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Abstract
String-localized quantum field theory (SLFT) as an alternative to gauge theory has been
under investigation for the last decade because of its conceptual benefits. This thesis is
dedicated to the development and investigation of constructive tools for both perturbative
and non-perturbative aspects of SLFT.

On the non-perturbative side, we provide explicit formulas for the two-point function
and the propagator of the so-called “escort field” of the string-localized photon potential.
These are needed to describe the dressing of Dirac fields in quantum electrodynamics
(QED) with photon clouds and have a potential application in the scattering theory of these
dressed Dirac fields. We continue to derive the two-point functions and propagators of
string-localized potentials starting from the two-point function of the photon escort field.
We also prove no-go results for similar non-perturbative dressing constructions in models
with massless self-interacting fields. In QED, these constructions have been implemented
by Mund, Rehren and Schroer and work well. We show that such a Mund-Rehren-Schroer
construction already fails at an early stage for massless Yang-Mills theory and the graviton
self-coupling.

The main focus of this thesis is on perturbation theory with string-localized fields. We
propose a setup for string-localized perturbation theory and outline a new method to define
the time-ordering operation if string-localized fields are involved. We determine the
wavefront set of string-localized propagators and show that the divergences in loop graph
contributions stay pure ultraviolet divergences: the new singularities arising from the
string-localization are harmless in the sense of distributions. Furthermore, we investigate
and compare different methods to reduce the renormalization freedom in SLFT. These
considerations can be seen as a first step towards a full axiomatic construction of the
string-localized S-matrix in a Bogoliubov-Epstein-Glaser spirit. Finally, we discuss
examples of perturbative constructions in SLFT in low orders of perturbation theory.
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Chapter 1

Background

Quantum field theory (QFT) as the fundamental physical theory describing interactions
between elementary particles has been a tremendous success. Over the last decades, the
predictions of QFT, especially of quantum electrodynamics (QED), have been tested and
validated on a wide range of energy scales and turned out to be outstandingly accurate.
From a mathematical perspective, the precision and accuracy of those predictions is
somewhat surprising, for QFT is typically formulated perturbatively in terms of formal
power series, which come with several obstacles. First, these series need to be renormalized
in order to obtain (ultraviolet-)finite results at each order of the expansion. Second, the
question of convergence of the series after renormalization [22] and the existence of
the adiabatic limit [32] have not yet been answered in a satisfactory way, despite recent
progress [20] on the existence of the weak adiabatic limit. Furthermore, the perturbative
description of the strong interaction breaks down at low energy scales and so far, the
formation of bound particles like hadrons has to be modelled by effective or stochastic
approaches [30]. Despite constant efforts for almost a century, no interacting quantum
field theory in four spacetime dimensions has yet been constructed in a mathematically
rigorous way and the task to put QFT on a safe mathematical ground is still ongoing.

Mathematical approaches to QFT are usually based on a set of axioms like the axioms
of Gårding and Wightman [78] or Haag and Kastler (see for example [40]). From
these axioms, one typically tries to rigorously construct an interacting QFT, or at least
derive central properties that a QFT, which is subject to the axioms, must possess. In
Wightman’s approach, the central objects of axiomatization are the quantum fields. One
of the Wightman axioms states that quantum fields are operator-valued distributions,
which means that after smearing with test function 𝑓 , a quantum field 𝜙(𝑥) becomes
a – typically unbounded – operator 𝜙( 𝑓 ) on a domain that is dense in some Hilbert
space. The distributional nature of quantum fields is necessary but gives rise to certain
subtleties: In order to make quantitative predictions, one needs to rely on perturbation
theory, and in perturbative constructions, quantum fields need to be multiplied with each
other. However, the product of distributions makes no sense in general and thus, naively
taking powers of quantum fields results in divergences, which need to be removed by
renormalization. The implementation of renormalization schemes in certain quantum
field theoretic setups is a central topic of this thesis.

1



2 Background

In contrast to Gårding and Wightman, Haag and Kastler do not axiomatize properties
of quantum fields but properties of algebras of observables (therefore, it is usually referred
to as algebraic QFT, or AQFT). In the Haag-Kastler approach, one can go back to talking
about quantum fields by using an algebra which is generated by polynomials of quantum
fields. However, one then loses the power of the theory of bounded operators. An
advantage of the Haag-Kastler axioms is that they are easily generalizable to curved
spacetimes (see for example [15, 73] for introductions).

AQFT has been considerably boosted by modular theory. This powerful abstract
tool in the theory of von-Neumann-algebras turned out to be particularly useful for
addressing fundamental issues in QFT, such as locality, covariance and thermal states.
From the connection between modular localization and Wigner particles observed by
Brunetti, Guido and Longo [10], the modern theory of string-localized quantum fields
was born [52,53]. String-localized field theory (SLFT) is one attempt to better understand
quantum field theory by weakening the locality properties of certain auxiliary and non-
observable quantum fields. In some cases, it presents an alternative to the well-established
gauge theoretic approaches to QFT that suffer from a number of well-known drawbacks
like the appearance of ghost fields or negative norm states in intermediate steps, which
must be removed by means of complicated procedures such as the BRST procedure [4,69]
(see also [62,75] for introductions). String-localized fields have been considered since
the early days of QFT [19, 42, 46], although with quite different motivation than the cited
works of Mund, Schroer and Yngvason [52, 53].

The aim of this thesis is to contribute to the advancement of string-localized quantum
field theory, in particular to analytic aspects relevant for perturbation theory. We strive
to be as mathematically rigorous as possible. Therefore, the basis for the derivations in
this thesis is the most rigorous approach to implement perturbation theory in QFT that is
currently available. This is the causal method introduced by Bogoliubov [6], which was
later worked out in full detail in a seminal work by Epstein and Glaser [32]. In contrast
to most phenomenological approaches, which are typically set up in momentum space,
the Bogoliubov-Epstein-Glaser (BEG) approach is formulated in configuration space
(position space).

Since both SLFT and BEG perturbation theory are not well-known to many, we give
a concise overview of SLFT’s history and achievements in the following Section 1.1 and
a brief introduction to the BEG scheme in Section 1.2. A more concrete and technical
introduction to string-localized fields is then given in Chapter 2. Chapter 3 is dedicated to
non-perturbative constructions in SLFT. We perform explicit computations of massless
string-localized two-point functions and also prove no-go results for certain constructions
involving self-interactions of massless string-localized fields. In Chapter 4, we outline a
possible general setup of string-localized perturbation theory, including a prescription
for the time-ordering operation if string-localized fields are involved. We then discuss
steps towards a BEG scheme in SLFT in Chapter 5, where we in particular investigate the
nature of divergences in loop graphs and adjust several renormalization prescriptions,
which are known from gauge theory, to the SLFT framework. In Chapter 6, we work
out examples in low orders of perturbation theory. Finally, the results are discussed and
interpreted in Chapter 7.
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1.1 String-localized quantum field theory
In 1935, Jordan introduced finite line integrals over the potential of the Maxwell field
strength in his work on a gauge invariant formulation of QED [42]. Exponentials of
these integrals are used to dress the fermion field. Two decades after Jordan, Dirac [19]
considered similar constructions where the line integrals in the exponentials now extend
to (spacelike) infinity, and a few years after Dirac, Mandelstam [46] proposed to formulate
QED only in terms of two gauge invariant quantities: the Maxwell field strength 𝐹𝜇𝜈 (𝑥)
and the modified Dirac field

Ψ(𝑥, 𝑃) := 𝜓(𝑥) exp
{
−𝑖𝑒

∫ 𝑥

−∞
𝑑𝜉𝜇 𝐴𝜇 (𝜉)

}
, (1.1)

where 𝜓(𝑥) is the standard Dirac field, 𝑃 is the spacelike path along which the line integral
in Eq. (1.1) is to be taken and 𝐴𝜇 is a potential of 𝐹𝜇𝜈, i.e., 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈−𝜕𝜈𝐴𝜇. The above
mentioned works [19,42,46] can be regarded as the first appearances of string-localization
in QFT. The dependence of Ψ(𝑥, 𝑃) on the path 𝑃 becomes a dependence on additional
spacelike variables in modern formulations involving string-like quantities, which is
described in Section 2.1.

In the 1980’s, Steinmann came back to Mandelstam’s description, proving a Jost-
Schroer theorem [65] and considering perturbative constructions [66] involving string-
localized fields. In the first of the cited works, Steinmann sketches two problems of
gauge theories: first, the difficulty in interpreting the whole gauge theoretic formalism
and in particular in explaining the physical significance of the fields involved; second, the
non-applicability of (rigorous) results from axiomatic QFT to formulations that work
in physical gauges. He then relates to the formulation of Mandelstam, which can be
seen as a solution to the first of the sketched problems. At the time of Steinmann’s
works, the second problem essentially was unattended in a string-like formulation, with
the exceptions of his own Jost-Schroer theorem and considerations by Buchholz and
Fredenhagen [14]. The latter had shown that particles are always localized but that in
certain cases the corresponding fields, which are only mathematical auxiliary quantities,
might be localized in stringlike regions.

It took another two decades until Mund, Schroer and Yngvason [52, 53] gave the
modern formulation of string-localized fields, based on mathematical considerations on
modular localization by Brunetti, Guido and Longo [10]. Since then, many rigorous
statements on string-localized fields have been derived, diminishing Steinmann’s second
problem. As a motivation, we will briefly sketch the conceptual results that have been
derived by now.1

• Since the modern formulation of SLFT arose from modular theory, it is not
surprising that string-localized fields satisfy the Bisognano-Wichmann property
[53], which relates the modular group and conjugation associated with a wedge
(and the vacuum state) to Lorentz boosts and reflections associated to this wedge [5].

1The following list and the remaining part of this section is essentially an extension of parts of the
introduction of the author’s paper [35].
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The same authors also showed that the wedge algebras satisfy the Reeh-Schlieder
property [58].

• An important benefit of SLFT is that the string-localized potential for the massless
field strength of arbitrary helicity 𝑠 ∈ N is a Lorentz (or Poincaré) covariant rank-𝑠
tensor field that lives on Hilbert space and not on an indefinite Krein space like its
point-localized gauge field equivalents [49, 53].

• Closely related to the previous point, SLFT can be formulated without the appear-
ance of unphysical degrees of freedom. The string-localized potentials of the field
strength tensors of arbitrary mass 𝑚 ≥ 0 and spin respectively helicity 𝑠 ∈ N have
the number of degrees of freedom that is expected from fields transforming under
the respective Wigner representation. For the massive string-localized potential
𝐴(𝑠) of spin 𝑠, there is a hierarchy of couplings/relations to string-localized fields
of all lower integer tensor ranks 0 ≤ 𝑟 < 𝑠. These fields are usually called “escort
fields”. In the limit 𝑚 → 0, the escort fields decouple from the original field and
from each other, carrying away the excess number of 2𝑠 + 1 spin states over 2
helicity states [49].

• The string-localized potential of the field strength tensor associated with the Wigner
(𝑚, 𝑠) representation for mass𝑚 > 0 and spin 𝑠 ∈ N has an improved short distance
(SD) scaling behavior. It was conjectured by Mund, Schroer and Yngvason that this
improved scaling behavior has a positive effect on the renormalizability of string-
localized models compared to their gauge theoretic analogues [53]. In a recent
paper, the author of this thesis was able to put their claim on safer mathematical
ground [35].

• Besides the representations of finite spin respectively helicity, Wigner’s classifi-
cation of representations of the Poincaré group contains so-called infinite spin
representations, which are known to be in conflict with point-locality [79]. String-
localization, however allows for the construction of such infinite spin fields [52].

• Stress-energy tensors that yield the correct Poincaré generators can be constructed
for massless fields of arbitrary finite and infinite spin/helicity [49, 50, 59], circum-
venting the Weinberg-Witten theorem [76], which excludes the existence of such
stress energy tensors for massless point-localized fields of helicity 𝑠 ≥ 2 .

• The DVZ discontinuity [70, 81] in the massless limit of massive gravitons, which
is present in point-localized theories, can be removed in SLFT [49,50].

• A possible resolution of the Velo-Zwanziger problem of non-causal propagation [71]
within the framework of SLFT has been outlined [61]. However, more work is
needed on that matter to clarify all details.

• As mentioned before, the language of string-localized field theory allows to
reformulate gauge theories on Hilbert space without the appearance of unphysical
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degrees of freedom. However, Buchholz et al. [13] pointed out the importance of
unphysical degrees of freedom in QED. This criticism has led to a more thorough
analysis of the implementation of Gauss’ law within the framework of SLFT [48]
and to the realization how the unphysical degrees of freedom, i.e., the photon
escort field, can have the necessary effect on the interacting theory without being
separately present in the field content of the theory. This observation is closely
related to the next point in our list and is addressed in more detail in Section 3.2.

• A derivation of the dressing factor of the Dirac field in the spirit of Eq. (1.1) as well
as an investigation of its consequences on QED has been worked out recently [51]
with the emphasis on the infrared problems of QED.

• The concept of gauge symmetry as a fundamental principle absent in SLFT. The
string-localized potentials of the field strength tensors of arbitrary mass 𝑚 ≥ 0
and spin respectively helicity 𝑠 ∈ N can be expressed explicitly as line integrals
of the latter. From this fact, one can deduce the non-existence of the strong CP
problem in string-localized quantum chromodynamics (QCD) [37]. This statement
is discussed in more detail in Section 7.1, where we also shed light on a remaining
caveat in the argument.

To summarize, extensive research on conceptual aspects of SLFT has revealed many
benefits. On the other hand, the implementation of string-localized perturbation theory is
only in its beginnings. Besides some conceptual considerations [16, 47], only low-order
computations at tree level have been performed. The Lie algebra structure of pure
massless Yang-Mills theory and of the weak interaction as well as the chirality of the
latter have been derived at tree-level to second order of perturbation theory in a bottom-up
approach – the structure of these interactions is constrained by the requirement that the
scattering matrix be string independent [37, 39]. Parts of these results are due to the
author of this dissertation and are included in full detail in Section 6.1.

Calculations at higher orders of perturbation theory as well as computations of loop
graphs involving internal string-localized potentials have not yet been attacked. The
main reason for this is the most evident disadvantage of SLFT: The analytic structure
of propagators of string-localized potentials is highly complicated. Consequently, an
extension of the causal renormalization procedure as described by Epstein and Glaser [32]
naively seems very involved and is currently not at hand. In a recent article [35], the
author of this thesis proved some statements about the nature of renormalization in SLFT
and discussed constraints on the setup of string-localized perturbation theory. These
results clear the way for an BEG renormalization scheme in SLFT and are displayed in
full detail in Chapters 4 and 5.

1.2 Causal perturbation theory in point-localized QFT
The central object to describe the scattering of quantum fields is the scattering operator,
or S-matrix S[𝑔], which is usually defined as a functional of a test function 𝑔 ∈ S(R1+3)
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in terms of a formal power series (Dyson series) in 𝑔(𝑥) [6],

S[𝑔] = 1 +
∞∑︁
𝑛=1

1
𝑛!

∫
𝑆𝑛 (𝑥1, . . . , 𝑥𝑛) 𝑔(𝑥1) . . . 𝑔(𝑥𝑛) 𝑑𝑥1 . . . 𝑑𝑥𝑛. (1.2)

More general, S can be considered as a functional of a multiplet of test functions
𝑔 ∈ S(R1+3)𝑘 but within the framework of this thesis, it is sufficient to consider a single 𝑔.
A generalization to a multiplet is comparably straight-forward and can be found in [32].
The 𝑆𝑛 from Eq. (1.2) are operator-valued distributions that need to be constructed
recursively. The distributional nature of the 𝑆𝑛 and the fact that 𝑔 ∈ S(R1+3) is a test
function are crucial for the construction. But for a physical interpretation of S[𝑔] as a
formal power series in a coupling constant, the test function 𝑔(𝑥) must eventually be
sent to a true constant in the so-called adiabatic limit 𝑔(𝑥) → 𝑔. Especially in models
with massless particles, the existence and performance of a suitable adiabatic limit is an
intricate question [20, 25, 32], which will not be addressed in this thesis.

In the following, we sketch the construction of S[𝑔] in point-localized QFT before
the adiabatic limit is taken. As a first step for this construction, one notices that Eq. (1.2)
implies that the operator-valued distributions 𝑆𝑛 can be assumed to be symmetric under
exchange of any two arguments 𝑥𝑖 ↔ 𝑥 𝑗 without loss of generality because each argument
is smeared with the same test function.

One then axiomatizes properties, which S[𝑔] should possess. It should be unitary,
Poincaré covariant and respect causality. Using these properties (and an additional
enhanced symmetry property), one can relate 𝑆1 to the interaction Lagrangian 𝐿 describing
a physical model by

𝑆1(𝑥) = 𝑖𝐿 (𝑥), (1.3)

where the Wick-polynomial 𝐿 must be Hermitian, Poincaré covariant and local [6, 32] in
the sense that

[𝐿 (𝑥), 𝐿(𝑦)] = 0 if 𝑥 and 𝑦 are spacelike separated. (1.4)

In a next step, one derives that the 𝑆𝑛 are time-ordered products of 𝑆1, i.e.,

𝑆𝑛 (𝑥1, . . . , 𝑥𝑛) = 𝑖𝑛 𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛)), (1.5)

where the time-ordered product on the right-hand side coincides with the usual product if
the arguments can be meaningfully ordered in time, that is

𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛)) = 𝐿 (𝑥 𝑗1)𝐿 (𝑥 𝑗2) . . . 𝐿 (𝑥 𝑗𝑛) if 𝑥0
𝑗1
> 𝑥0

𝑗2
> · · · > 𝑥0

𝑗𝑛
. (1.6)

With this at hand, the Dyson series (1.2) for the S-matrix can be written as

S[𝑔] = 1 +
∞∑︁
𝑛=1

𝑖𝑛

𝑛!

∫
𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛)) 𝑔(𝑥1) . . . 𝑔(𝑥𝑛) 𝑑𝑥1 . . . 𝑑𝑥𝑛. (1.7)
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There is a snag to the right-hand side of Eq. (1.7). It is not evident how to define the
time-ordered product if 𝑥0

𝑖
= 𝑥0

𝑗
for some 𝑖 ≠ 𝑗 . Naively, one can try to define 𝑇 by use of

Heaviside step functions via

𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛))
?
=

∑︁
𝜋∈𝔖𝑛

𝜃 (𝑥0
𝜋(1) − 𝑥

0
𝜋(2)) . . . 𝜃 (𝑥

0
𝜋(𝑛−1) − 𝑥

0
𝜋(𝑛))𝐿 (𝑥𝜋(1)) . . . 𝐿 (𝑥𝜋(𝑛)),

(1.8)

where𝔖𝑛 denotes the symmetric group of order 𝑛. However, both the Heaviside functions
and the interaction Lagrangians are of distributional nature and their product as in Eq. (1.8)
will in general not be well-defined. Indeed, using the expression on the right-hand side
of Eq. (1.8) for the time-ordered products yields unrenormalized scattering amplitudes
that exhibit the well-known ultraviolet divergences in loop graph contributions to the
S-matrix within the common momentum space approaches.

A solution to the issue of defining the time-ordered products that appear in the Dyson
series of the S-matrix was given in a seminal paper by Epstein and Glaser in terms of
distribution splitting [32]. A more modern formulation, which also applies to curved
spacetimes, would be in terms of the extension of products of distributions [9]. One proves
that the right-hand side of Eq. (1.8) is well-defined outside a diagonal set where some of
the arguments coincide and defines 𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛)) as an extension of this right-hand
side to the full space. In this way, the time-ordered products𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛)) stay finite
(in the sense of operator-valued distributions) at every step of the construction of S[𝑔]
and no divergent loop integrals will appear. Therefore, this Bogoliubov-Epstein-Glaser
(BEG) approach is sometimes referred to as renormalization without regularization.
The extension procedure might be ambiguous and the infinite counterterms in the
usual momentum space approaches to renormalization correspond to finite constants
that reflect the freedom in choosing an extension of the right-hand side of Eq. (1.8).
These renormalization constants are a priori free and need to be absorbed into physical
quantities or constrained by physical (and mathematical) considerations such as power
counting. Making sense of all free parameters is the BEG equivalent of examining the
renormalizability of a model.

The construction of the time-ordered products 𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛)) is a very non-
trivial inductive procedure. In the language of Feynman graphs, the graphs contribut-
ing to 𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛)) might contain divergent subgraphs. Due to the constraints
coming from the described axioms for S[𝑔], in particular causality, the extensions
𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛)) must be consistent with all extensions of time-ordered products
𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑘 )) of lower order 𝑘 < 𝑛. In an inductive procedure, one can show that
the time-ordered product 𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛)) is well-defined and uniquely determined
outside the “small diagonal”

𝐷𝑛 := { (𝑥1, . . . , 𝑥𝑛) ∈ (R1+3)𝑛 | 𝑥1 = · · · = 𝑥𝑛 } (1.9)

provided that all extensions 𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑘 )) of lower order 𝑘 < 𝑛 have already been
constructed [9]. In this way, one obtains a consistent inductive construction and sees that
the extension 𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛)) is only ambiguous at 𝐷𝑛.
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The construction of the S-matrix and time-ordered products on the level of operators
is somewhat abstract and difficult to grasp. Using Wick’s theorem [77], operator products
𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛) can be written as a sum of products of expectation values multiplied
by normal-ordered operators. Similarly, the time-ordered products 𝑇 (𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛))
can be written as a sum of products of time-ordered expectation values multiplied
normal-ordered operators, wherever they are defined. The extension of the operator-
valued time-ordered products across 𝐷𝑛 then reduces to the extension of time-ordered
expectation values across 𝐷𝑛. As long as the extensions are translation invariant – or
satisfy a spectral condition in curved spacetimes [9] – this procedure yields well-defined
expressions by Theorem 0 of Epstein and Glaser [32].

Remark 1.1. The extensions of time-ordered distributions in the BEG approach and the
corresponding renormalization freedom can be classified in two categories. First, the
BEG scheme provides a configuration space analogue of the renormalization of divergent
loop integrals and second, it accounts for possible finite ambiguities in the definition of
time-ordering. This is discussed in more detail in Chapter 4.

By now, the BEG procedure is well-established for point-localized QFT over both
Minkowski space [32] and curved spacetimes [9]. A transition to SLFT is a non-trivial task
but a step towards such a transition over Minkowski space is introduced in Chapter 4 of
this thesis. There we also propose a method to define the time-ordering of string-localized
expressions, which goes beyond the currently available methods.

1.3 Conventions
Let us fix the conventions, which are used in this thesis. The convention for the Minkowski
metric is with mostly negative signs, 𝜂 = diag(1,−1,−1,−1). The Minkowski product of
two four-vectors 𝑥 and 𝑦 is generically denoted by (𝑥𝑦) := 𝜂𝜇𝜈𝑥𝜇𝑦𝜈 and 𝑥2 is used for the
Minkowski square of 𝑥. The Fourier transform 𝑓 (𝑝) = F 𝑓 (𝑝) of a function 𝑓 (𝑥) over
Euclidean space R𝑛 is defined with negative sign in the exponent, the back transform
has a positive sign. All factors of 2𝜋 are absorbed in the back transform. The Fourier
transform over Minkowski space R1+3 has an overall minus sign in the exponent due to
our convention of a “mostly negative” Minkowski metric:

𝑓 (𝑝) :=
∫

𝑑4𝑥 𝑒𝑖(𝑝𝑥) 𝑓 (𝑥), 𝑓 (𝑥) :=
∫

𝑑4𝑝

(2𝜋)4 𝑒
−𝑖(𝑝𝑥) 𝑓 (𝑝) (1.10)

for a generic 𝑓 living on R1+3. This sign convention has effects on the signs of the
wavefront sets computed in Section 5.5 because statements about wavefront sets are
usually formulated over Euclidean space (see for example [41] or Section 5.1, where we
give a concise overview of important statements). When relevant, it is always specified
whether statements pertain to Euclidean space R𝑛 or Minkowski space R1+3.



Chapter 2

Introduction: string-localized fields

String-localized fields for arbitrary mass 𝑚 ≥ 0 and spin/helicity 𝑠, including string-
localized fields of infinite spin, can be constructed from the irreducible (𝑚, 𝑠) Wigner
representations of the Poincaré group [52,53]. String-localized fields have a distributional
dependence on an additional spacelike variable 𝑒, which indicates the direction of their
localization. String-localization is reflected in the commutation relations of string-
localized fields. If 𝑒 and 𝑒′ are spacelike directions and 𝜙(𝑥, 𝑒) and 𝜑(𝑥′, 𝑒′) are
string-localized fields, then

[𝜙(𝑥, 𝑒), 𝜑(𝑥′, 𝑒′)]± = 0 if (𝑥 + R≥0𝑒 − 𝑥′ − R≥0𝑒
′)2 < 0, (2.1)

where the commutator is to be taken for bosonic and the anti-commutator for fermionic
fields, as usual [52, 65]. It is evident from Eq. (2.1) that string-localized fields do not
satisfy the local commutativity axiom in the Wightman setting, which needs to be adjusted
to the string-locality of the fields. This was already observed by Steinmann [65] and is
not in conflict with Einstein causality, for quantum fields are in general no observable
quantities.

In this thesis, we will not consider general string-localized fields but only string-
localized potentials for the field-strength tensors of arbitrary mass 𝑚 ≥ 0 and positive
integer spin respectively helicity 𝑠 ∈ N as well as fields that are closely related to these
potentials, which are usually referred to as “escort fields” [49]. String-localized fields of
half-integer or infinite spin will not appear in this thesis.

2.1 String-localized potentials of integer spin or helicity
We start by defining string-localized potentials for arbitrary masses and spins respectively
helicities.

Definition 2.1. For arbitrary mass 𝑚 ≥ 0 and for spin respectively helicity 𝑠 ∈ N,
let 𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠] (𝑥) denote the field strength tensor associated with the (𝑚, 𝑠) Wigner
representation [74], where the brackets around neighboring indices indicate an antisym-
metrization. Let further 𝐻 ⊂ R1+3 denote the open subset of spacelike vectors. The

9
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string-localized potential 𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) of 𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠] (𝑥) is defined as an 𝑠-fold line
integral over 𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠] (𝑥) in direction 𝑒 ∈ 𝐻,

𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) := 𝐼 𝑠𝑒𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠] (𝑥)𝑒𝜈1 . . . 𝑒𝜈𝑠 , (2.2)

where 𝐼 𝑠𝑒 𝑓 (𝑥) :=
∫ ∞
0 𝑑𝜆1· · ·

∫ ∞
0 𝑑𝜆𝑠 𝑓 (𝑥+ (𝜆1+· · ·+𝜆𝑠)𝑒) for some generic 𝑓 [49,53,56].

Remark 2.2. In the literature (see for example [37,49,53]), the string variables are usually
taken to be elements of the closed subset 𝐻−1 := { 𝑒 ∈ R1+3 | 𝑒2 = −1 } ⊂ 𝐻 ⊂ R1+3. We
prove in Section 5.6.2 that it does not severely affect the singularity structures in SLFT
whether one chooses 𝑒 ∈ 𝐻 or 𝑒 ∈ 𝐻−1. The restriction to the open set 𝐻, however, has
the advantages that one can easily take derivatives with respect to the string variables and
that restrictions of distributions to open subsets are much easier to handle than restrictions
to closed subsets.

Using the Bianchi identity for the field strength tensors,

𝜕𝜅𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠] + 𝜕𝜇1𝐹[𝜈1𝜅] ...[𝜇𝑠𝜈𝑠] + 𝜕𝜈1𝐹[𝜅𝜇1] ...[𝜇𝑠𝜈𝑠] = 0, (2.3)

and similar for the other index pairs [𝜇𝑖𝜈𝑖], as well as the relation (𝑒𝜕)𝐼𝑒 = −1, it is easy
to verify that 𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) is indeed a potential for 𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠] (𝑥). The string-localized
potentials from Eq. (2.2) are symmetric under exchange of any two Lorentz indices
𝜇𝑖 ↔ 𝜇 𝑗 and axial with respect to the string variable 𝑒,

𝑒𝜇1𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) = 0, (2.4)

which follows from the skewsymmetry of the field strength tensor under exchange of
any pair of indices 𝜇𝑖 ↔ 𝜈𝑖 (as indicated by the brackets). Moreover, by its definition as
integral over the field strength, the string-localized potential 𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) lives on the
same Hilbert space as 𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠] . This remains true even in the massless case, where
the gauge potentials in standard approaches are usually only defined on an indefinite
Krein space that contains the Hilbert space of the field strength [60]. Moreover, the
defining Eq. (2.2) tells us that the string-localized potentials transform covariantly under
representations 𝑈 (𝑎,Λ) of the Poincaré group, where 𝑎 ∈ R1+3 is a translation vector
and Λ is a Lorentz matrix,

𝑈 (𝑎,Λ)𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒)𝑈 (𝑎,Λ)∗ = Λ𝜈1
𝜇1 . . .Λ

𝜈𝑠
𝜇𝑠𝐴𝜈1...𝜈𝑠 (Λ𝑥 + 𝑎,Λ𝑒). (2.5)

The good short distance behavior of string-localized potentials advertised in the
previous section can be read off Eq. (2.2). The field strength of spin or helicity 𝑠

scales as |𝑥 |−(𝑠+1) with respect to 𝑥 = 0 and the 𝑠-fold string integration implies that the
string-localized potentials scale as |𝑥 |−1 for all masses and spins respectively helicities
with respect to 𝑥 = 0. However, due to the delocalization of the string-localized potentials
it is not clear that this improved scaling behavior has a positive effect on renormalizability.
New singularities might appear in loop graph contributions to the S-matrix, which depend
on the string variables and have the effect that renormalization is no longer a short
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distance (or in momentum space: an ultraviolet) problem. In such a case, the short
distance behavior alone would not imply improved renormalizability of string-localized
models.

In Section 5.5, we present a proof that the renormalization of loop graph contributions
to the S-matrix stays a short distance problem and thus put the conjecture of improved
renormalizability on safer mathematical ground.

Remark 2.3. Recently, a more general alternative to the Definition 2.1 of string-localized
potentials has been proposed. This alternative leads to a further delocalization – the
result is less than string-localized – but yields better analytic properties. Namely, one can
define

𝐴̃𝜇1...𝜇𝑠 (𝑥, 𝑒1, . . . , 𝑒𝑠) := 𝐼𝑒1 · · · 𝐼𝑒𝑠
1
𝑠!

∑︁
𝜋∈𝔖𝑠

𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠] (𝑥)𝑒
𝜈1
𝜋(1) . . . 𝑒

𝜈𝑠
𝜋(𝑠) , (2.6)

where 𝔖𝑠 is the symmetric group of order 𝑠. Similarly to the case of string-localized
potentials, one can easily show that the field 𝐴̃𝜇1...𝜇𝑠 from Eq. (2.6) is indeed a potential
for the field strength. For 𝑠 = 2, the potential 𝐴̃𝜇1𝜇2 has been used to investigate the
coupling of gravitons to the stress-energy tensor (SET) of a scalar field [11].1 In this
thesis, we use the term “multi-string-localized” for potentials of the form as in Eq. (2.6).

2.2 Two-point functions of string-localized potentials
In this section, we introduce the two-point functions of string-localized potentials for
arbitrary 𝑚 ≥ 0 and 𝑠 ∈ N as described by Mund, Rehren and Schroer [49].2 These
authors did not consider questions of well-definedness, and in the current section, we shall
also not address this matter. Questions concerning well-definedness and the analytical
and singularity structure are discussed in Chapter 5.

We employ the notation 〈〈•〉〉 := (Ω, •Ω) for vacuum expectation values and for the
two-point function of two arbitrary point-localized fields 𝑋 (𝑥) and 𝑋′(𝑥′) of mass 𝑚 ≥ 0,
we always use the notation

〈〈𝑋 (𝑥)𝑋′(𝑥′)〉〉 :=
∫

𝑑𝜇𝑚 (𝑝) 𝑒−𝑖(𝑝(𝑥−𝑥
′))

𝑚𝑀
𝑋,𝑋 ′ (𝑝), (2.7)

with 𝑑𝜇𝑚 (𝑝) :=
𝑑4𝑝

(2𝜋)3 𝛿(𝑝
2 − 𝑚2)𝜃 (𝑝0) (2.8)

being the measure on the mass shell and where 𝑚𝑀
𝑋,𝑋 ′ (𝑝) is a polynomial in 𝑝. In

momentum space, the string integrations from Eq. (2.2) become multiplication with

1To be precise, only the coupling of the escort fields to the SET of a scalar field has been considered in
the cited work. Escort fields for string-localized potentials will be defined in Section 2.3. Their coupling
to the SET yields a trivial S-matrix but has non-perturbative effects. We briefly sketch non-perturbative
effects related to the escort fields in Section 3.2.

2The present section is based on the author’s work [35].
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string-dependent factors ±𝑖(𝑝𝑒)−1
± := ±𝑖 lim𝜀↓0 [(𝑝𝑒) ± 𝑖𝜀]−1. For example, we have

𝐼𝑒 𝑓 (𝑝) =
∫

𝑑4𝑥

∫ ∞

0
𝑑𝑠 𝑒𝑖(𝑝𝑥) 𝑓 (𝑥 + 𝑠𝑒) =

∫
𝑑4𝑥

∫ ∞

0
𝑑𝑠 𝑒𝑖(𝑝 [𝑥−𝑠𝑒]) 𝑓 (𝑥)

= 𝑓 (𝑝)
∫ ∞

0
𝑑𝑠 𝑒−𝑖𝑠(𝑝𝑒) :=

−𝑖 𝑓 (𝑝)
(𝑝𝑒)−

.

(2.9)

Therefore, the string dependence of the two-point functions of string-localized potentials
can be absorbed into the integral kernel 𝑚𝑀 (𝑝) in Eq. (2.7), i.e.,

〈〈𝑋 (𝑥, 𝑒)𝑋′(𝑥′, 𝑒′)〉〉 =
∫

𝑑𝜇𝑚 (𝑝) 𝑒−𝑖(𝑝(𝑥−𝑥
′))

𝑚𝑀
𝑋,𝑋 ′ (𝑝, 𝑒, 𝑒′), (2.10)

where now 𝑚𝑀
𝑋,𝑋 ′ (𝑝, 𝑒, 𝑒′) is a polynomial in the variables 𝑝, 𝑒 and 𝑒′ with possible

denominators −𝑖(𝑝𝑒)−1
− and 𝑖(𝑝𝑒′)−1

+ . 𝑚𝑀
𝑋,𝑋 ′ (𝑝, 𝑒, 𝑒′) is separately homogeneous of

degree 𝜔 = 0 in both string variables since each string integration in Eq. (2.2) is
accompanied by a factor 𝑒𝜈𝑖 . Of course, one of the fields in Eq. (2.10) might be
point-localized, and in this case the dependence on the respective string variable is trivial.

The expressions Eq. (2.9) and Eq. (2.10) are to be understood as distributions in
all their variables, including the string variables. Both the string-localized and point-
localized two-point functions from Eq. (2.10) and Eq. (2.7), respectively, are translation
invariant. We therefore often redefine 𝑥 − 𝑥′ → 𝑥 and perform the transition from
distributions over (R1+3)2 × 𝐻2 to distributions over R1+3 × 𝐻2,

〈〈𝑋 (𝑥, 𝑒)𝑋′(𝑥′, 𝑒′)〉〉 𝑥−𝑥 ′→𝑥−→ 〈〈𝑋 (𝑒)𝑋′(𝑒′)〉〉(𝑥). (2.11)

The two-point functions of the string-localized potentials arise from the two-point
function of the field strength tensors by Eq. (2.2). For arbitrary mass 𝑚 ≥ 0 and spin
respectively helicity 𝑠 = 1, the kernel of the field strength two-point function is given
by [74]

𝑚𝑀
𝐹,𝐹

𝜇𝜈𝜅𝜆
(𝑝) = −𝜂𝜇𝜅𝑝𝜈𝑝𝜆 + 𝜂𝜇𝜆𝑝𝜈𝑝𝜅 + 𝜂𝜈𝜅𝑝𝜇𝑝𝜆 − 𝜂𝜈𝜆𝑝𝜇𝑝𝜅, (2.12)

and thus, by Eq.s (2.2) and (2.9), the kernel of the associated string-localized potential is
given by

𝑚𝑀
𝐴,𝐴
𝜇𝜅 (𝑝, 𝑒, 𝑒′) = −𝜂𝜇𝜅 +

𝑒𝜅𝑝𝜇

(𝑝𝑒)−
+
𝑒′𝜇𝑝𝜅
(𝑝𝑒′)+

−
(𝑒𝑒′)𝑝𝜇𝑝𝜅
(𝑝𝑒)−(𝑝𝑒′)+

=: −𝐸𝜇𝜅 (𝑝, 𝑒, 𝑒′). (2.13)

The quantity 𝐸𝜇𝜅 (𝑝, 𝑒, 𝑒′) from Eq. (2.13) turns out to be the central building block of
the two-point functions of string-localized potentials of arbitrary spin or helicity 𝑠 ∈ N.
To construct these two-point functions, one makes a useful change of notation. Because
the string-localized potentials are totally symmetric under exchange of Lorentz indices,
no information is lost if all indices are contracted with the same dummy four-vector 𝑓 𝜇.
Therefore, we can define

𝐴
(𝑠)
𝑓
(𝑥, 𝑒) := 𝑓 𝜇1 · · · 𝑓 𝜇𝑠𝐴𝜇1···𝜇𝑠 (𝑥, 𝑒) (2.14)
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and also

𝐸 𝑓 𝑓 := 𝑓 𝜇𝐸𝜇𝜈 (𝑝, 𝑒,−𝑒) 𝑓 𝜈, 𝐸 𝑓 ′ 𝑓 ′ := 𝑓 ′𝜇𝐸𝜇𝜈 (𝑝,−𝑒′, 𝑒′) 𝑓 ′𝜈, and
𝐸 𝑓 𝑓 ′ := 𝑓 𝜇𝐸𝜇𝜈 (𝑝, 𝑒, 𝑒′) 𝑓 ′𝜈, (2.15)

where the signs in the arguments of 𝐸 𝑓 𝑓 , 𝐸 𝑓 ′ 𝑓 ′ and 𝐸 𝑓 𝑓 ′ ensure that only denominators
(𝑝𝑒)−1

− and (𝑝𝑒′)−1
+ with the correct imaginary shift appear.

