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Introduction 1

“Wir müssen wissen, wir
werden wissen.”

David Hilbert

1.1 Motivation
Acoustic signals are rich in information content. They provide engineering and
scientific insights in myriad fields including underwater source localization, auto-
mated interpretation of human speech and animal vocalizations, acoustic monitor-
ing, medicine, etc. For humans, the skill of listening to sounds and extracting rele-
vant information comes effortlessly. However, for computers, this task is still quite
challenging. Factors ranging from large variance in characteristics of a sound class,
similarity in sound properties across classes, reverberation and noise, interference ef-
fects due to other signals, and overlapping sounds act as strong impediments when
it comes to realizing the full potential of automated analysis of sound data. Never-
theless, as the amount of data grows, human effort required to manually process the
acoustic data and recognize relevant patterns increases considerably. Furthermore,
human cognition also places limits on identifying certain trends that may exist in
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. Introduction

data but are hard for us to glean, especially at scale. Machine hearing entails de-
veloping computational methods that would enable us to capture the approximate
statistical structure of acoustic signals. The more functional goal is to be able to ana-
lyze acoustic signals automatically to extract useful information that would assist in
a wide range of applications.

One such utility is in the field of bioacoustics, and more specifically, bird vocal-
izations. Automated analysis of bird sounds can be utilized to answer some specific
questions such as: Which bird species are vocalizing? When are birds present and
vocalizing? How do different calls or songs relate to each other? What kind of calls
or songs were produced? Are there differences in vocalizations between different
sub-species of birds? (Bianco et al., 2019) Birds are relatively well studied since they
are found in most environmental niches. This also makes avian population trends
a useful indicator to measure the health of an ecosystem. The need for monitoring
bird species populations has never been more dire owing to the stresses of human
driven global warming that has accounted for a surge in global extinctions of animal
populations in general and bird populations in particular. One in six bird species
populations around the world are at a risk of extinction today as per the IUCN Red
List (Ritchie and Roser, 2021).

Owing to the recent advances in recording and data storage technologies, afford-
able autonomous recording units can be deployed for extended time periods in fa-
vorable locations to collect huge amounts of data. This has led to a huge interest
in developing state-of-the-art algorithms that can enable computers to analyze the
data to automatically classify bird species based on their sounds. Compared to the
advances on the hardware side, there is still an enormous dearth of computational
methods that will allow for seamless analysis of huge amounts of acoustic data saving
humongous time and effort that is spent in analysing the sound samples manually.
Most of the literature available on automated recognition of bird species is either
focused on specific bird species or the recordings are carefully chosen and of high
quality (Priyadarshani et al., 2018). On the other hand, there are algorithms that are
developed for general use based on very deep neural networks but these are extremely
data hungry, have high computational complexity, and suffer from higher degrees
of interpretability or adaptability issues (Purwins et al., 2019). Therefore, there is a
need to build robust and scalable models that can be run on minimal computational
budgets to carry out the task of automated analysis of unattended field recordings.
While there have been significant advances in the recent past in the field of machine
hearing, the field is still not as diverse and advanced as the field of machine vision and
there is huge scope for improvement. The broad objective of this thesis is to build on
the computational analysis tools that will assist automated monitoring of bird species
based on their vocalizations.

2



1.2. Main Aims

1.2 Main Aims
1. Exploring performance of bird species classification by relying on simple, com-

putationally inexpensive methods that can be trained on pre-computed sound
features without a careful selection of bird species or recording samples.

2. Investigating the influence of number of selected bird species classes on classi-
fication performance.

3. Quantifying variations in songs within bird species using a purely algorithmic
approach.

1.3 Thesis Outline
Chapter 2 starts off by describing the foundational concepts and tools from the ar-
eas of audio signal processing and machine learning that are necessary to grasp the
workings of techniques and results presented in this thesis. This is followed by a
recapitulation of requisite theoretical background on bird vocalizations (Chapter 3),
motivation behind the impetus for analyzing bird sounds and presentation of a review
of methods and techniques carried out in the past toward classification of bird species
based on their sounds.

In Chapter 4, the utility of a simple statistical technique to perform the task of
bird species classification is studied. Ensembles of cepstral coefficients are computed
from bird vocalizations distributions are estimated from the time series of cepstral
coefficients for different species. This is followed by comparing distributions of these
ensembles by computing relative entropies to reveal group specificities. Next, a ran-
dom forest classifier is employed and several experiments are conducted; to explore
the predictive power of different descriptors, scanning for parameters to come up
with the feature configuration that would provide the best performance, investigat-
ing the influence of segmenting signal parts from audio recordings, investigating the
influence of bird sound type, and the influence of noise on the performance of classifi-
cation. The goal here was to explore the complexities of the bird sound classification
problem and understand the influence of different attributes on the overall perfor-
mance of a classification system.

In Chapter 5, a shallow feed-forward neural network is fed with pre-computed
sound features to study the robustness of bird sound classification. It is investigated in
detail if and how classification results are dependent on the number of species and the
selection of species in the subsets presented to the classifier. The number of species
present in each subset is varied between 10 and 300, randomly drawing sounds of
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. Introduction

species from a data set of 659 bird species to study the reliability of classification
performance results.

In Chapter 6, the analysis is extended to explore the intra-species differences
in bird species vocalizations in widespread species. Ornithologists have known that
birds species vocalizations can vary even within the same species. Machine learning
models are employed to classify vocal variation within widespread species in a way
that does not require hundreds or thousands of hours of manual processing of record-
ings. Two widespread bird species, House Wren and Yellowhammer, are considered
in this work to explore the possible variations in songs in case of the former and clas-
sification of various established dialects in case of the latter species. In contrast to
existing approaches these issues are approached in a purely algorithmic manner us-
ing the classification approach developed in the previous chapters. Our motivations
to choose a shallow feed-forward neural network and a random forest classifier over
very deep networks lie mainly in the model simplicity, the lower computational costs,
and the relatively small amount of data required to train such networks. We wanted
to analyze the classification performance using a simple model that can be trained
with pre-computed sound features.

In Chapter 7, the findings of different computational experiments carried out in
this thesis are summarized and a brief outlook for future work is presented.

Chapter Title Journal Status

5 A randomized bag-of-birds approach
to study robustness of automated
audio based bird species classification.

Applied
Sciences

Published

6 Quantifying variability in songs
for House Wren species.

Ecology
and Evolution

In preparation

6 Automated Classification of dialects
of Yellowhammer species.

Ecological
Informatics

In preparation

Table 1.1: Manuscripts from analysis in this thesis.
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Machine Hearing Foundations 2

“If you want to find the secrets
of the universe,
think in terms of energy,
frequency and vibration.”

Nikola Tesla

2.1 From Sounds to Acoustic Signals
Sound can be defined as the auditory perception of pressure waves that are generated
by an oscillating object. Waves travel in the form of compressions and rarefactions of
particles of an elastic medium such as water or air. These compressions and rarefac-
tions are alternating regions of high and low pressure respectively. The particles retain
their equilibrium position while transporting energy in the form of pressure waves
that propagate through the medium. The number of times the object producing the
waves oscillates back and forth in one second gives the sound its key characteristic
known as frequency. Frequency of oscillation is measured in cycles per second or
Hertz (Hz). It is the physical basis for our sensation of pitch. Humans can detect
sounds in the stated frequency range between 20 Hz and 20 kHz.

Acoustic transducers, also known as microphones1, are artificial sensors used to
1or hydrophones if you are working under water.
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. Machine Hearing Foundations

(a)

(b) (c)

Figure .: Schematic for analog to digital conversion. a) Analog Signal: An ana-
log signal v(t) where T denotes the period i.e., the duration of a full oscillation. b)
Sampling: The analog signal v(t) is uniformly sampled 3 times within each period T
to produce a time-discrete sequence of samples v[n]. c) Quantization: A 3-bit quan-
tizer with 8 quantization levels that are uniformly spaced is applied to the samples
in v[n] to generate a fully digital signal. This results in each sample in v[n] being
approximated to the nearest level of the quantizer. Figure adapted from Varodayan
(2014)

mimic our auditory perception. These devices are placed in the sound field to record
sounds and convert sound pressure difference over time into a time varying voltage
difference to provide an electrical representation of sound. These continuous time
and pressure variations of electrical signals are known as acoustic signals v(t). In or-
der to store these representations on a computer, the continuous acoustic signals are
converted to a digital format v[n]. This process is called analog to digital conversion.
The digitization process primarily includes two processes to reduce the resolution of
continuous signals while maintaining the information content that allows us to per-
ceive the sound. The two processes are sampling and quantization. Sampling, also
referred to as discretization, entails sampling the continuous acoustic signal at dis-
crete intervals in time, usually spaced linearly. Sampling frequency (fs) determines
the number of samples that are measured from the continuous acoustic signal. Con-
sequently, a digital recording is composed of a series of sample values proportional to

6



2.2. Time-Frequency Representation

the original sound pressure at discrete time intervals given by the sampling frequency.
The sampling frequency is estimated using Nyquist-Shannon sampling theorem which
establishes a relation between the sampling frequency and the range of recorded fre-
quencies in the continuous acoustic signal. To elaborate, it states that a digital audio
signal can only capture frequencies less than half the sampling frequency. Follow-
ing this criterion, the analog signals are sampled at a sampling frequency of at least
two times the highest recorded frequency or the maximum frequency relevant for us
(fs = 2fm where fm is the highest relevant frequency).

The other process that assists analog to digital conversion is called quantization.
Quantization is sampling performed in the pressure or amplitude domain as opposed
to discretization which is performed in the time domain. The idea is to approximate
a continuous pressure value from a set of predefined amplitude values. These prede-
fined values depend on a parameter called bit depth which is the number of bits or
binary digits used to specify the amplitude. Consequently, the bit depth places a limit
on the number of discrete values that can be used to represent the amplitude at a spe-
cific time interval. In more detail, 2n different amplitude values can be represented
by a bit depth of n bits. Fig. 2.1 graphically illustrates the digitization process.

2.2 Time-Frequency Representation
It was discussed in the last section how frequency is one of the key characteristics
of sound signals. It determines the number of times the pressure oscillates in one
second. While this is true for a signal that is composed of a single frequency, real
world sounds are more complex and contain more than one frequency component
at any moment in time. Also, it is quite useful for many real-world applications to
have the frequency distribution information of sound signals. Fig. 2.2 illustrates the
idea further. Therefore, the central question at this point is how can we take such a
signal and decompose it into its constituent frequencies. The discrete Fourier Trans-
form (DFT) is one such technique that can be used to transform an acoustic signal
in time domain into its component frequencies along with corresponding amplitudes
and phases for each frequency component. Such a distribution of amplitudes against
the frequency components of an acoustic signal is known as its frequency spectrum.
More formally, the discrete Fourier Transform is defined by:

F[k] =
N−1∑
n=0

v[n]e−2πikn/N , k = 0, 1, . . . , N − 1, (2.1)

where, F[k] is the DFT of the acoustic signal sequence v[n]. F = F[0],F[1], . . .
,F[N − 1] are the fourier components, see e.g., (Osgood, 2007).
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. Machine Hearing Foundations

Figure .: A signal in time and frequency domain. Image reproduced from nti
audio

One way of understanding what is happening in Eq. 2.1 is in terms of correlation
between sinusoids of different frequencies and the acoustic signal. In order to under-
stand this further, let us use Euler’s formula 2 to break the exponential in the above
equation into its sine and cosine components where θ = 2πkn/N . We can hence
re-write Eq. 2.1 as:

F[k] =
N−1∑
n=0

v[n](cos(2πkn/N)− i sin(2πkn/N)), (2.2)

and consequently:

F[k] =
N−1∑
n=0

v[n] cos
(
2πkn

N

)
− i

N−1∑
n=0

v[n] sin
(
2πkn

N

)
(2.3)

We can see from Eq. 2.3 that both summations are basically correlations between
the signal (v[n]) and a sinusoidal function. This calculation is repeated for different
values of k which gives us fourier coefficients for different frequencies. From the co-
sine part we derive the real part that gives us the amplitude for a particular frequency
range present in the signal while the sine part which is imaginary gives us the corre-
sponding phase. In this way, we generate a spectrum of a signal from its amplitude
values. While the frequency spectrum provides valuable insight about the distribu-
tion of frequencies in a signal, it is not helpful if we are interested in time localizing
various frequencies in a signal. Frequency spectrum provides an averaged estimate of

2e−iθ = cos θ − i sin θ

8



2.2. Time-Frequency Representation

Signal

Window Length

Windows

Hop Overlap

Length Length

Windowing

FFT

FFT Output1 FFT Output2 FFT Output3

Figure .: Overview of short term Fourier Transform. Image adapted from Jeon
et al. (2020)

different frequencies in the entire signal. In order to recover the time information,
Gabor introduced short-time Fourier transform (STFT). The simple idea is to divide
the long signal into small consecutive segments and then perform fourier transform
on these individual frames separately in order to understand how various frequencies
evolve. The kth coefficient of DFT for the tth time frame of v[n] is computed as:

F[t, k] =
N−1∑
n=0

w[n]v[tH + n]e−
−i2πkn

N , (2.4)

where w[n] is the window function that is used to make sure frames on which the
DFT is computed are periodic and to account for the discontinues at the end points
that arise due to non-integer number of periods filling the frames. There are several
types of windowing functions, the choice of which is contingent on different appli-
cations. Some commonly used windowing functions are Rectangular, Hamming,
Hanning, and Blackman-Harris. H is another parameter which is referred to as hop

9
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Figure .: Time domain, frequency domain, and time-frequency domain repre-
sentation of a sound signal of a bird song of 5s duration. a) Waveform of a 5s signal
b) A time averaged frequency spectrum of the signal c) Spectrogram representation
that shows frequency distribution over time.

size and is specified in number of samples. Hop size determines the fraction of over-
lap between consecutive frames. It is common practice to introduce an overlap by
choosing hop size smaller than the length of the frame, this leads to smooth STFT
representations and also allows statistical dependencies between time frames (Virta-
nen et al., 2018).

Spectrograms provide a way of visualizing various frequency contributions of a
signal as it evolves over time, see e.g., (Müller, 2015; Smith, 2007). Fig. 2.4 shows
a representation of a big song signal along with its spectrum and spectogram. It is
evident from the figure that, while the frequency spectrum provides the frequency
distribution of the entire signal, the spectrogram informs on an elaborate frequency
evolution along the time horizon.

2.3 Sound Scene Analysis: Machine Hearing
Acoustic signals are rich in information content. For humans, the skill of listening to
sounds and extracting relevant information from them comes effortlessly. This ability

10



2.3. Sound Scene Analysis: Machine Hearing

of the human auditory system to extract separate sound events from complex sound
mixtures is phenomenal. However, for computers, this task is quite challenging. Ma-
chine Hearing entails developing computational methods to capture the approximate
statistical structure of acoustic signals (Mobin, 2019). The more functional goal is
to be able to analyze acoustic signals automatically to extract useful information. In
general, most machine hearing tasks can be broadly divided into two main categories:
Classification and Detection. Classification deals with assigning an acoustic signal to
one of the several predefined classes. For instance, different classes could be several
bird species and the goal of the classifier would be to analyze the acoustic signal to
assign one bird species label to it. When the number of classes is limited to two, it is
termed as binary classification, and when the number of categories is more than two,
it is called multi-class classification. Detection algorithms, on the other hand, aim
at time localizing different events or sources of sounds within an audio recording.

Figure .: Overview of machine hearing process. Figure reproduced from Virta-
nen et al. (2018).

A typical machine hearing system involves acquiring acoustic signal, pre-
processing the signal, extracting features, and decision-making (Li and Cox, 2019).
An acoustic signal is recorded using a transducer such as microphone and stored in a
digital form. The stored signal is then pre-processed. This may involve several pro-
cesses such as denoising, frequency filtering, pre-emphasis, sound-source separation,
peak normalization, re-sampling, etc. The goal of this step is to enhance specific
properties of the acquired signal that best assists the overall performance of the task
the system aims at solving. The next step entails extracting audio features from time
series of audio signals. Extracting features allows obtaining lower-dimensional com-
pact statistical representations while preserving the distinguishing characteristics of
the signal in a non-redundant manner. In addition to reducing the computational
costs, feature extraction maximizes classification performance of the system. Stud-
ies have shown that models with aggregated features achieve a better classification
performance compared to a single feature (Xie and Zhu, 2019). The final decision-
making step can range between something as simple as setting a threshold on a uni-

11



. Machine Hearing Foundations

dimensional feature to quantifying similarity or dissimilarity involving a set of fea-
tures in a higher dimensional space. The decision making algorithms grow in com-
plexity as acoustic signals become more complex. Machine learning algorithms are
commonly used to handle the demands of sophistication (Li and Cox, 2019). The
simple idea of machine learning is to use large amounts of data to learn models that
can capture necessary statistical properties inherent in the data. Lately, Artificial Neu-
ral Networks (ANNs) have proven to be one of the most effective machine learning
frameworks when it comes to learning representations of sounds and images and have
produced state-of-the-art results (Mobin, 2019; LeCun et al., 2015). These work on
the principle of supervised machine learning where a set of input-output pairs are
introduced to the system and the aim is to learn the mapping of inputs to the out-
puts. In case of acoustic signals, we have acoustic features extracted from a signal to
be analyzed and reference annotations provided for each signal respectively. Fig. 2.5
provides a schematic of the overall machine learning process for acoustic analysis.

2.3.1 Machine Learning
In this section, the different machine learning techniques used in this thesis are in-
troduced. These techniques are commonly used and widely known by the machine
hearing community. A brief overview is presented here.

Decision Trees

Decision trees can be applied in both classification and regression aspects (Breiman
et al., 2017). The core idea behind decision trees is to split or stratify the input space
into sub-spaces. The sub-space regions are defined by a set of binary splitting rules
based on which quantitative or qualitative decisions are made. Stratification of the
input space can be nicely summarized in a decision tree and that makes these models
very insightful data analysis tools. The biggest advantage of decision trees is that they
are simple algorithms, easily interpretable, and nice to visualize. In order to make
binary splits, the classification error rate is used as a criterion. It gives the fraction
of training samples in a region that do not belong to the most commonly occurring
class of training samples in that region and is defined by:

E = 1− max
k

(p̂rk) , (2.5)

where p̂rk gives the proportion of training samples in the rth region that belong to the
kth class. In practice, another criterion known as the Gini index is mostly used since
the classification error has been found to not be sufficiently sensitive to grow trees,
see e.g., (James et al., 2013). The Gini index provides a measure of total variance
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2.3. Sound Scene Analysis: Machine Hearing

across K classes and is given by:

Gr =
K∑
k=1

p̂rk (1− p̂rk) . (2.6)

Note that Gr is 0 when a sub-space has samples from only one class. The Gini index
has the property of encouraging purity in a region i.e., favours regions with high
proportions of data samples that purely belong to one of the classes, since the goal is
to maximize homogeneity in a region. The tree is then recursively split to minimize:

min
R∑

r=1

Gr (2.7)

Random Forests

Although decision trees are very simple and therefore easy to interpret, they usually
suffer from sub optimal performance. The variance across different classes is high.
Therefore, if the training samples are randomly split into two parts and decision trees
are fit to both halves, the results for the two could be significantly different. In order
for a model to be robust in terms of predictive power, it should deliver similar results
on different datasets i.e., the variance should be low. Bagging or bootstrap aggrega-
tion provides a solution to overcome the problem of low variance. In this procedure,
B number of decisions trees are trained using B separate training datasets. In case,
the data is limited, the same can be done using bootstrapping, where repeated sam-
ples are drawn B times, with replacement, from the same data set to train B number
of decision trees. Consequently, for a given test sample, the majority vote from the
predictions made by the B trees for that sample determines the predicted class for
the sample.

