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Abstract

In this thesis we investigate harmonic analysis on a particular class of sub-
Riemannian manifold, namely the 2-step stratified Lie groups G, as well as its
applications in partial differential equations. This class consists a breadth of in-
teresting geometric objects such as Heisenberg group and H-type Lie group, which
can be seen as a meaningful extension of classical theories.

After reviewing some main definitions and properties in Chapter 2, we start to
study the most important representation of G, the so-called Schrédinger represen-
tation on L?(G), and then we prove the Stone-von Neumann theorem for the 2-step
stratified Lie groups.

In Chapter 3 we also study the Fourier transforms and define the (A, v)-Wigner
and (A, v)-Weyl transform related to G, we then show some properties of these
transforms, which can help us to compute the sub-Laplacian and the A-twisted
sub-Laplacian. Moreover, in this chapter we demonstrate the beautiful interplay
between the representation theory on G and the classical expansions in terms of
Hermite functions and Lagueere functions.

As applications, a global calculus of pseudo-differential operator on 2-step strat-
ified Lie groups G is introduced in the fourth chapter. It relies on the explicit knowl-
edge of the irreducible unitary representations of G, which then allows one to reduce
the analysis to study of a rescaled harmonic oscillator on unitary dual G. The sub-
Laplacian appears as an elliptic operator in this calculus. The explicit formula for
the heat kernel of the A-twisted sub-Laplacian can be also obtained, which gives a

closed formula for the heat kernel of the sub-Laplacian on G.
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1 Introduction

1.1 Background

Harmonic analysis on nilpotent Lie groups is by now classical matter that goes back to the
first half of the 20th century (see e.g.|JCG90; Rud90| for a self-contained presentation). As is
known to all, harmonic analysis on nilpotent Lie groups plays a power role in contemporary
investigations of linear PDEs. In fact, it has been realised for a long time that the analysis on
nilpotent Lie groups can be effectively used to prove subelliptic estimates for operators such as
sums of squares of vector fields on manifolds. Such ideas started coming to light in the works
on the construction of parametrices for the Kohn-Laplacian [J, (the Laplacian associated to
the tangential CR(Cauchy-Riemann) complex on the boundary X of a strictly pseudoconvex
domain), which was shown earlier by J. J. Kohn to be hypoelliptic (see e.g. an exposition by
Kohn [Koh73| on the analytic and smooth hypoellipticities).

Thus, the corresponding parametrices and subsequent subelliptic estimates have been ob-
tained by Folland and Stein in [FS74] by first establishing a version of the results for a family
of sub-Laplacians on the Heisenberg group, and then for the Kohn-Laplacian [, by replacing
X locally by the Heisenberg group.

These ideas soon led to powerful generalisations. The general techniques for approximating
vector fields on a manifold by left-invariant operators on a nilpotent Lie group have been
developed by Rothschild and Stein in [RS76]. A more geometric version of these constructions
has been carried out by Folland in [Fol77], see also Goodman |Goo76| for the presentation
of nilpotent Lie algebras as tangent spaces (of sub-Riemannian manifolds). The functional
analytic background for the analysis in the stratified setting was laid down by Folland in
|[Fol75]. A general approach to studying geometries appearing from systems of vector fields
has been developed by Nigel, Stein and Wainger [INSW85|. Furthermore, in their fundamental

book |FS82|, Folland and Stein laid down foundations for the anisotropic analysis on general
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1 Introduction

homogeneous groups, i.e., Lie groups equipped with a compatible family of dilations. Such
groups are necessarily nilpotent, and the realm of homogeneous groups almost exhausts the
whole class of nilpotent Lie groups, including the classes of stratified, and more generally,
graded groups. Many other important results have also been obtained, see [FR16; Tay86| and
their references.

Consider a locally compact Abelian group (G, +) endowed with a Haar measure u, and
denote by (@, -) the dual group of (G,+) that is the set of characters on G equipped with
the standard multiplication of functions. By definition, the Fourier transform of an integrable

function f : G — C is the continuous and bounded function Ff : G — C defined by

Vv € G, Ff(y /f (). (1.1)

Being also a locally compact Abelian group, the "frequency space" G may be endowed with

a Haar measure 1. Furthermore, one can normalize 11 so that the following Fourier inversion

formula holds true, for all function f in L'(G) with Ff in Ll(@) ;

Vz €G, f(z (/ff dp(y). (1.2)

As a consequence, we get the Fourier-Plancherel identity

[ r@dute) = [ 1Fr6)PdaG) (1.3

for all fin LY(G) N L*(G).
In the Euclidean case G = R" the dual group may be identified to (R™)" through the
map ¢ — €& (where (-,-) stands for the duality bracket between (R")" and R"), and the
Fourier transform of an integrable function f may thus be seen as the function on (R™)" (usually

identified to R™ ) given by

FOE© = [ e o). (14)

n

For noncommutative groups, Fourier theory gets wilder, for the dual group is too "small" to
keep the definition of the Fourier transform given in and still have the inversion formula
(1.2). Nevertheless, if the group has "nice" properties, then one can work out a consistent
Fourier theory with properties analogous to (L.1),(L.2) and (see e.g. [ADBR13; [BCD19;
CGY90; FR16; [Tha98] and the references therein).

In that context, the classical definition of the Fourier transform amounts to replacing char-
acters in (1.1)) with suitable families of irreducible unitary representations that are valued in

Hilbert spaces (see e.g. [BCD19; BFKG16; |Lév19| for a detailed presentation). Consequently,



1.1 Background

the Fourier transform is no longer a complex valued function but rather a family of bounded
operators on suitable Hilbert spaces.

The simplest example (apart from R™) of a nilpotent Lie group is the Heisenberg group,
and the harmonic analysis there is a very well researched topic. If we consider the Heisenberg
group H¢ = R?¥*! a5 a vector space whose elements w € R?¥! can be written w = (z,y, s)

with (x,y) € R? x R?, endowed with the following product law:

w-w' = (x,y,8) (,y,s)=(x+2,y+y,s+5 —2x-y +2y-2)
where for z,2’ € R? z - 2/ denotes the Euclidean scalar product between the vectors z and
2'. Equipped with the standard differential structure of the manifold R?¢*!, the set H is a
noncommutative Lie group with identity (0,0).

As already explained above, as H? is noncommutative, in order to have a good Fourier
theory, one has to resort to more elaborate irreducible representations than characters. In
fact, the group of characters on H? is unitary equivalent to the group of characters on T*R¢.
Roughly, if one defines the Fourier transform according to then the information pertaining
to the vertical variable s is lost.

Let us recall the Schrodinger representation for H¢, which is the family of group homomor-
phisms w — U;) (with A € R\{0}) between H? and the unitary group of L? (R?), defined for

all w = (z,y, s) in H? and w in L* (R?) by
Udu(€) = N+ weramly (¢ 4 ).

w

The classical definition of Fourier transform of integrable functions on H? reads as follows:

FuaafA) = [ fw)U)-1dw, (1.5)
Hd
and we have the inversion formula:
2d71
Yw € HY, f(w) = — /Rtr (Up-1Fa f(N)) A" dA

where tr(A) denotes the trace of the operator A. In particular, the Fourier transform allows to
diagonalize the sub-Laplacian Aya (see Chapter 2), a property that is based on the following
relation that holds true for all functions f and v in & (Hd) and § (]Rd), respectively:

0osc OoSsc

Fua (Agaf) (A) = 4Fma(f)(N) 0o AL, with A} u(z) = Z Pu(x) — N|z[u(x).

This indicate that we need study Weyl-Hormander calculus associated to the harmonic oscil-

lator A*

osc*

Recently, the definition of suitable classes of Shubin type for these Weyl-symbols led



1 Introduction

to another version of the calculus on the Heisenberg group by Bahouri, Fermanian-Kammerer
and Gallagher |[BFKG12|. The explicit knowledge of the Bargmann-Fock representations of
the Heisenberg group allows one to construct the necessary Heisenberg calculus adapted to
subelliplic operators in this setting. The approach in this paper is not quite of the same nature
as in the works refered to above, as the aim is to define an algebra of operators on functions
defined on the Heisenberg group, which contains differential operators and Fourier multipliers,
and which has a structure close to that of pseudo-differential operators in the Euclidian space.

Up to now, most of the above works that concern the non-invariant symbolic calculi of
operators on nilpotent Lie groups, are restricted to the Heisenberg groups or to manifolds having
the Heisenberg group as a local model (except for the calculi which are not symbolic). One
of the reasons is that they rely in an essential way on the explicit formulae for representations
of the Heisenberg group. Then in this thesis, we try to general the results to more general
nilpotent Lie groups, especially 2-step stratified Lie group G. The difficulty is that there is no
simple notion of symbols as functions on G, since the Fourier transform is a family of operators
on Hilbert spaces depending on some real-valued parameters. Those operators reads in the
Schrodinger representation of G as a family of differential operators belonging to a class of
operators of order 1 for the Weyl-Hérmander calculus of the resealed harmonic oscillator. That

basic observation is the heart of the matter achieved in this thesis.

1.2 Main results

As we wish for this thesis to be relatively self-contained, the main definitions and properties
are covered in Chapter 2 and Appendix. In particular, we first study Lie group G and the Lie
algebra g of their left-invariant vector fields. Subsequently, we equip G with a homogeneous
structure by the datum of a well-behaved group of dilations on G. Finally, we introduce the
notion of 2-step stratified Lie group and of sub-Laplacian. More specifically we assume that

the Lie algebra g decomposes into subspaces
9= 01D g,
with dim g; = n,dim g, = m and

g, 9] = g2 C 3 = the center of g.



1.2 Main results

A wide number of explicit examples of 2-step stratified Lie group will be also given. Some of
them have been known in specialized literature for several years, such as the Heisenberg groups
[Cap+07]; the H-type groups [Kap80|; the H-groups in the sense of Métivier [Mét80]. Following
[BLUO7|, we show that these stratified Lie groups are naturally given with the data on R™*™
of m suitable linearly independent and skew-symmetric matrices of order n.

In Chapter 3, we try to develop basic harmonic analysis on 2-step stratified Lie groups. First,
we use the orbit method of Kirillov (see [CG90; Ray99|) to describe the explicit construction of
irreducible unitary representations. For any A € g5 (the dual of g,), we define a skew-symmetric

bilinear form on g; by
BY(X,Y):=\[X,Y]) forall X,Y € g,.

One can find a Zariski-open subset A of g5 such that the number of distinct eigenvalues of B™
is maximum. We denote by k the dimension of the radical ty of BV, If ty = {0} for each \ € A,
then the Lie algebra is called an Moore-Wolf algebra and the corresponding Lie group is called
an Moore-Wolf group. In this paper, we will only consider G to be a 2-step stratified Lie group
without Moore-Wolf condition. In this case, the dimension of the orthogonal complement of t)
in g, is an even number, which we shall denote by 2d. Therefore, there exists an orthonormal

basis
(X1(A), o, Xa(A), Yi(N), o Ya(N), Ri(A), ..., Ri(N))
and d continuous functions
nR" =Ry, 1<j<d

such that B™ reduces to the form

0 nA) 0
—n(A) 0 0 | € Mu(R),
0 0 0
where
n(A) = diag (1 (), ..., na(A)) € Ma(R),
and each 7;(A) > 0 is smooth and homogeneous of degree 1 in A = (A,---, \,,) and the basis

vectors are chosen to depend smoothly on A in A. Decomposing g; as

gL =P D gDy
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with

py 1= spang (X1(N), ..., Xq(N)),

qx = spang (Y1(A),...,Ya(N)),

t) = spang (R1(A),..., Re(N\)).
Then we have the decomposition g = p,@q)Dr\Dge. We denote the element exp(X+Y +R+T)
of G by (X,Y,R,T) for X € p),Y € qy, R € t), T € go. Further we can write

Y RT) = 35 (000 + S0 + L r (O + 30,
j=1

and denote it by (z,y,, t) suppressing the dependence of A which will be understood from the

context.

For (\,v,w) in A x R¥ x RY with
w:(ﬁ,yﬂ",t) GRd@Rd@Rk@Rm:RN’

we define the irreducible unitary representations of RY, equipped with the group law defined

above, on L? (]Rd)

(Maw(w)9) (§) = exp < Z Ajty +i Z virj +1 Zm (yjfj + %%@%‘)) P&+ )

d
i . I FINE D
= 67:<V,T'>€7;<>\7t>6 ngn](A)<yJ£J+2 ]y])¢<§+x)

We first prove the classic theorem of Stone-von Neumann for the 2-step stratified Lie group,
which says in effect that any irreducible unitary representation of G that is nontrivial on the

center is equivalent to some 7y ,,.

Theorem 1.1. Let m be any unitary representation of G on a Hilbert space H, such that for
some A € A, 7(0,0,0,t) = e¢MI. Then H = @ Hn where the Ho are mutually orthogonal
subspaces of H, each invariant under m, such that m|y, is unitarily equivalent to m, for each

a and some v € R*. In particular, if 7 is irreducible then m is equivalent to Ty, .

And then we can study the sub-Laplacian and Fourier transform, which is a family of
operators on Hilbert spaces depending on a real-valued parameters A and v. We can now define

the sub-Laplacian £ on G by

d k
==Y (X7+Y7)-> R
j=1 =1
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Explicitly,

m d
0 0
. 2
£ 8y = A= (o + o) 8t 30X { = (Baney) -+ (@) 5 b o

s=1 j=1

where we use

BW = i A\, B,.
s=1

By taking the Fourier transform of the sub-Laplacian £ with respect to ¢, we get parametrized

A-twisted sub-Laplacian £*, X € A, given by

A _ A, A A 4= (\x!2+]y| ’)\|2 ZZ{ B y,ej)ai—l—(l’ BWe )%}
J

What’s more, it is well known from [Won98| that Weyl transforms have intimate connections
with analysis with the so-called twisted sub-Laplacian and the Heisenberg group, and the
harmonic analysis there is a very well researched topic. Then in Section 3.3, we study the
(A, v)-Weyl transform W** and (), v)-Wigner transform W), (f,g) on 2-step stratified Lie

groups G, which should also depend on these parameters.

Theorem 1.2. For all f1, g1, f2, and g3 in S (Rd), we have

(Waw (f1,01), W (f2,92)) = (f1, f2) {91, 92),
where (-,-) is the inner product in L*(R?).

Theorem 1.3. There exists a unique bounded linear operator Q : L*(R?*?) — B(L*(R%)) such
that

_d
2

(Quf.g) = PIVECm T [ [ alw oWa(f.0)(o. ot

and
1, \_d
1Qall. < PEA)2 (2m) 72 [la]] 12 (gaa)
for all f and g in L* (R?) and a in L? (R*?), where || - ||, denotes the norm in B(L*(R?)) and
d
Pf(\) := [] n;(\) is the Pfaffian of BM
j=1

In particular, we can show a relationship between Hilbert-Schmidt pseudo-differential oper-

ators on L*(G) and (), v)-Weyl transforms with symbol in L? (R*k+m).

Theorem 1.4. Let a € L* (R*), K, : L*(R*!) — L*(R*®) be given by (3.29). Then W, is a
Hilbert-Schmadt operator with kernel

Pf(A)2(27) "2 Ka.
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More precisely

[NJIsH

Kya(z,y)f(y)dy, =€ R,

Rd

(W ) () = PE(N)2 (2m)

We can also give a formula for the product WM WA of two Weyl transforms W and W,
in terms of a A-twisted convolution (see Definition [3.38) of o and 7.

Theorem 1.5. Let o and T be in L? (RQd) . Then
W/\,zzw)\,lz — W)\,u

where w € L? (R*) and Fyw = P(N)(21) 7% (Fao) *, (FaT)).

In Section 3.5, we demonstrate the beautiful interplay between the representation theory
on G and the classical expansions in terms of Hermite functions. If n = (n1,...,n4) € (Rj)d

and o € N, we define the rescaled Hermite function ®) by
1 101 1
- ’Pf()\>|4q)a <7]12777227 e 7775) ’
and the special Hermite functions
L d % -px
B2 (x) = PE(V)? (21)" Q/Rdenw o (m+ 2)@ (m——)dw

In particular, they form an orthonormal basis of L? (]Rd) and we have the rescaled harmonic

oscillator

HNP) = (—A+[n- 2P Zm ) (205 + 1)@},
which can help us prove that @37 5 are eigenfunctlons of the M\-twisted sub-Laplacian £*.
Theorem 1.6. For A\ € A,v € R*, one has the formula

k
LN®) ) = <Zm 2aj+1)+zyj>q>gﬁ.
j=1

For the Lagueere polynomial L (x) (see Section 3.6 for details), we can prove the Laguerre

formulas for special hermite functions and therefore set up the connection with sub-Laplacian

on G.
Theorem 1.7. For o € N and any z in C¢,
8),(2) = PEY) (2m) HL (sl ) ertoovsr.

Theorem 1.8. For o« € N4 k=0,1,... and any z € C* we have

8



1.2 Main results

TNk ko
(i) ®hpalz) = PEOVRE)E (o) (35) 2 T L& (V)2 ) im0t

1 k k
.. 1 _d a! 2 i k; 1. 212
(i) @ 0ia(2) = PEOVR M) (i) (74) 2 L L& Gm (W) lf?)e it
]:
In Chapter 4, we give some application for the harmonic analysis theory developed above.

First, a global calculus of pseudo-differential operator on 2-step stratified Lie groups G is

introduced. We want to consider the symbol associated with rescaled harmonic oscillator:
HO) + [v]* = =D + In(X) - € + [v]*.

Then the Héormander metric depending on parameters A € R™, v € R* and p € (0,1] is the

metric ¢ on R*** defined via
1

p
(p,A) o L2 2

The associated weight function M) on R?¥+* is defined via

N

MAI(E0,v) = (1+[n(N) - €7 + 101 + [v]?) .
Similar to Proposition 1.20 in [BFKG12|, we have the following results:

Theorem 1.9. For each A\ € A and v € R¥, the metric ¢ is of Hormander type and
the function M) is a gl ) weight. Furthermore, if p € (0,1] is fized, then the structural
constants (see Definition for g ) and for MO¥) can be chosen independent of X\ and v.

Therefore, in what follows, we shall define a positive, noninteger real number ¢ € (0,1),
which will measure the regularity assumed on the symbols. This number p is fixed from now on
and we emphasize that the definitions below depend on p. We have chosen not to keep memory

of this number on the notations for the sake of simplicity.

Definition 1.10. Let p € (0,1] be a fixed parameter. For each parameter A € A and v € R*,
we define the (A, v)-Shubin classes by

2, (G):=S ((M(A,l/))5 7g(p,)\,l/)) ’

pAV

where we have used the Hérmander notation to define a class of symbols in terms of a metric

and a weight. Here this means that Zi}w (G) is the class of functions a € C* (G x R2+r+m)

such that for each N € Ny, the quantity

_ lal+18l+]
lallss @wi= s O (L )] (U (R + 16 + ()
lal + B8]+ v +1 <N
(£,0,v) € R? x RY x R¥

X H (/\8,\)@?8583@(% y,1,8,&,0,1,\) ‘

_5*P(\‘1|72L\5|+\’Y|>

Ce(G)
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is finite. Besides, one additionally requires that the function

(w,&,0,v,\) — o(a)(w,§&,0,v,\) & (w, 7715(1)\) . nf(d)\) 0, v, )\)

is uniformly smooth close to A = 0 in the sense that there exists C' > 0 such that V(w, &, 6,v) €

xR VA€ [-1,1], [0 (o), < O (L I+ (€2 + 62 + )™

In that case we shall write a € 220

(G).

PV

Theorem 1.11. To a symbol a € X9, ,(G) on R*® depending on the parameters (w, \,v) in
G x A x R* and belonging to (\,v)-dependent Hormander class. Then the pseudo-differential
operator on G defined in the following way: for any f € #(G) and some constant k,

=K rwkyw_l v) op™ (a(w v v w
w = [t SFIO ) 00 (a6, 0)) PNy, Y w € G

is well-defined, where op" is the Weyl quantization defined in (4.1]).

For the (), v)-Shubin Sobolev spaces Q) (G) (see Definition 4.17)), we have the following

properties:
Theorem 1.12. (1) The space Q) (G) is a Hilbert space endowed with the sesquilinear form
(9. M) grw = ((L+HA ) 2g, L+ HA))2h) o -
We also have
L2 (G) = 9" (G),
and the inclusions

7 (G) C QM (G) C Q¥ (G) C #(G), s > 5.

(2) The dual of QM (G) may be identified with Q™ (G) via the distributional duality form
(9,h) = [ ghdz.

(3) The complex interpolation between the spaces Q)" (G) and Q2 (G) is
(QM(G), Q3 (G)), = Qx" (G), s9=(1—0)so+0s1,0€(0,1).

(4) For any s € R, QM (G) coincides with the completion (in %' (G)) of the Schwartz space
S (G) for the norm

[Bllghe = 100" (83) 1l e

where b3(&,0,v) = /14 [n(\)-ER+[0 + [v]? is (A v)-uniform in W55, (G). The

norm || - ||(Qw extended to QM (G) is equivalent to || - [

10



1.2 Main results

(5) For any s € R, A\ € R™ and v € R¥, the Shubin Sobolev space QM (G) coincides with the
Sobolev space associated with g™ and (MA))* (see Definition

Q) (6) = H (MO), ) .

(6) For any s € R, the operators Op" (b=°) (I + H(\,v))? and (I1+ H(\,v))20p" (b7%) are
bounded and invertible on L* (G).

At last, we consider the heat kernel of the rescaled harmonic oscillator H(\) and the sub-
Laplacian £, which are related to the theory of parabolic operators which describes the dis-
tribution of heat on a given manifold as well as evolution phenomena and diffusion processes.
The solution of an initial value problem for a parabolic partial differential equation depends on
its heat kernel, which is the fundamental solution of the associated parabolic operator. Hence
the importance of finding explicit formulas for these kernels. We first compute the heat kernel
of the rescaled harmonic oscillator as follows.

Theorem 1.13. The associated heat kernel of the rescaled harmonic oscillator H(\) is
d

GT@)—HW@@{ Z”ﬂ L cott (07 >},

1j (A
i.e., G.(x) satisfies the heat equation

d 2
0G.- < 2(\)z? — %) Gr(z)=0 with lim [ G.(z)f(z)dz = f(0).

T—0 R4

Now, we consider the initial-value problem given by
O-u(w, t, 7) + (Lu)(w,t,7) =0,
u(w,t,0) = f(w, 1),
w=(z,r) € R2** t c R™ 7 > 0.
By taking the Fourier transform with respect to ¢t and evaluated at A, we get an initial-value
problem for the heat equation governed by the A-twisted sub-Laplacian £, i.e
Orun(w, 7) + (L uy) (w, 7) = 0,
ur(w, 0) = fa(w),
for all w = (z,7) € R*™* 7 > 0 and A\ € A. With this formula and Theorem the heat

kernel of £ is given in the following theorem.

Theorem 1.14. For all f in L*(G),e ™ f = f x¢ K., where

d 2
K, (w,t) = (2m)~dtm /m e~ ATV jl_ll 2smgj((ni)(x)7) exp {_?7 <2) coth (Wj()\)T)} d\




1 Introduction

for all (w,t) € G.
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2 Elementary analysis of stratified Lie

groups

In this thesis we deal with a particular class of sub-Riemannian manifold, i.e. stratified Lie
groups. Roughly speaking, a sub-Riemannian manifold is a Riemannian manifold together with
a constrain on admissible directions of movements. In Riemannian geometry every smoothly
embedded curve has locally finite length. In sub-Riemannian geometry, if a curve fails to satisfy
the obligation of the constrain, then it has infinite length.

Among sub-Riemannian manifolds, a fundamental role is played by stratified Lie groups,
following the terminology of [FS82|. In the literature, the name "Carnot groups" is also used,
they seem to owe their name to a paper by Carathéodory |Car09] and was also used in the
school of Gromov |Gro96|. In the following we will only use the name "stratified Lie groups"
for convenience.

The importance of stratified Lie groups became evident in |Mit85|, where it was proved
that a suitable blow-up limit of a sub-Riemannian manifold at a generic point is a stratified
Lie group. In other words, stratified Lie groups can be seen |Bel96| as the natural "tangent
spaces' to sub-Riemannian manifolds, and therefore can be considered as local models of general
sub-Riemannian manifolds. Therefore there is a comparison between sub-Riemannian Geom-
etry and Riemannian Geometry: stratified Lie groups are to sub-Riemannian manifolds what
Euclidean spaces are to Riemannian manifolds.

This part of this thesis is devoted to an elementary and self-contained introduction to the
stratified Lie groups. Our presentation does not require a specialized knowledge neither in
algebra nor in differential geometry, which can compare with the formal and abstract approach
to the stratified Lie groups commonly used in literature in the Appendix. The approach is
intended to be understandable by readers with basic backgrounds only in linear algebra and

differential calculus in RY. We introduce and discuss a wide range of explicit stratified Lie

13



2 Elementary analysis of stratified Lie groups

groups of arbitrarily large dimension and step two. It is also played a special attention to
the Lie algebras of the groups by stressing their links with second order partial differential
operators of Héormander type (sum of squares of vector fields). All results are already know in

the literature, we will take most of the material from [BLUOT7; |CG90).

2.1 Preliminaries on Lie groups

In this section, after giving some notations and the basic definitions concerning with vector
fields in RY, we first study Lie groups G and the Lie algebra of their left-invariant vector fields.
Subsequently, we equip G with a homogeneous structure by the dilations {0, },., on G. Finally,

we introduce the notion of (homogeneous) stratified Lie groups.

2.1.1 Vector fields in RY
Vector Fields in RV

We use any of the notation

9
axj’

to indicate the partial derivative operator with respect to the j-th coordinate of RY. Let

8j, 8xj, 8/89{53

Q C RY be an open (and non-empty) set.

Definition 2.1. Given an N-tuple of scalar functions aq,...,ay,
aj: =R, je{l,...,N},

the first order linear differential operator

N
X = Z aj(?j (21)
j=1
will be called a vector field on €2 with component functions (or simply, components) ay, ..., ay.

If f:Q — R is a differentiable function, we denote X f the function on €2 by
N
Xf(@) =Y a@)d (@), zeQ.
j=1
Occasionally, we shall also use the notation X f when
f:Q—=R™

14



2.1 Preliminaries on Lie groups

is a vector-valued function, to mean the component-wise action of X. More precisely, we set
X fi(z) fi(z)
Xf@)=| for fla)= |
X fn() fm(@)

Furthermore, given a differentiable function f : 2 — R™, we shall denote by

Ji(x), xe€

the Jacobian matrix of f at x.

Let C* (€2, R) (for brevity, C*°(€2)) be the set of smooth (i.e. infinitely-differentiable) real-
valued functions. If the components a; are smooth, we shall call X a smooth vector field and

we shall often consider X as an operator acting on smooth functions,
X:0%(Q) - C®Q), f—Xf
We shall denote by T'(RY) the set of all smooth vector fields in RY. Equipped with the natural

operations, T'(RY) is a vector space over R.

We adopt the following notation: I will denote the identity map on RY and, if X is the
vector field in ([2.1)), then

a1

XI:

(2.2)

an
will be the column vector of the components of X. This notation is obviously consistent with
our definition of the action of X on a vector-valued function. Thus, X1 may also be regarded
as a smooth map from R” to itself.

Often, many authors identify X and XI. Instead, in order to avoid any confusion between
a smooth vector field as a function belonging to C'*™ (]RN JRY ) and a smooth vector field as a
differential operator from C'*° (RN ) to itself, we prefer to use the different notation X7 and X
as described in and , respectively.

By consistency of notation, we may write
Xf=(Vf)-XI,

where V = (01, ...,0y) is the gradient operator in RY, f is any real-valued smooth function on

RY and - denotes the row x column product. For example, for the following two vector fields

15



2 Elementary analysis of stratified Lie groups

on R? (whose points are denoted by = = (21, T, x3))

X1 = 8361 —|— 25(7203;3, XQ = 81,2 — 21’16;33, (23)
we have
1 0
Xl =| o |, Xr@=| 1 |. (2.4)
21‘2 —2ZL‘1

Integral Curves

Definition 2.2. A path v : D — RY D being an interval of R, will be said an integral curve
of the smooth vector field X if

A(t) = XI(v(t)) for every t € D.

If X is a smooth vector field, then, for every « € RY, the Cauchy problem

¥ =XI(v)
1(0) =«

(2.5)

has a unique solution

vx (- 2) : DX, z) = RY,
Since X is smooth, t — vx(t,z) is a C*° function whose n-th Taylor expansion in a neighbor-
hood of t = 0 is given by

t° t"
vx(t,z) =z + tXDI(z) + EX(Q)I(x) + —'X(”)I(x)
! n!

(t — 8)" XD (yx (s, 1)) ds.

1t (2.6)

_I__
n! J,

Hereafter, for k € N, we denote by X* the vector field

xR —

WE

(inlaj) Ou;

1

J
being X? = I (the identity map) and X" h > 1, the h-th order iterated of X, i.e.

XPM=Xo.-.0X.

h times

Example 2.3. For example, if X; is as in ({2.3)), since

1 0
xVr=1 o |, xPr=] o0 [=x®r vk>3,
21’2 0

16



2.1 Preliminaries on Lie groups

we have
T 1 1+t
)=+t X)) =| 2 | +t| o |= s
x3 219 T3 + 210t

Definition 2.4. Let X be a smooth vector field on RY. Following all the above notation, we

set

exp(tX)(z) := vx(t, x)

where vx (-, z) is the solution of ({2.5)).

Then, being X smooth, for every n € N, we have the expansion

exp(tX) (x) = kaI( o)

+ i t(t — 8)" X" [ (exp(sX)(z))ds.

n! Jo

In particular, for n =1,
exp(tX)(z) = v +tX ' I(z) + /Ot(t — 5) X2 (exp(sX)(z))ds.
Moreover, from the unique solvability of the Cauchy problem related to smooth vector fields
we get: t € D(—X,x) iff —t € D(X, z) and
(=t X) () = exp((—1)X)(x) = exp(t(=X))(x),
exp(—tX)(exp(tX)(z)) = ,
(

+7)X)(x) = exp(tX)(exp(rX)(x)),
)

exp

exp((?

exp((t7)X

when all the terms are defined.

(x) = exp(t(7X))(2),

Remark 2.5. Let us consider a smooth function u : RY — R and the vector field in ([2.1). Then

Nal) — i LB @)~ u(z)
t—0 t

Vr € RY. (2.7)

Indeed, since exp(tX)(z) = x + tXI(x) + O (t*), the limit on the right-hand side of (2.7) is
equal to the following one:

lim u(z +tXI(z)) — u(x)
t—0 t

= Vu(z) - XI(z) = Xu(x).
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2 Elementary analysis of stratified Lie groups

Lie Brackets of Vector Fields in RY

Definition 2.6. Given two smooth vector fields X and Y in RY, we define the Lie bracket
[X, Y] as follows

[X,Y]:= XY - YX.

If X = Z a;0; and Y = Z b;0;, a direct computation shows that the Lie bracket [X,Y] is
the vector ﬁeld

N
(X, V] =) (Xb;—Ya;)0
7j=1

As a consequence,
Xby Ya,
(X, Y]I = : — : =Jyr- XI—Jx;-YI.
Xby Yan
For example, if X, X5 are as in , we have
(X1, Xo] = (X3 (—221) — X3 (222)) Oy = —40,,.

It is quite trivial to check that (X,Y’) — [X, Y] is a bilinear map on the vector space T'(RY)
satisfying the Jacobi identity
(X, Y, 2]+ [V, [Z, X]] + [Z,[X, Y]] = 0

for every X,Y, Z € T(RY).

We shall refer to T(R”Y) (equipped with the above Lie bracket) as the Lie algebra of the
vector fields on RY. Any sub-algebra g of T'(RY) will be called a Lie algebra of vector fields.
More explicitly, g is a Lie algebra of vector fields if g is a vector subspace of T(RY) closed with
respect to [,], i.e. [X,Y] € g for every XY € g.

We now introduce some other notation on the algebras of vector fields. Given a set of vector

fields Zi, ..., Z, € T(RY) and a multi-index

J =01, 0x) €{1,...,m}",
we set

Zy=\Zj,... [ Zj . Zj,] .. ]

We say that Z; is a commutator of length (or height) k of Z,...,Z,,. If J = j;, we also say

that Z; := Z;, is a commutator of length 1 of Z,...,Z,,. A commutator of the form Z; will

18



2.1 Preliminaries on Lie groups

also be called nested , in order to emphasize its difference from, e.g. a commutator of the form
(21, 2], |23, Z4]] -
Definition 2.7 (The Lie algebra generated by a set). If V' is any subset of T(R"), we denote
by Lie{V'} the least sub-algebra of T(R") containing V/, i.e.
Lie{V} := (b,
where b is a sub-algebra of T(RY) with V' C h. We also define
rank(Lie{V}(z)) :== dimg{Z1(z) | Z € Lie{V'}}.
Example 2.8. Let X; and X, be as in (2.3)). Since [X;, X5] = —40,, and since any commutator

involving X7, X3 more than twice is identically zero, then Lie { X7, X5} = span { X1, X5, [ X1, X5]},

and

rank (Lie { X, X5} (7)) =3 for every z € R®.
The following result holds.

Proposition 2.9 (Nested commutators). Let V C T(RY) be any set of smooth vector fields on
RY. We set
Vii=span{V}, V, :=span{[u,v]|ueV,veV, 1}, n>2.
Then we have
Lie{V} = span{V,, | n € N}.
Moreover,
[u,v] € Vig;  for everyu € V;,v €Vj.

We explicitly remark that, from the definition of V,,, the vector fields in V,, are linear

combination of nested brackets, i.e. brackets of the type

[ur [ug [ug [+ - [tn—1, un] - - ]]]]

with uq,...,u, € U. The above proposition then states that every element of Lie{V'} is a linear

combination of nested brackets.
Corollary 2.10. Let Zy, ..., Zy, € T(RY) be fived. Then
Lie{Z1,...,Zy} =span{Z; | with J = (ji,...,jx) € {1,...,m}* k € N}.
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2 Elementary analysis of stratified Lie groups

The following notation will be used when dealing with "stratified" (or "graded") Lie alge-
bras. If V}, Vs, are subsets of T(RY), we denote

Vi, Vo] :=span {[v1,vs] | v; € V}, 1 =1,2}.

2.1.2 Lie groups on RV

The Lie Algebra of a Lie Group on RY

We first recall a well-known definition.
Definition 2.11 (Lie group on RY). Let o be a given group law on R", and suppose that the
map

RY xRY 5 (z,9) =y tox € RY

is smooth. Then G := (R", o) is called a Lie group on R".

Fixed a € G, we denote by 7,(z) := aox the left-translation by a on G. A (smooth) vector
field X on R¥ is called left-invariant on G if

X(pom) =(Xp)o,

for every o € G and for every smooth function ¢ : RY — R. We denote by g the set of the

left-invariant vector fields on G. It is quite obvious to recognize that
for every X,Y € g and for every A\, u € R, we have AX 4+ pY € gand [X,Y] € g.

Then, g is a Lie algebra of vector fields, sub-algebra of T(RY). It will be called the Lie algebra
of G.

Example 2.12 (First Heisenberg group H'). The map

(21, 22, 3) © (Y1, Y2, Y3) = (1 + Y1, T2 + Yo, T3 + Y3 + 2 (T2y1 — T1Y2))

endows R* with a structure of Lie group. We shall refer to H' = (R?, o) as the first Heisenberg

group on R3. It is a direct computation to show that the vector fields
X1 = &Cl + 21’28:53, XQ = 8@ - 2171(9:53

are left invariant w.r.t. o. Consequently, X;, Xo,[X;, X5] € h!, say, the Lie algebra of H!.
Precisely, b = span { X, X5, [X1, X|} = Lie { X1, X5} .
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2.1 Preliminaries on Lie groups

From the theorem of differentiation of composite functions, we easily get the following

characterization of left-invariant vector fields on G.

Proposition 2.13. Let G be a Lie group on RY, and let g be the Lie algebra of G. The
(smooth) vector field X belongs to g if and only if

(XI)(aox)= T (z) (XI)(x) Va,zeG. (2.8)

As usual, T, (x) denotes the Jacobian matriz at the point x of the map 7,.

Interchanging o with z in (2.8) we obtain
(XD)(zoa) =T, (a)  (XI)(a)
for all a, z € G, so that, when a = 0,
(XI)(x)=J.,(0)-(XI)(0) Vxeg. (2.9)

This identity says that a left-invariant vector field on G is completely determined by its value

at the origin (and by the Jacobian matrix at the origin of the left-translation).

Proposition 2.14. Let G be a Lie group on RY, and let g be the Lie algebra of G. Let n be a
fized vector of RY, and define the (component functions of the) vector field X as follows

XI(x) =T, (0)-n, xeRY,
Then X € g.

Corollary 2.15. Let G be a Lie group on RY, and let g be the Lie algebra of G. The vector
field X belongs to g iff

(XI)(z) = J,.(0) - (XI)(0) V€ G.

