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Abstract

In this thesis we investigate harmonic analysis on a particular class of sub-

Riemannian manifold, namely the 2-step stratified Lie groups G, as well as its

applications in partial differential equations. This class consists a breadth of in-

teresting geometric objects such as Heisenberg group and H-type Lie group, which

can be seen as a meaningful extension of classical theories.

After reviewing some main definitions and properties in Chapter 2, we start to

study the most important representation of G, the so-called Schrödinger represen-

tation on L2(G), and then we prove the Stone-von Neumann theorem for the 2-step

stratified Lie groups.

In Chapter 3 we also study the Fourier transforms and define the (λ, ν)-Wigner

and (λ, ν)-Weyl transform related to G, we then show some properties of these

transforms, which can help us to compute the sub-Laplacian and the λ-twisted

sub-Laplacian. Moreover, in this chapter we demonstrate the beautiful interplay

between the representation theory on G and the classical expansions in terms of

Hermite functions and Lagueere functions.

As applications, a global calculus of pseudo-differential operator on 2-step strat-

ified Lie groups G is introduced in the fourth chapter. It relies on the explicit knowl-

edge of the irreducible unitary representations of G, which then allows one to reduce

the analysis to study of a rescaled harmonic oscillator on unitary dual Ĝ. The sub-

Laplacian appears as an elliptic operator in this calculus. The explicit formula for

the heat kernel of the λ-twisted sub-Laplacian can be also obtained, which gives a

closed formula for the heat kernel of the sub-Laplacian on G.
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1 Introduction

1.1 Background

Harmonic analysis on nilpotent Lie groups is by now classical matter that goes back to the

first half of the 20th century (see e.g.[CG90; Rud90] for a self-contained presentation). As is

known to all, harmonic analysis on nilpotent Lie groups plays a power role in contemporary

investigations of linear PDEs. In fact, it has been realised for a long time that the analysis on

nilpotent Lie groups can be effectively used to prove subelliptic estimates for operators such as

sums of squares of vector fields on manifolds. Such ideas started coming to light in the works

on the construction of parametrices for the Kohn-Laplacian □b (the Laplacian associated to

the tangential CR(Cauchy-Riemann) complex on the boundary X of a strictly pseudoconvex

domain), which was shown earlier by J. J. Kohn to be hypoelliptic (see e.g. an exposition by

Kohn [Koh73] on the analytic and smooth hypoellipticities).

Thus, the corresponding parametrices and subsequent subelliptic estimates have been ob-

tained by Folland and Stein in [FS74] by first establishing a version of the results for a family

of sub-Laplacians on the Heisenberg group, and then for the Kohn-Laplacian □b by replacing

X locally by the Heisenberg group.

These ideas soon led to powerful generalisations. The general techniques for approximating

vector fields on a manifold by left-invariant operators on a nilpotent Lie group have been

developed by Rothschild and Stein in [RS76]. A more geometric version of these constructions

has been carried out by Folland in [Fol77], see also Goodman [Goo76] for the presentation

of nilpotent Lie algebras as tangent spaces (of sub-Riemannian manifolds). The functional

analytic background for the analysis in the stratified setting was laid down by Folland in

[Fol75]. A general approach to studying geometries appearing from systems of vector fields

has been developed by Nigel, Stein and Wainger [NSW85]. Furthermore, in their fundamental

book [FS82], Folland and Stein laid down foundations for the anisotropic analysis on general
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1 Introduction

homogeneous groups, i.e., Lie groups equipped with a compatible family of dilations. Such

groups are necessarily nilpotent, and the realm of homogeneous groups almost exhausts the

whole class of nilpotent Lie groups, including the classes of stratified, and more generally,

graded groups. Many other important results have also been obtained, see [FR16; Tay86] and

their references.

Consider a locally compact Abelian group (G,+) endowed with a Haar measure µ, and

denote by (Ĝ, ·) the dual group of (G,+) that is the set of characters on G equipped with

the standard multiplication of functions. By definition, the Fourier transform of an integrable

function f : G → C is the continuous and bounded function Ff : Ĝ → C defined by

∀γ ∈ Ĝ,Ff(γ) =
∫
G
f(x)γ(x)dµ(x). (1.1)

Being also a locally compact Abelian group, the "frequency space" Ĝ may be endowed with

a Haar measure µ̂. Furthermore, one can normalize µ̂ so that the following Fourier inversion

formula holds true, for all function f in L1(G) with Ff in L1(Ĝ) :

∀x ∈ G, f(x) =
∫
Ĝ
Ff(γ)γ(x)dµ̂(γ). (1.2)

As a consequence, we get the Fourier-Plancherel identity∫
G
|f(x)|2dµ(x) =

∫
Ĝ
|Ff(γ)|2dµ̂(γ) (1.3)

for all f in L1(G) ∩ L2(G).

In the Euclidean case G = Rn the dual group may be identified to (Rn)∗ through the

map ξ 7→ ei⟨ξ,·⟩ (where ⟨·, ·⟩ stands for the duality bracket between (Rn)∗ and Rn), and the

Fourier transform of an integrable function f may thus be seen as the function on (Rn)∗ (usually

identified to Rn ) given by

F(f)(ξ) =

∫
Rn

e−i⟨ξ,x⟩f(x)dx. (1.4)

For noncommutative groups, Fourier theory gets wilder, for the dual group is too "small" to

keep the definition of the Fourier transform given in (1.1) and still have the inversion formula

(1.2). Nevertheless, if the group has "nice" properties, then one can work out a consistent

Fourier theory with properties analogous to (1.1),(1.2) and (1.3) (see e.g. [ADBR13; BCD19;

CG90; FR16; Tha98] and the references therein).

In that context, the classical definition of the Fourier transform amounts to replacing char-

acters in (1.1) with suitable families of irreducible unitary representations that are valued in

Hilbert spaces (see e.g. [BCD19; BFKG16; Lév19] for a detailed presentation). Consequently,

2



1.1 Background

the Fourier transform is no longer a complex valued function but rather a family of bounded

operators on suitable Hilbert spaces.

The simplest example (apart from Rn) of a nilpotent Lie group is the Heisenberg group,

and the harmonic analysis there is a very well researched topic. If we consider the Heisenberg

group Hd ∼= R2d+1 as a vector space whose elements w ∈ R2d+1 can be written w = (x, y, s)

with (x, y) ∈ Rd × Rd, endowed with the following product law:

w · w′ = (x, y, s) · (x′, y′, s′) = (x+ x′, y + y′, s+ s′ − 2x · y′ + 2y · x′)

where for x, x′ ∈ Rd, x · x′ denotes the Euclidean scalar product between the vectors x and

x′. Equipped with the standard differential structure of the manifold R2d+1, the set Hd is a

noncommutative Lie group with identity (0, 0).

As already explained above, as Hd is noncommutative, in order to have a good Fourier

theory, one has to resort to more elaborate irreducible representations than characters. In

fact, the group of characters on Hd is unitary equivalent to the group of characters on T ⋆Rd.

Roughly, if one defines the Fourier transform according to (1.1) then the information pertaining

to the vertical variable s is lost.

Let us recall the Schrödinger representation for Hd, which is the family of group homomor-

phisms w 7→ Uλ
w (with λ ∈ R\{0}) between Hd and the unitary group of L2

(
Rd
)
, defined for

all w = (x, y, s) in Hd and u in L2
(
Rd
)

by

Uλ
wu(ξ) = eiλ(s+⟨y,ξ+ 1

2
x⟩)u(ξ + x).

The classical definition of Fourier transform of integrable functions on Hd reads as follows:

FHdf(λ) =

∫
Hd

f(w)Uλ
w−1dw, (1.5)

and we have the inversion formula:

∀w ∈ Hd, f(w) =
2d−1

πd+1

∫
R
tr
(
Uλ
w−1FHdf(λ)

)
|λ|d dλ

where tr(A) denotes the trace of the operator A. In particular, the Fourier transform allows to

diagonalize the sub-Laplacian ∆Hd (see Chapter 2), a property that is based on the following

relation that holds true for all functions f and u in S
(
Hd
)

and S
(
Rd
)
, respectively:

FHd (∆Hdf) (λ) = 4FHd(f)(λ) ◦∆λ
osc with ∆λ

oscu(x) =
d∑
j=1

∂2ju(x)− λ2|x|2u(x).

This indicate that we need study Weyl-Hörmander calculus associated to the harmonic oscil-

lator ∆λ
osc. Recently, the definition of suitable classes of Shubin type for these Weyl-symbols led

3



1 Introduction

to another version of the calculus on the Heisenberg group by Bahouri, Fermanian-Kammerer

and Gallagher [BFKG12]. The explicit knowledge of the Bargmann-Fock representations of

the Heisenberg group allows one to construct the necessary Heisenberg calculus adapted to

subelliplic operators in this setting. The approach in this paper is not quite of the same nature

as in the works refered to above, as the aim is to define an algebra of operators on functions

defined on the Heisenberg group, which contains differential operators and Fourier multipliers,

and which has a structure close to that of pseudo-differential operators in the Euclidian space.

Up to now, most of the above works that concern the non-invariant symbolic calculi of

operators on nilpotent Lie groups, are restricted to the Heisenberg groups or to manifolds having

the Heisenberg group as a local model (except for the calculi which are not symbolic). One

of the reasons is that they rely in an essential way on the explicit formulae for representations

of the Heisenberg group. Then in this thesis, we try to general the results to more general

nilpotent Lie groups, especially 2-step stratified Lie group G. The difficulty is that there is no

simple notion of symbols as functions on G, since the Fourier transform is a family of operators

on Hilbert spaces depending on some real-valued parameters. Those operators reads in the

Schrödinger representation of G as a family of differential operators belonging to a class of

operators of order 1 for the Weyl-Hörmander calculus of the resealed harmonic oscillator. That

basic observation is the heart of the matter achieved in this thesis.

1.2 Main results

As we wish for this thesis to be relatively self-contained, the main definitions and properties

are covered in Chapter 2 and Appendix. In particular, we first study Lie group G and the Lie

algebra g of their left-invariant vector fields. Subsequently, we equip G with a homogeneous

structure by the datum of a well-behaved group of dilations on G. Finally, we introduce the

notion of 2-step stratified Lie group and of sub-Laplacian. More specifically we assume that

the Lie algebra g decomposes into subspaces

g = g1 ⊕ g2,

with dim g1 = n, dim g2 = m and

[g, g] = g2 ⊆ z = the center of g.

4



1.2 Main results

A wide number of explicit examples of 2-step stratified Lie group will be also given. Some of

them have been known in specialized literature for several years, such as the Heisenberg groups

[Cap+07]; the H-type groups [Kap80]; the H-groups in the sense of Métivier [Mét80]. Following

[BLU07], we show that these stratified Lie groups are naturally given with the data on Rn+m

of m suitable linearly independent and skew-symmetric matrices of order n.

In Chapter 3, we try to develop basic harmonic analysis on 2-step stratified Lie groups. First,

we use the orbit method of Kirillov (see [CG90; Ray99]) to describe the explicit construction of

irreducible unitary representations. For any λ ∈ g∗2 (the dual of g2), we define a skew-symmetric

bilinear form on g1 by

B(λ)(X, Y ) := λ([X, Y ]) for all X, Y ∈ g1.

One can find a Zariski-open subset Λ of g∗2 such that the number of distinct eigenvalues of B(λ)

is maximum. We denote by k the dimension of the radical rλ of B(λ). If rλ = {0} for each λ ∈ Λ,

then the Lie algebra is called an Moore-Wolf algebra and the corresponding Lie group is called

an Moore-Wolf group. In this paper, we will only consider G to be a 2-step stratified Lie group

without Moore-Wolf condition. In this case, the dimension of the orthogonal complement of rλ

in g1 is an even number, which we shall denote by 2d. Therefore, there exists an orthonormal

basis

(X1(λ), . . . , Xd(λ), Y1(λ), . . . , Yd(λ), R1(λ), . . . , Rk(λ))

and d continuous functions

ηj : Rm → R+, 1 ≤ j ≤ d

such that B(λ) reduces to the form
0 η(λ) 0

−η(λ) 0 0

0 0 0

 ∈ Mn(R),

where

η(λ) := diag (η1(λ), . . . , ηd(λ)) ∈ Md(R),

and each ηj(λ) > 0 is smooth and homogeneous of degree 1 in λ = (λ1, · · · , λm) and the basis

vectors are chosen to depend smoothly on λ in Λ. Decomposing g1 as

g1 = pλ ⊕ qλ ⊕ rλ

5



1 Introduction

with

pλ := spanR (X1(λ), . . . , Xd(λ)) ,

qλ := spanR (Y1(λ), . . . , Yd(λ)) ,

rλ := spanR (R1(λ), . . . , Rk(λ)) .

Then we have the decomposition g = pλ⊕qλ⊕rλ⊕g2.We denote the element exp(X+Y +R+T )

of G by (X, Y,R, T ) for X ∈ pλ, Y ∈ qλ, R ∈ rλ, T ∈ g2. Further we can write

(X, Y,R, T ) =
d∑
j=1

xj(λ)Xj(λ) +
d∑
j=1

yj(λ)Yj(λ) +
k∑
j=1

rj(λ)Rj(λ) +
m∑
j=1

tjTj

and denote it by (x, y, r, t) suppressing the dependence of λ which will be understood from the

context.

For (λ, ν, w) in Λ× Rk × RN with

w = (x, y, r, t) ∈ Rd ⊕ Rd ⊕ Rk ⊕ Rm = RN ,

we define the irreducible unitary representations of RN , equipped with the group law defined

above, on L2
(
Rd
)

(πλ,ν(w)ϕ) (ξ) := exp

(
i
m∑
j=1

λjtj + i
k∑
j=1

νjrj + i
d∑
j=1

ηj(λ)

(
yjξj +

1

2
xjyj

))
ϕ(ξ + x)

= ei⟨ν,r⟩ei⟨λ,t⟩e
i

d∑
j=1

ηj(λ)(yjξj+ 1
2
xjyj)

ϕ(ξ + x).

We first prove the classic theorem of Stone-von Neumann for the 2-step stratified Lie group,

which says in effect that any irreducible unitary representation of G that is nontrivial on the

center is equivalent to some πλ,ν .

Theorem 1.1. Let π be any unitary representation of G on a Hilbert space H, such that for

some λ ∈ Λ, π(0, 0, 0, t) = eiλtI. Then H =
⊕

Hα where the Hα are mutually orthogonal

subspaces of H, each invariant under π, such that π|Hα is unitarily equivalent to πλ,ν for each

α and some ν ∈ Rk. In particular, if π is irreducible then π is equivalent to πλ,ν.

And then we can study the sub-Laplacian and Fourier transform, which is a family of

operators on Hilbert spaces depending on a real-valued parameters λ and ν. We can now define

the sub-Laplacian L on G by

L = −
d∑
j=1

(
X2
j + Y 2

j

)
−

k∑
l=1

R2
l .

6



1.2 Main results

Explicitly,

L = −∆x −∆y −∆r −
1

4

(
|x|2 + |y|2

)
∆t +

m∑
s=1

d∑
j=1

{
− (Bsy, ej)

∂

∂xj
+ (x,Bsej)

∂

∂yj

}
∂

∂ts
,

where we use

B(λ) =
m∑
s=1

λsBs.

By taking the Fourier transform of the sub-Laplacian L with respect to t, we get parametrized

λ-twisted sub-Laplacian Lλ, λ ∈ Λ, given by

Lλ = −∆x −∆y −∆r +
1

4

(
|x|2 + |y|2

)
|λ|2 − i

d∑
j=1

{
−
(
B(λ)y, ej

) ∂

∂xj
+
(
x,B(λ)ej

) ∂

∂yj

}
.

What’s more, it is well known from [Won98] that Weyl transforms have intimate connections

with analysis with the so-called twisted sub-Laplacian and the Heisenberg group, and the

harmonic analysis there is a very well researched topic. Then in Section 3.3, we study the

(λ, ν)-Weyl transform W λ,ν and (λ, ν)-Wigner transform Wλ,ν(f, g) on 2-step stratified Lie

groups G, which should also depend on these parameters.

Theorem 1.2. For all f1, g1, f2, and g2 in S
(
Rd
)
, we have

⟨Wλ,ν (f1, g1) ,Wλ,ν (f2, g2)⟩ = ⟨f1, f2⟩ ⟨g1, g2⟩,

where ⟨·, ·⟩ is the inner product in L2(Rd).

Theorem 1.3. There exists a unique bounded linear operator Q : L2(R2d) → B(L2(Rd)) such

that

⟨(Qa)f, g⟩ = Pf(λ)
1
2 (2π)−

d
2

∫
Rd

∫
Rd

a(x, ξ)Wλ,ν(f, g)(x, ξ)dxdξ

and

∥Qa∥∗ ≤ Pf(λ)
1
2 (2π)−

d
2∥a∥L2(R2d)

for all f and g in L2
(
Rd
)

and a in L2
(
R2d
)
, where ∥ · ∥∗ denotes the norm in B(L2(Rd)) and

Pf(λ) :=
d∏
j=1

ηj(λ) is the Pfaffian of B(λ).

In particular, we can show a relationship between Hilbert-Schmidt pseudo-differential oper-

ators on L2(G) and (λ, ν)-Weyl transforms with symbol in L2
(
R2d+k+m

)
.

Theorem 1.4. Let a ∈ L2
(
R2d
)
, Kλ : L2(R2d) → L2(R2d) be given by (3.29). Then W λ,ν

a is a

Hilbert-Schmidt operator with kernel

Pf(λ)
1
2 (2π)−

d
2Kλa.

7



1 Introduction

More precisely (
W λ,ν
a f

)
(x) = Pf(λ)

1
2 (2π)−

d
2

∫
Rd

Kλa(x, y)f(y)dy, x ∈ Rd.

We can also give a formula for the product W λ,ν
σ W λ,ν

τ of two Weyl transforms W λ,ν
σ and Wτ

in terms of a λ-twisted convolution (see Definition 3.38) of σ and τ.

Theorem 1.5. Let σ and τ be in L2
(
R2d
)
. Then

W λ,ν
σ W λ,ν

τ = W λ,ν
ω

where ω ∈ L2
(
R2d
)

and Fλω = Pf(λ)(2π)−d (Fλσ) ∗λ (Fλτ)).

In Section 3.5, we demonstrate the beautiful interplay between the representation theory

on G and the classical expansions in terms of Hermite functions. If η = (η1, . . . , ηd) ∈
(
R∗

+

)d
and α ∈ Nd, we define the rescaled Hermite function Φλ

α by

Φλ
α := |Pf(λ)|

1
4Φα

(
η

1
2
1 ·, η

1
2
2 ·, · · · , η

1
2
d ·
)
,

and the special Hermite functions

Φλ
α,β(x) = Pf(λ)

1
2 (2π)−

d
2

∫
Rd

eiη(λ)·pxΦλ
α

(
x+

q

2

)
Φλ
β

(
x− q

2

)
dx.

In particular, they form an orthonormal basis of L2
(
Rd
)

and we have the rescaled harmonic

oscillator

H(λ)Φλ
α := (−∆+ |η · x|2)Φλ

α =
d∑
j=1

ηj(λ)(2αj + 1)Φλ
α,

which can help us prove that Φλ
α,β are eigenfunctions of the λ-twisted sub-Laplacian Lλ.

Theorem 1.6. For λ ∈ Λ, ν ∈ Rk, one has the formula

Lλ(Φλ
α,β) =

(
d∑
j=1

ηj(λ)(2αj + 1) +
k∑
j=1

ν2j

)
Φλ
α,β.

For the Lagueere polynomial Lkα(x) (see Section 3.6 for details), we can prove the Laguerre

formulas for special hermite functions and therefore set up the connection with sub-Laplacian

on G.

Theorem 1.7. For α ∈ Nd and any z in Cd,

Φλ
α,α(z) = Pf(λ)

1
2 (2π)−

d
2

d∏
j=1

L0
αj

(
1

2
ηj(λ)|zj|2

)
e−

1
4
ηj(λ)|zj |2 .

Theorem 1.8. For α ∈ Nd, k = 0, 1, . . . and any z ∈ Cd we have

8



1.2 Main results

(i) Φλ
α+k,α(z) = Pf(λ)

1
2 (2π)−

d
2

(
α!

(α+k)!

) 1
2
(

i√
2

)k
z̄k

k∏
j=1

L
kj
αj(

1
2
ηj(λ)|zj|2)e−

1
4
ηj(λ)|zj |2 .

(ii) Φλ
α,α+k(z) = Pf(λ)

1
2 (2π)−

d
2

(
α!

(α+k)!

) 1
2
(

−i√
2

)k
zk

k∏
j=1

L
kj
αj(

1
2
ηj(λ)|zj|2)e−

1
4
ηj(λ)|zj |2.

In Chapter 4, we give some application for the harmonic analysis theory developed above.

First, a global calculus of pseudo-differential operator on 2-step stratified Lie groups G is

introduced. We want to consider the symbol associated with rescaled harmonic oscillator:

H(λ) + |ν|2 = −∆ξ + |η(λ) · ξ|2 + |ν|2.

Then the Hörmander metric depending on parameters λ ∈ Rm, ν ∈ Rk and ρ ∈ (0, 1] is the

metric g(ρ,λ,ν) on R2d+k defined via

g
(ρ,λ)
ξ,θ (dξ, dθ) :=

(
1

1 + |η(λ) · ξ|2 + |θ|2 + |ν|2

)ρ (
|η(λ) · ξ|2 + |dθ|2

)
.

The associated weight function M (λ,ν) on R2d+k is defined via

M (λ,ν)(ξ, θ, ν) :=
(
1 + |η(λ) · ξ|2 + |θ|2 + |ν|2

) 1
2 .

Similar to Proposition 1.20 in [BFKG12], we have the following results:

Theorem 1.9. For each λ ∈ Λ and ν ∈ Rk, the metric g(ρ,λ,ν) is of Hörmander type and

the function M (λ,ν) is a g(ρ,λ,ν)-weight. Furthermore, if ρ ∈ (0, 1] is fixed, then the structural

constants (see Definition 4.3) for g(ρ,λ,ν) and for M (λ,ν) can be chosen independent of λ and ν.

Therefore, in what follows, we shall define a positive, noninteger real number ϱ ∈ (0, 1),

which will measure the regularity assumed on the symbols. This number ϱ is fixed from now on

and we emphasize that the definitions below depend on ϱ. We have chosen not to keep memory

of this number on the notations for the sake of simplicity.

Definition 1.10. Let ρ ∈ (0, 1] be a fixed parameter. For each parameter λ ∈ Λ and ν ∈ Rk,

we define the (λ, ν)-Shubin classes by

Σδ
ρ,λ,ν (G) := S

((
M (λ,ν)

)δ
, g(ρ,λ,ν)

)
,

where we have used the Hörmander notation to define a class of symbols in terms of a metric

and a weight. Here this means that
∑δ

ρ,λ,ν (G) is the class of functions a ∈ C∞ (G× R2d+k+m
)

such that for each N ∈ N0, the quantity

∥a∥Σδ
ρ,λ,ν(G),N := sup

|α| + |β| + |γ| + l ≤ N

(ξ, θ, ν) ∈ Rd × Rd × Rk

|η(λ)|−ρ
|α|+|β|+|γ|

2

(
1 + |η(λ)|

(
1 + |ξ|2 + |θ|2 + |ν|2

))− δ−ρ(|α|+|β|+|γ|)
2

×
∥∥∥(λ∂λ)l∂αξ ∂βθ ∂γνa(x, y, r, s, ξ, θ, ν, λ)∥∥∥

Cϱ(G)

9



1 Introduction

is finite. Besides, one additionally requires that the function

(w, ξ, θ, ν, λ) 7→ σ(a)(w, ξ, θ, ν, λ)
def
= a

(
w,

ξ1
η1(λ)

. . .
ξd

ηd(λ)
, θ, ν, λ

)
is uniformly smooth close to λ = 0 in the sense that there exists C > 0 such that ∀(w, ξ, θ, ν) ∈

G×R2d+k,∀λ ∈ [−1, 1],
∥∥∥∂lλ∂αξ ∂βθ ∂γν (σ(a))∥∥∥Cϱ(G)

≤ CN,l (1 + |η(λ)|+ |ξ|2 + |θ|2 + |ν|2)
δ−ρ(|α|+|β|+γ)

2 .

In that case we shall write a ∈ Σδ
ρ,λ,ν(G).

Theorem 1.11. To a symbol a ∈ Σδ
ρ,λ,ν (G) on R2d depending on the parameters (w, λ, ν) in

G × Λ × Rk and belonging to (λ, ν)-dependent Hörmander class. Then the pseudo-differential

operator on G defined in the following way: for any f ∈ S (G) and some constant κ,

Op(a)f(w) = κ

∫∫
Λ×Rk

tr
(
πλ,ν(w

−1)F(f)(λ, ν) opW (a(w, ξ, θ, ν, λ))
)
Pf(λ)dλdν, ∀ w ∈ G

is well-defined, where opW is the Weyl quantization defined in (4.1).

For the (λ, ν)-Shubin Sobolev spaces Qλ,ν
s (G) (see Definition 4.17), we have the following

properties:

Theorem 1.12. (1) The space Qλ,ν
s (G) is a Hilbert space endowed with the sesquilinear form

(g, h)Qλ,ν
s

=
(
(I +H(λ, ν))

s
2 g, (I +H(λ, ν))

s
2h
)
L2(G)

.

We also have

L2 (G) = Qλ,ν
0 (G) ,

and the inclusions

S (G) ⊂ Qλ,ν
s1

(G) ⊂ Qλ,ν
s2

(G) ⊂ S ′ (G) , s1 > s2.

(2) The dual of Qλ,ν
s (G) may be identified with Qλ,ν

−s (G) via the distributional duality form

⟨g, h⟩ =
∫
G ghdx.

(3) The complex interpolation between the spaces Qλ,ν
s0

(G) and Qλ,ν
s1

(G) is(
Qλ,ν
s0

(G) ,Qλ,ν
s1

(G)
)
θ
= Qλ,ν

sθ
(G) , sθ = (1− θ)s0 + θs1, θ ∈ (0, 1).

(4) For any s ∈ R,Qλ,ν
s (G) coincides with the completion (in S ′ (G)) of the Schwartz space

S (G) for the norm

∥h∥(b)
Qλ,ν

s
=
∥∥OpW (bsλ)h

∥∥
L2(G)

where bsλ(ξ, θ, ν) =
√

1 + |η(λ) · ξ|2 + |θ|2 + |ν|2 is (λ, ν)-uniform in ΨΣs
1,λ,ν(G). The

norm ∥ · ∥(b)
Qλ,ν

s
extended to Qλ,ν

s (G) is equivalent to ∥ · ∥Qλ,ν
s

.

10



1.2 Main results

(5) For any s ∈ R, λ ∈ Rm and ν ∈ Rk, the Shubin Sobolev space Qλ,ν
s (G) coincides with the

Sobolev space associated with g(1,λ,ν) and (M (λ,ν))s(see Definition 4.5)

Qλ,ν
s (G) = H

(
(M (λ,ν))s, g(ρ,λ,ν)

)
.

(6) For any s ∈ R, the operators OpW (b−s) (I +H(λ, ν))
s
2 and (I +H(λ, ν))

s
2OpW (b−s) are

bounded and invertible on L2 (G).

At last, we consider the heat kernel of the rescaled harmonic oscillator H(λ) and the sub-

Laplacian L, which are related to the theory of parabolic operators which describes the dis-

tribution of heat on a given manifold as well as evolution phenomena and diffusion processes.

The solution of an initial value problem for a parabolic partial differential equation depends on

its heat kernel, which is the fundamental solution of the associated parabolic operator. Hence

the importance of finding explicit formulas for these kernels. We first compute the heat kernel

of the rescaled harmonic oscillator as follows.

Theorem 1.13. The associated heat kernel of the rescaled harmonic oscillator H(λ) is

Gτ (x) =
d∏
j=1

1

2 sinh(ηj(λ)τ)
exp

{
−

d∑
j=1

ηj(λ) |xj|2

2
coth (ηj(λ)τ)

}
,

i.e., Gτ (x) satisfies the heat equation

∂Gτ

∂τ
+

d∑
j=1

(
η2j (λ)x

2
j −

∂2

∂x2j

)
Gτ (x) = 0 with lim

τ→0

∫
Rd

Gτ (x)f(x)dx = f(0).

Now, we consider the initial-value problem given by
∂τu(ω, t, τ) + (Lu)(w, t, τ) = 0,

u(ω, t, 0) = f(ω, t),

ω = (z, r) ∈ R2d+k, t ∈ Rm, τ > 0.

By taking the Fourier transform with respect to t and evaluated at λ, we get an initial-value

problem for the heat equation governed by the λ-twisted sub-Laplacian Lλ, i.e. ∂τuλ(ω, τ) + (Lλuλ)(ω, τ) = 0,

uλ(ω, 0) = fλ(ω),

for all ω = (z, r) ∈ R2d+k, τ > 0 and λ ∈ Λ. With this formula and Theorem 1.13, the heat

kernel of L is given in the following theorem.

Theorem 1.14. For all f in L2(G), e−τLf = f ∗G Kτ , where

Kτ (ω, t) = (2π)−(d+m)

∫
Rm

e−it·λe−τ |ν|
2

d∏
j=1

ηj(λ)

2 sinh (ηj(λ)τ)
exp

{
−
ηj(λ)ω

2
j

2
coth (ηj(λ)τ)

}
dλ

11
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for all (ω, t) ∈ G.

12



2 Elementary analysis of stratified Lie

groups

In this thesis we deal with a particular class of sub-Riemannian manifold, i.e. stratified Lie

groups. Roughly speaking, a sub-Riemannian manifold is a Riemannian manifold together with

a constrain on admissible directions of movements. In Riemannian geometry every smoothly

embedded curve has locally finite length. In sub-Riemannian geometry, if a curve fails to satisfy

the obligation of the constrain, then it has infinite length.

Among sub-Riemannian manifolds, a fundamental role is played by stratified Lie groups,

following the terminology of [FS82]. In the literature, the name "Carnot groups" is also used,

they seem to owe their name to a paper by Carathéodory [Car09] and was also used in the

school of Gromov [Gro96]. In the following we will only use the name "stratified Lie groups"

for convenience.

The importance of stratified Lie groups became evident in [Mit85], where it was proved

that a suitable blow-up limit of a sub-Riemannian manifold at a generic point is a stratified

Lie group. In other words, stratified Lie groups can be seen [Bel96] as the natural "tangent

spaces" to sub-Riemannian manifolds, and therefore can be considered as local models of general

sub-Riemannian manifolds. Therefore there is a comparison between sub-Riemannian Geom-

etry and Riemannian Geometry: stratified Lie groups are to sub-Riemannian manifolds what

Euclidean spaces are to Riemannian manifolds.

This part of this thesis is devoted to an elementary and self-contained introduction to the

stratified Lie groups. Our presentation does not require a specialized knowledge neither in

algebra nor in differential geometry, which can compare with the formal and abstract approach

to the stratified Lie groups commonly used in literature in the Appendix. The approach is

intended to be understandable by readers with basic backgrounds only in linear algebra and

differential calculus in RN . We introduce and discuss a wide range of explicit stratified Lie

13



2 Elementary analysis of stratified Lie groups

groups of arbitrarily large dimension and step two. It is also played a special attention to

the Lie algebras of the groups by stressing their links with second order partial differential

operators of Hörmander type (sum of squares of vector fields). All results are already know in

the literature, we will take most of the material from [BLU07; CG90].

2.1 Preliminaries on Lie groups

In this section, after giving some notations and the basic definitions concerning with vector

fields in RN , we first study Lie groups G and the Lie algebra of their left-invariant vector fields.

Subsequently, we equip G with a homogeneous structure by the dilations {δλ}λ>0 on G. Finally,

we introduce the notion of (homogeneous) stratified Lie groups.

2.1.1 Vector fields in RN

Vector Fields in RN

We use any of the notation

∂j, ∂xj ,
∂

∂xj
, ∂/∂xj

to indicate the partial derivative operator with respect to the j-th coordinate of RN . Let

Ω ⊆ RN be an open (and non-empty) set.

Definition 2.1. Given an N -tuple of scalar functions a1, . . . , aN ,

aj : Ω → R, j ∈ {1, . . . , N},

the first order linear differential operator

X =
N∑
j=1

aj∂j (2.1)

will be called a vector field on Ω with component functions (or simply, components) a1, . . . , aN .

If f : Ω → R is a differentiable function, we denote Xf the function on Ω by

Xf(x) =
N∑
j=1

aj(x)∂jf(x), x ∈ Ω.

Occasionally, we shall also use the notation Xf when

f : Ω → Rm

14
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is a vector-valued function, to mean the component-wise action of X. More precisely, we set

Xf(x) =


Xf1(x)

...

Xfm(x)

 for f(x) =


f1(x)

...

fm(x)

 .

Furthermore, given a differentiable function f : Ω → Rm, we shall denote by

Jf (x), x ∈ Ω

the Jacobian matrix of f at x.

Let C∞(Ω,R) (for brevity, C∞(Ω)) be the set of smooth (i.e. infinitely-differentiable) real-

valued functions. If the components aj are smooth, we shall call X a smooth vector field and

we shall often consider X as an operator acting on smooth functions,

X : C∞(Ω) → C∞(Ω), f 7→ Xf.

We shall denote by T (RN) the set of all smooth vector fields in RN . Equipped with the natural

operations, T (RN) is a vector space over R.

We adopt the following notation: I will denote the identity map on RN and, if X is the

vector field in (2.1), then

XI :=


a1
...

aN

 (2.2)

will be the column vector of the components of X. This notation is obviously consistent with

our definition of the action of X on a vector-valued function. Thus, XI may also be regarded

as a smooth map from RN to itself.

Often, many authors identify X and XI. Instead, in order to avoid any confusion between

a smooth vector field as a function belonging to C∞ (RN ,RN
)

and a smooth vector field as a

differential operator from C∞ (RN
)

to itself, we prefer to use the different notation XI and X

as described in (2.2) and (2.1), respectively.

By consistency of notation, we may write

Xf = (∇f) ·XI,

where ∇ = (∂1, . . . , ∂N) is the gradient operator in RN , f is any real-valued smooth function on

RN and · denotes the row × column product. For example, for the following two vector fields

15



2 Elementary analysis of stratified Lie groups

on R3 (whose points are denoted by x = (x1, x2, x3))

X1 = ∂x1 + 2x2∂x3 , X2 = ∂x2 − 2x1∂x3 , (2.3)

we have

X1I(x) =


1

0

2x2

 , X2I(x) =


0

1

−2x1

 . (2.4)

Integral Curves

Definition 2.2. A path γ : D → RN ,D being an interval of R, will be said an integral curve

of the smooth vector field X if

γ̇(t) = XI(γ(t)) for every t ∈ D.

If X is a smooth vector field, then, for every x ∈ RN , the Cauchy problem γ̇ = XI(γ)

γ(0) = x
(2.5)

has a unique solution

γX(·, x) : D(X, x) → RN .

Since X is smooth, t 7→ γX(t, x) is a C∞ function whose n-th Taylor expansion in a neighbor-

hood of t = 0 is given by

γX(t, x) =x+ tX(1)I(x) +
t2

2!
X(2)I(x) + · · ·+ tn

n!
X(n)I(x)

+
1

n!

∫ t

0

(t− s)nX(n+1)I (γX(s, x)) ds.

(2.6)

Hereafter, for k ∈ N, we denote by X(k) the vector field

X(k) =
N∑
j=1

(
Xk−1aj

)
∂xj ,

being X0 = I (the identity map) and Xh, h ≥ 1, the h-th order iterated of X, i.e.

Xh := X ◦ · · · ◦X︸ ︷︷ ︸
h times

.

Example 2.3. For example, if X1 is as in (2.3), since

X
(1)
1 I =


1

0

2x2

 , X
(2)
1 I =


0

0

0

 = X
(k)
1 I ∀k ≥ 3,
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we have

γX1(t, x) = x+ tX
(1)
1 I(x) =


x1

x2

x3

+ t


1

0

2x2

 =


x1 + t

x2

x3 + 2x2t

 .

Definition 2.4. Let X be a smooth vector field on RN . Following all the above notation, we

set

exp(tX)(x) := γX(t, x)

where γX(·, x) is the solution of (2.5).

Then, being X smooth, for every n ∈ N, we have the expansion

exp(tX)(x) =
n∑
k=0

tk

k!
XkI(x)

+
1

n!

∫ t

0

(t− s)nXn+1I(exp(sX)(x))ds.

In particular, for n = 1,

exp(tX)(x) = x+ tX1I(x) +

∫ t

0

(t− s)X2I(exp(sX)(x))ds.

Moreover, from the unique solvability of the Cauchy problem related to smooth vector fields

we get: t ∈ D(−X, x) iff −t ∈ D(X, x) and

exp(−tX)(x) := exp((−t)X)(x) = exp(t(−X))(x),

exp(−tX)(exp(tX)(x)) = x,

exp((t+ τ)X)(x) = exp(tX)(exp(τX)(x)),

exp((tτ)X)(x) = exp(t(τX))(x),

when all the terms are defined.

Remark 2.5. Let us consider a smooth function u : RN → R and the vector field in (2.1). Then

Xu(x) = lim
t→0

u(exp(tX)(x))− u(x)

t
∀x ∈ RN . (2.7)

Indeed, since exp(tX)(x) = x + tXI(x) + O (t2), the limit on the right-hand side of (2.7) is

equal to the following one:

lim
t→0

u(x+ tXI(x))− u(x)

t
= ∇u(x) ·XI(x) = Xu(x).
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Lie Brackets of Vector Fields in RN

Definition 2.6. Given two smooth vector fields X and Y in RN , we define the Lie bracket

[X, Y ] as follows

[X, Y ] := XY − Y X.

If X =
N∑
j=1

aj∂j and Y =
N∑
j=1

bj∂j, a direct computation shows that the Lie bracket [X, Y ] is

the vector field

[X, Y ] =
N∑
j=1

(Xbj − Y aj) ∂j.

As a consequence,

[X, Y ]I =


Xb1

...

XbN

−


Y a1

...

Y aN

 = JY I ·XI − JXI · Y I.

For example, if X1, X2 are as in (2.3), we have

[X1, X2] = (X1 (−2x1)−X2 (2x2)) ∂x3 = −4∂x3 .

It is quite trivial to check that (X, Y ) 7→ [X, Y ] is a bilinear map on the vector space T (RN)

satisfying the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0

for every X, Y, Z ∈ T (RN).

We shall refer to T (RN) (equipped with the above Lie bracket) as the Lie algebra of the

vector fields on RN . Any sub-algebra g of T (RN) will be called a Lie algebra of vector fields.

More explicitly, g is a Lie algebra of vector fields if g is a vector subspace of T (RN) closed with

respect to [, ], i.e. [X, Y ] ∈ g for every X, Y ∈ g.

We now introduce some other notation on the algebras of vector fields. Given a set of vector

fields Z1, . . . , Zm ∈ T (RN) and a multi-index

J = (j1, . . . , jk) ∈ {1, . . . ,m}k,

we set

ZJ :=
[
Zj1 , . . .

[
Zjk−1

, Zjk
]
. . .
]
.

We say that ZJ is a commutator of length (or height) k of Z1, . . . , Zm. If J = j1, we also say

that ZJ := Zj1 is a commutator of length 1 of Z1, . . . , Zm. A commutator of the form ZJ will
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also be called nested , in order to emphasize its difference from, e.g. a commutator of the form

[[Z1, Z2] , [Z3, Z4]] .

Definition 2.7 (The Lie algebra generated by a set). If V is any subset of T (RN), we denote

by Lie{V } the least sub-algebra of T (RN) containing V , i.e.

Lie{V } :=
⋂

h,

where h is a sub-algebra of T (RN) with V ⊆ h. We also define

rank(Lie{V }(x)) := dimR{ZI(x) | Z ∈ Lie{V }}.

Example 2.8. Let X1 and X2 be as in (2.3). Since [X1, X2] = −4∂x3 and since any commutator

involvingX1, X2 more than twice is identically zero, then Lie {X1, X2} = span {X1, X2, [X1, X2]},

and

rank (Lie {X1, X2} (x)) = 3 for every x ∈ R3.

The following result holds.

Proposition 2.9 (Nested commutators). Let V ⊆ T (RN) be any set of smooth vector fields on

RN . We set

V1 := span{V }, Vn := span {[u, v] | u ∈ V, v ∈ Vn−1} , n ≥ 2.

Then we have

Lie{V } = span {Vn | n ∈ N} .

Moreover,

[u, v] ∈ Vi+j for every u ∈ Vi, v ∈ Vj.

We explicitly remark that, from the definition of Vn, the vector fields in Vn are linear

combination of nested brackets, i.e. brackets of the type

[u1 [u2 [u3 [· · · [un−1, un] · · · ]]]]

with u1, . . . , un ∈ U . The above proposition then states that every element of Lie{V } is a linear

combination of nested brackets.

Corollary 2.10. Let Z1, . . . , Zm ∈ T (RN) be fixed. Then

Lie {Z1, . . . , Zm} = span
{
ZJ | with J = (j1, . . . , jk) ∈ {1, . . . ,m}k, k ∈ N

}
.
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The following notation will be used when dealing with "stratified" (or "graded") Lie alge-

bras. If V1, V2 are subsets of T (RN), we denote

[V1, V2] := span {[v1, v2] | vi ∈ Vi, i = 1, 2} .

2.1.2 Lie groups on RN

The Lie Algebra of a Lie Group on RN

We first recall a well-known definition.

Definition 2.11 (Lie group on RN). Let ◦ be a given group law on RN , and suppose that the

map

RN × RN ∋ (x, y) 7→ y−1 ◦ x ∈ RN

is smooth. Then G :=
(
RN , ◦

)
is called a Lie group on RN .

Fixed α ∈ G, we denote by τα(x) := α◦x the left-translation by α on G. A (smooth) vector

field X on RN is called left-invariant on G if

X (φ ◦ τα) = (Xφ) ◦ τα

for every α ∈ G and for every smooth function φ : RN → R. We denote by g the set of the

left-invariant vector fields on G. It is quite obvious to recognize that

for every X, Y ∈ g and for every λ, µ ∈ R, we have λX + µY ∈ g and [X, Y ] ∈ g.

Then, g is a Lie algebra of vector fields, sub-algebra of T (RN). It will be called the Lie algebra

of G.

Example 2.12 (First Heisenberg group H1). The map

(x1, x2, x3) ◦ (y1, y2, y3) = (x1 + y1, x2 + y2, x3 + y3 + 2 (x2y1 − x1y2))

endows R3 with a structure of Lie group. We shall refer to H1 = (R3, ◦) as the first Heisenberg

group on R3. It is a direct computation to show that the vector fields

X1 = ∂x1 + 2x2∂x3 , X2 = ∂x2 − 2x1∂x3

are left invariant w.r.t. ◦. Consequently, X1, X2, [X1, X2] ∈ h1, say, the Lie algebra of H1.

Precisely, h1 = span {X1, X2, [X1, X2]} = Lie {X1, X2} .
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From the theorem of differentiation of composite functions, we easily get the following

characterization of left-invariant vector fields on G.

Proposition 2.13. Let G be a Lie group on RN , and let g be the Lie algebra of G. The

(smooth) vector field X belongs to g if and only if

(XI)(α ◦ x) = Jτα(x) · (XI)(x) ∀α, x ∈ G. (2.8)

As usual, Jτα(x) denotes the Jacobian matrix at the point x of the map τα.

Interchanging α with x in (2.8) we obtain

(XI)(x ◦ α) = Jτx(α) · (XI)(α)

for all α, x ∈ G, so that, when α = 0,

(XI)(x) = Jτx(0) · (XI)(0) ∀x ∈ G. (2.9)

This identity says that a left-invariant vector field on G is completely determined by its value

at the origin (and by the Jacobian matrix at the origin of the left-translation).

Proposition 2.14. Let G be a Lie group on RN , and let g be the Lie algebra of G. Let η be a

fixed vector of RN , and define the (component functions of the) vector field X as follows

XI(x) := Jτx(0) · η, x ∈ RN .

Then X ∈ g.

Corollary 2.15. Let G be a Lie group on RN , and let g be the Lie algebra of G. The vector

field X belongs to g iff

(XI)(x) = Jτx(0) · (XI)(0) ∀x ∈ G.

Example 2.16. If G = H1, we have

Jτx(0) =


1 0 0

0 1 0

2x2 −2x1 1

 .

For example, for X1 = ∂x1 + 2x2∂x3 , we recognize that, for every x ∈ H1,

(X1I) (x) =


1

0

2x2

 =


1 0 0

0 1 0

2x2 −2x1 1

 ·


1

0

0

 = Jτx(0) · (XI)(0)

The same obviously holds, e.g. for the fields X2 = ∂x2 − 2x1∂x3 and [X1, X2] = −4∂x3 .
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From Proposition 2.13 and identity (2.9) it follows that g is a vector space of dimension N .

Indeed, the following proposition holds.

Proposition 2.17. Let G be a Lie group on RN , and let g be the Lie algebra of G. The map

J : RN → g, η 7→ J(η)

with J(η) defined by

J(η)I(x) = Jτx(0) · η

is an isomorphism of vector spaces. In particular,

dim g = N.

Example 2.18. The Lie algebra h1 of G = H1 is given by span {X1, X2, [X1, X2]}. Indeed,

X1, X2, [X1, X2] are three linearly independent left-invariant vector fields and dim (h1) = 3, as

stated in Proposition 2.17. Again using the same proposition, we could also argue as follows:

X1, X2, [X1, X2] are the vector fields obtained by multiplying Jτx(0) respectively times the basis

of R3

(1, 0, 0)T , (0, 1, 0)T , (0, 0,−4)T .

Proposition 2.19. Let G be a Lie group on RN , and let g be the Lie algebra of G. The vector

field X belongs to g iff there exists η ∈ RN such that, for every φ ∈ C∞ (RN ,R
)
,

(Xφ)(x) =
d

dt

∣∣∣∣
t=0

φ(x ◦ (tη)) ∀x ∈ RN .

In this case η = XI(0).

Given a family of vector fields X1, . . . , Xm ∈ g, the rank of the subset of RN spanned by

{X1I(x), . . . , XmI(x)} is independent of x. More precisely, we have the following result.

Proposition 2.20. Let G be a Lie group on RN , and let g be the Lie algebra of G. Let

X1, . . . , Xm ∈ g. Then the following statements are equivalent:

(i) X1, . . . , Xm are linearly independent (in g);

(ii) X1I(0), . . . , XmI(0) are linearly independent (in RN);

(iii) ∃x0 ∈ RN : X1I (x0) , . . . , XmI (x0) are linearly independent (in RN);

(iv) X1I(x), . . . , XmI(x) are linearly independent for all x ∈ RN .
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The Jacobian Basis

Definition 2.21 (Jacobian basis). Let G be a Lie group on RN , and let g be the Lie algebra

of G. If {e1, . . . , eN} is the canonical basis of RN and J is the map defined in Proposition 2.17,

we call

{Z1, . . . , ZN} , Zj := J(ej)

the Jacobian basis of g.

From the definition of J we obtain

ZjI(x) = Jτx(0) · ej = j-th column of Jτx(0) ∀x ∈ RN , (2.10)

so that, since Jτx(0) = IN ,

ZjI(0) = ej.

From Proposition 2.19 we also have

(Zjφ) (x) =
d

dt

∣∣∣∣
t=0

φ (x ◦ tej) =
∂

∂yj

∣∣∣∣
y=0

φ(x ◦ y)

for every φ ∈ C∞ (RN
)

and every x ∈ G.

Consequently, the Jacobian basis {Z1, . . . , ZN} of g is given by the N column of the Jacobian

matrix

Jτx(0).

Moreover, Zj|0 =
∂
∂yj

∣∣∣
0

and

(Zjφ) (x) =
∂

∂yj

∣∣∣∣
y=0

φ(x ◦ y) ∀φ ∈ C∞ (RN
)
, x ∈ G.

Summing up the above results, we have the following equivalent characterizations of the Jaco-

bian basis.

Proposition 2.22. Let G be a Lie group on RN , and let g be the Lie algebra of G. Let j ∈

{1, . . . , N} be fixed. Then there exists one and only one vector field in g, say Zj, characterized

by any of the following equivalent conditions:

(1) Zj|0 =
∂
∂xj

∣∣∣
0
, i.e.