The problem with such bagged trees is that they can be highly correlated. If there
are a few features in the data set that are very discriminative, all bagged trees will
use these features in the top splits to make the first decisions and therefore are going
to be very much the same in all trees. Random forests provides a solution to this
problem (Breiman, 2001). In addition to building an ensemble of decision trees by
bootstraping the data set, a procedure called feature bagging is employed. For each
decision tree, every time a split is considered out of a total of p features, a random
selection of m features are chosen as split candidates. At each split, a fresh sample
of m features is taken, where m is typically set to be equal to √

p. This makes sure
that each tree that is built is different based on the random selection of features and
the result is an ensemble of trees that are uncorrelated (James et al., 2013). Ran-
dom forests have shown very strong performance in a very wide range of empirical
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evaluations compared to several other supervised learning algorithms (Caruana and
Niculescu-Mizil, 2006).

Artificial Neural Networks

Neural networks derive their name from the fact that they were initially developed
to model the human brain. These models are sometimes also referred to as single
hidden layer back-propagation networks. A neural network is a two-stage non-linear
statistical model that can perform both classification and regression (Friedman et al.,
2001). Fig. 2.6 provides a graphical representation of a typical neural network. These
models constitute a sequence of layers where each layer is an affine transformation
followed by a non-linear transfer function σ:

fi(x | θ) := σi
(
w⊤
i x + bi

)
,

θ = (wi, bi, σi) constitutes the parameter space where wi are weights, bi are biases
and σi are transfer functions for different layers i. The transfer function σi is usually
selected as the sigmoid function 1/(1 + e−v). The values Zm of the units in the
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FIGURE 11.2. Schematic of a single hidden layer, feed-forward neural network.

Thinking of the constant “1” as an additional input feature, this bias unit
captures the intercepts α0m and β0k in model (11.5).

The output function gk(T ) allows a final transformation of the vector of
outputs T . For regression we typically choose the identity function gk(T ) =
Tk. Early work in K-class classification also used the identity function, but
this was later abandoned in favor of the softmax function

gk(T ) =
eTk

∑K
!=1 e

T!

. (11.6)

This is of course exactly the transformation used in the multilogit model
(Section 4.4), and produces positive estimates that sum to one. In Sec-
tion 4.2 we discuss other problems with linear activation functions, in par-
ticular potentially severe masking effects.

The units in the middle of the network, computing the derived features
Zm, are called hidden units because the values Zm are not directly ob-
served. In general there can be more than one hidden layer, as illustrated
in the example at the end of this chapter. We can think of the Zm as a
basis expansion of the original inputs X; the neural network is then a stan-
dard linear model, or linear multilogit model, using these transformations
as inputs. There is, however, an important enhancement over the basis-
expansion techniques discussed in Chapter 5; here the parameters of the
basis functions are learned from the data.

Figure .: Schematic of a feed forward neural network with a single hidden
layer (Friedman et al., 2001).

middle are not directly observed and therefore are referred to as the hidden units.
These values are sometimes called derived features and are computed from linear
combinations of input data. There can be, in general, more than one hidden layer in
a neural network. The goal of the neural network is to learn the value of parameters θ
that generates the best function approximation for the training data (Virtanen et al.,

14



2.3. Sound Scene Analysis: Machine Hearing

2018; Goodfellow et al., 2016). For classification, cross-entropy is usually used as an
error function to measure the model fit. Gradient descent is used as a generic method
to minimize cross-entropy loss.

2.3.2 Commonly Used Acoustic Features3

The acoustic features that have been employed in different experiments in this work
are described as follows:

Mel Spectra

In Section 2.2, it was discussed how, in order to capture the time evolution of a signal,
an STFT is computed on short time consecutive frames. Spectrum computed using
STFT provides the power spectrum for these successive frames of the audio signal.
The frequency representation thus produced is linear. The inception of the Mel scale
is inspired by human auditory perception (Stevens et al., 1937). To elaborate, the
idea is that the human auditory system perceives both magnitudes and frequencies
of individual frequency components in a highly non-linear manner. Following this
understanding, a new type of spectral features were introduced, that are less discrim-
inative of higher frequencies and more discriminative of lower frequencies. This is
achieved by allowing larger bandwidths at higher frequencies and narrow bandwidths
at the low frequencies (Virtanen et al., 2018). Mel-scaling is implemented using filter
banks in which triangular filters are applied to the power spectrum on non-linearly
spaced frequency ranges. Fig. 2.7 shows a Mel-spaced filterbank with 20 triangular
filters. To compute filterbank energies, each filterbank is multiplied with the corre-
sponding power spectrum and then the coefficients are added up to generate a Mel
spectra.

Cepstral Coefficients

It is well understood that the transformation from time domain to frequency domain
allows for conversion of the convolution of two discrete time series to a multiplication
of the two sequences. If a logarithm of the spectrum is followed by an inverse trans-
form, it turns out that this also provides useful information utilizing the property of
logarithms to convert products into sums. The relevance of this concept derives from
the idea that an audio signal recorded in a noisy reverberant environment may be
written as a convolution of the original audio signal and the impulse response of the
environment (Vary and Martin, 2006). Therefore, if the recorded signal has a well-
defined spectral vs excitation envelope, a cepstrum allows for a separation of those

3 Some parts of this section have been published in (Ghani and Hallerberg, 2021)
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Figure .: Mel-filterbank containing 20 filters that projects STFT bins onto Mel-
frequency bins. The minimum frequency is 0 Hz and the highest frequency is 11250
Hz.

parts. The cepstrum of a signal v[n] can be computed as:

C(v[n]) = F−1[log(|F [v[n]]|2)], (2.8)

which entails computing the Fourier transform of the signal, then taking a magni-
tude squared. By taking the magnitude we throw away the phase information. This
is followed by taking a logarithm and then an inverse transform to get a cepstrum
C(v[n]) of the signal v[n]. By taking an inverse transform what we get is something
like an inverted frequency which is termed as quefrency. This can be thought of as
the frequencies of the frequencies generated by the first Fourier transform. The lower
coefficients in the cepstrum will represent the slowly changing spectral information
that corresponds to the spectral envelope and is the useful part of the signal like infor-
mation about formants, the relative phonemes, the timbre etc. As we move towards
higher quefrency values in the cepstrum, we will get spectral details or fast changing
values in the spectrum. Consequently, when we move from spectral to cepstral do-
main, we can achieve a separation between the spectral envelope and spectral details
that correspond to the representation of the impulse response of the environment.

Mel-Frequency Cepstral Coefficients (MFCCs)

The coefficients of the Mel spectra obtained by applying a Mel-spaced filterbank to
the power spectrum of a signal turn out to be highly correlated which is not desir-
able for some machine learning algorithms such as Random Forests. In order to
decorrelate the coefficients of the mel spectra, they are first log transformed and then
a discrete Cosine Transform (DCT) is applied to obtain Mel-Frequency Cepstral Co-
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efficients (MFCCs). This also produces a compressed representation (Logan et al.,
2000). For a typical classification task, only the first 10-20 coefficients are retained
while the rest are discarded. This follows the same reasoning as the linear cepstral
coefficients, that the latter coefficients represent fast changes in the mel spectra that
do not contribute towards automatic recognition of desired patterns.

Deltas

The cepstral coefficients or the MFCCs thus computed describe the power spectral
envelope of different frames of the acoustic signal, but some audio signals have also
been shown to carry useful information in the trajectories of coefficients over time.
The delta coefficients are therefore computed to encapsulate such information and
can be defined as:

dn = fn − fn−1 (2.9)

where dn gives the delta coefficient for a feature f at time instant n. It is a common
practice, for instance, in the speech recognition tasks, to append 10-20 delta coeffi-
cients to the MFCCs which then forms an input to the machine learning algorithm.

Spectral Centroid

The spectral centroid measures the frequency where energy of a spectrum is centered.
In other words, it localizes the center of mass of the spectrum and is calculated as a
weighted mean of the frequencies the signal is composed of:

sc =

∑
k S(k)f(k)∑

k S(k)
, (2.10)

where, S(k) is the spectral magnitude at frequency bin k and f(k) represents the center
frequency of the bin (Klapuri and Davy, 2007).

Spectral Rolloff

The spectral rolloff gives the frequency f(k) belowwhich a predefined percentage (usu-
ally set to 0.85) of the total spectral energy is concentrated (Smith, accessed <2019>).

Zero-Crossing Rate

The zero-crossing rate r measures the smoothness of a signal. It is the rate at which
the signal changes its sign from negative to positive or vice versa (Giannakopoulos
and Pikrakis, 2014).
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The Root-Mean-Square Energy

The root-mean-square energy of a signal gives the signal’s total energy and is defined
as:

erms =

√
2
∑
k

|S(k)|2 (2.11)

where S(k) is the spectral magnitude at frequency bin k (McFee et al., 2019).

Spectral Bandwith

Spectral Bandwith measures if the power spectrum is concentrated around the spec-
tral centroid or spread across the spectrum. It is computed as:

sb =

√∑
k (k − sc)

2 · |S(k)|2∑
k |S(k)|

2 (2.12)

where sc is the spectral centroid, S(k) is the spectral magnitude at frequency bin
k (Abreha, 2014).

2.3.3 Measuring Classification Success4

This section introduces indices that have been used to measure classification
performance in different experiments (Sunasra, 2019; Grandini et al., 2020). Each
experiment involves n species and a data set of a total of 4m sound samples. To
elaborate, 3m samples are used for training, whereas the remaining m samples are
employed to evaluate the quality of classifications. For each species j = 1, 2, ..., n a
data set of 4m samples is processed. These evaluations are then done by computing
a confusion matrix for each species j, containing:

ctp(j) the number of classifications which are true positives,
ctn(j) the number of classifications which are true negatives,
cfp(j) the number of classifications which are false positives,
cfn(j) the number of classifications which are false negatives.

The resulting elements of the confusion matrix enter into a computation of
more advanced metrics for measuring classification success such as precision,
recall, accuracy, mean-average-precision and receiver-operator characteristics. To
understand how the entries of each species’ confusion matrix influence the outcomes
of these summarizing measures, more detailed descriptions of their computations
are introduced as follows:

4 Some parts of this section have been published in (Ghani and Hallerberg, 2021)
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Confusion Matrix

A confusion matrix is an N × N matrix, where N is the number of classes that is
used to evaluate performance of a classification model. The columns of the matrix
represent the true values while the rows represent the predicted values of the target
variable that can either be true or false.

Precision

The metric gives the measure of reliability of our predictions. The formula to compute
precision for a bird species j is

p(j) :=
ctp(j)

ctp(j) + cfp(j)
. (2.13)

Therefore, precision for a species j indicates how many true positives the model pre-
dicted out of all positives. Therefore, higher the precision, the more confident a
model is about its predictions. In order to compute precision for entire test data set,
we average over all species

P =
1

n

n∑
j=1

p(j). (2.14)

Recall

Thismetric gives themeasure of predictive power of amodel. The formula to compute
recall for each bird species j is

r(j) :=
ctp(j)

ctp(j) + cfn(j)
. (2.15)

Therefore, recall for a class species j would mean, of all actual positives in the test
data set, how many did the model predict as positive. Therefore, the higher the recall,
the more positive samples model correctly classified as positive. In order to compute
recall for the entire test data set, we average over all species:

R =
1

n

n∑
j=1

r(j). (2.16)

Accuracy

While precision and recall are computed for each class separately in a multi-class
classification problem, the accuracy A is computed for the entire test data set using

A :=

∑n
j=1 ctp(j)

m · n
. (2.17)
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So, out of all test samples how many were correctly classified.

Area Under ROC Curve (AUC)

An Receiver Operating Characteristics (ROC) curve shows performance of a classifica-
tion model at different classification thresholds. The curve is computed by plotting
true positive rate (rtp) against false positive rate (rfp) at these thresholds. The true
positive rate for a bird species j is defined as:

rtp(j, ρ) :=
ctp(j, ρ)

ctp(j, ρ) + cfn(j, ρ)
, (2.18)

and the false positive rate for a bird species j is defined as

rfp(j, ρ) :=
cfp(j, ρ)

cfp(j, ρ) + ctn(j, ρ)
, (2.19)

with ρ denoting a probability threshold that is varied from 0 to 1 in order to obtain
the ROC curve. Area Under ROC Curve (AUC) gives an aggregate measure of clas-
sification performance. The ROC was originally developed for a binary classifier and
has later been generalized for multi-class classification system (Hand and Till, 2001).
Test set labels are binarized by employing either the one-vs-one or the one-vs-rest
configuration. We have employed the one-vs-one configuration for our task. To elab-
orate, different sound samples are ranked by their probabilities and then false positive
and true positive rates are computed by choosing different probability cut-offs ρ to
generate the ROC curve. AUC is computed as the area under the ROC curve. In
the end, an average across species is computed to get one AUC value for the entire
data set, i.e.,

AUC =
1

n

∑
ρ

n∑
j=1

rtp(j, ρ). (2.20)

Mean Average Precision (mAP)

Mean Average Precision (mAP) gives us a way of characterizing the performance of a
classifier by monitoring how precision changes on varying the classification probabil-
ity threshold, one the model uses to make a decision if a bird sound sample belongs
to a class j. A good classifier will maintain a high precision as recall increases while a
poor classifier will take a hit on precision as recall increases with changes in threshold.
To elaborate further, to compute Average Precision for a species j, a list of probabil-
ities is generated in which the discrimination probabilities our model has assigned
to all the test samples for class j are stored. The list is then sorted by decreasing
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probabilities and each element is assigned a rank l. By varying the rank l (by grad-
ually lowering the probability threshold), a list of true positives and false positives
is generated. Note that, as the classification threshold is lowered, the model labels
increasingly more samples as positive. This will lead to an increase in false positives.
The list is consequently employed to come up with a list of precision values at differ-
ent ranks p(l). Considering all the L cases in the list where the sound sample belongs
to class j, the average precision is computed as:

PA(j) :=

∑L
l=1 p(l)1(l)
ctp(j)

, (2.21)

where 1(l) is an indicator function that equals unity if the sample at threshold l is a
true positive. The mean average precision PmA is then computed by averaging over
all classes (species) (Kahl et al., 2019).

PmA :=

∑n
j=1 PA(j)

n
. (2.22)

2.3.4 Basic Statistics
Audio signals are time varying phenomena and come with intrinsic randomness due
to the background noise and/or interference effects added to them en-route. They
can therefore be modeled as discrete stochastic processes. A discrete time random
process is defined as a sequence of random variables X(n), where,

n = 0, 1, 2, . . . , (2.23)

is the time index as the signal evolves, see e.g., (Gray and Davisson, 2004). In order
to extract the statistical structure of a random signal at a certain time step, one would
need to have access to an ensemble of X(n) sequences. However, in reality, it is not
always feasible to observe more than one ensemble sequence of a random process. In
case of stationary signals, ensemble averaging can be replaced by the time averaging.
In case of non-stationary signals, for instance bird vocalizations, the signal is sliced
into short time analysis frames. The features are extracted from these analysis frames
that are assumed to be in a quasi-stationary state (Virtanen et al., 2018). Based
on the values of features for different short time analysis frames, summary statistics
are computed for each feature component to provide an estimate of the structure of
the assumed underlying distributions representing different bird vocalizations. The
sample moments that have been employed in this work are briefly defined as follows:
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Mean

Sample mean of a distribution is the estimation of the first moment of the random
variable X and is defined as,

µ̂ = X =
1

n

n∑
i=1

Xi, (2.24)

and provides an estimate of the average value of data.

Variance

Sample variance of a distribution is the estimation of the second moment of X and
is defined as,

s2 =
1

n− 1

n∑
i=1

(Xi − µ̂)2 , (2.25)

and provides a measure of the spread of the distribution about the mean.

Skewness

Sample skewness of a distribution is the estimation of the third moment of the ran-
dom variable X and is defined as,

µ̂3 =
1

n

n∑
i=1

(xi − µ̂)3 , (2.26)

and provides a measure of asymmetry of distribution about its mean. It can take all
values on a real number line. A negative skewness would mean that the values are
spread out more to the left of the mean and similarly, a positive skewness would mean
the values are spread more to the right.

Kurtosis

Sample kurtosis of a distribution is the estimation of the fourth moment of X and is
defined as,

µ̂4 =
1

n

n∑
i=1

(xi − µ̂)4 , (2.27)

and provides a measure of tailedness of a distribution and therefore quantifies to what
degree outliers are present in the data.
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Bird Vocalizations 3

“A bird doesn’t sing because it
has an answer,
it sings because it has a song. ”

Maya Angelou

3.1 Bird Sounds
Birds, in a way similar to humans and many other vertebrates, produce sounds by
making use of their respiratory system. The quasi-periodic flow of air enables the
respiratory muscles to transfer the energy to a small structure that then generates
sound. While it is larynx in case of humans that is responsible for sound production,
in birds, the vocal organ that produces sound is called syrinx. It is located at the base
of trachea in contrast to the larynx that lies at the top of the trachea. To elaborate
further, air propagates from the lungs through the bronchi into the syrinx which is
where the vibrations get produced. The sound before emerging out as vocalizations
gets modulated while passing through the trachea, the larynx, the mouth, and finally
the beak of the bird, see e.g., (Bastas, 2012; Fagerlund, 2004; Catchpole and Slater,
2003). Although this is a simplified understanding of the sound production mecha-
nism in birds, it captures the overall idea to assist the flow of details that will follow.
The capability of producing sounds provides birds with an efficient means to com-
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Figure .: Human and bird sound production models (top and bottom, respec-
tively). The figure has been reproduced from Potamitis et al. (2014)

municate as sound can traverse long distances, does not require visual contact, and is
not hindered by low visibility for instance during nighttime, bad weather conditions
or dense environments, see e.g., (Potamitis et al., 2014). Bird vocalizations that are
produced by the vocal organ of birds can mainly be divided into calls and songs. Calls
are usually classified as sounds that are shorter and less complex. These sounds are
used in different contexts such as to share information about food sources, to facili-
tate contact between parents and their young offspring, to maintain flock cohesion,
to signal alarm, etc. Songs, on the other hand, take the form of more complex vocal-
izations that are used mainly in the context of mating (Ball and Hulse, 1998). While
calls are produced by all birds, only a subset of birds also produce songs.