Example 2.16. If G = H!, we have

1 0 0
J.0)=1 o0 1 0
21‘2 —233’1 1

For example, for X| = 0,, + 2x20,,, we recognize that, for every x € H!,

1 1 0 0 1
XiD@=| o [=] o 1 o] o0 |=7.0)-(XI)0)
21’2 2(132 —25131 1 0

The same obviously holds, e.g. for the fields Xy = 0,, — 2210,, and [ X1, X5] = —40,,.
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2 Elementary analysis of stratified Lie groups

From Proposition and identity (2.9) it follows that g is a vector space of dimension N.
Indeed, the following proposition holds.
Proposition 2.17. Let G be a Lie group on RY, and let g be the Lie algebra of G. The map

J:RY =g, n— Jn)
with J(n) defined by
J(mI(z) = T, (0) - n
18 an isomorphism of vector spaces. In particular,
dimg = N.

Example 2.18. The Lie algebra h! of G = H! is given by span { X, X5, [X1, X5|}. Indeed,
X1, Xo, [X1, X»] are three linearly independent left-invariant vector fields and dim (h') = 3, as
stated in Proposition [2.17] Again using the same proposition, we could also argue as follows:

X1, Xo, [ X1, X5 are the vector fields obtained by multiplying J;, (0) respectively times the basis
of R?

(1,0,0)", (0,1,0)", (0,0, —4)".

Proposition 2.19. Let G be a Lie group on RY, and let g be the Lie algebra of G. The vector

field X belongs to g iff there exists n € RN such that, for every ¢ € C™ (RN, R),

(X)) = S| lwo(tn) VecRY

t=0
In this case n = X1(0).

Given a family of vector fields X,...,X,, € g, the rank of the subset of R" spanned by
{X1I(x),..., X, I(x)} is independent of x. More precisely, we have the following result.

Proposition 2.20. Let G be a Lie group on RY, and let g be the Lie algebra of G. Let

X1,...,X,n € g. Then the following statements are equivalent:
(1) Xi,...,X,, are linearly independent (in g);
(ii) X11(0),..., X, I(0) are linearly independent (in RN );
(4i1) Jrg € RY : Xq1 (20), ..., Xl (z0) are linearly independent (in RYN );

(iv) X1I(x),..., X,nI(x) are linearly independent for all z € RY.
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2.1 Preliminaries on Lie groups

The Jacobian Basis

Definition 2.21 (Jacobian basis). Let G be a Lie group on RY, and let g be the Lie algebra
of G. If {ey, ..., ey} is the canonical basis of R and .J is the map defined in Proposition m,
we call

{Zl,...,ZN}, Zj = J(Gj)

the Jacobian basis of g.

From the definition of J we obtain
Z;I(z) = J,,(0) - ¢; = j-th column of 7, (0) Vz € RY, (2.10)
so that, since 7., (0) = Iy,
Z;1(0) = e;.
From Proposition [2.19 we also have

(Zip) @)= S| e@ote)= | glzoy)

t=0 ay] y=0
for every p € C* (RN ) and every = € G.
Consequently, the Jacobian basis {71, ..., Zy} of g is given by the N column of the Jacobian

matrix

T, (0).

Moreover, Z;|, = 2-| and
) J10 Oy, 0

(Z0) (2) = %

p(zoy) VoelC®(RY),z€G.
y=0

Summing up the above results, we have the following equivalent characterizations of the Jaco-

bian basis.

Proposition 2.22. Let G be a Lie group on RY, and let g be the Lie algebra of G. Let j €
{1,..., N} be fized. Then there exists one and only one vector field in g, say Z;, characterized

by any of the following equivalent conditions:
8 .
(1) Z]’() == (9_2:] O, 1.€.
(Zjp) (0) = =7=(0)  for every p € C* (RY,R);
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2 Elementary analysis of stratified Lie groups

(2) for every p € C* (RN,R), it holds

(Zig) (@) = 2| (pwoy)) for cveryz € G

(3) if e; denotes the j-th vector of the canonical basis of RN, then

Z;1(0) = ej;

(4) the column vector of the component functions of Z; is

Zil(x) = J.,(0) - e; = j-th column of J,(0);

(5) for every x € G, we have

(Zjp) (x) = % ¢ (zol(te;))  for every p € C™ (]RN,R) .
=0

The system of vector fields Z :={Zy,...,Zn} is a basis of g, the Jacobian basis. The coordi-
nates of X € g w.r.t. Z are, orderly, the entries of the column vector X1(0).
Example 2.23. The Jacobian basis for the Lie algebra of H' is given by

Zl - aacl + 217283037 ZQ - @xg - 217183037 Z3 - aﬂ:37

since, in this case, the Jacobian matrix at 0 of the left-translation is

1 0 O
T (0) = 0 1 0
2%2 —22U1 1

The (Jacobian) Total Gradient

Let G = (R™,0) be a Lie group on R, and let Zi,...,Zy be the Jacobian basis of the Lie
algebra g of G.

For any differentiable function u defined on an open set 2 C RY, we consider a sort of
"intrinsic" gradient of u given by (Zyu, ..., Zyu) (in the sequel, we shall call it (Jacobian) total
gradient). Then it follows from (2.10]) that

(Zyu(z), ..., Zyu(z)) = Vu(x) - J.,(0) Vz € Q.
On the other hand, since J.,(0) is non-singular and its inverse is given by J. _,(0), we can
write the Euclidean gradient of u in terms of its total gradient in the following way

Vu(z) = (Z1u(z), ..., Zyu(z)) - Ir_,(0) Vo e (2.11)
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From ([2.11)) we immediately obtain the following result.

Proposition 2.24. Let G be a Lie group on RY, and let Z,, ..., Zx be the relevant Jacobian
basis (or any basis for g ). Let Q@ C RY be an open and connected set. A function u € C1(Q,R)
is constant in Q0 if and only if its total gradient (Zyu,. .., Zyu) vanishes identically on €.
Example 2.25. When G = H!, it indeed holds

(Zyu, Zou, Zsu) = (Op, u + 20902, U, Opyth — 221 055U, gy

1 0 O
= (02U, Oy, Ogyu) - | 0 1 0 | =Vu-T.,(0)
209 —2x1 1
and, vice versa,
1 0 0
(Zyu, Zou, Zsu) - Tr, ,(0) = (Zyu, Zou, Zsu) - 0 1 0 | =vu
—2x9 211 1

The Exponential Map of a Lie Group on RY

The next lemma will be useful to define the notion of Exponential map from g to G, one of the

most important tools in the Lie group theory.

Lemma 2.26. Let (G, o) be a Lie group on RN, and let g be its Lie algebra. Let X € g, and
let v : [to,to +T] — RY be an integral curve of X. Then:

(1) ao~y is an integral curve of X for every a € G.
(73) ~y can be continued to an integral curve of X on the interval [to — T, to + 2T].

From assertion (i7) of this Lemma we immediately obtain the following important statement:

for every X € g, the map
(x,1) — exp(tX)(x)

is well-defined for every z € R and every t € R.

The next corollary easily follows from the assertion (i) of Lemma [2.26]

Corollary 2.27. Let (G, o) be a Lie group on RN, and let g be its Lie algebra. Let X € g and
x,y € G. Then

0 exp(tX)(y) = exp(tX)(z o y)
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for every t € R. In particular, for y =0,

exp(tX)(z) = z o exp(tX)(0).

Definition 2.28 (Exponential map). Let G be a Lie group on RY, and let g be its Lie algebra.
The exponential map of the Lie group G is defined by

Exp:g— G, Exp(X)=-exp(l-X)(0).

More explicitly, Exp(X) is the value at the time ¢ = 1 of the path ~(¢) solution to

Example 2.29. Let us consider once again the first Heisenberg group H' on R®. We have

showed that a basis for its Lie algebra b is given by X1, Xo, X3, where X| = 0,, +2720,,, X =

Oy — 2210,, and X3 = [X1, Xo] = —40,,. Let us construct the exponential map. We set, for
£ € R?,
§- X =6X1 + X +6X3
1 0 0 &1
=& | 0 | +& 1 +&1 0 | = &
219 —21 —4 —4&3 + 289 — 26014

By definition, for fixed x € H', we have exp(¢ - X)(z) = v(1), where v(s) = (71(s), v2(5),v3(5))
is the solution to
Y(s) = (€ X)I(v(s)) = (&1, &o, =485 + 2&172(s) — 2&6m1(s)),
7(0) = .
Solving the above system of ODE’s, one gets
T+ &
exp(€ - X)(z) = s
xg — 4€3 + 26109 — 2891
As a consequence, by definition above, we obtain
&
Exp(§- X) =exp(-W)(0) = | &
—4&3
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so that Exp is globally invertible and its inverse map is given by

Y1
Log(y) = (Exp) '(y) = | . | X
—%y3
For example, we have
—&
Bxp(—¢ - X)=| -& |=—Exp(¢ X)=(Exp(—¢- X))
+4&3

since the inverse of z in H' coincides with —z.
Remark 2.30. Let {X,..., Xy} be a basis of g. Then, for every X € g,
N
X = ijXj for a suitable & = (£1,...,&y) € RY,
j=1
so that

Exp(X) = exp (Z ngj> (0).

From the classical theory of ODE’s we know that the map

(517 . 7£N) — exXp (Z é}Xj) (0)

is smooth. Then we can say that the map g 3 X — Exp(X) € G is smooth. From the Taylor

expansion we get
N
Exp(X) =) &n+O (&), aslel =0
j=1
where n; = X;1(0).
Denote by F the matrix whose column vectors are 7y, ...,ny. Then
Jexp(0) = E.
In particular, if {X;,..., Xy} ={Z1,..., Zn} is the Jacobian basis of g, then
jExp(O) = ]IN-

As a consequence, Exp is a diffeomorphism from a neighborhood of 0 € g onto a neighborhood

of 0 € G. Where defined, we denote by Log the inverse map of Exp.

The next proposition is an easy consequence of Corollary and shows an important link

between the composition law in G and the exponential map.
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Proposition 2.31. Let (G, o) be a Lie group on RY, and let g be its Lie algebra. Let z,y € G.
Assume Log(y) is defined. Then

x oy = exp(Log(y))(x).

Remark 2.32. Suppose that
Exp:g—G and Log:G—g
are globally defined C*° maps, inverse to each other. We then define on g the operation
X oY = Log(Exp(X) o Exp(Y)), X,Y e€g.
It is immediately seen that ¢ defines a Lie group structure on g and
Exp : (g,0) = (G,0)

is a Lie-group isomorphism. Indeed, this last fact is obvious from the definition of ¢, whereas

the associativity of ¢ on g follows immediately from the associativity of o on G.

One of the most striking facts about Lie algebras and Lie groups is that (under suitable
hypotheses) the operation ¢ on g is well-posed and can be expressed in a somewhat "universal"

way as a sum of iterated Lie-brackets of X and Y. For example, the first few terms are

XoV =X +Y 4 J[X Y]+ S[X (X Y]« SV [X Y]+ (2.12)

Example 2.33. When G = H!, we saw that Exp is globally invertible. We fix X € ht. If
71, Zy, Z3 is the Jacobian basis for ', and we set, for brevity, £ := X1(0), we have
X =821+ &2+ 83723 =& Z.
Analogously, if Y € !, we set 1 := YI(0), so that Y =5 - Z. Thus, we derive
Log(Exp(X) o Exp(Y))

= Log(Exp(¢ - Z) o Exp(n - Z))

= Log({ o)

= Log (& 4+ m, &+ 12, & + 13 + 2m&e — 2mp&1)

= (& +m, &+ m,8 + 03+ 2mE —2m&) - Z

(2.13)

= (& +m) Z1 + (S +m2) Zo + (§3 + 03+ 280 — 2m2&1) Zs.
On the other hand, we consider ([2.12)), truncated to the commutators of length two (sine b is
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nilpotent of step two!), and we explicitly write down X ¢ Y in our case, thus obtaining
€ Z)oln 2)=¢-Z4n-2+ 3¢ Zn- 7]
=121+ &2y + 323 + mZi + 2 2o + 323
+ % (171 + &2 + E3Z3, m 2y + N2 Zz + 1373
(here we use [Z1,Zy| = —4Z3,[Z1, Zs] = [Zs, Z3] = 0)
=& +m) 21+ (& +m2) Zo+ (& +m3) Zs + % ((—4&uma + 4&m) Zs3)
= (& +m) Z1 4+ (& +m) Za+ (& + 13 + 2m&e — 2m&1) Zs
which equals the last term in . As a consequence, we have proved that in this case it
holds

Log(Exp(X)oExp(Y)) =X +Y + %[X, Y]

Homogeneous Lie Groups in RV

We begin by giving the definition of homogeneous Lie group (see also E.M. Stein [Ste93]).

Definition 2.34 (Homogencous Lie group (on RY)). Let G = (R¥,0) be a Lie group on RY.

We say that G is a homogeneous (Lie) group (on RY ) if the following property holds:

(H) There exists an N-tuple of real numbers ¢ = (0y,...,0y), with 1 < 0y < -+ < gy,
such that the "dilation" &y : RY — RN, 4§y (z1,...,2x) = (A%'@y,..., \7Vay) is an

automorphism of the group G for every A > 0.

We shall denote by G = (RN ,0,6,\) the datum of a homogeneous Lie group on RY with

composition law o and dilation group {dx},-,-
The family of dilations {d»},., forms a one-parameter group of automorphisms of G whose
identity is
0 =1,
the identity map of RY. Indeed, we have
Ors(z) = 0, (05(x)) Va e G,r,s > 0.

Moreover, (6,)”" = d,-1. In the sequel, {d,} y0 Will be referred to as the dilation group (or

group of dilations) of G.
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From (H) it follows that
(xoy)=(0\x)o (d0ry) Vr,yeG (2.14)

and, if e denotes the identity of G, d,(e) = e for every A > 0. This obviously implies that e = 0.
This is consistent with our previous assumption that the origin is the identity of G.
For example, the first Heisenberg group H' is a homogeneous Lie group if R? is equipped

with the dilations 0y (1, 2, 23) = (Az1, AT2, \223).

Remark 2.35. Suppose G = (]RN, o) is a Lie group on R¥ such that there exists an N-tuple of

positive real numbers o = (07y,...,0y) such that
dy ZRN—)RN, dy ((L’l,...,l‘N) = ()\UliL'l,...,)\UNZL'N)

is an automorphism of the group G for every A > 0. Then, modulo a permutation of the
variables of RY it is always not restrictive to suppose that oy < --- < oy. Obviously, this
permutation of the coordinates does not alter neither (the new permuted) G being a Lie group
on RY nor the (relevant permuted) dilation dy satisfying . Moreover, there exists a group
of dilations d, on G such that

o (z1,...,xy) = ()\51:61, . )\5NJJN)
with 1 = 6; < --- < gy. Indeed, it suffices to take (once the o; ’s have been ordered
increasingly)
Gj=o0j/op foreveryj=1,...,N
With this choice, we have
o = dyi/oy

and 6, (z o y) = dx(x) 0 0x(y) follows from (2.14)), restated for dy, with A replaced by /o1,

0x-homogeneous Functions and Differential Operators

Before we continue the analysis of homogeneous Lie groups, we show some basic properties

of homogeneous functions and homogeneous differential operators with respect to the family

{5A}A-
In this subsection, no group law is required on RY. Here, we only suppose that it is given

on RY a family of maps J, of the form
S RY RN, 6y (2q,...,2n) = (A2, .., AV ay) (2.15)
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with fixed positive real numbers oy, ...,0n. We set 0 := (01,...,0n).
A real function a defined on R" is called dy,-homogeneous of degree m € R if a does not

vanish identically and, for every z € RY and X\ > 0, it holds
a(dx(z)) = A"a(x).

A non-identically-vanishing linear differential operator X is called §)-homogeneous of degree

m € R if, for every p € C* (RY) ,z € RY and A > 0, it holds
X (¢ (dr(2))) = A" (X ) (0x(2)) -

Let a be a smooth d,-homogeneous function of degree m € R and X be a linear differential
operator dy-homogeneous of degree n € R. Then Xa is a d)-homogeneous function of degree

m —n (unless Xa =0 ). Indeed, for every z € RY and A > 0, we have
A"(Xa) (0x(x)) = X (a (0x(z))) = X (N"a(z)) = A"™(Xa)(z).
Given a multi-index a € (NU{0})™, o = (auy, . .., an), we define the dy-length (or 6y-height)
of a as

N
|ale = (a,0) = Zaiai-
i=1

Definition 2.36. When G = (]RN , 0,5)\) is a homogeneous Lie group on RY with its given
group of dilations {d,},, we shall use the notation |a|g for the relevant dy-length. In this case,
we shall refer to |a|g as the G-length (or G-height) of oe. Moreover, if p : G — R is a polynomial

function (the sum below is intended to be finite)
p(z) = Z o, cq ER,
we say that )
degg(p) := max {[ale : ca # 0}
is the G-degree or 0,-(homogeneous) degree of p.

Let us now consider a smooth and d),-homogeneous of degree m € R function a and a
multi-index a. Assume that D% is not identically zero. Then, since D%a is smooth and dy-
homogeneous of degree m — |a/|,, it has to be m — |a|, > 0, i.e. |a|, < m. This result can be

restated as follows:
D% =0 Va such that |a|, > m.

Thus a is a polynomial function. Let a(z) = Y a,z®, where A is a finite set of multi-indices
acA

31



2 Elementary analysis of stratified Lie groups

and a, € R for every a € A. Since a is dy-homogeneous of degree m, we have

Z Aanx® = N"a(z) = a (6\(z)) = Z Ao N7 2.

acA acA
Hence A\™a, = M®leq,, for every A > 0, so that |a|, = m if aq # 0. Then

a(x) = Z anx”. (2.16)

|a|le=m
It is quite obvious that every polynomial function of the form ([2.16) is dy-homogeneous of

degree m. Thus, we have proved the following proposition.

Proposition 2.37 (Smooth dy-homogeneous functions). Let 6y be as in (2.15). Suppose that
aec(C™® (]RN,R). Then a is dy-homogeneous of degree m € R if and only if a is a polynomial
function of the form with some a, # 0. As a consequence, the set of the degrees of the
smooth dx-homogeneous (non-vanishing) functions is precisely the set of the nonnegative real

numbers
A={la, :ae (NU{0})"},
with ||, = 0 if and only if a is constant.

From the proposition above one easily obtains the following characterization of the smooth

dx-homogeneous vector fields.

Proposition 2.38 (Smooth §)-homogeneous vector fields). Let ) be as in (2.15)). Let X be a

smooth non-vanishing vector field on RY,

N
X = Z a;(2)0y,;.
j=1

Then X is dx-homogeneous of degree n € R if and only if a; is a polynomial function 0y-
homogeneous of degree o; —n (unless a; = 0 ). Hence, the degree of 0x- homogeneity of X

belongs to the set of real (possibly negative) numbers
Aj = {oj —lals -a € (NU{0})™},
whenever j 1s such that a; is not identically zero.

Corollary 2.39. Let 6y be as in (2.15)). Let X be a smooth non-vanishing vector field. Then

X is dy-homogeneous of degree n € R iff
As a straightforward consequence, we have the following simple fact.
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Remark 2.40. Let 0y be as in (2.15). Let X # 0 be a smooth vector field on RY of the form

N
X = Z a; ()0,
j=1

If X is dy\-homogeneous of degree n € R, then, for every a; non-identically zero, we must have
n < o;. As a consequence, it has to be n < oy (i.e. the set of the d),-homogeneous degrees of
the smooth vector fields is bounded above by the maximum exponent of the dilation). Hence,
X has the form
X = Z aj(z)0x;.
J<N,o0;>n

From this remark the next proposition straightforwardly follows.

Proposition 2.41. Let 0, be as in (2.15)). Let X = Zjvzl a;j(x)0,; be a smooth vector field
0x-homogeneous of positive degree. Then its adjoint operator X* = —Zévzl 0; (a;-) satisfies

X*=-X and
X? =div (4-V")

where A is the square matriz (a;a;) Finally, X has null divergence.

1,j<N*

Vector fields with different degree of 6\-homogeneity are linearly independent if they do not

vanish at the origin. Indeed, the following proposition holds.

Proposition 2.42. Let 6, be as in (2.15). Let X1,..., X € T(RN) be 65-homogeneous vector
fields of degree nq, ... ,ny, respectively. If n; # n; for i # j and if X;1(0) # 0 for every
je{l,...,k}, then Xq,..., Xy are linearly independent.

The following simple proposition will be useful in the sequel.

Proposition 2.43. Let §, be as in . Let X1, X5 be 6x-homogeneous vector fields of degree
ni,no, respectively. Then [Xy, Xa] is 0x-homogeneous of degree ny + ny (unless Xy and X,
commute).

As a consequence, if ni,ne are both positive, then every commutator of X1, Xo containing

ki times X1 and ko times Xo vanish identically whenever kini+ kong > on.

For example, the differential operators Xy = 0,, + 2220,,, Xo = 0., — 2210,, on the first
Heisenberg group H' are homogeneous of degree one with respect to the dilation dy (x1, 79, 73) =
(A1, Awa, A2x3), and [X, Xo] = —40,, is indeed d, homogeneous of degree two. Moreover, any

commutator of X, X5 of length > 3 vanish identically.
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Corollary 2.44. Let G = (RN, o, 5)\) be a homogeneous Lie group on RN, and let g be the Lie
algebra of G. Let Xy,..., Xy € g be non-identically vanishing and dx-homogeneous of degrees

ni, ..., N, respectively. If n; # n; fori # j, then Xy, ..., Xy are linearly independent.

Proposition 2.45 (Nilpotence of homogeneous Lie groups on RY). Let G = (RN, 0,(5>\) be
a homogeneous Lie group on RY, and let g be the Lie algebra of G. Then G is nilpotent of
step < on, i.e. every commutator of vector fields in g containing more than oy terms vanishes
identically.

Moreover, if Z; is the j-th element of the Jacobian basis of g, Z; is 05 homogeneous of degree

O'j.

The Composition Law of a Homogeneous Lie Group

By using the elementary properties of the homogeneous functions showed in the previous sub-
section, we shall obtain a structure theorem for the composition law in a homogeneous Lie

group (RN ,0,0 ,\). We first recall two lemmas.
Lemma 2.46. Let 0y be as in . Let P : RN xRN — R be a smooth nonvanishing function
such that

P (0x(x),0\(y)) = A P(z,y) Va,y € RV, YA >0,
for some j such that 1 < j < N. Assume also that

P(x,0) =25, P0,y) =y

Then P(x,y) =x1+ vy, if =1 and, if j > 2,

P(z,y) =25 +y; + P (21, .., o1, 1, Y1)
where P is a polynomial, the sum of mized monomials in x1,...,2;_1,Y1,...,Yj—1. Moreover,
P (6:(2),0x(y)) = X7 P(z,y). Finally, P(z,y) only depends on the z;, and y; with oy < ;.
Lemma 2.47. Let 0y be as in . Let Q : RY x RV — R be a smooth function such that

Q (0r(2), 0x(y)) = X" Q(z,y) Va,y € RY, VA >0
where m > 0. Then

T @(x, 0)

0y,

is dx-homogeneous of degree m — o; (unless it vanishes identically).
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Now, we are in the position to give the structure theorem for the composition law of a

homogeneous Lie group on R¥.

Theorem 2.48 (Composition of a homogeneous Lie group on RY). Let (]RN , 0,6,\) be a ho-
mogeneous Lie group on RYN. Then o has polynomial component functions. Furthermore, we

have
(xoyh =z1+uy, (roy);=x;+y; +Q;(zr,y), 2<j<N,

and the following facts hold:
(1) Qj only depends on xq,...,x;—1 and Y, ..., Yj-1;
(2) Q; is a sum of mized monomials in x,y;

(3) Qj (0xz,0xy) = A7 Q;(w,y).
More precisely, Q;(x,y) only depends on the xj and y; with o), < 0.

Corollary 2.49. Let G = (R, 0,6,) be a homogeneous Lie group on RN. Let j € {1,...,N}.

For every y € G, we have

(v™), =~y +ay),
where q;(y) is a polynomial function in y, dx-homogeneous of degree o;, only depending on the

yr with oy, < 0j.

Corollary 2.50. Let G = (RN, O,(SA) be a homogeneous Lie group on RN. Let j € {1,...,N}.

For every z,y € G, we have

(v o),

=zj—y+ Y. PPy (w—w),

k:o‘k<0j
where P,Ej) (x,y) is a polynomial function in x and y only depending on the xj and yi with

o < 0j.

The following result describes in a very explicit way the Jacobian matrix at 0 of the left-

translation 7, on a homogeneous Lie group on R¥.

Corollary 2.51 (The Jacobian basis of a homogeneous Lie group). Let G = (]RN , 0, 5,\) be a
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homogeneous Lie group on RN . Then we have

1 0 0
agl) 1
: . -0
ag\l,) e a%vfl) 1
where agj) is a polynomial function dy-homogeneous of degree o; — 0. As a consequence, if we
let

N
Zj = Oy, + Z a8, for1<j<N-—1and Zy=0,,
i=j+1

then Z; is a left-invariant vector field dx-homogeneous of degree o;. Moreover,
I, (0) = (Z11(x) - - Zn1(x))

In other words, the Jacobian basis Zi,...,Zy for the Lie algebra g of G is formed by -

homogeneous vector fields of degree o1, ...,0N, respectively.

Example 2.52. For the first Heisenberg group H!, we showed that the Jacobian matrix of the

left translation on H' is

1 0 0
J.0)=1 0 1 0
21’2 —25(]1 1

We recognize that the three columns of this matrix give raise to the Jacobian basis Z; =
Ouy + 22904, Zo = Oy, —2210,, and Z3 = 0,, and these vector fields are homogeneous of degree,

respectively, 1,1, 2 with respect to 0y (71, T2, 13) = (A\z1, A12, N213).

The structure Theorem of the composition law of (RN ,0,0 ,\) implies that the Lebesgue
measure on RY is invariant under left and right translations on G. Indeed, by Theorem m,
the Jacobian matrices of the functions x +— a oz and = — x o a have the following lower

triangular form

10 0
* 1

0
* * 1

Then, we have proved the following proposition.
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Proposition 2.53 (Haar measure on a homogeneous Lie group). Let G be a homogeneous Lie
group on RY. Then the Lebesgue measure on RY is invariant with respect to the left and the

right translations on G.

If we denote by |E| the Lebesgue measure of a measurable set £ C RY, we then have
oo E|=|E|=|FEoa| Vaeg.

We also have that the Lebesgue measure is homogeneous with respect to the dilations {0}, -

More precisely, as a trivial computation shows,

OA(E)| = A%|E],
where
N
Q = ZO']‘.
j=1

The positive number @) is called the homogeneous dimension of the group G = (]RN ,0,0 ,\) .

For example, in the case of the first Heisenberg group H!, where 7, is given by
To(2) = (1 + 71, @ + 29, a3 + 3 + 2 (a1 — @129)) ,

and 0y (71, T, 13) = (Ax1, AT2, \?23), we have

1 0 0 A0 0
Tr(2) = 0 1 0], Ts@=10 X 0 |,
20&2 —20[1 1 0 0 )\2

so that, for every a, x € H' and every A > 0, we have
det J;, (.Z‘) =1, det Is, (ZL‘) —\4 = /\Q7

since the homogeneous dimension of H' is Q =1+ 1+ 2 = 4.

The Lie Algebra of a Homogeneous Lie Group on RV

Let G be a homogeneous Lie group on RY with Lie algebra g. From Corollary we easily
obtain the splitting of g as a direct sum of linear spaces spanned by vector fields of constant
degree of dy-homogeneity.

More precisely, let us recall that the exponents o; in the dilation 6 of G satisfy oy < --- <

oy and can then be grouped together to produce real and natural numbers, respectively, say
niy,...,n, and Ny,...,N,,
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such that
ng<ng <---<ny, N +No+---+ N, =N,

defined by

¢

np=o0; forl<j<N;

Ng = 0j fOYN1<j§N1+N2

| e =05 for Nyt +Ney <G < N4+ Ny + Ny
Let Z1,...,Zx be the Jacobian basis of g. Define

gr=span{Z; |1 <j<N;} and,fori=2,...,r

gi=span{Z; | Ny + -+ N1 <j< Ni+---+ Ny + Nij
By Corollary [2.51], the generators Z; of g; are d)-homogeneous vector fields of degree n;,1 <

t < r. Moreover, we obviously have

g=01D Dy,
We also explicitly notice that a vector field X € g is dy-homogeneous of degree n iff, for a

suitable i € {1,...,r},n =n; and X € g;.

Example 2.54. The usual additive group (R?, +) is a homogeneous Lie group if equipped with
the dilation

O (w1, 2, x3) = (Na1, \"o, /\41:3)
The decomposition of the Lie algebra is
span {0,, } @ span {0,, } ® span{d,,} .
Moreover, R?* is a homogeneous Lie group if equipped with the group law

T+

T2 + Y2
Toy =

T3 + Y3 + 2102 — 2y211
Ty + Y4
and the dilation

Ox (21, T2, 73, 14) = ()\371, AT, )\2373, )\2964) .
The decomposition of the Lie algebra is
g1 @ g2 = span { X, Xo} @ span {0,, s, }
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where Xy = 0., + 2290,,, Xo = 0, — 2210,,. Note that

(91, 01] 2 g2.

Observe that the above (R% o) is isomorphic to the homogeneous Lie group (R*, %) with the

composition law

& +m
§2 + 12
3+ 13
§a 4 M1+ 2m& — 21
and the new group of dilations

ox (51752753754) = (>\§1, A2, AE3, >\2334) .

The decomposition of the Lie algebra is
g1 ® g2 = span{Zy, Z3, g, } & span {0},
where Zy = O¢, + 2£20¢,, Zo = O, — 2£10¢,. Note that this time we have

[91791] = g2.

Definition 2.55 (Dilations on the Lie algebra of a homogeneous Lie group). Let G = (RN ,0,0 A)

be a homogeneous Lie group on RY with Lie algebra g and dilation
5)\ (.Tl, ce ,QZN) = ()\011}1, ey )\UNIN) .

We define a group of dilations on g (which we still denote by d, ) as follows: d, is the (only)

linear (auto)morphism of g mapping the j-th element Z; of the Jacobian basis for g into A% Z;.

In other words, if X € g is written w.r.t. the Jacobian basis Z,..., Zy as
N N
X = chZj, we then have 0,(X) = Z ci\ Z;.
j=1 j=1

We immediately recognize that, if 7 : g — R is the map defined by 7(X) = X1(0), it holds
m(0A(X)) = d\(7(X)) VX €g.

Indeed, we have

Sx(m(X)) = 0y <7r <Z cjzj>> =\ (Z ¢ (zj>> =\ (Z ¢; (Z;) 1(0))

j=1 j=1 j=1

=on(c1,. . en) = (AT, ., AN ey)
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and, on the other hand,

T(ONX))=m <5,\ (i Cij)) = <i cj)\"ij)

N
= Z Cj)\gjﬂ' (ZJ) = ()\0101, ce ,)\JNCN> .
j=1

The following simple and very useful fact holds.

Proposition 2.56. Let G be a homogeneous Lie group on RN with Lie algebra g. The dilation

on g introduced in Definition [2.55| is a Lie algebra automorphism of g, i.e.

5)\([X7 Y]) = [5)\(X),5>\(Y)] \V/X7Y €g.

The Exponential Map of a Homogeneous Lie Group

Let G = (RN , O, (5,\) be a homogeneous Lie group on RY with Lie algebra g. The exponential
map on g has some remarkable properties, due to the homogeneous structure of G. We give
such properties in what follows.

Let Zi,...,Zy be the Jacobian basis of g. By Corollary 2.51, Z; is d),-homogeneous of

degree o; and takes the form

N
Zj = Za,](j) (I'l, Ce ,JIk_l) axk,
k=j

where a,(j )is a polynomial function dy-homogeneous of degree o, — o; and aﬁj ) = 1. We now

consider on g the dilation group introduced in Definition [2.55] i.e. with abuse of notation
N

N
Ox:g—>0, Ox (Z §ij> = X7 (2.17)
j=1

j=1
The dilation (2.17)) is consistent with the one in G. More precisely, if Z € g then, for every
A > 0, it holds

SNZI1(2)) = (0:2) 1 (6x(z)) V€ G.

Lemma 2.57. Let G = (RN,O,(SA) be a homogeneous Lie group on RN with Lie algebra g.
Denote also by 8y the dilation [2.17) on g. Let v : [0,T] — RY be an integral curve of Z with
Z €g. Then T':=6,(v) is an integral curve of 6x(Z).

We are now in the position to give the following important theorem.
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Theorem 2.58 (Exponential map of a homogeneous Lie group). Let G = (RN ,O,5A) be a

homogeneous Lie group with Lie algebra g. Then
Exp:g—G and Log:G —g

are globally defined diffeomorphisms with polynomial component functions (provided g is equipped
with its vector space structure and any fized system of linear coordinates).

Moreover, denote also by 6y the dilation on g defined in . Then, for every Z € g and
x € G, it holds

Exp (0A(Z)) = ox(Exp(Z)) and Log(dx(z)) = dx(Log(z)).
Corollary 2.59. For every z,y € G, we have
voy=exp(Log(y))(z) and a7 =Exp(— Log(z)).

Theorem has many important consequences. We collect some of them in the following

remark.

Remark 2.60. From Theorem we infer, in particular, that
Exp:g—G and Log:G—g
are globally defined C'*° maps. Hence, the operation on g
X oY :=Log(Exp(X)oExp(Y)), X,Y €g,

defines a Lie group structure isomorphic to (G, o). We consider on g the dilation (still denoted

by d,). We claim that ¢, is a Lie group automorphism of (g, ), i.e.
NXoY)=(0\(X))o(0:(Y)) VXY eg.
Roughly speaking, (g, ¢, d,) is a homogeneous Lie group too.

We now identify g with RY taking coordinates with respect to the Jacobian basis. In other

words, we consider the map
m:g—=RY X a(X):=XI0).

Again, we transfer the Lie group structure of (g, ¢) into a Lie group (]RN , >x<) in the natural way,

by setting

Exni=m (W‘l(f) <>7r_1(7])) . & neRY.
As a consequence, (RN , *) is isomorphic to (g,¢) and hence to (G, o). We finally consider on

RY the same dilation §y defined on G (this makes sense, since the underlying manifold for G
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2 Elementary analysis of stratified Lie groups

is RY too). We claim that
(RN )k, 5/\) is a homogeneous Lie group.

We can summarize the above remarked facts as follows:
Given a homogeneous Lie group G = (]RN ,0,0 ,\), we can consider a somewhat "more canon-

ical" homogeneous Lie group on R
CH(G) := (RY,*,6,)

(which we may call "of Campbell-Hausdorff type") obtained by the natural identification of
the Lie algebra of G (equipped with the Campbell-Hausdorff composition law ¢ to RY (via

coordinates w.r.t. the Jacobian basis).

2.1.3 Homogeneous stratified Lie groups

We now enter into the core of this chapter by introducing the central definition of stratified Lie
group. We give two definitions of stratified Lie groups: the first one is the most convenient for
our purposes and it seems very natural in an analysis context; the second one is the classical
one from Lie group theory. Then, we will compare the two definitions showing that, up to

isomorphism, they are equivalent in the Appendix.

Definition 2.61 (Stratified Lie Group). We say that a Lie group G = (]RN,o), is a (ho-
mogeneous) stratified Lie group or a homogeneous Carnot group, if the following properties

hold:
(C1) RY can be split as RY = RM x ... x RM and the dilation §, : RY — RY
Ir(x) = Iy ((E(l), o ,[E(T)) = ()\:E(l), Na® oo X"x(r)) . 2® e RM,
is an automorphism of the group G for every A > 0.

Then (RN 70,5,\) is a homogeneous Lie group on RY. Moreover, the following condition

holds:

(C2) If Ny is as above, let Z1, ..., Zy, be the left invariant vector fields on G such that Z;(0) =
%‘0 for j=1,...,N;. Then

rank (Lie{Z,,...,Zn,} (z)) = N for every x € RY.

If (C1) and (C2) are satisfied, we shall say that the triple G = (RY, o, §,) is a (homogeneous)

stratified Lie group.
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We also say that G has step r and N; generators. The vector fields 71, ..., Zx, will be called
the (Jacobian) generators of G, whereas any basis for span{Z;,..., Zy,} is called a system of

generators of G.
Definition 2.62. A stratified Lie group (or Carnot group) G is a connected and simply con-

nected Lie group whose Lie algebra g admits a stratification, i.e. a direct sum decomposition

Vi, Vial=Vi if2<i<r,

g=Vi®oVo® ---®V, such that

In the sequel, we use the following notation to denote the points of G
r=(x1,...,2N) = (x(l), . ,x(”)
with
@ = (m&l),,x%) eRY, i=1,...,r
Furthermore, we shall denote by g the Lie algebra of G.

