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(Clive W.J. Granger, Nobel Prize laureate 2003) 

 

Multi-criteria decision making (MCDM) is a field of knowledge in Operations Research 

(OR) that can help decision-makers make transparent and auditable decisions in a logical 

manner (Dias et al., 2019). It offers methods that help to choose suitable decision alter-

natives from the set of available alternatives, via synthesis of objective information  

specifying the expected consequences of a decision  and subjective information  speci-

fying how much any single consequence matters (Keeney, 1988; Belton and Stewart, 

2003; French and Geldermann, 2005; Bouyssou et al., 2006). According to Berjawi et al. 

(2021), MCDM approaches can be used  

(1) to open up discussions among stakeholders, decision makers (DM), and analysts 

by structuring complex  decision problems (Churchman, 1967) with 

 (Mingers and Brocklesby, 1997; Mingers and Rosenhead, 

2004), including a search for suitable alternatives as well as relevant evaluation 

criteria and uncertainties, and/or 

(2) to close down discussions by aggregating relevant information in a logical manner 

and ranking the alternatives accordingly, as part of prescriptive decision theory 

(Brown and Vari, 1992; French, 1995a). 

In the case of strategic management decision problems with long planning horizons, 

at least some of the information required in MCDM is usually uncertain, e.g., the set of 

alternatives available to a DM,  consequences, possible states of the environ-

ment, or subjective information regarding s preference relations (Stewart et al., 

2013; Troldborg et al., 2014). Moreover, if dynamic decision problems also require a 

recommendation regarding when to proceed with which action, explicitly modelling the 

temporal aspect of the decision problem becomes relevant, leading to multi-period 

MCDM (Yu and Chen, 2012). 

One application area, where MCDM has been applied to support strategic decision-

making is energy systems planning (Løken, 2007; Stewart et al., 2013; Antunes and 

Henriques, 2016; Kumar et al., 2017; Mardani et al., 2017). One major objective of energy 
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systems planning is to reach sustainable energy supply systems (Harjanne and Korhonen, 

2019), and thus, the sustainability of such systems needs to be evaluated (Giannetti et 

al., 2020). In the research field of cleaner production, the sustainability objective is usu-

ally operationalized with a wide range of economic, social, environmental, and technical 

criteria (Antunes and Henriques, 2016). Because these criteria are usually conflicting and 

measured in incommensurable units, formal decision support with MCDM approaches 

can be helpful (Hwang et al., 1980; Stewart, 1992; Dias et al., 2019). Regarding energy 

policy, energy scenario studies provide orientation for decision-makers in government and 

industry by offering relevant quantitative information on key figures such as system costs 

regarding various long-term strategies in the energy sector (Keles et al., 2011; Cao et al., 

2016; Weimer-Jehle et al., 2016). These energy scenario studies usually consider long-

term consequences due to the long product life cycles of power plants (Grunwald, 2011; 

Antunes and Henriques, 2016). 

According to French (2013), there are four levels of support that may be offered by 

decision support processes and systems: 

• Level 0: Acquisition, checking and presentation of data, directly or with mini-

mal analysis, to DMs 

• Level 1: Analysis and forecasting of the current and future environment 

• Level 2: Simulation and analysis of the consequences of potential strategies; 

determination of their feasibility and quantification of their benefits and dis-

advantages 

• Level 3: Evaluation and ranking of alternative strategies in the face of uncer-

tainty by balancing their respective benefits and disadvantages. 

In the context of this categorization, the level of decision support provided in energy 

scenario studies can be described as level 2. The objective of integrating MCDM and 

energy systems planning is to increase the achievable level of decision support to level 3, 

as this would allow to include  preferences and to consider uncertainties. While 

MCDM has already been applied to support decision-making in energy systems planning, 

varying forms of combining MCDM and energy systems planning hinder effective decision 

support. The majority of energy scenario studies thus does not incorporate MCDM tech-

niques, but is mainly based on quantitative energy system analysis. Therefore, the ob-

jective of this dissertation is to investigate how MCDM approaches can effectively sup-

port decision-making in energy systems planning. The cumulative dissertation encom-

passes 7 published papers (3 journal papers, 2 conference papers, and 2 contributions to 

collections). Detailed information on the papers are provided in Section 4, and full texts 

are provided in the appendix. 
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Section 2 includes an elaboration of the research background regarding multi-criteria 

decision making and research gaps are identified. In Section 3, the research methodology 

is described. Section 4 summarizes the research contributions of each paper. In the final 

Section 5, the results of the dissertation are summarized and their implications are dis-

cussed. Finally, directions for further research are provided. 
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2  

In this section, OR, MCDM, and energy system analysis are introduced and the specific 

challenges of dynamic MCDM and modelling of uncertainties in MCDM are described. 

Finally, the main research gaps regarding the integration of MCDM and energy systems 

planning are identified. 

2.1 OPERATIONS RESEARCH 

OR is a discipline on the process of making better decision[s] through the development 

and the application of a wide range of problem- (IFORS, 

2020). OR emerged in the 1940s from military operations, computer science, and eco-

nomics (Laengle et al., 2020). Particularly, advances in linear optimization by George B. 

Dantzig (summarized in Dantzig (1963)) allowed to solve optimization problems in many 

fields, including business and economics. Optimization approaches exist for continuous 

-

problems (Simon and Newell, 1958), where problem structuring is only an implicit issue. 

This approach is also called empirical-analytic paradigm or  (Mingers and 

Brocklesby, 1997). In contrast, the interpretive paradigm or -

structured nature of the problems encountered explicit (Mingers and Rosenhead, 2004). 

An OR model is a conceptual representation of a real or proposed decision problem, 

attempting to capture all relevant problem components. Figure 1 shows the connection 

between a decision problem, an OR model, and its implementation. According to Ackoff 

(1956), it is not implied that modeling, implementation, experimentation, or validation 

steps are applied in a specific order, or that one step must be completed before another 

is begun. Contrary, there is usually a continuous interplay between all steps during the 

whole model development process. 
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Figure 1: OR model development process (adapted from Gösling (2015)) 

2.2 MULTI-CRITERIA DECISION MAKING 

MCDM is situated in the research domain of Operations Research. MCDM approaches 

are designed for decision problems with at least two alternatives, in which DMs need to 

consider at least two, usually conflicting decision criteria (French and Geldermann, 2005). 