It has historically been held that bird song is exclusively a male trait (Ball and
Hulse, 1998). This observation was also fundamental to the formulation of Darwin’s
theory of sexual selection (Darwin, 1872). The female song instances were dismissed
as atypical, scarce, or outcome of hormonal aberrations (Catchpole and Slater, 2003).
However, more recent studies have reversed this classical assumption and there has
been a growing acknowledgment in the past decades that female bird songs are also
common, especially in the tropical regions (Odom et al., 2014). Fig. 6.1 shows spec-
trogram representations of calls and songs for three different bird species that have
been recorded in Germany.

Songs are often simple harmonics that can contain single sinusoidal traces, over-
tones, and stronger formants. Due to their distinctive and elaborate nature, songs
also allow for a greater possibility for automated sound-based bird species classifi-
cation (Stowell and Plumbley, 2010). Birds can produce more than one version of
their species’ songs and these different versions are called song types. Bird songs
can be hierarchically broken down into different sections. Each song consists of a
series of phrases that occur in a certain pattern. The phrases in turn are composed
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Figure .: Spectrograms of bird sounds for three species recorded in different
locations in Germany. The left column corresponds to calls and the right column
corresponds to songs. In the top row is the bird species Common Blackbird (Tur-
dus merula). The call is recorded in Essen-Werden, Nordrhein-Westfalen while the
song is recorded at the University of Göttingen1. The center row is the species Great
tit (Parus Major). Both the call and song for this species are recorded in the Han-
nover region (near Uetze). The bottom row corresponds to the bird called Common
Chaffinch (Fringilla coelebs). Both the call and song for this bird species are recorded
in Riesewohld, Schleswig-Holstein. The x and y axes correspond to time (in seconds)
and frequency (in Hertz).

of even finer units called syllables. There are bird species that only produce a single
syllable while other species can produce different patterns formed by a few syllables.
There are yet other bird species that have even elaborate vocabularies with a com-
plex structure of syllables. These complex syllables can be divided into even more
elementary units called elements or notes (Catchpole and Slater, 2003). The songs

1North Campus, Faculty of Forest Sciences and Ecology, University of Göttingen.
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Figure .: Time-frequency representations (spectrograms) of two different songs
for the bird species Common Chaffinch (Fringilla coelebs). The figure illustrates the
hierarchical divisions of bird songs – phrases, syllables and elements. The x axis repre-
sents the time in seconds, while the y axis represents frequency in Hertz. The figure
has been reproduced from Catchpole and Slater (2003)

produced by the passerines2 are generally more complex than the songs produced by
non-passerines (Potamitis et al., 2014). Fig. 3.3 provides a graphical representation
of different sections of a bird song. Different birds vocalize in different frequency
ranges and the broad range of most bird vocalizations has been estimated to lie be-
tween 250 Hz and 8.3 kHz (Hu and Cardoso, 2009).

3.2 Why are we interested in Bird Vocalizations?
Throughout the timeline of our planet, bird species have been evolving and disappear-
ing due to naturally occurring long-term processes such as earth’s climate fluctuations,
continental splits, volcanic eruptions, etc. However, it has been reported that the cur-
rent rate of extinction is outside the scope of natural processes and is heavily driven by
environmental changes humans have caused on earth (Lovette and Fitzpatrick, 2016).
As per the IUCN Red List of Threatened Species, 1481 bird species are facing an im-
mediate threat of extinction, that is 14% of bird species (iuc, 2021). It was estimated

2Birds species that belong to the order Passeriformes are called passerines. More than half of all
bird species belong to this order. They are also called perching birds.
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in a study conducted across North American avifauna that the net loss of birds in the
last 48 years was approaching 3 billion since 1970 (Rosenberg et al., 2019). Therefore,
it is becoming increasingly important to monitor bird species trends and population
sizes (or for animal species in general) for conservation purposes. We can only take
proper measures toward prevention of such extinctions if we know the real status of
animal diversity. Birds are relatively well studied because they are found in most en-
vironmental habitats. This also makes avian population trends a useful indicator to
measure the health of an ecosystem.

Themonitoring of bird species diversity has classically been carried out using point
counts (or call counts) where a bird expert manually counts birds in a field based on vi-
sual and aural cues. This observer-based technique to estimate bird population trends
has several limitations ranging from high financial costs to high temporal constraints
and errors induced due to reliance on observer expertise (Kahl et al., 2021b). This is
where automated monitoring based on bird vocalizations provides a cost and effort-
effective way to study changes in avian diversity. Automated acoustic monitoring
involves the use of autonomous recording units3 that can provide continuous streams
of real-time data to access the status of bio-diversity in a region with minimal human
intervention (Potamitis et al., 2014). These recorders can be installed in fields and
left unattended to record bird sounds for weeks or even months. Some comparative
studies have shown that autonomous recordings are capable of detecting more species
than observer-based surveys (Cunningham et al., 2004; Shonfield and Bayne, 2017;
Priyadarshani et al., 2018). Furthermore, the analyses can always be repeated and
results reproduced in contrast to observer-based point counts.

3.3 Automatic Bird Detection and Classification
The next challenge after collection of such huge amounts of acoustic data using unat-
tended autonomous recorders is to process the data. Evidently, if this work would
have to be done manually, it would be extremely tedious as it would entail going
through tens of hundreds of hours of recordings that have been recorded, sometimes
for months on end. Pattern recognition of bird vocalizations aims at automating the
task of detecting and identifying bird species in field recordings. Therefore, it has
become an increasingly common and effective method in the context of bird species
monitoring. Notwithstanding the advantages of using bird vocalizations to infer eco-
logically relevant information, there are certain challenges associated with processing
field recordings to produce robust results. Unattended field recordings can be quite

3These are self-contained recording devices with high memory capacity and long battery life that
are deployed in terrestrial environments for passive acoustic monitoring.
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Figure .: Rosenberg et al. (2019) have integrated bird population size estimates
and trajectories for 529 species across North American avifauna and reported an esti-
mated net loss of 2.9 billion birds since 1970. Gray shape represents the 95% credible
interval. The graphic has been reproduced from the same work.

noisy, as depending on the distance from the recording device, sound samples can
be faded or distorted and recordings can include overlapping sounds from the same
or different bird species. For this reason, the automated analyses of bird sounds has
shown limited success until now. On surveying the literature available on automatic
audio-based analysis of bird species, it has been found that several authors have ad-
dressed the influence of noise by adding artificial stationary and non-stationary noise
to recordings which is unlikely to represent the real world environment. Moreover,
most analysis have been performed using less noisy recordings and relatively small
datasets, as has already also been pointed out in Priyadarshani et al. (2018). In many
works, bird species diversity data has been manually extracted from a reduced set of
recordings (Furnas, 2020; Swiston and Mennill, 2009), or the number of species that
have been extracted from huge amounts of data has been severely restricted (Wood
et al., 2019).

Zhang and Li (2015) have used an Support Vector Machines (SVM) classi-
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fier trained on Mel-scaled wavelet features where twenty 2s recordings with clean
sound samples for each class and added artificial noise are used to classify 30 bird
species. The highest average classification accuracy at different SNRs of 85% is re-
ported. Jančovič and Köküer (2011) used a Gaussian Mixture Model (GMM) trained
on MFCCs/tonal-based features where the recordings were manually split into in-
dividual syllable groups. 83% recall performance was reported when white noise
with an signal-to-noise ratio (SNR) of 10dB was added to the data. Fox et al. (2006)
have trained a neural network on MFCCs to report a precision of 89% for 3 bird
species. Potamitis et al. (2014) used Hidden Markov Models with perceptual LPCC
features to recognize recordings for 2 bird species and reported a precision of about
85%. Somervuo et al. (2006) use sinusoidal modeling and MFCCs and report their
best accuracy result of 71.3% on 14 commonNorth-European bird species. Fagerlund
(2007) use global decision tree in combination with SVM trained on a set of low level
signal parameters and MFCCs reporting the best accuracy of 98% on a set of 8 bird
species. Jančovič and Köküer (2015) employed an Hidden Markov Model (HMM)
in combination with an estimation of frequency tracks to report an accuracy of 78%
on 30 bird species. Bastas et al. (2012) proposed a novel Spectrogram-based Image
Frequency Statistics feature extraction algorithm and reported an accuracy of 94%
for 5 bird species. Lopes et al. (2011) employ a set of classifiers, namely Naive Bayes,
the k-nearest neighbors algorithm (k-NN), decision tree classifier, multilayer percep-
tron (MLP) neural network, Sequential Minimal Optimization (SMO) (Polynomial)
and SMO (Pearson). Themodels are trained onMusic Analysis Retrieval and Synthesis
for Audio Signals (MARSYAS) feature set that includes 64 features in total. The best
F1 score of 65% is reported using an MLP model when full recordings are used for 8
bird species and an F1 score of 89.7% is reported using SMO (Pearson) when pulses
are used to classify the bird species. Damoulas et al. (2010) employed a Bayesian clas-
sification algorithm with a dynamic time warping kernel to classify flight calls of 42
bird species. They report an average accuracy of 74%.

Salamon et al. (2017) propose a fusion of shallow and deep learning algorithms
to classify different flight calls on the same dataset employed by the previous study
(with additional data for same species) and report classification accuracy of 96%. Ruff
et al. (2020) employed a deep neural network with four convulational layers followed
by two fully connected layers. The model was fed with spectrograms generated from
12s audio recordings for 6 owl species and reported a F0.5 score of 0.5. Sprengel
et al. (2016) employ novel data segmentation and data augmentation methods to
train a convolutional neural network to classify 50 bird species. They report a mean
average precision score of 0.68 when predicting the main bird species in each sound
file. LeBien et al. (2020) train an end-to-end convolutional neural network based on
mel-spectrograms. The method employs transfer learning to reduce computational
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costs, by using a ResNet50 model, pre-trained on the ImageNet dataset. They re-
port a mean average precsion score of 0.893 across 24 species of regional birds and
frogs. Cramer et al. (2020) used TaxoNet, a deep neural network architecture with
three convolutional layers, a flattening layer, a fully connected hidden layer and a
fully connected output layer. They reported a micro-average accuracy of 0.663 for
flight calls across 14 bird species. Kahl et al. (2021b) employed a Residual Neural Net-
work (ResNet) architecture consisting of 157 layers, 36 of which are weighted. The
model was trained using extensive pre-processing and augmentation of sound data.
They report a mean average precision of 0.791 for song species recordings across 984
North American and European bird species.

The inception of very deep neural networks has pushed the state-of-the-art higher
in terms of classification performance, since hundreds of bird species can now be au-
tomatically classified and the methods generalize well. Nevertheless, these networks
are not devoid of serious challenges. Firstly, the design of these networks is mostly
guided by intuition. Secondly, the training of these networks is tremendously costly
in terms of computational resources and time. For instance, the usage of such net-
works would be an overkill if the training data is limited and there is a limited number
of bird species that need to be classified. Furthermore, power-hungry computation-
ally expensive algorithms and power-intensive hardware are not that well suited for
real world applications such as mobile recorders (Priyadarshani et al., 2018). In order
to realize full potential of passive acoustic data, there is a huge scope to explore com-
putational methods that can provide a better trade-off between the computational
costs and overall performance. (Kahl et al., 2021b).
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Automated Analysis of Bird Sounds 4

“Simpler solutions are more
likely to be correct than
complex ones.”

William of Occam

4.1 Introduction
In this chapter, different computational experiments aimed at investigating the task
of automated analysis of bird vocalizations are discussed; more specifically, the au-
tomated classification of bird species based on their sounds. The chapter starts with
describing the dataset used. Each experiment begins with description of the experi-
mental setup and analysis tools employed unless they are already explained in Chap-
ter 2. This is followed by results generated and a discussion of the results thereof.

4.2 Dataset
The bird sounds data used in the experiments that will follow in this chapter was
provided in the BirdClef 2021 challenge (Kahl et al., 2021a). The dataset was cu-
rated from the Xeno-Canto repository of bird vocalizations1. Xeno-Canto is a col-

1https://xeno-canto.org/
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laborative project dedicated to sharing bird vocalizations from all over the world.
The dataset consists of short recordings (more than 60,000) of 397 individual birds
recorded in South and North America along with metadata with information about
location (latitude and longitude), type of vocalization, date, quality of recording, au-
thor, etc. The audio data was provided in ogg format.

4.3 Computational Experiments

4.3.1 A Simple Statistical Method
In this computational experiment, a simple statistical method was employed to carry
out classification. The idea was to benchmark the classification performance without
employing conventional machine learning techniques. The classification system con-
sists of two phases: a training phase and a testing phase. Data is prepared by splitting
the recordings of varying length into 5 second samples. These audio samples are then
resampled to a sampling rate of 22050 Hz. This serves two purposes; firstly, it brings
different recordings of varying sampling rates to the same level and secondly, it allows
for filtering out frequency parts where the birds do not vocalize. The resampling is
followed by peak normalization to adjust the recording based on the highest signal
level present in the recordings.

Once the data is pre-processed, it is divided into training and testing subsets. For
each bird species, time series of cepstral features are computed (see Chapter 2 for
details about cepstral features). To elaborate further, the time series of qth cepstral
coefficient ct,q where q = 1, 2, 3, . . . , Q is the total number of coefficients for each
time frame and t = 0, 1, 2, . . . , T is the total number of frames in all bird sound
recordings in the training dataset for species s. Two different methods are investi-
gated to generate classifications and will be explained as follows.

Comparing Distributions of Cepstral Coefficients

Once the time series of Cepstral Coefficients (CCs) are computed, distributions of cep-
stral coefficients are estimated. For each bird species s, pi distributions are estimated
from the computed time series of cepstral coefficients for individual coefficients q.
The idea is to test the assumption that distributions for different species should be
representative of the distinct properties of sounds produced by the respective species.
Therefore, distributions estimated from recordings sampled from different species
should differ more than the ones estimated from recordings of the same species. This
should allow us a way to classify a random bird sound recording into one of s class
of species. The distributions are estimated by first computing minima and maxima
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values of the time series of cepstral coeffiecients. Based on these values, we define
n = 20 consecutive non-overlapping and equal sized bins to divide the entire range
of cepstra values for each coefficient into a series of intervals. The values for different
bins are then given by the counts of values that fall into each disjoint bin to pro-
vide us an approximate representation of the distribution. In this way, we estimate
distributions for the set of species that we want to analyze.

In the testing phase, the same process is followed to estimate the distributions
of individual testing samples. This is followed by a simple prediction method that
compares the distribution of the test sample with the distributions of individual
species estimated using the training dataset. In order to quantify the difference, a
common entropy measure is employed called the Kullback Leibler divergence (KLD)
D(pq,i||pq,j) (Kullback and Leibler, 1951), also known as the relative entropy. KLD
provides a measure of dissimilarity between two distributions. If pq,i and pq,j are two
distributions of a discrete random variable, the KLD is defined as:

D (pq,i∥pq,j) =
∑
k

ln
(
pq,i,k
pq,j,k

)
pq,i,k, (4.1)

where k refers to the k-th bin of the distribution. D (pq,i∥pq,j) is defined when both
pq,i and pq,j sum up to 1, i.e., both distributions are normalized.

The KLD values computed in this way are summed up:

kldi,j =
∑
q

D (pq,i∥pq,j) , (4.2)

to come up with a summarized KLD estimate kldi,j for a test sample i and a species j.
The test sample is then assigned the class that corresponds to the lowest summarized
KLD estimated kldi,j .

Comparing Mean Cepstra

The mean cepstra Cq are computed by taking the time average for all cepstral coeffi-
cients.

In the testing phase, the same process is followed to compute the mean cepstra
of individual testing samples. This is followed by a simple prediction method that
compares the mean cepstra of the test sample with the mean cepstra of individual
species computed for the training dataset. In order to quantify the difference, two
simple measures are tested 1) correlation coefficient and 2) Euclidean distance.

Let Ci
q denote the mean cepstra vector of a species i in the training set that has

the highest correlation with the mean cepstra vector of a test sample Cl
q:

ρ
(
Cl

q,Ci
q

)
≥ ρ

(
Cl

q,Ck
q

)
, k ̸= i, (4.3)
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where k = 1, 2, 3, . . . , N and N is the total number of species in the training set.
The test sample is then assigned the label i of the species to which the mean spectra
vector Ci

q belongs.
Similarly, let Ci

q denote the mean cepstra vector of a species i in the training set
that has the lowest Euclidean distance to the mean cepstra vector of a test sample
Cl

q:
d
(
Cl

q,Ci
q

)
≤ d

(
Cl

q,Ck
q

)
, k ̸= i, (4.4)

where k = 1, 2, 3, . . . , N and N is the total number of species in the training set.
The test sample is then assigned the label i of the species to which the mean spectra
vector Ci

q belongs.
In order to compute the accuracy for the entire test set, we employ the accuracy

metric which can be defined as:

A :=

∑n
j=1 ct(j)

m · n
, (4.5)

where ct(j) gives the number of correctly classified predictions for a specie j andm·n
is the total number of predictions if there are n bird species classes and each class has
m test samples.

Results and Discussion

The performance of the classification methods is evaluated by testing for 20 trials
drawing 10 randomly selected species, with repetition, for each trial from the larger
dataset of 397 species. This is done to arrive at a reliable estimate of performance
(for details, please refer to Chapter 5 where this approach is discussed in detail). The
results for accuracy of predictions for the three methods discussed above are sum-
marized using box plots in Fig. 4.1. Visual inspection of Fig. 4.1 yields that among
the two broad variations of classification techniques used, the one comparing the
mean cepstra leads to higher accuracy than comparing distributions estimated over
the time series of cepstral coefficients. This is an interesting result since one would
expect that, in the latter case, the summarization2 leads to loss of information which
does not happen in the former method since we use all the data to estimate distribu-
tions. However, one can argue that averaging over time allows for accentuation of
useful trends, components of bird sounds in our case, and similarly leads to dimin-
ishing of noisy non-recurring parts in the signals. Besides, since the field recordings
are noisy and birds do not vocalize throughout the span of the recordings, using cep-
stral coefficients computed over all time frames to estimate distributions exposes the
distributions to a considerable level of noise. Secondly, since the classifications are

2averaging over time
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Figure .: The accuracy measures for KLD based predictions, Eucledian distance-
based method and Correlation coefficient-based predictions estimate. Accuracy is
highest when the predictions are obtained by comparing the mean cepstra using the
correlation coefficient and worse when distributions estimated from the time series
of CCs are compared using KLD. Shown above are the ranges from best result to
worst result (whiskers) obtained for 20 different randomly drawn subsets for 10 bird
species. The black marking in each box represents the median and the boxes indicate
the middle 50% of the results.

generated by comparing the distribution estimated for a test sample with the distri-
butions estimated for the ground truth species where entire training set is used to
estimate the distribution, this leads to significant imbalance in data size.