Remark 2.63 (Equivalent definition of stratified Lie group I). Suppose G = (RN ,O) is a
Lie group on RY, and there exist positive real numbers 7 < --- < 7y such that dy(z) =
(AMzq,...,A™zy) is a Lie group morphism of G for every A > 0. Let g be the Lie algebra
of G, and let g; be the linear subspace of g of the left-invariant vector fields which are dy-
homogeneous of degree 7. If g; Lie-generates the whole g (which means that Lie(g,) = g),
then G is a stratified Lie group. Precisely, G has step r := 7y/71, it has m = dim (g;)

generators, and it is a homogeneous Lie group with respect to the dilation

5)\ — d)\l/rl
Also, set o; := 7; /71, then {01,09,...,0x} are consecutive integers starting from 1 up to r.
Proof. As we observed in Remark , dy is a morphism of (G, o), i.e. G = (RN, o, (5,\) is a
homogeneous Lie group on RY. Obviously, X € g; if and only if X is §, homogeneous of degree
1 . Let v be the maximum of the integers k such that o, = 1. Let us denote by {Z;,..., Zy}

the Jacobian basis related to G and observe that (by Proposition [2.45)), for every j < N, Z; is

dx-homogeneous of degree o;. We claim that
(x) v=dim(g;) =:m, and{Zy,...,Z,} is a basis forg;.
Indeed, let X € gi. Then X = {27 + -+ 4+ {nZn for suitable scalars ;. Since X is dy-
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2 Elementary analysis of stratified Lie groups

homogeneous of degree 1 , by Corollary and the definition of v, it holds §; = 0 for every
j > v. Hence, g; is spanned by {Zi,...,7,} whence (this system of vectors being linearly
independent) the claimed (%) holds.

By the assumption Lie (g;) = g and (%), it follows
(x%x) Lie(Zy,...,Zn) = g.

For every j € N,j > 2, let us set g; := [g1,8;-1] . By Proposition g; = {0} for every
j > 1= oy. Also, by Proposition 2.43] any X € g; is dy-homogeneous of degree j. Let now
jge{m+1,...,N} be fixed. Then, by (%), Z; is a linear combination of nested commutators
of Z1,...,Z,. But any such commutator is §)\-homogeneous of an integer degree in 1,...,r.
This proves that o; (the d\-homogeneous degree of Z; ) is integer and (again from Corollary
o; € {1,...,r}. As a consequence, we have the splitting of R", as requested in (C1) of
Definition [2.61, with N; = m.

Finally, let us prove that (C2) holds too. This is obvious thanks to (xx), since
rank(g(x)) > rank (Z,1(x), ..., ZnI(z)) = rank (Z,1(0),...,ZyI(0)) = N

for every x € G (see Proposition [2.20)). O

Remark 2.64 (Equivalent definition of stratified Lie group I7). A stratified Lie group is a
connected and simply connected Lie group G whose Lie algebra g admits a (vector space)

decomposition of the type
g=Vie- -0V,

where

Vi, Vil CViey Vijritj<r
= (2.18)
Vi,V;] =0 Vi,jii+j5>r
and V] generates all g. This means that every element of g can be written as a linear combination

of iterated Lie brackets of various elements of V.

Proof. In fact, in (2.18)), it holds [V;,V}] = Viy,; if i +j < r. If G is a stratified Lie group
according to Definition [2.62] then (setting V; := {0} if ¢ > r ) it holds

Vi=[W,---[W,Vi]] for every i € N.
—
i times

In particular, V] Lie-generates all the V; ’s (whence it generates also g =1V, @ --- @V, ). This
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also gives

Vi Vi) = [V, Ve AL Vi, - [, VA

(.

VvV vV
7 times 7 times

—_———
i+j times

In particular, (2.18)) holds. Vice versa, let G satisfy the above hypothesi. Set W; :=V; and

VI/’L: [Wlam—l}:“/la“/la‘/l“ fOYZZQ
—_—
7 times
Prove that condition (2.18)) implies that W; C V; for every 1 < i < r and W; = {0} for every
t > r. Moreover, the second hypothesis i.e. V; Lie-generates g ensures that g =W;+4---+ W,.

Now, a simple linear algebra argument shows that the following conditions
Wi+ - +W,=g=Vi®d---®V,, W,CV, Vi<r

are sufficient to derive that W; = V; for every 1 < i < r. As a consequence, we have [V, V;] =
(W1, W] = Wit1 = V41 whenever 1+ 5 < r, and [V4, V| = [W;, W] = {0} whenever 1+ j > r,
so that G is a stratified Lie group according to Definition [2.62] O

Example 2.65. The first Heisenberg group H! is a stratified Lie group of step two and two gen-
erators. Indeed, it is a homogeneous Lie group (with dilations 6y (21, x2, z3) = (Ax1, ATa, A2x3)).
Moreover (since the first two vector fields of the Jacobian basis are Z; = 9., + 2220,, and

Zy = Oy, — 2210,, ), we have
rank (Lie {Z;, Z»} (z)) =3  for every x € R,

Thus, the above properties (C1) and (C2) are fulfilled.

Example 2.66. Stratified Lie groups must be homogeneous Lie groups. However the opposite
is not true. We now give an example of a homogeneous Lie group which is not a stratified Lie

group. Let us consider the following composition law on R?

(21, 22) o (Y1,y2) = (x1 + Y1, 22 + Y2 + 211) -

It can be readily verified that G = (R2, o) is a Lie group (here (z1,25)"" = (—1, —25 + 22)).
Moreover, G is a homogeneous group, if equipped with the dilation dy (21, z2) 1= (Ax1, N2xs).
Hence (C1) is satisfied. However, (C2) is not. Indeed, if Z; = 0,, + x10,, is the first vector

field of the Jacobian basis, we have
rank (Lie {Z,} (z)) =1#2 for every x € R?.
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Hence G is not a homogeneous stratified group.

Remark 2.67. Let us remark that the triple (R? +,d,) is a homogeneous stratified Lie group
if 0 (z1,72) = (A1, \w2), whereas if 6y (z1,72) = (Az1, \2x2) , (R, +,4,) is a homogeneous Lie

group but not a stratified one.

From properties (C'1) and (C2) of Definition and the results on the homogeneous Lie

groups we immediately get the assertions contained in the following remarks.

Remark 2.68. Let (RN ,0,6,\) be a stratified Lie group. Then o has polynomial component

functions. Moreover, denoting z oy by ((zoy)™,...,(z0y)"), we have
(z o y)(l) =z 4+ 4O, (z o y)(i) =20 4+ 4@ 4 QW (z,y), 2<i<m,
where
(1) @@ only depends on 2™, ... 20=Y and y™ ... y0=b:
(2) the component functions of Q¥ are sums of mixed monomials in z,y;
(3) QW (6xz,dxy) = NQW(x,y).

Remark 2.69. Let (]RN, o, 5>\) be a stratified Lie group. Then we have

Iy, 0 - 0
JV) Iy, :
W)y - I @) Iy,

where I, is the n x n identity matrix, whereas J](-i) (x) is a N; x N; matrix whose entries are

dx-homogeneous polynomials of degree j — i. In particular, if we let
T (0) = (Z2W(2) - 2" ()
where Z(®(z) is a N x N; matrix, then the column vectors of Z(®(z) define §, homogeneous
vector fields of degree i : those of the relevant Jacobian basis.
Remark 2.70. Let G = (RN, o, 5,\) be a stratified Lie group with Lie algebra g. Let Z1,..., 2y

be the Jacobian basis of g, i.e.

Zyeg and  Z;(0)=0,],, j=1,....N.

0 )
We shall also denote the Jacobian basis by
1 1 T T
20, aG) 20 2,
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Obviously, Zj(l) = Zj for 1 < j < N;. By Corollary [2.51] Z](-i) is d\-homogeneous of degree i

and takes the form
T Nh

Zj(-i) = 6/8x§i) + Z Z agf}f) (m(l), . ,a:(h_i)) 8/(%,(;1),
h=i+1 k=1
where ag.f}ch) is a 0\-homogeneous polynomial function of degree h—i. In particular, the Jacobian

generators of G, i.e. the vector fields Zl(l), e Z](\}l) are 0 -homogeneous of degree 1 .

Remark 2.71. With the notation of the above remark, the Lie algebra g is generated by
VAT

g = Lie{Zl,...ZNl}.

Indeed, the inclusion Lie {Z,... Zy,} C g is obvious. Since dim(g) = N, in order to show the

opposite inclusion, it is enough to prove that
dim (Lie{Z1,... Zn,}) = N.

By condition (C2), there exists Xi,..., Xy € Lie{Z,... Zn,} such that X;7(0), ..., Xy1(0)

are linearly independent vectors in RY. Then X7, ..., Xy are linearly independent in g. Hence
N > dim (Lie{Zy,... Zn,}) > N,
and this ends the proof.

Remark 2.72 (Stratification of the algebra of a stratified Lie group). Let us denote by W) the

vector space spanned by the commutators of length k of Z;,..., Zn,,
W® .= span {ZJ | Je{1,.. .,Nl}k} :

Obviously, W®) C g, and every Z € W% is §y-homogeneous of degree k. Then W) = {0} if

k > r, while
W®) C gpan {Z%k), c Z](\]fk)} if2<k<r. (2.19)
Then, if we agree to let
WO =span{Z,...,Zn,} = span {Zfl), o Z](\}l)}
we have
dim (W(k)) < Ny forany ke {l,...,r}. (2.20)
On the other hand, by Proposition [2.9]

span{W(l), e ,W(T)} = Lie{Z%l), . .,Z](\}l)}.
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2 Elementary analysis of stratified Lie groups

Thus, by Remark

g = span {W(l), e W(T)} ,
so that, since WM N W®) = {0} if h # k, we have

=W W e ..aw),

As a consequence,

dim(g) = Z dim (W®)).

k=1
On the other hand, dim(g) = N = >_;_, Ni. Then, by (2.19),
dim (W(k)) =N, forany ke {l,...,7},

and, by (2.20),

k

W(k):span{ka),...,Z](\f)} if1<k<r.
We also have
(WO WD = WO for 2 <k <, (2.21)
and
(WO W] = {o0}. (2.22)
Indeed, let us put V; := WO and
Vii=[W,Vieq] fori=2...r

By the definition of W®*) and Proposition , V; € W® for i = 2,...,r. Then dim (V;) <
dim (W(i)) = N;. On the other hand, by Proposition , (V1,V,;] = {0}, and, by Proposition
2.9

g :Lie{Zfl),...,Z](\}l)} — span {Vi, Vs, ..., V.}.

Then N = > dim (V;) < > N; = N. This implies dim (V;) = N; for every i € {1,...,7r}. As a
i=1 i=1
consequence, V; = W for every i € {1,...,r}, and (2.21)) and (2.22)) hold.

Summing up, we have proved the "stratification" of the Lie algebra g, i.e. the decomposition

g=WVaeWwW?g...owm,
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with
(WO WD = W@ for 2 <k <,
[W(l),W(T)] = {0},

where

w k) :span{Zl(k),...,Z](ka} itl1 <k<r.

2.2 The sub-Laplacians on stratified Lie groups

We begin with a central definition.

Definition 2.73. If Z;,..., Zy, are the Jacobian generators of the stratified Lie group G =

(RN ,0,0 ,\), the second order differential operator
Ny
Ne =Y 7}
j=1
is called the canonical sub-Laplacian on G. Any operator
N1
L=
j=1
where Y7,...,Y), is a basis of span {Z;, ..., Zy, }, is simply called a sub-Laplacian on G. The

vector valued operator
VG - (Zl,. . .,ZNI)

will be called the canonical (or horizontal) G-gradient.
Finally, the notation V, = (Y1, ..., Yy,) will be used to denote the £-gradient (or horizontal
L-gradient).

Example 2.74. The canonical sub-Laplacian of the first Heisenberg group H! is
Agt = {0s, + 22205, }° + {0, — 2210y, }
= (00,)" 4 (00y)" + 4 (27 + 22) (90y)* + 4220, 1y — 4210, 15
A (non-canonical) sub-Laplacian on H' is, for example,
L ={(0y, + 2220y,) — (05, — 22100,)}> + {By — 2010, }
= (00,)> +2(00,)* + 4 (23 + (21 + 72)%) (Osy)”

— 28551@2 + 4 (331 + xz) 6:1:1,:1:3 —4 (.]71 + (33'1 + .]72)) 812713.
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2 Elementary analysis of stratified Lie groups

Remark 2.75. For the sub-Laplacians on groups of step two, provided the inverse map on the

group is —x, then any sub-Laplacian on a 2-step stratified Lie group contains only second order

coordinate partial derivatives.

We would like to list some basic properties of the sub-Laplacians, straightforward conse-

quences of the properties of the vector fields Z;,..., Zx,. In what follows £ = Z;le sz will

denote any sub-Laplacian on G.

(1)

(2)

(3)

(4)
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L is hypoelliptic, i.e. every distributional solution to Lu = f is of class C*° whenever f

is of class C°.

L is invariant with respect to the left translations on G, i.e. for every fixed a € G,

L(u(aox)) = (Lu)(aoz) forevery z € G and every u € C* (RV).

L is d)-homogeneous of degree two, i.e. for every fixed A > 0,
L (u(br(z))) = N*(Lu) (6x(z))  for every z € G and every u € C™ (RY).
L can be written as
L =div (A(z)VT")

where div denotes the divergence operator in RY,V = (dy,...,0y), A is the N x N

symmetric matrix

and o(x) is the N x Ny matrix whose columns are Y1I(x),..., Yy, I(x). We also have the

expression of £ with respect to the usual coordinate partial derivatives,

L= Y= Z a;,j(2)0; 5 + Z bj(x)0;
where |
asj(x) = Y (D), (0) (D), (@), (@) = > Vi (%id), ()
k=1 k=1

If z € G is fixed and A(x) is the matrix, then the quadratic form in ¢ € RY

qe(, &) = (A(2)E, €)

is called the characteristic form of £. We have
Ny

qe(x,§) =Y (YViI(x),)?

J=1
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so that ¢z (x, -) is obtained by formally replacing in £ the coordinate derivatives 0y, ...,y

by 51,...,61\7.

(6) The sub-Laplacian L is the second order partial differential operator related to the Dirich-

let form
u »—>/]V,;u\2dx.
More precisely, let Q2 C RY be an open set, and consider the functional
1 al
C®(LR) 5 u— J(u) = -/ Veul de,  |Veul? =) (Yu)
2 Jq =

Denoting by (,) the inner product in RM, we have

J(u+ h) — J(u) = / (Veu, Veh) de + J(h)

Q

for every h € C§°(€2,R). We call critical point of J any function u € C*°(2, R) such that
Q

Then, given u € C*°(Q,R), we have w is a critical point of J if and only if Lu = 0 in Q.

Indeed, since Y;* = =Y}, an integration by parts gives

N1 Nl
/ (Veu, Veh)de = / YuY;h do = — Z/ (Yiu) h dz
Q =170 =10

= —/(ﬁu)h dz
Q
for every u € C*(Q,R) and h € C§°(Q2, R).

Remark 2.76. The sub-Laplacian L is a second order differential operator in divergence form
with polynomial coefficients. The characteristic form of L is positive semi-definite. If the step
of G is > 2, then L is not elliptic at any point of G. If the step of G is 1, then L is an elliptic

operator with constant coefficients.

We end this section with some useful results on the horizontal £-gradient.

Proposition 2.77. Let L = Z;Vll Xf be a sub-Laplacian on the stratified Lie group G. Let

u € C*(G,R) be such that X;u is a polynomial function of G-degree not exceeding m for every

j=1,...,Ny. Then u is a polynomial function of G-degree not exceeding m + 1.
Corollary 2.78. Let u € C*(G,R) be such that
Xu=0 VB:|8l=m
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2 Elementary analysis of stratified Lie groups

for a suitable integer m > 1. Then u is a polynomial function on G of G-degree not exceeding

m— 1.

Proposition 2.79. Let € be an open and connected subset of the stratified Lie group G. Let L
be any sub-Laplacian on G. Then a function u € C1(Q,R) is constant in Q0 if and only if the

relevant horizontal L-gradient V pu vanishes identically on ).

2.3 Stratified Lie groups of step two

In this section, we study a special class of stratified Lie groups, which has step two (r = 2 in

Definition [2.61]). In particular, we have the following fact:
A (finite dimensional) nilpotent Lie algebra g of step two is necessarily stratified.

Indeed, let us set Vo = [g,g] and choose any V; such that g = V; @ V4 : then it also holds
V1, V4] = Vo and [V, V5] = {0}. We will observe in next chapter that the explicit construction
of irreducible unitary representations for 2-step stratified Lie groups is much simpler. The aim
of this section is to collect some results and many explicit examples of stratified Lie groups of
step two and n generators, n > 2. In particular, we show that they are naturally given with

the data on R"*™ of m skew-symmetric matrices of order n.

2.3.1 Characterization of 2-step stratified groups

Let m,n € N. Set RY := R" x R™ and denote its points by z = (z,t) with 2 € R® and t € R™.

m

Given an m-tuple B, ... B(™ of n x n matrices with real entries, let

(x,t)o (&) = <x+§,t+7+%<3x,§)) . (2.23)

Here (Bzx, &) denotes the m-tuple

((BWz, &), ... .(B™z,¢)) ( also written as Z Bi,j$j§z‘>
ij=1

and (-, -) stands for the inner product in R™. One can easily verify that (RN , o) is a Lie group

whose identity is the origin and where the inverse is given by
(z,t)"' = (—x,—t + (Bx,1)).
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We highlight that the inverse map is the usual —(z,t) if and only if, for every k = 1,... ,m, it
holds
<B(k)x,x> =0 VxeR",
i.e. iff the matrices B%*) are skew-symmetric. It is also quite easy to recognize that the dilation
Sy RY = RY, 0y(z,t) = (Az, A\*t) (2.24)
is an automorphism of (R",o) for any A > 0. Then G = (R",0,4,) is a homogeneous Lie

group.
We explicitly remark that the composition law of any Lie group in R” x R™, homogeneous

w.r.t. the dilations {0,}, as in (2.24), takes the form (2.23) (see Theorem [2.48)).

The Jacobian matrix at (0,0) of the left translation 7, takes the following block form

I, |0

1

jT(z,t) (07 0) =

where, if B®) = (bgk-)> for k =1,...,n, Bxr denotes the matrix
ij<m

J
n
(k)
J=1 k<m,i<n

More explicitly, we have

]In On><m
1 LAY
%Zb}ﬁi % anz%
jT@ ) (0’ O) — Jj=1 j=1
’ : : L,
Ly pmy Ly g
2 1,5 JI] 2 n,j x]

Then the Jacobian basis of g, the Lie algebra of G, is given by

Xi = 81‘1 + % Z (Z bg?:ﬂ) 8tk

k=1 =1
1 2.25
:8x1+§<(B$)Z,Vt>, izl,...,n, ( )

Tkzatk, k‘zl,...,m.
Here, we briefly denoted by (Bz); the vector of R™

(BWz),.. ... (B™x))

7
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where (B(k)l')i is the i-th component of B®)z. An easy computation shows that

m

1/ % k k
[ijXi] = Z 5 (bz(g) - b§,z)> 8tk =: Zc;j)atk.

k=1 k=1

We have denoted by C*) = (cE’?) the skew-symmetric part of B®) | i.e.
7/ ij<n

o) _ % ( B® — ( B(k)f’)

Let us now assume that CM ... C™ are linearly independent. This implies that the n? x m
matrix
1 m
c ooy
1 m
Cls - O
o o
1 m
5 cyy
Ch e

has rank equal to m. As a consequence,

span {[X;, Xi] |4, =1,...,n} =span{0y,,..., 0, }-
Therefore,

rank (Lie {X1,..., X,}(0,0))

= dim (span {0y, ..., 0%, 04, ---, 0. }) = n+m.
This shows that G is a stratified Lie group of step two and Jacobian generators Xy, ..., X,,.

We explicitly remark that the linear independence of the matrices

is also necessary for G to be a stratified Lie group. Then, we have proved the following

proposition.
Proposition 2.80. Every stratified Lie group G on RY, homogeneous with respect to the dila-
tion
Sy RY = RN §y(,t) = ()\x,)\Qt)
(where x € R"t € R™ and N =n+m ), is equipped with the composition law

(x,t)o (1) = <x+f,t1+71+%<B(1)g;’§>,...,tm+7'm+%<B(m)x,§>)
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for m suitable n x n matrices BV, ..., BM™.

Moreover, a characterization of stratified Lie groups of step two and n generators is given
by the above G = (R™™ o, 6,), where the skew-symmetric parts of the B®) are linearly inde-
pendent.

We remark that the above arguments show that there exist stratified Lie groups of any

dimension n € N of the first layer and any dimension
—1
_nln—1)

of the second layer: it suffices to choose m linearly independent matrices B, ... B in

the vector space of the skew-symmetric n x n matrices (which has dimension @) and then

define the composition law as in (2.23]).
By ([2.25)), we can write explicitly the canonical sub-Laplacian of the Lie group G = (RN , o)
with o as in (2.23). It is given by

1 m n 1 m
Ag =0, + 7 > (B2, BWx) 0, + > (B®2,V,) 0, + 3 > trace (BW)d,.  (2.26)
k=1 k=1

hk=1

Here, we denoted

n

Ao = b and Vo= (0n....,0,).

i=1
We recognize that Ag contains partial differential terms of second order only if trace (B (k)) =0
for every k = 1,...,m. This happens, for example, if the B*) are skew-symmetric, i.e. if the

inverse map on G is x — —ux.

Example 2.81. Following all the above notation, let us take n = 3, m = 2 and

1 10 00 —1
BY=| 1 00|, BP=]01 o0
0 00 10 0

Then the composition law on R® = R*xR? as in (2.23)) becomes (denoting (z,t) = (x1, T2, 73,11, t2)

and analogously for (£, 7))

1+ &
To + &
(@,t) 0 (&) = T3+ &3
ti 471+ 5 (01& + Sixo — S1)
bty + 7o + 3 (226 — §a3 — E321)
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2 Elementary analysis of stratified Lie groups

and the dilation is
5)\ (.Tl, Zg, T3, t17 tQ) = ()\.Tl, )\LUQ, Al’g, )\2t17 A2.[:2) .

Then G = (R°,0,4,) is a stratified Lie group, for the skew-symmetric parts of B and B®

are linearly independent,

0 10 00 -1

1 T 1 T

5(B<1>—(B<1>) )= -1 00| 5(3(2)—(3(2)) J=|oo0 o
0 00 10 0

In fact, we can compute the first three vector fields of the Jacobian basis and verify that they
are Lie-generators for the whole Lie algebra,
1 1
X1 = 8;,;1 + 5 (l’1 + 113'2) 8,51 — 51‘38@,
Xy = Oy — 22100 + 220
2 = Uz, 2951 (21 2$2 ta)
1
X3 = 8x3 + 53318,52,
1
[Xla XQ] - _atla [X17X3] - a1527 [X27 X?)] - éatg'
The related canonical sub-Laplacian is
AG :ax1,xl + axg,xg + axg,:tg
1
+ 4_1 {{(l’l + .1‘2)2 -+ (—1'1)2} 8“7“ + {(—1‘3)2 + (ZE2)2 + (ZL’l)Q} 8t2,t2
+2{(z1 + 22) (—x3) + (—21) (22)} Oy 0}
+ {(xl + $2) awl - $1ax2} atl + {_x3a:r1 + 3728352 + xla’fs} atQ
1 1
+ Eatl + 581527

Ag contains first order terms, for trace (BW) # 0 # trace (B®). On the contrary, if

1 10 0 -2 0
BY=1 100 |, B¥=[2 1 0
0 00 0 0 0

then the composition law on R® given by

7+ &
T2 + &
(2,t) 0 (&,7) = T3+ &3
tr+ 714 5 (2160 + &0 — &)
ta + 7o + 5 (2280 — 26122 + 26511)
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2.3 Stratified Lie groups of step two

does not define a stratified Lie group, because the skew-symmetric parts of B1) and B® are

linearly dependent,

0 10 0 -2 0
1 1
S(BY=BN) = 1o | F(B2-BY)=|2 0 0
0 00 0 0 0

In fact, the only admissible dilation would be
(S)\([L', t) = ()\1'1, )\$2, )\1’3, )\2t1, )\ztg)
but the first three vector fields of the related Jacobian basis are not Lie-generators for the whole

Lie algebra, since

1
X1 =0, + 3 (21 + x3) Oy — 2204,

1 1
Xo =04, — =210y, + | =22+ 21 | Oy,
2 2
X3 = axga
(X1, Xo] = =0y, + 20,,,

[XlaXS] - [X27X3] =0.

2.3.2 Some examples

The aim of this subsection is to collect some explicit examples of stratified Lie groups of step
two. To begin with, we present the most studied (and by far one of the most important) among
stratified Lie groups, the Heisenberg group. Then, we turn our attention to general stratified
Lie groups of step two such as free step-two stratified Lie groups, Heisenberg-type groups and

Meétivier groups.

The Heisenberg Group

Let us consider in C" xR (whose points we denote by (z,¢) with¢ € Rand z = (21,...,2,) € C")

the following composition law
(z,t) o (2, ) = (242, t+ ' +2Im (2 - 2)) . (2.27)

In (2.27)), we have set ( 7 obviously denotes the imaginary unit) Im(z + iy) = y (z,y € R),

whereas z - 2/ denotes the usual Hermitian inner product in C”,

n

J=1
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2 Elementary analysis of stratified Lie groups

Hereafter we agree to identify C"® with R?" and to use the following notation to denote the
points of C* x R = R?+1 .
(Z7t) = ($7y7t) = (*Ila---vxn?yla"'aynat)
with 2 = (21,...,2,),2; = x; + iy; and z;,y;,t € R. Then, the composition law o can be
explicitly written as
(z,y,t) o (2, ¥, 1) = (x+ 2",y +y t+ ' +2(y,2") = 2(z,9)), (2.28)
where (-, -) denotes the usual inner product in R™. It is quite easy to verify that (R*"*1 o) is

a Lie group whose identity is the origin and where the inverse is given by (z,t)"! = (—z, —t).

Let us now consider the dilations
5y R R2"+1, Iz, t) = (/\z, /\2t) .

A trivial computation shows that dy is an automorphism of (R?"*! o) for every A > 0. Then
H" = (R**10,4,) is a homogeneous group. It is called the Heisenberg group in R?"*1.
For example, when n = 1, the first Heisenberg group H' in R3 is equipped with the compo-

sition law
(z,y,t) o ("¢, 1) = (x + 2",y +y, t + 1 +2(y2" — ),
while, when n = 2, the Heisenberg group H? in R? is equipped with the composition law
(21, T2, Y1, Y2, 1) © (77, 75, Y, Yo, 1)

= (z1+ o), 20 + x5, 1 + Y1, Y2 + Yo, t + U+ 2 (112 + Yoy — 21y — 2235)) -

The Jacobian matrix at the origin of the left translation 7.4 is the following block matrix

L, 0 0
jT(z,t) (0,0) = 0 I, 01,
297 227 1

where I,, denotes the n x n identity matrix, while 2y” and —2z7 stand for the 1 x n matrices
(2yy -+ - 2y,,) and (—2z4 - - - — 2x,), respectively. Then, the Jacobian basis of b, the Lie algebra
of H", is given by
Xj :835], +2y]-8t, Y; :ayj —2xj8t, j: 1,...,7”6, Tz@t
Since [X, Y] = —40,, we have
rank (Lie { X1, ..., X,,,Y1,...,Y,}(0,0))

= dim (span {0y, ..., 0s,, Oy, - - ., Oy,, —401}) = 2n + 1.
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2.3 Stratified Lie groups of step two

This shows that H" is a stratified Lie group with the following stratification
h, =span{Xy,..., X, Y1,..., Y, } ®span {0, } (2.29)

The step of (H", 0) is r = 2 and its Jacobian generators are the vector fields X;, Y;(j = 1,...,n).

The canonical sub-Laplacian on H" (also referred to as Kohn Laplacian) is then given by

n

Agn :Z(Xf—l—YjZ).

j=1
An explicit formula for Ag» can be found in Example 2.74. Finally, we exhibit the explicit

form of the exponential map for H". It is given by

EXp((€7 n, T) : Z) = (677777—)

Here we have set (&,n,7)-Z ="

n
J=1

(&X; +n;Y;)+ 7T

Heisenberg-type group

Consider the homogeneous Lie group
H = (R™™,0,5,)
with composition law as
(x,t)o (&,7) = <x+§,t1 + 7+ % <B(1)x,§>,.--,tm + T + % <B(m)x’§>)

where BM ... B(™ are fixed n x n matrices, and dilations as in (2.24). Let us also assume

that the matrices B, ... B have the following properties:

(1) BY) is an n x n skew-symmetric and orthogonal matrix for every j < m;
(2) BOYBUW = —BUBW for every 4,5 € {1,...,m} with i # j.

If all these conditions are satisfied, H is called a group of Heisenberg-type, in short, a H-type
group.

A H-type group is a stratified Lie group, since conditions (1) and (2) imply the linear
independence of B, ..., B Indeed, if a = (a1,...,a,) € R™\{0}, then

1 m
— Z a,B®
|O[| s=1
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2 Elementary analysis of stratified Lie groups

is orthogonal (hence non-vanishing), as the following computation shows,

m m T
(B50) ()

= |a|2 Z OCTOCS

r,s<m

:_@Z&i(f;(r 2_% S aaBOBY

r,s<m,r#s

Here we used the following facts: (B (’"))2 = —1I,, since B™ is skew-symmetric and orthogonal;
BMBE) = —B®) B according to condition (2).

The generators of H are the vector fields ( see (12. 25

= —|— Z(szlxl>atk7 1=1 yee sy
k=1 =

Moreover, if we set

T,:=0t,, k=1...,m,
then we know that

{Xy1,..., X0, T, T}

is the Jacobian basis for H.

n
A direct computation shows that the canonical sub-Laplacian Ay = > X? can be written
i=1

Z <B z, B¥ :L‘> Oty +Z 8tk Ztrace &ek

hkl

On the other hand, by conditions (1) and (2),

as follows

(B g, BW ) = |z,
while, for h # k,
(BMz, B®Wz) =0
since
(BMz, BWz) = —(BWBWg o) = (BWBW g ) = — (BWa, BWz)

We also have trace (B (’“)) =0, since B is skew-symmetric. Then Ay takes the very compact
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2.3 Stratified Lie groups of step two

form

1 n
Ay =D, + oA+ (BW2,V,) 0,
k=1
Remark 2.82. From (12.26)) one obtains

n n

1
|VHu|2 = |Vzu|2 + 1 Z ((Bx);, Vyu) 2 4 Z ((Bx);, Viu) Opu, ue C™.
=1 =1

On the other hand,

Z ((Bx);, Vou)* = Z <B( )z, B® ) O, udyu = x|’ |V ul?
i=1 hok=1

and

n

Z ((Bx);, Viu) Opu = Z (BWz,V,u) dyu.

i=1 k=1
Thus, for every smooth real-valued function u, it holds

1 m
IVau)® = |Voul® + vl Veul? +> (B®x, Vau) d,u.
k=1
Remark 2.83. The first layer of a H-type group has even dimension n. Indeed, if Bisan xn

skew-symmetric orthogonal matrix, we have I, = B - BT = —B? whence 1 = (—1)"(det B)?.

Remark 2.84. With the previous notation, if H = (R"*™ o, ,) is a H-type group, then
3=1{0,t) [t e R™}
is the center of H. Indeed, let (y,¢) € H be such that
(x,8) 0 (y,t) = (y,t) o (x,s) for every (z,s) € H.
This holds iff
<B(k)x, y> - <B(’€)y7 a:>
for any x € R™ and any k € {1,...,m}. Then, since (B(k))T = —BW),
(BWy, 2y =0 VreR", Vke{l,...,m},
so that y = 0 because B*) is orthogonal (hence non-singular).

Remark 2.85. The classical Heisenberg group H* on R?*! is canonically isomorphic to a H-
type group. Precisely, it is isomorphic to the H-type group (H, %) corresponding to the case
n=2k,m =1 and
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2 Elementary analysis of stratified Lie groups

The isomorphism ¢ : (R** %) — (H*, o) is given by

Qp(gv 7, T) = (f? 7, _47—)

Moreover, H is in its turn isomorphic to the H-type group with n = 2k, m =1 and

~ ' 0 -1 0 —1 ] _
BW = diag s , the block occurring k times.
1 0 1 0
This type of Heisenberg-group is the only (up to isomorphism) H-type group with one-dimensional

center.

Remark 2.86. Groups of Heisenberg type with center of dimension m > 2 do exist. For example,

the following two matrices

0 -1 0 0 0 01 0
po_ |1 000y | 0001
0 0 0 -1 ~100 0
0 0 1 0 010 0

satisfy conditions (1) — (2) and hence they define in R® = R* x R? a H-type group whose center

has dimension 2. The composition law is

T+ &

Ty + &

(@.8)0(6,7) = e
T4+ &4

t+ 71+ 5 (—22b + 218 — a3 + 1384)

by + 7o+ 3 (2361 — 248 — 11&3 + 2264)

The above matrices B and B®), together with

0 0 01
s _| 0 0 10
0 —-100
~1 0 00

define in R” = R* x R? a H-type group whose center has dimension 3.

Remark 2.87. The groups of Heisenberg-type were introduced by A. Kaplan in [Kap80]. He
also shows the following result. Let n,m be two positive integers. Then there exists a H-type

group of dimension n+m whose center has dimension m if and only if it holds m < p(n), where
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2.3 Stratified Lie groups of step two

p is the so-called Hurwitz-Radon function, i.e.
p:N—=N, p(n):=8v+q  wheren = (odd) -2 0<qg<3.

We explicitly remark that if n is odd, then p(n) = 0, whence the first layer of any H-type group
has even dimension (as we already proved in Remark [2.83)).

Meétivier group
Following G. Métivier |[Mét80|, we give the following definition.

Definition 2.88. Let g be a (finite-dimensional real) Lie algebra, and let us denote by j3 its

center. We say that g is of Métivier Lie algebra if it admits a vector space decomposition

[91,91] C 92,

g?Qﬁ?

g9=01Dg

with the following additional property: for every n € g5 (the dual space of g,)), the skew-
symmetric bilinear form on g; defined by

B’n:glxgl%Ru BU(X7X,) :n([Xqu])

is non-degenerate whenever n # 0.

We say that a Lie group is a Métivier group, if its Lie algebra is of Métivier Lie algebra.

Remark 2.89. First, a Métivier Lie algebra is obviously nilpotent of step two. Moreover, we

have
[9,0] = [91 + 92,01 + 82) C [g1,01] (since go C @),
[91,01] € [g,9] (since g1 C g).

Consequently, it holds

[9.9] = [91,01]. (2.30)

Finally, we claim that

g2 = [9, 9] (2.31)

Indeed, from ([2.30) we first derive that [g,g] = [g1,01] € go. We are left to show that
g2 C [g, g]. Suppose to the contrary that there exists Z € go such that Z ¢ [g, g]. This implies,
in particular, that Z # {0}. Moreover, since both Z € g, and [g, g] C go, there certainly exists
n € g5 such that go(Z) # 0 (whence n # 0 ) and 7 vanishes identically on [g, g| (here, we are
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2 Elementary analysis of stratified Lie groups

using the fact that Z ¢ [g, g]). But this implies that, for every X, X’ € g;, we have
B77 (Xv Xl) =1 ([X7 X/D =0
for

0.

[X, X1 €lgr,o] =1[g,9] and 7|y,
This is in contradiction with the non-degeneracy of B,,.
Collecting together and , we see that a Métivier Lie algebra is stratified: indeed
we have
g=01Dgs with [g1,0:] = g2 and [g1, g2 = {0}.
As a consequence, a Métivier group is a stratified Lie group of step two.

Collecting the above results, we have proved the following proposition.
Proposition 2.90. A Métivier group is a stratified Lie group G of step two such that if

g=0199 ([01,01] =02, [g1,92] ={0})
1s any stratification of the Lie algebra g of G, then the following property holds: for every
non-vanishing linear map n from gs to R, the (skew-symmetric) bilinear form B, on g, defined
by
B, (X, X =n(X, X, X, X €g,

18 non-degenerate.

When G is expressed in its logarithmic coordinates, the above definition is easily re-written

as follows. We consider a homogeneous Lie group of step two G = (R"*™ o,4,) with the

composition law as in (2.24)), i.e.

(z,t) o (£,7) = <x+§,t1+ﬁ+%<B<1>x,§>,...,tm+7m+%(B(mm,@),

where B, ..., B are fixed n x n matrices, and the group of dilations is 0y (x,t) = (Az, A*t).
For the sake of simplicity, we may also suppose that the matrices B®*) are skew-symmetric.

Now, if n is a linear map from g, to R, there exist m scalars ny,...,n, € R such that
nige— R, n(d,)=mn foralli=1,...,m.

In particular, the map B, can be explicitly written as follows

if X = vX; and X' =) v X;, then By (X, X') = Y (— > me?) v},
k=1

i=1 i=1 1,j=1
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2.3 Stratified Lie groups of step two

In other words, the matrix representing the (skew-symmetric) bilinear map B, w.r.t. the basis

Xi,...,X,, of g is the matrix
7713(1) NS nnB(”).

Hence, to ask for B, to be non-degenerate (for every n # 0 ) is equivalent to ask that any linear
combination of the matrices B%* is non-singular, unless it is the null matrix. We have thus

obtained the following proposition.