(Zjφ) (0) =
∂φ

∂xj
(0) for every φ ∈ C∞ (RN ,R

)
;
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(2) for every φ ∈ C∞ (RN ,R
)
, it holds

(Zjφ) (x) =
∂

∂yj

∣∣∣∣
y=0

(φ(x ◦ y)) for every x ∈ G;

(3) if ej denotes the j-th vector of the canonical basis of RN , then

ZjI(0) = ej;

(4) the column vector of the component functions of Zj is

ZjI(x) = Jτx(0) · ej = j-th column of Jτx(0);

(5) for every x ∈ G, we have

(Zjφ) (x) =
d

dt

∣∣∣∣
t=0

φ (x ◦ (tej)) for every φ ∈ C∞ (RN ,R
)
.

The system of vector fields Z := {Z1, . . . , ZN} is a basis of g, the Jacobian basis. The coordi-

nates of X ∈ g w.r.t. Z are, orderly, the entries of the column vector XI(0).

Example 2.23. The Jacobian basis for the Lie algebra of H1 is given by

Z1 = ∂x1 + 2x2∂x3 , Z2 = ∂x2 − 2x1∂x3 , Z3 = ∂x3 ,

since, in this case, the Jacobian matrix at 0 of the left-translation is

Jτx(0) =


1 0 0

0 1 0

2x2 −2x1 1

 .

The (Jacobian) Total Gradient

Let G =
(
RN , ◦

)
be a Lie group on RN , and let Z1, . . . , ZN be the Jacobian basis of the Lie

algebra g of G.

For any differentiable function u defined on an open set Ω ⊆ RN , we consider a sort of

"intrinsic" gradient of u given by (Z1u, . . . , ZNu) (in the sequel, we shall call it (Jacobian) total

gradient). Then it follows from (2.10) that

(Z1u(x), . . . , ZNu(x)) = ∇u(x) · Jτx(0) ∀x ∈ Ω.

On the other hand, since Jτx(0) is non-singular and its inverse is given by Jτx−1 (0), we can

write the Euclidean gradient of u in terms of its total gradient in the following way

∇u(x) = (Z1u(x), . . . , ZNu(x)) · Jτx−1 (0) ∀x ∈ Ω. (2.11)
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From (2.11) we immediately obtain the following result.

Proposition 2.24. Let G be a Lie group on RN , and let Z1, . . . , ZN be the relevant Jacobian

basis (or any basis for g ). Let Ω ⊆ RN be an open and connected set. A function u ∈ C1(Ω,R)

is constant in Ω if and only if its total gradient (Z1u, . . . , ZNu) vanishes identically on Ω.

Example 2.25. When G = H1, it indeed holds

(Z1u, Z2u, Z3u) = (∂x1u+ 2x2∂x3u, ∂x2u− 2x1∂x3u, ∂x3u)

= (∂x1u, ∂x2u, ∂x3u) ·


1 0 0

0 1 0

2x2 −2x1 1

 = ∇u · Jτx(0)

and, vice versa,

(Z1u, Z2u, Z3u) · Jτx−1(0) = (Z1u, Z2u, Z3u) ·


1 0 0

0 1 0

−2x2 2x1 1

 = ∇u.

The Exponential Map of a Lie Group on RN

The next lemma will be useful to define the notion of Exponential map from g to G, one of the

most important tools in the Lie group theory.

Lemma 2.26. Let (G, ◦) be a Lie group on RN , and let g be its Lie algebra. Let X ∈ g, and

let γ : [t0, t0 + T ] → RN be an integral curve of X. Then:

(i) α ◦ γ is an integral curve of X for every α ∈ G.

(ii) γ can be continued to an integral curve of X on the interval [t0 − T, t0 + 2T ].

From assertion (ii) of this Lemma we immediately obtain the following important statement:

for every X ∈ g, the map

(x, t) 7→ exp(tX)(x)

is well-defined for every x ∈ RN and every t ∈ R.

The next corollary easily follows from the assertion (i) of Lemma 2.26.

Corollary 2.27. Let (G, ◦) be a Lie group on RN , and let g be its Lie algebra. Let X ∈ g and

x, y ∈ G. Then

x ◦ exp(tX)(y) = exp(tX)(x ◦ y)
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for every t ∈ R. In particular, for y = 0,

exp(tX)(x) = x ◦ exp(tX)(0).

Definition 2.28 (Exponential map). Let G be a Lie group on RN , and let g be its Lie algebra.

The exponential map of the Lie group G is defined by

Exp : g → G, Exp(X) = exp(1 ·X)(0).

More explicitly, Exp(X) is the value at the time t = 1 of the path γ(t) solution to ˙γ(t) = XI(γ(t)),

γ(0) = 0.

Example 2.29. Let us consider once again the first Heisenberg group H1 on R3. We have

showed that a basis for its Lie algebra h1 is given by X1, X2, X3, where X1 = ∂x1 +2x2∂x3 , X2 =

∂x2 − 2x1∂x3 and X3 = [X1, X2] = −4∂x3 . Let us construct the exponential map. We set, for

ξ ∈ R3,

ξ ·X := ξ1X1 + ξ2X2 + ξ3X3

= ξ1


1

0

2x2

+ ξ2


0

1

−2x1

+ ξ3


0

0

−4

 =


ξ1

ξ2

−4ξ3 + 2ξ1x2 − 2ξ2x1

 .

By definition, for fixed x ∈ H1, we have exp(ξ ·X)(x) = γ(1), where γ(s) = (γ1(s), γ2(s), γ3(s))

is the solution to γ̇(s) = (ξ ·X)I(γ(s)) = (ξ1, ξ2,−4ξ3 + 2ξ1γ2(s)− 2ξ2γ1(s)) ,

γ(0) = x.

Solving the above system of ODE’s, one gets

exp(ξ ·X)(x) =


x1 + ξ1

x2 + ξ2

x3 − 4ξ3 + 2ξ1x2 − 2ξ2x1


As a consequence, by definition above, we obtain

Exp(ξ ·X) = exp(ξ ·W )(0) =


ξ1

ξ2

−4ξ3


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so that Exp is globally invertible and its inverse map is given by

Log(y) := (Exp)−1(y) =


y1

y2

−1
4
y3

 ·X.

For example, we have

Exp(−ξ ·X) =


−ξ1
−ξ2
+4ξ3

 = −Exp(ξ ·X) = (Exp(−ξ ·X))−1

since the inverse of x in H1 coincides with −x.

Remark 2.30. Let {X1, . . . , XN} be a basis of g. Then, for every X ∈ g,

X =
N∑
j=1

ξjXj for a suitable ξ = (ξ1, . . . , ξN) ∈ RN ,

so that

Exp(X) = exp

(
N∑
j=1

ξjXj

)
(0).

From the classical theory of ODE’s we know that the map

(ξ1, . . . , ξN) 7→ exp

(
N∑
j=1

ξjXj

)
(0)

is smooth. Then we can say that the map g ∋ X 7→ Exp(X) ∈ G is smooth. From the Taylor

expansion we get

Exp(X) =
N∑
j=1

ξjηj +O
(
|ξ|2
)
, as |ξ| → 0

where ηj = XjI(0).

Denote by E the matrix whose column vectors are η1, . . . , ηN . Then

JExp(0) = E.

In particular, if {X1, . . . , XN} = {Z1, . . . , ZN} is the Jacobian basis of g, then

JExp(0) = IN .

As a consequence, Exp is a diffeomorphism from a neighborhood of 0 ∈ g onto a neighborhood

of 0 ∈ G. Where defined, we denote by Log the inverse map of Exp.

The next proposition is an easy consequence of Corollary 2.27 and shows an important link

between the composition law in G and the exponential map.
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Proposition 2.31. Let (G, ◦) be a Lie group on RN , and let g be its Lie algebra. Let x, y ∈ G.

Assume Log(y) is defined. Then

x ◦ y = exp(Log(y))(x).

Remark 2.32. Suppose that

Exp : g → G and Log : G → g

are globally defined C∞ maps, inverse to each other. We then define on g the operation

X ⋄ Y := Log(Exp(X) ◦ Exp(Y )), X, Y ∈ g.

It is immediately seen that ⋄ defines a Lie group structure on g and

Exp : (g, ⋄) → (G, ◦)

is a Lie-group isomorphism. Indeed, this last fact is obvious from the definition of ⋄, whereas

the associativity of ⋄ on g follows immediately from the associativity of o on G.

One of the most striking facts about Lie algebras and Lie groups is that (under suitable

hypotheses) the operation ⋄ on g is well-posed and can be expressed in a somewhat "universal"

way as a sum of iterated Lie-brackets of X and Y . For example, the first few terms are

X ⋄ Y = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + · · · . (2.12)

Example 2.33. When G = H1, we saw that Exp is globally invertible. We fix X ∈ h1. If

Z1, Z2, Z3 is the Jacobian basis for h1, and we set, for brevity, ξ := XI(0), we have

X = ξ1Z1 + ξ2Z2 + ξ3Z3 =: ξ · Z.

Analogously, if Y ∈ h1, we set η := Y I(0), so that Y = η · Z. Thus, we derive

Log(Exp(X) ◦ Exp(Y ))

= Log(Exp(ξ · Z) ◦ Exp(η · Z))

= Log(ξ ◦ η)

= Log (ξ1 + η1, ξ2 + η2, ξ3 + η3 + 2η1ξ2 − 2η2ξ1)

= (ξ1 + η1, ξ2 + η2, ξ3 + η3 + 2η1ξ2 − 2η2ξ1) · Z

= (ξ1 + η1)Z1 + (ξ2 + η2)Z2 + (ξ3 + η3 + 2η1ξ2 − 2η2ξ1)Z3.

(2.13)

On the other hand, we consider (2.12), truncated to the commutators of length two (sine h1 is
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nilpotent of step two!), and we explicitly write down X ⋄ Y in our case, thus obtaining

(ξ · Z) ⋄ (η · Z) =ξ · Z + η · Z +
1

2
[ξ · Z, η · Z]

=ξ1Z1 + ξ2Z2 + ξ3Z3 + η1Z1 + η2Z2 + η3Z3

+
1

2
[ξ1Z1 + ξ2Z2 + ξ3Z3, η1Z1 + η2Z2 + η3Z3]

(here we use [Z1, Z2] = −4Z3, [Z1, Z3] = [Z2, Z3] = 0)

= (ξ1 + η1)Z1 + (ξ2 + η2)Z2 + (ξ3 + η3)Z3 +
1

2
((−4ξ1η2 + 4ξ2η1)Z3)

= (ξ1 + η1)Z1 + (ξ2 + η2)Z2 + (ξ3 + η3 + 2η1ξ2 − 2η2ξ1)Z3

which equals the last term in (2.13). As a consequence, we have proved that in this case it

holds

Log(Exp(X) ◦ Exp(Y )) = X + Y +
1

2
[X, Y ].

Homogeneous Lie Groups in RN

We begin by giving the definition of homogeneous Lie group (see also E.M. Stein [Ste93]).

Definition 2.34 (Homogeneous Lie group (on RN)). Let G =
(
RN , ◦

)
be a Lie group on RN .

We say that G is a homogeneous (Lie) group (on RN ) if the following property holds:

(H) There exists an N -tuple of real numbers σ = (σ1, . . . , σN), with 1 ≤ σ1 ≤ · · · ≤ σN ,

such that the "dilation" δλ : RN → RN , δλ (x1, . . . , xN) := (λσ1x1, . . . , λ
σNxN) is an

automorphism of the group G for every λ > 0.

We shall denote by G =
(
RN , ◦, δλ

)
the datum of a homogeneous Lie group on RN with

composition law ◦ and dilation group {δλ}λ>0.

The family of dilations {δλ}λ>0 forms a one-parameter group of automorphisms of G whose

identity is

δ1 = I,

the identity map of RN . Indeed, we have

δrs(x) = δr (δs(x)) ∀x ∈ G, r, s > 0.

Moreover, (δλ)
−1 = δλ−1 . In the sequel, {δλ}λ>0 will be referred to as the dilation group (or

group of dilations) of G.
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From (H) it follows that

δλ(x ◦ y) = (δλx) ◦ (δλy) ∀x, y ∈ G (2.14)

and, if e denotes the identity of G, δλ(e) = e for every λ > 0. This obviously implies that e = 0.

This is consistent with our previous assumption that the origin is the identity of G.

For example, the first Heisenberg group H1 is a homogeneous Lie group if R3 is equipped

with the dilations δλ (x1, x2, x3) = (λx1, λx2, λ
2x3).

Remark 2.35. Suppose G =
(
RN , ◦

)
is a Lie group on RN such that there exists an N -tuple of

positive real numbers σ = (σ1, . . . , σN) such that

dλ : RN → RN , dλ (x1, . . . , xN) := (λσ1x1, . . . , λ
σNxN)

is an automorphism of the group G for every λ > 0. Then, modulo a permutation of the

variables of RN , it is always not restrictive to suppose that σ1 ≤ · · · ≤ σN . Obviously, this

permutation of the coordinates does not alter neither (the new permuted) G being a Lie group

on RN nor the (relevant permuted) dilation δλ satisfying (2.14). Moreover, there exists a group

of dilations δλ on G such that

δλ (x1, . . . , xN) =
(
λσ̃1x1, . . . , λ

σ̃NxN
)

with 1 = σ̃1 ≤ · · · ≤ σ̃N . Indeed, it suffices to take (once the σj ’s have been ordered

increasingly)

σ̃j := σj/σ1 for every j = 1, . . . , N

With this choice, we have

δλ ≡ dλ1/σ1

and δλ(x ◦ y) = δλ(x) ◦ δλ(y) follows from (2.14), restated for dλ, with λ replaced by λ1/σ1 .

δλ-homogeneous Functions and Differential Operators

Before we continue the analysis of homogeneous Lie groups, we show some basic properties

of homogeneous functions and homogeneous differential operators with respect to the family

{δλ}λ.

In this subsection, no group law is required on RN . Here, we only suppose that it is given

on RN a family of maps δλ of the form

δλ : RN → RN , δλ (x1, . . . , xN) := (λσ1x1, . . . , λ
σNxN) (2.15)
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with fixed positive real numbers σ1, . . . , σN . We set σ := (σ1, . . . , σN).

A real function a defined on RN is called δλ-homogeneous of degree m ∈ R if a does not

vanish identically and, for every x ∈ RN and λ > 0, it holds

a (δλ(x)) = λma(x).

A non-identically-vanishing linear differential operator X is called δλ-homogeneous of degree

m ∈ R if, for every φ ∈ C∞ (RN
)
, x ∈ RN and λ > 0, it holds

X (φ (δλ(x))) = λm(Xφ) (δλ(x)) .

Let a be a smooth δλ-homogeneous function of degree m ∈ R and X be a linear differential

operator δλ-homogeneous of degree n ∈ R. Then Xa is a δλ-homogeneous function of degree

m− n (unless Xa ≡ 0 ). Indeed, for every x ∈ RN and λ > 0, we have

λn(Xa) (δλ(x)) = X (a (δλ(x))) = X (λma(x)) = λm(Xa)(x).

Given a multi-index α ∈ (N∪{0})N , α = (α1, . . . , αN), we define the δλ-length (or δλ-height)

of α as

|α|σ = ⟨α, σ⟩ =
N∑
i=1

αiσi.

Definition 2.36. When G =
(
RN , ◦, δλ

)
is a homogeneous Lie group on RN with its given

group of dilations {δλ}λ, we shall use the notation |α|G for the relevant δλ-length. In this case,

we shall refer to |α|G as the G-length (or G-height) of α. Moreover, if p : G → R is a polynomial

function (the sum below is intended to be finite)

p(x) =
∑
α

cαx
α, cα ∈ R,

we say that

degG(p) := max {|α|G : cα ̸= 0}

is the G-degree or δλ-(homogeneous) degree of p.

Let us now consider a smooth and δλ-homogeneous of degree m ∈ R function a and a

multi-index α. Assume that Dαa is not identically zero. Then, since Dαa is smooth and δλ-

homogeneous of degree m − |α|σ, it has to be m − |α|σ ≥ 0, i.e. |α|σ ≤ m. This result can be

restated as follows:

Dαa ≡ 0 ∀α such that |α|σ > m.

Thus a is a polynomial function. Let a(x) =
∑
α∈A

aαx
α, where A is a finite set of multi-indices
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and aα ∈ R for every α ∈ A. Since a is δλ-homogeneous of degree m, we have∑
α∈A

λmaαx
α = λma(x) = a (δλ(x)) =

∑
α∈A

aαλ
|α|σxα.

Hence λmaα = λ|α|σaα for every λ > 0, so that |α|σ = m if aα ̸= 0. Then

a(x) =
∑

|α|σ=m

aαx
α. (2.16)

It is quite obvious that every polynomial function of the form (2.16) is δλ-homogeneous of

degree m. Thus, we have proved the following proposition.

Proposition 2.37 (Smooth δλ-homogeneous functions). Let δλ be as in (2.15). Suppose that

a ∈ C∞ (RN ,R
)
. Then a is δλ-homogeneous of degree m ∈ R if and only if a is a polynomial

function of the form (2.16) with some aα ̸= 0. As a consequence, the set of the degrees of the

smooth δλ-homogeneous (non-vanishing) functions is precisely the set of the nonnegative real

numbers

A =
{
|α|σ : α ∈ (N ∪ {0})N

}
,

with |α|σ = 0 if and only if a is constant.

From the proposition above one easily obtains the following characterization of the smooth

δλ-homogeneous vector fields.

Proposition 2.38 (Smooth δλ-homogeneous vector fields). Let δλ be as in (2.15). Let X be a

smooth non-vanishing vector field on RN ,

X =
N∑
j=1

aj(x)∂xj .

Then X is δλ-homogeneous of degree n ∈ R if and only if aj is a polynomial function δλ-

homogeneous of degree σj − n (unless aj ≡ 0 ). Hence, the degree of δλ- homogeneity of X

belongs to the set of real (possibly negative) numbers

Aj =
{
σj − |α|σ : α ∈ (N ∪ {0})N

}
,

whenever j is such that aj is not identically zero.

Corollary 2.39. Let δλ be as in (2.15). Let X be a smooth non-vanishing vector field. Then

X is δλ-homogeneous of degree n ∈ R iff

δλ(XI(x)) = λnXI (δλ(x)) .

As a straightforward consequence, we have the following simple fact.
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Remark 2.40. Let δλ be as in (2.15). Let X ̸= 0 be a smooth vector field on RN of the form

X =
N∑
j=1

aj(x)∂xj .

If X is δλ-homogeneous of degree n ∈ R, then, for every aj non-identically zero, we must have

n ≤ σj. As a consequence, it has to be n ≤ σN (i.e. the set of the δλ-homogeneous degrees of

the smooth vector fields is bounded above by the maximum exponent of the dilation). Hence,

X has the form

X =
∑

j≤N,σj≥n

aj(x)∂xj.

From this remark the next proposition straightforwardly follows.

Proposition 2.41. Let δλ be as in (2.15). Let X =
∑N

j=1 aj(x)∂xj be a smooth vector field

δλ-homogeneous of positive degree. Then its adjoint operator X∗ = −
∑N

j=1 ∂j (aj·) satisfies

X∗ = −X and

X2 = div
(
A · ∇T

)
where A is the square matrix (aiaj)i,j≤N . Finally, X has null divergence.

Vector fields with different degree of δλ-homogeneity are linearly independent if they do not

vanish at the origin. Indeed, the following proposition holds.

Proposition 2.42. Let δλ be as in (2.15). Let X1, . . . , Xk ∈ T (RN) be δλ-homogeneous vector

fields of degree n1, . . . , nk, respectively. If ni ̸= nj for i ̸= j and if XjI(0) ̸= 0 for every

j ∈ {1, . . . , k}, then X1, . . . , Xk are linearly independent.

The following simple proposition will be useful in the sequel.

Proposition 2.43. Let δλ be as in (2.15). Let X1, X2 be δλ-homogeneous vector fields of degree

n1, n2, respectively. Then [X1, X2] is δλ-homogeneous of degree n1 + n2 (unless X1 and X2

commute).

As a consequence, if n1, n2 are both positive, then every commutator of X1, X2 containing

k1 times X1 and k2 times X2 vanish identically whenever k1n1+ k2n2 > σN .

For example, the differential operators X1 = ∂x1 + 2x2∂x3 , X2 = ∂x2 − 2x1∂x3 on the first

Heisenberg group H1 are homogeneous of degree one with respect to the dilation δλ (x1, x2, x3) =

(λx1, λx2, λ
2x3), and [X1, X2] = −4∂x3 is indeed δλ homogeneous of degree two. Moreover, any

commutator of X1, X2 of length ≥ 3 vanish identically.
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Corollary 2.44. Let G =
(
RN , ◦, δλ

)
be a homogeneous Lie group on RN , and let g be the Lie

algebra of G. Let X1, . . . , Xk ∈ g be non-identically vanishing and δλ-homogeneous of degrees

n1, . . . , nk, respectively. If ni ̸= nj for i ̸= j, then X1, . . . , Xk are linearly independent.

Proposition 2.45 (Nilpotence of homogeneous Lie groups on RN). Let G =
(
RN , ◦, δλ

)
be

a homogeneous Lie group on RN , and let g be the Lie algebra of G. Then G is nilpotent of

step ≤ σN , i.e. every commutator of vector fields in g containing more than σN terms vanishes

identically.

Moreover, if Zj is the j-th element of the Jacobian basis of g, Zj is δλ homogeneous of degree

σj.

The Composition Law of a Homogeneous Lie Group

By using the elementary properties of the homogeneous functions showed in the previous sub-

section, we shall obtain a structure theorem for the composition law in a homogeneous Lie

group
(
RN , ◦, δλ

)
. We first recall two lemmas.

Lemma 2.46. Let δλ be as in (2.15). Let P : RN×RN → R be a smooth nonvanishing function

such that

P (δλ(x), δλ(y)) = λσjP (x, y) ∀x, y ∈ RN ,∀λ > 0,

for some j such that 1 ≤ j ≤ N . Assume also that

P (x, 0) = xj, P (0, y) = yj.

Then P (x, y) = x1 + y1 if j = 1 and, if j ≥ 2,

P (x, y) = xj + yj + P̃ (x1, . . . , xj−1, y1, . . . , yj−1) ,

where P̃ is a polynomial, the sum of mixed monomials in x1, . . . , xj−1, y1, . . . , yj−1. Moreover,

P̃ (δλ(x), δλ(y)) = λσj P̃ (x, y). Finally, P (x, y) only depends on the xk and yk with σk < σj.

Lemma 2.47. Let δλ be as in (2.15). Let Q : RN × RN → R be a smooth function such that

Q (δλ(x), δλ(y)) = λmQ(x, y) ∀x, y ∈ RN ,∀λ > 0

where m ≥ 0. Then

x 7→ ∂Q

∂yj
(x, 0)

is δλ-homogeneous of degree m− σj (unless it vanishes identically).
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Now, we are in the position to give the structure theorem for the composition law of a

homogeneous Lie group on RN .

Theorem 2.48 (Composition of a homogeneous Lie group on RN). Let
(
RN , ◦, δλ

)
be a ho-

mogeneous Lie group on RN . Then ◦ has polynomial component functions. Furthermore, we

have

(x ◦ y)1 = x1 + y1, (x ◦ y)j = xj + yj +Qj(x, y), 2 ≤ j ≤ N,

and the following facts hold:

(1) Qj only depends on x1, . . . , xj−1 and y1, . . . , yj−1;

(2) Qj is a sum of mixed monomials in x, y;

(3) Qj (δλx, δλy) = λσjQj(x, y).

More precisely, Qj(x, y) only depends on the xk and yk with σk < σj.

Corollary 2.49. Let G =
(
RN , ◦, δλ

)
be a homogeneous Lie group on RN . Let j ∈ {1, . . . , N}.

For every y ∈ G, we have (
y−1
)
j
= −yj + qj(y),

where qj(y) is a polynomial function in y, δλ-homogeneous of degree σj, only depending on the

yk with σk < σj.

Corollary 2.50. Let G =
(
RN , ◦, δλ

)
be a homogeneous Lie group on RN . Let j ∈ {1, . . . , N}.

For every x, y ∈ G, we have(
y−1 ◦ x

)
j
= xj − yj +

∑
k:σk<σj

P
(j)
k (x, y) (xk − yk) ,

where P
(j)
k (x, y) is a polynomial function in x and y only depending on the xk and yk with

σk < σj.

The following result describes in a very explicit way the Jacobian matrix at 0 of the left-

translation τx on a homogeneous Lie group on RN .

Corollary 2.51 (The Jacobian basis of a homogeneous Lie group). Let G =
(
RN , ◦, δλ

)
be a
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homogeneous Lie group on RN . Then we have

Jτx(0) =


1 0 · · · 0

a
(1)
2 1

. . . ...
... . . . . . . 0

a
(1)
N · · · a

(N−1)
N 1

 .

where a(j)i is a polynomial function δλ-homogeneous of degree σi − σj. As a consequence, if we

let

Zj = ∂xj +
N∑

i=j+1

a
(j)
i ∂xi for 1 ≤ j ≤ N − 1 and ZN = ∂xN

then Zj is a left-invariant vector field δλ-homogeneous of degree σj. Moreover,

Jτx(0) = (Z1I(x) · · ·ZNI(x))

In other words, the Jacobian basis Z1, . . . , ZN for the Lie algebra g of G is formed by δλ-

homogeneous vector fields of degree σ1, . . . , σN , respectively.

Example 2.52. For the first Heisenberg group H1, we showed that the Jacobian matrix of the

left translation on H1 is

Jτx(0) =


1 0 0

0 1 0

2x2 −2x1 1

 .

We recognize that the three columns of this matrix give raise to the Jacobian basis Z1 =

∂x1 +2x2∂x3 , Z2 = ∂x2 −2x1∂x3 and Z3 = ∂x3 and these vector fields are homogeneous of degree,

respectively, 1, 1, 2 with respect to δλ (x1, x2, x3) = (λx1, λx2, λ
2x3).

The structure Theorem 2.48 of the composition law of
(
RN , ◦, δλ

)
implies that the Lebesgue

measure on RN is invariant under left and right translations on G. Indeed, by Theorem 2.48,

the Jacobian matrices of the functions x 7→ α ◦ x and x 7→ x ◦ α have the following lower

triangular form 
1 0 · · · 0

⋆ 1
. . . ...

... . . . . . . 0

⋆ · · · ⋆ 1


Then, we have proved the following proposition.
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Proposition 2.53 (Haar measure on a homogeneous Lie group). Let G be a homogeneous Lie

group on RN . Then the Lebesgue measure on RN is invariant with respect to the left and the

right translations on G.

If we denote by |E| the Lebesgue measure of a measurable set E ⊆ RN , we then have

|α ◦ E| = |E| = |E ◦ α| ∀α ∈ G.

We also have that the Lebesgue measure is homogeneous with respect to the dilations {δλ}λ>0 .

More precisely, as a trivial computation shows,

|δλ(E)| = λQ|E|,

where

Q =
N∑
j=1

σj.

The positive number Q is called the homogeneous dimension of the group G =
(
RN , ◦, δλ

)
.

For example, in the case of the first Heisenberg group H1, where τα is given by

τα(x) = (α1 + x1, α2 + x2, α3 + x3 + 2 (α2x1 − α1x2)) ,

and δλ (x1, x2, x3) = (λx1, λx2, λ
2x3), we have

Jτα(x) =


1 0 0

0 1 0

2α2 −2α1 1

 , Jδλ(x) =


λ 0 0

0 λ 0

0 0 λ2

 ,

so that, for every α, x ∈ H1 and every λ > 0, we have

detJτα(x) = 1, detJδλ(x) = λ4 = λQ,

since the homogeneous dimension of H1 is Q = 1 + 1 + 2 = 4.

The Lie Algebra of a Homogeneous Lie Group on RN

Let G be a homogeneous Lie group on RN with Lie algebra g. From Corollary 2.51 we easily

obtain the splitting of g as a direct sum of linear spaces spanned by vector fields of constant

degree of δλ-homogeneity.

More precisely, let us recall that the exponents σj in the dilation δλ of G satisfy σ1 ≤ · · · ≤

σN and can then be grouped together to produce real and natural numbers, respectively, say

n1, . . . , nr and N1, . . . , Nr,
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such that

n1 < n2 < · · · < nr, N1 +N2 + · · ·+Nr = N,

defined by 

n1 = σj for 1 ≤ j ≤ N1

n2 = σj for N1 < j ≤ N1 +N2

...

nr = σj for N1 + · · ·+Nr−1 < j ≤ N1 + · · ·+Nr−1 +Nr

Let Z1, . . . , ZN be the Jacobian basis of g. Define

g1 = span {Zj | 1 ≤ j ≤ N1} and, for i = 2, . . . , r

gi = span {Zj | N1 + · · ·+Ni−1 < j ≤ N1 + · · ·+Ni−1 +Ni}

By Corollary 2.51, the generators Zj of gi are δλ-homogeneous vector fields of degree ni, 1 ≤

i ≤ r. Moreover, we obviously have

g = g1 ⊕ · · · ⊕ gr.

We also explicitly notice that a vector field X ∈ g is δλ-homogeneous of degree n iff, for a

suitable i ∈ {1, . . . , r}, n = ni and X ∈ gi.

Example 2.54. The usual additive group (R3,+) is a homogeneous Lie group if equipped with

the dilation

δλ (x1, x2, x3) =
(
λ2x1, λ

πx2, λ
4x3
)

The decomposition of the Lie algebra is

span {∂x1} ⊕ span {∂x2} ⊕ span {∂x3} .

Moreover, R4 is a homogeneous Lie group if equipped with the group law

x ◦ y =


x1 + y1

x2 + y2

x3 + y3 + 2y1x2 − 2y2x1

x4 + y4


and the dilation

δλ (x1, x2, x3, x4) =
(
λx1, λx2, λ

2x3, λ
2x4
)
.

The decomposition of the Lie algebra is

g1 ⊕ g2 = span {X1, X2} ⊕ span {∂x3 , ∂x4}
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where X1 = ∂x1 + 2x2∂x3 , X2 = ∂x2 − 2x1∂x3 . Note that

[g1, g1] & g2.

Observe that the above (R4, ◦) is isomorphic to the homogeneous Lie group (R4, ∗) with the

composition law

ξ ∗ η =


ξ1 + η1

ξ2 + η2

ξ3 + η3

ξ4 + η4 + 2η1ξ2 − 2η2ξ1


and the new group of dilations

δλ (ξ1, ξ2, ξ3, ξ4) =
(
λξ1, λξ2, λξ3, λ

2x4
)
.

The decomposition of the Lie algebra is

g1 ⊕ g2 = span {Z1, Z2, ∂ξ3} ⊕ span {∂ξ4} ,

where Z1 = ∂ξ1 + 2ξ2∂ξ4 , Z2 = ∂ξ2 − 2ξ1∂ξ4 . Note that this time we have

[g1, g1] = g2.

Definition 2.55 (Dilations on the Lie algebra of a homogeneous Lie group). Let G =
(
RN , ◦, δλ

)
be a homogeneous Lie group on RN with Lie algebra g and dilation

δλ (x1, . . . , xN) = (λσ1x1, . . . , λ
σNxN) .

We define a group of dilations on g (which we still denote by δλ ) as follows: δλ is the (only)

linear (auto)morphism of g mapping the j-th element Zj of the Jacobian basis for g into λσjZj.

In other words, if X ∈ g is written w.r.t. the Jacobian basis Z1, . . . , ZN as

X =
N∑
j=1

cjZj, we then have δλ(X) =
N∑
j=1

cjλ
σjZj.

We immediately recognize that, if π : g → RN is the map defined by π(X) = XI(0), it holds

π (δλ(X)) = δλ(π(X)) ∀X ∈ g.

Indeed, we have

δλ(π(X)) = δλ

(
π

(
N∑
j=1

cjZj

))
= δλ

(
N∑
j=1

cjπ (Zj)

)
= δλ

(
N∑
j=1

cj (Zj) I(0)

)

= δλ (c1, . . . , cN) = (λσ1c1, . . . , λ
σN cN)
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and, on the other hand,

π (δλ(X)) = π

(
δλ

(
N∑
j=1

cjZj

))
= π

(
N∑
j=1

cjλ
σjZj

)

=
N∑
j=1

cjλ
σjπ (Zj) = (λσ1c1, . . . , λ

σN cN) .

The following simple and very useful fact holds.

Proposition 2.56. Let G be a homogeneous Lie group on RN with Lie algebra g. The dilation

on g introduced in Definition 2.55 is a Lie algebra automorphism of g, i.e.

δλ([X, Y ]) = [δλ(X), δλ(Y )] ∀X, Y ∈ g.

The Exponential Map of a Homogeneous Lie Group

Let G =
(
RN , ◦, δλ

)
be a homogeneous Lie group on RN with Lie algebra g. The exponential

map on g has some remarkable properties, due to the homogeneous structure of G. We give

such properties in what follows.

Let Z1, . . . , ZN be the Jacobian basis of g. By Corollary 2.51, Zj is δλ-homogeneous of

degree σj and takes the form

Zj =
N∑
k=j

a
(j)
k (x1, . . . , xk−1) ∂xk ,

where a(j)k is a polynomial function δλ-homogeneous of degree σk − σj and a
(j)
j ≡ 1. We now

consider on g the dilation group introduced in Definition 2.55, i.e. with abuse of notation

δλ : g −→ g, δλ

(
N∑
j=1

ξjZj

)
:=

N∑
j=1

λσjξjZj. (2.17)

The dilation (2.17) is consistent with the one in G. More precisely, if Z ∈ g then, for every

λ > 0, it holds

δλ(ZI(x)) = (δλZ) I (δλ(x)) ∀x ∈ G.

Lemma 2.57. Let G =
(
RN , ◦, δλ

)
be a homogeneous Lie group on RN with Lie algebra g.

Denote also by δλ the dilation (2.17) on g. Let γ : [0, T ] → RN be an integral curve of Z with

Z ∈ g. Then Γ := δλ(γ) is an integral curve of δλ(Z).

We are now in the position to give the following important theorem.
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Theorem 2.58 (Exponential map of a homogeneous Lie group). Let G =
(
RN , ◦, δλ

)
be a

homogeneous Lie group with Lie algebra g. Then

Exp : g → G and Log : G → g

are globally defined diffeomorphisms with polynomial component functions (provided g is equipped

with its vector space structure and any fixed system of linear coordinates).

Moreover, denote also by δλ the dilation on g defined in (2.17). Then, for every Z ∈ g and

x ∈ G, it holds

Exp (δλ(Z)) = δλ(Exp(Z)) and Log (δλ(x)) = δλ(Log(x)).

Corollary 2.59. For every x, y ∈ G, we have

x ◦ y = exp(Log(y))(x) and x−1 = Exp(−Log(x)).

Theorem 2.58 has many important consequences. We collect some of them in the following

remark.

Remark 2.60. From Theorem 2.58 we infer, in particular, that

Exp : g → G and Log : G → g

are globally defined C∞ maps. Hence, the operation on g

X ⋄ Y := Log(Exp(X) ◦ Exp(Y )), X, Y ∈ g,

defines a Lie group structure isomorphic to (G, ◦). We consider on g the dilation (still denoted

by δλ). We claim that δλ is a Lie group automorphism of (g, ⋄), i.e.

δλ(X ⋄ Y ) = (δλ(X)) ⋄ (δλ(Y )) ∀X, Y ∈ g.

Roughly speaking, (g, ⋄, δλ) is a homogeneous Lie group too.

We now identify g with RN taking coordinates with respect to the Jacobian basis. In other

words, we consider the map

π : g → RN , X 7→ π(X) := XI(0).

Again, we transfer the Lie group structure of (g, ⋄) into a Lie group
(
RN , ∗

)
in the natural way,

by setting

ξ ∗ η := π
(
π−1(ξ) ⋄ π−1(η)

)
, ξ, η ∈ RN .

As a consequence,
(
RN , ∗

)
is isomorphic to (g, ⋄) and hence to (G, ◦). We finally consider on

RN the same dilation δλ defined on G (this makes sense, since the underlying manifold for G
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is RN too). We claim that(
RN , ∗, δλ

)
is a homogeneous Lie group.

We can summarize the above remarked facts as follows:

Given a homogeneous Lie group G =
(
RN , ◦, δλ

)
, we can consider a somewhat "more canon-

ical" homogeneous Lie group on RN

CH(G) :=
(
RN , ∗, δλ

)
(which we may call "of Campbell-Hausdorff type") obtained by the natural identification of

the Lie algebra of G (equipped with the Campbell-Hausdorff composition law ⋄ to RN (via

coordinates w.r.t. the Jacobian basis).

2.1.3 Homogeneous stratified Lie groups

We now enter into the core of this chapter by introducing the central definition of stratified Lie

group. We give two definitions of stratified Lie groups: the first one is the most convenient for

our purposes and it seems very natural in an analysis context; the second one is the classical

one from Lie group theory. Then, we will compare the two definitions showing that, up to

isomorphism, they are equivalent in the Appendix.

Definition 2.61 (Stratified Lie Group). We say that a Lie group G =
(
RN , ◦

)
, is a (ho-

mogeneous) stratified Lie group or a homogeneous Carnot group, if the following properties

hold:

(C1) RN can be split as RN = RN1 × · · · × RNr , and the dilation δλ : RN → RN

δλ(x) = δλ
(
x(1), . . . , x(r)

)
=
(
λx(1), λ2x(2), . . . , λrx(r)

)
, x(i) ∈ RNi ,

is an automorphism of the group G for every λ > 0.

Then
(
RN , ◦, δλ

)
is a homogeneous Lie group on RN . Moreover, the following condition

holds:

(C2) If N1 is as above, let Z1, . . . , ZN1 be the left invariant vector fields on G such that Zj(0) =
∂
∂xj

∣∣∣
0

for j = 1, . . . , N1. Then

rank (Lie {Z1, . . . , ZN1} (x)) = N for every x ∈ RN .

If (C1) and (C2) are satisfied, we shall say that the triple G =
(
RN , ◦, δλ

)
is a (homogeneous)

stratified Lie group.
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2.1 Preliminaries on Lie groups

We also say that G has step r and N1 generators. The vector fields Z1, . . . , ZN1 will be called

the (Jacobian) generators of G, whereas any basis for span {Z1, . . . , ZN1} is called a system of

generators of G.

Definition 2.62. A stratified Lie group (or Carnot group) G is a connected and simply con-

nected Lie group whose Lie algebra g admits a stratification, i.e. a direct sum decomposition

g = V1 ⊕ V2 ⊕ · · · ⊕ Vr such that

 [V1, Vi−1] = Vi if 2 ≤ i ≤ r,

[V1, Vr] = {0}.

In the sequel, we use the following notation to denote the points of G

x = (x1, . . . , xN) =
(
x(1), . . . , x(r)

)
with

x(i) =
(
x
(i)
1 , . . . , x

(i)
Ni

)
∈ RNi , i = 1, . . . , r

Furthermore, we shall denote by g the Lie algebra of G.

Remark 2.63 (Equivalent definition of stratified Lie group I). Suppose G =
(
RN , ◦

)
is a

Lie group on RN , and there exist positive real numbers τ1 ≤ · · · ≤ τN such that dλ(x) =

(λτ1x1, . . . , λ
τNxN) is a Lie group morphism of G for every λ > 0. Let g be the Lie algebra

of G, and let g1 be the linear subspace of g of the left-invariant vector fields which are dλ-

homogeneous of degree τ1. If g1 Lie-generates the whole g (which means that Lie(g1) = g),

then G is a stratified Lie group. Precisely, G has step r := τN/τ1, it has m := dim (g1)

generators, and it is a homogeneous Lie group with respect to the dilation

δλ = dλ1/τ1

Also, set σj := τj/τ1, then {σ1, σ2, . . . , σN} are consecutive integers starting from 1 up to r.

Proof. As we observed in Remark 2.35, δλ is a morphism of (G, ◦), i.e. G =
(
RN , ◦, δλ

)
is a

homogeneous Lie group on RN . Obviously, X ∈ g1 if and only if X is δλ homogeneous of degree

1 . Let v be the maximum of the integers k such that σk = 1. Let us denote by {Z1, . . . , ZN}

the Jacobian basis related to G and observe that (by Proposition 2.45), for every j ≤ N,Zj is

δλ-homogeneous of degree σj. We claim that

(⋆) v = dim (g1) =: m, and {Z1, . . . , Zm} is a basis forg1.

Indeed, let X ∈ g1. Then X = ξ1Z1 + · · · + ξNZN for suitable scalars ξj. Since X is δλ-
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2 Elementary analysis of stratified Lie groups

homogeneous of degree 1 , by Corollary 2.44 and the definition of v, it holds ξj = 0 for every

j > v. Hence, g1 is spanned by {Z1, . . . , Zν} whence (this system of vectors being linearly

independent) the claimed (⋆) holds.

By the assumption Lie (g1) = g and (⋆), it follows

(⋆⋆) Lie (Z1, . . . , Zm) = g.

For every j ∈ N, j ≥ 2, let us set gj := [g1, gj−1] . By Proposition 2.45, gj = {0} for every

j > r := σN . Also, by Proposition 2.43, any X ∈ gj is δλ-homogeneous of degree j. Let now

j ∈ {m+ 1, . . . , N} be fixed. Then, by (⋆⋆), Zj is a linear combination of nested commutators

of Z1, . . . , Zm. But any such commutator is δλ-homogeneous of an integer degree in 1, . . . , r.

This proves that σj (the δλ-homogeneous degree of Zj ) is integer and (again from Corollary

2.44) σj ∈ {1, . . . , r}. As a consequence, we have the splitting of RN , as requested in (C1) of

Definition 2.61, with N1 = m.

Finally, let us prove that (C2) holds too. This is obvious thanks to (⋆⋆), since

rank(g(x)) ≥ rank (Z1I(x), . . . , ZNI(x)) = rank (Z1I(0), . . . , ZNI(0)) = N

for every x ∈ G (see Proposition 2.20).

Remark 2.64 (Equivalent definition of stratified Lie group II). A stratified Lie group is a

connected and simply connected Lie group G whose Lie algebra g admits a (vector space)

decomposition of the type

g = V1 ⊕ · · · ⊕ Vr,

where [Vi, Vj] ⊆ Vi+j ∀i, j : i+ j ≤ r

[Vi, Vj] = 0 ∀i, j : i+ j > r

(2.18)

and V1 generates all g. This means that every element of g can be written as a linear combination

of iterated Lie brackets of various elements of V1.

Proof. In fact, in (2.18), it holds [Vi, Vj] = Vi+j if i + j ≤ r. If G is a stratified Lie group

according to Definition 2.62, then (setting Vi := {0} if i > r ) it holds

Vi = [V1, · · · [V1, V1]]︸ ︷︷ ︸
i times

for every i ∈ N.

In particular, V1 Lie-generates all the Vi ’s (whence it generates also g = V1 ⊕ · · · ⊕ Vr ). This
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also gives

[Vi, Vj] = [[V1, · · · [V1, V1]]︸ ︷︷ ︸
i times

, [V1, · · · [V1, V1]]︸ ︷︷ ︸
j times

]

⊆ [V1, · · · [V1, V1]]︸ ︷︷ ︸
i+j times

= Vi+j.

In particular, (2.18) holds. Vice versa, let G satisfy the above hypothesi. Set W1 := V1 and

Wi := [W1,Wi−1] = [V1, · · · [V1, V1]]︸ ︷︷ ︸
i times

for i ≥ 2.

Prove that condition (2.18) implies that Wi ⊆ Vi for every 1 ≤ i ≤ r and Wi = {0} for every

i > r. Moreover, the second hypothesis i.e. V1 Lie-generates g ensures that g = W1 + · · ·+Wr.

Now, a simple linear algebra argument shows that the following conditions

W1 + · · ·+Wr = g = V1 ⊕ · · · ⊕ Vr, Wi ⊆ Vi ∀i ≤ r

are sufficient to derive that Wi = Vi for every 1 ≤ i ≤ r. As a consequence, we have [V1, Vj] =

[W1,Wj] = Wj+1 = Vj+1 whenever 1+ j ≤ r, and [V1, Vj] = [W1,Wj] = {0} whenever 1+ j > r,

so that G is a stratified Lie group according to Definition 2.62.

Example 2.65. The first Heisenberg group H1 is a stratified Lie group of step two and two gen-

erators. Indeed, it is a homogeneous Lie group (with dilations δλ (x1, x2, x3) = (λx1, λx2, λ
2x3)).

Moreover (since the first two vector fields of the Jacobian basis are Z1 = ∂x1 + 2x2∂x3 and

Z2 = ∂x2 − 2x1∂x3 ), we have

rank (Lie {Z1, Z2} (x)) = 3 for every x ∈ R3.

Thus, the above properties (C1) and (C2) are fulfilled.

Example 2.66. Stratified Lie groups must be homogeneous Lie groups. However the opposite

is not true. We now give an example of a homogeneous Lie group which is not a stratified Lie

group. Let us consider the following composition law on R2

(x1, x2) ◦ (y1, y2) = (x1 + y1, x2 + y2 + x1y1) .

It can be readily verified that G = (R2, ◦) is a Lie group (here (x1, x2)
−1 = (−x1,−x2 + x21)).

Moreover, G is a homogeneous group, if equipped with the dilation δλ (x1, x2) := (λx1, λ
2x2).

Hence (C1) is satisfied. However, (C2) is not. Indeed, if Z1 = ∂x1 + x1∂x2 is the first vector

field of the Jacobian basis, we have

rank (Lie {Z1} (x)) = 1 ̸= 2 for every x ∈ R2.
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Hence G is not a homogeneous stratified group.

Remark 2.67. Let us remark that the triple (R2,+, δλ) is a homogeneous stratified Lie group

if δλ (x1, x2) = (λx1, λx2), whereas if δλ (x1, x2) = (λx1, λ
2x2) , (R2,+, δλ) is a homogeneous Lie

group but not a stratified one.

From properties (C1) and (C2) of Definition 2.61 and the results on the homogeneous Lie

groups we immediately get the assertions contained in the following remarks.

Remark 2.68. Let
(
RN , ◦, δλ

)
be a stratified Lie group. Then ◦ has polynomial component

functions. Moreover, denoting x ◦ y by
(
(x ◦ y)(1), . . . , (x ◦ y)(r)

)
, we have

(x ◦ y)(1) = x(1) + y(1), (x ◦ y)(i) = x(i) + y(i) +Q(i)(x, y), 2 ≤ i ≤ r,

where

(1) Q(i) only depends on x(1), . . . , x(i−1) and y(1), . . . , y(i−1);

(2) the component functions of Q(i) are sums of mixed monomials in x, y;

(3) Q(i) (δλx, δλy) = λiQ(i)(x, y).

Remark 2.69. Let
(
RN , ◦, δλ

)
be a stratified Lie group. Then we have

Jτx(0) =


IN1 0 · · · 0

J
(1)
2 (x) IN2

. . . ...
... . . . . . . 0

J
(1)
r (x) · · · J

(r−1)
r (x) INr

 ,

where In is the n × n identity matrix, whereas J (i)
j (x) is a Nj × Ni matrix whose entries are

δλ-homogeneous polynomials of degree j − i. In particular, if we let

Jτx(0) =
(
Z(1)(x) · · ·Z(r)(x)

)
where Z(i)(x) is a N × Ni matrix, then the column vectors of Z(i)(x) define δλ homogeneous

vector fields of degree i : those of the relevant Jacobian basis.

Remark 2.70. Let G =
(
RN , ◦, δλ

)
be a stratified Lie group with Lie algebra g. Let Z1, . . . , ZN

be the Jacobian basis of g, i.e.

Zj ∈ g and Zj(0) = ∂xj
∣∣
0
, j = 1, . . . , N.

We shall also denote the Jacobian basis by

Z
(1)
1 , . . . , Z

(1)
N1

; . . . ;Z
(r)
1 , . . . , Z

(r)
Nr
.
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Obviously, Z(1)
j = Zj for 1 ≤ j ≤ N1. By Corollary 2.51, Z(i)

j is δλ-homogeneous of degree i

and takes the form

Z
(i)
j = ∂/∂x

(i)
j +

r∑
h=i+1

Nh∑
k=1

a
(i,h)
j,k

(
x(1), . . . , x(h−i)

)
∂/∂x

(h)
k ,

where a(i,h)j,k is a δλ-homogeneous polynomial function of degree h−i. In particular, the Jacobian

generators of G, i.e. the vector fields Z(1)
1 , . . . , Z

(1)
N1

are δλ-homogeneous of degree 1 .