We also observed that using correlation coefficient to comparemean cepstras leads
to better performance compared to using Eucleadian distance. One possible expla-
nation could be that a correlation coefficient provides a better estimate of capturing
the shape or trend of the data, whereas Eucleadian distance provides an estimate of
difference in values of different coefficients. Since cepstral envelope can also provide
useful information about bird vocalizations, we achieve a better performance using
correlation coefficient.

The overall accuracy of this method is relatively low. Nevertheless the perfor-
mance is better than a random classifier that will achieve an accuracy of 10% on 10
classes. The performance of thismethod can be explained by the nature of field record-
ings that can be noisy, with overlapping sounds of different birds, insects, and other
natural phenomena such as wind and rain that interfere with the bird sound signals.
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Fig. 4.2 shows distributions for first 6 cepstral coefficients for a set of 10 bird species.
Different species are labeled with different colors. One can see from the figure that
the distributions estimated from the recordings of different bird species are quite
similar which explains why it would not be an easy task for a simple threshold-based
classification technique as employed here to classify the sounds of different species.

As observed in Fig. 4.1 one can see that for each method, we get a range of accu-
racy values, depending on the particular random selection of 10 species. As discussed
in Chapter 4, a possible explanation could be the difference in degree of similarity
between different subsets of species.

4.3.2 A Random Forest-Based Approach
We learned in the previous section that employing simple statistical techniques might
not allow us to model complex patterns in the bird sound data that will allow us
to make useful predictions. For this reason, a machine learning-based approach is
explored. Compared to conventional methods, machine learning-based approaches
have shown an improved performance in a variety of tasks including machine hear-
ing (Bianco et al., 2019).

Following the usual convention, the classification system consists of two phases:
a training phase and a testing phase. Both phases comprise of more or less the same
steps, namely the data pre-processing, feature extraction, model training, and testing
of unobserved data. The data is prepared by splitting the recordings of varying length
into 5 second samples. The 5-second audio samples are then resampled to a sampling
rate of 22050 Hz. This serves two main purposes: it brings recordings of varying
sampling rates to the same sampling rate and filters the parts in the signals where the
birds do not vocalize. The resampling is followed by peak normalization to adjust
the recording based on highest signal level present in the recordings. Since most
birds have been reported to vocalize in the frequency range between 0.5 kHz and
10 kHz (Marler and Slabbekoorn, 2004), we apply a high pass filter to attenuate
parts of the signals below 0.5 kHz which strongly reduces the environmental noise.
Following the preprocessing of data, a balanced dataset is curated in which 300 sound
samples are randomly drawn for each bird species. The data is divided into training
and testing subsets wherein 75% data is left for training and the remaining 25% data
for testing.

The next step entails extracting low level representations of the data. In addition
to the linear scale cepstral features used in the previous experiment, Mel-frequency-
cepstral-coefficients (MFCCs) and Mel Spectrogram have also been employed in
this experiment. A detailed description of the features can be found in Chapter 2.
The features have been calculated for each audio sample using a frame size of 512
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Figure .: Distributions estimated from the time series of the first 6 cepstral coef-
ficients ct,q for a set of 10 bird species, labeled by different colors.
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frames with Hamming windowing function while allowing an overlap of 25%. The
features thus derived are all time series of feature coefficients. In order to reduce the
size of the features so that they can be used as input for the classifier, two different
summarization configurations are investigated – summarizing each feature dimension
over time by its first two sample moments; mean and variance, and summarizing each
feature dimension by its first four sample moments; mean, variance, skewness and
kurtosis. The different combinations including the dimensionality of data input to
the classifier can be seen in Table 4.1.

To perform the classification, we used a random forest classifier (Breiman, 2001).
Our choice for using random forests for the task is inspired by their strong perfor-
mance in an extensive range of empirical evaluations compared to several other super-
vised learning algorithms (Caruana and Niculescu-Mizil, 2006). A detailed descrip-
tion of random forests can be found in Chapter 2. For this computational experiment,
we have relied upon the random forest implementation provided by the Python library
scikit − learn (Pedregosa et al., 2011b). The parameters of the classifier were not
tuned manually. While parameters turning can lead to enhanced performance, it also
runs the risk of overfitting to the characteristics of the dataset (Stowell and Plumbley,
2014). The classifier was trained with 200 trees and the entropy information gain was
used as a quality of split measuring criteria.

Results and Discussion

The performance of the classification method is evaluated by testing for 20 trials
drawing 10 randomly selected species, with repetition, for each trial from the larger
dataset of 397 species. This is done to arrive at a reliable estimate of performance3.
The model is trained with 10 different feature configurations obtained by varying
the type of features used and the summarization employed (Table 4.1). Performance
is evaluated using two commonly used metrics, namely accuracy and mean average
precision (mAP ). The results of different feature configurations are summarized
using box plots in Fig. 4.3.

Classification performance is significantly higher than the methods employed in
the previous section. Comparing the results obtained using linearly scaled cepstral
features, since these features are also used in the previous method, we observed a gain
of at least 35% (see Fig. 4.1). This emphasizes the point that these robust machine
learning models learn more complex relationships in the feature space to model the
decision boundaries compared to what can be achieved by some simple linear com-
parisons of feature values. The gains are even higher when other two feature types,
MFCCs and Mel spectra, are compared.

3For details, please refer to Chapter 5 where this approach is discussed in detail.
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Figure .: Classification results using the performance measures a) Accuracy and
b) mAP for different feature configurations using a random forest classifier. Shown
are the ranges from best result to worst result (whiskers) obtained for 20 different
randomly drawn subsets for 10 bird species. The black marking in each box represents
the median and the boxes indicate the middle 50% of the results. Table 4.1 provides
the full forms of the abbreviations for the feature configurations used here.
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Comparing different feature configurations, it was found that the effect of feature
type was the strongest on the classification performance. The linearly spaced Cepstral
coefficients were outperformed by both Mel spectras and MFCCs in most trials. The
highest mAP value achieved in a trial by a feature type involving cepstral coefficients
was around 77%, whereas the highest mAP score achieved by a feature type involving
Mel-scaled coefficients was around 86%. Among the two Mel-scaled features, the
MFCCs performed slightly better than the Mel spectra, on an average across the
20 trials. This shows that the introduction of mel-scale improves the classification
results. In speech recognition, such results are not surprising since the Mel-scale is
supposed to mimic human perception, but the fact that better classification results
are obtained in case of bird vocalizations is interesting. The MFCCs performing
better than the Mel spectras, at least in some subsets of bird species, can perhaps be
explained by the fact that the coefficients of Mel spectra are highly correlated. For
a classifier such as random forests that employs bagging of different decision trees
with different combinations of features, the performance takes a hit if the features
are correlated. MFCCs, on the other hand, are decorrelated by first log transforming
the coefficients of the Mel spectra followed by a discrete cosine transform.

In the case of cepstral coefficients, appending the delta coefficients did not im-
prove the performance. On the contrary, the performance decreased for several sub-
sets of bird species. In case of MFCCs, the classification performance was at best
indifferent, in terms of gains, to the effect of appending deltas. The performance did
not decrease but didn’t increase either.

The effect of the two summarization variations employed in this work was differ-
ent for the three feature types. For the cepstral coefficients using the third and fourth
sample moments, in addition to the first two, led to a dip in performance, at least in
some trials. In the case of MFCCs, the results of different trials showed a reverse
effect in the case of MFCCs + deltas compared to just MFCCs. In the former case,
the median of results from different trials shifted higher by around 2% while the me-
dian of results lowered by almost the same degree in case of just MFCCs. In case
of Mel spectra, employing the first four moments shifted the median performance
over different trials a bit higher. From these results, it can be safely concluded that
given the increased computational costs of adding more features, it might be a good
trade-off to just use the first two moments for summarizing the time series of features.

Fig. 4.4 shows scanned parameters for the MFCCs and the Mel spectrogram. The
choice of number of coefficients in both Mel spectra and MFCCs had the largest
influence on the performance. Using 128 coefficients provided the highest mAP
score in case of Mel spectrogram. For the MFCCs, the score increased between 1-18
coefficients and then stayed more or less constant. For the Mel spectra, the variation
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Figure .: Classification performance using the performance measure mAP for
10 bird species as a function of different parameters for Mel spectra and MFCCs.
a) mAP score as a function of Mel filters and the frame size, when employing Mel
spectra. b) mAP score as a function of Mel spectra coefficients and frame size, when
employing Mel spectra. c) mAP score as a function of number of MFCCs and frame
size, when employing MFCCs. A random forest is used to carry out classification.
Shown are the ranges from best result to worst result obtained for 10 different ran-
domly drawn subsets of species.

42



4.3. Computational Experiments

due to frame size converged as the number of coefficients were increased. Frame size
did not influence the performance when employing theMFCCs. The influence of the
number of mel filter bands used to compute the Mel spectrogram differs slightly for
different frame sizes. The performance increases for all three frame sizes between 16-
32 Mel filters. Performance does not change for the frame size 256 beyond 32 filters.
For the frame size of 1024, the performance goes up between 32-64 Mel bands and
then decreases between 64-128. For the frame size of 512, does not change between
32-64 and thereafter increases slightly between 64-128 mel filters.

4.3.3 Influence of Segmentation
Since the audio recordings of bird vocalizations are usually made in noisy environ-
ments and include periods of “silence”, or intervals in which vocalizations are absent,
it is worthwhile to separate the signal and silent parts of the recordings. We also
observed in Section 4.3.1 that when the complete time series was used to estimate
distributions without employing any summarization over time, the performance was
worse. It was discussed how the presence of environmental noise, especially in pe-
riods of silence, can influence the underlying distributions of bird sounds that we
were trying to model. Segmentation is a process in which the most representative
segments are extracted from the field recordings with the goal to improve the auto-
mated identification performance (Colonna et al., 2015; Somervuo et al., 2006).

A segmentation technique developed in parts by Lasseck (2013) and Sprengel
et al. (2016) was employed in this work to extract signal parts from noisy audio record-
ings. Audio signal is first transformed into a spectrogram by applying an STFT. The
pixels in the spectrogram that are three times bigger than row median and three times
bigger than column median are selected. The intuition behind this is that the high
amplitudes in a spectrogram computed from bird sounds usually correspond to bird
sound signals. All these selected pixels are set to 1 and all other pixels to 0. Subse-
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Figure .: Spectrogram of sequence of calls of a Common Kingfisher. Boxes
represent the segmented regions, as an ideal result of segmentation. The figure has
been reproduced from Potamitis et al. (2014)
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Figure .: Spectrograms of a typical bird song of the bird species American redstart.
The left plot corresponds to a 1 minute non-segmented sample. On the right side is
the spectrogram of a 5 second segmented sample, where the segments are extracted
from the same recording using the segmentation method described above and then
the segments are joined to create 5 second samples. The x and y axes correspond to
time (in seconds) and frequency (in Hertz).

quently, two mathematical morphology operations are applied to get rid of the noise,
namely binary erosion and dilation. 4 by 4 filters are used that are known to produce
best results. In order to create a mask that can be used to extract the signal parts
from the samples, an indicator vector is created in which the number of elements
match the number of columns in the spectrogram. If the ith column in the spectro-
gram contains at least a single 1, the ith element of the vector is set to 1, else it is
set to 0. The indicator function is smoothed by applying two more binary dilation
operations (this time a filter size of 4 by 1). The indicator vector is then scaled to
the length of the sound file to generate a mask which is then applied to extract the
signal parts. These signal parts are simply joined to create a longer signal file, de-
pending on the length we are interested in. In this experiment, the audio recordings
are first segmented using the technique described above. Signal segments extracted
from the recordings are joined such that 5-second samples are formed. The 5-second
audio samples are then resampled to a sampling rate of 22050 Hz. The resampling
is followed by peak normalization to adjust the recording based on the highest signal
level present in the recordings. Since most birds have been reported to vocalize in
the frequency range between 0.5 kHz and 10 kHz (Marler and Slabbekoorn, 2004),
a high pass filter is applied to attenuate parts of the signals below 0.5 kHz which
strongly reduces the environmental noise. Following the pre-processing of data, a
balanced dataset is curated in which 300 sound samples are randomly drawn for each
bird species subset. The data is divided into training and testing subsets wherein 75%
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data is left for training and the remaining 25% data for testing. Time series of first
20 coefficients of MFCCs are computed. Feature vectors for the samples are then ob-
tained by taking mean and variance of the time series that are then input to a random
forest classifier with the same parameters as described in the previous section.

Results and Discussion

The performance of the classification is evaluated by testing for 20 trials drawing 10
randomly selected species, with repetition, for each trial from the larger dataset of
397 species. The model is trained with mean and variance summarization of the first
20 time series of the MFCC coefficients. Features are computed for segmented and
non-segmented audio samples to investigate the influence of segmentation. The per-
formance is evaluated using two commonly used metrics, namely, accuracy and mean
average precision (mAP). The results are summarized using box plots in Fig. 4.7.

We observe in the figure that the performance increases when segmentation is
employed to separate the signal parts from the noise parts of the signal. The highest
mAP for a subset in case of non-segmented signals is about 86% and, in case where
the audio samples are segmented, the highest Mean Average Precision for a subset
within 20 subsets tested is about 93%. This further emphasizes the negative influence
of noise on the performance of an automated sound-based analysis system for bird
species.

4.3.4 Investigating the Influence of Vocalization Type
InChapter 3, we discussed in detail how the bird vocalizations can be divided into two
groups – calls and songs. While calls are simpler vocalizations that last for a shorter
duration, songs have a more complex structure and are uttered for longer intervals.
Calls, therefore, contain less content and are produced in varied circumstances such
as alarm calls on sighting a predator, calls signaling information of food sources, etc.
Songs, on the other hand, serve a very specific purpose to signal territorial ownership
and, more generally, in the context of mating.

Since the structure of calls and songs differs, the influence of these two types of
vocalizations on the automated classification performance is investigated in this sec-
tion. Three separate datasets consisting of all bird vocalizations, only songs, and only
calls are curated to train classifiers and the classification results are thus compared.

Audio recordings of the three datasets are first segmented using the technique
described in the previous section. The signal segments extracted from the recordings
are joined such that 5-second samples are formed. The 5-second audio samples are
then resampled to a sampling rate of 22050 Hz. Resampling is followed by peak
normalization to adjust the recording based on the highest signal level present in the
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Figure .: Classification results using the performance measures a) Accuracy and
b) mAP with and without applying segmentation to the data using a random forest
classifier. Shown are the ranges from best result to worst result (whiskers) obtained
for 20 different randomly drawn subsets for 10 bird species. The black marking in
each box represents the median and the boxes indicate the middle 50% of the results.
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recordings. Since most birds have been reported to vocalize in the frequency range
between 0.5 kHz and 10 kHz (Marler and Slabbekoorn, 2004), a high pass filter is
applied to attenuate parts of the signals below 0.5 kHz which strongly reduces envi-
ronmental noise. Following the preprocessing of data, a balanced dataset is curated in
which 300 sound samples are randomly drawn for each bird species subset. The data
is divided into training and testing subsets with leaving 75% data for training and
the remaining 25% data for testing. Time series of first 20 coefficients of MFCCs
are computed. Feature vectors for the samples are then obtained by taking mean and
variance of the time series that are then input to a random forest classifier with the
same parameters as described in the previous sections.

Results and Discussion

The performance of the classification for three Sets of data is evaluated by testing for
20 trials drawing 10 randomly selected species, with repetition, for each trial from a
dataset of 51 species. The 51 species were selected after pruning the larger dataset
of 397 species in such a way that each species contained at least 300 audio samples
in each of the three experimental categories, namely, songs, calls, and vocalizations
with both types of sounds. The model was trained with mean and variance summa-
rization of the first 20 time series of the MFCC coefficients. Features are computed
for segmented audio samples. The performance is evaluated using two commonly
used metrics, namely, accuracy and mean average precision (mAP). The results are
summarized using box plots in Fig. 4.8.

We observe from the figure that the performance of classification increases when
the recordings containing two types of vocalizations are separated. The highest mAP
score for a set of species in case of all sounds is about 88% while in the case of just
songs it is 92.5% and about 94.5% for calls. Note that the same subsets of species were
used in all three experiments in order to have a proper comparison. In Table 4.2, one
can observe that although the increase in performance varies for different dataSets,
the performance nonetheless improves when a single sound type is used for classifica-
tion. The improvement in performance is as high as 10% in some cases. For instance,
for Set 18, mAP for both sound types is 78% and for just calls for the same set of
species the value goes up to 91%. These results are not surprising since there are
variations in the structure of the two bird sound types as explained above and this
should make it harder for a classifier to learn a decision boundary compared to data
containing a single sound type and therefore less variation in the properties of data.

Another interesting result that can be observed in the plots in Fig. 4.8 and Ta-
ble 4.2 is that datasets with calls either perform better than the datasets containing
songs or at least perform similarly. One possible reason, among others, that could
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Figure .: Classification results using the performance measures a) Accuracy and
b) mAP for data containing both songs and calls, only songs, and only calls using
a random forest classifier. Shown are the ranges from best result to worst result
(whiskers) obtained for 20 different randomly drawn subsets for 10 bird species. The
black marking in each box represents the median and the boxes indicate the middle
50% of the results.

explain this result is, while calls do not vary within the species, the songs can vary by
age, geographical location, and the time of year. Bird species songs can show varia-
tion in dialects. Moreover, an individual bird species can have a repertoire of multiple
song types.