Proposition 2.91. Let G = (R™™™, o) be a stratified Lie group of step two, with the composition

law
L/ g L/ gom
(.CE,t)O(f,T): $+€,t1—|—7'1—|—§<B x7£>7atm+7-m+§<B $,€> )
where BY ... B™) qare n x n skew-symmetric linearly independent matrices. Then G is a

Meétivier group if and only if every non-vanishing linear combination of the matrices B® is

non-singular.
In particular, if the above G is a Métivier group, then the B*) are all non-singular n x n
matrices, but since the B%*) are also skew-symmetric, this implies that n is necessarily even.

Indeed, as it can be seen from the

€ R™ 7 # 0, we proved that > 1, B®
k=1

Remark 2.92 (Any H-type group is a Métivier group).
definition of H-type group that, for every n = (n1,...,m,)

is |n| times an orthogonal matrix, hence (in particular) 3 7, B*) is non-singular. The converse
k=1
is not true. For example, consider the group on R® (the points are denoted by (x,t),z € R*,

t € R ) with the composition law

(x,t)o (&,71) = (l’+f,t+7+1<3x,§>),

2
where
0 1 0 O
-1 0 0 O
B =
0O 0 0 2
0 0 -2 0

Then G is obviously a Métivier group, for B is a non-singular skew-symmetric matrix. But G

is not a H-type group, for B is not orthogonal.
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2 Elementary analysis of stratified Lie groups

Free 2-Step Stratified Lie Groups

In this subsection, we fix a particular set of matrices B%*) and consider the relevant stratified
Lie group (IF,, 2, x), which will serve as prototype for what we shall call free stratified Lie group
of step two and n generators. Throughout the section, n > 2 is a fixed integer.

Let i,j € {1,...,n} be fixed with i > j, and let S be the n x n skew-symmetric matrix
whose entries are —1 in the position (7, j), +1 in the position (7, 4) and 0 elsewhere. For example,

if n = 3, we have

0 10 0 01 0 0 0
SEV =1 100 |.8*=| 0 00 [|.5%=[0 0 1
0 00 -1 0 0 0 -1 0
Then, we agree to denote by (I, »,*) the stratified Lie group on R associated to these @
matrices according to of the previous section. We set
mi:w,]\f:n-l—m:@,I::{(i,j) | 1<j<i<n}
We observe that the set Z has exactly m elements.
In the sequel of this section, we denote the points of F, » by (z,7), where z = (21, ...,2,,) €

R™ v € R", and the coordinates of v are denoted by
v,; where (i,7) € T.

Here we have ordered Z in an arbitrary (henceforth) fixed way. Then, the composition law * is

given by

x+a,, h=1,...,n

(2,7) % (2'7) = e
Vog + by 3 (el —xal) (i) €T

For example, when n = 3, we have

r1 + 7}

To + T4

T3 + T

(7)o (&%) = T

Vo1 + Y91 + % (z27) — 717)

/ 1 / /
Y31+ 30 + 5 (T3] — 117%)

/ 1 / /
V32t Y32t 3 (237 — wa3)

By ([2.25), we can compute the Jacobian basis
Xh, hzl,...,n, Fi,j7 (l,j) EI,
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2.3 Stratified Lie groups of step two

of f,2, the Lie algebra of I, : it holds

1 i)
Xh = al’h + 5 Z (Z S}(L’lj $l> 8’7,‘7]‘
1<j<i<n =1
4

Oy +% > ;0%

1<i<n

= O, +% >, Ti0Vin — % Yo xi0y,; ifl<h<mn,

h<i<n 1<j<n

&En + % Z ija’}/n’j if h = n,

\ 1<j<n
ij = 0%, (i,5) € T

Moreover, for every (i,7) € Z, we have the commutator identities

r

(X5, Xi] = Z Sz'(,};fk)a’ymk = 075 — 0y

1<k<h<n

whence we recognize that the algebra f,, » is "the most non-Abelian as possible" (as it is allowed
for an algebra with n generators and step two).
This is the reason why we shall refer to (any algebra isomorphic to) f, 2 as a free Lie algebra

with n generators and step two. For example, when n = 3, we have
X, =0xr, + % (220721 + 23073.1)
Xy =0xy + % (230732 — £10721)
X3 = 0xs — % (10731 — 22073,2)

F2,1 = 572,1, F3,1 = 373,1, F3,2 = 5’73,2-
From ([2.26)), we derive the explicit expression for the canonical sub-Laplacian of Fj o,

Ap,, = (021)" + (0r)” + (D3)”
P (a3 a) @) + (34 2) (@) + (534 23) (902)°)
¥ 52y (Dr3081) — 30175 (01220%2) + 51172 (093107%2)
+ (22071 — 21022) Oy21 + (23021 — £10x3) O34

+ (LU38.T2 — 1’281‘3) 873’2.
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groups of step two

In this chapter we study some basics of harmonic analysis on 2-step stratified Lie groups to
make the paper self contained. In particular, we use the orbit method of Kirillov (see |[CG90|
for details) to describe the explicit construction of irreducible unitary representations. As in

[CGI0], the following are the important steps:

(1) To parametrize the coadjoint orbits of g* or at least to parametrize a set of coadjoint

orbits which is of full Plancherel measure.
(17) Given A € g*, to construct a maximal subalgebra b subordinate to A, that is A([h, h]) = 0.

For the explicit expression of the Plancherel measure , see, e.g., |[CG90, Theorem 4.3.9].

For general nilpotent Lie groups (7) and (i) have explicit answers by Chevalley-Rosenlicht
theorem and Vergne polarizations (see [CG90]), but as is only to be expected, on 2-step stratified
Lie groups both (i) and (i7) turn out to be much simpler (see [Ray99]). After this we will go
to explicit construction of irreducible unitary representations of G. In Kirillov theory the
representations arise as induced representation, but as we will see, for the two step case they
come directly from the Stone-von Neumann theorem. And then we can study the sub-Laplacian
and Fourier transform. A complete account of Fourier analysis for connected, simply connected
step two nilpotent Lie groups can also be found in |Lév19).

In the sequel, we will restrict our attention to stratified Lie group of step two, which means

the left-invariant Lie algebra g is endowed with a vector space decomposition
9= 01D g,
with dim g; = n,dim g, = m and
[g,9] = g2 C 3 = the center of g.

69



3 Harmonic analysis on stratified Lie groups of step two

Then, there exists a bilinear, antisymmetric map
o:R"xR"— R™
such that, for Z, 7' € R" and t,t' € R™,
[(Z,1),(Z",1)] = (0,0(Z, Z"))
and
(Z.t) - (Z.1) = (Z 2t %a Z Z’)) | (3.1)

The map o and the integers n, m are determined by the group law and dimension. Conversely,
for any integers n, m and any bilinear, antisymmetric map ¢ : R” x R” — R, one may define

a Lie group of step two by the formula (3.1)).

3.1 Orbit method on stratified Lie group of step two

In this section we give the detail construction of irreducible unitary representations on 2-step
stratified Lie groups without the Moore-Wolf condition. All results are already know in the

literature, we will take most of the material from [Ray99].

3.1.1 Parametrization of coadjoint orbits

Let G be a stratified Lie group with Lie algebra g, and denote the dual of g by g*. Then G

acts on g* by the coadjoint action, that is
Ad*:Gxg" — ¢"
(9,A\) — AdgA
which is given by
Ad A (X) = A (Ad(g™")(X)), geG, eg' X ey,

= AMAd(expY)(X))

=A (eadY(X )

= MX) + A([Y, X]),
where Y is the unique element in g corresponding to g. We need to parametrize the orbits

under this action. For this it is important to consider the structure of these orbits. Let us fix

some notation first. Let A € g*, then
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e O, = The coadjoint orbit of .

e B, = The skew symmetric matrix corresponding to A, that is, given a basis through the

center of g, namely {Xy,..., X,, Xyi1,..., Xn}, we consider the matrix

By = (Ba(i, 7)) = (M[Xi, X5]).

e 7, = The radical of the bilinear form B,, that is,
ry={X eg: \N[X,Y])=0forall Y € g}.
Clearly r) is an ideal of g and 3 C r).
e 7\ =spang {Xq,..., X, Nry.
° B,\ = B\ |rnxre that is restriction of By on the complement of the center of g.

It follows trivially for two step nilpotent Lie groups that all the coadjoint orbits are hyper-
planes ([CG90; LRI6|). In fact we have from the above, the following result:

Theorem 3.1. Let A € g*. Then Oy = X\ +ry wherery ={h € g*: h|,,=0}.

Proof. Let A € Oy. Then X' = X\ o Ad(exp X) for some X € g. Then for Y € r,
A=) (Y) = AY) = X(Y) = AY) = AY) = A([X, Y]) = 0.

Thus ' = A+ (X — ) € A+ ri. Hence Oy C A+ 7y

Let {X1,..., Xk, Xgs1,...,Xn} be a basis of g passing through ) in the sense that
Spalp {Xk+17 e ,XN} =Tx-

Let N € A +rf and N (X;) = N, M(X;) = A, 1 <i < N. We want to get hold of an X € g
such that

that is
MXX) =X -, 1<i<k

k N
Expressing X = > a;X; + > «;X;, we are looking for the solutions of
j=1 j=kt1

k
Y aM[X, X =X -, 1<i<k,
7=1
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3 Harmonic analysis on stratified Lie groups of step two

which is a system of k linear equations in k unknowns. Since the matrix L = (L;;) =
(A ([X4, X;])) is just the matrix of the bilinear form corresponding to the linear functional
A on g/ry, L is invertible. So the above system has a unique solution (ay, ..., ;) say. Then
for any Y € r), we have

& ~1
exp <Y + Zanj> A=\,

J=1

So N € O, and hence Oy = A + ry-. This completes the proof. n

Remark 3.2. By Theorem , N € Oy if and only if 7y = 7y and A [,,= X |,,,.
Let B={Xy,..., X, Xs41,...,Xn} be a basis of g such that
spang { X411, ..., Xynim} = center of g = 3.

So B, is the N x N matrix whose (i, j)-th entry is A ([X;, Xj;]),1 < 4,57 < N. Let B* =
{X7,..., X%} be the dual basis of g*. This is a Jordan-Holder basis, that is g* = spang {X{, e ,X]’?‘}
is Ad"(G) stable for 1 < j < N. Let A € g* and X; € B.

Definition 3.3. The term i is called a jump index for A if the rank of the ¢ x N submatrix of
B, consisting of first i rows, is strictly greater than the rank of the (: — 1) x N submatrix of

B, consisting of first (i — 1) rows.

Since an alternating bilinear form has even rank the number of jump indices must be even.
The set of jump indices are denoted by J = {j1,...,j24}. The subset of B corresponding to J
is then {Xj,,..., X},,} . Notice that if 7 is a jump index then rank B} = rank B} ' + 1 where

17

Bj is the submatrix of B, consisting of first ¢ row’s.

Remark 3.4. These jump indices depend on A and on the order of the basis as well. But
ultimately we will restrict ourselves to ’generic linear functionals’ and they will have the same

jump indices.

Now we are going spell out what we mean by generic linear functionals. This is also a basis
dependent definition. We work with the basis B chosen above. Let us fix some notations. Let

R;(\) = rank B} and R; = Max {R;(\) : X € g*}.
Definition 3.5. A linear functional A € g* is called generic if R;(\) = R; for alli,1 <i < N.

Let U = {\ € g* : \ is generic }.
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3.1 Orbit method on stratified Lie group of step two

Example 3.6. Consider the free 2-step stratified Lie groups fso = spang {X;,..., X¢} with

nontrivial brackets
(X4, X5] = X1,  [Xy, Xg] = Xo, [X5, X6] = Xs.

6
Thus 3 = spang { X1, Xo, X3}. Let A = > N\, X € g*. Then

=1

000 O 0 0

000 O 0 O

000 O 0 0
By =

000 O Al Ao

00 0 =X 0 X5

000 =X =Xz O

Thus Rl()\) = RQ()\) = Rg()\) = OR4<>\) =1if l>\ 7é 0 or )\2 7é 0.

2 if A1 #£0
Rs(A\) =
Oorl A =0
and
2 if Ay # 0
Rg(N) =

Oor2 ifA; =0
Thus Ry = R =R3=0,R; =1,Rs = Rg = 2. Hence U = {A € g*: \y = A (X3) # 0} and 4,5

are jump indices.

Remark 3.7. If A € g* is such that B, is an invertible matrix, then r, = 3 and then 1,... n are
jump indices and then
U= {/\ € g* : By is an invertible matrix}.

Clearly, if codimension of 3 in g is odd then this cannot happen. Following [MW73| and
[MRI6|, we call the 2-step nilpotent Lie algebras, Moore-Wolf algebras (MW algebra) if there
exist A € g* such that B, is non-degenerate (or the corresponding matrix is invertible ). It is
obvious that Heisenberg algebras and Métivier algebras are MW algebras. Recall that a set
U C R™ is Zariski-open if it is a union of sets {x € R™ : P(z) # 0}, where P is a polynomial.
Remark 3.8. Since for any A € g%, we have Ad,A[; = A, we get R;(\) = Ri(Ady\), 1 <i < N

and hence,

(i) U is a G-invariant Zariski open subset of g*. So U is union of orbits.
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3 Harmonic analysis on stratified Lie groups of step two

(79) If j is a jump index for some \ € U, then j is a jump index for all A € U.

(77i) Let A € U, then the number of jump indices for A is the same as the dimension of O,
(as a manifold). For, the rank of the matrix B, is equal to the number of jump indices
(= 2d) and the dimension of the radical r, is the nullity of the matrix of B, which is

N — 2d. Since g/ is diffeomorphic to O, (see |[CGI0]), we have dim O, = 2d.

(1v) Every orbit in I is of maximum dimension though every maximum dimensional orbit may

not be in U.

Our aim is to parametrize the orbits in 4. We will see that they constitute a set of full

Plancherel measure. We again describe some notation
T={ny,..np,n+1,--- n+m} C{l,..., N} is the complement of J in {1,..., N}
Vy =spang {Xj;, : 1 <i<2d,j € J},

Vr = spang {Xn,, Xni1, -y Xpgm 1 1 <i <ryn; € T},

Vi =spang {X,..., X} },
Vi =spang {X;  Xr (.., X in €T},

Vi = spang { X, :n; € T}.
The following theorem shows that there exist a vector subspace of g* which intersects almost
every orbit contained in U at exactly one point (see [CG90]). In the two step case one can easily

prove it using Theorem [3.1] (see |[Ray99]). We give the proof for convenience here.

Theorem 3.9. (i) V' intersects every orbit in U at a unique point.

(73) There exist a birational homeomorphism ¥ : (VENU) x V; = U.

Proof. (i) Let A € U. We first try to describe 7. Denoting by p;(A) the i-th row of the matrix
By, every vector pp,(\),n; € T, is a unique linear combination of j,-th rows of By,1 < s < 2d

that is
2d

Pns(N) =Y cl(N)p. V),

s=1

where the scalars ¢(\) depend rationally on A, in fact they depend only on A[;. Also if js >
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3.1 Orbit method on stratified Lie group of step two

2d
=D ) (M (X5, X)) A (X, X))
s=1
2d 2d
- (A ([Z ci(A)st,X1]> A ([Z cz<A>st7Xn1>) .
s=1 s=1
So
2d 2d
<)\ ([Xn - ZCQ(A)X]-S,XID LA ([Xn - ZCZ(A)XJ-S,X”] )) =0.
s=1 s=1
_ 2d _
Hence X,,, = X,,, — > ¢}(A)X;, € #x. Since {X,, : 1 <i <r} are linearly independent vectors
s=1

in 7, we have 7\ = spang {Xm 1< < 7’}. We need to exhibit a unique A € V& (that is,
A(X;,) =0,1 < j <2d) such that A € Oy; so A has to satisfy ry = r5 and ’m = 5\‘ B
X
We define 5\‘3 = A |, For any such A

2d
s = I'x = Spallp {Xm B Zci()‘>staXn+1 s 7Xn+7m 1< j < T} :
s=1

We also define

and
X)) = A(Xo) = SOEMA (), 1<i<r

Thus A |ry = A|7x. So A € O,.
Suppose there exist A’ € g* such that ' (X;,) = 0,1 < ¢ < 2d and ry = ry, with
N |ry = A7y, Then X|; = A|; = A|;. Now for all i, 1 <i <,

2d
N (Xm) =\ (Xm - Z CZ5<A)XJ5> as \' (ij) =0

s=1

2
— (an. - ZC@(}\)X]'S> as \

s=1

SV )\‘

X

=\ (X,,) by definition of ).
This completes the proof of (7).
(i7) Let (Ar, A\y) € (Vr NU) x V; where

N T 2d
Av =Y NXT D A XL and A=) A XD
i=1

i=n+1 i=1
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3 Harmonic analysis on stratified Lie groups of step two

Since Ay € U, there exist constants ¢’ ()\T) = ¢ (Ans1, - -+ Anam) such that

f,\T:spanR{ Zc At - n+m)st:1§2'§r,=}.

Now we define ¥ by putting
U A, A) (Xi) =N, n+1<i<n+m,

U (Ar, Ag) (X)) =2y, 1<i<2d,

U (Ar, Ar) (Xn,) = A, + Z Atts - Angm) Aj-
As
2d
Tw(Ar,\;) = SPang {Xm - Zc@ (Antts ooy Angm) Xj, 11 < < 7’} = Txps
s=1
and

2d
U (A, Ag) (Xni - Z Ci (Antts e o5 Angm) st>
s=1
2d

)\m+z Aty o Angm) Ay = D a5 Anm) Ay,

s=1

=Ar ( ng Z C n+17 s n—i—m) st) )

it follows that U (A, A\;) € Oy, CU. Thus ¥ is well defined. It is easy to describe U1 : Y —
(ViNU) x Vy. Let A € U with A\(X;) = Ayn+1<i <N, ANX,,) =\,,1 <i<rand
AX;) = A0 <i<2d. Then W1(A\) = (A, \)) is defined by the conditions

)\N ni = nZ ZC n+17-~- n+m> )\jsa 1<:< T,

A (X)) =2, 1<i<2d
Clearly W is birational. This completes the proof. n
Example 3.10. Let G = F3,. Then n = {1,2,3,6},J = {4,5}, U = {A €f5,: A\ = A (X1) #
0}, VinU = {)\ Ef5o M =AX1) # 0 M= A(Xy) =X =A(X5) = 0}, ny, = the first jump

index outside center = 6.

A A
(A1, A2, Az, Ao) s (A, As)) = (Al,A2,A3,A4,A5,Aﬁ Tt A—%) ,
1 1
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3.1 Orbit method on stratified Lie group of step two

where, as before (A1, A2, A3, Ag) € ViFNU and (Ayg, A5) € V.

Remark 3.11. For each coadjoint orbit in U, we choose their representatives from V;NU. Notice
that V;: N can be identified with the Cartesian product of V;i and a Zariski open subset A of
3%, where A = {A € 3*: Ri(\) = R;,n+1<i<n+m}. In the next section our aim will be to
construct irreducible unitary representations corresponding to elements in V; NU by the orbit

method of Kirillov. In particular, we will identify f/:ﬁ with R* in the following for simplification.

3.1.2 Polarization and unitary representation

In this section, we first give a brief discussion of Kirillov theory, for details see |[CG90| and
then we use it to the 2-step stratified Lie group. All the results in this section can be found in
[Ray99).

Let G be a connected, simply connected stratified Lie group with Lie algebra g. G acts on
g* by the coadjoint action. Given any X € O,, the coadjoint orbit of A, there exist a subalgebra

by of g which is maximal with respect to the property
X ([hy, ba]) = 0. (3.2)
Thus we have a character x : exp (hy) — T given by
xv(exp X) = e X € by,

here we omit 27 for convenience.

Let my = indg(p(hy) X (induced representation). Then
(1) 7 is an irreducible unitary representation of G.

(2) If B’ is another subalgebra maximal with respect to the property X ([’,5’]) = 0, then

indg(p(h/)X)\ = indg(p(b/)x/\/
(3) m\, = my, if and only if A\; and Ay belong to the same coadjoint orbit.
(4) Any irreducible unitary representation 7w of G is equivalent to 7, for some \ € g*.

So we have a map k : g*/Ad"(G) — G, which is a bijection. A subalgebra corresponding to
A € g, maximal with respect to (3.2)) is called a polarization. It is known that the maximality

of b with respect to (3.2)) is equivalent to the following dimension condition

1
dimbh = 3 (dim g + dimr,).
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3 Harmonic analysis on stratified Lie groups of step two

Now suppose g is a 2-step stratified Lie algebra and A € g*. The following technique for
construction of a polarization corresponding to A, seems to be standard: we consider the bilinear
form By on the complement of the center, we restrict By on its nondegenerate subspace, then on
that subspace one can choose a basis with respect to which B, is the canonical symplectic form.
With a little modification the basis can be chosen to be orthonormal as well. This is essentially
what was done in [BJRIO0; [MRI6; Par95|. We will set down the basis change explicitly follows
from [Ray99|:

Lemma 3.12. Let B : R" x R"™ — R be a nondegenerate, alternating, bilinear form. Then
there exist an orthonormal basis {X;,Y; 11 <i <d} of R" such that B (X;,Y;) = 4, ;n;(B),

B(X;,X;) =B (Y;,Y;) =0,1 <14,j <d,n=2d where +in;(B) are eigenvalues of the matric

of B. Moreover, we can write n; < mp < -+ < np,.
As a consequence we have the following result.

Corollary 3.13. Let A\ € g*. Then there exist an Jacobian basis
LX), Xa), i Ya), BN, Re ) TN, TV}, (33)

of g such that

(i) rn =spang {R1(A),..., Rk(A), Ta(N), ..., Tn(N)}.

(i1) AN, Y (N)]) = 8y (V). 1 < i, < d and

A[XG(A), X;(N)]) = A([Yi(A), Y;(N)]) =0, 1 <d,j < d.
(27i) spang {Y1(A),...,Ya(A), Ri(N),..., Re(N), T1,...,Tn} = b is a polarization for \.

Proof. We choose a basis B ={X1,..., X, Xn11,..., Xy} (N =n+m) of g such that

Spallg {Xn+17 s 7X7L+m} =3

We define the Euclidean inner product on g such that B is an orthonormal basis. Let \ € g*
and suppose dimry, = m + k and dim Oy = 2d = N — m — k. We get hold of

2d
T'x = Spallg {Xn-i-la s 7Xn+m7Xni = an - Zci()\)sta 1< < k} .

s=1

We use Gram-Schmidt orthogonalization on 7 to get an orthonormal basis
(R, ReO), TV, TN}
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3.1 Orbit method on stratified Lie group of step two

On ry, the orthogonal complement of 7y, By is nondegenerate. By Lemma we get an
orthonormal basis {X;(\),..., Xa(A\),Yi(N),...,Ya(A\)} of 7+ such that X ([X;(N),Y;(N)]) =
iy (Ba) and A ([X,(0), X;(0]) = A ([Yi(A), Y;(\)]) = 0. T we define n; (By) = n;(A), 1 < j < d
then (7) and (i7) follow. (ii7) follows by observing that b satisfies and the dimension

condition. n

Remark 3.14. we call the above basis an almost symplectic basis. Civen X € g and a basis

(13.3]) we write
d d k m

X = 5X;0) + D> 5N+ ) RN\ + > TN = (z,y,7,1).

7j=1 j= 7=1 7j=1

Since we are going to use induced representations we need to describe nice sections of G/H
and a G-invariant measure on G/H. In our situation we will always have that H is a normal
subgroup of G. We identify G and g, via the exponential map. Let hh be an ideal of g containing
3 and H = expb.

We take {X7,..., X4, Xgi1, -+, Xn} a basis of g such that

3 =spang { X411, .-, Xosm}, b=spang {Xgi1,...,Xn}.

If Ly(z) = ¢g~'a and R,(x) = zg,2,9 € G, then it is clear from the group multiplication that
the Jacobian matrix for either of the transformations is upper triangular with diagonal entries

1. Thus we have the following lemma whose proof can be found in [CG90].

Lemma 3.15. Let {Xy,..., Xy, Xgi1,...,Xn} be a basis of g. Then

(1) dxy...dxy is a left and right invariant measure on G.
(77) 0 : G/H — G given by

, <exp (th) H> - (ztx>

(i73) dxy...dxaq is a left G-invariant measure on G/H.

is a section for G/H.

Now we come to the construction of representations corresponding to A € Vi NU. Let
dimry =m + k and dim Oy, = 2d, so m + k + 2d = N. We choose an almost symplectic basis
(3.3) of g corresponding to A and get hold of b, as in Corollary On H, = exp (h)) we

have the character x, : Hy — T. Let 7, = imdgA Xx- We do not use the standard model for the
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3 Harmonic analysis on stratified Lie groups of step two

induced representation as given in Chapter 2 of |[CG90|, rather using the continuous section o

given in Lemma [3.15] and computing the unique splitting of a typical group element

1
(x7 y’ r? t) = (x7 07 07 0) <O7 y7 T’ t - 5[(3:? O? 07 0)7 (O? y? r? O)])

corresponding to o, the representation 7 is realised on L? (]Rd) and is given by

i<>\(t)+>\(7‘)+§l 772'()‘)(%?}1’337;+£iyi)) (3.4)

(ma(z,y,m ) f) (§) feLl?(RY) =e fE+a)
for almost every ¢ € R% At this point we indulge ourselves a little to stop to show that,
for 2-step stratified Lie groups, the Kirillov theory can be totally bypassed. The conclusions
(3) and (4) listed at the beginning of the section can be reached through a straight forward
application of the Stone-von Neumann theorem. This fact is most likely known to experts, our
justification for including it here is that we know of no source pointing it out clearly.

Suppose 7" is an irreducible unitary representation of G acting on the Hilbert space H,-,
with the condition that 7/(exp X) = ¢*¥) where X € 3 and A € 3*. As before we get hold of
an almost symplectic basis (note that 7, is actually determined by A |;). We again write
elements of the Lie algebra and the group as well by (x,y,r,t). Then it is easy to show that 7’
has to satisfy the following properties:

(a) ©'(0,0,7,0)7’ (0,0,71,0) = 7' (0,0,7 4 r1,0),
(b) «'(0,0,7,0)7'(x,y,0,0) = «’'(x,y,0,0)7’(0,0,7,0),
(c) ©'(0,4,0,0)7" (0,41,0,0) = 7' (0,4 + 1,0, 0),

(d) 7'(x,0,0,0)7 (21,0,0,0) = 7' (z + x1,0,0,0),

d
iy wyini(N)
(¢) ®(x,0,0,0)7(0,4,0,0) = ¢ =" 10, .0,0)7(x, 0,0, 0).

From (a) and (b), it follows by Schur’s lemma that,
7'(0,0,7,0) = ") v € spang {Ry(N), ..., R(\)}".
By (c) — (e) and Stone-von Neumann theorem #, is unitarily equivalent to L? (R?) and

(n(,0,0,0)f) (€) = f(§ +2), [feL*(RY),

d
i3 &yini(N)

(7'(0,9,0,0)f) (§) =e = f8),
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3.2 The Fourier analysis

for almost every & € R%. Then by using the fact that
<I7 y? r? t)
1 1
= (x,0,0,0)(0,y,0,0)(0,0,r,0) (0,0,0,t — 5[(0,0,7’, 0),(0,4,0,0)] — 5[(O,y,'r’, 0), (a:,0,0,0)]>

we get that for almost every ¢ € R?

)

(7' (z,y,r,w) f) (§) =e
If v =X |spang {(Ri(),....r-(n)} then it follows from (3.4) that 7" = indgA Xx where X' € g* is such

Do)+ 35 g+ D S5 meimi(3)
i=1 i=1 f(é _|_ x)

that

A" Jspang X1 (1), v ()= 0.
We have noted above that every unitary irreducible representation of G is of the form (3.4)).
The assertion about equivalences among the representations now is an immediate consequence
of the uniqueness of the Stone-von Neumann theorem (see Section 3.4). For, if 7, and ), are
given by (3.4), then the analysis (a) — (e) on 7, and 7, would show that 7, = m,, if and

only if A; and Ay belong to the same coadjoint orbit.

3.2 The Fourier analysis

3.2.1 Irreducible unitary representations

In this section, we first rewrite the results above by a more analysis language, and then we give
some examples for 2-step stratified Lie groups to describe the explicit construction of irreducible
unitary representations.

Let G be a two step connected simply connected stratified Lie group so that its Lie algebra
g has the decomposition g = g; @ go, where go is contained in the center of g and g; is
any subspace of g complementary to go,. We choose an inner product on g such that g; and
g2 are orthogonal. Fix an Jacobian basis B = {X1, Xo-+- , X,,, X101, -+, Xogm ) so that g1 =
spang { X1, Xo -+, X, } and go = spang {X,,11, -+, Xsum } - Since g is nilpotent the exponential
map is an analytic diffeomorphism. We can identify G with g; @ go and write (X + 7T') for
exp(X 4+ T') and denote it by (X,T) where X € g; and T' € g. The product law on G is given
by .

Now, given A € R™, we define the matrix B € M, (R) as follows. For any Z,Z' € R",
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3 Harmonic analysis on stratified Lie groups of step two

there holds
\o(2,2"))y=(2,BY .- 7).

If (¢1,...,tm) denotes an orthonormal basis of R™, we also define By € M,,(R) by
(th,o (Z,2")y =(Z, By - Z").

Then for A = > Agig, we get
k=1

BW — Z M\ By
k=1

Conversely, the map o may be defined from (By,) thanks to the equality

1<k<m
o(Z,2") = ((Z,By,- Z,>)1§k§m'

Notice that the map A — BW is linear, with its image spanned by (Br)1<pem - As BW is an

antisymmetric matrix, its rank is an even number. We define the integer d by

2d := max rank BW.
AER™

The set A = {)\ € R™ | rank BW = Zd} is then a nonempty Zariski-open subset of R™. We

denote by k the dimension of the radical 7y of BMN. If ry = {0} for each A\ € A, then the Lie

algebra is called an MW algebra and the corresponding Lie group is called an MW group. In

this paper, we will only consider G to be a 2-step stratified Lie group without MW-condition.
For

(X, T) = €eXp (Z [L’ij + thXn+j> s l‘j,tj S R,

j=1 j=1

the map

n m
(ZL’l,’ .- ,xn,tl s ,tm> — Zl’ij + thXn+j
j=1 j=1

— €xXp (Z l’ij + Z thn—l—j)
j=1 j=1
takes Lebesgue measure dx - - - dx,,, dty - - - dt,, of R"™™ to Haar measure on G. Any measurable

function f on G will be identified with a function on R™*.

Therefore, there exists an orthonormal basis
(X1(A)y o, Xa(N), Yi(A), o, Ya(A), Ri(A), ..., Re(N))
and d continuous functions
niR™ SRy, 1<j<d
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3.2 The Fourier analysis

such that B reduces to the form

0 nA) O
—n(A) 0 0 | € Mu(R)
0 0 O
where
n(A) i= diag (m(A); - -, ma(A) € Ma(R)
and each 7;(A) > 0 is smooth and homogeneous of degree 1 in A = (A,--- , \,,) and the basis

vectors are chosen to depend smoothly on A in A. Decomposing g; as
g1 =P Dy DTy
with
py = spang (X1 (A),..., Xa(N)), qx :=spang (Y1 (A),..., Yi(N)), vy :=spang (Ri(N), ..., Rk(N)).

Then we have the decomposition g = p, B q Dty Pge. We denote the element exp(X+Y +R+T)
of G by (X,Y,R,T) for X € p,,Y € qy, R € t)\,T € go. Further we can write

(X,Y,R,T) = Z 2 (A)X;(A) + Zyj(A)Yj()\) + Z ri(A)R;(A) + Z t;T}

and denote it by (x,y,r,t) suppressing the dependence of A which will be understood from the
context.

For (/\7V7w) in A x R¥ x RY with
w=(z,y,r,t) e RTGRI P R* § R™ = RV,

we define the irreducible unitary representations of RY (we will prove this fact in Section 3.4),

equipped with the group law of the nilpotent group defined above, on L? (Rd)
m k d 1
(map(w)e) (§) = exp (l DNt iy v Ai > n(V) <yj§j + 5%‘%‘)) o€ + )
j=1 j=1 j=1
d
i > (V) (vs€&5+525v;)

— €i<'/77‘>6i<)‘7t>6 j=1 ¢(€ —+ aj)

3.2.2 Examples

Let us give a few examples of well-known stratified Lie groups with a two step stratification:
The Heisenberg group:

The Heisenberg group R? is defined as the space R?*! whose elements can be written
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3 Harmonic analysis on stratified Lie groups of step two

w = (x,y,s) with (z,y) € R? x R? endowed with the product law
(z,y,8) - (20, 8") = (@ + 2",y +0/ s + 5" = 2, y) +2(y, 7))
where (-, -) denotes the euclidean scalar product on R. In that case the center consists of the

points of the form (0,0, s) and is of dimension 1. The Lie algebra of left-invariant vector fields

is generated by

1
Xj =0y, +2y;0,, Y;:=0, —2x;0, for1<j<d; S:=0,= 2 Y;, X;].

Regarding the choice of suitable bases, let (21, ...,Z4,1,...,%4) be a basis of R?? in which the

matrix of o, assumes the form

0 Iy
€ M2d<R).

—I; 0
For A > 0, we choose (z1,...,Z4,Y1,...,Yq) as a basis of R* while for A < 0 this choice
becomes (y1,...,Y4, Z1,...,2q). Hence, for any A € R*, we have, as desired,

0 4|\,
BW = Al € My (R).
—4|\|1y 0

Its radical reduces to {0} with A =R*, and |n;(\)| = 4|A| for all j € {1,...,d}.
H-type group:
These groups are canonically isomorphic to R"™™ and are a multidimensional version of the
Heisenberg group. The group law is of the form
(20, 2®) - (yV,y@) = . (2)$§1)1+ yj(il)’ - j=1...,n
L + Y +§<:U( ), UFEy )>, k=1,...,m

where UU) are n x n linearly independent, orthogonal, skew-symmetric matrices satisfying the
property

Uy + UGS ym = o

for every r,;s € {1,...,m} with r # s. In that case the center is of dimension m and may be
identified with R™, and the radical of the canonical skew-symmetric form associated with the
frequencies \ is again {0}. For example, the Iwasawa subgroup of semisimple Lie groups of split
rank 1 (see |[Kor85|) is of this type. On H-type groups, n is an even number, which we denote

by 2[, and the Lie algebra of left-invariant vector fields is spanned by the following vector fields,
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3.2 The Fourier analysis

where we have written z = (2,9y) in R x Rt : for j=1,...,land k =1,...,m,
1 m 2l 1 m 2l
Xy =, S o, Vim0, + 130S e, wa o,
k=1 I—1 =1 I=1

In that case, we have A = R™\{0} with 7;(A) = /A2 + -+ X2, forall j € {1,...,1} .
Diamond groups:

These groups, which occur in crystal theory (for more details, see [Lud95; |Pog99|), are of the
type ¥ x H?, where ¥ is a connected Lie group acting smoothly on H?. One can find examples
for which the radical of the canonical skew-symmetric is of any dimension k£, 0 < k < d. For

example, one can take for ¥ the k-dimensional torus, acting on H? by
O(w):=(0-2,s):= (eielzl, e €0 e 2k, 2, s) , w=(z,9)

where the element § = (6y,...,6;) corresponds to the element (e, ... e?*) of T*. Then the

product law on G = T* x H? is given by
(6, w) - (¢, w') = (0 + 0, w- (6 (w)))

where w. (6 (w')) denotes the Heisenberg product of w by 6 (w'). As a consequence, the center
of G is of dimension 1 , since it consists of the points of the form (0,0, s) for s € R. Let us
choose for simplicity £ = d = 1; the algebra of left-invariant vector fields is generated by the

vector fields 0y, 05 'y, and 'y, where
Iy, = cos00, + sin 00, + 2(y cos — xsin 6)0;,

Iy, = —sinf0, + cos 80, — 2(ysin 6 + x cos )0;.
It is not difficult to check that the radical of B) is of dimension 1 . In the general case, where
k < d, the algebra of left-invariant vector fields is generated by the vector fields 0y, the 2(d — k)

vectors
Xl = 811 + 2ylas and }/l = 8yl — leas
and the 3k vectors defined for 1 < j < k by dp,, 'y, », and Iy, ., where

Ly, 2, = c0s0;0,, + sin6;0,, 4 2 (y; cos 0 — x;sin 6;) s,

7

T,

7-Y35

= —sin6;0,, + cos 0;0,, — 2 (y;sin0; + x; cos 0;) O,
and this provides an example with a radical of dimension k.
The product of Heisenberg groups:

Consider H® @ H, the set of elements (w;,w;) in H" ® H% that can be written as
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3 Harmonic analysis on stratified Lie groups of step two

(wy,wa) = (1, Y1, 1, T2, Yo, S2) in R21FL x R22F1 equipped with the product law
(wi, w2) - (wh, wh) = (wr - wh, w - W)

where w; - w] and w, - wh denote the product in H% and H<, respectively. Clearly H%  H4
is a 2-step stratified Lie group with center of dimension 2 and radical index null. Moreover, for
A = (A1, A2) in the dual of the center, the canonical skew bilinear form B(\) has radical {0}
with A = R* x R*, and one has n;(\) = 4|A1| and na(N\) = 4 |Aa].
The product of H-type groups:

The group R™1+P1 @ R™2+P2 jg easily verified to be a 2-step stratified Lie group with center of
dimension p;+ps, radical index null and a skew bilinear form B(\) defined on R"™ ™2 with m; =
2l; and my = 2l5. The Zariski-open set associated with B is given by A = (RP*\{0}) x (RP2\{0})

and, for A = (A1,..., Ay, 4p,), We have

Ni(A) = /AT +---+ A2 forall je{l,...,01},

ni(\) = \/A;H bk A2, forall e {l+ 1,0+ 1}

3.2.3 The Fourier transform

The stratified Lie groups being noncommutative, then the Fourier transform on G is defined
using irreducible unitary representations of G. We devote this section to the introduction of

the basic concepts that will be needed in the sequel. For (\,v,w) in A x R¥ x RN with
w=(z,y,7,t) ERTOR! P R* o R™ = R",

we define the irreducible unitary representations of RY, equipped with the group law of the

nilpotent group defined above, on L?* (R?)

d
, . i 32 (N (y5€5+352595)
(WA,u(b) (f) _ ez(u,r)ez()\,t>e = J iSiT2%5Y5 ¢(f n :L‘)

In the case of the first Heisenberg group H', we have k = 0 and n(\) = d = m = 1; hence, for
& x,y,) € Rand ¢ in L*(R), we have

(mro) (€) = eMH(ETE)) g 4 )

which, up to a factor of —27 in front of the x variable, the well-known formula for the Heisen-
berg’s representations found e.g. in [BCD19; BFKG12].
With these notations, the Fourier transform of an integrable function of G is defined as

follows:
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3.2 The Fourier analysis

Definition 3.16. The Fourier transform of the function f € L'(G) at the point
(\v) €A xRF
is a unitary operator acting on L?(G) with

‘F(f)<)‘7 V) = (f()\> V) = /Gf(w)w,\y,,(w)*dw.

