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Abstract

When a hydrogen atom collides with a surface it may either scatter or stick to the
surface, depending on the energy loss the particle experiences during collision. It is
established that non-adiabatic effects in form of electronic excitation dominate the
energy transfer between H atom and metal surfaces. This work addresses the ques-
tion whether the scattering dynamics and the associated energy transfer depend on
the structural and electronic properties of the underlying surface. In order to answer
this question, I performed molecular dynamics simulations with electronic friction
describing H atom scattering from various metal surface facets on potential energy
surfaces that are based on Effective Medium Theory. At ambient temperatures,
the resulting energy loss distributions are similar for all metals, whereas drastic
differences between the individual systems appear at low temperatures. Adiabatic
molecular dynamics simulation of H atom scattering from a Xe(111) surface predicts
a very narrow energy loss distribution which is in good agreement with experimen-
tal findings, demonstrating that electron-hole pair excitation are not important here
due to the large separation of valence and conduction band in the noble gas crystal.
The reaction dynamics of chemisorbed hydrogen on platinum and palladium can be
described with transition state theory, where the transition state is chosen to be the
gas-phase molecular hydrogen, provided that the two sensitive quantities, the par-
tition function and the activation energy, are acquired accurately. Testing several
models revealed that incorporation of quantum effects are of critical importance.
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Preface

This work is the answer to the question I originally asked myself as a master student,
experimentally investigating H atom scattering from Ni(111). I was curious why my
colleagues from the theory department of our working group could only perform
simulation on face-centred cubic (fcc) transition metal surfaces. The answer was
obvious but revealing at the same time: the underlying formalism used for the
construction of full-dimensional potential energy surfaces was only formulated for
fcc metals at that time. Additionally, only the (111) cuts of the late transition
metal surfaces were investigated experimentally and theoretically at that point. The
results from both calculation and experiment, however, were extremely insensitive to
initial kinetic energy, incidence angle and azimuthal angle, while simultaneously the
influence of the surface structure has not been investigated at that point. This made
me very curious to investigate whether the surface structure has an influence and
combined with the intention to get an understanding of how computer simulations
of these systems are performed, I suggested to the head of our theory sub-group, Dr.
Alexander Kandratsenka, to generalise the used formalism to the body-centred cubic
(bcc) crystal structure with the intention to study the role of the crystal structure on
the scattering dynamics of H atoms. Originally supposed to take one year, but now
a whole PhD thesis later, I dare say that I managed to answer the question I asked
myself as a master student. Due to the fact that I went as an experimenter into
theory and thus stepped into a lot of pitfalls, I wrote this thesis with the intention to
not only present the results acquired in the last four years but also to highlight the
difficulties I faced and the corresponding approaches to solve them. In that sense,
this thesis is written in a more pedagogical style with the intention to be educative
for new PhD students of this working group who are supposed to perform molecular
dynamics simulations as part of their scientific investigations. As a consequence, this
thesis might be in some cases a little bit repetitive. For those, who are primarily
interested in the results, Appendix E provides the associated papers which are given
in a logical order with the purpose of sharing what I learned throughout the course of
my PhD in the most pedagogical manner. I hope this thesis is capable of transferring
the fascination for this topic, which has been my driving force for the past four years,
and that you enjoy reading this work.
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1. Introduction

In the last decades, the hydrogen economy has been on the rise.6 In this sector of
energy economy, hydrogen replaces fossil fuels as principle energy carrier, and its util-
isation is discussed in various areas of industry, ranging from mobility over cement
and steel production to the chemical industry.7–9 At present, 90% of all chemicals
are produced via heterogeneous catalysis.10 The probably most commonly known
reaction in chemical industry, which involves heterogeneous catalysis, is the Haber-
Bosch process, where the surface of an iron-based material promotes the reduction
of molecular nitrogen with molecular hydrogen into ammonia. Approximately 1%
of the annual energy demand worldwide is due to the production of fertiliser via
this way.11 Another example for heterogeneous catalysis are hydrogenation reac-
tions of olefines over Raney-Ni, Pd and Pt.12 These two examples underline the
importance of unravelling the complexity of heterogeneous catalysis like energy con-
version mechanisms on surfaces on the atomic scale in order to optimise technical
processes taking place on an industrial scale. Unfortunately, the most interesting
systems for industry are still too complicated to describe within a single theory. But
it is even worse: Even more than 100 years after Fritz Haber was honoured with the
Nobel prize, the acquisition of a detailed picture for adsorption processes of atoms
or molecules on surfaces remains a challenge due to the many degrees of freedom of
the substrate. However, heterogeneous catalysis cannot occur without adsorption,
because it is the first elementary step towards chemical conversions on surfaces. As
a consequence, simplifications must be made if we wish to elucidate the dynamics of
adsorbed particles between each other or the many atoms that form the surface. A
common strategy to unravel the interaction mechanisms between atom or molecule
and surface is to investigate benchmark systems experimentally and compare the
results with theoretical simulations. This strategy involves the simplification of a
poorly defined surface in a high pressure environment to a single crystal with a well
defined orientation in ultra-high vacuum. The simplest benchmark system one could
probably imagine is a hydrogen atom interacting with a well defined surface.
In 2015, Bünermann et al. reported scattering experiments of H atoms from

Au(111).13 Those results were complemented with first principles calculations.14

Both, experiment and simulations are in good agreement with each other and thus
conclusions about the energy transfer between H atom and metal surface could be

2



drawn. The kinetic energy of the H atom is predominantly transferred to the metal
via electron-hole pair (ehp) excitations, whereas the energy transfer to the lattice is
inefficient due to the large mass mismatch between projectile and metal atom, con-
firming suggestions already made in 1979 by Nørskov and Lunqvist.15 Remarkable
similar results were obtained for the other late fcc transition metals. The combina-
tion of first-principles calculation and high-resolution time-of-flight measurements
demonstrated a universal behaviour in the energy transfer and adsorption process
occurring in H atom scattering from fcc metal(111) surfaces.16 Furthermore, the
weak isotope effect found for the scattering of H atoms from the investigated metal
surfaces helped to understand the strong isotope effect present in chemicurrents.17–21

Another success story is the experimental and theoretical investigation of high-
energetic H atoms which scatter off graphene.22 The way in which the energy is
dissipated from the H atom to the graphene sheet is entirely different from the
energy dissipation occurring in H atom scattering from metals. When hydrogen
collides with graphene, it is possible that electronic rehybridisation occurs which
leads to formation of a transient C-H bond. During this bond formation, one car-
bon atom puckers out of the surface plane which causes a local disturbance of the
graphene structure. The bound hydrogen can then dissipate a portion of its initial
kinetic energy into the lattice of the graphene layer, before it finally dissociates and
reemerges into the gas-phase. The agreement between MD simulations and experi-
ments could be significantly improved by exchanging a semi-empirical reactive bond
order potential energy surface (PES) with a neural-network PES.23

Despite these very successful investigations of H atoms from zero-band gap ma-
terials, the influence of the crystal structure on the scattering process between H
atom and metal has been no subject of investigation so far. The reason for those
missing studies is that the theoretical methods used in Ref. [13, 14, 16, 21, 24] are
based on Effective Medium Theory (EMT),25–28 a theory that has been formulated
to describe fcc metals and their alloys. Hence, no bcc metal surfaces were inves-
tigated yet, neither experimentally nor theoretically. The aim of this thesis is to
provide an answer to the question whether the energy transfer between H atom and
metal surface is influenced by the crystal structure. In order to accomplish this aim,
I adapted the formulated theory, published in Ref. [28] and later used for scattering
simulations,14 to a perfect bcc crystal. Moreover, I investigated whether the EMT-
PESs, used for H atom scattering from fcc(111) metal surfaces, can also be applied
to other surface facets with the intention to investigate not only the influence of
the surface structure on the energy transfer but also the transferability of the PESs
generated previously.24,29

The remainder of this thesis is organised as follows: Chapter 2 overviews the
theoretical foundations of the concepts and methods used in this work, followed by

3



1. Introduction

Chapter 3 containing the description of the programmes which I used to perform
calculations. In Chapter 4, the energy transfer between scattered H atoms and
various metal surfaces are investigated with the help of molecular dynamics (MD)
simulations performed on full-dimensional potential energy surfaces generated for
that purpose. The application of those potential energy surfaces to reaction kinetics
is also discussed in the same chapter. Finally, the thesis will be summarised and
suggestions for future subjects of investigations will be made. The appendix con-
tains detailed derivations, which have been separated from the main text for the
sake of briefness.

4



2. Theoretical foundations

In this chapter, the required physical concepts are briefly reviewed with the intention
to allow a smoother immersion in this thesis. The notation is mainly adopted
from the very well written and pedagogic ΦSX series, written by Peter Blöchl.†

In particular, I relied on the lecture notes about theoretical solid state physics
to give a brief explanation of the Born-Oppenheimer approximation.30,31 This is
followed by the basic concepts of density functional theory, where I used the book
written by Carsten A. Ullrich32 unless stated otherwise. More effort is laid upon
the presentation of the Effective Medium Theory,27,28 as this theoretical model is
a keystone for this thesis. Finally, I will provide a quick overview of the common
theoretical framework in surface science, which allow theoreticians to go beyond the
Born-Oppenheimer approximation.

2.1. The Born Oppenheimer Approximation
The dynamics of a system with n electrons and N nuclei where relativistic effects
can be ruled out is governed by the time-dependent Schrödinger equation

i~
∂

∂t
Φ(~x1,..., ~xn, ~R1, ..., ~RN , t) = ĤΦ(~x1,..., ~xn, ~R1, ..., ~RN , t), (2.1)

where Φ(~x1,..., ~xn, ~R1, ..., ~RN , t) is the many-body particle wave-function and ~xi ≡
(~ri, σi) is a shorthand notation for the spatial coordinate and spin of the ith electron.
~Rj represents location of the jth nuclei and t stands for the time. The Hamiltonian
that is commonly encountered in chemistry and many-body physics on the atomic
scale can be written as

Ĥ =
n∑
i=1
− ~2

2me

~∇2
~ri︸ ︷︷ ︸

=T̂el

+
N∑
j=1
− ~2

2Mj

~∇2
~Rj︸ ︷︷ ︸

=T̂nuc

+
n∑
i=1

N∑
j=1

−Zje2

4πε0 |ri −Rj|︸ ︷︷ ︸
=V̂el, nuc

+ 1
2

n∑
i 6=k

−e2

4πε0 |ri − rk|︸ ︷︷ ︸
=V̂el, el

+ 1
2

N∑
j 6=l

−ZjZle2

4πε0 |Rj −Rl|︸ ︷︷ ︸
=V̂nuc, nuc

. (2.2)

†The lecture notes are available at: https://www2.pt.tu-clausthal.de/atp/phisx.html
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2. Theoretical foundations

The first term describes the kinetic energy of the n electrons in the system. All
electrons have the same mass me and charge q = −e, whereas the individual nucleus
j is characterised by its mass Mj and charge Q = Zje. Thus, the second term
stands for the kinetic energy of the nuclei in the system. The interaction between the
charged particles is described by a sum of Coloumb potentials, and is represented by
the third, fourth and fifth term. The third term on the right hand side is attractive
in nature, describing the interaction between electrons and nuclei. The fourth and
the fifth summand are both repulsive, representing the electron-electron and nuclei-
nuclei interactions, respectively. One can split the general Hamiltonian in Eq. 2.2
and define a purely electronic Hamiltonian, also referred to as Born-Oppenheimer
Hamiltonian, that does not include the momenta of the nuclei anymore.

ĤBO(~R) = Ĥ − T̂nuc (2.3)

This Hamiltonian ĤBO(~R) depends only parameterically on the position of the nu-
clei. For simplification, I gathered all nuclei coordinates into a 3N dimensional vector
~R and I will do the same for the electronic coordinates and spin, i.e.: ~x = (~x1,..., ~xn).
The time-independent Schrödinger equation provides the eigenvalues EBO

` (~R) and
eigenfunctions ΨBO

` (~x, ~R) for this operator for a fixed nuclear configuration via

ĤBO(~R)ΨBO
` (~x, ~R) = EBO

` (~R)ΨBO
` (~x, ~R). (2.4)

Again I want to emphasise, that the nuclear coordinates ~R enter EBO
` (~R) and

ΨBO
` (~x, ~R) only in the form of parameters and thus we can regard the eigenvalues

of the Born-Oppenheimer operator, EBO
` (~R), as a set of potential energy surfaces.

The eigenfunctions are chosen to be orthonormal for each atomic configuration, i.e.,

〈ΨBO
k (~R)|ΨBO

` (~R)〉 = δk,l. (2.5)

Furthermore, the eigenvectors of ĤBO(~R) are a complete basis set. We can make
use of this fact and express the many-body wave function Φ(~x, ~R, t) in terms of a
linear-combination of Born-Oppenheimer wave functions

Φ(~x, ~R, t) =
∑
`

φ`(~R, t)ΨBO
` (~x, ~R), (2.6)

where φ`(~R, t) is the nuclear wave function chosen to obey the normalisation condi-
tion ∑

`

〈φ`(~R, t)|φ`(~R, t)〉 = 1 (2.7)

6



2.1. The Born Oppenheimer Approximation

This is the so called Born-Huang ansatz,33 but so far we have not introduced any
approximation. We can insert this ansatz into the time-dependent Schrödinger equa-
tion given in Eq. 2.1 and multiply a complex conjugated Born-Oppenheimer state
〈ΨBO

k (~R)| to it. Thus, we end up with

i~
∂

∂t
φk(~R, t) = 〈ΨBO

k (~R)|Ĥ |
∑
`

φ`(~R, t)ΨBO
` (~R)〉︸ ︷︷ ︸

=|Φ(~R,t)〉

= 〈ΨBO
k (~R)|ĤBO(~R) + T̂nuc|

∑
`

φ`(~R, t)ΨBO
` (~R)〉

=
[
EBO(~R) + T̂nuc

]
φk(~R, t)

+
∑
`


〈
ΨBO
k (~R)

∣∣∣ ~
i
~∇~R

∣∣∣ΨBO
` (~R)

〉
︸ ︷︷ ︸

= ~Ak,`(~R)

M−1~
i
~∇~R

+ 1
2
〈
ΨBO
k (~R)

∣∣∣ ~
i
~∇~RM

−1~
i
~∇~R

∣∣∣ΨBO
` (~R)

〉
︸ ︷︷ ︸

=Bk,`(~R)

φ`(~R, t). (2.8)

In this equation I introduced a diagonal 3N ×3N matrixM−1 that contains the in-
verse masses of all N nuclei in the system on its main diagonal. Moreover, the brack-
ets 〈...〉 indicate that integration over all electronic degrees of freedom is performed
and therefore the derivative coupling terms ~Ak,`(~R) and Bk,`(~R) solely depend on
the nuclear configurations. From Eq. 2.8 we see that if want to study the dynamics
of our system we need the whole set of potential energy surfaces EBO

` (~R) from the
respective Born-Oppenheimer operator. However, if we assume that electronic and
nuclear motion are decoupled, which can be motivated by the small mass ratio be-
tween electrons and nuclei me/Mj, these terms tend to be small and therefore can
be neglected. This is the essence of the Born-Oppenheimer approximation (BOA),30

and it is a good approximation provided the Born-Oppenheimer surfaces show a suf-
ficient energy difference between each other for a respective nuclear configuration.34

The time-dependent Schrödinger equation reads as

i~
∂

∂t
φk(~R, t) =

EBO
k (~R) +

3N∑
j=1

−~2

2Mj

~∇2
~Rj

φk(~R, t). (2.9)

From Eq. 2.9 we see that the dynamics of the nuclei take place on a single Born-
Oppenheimer surface EBO

k (~R). The BOA is the foundation for molecular dynam-
ics simulations as we need only a single potential energy surface. Under ambient
conditions typically the electronic ground-state is populated and all higher states

7



2. Theoretical foundations

can be ignored. However, when the energetic difference for the individual Born-
Oppenheimer states is small as for metals, we can expect the BOA to fail and we
need theories that allow us to go beyond the BOA. The investigation of such pro-
cesses where the BOA fails is the major part of this thesis. I will therefore outline
the used theoretical tools in more detail in individual sections.

But before, I want to emphasise that although we are in principle able to perform
dynamics on the Born-Oppenheimer surface, in practice we cannot hope to get an
analytical expression for EBO

` (~R) for systems on the scale of large molecules, solids
or surfaces. A common approach is then to use model potentials and I parameterise
them to an ensemble of energy points of the Born Oppenheimer surfaces, which
are commonly acquired self-consistently from electron structure methods. The most
popular theoretical tool to do this nowadays is density functional theory and the
basic concepts are presented in the next section.

2.2. Density Functional Theory

In the previous section, I have outlined that if we apply the Born-Oppenheimer
approximation we only need a single potential energy surface to investigate the
dynamics of the system. Unless one aims to describe some special cases, as for
example the reaction dynamics of electronic excited educts in a molecular beam
experiment, we can use the ground-state PES. A convenient way to acquire potential
energy surfaces that provide both a sufficient accuracy and dimensionality is to fit
a model potential to input data that originate from solving the time independent
Schrödinger equation of the Born-Oppenheimer operator

ĤBO(~R)ΨBO
` (~x, ~R) = EBO

` (~R)ΨBO
` (~x, ~R). (2.10)

However, this solving process is still often an intractable problem both conceptu-
ally and computationally for many-body systems like solids and their surfaces. One
approach that acquired an enormous popularity over the past decades is density
functional theory (DFT). Its major advantage over wave function methods is the
reduced dimensionality, because in density functional theory, the electron density is
the essential quantity which depends solely on three Cartesian coordinates. In wave
function methods on the other hand, the dimensions of all n electrons are incorpo-
rated explicitly, lifting the overall dimensionality to 3n, which makes it impossible to
stem for even the most modern computers when the size of the system incorporates
100s or 1000s of atoms.
The central idea of DFT is given by the two theorems of Hohenberg and Kohn.35
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2.2. Density Functional Theory

The first theorem states that there exists a one-to-one correspondence between the
external potential v(~r) and the electronic ground-state density n0(~r). As a conse-
quence, we are able to describe the external potential uniquely as a functional of the
electronic ground-state density. In addition to the one-to-one correspondence be-
tween external potential and ground-state density, Hohenberg and Kohn also showed
that the electronic wave function and the energy can be expressed as a functional of
the electronic ground-state density. The latter can be written for a given external
potential v0(~r) as

Ev0 [n] ≡ 〈Ψ[n]|T̂el + V̂el,el + V̂0|Ψ[n]〉. (2.11)

Here, T̂el and V̂el,el are given in Eq. 2.2. V̂0 marks the operator of the external
potential. Within the context of this work, the external potential will solely consist
of the electron-nuclei interaction. The second theorem argues that the total energy
of the N -particle system Ev0 [n(~r)] for a given external potential v0(~r) follows the
variational principle, i.e.

Ev0 [n] > E0 for n(~r) 6= n0(~r) (2.12)

Ev0 [n] = E0 for n(~r) = n0(~r), (2.13)

where n0(~r) is the ground-state density corresponding to v0(~r). As a consequence of
the Hohenberg-Kohn theorems, we are able to find the exact ground-state density
without solving the Schrödinger equation but with a variational equation

δ

δn(~r)

[
Ev0 [n]− µ

(∫
d3r′n(~r′)−N

)]
= 0. (2.14)

The Langrange multiplier µ ensures that integration of the density results in the
correct number of electrons. Unfortunately, Hohenberg and Kohn35 only proved
that it is possible to describe the system completely when its electronic ground-
state density is known. But they did not provide a recipe how to acquire the energy
functional, and thus it remains unknown until today. Therefore, a lot of work has
been put into finding suitable approximations.
Just shortly after the publication of the Hohenberg-Kohn theorem, Kohn and

Sham36 reformulated the energy functional by introducing quantities that arise from
non-interacting electrons

Ev0 [n] = T [n] + Vel,el[n] +
∫
d3rn(~r)v0(~r)

= Ts[n] +
∫
d3rn(~r)v0(~r) + 1

2

∫
d3r

∫
d3r′

e2n(~r)n(~r′)
4πε0|~r − ~r′|︸ ︷︷ ︸

=EH[n]

+Exc[n]. (2.15)

9



2. Theoretical foundations

Ts[n] describes the kinetic energy of the electrons in a system, where the electron-
electron interactions are absent. EH stands for the Hartree energy. Exc[n] is the
exchange-correlation functional and contains both the difference between the kinetic
energy T [n]−Ts[n] and the difference Vel,el[n]−EH[n]. In addition, Kohn and Sham
introduced orbitals in order to evaluate the kinetic energy of the fictitious system of
non-interacting electrons. Thus Ts[n] can be computed via the following equation

Ts[n] =
∑
i

〈ϕKS
i (~r)| − ~2

2me

∇2
~ri
|ϕKS
i (~r)〉 (2.16)

Inserting (2.15) into (2.14) and making use of the Kohn-Sham orbitals, we end up
in a set of self-consistent equations, the so called Kohn-Sham equations:(

− ~2

2me

∇2
~ri

+ veff(~r)
)
ϕKS
i (~r) = εiϕ

KS
i (~r) (2.17a)

veff(~r) =
∫
d3r

e2n(~r′)
4πε0|~r − ~r′|

+ v0(~r) + vxc(~r) (2.17b)

n(~r) =
∑
i

|ϕKS
i (~r)|2 (2.18)

vxc(~r) = δExc(~r)
δn(~r) (2.19)

With these equations one can determine the density of the interacting system via
solving a single particle Schrödinger equation self-consistently by starting from a
set of random orbitals. The total energy of the interacting system Eq. 2.15 can be
rewritten in terms of the Kohn-Sham energies εi and one ends up with

Ev0 [n0(~r)] =
∑
i

εi −
1
2

∫
d3r

∫
d3r′

e2n(~r)n(~r′)
4πε0|~r − ~r′|

−
∫
d3rvxc(~r)n0(~r) + Exc[n0(~r)], (2.20)

where εi and n0(~r) are self-consistent quantities. As of now, the theory is exact
provided that the exact exchange-correlation functional is used. Since the exact
formulation of Exc[n0(~r)] is unknown, it is necessary in practice to make approxi-
mations causing the only deviations from the ’exact’ solution.
There exist multiple levels of approximations in the field of DFT. The simplest

is the local-density approximation (LDA), where the exchange correlation energy
of an inhomogeneous system ELDA

xc [n] can be described as the integral over the
exchange-correlation energy per particle multiplied with the density n of a homoge-
neous interacting electron gas evaluated at the local density n(~r)

ELDA
xc [n] =

∫
d3rexc(n(~r))n(~r) (2.21)

10



2.3. Effective Medium Theory

On the next level, the exchange-correlation functional is not merely a functional of
the local density alone, but also of its gradient. This is referred to as generalised
gradient approximation (GGA)

EGGA
xc [n] =

∫
d3rF

(
n(~r), ~∇~rn(~r)

)
(2.22)

The function F is not uniquely defined and does not stem from a power series
expansion with respect to the gradient of the local density, as it was done in the
original work of Hohenberg and Kohn,35 where the energy functional was expanded
with the gradients of the local density in terms of a power series. Instead one
makes use of explicit mathematical expressions and nowadays there exist a zoo of
GGA functionals. In this work, I heavily relied on the PBE functional37,38 and
RPBE functional.39 The level of approximations reach even higher from Meta-GGA
functionals to RPA double hybrid functionals, but I will not cover these type of
functionals here as I never used them for this PhD thesis.
Another important aspect of density functional theory is that van der Waals

interactions are not incorporated by nature. Fortunately, they can be included in
an artificial manner after a successful DFT calculation. The method introduced by
Grimme,40 commonly referred to as DFT-D2, as well as the method proposed by
Tkatchenko and Scheffler41 were used in the context of this work.
In the end, the main motivation to use density functional theory for the acquisition

of points of the Born Oppenheimer surfaces is a good compromise between physical
accuracy on one hand and required calculation time on the other hand. Moreover, for
simulations of scattering processes from surfaces, electron structure calculations with
periodic boundary conditions are a must. DFT easily allows to do that, whereas
wave function based methods only allow cluster calculations in the range of 10 -
20 atoms.42 Besides the high computationally cost, cluster calculation also have a
fundamental disadvantage when simulating scattering processes from surfaces. Since
no periodic boundary conditions in the xy-plane exist, it might very well happen
that a projectile does not hit the cluster and propagates unperturbed through the
simulation cell. This is an absurd event both from a physical point of view but also
from a perspective of utilising valuable computational resources as one produces a
lot of computationally expensive data which just go to waste.

2.3. Effective Medium Theory

The derivation of the Effective Medium Theory formalism that has been published
by Jacobsen et al.27,28 will be briefly explained to make the modifications, which are
going to be made in the next section, more easily understandable.
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2. Theoretical foundations

2.3.1. Formalism for an ideal fcc crystal

The Effective Medium Theory (EMT) has been proven useful to describe gas-surface
interaction.28,43 The basic idea of EMT is to calculate the energy in a real system
by calculating the energy in a well-defined reference system first and then evaluate
the energy difference between reference and real system.28 Hence, the total energy
E of a system of N atoms can be written as a sum of the energy of the reference
system and a correction term ∆E to account for the differences between ideal and
real system:

E =
N∑
i=1

Ei (n̄i) + ∆E. (2.23)

Here, Ei (n̄i) represents the cohesive energy of atom i and depends on the average
electron density n̄i of the reference system. It is calculated by considering the atom
i to be an impurity embedded in a host of other atoms. Jacobsen et al.28 and Janke
et al.14 chose a perfect fcc crystal to be the reference system, but other choices are
possible, too.28 Usually, the correction term is expressed as a difference of two pair
potentials.14,28 Eq. 2.23 can then be written as:

E =
N∑
i=1

Ei (n̄i) +
N∑
i=1

 N∑
j>i

Vij (rij)− V ref
i (n̄i)

 . (2.24)

Vij (rij) is the pairwise correction term of atom i and j separated by the distance
rij. V ref

i (n̄i) is the pair potential of the reference system. The density argument
n̄i of the cohesive energy Ei serves as a connection between the real system and
the reference system and is calculated from the density tails ∆nj (si, rij) of the
surrounding atoms a distance rij away.14,28 The background electron density n̄i,
averaged over the volume inside a sphere with the radius si, serves as a connection
between the real system and the reference system and is calculated as

n̄i =
∑
j 6=i

∆nj (si, rij) , (2.25)

where ∆nj (si, rij) is the electron density tail of atom j contributing to the back-
ground electron density at the location of reference atom i.27 These density tails can
be approximated by exponential functions resulting in the following equation:

n̄i =
∑
j 6=i

∆n0,je
η1si−η2rij , (2.26)

where η1 and η2 describe the fall-off of the many-body and the pairwise contribution
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2.3. Effective Medium Theory

to the average electron density n̄i, respectively. ∆n0,j is assumed to be a constant.
On the other hand, the DFT calculations on the level of local density approximation
lead to the following relation:27

n̄i = n0e
−η(si−s0). (2.27)

Setting equal the expression for n̄i Eq. 2.26 and Eq. 2.27 leads to the following
relationship

n̄i = n0e
−η(si−s0) =

∑
j 6=i

∆n0e
η1si−η2rij . (2.28)

Strictly speaking, this equation cannot be fulfilled, because we have one expo-
nential function on the left hand side of Eq. 2.28 and a sum of different exponential
functions on the right hand side. However, we can approximately satisfy this equa-
tion. Firstly, the neutral sphere radius under equilibrium conditions s0 can be easily
related to the distance of the nearest-neighbours r(1)

ij , which is

r
(1)
ij = βs0. (2.29)

For isotropic deviations from the equilibrium geometry we can approximately apply
a similar relationship, i.e.

r
(1)
ij ≈ βsi. (2.30)

Here, β is a geometric factor and its numerical value depends on the Bravais lattice.
It can be shown that

β = 3

√
16π
3 /
√

2 (2.31)

for a fcc lattice. If only the nearest neighbours are considered, Eq. 2.28 results in

n̄i =
12∑
j=1

∆n0e
η1si−η2βsi = 12∆n0e

−(βη2−η1)si . (2.32)

We can fulfil the left hand side of Eq. 2.28 if we take

∆n0 = n0

12e
(βη2−η1)s0 , (2.33)

and
η = βη2 − η1. (2.34)

The factor 12 entering Eq. 2.33 reflects the fact that an atom in a perfect mono
atomic fcc crystal has 12 nearest neighbours. Inserting Eq. 2.33 and Eq. 2.34 in
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2. Theoretical foundations

Eq. 2.28 leads to the following result

n̄i = n0e
−(βη2−η1)(si−s0) = n0

12
∑
j 6=i

eη1(si−s0)−η2(rij−βs0). (2.35)

Rose et al.44 developed a functional producing the cohesive energy for a crystal
lattice of the following form

Ei = E0 [1 + λ (si − s0)] e−λ(si−s0) − E0, (2.36)

with the neutral sphere radius determined from Eq. (2.35),

si = s0 −
1
βη2

ln
[
σi
12

]
, σi =

∑
j 6=i

e−η2(rij−βs0). (2.37)

E0 is the cohesive energy for the equilibrium geometry. The pairwise correction term
for the real system and the reference system in Eq. 2.24 can be written in the form
of

Vij = −V0e
−κ( rijβ −s0), (2.38)

and
Vref = −12V0e

−κ(si−s0), (2.39)

respectively.28

However, the interaction of hydrogen with metal surfaces is considered, so that
we have to distinguish between two species of atoms and this leads to two sets
of physical quantities, which will be labelled a and b. Hence, the cohesive energy
functions for species a is rewritten as

Eia = E0,a [1 + λa (sia − s0,a)] e−λa(sia−s0,a) − E0,a. (2.40)

In a two component system the neutral sphere radius of the atom ia is described by
the following formula:

sia = s0,a −
1

βη2,a
ln
σ(a)

ia + χabσ
(b)
ia

12

 , (2.41)

where χab is given by
χab = n0,be

−η1,bs0,b

n0,ae−η1,as0,a
. (2.42)

Here, σ(a)
ia and σ(b)

ia are the exponential contributions to the neutral sphere radius sia
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2.3. Effective Medium Theory

of the atom ia summed up over Na and Nb atoms, respectively:

σ
(a)
ia = γ−1

1,a

Na∑
ja 6=ia

e−η2,a(riaja−βs0,a)θiaja , (2.43)

σ
(b)
ia = γ−1

1,a

Nb∑
jb

e−η2,b(riajb−βs0,b)θiajb . (2.44)

The pairwise correction term in Eq. 2.24 is calculated in a way similar to Eq. 2.43
and Eq. 2.44,

Vaa = − V0,a

2γ2,a

∑
ia,ja

e−κa(
riaja
β
−s0,a)θiaja , (2.45)

Vab = −χab
V0,a

γ2,a

∑
ia,jb

e
−κb
(
riajb
β
−s0,b

)
θiajb . (2.46)

The reference energy contribution V (ref)
a is given by:

V (ref)
a = −12V0,a

Na∑
ia

e−κa(sia−s0,a). (2.47)

The factor θij in the formulae above serves as a smooth cut-off function and has been
introduced to make these formulae suitable for molecular dynamics simulations.14

θij is defined as follows:
θij =

[
1 + eα(rij−rc)

]−1
(2.48)

and the falloff parameter

α = ln
[

104

rr − rc

]
(2.49)

dictates the steepness of the cut-off function. The next-next-nearest neighbour dis-
tance in equilibrium r

(3)
ij =

√
3βs0,a has been chosen to serve as the cut-off radius rc

and rr is a characteristic parameter, which is given by

rr = 2rc
1
2

(√
3 +
√

4
) . (2.50)

Here,
√

3 and
√

4 represent the third and fourth nearest neighbours in the unit of
βs0 in a fcc lattice. In general, it can be shown that the interatomic distance r(m)

ij

of the m-th next-neighbour in a fcc lattice under equilibrium condition is given by

r
(m)
ij =

√
mβs0. (2.51)

The normalisation coefficients

15
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γ1,a =
3∑

m=1

bm
12

[
1 + eα(

√
m−
√

3)βs0,a

]−1
e−η2,a(√m−1)βs0,a , (2.52)

and
γ2,a =

3∑
m=1

bm
12

[
1 + eα(

√
m−
√

3)βs0,a

]−1
e−κ2,a(√m−1)βs0,a (2.53)

in Eq. 2.43 and Eq. 2.45 ensure that E = 0 for the perfect bulk structure.14,28 The
parameters bm are the number of the m-th nearest neighbours in a perfect fcc
crystal. It can be shown that

b1 = 12, (2.54)

b2 = 6, (2.55)

b3 = 24. (2.56)

EMT characterises each atomic species in the system with seven parameters:14,27,28

E0, n0, s0, λ, η2, V0 and κ. All parameters except for n0 are connected to bulk
properties that can be obtained experimentally. E0 is the cohesive energy and can
be either determined experimentally or from a calculation. s0 can be derived from
the lattice constant a0 and λ can be obtained from the bulk modulus B in the
following manner:14,27,28

B = − E0λ
2

12πs0
. (2.57)

The remaining parameters V0, η2 and κ can be obtained from the shear modulus
C44

C44 = 3V0 (βη2 − κ)κ
8πs0

. (2.58)

Considering only the nearest neighbours, i.e neglecting many-body contributions,
one can derive the other two independent elastic constants C11 and C12 by exploiting
the following relationships:

C44 = C11 − C12, (2.59)

B = C11 + 2C12

3 . (2.60)

By utilising Eq. 2.59 and Eq. 2.60 one can find the following relationships between
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C11, C12 and the EMT parameters:

C11 = 3V0 (βη2 − κ)κ− E0λ
2

12πs0
, (2.61)

C12 = −3V0 (βη2 − κ)κ+ 2E0λ
2

24πs0
. (2.62)

2.3.2. Structural modifications

The modifications of the EMT formalism discussed above will be presented in this
section. The approach that has been taken to construct the analytic energy term
for H atoms interacting with bcc metal surface may be considered as the simplest
approach possible: All assumptions that were made in the derivation of the above
presented EMT formalism were assumed to hold for the bcc crystal structure as well.
Only the crystal structure dependent formulae in the EMT formalism are going to
be modified with respect to the new crystal structure. In short, a perfect mono
atomic bcc crystal will play the role as effective medium in this section and hence
the mechanism discussed above must be adjusted with respect to this new effective
medium. Nevertheless, due to the simplicity of this approach, a generalisation of
both EMT formalism is rather feasible. Thus, the adjusted formalism is presented
in a generalised form in order to emphasise the modifications.
As in the EMT formalism presented above, the total energy E can be separated

into a sum of the energy of all atoms of the effective medium and the correction
term

E =
N∑
i=1

Ei (n̄i) +
N∑
i=1

 N∑
j>i

Vij (rij)− V ref
i (n̄i)

 . (2.1)

Again, the average electron density n̄i can be calculated from the density tails of
the surrounding atoms ∆nj (si, rij) and is assumed to depend exponentially on the
sphere radius si, which leads to the result that is already known from the previous
section:

n̄i = n0e
−η(si−s0) =

∑
j 6=i

∆n0e
η1si−η2rij . (2.6)

Now, the differences between the fcc crystal structure and the bcc crystal structure
have to be taken into account. It was stated that the interatomic distance r(1)

ij

between two nearest neighbours can be related to the neutral sphere radius si with
the aid of a geometric factor β. Naturally, the parameter β has to be different for
the two different Bravais lattices. It can be shown that

β =


3
√

16π
3 /
√

2, for a fcc lattice
6
√

3π2, for a bcc lattice.
(2.63)
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Besides the different geometry, the different number of neighbours must also be
taken into account. Consequently, the connection between ∆n0 and n0 is

∆n0 = n0

b1
e(βη2−η1)s0 , (2.64)

where b1 denotes the number of nearest neighbours of the respective crystal struc-
ture. In a perfect bcc lattice, an atom is surrounded by 8 neighbours, while it would
have 12 neighbours in a fcc lattice. The details of the derivation are given in the
previous section. Since the employed energy functional, developed by Rose et al.,44

is independent of the crystal structure, it can be used directly, and no adjustments
are necessary. As a consequence, n̄i is used to obtain the neutral sphere radius once
more. The generalised formula for both reference systems is

si = s0 −
1
βη2

ln
[
σi
b1

]
. (2.65)

The pairwise correction term for the real system and the reference system is param-
eterised in the same way as it has been done by Jacobsen et al.28 earlier. Again, only
the number of nearest neighbours need to be adapted, which leads to the following
results:

Vij = −V0e
−κ( rijβ −s0), (2.17)

and
Vref = −b1V0e

−κ(si−s0). (2.66)

In the end, a hydrogen atom interacting with a metal surface is the system of
interest. Thus, the formulae must also be adapted with respect to the second atomic
species. This, however, does not have an influence on the required geometrical
modifications that come with the choice of a perfect bcc lattice as effective medium.
As a consequence, the derivation of the generalised neutral sphere radius of the atom
ia remains the same and can be written in the form of:

sia = s0,a −
1

βη2,a
ln
σ(a)

ia + χabσ
(b)
ia

b1

 , (2.67)

where χab remains unchanged. While the expressions of σ(a)
ia and σ(b)

ia do not change
in themselves, some of the parameters in these expressions depend strongly on the
crystal structure. For the sake of better understanding, σ(a)

ia and σ(b)
ia are given below

again:

σ
(a)
ia = γ−1

1,a

Na∑
ja 6=ia

e−η2,a(riaja−βs0,a)θiaja , (2.22)
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σ
(b)
ia = γ−1

1,a

Nb∑
jb

e−η2,b(riajb−βs0,b)θiajb . (2.23)

Both, the cut-off function θij and the normalisation coefficient γ1,a depend strongly
on the crystal structure and thus have to be modified. The functional form of the
cut-off function and the falloff parameter has been taken from the previous work of
Janke et al.14 In addition, the next-next nearest neighbour distance in equilibrium
has been chosen to be the cut-off radius rc as well. This results in the following
equations:

rc = r
(3)
ij = d3βs0,a (2.68)

and
rr = 2rc

1
2 (d3 + d4) . (2.69)

Here, dm denotes the m-th nearest neighbour in units of βs0. As it has been already
mentioned in the previous section, it can be shown that in a perfect fcc lattice dm
is given by

dm,fcc =
√
m. (2.70)

However, it was not possible to find a formula for the relative next-neighbour dis-
tances dm between two atoms in a bcc lattice. Still the relative next-neighbour
distances can be found, too. It can be shown that

d3 =


√

3, for a fcc lattice√
8
3 , for a bcc lattice.

(2.71)

and

d4 =


√

4, for a fcc lattice√
11
3 , for a bcc lattice.

(2.72)

Not only the neutral sphere radius si,a, but also the pairwise correction term Vij

contains the cut-off function θij and a normalisation coefficient γ2. In general, the
pairwise correction terms in a system with two different atomic species are

Vaa = − V0,a

2γ2,a

∑
ia,ja

e−κa(
riaja
β
−s0,a)θiaja , (2.24)

and
Vab = −χab

V0,a

γ2,a

∑
ia,jb

e
−κb
(
riajb
β
−s0,b

)
θiajb , (2.73)

as well as
V (ref)
a = −b1V0,a

Na∑
ia

e−κa(sia−s0,a). (2.74)
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The last term corresponds to the reference energy contribution term and is given in
its generalised form for both kind of reference systems discussed in this thesis. The
normalisation coefficients ensure that E = 0 for the perfect bcc or fcc bulk structure.
Due to this fact, both normalisation coefficients must depend strongly on the crystal
structure. With the help of the number of the m-th nearest neighbours and their
corresponding distances it is possible to generalise the normalisation coefficients with
respect to the bcc and the fcc crystal structure. The results are given below:

γ1,a =
3∑

m=1

bm
b1

[
1 + eα(dm−d3)βs0,a

]−1
e−η2,a(dm−1)βs0,a , (2.75)

and
γ2,a =

3∑
m=1

bm
b1

[
1 + eα(dm−d3)βs0,a

]−1
e−κ2,a(dm−1)βs0,a . (2.76)

It can be shown that

b1 =

12, for a fcc lattice

8, for a bcc lattice,
(2.77)

and

b3 =

24, for a fcc lattice

12, for a bcc lattice,
(2.78)

whereas b2 = 6 for both crystal structures.
The introduction of a different effective medium does not change the fact that EMT
characterises each atomic species in the system with seven parameters. However,
the correlation between bulk properties and EMT parameters might change and
hence need to be checked. The lattice constant a0 for both fcc and bcc lattices is
identical with r

(2)
ij and on the basis of this fact, it is easy to calculate s0 from the

lattice constant a0 via the following relationship:

s0 =


3
√

3
16πa0, for a fcc lattic,

3
√

3
8πa0, for a bcc lattice.

(2.79)

Since the cohesive energy in equilibrium E0 can be obtained directly from the lit-
erature, no further considerations with respect to the newly introduced effective
medium need to be made. The relationship between the elastic constants C11, C12

and C44 and the EMT parameters λ, η2, V0 and κ depends on the choice of the refer-
ence system, because the formula of the pairwise correction depends on the crystal
structure. While the derivation of the elastic constant for a perfect fcc crystal con-
sidered only nearest neighbours, it is necessary in the case of a bcc crystal to include
the next-nearest neighbours or otherwise the elastic stability criteria are not met.
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2.3. Effective Medium Theory

The general procedure to calculate elastic constants for a many-body potential is

Cξρστ = 1
Ω0

Nb∑
k,`=1

∂2ε

∂rk,ρ∂r`,τ
rk,ξr`,σ

∣∣∣∣∣∣
eq

, (2.80)

where Ω0 is the atomic volume under equilibrium conditions and ε represents the
energy per atom. k and ` are labels for the neighbouring atoms and the Greek indices
label Cartesian coordinates. Furthermore, Nb stands for the number of neighbours
of a reference atom which are considered in the calculation of the elastic constants.
If we insert the EMT energy expression for a one-component metal system into
Eq. 2.80 and take only the nearest neighbours into account, we arrive at the following
equations:

C11 = − E0λ
2

12πs0
, (2.81)

C12 = − E0λ
2

12πs0
(2.82)

and
C44 = V0 (βη2 − κ)κ

3πs0
. (2.83)

With Eq. 2.29, we get the following expression for the bulk modulus:

B = − E0λ
2

12πs0
, (2.84)

which is identical to the expression for B when a fcc crystal is used as reference
system. From Eq. 2.81 and Eq. 2.82 we can directly see that the EMT equations for
a perfect bcc crystal violate the elastic stability criteria.45 Therefore, it is necessary to
take the next-nearest neighbours into account as well. We then obtain the following
equations:

C11 = 4
πs0

(
−E0λ

2 + 4V0κ(κ− βη2)
64γ2

1

)(
4
3 + 4√

3
Mη2 + M2

η2

)

+ V0κ

3πs2
0γ1γ2

(−γ1 (κs0 (1 + 3Mκ)− 2) + γ2 (βη2s0 (1 + 3Mη2)− 2)) , (2.85)

C12 = 4
πs0

(
−E0λ

2 + 4V0κ(κ− βη2)
64γ2

1

)(
4
3 + 4√

3
Mη2 + M2

η2

)

+ V0κ

3πs2
0γ1γ2

(−γ1 (κs0 + 1) + γ2 (βη2s0 + 1)) , (2.86)
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and

C44 = V0κ

3πs2
0γ1γ2

(
(−γ1(κs0 − 2) + γ2(βη2s0 − 2)) +

√
27
2 (γ1Mκ − γ2Mη2)

)
, (2.87)

with Mη2 and Mκ being

Mκ = e
−κs0

(
2√
3
−1
)
, (2.88)

and
Mη2 = e

−η2βs0

(
2√
3
−1
)
, (2.89)

respectively. The detailed derivation of the three elastic constants are outlined in
Appendix A. The bulk modulus can be obtained by utilising the relation between
C11 and C12 and B for cubic crystals, given in Eq. 2.60. In case of a perfect bcc
lattice, the equations obtained for the elastic constants are much more complicated
compared to the fcc analogues and none of the seven metal EMT parameter can be
directly extracted from experimental values for C11, C12, C44 or B. However, those
relations are used to constrain the fit in such a way that the elastic stability criteria
are fulfilled.45

2.4. Molecular dynamics beyond the Born
Oppenheimer Approximation

If the Born-Oppenheimer approximation is applied, the dynamics of a system will
take place on a single potential energy surface. Electronic excitations arising from
coupling of the electronic states with nuclear motion is intrinsically excluded for
molecular dynamics on a single PES. Therefore, if we want to include electronic
excitations in our molecular dyanmics simulations, it is necessary to apply methods
that go beyond the Born-Oppenheimer approximation. The probably most pop-
ular non-adiabatic molecular dynamics simulation technique in theoretical surface
science is molecular dynamics with electronic friction (MDEF).46,47 Within MDEF
the electrons are treated effectively in terms of a bath. Excitations of electron-hole
pairs are treated as a non-adiabatic correction to Newton’s equation of motion in the
form of a friction force. An additional random force ensures that detailed balance
is obtained so that the atoms which are subject to the friction force do not come to
a standstill at large simulation times. The equation of motion of atom i can thus
be written in terms of a Langevin equation48

mi~̈ri = ~∇~riE({rij})−miη
el(~ri)~̇ri︸ ︷︷ ︸

=~Ffric

+~FL(t). (2.90)
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2.4. Molecular dynamics beyond the Born Oppenheimer Approximation

Here, mi and ~ri correspond to the mass and position of atom i, respectively. The
derivative with respect to the time t are abbreviated in terms of a dot. The first term
on the right-hand side of Eq. 2.90 describes the force of the particle originating from
the EMT-PES, described in detail in the last section. ηel(~ri) represents the friction
tensor of the dissipative force ~Ffric, and ~FL(t) is the random force. It is connected
to the friction tensor in terms of the second fluctuation-dissipation theorem49 and
also depends on the temperature of the bath Tel

〈~FL(t)~FL(t′)〉 = 2miη
el(~ri)kBTelδ(t− t′). (2.91)

Albeit there exists a unique formulation for the friction tensor,50–52 its computation
is often very challenging. Hence, the electronic friction tensor is commonly rep-
resented by an approximated expression. The most established approximation for
the friction tensor is the so-called local density friction approximation (LDFA),53–55

where the friction tensor is treated as a scalar that solely depends on the local elec-
tron density at the position of the projectile n(~ri). The underlying theoretical model
has its foundation in the description of slow moving ions decelerating in a homoge-
neous electron gas.56–58 The free electrons at the Fermi edge scatter from a spherical
symmetric potential of the moving ion. The phase shifts of the scattered electrons
at the Fermi edge can be used to calculate the friction coefficient as a function of the
density of the free electron gas.53–55,57 Puska and Nieminen57 have calculated these
phase shifts of a proton moving in a homogeneous electron gas with DFT at the
LDA level, which have later been used by Janke et al.14 to generate an interpolation
function for the friction coefficient as a function of the electronic density. Here, the
background density nEMT(~ri) obtained from our applied EMT-PES for the position
of the projectile is assumed to be equal to the electron density of the homogeneous
electron gas nHEG(~ri).
One reason for computing the friction tensor within the framework of LDFA is

the straightforward implementation of the model. Perhaps the main strength of the
LDFA comes with the underlying utilisation of the EMT-PES. An advantageous at-
tribute of our potential energy surfaces is the capability to provide the background
electron density of the projectile for every configuration on the fly. This is very con-
venient for non-adiabatic simulations, as additional self-consistent DFT calculations
for the electron density are not necessary.
There exist more sophisticated calculation schemes that maintain the matrix

form of the friction tensor, like orbital-dependent friction (ODF).59,60 Here, the fric-
tion tensor is computed with density functional perturbation theory in which the
electron-phonon coupling is treated as perturbation. Although it is possible to com-
pute the friction tensor self-consistently with DFT via finite differences, it is difficult
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to make a discrete set of those friction tensors continuous with a fit, because in such
a fit the symmetric representation between the individual matrix entries ηij must
be maintained.61,62 The continuous mapping of the friction tensor is typically done
with neural networks (NN), which requires a significant amount of training points
and test points accompanied by a lengthy fitting process to set up an accurate NN
representation.
For atoms, the off-diagonal elements of the friction tensor are about one order of

magnitude smaller than the elements on the main diagonal. Thus, we can regard
the translational degrees of freedom of the projectile to be approximately decoupled
from each other. Thus, a scalar representation of the friction coefficient should al-
ready be a reasonable approximation. This statement, however, is not necessarily
true for molecules interacting with metal surfaces. In the first application of the
LDFA to molecular surface dynamics, the atoms in the molecule were assumed to
be independent of each other.55 which caused controversy due to the absence of any
molecular character in the computation of the friction coefficients.55,63,64 The lack
of molecular character in the so called independent atom approximation has been
remedied by applying a Hirshfeld partitioning scheme65 to the total density of a
molecule metal surface system,66 instead of relying on a density of a bare metal
surface as it was done in case of the independent atom approximation.55 Spiering
et al.61 investigated the influence of different electronic friction models on the disso-
ciative sticking probability of N2 on Ru(0001).61 The dissociative sticking probability
decreased by 50% when performing MDEF simulations with a friction tensor based
on ODF compared to MDEF simulations within the LDFA. However, both models
gave a reasonable agreement to complementary experimental data, although the ex-
perimental uncertainties of the measured sticking probabilities are rather large.61,67

For the description of H atom scattering from fcc metal (111) surfaces, it has been
demonstrated that MDEF simulations with LDFA is already sufficient to reproduce
experimental recorded energy loss distributions.13,16,21 This allows the conclusion
that the matrix nature of the friction tensor seems to play a minor role in the en-
ergy transfer mechanism between H atom and metal surface. As a consequence, I
relied on the LDFA to compute the required friction coefficient, because the more
sophisticated ODF method does not bring so much more to the table that would
justify the additional expense of work to set it up.
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In this chapter I will describe the tools in the toolbox which have been used to
conduct the theoretical investigations presented in this thesis. Firstly, I will de-
scribe the electron structure codes that were purchased by our group, i.e. externally
written programmes. Secondly, I will introduce the molecular dynamics simulation
programmes that have been written in our group.

3.1. VASP

The Vienna ab-initio simulation package (VASP)68–71 is a common electron structure
code that uses plane waves as basis set. It was developed in the 90’s of the past
century at the University of Vienna. VASP requires four input files to set up a
calculation. The necessary input files will be described in the following subsections.
However, it is beyond the scope of the thesis to give a detailed explanation of
this code. I refer to the VASP homepage for further reading, because my brief
introduction of the input files is based on this web-page unless stated otherwise.72

In this thesis, I used VASP5.3.5 for the simulations of H atoms interacting with
transition metal surfaces.

3.1.1. INCAR

All keywords that provide the information to the programme what kind of calcula-
tion shall be performed are given in the INCAR file. An exemplary file is given at the
end of this subsection. The most critical keywords which appear in the INCAR file
and are typically subject to optimisation for every system of interest are ENCUT and
SIGMA. The former defines the energy cut-off of the plane wave basis set, whereas
the latter specifies the width of the fractional electronic band occupation. In this
regard, it is also recommended to check the ISMEAR keyword. For metals at 0K, the
occupation of the individual states jumps from 1 to 0 at the Fermi level, resulting in
slow convergence when integrating over all states in the irreducible Brillouin zone to
obtain the electronic ground-state. To accelerate the calculation, the step function
is replaced by a continuous function and an electronic temperature is introduced,
e.g. the Fermi-Distribution with a width σ = kBT , resulting in fractional occupation
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of the states in the irreducible Brillouin zone. Other choices are of course possible
but then the temperature has no physical meaning. With the introduction of this
partial occupation, we do not longer calculate the total energy, but a generalised
free energy. However, the total energy can be retained, when extrapolating the free
energy to σ → 0. The choice of this smoother function is controlled with the key-
word ISMEAR. In case for metals, it is recommended to either use Gaussian smearing
or the smearing function developed by Methfessel and Paxton.73

The exchange-correlation functional is also specified in the INCAR file. As I men-
tioned in Section 2.2, I will throughout make use of GGA functionals, in particular
the PBE functional.37,38 Moreover, the type of calculation is set in the INCAR file
with the command IBRION, e.g. a static energy calculation or an ab-initio molecular
dynamics simulation. At last, different types of output can be controlled with the
aid of the INCAR file. For instance, setting the boolean type keywords .LCHARGE. and
.LWAVE. to either TRUE or FALSE controls whether the density output (CHGCAR)
and wavefunction output (WAVECAR) are written out.
Finally, I want to emphasise that I only covered—in my point of view—the most

important keywords of the INCAR file. There are of course a lot more which can be
tuned to bring a system to convergence or to reduce the calculation time. The full
compilation can be found online on the VASP homepage.72
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System = Ta surface (111) (2 x 2 x 6) with H # comment line
ISTART = 0 # Calculation is started from scratch
ICHARG = 2 # Uses superposition of atomic charge densities
ISMEAR = 1 # Smearing method. Here MP1 is used.
SIGMA = 0.1 # Smearing width in eV
ENCUT = 550 # Energy cutoff for plane waves
ALGO = FAST # Relaxation alogrithm of electronic wave function.
LREAL = AUTO # Projection done in real space
LWAVE = .FALSE. # No WAVECAR file is written out
LCHARG = .FALSE # No CHGCAR file is written out
NPAR = 2 # Organises optimal parallel computation.
spin:
ISPIN = 2 # Spin polarised turned on
MAGMOM = 24*0 1*1 # Defines initial magnetic momenta.
AMIX = 0.3 # Charge mixing parameter
BMIX = 0.0001 # Charge mixing parameter
AMIX_MAG = 0.3 # Mixing parameter for magnetisation density.
BMIX_MAG = 0.0001 # Mixing parameter for magnetisation density.
functional:
GGA = PE # PBE functional

Figure 3.1.: Exemplary INCAR-file of H metal interaction energy calculation.

K-Points
0

Monkhorst Pack
6 6 1
0 0 0

Figure 3.2.: Exemplary KPOINTS-file for an interaction energy calculation.

3.1.2. KPOINTS

The KPOINTS file sets the number of k-points that serve as discretisation of the
irreducible Brillouin zone. They can either be set manually by entering specific
coordinates or automatically by giving a defined mesh size. If the k-point mesh
shall be constructed automatically, the sampling method needs to be entered in line
3, followed by the size of the mesh in line 4. Here, the sampling scheme of Monkhorst
and Pack is employed.74 The last line in KPOINTS stands for the shift to the Γ-point
in reciprocal space.
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3.1.3. POSCAR

The POSCAR file defines both the simulation cell and the coordinates of the atoms.
The first line is a comment line which I always used to describe my system to avoid
confusion in the future. The following three lines describe the lattice vectors of
the simulation cell, as all calculations are periodic in every direction. Hence, it
is important to define a sufficient distance between two surface slabs to suppress
interactions between them. This can be achieved by increasing the lattice vector
perpendicularly to the surface plane. It is always mandatory to check whether the
slab and its periodic images are well separated from each other or otherwise the
first-principles calculation would give nonphysical results.
The atomic species and its respective number of atoms are also specified in this

file. The coordinates of the atoms can be either given in Cartesian coordinates or
in Direct coordinates. The values of the direct coordinates range from 0 to 1 and
are connected to the Cartesian coordinates in the following way:

~Rcart = AT ~Rdir. (3.1)

Here, ~Rcart and ~Rdir are the atomic position vector represented in Cartesian and
Direct coordinates, respectively. AT is the transposed matrix that consists of the
three lattice vectors ~a1, ~a2 and ~a3 which span the simulation cell. After the choice
of coordinates are defined, one has to provide the coordinates of the atoms. Every
atom requires an individual line.
It is possible to fix individual coordinates and in order to do so one has to enter

the tag Selective Dynamics above the line that defines the choice of the coordinate
representation. Additionally, in every line of coordinates one has to add either T
to allow movement or F to forbid it and thus keep the atom fixed. An exemplary
POSCAR file is given below.
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bcc: H 6A above Ta(111) 2x2x6 - PBE
3.31

2.82842 0.00000 0.00000
-1.41421 2.44949 0.00000
0.00000 0.00000 7.29687

24 1
Selective Dyamics
Cartesian
0.00000 0.00000 0.0000000000 F F F
1.41421 0.00000 0.0000000000 F F F

-0.70711 1.22474 0.0000000000 F F F
0.70711 1.22474 0.0000000000 F F F
0.70711 0.40825 -0.2261916279 F F F
2.12132 0.40825 -0.2261916279 F F F
0.00000 1.63299 -0.2261916279 F F F
1.41421 1.63299 -0.2261916279 F F F
0.00000 0.81650 -0.4544632188 F F F
1.41421 0.81650 -0.4544632188 F F F

-0.70711 2.04124 -0.4544632188 F F F
0.70711 2.04124 -0.4544632188 F F F
0.00000 0.00000 -0.8001135075 F F F
1.41421 0.00000 -0.8001135075 F F F

-0.70711 1.22474 -0.8001135075 F F F
0.70711 1.22474 -0.8001135075 F F F
0.70711 0.40825 -1.0283678288 F F F
2.12132 0.40825 -1.0283678288 F F F
0.00000 1.63299 -1.0283678288 F F F
1.41421 1.63299 -1.0283678288 F F F
0.00000 0.81650 -1.2545692824 F F F
1.41421 0.81650 -1.2545692824 F F F

-0.70711 2.04124 -1.2545692824 F F F
0.70711 2.04124 -1.2545692824 F F F
0.00000 0.00000 1.8126888217 F F F

Figure 3.3.: Exemplary POSCAR-file for an interaction energy calculation.

3.1.4. POTCAR

The fourth required file for launching a calculation with VASP is the POTCAR file
and it is specific for every species. Therefore, one has to use those POTCAR files
for the species given in the POSCAR file. If one wants to launch a calculation that
contains more than one atomic species one has to concatenate the individual POTCAR
files into one POTCAR file. It is mandatory to keep the same order of species in the
merged POTCAR file as in the corresponding POSCAR file. If not the calculation will
stop. POTCAR files are either based on ultrasoft pseudopotentials75 or the projector-
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augmented wave method.76 Although both approaches can be transformed into each
other,77 I relied on the PAW potentials throughout this thesis, because they are in
practice more efficient than the ultrasoft pseudopotentials.

3.2. FHI-aims

The Fritz Haber Institute ab-initio molecular dynamics simulation (FHI-aims) code
is another electron structure code. In contrast to VASP it uses numeric-atom cen-
tered orbitals (NAO) as basis set, allowing an explicit treatment of all electrons in
the system. For the description of this code I rely on the FHI-aims manual78 and the
central publications to the code,79–84 but again, I will only give an overview about
the main features of this code. In FHI-aims, only two input files are needed to be
present in a directory to launch a calculation. These two files are described in more
detail below.

3.2.1. control.in

The control.in is the file that contains all calculation settings, e.g., the choice of the
exchange-correlation functional, treatment of relativistic effects, spin-polarisation
and convergence settings. In contrast to VASP one has to specify in the control.in
file whether periodic boundary conditions shall be included in a calculation or not.
This is done by providing a k-Point mesh in the input file. For carrying out ab-
initio molecular dynamics, one can define the ensemble of interest, either NVE
or NVT ensemble, alongside the integration time-step and the choice if a restart
shall be written or not. The control.in file also contains species specific basis set
settings at the end of the file. There are three optimised basis sets provided for each
atomic species; light, tight and very-tight. The preconstructed light basis
contains a minimum basis including all occupied orbitals alongside with a small set
of unoccupied orbital functions. The tight basis set is optimised in such a way
that this preoptimised set of functions provides convergence up to some meV on the
absolute energy scale. Convergence tests with respect to the basis set of orbitals are
carried out by switching from the light basis set to the higher tight basis set. For
my investigated systems, I found that energy differences are already well converged
when the light basis set is used. The last one basis set really tight should only
be used for very specific testing scenarios as calculations with this basis set are
very expensive from a computational point of view. An exemplary control.in file
without the species defaults is given below.
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# Physical model settings
#

xc rpbe
vdw_correction_hirshfeld
charge 0.
spin none
relativistic atomic_zora scalar

#
# SCF convergence settings
#
# occupation_type gaussian 0.1
# mixer pulay
# n_max_pulay 10
# charge_mix_param 0.1

# ini_linear_mixing 10
# ini_linear_mix_param 0.05
# preconditioner kerker 1.5
# precondition_max_l 0
# preconditioner turnoff charge 1e-4
# preconditioner turnoff sum_ev 1e-1

sc_accuracy_rho 1E-5
sc_accuracy_eev 1E-3
sc_accuracy_etot 1E-6
sc_iter_limit 100

#
# For periodic boundary conditions
#

k_grid 30 30 30

Figure 3.4.: Exemplary control.in file for an energy calculation of bulk-Si.

3.2.2. geometry.in

The geometry.in file contains all information about the atomic species occurring
in the calculation alongside with the atoms positions. Each row starts with the
tag atom followed by three Cartesian coordinates and is ended with the chemical
symbol of the element. If the calculations shall be periodic, an additional simula-
tion cell must be defined in terms of three lattice vectors prior to the list of atoms.
For molecular dynamics simulations, the initial velocity components of a respective
atom are provided under the row specifying the atom with its Cartesian coordinates.
The same concept holds for the specification of initial magnetic momenta or relax-
ation constraints, i.e. the atom is kept fixed during a geometry optimisation. An
exemplary geometry.in file is given below.
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lattice_vector 7.7739319523649026 0.0000000000000000 0.0000000000000000
lattice_vector 0.0000000000000000 3.8869659761824513 0.0000000000000000
lattice_vector 0.0000000000000000 0.0000000000000000 20.4969999999999999
atom -1.2243942824974721 0.0000000000000000 -0.8657775000000000 H

constrain_relaxation .true.
atom 1.2243942824974721 0.0000000000000000 -0.8657775000000000 H

constrain_relaxation .true.
atom 2.6625716936849795 0.0000000000000000 -0.8657775000000000 H

constrain_relaxation .true.
atom 5.1113602586799232 0.0000000000000000 -0.8657775000000000 H

constrain_relaxation .true.
atom 0.0000000000000000 0.0000000000000000 0.0000000000000000 Si

constrain_relaxation .true.
atom 3.8869659761824513 0.0000000000000000 0.0000000000000000 Si

constrain_relaxation .true.
atom 0.0000000000000000 1.9434829880912257 1.3742500000000000 Si
atom 3.8869659761824513 1.9434829880912257 1.3742500000000000 Si
atom 1.9434829880912257 1.9434829880912257 2.7484999999999999 Si
atom 5.8304489642736765 1.9434829880912257 2.7484999999999999 Si
atom 1.9434829880912257 0.0000000000000000 4.1227499999999999 Si
atom 5.8304489642736765 0.0000000000000000 4.1227499999999999 Si
atom 0.5000000000000000 0.0000000000000000 5.0069999999999999 Si
atom 3.3869659761824513 0.0000000000000000 5.4969999999999999 Si

Figure 3.5.: Exemplary geometry.in for a relaxation calculation of an unrecon-
structed Si(100) surface. The conventional lattice constant a0 equals
5.5 Å. A vacuum layer of 15 Å is employed.

3.3. md_tian

md_tian, written in Fortran by Dr. Svenja Janke, Dr. Alexander Kandratsenka
and Prof. Dr. Daniel J. Auerbach, was the first molecular dyanmics simulation
programme developed in our group. It was specifically designed to perform simu-
lations of H atom scattering from Au(111) on PESs based on EMT and was later
generalised to make simulations for H atoms at fcc(111) metal surfaces possible.
To perform fits for atomic hydrogen at bcc metals, I extended the programme with
the bcc EMT formalism presented in Section 2.3.2 so that the user can now choose
between an ideal fcc or bcc lattice as effective medium.
To generate a PES based on EMT, md_tian comprises a routine which fits the

EMT energy function to input data by utilising the non-linear Levenberg-Marquadt
approach.85,86 Originally, a fit had to be set up by the user and for each fit it was the
responsibility of the user to introduce constraints to the fitting procedure, e.g., to
fix some of the 14 EMT fitting parameters. The parameter optimisation procedure

32



3.3. md_tian

towards a global minimum is therefore unsystematic and as a consequence improve-
ments over several fit generations are not ensured. In addition, the acquisition of
meaningful PESs is more than hammering down the RMSE of the fit. For exam-
ple, it was discovered that an unconstrained fit might result in a PES on which a H
atom is capable to pull a gold atom out of the surface and desorbs in form of a H-Au
dimer. Thus, the PES must fulfil the mechanical stability criterion45 and exhibit a
meaningful disintegration temperature. To provide a more systematic exploration
of the fourteen dimensional parameter space, an external wrapper script that opti-
mises the parameter set based on a genetic algorithm (GA) approach was written.
This approach is discussed in detail in the references24,29 and the interested reader
is referred to it. I will only shortly cover the basics of this approach.
Before a fit can start, an initial set of fourteen parameters must be provided. In

the first step the parameter set of every individual that shall be fitted in the first
generation is randomly determined. The parameter set of an individual can range
from zero (all parameters remain how they are) to eleven as the three EMT param-
eters E0,M, λM and s0,M are kept fixed. In addition, one AIMD trajectory out of
the set of provided trajectories is randomly chosen and also a random fraction of
the configurations from that particular trajectory is chosen by a uniform random
number generation ranging from 0 to 1. After all this information has been assigned
to every individual in the first generation, those individuals are fitted. When all
individuals are fitted, a fitness is assigned to each individual based on the following
relationship:

F ∝ α

RMSEvd
+ 1− α

RMSEtd
, (3.2)

with the RMSE being defined as

RMSE =

√√√√ 1
N

N∑
i=1

(Ei,input − Ei,EMT)2. (3.3)

N represents the number of data points included into a fit, whereas Ei,input marks an
input energy for a given configuration and Ei,EMT is the corresponding EMT energy
for the same configuration. Moreover, penalty functions are introduced to constrain
the fit to experimental physical properties, which have the form of

P =
∑
k

max [0, Pk (xk)] , (3.4)

Pk (xk) = pk

(∣∣∣∣∣xkx0
k

− 1
∣∣∣∣∣−∆k

)
. (3.5)

Here, P denotes the penalty that is subtracted from Eq. 3.2 and Pk is the penalty of
each constraint k. It is calculated from the deviation between the literature value
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x0
k and the target value xk of the physical quantity that enters the fit as constraint.