With this useful notation, Mund, Rehren and Schroer [49] were able to write down
the kernel of the two-point function of the string-localized potentials for arbitrary 𝑚 ≥ 0
and 𝑠 ∈ N in a concise way. It reads

𝑚𝑀
𝐴
(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ (𝑝, 𝑒, 𝑒′) = (−1)𝑠

∑︁
2𝑛≤𝑠

𝛽𝑠𝑛 (𝐸 𝑓 𝑓 )𝑛 (𝐸 𝑓 ′ 𝑓 ′)𝑛 (𝐸 𝑓 𝑓 ′)𝑠−2𝑛 (2.16)

with numerical coefficients 𝛽𝑠𝑛 that are of no particular interest in this thesis. The
derivation of the 𝛽𝑠𝑛 for the different cases of massive and massless potentials can be
found in [49]. The features of Eq. (2.16), which are important for this thesis because they
are relevant to prove well-definedness and to determine the singularity structure of the
two-point functions (see Chapter 5), are the following:

1. The kernel from Eq. (2.16) is homogeneous of degree 𝜔 = 0 separately in all
variables 𝑝, 𝑒 and 𝑒′.

2. The kernel from Eq. (2.16) only contains denominators (𝑝𝑒)−𝑘− (𝑝𝑒′)−𝑙+ , but no
“mixed denominators” of the form (𝑝𝑒)−1

− (𝑝𝑒)−1
+ , where the same string variable

has different imaginary shifts.

Remark 2.4. Similar to the case of the string-localized potentials, we do not lose infor-
mation about the multi-string-localized potentials 𝐴̃𝜇1...𝜇𝑠 (𝑥, 𝑒1, . . . , 𝑒𝑠) from Remark
2.3 if all the indices are contracted with the same dummy four-vector 𝑓 𝜇 by the symmetry
of the potentials,

𝐴̃
(𝑠)
𝑓
(𝑥, 𝑒1, . . . , 𝑒𝑠) := 𝑓 𝜇1 . . . 𝑓 𝜇𝑠 𝐴̃𝜇1...𝜇𝑠 (𝑥, 𝑒1, . . . , 𝑒𝑠). (2.17)

The average over all permutations of the string variables in the definition of 𝐴̃𝜇1...𝜇𝑠

can be dropped because symmetry is now encoded in the contraction with 𝑓 𝜇. One
might therefore hope that there is a concise formula of similar nature as Eq. (2.16) for
the potentials 𝐴̃𝜇1...𝜇𝑠 . Although this is unknown at present, the important features for
the content of this thesis are clearly there. The kernel of the two-point function of the
string-localized potential arises from contraction of the kernel of the associated field
strength with

𝑞𝜈1...𝜈𝑠
− (𝑝, 𝑒) 𝑞𝜆1...𝜆𝑠

+ (𝑝, 𝑒′) :=
(−𝑖)𝑠𝑒𝜈1 . . . 𝑒𝜈𝑠

(𝑝𝑒)𝑠−
× 𝑖𝑠𝑒′𝜆1 . . . 𝑒′𝜆𝑠

(𝑝𝑒′)𝑠+
(2.18)
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and similarly, the kernel of the multi-string-localized potential arises from contraction
with a symmetrization of

𝑞𝜈1
− (𝑒1) . . . 𝑞𝜈𝑠− (𝑒𝑠) × 𝑞

𝜆1
+ (𝑒′1) . . . 𝑞

𝜆𝑠
+ (𝑒′𝑠). (2.19)

Hence, we already know that the kernel of the multi-string-localized potential 𝐴̃(𝑠)
𝑓

satisfies similar properties as the kernel of the string-localized potential, which are that

1̃. 𝑚𝑀
𝐴̃
(𝑠)
𝑓
, 𝐴̃

(𝑠)
𝑓 ′ (𝑝, 𝑒1, . . . , 𝑒

′
𝑠) is homogeneous of degree 𝜔 = 0 in all variables sepa-

rately, and moreover,

2̃. 𝑚𝑀
𝐴̃
(𝑠)
𝑓
, 𝐴̃

(𝑠)
𝑓 ′ (𝑝, 𝑒1, . . . , 𝑒

′
𝑠) contains no mixed denominators, simply because each

string variable can appear in at most one denominator.

Remark 2.5 (Relation to axial gauges). The new denominators (𝑝𝑒)−1
± are similar to the

denominators that appear in gauge theories with axial or lightcone gauges [45] but there
are important differences.3 First, the two-point functions of string-localized potentials
are treated as distributions in all variables, including the string variables, whereas the
preferred direction in axial gauges is typically assumed to be fixed. The interpretation of
two-point functions as distributions also in the string variables is of great importance for
renormalization, as we shall see in Sections 5.2 to 5.5. The second important difference
is that the string-localized potentials are covariant by Eq. (2.5) while the axial gauge
potentials are not.

2.3 Escort fields
In the case of massive string-localized potentials, there is a hierarchy of fields associated
with the potential of spin 𝑠, which describes the latter’s coupling to string-localized fields
𝑎
(𝑟)
𝜇1...𝜇𝑟 of all smaller spins 𝑟 = 0, 1, . . . , 𝑠 − 1. Writing 𝐴𝜇1···𝜇𝑠 ≡ 𝑎

(𝑠)
𝜇1...𝜇𝑠 , these relations

are given by [49]

𝜕𝜇1𝑎
(𝑟)
𝜇1...𝜇𝑟 = −𝑚𝑎 (𝑟−1)

𝜇2...𝜇𝑟 , 𝜂𝜇1𝜇2𝑎
(𝑟)
𝜇1...𝜇𝑟 = −𝑎 (𝑟−2)

𝜇3...𝜇𝑟 (2.20)

for all 𝑟 ∈ { 1, . . . , 𝑠 } and 𝑟 ∈ { 2, . . . , 𝑠 }, respectively. The fields from Eq. (2.20)
coupled to the string-localized field of spin 𝑠 are called “escort fields”. One can
relate the massive point-localized potential 𝐴P

𝜇1...𝜇𝑠 (𝑥), where P stands for Proca, to the
string-localized potential and its escort fields via

𝐴P
𝜇1...𝜇𝑠 (𝑥) = 𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) +

∑︁
𝑟<𝑠

(−𝑚)−(𝑠−𝑟) 𝑃(𝑟)𝜈1...𝜈𝑟
𝜇1...𝜇𝑠 (𝜕) 𝑎 (𝑟)𝜈1...𝜈𝑟 (𝑥, 𝑒), (2.21)

where the 𝑃(𝑟)𝜈1...𝜈𝑟
𝜇1...𝜇𝑠 (𝜕) are differential operators of order 𝑠 − 𝑟 [49].

3See also [44] and Section 25.4.3 of [62] for further literature on axial and light-cone gauges.
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It is clear from the first relation in Eq. (2.20) that the escort fields of uneven degree
– even and uneven understood in the sense of counting down from 𝑠 – decouple in the
massless limit. On the other hand, the even escort fields stay coupled even in the massless
limit due to the trace relation in Eq. (2.20). Mund, Rehren and Schroer showed that
there is a unique linear combination of the massive string-localized potential and its
even escort fields, which is traceless in the massless limit, and the massless limit of this
combination coincides with the massless string-localized potentials from Eq. (2.2) [49].
These massless string-localized potentials live on the Hilbert space of their field strengths
and thus inherit properties from the latter. They are traceless with respect to any index
pair and have vanishing divergence – remember that they are also axial with respect
to the string variable and symmetric under exchange of any pair of Lorentz indices, as
described in Section 2.1. To summarize,

𝑒𝜇1𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) = 0, 𝜕𝜇1𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) = 0, 𝜂𝜇1𝜇2𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) = 0 at 𝑚 = 0.
(2.22)

The second and third property from Eq. (2.22) can now also be explained by the decoupling
of the massless string-localized potentials from their escort fields. Doing the simple
combinatorics, one sees that all conditions together imply that the massless string-
localized potentials carry 2 degrees of freedom, as is expected from fields transforming
under the massless ±𝑠 Wigner representations. The unphysical degrees of freedom
have been absorbed into the decoupled escort fields. To see this explicitly, note that a
symmetric tensor of rank 𝑠 ≥ 1 in 𝑑 = 4 spacetime dimensions that is also subject to the
axiality condition from Eq. (2.22) has(

𝑠 + 3
𝑠

)
−

(
𝑠 + 2
𝑠 − 1

)
=
𝑠(𝑠 + 3)

2
+ 1 (2.23)

degrees of freedom. The trace condition from Eq. (2.22) removes another (𝑠−2) (𝑠+1)
2 + 1

degrees of freedom, i.e., the number or degrees of freedom of a symmetric and axial
tensor of rank 𝑠 − 2 in four spacetime dimensions,

𝑠(𝑠 + 3)
2

+ 1 −
[
(𝑠 − 2) (𝑠 + 1)

2
+ 1

]
= 2𝑠 + 1. (2.24)

Finally, the divergence condition from Eq. (2.22) removes another 2𝑠 − 1 degrees of
freedom, which is the number of degrees of freedom of a symmetric, traceless and axial
tensor of rank 𝑠 − 1. We are thus left with the desired

2𝑠 + 1 − (2𝑠 − 1) = 2 (2.25)

degrees of freedom.
In the massive case, the even escort fields are related to both the trace and the

divergence,

𝜕𝜇1𝜕𝜇2𝑎
(𝑟)
𝜇1...𝜇𝑟 = 𝑚

2𝑎
(𝑟−2)
𝜇3...𝜇𝑟 = −𝑚2𝜂𝜇1𝜇2𝑎

(𝑟)
𝜇1...𝜇𝑟 . (2.26)
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Therefore, the trace degrees of freedom are not independent and the massive string-
localized potential 𝐴𝜇1...𝜇𝑠 possesses as many degrees of freedom as a symmetric, axial
and traceless tensor field of rank 𝑠. That is, it has the desired

𝑠(𝑠 + 3)
2

+ 1 −
[
(𝑠 − 2) (𝑠 + 1)

2
+ 1

]
= 2𝑠 + 1 (2.27)

degrees of freedom. In particular, the massive string-localized potentials and their
mentioned traceless combinations, which yield the correct massless limit, carry the same
number of degrees of freedom.

One can attempt to set up physical models that are formulated on Hilbert space even
in the massless case by replacing the usual gauge potentials with the string-localized
potentials from Definition 2.1. Programmes of this type have been attacked but are mostly
unfinished in the sense that they have only been verified in low orders and/or tree level of
perturbation theory. Examples are massless Yang-Mills theory [37], whose current state
is presented in Section 6.1 and scalar QED [67], which is not addressed in this thesis.

However, the decoupling of the escort fields and the possibility to formulate perturba-
tion theory with massless particles directly on Hilbert space does not mean that the escort
fields are unimportant in the massless case. It has been pointed out by Buchholz and
collaborators [13] that unphysical degrees of freedom are important in QFT and indeed,
the escort fields reappear in a non-perturbative guise [48, 51]. This topic is discussed in
more detail in Chapter 3.

2.4 The string independence principle
A string dependence of measurable quantities is not observed in experiment and therefore
it is a reasonable requirement that observables must be independent of the string variables.
This principle of string independence (SI) is the SLFT analogue of the gauge invariance
principle in gauge theories.

The requirement that observables, and also quantities that are closely related to them,
are string independent turns out to give strong constraints on string-localized models.
In this thesis, the central quantity subjected to the string independence principle is the
string-localized S-matrix. To be precise, the string-localized analogue of the Dyson series
Eq. (1.7) is required to be string independent in the adiabatic limit at each fixed order
in 𝑔. This is achieved if the string variation of each time-ordered product in the Dyson
series is a total divergence. The details of such a requirement depend on the formulation
of perturbation theory in SLFT and are discussed in Chapter 4, after such a formulation
has been worked out. We then encounter in Chapters 5 and 6 that this form of the SI
principle has many facets:

• At first order, it gives rise to strong constraints on the form of the interaction
Lagrangian of string-localized models.

• At second order and tree level, it constrains the ambiguities of string-localized
propagators. These ambiguities belong to the second category of the renormaliza-
tion freedom inherent to the BEG approach described in Remark 1.1. For example,
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in string-localized QED and massless Yang-Mills theory, the string independence
principle uniquely fixes the propagator of the respective string-localized potentials,
see Sections 5.7.2 and 6.1. The effect of the SI principle on propagators in other
models has not yet been investigated.

• More general, the SI principle exhibits features of a renormalization condition.
That means, it gives constraints on the allowed extensions of time-ordered products
in a string-localized BEG scheme. These constraints resemble Ward identities, for
example, the master Ward identity [25, 26].

The described constraints coming from SI are of similar nature as constraints in the
perturbative gauge theoretic framework of Scharf and collaborators, which originate from
the gauge invariance principle [1, 29,60]. However, it remains unproven whether the SI
principle in SLFT and the gauge invariance principle in the gauge theoretic framework
are formally equivalent.

To implement the string independence principle in perturbation theory, we will later
make use of the fact that the string derivative of the string-localized potentials Eq. (2.2)
is a symmetrized gradient of certain auxiliary fields. To verify this, note that by Eq. (2.9),
we have

𝜕𝑒𝜇
−𝑖

(𝑝𝑒)−
= −𝑖𝑝𝜇

(−𝑖)2

(𝑝𝑒)2
−

⇒ 𝜕𝑒𝜇 𝐼𝑒 𝑓 (𝑥) = 𝐼2𝑒𝜕𝜇 𝑓 (𝑥) (2.28)

for a generic 𝑓 . In Section 5.2, we prove that the distributional product 1
(𝑝𝑒)2−

, which
appears in Eq. (2.28), is indeed well-defined if 𝑒 is spacelike (see Corollary 5.13). In the
case 𝑠 = 1, the Bianchi identity 𝜕𝜅𝐹𝜇𝜈 + cyclic = 0 gives

𝜕𝑒𝜅 𝐴𝜇 (𝑥, 𝑒) = 𝜕𝑒𝜅 𝐼𝑒𝐹𝜇𝜈 (𝑥)𝑒𝜈

= 𝐼2𝑒𝜕𝜅𝐹𝜇𝜈 (𝑥)𝑒𝜈 + 𝐼𝑒𝐹𝜇𝜅 (𝑥)
= 𝐼2𝑒 [𝜕𝜇𝐹𝜅𝜈 + 𝜕𝜈𝐹𝜇𝜅]𝑒𝜈 + 𝐼𝑒𝐹𝜇𝜅 (𝑥)
= 𝜕𝜇 𝐼𝑒𝐴𝜅 (𝑥, 𝑒),

(2.29)

where we have used that 𝐼2𝑒 (𝑒𝜕)𝐹𝜇𝜅 = −𝐼𝑒𝐹𝜇𝜅. Thus, introducing the auxiliary field
𝑤𝜇 (𝑥, 𝑒) := 𝐼𝑒𝐴𝜇 (𝑥, 𝑒), we get that

𝜕𝑒𝜅 𝐴𝜇 (𝑥, 𝑒) = 𝜕𝜇𝑤𝜅 (𝑥, 𝑒). (2.30)

The Bianchi identity holds for any index pair [𝜇𝑖𝜈𝑖], 𝑖 = 1, . . . , 𝑠 of the field strengths
𝐹[𝜇1𝜈2] ...[𝜇𝑠𝜈𝑠] (𝑥) of arbitrary spin respectively helicity 𝑠 and moreover, the chain rule
implies 𝜕𝑒𝜇 𝐼 𝑠𝑒 𝑓 (𝑥) = 𝑠𝐼 𝑠+1

𝑒 𝜕𝜇 𝑓 (𝑥). Consequently, Eq. (2.2) gives

𝜕𝑒𝜅 𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) =
𝑠∑︁
𝑖=1

𝜕𝜇𝑖𝑤𝜇1...𝜇𝑖−1𝜅𝜇𝑖+1...𝜇𝑠 (𝑥, 𝑒) (2.31)

for the string derivative of the string-localized potentials for arbitrary 𝑠 ∈ N, with
the symmetric auxiliary fields 𝑤𝜇1...𝜇𝑠 (𝑥, 𝑒) = 𝐼𝑒𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒). By their definition, the
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auxiliary fields inherit certain properties of the string-localized potentials: the auxiliary
fields 𝑤𝜇1...𝜇𝑠 are axial with respect to 𝑒 and satisfy the Klein-Gordon equation. In
the massless case, they additionally are divergence-free and traceless, while there is a
hierarchy of auxiliary fields of the type Eq. (2.20) in the massive case.



Chapter 3

The hybrid approach to SLFT

The string-localized potential lives on the Hilbert space of its field strength even in the
massless case. Therefore, a pure string-localized QFT, where all (massless) gauge bosons
are replaced by string-localized potentials, is also formulated on Hilbert space. However,
Buchholz and collaborators have pointed out the importance of unphysical degrees of
freedom, which seem to be absent in SLFT, for certain non-perturbative constructions
in QED [13]: in the gauge theoretic framework, the existence of gauge bridges that are
needed to ensure the validity of Gauss’ law in QFT relies on the presence of unphysical
degrees of freedom. Buchholz and collaborators point out that their construction cannot
be formulated solely in terms of the string-localized photon potential, which carries only
physical degrees of freedom.

However, it is not true that there are no unphysical degrees of freedom at all in SLFT.
In Section 2.3, we have encountered the escort fields associated with string-localized
potentials, which carry away the unphysical degrees of freedom in the massless limit of
massive fields [49, 50]. In that sense, the distinction between physical and unphysical
degrees of freedom is very clear in SLFT. The massless string-localized potentials carry
the physical degrees of freedom, the escort fields the unphysical ones. One can lift the
string-localized potentials from Hilbert space to Krein space in the same way as one lifts
the field strength tensors in gauge theories. In this way, one gets relations between the
gauge potential and the string-localized potential [50]. They differ from each other by
gradients of the escort fields.

We constrain our considerations in this section to helicities 𝑠 = 1 and 𝑠 = 2 (because
of their physical relevance in describing photons, gluons and gravitons). The massless
string-localized potential for helicity 𝑠 = 1 will be denoted by 𝐴𝜇 (𝑥, 𝑒), the one for
helicity 𝑠 = 2 by ℎ𝜇𝜈 (𝑥, 𝑒). The corresponding gauge potentials, which we choose to be
in Feynman gauge, get an index “K” standing for “Krein field”. Then, on Krein space,
the string-localized potentials and the gauge potentials differ by operator-valued gauge
transformations,

𝐴𝜇 (𝑥, 𝑒) = 𝐴K
𝜇 (𝑥) + 𝜕𝜇𝜑(𝑥, 𝑒), (3.1a)

ℎ𝜇𝜈 (𝑥, 𝑒) = ℎK
𝜇𝜈 (𝑥) + 𝜕𝜇Φ𝜈 (𝑥, 𝑒) + 𝜕𝜈Φ𝜇 (𝑥, 𝑒) + 𝜕𝜇𝜕𝜈𝜙(𝑥, 𝑒), (3.1b)

where 𝜑(𝑥, 𝑒), Φ𝜇 (𝑥, 𝑒) and 𝜙(𝑥, 𝑒) are the associated escort fields [50, 51]. If 𝐴𝜇 (𝑥, 𝑒)
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is coupled to a conserved current 𝑗 𝜇 (𝑥) (for example to the current of QED or scalar
QED), or if the graviton potential ℎ𝜇𝜈 (𝑥, 𝑒) is coupled to a symmetric and conserved
stress energy tensor 𝑇 𝜇𝜈 (𝑥), then the string-localized and Krein Lagrangian differ by a
total divergence,

𝐿 (𝑥, 𝑒) = 𝐴𝜇 (𝑥, 𝑒) 𝑗 𝜇 (𝑥)
(3.1a)
= 𝐿K(𝑥) + 𝜕𝜇𝑉 𝜇 (𝑥, 𝑒),

𝐿̃ (𝑥, 𝑒) = ℎ𝜇𝜈 (𝑥, 𝑒)𝑇 𝜇𝜈 (𝑥)
(3.1b)
= 𝐿̃K(𝑥) + 𝜕𝜇𝑉̃ 𝜇 (𝑥, 𝑒),

(3.2)

where

𝐿K(𝑥) = 𝐴K
𝜇 (𝑥) 𝑗 𝜇 (𝑥), 𝑉 𝜇 (𝑥, 𝑒) = 𝜑(𝑥, 𝑒) 𝑗 𝜇 (𝑥),

𝐿̃K(𝑥) = ℎK
𝜇𝜈 (𝑥)𝑇 𝜇𝜈 (𝑥), 𝑉̃ 𝜇 (𝑥, 𝑒) = (2Φ𝜈 (𝑥, 𝑒) + 𝜕𝜈𝜙(𝑥, 𝑒)) 𝑇 𝜇𝜈 (𝑥).

(3.3)

More general, we make the following definition.

Definition 3.1. We say that a string-localized Lagrangian 𝐿 (𝑥, 𝑒) and a point-localized
Lagrangian 𝐿K(𝑥) are part of an L-V pair if they differ by the total divergence of some
Wick polynomial 𝑉 𝜇 (𝑥, 𝑒), i.e.,

𝐿 (𝑥, 𝑒) − 𝐿K(𝑥) = 𝜕𝜇𝑉 𝜇 (𝑥, 𝑒). (3.4)

If 𝐿 (𝑥, 𝑒) and 𝐿K(𝑥) are part of an L-V pair, their difference gives rise to a trivial
S-matrix in the adiabatic limit.1 Therefore, the unphysical degrees of freedom in
the examples from Eq. (3.3), do not enter the perturbative expansion of the S-matrix.
The problem of constructing physical models in SLFT then splits into two parts – the
construction of the scattering matrix on Hilbert space and the investigation of non-
perturbative effects arising from the contribution of 𝜕𝜇𝑉 𝜇 (𝑥, 𝑒) on a detour through
Krein space. This double-tracked approach is usually called the “hybrid approach to
SLFT” [48, 51]. Alternatively, one could also say that the hybrid approach allows for the
construction of string-localized models on Hilbert space by splitting the construction into
a point-localized perturbative part and a string-localized non-perturbative part.

Remark 3.2. We say “detour through Krein space” because one can hope to descend
back to Hilbert space after the construction. For QED, this is indeed the case: positivity
is restored by restricting the string variables to be purely spatial, i.e., 𝑒 = (0, ®𝑒), thereby
breaking Lorentz covariance [48, 51]. So far, it is not clear that positivity can be restored
in general models.

3.1 String-localized fields on Krein and Hilbert space
Lifted to Krein space, the massless string-localized potentials for helicities 𝑠 = 1, 2 can
be related to the respective point-localized Krein potentials by Eq.s (3.1a) and (3.1b).

1It is a non-trivial requirement, or rather a renormalization condition in the BEG sense, that a total
divergence gives rise to a trivial S-matrix, see for example [11].
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On Hilbert space, they satisfy the conditions from Eq. (2.22) but it is not clear whether
these conditions are satisfied also on Krein space. In the following, we investigate what
properties of the string-localized potentials (and the field strengths) for helicities 𝑠 = 1, 2
survive the lifting process. For that, we choose the point-localized potentials to be in
Feynman gauge, that is (see for example [60]),

0𝑀
𝐴K,𝐴K

𝜇𝜈 (𝑝) = −𝜂𝜇𝜈,

0𝑀
ℎK,ℎK

𝜇𝜈𝜅𝜆
(𝑝) = 1

2
(𝜂𝜇𝜅𝜂𝜈𝜆 + 𝜂𝜇𝜆𝜂𝜈𝜅 − 𝜂𝜇𝜈𝜂𝜅𝜆).

(3.5)

Before we split our considerations into the separate cases of 𝑠 = 1 and 𝑠 = 2, we formulate
a general property of all fields. The Fourier transform of the two-point functions of all
fields in Eq.s (3.1a) and (3.1b) and of the respective field strengths is supported on the
mass-zero shell. Therefore, they all satisfy the wave equation also on the larger Krein
space,

�𝑋 = 0 for 𝑋 ∈ { 𝐴𝜇, 𝐴K
𝜇 , 𝜑, 𝐹𝜇𝜈; ℎ𝜇𝜈, ℎK

𝜇𝜈,Φ𝜇, 𝜙, 𝐹𝜇𝜅𝜈𝜆 }. (3.6)

3.1.1 Helicity one
On Krein space, the two-point function of the string-localized potential can not only be
obtained from the two-point function of the field strength, but also from the two-point
function of the Krein potential in Feynman gauge [49]. The index of the first Krein field
𝐴K
𝛼 in Eq. (3.5) is hit by a factor 𝐽−𝜇𝜅 (𝑝, 𝑒), the index of the second Krein field by a factor

𝐽+𝜈
𝜆
(𝑝, 𝑒′), where

𝐽
±𝛽
𝛼 (𝑝, 𝑒) := 𝛿 𝛽𝛼 − 𝑝𝛼𝑒

𝛽

(𝑝𝑒)±
, (3.7)

so that

0𝑀
𝐴,𝐴

𝜅𝜆
(𝑝, 𝑒, 𝑒′) = 𝐽−𝜇𝜅 (𝑝, 𝑒)𝐽+𝜈𝜆 (𝑝, 𝑒′)0𝑀

𝐴K,𝐴K

𝜇𝜈 (𝑝). (3.8)

This is in agreement with the result coming from the fact that 𝐴𝜇 and 𝐴K
𝜇 are potentials

for the same field strength,

𝐴𝜇 = 𝐼𝑒𝐹𝜇𝜈𝑒
𝜈 = 𝐼𝑒𝜕𝜇 (𝑒𝐴K) − 𝐼𝑒 (𝑒𝜕)𝐴K

𝜇 = 𝐴K
𝜇 + 𝜕𝜇 𝐼𝑒 (𝑒𝐴K) = 𝐽−𝜅𝜇 𝐴K

𝜅 , (3.9)

where 𝐽−𝛽𝛼 = 𝛿
𝛽
𝛼 + 𝐼𝑒𝜕𝛼𝑒𝛽 is the inverse Fourier transform of 𝐽−𝛽𝛼 . Comparing Eq. (3.9)

to Eq. (3.1a), we can read off a relation between the Krein potential and the escort field,
namely

𝜑(𝑥, 𝑒) = 𝐼𝑒 (𝑒𝐴K). (3.10)

Because 𝑒𝛼𝐽±𝛽𝛼 = 0, the axiality condition from Eq. (2.22) is satisfied also on Krein space.
All fields satisfy the wave equation, from which we can infer that the divergence of the
string-localized potential 𝐴𝜇 (𝑥, 𝑒) is non-vanishing on Krein space,

(𝜕𝐴) = (𝜕𝐴K) + �𝜑 = (𝜕𝐴K) ≠ 0, (3.11)
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since

𝜕𝜇〈〈𝐴K
𝜇 𝐴

K
𝜈 〉〉 = 𝜕𝜇

∫
𝑑𝜇0(𝑝) 𝑒−𝑖(𝑝𝑥) [−𝜂𝜇𝜈] = −𝜕𝜈𝑊0(𝑥) ≠ 0, (3.12)

where𝑊0(𝑥) = −(2𝜋)−2 lim𝜀↓0 [𝑥2− 𝑖𝜀𝑥0]−1 is the two-point function of a massless scalar
Klein-Gordon field. Also the field strength 𝐹𝜇𝜈 has non-vanishing divergence on Krein
space,

𝜕𝜇𝐹𝜇𝜈 = �𝐴
K
𝜈 − 𝜕𝜈 (𝜕𝐴K) = −𝜕𝜈 (𝜕𝐴K) ≠ 0 (3.13)

by virtue of Eq.s (3.11) and (3.12). But the field strength satisfies the Bianchi identity
also on Krein space,

𝜕𝜅𝐹𝜇𝜈 + cyclic = 𝜕𝜅𝜕𝜇𝐴
K
𝜈 − 𝜕𝜅𝜕𝜈𝐴K

𝜇 + 𝜕𝜇𝜕𝜈𝐴K
𝜅 − 𝜕𝜇𝜕𝜅𝐴K

𝜈 + 𝜕𝜈𝜕𝜅𝐴K
𝜇 − 𝜕𝜈𝜕𝜇𝐴K

𝜅 = 0.
(3.14)

A summary comparing the properties of the fields on Hilbert and Krein space can be
found in Table 3.1.

Property Hilbert space Krein space

Wave equation for all fields satisfied satisfied

(𝑒𝐴) = 0 = 0

(𝜕𝐴) = 0 = (𝜕𝐴K) ≠ 0

𝜕𝜇𝐹𝜇𝜈 = 0 = −𝜕𝜈 (𝜕𝐴K) ≠ 0

𝜕𝜅𝐹𝜇𝜈 + cyclic = 0 = 0

Table 3.1: Properties of helicity one fields on Krein and Hilbert space.

3.1.2 Helicity two
There are more escort fields and correspondingly also more unphysical degrees of freedom
for helicity 𝑠 = 2 than for 𝑠 = 1 but the analysis will be similar to the one presented in the
last section. Resembling the case 𝑠 = 1, the escort fields from Eq. (3.1b) can be read off
from the fact that ℎ𝜇𝜈 and ℎK

𝜇𝜈 are potentials for the same field strength,

ℎ𝜇𝜈 = 𝐼
2
𝑒 𝑒
𝜅𝑒𝜆𝐹𝜇𝜅𝜈𝜆 = 𝐼

2
𝑒 𝑒
𝜅𝑒𝜆

(
𝜕𝜅𝜕𝜆ℎ

K
𝜇𝜈 + 𝜕𝜇𝜕𝜈ℎK

𝜅𝜆 − 𝜕𝜇𝜕𝜆ℎK
𝜅𝜈 − 𝜕𝜅𝜕𝜈ℎK

𝜇𝜆

)
= ℎK

𝜇𝜈 + 𝜕𝜇𝜕𝜈 𝐼2𝑒 (𝑒ℎK𝑒) + 𝜕𝜇 𝐼𝑒 (ℎK𝑒)𝜈 + 𝜕𝜈 𝐼𝑒 (ℎK𝑒)𝜇
= 𝐽

−𝜚
𝜇 𝐽−𝜎𝜈 ℎK

𝜚𝜎,

(3.15)
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giving Φ𝜇 = 𝐼𝑒 (ℎK𝑒)𝜇 and 𝜙 = 𝐼2𝑒 (𝑒ℎK𝑒). Also, the two-point function (2.16) of the
string-localized potential ℎ𝜇𝜈 arises from the action of 𝐽±𝛽𝛼 on the two-point function
(3.5) of ℎK

𝜇𝜈 [49, 50], giving

0𝑀
ℎ,ℎ

𝜇𝜈𝜅𝜆
(𝑝, 𝑒, 𝑒′) = 𝐽−𝛼𝜇 (𝑝, 𝑒)𝐽−𝛽𝜈 (𝑝, 𝑒)𝐽+𝜚𝜅 (𝑝, 𝑒′)𝐽+𝜎𝜆 (𝑝, 𝑒′)0𝑀

ℎK,ℎK

𝛼𝛽𝜚𝜎
(𝑝)

=
1
2

[
𝐸𝜇𝜅 (𝑒, 𝑒′)𝐸𝜈𝜆 (𝑒, 𝑒′) + 𝐸𝜈𝜅 (𝑒, 𝑒′)𝐸𝜇𝜆 (𝑒, 𝑒′) (3.16)

−𝐸𝜇𝜈 (𝑒,−𝑒)𝐸𝜅𝜆 (−𝑒′, 𝑒′)
]
.

Since 𝑒𝛼𝐽±𝛽𝛼 = 0, ℎ𝜇𝜈 (𝑥, 𝑒) remains axial with respect to 𝑒𝜇 on Krein space. Writing
the field strength as the (double) curl of the Krein potential, one easily derives that the
Bianchi identity

𝜕𝜚𝐹𝜇𝜅𝜈𝜆 + 𝜕𝜇𝐹𝜅𝜚𝜈𝜆 + 𝜕𝜅𝐹𝜚𝜇𝜈𝜆 = 0 = 𝜕𝜚𝐹𝜇𝜅𝜈𝜆 + 𝜕𝜈𝐹𝜇𝜅𝜆𝜚 + 𝜕𝜆𝐹𝜇𝜅𝜚𝜈 (3.17)
is valid on Krein space. Let us introduce the notation ℎ ≡ tr(ℎ) := 𝜂𝜇𝜈ℎ𝜇𝜈 and
ℎK ≡ tr(ℎK) := 𝜂𝜇𝜈ℎK

𝜇𝜈 for the traces of the string-localized and Krein potential,
respectively. By Eq. (3.5), we have

0𝑀
tr(ℎK),ℎK

𝜅𝜆
(𝑝) = 𝜂𝜇𝜈0𝑀

ℎK,ℎK

𝜇𝜈𝜅𝜆
(𝑝) = −𝜂𝜅𝜆, (3.18)

so 0𝑀
tr(ℎK),ℎK

𝜅𝜆
does not vanish on the mass-zero shell and thus 〈〈ℎKℎK

𝜇𝜈〉〉 ≠ 0, implying
that the trace ℎK is non-zero. One also finds that

0𝑀
tr(ℎ),ℎK

𝜅𝜆
(𝑝, 𝑒) = 𝜂𝜇𝜈𝐽−𝛼𝜇 (𝑝, 𝑒) 𝐽−𝛽𝜈 (𝑝, 𝑒) 0𝑀

ℎK,ℎK

𝛼𝛽𝜚𝜎
(𝑝)

= − 𝑝𝜅𝑒𝜆 + 𝑝𝜆𝑒𝜅(𝑝𝑒)−
+ O(𝑝2)

(3.19)

does not vanish on the mass-shell, meaning that 〈〈ℎ(𝑒)ℎK
𝜇𝜈〉〉 ≠ 0 and thus ℎ = 𝜂𝜇𝜈ℎ𝜇𝜈 ≠ 0

on Krein space. With the same reasoning, one also finds that 𝜕𝜇ℎ𝜇𝜈 ≡ (𝜕ℎ)𝜈 ≠ 0 on
Krein space and trivially, that (𝜕ℎK)𝜈 ≠ 0. From Eq. (3.1b), we can infer

ℎ = ℎK + 2(𝜕Φ), (𝜕ℎ)𝜈 = (𝜕ℎK)𝜈 + 𝜕𝜈 (𝜕Φ),

⇒ 𝜕𝜇
(
ℎ𝜇𝜈 − ℎK

𝜇𝜈

)
=

1
2
𝜕𝜈

(
ℎ − ℎK

)
.

(3.20)

Finally, expressing the field strength as (double) curl of the Krein potential, we find that
neither the Ricci trace 𝜂𝜇𝜈𝐹𝜇𝜅𝜈𝜆 nor the divergence 𝜕𝜇𝐹𝜇𝜅𝜈𝜆 vanishes on Krein space
because

𝜂𝜇𝜈𝐹𝜇𝜅𝜈𝜆 = 𝜕𝜅𝜕𝜆ℎ
K − 𝜕𝜆 (𝜕ℎK)𝜅 − 𝜕𝜆 (𝜕ℎK)𝜅 ≠ 0,

𝜕𝜇𝐹𝜇𝜅𝜈𝜆 = 𝜕𝜅

(
𝜕𝜆 (𝜕ℎK)𝜈 − 𝜕𝜈 (𝜕ℎK)𝜆

)
≠ 0.

(3.21)

A summary comparing the properties of the fields on Hilbert and Krein space can be
found in Table 3.2.
Remark 3.3. For the multi-string-localized potentials from Remark 2.3, one can do
similar considerations that yield relations as displayed in Table 3.2. We do not go into
detail here but the reader should be aware that the proofs in the subsequent Sections 3.4.1
and 3.4.2 apply also to the multi-string-localized potentials.
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Property Hilbert space Krein space

Wave equation for all fields satisfied satisfied

(𝑒ℎ)𝜈 = 0 = 0

(𝜕ℎ)𝜈 = 0 = (𝜕ℎK)𝜈 + 𝜕𝜈 (𝜕Φ) ≠ 0

ℎ = 𝜂𝜇𝜈ℎ𝜇𝜈 = 0 = ℎK + 2(𝜕Φ) ≠ 0

𝜕𝜇𝐹𝜇𝜅𝜈𝜆 = 0 = 𝜕𝜅
(
𝜕𝜆 (𝜕ℎK)𝜈 − 𝜕𝜈 (𝜕ℎK)𝜆

)
≠ 0

𝜂𝜇𝜈𝐹𝜇𝜅𝜈𝜆 = 0 = 𝜕𝜅𝜕𝜆ℎ
K − 𝜕𝜆 (𝜕ℎK)𝜅 − 𝜕𝜆 (𝜕ℎK)𝜅 ≠ 0

Bianchi identity for 𝐹𝜇𝜅𝜈𝜆 satisfied satisfied

Table 3.2: Properties of helicity two fields on Krein and Hilbert space.