Here 7y, (w) are the Schrodinger representations and the integral is a Bochner integral

taking values in the Hilbert space L? (R?) . If ¢ is another function in L? (R?), then

(FOnv)p.0) = / £ (w) (s (w) 0, ) dw.

Since 7y, (w) are unitary operators, it follows that

|(mx (W), ) < llpllaflo]]2

and consequently

A

[(FO e, ) < llellzllvll2l £

This shows that f (\,v) is a bounded operator on L2 (]Rd) and the operator norm satisfies

£\ )| < [|f]li. In summary, we have the following proposition:

Proposition 3.17. The Fourier transformation is continuous in all its variables, in the fol-
lowing sense.
o For any A € A and v € R¥, the map
FO)Av): LR — L (L* (R7))

18 linear and continuous, with norm bounded by 1.

e For any u € L* (RY) and f € L' (R?), the map
F(HC ) (u) - A x RF — L (RY)

1S continuous.

Further, the Fourier transform can be extended to an isometry from L?*(G) onto the Hilbert
space of two-parameter families A = {A(\,v)}(\)eaxrr Of operators on L? (Rd) which are
Hilbert-Schmidt for almost every (A, v) € A x R¥ with HA()\?U)”HS(LZ(RCI)) measurable and

with norm

2

IA] == (//AXWRHA(A,U)HgS(LQ(Rd)) Pf(A)dud)\) < o0,
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3 Harmonic analysis on stratified Lie groups of step two

d

where £ > 0 is a constant depending only on the choice of the group, Pf(\) := [] n;()) is the
j=1

Pfaffian of B®). We have the following Fourier-Plancherel formula:

Proposition 3.18. There exists some constant k > 0 depending only on the choice of the group

such that, for any f € L'(G) N L*(G), there holds

/G ) = | /A IFO ) rs(as(eey) PENI A

Proof. The proof is standard as in |[CG90; Ray99|, we provide proof for completeness. We
recall, for (A, ) € A x R¥, we get hold of an almost symplectic basis ([3.3)) and because of the

orthonormal basis change, d:z:dydrdt is the normalized Haar measure, where

d k m
(z,y,7,t) = le i)+ uYi(N) + > R\ + Y 4T
i=1 i=1 i=1

Let )\|3 = (A1,.. ., A\p) and A \spanR{Rl(A) R0 = (V1,...,14) and dv = dv ... dvy, denotes the

.....

usual Lebesgue measure on R¥. We first prove the following results:

o [ IFOOD N ey PO = [ B @i A dadyd
Rk R2d+k

(3.5)
where
i Mt
Fif (9,71, Thy My ey A) = K flzyy,ry, .o rety, o tm) e =0 dty L. dty,
Rm
and A (T;) = A\, 1 <i < m. Let ¢ € L? (Rd) . Then from ({3.4))
F(HNv)9(E)
= [ 5y Om0l€ + a)dodydrds
RN
:/ f(x,y,rt)e e it o= i(n(V)-(6+5e >¢(§+x)dxdydrdt
R2d+k+m
d d
. . —i > nj(Nyi&i—iz > ni(N)(@—&5)y;
- / =gy et e ST ST o) dudydrdt
R m
E SRV IS SR
) . —ig 2 ni(Nzjyi—iz 3 1j(NEy;
- /2d+k+ f(x - &y, t)eil@ﬂeil()\’we KR . ¢($)dxdyd7’dt
R m
d
. . —ig > (2+€)n;(N)y;
N / oSGy e e e ¢(x)dxdydrdt.
R m
Let
LS @m0
. . —iy z;+E5)N;
K(x,6) = / fl@ =&y e e e 2 Y dydrat.
Rd+k+m
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3.2 The Fourier analysis
Since f € L'(G) N L*(G), it follows that K € L? (R? x R?). Then

_ T+ Tq+
K(z,8) = k' Fosuf ($—§a . 5 61771()\)>-~, d2 édnd(/\)ayh---aan/\l,---;)\m)

where Fa34 stands for the partial Fourier (Euclidean) transform in the variables y, 7, t. Thus

F(f)(\,v) is a Hilbert-Schmidt operator on L? (R?) with the kernel K (z,&). If we do the
change of variables

xi;&mk),l <i<d

U;

then the modulus of the Jacobian determinant is |7, () ... 74(\)| and the above integral reduces
to

K1 Im(A).. .nd()\)|_1 </2d | Fosaf (u, 0,01, .o Vpy Aqyee s )\m)|2dudv>
R

where u = (uy, . .

,uq) and v = (vy,...,vq) . By applying the Euclidean Plancherel theorem in
the variable u we get

IFEOOD sy =5 1) o) [ 1Fiaf (001,00 A M) dude

If we integrate both sides of the above equation on R* with respect to the usual Lebesgue

measure and use change of variables by the map ¢ defined by

R2d

¢:R¥ - RF
(3.6)
O Mgy ) = (V1,0 0).
We need to find the modulus of the Jacobian determinant of ¢, which states:
Claim:
Pf(A
|det J,| = [PE)

mA)m(A) - na(A)
where Jy is the Jacobian matrix of ¢.

We restrict ourselves only to the complement of the center, because it is there that the
change of basis takes place. We define

Ap {Xl,XQ,...,Xn} — {le,...,Xde,an,...,Xnk},
A2:{le,...,XJQd,Xm,...,Xnk}—>{le, , % %

. Xj%,Xm,...,Xnk},
A3:{Xj1,...,X- X

J2dr “Yniy - - ,Xnk} — {Xl()\>a c. 7Xd(/\)71/1(/\)7 SR 7YVd(>‘)’R1<)\)’ o ’Rk(A)}’
where an == Xn.b - Z Cé(l)Xjﬂ

1 <i < k. A;isjust a rearrangement of basis and hence is
s=1

given by an orthogonal matrix. A, is clearly given by a lower triangular matrix with diagonal
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3 Harmonic analysis on stratified Lie groups of step two

entries equal to one. The matrix of Az looks like
A C
0 D
where A’ is a k x k matrix, C" is a k x 2d matrix and D’ is a 2d x 2d matrix, because Az is

obtained from the following operations:
(1) Gram-Schmidt orthogonalisation of {f(n 1< < k}
(77) Finding the orthogonal complement of the span of {f(n 1 <i < k}

(#7i) Choosing an almost symplectic basis on the nondegenerate subspace of B,

i

Notice that for A € Vi, A (X;,) = 0,1 < i < 2d; thus A (Xn) — \(X,,),1< i<k Hence
|det J,| = |det A'] .
Since |det A; - det As - det A3| = 1, we have | det As| = 1. But
|det Az| = | det A'|| det D'|.
So

|det J,| = |det D'| "

If we write B, in terms of the basis {le, RERD. €D, S ,Xnk}, then the matrix of By looks
like

00

0 Bj

where (B)),, = A ([Xj,, X,,]) . Thus clearly
|det BY| = | Pf(\) .

Because of A3 the above matrix changes to

0 0
0 D'B, (D"
which is nothing but the matrix in (3.6)). So

(A ... a(MV)] o m(A) - na(N)]
|det D'|* = = |det D'| = .
| PE(A)[? | PE(N)|
Thus
|det Jy| = | PEA)]

[ (A) - ma(N)]
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3.2 The Fourier analysis

as claimed.

Thus, we get

‘/gk\|Jr<f><x,1/>H§{S(L2<Rd))<1y1...¢jyk

_ ) ) o o
_|771()\) ( )| ’Pf( )| |~7:12f( y Uy 1y e ve k7>\17"-;>\m)| dudvdy.

R2d+k

Then by applying the Euclidean Plancherel theorem on the variables (v, ... 1) € R¥, we obtain

B3).
We integrate both sides of (3.5) with respect to the standard Lebesgue measure on R™ to

get

/Aka [F(f)A, V)”i]S(LQ(Rd)) | PE(N\)|dA

:AOWWAJHN%M%WWWMMWOMMJM

_“1/ (/ \Fuf (z,y,71, .. Tk,/\l,...,)\m)|2dxdydy> A\ ...d\,
R2d+k
_1/ / 1f (g, 71, Tt - b)) [P dedydrdt
m JR2d+k

by using the Euclidean Plancherel theorem in the outer integral. The last integral is, of course,

HfH%Q(G) and the proof is complete. O

Remark 3.19. The situation is simpler if we consider the case of MW groups. In this case

R¥ = () and the representation 7y is given by

d d
N+ &y (N +5 D ziym(A)

(ma(z, 9, 0)f) (§) =e = = flz+8),
where ¢ € RY, f € L2 (Rd) and dim g/3 = 2d. Then it follows from the calculations above that
1
- Na(A)| Jgee
Clearly |m1()\)...7na(N)| = | Pf(N)|, since B; is nondegenerate. The Plancherel theorem again

K Hf(f)(A)H;S(Lz(Rd)) =T, \Fsf (2,9, M, - - -5 Am)|* ddy.

follows. So the change of variables through the map ¢ is not needed for MW groups.
On the Heisenberg group H?, the Pfaffian is simply Pf(\) = |A|¢ and the value of & is known,

namely

2d—1
rd+1 '

K (Hd) =

In this context, we have an inversion formula as stated in the following proposition:

Proposition 3.20. For f € L* (]RN) and almost every w € RY, the following inversion formula
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3 Harmonic analysis on stratified Lie groups of step two

holds:

flw) = /{//A N tr ((ma,(w)) F(f)(A, v)) PE(A)dAdv

with the same constant k > 0.

Finally, the Fourier transform exchanges as usual convolution and product, in the following

sense.

Proposition 3.21. For any fi1, f» € L' (RY) and (\,v) € A x R*, we have, denoting by - the

operator composition on L (L2 (Rd)),

‘F(fl*f2><)‘7’/):‘F(fl)()‘ﬂy>'f(f2)(/\7y)'

3.2.4 The sub-Laplacian operator

Let g be a 2-step stratified Lie algebra with a basis B as before. Now we consider elements of
g as left invariant differential operators acting on C*°(G), that is given X € g and f € C*(G),
the differential operator X acts on f by the rule

(XD = | flgespsX). (3.7

s=0
We define the sub-Laplacian of G by

L= —zn:Xf.
=1

It is a self-adjoint operator which is independent of the orthonormal basis (X7, ..., X,), and

homogeneous of degree 2 with respect to the dilations in the sense that
6y Loy = N°L.

To write its expression in Fourier space, we analysis the left-invariant vector fields as follows. Let
g be the Lie algebra of all left-invariant vector fields on G. For j =1,2,...,d,let v, ; : R = G
and 72 : R — G be curves in G given by

’}/1’]'(7') = (7'6]', 0, O, O)
and
Y2,5(7) = (0, 7e;,0,0)
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3.2 The Fourier analysis

for all 7 € R, where ¢; is the standard unit vector in R?. For all [ = 1,2,...,k and s =

1,2,...,m,let 73, : R = G and 745 : R = G be curves in G given by
7375(7') = (0, 0, TEL, O)
and

Yak(7) = (0,0,0, Tes)

for all 7 € R, where ¢; is the standard unit vector in R¥ and e, is the standard unit vector
in R™. Then we define the left-invariant vector fields X;,Y; and R}, T, 5 = 1,2,...,d,l =
1,2,...,k,s =1,2,...,m, on G as follows. Let f € C*>°(G). Then for all j = 1,2,...,d, we
define X; and Y; by

d
(Xjf) (x,y,r, t) = d_f ((x,y,r, t) ' Vl,j(T))
T =0
_ if + . t. + 1 (B ) "
— dr x TE€;, Y, T, s 9 sY, TEk YA
o) 1 « o)
= a_xjf(xuy7rv S) + 5 ; <B8y7€j> a_tsf(xui%ra S)
and
d
(Y;f) @@y, t) = —f((@,y,7,8) - 724(7))
T 7=0
d 1 "
— Ef (x, y+Tej,m | ts — 5 (x, TBij)) 51> .
0 “ 0
:a_yjf(xvyur75>_ ;(l’,Bk@j) a_tsf(xvyuras>

1
2 S
for all (x,y,r,s) € G. Similarly, for = 1,2,...,k and s = 1,2,...,m, the function R;f and

T, f are defined by

(Ruf) (.7, 0) = - F (G, 1) - 300(7)

7=0

d
= Ef(%y,T—f'T@z,t)

7=0

0
= t
a/’al (x7 y7 T? )

and

(1) (. 0) = < (7 1) - 0a(7)

=0

d
— Ef(x,y,’r,t—l—Tes)

=0

0
= atsf(%y,r,t)
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3 Harmonic analysis on stratified Lie groups of step two

for all (z,y,r,t) € G. We can easily check that

1« .
[Xi,Yj]:—ZZ(Bk)ist, i,j=1,2,...,N

s=1

and the other commutators are zero.

Theorem 3.22. The Lie algebra g is generated by { X;,Y;, Ry, [X;,Y;] :i,j=1,2,...,d,l=1,2,..

J

Proof. 1t is enough to show that
span {11, T5,..., T} = span{[X;, X;] : i, =1,2,....,d}

Let

and

[Xlayn]
[ X2, Y1
[ X, Ya

[Xda Yd]
Forl1<s<mand1l<i,j<d,let (Bk)ij be the entry of the matrix By, in the 7 th row and j

th column. Consider the d? x m matrix

(Bl)ll (B2)11 s (Bm)u
(31)12 (B2>12 T (Bm>12
O (Bi)ig (Ba)yy (Bm)1n
(Bl)21 (32)21 (Bm)21
(31)22 (32)22 (Bm>22
L (Bl)dd (B2)dd (Bm)dd ]
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Then CT = —Z. Since C has full column rank, it follows that there exists an m x d? matrix

(left inverse) D such that
DC =1

where [ is the m X m identity matrix. Therefore T'= —DZ. [

We can now define the sub-Laplacian £ on G by

d
L=-) (X}+Y}) ZRl
7j=1

Explicitly,

o 1, K2 N
L=—A,— A, —A, (val +[yl?) +ZZ{ Buyr€3) g + (o Bati) 5‘,%} ot,’

s=1 j=1

By taking the Fourier transform of the sub-Laplacian £ with respect to t, we get parametrized

AM-twisted sub-Laplacian £*, A\ € R™, given by
d

£ = 8= 8= Bt 3 (ol W) P =130 { = (%) 5+ (8% -
j=1 J Yj

where we use

BW = f: A\ Bs.
s=1

For j =1,2,...,d, we define the linear partial differential operators ZjA and Z;‘ by

=0, + @)\Z )iZjs

and
Z) =0, — 5iA > (B2
Then
d B . k
EINCEER AR
j=1 =1

1
=—-A.— A, + Z|z|2|A|2 —iN,

[\.')Ib—

where N is the operator
d
0 0
N = ZZ{ y,e] 8_xj+(x’B(A)ej)8_yj}'
J=1
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3 Harmonic analysis on stratified Lie groups of step two

3.3 (A, v)-Weyl transforms

In the standard formulation of quantum mechanics the probability density p(x) in position space

 is given by the square of the magnitude of the wave function, p(z) = [¢)(x)|*>. Thus knowing
Y (x) it is easy to visualize the distribution p(z). Obtaining the distribution in momentum p is

also straightforward. The wave function in p is found by

1 —ixp/h )dr =
o(p) = ﬁ/e hp(z)dz = (p, ),

where all integrations are understood to be over the entire space. The quantity |o(p)[?

gives
the probability density in the momentum variable. Although straightforward, the momentum
distribution is difficult to visualize if one only has ¢ (x). It would be desirable to have a function
that displays the probability distribution simultaneously in the x and p variables. The Wigner
function, introduced by Wigner in 1932 [Wig32| does just that. Wigner’s original goal was to
find quantum corrections to classical statistical mechanics where the Boltzmann factors contain
energies which in turn are expressed as functions of both x and p. As is well known from the
Heisenberg uncertainty relation, there are constraints on this distribution and thus on the
Wigner function.

When using Wigner functions the expectation values are obtained in conjunction with the
closely associated Weyl transforms of the operators corresponding to physical observables. As
shown in [Cas08|] the correct Weyl transform is critical for obtaining the spread of the energy
of a state; without it, the Wigner function is little more than a visual aid for understanding
quantum states.

In fact, the classical Weyl transform was first envisaged in [Wey50| by Hermann Weyl arising
in quantum mechanics. The theory of Weyl transform is a vast subject of remarkable interest
both in mathematical analysis and physics. In the theory of partial differential equations,
Weyl operators have been studied as a particular type of pseudo-differential operators. They
have proved to be a useful technique in a quantity of problems like elliptic theory, spectral
asymptotics, regularity problems, etc. [Won9g|.

What’s more, it is well known from [Won98| that Weyl transforms have intimate connections
with analysis with the so-called A-twisted sub-Laplacian and the Heisenberg group, and the
harmonic analysis there is a very well researched topic. Then in this section, we will study the
Weyl transforms and Wigner transforms on 2-step stratified Lie groups G, which should also

depend on these parameters and can help us to compute the sub-Laplacian and the A-twisted
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3.3 (A, v)-Weyl transforms

sub-Laplacian.

3.3.1 (), v)-Fourier-Wigner transform

In this section, we want to define the (\,v)-Weyl transform. As we have known, a basic tool
we use in the study of the (A, v)-Weyl transform is the (A, v)-Wigner transform. And now we
find it convenient to introduce first a related transform, which we call the (A, v)-Fourier-Wigner
transform.

Let p,g € R? and let A € A,v € R*. Then, for every measurable function ¢ on R%, the
function 7 (p, ¢)¢ on R? is defined by

d
i > 0 (A (pjzi+5p505)
7r’\’”(p, q)p(x) =e =t S e o(r+q), pqc R? (3.8)

where 7 (p, q) stands for 7y, (p, q,0,0).
Proposition 3.23. 7(p,q) : L*(R?) — L%(RY) is a unitary operator for all p and q in RY.

Proof. We only need to prove that

17,00l oy = Wl pageey, F € 22 (R

and 7™ (p, q) is onto for all p and ¢ in R%. Indeed, it follows from (3.8)) that
2

flz+q)| dx

d
i n; (V) (psi+5P545)
P

17 )y = [ |
- [ e+ s
Rd

— [ Ve
Rd
= Hinz(Rd)v f € L2 (Rd) )
for all p and ¢ in R%. To prove that 7 (p, q) is onto, we let g € L? (Rd) and define the function
f on R? by

d
—i > (AN (pjzi—5pi05)

f@)=c & gla—g), zER! (3.9)

Then f is obviously in L? (R?), and by (3.8) and (3.9),

d
i > ni(N(pizi+3pi4;)

(T (p,q)f)(x) = e = flx+q)
i _Xd) nj (N (pjzj+5pia;) —i Zd: 1j (M) (pj (2 +4;5) = 59;45)
= e =1 e =1 g(aj)
=g(z), x€R%
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]

Definition 3.24. For f, g € L* (R?), the (), v)-Fourier-Wigner transform of f and g is defined
by
Vau (£, 9)(p, @) = PEN)Z(2m) % (7 (p,0) £, g) .

where (,) is the inner product in L* (R?).

Remark 3.25. The (A, v)-Fourier-Wigner transform Vj , : S(R?) x S(R?) — S(R??) is a bilinear
mapping, and we have the following symmetric form
1 _d v
Vi (£, 9) (0, q) = PE(N)2(2m) 7> («™ (p,9) f, 9)

i 5 OV wi+ i) ——
ELETE gt

— PE(M\)F(21) % /R ey (:v + g) g <3: - g)das.

Moreover, it is easy to see that the (), v)-Fourier-Wigner transform is related to the ordinary

Fourier-Wigner transform by

Vi (f,9) () = V(f,9)(n(A) - p, q).

3.3.2 (A, v)-Wigner transform

Next, we introduce the (A, v)-Wigner transform and study some of its very basic properties.
The original Wigner transform W(f) of a function f in L? (Rd), introduced by Wigner in
[Wig32|, is a tool for the study of the nonexisting joint probability distribution of position and
momentum in the state f. To do this, we begin by computing the Fourier transform of the

(A, v)-Fourier-Wigner transform.

Definition 3.26. We define the Fourier transform by

(FA() ) = PEY)A 2 )3wj@kﬂgwwwﬂa yeR!

where A € A, f € L (Rd) and the inverse Fourier transform is defined by

.4
d i > m5(A)
2

(FH(0) @) =PEsEn)? [ f@e ="y 2 e R,

Theorem 3.27. Let f and g be in S (R?). Then

d

FWulfa) @8 =Prvten [ S o D) g (o= Da (310
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3.3 (A, v)-Weyl transforms

Proof. For any positive number ¢, we define the function 7. on R?? by

I.(2,€) =PI\ // Ol ) i

_ 7g / / / x eI e pHea—py) £ (y + g) g (y — g)dqdpdy
]Rd Rd Rd 2 2

i 3 m (N S Plsy? —
:Pf(/\)/ e A J/ el x M f (y—i— g) g <y— g)dpdy.
Rd Rd

2
(3.11)
Now, for each ¢ in R, we define the function F, on R? by
Fo(y) Zf(y+g>g<y—g>, y € R, (3.12)
Then, by and ,
I.(2,€) = PE(N) /R L (F, e g (2)dg, 7,6 € R (3.13)
where
0e(z) = % (77()\5) : :1:) , plz) = 6_#, r € RY (3.14)
Note that, for each fixed ¢ in R¢,
Fy % . — ( /R d go(:c)d:v) F, = Pf(\)(2m)2 F, (3.15)

uniformly on compact subsets of R? as ¢ — 0. Let N be any positive integer. Then, by (3.12)
and (3.14)), there exists a positive constant C'y such that

By % 02) ()] < Fyl e ) 9

= [ Fall g (me) oll 1 (e
sup

ol (rrg)elv=3)

<Onv(1+1a?) ™", zqeR,
for all positive numbers €. So, by (3.13)), (3.15) and (3.16]), and the Lebesgue dominated

d
2

< P£(\)(2r)

convergence theorem,

: _ 2 g =i 9 (Vg€ 4 _ 4 d
lim 1., €) = PE(\)?(2r)* /Rde ! f<3c+ 2)9(:10 2>dq, rE€RY (3.17)

But, using (3.11)) and again the Lebesgue dominated convergence theorem,

llmI x % Aepreay, , ,q)dpd

(#,§) = /Rd /Rd (2 9)(p, @)dpdg 18
= PE(N)2 (2m)" (F, (Vau(f, 9))) (2,€).

So, by (3.17)) and (3.18)),(3.10)) is valid. O
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3 Harmonic analysis on stratified Lie groups of step two

Definition 3.28. The (A, v)-Wigner transform W) ,(f,g) for all f,g € L? (Rd) is defined by

Wiu(f;9)(2,8) = (Fx (Vau(f, 9))) (2,€)

Theorem 3.29 (The Moyal Identity). For all fi, g1, fo, and g5 in S (R?), we have

Wi (f1,91) s Wi (f2,92)) = (1, f2) (915 92)

Proof. We define W : S (R*) — S (R*®) by

d
- 1 =i > mi(MN)gié;
(WF)(z,€) = PI(\)} (2r) / R CFE P P
R

for all F'in S (RZd). Then, by and the Plancherel theorem,
(Wh,WE) = / / (WE) (2,0 (WE) (z, €)dud
Re JRd
_ /R {/R <WF1> (z,€) (WFQ) (x,g)dg} dz
_ g,._41 4,4
_/]Rd {/RdFl <x+ 5T 2) F, <x+ 5T 2>dq}dx
_ g ,._1 4,4
= S /RdFl ("TJF 9 2) F <x+ 2" 2>dqu
for all F; and F5 in S (R2d) .Let u=2+1 and v = x — . Then, by , we get
<WF1,WF2> = / / Fi(u,v)Fy(u,v)dudv
Rd JRdA

= (F,B), F,FKeS(RM).

Now, let f1, g1, fo, and g» be in S (R?). Let F; and F be functions on R*? defined by

F1<U,U) :fl(u)ma U,UERd
and
Fy(u,v) = fou)ga(v), u,v e R?
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3.3 (A, v)-Weyl transforms

Therefore we have

Waw (f1,01) W (fa, 92)) = <
- /]Rd /]Rd Fy (u, v) Fy(u, v)dudv
Yoot

- ([ pwra) ([ a@unwa)

R WE) = (1, F)

I
SR

]
Corollary 3.30. W, : S (R?) x S (RY) — S (R*) can be extended uniquely to a bilinear
operator
Wy o L? (RY) x L* (R?) — L? (R*)
such that

W (f: 9l 2 gzay = 1 1] 2 (mea) |91 2 (o)
for all f and g in L? (Rd).
Corollary 3.31. The Moyal identity and preceding corollary are also true for the (\, v)-Fourier-
Wigner transform: For all fi, g1, f2, and g2 in S (Rd), we have

Vaw (f1,91) s Vaw (f2,92)) = (f1, f2) (91, 92)- (3.22)

3.3.3 (A, v)-Weyl transform

We can now introduce the (A, )-Weyl transform and explicate its beautiful connection with

the Wigner transform.
Definition 3.32. Let a be a function in the Schwartz space S (R?*?). For A € A and v € R,

we define W to be the (), ) -Weyl transform associated to the function a by

(WM g) = pf()\)%(zﬂ)*%(gﬂ)*dﬂ /Rd /Rd a(z, )Wiu(f, 9)(x, §)dzds

D=

= Pf(A)z(2m) "2 /R , /]R ) (Faa) (0, )V (f, 9)(p, q)dpdyq

=piven [ [ (Fa) ) (7 00 0) dps.

Thus we can also write
W = PE(A)(2m) ™ / ) / (F2a) (p, @) (p, g)dpdg. (3.23)
Rd JR
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3 Harmonic analysis on stratified Lie groups of step two

Theorem 3.33. There exists a unique bounded linear operator @ : L* (R*") — B (L* (R?))
such that

(Quif.g) =PENEem T [ [ alw OWa(s.g)(o. dode (3.21)
and
|Qall. < PE(A)2 (27) 2 lal] 2 geny (3.25)

for all f and g in L* (R?) and a in L* (R*), where || - || denotes the norm in B (L* (R?)).

Proof. Let a € S (R*!). Then, for any f in S (R?), we define (Qa)f by
(Qa)f =W2f.
Then for all f and g in S (]Rd), by (3.23]) we have

((Qa)f,g) = (Wi f,9)

1 ) (3.26)
_ P\ (20) / / alw, Wi (f, 9)(x, €)dade.
Rd JRdA
Therefore, by Theorem [3.29) and (3.26]),
(Qa) £, 6} < PN} (2m) sy 1TV ) 5 s
1 ) (3.27)
= Pf()‘>§(27>_§“a||m(u§2d) “fHL?(Rd)HgHL?(Rd)‘
Hence we have
1(Qa) Il 2 (ray < PEN)2 (27) 7 lall o gy 1 2
and
1Qall, < Pf(A)%(QW)_%HaHLQ(RM), a€S(R™). (3.28)

Now, let a € L? (RQd). Let {ax},-, be a sequence of functions in S (RZd) such that a; — a in

L? (R*) as k — co. Then, by (3.28),
|Qax — Qaill, < PE)2 (27) % llax — all o (gasy = 0

as k,l — oo. Thus, {Qay},—, is a Cauchy sequence in B (L2 (]Rd)). We define Qa to be the
limit in B (L2 (Rd)) of the sequence {Qay},,. This definition is independent of the choice

of the sequence {ay}y-;. Indeed, let {7, };~, be another sequence of functions in S (R*?) such

that 7, — a in L? (R*®) as k — oo. Then, again, by (3.28),
|Qar = Qmill, < PE(N)2(2m) % [lar — 7l 2geny — O
as k — oo. Thus, the limits in B (L* (R?)) of {Qax};=, and {Q7};~, are equal. Next, let
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3.3 (A, v)-Weyl transforms

a € L* (R*), and let {a;},, be a sequence of functions in S (R??) such that a;, — a in L* (R*?)
as k — oco. Then, by (13.28)

|Qall. = lim [Qall, < PEAN)Z(2m)"% lim [la]| o meay = PEA)? (2m) 2 |al] o(gany
and is proved. Now, if f and g are in § (]Rd), then
{(Qa)f,g) = lim {(Qar) f. 9)
= lim Pf(3)2(2m)" YW dad
m PIOVEn) [ ale OWa (1. g)(e ot

-
Q.

= PV (2m) 4 / [ alwWsulr.) (. €)dode
Rd JRd
Finally, let f and g be in L? (]Rd) . Then we pick sequences { fx},—, and {gx},—, in S (Rd) such

that f, — f in L* (R?) and g, — g in L? (R?) as k — co. We have

(Qa)f.g) = lim ((Qa)fi. )

k—

= lim Pf(\)2(27)" g/ / a(x, E)Wiu (fr, g)(x, §)dxdE
R4 JRdA

k—o0

—pr0en) [ ol OWaLf o) dudg
Rd JRA
It is obvious that @ : L? (R*!) — B (L* (R?)) is the only bounded linear operator satisfying
(3-24) for all f and g in L? (R?) and o in L* (R*). O

For a € L? (R*), we define Dpgyya(z, ) = a (z1mi(N), -+, zana(N), €). Then the (X, v)-Weyl
transform also can be expressed in terms of the dialation Dp¢(y), and the Fourier transform on
a 2-step stratified Lie group is in fact a (), v)-Weyl transform on R¢, which are proved in the

following propositions.
Proposition 3.34. [VS21] Let a € S (R? x R?) . Then the (X, v)-Weyl transform W} is given
by

W = Wp

Pf(A)—14°
Proposition 3.35. [VS21|] Let f € LY(G). Then
Fluw) = PO 202

for every X € A and v € RY, where fM is defined by
Pt = [ 0 e
Rk m

We end this section by showing a relationship between Hilbert-Schmidt pseudo-differential
operators on L*(G) and (\,v)-Weyl transforms with symbol in L? (R****™). The twisting
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3 Harmonic analysis on stratified Lie groups of step two

operator T : L? (R*!) — L* (R*?) is defined by
@)@y =f(z+5.2-5), wyeR, vfeL(®Y).

Clearly, T' is a unitary operator and its the inverse is given by
T+y

@) ) = £ (5o =) oy e B

Let us define the operator K, : L? (RQd) — L? (RQd) by

(Kaf) (@.y) = (T F) (y,2), 2,y € R (3.29)
where F3 is the Fourier transform with respect to the second variable.

We need the following proposition whose proofs can be found in [Won98| Proposition 6.7].

Proposition 3.36. The linear operator K, on L* (RQd) defined by (3.29) has the following

properties:
(i) Ky:L?(R*) — L* (R*®) is a unitary operator.
(it) Ky=T"YF3)
(iii) Kaf = (Kaf)", | € L2 (R*).
() Wau(f.9) =K' (f®g), fgel”(RY).
We can now give the following important property of the (A, v)-Weyl transform.

Theorem 3.37. Let a € L? (R*). Then W is a Hilbert-Schmidt operator with kernel
Pf(A\)2(27) 2 Kya.
More precisely

d
2

(WX f) (z) = PENE2m) % | Kaa(z,y)f(y)dy, «eR%

iy
Proof. Let f and g be in L? (R%). Then, by Theorem [:33 and Proposition B:36] we get
(WM f,g) = PE(A)2(2m) % /Rd /Rd a(z, )W (f, 9)(x, §)dxdg
= PE(A)2(21) "2 (W, (f, g), @)
= Pf(\)2(27) "% (K'(f ® g),a)
= PE(A) 2 (21) 7% (f ® §, (Kxa)*) .

vl
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3.3 (A, v)-Weyl transforms

Therefore,
(wW2er.a) = PR e [ [ 5@ (E5a) 0, a)dady
—rivien [ { [ d(Kw)(y,x)f(x)dx} oy

:<Sk’f>g>7 f?gGLQ(Rd)
where we define the integral operator Sy : L?(R?) — L*(R?) by

5uf(a) = [ ko) f)dy. € RY VF € LR

and k is the function on R?¢ defined by

1\3\&

k(z,y) = PEA)2(21) 2 (Kya)(z,y), z,y € R?

and the proof is complete. n

3.3.4 The )M-twisted convolution

The aim of this section is to express the symbol of the product of two (A, v)-Weyl transforms

with symbols in L? (R2d) in terms of a twisted convolution, which we now define.

Definition 3.38. Let f and g be functions in L? ((Cd) . Then the A-twisted convolution f * g
of f and ¢ is the function on C¢ defined by

(f *x9) // flz— A"(Z””)dzdw, z€CY (3.30)

where o(z,w) is the bilinear, antisymmetric map of z and w, provided that the integral exists.

Proposition 3.39. Let f and g be measurable functions on C? such that (f * g) () ewxists at
the point z in C4. Then (g *_y f) (2) exists, and

(f*r9)(2) = (g% f)(2)

Proof. In (3.30), we change the variable of integration from w to ¢ by w = z — . Then we get
(Foa9) () = [ gz = OFQed =g (3.31)

By and ([3.31]), we get
(F29) () = [ gtz = (O P9

= (g% f)(2).
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3 Harmonic analysis on stratified Lie groups of step two

Remark 3.40. It is clear from Proposition that the twisted convolution is, in general,

noncommutative.

We can now give a formula for the product W W2 of two Weyl transforms W and W,

in terms of a twisted convolution of ¢ and 7.

Theorem 3.41. Let o and T be in L? (de) . Then
e -

where w € L? (RQd) and Fyw = PE(N)(27) 74 (Fao) 5 (FaT))

Proof. We begin with the case when both ¢ and 7 are in S (de). To do this, let ¢ and ¥ be
in S (R?). Then, by Definition [3.24] and Theorem m, Fubini’s theorem and the adjoint

formula in the theory of the Fourier transform,

(W2p.0) =PIV} [ (Rl lmuoa)e. v)dads
—riien [ [ Bowa ] [ a0t | dd
—piien [ T [ BoEm s} .