In these problems, there usually is no dominant solution, so that MCDM approaches are 

applied to structure a decision problem (by identifying suitable alternatives, criteria, 

relevant uncertainties) and to sort, rank, or choose suitable alternatives based on the 

DMs  preferences (Belton and Stewart, 2003). Regarding these preferences however, the 

schools of thought of MCDM differ: the American school supposes that DMs are able to 

concisely articulate their preferences and ass

the European school considers the opposite, so that preferences need to be elicited in an 

interactive process (Roy and Vanderpooten, 1996). Solving a multi-criteria decision prob-

lem usually involves three stages: (1) formulating the problem, (2) evaluating the options, 

and (3) reviewing the decision structure (Belton and Stewart, 2003; French and 

Geldermann, 2005). 

Regarding the problem formulation, various problem structuring methods facilitate 

(Rosenhead, 

2013; Marttunen et al., 2017), or as Belton and Stewart (2003, p. 35) 

well-structured is a problem half- , the CAUSE checklist aims to 

structure decision problems and includes Criteria, Alternatives, Uncertainties, Stakehold-

ers, and the Environment of a decision problem (Belton and Stewart, 2003). All these 
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ingredients can be included in a decision model, which serves to formally and analytically 

DMs  preferences 

(Götze and Bloech, 2002). While most MCDM approaches can determine relations of 

preference or indifference regarding two alternatives, some also allow for modelling in-

comparability (Belton and Stewart, 2003).  

In decision theory, DMs are usually supposed to act rationally in the course of achiev-

ing their goals.1 Goals can have interdependencies, i.e., two goals can be indifferent, 

complementary, or conflicting (Zäpfel, 1981). Indifferent means that achieving one goal 

does not have an impact on the other one, complementary means that achieving one goal 

also facilitates achieving the other one  this may be symmetric or asymmetric , and 

conflicting means that achieving one goal hinders achieving the other one. In the context 

of sustainable development, typical goal dimensions are environmental, economic, and 

social (Elkington, 2002). In the context of energy systems planning, the energy trilemma 

considers affordability, environmental sustainability, and security of supply (Berjawi et 

al., 2021). While these dimensions usually are portrayed as conflicting, they do not nec-

essarily have to be. However, to avoid loss of relevant information in complex decision 

problems, all dimensions usually need to be considered explicitly.  

The alternatives (also called options, action opportunities, decision possibilities, ac-

tions, or strategies) constitute the decision field for the DMs (including sticking with the 

status quo) (Geldermann, 1998). The number of alternatives can be countable and dis-

crete (approaches dealing with such situations are called multi-attribute decision making, 

MADM, or multi-criteria analysis, MCA) or uncountable and infinite (approaches deal-

ing with such situations are called multi-objective optimization, MOO) (Antunes and 

Henriques, 2016). Deriving suitable alternatives can be supported with value focused 

thinking (Keeney, 1988, 1992; Siebert and Keeney, 2015). Alternatives are usually con-

sidered to be mutually exclusive, but in some decision problems, a combination of alter-

natives is sought. This is usually the case in multi-period decision problems, where a 

combination of multiple alternatives over multiple periods is evaluated (Yu and Chen, 

2012). 

Criteria are used to operationalize goals, which help identifying whether an alternative 

is suitable to achieve said goals. Criteria should be measurable, complete, independent, 

relevant, understandable, and non-redundant (Belton and Stewart, 2003). Criteria may 

be measured in incommensurable units and nominal, ordinal, or metric scales. Different 

MCDM approaches have been developed to deal with this diversity. For example, the 

                                       
1 Behavioral issues are not addressed in this dissertation. Overviews of behavioral OR are provided in Kunc et al. 
(2016) and White et al. (2020). 
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ORESTE method (Organisation, Rangement Et Synthèse de données relaTionnElles) 

(Roubens, 1982; Pastijn and Leysen, 1989) deals with ordinally scaled criteria, while e.g., 

PROMETHEE (Preference Ranking and Organization METHod for Enrichment Evalu-

ations) (Brans and Vincke, 1985; Brans and Smet, 2016) can deal with ordinal or metri-

cally scaled criteria. 

The DMs  preferences need to be considered if there is no perfect alternative  being 

optimal regarding all criteria  or dominating alternative  being at least as good as all 

other alternatives regarding all criteria and strictly better than all other alternatives 

regarding at least one criterion. There are inter- or intra-criteria preferences. Inter-crite-

ria preferences regard the relative advantageousness of one criterion compared to the 

others (Zimmermann and Gutsche, 1991). Usually, these preferences are expressed in the 

form of normalized criteria weights so that the sum of all weights equals 1 or 100. For 

specifying intra-criteria preferences, MCDM approaches differ. For example, PROME-

THEE allows expressing intra-criteria preferences with six standard types of preference 

functions that are based on the differences between performance scores of two alterna-

tives (Brans and Vincke, 1985). Usually, preference parameters are subject to sensitivity 

analyses, which help explore the robustness of the solution regarding subjectively set 

parameters (Belton and Stewart, 2003). 

In MCDM, uncertainty manifests in two forms: internal and external (Stewart and 

Durbach, 2016). Internal uncertainty relates to the process of problem structuring and 

analysis, including uncertainty about the appropriateness of a developed model for a 

particular real-world problem, or uncertainty about judgmental inputs required from 

DMs. External uncertainty relates to the nature of  environment and 

its influence on the performance scores of a particular alternative. Approaches for mod-

elling internal uncertainties include fuzzy set theory (Zimmermann, 2010) and rough sets 

(Greco et al., 2001). However, this uncertainty can inherently not be eradicated com-

pletely and should thus be resolved as much as possible during the problem structuring 

stage (French, 1995b; Stewart and Durbach, 2016). A promising approach for considering 

external uncertainties in a multi-criteria analysis is to incorporate a scenario planning 

technique (Schoemaker, 1995; van der Heijden, 1996; Gausemeier et al., 1998) during the 

problem structuring stage (Marttunen et al., 2017).  