∆k is a threshold value that spans the width of the penalty free space and pk is
the slope of the penalty determining the impact of the constraint if the target value
lies out of the penalty-free region. In our GA wrapper script the cohesive energy
E0, the bulk modulus B and the elastic constant C44 are the quantities to which
the fit is constrained. After the fitness has been evaluated for all individuals in one
generation, two individuals of this set are chosen to mix with each other, i.e., the
two parents form two children. The probability for an individual to be chosen is
proportional to its fitness. It is important to note that a parent can be chosen not
only once but several times to form a child, but it is forbidden to clone itself. Now
that two individuals have been chosen, a random number ranging from 0 to 13 is
drawn to set the index at which the parents’ parameter set is cut into two parts. The
two parents swap their fragmented parameter set with each other. This procedure is
repeated for the assignment of the parameters which shall be subject to optimisation
in the child. Finally one parent passes its AIMD input data to one child. To cover
a larger part of the parameter space, additional mutations are introduced. Those
mutations affect not only the chosen AIMD trajectory and its number of points of
a child, but also the parameter sets which are going to be optimised in the next
generation. After the number of children is equal to the number of parents, the
individuals of the new generation, i.e. the children, are optimised and the process
repeats.
In the course of this thesis I only used the fitting routine of md_tian combined

with the genetic algorithm. However, I extended this script to make fits to the bcc
EMT formalism possible. Molecular dynamics simulations were performed with the
successor of this programme, which is presented in the following section.

3.4. md_tian2

md_tian has proven itself to be very useful for exploring the scattering dynamics of
atomic hydrogen from noble metal(111) surfaces.14,16,21,24 However, the programme
had a central weakness, because its architecture was centralised on utilising poten-
tial energy surfaces based on EMT. As outlined in Section 2.3, EMT is not capable
to describe chemical bonds that have a preferred orientation like in diamond or ele-
mental silicon.
In order to conduct molecular dynamics simulations for investigating the scat-

tering of H atoms from graphene, a new molecular dynamics simulation code was
developed in our group, called md_tian2.87 It was purposely designed to overcome
the weaknesses of its predecessor md_tian. First of all, the design of md_tian2 is
heavily based on modularity and individual subroutines are written to be as inde-
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3.4. md_tian2

pendent from each other as possible. This makes it very easy to incorporate new
potential subroutines and propagators among other features into the programme.
md_tian2 also allows its user to incorporate more than two chemical elements, which
was not possible in the old version. The user must provide a potential for every in-
teraction between two chemical elements and also an interaction potential for atoms
of the same kind. All interaction potentials are provided in form of an external PES
file. The directory where this PES file is stored can be given as a path in the input
file. From this PES input file the programme constructs an n×n interaction poten-
tial matrix for the energy and force calculation. Here, n stands for the number of
chemical elements present in the simulation cell. md_tian2 allows to use interaction
energy functions based on Effective Medium Theory (EMT)27,28 for both fcc and now
bcc metals, Lennard-Jones (LJ),88–90 reactive empirical bond order (REBO)91–93 as
well as the harmonic oscillator (HO) and the Morse potential.94 Furthermore, at
this time of writing my colleague and fellow PhD student Sebastian Wille connected
md_tian2 with RuNNer,95–100 which allows the user to use high-dimensional neural
network potentials (HNNDP) for MD simulations. This has the enormous advan-
tage that md_tian2 is now unrestricted to any kind of material class. All other
aforementioned interaction potentials arise from physical models and are therefore
restricted in their approximations, e.g., EMT only applies for metals and alloys,
whereas REBO can only be applied to carbon-hydrogen systems.
In order to launch a calculation, the user needs to provide an input file that con-

tains commands which define the type of simulation. Several mandatory commands
exist which need to be present in the input file. First of all, the running mode must
be given in the input file. An exemplary file is given in Section 3.6. The user has
the choice between a relaxation set with the tag min and the tag md will start molec-
ular dynamics simulation. With the tag fit the user has the possibility to fit the
REBO potential to an ab-initio data set. The fitting of other interaction potentials
to input data is not possible yet and the construction of HNNDPs is done exter-
nally with the RuNNer95–100 code. A number is assigned to every MD trajectory for
later output purposes, but this number also influences the random number genera-
tor (RNG) if the inital positions of the projectile are supposed to be set randomly.
The first number is provided by the tag start. This is followed by the number of
trajectories ntrajs. The time scale on which the dynamics of the system shall be
investigated is set with nsteps and step, where the former represents the number
of steps and the latter stands for integration time step. md_tian2 operates in the
units fs, eV and Å. If the keyword projectile or lattice are set, they must be
accompanied by the number of elements that occur as lattice or projectile atoms.
Next, the chemical symbol and the mass and finally the type of propagator must
be entered. If the keyword projectile is set also the keywords Einc, polar and
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run md ! Running mode - here molecular dynamics
start 1 ! Number of first trajectory. Affects RNG for random projectile position
ntrajs 1000 ! Number of trajectories
nsteps 10000 ! Number of simulation steps
step 0.1 ! Integration time step in fs.

lattice 1 Au 196.97 ver ! Number, type, mass and propagator of lattice
projectile 1 H 1.0 lan ! Number, type, mass and propagator of projectile

Einc 2.76 ! Incidence kinetic energy of projectile in eV
polar 45 ! Incidence angle of projectile with respect to surface normal
azimuth 60 ! Incidence orientation angle of projectile with respect to x-axis

pip r r 6.0 ! Projectile’s initial position. ’r’ means random
pul 6.05 ! Projectile upper limit. Causes stop of trajectory.

Tsurf 300 ! Desired surface temperature in K
Tproj 300 ! Desired temperature of the projectile in K

! Incorporation of 1 projectile and 1000 surface configuration snapshots
conf merge ’proj’ 1 ’latt’ 1000

!pes definition
pes ’/home/nhertl/Simulations/Gold/pes/HAu.pes’ ! Absolute path to PES file
output scatter 1 ! Output files

Figure 3.6.: Exemplary md_tian2.inp file to perform non-adiabatic molecular dy-
namics simulation of 1000 trajectories for H on Au.
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Table 3.1.: Types of propagation method which can be used in combination with
the available PES in md_tian2 are represented as 4. The symbol 8

marks those combinations of PES and propagation type which are not
accessible yet.

Type of propagation
classical RPMD non-adiabatic

LJ 4 4 8

EMT 4 4 4

PES REBO 4 4 8

HO 4 4 8

MO 4 4 8

NN 4 4 8

azimuthal accompanied with real numbers must be present to set the initial con-
ditions of the projectile. Note that the initial polar θi and initial azimuthal angle
ϕi are defined with respect to the z-axis and the x-axis, respectively. md_tian2
allows to perform MD simulations in a microcanonical ensemble, where the number
of particles N , the cell volume V and the total energy E are constant. This is done
with the velocity Verlet algorithm.101,102 It is also possible to make simulations in
the canonical ensemble to heat up the surface slab to the desired temperature. This
can be done either with the Anderson thermostat or with a path-integral Langevin
propagator.103 The desired temperature is set via the keyword Tsurf followed by
the number of choice. md_tian2 provides a different Langevin propagator in which
the friction coefficient is not constant, but depends on the local background den-
sity at the projectiles position. The mapping from background density to friction
coefficient is governed by the local density friction approximation, which has been
discussed in Section 2.4. The temperature of the electron reservoir is set with the
keyword Tproj.
Another very significant improvement over the old programme is that md_tian2

allows to perform path-integral molecular dynamics, which is based on Ring Poly-
mer Molecular Dynamics.104,105 This allows the user to incorporate zero-point energy
and tunneling effects into the dynamics. The available potentials and propagators
are listed in the table below. If one atom in the simulation shall play the role as
projectile, the keyword pip which defines the projectiles initial position as Cartesian
coordinates must be set. The keyword pul ends the trajectory if the z-coordinate is
larger than the chosen value. This keyword is very useful to decrease the required
time for the computation of a larger set of trajectories. Otherwise all trajectories
are stopped if the number of simulation steps is exceeded.
md_tian2 provides the possibility to choose between several output files. One

option are binaries that store snapshots of surface configurations from a previously
executed calculation. This is especially useful if the user wants to calculate a large
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set of trajectories, because these binaries can be used to provide the initial positions
and velocities of the surface atoms. There also exists an output file that contains
the kinetic and potential energy of the lattice and the surface at every n-th time
step, depending on n chosen by the user. However, since the main purpose of this
programme is to simulate scattering events, in particular the energy loss of the pro-
jectile after a scattering process, one does not need such an excessive amount of
data. For a large set of trajectories it is cumbersome to write out information about
the projectile every n-th time step, as more data are written out than one would
actually use in the end. To address this issue the user has the option to let the
programme write out a summary file about every individual trajectory. It contains
all initial and final conditions that the user needs to investigate the scattering dy-
namics like initial and final kinetic energy or initial and final position.
Alongside with the input file comes a geometry file of the system containing both

size and shape of the simulation cell as well as number and position of the atoms.
The layout of this geometry file is heavily inspired by the POSCAR file from VASP. For
md_tian2, the atomic species have to be entered explicitly into the geometry file.
This is necessary for the programme to conduct an internal sanity check whether
the species given in the potential file is correct or not. In addition, to each chemical
element the number of respective particles must be provided in the next line. This
is important to assign the coordinates provided further down in the structure file to
the respective atomic species. An exemplary file for a structure file is given below.
md_tian2 also provides the option to write out this geometry file with the keyword
VASP followed by an integer that marks the sequence of steps after which a geometry
output file is written. These files can be used to perform new calculations either
with md_tian2 or with VASP. The latter is in particular interesting when the user
is operating with neural-network potentials, which usually require several cycles of
improvement. Recently, an output file that can be used with fhi-aims has also been
implemented.
In summary, md_tian2 is a powerful molecular dynamics simulation programme

designed for atomic scattering and molecular scattering from surfaces. I used this
programme exclusively for the molecular dynamics simulation of H atom scattering
from various transition metal surface facets. To ensure a proper statistical weight
it was necessary to produce large trajectory data sets which will be presented and
investigated in the following chapter.
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fcc: Au(111) 2x2x6 unrelaxed - for md_tian relaxation
1.0000000000000000
5.9396969619669990 0.0000000000000000 0.0000000000000000

-2.9698484809834982 5.1439284598446742 0.0000000000000000
0.0000000000000000 0.0000000000000000 24.1243556529821426
Au
24

Cartesian
0.0000000000000000 0.0000000000000000 0.0000000000000000 T T T
2.9698484809834995 0.0000000000000000 0.0000000000000000 T T T

-1.4849242404917498 2.5719642299223371 0.0000000000000000 T T T
1.4849242404917498 2.5719642299223371 0.0000000000000000 T T T
1.4849242404917498 0.8573214099741124 -2.4248711305964283 T T T
4.4547727214752495 0.8573214099741124 -2.4248711305964283 T T T
0.0000000000000000 3.4292856398964493 -2.4248711305964283 T T T
2.3422456504658622 3.4292856398964493 -2.4248711305964283 T T T
0.0000000000000000 1.7146428199482247 -4.8497422611928567 T T T
2.9698484809834995 1.7146428199482247 -4.8497422611928567 T T T

-1.4849242404917498 4.2866070498705611 -4.8497422611928567 T T T
1.4849242404917498 4.2866070498705611 -4.8497422611928567 T T T
0.0000000000000000 0.0000000000000000 -7.2746133917892850 T T T
2.9698484809834995 0.0000000000000000 -7.2746133917892850 T T T

-1.4849242404917498 2.5719642299223371 -7.2746133917892850 T T T
1.4849242404917498 2.5719642299223371 -7.2746133917892850 T T T
1.4849242404917498 0.8573214099741124 -9.6994845223857133 T T T
4.4547727214752495 0.8573214099741124 -9.6994845223857133 T T T
0.0000000000000000 3.4292856398964493 -9.6994845223857133 T T T
2.3422456504658622 3.4292856398964493 -9.6994845223857133 T T T
0.0000000000000000 1.7146428199482247 -12.1243556529821426 F F F
2.9698484809834995 1.7146428199482247 -12.1243556529821426 F F F

-1.4849242404917498 4.2866070498705611 -12.1243556529821426 F F F
1.4849242404917498 4.2866070498705611 -12.1243556529821426 F F F

Figure 3.7.: Exemplary POSCAR of an unrelaxed Au(111) for md_tian2 to perform a
structure relaxation.
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4. Dynamics of H atoms on
non-covalent bonding surfaces

In this chapter I will investigate whether the scattering dynamics of an H atom
impinging on a single crystalline metal surface depends on the surface structure or
not. From a pure mechanical point of view, and given the geometry of the surface
does not change, this question seems very trivial to answer. Of course it should.
Let us imagine the H atom to be a rubber ball which is repeatedly thrown by

us onto a set of metallic balls that are ordered in a certain symmetry and larger
in size compared to the rubber ball. For every throw we capture the rubber ball’s
position and velocity, at the point in time at which the ball reached the same height
at which we made the throw while keeping the initial position and speed the same.
From the initial conditions combined with our data sets of the final positions and
final velocities we can calculate a probability distribution for the scattering angle
(with respect to the normal of the plane of the metallic balls) and an energy loss
distribution. The resulting angular distribution changes when we change the ar-
rangement of the metallic balls. Unfortunately, this simple, macroscopic picture has
its flaws when comparing to an atomic picture. On the atomic scale, the movement
of the atoms can be reasonably described as spheres connected with springs which
are jiggling periodically leading to a reduction in symmetry. On the macroscopic
scale, the metallic balls will remain in their position, i.e. preserving their symmetric
order. Additionally, the impinging H atom will feel the presence of the metal atoms
not just at the point of impact but much earlier due to the existence of a binding
well. As a consequence the projectile will accelerate towards the target much more
than the rubber ball will due to the gravitation force.
Thus, we firstly need to ask whether the movement of the surface atoms and the

concomitant symmetry reduction of the surface structure vanish out every geometry
effect in angular distribution (AD) and energy loss distribution (ELD) at ambient
temperatures or not? Another aspect that is neglected in our nice simple picture,
is the fact that in case of metals, the H atoms translational degrees of freedom can
couple to the electron reservoir of the substrate. Therefore, there is another en-
ergy transfer channel that decelerates the H atom and thus is able to change the
scattering dynamics. The second question I will investigate is whether excitation
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of electron-hole pairs (ehps) wash out any dependence on the surface structure. In
this chapter, I will address these question to both fcc and bcc metals. At first, I will
cover the generation of the ab-initio energies which are going to serve as input data
for the EMT parameterisation. Next, I will present the PES that results from the
fit, in particular for the bcc crystal structure, as valid EMT-PES for fcc metal(111)
surfaces have already been crafted.14,24 I will nonetheless test their transferability
onto the other surface facets as this has only been done for Pd yet.24,29 Finally, I
will discuss the results of the molecular dynamics simulation for atomic H atoms
impinging on a vast set of metal surfaces.

4.1. Potential energy surface generation

4.1.1. DFT calculations

This subsection is dedicated to outline the general procedure of how to generate
the ab-initio energies required for the fit. Although input data for a variety of
H/metal(hkl) systems were generated in the course of this thesis, the input data
generation scheme is the same for all of them. Only the optimised calculation set-
tings of the DFT calculation are of course different along with the different surface
structure. Therefore, I will outline the generation procedure using the example of
H/W(111). The surface geometries of an individual surface facet and potential en-
ergy curves for atomic hydrogen interacting with the respective surface facets will
be shown in Section 4.1.2. Exemplary input files for the individual steps are pro-
vided in the appendix. For all H/metal systems I used VASP5.3.5. In the following
paragraphs, I will briefly outline the order of procedures for the sake of providing
a clear guideline. Every individual step in the data preparation procedure will be
presented in more detail in individual sections further below.
For every system, the first step towards a set of ab-initio energies is the optimi-

sation of the lattice constant a0. After this quantity has been successfully acquired,
the next step is the preparation of a surface slab. The surface is formed when a
crystal is cut along a certain crystallographic direction, which is given in terms
of Miller indices (hkl).106 In case of a cubic crystal the perpendicular distance be-
tween two crystallographic planes dhkl is constant. For surfaces this is not true as
the surface atoms feel their missing neighbours and therefore predominantly move
inwards.10 Obviously, this must be taken into account before making calculations for
the interaction of hydrogen with a metal surface. As a consequence, I conducted a
structure optimisation for every metal slab I used to model the surface before doing
any calculations involving the presence an H atom in the simulation cell. When the
convergence criteria for energy and force are reached, the optimised structure of the
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4. Dynamics of H atoms on non-covalent bonding surfaces

slab can subsequently be used to calculate interaction energies for the H/metal(hkl)
system. To calculate a set of DFT energies, I prepared a p(2 × 2) metal slab with
six layers. The scaling along the lateral is necessary due to the periodic boundary
conditions. Using only a p(1× 1) slab would result in a metal surface with a 100%
coverage of hydrogen adsorbates.13,16 Under these conditions, the H atom feels the
presence of its periodic images which is a scenario that does not meet the condi-
tions of former experiments.13,16 Former convergence checks with a p(3 × 3) slab
showed that a p(2× 2) surface cell is sufficient when dealing with H as adsorbate.107

Besides the generation of static potential energy curves, which I will from now on
refer to as energy grid (EG), the input data also consists of configurations that were
sampled from ab-initio molecular dynamics (AIMD) trajectories. For the purpose
of providing initial values for the metal atoms’ positions and velocities, I followed
the procedure established by Janke et al.14,107 and thermalised the surface slab to
120K. After the initial conditions for the metal atoms are acquired, I launched
AIMD trajectories simulating an H atom impinging with a kinetic energy of 5 eV
onto the metal slab. The configurations of the displaced metal atoms and the H
atom along with the corresponding potential energy are subsequently used for the
fitting. For all H/metal systems I relied on the PBE functional.37,38 An electronic
smearing parameter σ = 0.1 eV was found to be useful for all systems. I relied on
the smearing scheme of Methfessel and Paxton (N = 1).73 The k-point sampling
and cutoff energy were checked for every system and the final settings were chosen
so that the results are well converged.

Bulk properties

To find the optimal lattice constant, I used the following strategy: I calculated the
potential energy for a primitive bcc unit cell by varying the conventional lattice
constant a0. Subsequently, I fitted a polynomial of degree four to the DFT data
and determined its minimum, i.e. the optimum conventional lattice constant a0 for
a specific k-point setting. This procedure has been repeated for a various set of k-
point meshes to ensure convergence. I calculated the mean value out of those lattice
constants which were close to the converged value at the highest k-point setting,
which I used as optimum lattice constant for the geometry of the surface slab. All
lattice constants of the metals used in this thesis are provided in Table 4.1. One can
see that the lattice constants determined here are in most cases larger compared to
the experimental ones, which is to be expected for the PBE functional.108
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bcc W: # System
$i # Conventional lattice constant
-0.5 0.5 0.5 # Base vector 1
0.5 -0.5 0.5 # Base vector 2
0.5 0.0 -0.5 # Base vector 3
1 # Number of atoms in simulation cell
cartesian # Type of coordinates
0 0 0 # x, y and z coordinate

Figure 4.1.: Representative POSCAR-file for a lattice constant optimisation.

Table 4.1.: Table of lattice constants given along with their experimental counter-
parts. All values are given in Å.

Ni Cu Mo Pd Ag W Pt Au
DFT 3.5029 3.6429 3.15 3.9429 4.1629 3.18 3.9629 4.20107

Exp.109 3.52 3.61 3.15 3.89 4.09 3.16 3.92 4.08

Surface calculations

Now that we have the optimal lattice constant, we are able to construct energetic
favourable configuration of the ideal M(hkl) surface. As I already pointed out, the
surface atoms feel the absence of their missing neighbours and therefore tend to relax
toward the bulk.10 Thus, it is necessary to perform a structure optimisation. The
ideal surface geometry will serve as starting point. For the modelling of the surface
relaxation, I found that a p(1 × 1) six-layered slab is sufficient as the atoms move
predominantly perpendicular to the surface plane. To avoid translation of the entire
slab I fixed the bottom layer. As already pointed out in Section 3.1, VASP uses plane
waves as basis set and therefore every slab has an periodic image in perpendicular
direction. It is therefore necessary to check that there are no interactions between the
slab and their periodic images. I found that the application of a 15 Å vacuum layer
between the slabs is sufficient. I considered the relaxation to be converged when the
difference in energy between two wave function optimisation steps is smaller than
10−5 eV and the forces are smaller than 10−3 eV/Å. The optimised surface structures
can then be used for both an equilibration towards a desired temperature and the
calculation of a static energy grid. The latter is going to be discussed next.

Energy grid

After the optimal slab geometry has been determined, I acquired the data set of
static DFT energies as follows: At ten different surface sites, the hydrogen atom
was initially placed 6 Å above the relaxed surface. Subsequently, the z-coordinate
was changed in steps of 0.1 Å, whereas the x- and y-coordinate remained constant.
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Figure 4.2.: Top view on the bcc(111) and fcc(111) facets shown in panel a) and b),
respectively. The white spheres indicate the ten chosen high-symmetry
sites which constitute the energy grid of both facets.

Table 4.2.: x and y position of the ten surfaces sites used for the construction of the
static lattice energy grid and their names. The names are adopted from
Nobuhara et al.110 and Janke et al..111

site number site x/a0 y/a0 description
1 top 0 0 on top of a surface atom
2 tso 1

3
√

2 0 between top and ott site
3 ott

√
2

3 0 center of the equilateral triangle
4 bri 1√

2 0 bridge site
5 fht 1√

8

√
6

12 between top and hcp
6 hho 5

√
2

12

√
6

12 between hcp and bri
7 hcp 1√

2
1√
6 hexagonal close packed hollow site

8 hht 1√
8

−
√

6
12 between top and fcc

9 fho 5
√

2
12

−
√

6
12 between bri and fcc

10 fcc 1√
2

−1√
6 face centered cubic hollow site

This resulted into a grid with 988 positions. Note that the z-axis is parallel to the
surface normal. The ten surface sites are given in the units of the optimised lattice
constant a0 in Table 4.2 and an exemplary bcc(111) surface along with its ten high-
symmetry sites is depicted in Figure 4.2 a).

All high-symmetry sites lie in the irreducible part of the bcc(111) Wigner-seitz
surface cell. Although number and position of points in the irreducible part of
the surface can be chosen arbitrarily, I relied on a similar sampling to the energy
grid construction of the fcc(111) transition metal EMT-PES generation of my two
predecessors.14,24,29,107,111 For the bcc(111) this strategy is obvious because it is com-
paratively easy to write down a transformation matrix between fcc(111) and bcc(111)
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metal surface. The basis vectors of the bcc(111) p(1× 1) surface cell are

~a1 =


√

2
0
0

 a0,bcc; ~a2 =


− 1√

2√
3
2

0

 a0,bcc; ~a3 =


0
0
√

3
6

 a0,bcc, (4.1)

The lattice vectors of a fcc (111) p (1× 1) cell are

~b1 =


1√
2

0
0

 a0,fcc; ~b2 =


− 1

2
√

2√
3
8

0

 a0,fcc; ~b3 =


0
0
1√
3

 a0,fcc, (4.2)

and an exemplary fcc(111) surface is depicted in Figure 4.2 b). The lattice vectors
are defined in such a way that the surface plane lies in the x,y plane. The perpen-
dicular direction is laid onto the z-axis. Consequently, ~a3 and ~b3 mark the vertical
distance between two layers. The transformation matrix T between both surface
cells is thus

~ai =


2 0 0
0 2 0
0 0 1

2

 a0,bcc
a0,fcc︸ ︷︷ ︸

=T

~bi (4.3)

In case of a0,bcc = a0,fcc, this means that if one doubles the distance between the
atoms in one fcc(111) surface layer and compresses the vertical distance between to
layers to the factor of 1/2, one arrives at the bcc(111) structure. The increase in the
distance between two atoms situated in the same layer leads to a drastic decrease
of the planar density

ρA
def= Aatom

Acell
. (4.4)

The area filled by an atom is denoted as Aatom and Acell is the area of the simulation
cell. The detailed derivation of the planar densities of all surfaces discussed in this
thesis is given in Appendix C. While the fcc(111) surface has planar density of 0.907,
i.e. almost 91% of the p(1 × 1) cell are filled by atoms, only 34% of the primitive
bcc(111) cell is occupied by surface atoms. However, the overall three-fold symmetry
between the layers is still contained and one can loosely regard the bcc(111) surface
as a distorted fcc(111) surface. However, the location of the nearest neighbours of
an atom is different. In contrast to the fcc(111) surface, in which a respective atom
has some of its neighbours located in the same layer, the eight nearest neighbours of
an atom in a bcc(111) cut are all located in different layers. Three of eight nearest
neighbours are located one layer above and three other nearest neighbours one layer
below. The other two nearest neighbours are directly above and below the reference
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Figure 4.3.: Potential energy (panels a) - d)) and magnetic moment µ (panels e)
- h)) of four high-symmetry sites of a bcc(111) surface plotted against
the vertical distances between H atom and surface, zH. Note that the
surface plane lies in z = 0. The black line is there to guide the eye.

atom, i.e. those two nearest neighbours are located three layers above and below.
Since a hydrogen atom is a open-shell system, it has a spin ~S > 0. This has to be

taken into account into the DFT calculations when the H atom is far away from the
surface. However, since now the spin is taken into account a single point calculation
takes twice as long. When the H atom is close to the surface, the electron density
of the H atom and the metal start to interact with each other, which results into a
spin state of ~S = 0 for the entire simulated H/metal(hkl) system. As a consequence,
I performed spin-polarised DFT calculations, when the H atom’s vertical distance
to the surface plane is larger than 2 Å. For all other calculations I turned the spin-
polarisation off with the intention to save calculation time. A representative plot for
the potential energy curves at the top, bri, hcp and fcc site of the bcc(111) surface
along with the spin of the system is given in Figure 4.3. The potential energy curves
show that binding of atomic hydrogen at the W(111) surface is much more favoured
in comparison to the binding situation inside the bulk. Furthermore, the magnetic
moment, i.e. the spin, of the system starts to get affected earlier by the presence of
the metal slab than the potential energy and starts to deplete approximately 4 Å
above the surface. However, in the whole bulk region the spin of the system is zero
and therefore one can turn off the spin polarisation in the DFT calculation to save
calculation time.
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AIMD trajectories

Besides the static DFT energies that are equivalent to 0K, also thermally displaced
energy points were included into the fit to get a better sampling of the whole con-
figuration space. First of all, the optimised metal slab needs to be equilibrated
to a desired temperature. As long as the desired temperature of the metal slab is
far away from the melting temperature, the lattice vibrations can be—to a good
extent—regarded to behave like harmonic oscillators. For a harmonic oscillator the
Virial theorem112 states that

〈H〉 = 〈T 〉+ 〈V 〉
V= 1

2k(r−r0)2

= 2 〈T 〉 . (4.5)

Note that 〈T 〉 in Eq. 4.5 denotes the mean value of the kinetic energy and not the
temperature. Since the relaxed metal slab is used, its potential energy in the first
step is zero and I drew velocities from a Maxwell-Boltzmann distribution with a
temperature twice as large as the desired temperature, assigned to the metal atoms,
and subsequently let it distribute its kinetic energy in a microcanonical manner
for 1 ps with a time-step of 1 fs. I fixed the atoms of the bottom layer however
to prevent a translation of the entire metal slab. If the mean temperature is close
to the desired temperature and the velocity distribution resembles a 3D Maxwell-
Boltzmann distribution, I continued the calculation for several hundreds of fs but
saved multiple snapshots in order to use them as initial configurations for the AIMD
trajectories.

The H atom itself was again placed 6Å above a taken thermalised surface con-
figuration and shot it along the [112̄] direction. Again, it is important to turn the
spin on. The kinetic energy and the incidence polar angle were set to 5 eV and 30◦,
respectively. I chose 5 eV for three reasons: First of all, because the H atom prop-
agates faster and thus reduces the overall required calculation time of the AIMD
trajectory. Secondly, the H atom travels deeper into the repulsive region of the po-
tential and thus explores a larger configuration space compared to a projectile with a
lower kinetic energy. Lastly, the sticking coefficient for H atom scattering critically
depends on the initial kinetic energy.16 The higher the initial kinetic energy, the
lower the chance for the H atom to remain in the slab, which in turn also reduces
calculation time.

In Figure 4.3 it was shown that on the way towards the surface slab, the magnetic
moment of the system is going to vanish. However, since VASP uses the optimised
charge and wave-function of the previous step as a initial guess to accelerate the
calculation time. Although certainly programmed with the best intentions, this
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Figure 4.4.: Potential energy plotted against the run time of AIMD trajectories sim-
ulating an H atom impinging on W(111) surface with Ekin = 5 eV show-
ing several events. A single-bounce event is shown in panel a). Panel b)
depicts a penetration-resurfacing event. Panel c) and d) show trajecto-
ries with longer diffusion time over the first three layers of the W(111)
slab.

is problematic for simulating scattering trajectories of open-shell atoms/molecules
from surfaces, because on its way back from the surface the H atom will be optimised
into a wrong spin state leading to a much higher potential energy. In order to escape
from this dilemma, I followed an approach similar to Novko et al..113 For a certain
area above the surface, in case of H/W(111) between 2 and 3 Å, I used a self-written
python script which restarts VASP for every propagation step in the previously
mentioned area from scratch. This prevents the utilisation of an optimised wave
function from the previous step. After the H atom passed this area, the trajectory
is allowed to run as usual and we finally got an AIMD trajectory that arrives at
correct spin state in case of a scattering event. Although we have seen in Figure 4.3
that the magnetic moment starts to decrease 4Å from the surface away, I found that
the above described area is sufficient to retain the spin of the scattered H atoms.
Four representative trajectories are provided in Figure 4.4 showing events ranging

from scattering (cf. panel a)) from the top-layer to penetration below the fourth
layer and subsequent resurfacing before ejection into the vacuum (cf. panel b)). In
addition, since the vertical distance between two surface layers is extremely small for
a bcc(111) surface, also diffusion over the three upper layers can be observed during
two collision events. This can be seen in the panels c) and d) in Figure 4.4. In
particular panel c) shows a trajectory in which the H atom firstly oscillates between
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4.1. Potential energy surface generation

second and third layer before it collides strongly with a W atom of the first layer. In
panel d), a large proportion of the projectile’s perpendicular momentum is converted
into parallel momentum during the first collision and the projectile is ejected into
the vacuum due to a second collision from the second layer after some sliding over
the second and third layer. Penetration resurfacing events along as single-bounce
and multiple bounce events are not unique to this surface facet, but appear in all
bcc and fcc surface facets I investigated in the course of this thesis.

4.1.2. EMT parameterisation

At the beginning of this subsection, I will outline the general fitting procedure along
with the criteria I used to judge the quality of a fit. This is followed by the discussion
of the fit results for H/W(111) and H/Mo(111).

Fitting procedure

Now, after an energy grid alongside with a set of AIMD trajectories have been
acquired, they can be used to find an optimum set for the fourteen parameters of
the EMT energy expression. As mentioned in Section 3.3, I used an extended version
of the genetic algorithm (GA) script,24 to fit the EMT energy functions to the DFT
input data. As a brief reminder, the fitting process with the GA approach involves n
fit generations with a certain number of individual fitsm per generation. After every
generation, the individual fits are evaluated with respect to the RMSE to the input
data, and the provided literature values for the cohesive energy E0, the bulk modulus
B and the elastic constant C44. I chose to use 200 generations with 300 individual fits
per generation as this setting proved itself to give converged H/fccmetal(111) EMT-
PES.24,29 This results in 60,000 fits in total. Since no EMT parameters for tungsten
were available I just picked seven values out of the box. The initial parameters for
the hydrogen atom were taken from Strömquist et al..43 All ab-initio energies from
the energy grid were used for the fit, whereas the number configurations from AIMD
trajectories were chosen randomly by the genetic algorithm.
Figure 4.5 shows development of the fitness during a fit of the EMT formalism to

the H/W(111) input data set. The mean fitness of an individual generation increases
drastically during the first ten generations and then reaches a plateau with some
oscillations. It is especially interesting to see that the highest fitness values levels
off even a little bit earlier and then remain almost constant. This means firstly that
some fits of the earlier generation are able to compete in terms of quality with the
best fits of a later generation and secondly that initial guessing of the initial metal
EMT parameters is not a bad approach.
Another question I wanted to answer was whether the EMT energy formulae based
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Figure 4.5.: Evolution of the Fitness during a H/W(111) EMT-PES fit. Highest
and mean fitness of a generation are represented by open circles and
filled squares, respectively. The black symbols indicate a fit with the
bcc EMT formulae and the grey symbols a fit with the EMT formulae
from Ref. [28]. Note that the fitness has no physical dimension, which
appears from Eq. 3.2.

on a perfect fcc crystal as reference medium are capable to reproduce the interaction
energy curves. The result of the fit is given as grey points in Figure 4.5. In contrast
to the EMT formalism with an ideal bcc crystal as effective medium, the fcc EMT
energy formulae are not capable to fit the H/W(111) input data. Both, the highest
and the mean fitness are much lower compared to the bcc analogue. Furthermore,
more generations the GA required more generations to reach the plateau of the mean
fitness.
Due to the striking constancy of the highest fitness with respect to the gener-

ations, I randomly chose some generations and used the EMT parameters of the
individual with the highest fitness in that particular generation. I investigated the
chosen parameter sets in terms of the disintegration temperature. I thermalised the
slab up to 1000K and checked whether the slab remained stable for 200 ps. If the
slab remained stable, I considered this particular parameter set to be candidate for
molecular dynamics simulation that have a time span not longer than one picosec-
ond. Another important aspect is the transferability to other surface facets. EMT
should in principle be applicable to all surface facets because it does not contain any
surface geometry terms in its energy expression. If a parameter set is not capable
to qualitatively reproduce the energy curve of another surface facet, I disregarded
this parameter set as suitable candidate for MD simulations because this PES can
only describe a poor portion of metal bulk’s configuration space. Furthermore, the
final goal is to use the PES and its provided density model to conduct molecular
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4.1. Potential energy surface generation

dynamics with non-adiabatic corrections within the picture of electronic friction. A
suitable background density for this undertaking is thus critical. Hence, I analysed
all fits that I considered potentially usable in terms of how well the EMT-background
density compares to the electron density of a bare metal slab calculated with DFT.
Albeit both quantities are technically not the same, this comparison is still a good
estimate whether the background density is either too high or too low. This point
will be addressed in more detail further below.

Fit results

Since the input data consists of an ensemble of static configurations and points
taken from AIMD trajectories, it makes sense to discuss both subsets of the input
data separately. Figure 4.6 depicts the fitting results of the energy grid for the
ten selected high-symmetry sites. All curves are referenced to the potential energy
with the H atom being 6 Å above the surface. At those locations the interactions
between H atom and W(111) surface are negligible and thus the simulation cell
consists effectively of two subsystems which do not affect each other.
In general, the binding energy at the surface is much more favoured compared

to the subsurface or deeper regions in the material. If one looks at the grey curves
in Figure 4.6, which depict the DFT energies, one can classify the potential energy
curves into four different categories in terms of their appearance in the bulk region.
The first class consists of the top, hcp and fcc site. Here, the potential energy
is extremely repulsive and the local minimum inside the bulk is ∼ 4 eV above the
reference value. This local minimum is the space between two neighbouring tungsten
atoms in [111] direction. The second category consists of the tso, hho and fho sites.
These sites are similar to category one but the difference is that the local minimum
in the bulk region is energetically more favoured compared to category one, because
the lateral distance between the two neighbouring W atoms is larger here. The third
category consists of the bri and fht sites. The binding well inside the bulk is lower
compared to the second category. In addition, the repulsive part toward this local
minimum is much lower. It is interesting to see that the local minimum inside the
bulk for the third category compares to the energy of a gaseous H atom. The fourth
and last category is the most distinguishable category as it clearly shows the low
planar density of the bcc(111) surface. This category consists of the ott and hht sites.
The hht site shows several local minima along its curve inside the bulk, but none of
them has a significant well-depth and thus it is easy to escape out of these minima.
The ott site is even more remarkable. The potential energy inside the bulk is very
close to the interaction free region far above the surface. This can be understood
with the help of Figure 4.2. The ott site is the centre of the equilateral triangle and
at this high-symmetry site the H atom does not face any tungsten atoms directly on
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Figure 4.6.: Potential energy between H and W(111) for the ten high-symmetry sites
plotted against the z coordinate of the H atom. The grey crosses label
the DFT input data which entered into the fit. The black line represents
the parameterised EMT energy function. Again, the labels are adopted
from Ref. [110] and [111].
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this vertical potential energy curve. The decrease in the potential energy surface at
the end of the curve is caused by the second surface plane as the W(111) surface is
modelled by a six layered slab with a p(2× 2) super cell. It is interesting to see that
the parameterised EMT energy functions describe the energy curves of category one
and two better in comparison to category three and four.

The root-mean square error (RMSE) of the fit for the energy grid data is 0.25 eV.
There are systematic deviations that are introduced when using an EMT energy
function to fit the DFT based energy curves. Firstly, the depth of the binding
well for the EMT-PES depends weakly on the high-symmetry site, quite in contrast
to DFT which provides binding energies ranging from 1.8 eV to 2.5 eV. This can
especially be seen if the potential energy curves of the hho site and the fcc site,
shown in Figure 4.6, are compared to each other. In case of the hho site, the binding
energy is underestimated by the EMT-PES, whereas the depth is overestimated
at the fcc high-symmetry site. However, the fcc high-symmetry site is rather the
exception than the rule. Overall the EMT-PES tends to underestimate the depth
of the H-W(111) binding well. Another aspect is that the DFT potential energy
curves show a steeper slope of the binding well. The repulsive part on the other
hand is extraordinarily well described. This is why the high-symmetry sites which
are steeply repulsive, i.e., the top, tso, hho, hcp, fho and fcc site are overall better
represented by the EMT energy function. Comparing the EMT and DFT energies
at the ott site, one can see that the EMT energy functions are not flexible enough
to reproduce a binding well of approximately 2 eV on one hand and a very flat
energy plateau on the other hand. This can be put into a more abstract statement:
Dr. Marvin Kammler wrote in his thesis that EMT is not capable to reproduce a
deep adsorption well and a repulsive subsurface potential energy landscape at the
same time in in a very accurate manner.29 This conclusion was drawn after the
investigation of various potential energy curves for H on fcc(111) metal surfaces.
The same trend seems to apply for H atoms at bcc metal(111) surfaces. The EMT
energy functions with its fourteen parameters and a set of exponential functions
alone is too inflexible to reproduce such a corrugated potential energy landscape. In
order to minimise the residuals, the non-linear least square algorithm in the fitting
routine tries to find the best compromise in reproducing the deep binding well and
repulsive subsurface energies. Therefore, the resulting EMT-PES will have a smaller
energy difference between adsorption and absorption sites compared to DFT.

The EMT-PES for H/Mo(111) follows the same trends which we identified in the
analysis of the H/W(111), but in a more pronounced manner. Figure 4.7 compares
four high-symmetry sites of the EMT-PES for H/W(111) and H/Mo(111) with each
other. A plot of all ten high-symmetry sites can be found in Appendix D. The
RMSE for the energy grid of H/Mo(111) equals 0.26 eV and therefore very similar
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Figure 4.7.: Potential energy curves of four selected high-symmetry sites for
H/W(111) and H/Mo(111) plotted against the z coordinate of the H
atom. Grey crosses mark the ab-initio energies and the black line rep-
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to its H/W(111) analogue which has a RMSE of 0.25 eV. However, a detailed anal-
ysis reveals that the deviations in both EMT-PESs are different despite the very
similar RMSE (which also implies that one should never blindly judge the poten-
tial’s quality on the RMSE alone). The H/Mo(111) shows larger deviations in the
adsorption wells. The adsorption well at the top position is the most accurately
described one of all ten high-symmetry sites for H/Mo(111). With 2.00 eV it is also
the shallowest well, though, which favours an accurate reproduction by the EMT
formulae. Like for H/W(111), the adsorption well depth of the EMT-PES depends
only weakly on the high-symmetry site. This indicates that an EMT-PES tends
to provide a less corrugated potential energy surface compared to the respective
potential energy surface one would obtain with a dens sampling of DFT energies.
Since the top-site for both H/metal(111) systems was the most accurately modelled
binding site, it implies that the top-site seems to define the binding well of the
EMT-PES to a large proportion. This would also explain why the adsorption well
of the H/Mo(111) PES is generally lower compared to its H/W(111) analogue, be-
cause DFT predicts a shallower binding well for H/Mo(111) compared to H/W(111)
at the top-site. Furthermore, the H/W(111) reproduces the attractive part of the
binding well better to that one of H/Mo(111). Another clear difference between the
H/Mo(111) and H/W(111) EMT-PES is that the former is capable to describe the
subsurface energies much better than the latter, which can be remarkably seen when
comparing the fht-site in Figure 4.7. This is also the reason why the RMSEs for the
grid of both systems are so similar to each other. The capacity of the H/Mo(111)
PES to model subsurface energies rather accurately compensate the poorer descrip-
tion of the binding well, bringing the RMSE close to the value for the H/W(111)
PES.

The advantageous attribute of physical many-body potentials like the Embed-
ded Atom Model (EAM)114,115 or Effective Medium Theory27,28 to provide a model
density along with their energy functions, predestines them to serve as model po-
tentials for non-adiabatic molecular dynamics simulation. However, since the values
of these model densities are determined by the parameterisation of the energy func-
tions. Consequently, the model density needs to be checked too. A reasonable
estimate one can make is to compare the background density that a hydrogen atom
experiences at a position ~r with the electronic density of a bare metal slab cal-
culated with DFT at the same position. Strictly speaking, both densities are not
comparable to each other and therefore fitting the model densities to the calculated
DFT densities is not an option. Up to my knowledge, no formal proof exists which
states that the densities of these many-body potentials should either be higher or
lower compared to the DFT density of the bare metal slab. Fortunately, since EMT
is based on the assumption that the background density of an atom is the sum
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Figure 4.8.: Background densities n(~r) (left panels) plotted against the z position of
the H atom. The DFT densities of a bare Mo(111) and a bare W(111)
slab are depicted as solid and dashed line, respectively. The black circles
and the white circles in the left panels represent the EMT background
densities for H/Mo(111) and H/W(111), respectively. In the right pan-
els, the friction coefficients η(~r) calculated from the EMT densities are
shown for H/Mo(111) (black circles) and H/W(111) (white circles.)
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of its surrounding atoms, we can rationalise that the EMT density should not be
too different to the DFT density of a bare metal slab. On the basis of these ar-
guments, I always checked on the static energy grid whether the EMT density and
DFT density give similar values with a tolerance of ± 50% to account for the fact
that both quantities are strictly not the same. This tolerance may seem very large
at first glance, but given the form of the mapping function between background
density n(~r) and friction coefficient η(~r) a deviation about 50% is of minor impact
especially in the vacuum regime and high density regime. In addition, there exist
previous studies that support my chosen quality criterion: Janke et al. demonstrated
that an EMT background density which is ∼ 33% larger than the DFT density of
a bare Au(111) slab provides almost the same energy loss distribution for inelastic
scattered H atoms.14

Figure 4.8 shows the background densities resulting from the EMT fit for H/W(111)
and H/Mo(111) in comparison to the electron densities for bare metal slabs calcu-
lated with DFT. The trends in the deviation between both densities of a respective
metal hold for all symmetry sites. For the purpose of not being repetitive, I chose
two high-symmetry sites, the fcc hollow site and the bridge site, which show different
density shapes to discuss similarities and differences between both kind of densities.
In case for the H/Mo(111) the background density which the H atom experiences
starts to rise at larger z values in comparison to the DFT electron density. Closer to
the surface, however, the EMT background density is approximately 33% lower than
its DFT based counterpart. For W on the other hand, the electron density nDFT(~r)
rises earlier compared to nEMT(~r), but in the bulk region, the EMT background
density provides values that are up to 50% larger than the density of bare W(111),
which can be well seen in panel d) of Figure 4.8.
The friction coefficients that were calculated with the interpolation function from

Ref. [14] show that deviations in the high density limits are barely significant. This
can especially be well seen in the subsurface regime, i.e. z < 0, in panel a) and b)
of Figure 4.8. There, the friction coefficients are nearly constant despite a deviation
of nearly 33% in case of H/Mo(111). This leads just to a minor dip in the friction
coefficient. Another reason why deviations in the high density positions are unim-
portant is the fact that the potential energy is also a function of the background
density, i.e. locations with background densities will also be strongly repulsive and
only accessible to H atoms with an enormous amount of kinetic energy. In case of
W(111) one would require an initial kinetic energy larger than 4 eV, which can be
taken from panel (10) in Figure 4.6. Far away from the surface, the deviations be-
tween both models are of course indecisive, because the resulting friction values are
so small that they are effectively negligible. The largest deviation between the fric-
tion coefficients can be observed in the region between 1 and 3 Å above the surface.
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Figure 4.9.: Interaction energies corresponding to configurations sampled from
AIMD trajectories. The grey circles in the left and right panels rep-
resent the ab-initio energies along the trajectories for H/W(111) and
H/Mo(111), respectively. The black line is the EMT fitting function.

However, despite the different slopes in these areas, the EMT-PES for both metal
systems are capable to represent the increase of the density and thus of the friction
coefficient in a sufficient accurate manner over the whole range of the metal slab.
Moreover, the EMT density is also capable to account for the change of the geometry
due to thermal displacements. If one would use a density based on DFT to conduct
molecular dynamics simulations with electronic friction, it would be necessary to
calculate densities for a lot of geometries, which is given the size of approximately
50 MB for one density file a challenging undertaking in terms of data handling. This
again demonstrates the elegance of the methodology to use a PES that provides a
background density on the fly for MD simulations with electronic friction.

The EMT energy function allows one to craft full-dimensional potential energy
surfaces. However, the energy grid, which is made up by about 1,000 points, con-
tains one single configuration of the metal atoms. This is definitely not enough to
construct a PES in full dimensions. As a consequence, configurations sampled from
ab-initio molecular dynamics were taken into the fit to include thermal displaced
geometries into the parameterisation process. In addition, the AIMD trajectories
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which were excluded from the training data set were used as validation data in or-
der to evaluate the capability of the respective PES to describe the potential energy
of unknown geometries correctly. The RMSE for all trajectory configurations is
0.33 eV and 0.26 eV for W and Mo, respectively. Figure 4.9 shows multiple AIMD
trajectories for scattering H atoms from both W(111) and Mo(111). The qualitative
deviations between the energies predicted by EMT and DFT which appeared for the
energy grid can be seen for trajectories, too. Firstly, the depth of the binding well
is shallower and the slope towards the binding well is not so steep compared to the
DFT calculations. Secondly, the repulsive part of the trajectories is very well de-
scribed as it was in the energy grid. Aside from these shortcomings, the trajectories
are reasonably well represented by the two EMT-PESs. In addition the RMSEs of
both fits are still smaller than the uncertainties which arise due to the generalised
gradient approximation.116

4.1.3. PES transferability

In the previous subsection, I presented the fit procedure and two new potential en-
ergy surfaces for H atoms interacting with bcc metal(111) surfaces. Several AIMD
trajectories were used to test the capability of the fit to predict the energies of
configurations which lie outside of the used configuration space. As it was already
discussed in Section 2.3, the EMT energy formulae do not contain any terms that
depend explicitly on the surface structure. Therefore, I will make the ultimate
transferability test in this section by letting the parameterised EMT energy func-
tion predict the energies of an entire different surface geometry without changing
the parameter set itself. I will start with the two potential energy surface presented
above and continue with the six EMT based potentials that were used in Ref. [16].
To put the predicting capacities of the EMT-PESs to the test, I will compare the
energies calculated with EMT to DFT reference data for H on (110) and (100) sur-
faces for both crystal structures. Each surface structure will get a brief introduction
before the results of the fits are discussed.

bcc 110

The bcc (110) surface has an ABAB stacked structure, quite in contrast to the bcc
(111) surface with its ABCABC stacked structure. The lattice vectors of a p(1× 1)
surface cell are

~a1 =


1√
2

1
2

0

 a0; ~a2 =


− 1√

2
1
2

0

 a0; ~a3 =


0
0
1√
2

 a0. (4.6)
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top hollth thf
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Figure 4.10.: Top view on the bcc(110) facet. The white spheres indicate the six
chosen high-symmetry sites which constitute the energy grid.

Again, ~a3 marks the vertical distance between two neighbouring layers. One can see
from the lattice vectors ~a1 and ~a2 that the atoms in a specific layer are ordered in a
rhomb. The short median line of the rhomb is equal to the conventional cubic lattice
constant a0 and the long median line has a length of

√
2a0. Four of the eight nearest

neighbours of an atom in a bcc crystal are located in the same layer. Two of the four
remaining nearest neighbours are the closest atoms one layer above and the remain-
ing two neighbours are the nearest atoms one layer below. This is quite different to
the (111) surface in which two of the eight nearest neighbours of a reference atom
are located three layers away - one atom lies three layers above and the other three
layers below. The bcc(110) facet has a highest planar density ρA = 0.833, and thus
is the facet with the highest planar density of all bcc metal(hkl) surface cuts.[117]
A picture of the p(1× 1) surface cell along with the different chosen high-symmetry
sites is given in Figure 4.10.

The EMT-PES is capable to reproduce the curves of the static grid at the six
high-symmetry sites astonishingly well. One cannot expect that machine learning
potentials are capable to reproduce energies for configurations which lie that far
out of the configuration space covered by the input data. Thus Figure 4.11 demon-
strates one strength of physical model potentials, albeit the RMSE of the fit with
respect to the W(110) energy grid is 0.37 eV and is 0.11 eV higher compared to the
H/W(111) energy grid. The increase in the RMSE between both surface sites is
mainly due to the deeper binding wells of the H-W bonds at W(110). For example,
the binding well for the top site, depicted in panel (1) of Figure 4.11, are very sim-
ilar for both sites and thus the EMT-PES is capable to reproduce the binding well
rather well. Deviations therefore are located in the bulk region at the top site, where
the EMT-PES predicts lower values compared to DFT. The other extreme case is
the thf site, shown in panel (6) of Figure 4.11. At this particular site the binding
well of the H-W(110) bond predicted with the PBE functional is 2.98 eV, while the
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Figure 4.11.: Potential energy curves for H/W(110) at the six high-symmetry sites.
The grey crosses show the DFT validation data and the black line
shows the energies according to the EMT-PES. Keep in mind that the
EMT parameters were not adjusted to get a better description for these
surface sites.
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4. Dynamics of H atoms on non-covalent bonding surfaces

binding well of the EMT-PES at the same location is 2.30 eV. However, the region
inside the bulk are better described at the thf site. Thus the observed trend of the
EMT-PES to predict a smaller energy difference between binding well minimum and
bulk region is contained for the H/W(110) system as well. This makes sense as the
parameter set was not changed and the EMT energy formulae only depend on the
bulk geometry and thus the general deviations introduced with an EMT fit should
be contained for all geometries outside the sampled configuration space. Like for
H/W(111), the repulsive part is again extremely well represented. For H/Mo(110)
the RMSE with respect to the energy grid is 0.30 eV and thus comparatively similar
to the H/Mo(111) analogue, which exhibits a RMSE of 0.26 eV. The qualitative de-
viations between DFT and EMT energies for the H/Mo fit are very similar to those
discussed for H/W(110) and for the sake of briefness, I put a figure showing the fit
in comparison to the high-symmetry sites for H/Mo(110) in the appendix without
any further discussion.
Again, the static energy grids contain only one slab geometry. Therefore, I per-

formed AIMD trajectories simulating H at W(110) and Mo(110) to investigate the
capability of the EMT fits to describe thermal displaced configurations of different
surface structures. For the sake of consistency, I chose the same settings as for the
AIMD trajectories presented in Section 4.1.1. The results are depicted in Figure
4.12. One can see that both EMT fits are capable of describing several trajectory
events, ranging from single-bounce to multiple bounce events as well as absorption
processes and diffusion along the surface plane. The RMSE to the AIMD trajec-
tories is 0.44 eV for the H/W(110) data set, which is not small. A closer analysis
reveals that the overall shape of the AIMD trajectories is rather well represented
by the fit, although the potential energies of the EMT-PES are lower compared to
the input data for configurations where the H atom is situated at the subsurface or
below. These differences in energy are the main reason for the large RMSE. More-
over, the binding well is flatter and the slope is not so steep compared to the DFT
calculations—a fact already established for EMT fits. This results in the end in a
flatter potential landscape but this is not an issue for the MD simulations I aim for:
Since my objective is to simulate scattering process with H atoms that have an initial
kinetic energy of 2.76 eV or higher, deviations in the diffusion barriers are of minor
importance as the H atom has enough energy to overcome them anyway. However,
we can already recognise that the H/W EMT-PES is not suitable for diffusion prob-
lems. I will demonstrate in Section 4.2.3 that the accuracy of the H/W EMT-PES
for H at W(110) is sufficient to provide specular energy loss distributions that are in
qualitative agreement with other MDEF simulation strategies. For Mo(110) we can
observe that the H/Mo PES represents the shape of the binding well in the AIMD
trajectories worse compared to the H/W PES for the same surface facet. In stark
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Figure 4.12.: Interaction energies corresponding to configurations sampled from
AIMD trajectories. The grey circles represent the ab-initio energies
along the trajectories for H/W(110) and H/Mo(110), respectively. The
black line stands for the EMT fitting function. Note that none of these
configurations were included into the fitting process.

contrast to that the bulk energies are represented much better. The RMSE of the
EMT fit with respect to the AIMD validation data is 0.36 eV.
The energies of the static grid for H interacting with both Mo(110) and W(110)

could be reasonably well described by the parameterised EMT functions without
any modifications of the parameter set. This poses the question whether EMT-
PESs have also the capability to describe the background densities for the bcc (110)
surfaces on a satisfying level. Figure 4.13 show the background densities provided
by the EMT potentials for the four most characteristic high-symmetry sites of a bcc
(110) surface. Of course, electron densities for bare W(110) and Mo(110) are also
provided in Figure 4.13 to make the assessment of nEMT(~r) easier. The overall shape
of the EMT and DFT density curves are remarkably similar and thus both EMT-
PESs that were fitted to bcc (111) data exclusively manage to provide reasonable
background densities for an entire different surface geometry. In case for the H/Mo
PES, the background density in the bulk region is ∼ 33% smaller compared to the
electron density provided by DFT as it was the case for the minima in the bulk
region for H/Mo(111). Also the background density of the H/W(110) PES tends to
be higher in the bulk compared to the DFT density and thus follows the same trend
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Figure 4.13.: Density curves obtained from the EMT-PESs for H/W(110) and
H/Mo(110) depicted as black solid lines. The grey crosses mark elec-
tron densities obtained from DFT calculations for bare W(110) and
Mo(110) slabs. z marks the position of the H atom above or below the
surface plane.
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4.1. Potential energy surface generation

which has been observed for the W(111) surface. In a sense this is not surprising
as the density values are also completely determined by the EMT parameter sets,
which have not been changed. Therefore, if a respective fit provides higher or lower
densities than DFT for the input data, this trend should be contained when other
surface facets are described with the same fit. Both PESs provide densities which
tend to rise earlier compared to the DFT density at the top site. Moreover, the
EMT-PESs provide small local maxima where the electronic densities of the bare
slab exhibits local minima for the top, hol and thf site. This slight deviation is
due to the shape of the potential energy curves at those positions (cf. Figure 4.11).
This can be understood as follows: The potential energy within EMT is a function of
density, and if the interaction energy between H and metal surface rises, so must the
background density at this location. Consequently, we cannot hope that nEMT(~r)
will perfectly agree with nDFT(~r) as the shape of the density curve of a particular
high-symmetry site is defined by the potential energy curves of this particular site.
Since the density curves calculated with DFT at the high-symmetry sites look sim-
ilar to the potential energy curves at the same lateral sites, the agreement between
both curves in terms of the shape is reasonably well. Of course, in case of H on
molybdenum, we have to take into account that the respective EMT-PES provides
smaller values in the bulk region in general which prevents an overall agreement
with the reference densities from DFT.
It was demonstrated in Figure 4.8 that the density has no large influence on the

friction coefficient if the density values are larger than 0.6Å−3. However, the minima
in the bulk region of the bcc (110) surfaces have lower density values than 0.6Å.
To be on the safe side, I used the fact that the EMT background density is to a
large extend approximately 33% smaller than the DFT density. I launched a million
trajectories with well defined initial conditions and I scaled the EMT density to the
DFT density to investigate the influence of the background density on the molec-
ular dynamics simulation with electronic friction. From the scattered projectiles I
collected the final energy and computed a probability distribution function, which
I will from now on refer to as energy loss distribution (ELD). I repeated this proce-
dure but this time I used the unmodified EMT background density and compared
both resulting ELDs with each other. Since my main goal is to calculate energy loss
distribution I consider this to be the ultimate test for the quality of the provided
background density. The results are depicted in Figure 4.14. The resulting energy
loss distribution was sampled from scattered H atoms overall scattering angles, which
I will refer to as angle integrated energy loss distribution (AI-ELD). The curves in
Figure 4.14 demonstrates that our MDEF simulation scheme provides robust results
when nEMT(~r) varies around 33%. Higher density values lead to an almost constant
shift towards higher energy losses of approximately 75 meV in the range from 0.2 to
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Figure 4.14.: Angle integrated energy loss distributions for H atoms scattered in-
elastically from a 70K Mo(110) surface calculated with a background
density directl obtained from the EMT-PES (black line) and the scaled
EMT background density (grey line) to match the electron density of a
bare Mo(110) slab obtained with DFT— see main text for the details
of the scaling. The initial kinetic energy was set to 2.76 eV and the
incidence angle was 45◦ with respect to the surface normal. The H
atoms were shot along the [001] direction.

2.2 eV energy loss. For higher energy losses this shift depletes drastically which is
due to conservation of energy. The mean energy loss increases by 60meV when the
scaled background density is employed in the MD simulations. The MD simulations
with the EMT background density provide a sticking probability of 51%, while the
set of trajectories where the scaled density is incorporated show a sticking proba-
bility of 55%. Also the shape of the curves remain nearly unaffected. In regard to
this analysis, I consider the provided EMT background density for the H/Mo PES
to be suitable for MD simulations with electronic friction. Details of the analysis of
the ELDs will be given in Section 4.2.
In summary, the EMT-PESs generated with interaction energies for H at bcc(111)

metal surfaces are capable to describe the interaction energies between atomic hy-
drogen and bcc(110) metal surfaces with an increase of the RMSE, but still within
satisfying accuracy. The trends of deviation between DFT energies and EMT ener-
gies observed during the fitting of the H/bcc(111) data can also be observed for the
(110) facet.

bcc (100)

The bcc(100) surface is an ABAB stacked surface like the earlier discussed bcc(110).
The planar density of this cut is 0.589 and thus significantly lower than the (110)
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Figure 4.15.: Top view on the bcc(100) facet. The white spheres indicate the six
chosen high-symmetry sites which constitute the energy grid.

surface. The lattice vectors of a p(1× 1) surface cell can be written as

~a1 =


1
0
0

 a0; ~a2 =


0
1
0

 a0; ~a3 =


0
0
1
2

 a0. (4.7)

These lattice vectors are nothing less than the conventional lattice constants of
perfect bcc crystal except that the distance vector between two layers is half as long
compared to the conventional bulk unit cell. Figure 4.15 depicts a bcc(100) unit
cell. Again, I chose the irreducible part of the surface Wigner-Seitz cell, which is in
this particular simple case, just one quarter of the p(1× 1) cell. Due to the higher
symmetry a fewer number of lateral positions are required. These coordinates are
also depicted as labelled white spheres in Figure 4.15.
The RMSE of the fitted EMT-PES with respect to the H/W(100) energies of the

static grid is 0.29 eV. The largest deviation appears for the bridge (bri) site. The
binding well depth is 3.01 eV according to DFT, while the EMT-PES predicts a
binding energy of 2.28 eV. It is also the static binding site that is described worse by
the EMT fit, as the bulk region is much overall flatter compared to the DFT grid.
Except for the brf site, which is depicted in panel (6) of Figure 4.16, the binding wells
of all other surface high-symmetry sites are fairly well described. Again, the repulsive
regions are well represented by the EMT-PES fit. The EMT-PES is also capable
to provide an electronic density which compares qualitatively to the background
density of a bare W(100) slab for several high-symmetry sites. This is shown in
Figure 4.17. Like for the other two surface facets the EMT density inside the bulk
region tends to be higher especially at the tof site.
Unfortunately, up to the point of this writing it was not possible to equilibrate

the H/bcc metal(100) surfaces properly with the procedure described in Section
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Figure 4.16.: Potential energy curves for H/W(100) at the six high-symmetry sites.
The grey crosses show the DFT validation data and the black line
shows the energies according to the EMT-PES. Keep in mind that the
EMT parameters were not adjusted to get a better description for this
surface site.
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Figure 4.17.: Density curves obtained from the EMT-PES for H/W(100) depicted as
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electron density obtained from DFT calculations for the bare W(110).
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4.1.1. As a consequence, no AIMD trajectories were performed and thus I lack the
possibility to judge the performance of the EMT-PESs at finite temperatures. It is
also for this reason why I have not performed scattering calculations for this surface
facet for both W and Mo.
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otthht
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Figure 4.18.: Top view on the fcc surfaces covered in this thesis. Panel a) depicts the
(111) surface, whereas panel b) and c) show the (110) and (100) facet,
respectively. The white spheres indicate the chosen high-symmetry
sites which constitute the energy grid. The high-symmetry sites of the
fcc(111) surface were labelled according to Ref. [107].