Rd

and hence

(W) (2) = PE(A)2(2m) /Cd%o—)<z><m,y<z>¢><x>dz7 reR' (332)

for all p in S (]Rd). But by the irreducible unitary representations and (3.32]),
(71')\,1,(2) (W;\,V(p)) (x) — €i<77(/\)'p,:v+§CI> (W:\,V(p) (iC + q)

= M) Pat3a) pp(\) 2 (27) /(C JAT)(w)(m(w)e)(@ +g)dw (3.33)

= Pf(\)2(2m) ¢ /(;d(FAT)(w)(71')\7,,(2)71'/\,1,(?1))(,0)(33)(111), r € R,

for all ¢ in S (R?). Thus, by and (3.33),
W2 w2g) (@) = PNEn ™ [ [ (Fo)@@Enw) @ (e w)e)a)dzde, z R
(3.34)

Now, by the definition of irreducible unitary representation on G, we get

T ()M (W) = (2, 0) T (w,0) = T, (2 + w, o(2,w
() ( ) A,u( 70) )\,V( ’O) A,u( +w, (7 )) (335>

= (2 4+ w)e 2B 4w e CY
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3.3 (A, v)-Weyl transforms

So, by (3.34]) and (3.35)),

(W W) (x) = PRV (2m) / / (Fao) (2)(Fam) () (7™ (2 + w)p) (x)e™ 227 dzdu
o (3.36)
for all ¢ in & (Rd). Now, in , we change the variable z to ( by z = ( — w. Then, by
(13.31)), we get

W2 w2g) (@) = Py En ™ [ [ (B¢ = u)Bmw) () e 2o
=pien ™ [ | (Bo)c - w@EnwE Qe i
=riven [ { [ (o) - wEnwe e} @ 0pwi
=PI [ (Fio)aa (Far) QP (Op) @), @ € B

(Cd

(3.37)
Hence, by (3.32)and (3.37)),
WMWY = W (3.38)
where
Faw = PEA)2(2m) "4 (Fao) 55 (FaT)) . (3.39)
Now let {0y}, and {7}, be sequences of functions in S (R*?) such that
o — o and T, — T (3.40)
in L? (RQd) as k — o0o. Then, by and
Wor W = Wey (3.41)
where
Fowr = PEN)2(27) 4 (Fao)s % (Fat)s) (3.42)
for k=1,2,.... Now, by Theorem [3.33 and ({3.40))
WX — W2 and W)Y — WM (3.43)
in B (L? (R?)) as k — oco. So, by
WO = WIWAY — W (3.44)
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3 Harmonic analysis on stratified Lie groups of step two

in B (L? (R?)) as k — oo. By and

<Fwnncaﬂwuw=L}awAnwmmvﬂww%MwwM

(Fro)(z — w)(Far)(w)e” GO dy (3.45)
cd

= (Fao) *x (Fa7)) (2)

for almost all z in C? as k — oo. On the other hand, we get
1(F0)s x (FaT)ie = (Fac)j o (FAT)jl 2 (g2
= [[(Fao)k #x (Fat)k — (Fao )k ka (Fat)j + (Fao)k %a (FaT); — (Fag); *a (-FAT)j||L2(R2d)

< (a0 #n (Fa(mie = 7)) g2 (g2ay + [ (Falor — 05)) 5x (FT)l 12 (2a)

= PE(\)3 (2m) % |[WA WY +Pf(A)%(27r)%d WQ,;”_JJ.WQW s
< PEO)Em) Y [0, W22 PiVim® wor, | [war
( ) ( HW HHS WTk i gs + WUk 93 T \lgs

1 da
=Hm4%wmmmwgmsnm%m+wWwﬂmwwmmwﬁ
— 0

as k,7 — o0o. Hence, by the Plancherel theorem, there exists a function w such that
(Fac)k % (Fam)e = PE)2 (2m) 4 (Fw) (3.46)

in I,2 (]RQd) as k — oo. Therefore, by (3.46]), there exists a subsequence {(F o )w *x (FAT) Foreq
of {(Fro)k *x (FaT)k}re; such that

(Fa0)w #x (Fam)er — (2m) (Faw) (3.47)
a.e. on R?! as k' — oo. Thus, by and
2m)H(Faw) = (Fao) #x (Fa1) (3.48)
a.e. on R?’. By (3.42), (3.46), and the Plancherel theorem,
Wy = W (3.49)
in L? (R*!) as k — co. Thus, by Theorem and (3.49),
WO — W (3.50)

in B (L? (R?)) as k — oc. So, by (3.44), (3.48) and (3.50)), the proof of the theorem is complete.
[l
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3.4 Stone-von Neumann theorem

3.4 Stone-von Neumann theorem

In this section, we prove the famous Stone-von Neumann theorem for 2-step nilpotent Lie groups
without the Moore-Wolf condition, which means that the unitary irreducible representation
(3.4) is uniqueness. We first prove that the representations introduced above are actually

irreducible.

Theorem 3.42. The representations ., (p,q,r,t) are irreducible for any X € A.

Proof. Suppose M C L? (Rd) is invariant under all 7, ,(p, g, r,t). If M # {0} we will show that
M = L* (R?) proving the irreducibility of 7y ,.

If M is a proper subspace of L? (]Rd) invariant under 7, ,(p, q,r,t) for all (p,q,r,t) € G,
then there are nontrivial functions f and ¢ in L? (Rd) such that f € M and g is orthogonal to
7 (p,q) f for all p,q € R This means that (7 (p, q)f,g) = 0. But by above proposition

V(s 9)ll2 = [ fll2llgll2,

this is a contradiction since both f and g are nontrivial. Hence M has to be the whole of

L*(R9) and this proves that 7y, is irreducible. O

We now prove the classic theorem of Stone and von Neumann for the 2-step stratified Lie
group, which says in effect that any irreducible unitary representation of G that is nontrivial
on the center is equivalent to some 7 ,,. Since the irreducible representations that are trivial on
the center are easily described, as we shall see below, we shall obtain a complete classification
of the irreducible unitary representations of G.

We first establish some technical results, which we will mainly use to prove the Stone-
von Neumann theorem. The integrated representations of Gaussian functions are of particular

interest and importance in this context.

Lemma 3.43. For a,b,c,d € R? we have

Vi (7 (a,0) f, 7 (¢, d)g) (p, g) = €2V etacsbemrb =y, (1 g)(p+a—c,q+b—d).

Proof. The claim follows from the identity

V)\,V(ﬂ-/\’y(a’? b)fv 71_)\,1/(07 d)g) (p7 Q> - <7T>\7V<_c’ _d)7r>‘7"<p7 Q>7T)\7V(a’ b)f7 g>
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3 Harmonic analysis on stratified Lie groups of step two

and the fact that

(_07 _d7 07 0)(]97 q, 07 O)(a'7 ba 07 0)

1
- (_Cu _d7 07 0)(]7 =+ a, q + b7 07 577()‘) ' (CLq - pb))

1 1
=(p+a—cq+b—d.0,5n() - (ag —pb) +5n(A) - (—d(p +a) + (g +1b)))
1
= (p+a—c,q+b—d,0,§n()\)~(qa+qc+bc—pb—pd—ad)).

Corollary 3.44. The following three identities are special cases of Lemma [3.43.
1. Vi (®(a,b) f, 9)(p, q) = e =DV, (f, g)(p+ a,q + ),

2. VA,I/(f) WA’V(Ca d)g)(p7 q) = 6%in()\).(q07dp)v)\,l/(fa g) (p —Cq— d);

3. Va (7™ (a,b) f, 7 (a,b)g)(p, q) = eN@a=PV, (f ) (p, q).

The matrix elements of the integrated representation can also be expressed in terms of the
(A, v)-Fourier-Wigner transform. Indeed, we have

(T (F) S, g) = / / F(p, q) (™ (p, 0)f g)dpdq
(3.51)
— P\ F(2m)} / / F(p. q)Vau (. 9) (s a)dpda.

An interesting thing happens when we use the conjugate of a (\, v)-Fourier-Wigner transform
as input for the representation 7" :

Lemma 3.45. If ¢,¢ € L? (R?) and ® = Pf(\)2(27)"2V3 (6, ¥) then
(D) f = (f,¢)0  for feL*(RY).
Proof. By and (351)), we have
@ (@)1.9) = [ Vo 0lVaulF.9)
= (Vau(f, 9) Vau(o, )

= (f,9){(g,¥)
= ([, )¢, 9)
whence the result is immediate. O
Lemma 3.46. Let o(x) := w‘%e‘é}

a scalar multiple of the Gaussian probability distribution,
let & = Pf()\)E(ZW)_%V,\J,(go, ©) and PP = Pf()\)%(ZW)_%V,\W(go, m(a,b)p). Then, we have

(Z) @(p, Q) = Pf()\)% (2%)_36—”2*‘12

2 4

)
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3.4 Stone-von Neumann theorem

_(p=a)%+(g=b)?
4

(i1) ®%(p,q) = PE(\)7 (2m) % eV (aa—pb) o= ==

a2+b2
4

(idi) T (@) (a, b)T M (®) = e~ - T (D).

Proof. To begin with, note that for v(z) := e~

(2m) "2 Fry(x) = ! : / Y(y)e “dy

(i) It follows that the Fourier transform for Gaussians:

®(p,q) = PE(N)Z(2m) 2 VaL (0, 9) (9, )
q

(2m) 474 PE(A)} (2m) % /Rd MV o(x 4 2 )plw — 3)da

N

= Pf(\)
(27T)_%7T_%2_%6_§ (2m)dF! (p/\/§)

2
_p_
2

(ST

— Pf()\)

N

q

(2#)_%ﬂ_%2_ge_7(27r)

ol
vl

= PE())

e

a>+p?

(271')7%67 1

D=

= Pf())

ii) Once we have (i), an application of Corollary [3.44] (ii) gives:
ii) O h i licati f Corollary |3.44] (ii) gi
( V)\,V(S[)? 7T>\7y<a’ b)gO)
(27T B e%in()\).(qaipb) V)\,U<907 90> (p —a,q — b)
( e%in(/\)'(qa—pb)q)(p —a,q—1b)
eém(/\)(qa—pb)6—7@_@)21((1_&2 '
Identity (iii) is due to (i) and repeated use of Lemma [3.45}

T (@) (a, b)T (@) f = M (@)(f, ) (a, ) = (f, ) (7 (a, D), )

= Vau(p, 9)(a, ) f, 9 = e~ (D).

]

Theorem 3.47. Let m be any unitary representation of G on a Hilbert space H, such that for
some A € A, m(0,0,0,t) = e*MI. Then H = @ H, where the H, are mutually orthogonal
subspaces of H, each invariant under m, such that m|y,, is unitarily equivalent to m, for each

a and some v € R*. In particular, if 7 is irreducible then 7 is equivalent to Ty, .

Proof. The proof is similar to the proof for the Heisenberg group in [Fol89), we give it here for
completeness. The key tools in this proof are the (A, v)-Fourier-Wigner transform and Gaussian

functions as well as their analogues for general unitary representations of G on any Hilbert space
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3 Harmonic analysis on stratified Lie groups of step two

‘H. Treating these objects, we adopt the notation from above:

_d _a22
4

p(x) =m1e 2,

™ (x) := 7™ (a,b)p(z) = W—%ein(k)-(awéab)e_%’
(3.52)

@ := PE()2(2m) "2V, (0, 0),
% = PF(\)2(21) "2 Vi, (0, 7 (a, b)) = o 3in(V)-(ga—bp) ,— =D HE=DT
Let 7 be an arbitrary unitary representation of G on a Hilbert space H. First we set w(p,q) =

7(p,q,0,0) and we have

1 1.
71'(]), q)ﬂ-(r’ 3) = 7r(p +7r,q+s, 577()\) . (ps _ qr)) = ei”]()\)-(}?sfqr)ﬂ-(p +7r,q+ 3)_

We consider the integrated version of ,
m(F) = / / F(p,q)7" (p,q)dpdq, F € L' (R*),

then we have

7(F)7m(a,b) = 7(G) where G(p,q) = e%i"(’\)'(“q_bp)F(p —a,q—b), (3.53)
and

m(a,b)(F) = 7(H) where H(p,q) = ez ®=p(p_q q—b). (3.54)
Moreover, 7 is faithful on L'(R?*?). Indeed, if 7(F) = 0 then, by and (3.54), for any
u,v € H and a,b € R?

0 = (m(a, byr(F)m(—a, —byu, v) = / / N 00) B, o) (. @), o) dpd

Thus by the Fourier inversion theorem,

F(p,q){r(p,q)u,v) =0 for a.e. (p,q)

and since u and v are arbitary, F' =0 a.e.

Now let us take F' to be the function ® defined above. By (3.51)-(3.54)),

(a2 +b2)

7(®)m(a,b)m(®) =€ 4 w(P).

In particular, taking a = b = 0 we obtain 7(®)? = 7(®), and since ® is even and real it is
easily seen that 7(®) is self-adjoint. Thus 7(®) is an orthogonal projection which is nonzero

since ® # 0 and 7 is faithful.
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3.5 Hermite and special Hermite functions

Let R denote the range of 7(®). If u,v € R then u = 7(P)u and v = 7(P)v, so
(m(p, @)u, 7(r, s)v) = (w(=r, =s)7w(p, )7 (®)u, 7(P)v)
= 2N =) (2 (D) (p — 1, g — $)7(D)u, v) (3.55)

(u,v).

Let {vs} be an orthonormal basis for R, and let #H,, be the closed linear span of {w(p, Q) i P, q € ]Rd} )
By (3.59), Ha L Hp for a # 3, and H,, is invariant under 7 by definition. Hence N' = (€D Ho )t

24 (g—s)2
_ e%m(,\).(ps_qﬂe_%

is also invariant under 7, and we have 7(®)|x = 0. But this implies that A" = {0}, for otherwise
we could apply the above reasoning to 7|y to conclude that m(®)| were a nonzero orthogonal
projection.

We claim that 7|y, is equivalent to 7% for all a. Indeed, fix an « and let v*4 = 7(p, q)vq.

Then by (353
(VP ") = (P, ")  for all p,q, 7, s.

It follows that if u = ) ajv?% and f = > a;,¢?% then ||u|ly = || f||2, and in particular v = 0
ifft f = 0. Therefore the correspondence v?¢ — @ extends by linearity and continuity to a

unitary map from H, to L> (Rd) that intertwines 7|4, and p. ]

3.5 Hermite and special Hermite functions

The seminal work by Fourier, published in 1822 |[Fou88|, about the solution of the heat equation
had a deep impact in physics and mathematics as is well known. Roughly speaking, the Fourier
method decomposes functions into a superposition of “special functions” |[AAR99; Fol89]. In
addition, the Fourier method makes use of different types of special functions; each of these
types is often related with a group. For Euclidean space it is Bessel functions. The interplay
between the properties of Bessel functions and the Euclidean harmonic analysis is beautifully
described in Stein and Weiss [SW71|. For noncompact Rank one symmetric spaces it is Legendre
and Jacobi functions, which is given in [AT17]|. For the Heisenberg group it is the Lagueere
and Hermite polynomials, which can be found in [Fol89] and |Tha93|. Based on the methods
for the Heisenberg group, it is nature to develop harmonic analysis on stratified Lie groups by
the Lagueere and Hermite functions.

In this section we introduce and study some properties of the Hermite and special Hermite

functions. For the 2-step stratified Lie group, these functions are eigenfunctions of the rescaled
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3 Harmonic analysis on stratified Lie groups of step two

harmonic oscillator and the A-twisted Laplacian, respectively. As we will see later, the two
operators are directly related to the sub-Laplacian on the 2-step stratified Lie group.

We start with the definition of the Hermite polynomials. For a =0,1,2,..., and z € R we
define H,(x) by the equation

Ho(w) = (<1)° (57 {o+) ) |

The Hermite functions are then defined by

First of all we have the following generating function identity for the Hermite polynomials.

If || < 1, then we have

= H, 2
Z <I> ra — 62331“77“ ) (356)

o!
a=0

It follows from (3.56)) that
H!(z) =2aH, 1(x), Hy(z)=2xH, 1(x)— H,_ ().

Defining the creation operator

d
A=——
I +x
and the annihilation operator
d
A= —
I +x

Then we have
Ahy(x) = ho1(z) and  A*h.(x) = 2aha—1(x).

Now, an easy calculation shows that H = —% + 22, the harmonic oscillator, can be written

in the form
H = %(AA* + A*A).

The Hermite functions h,, are then eigenfunctions of this operator and
H(hy) = 2a+ 1)h,.

Note that [*_ha(z)?dz = 2*aly/7, then the normalised Hermite functions are defined by

2

1 1
eo(r) = (2°Vmal) 2 Ho(x)e 2"
These functions form an orthonormal basis for L*(R). The higher dimensional Hermite func-

tions denoted by ®, are then obtained by taking tensor products. Thus for any multi-index «
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3.5 Hermite and special Hermite functions

and z € R, we define
d

D, (x) = Heaj (z;).

=1
The family {®,} is then an orthonormal basis for L? (R?) and in particular that for any
i,j € N9,

1 ifi=j,
(Pa,, @aj)LQ(Rd) = /Rd by, (2) Py, (2)dr = (3.57)

0 otherwise.

Furthermore, the definition of the Hermite functions entails that for any o € N and 1 < j < d,
there holds

and by duality, we get

*
Alen = /2a€4-5;,

where o £ 6; := (@, , a5 £ 1, ;). Also, combining the action of A; and A} gives, for
a € N and 1 < j < d, the harmonic oscillator

d

1

=5 ) (AjAS + ATA;) = A+ [z,
7j=1

\V)

and we have
H®, = (2|a| + d)®,,
where |a] = a3 +ag + -+ + ag.

Now, if n = (m1,...,m4) € (]Ri)d and o € N?, we define the rescaled Hermite function ®?
by

1 11 1
= |PE[ g (0 mfe - omi-)
These functions satisfy identities similar to those of the usual Hermite functions. In particular,

they also form an orthonormal basis of L? (]Rd) and for a € N4 np = (n1,...,14) € (Ri)d, we

have the rescaled harmonic oscillator
HND) = (=A+ |n-z|*)® Z% (205 + 1) D).

Now let us study the action of the Fourier transform on derivatives. Straightforward computa-

tions show that

f<ZJf>()‘7V):F<f)()‘7V> j\v ‘F(ij)()VV):f(f)()‘vV)Qj\
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3 Harmonic analysis on stratified Lie groups of step two

where the operators Q? and Q? are defined by

Q) =0, —n;(NE  and Q) = I, + n; (V)&

We therefore can write

F(LF) (A v)(u) = F(F)Av) (HO) + [v) (u).

3.5.1 Mehler’s formula for the rescaled harmonic oscillator

In this section, we discuss the Mehler’s formula for the rescaled harmonic oscillator with the

parameter |r| = 1. We begin with the following formulas:
Lemma 3.48. For o in C with |arga| < 7, Rea > 0 and a # 0,
/ e dy = rra 2 (3.58)
R
which is the improper integration in the sense of Riemann.

Immediately, Lemma gives the following lemma, which can be regarded as the Fourier

transform of tempered distribution e°** with Rea > 0:

Lemma 3.49. For all £ in R and o in C with Rea =0,
1 g2
) , ) (20)"ze 4a, a #0,
(2m) "2 / e e dy =
‘ (2m)35(¢), =0,
which is Fourier transform in the sense of tempered distribution S'(R) and 0 is Dirac’s delta

function. For all £ in R and a in C with Rea > 0,
. 2
(27r)_% / e T g (2@)_%6_‘%
R
which is the improper integration in the sense of Riemann.

For all A in A and n(\) = (m1(N\), m2(A), -+ ,na(A)), we now define rescaled harmonic oscil-
lators on R by

er@) = mWlier (neVlie), k=0,1,2....
We put o € N? and
@, (x) = €y, (21) €, (2a)

for x = (x1,...,24) in R%. Lemma gives to verify the following Mehler’s formula with the

parameter |r| = 1.
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3.5 Hermite and special Hermite functions

Theorem 3.50. For all X in A, x and y in R? and all r € C with |r| =1 and r # +1,

_1 1402 (0 2nA)|r .
M) (z,y,r) = ¥ O (@)BA(y)rlel = PO =3I (2 ?)+ 505 ey (3.59)

w2 (1—r2)2

Proof. We prove in d = 1 case. It follows from

1 )
g(z) = e = — / e~ Ry ¢ e R
w2 Jr

that for all z in R

d* 1 d\" .

_g(l-) = el 67u2+2mudu

dxk 3 dx
7T12 R (3.60)

= (2iu)Fe " T2y,
w2 JR
So, the definition of rescaled harmonic oscillators and (3.60) gives
MMNa,y,r) =Y ep(@)ep(y)r*
k=0

Il
(]
=3
—~
>~
S~—
ol
Cb_
,f
%3
_l’_
<,
\_/
—
[\)
S
5
=
_
—N
ol
> Q
[
3
S
>
-
N[
8
N~
——
—
Q|
S
>
I
3
—~
>
-
N
N
N~
—
3
Bl

1 1
T2 k=0 T2
1 dF
e A (TR

ES
. <

Now, using Taylor’s theorem, we have

g (|n(/\)|%y - uri) = i (ug)k {% <|77()\)|%y> } :

Since r € C with |r| = 1 and r # 41, we have Re (1 — r?) > 0. Then we have

u” { (|77()\)|%y> } e—“2+2ln(x\)\%mz’du

(In( ) 2y— url>2 —u +2|77(>\)|2:cuzdu

6

/‘ ~[n(NV)y? = (1-r?)u?

< e T
(1 —Rer?)2

du

N\»—A
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3 Harmonic analysis on stratified Lie groups of step two

Therefore, Lebesgue’s dominated convergence theorem gives

2 2
Mf(x,y,r) _ |77()\)|2 ew(x)l(z +y ) / e—(ln(/\)\%y—um‘) e_“2+2|"(’\)|%x“idu
R

1
— |77()‘)|2€‘"(>‘)|(:8 —yQ)/e—(l—TQ)uQ—&Qn()\)%(a:—yr)uidu
R

1 2
L (192 [ g [0 2 (@ —yr)
_ |77()‘)|2e\n(ZA)I(xzfyz)efln(k)ll(frgyrﬂ /e (1-r )(“ = z) .
R
Hence, using Cauchy integral theorem and Lemma [3.49] we have
l r—yr 2
le)\(x7 n 7,) _ |77()‘>|2 eln(ZA)l (x2_y2)€_ln(/\)l\(7r2y ) / 6_(1_T2)u2du
7T R

) 000 (g2 y2) 1m0 (o2

R o 3.61
T2 (1— 7’2)% ( )
S U{C)) LI EEE YR P
T2 (1 — 712)%
and the proof is complete. -

Proposition 3.51. ForallA e A,p € S (]RM) and r € C with |r| =1 and r # £1,

Hm, <Z ) ()@ (), 90> = (5(zFy),¢)

|r|=1

where 6(x £y) =06 (x1 £ v1) - (xqg £ ya)-

Proof. We consider 2-dimensional case. Let r be in C with |r| =1 and r # +1. By (3.61), for
all p € S (R?),
ANz e, 20,
(MNz,y,7), o(2,y)) = TR ) 2 )
w2 (1 —1r2)2

B In(\)|2 <€ Q) f Lt (2

ot (1 —1r2)2

where 1”,}“ € iR by |r| = 1. Puttinng:x—yand 2t =z +y,

<M1)\(517,y,7”),g0(27,y)> N // ~In( A)|{1+r 2+}+:t2}gp(t—|— s, t— S)2d8dt
7T2 (1-— 7"2 2 J Jr2

-

@(x,y)>

(V)2 (147) 2
(1—1")%

2 2 lt=r),2
<M1A(I7?Ja7")a80(%y)> =1, < // e e %
72(1 —|—7’) R2

X (t—l— (11_T)% ~u, t— (11—7’)% 1u> dudt.
[n(A)[2 (1 + )2 [n(A)[2 (1 +7)2

Then we take the limit as r tends to 1 for |r| = 1, by Lebesgue’s dominated convergence theorem

If we put u = s, then we have u? € iR and
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3.5 Hermite and special Hermite functions

and Lemma |3.48] we have

1 M i w2 wﬂ
rir£1< (@,y,7), ¢(z, y)> rﬁr}}l w2 (1+7) R2 v

><<t+ (11—7“)% i (11—7")2 1U>dudt
\U(A)\5(1+T)§ In(A)[2(1+7)>
//R2 t t dudt = /Rgo(t,t)dt = <5(:€ — Z/);SO(SU,y)).

1
On the other hand, if we put v = 2% ()1|2(§ Wk
+r)2

\n(/\)l(l-&-r) 22
<M1)\(Jf,y,’l“),g0(l’,y)> - % 1 . T‘ /\/RQ (20

x( (ljrr)% U+ s, (11+T)2 1v—s>dvds
[n(A)[2(1 —r)2 [n(A)]2(1 =)z

Similarly, taking the limit as r tends to —1,

t, we have

Tim (M(2,y. 1), o2, 9)) = (0 +v), o2, y))

and the proof is complete. O

3.5.2 Special Hermite functions

In this section, we define and prove some important properties of special Hermite functions for
the rescaled harmonic oscillator. For each o, 3 € N? and z € C?, we define the special Hermite
functions @}, 5 by

®, 5(2) = Vaw (g, 25)(p. q)
= Pf()\)%(QW)_% / M) P A <x + g) N <x - —)dx
Rd 2
Thus @) 4(z) are the (A, v)-Fourier-Wigner transforms of the Hermite functions @} and ®3.
The connection of {CID s, 3=0,1,2,. } with {®,5:0a,6=0,1,2,...} is given by the

following formula.

Theorem 3.52. For \e A and o, 5 =0,1,2,...,

O 5(p,q) = PE(N)2 @, <
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3 Harmonic analysis on stratified Lie groups of step two

Proof. For A€ A and o, =0,1,2,...,

@) 5(p,q)
:V)\,V((b(/)a (bg) <p7 Q>

— PE(A)F(27) Q/Rd ()P A (m—l— 2) ) (m - ?>dx
~en) i) [ e, (VI (o + ) s (VIR (o - ) )ds
— PE(N)F(27) /R d "V, (x + IV E ) Oy (x /Il q)dx

— PE)E Do s ( "(C] )<';;| , |n(A)|q>

for all p and ¢ in R%. O]

(V]IS

The Mehler’s formula (Theorem [3.50) with the parameter |r| = 1 and Lemma [3.49| give the

following proposition:

Proposition 3.53. For |r| = 1 with r # +1, we have

1
Z O )t = —o B ()
(27?) (1—7r)

Proof. We only consider the 1-dimension case and first consider in the case of n(A) = 1. By
B5T), for || = 1.

s _11gr? (oo g? N 2e (L0 42
(o D)en (s D)= L AR
k=0 2 w2 (1 —1r?2)?2

1 _l-r 2 114r 2
= e 1+r 1179

So we have
eri(p, Q" = e ey (“’Jr‘) ex (x ‘) dr pr
2 e §{<2w>% . 2/ 72
1 , >
= e’ e (a: + —> e (m — —> r* % dx
oo [ (e Do
L
@2m)2 Jr 7z (1—12)2
1 _1lfreo 1 / ipz .
= —————e i [ ePe T dx
T2 (1—7“2)5 (271')5 R
But if [r| = 1, £ is in iR. So, by Lemmaw

1 1 r
e )% /emem dr =272 (1 +:) e aTrP”
m)2 Jr -
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3.5 Hermite and special Hermite functions

Then we have

S erulpq)rt = ————e ),
— (2m)z(1 —r)

Because of Theorem [3.52], we have

ep L (p, q)r” 3 A)|ze 770\)‘?7 A é)rk
&Pt =" (V)| k,k(,n()\>|2 n(A)[zq

1
N2 Qe (2 02)

as asserted.

]
We also consider to take the limit as r — £1
Proposition 3.54. For all ¢ € S (R*) and X € A
. (2m)?
lim 1. (p, )", 0(p,q) ) = (3 (p, q
Pﬂ<§; el plp0) ) = L0000, (0. 0)
and
e PE(\)2
lim o) (p,q)r* = )
rel%% b=
1 1
Proof. We still consider the case d = 1. Putting p = —24-1° _ dg=—2U"" 4 we
[n(A)]2 (1+47)2
have

n(N)|2 (14r)2

(Z o 1. (p, ), (g, p)>

__ln)E 41— ) emu—v? 2(1—r)z u 2(1—7“)% v | dudv
(@231 —r) I +’f’)//Rz 7 <|77( ] ) E )d d

NI +7)z ()= (1 + 7

_ 93/2 . 21 — r)3 . 2(1 — 73 U>dudv
() 2W21+T.K42 (muna1+m%’hx>hu+rﬁ '

Then it follows from Lebesgue’s dominated convergence theorem that

lim o) (p, q)rt, , _ // ~4 =% dudy
Hl<k§ ww(P:9) w(qp)> |77( T g

24r} (2m)}

0,0) = —2_(§ :
|?7( )|590( ) = L (0(q,p), v(q,p))

On the other hand, according to Proposition [3.53] simple computation complete the proof

O]
We now show that {@3 ,8} is an orthonormal basis for L2 (Cd).

Proposition 3.55. The special Hermite functions form a complete orthonormal system for

L*(C%).
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3 Harmonic analysis on stratified Lie groups of step two

Proof. The orthonormality follows from the properties of the (A, v)-Fourier-Wigner transform.
To prove completeness, we use the Plancherel theorem for the (A, v)-Weyl transform. Suppose

f € L* (C?) is orthogonal to all ®} ;. Using the definition of ®}, ; this means that
) [(z) (TN (2)®), ®3) dz = (WA(f) @), ©3) = 0.

The completeness of {®)} in L? (R?) proves that W>¥(f) = 0 which implies f = 0 in view of
the Plancherel theorem for the (A, v)-Weyl transform. O

3.5.3 Eigenvalue problems of the A-twisted sub-Laplacian

We now show that our special Hermite functions are eigenfunctions of the A\-twisted operator
L* as in Section 3.2.4. For j = 1,2,...,d, we define the linear partial differential operators Zj‘
and Z;‘ by

L. _
Z])\ = azj + §ZB(A)ZJ‘,

and

Then
d ) ) k
SPGB W

=-A,— A, +- |z| I\ —iN,

l\DIr—t

where N is the operator

d 0 0
N=i), {— (BYy. ¢)) oz, © (2, BVe;) _} )
j=1

We now prove that @g} 5 are eigenfunctions of the operator L.
Theorem 3.56. For j =1,2,...,d, one has the formulas

(1) (2)®)5) = iy (N)?(20;)2 @)

a,B—e;’

(2) (Z)®)5) = in (V)2 (205 +2)29 5.

(3) LX(D35) = (Z (M) (205 + 1) + él/?) A

Proof. As the functions ®), 4(z) are products of q)gj 5,(23), so we consider the functions

+oo
(27r)—%/ %”J<>PI<I>A(3:+2)<I>A( g)dx.

SIS

2, (p,q) = n;(N)

[e.e]
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3.5 Hermite and special Hermite functions

Differentiating with respect to p and writing 2z = (z + ) + (z — £) we have

a(;pp o) =i WHent [ e (o4 1) 8 (o - 1) da
= JP(p,q)+ T, 9),
where
J®(p,q) = %mj(x)%(zm—é / Z BN (1 4 g) ) (o+ g) ) (o - g) dz.
Next, for all p and ¢ in R
A
iag);’l (p.q) = KV (p,q) — K®(p,q)

where

KO(,0) = gnWhent [ @y (o ) o (y- 1) o
and

K(,0) = gniemt [ e (o 2) @y (o - )

Now, by the construction at beginning we get, for [ =0,1,2, ...,

(x - %) e(z) = (21 +2)2ei 4 (2), = €R,

and,

(:c + d%) e(z) = (2D)2e1(2), z€R.

So, for j =0,1,2,...and [ =1,2,... we get

0P}
-2 = (D w.0) - KV p.0) + (SO .0) + KD (p.g))
]., 1 _1 o in: (\)-px 1 1 q q
=i ()2 (2m)72 {/_wenﬂ P (20 + 2)2m;(N) 200, <x+ 5) P} (x - 5) du

[ e o0t (r+ D)t (o )

1. 1 1 1 .
im0} {20, + 2402, + Qaptel ()} s=pigec
(3.62)
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3 Harmonic analysis on stratified Lie groups of step two

We can also obtain

0P}
522 =(JP0.0) + KV .0) + (/7. 0) - KD (p.q))
1, 1 _1 X i) p 1 3 q g
—5iny(3)3 (2m) 3 {/ (0} (24 ) 8 (2 - F) da
R oo (3.63)
i (V) 1 1
[ a2t (s 2) o (v 4) )
1. 1 1 ]
:527’]]()\); {(2043)%@;\_171(Z) + (20[1 + 2) q)J l-‘rl( )} ) Z=ptig € C.
Writing 77]'( )\)peinj(k)pw — _ia%einj(/\)-pw and integrating by parts we get
1 7 1 & 0 q
Zn () pd = ——(27)2 inj(\)p @A( )‘PA( ——>d
51 (M5 (p,4) = =5 7?)2/_00{@:56 } vry) i\t Ty (3.64)
Using the formula
- ()= -
we also have
i _
5@, (N2 (p.a) = JPp.a) + IV (pa), paeR (3.65)

2

So, byand -,Weget forj=1,2,...and [ =0,1,2,...,
1

Ln(=0(2) = 27”@)%(2%) 4 {/_oo ey (3)E(20;)10) (:c n g) o) (a: . g) dy
e 2103 (o 2) o (5 ) )
:%n](A)é {(20@)2(1) 1(2) = (2aq + 2)%@;\,l+1(2)}
(3.66)
and ‘
sk (e) = g0t emE { = [ em om0 a4 iel, (o4 D) @ (- 2 dy
[ e (s + D) ats (s 2) )
%mwé {20)b@2 1 (2) — (20, +2)18),,,()}
(3.67)

for all z in C. Therefore, by (3.62)) and ( -

220N =i (N2 (205 + 2200, j=1,2,...,01=0,1,2,....
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3.6 Laguerre functions

Now, for j =0,1,2,... and [ = 1,2,..., we have
5 . 1
Z) 7003, = ini(\)? (200 + 22 200,y = —(200 + 2); (NP},
and

ZAZ*cpA

il =

in; (N2 (20)2 2300, = —2am; (NP,

Then the third one follows from (1) and (2) and the definition of £*. O

3.6 Laguerre functions

3.6.1 Laguerre polynomials

In this section, we recall some properties for the Laguerre polynomials, which can be found in
[Tha93; [Won98|, we give some proofs here for completeness. Let 6 > —1, Laguerre polynomial

of degree k and order ¢ are defined by the formula

é x—éex d g —x,.0+k
Ly (x) = X e (e x )

Here z > 0 and k = 0,1,2,.... If we write out L{(z),z > 0, in detail, then we get
5.z k k ) d k—j
T e Z | (_1)36—1‘ (d_> (xé-i—k) . x>0
j= J .
Thus,
k—1 .
5 + /43 5 + k? —1 0+j7+1 -
L) = Ty Z R R R R

(k—j)!5!

I'k+0+1) (—x)
Fk—j+1)I'G+0+1) !

Mw

Jj=0

Lemma 3.57. The Laguerre polynomials satisfy the orthogonality properties

% ~ IF'k+d6+1)
1 0 z,.0 _ .
/0 Ly(x)L;(z)e "2’ dr = Tt 1) k-

Proof. Let f be any polynomial and consider

/0 f(x)Li(z)e s dr = —/ f(x dq:k ( - k”dx)

Integrating by parts we see that

/0 " F @) L (w)e*addy = ¢

e Txh o,
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3 Harmonic analysis on stratified Lie groups of step two

If f is a polynomial of degree 7 < k then it follows that

/ f(2) L (x)e "2’ dx = 0.
0
In particular this proves that when k # j

/ Li(m)Lf(x)e_xzc(sd:U = 0.
0
And when k = j, taking f(x) = LJ(x) we observe that f*)(z) = (—1)* so that
oo 1 oo
/ L (x) L (2)e “2’dr = —/ a* e dy
0 Kkt Jo

which proves the Lemma. O]

Therefore, if we define £ (z) by

we have the following result.

Theorem 3.58. L3 (z) is an orthonormal basis for L*(0,00).

Proof. By Lemma we only need to prove that if g € L*(0, 00) is such that
(9.L)) =0, k=0,1,2,...
then g = 0 a.e. on (0,00). Now, for £ =0,1,2,..., we get, by [Won98, Lemma 18.5],
k
2t = chL?(x), x>0
=0
where cg, ¢1, ¢, ..., ¢ are constants. Thus, for £ =0,1,2,..., we have
o0 k oo
/ g(z)zFale " dr = Z cj/ g(:L’)L?(:U)a:‘Se_xda: = 0. (3.68)
Let 2 = y? in (8.68)), we get, for k =0,1,2,.. .,
2/ g (") yry ey =0 =2 / g () g™yl dy = 0
0 0
- / g (v") vy eV dy = 0
Hence,

/ g () oy eV dy =0, k=0,1,2,....

—00

Let P be any polynomial of degree j. Then
J
P(y) = Zakyk: yeR
k=0
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3.6 Laguerre functions

where ag, a1, as, . .., a; are constants. And

/ g (v%) P(y)|y|® e dy = 0.

o0

Also, for all ¢ in R,

o 2
/ 9(y?)] [yt elle dy

oo % o0 %
2 2 a2
{/ ‘9 (yQ)‘ |y|26 16 Y dy} {/ ‘y’% 162‘%'6 Y dy}

1

* . 2
N {/ ’g(m)‘Qwée—xdw} {/ ’y|26+16_2|956_y2dy}
0 — o

< 00

IN

Thus, by [Won98, Lemma 18.6], we have g(y?)|y|?**! = 0 for almost all y in R. Therefore, g = 0

a.e. on (0, 00). O

Theorem 3.59. For each fized positive number x,

= s ko e i
kZ:OLk(l')T T Irl <1,

where the series is uniformly and absolutely convergent on every compact subset of {r € C :

Ir| < 1}. We call 6_%(1 — 1)L the generating function of the Laguerre polynomials LS, k =
0,1,2,. ...

Proof. Let v be a circle with center at x and radius [/, and lying inside the right half plane.

Now,

h
||
8
oyl
B s
8
A
=
\/
E
—~
[
H
Oq
+
Bl
SN—"
~s

k=0 k= 'oo (3.69)

where the principal branch of (°** is taken, i.e.,

C6+k — e(5+k) Log_, ¢
and
Log_ . (=In|{|+iArg_.(, —-7m<Arg  (<m.

127



3 Harmonic analysis on stratified Lie groups of step two

Next, for k =1,2,...