Remark 2.71. With the notation of the above remark, the Lie algebra g is generated by

Z1, . . . ZN1 ,

g = Lie {Z1, . . . ZN1} .

Indeed, the inclusion Lie {Z1, . . . ZN1} ⊆ g is obvious. Since dim(g) = N , in order to show the

opposite inclusion, it is enough to prove that

dim (Lie {Z1, . . . ZN1}) = N.

By condition (C2), there exists X1, . . . , XN ∈ Lie {Z1, . . . ZN1} such that X1I(0), . . . , XNI(0)

are linearly independent vectors in RN . Then X1, . . . , XN are linearly independent in g. Hence

N ≥ dim (Lie {Z1, . . . ZN1}) ≥ N,

and this ends the proof.

Remark 2.72 (Stratification of the algebra of a stratified Lie group). Let us denote by W (k) the

vector space spanned by the commutators of length k of Z1, . . . , ZN1 ,

W (k) := span
{
ZJ | J ∈ {1, . . . , N1}k

}
.

Obviously, W (k) ⊆ g, and every Z ∈ W (k) is δλ-homogeneous of degree k. Then W (k) = {0} if

k > r, while

W (k) ⊆ span
{
Z

(k)
1 , . . . , Z

(k)
Nk

}
if 2 ≤ k ≤ r. (2.19)

Then, if we agree to let

W (1) = span {Z1, . . . , ZN1} = span
{
Z

(1)
1 , . . . , Z

(1)
N1

}
we have

dim
(
W (k)

)
≤ Nk for any k ∈ {1, . . . , r}. (2.20)

On the other hand, by Proposition 2.9,

span
{
W (1), . . . ,W (r)

}
= Lie

{
Z

(1)
1 , . . . , Z

(1)
N1

}
.
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Thus, by Remark 2.71,

g = span
{
W (1), . . . ,W (r)

}
,

so that, since W (h) ∩W (k) = {0} if h ̸= k, we have

g = W (1) ⊕W (2) ⊕ · · · ⊕W (r).

As a consequence,

dim(g) =
r∑

k=1

dim
(
W (k)

)
.

On the other hand, dim(g) = N =
∑r

k=1Nk. Then, by (2.19),

dim
(
W (k)

)
= Nk for any k ∈ {1, . . . , r},

and, by (2.20),

W (k) = span
{
Z

(k)
1 , . . . , Z

(k)
Nk

}
if 1 ≤ k ≤ r.

We also have [
W (1),W (i−1)

]
= W (i) for 2 ≤ k ≤ r, (2.21)

and [
W (1),W (r)

]
= {0}. (2.22)

Indeed, let us put V1 := W (1) and

Vi := [V1, Vi−1] for i = 2, . . . , r.

By the definition of W (k) and Proposition 2.9, Vi ⊆ W (i) for i = 2, . . . , r. Then dim (Vi) ≤

dim
(
W (i)

)
= Ni. On the other hand, by Proposition 2.45, [V1, Vr] = {0}, and, by Proposition

2.9,

g = Lie
{
Z

(1)
1 , . . . , Z

(1)
N1

}
= span {V1, V2, . . . , Vr} .

Then N =
r∑
i=1

dim (Vi) ≤
r∑
i=1

Ni = N . This implies dim (Vi) = Ni for every i ∈ {1, . . . , r}. As a

consequence, Vi = W (i) for every i ∈ {1, . . . , r}, and (2.21) and (2.22) hold.

Summing up, we have proved the "stratification" of the Lie algebra g, i.e. the decomposition

g = W (1) ⊕W (2) ⊕ · · · ⊕W (r),
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with [
W (1),W (i−1)

]
= W (i) for 2 ≤ k ≤ r,[

W (1),W (r)
]
= {0},

where

W (k) = span
{
Z

(k)
1 , . . . , Z

(k)
Nk

}
if 1 ≤ k ≤ r.

2.2 The sub-Laplacians on stratified Lie groups

We begin with a central definition.

Definition 2.73. If Z1, . . ., ZN1 are the Jacobian generators of the stratified Lie group G =(
RN , ◦, δλ

)
, the second order differential operator

∆G =

N1∑
j=1

Z2
j

is called the canonical sub-Laplacian on G. Any operator

L =

N1∑
j=1

Y 2
j

where Y1, . . . , YN1 is a basis of span {Z1, . . . , ZN1}, is simply called a sub-Laplacian on G. The

vector valued operator

∇G = (Z1, . . . , ZN1)

will be called the canonical (or horizontal) G-gradient.

Finally, the notation ∇L = (Y1, . . . , YN1) will be used to denote the L-gradient (or horizontal

L-gradient).

Example 2.74. The canonical sub-Laplacian of the first Heisenberg group H1 is

∆H1 = {∂x1 + 2x2∂x3}
2 + {∂x2 − 2x1∂x3}

2

= (∂x1)
2 + (∂x2)

2 + 4
(
x21 + x22

)
(∂x3)

2 + 4x2∂x1,x3 − 4x1∂x2,x3 .

A (non-canonical) sub-Laplacian on H1 is, for example,

L = {(∂x1 + 2x2∂x3)− (∂x2 − 2x1∂x3)}
2 + {∂x2 − 2x1∂x3}

2

=(∂x1)
2 + 2 (∂x2)

2 + 4
(
x21 + (x1 + x2)

2) (∂x3)2
− 2∂x1,x2 + 4 (x1 + x2) ∂x1,x3 − 4 (x1 + (x1 + x2)) ∂x2,x3 .
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Remark 2.75. For the sub-Laplacians on groups of step two, provided the inverse map on the

group is −x, then any sub-Laplacian on a 2-step stratified Lie group contains only second order

coordinate partial derivatives.

We would like to list some basic properties of the sub-Laplacians, straightforward conse-

quences of the properties of the vector fields Z1, . . . , ZN1 . In what follows L =
∑N1

j=1 Y
2
j will

denote any sub-Laplacian on G.

(1) L is hypoelliptic, i.e. every distributional solution to Lu = f is of class C∞ whenever f

is of class C∞.

(2) L is invariant with respect to the left translations on G, i.e. for every fixed α ∈ G,

L(u(α ◦ x)) = (Lu)(α ◦ x) for every x ∈ G and every u ∈ C∞ (RN
)
.

(3) L is δλ-homogeneous of degree two, i.e. for every fixed λ > 0,

L (u (δλ(x))) = λ2(Lu) (δλ(x)) for every x ∈ G and every u ∈ C∞ (RN
)
.

(4) L can be written as

L = div
(
A(x)∇T

)
where div denotes the divergence operator in RN ,∇ = (∂1, . . . , ∂N) , A is the N × N

symmetric matrix

A(x) = σ(x)σ(x)T

and σ(x) is the N ×N1 matrix whose columns are Y1I(x), . . . , YN1I(x). We also have the

expression of L with respect to the usual coordinate partial derivatives,

L =

N1∑
k=1

Y 2
k =

N∑
i,j=1

ai,j(x)∂i,j +
N∑
j=1

bj(x)∂j

where

ai,j(x) =

N1∑
k=1

(YkI)i (x) (YkI)j (x), bj(x) =

N1∑
k=1

Yk

(
(YkI)j (x)

)
.

(5) If x ∈ G is fixed and A(x) is the matrix, then the quadratic form in ξ ∈ RN

qL(x, ξ) := ⟨A(x)ξ, ξ⟩

is called the characteristic form of L. We have

qL(x, ξ) =

N1∑
j=1

⟨YjI(x), ξ⟩2
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so that qL(x, ·) is obtained by formally replacing in L the coordinate derivatives ∂1, . . . , ∂N

by ξ1, . . . , ξN .

(6) The sub-Laplacian L is the second order partial differential operator related to the Dirich-

let form

u 7→
∫

|∇Lu|2 dx.

More precisely, let Ω ⊆ RN be an open set, and consider the functional

C∞(Ω,R) ∋ u 7→ J(u) =
1

2

∫
Ω

|∇Lu|2 dx, |∇Lu|2 =
N1∑
j=1

(Yju)
2 .

Denoting by ⟨, ⟩ the inner product in RN1 , we have

J(u+ h)− J(u) =

∫
Ω

⟨∇Lu,∇Lh⟩ dx+ J(h)

for every h ∈ C∞
0 (Ω,R). We call critical point of J any function u ∈ C∞(Ω,R) such that∫

Ω

⟨∇Lu,∇Lh⟩ dx = 0 ∀h ∈ C∞
0 (Ω,R).

Then, given u ∈ C∞(Ω,R), we have u is a critical point of J if and only if Lu = 0 in Ω.

Indeed, since Y ∗
j = −Yj, an integration by parts gives∫
Ω

⟨∇Lu,∇Lh⟩ dx =

N1∑
j=1

∫
Ω

YjuYjh dx = −
N1∑
j=1

∫
Ω

(
Y 2
j u
)
h dx

= −
∫
Ω

(Lu)h dx

for every u ∈ C∞(Ω,R) and h ∈ C∞
0 (Ω,R).

Remark 2.76. The sub-Laplacian L is a second order differential operator in divergence form

with polynomial coefficients. The characteristic form of L is positive semi-definite. If the step

of G is ≥ 2, then L is not elliptic at any point of G. If the step of G is 1 , then L is an elliptic

operator with constant coefficients.

We end this section with some useful results on the horizontal L-gradient.

Proposition 2.77. Let L =
∑N1

j=1X
2
j be a sub-Laplacian on the stratified Lie group G. Let

u ∈ C∞(G,R) be such that Xju is a polynomial function of G-degree not exceeding m for every

j = 1, . . . , N1. Then u is a polynomial function of G-degree not exceeding m+ 1.

Corollary 2.78. Let u ∈ C∞(G,R) be such that

Xβu = 0 ∀β : |β| = m
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for a suitable integer m ≥ 1. Then u is a polynomial function on G of G-degree not exceeding

m− 1.

Proposition 2.79. Let Ω be an open and connected subset of the stratified Lie group G. Let L

be any sub-Laplacian on G. Then a function u ∈ C1(Ω,R) is constant in Ω if and only if the

relevant horizontal L-gradient ∇Lu vanishes identically on Ω.

2.3 Stratified Lie groups of step two

In this section, we study a special class of stratified Lie groups, which has step two (r = 2 in

Definition 2.61). In particular, we have the following fact:

A (finite dimensional) nilpotent Lie algebra g of step two is necessarily stratified.

Indeed, let us set V2 = [g, g] and choose any V1 such that g = V1 ⊕ V2 : then it also holds

[V1, V1] = V2 and [V1, V2] = {0}. We will observe in next chapter that the explicit construction

of irreducible unitary representations for 2-step stratified Lie groups is much simpler. The aim

of this section is to collect some results and many explicit examples of stratified Lie groups of

step two and n generators, n ≥ 2. In particular, we show that they are naturally given with

the data on Rn+m of m skew-symmetric matrices of order n.

2.3.1 Characterization of 2-step stratified groups

Let m,n ∈ N. Set RN := Rn×Rm and denote its points by z = (x, t) with x ∈ Rn and t ∈ Rm.

Given an m-tuple B(1), . . . , B(m) of n× n matrices with real entries, let

(x, t) ◦ (ξ, τ) =
(
x+ ξ, t+ τ +

1

2
⟨Bx, ξ⟩

)
. (2.23)

Here ⟨Bx, ξ⟩ denotes the m-tuple(〈
B(1)x, ξ

〉
, . . . ,

〈
B(m)x, ξ

〉) (
also written as

n∑
i,j=1

Bi,jxjξi

)
and ⟨·, ·⟩ stands for the inner product in Rn. One can easily verify that

(
RN , ◦

)
is a Lie group

whose identity is the origin and where the inverse is given by

(x, t)−1 = (−x,−t+ ⟨Bx, x⟩).
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We highlight that the inverse map is the usual −(x, t) if and only if, for every k = 1, . . . ,m, it

holds 〈
B(k)x, x

〉
= 0 ∀x ∈ Rn,

i.e. iff the matrices B(k) are skew-symmetric. It is also quite easy to recognize that the dilation

δλ : RN → RN , δλ(x, t) =
(
λx, λ2t

)
(2.24)

is an automorphism of
(
RN , ◦

)
for any λ > 0. Then G =

(
RN , ◦, δλ

)
is a homogeneous Lie

group.

We explicitly remark that the composition law of any Lie group in Rn ×Rm, homogeneous

w.r.t. the dilations {δλ}λ as in (2.24), takes the form (2.23) (see Theorem 2.48).

The Jacobian matrix at (0, 0) of the left translation τ(x,t) takes the following block form

Jτ(x,t)(0, 0) =

 In 0

1
2
Bx Im


where, if B(k) =

(
b
(k)
i,j

)
i,j≤m

for k = 1, . . . , n, Bx denotes the matrix(
n∑
j=1

b
(k)
i,j xj

)
k≤m,i≤n

.

More explicitly, we have

Jτ(x,t)(0, 0) =



In 0n×m

1
2

n∑
j=1

b
(1)
1,jxj · · · 1

2

n∑
j=1

b
(1)
n,jxj

...
... Im

1
2

n∑
j=1

b
(m)
1,j xj · · · 1

2

n∑
j=1

b
(m)
n,j xj


.

Then the Jacobian basis of g, the Lie algebra of G, is given by

Xi = ∂xi +
1

2

m∑
k=1

(
n∑
l=1

b
(k)
i,l xl

)
∂tk

= ∂xi +
1

2
⟨(Bx)i,∇t⟩ , i = 1, . . . , n,

Tk = ∂tk, k = 1, . . . ,m.

(2.25)

Here, we briefly denoted by (Bx)i the vector of Rm((
B(1)x

)
i
, . . . ,

(
B(m)x

)
i

)
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2 Elementary analysis of stratified Lie groups

where
(
B(k)x

)
i
is the i-th component of B(k)x. An easy computation shows that

[Xj, Xi] =
m∑
k=1

1

2

(
b
(k)
i,j − b

(k)
j,i

)
∂tk =:

m∑
k=1

c
(k)
i,j ∂tk .

We have denoted by C(k) =
(
c
(k)
i,j

)
i,j≤n

the skew-symmetric part of B(k), i.e.

C(k) =
1

2

(
B(k) −

(
B(k)

)T)
Let us now assume that C(1), . . . , C(m) are linearly independent. This implies that the n2 ×m

matrix 

C
(1)
1,1 · · · C

(m)
1,1

C
(1)
1,2 · · · C

(m)
1,2

... · · · ...

C
(1)
1,n · · · C

(m)
1,n

C
(1)
2,1 · · · C

(m)
2,1

... · · · ...

C
(1)
n,n · · · C

(m)
n,n


has rank equal to m. As a consequence,

span {[Xj, Xi] | i, j = 1, . . . , n} = span {∂t1 , . . . , ∂tm} .

Therefore,

rank (Lie {X1, . . . , Xn} (0, 0))

= dim (span {∂x1 , . . . , ∂xn , ∂t1 , . . . , ∂tm}) = n+m.

This shows that G is a stratified Lie group of step two and Jacobian generators X1, . . . , Xn.

We explicitly remark that the linear independence of the matrices

C(1), . . . , C(m)

is also necessary for G to be a stratified Lie group. Then, we have proved the following

proposition.

Proposition 2.80. Every stratified Lie group G on RN , homogeneous with respect to the dila-

tion

δλ : RN → RN , δλ(x, t) =
(
λx, λ2t

)
(where x ∈ Rn, t ∈ Rm and N = n+m ), is equipped with the composition law

(x, t) ◦ (ξ, τ) =
(
x+ ξ, t1 + τ1 +

1

2

〈
B(1)x, ξ

〉
, . . . , tm + τm +

1

2

〈
B(m)x, ξ

〉)
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2.3 Stratified Lie groups of step two

for m suitable n× n matrices B(1), . . . , B(m).

Moreover, a characterization of stratified Lie groups of step two and n generators is given

by the above G = (Rn+m, ◦, δλ), where the skew-symmetric parts of the B(k) are linearly inde-

pendent.

We remark that the above arguments show that there exist stratified Lie groups of any

dimension n ∈ N of the first layer and any dimension

m ≤ n(n− 1)

2

of the second layer: it suffices to choose m linearly independent matrices B(1), . . . , B(m) in

the vector space of the skew-symmetric n× n matrices (which has dimension n(n−1)
2

) and then

define the composition law as in (2.23).

By (2.25), we can write explicitly the canonical sub-Laplacian of the Lie group G =
(
RN , ◦

)
with ◦ as in (2.23). It is given by

∆G =∆x +
1

4

m∑
h,k=1

〈
B(h)x,B(k)x

〉
∂thtk +

n∑
k=1

〈
B(k)x,∇x

〉
∂tk +

1

2

m∑
k=1

trace
(
B(k)

)
∂tk . (2.26)

Here, we denoted

∆x =
n∑
i=1

∂xi,xi and ∇x = (∂x1 , . . . , ∂xn) .

We recognize that ∆G contains partial differential terms of second order only if trace
(
B(k)

)
= 0

for every k = 1, . . . ,m. This happens, for example, if the B(k) are skew-symmetric, i.e. if the

inverse map on G is x 7→ −x.

Example 2.81. Following all the above notation, let us take n = 3,m = 2 and

B(1) =


1 1 0

−1 0 0

0 0 0

 , B(2) =


0 0 −1

0 1 0

1 0 0

 .

Then the composition law on R5 = R3×R2 as in (2.23) becomes (denoting (x, t) = (x1, x2, x3, t1, t2)

and analogously for (ξ, τ))

(x, t) ◦ (ξ, τ) =



x1 + ξ1

x2 + ξ2

x3 + ξ3

t1 + τ1 +
1
2
(x1ξ1 + ξ1x2 − ξ2x1)

t2 + τ2 +
1
2
(x2ξ2 − ξ1x3 − ξ3x1)


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2 Elementary analysis of stratified Lie groups

and the dilation is

δλ (x1, x2, x3, t1, t2) =
(
λx1, λx2, λx3, λ

2t1, λ
2t2
)
.

Then G = (R5, ◦, δλ) is a stratified Lie group, for the skew-symmetric parts of B(1) and B(2)

are linearly independent,

1

2

(
B(1) −

(
B(1)

)T)
=


0 1 0

−1 0 0

0 0 0

 ,
1

2

(
B(2) −

(
B(2)

)T)
=


0 0 −1

0 0 0

1 0 0

 .

In fact, we can compute the first three vector fields of the Jacobian basis and verify that they

are Lie-generators for the whole Lie algebra,

X1 = ∂x1 +
1

2
(x1 + x2) ∂t1 −

1

2
x3∂t2 ,

X2 = ∂x2 −
1

2
x1∂t1 +

1

2
x2∂t2 ,

X3 = ∂x3 +
1

2
x1∂t2 ,

[X1, X2] = −∂t1 , [X1, X3] = ∂t2 , [X2, X3] =
1

2
∂t2 .

The related canonical sub-Laplacian is

∆G =∂x1,x1 + ∂x2,x2 + ∂x3,x3

+
1

4

{{
(x1 + x2)

2 + (−x1)2
}
∂t1,t1 +

{
(−x3)2 + (x2)

2 + (x1)
2} ∂t2,t2

+2 {(x1 + x2) (−x3) + (−x1) (x2)} ∂t1,t2}

+ {(x1 + x2) ∂x1 − x1∂x2} ∂t1 + {−x3∂x1 + x2∂x2 + x1∂x3} ∂t2

+
1

2
∂t1 +

1

2
∂t2 ,

∆G contains first order terms, for trace
(
B(1)

)
̸= 0 ̸= trace

(
B(2)

)
. On the contrary, if

B(1) =


1 1 0

−1 0 0

0 0 0

 , B(2) =


0 −2 0

2 1 0

0 0 0


then the composition law on R5 given by

(x, t) ◦ (ξ, τ) =



x1 + ξ1

x2 + ξ2

x3 + ξ3

t1 + τ1 +
1
2
(x1ξ1 + ξ1x2 − ξ2x1)

t2 + τ2 +
1
2
(x2ξ2 − 2ξ1x2 + 2ξ2x1)


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2.3 Stratified Lie groups of step two

does not define a stratified Lie group, because the skew-symmetric parts of B(1) and B(2) are

linearly dependent,

1

2

(
B(1) −

(
B(1)

)T)
=


0 1 0

−1 0 0

0 0 0

 ,
1

2

(
B(2) −

(
B(2)

)T)
=


0 −2 0

2 0 0

0 0 0

 .

In fact, the only admissible dilation would be

δλ(x, t) =
(
λx1, λx2, λx3, λ

2t1, λ
2t2
)

but the first three vector fields of the related Jacobian basis are not Lie-generators for the whole

Lie algebra, since

X1 = ∂x1 +
1

2
(x1 + x2) ∂t1 − x2∂t2 ,

X2 = ∂x2 −
1

2
x1∂t1 +

(
1

2
x2 + x1

)
∂t2 ,

X3 = ∂x3 ,

[X1, X2] = −∂t1 + 2∂t2 ,

[X1, X3] = [X2, X3] = 0.

2.3.2 Some examples

The aim of this subsection is to collect some explicit examples of stratified Lie groups of step

two. To begin with, we present the most studied (and by far one of the most important) among

stratified Lie groups, the Heisenberg group. Then, we turn our attention to general stratified

Lie groups of step two such as free step-two stratified Lie groups, Heisenberg-type groups and

Métivier groups.

The Heisenberg Group

Let us consider in Cn×R (whose points we denote by (z, t) with t ∈ R and z = (z1, . . . , zn) ∈ Cn)

the following composition law

(z, t) ◦ (z′, t′) =
(
z + z′, t+ t′ + 2 Im

(
z · z′

))
. (2.27)

In (2.27), we have set ( i obviously denotes the imaginary unit) Im(x + iy) = y (x, y ∈ R),

whereas z · z′ denotes the usual Hermitian inner product in Cn,

z · z′ =
n∑
j=1

(xj + iyj)
(
x′j − iy′j

)
.
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2 Elementary analysis of stratified Lie groups

Hereafter we agree to identify Cn with R2n and to use the following notation to denote the

points of Cn × R = R2n+1 :

(z, t) ≡ (x, y, t) = (x1, . . . , xn, y1, . . . , yn, t)

with z = (z1, . . . , zn) , zj = xj + iyj and xj, yj, t ∈ R. Then, the composition law ◦ can be

explicitly written as

(x, y, t) ◦ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2 ⟨y, x′⟩ − 2 ⟨x, y′⟩) , (2.28)

where ⟨·, ·⟩ denotes the usual inner product in Rn. It is quite easy to verify that (R2n+1, ◦) is

a Lie group whose identity is the origin and where the inverse is given by (z, t)−1 = (−z,−t).

Let us now consider the dilations

δλ : R2n+1 → R2n+1, δλ(z, t) =
(
λz, λ2t

)
.

A trivial computation shows that δλ is an automorphism of (R2n+1, ◦) for every λ > 0. Then

Hn = (R2n+1, 0, δλ) is a homogeneous group. It is called the Heisenberg group in R2n+1.

For example, when n = 1, the first Heisenberg group H1 in R3 is equipped with the compo-

sition law

(x, y, t) ◦ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + 2 (yx′ − xy′)) ,

while, when n = 2, the Heisenberg group H2 in R5 is equipped with the composition law

(x1, x2, y1, y2, t) ◦ (x′1, x′2, y′1, y′2, t′)

= (x1 + x′1, x2 + x′2, y1 + y′1, y2 + y′2, t+ t′ + 2 (y1x
′
1 + y2x

′
2 − x1y

′
1 − x2y

′
2)) .

The Jacobian matrix at the origin of the left translation τ(z,t) is the following block matrix

Jτ(z,t)(0, 0) =


In 0 0

0 In 0

2yT −2xT 1

 ,

where In denotes the n× n identity matrix, while 2yT and −2xT stand for the 1× n matrices

(2y1 · · · 2yn) and (−2x1 · · · − 2xn), respectively. Then, the Jacobian basis of hn, the Lie algebra

of Hn, is given by

Xj = ∂xj + 2yj∂t, Yj = ∂yj − 2xj∂t, j = 1, . . . , n, T = ∂t.

Since [Xj, Yj] = −4∂t, we have

rank (Lie {X1, . . . , Xn, Y1, . . . , Yn} (0, 0))

= dim (span {∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn ,−4∂t}) = 2n+ 1.

58



2.3 Stratified Lie groups of step two

This shows that Hn is a stratified Lie group with the following stratification

hn = span {X1, . . . , Xn, Y1, . . . , Yn} ⊕ span {∂t} (2.29)

The step of (Hn, 0) is r = 2 and its Jacobian generators are the vector fieldsXj, Yj(j = 1, . . . , n).

The canonical sub-Laplacian on Hn (also referred to as Kohn Laplacian) is then given by

∆Hn =
n∑
j=1

(
X2
j + Y 2

j

)
.

An explicit formula for ∆Hn can be found in Example 2.74. Finally, we exhibit the explicit

form of the exponential map for Hn. It is given by

Exp((ξ, η, τ) · Z) = (ξ, η, τ)

Here we have set (ξ, η, τ) · Z =
n∑
j=1

(ξjXj + ηjYj) + τT .

Heisenberg-type group

Consider the homogeneous Lie group

H =
(
Rn+m, ◦, δλ

)
with composition law as

(x, t) ◦ (ξ, τ) =
(
x+ ξ, t1 + τ1 +

1

2

〈
B(1)x, ξ

〉
, . . . , tm + τm +

1

2

〈
B(m)x, ξ

〉)
where B(1), . . . , B(m) are fixed n × n matrices, and dilations as in (2.24). Let us also assume

that the matrices B(1), . . . , B(m) have the following properties:

(1) B(j) is an n× n skew-symmetric and orthogonal matrix for every j ≤ m;

(2) B(i)B(j) = −B(j)B(i) for every i, j ∈ {1, . . . ,m} with i ̸= j.

If all these conditions are satisfied, H is called a group of Heisenberg-type, in short, a H-type

group.

A H-type group is a stratified Lie group, since conditions (1) and (2) imply the linear

independence of B(1), . . . , B(m). Indeed, if α = (α1, . . . , αn) ∈ Rm\{0}, then

1

|α|

m∑
s=1

αsB
(s)
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is orthogonal (hence non-vanishing), as the following computation shows,(
1

|α|

m∑
s=1

αsB
(s)

)
·

(
1

|α|

m∑
s=1

αsB
(s)

)T

= − 1

|α|2
∑
r,s≤m

αrαsB
(r)B(s)

= − 1

|α|2
∑
r≤m

α2
r

(
B(r)

)2 − 1

|α|2
∑

r,s≤m,r ̸=s

αrαsB
(r)B(s)

= In.

Here we used the following facts:
(
B(r)

)2
= −In, since B(r) is skew-symmetric and orthogonal;

B(r)B(s) = −B(s)B(r) according to condition (2).

The generators of H are the vector fields (see (2.25))

Xi = ∂xi +
1

2

m∑
k=1

(
n∑
l=1

b
(k)
i,l xl

)
∂tk , i = 1, . . . , n.

Moreover, if we set

Tk := ∂tk, k = 1, . . . ,m,

then we know that

{X1, . . . , Xn;T1, . . . , Tm}

is the Jacobian basis for H.

A direct computation shows that the canonical sub-Laplacian ∆H =
n∑
i=1

X2
i can be written

as follows

∆H =∆x +
1

4

m∑
h,k=1

〈
B(h)x,B(k)x

〉
∂thtk +

n∑
k=1

〈
B(k)x,∇x

〉
∂tk +

1

2

m∑
k=1

trace
(
B(k)

)
∂tk .

On the other hand, by conditions (1) and (2),〈
B(h)x,B(h)x

〉
= |x|2,

while, for h ̸= k, 〈
B(h)x,B(k)x

〉
= 0

since 〈
B(h)x,B(k)x

〉
= −

〈
B(k)B(h)x, x

〉
=
〈
B(h)B(k)x, x

〉
= −

〈
B(k)x,B(h)x

〉
.

We also have trace
(
B(k)

)
= 0, since B(k) is skew-symmetric. Then ∆H takes the very compact
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form

∆H = ∆x +
1

4
|x|2∆t +

n∑
k=1

〈
B(k)x,∇x

〉
∂tk .

Remark 2.82. From (2.26) one obtains

|∇Hu|2 = |∇xu|2 +
1

4

n∑
i=1

⟨(Bx)i,∇tu⟩2 +
n∑
i=1

⟨(Bx)i,∇tu⟩ ∂xiu, u ∈ C∞.

On the other hand,
n∑
i=1

⟨(Bx)i,∇tu⟩2 =
m∑

h,k=1

〈
B(h)x,B(k)x

〉
∂thu∂tku = |x|2 |∇tu|2

and
n∑
i=1

⟨(Bx)i,∇tu⟩ ∂xiu =
m∑
k=1

〈
B(k)x,∇xu

〉
∂tku.

Thus, for every smooth real-valued function u, it holds

|∇Hu|2 = |∇xu|2 +
1

4
|x|2 |∇tu|2 +

m∑
k=1

〈
B(k)x,∇xu

〉
∂tku.

Remark 2.83. The first layer of a H-type group has even dimension n. Indeed, if B is a n× n

skew-symmetric orthogonal matrix, we have In = B ·BT = −B2, whence 1 = (−1)n(detB)2.

Remark 2.84. With the previous notation, if H = (Rn+m, ◦, δλ) is a H-type group, then

z = {(0, t) | t ∈ Rm}

is the center of H. Indeed, let (y, t) ∈ H be such that

(x, s) ◦ (y, t) = (y, t) ◦ (x, s) for every (x, s) ∈ H.

This holds iff 〈
B(k)x, y

〉
=
〈
B(k)y, x

〉
for any x ∈ Rn and any k ∈ {1, . . . ,m}. Then, since

(
B(k)

)T
= −B(k),〈

B(k)y, x
〉
= 0 ∀x ∈ Rn, ∀k ∈ {1, . . . ,m},

so that y = 0 because B(k) is orthogonal (hence non-singular).

Remark 2.85. The classical Heisenberg group Hk on R2k+1 is canonically isomorphic to a H-

type group. Precisely, it is isomorphic to the H-type group (H, ∗) corresponding to the case

n = 2k,m = 1 and

B(1) =

 0 −Ik
Ik 0

 .
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The isomorphism φ :
(
R2k+1, ∗

)
→
(
Hk, ◦

)
is given by

φ(ξ, η, τ) = (ξ, η,−4τ)

Moreover, H is in its turn isomorphic to the H-type group with n = 2k, m = 1 and

B̃(1) = diag


 0 −1

1 0

 , . . . ,

 0 −1

1 0

 , the block occurring k times.

This type of Heisenberg-group is the only (up to isomorphism) H-type group with one-dimensional

center.

Remark 2.86. Groups of Heisenberg type with center of dimension m ≥ 2 do exist. For example,

the following two matrices

B(1) =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 , B(2) =


0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0


satisfy conditions (1)− (2) and hence they define in R6 = R4×R2 a H-type group whose center

has dimension 2. The composition law is

(x, t) ◦ (ξ, τ) =



x1 + ξ1

x2 + ξ2

x3 + ξ3

x4 + ξ4

t1 + τ1 +
1
2
(−x2ξ1 + x1ξ2 − x4ξ3 + x3ξ4)

t2 + τ2 +
1
2
(x3ξ1 − x4ξ2 − x1ξ3 + x2ξ4)


.

The above matrices B(1) and B(2), together with

B(3) =


0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0


define in R7 = R4 × R3 a H-type group whose center has dimension 3.

Remark 2.87. The groups of Heisenberg-type were introduced by A. Kaplan in [Kap80]. He

also shows the following result. Let n,m be two positive integers. Then there exists a H-type

group of dimension n+m whose center has dimension m if and only if it holds m < ρ(n), where
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2.3 Stratified Lie groups of step two

ρ is the so-called Hurwitz-Radon function, i.e.

ρ : N → N, ρ(n) := 8p+ q, where n = (odd) · 24p+q, 0 ≤ q ≤ 3.

We explicitly remark that if n is odd, then ρ(n) = 0, whence the first layer of any H-type group

has even dimension (as we already proved in Remark 2.83).

Métivier group

Following G. Métivier [Mét80], we give the following definition.

Definition 2.88. Let g be a (finite-dimensional real) Lie algebra, and let us denote by z its

center. We say that g is of Métivier Lie algebra if it admits a vector space decomposition

g = g1 ⊕ g2

 [g1, g1] ⊆ g2,

g2 ⊆ z,

with the following additional property: for every η ∈ g∗2 (the dual space of g2)), the skew-

symmetric bilinear form on g1 defined by

Bη : g1 × g1 → R, Bη (X,X
′) := η ([X,X ′])

is non-degenerate whenever η ̸= 0.

We say that a Lie group is a Métivier group, if its Lie algebra is of Métivier Lie algebra.

Remark 2.89. First, a Métivier Lie algebra is obviously nilpotent of step two. Moreover, we

have

[g, g] = [g1 + g2, g1 + g2] ⊆ [g1, g1] (since g2 ⊆ g),

[g1, g1] ⊆ [g, g] (since g1 ⊆ g).

Consequently, it holds

[g, g] = [g1, g1] . (2.30)

Finally, we claim that

g2 = [g, g]. (2.31)

Indeed, from (2.30) we first derive that [g, g] = [g1, g1] ⊆ g2. We are left to show that

g2 ⊆ [g, g]. Suppose to the contrary that there exists Z ∈ g2 such that Z /∈ [g, g]. This implies,

in particular, that Z ̸= {0}. Moreover, since both Z ∈ g2 and [g, g] ⊆ g2, there certainly exists

η ∈ g∗2 such that g2(Z) ̸= 0 (whence η ̸= 0 ) and η vanishes identically on [g, g] (here, we are
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2 Elementary analysis of stratified Lie groups

using the fact that Z /∈ [g, g]). But this implies that, for every X,X ′ ∈ g1, we have

Bη (X,X
′) = η ([X,X ′]) = 0

for

[X,X ′] ∈ [g1, g1] = [g, g] and η|[g,g] ≡ 0.

This is in contradiction with the non-degeneracy of Bη.

Collecting together (2.30) and (2.31), we see that a Métivier Lie algebra is stratified: indeed

we have

g = g1 ⊕ g2 with [g1, g1] = g2 and [g1, g2] = {0}.

As a consequence, a Métivier group is a stratified Lie group of step two.

Collecting the above results, we have proved the following proposition.

Proposition 2.90. A Métivier group is a stratified Lie group G of step two such that if

g = g1 ⊕ g2 ([g1, g1] = g2, [g1, g2] = {0})

is any stratification of the Lie algebra g of G, then the following property holds: for every

non-vanishing linear map η from g2 to R, the (skew-symmetric) bilinear form Bη on g1 defined

by

Bη (X,X
′) := η ([X,X ′]) , X,X ′ ∈ g1,

is non-degenerate.

When G is expressed in its logarithmic coordinates, the above definition is easily re-written

as follows. We consider a homogeneous Lie group of step two G = (Rn+m, ◦, δλ) with the

composition law as in (2.24), i.e.

(x, t) ◦ (ξ, τ) =
(
x+ ξ, t1 + τ1 +

1

2

〈
B(1)x, ξ

〉
, . . . , tm + τm +

1

2

〈
B(m)x, ξ

〉)
,

where B(1), . . . , B(m) are fixed n×n matrices, and the group of dilations is δλ(x, t) = (λx, λ2t).

For the sake of simplicity, we may also suppose that the matrices B(k) are skew-symmetric.

Now, if η is a linear map from g2 to R, there exist m scalars η1, . . . , ηm ∈ R such that

η : g2 → R, η (∂ti) = ηi for all i = 1, . . . ,m.

In particular, the map Bη can be explicitly written as follows

if X =
n∑
i=1

viXi and X ′ =
n∑
i=1

v′iXi, then Bη (X,X
′) =

m∑
i,j=1

(
−

m∑
k=1

ηkB
(k)
i,j

)
viv

′
j.
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2.3 Stratified Lie groups of step two

In other words, the matrix representing the (skew-symmetric) bilinear map Bη w.r.t. the basis

X1, . . . , Xm of g1 is the matrix

η1B
(1) + · · ·+ ηnB

(n).

Hence, to ask for Bη to be non-degenerate (for every η ̸= 0 ) is equivalent to ask that any linear

combination of the matrices B(k) is non-singular, unless it is the null matrix. We have thus

obtained the following proposition.

Proposition 2.91. Let G = (Rn+m, ◦) be a stratified Lie group of step two, with the composition

law

(x, t) ◦ (ξ, τ) =
(
x+ ξ, t1 + τ1 +

1

2

〈
B(1)x, ξ

〉
, . . . , tm + τm +

1

2

〈
B(m)x, ξ

〉)
,

where B(1), . . . , B(m) are n × n skew-symmetric linearly independent matrices. Then G is a

Métivier group if and only if every non-vanishing linear combination of the matrices B(k) is

non-singular.

In particular, if the above G is a Métivier group, then the B(k) are all non-singular n × n

matrices, but since the B(k) are also skew-symmetric, this implies that n is necessarily even.

Remark 2.92 (Any H-type group is a Métivier group). Indeed, as it can be seen from the

definition of H-type group that, for every η = (η1, . . . , ηn) ∈ Rn, η ̸= 0, we proved that
m∑
k=1

ηkB
(k)

is |η| times an orthogonal matrix, hence (in particular)
m∑
k=1

ηkB
(k) is non-singular. The converse

is not true. For example, consider the group on R5 (the points are denoted by (x, t), x ∈ R4,

t ∈ R ) with the composition law

(x, t) ◦ (ξ, τ) =
(
x+ ξ, t+ τ +

1

2
⟨Bx, ξ⟩

)
,

where

B =


0 1 0 0

−1 0 0 0

0 0 0 2

0 0 −2 0

 .

Then G is obviously a Métivier group, for B is a non-singular skew-symmetric matrix. But G

is not a H-type group, for B is not orthogonal.
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2 Elementary analysis of stratified Lie groups

Free 2-Step Stratified Lie Groups

In this subsection, we fix a particular set of matrices B(k) and consider the relevant stratified

Lie group (Fn,2, ⋆), which will serve as prototype for what we shall call free stratified Lie group

of step two and n generators. Throughout the section, n ≥ 2 is a fixed integer.

Let i, j ∈ {1, . . . , n} be fixed with i > j, and let S(i,j) be the n× n skew-symmetric matrix

whose entries are −1 in the position (i, j),+1 in the position (j, i) and 0 elsewhere. For example,

if n = 3, we have

S(2,1) =


0 1 0

−1 0 0

0 0 0

 , S(3,1) =


0 0 1

0 0 0

−1 0 0

 , S(3,2) =


0 0 0

0 0 1

0 −1 0

 .

Then, we agree to denote by (Fn,2, ⋆) the stratified Lie group on RN associated to these n(n−1)
2

matrices according to (2.23) of the previous section. We set

m :=
n(n− 1)

2
, N = n+m =

n(n+ 1)

2
, I := {(i, j) | 1 ≤ j < i ≤ n}.

We observe that the set I has exactly m elements.

In the sequel of this section, we denote the points of Fn,2 by (x, γ), where x = (x1, . . . , xm) ∈

Rm, γ ∈ Rn, and the coordinates of γ are denoted by

γi,j where (i, j) ∈ I.

Here we have ordered I in an arbitrary (henceforth) fixed way. Then, the composition law ⋆ is

given by

(x, γ) ⋆ (x′, γ′) =

 xh + x′h, h = 1, . . . , n

γi,j + γ′i,j +
1
2

(
xix

′
j − xjx

′
i

)
, (i, j) ∈ I

 .

For example, when n = 3, we have

(x, γ) ◦ (x′, γ′) =



x1 + x′1

x2 + x′2

x3 + x′3

γ2,1 + γ′2,1 +
1
2
(x2x

′
1 − x1x

′
2)

γ3,1 + γ′3,1 +
1
2
(x3x

′
1 − x1x

′
3)

γ3,2 + γ′3,2 +
1
2
(x3x

′
2 − x2x

′
3)


.

By (2.25), we can compute the Jacobian basis

Xh, h = 1, . . . , n, Γi,j, (i, j) ∈ I,
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2.3 Stratified Lie groups of step two

of fn,2, the Lie algebra of Fn,2 : it holds

Xh = ∂xh +
1

2

∑
1≤j<i≤n

(
n∑
l=1

S
(i,j)
h,l xl

)
∂γi,j

=



∂x1 +
1
2

∑
1<i≤n

xi∂γi,1

∂xh +
1
2

∑
h<i≤n

xi∂γi,h − 1
2

∑
1≤j<n

xj∂γh,j if 1 < h < n,

∂xn + 1
2

∑
1≤j<n

xj∂γn,j if h = n,

Γi,j = ∂γi,j, (i, j) ∈ I.

Moreover, for every (i, j) ∈ I, we have the commutator identities

[Xj, Xi] =
∑

1≤k<h≤n

S
(h,k)
i,j ∂γh,k = ∂γj,i − ∂γi,j

whence we recognize that the algebra fn,2 is "the most non-Abelian as possible" (as it is allowed

for an algebra with n generators and step two).

This is the reason why we shall refer to (any algebra isomorphic to) fn,2 as a free Lie algebra

with n generators and step two. For example, when n = 3, we have

X1 = ∂x1 +
1

2
(x2∂γ2,1 + x3∂γ3,1)

X2 = ∂x2 +
1

2
(x3∂γ3,2 − x1∂γ2,1)

X3 = ∂x3 −
1

2
(x1∂γ3,1 − x2∂γ3,2)

Γ2,1 = ∂γ2,1, Γ3,1 = ∂γ3,1, Γ3,2 = ∂γ3,2.

From (2.26), we derive the explicit expression for the canonical sub-Laplacian of F3,2,

∆F3,2 =(∂x1)
2 + (∂x2)

2 + (∂x3)
2

+
1

4

{(
x22 + x21

)
(∂γ2,1)

2 +
(
x23 + x21

)
(∂γ3,1)

2 +
(
x23 + x22

)
(∂γ3,2)

2}
+

1

2
x2x3 (∂γ2,1∂γ3,1)−

1

2
x1x3 (∂γ2,1∂γ3,2) +

1

2
x1x2 (∂γ3,1∂γ3,2)

+ (x2∂x1 − x1∂x2) ∂γ2,1 + (x3∂x1 − x1∂x3) ∂γ3,1

+ (x3∂x2 − x2∂x3) ∂γ3,2.
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3 Harmonic analysis on stratified Lie

groups of step two

In this chapter we study some basics of harmonic analysis on 2-step stratified Lie groups to

make the paper self contained. In particular, we use the orbit method of Kirillov (see [CG90]

for details) to describe the explicit construction of irreducible unitary representations. As in

[CG90], the following are the important steps:

(i) To parametrize the coadjoint orbits of g∗ or at least to parametrize a set of coadjoint

orbits which is of full Plancherel measure.

(ii) Given λ ∈ g∗, to construct a maximal subalgebra h subordinate to λ, that is λ([h, h]) = 0.

For the explicit expression of the Plancherel measure , see, e.g., [CG90, Theorem 4.3.9].

For general nilpotent Lie groups (i) and (ii) have explicit answers by Chevalley-Rosenlicht

theorem and Vergne polarizations (see [CG90]), but as is only to be expected, on 2-step stratified

Lie groups both (i) and (ii) turn out to be much simpler (see [Ray99]). After this we will go

to explicit construction of irreducible unitary representations of G. In Kirillov theory the

representations arise as induced representation, but as we will see, for the two step case they

come directly from the Stone-von Neumann theorem. And then we can study the sub-Laplacian

and Fourier transform. A complete account of Fourier analysis for connected, simply connected

step two nilpotent Lie groups can also be found in [Lév19].

In the sequel, we will restrict our attention to stratified Lie group of step two, which means

the left-invariant Lie algebra g is endowed with a vector space decomposition

g = g1 ⊕ g2,

with dim g1 = n, dim g2 = m and

[g, g] = g2 ⊆ z = the center of g.
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3 Harmonic analysis on stratified Lie groups of step two

Then, there exists a bilinear, antisymmetric map

σ : Rn × Rn → Rm

such that, for Z,Z ′ ∈ Rn and t, t′ ∈ Rm,

[(Z, t), (Z ′, t′)] = (0, σ(Z,Z ′))

and

(Z, t) · (Z ′, t′) =

(
Z + Z ′, t+ t′ +

1

2
σ (Z,Z ′)

)
. (3.1)

The map σ and the integers n,m are determined by the group law and dimension. Conversely,

for any integers n,m and any bilinear, antisymmetric map σ : Rn × Rn → Rm, one may define

a Lie group of step two by the formula (3.1).

3.1 Orbit method on stratified Lie group of step two

In this section we give the detail construction of irreducible unitary representations on 2-step

stratified Lie groups without the Moore-Wolf condition. All results are already know in the

literature, we will take most of the material from [Ray99].

3.1.1 Parametrization of coadjoint orbits

Let G be a stratified Lie group with Lie algebra g, and denote the dual of g by g∗. Then G

acts on g∗ by the coadjoint action, that is

Ad∗ : G× g∗ −→ g∗

(g, λ) −→ Ad∗
gλ

which is given by

Ad∗
gλ(X) = λ

(
Ad(g−1)(X)

)
, g ∈ G, λ ∈ g∗, X ∈ g,

= λ(Ad(expY )(X))

= λ
(
eadY (X)

)
= λ(X) + λ([Y,X]),

where Y is the unique element in g corresponding to g. We need to parametrize the orbits

under this action. For this it is important to consider the structure of these orbits. Let us fix

some notation first. Let λ ∈ g∗, then
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3.1 Orbit method on stratified Lie group of step two

• Oλ = The coadjoint orbit of λ.

• Bλ = The skew symmetric matrix corresponding to λ, that is, given a basis through the

center of g, namely {X1, . . . , Xn, Xn+1, . . . , XN}, we consider the matrix

Bλ = (Bλ(i, j)) = (λ([Xi, Xj]).

• rλ = The radical of the bilinear form Bλ, that is,

rλ = {X ∈ g : λ([X, Y ]) = 0 for all Y ∈ g}.

Clearly rλ is an ideal of g and z ⊂ rλ.

• r̃λ = spanR {X1, . . . , Xn} ∩ rλ.

• B̃λ = Bλ |Rn×Rn that is restriction of Bλ on the complement of the center of g.

It follows trivially for two step nilpotent Lie groups that all the coadjoint orbits are hyper-

planes ([CG90; LR96]). In fact we have from the above, the following result:

Theorem 3.1. Let λ ∈ g∗. Then Oλ = λ+ r⊥λ where r⊥λ = {h ∈ g∗ : h |rλ= 0}.

Proof. Let λ′ ∈ Oλ. Then λ′ = λ ◦ Ad(expX) for some X ∈ g. Then for Y ∈ rλ

(λ− λ′) (Y ) = λ(Y )− λ′(Y ) = λ(Y )− λ(Y )− λ([X, Y ]) = 0.

Thus λ′ = λ+ (λ′ − λ) ∈ λ+ r⊥λ . Hence Oλ ⊆ λ+ r⊥λ .

Let {X1, . . . , Xk, Xk+1, . . . , XN} be a basis of g passing through rλ in the sense that

spanR {Xk+1, . . . , XN} = rλ.

Let λ′ ∈ λ + r⊥λ and λ′ (Xi) = λ′i, λ (Xi) = λi, 1 ≤ i ≤ N . We want to get hold of an X ∈ g

such that

λ (Xi) + λ ([X,Xi]) = λ′ (Xi) , 1 ≤ i ≤ k,

that is

λ ([X,Xi]) = λ′i − λi, 1 ≤ i ≤ k.