3.2 Non-perturbative constructions in SLFT
The interaction Lagrangian of string-localized QED, obtained by inserting the conserved
fermion current 𝑗 𝜇 (𝑥) = 𝜓(𝑥)𝛾𝜇𝜓(𝑥) into Eq.s (3.2) and (3.3), is part of an L-V pair,

𝐴𝜇 (𝑥, 𝑒) 𝑗 𝜇 (𝑥) = 𝐴K
𝜇 (𝑥) 𝑗 𝜇 + 𝜕𝜇 [𝜑(𝑥, 𝑒) 𝑗 𝜇 (𝑥)] . (3.22)

The trivial interaction 𝑞𝜕𝜇 [𝜑(𝑥, 𝑒) 𝑗 𝜇 (𝑥)] = 𝑞𝜕𝜇𝜑(𝑥, 𝑒) 𝑗 𝜇 (𝑥) yields

𝑖𝛾𝜇
[
𝜕𝜇 − 𝑖𝑞𝜕𝜇𝜑(𝑥, 𝑒)

]
𝜓(𝑥) = 𝑚𝜓(𝑥) (3.23)

as equations of motion for the Dirac field 𝜓(𝑥), with the classical solution

𝜓𝑒 (𝑥) = 𝑒𝑖𝑞𝜑(𝑥,𝑒)𝜓0(𝑥), (3.24)

where 𝜓0(𝑥) is the free Dirac field satisfying (𝑖𝛾𝜇𝜕𝜇 − 𝑚)𝜓(𝑥) = 0 [51]. Remembering
that the escort field 𝜑(𝑥, 𝑒) is given by an integral over the Krein potential by Eq. (3.10),
we recognize that 𝜓𝑒 (𝑥) from Eq. (3.24) formally is the same as Mandelstam’s gauge
invariant Ψ(𝑥, 𝑃) from Eq. (1.1). However, 𝜓𝑒 (𝑥) is a classical solution but not a quantum
field. Moreover, the escort field 𝜑(𝑥, 𝑒) is logarithmically divergent in the infrared and
needs to be regularized, for formally

〈〈𝜑(𝑒)𝜑(𝑒′)〉〉(𝑥) = 𝐼𝑒 𝐼−𝑒′𝑒𝜇𝑒′𝜈〈〈𝐴K
𝜇 𝐴

K
𝜈 〉〉(𝑥) = −(𝑒𝑒′)

∫
𝑑𝜇0(𝑝)

𝑒−𝑖𝑝𝑥

(𝑝𝑒)−(𝑝𝑒′)+
, (3.25)

and the right-hand side scales as |𝑝 |−4 with respect to 𝑝 = 0. As expected from the fact
that the escort field lives on Krein space, its two-point function (3.25) is not positive
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definite. Mund, Rehren and Schroer [51] showed that positivity can be restored if one
chooses the string variables to be purely spacelike, that is, 𝑒0 = 𝑒′0 = 0, thereby breaking
Lorentz invariance. In a next step, they split the two-point function in a singular and
a regularized part by introducing an infrared cutoff function 𝑣(𝑝) with 𝑣(0) = 1 and
defining it as a massless limit,

〈〈𝜑(𝑒)𝜑(𝑒′)〉〉(𝑥) = −(𝑒𝑒′) lim
𝑚→0

[∫
𝑑𝜇𝑚 (𝑝)

𝑒−𝑖𝑝𝑥 − 𝑣(𝑝)
(𝑝𝑒)−(𝑝𝑒′)+

+
∫

𝑑𝜇𝑚 (𝑝)
𝑣(𝑝)

(𝑝𝑒)−(𝑝𝑒′)+

]
=: 〈〈𝜑(𝑒)𝜑(𝑒′)〉〉𝑣 (𝑥) + lim

𝑚→0
𝑑𝑚,𝑣 (𝑒, 𝑒′), (3.26)

where 〈〈𝜑(𝑒)𝜑(𝑒′)〉〉𝑣 (𝑥) is the regularized part and where the 𝑥-independent expression
𝑑𝑚,𝑣 (𝑒, 𝑒′) diverges to +∞ in the limit 𝑚 → 0. Starting with this splitting, Mund, Rehren
and Schroer [51] could construct the renormalized exponential of the smeared escort
field, 𝜑(𝑔, 𝑐), where the test function 𝑐, which smears out the string variables, needs to
be of total weight

∫
𝑑3 ®𝑒 𝑐( ®𝑒) = 1:

:𝑒𝑖𝜑(𝑔,𝑐): 𝑣 := lim
𝑚→0

𝑒−
1
2 𝑔̂(0)

2 𝑑𝑚,𝑣 (𝑐,𝑐) :𝑒𝑖𝜑(𝑔,𝑐): . (3.27)

With the regularized exponential from Eq. (3.27) constructed, these authors derived
an uncountable superselection structure corresponding to (then superselected) photon
clouds accompanying the Dirac field, which arises from the fact that 𝑑𝑚,𝑣 (𝑐, 𝑐) diverges
to +∞ in the massless limit unless 𝑐 ≡ 0. Finally, defining 𝑔 = 𝑞𝛿𝑥 = 𝑞𝛿(𝑥 − ·) as
smearing function, they define the vertex operators 𝑉𝑞,𝑐 (𝑥) := :𝑒𝑖𝜑(𝑞𝛿𝑥 ,𝑐): 𝑣 and complete
the construction of the dressed Dirac field

𝜓𝑞,𝑐 (𝑥) := 𝑉𝑞,𝑐 (𝑥) 𝜓0(𝑥). (3.28)

The breaking of Lorentz invariance in their construction is unproblematic since it is
known that photon clouds break Lorentz invariance [34, 51].

Similar constructions to the ones of Mund, Rehren and Schroer in the framework of
QED have been studied by Brüers for the coupling of a string-localized graviton potential
to the SET of a scalar Klein-Gordon field 𝜒(𝑥) but the situation there is less clear [11].
The escort fields of the string-localized graviton field can be combined into a single field
𝛽𝜇 (𝑥, 𝑒) and an analogue of the dressed Dirac field is the shifted field

𝜒𝑞,𝑐 (𝑥) = 𝜒0(𝑥 − 𝑞𝛽(𝑥, 𝑐)), (3.29)

where 𝜒0 is the free field. The shift of 𝜒0 by an operator-valued coordinate transformation
𝑞𝛽(𝑥, 𝑐) as depicted in Eq. (3.29) seems natural from the perspective of general relativity
– forgetting for the moment that the shift is an operator-valued distribution that is in
addition infrared divergent if naively written down as in Eq. (3.29). However, the shifted
field is not the only solution to the problem and work is needed to clarify the ambiguities.
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3.3 Singularity structure of infrared divergences in QED
Together with K.-H. Rehren and F. Tippner, the author of this thesis was able to derive
an analytic representation of the two-point function (3.25) of the escort field 𝜑(𝑥, 𝑒),
identifying the finite and the divergent part explicitly [38]. This makes the undetermined
regularization function 𝑣(𝑝) obsolete and offers the opportunity to directly compute
correlations of the vertex operator and the dressed Dirac field. In this section, we
derive the analytic representation of 〈〈𝜑(𝑒)𝜑(𝑒′)〉〉(𝑥). We start with an investigation of
Minkowski space Gram determinants, which are central building blocks of this two-point
function, in Section 3.3.1. We then perform the actual derivation of the two-point
functions of interest in Section 3.3.2. In Section 3.3.3, the results are related to the vertex
operators 𝑉𝑞,𝑐, which we encountered in Section 3.2.

3.3.1 Gram determinants in Minkowski space
Gram determinants appear at various places in the two-point functions of string-localized
fields to be derived in Section 3.3.2. Their properties over Euclidean space are well-
established and understood. However, their properties and a geometrical interpretation
over Minkowski space are not – and hence are interesting from a purely mathematical per-
spective. Therefore, this section, in which we prove statements about Gram determinants
over Minkowski space, should not be seen as a mere introduction to tools needed for
physical application but also as a list of mathematical results that stand on their own feet.

For a collection of vectors 𝑦1, . . . , 𝑦𝑛, the associated Gram determinant is defined by

det𝑦1...𝑦𝑛 := det
©­­­­«

𝑦2
1 (𝑦2𝑦1) · · · (𝑦𝑛𝑦1)

(𝑦1𝑦2)
. . .

...
...

. . .
...

(𝑦1𝑦𝑛) (𝑦2𝑦𝑛) · · · 𝑦2
𝑛

ª®®®®®¬
. (3.30)

Over Euclidean space, Gram determinants vanish if and only if the appearing vectors
are linearly dependent. In Minkowski space however, Gram determinants vanish on a
bigger set of configurations. A vanishing Gram determinant in Minkowski space implies
that “something” is lightlike but does not always mean that the vectors are linearly
dependent. Of course, the Gram determinant vanishes if the system { 𝑦1, . . . , 𝑦𝑛 } is
linearly dependent but in contrast to the Euclidean case, there is no “only if” in the
Minkowskian case.

Remark 3.4. If the number 𝑛 of vectors exceeds the dimension of the space (or spacetime),
then the system { 𝑦1, . . . , 𝑦𝑛 } must be linearly dependent and consequently, the Gram
determinant det𝑦1...𝑦𝑛 must vanish. This simple observation gives a relation between
scalar products of the involved vectors and proves useful later in Section 5.7.1.

In the following, we restrict our considerations to properties of Minkowski space
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Gram determinants of two or three Minkowski vectors,

det𝑦1𝑦2 = 𝑦
2
1𝑦

2
2 − (𝑦1𝑦2)2, and

det𝑦1𝑦2𝑦3 = 𝑦
2
1𝑦

2
2𝑦

2
3 − 𝑦

2
1(𝑦2𝑦3)2 − 𝑦2

2(𝑦3𝑦1)2 − 𝑦2
3(𝑦1𝑦2)2 + 2(𝑦1𝑦2) (𝑦2𝑦3) (𝑦3𝑦1)

(3.31)

and to the cofactors (signed subdeterminants) of the 3 × 3-determinant,

Λ𝑦𝑖 := (𝑦𝑖𝑦 𝑗 ) (𝑦𝑖𝑦𝑘 ) − 𝑦2
𝑖 (𝑦 𝑗 𝑦𝑘 ), for 𝑖, 𝑗 , 𝑘 pairwise distinct. (3.32)

Let us first prove a relation between the 3 × 3-determinant and some of its cofactors,
which has two interesting corollaries.

Lemma 3.5. We have 𝑦2
1det𝑦1𝑦2𝑦3 = det𝑦1𝑦2det𝑦1𝑦3 − Λ2

𝑦1 .

Proof. The proof is just a short computation,

𝑦2
1det𝑦1𝑦2𝑦3

= (𝑦2
1)

2𝑦2
2𝑦

2
3 − (𝑦2

1)
2(𝑦2𝑦3)2 − 𝑦2

1𝑦
2
2(𝑦3𝑦1)2 − 𝑦2

1𝑦
2
3(𝑦1𝑦2)2 + 2𝑦2

1(𝑦1𝑦2) (𝑦2𝑦3) (𝑦3𝑦1)
=

[
𝑦2

1𝑦
2
2 − (𝑦1𝑦2)2] [

𝑦2
1𝑦

2
3 − (𝑦1𝑦3)2]

− (𝑦2
1)

2(𝑦2𝑦3)2 + 2𝑦2
1(𝑦1𝑦2) (𝑦2𝑦3) (𝑦3𝑦1) − (𝑦1𝑦2)2(𝑦1𝑦3)2

=
[
𝑦2

1𝑦
2
2 − (𝑦1𝑦2)2] [

𝑦2
1𝑦

2
3 − (𝑦1𝑦3)2] − [

(𝑦1𝑦2) (𝑦1𝑦3) − 𝑦2
1(𝑦2𝑦3)

]2

= det𝑦1𝑦2det𝑦1𝑦3 − Λ2
𝑦1 . �

Corollary 3.6 (of Lemma 3.5). Suppose that det𝑦1𝑦2𝑦3 = 0. Then all 2 × 2-determinants
of the form det𝑦𝑖𝑦 𝑗 have the same sign or vanish.

Proof. By Lemma 3.5, we have 𝑦2
1det𝑦1𝑦2𝑦3 = det𝑦1𝑦2det𝑦1𝑦3 −Λ2

𝑦1 , so if det𝑦1𝑦2𝑦3 = 0, we
have

det𝑦1𝑦2det𝑦1𝑦3 = Λ2
𝑦1 ≥ 0,

which means that either sgn det𝑦1𝑦2 = sgn det𝑦1𝑦3 or that at least one of them is zero. By
symmetry of the Gram determinant under exchanging the 𝑦𝑖, we get the claim also for the
other combinations of indices. �

Corollary 3.7 (of Lemma 3.5). Suppose that det𝑦1𝑦2𝑦3 = 0 = det𝑦𝑖𝑦 𝑗 for some 𝑖 ≠ 𝑗 ∈
{1, 2, 3}. then Λ𝑦𝑖 = Λ𝑦 𝑗 = 0.

Proof. Let 𝑖, 𝑗 , 𝑘 ∈ {1, 2, 3} be pairwise distinct. Using Lemma 3.5, we obtain

Λ2
𝑦𝑖
= det𝑦𝑖𝑦 𝑗det𝑦𝑖𝑦𝑘 − 𝑦2

𝑖 det𝑦1𝑦2𝑦3 = 0 − 0,
Λ2
𝑦 𝑗

= det𝑦𝑖𝑦 𝑗det𝑦 𝑗 𝑦𝑘 − 𝑦2
𝑖 det𝑦1𝑦2𝑦3 = 0 − 0,

which proves the claim. �
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The 3 × 3-determinant and its gradients can also be expressed via its minors in the
following way, as can be seen by a short computation.

Lemma 3.8. Let 𝑖, 𝑗 , 𝑘 ∈ {1, 2, 3} be pairwise distinct. We have

det𝑦1𝑦2𝑦3 = det𝑦𝑖𝑦 𝑗 𝑦𝑘
2 + Λ𝑦 𝑗 (𝑦𝑘 𝑦𝑖) + Λ𝑦𝑖 (𝑦𝑘 𝑦 𝑗 ) and

𝜕𝑦𝑘det𝑦1𝑦2𝑦3 = 2
{
det𝑦𝑖𝑦 𝑗 𝑦𝑘 + Λ𝑦 𝑗 𝑦𝑖 + Λ𝑦𝑖 𝑦 𝑗

}
.

(3.33)

Later, we will also need the inverse Gram matrix, which can easily be computed by
use of Lemma 3.8:

Lemma 3.9. Let 𝐺 be the Gram matrix associated with the vectors 𝑦1, 𝑦2 and 𝑦3 and let
det 𝐺 = det𝑦1𝑦2𝑦3 ≠ 0. Then

𝐺−1 =
1

det𝑦1𝑦2𝑦3

©­«
det𝑦2𝑦3 Λ𝑦3 Λ𝑦2

Λ𝑦3 det𝑦1𝑦3 Λ𝑦1

Λ𝑦2 Λ𝑦1 det𝑦1𝑦2

ª®¬ . (3.34)

The vanishing of Gram determinants over Minkowski space is related to the gradients
𝜕𝑦𝑘det𝑦1𝑦2𝑦3 by the following lemma.

Lemma 3.10. Let det𝑦1𝑦2𝑦3 = 0, then 𝜕𝑦𝑘det𝑦1𝑦2𝑦3 is lightlike for all 𝑘 ∈ {1, 2, 3}.
Similarly, let det𝑦1𝑦2 = 0, then 𝜕𝑦𝑘det𝑦1𝑦2 is lightlike for 𝑘 = 1, 2.

Proof. Let 𝑤𝑘 := 𝜕𝑦𝑘det𝑦1𝑦2𝑦3 . Since

(𝑦𝑖𝜕𝑦𝑘 )det𝑦1𝑦2𝑦3 = 2𝛿𝑖𝑘det𝑦1𝑦2𝑦3 = 0 (3.35)

if det𝑦1𝑦2𝑦3 = 0, Lemma 3.8 gives 𝑤𝑘2 = 2det𝑦𝑖𝑦 𝑗det𝑦1𝑦2𝑦3 = 0, where 𝑖, 𝑗 , 𝑘 are pairwise
distinct. The proof is similar for the 2 × 2 determinant. �

Most probably, Lemma 3.10 can easily be generalized to det𝑦1...𝑦𝑛 but only properties
of det𝑦1𝑦2𝑦3 and det𝑦1𝑦2 are of physical interest in this thesis. Lemma 3.10 is in some
sense the Minkowski space generalization of the “if and only if” between the vanishing of
the Euclidean Gram determinant and the linear dependency of the appearing Euclidean
vectors.

Of particular interest for SLFT is the setup where some of the vectors are spacelike.
For spacelike string variables 𝑒1, 𝑒2 ∈ 𝐻, we will encounter the determinants det𝑥𝑒𝑖 ,
det𝑒1𝑒2 and det𝑥𝑒1𝑒2 . Such determinants have more properties than general ones, which
we investigate in the following. We start by proving the following statement about a
non-zero and two non-lightlike vectors.

Lemma 3.11. Let 𝑦1 ≠ 0 and let 𝑦2 and 𝑦3 have non-zero Minkowski square. Suppose
further that det𝑦1𝑦2𝑦3 = 0, det𝑦1𝑦2 = 0 and det𝑦2𝑦3 = 0. Then the set {𝑦1, 𝑦2, 𝑦3} is linearly
dependent.
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Proof. Since 𝑦2
2 ≠ 0 and 𝑦2

3 ≠ 0 by assumption, we can define the vectors

𝑣 := 𝑦1 −
(𝑦1𝑦2)
𝑦2

2
𝑦2, 𝑤 := 𝑦2 −

(𝑦2𝑦3)
𝑦2

3
𝑦3. (3.36)

It is easy to check that 𝑣2 =
det𝑦1𝑦2
𝑦2

2
= 0 and 𝑤2 =

det𝑦2𝑦3
𝑦2

3
= 0. Moreover,

(𝑣𝑤) = (𝑦2𝑦3)
𝑦2

2𝑦
2
3

(
(𝑦2𝑦3) (𝑦1𝑦2) − 𝑦2

2(𝑦1𝑦3)
)
=

(𝑦2𝑦3)
𝑦2

2𝑦
2
3
Λ𝑦2 = 0 (3.37)

by Corollary 3.7. Hence, 𝑣 and 𝑤 are both lightlike and Minkowski-orthogonal to each
other. This means that either one of them is zero or they are both non-zero but linearly
dependent. If 𝑣 = 0, then 𝑦1 and 𝑦2 are linearly dependent, if 𝑤 = 0, then 𝑦2 and 𝑦3 are
linearly dependent. If 𝑣 and 𝑤 are non-zero but linearly dependent, 𝜆𝑣 + 𝜇𝑤 = 0 for
𝜆, 𝜇 ≠ 0, then

𝜇𝑦1 +
(
𝜆 − 𝜇 (𝑦1𝑦2)

𝑦2
2

)
𝑦2 − 𝜆

(𝑦2𝑦3)
𝑦2

3
𝑦3 = 0, (3.38)

which means that 𝑦1, 𝑦2 and 𝑦3 are linearly dependent. �

While det𝑦1𝑦2 can be exchanged with det𝑦1𝑦3 in the previous Lemma 3.11 by symmetry
of the assumptions under the exchange 𝑦2 ↔ 𝑦3, it is crucial that we require det𝑦2𝑦3 = 0,
i.e., it is crucial that the 2 × 2 sub-determinant of the two non-lightlike vectors vanishes.
To see that the statement is in general not true if we require det𝑦1𝑦2 = det𝑦1𝑦3 = 0
instead of det𝑦1𝑦2 = det𝑦2𝑦3 = 0, we can choose a lightlike 𝑦1 and find 𝑦2, 𝑦3 that form a
counterexample. For example, take

𝑦1 =

©­­­«
1
0
0
1

ª®®®¬ , 𝑦2 =

©­­­«
0
1
0
0

ª®®®¬ and 𝑦3 =

©­­­«
0
0
1
0

ª®®®¬ .
We have 𝑦2

1 = 0 = (𝑦1𝑦2) = (𝑦1𝑦3) = (𝑦2𝑦3), which yields

det𝑦1𝑦2𝑦3 = det𝑦1𝑦2 = det𝑦1𝑦3 = 0, det𝑦2𝑦3 = 1,

but clearly, the set {𝑦1, 𝑦2, 𝑦3} is not linearly dependent.

Lemma 3.12. Let 𝑦1 ≠ 0, let 𝑦2 and 𝑦3 have non-zero Minkowski square and suppose
that the set {𝑦1, 𝑦2, 𝑦3} is not linearly dependent. Then

©­«
𝜕𝑦1det𝑦1𝑦2𝑦3

𝜕𝑦2det𝑦1𝑦2𝑦3

𝜕𝑦3det𝑦1𝑦2𝑦3

ª®¬ ≠
©­«
0
0
0

ª®¬ . (3.39)
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Proof. By Lemma 3.8, we can write

©­«
𝜕𝑦1det𝑦1𝑦2𝑦3

𝜕𝑦2det𝑦1𝑦2𝑦3

𝜕𝑦3det𝑦1𝑦2𝑦3

ª®¬ = 2 ©­«
det𝑦2𝑦3 Λ𝑦3 Λ𝑦2

Λ𝑦3 det𝑦1𝑦3 Λ𝑦1

Λ𝑦2 Λ𝑦1 det𝑦1𝑦2

ª®¬ ©­«
𝑦1
𝑦2
𝑦3

ª®¬ . (3.40)

Since 𝑦1, 𝑦2 and 𝑦3 are linearly independent, it follows that all 2 × 2 sub-determinants
must vanish. But then Lemma 3.11 implies that 𝑦1, 𝑦2 and 𝑦3 are linearly dependent,
which contradicts our assumption. �

We have now proven two statements about Gram determinants if two of the appearing
vectors are non-lightlike. Assuming that these vectors are spacelike, we can make a
statement about the sign of the 2 × 2 subdeterminants of det𝑦1𝑦2𝑦3 , provided the system
{ 𝑦1, 𝑦2, 𝑦3 } is not linearly dependent.

Lemma 3.13. Let 𝑦1 ≠ 0, 𝑦2
2 < 0 and 𝑦2

3 < 0, det𝑦1𝑦2𝑦3 = 0 and suppose that the set
{𝑦1, 𝑦2, 𝑦3} is not linearly dependent. Then det𝑦𝑖𝑦 𝑗 ≥ 0 for all 𝑖, 𝑗 .

Proof. Since det𝑦1𝑦2𝑦3 = 0, all vectors 𝑤𝑖 := 𝜕𝑦𝑖det𝑦1𝑦2𝑦3 are lightlike by Lemma 3.10.
We define the vectors

𝑣1 := 𝑦2 −
(𝑦2𝑦3)
𝑦2

3
𝑦3, 𝑣2 := 𝑦1 −

(𝑦1𝑦3)
𝑦2

3
𝑦3, 𝑣3 := 𝑦1 −

(𝑦1𝑦2)
𝑦2

2
𝑦2 (3.41)

with 𝑣1
2 = 1

𝑦2
3
det𝑦2𝑦3 , 𝑣2

2 = 1
𝑦2

3
det𝑦1𝑦3 and 𝑣3

2 = 1
𝑦2

2
det𝑦1𝑦2 . Moreover, since

(𝑦𝑖𝜕𝑦 𝑗 )det𝑦1𝑦2𝑦3 = 2𝛿𝑖 𝑗det𝑦1𝑦2𝑦3 = 0 (3.42)

if det𝑦1𝑦2𝑦3 = 0, we have that (𝑣𝑖𝑤 𝑗 ) = 0 for all 𝑖, 𝑗 . Suppose now that one of the
determinants det𝑦𝑖𝑦 𝑗 is negative. Then the vector 𝑣𝑘 , where 𝑘 ∉ {𝑖, 𝑗} is timelike since
𝑦2 and 𝑦3 are spacelike. But then (𝑣𝑘𝑤𝑙) = 0 for all 𝑙 = 1, 2, 3 implies that all 𝑤𝑙 are
actually the zero-vector because a timelike vector cannot be Minkowski-orthogonal to a
non-zero lightlike vector. Hence the set {𝑦1, 𝑦2, 𝑦3} would be linearly dependent since 𝑤𝑙
are linear combinations of 𝑦1, 𝑦2 and 𝑦3, which is a contradiction to the assumption. �

The statement from Lemma 3.13 that the determinants det𝑦𝑖𝑦 𝑗 are non-negative in the
case when det𝑦1𝑦2𝑦3 = 0 but when the vectors 𝑦1, 𝑦2 and 𝑦3 are not linearly dependent
(and two of them are spacelike) is relevant for the 𝑖𝜀-prescription of the string-localized
photon propagator. This will become clear in Section 3.3.4.

3.3.2 The escort field two-point function in configuration space
In this section, we have to deal with logarithms and square roots of complex variables.
We choose their branch cuts along the negative real axis. Let 𝑊0(𝑥) be the two-point
function of a massless scalar Klein-Gordon field, that is

𝑊0(𝑥) :=
∫

𝑑𝜇0(𝑝) 𝑒−𝑖𝑝𝑥 = − 1
(2𝜋)2 lim

𝜀↓0

1
(𝑥0 − 𝑖𝜀)2 − |®𝑥 |2

= − 1
(2𝜋)2 lim

𝜀↓0

1
𝑥2 − 𝑖𝜀𝑥0 .

(3.43)
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The two-point function of the massless Krein potential of helicity 𝑠 = 1 in Feynman
gauge is 〈〈𝐴K

𝜇 𝐴
K
𝜈 〉〉(𝑥) = −𝜂𝜇𝜈𝑊0(𝑥), giving the formal and infrared divergent two-point

function

〈〈𝜑(𝑒)𝜑(𝑒′)〉〉(𝑥) = −(𝑒𝑒′)𝐼𝑒 𝐼−𝑒′𝑊0(𝑥) (3.44)

of the escort field 𝜑(𝑒) = 𝐼𝑒 (𝐴K𝑒). To derive an explicit representation of Eq. (3.44), we
start by computing the single string integral 𝐼𝑒𝑊0(𝑥).

Lemma 3.14. Let 𝑒 ∈ 𝐻. The single string integral 𝐼𝑒𝑊0(𝑥) over𝑊0(𝑥) is given by

(2𝜋)2𝐼𝑒𝑊0(𝑥) =
1
2

lim
𝜀↓0

ln
(
−(𝑥𝑒) +

√︁
−det𝑥𝜀𝑒

)
− ln

(
−(𝑥𝑒) −

√︁
−det𝑥𝜀𝑒

)
√︁
−det𝑥𝜀𝑒

=: 𝑓 (𝑥, 𝑒),

(3.45)

where the Gram determinant det𝑥𝜀𝑒 = (𝑥2 − 𝑖𝜀𝑥0)𝑒2 − (𝑥𝑒)2 contains an imaginary shift.
Moreover, 𝑓 (𝑥, 𝑒) is independent of the branch of the complex square root.

Remark 3.15. Note the formal symmetry of 𝑓 (𝑥, 𝑒) under the exchange 𝑥 ↔ 𝑒, which
can be understood by performing a change of variables 𝑠 → 1

𝑠
in the integral∫ ∞

0
𝑑𝑠

1
(𝑥 + 𝑠𝑒)2 − 𝑖𝜀(𝑥0 + 𝑠𝑒0)

. (3.46)

Proof (see also [38] for an alternative proof). The spacelike string variable 𝑒 ∈ 𝐻 can
be boosted to a purely spatial vector (0, ®𝑒)𝑇 and because the integrated two-point function
𝐼𝑒𝑊0(𝑥) is Lorentz invariant by invariance of the measure 𝑑𝜇0(𝑝),

𝐼Λ𝑒𝑊0(Λ𝑥) =
∫ ∞

0
𝑑𝑠

∫
𝑑𝜇0(𝑝) 𝑒−𝑖𝑝Λ(𝑥+𝑠𝑒) =

∫ ∞

0
𝑑𝑠

∫
𝑑𝜇0(Λ𝑝) 𝑒−𝑖𝑝(𝑥+𝑠𝑒)

= 𝐼𝑒𝑊0(𝑥),

it is sufficient to compute 𝐼𝑒𝑊0(𝑥) in a Lorentz frame where 𝑒0 = 0. Let 𝑢 = (1, ®0)𝑇 so
that𝑊0(𝑥) = lim𝜀↓0 [(𝑥 − 𝑖𝜀𝑢)2]−1, then in a frame with 𝑒0 = 0, we have

(2𝜋)2𝐼𝑒𝑊0(𝑥) = − lim
𝜀↓0

∫ ∞

0
𝑑𝑠

1
(𝑥 − 𝑖𝜀𝑢)2 + 2𝑠(𝑥𝑒) + 𝑠2𝑒2

= −𝑒2 lim
𝜀↓0

∫ ∞

0
𝑑𝑠

1
(𝑒2𝑠 + (𝑥𝑒))2 + det𝑥𝜀𝑒

.

(3.47)

To perform the integral, we decompose the denominator in Eq. (3.47). This means taking
the square root of the complex determinant −det𝑥𝜀𝑒. We proceed without specifying
the branch of the square root and after the computation, we will see that the result is
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independent of the branch. We then have

(2𝜋)2𝐼𝑒𝑊0(𝑥) = lim
𝜀↓0

1
2
√︁
−det𝑥𝜀𝑒

∫ ∞

0
𝑑𝑠

1

𝑠 + (𝑥𝑒)+
√
−det𝑥𝜀𝑒
𝑒2

− 1

𝑠 + (𝑥𝑒)−
√
−det𝑥𝜀𝑒
𝑒2

= − lim
𝜀↓0

ln
(
(𝑥𝑒)+

√
−det𝑥𝜀𝑒
𝑒2

)
− ln

(
(𝑥𝑒)−

√
−det𝑥𝜀𝑒
𝑒2

)
2
√︁
−det𝑥𝜀𝑒

= lim
𝜀↓0

ln
(
−(𝑥𝑒) +

√︁
−det𝑥𝜀𝑒

)
− ln

(
−(𝑥𝑒) −

√︁
−det𝑥𝜀𝑒

)
2
√︁
−det𝑥𝜀𝑒

,

(3.48)

where the last transformation follows because 𝑒2 = −|𝑒2 | and the positive factor |𝑒2 |
cancels in the difference of the two logarithms. The independence of the branch of the
square root follows because numerator and denominator of the last version of Eq. (3.48)
change sign simultaneously under a change of the branch. �

Remark 3.16. Note that the difference of two logarithms in the distribution 𝑓 (𝑥, 𝑒) is not
necessarily the logarithm of the quotient of the arguments since we deal with complex
logarithms. To make the arguments of the logarithms dimensionless, one can for example
insert a positive denominator√︁

| (𝑥2 − 𝑖𝜀𝑥0)𝑒2 | =
√︁
|𝑥2𝑒2 − 𝑖𝜀𝑒2𝑥0 | (3.49)

into both logarithms.

The well-definedness of 𝑓 (𝑥, 𝑒) = (2𝜋)2𝐼𝑒𝑊0(𝑥) as a distribution over R1+3 × 𝐻 is
easier to prove in momentum space. We postpone this proof to Section 5.3. The double
integral Eq. (3.44), however, is infrared divergent and not well-defined as it stands. To
give meaning to it, we compute the cutoff integral 𝐼𝑎𝑒2 𝐼𝑒1𝑊0(𝑥), with 𝑒1 = 𝑒, 𝑒2 = −𝑒′
and where 𝐼𝑎𝑒2 stands for a string integration with the finite upper integral border 𝑎 > 0.
Now, the computation for general spacelike string variables is quite cumbersome and
two spacelike vectors can in general not be boosted into a purely spatial plane. However,
for the application to the Mund-Rehren-Schroer construction, only purely spatial string
variables with 𝑒0

1 = 𝑒0
2 = 0 are needed. Therefore, we restrict our discussion to that case.

The double integral contains dilogarithm functions of complex arguments. Since the
dilogarithm is usually not considered a standard function, we display its definition,

Li2(𝑧) :=
∫ 𝑧

0
𝑑𝑡

− ln(1 − 𝑡)
𝑡

, (3.50)

with a branch cut along [1,∞). Inside the circle |𝑧 | < 1, it is given by a power series

Li2(𝑧) =
∞∑︁
𝑛=1

𝑧𝑛

𝑛2 , for |𝑧 | < 1. (3.51)
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The dilogarithm satisfies several functional equations, some of which we employ during
the computation for the cutoff integral 𝐼𝑎𝑒2 𝐼𝑒1𝑊0(𝑥). We do not give an introduction to
properties of the dilogarithm at this point and refer to the literature, e.g. [80], for further
details. We are now ready to prove the following statement.

Theorem 3.17. Let 𝑒1 and 𝑒2 be purely spatial, that is, 𝑒0
1 = 𝑒0

2 = 0, linearly independent
with 𝑒2

1 = 𝑒2
2 = −1 and denote the angle between ®𝑒1 and ®𝑒2 by 𝛾 ∈ (0, 𝜋), so that

det𝑒1𝑒2 = sin2 𝛾 ≠ 0. Let further 𝑢 = (1, ®0)𝑇 . Then

𝐼𝑎𝑒2 𝐼𝑒1𝑊0(𝑥) = lim
𝜀↓0

1
(2𝜋)2

[
1
2
𝑓 (𝑒1, 𝑒2) ln

(
4(𝑎𝑒2)2

(𝑥 − 𝑖𝜀𝑢)2

)
+ 𝐻 (𝑥, 𝑒1, 𝑒2)

(𝑒1𝑒2)

]
+ O(𝑎−1),

(3.52)

where 𝑓 (𝑒1, 𝑒2) is the distribution 𝑓 from Lemma 3.14 restricted to the set (S2)2 of
two purely spatial unit vectors, given by 𝑓 (𝑒1, 𝑒2) = 𝛾

sin 𝛾 , and where 𝐻 (𝑥, 𝑒1, 𝑒2) is the
distribution

𝐻 = − cos 𝛾
2 sin 𝛾

𝛾 ln
(
sin4 𝛾

𝐷

)
+ 𝜋(𝜁1 + 𝜁2) −

𝑖

2

Li2
(
𝑒𝑖𝛾𝑒𝜁1𝑒𝜁2

) + (𝑒𝜁1 ↔ −𝑒−𝜁1)
+ (𝑒𝜁2 ↔ −𝑒−𝜁2)
− (𝑒𝑖𝛾 ↔ 𝑒−𝑖𝛾)


 ,

which is homogeneous of degree 𝜔 = 0 in all three variables 𝑥, 𝑒1 and 𝑒2 and where

𝐷 :=
det𝑥𝜀𝑒1𝑒2

(𝑥 − 𝑖𝜀𝑢)2𝑒2
1𝑒

2
2
, ±𝑒±𝜁𝑖 :=

Λ𝑒𝑖 ±
√︁

det𝑒1𝑒2 det𝑥𝜀𝑒𝑖√︃
𝑒2
𝑖
det𝑥𝜀𝑒1𝑒2

(3.53)

with Λ𝑒𝑖 as in Eq. (3.32) and with the subscript 𝜀 in the determinants indicating that 𝑥2

is to be understood as (𝑥 − 𝑖𝜀𝑢)2.

The proof is similar to the one given in our paper [38]. However, in the framework of
this thesis, we display all details of the computation, which have partially been omitted in
the paper, where conciseness is more important.

Proof. The cutoff double integral is given by a finite line integral over the distribution
𝑓 (𝑥, 𝑒1) from Lemma 3.14,

𝐼𝑎𝑒2 𝐼𝑒1𝑊0(𝑥) =
1
2

∫ 𝑎

0
𝑑𝑠

ln
(
−(𝑥𝑒1) − 𝑠(𝑒1𝑒2) +

√︁
−det(𝑥+𝑠𝑒2)𝜀𝑒1

)
√︁
−det(𝑥+𝑠𝑒2)𝜀𝑒1

−
ln

(
−(𝑥𝑒1) − 𝑠(𝑒1𝑒2) −

√︁
−det(𝑥+𝑠𝑒2)𝜀𝑒1

)
√︁
−det(𝑥+𝑠𝑒2)𝜀𝑒1

.

