transcripts in brain
compared to other tissues.[91] About 2500 neural-regulatedmicro-
exons have been identified in each human and mouse[89] and
their splicing was shown to be mis-regulated in autism.[89,92,93]

Many of the very short micro-exons are well conserved from fish
to human. Of the about 150mammalian, neural-regulatedmicro-
exons with lengths of 3–15 nucleotides at least 55 are deeply con-
served in vertebrate species spanning 400–450 million years of
evolution.[89] Micro-exon splicing is suggested to be promoted by
a specialized domain in an ancestral splicing factor that origi-
nated in a common bilaterian ancestor.[94]

7.2. Wobble Splicing

Another mechanism introducing small variations to protein iso-
forms is wobble splicing. Here, a GYN repeat at the donor splice
site (5’ splice site; Y stands for C or T and N stands for A, C, G, or
T) or an NAG repeat at the acceptor splice site (3’ splice site) leads
to subtle length variations in the spliced transcripts and finally to
alternative isoforms differing in few amino acids. The most fre-
quent wobble splicing element is the NAGNAG tandem repeat,
which was systematically identified in the human genome using
EST data.[95–97] In a first attempt to characterize NAGNAG splic-

ing, the RefSeq annotation was searched, and 7326 candidate ac-
ceptor splice sites were discovered, corresponding to NAGNAG
splicing in 30% of all RefSeq transcripts.[95] Subsequent EST data
mapping confirmed 878 sites. In addition, NAGNAG acceptors
show high conservation[98] with 73% being conserved between
human andmouse.[95] Interestingly, NAGNAG repeatsmainly al-
ternate the protein sequence by one amino acid, but rarely intro-
duce premature stop codons. Later, the same approach was used
to identify and verify GYNGYN tandem repeats at donor splice
sites in the human genome.[99]

In another approach to identify wobble splice sites the Swis-
sProt database was searched for pairs of protein isoforms
with single amino acid differences. The candidate list was
then extended by reports in the literature about subtle protein
differences.[96] Identified alternative donor splice sites were veri-
fied through presence in the human genome and through com-
parison with cDNA available from NCBI and EBI’s AltSplice
database. RNA-seq data were also used to investigate the reg-
ulation of NAGNAG splicing.[100] Here, sequences flanking the
NAGNAG acceptor splice sites identified in the human genome
were extracted andmapped with RNA-seq reads requiring at least
six nucleotides overhang on each side. Evidence for tissue reg-
ulated splicing was found for 73% of NAGNAG acceptor splic-
ing events.[100,101] Still, some events might better be explained by
stochastic splicing alone.[102–105] This stochasticity has been de-
scribed as a physiologically triggered, concerted shift in alterna-
tive splicing.[106] A specialized tool to detect and quantify NAG-
NAG splicing events identifies NAGNAG motifs in splice sites
and counts RNA-seq reads mapping to those sites.[107]

7.3. Mutually Exclusive Exons

Mutually exclusive splicing means that exactly one exon of a clus-
ter of neighboring exons is spliced into the mature transcript.
Although mutually exclusive exons (MXEs) of a cluster are rela-
tively similar, they cannot substitute each other if one is damaged.
MXEs have been described in many crucial and essential human
genes such as in the ↵-subunits of six of the ten voltage-gated
sodium channels (SCN genes), in each of the glutamate recep-
tor subunits 1–4 (GluR1-4) in which the MXEs are called flip and
flop and in SNAP-25 as part of the neuroexocytosis machinery.
Mutations in MXEs have been shown to cause diseases such as
Timothy syndrome (missense mutation in the CACNA1C gene),
cardiomyopathy (defect of the mitochondrial phosphate carrier
SLC25A3), or cancer (mutations in, e.g., the pyruvate kinasePKM
and the zinc transporter SLC39A14).
To explore the extent of mutually exclusive splicing in hu-

mans, we recently predicted 1722 completely novel exons in pre-
viously intronic regions in the human genome.[108] Our predic-
tion algorithm is based on criteria derived from biological knowl-
edge and has successfully been applied to plants, worm, and
fruit fly before.[109,110] MXEs must be translated in same read-
ing frames and splice sites must be compatible. We expect MXEs
to have about the same length, because they code for the same
structural region in the resulting protein, and length differences
should only be possible in loop regions. Finally, the protein se-
quences coded by MXEs are supposed to be similar, because
they code for the same region in the protein and evolved most

BioEssays 2019, 1900066 © 2019 The Authors. BioEssays Published by Wiley Periodicals, Inc1900066 (9 of 14)

3. Publications and Manuscripts

180



www.advancedsciencenews.com www.bioessays-journal.com

probably through exon duplication. Together with already an-
notated exons matching the aforementioned criteria, the men-
tioned 1722 newly predicted MXEs became part of a list of 6541
MXE candidates. By mapping 15 billion RNA-seq reads, repre-
senting 515 samples comprising 31 tissues and organs, 12 cell
lines, and seven developmental stages, we could show that each
novel exon is covered by at least one read. Applying strict cri-
teria requiring reads bridging the respective other MXE and
absence of reads joining MXEs, 1399 of the 6541 MXE candi-
dates comprise high-confidence MXEs. This number is about
tenfold higher than previous MXE estimates in human (EN-
CODE, e.g., reported only 14 MXEs in human and other analy-
ses showed amaximum of 147). Mapping high-confidenceMXEs
onto known protein structures revealed further support for their
annotation. The ends of MXE-encoded sequences preferentially
match within secondary structural elements excluding that these
exons can be spliced as constitutive or differentially included
exons.
In order to assess the conservation and evolution of human