‘ (¢ — z)Ft? [k
g e~ @D (1 4 1)k
- [k+1
ey @) (x4 g
=e
l l
Then, for all r in C with |r| < L5, the series Y7 % is uniformly and absolutely

convergent with respect to r on {r € C: |r| <r,} and { on v, where r, is any number in

(0, - +l> Therefore, by (i3.69 -

5 CC(S = T’C
];me— - / = ( ) ac

< Irl(le)

for |r| < r,. Note that
r¢

<1
(—=x

and hence,

oo 5 k_ —ng 1 —CCcS
;Lk(x)r - 2mi /C—azl 27rz /C—az—r(

B —CCS B —Ccé
B 2m' /(1—7“)C—31:'dC 1—7"27rz/<

for |r| < r,. For sufficiently small r, ;- is inside ~. So, by (3.70) -

) _5 ) — £
ZL e () -
1—7r 1—7r (1 —r)ott

=0

(3.70)

for sufficiently small r. Now, % is an analytic function on {r € C: |r| < 1}. Thus, by the

1—r

principle of analytic continuation,

= - eior
kZZOLk('?U)?“ = rl <1,

and the theorem is proved. O

3.6.2 Laguerre formulas for special Hermite functions

Now we give the formula expressing the special Hermite functions ®) _ in terms of Laguerre

,Q

polynomials.
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3.6 Laguerre functions

Theorem 3.60. For oo € N% and any z in C?,

Proof. We only consider the 1-dimension case and first consider the case of n(A) = 1. By

Mehler’s formula in Theorem [3.50],

Zek <$ + Q) €k (95 - Q) rf = %e—ﬁgﬂ_i%q{
k=0 2 2 T2 (1—7r2)2
So we have
err(p, q)r’ = e’pxek<x+—>ek< ——)dz r
2l =2, { )t Js 2\
1 / e ) q q\ ok
= e'Pr e (x + —> ek (.r > r® > dx
(27)2 Jr {z; 2 2
_ b /em L ey,
(2m)z Jr 72 (1 —1r2)?
1 _1lyreo 1 ipo
= — T€ 41-r + [ ePPe 1+ dr
72 (1 —r?)2 (2m)2 Jr

By Lemma |3.49, we have

1
(21)1 /eimeu‘#dx — 93 (1 + 7“) i e
m)2 JR -

o0
k 114 (2, 02
E enn(p, r’ = —1 ——¢ H5 (),
k=0
Because of Theorem [3.52], we have

St =S W e [ EALL 50
n;(A)2

1
. nj()‘)Q e—anm%(pQ-I—qg)_

Then

(ST

q) ¥

So, by Theorem |3.59

and hence

The following lemma will be used later.
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3 Harmonic analysis on stratified Lie groups of step two

Lemma 3.61. For 6 > —1 and k=1,2,...,

d
e (Li(x)) =L (x), x>0

Proof. By definition of Laguerre polynomials,
k

d d T(k+0641) (—x)
EE@%@):EEjOwk—j+Uru+5+m 5!
T(k+6+1) (—z)i-1

M-

F'k—g+1I'(G+0+1) (5 —1)!

> .
I

__E: M'k—14+0+1+1) (—x)!
=Tk -1-1+ DI +0+1+1)

= —Lifll(a:), x> 0.

]

If o and k are multi-index we write a!l = a;lay!---ay! and 2F = Zfl e zsd. With these
notations we have the following formulas expressing Hermite functions in terms of Laguerre

polynomials.

Theorem 3.62. For a € N* k =0,1,... and any z € C? we have

! 300N ek L2
(i) ®hyralz) = PEORE)H ()" (Z5) 2 T L& Gy 2 2)e Vit

1 k k
.. 1 _d al 2 —i kj 1l 22
9 02 =P () ()
Proof. Again we only consider the one dimension case. From the definition it follows that

D (2) =B o(—2). Thus, if part (7) of Theorem is true, then,
a7/3 a?ﬁ

(2m) {( ; j!k)! }é (—ﬁ (—2)* L} (gmmu,-\?) R DI

. 1 AN
_1 J! 20 1 Lo s 2
et Tt (25) S (Gulsr) et e

Thus, to prove this Theorem, we only need to prove part (7).

N

€55 x(2) = 1;(N)

[N

By Theorem [3.60, the formula is true if £ = 0. Suppose that the formula is true for all

nonnegative integers j and all nonnegative integers k& with & < [. Then, by Theorem [3.56,

N|=

. _ . _1
ejihiry = =M1 (N)72(2) +2) 72 2 ejpnr1 g (3.71)

Now, by the induction hypothesis, we have, for all z; € C,

. L N
_1 1 J+1)! 2l _ 1 1, 2|2
o) = @ s G () @ (sl etoorst
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3.6 Laguerre functions

Let f; be the function on C defined by

1 1. 2.2
f](z> ( ) L;c_;'_l (577j+1(/\)|zj|2) e ani+1 (N2 , % € C. (372)
Then, for k£ > 1,
8f 1 _1l,. 2|2
8])]( ) ( ) (8L§+1) (§Uj+1()\)|2’j|2) 77j+1()\)p6 1mi+1(M)z]
1 1 1
+ ()T (WHMMZP) (~3matp) b 573)
and
a 1 . S 2|2
aJ;J( ) ( ) (aLf.H) (5ﬁj+1(>\)‘2’2) anJrl()\)qe 1n+1(N)|z]
1 i _1l,. 212
( >kL§€+1 (577j+1()\>’2|2) (—577]+1<)\)q) e TMi+1 (N 751 (374)

# R (G VIR ) et
So, by (3.72)-(3.74)),
(Z7'15) (z5) = ()" (0L]) (%WjJrl()‘)’Zj’Q) emamnWEF 5 e (3.75)
It is easy to see that is also true for £ = 0. Thus, by -,

o G+
(—i)(25 +2)2 {m}

.\ k
Z 2, 1 1, y
* (E) (Zj)k+1 <6L§+1) <§nj+1(/\)|zj|2> e~ 1Mi+1 (N2
for all z; in C. It follows from Lemma that

D=

_1
ikt (2) =(2m) 2041 ()

€jrh+1,5(25)

1 1, 1 (j+1) : i\" — \k+1 T k+1 1 2\ —inii(Vlz)?
= (2m) " 2m;41(N)2i(25 +2) 2 —= | (&) L] §nj+1()\)|zj| e A

1
1 1 2l 1 1, e
— (271) 277j+1(/\)2 { T k; 1 } (7> k+1Lk+1 (§nj+1()\>|zj’2) e~ 1mi+1(N)|z] , 2z € C,

and the proof is complete. O

Defining P to be the projection onto the kth eigenspace, we conclude thie paper with the
following result which connects the Weyl transform, the Hermite projection operator P, and

the Laguerre function ¢, which is defined by

122

1,1 _1 ;
oi(z) = L 1(§|77(/\)||Z|2)6 A=,

where LZ_I beging a Laguerre polynomial to type (d — 1).
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3 Harmonic analysis on stratified Lie groups of step two

Theorem 3.63.
W (k) = PE(X)72(27)% B

Proof. For f,g € L*(R), it follows from the properties of the (), v)-Fourier-Wigner transform

that

W@L)1.0) = [ 0l o)
— PEN)2(21)% (Vau (£, 9), Vau (@2, B2))
= Pf(\)"2(2m)2 (f, ©})(D), 9).

Then we have
d
3

W () ) f = PEA) "2 (2m)2 (f, &))@

As Pof = X (f,®)) @) it is enough to show that

|a|=k
pr(z) = PE)2(2m)2 Y @) (2)

|a|=k

The Laguerre functions ;. satisfy the generating function
Z oz (1 — )= de b ES MOV,

On the other hand, Theorem @ gives

and each ng (%ﬁj(/\) ]zj|2) e~ 1MW gatisfy the relation

From (3.78) and (| - ) it is clear that

ST @) .(2) | = Pi(V)E(2m)

k=0 \ |a|=k
Comparing this with (3.77)) we obtain (3.76)).
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4 Applications

4.1 Weyl-Hormander calculus

4.1.1 Weyl-Hormander calculus on R"

We first recall some elements of the Weyl-Hormander pseudo-differential calculus and the asso-
ciated Sobolev spaces that will be relevant for our analysis. For more details on the underlying
general theory, we can refer, for instance, to |Lerl0].
We consider R" and identify its cotangent bundle T*R" with R?". The canonical symplectic
form on R?" is w defined by
w(T,TY=z-& -2 -¢ T= (), T = (¢, 2) cR™
Definition 4.1. If ¢ is a positive quadratic form on R?", then we define its conjugate ¢* by
T, 7"
VT eR*™ ¢“(T):= sup M,
rrerem\foy ¢ (T")
and its gain factor by

¢“(T)

A = in .
rerz\{0} q(T)

q

Definition 4.2. We shall say that the metric g is of Hormander type if it is a family of positive

quadratic forms
9={9x. X e R*"}
depending smoothly on X € R?" and satisfies:

e The metric g is uncertain, i.e. VX € R*™ A, > 1.

e The metric g is slowly varying, i.e. there exists a constant C' > 0 such that we have for

any X, X' € R2»

— T) gX/ (T) _
X-X)<C'l'= sup (gX( + <C.
gx ( ) rerzn\goy \9x(T) ~ gx(T)
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e The metric g is temperate, i.e. there are constants C' > 0 and N > 0 such that we have

for any X, X’ € R? and T € R*"\{0} :

gX(T) ~ w NV

In the following any constant depending only on C' > 0 and N > 0 will be called a

structural constant.

We also define a weight as a positive function on R?" satisfying the same type of conditions

as a Hormander metric.

Definition 4.3. Let g be a metric of Hormander type. A positive function M defined on R??

is a g-weight when there are structural constants C’ and N’ satisfying for any X,Y € R?*" :

(X -Y)< 0 = M(X) M)

v tar = ¢

and

Definition 4.4 (Hérmander symbol class S(M, g)). Let g be a metric of Hérmander type and
M a g-weight on R*". The symbol class S(M, g) is the set of functions a € C* (R?") such that

for each integer ¢ € Ny, the quantity

o] C g Pn e
S(M,g),L ‘=
(W9) <0, X€eR2n M(X)

is finite. Here Ora denotes the quantity (da, T').

Now, if a is a symbol in S(M, g), then its Weyl quantization is the operator which associates

to u € .7 (R") the function op" (a)f defined by

Ve,y € R, (opW(a)u(x)) = (2%)_”/

R2n

i(x—y)- T+ Yy
e (TR utndpe. (4)
Let us mention that the operator op op" (a) has a kernel K (z,y) defined by

K (o) = ) [ eesa (T2 e ae

which is linked to its symbol through

a(x,n) = / e WK (x + %,:L‘ - %) dy.

Let us also point out that a concept of Sobolev space H(M, g) was introduced by R. Beals

in |[Bea81]. We will use the following characterization of those spaces.
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4.1 Weyl-Hormander calculus

Definition 4.5 (Sobolev spaces H(M,g)). Let g be a metric of Hérmander type and M a
g-weight on R?". We denote by H(M,g) the set of all tempered distributions u on R" such
that for any symbol a € S(M, g) we have op" (a)u € L? (R™).

The following properties are well known |Ler10, Chapters 1 and 2 |:
Proposition 4.6. Let g be a metric of Hormander type on R*™.

e The space H(1,g) coincides with L* (R™). Furthermore, there exist a structural constant

C' > 0 and a structural integer £ € Ny such that for any symbol a € S(1, g), we have
||OpW(CL)||$(L2(Rn)) < CHa“S(l,Q)f'

o Let My, My be g-weights. For any a € S (M, g), the operator op' (a) maps continuously
H (Ms,g) to H (Mngl,g) . Furthermore, there exist a constant C' > 0 and an integer
{ € Ny such that

w
Hop (a)H,%(H(MQ,g),H(Mng—l,g)) < Cllalls(as g0
The constant C and the integers £ may be chosen to depend only on the structural constants

of g, M1, My and to be independent of g, M and a.

Proposition 4.7. Let g be a metric of Hormander type and let M, M, My be g weights. Then:

e The symbol class S(M, g) is a vector space endowed with a Fréchet topology via the family
of seminorms || - ||s(a,g),0- ¢ € No.
o Ifae€ S(M,g) then the symbol b defined by
opVb = (opWa)*

is in S(M,g) as well. Furthermore, for any { € Ny there ezist a constant C > 0 and a

integer ' € Ny such that

[16/s(r.9).6 < Cllalls,g).e

The constant C' and the integer {' may be chosen to depend on € and on the structural

constants and to be independent of g, M and a.
o Ifa; € S(My,qg) and as € S (Ms, g) then the symbol b defined by
opVb = (opwal) (opWaQ)
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is in S (M, My, g). Furthermore, for any { € Ny there exist a constant C' > 0 and two
integers l1,ly € Ny such that

165t M2.0).6 < Cllarllsar, g0 192l 501 g) 0

The constant C' and the integers {1, {5 may be chosen to depend on ¢ and on the structural

constants and to be independent of g, My, My and ay, as.

As pointed out in Chapter 3, it is natural to base the quantization of symbols on R™ on the

calculus related to the harmonic oscillator. In that case the metric
de? + dp?
(L+102 +1£13)”

is of Hérmander type with corresponding weights (1 + |0 + |€ |2)§ for 6 € R. For 6 € R and

p € (0, 1], we denote by Ei (R™) the corresponding symbol class, often called the Shubin classes

of symbols on R™ :

s 2 2
2?,(R”)::S<(1+|0|2+|§I2)2 d” + df )

T4 10 + 1€7)”
This means that a symbol a € C> (R*") is in ¥ (R") if and only if for any a, 8 € Nj there
exists a constant C' = C, 3 > 0 such that

S—p(la|+]8])
2

V(£,0) € R

0 0al€,0)| < € (1+ |¢ +10)

The class ¥) (R") is a vector subspace of C* (R" x R") which becomes a Fréchet space when

endowed with the family of seminorms:

_ 5—p(ol+IB])
lalsg = swp (L[ 10) T2 |ogdjale.0)

(£,0)ER" xR™
where N € Ny. We denote by

Y

4 ny . w 0 n
Uy (R") := Op" () (R"))
the corresponding class of operators and by || - H\pgg  the corresponding seminorms. We have
the inclusions
pr>p2 and 0 <0y = UX (RY) C UN2 (R").

The following is well known and can be viewed more generally as a consequence of the Weyl-

Hormander calculus.

Proposition 4.8. e The class of operators 6U]R \I/Eg (R™) forms an algebra of operators sta-
€
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4.1 Weyl-Hormander calculus

ble by taking the adjoint. Furthermore, the operations
1) n 1) n
vyl (R") — U270 (R")
Ar— A"
and
91 n 1) n 01+6 n
3o (R™) x U2 (R") — \I/Zp1+ 2 (R™)
(A,B) — AB

are continuous.

e The operators in WY (R") extend boundedly to L* (R™). Furthermore, there exist C' > 0
and N € N such that if A € X (R") then

Al 2z2@n)) < CllA|wss N

Example 4.9. The operators 9,, = Op" (i¢;),j = 1,...,n, or multiplication by u, =
Op" (ug) ,k=1,...,n, are two operators in X! (R").

Example 4.10. For each § € R, the symbol b°, where

b(€,0) = V1410 + [¢]?

is in 3¢ (R™).

From Example [1.9] it follows that the (positive) harmonic oscillator

A= Z (—812” + uf)
j=1
is in X2 (R").
4.1.2 The ()\,v)-Shubin classes ', , (G)

Now, we will prove our main results. It follows from Chapter 3 that we want to consider the

symbol associated with rescaled harmonic oscillator:
_Aosc,n(k) + |V’2 = _A§ + |7](>\) ’ x|2 + |V’27

where 7(\) > 0 is smooth and homogeneous of degree 1 in A.

Then the Shubin metric depending on parameters A € R™ and v € R* is the metric g***)
on R?¥* defined via

v 1
g (de, do) = (

L+ [n(A) - €2 + 0] + |v]?

)p () - def? + |d6r?)
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The associated positive function M®*) on R?¥+* is defined via
1
M*(E,0,v) = (1+ [n(N) - €7 + [0]* + [v]*)* .

For the Heisenberg group with n(A) = A and v = 0, these A-families of metrics and weights
were first introduced in [BFKG12] in the case p = 1. Similar to Proposition 1.20 in [BFKG12|,

we have the first result as follows:

Lemma 4.11. For each A € R™ and v € R*, the metric ¢ is of Hormander type and
the function M) is a giP ) weight. Furthermore, if p € (0,1] is fized, then the structural

constants for ¢ ) and for MO*) can be chosen independent of X and v.

Now, motivated by the examples on the Heisenberg group studied in [BFKG12|, we shall
give a definition of symbols, and pseudo-differential operators, on two step nilpotent Lie groups.
Therefore, in what follows, we shall define a positive, noninteger real number o, which will
measure the regularity assumed on the symbols. This number p is fixed from now on and we
emphasize that the definitions below depend on p. We have chosen not to keep memory of this

number on the notations for the sake of simplicity.

Definition 4.12. Let p € (0,1] be a fixed parameter. For each parameter A € R™ and v € R*,
we define the (A, v)-Shubin classes by

)\° »
S (6) 1= 5 (M) gler),

where we have used the Hormander notation to define a class of symbols in terms of a metric
and a weight. Here this means that Zi . (G) is the class of functions a € C* (G x R2*¢+k+m)

such that for each N € Ny, the quantity

S—p(a|+|Bl+]v])
_pla\Hng'ﬂ ( At

lallss | @)~ = sup In(A)] L+ ()] (1 + €12 + [0 + [v[?))
lal + 18] + v +1 <N
(&,0,v) € RY x R? x RF

X H(/\a,\)lﬁgagéza(x,y,r,3,5,0, v, )\)‘

Ce(G)
is finite. Besides, one additionally requires that the function

(w,&,0,v,\) — o(a)(w,&,0,v,\) L (w, 771€(I>\> . nf(d)\) 0, v, )\) (4.2)

is uniformly smooth close to A = 0 in the sense that there exists C' > 0 such that

d=p(a|+]Bl+Y)
2

|koeasoniotan]] | < Coa (14 O]+ IEP + 10 + ) ,

ce(G)

where V(w,£,0,v) € H? x G x R*** VA € [-1,1]. In that case we shall write a € 9, (G).
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4.1 Weyl-Hormander calculus

Remark 4.13. The additional assumption (4.2) on o(a) is necessary in order to guarantee
that pseudo-differential operators associated with those symbols are continuous on . (G) (see
[IBFKG12, Proposition 2.6]). It is also required to obtain that the space of pseudo-differential

operators is an algebra.

The class of symbols X9 , , (G) is a vector subspace of C* (G x R***+m) hecomes a Fréchet

space when endowed with the family of seminorms || - ||Ea @ N € No. We denote by

U3y, (G) = 0p" (), (G))

the corresponding class of operators, and by |[|-|[gxs  y the corresponding norms on the Fréchet
PNV

space U3, | (G).

By the definition of symbol class, Lemma [£.11] has important consequences which are stated

below.

Corollary 4.14. Let a be a symbol in EP/\V (G). Then for anyw € G , A € R™ and v € R¥,
the operator Op”(a(w, \,v)) is continuous from H (M, g(W"”)) into H <M (M(’\))fé,g(’“’”v
for any g»™M) weight M, and the constant of continuity is uniform with respect to X , v and
w. In particular for § = 0, the operator Op™(a(w, \,v)) maps L* (G) into itself uniformly with

respect tow , A and v.
Let us now mention some properties of the function o(a) defined in (4.2)).

Proposition 4.15. A function a belongs to Zi«\,u (G) if and only if o(a) € C* (G x R¥+k+m)
satisfies: for all I, N € N, there exists a constant Cx; > 0 such that for any «, B,y € N4
satisfying || + |B] + |y| < N, and for all (w,&,0,v,\) € G x R2dTrm

—r(la I+\BI+7)

oy S O (14 n(x )|+ IR+ 10 + ) (L+A)7 (43)

|hozaor (o (a)

Proof. For any multi-index f satisfying |3| < N, we have

b V(O(a)(w,i,e,u,A))‘ S TPON s (agaﬁav > ( & &

"m(A) “‘77d()‘)’)\> | (4.4)

9 9 9 57/3(\04|42r|5|+\“/|)
< Nallss , v (1 In(N)] + (€12 + 107 + o)

Besides, there exists a constant C' > 0 such that for A € R

<(A8A>l a> (w’ nf(lk) N ngdk) A)‘
agaﬂm ( . %\))\N

s
2

(00 () (w, .., 1) < €

+C ST O (6P + 1612 + [v?)?

o+ [Bl+[v]=!

< Cllallss @y (1+ 1OV + 1€ + 162 + [v]?)
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The converse inequalities come easily: one has a € ¥3,  (G) if and only if for all [, N € N,

DAV

there exists a constant C; such that for any a, 3,7 € N¢ satisfying |a| + |8] + |y] < N and
for all (w,&,0,v,)) belonging to G x R2dTr+m,

d=p(a|+|Bl+[v])

|oateeasono)| | < Oni(Ue I+ IgR+10F+ W) . (@)

Co(G)
We then remark that if |n(\)| < 1, the smoothness of o(a) yields that (4.4) implies on the

compact {[n(A)] <1}

(1+ ) ||ohoe 023 (o))

5—9(\a\42-\ﬁ\+h\)

iy S Ot (14 [0+ [+ 10+ o)

Besides, for [n(A)| > 1, (4.5) gives
N ) ) oy 2=pllalHI8L+) .
|Beeaianiota],, ., < One (Lt In)] + I + 10 + o) (1+ )
This ends the proof of the proposition. ]
Theorem 4.16. To a symbol a € X9, , (G) on R* depending on the parameters (w, A, v) in
G x R? x R¥ and belonging to (\,v)-dependent Hormander class. Then the pseudo-differential
operator on G defined in the following way: for any f € L (G),

Op(a)f(w) = Ii//A iy tr (uf‘u’fl]:(f)()\, v)op” (a(w,€,0,v, A))) Pf(A\)dXdv, Y w € G

15 well-defined.

4.1.3 (A, v)-Shubin Sobolev spaces

In this subsection, we study (\, v)-Shubin Sobolev spaces for the rescaled harmonic oscillator:
HAv) = =Dy + In(A) -2 + V],

which is the diagonal operator defined on L?(R?) by

(Z n;(N) (20 + 1/2> P,

The rescaled harmonic oscillator #(\,v) is a positive (unbounded) operator on L? (R?) . Its

((Smomem -0+ mers).

d
The eigenfunctions associated with the eigenvalues (Z n;(A)(2n; + 1) + v | are the Hermite
=1

spectrum is

functions ®). Therefore, the functions ®} form an orthonormal basis of L? (R?). For each
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4.1 Weyl-Hormander calculus

s € R, we define the operator (I + (), v))? using the functional calculus, that is, in this case,
the domain of (I4 H(\,v))2 is the space of functions

2
< o0

Dom(I+ H(\, v))2 =< h e L? Rd : Z (Z% (2a; +1) + ) )((Dz\wh)m(ﬂ&d)

nENd

and if h € Dom(I + H()\,v))> then

(I+H(>‘ V % = Z (ZUJ 2a] +I/2> (®3ﬂh’)L2(Rd) (I)())\r

nENd

Many of their properties, especially their equivalent characterisations, are well known for
n(A) =1 and v = 0. Our starting point will be the following definition for the (), v)-Shubin

Sobolev spaces:

Definition 4.17. Let s € R. The (\,v)—Shubin Sobolev space Q)" (G) is the subspace of
' (G) which is the completion of Dom(I + H(\,v))2 for the norm

llgae o= T+ O )3 -
Theorem 4.18. We have the following properties:

(1) The space Q¥ (G) is a Hilbert space endowed with the sesquilinear form
(9:h)grw = (T+HA))2g, L+ HOA v))2h) a6 -
We also have
L*(G) = 9" (G),
and the inclusions

S (G) C Q¥ (G) C QY (G) C S (G), s1> s

(2) The dual of Q) (G) may be identified with Q™ (G) wvia the distributional duality form
(9,h) = |5 ghdz.

(3) The complex interpolation between the spaces Q)Y (G) and Q" (G) is
(937 (6), Q5" (G)), = Q' (G), 5= (1= 0)so+051,0 € (0,1).

(4) For any s € R, QM (G) coincides with the completion (in %' (G)) of the Schwartz space
S (G) for the norm

I8l ghr = 100" (03) A e
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where b3(€,0,v) = 1+ [n(\)-EP+ 0P + [v]? is (A v)-uniform in W55, (G). The

norm || - H(Qb)w extended to QM (G) is equivalent to || - [ -

(5) For any s € R, A € R™ and v € R¥, the Shubin Sobolev space QM (G) coincides with the
Sobolev space associated with g™ and (MA)* (see Definition

QY (6) = H (MO, g .

(6) For any s € R, the operators Op" (b=°) (I + H(\,v))? and (I+ H(A,v))20p" (b=°) are
bounded and invertible on L* (G).

Proof. From Definition m, it is easy to prove that the space QM (G) is a Hilbert space, that
it is included in .’ (G) and that Q)" (G) = L?(G). The proofs for the dual of QM (G) is
QM (G) via the distributional duality and that the spaces QM (G) decrease with s € R are
standard, we omit them here (Part 1 and 2).

Let us prove the complex interpolation property of Part (3). We may assume s; > sq. For

h € Q3*(G), we consider the function

—(zs1+(1-2)s)+39

f(z) = (T+H(A,v)) 2 h,

and we check easily that

f@)=h, Nf@yllgyr = IIF(1 +iy)]

This shows that Q}(G) is continuously included in (Q3" (G), Q)" (G)),. By duality of the

o =lhlle, VyeG.
complex interpolation and of the QM (G), we obtain the reverse inclusion and Part (3) is
proved.

Let us prove Part (4). For any s € R, the operator Op" (b°) maps .7 (G) to itself and
the mapping || - ||(Qb)?u as defined in Part (4) is a norm on .¥ (G). We denote its completion in
" (G) by ol (G) From the properties of the calculus it is standard that the dual of Q% (G)
is o (G) via the distributional duality and that the spaces ol (G) decrease with s € R.

We claim the following property about interpolation between the Q® (G) spaces which is
analogous to Part(3):

QW (R"), Q0 (G)), = QW (G), s9= (1 —0)so+0s1,0 € (0,1) (4.6)
Indeed we may assume s; > sq. For h € QS;)(G), we consider the function
f(z) = e5=7000pW (b7 %) where s, = (1 — z)sp + 251.
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4.1 Weyl-Hormander calculus

Clearly f(6) = h. Furthermore,

Ifn)lg), = e [[op" (b) Op™ (b= ) bl Lo(e, ()
Se_y 2(s1—50) HOPW (bs1) OpW (b—Siy+50) OpW (b—sa) H_f(LQ(G)) ||h| (sze
and
( (14+iy) (s144y—s s W (1 —S14iy+s
11, = e o ) 00 (e

< eS1m80Y 2(s1—s0) HOpW (bs()) OpW (b_51+iy+59) OpW (b_

Meaey 1712,
From the calculus we obtain that the two operator norms on L?(G) in and are
bounded by a constant of the form C(1 + |y|) where C' > 0 and N € Ny are independent
of y. This shows that Q) is continuously included in ( % ( ), ol (G ))9. By duality of the
complex interpolation and of the spaces Q, (G), we obtain the reverse inclusion and is
proved.

Let us show that the spaces Q (G) and Q) (G) coincide. First let us assume s € 2Nj.
We have for any h € Q1 (G)

Il g < 10+ HOE0DY (07) | e

As H(\, v) € U¥?(G), the operator (I 4+ H(\,v))20p" (b7*) is in UX? and thus is bounded
on L?(G). We have obtained a continuous inclusion of ol (G) into QM (G) . Conversely, we

have for any h € Q" (G) that

1P1G) < JOB™ (0°) (T+ KA ) 72| 1 1oy Il gre-

The inverse of Op" (b*) (I + H(\,v))"% is (I + H(\,v))2 (Op" (bs))_1 since the opera-
tors I + H(\,v) and Op" (b®) are invertible. Moreover, for the same reason as above, (I +
H(\, V)2 (OpW (bs))_l is bounded on L? (G). By the inverse mapping theorem, Op" (b*) (I +

H (A, v))"% is bounded on L? (G) . This shows the reverse continuous inclusion. We have proved
Q" (6) = Q" (G)

with equivalence of norms for s € 2N; and this implies that this is true for any s € R by
the properties of duality and interpolation for Q (G) and Q) (G). This shows Part (4) and
implies Parts (5) and (6). O
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4.2 Heat kernels of sub-Laplacians

The development of mathematics in the past few decades has witnessed an unprecedented
rise in the usage of the notion of heat kernel in the diverse and seemingly remote sections
of mathematics. The special role of exponential functions ¢ —— e has been seen in the
first analysis courses. No wonder a far-reaching generalization of exponential functions—heat
semigroups {e~4},>0, where A is a positive definite linear operator which plays an integral role
in mathematics and physics, not least because it solves the associated heat equation d,u+ Au =
0. If the operator A acts in the function space, the action of the semigroup e~ is usually given
by the integral operator whose kernel is called the heat kernel of A.

As we have known that if in additional the operator A is Markovian, i.e. generates a Markov
process (for example, the case where A is a second-order elliptic differential operator), then the
information about the heat kernel can be used to answer the question about the process itself
(IGH09]). What’s more, upper and/or lower bound estimates about heat kernel that can also
help solve various problems related to operator A and its spectrum, solutions to heat equations,
and properties of the underlying space (JHLMO02]).

The culmination of this work was the proof by Li and Yau |[LY86] in 1986 of the parabolic
Harnack inequality and the heat kernel two-sided estimates on complete manifolds of non-
negative Ricci curvature, which stimulated further research on heat kernel estimates by many
authors. Apart from the general wide influence on geometric analysis, the gradient estimates
of Li and Yau motivated Richard Hamilton in his program on Ricci flow that eventually lead
to the resolution of the Poincaré conjecture by Grigory Perel’man, which can be viewed as a
most spectacular application of heat kernels in geometry. On the other hand, an interesting
application of heat kernels is the heat equation approach to the Atiyah-Singer index theorem
(see [ABP73|). Then the last purpose of this thesis is to consider the sub-Laplacian and the

heat kernel on 2-step stratified Lie group without the Moore-Wolf condition.

4.2.1 Heat kernels of H()\)

In this section, we consider the heat kernel of the rescaled harmonic oscillator:

HO) = =804 ) o = 3 (02 - aa—> |

j=1 J
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4.2 Heat kernels of sub-Laplacians

As we have known, the heat kernel plays an important role in many problems in harmonic
analysis and partial differential equations. An explicit expression for the heat kernel on the
Heisenberg group was obtained in |[Gav77; Hul76; Sta03|. Gaveau |Gav77| also obtained the
heat kernel for free nilpotent Lie groups of two step. Cygan [Sta03| obtained the heat kernel
for all nilpotent Lie groups of two step. But neither Gaveau’s expression for free nilpotent Lie
groups nor Cygan’s expression for arbitrary nilpotent Lie groups of two step were as explicit
as those in the cases of Heisenberg groups and quaternionic Heisenberg groups. Our results
revise and generalize the results in [CT05| to the 2-step stratified Lie group, where we can give
explicitly all irreducible unitary representations, which can help us to give a explicit expression
for the kernel and fundamental solution for the sub-Laplacian on 2-step stratified Lie group,

which can be found in next section. We state our main results as follows.

Theorem 4.19. The associated heat kernel of the rescaled harmonic oscillator H(\) is

d
_ ; 771 ’ J‘
GT (,I) H 92 Slnh(nj eXp { Z COth (773(>‘) ) )
i.e., G,(x) satisfies the heat equation
oC + i HONEE o G.(r)=0 with lim [ G.(x)f(x)dx = f(0)
or = & 8%2- T 750 Jpa N '

Proof. We are looking for a distribution K (x,y) such that
d 2

> (02 - 3 ) Ko = o0 = ). (19)

j=1 J
We find K(z) = K(z,0), i.e., the fundamental solution with singularity at the origin. Taking
the Fourier transform on R?

F()(E) = / e f(2)de

Rd
to the rescaled harmonic oscillator and applying the formulae

0

F (%) — i&; F(f)(€) and F (z;f(x)) = i=—(F(f))(€)

then, when y = 0, equation (4.9) becomes

(m? S <A>§;>fc<f>—1.

7=1

d
Next, for k = (ki,...,kq) we define the d-tuple Hermite function Wy (&) = [ ¥w, .00 =
j=1
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]ﬁl (. (é}- nj(/\)> and let

I?(f) = Z aVk(§), where [k| =k + -+ kg
k=0

J

d , N
Then we apply the operator <|§]2 -3 77]2()\)6%) to K (&) and obtain:
i=1

<|§|2 > o0 ()%) Zm )2k +1) ) ali(€).

Jj=1 |k|=0

Next we use the orthogonality property - ) to find ck. It is easy to see that

Zm )2k +1) 3 () = L,

k|=0

implies
Z T]J 2]<7 + Ck <\I/k, \I/k> = <1, \I/k> .

Here (¥y, U,,) is the usual inner product in L*(R). Since

d
‘Ifk, \I/k H A/ 77] 72 k ' 1 \I;2k+1> =0 and <17 \112k> = H 77]()\>7T

J=1

we have cg 1 = 0 for k € (Z+) and

_ <17 \I/2k>
Gk = —
Zlnj()‘)(zkj + 1) (Yo, Yox)
i=
1 11V
; nj(A)(2k; +1) ﬁ\/ 92k; (2k:;)
=1 =1
’ 1 1
= — — _
> (N (2k; +1) [T 220k
Jj=1 j=1
Hence
~ . > 1 4 Par; (/M (NE;
K@) =) caVa=> — 11 (22,%;'! j).
=0 =0 > m;(A)(2k; + 1) 3=t ’
=1

Next we apply

d
1 A
Z:/0 e 4%ds forAIZUj()‘)(ij+1>

Jj=1
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4.2 Heat kernels of sub-Laplacians

and obtain
o d /
Z / ¢2k 77] ]> —(2kj+1)n; (A SdS
=0 "° 20k!
Oo Yot (Vm @) o2k (0
/ He 77] 22k k ' 177]( )st
:/O He—m‘(/\)s ( ni(NE;, s ) ds
j=1

with

o ¢ ) /7] g
& (” 77j(>\)§j,5> B Z = (22k; /Zu j> e ki s,

k=0

To sum up with respect to k; in g; (\/ n;i(AN)&;, 3), we apply the relationship between the

Hermite function and Laguerre polynomial (see Chapter 3) to get

2

(z, 5) Z “TLY (a?) e o = —*ZL(O) ) (e72mN5)™ (4.10)

The Laguerre polynomlals are defined by their generating formula (see Theorem [3.59)):

N K 1 wz
ZLk (w)z" = A= exp{—z_ 1}.
k=0
Now we may apply the generating formula of the Laguerre polynomials to sum up the series

(4.10) and find g;(z, s)
B 6_“‘7 xze—an(A)S
gj(x’ S) - 1 — e—2n;(N)s exXp e—2n;(N)s _ 1
1 22 221 (N)s
T e zmms P {‘? {1 e s — 1} }

1 2 —1— e 2mNs
T 1 o2 eXp{‘?' o2 (Vs _ | }

= (A 1 —2m;(N)s
H e Z 1; (A |§J te ’ s
1— 6*277](/\)5 1 — e~ 2m;(N)s
We may rewrite the above formula in terms of hyperbohc functions:

- /0 H QSlnh { Z i ’é} oth (773‘()\)5)} ds,

Hence

where we use
1 — e 2n;(N)s

sinh 77]()\)5 = W,
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and
1 + 6—277j()‘)3
coth(—n;(X)s) = — coth(n;(\)s) = 1_c2ms
Let
d 1 n; (M) 1§17 |£;
G(&,7) = H W exp Z coth (n;(A\)7)
i(

be the integrand of the above integral. We can prove directly that

fj(g - <>§;)]f<<§>:1

1

J
by showing that the function G(&, ) satisfies the heat equation

% |
or

d

> (¢- niu%)

Jj=1

G¢,7)=0 and lim G, 7)= (4.11)

T—0t

Then the fundamental theorem of calculus yields

> (gl Ko~ [T (4

J=1

The fact that G (&, 7) satisfies the heat equation (4.11]) can be proved directly by simple differ-

entiation. Therefore

0G & 0>
FD3 (¢ -nogg ) clen =0

d
This shows that G(&, 7) is the heat kernel of the rescaled harmonic oscillator > (ff - 77?0\),%)
j=1 J
with G(&,0) = 1. -

4.2.2 Heat kernels of L

In this section, we are interested in finding the heat kernel of £, which are related to the kernel

of the integral operator e™™*,7 > 0. We need the following proposition that follows from the

Theorem [3.29] and Theorem [3.41].

Proposition 4.20. For all multi-indices o, 5, u and ~y
EAE DY eg# = Pf()\)_%(QW)g(S/gﬁeé#

a?’y

where 63,4 s the Kronecker delta function.
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4.2 Heat kernels of sub-Laplacians

Theorem 4.21. For all f € L* (R***) and all 7 > 0,
e_Tﬂf = kM f

where
d

A —7|v|? -3 J A J<
KNz, r) = e ™ ]1;[1(27) 228111}?((77]-)()\)7') exp{—n

\)z?