In dynamic multi-criteria decision problems, the previously mentioned elements of 

multi-criteria decision problems are allowed to change over time (Yu and Chen, 2012), 

including the available set of alternatives, the criteria, the consequences measured in 

terms of the criteria, and the preferences of DMs. Multi-period MADM approaches vary 

regarding their multi-period aggregation procedures, the dynamicity of preferences, and 
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the consideration of path dependencies, which hinder the choice of alternatives in subse-

quent periods, based on earlier choices (Sydow et al., 2009). For example, Kornbluth 

(1992) investigated the impact of future expected changes in the  preferences over 

time on a decision at hand. 

2.3 ENERGY SYSTEM ANALYSIS AND PLANNING 

Energy system analysis comprises various methods that help to enhance the understand-

ing of the operating principles of the energy system and its components. Its objective is 

to support decisions in energy policy and energy research with regard to technologies and 

infrastructures for the energy supply and energy conversion in a scientific and systematic 

way (Möst and Fichtner, 2009; Cao et al., 2016). The main model classes of energy 

system analysis are optimization models, helping to find optimal solutions  usually min-

imizing system costs in given constraints , and simulation models, investigating energy 

(Schönfelder et al., 2011; Pfenninger et al., 2014). 

One important current application of energy system analysis is planning the transition 

from energy systems relying on fossil fuels toward systems relying on energy from renew-

able sources, with the overall objective to tackle problems related to climate change 

and/or the depletion of fossil fuels. Fossil fuel reserves of different continents are pre-

dicted to become less exploitable in an economically reasonable way in the next 30 150 

years (bp, 2020) s is mainly 

dependent on fossil or nuclear fuels, but the share of renewable energy sources has been 

increasing steadily since the 2000s. In 2018, 86.2% of the global primary energy supply 

was provided by fossil or nuclear energy sources (International Energy Agency, 2020b). 

Although renewable and sustainable energy are not necessarily the same (Harjanne and 

Korhonen, 2019), the transition of energy supply systems toward energy from renewable 

sources is widely regarded as a key measure for reaching sustainable energy supply sys-

tems (International Energy Agency, 2019b; Blazquez et al., 2020). Energy policy frame-

works across the globe often include specific targets regarding the expansion of the in-

stalled capacities of renewable energy technologies, for example: 

• The European Union (EU) aims to increase the share of renewable energy to 32% 

by 2030, from 18.84% in 2018 (European Union, 2018; Eurostat, 2018). 

• China has aimed to increase the installed capacities of hydro energy (to 340 GW) 

as well as wind and solar energy (to 240 GW) by 2020, from 332 GW and 226 

GW, respectively, in 2016 (International Energy Agency, 2019a; National 

Development and Reform Commission, 2020). 
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• India has aimed to increase renewable capacities to 227 GW by 2020 and aims to 

further increase to 275 GW by 2027 (International Energy Agency, 2020a) from 

84 GW in 2019. 

2.4 RESEARCH GAPS 

As emerged from the literature, the following research gaps can be identified: 

1. Energy scenarios are usually constructed with the help of energy system analysis. 

However, the underlying processes of scenario construction and decision support in 

energy scenarios have been criticized as in-transparent, hindering effective interpre-

tation and transfer of energy scenario studies (Cao et al., 2016; Grunwald et al., 2016; 

Junne et al., 2019). For improving this situation, an integrated sustainability assess-

ment could prove useful (Kronenberg et al., 2012). 

2. From a methodological perspective, a disparity regarding how to integrate scenario 

planning and MCDM can be observed in the literature: The first group of authors 

applies the scenario planning technique to identify alternatives for future energy sys-

tems and thus treats the terms alternative  and scenario  synonymously. This 

means that, in fact, scenarios  are evaluated with MCDM. For examples from energy 

systems planning, see Kowalski et al. (2009), Browne et al. (2010), Ribeiro et al. 

(2013), Diakoulaki and Karangelis (2007), and Trutnevyte et al. (2011). The second 

group of authors highlights that scenarios should describe the external conditions 

under which alternatives need to be evaluated, therefore clearly distinguishing be-

tween alternatives  and scenarios  (French, 1995b; Comes et al., 2013; Stewart et 

al., 2013; Durbach and Stewart, 2020). The latter approach can be expected to be 

more useful for DMs in energy systems planning, as long-term uncertainties need to 

be considered in all investment decisions due to long life-cycles of power plants. An 

approach, which integrates MCDM, scenario planning, and energy systems analysis, 

in which scenarios and alternatives are distinguished, has not yet been developed and 

applied to an energy system planning problem. This is also acknowledged in the lit-

erature on energy scenarios. For example, Grunwald et al. (2016) call for a method 

which considers conflicting criteria, conflicting opinions of stakeholders, and uncer-

tainties explicitly and transparently. 

3. Effectively analyzing and communicating the uncertainties associated with certain 

energy futures is vital in strategic decision-making with long planning horizons 

(MacKerron and Scrase, 2009; Grunwald, 2011; Grunwald et al., 2016; Yue et al., 

2018). Although many quantitative energy system models are readily available, 
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interpreting their results and specifically, the assessment and communication of un-

-makers, can be improved. 

4. While multi-period energy system models are state-of-the-art in energy system anal-

ysis (Pfenninger et al., 2014), multi-period MCDM approaches are not.2 To support 

decision-making, multi-period MCDM approaches can build upon the output of multi-

period energy system models. A suitable multi-period MCDM approach that allows 

evaluating ver time should support DMs in planning 

the transition towards energy from renewable sources dynamically. 