(3.54)

To compute this integral, we first assume that the component 𝑥⊥ of 𝑥 perpendicular to 𝑒1
and 𝑒2 is spacelike. In such a case, there is a Lorentz boost Λ such that (Λ𝑥)0 = 0 and
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Λ𝑒𝑖 = 𝑒𝑖 for 𝑖 = 1, 2, i.e., we can assume 𝑥 to be purely spatial as well. Then, because all
appearing vectors are purely spatial, we have

𝑒2
𝑖 det𝑥𝑒1𝑒2 ≥ 0 and det𝑦𝑖𝑦 𝑗 ≥ 0 for 𝑦𝑖, 𝑦 𝑗 ∈ { 𝑥, 𝑒1, 𝑒2 }, (3.55)

and consequently, Lemma 3.5 gives |det𝑥𝑒𝑖det𝑒1𝑒2 | ≥ |Λ𝑒𝑖 |, so that the variables 𝜁𝑖 defined
in Eq. (3.53) are real. A short computation shows that

det(𝑥+𝑠𝑒2)𝑒1 =
[det𝑒1𝑒2𝑠 − Λ𝑒1]2 + 𝑒2

1det𝑥𝑒1𝑒2

det𝑒1𝑒2

=:
det𝑒1𝑒2

Γ2
1

[
1 + (𝑠Γ1 + Γ2)2] , (3.56)

where we have defined

Γ1 :=
det𝑒1𝑒2√︃
𝑒2

1det𝑥𝑒1𝑒2

and Γ2 := −
Λ𝑒1√︃

𝑒2
1det𝑥𝑒1𝑒2

, (3.57)

with Γ1 being non-negative due to Eq. (3.55). Thus, we can perform a change of the
integration variable according to

𝐶 (𝑠) = 𝑠Γ1 + Γ2 +
√︁

1 + (𝑠Γ1 + Γ2)2

with 𝐶 (𝑠)−1 = −(𝑠Γ1 + Γ2) +
√︁

1 + (𝑠Γ1 + Γ2)2.
(3.58)

Note that both 𝐶 (𝑠) and 𝐶 (𝑠)−1 are positive for real Γ𝑖. Using that Γ1 is non-negative
and that the 𝜁𝑖 are real, we find

𝑓 (𝑥 + 𝑠𝑒2, 𝑒1) =
Γ1√︁

det𝑒1𝑒2


ln

[
𝑒−𝜁2
2Γ1

(1 + 𝑒𝑖𝛾𝑒𝜁2𝐶 (𝑠)) (1 − 𝑒−𝑖𝛾𝑒𝜁2𝐶 (𝑠)−1)
]

𝑖[𝐶 (𝑠) + 𝐶 (𝑠)−1]

−
ln

[
𝑒−𝜁2
2Γ1

(1 + 𝑒−𝑖𝛾𝑒𝜁2𝐶 (𝑠)) (1 − 𝑒𝑖𝛾𝑒𝜁2𝐶 (𝑠)−1)
]

𝑖[𝐶 (𝑠) + 𝐶 (𝑠)−1]


=

Γ1√︁
det𝑒1𝑒2

{
ln

[
(1 + 𝑒𝑖𝛾𝑒𝜁2𝐶 (𝑠)) (1 − 𝑒−𝑖𝛾𝑒𝜁2𝐶 (𝑠)−1)

]
𝑖[𝐶 (𝑠) + 𝐶 (𝑠)−1]

−
ln

[
(1 + 𝑒−𝑖𝛾𝑒𝜁2𝐶 (𝑠)) (1 − 𝑒𝑖𝛾𝑒𝜁2𝐶 (𝑠)−1)

]
𝑖[𝐶 (𝑠) + 𝐶 (𝑠)−1]

}
.

(3.59)

Writing the double integral in the new integration variable yields∫ 𝑎

0
𝑑𝑠 𝑓 (𝑥 + 𝑠𝑒2, 𝑒1) =

1
2𝑖

√︁
det𝑒1𝑒2

∫ 𝐶 (𝑎)

𝐶 (0)

𝑑𝐶

𝐶

{
ln

[
(1 + 𝑒𝑖𝛾𝑒𝜁2𝐶) (1 − 𝑒−𝑖𝛾𝑒𝜁2𝐶−1)

]
− ln

[
(1 + 𝑒−𝑖𝛾𝑒𝜁2𝐶) (1 − 𝑒𝑖𝛾𝑒𝜁2𝐶−1)

]}
. (3.60)
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Using the definition of the dilogarithm Eq. (3.50), we obtain∫ 𝑎

0
𝑑𝑠 𝑓 (𝑥 + 𝑠𝑒2, 𝑒1) =

Li2(𝑒−𝑖𝛾𝑒𝜁2𝐶−1) − Li2(−𝑒𝑖𝛾𝑒𝜁2𝐶) − (𝑒𝑖𝛾 ↔ 𝑒−𝑖𝛾)
2𝑖

√︁
det𝑒1𝑒2

�����𝐶 (𝑎)
𝐶 (0)

,

(3.61)

where we are allowed to apply the logarithm law to relate the sum of derivatives of the
dilogarithm to logarithms of products because we do not cross any branch cuts. Inserting
𝐶 (0)±1 = 𝑒∓𝜁1 , the contribution of the lower boundary of the integral (3.61) reads

𝑖
[
Li2(𝑒−𝑖𝛾𝑒𝜁2𝑒𝜁1) − Li2(−𝑒𝑖𝛾𝑒𝜁2𝑒−𝜁1) − Li2(𝑒𝑖𝛾𝑒𝜁2𝑒𝜁1) + Li2(−𝑒−𝑖𝛾𝑒𝜁2𝑒−𝜁1)

]
2
√︁

det𝑒1𝑒2

. (3.62)

To relate Eq. (3.62) to the form presented in the theorem, we need the functional
identity [80]

Li2(𝑧) + Li2
(
1
𝑧

)
= −𝜋

2

6
− 1

2
ln2(−𝑧) (3.63)

of the dilogarithm. With the help of this identity and splitting the sum of dilogarithms in
Eq. (3.62) in a symmetric and and antisymmetric part with respect to the simultaneous
exchange of 𝑒±𝜁1 ↔ −𝑒∓𝜁1 and 𝑒±𝜁2 ↔ −𝑒∓𝜁2 , we obtain

Li2(𝑒−𝑖𝛾𝑒𝜁2𝑒𝜁1) − Li2(−𝑒𝑖𝛾𝑒𝜁2𝑒−𝜁1) − Li2(𝑒𝑖𝛾𝑒𝜁2𝑒𝜁1) + Li2(−𝑒−𝑖𝛾𝑒𝜁2𝑒−𝜁1)

= − 1
2

Li2
(
𝑒𝑖𝛾𝑒𝜁1𝑒𝜁2

) + (𝑒𝜁1 ↔ −𝑒−𝜁1)
+ (𝑒𝜁2 ↔ −𝑒−𝜁2)
− (𝑒𝑖𝛾 ↔ 𝑒−𝑖𝛾)


+ 1

4
{
ln2(−𝑒𝑖𝛾𝑒𝜁2𝑒𝜁1) − ln2(𝑒𝑖𝛾𝑒−𝜁2𝑒𝜁1) − ln2(−𝑒𝑖𝛾𝑒−𝜁2𝑒−𝜁1) + ln2(𝑒𝑖𝛾𝑒𝜁2𝑒−𝜁1)

}
(3.64)

and the last line in Eq. (3.64) is nothing but

1
4

{[
ln(−𝑒𝑖𝛾) + (𝜁1 + 𝜁2)

]2 −
[
ln(𝑒𝑖𝛾) + (𝜁1 − 𝜁2)

]2

−
[
ln(−𝑒𝑖𝛾) − (𝜁1 + 𝜁2)

]2 +
[
ln(𝑒𝑖𝛾) − (𝜁1 − 𝜁2)

]2
}

= (𝜁1 + 𝜁2) ln(−𝑒𝑖𝛾) − ln(𝑒𝑖𝛾) (𝜁1 − 𝜁2)
= − 𝑖(𝜋 − 𝛾) (𝜁1 + 𝜁2) − 𝑖𝛾(𝜁1 − 𝜁2).

(3.65)

Thus, the full contribution of the lower boundary is

− 𝑖

4 sin 𝛾

Li2
(
𝑒𝑖𝛾𝑒𝜁1𝑒𝜁2

) + (𝑒𝜁1 ↔ −𝑒−𝜁1)
+ (𝑒𝜁2 ↔ −𝑒−𝜁2)
− (𝑒𝑖𝛾 ↔ 𝑒−𝑖𝛾)

 + (𝜋 − 𝛾) (𝜁1 + 𝜁2) + 𝛾(𝜁1 − 𝜁2)
2 sin 𝛾

. (3.66)
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For large values of 𝑎, we have

𝐶 (𝑎) = 2Γ1𝑎 + 2Γ2 + O(𝑎−1) and 𝐶 (𝑎)−1 = O(𝑎−1) (3.67)

and by the functional identity Eq. (3.63) and the power series representation (3.51), the
dilogarithm satisfies

Li2
(
1
𝑧

)
= O(|𝑧 |−1) and Li2(𝑧) = −𝜋

2

6
− 1

2
ln2(−𝑧) − O(|𝑧 |−1) for |𝑧 | > 1.

(3.68)

Hence, the upper boundary of the double integral Eq. (3.61) is given by

1
4𝑖

ln2(𝑒𝑖𝛾𝑒𝜁2𝐶 (𝑎)) − ln2(𝑒−𝑖𝛾𝑒𝜁2𝐶 (𝑎))√︁
det𝑒1𝑒2

+ O(𝑎−1)

=
𝛾

sin 𝛾
[𝜁2 + ln(𝐶 (𝑎))] + O(𝑎−1)

(3.69)

so that

(2𝜋)2𝐼𝑎𝑒2 𝐼𝑒1𝑊0 =
1

2 sin 𝛾

𝜋(𝜁1 + 𝜁2) −
𝑖

2

Li2
(
𝑒𝑖𝛾𝑒𝜁1𝑒𝜁2

) + (𝑒𝜁1 ↔ −𝑒−𝜁1)
+ (𝑒𝜁2 ↔ −𝑒−𝜁2)
− (𝑒𝑖𝛾 ↔ 𝑒−𝑖𝛾)




+ 𝛾

sin 𝛾
ln(𝐶 (𝑎)) + O(𝑎−1).

(3.70)

Because (𝑒1𝑒2) = − cos 𝛾, we have established that

(2𝜋)2𝐼𝑎𝑒2 𝐼𝑒1𝑊0 =
𝐻 (𝑥, 𝑒1, 𝑒2)

(𝑒1𝑒2)
− 𝛾

2 sin 𝛾
ln

(
sin4 𝛾

𝐷

)
+ 𝛾

sin 𝛾
ln(𝐶 (𝑎)) + O(𝑎−1)

=
𝐻 (𝑥, 𝑒1, 𝑒2)

(𝑒1𝑒2)
+ 1

2
𝑓 (𝑒1, 𝑒2) ln

(
4Γ2

1𝑎
2𝐷

sin4 𝛾

)
+ O(𝑎−1)

=
𝐻 (𝑥, 𝑒1, 𝑒2)

(𝑒1𝑒2)
+ 1

2
𝑓 (𝑒1, 𝑒2) ln

(
4(𝑎𝑒2)2

𝑥2

)
+ O(𝑎−1), (3.71)

which is the desired result for spacelike 𝑥⊥. If 𝑥⊥ is not spacelike, 𝐼𝑎𝑒2 𝐼𝑒1𝑊0 is defined
as the distributional boundary value of the analytic continuation of Eq. (3.71) to the
backward tube 𝑥 − 𝑖𝜀𝑢. �

The cutoff integral 𝐼𝑎𝑒2 𝐼𝑒1𝑊0 from Theorem 3.17 can be related to the 𝑣-regularized
version (𝐼𝑒2 𝐼𝑒1𝑊0)𝑣 = 〈〈𝜑(𝑒1)𝜑(−𝑒2)〉〉𝑣

(𝑒1𝑒2) from Section 3.2 because the difference between the
two regularizations is independent of 𝑥, for

𝜕𝜇 (𝐼𝑒2 𝐼𝑒1𝑊0)𝑣 = 𝐼𝑒2 𝐼𝑒1𝜕𝜇𝑊0 = lim
𝑎→∞

𝐼𝑎𝑒2 𝐼𝑒1𝜕𝜇𝑊0 = lim
𝑎→∞

𝜕𝜇 (𝐼𝑎𝑒2 𝐼𝑒1𝑊0). (3.72)
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Thus, we can write

(𝐼𝑒2 𝐼𝑒1𝑊0)𝑣 = lim
𝜀↓0

1
(2𝜋)2

[
−1

2
𝑓 (𝑒1, 𝑒2) ln

(
−𝜇2

𝑣 (𝑥 − 𝑖𝜀𝑢)2
)
+ 𝐻 (𝑥, 𝑒1, 𝑒2)

(𝑒1𝑒2)

]
, (3.73)

where 𝜇𝑣 depends on the regularizing function 𝑣, and possibly also on the string variables
𝑒1 and 𝑒2.

Even after regularization, the two-point function of the escort field is fairly complicated
due to the appearance of dilogarithms. The two-point function of the string-localized
potential itself, however, has a much simpler structure. This is due to the fact that
only derivatives of the doubly integrated 𝑊0 appear, as can be seen by the form of
𝐸𝜇𝜅 (𝑝, 𝑒, 𝑒′) in Eq. (2.13). It is less difficult than one might naively expect to compute
lim𝑎→∞ 𝜕𝜇 (𝐼𝑎𝑒2 𝐼𝑒1𝑊0).

Theorem 3.18. For 𝑒0
1 = 𝑒0

2 = 0, we have

𝐼𝑒2 𝐼𝑒1𝜕𝜇𝑊0 = − 1
(2𝜋)2

1
2

[
𝑓 (𝑒1, 𝑒2)𝜕𝜇 + 𝑓 (𝑥, 𝑒2)𝜕𝑒1𝜇 + 𝑓 (𝑥, 𝑒1)𝜕𝑒2𝜇

]
ln(det𝑥𝜀𝑒1𝑒2).

(3.74)

Remark 3.19. Similar to the case of 𝐼𝑒𝑊0, there is a formal symmetry of 𝐼𝑒2 𝐼𝑒1𝜕𝜇𝑊0
under the exchange of any pair of variables. This symmetry can be understood by
performing a change of variables (𝑠1, 𝑠2) → ( 1

𝑠1
,
𝑠2
𝑠1
) in∫ ∞

0
𝑑𝑠1

∫ ∞

0
𝑑𝑠2

𝑥𝜇 + 𝑠1𝑒1𝜇 + 𝑠2𝑒2𝜇

[(𝑥 + 𝑠1𝑒1 + 𝑠2𝑒2 − 𝑖𝜀𝑢)2]2 . (3.75)

Proof (see also [38])2. We compute the derivative only for regular configurations of
the variables 𝑥, 𝑒1 and 𝑒2. The 𝑖𝜀-prescription (𝑥 − 𝑖𝜀𝑢) then gives the generalization
for arbitrary configurations. For regular configurations, Eq. (3.73) together with the
homogeneity of 𝐻 (𝑥, 𝑒1, 𝑒2) of degree 𝜔 = 0 in 𝑥 imply 𝑥𝜇 𝐼𝑒2 𝐼𝑒1𝜕𝜇𝑊0 = − 𝑓 (𝑒1, 𝑒2). Be-
cause (𝑒𝑖𝜕)𝐼𝑒𝑖 = −1, Lemma 3.14 gives 𝑒𝜇1 𝐼𝑒2 𝐼𝑒1𝜕𝜇𝑊0 = − 𝑓 (𝑥, 𝑒2) and 𝑒𝜇2 𝐼𝑒2 𝐼𝑒1𝜕𝜇𝑊0 =

− 𝑓 (𝑥, 𝑒1). Furthermore, 𝐼𝑒2 𝐼𝑒1𝜕𝜇𝑊0 must be a linear combination 𝑏1𝑒1 + 𝑏2𝑒2 + 𝑏3𝑥
because it is defined as a convergent integral over

𝜕𝜇
1

(𝑥 + 𝑠1𝑒1 + 𝑠2𝑒2)2 = −2
𝑥𝜇 + 𝑠1𝑒1𝜇 + 𝑠2𝑒2𝜇

[(𝑥 + 𝑠1𝑒1 + 𝑠2𝑒2)2]2 . (3.76)

Therefore, we have

©­«
𝑥𝜇 𝐼𝑒2 𝐼𝑒1𝜕𝜇𝑊0
𝑒
𝜇

1 𝐼𝑒2 𝐼𝑒1𝜕𝜇𝑊0
𝑒
𝜇

2 𝐼𝑒2 𝐼𝑒1𝜕𝜇𝑊0

ª®¬ = − ©­«
𝑓 (𝑒1, 𝑒2)
𝑓 (𝑥, 𝑒2)
𝑓 (𝑥, 𝑒1)

ª®¬ =
©­«
𝑥2 (𝑥𝑒1) (𝑥𝑒2)

(𝑥𝑒1) 𝑒2
1 (𝑒1𝑒2)

(𝑥𝑒2) (𝑒1𝑒2) 𝑒2
2

ª®¬ ©­«
𝑏3
𝑏1
𝑏2

ª®¬ (3.77)

and because we have restricted ourselves to regular configurations, the coefficients 𝑏1, 𝑏2
and 𝑏3 can be obtained by using Lemma 3.9. A rearrangement of the result with the help
of Lemma 3.8 yields Eq. (3.74). �

2The following proof of Theorem 3.18 from our paper [38] is mainly due to K.-H. Rehren. The original
proof, which was given by the author of this thesis, is a rather complicated direct computation of the
derivative.
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Both the regularized double integral (𝐼𝑒2 𝐼𝑒1𝑊0)𝑣 and its derivative Eq. (3.74) contain
a factor

𝑓 (𝑒1, 𝑒2) =
𝛾

sin 𝛾
, (3.78)

which is regular at 𝛾 = 0 but singular at 𝛾 = 𝜋, reflecting the fact that the integral of a
distribution over a full line is (in general) no longer a distribution and implying that it is
not allowed to make the identification 𝑒 = 𝑒′ in 〈〈𝐴𝜇 (𝑒)𝐴𝜈 (𝑒′)〉〉 or 〈〈𝜑(𝑒)𝜑(𝑒′)〉〉𝑣. Still,
the singularity of 𝑓 (𝑒1, 𝑒2) at 𝛾 = 𝜋 is integrable with respect to the invariant measure
on S2 × S2 so that 𝑓 (𝑒1, 𝑒2) is a well-defined distribution. However, if there are further
constraints on the string variables beyond 𝑒2

𝑖
= −1 and 𝑒0

𝑖
= 0, this singularity is no longer

integrable so that the result of such a further restriction does not yield a well-defined
distribution.

3.3.3 Application: vertex operators
The results of Section 3.3.2 and the explicit form of 〈〈𝜑(𝑒)𝜑(𝑒′)〉〉𝑣 = −(𝑒𝑒′) (𝐼−𝑒′ 𝐼𝑒𝑊0)𝑣 ,
in particular the knowledge of the infrared finite part 𝐻 (𝑥, 𝑒,−𝑒′), can be used to
investigate scattering amplitudes of the dressed Dirac field 𝜓𝑞,𝑐 (𝑥) from the Mund-
Rehren-Schroer construction outlined in Section 3.2. Using our explicit representation
(3.73), Mund, Rehren and Schroer [51] were able to derive the correlation functions of
the vertex operators 𝑉𝑞,𝑐 (𝑥) = :𝑒𝑖𝜑(𝑞𝛿𝑥 ,𝑐): introduced in Section 3.2:

〈〈𝑉𝑞1,𝑐1 (𝑥1) . . . 𝑉𝑞𝑛,𝑐𝑛 (𝑥𝑛)〉〉

= 𝛿∑
𝑖 𝑞𝑖𝑐𝑖 ,0

∏
𝑖< 𝑗


(

−1
(𝑥𝑖 − 𝑥 𝑗 )2 − 𝑖𝜀(𝑥0

𝑖
− 𝑥0

𝑗
)

)− 𝑞𝑖𝑞 𝑗

8𝜋2 〈𝑐𝑖 ,𝑐 𝑗 〉

𝑒
−

𝑞𝑖𝑞 𝑗

4𝜋2 𝐻̃ (𝑥𝑖−𝑥 𝑗 ,𝑐𝑖 ,𝑐 𝑗 )
 ,

(3.79)

with the Kronecker delta 𝛿∑
𝑖 𝑞𝑖𝑐𝑖 ,0 giving rise to an uncountable superselection rule, the

partially smeared distribution 𝐻̃ (𝑥, 𝑐𝑖, 𝑐 𝑗 ) :=
∫
𝑑𝜇S2 (𝑒𝑖)

∫
𝑑𝜇S2 (𝑒 𝑗 ) 𝐻 (𝑥, 𝑒𝑖,−𝑒 𝑗 ) and

with

〈𝑐𝑖, 𝑐 𝑗 〉 :=
∫

𝑑𝜇S2 (𝑒𝑖)
∫

𝑑𝜇S2 (𝑒 𝑗 ) 𝑐(𝑒𝑖)𝑐(𝑒 𝑗 )
𝜋 − 𝜃 ( ®𝑒𝑖, ®𝑒 𝑗 )
tan 𝜃 ( ®𝑒𝑖, ®𝑒 𝑗 )

, (3.80)

𝜃 ( ®𝑒𝑖, ®𝑒 𝑗 ) being the angle between ®𝑒𝑖 and ®𝑒 𝑗 .
In order to have a chance to explicitly compute Eq. (3.79), one can choose 𝑐0(𝑒) = 1

4𝜋
to be the constant test function on S2. Then, the partially smeared and regularized escort
field two-point function is [38, 51]

〈〈𝜑(𝑐0)𝜑(𝑐0)〉〉𝑣 (𝑥) = − 1
(2𝜋)2

1
2

ln
(
−𝜇̃2

𝑣 (𝑥2 − 𝑖𝜀𝑥0)
)
+ 𝐻̃𝑐0 (𝑥),

with 𝐻̃𝑐0 (𝑥) =
1

(2𝜋)2
𝑥0

2| ®𝑥 | ln
(
𝑥0 − 𝑖𝜀 − |®𝑥 |
𝑥0 − 𝑖𝜀 + |®𝑥 |

) (3.81)
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and the vertex operator two-point function, obtained from Eq. (3.79), is [38]

〈〈𝑉∗
𝑞,𝑐0𝑉𝑞,𝑐0〉〉(𝑥) =

[ (
𝑥0−𝑖𝜀−|®𝑥 |
𝑥0−𝑖𝜀+|®𝑥 |

) 𝑥0
| ®𝑥 |

−(𝑥2 − 𝑖𝜀𝑥0)

] 𝛼
2𝜋

(3.82)

These results can be used to investigate the toy model of a scattering theory of vertex
operators without the Dirac field, which works in 1+ 1 dimensions [12,21]. If the method
from these references is naively applied to the present case, however, the function 𝐻̃ can
produce a result of modulus greater than one, so it cannot directly be interpreted as a
scattering amplitude [38, 68]. Hence, more work is needed on the topic. Especially, one
has to properly understand how the presence of 𝐻̃ affects the scattering theory of vertex
operators and also of the full dressed Dirac field. Such considerations are not part of this
thesis but are currently studied as part of a master’s thesis [68].

3.3.4 The string-localized photon propagator in configuration space
The non-perturbative constructions described in Sections 3.2 and 3.3.3 involve the two-
point function of the escort field. Time-ordering is not required. In perturbation theory,
however, the S-matrix is a time-ordered exponential and consequently contains time-
ordered two-point functions, i.e., propagators, instead of ordinary two-point functions.
We shall see in Section 5.4.1 that one choice of a propagator of the string-localized
photon potential is given by the kinematic propagator

〈〈𝑇0𝐴𝜇 (𝑒)𝐴𝜈 (𝑒′)〉〉(𝑥)

≡ − 𝑖

(2𝜋)2 lim
𝜀↓0

(
𝜂𝜇𝜈 + 𝑒𝜈 𝐼𝑒𝜕𝜇 + 𝑒′𝜇 𝐼−𝑒′𝜕𝜈 + (𝑒𝑒′)𝐼𝑒 𝐼−𝑒′𝜕𝜇𝜕𝜈

) 1
𝑥2 − 𝑖𝜀

,
(3.83)

and all other possible choices of a propagator can at most differ from Eq. (3.83) by certain
linear combinations of derivatives of string-integrated Dirac deltas, as we shall see in
Section 5.4.2.

Due to the multiplication with Heaviside functions, the propagator has a different
𝑖𝜀-prescription than the two-point function. Introducing again the notation 𝑒1 := 𝑒 and
𝑒2 := −𝑒′, we find

𝐼𝑒1 𝐼𝑒2𝜕𝜇
1

𝑥2 − 𝑖𝜀
=

∫ ∞

0
𝑑𝜆1

∫ ∞

0
𝑑𝜆2 𝜕𝜇

1
(𝑥 + 𝜆1𝑒1 + 𝜆2𝑒2)2 − 𝑖𝜀

(3.84)

and since 𝜆𝑖 ≥ 0, we can absorb the infinitesimal imaginary shift into all Minkowski
squares,

𝑥2 → 𝑥2 − 𝑖𝜀 and 𝑒2
𝑗 → 𝑒2

𝑗 − 𝑖𝜀, 𝑗 = 1, 2. (3.85)

Therefore, in contrast to the case of the two-point function, the imaginary shift does not
change its sign on the line (or wedge) of integration even if we consider general spacelike
string variables 𝑒1, 𝑒2 ∈ 𝐻. We can hence use the formulas derived in Section 3.3.2 to
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describe the string-localized photon propagator for general spacelike 𝑒 𝑗 after adjusting the
𝑖𝜀-prescription accordingly. For the 2 × 2 Gram determinants, the prescription Eq. (3.85)
yields

det𝑒1𝑒2 → det𝑒1𝑒2 − 𝑖(𝑒2
1 + 𝑒

2
2)𝜀 = det𝑒1𝑒2 + 𝑖𝜀 since 𝑒2

𝑗 < 0,
det𝑥𝑒 𝑗 → det𝑥𝑒 𝑗 − 𝑖(𝑥2 + 𝑒2

𝑗 )𝜀,
(3.86)

and for the 3 × 3 determinant, we obtain

det𝑥𝑒1𝑒2 → det𝑥𝑒1𝑒2 − 𝑖𝜀[det𝑒1𝑒2 + det𝑥𝑒1 + det𝑥𝑒2] . (3.87)

The 2 × 2 determinants only appear in the distributions 𝑓 (𝑒1, 𝑒2) and 𝑓 (𝑥, 𝑒 𝑗 ). The
latter are only singular if 𝑥2 ≤ 0, and hence we can, without loss of generality, rewrite
Eq. (3.86) to

det𝑒1𝑒2 → det𝑒1𝑒2 + 𝑖𝜀, det𝑥𝑒 𝑗 → det𝑥𝑒 𝑗 + 𝑖𝜀. (3.88)

The 3 × 3 determinant only appears in the doubly string-integrated part of the propagator
Eq. (3.83) as a denominator

1
det𝑥𝑒1𝑒2 − 𝑖𝜀[det𝑒1𝑒2 + det𝑥𝑒1 + det𝑥𝑒2]

, (3.89)

which is of course only singular if det𝑥𝑒1𝑒2 = 0 and arises from the derivatives of the
logarithm in Eq. (3.74). Indeed, if det𝑥𝑒1𝑒2 = 0 but the set { 𝑥, 𝑒1, 𝑒2 } is not linearly
dependent, then Lemmas 3.11 and 3.13 imply

det𝑒1𝑒2 + det𝑥𝑒1 + det𝑥𝑒2 > 0 (3.90)

so that the imaginary shift in Eq. (3.89) is non-zero. Thus, as long as the set { 𝑥, 𝑒1, 𝑒2 }
is not linearly dependent, we have

(2𝜋)2𝑖〈〈𝑇0𝐴𝜇 (𝑒)𝐴𝜈 (𝑒′)〉〉(𝑥)

= lim
𝜀↓0

{
𝜂𝜇𝜈

𝑥2 − 𝑖𝜀
+ 𝑒𝜈𝜕𝜇 𝑓 (𝑥, 𝑒) + 𝑒′𝜇𝜕𝜈 𝑓 (𝑥,−𝑒′)

+ (𝑒𝑒′)
2

𝜕𝜈
[ (
𝑓 (𝑒,−𝑒′)𝜕𝜇 + 𝑓 (𝑥,−𝑒′)𝜕𝑒𝜇 + 𝑓 (𝑥, 𝑒)𝜕−𝑒′𝜇

)
ln(det𝑥𝑒𝑒′ − 𝑖𝜀)

]}
,

(3.91)

where the 2 × 2 determinants appearing in 𝑓 (·, ·) are defined as in Eq. (3.88). The
𝑖𝜀-prescription in Eq. (3.91) is only valid if the set { 𝑥, 𝑒1, 𝑒2 } is not linear dependent and
by now, it is unclear whether one can find suitable coordinates in which the string-localized
photon propagator is locally integrable with respect to this set of linear dependency.

However, we prove the well-definedness of the kinematic string-localized photon
propagator in a momentum space consideration in Section 5.4.1. This well-definedness
suggests that such coordinates do indeed exist.
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3.3.5 Higher helicities
The string-localized potential 𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) of the massless field strength 𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠] (𝑥)
of helicity 𝑠 ∈ N is defined as an 𝑠-fold integral

𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) = 𝐼 𝑠𝑒𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠] (𝑥)𝑒𝜈1 . . . 𝑒𝜈𝑠 . (3.92)

Consequently, the two-point function of the helicity 𝑠 potential is an 2𝑠-fold string
integral over a 2𝑠-fold 𝑥-derivative of the two-point function𝑊0(𝑥) of a massless scalar
Klein-Gordon field. Naively, one might hence expect that one needs to compute an
increasing number of evermore complex integrals in order to explicitly determine the
two-point functions of massless string-localized potentials of higher helicities. However,
it turns out that no further integrals need to be computed. We can instead determine the
two-point functions for higher helicities by taking derivatives of the expressions that we
have already derived in Sections 3.3.2 and 3.3.4.

At the heart of this idea is the observation Eq. (2.28), which tells us that derivatives
with respect to the string variables of string integrals are the same as higher string
integrals over 𝑥-derivatives,

𝜕𝑒𝜇 𝐼𝑒 𝑓 (𝑥) = 𝐼2𝑒𝜕𝜇 𝑓 (𝑥) (3.93)

for some generic 𝑓 . Thus, we have

𝐼 𝑠𝑒 𝐼
𝑠
−𝑒′𝜕𝜇1 . . . 𝜕𝜇2𝑠𝑊0(𝑥) ∼ 𝜕𝑒𝜇1

. . . 𝜕𝑒𝜇𝑠−1
𝜕𝑒′𝜇𝑠 . . . 𝜕𝑒

′
𝜇2𝑠−2

𝐼𝑒 𝐼−𝑒′𝜕𝜇2𝑠−1𝜕𝜇2𝑠𝑊0(𝑥)
= 𝜕𝑒𝜇1

. . . 𝜕𝑒𝜇𝑠−1
𝜕𝑒′𝜇𝑠 . . . 𝜕𝑒

′
𝜇2𝑠−2

𝜕𝜇2𝑠−1 𝐼𝑒 𝐼−𝑒′𝜕𝜇2𝑠𝑊0(𝑥),
(3.94)

where the double integral over the gradient of 𝑊0(𝑥) in the last line is given by the
derivative formula from Theorem 3.18. Thus, the two-point functions of massless
string-localized potentials of arbitrary helicities are contractions of derivatives of the
distribution from Theorem 3.18, which only contains the distributions 𝑓 (𝑥, 𝑒), 𝑓 (𝑥,−𝑒′),
𝑓 (𝑒,−𝑒′) and ln(det𝑥𝜀𝑒𝑒′). In particular, no dilogarithms appear.

Remark 3.20. Note that the observation from this section is a rare example of a
consideration that cannot be applied to the multi-string-localized potentials from Remark
2.3: in order to be able to rewrite repeated string-integrals as derivatives, the repeated
integrals must be in the same direction.

3.4 Massless self-interactions and the non-existence of
L-V pairs

The success of the non-perturbative constructions by Mund, Rehren and Schroer in
QED [51] and the results of Brüers on similar constructions for the coupling of gravitons
to the stress energy tensor of a scalar field [11] outlined in Section 3.2 automatically
raise the question whether recipes of their type are applicable in general models. The
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answer turns out to be “no”. There is no photon self-interaction and consequently the
photon itself is not dressed by a photon cloud. Similarly, a graviton self-interaction is
not present if one only considers the coupling of a graviton to the SET of other fields. If
self-interactions of string-localized (or gauge) potentials are involved, the matter becomes
more complicated. One must expect that self-interacting bosons do not only dress the
fields, which they accompany, but also themselves.

In the following, we prove that constructions of the type described in Section 3.2
already fail in the first step: the interaction Lagrangian of massless string-localized
Yang-Mills theory and the cubic part of a string-localized graviton self-interaction are
not part of an L-V pair.

Remark 3.21. We shall derive in Section 4.2 that perturbation theory in SLFT should
be set up in such a way that each string-localized potential in the Dyson series for the
S-matrix depends on its own string variable but the fixed-order terms in the S-matrix
must be symmetric under exchange of any pair of string variables. To keep notation
simple, we do not explicitly write the 𝑒-dependence of the string-localized potentials
and the escort fields in the following Sections 3.4.1 and 3.4.2. The concrete nature of
the number of string variables appearing in a Lagrangian is irrelevant for our proofs.
Similarly, with slight adjustments for the escort fields, the derivations in Section 3.4.2
also apply for the multi-string-localized potential

ℎ̃𝜇𝜈 (𝑥, 𝑒1, 𝑒2) =
1
2
𝐼𝑒1 𝐼𝑒2𝐹𝜇𝜅𝜈𝜆 (𝑥)

[
𝑒𝜅1𝑒

𝜆
2 + 𝑒

𝜅
2𝑒
𝜆
1
]
. (3.95)

3.4.1 Massless Yang-Mills theory
We will derive in Section 6.1 (see also [37]) that string independence at second order of
perturbation theory constrains the interaction Lagrangian describing a self-interaction of
string-localized potentials of mass 𝑚 = 0 and helicity 𝑠 = 1 to be of the Yang-Mills form

𝐿YM =
𝑔

2
𝑓𝑎𝑏𝑐 :𝐴𝑎𝜇 (𝑥)𝐴𝑏𝜈 (𝑥)𝐹𝜇𝜈𝑐 (𝑥):

+ 𝑔
2

2
𝑓𝑎𝑏𝑐 𝑓𝑐𝑑𝑒 :𝐴𝑎𝜇 (𝑥)𝐴𝑏𝜈 (𝑥)𝐴𝜇𝑑 (𝑥

′)𝐴𝜈𝑒 (𝑥′): 𝛿(𝑥 − 𝑥′), (3.96)

where 𝑔 ∈ S(R1+3) is a coupling to be sent to a constant in the adiabatic limit and the 𝑓𝑎𝑏𝑐
are the structure constants of a Lie algebra of compact type. Summation over repeated
Latin indices is understood.

Theorem 3.22. The string-localized Lagrangian 𝐿YM from Eq. (3.96) is not part of an
L-V pair.

Proof. It is sufficient to prove that the cubic part 𝐿 (3) of the Lagrangian 𝐿𝑌𝑀 is not part of
an L-V pair. We lift the field strengths 𝐹𝜇𝜈𝑎 (𝑥) and the string-localized potentials 𝐴𝜇𝑎 (𝑥, 𝑒)
to Krein space in order to connect the 𝐴𝑎𝜇 (𝑥, 𝑒) with the Krein potentials 𝐴K

𝑎𝜇 (𝑥) in
Feynman gauge via the escort fields 𝜑𝑎 (𝑥, 𝑒), as prescribed in Section 3.1,

𝐴
𝜇
𝑎 (𝑥, 𝑒) = 𝐴K

𝑎𝜇 (𝑥) + 𝜕𝜇𝜑𝑎 (𝑥, 𝑒), with 𝜑𝑎 (𝑥, 𝑒) = 𝐼𝑒 (𝐴K
𝑎 𝑒). (3.97)
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Then, the cubic part of the Lagrangian (3.96) can be written as

𝐿 (3) =
𝑔

2
𝑓𝑎𝑏𝑐 :(𝐴K

𝑎𝜇 + 𝜕𝜇𝜑𝑎) (𝐴K
𝑏𝜈 + 𝜕𝜈𝜑𝑏)𝐹

𝜇𝜈
𝑐 :

= 𝐿K,(3) + 𝑔 𝑓𝑎𝑏𝑐 :𝐴K
𝑎𝜇𝜕𝜈𝜑𝑏𝐹

𝜇𝜈
𝑐 : + 𝑔

2
𝑓𝑎𝑏𝑐 :𝜕𝜇𝜑𝑎𝜕𝜈𝜑𝑏𝐹𝜇𝜈𝑐 : , (3.98)

where 𝐿K,(3) =
𝑔

2 𝑓𝑎𝑏𝑐 :𝐴K
𝑎𝜇𝐴

K
𝑏𝜈
𝐹
𝜇𝜈
𝑐 : is the cubic part of the point-localized massless

Yang-Mills Lagrangian on Krein space. The last term in Eq. (3.98) can be expressed in
terms of the escort field and the Krein potential and becomes a total divergence in the
adiabatic limit by virtue of the wave equation,

𝑔

2
𝑓𝑎𝑏𝑐 :𝜕𝜇𝜑𝑎𝜕𝜈𝜑𝑏𝐹𝜇𝜈𝑐 :

= 𝑔 𝑓𝑎𝑏𝑐 :𝜕𝜇𝜑𝑎𝜕𝜈𝜑𝑏𝜕𝜇𝐴K𝜈
𝑐 :

=
𝑔

2
𝑓𝑎𝑏𝑐𝜕𝜇

(
:𝜑𝑎𝜕𝜈𝜑𝑏𝜕𝜇𝐴K𝜈

𝑐 : + :𝜕𝜇𝜑𝑎𝜕𝜈𝜑𝑏𝐴K𝜈
𝑐 : − :𝜑𝑎𝜕𝜇𝜕𝜈𝜑𝑏𝐴K𝜈

𝑐 :
)
. (3.99)

However, the second term in the last line of Eq. (3.98) does not form a divergence in the
adiabatic limit,

𝑔 𝑓𝑎𝑏𝑐 :𝐴K
𝑎𝜇𝜕𝜈𝜑𝑏𝐹

𝜇𝜈
𝑐 : = 𝑔 𝑓𝑎𝑏𝑐𝜕𝜈

(
:𝐴K

𝑎𝜇𝜑𝑏𝐹
𝜇𝜈
𝑐 :

)
− 𝑔 𝑓𝑎𝑏𝑐 :𝐴K

𝑎𝜇𝜑𝑏𝜕𝜈𝐹
𝜇𝜈
𝑐 : (3.100)

because on Krein space, we have 𝜕𝜈𝐹𝜇𝜈𝑐 = 𝜕𝜇 (𝜕𝐴K
𝑐 ) ≠ 0, see Table 3.1. Still, the

obstructing term in Eq. (3.100) could be compensated by a term that vanishes identically
on Hilbert space but gives a non-zero contribution on Krein space. Up to a total divergence,
the only possible such term is

Δ𝐿 (3) := 𝑔 𝑓𝑎𝑏𝑐 :(𝜕𝐴𝑎) (𝐴𝑏𝐴𝑐): , (3.101)

where the coefficients 𝑓𝑎𝑏𝑐 can be assumed to satisfy 𝑓𝑎𝑏𝑐 = 𝑓𝑎𝑐𝑏 without loss of generality.
Then Δ𝐿 (3) from Eq. (3.101) equals

Δ𝐿 (3) = 𝑔 𝑓𝑎𝑏𝑐 :(𝜕𝐴K
𝑎 )

[
(𝐴K

𝑏 𝐴
K
𝑐 ) + 𝜕𝜇𝜑𝑏𝜕𝜇𝜑𝑐 + 2𝜕𝜇𝜑𝑏𝐴K

𝑐𝜇

]
:

= 𝐿̃K,(3) + 𝑔
2
𝑓𝑎𝑏𝑐𝜕

𝜇
(
2 :(𝜕𝐴K

𝑎 )𝜕𝜇𝜑𝑏𝜑𝑐: − :𝜕𝜇 (𝜕𝐴K
𝑎 )𝜑𝑏𝜑𝑐:

)
+ 2𝑔 𝑓𝑎𝑏𝑐 :(𝜕𝐴K

𝑎 )𝜕𝜇𝜑𝑏𝐴K
𝑐𝜇: ,

(3.102)

where we defined 𝐿̃K,(3) := 𝑔 𝑓𝑎𝑏𝑐 :(𝜕𝐴K
𝑎 ) (𝐴K

𝑏
𝐴K
𝑐 ): . The last term in Eq. (3.102) equals

2𝑔 𝑓𝑎𝑏𝑐 :(𝜕𝐴K
𝑎 )𝜕𝜇𝜑𝑏𝐴K

𝑐𝜇: = 2𝑔 𝑓𝑎𝑏𝑐𝜕𝜇
(
:(𝜕𝐴K

𝑎 )𝜑𝑏𝐴K
𝑐𝜇:

)
− 2𝑔 𝑓𝑎𝑏𝑐 :(𝜕𝐴K

𝑎 )𝜑𝑏 (𝜕𝐴K
𝑐 ):

− 2𝑔 𝑓𝑎𝑏𝑐 :𝜕𝜇 (𝜕𝐴K
𝑎 )𝜑𝑏𝐴K

𝑐𝜇: .