Expressing X =
k∑
j=1

αjXj +
N∑

j=k+1

αjXj, we are looking for the solutions of

k∑
j=1

αjλ ([Xj, Xi]) = λ′i − λi, 1 ≤ i ≤ k,
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3 Harmonic analysis on stratified Lie groups of step two

which is a system of k linear equations in k unknowns. Since the matrix L = (Lij) =

(λ ([Xi, Xj])) is just the matrix of the bilinear form corresponding to the linear functional

λ̄ on g/rλ, L is invertible. So the above system has a unique solution (α1, . . . , αk) say. Then

for any Y ∈ rλ, we have

exp

(
Y +

k∑
j=1

αjXj

)−1

· λ = λ′.

So λ′ ∈ Oλ and hence Oλ = λ+ r⊥λ . This completes the proof.

Remark 3.2. By Theorem 3.1, λ′ ∈ Oλ if and only if rλ = rλ′ and λ |rλ= λ′ |rλ′ .

Let B = {X1, . . . , Xn, Xn+1, . . . , XN} be a basis of g such that

spanR {Xn+1, . . . , Xn+m} = center of g = z.

So Bλ is the N × N matrix whose (i, j)-th entry is λ ([Xi, Xj]) , 1 ≤ i, j ≤ N . Let B∗ =

{X∗
1 , . . . , X

∗
N} be the dual basis of g∗. This is a Jordan-Hölder basis, that is g∗ = spanR

{
X∗

1 , . . . , X
∗
j

}
is Ad∗(G) stable for 1 ≤ j ≤ N . Let λ ∈ g∗ and Xi ∈ B.

Definition 3.3. The term i is called a jump index for λ if the rank of the i×N submatrix of

Bλ, consisting of first i rows, is strictly greater than the rank of the (i− 1)×N submatrix of

Bλ, consisting of first (i− 1) rows.

Since an alternating bilinear form has even rank the number of jump indices must be even.

The set of jump indices are denoted by J = {j1, . . . , j2d}. The subset of B corresponding to J

is then {Xj1 , . . . , Xj2d} . Notice that if i is a jump index then rank Bi
λ = rankBi−1

λ + 1 where

Bi
λ is the submatrix of Bλ consisting of first i row’s.

Remark 3.4. These jump indices depend on λ and on the order of the basis as well. But

ultimately we will restrict ourselves to ’generic linear functionals’ and they will have the same

jump indices.

Now we are going spell out what we mean by generic linear functionals. This is also a basis

dependent definition. We work with the basis B chosen above. Let us fix some notations. Let

Ri(λ) = rankBi
λ and Ri = Max {Ri(λ) : λ ∈ g∗}.

Definition 3.5. A linear functional λ ∈ g∗ is called generic if Ri(λ) = Ri for all i, 1 ≤ i ≤ N .

Let U = {λ ∈ g∗ : λ is generic }.
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3.1 Orbit method on stratified Lie group of step two

Example 3.6. Consider the free 2-step stratified Lie groups f3,2 = spanR {X1, . . . , X6} with

nontrivial brackets

[X4, X5] = X1, [X4, X6] = X2, [X5, X6] = X3.

Thus z = spanR {X1, X2, X3} . Let λ =
6∑
i=1

λiX
∗
i ∈ g∗. Then

Bλ =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 λ1 λ2

0 0 0 −λ1 0 λ3

0 0 0 −λ2 −λ3 0


.

Thus R1(λ) = R2(λ) = R3(λ) = 0.R4(λ) = 1 if lλ ̸= 0 or λ2 ̸= 0.

R5(λ) =

2 if λ1 ̸= 0

0 or 1 if λ1 = 0

and

R6(λ) =

2 if λ1 ̸= 0

0 or 2 if λ1 = 0

.

Thus R1 = R2 = R3 = 0, R4 = 1, R5 = R6 = 2. Hence U = {λ ∈ g∗ : λ1 = λ (X1) ̸= 0} and 4, 5

are jump indices.

Remark 3.7. If λ ∈ g∗ is such that B̃λ is an invertible matrix, then rλ = z and then 1, . . . , n are

jump indices and then

U =
{
λ ∈ g∗ : B̃λ is an invertible matrix}.

Clearly, if codimension of z in g is odd then this cannot happen. Following [MW73] and

[MR96], we call the 2-step nilpotent Lie algebras, Moore-Wolf algebras (MW algebra) if there

exist λ ∈ g∗ such that B̃λ is non-degenerate (or the corresponding matrix is invertible ). It is

obvious that Heisenberg algebras and Métivier algebras are MW algebras. Recall that a set

U ⊆ Rm is Zariski-open if it is a union of sets {x ∈ Rm : P (x) ̸= 0}, where P is a polynomial.

Remark 3.8. Since for any λ ∈ g∗, we have Ad∗
gλ|z = λ|z, we get Ri(λ) = Ri(Ad

∗
gλ), 1 ≤ i ≤ N

and hence,

(i) U is a G-invariant Zariski open subset of g∗. So U is union of orbits.
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3 Harmonic analysis on stratified Lie groups of step two

(ii) If j is a jump index for some λ ∈ U , then j is a jump index for all λ ∈ U .

(iii) Let λ ∈ U , then the number of jump indices for λ is the same as the dimension of Oλ

(as a manifold). For, the rank of the matrix Bλ is equal to the number of jump indices

(= 2d) and the dimension of the radical rλ is the nullity of the matrix of Bλ, which is

N − 2d. Since g/rλ is diffeomorphic to Oλ (see [CG90]), we have dimOλ = 2d.

(iv) Every orbit in U is of maximum dimension though every maximum dimensional orbit may

not be in U .

Our aim is to parametrize the orbits in U . We will see that they constitute a set of full

Plancherel measure. We again describe some notation

T = {n1, . . . nr, n+ 1, · · · , n+m} ⊂ {1, . . . , N} is the complement of J in {1, . . . , N}

VJ = spanR {Xji : 1 ≤ i ≤ 2d, ji ∈ J} ,

VT = spanR {Xni
, Xn+1, . . . , Xn+m : 1 ≤ i ≤ r, ni ∈ T} ,

V ∗
J = spanR

{
X∗
j1
, . . . , X∗

j2d

}
,

V ∗
T = spanR

{
X∗
ni
, X∗

n+1, . . . , X
∗
n+m : ni ∈ T

}
,

Ṽ ∗
T = spanR {Xni

: ni ∈ T} .

The following theorem shows that there exist a vector subspace of g∗ which intersects almost

every orbit contained in U at exactly one point (see [CG90]). In the two step case one can easily

prove it using Theorem 3.1 (see [Ray99]). We give the proof for convenience here.

Theorem 3.9. (i) V ∗
T intersects every orbit in U at a unique point.

(ii) There exist a birational homeomorphism Ψ : (V ∗
T ∩ U)× V ∗

J → U .

Proof. (i) Let λ ∈ U . We first try to describe r̄λ. Denoting by ρ̄i(λ) the i-th row of the matrix

B̃λ, every vector ρ̄ni
(λ), ni ∈ T , is a unique linear combination of js-th rows of B̃λ, 1 ≤ s ≤ 2d

that is

ρ̃ni
(λ) =

2d∑
s=1

cis(λ)ρ̃js(λ),

where the scalars cis(λ) depend rationally on λ, in fact they depend only on λ|z. Also if js >
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3.1 Orbit method on stratified Lie group of step two

ni, c
i
s(λ) = 0. Thus

ρ̃ni
(λ) = (λ ([Xni

, X1]) , . . . , λ ([Xni
, Xn]))

=
2d∑
s=1

cis(λ) (λ ([Xjs , X1]) , . . . , λ ([Xjs , Xn]))

=

(
λ

(
[
2d∑
s=1

cis(λ)Xjs , X1]

)
, . . . , λ

(
[
2d∑
s=1

cis(λ)Xjs , Xn]

))
.

So (
λ

([
Xni

−
2d∑
s=1

cis(λ)Xjs , X1

])
, . . . , λ

([
Xni

−
2d∑
s=1

cis(λ)Xjs , Xn

]))
= 0.

Hence X̃ni
= Xni

−
2d∑
s=1

cis(λ)Xjs ∈ r̃λ. Since
{
X̄ni

: 1 ≤ i ≤ r
}

are linearly independent vectors

in r̃λ we have r̃λ = spanR

{
X̃ni

: i ≤ i ≤ r
}
. We need to exhibit a unique λ̄ ∈ V ∗

T (that is,

λ̄ (Xji) = 0, 1 ≤ j ≤ 2d
)

such that λ̄ ∈ Oλ; so λ̄ has to satisfy rλ = rλ̄ and λ
∣∣
rλ = λ̄

∣∣
rλ̄

.

We define λ̄
∣∣
z
= λ |z. For any such λ̄

rλ̄ = rλ = spanR

{
Xni

−
2d∑
s=1

cis(λ)Xjs , Xn+1 . . . , Xn+m, : 1 ≤ j ≤ r

}
.

We also define

λ̄ (Xji) = 0, 1 ≤ i ≤ 2d,

and

λ̄ (Xni
) = λ (Xni

)−
2d∑
s=1

cis(λ)λ (Xjs) , 1 ≤ i ≤ r.

Thus λ̄ |rλ̄ = λ| rλ. So λ̄ ∈ Oλ.

Suppose there exist λ′ ∈ g∗ such that λ′ (Xji) = 0, 1 ≤ i ≤ 2d and rλ′ = rλ with

λ′ |rλ′ = λ| rλ. Then λ′|z = λ|z = λ̄|z. Now for all i, 1 ≤ i ≤ r,

λ′ (Xni
) = λ′

(
Xni

−
2d∑
s=1

cis(λ)Xjs

)
as λ′ (Xji) = 0

= λ

(
Xni

−
2d∑
s=1

cis(λ)Xjs

)
as λ′

∣∣
rλ′

= λ
∣∣
rλ

= λ̄ (Xni
) by definition of λ̄.

This completes the proof of (i).

(ii) Let (λT , λJ) ∈ (VT ∩ U)× V ∗
J where

λN =
N∑

i=n+1

λiX
∗
i +

r∑
i=1

λni
X∗
ni

and λJ =
2d∑
i=1

λjiX
∗
ji
.
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3 Harmonic analysis on stratified Lie groups of step two

Since λT ∈ U , there exist constants cis (λT ) = cis (λn+1, . . . , λn+m) such that

r̃λT = spanR

{
Xni

−
2d∑
s=1

cis (λn+1 . . . , λn+m)Xjs : 1 ≤ i ≤ r

}
.

Now we define Ψ by putting

Ψ(λT , λJ) (Xi) = λi, n+ 1 ≤ i ≤ n+m,

Ψ(λT , λJ) (Xji) = λji , 1 ≤ i ≤ 2d,

Ψ(λT , λI) (Xni
) = λni

+
2d∑
s=1

cis (λn+1, . . . , λn+m)λjs .

As

r̃Ψ(λT ,λJ ) = spanR

{
Xni

−
2d∑
s=1

cis (λn+1, . . . , λn+m)Xjs : 1 ≤ i ≤ r

}
= r̄λT ,

and

Ψ(λT , λJ)

(
Xni

−
2d∑
s=1

cis (λn+1, . . . , λn+m)Xjs

)

=λni
+

2d∑
s=1

cis (λn+1, . . . , λn+m)λjs −
2d∑
s=1

cis (λn+1, . . . , λn+m)λjs

=λT

(
Xni

−
2d∑
s=1

cis (λn+1, . . . , λn+m)Xjs

)
,

it follows that Ψ(λT , λJ) ∈ OλT ⊆ U . Thus Ψ is well defined. It is easy to describe Ψ−1 : U →

(V ∗
T ∩ U) × VJ . Let λ ∈ U with λ (Xi) = λi, n + 1 ≤ i ≤ N , λ (Xni

) = λni
, 1 ≤ i ≤ r and

λ (Xji) = λj, i ≤ i ≤ 2d. Then Ψ−1(λ) = (λT , λJ) is defined by the conditions

λN (Xi) = λi, n+ 1 ≤ i ≤ N,

λN (Xni
) = λni

−
2d∑
s=1

cis (λn+1, . . . , λn+m)λjs , 1 ≤ i ≤ r,

λJ (Xji) = λji , 1 ≤ i ≤ 2d.

Clearly Ψ is birational. This completes the proof.

Example 3.10. Let G = F3,2. Then n = {1, 2, 3, 6}, J = {4, 5}, U = {λ ∈ f∗3,2 : λ1 = λ (X1) ̸=

0}, V ∗
T ∩ U =

{
λ ∈ f∗3,2 : λ1 = λ (X1) ̸= 0, λ4 = λ (X4) = λ5 = λ (X5) = 0

}
, n1 = the first jump

index outside center = 6.

ρ̃6(λ) = −λ3
λ1
ρ̃4(λ) +

λ2
λ1
ρ̃5(λ).

Thus c64(λ) = −λ3
λ1
, c65(l) =

λ2
λ1

. So

Ψ((λ1, λ2, λ3, λ6) , (λ4, λ5)) =

(
λ1, λ2, λ3, λ4, λ5, λ6 −

λ3
λ1
λ4 +

λ2
λ1
λ5

)
,
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3.1 Orbit method on stratified Lie group of step two

where, as before (λ1, λ2, λ3, λ6) ∈ V ∗
T ∩ U and (λ4, λ5) ∈ V ∗

J .

Remark 3.11. For each coadjoint orbit in U , we choose their representatives from V ∗
T ∩U . Notice

that V ∗
T ∩U can be identified with the Cartesian product of Ṽ ∗

T and a Zariski open subset Λ of

z∗, where Λ = {λ ∈ z∗ : Ri(λ) = Ri, n+ 1 ≤ i ≤ n+m}. In the next section our aim will be to

construct irreducible unitary representations corresponding to elements in V ∗
T ∩ U by the orbit

method of Kirillov. In particular, we will identify Ṽ ∗
T with Rk in the following for simplification.

3.1.2 Polarization and unitary representation

In this section, we first give a brief discussion of Kirillov theory, for details see [CG90] and

then we use it to the 2-step stratified Lie group. All the results in this section can be found in

[Ray99].

Let G be a connected, simply connected stratified Lie group with Lie algebra g. G acts on

g∗ by the coadjoint action. Given any λ′ ∈ Oλ, the coadjoint orbit of λ, there exist a subalgebra

hλ′ of g which is maximal with respect to the property

λ′ ([hλ′ , hλ′ ]) = 0. (3.2)

Thus we have a character χλ′ : exp (hλ′) → T given by

χλ′(expX) = eiλ
′(X), X ∈ hλ′ ,

here we omit 2π for convenience.

Let πλ′ = indGexp(hλ′ ) χλ′(induced representation). Then

(1) πλ′ is an irreducible unitary representation of G.

(2) If h′ is another subalgebra maximal with respect to the property λ′ ([h′, h′]) = 0, then

indGexp(h′)χλ
∼= indGexp(h′)χλ′

(3) πλ1
∼= πλ2 if and only if λ1 and λ2 belong to the same coadjoint orbit.

(4) Any irreducible unitary representation π of G is equivalent to πλ for some λ ∈ g∗.

So we have a map κ : g∗/Ad∗(G) → Ĝ, which is a bijection. A subalgebra corresponding to

λ ∈ g∗, maximal with respect to (3.2) is called a polarization. It is known that the maximality

of h with respect to (3.2) is equivalent to the following dimension condition

dim h =
1

2
(dim g+ dim rλ) .
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3 Harmonic analysis on stratified Lie groups of step two

Now suppose g is a 2-step stratified Lie algebra and λ ∈ g∗. The following technique for

construction of a polarization corresponding to λ, seems to be standard: we consider the bilinear

form B̄λ on the complement of the center, we restrict B̃λ on its nondegenerate subspace, then on

that subspace one can choose a basis with respect to which B̄λ is the canonical symplectic form.

With a little modification the basis can be chosen to be orthonormal as well. This is essentially

what was done in [BJR90; MR96; Par95]. We will set down the basis change explicitly follows

from [Ray99]:

Lemma 3.12. Let B : Rn × Rn → R be a nondegenerate, alternating, bilinear form. Then

there exist an orthonormal basis {Xi, Yi : 1 ≤ i ≤ d} of Rn such that B (Xi, Yj) = δi,jηj(B),

B (Xi, Xj) = B (Yi, Yj) = 0, 1 ≤ i, j ≤ d, n = 2d where ±iηj(B) are eigenvalues of the matrix

of B. Moreover, we can write η1 ≤ η2 ≤ · · · ≤ ηn.

As a consequence we have the following result.

Corollary 3.13. Let λ ∈ g∗. Then there exist an Jacobian basis

{X1(λ), . . . , Xd(λ), Y1(λ), . . . , Yd(λ), R1(λ), . . . , Rk(λ), T1(λ), . . . , Tm(λ)} , (3.3)

of g such that

(i) rλ = spanR {R1(λ), . . . , Rk(λ), T1(λ), . . . , Tm(λ)}.

(ii) λ ([Xi(λ), Yj(λ)]) = δijηj(λ), 1 ≤ i, j ≤ d and

λ ([Xi(λ), Xj(λ)]) = λ ([Yi(λ), Yj(λ)]) = 0, 1 ≤ i, j ≤ d.

(iii) spanR {Y1(λ), . . . , Yd(λ), R1(λ), . . . , Rk(λ), T1, . . . , Tm} = h is a polarization for λ.

Proof. We choose a basis B = {X1, . . . , Xn, Xn+1, . . . , XN} (N = n+m) of g such that

spanR {Xn+1, . . . , Xn+m} = z.

We define the Euclidean inner product on g such that B is an orthonormal basis. Let λ ∈ g∗

and suppose dim rλ = m+ k and dimOλ = 2d = N −m− k. We get hold of

rλ = spanR

{
Xn+1, . . . , Xn+m, X̃ni

= Xni
−

2d∑
s=1

cis(λ)Xjs , 1 ≤ i ≤ k

}
.

We use Gram-Schmidt orthogonalization on rλ to get an orthonormal basis

{R1(λ), . . . , Rk(λ), T1(λ), . . . , Tm(λ)} .
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3.1 Orbit method on stratified Lie group of step two

On r⊥λ , the orthogonal complement of rλ, B̄λ is nondegenerate. By Lemma 3.12 we get an

orthonormal basis {X1(λ), . . . , Xd(λ), Y1(λ), . . . , Yd(λ)} of r⊥λ such that λ ([Xi(λ), Yj(λ)]) =

δijηj (Bλ) and λ ([Xi(λ), Xj(λ)]) = λ ([Yi(λ), Yj(λ)]) = 0. If we define ηj (Bλ) = ηj(λ), 1 ≤ j ≤ d

then (i) and (ii) follow. (iii) follows by observing that h satisfies (3.2) and the dimension

condition.

Remark 3.14. we call the above basis an almost symplectic basis. Civen X ∈ g and a basis

(3.3) we write

X =
d∑
j=1

xjXj(λ) +
d∑
j=1

yjYj(λ) +
k∑
j=1

rjRj(λ) +
m∑
j=1

tjTj(λ) = (x, y, r, t).

Since we are going to use induced representations we need to describe nice sections of G/H

and a G-invariant measure on G/H. In our situation we will always have that H is a normal

subgroup of G. We identify G and g, via the exponential map. Let h be an ideal of g containing

z and H = exp h.

We take {X1, . . . , Xd, Xd+1, · · · , XN} a basis of g such that

z = spanR {Xn+1, . . . , Xn+m} , h = spanR {Xd+1, . . . , XN} .

If Lg(x) = g−1x and Rg(x) = xg, x, g ∈ G, then it is clear from the group multiplication that

the Jacobian matrix for either of the transformations is upper triangular with diagonal entries

1. Thus we have the following lemma whose proof can be found in [CG90].

Lemma 3.15. Let {X1, . . . , Xd, Xd+1, . . . , XN} be a basis of g. Then

(i) dx1 . . . dxN is a left and right invariant measure on G.

(ii) σ : G/H → G given by

σ

(
exp

(
N∑
i=1

tiXi

)
H

)
= exp

(
2d∑
i=1

tiXi

)
is a section for G/H.

(iii) dx1 . . . dx2d is a left G-invariant measure on G/H.

Now we come to the construction of representations corresponding to λ ∈ V ∗
T ∩ U . Let

dim rλ = m + k and dimOλ = 2d, so m + k + 2d = N . We choose an almost symplectic basis

(3.3) of g corresponding to λ and get hold of hλ as in Corollary 3.13. On Hλ = exp (hλ) we

have the character χλ : Hλ → T. Let πλ = indGHλ
χλ. We do not use the standard model for the
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3 Harmonic analysis on stratified Lie groups of step two

induced representation as given in Chapter 2 of [CG90], rather using the continuous section σ

given in Lemma 3.15 and computing the unique splitting of a typical group element

(x, y, r, t) = (x, 0, 0, 0)

(
0, y, r, t− 1

2
[(x, 0, 0, 0), (0, y, r, 0)]

)
corresponding to σ, the representation πλ is realised on L2

(
Rd
)

and is given by

(πλ(x, y, r, t)f) (ξ) f ∈ L2
(
Rd
)
= e

i

(
λ(t)+λ(r)+

d∑
i=1

ηi(λ)(
1
2
yixi+ξiyi)

)
f(ξ + x)

(3.4)

for almost every ξ ∈ Rd. At this point we indulge ourselves a little to stop to show that,

for 2-step stratified Lie groups, the Kirillov theory can be totally bypassed. The conclusions

(3) and (4) listed at the beginning of the section can be reached through a straight forward

application of the Stone-von Neumann theorem. This fact is most likely known to experts, our

justification for including it here is that we know of no source pointing it out clearly.

Suppose π′ is an irreducible unitary representation of G acting on the Hilbert space Hπ′ ,

with the condition that π′(expX) = eiλ(X) where X ∈ z and λ ∈ z∗. As before we get hold of

an almost symplectic basis (3.3) (note that rλ is actually determined by λ |z) . We again write

elements of the Lie algebra and the group as well by (x, y, r, t). Then it is easy to show that π′

has to satisfy the following properties:

(a) π′(0, 0, r, 0)π′ (0, 0, r1, 0) = π′ (0, 0, r + r1, 0),

(b) π′(0, 0, r, 0)π′(x, y, 0, 0) = π′(x, y, 0, 0)π′(0, 0, r, 0),

(c) π′(0, y, 0, 0)π′ (0, y1, 0, 0) = π′ (0, y + y1, 0, 0),

(d) π′(x, 0, 0, 0)π′ (x1, 0, 0, 0) = π′ (x+ x1, 0, 0, 0),

(e) π′(x, 0, 0, 0)π′(0, y, 0, 0) = e
i

d∑
i=1

xiyiηi(λ)
π′(0, y, 0, 0)π′(x, 0, 0, 0).

From (a) and (b), it follows by Schur’s lemma that,

π′(0, 0, r, 0) = eiν(r) ν ∈ spanR {R1(λ), . . . , Rk(λ)}∗ .

By (c)− (e) and Stone-von Neumann theorem Hπ′ is unitarily equivalent to L2
(
Rd
)

and

(π′(x, 0, 0, 0)f) (ξ) = f(ξ + x), f ∈ L2
(
Rd
)
,

(π′(0, y, 0, 0)f) (ξ) = e
i

d∑
i=1

ξiyiηi(λ)
f(ξ),
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for almost every ξ ∈ Rd. Then by using the fact that

(x, y, r, t)

= (x, 0, 0, 0)(0, y, 0, 0)(0, 0, r, 0)

(
0, 0, 0, t− 1

2
[(0, 0, r, 0), (0, y, 0, 0)]− 1

2
[(0, y, r, 0), (x, 0, 0, 0)]

)
we get that for almost every ξ ∈ Rd

(π′(x, y, r, w)f) (ξ) = e
i

[
λ(t)+ν(r)+

d∑
i=1

yiξiηi(λ)+
1
2

d∑
i=1

xiyiηi(λ)

]
f(ξ + x).

If ν = λ′ |spanR{R1(λ),...,Rr(λ)} then it follows from (3.4) that π′ = indGHλ
χλ′ where λ′ ∈ g∗ is such

that

λ′ |spanR{W1(λ),...,Wm(λ)}= λ,

λ′ |spanR{X1(λ),...,Yk(λ)}= 0.

We have noted above that every unitary irreducible representation of G is of the form (3.4).

The assertion about equivalences among the representations now is an immediate consequence

of the uniqueness of the Stone-von Neumann theorem (see Section 3.4). For, if πλ1 and πλ2 are

given by (3.4), then the analysis (a) − (e) on πλ1 and πλ2 would show that πλ1 ∼= πλ2 if and

only if λ1 and λ2 belong to the same coadjoint orbit.

3.2 The Fourier analysis

3.2.1 Irreducible unitary representations

In this section, we first rewrite the results above by a more analysis language, and then we give

some examples for 2-step stratified Lie groups to describe the explicit construction of irreducible

unitary representations.

Let G be a two step connected simply connected stratified Lie group so that its Lie algebra

g has the decomposition g = g1 ⊕ g2, where g2 is contained in the center of g and g1 is

any subspace of g complementary to g2. We choose an inner product on g such that g1 and

g2 are orthogonal. Fix an Jacobian basis B = {X1, X2 · · · , Xn, Xn+1, · · · , Xn+m} so that g1 =

spanR {X1, X2 · · · , Xn} and g2 = spanR {Xn+1, · · · , Xn+m} . Since g is nilpotent the exponential

map is an analytic diffeomorphism. We can identify G with g1 ⊕ g2 and write (X + T ) for

exp(X + T ) and denote it by (X,T ) where X ∈ g1 and T ∈ g2. The product law on G is given

by (3.1).

Now, given λ ∈ Rm, we define the matrix B(λ) ∈ Mn(R) as follows. For any Z,Z ′ ∈ Rn,
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there holds

⟨λ, σ (Z,Z ′)⟩ =
〈
Z,B(λ) · Z ′〉 .

If (ι1, . . . , ιm) denotes an orthonormal basis of Rm, we also define Bk ∈ Mn(R) by

⟨ιk, σ (Z,Z ′)⟩ = ⟨Z,Bk · Z ′⟩ .

Then for λ =
m∑
k=1

λkιk, we get

B(λ) =
m∑
k=1

λkBk.

Conversely, the map σ may be defined from (Bk)1≤k≤m thanks to the equality

σ (Z,Z ′) = (⟨Z,Bk · Z ′⟩)1≤k≤m .

Notice that the map λ 7→ B(λ) is linear, with its image spanned by (Bk)1≤k≤m . As B(λ) is an

antisymmetric matrix, its rank is an even number. We define the integer d by

2d := max
λ∈Rm

rankB(λ).

The set Λ :=
{
λ ∈ Rm | rankB(λ) = 2d

}
is then a nonempty Zariski-open subset of Rm. We

denote by k the dimension of the radical rλ of B(λ). If rλ = {0} for each λ ∈ Λ, then the Lie

algebra is called an MW algebra and the corresponding Lie group is called an MW group. In

this paper, we will only consider G to be a 2-step stratified Lie group without MW-condition.

For

(X,T ) = exp

(
n∑
j=1

xjXj +
m∑
j=1

tjXn+j

)
, xj, tj ∈ R,

the map

(x1, · · · , xn, t1 · · · , tm) −→
n∑
j=1

xjXj +
m∑
j=1

tjXn+j

−→ exp

(
n∑
j=1

xjXj +
m∑
j=1

tjXn+j

)
takes Lebesgue measure dx1 · · · dxn, dt1 · · · dtm of Rn+m to Haar measure on G. Any measurable

function f on G will be identified with a function on Rn+m.

Therefore, there exists an orthonormal basis

(X1(λ), . . . , Xd(λ), Y1(λ), . . . , Yd(λ), R1(λ), . . . , Rk(λ))

and d continuous functions

ηj : Rm → R+, 1 ≤ j ≤ d
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such that B(λ) reduces to the form
0 η(λ) 0

−η(λ) 0 0

0 0 0

 ∈ Mn(R)

where

η(λ) := diag (η1(λ), . . . , ηd(λ)) ∈ Md(R)

and each ηj(λ) > 0 is smooth and homogeneous of degree 1 in λ = (λ1, · · · , λm) and the basis

vectors are chosen to depend smoothly on λ in Λ. Decomposing g1 as

g1 = pλ ⊕ qλ ⊕ rλ

with

pλ := spanR (X1(λ), . . . , Xd(λ)) , qλ := spanR (Y1(λ), . . . , Yd(λ)) , rλ := spanR (R1(λ), . . . , Rk(λ)) .

Then we have the decomposition g = pλ⊕qλ⊕rλ⊕g2.We denote the element exp(X+Y +R+T )

of G by (X, Y,R, T ) for X ∈ pλ, Y ∈ qλ, R ∈ rλ, T ∈ g2. Further we can write

(X, Y,R, T ) =
d∑
j=1

xj(λ)Xj(λ) +
d∑
j=1

yj(λ)Yj(λ) +
k∑
j=1

rj(λ)Rj(λ) +
m∑
j=1

tjTj

and denote it by (x, y, r, t) suppressing the dependence of λ which will be understood from the

context.

For (λ, ν, w) in Λ× Rk × RN with

w = (x, y, r, t) ∈ Rd ⊕ Rd ⊕ Rk ⊕ Rm = RN ,

we define the irreducible unitary representations of RN (we will prove this fact in Section 3.4),

equipped with the group law of the nilpotent group defined above, on L2
(
Rd
)

(πλ,ν(w)ϕ) (ξ) := exp

(
i

m∑
j=1

λjtj + i

k∑
j=1

νjrj + i

d∑
j=1

ηj(λ)

(
yjξj +

1

2
xjyj

))
ϕ(ξ + x)

= ei⟨ν,r⟩ei⟨λ,t⟩e
i

d∑
j=1

ηj(λ)(yjξj+ 1
2
xjyj)

ϕ(ξ + x).

3.2.2 Examples

Let us give a few examples of well-known stratified Lie groups with a two step stratification:

The Heisenberg group:

The Heisenberg group Rd is defined as the space R2d+1 whose elements can be written
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w = (x, y, s) with (x, y) ∈ Rd × Rd, endowed with the product law

(x, y, s) · (x′, y′, s′) = (x+ x′, y + y′, s+ s′ − 2⟨x, y′⟩+ 2⟨y, x′⟩)

where ⟨·, ·⟩ denotes the euclidean scalar product on Rd. In that case the center consists of the

points of the form (0, 0, s) and is of dimension 1. The Lie algebra of left-invariant vector fields

is generated by

Xj := ∂xj + 2yj∂s, Yj := ∂yj − 2xj∂s for 1 ≤ j ≤ d; S := ∂s =
1

4
[Yj, Xj] .

Regarding the choice of suitable bases, let (x1, . . . , xd, y1, . . . , yd) be a basis of R2d in which the

matrix of σc assumes the form  0 Id

−Id 0

 ∈ M2d(R).

For λ > 0, we choose (x1, . . . , xd, y1, . . . , yd) as a basis of R2d, while for λ < 0 this choice

becomes (y1, . . . , yd, x1, . . . , xd) . Hence, for any λ ∈ R∗, we have, as desired,

B(λ) =

 0 4|λ|Id
−4|λ|Id 0

 ∈ M2d(R).

Its radical reduces to {0} with Λ = R∗, and |ηj(λ)| = 4|λ| for all j ∈ {1, . . . , d}.

H-type group:

These groups are canonically isomorphic to Rn+m and are a multidimensional version of the

Heisenberg group. The group law is of the form

(
x(1), x(2)

)
·
(
y(1), y(2)

)
:=

 x
(1)
j + y

(1)
j , j = 1, . . . , n

x
(2)
k + y

(2)
k + 1

2

〈
x(1), U (k)y(1)

〉
, k = 1, . . . ,m


where U (j) are n× n linearly independent, orthogonal, skew-symmetric matrices satisfying the

property

U (r)U (s) + U (s)U (r) = 0

for every r, s ∈ {1, . . . ,m} with r ̸= s. In that case the center is of dimension m and may be

identified with Rm, and the radical of the canonical skew-symmetric form associated with the

frequencies λ is again {0}. For example, the Iwasawa subgroup of semisimple Lie groups of split

rank 1 (see [Kor85]) is of this type. On H-type groups, n is an even number, which we denote

by 2l, and the Lie algebra of left-invariant vector fields is spanned by the following vector fields,
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3.2 The Fourier analysis

where we have written z = (x, y) in Rl × Rl : for j = 1, . . . , l and k = 1, . . . ,m,

Xj := ∂xj +
1

2

m∑
k=1

2l∑
l=1

zlU
(k)
l,j ∂ts , Yj := ∂yj +

1

2

m∑
k=1

2l∑
l=1

zlU
(k)
l,j+l∂ts and ∂ts .

In that case, we have Λ = Rm\{0} with ηj(λ) =
√
λ21 + · · ·+ λ2m for all j ∈ {1, . . . , l} .

Diamond groups:

These groups, which occur in crystal theory (for more details, see [Lud95; Pog99]), are of the

type Σ⋉Hd, where Σ is a connected Lie group acting smoothly on Hd. One can find examples

for which the radical of the canonical skew-symmetric is of any dimension k, 0 ≤ k ≤ d. For

example, one can take for Σ the k-dimensional torus, acting on Hd by

θ(w) := (θ · z, s) :=
(
eiθ1z1, . . . , e

iθkzk, zk+1, . . . , zd, s
)
, w = (z, s)

where the element θ = (θ1, . . . , θk) corresponds to the element
(
eiθ1 , . . . , eiθk

)
of Tk. Then the

product law on G = Tk ⋉Hd is given by

(θ, w) · (θ′, w′) = (θ + θ′, w · (θ (w′)))

where w. (θ (w′)) denotes the Heisenberg product of w by θ (w′). As a consequence, the center

of G is of dimension 1 , since it consists of the points of the form (0, 0, s) for s ∈ R. Let us

choose for simplicity k = d = 1; the algebra of left-invariant vector fields is generated by the

vector fields ∂θ, ∂s Γθ,x and Γθ,y, where

Γθ,x = cos θ∂x + sin θ∂y + 2(y cos θ − x sin θ)∂s,

Γθ,y = − sin θ∂x + cos θ∂y − 2(y sin θ + x cos θ)∂s.

It is not difficult to check that the radical of Bλ is of dimension 1 . In the general case, where

k ≤ d, the algebra of left-invariant vector fields is generated by the vector fields ∂s, the 2(d−k)

vectors

Xl = ∂xl + 2yl∂s and Yl = ∂yl − 2xl∂s

and the 3k vectors defined for 1 ≤ j ≤ k by ∂θj ,Γθj ,xj and Γθj ,yj , where

Γθj ,xj = cos θj∂xj + sin θj∂yj + 2 (yj cos θj − xj sin θj) ∂s,

Γθj ,yj = − sin θj∂xj + cos θj∂yj − 2 (yj sin θj + xj cos θj) ∂s,

and this provides an example with a radical of dimension k.

The product of Heisenberg groups:

Consider Hd1 ⊗ Hd2 , the set of elements (w1, w2) in Hd1 ⊗ Hd2 that can be written as
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3 Harmonic analysis on stratified Lie groups of step two

(w1, w2) = (x1, y1, s1, x2, y2, s2) in R2d1+1 × R2d2+1, equipped with the product law

(w1, w2) · (w′
1, w

′
2) = (w1 · w′

1, w2 · w′
2)

where w1 · w′
1 and w2 · w′

2 denote the product in Hd1 and Hd2 , respectively. Clearly Hd1 ⊗Hd2

is a 2-step stratified Lie group with center of dimension 2 and radical index null. Moreover, for

λ = (λ1, λ2) in the dual of the center, the canonical skew bilinear form B(λ) has radical {0}

with Λ = R∗ × R∗, and one has η1(λ) = 4 |λ1| and η2(λ) = 4 |λ2|.

The product of H-type groups:

The group Rm1+p1⊗Rm2+p2 is easily verified to be a 2-step stratified Lie group with center of

dimension p1+p2, radical index null and a skew bilinear form B(λ) defined on Rm1+m2 withm1 =

2l1 and m2 = 2l2. The Zariski-open set associated with B is given by Λ = (Rp1\{0})×(Rp2\{0})

and, for λ = (λ1, . . . , λp1+p2), we have

ηj(λ) =
√
λ21 + · · ·+ λ2p1 for all j ∈ {1, . . . , l1} ,

ηj(λ) =
√
λ2p1+1 + · · ·+ λ2p1+p2 for all j ∈ {l1 + 1, . . . , l1 + l2} .

3.2.3 The Fourier transform

The stratified Lie groups being noncommutative, then the Fourier transform on G is defined

using irreducible unitary representations of G. We devote this section to the introduction of

the basic concepts that will be needed in the sequel. For (λ, ν, w) in Λ× Rk × RN with

w = (x, y, r, t) ∈ Rd ⊕ Rd ⊕ Rk ⊕ Rm = RN ,

we define the irreducible unitary representations of RN , equipped with the group law of the

nilpotent group defined above, on L2
(
Rd
)

(πλ,νϕ) (ξ) = ei⟨ν,r⟩ei⟨λ,t⟩e
i

d∑
j=1

ηj(λ)(yjξj+ 1
2
xjyj)

ϕ(ξ + x).

In the case of the first Heisenberg group H1, we have k = 0 and η(λ) = d = m = 1; hence, for

ξ, x, y, λ ∈ R and ϕ in L2(R), we have

(πλϕ) (ξ) = eiλ(t+y(ξ+
x
2 ))ϕ(ξ + x)

which, up to a factor of −2π in front of the x variable, the well-known formula for the Heisen-

berg’s representations found e.g. in [BCD19; BFKG12].

With these notations, the Fourier transform of an integrable function of G is defined as

follows:
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3.2 The Fourier analysis

Definition 3.16. The Fourier transform of the function f ∈ L1(G) at the point

(λ, ν) ∈ Λ× Rk

is a unitary operator acting on L2(G) with

F(f)(λ, ν) = (f̂(λ, ν) :=

∫
G
f(w)πλ,ν(w)

∗dw.

Here πλ,ν(w) are the Schrödinger representations and the integral is a Bochner integral

taking values in the Hilbert space L2
(
Rd
)
. If ψ is another function in L2

(
Rd
)
, then

(f̂(λ, ν)φ, ψ) =

∫
G
f(w) (πλ,ν(w)

∗φ, ψ) dw.

Since πλ,ν(w) are unitary operators, it follows that

|(πλ,ν(w)φ, ψ)| ≤ ∥φ∥2∥ψ∥2

and consequently

|(f̂(λ, ν)φ, ψ)| ≤ ∥φ∥2∥ψ∥2∥f∥1.

This shows that f̂(λ, ν) is a bounded operator on L2
(
Rd
)

and the operator norm satisfies

∥f̂(λ, ν)∥ ≤ ∥f∥1. In summary, we have the following proposition:

Proposition 3.17. The Fourier transformation is continuous in all its variables, in the fol-

lowing sense.

• For any λ ∈ Λ and ν ∈ Rk, the map

F(·)(λ, ν) : L1
(
Rd
)
−→ L

(
L2
(
Rd
))

is linear and continuous, with norm bounded by 1.

• For any u ∈ L2
(
Rd
)

and f ∈ L1
(
Rd
)
, the map

F(f)(·, ·)(u) : Λ× Rk −→ L2
(
Rd
)

is continuous.

Further, the Fourier transform can be extended to an isometry from L2(G) onto the Hilbert

space of two-parameter families A = {A(λ, v)}(λ,v)∈Λ×Rk of operators on L2
(
Rd
)

which are

Hilbert-Schmidt for almost every (λ, v) ∈ Λ × Rk, with ∥A(λ, v)∥HS(L2(Rd)) measurable and

with norm

∥A∥ :=

(∫∫
Λ×Rk

κ∥A(λ, v)∥2
HS(L2(Rd)) Pf(λ)dνdλ

) 1
2

<∞,
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3 Harmonic analysis on stratified Lie groups of step two

where κ > 0 is a constant depending only on the choice of the group, Pf(λ) :=
d∏
j=1

ηj(λ) is the

Pfaffian of B(λ). We have the following Fourier-Plancherel formula:

Proposition 3.18. There exists some constant κ > 0 depending only on the choice of the group

such that, for any f ∈ L1(G) ∩ L2(G), there holds∫
G
|f(w)|2dw = κ

∫∫
Λ×Rk

∥F(f)(λ, ν)∥2
HS(L2(Rd)) Pf(λ)dλdν.

Proof. The proof is standard as in [CG90; Ray99], we provide proof for completeness. We

recall, for (λ, ν) ∈ Λ× Rk, we get hold of an almost symplectic basis (3.3) and because of the

orthonormal basis change, dxdydrdt is the normalized Haar measure, where

(x, y, r, t) =
d∑
i=1

xiXi(λ) +
d∑
i=1

yiYi(λ) +
k∑
i=1

riRi(λ) +
m∑
i=1

tiTi.

Let λ|z = (λ1, . . . , λm) and λ |spanR{R1(λ),...,Rk(λ)}= (ν1, . . . , νk) and dν = dν1 . . . dνk denotes the

usual Lebesgue measure on Rk. We first prove the following results:

κ

∫
Rk

∥F(f)(λ, ν)∥2
HS(L2(Rd)) Pf(λ)dν =

∫
R2d+k

|F1f (x, y, r1, . . . , rk, λ1, . . . , λm)|2 dxdydν

(3.5)

where

F1f (x, y, r1, . . . , rk, λ1, . . . , λm) = κ−1

∫
Rm

f (x, y, r1, . . . , rr, t1, . . . , tm) e
−i

m∑
j=1

λjtj
dt1 . . . dtm

andλ (Ti) = λi, 1 ≤ i ≤ m. Let ϕ ∈ L2
(
Rd
)
. Then from (3.4)

F(f)(λ, ν)ϕ(ξ)

=

∫
RN

f(x, y, r, t)πλ,νϕ(ξ + x)dxdydrdt

=

∫
R2d+k+m

f(x, y, r, t)e−i⟨ν,r⟩e−i⟨λ,t⟩e−i⟨η(λ)·(ξ+
1
2
x),y⟩ϕ(ξ + x)dxdydrdt

=

∫
R2d+k+m

f(x− ξ, y, r, t)e−i⟨ν,r⟩e−i⟨λ,t⟩e
−i

d∑
j=1

ηj(λ)yjξj−i 12
d∑

j=1
ηj(λ)(xj−ξj)yj

ϕ(x)dxdydrdt

=

∫
R2d+k+m

f(x− ξ, y, r, t)e−i⟨ν,r⟩e−i⟨λ,t⟩e
−i 1

2

d∑
j=1

ηj(λ)xjyj−i 12
d∑

j=1
ηj(λ)ξjyj

ϕ(x)dxdydrdt

=

∫
R2d+k+m

f(x− ξ, y, r, t)e−i⟨ν,r⟩e−i⟨λ,t⟩e
−i 1

2

d∑
j=1

(xj+ξj)ηj(λ)yj
ϕ(x)dxdydrdt.

Let

K(x, ξ) =

∫
Rd+k+m

f(x− ξ, y, r, t)e−i⟨ν,r⟩e−i⟨λ,t⟩e
−i 1

2

d∑
j=1

(xj+ξj)ηj(λ)yj
dydrdt.
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3.2 The Fourier analysis

Since f ∈ L1(G) ∩ L2(G), it follows that K ∈ L2
(
Rd × Rd

)
. Then

K(x, ξ) = κ−1F234f

(
x− ξ,

x1 + ξ1
2

η1(λ), . . . ,
xd + ξd

2
ηd(λ), ν1, . . . , νk, λ1, . . . , λm

)
where F234 stands for the partial Fourier (Euclidean) transform in the variables y, r, t. Thus

F(f)(λ, ν) is a Hilbert-Schmidt operator on L2
(
Rd
)

with the kernel K(x, ξ). If we do the

change of variables

vi =
xi + ξi

2
ηi(λ), 1 ≤ i ≤ d,

ui = xi − ξi, 1 ≤ i ≤ d.

then the modulus of the Jacobian determinant is |η1(λ) . . . ηd(λ)| and the above integral reduces

to

κ−1 |η1(λ) . . . ηd(λ)|−1

(∫
R2d

|F234f (u, v, ν1, . . . νr, λ1, . . . , λm)|2 dudv
)

where u = (u1, . . . , ud) and v = (v1, . . . , vd) . By applying the Euclidean Plancherel theorem in

the variable u we get

∥F(f)(λ, ν)∥2
HS(L2(Rd)) = κ−1 |η1(λ) . . . ηd(λ)|−1

∫
R2d

|F12f (u, v, ν1, . . . νr, λ1, . . . , λm)|2 dudv.

If we integrate both sides of the above equation on Rk with respect to the usual Lebesgue

measure and use change of variables by the map ϕ defined by

ϕ : Rk → Rk

ϕ (λn1 , . . . , λnr) = (ν1, . . . , νr) .
(3.6)

We need to find the modulus of the Jacobian determinant of ϕ, which states:

Claim:

|det Jϕ| =
|Pf(λ)|

η1(λ)η2(λ) . . . ηd(λ)

where Jϕ is the Jacobian matrix of ϕ.

We restrict ourselves only to the complement of the center, because it is there that the

change of basis takes place. We define

A1 : {X1, X2, . . . , Xn} → {Xj1 , . . . , Xj2d , Xn1 , . . . , Xnk
} ,

A2 : {Xj1 , . . . , XJ2d , Xn1 , . . . , Xnk
} →

{
Xj1 , . . . , Xj2k , X̃n1 , . . . , X̃nk

}
,

A3 :
{
Xj1 , . . . , Xj2d , X̃n1 , . . . , X̃nk

}
→ {X1(λ), . . . , Xd(λ), Y1(λ), . . . , Yd(λ), R1(λ), . . . , Rk(λ)} ,

where X̃ni
= Xni

−
2d∑
s=1

cis(l)Xjs , 1 ≤ i ≤ k. A1 is just a rearrangement of basis and hence is

given by an orthogonal matrix. A2 is clearly given by a lower triangular matrix with diagonal
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3 Harmonic analysis on stratified Lie groups of step two

entries equal to one. The matrix of A3 looks like A′ C ′

0 D′


where A′ is a k × k matrix, C ′ is a k × 2d matrix and D′ is a 2d × 2d matrix, because A3 is

obtained from the following operations:

(i) Gram-Schmidt orthogonalisation of
{
X̃ni

: 1 ≤ i ≤ k
}

(ii) Finding the orthogonal complement of the span of
{
X̃ni

: 1 ≤ i ≤ k
}

(iii) Choosing an almost symplectic basis on the nondegenerate subspace of B̃λ

Notice that for λ ∈ Ṽ ∗
T , λ (Xji) = 0, 1 ≤ i ≤ 2d; thus λ

(
X̃ni

)
= λ (Xni

) , 1 ≤ i ≤ k. Hence

|det Jϕ| = |detA′| .

Since |detA1 · detA2 · detA3| = 1, we have | detA3| = 1. But

|detA3| = | detA′|| detD′|.

So

|det Jϕ| = |detD′|−1
.

If we write B̃λ in terms of the basis
{
Xj1 , . . . , Xj2d , X̃n1 , . . . , X̃nk

}
, then the matrix of B̃λ looks

like  0 0

0 B′
λ


where (B′

λ)is = λ ([Xji , Xjs ]) . Thus clearly

|detB′
λ| = |Pf(λ)|2.

Because of A3 the above matrix changes to 0 0

0 D′B′
λ (D

′)t


which is nothing but the matrix in (3.6). So

|detD′|2 = |η1(λ) . . . ηd(λ)|2

|Pf(λ)|2
⇒ |detD′| = |η1(λ) . . . ηd(λ)|

|Pf(λ)|
.

Thus

|det Jϕ| =
|Pf(λ)|

|η1(λ) . . . ηd(λ)|
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3.2 The Fourier analysis

as claimed.

Thus, we get∫
Rk

∥F(f)(λ, ν)∥2
HS(L2(Rd)) dν1 . . . dνk

= |η1(λ) . . . ηd(λ)|−1 |η1(λ) . . . ηd(λ)|
|Pf(λ)|

∫
R2d+k

|F12f (u, v, ν1, . . . νk, λ1, . . . , λm)|2 dudvdν.

Then by applying the Euclidean Plancherel theorem on the variables (ν1, . . . νk) ∈ Rk, we obtain

(3.5).