The EMT potentials for H atoms interacting with fcc metal(111) surfaces were de-
veloped previously and were published in Ref. [24]. However, these PESs have never
been checked on their capacity to describe other surface facets except for H/Pd.24,29

The H/Pd EMT-PES, which has been crafted with the procedures presented in Sec-
tion 4.1.1 and 4.1.2, is extremely capable of reproducing the interaction energies
between atomic hydrogen and a fcc(100) and (110) metal surface. In the course of
this thesis, one of my aims was to investigate whether the other five EMT-PESs,
used in Ref. [16], can also be applied for the simulation of H atom scattering from
fcc(100) and (110) metal surfaces. I will briefly present the fit results for the fcc(111)
surface and will then apply the same parameterised EMT-PES to produce energies
for configurations taken from a static grid as well as from AIMD trajectories for the
other two surface facets. All EMT-PESs for the six late transition metals Ni, Pd,
Pt, Cu, Ag and Au behave very similar when it comes to the transferability from
the (111) surface to other surface facets. Of course, the RMSEs differ from system
to system but the overall arguments remain the same. Thus, for the sake of avoiding
redundancy, I will restrict myself to the presentation of H on Cu in terms of figures
in this section but will provide the plots of the other systems in the appendix.
In terms of pure geometry, the fcc(111) and bcc(111) surface are very similar to

each other, which has been discussed in Section 4.1.1 and also can be seen in Fig-
ure 4.18, One decisive difference between the energy grids of bcc(111) and fcc(111)
the more attractive interaction between hydrogen and the metal atoms in the bulk
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Figure 4.19.: Interaction energies between H and Cu(111) at the ten high-symmetry
sites depicted as grey crosses. The black line represents the EMT-PES.

region, which can be taken from the energy grids: While the energy grid for a
bcc(111) surface is shown in Figure 4.6, the energy grid involving the ten chosen
high-symmetry sites for H/Cu(111) along with the EMT fit is shown in Figure 4.19.
One argument for the higher binding energies for hydrogen in the subsurface or
the bulk region is the larger distance between two individual layers in case of the
fcc(111) cut, keeping enough space for vacancies which the tiny H atom can easily
fill. In particular, hydrogen shows a rapid diffusion in palladium.118

The RMSE with respect to energy grid describing H at Cu(111) is 0.14 eV. Again,
the EMT-PES predicts a less steeper slope than the DFT grid. Like for the bcc
fits, the binding well depth of the EMT-PES shows a very weak dependence on
the lateral positions. The well-depth at the fcc, hcp and bri position are slightly
underestimated compared to the calculations performed with DFT. In addition, at
these four high-symmetry sites the DFT potential energy curves are very flat in the
subsurface region. The EMT-PES is slightly more corrugated there, reflecting the
inflexibility of the energy formula, because the fit also tries to accurately reproduce
potential energy curves between two layers that are more corrugated, like for exam-
ple at the tso and fho site.
For completeness, the comparison between DFT and EMT for configurations taken
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Figure 4.20.: Interaction energies corresponding to configurations sampled from
AIMD trajectories. The grey crosses represent the ab-initio energies
along the trajectories for H/Cu(111). The black line stands for the
EMT fitting function.

from AIMD trajectories are depicted in Figure 4.20. The trajectories shown in Fig-
ure 4.20 are single-bounces, double-bounces and multibounce events with surface
penetration as well as absorption processes. The RMSE with respect to the AIMD
input data is 0.15 eV. The low RMSE of the fit demonstrates that a well parame-
terised EMT energy function is capable of describing all aspects of the dynamics of
H atom scattering from metal(111) surfaces in an accurate manner. The other five
EMT-PESs for the (111) surfaces of the d8 metals and the two remaining coinage
metals are capable to reproduce the respective DFT input data within the same ac-
curacy as the above presented H/Cu(111) potential and are presented in Appendix
D. Moreover, they work extremely well to simulate the H atom scattering experi-
ments under ambient temperatures.16

fcc(110)

The fcc(110) surface is an ABAB stacked surface. With ρA being 0.555 it is also
the low Miller-index fcc surface with the lowest planar density—see Appendix C for
details. The fcc(110) has a rectangular shape; the length of the long side is equal
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Figure 4.21.: Potential energy curves for H at Cu(110) at the nine high-symmetry
sites depicted as grey crosses. The black line represents the EMT-PES.

to the conventional cubic lattice constant a0, whereas the short side’s length equals
a0/
√

2. The irreducible part of the surface Wigner-Seitz cell is also rectangular and
is a quarter of the p(1× 1) cell, which is spanned by the lattice vectors

~a1 =


1
0
0

 a0; ~a2 =


0
1√
2

0

 a0; ~a3 =


0
0
1√
8

 a0, (4.8)

where ~a3 again marks the distance between two layers. I sampled the irreducible
part of the Wigner-Seitz cell with nine equidistant lateral positions. The energy
grid is subsequently constructed by varying the z-coordinates of the H atom with
0.2Å steps starting from 6Å above the surface. The results are shown in Figure
4.21. The RMSE of the fit with respect to the DFT validation data is 0.20 eV
and thus slightly higher than the RMSE of the fit to the H/Cu(111) input data.
Some potential energy curves for H/Cu(110) are very flat. At these lateral sites,
the H atom, which approaches perpendicular to the surface, does not directly face
a metal atom. Other potential energy curves exhibit very repulsive regions. At
these curves, the H comes close to a metal atom and thus the potential energy
rises. The simultaneous appearance of flat and strongly corrugated potential curves
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Figure 4.22.: Potential energy curves for H at Cu(100) at the six high-symmetry sites
depicted as grey crosses. The black line represents the EMT-PES.

perpendicular to the surface plain are a fingerprint for the low planar density of
the metal surface. In comparison, all potential energy curves for the respective ten
high-symmetry sites for H/Cu(111) show large repulsive areas, which reflects the
close packed nature of the fcc(111) surface. It is interesting to note, that the EMT-
PES tend to predict stronger attractive interactions for H in the subsurface region
for the fcc(110) surfaces for the open sites, i.e. site (3), (5) and (7) in Figure 4.21.
For the sake of briefness I will discuss the performance of the fit towards the AIMD
configurations for H/Cu(110) along with the H/Cu(100) AIMD trajectories in the
next section.

fcc(100)

Like the fcc(110) surface, the fcc(100) is an ABAB stacked surface, too. The p(1×1)
cell is spanned by the lattice vectors

~a1 =


1√
2

0
0

 a0; ~a2 =


0
1√
2

0

 a0; ~a3 =


0
0
1
2

 a0. (4.9)
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The surface cell of the fcc(100) cell is quadratic and smaller than the fcc(110) cell.
The planar density ρA is 0.785. The Wigner-Seitz cell of the fcc(100) surface is a
square that makes up a quarter of the p(1 × 1) cell. The irreducible part of this
surface Wigner-Seitz cell can be obtained by dividing the Wigner-Seitz cell along
its diagonal. I sampled the resulting rectangular triangle with six lateral positions,
which is shown in Figure 4.18 a). Subsequently, a static energy grid was sampled in
the same way as discussed for the fcc(110) surface or in Section 4.1.1. The results
are depicted in Figure 4.22. The RMSE of the fit with respect to the static grid
is 0.20 eV and thus the fit can represent both surface facets, the (110) and (110)
surface, within the same accuracy. Except for site (4), all other five high-symmetry
sites show large repulsive areas. Like for the fcc(110) surface, EMT predicts the
local minima in the subsurface region to be more stable than the corresponding
DFT calculations.

As it was already explained for the bcc fits, it is not sufficient to investigate the
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Figure 4.23.: Interaction energies corresponding to configurations sampled from
AIMD trajectories. The grey crosses represent the ab-initio energies
along the trajectories for H/Cu(100) and H/Cu(110). The black line
stands for the EMT fitting function. Note, that the EMT parameter
set was not changed.

performance of the fit by comparing only the static grid energies to the parameterised
PES because all energy grids contain only the relaxed surface structure at 0K.
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4.1. Potential energy surface generation

Consequently, I calculated a bunch of AIMD trajectories and compared the energies
of the thermally displaced configurations with the energies predicted by EMT. The
results are provided in Figure 4.23. On the basis of the results depicted in Figure 4.23
we can conclude that the EMT-PES is also capable to describe thermally displaced
configurations for the other two low Miller index surface cuts reasonably well. The
events showed in Figure 4.23 cover the whole spectra of possible events, ranging from
single-bounce events to absorption processes. For all these events the RMSE of the
EMT-PES with respect to the H/Cu(100) and H/Cu(110) trajectories is 0.18 eV
and 0.21 eV, respectively. As a consequence we can conclude that the fit, performed
with H/Cu(111) input data set, is capable to describe the interaction energies for
H at the two other low Miller index surface cuts without significant loss in terms of
accuracy. One cannot hope to get such a good transferability for validation data that
lie so far out of the sampled configuration space with machine learning potentials,
especially given the fact that less than 2000 H/Cu configurations were used for the
full-dimensional PES generation.

4.1.4. Conclusions

In summary, two new potential energy surfaces were constructed for H on W and
Mo. These PESs are based on a modified EMT-formalism which uses a perfect bcc
crystal as reference system instead of a perfect fcc crystal. In both cases the EMT
energy formulae were fitted to bcc(111) energies but the resulting potential energy
surfaces are also capable to describe the other surface facets when they were tested
on this attribute. The RMSE of the two bcc metal PESs are larger compared to
the EMT-PESs describing H at the late six fcc transition metals Ni, Cu, Pd, Ag,
Pt and Au. All fits show the same qualitative deviations compared to the DFT
input data: Firstly, a smaller difference between the binding energies at the surface
and subsurface. This is most likely the decisive reason why the EMT-PES for all
H/Pd sites has such an astonishingly low RMSE, because DFT predicts the energies
for H in the subsurface to be nearly equal to the binding energy on the surface for
a certain high-symmetry site. The large differences in energy between the surface
and the bulk region is also the reason why the bcc metal PESs have the highest
RMSEs. The energy landscape is way more corrugated compared to H/Pd(111) or
H/Ag(111) and the EMT energy formula with its fourteen fitting parameters is not
flexible represent the more complex energy landscape. Secondly, the slope of the
surface binding well is not that steep compared to the DFT calculations. Lastly,
the depth of the binding well on the EMT-PESs is not that strongly depending
on the binding site. Usually, the binding wells with the shallowest depth are best
represented by the EMT-PES. This is why the binding wells at the most stable
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4. Dynamics of H atoms on non-covalent bonding surfaces

Table 4.3.: Root mean square errors (RMSE) of the EMT-PESs in comparison to
the DFT data for all possible low Miller index surfaces of the fcc and bcc
metals discussed in this thesis. The combined data set consists of the
input data assembling the energy grid and the DFT energies taken from
the AIMD trajectories.

RMSE / meV
metal data type (111) (110) (100)

Ni energy grid 120 219 215
Cu energy grid 151 201 201
Mo energy grid 262 276 346
Pd energy grid 115 116 122
Ag energy grid 145 267 247
W energy grid 255 369 293
Pt energy grid 166 254 220
Au energy grid 143 292 287
Ni combined 149 237 210
Cu combined 142 247 189
Mo combined 245 335 346b
Pd combined 147 128 128
Ag combined 145 243 196
W combined 298 365 293b

Pt combined 195 206 238
Au combined 159 255 257

bThe combined RMSE is equal to the RMSE of the energy grid

binding positions are likely to be underestimated by the EMT-PES, especially when
the differences in the binding energies of the different binding sites are large like for
H/Pt(111) or H/W(110).
Table 4.3 shows the RMSEs between EMT and DFT energies of the whole spectra

of H/metal(hkl) systems for both the static energy grids and the AIMD trajectories.
If input data from AIMD trajectories are included, one can see that the differences
in the RMSEs between the individual facets for almost all metals are smaller than
100meV. The differences in the RMSEs for the energy grids can be larger in some
cases, e.g. gold and tungsten: the difference in the RMSE between (110) and (111)
for the static configuration of H at W is 114meV. For gold the difference between the
same surface facets is 149meV. All data sets show RMSEs smaller than 15meV per
atom. Thus, we can conclude that all EMT-PESs overall performs on a satisfying
level in representing the energetic landscape for other H at other surface facets for our
purposes, namely to perform molecular dynamics investigating scattering processes
of H atoms with kinetic energies far away from thermal equilibrium. Nevertheless,
the EMT-PESs presented here cannot compete with neural network potentials in
terms of accuracy, which usually provide an RMSE smaller than 1meV per atom.
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4.2. Molecular dynamics simulations of inelastic H atom scattering

Table 4.4.: Optimised EMT parameters for all the H/metal systems occurring in
this thesis. The parameters for the fcc metals are taken from Ref. [24]

η2/Å
−1

n0/Å
−3

E0/eV λ/Å−1
V0/eV κ/Å−1

s0/Å
−1

H 5.20958 0.11432 -2.31061 7.20569 0.33739 8.49551 0.57941
Ni 3.40540 0.08876 -4.44000 3.60955 5.96071 5.90006 1.36583
H 5.23519 0.11321 -2.12698 7.02892 0.42658 8.80060 0.59823

Cu 3.30489 0.08597 -3.51000 3.65552 6.58745 5.84225 1.42367
H 5.37094 0.06633 -2.33328 6.23562 0.40736 8.76703 0.84416

Mo 2.78202 0.05111 -6.82000 3.73800 2.59533 3.89936 1.55400
H 4.79284 0.11656 -2.43336 6.52787 0.41804 7.84875 0.61153
Pd 3.29258 0.05533 -3.90000 4.08942 3.96130 5.67148 1.53974
H 5.17053 0.11365 -1.99701 7.11981 0.42048 8.16845 0.58518
Ag 3.29687 0.05115 -2.96000 3.59423 2.76454 5.72616 1.62493
H 7.04903 0.14083 -3.35587 7.70171 0.4819 8.04736 0.67995
W 3.54553 0.05067 -8.90000 3.50538 1.51834 2.29649 1.56475
H 4.92557 0.12090 -2.11450 7.01217 0.21350 8.85208 0.64979
Pt 3.37380 0.06062 -5.85000 4.19626 21.6778 6.05575 1.54677
H 5.06612 0.13115 -1.76738 8.00198 0.21350 8.97429 0.71031

Au 3.16340 0.04858 -3.80000 4.12338 2.32100 5.42918 1.64174

For the systems presented here, a NN potential would have an absolute RMSE of
25meV. However, I will demonstrate in the next section, that the inaccuracies of the
EMT potentials will not be critical for molecular dynamics simulations of H atom
scattering from metal surfaces at 200K and higher. For diffusion processes on the
other hand, the presented EMT based potentials are not accurate enough, because
the barriers, which an H atom experiences on a metal surface in a hopping process
from one binding site to another, is in the order of tens of meV. For example, the
activation energy for a single jump of a chemisorbed H on Pt(111) was reported to
be 68meV.119 Finally, Table 4.4 provides all fourteen parameters for the respective
H/metal systems.

4.2. Molecular dynamics simulations of inelastic H
atom scattering

Now, after the potential energy surfaces have been established and discussed, this
section will be dedicated to the results of the molecular dynamics simulations which
were performed on the above presented PESs. At the beginning, I will briefly de-
scribe the calculation details of the molecular dynamics simulations along with all
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4. Dynamics of H atoms on non-covalent bonding surfaces

required preparations to launch a set of MD trajectories. With the intention to make
it easier for the reader to rationalise why I analysed the MD trajectories in the way
I did, I will quickly present the experimental setup accompanied with the details of
my analysis. My main objective for this section is to investigate whether the energy
loss distributions (ELDs) of inelastically scattered H atoms depend on the geometry
of the underlying metal surface from which the H atoms scatter. In addition, I will
also check the quality of the H/W EMT-PES, which shows the highest RMSE of
all the presented PESs, by performing MDEF simulations under well-defined con-
ditions and compare the results to simulations which were run on a different kind
of PES along with a different electron density and propagator. Finally, I will also
investigate the scattering dynamics of collision processes between atomic hydrogen
and a Xe(111) surface.

4.2.1. Experimental and simulation details

The experimental apparatus, which allows to study the energy transfer during colli-
sions of mono-energetic H atoms with various surfaces, has been described in detail
in Ref. [120]. I will therefore stick to those aspects which are important to compre-
hend the simulation details as well as the analysis of the trajectories. The beam of
nearly mono-energetic H atoms is generated via photolytic dissociation of hydrogen
halide molecules (HX), which have been expanded supersonically prior to the dis-
sociation. The kinetic energy of the resulting H atoms is defined by the used laser
wavelength and the internal energy of the halogen halide, the remnant halogen atom
(either Br or I) along with it’s electronic state (2P3/2 or 2P1/2) and the hydrogen
isotope (H vs. D).120 A small fraction of H atoms flies perpendicular to the HX
beam axis, pass a skimmer, two differential pumping stages, and then enters the
main chamber which contains the surface of interest. The apparatus allows to tilt
the surface with the intention to control the initial polar angle θi. Moreover, the
orientation of the crystal can also be tuned, allowing well-defined incidence direc-
tions along certain crystallographic directions. Consequently, it is not necessary to
perform simulations with random incidence directions to simulate the experiment.
Entering an initial kinetic energy, incidence polar and azimuthal angle is already
sufficient to match the experiment in terms of initial conditions.
Furthermore, the surface can either be heated or cooled down. To account for this

in the simulation, the surface needs to be thermalised properly. I used an Anderson
thermostat121 to bring the surface to the desired temperature. Subsequently, I let the
bare surface equilibrate in an NV E ensemble for an additional picosecond and ob-
served the mean-temperature. If the mean temperature deviated within ±10% from
the desired temperature, I considered the temperature to be suitable and started an
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4.2. Molecular dynamics simulations of inelastic H atom scattering

additional microcanonical simulation for 100 ps. Every 100 fs I took a snapshot of
the surface configuration and saved it as a binary file making 1000 configurations
in total. The time-step of the simulation involving only the metal slab was set to
1 fs. The surface was modelled as p(6 × 6) slab with six layers making up for 216
metal atoms in the simulation cell. An exception mark the bcc(111) slabs which I
modelled as p(6 × 6) ten-layered slab. The reason for a larger number of layers is
due to the lattice geometry. Within the framework of EMT, the next-next-nearest
neighbours are explicitly treated in the formulae. For a bcc(111) surface, some of the
next-next-nearest neighbours of an atom in the first layer are located in the tenth
layer.
Throughout the course of my PhD thesis, I performed calculations at 300K and

70K. The latter is decisive as it is very close to the boiling temperature of liq-
uid nitrogen. Experiments at this temperature are thus more easily realisable to
accomplish for my experimental colleagues than experiments at liquid helium. Cal-
culations at high temperatures were excluded in this thesis because the influence of
high temperatures has already been investigated experimentally and theoretically
and is thus understood.107,122 The higher the surface temperature the broader is the
resulting energy loss distribution of the scattered H atoms.
Now that the initial surface geometries have been generated, the H atom was

placed 6Å above the surface since we are in the asymptotic limit of the interaction
potential at that vertical distance (cf. Section 4.1.2 for details). The x and y po-
sition were generated randomly over the p(6 × 6) cell. All other initial conditions
are entered in terms of the initial kinetic energy Ekin,i, initial polar angle θi, and the
azimuthal angle ϕi as well as the surface temperature. Due to the small mass of hy-
drogen and the high initial kinetic energy, a time-step of 1 fs is not suitable anymore
because the velocity is too large. Consequently, the change in the H atom’s position
after an integration step would be too large either. Instead, I used a time-step of
0.1 fs. A Langevin-type propagator, published by Dellago et al.,123 was used for the
H atom’s propagation with the intention to include the possibility of ehp-excitations
into the simulation.
In the apparatus, scattered H atoms are electronically excited via a technique

that is called Rydberg atom tagging124 to detect their scattering angle and final
kinetic energies. In a first step, the electron is put from the ground state into the
first excited state via a photon generated by resonance enhanced sum-difference fre-
quency mixing scheme.125 From the first excited state the electron is brought into
a highly excited electronic state, i.e. a Rydberg state with a principal quantum
number n = 34. The tagged H atom is very close to ionisation but is still a neutral
particle. Hence, the resolution is not reduced by space charge effects and stray fields
resulting in very accurate time-of-flight measurements. Since the detector geometry
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4. Dynamics of H atoms on non-covalent bonding surfaces

is known, the kinetic energy can be calculated from the recorded time of flight. As
a consequence, the final kinetic energy needs to be extracted out of the simulations
at a position where the interaction potential converges to zero. This was realised
in the following manner: Whenever the projectile’s vertical distance to the surface
is larger than 6.05Å, the molecular dynamics simulation was stopped by the pro-
gramme and a bunch of trajectory information are written out for the later analysis
procedure. Since the impinging projectile can also stick to the surface, the trajec-
tory is automatically stopped after a certain number of propagation steps. A higher
initial kinetic energy or a smaller polar angle allows one to reduce the maximum
number of steps and when a large number of trajectories are supposed to be calcu-
lated, it is strongly recommended to optimise the maximum step number for an MD
trajectory. This can be done in the following way: Firstly, one calculates around
10,000 trajectories with a huge maximum step number, e.g 15,000 steps, which can
be done in within a few hours on a cluster with 360 nodes, given the individual jobs
are launched parallel. Subsequently, the time-of-flight of the scattered particles is
analysed. The maximum flight time, i.e. time-step multiplied by the number of
steps, of this distribution can be taken as maximum step number for the particular
calculation set. I preferred to add another 10% on the maximum step number as
a safety measure and also analysed the final vertical distance distribution of the
adsorbed H atoms.
The detector in the machine is rotatable but only in-plane, i.e only the polar

angle θf can be tuned for a given crystallographic orientation. The final azimuthal
angle will always be: ϕf = ϕi because in its current state the apparatus does not
allow out-of plane measurements. Thus, I focused mainly on in-plane scattering.
The detector itself is a circular point detector with a width that translates into an
angular diameter of ±3.18◦. To simulate the experimental setup, I collected only
those scattered particles which scattered in-plane in a polar angle θf±∆θ. Moreover,
the in-plane tolerance was set to the same tolerance, i.e. ∆ϕ = ∆θ to account for
the circular geometry of the detector. A small detector size leads to a low number
of collected particles and thus to a higher statistical uncertainty in the resulting
energy loss distribution. There are now two strategies to remedy this: One option
is to calculate just more trajectories in order to get a larger amount of the desired
events. The second option is to analyse how strongly the energy loss depends on
the final polar and final azimuthal angle. If this distribution approximately uniform
around θf and ϕf one can increase the size of the detector in the analysis a little bit
to get a better sampling. If the angular distribution is not uniform, though, one
has to grasp the nettle and go back to option number one. For all H/metal systems
I found that the increase from a detector radius of 1.59◦ to 5◦ does not lead to a
systematic change of the ELDs. The benefit is that one can already operate with a
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million launched trajectories to get a proper statistical sampling for the calculation
of energy loss distribution from in-plane scattered particles at a certain scattering
angle. Usually, I analysed those trajectories with a final scattering angle equal to
the initial polar angle. From now on, this kind of scattering will be referred to as
specular scattering and the corresponding energy loss distributions are going to be
attributed as specular energy loss distributions.

4.2.2. H on fcc metals

Prelude

H atom scattering from late fcc transition metal(111) surfaces has been investigated
in the past both experimentally and theoretically,13,14,16,21,24 where an astonishing
agreement between theory and experiment was found. Since no experimental record-
ings for the other surface facets were performed so far, the ELDs for H scattered
from fcc(111) metal surfaces will serve as a benchmark for the other results. As a
consequence, I consider it worthy for the sake of readability to briefly summarise
the scattering and energy transfer dynamics. In Ref. [16] energy loss distributions
were recorded for initial energies of 0.99 eV, 1.92 eV and 3.33 eV. In this thesis, I
will mainly present energy loss distributions for an initial kinetic energy equal to
2.76 eV. The reason for this choice is the publication of Bünermann et al.13 and a
collaboration with the working group of Dr. Pascal Larrégaray in which we analysed
H atom scattering from W(110) at this kinetic energy (cf. Section 4.2.3). The choice
of 2.76 eV as initial kinetic energy has the additional advantage that the ELDs pre-
sented in the following paragraphs are a nice addition to the performed calculations
of Dr. Kammler.29 The results of the ELDs for an incidence kinetic energy of 2.76 eV
are shown in Figure 4.24.

The MDEF simulations of H atom scattering from Au(111) provide a specular
energy distribution which has a mean energy loss of approximately 1 eV and ranges
up to 2.7 eV. This agrees astonishingly well with the experiment. Molecular dynam-
ics without electronic friction, i.e. adiabatic MD simulations, cannot describe the
experimental curve. When electronic friction is turned off, the H atoms can only
transfer the energy to the lattice. The resulting energy loss distribution is much
narrower, reflecting the incapacity of the lattice to take up energies on the eV scale
during a scattering process that might involve one or several collisions. This can be
understood easily by considering a binary collision model which is based on conser-
vation of energy and parallel momentum. Additionally, if one takes the binding well
depth D and the lattice movement into account one arrives at126

∆Ecube = 4µ
(1 + µ)2

(
Ei cos2 θi +D

)
− µ(2− µ)

(1 + µ)2 kBTs. (4.10)
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Figure 4.24.: Energy loss distributions for H atoms scattered from the six late transi-
tion metal(111) surfaces. The grey circles represent the experimentally
recorded distribution, while the black lines stand for the ELDs obtained
with MDEF simulations. The grey line indicates an energy loss dis-
tribution acquired from adiabatic MD simulations. The initial kinetic
energy is 2.76 eV, whereas the initial polar angle θi equals 45◦. The
travelling direction is along the [101̄] orientation, which corresponds to
an azimuthal angle of ϕi = 60◦. The surface temperature is 300K.

This model is referred to as the cube model and predicts the energy that is trans-
ferred mechanically to the surface atoms with a single collision. µ is the ratio
between the mass of the projectile and the atomic mass of the underlying metal.
Again, θi is the incidence polar angle, reflecting the fact that due to parallel momen-
tum conservation only normal energy is transferred. The second term of Eq. 4.10
describes the possibility of transferring energy from the surface to the particle at
finite temperatures. A larger mass difference between projectile and metal atom
results in smaller values for µ and consequently in lower energy transfers.
The disagreement between the adiabatic ELD and the experiment allows the con-

clusion that the incorporation of ehp excitation is of critical importance for the
correct description of the experimental curves—a fact that has been already estab-
lished for this system in 2015.13 Unfortunately, experimental recorded energy loss
distributions for an initial kinetic energy of 2.76 eV have not been measured for other
metals and surface facets yet. However, the ELDs presented in Figure 4.24 com-
pare well to their analogues with initial kinetic energies of 0.99, 1.92 and 3.33 eV,
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which have been published and discussed in Ref. [16, 29]. Hence, we can reasonably
assume that the calculated ELDs for the five other transition metals are of good ac-
curacy and thus I will use them as benchmark for a comparison with ELDs of other
surface facets. From the former studies13,14,16,21,24 and Figure 4.24 a clear energy
transfer picture emerges: Highly energetic hydrogen atoms transfer the majority of
its kinetic energy by exciting electron-hole pairs, leading to a broad, structureless
distribution. No dependence on the details of the electronic band-structures can be
observed.

Non-adiabatic energy loss distributions

Experiment and theory provide energy loss distributions for H atoms scattering off
fcc(111) metals which have a very similar appearance. It is now interesting to study
what kind of influence the surface structure has on the energy loss distribution. In
order to do so, I launched a million trajectories for H atoms impinging on fcc(100)
and (110) surfaces with the same initial kinetic energy Ekin,i and polar angle θi as
for the fcc(111) simulations. Thus, I chose 2.76 eV and 45◦ as initial conditions. Due
to the different surface geometries one azimuthal angle corresponds to a different
crystallographic direction in each facet, which gives a slight touch of arbitrariness to
the choice of the initial azimuthal angle. To provide consistency between the three
sets of MD simulations, I chose the crystallographic direction which happens to be
the bisecting line between the two lattice vectors of the surface facet of interest,
~a1,hkl and ~a2,hkl. The vectors for the (100), (110) and (111) surfaces of an fcc crystal
have been presented in Section 4.1.3 and the corresponding azimuthal angles are
45◦, 35.45◦ and 60◦, respectively. The resulting specular energy loss distributions
for the three low Miller-index surfaces are depicted in Figure 4.25.

From Figure 4.25 it is apparent that the surface structure has only a minor
influence on the shape of the energy loss distributions. All curves are broad and show
energy losses up to 2.7 eV. For the 3d-metals the differences between the individual
facets are most pronounced: The ELDs of Ni(110) and Cu(110) have their maximum
located at ∼ 1 eV, while the ELDs of the other two 3d-metal surface facets exhibit
a maximum energy loss at ∼ 0.5 eV. Moreover, the ELDs for H atoms scattered off
fcc(100) surfaces show a dip in intensity between 0.5 eV and 1 eV. The same trend
can also be observed for the other metals but to a lesser extent. However, overall the
differences are of subtle nature. This is an important finding because it is a priori not
obvious why the ELDs should be more or less independent of the surface geometry.
A possible explanation for the strong similarity between the energy loss distributions
could be the lattice displacement due to thermal motion. Those lattice distortion
reduce the symmetry of the surface structure and the concomitant changes in the
PES annihilate a majority of symmetry associated features in the resulting ELDs.
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Figure 4.25.: Specular energy loss distributions of 2.76 eV H atoms scattering off
various fcc metal surface facets at 300K. The initial polar angle is
45◦. In case of the (100), the crystallographic orientation corresponds
the [011] direction. For the (110) and (111) facet, the crystallographic
orientations are [1̄12] and [101̄], respectively.

An alternative explanation for the insensitivity of the ELDs to the surface geometry
could be the dominant energy transfer channel to the electrons, which enters the
simulations in form of a frictional drag and a random force. Both hypotheses will
be tested and analysed in Section 4.2.4 involving also the bcc metal surfaces for a
greater scope.

Penetration depth analysis

Albeit the specular energy loss distributions look similar, an interesting aspect to
look at is how many H atoms undergo surface penetration before they are eventually
scattered back from the surface. From a pure geometrical point of view, the likeli-
hood for such an event to happen should be low for the fcc(111) surface because it
is the facet with the highest planar density. On the other hand, the contribution of
the H atoms, which underwent surface penetration in the scattering event, should
be large for the fcc(110) because it is the fcc facet with the lowest planar density.
While it is not possible to identify contribution of penetrated H atoms to the overall
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Figure 4.26.: Probability density function for the minimum altitudes of specular
scattered H atoms with the same conditions as in Figure 4.25. Note
that z = 0 corresponds to the surface plane.

signal in the experiments, for MD simulations such a question is fairly easy to an-
swer. I analysed the minimum altitudes of all specular scattered trajectories. Those
trajectories which exhibit a minimum altitude below the first metal layer, i.e. below
the surface, are considered to be scattering events with a penetration event. For all
H/metal(hkl) systems I calculated probability density functions and the results can
be seen in Figure 4.26.
The peaks in the probability density functions can be regarded as fingerprints of

the individual layers of the surface slab. The first peak, i.e. the peak at higher
vertical distances z, thus corresponds to scattering from the surface, whereas the
second peak corresponds to scattering from the subsurface. From Figure 4.26, it
can be concluded that surface penetration is the dominant scattering channel for H
atoms scattering off fcc(110) metals. For Ni(110), the fraction of H atoms which
underwent a penetration resurfacing event is 56 % and also larger than 50% for the
five other fcc(110) facets. For H atoms scattering off a fcc(111) surface on the other
hand, surface penetration plays only a minor role in the overall scattering dynam-
ics, which reflects the closed-packed nature of the facet. The amount of H atoms
scattered from the subsurface in this case is smaller than < 10%. The fcc(100) sur-
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face marks the middle ground with a contribution of subsurface scattered H atoms
between 20% and 26%. Thus, we can conclude that the MD simulations reflect our
simple geometric consideration of the planar density.
Only in case of the fcc(110) surfaces contributions from the third layer to the sig-

nal can be observed. Albeit those contributions are small, they are still significant.
3.77% of the specular scattered H atoms were reflected from the third layer in case
of H/Pd(110). For the other two surface facets the percentage of H atoms which
are scattered from the third layer are smaller than 1% and thus can be neglected
for the further discussions.
All curves of a respective surface facet presented in Figure 4.26 are comparatively

similar to each other, indicating scattering dynamics that are not so dependent on
the individual metal, but rather on the surface geometry. However, slight differ-
ences can be recognised between the 3d-metals of an individual facet on one hand
and the 4d- and 5d-metals on the other hand. The probability density functions
for the 3d-metals start to rise at slightly smaller minimum altitudes. This finding
can be explained with the size of the underlying metal atoms. The repulsive part
of the interaction potential between hydrogen and the 3d-metals occurs at smaller
distances compared to their higher homologues. Additionally, this size argument is
also reflected in the conventional lattice constants of the specific transition metals,
described in Table 4.1. Nickel and copper have smaller a0 values compared to their
higher homologues. The lattice constants for the discussed 4d- and 5d on the other
hand metals are very similar.

Figure 4.27 shows the decomposition of the energy loss distribution into distribu-
tions due to H atom scattering from the surface and subsurface. Scattered hydrogen
atoms with a small energy loss are typically repelled from the first layer. Projectiles
which penetrated the surface during the scattering process tend to show larger en-
ergy losses. This can be understood in the following way: Firstly, projectiles which
are scattered from first metal layer typically spend less time in the high density
region and thus less energy is dissipated via the friction force. Since the distance
between two layers in an ideal fcc(110) surface is only a0/

√
8, the curve representing

the subsurface contribution to the total signal starts to rise at lower energy losses
compared to the other two facets. Secondly, H atoms which are penetrating the
surface also have a higher chance to collide with the lattice multiple times and thus
the energy transfer to the lattice is higher.

Mean values

While the overall specular energy loss distributions showed only a weak dependence
on the surface geometry, the contribution of the subsurface scattered particles to the
overall signal is crucially determined by the shape of the individual facet. Hence, it
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Figure 4.27.: Specular energy loss distributions decomposed into events where the
projectiles are scattered from the first layer, i.e. the surface, and from
the subsurface. The initial conditions are the same as for the distribu-
tions shown in Figure 4.25.

is interesting to analyse how the mean energy loss or the sticking coefficient for the
individual H/metal(hkl) systems compare to each other. Figure 4.28 summarises
the results of this investigation. The mean energy loss of all scattered particles are
depicted in the first row of Figure 4.28. It decreases with increasing mass of the
metal atoms and this trend is a little bit more pronounced for the heavier D atoms,
i.e. the scattered D atoms retain on average more energy. For the 3d-metals, the
mean energy loss for H and D is almost equal; the difference is smaller than 10meV.
For the 5d-metals on the other hand, the difference in 〈Eloss〉 between H and D is
75meV. It is possible to extract the energy loss of the scattered atom to the electron
hole pairs for each trajectory. Its mean value is depicted in the second row of Figure
4.28. By comparing the non-adiabatic energy loss between the scattered H and D
atoms, one can observe an isotope effect. The D atoms lose on average less energy
due to ehp excitation than their lighter analogues. This can be explained by the
fact that the friction force scales linearly with the particle’s velocity. The energy
which is dissipated by the friction force can be calculated via

∆E =
∫
C
η(~r)~vd~r (4.11)
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Figure 4.28.: Several mean values taken from MD simulations describing 2.76 eV H
atoms and 2.71 eV D atoms impinging on a vast set of fcc metal surface
facets. The projectiles were shot with a polar angle θi = 45◦. The first
row depicts the mean energy loss 〈Eloss〉. The second and third shows
the mean energy loss to ehps 〈Eloss,ehp〉 and the lattice atoms 〈Eloss,ph〉,
respectively. The last row shows the sticking probability S0.

C stands for the trajectory pathway, whereas ~r and ~v are the projectile’s position
and velocity, respectively. The friction coefficient depends solely on the background
density and not on the mass of the projectile. For simplicity’s sake, I will treat the
friction coefficient as constant in my further argument. Now, if we assume that an
H and a D atom travel the same trajectory path C, the ratio of the non-adiabatic
energy loss of the two isotopes can be approximately written as:

∆EH

∆ED
=
∫
C η~vHd~r∫
C η~vDd~r

≈ |~vH|
|~vD|

=
√

2Ekin,imD

2Ekin,imH
=
√
mD

mH
=
√

2. (4.12)

This means that the isotope effect for the non-adiabatic energy loss antagonises the
adiabatic isotope effect, which can be reasonably described with a cube model, i.e.
with Eq. 4.10. Within that model, the energy transfer to the lattice is favoured with
increasing mass of the particle. This can also be nicely seen in the third row of
Figure 4.28. The energy transfer to the lattice for a given metal is higher when H is
exchanged with D. Moreover, higher masses of the surface atoms lead to a smaller
mass ratio µ and thus less energy is transferred from the particle to the lattice.
As a consequence, more energy can be transferred via ehp-excitation. This is why
the average non-adiabatic energy loss increases for substrates with higher atomic
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4.2. Molecular dynamics simulations of inelastic H atom scattering

masses, even though the friction force is independent on the mass of the underlying
metal atoms.
The effects described so far apply for all surface facets. From the surface geometry

perspective, it is interesting to notice that the fcc(110) metal surfaces show on
average the lowest energy losses for both isotopes. H atoms scattering from an
fcc(100) surfaces results in the largest mean energy loss, followed by the remaining
fcc(111) facet. For the D atoms on the other hand, the difference in the mean
energy loss between the fcc(100) and fcc(111) does not show such a clear trend
in comparison to the lighter isotope. Also in terms of the individual contribution,
the fcc(110) shows the smallest energy losses, whereas the individual energy loss
channels for the remaining two facets are comparatively similar, especially for the
3d-metals.
In terms of the sticking probability, the fcc(100) surface facet shows the highest

values, albeit the differences between the (100) and (111) facet range between ±
5%. Exceptions mark Ni and Au. The (110) surface on the other hand shows
the smallest sticking probabilities. This can be explained as follows. From the
penetration depth analysis, we know that most particles scatter either from the
surface or the subsurface. The vertical distance between these two surfaces are
small compared to the vertical distance of the other two facets. Thus a smaller
energy loss to electron-hole pairs can be accumulated and more H atoms escape
the binding well. In addition, the lower planar density of the (110) facet decreases
the likelihood for a collision with a metal atom when the H atom scatters off the
subsurface, which can be taken from the lower energy transfer to the lattice in Table
4.28.

Isotope effect

Exchanging the H atom by its heavier analogue D neither leads to a significant
change in the mean energy loss nor to one in the sticking probability S0 for all three
investigated surface facets. For hydrogen atom scattering from fcc(111) surfaces, it
has been demonstrated that the shape of the corresponding energy loss distributions
is only slightly affected by the mass of the projectile.21,29 For the sake of complete-
ness, I also investigated whether this finding holds for the other two surface facets
or if there exists an isotope effect which depends on the surface geometry of the
underlying substrate.
Figure 4.29 shows the specular energy loss distributions for the (100) and (110)

facets of the coinage metals. The isotope does not drastically change the appearance
of the curve. The maxima of the ELDs describing scattered D atoms are slightly
shifted towards lower energy losses. In a sense, the absence of a pronounced isotope
effect is a result that is to be expected, as the compensation of the two isotope
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Figure 4.29.: Specular energy loss distributions for H and D at an incidence angle
of 45◦ scattering off the coinage metal(100) and (110) surfaces. The
initial kinetic energy of the H and D atoms were set to 2.76 eV and
2.71 eV, respectively. The incidence direction corresponds to the [011]
crystallographic orientation in case of the (100) facet. For the simula-
tions involving the (110) facet, the projectiles were shot along the [1̄12]
direction.

effects is due to the opposite mass dependencies of the forces which determine the
energy transfer channels. The shape of the underlying PES, which is determined by
the surface geometry, does not depend on the mass of the projectile.

Adiabatic simulations

Albeit I stated earlier that the incorporation of non-adiabatic effects are critical to
describe the energy transfer between the colliding H atom and the metal surface, no
experiments for the the late fcc transition metal (100) and (110) surface facet exist
yet. So for the sake of completeness, I will exemplary show the specular energy loss
distributions calculated from purely adiabatic MD simulations of H atom scattering
from Ag(100), Ag(110) and Ag(111) and demonstrate that the different surface
geometry does not give rise to a broad energy loss distribution. From Figure 4.30,
we see that the energy loss distributions obtained from adiabatic H atom scattering
off Ag(100), Ag(110) and Ag(111) are very narrow and strongly differ from the
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Figure 4.30.: Specular energy loss distributions calculated from adiabatic and non-
adiabatic MD simulations of H atoms scattering from Ag(100), Ag(110)
and Ag(111). The initial simulation conditions are: Ekin,i = 2.76 eV,
θi=45◦ and T = 300K. The crystallographic orientations are the same
as in Figure 4.25. The distributions are normalised with respect to the
area under the curve.

Table 4.5.: Mean energy loss of all scattered H atoms and sticking probability for
non-adiabatic (adiabatic) MD simulations of 2.76 eV H atoms impinging
on Ag(100), Ag(110) and Ag(111). The other initial conditions are the
same as in Figure 4.25.

System 〈Eloss〉 / eV S0

H/Ag(100) 1.17 (0.49) 0.64 (0.32)
H/Ag(110) 1.10 (0.40) 0.52 (0.23)
H/Ag(111) 1.15 (0.42) 0.60 (0.26)

shape of the energy loss distribution obtained from non-adiabatic MD simulations
for the same surface facet. The large peaks of the adiabatic energy loss distributions
are located around 0.12 eV, which corresponds to the energy transfer predicted by
the binary cube model for a single collision between H atom and silver atom. This
allows us to draw the conclusion that the energy transfer is determined by the laws of
energy and momentum conservation, which ends up in Eq. (4.10). The mean energy
losses and the sticking probabilities in Table 4.5 clearly demonstrate that electron-
hole pair excitations are the dominant energy transfer channel. Both 〈Eloss〉 and
S0 are reduced by over 50% when electron-hole pair excitations are not taken into
account. It is therefore mandatory to incorporate these non-adiabatic effects into
the MD simulations if we wish to predict future experiments correctly.
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4. Dynamics of H atoms on non-covalent bonding surfaces

Angular distribution

Finally, I want to analyse whether the in-plane angular distributions depend on the
surface geometry or not. It has been demonstrated that the shape of the angular
distribution does not depend on whether electronic friction is included in the MD
simulations.107 Moreover, the calculated angular distributions for the fcc metal(111)
surfaces agree very well with the experiment.16 Therefore, one could potentially
use adiabatic simulations in the future to get a better sampling, because of the
reduced sticking probability. Here, I used the sets of MDEF trajectories right away
to calculate the angular distribution as they were already at hand. The results are
given in Figure 4.31.
The angular distributions comprise a surface facet dependence. H atoms that are

scattered in-plane off a fcc metal(110) surface have a strong preference for backwards
scattering rather than forward scattering. In case of the 4d and 5d metal(110)
surfaces, the maximum of the signal is located between −50◦ and −60◦ with a
concentrated intensity around this location. For the 3d-metals, the preference for
backwards scattering is reduced compared to their heavier homologues. Instead,
the maximum intensity is located at θf ∼ 50◦, i.e. the scattering dynamics results
primarily in forward scattering events. The evenly distributed intensity over almost
the whole range of positive scattering angles reflects that no clear scattering channel
exists. In that regard, a clear difference in the scattering dynamics between the 3d-
metal(110) surfaces and their heavier homologues could be identified.
Such a distinct feature is absent for the (100) and (111) facet. The angular

distributions sampled for scattering events from those facets look much more alike.
The intensity of the metal(111) angular distributions is more equally distributed,
whereas the intensity is higher at smaller scattering angles in case of the metal(100)
facets. Furthermore, no metal specific features could be identified for one of these
twelve angular distributions. They are all broad and structureless. For both surface
facets the maximum signal is not located at the specular angle, i.e. θf = 45◦, but at
scattering angles ranging from 0◦ to 30◦. Albeit the angular distributions for these
two surface facets are broad with their maximum close to the surface normal, this
finding should not be confused with thermal desorption which gives rise to a broad,
cosine-like angular distribution.127 The corresponding kinetic energy distributions
of thermal desorbed particles obey a Maxwell-Boltzmann distribution. The energy
loss distributions sampled from the scattered H atoms on the other hand, cannot
be described with such an energy distribution. Hence, broad, non-thermal angular
distributions peaking in normal direction indicate subsurface scattering or a rather
long interaction time at the surface where many collisions are involved. Those many
collisions result in random scattering directions.

92



4.2. Molecular dynamics simulations of inelastic H atom scattering

90°

60°

30°
0°

-30°

-60°

-90°

Normalised signal / a. u.

0 0.2 0.4 0.6 0.8 1.0

Po
la

r a
ng

le
 / 

Ni(100)
Ni(110)
Ni(111)

90°

60°

30°
0°

-30°

-60°

-90°

Normalised signal / a. u.

0 0.2 0.4 0.6 0.8 1.0

Po
la

r a
ng

le
 / 

Cu(100)
Cu(110)
Cu(111)

90°

60°

30°
0°

-30°

-60°

-90°

Normalised signal / a. u.

0 0.2 0.4 0.6 0.8 1.0

Po
la

r a
ng

le
 / 

Pd(100)
Pd(110)
Pd(111)

90°

60°

30°
0°

-30°

-60°

-90°

Normalised signal / a. u.

0 0.2 0.4 0.6 0.8 1.0

Po
la

r a
ng

le
 / 

Ag(100)
Ag(110)
Ag(111)

90°

60°

30°
0°

-30°

-60°

-90°

Normalised signal / a. u.

0 0.2 0.4 0.6 0.8 1.0

Po
la

r a
ng

le
 / 

Pt(100)
Pt(110)
Pt(111)

90°

60°

30°
0°

-30°

-60°

-90°

Normalised signal / a. u.

0 0.2 0.4 0.6 0.8 1.0

Po
la

r a
ng

le
 / 

Au(100)
Au(110)
Au(111)

Figure 4.31.: Energy integrated in-plane angular distributions for all six fcc transi-
tion metals. Negative final polar angles indicate backward scattering,
whereas positive angles can be referred to as forward scattering. Thus,
the initial polar angle θi corresponds to −45◦. The other conditions
are: Ekin,i = 2.76 eV and T = 300K. The incidence directions are the
standard directions which have been given in Section 4.2.1. The dis-
tributions are normalised with respect to the intensity maximum.
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Bottom line, in contrast to the energy loss distributions, which show only minor
dependencies on the surface structure, the fcc metal(110) differs significantly from
the other two facets in terms of a higher preference for backward scattering. An
exception mark the 3d-metal(110) surfaces, where forward scattering is preferred.
The fcc (100) and (111) facets on the other hand do not differ significantly from each
other. The H atoms scattered from these two surface facets tend to prefer forward
scattering with the maximum intensity located between 0◦ and 30◦.

4.2.3. H on bcc metals

So far, the surface structure did not have a big impact on the shape of the non-
adiabatic energy loss distributions. This subsection is dedicated to the analysis of
ELDs sampled from H atoms scattering off bcc metal(110) and metal(111) surface
facets. Since the lack of experimental data for H/W or H/Mo prevents a direct
comparison between theory and experiment, I will instead compare the energy loss
distributions of the H/bcc metal surfaces to experiments made on fcc metals. The
energy loss distributions of H atoms that scattered off tungsten and molybdenum
are shown in Figure 4.32. The simulation details of these calculations have been
described in Section 4.2.1. To put the results of the bcc metal simulations into a
broader context, I also included simulations and experimental data of a coinage
metal into Figure 4.32. As the energy transfer to the lattice depends on the mass of
the underlying substrate, I chose to compare bcc and fcc metals of the same row in
the periodic table with each other. Since no experimental data for Ekin,i = 2.76 eV
are available for Ag(111), I used experimental and computed data where the initial
kinetic energy of the impinging H atoms is 3.33 eV and calculated relative energy
loss distributions, i.e. dividing the energy loss by the initial kinetic energy Ekin,i.
The relative energy loss of the scattered H atoms ranges from slight energy gain

to a relative energy loss close to 1. Moreover, the surface geometry does not seem
to have a big influence on the shape of the energy loss distribution in case of the
bcc metals. Both results are in line with the observations made for the late fcc
transition metal surfaces in Section 4.2.2. Differences in the ELDs for the bcc(111)
surfaces and the fcc(111) surfaces are more pronounced in comparison to the ELDs
for H atoms scattered off the investigated bcc(110) metals. The distributions for
the bcc(111) surfaces have a maximum located at larger energy losses compared
to their fcc analogues. The distribution for H/Mo(111) shows a large peak at a
relative energy loss of ∼ 0.3 eV, whereas the ELD for H/Ag(111) shows a dip in
the probabilities at that particular relative energy loss. The curve for H/W(111)
starts to rise at larger energy losses compared to the curve describing the energy
loss of H/Au(111). Furthermore, the distribution associated with W(111) peaks at
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Figure 4.32.: Comparison between relative energy loss distributions for H atom scat-
tering from bcc metals and computed distributions for H atoms scat-
tered from fcc coinage metals. The corresponding experimental distri-
butions for the coinage metal surfaces are included, too. All simula-
tions are performed at 300K. To match experimental conditions, polar
and azimuthal angle equal 45◦ and 0◦, respectively. The initial kinetic
energy for the experimental and theoretical curves of H/Ag(111) is
3.33 eV, whereas Ekin,i equals 2.76 eV for all other systems. The ex-
perimental ELD for H/Ag(111) was taken from Ref. [16]. Note that
the energy loss is divided by the initial kinetic energy.

an relative energy loss of ∼ 0.35 eV. The slight differences in the behaviour of the
curves for H/Mo(111) and H/W(111) can be explained by the fact that the H/W
EMT-PES provides a larger background density than the corresponding H/Mo PES.
This has been discussed in detail in Section 4.1.2. Bottom line, on the basis of the
presented ELDs in Figure 4.32, we can conclude that the crystal structure does not
have a drastic influence on the shape of the ELDs under the applied simulation
conditions, e.g. Ekin,i=2.76 eV and T = 300K.
The mean energy loss of all scattered particles for the investigated bcc metal

surfaces range from 1.0 eV to 1.1 eV, which is in good agreement with the results
for the fcc metal surfaces discussed in Section 4.2.2. The precise values are listed in
Table 4.6. The bcc(111) surfaces show a slightly smaller energy loss compared to the
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Table 4.6.: Mean energy loss of all scattered H atoms and sticking probability for
the investigated bcc metal surfaces.

System 〈Eloss〉 / eV 〈Eloss,ehp〉 / eV 〈Eloss,latt〉 / eV S0

H/Mo(110) 1.10 0.80 0.30 0.43
H/W(110) 1.10 0.90 0.20 0.42
H/Mo(111) 1.02 0.80 0.22 0.40
H/W(111) 1.06 0.90 0.16 0.40

bcc(110) surfaces. The differences between the energy loss arise from the different
energy transfer to the lattice. When H atoms are scattered off Mo, a larger portion
of the kinetic energy is transferred to the lattice in comparison to tungsten, which
can again be explained with the hard cube model. The sticking probability S0 does
not show a dependence on the surface facet. However, it is interesting to note that
the sticking probability is smaller compared to the fcc metal surfaces, where 50% to
70% of the incidence projectiles remain at the surface or inside the bulk.

Penetration depth analysis

While the face centred cubic crystal structure is a close packed structure, the body
centred cubic structure does not have such a high packing density. Therefore, cuts
along certain angles result in more open surface facets. As a consequence, surface
penetration is expected to occur more often for the densest bcc surface compared
to the close packed fcc(111) analogue. The minimum altitude distributions for H
atoms scattered from the investigated bcc surfaces are depicted in Figure 4.33.
The minimum altitude distributions clearly depend on the underlying surface

geometry. The shape of the probability density allows one to draw conclusion about
the structure of the underlying metal surface. The contribution from H atoms
that scattered off the surface and subsurface are well separated from each other
in panel a) of Figure 4.33 reflecting the vertical distance of a0/

√
2 between two

layers in a bcc(110) surface. The minimum altitude distribution in panel b) does
not show a clear separation in the probability densities. This is a fingerprint of
not only the small vertical distance of a0/

√
12 between two layers in a bcc(111)

surface but also the wide lateral distance between atoms located in the same layer.
The fraction of H atoms which undergo surface penetration during the scattering
process is around 18% for both investigated bcc(110) surfaces. It is noteworthy that
the bcc(110) has the highest planar density of all bcc surface facets. The minimum
altitude distributions sampled from specular scattered H atoms does not show any
contribution from the third layer or layers further below. If a bcc(111) surface is the
substrate, the probability for surface penetration is drastically increased. In total,
59.4% of the scattered H atoms repelled from the subsurface, the third surface layer
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Figure 4.33.: Minimum altitude distribution of specular scattered H atoms with an
initial kinetic energy of 2.76 eV. Panel a) and b) show scattering events
for the bcc(110) and for bcc(111) metal surfaces, respectively. The
surfaces have been thermalised to 300K and the incidence angle is
45◦. The crystallographic incidence directions for the (110) and (111)
surface are [001] and [101̄], respectively. Note that the surface plane is
located at 0 Å.

or underlying layers of the W(111) surface. For H/Mo(111), the fraction is 60.7%.
The maxima in Figure 4.33 b) at a minimum altitude of ∼ 1.1Å, 0.3Å and -0.5Å
correspond to scattering from the top, hcp and fcc site of the bcc(111) surface —
see Figure 4.2 a). In fact, most scattered particles repel from metal atoms which
are located in the third layer, i.e. the fcc site.

In Figure 4.34, I decomposed the specular energy loss distributions into the
contributions of H atoms that are scattered from surface and those which penetrated
it during the scattering process. Like for the fcc metal surfaces the contribution of
surface penetration events to the specular energy loss distribution varies from facet
to facet. For the bcc(110) facet, the minimum energy loss of H atoms which undergo
surface penetration is ∼ 0.5 eV. The maximum contribution is located around 1.5 eV.
Scattering off the surface plane is the main event for the whole range of the energy
loss distributions if H atoms impinge on bcc(110) metal surface. The situation for
the H/bcc(111) system is different: H atoms which underwent surface penetration
experience energy loss that range from even small energy gains to values close to
2.76 eV. For energy losses ranging from 0.5 eV to 2.76 eV this scattering channel is
the dominant one reflecting the open structure of the bcc(111) surface and thus the
high chance to travel to the subsurface or lower.
In the end we can conclude from Figure 4.34 that H atoms which penetrated the

surface exhibit on average a larger energy loss. This result reflects the fact that the
energy is dissipated to the electrons continuously over time. A deeper penetration
involves a longer presence in a region where the electronic friction is high resulting
in a larger energy transfer via ehp excitation. The fraction of penetrated H atoms
increases with decreasing planar density of the underlying substrate. In that regard,
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Figure 4.34.: Specular energy loss distributions decomposed into events where the
projectiles are scattered from the first layer, i.e. the surface, and from
the subsurface. The initial conditions are the same as in Figure 4.33.

the behaviour between bcc and fcc metals is alike. Hence, it is more appropriate to
refer to a surface geometry dependence rather than to a crystal structure dependence
when the influence of subsurface scattering is compared between different surfaces.

Angular distributions

Finally, I also want to investigate whether the angular distributions for the in-
plane scattered H atoms show a surface structure dependence. The results are
given in Figure 4.35. The angular distributions for the investigated surface facets
of Mo and W are broad and without any structure. No pronounced peak at a
certain angle can be observed but the scattered particles have a slight preference to
forward scattering, which is in line with the angular distributions for the fcc(100)
and fcc(111) surfaces. This can be seen when the angular distributions are compared
to an angular distribution for thermal desorption, which is represented by a cos θf
distribution in Figure 4.35. The trend towards forward scattering is slightly more
pronounced in case of tungsten but no impact of the surface geometry on the angular
distribution could be observed for both metals. However, the comparison with
an angular distribution for thermal-desorption should not imply that the angular
distributions of the scattered H atoms are thermal. In fact, the scattered projectiles
are far away from thermal equilibrium, which can be taken from the corresponding
energy loss energy loss distributions. Bottom line, the angular distributions for the
investigated Mo and W surfaces compare well to their fcc metal analogues. So far,
only two metals were investigated. Clearly, a larger set of investigated metals are
necessary to check whether the results presented in this subsection apply to all bcc
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Figure 4.35.: Energy integrated in-plane angular distributions for Mo and W. Neg-
ative final polar angles indicate backward scattering, whereas positive
angles can be referred to as forward scattering. Thus, the initial polar
angle θi corresponds to−45◦. The other conditions are: Ekin,i = 2.76 eV
and T = 300K. The incidence directions for the (110) and (111) facet
are [001] and [101̄], respectively. The distributions are normalised with
respect to the intensity maximum. The grey dotted line indicates a
cos θf distribution.

transition metals. This would make an interesting future research subject.

Comparison between two MDEF simulation methods

The EMT-PES for H on W(110) has a combined RMSE of 365meV, which is not
small even for MD simulations that involve particles with an initial kinetic energy
close to 3 eV. Fortunately, there exist electronic non-adiabatic MD simulations for
H/W(110) where a PES of different nature with a much smaller RMSE is used.
These MD simulations have been performed in the working group of Dr. Pascal
Larrégaray and have been shared with me. Although non-adiabatic effects were also
incorporated in form of electronic friction at the LDFA level, a different electron
density and friction function has been used in those MD simulations. This offers a
splendid opportunity to compare two different MD simulation procedures to each
other by analysing similarities and differences in the energy loss distributions re-
sulting from both procedures. I will use this comparison to demonstrate that the
EMT-PES for H/W(110) gives scattering results similar to those results obtained
with the CRP-PES, despite the large RMSE of the EMT potential.

The MD simulations, which are going to be compared to my results, are based
on the Corrugation Reduction Procedure (CRP).128,129 In short, this procedure is a
sophisticated interpolation scheme for an ensemble of ab-initio energies. The gen-
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Figure 4.36.: Friction coefficient calculated from electron densities with two different
models. Model I uses the electron density from the full-dimensional
EMT-PES and the interpolation function published in Ref. [14]. In
Model II, the electron density of a bare W(110) slab is obtained from
a single, self-consistent DFT calculation. This density is subsequently
used as argument for the function of the friction coefficient, which is
published in Ref. [55].

eration of the CRP-PES that has been used in the context of this work is detailed
out in Refs.130,131 The CRP-PES differs in three major points from the EMT-PES:
Firstly, the DFT energies have been calcualted with the PW91 functional132 instead
of the PBE functional.37,38 Therefore, the conventional lattice constant and the dis-
tance between two layers in the relaxed W(110) are different in both models. A more
severe difference between both models is the fact that the utilised CRP-PES only
interpolates DFT energies where the W atoms remain at their equilibrium condi-
tions at 0K. The CRP-PES is thus three-dimensional instead of full-dimensional as
interatomic displacements of the surface are not considered. For the incorporation
of energy exchange between H atom and surface into the MD simulations, a gener-
alised Langevin oscillator (GLO) model is used.133,134 Within this model, the surface
is reduced to a 3D oscillator with a mass equal to the atomic mass of the metal. The
3D oscillator is coupled to a bath and this bath is composed of a ghost oscillator,
which has a motion that is governed by a Langevin equation with a friction force
and a random force. The last difference between the CRP-PES and the EMT-PES
is the fact that the former does not provide an electron density model. In order
to incorporate electronic friction into the MD simulations, the friction coefficients
are calculated from electron density values obtained with DFT. Since the internal
slab geometry will never change during the MD simulations, a single density file is
already sufficient. Furthermore, the MD simulations based on the CRP-PES makes
use of the function published by Juaristi et al.,55 whereas I used an interpolated
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Figure 4.37.: Specular energy loss distributions shown in the left panels and mini-
mum altitude distribution for H/W(110) depicted in the right panels.
The initial conditions are Ekin,i = 2.76 eV, θi = 45◦. The azimuthal
angle corresponds to the [001] direction. The applied temperature in
the first and second row is 300K and 70K, respectively. Note that the
surface plane is located at an altitude equal to zero.

function published in Ref. [14]. The differences between both functions are small,
though, which can be seen in Figure 4.36.
Now that the major differences between both methods have been explained, I will

investigate how the different treatment of electronic friction and lattice movement
affect the energy loss distribution. The influence of the lattice displacements due to
thermal motion can be easily investigated because the lattice geometry of the CRP-
PES will be always the same. We performed MD simulations at 300K and 70K
with both potentials to investigate the influence of the change of the lattice geome-
try on the energy loss distribution and minimum altitude distribution. In classical
simulations smaller temperatures result in smaller displacements. Thus, differences
between the results for the CRP-PES and EMT-PES which intensify with increasing
temperature can be attributed to thermal motion of the lattice atoms. We chose
70K, because it is a temperature that is close to the boiling point of liquid nitrogen
and thus easier amenable for experimenters.

Figure 4.37 shows the specular energy loss distributions for H on W(110) calcu-
lated with both methods at 300K and 70K. The energy loss distributions of both
models at 300K are in good agreement with each other. Both are broad and without
a specific structure. The ELDs calculated from MD simulations performed at 70K
with the CRP-PES has a higher intensity at energy losses between ∼ 0.8 eV and
1.5 eV compared to the EMT-PES. The differences between both simulation models
in the minimum altitude distribution sampled from specular scattered particles at
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4. Dynamics of H atoms on non-covalent bonding surfaces

300K is more pronounced. For scattering from the surface, the MD simulations
based on the CRP-PES give rise to a more structured distribution than the EMT-
PES. In case of the EMT-PES, the spike at ∼ 1.1Å is absent and the probabilities
to scatter from a given altitude is more evenly distributed. Both models also differ
by the fact that the CRP-PES based MD simulations predict a larger fraction of
subsurface scattering for the specular scattering events compared to the MD simu-
lations performed on the EMT-PES. If the MD simulations are performed at 70K,
the change in the shape of the ELDs is drastic for both methods, which can be seen
in panel c) of Figure 4.37. Overall, the two models are in qualitative agreement with
each other, but differences can be observed too. Both ELDs start with a prominent
peak. In case of the EMT-PES, this peaks starts at higher energy losses and merges
with the probability densities for higher energy losses. The other model predict
an ELD which is located at an energy loss around 0.3 eV, followed by a dip in the
probability density. Furthermore, both ELDs comprise a very prominent peak at
energy losses larger than 1 eV. Again, the maximum of the energy loss distribution
calculated with the EMT-PES is located at higher energy loss distribution compared
to its CRP based analogue. The shift of the prominent features towards a higher
energy loss in the EMT based ELD can be explained by the fact that the H/W
EMT-PES provides larger electron densities compared to DFT for a bare W(110)
slab — see Section 4.1.3, Figure 4.13†. At higher energy losses the difference be-
tween both models diminishes due to conservation of energy.
The characteristic peaks in the ELDs of both models differ not only in the energy

loss but also in their height. The first peak at low energy losses is smaller in case
of the ELD calculated with the CRP-PES, whereas the peak at ∼ 1.3 eV is more
dominant compared to the EMT based distribution. The minimum altitude distri-
bution of both models at 70K are in better agreement to each other compared to
the distributions at 300K. This can be explained by the smaller distortions from
the ideal lattice symmetry at lower temperature. Furthermore, the fraction of par-
ticles which penetrates the surface during the scattering process increases in the
MD simulations performed on the EMT-PES. At 300K, 17% of the specular scat-
tered H atoms undergo a penetration-resurfacing event. At 70K on the other hand,
where the displacements are reduced, the fraction of subsurface scattered H atoms
increases to 27%. This value compares well to the predictions of the CRP-based MD
simulations. For both temperatures, the fraction of subsurface scattered particles
is about 31%. With the fact in mind that the CRP-PES does always simulate a
W(110) with the atoms in their equilibrium lattice positions it is not surprising that

†Figure 4.13 shows the electron density of a bare slab calculated with PBE instead of the
PW91 functional. However, the differences in the electron density between PBE and PW91 are
much smaller than the differences between DFT and EMT.
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Figure 4.38.: Specular energy loss distribution for both models decomposed into
events where the H atoms scatter either from the surface or the subsur-
face. The black line corresponds to the total signal. The bright grey
line indicate scattering events from the surface, whereas the dark grey
line represent subsurface scattering events. The surface temperature
is 70K, whereas the initial kinetic energy and polar angle are 2.76 eV
and 45◦, respectively. The different initial azimuthal angles are given
in the panels. ϕi = 90◦ corresponds to the [001] direction.

the contribution of subsurface scattering to the overall specular energy loss distribu-
tion shows no temperature dependence. In addition, it is for the same reason which
allows us to conclude that the broad and structureless distributions are not due to
thermal displacements in the lattice and the concomitant reduction of symmetry.
Instead the broadening strongly indicates an effect originating from ehp excitation.
I will dedicate Section 4.2.4 to explain this broadening effect in detail, because it
can be shown that this effect is related to the Langevin equation and not the PES
on which the MDEF simulations are performed.

To investigate the characteristic peak at high energy losses in the ELDs at 70K
further, we analysed launched multiple sets of MD simulations with varying crystal-
lographic incidence direction which corresponds to varying initial azimuthal angles
ϕi. The result of the analysis is given in Figure 4.38. Both models predict not only
a similar energy loss distributions for a certain set of initial simulation parameters
but also dynamical fingerprints inside the ELDs which compare well to each other.
For the MD simulations with ϕi = 90◦, the energy loss distribution comprise a very
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4. Dynamics of H atoms on non-covalent bonding surfaces

characteristic peak at energy losses above 1 eV. This characteristic peak is mainly
due to subsurface scattering events and it vanishes if a different incidence direction
is chosen. A smaller azimuthal angle results in an increase in the probability density
for energy losses between 0.5 eV and 1 eV, which is captured by both models although
this trend is stronger when the CRP-PES is used. A closer inspection of the isolated
peak in the CRP based energy loss distribution showed that this peak is composed
of H atoms which scatter from the top-site of the W(110) surface. The energy losses
between 0.5 eV and 1.0 eV arise from H atoms which scatter off the hollow and bridge
sites. This finding is confirmed by the EMT-PES and it can be understood with the
help of Eq. 4.11 in the following way: H atoms which scatter from the top side spend
less time in the region where the electron density, and thus the friction coefficient, is
high compared to particles which scatter from the hollow or bridge site. Therefore,
the energy transfer due to electronic friction is smaller. It is also interesting to see
that the contribution of subsurface scattering drastically depends on the azimuthal
angle. While at ϕi = 90◦ the contribution to the signal is large, it is negligible at
ϕ = 35.26◦, which is not surprising as this direction corresponds to the close-packed
direction of a bcc(110) surface. More surprising is that both models predict a mi-
nor role of subsurface scattering for ϕi = 0◦, albeit this direction corresponds to
the major semi-axis of the p(1 × 1) surface cell of the bcc(110) surface. So from a
geometrical point of view, it should be easy for the H atoms to enter the bulk. This
is indeed the case as MD simulations with the EMT-PES predict that 29.8% and
30.5% of the incident H atoms migrate into the surface for ϕi = 0◦ and ϕi = 90◦,
respectively. Only for the case of specular scattering the contribution of penetrated
H atoms is strongly affected by the choice of the initial azimuthal angle. 27.5% of
specular scattered particles repelled from the subsurface if the incidence direction
corresponds to ϕi = 90◦. With an incidence direction ϕi = 0◦ on the other hand, this
fraction shrinks to 5.4%. The contribution of scattered particles which travelled to
the third layer or deeper is smaller than 0.5% and thus negligible. MD simulations
performed on the CRP-PES provide similar results. 14% of specular scattered par-
ticles penetrated the surface during the scattering event and repel from the second
layer if the initial incidence direction corresponds to ϕi = 0◦. Setting ϕi = 90◦ in-
creases the amount of subsurface scattering which contribute to the overall specular
energy loss distribution to 31%.