48



4.3. Computational Experiments

Sets Sounds Songs Calls

Set 1 0.86 0.91 0.92
Set 2 0.83 0.90 0.90
Set 3 0.82 0.83 0.91
Set 4 0.89 0.89 0.94
Set 5 0.86 0.91 0.88
Set 6 0.84 0.92 0.88
Set 7 0.82 0.86 0.88
Set 8 0.81 0.83 0.90
Set 9 0.86 0.90 0.93

Set 10 0.79 0.81 0.92
Set 11 0.81 0.86 0.90
Set 12 0.84 0.90 0.92
Set 13 0.85 0.89 0.89
Set 14 0.85 0.87 0.91
Set 15 0.84 0.91 0.91
Set 16 0.85 0.89 0.91
Set 17 0.83 0.89 0.88
Set 18 0.78 0.82 0.91
Set 19 0.85 0.91 0.92
Set 20 0.88 0.92 0.95

Table 4.2: Classification results using the mean average precision for data contain-
ing both songs and calls, only songs, and only calls using a random forest classifier.
Shown aremAP scores for different subsets obtained for 20 different randomly drawn
subsets for 10 bird species.
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4.3.5 Investigating the Influence of Quality of Recordings

In past bird sounds have been recordedmanually, which allows capturing good quality
recordings, provided the recordist has sufficient domain knowledge when it comes to
recognizing bird species and can handle the recording gear well. This has changed af-
ter the advent of autonomous recording units that can be installed in the field and can
provide continuous unattended streams of real-time data (Priyadarshani et al., 2016).
This is advantageous on several counts when compared to the traditional observer-
based method. For instance, the reliance on expert birdists is not required anymore
to carry out recordings and birds do not need to be approached in order to record,
etc. While this method has proven to provide a better trade-off on several counts,
it comes with its own challenges. Unattended field recordings thus made in natural
environments lend themselves to a high susceptibility to wide range of noise that can
be controlled to some extent when the recordings are done manually. Such noise
has been broadly classified into three categories: anthrophony, geophony, and bio-
phony. Anthrophony includes noise induced by humanly engineered machines, for
instance, vehicles, aircraft and recording devices, etc. Geophony refers to a variety
of naturally occurring sounds that are non-biological, for instance, sound produced
by wind, rain, running water, and so on. Finally, one of the most precarious types of
noise is biophony which refers to sounds produced by all biological beings other than
the ones we are interested in e.g., insects, rodents, and other mammals. In case of
targeted recordings, where we are interested in a specific species of birds, even other
bird species would be regarded as noise (Farina, 2013).

This experiment is devised to investigate the effect of noise on the classification
performance. The dataset used in these experiments allows for extracting the rating
of the quality of recordings. These ratings are provided by the recordists at the time
of uploading recordings to the database and will, naturally, induce some subjectivity.
Given the guidelines of rating provided in the Xeno-Canto database, the data for this
experiment has been divided into two classes: recordings that are loud and clear, and
recordings that are moderately clear.

Similar to the previous experiment, the audio recordings are first segmented. The
signal segments extracted from the recordings are joined such that 5-second samples
are formed. These 5-second audio samples are then resampled to a sampling rate of
22050 Hz. The resampling is followed by peak normalization to adjust the recording
based on the highest signal level present in the recordings. Since most birds have
been reported to vocalize in the frequency range between 0.5 kHz and 10 kHz (Mar-
ler and Slabbekoorn, 2004), a high pass filter is applied to attenuate parts of the
signals below 0.5 kHz which strongly reduces the environmental noise. Following
the preprocessing of data, a balanced dataset is curated in which 300 sound samples
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are randomly drawn for each bird species subset. The data is divided into training and
testing subsets leaving 75% data for training and the remaining 25% data for testing.
Time series of first 20 coefficients of MFCCs are computed. Feature vectors for the
samples are then obtained by taking mean and variance of the time series that are
then input to a random forest classifier with the same parameters as described in the
previous sections.

Results and Discussion

The performance of the classification for the two Sets of data is evaluated by testing
for 20 trials drawing 10 randomly selected species, with repetition, for each trial from
a dataset of 45 species. The 45 species were selected after pruning the larger dataset
of 397 species in such a way that each species contained at least 300 audio samples in
both experimental categories, namely, bird sounds of low quality and bird sounds of
high quality. Features are computed for segmented audio samples. The performance
is evaluated using two commonly used metrics, namely, accuracy and mean average
precision (mAP). Results are summarized using box plots in Fig. 4.9.

It can be observed in the figure, that on both metrics, the performance increases
when higher quality recordings are used to carry out classification. The highest mAP
score for a set of species in case of low quality recordings is about 87% while in case
of recordings with less noise, the mAP increases upto 96% for a trial. Secondly, the
inter-quantile range for the 20 trials in higher quality recordings is higher than the
low quality dataset.
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Figure .: Classification results using the performance measures a) Accuracy and
b) mAP for datasets with different levels of noise using a random forest classifier.
Shown are the ranges from best result to worst result (whiskers) obtained for 20
different randomly drawn subsets for 10 bird species. The black marking in each box
represents the median and the boxes indicate the middle 50% of the results.
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Randomized bag-of-birds Approach 5

Large parts of this chapter have been published in the journal
Applied Sciences (Ghani and Hallerberg, 2021).

“Randomization is too
important to be left to chance.”

J. D. Petruccelli

5.1 Introduction
One of the main focuses of this chapter is to look into the robustness of classifica-
tion results and the reliability of accuracy measures, when bird species are selected
in a randomized way. Additionally, the influence of the number of selected species
(classes) on different measures for multi-class classification success is investigated
(see Sec. 5.3.4). For this work, we use the dataset curated by the organizers of the
BirdClef 2019 challenge (Kahl et al., 2019). This dataset contains recordings of 659
bird species from South and North America and has originally been drawn from the
Xeno-Canto repository for bird sounds (xen, accessed <2020>).

In this contribution, out of 659 available species, n species are randomly drawn
with varying n incrementally between 10 and 300. For each n we generate 20 ran-
domly composed lists of species and for each species we choose 200 recordings of
comparable length to generate balanced subsets (as will be explained in more detail
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in Sec. 6.2.3). The robustness of classification results is then accessed by training a
feed-forward neural network on each subset (see Sec. 5.2.3). Our motivations to
choose a shallow feed-forward neural network over very deep networks lie mainly
in the model simplicity, lower computational costs, and the relatively small amount
of data required to train such networks. We wanted to analyze the classification
performance using a simple model that can be trained with handcrafted sound fea-
tures. The performance of classification is accessed using several measures for classi-
fication success such as accuracy, precision, recall, area under the receiver-operator-
characteristics curve, and mean average precision (see Sec. 2.3.3). As a consequence
of these repeated randomized classification experiments, we can hence also provide
box-and-whisker plots for each performance metric (see Sec. 5.3). Additionally, it is
possible to infer functional relations between the number of classes and classification
success (see Sec. 5.3.2). Furthermore, a discussion is included on how confidently the
probabilistic classifier classifies different species. In more detail, we discuss whether
the predictions made by the model are proportional to the probabilistic confidence
the model assigns to the predictions and how this can be used as a measure to evaluate
the performance of the classifier(see Sec. 5.3.3).

5.2 Methods
Our audio-based bird classification framework comprises of three modules: data
preparation, feature extraction, and model construction.

5.2.1 Bags-of-Birds Approach: Performing Randomized
Classification Experiments

In this analysis we use a dataset containing birds sounds of 659 species provided
within the BirdClef 2019 challenge (Kahl et al., 2019), originally drawn from the
Xeno-Canto repository for bird sounds. The data is prepared, for our analysis, by split-
ting all sound recordings of varying lengths into 5-second chunks. The audio clips
are then resampled to 22050 Hz with Librosa 0.6 audio processing package (McFee
et al., 2019). It has been reported that most birds vocalize in the frequency range
of 0.5 kHz to 10 kHz (Marler and Slabbekoorn, 2004). The resampling is followed
by peak normalisation. To get rid of sound samples that do not contain any bird
sounds, a simple signal-to-noise ratio-based estimate is employed. This estimate en-
sures, with high probability, that 5-second clips that do not contain bird sounds are
discarded (Kahl et al., 2018).

Since one of the aims of this work is to estimate robustness of the classification
approach, for each classification run of n species, the subsets of species are not care-
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Figure .: Schematic for the bags-of-birds approach.

fully chosen. Rather, a random number generator is employed to construct 20 bags of
species. Analogous to bag-of-words approaches1, one can maybe refer to this proce-
dure as a bags-of-birds approach. Each bags-of-birds is a set of randomly drawn species
without repetition from a complete list of 659 bird species. The idea is to repeat the
computation 20 times to have a reliable estimate of classification performance given
a certain number of species. Fig. 6.2 illustrates the idea of this numerical experiment.
A balanced dataset was curated for the classification task in which 200 sound samples
were randomly drawn for each bird species. Finally, the dataset was divided into train-
ing and testing sets such that training sets contained 75% and test sets 25% contained
of the data. Given that for each bird species we are using 200 sound samples, the test
set for each analyzed species will consequently contain m = 50 sound samples. This
is described in detail in Sec. 2.3.3.

5.2.2 Feature Extraction
The next step entails extracting audio features from time series of audio signals. Ex-
tracting features allows us to obtain lower-dimensional compact statistical represen-
tations while preserving the distinguishing characteristics of the signal in a non-
redundant manner. In addition to reducing the computational costs, feature extrac-
tion can maximize the classification performance of the system (Khalid et al., 2014).
Studies have shown that aggregated features allow us to achieve a better classifica-
tion performance compared to a single feature (Xie and Zhu, 2019). In this analysis,

1See, for instance Zhang et al. (2010).
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we employ the spectral centroid, the spectral rolloff, the zero-crossing-rate, Spectral
Bandwidth, the root-mean-square energy, the Mel-frequency-cepstral-coefficients
(MFCCs), and MFCCs as features.

Since signal statistics change rapidly, bird sounds, like audio signals in general,
are non-stationary signals. For this reason, feature extraction is carried out in a short-
term processing manner where the signal is chunked into short analysis frames. The
analysis frames are assumed to be in a quasi-stationary state (Virtanen et al., 2018). In
order to preserve as much information and arrive at a good enough trade-off between
frequency and temporal resolution, we select an analysis frame size of 512 samples
(23ms) while allowing an overlap of 25%. Therefore, the spectral features described
below are computed frame-wise. In case an additional splitting into even shorter
windows within each analysis frame was needed (e.g., for the MFCCs), the temporal
average of the feature is computed to generate a single value which is associated with
the respective analysis frame. For each MFCC, the variance of the coefficients within
the analysis frame is computed and used as an additional feature.

To elaborate further, all features are computed using Librosa 0.6 audio processing
package (McFee et al., 2019) and can be described as follows (Virtanen et al., 2018):
In total the dimension of the feature space is 45, containing first 20 time averaged
MFCCs, variances of first 20 MFCCs, time averaged zero-crossing-rate, the spectral
rolloff, the spectral centroid, root-mean-square energy, and the spectral bandwidth.

5.2.3 Classification Model

The features are then fed into a feed forward neural network, which is constructed
using the sequential model within the Tensor Flow framework (Abadi et al., 2016).
Feed forward neural networks are archetypal models for machine learning (Bebis and
Georgiopoulos, 1994; Fine, 2006) . In contrast to deep learning approaches used to
classify bird sounds, the network consists of only four layers as illustrated in Fig. 5.2.
The input to the neural network is the feature vector x ∈ R45 which maps through
three intermediate layers with d1 = 256, d2 = 128, and d3 = 64 hidden units respec-
tively, and is amplified using rectified linear units (ReLU) Goodfellow et al. (2016).
Finally, the output layer maps to n independent classes with a softmax transfer func-
tion (Goodfellow et al., 2018; Bishop, 2006) where n is the number of bird species.

During training, the model optimizes cross-entropy loss using Adam stochastic
optimization algorithm (Kingma and Ba, 2014). We use a constant learning rate
of 0.001. To identify the parameter setting that increases the likelihood of predic-
tions, the model is trained for 100 epochs. We observed, that the loss converged to
a minimum towards the end of 100 epochs.
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Figure .: Architecture of the feed forward neural network used for bird classifi-
cation. The input x ∈ R45 maps through three intermediate layers with d1 = 256,
d2 = 128, and d3 = 64 and ReLU transfer functions. The output layer maps to n
independent classes with a softmax transfer function where n is the number of bird
species.

5.3 Results and Discussion

We evaluated the performance of our classification algorithm by testing it for 20 trials
on n randomly selected species2, with n varying between n = 10 and n = 300. The
results for precision, AUC, mAP, recall, and accuracy are summarized in Fig. 5.3.
Box plots were estimated from 20 different randomized datasets for each n. Box
plots, also known as box-and-whisker plots, provide robust statistical summaries for
the data if the sample size is relatively small, i.e., here 20. The box plot divides data
into quartiles or fourths – 2 box panels and 2 whiskers. The middle 50% of the data
is spanned by the box with 25th percentile or 25% of the data falling below the lower
edge of the box (first quartile) and 75% of data falling below the upper edge of box
(third quartile). The edges of the box are often referred to as hinges and the length of
the box is called the interquartile range (IQR). The median is indicated by the middle
line of box. The whiskers mark the extremes for the remaining 50% of data (Nuzzo,
2016). Surprisingly, we find no increase in the size of the interquartile range for the
performance measures with increasing n.

There are several aspects of these results that must be addressed in more detail.

2Out of 659 species in the selected dataset.
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Figure .: The performance measures a) Precision b) AUC c) mAP d) Recall
and e) Accuracy decrease as the number of species in each subset is varied between
n = 10 and n = 300. Shown are the ranges from best result to worst result (whiskers)
obtained for 20 different randomly drawn subsets for each value ofn. The redmarking
in each box represents the median and the boxes indicate the middle 50% of the
results.
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5.3.1 Variations Due to Randomized Sub-Sets

As observed in Fig. 5.3, we can see that for each choice of a subset of n species, we
get a range of performance values depending on the particular random selection of
species. Our results show that the interquartile-ranges vary as much as 12% in some
cases. For instance, in case of n = 30 in Fig. 5.3(c), we see that the mean average
precision (mAP) varies between 0.72 for one subset of 30 species to 0.84 for another
subset of randomly drawn 30 species. Similarly, for n = 70, the mAP varies between
0.6 and 0.71. We can see a similar trend in the figures for other metrics considered
in this work. As mentioned earlier, the experiment has been repeated 20 times for
different randomized selections of n species. The variation in results within different
n species’ trials shows that classification results can vary significantly depending on
the choice of species chosen for analysis. Consequently, it can be inferred that generic
claims about the performance of a certain algorithm for a certain number of non-
randomly selected species must be interpreted with caution. The results might not
generalize for another set of n species even when the species are drawn from the same
dataset.

One possible reason, among others, that could explain the variability in perfor-
mance between different subsets or ensembles of randomly drawn sound samples
from n species (bags-of-birds) is the possible degrees of similarity of sounds, or the
lack of it, between species of different subsets. Ambiguity can be a consequence
of similarity of the sounds of species within an ensemble. Therefore, one possible
explanation for these results is that sounds of species in the bags leading to lower per-
formance measures have a higher degree of similarity compared to bags that generate
higher classification performance.

5.3.2 Dependence on the Number of Species

All performance measures decrease with increased number of species as is visible in
Figs. 5.3 and 5.4. An intuitive explanation for this could be that species are more
difficult to distinguish when more species are added to the classification task.

However, looking at the definition of the performancemeasures (Eqs. 2.13 - 2.22),
we tried to see if it is possible to understand the numerical results by some analytical
reasoning. Consider e.g., the precision P (n) which is defined in Eq. (2.14). If each
precision per species p(j) contributing to the average was constant and not depending
on n (i.e., p(j) ∼ c), one should expect P (n) ∼ c. This is obviously not what is ob-
served in Fig. 5.4. Therefore, one must assume that p(j) is dependent on n, although
this is not explicitly visible in Eq. (2.13). To investigate this implicit dependence on
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Figure .: The n-dependence of a) Precision, b) AUC, c) mAP, d) Recall and
e) Accuracy can be described by fitting quadratic functions (line). The error bars
(whiskers) represent the ranges from best result to worst result obtained for 20 dif-
ferent randomly drawn subsets for each value of n. The red marking in each box
indicates the median and the boxes show the range of the middle 50% of the results.
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n, we have visualized the average numbers of true positives

atp =
1

n

n∑
j=1

ctp(j), (5.1)

for each n, and in a similar way, the averaged numbers of false positives, true nega-
tives, and false negatives in Fig. 5.5(a-c). These elements of a confusion matrix enter
(in an non-averaged form) into the computed performance measures and thus their
dependence on n influences the performance measures. The averaging in Fig. 5.5
was done since the amount of sound samples in each trial depends linearly on n.
Therefore, this trivial dependence was removed and we can monitor a non-trivial im-
plicit dependence on n. As is evident, the dependence of the averaged numbers of
true positive, false positives, and false negatives can be described relatively well by a
quadratic function, whereas the averaged number of true negatives increases linearly
with increasing n.

The fact that true negatives, as can be seen in Fig. 5.5(d), behave differently than
the other elements of the confusion matrix can be understood by considering the way
true negatives are computed in a multi-class classification problem, using a one-vs-all
configuration. Each time a sound sample was correctly not classified as the particular
species j under consideration, the count of true negatives is increased by one. There-
fore, e.g., in a subset of m · n = 500 sound samples recorded from n = 10 different
species, and each species being represented by m = 50 sound samples, a perfect al-
gorithm would classify 50 samples correctly as belonging to species j. Consequently,
the count of true positives would be ctp(j) = 50 and the count of true negatives
ctn(j) = 450 for a perfect classifier. In other words, we can expect ctn(j) = nm−m

with m being the sample size, as specified before, in case of a perfect classifier

atn =
1

n

n∑
i=1

nm−m =
n(nm−m)

n
= m(n− 1). (5.2)

The results of the prediction experiments in this contribution with an obviously not
perfect classifier reveal that atn can be fitted by a linear function atn(n) = (49.88±
0.82 · 10−2)n− (59.27± 0.61). Note that the two coefficients are relatively close to
the true sample size m = 50.

The dependence of the other elements of the confusion matrix on n are more
subtle with respect to the range in which these numbers vary and the dependence
can be described by quadratic functions

atp(n) = d2 n
2 − d1 n+ c0, (5.3)

afp(n) = −d2n
2 + d1n+ d0 and, (5.4)

afn(n) = −d2n
2 + d1n+ d0, (5.5)
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Figure .: The elements of a confusion matrix ( a) averaged numbers of true pos-
itives, b) averaged numbers of false positives, c) averaged numbers of false negatives,
d) averaged numbers of true negatives) display a linear (true negatives) and quadratic
(all other elements) dependence on n. The error bars (whiskers) represent the ranges
from best result to worst result obtained for 20 different randomly drawn subsets for
each value of n. The green marking in each box indicates the median and the boxes
show the range of the middle 50% of the results.

with d2 = (8.02 ± 1.00) · 10−4, d1 = (22.87 ± 1.34) · 10−2, d0 = 6.84 ± 0.37 and
c0 = 43.16± 0.38. Note that the first two coefficients d1 and d2 of atp, afp and afn
have either the same values (up to the first 8 digits which are not shown here), or just
differ in sign, but not in value. These coefficients are shown in detail here, since we
will demonstrate a connection between Eqs. (5.3)-(5.5) and the functions describing
the dependence of the overall performance measures.