We integrate both sides of (3.5) with respect to the standard Lebesgue measure on Rm to

get ∫
Λ×Rk

∥F(f)(λ, ν)∥2
HS(L2(Rd)) |Pf(λ)|dλ

=

∫
Λ

(
|Pf(λ)|

∫
Rk

∥F(f)(λ, ν)∥2
HS(L2(Rd)) dν1 . . . dνk

)
dλ1 . . . dλm

= κ−1

∫
Λ

(∫
R2d+k

|F1f (x, y, r1, . . . , rk, λ1, . . . , λm)|2 dxdydν
)
dλ1 . . . dλm

= κ−1

∫
Rm

∫
R2d+k

|f (x, y, r1, . . . , rk, t1, . . . , tm)|2 dxdydrdt

by using the Euclidean Plancherel theorem in the outer integral. The last integral is, of course,

∥f∥2L2(G) and the proof is complete.

Remark 3.19. The situation is simpler if we consider the case of MW groups. In this case

Rk = ∅ and the representation πλ is given by

(πλ(x, y, t)f) (ξ) = e
iλt+

d∑
j=1

ξjyjηj(λ)+
1
2

d∑
j=1

xjyjηj(λ)

f(x+ ξ),

where ξ ∈ Rd, f ∈ L2
(
Rd
)

and dim g/z = 2d. Then it follows from the calculations above that

κ ∥F(f)(λ)∥2
HS(L2(Rd)) =

1

|η1(λ) . . . ηd(λ)|

∫
R2d

|F3f (x, y, λ1, . . . , λm)|2 dxdy.

Clearly |η1(λ) . . . ηd(λ)| = |Pf(λ)|, since B̃l is nondegenerate. The Plancherel theorem again

follows. So the change of variables through the map ϕ is not needed for MW groups.

On the Heisenberg group Hd, the Pfaffian is simply Pf(λ) = |λ|d and the value of κ is known,

namely

κ
(
Hd
)
=

2d−1

πd+1
.

In this context, we have an inversion formula as stated in the following proposition:

Proposition 3.20. For f ∈ L1
(
RN
)

and almost every w ∈ RN , the following inversion formula
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3 Harmonic analysis on stratified Lie groups of step two

holds:

f(w) = κ

∫∫
Λ×Rk

tr ((πλ,ν(w))F(f)(λ, ν)) Pf(λ)dλdν

with the same constant κ > 0.

Finally, the Fourier transform exchanges as usual convolution and product, in the following

sense.

Proposition 3.21. For any f1, f2 ∈ L1
(
RN
)

and (λ, ν) ∈ Λ× Rk, we have, denoting by · the

operator composition on L
(
L2
(
Rd
))

,

F (f1 ∗ f2) (λ, ν) = F (f1) (λ, ν) · F (f2) (λ, ν).

3.2.4 The sub-Laplacian operator

Let g be a 2-step stratified Lie algebra with a basis B as before. Now we consider elements of

g as left invariant differential operators acting on C∞(G), that is given X ∈ g and f ∈ C∞(G),

the differential operator X acts on f by the rule

(Xf)(g) =
d

ds

∣∣∣∣
s=0

f(g exp sX). (3.7)

We define the sub-Laplacian of G by

L = −
n∑
i=1

X2
i .

It is a self-adjoint operator which is independent of the orthonormal basis (X1, . . . , Xn), and

homogeneous of degree 2 with respect to the dilations in the sense that

δ−1
λ Lδλ = λ2L.

To write its expression in Fourier space, we analysis the left-invariant vector fields as follows. Let

g be the Lie algebra of all left-invariant vector fields on G. For j = 1, 2, . . . , d, let γ1,j : R → G

and γ2,j : R → G be curves in G given by

γ1,j(τ) = (τej, 0, 0, 0)

and

γ2,j(τ) = (0, τej, 0, 0)
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for all τ ∈ R, where ej is the standard unit vector in Rd. For all l = 1, 2, . . . , k and s =

1, 2, . . . ,m, let γ3,l : R → G and γ4,s : R → G be curves in G given by

γ3,l(τ) = (0, 0, τel, 0)

and

γ4,k(τ) = (0, 0, 0, τes)

for all τ ∈ R, where el is the standard unit vector in Rk and es is the standard unit vector

in Rm. Then we define the left-invariant vector fields Xj, Yj and Rl, Ts, j = 1, 2, . . . , d, l =

1, 2, . . . , k, s = 1, 2, . . . ,m, on G as follows. Let f ∈ C∞(G). Then for all j = 1, 2, . . . , d, we

define Xj and Yj by

(Xjf) (x, y, r, t) =
d

dτ
f ((x, y, r, t) · γ1,j(τ))

∣∣∣∣
τ=0

=
d

dτ
f

(
x+ τej, y, r,

(
ts +

1

2
(Bsy, τek)

)m
s=1

)∣∣∣∣
τ=0

=
∂

∂xj
f(x, y, r, s) +

1

2

m∑
s=1

(Bsy, ej)
∂

∂ts
f(x, y, r, s)

and

(Yjf) (x, y, r, t) =
d

dτ
f ((x, y, r, t) · γ2,j(τ))

∣∣∣∣
τ=0

=
d

dτ
f

(
x, y + τej, r,

(
ts −

1

2
(x, τBkej)

)m
s=1

)∣∣∣∣
τ=0

=
∂

∂yj
f(x, y, r, s)− 1

2

m∑
s=1

(x,Bkej)
∂

∂ts
f(x, y, r, s)

for all (x, y, r, s) ∈ G. Similarly, for l = 1, 2, . . . , k and s = 1, 2, . . . ,m, the function Rlf and

Tsf are defined by

(Rlf) (x, y, r, t) =
d

dτ
f ((x, y, r, t) · γ3,l(τ))

∣∣∣∣
τ=0

=
d

dτ
f (x, y, r + τel, t)

∣∣∣∣
τ=0

=
∂

∂rl
(x, y, r, t)

and

(Tsf) (x, y, r, t) =
d

dτ
f ((x, y, r, t) · γ4,s(τ))

∣∣∣∣
τ=0

=
d

dτ
f (x, y, r, t+ τes)

∣∣∣∣
τ=0

=
∂

∂ts
f(x, y, r, t)
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3 Harmonic analysis on stratified Lie groups of step two

for all (x, y, r, t) ∈ G. We can easily check that

[Xi, Yj] = −1

4

m∑
s=1

(Bk)ij Ts, i, j = 1, 2, . . . , N

and the other commutators are zero.

Theorem 3.22. The Lie algebra g is generated by {Xi, Yj, Rl, [Xi, Yj] : i, j = 1, 2, . . . , d, l = 1, 2, . . . , k}.

Proof. It is enough to show that

span {T1, T2, . . . , Tm} = span {[Xi, Xj] : i, j = 1, 2, . . . , d}

Let

T =


T1

T2
...

Tm


and

Z =



[X1, Y1]

[X1, Y2]
...

[X1, Yn]

[X2, Y1]

[X2, Y2]
...

[Xd, Yd]



.

For 1 ≤ s ≤ m and 1 ≤ i, j ≤ d, let (Bk)ij be the entry of the matrix Bk in the i th row and j

th column. Consider the d2 ×m matrix

C =



(B1)11 (B2)11 . . . (Bm)11

(B1)12 (B2)12 . . . (Bm)12
...

... . . . ...

(B1)1d (B2)1d . . . (Bm)1n

(B1)21 (B2)21 . . . (Bm)21

(B1)22 (B2)22 . . . (Bm)22
...

...
...

...

(B1)dd (B2)dd . . . (Bm)dd


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3.2 The Fourier analysis

Then CT = −Z. Since C has full column rank, it follows that there exists an m × d2 matrix

(left inverse) D such that

DC = I

where I is the m×m identity matrix. Therefore T = −DZ.

We can now define the sub-Laplacian L on G by

L = −
d∑
j=1

(
X2
j + Y 2

j

)
−

k∑
l=1

R2
l .

Explicitly,

L = −∆x −∆y −∆r −
1

4

(
|x|2 + |y|2

)
∆t +

m∑
s=1

d∑
j=1

{
− (Bsy, ej)

∂

∂xj
+ (x,Bsej)

∂

∂yj

}
∂

∂ts
.

By taking the Fourier transform of the sub-Laplacian L with respect to t, we get parametrized

λ-twisted sub-Laplacian Lλ, λ ∈ Rm, given by

Lλ = −∆x −∆y −∆r +
1

4

(
|x|2 + |y|2

)
|λ|2 − i

d∑
j=1

{
−
(
B(λ)y, ej

) ∂

∂xj
+
(
x,B(λ)ej

) ∂

∂yj

}
,

where we use

B(λ) =
m∑
s=1

λsBs.

For j = 1, 2, . . . , d, we define the linear partial differential operators Zλ
j and Z̄λ

j by

Zλ
j = ∂zj +

1

2
iλ

m∑
s=1

(Bs)j z̄j,

and

Z̄λ
j = ∂z̄j −

1

2
iλ

m∑
s=1

(Bs)jzj.

Then

Lλ = −1

2

d∑
j=1

(
Zλ
j Z̄

λ
j + Z̄λ

j Z
λ
j

)
−

k∑
l=1

R2
l

= −∆z −∆r +
1

4
|z|2|λ|2 − iN,

where N is the operator

N = i
d∑
j=1

{
−
(
B(λ)y, ej

) ∂

∂xj
+
(
x,B(λ)ej

) ∂

∂yj

}
.
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3 Harmonic analysis on stratified Lie groups of step two

3.3 (λ, ν)-Weyl transforms

In the standard formulation of quantum mechanics the probability density ρ(x) in position space

x is given by the square of the magnitude of the wave function, ρ(x) = |ψ(x)|2. Thus knowing

ψ(x) it is easy to visualize the distribution ρ(x). Obtaining the distribution in momentum p is

also straightforward. The wave function in p is found by

φ(p) =
1√
h

∫
e−ixp/ℏψ(x)dx = ⟨p, ψ⟩,

where all integrations are understood to be over the entire space. The quantity |φ(p)|2 gives

the probability density in the momentum variable. Although straightforward, the momentum

distribution is difficult to visualize if one only has ψ(x). It would be desirable to have a function

that displays the probability distribution simultaneously in the x and p variables. The Wigner

function, introduced by Wigner in 1932 [Wig32] does just that. Wigner’s original goal was to

find quantum corrections to classical statistical mechanics where the Boltzmann factors contain

energies which in turn are expressed as functions of both x and p. As is well known from the

Heisenberg uncertainty relation, there are constraints on this distribution and thus on the

Wigner function.

When using Wigner functions the expectation values are obtained in conjunction with the

closely associated Weyl transforms of the operators corresponding to physical observables. As

shown in [Cas08] the correct Weyl transform is critical for obtaining the spread of the energy

of a state; without it, the Wigner function is little more than a visual aid for understanding

quantum states.

In fact, the classical Weyl transform was first envisaged in [Wey50] by Hermann Weyl arising

in quantum mechanics. The theory of Weyl transform is a vast subject of remarkable interest

both in mathematical analysis and physics. In the theory of partial differential equations,

Weyl operators have been studied as a particular type of pseudo-differential operators. They

have proved to be a useful technique in a quantity of problems like elliptic theory, spectral

asymptotics, regularity problems, etc. [Won98].

What’s more, it is well known from [Won98] that Weyl transforms have intimate connections

with analysis with the so-called λ-twisted sub-Laplacian and the Heisenberg group, and the

harmonic analysis there is a very well researched topic. Then in this section, we will study the

Weyl transforms and Wigner transforms on 2-step stratified Lie groups G, which should also

depend on these parameters and can help us to compute the sub-Laplacian and the λ-twisted
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3.3 (λ, ν)-Weyl transforms

sub-Laplacian.

3.3.1 (λ, ν)-Fourier-Wigner transform

In this section, we want to define the (λ, ν)-Weyl transform. As we have known, a basic tool

we use in the study of the (λ, ν)-Weyl transform is the (λ, ν)-Wigner transform. And now we

find it convenient to introduce first a related transform, which we call the (λ, ν)-Fourier-Wigner

transform.

Let p, q ∈ Rd and let λ ∈ Λ, ν ∈ Rk. Then, for every measurable function ϕ on Rd, the

function πλ,ν(p, q)ϕ on Rd is defined by

πλ,ν(p, q)ϕ(x) = e
i

d∑
i=1

ηj(λ)(pjxj+
1
2
pjqj)

ϕ(x+ q), p, q ∈ Rd (3.8)

where πλ,ν(p, q) stands for πλ,ν(p, q, 0, 0).

Proposition 3.23. πλ,ν(p, q) : L2(Rd) → L2(Rd) is a unitary operator for all p and q in Rd.

Proof. We only need to prove that

∥πλ,ν(p, q)f∥L2(Rd) = ∥f∥L2(Rd), f ∈ L2
(
Rd
)

and πλ,ν(p, q) is onto for all p and q in Rd. Indeed, it follows from (3.8) that

∥πλ,ν(p, q)f∥2
L2(Rd) =

∫
Rd

∣∣∣∣∣ei
d∑

i=1
ηj(λ)(pjxj+

1
2
pjqj)

f(x+ q)

∣∣∣∣∣
2

dx

=

∫
Rd

|f(x+ q)|2dx

=

∫
Rd

|f(x)|2dx

= ∥f∥2
L2(Rd), f ∈ L2

(
Rd
)
,

for all p and q in Rd. To prove that πλ,ν(p, q) is onto, we let g ∈ L2
(
Rd
)

and define the function

f on Rd by

f(x) = e
−i

d∑
i=1

ηj(λ)(pjxj− 1
2
pjqj)

g(x− q), x ∈ Rd (3.9)

Then f is obviously in L2
(
Rd
)
, and by (3.8) and (3.9),

(πλ,ν(p, q)f)(x) = e
i

d∑
i=1

ηj(λ)(pjxj+
1
2
pjqj)

f(x+ q)

= e
i

d∑
i=1

ηj(λ)(pjxj+
1
2
pjqj)

e
−i

d∑
i=1

ηj(λ)(pj(xj+qj)− 1
2
pjqj)

g(x)

= g(x), x ∈ Rd.
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3 Harmonic analysis on stratified Lie groups of step two

Definition 3.24. For f, g ∈ L2
(
Rd
)
, the (λ, ν)-Fourier-Wigner transform of f and g is defined

by

Vλ,ν(f, g)(p, q) = Pf(λ)
1
2 (2π)−

d
2

〈
πλ,ν(p, q)f, g

〉
,

where ⟨, ⟩ is the inner product in L2
(
Rd
)
.

Remark 3.25. The (λ, ν)-Fourier-Wigner transform Vλ,ν : S(Rd)×S(Rd) → S(R2d) is a bilinear

mapping, and we have the following symmetric form

Vλ,ν(f, g)(p, q) = Pf(λ)
1
2 (2π)−

d
2

〈
πλ,ν(p, q)f, g

〉
= Pf(λ)

1
2 (2π)−

d
2

∫
Rd

e
i

d∑
i=1

ηj(λ)(pjxj+
1
2
pjqj)

f(x+ q)g(x)dx

= Pf(λ)
1
2 (2π)−

d
2

∫
Rd

eiη(λ)·pxf
(
x+

q

2

)
g
(
x− q

2

)
dx.

Moreover, it is easy to see that the (λ, ν)-Fourier-Wigner transform is related to the ordinary

Fourier-Wigner transform by

Vλ,ν(f, g)(p, q) = V (f, g)(η(λ) · p, q).

3.3.2 (λ, ν)-Wigner transform

Next, we introduce the (λ, ν)-Wigner transform and study some of its very basic properties.

The original Wigner transform W (f) of a function f in L2
(
Rd
)
, introduced by Wigner in

[Wig32], is a tool for the study of the nonexisting joint probability distribution of position and

momentum in the state f . To do this, we begin by computing the Fourier transform of the

(λ, ν)-Fourier-Wigner transform.

Definition 3.26. We define the Fourier transform by

(Fλ(f)) (y) = Pf(λ)
1
2 (2π)−

d
2

∫
Rd

f(x)e
−i

d∑
j=1

ηj(λ)xjyj
dx, y ∈ Rd,

where λ ∈ Λ, f ∈ L1
(
Rd
)

and the inverse Fourier transform is defined by

(
F−1
λ (f)

)
(x) = Pf(λ)

1
2 (2π)−

d
2

∫
Rd

f(x)e
i

d∑
j=1

ηj(λ)xjyj
dy x ∈ Rd.

Theorem 3.27. Let f and g be in S
(
Rd
)
. Then

(Fλ (Vλ,ν(f, g))) (x, ξ) = Pf(λ)
1
2 (2π)−

d
2

∫
Rd

e
−i

d∑
j=1

ηj(λ)qjξj
f
(
x+

q

2

)
g
(
x− q

2

)
dq. (3.10)
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3.3 (λ, ν)-Weyl transforms

Proof. For any positive number ε, we define the function Iε on R2d by

Iε(x, ξ) =Pf(λ)

∫
Rd

∫
Rd

e−
ε2|p|2

2 e−i⟨η(λ),x·p+ξ·q⟩Vλ,ν(f, g)(p, q)dpdq

=Pf(λ)
3
2 (2π)−

d
2

∫
Rd

∫
Rd

∫
Rd

e−
ε2|p|2

2 × e−i⟨η(λ),x·p+ξ·q−p·y⟩f
(
y +

q

2

)
g
(
y − q

2

)
dqdpdy

=Pf(λ)

∫
Rd

e
−i

d∑
j=1

ηj(λ)qjξj
∫
Rd

ε−d × e
|η(λ)|2|x−y|2

2ε2 f
(
y +

q

2

)
g
(
y − q

2

)
dpdy.

(3.11)

Now, for each q in Rd, we define the function Fq on Rd by

Fq(y) = f
(
y +

q

2

)
g
(
y − q

2

)
, y ∈ Rd. (3.12)

Then, by (3.11) and (3.12),

Iε(x, ξ) = Pf(λ)

∫
Rd

e−i
∑d

j=1 ηj(λ)qjξj (Fq ∗ φε) (x)dq, x, ξ ∈ Rd (3.13)

where

φε(x) = ε−dφ

(
η(λ) · x

ε

)
, φ(x) = e−

|x|2
2 , x ∈ Rd. (3.14)

Note that, for each fixed q in Rd,

Fq ∗ φε →
(∫

Rd

φ(x)dx

)
Fq = Pf(λ)(2π)

d
2Fq (3.15)

uniformly on compact subsets of Rd as ε → 0. Let N be any positive integer. Then, by (3.12)

and (3.14), there exists a positive constant CN such that

|(Fq ∗ φε) (x)| ≤ ∥Fq∥L∞(Rd) ∥φε∥L1(Rd)

= ∥Fq∥L∞(Rd) ∥φ∥L1(Rd)

≤ Pf(λ)(2π)
d
2 sup
y∈Rd

∣∣∣f (y + q

2

)
g
(
y − q

2

)∣∣∣
≤ CN

(
1 + |q|2

)−N
, x, q ∈ Rd,

(3.16)

for all positive numbers ε. So, by (3.13), (3.15) and (3.16), and the Lebesgue dominated

convergence theorem,

lim
ε→0

Iε(x, ξ) = Pf(λ)2(2π)
d
2

∫
Rd

e−i
∑d

j=1 ηj(λ)qjξjf
(
x+

q

2

)
g
(
x− q

2

)
dq, x, ξ ∈ Rd (3.17)

But, using (3.11) and again the Lebesgue dominated convergence theorem,

lim
ε→0

Iε(x, ξ) = Pf(λ)
3
2

∫
Rd

∫
Rd

e−i⟨η(λ),x·p+ξ·q⟩Vλ,ν(f, g)(p, q)dpdq

= Pf(λ)
3
2 (2π)d (Fν (Vλ,ν(f, g))) (x, ξ).

(3.18)

So, by (3.17) and (3.18),(3.10) is valid.
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3 Harmonic analysis on stratified Lie groups of step two

Definition 3.28. The (λ, ν)-Wigner transform Wλ,ν(f, g) for all f, g ∈ L2
(
Rd
)

is defined by

Wλ,ν(f, g)(x, ξ) = (Fλ (Vλ,ν(f, g))) (x, ξ)

= Pf(λ)
1
2 (2π)−

d
2

∫
Rd

e
−i

d∑
j=1

ηj(λ)qjξj
f
(
x+

q

2

)
g
(
x− q

2

)
dq.

Theorem 3.29 (The Moyal Identity). For all f1, g1, f2, and g2 in S
(
Rd
)
, we have

⟨Wλ,ν (f1, g1) ,Wλ,ν (f2, g2)⟩ = ⟨f1, f2⟩ ⟨g1, g2⟩ (3.19)

Proof. We define W̃ : S
(
R2d
)
→ S

(
R2d
)

by

(W̃F )(x, ξ) = Pf(λ)
1
2 (2π)−

d
2

∫
Rd

e
−i

d∑
j=1

ηj(λ)qjξj
F
(
x+

q

2
, x− q

2

)
dq, x, ξ ∈ Rd (3.20)

for all F in S
(
R2d
)
. Then, by (3.20) and the Plancherel theorem,〈

W̃F1, W̃F2

〉
=

∫
Rd

∫
Rd

(
W̃F1

)
(x, ξ)

(
W̃F2

)
(x, ξ)dxdξ

=

∫
Rd

{∫
Rd

(
W̃F1

)
(x, ξ)

(
W̃F2

)
(x, ξ)dξ

}
dx

=

∫
Rd

{∫
Rd

F1

(
x+

q

2
, x− q

2

)
F2

(
x+

q

2
, x− q

2

)
dq

}
dx

=

∫
Rd

∫
Rd

F1

(
x+

q

2
, x− q

2

)
F2

(
x+

q

2
, x− q

2

)
dqdx

(3.21)

for all F1 and F2 in S
(
R2d
)
. Let u = x+ q

2
and v = x− q

2
. Then, by (3.21), we get〈

W̃F1, W̃F2

〉
=

∫
Rd

∫
Rd

F1(u, v)F2(u, v)dudv

= ⟨F1, F2⟩ , F1, F2 ∈ S
(
R2d
)
.

Now, let f1, g1, f2, and g2 be in S
(
Rd
)
. Let F1 and F2 be functions on R2d defined by

F1(u, v) = f1(u)g1(v), u, v ∈ Rd

and

F2(u, v) = f2(u)g2(v), u, v ∈ Rd
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3.3 (λ, ν)-Weyl transforms

Therefore we have

⟨Wλ,ν (f1, g1) ,Wλ,ν (f2, g2)⟩ =
〈
W̃F1, W̃F2

〉
= ⟨F1, F2⟩

=

∫
Rd

∫
Rd

F1(u, v)F2(u, v)dudv

=

∫
Rd

∫
Rd

f1(u)g1(v)f2(u)g2(v)dudv

=

(∫
Rd

f1(u)f2(u)du

)(∫
Rd

g1(v)g2(v)dv

)
= ⟨f1, f2⟩ ⟨g1, g2⟩.

Corollary 3.30. Wλ,ν : S
(
Rd
)
× S

(
Rd
)
→ S

(
R2d
)

can be extended uniquely to a bilinear

operator

Wλ,ν : L
2
(
Rd
)
× L2

(
Rd
)
→ L2

(
R2d
)

such that

∥Wλ,ν(f, g)∥L2(R2d) = ∥f∥L2(Rd)∥g∥L2(Rd)

for all f and g in L2
(
Rd
)
.

Corollary 3.31. The Moyal identity and preceding corollary are also true for the (λ, ν)-Fourier-

Wigner transform: For all f1, g1, f2, and g2 in S
(
Rd
)
, we have

⟨Vλ,ν (f1, g1) , Vλ,ν (f2, g2)⟩ = ⟨f1, f2⟩ ⟨g1, g2⟩. (3.22)

3.3.3 (λ, ν)-Weyl transform

We can now introduce the (λ, ν)-Weyl transform and explicate its beautiful connection with

the Wigner transform.

Definition 3.32. Let a be a function in the Schwartz space S
(
R2d
)
. For λ ∈ Λ and ν ∈ Rk,

we define W λ,ν
a to be the (λ, ν) -Weyl transform associated to the function a by〈
W λ,ν
a f, g

〉
= Pf(λ)

1
2 (2π)−

d
2 (2π)−d/2

∫
Rd

∫
Rd

a(x, ξ)Wλ,ν(f, g)(x, ξ)dxdξ

= Pf(λ)
1
2 (2π)−

d
2

∫
Rd

∫
Rd

(Fλa) (p, q)Vλ,ν(f, g)(p, q)dpdq

= Pf(λ)(2π)−d
∫
Rd

∫
Rd

(Fλa) (p, q)
〈
πλ,ν(p, q)f, g

〉
dpdq.

Thus we can also write

W λ,ν
σ = Pf(λ)(2π)−d

∫
Rd

∫
Rd

(Fλa) (p, q)π
λ,ν(p, q)dpdq. (3.23)
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3 Harmonic analysis on stratified Lie groups of step two

Theorem 3.33. There exists a unique bounded linear operator Q : L2
(
R2d
)
→ B

(
L2
(
Rd
))

such that

⟨(Qa)f, g⟩ = Pf(λ)
1
2 (2π)−

d
2

∫
Rd

∫
Rd

a(x, ξ)Wλ,ν(f, g)(x, ξ)dxdξ (3.24)

and

∥Qa∥∗ ≤ Pf(λ)
1
2 (2π)−

d
2∥a∥L2(R2d) (3.25)

for all f and g in L2
(
Rd
)

and a in L2
(
R2d
)
, where ∥ · ∥∗ denotes the norm in B

(
L2
(
Rd
))

.

Proof. Let a ∈ S
(
R2d
)
. Then, for any f in S

(
Rd
)
, we define (Qa)f by

(Qa)f = W λ,ν
a f.

Then for all f and g in S
(
Rd
)
, by (3.23) we have

⟨(Qa)f, g⟩ =
〈
W λ,ν
a f, g

〉
= Pf(λ)

1
2 (2π)−

d
2

∫
Rd

∫
Rd

a(x, ξ)Wλ,ν(f, g)(x, ξ)dxdξ.
(3.26)

Therefore, by Theorem 3.29 and (3.26),

|⟨(Qa)f, g⟩| ≤ Pf(λ)
1
2 (2π)−

d
2∥a∥L2(R2dn)∥Wλ,ν(f, g)∥L2(R2d)

= Pf(λ)
1
2 (2π)−

d
2∥a∥L2(R2d)∥f∥L2(Rd)∥g∥L2(Rd).

(3.27)

Hence we have

∥(Qa)f∥L2(Rd) ≤ Pf(λ)
1
2 (2π)−

d
2∥a∥L2(R2d)∥f∥L2(Rd)

and

∥Qa∥∗ ≤ Pf(λ)
1
2 (2π)−

d
2∥a∥L2(R2d), a ∈ S

(
R2d
)
. (3.28)

Now, let a ∈ L2
(
R2d
)
. Let {ak}∞k=1 be a sequence of functions in S

(
R2d
)

such that ak → a in

L2
(
R2d
)

as k → ∞. Then, by (3.28),

∥Qak −Qal∥∗ ≤ Pf(λ)
1
2 (2π)−

d
2 ∥ak − al∥L2(R2d) → 0

as k, l → ∞. Thus, {Qak}∞k=1 is a Cauchy sequence in B
(
L2
(
Rd
))

. We define Qa to be the

limit in B
(
L2
(
Rd
))

of the sequence {Qak}∞k=1. This definition is independent of the choice

of the sequence {ak}∞k=1. Indeed, let {τk}∞k=1 be another sequence of functions in S
(
R2d
)

such

that τk → a in L2
(
R2d
)

as k → ∞. Then, again, by (3.28),

∥Qak −Qτk∥∗ ≤ Pf(λ)
1
2 (2π)−

d
2 ∥ak − τk∥L2(R2n) → 0

as k → ∞. Thus, the limits in B
(
L2
(
Rd
))

of {Qak}∞k=1 and {Qτk}∞k=1 are equal. Next, let
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3.3 (λ, ν)-Weyl transforms

a ∈ L2
(
R2d
)
, and let {ak}∞k=1 be a sequence of functions in S

(
R2d
)

such that ak → a in L2
(
R2d
)

as k → ∞. Then, by (3.28)

∥Qa∥∗ = lim
k→∞

∥Qak∥∗ ≤ Pf(λ)
1
2 (2π)−

d
2 lim
k→∞

∥ak∥L2(R2d) = Pf(λ)
1
2 (2π)−

d
2∥a∥L2(R2d)

and (3.25) is proved. Now, if f and g are in S
(
Rd
)
, then

⟨(Qa)f, g⟩ = lim
k→∞

⟨(Qak) f, g⟩

= lim
k→∞

Pf(λ)
1
2 (2π)−

d
2

∫
Rd

∫
Rd

ak(x, ξ)Wλ,ν(f, g)(x, ξ)dxdξ

= Pf(λ)
1
2 (2π)−

d
2

∫
Rd

∫
Rd

a(x, ξ)Wλ,ν(f, g)(x, ξ)dxdξ.

Finally, let f and g be in L2
(
Rd
)
. Then we pick sequences {fk}∞k=1 and {gk}∞k=1 in S

(
Rd
)

such

that fk → f in L2
(
Rd
)

and gk → g in L2
(
Rd
)

as k → ∞. We have

⟨(Qa)f, g⟩ = lim
k→∞

⟨(Qa)fk, gk⟩

= lim
k→∞

Pf(λ)
1
2 (2π)−

d
2

∫
Rd

∫
Rd

a(x, ξ)Wλ,ν(fk, gk)(x, ξ)dxdξ

= Pf(λ)
1
2 (2π)−

d
2

∫
Rd

∫
Rd

a(x, ξ)Wλ,ν(f, g)(x, ξ)dxdξ

It is obvious that Q : L2
(
R2d
)
→ B

(
L2
(
Rd
))

is the only bounded linear operator satisfying

(3.24) for all f and g in L2
(
Rd
)

and σ in L2
(
R2d
)
.

For a ∈ L2
(
R2d
)
, we defineDPf(λ)a(x, ξ) = a (x1η1(λ), · · · , xdηd(λ), ξ). Then the (λ, ν)-Weyl

transform also can be expressed in terms of the dialation DPf(λ), and the Fourier transform on

a 2-step stratified Lie group is in fact a (λ, ν)-Weyl transform on Rd, which are proved in the

following propositions.

Proposition 3.34. [VS21] Let a ∈ S
(
Rd × Rd

)
. Then the (λ, ν)-Weyl transform W λ,ν

a is given

by

W λ,ν
a = WDPf(λ)−1a.

Proposition 3.35. [VS21] Let f ∈ L1(G). Then

f̂(µ, ν) = Pf(λ)−1(2π)dW λ,ν

F−1
λ (fλ,ν)

for every λ ∈ Λ and ν ∈ Rt, where fλ,ν is defined by

fλ,ν(x, y) =

∫
Rk

∫
Rm

e−i⟨ν,r⟩e−i⟨λ,t⟩f(x, y, r, t)drdt.

We end this section by showing a relationship between Hilbert-Schmidt pseudo-differential

operators on L2(G) and (λ, ν)-Weyl transforms with symbol in L2
(
R2d+k+m

)
. The twisting
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3 Harmonic analysis on stratified Lie groups of step two

operator T : L2
(
R2d
)
→ L2

(
R2d
)

is defined by

(Tf)(x, y) = f
(
x+

y

2
, x− y

2

)
, x, y ∈ Rd, ∀f ∈ L

(
R2d
)
.

Clearly, T is a unitary operator and its the inverse is given by(
T−1f

)
(x, y) = f

(
x+ y

2
, x− y

)
, x, y ∈ Rd.

Let us define the operator Kλ : L
2
(
R2d
)
→ L2

(
R2d
)

by

(Kλf) (x, y) =
(
T−1F2

λf
)
(y, x), x, y ∈ Rd (3.29)

where F2
λ is the Fourier transform with respect to the second variable.

We need the following proposition whose proofs can be found in [Won98, Proposition 6.7].

Proposition 3.36. The linear operator Kλ on L2
(
R2d
)

defined by (3.29) has the following

properties:

(i) Kλ : L
2
(
R2d
)
→ L2

(
R2d
)

is a unitary operator.

(ii) Kλ = T−1(F2
λ)

−1.

(iii) Kλf̄ = (Kλf)
∗, f ∈ L2

(
R2d
)
.

(iv) Wλ,ν(f, g) = K−1
λ (f ⊗ ḡ), f, g ∈ L2

(
RN
)
.

We can now give the following important property of the (λ, ν)-Weyl transform.

Theorem 3.37. Let a ∈ L2
(
R2d
)
. Then W λ,ν

a is a Hilbert-Schmidt operator with kernel

Pf(λ)
1
2 (2π)−

d
2Kλa.

More precisely (
W λ,ν
a f

)
(x) = Pf(λ)

1
2 (2π)−

d
2

∫
Rd

Kλa(x, y)f(y)dy, x ∈ Rd.

Proof. Let f and g be in L2
(
Rd
)
. Then, by Theorem 3.33 and Proposition 3.36, we get〈

W λ,ν
a f, g

〉
= Pf(λ)

1
2 (2π)−

d
2

∫
Rd

∫
Rd

a(x, ξ)Wλ,ν(f, g)(x, ξ)dxdξ

= Pf(λ)
1
2 (2π)−

d
2 ⟨Wλ,ν(f, g), ā⟩

= Pf(λ)
1
2 (2π)−

d
2

〈
K−1
λ (f ⊗ ḡ), ā

〉
= Pf(λ)

1
2 (2π)−

d
2 ⟨f ⊗ ḡ, (Kλa)

∗⟩ .
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3.3 (λ, ν)-Weyl transforms

Therefore, 〈
W λ,ν
a f, g

〉
= Pf(λ)

1
2 (2π)−

d
2

∫
Rd

∫
Rd

f(x)ḡ(y)(Kλa)(y, x)dxdy

= Pf(λ)
1
2 (2π)−

d
2

∫
Rd

{∫
Rd

(Kλa)(y, x)f(x)dx

}
g(y)dy

= ⟨Skf, g⟩ , f, g ∈ L2
(
Rd
)

where we define the integral operator Sk : L2(Rd) → L2(Rd) by

Skf(x) =

∫
Rd

k(x, y)f(y)dy, x ∈ Rd, ∀f ∈ L2(Rd),

and k is the function on R2d defined by

k(x, y) = Pf(λ)
1
2 (2π)−

d
2 (Kλa)(x, y), x, y ∈ Rd

and the proof is complete.

3.3.4 The λ-twisted convolution

The aim of this section is to express the symbol of the product of two (λ, ν)-Weyl transforms

with symbols in L2
(
R2d
)

in terms of a twisted convolution, which we now define.

Definition 3.38. Let f and g be functions in L2
(
Cd
)
. Then the λ-twisted convolution f ∗ λg

of f and g is the function on Cd defined by

(f ∗λ g) (z) =
∫∫

Cd

f(z − w)g(w)e
i
2
λσ(z,w)dzdw, z ∈ Cd, (3.30)

where σ(z, w) is the bilinear, antisymmetric map of z and w, provided that the integral exists.

Proposition 3.39. Let f and g be measurable functions on Cd such that (f ∗λ g) (z) exists at

the point z in Cd. Then (g ∗−λ f) (z) exists, and

(f ∗λ g) (z) = (g ∗−λ f) (z)

Proof. In (3.30), we change the variable of integration from w to ζ by w = z − ζ. Then we get

(f ∗λ g) (z) =
∫
Cn

g(z − ζ)f(ζ)e
i
2
λσ(z,z−ζ)dζ (3.31)

By (3.30) and (3.31), we get

(f ∗λ g) (z) =
∫
Cn

g(z − ζ)f(ζ)e−
i
2
λσ(z,ζ)dζ

= (g ∗−λ f) (z).
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3 Harmonic analysis on stratified Lie groups of step two

Remark 3.40. It is clear from Proposition 3.39 that the twisted convolution is, in general,

noncommutative.

We can now give a formula for the product W λ,ν
σ W λ,ν

τ of two Weyl transforms W λ,ν
σ and Wτ

in terms of a twisted convolution of σ and τ.

Theorem 3.41. Let σ and τ be in L2
(
R2d
)
. Then

W λ,ν
σ W λ,ν

τ = W λ,ν
ω

where ω ∈ L2
(
R2d
)

and Fλω = Pf(λ)(2π)−d (Fλσ) ∗λ (Fλτ))

Proof. We begin with the case when both σ and τ are in S
(
R2d
)
. To do this, let φ and ψ be

in S
(
Rd
)
. Then, by Definition 3.24, 3.28 and Theorem 3.27, Fubini’s theorem and the adjoint

formula in the theory of the Fourier transform,〈
W λ,ν
σ φ, ψ

〉
= Pf(λ)

1
2 (2π)−d

∫
Rd

∫
Rd

(Fλσ)(p, q)⟨πλ,ν(p, q)φ, ψ⟩dqdp

= Pf(λ)
1
2 (2π)−d

∫
Rd

∫
Rd

(Fλσ)(p, q)

{∫
Rd

(πλ,ν(p, q)φ)(x)ψ(x)dx

}
dqdp

= Pf(λ)
1
2 (2π)−d

∫
Rd

ψ(x)

{∫
Cd

(Fλσ)(z)(πλ,ν(z)φ)(x)dz

}
dx,

and hence (
W λ,ν
σ φ

)
(x) = Pf(λ)1/2(2π)−d

∫
Cd

(Fλσ)(z)(πλ,ν(z)φ)(x)dz, x ∈ Rd (3.32)

for all φ in S
(
Rd
)
. But by the irreducible unitary representations and (3.32),(

πλ,ν(z)
(
W λ,ν
τ φ

))
(x) = ei⟨η(λ)·p,x+

1
2
q⟩ (W λ,ν

τ φ
)
(x+ q)

= ei⟨η(λ)·p,x+
1
2
q⟩ Pf(λ)1/2(2π)−d

∫
Cd

(Fλτ)(w)(πλ,ν(w)φ)(x+ q)dw

= Pf(λ)1/2(2π)−d
∫
Cd

(Fλτ)(w)(πλ,ν(z)πλ,ν(w)φ)(x)dw, x ∈ Rd,

(3.33)

for all φ in S
(
Rd
)
. Thus, by (3.32) and (3.33),(

W λ,ν
σ W λ,ν

τ φ
)
(x) = Pf(λ)(2π)−2d

∫
Cd

∫
Cd

(Fλσ)(z)(Fλτ)(w)(π
λ,ν(z)πλ,ν(w)φ)(x)dzdw, x ∈ Rd.

(3.34)

Now, by the definition of irreducible unitary representation on G, we get

πλ,ν(z)πλ,ν(w) = πλ,ν(z, 0)πλ,ν(w, 0) = πλ,ν(z + w, σ(z, w))

= πλ,ν(z + w)e−
i
2
λσ(z,w), z, w ∈ Cd.

(3.35)
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3.3 (λ, ν)-Weyl transforms

So, by (3.34) and (3.35),(
W λ,ν
σ W λ,ν

τ φ
)
(x) = Pf(λ)(2π)−2d

∫
Cd

∫
Cd

(Fλσ)(z)(Fλτ)(w)(π
λ,ν(z + w)φ)(x)e−

i
2
λσ(z,w)dzdw

(3.36)

for all φ in S
(
Rd
)
. Now, in (3.36), we change the variable z to ζ by z = ζ − w. Then, by

(3.31), we get(
W λ,ν
σ W λ,ν

τ φ
)
(x) = Pf(λ)(2π)−2d

∫
Cd

∫
Cd

(Fλσ)(ζ − w)(Fλτ)(w)(π
λ,ν(ζ)φ)(x)e−

i
2
λσ(ζ−w,w)dζdw

= Pf(λ)(2π)−2d

∫
Cd

∫
Cd

(Fλσ)(ζ − w)(Fλτ)(w)(π
λ,ν(ζ)φ)(x)e−

i
2
λσ(ζ,w)dζdw

= Pf(λ)(2π)−2d

∫
Cd

{∫
Cd

(Fλσ)(ζ − w)(Fλτ)(w)e
− i

2
λσ(ζ,w)dw

}
(πλ,ν(ζ)φ)(x)dζ

= Pf(λ)(2π)−2d

∫
Cd

(Fλσ) ∗λ (Fλτ)) (ζ)(π
λ,ν(ζ)φ)(x)dζ, x ∈ Rd.

(3.37)

Hence, by (3.32)and (3.37),

W λ,ν
σ W λ,ν

τ = W λ,ν
ω (3.38)

where

Fλω = Pf(λ)
1
2 (2π)−d (Fλσ) ∗λ (Fλτ)) . (3.39)

Now let {σk}∞k=1 and {τk}∞k=1 be sequences of functions in S
(
R2d
)

such that

σk → σ and τk → τ (3.40)

in L2
(
R2d
)

as k → ∞. Then, by (3.38)and (3.39)

W λ,ν
σk
W λ,ν
τk

= W λ,ν
ωk

(3.41)

where

Fλωk = Pf(λ)
1
2 (2π)−d (Fλσ)k ∗λ (Fλτ)k) (3.42)

for k = 1, 2, . . . . Now, by Theorem 3.33, and (3.40)

W λ,ν
σk

→ W λ,ν
σ and W λ,ν

τk
→ W λ,ν

τ (3.43)

in B
(
L2
(
Rd
))

as k → ∞. So, by (3.43)

W λ,ν
ωk

= W λ,ν
σk
W λ,ν
τk

→ W λ,ν
σ W λ,ν

τ (3.44)
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3 Harmonic analysis on stratified Lie groups of step two

in B
(
L2
(
Rd
))

as k → ∞. By (3.31) and (3.40)

(Fλσ)k ∗λ (Fλτ)k) (z) =

∫
Cd

(Fλσ)k(z − w)(Fλτ)k(w)e
− i

2
λσ(z,w)dw

→
∫
Cd

(Fλσ)(z − w)(Fλτ)(w)e
− i

2
λσ(z,w)dw

= (Fλσ) ∗λ (Fλτ)) (z)

(3.45)

for almost all z in Cd as k → ∞. On the other hand, we get

∥(Fλσ)k ∗λ (Fλτ)k − (Fλσ)j ∗λ (Fλτ)j∥L2(R2d)

= ∥(Fλσ)k ∗λ (Fλτ)k − (Fλσ)k ∗λ (Fλτ)j + (Fλσ)k ∗λ (Fλτ)j − (Fλσ)j ∗λ (Fλτ)j∥L2(R2d)

≤ ∥(Fλσ)k ∗λ (Fλ(τk − τj))∥L2(R2d) + ∥(Fλ(σk − σj)) ∗λ (Fλτ)j∥L2(R2d)

= Pf(λ)
3
2 (2π)

3d
2

∥∥∥W λ,ν
σk
W λ,ν
τk−τj

∥∥∥
HS

+ Pf(λ)
3
2 (2π)

3d
2

∥∥∥W λ,ν
σk−σjW

λ,ν
τj

∥∥∥
HS

≤ Pf(λ)
3
2 (2π)

3d
2

∥∥W λ,ν
σk

∥∥
HS

∥∥∥W λ,ν
τk−τj

∥∥∥
HS

+ Pf(λ)
3
2 (2π)

3n
2

∥∥∥W λ,ν
σk−σj

∥∥∥
HS

∥∥∥W λ,ν
τj

∥∥∥
HS

= Pf(λ)
1
2 (2π)

d
2

(
∥σk∥L2(R2d) ∥τk − τj∥L2(R2d) + ∥σk − σj∥L2(R2d) ∥τj∥L2(R2d)

)
→ 0

as k, j → ∞. Hence, by the Plancherel theorem, there exists a function ω such that

(Fλσ)k ∗λ (Fλτ)k → Pf(λ)
1
2 (2π)d(Fλω) (3.46)

in L2
(
R2d
)

as k → ∞. Therefore, by (3.46), there exists a subsequence {(Fλσ)k′ ∗λ (Fλτ)k′}∞k′=1

of {(Fλσ)k ∗λ (Fλτ)k}∞k=1 such that

(Fλσ)k′ ∗λ (Fλτ)k′ → (2π)d(Fλω) (3.47)

a.e. on R2d as k′ → ∞. Thus, by (3.45) and (3.47)

(2π)d(Fλω) = (Fλσ) ∗λ (Fλτ) (3.48)

a.e. on R2d. By (3.42), (3.46), and the Plancherel theorem,

ωk → ω (3.49)

in L2
(
R2d
)

as k → ∞. Thus, by Theorem 3.33 and (3.49),

W λ,ν
ωk

→ W λ,ν
ω (3.50)

in B
(
L2
(
Rd
))

as k → ∞. So, by (3.44), (3.48) and (3.50), the proof of the theorem is complete.
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3.4 Stone-von Neumann theorem

In this section, we prove the famous Stone-von Neumann theorem for 2-step nilpotent Lie groups

without the Moore-Wolf condition, which means that the unitary irreducible representation

(3.4) is uniqueness. We first prove that the representations introduced above are actually

irreducible.

Theorem 3.42. The representations πλ,ν(p, q, r, t) are irreducible for any λ ∈ Λ.

Proof. Suppose M ⊂ L2
(
Rd
)

is invariant under all πλ,ν(p, q, r, t). If M ̸= {0} we will show that

M = L2
(
Rd
)

proving the irreducibility of πλ,ν .

If M is a proper subspace of L2
(
Rd
)

invariant under πλ,ν(p, q, r, t) for all (p, q, r, t) ∈ G,

then there are nontrivial functions f and g in L2
(
Rd
)

such that f ∈M and g is orthogonal to

πλ,ν(p, q)f for all p, q ∈ Rd. This means that (πλ,ν(p, q)f, g) = 0. But by above proposition

∥Vλ,ν(f, g)∥2 = ∥f∥2∥g∥2,

this is a contradiction since both f and g are nontrivial. Hence M has to be the whole of

L2(Rd) and this proves that πλ,ν is irreducible.

We now prove the classic theorem of Stone and von Neumann for the 2-step stratified Lie

group, which says in effect that any irreducible unitary representation of G that is nontrivial

on the center is equivalent to some πλ,ν . Since the irreducible representations that are trivial on

the center are easily described, as we shall see below, we shall obtain a complete classification

of the irreducible unitary representations of G.

We first establish some technical results, which we will mainly use to prove the Stone-

von Neumann theorem. The integrated representations of Gaussian functions are of particular

interest and importance in this context.

Lemma 3.43. For a, b, c, d ∈ Rd we have

Vλ,ν(π
λ,ν(a, b)f, πλ,ν(c, d)g)(p, q) = e

1
2
iη(λ)·(qa+qc+bc−pb−pd−ad)Vλ,ν(f, g)(p+ a− c, q + b− d).

Proof. The claim follows from the identity

Vλ,ν(π
λ,ν(a, b)f, πλ,ν(c, d)g)(p, q) = ⟨πλ,ν(−c,−d)πλ,ν(p, q)πλ,ν(a, b)f, g⟩

109



3 Harmonic analysis on stratified Lie groups of step two

and the fact that

(−c,−d, 0, 0)(p, q, 0, 0)(a, b, 0, 0)

= (−c,−d, 0, 0)(p+ a, q + b, 0,
1

2
η(λ) · (aq − pb))

= (p+ a− c, q + b− d, 0,
1

2
η(λ) · (aq − pb) +

1

2
η(λ) · (−d(p+ a) + c(q + b)))

= (p+ a− c, q + b− d, 0,
1

2
η(λ) · (qa+ qc+ bc− pb− pd− ad)).

Corollary 3.44. The following three identities are special cases of Lemma 3.43.

1. Vλ,ν(πλ,ν(a, b)f, g)(p, q) = e
1
2
iη(λ)·(qa−pb)Vλ,ν(f, g)(p+ a, q + b),

2. Vλ,ν(f, πλ,ν(c, d)g)(p, q) = e
1
2
iη(λ)·(qc−dp)Vλ,ν(f, g)(p− c, q − d),

3. Vλ,ν(πλ,ν(a, b)f, πλ,ν(a, b)g)(p, q) = eiη(λ)·(qa−pb)Vλ,ν(f, g)(p, q).

The matrix elements of the integrated representation can also be expressed in terms of the

(λ, ν)-Fourier-Wigner transform. Indeed, we have

⟨πλ,ν(F )f, g⟩ =
∫∫

F (p, q)⟨πλ,ν(p, q)f, g⟩dpdq

= Pf(λ)−
1
2 (2π)

1
2

∫∫
F (p, q)Vλ,ν(f, g)(p, q)dpdq.