(3.103)

Thus, combining Eq.s (3.98), (3.100), (3.102) and (3.103), we obtain

𝐿 (3) + Δ𝐿 (3) div
= 𝐿K,(3) + 𝐿̃K,(3) − 2𝑔 𝑓𝑎𝑏𝑐 :(𝜕𝐴K

𝑎 )𝜑𝑏 (𝜕𝐴K
𝑐 ):

− 𝑔( 𝑓𝑐𝑏𝑎 + 2 𝑓𝑎𝑏𝑐) :𝜕𝜇 (𝜕𝐴K
𝑎 )𝜑𝑏𝐴K

𝑐𝜇: ,
(3.104)
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where div
= again means an equality up to a total divergence. The requirement that

𝐿 (3) + Δ𝐿 (3) be part of an L-V pair hence translates to the requirements

𝑓𝑎𝑏𝑐 :(𝜕𝐴K
𝑎 )𝜑𝑏 (𝜕𝐴K

𝑐 ):
!
= 0, (3.105a)

(2 𝑓𝑎𝑏𝑐 − 𝑓𝑎𝑏𝑐) :𝜕𝜇 (𝜕𝐴K
𝑎 )𝜑𝑏𝐴K

𝑐𝜇:
!
= 0. (3.105b)

While the requirement Eq. (3.105a) can be satisfied if 𝑓𝑎𝑏𝑐 = − 𝑓𝑐𝑏𝑎, the requirement
Eq. (3.105b) can only be satisfied if 𝑓𝑎𝑏𝑐 = 𝑓𝑎𝑏𝑐 = 0 since the fields are independent and
𝑓𝑎𝑏𝑐 = − 𝑓𝑎𝑐𝑏 while 𝑓𝑎𝑏𝑐 = 𝑓𝑎𝑐𝑏. This proves the claim. �

3.4.2 Graviton self-interaction
A possible interaction Lagrangian describing a graviton self-interaction is expected to
have infinitely many terms of arbitrarily high power in the linearized metric tensor, which
is interpreted as the graviton field. Furthermore, it seems reasonable that all these terms
should sum up to the expansion of the Einstein-Hilbert Lagrangian as a power series in
the gravitational coupling constant 𝜅 [60]. Indeed, one can prove in the gauge theoretic
framework that the expansion of the Einstein-Hilbert Lagrangian is perturbatively gauge
invariant, i.e., gauge invariant to all orders of perturbation theory, at tree level [23]. But
it is not known whether (and if so, in which way) the Einstein-Hilbert Lagrangian is the
unique gauge invariant solution.

At present, no string-localized analogue of such a statement has been proven and it is
unclear if the expansion of the Einstein-Hilbert Lagrangian, where now the linearized
metric is interpreted as the string-localized potential ℎ𝜇𝜈 (𝑥, 𝑒) of the linearized curvature
tensor, is string independent at all orders of perturbation theory. However, there is a string
independent cubic self-coupling of ℎ𝜇𝜈 (𝑥, 𝑒), which is unique up to total divergences and
overall prefactors. This cubic self-coupling Lagrangian coincides with the cubic part of
the expansion of the Einstein-Hilbert Lagrangian [36],

𝐿
(3)
𝐺

= :ℎ𝜇𝜈
[
𝜕𝜇ℎ𝜅𝜆𝜕𝜈ℎ

𝜅𝜆 + 2𝜕𝜅ℎ𝜇𝜆𝜕𝜆ℎ𝜈𝜅
]
: . (3.106)

Although the full interaction Lagrangian describing the self-coupling of massless string-
localized potentials of helicity 𝑠 = 2 is not yet known, we can show that it cannot be part
of an L-V pair by proving that the cubic part alone is not part of one. Indeed, this is the
case:
Theorem 3.23. The cubic part 𝐿 (3)

𝐺
of the string-localized graviton self-coupling from

Eq. (3.106) is not part of an L-V pair.

The proof of Theorem 3.23 is much more involved than the proof for massless
Yang-Mills theory. Thus, we do not display it here but transfer it to Appendix A. One
needs to heavily employ a useful lemma for cubic polynomials of solutions of the wave
equation (see also [60]), stating that

𝜕𝜇 𝑓1𝜕
𝜇 𝑓2 𝑓3 =

1
2
𝜕𝜇 (𝜕𝜇 𝑓1 𝑓2 𝑓3 + 𝑓1𝜕𝜇 𝑓2 𝑓3 − 𝑓1 𝑓2𝜕𝜇 𝑓3) =: 𝔡𝔦𝔳(𝜕𝜇 𝑓1𝜕𝜇 𝑓2 𝑓3) (3.107)

if � 𝑓𝑖 = 0 for 𝑖 = 1, 2, 3, which can easily be verified by direct computation.



Chapter 4

Perturbation theory with
string-localized fields

We now turn to perturbation theory in the framework of SLFT. In particular, we explore
the construction of the string-localized version of the Dyson series Eq. (1.2) for the
S-matrix. There is no straightforward transition of the Bogoliubov-Epstein-Glaser (BEG)
construction of the S-matrix to string-localized field theories. The first and main obstacle
for such a transition is the construction of time-ordered products of string-localized
fields: how can one order two or more infinitely extended strings in time and what are
the ambiguities in the construction? A partial answer to these questions has been given
by Cardoso, Mund and Várilly with the method of string chopping [16] but it is unclear
whether this method works in general. In Section 4.1, we sketch the method of string
chopping and then propose another method for time-ordering string-localized fields,
which goes beyond string chopping.

Another obstacle for the construction of a string-localized Dyson series for the S-
matrix is that very little is known on renormalization in SLFT. In a recent paper [35], the
author was able to shed some light on this question. The results of this paper concerning
renormalization are the central topic of Sections 5.1 to 5.6. However, the nature of
renormalization crucially depends on the setup of string-localized perturbation theory
and in particular, before addressing renormalization, one must declare the nature of the
string-localization of the S-matrix. These issues are described in Section 4.2, which is
based on the mentioned paper [35].

The implementation of an axiomatic and comprehensive BEG scheme to construct
the string-localized S-matrix is beyond the scope of this thesis. In particular, we do
not give a rigorous classification of all possible ambiguities of time-ordered products in
SLFT. However, the considerations in this and the following chapter contribute to several
aspects that are important to establish a BEG scheme.

Remark 4.1. Another central question in perturbation theory is the existence of the
adiabatic limit or at least a weak version of it. However, as explained in the introductory
Section 1.2, that question is not addressed in this thesis. We focus on aspects of a BEG
construction in SLFT before taking the adiabatic limit.

45
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4.1 Time-ordering in string-localized field theory
Already in point-localized QFT, time-ordering and the construction of time-ordered prod-
ucts are somewhat subtle operations. The BEG description outlined in the introductory
Section 1.2 is the most rigorous method available to perform such a construction. It is
well-defined at all steps but gives rise to ambiguities. The BEG scheme is a geometric
approach to time-ordering in relativistic theories that takes into account the causal
structure of quantum fields, i.e., commutativity at spacelike distance.

One approach to generalize such a geometric description of time-ordering is string
chopping, which has been implemented first for linear string-localized fields [16], with a
recent generalization to very specific models where the coupling between string-localized
fields is skewsymmetric [37]. We briefly sketch the method of string chopping in Section
4.1.1. String chopping is fairly abstract, it is so far unclear whether it can be implemented
for general string-localized models and it seems difficult to use string chopping for
practical applications. In Section 4.1.2, we therefore introduce a different method to
define time-ordering in SLFT, which is an attempt to go beyond string chopping. In this
introduction, we only outline the proposed method. A full and rigorous description is not
yet available. It is a so far unproven conjecture of the author of this thesis that this new
method is a generalization of string chopping to arbitrary models. Relations between
string chopping and the new method are discussed at the end of this thesis in Section 7.2.

4.1.1 State of the art: string chopping
The earliest description of string chopping [16] only describes the time-ordering for
linear string-localized fields. Recently, this method has been generalized to models that
contain skewsymmetric self-interactions of string-localized fields [37]. A generalization
to arbitrary string-localized models has not yet been given. Indeed, the author expects
that string chopping is, without major adjustments, not suited to describe arbitrary models
involving string-localized fields. This expectation comes from the following observation.
The generalization of string chopping, which was done in the mentioned work [37],
was only possible because the cubic part of the massless Yang-Mills Lagrangian (cf.
Eq. (3.96)) has totally skewsymmetric constants of proportionality 𝑓𝑎𝑏𝑐. In the paper [37],
we performed computations only up to second order in the coupling constant and thus,
time-ordering the quartic part of the massless Yang-Mills Lagrangian was not necessary.
Going beyond second order is not possible so far, because the constants of proportionality
𝑓𝑎𝑏𝑐𝑑 := 𝑓𝑎𝑏𝑥 𝑓𝑥𝑐𝑑 in front of the quartic term of the interaction Lagrangian are not totally
skewsymmetric and it is unclear how to implement the string chopping prescription in
that case.1

This does not mean that one cannot compute anything. One can still make the usual

1One possibility might be via “color ordering” (see for example [31]). There, one notices that the
four-gluon-vertex can be described by a sum of cubic vertices. However, this procedure would have to be
adjusted to a position space consideration. Even if it turns out that color ordering can help to implement
string chopping in massless Yang-Mills theory, one is still miles away from a general string chopping
description.
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ansatz and expand the Dyson series as a sum of divergent products of propagators by
means of Wick’s theorem and renormalize these products in retrospective to get a finite
result. This is one solution of the problem but it is then unclear what the ambiguities in
the construction are.

Now, let us briefly outline the string chopping method for the case of linear string-
localized quantum fields, as described by Cardoso, Mund and Várilly [16]. These authors
define the time-ordered products

𝑇𝑛 𝜑1(𝑥1, 𝑒1) . . . 𝜑𝑛 (𝑥𝑛, 𝑒𝑛) (4.1)

of 𝑛 string-localized fields 𝜑𝑖 depending on different 𝑥- and 𝑒-variables. They first show
that the 𝑛 strings 𝑥𝑖 + R≥0𝑒𝑖 can be chopped into a finite number of compact segments
plus infinite tails, which can be mutually compared in time – unless two or more of
the strings intersect. This gives a comprehensive classification of the ambiguities of a
BEG-like construction in SLFT, but only for linear string-localized fields.

The authors of [16] proceed by subjecting the 𝑇𝑛 to certain assumptions:

P1 Initial condition: 𝑇1𝜑(𝑥, 𝑒)
!
= 𝜑(𝑥, 𝑒).

P2 Linearity: The 𝑇𝑛 are 𝑛-linear mappings from the space of linear fields into
operator-valued distributions acting on a specified domain.

P3 Symmetry: 𝑇𝑛 is symmetric under exchange of any pair of arguments.

P4 Causality: If 𝜑𝑖 is localized on 𝑆𝑖, where 𝑆𝑖 is either the string 𝑥𝑖 + R≥0𝑒𝑖 or a
segment of it, and if furthermore all 𝑆 𝑗 , 𝑗 = 1, . . . , 𝑘 , are later than all strings 𝑆𝑙 ,
𝑙 = 𝑘 + 1, . . . , 𝑛, then

𝑇𝑛 𝜑1(𝑥1, 𝑒1) . . . 𝜑𝑛 (𝑥𝑛, 𝑒𝑛)
= 𝑇𝑘 𝜑1(𝑥1, 𝑒1) . . . 𝜑𝑘 (𝑥𝑘 , 𝑒𝑘 ) 𝑇𝑛−𝑘 𝜑𝑘+1(𝑥𝑘+1, 𝑒𝑘+1) . . . 𝜑𝑛 (𝑥𝑛, 𝑒𝑛).

(4.2)

P1 to P3 are the same requirements as in point-localized QFT (see for example [25]),
while P4 is adjusted according to the string localization.

Cardoso, Mund and Várilly then show that under these assumptions the𝑇𝑛 are uniquely
fixed outside the large string diagonal Δ𝑛, which is the set where two or more of the string
intersect, and that they can be expanded according to Wick’s theorem [16].

4.1.2 Beyond string chopping
We propose an alternative method to implement time-ordering in SLFT. No general set
of axioms to define time-ordered products involving string-localized fields is available,
and we propose to reconnect to the axioms of point-localized time-ordered products even
if string-localized fields are involved.
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To do so, recall that the string-localized potentials 𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) from Eq. (2.2) are
defined as integrals over the field strength tensors 𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠] (𝑥),

𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) =
∫ ∞

0
𝑑𝜆1· · ·

∫ ∞

0
𝑑𝜆𝑠 𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠]

(
𝑥 +

𝑠∑︁
𝑖=1

𝜆𝑖𝑒𝑖

)
𝑒𝜈1 . . . 𝑒𝜈𝑠 . (4.3)

The field strengths are point-localized. Motivated by Eq. (4.3), we define the time-ordered
product of expressions involving string-localized potentials as the corresponding integral
over the respective time-ordered products expressed in terms of the corresponding field
strengths. For example, we define the time-ordered product of two string-localized photon
potentials 𝐴𝜇 (𝑥, 𝑒) and 𝐴𝜈 (𝑥′, 𝑒′) as

𝑇 [𝐴𝜇 (𝑥, 𝑒)𝐴𝜈 (𝑥′, 𝑒′)] :=
∫ ∞

0
𝑑𝜆

∫ ∞

0
𝑑𝜆′ 𝑇 [(𝐹𝑒)𝜇 (𝑥 + 𝜆𝑒) (𝐹𝑒)𝜈 (𝑥′ + 𝜆′𝑒′)], (4.4)

with

𝑇 [(𝐹𝑒)𝜇 (𝑥 + 𝜆𝑒) (𝐹𝑒)𝜈 (𝑥′ + 𝜆′𝑒′)]

=

{
(𝐹𝑒)𝜇 (𝑥 + 𝜆𝑒) (𝐹𝑒)𝜈 (𝑥′ + 𝜆′𝑒′) if (𝑥 − 𝑥′ + 𝜆𝑒 − 𝜆′𝑒′)0 > 0,
(𝐹𝑒)𝜈 (𝑥′ + 𝜆′𝑒′) (𝐹𝑒)𝜇 (𝑥 + 𝜆𝑒) if (𝑥 − 𝑥′ + 𝜆𝑒 − 𝜆′𝑒′)0 < 0.

(4.5)

By local commutativity of the field strength, this time-ordering recipe is unique whenever
𝑥 + 𝜆𝑒 ≠ 𝑥′ + 𝜆′𝑒′, which guarantees the Lorentz invariance of Eq. (4.5). The obvious
choice for the corresponding time-ordered two-point function is then

〈〈𝑇𝐴𝜇 (𝑥, 𝑒)𝐴𝜈 (𝑥′, 𝑒′)〉〉

:=
∫ ∞

0
𝑑𝜆

∫ ∞

0
𝑑𝜆′

[
𝜃
(
(𝑥 − 𝑥′ + 𝜆𝑒 − 𝜆′𝑒′)0) 〈〈(𝐹𝑒)𝜇 (𝑥 + 𝜆𝑒) (𝐹𝑒)𝜈 (𝑥′ + 𝜆′𝑒′)〉〉 (4.6)

+ 𝜃
(
− (𝑥 − 𝑥′ + 𝜆𝑒 − 𝜆′𝑒′)0) 〈〈(𝐹𝑒)𝜈 (𝑥′ + 𝜆′𝑒′)𝐹𝑒)𝜇 (𝑥 + 𝜆𝑒)〉〉] ,

and by the axioms of the point-localized BEG construction, the integrand of Eq. (4.6)
is unique up to a distribution supported on { 𝑥 − 𝑥′ + 𝜆𝑒 − 𝜆′𝑒′ } = 0. That is, any other
time-ordered two-point function of the string-localized 𝐴𝜇 can differ from Eq. (4.6) only
by a sum of derivatives of a string-integrated Dirac delta. We shed more light on the
well-definedness and singularity structure of propagators of the form Eq. (4.6) and their
ambiguities in Chapter 5.

With the method we propose, an automatic string chopping is achieved because the
time-ordering of string integrals is defined as integral over the time-ordered integrands.
Instead of chopping a full string into (extended) segments, which are comparable in time,
we compare each pair of points on the strings separately.

Without mentioning, we have assumed that the two string-localized photon potentials
in the time-ordered product Eq. (4.4) and the propagator Eq. (4.6) depend on different
string variables 𝑒 and 𝑒′. This dependence on different string variables is necessary for
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the following reason. By our considerations from Sections 2.2 and 3.3, the two-point
function of the string-localized photon potential is

〈〈𝐴𝜇 (𝑒)𝐴𝜈 (𝑒′)〉〉(𝑥) = −
(
𝜂𝜇𝜈 + 𝑒𝜈𝜕𝜇 𝐼𝑒 + 𝑒′𝜇𝜕𝜈 𝐼−𝑒′ + (𝑒𝑒′)𝐼𝑒 𝐼−𝑒′𝜕𝜇𝜕𝜈

)
𝑊0(𝑥), (4.7)

with the ordinary massless scalar two-point function𝑊0(𝑥) as in Eq. (3.43). By Lemma
3.14 and Theorem 3.18, Eq. (4.7) is built from𝑊0(𝑥), the distributions 𝑓 (𝑥, 𝑒), 𝑓 (𝑥,−𝑒′)
and 𝑓 (𝑒,−𝑒′) from Section 3.3, the inverse Gram determinant det−1

𝑥𝜀𝑒𝑒
′ and smooth

functions. In particular, 〈〈𝐴𝜇 (𝑒)𝐴𝜈 (𝑒′)〉〉 contains a term proportional to 𝑓 (𝑒,−𝑒′), which
diverges in the limit 𝑒′ → 𝑒.2 Thus, an identification 𝑒′ = 𝑒 in the two-point function and
hence also in the time-ordered two-point function is not possible.

To define the string-localized S-matrix, one must declare how the string-localized
equivalent of its Dyson series depends on string variables. We discuss this topic in
full detail in the following section. For now, we consider the simple example of string-
localized QED,where the interaction Lagrangian 𝐿 = :𝐴𝜇 (𝑥, 𝑒) 𝑗 𝜇 (𝑥): only depends on
a single string variable. To avoid divergences in the string-localized two-point functions,
each Lagrangian shall depend on its own string variable. Our approach then yields

𝑇 [𝐿 (𝑥1, 𝑒1) . . . 𝐿 (𝑥𝑛, 𝑒𝑛)] (4.8)

:=
∫ ∞

0
𝑑𝑛𝜆𝑇 [ :(𝐹𝑒1)𝜇1 (𝑥1 + 𝜆1𝑒1) 𝑗 𝜇1 (𝑥1): . . . :(𝐹𝑒𝑛)𝜇𝑛 (𝑥𝑛 + 𝜆𝑛𝑒𝑛) 𝑗 𝜇𝑛 (𝑥𝑛): ]

so that the time-ordering of string-localized objects becomes an integral over time-ordered
point-localized objects and for the latter, we know how to define time-ordering. In the
example of QED, we can introduce 𝑦𝑖 = 𝑥𝑖+𝜆𝑖𝑒𝑖 so that the time-ordered product Eq. (4.8),
which has 𝑛 arguments in point-localized QED, becomes a time-ordered product in 2𝑛
variables of the fields (𝐹𝑒1)𝜇𝑖 (𝑦𝑖) and 𝑗 𝜇𝑖 (𝑥𝑖) = :𝜓(𝑥𝑖)𝛾𝜇𝑖𝜓(𝑥𝑖): because

:(𝐹𝑒1)𝜇𝑖 (𝑦𝑖) 𝑗 𝜇𝑖 (𝑥𝑖): = (𝐹𝑒1)𝜇𝑖 (𝑦𝑖) 𝑗 𝜇𝑖 (𝑥𝑖). (4.9)

The time-ordering with respect to the 2𝑛 variables { 𝑥1, 𝑦1, . . . , 𝑥𝑛, 𝑦𝑛 } then works as it
does in the point-localized case. In particular, the time-ordered product

𝑇 [(𝐹𝑒1)𝜇1 (𝑦1) 𝑗 𝜇1 (𝑥1) (𝐹𝑒2)𝜇2 (𝑦2) 𝑗 𝜇2 (𝑥2)] (4.10)

of the four variables { 𝑥1, 𝑦1, 𝑥2, 𝑦2 } is unique outside the thin diagonal

{ 𝑥1 = 𝑥2 = 𝑦1 = 𝑦2 } = { 𝑥1 = 𝑥2 = 𝑥1 + 𝜆1𝑒1 = 𝑥2 + 𝜆2𝑒2 }
= { 𝑥1 = 𝑥2 ∧ 𝜆1 = 𝜆2 = 0 },

(4.11)

by the reasoning of Epstein-Glaser, provided that all lower time-ordered products have
been constructed. Let us for the moment assume that these lower time-ordered products
have been constructed. Then the requirement 𝜆1 = 𝜆2 = 0 from Eq. (4.11) cancels the
string integrations and the time-ordered product after string integration is ambiguous

2This is the limit 𝛾 → 𝜋 in 𝑓 (𝑒1, 𝑒2) = 𝛾

sin 𝛾
discussed in the end of Section 3.3.
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only at the 𝑥-diagonal. That is, two time-ordering recipes 𝑇1 and 𝑇2 can – after string
integration – only differ by a term supported on the 𝑥 diagonal { 𝑥1 = 𝑥2 },(

𝑇1 [𝐿 (𝑥1, 𝑒1)𝐿 (𝑥2, 𝑒2)] − 𝑇2 [𝐿 (𝑥1, 𝑒1)𝐿 (𝑥2, 𝑒2)]
)���
𝑥1≠𝑥2

= 0, (4.12)

again: provided that the lower time-ordered products have been constructed. Eq. (4.12)
has the following physical consequence. The difference 𝑇1 − 𝑇2 gives rise to an induced
term in the Lagrangian and the fact that this difference is supported on the 𝑥-diagonal
ensures that such an induced term is local in the sense that all strings appearing in it
emanate from the same 𝑥-variable.

Remember that we are still working within the example of QED. Let us write the
second order tree graph contribution explicitly. We can carry out the string integrations
to obtain

𝑇 [𝐿 (𝑥1, 𝑒1)𝐿 (𝑥2, 𝑒2)] |tree

= 〈〈𝑇𝐴𝜇 (𝑥1, 𝑒1)𝐴𝜈 (𝑥2, 𝑒2)〉〉 : 𝑗 𝜇 (𝑥1) 𝑗 𝜈 (𝑥2):

+
∑︁
𝜒,𝜙

〈〈𝑇 𝜒(𝑥1)𝜙(𝑥2)〉〉 :𝐴𝜇 (𝑥1, 𝑒1)𝐴𝜈 (𝑥2, 𝑒2)
𝜕 𝑗 𝜇 (𝑥1)
𝜕𝜒

𝜕 𝑗 𝜈 (𝑥2)
𝜕𝜙

:

+ ambiguities supported on { 𝑥1 = 𝑥2 }.

(4.13)

But in Eq. (4.13), the propagators have not yet been fixed and according to the Epstein-
Glaser reasoning, they can also have ambiguities. In contrast to the full time-ordered
product, which is an integral over time-ordered products of four arguments, the propagator
of the string-localized photon potential appearing in Eq. (4.13) is (a vacuum expectation
value) of an integral over a time-ordered product of the two arguments 𝑦𝑖 = 𝑥𝑖 + 𝜆𝑖𝑒𝑖,
𝑖 = 1, 2. Its ambiguity is thus a linear combination of derivatives of a doubly string-
integrated Dirac delta.

We postpone a generalization of these considerations in QED until after we have
clarified the string dependence of the S-matrix in a generic model in the next section.

4.2 The string-localized scattering matrix
We now outline the construction of the string-localized analogue of the Dyson series
Eq. (1.2) for the S-matrix with time-ordering as defined in the previous section. These
considerations are partially taken from the author’s paper [35] with adjustments made to
better fit into the context of this thesis.

As a first step towards a perturbative construction of the string-localized S-matrix,
one must declare the nature of the string-localization. Is string-localization a feature of
the potentials, the Lagrangian or the S-matrix? That is to say: Does each field come with
its own string variable, do the fields in the interaction Lagrangian 𝐿 depend on the same
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string variable or do all appearing fields depend on the same string variable:

𝐿 = 𝐿 (𝑥, 𝑒1, · · · , 𝑒𝑘 ) (each SL field has its own string variable), (4.14a)
𝐿 = 𝐿 (𝑥, 𝑒) (all SL fields in 𝐿 depend on the same 𝑒), (4.14b)
S = S[𝑔; 𝑒] (there is only a single string variable). (4.14c)

In a generic model, the three alternatives (4.14a), (4.14b) and (4.14c) result in completely
different analytic properties of the corresponding perturbation theory. Note, however,
that the alternatives (4.14a) and (4.14b) are equivalent if 𝐿 is at most linear in the
string-localized potentials, as is the case in QED, which was our example in the previous
Section 4.1.2.

Alternative (4.14c) is desirable if one wants to keep the delocalization as small as
possible and has been employed in models with lightlike string variables and massive
string-localized potentials [39]. However, it is in general not realizable due to the
divergence of 𝑓 (𝑒,−𝑒′) at 𝑒′ = 𝑒 that we have encountered in Section 3.3 and described
in the context of time ordering in the previous Section 4.1.2. We will see another facet of
that divergence in a Hörmander analysis in Section 5.2, see Corollary 5.13 below. The
divergence of 𝑓 (𝑒,−𝑒′) at 𝑒′ = 𝑒 rules out alternative (4.14c) for spacelike strings, which
is the only case that we consider in this thesis.

The interaction Lagrangian 𝐿 depends only on a single 𝑥-variable. One can therefore
argue that alternative (4.14b) is a natural choice to set up perturbation theory in SLFT. In
this case, loop graph contributions would consist of products of propagators in 𝑥 and 𝑒
and one must expect renormalization to become very complicated. Recent observations
by the author of this thesis, José M. Gracia-Bondía and Jens Mund in the string-localized
equivalent of massless Yang-Mills theory suggest that alternative (4.14b) does not
reproduce the standard model of particle physics [37]. In the cited work, we consider the
alternative (4.14a) from the beginning without mentioning other alternatives but one can
verify without too much effort that the Lie algebra structure of gluon self-interactions
is not compatible with alternative (4.14b) by adjusting Section 2.3 in [37] according
to 𝐿 (𝑥, 𝑒1, 𝑒2) → 𝐿 (𝑥, 𝑒). The complete reasoning is displayed explicitly in Section
6.1.3 of this thesis. This observation rules out alternative (4.14b) for phenomenological
reasons.

We are thus left with the alternative (4.14a), i.e., 𝐿 = 𝐿 (𝑥, 𝑒1, · · · , 𝑒𝑘 ) =: 𝐿 (𝑥, 𝒆),
which is also employed in the cited work [37]. The analyses therein additionally require a
symmetry under exchange of all string variables that appear at a fixed order of perturbation
theory. This symmetry can be achieved by smearing all string variables with the same
averaging function 𝑐 ∈ D(𝐻) with

∫
𝑑4𝑒 𝑐(𝑒) = 1.3 With this at hand, we are finally

able to write down a candidate for the string-localized S-matrix,

S[𝑔; 𝑐] := 1 +
∞∑︁
𝑛=1

1
𝑛!

𝑛∏
𝑗=1

𝑘∏
𝑙=1

∫
𝑑4𝑥 𝑗

∫
𝑑4𝑒 𝑗 ,𝑙 𝑔(𝑥 𝑗 )𝑐(𝑒 𝑗 ,𝑙)𝑆𝑛 (𝑥1, 𝒆1; . . . ; 𝑥𝑛, 𝒆𝑛),

(4.15)

3The test function 𝑐 needs to have integral equal to 1 if the string-localized potential is to remain a
potential for the field strength after smearing out the 𝑒-variable.
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where the first-order coupling 𝑆1(𝑥, 𝒆) = :𝐿 (𝑥, 𝒆): is the Wick-ordered interaction
Lagrangian. The property that 𝑐 integrates to unity ensures consistency if 𝐿 is a sum
of terms where different powers of string-localized potentials appear. The higher-order
couplings 𝑆𝑛 are time-ordered products of the first-order coupling, which need to be
constructed recursively. For the construction of these time-ordered products, we stick to
the procedure outlined in Section 4.1.2.

The time-ordered products of operator-valued distributions (i.e., of the interaction
Lagrangian 𝐿) that appear in the Dyson series for S are usually reduced to products of
numerical distributions by taking expectation values and employing Wick’s theorem. In
the point-localized case, that means [9, 32]

𝑇 [𝐿 (𝑥1) . . . 𝐿 (𝑥𝑛)]

=
∑︁
𝑗1,..., 𝑗𝑛

1
𝑗1! . . . 𝑗𝑛!

〈〈𝑇 :𝜑 𝑗1 (𝑥1): . . . :𝜑 𝑗𝑛 (𝑥𝑛): 〉〉 :
𝜕 | 𝑗1 |𝐿 (𝑥1)
𝜕 𝑗1𝜑

. . .
𝜕 | 𝑗𝑛 |𝐿 (𝑥𝑛)
𝜕 𝑗𝑛𝜑

: , (4.16)

where 𝜑 is an array of all quantum fields appearing in 𝐿 and the 𝑗𝑖 are multi-indices,
and where we have employed formal derivatives within Wick polynomials. If the
time-ordering operation was not involved in Eq. (4.16), the expectation value

〈〈 :𝜑 𝑗1 (𝑥1): . . . :𝜑 𝑗𝑛 (𝑥𝑛): 〉〉 (4.17)

would factorize into a sum of products of two-point functions, which is well-defined
as a product of distributions [9, 32, 41, 57]. But a factorization of the time-ordered
expectation values 〈〈𝑇 :𝜑 𝑗1 (𝑥1): . . . :𝜑 𝑗𝑛 (𝑥𝑛): 〉〉 into a product of propagators does not
hold everywhere but only outside the diagonal set described in Section 1.2, provided
that the lower time-ordered products have already been fixed. In the BEG-scheme, one
constructs a well-defined distribution 〈〈𝑇 :𝜑 𝑗1 (𝑥1): . . . :𝜑 𝑗𝑛 (𝑥𝑛): 〉〉 by extension across
that diagonal set [9, 32].

For example, if 𝜙 is a point-localized scalar field, then 〈〈 :𝜙(𝑥1)2: :𝜙(𝑥2)2: 〉〉 =

2〈〈𝜙(𝑥1)𝜙(𝑥2)〉〉2, where the product of distributions on the right-hand side is well-
defined. However, the square of the Feynman propagator is ill-defined and for the
time-ordered product, one instead has

〈〈𝑇 :𝜙(𝑥1)2: :𝜙(𝑥2)2: 〉〉 :=
[
2〈〈𝑇𝜙(𝑥1)𝜙(𝑥2)〉〉2]

extended across { 𝑥1=𝑥2 } . (4.18)

The ambiguities of choosing an extension as in the right-hand side of Eq. (4.18) are
precisely the BEG ambiguities. We shall discuss the details in Section 5.1.

Let us go back to the string-localized case and outline our programme. In Chapter 5,
we prove the well-definedness of string-localized two-point functions and propagators
and also that products of string-localized propagators exist whenever they exist in point-
localized QFT. Consequently, products involving string-localized propagators of the
type (4.18) make sense whenever they make sense in point-localized QFT and standard
renormalization techniques can be employed to perform renormalization in SLFT. The
fact that we were forced to choose alternative (4.14a) for the string dependence of the
S-matrix has profound impact on renormalization. It is of great importance for the proofs
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in Sections 5.3 and 5.5 that all appearing products of distributions are products only in
the spacetime variables but not in the string variables.

In the second part of Chapter 5, we investigate the “finite renormalization freedom”
of choosing a propagator for string-localized fields and discuss methods that reduce this
freedom. One such method is the implementation of the string independence principle
that we have already encountered in Section 2.4. We shall see that there are more methods
to reduce the extension freedom, some of which are not compatible. One therefore has to
take care, which methods for the reduction of the renormalization freedom one chooses.
However, since the string independence principle is at the heart of SLFT, it should be
given supremacy over the other methods.

Now that we are clear about how the string-localized version of the Dyson series
should look like, we can give an explicit description of what string independence in
string-localized perturbation theory means. Noting that all string variables of 𝑆𝑛 in
Eq. (4.15) are smeared in the same test function, we see that only the symmetric part
𝑆

symm
𝑛 of 𝑆𝑛 enters the Dyson series, where

𝑆
symm
𝑛 =

1
(𝑛𝑘)!

∑︁
𝜋∈𝔖𝑛𝑘

𝑆𝑛 (𝑥1, 𝑒𝜋(1,1) , . . . , 𝑒𝜋(1,𝑘); . . . ; 𝑥𝑛, 𝑒𝜋(𝑛,1) , . . . , 𝑒𝜋(𝑛,𝑘)), (4.19)

where𝔖𝑛𝑘 is the symmetric group of order 𝑛𝑘 . Introducing 𝑑𝑒 𝑗 ,𝑙 := 𝜕𝑒 𝑗 ,𝑙𝜅𝑑𝑒𝜅𝑗 ,𝑙 as notation
for the variation with respect to 𝑒 𝑗 ,𝑙 , we require that

𝑑𝑒 𝑗 ,𝑙𝑆
symm
𝑛 = 𝜕𝜇𝑄

𝜇

𝑛, 𝑗 ,𝑙
, (4.20)

so that the total divergence on the right-hand side of Eq. (4.20) gives a trivial contribution
to the S-matrix in the adiabatic limit 𝑔 → 𝑐𝑜𝑛𝑠𝑡. The requirement (4.20) has many
important consequences on the construction of the Dyson series, which will appear at
many places in the remaining parts of this thesis. For some implications of the string
independence principle at low orders of perturbation theory, see [37, 39].

Besides the string independence requirement, which is the string-localized analogue
of perturbative gauge invariance [1,29,60], the string-localized S-matrix should of course
be subject to similar constraints as in point-localized QFT. It should be unitary, Poincaré
invariant and causal [6, 32]. The S-matrix can also be subjected to model-dependent
discrete symmetries [74].

Causality takes a special role among these requirements because the causal structure,
or the commutation relations, are different in SLFT than in point-localized QFT. In the
string chopping description for linear string-localized fields [16], causality is realized
by a causal factorization adjusted to the string locality, see Property P4 from Section
4.1.1. For an implementation of a causal factorization in our time-ordering prescription,
presented in Section 4.1.2, we aim at a causal factorization, which is closely related to
the standard one from point-localized QFT, only formulated in terms of all variables 𝑥 𝑗
and 𝑦 𝑗 ,𝑙 ≡ 𝑥 𝑗 + 𝜆 𝑗 ,𝑙𝑒 𝑗 ,𝑙 . However, to implement such a factorization rule, some obstacles
need to be overcome.

Using our definition that time-ordered products involving string-localized fields
are given by the respective string-integrals over time-ordered products involving the
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field strength tensors, we can rewrite the Dyson series for the string-localized S-matrix
Eq. (4.15) as

S[𝐺] := 1 +
∞∑︁
𝑛=1

1
𝑛!