After describing atp(n), afp(n) and afn(n), one can now try to understand the
dependencies of the performance measures. Assuming that each species is classified
equally well by a perfect classifier, one would expect atp(n) = ctp(j, n) for all j and
similar for afp = cfp(j, n) and afn = cfn. Inserting Eq. (5.3) and Eq. (5.4) in
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Eq. (2.13) holds

p(j, n) ≈ atp(n)

atp(n) + afp(n)
≈ d2n

2 − d1n+ c0
c0 + d0

, (5.6)

since the non-constant terms in the denominator cancel each other. Inserting this in
the equation for the overall precision (Eq. 2.14) holds

P (n) ≈ d2n
2 − d1n+ c0
c0 + d0

∼ atp(n), (5.7)

since all terms p(j) are identical for the perfect classifier. Consequently, one should
be able to predict the scaling of P (n), knowing the coefficients d2, d1, d0 and c0.

Fitting the coefficients for the quadratic function describing P (n) as in Fig. 5.4,
one obtains

P (n) ≈ g2n
2 + g1n+ g0, (5.8)

with g2 = (0.16± 0.02) · 10−4, g1 = −(0.44± 0.03) · 10−2, g0 = 0.86± 0.76 · 10−2.
Note that these coefficients are very close to the coefficients of atp multiplied with a
factor 1

d0+c0
= 1

50 as indicated by Eq. (5.7). Hence, we could confirm numerically
that the dependence of precision on the number of classes follows the dependence of
atp up to a scaling factor of 1

d0+c0
= 1

50 .
Following the same assumptions and reasoning, one obtains

R(n) ≈ r(j) ≈ d2n
2 − d1n+ c0
c0 + d0

∼ atp(n), (5.9)

for the recall. Also in this case, the relation between the fitting coefficients of atp and
R is confirmed by the quadratic function fitted to R in Fig. 5.4. Note that for the
prediction experiments in this study, the same quadratic function is able to describe
the n-dependence of precision and recall.

Extending the above reasoning (i.e., ctp(j, n) ≈ atp(n)) to explain the n-
dependence of the accuracy as given by Eq. (2.17) yields

A(n) ≈ 1

m

(
d2n

2 − d1n+ c0
)
∼ atp(n). (5.10)

Also, this relation was numerically confirmed by comparing the coefficients for the
polynomials describing A and atp. The values of the coefficients d2, d1, and c0 are
given after Eq (5.5).

Discussing the n-dependence of the multi-class AUC and the mAP analytically
is not as straightforward as the previous considerations. Therefore only numerical
results are presented in this analysis. As one can see in Fig. 5.4, the n-dependence
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of AUC and mAP can be also described by quadratic functions. Additionally, we
observe that the coefficients for the linear and the quadratic term of the function de-
scribing the mAP resemble the coefficients describing P (n) in value3. Consequently,
one can argue that the above discussion for P (n) could possibly also explain the n-
dependence of mAP. Nevertheless, the constant term (c0 = 43.16± 0.38) added to
the function describing PmA(n) is higher than the constant offset of the precision.

In summary, we can relate the n-dependence of several measures for the classifi-
cation success to the n-dependences of the confusion matrix, assuming the behaviour
of a perfect classifier we fit functions describing these dependencies. Note that this
does not imply that we claim our classifier to be a perfect classifier, neither do we
claim that scaling with n which we obtain here is universal in the sense that it will
be observed for any other classifier. The latter aspect is a question which needs to be
tested in future contributions, but it is out of the scope of this work.

5.3.3 Metric of Confidence
The decisions made by the classifier are based on probabilities which are estimated
(through the Artificial Neural Network (ANN)) for each species. The predicted la-
bel is then assigned to the species with the highest probability. We are aware that
a probabilistic classifier does not have to always classify correctly, it just needs to
classify with the right frequencies. Following that definition, one way of measur-
ing the performance of the classifier would be to check whether the probabilities it
assigns to classifications are really representative of correct classifications. In other
words, we need to find out if the frequencies with which the classifier classifies the
samples correctly matches with the level of confidence, high or low, the classifier is
assigning them. The probabilistic classifier tries to account for implicit uncertainties
in the classification process, for instance, due to noisy data, inter-class similarity, in-
adequate classification capability of the features, etc. Consequently, measuring the
performance of the classifier then boils down to measuring the performance of its
confidence. That is what we are trying to do here.

We analyze the effect of introducing a confidence threshold requiring the assigned
probability to be above the threshold in order to accept the classification. In an ideal
case, this should follow – if the model assigns a probabilty of 90% to its classifications,
then we should see a convergence of 90% for our measuring indices. Apart from
measuring the performance of our classifier, this analysis also provides us a way to
ascertain where the classifier is over-confident and where it is under-confident. If
the probability it assigns is higher than the true positive rate then our model is over-
confident and if it gives low probabilities even when the true positive rate is high it

3The values describing coefficients of P (n) are given after Eq (5.8).
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Figure .: The precision (cTPs/cPs) increases as the confidence threshold (prob-
ability a sample needs to be assigned by the model in order for it to be classified as
a positive prediction) is varied between 0.5 and 1.0. Shown are precision values for
n = 30, 60, 90 and 300. As is evident, for different n, as the confidence threshold
tends towards 1.0, precision also increases significantly.

is under-confident. This will allow for targeted improvements in the classification
model thereby providing clearer insight on what is actually happening, and provide
opportunities for active learning as we can feed the model with more training data of
classes that are suffering from over/under confidence. In Fig. 5.6, one can see that
the precision (cTPS/cPs)4, i.e., the ratio of true positives to all classified positives
changes as the confidence threshold is varied between 0.5 and 1.0. We observe that
precision increases as the confidence threshold is increased. And, for instance, for
n = 30 species, the precision for confidence threshold in range 0.9-1.0 is more than
0.8. Similar results can be seen for other n. This shows that when the model is
assigning high confidence to its predictions, the predictions are mostly correct, which
should be expected from a good classifier. Nevertheless, for lower thresholds, it gives
high probabilities but is unable to match the classifications. For instance, in the 0.5-

4cTPS is the total number of true positives given the confidence threshold and cPs is the total
number of positives (true positives + false positives) given the confidence threshold.
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0.6 confidence threshold range, we expect the precision to be between 0.5-0.6, but
we see a difference of about 0.2 between the confidence threshold and the precision
cloud. It gets better towards higher confidence thresholds. The percentage error
decreases. This means that the model performs relatively better for samples it is more
confident about. And the samples it is not confident about, it errs on the side of over-
confidence than being under-confident. Besides, ourmodel assigns high probabilities
to most samples classified as positive which basically means most true positives are
skewed toward the high confidence threshold. Since, in this analysis, we are defining
the measure of the classifier performance by how well it aligns frequencies of true
positives with the probability confidence, we can safely claim that our model does
not do poorly when it is highly confident about its predictions.

There is work going on in stochastic artificial neural network trained using
Bayesian inference instead of traditional backpropagation (Jospin et al., 2020). These
models assign probability distributions to weights and have probabilistic activation
functions with the intent of getting better insights on the uncertainties associated
with underlying processes.

5.3.4 Comparing Different Measures for Classification Success
In this analysis, we use several common measures for evaluating classification per-
formance and compare their results. The primary reason for this is that different
indices encapsulate different aspects of the classification performance. Secondly, as
mentioned earlier, there seems to be no consensus in the literature available on the
choice of evaluation metric for the audio-based bird species classification task. This
compelled us to study a set of indices and not rely on a specific metric.

As one can see in Fig. 5.3, the precision and recall for n < 100 do not show much
disparity but look quite similar. Although, by definition, these two indices encap-
sulate different aspects of model performance. This can be clearly seen in Fig. 5.7.
Here, we see that for different species in one classification run of n = 10, the preci-
sion and recall values differ. There are species where precision is higher than recall
(e.g., species 10) while others where recall is higher than precision (e.g., species 3).
But, it seems for n < 100, the precision and recall values more or less equalize when
an average is taken over species.

From Figs. 5.3 and 5.4, one can additionally see that the accuracy is exactly the
same as recall, since the equations of recall and accuracy become the same when an
average is taken over all classes.

Additionally, the mean average precision (mAP) was used to evaluate classifica-
tion success. Increasingly, a number of works in recent years have been using this
metric to state the classification performance of their models. Note that average pre-
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Figure .: The precision, the recall, and the average precision for individual species
classified in a subset composed of 10 randomly selected species are compared. The
largest and the smallest value of each performance measure indicates a relatively large
variation and strong dependence on the particular species under study.

cision is one way of measuring the area under the precision-recall curve. Compared
to precision and recall, that are computed for one probability threshold, average pre-
cision is computed cumulatively by varying the threshold. We see in Fig. 5.3, that
although it follows a similar downward quadratic trend as recall and precision, the
mAP values are slightly higher than the precision and recall values for different n.
For instance, the range for n = 10 species for the 20 runs is between 0.86 and 0.94,
whereas the precision and recall ranges are between 0.79 and 0.87. This observation is
also reflected in the offset of the functions describing the n-dependence as mentioned
above.

Another commonly used metric for classification success is the area under the
Receiver Operating Characteristics curve (ROC). Our model achieves a high score
on the AUC metric as can be seen in Figs. 5.3 and 5.4. Although the AUC score
decreases with the increase in number of species n, the score is nevertheless unex-
pectedly high. For instance, the AUC score for n = 300 for one run is 0.94 which is
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unexpected for such a large number of species5.
In our understanding, the multi-class nature of our problem explains this result.

As mentioned earlier, the AUC metric is essentially designed for a binary classifier
and has later been generalized for multi-class classification problems (Hand and Till,
2001). Therefore, in case of multi-class problems, one needs to binarize the class
labels to compute the AUC score such that the problem is transformed into a binary
classification problem with n(n−1)

2 binary classifiers (where n is number of classes).
Using a one-vs-one configuration (Hand and Till, 2001; Pedregosa et al., 2011a), as
recommended by tutorials of many software packages, an AUC score is then com-
puted for each of these binary classifiers and finally an average is computed to get
a final AUC score for the entire set of n classes. For an actual binary classifier that
classifies poorly, the miss-classifications will reflect in significant enough values of
false positives and false negatives to give us a low true positive rate and high false
positive rate as per Eq. 2.18 and 2.19. This will result in a low AUC score. However,
in the multi-class scenario with one-vs-one configuration, we observe that a classifier
distributing misclassifications sparsely across several classes leads to a small number
of false positives and small number of false negatives for these artificially assumed
binary classifiers. One should note that this will happen even if the classifier fares
poorly, i.e., misclassifies with a high rate. An example for this can be seen in Fig. 5.8
which shows a confusion matrix for a classification run with 20 species. It can be
seen that the misclassifications are spread throughout the rows and columns of the
confusion matrix. Consequently, less numbers of false positives and false negatives
will amount to high true positive rate and low false positive rate for individual binary
comparisons. Therefore, a high AUC score (refer to Eqs. (2.18) and (2.19)). This is
exactly what is reflected on averaging the individual AUC scores to compute the total
AUC score for n classes. The classifier is distributing the false predictions sparsely
acss several classes and the one-vs-one generalization is unable to capture the actual
performance of the model. This leads us to the conclusion that ROC is not a suitable
performance measure for multi-class classification tasks. Especially in cases where
the misclassifications are distributed rather evenly among several classes, it is very
likely to obtain overestimated AUC scores.

5.4 Conclusions
The novelty of this work lies in studying the dependence of classification success
on the number of species for bird sound classification. Furthermore, the idea is to

5Note that as per the definition of AUC, a random classifier making randomized decisions should
give a score of 0.5.
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Figure .: The confusionmatrix for a classification runwithn = 20 species displays
that the misclassifications are spread among several classes. This can result in an
overestimation of the averaged AUC for multi-class classifications.

illustrate how these classification results are heavily contingent on the composition
of bird species subsets. Therefore, we employ balanced subsets of bird sounds for n
species, drawing the species randomly from a larger dataset containing 659 species,
where n is varied between 10 and 300. For each n, we repeat the whole procedure6 20
times to come up with a reliable estimate of the performance given a certain number
of bird species.

The classification is performed using a shallow feed forward neural network
trained on 45 pre-computed sound features. We have used a shallow neural network
to conduct our analysis primarily due to its model simplicity, less computational costs,
and relatively less amount of data that is required to train such networks vis-a-vis deep
neural networks. We wanted to benchmark the classification performance and per-
form our analysis using a simple model that can be trained using hand crafted sound
features.

We evaluate the classification performance using several common measures for
classification success and also analyze their dependence on n in detail. We ob-

6Composition of the subset, training of the classifier and testing.
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served that the classification performance is relatively high, even whenmany different
species are present in the datasets under study and using relatively less data. This is an
interesting result, since many recent approaches are based on deep neural networks
trained on much larger datasets of images of spectrograms without any feature se-
lection. This suggests that shallow neural networks trained on pre-computed sound
features can also provide a robust approach to bird classification, which at the same
time, is inexpensive in terms of computational costs and the amount of data used.

Concerning the robustness of the approach, we find that all measures of classifi-
cation success show a decline in value if the number of species present in the subset
is increased. For some of these measures, this decline can be explained analytically
knowing the n-dependence of the confusion matrix and assuming the behavior of an
idealized perfect classifier.

Additionally, we observe that the classification success depends on the individual
composition of the bird subsets and classification results can vary significantly de-
pending on the choice of species chosen for the analysis. For this reason, it seems
that the generic claims about the performance of a certain algorithm for, say, n non-
randomly drawn species, must not be interpreted as a generalized measure of perfor-
mance for any n species. The classification results might not generalize for another
set of n species, even when the species are drawn from the same dataset.
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Quantifying Variability in Bird Songs in
Widespread Species 6

“There is grandeur in this view
of life ... from so simple a
beginning, endless forms most
beautiful and most wonderful,
have been, and are being,
evolved.”

Charles Darwin

6.1 Introduction
The automatic analysis of bird species based on their vocalizations is an ongoing re-
search topic and several results have been reported towards identification and classi-
fication of multitude of bird species around the world. While the newest techniques
are improving the state-of-the-art in terms of providing more efficient, robust, and
reliable predictions, automated analysis to date has been restricted to within different
species. However, there is a growing interest in developing automated methods that
can perform separation at an intraspecific level. Such tools can assist studies aimed at
understanding variations in vocal patterns within populations of bird species. For in-
stance, the divergence in song characteristics across geographical scales is widespread
in several bird species (Catchpole and Slater, 2003), and often leads to regionally dis-
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tinct song patterns, many times referred to as dialects (Kroodsma, 2004). It has been
proposed that evolution of such variations in vocalizations can arise as a result of adap-
tation processes of the song features to the conditions of local habitats (Slabbekoorn
and Smith, 2002). Another factor that may, over time, result in different song pat-
terns among populations is the social processes associated with the role of learning in
the inter-generational transmission of songs (Barros dos Santos et al., 2018; Marler
and Tamura, 1962). Such differences have been documented to also occur over very
short geographical distances (MacDougall-Shackleton and MacDougall-Shackleton,
2001). Although there is no dearth of studies to investigate this phenomenon, the
need for empirical studies to further our understanding of the evolution of variations
in bird vocalizations is still there (Petrusková et al., 2015).

Biologists, in order to investigate such phenomena, have been relying on manual
approaches to classify vocal variations and dialects, for instance, by visually inspecting
the spectrograms of bird sounds to measure spectral characteristics that would allow
them to tell differences in vocalizations apart. However, this approach is quite time
and labor-intensive and also requires expert knowledge to carry out such analysis. In
this analysis, machine learning techniques are employed to classify vocal variation in
widespread species in a way that does not require hundreds or thousands of hours of
manual processing of recordings.

Two bird species, House Wren and Yellowhammer, have been considered in this
work to explore possible variations in songs in the case of former and classification
of various established dialects in the case of the latter species. In contrast to exist-
ing approaches, these issues are approached in a purely algorithmic manner using
the classification approach developed in the previous chapters. To elaborate further,
numerous genetic studies have reported that the aedon, brunneicollis, and musculus
groups of House Wren have independent evolutionary trajectories (Sosa-López and
Mennill, 2014). This information is used as a basis to test the assumption of vocal
divergence across these groups in a purely data-driven manner. Furthermore, latitudi-
nal variation in songs ofHouseWrens is explored by curating 5 regions between 45◦N
to 30◦S. In the case of the Yellowhammer species, data available for 7 dialects is used
to classify different configurations of these dialects with varying degrees of complex-
ity of classification by choosing. A bag-of-birds approach is employed to randomly
create balanced subsets of sound recordings for different classes for repeated classi-
fication runs to arrive at reliable estimates of performance. Two machine learning
models, a random forest and a shallow feed forward neural network, are employed
to carry out classifications. It is observed that the random forest classifier trained
on pre-computed sound features is able to classify bird sound variations better than
the shallow feed forward ANN. The classification performance is evaluated using
accuracy and mean average precision metrics.
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6.2 Methods
6.2.1 Species Analyzed

House Wren

The House Wren (Troglodytes aedon) is one of the most widely and continuously dis-
tributed native bird species in the Western Hemisphere. The latitudinal distribution
of the species ranges between Alberta, Canada1 to Tierra del Fuego2 (Brewer, 2010).
That makes this songbird a unique specimen to investigate variation in vocal patterns
across wide geographical scales (Kaluthota et al., 2016). While 30 subspecies have
been recognized by theAmericanOrnithologists Union (AOU, 1998), several author-
ities have grouped the subspecies into five main groups on the basis of geographical
and slight morphological differences. Some of these groups have also been treated as
separate groups by a few authorities (Howell and Webb, 1995; Navarro-Sigüenza and
Peterson, 2004; Kroodsma et al., 2005). The five groups are as follows (Sosa-López
and Mennill, 2014): 1) The aedon group that includes two subspecies, T. a. aedon
and T. a. parkmanii. The first one is located in southeastern Canada and eastern
United States and the second one ranges from southwestern Canada to Baja Califor-
nia, Mexico; 2) The brunneicollis group has three subspecies, T. a. cahooni that ranges
between the mountains of southern Arizona to central Mexico, T. a. nitidus found
in mountains of Zempoaltepec, Oaxaca, and T. a. brunneicollis found in the south
of the Sierra Madre del Sur of Oaxaca; (3) The musculus group with the most sub-
species includes 20 subspecies, covering most areas from the south of central Mexico
to Tierra del Fuego; 4) The beani group including one subspecies is found in the
Cozumel Island; and 5) The martinicensis group that includes six subspecies, each of
which is restricted to an island in Lesser Antilles. Sosa-López and Mennill (2014)
has reported based upon numerous genetic studies that the aedon, brunneicollis, and
musculus groups have independent evolutionary trajectories.

There are two distinct sections in a House Wren song. The initial section which is
relatively soft is made up of broadband notes that are compared to the terminal section
rather unstructured. Notes in this first section are either tonal or harsh, containing
multiple harmonics. The terminal section maintains high structure and is consider-
ably louder where the notes are organised as discrete syllable types (Kaluthota et al.,
2016).

158◦ in the north
255◦ in the south
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Figure .: Spectrograms of geographically seperated House Wren species. The
upper left figure corresponds to a 5-second recording for a typical song of a Northern
House Wren ( Troglodytes aedon group). On the upper right side is the spectrogram
for a typical song of a Southern House Wren (Troglodytes musculus group). The lower
figure is the spectrogram for a song of a House Wren in the brunneicollis group. The
x and y axes correspond to time (in seconds) and frequency (in Hertz).