MXEs across mammals, we identified orthologous proteins in
18 representative species from all major sub-branches spanning
180million years and predicted MXEs therein.[108] Of the 554 hu-
man MXE clusters, 100 (18%) and 86 (15%) are shared between
at least 15 and 16 of the 18 species, respectively. Conserved clus-
ters include the annotated MXEs of sodium-channel SCN genes,
MAPK8 andMAPK14, glutamate-receptorsGRIA genes, andKC-
NMA1. Dozens of genes contained novel exons such as colla-
gen genes, members of the SLIT family of secreted glycopro-
teins, calcium-channelCACNA1E, andmany genes of the solute-
carrier family. MXEs are of high relevance in human diseases
as an overlay of the set of high-confidence MXEs with the Clin-
Var database showed (35 of the MXEs contained 82 pathogenic
SNPs). Disease-associated MXEs show tight developmental and
tissue-specific expression with prominent selective expression in
heart and brain and in cancer cell lines.

8. To Each Individual Its Own Annotation

Every individual has its own genome including parts conserved
in families, differences at population level, and a collection of
sequences distinguishing us from related hominins. The first
two human genome assemblies represented examples of two ex-
tremes: a private genome sequencing effort reported the genome
of an individual, John Craig Venter,[39] while the international hu-
man genome project generated a reference genome represent-
ing a mix of cell-lines and various donors.[40] The latest refer-
ence genome, GRCh38, provides representations for alternative
loci that are alternative sequences found in largely haploid as-
semblies (earlier also termed “alternative alleles” and “alternative
haplotypes”).[111,112] However, this reference genome and corre-
sponding reference genome annotation represent a rather artifi-
cial consensus of the “human genome.” Genomic drift causes
random duplication and deletion of genes, which means that
every individual genome contains a significant amount of copy
number variations (CNV). The first analysis of genomic drift in
humans identified CNVs of sensory receptor genes among 270
individuals from the HapMap data demonstrating a difference of
at least eleven olfactory receptor genes between randomly chosen

individuals.[113] At the level of nations, sequencing and de novo as-
sembly of 150 genomes from Denmark showed large differences
at the chromosome scale.[114] Recently, the first pan-genome of
a human population, the population of 910 humans of African
descent, revealed a collection of sequences totaling about 300
million nucleotides that are not present in the human reference
genome assembly but shared among multiple individuals of the
African population.[115] Similarly, building and analyzing the pan-
genome of Han Chinese detected 29.5million novel nucleotides
and at least 188 novel protein-coding genes.[116]

Human reference genome assembly and annotation are un-
doubtedly invaluable tools with respect to comparison and eval-
uation of annotations, tools, approaches, and conclusions. How-
ever, the available sequencing tool set should now allow combin-
ing analyses of genome, transcriptome, and proteome data at the
individual level. Such an approach will also shed light on the re-
ported discrepancies of alternatively spliced isoforms found in
transcript and proteomics studies. We also anticipate that some
of the loci annotated as pseudogenes in the reference annotation
will become protein-coding genes in other annotations. Annota-
tion of “alternate sequences” placed on alternative assembly units
in RefSeq and Ensembl is a huge step forward (e.g., Ensembl re-
lease 96 contains 2960 coding genes on alternative sequences),
but still the annotations are mixed and do not represent different
populations, or even individuals.

9. Conclusions and Outlook: Are We Approaching
Completeness of Human Genome Annotation?

Although the human genome assembly was declared to be com-
pleted in 2003, it has seen substantial changes since then. The
current reference assembly has representations for alternative re-
gions, from allelic differences and copy number variations and
still there are gaps that need to be closed. These gaps (some of
which have recently been closed) have a considerable influence
on the annotation. For example, a gap of about 56 000 nucleotides
within the dynein heavy chain gene DHC7C covering about 860
of the 3800 amino acids was closed only in the latest genome
version, GRCh38, although contigs spanning the entire gene re-
gion were already present and in correct order in the J. C. Ven-
ter assembly.[117] Accordingly, the old gene annotations contained
separate genes for DHC7C N- and C-terminus. These are still
present as alternative transcripts in latest genome annotations,
although they are artificial and will never result in folded pro-
teins. A big step forward would be to not only search for novel
transcripts but also to clean up old annotations. Therefore, it is
highly likely that similar to finishing the genome assembly fin-
ishing reference genome annotation will also last for many years
to come.
In addition to data provided by large consortia the scientific

community highly profits from complementary efforts by, for
example, CHESS in determining a set of consensus transcript
sequences or by the Human Proteome Project and the Human
Protein Atlas, which provide strong evidence for tissue-specific
presence of proteins. Integrating many layers of evidence from
ab initio predictions, RNA-seq data, splicingmechanism, protein
structure, and evolutionary conservation is promising in case ex-
perimental data generation is limited by, e.g., protein abundance
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or due to highly tissue- and developmental stage-specific expres-
sion. Such a multi-facet analysis revealed a detailed landscape of
the mutually exclusive exome including not only the identifica-
tion of hundreds of novel exons but also a re-evaluation of the
splice type of hundreds of already known exons[108] and could be
used as blueprint for the comprehensive analysis of other splice
variants.
It has been pointed out already that the “human reference