At room temperature, no significant peak was observed in both models for
ϕi = 90◦. Hence, in order to investigate the role of subsurface scattering at room
temperature, we performed MD simulations for the same three different incidence
directions that were used in the 70K simulation sets. The result is shown in Figure
4.39. For all three incidence directions, the energy loss distribution calculated with
the EMT-PES are broad and structureless. Their appearance does not depend on
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Figure 4.39.: Specular energy loss distribution for both models decomposed into
events where the H atoms scatter either from the surface or the subsur-
face. The black line corresponds to the total signal. The bright grey
line indicates scattering events from the surface, whereas the dark grey
line represents subsurface scattering events. The surface temperature
is 300K, whereas the initial kinetic energy and polar angle are 2.76 eV
and 45◦, respectively. The different initial azimuthal angles are given
in the panels. ϕi = 90◦ corresponds to the [001] direction.

the initial azimuthal angle. The MDEF simulations with the CRP-PES at 300K on
the other hand differ show a dependence on the initial incidence direction, but not
as pronounced as the calculations at 70K. This dependence at room temperature
is the consequence of the absent interatomic displacements or, to put it differently,
the preservation of the ideal lattice symmetry. In the MD simulations where the
EMT-PES is used, 1,000 different slab configurations are used as initial conditions
and which vanishes out any dynamical fingerprints in the energy loss distribution
due to a certain surface geometry - either be it the ideal geometry at 0K or one
thermally displaced geometry.
In summary, I compared specular energy loss distributions of H atoms scattered

off W(110) performed with two different models at room temperature and 70K.
Both models give results that are in good agreement with each other, albeit there
exists differences of course, which arise from different treatment of lattice motion and
electron densities. The models predict broad energy loss distributions at room tem-
perature. At this temperature the model involving a full-dimensonal PES provides
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ELDs which show no dependence on the initial azimuthal angle. These findings are
in good agreement with the experiments for hydrogen atom scattering from the late
fcc metal(111) surfaces.16,29,135 The model involving a three-dimensional treatment
of the lattice movement shows a dependence on the initial incidence direction, albeit
this effect is weaker in case of the high temperature calculations. This dependence is
a consequence of the preserved ideal lattice symmetry in the model with the CRP-
PES. At 70K, both models predict energy loss distributions which drastically differ
from their room temperature analogues. Instead of a broad, structureless distribu-
tion, different scattering channels can now be distinguished from each other. Since
the EMT-PES provides a higher electron density than DFT for a bare W slab, the
energy loss of the individual scattering channels is higher in the full-dimensional
MD simulations. Bottom line, with the comparison of the two MDEF methods we
have identified a scattering channel which strongly depends on the initial incidence
direction, which is very much suitable to serve as benchmark for experimenters to
do experiments on. Unfortunately, such experiments do not exist at the point of
this writing.

4.2.4. Origin of universality between all surfaces

Most of the results presented in this subsection have been already published in Ref.
[1] and thus some phrases in this thesis might coincide. The aim of this subsection
is to present the content of Ref. [1] in a little bit more detailed manner and addi-
tionally to put it into the context of the work I have presented so far.
We already saw for H on W(110) that the energy loss distributions drastically

change their appearance when the surface temperature is reduced. Moreover, at
low surface temperatures the shape of the ELDs for H/W(110) also depends on the
shape of the PES and the underlying density model. At room temperatures on the
other hand, the energy loss distributions for the investigated fcc and bcc facets seem
to behave in an universal manner. Neither PES nor treatment of lattice excitation
as well as the model of the background density seem to have a strong influence on
the ELDs appearance. The impact of the lower surface temperature for all facets
investigated in this thesis are shown in Figure 4.40. Not only do the energy loss
distributions of different surface facets differ from each other, but ELDs for H atom
scattering from different metals of the same facet can also be distinguished between
each other. Two hypothesis can be made to explain the differences in the ELDs at
room temperature and 70K: Firstly, the smaller amount of electron-hole pairs at
lower temperature which are incorporated here, in an effective way, via the random
force ~FL(t). Secondly, higher temperatures lead to stronger lattice distortions and
thus into a lower symmetry of the surface slab. The concomitant changes in the
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Figure 4.40.: Probability densities plotted against the energy loss specular scattered
H atoms experience during their interaction with all the so far discussed
metal surfaces. The temperature of the surface in left and right panel
is 300K and 70K, respectively. The other initial conditions are Ekin,i =
2.76 eV and θi = 45◦. The crystallographic directions are those, which
have been declared as standard directions in Section 4.2.2 and Section
4.2.3.

PES result in a broader spectrum.
Due to the comparison between the ELDs sampled with the CRP-PES and the

EMT-PES, we can exclude the second hypothesis as the lattice movement in the
simulation with the CRP-PES are described by a generalised Langevin oscillator
model.133,134 In this model, the movement of the slab is reduced into three dimen-
sions and interatomic displacements thus ignored. The broad, structureless shape
of the CRP-based ELDs are a very strong indicator that this broadening effect is
due to incorporation of electron-hole pairs. Since the random force ensures micro-
scopic reversibility in the energy transfer between system and bath, we excluded
~FL(t) in a set of MDEF trajectories describing 2.76 eV atoms impinging on Au(111)
and W(110). The amplitude of the random force is determined by the second fluc-
tuation dissipation theorem, given in Eq. 2.91, and thus the random force can be
turned off by simply setting the electron temperature Tel to zero. Figure 4.41 show
the results of both simulation settings along with the experimental recorded energy
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Figure 4.41.: Specular energy loss distributions for 2.76 eV H atoms scattering off
a 300K Au(111) surface. Model I where Tel = 300K (•) is in good
agreement with the experiment (◦). For Tel = 0K, the random force
is turned off and theory (�) deviates from experiment. The incidence
polar angle is ϑi = 45◦, whereas ϕi = 0◦ with respect to the

[
101̄

]
direction. The black vertical line indicates the base line. The figure
has been taken from Ref. [1] with permission of ACS.

loss distribution for H on Au(111).
With the aid of Figure 4.41 we can conclude that neglecting the random force

leads to a dramatic failure in describing the experimental curve. Instead of a broad,
structureless distribution, the computed distribution shows several maxima, reflect-
ing different scattering dynamics of the reflected H atoms. The larger the interaction
time of the H atom with the Au surface, the larger the energy loss. A closer analysis
of the maxima reveals that each peak corresponds to a different number of collisions
between H atom and one Au atom of the surface. If the random force is included
on the other hand, the simulated energy loss distribution is in good agreement with
the experiment.
To study the impact of the electronic temperature on the broadening effect caused

by the random force, I run several sets of MD trajectories with varying Tel. In addi-
tion, I also started trajectories with a rigid Au(111) surface, to suppress the energy
transfer to the lattice with both Tel = 0K and Tel = 300K, which are depicted as
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Figure 4.42.: Angle integrated energy loss distributions for 2.76 eV H atoms scat-
tering off a 300K Au(111) surface (•) and off a static lattice (◦) with
varying Tel. The other settings are the same as in Figure 4.41. The
shape of the energy loss distributions are determined by the electronic
temperature. The figure has been taken from Ref. [1] with permission
of ACS.
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4. Dynamics of H atoms on non-covalent bonding surfaces

Table 4.7.: Angle integrated mean-energy loss 〈Eloss〉 and sticking probability S0 for
2.76 eV H atoms scattered off an Au(111) surface with a lattice temper-
ature of 300K. The particles impinge along the [101̄] direction onto the
surface in a polar angle θi equal to 45◦ with respect to the surface normal.

Tel/K 〈Eloss〉/eV S0/%
300 1.08 42.9
200 1.09 43.2
100 1.10 43.4
50 1.10 43.5
0 1.11 43.6

white circles in Figure 4.42. With increasing temperatures, the peaks in the distri-
butions disappear, resulting ultimately into the broad curves without any features.
By comparing the calculations for the moving and frozen surface at Tel = 0K, we
can see that the energy transfer to the lattice has also a broadening effect on the
distributions. The peaks of the curve representing the moving surface are a little bit
broader, but the smearing effect of the energy transfer of the lattice pales in compar-
ison to the broadening caused by the random force. The probably most astonishing
result of Figure 4.42 is the comparison between the rigid and moving surface for
Tel = 300K. Both curves can be barely distinguished from each other. The moving
surface is only slightly shifted to higher energy losses, representing the fact that
energy can also be exchanged with the lattice. With the aid of Figure 4.42, we have
the hypothesis that the broadening effect is caused by thermal displacements which
are reduced at low temperatures. Thus the similarities at 300K and differences at
70K between the individual metals shown in Figure 4.40 are caused by the random
force, which has an amplitude that scales with

√
T .

The decisive impact of the random force on the energy loss distribution poses the
question whether the mean values are affected in the same manner or not. The mean
energy loss and sticking probability belonging to the simulations which are depicted
as black curves in Figure 4.42 are given in Table 4.7. The mean energy losses are
only reduced by the random force in the range of 10 - 30meV, which corresponds to
a reduction of 1 - 3%. This reduction can be explained by the fact that a possibility
to gain energy from the bath is now introduced. In comparison to the vast change
of the probability distribution function, the mean energy loss can be regarded as al-
most independent of the random force’s presence. The sticking probability increases
with 0.7% when the random force is neglected in the simulation, which is in line
with the previous calculations for H/Au(111) stating that the sticking probability
does not depend on the surface temperature.107

In fact, the random force has often been omitted,55,58,136–143 using the justifica-
tion that the initial kinetic energy Ekin,i is much larger than kBT . Additionally,
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4.2. Molecular dynamics simulations of inelastic H atom scattering

the fact that the Fermi-Dirac distribution at few hundred Kelvin and 0K hardly
differ between each other was also raised as an argument.137 As we have seen now,
omitting the random force is not critical for the determination of mean values and
in fact most of the cited references calculate mean values, like the mean energy loss
to electron-hole pairs and sticking probabilities. For energy loss distributions on the
other hand, negligence of the random gives rise to spurious results. In Figure 4.42,
we can see that the random force strongly changes the appearance of the probability
density functions already at 50K.
In order to get a more profound understanding where this broadening effect orig-

inates from, I will make use of a simple physical model, known as the Ornstein-
Uhlenbeck (OU) process. This simple model can be solved analytically but can still
be closely related to the theoretical description of inelastic H atom scattering from
metal surfaces. In the OU process, we consider the one-dimensional motion of a set
of equivalent particles with the mass m and initial kinetic energy ε0. Please note
that I will denote the initial kinetic energy as ε0 instead of Ekin,i to be consistent
with the notation of Ref. [1] as long as I discuss the OU process. This ensemble of
particles experiences a friction force and a random force with a bath at a tempera-
ture T . The equation of motion of the particles in the OU process can be written
as a Langevin equation in the following form:

m~̈r(t) = mη~̇r(t) + ~FL(t) (4.13)

Here, the notation is consistent with the Langevin equation in Eq. 2.90, described
in Section 2.4. Two major differences exist between the MDEF simulations and the
OU process: Firstly, the ensemble of particles does not propagate on a potential
energy surface. Secondly, the friction coefficient is constant and can thus be related
to a characteristic time τ via

η = τ−1. (4.14)

At t = 0, the initial velocity distribution is a delta distribution δ(v − v0), where
v0 =

√
2ε0/m. As soon as the particles start to interact with the bath, the mean

velocity 〈v(t)〉 and standard deviation σv(t) of the velocity distribution are

〈v(t)〉 = v0e
−t/τ , σv(t) =

√
kBT

m
ξ(t), (4.15)

where ξ(t) = 1 − e−2t/τ .144,145 With ε = 1/2mv2 the energy loss distribution of the
ensemble of particles can be derived and details are provided in Ref. [1]. The energy
distribution is

P (ε,t) = e−(ε+ε0e−2t/τ )/kBTξ(t)√
πεkBTξ(t)

cosh 2e−t/τ√ε0ε
kBTξ(t)

, (4.16)
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4. Dynamics of H atoms on non-covalent bonding surfaces

which has the form of a folded normal distribution.146 The expression for the corre-
sponding standard distribution of P (ε,t) are

σε(t) = kBTξ(t)√
2

√√√√1 + 4ε0
kBT

1− ξ(t)
ξ(t) . (4.17)

The standard deviation σε(t), which will play the role as a characteristic width
of the energy distribution, reaches its maximum at a time tmax. This time can be
expressed as a function of temperature T and initial kinetic energy ε0, namely

tmax = τ

2 ln 4ε0 − kBT
2ε0 − kBT

. (4.18)

At this time the standard distribution σε(tmax) can be written as:

σε(tmax) =
√

2kBTε20
4ε0 − kBT

. (4.19)

Figure 4.43 shows plots of Eq. 4.16 and Eq. 4.17 with the same temperature and
initial kinetic energy used in the MD simulations, i.e. T = 300K and ε0 = 2.76 eV.
For very short interaction times, the energy distribution is very narrow, but already
at t = 0.1τ , which is the typical interaction time for an H atom colliding with an
Au(111) surface, the distribution is remarkably broad. If the temperature and ini-
tial kinetic energy of the MD simulations are used, the standard deviation of the
energy distribution reaches its maximum at 0.35τ , before it is finally arriving at
its equilibrium value kBT/

√
2 at very high interaction times. The shape of the en-

ergy distribution takes the form of the 1D Maxwell-Boltzmann energy distribution,
reflecting the fact that the ensemble of particles have now reached thermal equilib-
rium. It is noteworthy that σε(tmax) can only overshoot the equilibrium value for
initial energies ε0 ≥ kBT/2. Thus, hypothermal H atoms will never show a broad
distribution, which can be understood by looking at the curve representing the set
of particles with an initial kinetic energy of 0.02 kBT , shown in Figure 4.16b). Hy-
perthermal H atoms with ε0 = 2.76 eV on the other hand, will show a maximum
width that is more than 7 times larger than kBT .
With the help of the Ornstein-Uhlenbeck process, in particular Eq. 4.17, we are

able to show that the width of the energy distribution during the equilibration
process scales with

√
ε0kBT if the particles have much more energy than their en-

vironment, i.e. large ε0/kBT values. Therefore, one cannot omit the random force
with the argument that ε0 is much larger than the thermal energy. It is no surprise
then that the omission of the random force in non-adiabatic MD simulations lead to
erroneous results as well, and thus its incorporation in the acquisition of energy loss
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Figure 4.43.: Time-dependent energy distribution of the Ornstein-Uhlenbeck pro-
cess. Panel a) shows a particle with incidence kinetic energy ε0 =
2.76 eV decelerates under a frictional drag subject to thermal fluctua-
tions at T = 300K. Energy distributions are shown at various times, in
units of τ , the characteristic time for deceleration. Panel b) depicts the
corresponding standard deviation of P (ε, t) for various choices of inci-
dence kinetic energy ε0. Figure taken from Ref. [1] with the permission
of ACS.
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4. Dynamics of H atoms on non-covalent bonding surfaces

distributions is critical. The universal looking energy loss distribution of H atoms
scattered of metal surfaces can be interpreted as interrupted thermalisation process
and can be easily understood with the help of the Ornstein-Uhlenbeck process.
Imagine that we are in possession of a magical switch that would allow us to turn

the interactions between the ensemble of particles and the bath on and off. At t = 0,
we pull the switch to turn on the interactions and let ensemble interact for a while.
After a certain time t/τ of our desire, we push the switch and thus turn off the
interactions. The energy exchanges stop and the distribution of the set of particles
will have the shape of one of the distributions shown in Figure 4.43 a). In reality,
this scenario corresponds (almost) one to one to scattering experiments under UHV
conditions. The H atoms fly towards the surface, exchange energy with the metal
by exciting electron-hole pairs and phonons for a certain amount of time, before
they are eventually ejected into the gas phase again. There, they are incapable to
exchange energy anymore and thus a broad structureless energy loss distribution is
recorded.
From the information provided in Figure 4.40 we are able to conclude that the

role of interatomic displacements and energy transfer to the lattice gives rise to a
broader energy loss distribution, but both pale in comparison to the influence of the
random force. The full-dimensionality of the EMT-PESs allows us to give an esti-
mate of how the thermal distortions affect the energy loss distributions without the
adiabatic energy transfer. With the aim to investigate this aspect in mind, I gener-
ated 1,000 initial slab geometries as outlined in Section 4.2.1. In this case, however,
I forbade the metal atoms to move after the snapshots of the thermalised surface
were made. Through the comparison with a set of trajectories involving a relaxed,
static W(110) with W atoms at their ideal lateral positions, we can investigate the
influence of the changes in the PES due to interatomic displacements on the energy
loss distribution exclusively. I chose W(110) instead of Au(111), because of the
very characteristic peak at ∼ 1.5 eV energy loss. Figure 4.44 shows the comparison
between both set of trajectories. For completeness’ sake, I also included an ELD
involving a moving W(110) slab with a lattice temperature of 300K, but without
the random force, i.e. the electron temperature is set to zero. By comparing the
black and the grey line with each other, one can see that the symmetry reduction
of the PES caused by thermal displacements lead to a slight change in the shape
of the ELD. The microstructure in the three peaks ranging from 0.5 eV to 1.0 eV is
gone. The peak at approximately 0.3 eV energy loss does not show any difference
at all. The probably most pronounced effect on the ELD shape marks the absence
of the large peak at ∼ 1.3 eV energy loss. An elevation at this energy loss can be
still seen in the probability density distribution, but no characteristic peak like in
the distribution, where only a single relaxed non-displaced W(110) configuration is
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Figure 4.44.: Angle-integrated, non-adiabatic energy loss distribution sampled from
2.76 eV H atoms that scattered inelastically off a W(110) under various
conditions: The black circles represent calculation involving a frozen
surface approach with only one relaxed slab configuration. The grey
line stands for calculations with a frozen surface, but 1,000 thermally
displaced configurations are used for the initial W atom positions. The
black line represents an ELD for H atoms scattered off a moving W
surface with a lattice temperature equal to 300K. For all three calcu-
lation sets the remaining simulation parameters are ϕi = 0◦, θi = 45◦
and Tel = 0K.

used. It again indicates the orientation dependence of this subsurface scattering
channel discussed in detail in Section 4.2.3. Through the comparison of the grey
line with the black line of Figure 4.44, we also see that that the energy transfer to
the lattice gives rise to a stronger broadening effect than the symmetry reduction
caused by the thermal displacements alone. The energy loss distribution is slightly
shifted towards higher energy losses, which is explained by the fact that a second
energy transfer channel is now allowed. Only the single peak at approximately 0.4 eV
energy loss, which can be referred to direct reflection events, is still existent. Also
the peak representing the subsurface channel, now located at around 1.5 eV energy
loss, is broader and not so conspicuous anymore.
On the basis of the analysis presented in this section, we are now able to assign

the influence of the individual components of the Langevin equation onto the en-
ergy loss distribution of the particles that are governed by this equation of motion.
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4. Dynamics of H atoms on non-covalent bonding surfaces

The frictional drag force gives rise to the overall large energy losses. Without it,
one would arrive at narrow distribution with its maximum close to an energy loss
that can be estimated with a cube model, i.e. with Eq. 4.10. However, this friction
force leads to an integrative energy loss, or in other words, the kinetic energy is
dissipated continuously over time. Longer interaction times thus give rise to larger
energy losses: Depending on the scattering event, the energy loss can range from
0.3 eV up to energy losses larger than 2.7 eV even without energy transfer to the lat-
tice. The random force, originally introduced to ensure thermal equilibrium at long
simulation times, defines the shape of the energy loss distribution the most. Since
it obeys the second fluctuation-dissipation theorem,49 the random force disappears
in the vacuum or at zero Kelvin and its influence diminishes at lower tempera-
ture. The large broadening effect of the random force can be explained with the
help of the Ornstein-Uhlenbeck process; the broad structureless energy loss distribu-
tions observed both in simulations and experiment can be interpreted as interrupted
equilibration processes. Furthermore, the OU process also demonstrates that the
broadening effect scales with the square-root of the initial kinetic energy and the
temperature. Albeit stated otherwise in many publications,55,58,136–143 it is of crit-
ical importance to include this quantity into molecular dynamics simulation with
electronic friction if the energy transfer of an atom or molecule is under study. In
comparison to the random force, the energy transfer to the lattice or the form of
the PES have only a minor effect on the shape of the energy loss distribution. It
is for this reason why only a minor surface structure dependence is observed in the
energy loss distributions for the various investigated H/metal systems. This is the
central essence of this thesis! In that regard, we can also understand why the ELDs
for the H/W systems obtained from simulations with a CRP-PES compare well with
those ELDs generated with the EMT-PES, albeit the CRP-PES is much more ac-
curate than the EMT-PES. Hence, the accuracy of the applied PES is of ancillary
importance and therefore the presented EMT-PES, despite being large in error for
nowadays standards, can be considered to be appropriate for simulating scattering
dynamics of hyperthermal H atoms impinging on metal surfaces.
The results shown in this section also serve a warning: In daily work, the smearing

effect of the random force leads to results that are extremely forgiving in terms of
simulation errors, e.g. a bad sampling area for the initial positions of the H atoms
or utilisation of structures which are not properly equilibrated. It further makes
it hard to compare different simulation schemes with each other, which has been
demonstrated in Section 4.2.3. To do so, it is necessary to go to low electronic tem-
peratures. Unfortunately, no experiments at low surface temperatures exist yet to
test the level of theory presented in this thesis, which gave such a good agreement
to the experiments at ambient temperatures. A different pathway to investigate the
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4.2. Molecular dynamics simulations of inelastic H atom scattering

influence of the random force might be to perform experiments with higher initial ki-
netic energies. According to the OU-effect, small interaction times also diminish the
broadening effect of the random force. Clearly, those measurements are needed to
check the validity of the electronic friction approach, in particular the local density
friction approximation, to incorporate electron-hole pair excitation in MD simula-
tions correctly. From a theoretical point of view, the MDEF simulations with LDFA
of H atom scattering from metal surfaces can now be considered to be understood,
though. In the next section, I will present scattering calculations where electronic
friction and thus the random force are excluded. Therefore, the results will be very
sensitive to the applied potential energy surface.

4.2.5. H on Xe(111)

Most of the content of this section has been published in Ref. [3]. Pioneering
work has been done by my predecessor, Dr. Marvin Kammler, who constructed the
underlying H/Xe(111) PES for the MD simulations which are going to be presented
in this section.29 My aim for this section is to present the content of Ref. [3] not
only a little bit more detailed, but also to put into the context of the work I have
presented in the previous sections.

Prelude

So far, H atom scattering from metals has been studied exclusively. Since metals
are zero band gap materials and have a continuum of empty states, we can already
estimate with the aid of the famous Landau-Zener formula147–149 that electronic
transitions in the metal are very likely to happen, if an H atom is present and
disturbs the system. Insulators on the other hand possess large band gaps and
therefore electronic excitation should be very unlikely. For H atom scattering this
has been investigated experimentally by Bünermann et al.13 in an elegant way. At
first, the Au(111) surface was cooled to ∼50K and subsequently exposed to xenon
so that a thick solid Xe layer could build up on the gold surface. Xenon was chosen,
because of its similar mass to gold and the fact that solid xenon has the same
crystal structure as gold. This simplifies the growth process and xenon crystallises
in a fcc(111) orientation.150 After the H atom scattering experiments were performed
on the Xe-layer, the sample was heated and H atom scattering experiments were
performed on the clean Au surface. Figure 4.45 shows the drastic difference between
both materials. The broad structureless curve for H/Au(111) is a phenomenon we
already know and understand. The narrow distribution for the H atoms scattered
from the Xe(111) surface peak at an energy that is reasonably described with the
cube model,126 indicating purely mechanical energy transfer. Therefore, it should be
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Figure 4.45.: Experimental recorded energy loss distributions for 2.76 eV H atom
scattered inelastically from Xe(111) and Au(111). The initial condi-
tions are: θi = 45◦, ϕi = 0◦ and Ts = 300K and Ts ∼ 50K in case of
Au(111) and Xe(111), respectively. The black line represents the initial
H atom beam which has been shifted to the energy loss predicted by
the cube model, i.e. Eq. (4.10), for a collision between a hydrogen and
a xenon atom under the given conditions. The curves were taken from
Ref. [13] and are normalised with respect to their maximum values.

Table 4.8.: Optimised EMT parameters for the interaction between atomic hydrogen
and solid Xe.29

η2/Å
−1

n0/Å
−3

E0/eV λ/Å−1
V0/eV κ/Å−1

s0/Å
−1

H 0.838 0.193 -0.743 2.530 0.638 1.641 0.741
Xe 2.181 0.056 -0.160 1.765 0.042 2.500 2.370

in principle possible to reproduce the experimental finding with molecular dynamics
simulation on an accurate potential energy surface without non-adiabatic effects.

H/Xe(111) PES

Again, a potential energy surface based on Effective Medium Theory has been
utilised to describe the interactions between atomic hydrogen and solid Xe. The
PES generation procedure is the same as outlined in Section 4.1.2, and detailed
in Ref. [29]. In short, a static energy grid for atomic hydrogen at a p(2 × 2) four-
layered slab was calculated. Additionally, 12 AIMD trajectories were launched using
a 45K slab to incorporate thermally displaced configurations into the fitting process.
The generation of the DFT data was done with VASP5.3.5,68–71 making use of the

118



4.2. Molecular dynamics simulations of inelastic H atom scattering

 0

 1

 2
a)

E
po

t /
 e

V

top

b)
DFT
EMTSB

 0

 1

 2
c)

E
po

t /
 e

V

bri

d)

DB

 0

 1

 2
e)

E
po

t /
 e

V

hcp

f)

MB

 0

 1

 2

−9 −6 −3  0  3  6

g)

E
po

t /
 e

V

zH / Å

fcc

 0  20  40  60  80  100

h)

t / fs

ABS

Figure 4.46.: EMT-PES fitted to ab-initio energies describing hydrogen at a Xe(111)
surface. The grey circles denote the DFT energies, whereas the fitted
EMT-PES is represented by the black line. The interaction energies
between H and Xe(111) at the top, bridge hcp hollow and fcc hollow
site are shown in the left panels. In the right panels, AIMD trajecto-
ries with different number of bounces are shown; single-bounce (SB),
double-bounce (DB) and multi-bounce (MB). The trajectory in panel
h) is an absorption (ABS) event.

PBE functional37,38 along with the D2 van der Waals correction scheme proposed
by Grimme.40 The EMT function was parameterised with the aid of the genetic
algorithm.24,29 The optimised fitting parameter are given in Table 4.8 and Figure
4.46 shows the EMT-PES in comparison to the energies calculated with DFT. The
corresponding EMT-PES is capable to reproduce the data points taken from both,
the static energy grid and the AIMD trajectories extraordinarily well. In fact, the
RMSE with respect to the DFT input data is 1.4meV per atom, bringing it close
to the quality of machine-learning potentials in terms of accuracy but with a much
smaller number of parameters. This increases the performance of the MD simula-
tions significantly.

The minimum configuration for atomic hydrogen on Xe(111) is located at the
fcc hollow site. The vertical binding distance to the surface is 2.8Å and the bind-
ing well of this configuration has a depth of 30meV. This is in good agreement to
the reported well-depth of a reported van-der Waals potential which is based on
molecular beam experiments, albeit both PESs are not strictly comparable.151 The
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binding sites for atomic hydrogen in the bulk are higher in energy compared to the
binding sites on the surface. One word of warning though. Despite the accurate
representation of the energetic landscape, the xenon slab atoms in this framework,
i.e. within EMT, are treated as a metal. The cohesive energy is a function of the
background electron density. Thus, molecular dynamics using electronic friction at
the LDFA level as non-adiabatic correction will give energy loss distribution sim-
ilar to those we have seen for the H/metal systems for two reasons: Firstly, the
H atom will experience a high background density when it comes close to the Xe
atoms. Secondly, no spectral quantity, in particular the electronic density of states
of the underlying material, is taken into account within the LDFA, which has been
discussed in detail in Section 2.4. Fortunately, this issue can be easily solved by
performing MD simulations without electronic friction.

Molecular dynamics simulations

With the PES for H/Xe(111) in hand, I performed molecular dynamics simulations
with the aim to provide a detailed picture of the underlying scattering dynamics.
The preparation of the surface slab is the same as described in Section 4.2.1. The
Xe(111) surface was modelled as a p(6 × 6) six layered slab and equilibrated to
45K to meet the experimental conditions. Again, my main focus will lie on spec-
ular scattered particles to account for the fact that a point detector is used in the
complementary experiment. A comparison between experiment and simulation is
depicted in Figure 4.47.
The energy loss distribution acquired from the MD simulations is in excellent

agreement with the experiment. The distribution comprises a large peak with a
maximum at ∼ 0.04 eV and a full width at half maximum (FHWM) of 0.054 eV.
A cube model, given by Eq. 4.10, which takes both the depth of the binding well
and the surface temperature into account, predicts an energy loss of 0.042 eV under
the experimental conditions for one collision. This agrees almost perfectly with the
most probable energy loss of the computed and experimental recorded energy loss
distribution. The maximum energy that can be transferred to the lattice under the
assumption of parallel momentum conservation and energy conservation is given by

∆Ebaule = 4µ
(1 + µ)2Ei. (4.20)

This model is often referred to as Baule limit.152 Under the present condition,
∆EBaule is 0.083 eV. The mean energy loss of the ELD is 0.124 eV and thus larger
than the value predicted by the Baule limit. Hence, a significant fraction of particles
must have undergone multiple collisions with the substrate atoms, especially those
which contribute to the right flank of the large peak in Figure 4.47 showing a fall
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Figure 4.47.: Comparison of energy loss distributions of 2.76 eV H atoms scattering
off a Xe(111) surface sampled from TOF measurements (white circles)
and adiabatic MD simulations (black solid line). The thin dashed line
represents the baseline level. The surface temperature is 45K and
the polar angle θi = 45◦. The H atoms were shot along the [101̄]
direction. ∆Ecube is the energy transferred in one collision according
to the cube model, given by Eq. 4.10. The experimental data has been
shifted by 7meV towards higher energy losses, which is in line with the
experimental uncertainty in the absolute energy scale.

off to energy losses up to 0.5 eV. Since experiment and theory are in such a good
agreement with each other, I consider the MD trajectories suitable to describe the
underlying scattering dynamics in detail.

Penetration depth analysis

In order to investigate in what manner the penetration depth correlates with the
energy loss of the specular scattered H atoms, I plotted the energy loss against
the minimum altitude zmin in form of a contour plot. The result can be found in
Figure 4.48 a). There is a clear correlation between the depth of penetration and
the minimum energy transfer. H atoms that scatter from the third layer, i.e. the
next layer under the subsurface, do not show energy losses smaller than 0.2 eV. The
energy losses of specular scattered H atoms which made their way to the subsurface
do not undershoot an energy loss of 0.09 eV, which is larger than the maximum
energy transfer predicted by the Baule limit for one collision. Thus, those scattered
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Figure 4.48.: Analysis of penetration events. Panel a) shows a contour plot where
the energy loss of specular scattered H atoms is plotted against their
minimum altitude zmin. The contour lines represent the number of
events. Panel b) shows a probability density for the final altitudes
zfin of the H atoms which remained in the Xe(111) slab. The initial
conditions are the same as in Figure 4.47. The vertical lines in panel b)
indicate the vertical locations, i.e. the z-coordinates of the Xe atoms
in a non-thermalised, relaxed p(6× 6) six-layered slab.

particles must at least undergo two collisions during their time at the xenon surface.
This argument can be understood from a pure geometric point of view: Since the
fcc(111) surface is a closed-packed surface, it is very unlikely for projectiles which
penetrated the slab to undergo one collision with the Xe atoms only. A deeper depth
of penetration correlates with a higher chance for a larger number of collisions with
the lattice, which inevitably results in a higher energy loss. As a consequence, only
particles which scattered from the surface layer experience energy gain. Lastly, it
should also be noted that penetrated particles contribute to the large peak, depicted
in Figure 4.47, only in an ancillary manner.
From Figure 4.48 a) it can be seen that H atoms which scatter from the surface

layer can be subdivided into two categories. The majority of those H atoms experi-
ence an energy loss that ranges from −0.02 eV to 0.08 eV, which could be attributed
to single collision processes. However, the FWHM of the peak in Figure 4.47 is com-
paratively large, which indicates that several scattering mechanisms are involved.
The remaining projectiles show an energy loss from 0.08 eV to ∼ 0.3 eV, despite
the fact that they did not undergo surface penetration. It is therefore reasonable
to assume that these class of scattered projectiles collide multiple times with the
substrate atoms.
The contribution of those particles which penetrated deeper into the Xe slab than
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4.2. Molecular dynamics simulations of inelastic H atom scattering

the third layer is approximately 2%. However, due to the high kinetic energy and no
possibility to excite electron-hole pairs, it should be fairly easy for the impinging H
atoms to penetrate deep into the slab. Therefore, a look onto the adsorbed particles
is fruitful. For the given initial conditions, the MD simulations predict the sticking
probability S0 to be 15%, which is much smaller compared to the S0 calculated
values for the corresponding fcc metal(111) surfaces.16,29 I analysed the altitudes
of the adsorbed particles after the last integration step of the MD trajectories and
constructed a probability density function for this quantity. The result is depicted in
Figure 4.48 b). The H atoms are located over the entire slab with no clear preference
for an individual layer. It is, however, interesting to see that almost no H atoms are
located at the surface. The fraction of adsorbed H atoms located above the surface
plain marks only 5% of the stuck particles. This finding is in stark contrast to the
behaviour of H atoms adsorbed on a fcc metal(111) slab.14 In case of the metal sur-
faces, the majority of adsorbed particles penetrate the surface at first and dissipate
a lot of their high kinetic energy to electrons and lattice, before they eventually hop
back to the surface. At that time, they usually do not possess enough kinetic energy
anymore to overcome the binding well of ∼ 2 eV. For xenon on the other hand, the
situation is different. Obviously, the very effective non-adiabatic energy transfer
channel is not accessible here and in addition the binding well of H-Xe(111) has
only a depth of ∼ 30 meV. Hence, particles with a positive velocity component into
z-direction which reemerge from the subsurface or deeper regions of the bulk can
therefore easily escape the binding well and reenter the gas-phase. This is reflected
in the low sticking probability, but can also be nicely rationalised with the help of
the probability density function for adsorbed H atoms above the surface layer, i.e.
positive z values in Figure 4.48 b). The H atoms are not concentrated at a certain
vertical distance z, but evenly distributed up to almost 6Å. Since the shallowness
of the H/Xe(111) binding well allows an easy escape from the Xe(111) surface, we
can also grasp why the amount of H atoms located between the subsurface and the
surface, as well as, between the penultimate and the last layer, is lower compared
to the numbers between the layers in the middle of the slab.

Bounce criterion

The centre of the large peak of the specular energy loss distribution for H/Xe(111)
in Figure 4.47 can be very well described with the cube model given in Eq. (4.10).
However, this mechanical model cannot explain the comparatively large FWHM of
this peak and thus I made first considerations that the large peak does not exclu-
sively consists of particles which bounced directly off the Xe(111) surface. In this
part, I want to give a detailed analysis of how the kinetic energy is transferred from
the H atom to the Xe(111) slab. In order to do so, I will make use of the concept
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4. Dynamics of H atoms on non-covalent bonding surfaces

of bounces. Since a ’bounce’ is something that is not rigorously defined in physics,
I have some liberty in my choice, but naturally my analysis will strongly depend on
this choice. Therefore, I consider it fruitful to motivate my definition of a bounce
prior to the presentation of my analysis. Moreover, I will also demonstrate how
different choices of bounce criteria lead to different results and therefore different
interpretations of the underlying scattering dynamics which ultimately leads to the
overall energy loss distribution for H/Xe(111) agreeing so well with the experiment.
One option for the definition of a bounce is the change of sign of the z-component

of the projectile’s velocity vector ~v. This choice has its merits due to its simplicity
and generality at the same time. Moreover, it is rather intuitive: Imagine an atom
impinging on the surface, thus it has a negative vz component. If it is supposed
to scatter, it must have a positive z entry in the velocity vector ~v at the end of
the simulation. Thus, scattered trajectories will always exhibit an odd number of
vz changes of sign. Since these events are rather characteristic for trajectories, it is
quite natural to categorise scattered trajectories with respect to their number of vz
changes of sign. A scheme for the detection of those events is also very simple to
implement into a code without any further characteristic information of a specific
system under study. In addition, the generality allows a direct comparison between
two different simulation codes involving (most likely) two different potential energy
surfaces in the simulation. On the other hand, the simplicity of this bounce criterion
has also its downsides. Imagine a strong collision that does not change the sign of
the vz component of the projectile’s velocity vector, but its vx component instead.
This kind of event would not be classified as a bounce, although energy is most
likely transferred from the projectile to the lattice atoms. This can lead to some
unrealistic situations where single-bounce trajectories show a much larger energy
loss compared to trajectories exhibiting two or even multiple bounces. Furthermore,
the change of sign of the velocity happens in one integration step — it is sudden.
This attribute prevents a further diversification of a bounce into subclasses. I will
demonstrate below that a categorisation of bounces is very useful to describe the
scattering dynamics of H atom scattering from Xe(111).
Another option for a bounce criterion is the utilisation of a hard-sphere model.

The idea behind this criterion is that if an atom or molecule comes close to an atom
in a surface, the projectile enters the repulsive part of the interaction potential and
the surface responds in form of lattice deformation. This cost in energy is usually
overcome with kinetic energy that is taken from the projectile. Hence, the closer the
projectile approaches a surface atom the deeper it travels into the repulsive part of
the interaction potential and the more kinetic energy is taken from the projectile.
The characteristic distance between projectile and lattice atom can thus be used
as a bounce criterion. On one hand, this characteristic value should be chosen in
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Figure 4.49.: Closest approach between projectile and surface atom which serves
as decision criterion for the choice of a proper collision parameter σ.
Panel a) shows a probability density function of the minimum distance
dmin between the projectile and the surface atoms for all scattered H
atoms. The dashed line in Panel a) marks the chosen collision parame-
ter. Panel b) shows a correlation plot between dmin and the energy loss
of the scattered H atoms. For the sampling in panel b) all scattered H
atoms were taken into account. Panel c) shows the same correlation,
but in that panel, only specular scattered H atoms were used for the
correlation plot. The contour lines in b) and c) represent the num-
ber of events. The horizontal lines mark the boundaries between hard
’h’, medium ’m’, soft ’s’ and very soft ’v’ bounces. In the used cate-
gorisation, hard bounces occur when the projectile approaches closer
than 1.55Å. Medium bounces occur between 1.55 and 1.65Å, whereas
a bounce is considered to be soft if the projectile approaches the Xe
atom within a range from 1.65 and 1.81Å. Very soft bounces are colli-
sions in which the distance between H atom and Xe atom range from
1.81 and 2.00Å. The title of the individual panels gives the number of
required trajectories that must be launched to acquire a good statisti-
cal sampling for the respective distributions.

such a way that no zero bounces occur because scattered particles must at least
undergo one collision, but on the other hand this radius must not be too large to
avoid false-positive events. Therefore, this criterion requires prior knowledge of the
system of interest. To define a hard sphere radius, denoted as σ, which I henceforth
refer to as collision parameter, I calculated ∼ 50,000 trajectories and analysed
the minimum distance between H atom and lattice atoms along the scattered parti-
cle’s trajectory. An example for H/Xe(111) is given in Figure 4.49 a). In this case I
chose σ to be 2Å, because this choice meets the above formulated requirements for
the collision parameter.
Another advantageous attribute of this bounce criterion is that it is possible to

classify the bounce events into subcategories, e.g. by analysing the minimum dis-
tance of the H atom to the nearest Xe atom when the projectile was inside the sphere
spanned by the collision parameter. In panel b) of Figure 4.49 I checked whether
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Figure 4.50.: Bounce analysis of the specular energy loss distribution with two dif-
ferent bounce criteria. Panel a) shows the results obtained with the
hard-sphere criterion. In panel b), the vz change of sign is used as
criterion to classify a bounce. The simulation conditions are the same
as in Figure 4.48. Note that the criterion applied in panel b) does not
allow a detailed bounce analysis, as almost all trajectories are classified
as single-bounce trajectories.

the energy loss of the scattered H atoms depends on the minimum distance between
projectile and surface. The L-shape of the plotted intensity clearly demonstrates
that the energy loss shows a dependence on dmin. This allows a further categorisa-
tion of the bounces in terms of their ’hardness’. The closer a projectile approaches
a lattice atom, the deeper it travels into the repulsive territory of the potential and
thus the harder the occurring collision is. I defined four categories for a bounce;
hard (h), medium (m), soft (s) and very soft (v). The boundaries of the individual
categories were chosen on the basis of the specular 2D histogram plotted in panel
c) of Figure 4.49. Of course the chosen number of categories and boundaries have a
flavour of arbitrariness in them, but I made my decision so that the characteristic
features of the 2D histogram in Figure 4.49 c) are properly accounted for.
Overall the hard-sphere criterion is a little bit more sophisticated compared to

the velocity sign-change criterion and cannot be used out of the box. However, once
optimised, it provides a lot more information about the collision dynamics between
projectile and surface. This is demonstrated in Figure 4.50, in which the same over-
all ELD is shown, but the two discussed bounce criteria are applied to categorise the
trajectories with respect to the number of bounces. While the hard-sphere criterion
subdivides the overall energy loss distribution in a reasonable manner, a detailed
analysis with the vz sign-change criterion is not possible, because almost all trajec-
tories are classified to be single-bounce events. I therefore chose the hard-sphere
criterion, because it allows a more detailed analysis of the scattering dynamics. Ad-
ditionally, this criterion appears more natural to use, since the mean energy loss
of the experimental recorded distribution agrees so fairly well with the energy loss
predicted by classical mechanics for an elastic collision.
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Figure 4.51.: Energy loss distribution of specular scattered H atoms from Xe(111)
decomposed with respect to the number of bounces occurring along the
trajectory. Panel a) shows the different categories of single-bounces
along with the total number represented by the black line. In panel
b) the contribution of the individual double-bounce categories to the
whole ELD is presented. The abbreviations ’m’, ’s’ and ’v’ are ex-
plained in the caption of Figure 4.49. The initial conditions are the
same as in Figure 4.47.

Bounce analysis

With the proper bounce criterion in hand I analysed how the individual bounce
events contribute to the overall energy loss distribution that agrees so well with the
experiment. The results are shown in Figure 4.51. In panel a) the focus is laid on the
single-bounces; their contribution to the specular energy loss distribution is 32%,
which is, if one imagines the H atoms to behave like hard-spheres bouncing off larger
balls, surprisingly small. I categorised the bounces with respect to their hardness
and decomposed the distribution even further. The concept of this categorisation is
explained in the previous section. I found that no single-bounce trajectories with a
hard (’h’) collision contribute to the specular energy loss distribution. The hardest
type of bounces occurring in form of single-bounce events are medium (’m’) bounces.
Also soft (’s’) and very soft (’v’) bounces occur, but to a much smaller extent, which
is why I added them together in Figure 4.51 a). There are almost no contributions
of single-bounces to the tail starting at an energy loss of approximately 0.09 eV. The
double-bounces on the other hand can be discriminated into two components. A
large proportion of double-bounce trajectories contribute to the large peak of the
total ELD, whereas a smaller fraction defines the intensity of the decaying tail in
the range from ∼ 0.08 − 0.15 eV. A closer analysis reveals that the double-bounces
contributing to the large peak are weak double-bounces, i.e. a mixture of two soft
bounces (’ss’), soft and very soft bounce (’sv’) and two very soft (’vv’) bounces. The
mean energy loss of those trajectories is with 35meV even slightly smaller than the
mean energy loss of the single-bounce trajectories (41meV). However, their contri-
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bution to the specular energy loss distribution is with 33% almost identical to the
contribution of the single-bounces. Those double-bounces which dominate the tail
at the right edge of the large peak consists primarily of trajectories exhibiting two
medium bounces (’mm’), a medium and a soft bounce (’ms’) and two soft bounces
(’ss’). Again no hard bounces are contributing to the signal. Thus, we can dis-
criminate the overall double-bounce signal into a part with strong double-bounces
and a part involving weak double-bounces. The mean energy loss of the strong
double-bounces is 0.13 eV which is very close to the overall mean value of specular
scattered particles. Visualisation of one exemplary trajectory of each category sup-
ports the discrimination into strong and weak double-bounces. In case of the latter,
the projectile impinges with a large impact parameter b on a Xe atom. During the
collision it is directed out-of plane to another Xe atom. Subsequently, the projectile
is deflected again leading to an in-plane redirection and thus the two out-of-plane
scattering events compensate each other. It is further interesting to note that the
large peak also contains contributions from multi-bounces. A closer analysis reveals
that these type of multi-bounces are triple bounces that contain soft bounces as
the hardest type of bounces. Then, the contribution of the multi-bounces fall off
again until it becomes the dominant scattering channel at an energy loss of 0.18 eV.
Exemplary visualised trajectories of a sv event and ms event are provided in Movie
S4 and S5 in the SI of Ref. [3], respectively.

Another interesting aspect is the angular distribution of the in-plane scattered H
atoms. Figure 4.52 shows the energy integrated angular distribution along with the
contributions of the single-bounce, double-bounce and multi-bounce trajectories to
the total signal. The maximum of the signal is located at a polar angle θf = 62.5◦.
Single-bounce and double-bounce events have a preference direction to exactly that
location. This reflects the non-corrugated nature of the H/Xe(111) EMT-PES. The
multi-bounce events on the other hand are broad and have their maximum to the
surface-normal. This observation is another implication that multi-bounces usually
go along with surface penetration. The H atom penetrates to surface and several
collisions occur until it manages to escape from the surface. At that point all in-
formation about the initial impinging direction are annihilated as a consequence to
the multiple collisions the H atom experienced inside the xenon slab.

Out of plane scattering

Almost no H atoms which undergo hard bounces along their trajectory contribute to
the specular energy loss distribution, but we know from panel b) of Figure 4.49 that
hard bounces are common events, if all scattered H atoms are considered. Hence,
those kind of H atoms must scatter out-of-plane and are not detected in the ex-
periment, because the apparatus does not allow out-of-plane measurements at the
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Figure 4.52.: Energy integrated angular distribution of H atoms scattered in-plane
off a Xe(111) surface. The initial kinetic energy is 2.76 eV. Positive
polar angles indicate forward scattering whereas negative polar angles
indicate backward scattering. Thus, the initial polar angle θi corre-
sponds to −45◦ in the shown polar plot. The crystallographic inci-
dence direction has been chosen to be [101̄] to simulate the experimen-
tal conditions. The signal is normalised with respect to the maximum
intensity.

moment. Since this is not an issue for theory, I will therefore look at the out-of-plane
signal in order to provide a more complete picture of this system.
Figure 4.53 shows the polar angle integrated energy loss plotted against the out-

of-plane angle. In panel a) only the single-bounce trajectories are taken into account.
This histogram has a mirror symmetry with respect to the incidence direction. Fur-
thermore, three maxima can be observed for both positive and negative out-of-plane
angles. In general, a very clear trend emerges for single-bounce trajectories. A
larger energy loss is associated with a larger out-of-plane angle. On one hand those
H atoms, which scatter in an out-of-plane angle of 180◦, i.e. backwards, have the
highest energy losses. The local maximum located around ±150◦ agrees extremely
well with the value predicted by the Baule limit. This agreement strongly suggests
that these H atoms undergo a central collision with a Xe atom. On the other hand,
forward scattered H atoms which only undergo one collision show—on average —the
smallest energy loss. A closer analysis of the single-bounce trajectories with respect
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Figure 4.53.: Out-of-plane scattering of H atoms integrated over all polar angles.
Panel a) depicts single-bounce events exclusively. In panel b) all other
scattered H atoms are used for the calculation of the 2D histogram.
The contour lines represent the number of events. Note that in this plot
double-bounces are not discriminated from the other multi-bounces.
The horizontal dashed lines indicate the angle area of in-plane scatter-
ing, whereas the solid vertical line marks the energy loss predicted by
the Baule limit. The maxima in panel a) are labelled with the abbrevi-
ations for the categories of bounces which contribute to the respective
maximum the most.

to the hardness of the occurred bounce reveals that harder collisions lead to a larger
out-of-plane scattering. The maxima shown in Figure 4.53 are labelled with the
abbreviation of the respective bounce category which predominantly contributes to
the signal. At approximately ±150◦, the signal is mainly due to scattered H atoms
which performed hard single-bounces. A single medium-bounce usually results in an
out-of-plane scattering of approximately ±75◦. Single-bounce trajectories with soft
and very soft bounces usually show an out-of-plane angle equal to ±25◦. Both types
of trajectories contribute to the respective maxima in almost equally—soft bounces
have only a slight majority.
It is further interesting to see that the H atoms with a single-bounce always have

a diminished probability to scatter in-plane. Double-bounce events behave much
differently in that regard. This can be grasped with the help of Figure 4.53 b). In
that panel, the energy loss for all scattered H atoms with two or more bounces is
plotted against the out-of-plane angle in form of a contour map. The trend that
the energy loss increases with increasing out-of-plane angle is contained. However,
the maximum of panel b) is located in-plane and at an energy loss of 0.035 eV.
From the bounce analysis of the specular energy loss distribution, we know that the
double-bounces with an energy loss ranging from small negative values, i.e. energy
gain to 90meV are of weak nature. The combination of two weak out-of-plane colli-
sions that ultimately result in in-plane scattering is the dominating double-bounce
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channel. Trajectories of strong multi-bounces are scattered to all out-of-plane an-
gles without any angular preference and thus behave as one would expect. This
can be nicely taken from Figure 4.53 b) in the high energy loss regime. With the
results presented in Figure 4.53 in mind, we can now understand why the double-
bounce trajectories contribute equally to the large peak in the specular energy loss
distribution as single-bounce events.

Comparison to a hard-sphere potential

To conclude the analysis of the collision dynamics, I want to remark that this gas-
surface system, despite its many degrees-of-freedom, can be surprisingly well under-
stood with the help of the hard-sphere model, which is probably the simplest concept
in the area of gas-phase scattering dynamics. Let us assume that the interaction of
two particles can be described with a hard-sphere potential

V (r) =

∞, r ≤ bmax

0, r > bmax,
(4.21)

where r is the distance between the two particles and bmax the largest possible
impact parameter. The deflection function χ(b), which describes the scattering
angle of two particles in the centre-of-mass frame, has the following form for this
model potential:153

χ(b) = 2 arccos b

bmax
, (4.22)

with b being the impact parameter. For central collisions, i.e. b = 0, the deflection
function equals π and backward scattering occurs. In this scenario the energy trans-
fer can be calculated with Eq. (4.20), which is the maximal energy transfer possible
in a central collision. The first scenario, depicted in Figure 4.54, demonstrates that
the EMT-PES also predicts this kind of scattering behaviour. In addition, the MD
trajectory predicts an energy loss being in very good agreement with the energy
loss obtained by the Baule limit, i.e. with Eq. (4.20). Collisions with an impact
parameter b = bmax/2 result in a deflection function of π/2, which corresponds to
specular scattering in our coordinate system. This can be taken from the second
scenario shown in Figure 4.54. Again, the EMT-PES provides a very similar pic-
ture of the underlying scattering process and the associated energy transfer can be
reasonably well described with the Cube model, i.e. with Eq. (4.10). If the impact
paramater b is larger than bmax, which is nothing else than the radius of a Xe atom,
the interaction potential is zero and thus no collision occurs. Hence, the deflection
function would be zero and so the energy transfer. This is the scenario where the
differences between a simple gas-phase model a gas-surface system, e.g. H/Xe(111),
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Figure 4.54.: Comparison of a collision between two gaseous particles behaving like
hard sphere particles with scattering trajectories of H/Xe(111), calcu-
lated with the EMT-PES, which are shown as snapshots at the bottom
of the figure. The dotted line on the Xe atom indicates the z-axis,
which would correspond to the surface normal in the MD simulation.
Event I) shows a central collision which will result in backwards scat-
tering, i.e. a deflection function χ(b) = π. Event II) shows a collision
event with an impact parameter b = bmax/2, which results in a deflec-
tion function of π/2. In our scattering geometry, this corresponds to
specular scattering. The simulated MD trajectory for H/Xe(111) looks
very much alike. Event III) shows a collision event with b > bmax, which
would lead to no collisions in the hard-sphere model. In the MD sim-
ulation, the H atom is firstly attracted to the Xe atom resulting in a
collision that redirects it further into the xenon slab. There, the H
atom undergoes multiple collisions before it finally reemerges into the
gas-phase. Both models predict a significantly different energy loss
∆E.

kick in. If the top atom is not directly hit, surface penetration is a possible pathway
of the trajectory, resulting in subsurface scattering and to a multi-bounce event.
Moreover, the EMT-PES is no hard-sphere potential and thus the H atom will feel
the presence of the Xe atoms even when b > bmax and as a consequence the H atom’s
momentum is converted, resulting in an out-of-plane redirection of the projectile.
This is the path towards a weak double-bounce event. On the other hand, strong
double-bounce trajectories can be reasonably well seen as two consecutive hard-
sphere collision events (see Movie S5 in the SI of Ref. [3]). Bottom line, the weak
double-bounces and multi-bounces are the events that bring the effects of a long-
range many-body potential into the energy loss distribution, whereas single-bounce
and strong double-bounce events can be effectively regarded as gas-phase processes
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involving a hard-sphere potential. Figure 4.54 shows an example of a single-bounce
event corresponding to each of the three discussed scenarios to emphasise the sim-
ilarities and differences between the collision dynamics predicted, arising from the
two applied potentials.

Comparison to a Lennard-Jones potential

I have demonstrated that a large portion of the scattering dynamics between atomic
hydrogen and a Xe(111) surface can be qualitatively understood with the help of
a simple hard-sphere model, but I also gave the reason why a hard-sphere poten-
tial cannot reproduce the experimental recorded energy loss distribution. From a
methodology point of view we should already do better, if we now apply a simple
long range potential. Since London forces are the reason why noble gas crystals
exist154 and atomic hydrogen does not form a bond with Xe, the attractive inter-
action between hydrogen and xenon should already be reasonably well described
with a Lennard-Jones potential (LJP). The Lennard-Jones parameters for the Xe-
Xe and H-Xe interactions are easily obtained. For the H/Xe interactions, I relied on
Lennard-Jones parameters σH,Xe = 3.935Å and εH,Xe = 20meV published by Toen-
nies et al.,151 who determined these parameters with the help of crossed molecular
beam experiments. For the Xe-Xe interactions, I used Lennard-Jones parameter
σXe,Xe = 3.98Å and εXe,Xe = 19meV which are established to describe a xenon crys-
tal accurately.155

A comparison between the constructed LJP and the EMT-PES is provided in
Figure 4.55 a). The LJP starts to rise at higher distances and fails to mimic the
repulsive wall of the DFT input data. The incapacity of the LJP to reproduce the
DFT input data accurately originates from the fact that a repulsive r−12-term is
an insufficient model for the Pauli repulsion which gives rise to the increase of the
potential energy at short distances in an exponential manner.156 The EMT-PES
on the other hand manages to represent the repulsive energies predicted by DFT
with van der Waals corrections very well. This has drastic consequences for the
MD simulations: Albeit the LJP based distribution is capable to simulate the peak
at 0.042 eV, it fails to reproduce the probabilities accurately. Quite in contrast to
the Lennard-Jones potential, the EMT-PES is capable to reproduce the experiment
well for the whole range of energy losses and, in addition, is also capable to repro-
duce the probabilities correctly. With the results given in panel a) of Figure 4.55 in
mind, it easy to understand why the ELD, calculated with the LJP, does not agree
so well with the experiment in comparison to the EMT based ELD. The effective
radius of xenon within the LJP is approximately 1Å larger than in EMT. Therefore,
the MD simulations yield mainly single-bounce trajectories which have a reasonably
well described energy transfer with a cube model. The large energy losses resulting
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4. Dynamics of H atoms on non-covalent bonding surfaces

0 1 2 3 4 5 6
zH / Å

0

1

2

3

4

5

E p
ot

 / 
eV

a)

2 4 6
zH / Å

0.02

0.00

0.02

E p
ot

 / 
eV

DFT
EMT
LJP

0.0 0.1 0.2 0.3 0.4 0.5
Energy loss / eV

0

5

10

15

20

Pr
ob

ab
ilit

y 
de

ns
ity

 / 
eV

1

b)
Experiment
EMT
LJP

Figure 4.55.: Performance comparison of the EMT based PES with a Lennard-Jones
potential (LJP). Panel a) shows the one-dimensional PES cut of the
top-site of both used potentials. The DFT input data used in the EMT-
PES parameterisation are also included to allow a better estimation of
the PES quality. The inset shows the binding wells. Panel b) shows
the specular energy loss distribution sampled from MD simulations
performed on both PESs. The experimental data are also included for
a better comparison. Note that the LJP provides an ELD that fails to
provide the correct probabilities and does not show any high energy
losses at all.

from strong double-bounces and multi-bounces are not caught in the MD simula-
tions with the Lennard-Jones potential. Especially the multi-bounce events which
predominantly go along with surface penetration are notably affected by the more
repulsive nature of the Lennard-Jones potential. Almost no H atoms penetrate the
surface when they propagate on the Lennard-Jones potential. The LJP based MD
simulations predict a sticking probability S0 of 5 × 10−6. Comparing this value to
the value of 0.15, which is provided by the EMT-PES, one can identify that the
sticking dynamics of H atoms on noble gas solids must involve surface penetration.
Hence, the repulsive part of the underlying PES is of central essence if one wishes
to perform accurate MD simulations. This result does not only apply for 2.76 eV H
atoms, since the effective larger size of the Xe atoms persists for all initial kinetic
energies.
Bottom line, the here presented EMT-PES might serve as a benchmark for apply-

ing simpler pair potentials, like the Lennard-Jones potential, to study the scattering
dynamics of H/Xe(111). Although the Lennard-Jones potential, presented in this
section, failed to describe the scattering and sticking dynamics quantitatively, it
should be noted that the H/Xe interactions were taken from gas-phase experiments
and thus the transferability to a surface problem might be questionable. From that
perspective, it could argued that the applied LJP does not perform so badly and one
could have done better, if one had used a differently parameterised Lennard-Jones
potential. In fact, MD simulations based on a Lennard-Jones potential that was
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crafted according to the Lorentz-Berthelot mixing rules157 using the van der Waals
parameters for H and Xe from Ref. [158] and [159], respectively, gave an ELD which
showed a slightly better agreement with the experiment.29 Still though, the large
energy losses could not be described with this Lennard-Jones parameter set either
and the sticking probability was 0.01%. Thus, if the EMT-PES sets the standard,
also this Lennard-Jones potential falls short of the mark, because no subsurface
scattering dynamics was observed with this LJ parameter set either. As a prospect
for the future, one could use a Buckingham potential,160 which might be a more ap-
propriate since the repulsive part of this potential is described with an exponential
function instead of a r−12 term like it is done in a Lennard-Jones potential.

4.2.6. Conclusions

The specular scattering of H atoms from metal surfaces and insulator surfaces in
form of Xe(111) has been investigated with MD simulations performed on EMT-
PESs. The focus of the analysis was laid onto the energy loss distributions of the
scattered H atoms along with the impact of the surface geometry on these distribu-
tions. The low Miller-index surface facets of the fcc metals Ni, Cu, Pd, Ag, Pt and
Au have been investigated in Section 4.2.2, while the (110) and (111) facet of Mo
and W were under study in Section 4.2.3. For all investigated surface facets, the
surface geometry does only have a minor influence on the shape of the energy loss
distributions if the surface temperature is at room temperature. The insensitivity
of the energy loss distributions to the surface geometry as well as to details of the
employed PES can be explained with the presence of the random force ~FL(t), which
has an amplitude scaling with

√
T . If the amplitude of the random force is large, it

casts a strong broadening effect on the energy loss distribution concealing all effects
of the underlying PES. At 70K, the influence of the random force diminishes and the
surface geometry in form of the geometry of the PES starts to become important.
As a consequence, the energy loss distributions for the different facets look different
and can now be distinguished from each other. This has been discussed in detail
in Section 4.2.4. Thermal displacements are another reason why the energy loss
distributions for specularly scattered H atoms look more similar at 300K compared
to 70K. The change in the lattice geometry due to thermal movements of the lattice
atoms results in different shapes in the PES (as well as in a different background
electron density nEMT(~r)) and thus destroys the lattice symmetry. This also causes
a broadening in the specular energy loss distributions. Even though the effect is not
as large as the effect of the random force, it is still significant, which can be taken
from the comparison between the specular energy loss distributions for H/W(110)
calculated with a CRP-PES and a EMT-PES, presented in Section 4.2.3. The ab-
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4. Dynamics of H atoms on non-covalent bonding surfaces

sent isotope effect can be explained within the framework of electronic friction. The
inverse mass dependence of the friction force compensates the approximately linear
mass dependence of the mechanical energy transfer, given by Eq. 4.10. Therefore all
investigated surface facets show no isotope effect and are thus in line with earlier
observations.21,29,107 The contribution of subsurface scattering to the specular energy
loss distribution is in line with the planar density of the respective surface geometry.
The lower the planar density, the larger the contribution.
The mean energy loss 〈Eloss〉 of all scattered H atoms as well as the sticking prob-

ability S0 show a slight dependence on the surface geometry. In case of the fcc metal
surfaces, the (110) facet shows the smallest values for both, 〈Eloss〉 and S0. This
also holds for the bcc metals, where the bcc(111) surfaces, the facet with the lowest
planar density, showed slightly lower values compared to their (110) analogues. The
angular distributions of the in-plane scattered H atoms do not show a significant
surface geometry dependence either. An exception marks the fcc(110) surface, which
exhibit a significant backward scattering channel. The angular distributions of the
investigated bcc metal surfaces did not show a dependence on the surface structure.
In contrast to the investigated metal surfaces, an energy loss distribution of sig-

nificant difference was recorded for H atom scattering from Xe(111).13 Thus, it was
necessary to exclude ehp excitation to acquire ELDs with MD simulations that fit
the experiment well. The specular energy loss distribution is to major extent a
composition of single-bounces, and two different kind of double-bounce events. One
category consists of two consecutive strong collisions, which can be interpreted as
two subsequent single-bounces and consequently the energy transfer is on average
approximately twice as large as the mean energy transfer of the single-bounce events.
The other classes are two subsequent weak collisions. In the first bounce, the mo-
mentum of the H atom converted into an out-of-plane direction and the projectile
is redirected towards another Xe atom. In the following collision, the momentum
is then converted into in-plane direction again, neutralising the effect of the first
collision. The average energy loss for these weak double-bounces is in fact even
slightly lower compared to the mean energy loss of the single-bounce events. While
the scattering behaviour of the single-bounce and strong double-bounce trajecto-
ries can be qualitatively described with a simple hard-sphere model, borrowed from
gas-phase reaction dynamics, the weak double-bounce trajectories reflect the that
the EMT potential for H/Xe(111) is less repulsive than the hard-sphere potential.
Hard single-bounces predominantly undergo backwards scattering and are thus not
detectable in the experiment, which can also be rationalised with the simple hard-
sphere model. The intensity maximum of the weak double-bounces is located at an
out-of-plane angle ∆ϕ = 0◦ and are thus in-plane. The in-plane angular distribution
shows a strong preference to forward scattering with the intensity maximum located
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at a scattering angle θf = 60◦, reflecting the flat nature of the H/Xe(111) EMT-
PES. The signal at scattering angles close to the surface normal are dominated by
multi-bounce events which usually goes along with subsurface scattering, resulting
in a large momentum perpendicular to the surface when the H atom reemerges into
the gas-phase.
MD simulations performed on a simple Lennard-Jones potential failed to describe

the experimental energy loss distribution because it is too repulsive. Hence, those
MD simulations helped to identify that an accurate description of the repulsive part
of the PES is more important than the binding well, if one aims to describe the
scattering dynamics of H atoms with a kinetic energy of several eV. A Buckingham
potential might already provide a significant improvement to the Lennard-Jones po-
tential, since the repulsive part of the Buckingham potential is exponential and does
not scale with r−12, like the Lennard-Jones Potential.
Bottom line, with the aid of MD simulations performed on the parameterised

EMT-PESs I demonstrated that the energy loss distributions of scattered H atoms
are only dependent on the surface geometry when the surface temperature is small.
As soon as the temperature is larger than ∼ 200K, the influence of the surface ge-
ometry vanishes due to the broadening effect of the random force. With the help of
adiabatic MD simulations, I was able to demonstrate that ehp exciation are unim-
portant for insulator surfaces and the dynamics of the scattering processes can be
very well rationalised with simple concepts taken from collision dynamics of particles
in the gas-phase.