(3.51)

An interesting thing happens when we use the conjugate of a (λ, ν)-Fourier-Wigner transform

as input for the representation πλ,ν :

Lemma 3.45. If ϕ, ψ ∈ L2
(
Rd
)

and Φ = Pf(λ)
1
2 (2π)−

d
2Vλ,ν(ϕ, ψ) then

πλ,ν(Φ)f = ⟨f, ϕ⟩ψ for f ∈ L2
(
Rd
)
.

Proof. By (3.22) and (3.51), we have

⟨πλ,ν(Φ)f, g⟩ =
∫
Vλ,ν(ϕ, ψ)Vλ,ν(f, g)

= ⟨Vλ,ν(f, g), Vλ,ν(ϕ, ψ)⟩

= ⟨f, ϕ⟩⟨g, ψ⟩

= ⟨f, ϕ⟩⟨ψ, g⟩

whence the result is immediate.

Lemma 3.46. Let φ(x) := π− d
4 e−

x2

2 , a scalar multiple of the Gaussian probability distribution,

let Φ := Pf(λ)
1
2 (2π)−

d
2Vλ,ν(φ, φ) and Φab := Pf(λ)

1
2 (2π)−

d
2Vλ,ν(φ, π(a, b)φ). Then, we have

(i) Φ(p, q) = Pf(λ)
1
2 (2π)−

d
2 e−

p2+q2

4 ,
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3.4 Stone-von Neumann theorem

(ii) Φab(p, q) = Pf(λ)
1
2 (2π)−

d
2 e

1
2
iη(λ)·(qa−pb)e−

(p−a)2+(q−b)2

4 ,

(iii) πλ,ν(Φ)πλ,ν(a, b)πλ,ν(Φ) = e−
a2+b2

4 πλ,ν(Φ).

Proof. To begin with, note that for γ(x) := e−x
2/2 we have

(2π)−
d
2Fγ(x) = 1

(2π)
d
2

∫
Rd

γ(y)e−ixydy

= (2π)
d
2F−1γ(x) = e−

x2

2 .

(i) It follows that the Fourier transform for Gaussians:

Φ(p, q) = Pf(λ)
1
2 (2π)−

d
2Vλ,ν(φ, φ)(p, q)

= Pf(λ)
1
2 (2π)−

d
2π− d

2 Pf(λ)
1
2 (2π)−

d
2

∫
Rd

eiη(λ)·pxφ(x+
q

2
)φ(x− q

2
)dx

= Pf(λ)
1
2 (2π)−

d
2π− d

2 2−
d
2 e−

q2

4 (2π)dF−1γ(p/
√
2)

= Pf(λ)
1
2 (2π)−

d
2π− d

2 2−
d
2 e−

q2

4 (2π)
d
2 e−

p2

2

= Pf(λ)
1
2 (2π)−

d
2 e−

q2+p2

4 .

(ii) Once we have (i), an application of Corollary 3.44 (ii) gives:

Φab(p, q) = Pf(λ)
1
2 (2π)−

d
2Vλ,ν(φ, π

λ,ν(a, b)φ)

= Pf(λ)
1
2 (2π)−

d
2 e

1
2
iη(λ)·(qa−pb)Vλ,ν(φ, φ)(p− a, q − b)

= Pf(λ)
1
2 (2π)−

d
2 e

1
2
iη(λ)·(qa−pb)Φ(p− a, q − b)

= Pf(λ)
1
2 (2π)−

d
2 e

1
2
iη(λ)·(qa−pb)e−

(p−a)2+(q−b)2

4 .

Identity (iii) is due to (i) and repeated use of Lemma 3.45:

πλ,ν(Φ)πλ,ν(a, b)πλ,ν(Φ)f = πλ,ν(Φ)⟨f, φ⟩πλ,ν(a, b)φ = ⟨f, φ⟩⟨πλ,ν(a, b)φ, φ⟩φ

= Vλ,ν(φ, φ)(a, b)⟨f, φ⟩φ = e−
a2+b2

4 πλ,ν(Φ)f.

Theorem 3.47. Let π be any unitary representation of G on a Hilbert space H, such that for

some λ ∈ Λ, π(0, 0, 0, t) = eiλtI. Then H =
⊕

Hα where the Hα are mutually orthogonal

subspaces of H, each invariant under π, such that π|Hα is unitarily equivalent to πλ,ν for each

α and some ν ∈ Rk. In particular, if π is irreducible then π is equivalent to πλ,ν.

Proof. The proof is similar to the proof for the Heisenberg group in [Fol89], we give it here for

completeness. The key tools in this proof are the (λ, ν)-Fourier-Wigner transform and Gaussian

functions as well as their analogues for general unitary representations of G on any Hilbert space
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3 Harmonic analysis on stratified Lie groups of step two

H. Treating these objects, we adopt the notation from above:

φ(x) := π− d
4 e−

x2

2 ,

φab(x) := πλ,ν(a, b)φ(x) = π− d
4 eiη(λ)·(ax+

1
2
ab)e−

(x+b)2

2 ,

Φ := Pf(λ)
1
2 (2π)−

d
2Vλ,ν(φ, φ),

Φab := Pf(λ)
1
2 (2π)−

d
2Vλ,ν(φ, π

λ,ν(a, b)φ) = e
1
2
iη(λ)·(qa−bp)e−

(p−a)2+(q−b)2

4 .

(3.52)

Let π be an arbitrary unitary representation of G on a Hilbert space H. First we set π(p, q) =

π(p, q, 0, 0) and we have

π(p, q)π(r, s) = π(p+ r, q + s,
1

2
η(λ) · (ps− qr)) = e

1
2
iη(λ)·(ps−qr)π(p+ r, q + s).

We consider the integrated version of π,

π(F ) =

∫∫
F (p, q)πλ,ν(p, q)dpdq, F ∈ L1

(
R2d
)
,

then we have

π(F )π(a, b) = π(G) where G(p, q) = e
1
2
iη(λ)·(aq−bp)F (p− a, q − b), (3.53)

and

π(a, b)π(F ) = π(H) where H(p, q) = e
1
2
iη(λ)·(bp−aq)F (p− a, q − b). (3.54)

Moreover, π is faithful on L1(R2d). Indeed, if π(F ) = 0 then, by (3.53) and (3.54), for any

u, v ∈ H and a, b ∈ Rd

0 = ⟨π(a, b)π(F )π(−a,−b)u, v⟩ =
∫∫

e
1
2
iη(λ)·(bp−aq)F (p, q)⟨π(p, q)u, v⟩dpdq.

Thus by the Fourier inversion theorem,

F (p, q)⟨π(p, q)u, v⟩ = 0 for a.e. (p, q)

and since u and v are arbitary, F = 0 a.e.

Now let us take F to be the function Φ defined above. By (3.51)-(3.54),

π(Φ)π(a, b)π(Φ) = e−
(a2+b2)

4 π(Φ).

In particular, taking a = b = 0 we obtain π(Φ)2 = π(Φ), and since Φ is even and real it is

easily seen that π(Φ) is self-adjoint. Thus π(Φ) is an orthogonal projection which is nonzero

since Φ ̸= 0 and π is faithful.
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Let R denote the range of π(Φ). If u, v ∈ R then u = π(Φ)u and v = π(Φ)v, so

⟨π(p, q)u, π(r, s)v⟩ = ⟨π(−r,−s)π(p, q)π(Φ)u, π(Φ)v⟩

= e
1
2
iη(λ)·(ps−qr)⟨π(Φ)π(p− r, q − s)π(Φ)u, v⟩

= e
1
2
iη(λ)·(ps−qr)e−

(p−r)2+(q−s)2

4 ⟨u, v⟩.

(3.55)

Let {vα} be an orthonormal basis for R, and let Hα be the closed linear span of
{
π(p, q)vα : p, q ∈ Rd

}
.

By (3.55), Hα ⊥ Hβ for α ̸= β, and Hα is invariant under π by definition. Hence N = (
⊕

Hα)
⊥

is also invariant under π, and we have π(Φ)|N = 0. But this implies that N = {0}, for otherwise

we could apply the above reasoning to π|N to conclude that π(Φ)|N were a nonzero orthogonal

projection.

We claim that π|Hα is equivalent to πλ,ν for all α. Indeed, fix an α and let vpq = π(p, q)vα.

Then by (3.55)

⟨vpq, vrs⟩ = ⟨ϕpq, ϕrs⟩ for all p, q, r, s.

It follows that if u =
∑
ajkv

pjqk and f =
∑
ajkϕ

pjqk then ∥u∥H = ∥f∥2, and in particular u = 0

iff f = 0. Therefore the correspondence vpq → ϕpq extends by linearity and continuity to a

unitary map from Hα to L2
(
Rd
)

that intertwines π|Hα and ρ.

3.5 Hermite and special Hermite functions

The seminal work by Fourier, published in 1822 [Fou88], about the solution of the heat equation

had a deep impact in physics and mathematics as is well known. Roughly speaking, the Fourier

method decomposes functions into a superposition of “special functions” [AAR99; Fol89]. In

addition, the Fourier method makes use of different types of special functions; each of these

types is often related with a group. For Euclidean space it is Bessel functions. The interplay

between the properties of Bessel functions and the Euclidean harmonic analysis is beautifully

described in Stein and Weiss [SW71]. For noncompact Rank one symmetric spaces it is Legendre

and Jacobi functions, which is given in [AT17]. For the Heisenberg group it is the Lagueere

and Hermite polynomials, which can be found in [Fol89] and [Tha93]. Based on the methods

for the Heisenberg group, it is nature to develop harmonic analysis on stratified Lie groups by

the Lagueere and Hermite functions.

In this section we introduce and study some properties of the Hermite and special Hermite

functions. For the 2-step stratified Lie group, these functions are eigenfunctions of the rescaled
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3 Harmonic analysis on stratified Lie groups of step two

harmonic oscillator and the λ-twisted Laplacian, respectively. As we will see later, the two

operators are directly related to the sub-Laplacian on the 2-step stratified Lie group.

We start with the definition of the Hermite polynomials. For α = 0, 1, 2, . . ., and x ∈ R we

define Hα(x) by the equation

Hα(x) = (−1)α
(
dα

dtα

{
e−x

2
}
ex

2

)
.

The Hermite functions are then defined by

hα(x) = Hα(x)e
− 1

2
x2 .

First of all we have the following generating function identity for the Hermite polynomials.

If |r| < 1, then we have
∞∑
α=0

Hα(x)

α!
rα = e2xr−r

2

. (3.56)

It follows from (3.56) that

H ′
α(x) = 2αHα−1(x), Hα(x) = 2xHα−1(x)−H ′

α−1(x).

Defining the creation operator

A = − d

dx
+ x

and the annihilation operator

A∗ =
d

dx
+ x.

Then we have

Ahα(x) = hα+1(x) and A∗hα(x) = 2αhα−1(x).

Now, an easy calculation shows that H = − d2

dx2
+ x2, the harmonic oscillator, can be written

in the form

H =
1

2
(AA∗ + A∗A).

The Hermite functions hα are then eigenfunctions of this operator and

H(hα) = (2α + 1)hα.

Note that
∫∞
−∞ hα(x)

2dx = 2αα!
√
π, then the normalised Hermite functions are defined by

eα(x) =
(
2α
√
πα!
)− 1

2 Hα(x)e
− 1

2
x2 .

These functions form an orthonormal basis for L2(R). The higher dimensional Hermite func-

tions denoted by Φα are then obtained by taking tensor products. Thus for any multi-index α
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3.5 Hermite and special Hermite functions

and x ∈ Rd, we define

Φα(x) =
d∏
j=1

eαj
(xj) .

The family {Φα} is then an orthonormal basis for L2
(
Rd
)

and in particular that for any

i, j ∈ Nd,

(
Φαi

,Φαj

)
L2(Rd)

:=

∫
Rd

Φαi
(x)Φαj

(x)dx =

 1 if i = j,

0 otherwise.
(3.57)

Furthermore, the definition of the Hermite functions entails that for any α ∈ Nd and 1 ≤ j ≤ d,

there holds

Ajeα =
√
2 (αj + 1)eα+δj

and by duality, we get

A∗
jeα =

√
2αjeα−δj ,

where α ± δj := (α1, · · · , αj ± 1, · · · , αn). Also, combining the action of Aj and A∗
j gives, for

α ∈ Nd and 1 ≤ j ≤ d, the harmonic oscillator

H :=
1

2

d∑
j=1

(AjA
∗
j + A∗

jAj) = −∆+ |x|2,

and we have

HΦα = (2|α|+ d)Φα,

where |α| = α1 + α2 + · · ·+ αd.

Now, if η = (η1, . . . , ηd) ∈
(
R∗

+

)d and α ∈ Nd, we define the rescaled Hermite function Φλ
α

by

Φλ
α := |Pf(λ)|

1
4Φα

(
η

1
2
1 ·, η

1
2
1 ·, · · · , η

1
2
d ·
)
.

These functions satisfy identities similar to those of the usual Hermite functions. In particular,

they also form an orthonormal basis of L2
(
Rd
)

and for α ∈ Nd, η = (η1, . . . , ηd) ∈
(
R∗

+

)d, we

have the rescaled harmonic oscillator

H(λ)Φλ
α := (−∆+ |η · x|2)Φλ

α =
d∑
j=1

ηj(λ)(2αj + 1)Φλ
α.

Now let us study the action of the Fourier transform on derivatives. Straightforward computa-

tions show that

F (Zjf) (λ, ν) = F(f)(λ, ν)Qλ
j , F

(
Z̄jf

)
(λ, ν) = F(f)(λ, ν)Q̄λ

j
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3 Harmonic analysis on stratified Lie groups of step two

where the operators Qλ
j and Q̄λ

j are defined by

Qλ
j = ∂ξj − ηj(λ)ξj and Q̄λ

j = ∂ξj + ηj(λ)ξj.

We therefore can write

F (Lf) (λ, ν)(u) = F(f)(λ, ν)
(
H(λ) + |ν|2

)
(u).

3.5.1 Mehler’s formula for the rescaled harmonic oscillator

In this section, we discuss the Mehler’s formula for the rescaled harmonic oscillator with the

parameter |r| = 1. We begin with the following formulas:

Lemma 3.48. For α in C with | argα| ≤ π
2
,Reα ≥ 0 and α ̸= 0,∫

R
e−αx

2

dx = π
1
2α− 1

2 (3.58)

which is the improper integration in the sense of Riemann.

Immediately, Lemma 3.48 gives the following lemma, which can be regarded as the Fourier

transform of tempered distribution e−αx2 with Reα ≥ 0:

Lemma 3.49. For all ξ in R and α in C with Reα = 0,

(2π)−
1
2

∫
R
e−ixξe−αx

2

dx =

(2α)−
1
2 e−

ξ2

4α , α ̸= 0,

(2π)
1
2 δ(ξ), α = 0,

which is Fourier transform in the sense of tempered distribution S ′(R) and δ is Dirac’s delta

function. For all ξ in R and α in C with Reα > 0,

(2π)−
1
2

∫
R
e−ixξe−αx

2

dx = (2α)−
1
2 e−

ξ2

4α

which is the improper integration in the sense of Riemann.

For all λ in Λ and η(λ) = (η1(λ), η2(λ), · · · , ηd(λ)), we now define rescaled harmonic oscil-

lators on R by

eλk(x) = |ηk(λ)|
1
4 ek

(
|ηk(λ)|

1
2x
)
, k = 0, 1, 2 . . . .

We put α ∈ Nd and

Φλ
α(x) = eλα1

(x1) · · · eλαd
(xd)

for x = (x1, . . . , xd) in Rd. Lemma 3.49 gives to verify the following Mehler’s formula with the

parameter |r| = 1.
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Theorem 3.50. For all λ in Λ, x and y in Rd and all r ∈ C with |r| = 1 and r ̸= ±1,

Mλ
d (x, y, r) =

∑
α

Φλ
α(x)Φ

λ
α(y)r

|α| = Pf(λ)1/2

π
d
2 (1−r2)

d
2
e
− 1

2
|η(λ)| 1+r2

1−r2
(x2+y2)+ 2|η(λ)|r

1−r2
x·y (3.59)

Proof. We prove in d = 1 case. It follows from

g(x) = e−x
2

=
1

π
1
2

∫
R
e−u

2+2ixudu, ξ ∈ R

that for all x in R
dkg

dxk
(x) =

1

π
1
2

∫
R

(
d

dx

)k
e−u

2+2ixudu

=
1

π
1
2

∫
R
(2iu)ke−u

2+2ixudu.

(3.60)

So, the definition of rescaled harmonic oscillators and (3.60) gives

Mλ
1 (x, y, r) =

∞∑
k=0

eλk(x)e
λ
k(y)r

k

=
∞∑
k=0

|η(λ)| 12
π

1
2

e
|η(λ)|

2 (x2+y2) (2kk!)−1
{
dkg

dxk

(
|η(λ)|

1
2x
)}{dkg

dyk

(
|η(λ)|

1
2y
)}

rk

=
|η(λ)| 12
π

1
2

e
|η(λ)|

2 (x2+y2)
∞∑
k=0

(
2kk!

)−1 1

π
1
2

×
∫
R
(2iu)ke−u

2+2|η(λ)|
1
2 xuidu

{
dkg

dyk

(
|η(λ)|

1
2y
)}

rk

=
|η(λ)| 12
π

e
|η(λ)|

2 (x2+y2)
∞∑
k=0

∫ ∞

R

(uri)k

k!

{
dkg

dyk

(
|η(λ)|

1
2y
)}

e−u
2+2|η(λ)|

1
2 xuidu.

Now, using Taylor’s theorem, we have

g
(
|η(λ)|

1
2y − uri

)
=

∞∑
k=0

(uri)k

k!

{
dkg

dyk

(
|η(λ)|

1
2y
)}

.

Since r ∈ C with |r| = 1 and r ̸= ±1, we have Re (1− r2) > 0. Then we have∣∣∣∣∣
∫
R

∞∑
k=0

(uri)k

k!

{
dkg

dyk

(
|η(λ)|

1
2y
)}

e−u
2+2|η(λ)|

1
2 xuidu

∣∣∣∣∣
=

∣∣∣∣∫
R
e
−
(
|η(λ)|

1
2 y−uri

)2
e−u

2+2|η(λ)|
1
2 xuidu

∣∣∣∣
≤
∫
R

∣∣∣e−|η(λ)|y2−(1−r2)u2
∣∣∣ du

≤ e−|η(λ)|y2 π
1
2

(1− Re r2)
1
2

.
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Therefore, Lebesgue’s dominated convergence theorem gives

Mλ
1 (x, y, r) =

|η(λ)| 12
π

e
|η(λ)|

2 (x2+y2)
∫
R
e
−
(
|η(λ)|

1
2 y−uri

)2
e−u

2+2|η(λ)|
1
2 xuidu

=
|η(λ)| 12
π

e
|η(λ)|

2 (x2−y2)
∫
R
e−(1−r

2)u2+2|η(λ)|
1
2 (x−yr)uidu

=
|η(λ)| 12
π

e
|η(λ)|

2 (x2−y2)e
− |η(λ)|(x−yr)2

1−r2

∫
R
e
−(1−r2)

(
u− |η(λ)|

1
2 (x−yr)

1−r2
i

)2

du.

Hence, using Cauchy integral theorem and Lemma 3.49, we have

Mλ
1 (x, y, r) =

|η(λ)| 12
π

e
|η(λ)|

2 (x2−y2)e
− |η(λ)|(x−yr)2

1−r2

∫
R
e−(1−r

2)u2du

=
|η(λ)| 12

π
1
2 (1− r2)

1
2

e
|η(λ)|

2 (x2−y2)− |η(λ)|
1−r2

(x−yr)2

=
|η(λ)| 12

π
1
2 (1− r2)

1
2

e
−

ηj(λ)

2
1+r2

1−r2
(x2+y2)+ 2|η(λ)|r

1−r2
xy

(3.61)

and the proof is complete.

Proposition 3.51. For all λ ∈ Λ, φ ∈ S
(
R2d
)

and r ∈ C with |r| = 1 and r ̸= ±1,

lim
r→±1
|r|=1

〈∑
α

Φλ
α(x)Φ

λ
α(y)r

|α|, φ

〉
= ⟨δ(x∓ y), φ⟩

where δ(x± y) = δ (x1 ± y1) · · · δ (xd ± yd).

Proof. We consider 2-dimensional case. Let r be in C with |r| = 1 and r ̸= ±1. By (3.61), for

all φ ∈ S (R2),〈
Mλ

1 (x, y, r), φ(x, y)
〉
=

〈
|η(λ)| 12

π
1
2 (1− r2)

1
2

e
− |η(λ)|

2
1+r2

1−r2
(x2+y2)+ 2|η(λ)|r

1−r2
xy
, φ(x, y)

〉

=
|η(λ)| 12

π
1
2 (1− r2)

1
2

〈
e−

|η(λ)|
4 { 1+r

1−r
(x−y)2+ 1−r

1+r
(x+y)2}, φ(x, y)

〉
where 1+r

1−r ,
1−r
1+r

∈ iR by |r| = 1. Putting 2s = x− y and 2t = x+ y,〈
Mλ

1 (x, y, r), φ(x, y)
〉
=

|η(λ)| 12

π
1
2 (1− r2)

1
2

∫∫
R2

e−|η(λ)|{ 1+r
1−r

s2+ 1−r
1+r

t2}φ(t+ s, t− s)2dsdt.

If we put u = |η(λ)|
1
2 (1+r)

1
2

(1−r)
1
2

s, then we have u2 ∈ iR and

〈
Mλ

1 (x, y, r), φ(x, y)
〉
=

2

π
1
2 (1 + r)

∫∫
R2

e−u
2− ||(1−r)

1+r
t2φ

×

(
t+

(1− r)
1
2

|η(λ)| 12 (1 + r)
1
2

u, t− (1− r)
1
2

|η(λ)| 12 (1 + r)
1
2

u

)
dudt.

Then we take the limit as r tends to 1 for |r| = 1, by Lebesgue’s dominated convergence theorem
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and Lemma 3.48, we have

lim
r→+1

〈
Mλ

1 (x, y, r), φ(x, y)
〉
= lim

r→+1

2

π
1
2 (1 + r)

∫∫
R2

e−u
2− |η(λ)| 1−r

4
1+r

t2φ

×

(
t+

(1− r)
1
2

|η(λ)| 12 (1 + r)
1
2

u, t− (1− r)
1
2

|η(λ)| 12 (1 + r)
1
2

u

)
dudt

=
1

π
1
2

∫∫
R2

e−u
2

φ(t, t)dudt =

∫
R
φ(t, t)dt = ⟨δ(x− y), φ(x, y)⟩.

On the other hand, if we put v = |η(λ)|
1
2 (1−r)

1
2

(1+r)
1
2

t, we have

〈
Mλ

1 (x, y, r), φ(x, y)
〉
=

2

π
1
2 (1− r)

∫∫
R2

e−
|η(λ)|(1+r)

1−r
s2−v2φ

×

(
(1 + r)

1
2

|η(λ)| 12 (1− r)
1
2

v + s,
(1 + r)

1
2

|η(λ)| 12 (1− r)
1
2

v − s

)
dvds

Similarly, taking the limit as r tends to −1,

lim
r→−1

〈
Mλ

1 (x, y, r), φ(x, y)
〉
= ⟨δ(x+ y), φ(x, y)⟩

and the proof is complete.

3.5.2 Special Hermite functions

In this section, we define and prove some important properties of special Hermite functions for

the rescaled harmonic oscillator. For each α, β ∈ Nd and z ∈ Cd, we define the special Hermite

functions Φλ
α,β by

Φλ
α,β(z) = Vλ,ν(Φ

λ
α,Φ

λ
β)(p, q)

= Pf(λ)
1
2 (2π)−

d
2

∫
Rd

eiη(λ)·pxΦλ
α

(
x+

q

2

)
Φλ
β

(
x− q

2

)
dx.

Thus Φλ
α,β(z) are the (λ, ν)-Fourier-Wigner transforms of the Hermite functions Φλ

α and Φλ
β.

The connection of
{
Φλ
α,β : α, β = 0, 1, 2, . . .

}
with {Φα,β : α, β = 0, 1, 2, . . .} is given by the

following formula.

Theorem 3.52. For λ ∈ Λ and α, β = 0, 1, 2, . . .,

Φλ
α,β(p, q) = Pf(λ)

1
2Φα,β

(
η(λ) · p√
|η(λ)|

,
√
|η(λ)|q

)
, p, q ∈ Rd.

119



3 Harmonic analysis on stratified Lie groups of step two

Proof. For λ ∈ Λ and α, β = 0, 1, 2, . . .,

Φλ
α,β(p, q)

=Vλ,ν(Φ
λ
α,Φ

λ
β)(p, q)

=Pf(λ)
1
2 (2π)−

d
2

∫
Rd

eiη(λ)·pxΦλ
α

(
x+

q

2

)
Φλ
β

(
x− q

2

)
dx

=(2π)−
d
2 Pf(λ)

∫
Rd

eiη(λ)·pxΦα

(√
|η(λ)|

(
x+

q

2

))
Φβ

(√
|η(λ)|

(
x− q

2

))
dx

=Pf(λ)
1
2 (2π)−

d
2

∫
Rd

e
iη(λ)·p x√

|η(λ)|Φαj

(
x+

√
|η(λ)|q

2

)
Φβk

(
x−

√
|η(λ)|q

2

)
dx

=Pf(λ)
1
2Φα,β

(
η(λ) · p√
|η(λ)|

,
√

|η(λ)|q

)
for all p and q in Rd.

The Mehler’s formula (Theorem 3.50) with the parameter |r| = 1 and Lemma 3.49 give the

following proposition:

Proposition 3.53. For |r| = 1 with r ̸= ±1, we have
∞∑
k=0

Φλ
k,k(p, q)r

k =
Pf(λ)

1
2

(2π)
d
2 (1− r)

e−
|η(λ)|

4
1+r
1−r (p2+q2)

Proof. We only consider the 1-dimension case and first consider in the case of η(λ) = 1. By

(3.61), for |r| = 1,
∞∑
k=0

ek

(
x+

q

2

)
ek

(
x− q

2

)
rk =

1

π
1
2 (1− r2)

1
2

e
− 1

2
1+r2

1−r2

(
x2+ q2

4

)
+ 2r

1−r2

(
x2− q2

4

)

=
1

π
1
2 (1− r2)

1
2

e−
1−r
1+r

x2− 1
4

1+r
1−r

q2 .

So we have
∞∑
k=0

ek,k(p, q)r
k =

∞∑
k=0

{
1

(2π)
1
2

∫
R
eipxek

(
x+

q

2

)
ek

(
x− q

2

)
dx

}
rk

=
1

(2π)
1
2

∫
R
eipx

{
∞∑
k=0

ek

(
x+

q

2

)
ek

(
x− q

2

)
rk

}
dx

=
1

(2π)
1
2

∫
R
eipx

1

π
1
2 (1− r2)

1
2

e−
1−r
1+r

y2− 1
4

1+r
1−r

q2dx

=
1

π
1
2 (1− r2)

1
2

e−
1
4

1+r
1−r

q2 1

(2π)
1
2

∫
R
eipxe−

1−r
1+r

x2dx.

But if |r| = 1, 1−r
1+r

is in iR. So, by Lemma 3.49,

1

(2π)
1
2

∫
R
eipxe−

1−r
1+r

x2dx = 2−
1
2

(
1 + r

1− r

) 1
2

e−
1
4

1+r
1−r

p2 .
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Then we have
∞∑
k=0

ek,k(p, q)r
k =

1

(2π)
1
2 (1− r)

e−
1
4

1+r
1−r (p2+q2).

Because of Theorem 3.52, we have
∞∑
k=0

eλk,k(p, q)r
k =

∞∑
k=0

|η(λ)|
1
2 ek,k

(
η(λ) · p
|η(λ)| 12

, |η(λ)|
1
2 q

)
rk

=
|η(λ)| 12

(2π)
1
2 (1− r)

e−
|η(λ)|

4
1+r
1−r (p2+q2)

as asserted.

We also consider to take the limit as r → ±1.

Proposition 3.54. For all φ ∈ S
(
R2d
)

and λ ∈ Λ,

lim
r→1

〈
∞∑
k=0

Φλ
k,k(p, q)r

k, φ(p, q)

〉
=

(2π)
d
2

Pf(λ)
1
2

⟨δ(p, q), φ(p, q)⟩,

and

lim
r→−1

∞∑
k=0

Φλ
k,k(p, q)r

k =
Pf(λ)

1
2

(2π)
d
2

.

Proof. We still consider the case d = 1. Putting p = 2(1−r)
1
2

|η(λ)|
1
2 (1+r)

1
2
u and q = 2(1−r)

1
2

|η(λ)|
1
2 (1+r)

1
2
v, we

have (
∞∑
k=0

Φλ
k,k(p, q)r

k, φ(q, p)

〉

=
|η(λ)| 12

(2π)
1
2 (1− r)

4(1− r)

|η(λ)|(1 + r)

∫∫
R2

e−u
2−v2φ×

(
2(1− r)

1
2

|η(λ)| 12 (1 + r)
1
2

u,
2(1− r)

1
2

|η(λ)| 12 (1 + r)
1
2

v

)
dudv

=
23/2

|η(λ)| 12π 1
2 (1 + r)

∫∫
R2

e−u
2−v2φ×

(
2(1− r)

1
2

|η(λ)| 12 (1 + r)
1
2

u,
2(1− r)

1
2

|η(λ)| 12 (1 + r)
1
2

v

)
dudv.

Then it follows from Lebesgue’s dominated convergence theorem that

lim
r→1

〈
∞∑
k=0

Φλ
k,k(p, q)r

k, φ(q, p)

〉
=

2
1
2

|η(λ)| 12π 1
2

φ(0, 0)

∫∫
R2

e−u
2−v2dudv

=
2

1
2π

1
2

|η(λ)| 12
φ(0, 0) =

(2π)
1
2

|η(λ)| 12
⟨δ(q, p), φ(q, p)⟩

On the other hand, according to Proposition 3.53, simple computation complete the proof.

We now show that
{
Φλ
α,β

}
is an orthonormal basis for L2

(
Cd
)
.

Proposition 3.55. The special Hermite functions form a complete orthonormal system for

L2
(
Cd
)
.
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Proof. The orthonormality follows from the properties of the (λ, ν)-Fourier-Wigner transform.

To prove completeness, we use the Plancherel theorem for the (λ, ν)-Weyl transform. Suppose

f ∈ L2
(
Cd
)

is orthogonal to all Φλ
α,β. Using the definition of Φλ

α,β this means that∫
Cd

f̄(z)
(
πλ,ν(z)Φλ

α,Φ
λ
β

)
dz =

(
W λ,ν(f̄)Φλ

α,Φ
λ
β

)
= 0.

The completeness of
{
Φλ
α

}
in L2

(
Rd
)

proves that W λ,ν(f̄) = 0 which implies f = 0 in view of

the Plancherel theorem for the (λ, ν)-Weyl transform.

3.5.3 Eigenvalue problems of the λ-twisted sub-Laplacian

We now show that our special Hermite functions are eigenfunctions of the λ-twisted operator

Lλ as in Section 3.2.4. For j = 1, 2, . . . , d, we define the linear partial differential operators Zλ
j

and Z̄λ
j by

Zλ
j = ∂zj +

1

2
iB(λ)z̄j,

and

Z̄λ
j = ∂z̄j −

1

2
iB(λ)zj.

Then

Lλ = −1

2

d∑
j=1

(
Zλ
j Z̄

λ
j + Z̄λ

j Z
λ
j

)
−

k∑
l=1

R2
l

= −∆z −∆r +
1

4
|z|2|λ|2 − iN,

where N is the operator

N = i

d∑
j=1

{
−
(
B(λ)y, ej

) ∂

∂xj
+
(
x,B(λ)ej

) ∂

∂yj

}
,

We now prove that Φλ
α,β are eigenfunctions of the operator Lλ.

Theorem 3.56. For j = 1, 2, . . . , d, one has the formulas

(1)
(
Zλ
j Φ

λ
α,β

)
= iηj(λ)

1
2 (2αj)

1
2Φλ

α,β−ej ;

(2)
(
Z̄λ
j Φ

λ
α,β

)
= iηj(λ)

1
2 (2αj + 2)

1
2Φλ

α,β+ej
;

(3) Lλ(Φλ
α,β) =

(
d∑
j=1

ηj(λ)(2αj + 1) +
k∑
j=1

ν2j

)
Φλ
α,β.

Proof. As the functions Φλ
α,β(z) are products of Φλ

αj ,βj
(zj), so we consider the functions

Φλ
j,l(p, q) = ηj(λ)

1
2 (2π)−

1
2

∫ +∞

−∞
eiηj(λ)·pxΦλ

j (x+
q

2
)Φλ

l (x−
q

2
)dx.
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Differentiating with respect to p and writing 2x = (x+ q
2
) + (x− q

2
) we have

∂Φλ
j,l

∂p
(p, q) = iηj(λ)

1
2 (2π)−

1
2

∫ ∞

−∞
ηj(λ)xe

iηj(λ)·pxΦλ
j

(
x+

q

2

)
Φλ
l

(
x− q

2

)
dx

= J (+)(p, q) + J (−)(p, q),

where

J (±)(p, q) =
1

2
iηj(λ)

1
2 (2π)−

1
2

∫ ∞

−∞
ηj(λ)e

iηj(λ)·px
(
x± q

2

)
Φλ
j

(
x+

q

2

)
Φλ
l

(
x− q

2

)
dx.

Next, for all p and q in R

i
∂Φλ

j,l

∂q
(p, q) = K(1)(p, q)−K(2)(p, q)

where

K(1)(p, q) =
i

2
ηj(λ)

1
2 (2π)−

1
2

∫ ∞

−∞
eiηj(λ)·px(Φλ

j )
′
(
x+

q

2

)
Φλ
l

(
y − q

2

)
dx

and

K(2)(p, q) =
i

2
ηj(λ)

1
2 (2π)−

1
2

∫ ∞

−∞
eiηj(λ)·pxΦλ

j

(
x+

q

2

)
(Φλ

l )
′
(
x− q

2

)
dx.

Now, by the construction at beginning we get, for l = 0, 1, 2, . . .,(
x− d

dx

)
el(x) = (2l + 2)

1
2 el+1(x), x ∈ R,

and, (
x+

d

dx

)
el(x) = (2l)

1
2 el−1(x), x ∈ R.

So, for j = 0, 1, 2, . . . and l = 1, 2, . . . we get

∂Φλ
j,l

∂z
(z) =

(
J (+)(p, q)−K(1)(p, q)

)
+
(
J (−)(p, q) +K(2)(p, q)

)
=
1

2
iηj(λ)

1
2 (2π)−

1
2

{∫ ∞

−∞
eiηj(λ)·px(2αj + 2)

1
2ηj(λ)

1
2Φλ

j+1

(
x+

q

2

)
Φλ
l

(
x− q

2

)
dx

+

∫ ∞

−∞
eiηj(λ)·px(2αl)

1
2ηj(λ)

1
2Φλ

j

(
x+

q

2

)
Φλ
l−1

(
x− q

2

)
dx

}
=
1

2
iηj(λ)

1
2

{
(2αj + 2)

1
2Φλ

j+1,l(z) + (2αl)
1
2Φλ

j,l−1(z)
}
, z = p+ iq ∈ C.

(3.62)
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We can also obtain
∂Φλ

j,l

∂z̄
(z) =

(
J (+)(p, q) +K(1)(p, q)

)
+
(
J (−)(p, q)−K(2)(p, q)

)
=
1

2
iηj(λ)

1
2 (2π)−

1
2

{∫ ∞

−∞
eiηj(λ)·pxηj(λ)

1
2 (2αj)

1
2Φλ

j−1

(
x+

q

2

)
Φλ
l

(
x− q

2

)
dx

+

∫ ∞

−∞
eiηj(λ)·pxηj(λ)

1
2 (2αl + 2)

1
2Φλ

j

(
x+

q

2

)
Φλ
l+1

(
x− q

2

)
dx

}
=
1

2
iηj(λ)

1
2

{
(2αj)

1
2Φλ

j−1,l(z) + (2αl + 2)
1
2Φλ

j,l+1(z)
}
, z = p+ iq ∈ C.

(3.63)

Writing ηj(λ)peiηj(λ)px = −i ∂
∂x
eiηj(λ)·px and integrating by parts we get

1

2
ηj(λ)pΦ

λ
j,l(p, q) = − i

2
(2π)

1
2

∫ ∞

−∞

{
∂

∂x
eiηj(λ)·px

}
Φλ
j

(
x+

q

2

)
Φλ
l

(
x− q

2

)
dx

= K(1)(p, q) +K(2)(p, q), p, q ∈ R.
(3.64)

Using the formula

q =
(
x+

q

2

)
−
(
x− q

2

)
,

we also have

i

2
qηj(λ)Φ

λ
j,l(p, q) = J (+)(p, q) + J (−)(p, q), p, q ∈ R. (3.65)

So, by (3.64) and (3.65), we get, for j = 1, 2, . . . and l = 0, 1, 2, . . .,

1

2
ηj(λ)zΦ

λ
j,l(z) =

i

2
ηj(λ)

1
2 (2π)−

1
2

{∫ ∞

−∞
eiηj(λ)·pxηj(λ)

1
2 (2αj)

1
2Φλ

j−1

(
x+

q

2

)
Φλ
l

(
x− q

2

)
dy

−
∫ ∞

−∞
eiηj(λ)·pxηj(λ)

1
2 (2αl + 2)

1
2Φλ

j

(
x+

q

2

)
Φλ
l+1

(
x− q

2

)
dy

}
=
i

2
ηj(λ)

1
2

{
(2αj)

1
2Φλ

j−1,l(z)− (2αl + 2)
1
2Φλ

j,l+1(z)
}

(3.66)

and
1

2
ηj(λ)z̄Φ

λ
j,l(z) =

i

2
ηj(λ)

1
2 (2π)−

1
2

{
−
∫ ∞

−∞
eiηj(λ)·pxηj(λ)

1
2 (2αj + 2)

1
2Φλ

j+1

(
x+

q

2

)
Φλ
l

(
x− q

2

)
dy

+

∫ ∞

−∞
eiηj(λ)·pxηj(λ)

1
2 (2αl)

1
2Φλ

j

(
x+

q

2

)
Φλ
l−1

(
x− q

2

)
dy

}
=
i

2
ηj(λ)

1
2

{
(2αl)

1
2Φλ

j,l−1(z)− (2αj + 2)
1
2Φλ

j+1,l(z)
}

(3.67)

for all z in C. Therefore, by (3.62) and (3.67),

Zλ
j Φ

λ
j,l = iηj(λ)

1
2 (2αl)

1
2Φλ

j,l−1, j = 0, 1, 2, . . . , l = 1, 2, . . .

and by (3.63) and (3.66),

Z̄λ
j Φ

λ
j,l = iηj(λ)

1
2 (2αj + 2)

1
2Φλ

j,l+1, j = 1, 2, . . . , l = 0, 1, 2, . . . .
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Now, for j = 0, 1, 2, . . . and l = 1, 2, . . ., we have

Zλ
j Z̄

λ
j Φ

λ
j,l = iηj(λ)

1
2 (2αl + 2)

1
2Zλ

j Φ
λ
j,l+1 = −(2αl + 2)ηj(λ)Φ

λ
j,l,

and

Z̄λ
j Z

λ
j Φ

λ
j,l = iηj(λ)

1
2 (2αl)

1
2Zλ

j Φ
λ
j,l−1 = −2αlηj(λ)Φ

λ
j,l.

Then the third one follows from (1) and (2) and the definition of Lλ.

3.6 Laguerre functions

3.6.1 Laguerre polynomials

In this section, we recall some properties for the Laguerre polynomials, which can be found in

[Tha93; Won98], we give some proofs here for completeness. Let δ > −1, Laguerre polynomial

of degree k and order δ are defined by the formula

Lδk(x) =
x−δex

k!

(
d

dx

)k (
e−xxδ+k

)
.

Here x > 0 and k = 0, 1, 2, . . . . If we write out Lδk(x), x > 0, in detail, then we get

Lδk(x) =
x−δex

k!

k∑
j=0

 k

j

 (−1)je−x
(
d

dx

)k−j (
xδ+k

)
, x > 0.

Thus,

Lδk(x) =
(−1)k

k!
xk +

k−1∑
j=0

(δ + k)(δ + k − 1) · · · (δ + j + 1)

(k − j)!j!
(−x)j

=
k∑
j=0

Γ(k + δ + 1)

Γ(k − j + 1)Γ(j + δ + 1)

(−x)j

j!

.

Lemma 3.57. The Laguerre polynomials satisfy the orthogonality properties∫ ∞

0

Lδk(x)L
δ
j(x)e

−xxδdx =
Γ(k + δ + 1)

Γ(k + 1)
δjk.

Proof. Let f be any polynomial and consider∫ ∞

0

f(x)Lδk(x)e
−xxδdx =

1

k!

∫ ∞

0

f(x)
dk

dxk
(
e−xxk+δdx

)
.

Integrating by parts we see that∫ ∞

0

f(x)Lδk(x)e
−xxδdx =

(−1)k

k!

∫ ∞

0

f (k)(x)e−xxk+δdx.
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If f is a polynomial of degree j < k then it follows that∫ ∞

0

f(x)Lδk(x)e
−xxδdx = 0.

In particular this proves that when k ̸= j∫ ∞

0

Lδk(x)L
δ
j(x)e

−xxδdx = 0.

And when k = j, taking f(x) = Lδk(x) we observe that f (k)(x) = (−1)k so that∫ ∞

0

Lδk(x)L
δ
k(x)e

−xxδdx =
1

k!

∫ ∞

0

xk+δe−xdx

which proves the Lemma.

Therefore, if we define Lδk(x) by

Lδk(x) =
(

Γ(k + 1)

Γ(k + δ + 1)

) 1
2

e−xx
δ
2Lδk(x),

we have the following result.

Theorem 3.58. Lδk(x) is an orthonormal basis for L2(0,∞).

Proof. By Lemma 3.57, we only need to prove that if g ∈ L2(0,∞) is such that〈
g, Lδk

〉
= 0, k = 0, 1, 2, . . .

then g = 0 a.e. on (0,∞). Now, for k = 0, 1, 2, . . ., we get, by [Won98, Lemma 18.5],

xk =
k∑
j=0

cjL
δ
j(x), x > 0

where c0, c1, c2, . . . , ck are constants. Thus, for k = 0, 1, 2, . . ., we have∫ ∞

0

g(x)xkxδe−xdx =
k∑
j=0

cj

∫ ∞

0

g(x)Lδj(x)x
δe−xdx = 0. (3.68)

Let x = y2 in (3.68), we get, for k = 0, 1, 2, . . .,

2

∫ ∞

0

g
(
y2
)
y2ky2δ+1e−y

2

dy = 0 ⇒ 2

∫ ∞

0

g
(
y2
)
y2k|y|2δ+1e−y

2

dy = 0

⇒
∫ ∞

−∞
g
(
y2
)
y2k|y|2δ+1e−y

2

dy = 0

.

Hence, ∫ ∞

−∞
g
(
y2
)
yk|y|2δ+1e−y

2

dy = 0, k = 0, 1, 2, . . . .

Let P be any polynomial of degree j. Then

P (y) =

j∑
k=0

aky
k, y ∈ R
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where a0, a1, a2, . . . , aj are constants. And∫ ∞

−∞
g
(
y2
)
P (y)|y|2δ+1e−y

2

dy = 0.

Also, for all ξ in R,∫ ∞

−∞

∣∣g(y2)∣∣ |y|2δ+1e|yξ|e−y
2

dy

≤
{∫ ∞

−∞

∣∣g (y2)∣∣2 |y|2δ+1e−y
2

dy

} 1
2
{∫ ∞

−∞
|y|2δ+1e2|yξ|e−y

2

dy

} 1
2

=

{∫ ∞

0

|g(x)|2xδe−xdx
} 1

2
{∫ ∞

−∞
|y|2δ+1e−2|yξ|e−y

2

dy

} 1
2

<∞

.

Thus, by [Won98, Lemma 18.6], we have g(y2)|y|2δ+1 = 0 for almost all y in R. Therefore, g = 0

a.e. on (0,∞).

Theorem 3.59. For each fixed positive number x,
∞∑
k=0

Lδk(x)r
k =

e−
xr
1−r

(1− r)δ+1
, |r| < 1,

where the series is uniformly and absolutely convergent on every compact subset of {r ∈ C :

|r| < 1}. We call e−
xr
1−r (1− r)−δ−1 the generating function of the Laguerre polynomials Lδk, k =

0, 1, 2, . . ..

Proof. Let γ be a circle with center at x and radius l, and lying inside the right half plane.

Now,
∞∑
k=0

Lδk(x)r
k =

∞∑
k=0

x−δex

k!

(
d

dx

)k (
e−xxδ+k

)
rk

=
x−δex

2πi

∞∑
k=0

rk
∫
γ

e−ζζδ+k

(ζ − x)k+1
dζ

(3.69)

where the principal branch of ζδ+k is taken, i.e.,

ζδ+k = e(δ+k) Log−π ζ

and

Log−π ζ = ln |ζ|+ iArg−π ζ, −π < Arg−π ζ < π.
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3 Harmonic analysis on stratified Lie groups of step two

Next, for k = 1, 2, . . . ∣∣∣∣ e−ζζδ+k

(ζ − x)k+1

∣∣∣∣ = e−Re ζe(δ+k) ln |ζ|

lk+1

≤ e−(x−l)(x+ l)δ+k

lk+1

= e−(x−l) (x+ l)δ

l

(
x+ l

l

)k
.

Then, for all r in C with |r| < l
x+l

, the series
∑∞

k=0
rke−ζζδ+k

(ζ−x)k+1 is uniformly and absolutely

convergent with respect to r on {r ∈ C : |r| < rx} and ζ on γ, where rx is any number in(
0, l

x+l

)
. Therefore, by (3.69)

∞∑
k=0

Lδk(x)r
k =

x−δex

2πi

∫
γ

e−ζζδ

ζ − x

∞∑
k=0

(
rζ

ζ − x

)k
dζ

for |r| < rx. Note that ∣∣∣∣ rζ

ζ − x

∣∣∣∣ ≤ |r|(x+ l)

l
< 1

and hence,
∞∑
k=0

Lδk(x)r
k =

x−δex

2πi

∫
γ

e−ζζδ

ζ − x

1

1− rζ
ζ−x

dζ =
x−δex

2πi

∫
γ

e−ζζδ

ζ − x− rζ
dζ

=
x−δex

2πi

∫
γ

e−ζζδ

(1− r)ζ − x
dζ =

x−δex

1− r

1

2πi

∫
γ

e−ζζδ

ζ − x
1−r

dζ

(3.70)

for |r| < rx. For sufficiently small r, x
1−r is inside γ. So, by (3.70)

∞∑
k=0

Lδk(x)r
k =

x−δex

1− r
e−

x
1−r

(
x

1− r

)δ
=

e−
xr
1−r

(1− r)δ+1

for sufficiently small r. Now, e
− xr

1−r

(1−r)δ+1 is an analytic function on {r ∈ C : |r| < 1}. Thus, by the

principle of analytic continuation,
∞∑
k=0

Lδk(x)r
k =

e
−xr
1−r

(1− r)δ+1
, |r| < 1,

and the theorem is proved.

3.6.2 Laguerre formulas for special Hermite functions

Now we give the formula expressing the special Hermite functions Φλ
α,α in terms of Laguerre

polynomials.
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3.6 Laguerre functions

Theorem 3.60. For α ∈ Nd and any z in Cd,

Φλ
α,α(z) = Pf(λ)

1
2 (2π)−

d
2

d∏
j=1

L0
αj

(
1

2
ηj(λ)|zj|2

)
e−

1
4
ηj(λ)|zj |2 .

Proof. We only consider the 1-dimension case and first consider the case of η(λ) = 1. By

Mehler’s formula in Theorem 3.50,
∞∑
k=0

ek

(
x+

q

2

)
ek

(
x− q

2

)
rk =

1

π
1
2 (1− r2)

1
2

e−
1−r
1+r

x2− 1
4

1+r
1−r

q2 .