𝑛∏
𝑗=1

∫
𝑑4𝑥 𝑗 𝑑

4𝑘 𝒚 𝑗 𝐺
𝜈 𝑗 (𝑥 𝑗 , 𝒚 𝑗 ) 𝑆𝑛𝜈1...𝜈𝑛

(𝑥1, 𝒚1; . . . ; 𝑥𝑛, 𝒚1), (4.21)

with the tensor-valued auxiliary “test function”

𝐺𝜈 (𝑥, 𝒚) = 𝑔(𝑥)
𝑘∏
𝑙=1

∫
𝑑4𝑒𝑙 𝑐(𝑒𝑙) 𝑒𝜈𝑙,1𝑙

. . . 𝑒
𝜈𝑙,𝑠𝑙
𝑙

×
∫ ∞

0
𝑑𝑠𝑙𝝀𝑙 𝛿

(
𝑦𝑙 − 𝑥 −

( 𝑠𝑙∑︁
𝑖=1

𝜆𝑙,𝑖

)
𝑒𝑙

)
,

(4.22)

where 𝑠𝑙 ∈ N is the spin resp. helicity of the string-localized potential that depends on
the variable 𝑒𝑙 . The adjusted 𝑛-th order coupling in Eq. (4.21) is then

𝑆𝑛𝜈1...𝜈𝑛
(𝑥1, 𝒚1; . . . ; 𝑥𝑛, 𝒚1) = 𝑆𝑛 (𝑥1, 𝒆1; . . . ; 𝑥𝑛, 𝒆𝑛)

��
𝐴𝜇 (𝑥 𝑗 ,𝑒 𝑗 ,𝑙)→𝐹𝜇𝜈 (𝑦 𝑗 ,𝑙) . (4.23)

It is clear that 𝐺𝜈 (𝑥, 𝒚) is not a true test function. Caused by the string integrations,
which it contains, it is neither compactly supported nor does it fall off in negative string
direction.

In a first attempt, one can try to implement a causal factorization of the string-
localized S-matrix in two steps. First, require for true (tensor-valued) test functions
𝐺, 𝐻 ∈ D

(
(R1+3)𝑘+1, (R1+3) |𝜈 |

)
that

S[𝐺 + 𝐻] = S[𝐺]S[𝐻] (4.24)

if none of the points 𝑥 and 𝑦𝑙 in the support of 𝐻 is in the causal future of any of the points
𝑥′ or 𝑦′

𝑙
in the support of 𝐺. In a second step, check if the transition from test functions to

the stringy function from Eq. (4.22) is well-defined. It is however foreseeable that such
a factorization rule would imply that the time-ordering prescription is ambiguous on a
huge set because we are blind to what happens in situations of the type

“Some points of (𝑥, 𝒚) are later than all points (𝑥′, 𝒚′) and all of these
are later than the remaining points of (𝑥, 𝒚)”.

From a physical perspective, it is clear that the time-ordering prescription should be unique
also in this type of situation. Thus, an improvement of the described causal factorization
property is highly desirable. What blocks our way to an improved factorization rule is
the normal ordering of the interaction Lagrangian.

In the example of QED, which we discussed in Section 4.1.2, we had the advantage
that the normal-ordered product :𝐹𝜇𝜈 (𝑦) 𝑗 𝜇 (𝑥): is the same as the product 𝐹𝜇𝜈 (𝑦) : 𝑗 𝜇 (𝑥): .
We were then able to define the time-ordered product of 𝑛 copies of the QED interaction
Lagrangian as a time-ordered product of 2𝑛 variables, which satisfies a causal factorization
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rule with respect to all these variables. This is no longer possible in generic models,
where we have

:𝜙(𝑥)𝜒(𝑥′): = 𝜙(𝑥)𝜒(𝑥′) − 〈〈𝜙(𝑥)𝜒(𝑥′)〉〉 (4.25)

for generic (linear) quantum fields 𝜙(𝑥) and 𝜒(𝑥′) with a generally non-vanishing vacuum
expectation value on the right-hand side. Thus, if one were to drop the normal-ordering
of the interaction Lagrangian, the resulting Wick expansion of the 𝑛-th order coupling
would in general contain terms that could be interpreted as “self-contractions” in the
standard formulations.

Remark 4.2. The fact that the vacuum expectation values of the gluon potential are
color diagonal while the constants of proportionality 𝑓𝑎𝑏𝑐 are totally skewsymmetric
is precisely the reason why the string chopping procedure could be generalized to the
cubic part of the massless Yang-Mills Lagrangian [37]: the vacuum expectation values
corresponding to “self-contractions” add up to zero.

We propose the following ad hoc improvement of the previously described causal
factorization rule.

1. Drop the normal-ordering of the string-localized interaction Lagrangian.

2. Formally construct the 𝑛-th order coupling 𝑆𝑛𝜈1...𝜈𝑛
as point-localized time-ordered

product of the 𝑛(𝑘 + 1) variables (𝑥 𝑗 , 𝒚 𝑗 ), 𝑗 = 1, . . . , 𝑛 with a point-localized
causal factorization rule for all variables.4

3. Since the result is a point-localized time-ordered product, it has a Wick expansion.
Thus, subtract all terms in the Wick expansion that would correspond to self-
contractions before dropping the normal-ordering of the interaction Lagrangian.
This effectively restores the normal-ordering of the interaction Lagrangian.

4. Perform the string integrations.

A proper and axiomatic formulation of this ad hoc procedure is still missing. However,
the outlined rules allow us to perform computations.

By similar reasoning as in the example of QED discussed in Section 4.1.2, the outlined
ansatz yields that the full time-ordered products

𝑇 [𝐿 (𝑥1, 𝑒1,1, . . . , 𝑒1,𝑘 ) . . . 𝐿 (𝑥𝑛, 𝑒𝑛,1, . . . , 𝑒𝑛,𝑘 )] (4.26)

of 𝑛𝑘 or 𝑛(𝑘 + 1) arguments (that is, after dropping the normal-ordering of 𝐿) are
unique outside the thin 𝑥-diagonal { 𝑥1 = · · · = 𝑥𝑛 ∧ 𝜆 𝑗 ,𝑙 = 0 } provided that all lower
time-ordered products have been constructed. The ambiguities of the lower time-ordered
products might possess string-localized features, whose concrete nature still needs to be
clarified.

4Or as time-ordered products of 𝑛𝑘 arguments if 𝐿 contains only string-localized potentials so that the
𝑥-dependence disappears and only the dependence on the 𝑦-variables remains.



56 Perturbation theory with string-localized fields

Remark 4.3. We have argued in this chapter that we are left with alternative (4.14a) for a
proper setup of perturbation theory in string-localized quantum field theory. The reader
should be aware that the alternatives (4.14a) to (4.14c) have to be adjusted and that our
arguments need to be reevaluated if one employs the multi-string-localized potentials
from Remark 2.3 instead of string-localized potentials. The most obvious consequence
is that alternative (4.14c) drops out automatically if multi-string-localized higher-spin
potentials are involved because there is more than one string variable from the start. A
second aspect is that one needs to investigate an appropriate symmetrization in the string
variables.



Chapter 5

Renormalization in SLFT

In this chapter, we investigate BEG renormalization in string-localized field theory. For
these investigations, we employ mathematical tools of microlocal analysis. These tools
might not be well-known to many physicists, so we give an introduction in Section
5.1. We start the actual investigations in Section 5.2, where we describe the additional
singularities that arise from string integration with microlocal methods. We proceed to
give proofs of the well-definedness and singularity structure of the two-point functions
and propagators of string-localized potentials in Sections 5.3 and 5.4. In the latter section,
we also investigate ambiguities in the definition of the propagators, which correspond to a
(re-)normalization freedom in the BEG sense. In contrast to the previous considerations
in Section 3.3, we start by working in momentum space and then transfer the results
to configuration space. A major result of the chapter is the existence of products of
string-localized propagators outside an 𝑥-diagonal, which we derive in Section 5.5 based
on the formulation of string-localized perturbation theory outlined in Section 4.2. Section
5.6 is an excursion, where we check if the presented results also work for other choices
of string variables. In Section 5.7, we give a list of different approaches how to remove
ambiguities in string-localized propagators and comment on their non-trivial interplay.

Sections 5.1 to 5.6 are mainly based on the author’s paper [35]. Parts of them,
especially the biggest part of the introductory Section 5.1, are incorporated verbatim
from this reference.1

5.1 Introduction: wavefront sets and renormalization
As described in Sections 1.2, 4.1 and 4.2, perturbation theory in point-localized QFT is
typically formulated by writing matrix elements of the scattering operator as products
of numerical distributions – the propagators of the quantum fields involved in a certain
model – with the help of Wick’s theorem [32,77]. However, products or higher powers
of distributions make no sense in general and also the products of propagators in the
Wick expansion for the scattering operator are divergent. At 𝑛-th order of perturbation

1The corresponding section in the reference is in turn based on parts of Hörmander’s book [41]. See
also [33] for a concise but detailed introduction to distribution theory and wavefront sets.

57



58 Renormalization in SLFT

theory, they only make sense outside the thin diagonal { 𝑥1 = · · · = 𝑥𝑛 } ⊂ (R1+3)𝑛,
or after exploiting translation invariance, outside the origin { 𝑧 = 0 } ⊂ (R1+3)𝑛−1,
where 𝑧 = (𝑥1 − 𝑥𝑛, · · · , 𝑥𝑛−1 − 𝑥𝑛). In momentum space, the non-existence of these
products manifests itself in the well-known ultraviolet (UV) divergences of loop integrals
contributing to scattering amplitudes. Renormalization in a mathematically rigorous
sense is the extension of non-existent products of distributions in configuration space
across the origin { 𝑧 = 0 } [9, 32].

Once the existence of some extension across the origin has been established, one
must address the question of uniqueness. Two extensions can only differ by a distribution
supported on the origin, i.e., by a linear combination of derivatives of the Dirac delta,
since both extensions must be equal to the original distribution outside the origin. Vice
versa, adding an arbitrary linear combination of derivatives of the Dirac delta to a
particular extension gives another extension. These ambiguities are precisely the BEG
renormalization freedom. They can be controlled via constraints on the short-distance
scaling behavior of the extensions, i.e., the scaling behavior with respect to 𝑧 = 0 [9]
(cf. also [64]), by requiring that the extension does not scale worse than the original
distribution. This type of constraint is often referred to as power counting.

Example 5.1. Consider the distribution 𝐷 := [𝑥2 − 𝑖0]−1 ∈ S′(R1+3), which is a multiple
of the massless Feynman propagator. We will see in Example 5.8 that the square of 𝐷
is defined on R1+3 \ 0 but not on the full space R1+3. For now, we are only interested
in constructing an extension. First, note that 𝐷 is homogeneous, 𝐷 (𝜆𝑥) = 𝜆−2𝐷 (𝑥) for
all 𝜆 > 0. Correspondingly, the square (𝐷 |R1+3\0)2 scales as 𝜆−4. Power counting is the
requirement that any admissible extension does not scale worse than the non-extended
distribution, i.e., one requires that lim𝜆↓0 𝜆

4+𝜔𝑤(𝜆𝑥) = 0 for any admissible extension 𝑤
of (𝐷 |R1+3\0)2 and for all 𝜔 > 0.

It is a simple task to verify that on R1+3 \ 0, the square of 𝐷 coincides with the
divergence of the vector-valued distribution

𝑣𝜇 :=
1
2
𝑥𝜇 ln(𝑥2 − 𝑖0)
(𝑥2 − 𝑖0)2 . (5.1)

Since 𝑣𝜇 is locally integrable with respect to 𝑥 at 𝑥 = 0, it is a well-defined distribution2

on the full space R1+3 and thus, the divergence 𝐷2 := 𝜕𝜇𝑣
𝜇 defines an extension of

(𝐷 |R1+3\0)2. It is also admissible by power counting since lim𝜆↓0 𝜆
𝜔 ln(𝜆2) = 0 for all

𝜔 > 0.
An arbitrary extension𝑤 of (𝐷 |R1+3\0)2 can only differ from𝐷2 by a linear combination

of derivatives of the Dirac delta. Power counting introduces an upper bound on the
number of derivatives appearing in said linear combination. In the case at hand,

𝑤 − 𝐷2 = 𝑐0𝛿(𝑥) (5.2)

2The reader may try to verify that the logarithm does not cause any trouble by using the tools that we
present in the remaining part of the section.
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for some constant 𝑐0 and any admissible extension 𝑤 since the Dirac delta already scales
like 𝜆−4. The free parameter 𝑐0 in Eq. (5.2) introduces a renormalization freedom to the
model under consideration. It usually needs to be fixed by physical reasoning.

The method used to obtain the special extension 𝐷2 is called differential renorma-
lization but there are also other well-established methods (see for example [25] for an
introduction or [9, 17] for more abstract considerations).

Remark 5.2. The massless Feynman propagator 𝐷 from Example 5.1 is homogeneous.
Therefore, it is obvious how to define the scaling behavior with respect to the origin. A
more general definition can for example be found in [9].

A definition of a product of two distributions, which satisfies the known rules of
calculus, as well as a criterion for its existence was found by Hörmander [41, Theorem
8.2.10.] (as a special case of Lemma 5.4 below). If 𝑢 and 𝑣 are distributions over an open
subset 𝑋 ⊂ R𝑛, their product 𝑢𝑣 can be defined as the pullback of the tensor product
𝑢 ⊗ 𝑣 by the diagonal map Δ : 𝑋 → 𝑋 × 𝑋 , Δ(𝑥) = (𝑥, 𝑥) if

(𝑥; 𝑝) ∈ WF 𝑢 implies (𝑥;−𝑝) ∉ WF 𝑣, (5.3)

where the wavefront set WF 𝑢 of a distribution 𝑢 is a subset of the cotangent bundle
¤𝑇∗(𝑋) over 𝑋 deprived of the elements (𝑥; 0) (as indicated by the dot). WF 𝑢 gives a
refined characterization of the singularities of 𝑢:

Definition 5.3 (see Ch. 8 in [41]). Let 𝑢 ∈ D′(𝑋) for 𝑋 ⊂ R𝑛 open. Then the singular
support singsupp 𝑢 of 𝑢 is the set of points in 𝑋 that have no open neighborhood where 𝑢
is smooth. The frequency set Σ𝑥 (𝑢) of 𝑢 over a point 𝑥 ∈ 𝑋 is defined as an intersection

Σ𝑥 (𝑢) :=
⋂

𝜙∈𝐶∞
𝑐 (𝑋)

𝜙(𝑥)≠0

Σ(𝜙𝑢), (5.4)

where Σ(𝜙𝑢) is the cone of directions in R𝑛 \ 0 having no conic neighborhood in which
the Fourier transform of the compactly supported distribution 𝜙𝑢 is rapidly decaying.
Finally, the wavefront set WF 𝑢 of 𝑢 is the closed subset of ¤𝑇∗(𝑋) defined by

WF 𝑢 := { (𝑥; 𝑝) ∈ ¤𝑇∗(𝑋) | 𝑝 ∈ Σ𝑥 (𝑢) } (5.5)

so that the projection of WF 𝑢 onto the first component yields the singular support.

Thus, the wavefront set does not only encode the information about the singularities of
a distribution but also about the high frequencies that are responsible for their appearance.
It is easy to verify that the wavefront set is a closed and conic subset of ¤𝑇∗(𝑋), where
conic means that the wavefront set is invariant under scaling the second variable with
positive scalars.

The proofs in the following parts of this section are based on several standard
statements about properties of the wavefront set. For convenience of the reader, we now
concisely list the statements on which we rely later.
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The Hörmander product of two distributions 𝑢 and 𝑣 is defined as a pullback of their
tensor product, provided that the criterion Eq. (5.3) is satisfied. One can then also give a
bound on the wavefront set of the product [41, Theorem 8.2.10.], namely

WF(𝑢𝑣) ⊂ { (𝑥; 𝑝 + 𝑘) | (𝑥; 𝑝) ∈ WF 𝑢 or 𝑝 = 0, (𝑥; 𝑘) ∈ WF 𝑣 or 𝑘 = 0 }. (5.6)

The Hörmander product of two distributions is an important special case of the pullback
of distributions but we will also need to consider other pullbacks in order to examine the
wavefront set of string-localized propagators.

Lemma 5.4 (Thm. 8.2.4. in [41]). The pullback 𝑓 ∗𝑢 of a distribution 𝑢 ∈ D′(𝑌 ) by a
smooth map 𝑓 : 𝑋 → 𝑌 , where 𝑋 ⊂ R𝑚 and 𝑌 ⊂ R𝑛 are open, can be defined such that it
coincides with the pullback of smooth maps if 𝑢 ∈ 𝐶∞(𝑌 ), provided that 𝑁 𝑓 ∩ WF 𝑢 = ∅,
where

𝑁 𝑓 := { ( 𝑓 (𝑥); 𝑝) ∈ 𝑌 × R𝑛 | 𝑡 𝑓 ′(𝑥)𝑝 = 0 }. (5.7)

is the set of normals of the map 𝑓 . Moreover, we have

WF( 𝑓 ∗𝑢) ⊂ 𝑓 ∗ WF 𝑢 := { (𝑥; 𝑡 𝑓 ′(𝑥)𝑝) | ( 𝑓 (𝑥); 𝑝) ∈ WF 𝑢 }. (5.8)

The distributions that appear in quantum field theory are often solutions of partial
differential equations. For such distributions, one can give bounds on their wavefront set:

Lemma 5.5 (Eq. (8.1.11) and Thm. 8.3.1. in [41]). Let 𝑢 ∈ D′(𝑋) for 𝑋 ⊂ R𝑛 open
and let 𝑃 =

∑
|𝛼 |≤𝑚 𝑎𝛼 (𝑥)𝜕𝛼 be a differential operator of order 𝑚 on 𝑋 with smooth

coefficients. Then

WF(𝑃𝑢) ⊂ WF 𝑢 ⊂ WF(𝑃𝑢) ∪ char 𝑃, (5.9)

where the characteristic set char 𝑃 is defined in terms of the principal symbol 𝑃𝑚 (𝑥, 𝑝) :=∑
|𝛼 |=𝑚 𝑎𝛼 (𝑥)𝑝𝛼 of 𝑃 via

char 𝑃 := { (𝑥; 𝑝) ∈ ¤𝑇∗(𝑋) | 𝑃𝑚 (𝑥, 𝑝) = 0 }. (5.10)

In particular, if 𝑢 solves 𝑃𝑢 = 0, then WF 𝑢 ⊂ char 𝑃.

We will also deal with several homogeneous distributions. These are automatically
tempered [41, Theorem 7.1.18.] and the wavefront set of a homogeneous distribution is
closely related to the wavefront set of its Fourier transform:

Lemma 5.6 (Thm. 8.1.8. in [41]). Let 𝑢 ∈ D′(R𝑛) be homogeneous in R𝑛 \ 0. Then

(𝑥; 𝑝) ∈ WF 𝑢 ⇔ (𝑝;−𝑥) ∈ WF 𝑢̂ if 𝑥 ≠ 0 and 𝑝 ≠ 0,
𝑥 ∈ supp 𝑢 ⇔ (0;−𝑥) ∈ WF 𝑢̂ if 𝑥 ≠ 0,
𝑝 ∈ supp 𝑢̂ ⇔ (0; 𝑝) ∈ WF 𝑢 if 𝑝 ≠ 0.
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Remark 5.7. The statements from [41] displayed in this section are formulated over
Euclidean space with the sign convention of the Fourier transform described in the end of
the introduction. The mentioned change of the sign convention due to physical reasons
when working over Minkowski space implies that the covector components of wavefront
sets over Minkowski space get an additional sign.

Example 5.8. We show that the wavefront set of the massless Feynman propagator 𝐷
from Example 5.1 is given by

WF𝐷 = { (𝑥;𝜆𝑥) | 𝑥2 = 0, 𝑥 ≠ 0, 𝜆 > 0 } ∪ ¤𝑇∗
0 . (5.11)

First, we have ¤𝑇∗
0 ⊂ WF𝐷 by Lemma 5.5 since 𝐷 is a fundamental solution of the wave

equation and since WF 𝛿(𝑥) = ¤𝑇∗
0 . The latter wavefront set can be computed by using that

𝜑𝛿(𝑝) = 𝜑(0) for 𝜑 ∈ 𝐶∞
𝑐 (R1+3). When 𝑥 ≠ 0, 𝐷 is the pullback of the homogeneous

distribution [𝑡 − 𝑖0]−1 ∈ S′(R) by the map 𝑓 : R1+3 \ 0 → R with 𝑓 (𝑥) = 𝑥2. To verify
this, note that the Fourier transform of [𝑡± 𝑖0]−1 is a multiple of the Heaviside distribution
𝜃 (±𝜆) and thus, by Lemma 5.6,

WF[𝑡 ± 𝑖0]−1 = { (0;𝜆) | 𝜆 ≷ 0 } (5.12)

and 𝑁 𝑓 ∩WF[𝑡− 𝑖0]−1 = ∅. Hence, the pullback is defined by Lemma 5.4. The wavefront
set of the pullback is thus contained in the right-hand side of Eq. (5.11) by Lemma 5.4,
where the inverted sign of 𝜆 comes from the fact that we work over Minkowski space, as
explained in Remark 5.7. Since the wavefront set is conic and the projection onto the
first component yields the singular support, WF𝐷 cannot be smaller than the right-hand
side of Eq. (5.11).

Since 𝜆 has a fixed sign, the Hörmander square of 𝐷 exists when 𝑥 ≠ 0 but because
the wavefront set over 𝑥 = 0 contains any direction, the square is not defined at 𝑥 = 0.

Examples 5.1 and 5.8 are prototypical for an extension problem in point-localized
gauge theories. The situation becomes much more complex in string-localized field
theories. There, the propagators are not only distributions in the variables 𝑥 and 𝑥′
but also in spacelike string directions 𝑒 and 𝑒′. The string-localization can induce new
singularities to the propagator and moreover, the structure of these singularities depends
on the formulation of a string-localized perturbation theory, as we shall investigate in
Section 4.2. We will then prove in Section 5.5 that in a proper setup of string-localized
perturbation theory, the wavefront sets of string-localized propagators are actually
contained in the wavefront sets of certain point-localized propagators, that is to say that
the renormalization problem does not get worse in SLFT despite the delocalization.

To prove the latter statement, another standard theorem from microlocal analysis
about partially smeared distributions will play a central role:

Lemma 5.9 (Thm. 8.2.12. in [41]). Let 𝑋 ⊂ R𝑛 and 𝑌 ⊂ R𝑚 be open and let
𝐾 ∈ D′(𝑋 × 𝑌 ) with the corresponding linear transformation K from D(𝑌 ) to D′(𝑋),
i.e.,

[K𝜑] (𝜙) = 𝐾 (𝜙 ⊗ 𝜑). (5.13)
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Then

WF(K𝜑) ⊂ { (𝑥; 𝑝) | (𝑥, 𝑦; 𝑝, 0) ∈ WF𝐾 for some 𝑦 ∈ supp 𝜑 }. (5.14)

The two-point functions and propagators of string-localized potentials are tensor-
valued distributions. To investigate their singularity structure and the existence of
products, we need the definition of the wavefront set of a a distribution with values in C𝑛.

Definition 5.10 (see [18]). Let 𝑋 ⊂ R𝑚 and let 𝑢 = (𝑢 𝑗 ) 𝑗 ∈ D′(𝑋,C𝑛) be a vector-valued
distribution. Then WF 𝑢 =

⋃𝑛
𝑗=1 WF 𝑢 𝑗 .

5.2 Singularities arising from string integration
The following section is partially taken from the author’s paper [35], with adjustments
made to better fit into the context of this thesis. In Section 2.2, we have seen that string
integration leads to multiplication with the distributions

(𝑝𝑒)−1
± := lim

𝜀↓0

1
(𝑝𝑒) ± 𝑖𝜀 (5.15)

in momentum space. These distributions become singular when (𝑝𝑒) = 0 and thus
introduce additional singularities to string-localized two-point functions and propagators.
Let us characterize the new singularities in detail for general directions 𝑒 ∈ R1+3.

Lemma 5.11. The expressions𝑈±(𝑝, 𝑒) := (𝑝𝑒)−1
± are tempered distributions on (R1+3)2

with

WF𝑈± = { (𝑝, 𝑒;𝜆𝑒, 𝜆𝑝) | 𝜆 ≶ 0, (𝑝𝑒) = 0, (𝑝, 𝑒) ≠ (0, 0) } ∪ ¤𝑇∗
(0,0) , (5.16)

where ¤𝑇∗
(0,0) is the cotangent space at (𝑝, 𝑒) = (0, 0) deprived of the zero-covector.

Proof. First note that if𝑈± are well-defined distributions, they are also tempered because
they are homogeneous. When (𝑝, 𝑒) ≠ (0, 0),𝑈± are the pullbacks of the distributions
[𝑡 ± 𝑖0]−1 ∈ S′(R) by the map 𝑓 : (R1+3)2 \ (0, 0) → R, 𝑓 (𝑝, 𝑒) = (𝑝𝑒) with set of
normals

𝑁 𝑓 = { ((𝑝𝑒);𝜆) ∈ R2 | 𝜆𝑒 = 𝜆𝑝 = 0, (𝑝, 𝑒) ≠ (0, 0) } = { (𝑡; 0) | 𝑡 ∈ R } (5.17)

so that 𝑁 𝑓 ∩ WF[𝑡 ± 𝑖0]−1 = ∅. Thus, by Lemma 5.4, Remark 5.7 and the form of
WF[𝑡 ± 𝑖0]−1 given in Eq. (5.12), we have

WF 𝑈± | (𝑝,𝑒)≠(0,0) ⊂ 𝑓 ∗ WF[𝑡 ± 𝑖0]−1 = { (𝑝, 𝑒;𝜆𝑒, 𝜆𝑝) | (𝑝𝑒) = 0, 𝜆 ≶ 0 }. (5.18)

Eq. (5.18) must actually be an equality since the wavefront set is conic and the projection
onto the first component must yield the singular support. Since𝑈± are locally integrable
at (𝑝, 𝑒) = (0, 0), we have established their existence as tempered distributions.
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It remains to show that the wavefront set over (𝑝, 𝑒) = (0, 0) is the whole cotangent
space (deprived of the zero-covector). To do so, we introduce the bilinear form

𝐴 :=
1
2

(
0 𝜂

𝜂 0

)
(5.19)

on (R1+3)2 such that 𝐴(𝑝, 𝑒) = (𝑝𝑒) and 4𝐴2 = I. By [41, Theorem 6.2.1.],

(𝜕𝑝𝜕𝑒) [(𝑝𝑒) ± 𝑖0]−3 = 𝑎±𝛿(𝑝, 𝑒), (5.20)

where 𝑎± are non-vanishing constants that are unimportant for the following arguments.
Moreover, we have

(𝜕𝑝𝜕𝑒)2𝑈± = 4 [(𝑝𝑒) ± 𝑖0]−3 ⇒ (𝜕𝑝𝜕𝑒)3𝑈± = 4𝑎±𝛿(𝑝, 𝑒). (5.21)

Consequently WF 𝛿(𝑝, 𝑒) = ¤𝑇∗
(0,0) ⊂ WF𝑈± by Lemma 5.5 and the proof is completed.

�

The distributions𝑈± in Lemma 5.11 depend on a general string direction 𝑒 ∈ R1+3.
In SLFT, however, the string directions are usually restricted to a set of spacelike (or
lightlike, see [39]) directions. Within our derivations, they are elements of the open
subset 𝐻 ⊂ R1+3 of spacelike directions, as explained in Section 2.1. The restriction of a
distribution to an open subset always exists and it follows immediately from Definition
5.3 that the wavefront set of the restricted distribution is the restriction of the wavefront
set. We therefore define:

Definition 5.12. Let 𝑢±(𝑝, 𝑒) := 𝑈±(𝑝, 𝑒) |R1+3×𝐻 denote the restriction of the distributions
𝑈± over (R1+3)2 from Lemma 5.11 to the open subsetR1+3×𝐻 of spacelike string directions
with

WF 𝑢± = { (𝑝, 𝑒; 𝑥, 𝜉) | (𝑝, 𝑒; 𝑥, 𝜉) ∈ WF𝑈±, 𝑒 ∈ 𝐻 } (5.22)

by definition of the wavefront set.

Lemma 5.11 has the following important consequence for the restricted distributions
𝑢±.

Corollary 5.13. Hörmander products (𝑢+)𝑘 and (𝑢−)𝑘 of the restrictions to spacelike
string variables do exist for arbitrary 𝑘 ∈ N, but the Hörmander product 𝑢+ · 𝑢− with
opposite imaginary shift does not exist. Moreover,

WF
[
(𝑢±)𝑘

]
= WF 𝑢±. (5.23)

Proof. If 𝑒 ∈ 𝐻, then (𝑝, 𝑒) ≠ (0, 0) and

WF 𝑢± = { (𝑝, 𝑒;𝜆𝑒, 𝜆𝑝) | 𝑒 ∈ 𝐻, 𝜆 ≶ 0, (𝑝𝑒) = 0 }. (5.24)
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The Hörmander product of two distributions exists if Eq. (5.3) is satisfied. Since the sign
of 𝜆 in Eq. (5.24) is fixed by the sign of the imaginary shift, (𝑢±)2 are defined but 𝑢+ · 𝑢−
is not. It also follows immediately from the shape of WF 𝑢± and Eq. (5.6) that

WF
[
(𝑢±)2] ⊂ WF 𝑢± (5.25)

and both sides must be equal since the wavefront set is conic and the projection onto the
first component must yield the singular support. By induction, we get the statement for
arbitrary powers. �

Remark 5.14. In the literature, the string variables are usually considered as elements
of the closed subset 𝐻−1 ⊂ R1+3 of spacelike vectors with Minkowski square 𝑒2 = −1
(as for example in [37,49]). The restriction of a distribution to a closed subset is much
more involved than the restriction to an open subset. It does not always exist and even if
it does, it may affect the form of the wavefront set [41]. We will briefly sketch in Section
5.6.2 why the restriction to 𝐻−1 is indeed unproblematic. For our purposes, however, the
simpler case of the restriction to the open subset 𝐻 is sufficient.

By our considerations in Section 4.2, each string-localized potential appearing in the
Dyson series for the string-localized S-matrix depends on a different string variable. The
products of propagators are products only in the 𝑥-variables but not in the 𝑒-variables. We
can thus smear out the string variables and investigate the existence of the distributional
product in 𝑥 after smearing. Let us determine the effect of this smearing on the new
singularities coming from 𝑢±. More detailed, each denominator 𝑢±(𝑝, 𝑒) in the two-
point function (2.16) is accompanied by a numerator 𝑒𝜇 and this numerator, although
unproblematic, must be included in our considerations. We have:

Lemma 5.15. For 𝑐 ∈ D(𝐻), we define

𝑞
𝜇1···𝜇𝑠
𝑐,± (𝑝) :=

∫
𝑑4𝑒 𝑐(𝑒) (±𝑖)

𝑠𝑒𝜇1 · · · 𝑒𝜇𝑠
[(𝑝𝑒) ± 𝑖0]𝑠 . (5.26)

Then 𝑞𝜇1···𝜇𝑠
𝑐,± (𝑝) ∈ S′(R1+3) with WF 𝑞𝜇1···𝜇𝑠

𝑐,± (𝑝) = { (0;𝜆𝑒) | 𝜆 ≶ 0, 𝑒 ∈ supp 𝑐 }.

Proof. The expressions 𝑞𝜇1···𝜇𝑠
𝑐,± (𝑝) are the results of smearing distributions of the form

appearing in Corollary 5.13 times a smooth (tensor-valued) function in the string variable.
Therefore, they are well-defined distributions. By homogeneity, they are also tempered.

Since 𝑒 ∈ 𝐻 is spacelike and hence non-zero, the wavefront set of 𝑞𝜇1···𝜇𝑠
𝑐,± (𝑝) must

be contained in { (𝑝; 𝑥) | (𝑝, 𝑒; 𝑥, 0) ∈ WF 𝑢± } by Lemma 5.9, with 𝑢± as in Corollary
5.13 and WF 𝑢± as in Eq. (5.24). This yields

(𝑝; 𝑥) ∈ WF 𝑞𝜇1···𝜇𝑠
𝑐,± (𝑝) ⇒ 𝑝 = 0 and 𝑥 = 𝜆𝑒 for some 𝜆 ≶ 0 and 𝑒 ∈ supp 𝑐.

(5.27)

To show that any such element (0;𝜆𝑒) is in the wavefront set, note that the Fourier
transform of 𝑞𝜇1···𝜇𝑠

𝑐,± (𝑝) is∫
𝑑4𝑝 𝑒𝑖(𝑝𝑥)𝑞𝜇1···𝜇𝑠

𝑐,± (𝑝) ∼
∫

𝑑4𝑒 𝑐(𝑒) 𝑒𝜇1 · · · 𝑒𝜇𝑠 𝐼 𝑠±𝑒𝛿(𝑥) (5.28)
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with support { 𝑥 = 𝜆𝑒 | 𝜆 ≶ 0, 𝑒 ∈ supp 𝑐 }. By homogeneity and Lemma 5.6, (0; 𝑥) is
an element of WF 𝑞𝜇1···𝜇𝑠

𝑐,± (𝑝) if and only if 𝑥 is in the support of the Fourier transform.
This proves the claim. �

Note that Lemma 5.15 implies that the new singularities coming from string integration
are pure infrared singularities after smearing out the string variables.
Remark 5.16. Let 𝒆 = (𝑒1, . . . , 𝑒𝑘 ) ∈ 𝐻𝑘 and 𝒆′ = (𝑒′1, . . . , 𝑒

′
𝑙
) ∈ 𝐻𝑙 . Note that the

existence criterion for “full” 𝑥-products after smearing out the string variables (𝒆, 𝒆′) is
the same existence criterion as for “partial” 𝑥-products of distributions in R1+3 × 𝐻𝑘+𝑙 .
Let us have a closer look at this, starting with the 𝑥-product of smeared distributions and
assuming that all string variables are smeared with the same test function 𝑐 ∈ D(𝐻).3

Let 𝑢 ∈ D′(R1+3 × 𝐻𝑘 ) and 𝑣 ∈ D′(R1+3 × 𝐻𝑙). Lemma 5.9 gives

WF 𝑢(𝑥, 𝑐⊗𝑘 ) ⊂ { (𝑥; 𝑝) | (𝑥, 𝒆; 𝑝, 0) ∈ WF 𝑢(𝑥, 𝒆) for some 𝒆 ∈ supp 𝑐⊗𝑘 },
WF 𝑣(𝑥, 𝑐⊗𝑙) ⊂ { (𝑥; 𝑝) | (𝑥, 𝒆′; 𝑝, 0) ∈ WF 𝑣(𝑥, 𝒆′) for some 𝒆′ ∈ supp 𝑐⊗𝑙 }

(5.29)

so that the product 𝑢(𝑥, 𝑐⊗𝑘 )𝑣(𝑥, 𝑐⊗𝑙) of the partially smeared distributions exists if

(𝑥, 𝒆; 𝑝, 0) ∈ WF 𝑢(𝑥, 𝒆) implies (𝑥, 𝒆′;−𝑝, 0) ∉ WF 𝑣(𝑥, 𝒆′), (5.30)

for any 𝑒𝑖, 𝑒′𝑗 ∈ supp 𝑐. On the other hand, the partial 𝑥-product before smearing is
nothing but the pull-back to the 𝑥-diagonal by the map

Δ𝑥 : R1+3 × 𝐻𝑘+𝑙 → (R1+3)2 × 𝐻𝑘+𝑙 , (𝑥, 𝒆, 𝒆′) ↦→ (𝑥, 𝑥, 𝒆, 𝒆′) (5.31)

with

𝑡Δ′
𝑥 (𝑥, 𝑒, 𝑒′)

©­­­«
𝑝

𝑘

𝜉

𝜉′

ª®®®¬ =
©­«
𝑝 + 𝑘
𝜉

𝜉′

ª®¬ = 0 if and only if 𝜉 = 𝜉′ = 0 and 𝑝 + 𝑘 = 0. (5.32)

Therefore, by Lemma 5.4, the criteria for the existence of the partial product and the
product after smearing are the same. In the following, we will work with the product
after smearing because there, it is easier to perform a transition from momentum to
configuration space. However, for a BEG construction in SLFT, the time-ordered products
should be defined before smearing so that one does not have to extend across an open set.
Remark 5.17. Indeed, the singularities of the multi-string-localized potentials (2.6)
from Remark 2.3 are also pure infrared singularities after smearing out the string
variables. To see this, note that in momentum space the additional singularities of the
multi-string-localized potentials are∫

𝑑4(𝑒1) . . . 𝑑4𝑒𝑠 𝑐(𝑒1) . . . 𝑐(𝑒𝑠)
(±𝑖)𝑠𝑒𝜇1 . . . 𝑒

𝜇
𝑠

(𝑝𝑒1)± . . . (𝑝𝑒𝑠)±
, (5.33)

which is nothing but the 𝑠-fold 𝑝-product of 𝑞𝜇𝑐,±(𝑝) with itself, whose wavefront set is
contained in ¤𝑇∗

0R
1+3. This can be seen in a similar manner to the proof of Lemma 5.15.

3This assumption is not necessary for the subsequent reasoning but since it is satisfied anyway in our
considerations, we use it here to simplify the notation.
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Lemma 5.11, Corollary 5.13 and Lemma 5.15 are the starting point for the full
analysis of the singularities of string-localized propagators that we subsequently perform.
We proceed to show that the singularities induced by string-integration are completely
harmless if string-localized perturbation theory is set up as described in Section 4.2.