L coth (n;(\)7 )}

for all z € R?4+F,

Proof. Let f € S (R****) and 7 > 0. Then by Theorem W,

e = Z > (freas) 12(R2d) €a s
(03
By Proposition [£.20]
S e//\iﬁ - Z Z (fv e;\éﬂ)LQ (R2a+F) eéw g eg,ﬂ
a v

= Pf(A)_%@ﬂ-)% Z Z ( 762,7)L2(R2d+k) 5%563,6
a v

= Pf()‘)_%(%r)% Z (f> 6375>L2(R2d+k) eg,ﬁ

<Z n; (A 25J+1)+|V2>

for all 8 € N&. Thus,

d
> nj(A>(2ﬂj+1>+v|2>
]:l *2 €55

d
> Wj(A)(25j+1)+V|2> N
= €55 %2 [-

To compute

—T<i e )(2B]+1)+V2> .
Z e =t €34
B
we first to compute
—7(21 ng(/\)(2ﬁ,j+1)> N
Z e V= €35

by Mehler’s formula. In fact,

((BY)'p),
eﬁﬂ(p7 H ﬂ] /8] ( \/— \/ QJ> ) D, q S Rda

where eg; 5. is the ordinary Fourler—ngner transform of the Hermite functions eg,. Hence for
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all (p,q) € RY x R¢

> ni (M) (285+1)

Z e <J >€?3,5(p> q) = Pf()\)% H Z e "es; 5
8 ‘ :

Now, by Theorem |4.19

Ze <]Z " %H))eﬁj,ﬂj (ps:45) = \/127 QSinh(%’lj()\)T) eXp{_nj(M(pj) e )COth(”jmT)}

for all (p;,q;) in R x R. So,

/\)1/2

> mi(M(2Bi+1)+|v| > 1n;(A)z;
L | | IR coth (;(\)7) b
65 B p q =€ 2 Slnh (773()\)7_) €xp { 2 CO (T’J( )T>}

wath

l\:)\»—‘

Now, we use the heat kernel £ of the A-twisted sub-Laplacian to find the heat kernel of the
sub-Laplacian by taking the Fourier transform with respect to the parameter A. To do this, we

need some preparation. The group convolution of two measurable functions f and g on G is

defined by
(f*cg) (z,8) = / F((z,8)(w,8)7") g(w, s)dwds, z,w e R**™* s € R™
G

if the integral exists. Moreover, we denote by f\ the ordinary Fourier transform of f with

respect to the s variable evaluated at the point A € R™. More precisely,

fia(z) = (2n)7% /m e A (2, 8)ds, 2 € R¥ME

We need the following theorem.

Theorem 4.22. Let f and g be functions in L'(G). Then for all nonzero A € R™,

(f % 9)y = (2m) 2 fr %_x g».

Proof. For all z € R24+F
(f %c 9), = (2m) % / X (f 5 g) (2, 8)ds
Rm

— (2n)% /Rm g (/R+ /m f (z Cws—1— %J(z,w)) g(w,l)dwds) dl.

Let s = s — 20(z, w). Then

(f*cg), = (2m)” / / / e (2 —w, s — 1) g(w, l)_’\azwdwdlds
m m R2d+k
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4.2 Heat kernels of sub-Laplacians

On the other hand, for all z in R?** we get

(f)\ *_ A g)\) ( ) /R%Jrlc f)\(Z — (’LU)@ 2)\U(Z w)dw

(2m)~ / / / e (2 —w, s — Dg(w, e 22 dwdlds,
m m ]RZd—Hc

and the proof is complete. O]

Now, we consider the initial-value problem given by
O-u(w, t, 7) + (Lu)(w,t,7) =0,
u(w,t,0) = f(ew,1),
w=(z,r) € R2** t e R™ 7 > 0.
By taking the Fourier transform with respect to ¢ and evaluated at A, we get an initial-value

problem for the heat equation governed by the A-twisted sub-Laplacian £, i.e
Orun(w, 7) + (L uy) (w, 7) = 0,
ur(w,0) = fa(w),

for all w = (z,7) € R¥** 7> 0 and A € R™\{0}. By Theorem [4.21]

un(w,7) = (k) %3 fr) (W), we R 750

for all A € A. Therefore by taking the inverse Fourier transform with respect to A and evaluated
at s, and using Theorem |4.22 we get the solution of the initial-value problem governed by the

sub-Laplacian given by
u(w,t,7) = (2m)7% (f g K;) (w,1), weR*™ teR™ >0

where K, is the Fourier transform of the heat kernel of &k} with respect to A and evaluated at

t. So, the heat kernel of L is given in the following theorem.

Theorem 4.23. For all f in L*(G),e” ™ f = f ¢ K., where
d

A 5 4 ;i (A wJQ
K (w,t) = (2r)" @™ /m e~ eIV ]1;[1 2sin}?]((77);)()\)7) exp {_77 (2) coth (n;(A\)7 )} d\

for all (w,t) € G.

Our results can be seen as a generalization of Heisenberg group and H-type group. In fact,
if we take k = 0, m = 1, then the step two stratified Lie group is the Heisenberg group H?2+!,
and our result cover the one in [Dual3|. If we take & = 0, then the step two stratified Lie group
is the H-type group, and some results can be found in |Cyg79; DW15; MW18; MRO03; YZ08|.
Also, there are some results in this direction by different methods, i.e. |[AG16; CKW21}; [LZ19].
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To the best of our knowledge, this is the first result on the Weyl transform and Heat kernel for

sub-Laplacian on general 2-step stratified Lie groups, especially we consider the case k # 0.
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5 Appendix

The aim of this appendix is to prove that, up to a canonical isomorphism, the classical definition
of stratified Lie group (Definition [2.62)) coincides with our Definition as given in Section
2.1.3. To this aim, we begin by recalling some basic facts about abstract Lie groups, providing
all the terminology and the main results about manifolds, tangent vectors, left-invariant vector
fields, Lie algebras, homomorphisms, the exponential map. We take most of the material from

[BLUO7).

5.1 Abstract Lie groups

Let N € N, and let us define, for i = 1,..., N, the coordinate projections on R" (whose points
will be denoted by € = (&,...,&v) € RY with &,..., &y €R)

i RY — R, m(&)=¢.
Definition 5.1 (N-dimensional locally Euclidean space). An N-dimensional locally Euclidean
space M is a Hausdorff topological space such that every point of M has a neighborhood in M

homeomorphic to an open subset of RY. If ¢ is a homeomorphism between a connected open

set U C M and an open subset of RY, we say that ¢ : U — R” is a coordinate map,
Z; ::WiOQOZU—)R

is a coordinate function, and the pair (U, ) (sometimes also denoted by (U, xy,, ...,xy)) is
a coordinate system or a chart. If m € U and ¢(m) = 0, we say that the coordinate system is

centered at m.

Definition 5.2 (Differentiable manifold). A C* differentiable structure F on a locally Eu-

clidean space M is a collection of coordinate systems

{(Uaﬂoa) NS A}
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with the following properties:
i UaGA Ua = M7
e p,0 @El is C for every a, B € A (whenever it is defined);

e F is maximal w.r.t. the second property in the sense that if (U, ¢) is a coordinate system

such that p o ¢ ! and @, 0 ¢~ are C*™ for every a € A, then (U, p) € F.

An N-dimensional C* differentiable manifold is a couple (M, F), where M is a second countable

N-dimensional locally Euclidean space and F is a C* differentiable structure.

As usual, when we say "M is an N-dimensional C* differentiable manifold", we leave unsaid

that M is equipped with the fixed datum of a C'*° differentiable structure F on M.

Definition 5.3 (Tangent vector, space and bundle). Let M be an N-dimensional C* differen-
tiable manifold. A tangent vector v at m € M is a linear functional, defined on the collection

of the real-valued functions C'*° in some neighborhood of m, such that

v(f) =0
whenever f is horizontal in m.

We denote by M,, the set of the tangent vectors at m € M, and we say that M, is the

tangent space to M at m. We finally set

T(M):= | {m} x My, ={(m,v) :m € M,v € My,}.

T(M) is called the tangent bundle to M.

Proposition 5.4. Let M be an N-dimensional C™ differentiable manifold. Then dim (M,,) =
N =dim M.

Definition 5.5 (Partial derivatives on M). Let M be an N-dimensional C'*° differentiable
manifold. Let (U, ¢) be a coordinate system with coordinate functions x1, ..., zy (z; := m 0 ¢),

and let m € U. For every i € {1,..., N} we define a tangent vector, denoted

0
8J]Z' m < Mm
by setting
0 0 1
= o

for every C'*° function f defined in a neighborhood of m.
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5.1 Abstract Lie groups

Definition 5.6 (Differential at a point). Let ¢» : M — M’ be a C*° map between two

differentiable manifolds, and let m € M. The differential of ¢ at m is the linear map
Aty © My — My,

defined as follows: if v € M,,, d,,1(v) is the tangent vector in Mz/p(m) acting in the following

way: if f is aC* function in a neighborhood of ¥(m), we set
(dmo(v)) (f) == v(fov).

Definition 5.7 (di as a map on the tangent bundle). Let ¢ : M — M’ be a C'™° map between
two differentiable manifolds M, M'. We set

dy : T(M) —» T (M), dp(m,v) = (Y(m), duip(v)).
Note that, whereas d,,1 is a map from M, to M 7/11(”71) (for any fixed m € M), dy is a map from
T(M) to T (M").

Definition 5.8 (Vector field). Let 2 C M be an open subset of a differentiable manifold M.

A vector field X on () is an application
X:Q—T(M)
such that,
X(m) = (m,v(m)) € T(M) Vm €.
Equivalently, we have

X(m) = (m,v(m)), where v(m) € M, for every m € Q.

If T(M) is the tangent bundle of a differentiable manifold M, and, for every m € M,v € M,,,

we set m(m,v) := v, then the following map is well posed on T'(M) :

7:T(M)— U My, (m,v)—v.
meM

In the sequel, if X is a vector field on an open set 2 C M, we shall use the notation X (m) for

the map
X:Q—=T(M), m— X(m),
whereas X, will denote the map

Q= |J M, m— X, = (w0 X)(m).

meM
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So, the above positions can be summarized as
X(m)=(m,X,,) for every m € M.

Finally, if f is a C*° function on 2 and X is a vector field on 2, we shall denote (with an abuse
of notation) by X (f) or shortly X f the function on 2 whose value at m is X,,(f), i.e.
Xf:Q=R, (Xf)(m):=X,(f). (5.1)

Definition 5.9 (Smooth vector field). Let X be a vector field defined on a manifold M. We
say that X is C ( or smooth) if, for every open set Q@ C M and every smooth real-valued

function f on 2, the function X f as defined in (5.1]) is smooth on Q.

Remark 5.10 (Smooth vector fields as operators on C*(M,R)). Let X be a smooth vector field
on a differentiable manifold M. Besides a map from M to T'(M), it is possible to identify X

with the map
X :C®(M,R) - C*(M,R), fr—Xf
where
Xf:M—->R, m—(Xf)(m)=X,f.
We denote by X(M) the set of the smooth vector fields considered as linear operators (i.e.
endomorphisms) on C*°(M,R). Note that X'(M) is a vector space over R.

In what follows, we introduce an important definition. The adjectives "regular" and "smooth"

will always mean "of class C*° ".

Definition 5.11 (Tangent vector to a curve). Let u : [a,b] — M be a regular curve. The

tangent vector to the curve p at time ¢ is defined by

. d
[(t) == dp (5 ) € M.

Hence, fixed t € [a, b], if f is C™ near pu(t), we have

A0 = 2| ().

dr r=t

Definition 5.12 (Integral curve). Let X be a smooth vector field on the differentiable manifold

r=t

M. A regular curve p : [a,b] — M is called an integral curve of X if
((t) = Xy for every t € [a, b]. (5.2)

More explicitly, (5.2) means that
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5.1 Abstract Lie groups

for every smooth function f on M and every t € [a, b].

Definition 5.13 (Complete vector field). Let X be a smooth vector field on the differentiable
manifold M. We say that X is complete if, for every m € M, the integral curve p of X such
that 1(0) = m is defined on the whole R (i.e. its maximal interval of definition is R ).

In the sequel, we denote by C*°(M, R) or, shortly, C°(M) the set of the smooth real-valued
functions defined on a differentiable manifold M. It is immediate to observe that if X is a
smooth vector field on M and f € C*°(M,R), we have X f € C*°(M,R). We explicitly recall

that, here and in the sequel, we use the notation in (5.1)):
Xf:M—=R, (X[f)(m)=Xn(f).

As a consequence, the following definition is well posed.

Definition 5.14 (Commutators). Let X and Y be smooth vector fields on a differentiable
manifold M. We define a vector field on M (called the commutator of X and Y ) in the

following way:
(X, Y]: M = T(M), [X,Y](m):=(m,[X,Y]n),
where

[X’ Y]m(f) = Xm(Yf) - Ym(Xf)

for every m € M and every f € C*(M,R).
Definition is well posed as it follows from (i) in the proposition below.
Proposition 5.15. If X, Y and Z are smooth vector fields on M, we have:
(1) [X,Y] is a smooth vector field on M ;
(13) [X,Y]m ==Y, X]mn for every m € M;
(ii3) [[X,Y], Z)m +[IY, Z], X]m + [[Z, X], Y] = 0 for every m € M.

Remark 5.16. Consider the alternative definition of smooth vector field as an element of X' (M).

The commutator operation rewrites as an operation on X(M) in the following way: Given

X,Y € X(M), we consider the operator on C*°(M,R) defined by
(X, Y]: C%(M,R) = C*(M,R), f—[X,Y]f,
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where

(X Y]f)(m) = [X, Y] f = Xn(Y ) = V(X )
Then, obviously, [X,Y] € X(M) is the operator on C*°(M,R) related to the (usual) vector
field [X,Y].
With this meaning of the commutation, Proposition rewrites as: If X, Y and Z belong
to X (M), we have:

(i) [X,Y] € X(M);
(i) [X,Y] = [V, X];
(vid) [[X,Y], Z]+ Y, Z], X]|+ [[Z, X],Y] = 0.
Definition 5.17 (Lie group). A Lie group G is a differentiable manifold G along with a group
law % : G x G — G such that the applications
GxG>3(z,y)—~x*xycG, Gozx—az'eG
are smooth.
In the following, we shall always denote by e the identity of (G, ). Moreover, fixed o € G,
we denote by 7, the left translation on G by o, i.e. the map
Gozrr—1,(r) =0xxeG.
Definition 5.18 (Lie algebra). A (real) Lie algebra is a real vector space g with a bilinear
operation [-,-] : g x g — g (called (Lie) bracket) such that, for every X, Y, Z € g, we have:
1. (anti-commutativity) [X,Y] = —[Y, X];
2. (Jacobi identity) [[X,Y], Z] +[[Y, Z], X] + [[Z, X],Y] = 0.

A very remarkable fact is that, given any Lie group, there exists a certain finite dimen-
sional Lie algebra such that the group properties are reflected into properties of the algebra.
For instance, any connected and simply connected Lie group is completely determined (up to
isomorphism) by its Lie algebra. Therefore, the study of a Lie group is often reduced to the
study of its Lie algebra.

Remark 5.19. If X;,..., X,, are elements of an (abstract) Lie algebra, then a system of gener-

ators of Lie {X1,..., X,,} is given by the commutators
e Xi] 1]

X] = [Xil, [Xi27 [XZ'37 e [Xz

158



5.2  Left invariant vector fields and the Lie algebra

where {iy,d9,...,it} C{1,...,m} and I = (iy,42,...,1),k € N.

5.2 Left invariant vector fields and the Lie algebra

Definition 5.20 (Left invariant vector fields). Let G be a Lie group. A smooth vector field X

on G is called left invariant if, for every o € G, X is 7,-related to itself, i.e.

dr,o X = X o7,. (5.3)

Here dr, is intended as a map from T(G) to itself. Condition (5.3]) is equivalent to the
following one:
(de70) (Xp) = Xoww Vx,0 €G. (5.4)
Applying (5.4) at the identity e, it follows immediately that if X is a left invariant vector field,
we have

det (X.) = X, Vo €G,

which proves that a left invariant vector field is determined by its action at the origin. Moreover,

(5.4)) can also be written as

X, (foTy) = Xowa(f) forevery z,0 € G and every f € C°(G,R)

or again as (the most commonly used)
Xoy = floxy)) = (X[)(o *2).

Before giving the following central Definition, we pause a moment in order to recall the
multiple ways a smooth vector field can be thought of. A smooth vector field on G is a map
X : G — T(G) such that, for every x € G, it holds X (z) = (z, X,), where X, € G, for every
z € G and such that, for every f € C(G,R), the function x — X,(f) is smooth on G. A
smooth vector field can be identified to the operator

X :C®(G,R) — C*(G,R),
f—=Xf:G—=>R,
x— X, f.
The set of the vector fields, as the above described operators, is denoted by X (G). Obviously,
the set of the left invariant operators on G gives rise to a relevant subset in X' (G), following

the above identification. We are ready to give the following central definition.
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Definition 5.21 (Algebra of a Lie group). Let G be a Lie group. Then the subset of X'(G) of
the smooth left invariant vector fields on G is called the (Lie) algebra of G. It will be denoted

by g.
More precisely, following Remark [5.10, we henceforth identify a left invariant vector field X

on G with the following operator
X : C*(G,R) —» C*(G,R)

such that, for every f € C*(G,R), the function X f on G is defined by
(Xf)(z) =X, f VeeG.

Hence, g is a (linear) set of endomorphisms on C*(G, R),

g C X(G).
Note that, from the left invariance of X € g, we have
(Xf)x)=X(for)(e) VeeGVYfeC?G,R).

Along with the above definition of the algebra of a Lie group, there is a wide commonly used

identification of g with G, described in the following theorem.

Theorem 5.22 (The Lie algebra of a Lie group). Let G be a Lie group and g be its algebra.

Then we have:

(1) g is a vector space, and the map
a:g— G,
X = a(X) =X,
1s an isomorphism between g and the tangent space G, to G at the identity e of G. As a

consequence, dim g = dim G, = dim G;

(ii) The commutator of smooth left invariant vector fields is a smooth left invariant vector

field;
11 with the commutation operation is a Lie algebra.
g g

Example 5.23 (The Lie algebra of (R, +)). It is obvious that the Lie algebra t of the usual

span i
P dr

Euclidean Lie group (R, +) is
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where

% L C®(R,R) = C*(R,R), [ f"

With the usual formalism X, for vector fields, this rewrites as

d
o tf = f'(t) for every t € R.

Definition 5.24 (Homomorphisms). Let (G, ) and (H, *) be Lie groups. A map ¢ : G — H

is a homomorphism of Lie groups if it is C* and if
plrey) =) *xply) Vr,yeG.

A map ¢ is an isomorphism of Lie groups if it is a homomorphism of Lie groups and a diffeomor-
phism of differentiable manifolds. An isomorphism of G onto itself is called an automorphism
of G.

Let (g,[-,-]1) and (b, [-,-]2) be Lie algebras. A map ¢ : g — b is a homomorphism of Lie

algebras if it is linear and if
p (X, Y]) = [p(X), oY) VXY €g.

A map ¢ is an isomorphism of Lie algebras if it is a bijective homomorphism of Lie algebras.

An isomorphism of g onto itself is called an automorphism of g.

We recall that, according to Definition [5.13] a smooth vector field X on a Lie group G is
complete if, for every z € G, the integral curve p of X such that u(0) = x is defined on the
whole R.

Proposition 5.25 (Completeness of the left invariant vector fields). The left invariant vector

fields on a Lie group G are complete.

Definition 5.26 (The exponential curve expy(t)). Let G be a Lie group with Lie algebra g.
Let X € g be fixed. By Proposition the integral curve p(t) of X passing through the
identity of G when ¢ = 0 is defined on the whole R. We set

expy (1) = p(t).

By the Definition of integral curve, we have

expy(0) = eg,
expy :R— G  with px(0) = cc (5.5)

deexpy (L] ) = Xexpyy VEER.
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In terms of functionals on C*°(G,R), (5.5)) can be written more explicitly as

d

(@) U expx ()} = Xewy(f) VS € CF(GR).

In particular, when ¢t = 0,

() U et} = Xl) v/ eC™@R)

Again from (5.5) with ¢ = 0 we infer

d
doexpy { (E) } = X..
0

For future reference, we collect some other useful formulas for expy(¢), immediate conse-

quence of the facts proved above.
Theorem 5.27. Let (G, ) be a Lie group with algebra g. Let X € g. Then:
(1) expy(r+8) = expy(r) x expx($s) for every r,s € R;
(i1) expx(—t) = (expx (1)) for every t € R;
(i17) expx(0) =e;
(iv) R >t expx(t) € G is a smooth curve;

(v) expx(t) is the unique integral curve of X passing through the identity at time zero, so
that, for every x € G,

t— xx (expy(t))

1s the unique integral curve of X passing through x at time zero.
We are ready to give the fundamental definition.

Definition 5.28 (Exponential map). Let (G, %) be a Lie group with Lie algebra g. Following

the notation in Definition [5.26] we set
Exp:g — G,
X — Exp(X) = expx(1).

Exp is called the exponential map (related to the Lie group G ).
The following results hold.

Proposition 5.29. Let (G, *) be a Lie group with Lie algebra g. For every X € g, we have

162



5.3 Nilpotent Lie groups

(1) Exp(tX) = expx(t) for every t € R;
(i7) Exp((r + s)X) = Exp(rX) = Exp(sX) for every r,s € R;
(i11) Exp(—tX) = (Exp(tX))™!, for every t € R.

Theorem 5.30. Let G and H be Lie groups with associated algebras g and . We denote
by Expg and Expy the exponential maps related to G and to H, respectively. Finally, let

v : G — H be a Lie group homomorphism. Then the following diagram is commutative:

G—2—H

ExpGT TEXPJ}H .
b

—_—
g i

5.3 Nilpotent Lie groups

In this section we discuss nilpotent Lie algebras and groups in the spirit of Folland and Stein’s
book |FS82| as well as introduce homogeneous (Lie) groups. For more analysis and details in

this direction we refer to the recent open access books |[FR16|.

Definition 5.31 (Graded Lie algebras and groups). A Lie algebra g is called graded if it is

endowed with a vector space decomposition (where all but finitely many of the V;’s are 0 )
g=®;2,V; suchthat [V;,Vj] C Vi,

Consequently, a Lie group is called graded if it is a connected and simply connected Lie group

whose Lie algebra is graded.

The condition that the group is connected and simply connected is technical but important
to ensure that the exponential mapping is a global diffeomorphism between the group and its

Lie algebra.

Definition 5.32 (Stratified Lie algebras and groups). A graded Lie algebra g is called stratified

if V| generates g an algebra. In this case, if g is nilpotent of step r we have
g= @;:1‘/37 [V;’ Vi = Vit

and the natural dilations of g are given by

r

O (Z Xk> =3 NX,, (X eVh).

k=1
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Consequently, a Lie group is called stratified if it is a connected simply-connected Lie group

whose Lie algebra is stratified.

Definition 5.33 (Homogeneous groups). Let d, be dilations on G. We say that a Lie group

G is a homogeneous group if:

(a) It is a connected and simply-connected nilpotent Lie group G whose Lie algebra g is

endowed with a family of dilations {d,}.
(b) The maps exp ody, o exp~! are group automorphism of G.

Remark 5.34. The exponential mapping exp is a global diffeomorphism from g to G, it induces
the corresponding family on G which we may still call the dilations on G and denote by 9.

Thus, for z € G we will write d,(z) or abbreviate it writing simply Az.

Lemma 5.35. Graded Lie algebras are naturally equipped with dilations. If a Lie algebra g has

a family of dilations such that the weights are all rational, then g has a natural gradation.
Proposition 5.36. The following holds:

(1) A Lie algebra equipped with a family of dilations is nilpotent.

(ii) A homogeneous Lie group is a nilpotent Lie group.

Remark 5.37. A gradation over a Lie algebra is not unique: the same Lie algebra may admit
different gradations. For example, any vector space decomposition of R yields a graded struc-
ture on the group (R", +). More convincingly, we can decompose the 3 dimensional Heisenberg

Lie algebra b as
3
b=V, with Vi=RX, Vz=RY,V;=RT
j=1

This example can be easily generalised to find several gradations on the Heisenberg groups

H,, ,n,=2,3,..., which are not the classical ones. Another example would be
8
b=V, with V3=RX, V;=RY, Vi =RT
j=1

and all the other V; = {0}.

Remark 5.38. A gradation may not even exist. The first obstruction is that the existence of a
gradation implies nilpotency; in other words, a graded Lie group or a graded Lie algebra are

nilpotent. Even then, a gradation of a nilpotent Lie algebra may not exist. As a curiosity,
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let us mention that the (dimensionally) lowest nilpotent Lie algebra which is not graded is the

seven dimensional Lie algebra given by the following commutator relations:
(X1, X)) = X for j=2,...,6,
[ X2, X3] = X,
[Xo, X4| = [ X5, Xo] = [ X3, Xy] = X7
They define a seven dimensional nilpotent Lie algebra of step 6 (with basis {Xj,..., X7}). It

is the (dimensionally) lowest nilpotent Lie algebra which is not graded.

If H is a stratified Lie group, its Lie algebra admits at least a stratification, but it can also
have more than one. For example, if H = H! is the Heisenberg group on R3, its Lie algebra
admits the stratifications

span { X, Xo} @ span {[ X1, X},
span { X7 — 3[X1, X5], Xo} @ span {[ X1, X,]},
span { X + X», 33X, + [X1, Xo]} @ span {[ X, Xo]} .
Definition 5.39 (Basis adapted to the stratification). Let H be a stratified Lie group. Let

V = (W,...,V;) be a fixed stratification of the Lie algebra b of H. We say that a basis B of b
is adapted to V if

B— (Ef”,...,E}&f;...;E@,...,E}J})
where, for ¢ = 1,...,r, we have N; := dim V}, and
<E(i) E(i)> is a basis for V;
1 9+ Ni 7.
Obviously, every stratified Lie group admits an adapted basis to any of its stratifications.

Proposition 5.40. Let H be a stratified Lie group. Suppose that (V1,...,V,) and (\N/l, ce ‘N/f,:>
be any two stratifications of the algebra of H. Then r = 7 and dim (V;) = dim <‘~/Z> for every
t=1,...,7. Moreover, the algebra of H is a nilpotent Lie algebra of step r. Hence, the natural

number
Q=) idim (V)
=1

depends only on the stratified nature of H and not on the particular stratification. Q is called

the homogeneous dimension of H.

Lemma 5.41 (The two-stratification lemma). Let H be a stratified Lie group with Lie algebra
b. Suppose V := (Vi,..., V) and W := (W4, ..., W,) are two stratifications of b.
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Then, for every couple of bases V and W of b respectively adapted to the stratifications V

and W, the transition matrixz between the two bases is non-singular and has the block-triangular

form
MO 0 ... 0
*  M®
0
* e * M®

where, for every i = 1,...,r, the block M® is aN; x N; non-singular matriz (N; being the

common value of dim (V;) = dim (W,)).

The following proposition shows that "to be a stratified Lie group" is an invariant under

isomorphism of Lie groups.

Proposition 5.42. Let H be a stratified Lie group. Suppose G is a Lie group isomorphic to H.
Then G 1is a stratified Lie group too. Moreover, H and G have the same step, the same number
of generators and even the dimensions of the layers of the relevant stratifications are preserved.
Also, H and G have the same homogeneous dimension Q).

More precisely, suppose ¢ : H — G is a Lie group isomorphism and that (Vi,...,V,) is a
stratification of b, the algebra of H. Then, if g is the algebra of G, a stratification for g is
given by (de (V1) ,...,dp (V,)), where dg is the differential of ¢ which is an isomorphism of

Lie algebras (and of vector spaces).
We recall the following result, which also gives the well known Campbell-Hausdorff formula.

Theorem 5.43. Let (H, *) be a connected and simply connected Lie group. Suppose that the Lie
algebra by of H is nilpotent. Then ¢ defines a Lie group structure on by and Exp : (h,0) — (H, )

18 a group-isomorphism. In particular, we have

Exp(X) * Exp(Y) = Exp(X oY) VXY €b.

Theorem 5.44 (The third fundamental theorem of Lie). Let b be a finite-dimensional Lie
algebra. Then there exists a connected and simply connected Lie group whose Lie algebra is
1somorphic to b.

Collecting the above two theorems, we obtain the following result.
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Corollary 5.45. Let b be a finite-dimensional nilpotent Lie algebra. Then o defines a Lie
group structure on by. Moreover, the Lie algebra associated to the Lie group (h,<) is isomorphic

to the algebra b.

5.4 Abstract and homogeneous stratified Lie groups

We now aim to prove that, up to isomorphism, the definitions of classical and homogeneous

stratified Lie group are equivalent. To begin with, we prove the following simple fact:

Proposition 5.46 (Homogeneous = stratified). A homogeneous stratified Lie group in Defi-
nition [2.61] is a stratified group of Definition [2.62]

Proof. Let G = (RN ,0,5)\) be a homogeneous Carnot group. Clearly, G is connected and
simply connected. Let g be the algebra of G.
Fori=1,....,rand j=1,..., N, let ZJ@ be the vector field of g agreeing with 8/83@? at
the origin. We set
V; := span {Z{i), ce Z](\Z,Z)}

Remark proves that (Vi,...,V,) is a stratification of g, as in Definition [2.62] This ends
the proof. n

Proposition 5.47 (Stratified om, homogeneous). Let H be a stratified Lie group, according
to Definition . Then there exists a homogeneous stratified Lie group H* (according to our
Definition m which s 1somorphic to H.

We can choose as H* the Lie algebra b of H (identified to RN by a suitable choice of an
adapted basis of B) equipped with the composition law ¢ defined by the Campbell-Hausdorff

operation. In this case, a group isomorphism from H* to H s the exponential map
Exp : (h,0) — (H, *).

Proof. Let (H, *) be as in Definition 2.62] Let b be the algebra of H. Let h =V, @ --- @V, be
a fixed stratification of h. By Proposition [5.40], § is nilpotent of step r.
Then Theorem [5.43] yields that

Exp : (h,¢) — (H, ) is a Lie-group isomorphism.
We now prove that (f,¢) is a homogeneous stratified Lie group according to Definition [2.61]
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We fix a basis for h adapted to its stratification: for ¢ = 1,...,r,set N; := dim V;, and let
(E{i), e ,E;@) be a basis for V;. Then consider the basis for h given by

- <E£1),-"7E](\}1);'";EY)""’E](\Q)'

By means of this basis, we fix a coordinate system on b, and we identify b with RY, where
N := Ny + --- 4+ N,. More precisely, we consider the map
r N;
meih o RY, E:=) Y eWEY o (¢W, ey,
i=1 j=1

where £

<§£i), e ](\2> € RYi for every i = 1,...,r. Next, we set
U= Expo(me) ™ RY — H, W(¢) = (Exp(E -€)).

Notice that, more explicitly,

r N;
¥(E) = Exp (z zg;@Ep) —

i=1 j=1

Finally, we equip R" with the composition law ¢ defined by

gogn =T V(&) *(n), &neRY.

We define a family of dilations {Ay},., on the Lie algebra b as follows:

Ay:h—=bh, A, (ZT:XZ> = zr:)\iXi, where X; € Vj.
i=1 i=1
Obviously,
A, is a vector-space automorphism of h.
And A, turns into a family of dilations {6,},., on R via ¥ by setting
Oy = WgOA)\OT('gl. (5.6)

We claim that H* := (RN , 0 ,(5,\) is a homogeneous stratified Lie group (of step r and N,
generators) isomorphic to (H, *) via the Lie group isomorphism W.
To prove the claim, we split the proof in steps.

Step 1. By the definition of ¢¢ and ¥, we have
U(Eoln) =V(E)=V(n) V& neRY,
which, in turn, is equivalent to

mH(EoEn) =mt(€) oms () VEn eRY, (5.7)
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or, equivalently,
me(X oY) =me(X)oegme(Y) VXY €b. (5.8)
Which means that
(RY,0g), (b,0), (H, %)
are isomorphic Lie groups via the Lie-group isomorphisms
(RY,0€) 2 (h o) =B (H, #).

In particular,

¥ =Expor;': (RY,0g) — (H, *) is a Lie-group isomorphism. (5.9)

Step 2. We now investigate the dilation 6. The stratified notation

r N;
hsE-¢= > ¢"E)

i=1 j=1

for an arbitrary vector of  and the fact that
Te(E-§) =¢
suggests the notation
RY 5 ¢=(¢W,...,¢M)

for the points in RY. We claim that, with the above notation, dy introduced in (5.6) has the

form

6)\ (6(1)7 5(2)a s 7£(T)) = ()\5(1)’ >‘2§(2)7 s 7)\T€(r)) .

Indeed,

r N;
0(8) = (me 0 Bxomg’) (§) = me (AA(E - €)) (AA < fj(i)Ej(i)))
i=1 j=1

((Exes @)= ((E5ew))

=me (E- (AW, .., 07¢M)) = (AW, a¢).
Next, we proceed by showing that A, is an automorphism of the Lie-group (h,¢), i.e

A)\<X<>Y):A)\(X><>A)\(Y) VX,YE [), VA > 0.
In fact, it is enough to prove that

ANM[X,Y]) = [ANX),A\(Y)]  for every X,Y € b. (5.10)
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EX=5, X;andY =) | Vi, where X;,Y; € V;, we have [X;, Y]] € V;;;, whence

i=1 "%

AY) = 3 An (X0 V) = 3 A X,V

=3 XY = Y A (X)), A ()] = [AN(X), Ax(Y)] .

Now, a joint application of (5.7)),(5.8) and (5.10)) prove that J, is a Lie-group automorphism of
(RN, <>5), ie.

Oy (E0en) = 0r(E) 0e Oa(n) VEMeRY, YA>0.
Step 3. Thus, H* := (RY,¢¢,4,) is a homogeneous Lie group on RY. Let now h* be the Lie

algebra of H*. Dealing with a Lie group on R" (and the fixed Cartesian coordinates & ’s on

RY ), the Jacobian basis related to the composition og is well-posed. We denote by
1 1 T T
z - <Z§ U/ I/ ),...,Z}V}>

this Jacobian basis, i.e. Z,gi) is the vector field in h* agreeing at the origin with 9/ (95,(:). The
proof is complete if we show that the Lie algebra generated by Zi,..., Zy, coincides with the
whole b*.

To this end, we first observe that, thanks to (5.9), d¥ : hb* — b is an algebra isomorphism.
Furthermore, we have

dV = (dExp) o (d (ng)) .

Moreover, since EF), ey EJ(\}I) is a system of Lie-generators for h (by the very definition of
stratification!), it is enough to prove that

dv (Z,gi)> = E,gi) forevery:=1,...,rand every k=1,..., N;. (5.11)

In order to prove (5.11]), we recall that a left-invariant vector field is determined by its value at

the identity. Hence, (5.11]) will follow if we show that

(a0 (27)) = (7).

170



5.4 Abstract and homogeneous stratified Lie groups

For every f € C*(H,R), we have

(o (#9), 1= (v (25) ) 0 = (), o

— (006) I 0f<EXp<Z; :5’ ))
Gl g (e (i50))

dt |,
NG
= () ).

dt|,_,
The proposition is thus completely proved. O

At last, we furnish some properties in the following proposition which collect several already

proved facts.

Proposition 5.48. Let H be a stratified Lie group with Lie algebra b and exponential map
Expy : b — H. Let also ¢ be the Campbell-Hausdorff operation on ty. Let Vi & --- ® V, be
a stratification of . Let £ be any basis for b adapted to the stratification. Set N := dim(h),

consider the map me : h — RY | where, for every X € b, ne(X) is the N-tuple of the coordinates
of X w.r.t. &.

Then the binary operation on RY defined by

zoly=me((rz'(x)) o (7' (y))) Va,yeRY

has the following properties:

(1) G := (RN,Og) is a Lie group on RY; G is isomorphic to H via the map ¥ = Expy owgl

and to (b, o) via mg, whence (G,og) and (h,9) are stratified Lie groups.
(2) Let Z=A{Z,...,Zn} be the Jacobian basis related to G; then, denoting the adapted basis
by E ={FE1,...,En}, we have
dv (Z,)=E; foreveryi=1,...,N
or, equivalently,
Zi(foW)=FEi(f)oV on G

for every f € C*°(H,R). Moreover, if g is the algebra of G, the exponential map Expg :
g — G is a linear map and it sends Z; in the i-th element of the standard basis of G = RY,
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whence
EXpG ((xlv"'wrN)Z) = (.Tl,...,{EN)
being (z1,...,oN)z =121+ + TnZN.

(3) The inversion on G is the Fuclidean inversion —x.

(4) For everyi € {1,..., N}, we have
(zogy); = zi +yi + Ri(w,y),

where R;(x,y) is a polynomial function depending on the xy and yp with k < i, and

Ri(x,y) can be written as a sum of polynomials each containing a factor of the following
type
Ty — Tpyn  with h # k and h, k < 1.
(5) Let Ay be the linear map on h such that, for everyi=1,...,r,
ANX) = XX whenever X €Vj.

Let 8y :=mg o Ayomz'. Then (RN,Og, 5,\) is a (homogeneous) stratified Lie group of the

same step and number of generators as H.
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