So we have
∞∑
k=0

ek,k(p, q)r
k =

∞∑
k=0

{
1

(2π)
1
2

∫
R
eipxek

(
x+

q

2

)
ek

(
x− q

2

)
dx

}
rk

=
1

(2π)
1
2

∫
R
eipx

{
∞∑
k=0

ek

(
x+

q

2

)
ek

(
x− q

2

)
rk

}
dx

=
1

(2π)
1
2

∫
R
eipx

1

π
1
2 (1− r2)

1
2

e−
1−r
1+r

y2− 1
4

1+r
1−r

q2dx

=
1

π
1
2 (1− r2)

1
2

e−
1
4

1+r
1−r

q2 1

(2π)
1
2

∫
R
eipxe−

1−r
1+r

x2dx.

By Lemma 3.49, we have

1

(2π)
1
2

∫
R
eipxe−

1−r
1+r

x2dx = 2−
1
2

(
1 + r

1− r

) 1
2

e−
1
4

1+r
1−r

p2 .

Then
∞∑
k=0

ek,k(p, q)r
k =

1

(2π)
1
2 (1− r)

e−
1
4

1+r
1−r (p2+q2).

Because of Theorem 3.52, we have
∞∑
k=0

eλk,k(p, q)r
k =

∞∑
k=0

ηj(λ)
1
2 ek,k

(
ηj(λ) · p
ηj(λ)

1
2

, ηj(λ)
1
2 q

)
rk

=
ηj(λ)

1
2

(2π)
1
2 (1− r)

e−
ηj(λ)

4
1+r
1−r (p2+q2).

So, by Theorem 3.59
∞∑
k=0

eλk,k(zj)r
k =

ηj(λ)
1
2

√
2π

∞∑
k=0

L0
k

(
1

2
ηj(λ)|zj|2

)
rke−

1
4
ηj(λ)|zj |2

and hence

eλk,k(zj) = ηj(λ)
1
2 (2π)−

1
2L0

k

(
1

2
ηj(λ)|zj|2

)
e−

1
4
ηj(λ)|zj |2 , zj ∈ C.

The following lemma will be used later.
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3 Harmonic analysis on stratified Lie groups of step two

Lemma 3.61. For δ > −1 and k = 1, 2, . . .,

d

dx

(
Lδk(x)

)
= −Lδ+1

k−1(x), x > 0.

Proof. By definition of Laguerre polynomials,

d

dx

(
Lδk(x)

)
=

d

dx

k∑
j=0

Γ(k + δ + 1)

Γ(k − j + 1)Γ(j + δ + 1)

(−x)j

j!

= −
k∑
j=1

Γ(k + δ + 1)

Γ(k − j + 1)Γ(j + δ + 1)

(−x)j−1

(j − 1)!

= −
k−1∑
l=0

Γ(k − 1 + δ + 1 + 1)

Γ(k − 1− l + 1)Γ(l + δ + 1 + 1)

(−x)l

l!

= −Lδ+1
k−1(x), x > 0.

If α and k are multi-index we write α! = α1!α2! · · ·αd! and zk = zk11 · · · zkdd . With these

notations we have the following formulas expressing Hermite functions in terms of Laguerre

polynomials.

Theorem 3.62. For α ∈ Nd, k = 0, 1, . . . and any z ∈ Cd we have

(i) Φλ
α+k,α(z) = Pf(λ)

1
2 (2π)−

d
2

(
α!

(α+k)!

) 1
2
(

i√
2

)k
z̄k

k∏
j=1

L
kj
αj(

1
2
ηj(λ)|zj|2)e−

1
4
ηj(λ)|zj |2 .

(ii) Φλ
α,α+k(z) = Pf(λ)

1
2 (2π)−

d
2

(
α!

(α+k)!

) 1
2
(

−i√
2

)k
zk

k∏
j=1

L
kj
αj(

1
2
ηj(λ)|zj|2)e−

1
4
ηj(λ)|zj |2.

Proof. Again we only consider the one dimension case. From the definition it follows that

Φλ
α,β(z) = Φ

λ

α,β(−z). Thus, if part (i) of Theorem is true, then,

eλj,j+k(zj) = ηj(λ)
1
2 (2π)−

1
2

{
j!

(j + k)!

} 1
2
(
− i√

2

)k
(−zj)kLkj

(
1

2
ηj(λ)|zj|2

)
e−

1
4
ηj(λ)|zj |2

= ηj(λ)
1
2 (2π)−

1
2

{
j!

(j + k)!

} 1
2
(

i√
2

)k
zkjL

k
j

(
1

2
ηj(λ)|zj|2

)
e−

1
4
ηj(λ)|zj |2 , zj ∈ C.

Thus, to prove this Theorem, we only need to prove part (i).

By Theorem 3.60, the formula is true if k = 0. Suppose that the formula is true for all

nonnegative integers j and all nonnegative integers k with k ≤ l. Then, by Theorem 3.56,

ej+k+1,j = −iηj+1(λ)
− 1

2 (2j + 2)−
1
2Zλ

j ej+k+1,j+1. (3.71)

Now, by the induction hypothesis, we have, for all zj ∈ C,

ej+k+1,j+1(z) = (2π)−
1
2ηj+1(λ)

1
2

{
(j + 1)!

(j + k + 1)!

} 1
2
(

i√
2

)k
(z̄)kLkj+1

(
1

2
ηj+1(λ)|zj|2

)
e−

1
4
ηj+1(λ)|zj |2 .
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3.6 Laguerre functions

Let fj be the function on C defined by

fj(z) = (z̄)kLkj+1

(
1

2
ηj+1(λ)|zj|2

)
e−

1
4
ηj+1(λ)|zj |2 , zj ∈ C. (3.72)

Then, for k ≥ 1,
∂fj
∂p

(z) =(z̄)k
(
∂Lkj+1

)(1

2
ηj+1(λ)|zj|2

)
ηj+1(λ)pe

− 1
4
ηj+1(λ)|z|2

+ (z̄)kLkj+1

(
1

2
ηj+1(λ)|z|2

)(
−1

2
ηj+1(λ)p

)
e−

1
4
|z|2

+ k(z̄)k−1Lkj+1

(
1

2
ηj+1(λ)|zj|2

)
e−

1
4
ηj+1(λ)|zj |2 ,

(3.73)

and

i
∂fj
∂q

(z) =(z̄)k
(
∂Lkj+1

)(1

2
ηj+1(λ)|z|2

)
iηj+1(λ)qe

− 1
4
ηj+1(λ)|z|2

+ (z̄)kLkj+1

(
1

2
ηj+1(λ)|z|2

)(
− i

2
ηj+1(λ)q

)
e−

1
4
ηj+1(λ)|zj |2

+ k(z̄)k−1Lkj+1

(
1

2
ηj+1(λ)|z|2

)
e−

1
4
ηj+1(λ)|z|2 .

(3.74)

So, by (3.72)-(3.74),(
Zλ
j fj
)
(zj) = (z̄j)

k+1
(
∂Lkj+1

)(1

2
ηj+1(λ)|zj|2

)
e−

1
4
ηj+1(λ)|zj |2 , zj ∈ C. (3.75)

It is easy to see that (3.75) is also true for k = 0. Thus, by (3.71)-(3.75),

ej+k+1,j(zj) =(2π)−
1
2ηj+1(λ)

1
2 (−i)(2j + 2)−

1
2

{
(j + 1)!

(j + k + 1)!

} 1
2

×
(

i√
2

)k
(z̄j)

k+1
(
∂Lkj+1

)(1

2
ηj+1(λ)|zj|2

)
e−

1
4
ηj+1(λ)|zj |2

for all zj in C. It follows from Lemma 3.61 that

ej+k+1,j(zj)

= (2π)−
1
2ηj+1(λ)

1
2 i(2j + 2)−

1
2

{
(j + 1)!

(j + k + 1)!

} 1
2
(

i√
2

)k
(z̄j)

k+1Lk+1
j

(
1

2
ηj+1(λ)|zj|2

)
e−

1
4
ηj+1(λ)|zj |2

= (2π)−
1
2ηj+1(λ)

1
2

{
j!

(j + k + 1)!

} 1
2
(

i√
2

)k+1

(z̄j)
k+1Lk+1

j

(
1

2
ηj+1(λ)|zj|2

)
e−

1
4
ηj+1(λ)|zj |2 , zj ∈ C,

and the proof is complete.

Defining Pk to be the projection onto the kth eigenspace, we conclude thie paper with the

following result which connects the Weyl transform, the Hermite projection operator Pk and

the Laguerre function φk which is defined by

φk(z) = Ld−1
k (

1

2
|η(λ)||z|2)e−

1
4
|η(λ)||z|2 ,

where Ld−1
k beging a Laguerre polynomial to type (d− 1).
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3 Harmonic analysis on stratified Lie groups of step two

Theorem 3.63.

W (φk) = Pf(λ)−
1
2 (2π)

d
2Pk.

Proof. For f, g ∈ L2(R), it follows from the properties of the (λ, ν)-Fourier-Wigner transform

that (
W (Φλ

α,α)f, g
)
=

∫
R2d

Φλ
α,α(z)(π

λ,ν(z)f, g)dz

= Pf(λ)−
1
2 (2π)

d
2

(
Vλ,ν(f, g), Vλ,ν(Φ

λ
α,Φ

λ
α)
)

= Pf(λ)−
1
2 (2π)

d
2 (f,Φλ

α)(Φ
λ
α, g).

Then we have

W (Φλ
α,α)f = Pf(λ)−

1
2 (2π)

d
2 (f,Φλ

α)Φ
λ
α.

As Pkf =
∑

|α|=k

(
f,Φλ

α

)
Φλ
α it is enough to show that

φk(z) = Pf(λ)−
1
2 (2π)

d
2

∑
|α|=k

Φλ
α,α(z). (3.76)

The Laguerre functions φk satisfy the generating function
∞∑
k=0

φk(z)r
k = (1− r)−de−

1
2

1+r
1−r

|η(λ)||z|2 . (3.77)

On the other hand, Theorem 3.60 gives

Φλ
α,α(z) = Pf(λ)

1
2 (2π)−

d
2

d∏
j=1

L0
αj

(
1

2
ηj(λ) |zj|2

)
e−

1
4
ηj(λ)|zj |2 (3.78)

and each L0
αj

(
1
2
ηj(λ) |zj|2

)
e−

1
4
ηj(λ)|zj |2 satisfy the relation

∞∑
k=0

L0
k

(
1

2
ηj(λ) |zj|2

)
e−

1
4
ηj(λ)|zj |2rk = (1− r)−1e−

1
2

1+r
1−r

ηj(λ)|zj |2 . (3.79)

From (3.78) and (3.79) it is clear that

∞∑
k=0

∑
|α|=k

Φλ
α,α(z)

 rk = Pf(λ)
1
2 (2π)−

d
2 (1− r)−ne−

1
2

1+r
1−r

|η(λ)||z|2 .

Comparing this with (3.77) we obtain (3.76).
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4 Applications

4.1 Weyl-Hörmander calculus

4.1.1 Weyl-Hörmander calculus on Rn

We first recall some elements of the Weyl-Hörmander pseudo-differential calculus and the asso-

ciated Sobolev spaces that will be relevant for our analysis. For more details on the underlying

general theory, we can refer, for instance, to [Ler10].

We consider Rn and identify its cotangent bundle T ∗Rn with R2n. The canonical symplectic

form on R2n is ω defined by

ω (T, T ′) = x · ξ′ − x′ · ξ, T = (ξ, x), T ′ = (ξ′, x′) ∈ R2n.

Definition 4.1. If q is a positive quadratic form on R2n, then we define its conjugate qω by

∀ T ∈ R2n qω(T ) := sup
T ′∈R2n\{0}

|ω (T, T ′)|2

q (T ′)
,

and its gain factor by

Λq := inf
T∈R2n\{0}

qω(T )

q(T )
.

Definition 4.2. We shall say that the metric g is of Hörmander type if it is a family of positive

quadratic forms

g =
{
gX , X ∈ R2n

}
depending smoothly on X ∈ R2n and satisfies:

• The metric g is uncertain, i.e. ∀X ∈ R2n,ΛgX ≥ 1.

• The metric g is slowly varying, i.e. there exists a constant C̄ > 0 such that we have for

any X,X ′ ∈ R2n

gX (X −X ′) ≤ C̄−1 =⇒ sup
T∈R2n\{0}

(
gX(T )

gX′(T )
+
gX′(T )

gX(T )

)
≤ C̄.
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• The metric g is temperate, i.e. there are constants C̄ > 0 and N̄ > 0 such that we have

for any X,X ′ ∈ R2n and T ∈ R2n\{0} :

gX(T )

gX′(T )
≤ C̄ (1 + gωX (X −X ′))

N̄
.

In the following any constant depending only on C̄ > 0 and N̄ > 0 will be called a

structural constant.

We also define a weight as a positive function on R2n satisfying the same type of conditions

as a Hörmander metric.

Definition 4.3. Let g be a metric of Hörmander type. A positive function M defined on R2n

is a g-weight when there are structural constants C̄ ′ and N̄ ′ satisfying for any X, Y ∈ R2n :

gX(X − Y ) ≤ C̄ ′−1 =⇒ M(X)

M(Y )
+
M(Y )

M(X)
≤ C̄ ′

and

M(X)

M(Y )
≤ C̄ (1 + gωX(X − Y ))N̄

′
.

Definition 4.4 (Hörmander symbol class S(M, g)). Let g be a metric of Hörmander type and

M a g-weight on R2n. The symbol class S(M, g) is the set of functions a ∈ C∞ (R2n) such that

for each integer ℓ ∈ N0, the quantity

∥a∥S(M,g),ℓ := sup
ℓ′≤ℓ,X∈R2n

∣∣∂T1 . . . ∂Tℓ′a(X)
∣∣

M(X)

is finite. Here ∂Ta denotes the quantity (da, T ).

Now, if a is a symbol in S(M, g), then its Weyl quantization is the operator which associates

to u ∈ S (Rn) the function opW (a)f defined by

∀x, y ∈ Rn,
(
opW (a)u(x)

)
= (2π)−n

∫
R2n

ei(x−y)·ξa

(
x+ y

2
, ξ

)
u(y)dydξ. (4.1)

Let us mention that the operator op opW (a) has a kernel K (x, y) defined by

K (x, y) = (2π)−n
∫
Rn

ei(x−y)·ξa

(
x+ y

2
, ξ

)
dξ,

which is linked to its symbol through

a(x, η) =

∫
Rn

e−iyξK
(
x+

y

2
, x− y

2

)
dy.

Let us also point out that a concept of Sobolev space H(M, g) was introduced by R. Beals

in [Bea81]. We will use the following characterization of those spaces.
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Definition 4.5 (Sobolev spaces H(M, g)). Let g be a metric of Hörmander type and M a

g-weight on R2n. We denote by H(M, g) the set of all tempered distributions u on Rn such

that for any symbol a ∈ S(M, g) we have opW (a)u ∈ L2 (Rn).

The following properties are well known [Ler10, Chapters 1 and 2 ]:

Proposition 4.6. Let g be a metric of Hörmander type on R2n.

• The space H(1, g) coincides with L2 (Rn) . Furthermore, there exist a structural constant

C > 0 and a structural integer ℓ ∈ N0 such that for any symbol a ∈ S(1, g), we have∥∥opW (a)
∥∥

L (L2(Rn))
≤ C∥a∥S(1,g),ℓ.

• Let M1,M2 be g-weights. For any a ∈ S (M1, g), the operator opW (a) maps continuously

H (M2, g) to H
(
M2M

−1
1 , g

)
. Furthermore, there exist a constant C > 0 and an integer

ℓ ∈ N0 such that ∥∥opW (a)
∥∥

L (H(M2,g),H(M2M
−1
1 ,g)) ≤ C∥a∥S(M1,g),ℓ

The constant C and the integers ℓ may be chosen to depend only on the structural constants

of g,M1,M2 and to be independent of g,M and a.

Proposition 4.7. Let g be a metric of Hörmander type and let M,M1,M2 be g weights. Then:

• The symbol class S(M, g) is a vector space endowed with a Fréchet topology via the family

of seminorms ∥ · ∥S(M,g),ℓ, ℓ ∈ N0.

• If a ∈ S(M, g) then the symbol b defined by

opW b =
(
opWa

)∗
is in S(M, g) as well. Furthermore, for any ℓ ∈ N0 there exist a constant C > 0 and a

integer ℓ′ ∈ N0 such that

∥b∥S(M,g),ℓ ≤ C∥a∥S(M,g),ℓ′

The constant C and the integer ℓ′ may be chosen to depend on ℓ and on the structural

constants and to be independent of g,M and a.

• If a1 ∈ S (M1, g) and a2 ∈ S (M2, g) then the symbol b defined by

opW b =
(
opWa1

) (
opWa2

)
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is in S (M1M2, g) . Furthermore, for any ℓ ∈ N0 there exist a constant C > 0 and two

integers ℓ1, ℓ2 ∈ N0 such that

∥b∥S(M1M2,g),ℓ ≤ C ∥a1∥S(M1,g),ℓ1
∥a2∥S(M2,g),ℓ2

The constant C and the integers ℓ1, ℓ2 may be chosen to depend on ℓ and on the structural

constants and to be independent of g,M1,M2 and a1, a2.

As pointed out in Chapter 3, it is natural to base the quantization of symbols on Rn on the

calculus related to the harmonic oscillator. In that case the metric

dξ2 + dθ2

(1 + |θ|2 + |ξ|2)ρ

is of Hörmander type with corresponding weights (1 + |θ|2 + |ξ|2)
δ
2 for δ ∈ R. For δ ∈ R and

ρ ∈ (0, 1], we denote by Σδ
ρ (Rn) the corresponding symbol class, often called the Shubin classes

of symbols on Rn :

Σδ
ρ (Rn) := S

((
1 + |θ|2 + |ξ|2

) δ
2 ,

dξ2 + dθ2

(1 + |θ|2 + |ξ|2)ρ
)
.

This means that a symbol a ∈ C∞ (R2n) is in Σδ
ρ (Rn) if and only if for any α, β ∈ Nn

0 there

exists a constant C = Cα,β > 0 such that

∀(ξ, θ) ∈ R2n
∣∣∣∂αξ ∂βθ a(ξ, θ)∣∣∣ ≤ C

(
1 + |ξ|2 + |θ|2

) δ−ρ(|α|+|β|)
2 .

The class Σδ
ρ (Rn) is a vector subspace of C∞ (Rn × Rn) which becomes a Fréchet space when

endowed with the family of seminorms:

∥a∥Σδ
ρ,N

= sup
(ξ,θ)∈Rn×Rn

(
1 + |ξ|2 + |θ|2

)− δ−ρ(|α|+|β|)
2

∣∣∣∂αξ ∂βθ a(ξ, θ)∣∣∣ ,
where N ∈ N0. We denote by

ΨΣδ
ρ (Rn) := OpW

(
Σδ
ρ (Rn)

)
the corresponding class of operators and by ∥ · ∥ΨΣδ

ρ,N
the corresponding seminorms. We have

the inclusions

ρ1 ≥ ρ2 and δ1 ≤ δ2 =⇒ ΨΣδ1
ρ1
(Rn) ⊂ ΨΣδ2

ρ2
(Rn) .

The following is well known and can be viewed more generally as a consequence of the Weyl-

Hörmander calculus.

Proposition 4.8. • The class of operators
⋃
δ∈R

ΨΣδ
ρ (Rn) forms an algebra of operators sta-
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4.1 Weyl-Hörmander calculus

ble by taking the adjoint. Furthermore, the operations

ΨΣδ
ρ (Rn) −→ ΨΣδ

ρ (Rn)

A 7−→ A∗

and

ΨΣδ1
ρ (Rn)×ΨΣδ2

ρ (Rn) −→ ΨΣδ1+δ2
ρ (Rn)

(A,B) 7−→ AB

are continuous.

• The operators in ΨΣ0
ρ (Rn) extend boundedly to L2 (Rn) . Furthermore, there exist C > 0

and N ∈ N such that if A ∈ ΨΣ0
ρ (Rn) then

∥A∥L (L2(Rn)) ≤ C∥A∥ΨΣδ
ρ,N
.

Example 4.9. The operators ∂uj = OpW (iξj) , j = 1, . . . , n, or multiplication by uk =

OpW (uk) , k = 1, . . . , n, are two operators in ΨΣ1
1 (Rn).

Example 4.10. For each δ ∈ R, the symbol bδ, where

b(ξ, θ) =
√

1 + |θ|2 + |ξ|2

is in Σδ
1 (Rn).

From Example 4.9, it follows that the (positive) harmonic oscillator

A :=
n∑
j=1

(
−∂2uj + u2j

)
is in ΨΣ2

1 (Rn).

4.1.2 The (λ, ν)-Shubin classes
∑δ

ρ,λ,ν (G)

Now, we will prove our main results. It follows from Chapter 3 that we want to consider the

symbol associated with rescaled harmonic oscillator:

−∆osc,η(λ) + |ν|2 = −∆ξ + |η(λ) · x|2 + |ν|2,

where η(λ) > 0 is smooth and homogeneous of degree 1 in λ.

Then the Shubin metric depending on parameters λ ∈ Rm and ν ∈ Rk is the metric g(ρ,λ,ν)

on R2d+k defined via

g
(ρ,λ,ν)
ξ,θ,ν (dξ, dθ) :=

(
1

1 + |η(λ) · ξ|2 + |θ|2 + |ν|2

)ρ (
|η(λ) · dξ|2 + |dθ|2

)
.
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The associated positive function M (λ,ν) on R2d+k is defined via

M (λ,ν)(ξ, θ, ν) :=
(
1 + |η(λ) · ξ|2 + |θ|2 + |ν|2

) 1
2 .

For the Heisenberg group with η(λ) = λ and ν = 0, these λ-families of metrics and weights

were first introduced in [BFKG12] in the case ρ = 1. Similar to Proposition 1.20 in [BFKG12],

we have the first result as follows:

Lemma 4.11. For each λ ∈ Rm and ν ∈ Rk, the metric g(ρ,λ,ν) is of Hörmander type and

the function M (λ,ν) is a g(ρ,λ,ν)-weight. Furthermore, if ρ ∈ (0, 1] is fixed, then the structural

constants for g(ρ,λ,ν) and for M (λ,ν) can be chosen independent of λ and ν.

Now, motivated by the examples on the Heisenberg group studied in [BFKG12], we shall

give a definition of symbols, and pseudo-differential operators, on two step nilpotent Lie groups.

Therefore, in what follows, we shall define a positive, noninteger real number ϱ, which will

measure the regularity assumed on the symbols. This number ϱ is fixed from now on and we

emphasize that the definitions below depend on ϱ. We have chosen not to keep memory of this

number on the notations for the sake of simplicity.

Definition 4.12. Let ρ ∈ (0, 1] be a fixed parameter. For each parameter λ ∈ Rm and ν ∈ Rk,

we define the (λ, ν)-Shubin classes by

Σδ
ρ,λ,ν (G) := S

((
M (λ,ν)

)δ
, g(ρ,λ,ν)

)
,

where we have used the Hörmander notation to define a class of symbols in terms of a metric

and a weight. Here this means that
∑δ

ρ,λ,ν (G) is the class of functions a ∈ C∞ (G× R2d+k+m
)

such that for each N ∈ N0, the quantity

∥a∥Σδ
ρ,λ,ν(G),N := sup

|α| + |β| + |γ| + l ≤ N

(ξ, θ, ν) ∈ Rd × Rd × Rk

|η(λ)|−ρ
|α|+|β|+|γ|

2

(
1 + |η(λ)|

(
1 + |ξ|2 + |θ|2 + |ν|2

))− δ−ρ(|α|+|β|+|γ|)
2

×
∥∥∥(λ∂λ)l∂αξ ∂βθ ∂γνa(x, y, r, s, ξ, θ, ν, λ)∥∥∥

Cϱ(G)

is finite. Besides, one additionally requires that the function

(w, ξ, θ, ν, λ) 7→ σ(a)(w, ξ, θ, ν, λ)
def
= a

(
w,

ξ1
η1(λ)

. . .
ξd

ηd(λ)
, θ, ν, λ

)
(4.2)

is uniformly smooth close to λ = 0 in the sense that there exists C > 0 such that∥∥∥∂lλ∂αξ ∂βθ ∂γν (σ(a))∥∥∥Cϱ(G)
≤ CN,l

(
1 + |η(λ)|+ |ξ|2 + |θ|2 + |ν|2

) δ−ρ(|α|+|β|+γ)
2 ,

where ∀(w, ξ, θ, ν) ∈ Hd ×G× R2d+k,∀λ ∈ [−1, 1]. In that case we shall write a ∈ Σδ
ρ,λ,ν(G).
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Remark 4.13. The additional assumption (4.2) on σ(a) is necessary in order to guarantee

that pseudo-differential operators associated with those symbols are continuous on S (G) (see

[BFKG12, Proposition 2.6]). It is also required to obtain that the space of pseudo-differential

operators is an algebra.

The class of symbols Σδ
ρ,λ,ν (G) is a vector subspace of C∞ (G× R2d+k+m

)
becomes a Fréchet

space when endowed with the family of seminorms ∥ · ∥Σδ
ρ,λ,ν(G),N , N ∈ N0. We denote by

ΨΣδ
ρ,λ,ν (G) := OpW

(
Σδ
ρ,λ,ν (G)

)
the corresponding class of operators, and by ∥·∥ΨΣδ

ρ,λ,ν ,N
the corresponding norms on the Fréchet

space ΨΣδ
ρ,λ,ν (G).

By the definition of symbol class, Lemma 4.11 has important consequences which are stated

below.

Corollary 4.14. Let a be a symbol in Σδ
ρ,λ,ν (G). Then for any w ∈ G , λ ∈ Rm and ν ∈ Rk,

the operator Opw(a(w, λ, ν)) is continuous from H
(
M, g(ρ,λ,ν)

)
into H

(
M
(
M (λ)

)−δ
, g(ρ,λ,ν)

)
for any g(ρ,λ,ν) weight M , and the constant of continuity is uniform with respect to λ , ν and

w. In particular for δ = 0, the operator Opw(a(w, λ, ν)) maps L2 (G) into itself uniformly with

respect to w , λ and ν.

Let us now mention some properties of the function σ(a) defined in (4.2).

Proposition 4.15. A function a belongs to Σδ
ρ,λ,ν (G) if and only if σ(a) ∈ C∞ (G× R2d+k+m

)
satisfies: for all l, N ∈ N, there exists a constant CN,l > 0 such that for any α, β, γ ∈ Nd

satisfying |α|+ |β|+ |γ| ≤ N , and for all (w, ξ, θ, ν, λ) ∈ G× R2d+k+m,∥∥∥∂lλ∂αξ ∂βθ ∂γν (σ(a))∥∥∥Cϱ(G)
≤ CN,l

(
1 + |η(λ)|+ |ξ|2 + |θ|2 + |ν|2

) δ−ρ(|α|+|β|+γ)
2 (1 + |λ|)−l. (4.3)

Proof. For any multi-index β satisfying |β| ≤ N , we have∣∣∣∂αξ ∂βθ ∂γν (σ(a)(w, ξ, θ, ν, λ))∣∣∣ = ||η(λ)|−ρ
|α|+|β|+|γ|

2

(
∂αξ ∂

β
θ ∂

γ
νa
)(

w,
ξ1

η1(λ)
. . .

ξd
ηd(λ)

, λ

)
|

≤ ∥a∥Σδ
ρ,λ,ν(G),N

(
1 + |η(λ)|+ |ξ|2 + |θ|2 + |ν|2

) δ−ρ(|α|+|β|+|γ|)
2 .

(4.4)

Besides, there exists a constant C > 0 such that for λ ∈ R∣∣∣(λ∂λ)l (σ(a)(w, ξ, θ, ν, λ))∣∣∣ ≤ C

∣∣∣∣((λ∂λ)l a)(w, ξ1
η1(λ)

. . .
ξd

ηd(λ)
, λ

)∣∣∣∣
+ C

∑
|α|+|β|+|γ|=l

|η(λ)|−
l
2

(
|ξ|2 + |θ|2 + |ν|2

) l
2

∣∣∣∣(∂αξ ∂βθ ∂γνa)(w, ξ1
η1(λ)

. . .
ξd

ηd(λ)
, λ

)∣∣∣∣
≤ C∥a∥Σδ

ρ,λ,ν(G),N

(
1 + |η(λ)|+ |ξ|2 + |θ|2 + |ν|2

) δ
2 .
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The converse inequalities come easily: one has a ∈ Σδ
ρ,λ,ν (G) if and only if for all l, N ∈ N,

there exists a constant CN,l such that for any α, β, γ ∈ Nd satisfying |α| + |β| + |γ| ≤ N and

for all (w, ξ, θ, ν, λ) belonging to G× R2d+k+m,∥∥∥(λ∂λ)l ∂αξ ∂βθ ∂γν (σ(a))∥∥∥Cϱ(G)
≤ CN,l

(
1 + |η(λ)|+ |ξ|2 + |θ|2 + |ν|2

) δ−ρ(|α|+|β|+|γ|)
2 . (4.5)

We then remark that if |η(λ)| ≤ 1, the smoothness of σ(a) yields that (4.4) implies on the

compact {|η(λ)| ≤ 1}

(1 + |λ|)l
∥∥∥∂lλ∂αξ ∂βθ ∂γν (σ(a))∥∥∥Cϱ(G)

≤ CN,l
(
1 + |η(λ)|+ |ξ|2 + |θ|2 + |ν|2

) δ−ρ(|α|+|β|+|γ|)
2 .

Besides, for |η(λ)| ≥ 1, (4.5) gives∥∥∥∂lλ∂αξ ∂βθ ∂γν (σ(a))∥∥∥Cϱ(G)
≤ CN,l

(
1 + |η(λ)|+ |ξ|2 + |θ|2 + |ν|2

) δ−ρ(|α|+|β|+|γ|)
2 (1 + |λ|)−l.

This ends the proof of the proposition.

Theorem 4.16. To a symbol a ∈ Σδ
ρ,λ,ν (G) on R2d depending on the parameters (w, λ, ν) in

G× Rp × Rk and belonging to (λ, ν)-dependent Hörmander class. Then the pseudo-differential

operator on G defined in the following way: for any f ∈ S (G),

Op(a)f(w) = κ

∫∫
Λ×Rk

tr
(
uλ,νw−1F(f)(λ, ν) opW (a(w, ξ, θ, ν, λ))

)
Pf(λ)dλdν, ∀ w ∈ G

is well-defined.

4.1.3 (λ, ν)-Shubin Sobolev spaces

In this subsection, we study (λ, ν)-Shubin Sobolev spaces for the rescaled harmonic oscillator:

H(λ, ν) = −∆x + |η(λ) · x|2 + |ν|2,

which is the diagonal operator defined on L2(Rd) by

H(λ, ν)Φλ
α =

(
d∑
j=1

ηj(λ)(2αj + 1) + ν2

)
Φλ
α.

The rescaled harmonic oscillator H(λ, ν) is a positive (unbounded) operator on L2
(
Rd
)
. Its

spectrum is {(
d∑
j=1

ηj(λ)(2αj + 1) + ν2

)
, nj ∈ N0

}
.

The eigenfunctions associated with the eigenvalues

(
d∑
j=1

ηj(λ)(2nj + 1) + ν2

)
are the Hermite

functions Φλ
α. Therefore, the functions Φλ

α form an orthonormal basis of L2
(
Rd
)
. For each
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s ∈ R, we define the operator (I +H(λ, ν))
s
2 using the functional calculus, that is, in this case,

the domain of (I +H(λ, ν))
s
2 is the space of functions

Dom(I +H(λ, ν))
s
2 =

h ∈ L2
(
Rd
)
:
∑
n∈Nd

0

(
d∑
j=1

ηj(λ)(2αj + 1) + ν2

)s ∣∣∣(Φλ
α, h
)
L2(Rd)

∣∣∣2 <∞


and if h ∈ Dom(I +H(λ, ν))

s
2 then

(I +H(λ, ν))
s
2h =

∑
n∈Nd

0

(
d∑
j=1

ηj(λ)(2αj + 1) + ν2

) s
2 (

Φλ
α, h
)
L2(Rd) Φ

λ
α.

Many of their properties, especially their equivalent characterisations, are well known for

η(λ) = 1 and ν = 0. Our starting point will be the following definition for the (λ, ν)-Shubin

Sobolev spaces:

Definition 4.17. Let s ∈ R. The (λ, ν)−Shubin Sobolev space Qλ,ν
s (G) is the subspace of

S ′ (G) which is the completion of Dom(I +H(λ, ν))
s
2 for the norm

∥h∥Qλ,ν
s

:=
∥∥(I +H(λ, ν))

s
2h
∥∥
L2(Rd) .

Theorem 4.18. We have the following properties:

(1) The space Qλ,ν
s (G) is a Hilbert space endowed with the sesquilinear form

(g, h)Qλ,ν
s

=
(
(I +H(λ, ν))

s
2 g, (I +H(λ, ν))

s
2h
)
L2(G)

.

We also have

L2 (G) = Qλ,ν
0 (G) ,

and the inclusions

S (G) ⊂ Qλ,ν
s1

(G) ⊂ Qλ,ν
s2

(G) ⊂ S ′ (G) , s1 > s2.

(2) The dual of Qλ,ν
s (G) may be identified with Qλ,ν

−s (G) via the distributional duality form

⟨g, h⟩ =
∫
G ghdx.

(3) The complex interpolation between the spaces Qλ,ν
s0

(G) and Qλ,ν
s1

(G) is(
Qλ,ν
s0

(G) ,Qλ,ν
s1

(G)
)
θ
= Qλ,ν

sθ
(G) , sθ = (1− θ)s0 + θs1, θ ∈ (0, 1).

(4) For any s ∈ R,Qλ,ν
s (G) coincides with the completion (in S ′ (G)) of the Schwartz space

S (G) for the norm

∥h∥(b)
Qλ,ν

s
=
∥∥OpW (bsλ)h

∥∥
L2(G)
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where bsλ(ξ, θ, ν) =
√

1 + |η(λ) · ξ|2 + |θ|2 + |ν|2 is (λ, ν)-uniform in ΨΣs
1,λ,ν(G). The

norm ∥ · ∥(b)
Qλ,ν

s
extended to Qλ,ν

s (G) is equivalent to ∥ · ∥Qλ,ν
s

.

(5) For any s ∈ R, λ ∈ Rm and ν ∈ Rk, the Shubin Sobolev space Qλ,ν
s (G) coincides with the

Sobolev space associated with g(1,λ,ν) and (M (λ,ν))s(see Definition 4.5)

Qλ,ν
s (G) = H

(
(M (λ,ν))s, g(ρ,λ,ν)

)
.

(6) For any s ∈ R, the operators OpW (b−s) (I +H(λ, ν))
s
2 and (I +H(λ, ν))

s
2OpW (b−s) are

bounded and invertible on L2 (G).

Proof. From Definition 4.17, it is easy to prove that the space Qλ,ν
s (G) is a Hilbert space, that

it is included in S ′ (G) and that Qλ,ν
0 (G) = L2 (G). The proofs for the dual of Qλ,ν

s (G) is

Qλ,ν
−s (G) via the distributional duality and that the spaces Qλ,ν

s (G) decrease with s ∈ R are

standard, we omit them here (Part 1 and 2).

Let us prove the complex interpolation property of Part (3). We may assume s1 > s0. For

h ∈ Qλ,ν
sθ

(G), we consider the function

f(z) := (I +H(λ, ν))
−(zs1+(1−z)s0)+sθ

2 h,

and we check easily that

f(θ) = h, ∥f(iy)∥Qλ,ν
s0

= ∥f(1 + iy)∥λ,νQs1
= ∥h∥Qsθ

∀y ∈ G.

This shows that Qλ,ν
sθ

(G) is continuously included in
(
Qλ,ν
s0

(G) ,Qλ,ν
s1

(G)
)
θ
. By duality of the

complex interpolation and of the Qλ,ν
s (G), we obtain the reverse inclusion and Part (3) is

proved.

Let us prove Part (4). For any s ∈ R, the operator OpW (bs) maps S (G) to itself and

the mapping ∥ · ∥(b)
Qλ,ν

s
as defined in Part (4) is a norm on S (G). We denote its completion in

S ′ (G) by Q(b)
s (G). From the properties of the calculus it is standard that the dual of Q(b)

s (G)

is Q(b)
−s (G) via the distributional duality and that the spaces Q(b)

s (G) decrease with s ∈ R.

We claim the following property about interpolation between the Q(b) (G) spaces which is

analogous to Part(3):(
Q(b)
s0

(Rn) ,Q(b)
s1

(G)
)
θ
= Q(b)

sθ
(G) , sθ = (1− θ)s0 + θs1, θ ∈ (0, 1) (4.6)

Indeed we may assume s1 > s0. For h ∈ Q(b)
sθ (G), we consider the function

f(z) = ez(sz−sθ)OpW
(
b−sz+sθ

)
h where sz = (1− z)s0 + zs1.
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Clearly f(θ) = h. Furthermore,

∥f(iy)∥(b)Qs1
=
∣∣eiy(siy−sθ)∣∣ ∥∥OpW (bs1)OpW

(
b−siy+sθ

)
h
∥∥
L2(G)

≤e−y2(s1−s0)
∥∥OpW (bs1)OpW

(
b−siy+sθ

)
OpW

(
b−sθ

)∥∥
L (L2(G))

∥h∥(b)Qsθ

(4.7)

and

∥f(1 + iy)∥(b)Qs0
=
∣∣e(1+iy)(s1+iy−sθ)

∣∣ ∥∥OpW (bs0)OpW
(
b−s1+iy+sθ

)
h
∥∥
L2(G)

≤ es1−sθ−y
2(s1−s0)

∥∥OpW (bs0)OpW
(
b−s1+iy+sθ

)
OpW

(
b−sθ

)∥∥
L (L2(G))

∥h∥(b)Qsθ
.

(4.8)

From the calculus we obtain that the two operator norms on L2 (G) in (4.7) and (4.8) are

bounded by a constant of the form C(1 + |y|)N where C > 0 and N ∈ N0 are independent

of y. This shows that Q(b)
sθ is continuously included in

(
Q(b)
s0 (G) ,Q(b)

s1 (G)
)
θ
. By duality of the

complex interpolation and of the spaces Qs (G), we obtain the reverse inclusion and (4.6) is

proved.

Let us show that the spaces Q(b)
s (G) and Qλ,ν

s (G) coincide. First let us assume s ∈ 2N0.

We have for any h ∈ Q(b)
s (G)

∥h∥Qλ,ν
s

≤
∥∥(I +H(λ, ν))

s
2OpW

(
b−s
)∥∥

L(L2(G))
∥h∥(b)Qs

.

As H(λ, ν) ∈ ΨΣ2
1 (G), the operator (I + H(λ, ν))

s
2OpW (b−s) is in ΨΣ0

1 and thus is bounded

on L2 (G). We have obtained a continuous inclusion of Q(b)
s (G) into Qλ,ν

s (G) . Conversely, we

have for any h ∈ Qλ,ν
s (G) that

∥h∥(b)Qs
≤
∥∥OpW (bs) (I +H(λ, ν))−

s
2

∥∥
L(L2(G))

∥h∥Qλ,ν
s
.

The inverse of OpW (bs) (I + H(λ, ν))−
s
2 is (I + H(λ, ν))

s
2

(
OpW (bs)

)−1 since the opera-

tors I + H(λ, ν) and OpW (bs) are invertible. Moreover, for the same reason as above, (I +

H(λ, ν))
s
2

(
OpW (bs)

)−1 is bounded on L2 (G). By the inverse mapping theorem, OpW (bs) (I +

H(λ, ν))−
s
2 is bounded on L2 (G) . This shows the reverse continuous inclusion. We have proved

Q(b)
s (G) = Qλ,ν

s (G)

with equivalence of norms for s ∈ 2N0 and this implies that this is true for any s ∈ R by

the properties of duality and interpolation for Q(b)
s (G) and Qλ,ν

s (G). This shows Part (4) and

implies Parts (5) and (6).
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4.2 Heat kernels of sub-Laplacians

The development of mathematics in the past few decades has witnessed an unprecedented

rise in the usage of the notion of heat kernel in the diverse and seemingly remote sections

of mathematics. The special role of exponential functions t 7−→ eat has been seen in the

first analysis courses. No wonder a far-reaching generalization of exponential functions—heat

semigroups {e−At}t≥0, where A is a positive definite linear operator which plays an integral role

in mathematics and physics, not least because it solves the associated heat equation ∂tu+Au =

0. If the operator A acts in the function space, the action of the semigroup e−At is usually given

by the integral operator whose kernel is called the heat kernel of A.

As we have known that if in additional the operator A is Markovian, i.e. generates a Markov

process (for example, the case where A is a second-order elliptic differential operator), then the

information about the heat kernel can be used to answer the question about the process itself

([GH09]). What’s more, upper and/or lower bound estimates about heat kernel that can also

help solve various problems related to operator A and its spectrum, solutions to heat equations,

and properties of the underlying space ([HLM02]).

The culmination of this work was the proof by Li and Yau [LY86] in 1986 of the parabolic

Harnack inequality and the heat kernel two-sided estimates on complete manifolds of non-

negative Ricci curvature, which stimulated further research on heat kernel estimates by many

authors. Apart from the general wide influence on geometric analysis, the gradient estimates

of Li and Yau motivated Richard Hamilton in his program on Ricci flow that eventually lead

to the resolution of the Poincaré conjecture by Grigory Perel’man, which can be viewed as a

most spectacular application of heat kernels in geometry. On the other hand, an interesting

application of heat kernels is the heat equation approach to the Atiyah-Singer index theorem

(see [ABP73]). Then the last purpose of this thesis is to consider the sub-Laplacian and the

heat kernel on 2-step stratified Lie group without the Moore-Wolf condition.

4.2.1 Heat kernels of H(λ)

In this section, we consider the heat kernel of the rescaled harmonic oscillator:

H(λ) := −∆x + |η(λ) · x|2 =
d∑
j=1

(
η2j (λ)x

2
j −

∂2

∂x2j

)
.
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As we have known, the heat kernel plays an important role in many problems in harmonic

analysis and partial differential equations. An explicit expression for the heat kernel on the

Heisenberg group was obtained in [Gav77; Hul76; Sta03]. Gaveau [Gav77] also obtained the

heat kernel for free nilpotent Lie groups of two step. Cygan [Sta03] obtained the heat kernel

for all nilpotent Lie groups of two step. But neither Gaveau’s expression for free nilpotent Lie

groups nor Cygan’s expression for arbitrary nilpotent Lie groups of two step were as explicit

as those in the cases of Heisenberg groups and quaternionic Heisenberg groups. Our results

revise and generalize the results in [CT05] to the 2-step stratified Lie group, where we can give

explicitly all irreducible unitary representations, which can help us to give a explicit expression

for the kernel and fundamental solution for the sub-Laplacian on 2-step stratified Lie group,

which can be found in next section. We state our main results as follows.

Theorem 4.19. The associated heat kernel of the rescaled harmonic oscillator H(λ) is

Gτ (x) =
d∏
j=1

1

2 sinh(ηj(λ)τ)
exp

{
−

d∑
j=1

ηj(λ) |xj|2

2
coth (ηj(λ)τ)

}
,

i.e., Gτ (x) satisfies the heat equation

∂Gτ

∂τ
+

d∑
j=1

(
η2j (λ)x

2
j −

∂2

∂x2j

)
Gτ (x) = 0 with lim

τ→0

∫
Rd

Gτ (x)f(x)dx = f(0).

Proof. We are looking for a distribution K(x, y) such that
d∑
j=1

(
η2j (λ)x

2
j −

∂2

∂x2j

)
K(x, y) = δ(x− y). (4.9)

We find K(x) = K(x, 0), i.e., the fundamental solution with singularity at the origin. Taking

the Fourier transform on Rd

F(f)(ξ) =

∫
Rd

e−ix·ξf(x)dx

to the rescaled harmonic oscillator and applying the formulae

F
(
∂f

∂xj

)
= iξjF(f)(ξ) and F (xjf(x)) = i

∂

∂ξj
(F(f))(ξ)

then, when y = 0, equation (4.9) becomes(
|ξ|2 −

d∑
j=1

η2j (λ)
∂2

∂ξ2j

)
K̂(ξ) = 1.

Next, for k = (k1, . . . , kd) we define the d-tuple Hermite function Ψk(ξ) =
d∏
j=1

ψkj ,ηj(λ) =

145



4 Applications

d∏
j=1

ψkj

(
ξj
√
ηj(λ)

)
and let

K̂(ξ) =
∞∑

|k|=0

ckΨk(ξ), where |k| = k1 + · · ·+ kd.

Then we apply the operator

(
|ξ|2 −

d∑
j=1

η2j (λ)
∂2

∂ξ2j

)
to K̂(ξ) and obtain:

(
|ξ|2 −

d∑
j=1

η2j (λ)
∂2

∂ξ2j

)
K̂(ξ) =

d∑
j=1

ηj(λ)(2kj + 1)
∞∑

|k|=0

ckΨk(ξ).

Next we use the orthogonality property (3.57) to find ck. It is easy to see that
d∑
j=1

ηj(λ)(2kj + 1)
∞∑

|k|=0

ckΨk(ξ) = 1,

implies
d∑
j=1

ηj(λ)(2kj + 1)ck ⟨Ψk,Ψk⟩ = ⟨1,Ψk⟩ .

Here ⟨Ψk,Ψm⟩ is the usual inner product in L2(R). Since

⟨Ψk,Ψk⟩ =
d∏
j=1

√
ηj(λ)π2

kjkj!, ⟨1,Ψ2k+1⟩ = 0 and ⟨1,Ψ2k⟩ =
d∏
j=1

√
ηj(λ)π

(2kj)!

kj!
,

we have c2k+1 = 0 for k ∈ (Z+)
d and

c2k =
⟨1,Ψ2k⟩

d∑
j=1

ηj(λ)(2kj + 1) ⟨Ψ2k,Ψ2k⟩

=
1

d∑
j=1

ηj(λ)(2kj + 1)

n∏
j=1

√
ηj(λ)π

(2kj)!

kj !

d∏
j=1

√
ηj(λ)π22kj (2kj)!

=
1

d∑
j=1

ηj(λ)(2kj + 1)

· 1
d∏
j=1

22kjkj!

.

Hence

K̂(ξ) =
∞∑

|k|=0

c2kΨ2k =
∞∑

|k|=0

1
d∑
j=1

ηj(λ)(2kj + 1)

d∏
j=1

ψ2kj

(√
ηj(λ)ξj

)
22kjkj!

.

Next we apply

1

A
=

∫ ∞

0

e−Asds for A =
d∑
j=1

ηj(λ) (2kj + 1)
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and obtain

K̂(ξ) =
∞∑

|k|=0

∫ ∞

0

d∏
j=1

ψ2kj

(√
ηj(λ)ξj

)
22kjkj!

e−(2kj+1)ηj(λ)sds

=

∫ ∞

0

d∏
j=1

e−ηj(λ)s
∞∑
kj=0

ψ2kj

(√
ηj(λ)ξj

)
22kjkj!

e−2kjηj(λ)sds

=

∫ ∞

0

d∏
j=1

e−ηj(λ)sgj

(√
ηj(λ)ξj, s

)
ds

with

gj

(√
ηj(λ)ξj, s

)
=

∞∑
kj=0

ψ2kj

(√
ηj(λ)ξj

)
22kjkj !

e−2kjηj(λ)s.

To sum up with respect to kj in gj

(√
ηj(λ)ξj, s

)
, we apply the relationship between the

Hermite function and Laguerre polynomial (see Chapter 3) to get

gj(x, s) =
∞∑
kj=0

e−
x2

2 L
(0)
kj

(
x2
)
e−2kjηj(λ)s = e−

x2

2

∞∑
kj=0

L
(0)
kj

(
x2
) (
e−2ηj(λ)s

)kj
. (4.10)

The Laguerre polynomials are defined by their generating formula (see Theorem 3.59):
∞∑
k=0

L
(β)
k (w)zk =

1

(1− z)β+1
exp

{
wz

z − 1

}
.

Now we may apply the generating formula of the Laguerre polynomials to sum up the series

(4.10) and find gj(x, s)

gj(x, s) =
e−

x2

2

1− e−2ηj(λ)s
exp

{
x2e−2ηj(λ)s

e−2ηj(λ)s − 1

}
=

1

1− e−2ηj(λ)s
exp

{
−x

2

2

[
1− 2e−2ηj(λ)s

e−2ηj(λ)s − 1

]}
=

1

1− e−2ηj(λ)s
exp

{
−x

2

2
· −1− e−2ηj(λ)s

e−2ηj(λ)s − 1

}
.