In the next section, it is described how the abovementioned research gaps are addressed 

in this dissertation, with the overall objective to make decision-making in energy systems 

planning more transparent and robust. 

 

                                       
2 A review of dynamic MADM approaches is included in paper 7. With multi-period MADM approaches being of very 
limited use in general, it can also be observed that none have been applied to energy systems planning. 
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In order to investigate how MCDM approaches can effectively support decision-making 

in energy systems planning, the research design encompasses a mixed research frame-

work, which is summarized in Figure 2 and described in the following subsection 3.1. The 

methodology was divided into four phases (I-IV), each addressing one of the previously 

mentioned research gaps. In subsection 3.2, an overview of the methods used in the 

individual papers is provided. 

3.1 CONTRIBUTION STRUCTURE 

In phase I, a qualitative literature review on energy scenarios and energy systems analysis 

led to the development of a morphological box of energy scenarios. This box builds upon 

the methodological literature on developing and evaluating energy scenarios. The box 

comprises parameters describing the scenario properties, energy system model properties, 

scientific practice, and institutional settings of energy scenarios. It serves as a means of 

structuring the different types of energy scenario studies and helped identify research 

gaps regarding the integration of MCDM and energy system analysis. 

In phase II followed the development of an approach, which allows the integrated 

development and evaluation of energy scenarios. This approach was refined through three 

publications: First, a prototype reference model (Wilde and Hess, 2007) was developed 

in the form of a data flow sheet; second, possible automations of the approach with the 

help of semantic web technologies and ontologies were considered; third, the approach 

was connected to the standard processes of scenario planning, energy system analysis, 

and MCDM, while using an unambiguous terminology (regarding the terms scenario  

and alternative ). Development, refinement, and application of this approach were em-

Nachhaltige Energieversorgung Niedersachsen (NEDS  

(sustainable energy supply Lower Saxony, Germany) (Engel, 2019), which is why the 

energy transition in Lower Saxony serves as an illustrative example for the approach. In 

its application, input from quantitative and qualitative energy system analyses from the 

research partners, including innovation studies (Kleinau et al., 2019), a grid expansion 

planning optimization model (Blaufuß and Hofmann, 2018), a smart grid optimization 

model (Nieße and Tröschel, 2016), a macroeconomic equilibrium model (Pothen and 

Hübler, 2018), and smart home energy management simulation model (Reinhold and 
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Engel, 2017; Reinhold et al., 2018) were integrated in the multi-criteria analysis. Input 

from stakeholders regarding their preferences was gathered at a public symposium em-

bedded in the NEDS project (Wille, 2019). However, this input did not prove meaningful 

for the research conducted herein, which is why the project team proceeded with an equal 

criteria weighting followed by extensive sensitivity analysis of preference parameters. 

Moreover, because of time limitations in the project and the review process of the asso-

ciated paper 4, we only obtained input data for the year 2050, which made it impossible 

to apply a multi-period evaluation with the same quality of data. 

 

Figure 2: Research framework 

Research Gap 1 - Phase I: Literature review, classification of energy scenario 
studies, and identification of research gaps

Paper 1: Morphological Analysis of Energy Scenarios

Research Gap 2 - Phase II: Development of the approach for integrating 
MCDM, scenario planning, and energy system analysis

Paper 2: Towards an Integrated Sustainability Evaluation of Energy Scenarios 
with Automated Information Exchange

Paper 3: Towards an Integrated Development and Sustainability Evaluation of 
Energy Scenarios Assisted by Automated Information Exchange

Paper 4: Combining Scenario Planning, Energy System Analysis, and Multi-
criteria Analysis to Develop and Evaluate Energy Scenarios

Research Gap 3 - Phase III: 
Evaluation and comparison of new 

and extant approaches

Paper 5: Transparency in Energy 
Scenario Studies: Survey of Different 
Approaches Combining Scenario 
Planning, Energy System Analysis, 
and Multi-criteria Analysis

Research Gap 4 - Phase IV: 
Integrating a multi-period perspective 

and consideration of uncertainties

Paper 6: Multi-criteria Evaluation 
of the Transition of Power 
Generation Systems

Paper 7: Multi-Period Multi-
Criteria Decision Making under 
Uncertainty: A Renewable Energy 
Transition Case from Germany
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In phase III, the new and existing approaches for combining MCDM and scenario 

planning were reviewed and investigated regarding their transparency and implications 

for decision support and use cases for both approaches were derived. 

In phase IV, the new approach was developed for and applied in a multi-period set-

ting. This was also done in two iterations: In the first iteration, the multi-period MCDM 

approach was applied to the case of energy systems planning in the town of Jühnde, 

Lower Saxony, Germany. In the second iteration, this application was enriched with a 

scenario analysis, so that a multi-period MCDM approach under uncertainty was pro-

posed and also applied to the case of energy systems planning in Jühnde.  

3.2 METHOD STRUCTURE 

Table 1 shows the methods that were used in the individual papers. Because the main 

objective of this dissertation is to investigate how MCDM can effectively support deci-

sion-making in energy systems planning, the main contributions are methodological ad-

vancements in the intersection of the fields of MCDM and energy system analysis. There-

fore, the results obtained by applying the newly developed methods, e.g., results regard-

ing the analysis of 4 energy scenario studies in paper 1, or the results of the analysis 

addressed 

in the following section. For the results of the individual applications of the developed 

methods, the interested reader is referred to the respective individual papers. 
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Table 1: Methods used in the individual papers 

Re-

search 

gap / 

Phase 

Paper Methods 

I 
1: Morphological Analysis of Energy Scenarios 

(Witt et al., 2018) 

Literature review & 

morphological box 

II 

2: Towards an Integrated Sustainability Evalua-

tion of Energy Scenarios with Automated Infor-

mation Exchange (Schwarz et al., 2017) 

Prototype model 

(data flow sheet) 

3: Towards an Integrated Development and Sus-

tainability Evaluation of Energy Scenarios As-

sisted by Automated Information Exchange 

(Schwarz et al., 2019) 