5.3 Well-definedness of string-localized two-point func-
tions

With the microlocal tools listed in Section 5.1 and the wavefront set of the denominators
(𝑝𝑒)−1

± derived in Section 5.2 at hand, we are now ready to analyze the well-definedness
and singularity structure of the string-localized two-point functions introduced in Section
2.2. We have:

Theorem 5.18. For all masses 𝑚 ≥ 0 and all spins respectively helicities 𝑠 ∈ N, the
two-point function of the string-localized potential, given by

〈〈𝐴(𝑠)
𝑓
(𝑒)𝐴(𝑠)

𝑓 ′ (𝑒
′)〉〉(𝑥) =

∫
𝑑𝜇𝑚 (𝑝) 𝑒−𝑖𝑝𝑥 𝑚𝑀𝐴

(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ (𝑝, 𝑒, 𝑒′), (5.34)

with the kernel 𝑚𝑀
𝐴
(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ (𝑝, 𝑒, 𝑒′) as defined in Eq. (2.16), is a well-defined distribution

over R1+3 × 𝐻2.

Proof. At 𝑚 = 0, the point-localized scalar two-point function

𝑊0(𝑥) =
∫

𝑑𝜇0(𝑝) 𝑒−𝑖𝑝𝑥 (5.35)

is homogeneous, as is its Fourier transform, the measure 𝑑𝜇0(𝑝). Since [57, Theorem
IX.48]

WF𝑊0(𝑥) = { (0; 𝑝) | 𝑝2 = 0, 𝑝0 < 0 } ∪ { (±|®𝑥 |, ®𝑥;𝜆 | ®𝑥 |,±𝜆®𝑥) | ®𝑥 ∈ R3, 𝜆 < 0 }.
(5.36)

and since𝑊0(𝑥) is supported everywhere, Lemma 5.6 on the wavefront set of homogeneous
distributions gives4

WF 𝑑𝜇0(𝑝) = { (𝑝;𝜆𝑝) | 𝑝2 = 0, 𝑝0 > 0, 𝜆 ≠ 0 } ∪ ¤𝑇∗
0R

1+3. (5.37)

In the massive case, homogeneity is lost but the mass hyperboloid 𝐻+
𝑚 := { 𝑝2 = 𝑚2, 𝑝0 >

0 } is a smooth and closed submanifold and the measure 𝑑𝜇𝑚 (𝑝) is a smooth density on
𝐻+
𝑚, so that [7, 41] (cf. also [36])

WF 𝑑𝜇𝑚 (𝑝) = { (𝑝;𝜆𝑝) | 𝑝2 = 𝑚2, 𝑝0 > 0, 𝜆 ≠ 0 }. (5.38)

4Note again the inverted sign convention for the Fourier transform over Minkowski space, which is
important at this point. See also Section 1.3.
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The kernel 𝑚𝑀
𝐴
(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ (𝑝, 𝑒, 𝑒′) is homogeneous of degree 𝜔 = 0 in 𝑝 and contains only

denominators 𝑢−(𝑝, 𝑒)𝑘 and 𝑢+(𝑝, 𝑒′)𝑙 . Tensoring 𝑑𝜇𝑚 (𝑝), 𝑢−(𝑝, 𝑒)𝑘 and 𝑢+(𝑝, 𝑒′)𝑙 with
the constant distribution in the missing string variables, we see that the Hörmander
criterion for the triple product

𝑑𝜇𝑚 (𝑝) · 𝑢−(𝑝, 𝑒)𝑘 · 𝑢+(𝑝, 𝑒′)𝑙 (5.39)

is satisfied for all masses 𝑚 ≥ 0 whenever 𝑝 ≠ 0 by Eq. (5.37), Eq. (5.38) and Corollary
5.13. Since 𝑑𝜇𝑚 (𝑝) is smooth at 𝑝 = 0 for 𝑚 > 0 and since 𝑑𝜇0(𝑝) is homogeneous of
degree 𝜔̃ = −2,

𝑑𝜇𝑚 (𝑝) 𝑚𝑀𝐴
(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ (𝑝, 𝑒, 𝑒′) (5.40)

is locally integrable with respect to 𝑝 = 0 and hence a well-defined distributions. The
vacuum expectation values are then the Fourier back transform with respect to 𝑝 of
(5.40). �

Next, we determine the wavefront set of the partially smeared two-point functions.

Theorem 5.19. The wavefront set of the partially smeared two-point function

〈〈𝐴(𝑠)
𝑓
(𝑐)𝐴(𝑠)

𝑓 ′ (𝑐)〉〉(𝑥) :=
∫

𝑑4𝑒

∫
𝑑4𝑒′ 𝑐(𝑒) 𝑐(𝑒′) 〈〈𝐴(𝑠)

𝑓
(𝑐)𝐴(𝑠)

𝑓 ′ (𝑐)〉〉(𝑥) ∈ S′(R1+3)

(5.41)

is contained in the wavefront set of the two-point function 𝑊𝑚 (𝑥) of a scalar and
point-localized Klein-Gordon field, i.e.,

WF
[
〈〈𝐴(𝑠)

𝑓
(𝑐)𝐴(𝑠)

𝑓 ′ (𝑐)〉〉(𝑥)
]
⊂ WF𝑊𝑚 (𝑥), (5.42)

where the wavefront set on the righthand side of Eq. (5.42) is given by Eq. (5.36) also for
𝑚 > 0 [57].

To prove Theorem 5.19, we can exploit homogeneity for the massless case. For the
massive case, we first prove an auxiliary lemma.

Lemma 5.20. Let 𝑢, 𝑣 ∈ S′(R1+3). Suppose further that 𝑢̂ is polynomially bounded,
that WF 𝑢̂ ⊂ ¤𝑇∗

0 , that 𝑣̂ is smooth on a neighborhood of 𝑝 = 0 and that the Hörmander
product 𝑢̂𝑣̂ is an element of S′(R1+3). Then WF

[
F −1(𝑢̂𝑣̂)

]
⊂ WF 𝑣.

Proof (see also [35]). We have to investigate the decay properties of the Fourier trans-
forms of 𝜙F −1(𝑢̂𝑣̂) for 𝜙 ∈ 𝐶∞

𝑐 (R1+3). Since 𝜙 is compactly supported and smooth, we
know that its Fourier transform is a Schwartz function, 𝜙 ∈ S(R1+3). Moreover, F −1(𝑢̂𝑣̂)
is a tempered distribution since by assumption also 𝑢̂𝑣̂ is tempered. Then[

F
(
𝜙F −1(𝑢̂𝑣̂)

)]
(𝑝) = 𝜙 ∗ 𝑢̂𝑣̂(𝑝) = 𝑢̂𝑣̂(𝜙(𝑝 − ·)) (5.43)
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is smooth and polynomially bounded [57, Thm. IX.4].
To investigate the decay of 𝑢̂𝑣̂(𝜙(𝑝 − ·)), we introduce a second cutoff function

𝜒 ∈ 𝐶∞
𝑐 (R1+3) with 0 ≤ 𝜒 ≤ 1, 𝜒 ≡ 1 on 𝐵𝑟 (0) and supp 𝜒 ⊂ 𝐵𝑅 (0), where 𝐵𝜚 (𝑝)

is the closed ball of Euclidean radius 𝜚 and center 𝑝 ∈ R1+3, and where 0 < 𝑟 < 𝑅 is
chosen such that 𝐵𝑅 (0) ∩ singsupp 𝑣̂ = ∅.

Then 𝑢̂ is smooth on supp(1 − 𝜒), 𝑣̂ is smooth on supp 𝜒 and 𝑢̂𝑣̂ = 𝜒𝑢̂𝑣̂ + (1 − 𝜒)𝑢̂𝑣̂.
The first term is unproblematic, for there are constants 𝑁 , 𝐶 and 𝐶′ such that

|𝜒𝑢̂𝑣̂(𝜙(𝑝 − ·)) | ≤ 𝐶
∑︁

|𝛼+𝛽 |≤𝑁
sup

𝑘∈𝐵𝑅 (0)

���𝑘𝛼𝜕𝛽
𝑘
𝜙(𝑝 − 𝑘)

���
≤ 𝐶′(1 + |𝑝 |)𝑁

∑︁
|𝛼+𝛽 |≤𝑁

sup
𝑘∈𝐵𝑅 (𝑝)

���𝑘𝛼𝜕𝛽
𝑘
𝜙(𝑘)

��� , (5.44)

where |𝑝 | is the Euclidean norm of 𝑝. The right-hand side of Eq. (5.44) is rapidly
decaying since 𝜙 ∈ S(R1+3) and since the supremum is taken over a compact set around
𝑝.

To estimate the second term (1 − 𝜒)𝑢̂𝑣̂, note that the smooth function (1 − 𝜒)𝑢̂ is
polynomially bounded and thus

[(1 − 𝜒)𝑢̂𝑣̂]
(
𝜙(𝑝 − ·)

)
= 𝑣̂

(
(1 − 𝜒)𝑢̂(·) 𝜙(𝑝 − ·)

)
(5.45)

falls off rapidly if 𝑣̂
(
𝜙(𝑝 − ·)

)
= 𝜙𝑣 falls off rapidly. Thus, also the full expression falls

off rapidly if 𝜙𝑣 does, which proves the lemma. �

With Lemma 5.20 at hand, we are ready to prove Theorem 5.19.

Proof of Theorem 5.19. To prove the massive case, we define the distributions

𝑢̂(𝑝) =
∫

𝑑4𝑒

∫
𝑑4𝑒′ 𝑐(𝑒)𝑐(𝑒′) 𝑚𝑀𝐴

(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ (𝑝, 𝑒, 𝑒′) (5.46)

and 𝑣̂(𝑝) = 𝑑𝜇𝑚 (𝑝) for 𝑚 > 0. 𝑢̂(𝑝) is homogeneous of degree 0 in 𝑝 and arises from
contraction of the distributions 𝑞𝜇1···𝜇𝑠

𝑐,± from Lemma 5.15 with a polynomial in 𝑝. Local
integrability of 𝑢̂(𝑝) at 𝑝 = 0 ensures its existence as a tempered distribution and by
Lemma 5.15, WF 𝑢̂ ⊂ ¤𝑇∗

0R
1+3. 𝑣̂ is smooth at 𝑝 = 0 because 𝑚 > 0 and hence 𝑢̂ and 𝑣̂

satisfy the assumptions of Lemma 5.20. Therefore, the part of Theorem 5.32 concerning
the massive case is a special case of Lemma 5.20 and

WF 〈〈𝐴(𝑠)
𝑓
(𝑐)𝐴(𝑠)

𝑓 ′ (𝑐)〉〉 ⊂ WF 𝑣 = WF𝑊𝑚 (𝑥). (5.47)

In the massless case, the partially smeared string-localized two-point function is

〈〈𝐴(𝑠)
𝑓
(𝑐)𝐴(𝑠)

𝑓 ′ (𝑐)〉〉 =
∫

𝑑𝜇0(𝑝) 𝑢̂(𝑝) 𝑒−𝑖𝑝𝑥 (5.48)

with 𝑢̂(𝑝) as in Eq. (5.46). Here we have ¤𝑇∗
0R

1+3 ⊂ WF 𝑑𝜇0(𝑝), so Lemma 5.20 does
not apply. However, by local integrability with respect to 𝑝 = 0, 𝑑𝜇0(𝑝) 𝑢̂(𝑝) is a
well-defined distribution because WF 𝑢̂ ⊂ ¤𝑇∗

0R
1+3 and since 𝑢̂(𝑝) can only introduce

additional singularities at 𝑝 = 0, Lemma 5.6 gives the claim for the vacuum expectation
value (5.48). �
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Corollary 5.21. All Hörmander powers

𝑣 𝑓1... 𝑓2𝑛 (𝑥) :=
𝑛∏
𝑖=1

〈〈𝐴(𝑠)
𝑓2𝑖−1

(𝑐)𝐴(𝑠)
𝑓2𝑖
(𝑐)〉〉(𝑥) (5.49)

are well-defined elements of S′(R1+3) with

WF 𝑣 𝑓1... 𝑓2𝑛 ⊂ WF𝑊𝑚 (𝑥) ∪ { (0; 𝑝) | 𝑝2 ≥ 0, 𝑝0 < 0 }. (5.50)

Proof. The wavefront set of 𝑊𝑚 (𝑥) is directed and from its form given by Eq. (5.36)
we see that the Hörmander square of𝑊𝑚 (𝑥) exists. Using the estimate Eq. (5.6) on the
wavefront set of the Hörmander product, we also get that

WF
[
(𝑊𝑚 (𝑥))2] ⊂ WF𝑊𝑚 (𝑥) ∪ { (0; 𝑝) | 𝑝2 ≥ 0, 𝑝0 < 0 }, (5.51)

where the second component comes from the fact that the sum of two backwards directed
lightlike vectors can also be a backwards directed timelike vector. The statement for
arbitrary powers follows by induction because any linear combination of backwards
directed timelike and lightlike vectors remains a backwards directed timelike or lightlike
vector. Finally, Theorem 5.19 gives the same statement for the powers of partially smeared
two-point functions of string-localized potentials. �

We have thus shown that the singularity structure of the partially smeared two-point
functions of string-localized potentials of arbitrary mass and spin respectively helicity is
not worse than in the point-localized case.

Remark 5.22. Note again that all proofs in this section work analogously for the
multi-string-localized potentials from Remark 2.3.

5.4 Propagators and their ambiguities
In the preceding section, we have shown that the two-point functions of string-localized
potentials are well-defined and that the wavefront set of the partially smeared two-point
functions is contained in the wavefront set of the two-point function of the scalar Klein-
Gordon field. In this and the following section, we prove similar statements about
the respective propagators. Both sections are again partially taken from the author’s
paper [35].

In accordance with the BEG scheme, there is no unique choice of a propagator
in general. To visualize that, note that any (smooth) term proportional to 𝑝2 − 𝑚2

can be added to the kernel of a two-point function without changing the latter because
(𝑝2−𝑚2)𝑑𝜇𝑚 (𝑝) = 0. However, adding such a term to the propagator yields a contribution
𝑝2−𝑚2

𝑝2−𝑚2+𝑖0 = 1, which becomes a Dirac delta in configuration space. This freedom in
choosing a propagator is well-known and of course, we have come across it already in
Section 1.2 and Chapter 4 when discussing the ambiguities in the BEG approach to
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perturbation theory. As described in Section 5.1, the freedom of choosing an extension is
usually restricted by the power counting principle.

In Section 5.4.1, we introduce a special choice of (string-localized) propagators –
the “kinematic” propagators – and prove their well-definedness. In Section 5.4.2, we
discuss a reasonable class of different choices of propagators before we perform a similar
analysis to the one from Section 5.3 for all propagators in that class in Section 5.5.

5.4.1 The kinematic propagator
A special choice of a propagator, the “kinematic” propagator 〈〈𝑇0𝜑𝜒〉〉, is obtained by
replacing the measure 𝑑𝜇𝑚 (𝑝) in the two-point function by 𝑑4𝑝

(2𝜋)4
𝑖

𝑝2−𝑚2+𝑖0 . In the case
of the point-localized Klein-Gordon field 𝜙(𝑥), the kinematic propagator is simply the
Feynman propagator,

〈〈𝑇0𝜙𝜙〉〉(𝑥) = 𝜃 (𝑥0)𝑊𝑚 (𝑥) + 𝜃 (−𝑥0)𝑊𝑚 (−𝑥) = 𝐷𝐹 (𝑥), (5.52)

where 𝜃 is the Heaviside step function. The derivation of Eq. (5.52) is a standard task (see
for example the textbooks [55,62]), while the proof of the existence as a distributional
product in the sense of Hörmander is less known but clear from the shape of the wavefront
set of 𝑊𝑚 (𝑥) given by Eq. (5.36) – see also [57]. In the general case of two arbitrary
point-localized fields 𝑋 and 𝑋′ given by Eq. (2.7), the kinematic propagator is a derivative
of 𝐷𝐹 (𝑥),

〈〈𝑇0𝑋𝑋
′〉〉(𝑥) = 𝑚𝑀

𝑋,𝑋 ′ (𝑖𝜕)𝐷𝐹 (𝑥) (5.53)

with the kernel 𝑚𝑀𝑋,𝑋 ′ of the two-point function of 𝑋 and 𝑋′. To avoid ambiguities in
the definition of the kinematic propagator, we need to fix some conventions:

1. All terms in 𝑚𝑀
𝑋,𝑋 ′ (𝑝), which are proportional to 𝑝2 − 𝑚2 and hence vanish on

the mass-shell and yield no contribution to the two-point function, are set to zero.

2. In the massive case, all factors 𝑝2 that might appear in 𝑚𝑀
𝑋,𝑋 ′ (𝑝) are replaced by

factors 𝑚2.

Note that the kinematic propagator Eq. (5.53) should be seen as a so-called offshell
propagator in the sense of Brouder-Dütsch-Fredenhagen [8, 27, 28].5 Consequently,
the kinematic propagator does not necessarily respect the equations of motions, which
on-shell fields satisfy.

For the string-localized potentials from Eq. (2.1), the integral kernel 𝑚𝑀
𝐴
(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ of

the two-point function actually only depends on 𝑝, −𝑖𝑒
(𝑝𝑒−) and 𝑖𝑒′

(𝑝𝑒′)+ , so that we can write

〈〈𝑇0𝐴
(𝑠)
𝑓
(𝑒)𝐴(𝑠)

𝑓 ′ (𝑒
′)〉〉(𝑥) = 𝑖

∫
𝑑4𝑝

(2𝜋)4
𝑒−𝑖𝑝𝑥

𝑝2 − 𝑚2 + 𝑖0 𝑚𝑀
𝐴
(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′

(
𝑝,

−𝑖𝑒
(𝑝𝑒)−

,
𝑖𝑒′

(𝑝𝑒′)+

)
= 𝑚𝑀

𝐴
(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ (𝑖𝜕, 𝑒𝐼𝑒, 𝑒′𝐼−𝑒′)𝐷𝐹 (𝑥).

(5.54)

5Details on offshell propagators are given in Section 5.7.4.
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We prove the well-definedness of the kinematic propagator Eq. (5.54).

Theorem 5.23. The kinematic propagators of the string-localized potentials for arbitrary
mass 𝑚 ≥ 0 and spin/helicity 𝑠 ∈ N defined by

〈〈𝑇0𝐴
(𝑠)
𝑓
(𝑒)𝐴(𝑠)

𝑓 ′ (𝑒
′)〉〉(𝑥) := 𝑖

∫
𝑑4𝑝

(2𝜋)4
𝑒−𝑖(𝑝𝑥)

𝑝2 − 𝑚2 + 𝑖0 𝑚𝑀
𝐴
(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ (𝑝, 𝑒, 𝑒′) (5.55)

are well-defined distributions on R1+3 × 𝐻2.

Proof. In the massive case, the distribution [𝑝2 − 𝑚2 + 𝑖0]−1 can be seen as the pullback
of [𝑡 + 𝑖0]−1 ∈ S′(R) by the map 𝑓 : R1+3 → R with 𝑓 (𝑝) = 𝑝2 −𝑚2 with set of normals

𝑁 𝑓 = { (𝑝2 − 𝑚2;𝜆) ∈ R2 | 𝜆𝑝 = 0 } (5.56)

because 𝑁 𝑓 ∩ WF[𝑡 + 𝑖0]−1 = ∅. Then

WF[𝑝2 − 𝑚2 + 𝑖0]−1 ⊂ 𝑓 ∗ WF[𝑡 + 𝑖0]−1 = { (𝑝;𝜆𝑝) | 𝑝2 = 𝑚2, 𝜆 < 0 }, (5.57)

where the inverted sign of 𝜆 again comes from the fact that we work over Minkowski
space, as explained in Remark 5.7. In the massless case, we can use Lemma 5.6 on the
wavefront set of homogeneous distributions and describe WF[𝑝2 + 𝑖0]−1 in terms of the
wavefront set of the massless Feynman propagator from Example 5.8, giving

WF[𝑝2 + 𝑖0]−1 = { (𝑝;𝜆𝑝) | 𝑝2 = 0, 𝑝 ≠ 0, 𝜆 < 0 } ∪ ¤𝑇∗
0R

1+3. (5.58)

Comparing WF[𝑝2 + 𝑖0]−1 and WF[𝑝2 − 𝑚2 + 𝑖0]−1 to the wavefront sets of 𝑑𝜇0(𝑝)
and 𝑑𝜇𝑚 (𝑝) from the proof of Theorem 5.18 on the well-definedness of string-localized
two-point functions, we see that the proof of the well-definedness of the string-localized
kinematic propagators works completely analogous to the proof for the two-point functions
because the only difference is that now 𝑝0 has arbitrary sign. The sign of 𝑝0, however,
was irrelevant for the proof of Theorem 5.18. �

5.4.2 Ambiguities of string-localized propagators
We next investigate the ambiguities of propagators of string-localized potentials in detail.
The following considerations are again partially taken from the author’s paper [35].

We start by considering the ambiguities in the point-localized case. As outlined in
the beginning of the current Section 5.4, adding a term of the form

(𝑝2 − 𝑚2) 𝑚𝑀̃𝑋,𝑋 ′ (𝑝) e.g., with 𝑚𝑀̃
𝑋,𝑋 ′ (𝑝) a polynomial (5.59)

to the kernel 𝑚𝑀
𝑋,𝑋 ′ (𝑝) will have no effect on the two-point function but yield a

different propagator. If 𝑇 denotes a generic time-ordering recipe and 𝑇0 the kinematic
time-ordering, then this ambiguity is a linear combination of derivatives of the Dirac
delta,

〈〈𝑇𝑋𝑋′〉〉(𝑥) − 〈〈𝑇0𝑋𝑋
′〉〉(𝑥) =

∑︁
𝑎

𝐶𝑎𝜕
𝑎𝛿(𝑥) (5.60)

with multi-indices 𝑎.



72 Renormalization in SLFT

Remark 5.24. To work with multi-indices over Minkowski space and to be able to use
all rules like the Einstein summation convention, Epstein and Glaser used quadri-indices,
superquadri-indices and multi-superquadri-indices in their original work [32]. For
simplicity, we stick to the slightly misleading but established term “multi-index”, hoping
that the reader understands this abuse of notation. For example, if both fields in Eq. (5.60)
are Minkowski scalars, then the right-hand side is to be interpreted as

𝑐0𝛿(𝑥) + 𝑐1𝜅𝜕
𝜅𝛿(𝑥) + 𝑐2𝜅𝜆𝜕

𝜅𝜕𝜆𝛿(𝑥) + . . . ; (5.61)

if both fields are vectors, then the right-hand side should be interpreted as

𝑐0𝜇𝜈𝛿(𝑥) + 𝑐1𝜇𝜈𝜅𝜕
𝜅𝛿(𝑥) + 𝑐2𝜇𝜈𝜅𝜆𝜕

𝜅𝜕𝜆𝛿(𝑥) + . . . (5.62)

and so on.

The ambiguities on the right-hand side of Eq. (5.60) lie within the freedom of the BEG
construction. The freedom can be reduced by the power counting argument described in
the beginning of Section 5.1. In the present form, power counting can be formulated as
follows: The propagator must not have a worse scaling behavior with respect to 𝑥 = 0
than the two-point function. In the massless case, where the two-point functions and
propagators are homogeneous, it is clear what that means (see also Example 5.1). For a
generic distribution, one can use the scaling degree, sometimes also called “Steinmann”
scaling degree:

Definition 5.25 (see [9, 64]). For any test function 𝜙 ∈ D(R𝑛), we define a family (𝜙𝜆)𝜆
of scaled test functions indexed by a positive real number 𝜆,

𝜙𝜆 (·) := 𝜆−𝑛𝜙(𝜆−1·) (5.63)

and for a distribution 𝑡 ∈ D′(R𝑛), we consider the family of scaled distributions
𝑡𝜆 (𝜙) := 𝑡 (𝜙𝜆). 𝑡 is then said to have scaling degree sd 𝑡 = 𝜔 with respect to the origin
𝑥 = 0 if

𝜔 = inf
{
𝜔′ ∈ R | lim

𝜆↓0
𝜆𝜔

′
𝑡𝜆 = 0 in the sense of distributions

}
. (5.64)

Remark 5.26. If 𝑡 is a locally integrable function, then 𝑡𝜆 (𝜙) =
∫
𝑑𝑛𝑥 𝑡 (𝜆𝑥)𝜙(𝑥).

The two-point functions of the field strength tensors of spin or helicity 𝑠 have scaling
degree 𝜔𝐹 = 2𝑠 + 2 and the Dirac delta has scaling degree 𝜔𝛿 = 4 (in four spacetime
dimensions), so if the generic fields 𝑋 and 𝑋′ in Eq. (5.60) are replaced by the field
strengths and the power counting requirement is implemented, we obtain

〈〈𝑇𝐹 (𝑠)
× 𝐹

(𝑠)
× 〉〉 − 〈〈𝑇0𝐹

(𝑠)
× 𝐹

(𝑠)
× 〉〉 =

∑︁
|𝑎 |≤2(𝑠−1)

𝐶×,𝑎𝜕
𝑎𝛿(𝑥), (5.65)

where × is a placeholder for the Lorentz indices of the field strengths.



Propagators and their ambiguities 73

The requirement that the time-ordering for the string-localized potentials arises from
the time-ordering of the corresponding field strength by appropriate string integration
and contraction is central to our approach. Consequently, the freedom of choosing a
propagator for the string-localized potentials arises from Eq. (5.65) as

〈〈𝑇𝐴(𝑠)
× (𝑒)𝐴(𝑠)

× (𝑒′)〉〉 − 〈〈𝑇0𝐴
(𝑠)
× (𝑒)𝐴(𝑠)

× (𝑒′)〉〉 =
∑︁

|𝑎 |≤2(𝑠−1)
𝐶×,𝑎 (𝑒, 𝑒′)𝐼 𝑠𝑒 𝐼 𝑠−𝑒′𝜕𝑎𝛿(𝑥)

(5.66)

with string integrals over derivatives of the Dirac delta appearing on the right-hand side
and where 𝐶×,𝑎 (𝑒, 𝑒′) is the appropriate contraction of 𝐶×,𝑎 from Eq. (5.65) with the
string variables.

Lemma 5.27. Let 𝑗 , 𝑘, 𝑙 ∈ N0. The expression

𝐼
𝑗
𝑒 𝐼
𝑘
−𝑒′𝜕

𝜇1 . . . 𝜕𝜇𝑙𝛿(𝑥) (5.67)

is a well-defined distribution over R1+3 × 𝐻2 if 𝑗 + 𝑘 − 𝑙 < 4.

Proof. 𝐼 𝑗𝑒 𝐼 𝑘−𝑒′𝜕
𝜇1 . . . 𝜕𝜇𝑙𝛿(𝑥) is the Fourier back transform with respect to the 𝑥-variable

of

(−1) 𝑗+𝑙𝑖 𝑗+𝑘+𝑙
𝑝𝜇1 . . . 𝑝𝜇𝑙

(𝑝𝑒) 𝑗−(𝑝𝑒′)𝑘+
, (5.68)

which exists as a Hörmander product if 𝑝 ≠ 0 by Lemma 5.11 and Corollary 5.13, and is
locally integrable with respect to 𝑝 = 0 if 𝑗 + 𝑘 − 𝑙 < 4. �

The integrability condition 𝑗 + 𝑘 − 𝑙 < 4 from Lemma 5.27 introduces a lower bound
on the number of derivatives that can appear on the right-hand side of Eq. (5.66); it
implies |𝑎 | > 2𝑠 − 4.

Thus, the scaling behavior of the field strengths gives an upper bound on |𝑎 |, while
the requirement for local integrability in momentum space gives a lower bound. In the
massless case, the two-point functions of field strength and string-localized potential are
homogeneous of degree 𝜚 = −𝜔𝐹 = −(2𝑠 + 2). The requirement that the propagators are
homogeneous of the same degree then restricts the freedom to |𝑎 | = 2𝑠 − 2 at 𝑚 = 0. In
summary, we demand

〈〈𝑇𝐴(𝑠)
× 𝐴

(𝑠)
× 〉〉 − 〈〈𝑇0𝐴

(𝑠)
× 𝐴

(𝑠)
× 〉〉 =

∑︁
|𝑎 |=2𝑠−2

𝐶×,𝑎 (𝑒, 𝑒′)𝐼 𝑠𝑒 𝐼 𝑠−𝑒′𝜕𝑎𝛿 at 𝑚 = 0, (5.69a)

〈〈𝑇𝐴(𝑠)
× 𝐴

(𝑠)
× 〉〉 − 〈〈𝑇0𝐴

(𝑠)
× 𝐴

(𝑠)
× 〉〉 =

2𝑠−2∑︁
|𝑎 |=2𝑠−3

𝐶×,𝑎 (𝑒, 𝑒′)𝐼 𝑠𝑒 𝐼 𝑠−𝑒′𝜕𝑎𝛿 at 𝑚 > 0 (5.69b)

for a general time-ordering recipe 𝑇 ordering string-localized potentials.

Remark 5.28. We want to stress that the requirements |𝑎 | = 2𝑠 − 2 for 𝑚 = 0 and
2𝑠 − 3 ≤ |𝑎 | ≤ 2𝑠 − 2 for 𝑚 > 0 are stronger than the power counting constraints. The
latter would only imply |𝑎 | ≤ 2𝑠 − 2 but the integrability condition – an infrared effect –
forbids all |𝑎 | ≤ 2𝑠 − 4. At 𝑚 = 0, homogeneity gives an even stronger constraint and
excludes all |𝑎 | < 2𝑠 − 2.
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5.5 Renormalization of divergent amplitudes
We now turn to the renormalization of divergent amplitudes in SLFT. Each order in the
Dyson series for string-localized field theories Eq. (4.15) can be written as a sum of
time-ordered 𝑛-point functions times a normal-ordered product of quantum fields. One
particular way of constructing the time-ordered 𝑛-point functions is by extensions of
sums of products of propagators. In this section, we prove that the extension of such
products of propagators is not worse than it is in the point-localized case. We start by
proving this statement for kinematic propagators in Section 5.5.1 and generalize it in
Section 5.5.2 to all propagators described in Section 5.4.2.

Remark 5.29. It is important to define the time-ordering of string-localized fields
before smearing out the string variables so that one does not need to extend products
of distributions across open sets. However, to prove the existence of 𝑥-products of
propagators – only such products appear in the string-localized Dyson series – outside
the 𝑥-diagonal, it proves useful to first smear out the string variables, similar to what we
did for the two-point functions in Section 5.3. By Remark 5.16, proving the existence
of partially smeared products is nothing but proving the existence of 𝑥-products before
smearing out the string variables. Hence there is no conflict between “time-ordering
before smearing” and “proving the existence of time-ordered 𝑥-products after smearing”.

The results in this section are again taken from the author’s paper [35]; some
paragraphs are verbatim quotes from the paper.

5.5.1 Products of kinematic propagators
To investigate the existence of products of kinematic string-localized propagators after the
string variables have been smeared out, recall Lemma 5.15, which says that the 𝑞𝜇1···𝜇𝑠

𝑐,± (𝑝)
are smooth when 𝑝 ≠ 0 and therefore, they can at most contribute to the wavefront set
over 𝑝 = 0. Since the 𝑞𝜇1···𝜇𝑠

𝑐,± (𝑝) are the only singular objects appearing in the smeared
kernel ∫

𝑑4𝑒

∫
𝑑4𝑒′ 𝑐(𝑒)𝑐(𝑒′) 𝑚𝑀𝐴

(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ (𝑝, 𝑒, 𝑒′) (5.70)

of the kinematic propagator of the string-localized potentials, we arrive at the following
statement.

Lemma 5.30. The Fourier transform

F
[
〈〈𝑇0𝐴

(𝑠)
𝑐, 𝑓
𝐴
(𝑠)
𝑐, 𝑓 ′〉〉(𝑥)

]
(𝑝) = 𝑖

∫
𝑑4𝑒

∫
𝑑4𝑒′ 𝑐(𝑒)𝑐(𝑒′) 𝑚𝑀

𝐴
(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ (𝑝, 𝑒, 𝑒′)

𝑝2 − 𝑚2 + 𝑖0
(5.71)

of the smeared kinematic string-localized propagators for all masses 𝑚 ≥ 0 and all spins
respectively helicities 𝑠 ∈ N are tempered distributions with

WF
(
F

[
〈〈𝑇0𝐴

(𝑠)
𝑐, 𝑓
𝐴
(𝑠)
𝑐, 𝑓 ′〉〉(𝑥)

]
(𝑝)

)
⊂ WF

1
𝑝2 − 𝑚2 + 𝑖0

∪ ¤𝑇∗
0 . (5.72)
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In the massless case, the Fourier transform (5.71) is homogeneous. Therefore,
the wavefront set of the massless kinematic propagator in configuration space can be
determined easily from Eq. (5.72) by use of Lemma 5.6. We obtain our first result
concerning the existence of products of propagators.
Theorem 5.31 (massless case). At𝑚 = 0, the wavefront set of the smeared string-localized
kinematic propagator

〈〈𝑇0𝐴
(𝑠)
𝑐, 𝑓
𝐴
(𝑠)
𝑐, 𝑓 ′〉〉(𝑥) = 𝑖

∫
𝑑4𝑝

(2𝜋)4 𝑒
−𝑖(𝑝𝑥)

∫
𝑑4𝑒

∫
𝑑4𝑒′ 𝑐(𝑒)𝑐(𝑒′)𝑚𝑀

𝐴
(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ (𝑝, 𝑒, 𝑒′)

𝑝2 + 𝑖0
(5.73)

is contained in the wavefront set of the massless point-localized Feynman propagator from
Eq. (5.11). In particular, products of massless string-localized kinematic propagators and
their product with the propagators of point-localized fields are well-defined on R1+3 \ 0.

In the massive case, homogeneity is lost and a transition from momentum to
configuration space needs more effort. We encountered the same situation when
investigating powers of two-point functions in Section 5.3. There, we proved the auxiliary
Lemma 5.20, which made it possible to also consider the massive case. We use this
lemma again to prove the following statement.
Theorem 5.32 (massive case). At𝑚 > 0, the wavefront set of the smeared string-localized
kinematic propagator

〈〈𝑇0𝐴
(𝑠)
𝑐, 𝑓
𝐴
(𝑠)
𝑐, 𝑓 ′〉〉(𝑥) = 𝑖

∫
𝑑4𝑝

(2𝜋)4 𝑒
−𝑖(𝑝𝑥)

∫
𝑑4𝑒

∫
𝑑4𝑒′ 𝑐(𝑒)𝑐(𝑒′)𝑚𝑀

𝐴
(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ (𝑝, 𝑒, 𝑒′)

𝑝2 − 𝑚2 + 𝑖0
(5.74)

is contained in the wavefront set of the massive point-localized Feynman propagator. In
particular, products of massive string-localized kinematic propagators, their product
with massless string-localized kinematic propagators and with the propagators of point-
localized fields are well-defined on R1+3 \ 0.
Proof. We define the distributions

𝑢̂(𝑝) =
∫

𝑑4𝑒

∫
𝑑4𝑒′ 𝑐(𝑒)𝑐(𝑒′) 𝑚𝑀𝐴

(𝑠)
𝑓
,𝐴

(𝑠)
𝑓 ′ (𝑝, 𝑒, 𝑒′) (5.75)

and 𝑣̂(𝑝) = [𝑝2 − 𝑚2 + 𝑖0]−1 with 𝑚 > 0. 𝑢̂(𝑝) is homogeneous of degree 0 in 𝑝 and
arises from contraction of the distributions 𝑞𝜇1···𝜇𝑠

𝑐,± from Lemma 5.15 with a polynomial
in 𝑝. Local integrability of 𝑢̂(𝑝) at 𝑝 = 0 ensures its existence as a tempered distribution
and by Lemma 5.15, WF 𝑢̂ ⊂ ¤𝑇∗

0 . 𝑣̂ is smooth at 𝑝 = 0 because 𝑚 > 0 and hence 𝑢̂ and 𝑣̂
satisfy the assumptions of Lemma 5.20. Therefore, Theorem 5.32 is a special case of
Lemma 5.20 and

WF 〈〈𝑇0𝐴
(𝑠)
𝑐, 𝑓
𝐴
(𝑠)
𝑐, 𝑓 ′〉〉 ⊂ WF 𝑣 = WF

[∫
𝑑4𝑝

(2𝜋)4
𝑒−𝑖(𝑝𝑥)

𝑝2 − 𝑚2 + 𝑖0

]
, (5.76)

where 𝑣 is the massive scalar Feynman propagator, whose wavefront set is the same as
for the massless scalar Feynman propagator given by Eq. (5.11) [7]. �
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Remark 5.33. Note that Lemma 5.20 is only helpful at 𝑚 > 0 since the wavefront set of
the massless kernel [𝑝2 + 𝑖0]−1 contains ¤𝑇∗

0 , so that the Hörmander product 𝑢̂𝑣̂ of the
respective 𝑢̂ and 𝑣̂ does not exist at 𝑝 = 0. For the same reason, there is no straightforward
generalization of Lemma 5.20 to the massless case.

Theorems 5.31 and 5.32 show that renormalization of divergent amplitudes stays
an extension problem across the 𝑥-diagonal despite the delocalization in SLFT if the
kinematic propagators from Theorem 5.23 are employed. However, the transition from the
two-point functions to the propagators might not be unique as we have argued in Section
5.4.2. In the following section, we prove that Theorems 5.31 and 5.32 are generalizable
to all propagators described in Section 5.4.2.

5.5.2 Products of non-kinematic propagators
The propagators described in Section 5.4.2 differ from the kinematic propagators of the
string-localized potentials of spin or helicity 𝑠 by a linear combination of derivatives
of a 2𝑠-fold string-integrated Dirac delta with constraints on the number of appearing
derivatives coming from power counting and the requirement that the 𝑥-Fourier transform
be locally integrable with respect to 𝑝 = 0. In the massless case, homogeneity gives an
even stronger restriction on the number of appearing derivatives. These constraints led
us to the ambiguities Eq.s (5.69a) and (5.69b). We determine the wavefront sets of the
relevant partially smeared string integrated Dirac deltas, which appear in Eq.s (5.69a)
and (5.69b) and form the difference between 〈〈𝑇𝐴(𝑠)

𝑐,×𝐴
(𝑠)
𝑐,×〉〉 and 〈〈𝑇0𝐴

(𝑠)
𝑐,×𝐴

(𝑠)
𝑐,×〉〉.