genome” generated from mostly a single individual is as bad a
reference for human genomes as a genome of every other indi-
vidual would be.[118] We suppose that the same will become true
for the “human reference annotation”, which will be substituted
by annotations for individuals, groups, and populations. Genome
annotations have many layers and differ from individual to indi-
vidual and in many cases also from cell to cell. Mapping tran-
scriptional, gene regulatory, and genetic variant data on a refer-
ence genome alone considerably limits the use and application
of these data.[118] Deep learning approaches, which currently still
incorporate steady genome annotations,[119,120] might resolve the
issues of such individual annotations in the future.
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4 Conclusions

The present work incorporates the results of five studies that investigate two different topics from
the research fields »coiled-coil prediction« and »heterologous gene expression«. At the centre of these
studies stands the elucidation of biological questions that have become feasible and even more neces-
sary in the first place through the ever-increasing amount of biological information. More and more
genomic data is accumulated each year due to the advances in sequencing techniques. These devel-
opments led to an exponential growth of sequenced genome data and subsequently to further types
of biological data such as sequential information of genes and proteins. By now, there are billions of
generated protein sequences available in public databases to a large extent without experimentally
proven structure and function. Computational approaches, like the ones presented here, comple-
ment and assist experimentally intensive research efforts by processing, analyzing and interpreting
the produced amounts of biological data and by giving first forecasts to uncover hidden knowledge
from the data and help answering these questions.

The prediction of coiled-coil domains as part of the computational protein structure and function
prediction aims to contribute to one of the major challenges in biology, the gain of insight into the
molecular structure, its mechanics and supported cellular processes of proteins to achieve a deeper
understanding of their functions and roles. Coiled-coil prediction software has an important role
in one of the first steps of the structural annotation of newly generated protein sequences with un-
known molecule structure. In focus of this type of annotation stands therefore the generation of
precise and reliable predictions of coiled-coil domains as well as high demands on the performance.
Especially since these applications are not only used for single proteins, but even on a much larger
scale for the annotation of entire genomes. Unfortunately established software have been shown to
have a rather limited applicability especially in terms of the prediction quality with regard to large-
scale coiled-coil analyses run against diverse types of protein sequence information. Difficulties lie
not only in the prediction of the correct sequence regions, but also in whether regions with coiled-
coils are recognized at all and, if so, are not mistaken for SAH domains. In addition, the quality of
the predictions depends significantly on the software being used, because these often give different,
and in part contradictory, results. This is either due to technical limitations in the chosen underlying
model or deficiencies in the choice of reference data for training and fitting model parameters of the
respective software. For this reason, the field of coiled-coil domain detection providing accurate and
reliable predictions remains a challenge.

4.1. Contributions to prediction of coiled-coil and SAH domains

With our approach, we try to address improvements in protein structure prediction of coiled-coil
domains on two levels, on the one side the prediction and interpretation for individual cases in very
detail and on the other for large scale investigations as the annotation of whole genomes. One fo-

186



4. Conclusions

cus of this work has therefore been placed on the development of a web-based application, termed
»Waggawagga«, for the comparative visualization of coiled-coil predictions from individual protein
sequences generated by different softwares (Simm et al., 2015). A solution to provide end-users an
easy-to-use tool, that provides access to the most widely used prediction softwares of the field in
one place and helps to make a profound decision about obtained coiled-coil predictions for a single
protein sequence. Unique features of Waggawagga lie in the structural overview representation of
multiple aligned predictions in direct comparison and in detailed views of the respective predictions
down to single amino acid interactions. As a basis for decision-making over a coiled-coil domain in
question, the strength of the majority consensus of multiple and freely combinable prediction tools
builds the central aspect of this comparative approach to overcome the limitations of single applica-
tions. It can be extended by the activation of additional data from oligomerization state predictors.
Each of the predicted coiled-coil domains can be inspected in detail with the support of the helical
wheel and the helical net structure representations. Both are interactive views, that allow a biological
assessment of predicted coiled-coil domains based on interactions on the residue level. The helical
wheel represents the predicted oligomeric state and its position-dependent amino acid interactions
based on the heptad assignment in a defined region. Similarly, the helical net view visualizes inter-
acting amino acids within a single stable a-helix according to the occupied heptad positions.
Furthermore, supportive hints are provided by the specifically developed SAH prediction algorithm,
a window-based net score, which assesses the occurrence of helix-stabilizing interactions based on
single and network interactions between amino acids. It enables a distinct discrimination between
putative coiled coils and actual stable single a-helix domains (SAH) and helps in the identification
of real coiled-coil domains. This type of confusion is made by many tools through false-positive
predictions, and is one of the side-effects of a too specialized training of the prediction models. Our
approach follows the principle to use the strength of combining different information to build a
broader basis for the decision-making and help to prevent these mispredictions in the future.