Prototype model 

(data flow sheet) & 

data management ap-

proach with semantic 

web technologies 

4: Combining Scenario Planning, Energy System 

Analysis, and Multi-Criteria Analysis to Develop 

and Evaluate Energy Scenarios (Witt et al., 

2020) 

Reference modelling 

(Wilde and Hess 

2007), MCDM, en-

ergy system analysis 

& scenario planning 

III 

5: Transparency in Energy Scenario Studies: Sur-

vey of Different Approaches Combining Scenario 

Planning, Energy System Analysis, and Multi-cri-

teria Analysis (Witt, 2020) 

Literature review 

IV 

6: Multi-Criteria Evaluation of the Transition of 

Power Generation Systems (Witt et al., 2019) 

Multi-period MCDM 

& energy system 

analysis 

7: Multi-Period Multi-Criteria Decision Making 

under Uncertainty: A Renewable Energy Transi-

tion Case from Germany (Witt and Klumpp, 

2021) 

Multi-period MCDM, 

energy system analy-

sis & scenario plan-

ning 

 



 

 

4  

In this section, the contribution of each paper is briefly presented and discussed, focusing 

on the specific goals and main results. The full texts of the papers are presented in the 

appendix. 

4.1 SUMMARY: MORPHOLOGICAL ANALYSIS OF ENERGY 

SCENARIOS 

Energy scenarios have long been successfully used to inform decision-making in energy 

systems planning, with a wide range of different methodological approaches for develop-

ing and evaluating them. The purpose of paper 1 (Witt et al., 2018) is to analyze the 

existing approaches and classify them with a morphological box. This paper builds upon 

the methodological literature on developing and evaluating energy scenarios and presents 

a morphological box, which comprises parameters describing the scenario properties, (en-

ergy system) model properties, scientific practice, and institutional settings of energy 

scenarios. The newly developed morphological box is applied to four selected energy 

scenarios of the German energy transition. The morphological box is a suitable tool to 

classify current energy scenarios. The exemplary application also points toward four chal-

lenges in the current practice of energy scenario development and evaluation: increasing 

complexity of decision problems, transparency of the scenario development process, trans-

parency of the decision support process, and communication of uncertainty. The mor-

phological box of energy scenarios helps researchers soundly document and present their 

methodological approaches for energy scenario development and evaluation. It also facil-

itates the work of analysts who want to classify, interpret, and compare energy scenarios 

from a methodological perspective. Finally, it supports the identification of gaps between 

current practice and the methodological literature on energy scenarios, leading to the 

development of new types of energy scenarios. 

This paper substantially contributed to the further research in the subsequent phases 

II through IV: The challenges of increasing transparency of the scenario development 

and decision support process were tackled with the development of a new approach for 

combining MCDM with scenario planning and energy system analysis (papers 2 4). Pa-

per 5 specifically addresses how uncertainties can be effectively analyzed and 
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communicated in energy scenario studies, while paper 7 provides an adequate multi-

period MCDM method with an illustrative example. 

4.2 SUMMARY: TOWARDS AN INTEGRATED SUSTAINABILITY 

EVALUATION OF ENERGY SCENARIOS WITH AUTOMATED 

INFORMATION EXCHANGE 

To reshape energy systems toward renewable energy resources, DMs need to decide today 

on how to make the transition. Energy scenarios are widely used to guide decision making 

in this context. While considerable effort has been put into developing energy scenarios, 

researchers have pointed out three requirements for energy scenarios that are not fulfilled 

satisfactorily yet: The development and evaluation of energy scenarios should (1) incor-

porate the concept of sustainability, (2) provide decision support in a transparent way, 

and (3) be replicable for other researchers. To meet these requirements, different meth-

odological approaches are combined in paper 2 (Schwarz et al., 2017): story-and-

simulation scenarios (Alcamo, 2008), MCDM, information modeling (Lee, 1999), and co-

simulation (Steinbrink et al., 2019). This paper shows how the combination of these 

methods can lead to an integrated approach for sustainability evaluation of energy sce-

narios with automated information exchange. The approach consists of a sustainability 

evaluation process (see Figure 3) and an information model for modeling dependencies. 

The objectives are to guide decisions toward sustainable development of the energy sector 

and to make the scenario and decision support processes more transparent for both DMs 

and researchers. 
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Figure 3: First iteration of the sustainability evaluation process model (Schwarz et al., 2017) 

4.3 SUMMARY: TOWARDS AN INTEGRATED DEVELOPMENT AND 

SUSTAINABILITY EVALUATION OF ENERGY SCENARIOS 

ASSISTED BY AUTOMATED INFORMATION EXCHANGE 

As this paper 3 (Schwarz et al., 2019) is an extension of the previous one, there is 

expected overlap regarding their contents. Significant additions in paper 3 include: (1) a 

connection of the process to the sustainable development goals, (2) the overall conceptual 

solution for the scenario development and evaluation process, and (3) a table, which lists 

all artifacts and types of data that emerge during the development and evaluation pro-

cess, also showing interdependencies between process steps and possibilities for automat-

ing the data exchange (see Table 2). 
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Table 2: Description of artifacts developed during the sustainability evaluation process 

(S: structured, U: unstructured), (Schwarz et al., 2019) with minor editing 

 

#
 

A
rt

if
a
ct

 
D

a
ta

 
D

e
sc

ri
p
ti

o
n
 

R
e
q
u
ir

e
d
 

In
p
u
t 

In
p
u
t 

fo
r 

1
.1

 
C

ri
te

ri
a 

S
 

C
ri

te
ri

a,
 w

h
ic

h
 a

re
 u

se
d
 t

o 
ev

a
lu

at
e 

th
e 

su
st

ai
n
ab

il
it

y
 o

f 
fu

tu
re

 

en
er

gy
 s

y
st

em
s 

w
it

h
 M

C
D

M
 m

et
h
od

s 

 
2.