4.3. Application to thermal processes

In the last section, I demonstrated that the EMT based potential energy surfaces
are suitable to reproduce scattering experiments of H atoms with an initial kinetic
energy of almost 3 eV. This poses the question whether the presented PESs are
also suitable to investigate other research topics than surface scattering of highly
non-thermal particles, as for example reaction dynamics of adsorbed H atoms. An
adsorbed H atom, equilibrated with its environment, can either transcend the barrier
of a pathway from one surface binding site to another. Alternatively, it travels into
the subsurface or even deeper into the bulk. Recent transient kinetic measurements
of hydrogen atom recombination at Pt and Pd, exploting the Velocity Resolved
Kinetics method,161 have shown that the first possibility is more likely to occur
for chemisorbed hydrogen (H∗) on Pt(111), whereas surface penetration (and the
reversed process) definitively needs to be accounted for in case of H∗ on Pd(111).
Since the chemisorption well for atomic hydrogen on transition metals is up to 2 eV
deep, thermal desorption of H atoms at ambient temperatures will not happen.
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4. Dynamics of H atoms on non-covalent bonding surfaces

Thus, an H atom needs to find a reaction partner and use the released reaction
energy to escape with its binding partner from the surface, e.g.

H∗ + H∗ −→ H2(g). (4.23)

Kinetic traces of H2(g) (and their isotopologues), formed in the recombination
reaction on Pt(111) and Pt(332) as well as on Pd(111) and Pd(332) in the tempera-
ture range from 573 - 973K, were recorded.5,162 In contrast to the inelastic H atom
scattering experiments analysed in the previous section, the experiments here are
conducted under equilibrium conditions which allows us in turn to use transition
state theory to model the rate coefficients of the recombination reaction. Within
this framework, the canonical rate coefficient k(T ) for a temperature T reads

k(T ) = κ(T ) Q‡(T )
Qad,1(T )Qad,2(T )e

− E0
kBT , (4.24)

with κ(T ) being the recrossing correction and E0 is the energy of the barrier of
the underlying reaction. The partition functions of the two adsorbates are denoted
as Qad,1(T ) and Qad,2(T ), whereas Q‡(T ) corresponds to the partition function of
the transition state. Qad,1(T ) an Qad,2(T ) depend strongly on the form of the em-
ployed potential energy landscape and there are several approximations of how to
acquire the partition functions of the adsorbed particles.163,164 The most accurate
method is referred to as Complete Potential Energy Sampling (CPES),164 in which
the classical partition function is calculated from the configuration integral. I used
the EMT-PES for H/Pt(111) as a model potential to acquire the partition function
Qad(T ) with the intention to test whether this PES is also suitable for modelling
the reaction kinetics of adsorbates. This was, however, not successful and can be
understood with the help of the following reasons:
Firstly, since all processes occurring in the reaction dynamics of adsorbates are

thermal, a much smaller part of the interaction potential is explored by the adsor-
bates with a kinetic energy in the order of kBT . H atoms with a kinetic energy of
2.76 eV, however, will forward into regions that are never accessible to equilibrated,
chemisorbed H atoms. This is sketched in Figure 4.56. The RMSE of the H/Pt(111)
EMT-PES is 166meV with respect to the energy grid. This corresponds to 2kBT
for the highest temperature at which the recombination of adsorbed H atoms were
investigated in the laboratory. With a potential in hand which has an uncertainty
in energy almost thrice as large as the energy barrier for the hopping process of a
chemisorbed H atom from one binding site to another,119 we cannot hope to model
the configuration integral required for the acquisition of the partition function of
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Figure 4.56.: Potential energy curve plotted against the distance of the H atom to the
metal. The black arrow marks the highest potential energy relevant for
inelastic H atom scattering from metal surfaces, discussed previously.
In case of thermal processes on the other hand, only the region under
the black bar can be explored by adsorbed H atoms. ∆E represents
the energy range typical for the RMSE of the EMT-PESs with respect
to the energy grids for H at the fcc metal(111) surfaces.

the adsorbate in an accurate manner.
Secondly, neither the energetic preferences for the binding sites nor the harmonic

vibration frequencies are accurately modelled by the EMT-PES. This is demon-
strated with the help of Table 4.9, where the relative energies and the harmonic
frequencies of four common binding sites of the EMT-PES are compared to the
input data. While DFT predicts a clear preference for the fcc binding site, all high-
symmetry sites on the EMT-PES for H/Pt(111) nearly have the same H-Pt binding
energy with the top site being the preferred site. Another interesting aspect is that
the EMT-PES for H/Pt(111) provides lower harmonic frequencies in comparison to
DFT. While the perpendicular stretching mode ωz obtained from the EMT-PES is
still in qualitative agreement with its DFT analogue, the in-plane vibrations are
sometimes more than 50% smaller, which is grave if one wishes to calculate the
zero-point energy from this PES. In addition, the lower in-plane frequencies indi-
cate a more shallow potential landscape. As a consequence, instead of using the
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4. Dynamics of H atoms on non-covalent bonding surfaces

Table 4.9.: Relative energies ∆E0 and harmonic frequencies ω for adsorbed hydrogen
located at the four important high-symmetry sites of a Pt(111) surface,
acquired with DFT and the EMT-PES. The energies of each data set are
referenced to the minimum energy of that particular set.

Site top bri hcp fcc
∆E0,DFT / meV 34.1 44.3 39.4 0
∆E0,EMT / meV 0 5.2 12.2 6.6
ωz,DFT / cm−1 2238 1339 1223 1121
ωz,EMT / cm−1 2072 1256 1061 1055
ωy,DFT / cm−1 376 165 547 620
ωy,EMT / cm−1 90 58 258 307
ωx,DFT / cm−1 380 870 557 623
ωx,EMT / cm−1 97 178 228 186

H/Pt EMT-PES, I calculated a grid of interaction energies for an H atom adsorbed
on Pt(111) and Pt(332) with DFT which involved optimisation of the z coordinate
of the H atom, while the Pt atoms were kept rigid. The details are given in the
SI of Ref. [5] which can be found in Appendix E.5. Subsequently, the optimised
positions were used as input geometries for the calculation of harmonic vibration
frequencies in z direction only. Again, the calculation details are given in Appendix
E.5. The DFT energies assembling the grid were corrected by the zero-point energy
(ZPE) calculated from the aforementioned harmonic frequencies. The grid was in-
terpolated and the resulting potential was subsequently used to solve the 2D nuclear
Schrödinger equation with the intention to acquire the eigenvalues for the sampling
of the partition functions Qad(T ). The partition functions were then used for the
calculation of rate constants via transition-state theory to reproduce the experimen-
tal kinetic traces. The results are given in the form of a manuscript in Appendix
E.5.
In addition to the arguments which I made above, another problem emerges when

the EMT-PES for H/Pd(111) is used to model the interaction between chemisorbed
hydrogen and the Pd surface. Although the difference in the binding energy for the
subsurface and the surface is much smaller for H/Pd than H/Pt, the H/Pd(111)
EMT-PES predicts the binding sites at the subsurface under the fcc binding site to
be 54meV more stable than the fcc binding site itself. Again, this is a negligible
flaw when inelastic scattering of high energetic H atoms is modelled, but for the
simulation of thermodynamics such as the modelling of the subsurface H atom con-
centration in thermal equilibrium, such an error is critical. Since kinetic experiments
for the H atom recombination on Pd(111) indicate that subsurface H atoms play a
role in the underlying reaction kinetics, I calculated the barriers for the diffusion
process of an H atom situated either in an octahedral or tetrahedral into the neigh-
bouring interstitials in addition to the same calculations as for H∗ on Pt(111). The
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acquisition of the barriers was accomplished via the climbing image Nudged Elastic
Band (CI-NEB) methodology.165 With the aid of these calculations it was possible
to construct a model that is capable to describe the recorded kinetic traces.162
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In the course of this thesis I investigated inelastic scattering of highly energetic
H atoms from transition metals and addressed the question whether the resulting
specular energy loss distributions depend on the surface geometry or not. To answer
this question I performed MD simulations of H atom scattering from various fcc and
bcc transition metal surfaces. For the simulations involving the fcc metal surfaces,
I relied on earlier published EMT-PESs24 which have been constructed by fitting
the EMT-based energy formulae to DFT data describing an H atom interacting
with fcc(111) metal surfaces. The resulting EMT-PESs have proven their worth by
providing specular energy loss distributions which are in excellent agreement with
the experimental data.16 Hence, I investigated the transferability of these PESs by
comparing interaction energies between a hydrogen atom and a metal surface calcu-
lated with the EMT-PESs to DFT reference data. For both the (100) and the (110)
facet, the EMT-PESs for the six investigated metals Ni, Cu, Pd, Ag, Pt and Au
can reproduce the DFT data with RMSEs smaller than 0.3 eV without any modifi-
cation of the parameter set. To make simulations with bcc metal surfaces possible,
I extended the existing EMT formalism, published by Jacobsen et al.,28 by using
a perfect bcc crystal instead of a perfect fcc crystal as effective medium. I used
this newly derived formalism to construct EMT-based PESs for atomic hydrogen at
tungsten and molybdenum, by fitting the energy expressions to DFT energies for
hydrogen at a p(2×2) six layered metal(111) surface. These newly fitted EMT-PESs
are also capable of describing the metal(110) facet within a range of 0.4 eV.
MDEF simulations on those EMT-PESs for all investigated metal surfaces at

ambient temperatures provide energy loss distributions and angular distributions
that show an universal behaviour which is in line with the results for the fcc(111)
transition metals published recently.16 The energy loss distributions are broad and
without any structure, exhibiting only a weak dependence on the surface geometry.
This finding can be explained by the presence of the random force which enters
the MDEF simulations and the broadening effect caused by this quantity can be
rationalised with an analytic model based on the Ornstein-Uhlenbeck effect.166 For
high incidence energies and short interaction times, which are typical conditions for
surface scattering experiments under UHV conditions, this model predicts a broad
energy distribution for an ensemble of particles interacting with a bath. The broad-
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ening effect of the random force affects the appearance of the energy loss distribution
much stronger than the geometry of the underlying PES. In that sense, the insen-
sitivity of the energy loss distribution on the surface geometry can be understood.
At low temperatures the situation is different because the amplitude of the random
force scales with

√
T . Calculations for all surface facets at 70K provided energy

loss distributions which depend on the surface geometry and thus on the form of the
underlying PES because of the weak presence of the random force. In that regard,
it can be argued that inaccuracies of an applied PES also affects the resulting en-
ergy losses in an ancillary manner, provided that the simulations are performed at
ambient temperatures. This is why the quite inaccurate PESs for Mo and W still
work well for the purpose of performing H atom scattering simulations from metal
surfaces with high incidence kinetic energies. The comparison between the calcula-
tions for H on W with two different simulation methods, presented in Section 4.2.3,
demonstrate this: Even at low temperatures where the smearing of the random force
is small, the scattering dynamics obtained with the EMT-PES for H on W(110) are
in qualitative agreement with simulations performed on an accurate, interpolated
PES.
It is important to emphasise that the experiment is not capable of distinguishing

between H atoms scattered from the surface layer or the subsurface layer. But with
the knowledge we acquired about the impact of the random force, the recorded ELDs
will look very much alike and one might conclude that the underlying scattering dy-
namics would be similar as well. This is clearly not the case though. The amount
of H atoms which undergo surface penetration in the scattering process is strongly
dependent on the surface geometry and to provide a simple estimate: The lower the
planar density ρA, the higher the portion of particles which are repelled from the
subsurface or even deeper regions of the slab. The minimum altitude distributions
shown in Section 4.2.2 and 4.2.3 clearly demonstrate this finding.
The energy loss distribution calculated from the adiabatic H atom scattering sim-

ulation is in very good agreement with the underlying experiment. Again, the MD
simulations have been performed on an EMT-PES for H/Xe(111), which has been
constructed earlier.29 A closer analysis of the underlying collision events revealed
that they can be categorised in two different classes: strong and weak collisions.
Investigations of the out-of-plane scattering, which is currently impossible to mea-
sure in the lab, revealed that the resulting out-of-plane angle ∆φ correlates with the
hardness of the bounce in case of H atoms which collide only once with the lattice.
The maximum signal of double bounce trajectories is located in-plane which can be
explained by the fact that the out-of-plane deflection of the first collision event is
compensated by the out-of-plane deflection of the second event. A comparison of the
ELDs obtained from calculations on the EMT-PES with calculations performed on
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a simple Lennard-Jones potential, published by Toennies et al.,151 revealed that the
latter is not capable to reproduce the experiment. The reason for this discrepancy
originates from the fact that the Lennard-Jones potential is too repulsive. The effec-
tive size of the Xe atoms are almost 1 Å larger compared to the EMT-PES and this
prevents surface penetration which is the first step towards sticking. A comparison
between the sticking coefficient S0 of both models supports this interpretation. The
EMT-PES predicts a value of 0.15 for S0, whereas the simulation of the Lennard-
Jones potential provides a sticking probability equal to 5× 10−6 .
Although the EMT-PESs are suitable for MD simulations of H atom scattering

from metal surfaces, they are too inaccurate for the acquisition of thermodynamical
quantities such as the partition functions. The RMSEs between 0.1 eV and 0.4 eV
the presented potentials are multiple times higher than the thermal energy kBT for
temperatures up 1000K. Therefore, I made a step back to density functional theory
to sample a grid of the potential energy surface of chemisorbed hydrogen on Pt(111),
Pt(332), as well as Pd(111) and Pd(332). These grids were interpolated resulting
continuous potentials, which were subsequently used for the solvation of the 2D nu-
clear Schrödinger equation. This allowed us to compute the partition function and
with an elegant trick, namely by choosing the gaseous H2 molecule as transition
state, we were able to provide a detailed picture of the reaction kinetics of the H∗

recombination reaction on transition metal surfaces.
A subsequent project for this work would be to investigate whether the two EMT-

PESs for Mo and W can also describe the energetic landscape of the (100) facet. At
the same time, increasing the accuracy of the fits to study the impact of the accu-
racy of the PES on the energy loss distributions would make an interesting research
project. At the moment no alkaline or earth alkaline metals have been investigated,
neither experimentally nor theoretically. Since the latter is more easily to accom-
plish, a generation of an EMT-PES for atomic hydrogen at for example calcium or
barium surface facets is another route one could take to continue this work. At the
time of this writing, generation of DFT energies which will serve as input data are
already in planning.
In this work, a lot of calculations are presented that might stimulate future exper-

iments. The predicted insensitivity of the energy loss distributions on the surface
geometry is an aspect that can easily be investigated in the laboratory. Experiments
on the Ag(100) and Ag(110) are already in planning and results can be expected in
the near future. No bcc metal has been subject of investigation up to this point, too.
My MD simulations for H/W(110) at 70K predict a distinct feature in the specular
energy loss distribution, which is very sensitive to the crystallographic orientation.
This can be used as excellent benchmark for future experiments in the laboratory.
Particularly the most important aspect of this work is the broadening effect of the
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random force at ambient and high temperatures. Clearly, experiments at low tem-
peratures are necessary in order to test the validity of describing electron-hole pair
excitation with a frictional drag and a random force.
Another possible research project for the future might be to go beyond the local

density friction approximation and use the orbital dependent friction framework,
published by Maurer et al.,60 instead. One advantage of this scheme is that the
friction tensor can be computed ab-initio with electron structure codes such as FHI-
aims.79–84 Another nice advantage would be that the friction tensor is not reduced to
a single coefficient. Finally, spectral information of the underlying substrate is incor-
porated in this friction model, which makes it extremely suitable for the investigation
of contaminated surfaces. As example, H atom scattering from a p(2× 2) O covered
Pt(111) surface has been investigated in our group recently but we had to rely on a
mere phenomenological model.4 With the application of ODF it might be possible
to describe the experimental findings with first principles simulations. As a last
point, I would like to emphasise that up to this point—although very successful—H
atom scattering experiments have been investigated with classical MD simulations
exclusively. In combination with the aforementioned low temperature experiments,
application of wave packet propagation methods such as the multi-configurational
time dependent Hartree approach167 might unearth the role of quantum mechanical
effects in the dynamics of H atom scattering from surfaces.
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A. Derivation of elastic constants

A.1. Generalised formalism

The total energy of the system E is considered within the effective medium theory
as consisting of the single-atomic contributions εi

E =
N∑
i=1

εi, (A.1)

where N is the number of atoms in the system. In turn, εi is decomposed into the
cohesive energy Ec,i(ni) and the atomic-sphere correction ∆EAS:27,28

εi = Ec,i + ∆EAS,i, (A.2)

The cohesive energy has the following form:

Ec,i(si) = E0 [1 + λ (si − s0)] e−λ(si−s0) − E0, (A.3)

where λ is a measure for the curvature of the cohesive energy function and s0 is
neutral sphere radius under equilibrium conditions. In the crystal structure inde-
pendent energy functional formulation by Rose et. al.,44 the electron density ni is
characterised by means of the neutral sphere radius si:

si = s0 −
1
βη2

ln
b−1

1

b1∑
n=1

e−η2(rin−βs0)

 (A.4)

where b1 is a number of nearest neighbours of atom i, η2 is the inverse screening
length of the embedding electron density and β is a geometric factor depending on
the crystal structure.

The atomic sphere correction ∆EAS,i can be written as:

∆EAS,i = 1
2Vi −

1
2Vref(si) (A.5)

where pair-wise term Vi and reference potential Vref(si) are parameterised in the
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following way:

Vi = −
b1∑
n 6=i

V0e
−κ
β

(rin−βs0) (A.6)

Vref(si) = −b1V0e
−κ(si−s0) (A.7)

The elastic constants are components of the tensor of the fourth order and can be
calculated as:

Cξρστ = 1
Ω0

N∑
k,`=1

∂2ε

∂rk,ρ∂r`,τ
rk,ξr`,σ

∣∣∣∣∣∣
eq

, (A.8)

where Ω0 is the atomic volume under equilibrium conditions and ε the EMT energy
per atom. k and ` are labels for the nearest neighbours of one reference atom with
the label i. The Greek indices label Cartesian coordinates. tells us that we need
the second derivative of the total energy functional with respect to the Cartesian
components of the distance vector ~rn. For the purpose of calculating the elastic
constants, we need to acquire the second derivatives of Ec,i(si), Vi and Vref(si) over
coordinates. In general, the first and second derivative of εi with respect to the
Cartesian components of the vectors connecting atom i to the neighbour atoms k, `
can be written as:

∂εi
∂ri`,τ

= ∂Ec,i(si)
∂ri`,τ

+ 1
2

[
∂Vi
∂ri`,τ

− ∂Vref(si)
∂ri`,τ

]
(A.9)

∂2εi
∂rk,ρ∂ri`,τ

= ∂2Ec,i(si)
∂rkρ∂ri`,τ

+ 1
2

[
∂2Vi

∂rk,ρ∂ri`,τ
− ∂2Vref(si)
∂rk,ρ∂ri`,τ

]
(A.10)

The first derivative of Ec,i(si) with respect to the Cartesian coordinate ri`,τ can
be calculated by applying the chain rule:

∂Ec,i

∂ri`,τ
= ∂Ec,i

∂si

∂si
∂ri`,τ

(A.11)

with
∂Ec,i

∂si
= −E0λ

2 (si − s0) e−λ(si−s0) (A.12)

and
∂si
∂ri`,τ

= 1
b1β

eβη2(si−s0)e−η2(ri`−βs0) ri`,τ
ri`

(A.13)

Thus, the first derivative is:

∂Ec,i

∂ri`,τ
= −E0λ

2

b1β
(si − s0) e(−λ+βη2)(si−s0)e−η2(ri`−βs0) ri`,τ

ri`
(A.14)
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and under equilibrium conditions

∂Ec,i

∂ri`,τ

∣∣∣∣∣
eq

= 0, (A.15)

because of

∂Ec,i

∂si

∣∣∣∣∣
eq

= 0. (A.16)

The second derivative can be obtained by applying the chain rule again:

∂2Ec,i

∂rik,ρ∂ri`,τ
=
[
∂2Ec,i

∂s2
i

∂si
∂rik,ρ

]
∂si
∂ri`,τ

+ ∂Ec,i

∂si

∂2si
∂rik,ρ∂ri`,τ

(A.17)

The second derivative of Ec,i with respect to si is

∂2Ec,i

∂s2
i

= −E0λ
2e−λ(si−s0) + λ3E0 (si − s0) e−λ(si−s0). (A.18)

In equilibrium, Eq.A.17 becomes

∂2Ec,i

∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq

= −E0λ
2

b2
1β

2
rik,ρri`,τ
rikri`

. (A.19)

The first and the second derivative of the pair potential can be obtained straight-
forwardly as we do not need to bother with many-body terms in this part of the
total energy:

∂Vi
∂ri`,τ

= V0κ

β
e−

κ
β

(ri`−βs0) ri`,τ
ri`

(A.20)

∂2Vi
∂rik,ρ∂ri`,τ

= −V0κ

β
e−

κ
β

(ri`−βs0)
[
κ

β

ri`,τri`,ρ
r2
i`

+ ri`,τri`,ρ
r3
i`

− 1
ri`
δρτ

]
δk` (A.21)

and under equilibrium conditions, both equations can be written as

∂Vi
∂ri`,τ

∣∣∣∣∣
eq

= V0κ

β

ri`,τ
ri`

(A.22)

and

∂2Vi
∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq

= −V0κ

β

[
κ

β

ri`,τri`,ρ
r2
i`

+ ri`,τri`,ρ
r3
i`

− 1
ri`
δρτ

]
δk` (A.23)

The first derivative of the reference potential Vref with respect to ri`,τ can be
written as:

158



A.1. Generalised formalism

∂Vref(si)
∂ri`,τ

= ∂Vref

∂si

∂si
∂ri`,τ

(A.24)

The second factor is given in Eq.A.13. The first derivative of Vref with respect to si
can be calculated straightforwardly.

∂Vref(si)
∂si

= b1V0κe
−κ(si−s0) (A.25)

Combining Eq.A.25 and Eq.A.13 leads to the following result:

∂Vref(si)
∂ri`,τ

= κV0

β
e−(κ+βη2)·(si−s0)e−η2(ri`−βs0) ri`,τ

ri`
(A.26)

However, it is better to express this equation in a different way in order to make
it easier to calculate the second derivative of the reference potential with respect to
the Cartesian coordinates. The alternative expression is:

∂Vref(si)
∂ri`,τ

= V0κ

β

( 1
b1

) κ
βη2
−1
 b1∑
n6=i

e−η2(rin−βs0)

 κ
βη2
−1

e−η2(ri`−βs0) ri`,τ
ri`

(A.27)

and under equilibrium conditions, this derivative can be written as

∂Vref(si)
∂ri`,τ

∣∣∣∣∣
eq

= V0κ

β

ri`,τ
ri`

(A.28)

The second derivative of the reference potential can be calculated by applying the
chain rule. This results in a equation that is quite similar to Eq.A.17:

∂2Vref(si)
∂rik,ρ∂ri`,τ

= ∂2Vref

∂s2
i

∂si
∂rik

∂si
∂ri`

rik,ρri`,τ
rikri`

+ ∂Vref

∂si

∂2si
∂rik,ρ∂ri`,τ

(A.29)

Hence, we need to evaluate the second derivative of Vref with respect to si, as well
as the second derivative of si with respect to rik,ρ and ri`,τ . All other derivatives are
already known. The missing derivative is

∂2Vref(si)
∂s2

i

= −b1V0κ
2e−κ(si−s0) (A.30)

and

∂2si
∂rik,ρ∂ri`,τ

= e2βη2(si−s0)

b2
1β

e−η2(ri`−βs0) ri`,τ
ri`

e−η2(rik−βs0)η2
rik,ρ
rik

−e
βη2(si−s0)

b1β
e−η2(ri`−βs0)

[
η2
ri`,ρri`,τ
r2
i`

+ ri`,ρri`,τ
r3
i`

− 1
ri`
δρτ

]
δk` (A.31)
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In equilibrium, Eq. A.30, Eq. A.13 and Eq. A.31 can be written as

∂2Vref(si)
∂s2

i

∣∣∣∣∣
eq

= −b1V0κ
2, (A.32)

∂si
∂ri`,τ

∣∣∣∣∣
eq

= 1
b1β

ri`,τ
ri`

(A.33)

and

∂2si
∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq

= η2

b2
1β

rik,ρri`,τ
rikri`

− 1
b1β

[
η2
ri`,ρri`,τ
r2
i`

+ ri`,ρri`,τ
r3
i`

− 1
ri`
δρτ

]
δk`. (A.34)

Finally, we can obtain the second derivative of the reference potential with respect
to the Cartesian coordinates under equilibrium conditions. The general formula is
given in the appendix.

∂2Vref(si)
∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq

= −V0κ (κ− βη2)
β2b1

rik,ρri`,τ
rikri`

− V0κ

β

(
η2ri`,ρri`,τ

r2
i`

+ ri`,ρri`,τ
r3
i`

− δρτ
ri`

)
δk`

(A.35)

Thus, we can write the second derivative of the single atom contribution εi with
respect to the Cartesian coordinates under equilibrium conditions in the following
way:

∂2εi
∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq

=b1V0κ (κ− βη2) (1− b1δk`)− 2E0λ
2

2b2
1β

2
ri`,τrik,ρ
rikri`

. (A.36)

This is the final result for the second derivative of εi with respect to the Cartesian
coordinates. In order to calculate the elastic constants, we have to use Eq.A.8 and
sum over the nearest neighbours, which results in

Cξρστ |eq = 1
Ω0

b1∑
k,`=1

(
ζ − V0κ (κ− βη2)

2β2 δk`

)
rk,ρ
rk

r`,τ
r`
rk,ξr`,σ, (A.37)

ζ = b1V0κ (κ− βη2)− 2E0λ
2

2β2b2
1

(A.38)

This is our final result. The last job is to insert for all rk, rl and as well as rk,ρ
and rl,τ the respective equilibrium values for the respective crystal lattices, which is
described in the following sections.
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(a) (b)

Figure A.1.: Panel (a) represents the visualisation of the first shell of neighbours of
a reference atom i with the radius of βs0. The second and third shell
are depicted in panel (b) in order to give an impression where the next-
and next-next-nearest neighbours are.

A.2. Application to cubic crystal structures

fcc structure

As already pointed out in the previous section, the constant β depends only on
the geometry of the crystal lattice. This geometric factor can be obtained in the
following way: Firstly, one can make use of the fact that a perfect crystal can
naturally be divided into its Wigner-Seitz cells. In the second step, we treat these
Wigner-Seitz cells as spheres with a volume of

VWS|eq = 4π
3 s3

0. (A.39)

By definition, the volume of the Wigner-Seitz cell can be regarded as the atomic
volume in a perfect solid. Thus it can be expressed in terms of the conventional
lattice constant of a fcc crystal a0, providing a connection between the Wigner-Seitz
radius s0 and a0. This ends up in

VWS|eq = Vfcc
Nfcc

= a3
0

4 , (A.40)

where Vfcc is the volume of the conventional cubic unit cell and Nfcc is the amount
of atoms in the respective unit cell, i.e., four. For our purposes however, it is more
convenient to deal with interatomic distances r(m)

ij , where m denotes the m-th shell
with respect to a reference atom i. This is depicted in the figure below.
The relationship between a0 and r(1)

ij is

a0 =
√

2r(1)
ij (A.41)
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Inserting Eq.A.40 and Eq.A.41 into Eq.A.39 results in the following equation:

r
(1)
ij =

3
√

16π
3√
2︸ ︷︷ ︸

=βfcc

s0. (A.42)

For simplicity’s sake, βfcc will be referred to as β for the rest of the subsection.
With the aid of Eq.A.41 and Eq.A.42 one can express the Cartesian coordinates
of the twelve nearest neighbours under equilibrium conditions in terms of βs0. The
Cartesian coordinates, expressed in terms of a0 and βs0, are given in the following
table:

# x [a0] y [a0] z [a0] x [βs0] y [βs0] z [βs0]
1 1/2 1/2 0 1/

√
2 1/

√
2 0

2 0 1/2 −1/2 0 1/
√

2 −1/
√

2
3 1/2 0 −1/2 1/

√
2 0 −1/

√
2

4 0 1/2 1/2 0 1/
√

2 1/
√

2
5 −1/2 1/2 0 −1/

√
2 1/

√
2 0

6 1/2 0 1/2 1/
√

2 0 1/
√

2
7 1/2 0 −1/2 −1/

√
2 0 −1/

√
2

8 1/2 −1/2 0 1/
√

2 −1/
√

2 0
9 0 −1/2 −1/2 0 −1/

√
2 −1/

√
2

10 −1/2 1/2 −1/
√

2 0 1/
√

2
11 0 −1/2 −1/2 0 −1/

√
2 −1/

√
2

12 −1/2 −1/2 0 −1/
√

2 −1/
√

2 0

The factor 1/
√

2 originates from the fact that

a0

2 =
√

2βs0

2 = βs0√
2
. (A.43)

Thus, we obtain the following expression for the elastic constant Cξρστ :

Cξρστ |eq = 1
Ω0

12∑
k,`=1

(
ζ − V0κ (κ− βη2)

2β2 δk`

)
rk,ρ
rk

r`,τ
r`
rk,ξr`,σ, (A.44)

ζ = 12V0κ (κ− βη2)− 2E0λ
2

2β2122 (A.45)

It is known that cubic crystals have only three independent force constants. In
Voigt notation these force constants are C11, C12 and C44. If one translate these
three force constants into our Cξρστ notation, we arrive at the following equations:
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A.2. Application to cubic crystal structures

C11 = Cxxxx = Cyyyy = Czzzz

C12 = Cxxyy = Cxxzz = Cyyzz

C44 = Cxyxy = Cxzxz = Cyzyz

Cxxxx can be calculated the following way:

Cxxxx|eq = 1
Ω0

12∑
k,`=1

(
ζ − V0κ (κ− βη2)

2β2 δk`

)
x2
k

rk

x2
`

r`

=3V0κ (βη2 − κ)− E0λ
2

12πs0
. (A.46)

Cxxyy and Cxyxy can be obtained analogously

Cxxyy|eq = 1
Ω0

12∑
k,`=1

(
ζ − V0κ (κ− βη2)

2β2 δk`

)
x2
k

rk

y2
`

r`

=E0λ
2 − 3V0κ (βη2 − κ)

24πs0
. (A.47)

Cxyxy|eq = 1
Ω0

12∑
k,`=1

(
ζ − V0κ (κ− βη2)

2β2 δk`

)
(xkyk)(x`y`)

rkr`

=3V0κ (βη2 − κ)
8πs0

. (A.48)

These are the expression for the three independent elastic constants. However, by
looking a bit closer on these three expressions, one discovers a relationship between
the elastic constants, which is:

C11 − C12 = C44 (A.49)

So, within effective-medium theory there are only two independent force con-
stants. In addition, this relationship describes the reality considerably better than
the ’Cauchy-criterion’, i.e., C12 = C44.168 The bulk modulus B can be calculated
by applying the following relationship between bulk modulus and elastic constants
that holds in general for cubic crystals:

B = C11 + 2C12

3 = − E0λ
2

12πs0
(A.50)
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A. Derivation of elastic constants

(a) (b)

Figure A.2.: Panel (a) represents the visualisation of the first shell of neighbours of
a reference atom i with the radius of βs0. The second and third shell
are depicted in panel (b) in order to give an impression where the next-
and next-next-nearest neighbours are.

bcc structure

The geometric factor β for a perfect bcc crystal can be derived in the same way as
discussed at the beginning of the previous subsection. The volume of the Wigner-
Seitz cell for a conventional bcc unit cell can be written as

VWS|eq = Vbcc
Nbcc

= a3
0

2 , (A.51)

where Vbcc is the volume of the conventional cubic unit cell for a bcc metal and
Nbcc is the amount of atoms in that respective volume. Again, the geometry of the
Wigner-Seitz cell is approximated by a sphere of the volume, given in Eq.A.39.

The relation between the conventional lattice constant a0 and the nearest neigh-
bour distance r(1)

ij is

a0 = 2√
3
r

(1)
ij (A.52)

As a consequence, we can connect the neutral sphere radius in equilibrium with the
nearest neighbour distance for a perfect bcc crystal, i.e.,

r
(1)
ij = 6

√
3π2︸ ︷︷ ︸

=βbcc

s0. (A.53)

By applying Eq.A.51, (A.52) and (A.53), we can write down the Cartesian coor-
dinates of the eight nearest neighbours. The Cartesian coordinates at equilibrium
positions with respect to both a0 and βs0 are given in the following table.
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# x [a0] y [a0] z [a0] x [βs0] y [βs0] z [βs0]
1 1/2 1/2 1/2 1/

√
3 1/

√
3 1/

√
3

2 −1/2 1/2 1/2 −1/
√

3 1/
√

3 1/
√

3
3 1/2 −1/2 1/2 1/

√
3 −1/

√
3 1/

√
3

4 1/2 1/2 −1/2 1/
√

3 1/
√

3 −1/
√

3
5 −1/2 −1/2 1/2 −1/

√
3 −1/

√
3 1/

√
3

6 −1/2 1/2 −1/2 −1/
√

3 1/
√

3 −1/
√

3
7 1/2 −1/2 −1/2 1/

√
3 −1/

√
3 −1/

√
3

8 −1/2 −1/2 −1/2 −1/
√

3 −1/
√

3 −1/
√

3

Here, the factor 1/
√

3 originates from the fact that

a0

2 = 2
2
√

3
r

(1)
ij = 1√

3
βs0. (A.54)

Hence, the formula for the elastic constants can be written as

Cξρστ |eq = 1
Ω0

8∑
k,`=1

(
ζ − V0κ (κ− βη2)

2β2 δk`

)
rk,ρ
rk

r`,τ
ri`

rk,ξr`,σ, (A.55)

ζ = 8V0κ (κ− βη2)− 2E0λ
2

2β282 (A.56)

Following the same procedure that has been applied to derive the expressions for
the elastic constants for the fcc formalism, we end up with the following equations
for C11, C12 and C44.

Cyyyy|eq = 1
Ω0

8∑
k,`=1

(
ζ − V0κ (κ− βη2)

2β2 δk`

)
y2
k

rk

y2
`

r`

=− E0λ
2

12πs0
. (A.57)

Cyyzz|eq = 1
Ω0

8∑
k,`=1

(
ζ − V0κ (κ− βη2)

2β2 δk`

)
y2
k

rk

z2
`

r`

=− E0λ
2

12πs0
(A.58)
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Cyzyz|eq = 1
Ω0

8∑
k,`=1

(
ζ − V0κ (κ− βη2)

2β2 δk`

)
(ykzk)(y`z`)

rkr`

=V0κ (βη2 − κ)
3πs0

. (A.59)

The bulk modulus B is obtained by applying Eq.A.50 and we get

B = C11 + 2C12

3 = − E0λ
2

12πs0
,

which is the same result we got for the fcc formalism. This is not a surprising result
as the energy functional, proposed by Rose et. al.44 is independent of the crystal
structure and the atomic sphere correction does not contribute to volume dependent
terms27,28 However, the results for the bcc modification are not satisfying since the
elastic stability criteria are violated within this EMT formalism.45 As a reminder,
the elastic stability criteria are45

C11 − C12 > 0

C11 + 2C12 > 0

C44 > 0.

It can be clearly seen that the elastic constants that have been calculated from
the bcc formalism do not meet the first criterion, since C11 = C12. Based on this
result, it can be concluded that, at least, the second nearest neighbours must be
included into the total energy expression, cf. Eq.A.2, to obtain reasonable results
for the force constants Cξρστ .

A.3. Consideration of higher shells.

In the last section, it has been shown that the negligence of the higher shells, i.e next-
nearest neighbours and next-next nearest neighbours, for the bcc formalism results
in elastic constants that violate the stability criteria of a solid. Taking higher shells,
i.e., all next nearest neighbours or even next-next nearest neighbours into account
requires some changes in the total energy functional εi. Those modifications are
outlined in Jacobsen et.al.28 and are not repeated here. The elastic constants with
consideration of the next nearest neighbours for the fcc and bcc formalism are going
to be derived in the following, but firstly, the general expression is going to be
presented in the next subsection.
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General expression

If more than the first shell is taken into account, some formulae in the EMT formal-
ism must be modified. Though the cohesive energy functional remains unchanged,
the neutral sphere si has to be modified. The new expression is

si = s0 −
1
βη2

ln
[∑

n6=i e
−η2(rin−βs0)

b1γ1

]
. (A.60)

γ1 is a normalisation coefficient which ensures that Ec,i remains zero for si = s0 and
has the following form.

γ1 =
M∑
m=1

bm
b1

e−η2(dm−1)βs0 , (A.61)

The index m runs over the numbers of nearest shells up to the shell M , with bm
being the number of atoms that can be found on a certain shell, i.e., the number of
atoms that have the distance dmβs0 to the reference atom i under equilibrium condi-
tions. As we can see, the normalisation coefficient γ1 does not depend on the distance
rin, which makes the calculations of the derivatives of the energy expressions, where
more than only the nearest neighbours are included, not more complicated than the
calculations that have been performed in the previous sections. For the evaluation
of the elastic constants, we still need ∂Ec,i

∂si
, ∂2Ec,i

∂s2
i
, ∂si
∂ri`,τ

and ∂2si
∂rik,ρ∂ri`,τ

. While the
first two derivatives remain the same, the latter two do not. The first derivative of
the sphere radius si with respect to ri`,τ is now

∂si
∂ri`,τ

= 1
b1γ1β

eβη2(si−s0) · e−η2(ri`−βs0) ri`,τ
ri`

(A.62)

and the second derivative can be written as

∂2si
∂rik,ρ∂ri`,τ

= e2βη2(si−s0)

γ2
1b

2
1β

· e−η2(ri`−βs0) ri`,τ
ri`
· e−η2(rik−βs0)η2

rik,ρ
rik

−e
βη2(si−s0)

γ1b1β
e−η2(ri`−βs0)

[
η2
rik,ρri`,τ
rikri`

+ rik,ρri`,τ
r3
i`

− 1
ri`
δρτ

]
δk` (A.63)

Hence, the first and second derivative of Ec,i with respect to to ri`,τ can be written
as

∂Ec,i

∂ri`,τ
= − E0λ

2

b1γ1β
(si − s0) e(−λ+βη2)(si−s0) · e−η2(ri`−βs0) ri`,τ

ri`
(A.64)

and
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∂2Ec,i

∂rik,ρ∂ri`,τ
=
(
−E0λ

2e−λ(si−s0) + λ3E0 (si − s0) e−λ(si−s0)
)
·

e2βη2(si−s0)

b2
1γ

2
1β

2 e−η2(ri`+rik−2βs0) ri`,τrik,ρ
rikri`

− E0λ
2 (si − s0) e−λ(si−s0)·{

η2e
2βη2(si−s0)

b2
1γ

2
1β

e−η2(ri`+rik−2βs0) ri`,τrik,ρ
rikri`

−

eβη2(si−s0)

b1γ1β
· e−η2(ri`−βs0) ·

[
η2
rik,ρri`,τ
rikri`

+ rik,ρri`,τ
r3
i`

− 1
ri`
δρτ

]
δk`

}

Now, if we place the atoms in their ideal lattice positions, we get the following
result:

∂2Ec,i

∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq

= −E0λ
2

b2
1γ

2
1β

2 e
−η2(ri`+rik−2βs0) ri`,τrik,ρ

rikri`
(A.65)

Now, we have to make a case-by-case analysis. We have to distinguish, between
three different cases:

1. both positions rik and ri` are in the first shell

2. both positions rik and ri` are in the second shell

3. one position lies in the first shell and the other in the second shell.

For case 1), we obtain

∂2Ec,i

∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq,11

= −E0λ
2

b2
1γ

2
1β

2
rik,ρri`,τ
rikri`

, (A.66)

where the subscript eq,11 indicates that both positions are positions in the first
shell of a perfect lattice. Case 2) leads to the following expression:

∂2Ec,i

∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq,22

= −E0λ
2

b2
1γ

1
1β

2
rik,ρri`,τ
rikri`

e−2η2(d2−1)βs0 (A.67)

Case 3), which includes one neighbours in the first and one in the second shell,
results in the following expression:

∂2Ec,i

∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq,12

= −E0λ
2

b2
1γ

1
1β

2
rik,ρri`,τ
rikri`

e−η2(d2−1)βs0 (A.68)

Not only the cohesive energy function, but also the pair potential V (rin) must
be modified as well, while the expression of the reference potential Vref remains the

168



A.3. Consideration of higher shells.

same. The new expression of the pair potential is given below:

V (rin) = γ−1
2 ·

∑
n6=i

V0e
−κ
β

(rin−βs0) (A.69)

with γ2 being the normalisation coefficient for the pair potential. This coefficient
can be written as

γ2 =
M∑
m=1

bm
b1
e−κ2(dm−1)βs0 . (A.70)

Like γ1, the second normalisation coefficient γ2 is also independent of the inter-
atomic distance rin. The first and second derivative of V (rin) are

∂V (rin)
∂ri`,τ

= V0κ

βγ2
e−

κ
β

(ri`−βs0) ri`,τ
ri`

, (A.71)

∂2V (rin)
∂rik,ρ∂ri`,τ

= −V0κ

βγ2
e−

κ
β

(ri`−βs0)
[
κ

β

ri`,τri`,ρ
r2
i`

+ ri`,τri`,ρ
r3
i`

− 1
ri`
δρτ

]
δk`. (A.72)

and at ideal lattice positions, the derivatives are:

∂V (rin)
∂ri`,τ

∣∣∣∣∣
eq,1

= V0κ

βγ2

ri`,τ
ri`

,

∂2V (rin)
∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq,11

= −V0κ

βγ2

[
κ

β

ri`,τri`,ρ
r2
i`

+ ri`,τri`,ρ
r3
i`

− 1
ri`
δρτ

]
δk`.

and

∂V (rin)
∂ri`,τ

∣∣∣∣∣
eq,2

= V0κ

βγ2
e−

κ
β

(d2−1)βs0 ri`,τ
ri`

,

∂2V (rin)
∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq,22

= −V0κ

βγ2
e−

κ
β

(d2−1)βs0

[
κ

β

ri`,τri`,ρ
r2
i`

+ ri`,τri`,ρ
r3
i`

− 1
ri`
δρτ

]
δk`.

The second derivative that include coordinates of different shells, ∂2V (rin)
∂rik,ρ∂ri`,τ

∣∣∣
eq,12

,
vanishes, due to the fact that neighbour k and neighbour l are always different.

Even though the expression of the reference potential remains the same, the
derivatives with respect to the distances do not, si was modified by including the
normalisation coefficient γ1. Thus, the first and second derivative of Vref with respect
to rik,ρ and ri`,τ have to be evaluated, too. The first derivative is
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∂Vref(si)
∂ri`,τ

= V0κ

β
(b−1

1 )
κ
βη2
−1(γ−1

1 )
κ
βη2 ·

 b1∑
n 6=i

e−η2(rin−βs0)

 κ
βη2
−1

e−η2(ri`−βs0) ri`,τ
ri`

(A.73)

and the second derivative can be written as

∂2Vref(si)
∂rik,ρ∂ri`,τ

=− V0κ

β
(b−1

1 )
κ
βη2
−1(γ−1

1 )
κ
βη2


(
κ

βη2
− 1

) b1∑
n6=i

e−η2(rin−βs0)

 κ
βη2
−2

·

e−η2(rik−βs0) rik,ρ
rik
· η2 · e−η2(ri`−βs0) ri`,τ

ri`
+ b1∑

n6=i
e−η2(rin−βs0)

 κ
βη2
−1

e−η2(ri`−βs0)
(
η2
ri`,ρri`,τ
r2
i`

+ ri`,ρri`,τ
r3
i`

− 1
ri`
δρτ

)
δk`

 .

Under equilibrium conditions, this expression can be simplified into

∂2Vref(si)
∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq

= V0κ

b1γ2
1β

(
η2 −

κ

β

)
e−η2(ri`+rik−2βs0) rik,ρri`,τ

rilrik

− V0κ

γ1β
e−η2(ri`−βs0)

(
η2
rik,ρri`,τ
rilrik

+ rik,ρri`,τ
r3
il

− δρτ
ri`

)
δkl.

Again, it is necessary to distinguish between three different cases as above:

1. both positions rik and ri` are in the first shell

2. both positions rik and ri` are in the second shell

3. one position lies in the first shell and the other in the second shell.

For case 1), we get the following result:

∂2Vref(si)
∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq

= V0κ

b1γ2
1β

(
η2 −

κ

β

)
rik,ρri`,τ
rilrik

− V0κ

γ1β

(
η2
rik,ρri`,τ
rilrik

+ rik,ρri`,τ
r3
il

− δρτ
ri`

)
δkl,
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for case 2)

∂2Vref(si)
∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq

= V0κ

b1γ2
1β

(
η2 −

κ

β

)
e−2η2(d2−1)βs0

rik,ρri`,τ
rilrik

− V0κ

γ1β
e−η2(d2−1)βs0

(
η2
rik,ρri`,τ
rilrik

+ rik,ρri`,τ
r3
il

− δρτ
ri`

)
δkl.

and for case 3), i.e. the mixed term:

∂2Vref(si)
∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq

= V0κ

b1γ2
1β

(
η2 −

κ

β

)
e−η2(d2−1)βs0

rik,ρri`,τ
rilrik

.

We can now write the second derivative of the total energy per atom εi with
respect to the Cartesian coordinate rin,τ .

∂2εi
∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq

=
(
−E0λ

2

b2
1γ

2
1β

2 + V0κ

2βb1γ2
1

(
κ

β
− η2

))
e−η2(rik+ril−2βs0) ri`,τrik,ρ

rikri`

− V0κ

2γ2β
e−

κ
β

(ri`−βs0) ·
(
κ

β

ri`,τri`,ρ
r2
i`

+ ri`,τri`,ρ
r3
i`

− 1
ri`
δρτ

)
δk`

+ V0κ

2βγ1
e−η2(ri`−βs0)

(
η2
ri`,ρri`,τ
r2
i`

+ ri`,ρri`,τ
r3
i`

− 1
ri`
δρτ

)
δk`

The equation above, can be abbreviated into the following form:

∂2εi
∂rik,ρ∂ri`,τ

∣∣∣∣∣
eq

= Λri`,τrik,ρ
rikri`

+ Σδk`

Λ =
(
−E0λ

2

b2
1γ

2
1β

2 + V0κ

2βb1γ2
1

(
κ

β
− η2

))
e−η2(rik+ril−2βs0)

Σ = − V0κ

2γ2β
e−

κ
β

(ri`−βs0)
(
κ

β

ri`,τri`,ρ
r2
i`

+ ri`,τri`,ρ
r3
i`

− 1
ri`
δρτ

)

+ V0κ

2βγ1
e−η2(ri`−βs0)

(
η2
ri`,ρri`,τ
r2
i`

+ ri`,ρri`,τ
r3
i`

− 1
ri`
δρτ

)

Now, with the expressions for the second derivative of εi in hand, we can derive the
elastic constants by applying Eq.A.8, which leads to the following expression

Cξρστ, = 1
Ω0

b1+b2∑
k,`=1

(
Λr`,τrk,ρ

rkr`
+ Σδk`

)
rk,ξr`,σ

∣∣∣∣∣∣
eq

, (A.74)
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A. Derivation of elastic constants

bcc expression

In this subsection,the explicit expressions for C11, C12, C44 and B are derived for the
bcc lattice. In a bcc lattice, there are six next-nearest neighbours with a distance of

r
(2)
ij = a0 (A.75)

to the reference atom. With the help of Eq.A.52 and (A.53), it is possible to express
the next-nearest neighbour distances with respect to βs0, i.e.,

r
(2)
ij = 2√

3
r

(1)
ij = 2√

3
βs0. (A.76)

The Cartesian coordinates of all 14 neighbours are given in the following table:

# x [a0] y [a0] z [a0] x [βs0] y [βs0] z [βs0]
1 1/2 1/2 1/2 1/

√
3 1/

√
3 1/

√
3

2 −1/2 1/2 1/2 −1/
√

3 1/
√

3 1/
√

3
3 1/2 −1/2 1/2 1/

√
3 −1/

√
3 1/

√
3

4 1/2 1/2 −1/2 1/
√

3 1/
√

3 −1/
√

3
5 −1/2 −1/2 1/2 −1/

√
3 −1/

√
3 1/

√
3

6 −1/2 1/2 −1/2 −1/
√

3 1/
√

3 −1/
√

3
7 1/2 −1/2 −1/2 1/

√
3 −1/

√
3 −1/

√
3

8 −1/2 −1/2 −1/2 −1/
√

3 −1/
√

3 −1/
√

3
9 1 0 0 2/

√
3 0 0

10 0 1 0 0 2/
√

3 0
11 0 0 1 0 0 2/

√
3

12 −1 0 0 −2/
√

3 0 0
13 0 −1 0 0 −2/

√
3 0

14 0 0 −1 0 0 −2/
√

3

Following the same procedure that has been applied to derive the expressions for
the elastic constants for the nearest-neighbour exclusive formulae, we obtain the
following results for C11, C12 and C44.
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A.3. Consideration of higher shells.

Cyyyy|eq = 1
Ω0

14∑
k,`=1

(
Λy`,τyk,ρ

rkr`
+ Σδk`

)
yk,ξy`,σ

= 4
πs0

(
−E0λ

2 + 4V0κ(κ− βη2)
64γ2

1

)(
4
3 + 4√

3
Mη2 + M2

η2

)

+ V0κ

3πs2
0γ1γ2

(−γ1 (κs0 (1 + 3Mκ)− 2) + γ2 (βη2s0 (1 + 3Mη2)− 2)) (A.77)

Mκ =e−κs0

(
2√
3
−1
)

(A.78)

Mη2 =e−η2βs0

(
2√
3
−1
)

(A.79)

Cyyzz|eq = 1
Ω0

14∑
k,`=1

(
Λy`,τzk,ρ

rkr`
+ Σδk`

)
yk,ξz`,σ

= 4
πs0

(
−E0λ

2 + 4V0κ(κ− βη2)
64γ2

1

)(
4
3 + 4√

3
Mη2 + M2

η2

)

+ V0κ

3πs2
0γ1γ2

(−γ1 (κs0 + 1) + γ2 (βη2s0 + 1)) (A.80)

Mκ =e−κs0

(
2√
3
−1
)

(A.81)

Mη2 =e−η2βs0

(
2√
3
−1
)

(A.82)

Cyzyz|eq = 1
Ω0

14∑
k,`=1

(
Λy`,τyk,ρ

rkr`
+ Σδk`

)
zk,ξz`,σ

= V0κ

3πs2
0γ1γ2

(
(−γ1(κs0 − 2) + γ2(βη2s0 − 2)) +

√
27
2 (γ1Mκ − γ2Mη2)

)
(A.83)

Mκ =e−κs0

(
2√
3
−1
)

(A.84)

Mη2 =e−η2βs0

(
2√
3
−1
)

(A.85)

With these relationships in hand, one can easily derive C ′, which is

C ′ = 1
2(C11 − C12) = V0κ

2πs2
0γ1γ2

(−γ1(κs0Mκ − 1) + γ2(βs0Mη2 − 1)) (A.86)
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A. Derivation of elastic constants

Furthermore, the bulk modulus can again be obtained via

B =C11 + 2C12

3

=−E0λ
2 + 4V0κ(κ− βη2)

16πs0γ2
1

(
4
3 + 4√

3
Mη2 + M2

η2

)

+ V0κ

3πs2
0γ1γ2

(−γ1κs0 (1 + Mκ) + γ2βη2s0 (1 + Mη2)) . (A.87)
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B. Input files

general:
System = bcc Mo
ISTART = 0
ICHARG = 2
ISMEAR = 1
SIGMA = 0.2
NPAR = 1
ENCUT = 550.0
LWAVE = .FALSE.
LCHARG = .FALSE.
PREC = ACCURATE
EDIFF = 1E-05
EDIFFG = -1E-03
ALGO = F
SYMPREC = 1E-8

spin:
ISPIN = 1
dynamic:
ISIF = 2
IBRION = 2
NSW = 120
POTIM = 0.5
NELMIN = 4
functional:
GGA = PE

Figure B.1.: Exemplary INCAR-file for a structure optimisation.
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K-Points
0

Monkhorst Pack
7 7 1
0 0 0

Figure B.2.: Exemplary KPOINTS-file for a structure optimisation.

bcc: Mo (110) (1 x 1 x 6) surface PBE
3.15

0.707106 0.500000 0.000000
-0.707106 0.500000 0.000000
0.000000 0.000000 8.535533

6
Selective Dynamics
Cartesian
.0000 .0000 0.0000 F F F
.0000 .5000 -0.7071 F F T
.0000 .0000 -1.4142 F F T
.0000 .4999 -2.1213 F F T
.0000 .0000 -2.8284 F F T
.0000 .4999 -3.5355 F F T

Figure B.3.: Exemplary POSCAR-file for a structure optimisation.
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B. Input files

general:
System = Mo surface PBE (110) Thermalisation
ISTART = 0
ICHARG = 2
ISMEAR = 1
SIGMA = 0.1
ENCUT = 550
ALGO = FAST
GGA = PE
LREAL = AUTO
PREC = ACCURATE
ISPIN = 1
NPAR = 2

NELMIN = 4
ISYM = 0
IBRION = 0
NSW = 1000
NWRITE = 0
SMASS = -3
POTIM = 1
TEBEG = 240

Figure B.4.: Exemplary INCAR-file for a surface thermalisation.

K-Points
0

Monkhorst Pack
12 12 1
0 0 0

Figure B.5.: Exemplary KPOINTS-file for a structure optimisation.
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#H on Mo Energy calculation GGA PBE H on Mo(2x2x6) (110)
3.150
1.41421 1.00000 0.00000

-1.41421 1.00000 0.00000
0.00000 0.00000 8.53553

24
Selective Dynamics
cartesian
0.00000 0.00000 0.00000 T T T
0.70711 0.50000 0.00000 T T T

-0.70711 0.50000 0.00000 T T T
0.00000 1.00000 0.00000 T T T
0.00000 0.50000 -0.66860 T T T
0.70711 1.00000 -0.66860 T T T

-0.70711 1.00000 -0.66860 T T T
0.00000 1.50000 -0.66860 T T T
0.00000 0.00000 -1.38325 T T T
0.70711 0.50000 -1.38325 T T T

-0.70711 0.50000 -1.38325 T T T
0.00000 1.00000 -1.38325 T T T
0.00000 0.50000 -2.09610 T T T
0.70711 1.00000 -2.09610 T T T

-0.70711 1.00000 -2.09610 T T T
0.00000 1.50000 -2.09610 T T T
0.00000 0.00000 -2.81080 T T T
0.70711 0.50000 -2.81080 T T T

-0.70711 0.50000 -2.81080 T T T
0.00000 1.00000 -2.81080 T T T
0.00000 0.50000 -3.47941 F F F
0.70711 1.00000 -3.47941 F F F

-0.70711 1.00000 -3.47941 F F F
0.00000 1.50000 -3.47941 F F F

Figure B.6.: Exemplary POSCAR-file for a surface thermalisation.
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System = H atom at Mo surface (110) AIMD Trajectory
ISTART = 0
ICHARG = 2
ISMEAR = 1
SIGMA = 0.1
NPAR = 2
ENCUT = 550
ALGO = Fast
GGA = PE
EDIFF = 1E-5
EDIFFG = -1E-3
LREAL = AUTO
LWAVE = .FALSE.
LCHARG = .FALSE.
PREC = Normal
ISPIN = 2
AMIX = 0.3
BMIX = 0.0001
AMIX_MAG = 0.3
BMIX_MAG = 0.0001
MAXMIX = 40
MAGMOM = 24*0 1*1
NELM = 300
NELMIN = 4
ISYM = 0
ISIF = 0
IBRION = 0
NSW = 1200
NWRITE = 0
SMASS = -3
POTIM = 0.1

Figure B.7.: Exemplary INCAR-file for an AIMD trajectory.
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#AIMD for 5eV H atom on Mo(110)
3.15000000000000

1.4142100000000000 1.0000000000000000 0.0000000000000000
-1.4142100000000000 1.0000000000000000 0.0000000000000000
0.0000000000000000 0.0000000000000000 8.5355299999999996

Mo H
24 1

Selective dynamics
Direct
0.9902667647642087 0.9962935569553379 0.0007389279450770 T T T
0.4966135605980884 0.0132976650290013 0.9986437098350638 T T T
0.0084487773840449 0.5029111995945402 0.9984204071825901 T T T
0.4962722494203600 0.5062491252714615 0.9994248957179098 T T T
0.2495816480050153 0.2501884094270239 0.9203648028054612 T T T
0.7521248837223262 0.2588358744659190 0.9205515501094186 T T T
0.2443132166974957 0.7522056901859988 0.9229624356868555 T T T
0.7459863939805972 0.7543121713266744 0.9207416017712228 T T T
0.0048849292441701 0.0182106230733379 0.8381783880352295 T T T
0.5111373206012887 0.0134631827569192 0.8369312510749682 T T T
0.0099170772545478 0.5150215097605433 0.8372622927388627 T T T
0.5043649350265204 0.5244126986847130 0.8380886849338191 T T T
0.2507774960015723 0.2446230066318210 0.7539194583967864 T T T
0.7539700516942309 0.2744509771403768 0.7538341742045246 T T T
0.2539389591592607 0.7545173336667729 0.7542863886808197 T T T
0.7521945802717374 0.7552261447209180 0.7522399573439085 T T T
0.0112646294098224 0.0097594214593412 0.6689758639483880 T T T
0.4994555916539475 0.0064280608416841 0.6703074521262085 T T T
0.0024717193387853 0.4986546305302290 0.6694076431917134 T T T
0.5068671025418341 0.5120390890796126 0.6727003795728204 T T T
0.2500000000000000 0.2500000000000000 0.5923615800000001 F F F
0.7500017700000000 0.2499982300000000 0.5923615800000001 F F F
0.2499982300000000 0.7500017700000000 0.5923615800000001 F F F
0.7500000000000000 0.7500000000000000 0.5923615800000001 F F F
0.0454230480234034 0.4952034802340343 0.2221568402620464 T T T
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-0.68355525E-03 0.59533842E-03 0.77171792E-03
0.43343987E-03 0.32554394E-02 0.84464137E-03

-0.39073386E-03 -0.64201534E-03 0.40866595E-03
0.10470826E-02 0.14478469E-02 -0.13187052E-03
0.40093233E-03 -0.11686897E-02 0.13585390E-02
0.21531472E-02 -0.36006520E-03 0.10426314E-02
0.65576155E-03 0.56994126E-03 -0.13521757E-02

-0.74693895E-03 0.24858655E-03 -0.11773008E-02
-0.27243751E-03 0.20487452E-02 -0.10597520E-02
-0.22429723E-03 -0.16050448E-03 -0.36354078E-03
-0.41994644E-03 -0.11608142E-02 0.13152891E-02
0.28030748E-03 -0.55292203E-03 0.20951789E-02
0.26457151E-03 -0.80857721E-03 0.13441114E-02

-0.56772034E-03 -0.13313989E-02 -0.37713797E-03
0.28916886E-03 -0.21739654E-02 0.42427893E-04

-0.23780003E-03 0.60824316E-03 0.12582251E-02
0.34785848E-03 -0.15593400E-02 -0.23277514E-02
0.40820842E-03 -0.47364672E-03 -0.32737332E-03

-0.12149107E-02 -0.50194049E-03 -0.11312505E-03
0.65026431E-03 -0.13254133E-02 0.17268297E-03
0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 0.00000000E+00 0.00000000E+00
0.00000000E+00 -0.15469472E+00 -0.26793910E+00

Figure B.8.: Exemplary POSCAR-file for an AIMD trajectory.
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C. Planar density of the different
facets

I define the planar density ρA in the following way:

ρA
def= AAtom

Acell
, (C.1)

with AAtom being the area of a single atom in the p(1×1) cell of the respective surface
facet, which is denoted as Acell. The area of the primitive surface cell is spanned
by the primitive lattice vectors ~a1 and ~a2, which have already been discussed in the
main text. For the sake of convenience, I will denote them here in the derivation
regardless. The diameter of an atom in a fcc crystal is related to the conventional
lattice constant of the crystal in the following way

d = a0√
2

(C.2)

Since the primitive surface cell contains in total one atom, the area that is filled by
the atom is thus

AAtom = πd2

4 (C.3)

for all fcc surface facets. The primitive lattice vectors of the fcc(111) surface are

~a1 =


1√
2

0
0

 a0; ~a2 =


− 1

2
√

2√
3
8

0

 a0. (C.4)

With them in hand we get the following value for the planar density

Acell =|~a1 × ~a2| =
a2

0
2 d

2 sin 60◦= C.2=
√

3d2

2 (C.5)

ρA,fcc(111)
C.1= π√

12
≈ 0.907. (C.6)

The planar density acquired for the fcc(111) surface has been proven to be the
highest possible packing.169 The primitive lattice vectors for the fcc(110) surface
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are

~a1 =


1
0
0

 a0; ~a2 =


0
1√
2

0

 a0, (C.7)

and thus the area of the primitive surface cell and the planar density are

Acell =|~a1 × ~a2| =
a0√

2
C.2=
√

2d2 (C.8)

ρA,fcc(110)
C.1= πd2

4
√

12d2
= π√

32
≈ 0.555, (C.9)

respectively. Finally, the primitive lattice vectors of the fcc(100) surface are

~a1 =


1√
2

0
0

 a0; ~a2 =


0
1√
2

0

 a0. (C.10)

Consequently, the primitive surface cell and the planar density are

Acell =|~a1 × ~a2| =
a2

0
2

C.2= d2 (C.11)

ρA,fcc(100)
C.1= πd2

4d2 = π

4 ≈ 0.785. (C.12)

For the bcc lattices, the definition of the planar density does not change. However,
the relationship between the diameter of an atom in a bcc lattice and the conventional
lattice constant a0 is different compared to the fcc lattice, i.e.

d =
√

3
2 a0. (C.13)

For the sake of convenience, I denoted the conventional lattice constant for a bcc
lattice with the same symbol, a0, as the conventional lattice constant for an fcc

lattice, albeit both quantities do not possess the same numerical value. This will not
be an issue for the consideration of the planar density anyhow as ρA is independent
of a0, respectively the diameter of an atom in that particular lattice. The lattice
vectors of a p(1× 1) cell of a bcc(111) surface are

~a1 =


√

2
0
0

 a0; ~a2 =


−
√

2√
3
2

0

 a0. (C.14)
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Table C.1.: Planar densities ρA of the surface facets used in the H atom scattering
simulations.

Facet fcc(100) fcc(110) fcc(111) bcc(100) bcc(110) bcc(111)
ρA 0.785 0.555 0.907 0.589 0.833 0.340

This enables us to write down the planar density of the bcc(111) surface

Acell =|~a1 × ~a2| = 2a2
0 sin 60◦ C.13= 4√

3
d2 (C.15)

ρA,bcc(111)
C.1= π
√

3d2

42d2 =
√

3π
16 ≈ 0.340 (C.16)

The primitive lattice vectors of the bcc(110) surface are

~a1 =


1√
2

1
2

0

 a0; ~a2 =


− 1√

2
1
2

0

 a0. (C.17)

The corresponding area of the primitive cell and the planar density are thus

Acell =|~a1 × ~a2| =
3
4a

2
0 sin 109.4◦ C.13= d2 sin 109.4◦ (C.18)

ρA,bcc(110)
C.1= πd2

4d2 sin 109.4◦ = π

4 sin 109.4◦ ≈ 0.833 (C.19)

Lastly, with the primitive lattice vectors of the bcc(100) surface being

~a1 =


1
0
0

 a0; ~a2 =


0
1
0

 a0 (C.20)

we can acquire the following expressions for the area of the primitive surface cell
and the planar density:

Acell =|~a1 × ~a2| = a2
0
C.13= 4

3d
2 (C.21)

ρA,bcc(100)
C.1= 3πd2

42d2 = 3π
16 ≈ 0.589 (C.22)

All planar densities are gathered in Table C.1 and starting with facet that shows
the largest value for ρA, we arrive at the following order:

ρA,fcc(111) > ρA,bcc(110) > ρA,fcc(100) > ρA,bcc(100) > ρA,fcc(110) > ρA,bcc(111).
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Figure D.1.: Energy grid of Ni(111).
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Figure D.2.: Energy grid of Ni(110).
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Figure D.4.: Energy grid of Pd(111).
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Figure D.6.: Energy grid of Pd(100).
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Figure D.8.: Energy grid of Ag(110).

194



−2

 0

 2 (1)

 

 

 

−2

 0

 2(2)

E
 / 

eV

−2

 0

 2

 

 

 (3)

 

 

 

−2

 0

 2(4)

E
 / 

eV

−2

 0

 2

−10 −8 −6 −4 −2  0  2  4

 

 

 

(5)

z / Å

DFT
EMT

 

 

 

−10 −8 −6 −4 −2  0  2  4  6

−2

 0

 2

(6)
E

 / 
eV

z / Å

DFT
EMT

Figure D.9.: Energy grid of Ag(100).