As a »proof of concept«, the developed SAH prediction algorithm has been calibrated, tested and
evaluated as an initial benchmark against the largest available myosin sequence dataset. It consists
of 7919 manually annotated myosin sequences from 938 species representing all major eukaryotic
branches (Simm et al., 2017). A small part of the dataset based on well-known coiled-coil and SAH
domains served initially for the calibration of the SAH scoring threshold. Although the function of
the SAH-domains in human class-6 and class-10 myosins has well been characterized, the distribu-
tion and evaluation of the SAH-domain in all myosin subfamilies and across the eukaryotic tree of
life remained elusive. With our approach we identified SAH-domains in more than one third of the
supposed 79 myosin subfamilies. Depending on the myosin class, the presence of SAH-domains can
range from a few to almost all class members indicating complex patterns of independent and taxon-
specific SAH-domain gain and loss.

For studies at a larger scale as for genome-wide annotations, the SAH prediction algorithm to analyze
SAH-domains in protein sequence datasets has been implemented as a stand-alone version for the
command line, termed »Waggawagga-CLI« (Simm and Kollmar, 2018). Although the number of
reported SAH-domains is steadily increasing, genome-wide analyses of SAH-domains in eukaryotic
genomes are still missing. We took this as an opportunity to demonstrate and evaluate the function
of the SAH prediction algorithm on large datasets. Using Waggawagga-CLI we predicted SAH-
domains in 24 datasets from eukaryotes across the tree of life. SAH-domains were predicted in 0.5
to 3.5% of the protein-coding content per species. SAH-domains are particularly present in longer
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proteins supporting their function as structural building block in multi-domain proteins. In human,
SAH-domains are mainly used as alternative building blocks not being present in all transcripts
of a gene. Gene ontology analysis showed that yeast proteins with SAH-domains are particular
enriched in macromolecular complex subunit organization, cellular component biogenesis and RNA
metabolic processes, and that they have a strong nuclear and ribonucleoprotein complex localization
and function in ribosome and nucleic acid binding. Human proteins with SAH-domains have roles
in all types of RNA processing and cytoskeleton organization, and are predicted to function in RNA
binding, protein binding involved in cell and cell-cell adhesion, and cytoskeletal protein binding.
Waggawagga-CLI allows the user to adjust the stabilizing and destabilizing contribution of amino
acid interactions in i, i + 3 and i, i + 4 spacings, and provides extensive flexibility for user-designed
analyses.

As concluding study, the »status quo« of the current coiled-coil prediction options was re-evaluated
and critically assessed. We performed a large-scale in-depth prediction analysis by testing the most
relevant softwares of the field against the most comprehensive reference data set available, the entire
Protein Data Bank, and tracked down the results to each amino acid and its secondary structure
(Simm et al., 2021). Apart from the 30-fold difference in minimum and maximum number of coiled
coils predicted the tools strongly vary in where they predict coiled-coil regions. Accordingly, there is
a high number of false predictions and missed, true coiled-coil regions. The evaluation of the binary
classification metrics in comparison with naïve coin-flip models and the calculation of the Matthews
correlation coefficient, the performance metric for imbalanced data sets, suggests that the tested
tools’ performance is close to random. This implicates that the tools’ predictions have only limited
informative value. Coiled-coil predictions are often used to interpret biochemical data and are part of
in-silico functional genome annotation. The observed results indicate that these predictions should
be treated very cautiously and need to be supported and validated by experimental evidence.
In the course of this study, the complete prediction results for all the 144,270 analyzed PDB structures
were processed separately for transparency purposes and made available to the general public. The
individual predictions for each PDB accession can be inspected and reviewed in detail in the web-
application Waggawagga using the provided WebGL viewers on the 3D molecule structures and in
direct comparison in the comparative visualization.

Outlook

Although many studies and developments have been made in this field over long time, some ap-
proaches to contribute to the improvement of the overall quality of coiled-coil predictions are still
conceivable. One of the obvious and directly feasable solutions to address this challenge, referring
here to the results of our performed studies on comparative coiled-coil prediction and the discrimina-
tion SAH domains, should lie in the combined consideration of multiple predictions generated from
different detection softwares. These predictions differ in parts strongly in their extend of coiled-coil
harbouring regions and with a high proportion of false positive predictions, but deliver at same time
helpful information to identify the actual coiled coils, compare our findings from Simm et al. (2021).
Using several predictions stemming from a well-chosen set of different softwares creates a type of
consensus of the predicted domains and regions within the analyzed protein sequences, that pro-
vides profound information about conserved and hence likely correct predicted regions and delivers
reliable evidence.
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A more elaborate way could be the development of a next-generation of coiled-coil prediction soft-
wares by combining well-performing traits of previous developments such as the usage of window-
less models, adopting efficient approaches from other fields and extensively exploiting additional
biological information based on public structural data of proteins. As demonstrated by the pioneer-
ing development of the protein structure prediction software Alphafold (Jumper et al., 2021), crucial
key factors lie in combining the incorporation of large amounts of diverse biological data information
with the novel techniques of deep learning for interpretation. At the same time, new developments
should address coiled-coil types deviating globally from the heptad periodicity, because currently
most of the published coiled-coil detection tools are designed to analyze unbroken heptad repeats
and have therefore limited applicability to coiled coils with other periodicities.