Yellowhammer

The Yellowhammer (Emberiza citrinella) is a small passerine songbird natively
widespread in the Palearctic region, from Central Asia in the east to Spain in the
west (del Hoyo, 2001). Nowadays, the bird is typically found in farmlands, and in
the Czech Republic, it is one of the most common farmland bird species (Pipek
et al., 2018). Yellowhammers have elaborate singing periods, singing from morn-
ing through evenings, starting early spring until late summer and even early au-
tumn (Petrusková et al., 2015). A quintessential Yellowhammer song consists of two
parts: an initial phrase, which is a quick repetitive sequence of typically 2-21 syllables
and the final phrase which is usually composed of two syllables. The terminal part of
the song (the second phrase) has been used for dialect distinction since this part has
been observed to be shared between males of a local dialect (Pipek et al., 2018). It
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Figure .: Range map3 for bird species House Wren (Fink et al., 2020)

has been observed that the terminal part of the song is often left unfinished or even
not sung at all (Gruber and Nagle, 2010).

Most studies on the dialects of the Yellowhammer have adopted the classification
provided by Hansen (1985) based on his study of Danish Yellowhammer popula-
tions. In his study, he has characterized different dialects based upon variations of
elements in the final phrase (see Fig. 6.4 for spectrograms of different dialects). The
different elements have been labeled as B, C, D, E differing in frequency, duration,
and modulation. Furthermore, Xl (l for long) and Xs (s for small) vary in duration
where the former is a very short sound and the latter long. Bh and Bl indicate relative
frequencies of adjacent B elements where h corresponds to a higher frequency and l
corresponds to a lower frequency. The different combinations of the these elements,
mostly in pairs, form different end-part variants that, as complete songs, are then
classified as distinct dialects. Some examples of spectrograms of the Yellowhammer

3https://birdsoftheworld.org
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Figure .: Distribution of Yellowhammer dialects in Czech Republic and some
data points from neighboring countries. (a) Data points in different colors refer to
distributions of different dialects. b) Voronoi polygons are created aroundmap points.
Repertoire of mixed singers is indicated by respective colours in white polygons. AT,
DE, PL, and SK are labels for neighboring countries Austria, Germany, Poland, and
Slovakia, respectively. The figure is taken from Diblíková et al. (2019).
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Figure .: Spectrograms representation of different Yellowhammer dialects. Figure
is reproduced from Diblíková et al. (2019).

dialects that are commonly observed in the Czech Republic are BD, BC, BC, BE,
BhBl, BlBh, XlB, and XsB (Diblíková et al., 2019).

6.2.2 Dataset
The songs for the House Wren species have been drawn from the Xeno-Canto repos-
itory4. The subsets for different groups considered for the classification experiments
were curated using the geo-spatial coordinates provided by the recordists for the place
where the recordings were made.

For the Yellowhammer species, the dataset was obtained from the researchers
working on the Yellowhammer dialects at the Department of Ecology, Charles Uni-
versity, Prague5. The dataset included recordings for 7 dialects of the species that
were recorded in the Czech Republic. In total, 450 recordings were provided where
the time of each recording ranged between a few seconds to a few minutes.

6.2.3 Data Pre-Processing
The data is prepared by first segmenting the audio signals to extract the signal parts
from the noisy audio recordings using the technique developed by Lasseck (2013)
and Sprengel et al. (2016) and described in Section 4.5. The signal segments ex-
tracted from the recordings are joined such that 5-second samples are formed. The

4https://xeno-canto.org/
5http://www.yellowhammers.net/
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audio clips are then resampled to 22050 Hz with Librosa 0.6 audio processing pack-
ageMcFee et al. (2019). It has been reported thatmost birds vocalize in the frequency
range of 0.5 kHz to 10 kHz (Marler and Slabbekoorn, 2004). The resampling is fol-
lowed by peak normalization. To get rid of sound samples that do not contain any
bird sounds, a simple signal-to-noise ratio-based estimate is employed. This estimate
ensures with high probability that 5-second clips that do not contain bird sounds are
discarded (Kahl et al., 2018).

6.2.4 Acoustic Analysis
Once the recordings are pre-processed, the next step is extraction of descriptors
that provide lower-dimensional compact statistical representations of the bird sound
recordings. Time series of first 20 coefficients of Mel frequency cepstral coefficients
(MFCCs) are extracted from the audio signals. The feature extraction is carried out
in a short-term processing manner where the signal is chunked into short analysis
frames. In order to preserve as much information and arrive at a good enough trade-
off between frequency and temporal resolution, we select an analysis frame size of
512 samples (23ms) while allowing an overlap of 25%. Therefore, the spectral fea-
tures described below are computed frame-wise. The temporal average of the feature
coefficients is computed to generate a single value which is associated with the re-
spective analysis frame. For each MFCC, the variance of the coefficients within the
analysis frame is also computed and used as an additional feature. The MFCC fea-
tures were computed using Librosa 0.6 audio processing package McFee et al. (2019).
In total, the dimension of the feature vector is 40, containing first 20 time averaged
MFCCs, and the variances of first 20 MFCCs.

House Wren

In this study, we only use song vocalizations. Since the aim of this work is to quantify
variability in vocalizations for a widespread species, we split the data into different
groups. It has been reported based upon numerous genetic studies that the aedon,
brunneicollis, and musculus groups have independent evolutionary trajectories (Sosa-
López and Mennill, 2014). We use this information as our basis to test the assump-
tion of vocal divergence across these groups in a purely data-driven manner. Conse-
quently, we create three subsets of sound recordings, one for each of the three groups.
For the second experiment, we investigate the geographical divergence in vocaliza-
tion characteristics by simply controlling for latitude. Five geo-spatial regions are
demarcated between 45◦N and 30◦S, each region spanning 15 degrees.

We need to ensure that the classifier is learning just from homologous vocaliza-
tions and not some other sytemic differences between different geospatial locations.
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aedo
T. a. aedon

T. a. brunneicollis
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15N
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Figure .: Map of North and South America, showing the distributions of differ-
ent groups of House Wren species considered in this study. The different colors in
the map refer to areas inhabited by the three groups, namely the aedon group (North-
ern House Wren), the brunneicollis group, and the musculus group (Southern House
Wren), respectively. The dotted lines show the demarcation for the classification
carried out while controlling for the latitude.
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One factor could be the differences in acoustic properties of typical geo-spatial ar-
eas, but since the recordings have been made at multiple sites by different recordists
within each area, we can safely assume that the acoustic properties such as background
noise, nature and quality of the recording gear, other species present, typical wind
conditions, differences in sound attenuation, etc. also vary within an area. Table 6.1
shows the distribution of recordings at different sites in one geospatial area for the
bird species House Wren. For instance, only one bird sound recording has been made
at each of the 89 different sites. Similarly, 2 recordings have been made at each of
the 15 different sides and so on. Furthermore, since we are randomly drawing sound
clips for training our classifier, this will ensure that we end up with a mixed bag of
recordings from different sites with different acoustic properties.

We have relied on the annotations provided by the recordists to determine the
vocalization type. The verification of actual vocalization type is out of the scope of
this work.

Number of sites Number of recordings (at each site)

89 1
15 2
9 3
3 4
2 5
1 8
1 9

Table 6.1: The data corresponds to recordings made in one geospatial area for the
bird species House Wren.

Yellowhammer

In the case of Yellowhammer, since the ground truth for different dialects for record-
ings made in the Czech Republic is available, we use this data to carry out different
dialects-based classification. In total, there are 7 dialect types that can be broadly
divided into B dialects and X dialects. First, classification is carried out at this level
of complexity where data is sorted into two groups based on their labels – all dialects
starting with a B element, as a terminal phrase, make the B subset and ones starting
with an X element form the X subset. Consequently, the B group consists of BD,
BC, BE, BhBl, and BlBh dialects and the X group contains the XlB and XsB
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dialects. A binary classification is carried out to determine one of the two group
types for a sample. The second classification configuration comprises of training the
classifier to classify different dialects within these two groups. Therefore, 5 sets of
data are formed for B group, while 2 sets are formed for X group. Finally, as a final
configuration, the classifier is trained to classify all 7 dialects.

In order to ensure robustness of classification, for each classification run, the sub-
sets of sounds for classification were not purposefully chosen. Rather, a random
number generator is employed to construct 20 bags of m sound clips for each group
for different classification experiments (see Fig. 6.6). The m is varied for different
classification experiments depending on how much data was available for each group.
Table 6.2 provides a list of m for different experiments for both species.

Each bags-of-birds is basically a set of randomly drawn sounds clips without repe-
tition from a complete set of sounds for each location. The idea is to repeat the com-
putation 20 times to have a reliable estimate of classification performance. Fig. 6.2
illustrates the idea of this numerical experiment. Finally, the dataset was divided into
training and testing sets such that training sets contain 75% and test sets contain 25%
of the data.

Two machine learning algorithms are employed to perform the classification – the
random forest and the feed forward artificial neural network. The parameters in both
models were not tuned using a grid search to get the best performance since this often
leads to over-fitting. Nevertheless, some parameters were chosen based upon hand

Species Classification
configuration

Number of
sound clips per class

House Wren Group based (3 classes) 300

House Wren Group based (2 classes) 300

House Wren Latitude controlled (5 classes) 300

Yellowhammer X, B groups (2 classes) 600

Yellowhammer All dialects (7 classes) 500

Yellowhammer X dialects (2 classes) 500

Yellowhammer B dialects (5 classes) 500

Table 6.2: Number of sound clips per class used for different classification config-
urations tested for House Wren and Yellowhammer. Different classes pertain to
different classification configurations employed in different experiments.
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Bird Species j
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Dialect r1

Group/Region/
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20 bags of m sound 
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20 bags of m sound 
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Randomly 
drawn with 
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Randomly 
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Figure .: Schematic for the bags-of-birds approach (Ghani and Hallerberg, 2021).
Recording samples for different regions and groups in the case of House Wren and
different dialects or dialect groups in the case of Yellowhammer are first organised
into larger datasets. Subsequently, for classification, 20 bags or ensembles of record-
ings are drawn randomly from these larger datasets with repetition to repeat each
computational run 20 times.

tuning such that the chances of over-fitting are reduced. In the random forest model,
max_depth was set to 5 to reduce the complexity of the model. min_samples_leaf was
set to 2. n_estimaters was set to 200. For the rest of the parameters, default values set
by the sklearn function for the random forest were chosen, since they are shown to
provide fairly good estimates. In the case of ANN, the only parameter that we tuned
was the learning rate using the keras tuner. The rest of the model parameters were
hand-tuned by trial-and-error and the ANN was constructed using one hidden layer,
an input layer, and an output layer. The number of neurons in the hidden layer was
set to 16.
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6.3 Results and Discussion

6.3.1 House Wren

The performance of classification is evaluated by testing for 20 trials drawing 300

recordings from different groups, with repetition, for each trial from the larger
datasets. Since datasets for different regions/groups vary in the number of record-
ings available, this allows us to create balanced datasets while varying the sets of
samples in each trial to arrive at a reliable estimate of expected performance. The
performance is evaluated using two commonly used metrics, namely, accuracy and
mean average precision (mAP). In the case where the classification is tested for three
groups of House Wren, namely, the aedon group, the brunneicollis group, and themus-
culus group, we performed a multi-class classification where the classifier is trained
on three classes, and in the second case, we performed a binary classification to train
for different combination of the three groups. The results of different classification
configurations are summarized using box plots in Fig. 6.7.

There are several aspects of the results that are worth discussing. It can be ob-
served from both the accuracy and mean average precision plots that classifying three
groups is, on an average, outperformed by the binary classification between any com-
bination of two groups, since the medians of the box plots are higher for the two
groups classification than the median of performance indices for the three groups.
This is an expected result since increasing the number of classes leads to a dip in per-
formance as investigated in detail in the previous chapter. The confusion matrices
(see Fig. 6.8), averaged over the 20 trials, were plotted to investigate the patterns of
misclassifications across groups. For instance, it can be observed in the confusion
matrix for three groups that, among the three groups, the brunneicollis group is the
easiest to distinguish. Firstly, this group has the highest number of true positives
and secondly, most of the wrongly classified samples for the other two groups are not
classified as belonging to this group. For instance, out of the 75 samples for the mus-
culus group, only 2 are labeled by the classifier as brunneicollis while 8 are labeled as
aedon. The binary classifications were carried out to further investigate the influence
of individual groups on classification performance. Consequently, the same pattern
was observed – out of the three combinations of binary classifications, the ones in-
volving emphbrunneicollis group performed better. The median mAP score is 0.925
using a random forest classifier for the classification involving the aedon group and
the musculus group while the median mAP scores for the other two combinations are
about 0.95 and 0.965, respectively.

The classification results were also mapped to the locations where the recordings
were made to explore the possibility of some kind of patterns in misclasssifications.
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Figure .: Classification results using the performance measures a) Accuracy and
b) mAP for different combinations of groups for the species House Wren using two
machine learning models – a random forest and an artificial neural network. Shown
are the ranges from best result to worst result (whiskers) obtained for 20 different
randomly drawn subsets of samples. The black marking in each box represents the
median and the boxes indicate the middle 50% of the results.
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Figure .: Confusion Matrices of classification results using a random forest clas-
sifier for different combinations of groups for the species House Wren. Note that
the confusion matrices plotted here display the average scores over 20 trials to un-
derstand the relevant patterns. The upper left figure corresponds to a multi-class
classification with three groups – aedon group, the brunneicollis group, and the mus-
culus group. The upper right figure corresponds to a binary classification between
the aedon group and the musculus group. The lower left figure corresponds to a binary
classification between the aedon group and the brunneicollis group and the lower right
figure corresponds to a binary classification between the brunneicollis group and the
musculus group. The total number of testing samples used for each group is 75.

It would be interesting if, for instance, the wrongly classified samples were restricted
to specific areas. Fig. 6.9 shows plots for the three groups where the blue markers
are true positives i.e., the correctly classified samples, and the red markers are false
positives i.e., samples belonging to other two groups that have been wrongly classified
as this group. Apart from the fact that most misclassifications are accumulated in
groups other than the brunneicollis group, there is not much of an area-specific pattern
that can be observed in the plots.

As per the accuracy metric, the two classifiers have performed almost similarly.
Apart from the brunneicollis-musculus classification, where the median over 20 trials
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is higher using the random forest classifier, the two classifiers provide comparable
performance in the other configurations. Using the average mean precision as a mea-
sure of classification performance, one can assert that the random forest provides
a better score, on an average over 20 trials, compared to the shallow feed forward
ANN. The median mAP scores over 20 trials are higher in all the four classification
configurations.

Fig. 6.10 provides a summary of the results obtained for the experimental setup
where the classifier is trained on the samples of recordings made in 5 different latitu-
dinal zones spanning about 75◦ of latitude across the Americas. It is evident from the
figure that the random forest trained on MFCC coefficients performs better than the
ANN in terms of performance of classification. The median mean average precision
score for 20 trials for a random forest classifier is about 0.73 while the score using
an ANN is 0.59. Therefore, the random forest outperforms the ANN by more than
10% in terms of classififying samples from different latitudinal areas.

The performance drops compared to the group-based classification discussed
above. Apart from the fact that the number of classes have increased by 2, by em-
ploying latitude-based demarcation, we have essentially divided the musculus group
into three regions since this is also the largest among the three groups (see Fig. 6.5),
and is composed of 20 House Wren sub-species, compared to the other two groups
that include between 1-3 sub-species each. This also, therefore, adds to the com-
plexity of classification. Nevertheless, the high number of sub-species perhaps also
explains the possible variablility in vocalizations within this group and, consequently,
the relatively high classification performance for these regions. We can see from the
averaged confusion matrix in Fig. 6.11 that more than half of the testing samples are
correctly classified in the lower three regions and, in the region spanning between
-15◦-0◦ latitude, about two-thirds of the samples have been correctly classified.

Given that there have been relatively few studies focusing on latitudinal variation
in songs variability on an intraspecific level (Kaluthota et al., 2016), these results can
be useful to biologists that are trying to understand the evolutionary divergence in
vocalizations or study the existence of sub-species and dialects. For instance, such an
audio-based analysis can provide hints to biologists on where to look for interesting
patterns. The results also show that it is possible to extract such information on vocal
variations based on a solely data-driven approach using recordings of vocalizations.

A similar pattern for inter-region misclassifications can bee seen here as was ob-
served in the inter-group classification (see Fig. 6.8). Most misclassifications of the
region spanning 30◦-45◦, which corresponds to the Troglodytes aedon group of House
Wren sub-species, are accumulated in the lower most three regions (corresponding
to the brunneicollis group). Now that the misclassifications can be seen in more reso-
lution, most of the wrongly classified samples can be seen as belonging to the region
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Figure .: Classification results for three groups of House Wren mapped to loca-
tions where the respective sound samples were recorded. The upper left map corre-
sponds to the Northern House Wren ( Troglodytes aedon group). On the upper right
side is the map for Troglodytes brunneicollis group. The lower map shows result for the
Southern House Wren (Troglodytes musculus group). The blue markers correspond to
correct classifications (true positives) and red markers correspond to incorrect classi-
fications (false positives).
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Figure .: Classification results using the performance measures a) Accuracy and
b) mAP for samples from 5 regions obtained by controllling for latitude between
45◦N and 30◦S for the species House Wren using two machine learning models – a
random forest and a artificial neural network trained on MFCC coefficients. Shown
are the ranges from best result to worst result (whiskers) obtained for 20 different
randomly drawn subsets of samples. The black marking in each box represents the
median and the boxes indicate the middle 50% of the results.

spanning -15◦-0◦ latitude. Moreover, a significant proportion of samples for the
lower most two regions are misclassified with the label for the region spanning the
30◦-45◦ latitude region. It also seems, from the confusion matrix, that the samples
in regions spanning 30◦-45◦ and -15◦-0◦ latitude are more similar to each other com-
pared to the samples in 0◦-15◦ regions. Once again, the region spanning 30◦- 45◦
latitude (also the brunneicollis group) has the highest number of correctly classified
samples, similar to the result of the previous experiment.