195



D. Potential energy curves

−2

 0

 2 (1) top

 

 

 

−2

 0

 2(2) tso

E
 [

eV
]

−2

 0

 2

 

 

 (3) ott

 

 

 

−2

 0

 2(4) bri

E
 [

eV
]

−2

 0

 2

 

 

 (5) fht

 

 

 

−2

 0

 2(6) hho

E
 [

eV
]

−2

 0

 2

 

 

 (7) hcp

 

 

 

−2

 0

 2(8) hht

E
 [

eV
]

−2

 0

 2

−8 −4  0  4

 

 

 

(9) fho

z [Å]

DFT
EMT

 

 

 

−8 −4  0  4

−2

 0

 2

(10) fcc

E
 [

eV
]

z [Å]

DFT
EMT

Figure D.10.: Energy grid of Pt(111).
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Figure D.14.: Energy grid of Au(110).
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ABSTRACT: Originally conceived to describe thermal diffusion,
the Langevin equation includes both a frictional drag and a random
force, the latter representing thermal fluctuations first seen as
Brownian motion. The random force is crucial for the diffusion
problem as it explains why friction does not simply bring the
system to a standstill. When using the Langevin equation to
describe ballistic motion, the importance of the random force is
less obvious and it is often omitted, for example, in theoretical
treatments of hot ions and atoms interacting with metals. Here,
friction results from electronic nonadiabaticity (electronic friction),
and the random force arises from thermal electron−hole pairs. We
show the consequences of omitting the random force in the
dynamics of H-atom scattering from metals. We compare
molecular dynamics simulations based on the Langevin equation to experimentally derived energy loss distributions. Despite the
fact that the incidence energy is much larger than the thermal energy and the scattering time is only about 25 fs, the energy loss
distribution fails to reproduce the experiment if the random force is neglected. Neglecting the random force is an even more severe
approximation than freezing the positions of the metal atoms or modelling the lattice vibrations as a generalized Langevin oscillator.
This behavior can be understood by considering analytic solutions to the Ornstein−Uhlenbeck process, where a ballistic particle
experiencing friction decelerates under the influence of thermal fluctuations.

The Langevin equation originally served as an alternative
to Einstein’s1 and Smoluchowski’s2 treatment of

Brownian motion, the jittery back-and-forth hopping first
seen under a microscope for pollen particles suspended in
water that forms the physical basis for thermal diffusion. It
explicitly describes time-dependent fluctuations seen in
experiments with a random force derived using the
fluctuation−dissipation theorem.3 The insights clarified by
the random force helped to establish the molecular view of
matter.4 Today, the Langevin equation is the most common
theoretical ansatz used to model electronically nonadiabatic
effects between atoms (or molecules) and solid metals.5−9

Here, nuclear motion takes the part of the Brownian pollen
particle, and thermally fluctuating electron−hole pairs (ehp) of
the metal play the role of the jiggling water molecules.
These frictional models of electronically nonadiabatic

motion have broad applicability, for example, to describe the
ion stopping power of metals,10−14 nonadiabatic dynam-
ics9,15−23 like the thermalization of hot atoms,20 and even
the mechanism of hydrogen atom adsorption to metal
surfaces.24,25 Furthermore, a variety of approximations to
compute the electronic friction tensor have been pro-
posed.8,14,17,26−36 Experimental tests of these models are
needed to determine which are most reliable.

Inelastic H-atom scattering from metal surfaces24,25,37,38

provides a direct probe of electronically nonadiabatic forces in
a system that can be treated classically in full dimensions,
including surface atom motion.39,40 Experimental and the-
oretical energy-loss distributions can be compared to test
models of electronic friction. However, since the Langevin
equation describes how a system evolves under the influence of
a frictional drag and a random force, the experimental
manifestations of a model of electronic friction cannot be
realized without the influence of the random force. This poses
the question how important is the influence of the random
force?
When the Langevin equation is used to describe diffusion,

the random force is essential, preventing motion from
eventually coming to a standstill due to friction. However, to
describe scattering and reactions of atoms and molecules at
surfaces, its importance is not as obvious. In fact, the random
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force has often been ignored9,15−23 using as justification the
fact that the projectile kinetic energy ϵ0 is much larger than
thermal energy kBT. On the face of it, this assumption appears
reasonable. For example, should we wish to describe ballistic
motion of a H-atom in collisions with a metal, there is no
danger of the system coming to a standstill and the timescale of
a scattering collision can be very short, possibly rendering the
ehp fluctuations unimportant.
In this article, we present molecular dynamics simulations

using the Langevin equation to describe H-atom scattering
from room-temperature metal surfaces, where the incidence
energy is large and where interactions last only ≈25 fs. We
compare these calculations to experimentally derived H-atom
energy loss distributions.24,25 The trajectory simulations are
generally in good agreement with the experiment provided the
random force is included. However, neglecting it produces
energy loss distributions that qualitatively fail to describe the
experimental ones, even for ϵ0/kBT > 100. Only at surface
temperatures below about 100 K does the influence of the
random force diminish. This work shows that the physical
mechanisms of nonadiabatic dissipation can easily be obscured
by the random force.
To investigate the influence of the random force in the

Langevin equation, we performed molecular dynamics (MD)
simulations of H-atom scattering from two metals, Au and W.
We compared outcomes employing two different approaches:
model I,39 where the atom−surface interaction is described by
a full-dimensional potential energy surface (PES) constructed
by means of the Effective Medium Theory,40−42 and the
surface is represented by a slab of metal atoms with periodic
boundary conditions; and model II,43,44 where a three-
dimensional (3D) PES produced by the Corrugation Reducing
Procedure45−47 is used, and the surface is described by a
generalized Langevin oscillator.48−50 In both models, the
nonadiabatic coupling is described by the electronic friction
coefficient depending on the background electron density
(local density friction approximation).14,17 In model I, the
background electron density appears self-consistently as it is
necessary to calculate the energy; it depends on the positions
of both projectile and surface atoms.39 In model II, one has to
do additional ab initio calculations with the frozen surface to
get the electron density as a function of a projectile position.44

The projectile is propagated by the Langevin equation of
motion

m
E

m tr
r

r F ( )el Lη̈ = − ∂
∂ − ̇ +

(1)

where E is the potential energy of the system, m is the mass of
the projectile, ηel is the electronic friction coefficient dependent
on the system’s geometry, and FL(t) is the random force,
which follows a Gaussian distribution with zero average and
variance determined by the fluctuation−dissipation theorem51

t t k T m t tF F I( ) ( ) 2 ( )L L B el elη δ⟨ ′ ⟩ = − ′ (2)

where Tel is the temperature of the electron bath and I is the
3D unity matrix.
For both models, trajectories were run with an incidence

energy of ϵ0 = 2.76 eV and an incidence angle of ϑi = 45° with
respect to the surface normal. The azimuthal angles φi for the
gold and tungsten calculations were defined with respect to the
[101̅] direction and the [001] direction, respectively.
Trajectories were initiated with the projectiles placed at
random lateral positions 6 Å above the surface. The

calculations were stopped after 1 ps or if the scattered
projectile was found more than 6.05 Å above the surface.
Figure 1 shows the results using model I. The energy loss

distribution constructed from the MD trajectories (•) that

scatter into angles that match the angular acceptance of the
experiment successfully reproduces an experimentally obtained
energy loss distribution (◦). The scattered H-atoms exhibit a
mean energy loss of approximately 1 eV and appear in a
distribution with a remarkably broad width of 2.5 eV due to
energy exchange with ehp and phonons. When Tel is set to 0 K,
the MD simulations (■) fail spectacularly. Note that setting
Tel = 0 K is equivalent to neglecting the random force.
We show the influence of the random force on the energy

loss distribution in Figure 2. Here, MD trajectories are
generated as in Figure 1 using a PES with moving Au atoms
(•), but Tel is varied between 300 and 0 K. As Tel decreases,
peaks appear in the energy loss distribution. Analysis of
trajectories reveals that these peaks correspond to “bounces”,
that is, to interactions involving different numbers of collisions
between H and Au atoms. The energy loss increases
approximately linearly with each additional collision, reflecting
the increased interaction time. Also shown in Figure 2 are two
MD calculations employing a frozen surface (◦) with Tel = 0
and 300 K. For Tel = 0 K, peaks are even sharper than for the
moving surface MD simulations at Tel = 0 K, the difference
reflecting kinetic energy exchange between H and Au atoms. In
contrast, at Tel = 300 K, it is hard to distinguish the energy loss
distribution obtained when using a static surface approxima-
tion from that obtained when Au atoms are allowed to move.
Figure 2 also shows that the mean energy loss does not

depend on the electronic temperature and is equal to 1.1 eV.
The random force does not affect the sticking probability as
well.
We next investigate the sensitivity of the energy loss

distribution to the choice of the dynamical model. Figure 3a,b

Figure 1. H-atom inelastic scattering from Au(111): comparing
theory and the experiment. Using model I with Tel = 300 K (•), good
agreement with the experiment (◦) is found. By setting Tel = 0 K, the
random force is deactivated and theory (■) deviates from the
experiment. For all three curves, ϵ0 = 2.76 eV, the phonon
temperature is 300 K, ϑi = 45°, and ϑs = 45° with respect to the
surface normal, while φi = 0° with respect to the [101̅] direction.
Experimental results are taken from ref 24.
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shows the results of MD simulations for H scattering from
W(110) computed with models I and II. In Figure 3a, where
Tel = 0 K, the two energy loss distributions are clearly

distinguishable from one another. This is, however, not the
case when Tel = 300 K (Figure 3b). Despite the moderate
temperature and high H-atom incidence energy, it is clear that
the broadening effects of the random force on the energy loss
distribution smear out the differences in the scattering
dynamics resulting from the two models.
It is noteworthy that similar effects were observed in

studying adiabatic dynamics of Ar and Xe at metal surfaces,49

where friction and fluctuating (random) force were due to the
thermal bath of phonons. Here, the calculated properties
(sticking coefficients, etc.) were not sensitive to the details of
atom−surface interactions or changes in the phonon spectral
density.
The sensitivity of the energy loss distribution to the identity

of the metal is also interesting. To study this, we compared
MD scattering results from two metals. Figure 3c,d shows
comparisons of H scattering from fcc Au(111) (◦) and bcc
W(110) (•), with both using model I. Remarkably, the energy
distributions associated with these two metals can only be
distinguished at low electronic temperatures.
To better understand the surprisingly strong influence of the

random force on the width of energy loss distributions,
consider a closely related problem that has an analytical
solution: the one-dimensional motion of an ensemble of
particles of mass m with incidence energy ϵ0 subjected to
friction with characteristic deceleration time τ experiencing a
random force at temperature T. This motion is described by
the one-dimensional version of eq 1, where the conservative
force (the first term in the right hand side) is omitted. The
random force distribution is Gaussian with the second moment
defined by eq 2, and the friction coefficient ηel = τ−1 is
constant. This is known as the Ornstein−Uhlenbeck (OU)
process,52 and we can use it to describe a scattering trajectory
that has not reached equilibrium.
The ensemble’s initial velocity distribution is δ(v − v0);

thereafter, it is normal, with the time-dependent expectation
v̅(t) and standard deviation σv(t) given by53,54

v t v t
k T

m
t( ) e , ( ) ( )t

v0
/ Bσ ξ̅ = =τ−

(3)

where v0 = 2ϵ0/m is the initial speed of a particle and ξ(t) = 1
− e−2t/τ. Since the energy of the particle ϵ = mv2/2 is non-
negative, its probability density function

P
e
m

( )
e

2

m v m v

v

( 2 ) /2 ( 2 ) /2v v
2 2 2 2

σ π
ϵ = +

ϵ
σ σ− ϵ − ̅ − ϵ − ̅

(4)

has the form of a folded normal distribution55 with the mean
energy
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and the energy standard deviation
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Substituting the mean velocity v̅(t) and the variance σv
2(t)

for the OU process from eq 3 into eqs 4 and 6 using the
definition of the cosine hyperbolic function, we derive the
time-dependent energy distribution

Figure 2. Electronic temperature determines the shape of the energy
loss distribution. Energy loss distributions are shown for scattered H-
atoms from a moving Au(111) surface with a phonon temperature of
300 K (•) and with a static lattice approximation (◦) at various
electronic temperatures Tel. Incidence conditions are the same as
those in Figure 1; however, here, trajectories at all scattering angles
are used.

Figure 3. Obscuring influence of the random force at modest
temperature: angle-integrated energy loss distributions for scattered
H-atoms from W(110) using models I (•) and II (×) at (a) Tel = 0 K
and (b) Tel = 300 K; in the insets, the energy loss spectra for H
scattering from W(110) (•) and Au(111) (◦) are compared at (c) Tel
= 0 K and (d) Tel = 300 K using model I. The phonon temperature in
all cases is 300 K.
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Figure 4a shows energy distributions from eq 7 for the one-
dimensional OU process at ϵ0 = 2.76 eV and T = 300 K. Figure

4b shows the time-dependent width of the energy distribution
eq 6 for four choices of ϵ0 and at T = 300 K. At t = 0, the
energy distribution is a delta function. At an intermediate time,
σϵ(t) overshoots kBT, reaching a maximum given by

t
k T

k T
( )

2
4max

B 0
2

0 B
σ = ϵ

ϵ −ϵ
(9)

where

t
k T
k T2

ln
4
2max

0 B

0 B

τ= ϵ −
ϵ − (10)

before eventually falling back to the equilibrium value k T/ 2B
in the limit of infinite time. Under the conditions of Figure 4a,
tmax = 0.35τ, but σϵ(t) is much larger than kBT already at t =
0.1τ and remains quite broad until nearly completely
decelerated.
A naive view of eq 2 might suggest that because the

distribution of random forces scales as k TB , the width of the

energy distribution scales similarly. However, when the
random force introduces a thermally distributed change in
velocity δv, the resulting change in energy scales as (v0 + δv)2

− v0
2 = 2v0δv + δv2. The term 2v0δv contributes to the energy

distribution width in proportion to the hyperthermal velocity
v0. Equation 9 shows this; σϵ(tmax) scales as k T0 Bϵ for ϵ0 ≫
kBT. Furthermore, eq 10 shows that the thermal overshoot in
the width of the energy distribution is absent only when ϵ0 <
kBT/2 (see also Figure 4b). Clearly, for the OU process, one
cannot justify ignoring the influence of the random force with
an argument that ϵ0 is much larger than kBT. It is not then
surprising that this argument is also incorrect when computing
nonadiabatic MD trajectories in many dimensions.
The observations arising from our analysis of the H-atom

energy loss distributions and of the OU process suggest that
neglecting the random force for ballistic motion is generally
unwise when considering the scattering properties more
detailed than the mean energy loss or sticking probability.
The results of this work also serve a warning. The generally
good agreement seen between H-atom scattering experiments
and MD simulations with electronic friction is due largely to
broadening effects introduced by the random force. To
experimentally distinguish different theories of nonadiabatic
dynamics, experiments at low surface temperatures are needed.
This could put new demands on theory as quantum dynamics
may be important at low temperature.

■ AUTHOR INFORMATION

Corresponding Author
Alexander Kandratsenka − Max-Planck-Institut für
Biophysikalische Chemie, 37077 Göttingen, Germany;
orcid.org/0000-0003-2132-1957; Email: akandra@

mpibpc.mpg.de

Authors
Nils Hertl − Max-Planck-Institut für Biophysikalische Chemie,
37077 Göttingen, Germany; Institut für Physikalische
Chemie, Georg-August-Universität Göttingen, 37077
Göttingen, Germany

Raidel Martin-Barrios − Université de Bordeaux, 33405
Talence, France; CNRS, 33405 Talence, France; Universidad
de La Habana, CP 10400 La Habana, Cuba

Oihana Galparsoro − Max-Planck-Institut für
Biophysikalische Chemie, 37077 Göttingen, Germany;
Institut für Physikalische Chemie, Georg-August-Universität
Göttingen, 37077 Göttingen, Germany; orcid.org/0000-
0003-4964-1696

Pascal Larrégaray − Université de Bordeaux, 33405 Talence,
France; CNRS, 33405 Talence, France; orcid.org/0000-
0002-1643-3164

Daniel J. Auerbach − Max-Planck-Institut für
Biophysikalische Chemie, 37077 Göttingen, Germany

Dirk Schwarzer − Max-Planck-Institut für Biophysikalische
Chemie, 37077 Göttingen, Germany; orcid.org/0000-
0003-3838-2211

Alec M. Wodtke − Max-Planck-Institut für Biophysikalische
Chemie, 37077 Göttingen, Germany; Institut für
Physikalische Chemie, Georg-August-Universität Göttingen,
37077 Göttingen, Germany; orcid.org/0000-0002-6509-
2183

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpcc.1c03436

Figure 4. Time-dependent energy distribution of the Ornstein−
Uhlenbeck process. (a) A particle with an incidence energy of ϵ0 =
2.76 eV decelerates under a frictional drag subject to thermal
fluctuations at T = 300 K. Energy distributions are shown at various
times, in units of τ, the characteristic time for deceleration. (b) The
width of the distribution is shown for various choices of incidence
energy ϵ0.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.1c03436
J. Phys. Chem. C 2021, 125, 14468−14473

14471

E. Associated Publications

208



Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors thank Prof. John C. Tully for helpful discussions
and comments. This work was partly funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion)217133147/SFB 1073, project A04. A.K. acknowledges
the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme
(grant agreement no. 833404). R.M.B. and P.L. acknowledge
funding from the French Embassy in Cuba and the
Transnational Common Laboratory QuantumChemPhys:
Theoretical Chemistry and Physics at the Quantum Scale
(ANR-10-IDEX-03-02).

■ REFERENCES
(1) Einstein, A. Zur Theorie der Brownschen Bewegung. Ann. Phys.
1906, 324, 371−381.
(2) von Smoluchowski, M. The kinetic theory of Brownian
molecular motion and suspensions. Ann. Phys. 1906, 326, 756−780.
(3) Langevin, P. Sur la theorie du mouvement brownien. C. R. Acad.
Sci. 1908, 146, 530−533.
(4) Coffey, W. T.; Kalmykov, Y. P. The Langevin Equation: With
Applications to Stochastic Problems in Physics, Chemistry and Electrical
Engineering; World Scientific Publishing Company, 2017.
(5) Schaich, W. L. Brownian motion model of surface chemical
reactions. Derivation in the large mass limit. J. Chem. Phys. 1974, 60,
1087−1093.
(6) d’Agliano, E. G.; Kumar, P.; Schaich, W.; Suhl, H. Brownian
motion model of the interactions between chemical species and
metallic electrons: Bootstrap derivation and parameter evaluation.
Phys. Rev. B: Solid State 1975, 11, 2122−2143.
(7) Li, Y.; Wahnström, G. Nonadiabatic effects in Hydrogen
Diffusion in Metals. Phys. Rev. Lett. 1992, 68, 3444−3447.
(8) Head-Gordon, M.; Tully, J. C. Molecular dynamics with
electronic frictions. J. Chem. Phys. 1995, 103, 10137−10145.
(9) Alducin, M.; Díez Muiño, R.; Juaristi, J. I. Non-adiabatic effects
in elementary reaction processes at metal surfaces. Prog. Surf. Sci.
2017, 92, 317−340.
(10) Fermi, E.; Teller, E. The Capture of Negative Mesotrons in
Matter. Phys. Rev. 1947, 72, 399−408.
(11) Ritchie, R. H. Interaction of Charged Particles with a
Degenerate Fermi-Dirac Electron Gas. Phys. Rev. 1959, 114, 644−
654.
(12) Echenique, P. M.; Nieminen, R. M.; Ritchie, R. H. Density
functional calculation of stopping power of an electron gas for slow
ions. Solid State Commun. 1981, 37, 779−781.
(13) Echenique, P. M.; Nieminen, R. M.; Ashley, J. C.; Ritchie, R. H.
Nonlinear stopping power of an electron gas for slow ions. Phys. Rev.
A 1986, 33, 897−904.
(14) Puska, M. J.; Nieminen, R. M. Atoms Embedded in an
Electron-Gas - Phase-Shifts and Cross-Sections. Phys. Rev. B: Condens.
Matter Mater. Phys. 1983, 27, 6121−6128.
(15) Alducin, M.; Muino, R. D.; Juaristi, J. Dynamics of Gas-Surface
Interactions-Atomic-level Understanding of Scattering Processes at
Surfaces, 1st ed.; Muino, R. D., Busnengo, H., Eds.; Springer-Verlag:
Berlin Heidelberg, 2013.
(16) Trail, J. R.; Bird, D. M.; Persson, M.; Holloway, S. Electron−
hole pair creation by atoms incident on a metal surface. J. Chem. Phys.
2003, 119, 4539−4549.
(17) Juaristi, J. I.; Alducin, M.; Muiño, R. D.; Busnengo, H. F.; Salin,
A. Role of Electron-Hole Pair Excitations in the Dissociative

Adsorption of Diatomic Molecules on Metal Surfaces. Phys. Rev.
Lett. 2008, 100, 116102.
(18) Saalfrank, P.; Juaristi, J. I.; Alducin, M.; Blanco-Rey, M.; Muiño,
R. D. Vibrational lifetimes of hydrogen on lead films: An ab initio
molecular dynamics with electronic friction (AIMDEF) study. J.
Chem. Phys. 2014, 141, 234702.
(19) Novko, D.; Blanco-Rey, M.; Juaristi, J. I.; Alducin, M. Ab initio
molecular dynamics with simultaneous electron and phonon
excitations: Application to the relaxation of hot atoms and molecules
on metal surfaces. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 92,
No. 201411(R).
(20) Blanco-Rey, M.; Juaristi, J. I.; Díez Muiño, R.; Busnengo, H. F.;
Kroes, G. J.; Alducin, M. Electronic Friction Dominates Hydrogen
Hot-Atom Relaxation on Pd(100). Phys. Rev. Lett. 2014, 112, 103203.
(21) Peña-Torres, A.; Busnengo, H. F.; Juaristi, J. I.; Larregaray, P.;
Crespos, C. Energy Dissipation Effects on the Adsorption Dynamics
of N2 on W(100). J. Phys. Chem. C 2019, 123, 2900−2910.
(22) Becerra, C. I.; Crespos, C.; Galparsoro, O.; Larrégaray, P.
Atomic scattering of H and N on W(100): Effect of lattice vibration
and electronic excitations on the dynamics. Surf. Sci. 2020, 701,
121678.
(23) Jiang, B.; Alducin, M.; Guo, H. Electron-Hole Pair Effects in
Polyatomic Dissociative Chemisorption: Water on Ni(111). J. Phys.
Chem. Lett. 2016, 7, 327−331.
(24) Bünermann, O.; Jiang, H.; Dorenkamp, Y.; Kandratsenka, A.;
Janke, S. M.; Auerbach, D. J.; Wodtke, A. M. Electron-hole pair
excitation determines the mechanism of hydrogen atom adsorption.
Science 2015, 350, 1346−1349.
(25) Dorenkamp, Y.; Jiang, H.; Köckert, H.; Hertl, N.; Kammler, M.;
Janke, S. M.; Kandratsenka, A.; Wodtke, A. M.; Bünermann, O.
Hydrogen collisions with transition metal surfaces: Universal
electronically nonadiabatic adsorption. J. Chem. Phys. 2018, 148,
034706.
(26) Hellsing, B.; Persson, M. Electronic Damping of Atomic and
Molecular Vibrations at Metal Surfaces. Phys. Scr. 1984, 29, 360−371.
(27) Rittmeyer, S. P.; Meyer, J.; Juaristi, J. I. N.; Reuter, K.
Electronic Friction-Based Vibrational Lifetimes of Molecular
Adsorbates: Beyond the Independent-Atom Approximation. Phys.
Rev. Lett. 2015, 115, 046102.
(28) Maurer, R. J.; Askerka, M.; Batista, V. S.; Tully, J. C. Ab initio
tensorial electronic friction for molecules on metal surfaces:
Nonadiabatic vibrational relaxation. Phys. Rev. B 2016, 94, 115432.
(29) Askerka, M.; Maurer, R. J.; Batista, V. S.; Tully, J. C. Role of
Tensorial Electronic Friction in Energy Transfer at Metal Surfaces.
Phys. Rev. Lett. 2016, 116, 217601.
(30) Dou, W.; Miao, G.; Subotnik, J. E. Born-Oppenheimer
Dynamics, Electronic Friction, and the Inclusion of Electron-Electron
Interactions. Phys. Rev. Lett. 2017, 119, 046001.
(31) Dou, W.; Subotnik, J. E. Universality of electronic friction:
Equivalence of von Oppen’s nonequilibrium Green’s function
approach and the Head-Gordon−Tully model at equilibrium. Phys.
Rev. B 2017, 96, 104305.
(32) Dou, W.; Subotnik, J. E. Universality of electronic friction. II.
Equivalence of the quantum-classical Liouville equation approach
with von Oppen’s nonequilibrium Green’s function methods out of
equilibrium. Phys. Rev. B 2018, 97, 064303.
(33) Dou, W.; Subotnik, J. E. Perspective: How to understand
electronic friction. J. Chem. Phys. 2018, 148, 230901.
(34) Spiering, P.; Shakouri, K.; Behler, J.; Kroes, G.-J.; Meyer, J.
Orbital-Dependent Electronic Friction Significantly Affects the
Description of Reactive Scattering of N2 from Ru(0001). J. Phys.
Chem. Lett. 2019, 10, 2957−2962.
(35) Zhang, Y.; Maurer, R. J.; Jiang, B. Symmetry-Adapted High
Dimensional Neural Network Representation of Electronic Friction
Tensor of Adsorbates on Metals. J. Phys. Chem. C 2020, 124, 186−
195.
(36) Gerrits, N.; Juaristi, J. I.; Meyer, J. Electronic friction
coefficients from the atom-in-jellium model for Z = 1−92. Phys.
Rev. B 2020, 102, 155130.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.1c03436
J. Phys. Chem. C 2021, 125, 14468−14473

14472

E.1. “Random Force in Molecular Dynamics with Electronic Friction“

209



(37) Jiang, H.; Dorenkamp, Y.; Krüger, K.; Bünermann, O. Inelastic
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Effective medium theory for bcc metals:
electronically non-adiabatic H atom scattering in
full dimensions

Nils Hertl, *ab Alexander Kandratsenka ab and Alec M. Wodtke abc

We report a newly derived Effective Medium Theory (EMT) formalism for bcc metals and apply it for the

construction of a full-dimensional PES for H atoms interacting with molybdenum (Mo) and tungsten (W).

We construct PESs for the (111) and (110) facets of both metals. The EMT-PESs have the advantage that

they automatically provide the background electron density on the fly which makes incorporation of ehp

excitation within the framework of electronic friction straightforward. Using molecular dynamics with

electronic friction (MDEF) with these new PESs, we simulated 2.76 eV H atoms scattering and

adsorption. The large energy losses at a surface temperature of 300 K is very similar those seen for H

atom scattering from the late fcc metals and is dominated by ehp excitation. We see significant

differences in the scattering from different surface facets of the same metal. For the (110) facet, we see

strong evidence of sub-surface scattering, which should be observable in experiment and we predict the

best conditions for observing this novel type of scattering process. At low temperatures the MD

simulations predict that H atom scattering is surface specific due to the reduced influence of the

random force.

1 Introduction

Adsorption is a prerequisite to most surface chemistry and
requires that the incident molecule transfers kinetic energy to
the solid, either via excitations of phonons or electron–hole
pairs (ehp). H-atom adsorption on transition metals is of
special interest1–4 as the efficiency of energy transfer to pho-
nons is reduced, a result of the light mass of hydrogen
compared to the surface atoms. This makes an accurate
description of ehp excitation essential and H atom scattering
from metal surfaces an excellent test case for modeling electro-
nically non-adiabatic dynamics beyond the Born–Oppenheimer
approximation.5

Two theoretical frameworks to accomplish this have evolved
over the last decades: (i) independent electron surface hopping6

and (ii) mean-field methods like the effective Hamiltonian
approach7,8 or molecular dynamics with electronic
friction.9–11 Electronic friction—the most commonly used
approach for H atom interactions with metals—treats the

electrons as a bath, which is well-suited to describe a metal’s
electronic continuum.10,11 The coupling between the transla-
tional degrees of freedom of the atom and metal electrons is
then described by a frictional drag force upon the classically
moving nuclei. The friction tensor is commonly treated simply
as a coefficient, which can then easily be calculated from the
background electron density at the location of the nuclei. This
is referred to as the local density friction approximation
(LDFA).10–13 Using this model of ehp excitations, a Langevin
equation is used to propagate classical trajectories. This intro-
duces a temperature dependent random force that ensures
detailed balance.14 Despite the LDFA works well in modeling
the ehp influence on the dynamics of atoms at metal surfaces,
it is not applicable for molecule-surface scattering. The con-
tribution due to the molecular electronic structure into the
friction can be taken into account by the orbital-dependent
friction approach.15,16

The critical step in carrying out molecular dynamic simula-
tions with LDFA electronic friction is the simultaneous acquisi-
tion of reliable configuration–dependent energies and
background electron densities. Many-body potentials like the
Embedded Atom Method (EAM)17,18 or Effective Medium The-
ory (EMT)19–22 have the advantage that their energy expressions
contain an electron density model, allowing potential gradients
and LDFA based friction coefficients to be computed on the fly.
By parameterizing an EMT expression by fitting to DFT data,
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full-dimensional potential energy surfaces (PES) and electron
density functions can be derived.23 In recent studies, this
approach was used to investigate the scattering dynamics of
H and D atoms from six late fcc (111) transition metal surfaces
and comparisons of predicted energy losses were in excellent
agreement with experiment.23–25 Remarkably, the scattering
dynamics of H and D from these six metals were quite similar,
prompting the authors to speak of ‘‘universal behavior’’.24

In this work, we investigate how the surface and crystal
structure influence the H and D translational energy losses
resulting from collisions at metal surfaces. This required us to
extend the EMT formalism22 to the bcc crystal symmetry, the
formalism for which we also present. We parameterized these
newly derived energy formulae by fitting them to ab initio
energies for two bcc metals, Mo and W, both with (111) surface
structures. We also showed that the same EMT parameters
accurately describe the H interactions with the (110) surfaces of
W and Mo. Finally, we used the PESs and electron densities to
perform LDFA electronic friction molecular dynamics simula-
tions of H atoms scattering and computed energy loss distribu-
tions. We find, as before, that there are only small differences
in the H atom energy losses when comparing different metals.
However, scattering from different facets—even for the same
metal—leads to significantly different scattering dynamics. In
contrast to (111) facets, H scattering from (110) facets leads to
deep H atom penetration followed by scattering back to the
vacuum. This produces a large energy loss that should be
observable in experiment. We make the prediction that H
scattering from W(110) at liquid nitrogen temperature is the
best possibility to observe this novel scattering process.

2 Theory
2.1 Effective medium theory

The Effective Medium Theory (EMT) has proven useful to
describe gas-surface interactions for fcc metals.2,14,22–24,26–30

Here, we extend the previously formulated EMT formalism to
the case of bcc metals.

EMT represents the energy of a real system relative to a
reference system.22 Hence, the total energy E of a system
consisting of N atoms is the sum of the energy of the reference
system and a correction term DE:

E ¼
XN
i¼1

Ei �nið Þ þ DE; (1)

where Ei ( %ni) represents the cohesive energy of atom i and
depends on the average background electron density %ni sur-
rounding the atom. Ei ( %ni) is calculated by considering atom i to
be an impurity embedded in a metal host. Jacobsen et al.22 and
Janke et al.2 chose a perfect fcc crystal as a reference system, but
other choices are possible. In our new formalism, we choose a
perfect bcc crystal to serve as an effective medium, and follow
the derivation used for fcc metals.22

The correction term DE is often represented in the
following form:

DE ¼
XN
i¼1

XN
j4 i

Vij rij
� �
� V ref

i �nið Þ
" #

; (2)

where Vij(rij) is the pairwise correction term due to the inter-
action between atoms i and j separated by the distance rij. Vref

i

( %ni) is the many-body correction term for the reference system.
The background electron density %ni, averaged over the volume
inside a sphere with the radius si, serves as a connection
between the real system and the reference system and is
calculated as

�ni ¼
X
jai

Dnj si; rij
� �

; (3)

where Dnj (si,rij) is the electron density tail of atom j contribut-
ing to the background electron density in the location of atom i.
These density tails can be approximated by exponential func-
tions resulting in the following equation:

�ni ¼
X
jai

Dn0;jeZ1si�Z2rij ; (4)

where Z1 and Z2 describe the fall-off of the many-body and the
pairwise contributions to the average electron density %ni,
respectively. Dn0,j is assumed to be a constant. On the other
hand, the DFT calculations on the level of local density
approximation lead to the following relation:21

%ni = n0e�Z(si�s0), (5)

where s0 defines a sphere of the same volume as the Wigner–
Seitz cell of a perfect fcc or bcc crystal in equilibrium. Setting si

= s0 and assuming that only nearest neighbors contribute to the
background electron density, eqn (4) and (5) give

Dn0 ¼
n0

b1
e�ðZ1�bZ2Þs0 : (6)

Here, b1 denotes the number of nearest neighbors. The geo-
metric factor b relates the neutral sphere radius s0 to the
nearest-neighbor equilibrium distance

r1 = bs0. (7)

In general, it can be shown that the interatomic distance to the
neighbors situated in the q-th shell in a perfect lattice is
given by

rq = dqbs0. (8)

For the fcc metal the coefficients dq are related to the number of
shell q by a simple formula

dðfccÞq ¼ ffiffiffi
q
p

: (9)

It is slightly more complex for the bcc lattice: the values of
d(bcc)

q can be calculated numerically with the aid of the primitive
lattice vectors. Table 1 shows the radii and the number of
atoms for the first 10 shells.
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The geometrical factor b entering eqn (8) is defined by:

b ¼

ffiffiffiffiffiffiffiffi
16p
3

3

r , ffiffiffi
2
p

; for a fcc lattice;ffiffiffiffiffiffiffi
3p26
p

; for a bcc lattice:

8><
>: (10)

Substituting eqn (6) into eqn (4) and comparing with eqn (5)
we obtain the equation:

b1e
�Zðsi�s0Þ ¼

X
jai

eZ1 si�s0ð Þ�Z2 rij�bs0ð Þ; (11)

which implies, for the sake of consistency, that

Z = bZ2 � Z1. (12)

Rose et al.31 developed a functional producing the cohesive
energy for a crystal lattice of the following form

Ei = E0 [1 + l (si � s0)]e�l(si�s0) � E0. (13)

The expression for the neutral sphere radius si can be obtained
from eqn (11):

si ¼ s0 �
1

bZ2
ln

si
b1

� �
; (14)

with si being the short hand notation for

si ¼
X
jai

e�Z2 rij�bs0ð Þ: (15)

E0 is the cohesive energy for the equilibrium geometry. The
pairwise correction term and the potential energy of the refer-
ence system entering eqn (2) can be represented in the
following form

Vij ¼ �V0e
�
k
b

rij�bs0ð Þ
; (16)

and

Vref = �b1V0e�k(si�s0), (17)

respectively.22

The above formalism allows the straightforward extension to
two-component systems like metal alloys or a hydrogen atom at
metal surfaces. Then, the total cohesive energy of the system
consists of the sum of the partial (species-specific) cohesive
energies

EiA ¼ E0;A 1þ lA siA � s0;A
� �� �

e�lA siA�s0;Að Þ � E0;A; (18)

where index A labels species A. In a two-component system the
neutral sphere radius of atom iA belonging to species A is
defined by the following formula:

siA ¼ s0;A �
1

bZ2;A
ln
X2
B¼1

wABs
Bð Þ
iA

b1
; (19)

where index B runs over the species. The important difference
between eqn (19) and (14) resides in the quantity

wAB ¼
n0;Be

�Z1;Bs0;B

n0;Ae
�Z1;As0;A ; (20)

which accounts for the contribution of cross-terms between two
different species to the neutral sphere radius. Note, that wAA = 1
in the case of A = B.

s Bð Þ
iA
¼ g�11;A

XNB

jB¼1
e�Z2;B riAjB

�bs0;Bð ÞyiAjB (21)

is the sum of exponential pair-wise contributions of the atoms
belonging to species B to the neutral sphere radius siA. The sum
in eqn (21) runs over all atoms of species B, and in case of B = A
the self-interacting term ( jA = iA) is excluded from the sum.

The pairwise correction term in eqn (2) is constructed in a
similar way to eqn (21),

VAB ¼ �wAB
V0;A

g2;A

X
iA ;jB

e
�
kB
b

riAjB
�bs0;Bð Þ

yiAjB : (22)

Finally, the reference energy contribution to eqn (2)

V
refð Þ
A ¼ �b1V0;A

XNA

iA¼1
e�kA siA�s0;Að Þ: (23)

is defined as in eqn (17).
The factor

yiAjB ¼ 1þ ea riAjB
�rcð Þ

h i�1
(24)

in the formulas above serves as a smooth cut-off function
needed for molecular dynamics simulations.2 The falloff para-
meter

a ¼ ln
104

rr � rc

� �
(25)

dictates the steepness of the cut-off function, rc = r3 is the cut-
off radius set to the third-nearest neighbor distance in

Table 1 Radius dq of the q-th shell in the units of bs0 and the corres-
ponding number of the atoms bq belonging to it for both the fcc and bcc
crystal

q dfcc
q bfcc

q dbcc
q bbcc

q

1 1 12 1 8
2

ffiffiffi
2
p

6 2ffiffiffi
3
p 6

3
ffiffiffi
3
p

24
ffiffiffi
8

3

r
12

4
ffiffiffi
4
p

12
ffiffiffiffiffi
11

3

r
24

5
ffiffiffi
5
p

24 2 8
6

ffiffiffi
6
p

8 4ffiffiffi
3
p 6

7
ffiffiffi
7
p

48
ffiffiffiffiffi
19

3

r
24

8
ffiffiffi
8
p

6
ffiffiffiffiffi
20

3

r
24

9
ffiffiffi
9
p

36
ffiffiffiffiffi
24

3

r
24

1
ffiffiffiffiffi
10
p

24 3 32
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equilibrium, and

rr ¼
2rc

1

2
d3 þ d4ð Þ

; (26)

where d3 and d4 are given in Table 1. The normalization
coefficients

g1;A ¼
X3
q¼1

bq

b1
1þ ea dq�d3ð Þbs0;A
h i�1

e�Z2;A dq�1ð Þbs0;A (27)

and

g2;A ¼
X3
q¼1

bq

b1
1þ ea dq�d3ð Þbs0;A
h i�1

e�k2;A dq�1ð Þbs0;A (28)

in eqn (21) and (22) ensure that for the perfect bulk structure
the total energy is zero.2,22 The sums in the above equations run
over the first three shells. bq is the number of atoms in shell q.
For a perfect fcc crystal b1 = 12, b2 = 6, and b3 = 24, while for a
bcc crystal b1 = 8, b2 = 6 and b3 = 12.

EMT characterizes each atomic species in the system with
seven parameters: E0, n0, s0, l, Z2, V0 and k. All parameters
except for n0 are connected to bulk properties that can be
obtained experimentally.2,21,22 E0 is the cohesive energy. s0 is
related to the lattice constant a0 by expressions:

s0 ¼

ffiffiffiffiffiffiffiffi
3

16p
3

r
a0; for a fcc lattice;ffiffiffiffiffiffi

3

8p
3

r
a0; for a bcc lattice;

8>><
>>: (29)

which were obtained from eqn (8) noting that a0 = r2 for both
fcc and bcc lattice.

The remaining parameters l, V0, Z2 and k are related to the
elastic moduli of a metal (see Appendix).

2.2 Electronic structure calculations

The optimal EMT parameters must be found by fitting the EMT
energy function to energy values obtained from ab initio

calculations, using a large number of configurations. These
were determined using VASP5.3.532–35 with the PBE
functional36,37 and with the electron-core interactions treated
within the framework of the projector-augmented wave (PAW)
approach.38 The plane-wave basis set cutoff energy was set to
400 eV. Partial occupancies were modeled with the method of
Methfessel–Paxton39 (N = 1) with a smearing width of 0.1 eV.
We calculated the energy for both (111) and (110) facets of W
and Mo metals. The simulation cell contained a (2 � 2) six-
layered slab with the bottom layer held stationary. The k-point
grid for the Brillouin zone for W(111) and Mo(111) was sampled
with the (6 � 6 � 1) Monkhorst–Pack mesh,40 while for W(110)
and Mo(110) the (12 � 12 � 1) and the (10 � 10 � 1) mesh were
used, respectively.

The system geometries were sampled in two ways: (i) H
atoms were placed at nodes of a 3D grid consisting of about
1000 points, while the metal atoms were fixed at their equili-
brium lattice positions (Fig. 1); (ii) configurations were taken
from ab initio molecular dynamics trajectories simulating the
scattering of an H atom from a surface at 120 K. The initial
positions of H atom for these AIMD simulations were set to be 6
Å above the surface at random lateral coordinates. The initial
velocity of the H atom was set to correspond to the incidence
kinetic energy of 5 eV and the incidence angle of 301. The time
step was set to 0.1 fs and the H atom was considered to be
scattered when it was more than 6.05 Å above the surface. The
initial positions and velocities of the surface atoms were
sampled from the equilibrium NVE MD simulations of a metal
slab at 120 K. The snapshots were taken from a 1 ps MD
trajectory with an interval of 100 fs.

2.3 Fitting procedure

A genetic algorithm developed in our group23 was used to fit the
EMT function to the DFT energies described above. We used
the relations of the fitting parameters to the bulk properties of
metals discussed in Subsection 2.1 to constrain values of the
following parameters. s0,M was calculated from eqn (29) using

Fig. 1 Top view on the bcc (110) surface, shown in panel (a), and the bcc (111) surface in panel (b). The cartesian coordinate system, the incidence
azimuth and the most important high symmetry sites are also shown. The white shaded areas mark the p(1 � 1) unit cell.
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the lattice constant a0 obtained from the DFT calculations. The
cohesive energy of the metal E0,M was set to its experimental
value.41 lM was set to a value ensuring a good agreement with
the literature value of the bulk modulus.41 This leaves eleven
parameters remaining, which were optimized to fit the DFT
data. We also used MD simulations to check that the metal slab
remained intact up to 900 K for 100 ps. Finally, we compared
the EMT background electron density to that of the DFT
calculations. Although these two physical quantities are not
strictly comparable, they agree well within one another.

2.4 Non-adiabatic molecular dynamics simulations

We treat electronically non-adiabatic effects in terms of a drag
force and a random force, using the Langevin equation to
govern the motion of the H atom

mr ¼ �@Eðr;RÞ
@r

�mZelðr;RÞ _rþ FLðtÞ; (30)

Here, m and r are the projectile’s mass and position, respec-
tively; Eðr;RÞ is the ground-state potential energy surface
provided by the optimized EMT energy expression that depends
not only on the projectile coordinates r but on the coordinates
of the surface atoms R. Eqn (30) can be derived from the time-
dependent Schrödinger equation using a mean-field approxi-
mation in the limit of weak non-adiabatic couplings.42 In that
case, the friction term Zelðr;RÞ is obtained by Fermi’s golden
rule with perturbations defined first-derivative non-adiabatic
couplings of the electronic states. In this work, we are operating
within the framework of the local density friction approxi-
mation (LDFA),10–12 i.e., we are dealing with a single friction
coefficient instead of a friction tensor. The friction coefficient
is calculated with the aid of the background densities asso-
ciated with the EMT-PES. The detailed mapping procedure
between friction coefficient and background electron density
is described elsewhere.2 The random force FL (t) is modeled by
a stochastic process with a Gaussian white noise of zero
mean value

hFL (t)i = 0, (31)

and the variance being characterized by the second fluctuation-
dissipation theorem43

FLðtÞFLðt 0Þh i ¼ 2kBTmZelðr;RÞdðt� t 0ÞI: (32)

Here, I denotes the 3D unity matrix and T is the surface
temperature. We emphasize that neglecting the random force,
as has sometimes been done,44 can lead to spurious results.14

The EMT-PES and the Langevin propagator integrating eqn (30)
are implemented in our homemade program md_tian2 avail-
able at a public repository.45

The MD trajectories simulating H scattering from a metal
surface were started with a H atom placed at 6 Å above the
surface with a lateral position chosen randomly. The time step
was 0.1 fs and the trajectory was stopped once the projectile was
more than 6.05 Å above the surface. The metal surface was
equilibrated to 70 K and 300 K in the following way: for 100 ps
the slab was equilibrated with an Anderson-thermostat,46 and

then propagated microcanonically for additional 100 ps, using
the velocity-Verlet algorithm.47,48 Afterwards, we ran a 1 ns-
equilibrium trajectory and took a snapshot every picosecond.
These shapshots sample the equilibrium slab geometries at the
desired temperature which served as slab initial conditions for
the scattering dynamics simulations.

3 Results and discussion
3.1 Full dimensional PES for H on W(111) and Mo(111)

Table 2 shows the optimized EMT parameter sets for atomic
hydrogen interacting with both W(111) and Mo(111). Fig. 2
shows cuts through the EMT-PESs for the two metals. The root
mean-square error (RMSE) for H/W(111) and H/Mo(111) is 0.25
eV and 0.26 eV, respectively. Fig. 3 shows comparisons of EMT-
PESs to DFT results as AIMD trajectories that include structures
with surface atoms displaced from their equilibrium positions.
The resulting EMT-PESs for H/Mo and H/W show an overall
RMSE of 0.27 eV and 0.30 eV, respectively. Fig. 4 shows cuts of
the EMT background electron density nðr;RÞ for four surface
symmetry sites along the surface normal, as well as the corres-
ponding electron densities obtained from the DFT calculations
absent the H atom. Again, the agreement is good.

3.2 EMT-PES transferability to the (110)-facet

The EMT energy expression is independent of the surface facet;
hence, the EMT parameters of Table 2 can just as easily be used
to produce a PES for H interacting with a (110) surface. This is
an advantage over other methods like neural networks, which
need to be retrained for each facet. Fig. 5 and 6 show compar-
isons of DFT data to the EMT energies for H on W and Mo(110)
facet. Agreement between the (111)-fitted EMT-PES and DFT is
good. We emphasize that these comparisons sample a wide
variety of configurations including those corresponding to single
bounce scattering as well as penetration of H atom into the bulk.
In all cases the EMT-PESs are in a good agreement with the DFT
calculations with the RMSE of about 330 meV (13.2 meV per atom)
without no adjustment to the fitting parameters.

We also checked the accuracy of the EMT electron densities
against DFT calculations—see Fig. 7. As in the (111) case,
agreement is good. In case of H/Mo(110), the EMT background
electron density (filled circles) is systematically B30% lower
than the one from DFT (solid line). However, this does not
influence the predicted energy loss distributions appreciably.

Nowadays, it is possible to craft Neural-Network potentials
with fitting errors (RMSE) less than 1 meV per atom.49 So, our

Table 2 EMT parameters defining the H/W and H/Mo interaction energies
and background electron density

Z2/Å�1 n0/Å�3 E0/eV l/Å�1 V0/eV k/Å�1 s0/Å

W 3.546 0.051 �8.90 3.505 1.518 2.296 1.564
H 7.049 0.141 �3.36 7.701 0.482 8.047 0.680
Mo 2.782 0.051 �6.82 3.738 2.595 3.899 1.554
H 5.371 0.066 �2.33 6.236 0.407 8.767 0.844
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potentials may seem by comparison inaccurate. But the high
accuracy of Neural-Network potentials comes at a cost of
complexity. It requires far more DFT data to be trained, and
it must be retrained from facet to facet. Furthermore, it delivers
no background electron density information necessary for
computing electronic friction forces. The EMT approach pre-
sented here is by comparison extremely simple, transferable
between facets and, as has been shown, despite the reduced
accuracy in reproducing DFT data, accurate enough to repro-
duce experimental energy loss distributions.24 Another strength
of the EMT-PES is that the projectile cannot enter out-of
sampling regions of the configuration space during MD simu-
lations—an aspect which needs to be always checked when
using Neural-Network potentials.

3.3 MD simulations of H scattering

Using the EMT-PESs described above, we performed LDFA
frictional based molecular dynamics simulations to compute
energy-loss distributions for hydrogen atom scattering from
tungsten and molybdenum. We launched 106 trajectories with

incidence energy of Ein = 2.76 eV and incidence angle Win= 451.
To reflect typical experimental conditions,50 we selected trajec-
tories scattered at the specular angle with the in-plane and out-
of-plane tolerance of �51. We refer to these distributions as
specular energy loss distributions.

Fig. 8 shows simulations for H scattering from both surface
facets of Mo and W at 70 K and 300 K. The energy loss
distribution obtained from electronically adiabatic MD simula-
tions are also shown. The MDEF simulations predict a much

Fig. 3 Interaction energies corresponding to configurations sampled
from AIMD trajectories. The gray crosses represent the ab initio energies
along the trajectories for H/W(111) (left panels) and H/Mo(111) (right
panels), respectively. The black line stands for the energy from EMT fitting
function.

Fig. 4 Background EMT and DFT electron densities for Mo(111) and
W(111) as a function of the H atom height over the surface at four different
high-symmetry sites shown in Fig. 1a. Note that the metal atoms were kept
fixed at their equilibrium lattice coordinates.

Fig. 2 Interaction energy of H atom with the metal as a function of the
projectile’s height z over the surface shown for several high-symmetry
sites (see Fig. 1). The gray crosses mark the DFT energies of H/W(111) and
H/Mo(111), which served as input data for the fit. The black line represents
the EMT fitting function. Note that the metals were held fixed at their
lattice coordinates.
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larger energy loss dominated by ehp excitation. The mean
energy losses are all about 1 eV, consistent with experimental

observations for H atom scattering from fcc metals24 and
similar in magnitude to predictions of another calculation
using a reduced dimensional PES.51 When comparing the four
scattering calculations at two temperatures, we see that there is
very little difference in the energy loss distributions for Mo and
W, when other factors are the same. On the other hand, there is
a distinct difference in the energy loss distributions when

Fig. 5 EMT energy dependence on z coordinate of the H-atom at W(110)
(left panels) and Mo(110) (right panels) shown for several high-symmetry
sites. The gray crosses mark the corresponding DFT energies. Note, the
EMT-PES was fitted to the (111) data.

Fig. 6 H/W(110) and H/Mo(110) interaction energies calculated for the
configurations sampled from AIMD scattering trajectories. The gray
crosses represent the DFT energies. The black line stands for the EMT-PES.

Fig. 7 Background EMT and DFT electron densities for Mo(110) and
W(110) as a function of the H atom height over the surface at four different
high-symmetry sites shown in Fig. 1b.

Fig. 8 Specular energy loss distributions of H atoms scattered from
molybdenum and tungsten surfaces. Upper panels show results for the
surface temperature of 300 K and lower panels for 70 K. The gray dashed
line represent adiabatic simulations for H atom scattering from tungsten,
demonstrating the crucial contribution of electrons to the energy loss of
the scattered particles. The initial conditions are: Ein = 2.76 eV, Win = 451,
and jin = 01 (see Fig. 1).
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comparing different surface facets or different temperatures.
The effect of temperature has been reported previously14 and
arises from the reduced influence of the random force at low
temperature.

The differences seen in the H-atom energy loss distributions
for different surface facets—compare Fig. 8(a)–(d)—are due to
differences in surface structure. This can be inferred from
results presented in Fig. 9. Here, contour plots report the
number of specular scattering events as a function of the energy
loss and depth of penetration for trajectories of panels Fig. 8(c)
and (d), where the surface temperature was 70 K. A clear
correlation between energy loss and the depth of penetration
is seen for both surface geometries—the deeper the H atom
moves into the bulk, the more kinetic energy is lost to
the metal.

This can be qualitatively understood from the structures of
the surfaces. The (111) surfaces allow access to three surface
sites—top, fcc-hollow and hcp-hollow—broadening the energy-
loss distribution as the three sites allow for different degrees of
surface penetration. For (110) surfaces, the surface density is
higher—over 70% of the specular scattered H atoms do not
penetrate the surface. But, the (110) facets also exhibit geo-
metric channels that allow very deep penetration that results in
a better resolved high energy loss feature in the energy loss
distributions. It is noteworthy that subsurface-penetration
scattering processes are predicted by these calculations, and
hints are provided how these might best be observed experi-
mentally. Specifically, we suggest that H atom scattering

experiments using W(110) held at liquid nitrogen temperature
would provide clear signatures of subsurface scattering. Tung-
sten is more favorable to these proposed experiments and it
exhibits higher background electron density (see Fig. 4): result-
ing in higher values of the friction coefficient, which in turn
leads to larger energy losses for deep penetration.

3.4 MD simulations of H adsorption

Finally, we report the sticking probabilities for H under the
incidence conditions of this work—see Table 3. Remarkably,
the sticking probability is uniformly about 0.4 regardless of the
identity of the metal, the surface facet or the temperature. This
reflects the mechanism of adsorption previously identified for
H adsorption to Au(111).2,4 In this mechanism, adsorption
results from trajectories that sample the high electron density
below the surface of the metal and subsequently resurface with
less than enough energy to desorb. In our case, for the (110)
surface, resurfacing originates predominantly from the under-
lying subsurface and—to a minor extend—from the third layer,
while for the (111) surface the resurfacing occurs even from the
sixth metal layer. This strong migration reflects the small
distance between the individual layers in the (111) surface
along with a variety of easy accessible diffusion pathways due
to the low packing density.

4 Conclusion

In summary, we have extended the EMT formalism derived for
fcc metals22 to the bcc case. We then fit the newly derived
formulae to DFT data for H interacting with W and Mo, which
led to full dimensional PESs and electron densities. We
employed the PESs and the electron densities to carry out
electronically non-adiabatic MD simulations of H atom scatter-
ing, following previous work that used the LDFA approximation
with a Langevin propagator. Specifically, we predict energy loss
distributions for H scattering from (111) and (110) facets of
these two metals at 2.76 eV incidence energy. Although no
experiments are currently available for bcc metals, our results
are similar to what has been seen for H scattering from fcc
metals. This suggests that the current results are likely to be a
reliable prediction of experiment. We find only subtle differ-
ences in the energy loss distributions arising from the scatter-
ing of H atom with these two metals; however, scattering from
the (111) and (110) facets are distinctly different. Remarkably,
on the (110) facet, we predict a clearly resolvable energy loss
peak that arises from sub-surface scattering. The calculations

Fig. 9 Distribution of specular scattering events as a function of the
energy loss and the depth of penetration of H atom scattered from (a)
Mo(110), (b) Mo(111), (c) W(110), and (d) W(111). The surface temperature is
70 K. The other conditions are the same as in Fig. 8. The signal above the
black, dashed line indicate from which layer the projectiles repelled. The
labels top, hcp and fcc refer to the high-symmetry sites of the (111) facet
and are shown in Fig. 1(b). The bin sizes are 0.027 eV and 0.063 Å.

Table 3 Sticking coefficient S0 computed from the same set of trajec-
tories that were used for the calculation of the specular energy loss
distributions shown in Fig. 8

System 300 K 70 K

H/Mo(110) 0.44 0.44
H/Mo(111) 0.40 0.41
H/W(110) 0.42 0.41
H/W(111) 0.40 0.40
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predict that the subsurface scattering is most easily seen for H
scattering from W(110) at reduced surface temperatures.
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Appendix

Derivation of elastic constants with
contributions from the first shell

The components of the elastic tensor can be obtained as
follows:

Cxrst ¼
1

O0

XNB

k;‘¼1

@2e
@rk;r@r‘;t

rk;xr‘;s

					
eq

; (33)

where O0 is the volume per metal atom at equilibrium condi-
tions, e is the energy per atom, rk,r is the Cartesian component
r of the position vector of neighbor k, NB is the total number of
neighbors. In case of a fcc lattice it is sufficient to include only
the neighbors located in the first shell. For a bcc lattice on the
other hand, it is necessary to include the second shell, too. Due
to the symmetry of the elastic tensor, defined by eqn (33), there
are only three independent components: C11 =
{Cxxxx,Cyyyy,Czzzz}, C12 = {Cxxyy,Cxxzz,Cyyzz}, and C44 = {Cxyxy,Cxzxz,-
Cyzyz}. The bulk modulus of the system can be obtained with the
following relationship that holds for all cubic metals

B ¼ C11 þ 2C12

3
: (34)

Now, when we insert the EMT energy expression (1) for a one-
component fcc metal system into eqn (33), we derive the bulk
modulus

B ¼ �E0l2

12ps0
(35)

and the shear modulus

C44 ¼
3V0 bZ2 � kð Þk

8ps0
: (36)

Considering only the nearest neighbors, i.e. neglecting many-
body contributions, one can derive the other elastic constants
for a fcc lattice

C11 ¼
3V0 bZ2 � kð Þk� E0l2

12ps0
; (37)

C12 ¼ �
3V0 bZ2 � kð Þkþ 2E0l2

24ps0
; (38)

and a bcc lattice

C11 ¼ �
E0l2

12ps0
; (39)

C12 ¼ �
E0l2

12ps0
: (40)

Thus, the bulk modulus reads the same as for the fcc case

B ¼ �E0l2

12ps0
; (41)

whereas the third elastic constant for a bcc lattice in EMT is

C44 ¼
V0 bZ2 � kð Þk

3ps0
: (42)

Accounting the second shell
contributions into elastic constants

If a perfect bcc crystal is used as effective medium and only the
nearest neighbors are considered, the elastic constants, given
in eqn (39), (40) and (42), violate the elastic stability criteria.52

As a consequence, we also took the next-nearest neighbors into
account. The three elastic constants and the bulk modulus then
have the following expressions:

C11 ¼ Aþ O �g1 ks0 1þ 3Mkð Þ � 2ð Þ½

þ g2 bZ2s0 1þ 3MZ2

� �
� 2

� ��
;

(43)

C12 = A + O [�g1 (ks0 + 1) + g2 (bZ2s0 + 1)], (44)

C44 ¼ O �g1ðks0 � 2Þ þ g2ðbZ2s0 � 2Þ½

þ
ffiffiffiffiffi
27
p

2
ðg1Mk � g2MZ2Þ

#
;

(45)

and

B = A + O (�g1ks0 (1 + Mk) + g2bZ2s0 (1 + MZ2
)). (46)

The factors A and O are the abbreviation for the following
expressions:

A ¼ �E0l2 þ 4V0kðk� bZ2Þ
16ps0g12

4

3
þ 4ffiffiffi

3
p MZ2 þMZ2

2


 �
; (47)

O ¼ V0k
3ps02g1g2

; (48)

with MZ2
and Mk being

MZ2 ¼ e
�Z2bs0

2ffiffiffi
3
p �1


 �
; (49)

and

Mk ¼ e
�ks0

2ffiffiffi
3
p �1


 �
; (50)

respectively.
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ABSTRACT: We report the results of inelastic differential
scattering experiments and full-dimensional molecular dynamics
trajectory simulations for 2.76 eV H atoms colliding at a surface of
solid xenon. The interaction potential is based on an effective
medium theory (EMT) fit to density functional theory (DFT)
energies. The translational energy-loss distributions derived from
experiment and theory are in excellent agreement. By analyzing
trajectories, we find that only a minority of the scattering results
from simple single-bounce dynamics. The majority comes from
multibounce collisions including subsurface scattering where the H
atoms penetrate below the first layer of Xe atoms and subsequently
re-emerge to the gas phase. This behavior leads to observable
energy-losses as large as 0.5 eV, much larger than a prediction of the
binary collision model (0.082 eV), which is often used to estimate the highest possible energy-loss in direct inelastic surface
scattering. The sticking probability computed with the EMT-PES (0.15) is dramatically reduced (5 × 10−6) if we employ a full-
dimensional potential energy surface (PES) based on Lennard-Jones (LJ) pairwise interactions. Although the LJ-PES accurately
describes the interactions near the H−Xe and Xe−Xe energy minima, it drastically overestimates the effective size of the Xe atom
seen by the colliding H atom at incidence energies above about 0.1 eV.

1. INTRODUCTION

Collisions of atoms and molecules with surfaces typically lead
to two experimentally identifiable outcomes: direct inelastic
scattering (DIS) and trapping followed by thermal desorption
(TD).1 DIS may exhibit maximum flux near the specular
scattering angle similar to reflection of light from a flat-
mirrored surface. Such behavior is often described as “single-
bounce” scattering2,3 since measured translational inelasticity is
typically consistent with simple models where momentum is
exchanged between the projectile and a single surface atom.4,5

Furthermore, the measured translational6 and internal7 energy
distributions of scattered particles are nonthermal.8 By
contrast, TD occurs when the energy lost in the initial
collision is sufficient to prevent the projectile’s escape from the
surface.9 Here, a sequence of many collisions brings the
projectile to thermal equilibrium with the surface.10 This may
also involve surface penetration followed by resurfacing.11,12

Scattering of Ne, Ar, and Xe from liquid molecular surfaces13

as well as Ne14−16 scattering from n-hexylthiolate self-
assembled monolayer (SAM) on Au(111) and water ice17

also show DIS as well as TD scattering. However, here the
thermal component may hide more complex dynamics.14−18

Classical trajectories showed that a Boltzmann component
could arise even when the interaction times are on the

picosecond time scale and where trajectories involve only a
single inner turning point during the Ne-SAM collision.15 This
has been attributed to the excitation of the polyatomic surface
to high-energy conformers and rapid intramolecular vibrational
redistribution through anharmonic intramolecular coupling,
allowing many degrees of freedom of the surface to be coupled
to the rare gas atom’s motion.16 Hyperthermal Xe scattering
experiments from SAM even showed three velocity compo-
nents: DIS, TD, and a direct scattering process, dubbed
“channel-directed ejection”, where hyperthermal Xe penetrates
the channels in the SAM before experiencing a repulsive
interaction resulting in nonthermalized ejection.18

There have been no such observations of complex scattering
dynamics involving multiple bounces or subsurface penetration
from simple (atomic) surfaces. Molecular dynamics (MD)
simulations of Ar colliding with Pt(111) provide evidence
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suggesting that DIS may be unlikely if more than one bounce
occurs.19 Electronically nonadiabatic MD simulations of H
scattering from fcc metal(111) surfaces20 suggest that
penetration to the subsurface leads exclusively to trapping, as
electronic friction experienced by the H atom is quite strong in
the subsurface.11,12 These trajectory simulations involved
multibounce trajectories, but because there is no definitive
theory for nonadiabatic dynamics, we cannot be certain that
multibounce dynamics are accurately represented.21 Despite
this, there appears to us no reason why multibounce or
subsurface DIS should not be demonstrably observable.
Experimental detection of multibounce and subsurface

scattering is difficult. Distinguishing DIS from TD exploits
the fact that the measured speed distributions of scattered and
desorbing particles often produce two peaks,22 one with high
velocities where a relatively small fraction of the incidence
energy is lost to the surface (DIS) and one reflecting the low
speeds of particles that have reached thermal equilibrium with
the surface (TD). By using hyperthermal beams and low
surface temperatures, the measured speeds of particles
undergoing DIS can be resolved from those undergoing TD.
It appears likely that the energy losses associated with
multibounce, subsurface, and single-bounce DIS overlap with
one another and therefore may require special conditions and
methods to be detected.
In this work, we present results from inelastic scattering

experiments involving H atom collisions with surfaces of solid
xenon. We employ a nearly monoenergetic beam of H atoms
with incidence translational energy Ei of 2.76 eV. The H atom
beam is incident at ϑi = 45° from the surface normal, and
scattered H atoms are detected at an angle ϑs = 45° from the
surface normal. These conditions strongly favor observation of
DIS. The energy-loss distribution exhibits a maximum at the
energy predicted by a binary line-of-centers (LOC) collision
model, suggesting the importance of single-bounce dynamics.
In addition to this feature, a second feature exhibiting much
larger energy-loss is seen. We simulate the scattering using
classical MD simulations with a full dimensional potential
energy surface (PES)12,23 fitted to density function theory
(DFT) data; the simulation is in excellent agreement with
experiment and is used to investigate the dynamical processes
giving rise to the energy-loss spectrum. This shows that
multibounce DIS including subsurface scattering makes up the
majority of events seen in the experimentally derived energy-
loss distribution.

2. METHODS
The H atom scattering apparatus has been described
elsewhere,24 and a review has recently appeared.25 Briefly, H
atoms were generated by photodissociation of a supersonic
molecular beam of hydrogen iodide with pulses of laser light at
212.5 nm, producing H atoms with incidence energy Ei = 2.76
eV and an energy uncertainty δEi ∼ 0.005 eV. H atoms
traveling normal to the molecular beam scatter from the Xe
sample that was condensed on a Au(111) substrate held at 45
K by cold He gas. Scattered H atoms were excited to a long-
lived Rydberg state by two laser pulses, one exciting the 1s →
2p transition at 121.6 nm and another the 2p → 34d transition
at 365.9 nm. The resulting metastable atoms travel 25 cm
without radiative loss and are field-ionized and detected by a
multichannel plate detector. A multichannel scaler records the
arrival time and the calibrated flight length is used to obtain H
atom speeds.