4.2. Contributions to heterologous expression of genes

Equally essential for a deeper understanding of the cellular functions of proteins are the underlying
mechanisms from the encoding and transcription of genetic information through biosynthetic pro-
duction by the ribosome to the correctly folded and functional protein. Heterologous protein expres-
sion is an important method for analyzing these mechanisms and processes in the cells to identify
regulating factors. It is therefore often applied in the investigation of cellular functions, in genetic
circuit engineering and in overexpressing proteins for biopharmaceutical applications and structural
biology research. One of the key factors for heterologous expression represents the degeneracy of
the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene
sequences and simultaneously allows adjusting gene sequences without changing the protein se-
quences, but substantial uncertainty exists concerning the details of this phenomenon.

The focus of this work was the development of the software »Odysseus«, that implements a new
approach for the design of typical protein-coding genes for heterologous expression applications in
common model organisms. The software realizes a probabilistic approach based on Markov models,
that is highly configurable and can be operated with pre-trained genome profiles to control protein
expression levels by the codon usage adaptation of genes. Specially composed genomic data sets
build the basis for the computed profiles from which characteristic genetic information of the expres-
sion systems are derived. In contrast to most other tools, which intend to optimize the codon usage
by selecting only codons from a few highly expressed proteins or by selecting only the codon with the
highest relative codon usage from each codon box, Odysseus generates genes resembling the codon
usage of any conceivable subset of endogenous genes, for instance a selected group of proteins. Such
groups can be the highest or lowest expressed proteins of a species (with the cut-off free to choose),
or even a subset of proteins with a certain function. Odysseus is made available to the general public
as a web-application for performing host-specific protein adaptations to a set of the most commonly
used model organisms.

As a »proof of concept« we analyze in the performed study "Design of typical genes for heterologous
gene expression", referring to the recently submitted manuscript from Chapter 3.2, the influence
of the profiled codon usage adaptation approach on protein expression levels in the eukaryotic
model organism Saccharomyces cerevisiae. We selected green fluorescent protein (GFP) and human
a-synuclein (aSyn) as representatives for stable and intrinsically disordered proteins and represent-
ing a benchmark and a challenging test case. Using the new approach, synthetic genes for GFP and
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aSyn were generated, heterologously expressed and evaluated in yeast. To this end, we first started
to generate synthetic genes of the non-toxic, highly structured protein GFP and to evaluate their ex-
pression level. The expression level strongly increased from the gene based on the lowest expressed
proteins to the gene based on the highest expressed proteins. This supports the general finding that
protein expression is stronger when adapting a heterologous gene to the most used codons. Such
a strong expression is, however, often not wanted and disfavoured when trying to express a toxic
protein. To test our software for its use for expressing proteins at low endogenous protein expression
levels, we designed synthetic genes for the toxic, non-structured protein a-synuclein and showed
that human aSyn can be adapted to low expression levels. These initially conducted tests on the
two representatives of the protein classes suggest that Odysseus is a valuable approach for designing
typical genes for heterologous protein expression with which insightful results can be achieved in
the regulation of expression levels.

Outlook and future work

However, our approach is still at the stage of development and more experimental tests with several
different proteins are needed. At this point in time, our approach can be used to roughly influence the
direction of the expression levels. In order to make more targeted adaptations in the gene design pro-
cess, that have the adjusted effect on the expression level, a much broader experimental evaluation
of modified genes is required to better analyze and understand the inferences between synonymous
sequence modifications and effects on expressed proteins. Furthermore, in our study only the model
organism Saccharomyces cerevisia was used as a test expression system. To be able to make more re-
liable gene adaptations in general the effects need also to be investigated in other common model
organisms such as the in the web-application provided genome profiles of E. coli and A. thaliana.
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A.1. Supplementary information

Limits of previous evaluations of coiled-coil prediction tools

Earlier assessments of coiled-coil tool performance used user-defined subsets of the PDB. However,
instead of mining the PDB directly, another database was used, the SCOP Structural Classification
of Proteins database (Andreeva et al., 2004), to extract super families with coiled-coil domains for
the positives and superfamilies of the alpha and beta protein class for the negatives (Gruber et al.,
2006). Both categories were enriched by homology searches in the nonredundant database followed
by sequence alignment and redundancy reduction to result in a final data set of about 1% positives,
a highly imbalanced data set. This approach generated hardly verifiable reference data as it involved
manual removal of SCOP coiled-coil superfamilies from the positives, which according to SOCKET
did not contain coiled-coils, manual removal of SCOP superfamilies from the negatives, which ob-
viously contained coiled-coils, and the sequence search and alignment of the notoriously difficult to
align coiled-coil domains. The performance of coiled-coil prediction tools was assessed at the residue
level by sensitivity and specificity, which were termed coverage and reliability for unknown reasons
(Gruber et al., 2006).

In a subsequent analysis, all PDB structures deposited in an 18-month period were downloaded,
filtered to 95% sequence identity, and split into positives and negatives using SOCKET hits as cri-
terion (Rackham et al., 2010). With about 2.6% positives this data set was also quite imbalanced.
Coiled-coils were evaluated at the protein sequence level, albeit only by counting hits on the same
sequence without verifying the precise location of reference and prediction (e.g. overlap was not
confirmed).