2,
 

4.
1 

1
.2

 
S
y
st

em
 b

ou
n
d
a-

ri
es

 

U
 

T
em

p
or

al
, 
sp

at
ia

l,
 a

n
d
 e

n
er

gy
-s

ec
to

r 
re

la
te

d
 b

ou
n
d
ar

ie
s 

of
 t

h
e 

m
od

el
ed

 e
n
er

gy
 s

y
st

em
 

 
1.

3,
 

2.
1 

1.
3 

Q
u
al

it
at

iv
e 

sc
e-

n
ar

io
s 

U
 

Q
u
al

it
at

iv
e 

fu
tu

re
 s

ce
n
ar

io
s 

d
es

cr
ib

ed
 w

it
h
 a

 s
to

ry
li
n
e,

 d
et

ai
l-

in
g 

th
e 

in
te

rp
la

y
 b

et
w

ee
n
 k

ey
 f
ac

to
r 

p
ro

je
ct

io
n
s 

1.
2 

2.
2,

 

2.
3 

2
.1

 
G

en
er

al
 f
ra

m
e-

w
or

k
 c

on
d
it

io
n
s 

S
 

B
ou

n
d
ar

y
 c

on
d
it
io

n
s 

n
ar

ro
w

in
g 

d
ow

n
 v

a
li
d
 d

ec
is

io
n
 a

lt
er

n
a-

ti
v
es

 

1.
2 

2.
3 

2
.2

 
L
is

t 
of

 a
tt

ri
b
u
te

s 
S
 

C
ol

le
ct

io
n
 o

f 
(d

er
iv

ed
 a

n
d
 n

on
-d

er
iv

ed
) 

at
tr

ib
u
te

s 
q
u
an

ti
fy

in
g 

th
e 

d
ev

el
op

m
en

t 
of

 q
u
al

it
at

iv
e 

k
ey

 f
ac

to
rs

 i
n
 n

u
m

er
ic

al
 t

er
m

s 

1.
1,

 1
.3

, 

4.
1 

2.
4,

 

4.
1 

2
.3

 
L
is

t 
of

 r
el

ev
an

t 

q
u
al

it
at

iv
e 

sc
e-

n
ar

io
s 

U
 

R
ed

u
ce

d
 s

et
 o

f 
fu

tu
re

 s
ce

n
ar

io
s,

 a
ft

er
 c

om
p
li
an

ce
 w

it
h
 g

en
er

al
 

fr
am

ew
or

k
 c

on
d
it

io
n
s 

is
 c

h
ec

k
ed

 

1.
3,

 2
.1

 
2.

4 

2
.4

 
Q

u
an

ti
fi
ed

 s
ce

-

n
ar

io
 a

ss
u
m

p
ti

on
s 

U
 

R
ef

er
en

ce
s 

an
d
 r

at
io

n
al

e 
fo

r 
n
u
m

er
ic

 v
al

u
es

 f
or

 a
ll
 a

tt
ri

b
u
te

s,
 

in
cl

u
d
in

g
 g

en
er

al
 f
ra

m
ew

or
k
 c

on
d
it

io
n
s,

 s
ce

n
ar

io
-s

p
ec

if
ic

 f
ra

m
e-

w
or

k
 c

on
d
it

io
n
s,

 r
an

ge
s 

fo
r 

en
d
og

en
ou

s 
at

tr
ib

u
te

s,
 a

n
d
 f
in

al
 

d
is

cr
et

e 
d
ec

is
io

n
 a

lt
er

n
at

iv
es

 

2.
2,

 2
.3

 
2.

5 

 



Research Contributions 18 

 

Table 2: Description of artifacts developed during the sustainability evaluation process 

(S: structured, U: unstructured), (Schwarz et al., 2019) with minor editing 
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4.4 SUMMARY: COMBINING SCENARIO PLANNING, ENERGY 

SYSTEM ANALYSIS, AND MULTI-CRITERIA ANALYSIS TO 

DEVELOP AND EVALUATE ENERGY SCENARIOS 

The transition from the current electricity system to a renewable electricity supply poses 

immense economic, technological, and policy challenges. Energy system models represent 

the complexity of interactions in combined processes from extraction of primary energy 

to the use of the final energy to supply services, goods, and processes. While these models 

were originally focused on energy security and costs, climate change, as the most pressing 

environmental concern as well as sustainability targets in general require the considera-

tion of a broader range of decision-relevant aspects. In this context, scenario planning 

and multi-criteria decision-making can complement energy system analysis in the devel-

opment and evaluation of energy scenarios. Therefore, in paper 4 (Witt et al., 2020), 

a combination of these three methods is proposed (see Figure 4) and illustrated in a case 

study that investigates the transition of the electricity sector in Lower Saxony, Germany, 

to energy from renewable sources. This method combination has resulted from connecting 

the process models presented in papers 2 and 3 with the standard process models of 

MCDM, energy system analysis, and scenario planning, and forms the basis for papers 

5, 6, and 7. 

The case study shows that the integration of multi-criteria analysis allows for better 

problem structuring by focusing on relevant alternatives, external uncertainties, and 

evaluation criteria. The integration of scenario planning allows for a systematic investi-

gation of external uncertainties. Thereby, the fallacy of investigating particular assump-

tions for uncertain parameters, which are however not consistent with the assumptions 

in the scenario, can be avoided. Finally, combining the methods allows for a more bal-

anced and objective evaluation of alternative energy systems in terms of multiple criteria, 

which can be used to inform discussions among stakeholders and may thus increase ac-

ceptance. 
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Figure 4: Framework for developing and evaluating energy scenarios as a combination of 

Scenario Planning, Energy System Analysis, and Multi-criteria Analysis, (Witt et 

al., 2019) 
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4.5 SUMMARY: TRANSPARENCY IN ENERGY SCENARIO STUDIES: 