We performed classical MD trajectory calculations using a
full-dimensional potential energy surface (PES) obtained by
fitting an effective medium theory (EMT) function to DFT
data. This procedure followed our previous work using PESs
for H interacting with metals.12,20,23 The DFT input data was
generated using VASP 5.3.526−29 with the PBE functional30

and D2 van der Waals corrections usingGrimme’s method.31

Xe was modeled as a 2 × 2 fcc (111) slab with 4 layers. The
Brillouin zone was sampled with a 4 × 4 × 1 gamma-centered
k-point mesh, using the sampling scheme of Monkhorst and
Pack.32 The plane wave cutoff energy was set to 250 eV. The
interaction between the valence and core electrons have been
described by the projector augmented wave approach.33 The
optimum lattice constant of an ideal Xe crystal has been found
to be 6.065 Å. To avoid interactions between the Xe slab and
its periodic images in the z-direction, a vertical distance
between unit cells of 13 Å has been applied in the z-direction.
For the MD simulations with our EMT-PES, we modeled Xe
as a (6 × 6) 6-layered slab with periodic boundary conditions.
The EMT parameters resulting from the fit to the DFT data
are presented in Table 1.

We also constructed a Lennard-Jones (LJ) pair potential
PES in full dimensions. The parameters used in that potential
are shown in Table 2. The LJ parameters for the H−Xe
interaction were obtained from the analysis of H−Xe scattering
experiments and are the best available.34

The thermal motion of the Xe atoms was explicitly treated in
the MD simulations; the Xe atom’s initial positions and
velocities were sampled from equilibrium simulations at 45 K
with the deepest layer held fixed. In each trajectory, the H
atom was placed 6 Å above the surface with random lateral
positions. The initial conditions were chosen so that they agree
with the experiment. We launched 106 trajectories to get a
reasonable amount of scattering events that meet the
experimental scattering conditions. The H atom is considered
to be scattered, when its final vertical position is again 6.05 Å
above the surface. The MD simulations were performed in an
NVE ensemble with an integration time step of 0.1 fs. The
PESs and propagation algorithms used in this work are
implemented into the md_tian 2 package, written in Fortran
and publicly available.36

Table 1. Parameters Needed to Construct the H on Solid Xe
Full-Dimensional Effective Medium Theory Potential

EMT-based potential fit to DFT data

η2/Å
−1 n0/Å

−3 E0/eV λ/Å−1 V0/eV
−1 κ/Å−1 s0/Å

−1

H 0.838 0.193 −0.743 2.530 0.638 1.641 0.741
Xe 2.181 0.056 −0.160 1.765 0.042 2.499 2.370

Table 2. Parameters Needed to Construct the H on Solid Xe
Full-Dimensional LJ Potential

LJ potential

σ/Å ε/eV

H−Xe34 3.935 0.020
Xe−Xe35 3.98 0.019
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3. RESULTS AND DISCUSSION

The EMT function reproduces the DFT data for H on Xe with
a RMSE of 0.024 eV; see Figure 1. This is the total energy
deviation for our 17-atom system. The minimum energy
structure represented by the PES corresponds to H atoms
adsorbed at an fcc hollow where the H atom is 2.8 Å displaced
toward the vacuum from the plane defined by the equilibrium
positions of the first layer of Xe atoms. The binding energy is
0.03 eV. Subsurface interactions are also accurately described
by the EMT-PES. Although not strictly comparable, a PES for
H−Xe derived from molecular beam scattering experiments34

gives a similar H−Xe equilibrium distance and well depth.
Figure 1c shows the deviation between DFT and EMT for a
trajectory involving Xe atom motion. The excellent agreement
is convincing evidence that the EMT PES accurately described
the Xe−Xe interactions predicted by DFT.
Figure 2 shows the energy-loss spectrum for H atoms

scattering from solid Xe obtained with Rydberg atom tagging
TOF (circles) and MD trajectory calculations (line). For both
experiment and simulation, the H atom beam is incident 45°
from the surface normal, and atoms are scattered at the
specular angle. The spectrum comprises a dominant peak with
an energy loss of 0.04 eV and a fwhm of 0.054 eV as well as a
second feature with energy losses between 0.1 and 0.5 eV. The
figure also shows the position of the energy loss predicted by a
line-of-centers (LOC) model ΔεLOC = Ei cos

2 ϑi[1 − (mXe −
mH)

2/(mXe + mH)
2], which is the fraction of the normal

component of incidence energy lost to the surface while
conserving momentum and assuming that H atom momentum
parallel to the surface is unaffected by the collision. The
expected energy loss for a binary collision ΔεBCM = Ei[1 −
(mXe − mH)

2/(mXe + mH)
2] is also shown.

The fact that the main peak in the energy-loss distribution is
consistent with ΔεLOC is often taken as evidence for “single-
bounce” dynamics. However, the LOC model obviously
cannot explain the width of the observed energy-loss feature,
nor can it explain energy losses greater than 0.04 eV.
Furthermore, since ΔεBCM is the maximum amount of energy
loss possible in a signal-bounce collision, multibounce
collisions must play a role.
Because the MD simulations agree well with experiment, we

have used them to investigate the scattering dynamics in this
system in detail. This analysis reveals that both multibounce
and subsurface direct inelastic scattering are important in H
atom collisions at solid Xe under the experimental conditions
of this work.
We first consider subsurface scattering. Figure 3a shows a

histogram of the minimum values of the z-coordinate zmin

found in the trajectories contributing to the energy-loss
distribution of Figure 2. (In our coordinate system, z is the
distance from the plane defined by the equilibrium positions of
the surface Xe atoms.) The largest feature in this distribution
peaks at 1 Å, corresponding to surface scattering without
penetration, but a substantial fraction of the scattering events
exhibit negative values of zmin with a peak at −3 and −6 Å.
These trajectories travel deep within the Xe solid before re-
entering the gas phase. Figure 3b shows how energy loss
increases with depth of penetration, exhibiting energy losses
that span the high energy-loss feature of the experimentally
obtained distribution shown in Figure 2. Two representative
trajectories traversing the first and second subsurface sites are
shown as Movies S1 and S2, respectively. Inspection of the
trajectories reveals that subsurface scattering involves many
H−Xe collisions.

Figure 1. DFT data compared to the EMT function H interacting with solid Xe. (a) 1D cuts through the high-dimensional PES for an H atom
moving along the surface normal at four different surface sites: top bridge, hcp hollow and fcc hollow. The DFT data is shown as “x” points, and the
EMT fit is shown as solid lines. (b) Potential energy of the system for a scattering trajectory involving moving Xe atoms; here, DFT data (circles)
are compared to EMT energies (solid line). (c) Energy differences between DFT and EMT are shown. (d) H atom distance to the surface during
the trajectory. A coordinate system for H atom is employed, where x and y are parallel to the surface and z is along the surface normal. For a
pictorial representation of the sites, see Figure 1 of ref 37
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We next consider how one can count the number of H−Xe
collisions (bounces) associated with each trajectory. To do

this, we must first understand that the definition of a bounce is
fundamentally ambiguous. Hence, the bounce number is only
meaningful with knowledge of the definition. To appreciate
this ambiguity, consider a collision between a high-energy gas-
phase H atom and a stationary Xe atom. Technically, any
interaction that results in a change in the H atom’s direction of
travel, no matter how small, qualifies as a collision (bounce),
despite the fact that collisions producing large deflection angles
transfer much more energy than collisions with low deflection
angles. In short, we need a way to classify collisions according
to their ability to transfer energy between the H and Xe atoms.
To make progress, consider Figure 4, which shows the

scattering-angle-integrated histogram of H−Xe distances of
closest approach dmin for all the trajectories run in our MD
simulation. All trajectories exhibit dmin values between about
1.5 and 2 Å. The figure shows a correlation of energy loss with
dmin. Obviously, collisions that approach more closely collide
with smaller impact parameters and transfer more energy. It is
therefore convenient to divide this distribution into four
categories: hard (h), medium (m), soft (s), and very soft (v)
collisions, according to the value of dmin as shown in Figure 4.
With this definition in mind, we can begin to analyze the
number of bounces in each trajectory.
Figure 5a,b shows single and double-bounce trajectories that

contribute to the energy-loss distribution shown in Figure 2.
The dominant feature of the experimental distribution seen at
about 0.04 eV arises partly from medium single-bounce
trajectories. The remaining single-bounce trajectories belong
to either the soft or very soft category and make up a small
portion of the scattering signal. A typical medium single-
bounce trajectory is shown in Movie S3. In Figure 5b, double-
bounce trajectories are shown. Weak double-bounce trajecto-
ries (vv + sv) contribute to the low energy loss side of the peak
centered at 0.04 eV. A typical sv double-bounce trajectory is
shown in Movie S4.Without weak double-bounce trajectories,
it is impossible to account for the full width of the main
energy-loss feature seen in experiment. In fact, only a minority
(47%) of all the trajectories scattered into all final angles are
the result of single-bounce events. Figure 5b also shows that
strong double-bounce (mm + ms + ss) trajectories account for
most of the high energy-loss feature out to about 0.25 eV. A
typical ms double-bounce trajectory is shown in Movie S5.
Hard single-bounce trajectories do not contribute to the

experimental energy-loss distribution seen in Figure 2 as such

Figure 2. Energy-loss spectrum for H scattering from solid Xe. (a)
Rydberg tagging experiment (circles) and MD simulation (solid line).
The sharp peak dominating the energy distribution results from
single-bounce LOC scattering and “weak double-bounce scattering”.
The shoulder spanning 0.1−0.5 eV results from strong double-bounce
and multibounce collisions including subsurface scattering. The inset
in (b) shows a zoomed in view of the data with the largest inelasticity
and an estimate of the statistical noise in the MD trajectories. (c)
Experimental conditions: Ei = 2.76 eV, ϑi = 45°, ϑs = 45° and φi = 0°,
and TS = 45 K. The spread in the H atoms’ incidence energy δEi is
also shown. The experimental data has been shifted to a lower energy
loss by less than 0.015 eV, consistent with the experimental
uncertainty in the absolute energy scale. The horizontal line shows
the baseline level of the experiment. φi = 0° corresponds to the
azimuthal orientation of the Xe surface where the projection of the
velocity vector of the incident H atoms along the surface is parallel to
the 110 direction of the crystal. In the MD simulations, the
trajectories were culled, including only those within ±5° of the
nominal scattering angle. This represents about 4000 trajectories of
the total (1 million).

Figure 3. Subsurface scattering: (a) Probability density distribution of the scattering trajectories as a function of distance of closest approach to the
surface zmin. The equilibrium positions of the Xe surface atoms define zmin = 0. (b) Probability correlation distribution comparing depth of
penetration and energy-loss. The numbers on the contour lines indicate the number of MD trajectories. Ei = 2.76 eV, ϑi = 45°, ϑs = 45°, and φi = 0°
and TS = 45 K.
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collisions do not produce scattered H atoms in the plane of
detection. Figure 6 shows the out-of-plane angle dependence
of the scattered H atom flux integrated over all in-plane
scattering angles. Single-bounce trajectories (Figure 6a) show a
clear correlation between energy loss and out-of-plane
scattering angle: The harder the collision, the larger the out-
of-plane scattering angle. In fact, the hardest possible collisions
at ΔεBCM (vertical dashed line in Figure 6a) only occur for out-
of-plane scattering angles approaching π, which reflects

backscattered H atoms traveling in the opposite direction of
the incident beam.
Interestingly, single-bounce trajectories have a diminished

probability at any energy loss to be scattered in the detection
plane. In contrast, weak double-bounce trajectories (energy-
loss ∼0.04 eV) peak within the detection plane; see Figure 6b.
This surprising observation reflects the fact that pairs of out-of-
plane scattering events can cancel the out-of-plane momentum;
effectively, they are guided by collisions with Xe atoms on
opposite sides of the detection plane (see Movies S4 and S5).
Strong multibounce trajectories behave more as expected; they
are scattered to all out-of-plane angles.
This analysis shows that without high-resolution angle-

resolved inelastic scattering capability like that offered by H
atom Rydberg tagging, observation of multibounce and
subsurface scattering would be difficult if not impossible.
The differential scattering experiments presented here are,
however, able to resolve specific dynamical events in surface
scattering. These diagrams also point out that the energy losses
that will be seen in different laboratories will depend on the
precise geometry of the experiment. For example, some
scattering experiments relying on ion imaging collect a larger
fraction of out-of-plane scattering than the present experi-
ments. Indeed, many are done exclusively with ϑi ∼ 0°,
meaning that the back-scattered BCM limit is more easily
observed.
Before closing, we would like to mention a few observations

relating to MD simulations carried out on a Lennard-Jones
(LJ) pair potential. The LJ pair PES is often the method of first
resort for constructing a PES, but we show here that such a
simple approach can lead to serious qualitative problems in
describing the interatomic interactions. In our case, the LJ-PES
is extremely simple to construct, as parameters for LJ pair
potentials for H/Xe and Xe/Xe are easily obtained;34,35 see
Table 2. Using these parameters, we easily produced a full-
dimensional PES and repeated some of the calculations we had
carried out on our more expensive EMT-PES.
Figure 7a shows the energy-loss distribution calculated with

the LJ-PES compared to the results obtained with the EMT-
PES and to experiment. With EMT-PES, the MD simulations
are able to capture the experimental results extremely well. The

Figure 4. Two-dimensional histogram for the scattering-angle-
integrated distance of closest approach of an H atom to a Xe atom
in H scattering from solid Xe. Ei = 2.76 eV, ϑi = 45° and TS = 45 K.
We note the correlation between dmin and energy loss. The horizontal
lines set boundaries between hard (h), medium (m), soft (s), and very
soft (v) collisions. According to our classification, hard collisions are
those where the H atom approaches a Xe atom within 1.55 Å
achieving a potential energy of 2.46 eV. Medium collisions require a
dmin of 1.65 Å and achieve 1.82 eV, while soft collisions approach 1.81
Å, producing an interaction energy of 1.1 eV at the turning point. The
numbers on the contour lines indicate the number of MD trajectories.

Figure 5. Decomposition of the energy-loss spectrum into single- and double-bounce trajectories. (a) Single-bounce trajectories are found only in
the energy-loss feature near 0.04 eV. (b) Double-bounce trajectories are of two types. Weak double-bounce trajectories are found within the
energy-loss feature at 0.04 eV and strong double collisions help explain the feature with energy loss greater than 0.1 eV. The unaccounted for
scattering signal is due to higher numbers of bounces (not shown). The experimentally derived energy-loss distribution is shown for reference as
open circles. The normalization of MD and experiment in each case is done to try to give the best agreement.
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results obtained with the LJ-PES are markedly worse.
Nonetheless, the LJ-PES MD simulations also reproduce the
main feature seen in experiment at 0.04 eV. In fact, one might
consider the deviations acceptable for many applications, but
such a conclusion could be dangerous.
The high energy losses between 0.1 and 0.5 eV, shown

above to be due to multibounce and penetrating trajectories,
are completely absent in the MD simulations resulting from
the LJ-PES. We also computed the sticking probability using
the LJ-PES to be about 5 × 10−6. Comparing this to 0.15
found when using the EMT-PES, one begins to have greater
dissatisfaction with the performance of the LJ-PES.
Both of these deficiencies are a result of errors in the

repulsive H−Xe interaction given by the LJ approximation.
Figure 7b shows the comparison of the DFT, EMT, and LJ-
PESs in a way that emphasizes the repulsive interaction
between H and Xe at energies relevant to this work. This
shows that the DFT and EMT PESs are substantially softer
than is LJ. The effective radius of each Xe atom is nearly 1 Å

larger under the LJ approximation at a collision energy of 2.76
eV, and this error in the effective size of the Xe atom persists to
incidence energies well below 1 eV. It is for this reason that the
sticking probability is markedly reduced as sticking requires
penetration to the subsurface.

4. CONCLUSIONS

The scattering of H from solid Xe provides a special
opportunity to delve into the dynamical details of atomic
collisions at simple solid surfaces. The combination of high-
resolution differential scattering experiments combined with
high-dimensional dynamical simulations allows for this. In the
course of this study, we find evidence that while conventional
single-bounce dynamics reported frequently in the literature of
surface scattering is clearly important, other dynamical
scattering processes can also be identified that are just as or
even more likely. Within the context of a definition of weak
and strong collisions based on the distance of closest approach
during the trajectory, we find that single-bounce trajectories

Figure 6. Out-of-plane scattering of H from solid Xe when integrated over all polar scattering angles. (a) Single-bounce trajectories. The vertical
dashed line indicates the energy loss predicted by the binary collision model. (b) Multibounce scattering trajectories. The numbers on the contour
lines indicate the number of MD trajectories. Ei = 2.76 eV, ϑi = 45°, and TS = 45 K.

Figure 7. Performance of a Lennard-Jones pair potential. (a) Comparison with experiment of MD trajectory simulations using two potential energy
surfaces. While the results using the EMT-PES are in excellent agreement with experiment, the LJ-PES fails to capture the high energy losses seen
between 0.1 and 0.5 eV. (b) Comparison of the repulsive interaction of H with Xe for the EMT-PES and the LJ-PES. The EMT PES agrees well
with DFT, whereas the LJ-PES gives the effective size of the Xe atom to be nearly 1 Å larger for an H atom colliding at 2.76 eV energy. This
suppresses penetration and sticking.
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cannot account for the full energy-loss distribution seen in
experiment. In fact, only 47% of all trajectories are the result of
single-bounce events. Double-bounce trajectories are more
important even for specular scattering where one might think
single-bounce events would be favored. The tendency of each
bounce to direct H atoms out of the plane of detection allows
two bounces to compensate out of plane momentum and more
easily remain in the detection plane. These weak double-
bounce events exhibit nearly the same energy loss as that
predicted by single-bounce line of centers model. This may
explain why they have not been experimentally resolved in the
past. We also observe that a large fraction of the observed
scattering results from trajectories that visit regions of space
below the first layer of Xe atoms (subsurface multibounce
scattering) before returning to the gas phase. Overall, these
multibounce and subsurface scattering dynamics allow as much
as 0.5 eV to be lost from 2.76 eV H atoms colliding with a solid
Xe surface, far exceeding the predicted energy loss of the
binary collision model (0.082 eV) normally considered the
largest energy loss possible. Subsurface penetration is also
responsible for sticking of the H atom, which we compute to
occur for 15% of the trajectories. A LJ pair potential fails to
describe penetration or sticking mainly due to its inability to
accurately describe the repulsive wall of the H−Xe interaction.
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ABSTRACT
We report inelastic differential scattering experiments for energetic H and D atoms colliding at a Pt(111) surface with and without adsorbed
O atoms. Dramatically, more energy loss is seen for scattering from the Pt(111) surface compared to p(2 × 2) O on Pt(111), indicating that
O adsorption reduces the probability of electron–hole pair (EHP) excitation. We produced a new full-dimensional potential energy surface
for H interaction with O/Pt that reproduces density functional theory energies accurately. We then attempted to model the EHP excitation
in H/D scattering with molecular dynamics simulations employing the electronic density information from the Pt(111) to calculate electronic
friction at the level of the local density friction approximation (LDFA). This approach, which assumes that O atoms simply block the Pt atom
from the approaching H atom, fails to reproduce experiment due to the fact that the effective collision cross section of the O atom is only
10% of the area of the surface unit cell. An empirical adiabatic sphere model that reduces electronic nonadiabaticity within an O–Pt bonding
length scale of 2.8 Å reproduces experiment well, suggesting that the electronic structure changes induced by chemisorption of O atoms nearly
remove the H atom’s ability to excite EHPs in the Pt. Alternatives to LDFA friction are needed to account for this adsorbate effect.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0058789

I. INTRODUCTION

The Born–Oppenheimer approximation1 has served as a
bedrock for theoretical chemistry,2 providing a standard model of
chemical reactivity involving nuclear motion on an electronically
adiabatic potential energy surface.3 In constructing an analogous
model for interactions of atoms and molecules at metal surfaces
and especially for surface chemistry, it is necessary to account for
electron–hole pair (EHP) excitations that may accompany nuclear
motion.4,5 For example, H and D atoms adsorbing at the metal
surface embedded in a Schottky diode produce chemicurrents,6–8

and diatomic molecules prepared in high initial vibrational states
exhibit multiquantum vibrational relaxation9–11 even producing
emitted electrons12–15 when scattered from metals. This behavior is
not seen on insulators where vibrational relaxation is inefficient.16,17

Failure of the Born–Oppenheimer approximation in surface
chemical dynamics has been a topic of great discussion, and com-
peting viewpoints have contributed to progress toward its better
understanding.18

H atom scattering from metals proves to be an excellent testing
ground for theory, as new experimental methods allow the precise
measurement of translational inelasticity, and the simplicity of the
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H (or D) atom makes the problem ambitious yet tractable for
theory.19 Using nearly monoenergetic H and D atom beams
whose energy is tunable, differentially resolved H scattering from
several metals20,21 has been detected by Rydberg atom tagging
time-of-flight22,23 to obtain high-resolution translational energy
distributions at selected incidence and scattering angles. Using
full-dimensional potential energy surfaces (PESs) and background
electron densities, based on an effective medium theory (EMT)24,25

fitted to density functional theory (DFT) data, electronically non-
adiabatic molecular dynamics (MD) trajectories experiencing elec-
tronic friction at the level of local density friction approximation
(LDFA)26–28 reproduce many experimental observations.29 This
theory was also able to explain the H and D isotope effect and
magnitude of experimentally observed chemicurrents.30

In this work, we extend these ideas to investigate electroni-
cally nonadiabatic interactions of H and D atoms on a metal surface
with a chemically bound adsorbate. We first present experimental
observations comparing H scattering from Pt(111) with and without
a p(2 × 2) adsorbed O atom overlayer and show that O atom
adsorption dramatically reduces the translational inelasticity by
limiting EHP excitation. This is the case despite the fact that O atoms
are present at only 0.25 monolayer (ML) surface concentration.
We then explore two hypotheses to explain these observations
involving: (1) a mechanical blocking LDFA model and (2) an
electronically adiabatic sphere model. In the blocking model, the
adsorbed O atoms prevent the H atom approach to Pt, limiting EHP
excitation possible in the high electron density regions near the Pt
atoms. In the adiabatic sphere model, the EHP excitation probability
is suppressed within an empirically optimized distance 𝜚ad from
each O atom.

While both models reduce translational inelasticity by reducing
the probability for EHP excitation, we find that the effective mechan-
ical blocking cross section of the adsorbed O atom in collisions with
H or D is only 2.84 Å2, a small fraction of the 27.16 Å2 area of
the surface unit cell. This relatively small modification of scattering
dynamics cannot explain the experimental observations. We find,
however, that when 𝜚ad = 2.8 Å, good agreement with experiment
is found. We emphasize that the adiabatic length scale is similar to
the O–Pt bonding length scale and that the adiabatic shadow area
π𝜚2

ad = 24.6 Å2 is a large fraction of the unit cell’s area. Thus, these
trajectory simulations are only weakly nonadiabatic.

This failure of the LDFA leads us to conclude that the changes
in the surface electronic structure induced by the adsorption reduce
the ability of the H/D atom to excite EHPs in energetic collisions.
Application of more sophisticated theories of nonadiabatic dyna-
mics such as orbital specific friction31,32 or independent-electron
surface hopping33 may be necessary to explain the adsorbate
effect.

II. METHODS
A. Experimental setup

The experimental scattering apparatus has been described
elsewhere.19,34 Briefly, H atoms were generated by photodissoci-
ation of a supersonic molecular beam of hydrogen iodide with
pulses of KrF excimer laser light at 248.35 nm, producing H atoms
with incidence energies of Ein = 1.92 ± 0.02 eV. H atoms traveling

normal to the molecular beam scatter from the room temperature
surface and are subsequently excited to a long-lived Rydberg state
by two laser pulses, one exciting the 1s→ 2p transition at 121.6 nm
and another the 2p→ 34d transition at 365.9 nm. The resulting
metastable atoms travel 25 cm without radiative loss and are
field-ionized and detected by using a multichannel plate detector. A
multichannel scaler records the arrival time, and the calibrated flight
length is used to obtain H atom speeds.

The Pt(111) surface was cleaned using several cycles of Ar-ion
sputtering and annealing at 1000 K. The oxygen-covered Pt(111)
surface was prepared in situ by dosing the cleaned Pt(111) surface
for 5 min with oxygen (10−6 mbar) at room temperature. This proce-
dure results in a saturation coverage of 0.25 ML atomic oxygen with
a preferential p(2 × 2) orientation.35,36 The surface structure was
confirmed by Auger electron spectroscopy and low-energy electron
diffraction.

B. Potential energy surface
We constructed a full-dimensional PES for an H atom at an

O-covered Pt(111) surface,

V = VEMT + VO–H + VO–Pt, (1)

by augmenting VEMT—the H–Pt(111) EMT-PES reported else-
where37—with terms accounting for the interaction of the adsorbed
oxygen with hydrogen VO–H and platinum VO–Pt atoms. We neglect
the interaction between adsorbed oxygen atoms, which are 5.6 Å
from one another (see Fig. 1).

The advantages of using an EMT-PES derive from its calcu-
lational efficiency and simplicity, while retaining a relatively small
root mean square error (RMSE) with respect to DFT. It also provides
the background electron density necessary to calculate the electronic
friction coefficient.29 Most importantly, H atom energy losses cal-
culated from MD simulations employing a Langevin propagator to
describe LDFA electronic friction on an EMT-PES agree well with
the energy losses obtained from the H(D) scattering experiments
from transition metals including Pt(111).38

The O–Pt interaction is modeled by an anharmonic potential
with a dissociative asymptote,39

UM(r) = D(e−α0(r−r0) − 1)2 −D, (2)

where r is the O–Pt distance, D is the dissociation energy, and r0 is
the equilibrium distance where the curvature is α0. The last term in
the rhs of Eq. (1) is then given by

VO–Pt = NO∑
i=1

NPt∑
j=1

UM(rij), (3)

where rij is the distance between oxygen atom i and platinum atom j
and NO and NPt are the number of O and Pt atoms in the simulation
box, respectively.
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FIG. 1. The p(2 × 2)O on the Pt(111) surface as seen by an H atom. (Left panel) The size of the O atoms (red) is 2.84 Å2, representing the area over which repulsive collisions
between H and O atoms may occur at Ein = 2 eV. The unit cell is shown as a parallelogram with an area of 27.16 Å2. The radius of the orange circles 𝜚ad = 2.8 Å represents
the distance of adiabatic shadowing derived from this work. (Right panel) Pictorial representation of various sites in the surface referred to in the text.

The interaction between the H and the O atoms—second term
in the r.h.s. of Eq. (1)—is given by

VO–H = NO∑
i=1

UEOM(ri, θi), (4)

where ri is the distance between the H atom and the ith O atom and
θi is the angle between the vector connecting H and the ith O and the
normal to the surface. UEOM(r, θ) is the extended oriented Morse
(EOM) potential,

UEOM(r, θ) = UOM(r, θ) +D1(r − ρ)2 sin2 θ
2

e−β(r−ρ), (5)

where UOM(r, θ) is an oriented Morse (OM) oscillator,

UOM(r, θ) = D0(e−2α(r−r0) − 2 cos θe−α(r−r0)). (6)

The parameters V0, V1, r0, ρα, and β were determined by fitting to
DFT data as described below.

C. Fitting parameters
The EMT fitting parameters needed to describe the H–Pt

system were determined by Kammler et al.37 using a genetic
algorithm method to find a global minimum. To find the parameters
for the O–Pt interaction potential (3), we used data available in the
literature for: (i) the frequency of the hindered O atom translations
measured by electron energy loss spectroscopy,40 ν = 490 cm−1; (ii)
the equilibrium Pt–O distance at the fcc site calculated by DFT using
a generalized gradient approximation Perdew–Burke–Ernzerhof
(GGA-PBE) functional, req = 2.04 Å;41 and (iii) the adsorption
energy of an O atom at the fcc site of Pt(111) obtained from
calorimetry42 and temperature programmed desorption43—both
methods giving Ea = 3.4 eV for 0.25 ML O coverage. These
three physical properties of the O–Pt(111) system are related to

three parameters of the Morse potential (2) by the following
equations:

ν = α
2π

√
2D
μ

, (7)

∂VO–Pt

∂zO
∣
zO=zeq

= 0, (8)

VO–Pt(rO = req) = −Ea. (9)

Here, Eq. (7) relates the fundamental vibrational frequency to
the parameters of the Morse potential in Eq. (2), where μ denotes
the reduced mass of the oscillator.39 Equation (8) accounts for the
fact that when the O atom is in its equilibrium position (rO = req),
the projection of the force on the O atom along the axis z normal to
the surface vanishes. Finally, Eq. (9) associates the energy of the O
atom adsorbed at the fcc site with the measured O atom adsorption
energy. The values of the parameters of the Morse potential deter-
mined from the system of algebraic Eqs. (7)–(9) are D = 1.06 eV,
r0 = 2.06 Å, and α0 = 2.59 Å−1.

To determine the optimized values of the six parameters of
the O–H interaction described by Eq. (4), we first performed spin-
polarized DFT calculations (see Sec. II D for details) for the H atom
approach to the O–Pt surface at 11 symmetry sites (see Fig. 1) using
a step size of 0.2 Å in the H atom distances from the surface. In the
vicinity of the O atom, the step size was reduced to 0.025 Å. Here,
the Pt and O atoms were held fixed at their relaxed configuration
in the absence of the H atom. We then optimized the parameters of
Eq. (4) to obtain the minimum possible deviation between the pre-
dicted energy of Eq. (1) and the DFT data. The optimized parameter
values are D0 = 1.01 eV, α = 4.00 Å−1, r0 = 0.92 Å, D1 = 90.3 eV Å−2,
β = 4.56 Å−1, and ρ = 0.70 Å, with a RMSE of 187 meV. The fit (solid
line) to the DFT data (empty circles) is shown in Fig. 2 for the bridge
site closest to the adsorbed oxygen (b1 in Fig. 1). The PES matches
the features of the DFT energy profile well.
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FIG. 2. A 2D cut (—) through a multidimensional PES developed in this work for H
interaction with p(2 × 2) O on Pt(111) at the b1 site (see Fig. 1). DFT data (⋅) are
shown for comparison. z is the distance from the H atom and the upper Pt layer.
Two fits using simplified functions are also shown. See the text.

The PES is fit poorly if simpler fitting functions are employed.
With D1 set to 0 in Eq. (5), the dotted line in Fig. 2 is obtained. This
demonstrates the importance of the exponentially repulsive term in
Eq. (5) to correctly represent the DFT data in the vicinity of the
adsorbed O atom (region between 0 and 2 Å for the H atom dis-
tance to the Pt surface z in Fig. 2). The dashed line in Fig. 2 shows
the fit obtained when setting the O–H repulsion radius ρ = 0 in the
second term in the rhs of Eq. (5). Though the fit looks better than
that in the case of D1 = 0, it is still qualitatively bad in the vicinity of
the oxygen.

We note that upon O–H bond formation, our PES fails to
account for the migration of the adsorbed oxygen from its lowest
energy binding site at an fcc hollow to a bridge site, the minimum
energy binding site of OH diatomic on Pt(111). Of course, it is of
interest to correct this deficiency in the PES, for example, to accu-
rately describe OH adsorbate formation and equilibration with the
solid. However, we do not expect that this aspect of the PES will have
significant influence on the subject of this study, since the duration
of the H and D atom collisions with the p(2 × 2) O–Pt(111) surface
is about 100 fs or less. In fact, the time scale within which the H atom
samples the adsorbtion well is even shorter than this. On these short
time scales, the heavy O atom cannot carry out its displacement from
fcc to the bridge site.

D. Details of the DFT calculations
The DFT data were generated using VASP5.3.544–47 with the

GGA-PBE functional.48 The optimized lattice constant for an ideal
platinum crystal was determined to be a0 = 3.96 Å. The plane wave
cutoff energy was set to 400 eV. The Pt(111) surface was modeled
as a 2 × 2 slab with six layers. To avoid interactions between the
slab and its periodic images in the direction normal to the surface,

a vacuum layer of 13 Å was incorporated into the simulation cell.
The Brillouin zone was sampled by a 4 × 4 × 1 Γ-point centered
k-point mesh using Monkhorst–Pack sampling.49 The interaction
between valence and core electrons was described by the projector-
augmented wave method.50 Partial electronic occupations were
modeled with the Methfessel–Paxton (N = 1) smearing scheme51

with a smearing width of σ = 0.2 eV. For the calculations involv-
ing the oxygen-covered Pt(111), an oxygen atom was set to the
most-stable binding site, the fcc hollow, to simulate a coverage of
0.25 ML. The electronic energy calculations were considered to be
converged when the energy difference was smaller than 10−4 eV
between two iteration steps. For calculations including oxygen
adsorbates, van der Waals corrections according to the method of
Tkatchenko–Scheffler52 were taken into account.

E. Molecular dynamics simulation details
The MD trajectories were simulated with the md_tian2 package

available at a public repository.53 The package utilizes the propagator
as described by Dellago et al.54 to solve numerically the Langevin
equation. The time step in simulations was set to 0.1 fs.

III. RESULTS AND ANALYSIS
Figure 3 compares the experimentally obtained translational

energy distributions for H scattering from Pt(111) (+) and p(2 × 2)
O on Pt(111) (○) under representative conditions. The former
exhibits a broad energy loss distribution with ⟨EH–Pt

loss ⟩ ≈ 0.71 eV,

FIG. 3. Comparing H scattering experiments for Pt(111) (+) with p(2 × 2)
O–Pt(111) (○). Ei = 1.92 eV, ϑi = 40○, and ϑs = 35○. The results of the electron-
ically nonadiabatic molecular dynamics simulations for H scattering from Pt(111)
(—) are also shown. See also Ref. 38. ΔεBCM shows the maximum energy that
can be transferred in a single collision between an H and an O atom without EHP
excitation.
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resulting from EHP excitation and multibounce collisions.38 For
H scattering from the clean metal, excellent agreement with exper-
iment is obtained using a Langevin propagator to account for
electronic friction at the level of LDFA24,55 (—).

The LDFA is popular and relatively easy to implement means
to model EHP excitation in atom scattering from metals. It assumes
that the friction coefficient depends only on the metal’s electron den-
sity at the position of the H atom. Figure 4 shows the electron density
calculated from DFT at several surface sites for H interacting with
Pt(111) (blue lines) and from p(2 × 2) O on Pt(111) (red and black
lines). At sites far from the adsorbate biding site f1 (see Fig. 1), the
electron density is similar to that of Pt(111) (compare blue and red
curves); however, near f1, the electron density is enhanced by the
presence of the O atom [compare blue and black curves in Figs. 4(a)
and 4(b)]. These calculations suggest that the electron density and,
hence, the friction coefficient should certainly not be diminished by
O atom adsorption.

Figure 3 also shows the experimental energy loss for H scatter-
ing from p(2 × 2) O on Pt, which exhibits a broad, high energy loss
feature similar to H scattering from Pt(111). However, the major
feature in the energy loss spectrum is a sharp peak at low-energy
loss. The average energy loss ⟨EH–O–Pt

loss ⟩ ≈ 0.42 eV is smaller than
that for H scattering from Pt(111) under the same conditions.
This is clear evidence that the LDFA fails to capture the adsorbate
effect, which clearly suppresses EHP excitation. Hence, we modi-
fied our model of EHP excitation to try for better agreement with
experiment.

The sharp peak in the energy loss distribution for H scattering
from p(2 × 2) O on Pt (Fig. 3, open circles) appears to die away at
the binary collision limit,

ΔεBCM = Ei[1 − (mO −mH

mO +mH
)2], (10)

which is the maximum energy that can be transferred in a single
collision between an H and an O atom without EHP excitation. This
observation suggested us a mechanical blocking model, where the H
atom interacts with O atoms adiabatically giving rise to the sharp
low-energy loss peak and with Pt atoms according to the LDFA
producing a broad high energy loss feature. In this picture, the
H atom collisions at O atoms occur without electronic friction,
so the maximum energy loss might well be expected to coincide
with ΔεBCM. The dynamics could then be similar to the case of
H on Pt, but the effect of the O atom adsorbate would be to
limit the approach of the H atom to regions of high electron den-
sity associated with the Pt metal, where electronic friction can be
high.

The PES obtained by fitting to the DFT data, as described in
Secs. II B and II C, is represented in detail in Fig. 5 as 1D cuts,
and the Pt electron density function used for calculating electronic
friction is shown in Fig. 4 (○). In each panel, the newly developed
PES for the H atom approaching along the surface normal is com-
pared to DFT data both with and without the O atom. Figures 5(a)
and 5(e) show the situation for the two fcc hollow sites, only one
of which can bind to an O atom. The influence of the O adsorbate
is striking. At f1, where the O atom is bound, one sees a binding
well (H–O–Pt formation) at z ≈ 2.3 Å and a strong repulsive inter-
action blocking the H atom from entering the fcc hollow of the
Pt(111) surface. Figures 5(b), 5(d), and 5(h) show the interaction
potential for the vertical approach to sites with an intermediate
distance from the O atom: fh, the nearby b1, and the ot sites.
Figures 5(c), 5(f), and 5(g) show more distant sites. One obser-
vation worth noting from the inspection of these potential curves
is that the H atom must collide quite closely to the adsorbed O
atom to avoid collision with the underlying Pt surface. At the b1
site, the H–O–Pt binding well can still be seen, but the O atom
can no longer fully prevent the H atom’s approach to the Pt
surface.

FIG. 4. Electron densities experienced
by the H atom at different surface sites
of Pt(111) with and without adsorbed O
atoms. The lines show DFT results along
with EMT background densities (○). We
show two: (a) fcc hollow sites, (b) bridge
sites, (c) hcp hollow sites, and (d) top
sites. Figure 1 shows the sites.
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FIG. 5. Cuts through the multidimensional PES for H interacting with p(2 × 2) O on Pt(111) (—) and Pt(111) (—). DFT data (○) used in the fitting procedure are also shown.
The H atom approaches: (a) the f1 hollow, where the O atom preferentially binds, (b) the b1 site, (c) the t1 site, (d) the fh site, (e) the f2 site, (f) the b2 site, (g) the hcp hollow
site h1, and (h) the ot hollow site. Sites are identified in Fig. 1.

MD simulations of the H atom scattering from O-covered
Pt(111) on the constructed PES, where O atom blocking is
accounted for and electron densities from the H/Pt system
are employed, produce energy loss distributions, as shown in

Figs. 6–9. Here, experiment and theory are compared for both
H and D scattering at two incidence energies of translation.
One sees that under all experimental conditions, the mechanical
blocking model (solid lines) exhibits much larger energy loss

FIG. 6. Comparison of MD simulations
with experimental energy loss distribu-
tions (○) in H scattering from p(2 × 2)
O on Pt(111) at Ei = 1.92 eV. ϑi = 45○.
Mechanical blocking model (—), adia-
batic results (—), and predictions of the
adiabatic sphere model are also shown
(⋅).
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FIG. 7. Comparison of MD simulations
with experimental energy loss distribu-
tions in D scattering from p(2 × 2) O on
Pt(111) at Ei = 1.87 eV. Other conditions
are as in Fig. 6.

(through EHP excitation) than is seen experimentally (open
circles).

To understand how the mechanical blocking model fails,
consider Fig. 1, where we show a scale drawing of p(2 × 2) O on
the Pt(111) surface (view from above). The size of the O atoms
represents the area over which a repulsive H–O collision may occur,
which reflects the idea that the attractive part of the interaction
potential between H and O is ineffective at preventing an H–Pt
collision. This picture shows that the area of the unit cell (parallelo-
gram) blocked by the O atoms (red circles) is small (10%), revealing

that the blocking cross section of the O atom is only sufficient to
affect a small fraction of the trajectories. It is immediately clear that
such a picture cannot explain the dramatic adsorbate effect seen
in Fig. 3.

This simple geometric picture provides a realistic explana-
tion of our MD trajectory simulations. Figure 10 shows the
penetration depth distribution of all the trajectories run in our
MD simulation of the blocking model using the PES for H
interacting with p(2 × 2) O on Pt(111). Less than 10% of the
trajectories exhibit a penetration depth consistent with an H–O

FIG. 8. Comparison of MD simulations
with experimental energy loss distribu-
tions in H scattering from p(2 × 2) O on
Pt(111) at Ei = 0.99 eV. Other conditions
are as in Fig. 6.
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FIG. 9. Comparison of MD simulations
with experimental energy loss distribu-
tions in D scattering from p(2 × 2) O on
Pt(111) at Ei = 0.94 eV. Other conditions
are as in Fig. 6.

collision (at 1.8 Å). The vast majority of the trajectories have
at least one collision with a Pt atom approaching closer than
1.5 Å. We conclude that mechanical blocking by the adsorbed
O atom thereby preventing the H atom from approaching
the Pt atoms is an insufficient explanation of the experimental
observations.

A second hypothesis is more successful. Consider that due to
O atom preference to bind at the f1 hollow site, three Pt atoms

FIG. 10. Penetration depth probability distribution of the collisions of H atoms on
a p(2 × 2) O on the Pt(111) surface. Ei = 1.92 eV. ϑi = 45○. Integrated over all
values of ϑs.

are engaged intimately in bonding, thereby strongly influencing the
electronic structure of the Pt atoms within about one lattice con-
stant distance (orange circles in Fig. 1). We asked what if changes in
the electronic structure of the Pt atoms engaged in bonding to the
O atoms reduce electronically nonadiabatic interactions in H atom
collisions with this surface. To model this, we reduced to zero the
friction coefficient within a distance of 𝜚ad from the O atom using a
cutoff function,

fcut = 1
2
[1 + erf( rO–H − 𝜚ad

σ
)], (11)

with 𝜚ad = 2.8 and σ = 0.2 Å. This represents an adiabatic sphere,
which casts an adiabatic shadow (shown by the orange circles in
Fig. 1) on the Pt surface. Figure 11 shows a representation of the
effective friction coefficients present for the adiabatic sphere model;
the friction reducing effect of the O atom adsorbate is present at sites
quite distant from its binding site.

Applying this model, we ran trajectories again and com-
pared to experiment. The comparison is shown in Figs. 6–9, where
results from the adiabatic sphere model (solid circles) are com-
pared to experiment (open circles). The agreement is excellent
for both H and D at Ei = 1.92 and Ei = 1.87 eV, respectively.
Although the values of the parameters in the adiabatic sphere
model were adjusted to agree with experiment at Ei = 1.92 eV,
the agreement with experiment at Ei = 0.99 eV is still good
and, furthermore, superior to the mechanical blocking model. If
anything, the adiabatic sphere model appears to overstate the
likelihood of EHP excitation at this incidence energy. A purely
adiabatic simulation (—) at Ei = 0.99 eV compares nearly as well to
the data; however, it does not describe the experimental results well
at Ei = 1.92 eV.
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FIG. 11. Friction coefficient experienced
by the H atom at different surface sites
with and without adsorbed O atoms. Fric-
tion coefficients in the blocking model
(⋅) and for the adiabatic sphere model
(—, —) are shown for: (a) two fcc hollow
sites, (b) two bridge sites, (c) two hcp hol-
low sites, and (d) two top sites. See Fig. 1
for a spatial description of the different
sites.

IV. DISCUSSION

The most important outcome of this work is the persuasive
evidence that the LDFA electronic friction treatment of EHP exci-
tation cannot account for the adsorbate effect in H/D scattering
from p(2 × 2) O on Pt(111). Figure 4, which shows electron densi-
ties calculated from DFT, helps explain the problem. The electron
densities for Pt(111) and p(2 × 2) O on Pt(111) are both shown.
Only at the sites f1 and b1 are the electron densities affected by O
atom adsorption, and the electron densities appear to be enhanced.
For all other surface sites more distant from the O atom binding
site, the electron densities are hardly affected by the adsorbate.
Thus, within the LDFA, we would expect that most H collisions
at p(2 × 2) O on Pt(111) experience similar or perhaps greater
EHP excitation as collisions on Pt(111). This is contradicted by
experimental observation and by the success of the adiabatic sphere
model, since only a model that dramatically reduces the probability
for EHP excitation is able to capture the experimental observations.

This means that EHP excitation is sensitive to the nature of
the chemical bonding of an adsorbate and not simply to the elec-
tron density. DFT calculations of the band structure for p(2 × 2)
O on Pt(111) show that O adsorption lowers the energy of the
center of the Pt d-band.56 The density of states at the Fermi level,
thus, goes down. Furthermore, there is a migration of electron
density from the d-band associated with Pt atoms to the (s, p)-band
associated with the O atoms. While it is not surprising that
substantial electronic structure changes accompany O atom adsorp-
tion, this work shows that these changes in electronic structure
influence electronic nonadiabaticity in H/D atom collisions with the
surface.

The LDFA approach starts with the assumption that only the
local electron density determines the nonadiabaticity. In the real
system, the electron density alone cannot determine the probability
of EHP excitation. For example, an LDFA approach always assumes
that there are empty states to which an excited electron can be

transferred. This is obviously not the case for electrons far below the
Fermi level. If one considers DFT calculations of the Pt band struc-
ture, the changes in the electron density at the Fermi level, seen, for
example, in the calculations of Ref. 56, are also not large enough to
account for the changes seen in our adiabatic sphere model. In fact,
the migration of electron density from the d-band associated with Pt
atoms to the (s, p)-band associated with the O atoms is even more
substantial above the Fermi level.56

The strong adsorbate effect seen in this work represents a chal-
lenge to new theories of electronically nonadiabatic dynamics at
surfaces. One approach worth exploring is the independent-electron
surface hopping (IESH) model.33 Here, an electron first jumps from
the solid to the projectile, forming a transient anion and leaving a
low-energy hole, a mechanism that has been applied to NO multi-
quantum vibrational relaxation in collisions with metals.10,11 Sub-
sequent electron transfer back to the solid leaves the electron in an
excited state, robbing energy from the projectile. The two electron
transfer events described by this model are energetically governed
by the surface work function and projectile electron binding energy.
IESH is certainly capable of describing a strong adsorbate effect as
the surface work function can be dramatically altered by the presence
of an adsorbate. Thus, the results of this work might be an indica-
tion of the failing of the LDFA and possible suitability of the IESH
model.

Another alternative to LDFA is orbital-dependent friction.31,32

In the LDFA, the electronic friction is computed from a model
reference system that has the same local electron density as the
system of interest. In the orbital-dependent approach, the friction
is described by a tensor, coupling the three translational degrees
of freedom of the H atom projectile. Perhaps of greater relevance
to the case of H atom scattering from p(2 × 2) O on Pt, the fric-
tional tensor elements depend on the precise electronic structure
of the system. Here, the friction tensor is likely to depend on the
precise nature of the solid conduction band, e.g., d character vs (s, p)
character.
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V. CONCLUSIONS AND OUTLOOK
We have observed a strong adsorbate effect, where O atom

adsorption to Pt(111) nearly eliminates an H atom’s ability to excite
EHPs in energetic collisions. We also developed two semi-empirical
descriptions of the adsorbate effect. An LDFA mechanical blocking
model, where the adsorbate prevents the H atom’s approach to the
metal, fails to explain experimental observations, whereas an adia-
batic sphere model, where electronic nonadiabaticity is removed in
a sphere around the O atom whose radius is similar to the Pt–O
bond length, broadly reproduces experiment. This shows that the
electronic structure changes induced by the chemisorption of O
atoms nearly remove the H atom’s ability to excite electron–hole
pairs. Alternatives to LDFA friction are needed to account for this
adsorbate effect.
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ABSTRACT 

Transition state theory (TST) is the leading tool for the prediction of elementary chemical reaction rates. 

Unfortunately for reactions at metal surfaces, which are crucially important to heterogeneous catalysis, 

there are few tests of its accuracy against elementary rate constants from experiments. Here, we report 

accurate experimental rate constants for hydrogen atom recombination on Pt(111) and (332) and a model 

of exact thermal rates, based on the equilibrium assumption of TST, which reproduces experimental results 

with no adjustable parameters over a broad temperature range. The model accounts for transition state re-

crossing and uses an adsorbate entropy for H atoms which is fully derived from quantum mechanics. A 

classical calculation of hydrogen atoms translational entropy parallel to the surface introduces large errors 

even at temperatures as high as 1000 K. Neglecting the electron spin of hydrogen atoms, i.e. electronic 

partition function, introduces a large temperature-independent error. The importance of entropy is also re-

flected by the fact that recombinative desorption is faster on the highly stepped Pt(332) surface compared 

to the nearly step-free Pt(111) surface, despite H atom’s  binding preference at steps. Our modeled adsorbate 

entropies for Pt(111) and (332) are in good agreement with measurements made for  Pt nano-particles and 

help to explain how adsorbate entropy depends on the nano-particle size. This study demonstrates the high 

accuracy of TST, but only when the quantum mechanical effects are correctly included.   
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The rates of thermal reactions at metal surfaces determine the effectiveness of many heterogeneous 

catalysts [1-3]. Thus, experimental rate constants for elementary reactions at surfaces are needed 

[4-7]. Unfortunately, the measurements are challenging and only few rate constants are accurately 

known. Consequently, modelling of heterogeneous catalyst’s activity and selectivity relies heavily 

on theory, which uses Density Functional Theory (DFT) in combination with Transition State The-

ory (TST) [8-11]. Sadly, theoretically predicted rate constants have rarely been compared to accu-

rate experiments and thus their accuracy remains unknown. The lack of high quality benchmarks 

is one problem, while uncertainties about TST and limitations of DFT are another.  

To show how TST can fail, we review its principles and how it is commonly used in practice. 

Modern TST formulations prescribes a dividing surface, referred to as the transition state (TS), 

through which molecules must pass to form the products. The thermal rate constant is calculated 

as the classical equilibrium one-way flux through the TS in the direction of the product [12-14]. 

TST provides an upper limit to the rate, since the equilibrium flux includes trajectories that can re-

cross the TS and not lead to products. If re-crossing corrections are neglected, which is routinely 

the case, the choice of TS may strongly affect the calculated rate. However, accurate rate constants 

can be obtained from any choice of the TS as long as the corresponding dynamical correction is 

included [12, 13]. Most common formulations of TST are based on classical mechanics[15] and 

quantum mechanical corrections are included by an ad hoc replacement of classical partition func-

tions by quantum expressions, typically based on simple model systems—e.g., harmonic oscilla-

tors or hindered translators and rotors[16, 17]. One then computes the physical parameters of the 

quantum models with DFT for the system of interest [16, 18].  Although well understood from 

studies of gas-phase reactions[15], effects due to electron spin, i.e. electronic partition functions, 

are generally omitted when TST is applied to reactions at metal surfaces.   

We see that TST’s predicted rates may deviate from experiments for several reasons including: 

1) failure of the equilibrium approximation, 2) neglect of or incorrect accounting for the quantum 

mechanics and 3) errors associated with dynamical TS re-crossing. To understand deviations be-

tween experiment and theory, one must be able to disentangle these effects.  

Recombination of hydrogen atoms at platinum is a crucial step in practical applications like 

electrochemical hydrogen evolution reactions[19]. It is also—on single-crystal surfaces—the sim-

plest possible reaction well suited for testing theoretical models of reaction rates. DFT at the level 

of the generalized gradient approximation (GGA) can accurately characterize the H/Pt potential 
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energy surface (PES) within the static surface approximation. Relative energies of H-atoms at dif-

ferent positions on the Pt surface are more accurate than absolute energies and depend only weakly 

on the choice of the exchange-correlation functional [20, 21]. We can then use the PES to obtain 

H atom’s adsorbate partition functions using classical or quantum approaches—essential ingredi-

ents of TST rate constants.  

In this paper, we present an accurate model to TST rate constant calculations, hereafter referred 

to as quantum potential energy sampling (QPES). The QPES approach uses a quantum partition 

function for H and D atom adsorbates, computed by directly counting vibrational eigenstates at 

the static surface. This requires only solving the two-dimensional in-plane Schrödinger equation 

of an anharmonic PES from DFT. The states associated with the H-Pt stretching coordinate are 

included as harmonic oscillators using a vibrationally adiabatic approximation. This use of a quan-

tum partition function, together with accounting for the electronic partition function, i.e. the H’s 

electron spin, allows us to describe accurately the quantum entropy of hydrogen atoms adsorbed 

to Pt surfaces (H*), which is also related to the pre-exponential factor in the TST rate constant. 

These rate constant predictions are then compared to experiment. We find that TST agrees ex-

tremely well with experiments over a wide temperature range, but more importantly, unless the 

influence of quantum entropy is included, large errors arise.  

A problem of our approach would be if we would rely on DFT-GGA to characterize the TS. 

Our results would strongly depend on the choice of the exchange-correlation functional [22, 23]. 

In fact, it is not even clarified whether or not dissociative adsorption of H2 at Pt(111) passes over 

an activation barrier [22-24]. Uncertainties in DFT-derived reaction barriers and TS-structures 

would prevent a meaningful comparison to the experimental rate constants. In our QPES-TST 

approach we solved this problem by positioning the dividing plane far from the Pt surface. This 

effectively makes the TS a gas-phase molecule, reduced by one translational degree of freedom. 

This has three advantages. First, the partition function of a gas-phase H2 molecule can be easily 

computed from experimental parameters. Second, the re-crossing correction is identical to the ther-

mal sticking probability [25]. These sticking probabilities are accurately known from previous 

experiments [26-29]. Third, the experimentally determined adsorption energy [30, 31] can be used 

instead of a DFT-based energy for recombinative desorption.   

In order to test QPES-TST, we required kinetic data that are far more accurate than that previ-

ously available. Therefore, we carried out velocity-resolved kinetics [6, 7, 32] measurements in 
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the temperature range of 550 to 950 K, which provided accurate rate constants for three isotopic 

recombination reactions: 2H∗ → H2, H∗ + D∗ → HD and 2D∗ → D2 on Pt(111) and Pt(332). In the 

velocity resolved kinetics approach—see Sec. S1a of the Supporting Information (SI)—the Pt(111) 

or (332) single crystal facets are exposed to a pulsed molecular beam with a known mixture of H2 

and D2. With spatial ion imaging, we were able to characterize the absolute flux and the spatial 

profile of the incident molecular beam. With this information and the sticking coefficients for H2 

and D2 [26, 28, 29], we determine the initial absolute atomic surface concentration [H∗]0 and [D∗]0 

needed for the determination of second-order rate constants from experimental rates[33]. See the 

SI, Sec. S2 and S3 for more details. 

 
Figure 1: Measured and theoretically predicted HD formation rates. Measured HD formation rates are shown as 

grey + for Pt(111) and as black × for Pt(332). The predictions of the QPES-TST model are shown as grey and black 

solid lines for Pt(111) and Pt(332), respectively. The rates are simulated with a H2 binding energy of 0.75 eV for 

Pt(111) and 0.93 eV for Pt(332), which are derived from reported isosteric heats of adsorption [30, 31]—see Sec. S4 

of the SI. Isotopic specificity in the recombination rate constants arises from mass-dependent differences in partition 

functions and the zero-point-energy (ZPE) of the reactants and the TS, all of which is accounted for by the QPES-TST 

model. The black dashed line displays the incident molecular beam pulse, reflecting the temporal resolution of the 

experiment. 

Fig. 1 shows the experimentally obtained HD formation rates for reaction on Pt(111) (+) and 

Pt(332) (×), reflecting the coupled kinetics of three isotopic recombination reactions. The black 

and grey curves in Fig. 1 show the QPES-TST rates of HD formation (S4 and S5 in the SI). The 
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simulation of the HD formation rates accounted for isotope specific rate constants (Section S5c 

and Fig. S9 in the SI) as well as the spatial density distribution of the molecular beam pulse, a 

problem that remained unsolved in earlier molecular beam studies [34]—see SI Section S6. The 

QPES-TST based kinetic isotope effect is small e.g., the relative rate constants at 800 K for 

H2:HD:D2 formation are 1.0:1.9:1.0. This was found to be consistent with further experiments we 

carried out that probed the relative yields of H2, HD and D2 after thermal recombination—see 

Section S7 and Fig. S10 of the SI.  

The agreement between QPES-TST and experiment is in good agreement for both Pt(111) and 

(332) without any adjustable parameters in the model. We find—consistent with previous work 

[20]—that the choice of the DFT functional does not alter the resulting QPES partition function 

significantly—see also Section S1b of the SI. We observe a clear effect of steps—the HD for-

mation rates were systematically ~4× higher on Pt(332) compared to the same reaction on Pt(111). 

The transient rate of the 2nd order reactions is proportional to the product of atom surface density 

and rate constant. As a result, the faster rates on Pt(332) are due to both the ~2× higher sticking 

coefficient as well as the ~2× larger reaction rate constant on Pt(332) compared to Pt(111). 

 
Figure 2: Rate constants for H atom recombination on Pt(111). Results of velocity resolved kinetics experiments 

with 2𝜎-error bars (o) are compared to the predictions of the QPES-TST model (grey solid line). Lower-left inset is 

an expanded view. Upper-right inset compares simulated temperature programmed desorption (TPD) spectra based 

on the QPES-TST (grey lines) with three TPD spectra (bold black lines, Ref. [35]), using initial H* coverages of 0.1, 

0.2 and 0.3 ML. The horizontal error bar on one of the modeled TPD spectra reflects the uncertainty of the H2 chem-

isorption energy, as does the region between the two dashed lines in the lower left inset. Note that the QPES-TST 

model of hydrogen atom recombination has no adjustable parameters. Solid trapezoids show the range of results from 

modulated molecular beam relaxation spectrometry (MBRS) experiments for: D* recombination ( —— ) [36] and for 

H*+D* recombination ( —— ) [37]. Other trapezoids are from TPD: H* recombination (— - —) [38] and (- - -) [31] 

and D* recombination ( — - — ) [39] and (- - -) [40].  
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Fig. 2 shows the QPES TST model’s predictions for H* recombination at Pt(111) over a wider 

temperature range (solid grey line) along with comparisons to the present results (open circles) 

and the range of results  from previous experiments (trapezoids).  The colors of the trapezoids in 

Fig. 2 reflects experiments using different isotopes. The isotope effect found in the present work 

is substantially smaller than the uncertainties of the prior work—see Fig. S9 of the SI. The predic-

tions of the QPES-TST model are consistent with the rate constants obtained from modulated mo-

lecular beam relaxation (MBRS) from Ref. [36], but are strongly different from those of Ref. [37].  

The rate constants derived from temperature programmed desorption (TPD) at low temperatures 

are in reasonable agreement with the predictions of QPES-TST. The derivation of rate constants 

from TPD data often involve crude approximations like ignoring the coverage dependence of rate 

parameters or making simplified estimations of prefactors. For a better comparison to TPD data, 

we simulated TPD spectra with the QPES-TST model directly and included the previously reported 

coverage dependence of the binding energy based on isosteric heats of adsorption [30, 31]—see 

Fig. S8 of the SI. This procedure yielded the grey curves in the inset of Fig. 2, which is in good 

agreement with TPD data (black bold lines, Ref. [35]) up to an H-atom coverage of 0.3 ML. The 

comparisons shown in Fig. 2 demonstrates that the QPES-TST model is reliable for predicting H* 

recombination rates on Pt(111) at least between 250 and 950 K and up to 0.3 ML coverage. 

 
Figure 3: Rate constants for H atom recombination on Pt(332).  Rate constants derived from velocity resolved 

kinetics for hydrogen atom recombination on Pt(111) and on Pt(332) are compared to their QPES-TST model predic-

tions. The 2𝜎 error bars arise from uncertainties in the flux calibration. The uncertainty of the Pt(332) model (2𝜎, 

region between the black dashed lines) is due to uncertainty in the H2 binding energy to Pt(332). The QPES-TST 

model has no adjustable parameters. The solid black line used a binding energy of 0.93 ± 0.03 eV on Pt(332). The 

difference in H2 binding energy between steps and terraces is 0.18 eV and is in agreement with previous experiments 

[30] and our DFT calculations (~0.18 eV, see SI Section S1b and S4). 
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Fig. 3 shows the influence of steps on H atom recombination, comparing the experimental re-

sults obtained with velocity resolved kinetics to QPES-TST. Desorption from (332) is clearly faster 

than from (111) at the temperatures of the velocity resolved kinetics experiments. This is surprising 

since often adsorbates bind more strongly at steps and an increased binding energy often reduces 

desorption rates [41, 42].  

Indeed, there is strong evidence to conclude that H atom’s binding energy to B-type steps 𝐸S
H∗

 

is larger than its binding energy at terraces 𝐸T
H∗

: in particular our DFT calculations as well as pre-

vious ion scattering experiments [30] agree on Δ𝐸ST = 0.18 eV (= 2𝐸S
H∗

− 2𝐸T
H∗

)—see SI Section 

S4 for an in-depth discussion. Consistent with Δ𝐸ST and a binding energy at terraces of 0.75 ±

0.03 eV, the black line in Fig. 3 was obtained by setting the binding energy of H2 at Pt(332) to 

0.93 ± 0.03 eV which yields excellent agreement with the results of velocity resolved kinetics 

data.  

 

Figure 4: H-atoms sum of states at Pt(111) and Pt(332). H-atom sum of states (per unit area) on Pt(111) (grey line) 

and Pt(332) (black line). The first H/Pt(332) eigenstate that is located on terraces is at ~92 meV. At the same temper-

ature there are fewer populated eigenstates for H/Pt(332) than H/Pt(111)  leading to a lower adsorbate entropy on the 

stepped surface. The red line indicates the Boltzmann factor—exp(−𝐸/𝑘𝐵𝑇)—at 700 K.  

Despite H atom’s stronger binding energy at steps, the associated reduction of entropy leads to 

recombinative desorption from (332) that is faster than that from (111). Increased binding energy 

often reduces desorption rates [41, 42], but the energetic preference for steps can also reduce ad-

sorbate’s entropy, leading to faster thermal desorption [43, 44]. We can directly evaluate the quan-

tum entropy for H atoms adsorbed on Pt(111) and (332) using QPES—it is substantially smaller 

on (332) between 600 and 800 K.  Quantification of the sum of states and inspection of the prob-

ability densities of the thermally populated eigenstates show that at these temperatures H atoms 
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tend to remain localized at step sites on (332). As a consequence the entropy of an adsorbed H 

atom is reduced and leads to an increased desorption rate—see Fig. 4. 

The importance of a correct adsorbate entropy description has been realized in studies of the 

equilibrium coverage of H* on catalytic Pt nano-particles [20], whose major facet is identified to 

be (111). Fig. 5(a) shows experimentally obtained entropies from that work along with classical 

and quantum entropies obtained using  the classical complete potential energy sampling 

(CPES)[17] and QPES method from this work. See SI Section S9 for details. Although CPES 

samples the full anharmonicity of the PES, it fails to accurately predict H adsorbate entropy. This 

has erroneously led to a suggestion that H adsorbate entropy on Pt nano-particles are best described 

by a free 2D ideal gas model [20]. This study has neglected the entropic contribution of the elec-

tronic partition function. In Fig. 5(a) we show that the QPES entropy of H* on Pt(111) is in good 

agreement with the measured entropies, suggesting that the agreement between the classical ideal 

gas entropy and experiment was accidental. In addition, the QPES entropy for adsorbed H atoms 

is lower on Pt(332) than Pt(111). This reflects the measured entropies’ dependence on nano-parti-

cle size. Larger nano-particles have a larger fraction of (111) facets [20] and smaller ones a larger 

fraction of step sites. This comparison suggests that relative step density may explain at least part 

of the dependence of the measured entropies on nano-particle size.  

      
Figure 5: Quantum influence on H-atom adsorbate entropy. (a) Experimentally obtained entropies at 598 K for Pt 

nano-particles of various sizes from Ref. [20] (symbols with error bars) are compared to quantum entropies from 

QPES and classical entropies (ignoring spin) from CPES[20] for Pt (111) and (332). The comparison suggests the H* 

entropy for nano-particles is strongly influenced by the density of steps. (b) H* Entropy Errors (𝑆QPES
H∗

− 𝑆N
H∗

) arising 

from common approximations to the adsorbate’s partition functions are shown as ratios of different recombination 

rate constant models to the QPES-TST rate constant for H*+H* on Pt(111) and (332). The green horizontal line indi-

cates agreement with the experimentally validated rate constant and adsorbate entropy. The subscript N reflects the 

employed method for the rate constant estimation that is shown in the legend. The grey and black line indicate modeled 

rate constants at Pt(111) and Pt(332), respectively. Neglect of electronic partition function in the QPES TST model 

(not shown) results in temperature independent error of ~5.8 kJ mol−1. 
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We can elucidate these points further by using the QPES-TST model to evaluate errors intro-

duced by established approximations [17] to describe translational entropy of H* on Pt—see 

Fig. 5(b). Here, temperature dependent rate constants obtained with three approximate methods 

are divided by the QPES-TST rate constants. In this comparison, the harmonic approximation 

(HA), CPES [17] and QPES methods are compared using the same PES. The two dimensional 

classical collision theory model (2DCT) is based on the classical 2D ideal gas entropy for H* and 

requires no PES.  

Using the harmonic approximation at high temperatures leads to drastically overestimated rate 

constants (underestimated adsorbate entropy) as this approximation cannot describe H atom delo-

calization present on the underlying PES, which is highly anharmonic. The classical CPES method 

also fails, especially at low temperatures where it drastically underestimates the adsorbate entropy. 