A later comparative study combined both approaches (Li et al., 2016): The positives were determined
by mining the PDB with SOCKET. The negatives were compiled in a difficult to follow procedure of
selecting alpha and beta classes from SCOPe, removing classes that contain annotated coiled coils,
removing all available training data from prediction tools, recombining the resulting set again with
the training data of three tools, and finally applying a 30% sequence identity cut-off using CD-HIT.
The final data set contained 1643 sequences, of which 601 did not contain any coiled coil (negatives)
and of which 1042 contained 2176 coiled coils (positives). Performance was evaluated as sensitivity
and false positive rate (1 – specificity) at the sequence level, e.g. a SOCKET hit and a coiled-coil
prediction in the same protein sequence were regarded as true positive hit. It is obvious, that this
data set is highly imbalanced towards positives (63%), and that chances to obtain positive hits are
additionally increased by the fact that most of the sequences of the positive class contain multiple
coiled coils.

Most recently, test data were compiled by selecting the PDB data clustered by 50% sequence identity,
running SOCKET and preferentially selecting structures with coiled coils as representatives of the
clusters (Ludwiczak et al., 2019). Further redundancy in the selected structures was removed by ap-
plying CD-HIT to 50% sequence identity. The data were further filtered by structure resolution and
minimum and maximum protein sequence length cut-offs. To increase the proportion of the posi-
tives, half of the negatives (sequences without coiled coil) were randomly removed. The prediction
tools’ performance was evaluated using multiple binary classification metrics (except the MCC) at
the sequence and residue level.
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A.2. Supplementary figures
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352)��DQG�LQ�PRXVH�0\R;�ZLWK�'HHS&RLO�DQG�'HHS&RLO���

Figure A.1. | Prediction of coiled-coils in human MyoVI with CCHMM- PROF, and in mouse MyoX with DeepCoil
and DeepCoil2. A) To test the performance of CCHMM-PROF, which is only accessible via a web interface, the motor
domain sequence of human MyoVI was used. MyoVI is a backwards walking myosin motor, and was chosen by chance
from the list of available protein crystal structures of myosin motor domains. Predicted coiled-coil regions were mapped
onto the crystal structure, PDB ID 2BKH, and are shown in red. B) To test the performance of DeepCoil and DeepCoil2,
which are accessible via a web interface, the mouse MyoX was used. The output of DeepCoil was mapped onto the
domain architecture for better orientation. Surprisingly, while there is coiled-coil probablility for a large region from
DeepCoil prediction, DeepCoil2 does not predict any coiled-coil region.
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Figure A.2. | Prediction of coiled-coils in human muscle and non-muscle myosin heavy chain proteins (class-2
myosins) using DeepCoil2 (v. 2.0.1. 30 Nov 2020). To test the performance of DeepCoil2 we predicted coiled-coil re-
gions in several of the classic coiled-coil forming proteins, the muscle and non-mucle myosin heavy chain proteins from
human. For protein naming please check (Kollmar and Mühlhausen, 2017b). Predictions by the tools analysed in this
benchmark study are shown in figure S5.
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Figure A.3. | Upset plot of the intersection of SOCKET hits and coiled-coil predictions. The upset plot is based on the
same data presented in main Fig 1C.
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Figure A.4. | Performance of coiled-coil prediction tools in dependence of reference sequence length. Several clas-
sification metrics are shown for the six coiled-coil prediction tools with respect to SOCKET coiled-coil identifications.
Classification as true positive hit requires overlap of at least a single amino acid between prediction and SOCKET. The
performance was analysed for data sets with increasing minimum length of coiled-coil region (SOCKET hit or prediction)
and decreasing levels of sequence redundancy.
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Figure A.5. | Coiled-coil prediction on human adult skeletal myosin heavy chain protein. The coiled-coil tools of inter-
est were run on the human myosin heavy chain 2a protein sequence (skeletal muscle, adult 2 variant; GenBank identifier
13431716). The orange bars denote the predicted coiled-coil regions with their range given in numbers on top of the bars.
Red lines indicate interruptions of heptads, regular breaks such as stutters and stammers as well as any other breaks.
The grey circles show the predictions of oligomeric states with from left to right: MultiCoil or MultiCoil2 (only for the
MultiCoil predictions), SCORER 2.0, PrOCoil and LOGICOIL (LOGICOIL also predicts parallel or anti-parallel dimeric
coiled coils, which are indicated by arrows here). The blue bars are sequence sliders for detailed helical wheel and helical
net views and can be ignored here. The image has been generated with the Waggawagga tool (Simm et al., 2015).
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Figure A.6. | Overlap of coiled-coil predictions with SOCKET hit regions. Top: Schematic drawing of a coiled-coil
prediction overlapping a SOCKET hit. The ratio of overlap between prediction and SOCKET hit is different depending
on whether the prediction or the SOCKET hit is taken as reference. Bottom: The plot shows the percentage of coiled-coil
predictions in dependence of the degree of overlap with the SOCKET hits. For each tool, the percentage of overlapping
hits is counted once with taking the coiled-coil prediction as reference (solid lines) and once with the SOCKET hits as
reference (dashed lines). The percentage of PDB files with predictions overlapping a SOCKET hit with at least a single
amino acid was set to 100%.
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SUHGLFWLRQ�WRROV�ZLWK�UHVSHFW�WR�62&.(7�FRLOHG�FRLO�LGHQWLILFDWLRQV��&ODVVLILFDWLRQ�DV�WUXH�

SRVLWLYH�KLW�UHTXLUHV������OHIW�SORWV��DQG������ULJKW�SORWV��RYHUODS�EHWZHHQ�62&.(7�DQG�

SUHGLFWLRQ��3HUFHQWDJH�RYHUODS�ZDV�GHWHUPLQHG�ZLWK�UHVSHFW�WR�WKH�62&.(7�KLW���

�

Figure A.7. | Performance of coiled-coil prediction tools in dependence of overlap with SOCKET reference. Accuracy
and MCC are shown for the six coiled-coil prediction tools with respect to SOCKET coiled-coil identifications. Clas-
sification as true positive hit requires 40% (left plots) and 80% (right plots) overlap between SOCKET and prediction.
Percentage overlap was determined with respect to the SOCKET hit.
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6XSSOHPHQWDU\�)LJXUH�6���3HUIRUPDQFH�RI�FRLOHG�FRLO�SUHGLFWLRQ�WRROV�LQ�GHSHQGHQFH�RI�

RYHUODS�ZLWK�62&.(7�UHIHUHQFH��6HYHUDO�FODVVLILFDWLRQ�PHWULFV�DUH�VKRZQ�IRU�VL[�FRLOHG�

FRLO�SUHGLFWLRQ�WRROV�ZLWK�UHVSHFW�WR�62&.(7�FRLOHG�FRLO�LGHQWLILFDWLRQV��&ODVVLILFDWLRQ�DV�WUXH�

Figure A.8. | Performance of coiled-coil prediction tools in dependence of overlap with SOCKET reference. Several
classification metrics are shown for six coiled- coil prediction tools with respect to SOCKET coiled-coil identifications.
Classification as true positive hit requires overlap between prediction and SOCKET. The performance was analysed
for two data sets. Plots on the left column: no filter. Plots on the right column: minimum length of 21 amino acid for
coiled-coil regions and a sequence redundancy cut-off of 50%. For each data set, the metrics were computed for increas-
ing percentages of overlap between prediction and reference. Percentage overlap was determined with respect to the
SOCKET hit.
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Figure A.9. | Amino acid preferences at heptad positions abcdefg. It is well known that hydrophobic amino acids
are preferred at the interface between coiled a-helices, at positions a and d, and that charged and polar amino acids are
preferred at the outside, especially at positions e and g. Because SOCKET not only detects "classical" coiled- coils but
interacting a-helices within globular protein structures, the distribution of hydrophobic and charged amino acids is
slightly less biased in the latter structures. The heptad patterns of the coiled-coils predictions show strong bias for leucine
and isoleucine at the interior positions a and d, and for glutamate at all other positions, independently of the tool. The
letters at the axes denote the heptad register positions. Data values at grid lines refer to amino acid counts at each heptad
position over all heptads.
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Figure A.10. | Simplified database scheme. Only the table names and connections are shown for clarity.
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Figure A.11. | SOCKET coiled coils not present in the benchmark data due to SOCKET output problems and missing
multimers. A) PDB files containing SOCKET coiled coils where the output file of the SOCKET run is incomplete. B)
Incomplete output of SOCKET run on 1I5N.pdb, and SOCKET run on one of the generated "multimers" of 1I5N.pdb.
C) Example of the performance of the prediction tools on a coiled coil missed in the benchmark data set, chain-B of
1I5N.pdb. 1I5N.pdb contains 4 chains of identical sequence but slightly different structure. For chain-A, a 5- stranded
coiled coil is predicted by SOCKET, but the output is incomplete not providing the detected registers. Chain-B is shown
in the figure. Chain-C is identical to chain-B. Chain-D is predicted by SOCKET to contain a 2-stranded coiled coil (aa
40-54 and aa 62-77).
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Supplementary Figures 

 

     

 

Figure S1: Southern hybridization and copy number determination. Yeast cells 

were transformed with integrative plasmids, harboring GFP- or Į6\Q-encoding 

genes, respectively. Multiple transformants were analyzed by Southern hybridization 

for verification of the integration of GFP or Į6\Q genes into the mutated genomic 

ura3-52 locus using labeled URA3 as a probe. Left plots: One copy (1x) of integrated 

GFP corresponds to 3.0 kb + 3.9 kb; two copies (2x) to 3.0 kb + 3.9 kb + 5.8 kb, and 

three copies (3x) to 3.0 kb + 3.9 kb + 5.8 kb (higher intensity). Right plots: One copy 

(1x) of integrated Į6\Q corresponds to 2.7 kb + 4.7 kb; two copies (2x) to 2.7 kb + 

4.7 kb + 6.2 kb, and three copies (3x) to 2.7 kb + 4.7 kb + 6.2 kb (higher intensity), as 

indicated. Copy numbers were determined with the ImageJ software. 