SURVEY OF DIFFERENT APPROACHES COMBINING SCENARIO 

PLANNING, ENERGY SYSTEM ANALYSIS, AND MULTI-CRITERIA 

ANALYSIS 

planning processes that are usually supported by energy scenario studies. If scenario 

planning, energy system analysis, and multicriteria analysis are combined in the design 

of such energy scenario studies, two possible method combinations can be identified in 

the literature (see second research gap in Section 2.4). In paper 5 (Witt, 2020), these 

method combinations are discussed with regard to transparency and communication of 

uncertainties, which are basic requirements for energy scenarios. Finally, a clear specifi-

cation of the intended purpose of the method combination is recommended to improve 

transparency in energy scenario studies and to avoid over-interpretation of energy sce-

by DMs. 

he extant approach for combining MCDM and 

energy system analysis should be applied if there are no specific DMs whose preferences 

should be considered, or no specific decision is to be supported. Rather, this method 

combination allows the construction of orientation scenarios, which help to identify de-

sirable future states that are relevant for a problem, and suggests to open up a discussion 

about these future states (Stirling, 2008). This method combination also implies that the 

weighting of criteria cannot be elicited from a specific DM, but the impact of all weighting 

decisions should be investigated by means of sensitivity analysis (Geldermann and Rentz, 

2005). Furthermore, external uncertainties cannot be considered from the perspective of 

a specific DM. In contrast, the new approach (developed in paper 4) allows the consid-

eration of the perspective of specific DMs, and the objective of this method combination 

can be to open up or close down a discussion about relevant alternatives in a transparent 

and systematic way, using the preferences and considering the external uncertainties 

from the perspective of specific DMs. The implication for improving the transparency of 

energy scenario studies is that the purpose of applying a method combination of MCDM 

and energy system analysis should be made very clear: Is the study intended to provide 

general orientation or does it solve a specific decision problem with clearly defined stake-

holders and DMs? This categorization is usually omitted in energy scenario studies, where 

MCDM and energy system analysis are combined, as most of these studies do not include 

the perspective of DMs, which is however a crucial component of MCDM. 
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4.6 SUMMARY: MULTI-CRITERIA EVALUATION OF THE TRANSITION 

OF POWER GENERATION SYSTEMS 

Energy scenarios describe possible future states or developments of energy systems, and 

are often used to provide orientation for strategic decision making in the energy sector 

or in energy policy, e.g., for planning the energy transition towards renewable energy 

technologies. In this context, multiple conflicting criteria, e.g., CO2-emissions and system 

costs, need to be considered. Hence, MCDM can support drawing conclusions from energy 

scenarios. However, as energy scenarios typically look several decades into the future, 

there are time-

sions can lead to path dependencies, uncertainties associated with the input parameters 

and results of energy scenarios increase significantly over time, and the preferences of 

stakeholders may vary over time. Paper 6 (Witt et al., 2019) presents a multi-period 

multi-criteria approach for the evaluation of transition pathways which allows to address 

these challenges. The approach is based on the outranking method PROMETHEE (Brans 

and Vincke, 1985; Brans and Smet, 2016) and consists of a three-phase procedure: In the 

first phase, the relevant alternatives are identified across multiple periods and perfor-

mance scores are calculated for each time-step (see Figure 5). In the second phase, the 

alternatives are evaluated with PROMETHEE II (Brans and Smet, 2016) in each period, 

and in the third phase, the evaluations of alternatives are aggregated along transition 

paths. As an example, the method is applied for planning the power generation system 

in a bio-energy village in southern Lower Saxony, Germany. 

 

Figure 5: An exemplary directed graph to structure alternatives in multiple periods (Witt 

et al., 2019) 
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4.7 SUMMARY: MULTI-PERIOD MULTI-CRITERIA DECISION 

MAKING UNDER UNCERTAINTY: A RENEWABLE ENERGY 

TRANSITION CASE FROM GERMANY 

Because of the long-term planning horizons in energy systems planning, deep uncertain-

ties need to be considered. Based on prior multi-period MCDM approaches, including the 

one presented in paper 6, paper 7 (Witt and Klumpp, 2021) provides an extension 

of the outranking approach PROMETHEE for multi-period evaluations in deep uncer-

tainty settings. Therefore, it extends paper 6 by an investigation of the impact of external 

uncertainties. In order to adequately address the consideration of uncertainties and to 

obtain an additional level of information, a multi-period PROMETHEE approach and 

scenario planning are combined. In an illustrative example, this method combination is 

applied to a case study from the German energy sector regarding a renewable energy 

transition (see Figure 6). This highlights the potential interactions of a multi-period 

perspective and the consideration of external scenarios in the decision-making process. 

Specifically, this method combination allows to evaluate the robustness of the obtained 

MCDM results for a number of scenarios. 
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Figure 6: Exemplary results of the multi-period aggregation under uncertainty with aggre-

gation variants 1 and 2 (r=1%, 5%, and 10%) (Witt and Klumpp, 2021) 
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5  

This last section sums up the results obtained, state the implications of this dissertation, 

and suggest potential further research developments. 

5.1 SUMMARY OF RESULTS AND IMPLICATIONS 

This dissertation set out to investigate how MCDM approaches can effectively support 

decision-making in energy systems planning. The contributions are structured in a re-

search framework of four phases, each of which contributed to achieving this objective. 

In phase I, a literature review and subsequent development of a morphological box 

revealed the parameters influencing the construction and interpretation of energy sce-

nario studies (paper 1). In this phase, it became apparent that MCDM can help support 

decision-making in energy systems planning, if MCDM and scenario planning are com-

bined in such a way that uncertainties are considered. 

In phase II, a new process combining MCDM, energy system analysis, and scenario 

planning was developed and refined through three publications (papers 2 4). Starting 

from a prototype data flow sheet, the method combination comes in the form of a process 

model that is linked to the standard processes of MCDM, scenario planning, and energy 

system analysis. This approach allows evaluating future energy systems while also con-

sidering systemic uncertainties induced by the long planning horizon. Regarding the time 

of the multi-criteria evaluation, however, this approach was limited to single-period eval-

uations (e.g., the year 2050). It was applied to evaluate the transition of the electricity 

sector in Lower Saxony to energy from renewable sources. 