Hence

K̂(ξ) =

∫ ∞

0

d∏
j=1

e−ηj(λ)s

1− e−2ηj(λ)s
exp

{
−

d∑
j=1

ηj(λ) |ξj|2

2
· 1 + e−2ηj(λ)s

1− e−2ηj(λ)s

}
ds

We may rewrite the above formula in terms of hyperbolic functions:

K̂(ξ) =

∫ ∞

0

d∏
j=1

1

2 sinh(ηj(λ)s)
exp

{
−

d∑
j=1

ηj(λ) |ξj|2

2
coth (ηj(λ)s)

}
ds,

where we use

sinh ηj(λ)s =
1− e−2ηj(λ)s

2e−ηj(λ)s
,
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and

coth(−ηj(λ)s) = − coth(ηj(λ)s) =
1 + e−2ηj(λ)s

1− e−2ηj(λ)s
.

Let

G(ξ, τ) =
d∏
j=1

1

2 sinh(ηj(λ)τ)
exp

{
−

d∑
j=1

ηj(λ) |ξj|2

2
coth (ηj(λ)τ)

}
be the integrand of the above integral. We can prove directly that[

d∑
j=1

(
ξ2j − η2j (λ)

∂2

∂ξ2j

)]
K̂(ξ) = 1

by showing that the function G(ξ, τ) satisfies the heat equation

∂G

∂τ
+

[
d∑
j=1

(
ξ2j − η2j (λ)

∂2

∂ξ2j

)]
G(ξ, τ) = 0 and lim

τ→0+
G(ξ, τ) = 1. (4.11)

Then the fundamental theorem of calculus yields[
d∑
j=1

(
ξ2j − η2j (λ)

∂2

∂ξ2j

)]
K̂(ξ) =

∫ ∞

0

[
d∑
j=1

(
ξ2j − η2j (λ)

∂2

∂ξ2j

)]
G(ξ, τ)dτ

=

∫ ∞

0

(
−∂G
∂τ

)
dτ = G(0) = 1.

The fact that G(ξ, τ) satisfies the heat equation (4.11) can be proved directly by simple differ-

entiation. Therefore

∂G

∂τ
+

d∑
j=1

(
ξ2j − η2j (λ)

∂2

∂ξ2j

)
G(ξ, τ) = 0.

This shows that G(ξ, τ) is the heat kernel of the rescaled harmonic oscillator
d∑
j=1

(
ξ2j − η2j (λ)

∂2

∂ξ2j

)
with G(ξ, 0) = 1.

4.2.2 Heat kernels of L

In this section, we are interested in finding the heat kernel of L, which are related to the kernel

of the integral operator e−τL, τ > 0. We need the following proposition that follows from the

Theorem 3.29 and Theorem 3.41.

Proposition 4.20. For all multi-indices α, β, µ and γ

eλα,γ ∗λ eλβ,µ = Pf(λ)−
1
2 (2π)

d
2 δβ,γe

λ
α,µ

where δβ,α is the Kronecker delta function.
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Theorem 4.21. For all f ∈ L2
(
R2d+k

)
and all τ > 0,

e−τL
λ

f = kλτ ∗−λ f

where

kλτ (z, r) = e−τ |ν|
2

d∏
j=1

(2π)−
1
2

ηj(λ)

2 sinh (ηj(λ)τ)
exp

{
−
ηj(λ)z

2
j

2
coth (ηj(λ)τ)

}
for all z ∈ R2d+k.

Proof. Let f ∈ S
(
R2d+k

)
and τ > 0. Then by Theorem 3.56,

e−τL
λ

f =
∑
β

e
−τ
(

d∑
j=1

ηj(λ)(2βj+1)+|ν|2
)∑

α

(
f, eλα,β

)
L2(R2d)

eλα,β.

By Proposition 4.20,

f ∗λ eλβ,β =
∑
α

∑
γ

(
f, eλα,γ

)
L2(R2d+k)

eλα,γ ∗λ eλβ,β

= Pf(λ)−
1
2 (2π)

d
2

∑
α

∑
γ

(
f, eλα,γ

)
L2(R2d+k)

δγ,βe
λ
α,β

= Pf(λ)−
1
2 (2π)

d
2

∑
α

(
f, eλα,β

)
L2(R2d+k)

eλα,β

for all β ∈ Nd
0. Thus,

e−τL
λ

f = Pf(λ)
1
2 (2π)−

d
2

∑
β

e
−τ
(

d∑
j=1

ηj(λ)(2βj+1)+|ν|2
)
f ∗λ eλβ,β

= Pf(λ)
1
2 (2π)−

d
2

∑
β

e
−τ
(

d∑
j=1

ηj(λ)(2βj+1)+|ν|2
)
eλβ,β ∗−λ f.

To compute

∑
β

e
−τ
(

d∑
j=1

ηj(λ)(2βj+1)+|ν|2
)
eλβ,β,

we first to compute

∑
β

e
−τ
(

d∑
j=1

ηj(λ)(2βj+1)

)
eλβ,β

by Mehler’s formula. In fact,

eλβ,β(p, q) = Pf(λ)
1
2

d∏
j=1

eβj ,βj

((
(B(λ))tp

)
j√

|η(λ)|
,
√

|η(λ)|qj

)
, p, q ∈ Rd,

where eβj ,βj is the ordinary Fourier-Wigner transform of the Hermite functions eβj . Hence for
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all (p, q) ∈ Rd × Rd

∑
β

e
−τ
(

d∑
j=1

ηj(λ)(2βj+1)

)
eλβ,β(p, q) = Pf(λ)

1
2

d∏
j=1

 ∞∑
βj=0

e−τeβj ,βj

((
(B(λ))tp

)
j√

|η(λ)|
,
√

|η(λ)|qj

) .

Now, by Theorem 4.19

∞∑
βj=0

e
−τ
(

d∑
j=1

ηj(λ)(2βj+1)

)
eβj ,βj (pj, qj) =

1√
2π

1

2 sinh (ηj(λ)τ)
exp

{
−ηj(λ) ((pj)

2 + (qj)
2)

2
coth (ηj(λ)τ)

}
for all (pj, qj) in R× R. So,

∑
β

e
−τ
(

d∑
j=1

ηj(λ)(2βj+1)+|ν|2
)
eλβ,β(p, q) = e−τ |ν|

2
d∏
j=1

(2π)−
1
2

ηj(λ)
1/2

2 sinh (ηj(λ)τ)
exp

{
−
ηj(λ)z

2
j

2
coth (ηj(λ)τ)

}
.

Now, we use the heat kernel κλτ of the λ-twisted sub-Laplacian to find the heat kernel of the

sub-Laplacian by taking the Fourier transform with respect to the parameter λ. To do this, we

need some preparation. The group convolution of two measurable functions f and g on G is

defined by

(f ∗G g) (z, s) =
∫
G
f
(
(z, s)(w, s)−1

)
g(w, s)dwds, z, w ∈ R2d+k, s ∈ Rm

if the integral exists. Moreover, we denote by fλ the ordinary Fourier transform of f with

respect to the s variable evaluated at the point λ ∈ Rm. More precisely,

fλ(z) = (2π)−
m
2

∫
Rm

e−is·λf(z, s)ds, z ∈ R2d+k.

We need the following theorem.

Theorem 4.22. Let f and g be functions in L1(G). Then for all nonzero λ ∈ Rm,

(f ∗G g)λ = (2π)
m
2 fλ ∗−λ gλ.

Proof. For all z ∈ R2d+k

(f ∗G g)λ = (2π)−
m
2

∫
Rm

e−is·λ (f ∗λ g) (z, s)ds

= (2π)−
m
2

∫
Rm

e−is·λ
(∫

R2d+k

∫
Rm

f

(
z − w, s− l − 1

2
σ(z, w)

)
g(w, l)dwds

)
dl.

Let s′ = s− 1
2
σ(z, w). Then

(f ∗G g)λ = (2π)−
m
2

∫
Rm

∫
Rm

∫
R2d+k

e−is
′·λf (z − w, s′ − l) g(w, l)e−

i
2
λσ(z,w)dwdlds′.
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On the other hand, for all z in R2d+k, we get

(fλ ∗−λ gλ) (z) =
∫
R2d+k

fλ(z − w)gλ(w)e
− i

2
λσ(z,w)dw

= (2π)−m
∫
Rm

∫
Rm

∫
R2d+k

e−is·λf(z − w, s− l)g(w, l)e−
i
2
λσ(z,w)dwdlds,

and the proof is complete.

Now, we consider the initial-value problem given by
∂τu(ω, t, τ) + (Lu)(w, t, τ) = 0,

u(ω, t, 0) = f(ω, t),

ω = (z, r) ∈ R2d+k, t ∈ Rm, τ > 0.

By taking the Fourier transform with respect to t and evaluated at λ, we get an initial-value

problem for the heat equation governed by the λ-twisted sub-Laplacian Lλ, i.e. ∂τuλ(ω, τ) + (Lλuλ)(ω, τ) = 0,

uλ(ω, 0) = fλ(ω),

for all ω = (z, r) ∈ R2d+k, τ > 0 and λ ∈ Rm\{0}. By Theorem 4.21,

uλ(ω, τ) =
(
kλτ ∗−λ fλ

)
(ω), ω ∈ R2d+k, τ > 0

for all λ ∈ Λ. Therefore by taking the inverse Fourier transform with respect to λ and evaluated

at s, and using Theorem 4.22, we get the solution of the initial-value problem governed by the

sub-Laplacian given by

u(ω, t, τ) = (2π)−
m
2 (f ∗G Kτ ) (ω, t), ω ∈ R2d+k, t ∈ Rm, τ > 0

where Kτ is the Fourier transform of the heat kernel of kλτ with respect to λ and evaluated at

t. So, the heat kernel of L is given in the following theorem.

Theorem 4.23. For all f in L2(G), e−τLf = f ∗G Kτ , where

Kτ (ω, t) = (2π)−(d+m)

∫
Rm

e−it·λe−τ |ν|
2

d∏
j=1

ηj(λ)

2 sinh (ηj(λ)τ)
exp

{
−
ηj(λ)ω

2
j

2
coth (ηj(λ)τ)

}
dλ

for all (ω, t) ∈ G.

Our results can be seen as a generalization of Heisenberg group and H-type group. In fact,

if we take k = 0,m = 1, then the step two stratified Lie group is the Heisenberg group H2d+1,

and our result cover the one in [Dua13]. If we take k = 0, then the step two stratified Lie group

is the H-type group, and some results can be found in [Cyg79; DW15; MW18; MR03; YZ08].

Also, there are some results in this direction by different methods, i.e. [AG16; CKW21; LZ19].
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To the best of our knowledge, this is the first result on the Weyl transform and Heat kernel for

sub-Laplacian on general 2-step stratified Lie groups, especially we consider the case k ̸= 0.
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5 Appendix

The aim of this appendix is to prove that, up to a canonical isomorphism, the classical definition

of stratified Lie group (Definition 2.62) coincides with our Definition 2.61, as given in Section

2.1.3. To this aim, we begin by recalling some basic facts about abstract Lie groups, providing

all the terminology and the main results about manifolds, tangent vectors, left-invariant vector

fields, Lie algebras, homomorphisms, the exponential map. We take most of the material from

[BLU07].

5.1 Abstract Lie groups

Let N ∈ N, and let us define, for i = 1, . . . , N , the coordinate projections on RN (whose points

will be denoted by ξ = (ξ1, . . . , ξN) ∈ RN with ξ1, . . . , ξN ∈ R )

πi : RN −→ R, πi(ξ) := ξi.

Definition 5.1 (N-dimensional locally Euclidean space). An N -dimensional locally Euclidean

space M is a Hausdorff topological space such that every point of M has a neighborhood in M

homeomorphic to an open subset of RN . If φ is a homeomorphism between a connected open

set U ⊆M and an open subset of RN , we say that φ : U → RN is a coordinate map,

xi := πi ◦ φ : U → R

is a coordinate function, and the pair (U,φ) (sometimes also denoted by (U, x1, , . . . , xN)) is

a coordinate system or a chart. If m ∈ U and φ(m) = 0, we say that the coordinate system is

centered at m.

Definition 5.2 (Differentiable manifold). A C∞ differentiable structure F on a locally Eu-

clidean space M is a collection of coordinate systems

{(Uα, φα) : α ∈ A}
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with the following properties:

•
⋃
α∈A Uα =M ;

• φα ◦ φ−1
β is C∞ for every α, β ∈ A (whenever it is defined);

• F is maximal w.r.t. the second property in the sense that if (U,φ) is a coordinate system

such that φ ◦ φ−1
α and φα ◦ φ−1 are C∞ for every α ∈ A, then (U,φ) ∈ F .

AnN -dimensional C∞ differentiable manifold is a couple (M,F), whereM is a second countable

N -dimensional locally Euclidean space and F is a C∞ differentiable structure.

As usual, when we say "M is an N -dimensional C∞ differentiable manifold", we leave unsaid

that M is equipped with the fixed datum of a C∞ differentiable structure F on M .

Definition 5.3 (Tangent vector, space and bundle). Let M be an N -dimensional C∞ differen-

tiable manifold. A tangent vector v at m ∈ M is a linear functional, defined on the collection

of the real-valued functions C∞ in some neighborhood of m, such that

v(f) = 0

whenever f is horizontal in m.

We denote by Mm the set of the tangent vectors at m ∈ M , and we say that Mm is the

tangent space to M at m. We finally set

T (M) :=
⋃
m∈M

{m} ×Mm = {(m,v) : m ∈M,v ∈ Mm} .

T (M) is called the tangent bundle to M .

Proposition 5.4. Let M be an N-dimensional C∞ differentiable manifold. Then dim (Mm) =

N = dimM .

Definition 5.5 (Partial derivatives on M). Let M be an N -dimensional C∞ differentiable

manifold. Let (U,φ) be a coordinate system with coordinate functions x1, . . . , xN (xi := πi ◦ φ),

and let m ∈ U . For every i ∈ {1, . . . , N} we define a tangent vector, denoted

∂

∂xi

∣∣∣∣
m

∈Mm

by setting

∂

∂xi

∣∣∣∣
m

(f) :=
∂

∂ξi

∣∣∣∣
φ(m)

(
f ◦ φ−1

)
(ξ)

for every C∞ function f defined in a neighborhood of m.
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Definition 5.6 (Differential at a point). Let ψ : M −→ M ′ be a C∞ map between two

differentiable manifolds, and let m ∈M . The differential of ψ at m is the linear map

dmψ :Mm −→M ′
ψ(m)

defined as follows: if v ∈ Mm, dmψ(v) is the tangent vector in M ′
ψ(m) acting in the following

way: if f is aC∞ function in a neighborhood of ψ(m), we set

(dmψ(v)) (f) := v(f ◦ ψ).

Definition 5.7 (dψ as a map on the tangent bundle). Let ψ :M →M ′ be a C∞ map between

two differentiable manifolds M,M ′. We set

dψ : T (M) → T (M ′) , dψ(m,v) := (ψ(m), dmψ(v)) .

Note that, whereas dmψ is a map from Mm to M ′
ψ(m) (for any fixed m ∈M) , dψ is a map from

T (M) to T (M ′).

Definition 5.8 (Vector field). Let Ω ⊆ M be an open subset of a differentiable manifold M .

A vector field X on Ω is an application

X : Ω −→ T (M)

such that,

X(m) = (m,v(m)) ∈ T (M) ∀m ∈ Ω.

Equivalently, we have

X(m) = (m,v(m)), where v(m) ∈Mm for every m ∈ Ω.

If T (M) is the tangent bundle of a differentiable manifoldM , and, for everym ∈M,v ∈Mm,

we set π(m,v) := v, then the following map is well posed on T (M) :

π : T (M) →
⋃
m∈M

Mm, (m,v) 7→ v.

In the sequel, if X is a vector field on an open set Ω ⊆M , we shall use the notation X(m) for

the map

X : Ω → T (M), m 7→ X(m),

whereas Xm will denote the map

Ω →
⋃
m∈M

Mm, m 7→ Xm := (π ◦X)(m).
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So, the above positions can be summarized as

X(m) = (m,Xm) for every m ∈M.

Finally, if f is a C∞ function on Ω and X is a vector field on Ω, we shall denote (with an abuse

of notation) by X(f) or shortly Xf the function on Ω whose value at m is Xm(f), i.e.

Xf : Ω → R, (Xf)(m) := Xm(f). (5.1)

Definition 5.9 (Smooth vector field). Let X be a vector field defined on a manifold M . We

say that X is C∞ ( or smooth) if, for every open set Ω ⊆ M and every smooth real-valued

function f on Ω, the function Xf as defined in (5.1) is smooth on Ω.

Remark 5.10 (Smooth vector fields as operators on C∞(M,R)). Let X be a smooth vector field

on a differentiable manifold M . Besides a map from M to T (M), it is possible to identify X

with the map

X : C∞(M,R) → C∞(M,R), f 7→ Xf

where

Xf :M → R, m 7→ (Xf)(m) = Xmf.

We denote by X (M) the set of the smooth vector fields considered as linear operators (i.e.

endomorphisms) on C∞(M,R). Note that X (M) is a vector space over R.

In what follows, we introduce an important definition. The adjectives "regular" and "smooth"

will always mean "of class C∞ ".

Definition 5.11 (Tangent vector to a curve). Let µ : [a, b] → M be a regular curve. The

tangent vector to the curve µ at time t is defined by

µ̇(t) := dtµ

(
d

dr

∣∣∣∣
r=t

)
∈Mµ(t).

Hence, fixed t ∈ [a, b], if f is C∞ near µ(t), we have

µ̇(t)(f) =
d

dr

∣∣∣∣
r=t

(f(µ(r))).

Definition 5.12 (Integral curve). Let X be a smooth vector field on the differentiable manifold

M . A regular curve µ : [a, b] −→M is called an integral curve of X if

µ̇(t) = Xµ(t) for every t ∈ [a, b]. (5.2)

More explicitly, (5.2) means that

d

dr

∣∣∣∣
r=t

(f(µ(r))) = X(f)(µ(t))
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for every smooth function f on M and every t ∈ [a, b].

Definition 5.13 (Complete vector field). Let X be a smooth vector field on the differentiable

manifold M . We say that X is complete if, for every m ∈ M , the integral curve µ of X such

that µ(0) = m is defined on the whole R (i.e. its maximal interval of definition is R ).

In the sequel, we denote by C∞(M,R) or, shortly, C∞(M) the set of the smooth real-valued

functions defined on a differentiable manifold M . It is immediate to observe that if X is a

smooth vector field on M and f ∈ C∞(M,R), we have Xf ∈ C∞(M,R). We explicitly recall

that, here and in the sequel, we use the notation in (5.1):

Xf :M → R, (Xf)(m) = Xm(f).

As a consequence, the following definition is well posed.

Definition 5.14 (Commutators). Let X and Y be smooth vector fields on a differentiable

manifold M . We define a vector field on M (called the commutator of X and Y ) in the

following way:

[X, Y ] :M → T (M), [X, Y ](m) := (m, [X, Y ]m) ,

where

[X, Y ]m(f) := Xm(Y f)− Ym(Xf)

for every m ∈M and every f ∈ C∞(M,R).

Definition 5.14 is well posed as it follows from (i) in the proposition below.

Proposition 5.15. If X, Y and Z are smooth vector fields on M , we have:

(i) [X, Y ] is a smooth vector field on M ;

(ii) [X, Y ]m = −[Y,X]m for every m ∈M ;

(iii) [[X, Y ], Z]m + [[Y, Z], X]m + [[Z,X], Y ]m = 0 for every m ∈M .

Remark 5.16. Consider the alternative definition of smooth vector field as an element of X (M).

The commutator operation rewrites as an operation on X (M) in the following way: Given

X, Y ∈ X (M), we consider the operator on C∞(M,R) defined by

[X, Y ] : C∞(M,R) → C∞(M,R), f 7→ [X, Y ]f,
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where

([X, Y ]f)(m) := [X, Y ]mf = Xm(Y f)− Ym(Xf)

Then, obviously, [X, Y ] ∈ X (M) is the operator on C∞(M,R) related to the (usual) vector

field [X, Y ].

With this meaning of the commutation, Proposition 5.15 rewrites as: If X, Y and Z belong

to X (M), we have:

(i) [X, Y ] ∈ X (M);

(ii) [X, Y ] = −[Y,X];

(iii) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

Definition 5.17 (Lie group). A Lie group G is a differentiable manifold G along with a group

law ∗ : G×G −→ G such that the applications

G×G ∋ (x, y) 7→ x ∗ y ∈ G, G ∋ x 7→ x−1 ∈ G

are smooth.

In the following, we shall always denote by e the identity of (G, ∗). Moreover, fixed σ ∈ G,

we denote by τσ the left translation on G by σ, i.e. the map

G ∋ x 7→ τσ(x) := σ ∗ x ∈ G.

Definition 5.18 (Lie algebra). A (real) Lie algebra is a real vector space g with a bilinear

operation [·, ·] : g× g −→ g (called (Lie) bracket) such that, for every X, Y, Z ∈ g, we have:

1. (anti-commutativity) [X, Y ] = −[Y,X];

2. (Jacobi identity) [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

A very remarkable fact is that, given any Lie group, there exists a certain finite dimen-

sional Lie algebra such that the group properties are reflected into properties of the algebra.

For instance, any connected and simply connected Lie group is completely determined (up to

isomorphism) by its Lie algebra. Therefore, the study of a Lie group is often reduced to the

study of its Lie algebra.

Remark 5.19. If X1, . . . , Xm are elements of an (abstract) Lie algebra, then a system of gener-

ators of Lie {X1, . . . , Xm} is given by the commutators

XI :=
[
Xi1 ,

[
Xi2 ,

[
Xi3 , . . .

[
Xik−1

, Xik

]
. . .
]]]

,
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where {i1, i2, . . . , ik} ⊆ {1, . . . ,m} and I = (i1, i2, . . . , ik) , k ∈ N.

5.2 Left invariant vector fields and the Lie algebra

Definition 5.20 (Left invariant vector fields). Let G be a Lie group. A smooth vector field X

on G is called left invariant if, for every σ ∈ G, X is τσ-related to itself, i.e.

dτσ ◦X = X ◦ τσ. (5.3)

Here dτσ is intended as a map from T (G) to itself. Condition (5.3) is equivalent to the

following one:

(dxτσ) (Xx) = Xσ∗x ∀x, σ ∈ G. (5.4)

Applying (5.4) at the identity e, it follows immediately that if X is a left invariant vector field,

we have

deτσ (Xe) = Xσ ∀σ ∈ G,

which proves that a left invariant vector field is determined by its action at the origin. Moreover,

(5.4) can also be written as

Xx (f ◦ τσ) = Xσ∗x(f) for every x, σ ∈ G and every f ∈ C∞(G,R)

or again as (the most commonly used)

Xx(y 7→ f(σ ∗ y)) = (Xf)(σ ∗ x).

Before giving the following central Definition, we pause a moment in order to recall the

multiple ways a smooth vector field can be thought of. A smooth vector field on G is a map

X : G → T (G) such that, for every x ∈ G, it holds X(x) = (x,Xx), where Xx ∈ Gx for every

x ∈ G and such that, for every f ∈ C∞(G,R), the function x 7→ Xx(f) is smooth on G. A

smooth vector field can be identified to the operator

X : C∞(G,R) −→ C∞(G,R),

f 7→ Xf : G → R,

x 7→ Xxf.

The set of the vector fields, as the above described operators, is denoted by X (G). Obviously,

the set of the left invariant operators on G gives rise to a relevant subset in X (G), following

the above identification. We are ready to give the following central definition.
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Definition 5.21 (Algebra of a Lie group). Let G be a Lie group. Then the subset of X (G) of

the smooth left invariant vector fields on G is called the (Lie) algebra of G. It will be denoted

by g.

More precisely, following Remark 5.10, we henceforth identify a left invariant vector field X

on G with the following operator

X : C∞(G,R) → C∞(G,R)

such that, for every f ∈ C∞(G,R), the function Xf on G is defined by

(Xf)(x) := Xxf ∀x ∈ G.

Hence, g is a (linear) set of endomorphisms on C∞(G,R),

g ⊆ X (G).

Note that, from the left invariance of X ∈ g, we have

(Xf)(x) = X (f ◦ τx) (e) ∀x ∈ G ∀f ∈ C∞(G,R).

Along with the above definition of the algebra of a Lie group, there is a wide commonly used

identification of g with Ge described in the following theorem.

Theorem 5.22 (The Lie algebra of a Lie group). Let G be a Lie group and g be its algebra.

Then we have:

(i) g is a vector space, and the map

α : g −→ Ge,

X 7→ α(X) := Xe

is an isomorphism between g and the tangent space Ge to G at the identity e of G. As a

consequence, dim g = dimGe = dimG;

(ii) The commutator of smooth left invariant vector fields is a smooth left invariant vector

field;

(iii) g with the commutation operation is a Lie algebra.

Example 5.23 (The Lie algebra of (R,+)). It is obvious that the Lie algebra r of the usual

Euclidean Lie group (R,+) is

span

{
d

dr

}
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where

d

dr
: C∞(R,R) → C∞(R,R), f 7→ f ′.

With the usual formalism Xx for vector fields, this rewrites as

d

dr

∣∣∣∣
t

f = f ′(t) for every t ∈ R.

Definition 5.24 (Homomorphisms). Let (G, •) and (H, ∗) be Lie groups. A map φ : G −→ H

is a homomorphism of Lie groups if it is C∞ and if

φ(x • y) = φ(x) ∗ φ(y) ∀x, y ∈ G.

A map φ is an isomorphism of Lie groups if it is a homomorphism of Lie groups and a diffeomor-

phism of differentiable manifolds. An isomorphism of G onto itself is called an automorphism

of G.

Let (g, [·, ·]1) and (h, [·, ·]2) be Lie algebras. A map φ : g −→ h is a homomorphism of Lie

algebras if it is linear and if

φ ([X, Y ]1) = [φ(X), φ(Y )]2 ∀X, Y ∈ g.

A map φ is an isomorphism of Lie algebras if it is a bijective homomorphism of Lie algebras.

An isomorphism of g onto itself is called an automorphism of g.

We recall that, according to Definition 5.13, a smooth vector field X on a Lie group G is

complete if, for every x ∈ G, the integral curve µ of X such that µ(0) = x is defined on the

whole R.

Proposition 5.25 (Completeness of the left invariant vector fields). The left invariant vector

fields on a Lie group G are complete.

Definition 5.26 (The exponential curve expX(t)). Let G be a Lie group with Lie algebra g.

Let X ∈ g be fixed. By Proposition 5.25, the integral curve µ(t) of X passing through the

identity of G when t = 0 is defined on the whole R. We set

expX(t) := µ(t).

By the Definition 5.12 of integral curve, we have

expX : R → G with

 expX(0) = eG,

dt expX
(

d
dr

∣∣
r=t

)
= XexpX(t) ∀t ∈ R.

(5.5)
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In terms of functionals on C∞(G,R), (5.5) can be written more explicitly as(
d

dr

)
r=t

{f (expX(r))} = XexpX(t)(f) ∀f ∈ C∞(G,R).

In particular, when t = 0,(
d

dr

)
r=0

{f (expX(r))} = Xe(f) ∀f ∈ C∞(G,R).

Again from (5.5) with t = 0 we infer

d0 expX

{(
d

dt

)
0

}
= Xe.

For future reference, we collect some other useful formulas for expX(t), immediate conse-

quence of the facts proved above.

Theorem 5.27. Let (G, ∗) be a Lie group with algebra g. Let X ∈ g. Then:

(i) expX(r + s) = expX(r) ∗ expX(s) for every r, s ∈ R;

(ii) expX(−t) = (expX(t))
−1 for every t ∈ R;

(iii) expX(0) = e;

(iv) R ∋ t 7→ expX(t) ∈ G is a smooth curve;

(v) expX(t) is the unique integral curve of X passing through the identity at time zero, so

that, for every x ∈ G,

t 7→ x ∗ (expX(t))

is the unique integral curve of X passing through x at time zero.

We are ready to give the fundamental definition.

Definition 5.28 (Exponential map). Let (G, ∗) be a Lie group with Lie algebra g. Following

the notation in Definition 5.26, we set

Exp : g −→ G,

X 7→ Exp(X) := expX(1).

Exp is called the exponential map (related to the Lie group G ).

The following results hold.

Proposition 5.29. Let (G, ∗) be a Lie group with Lie algebra g. For every X ∈ g, we have
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(i) Exp(tX) = expX(t) for every t ∈ R;

(ii) Exp((r + s)X) = Exp(rX) ∗ Exp(sX) for every r, s ∈ R;

(iii) Exp(−tX) = (Exp(tX))−1, for every t ∈ R.

Theorem 5.30. Let G and H be Lie groups with associated algebras g and h. We denote

by ExpG and ExpH the exponential maps related to G and to H, respectively. Finally, let

φ : G −→ H be a Lie group homomorphism. Then the following diagram is commutative:

G H

g h

ϕ

ExpG

dφ

ExpH .

5.3 Nilpotent Lie groups

In this section we discuss nilpotent Lie algebras and groups in the spirit of Folland and Stein’s

book [FS82] as well as introduce homogeneous (Lie) groups. For more analysis and details in

this direction we refer to the recent open access books [FR16].

Definition 5.31 (Graded Lie algebras and groups). A Lie algebra g is called graded if it is

endowed with a vector space decomposition (where all but finitely many of the Vk’s are 0 )

g = ⊕∞
j=1Vj such that [Vi, Vj] ⊂ Vi+j.

Consequently, a Lie group is called graded if it is a connected and simply connected Lie group

whose Lie algebra is graded.

The condition that the group is connected and simply connected is technical but important

to ensure that the exponential mapping is a global diffeomorphism between the group and its

Lie algebra.

Definition 5.32 (Stratified Lie algebras and groups). A graded Lie algebra g is called stratified

if V1 generates g an algebra. In this case, if g is nilpotent of step r we have

g = ⊕r
j=1Vj, [Vj, V1] = Vj+1

and the natural dilations of g are given by

δλ

(
r∑

k=1

Xk

)
=

r∑
k=1

λkXk, (Xk ∈ Vk) .
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Consequently, a Lie group is called stratified if it is a connected simply-connected Lie group

whose Lie algebra is stratified.

Definition 5.33 (Homogeneous groups). Let δλ be dilations on G. We say that a Lie group

G is a homogeneous group if:

(a) It is a connected and simply-connected nilpotent Lie group G whose Lie algebra g is

endowed with a family of dilations {δλ}.

(b) The maps exp ◦δλ ◦ exp−1 are group automorphism of G.

Remark 5.34. The exponential mapping exp is a global diffeomorphism from g to G, it induces

the corresponding family on G which we may still call the dilations on G and denote by δλ.

Thus, for x ∈ G we will write δλ(x) or abbreviate it writing simply λx.

Lemma 5.35. Graded Lie algebras are naturally equipped with dilations. If a Lie algebra g has

a family of dilations such that the weights are all rational, then g has a natural gradation.

Proposition 5.36. The following holds:

(i) A Lie algebra equipped with a family of dilations is nilpotent.

(ii) A homogeneous Lie group is a nilpotent Lie group.

Remark 5.37. A gradation over a Lie algebra is not unique: the same Lie algebra may admit

different gradations. For example, any vector space decomposition of Rn yields a graded struc-

ture on the group (Rn,+) . More convincingly, we can decompose the 3 dimensional Heisenberg

Lie algebra h1 as

h1 =
3⊕
j=1

Vj with V1 = RX1, V2 = RY1, V3 = RT

This example can be easily generalised to find several gradations on the Heisenberg groups

Hno , no = 2, 3, . . . , which are not the classical ones. Another example would be

h1 =
8⊕
j=1

Vj with V3 = RX1, V5 = RY1, V8 = RT

and all the other Vj = {0}.

Remark 5.38. A gradation may not even exist. The first obstruction is that the existence of a

gradation implies nilpotency; in other words, a graded Lie group or a graded Lie algebra are

nilpotent. Even then, a gradation of a nilpotent Lie algebra may not exist. As a curiosity,
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let us mention that the (dimensionally) lowest nilpotent Lie algebra which is not graded is the

seven dimensional Lie algebra given by the following commutator relations:

[X1, Xj] = Xj+1 for j = 2, . . . , 6,

[X2, X3] = X6,

[X2, X4] = [X5, X2] = [X3, X4] = X7.

They define a seven dimensional nilpotent Lie algebra of step 6 (with basis {X1, . . . , X7}) . It

is the (dimensionally) lowest nilpotent Lie algebra which is not graded.

If H is a stratified Lie group, its Lie algebra admits at least a stratification, but it can also

have more than one. For example, if H = H1 is the Heisenberg group on R3, its Lie algebra

admits the stratifications

span {X1, X2} ⊕ span {[X1, X2]} ,

span {X1 − 3 [X1, X2] , X2} ⊕ span {[X1, X2]} ,

span {X1 +X2, 3X1 + [X1, X2]} ⊕ span {[X1, X2]} .

Definition 5.39 (Basis adapted to the stratification). Let H be a stratified Lie group. Let

V = (V1, . . . , Vr) be a fixed stratification of the Lie algebra h of H. We say that a basis B of h

is adapted to V if

B =
(
E

(1)
1 , . . . , E

(1)
N1

; . . . ;E
(r)
1 , . . . , E

(r)
Nr

)
where, for i = 1, . . . , r, we have Ni := dimVi, and(

E
(i)
1 , . . . , E

(i)
Ni

)
is a basis for Vi.

Obviously, every stratified Lie group admits an adapted basis to any of its stratifications.

Proposition 5.40. Let H be a stratified Lie group. Suppose that (V1, . . . , Vr) and
(
Ṽ1, . . . , Ṽr̃

)
be any two stratifications of the algebra of H. Then r = r̃ and dim (Vi) = dim

(
Ṽi

)
for every

i = 1, . . . , r. Moreover, the algebra of H is a nilpotent Lie algebra of step r. Hence, the natural

number

Q :=
r∑
i=1

i dim (Vi)

depends only on the stratified nature of H and not on the particular stratification. Q is called

the homogeneous dimension of H.

Lemma 5.41 (The two-stratification lemma). Let H be a stratified Lie group with Lie algebra

h. Suppose V := (V1, . . . , Vr) and W := (W1, . . . ,Wr) are two stratifications of h.
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Then, for every couple of bases V and W of h respectively adapted to the stratifications V

and W , the transition matrix between the two bases is non-singular and has the block-triangular

form 
M (1) 0 · · · 0

⋆ M (2) . . . ...
... . . . . . . 0

⋆ · · · ⋆ M (r)


where, for every i = 1, . . . , r, the block M (i) is aNi × Ni non-singular matrix (Ni being the

common value of dim (Vi) = dim (Wi)).

The following proposition shows that "to be a stratified Lie group" is an invariant under

isomorphism of Lie groups.

Proposition 5.42. Let H be a stratified Lie group. Suppose G is a Lie group isomorphic to H.

Then G is a stratified Lie group too. Moreover, H and G have the same step, the same number

of generators and even the dimensions of the layers of the relevant stratifications are preserved.

Also, H and G have the same homogeneous dimension Q.

More precisely, suppose φ : H → G is a Lie group isomorphism and that (V1, . . . , Vr) is a

stratification of h, the algebra of H. Then, if g is the algebra of G, a stratification for g is

given by (dφ (V1) , . . . , dφ (Vr)), where dφ is the differential of φ which is an isomorphism of

Lie algebras (and of vector spaces).

We recall the following result, which also gives the well known Campbell-Hausdorff formula.

Theorem 5.43. Let (H, ∗) be a connected and simply connected Lie group. Suppose that the Lie

algebra h of H is nilpotent. Then ⋄ defines a Lie group structure on h and Exp : (h, ⋄) → (H, ∗)

is a group-isomorphism. In particular, we have

Exp(X) ∗ Exp(Y ) = Exp(X ⋄ Y ) ∀X, Y ∈ h.

Theorem 5.44 (The third fundamental theorem of Lie). Let h be a finite-dimensional Lie

algebra. Then there exists a connected and simply connected Lie group whose Lie algebra is

isomorphic to h.

Collecting the above two theorems, we obtain the following result.
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Corollary 5.45. Let h be a finite-dimensional nilpotent Lie algebra. Then ⋄ defines a Lie

group structure on h. Moreover, the Lie algebra associated to the Lie group (h, ⋄) is isomorphic

to the algebra h.

5.4 Abstract and homogeneous stratified Lie groups

We now aim to prove that, up to isomorphism, the definitions of classical and homogeneous

stratified Lie group are equivalent. To begin with, we prove the following simple fact:

Proposition 5.46 (Homogeneous ⇒ stratified). A homogeneous stratified Lie group in Defi-

nition 2.61 is a stratified group of Definition 2.62.

Proof. Let G =
(
RN , ◦, δλ

)
be a homogeneous Carnot group. Clearly, G is connected and

simply connected. Let g be the algebra of G.

For i = 1, . . . , r and j = 1, . . . , Ni, let Z(i)
j be the vector field of g agreeing with ∂/∂x

(i)
j at

the origin. We set

Vi := span
{
Z

(i)
1 , . . . , Z

(i)
Ni

}
Remark 2.72 proves that (V1, . . . , Vr) is a stratification of g, as in Definition 2.62. This ends

the proof.

Proposition 5.47 (Stratified isom.
=⇒ homogeneous). Let H be a stratified Lie group, according

to Definition 2.62. Then there exists a homogeneous stratified Lie group H∗ (according to our

Definition 2.61) which is isomorphic to H.

We can choose as H∗ the Lie algebra h of H (identified to RN by a suitable choice of an

adapted basis of h) equipped with the composition law ⋄ defined by the Campbell-Hausdorff

operation. In this case, a group isomorphism from H∗ to H is the exponential map

Exp : (h, ⋄) → (H, ∗).

Proof. Let (H, ∗) be as in Definition 2.62. Let h be the algebra of H. Let h = V1 ⊕ · · · ⊕ Vr be

a fixed stratification of h. By Proposition 5.40, h is nilpotent of step r.

Then Theorem 5.43 yields that

Exp : (h, ⋄) → (H, ∗) is a Lie-group isomorphism.

We now prove that (h, ⋄) is a homogeneous stratified Lie group according to Definition 2.61.
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We fix a basis for h adapted to its stratification: for i = 1, . . . , r, setNi := dimVi, and let(
E

(i)
1 , . . . , E

(i)
Ni

)
be a basis for Vi. Then consider the basis for h given by

E =
(
E

(1)
1 , . . . , E

(1)
N1

; . . . ;E
(r)
1 , . . . , E

(r)
Nr

)
.

By means of this basis, we fix a coordinate system on h, and we identify h with RN , where

N := N1 + · · ·+Nr. More precisely, we consider the map

πE : h → RN , E · ξ :=
r∑
i=1

Ni∑
j=1

ξ
(i)
j E

(i)
j 7→

(
ξ(1), . . . , ξ(r)

)
,

where ξ(i) =
(
ξ
(i)
1 , . . . , ξ

(i)
Ni

)
∈ RNi for every i = 1, . . . , r. Next, we set

Ψ := Exp ◦(πE)−1 : RN → H, Ψ(ξ) = (Exp(E · ξ)).

Notice that, more explicitly,

Ψ(ξ) = Exp

(
r∑
i=1

Ni∑
j=1

ξ
(i)
j E

(i)
j

)
∀ξ ∈ RN .

Finally, we equip RN with the composition law ⋄E defined by

ξ ⋄E η := Ψ−1(Ψ(ξ) ∗Ψ(η)), ξ, η ∈ RN .

We define a family of dilations {∆λ}λ>0 on the Lie algebra h as follows:

∆λ : h → h, ∆λ

(
r∑
i=1

Xi

)
:=

r∑
i=1

λiXi, where Xi ∈ Vi.

Obviously,

∆λ is a vector-space automorphism of h.

And ∆λ turns into a family of dilations {δλ}λ>0 on RN via Ψ by setting

δλ := πE ◦∆λ ◦ π−1
E . (5.6)

We claim that H∗ :=
(
RN , ⋄E , δλ

)
is a homogeneous stratified Lie group (of step r and N1

generators) isomorphic to (H, ∗) via the Lie group isomorphism Ψ.

To prove the claim, we split the proof in steps.

Step 1. By the definition of ⋄E and Ψ, we have

Ψ(ξ ⋄ Eη) = Ψ(ξ) ∗Ψ(η) ∀ξ, η ∈ RN ,

which, in turn, is equivalent to

π−1(ξ ⋄ Eη) = π−1
E (ξ) ⋄ π−1

E (η) ∀ξ, η ∈ RN , (5.7)
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or, equivalently,

πE(X ⋄ Y ) = πE(X) ⋄E πE(Y ) ∀X, Y ∈ h. (5.8)

Which means that (
RN , ⋄E

)
, (h, ⋄), (H, ∗)

are isomorphic Lie groups via the Lie-group isomorphisms(
RN , ⋄E

) π−1
E−→ (h, ⋄) Exp−→ (H, ∗).

In particular,

Ψ = Exp ◦π−1
E :

(
RN , ⋄E

)
→ (H, ∗) is a Lie-group isomorphism. (5.9)

Step 2. We now investigate the dilation δλ. The stratified notation

h ∋ E · ξ =
r∑
i=1

Ni∑
j=1

ξ
(i)
j E

(i)
j

for an arbitrary vector of h and the fact that

πE(E · ξ) = ξ

suggests the notation

RN ∋ ξ =
(
ξ(1), . . . , ξ(r)

)
for the points in RN . We claim that, with the above notation, δλ introduced in (5.6) has the

form

δλ
(
ξ(1), ξ(2), . . . , ξ(r)

)
=
(
λξ(1), λ2ξ(2), . . . , λrξ(r)

)
.

Indeed,

δλ(ξ) =
(
πE ◦∆λ ◦ π−1

E
)
(ξ) = πE (∆λ(E · ξ)) = πE

(
∆λ

(
r∑
i=1

Ni∑
j=1

ξ
(i)
j E

(i)
j

))

= πE

((
r∑
i=1

Ni∑
j=1

ξ
(i)
j ∆λ

(
E

(i)
j

)))
= πE

((
r∑
i=1

Ni∑
j=1

ξ
(i)
j λ

iE
(i)
j

))

= πE
(
E ·
(
λξ(1), . . . , λrξ(r)

))
=
(
λξ(1), . . . , λrξ(r)

)
.

Next, we proceed by showing that ∆λ is an automorphism of the Lie-group (h, ⋄), i.e.

∆λ(X ⋄ Y ) = ∆λ(X) ⋄∆λ(Y ) ∀X, Y ∈ h, ∀λ > 0.

In fact, it is enough to prove that

∆λ([X, Y ]) = [∆λ(X),∆λ(Y )] for every X, Y ∈ h. (5.10)
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If X =
∑r

i=1Xi and Y =
∑r

i=1 Yi, where Xi, Yi ∈ Vi, we have [Xi, Yj] ∈ Vi+j, whence

∆λ([X, Y ]) =
r∑

i,j=1

∆λ ([Xi, Yj]) =
r∑

i,j=1

λi+j [Xi, Yj]

=
r∑

i,j=1

[
λiXi, λ

jYj
]
=

r∑
i,j=1

[∆λ (Xi) ,∆λ (Yj)] = [∆λ(X),∆λ(Y )] .

Now, a joint application of (5.7),(5.8) and (5.10) prove that δλ is a Lie-group automorphism of(
RN , ⋄E

)
, i.e.

δλ (ξ ⋄E η) = δλ(ξ) ⋄E δλ(η) ∀ξ, η ∈ RN , ∀λ > 0.

Step 3. Thus, H∗ :=
(
RN , ⋄E , δλ

)
is a homogeneous Lie group on RN . Let now h∗ be the Lie

algebra of H∗. Dealing with a Lie group on RN (and the fixed Cartesian coordinates ξ ’s on

RN ), the Jacobian basis related to the composition ⋄E is well-posed. We denote by

Z =
(
Z

(1)
1 , . . . , Z

(1)
N1

; . . . ;Z
(r)
1 , . . . , Z

(r)
Nr

)
this Jacobian basis, i.e. Z(i)

k is the vector field in h∗ agreeing at the origin with ∂/∂ξ
(i)
k . The

proof is complete if we show that the Lie algebra generated by Z1, . . . , ZN1 coincides with the

whole h∗.

To this end, we first observe that, thanks to (5.9), dΨ : h∗ → h is an algebra isomorphism.

Furthermore, we have

dΨ = (dExp) ◦
(
d
(
π−1
E
))
.

Moreover, since E
(1)
1 , . . . , E

(1)
N1

is a system of Lie-generators for h (by the very definition of

stratification!), it is enough to prove that

dΨ
(
Z

(i)
k

)
= E

(i)
k for every i = 1, . . . , r and every k = 1, . . . , Ni. (5.11)

In order to prove (5.11), we recall that a left-invariant vector field is determined by its value at

the identity. Hence, (5.11) will follow if we show that(
dΨ
(
Z

(i)
k

))
e
=
(
E

(i)
k

)
e
.
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For every f ∈ C∞(H,R), we have(
dΨ
(
Z

(i)
k

))
e
(f) =

(
d0Ψ

(
Z

(i)
k

)
0

)
(f) =

(
Z

(i)
k

)
0
(f ◦Ψ)

=
(
∂/∂ξ

(i)
k

)
|ξ=0 f

(
Exp

(
r∑
i=1

Ni∑
j=1

ξ
(i)
j E

(i)
j

))

=
d

dt

∣∣∣∣
t=0

f
(
Exp

(
tE

(i)
k

))
=

d

dt

∣∣∣∣
t=0

f
(
exp

E
(i)
k
(t)
)

=
(
E

(i)
k

)
e
(f).

The proposition is thus completely proved.

At last, we furnish some properties in the following proposition which collect several already

proved facts.

Proposition 5.48. Let H be a stratified Lie group with Lie algebra h and exponential map

ExpH : h → H. Let also ⋄ be the Campbell-Hausdorff operation on h. Let V1 ⊕ · · · ⊕ Vr be

a stratification of h. Let E be any basis for h adapted to the stratification. Set N := dim(h),

consider the map πE : h → RN , where, for every X ∈ h, πE(X) is the N-tuple of the coordinates

of X w.r.t. E.

Then the binary operation on RN defined by

x ⋄ Ey = πE
((
π−1
E (x)

)
⋄
(
π−1
E (y)

))
∀x, y ∈ RN

has the following properties:

(1) G :=
(
RN , ⋄E

)
is a Lie group on RN ;G is isomorphic to H via the map Ψ = ExpH ◦π−1

E

and to (h, ⋄) via πE , whence (G, ⋄E) and (h, ⋄) are stratified Lie groups.

(2) Let Z = {Z1, . . . , ZN} be the Jacobian basis related to G; then, denoting the adapted basis

by E = {E1, . . . , EN}, we have

dΨ (Zi) = Ei for every i = 1, . . . , N

or, equivalently,

Zi(f ◦Ψ) ≡ Ei(f) ◦Ψ on G

for every f ∈ C∞(H,R). Moreover, if g is the algebra of G, the exponential map ExpG :

g → G is a linear map and it sends Zi in the i-th element of the standard basis of G ≡ RN ,
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whence

ExpG ((x1, . . . , xN)Z) = (x1, . . . , xN)

being (x1, . . . , xN)Z = x1Z1 + · · ·+ xNZN .

(3) The inversion on G is the Euclidean inversion −x.

(4) For every i ∈ {1, . . . , N}, we have

(x ⋄E y)i = xi + yi +Ri(x, y),

where Ri(x, y) is a polynomial function depending on the xk and yk with k < i, and

Ri(x, y) can be written as a sum of polynomials each containing a factor of the following

type

xhyk − xkyh with h ̸= k and h, k < i.

(5) Let ∆λ be the linear map on h such that, for every i = 1, . . . , r,

∆λ(X) = λiX whenever X ∈ Vi.

Let δλ := πE ◦∆λ ◦ π−1
E . Then

(
RN , ⋄E , δλ

)
is a (homogeneous) stratified Lie group of the

same step and number of generators as H.
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