  

GFP 
1 x     2 x 

kb 
5,8 
3,9 
3,0 

3 x kb 
6,2 
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2,7 

1 x   2 x 3 x 
SNCA 

Figure A.12. | Southern hybridization and copy number determination. Yeast cells were transformed with integrative
plasmids, harboring GFP- or aSyn-encoding genes, respectively. Multiple transformants were analyzed by Southern hy-
bridization for verification of the integration of GFP or aSyn genes into the mutated genomic ura3-52 locus using labeled
URA3 as a probe. Left plots: One copy (1x) of integrated GFP corresponds to 3.0 kb + 3.9 kb; two copies (2x) to 3.0 kb +
3.9 kb + 5.8 kb, and three copies (3x) to 3.0 kb + 3.9 kb + 5.8 kb (higher intensity). Right plots: One copy (1x) of integrated
aSyn corresponds to 2.7 kb + 4.7 kb; two copies (2x) to 2.7 kb + 4.7 kb + 6.2 kb, and three copies (3x) to 2.7 kb + 4.7 kb +
6.2 kb (higher intensity), as indicated. Copy numbers were determined with the ImageJ software.
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Figure S2: Full size blots corresponding to Figure 3A. On top, the part shown in 

Figure 3A is presented for comparison. Western blot analysis of crude protein 

extracts from yeast strains, expressing GAL1-driven GFP from one, two and three 

copies. Protein expression was induced for 6 h in galactose-containing medium, 

crude protein extracts were prepared and equal protein amounts from all samples 

were used for Western blotting. The membrane was probed with anti-GFP antibody. 

GAPDH antibody was used as a loading control. 
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1 x     1x 

1 x     1x 

GFP 

GAPDH 

Figure A.13. | Full size blots corresponding to Figure 3.6A. On top, the part shown in Figure 3.6A. is presented for com-
parison. Western blot analysis of crude protein extracts from yeast strains, expressing GAL1-driven GFP from one, two
and three copies. Protein expression was induced for 6 h in galactose-containing medium, crude protein extracts were
prepared and equal protein amounts from all samples were used for Western blotting. The membrane was probed with
anti-GFP antibody. GAPDH antibody was used as a loading control.
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Figure S3: Full size blots corresponding to Figure 4A. On top, the part shown in 

Figure 4A is presented for comparison. Western blot analysis for determination of the 

protein level of Į6\Q. Protein expression was induced for 6 h, crude protein extracts 

were prepared and the protein concentrations were determined with a Bradford 

DVVD\������ȝJ�FUXGH�SURWHLQ�H[WUDFW�IURP�VDPSOHV�gene4 (L), gene5 (M) and gene6 

(H), DQG����ȝJ�IURP�VDPSOHV�³hXPDQ´�were used for Western blotting. The 

membrane was probed with anti Į6\Q antibody. GAPDH antibody was used as a 

loading control. 
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Figure A.14. | Full size blots corresponding to Figure 3.7A. On top, the part shown in Figure 3.7A is presented for
comparison. Western blot analysis for determination of the protein level of aSyn. Protein expression was induced for 6
h, crude protein extracts were prepared and the protein concentrations were determined with a Bradford assay. 160 µg
crude protein extract from samples gene4 (L), gene5 (M) and gene6 (H), and 40 µg from samples "human" were used for
Western blotting. The membrane was probed with anti aSyn antibody. GAPDH antibody was used as a loading control.
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Figure S4: Full size blots corresponding to Figure 4C. On top, the part shown in 

Figure 4C is presented for comparison. Western blot analysis of crude protein 

extracts from yeast strains, expressing GAL1-driven Į6\Q from one, two and three 

copies. Protein expression was induced for 6 h, crude protein extracts were prepared 

DQG�WKH�SURWHLQ�FRQFHQWUDWLRQV�ZHUH�GHWHUPLQHG�ZLWK�D�%UDGIRUG�DVVD\������ȝJ crude 

protein extract from samples gene7, gene8 and gene9, DQG����ȝJ�IURP�VDPSOHV�

³hXPDQ´�ZHUH�XVHG�IRU�:HVWHUQ�EORWWLQJ��7KH�PHPEUDQH�ZDV�SUREHG�ZLWK�DQWL-Į6\Q�

antibody. GAPDH antibody was used as a loading control. 

1 x     2 x    3 x 1 x     2 x    3 x 1 x     2 x    3 x 

Į6\Q 

GAPDH 

Į6\Q 

GAPDH 

1 x     2 x    3 x 1 x     2 x    3 x 1 x     2 x    3 x Copy No. 

gene7 gene8 gene9 

Figure A.15. | Full size blots corresponding to Figure 3.7C. On top, the part shown in Figure 3.7C is presented for com-
parison. Western blot analysis of crude protein extracts from yeast strains, expressing GAL1-driven aSyn from one, two
and three copies. Protein expression was induced for 6 h, crude protein extracts were prepared and the protein concentra-
tions were determined with a Bradford assay. 160 µg crude protein extract from samples gene7, gene8 and gene9, and 40
µg from samples "human" were used for Western blotting. The membrane was probed with anti-aSyn antibody. GAPDH
antibody was used as a loading control.
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Figure A.16. | The "inverted" di-codon usage. The schematic view at the top shows example codon boxes within the
di-codon usage matrix. The heatmap plots at the bottom show the relative codon usage of the 308 highest expressed
proteins of S. cerevisiae, when weighted (top-left), and the two ways to get the di-codon usage inverted (bottom-right).
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