This pattern of increased misclassifications between the two extreme latitudinal
ranges or between aedon and musculus groups is perhaps consistent with the conven-
tional prediction that metrics of song complexity at the higher latitudes in the South-
ern Hemisphere might converge on the song metrics in the northern temperate zone.
The hypothesis avers that populations in higher latitudes in Southern Hemisphere
face functional pressures on songs due to strongly seasonal environments similar to
populations in the Northern Hemisphere (Kaluthota et al., 2016). The similarities
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Figure .: Confusion Matrix of classification results using a random forest clas-
sifier for samples from 5 regions obtained by controlling for latitude between 45◦N
and 30◦S for the species House Wren. Note that the confusion matrix plotted here
displays the average scores over 20 trials to understand the relevant patterns. The
total number of testing samples used for each region is 75. m in the latitude-range
labels stands for minus.

in seasonal environments can be, for instance, in the average temperatures, the day
length etc. It was also documented in Kaluthota et al. (2016) that the male House
Wrens in higher latitudes in both the Southern and Northern Hemispheres produced
more elements per song by singing at higher rates rather than extending their song
lengths. They found a U-shaped quadratic relationship for 14 song metrics of lati-
tudes, varying it between high latitudes in the two hemispheres.

It is worthwhile to mention that, compared to interspecies classification, in-
traspecies classification is a more challenging task for a classifier since the songs
within species can sometimes show variations in a very minute fraction of the song.
For instance, differences can be on a syllable level while most of the song pattern stays
the same. This must have an influence on the predictive power of the features em-
ployed in this work. To elaborate further, since the span of differing samples within
a recording is very small, it is likely that due to the nature of segments joining pro-
cess employed here to construct 5-second recordings, there are recordings that do not
include the differing parts of songs. These results can be improved in future works
by overcoming such scenerios. Furthermore, a lot of misclassifications are a result of
noisy samples or overlapping sounds of same or even different birds species and other
living organisms.
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6.3.2 Yellowhammer
The performance of classification is evaluated by testing for 20 trials, drawing samples
for each group with repetition, for each trial from the larger datasets. Since datasets
for different dialects vary in the number of recordings available, this allows us to
create balanced datasets while varying the sets of samples in each trial to arrive at a
reliable estimate of expected performance. In this way, we can also provide estimates
of spread around median scores. The performance is evaluated using two commonly
used metrics, namely, accuracy and mean average precision (mAP). Two different
machine learning models, similar to the ones for the analysis of House the Wren, are
employed to carry out classification.
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Figure .: Classification results using the performance measures a) Accuracy and
b) mAP for two dialects groups of Yellowhammer sounds, the B group, and the X
group, using two machine learning models – a random forest and a artificial neural
network trained on MFCC coefficients. Shown are the ranges from best result to
worst result (whiskers) obtained for 20 different randomly drawn subsets of samples.
The black marking in each box represents the median and the boxes indicate the
middle 50% of the results.

The classification is performed on two levels of complexity for different dialects
of the Yellowhammer species. In the first experiment, the classification is performed
for two groups of dialects, namely, the B group and the X group.

Results of the classification for the two groups of Yellowhammer sounds are sum-
marized using box plots in Fig. 6.12. We observe, at the outset, that random forest
performs better compared to the shallow feed forward ANN. The median scores
on both metrics are higher using the random forest. The spread of scores for differ-
ent subsets of recordings is rather large. Difference in mean average precision, for
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instance, between the lowest and highest scores is about 9% using a random forest
classifier. The ANN results are no different. This shows that the choice of recordings
has a considerable influence on the performance of classification.

The confusion matrix (see Fig. 6.13), averaged over the 20 trials, was plotted to
investigate the pattern of misclassifications for the two groups of dialects. The con-
fusion matrix is generated for the random forest classifier. For instance, it can be
observed in the confusion matrix that the classifications for the X have been outper-
formed by the B group in terms of number of misclassifications in each group. Given
the complexity of the problem, the classification results are promising since the di-
alects only vary in the last two syllables of the entire song. The first part of the song
is shared by all dialects as can be seen in Fig. 6.4.
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Figure .: Confusion Matrix of classification results using a random forest classi-
fier for two dialects groups of Yellowhammer sounds, the B group and the X group.
Note that the confusion matrix plotted here displays the average scores over 20 trials
to understand the relevant patterns. The total number of testing samples used for
each region is 150.

In the second configuration, the classification is performed on the higher level of
complexity in which all 7 different dialects are considered. Apart from the classifica-
tion involving all dialects, we also perform two separate classifications consisting of
different variations of the B group and different dialects in the X group. The results
of the classification for the different configurations are summarized using box plots
in Fig. 6.14.

It can be observed in the figure that including all dialects significantly lowers the
performance of classification. The random forest, once again, performs a little better
than the ANN. These results are not surprising for several reasons.

Firstly, the Yellowhammer recordings contain a lot of unfinished songs which
makes the whole task of distinction highly challenging since the last part is the only
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Figure .: Classification results using the performance measures a) Accuracy and
b) mAP for 3 different configurations of Yellowhammer dialects grouped together, us-
ing two machine learning models – a random forest and an artificial neural network
trained on MFCC coefficients. X, B dialects incluces all 7 Yellowhammer dialects
found in Czech Republic. B dialects includes the 5 dialects where the second last syl-
lable is B. X dialects includes the 2 dialects where the second last syllable is X. Shown
are the ranges from best result to worst result (whiskers) obtained for 20 different
randomly drawn subsets of samples. The black marking in each box represents the
median and the boxes indicate the middle 50% of the results.
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Figure .: Spectrograms of three instances of a dialect XsB of a Yellowhammer
song extracted from a single recording. The upper left figure corresponds to a finished
song. On the upper right side is the spectrogram for a partly finished song. The
lower figure is the spectrogram for a fully unfinished song. The red and blue pointed
arrows correspond to the second last and the last syllables, respectively. The x and y
axes correspond to time (in seconds) and frequency (in Hertz).

distinguishing characteristic for separating different dialects. There are partly unfin-
ished songs and fully unfinished ones. The former involves those songs that include
the first of the last two syllables and the fully unfinished songs do not include either
of the last two syllables. Fig. 6.15 shows spectrograms for three segments extracted
from a single recording of a Yellowhammer song with XsB dialect. The upper left
spectrogram shows the full song, the upper left shows a partly unfinished song with
the last syllable missing, and the lower one shows a fully unfinished song with the
last two syllables missing.

Secondly, as discussed before, the dialects vary for a very short proportion of the
song just towards the end. Each song is about 2.5s long and the last two syllables, the
different combinations of which give rise to different dialects, range between 0.5-1.0s
in length. Besides, the individual syllables within X group and B group only vary in
one syllable.

Thirdly, the differences are in some cases so minute that deciding a threshold to
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separate two dialects is a challenging task. Such is the case, for instance, for dialects
BD and BlBh. Researchers working on Yellowhammer dialects at the Charles Univer-
sity of Prague found it challenging to find a boundary that could separate these two
dialects and had to set some arbitrary threshold from the distribution of frequencies
for different samples. Similarly, to separate the dialects BE and BD was challenging,
because the D syllable in BD dialect is not always flat and has a rather ascending
frequency slope in some cases, similar to the syllable E in BE. Here again, these
researchers had to set arbitrary thresholds on the slope to separate the samples.

The averaged confusion matrix for the classification for all dialects, in Fig. 6.16,
shows that, among all dialects, XsB and BlBh are the easiest to classify while BhBl is
the most difficult.

We observe a slightly better performance for the classification for 5 different B
dialects compared to classifying all dialects. Here again, we notice from the con-
fusion matrix that BlBh is the easiest to classify. Given that there are significant
numbers of both partly unfinished and fully unfinished songs in the recordings, this
is not a surprising result. Since most of the B dialects only vary in the last syllable of
the terminal phrase, which means in either of the two scenerios – partly unfinished
songs and fully unfinshed songs – the distinguishing parts for such dialects are simply
absent. Therefore, the classification performance for this dialect group takes a hit.

TheX dialects, on the other hand, have performed surprisingly well with amedian
mAP score of about 0.94. The fact that there are only two classes to separate is also
a contributing factor that makes this case less challenging. Nevertheless, such a high
performance perhaps also implies that separating these two dialects is relatively easy.
The same hypothesis provided in the previous case can perhaps also explain this result.
Since X group varies in the first syllable of the last phrase, this syllable can also be
encapsulated by the party unfinished songs as can be observed in Fig. 6.15. Therefore,
there are more recordings that can capture the difference between the two dialects in
the X group. It can also be observed in the confusion matrix for all dialects that
misclassifications among these two dialects are also minimal. Furthermore, it seems
that between the two dialects, the XlB dialect is easier to separate, given the classifier,
on an average, wrongly classifies only 9 times compared to 25 times for the other
dialect.
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Figure .: Confusion Matrices for classification results obtained using a random
forest classifier for 3 different configurations of Yellowhammer dialects grouped to-
gether, the B dialects (upper left), the X dialects (upper right), and the X, B dialects
(lower). Note that the confusion matrix plotted here displays the average scores over
20 trials to understand the relevant patterns. The total number of testing samples
used for each region is 125.
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“It’s not only the question, but
the way you try to solve it.”

Maryam Mirzakhani

An automated analysis of bird vocalizations allows for a cost and effort-effective
way to gain insights about different aspects concerning birds in heavy contrast to
conventional observer-based surveying methods. One aspect that is of foremost in-
terest today is monitoring of bird species to gather reliable estimates of population
trends, sizes, and ranges for different species around the world. While the informa-
tion and knowledge gained from such an assessment would assist in efforts that are
directed toward conservation of species that are at risk of extinction, it would also
provide us cues about the health of the ecosystem in general. Passive acoustic mon-
itoring has made it possible to overcome spatial and temporal limitations presented
by classical observer-based methods. Nevertheless, this has posed new challenges of
sifting through huge amounts of audio data gathered using autonomous recording
units. The need for automated methods that can provide reliable estimates of infor-
mative trends and yet be cost-effective in terms of computational constraints is of
key interest to realize the full potential of passive acoustic monitoring. In this thesis,
several aspects of automated classification of bird species based on their vocalizations
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are investigated with the goal of furthering the understanding of challenges that need
to be addressed. The key findings of this thesis are summarized in the next sections.

7.1 On Relying on Simple, Computationally
Inexpensive Frameworks

1. We investigated the predictive power of a simple statistical technique to com-
pare estimated distributions from different bird species and their mean cepstra,
and found that advanced machine learning models can provide considerably
better performance for data that is complex such as bird sounds. A random
forest classifier was trained with pre-computed features and the performance
obtained on 10 species was comparable to several state-of-the-art classification
techniques. Amedian mean average precision of about 0.84was obtained across
20 subsets of 10 bird species that were drawn randomly. The different species
of birds were not purposely chosen as has been seen in many previous works.
Therefore, we can safely propose that the classification framework employed in
this work can be employed for all types of bird species.

2. Several aspects of audio-based analysis of bird species were studied. The pre-
dictive power of different commonly employed features was compared. It
was found that mel-scaled features performed better than linearly scaled ones.
MFCCs, by far, led to the highest classification performance when first and
second sample moments were used to summarize the time series of feature co-
efficients. Additionally, it was observed that segmenting signal parts from the
field recordings in order to discard the noisy parts led to an increase in perfor-
mance. Since, until this point, both vocalization types – calls and songs – were
used to classify bird species, we also performed a computational experiment to
study the influence of individual sound types on the classification performance.
It was observed that training a model on a single vocalization type led to higher
classification performance. The results of this experiment showed that it was
easiest to classify birds based on their calls. Furthermore, the influence of the
quality of sound recordings was investigated. It was found that high quality
recordings did lead to a higher performance.

3. We have employed a random forest classifier trained on pre-computed features
in order to analyze the classification performance using simple, computation-
ally inexpensive and yet tremendously powerful models that can be trained on
relatively less amounts of data as opposed to very deep neural networks.
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7.2 On Dependence of Classification Performance on
the Number of Bird Species

1. In order to estimate the robustness of the classification approach, we introduce
a novel bags-of-birds approach. Following this approach, the bird species are
not purposefully chosen but 20 bags or ensembles of bird species are constructed
where the species are drawn randomly with repetition from the complete dataset
of 659 bird species. The idea is to come up with reliable estimates of classifica-
tion performance by repeating the computations 20 times. In this way, we are
also able to provide the mean and spread for the expected performance on the
machine learning procedure.

2. We investigated the dependence of classification performance on the number of
species. This was done by randomly drawing n species from the larger dataset
where n was varied between 10 and 300. For each n, the computations were re-
peated 20 times on balanced subsets. The classification performance was mea-
sured using several metrics. This was done primarily since there has been no
consensus in the past works on the choice of evaluation metric employed. This
makes it difficult to compare results across different works. We found that all
metrics for classification performance showed a decline as the number of species
were increased. For some metrics, the trend was explained analytically knowing
the n-dependence of confusion matrix and making an assumption of an ideal-
ized perfect classifier. We again relied on a shallow feed forward neural network
to benchmark the performance using models that demand minimal computa-
tional power and can work with smaller datasets. We found that the model
provides a comparable performance when the species size is not that large, but
for large species’ sizes exceeding, say, 100, the deep neural network architectures
have shown a considerably better performance. Given that we high classifica-
tion performance can be obtained using less data hungry and less computation-
ally complex methods for datasets with moderate amount of species, it can be
inferred that employing very deep networks for such tasks is simply an overkill.

3. We observed that classification performance, apart from the number of species
considered, also depends on the individual composition of bird datasets. The
interquartile-ranges for the classification results varied as much as 12% for the
same value of n between two different bags-of-birds. For this reason, we assert
that the generic claims about performance for, say, n number of species should
not be interpreted as a measure of performance for any n species. Since the
classification performance is heavily contingent on the species selected, it might
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not generalize to another set.

4. We analyzed the effect of introducing a confidence threshold on the minimum
probability required by a class for a sample to be assigned to that class. This was
done to measure if the level of confidence, low or high, with which the classifier
assigns labels to samples matches the frequencies with which the classification
model classifies these samples. We observe that the precision increases as the
confidence threshold is increased which shows that when the model is assigning
high confidence to its classifications, the classifications are mostly correct which
would be expected of a good classifier. Nonetheless, for the samples the model
is not that confident about (lower confidence thresholds), it errs on the side of
over-confidence.

7.3 On Quantifying Intra-Species Variability in
Songs in Widespread Species

1. We extend the analysis from inter-species to intra-species classification. While
several results have been reported for classification and recognition of different
bird species, using machine learning models to classify variations within the
bird species has not been explored. Biologists have been relying on manual ap-
proaches to investigate such phenomena. We have considered two bird species,
namely, the House Wren and Yellowhammer. Both of these species are widely
spread across vast geographical areas. In case of House Wren, we carried classi-
fication to explore possible variations in songs for different groups of subspecies
and different latitudinal regions and for Yellowhammer, the task was to classify
7 established dialects found in the Czech Republic.

2. For House Wren, classification is first performed for three groups of subspecies,
namely, the aedon, brunneicollis, and musculus groups that have been reported to
have developed independent evolutionary trajectories. Two models – a random
forest and a feed forward neural network – are trained on MFCC features. Both
the models classify the three groups with a high performance. To further inves-
tigate the inter-group vocal variations, binary classifications were performed
between combinations of three groups. It was observed from all these compu-
tational experiments, that the brunneicollis group was the easiest to distinguish
while most misclassifications happened between the aedon and musculus groups.
We could find some evidence for this trend in the literature which suggests that
populations in the higher latitudes in the two hemispheres face similar func-
tional pressures on songs due to strongly seasonal environments. A latitudinal
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region-based classification of House Wren sounds was also conducted, where
the area between 45◦N and 30◦S is divided into 5 regions and songs recorded in
these regions are classified. Wewanted to confirm the studies that have reported
latitudinal variations in House Wren species in the Americas. Our model classi-
fied the recordings from different regions with a median mean average score of
about 0.73 across 20 runs for different sets of recordings drawn with repetition.

3. For Yellowhammer, we performed the classification broadly on two levels of
complexity for different dialects. In the first case, we classified two groups: B
dialects and X dialects. In the second case, we set up three configurations: clas-
sification of all 7 dialect types, classification of B dialect types, and classification
of X dialect types. We observed that both models classified the B and X groups
with relatively high performance. The random forest provided a higher score.
We obtained a median mean average score of about 0.79 across 20 runs for dif-
ferent sets of recordings. For the different configurations in the second case,
classifying all 7 dialects led to the lowest performance, which was followed by
classying different B dialect types. Classifying the two X dialect types led to
the highest classification performance across all setups.

4. In this way, we could confirm intraspecific vocal variation in bird species based
solely on a data-driven approach. Moreover, following the results obtained, we
can infer that automated classification using machine learning is capable of re-
placingmanual approaches to classify vocal divergence and different dialects in a
way that does not require hundreds or thousands of hours of manual inspection
of recordings to measure spectral characteristics of songs. Such an approach can
assist biologists by providing them hints on where to look for interesting trends
that could help further our understanding of the evolution of variations in bird
vocalizations.

7.4 Outlook
There are some ideas that could not be pursued due to paucity of time but can form
a basis for future work towards improving the tasks carried out in this thesis. A list
of some promising directions are presented as follows:

1. Unsupervised feature learning can be explored as a means of finding transfor-
mations in data that are driven by localized properties in the data. Learning
features that will allow extracting the most descriptive variations inherent in
target signals can help us overcome the selectivity-invariance problem and pro-
vide a trade-off between computationally expensive deep architectures and con-
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ventional machine learning algorithms that rely on manually designed features.
Feature learning has produced great success in the field of computer vision and
its effectiveness can be explored for the task of automated analysis of bird sound
recordings.

2. We observed that noise (low SNR data) has a significant influence on classi-
fication performance. Developing better techniques aimed at denoising field
recordings before feeding these recordings into the classification system can
improve predictions.

3. In addition to choosing features and models that exploit the discriminatory vari-
ations in sound data, temporal context present in bird vocalizations can be used
to more accurately classify different sounds. This can improve classification es-
pecially in case of dialects or intraspecific variation in songs where differences
can be very minute and meagre. Madhusudhana et al. (2021) have recently re-
ported improved automatic recognition on inclusion of temporal information
in the case of fin whale songs.

4. The data on Yellowhammer dialects from other countries, apart from the Czech
Republic, can be used to reproduce the results obtained in this thesis. Similarly,
for House Wren, the variations in songs across different regions and groups can
be tested using an additional dataset provided by a different source to verify the
findings.

5. In the case of Yellowhammer dialects, the classifier can be trained to classify
between finished songs, partially finished songs, and fully finished songs.

6. In this thesis, the datasets employed have included focal recordings with single
species or at least the annotated species forming the most prominent audio-
print in the respective recordings. In the future, models can be trained to per-
form on soundscapes that can include multiple species vocalizing in a single
recording or even overlapping sounds from different species. This is one of the
biggest challenges in automated classification of bird sounds and the perfor-
mance provided by the deepest and most complex neural architectures remains
scant to date.

7. Instead of traditional backpropagation the artificial neural network can be
trained using Bayesian inference (Jospin et al., 2020). Such models explicitly
incorporate uncertainty within its formulation by assigning probability distri-
butions to weights and employing probabilistic activation functions with the
intent of getting better insights on the uncertainties associated with underlying
processes.
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