Remarkably, even at 1000 K the rate predicted using an accurate classical entropy is 5× too high.  

 

Figure 6: H-atoms eigenstates at Pt(111). A 1D cut through the H/Pt(111) interaction potential with selected prob-

ability density distributions is shown. The black line reflects the H-atom interaction potential 𝑉𝑧
𝐻(𝑥, 𝑦). The grey 

dotted lines indicate the eigenstates with the corresponding probability density distribution shown as grey solid line. 

The zero-point energy correction has a predominant influence on the description of hydrogen atom entropy, while 

classical description fails in reproducing the experiment.  

This error in CPES arises because it does not properly account for the 2D in-plane zero-point 

energy (ZPE), which is crucial for a correct description of H-atom entropy on metal surfaces—see 

Fig. 6. The height of the classical diffusion barrier (60 meV) can be seen as an indicator to which 

degree the adsorbate is a free translator. The 2D in-plane ZPE of H* on Pt(111) is 58 meV and 

cannot be neglected if accurate entropy is desired—see Fig. 6. In fact, the error introduced to the 

translational entropy when neglecting ZPE accounts for nearly all of the deviation between CPES 
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and QPES. This discussion highlights the fact that while ZPE is often taken correctly into account 

in determining binding energies and reaction barriers, its contribution to adsorbate entropy cannot 

be ignored either.  

We also noted that the 2D collision theory model agreed well with the QPES rate constants for 

Pt(111) but failed badly for Pt(332). This apparently resulted from an accidental error cancellation 

for Pt(111) that did not arise for (332).  Clearly, 2D collision theory does not reflect the right 

physics of hydrogen atom recombination.  

Other quantum effects on the reaction should be also noted, in particular tunneling and spin. 

Tunneling through the adsorption barrier (an energetic effect) was not observed in sticking coeffi-

cient determination and is considered unimportant[28, 29]. Tunneling through diffusion barriers 

(an entropic effect) can be seen in Fig. 6 as a delocalization of the wave function. We think that 

this contribution is minor and that the contribution of accurate accounting of in-plane ZPE is the 

crucial point. The QPES partition function included H atom’s electron spin in counting the states 

of the adsorbate. This was essential to yield agreement with experimental rate constants of a second 

order reaction as this contribution is squared in the TST rate constant expression. While including 

spin is straightforward, it is often neglected, perhaps with the idea that only the local spin in the 

region of the H atoms matters. This is a misconception. H2 dissociation on Pt leads to two unpaired 

spins in the system, which become decoupled from one another, regardless of the local spin density 

at the Pt-H bonds. Hence, there is a two-fold degeneracy of spin states for each H atom, which for 

two H atoms represent four spin states which are all degenerate. These states are conserved in the 

molecule forming the electronic singlet ground state ( Σg
+1 ) and the first excited triplet state ( Σu

+3 ), 

which does not contribute to the electronic partition function of H2. The neglect of spin degeneracy 

increases the rate constant by a factor of 4, independent of temperature.  

The work presented here shows several key points relevant to the theoretical prediction of re-

action rates in catalytic reactions. First, the equilibrium assumption of TST is accurate for the 

hydrogen atom recombination reaction and, while it has not been tested fully for other reactions, 

this conclusion is likely to be general. The equilibrium assumption is valid in gas-phase reactions 

at high pressures, a topic that has been thoroughly investigated [45]. The high density of atoms in 

surface chemistry suggests that surface chemistry may resemble the high pressure limit of gas 

phase TST. Second, it becomes clear that large quantum effects contribute to H atom adsorbate 

entropy at temperatures even as high as 1000 K—classical methods should be avoided if accuracy 
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is required. This is likely to apply to adsorbed H atoms on all surfaces. Third, DFT-GGA is suffi-

ciently accurate to provide first principles quantum entropy for H atoms adsorbed on many metals. 

This becomes evident as the main contribution to the total H* entropy is the in-plane translational 

entropy. Finally, it appears that models based on H atom interactions with simple single crystal 

surfaces—e.g. Pt(111) or (332)—accurately describe H atom adsorbate entropy on Pt nano-parti-

cles, showing that a fundamental understanding of properties of real world catalysts can be ob-

tained from accurate experiments from surface science.  
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S1. METHODS AND MATERIALS 

a. Experimental Methods 

The velocity resolved kinetics setup has been described previously [1-3]. For this study, a 

supersonic molecular beam with a mixture of D2 in H2 was produced with a piezo-electrically 

driven pulsed nozzle. The beam passed two differentially pumped stages and entered the surface-

scattering chamber—base pressure 2 × 10−10 mbar—before striking Pt(111) or Pt(332) (MaTeck 

GmbH) at an incidence angle 30° from the surface normal. The molecular pulse had a full width 

at half maximum of 15 μs.   

We used two target crystals, a Pt(111) single crystal and a dual facet Pt sample cut with a (111) 

and a (332) facet [4] as shown in Fig. S1. The facets of the dual facet sample are sufficiently spaced 

to ensure that reactions at different surface cuts do not interact due to exposure from molecular 

beam or diffusion. The step density of the Pt(111) crystals is 0.4 ± 0.2 %, determined using atomic 

force microscopy, and the step density of the (111) facet of the dual facet crystal was estimated to 

0.15 ± 0.05 %, based on the surface cut angle accuracy. For all experiments the Pt(332) surface 

was aligned such that the step propagation axis is parallel to the scattering plane. Before kinetics 

measurements were performed, the target was prepared by sputtering with Ar+ (3 keV) for 15 min 

and subsequent annealing at 1300 K for 20 min and its cleanliness was checked with Auger 

electron spectroscopy.  

The molecular hydrogen isotopologues were ionized 20 mm from the surface, using either 2+1 

resonance enhanced multiphoton ionization (REMPI) via the E, F1 ∑  +
g state[5] or with non-

resonant multiphoton ionization using an ultrashort pulse of the Ti:Sapphire laser (800 nm, 35 fs, 

0.3 W at 1 kHz). A pulsed homogeneous electric field, formed between two parallel flat wire 

meshes, projected the ions onto an imaging detector (MCPs and Phosphor screen) and the image 

was recorded with a CCD camera. Recombined HD product formed at Pt(111) was detected with 

REMPI and, unless otherwise stated, we probed the 𝐽 = 3, 𝑣 = 0 state. Pulses of light (~2.5 mJ) 

with wavelengths between 201 and 209 nm were generated by frequency tripling the output of a 

pulsed dye laser running on a mixture of Rh B and Rh 101 in ethanol. We used non-resonant multi-

photon-ionization (MPI) for isotopic branching measurements and for kinetic measurements at the 

dual facet Pt sample. The incident beam flux and the radial beam profile were characterized with 

non-resonant MPI—see Section S2 of the SI.  

Each pixel in the ion image contains information about the product density—the pixel intensity—

and velocity—the pixel position in the image. We used this information to determine the flux of 

the desorbing molecules.  Previously this was done by integrating a narrow rectangular stripe of 

the image reflecting molecules with nearly identical velocities [3, 6] and correcting for the 

corresponding time of flights. For this work, we used an improved procedure determining the 

traces from several stripes and averaging them, thereby improving the signal-to-noise ratio.  

b. Computational Methods  

DFT Calculations 

The potential energy surface (PES) for an H atom on Pt(111) or Pt(332) was computed with the 

Vienna Ab-initio Simulation Package (VASP, Version 5.3.5)[7-10]. Electronic exchange and 

correlation were incorporated at the generalized gradient approximation (GGA) level by making 
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use of the RPBE functional[11]. The valance electrons were expanded with plane wave basis 

functions with the energy cutoff set to 400 eV and electron-core interactions were described with 

the projector augmented wave approach[12]. A single point calculation was considered to be 

converged when the energy difference between two optimization steps was smaller than 0.01 meV 

and a structure optimization was stopped when forces < 0.01 eV/Å were reached. A smearing 

scheme of Methfessel-Paxton[13] of 1st order was employed and the thermal broadening was set 

to 0.1 eV. The Brillouin zone was sampled with a 4 × 4 × 1 𝑘-point mesh using the method of 

Monkhorst and Pack[14]. 

The Pt(111) surface was modelled as a four layered slab with a 𝑝(3 × 3) super cell, with the top 

three layers relaxed and the bottom layer kept fixed. The Pt(332) surface was modelled as a slab 

with a 𝑝(4 × 5) supercell and four layers. The electronic energies of the H/Pt(111) PES were 

acquired by calculating a 20 × 20 equidistant energy grid along the basis vectors that span the 

(1 × 1) surface cell. For H/Pt(332) PES we spanned a 5 × 28 equidistant grid along the irreducible 

part of the Pt(332) surface. We permitted relaxation only of the H-atom’s degree of freedom 

perpendicular to the surface plane (along the 𝑧-axis) and the structure optimization was stopped 

when forces < 0.01 eV/Å were reached. The corresponding 𝑧-axis position is 𝑧min and the 

procedure yielded 𝑉(𝑥, 𝑦, 𝑧min). The optimized geometry served as a starting point for the 

calculation of harmonic H(D)-Pt stretch frequency, which was determined from the dynamic 

matrix using a finite difference method with four displacements along the 𝑧-axis. We added ZPE 

associated with the H(D)-Pt harmonic stretch frequency to 𝑉(𝑥, 𝑦, 𝑧min), giving us  the isotope 

specific 2D H(D)/Pt-interaction potential 𝑉𝑧
H(D)

(𝑥, 𝑦), corrected for 𝑧-axis ZPE. See, for example, 

Fig. S2. 

 

Solving the 2D Schrödinger Equation  

We solved the nuclear Schrödinger Equation (SE) on an adiabatically separated two-dimensional 

PES to determine the quantum partition function for the in-plane motion of the H atom. The SE 

for a coordinate system at a skew angle 𝛾 is given by: 

  
−

ℏ2

2𝑚 sin2(𝛾)
(

∂2

∂𝑥2
− 2 cos(𝛾)

∂

∂𝑥

∂

∂𝑦
+

∂2

∂𝑦2
) 𝜓(𝑥, 𝑦) + 𝑉𝑧

H(D)
(𝑥, 𝑦)𝜓(𝑥, 𝑦)

= 𝐸H(D)𝜓(𝑥, 𝑦) 

(S1) 

For the Pt(111) (Pt(332)) surface we used 𝛾 = 60∘(90∘). To find the wave function and the 

corresponding eigenenergies, 𝐸, we made use of the finite difference method to express the 

derivatives and curvatures of the wave function and then transformed the corresponding set of 

equations into an eigenvalue problem. The eigenvalue problem was solved using the LAPACK 

Fortran package wrapped in scipy.linalg.eigh method in Python – similar as used in Ref. [15]. This 

yielded the wave functions and eigenenergies. The procedure is closely related to the one used by 

Cooney et al.,[16] but we adapted it to work for two-dimensional problems. In addition, to account 

for periodicity of the lattice, we also introduced periodic boundary conditions to the Hamiltonian.  

We solved the SE for the energy eigenvalues by using a 80×80 (60×282) grid for the Pt(111) 

(Pt(332)) unit cell. We found, by testing grids with fewer points, that the eigen-energies have 

converged within 0.1% up to an energy of 1 eV above the ground state (for H and D) and we used 

this as the cut-off for the quantum mechanical partition functions. 
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We did not use plane wave functions, strictly required for periodic problems, but we tested the 

convergence of the partition functions by increasing the number of unit cells, e.g., 1 × 1, 4 × 4, 

7 × 7 for Pt(111), considered for determining the eigenstates. We found that the area normalized 

adsorbate partition function, used for determining the rate constants, were converged already for 

solutions in a single unit cell and accurate within 0.05 % at temperatures above 100 K. Despite the 

approximations we used, our results are consistent with the work of Källén and Wahnström [17].  

We used also the PES, generated with the PBE exchange-correlation functional in an earlier study 

[18], to test the functional sensitivity on the partition function. We find an average deviation for 

the H and D partition functions ~17% between 100 and 2000 K, confirming a small dependence 

on the functional in describing adsorbate entropies. This conclusion is consistent with previous 

reports [19].  
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S2. CALIBRATION OF THE ABSOLUTE MOLECULAR BEAM FLUX  

The determination of the absolute flux of the molecular beam is critical to the success of this study. 

Since it is not commonly performed, we request the patience of the reader as we explain in detail 

why and how this was done. 

a. Why is the absolute flux needed  

Quantifying 2nd order reaction rate constants with molecular beam methods has proven to be 

challenging [20], since either the absolute product flux or the absolute initial concentration of 

reactants is required [21]. Consider the analytic solution to the 2nd order rate equation for H2(g) 

formation from two adsorbed H atoms 

  
d[H2(g)]

𝑡

d𝑡
=  

𝑘r [H∗]0
2

 (1 + 2 𝑘r [H∗]0𝑡)2
. (S2) 

Here,  [H∗]0 is the initial concentration of adsorbed H atoms and 𝑘r is the recombination rate 

constant. Note that d[H2(g)]
𝑡

d𝑡⁄  is the time dependent absolute product flux which is proportional 

to the kinetic trace 𝐹𝑡
VRK obtained from velocity resolved kinetics experiment. While calibrating 

for absolute product flux is in principle possible, we found it more practical to pursue an 

alternative. To demonstrate the idea of our approach we linearize the relative H2 product flux, 

obtained from the experiment, by taking the inverse square root of it:  

 

1

√𝐹𝑡
VRK

∝ 1 + 2𝑘r[H∗]0𝑡, 
(S3) 

The slope of this linearized function is 2𝑘r[H∗]0 showing that to obtain 𝑘r we require the initial 

reactant concentration [H∗]0. For practical use we multiply Eq. S2 by α (𝑘r [H∗]0
2

)⁄ , with α as an 

arbitrary scaling factor, which results in 𝐹𝑡
VRK obtained from the experiment:  

 𝐹𝑡
VRK =  

α 

 (1 + 2 𝑘r [H∗]0𝑡)2
. (S4) 

With an independent measure of initial reactant concentration [H∗]0, we can fit α (amplitude 

parameter) and 𝑘r (shape parameter) to the kinetic trace 𝐹𝑡
VRK. [H∗]0 is obtained by measuring the 

absolute molecular beam flux and combining it with known sticking probabilities[22-25], as 

explained below.   

 

b. How is the absolute flux obtained  

To determine absolute beam fluxes, we followed a strategy similar to that employed in Ref. [26], 

where the authors calibrated the density signal in ion images using a static background gas, whose 

pressure was monitored by a calibrated ion gauge. This was used to obtaining the density of the 

molecular beam. While simple in principle, it is crucial to account for the differing spatial factors 

present when laser-ionizing background gas and pulsed molecular beams.  
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We start by defining a Cartesian coordinate system where the 𝑥-axis is parallel to the surface 

normal, the 𝑦-axis is along the laser propagation axis and the 𝑧-axis is parallel to the normal 

direction of the ion image.  

The number of ionized molecules, 𝑁ion, results from their ionization efficiency function, 

𝐸(𝑥, 𝑦, 𝑧), which is related to the spatial intensity distribution of the laser light and the molecule’s 

density distribution function, 𝐷(𝑥, 𝑦, 𝑧), which is different for background gas compared to a 

molecular beam sample  

 𝑁ion = ∭ 𝐷(𝑥, 𝑦, 𝑧) 𝐸(𝑥, 𝑦, 𝑧) d𝑥d𝑦d𝑧. (S5) 

The integration proceeds over the full volume of the ion Newton sphere. Assuming that the above 

spatial distributions is separable, i.e. 𝐷(𝑥, 𝑦, 𝑧) = 𝛿𝑥(𝑥)𝛿𝑦(𝑦)𝛿𝑧(𝑧) and 𝐸(𝑥, 𝑦, 𝑧) =

휀𝑥(𝑥)휀𝑦(𝑦)휀𝑧(𝑧), Eq. S5 is simplified to: 

  𝑁ion = ∫ 𝛿𝑥(𝑥) 휀𝑥(𝑥)d𝑥 ∫ 𝛿𝑦(𝑦) 휀𝑦(𝑦)d𝑦 ∫ 𝛿𝑧(𝑧) 휀𝑧(𝑧)d𝑧. (S6) 

Here, small Greek letters indicate 1D distributions for density 𝛿 and ionization efficiency 휀.  

The measured 𝑥𝑦-dependent ion image signal intensity, 𝑆II(𝑥, 𝑦), is proportional to: 

  𝑆II(𝑥, 𝑦) ∝ ( 𝛿𝑥(𝑥) 휀𝑥(𝑥)𝛿𝑦(𝑦) 휀𝑦(𝑦) ⊗ 𝑠(𝑥, 𝑦)) ∫ 𝛿𝑧(𝑧) 휀𝑧(𝑧)d𝑧, (S7) 

where integration over 𝑧 results due to the long time-gate applied to the microchannel plate (MCP) 

that allows detection of all ions created in the ionization volume. The function 𝑠(𝑥, 𝑦) describes 

the changes of the formed ion cloud during its flight towards the MCP detector, without altering 

its integral value, by a convolution (indicated by ⊗). It is important to realize that 𝑠(𝑥, 𝑦) is 

different for the background gas sample 𝑠BG(𝑥, 𝑦) compared to the molecular beam sample 

𝑠MB(𝑥, 𝑦). By comparing Eq. S6 and S7, we see that 𝑁ion is proportional to the 𝑥- and 𝑦-integrated 

signal of the ion image 

 𝑁ion ∝ ∫ ∫ 𝑆II(𝑥, 𝑦)d𝑥d𝑦, (S8) 

The ionization efficiency function, 𝐸, depends on the shape of the laser focus, specifically its 

spatial intensity distribution, and the laser power. However, we do not require absolute values of 

ionization efficiency; it is sufficient that it remains constant and the same for both the calibration 

measurement (using static background gas) and the molecular beam density measurement. Both 

the laser power and the position of the laser focus must remain unchanged. In practice, we position 

the laser focus to hit the center of the molecular beam in time and space, which we define 

as (𝑥, 𝑦, 𝑧) = (0,0,0). As we will show below, the only required contribution to 𝐸 is 휀𝑦(𝑦) which 

we are able to derive from 𝑆II(𝑥, 𝑦) in the calibration measurement from static background gas.  

To calibrate each species, we leaked H2 and D2, individually into the scattering chamber and 

recorded the pressure reading from a calibrated ion gauge. For the calibration of the ion imaging 

detector we used species-specific pressures between 2 × 10−7 and 1 × 10−6 mbar.  This 

procedure avoided problems that can occur using an MCP detector when the pressure in the 

chamber is too high, while providing enough sample to allow us to accumulate signal with the 

reduced laser power that is required to prevent space charge during density measurement of the 
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molecular beam. We ensure that neither the MCP detector nor the CCD camera was saturated in 

the calibration process.  

We verified that there are negligible pressure gradients between the ion gauge and the detection 

position through a simulation of the spatial profile of the static gas pressure in our apparatus during 

admission of gas from the leak value and active pumping of the chamber[27]. The molecular 

density in a static gas is uniform, allowing the following approximation to describe the number of 

ionized molecules: 

 𝑁ion
BG = 𝐷BG ∫  휀𝑥(𝑥)d𝑥 ∫ 휀𝑦(𝑦)d𝑦 ∫  휀𝑧(𝑧)d𝑧. (S9) 

Here 𝐷BG is the background gas density obtained from the calibrated ion gauge pressure with help 

of the ideal gas law.  

Fig. S3 shows an ion image from the calibrated pressure of H2 background gas 𝑆II
BG(𝑥, 𝑦). One 

dimensional projections of the ion image ℎ𝑥
BG(𝑥) and ℎ𝑦

BG(𝑦) are also shown and defined as 

follows.  

 ℎ𝑥
BG(𝑥) = ∫ 𝑆II

BG(𝑥, 𝑦)d𝑦, (S10) 

 ℎ𝑦
BG(𝑦) = ∫ 𝑆II

BG(𝑥, 𝑦)d𝑥. (S11) 

The shape of ion image is given by the spatial dependence of the ionization efficiencies 휀𝑥(𝑥)휀𝑦(𝑦) 

together with the background gas’s Maxwell-Boltzmann velocities, which modifies the shape of 

the packet of laser ionized molecules as it travels to the detector.  The spreading function 𝑠BG(𝑥, 𝑦) 

is given by: 

 𝑠BG(𝑥, 𝑦) = 𝑁 exp (−
𝑚(𝑥 − 𝑥0)2

2𝑘B𝑇𝑡TOF
2 ) exp (−

𝑚(𝑦 − 𝑦0)2

2𝑘B𝑇𝑡TOF
2 ) ≡ 𝑁 𝑠𝑥

BG(𝑥)𝑠𝑦
BG(𝑦) (S12) 

where 𝑁 is a normalization factor and 𝑚 is the molecule mass. Notice that we convert the velocity 

distribution to a spatial distribution using the ion’s time of flight to the MCP detector 𝑡TOF . 

Furthermore, we note that 𝑠BG(𝑥, 𝑦) is separable.  

We next examine the measured ℎ𝑥
BG(𝑥), which we find can be well represented by 𝑠𝑥

BG(𝑥) if 𝑇 is 

set to 295 K—see blue line of Fig. S3. From this we confirm that 휀𝑥(𝑥) possesses a negligible 

width (< 100 μm). We also note that the size of the individual ion events appearing on the ion 

camera (FWHM≈ 0.2 mm) can be neglected in this analysis. We next obtain 휀𝑦(𝑦), which we 

approximate by a flattop Gaussian, by fitting the convolution 휀𝑦(𝑦) ⊗ 𝑠𝑦
BG(𝑦) to ℎ𝑦

BG(𝑦)–see Fig. 

S3. The resulting 휀𝑦(𝑦) is shown in Fig. S4.  

In Fig. S5 we show the ion image for H2 obtained at the maximum of the molecular beam’s density 

profile found by adjusting the delay between the laser and molecular beam pulses, 𝑡BLD. The 

molecular beam propagation axis is indicated by the dashed white line in the image, and is incident 

30° with respect to the surface normal. Since the molecular beam passes through a skimmer and 

an orifice, we assume that velocities perpendicular to molecular beams propagation axis are 

negligible and thus spatial broadening of the ion image 𝑠MB(𝑥, 𝑦) can be neglected. The ion signal 

of the molecular beam is displaced from the image center, defined at the position of the laser focus, 
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due to translation of the molecular beam towards the surface. The mean speed of the molecular 

beam at each 𝑡BLD is determined from the center position of the flat-top Gaussian fits—𝑥0(𝑡BLD) 

and 𝑦0(𝑡BLD)—to the histograms ℎ𝑥
MB(𝑥) and ℎ𝑦

MB(𝑦) (see Fig. S5) by:  

  〈𝑣〉MB(𝑡BLD) = √(
𝑥0(𝑡BLD)

𝑡TOF
)

2

+ (
𝑦0(𝑡BLD)

𝑡TOF
)

2

. (S13) 

We notice hereby that ℎ𝑦
MB(𝑦) does not a priori represent the 𝑦-axis slice through the cross-section 

of the molecular beam. This is because non-resonant multiphoton ionization is most efficient at 

the waist of the laser focus, i.e. at 𝑦 = 0, falling off rapidly in all directions away from this position. 

The observed ℎ𝑦
MB(𝑦) thus reflects 𝛿𝑦

MB(𝑦) 휀𝑦(𝑦), where 𝛿𝑦
MB(𝑦) represents its density profile that 

we aim to determine. We determine the shape of 𝛿𝑦
MB(𝑦) from a measurement similar to that 

depicted in Fig. S5, where we accumulate the ion image while the position of the laser focus is 

translated slowly from −5 to +5 mm along the 𝑦-axis with constant speed. We make sure that no 

ions are observed at −5 and +5 mm. The translation of the laser focus, while accumulating the 

ion image, makes the ionization efficiency homogeneous along 𝑦, allowing us to map-out 𝛿𝑦
MB(𝑦) 

of the molecular beam directly (see Fig. S4). 

The number of ionized molecules from the molecular beam is given by:  

 𝑁ion
MB = ∫ 𝛿𝑥

MB(𝑥) 휀𝑥(𝑥)d𝑥 ∫ 𝛿𝑦
MB(𝑦) 휀𝑦(𝑦)d𝑦 ∫ 𝛿𝑧

MB(𝑧) 휀𝑧(𝑧)d𝑧. (S14) 

Next, we determine the absolute number of molecules in the beam using the results from Fig. S3 

and S5. Consider the ratio of the ionized molecules in the beam and in the background gas: 

 

𝑁ion
MB

𝑁ion
BG

=
∫ 𝛿𝑥

MB(𝑥) 휀𝑥(𝑥)d𝑥 ∫ 𝛿𝑦
MB(𝑦) 휀𝑦(𝑦)d𝑦 ∫ 𝛿𝑧

MB(𝑧) 휀𝑧(𝑧)d𝑧

𝐷BG ∫  휀𝑥(𝑥)d𝑥 ∫ 휀𝑦(𝑦)d𝑦 ∫  휀𝑧(𝑧)d𝑧

≡
∬ 𝑆II

MB(𝑥, 𝑦)d𝑥d𝑦

∬ 𝑆II
BG(𝑥, 𝑦)d𝑥d𝑦

. 

(S15) 

Due to the tight laser focus, the integrals over 𝑥 and 𝑧 can be simplified, which results in: 

 
𝑁ion

MB

𝑁ion
BG

=
𝛿𝑥

MB(0) 휀𝑥(0) Δ𝑥

휀𝑥(0) Δ𝑥
 
𝛿𝑧

MB(0) 휀𝑧(0) Δ𝑧

휀𝑧(0) Δ𝑧
 
∫ 𝛿𝑦

MB(𝑦) 휀𝑦(𝑦)d𝑦

 𝐷BG ∫ 휀𝑦(𝑦)d𝑦
, (S16) 

or after cancelation and removing 𝛿𝑦
MB(0) from the integral over 𝑦, we obtain: 

 𝑁ion
MB

𝑁ion
BG

=

𝛿𝑥
MB(0) 𝛿𝑦

MB(0)𝛿𝑧
MB(0) ∫

𝛿𝑦
MB(𝑦)

𝛿𝑦
MB(0)

 휀𝑦(𝑦)d𝑦

𝐷BG ∫ 휀𝑦(𝑦)d𝑦
, 

(S17) 

 

We note that 𝛿𝑥
MB(0) 𝛿𝑦

MB(0)𝛿𝑧
MB(0) = 𝐷MB(0,0,0), which is the peak molecular beam density—

the target of this analysis. We re-arrange Eq. S17, replacing 𝐷BG by the density expression from 

the ideal gas law, to obtain an expression for 𝐷MB(0,0,0) 
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𝐷MB(0,0,0) =

𝑝

𝑘B𝑇
 

∫ 휀𝑦(𝑦)d𝑦

∫
𝛿𝑦

MB(𝑦)

𝛿𝑦
MB(0)

 휀𝑦(𝑦)d𝑦

 
∬ 𝑆II

MB(𝑥, 𝑦)d𝑥d𝑦

∬ 𝑆II
BG(𝑥, 𝑦)d𝑥d𝑦

. 
(S18) 

All contributions on the right hand side of this equation are derived from experiment. We notice 

that the 𝑥-axis can be equivalently converted to the 𝑡-axis (beam-laser delay) for convenience. The 

flux is given by multiplying the density by the speed of the beam. The adsorbing flux of H2 (and 

D2) must also be multiplied by the sticking coefficient 𝑆(E) at the kinetic energy, 𝐸, of the particle 

at 𝑡. The instantaneous adsorbing flux at (𝑦, 𝑧) = (0,0) is then given by: 

  𝐹MB(𝑡, 0,0) = 𝑆 (
𝑚〈𝑣〉MB

2 (𝑡)

2
) 〈𝑣〉MB(𝑡) 𝐷MB(0,0,0) 𝛿𝑡

MB(𝑡), (S19) 

where 𝛿𝑡
MB(𝑡) is the peak normalized density profile vs. beam-laser delay time. Approximating 

the projection of the molecular beam at the 𝑦𝑧-plane to be radially symmetric, we can express the 

total number of adsorbing molecules as: 

 𝑁ads
MB = 2𝜋𝐷MB(0,0,0) ∫ 𝑆 (

𝑚〈𝑣〉MB
2 (𝑡)

2
) 〈𝑣〉MB(𝑡)  𝛿𝑡

MB(𝑡)d𝑡 ∫ 𝑟𝛿𝑟
MB(𝑟) d𝑟

∞

0

 (S20) 

Where 𝛿𝑟
MB(𝑟) is the peak-normalized radial distribution function of molecular beam density, 

which we determine from 𝛿𝑦
MB(𝑦).  

We note that the laser crosses the molecular beam at 60°—strictly speaking this prevents the 

approximation of radial symmetry. More specifically 𝛿𝑦
MB(𝑦) overestimates the width of the radial 

projection (perpendicular to beam propagation axis) by 15.5%. We compensate this artificially 

introduced error, by assuming radial symmetry and scaling down the width of measured 𝛿𝑦
MB(𝑦) 

by 7.5%. This allows us to ensure determination of the correct number of particles in the beam, 

while making a simplifying approximation regarding its shape.  

We show illustrative examples of the molecular beam flux projected onto the 𝑦𝑧 plane and 

compare it with the approximated shape of the molecular beam in the present analysis – see 

Fig. S4. The results of the calibration procedure are shown in Fig. S6. 
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S3. DETERMINATION OF INCIDENT BEAM STICKING COEFFICIENT 

We use the sticking coefficient of molecular hydrogen measured from Luntz et al.[25] (and 

confirmed by many others[23, 28]) for Pt(111) and Juurlink and coworkers [22, 24] for stepped Pt 

surfaces. We fitted the sticking coefficients from Luntz et al. to an error-function as used in Ref. 

[29] and as shown in Fig. S7. We use normal energy scaling to account for the incidence angle 

dependence of the sticking coefficient, consistent with previous measurements at 30∘ incidence 

angle, required to estimate the sticking from our incident molecular beam. 

 

Measurements of absolute sticking coefficients on Pt(332) do not exist, however Juurlink and 

coworkers measured the sticking coefficients at Pt(557), which have the same step density as 

Pt(332) with a different step type. To correct for step type, we use previous measurements of the 

effect of the step type on the sticking coefficients on curved Pt(111) single crystals[22] as a 

function of step density. We use the relative differences of sticking coefficients obtained at A- and 

B-type steps (see Fig. 2f of  Ref. [22]) to scale the sticking coefficients from Pt(557) accordingly 

(Ref. [24]). This yields the black squares of Fig. S7. In order to use the sticking probabilities to 

determine TS re-crossing, we require a reasonable model function fit to the two squares of Fig. 7 

that represent sticking at Pt(332).  Juurlink and coworkers developed a 𝑆(𝐸) sticking coefficient 

model for H2 at Pt accurately reproducing the step-density dependence of the crystal. In agreement 

with theoretical work[30, 31], they introduced three contributions to 𝑆(𝐸): indirect nonactivated 

at steps (𝐴 exp(−𝛼𝐸)), direct nonactivated at steps (𝐵) and direct activated at terraces (𝐶 𝐸). The 

additive contribution of the three functions yields the following formula: 

  𝑆(𝐸) = 𝐴 exp(−𝛼𝐸) + 𝐵 + 𝐶 𝐸 (S21) 

with 𝐴, 𝐵, 𝐶 and 𝛼 as fitting coefficients. We use this model to refit the Pt(557) data (from Fig. 8 

of Ref. [24]), which provides a set of four fitting parameters. It was recently found that the same 

model applies also to sticking coefficients for Pt surfaces with B-type steps[32]. The parameter 𝐶 

reflects the sticking efficiency at the terrace and 𝐴 reflects the probability of trapping into the 

molecular binding well of H2 located at the steps. Both parameters are sensitive to the geometry at 

the surface i.e. step density. The parameter 𝛼  is sensitive to the well depth of the molecular binding 

state of H2 at steps, while 𝐵 reflects the efficiency of H2 to react by direct impact with the step. 

Both parameters depend on the nature of the active sites present at steps. We assume that the 

parameters 𝐶 and 𝐴 are the same for Pt(557) and Pt(332) because the step density of the two 

crystals is equal. Since the reactivity of the A- and B-type steps is different we fit parameter 𝛼 and 

𝐵 to the Pt(332) sticking coefficients and obtain the black line of Fig. S7.  

 

As we have done for Pt(111), we also assume normal energy scaling here to obtain the sticking 

probability of our beam. Our estimated sticking coefficient at 30∘ incidence angle on Pt(332) is 

consistent with observations made earlier on other stepped surface[33] and is shown as black 

dashed line in Fig. S7. There is no isotope effect found for sticking coefficient of molecular 

hydrogen on Pt(111) and stepped Pt surfaces[24, 25].  

 

We combine the incident molecular beam sticking probabilities with the results of our absolute 

flux determinations to arrive at initial H and D atom concentrations on the Pt surfaces.   
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S4. DETERMINATION OF THE H2 BINDING ENERGY AT PT(111) AND PT(332) IN 

THE ZERO COVERAGE LIMIT 

The isosteric heats of H2 adsorption at Pt(111) were previously measured with Ar+-ion Low Energy 

Recoil Scattering[34] and Thermal Energy Helium Scattering[35]. These techniques are most 

sensitive to majority sites on the Pt(111) surface and can thus be seen as a selective probe for 

terrace binding energies, despite the presence of defects. This is the reason why we restrict 

ourselves to these reports.  

 

For the use in our TST rate model we require the isosteric heats of adsorption at 0 K. The average 

energy, 〈𝐸〉(𝑇), reflects the sum of microstate energies weighted by their population probabilities 

at a particular temperature. This property can be derived from the partition function, 𝑄, to be: 

  〈𝐸〉(𝑇) = 𝑘B𝑇2
∂ln(𝑄)

𝜕𝑇
  (S22) 

To obtain the isosteric heat of H2 adsorption at 0 K we apply the following formula: 

  𝐻𝜃(0 𝐾) = 𝐻𝜃(𝑇exp) − 𝑘B𝑇exp − 〈𝐸〉H2(g)
(𝑇exp) + 2〈𝐸〉H∗(𝑇exp) ≡ 𝐸0

HH (S23) 

where 𝑇exp is the temperature at which the heat of adsorption is measured and 𝐻𝜃(0 𝐾) is identical 

to the H2 binding energy (𝐸0
HH)  that is used for TST modelling. The 𝑘B𝑇 accounts for H2’s 

enthalpy to inner energy conversion. The partition functions for H2 and H* are introduced in the 

next section. The results of Ar+-ion and He scattering works from Pt(111) are corrected by the 

temperature dependent terms from Eq. S23, are shown as dots and crosses of Fig. S8. To obtain 

the coverage dependence of the adsorption energies we use the following function: 

  𝐻𝜃(0 𝐾) = 𝐴 (erfc (
𝜃 − 𝜃0

𝜎
) + 1) + 𝐵 (S24) 

with erfc as the complementary error function and 𝐴, 𝐵, 𝜎 and 𝜃0 as fitting parameters to determine 

the zero-coverage binding energy of H2 at Pt(111) (𝐻0(0 𝐾))—see grey line of Fig. S8. The 

extracted value—0.75 ± 0.03 eV—is corrected by the ZPE yielding 𝐷𝑒 and used for estimation of 

the HD and D2 binding energy in the modeling of the rate constant.  

 

The binding energy of H2 at Pt(332) has not been measured previously. However the binding 

energy difference between B-type steps—present at Pt(332)—and (111) terraces was found to be 

0.18 eV from low energy ion scattering experiments[34]. This is consistent with the DFT predicted 

binding energy difference for H* between steps and terraces on Pt(332). We determine it by 

solving the nuclear Schrödinger Equation for H* at Pt(332) and inspecting the probability 

distribution of H*. The ground state is located at the steps and the first eigenstate that is localized 

at the terrace site is 0.092 eV higher (corresponds to 0.184 eV per molecule). Note that this 

procedure already includes the ZPE correction. DFT calculations and experiments are consistent, 

such that we use a binding energy of 0.93 ± 0.03 eV for H2 at Pt(332) for the TST rate constant.  
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S5. MODELING OF THE RECOMBINATION RATE CONSTANTS 

The rate constants for H∗ and D∗ recombination on Pt(111) are described within the framework of 

exact thermal rates using Transition State Theory (TST). The general formula is given by: 

  

𝑘XY(𝑇) = 𝜅(𝑇) × 𝑘TST(𝑇) 

= 〈𝑆〉(𝑇) ×
𝑘B𝑇

ℎ

𝑄XY
≠

𝑄X 𝑄Y  

𝐴X𝐴Y

𝐴XY
≠ exp (−

𝐸0
XY

𝑘B𝑇
). 

(S25) 

Here, X and Y can be H or D. 𝜅(𝑇) is the re-crossing correction. Notice that for 2nd order rate 

constants the partition functions are divided by the corresponding reference area from which they 

are derived. This means that e.g., if the SE is solved for the Pt(111) unit cell, the corresponding 

partition function is divided by the area of the unit cell. This is required so that 𝑘XY will be 

expressed in the correct units. 〈𝑆〉(𝑇) is the thermally averaged sticking coefficient, which corrects 

for TS re-crossing—see main text. It was earlier found to be isotopologue independent[24, 25]. 

The classical TST expression involves partition functions for the TS, 𝑄XY
≠ , and reactants, 𝑄X 𝑄Y , 

as well as an exponential energy term with the energy of the TS, 𝐸0
XY  [36, 37]. We note that for 

our choice of TS, 𝐸0
XY is the Zero-Point-Energy (ZPE) corrected hydrogen chemisorption energy. 

We next explain how each piece of this formula is implemented. 

a) Modeling the TS partition function and ZPE correction for 𝑬𝟎
𝐗𝐘 

We have chosen the TS for hydrogen recombination to be gas-phase molecular hydrogen at infinite 

separation from the surface. With this choice the TS partition function is given by: 

 𝑄AB
≠ = 𝑞 tr

≠ 𝑞rot
≠ 𝑞 vib

≠ . (S26) 

Here 𝑞 tr
≠  is the translational partition function for an ideal 2D-gas given by: 

 𝑞 tr
≠ =

2𝜋𝑚𝑘B𝑇

ℎ2
𝐴  . (S27) 

With 𝑇 as the temperature, 𝐴 as the reference area and 𝑚 as the mass of the hydrogen molecule or 

its isotopologue. The “missing translational degree of freedom” is along the reaction coordinate 

and does not appear in the partition functions.  The rotational partition function is given by: 

 𝑞 rot
≠ =

𝑘𝐵𝑇

𝜎XY𝐵XY
. (S28) 

With 𝐵 as the rotational constant and 𝜎XY as the symmetry number of the hydrogen isotopologue 

XY. This partition function is accurate above 300 K, with a maximum deviation of 10%, for all 

temperatures relevant for the kinetics studies. To account for the temperature dependence of the 

isosteric heats of adsorption (150-300 K) for H2 we use its explicit rotational partition function, 

given by: 

 𝑞 rot
expl

=
1

4
( ∑ (2𝐽 + 1) exp (−

𝐵HH𝐽(𝐽 + 1)

𝑘𝐵𝑇
)

𝐽 even

+ 3 ∑ (2𝐽 + 1) exp (−
𝐵HH𝐽(𝐽 + 1)

𝑘𝐵𝑇
)

𝐽 odd

). (S29) 

The vibrational partition function is given by the harmonic oscillator partition function: 
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𝑞 vib

≠ =
1

1 − exp (−
ℎ𝜈XY

𝑘B𝑇
)

. 
(S30) 

With 𝜈XY as the stretch frequency of the XY hydrogen isotopologue. We also account for the ZPE 

correction in the TST rate expression following: 

 𝐸0
XY = 𝐷𝑒 − ZPEX∗ − ZPEY∗ + ZPEXY. (S31) 

Here 𝐷𝑒 is the classical isotope independent binding energy, ZPEXY is the ZPE of the hydrogen 

isotopologue in the gas phase and depends on its vibrational frequency. The ZPEX∗ and ZPEY∗ are 

the ZPE corrections for the two adsorbed H-atoms. It includes contributions from the 𝑧-stretch 

frequency of the atom at the most stable binding site and the ground state of the in-plane (𝑥𝑦) 

energy levels derived from the Schrödinger equation.  

 

b) Transition State (TS) re-crossing correction 

The sticking coefficients of H2 on Pt(111) are experimentally well known and thus we use them 

directly to account for re-crossing in the desorption rate. The sticking coefficients for Pt(332) are 

estimated based on previous experiments and the model of Juurlink and coworkers (see Section 

S3). Despite the measurement of the relative desorption flux along the surface normal we are 

sensitive to the lifetime of H* and D* on the surface, which is determined by recombinative 

desorption at all angles. Thus, the re-crossing correction has to be equal to the angle and thermal 

energy weighted sticking coefficient. To obtain this we follow the procedure described in Ref. [38] 

which is only recapitulated here for completeness.  

We assume normal energy scaling, 𝐸⊥ = 𝐸 cos2(𝜃), and use the experimental sticking coefficients 

obtained at normal incidence, 𝑆(𝐸⊥, 0∘) (grey and black solid line of Fig. S7, left panel for Pt(111) 

and Pt(332), respectively), to determine the thermal sticking coefficient 〈𝑆〉(𝑇) from: 

  〈𝑆〉(𝑇) =
∫ ∫ 𝑆(𝐸⊥, 0∘)

∞

0
𝐹 (

𝐸⊥

cos2(𝜃)
, 𝑇) d𝐸⊥ sin(𝜃) d𝜃

𝜋
2

0

∫ ∫ 𝐹 (
𝐸⊥

cos2(𝜃)
, 𝑇)

∞

0
d𝐸⊥ sin(𝜃) d𝜃

𝜋
2

0

. (S32) 

Here 𝐸⊥ is the normal kinetic energy and 𝐹(𝐸, 𝑇) is the thermal Maxwell-Boltzmann distribution 

of flux. The corresponding thermal sticking coefficients are shown in Fig. S7, right panel.  

We note that we assume cylindrical symmetry in the analysis, which is a good approximation for 

Pt(111). For Pt(332) the sticking coefficient has been observed to be anisotropic with the polar 

angle 𝜑 [39]. We think that our approximation remains accurate (within ~15%) as i) the 

anisotropies are restricted to a narrow azimuthal angle range 𝜃 and ii) the anisotropies will likely 

cancel out from the integration over all angles—see Fig. 1 of Ref. [39]. 

We note in passing that neglect of TS re-crossing introduces an error of factor of ~3 on Pt(332) 

and factor of 4-10 on Pt(111). However, we also note that this error is specific to our choice of the 

TS.  

 

 

E.5. “Quantum Influence on H Atom Recombination on Pt“

273



S14 

 

c) Modeling the H*(D*) partition function at Pt(111) and Pt(332) 

We have employed three different approaches to model the partition function for adsorbed 

hydrogen atoms. In the Harmonic Approximation (HA),  atoms are described using the vibrational 

partition function of an immobilized adsorbate. This approach assumes that the atom X is fixed to 

its binding site for which the partition function is given by: 

  𝑄HA
X = 𝑞vib,𝑥

X 𝑞vib,𝑦
X 𝑞vib,𝑧

X , (S33) 

where 𝑞vib,𝑖
X  is the partition function of the harmonic oscillator for three frequencies derived from 

the most stable binding site of the atom X. This approach works best at low temperatures where 

adsorbates tend to be localized. 

In the second approach often referred to as Complete Potential Energy Surface Sampling 

(CPES)[40, 41], we obtain the classical partition function from the configuration integral  

  𝑞CPES,𝑥𝑦
X =

2𝜋𝑚X𝑘B𝑇

ℎ2
𝐴 ∫ ∫ exp (−

𝑉𝑧
X(𝑥, 𝑦)

𝑘𝐵𝑇
) d𝑥d𝑦

1

0

1

0

 (S34) 

employing a two dimensional in-plane PES 𝑉𝑧
X(𝑥, 𝑦) that we obtain from DFT. Note that 𝑉𝑧

X(𝑥, 𝑦) 

is corrected to account for the ZPE associated with the X-Pt stretch vibration. Note that, as defined, 

the configuration integral is unit-less. CPES is considered to work well at high temperatures where 

the adsorbate is able to explore the whole surface. For the total CPES partition function we include 

the stretching vibration partition function, 𝑞vib,𝑧
X , at the most stable binding site to account for 

hydrogens atom motion along the z-axis. The total CPES partition function is then given as: 

  𝑄CPES
X =  𝑞CPES,𝑥𝑦

X  𝑞vib,𝑧
X  (S35) 

In the third approach called Quantum Potential Energy Sampling, QPES, we employ 𝑉𝑧
X(𝑥, 𝑦) to 

solve the nuclear Schrödinger Equation (SE) for H∗(D∗) on either Pt(111) or Pt(332), see Eq. S1. 

We solve the SE to obtain the eigenenergies, from which we construct the in-plane partition 

function. The detailed procedure to solve the SE is explained in Section S1b.  Since the stretching 

frequencies of H∗(D∗) are high, we solve the Schrödinger Equation in 2D, restricted to the surface 

plane, by making use of the vibrationally adiabatic approximation. In this way, we obtain the in-

plane partition function by explicit summation over the eigenstates, with the energy 𝐸𝑖, as: 

  𝑞QPES,𝑥𝑦
X = ∑ exp (−

𝐸𝑖 − 𝐸0

𝑘𝐵𝑇
) .

𝐸𝑖≤1 eV

𝑖

 (S36) 

We utilize the partition function for stretch vibrations as for the HA and CPES approach and obtain 

the total quantum mechanical partition function as follows: 

   𝑄QPES
X =  𝑞QPES,𝑥𝑦

X  𝑞vib,𝑧
X  (S37) 

We also include the electronic partition function for H atoms at Pt to account for their electron 

spin states.  

  𝑄el
X = 2 (S38) 
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We note that the spin degeneracy, which has often been ignored in past applications of TST to 

surface reactions, must be included to account for the full state count of adsorbed H atoms. It 

appears that there may be some confusion in the community about this point, perhaps due to the 

fact that TST applications in many gas phase reactions are carried out assuming a transition state 

that conserves spin with the reactant and product. However, for example the calculation of the 

equilibrium constant for the dissociation of H2 in gas phase to form two H atoms ignoring the spin 

degeneracy of the atoms would result in erroneous results. It should be clear that dissociation of 

H2 to form two uncoupled H atoms on a metal surface is not different.  

The TST recombination rate constant with quantum corrections thus becomes: 

  𝑘XY
QPES(𝑇) = 〈𝑆〉(𝑇) ×

𝑘B𝑇

ℎ

𝑄XY
≠

𝑄QPES
X 𝑄el

X 𝑄QPES
Y 𝑄el

Y
 
𝐴𝑋𝐴𝑌

𝐴XY
≠ exp (−

𝐸0
XY

𝑘B𝑇
) (S39) 

where 𝐴 indicates the reference area in which the corresponding in-plane partition function is 

defined. The recombination rates (Fig. 1) and the corresponding recombination rate constants 

(Fig. 2 and Fig. 3) using this expression are shown in the main text. We emphasize that this 

approach converges in the limit of low temperatures to the HA-TST approach and in the limit of 

high temperatures to results of the CPES-TST approach, exactly as expected – see Fig. 5(b) of the 

main text.  

d) Modeling the recombination rate with 2D collision theory (2DCT) 

Earlier work found that recombination rate constants for hydrogen on metals are close to values 

expected from 2DCT[42]. Here we also test this simplistic model, where rate expression is 

determined by: 

  𝑘XY
2DCT(𝑇) = 〈𝑆〉(𝑇)

𝑟XY

𝜎XY

√
2𝜋𝑘B𝑇

𝜇XY
exp (−

𝐸0
XY

𝑘B𝑇
) (S40) 

where 𝜇XY is the reduced mass of colliding particles X and Y, 𝜎XY is the symmetry number of the 

product hydrogen molecule—correcting for the double counting of collisions—and 𝑟XY its 

equilibrium distance—0.74 Å. Since the 2DCT can be derived from the TST rate expression—

using the simplifying assumptions of free translating particles and 1D rotation of the TS—we also 

include the re-crossing correction, 〈𝑆〉(𝑇), for a fair comparison with the other TST rate constant 

models. See Fig. 5(b) in the main text. 
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S6. SIMULATION OF KINETIC TRACES AND ISOTOPIC BRANCHING 

FRACTIONS 

Fig. S6 shows the radial profile of time integrated dose of H2 delivered by each molecular beam 

pulse—the inset shows the pulsed beam’s temporal distribution. These quantities are taken 

explicitly into account in the modeling of the observed kinetic trace, in the form of time and space 

dependent dosing functions, 𝑓(𝑡, 𝑟). We solve the rate equations below in a grid of 300 radially 

symmetric regions within radial distance of up to 3 mm from the center of the dosing pulse. 

  
d[H∗]𝑡,𝑟

d𝑡
= 𝐷H∗Δ𝑟[H∗]𝑡,𝑟 + 2〈𝑆〉𝑓H2

(𝑡, 𝑟) − 2𝑘HH[H∗]𝑡,𝑟
2 − 𝑘HD[H∗]𝑡,𝑟[D∗]𝑡,𝑟 (S41) 

  
d[D∗]𝑡,𝑟

d𝑡
= 𝐷D∗Δ𝑟[D∗]𝑡,𝑟 + 2〈𝑆〉𝑓D2

(𝑡, 𝑟) − 2𝑘DD[D∗]𝑡,𝑟
2 − 𝑘HD[H∗]𝑡,𝑟[D∗]𝑡,𝑟 (S42) 

  
d[H2]𝑡,𝑟

d𝑡
= 𝑘HH[H∗]𝑡,𝑟

2  (S43) 

  
d[D2]𝑡,𝑟

d𝑡
= 𝑘DD[D∗]𝑡,𝑟

2  (S44) 

  
d[HD]𝑡,𝑟

d𝑡
= 𝑘HD[H∗]𝑡,𝑟[D∗]𝑡,𝑟 (S45) 

The rate constants,  𝑘HH, 𝑘HD and 𝑘DD  are derived from the QPES-TST model. The isotope effect 

predicted by QPES-TST is shown in Fig. S9 for reactions on both Pt(111) and Pt(332) as a function 

of temperature. The symbol Δ𝑟 indicates the Laplacian. In solving Eqs. S41-S45,  diffusion 

coefficients 𝐷H∗ and 𝐷D∗  are obtained from Ref. [43]. The rate equations were solved numerically 

using LSODA method from the Fortran ODEPACK library implemented in the 

scipy.integrate.solve_ivp function in Python[44]. Further details on the modeling process can be 

found in Ref. [6]. 

The product formation rate is found by averaging over the spatial coordinates—Eq. S46 shows this 

for HD formation:  

  𝐹HD(𝑡) ≡
d[HD]𝑡

d𝑡
=

∫
d[HD]𝑡,𝑟

d𝑡
𝑟d𝑟

3 mm

0

∫ 𝑟d𝑟
3 mm

0

 (S46) 

𝐹𝑡
HD denotes the HD flux as a function of reaction time – shown as black and grey lines of Fig. 1 

in the main text.  

The yield, 𝑌, of each isotope  

  𝑌HD = ∫ 𝐹𝑡
HD d𝑡 ; (S47) 

  𝑌H2 = ∫ 𝐹𝑡
H2 d𝑡 ;  (S48) 

  𝑌D2 = ∫ 𝐹𝑡
D2 d𝑡. (S49) 
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is defined as the time integral of the product flux. The branching fraction is obtained from Eqs. 

S50-S52. 

 𝑋QPES
HD =

𝑌HD

𝑌H2 + 𝑌HD + 𝑌D2
 ; (S50) 

  𝑋QPES
H2 =

𝑌H2

𝑌H2 + 𝑌HD + 𝑌D2
;  (S51) 

  𝑋QPES
D2 =

𝑌D2

𝑌H2 + 𝑌HD + 𝑌D2
. (S52) 

The QPES predicted isotopic branching ratios are shown as lines in Fig. S10.  
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S7. EXPERIMENTAL DETERMINATION OF ISOTOPIC BRANCHING FRACTION  

The experimentally derived isotopic branching fractions, 𝑋exp
H2 , 𝑋exp

HD   and 𝑋exp
D2 , are determined 

from measured kinetic traces at 𝑚/𝑧 = 2, 3 and 4. While the kinetic trace for HD reflects only 

reactive scattering (RS), the traces for H2 and D2 include contributions from both DS and RS. 

Furthermore, the RS contributions to 𝑚/𝑧 = 2 and 4 signals are rather small in comparison to DS. 

Fortunately, DS is most important near time-zero and it is insensitive to surface temperature; 

hence, RS can be distinguished from DS by its temperature and time dependence. The RS 

component seen at 𝑚/𝑧 = 2 and 4 is similar in shape to that of 𝑚/𝑧 = 3. This allows us to perform 

a simple fitting using DS and RS components applied to data obtained at 𝑚/𝑧 = 2 and 4. 

 ℎHD(𝑡) = 𝑅𝑆(𝑡); (S53) 

  ℎH2
(𝑡) = 𝐴H2

× 𝐷𝑆H2
(𝑡) + 𝐵H2

× 𝑅𝑆(𝑡);  (S54) 

  ℎD2
(𝑡) = 𝐴D2

× 𝐷𝑆D2
(𝑡) + 𝐵D2

× 𝑅𝑆(𝑡). (S55) 

Here, 𝑅𝑆(𝑡) is derived from the analysis of the HD kinetic trace—only the parameter 𝐵H2
(𝐵D2

) 

was optimized to the 𝑚/𝑧 = 2(4) kinetic trace—furthermore,  𝐵H2
(𝐵D2

) provides the ratio of H2 

(D2) to HD. 𝐷𝑆H2
(𝑡) and 𝐷𝑆D2

(𝑡) are obtained experimentally using scattering data obtained close 

to the specular scattering angle, where DS dominates.  

The experimental isotopic branching fraction is then found with help from Eqs. S56-S58.  

 𝑋exp
H2 =

𝐵H2

𝐵H2
+ 1 + 𝐵D2

; (S56) 

  𝑋exp
D2 =

𝐵D2

𝐵H2
+ 1 + 𝐵D2

;  (S57) 

  𝑋exp
HD =

1

𝐵H2
+ 1 + 𝐵D2

. (S58) 

The experimentally derived branching fractions are shown in Fig. S10 and are in good agreement 

with predictions of QPES-TST. 
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S8. SIMULATION OF TPD SPECTRA 

We simulated temperature programmed desorption (TPD) spectra for H* recombination using the 

QPES-TST and compare to the TPD spectra of Ref. [45]. We have decided to compare to the 

spectra of that work because the surface used in that study had a low step density and the 

contribution of structural defects were clearly identified and removed. The QPES-TST rate 

constants are valid for the zero-coverage limit, while TPD experiments are conducted over a range 

of coverages. Therefore, we introduced a coverage-dependent binding energy of H2 which is based 

on the scaling with coverage of previously reported isosteric heats of adsorption [34, 35]—see 

Fig. S8. The experimental TPD traces from Ref. [45], obtained at different initial coverages, are 

compared with simulated TPD spectra based on the QPES-TST rate constants but 𝐸0
XY in Eq. S39 

becomes coverage-dependent. The rate equations used for TPD simulation neglect the diffusion 

contribution that we included for simulation of kinetic traces (Section S6), but the numeric 

procedure remained the same.  

This comparison shows that the QPES model is capable of accurately predicting the hydrogen 

recombination rates at much lower temperatures than in the velocity resolved kinetics experiments. 

In addition, although being designed to describe the recombination rates in the zero-coverage limit 

it can also describe the recombination rates accurately up to 0.30 ML without taking into account 

entropic changes resulting from higher coverage. Indeed these effects become more important 

when the coverages further increase, see Ref. [19].  

We also compared to TPD data obtained at much lower temperatures for hydrogen recombination 

on Pt(553)[46], which possesses the same step type as Pt(332). Simulations of TPD spectra using 

a  QPES-TST model of hydrogen recombination on Pt(332) yields peak temperatures within ~15 K 

of those experimentally observed for Pt(553) in good agreement with previous experiments. 

However, since the PES differs between the two facets a deeper comparison is beyond the scope 

of this work. 
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S9. QPES H* ENTROPY AT PT(111) AND PT(332) 

To simulate the coverage-dependent H* entropy at Pt(111) and Pt(332) we follow closely the 

strategy employed by Iglesias and coworkers [19]. We provide here merely the derivation for the 

QPES partition function. 

The canonical partition function of H* is given by: 

  𝑄c
H∗

=
(𝑄QPES

H∗
× 𝑄el

H∗
× 𝑛 × 𝑁cell)

𝑁

𝑁!
 (S59) 

We note that the single particle partition functions—𝑄QPES
H∗

× 𝑄el
H∗

—are defined per unit cell and 

𝑁cell is the number of unit cells over which the canonical partition function is defined. Here, 𝑛 is 

the maximum number of hydrogen atoms that can be placed within a single unit cell (1 for Pt(111)  

and 5 for Pt(332)). Using Stirling’s approximation we obtain: 

 𝑄c
H∗

=
(𝑄QPES

H∗
𝑄el

H∗
)

𝑁
𝑛𝑁𝑁cell

𝑁 exp(𝑁)

𝑁𝑁
=

(𝑄QPES
H∗

𝑄el
H∗

)
𝑁

exp(𝑁)

𝜃𝑁
 (S60) 

where 𝜃 is the coverage of the surface. The canonical entropy is derived from: 

 

 𝑆c
H∗

= 𝑘B

𝜕

𝜕𝑇
𝑇 ln(𝑄c

H∗
) ≡ 𝑆c,𝑥𝑦

H∗
(𝜃) + 𝑆c,𝑧

H∗
+ 𝑆c,el

H∗
 (S61) 

We also note that the product of the partition functions allows separability into three contributions: 

one coverage dependent—associated with in-plane degrees of freedom—and two coverage 

independent arising from 𝑧-stretch frequency and H-atom electron spin. The contribution of 

electron spin is temperature independent; the corresponding molar entropy is given by: 

 𝑆c,el
H∗

= 𝑅 ln(𝑄el
H∗

) (S62) 

It is about 5.8 J mol−1 K−1. The entropic contribution to the 𝑧-stretch frequency has been evaluated 

numerically and yields 2.3 J mol−1 K−1 at 600 K. The coverage dependent in-plane contribution 

to entropy is derived to be: 

 𝑆c,𝑥𝑦
H∗

(𝜃) = 𝑅 [1 + ln (
𝑞QPES,𝑥𝑦

H∗

𝜃
) +    

∑
𝐸𝑖 − 𝐸0

𝑘B𝑇
exp (−

𝐸𝑖 − 𝐸0

𝑘𝐵𝑇
)𝑖

𝑞QPES,𝑥𝑦
H∗ ] (S63) 

with 𝑞QPES,𝑥𝑦
H∗

 as defined in Section S5c. The coverage dependent results of 𝑆c
H∗

 at 600 K are shown 

in Fig. 5a of the main text.   
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S10. SUPPLEMENTARY FIGURES 

Fig S1 

 

Fig S1: Photograph of the dual facet platinum surface used in this work.   
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Fig S2 

 

 

 

 

Fig S2: In-plane interaction potential 𝑽𝒛
𝑯(𝒙, 𝒚) for (a) H* on Pt (111) and (b) H* on Pt(332). The zero-point 

energy associated with the H-Pt stretch frequency is included.  
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Fig S3 

 

Fig S3: Ion image of the thermal H2 background gas. The 𝒙-axis histogram is well represented by a thermal 

Maxwell-Boltzmann distribution—blue line. The 𝒚-axis histogram is a convolution of the thermal Maxwell-

Boltzmann distribution with the ionization efficiency function, 𝜺𝒚(𝒚), of H2. The red line is a fit used to 

determine 𝜺𝒚(𝒚), which is shown in Fig. S4. 
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Fig S4 

 

Fig S4: (a) Ionization efficiency (dash-dotted), the beams cross section (solid) and the product of both functions 

(dashed) is shown. (b) Projection of incident molecular beam at 𝟑𝟎∘ incidence angle (solid) and its radial 

approximation used for the analysis (dashed).     
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Fig S5 

 

Fig S5: Ion image of H2 from the incident molecular beam. The dashed line is the molecular beam propagation 

axis and dotted lines indicate the position of the laser focus. From the 𝑥- and 𝑦-axis histogram the speed of the incident 

molecules is derived. The 𝑦-axis histogram reflects the product of ionization efficiency and molecular beam cross 

section. See Fig. S4. 
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Fig S6 

 

Fig S6: The radial distribution of incident H2 density provided by a single molecular beam pulse at the surface. 

The shaded region indicates the error associated with the absolute flux calibration. The inset shows the temporal 

profile of the H2 molecular beam pulse.   
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Fig S7 

 

Fig S7: (a) The sticking coefficients obtained at different Pt surfaces. Grey solid line is an error function fit to the grey plusses. 

The black line is a fit of the model, developed by Juurlink and coworkers, to the corresponding squares. The black (grey) dashed 

line is the expected sticking coefficient at 30∘incidence angle for Pt(332) (Pt(111)) assuming normal energy scaling. (b) The angle 

and thermal energy averaged sticking coefficient for Pt(332) and Pt(111). 
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Fig S8 

 

Fig S8: Determination of the H2 Binding Energy at Pt(111) in the Zero Coverage Limit. The symbols represent 

isosteric heats of adsorption obtained experimentally with Ar+-ion Low Energy Recoil Scattering[34] (LERS) and 

Thermal Energy He Scattering[35] (TES). The intercept with the 𝑦-axis is the H2 adsorption energy in the zero 

coverage limit that we use for TST modeling at Pt(111). Note that the coverage axis of LERS experiments was in 

arbitrary units and we scale it to align with results of TES experiments. The solid grey line is the fit to circles and 

squares and the region between the gray dashed lines is its estimated 2𝜎 uncertainty. The coverage dependence of the 

binding energy is estimated based on the grey line and used for TPD simulations of Fig. 1 of the main text. 
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Fig S9 

 

Fig S9: Isotope effect of QPES-TST model. These rate constant fractions were used to predict the rate of HD 

production seen in the velocity resolved kinetics experiments. The light grey region indicates the temperature range 

of the velocity resolved kinetics experiments.  
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Fig S10 

 

Fig S10: Isotopic branching fraction in the velocity resolved kinetics experiments (symbols, see legend) QPES 

model (lines, see legend). The error bars and the region between the tiny dotted lines (omitted for H2 and D2 for 

clarity) reflect 2𝜎 uncertainty in the experiment and of the model. The data for H2 and D2 are shifted from experimental 

temperature by −5 and +5 K for the sake of presentation.  
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Acronyms

AD Angular distribution.

AIMD Ab initio molecular dynamics.

bcc Body centred cubic.

BOA Born-Oppenheimer approximation.

CPES Complete potential energy sampling.

DFT Density functional theory.

EG Energy grid.

ehp Electron hole pair.

ELD Energy loss distribution.

EMT Effective Medium Theory.

fcc Face centred cubic.

GA Genetic algorithm.

hcp Hexagonal close packed.

HEG homogeneous electron gas.

LDFA Local density friction approximation.

LJP Lennard-Jones potential.

MD Molecular dynamics.

MDEF Molecular dynamics with electronic friction.

NLLS Non-linear least square.
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Acronyms

ODF Orbital dependent friction.

PAW Projector augmented wave.

PBE Perdew, Burke and Ernzerhof.

PES Potential energy surface.

RMSE Root mean square error.

TST Transition state theory.

VASP Vienna ab initio simulation package.
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• Lehrpreis für die beste nicht selbstständige Lehre am Institut für Physikalische Chemie 2014

Page 2 of 2


	Abstract
	Associated Publications
	Preface
	Introduction
	Theoretical foundations
	The Born Oppenheimer Approximation
	Density Functional Theory
	Effective Medium Theory
	Formalism for an ideal fcc crystal
	Structural modifications

	Molecular dynamics beyond the Born Oppenheimer Approximation

	Methodologies
	VASP
	INCAR
	KPOINTS
	POSCAR
	POTCAR

	FHI-aims
	control.in
	geometry.in

	md_tian
	md_tian2

	Dynamics of H atoms on non-covalent bonding surfaces
	Potential energy surface generation
	DFT calculations
	EMT parameterisation
	PES transferability
	Conclusions

	Molecular dynamics simulations of inelastic H atom scattering
	Experimental and simulation details
	H on fcc metals
	H on bcc metals
	Origin of universality between all surfaces
	H on Xe(111)
	Conclusions

	Application to thermal processes

	Summary and prospects
	Bibliography
	Derivation of elastic constants
	Generalised formalism
	Application to cubic crystal structures
	Consideration of higher shells.

	Input files
	Planar density of the different facets
	Potential energy curves
	Associated Publications
	``Random Force in Molecular Dynamics with Electronic Friction``
	``Effective Medium Theory for bcc metals: Electronically non-adiabatic H atom scattering in full dimensions``
	``Multibounce and Subsurface Scattering of H Atoms Colliding with a van der Waals Solid``
	``Adsorbate modification of electronic nonadiabaticity: H atom scattering from p (2 × 2) O on Pt(111)``
	``Quantum Influence on H Atom Recombination on Pt``

	Acronyms