In phase III, the newly developed approach was compared to the traditional way of 

integrating MCDM in energy scenario studies, with particular consideration of the im-

uncertainties (paper 5).  

In phase IV, the newly developed approach was extended to support multi-period 

evaluations. However, in paper 6, no external uncertainties were considered. This was 

the last advancement in paper 7, where a scenario analysis was integrated. In both cases, 

the approaches were applied to evaluate the transition of the power system in the bio-

energy town Jühnde. 
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According to the categorization of the levels of decision support by French (2013), 

also described in the Introduction, the new method combinations developed in phases II 

and IV could advance the field of scientific policy advice in questions of energy systems 

planning from decision support level 2 to level 3. With the new method combination, the 

decision support process (including the consideration of preferences and uncertainties) 

can be made more transparent and auditable. This could lead to a higher acceptance of 

decisions regarding energy systems planning problems. In a time when energy policy 

decisions will have a crucial impact on whether or not the goals of the Paris Agreement 

can be achieved, i.e., holding the increase in the global average temperature to well below 

2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 

1.5°C above pre-industrial levels (United Nations, 2015), these energy policy decisions 

should be made in a very timely, transparent, and target-oriented manner. 

As determined in phase III, the newly developed method combination is suitable in 

settings where specific DMs are facing specific decision problems, so that the spatial scale 

of the problem also needs to be considered (the spatial scale of scenarios and energy 

system models has also been investigated in the morphological box developed in paper 1). 

For specific investment problems with a local/project scale and a clear set of stakeholders 

and DMs, the newly developed method combination is immediately applicable. For larger 

scales and less well-defined groups of stakeholders and DMs, additional stakeholder anal-

yses such as conducted by Steinhilber et al. (2016) may be necessary. 

5.2 DIRECTIONS FOR FURTHER RESEARCH 

Despite the research limitations and the related further developments tied to each paper, 

four directions for further research are suggested. 

Regarding the developed morphological box of energy scenarios, it could be integrated 

with other subsequently published classification schemes of energy system models, such 

as the one described by Savvidis et al. (2019). This would allow for a more detailed 

analysis of energy system model characteristics, while still keeping the important per-

spective regarding the general approach to scenario construction, which is usually lacking 

in classifications of energy system models. Overall, this would help to bring clarity for 

analysts trying to navigate the abundance of energy system models (for reviews, see, e.g., 

Connolly et al. (2010) or Bhattacharyya and Timilsina (2010)). For DMs, this could 

highlight which uncertainties are included in an energy scenario study, how these are 

sults. 
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One option for the newly developed MCDM approach is to include approaches that 

(Grimble and Wellard, 

1997), because long-term decision-making problems with high uncertainty, e.g., energy 

systems planning, often concern a high number of diverse stakeholders. For example, 

Steinhilber et al. (2016) integrated a stakeholder analysis in their MCDM approach and 

Schär and Geldermann (2021) applied a multi-actor MCDM approach. Another promis-

ing approach is group decision making (Cuoghi and Leoneti, 2019), a PROMETHEE-

specific group decision-making approach is already available (Macharis et al., 1998). 

Regarding the MCDM algorithm used, the included papers in this dissertation are all 

based on PROMETHEE. Interestingly, most multi-period approaches described in the 

literature are also based on PROMETHEE (see, e.g., Banamar and Smet (2018), Urli et 

al. (2019), and Ziemba et al. (2018)). However, other single synthesizing criterion ap-

proaches could also be used, as pointed out by Frini and Benamor (2017). Therefore, the 

developed PROMETHEE approach could serve as a benchmark, when similar approaches 

based on other MCDM algorithms are developed. 

Finally, the newly developed multi-period MCDM approach can be applied to decision 

problems from other domains. For example, in the energy sector, the approach can not 

only be applied to power systems planning, but also to heat and transport questions 

(Savvidis et al., 2019). An application field adjunct to the energy sector would be the 

multi-criteria sustainability evaluation of hydrogen supply chains (Fredershausen et al., 

2021), where MCDM has already been applied (see, e.g., Ren et al. (2020) and Xu et al. 

(2020)), uncertainties in technology evolution and its environment are high (Fazli-Khalaf 

et al., 2020), and long investment cycles can be expected. The newly developed multi-

period MCDM approach has already been applied in waste water management (Beutler 

and Lienert, 2020). This sector has even longer investment cycles than the energy system, 

as water infrastructure is usually built and used for even longer periods. Another prom-

ising application area for multi-period MCDM approaches is sustainable forest manage-

ment, as demonstrated by Frini and Ben Amor (2019). 

In general, applications for multi-period MCDM approaches under uncertainty can be 

decision problems in domains that are of dynamic nature, have a high impact on diverse 

stakeholder groups, and thus need to be communicated with a high degree of transpar-

ency and auditability. One current example would be the development and evaluation of 

appropriate political measures to contain the Covid-19 pandemic.3 While MCDM has 

been proven to be effective in nuclear disaster management (French, 1996; Geldermann 

                                       
3 https://www.bundesregierung.de/breg-de/themen/coronavirus/coronavirus-handeln, in German, last accessed on 
06.12.2021. 
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et al., 2009; Papamichail and French, 2013), however, is has to be kept in mind that a 

multi-period MCDM approach based on elaborate system modelling and preference elic-

itation can be very time-consuming due to its interactive and iterative nature. In this 

regard, the integration of behavioral OR approaches, such as the distinction between 

societal system 1 and system 2 thinking as proposed by Argyris and French (2017) could 

prove useful in accelerating the application of multi-period MCDM approaches for urgent 

decisions. 

The advanced methodology in the intersection of MCDM, system analysis and sce-

nario planning can help to make complex decision-making for complex management and 

policy decisions, where scientific inputs in terms of consequences of decisions (provided 

by scientific analysis) and value judgements (elicited from DMs) need to be considered, 

more transparent and auditable. Overall, the hope is that in the face of these complex 

decision problems, the developed combination of MCDM, system analysis and scenario 

planning can actually help DMs make better upcoming decisions. 
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