Lemma 5.34. Let 𝑠 ∈ N, 𝑐 ∈ D(𝐻) and let 𝑎 be a multi-index with |𝑎 | ≥ 2𝑠 − 3 (and
|𝑎 | ≥ 0 if 𝑠 = 1). Then the partially smeared derivative

𝛿
𝜇1...𝜇𝑠𝜈1...𝜈𝑠
𝑎,𝑠,𝑐 (𝑥) :=

∫
𝑑4𝑒

∫
𝑑4𝑒′ 𝑐(𝑒)𝑐(𝑒′) 𝑒𝜇1𝑒′𝜈1 . . . 𝑒𝜇𝑠𝑒′𝜈𝑠 𝐼 𝑠𝑒 𝐼

𝑠
−𝑒′𝜕

𝑎𝛿(𝑥) (5.77)

of the Dirac delta is a tempered distribution over R1+3 with

WF 𝛿𝜇1...𝜇𝑠𝜈1...𝜈𝑠
𝑎,𝑠,𝑐 (𝑥) ⊂ WF 𝛿(𝑥). (5.78)

Proof. The expression 𝛿𝜇1...𝜇𝑠𝜈1...𝜈𝑠
𝑎,𝑠,𝑐 (𝑥) is the Fourier back transform of the homogeneous

product of distributions

(−𝑖𝑝)𝑎𝑞𝜇1···𝜇𝑠
𝑐,− (𝑝)𝑞𝜈1···𝜈𝑠

𝑐,+ (𝑝), (5.79)

which exists by Lemma 5.15 and the integrability constraint |𝑎 | ≥ 2𝑠 − 3. Hence,
𝛿
𝜇1...𝜇𝑠𝜈1...𝜈𝑠
𝑎,𝑠,𝑐 is a well defined tempered distribution. Note that 𝑞𝑐,± is smooth when 𝑝 ≠ 0

by Lemma 5.15 so that there are no issues with well-definedness of the expression (5.79).
Moreover, the same lemma gives

WF
[
(−𝑖𝑝) |𝑎 |× 𝑞

𝜇1···𝜇𝑠
𝑐,+ (𝑝)𝑞𝜅1···𝜅𝑠

𝑐,− (𝑝)
]
⊂ ¤𝑇∗

0 (5.80)
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so that homogeneity implies

WF
[
𝛿
𝜇1...𝜇𝑠𝜈1...𝜈𝑠
𝑎,𝑠,𝑐 (𝑥)

]
= ¤𝑇∗

0 = WF 𝛿(𝑥) (5.81)

by Lemma 5.6, where the equality comes from the fact that the Fourier transform (5.79)
is supported everywhere. �

Since the wavefront set of the sum of two distributions is contained in the union of
their wavefront sets, adding a linear combination of derivatives of smeared string-deltas
subject to Eq.s (5.69a) or (5.69b), respectively, to any distribution does not affect the
wavefront set over R1+3 \0 by Lemma 5.34. Moreover, because the kinematic propagators
of the field strengths are derivatives of a fundamental solution of the wave equation,
¤𝑇∗
0 is already contained in their wavefront set and hence also in the wavefront set of

the kinematic propagators of the string-localized potentials since the wavefront set of a
string-integrated smeared Dirac delta is given by Eq. (5.78). For time-ordering recipes 𝑇
that are subject to Eq.s (5.69a) and (5.69b), we have thus shown that the renormalization
problem is the same as for 𝑇0. This statement is formalized in the following theorem.

Theorem 5.35. Let 𝑇 denote a time-ordering recipe that is subject to Eq. (5.69a) if 𝑚 = 0
and Eq. (5.69b) if 𝑚 > 0. Then

WF〈〈𝑇𝐴(𝑠)
𝑐,×𝐴

(𝑠)
𝑐,×〉〉 ⊂ WF〈〈𝑇0𝐴

(𝑠)
𝑐,×𝐴

(𝑠)
𝑐,×〉〉 (5.82)

and consequently, products of 〈〈𝑇𝐴(𝑠)
𝑐,×𝐴

(𝑠)
𝑐,×〉〉 as well as their products with propagators

of point-localized fields exist on R1+3 \ 0.

We have thus shown that renormalization of divergent amplitudes in SLFT stays a
pure ultraviolet problem not only if one uses the kinematic propagators discussed in
Section 5.4.1 but also for a large class of propagators satisfying Eq.s (5.69a) or (5.69b),
respectively. That is, we have generalized Theorems 5.31 and 5.32 to all propagators that

1. arise from one of the field strength propagators displayed in Eq. (5.65) by appropriate
string-integration, and

2. are subject to the constraints of power counting, integrability in momentum space
and, at 𝑚 = 0, homogeneity of the same degree as the two-point function.

Note that only the lower bounds on |𝑎 | are needed in the proof of Theorem 5.35, but not
the constraints coming from power counting. The latter are only an additional requirement
in order to reduce the (finite) renormalization freedom.

Remark 5.36. In all our considerations in Sections 5.5.1 and 5.5.2, we have only consid-
ered pure string-localized propagators 〈〈𝑇𝐴(𝑠)

𝑐,×𝐴
(𝑠)
𝑐,×〉〉, whereas also mixed propagators

like 〈〈𝑇𝐹 (𝑠)
× 𝐴

(𝑠)
𝑐,×〉〉 are non-vanishing in SLFT. However, it should be obvious that such

propagators are subject to similar statements as Theorems 5.31, 5.32 and 5.35.
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5.6 Other choices of string variables
In this thesis, we always work with spacelike string variables 𝑒 living in the open subset
𝐻 = { 𝑒2 < 0 } ⊂ R1+3. In the literature, one also finds other choices: lightlike string
variables [39], normalized spacelike string variables with Minkowski square 𝑒2 = −1
[37, 49, 50, 52, 53] or purely spacelike string variables 𝑒 = (0, ®𝑒) with ®𝑒2 = 1 [48, 51],
all of which correspond to restrictions of the string variables to closed subsets (or
more precisely, closed submanifolds). Such restrictions are much more subtle than the
restriction to 𝐻 used in this thesis. We briefly examine the described options in the
following Sections 5.6.1 to 5.6.3, which are taken from the author’s paper [35].

5.6.1 Lightlike strings
Lightlike string directions have been employed in [39] when dealing with massive
string-localized potentials, where they promise a computational advantage. The authors
of [39] were able to set equal all string variables appearing in the Dyson series for the
scattering operator describing the weak interaction by exploiting that the problematic
denominator ( [(𝑝𝑒) + 𝑖0] [(𝑝𝑒) − 𝑖0])−1 in 𝐸𝜇𝜅 (𝑝, 𝑒, 𝑒′) |𝑒=𝑒′ from Eq. (2.13) drops out
when 𝑒2 = 0. This simplification of 𝐸𝜇𝜅 yields an essential reduction of the complexity
of tree-graph calculations. Similarly, one can check that also the problematic terms in the
kernel for 𝑠 = 2 given by Eq. (2.16) drop out, resulting in an even bigger computational
simplification than for 𝑠 = 1.6

However, the authors of [39] restricted their considerations to tree graph contri-
butions, where no products (or convolution products in momentum space) of several
𝐸𝜇𝜅 (𝑝, 𝑒, 𝑒′) |𝑒=𝑒′ appear. It is very likely that this changes when treating loop graph con-
tributions and therefore, the divergent denominators will pop up again in loop amplitudes,
resulting in complex renormalization schemes and spoiling the computational advantage
that was achieved at tree level.

One can also think of SLFT with lightlike strings where not all string variables are
set equal. However, an analysis similar to the one presented in this thesis cannot be
performed in that case. This is due to the fact that the restriction to the closed set of
lightlike string directions causes trouble. Without loss of generality, we can investigate
the restriction to lightlike string variables with zero-component equal to 1, which is given
by the pullback of the respective inclusion map [41, Corollary 8.2.7.], provided that this
pullback exists. Thus, consider the map

𝜄 : R1+3 × (0, 2𝜋) × (0, 𝜋) → (R1+3)2, (𝑝, 𝜑, 𝜗) ↦→ (𝑝, 𝑒),
where 𝑒 = (1, sin 𝜗 cos 𝜑, sin 𝜗 sin 𝜑, cos 𝜗)𝑡 ,

(5.83)

so that the desired restriction is the pullback 𝜄∗𝑈± with𝑈±(𝑝, 𝑒) = (𝑝𝑒)−1
± ∈ D′(R1+3 ×

R1+3) as in Lemma 5.11.

6It is a conjecture of the author that the problematic denominators drop out for any helicity but whether
that turns out to be true or not is of no interest for our current considerations.
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Remark 5.37. The submanifold of elements (𝑝, 𝑒), where 𝑒 is lightlike and has 0-
component equal to one is R1+3 × S2. To avoid confusion with coordinate-related
singularities, one needs several charts. The map 𝜄 corresponds to only a single chart but
is enough to demonstrate the issues that come with lightlike strings.

Having a look at Lemma 5.11 and using

𝑡 𝜄′
(
𝜉

𝜂

)
=

©­«
𝜉

sin 𝜗(𝜂1 sin 𝜑 − 𝜂2 cos 𝜑)
𝜂3 sin 𝜗 − cos 𝜗(𝜂1 cos 𝜑 + 𝜂2 sin 𝜑)

ª®¬ (5.84)

for (𝜉, 𝜂) ∈ (R1+3)2, one can easily verify that 𝜄∗𝑈± is well-defined but that the wavefront
set of the pullback contains elements (𝑝, 𝜑, 𝜗;𝜆𝑒, 0, 0) when 𝑝 becomes proportional
to 𝑒, the latter being defined as in Eq. (5.83). Note that the singular-support-criterion
(𝑝𝑒) = 0 is met when 𝑝 is proportional to 𝑒 only if 𝑒 is lightlike (or 𝑝 = 0).

Hence, there is no immediate analogue of Theorems 5.18 and 5.19, Corollary 5.21 and
Theorems 5.23, 5.31 and 5.32 for the case of lightlike strings and in particular, analyses
as performed in Section 5.5, which led to a simple renormalization description, are not
feasible for lightlike strings because lightlike strings produce additional singularities also
when 0 ≠ 𝑝 = 𝜆𝑒. This problem is worse in the massless case than in the massive case,
for 𝑝2 + 𝑖0 is singular when 𝑝 = 𝜆𝑒, but 𝑝2 − 𝑚2 + 𝑖0 with 𝑚 > 0 is not.

In conclusion, spacelike strings seem preferable over lightlike strings from analytic
and heuristic viewpoints. Nevertheless, lightlike strings cannot be fully excluded at the
present time.

5.6.2 Closed subsets of spacelike strings
In Remark 5.14, we claimed that the restriction to the closed submanifold 𝐻−1 of
normalized spacelike string directions with Minkowski square −1 is harmless. In
principle, this restriction can cause similar issues as the restriction to the lightlike string
directions, but a brief analysis shows that it is indeed much better behaved than the latter.
Similar to the case of lightlike strings, we consider an inclusion map

𝜄 : R1+3 × R × (0, 2𝜋) × (0, 𝜋) → (R1+3)2,

(𝑝, 𝜏, 𝜑, 𝜗) ↦→ (𝑝, 𝑒), where 𝑒 =
©­­­«

sinh 𝜏
cosh 𝜏 sin 𝜗 cos 𝜑
cosh 𝜏 sin 𝜗 sin 𝜑

cosh 𝜏 cos 𝜗

ª®®®¬ , (5.85)

which is again only a single chart but a generalization to cover the full submanifold is
straightforward. For (𝜉, 𝜂) ∈ (R1+3)2, we have

𝑡 𝜄 ′
(
𝜉

𝜂

)
=

©­­­«
𝜉

𝜂0 cosh 𝜏 − sinh 𝜏 [𝜂1 sin 𝜗 cos 𝜑 + 𝜂2 sin 𝜗 sin 𝜑 + 𝜂3 cos 𝜗]
cosh 𝜏 sin 𝜗(𝜂1 sin 𝜑 − 𝜂2 cos 𝜑)

cosh 𝜏 [𝜂3 sin 𝜗 − cos 𝜗(𝜂1 cos 𝜑 + 𝜂2 sin 𝜑)]

ª®®®¬ (5.86)
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and thus, the pullback 𝜄∗𝑈± is well-defined by Lemmas 5.4 and 5.11. In contrast to
the case of lightlike string variables, the wavefront set of the pullback does not contain
elements (𝑝, 𝜏, 𝜑, 𝜗;𝜆𝑒, 0, 0, 0), provided that 𝑝 ≠ 0. This can be seen by inserting
𝜂 = 𝜆𝑝, 𝜆 ≠ 0, into Eq. (5.86) and noting that the pullback is only singular when

(𝑝𝑒) = 𝑝0 sinh 𝜏 − cosh 𝜏 [𝑝1 sin 𝜗 cos 𝜑 + 𝑝2 sin 𝜗 sin 𝜑 + 𝑝3 cos 𝜗] = 0. (5.87)

Consequently, the results in Sections 5.4 and 5.5 remain valid also if one restricts to 𝐻−1.
We nevertheless chose to consider the restriction to the open set 𝐻 in the main part of the
thesis because it is much simpler and also exhibits the practical advantage that one can
easily derive with respect to the string variables.

Remark 5.38. A qualitative and simpler argument that the restriction to 𝐻−1 is unprob-
lematic is the homogeneity in the string variables of all string-localized propagators of
degree 𝜔 = 0: When one interprets 𝐻 as 𝐻−1 × R≥0, the “radial” part is constant and can
simply be integrated out with the radial part of the test function.

5.6.3 Purely spacelike strings
Another case appearing in the literature [48, 51] is the case of purely spacelike string
variables 𝑒 = (0, ®𝑒), for example with | ®𝑒 | = 1. It is motivated by the fact that the
inner product −(𝑒𝑒′) becomes positive definite, which is not the case in 𝐻 or 𝐻−1.
Because the set { 𝑒 ∈ R1+3 | 𝑒0 = 0, | ®𝑒 | = 1 } is just the two-sphere S2, this case can be
investigated by adjusting the inclusion map Eq. (5.83) from the lightlike case by setting
the zero-component of 𝑒 to 0 instead of 1. Then the only – but very important – difference
in the wavefront set analysis is the criterion for the singular support, which becomes

®𝑝 · ®𝑒 = 0 instead of ®𝑝 · ®𝑒 = 𝑝0 in the lightlike case. (5.88)

The wavefront set of the restriction of 𝑈±(𝑝, 𝑒) to purely spacelike strings can then
only contain elements (𝑝, 𝜑, 𝜗;𝜆𝑒, 0, 0) if ®𝑝 = 0 but not when 𝑝 = 𝜅𝑒 for some 𝜅 ≠ 0,
in contrast to the lightlike case. Also in contrast to the lightlike case, the proofs of
well-definedness from Theorems 5.18 and 5.23 can easily be transferred to the case of
purely spacelike string variables with norm | ®𝑒 | = 1.

However, the appearance of the critical elements (𝑝, 𝜑, 𝜗;𝜆𝑒, 0, 0) in the wavefront
set of𝑈±(𝑝, 𝑒) |𝑒0=0,| ®𝑒 |=1 can happen for arbitrary 𝑝0 and hence, the wavefront sets of the
string-localized propagators are non-trivially affected by that restriction, so that Theorems
5.19, 5.31 and 5.32 as well as Corollary 5.21 cannot be directly transferred to a restriction
to purely spacelike strings.

We want to emphasize that in the mentioned applications [48, 51], which are the
non-perturbative constructions that we have outlined in Section 3.2, a time-ordering of
the string-localized expression is not required because there, the string-localized part is
perturbed with a point-localized Lagrangian.

Remark 5.39. In our derivation of the configuration space representation of string-
localized two-point functions in Section 3.3.2, in particular in Theorem 3.17, we
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encountered a singular contribution 𝑓 (𝑒1, 𝑒2) = 𝛾

sin 𝛾 for purely spacelike string variables
𝑒0
𝑖
= 0 with | ®𝑒𝑖 | = 1, where 𝛾 is the angle between ®𝑒1 and ®𝑒2. For the singularity at

𝑒1 = 𝑒2 of this term to be integrable, we must not further restrict the string variables.
If we nevertheless did, not only the wavefront set estimates, but also the proofs of
well-definedness from Sections 5.3, 5.4 and 5.5 would not work. In this sense, the results
from Section 3.3.2 also show how much smearing in the string variables is needed in
order to obtain well-defined string-localized two-point functions.

5.7 Methods to reduce ambiguities and their interplay
A particular part of fixing the BEG renormalization freedom is the removal of the
ambiguities of propagators. In our considerations in Section 5.4.2, we have classified the
ambiguities in the choice of a propagator for field strength tensors and their string-localized
potentials, constraining them by two requirements:

1. Scaling conditions like power counting or homogeneity of a fixed degree, and for
the potentials also integrability conditions.

2. The BEG renormalization freedom of the string-localized potentials arises from
the freedom of the field strength by appropriate string integration (and contraction).

The scaling requirements reduce an infinite number of free parameters to a finite
number, the second requirement connects the freedom for 𝐴𝜇1...𝜇𝑠 (𝑥, 𝑒) to the freedom
of 𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠] (𝑥). Still, free parameters remain and need to be fixed. In the literature
[2, 8, 25,27,54,60], one finds many advanced methods to fix the BEG freedom, which
are partially related to each other and might have a non-trivial interplay.

In the case of vector or tensor fields, one basic requirement is that the propagators
should inherit certain symmetry properties of the fields and that other algebraic conditions
should be satisfied. We start our considerations on the reduction of the BEG freedom
with the implementation of such conditions in Section 5.7.1 .

In reference [60], perturbative gauge invariance gives strong constraints on the free
parameters. The gauge concept is absent in SLFT but as a substitute, we have the string
independence principle, whose effect on the free constants we investigate in Section 5.7.2.
The methods from the other references [2, 8, 25,27,54] are described in Sections 5.7.3
and 5.7.4, where we also give examples of applications to SLFT. The methods turn out
to be partially incompatible and the implications of that observation are discussed in
Section 5.7.5.

Remark 5.40. The methods that we describe in Sections 5.7.3 and 5.7.4 are formulated
for the renormalization of general amplitudes in the original works that deal with point-
localized QFT [8, 27, 28, 54, 72] However, to display their application to string-localized
fields and to discuss the issues coming from the partial incompatibility, it is enough
to consider their application to the BEG ambiguities of propagators. Therefore, we
restrict our considerations to propagators but one may try to generalize our derivations to
arbitrary amplitudes.
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5.7.1 Algebraic conditions
The simplest way to constrain the free parameters in propagators is the implementation
of algebraic conditions. Such conditions (along with the string independence principle
discussed in the next section) might be regarded as the most natural type of constraints on
the free parameters of propagators. A prime example is that propagators should inherit
symmetry properties of the involved fields. For example, the propagator of the Maxwell
field strength 𝐹𝜇𝜈 (𝑥) is homogeneous of degree 𝜔 = −4 and thus has an ambiguity

〈〈𝑇𝐹𝜇𝜈𝐹𝜅𝜆〉〉(𝑥) = 〈〈𝑇0𝐹𝜇𝜈𝐹𝜅𝜆〉〉(𝑥) + 𝑐𝜇𝜈𝜅𝜆𝛿(𝑥). (5.89)

By Lorentz covariance, the tensor-valued constant 𝑐𝜇𝜈𝜅𝜆 can be expressed by a combination
of three scalar constants times factors of the Minkowski metric,

𝑐𝜇𝜈𝜅𝜆 = 𝑐1𝜂𝜇𝜈𝜂𝜅𝜆 + 𝑐2𝜂𝜇𝜅𝜂𝜈𝜆 + 𝑐3𝜂𝜇𝜆𝜂𝜈𝜅 . (5.90)

The requirement that the propagator should inherit the symmetry properties of the field
strength then means that we demand 𝑐𝜇𝜈𝜅𝜆 = −𝑐𝜈𝜇𝜅𝜆 = −𝑐𝜇𝜈𝜆𝜅 = 𝑐𝜈𝜇𝜆𝜅.7 This condition
yields a reduction from a space of three real parameters to a single one, because it implies
𝑐1 = 0 and 𝑐 := 𝑐2 = −𝑐3, so that we are left with

〈〈𝑇𝐹𝜇𝜈𝐹𝜅𝜆〉〉(𝑥) = 〈〈𝑇0𝐹𝜇𝜈𝐹𝜅𝜆〉〉(𝑥) + 𝑐(𝜂𝜇𝜅𝜂𝜈𝜆 − 𝜂𝜇𝜆𝜂𝜈𝜅)𝛿(𝑥). (5.91)

Because time-ordered products are required to be symmetric [32], one should also impose
a symmetry condition under exchange of (𝜇, 𝜈) ↔ (𝜅, 𝜆) but this condition is already
implemented in Eq. (5.91). The requirements are similar for higher spins respectively
helicities, with the additional condition of symmetry under exchange of any pair of
neighboring indices [𝜇𝑖𝜈𝑖] ↔ [𝜇 𝑗𝜈 𝑗 ] in 𝐹[𝜇1𝜈1] ...[𝜇𝑠𝜈𝑠] .

Remark 5.41. The requirement that the propagator of the Maxwell field strength
has the correct symmetry properties implies that the propagator of the corresponding
string-localized potential is axial. This can easily verified by inserting

〈〈𝑇𝐴𝜇 (𝑒)𝐹𝜅𝜆〉〉(𝑥) = 𝐼𝑒〈〈𝑇𝐹𝜇𝜈𝐹𝜅𝜆〉〉(𝑥)𝑒𝜈

and 〈〈𝑇𝐴𝜇 (𝑒)𝐴𝜅 (𝑒′)〉〉(𝑥) = 𝐼𝑒 𝐼−𝑒′〈〈𝑇𝐹𝜇𝜈𝐹𝜅𝜆〉〉(𝑥)𝑒𝜈𝑒′𝜆,
(5.92)

into Eq. (5.91).

The requirement that the propagator must respect the symmetries of the involved
fields might seem trivial at first. However, there are other algebraic constraints that
are less trivial. We discuss such constraints at the example of the requirement that the
propagator of the linearized Riemann tensor 𝐹[𝜇𝜈] [𝜅𝜆] , i.e., the graviton field strength,
should have vanishing Ricci trace because

𝜂𝜇1𝜇2𝐹[𝜇1𝜈1] [𝜇2𝜈2] = 0. (5.93)

7The kinematic propagator trivially inherits these properties.
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Recall that the kinematic propagator of the massless 𝑠 = 2 field strength is given by

〈〈𝑇0𝐹[𝜇1𝜈1] [𝜇2𝜈2]𝐹[𝜅1𝜆1] [𝜅2𝜆2]〉〉(𝑥) = 𝑀𝐹𝐹
𝜇1𝜈1𝜇2𝜈2𝜅1𝜆1𝜅2𝜆2

(𝑖𝜕)𝐷𝐹 (𝑥), (5.94)

where the polynomial 𝑀𝐹𝐹 can be obtained from the kernel Eq. (3.5) of the massless
𝑠 = 2 Krein potential by letting the curl operator 𝐽𝛾

𝛼𝛽
(𝜕) := 𝛿 𝛾𝛼 𝜕𝛽 − 𝛿 𝛾𝛽 𝜕𝛼 act on each

index of the latter,

𝑀𝐹𝐹
𝜇1𝜈1𝜇2𝜈2𝜅1𝜆1𝜅2𝜆2

(𝑖𝜕) = 𝐽 𝜚1
𝜇1𝜈1 (𝑖𝜕)𝐽

𝜚2
𝜇2𝜈2 (𝑖𝜕)𝐽

𝜎1
𝜅1𝜆1

(𝑖𝜕)𝐽𝜎2
𝜅2𝜆2

(𝑖𝜕)𝑀ℎKℎK

𝜚1𝜚2𝜎1𝜎2 , (5.95)

giving 𝑀𝐹𝐹 as a sum of 48 terms. In order to not have to deal with all these terms
explicitly, it proves useful to introduce a shorthand notation. This will also help to write
the allowed ambiguities of the propagator in a concise way. Moreover, it is easier to
work in momentum space, so we replace all 𝑖𝜕 in Eq. (5.95) by 𝑝. The field strength
𝐹[𝜇1𝜈1] [𝜇2𝜈2] is skewsymmetric under the exchange (𝜇𝑖 ↔ 𝜈𝑖), 𝑖 = 1, 2, and symmetric
under the exchange ((𝜇1, 𝜈1) ↔ (𝜇2, 𝜈2)). Without losing any information, we can thus
contract the 𝜇𝑖 with the same dummy vector 𝑓 and the 𝜈𝑖 with the same dummy vector 𝑔,
giving

𝐹 𝑓 ,𝑔 := 𝑓 𝜇1 𝑓 𝜇2𝑔𝜈1𝑔𝜈2𝐹[𝜇1𝜈1] [𝜇2𝜈2] . (5.96)

With this notation, Eq. (5.95) becomes

𝑀𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′ (𝑝) = (𝑝 [ 𝑓 𝑔] [ 𝑓 ′𝑔′]𝑝)2 − 1
2
(𝑝 [ 𝑓 𝑔] [ 𝑓 𝑔]𝑝) (𝑝 [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝), (5.97)

where we have introduced the shorthand notation [𝑥𝑦] for the skewsymmetric tensor built
from the vectors 𝑥 and 𝑦,

𝜇 [𝑥𝑦]𝜈 := 𝑥𝜇𝑦𝜈 − 𝑥𝜈𝑦𝜇, or [𝑥𝑦] = 𝑥𝑦𝑡 − 𝑦𝑥𝑡 (5.98)

so that for example

(𝑝 [ 𝑓 𝑔] [ 𝑓 ′𝑔′]𝑝) = (𝑝 𝑓 ) (𝑔 𝑓 ′) (𝑔′𝑝) − (𝑝𝑔) ( 𝑓 𝑓 ′) (𝑔′𝑝)
− (𝑝 𝑓 ) (𝑔𝑔′) ( 𝑓 ′𝑝) + (𝑝𝑔) ( 𝑓 𝑔′) ( 𝑓 ′𝑝).

(5.99)

The momentum space kernel Eq. (5.97) of the kinematic propagator only depends
on the skewsymmetric tensors [ 𝑓 𝑔] and [ 𝑓 ′𝑔′] and is symmetric under the exchange
[ 𝑓 𝑔] ↔ [ 𝑓 ′𝑔′]. It thus inherits the basic symmetry properties that we require the
propagator of the field strength to satisfy and all admissible corrections to this propagator
must possess the same symmetry properties.

We now turn to the Ricci trace, which can in our shorthand notation be computed by
applying � 𝑓 to Eq. (5.97) because

� 𝑓 𝑓
𝜇1 𝑓 𝜇2𝑔𝜈1𝑔𝜈1𝐹[𝜇1𝜈1] [𝜇2𝜈2] = 2𝜂𝜇1𝜇2𝑔𝜈1𝑔𝜈1𝐹[𝜇1𝜈1] [𝜇2𝜈2] (5.100)

Let us first show that the kinematic propagator does not satisfy this tracelessness condition.
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Lemma 5.42. The kinematic propagator of the (massless) graviton field strength tensor
has non-vanishing Ricci trace,

𝜂𝜇1𝜇2 〈〈𝑇0𝐹[𝜇1𝜈1] [𝜇2𝜈2]𝐹[𝜅1𝜆1] [𝜅2𝜆2]〉〉(𝑥) = 𝐶𝛼𝛽𝜈1𝜈2𝜅1𝜆1𝜅2𝜆2𝜕
𝛼𝜕𝛽𝛿(𝑥) ≠ 0 (5.101)

for some non-vanishing tensor of constants 𝐶𝛼𝛽𝜈1𝜈2𝜅1𝜆1𝜅2𝜆2 .

Proof. We compute � 𝑓𝑀𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′ (𝑝),

� 𝑓𝑀
𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′ (𝑝)

= 𝜕 𝑓 𝜇 {2 [𝑝𝜇 (𝑔[ 𝑓 ′𝑔′]𝑝) − (𝑝𝑔) (𝑝𝑔′) 𝑓 ′𝜇 + (𝑝𝑔) (𝑝 𝑓 ′)𝑔′𝜇] (𝑝 [ 𝑓 𝑔] [ 𝑓 ′𝑔′]𝑝)
−

[
𝑝𝜇 (𝑔[ 𝑓 𝑔]𝑝) − (𝑝𝑔)2 𝑓 𝜇 + (𝑝𝑔) (𝑝 𝑓 )𝑔𝜇

]
(𝑝 [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝)

}
= 2 [𝑝𝜇 (𝑔[ 𝑓 ′𝑔′]𝑝) − (𝑝𝑔) (𝑝𝑔′) 𝑓 ′𝜇 + (𝑝𝑔) (𝑝 𝑓 ′)𝑔′𝜇]

×
[
𝑝𝜇 (𝑔[ 𝑓 ′𝑔′]𝑝) − (𝑝𝑔) (𝑝𝑔′) 𝑓 ′𝜇 + (𝑝𝑔) (𝑝 𝑓 ′)𝑔′𝜇

]
+

[
𝑝2𝑔2 + 2(𝑝𝑔)2] (𝑝 [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝)

= 𝑝2 [
𝑔2(𝑝 [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝) + 2(𝑔[ 𝑓 ′𝑔′]𝑝)2]

+ 2(𝑝𝑔)2
[
(𝑝 [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝) + (𝑝𝑔′)2 𝑓 ′2 + (𝑝 𝑓 ′)2𝑔′2 − 2(𝑝 𝑓 ′) (𝑝𝑔′) ( 𝑓 ′𝑔′)

]
= 𝑝2 [

𝑔2(𝑝 [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝) + 2(𝑔[ 𝑓 ′𝑔′]𝑝)2] .
The overall prefactor 𝑝2 in � 𝑓𝑀𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′ (𝑝) ensures that the two-point function is
traceless but gives rise to a Dirac delta term for the kinematic propagator. Besides the 𝑝2,
there remain two more factors of 𝑝𝜇, implying that the trace of the kinematic propagator
is a second derivative of a Dirac delta, as claimed in the Lemma. �

In the following, we make the propagator traceless. A generic propagator of the
graviton field strength, which has the same degree of homogeneity 𝜔 = −6 as the
two-point function, can differ from the kinetic propagator by a linear combination of
second order derivatives of the Dirac delta,

〈〈𝑇𝐹[𝜇1𝜈1] [𝜇2𝜈2]𝐹[𝜅1𝜆1] [𝜅2𝜆2]〉〉 = 〈〈𝑇0𝐹[𝜇1𝜈1] [𝜇2𝜈2]𝐹[𝜅1𝜆1] [𝜅2𝜆2]〉〉
+ 𝑐𝛼𝛽𝜇1𝜈1𝜇2𝜈2𝜅1𝜆1𝜅2𝜆2𝜕

𝛼𝜕𝛽𝛿
(5.102)

Lemma 5.43. Requiring that the propagator of the field strength respects the symmetries
of the fields, the ambiguity on the right-hand side of Eq. (5.102) can be expressed in
terms of six scalar parameters.

Proof. We again employ the previously used shorthand notation and work in momentum
space. The kinematic propagator respects the desired symmetries, so the allowed
correction terms (or ambiguities) must respect them as well. That is, they can be
expressed solely in terms of 𝑝 and the skewsymmetric tensors [ 𝑓 𝑔] and [ 𝑓 ′𝑔′], and are
symmetric under the exchange [ 𝑓 𝑔] ↔ [ 𝑓 ′𝑔′]. Moreover, they must contain at least
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one factor of 𝑝2 and be homogeneous of degree 4 in 𝑝. Naively, we find seven linearly
independent admissible correction terms, which can be chosen as

𝑝2𝑁1 := 𝑝2 (𝑝 [ 𝑓 𝑔] [ 𝑓 𝑔] [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝), (5.103a)
𝑝2𝑁2 := 𝑝2 (𝑝 [ 𝑓 𝑔] [ 𝑓 ′𝑔′] [ 𝑓 𝑔] [ 𝑓 ′𝑔′]𝑝), (5.103b)
𝑝2𝑁3 := 𝑝2 {(𝑝 [ 𝑓 𝑔] [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′] [ 𝑓 𝑔]𝑝) + (𝑝 [ 𝑓 ′𝑔′] [ 𝑓 𝑔] [ 𝑓 𝑔] [ 𝑓 ′𝑔′]𝑝)} , (5.103c)
𝑝2𝑁4 := 𝑝2 {(𝑝 [ 𝑓 𝑔] [ 𝑓 𝑔]𝑝) Tr( [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′])

+(𝑝 [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝) Tr( [ 𝑓 𝑔] [ 𝑓 𝑔])}
(5.103d)

and

(𝑝2)2𝐾1 := (𝑝2)2 Tr( [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′] [ 𝑓 𝑔] [ 𝑓 𝑔]), (5.104a)
(𝑝2)2𝐾2 := (𝑝2)2 Tr( [ 𝑓 ′𝑔′] [ 𝑓 𝑔] [ 𝑓 ′𝑔′] [ 𝑓 𝑔]), (5.104b)
(𝑝2)2𝐾3 := (𝑝2)2 Tr( [ 𝑓 𝑔] [ 𝑓 𝑔]) Tr( [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]). (5.104c)

However, there is another, non-trivial, linear dependence coming from the fact that the
vectors 𝑝, 𝑓 , 𝑔, 𝑓 ′ and 𝑔′ are necessarily linearly dependent because they are five vectors
in a four-dimensional space. This implies

det𝑝 𝑓 𝑓 ′𝑔𝑔′ = det

©­­­­­«
𝑝2 (𝑝 𝑓 ) (𝑝 𝑓 ′) (𝑝𝑔) (𝑝𝑔′)

(𝑝 𝑓 ) 𝑓 2 ( 𝑓 𝑓 ′) ( 𝑓 𝑔) ( 𝑓 𝑔′)
(𝑝 𝑓 ′) ( 𝑓 𝑓 ′) 𝑓 ′2 ( 𝑓 ′𝑔) ( 𝑓 ′𝑔′)
(𝑝𝑔) ( 𝑓 𝑔) ( 𝑓 ′𝑔) 𝑔2 (𝑔𝑔′)
(𝑝𝑔′) ( 𝑓 𝑔′) ( 𝑓 ′𝑔′) (𝑔𝑔′) 𝑔′2

ª®®®®®¬
= 0, (5.105)

i.e., the vanishing of the Gram determinant yields a relation between the scalar products
of the five vectors. Working out all scalar products, we find

det𝑝 𝑓 𝑓 ′𝑔𝑔′ = 2𝑁1 − 2𝑁2 + 𝑁3 −
1
2
𝑁4 + 𝑝2

[
−𝐾1 +

1
2
𝐾2 +

1
4
𝐾3

]
, (5.106)

so that we can eliminate for example 𝑁4 in favor of the other terms and are thus left with
a six-parameter space. �

By Lemma 5.43, the kernel of a generic propagator of the massless 𝑠 = 2 field strength
is given by

P𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′ (𝑝) := 𝑀𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′ (𝑝) + 𝑝2
3∑︁
𝑖=1

𝑎𝑖𝑁𝑖 + (𝑝2)2
3∑︁
𝑖=1

𝑏𝑖𝐾𝑖 (5.107)

with six free parameters 𝑎𝑖 and 𝑏𝑖, 𝑖 = 1, 2, 3. We investigate the implications of the
tracelessness requirement.



86 Renormalization in SLFT

Proposition 5.44. The condition of vanishing trace, � 𝑓P𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′ (𝑝) = 0, reduces
the six-parameter-space span(𝑝2𝑁𝑖, (𝑝2)2𝐾𝑖) of ambiguities in Eq. (5.107) to a one-
parameter-space. Correspondingly, the kernel of any traceless propagator of the massless
𝑠 = 2 field strength, which respects the symmetries of the fields, must be of the form

P𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′

traceless (𝑝) := 𝑀𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′ (𝑝) + 𝑝2
[
1
2
𝑁1 − 𝑁2

]
+ 𝑏3(𝑝2)2 [−6𝐾1 + 6𝐾2 + 𝐾3] .

(5.108)

Proof. We have to find linear combinations

� 𝑓

{
𝑝2

3∑︁
𝑖=1

𝑎𝑖𝑁𝑖 + (𝑝2)2
3∑︁
𝑖=1

𝑏𝑖𝐾𝑖

}
(5.109)

that compensate the non-vanishing trace

1
2
� 𝑓𝑀

𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′ (𝑝) = 𝑝2
[
1
2
𝑔2(𝑝 [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝) + (𝑔[ 𝑓 ′𝑔′]𝑝)2

]
(5.110)

of the kinematic propagator. To find all possible such combinations, we compute the
trace of each term,

1
2
� 𝑓 𝑁1 = −2(𝑝𝑔) (𝑔[ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝) − 𝑔2(𝑝 [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝),

1
2
� 𝑓 𝑁2 = (𝑔[ 𝑓 ′𝑔′]𝑝)2 − (𝑝𝑔) (𝑔[ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝),

1
2
� 𝑓 𝑁3 = 2(𝑝𝑔) (𝑔[ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝) − (𝑝𝑔)2 Tr( [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′])

− 𝑝2(𝑔[ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑔) + 2(𝑔[ 𝑓 ′𝑔′]𝑝)2 − 𝑔2(𝑝 [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝),
1
2
� 𝑓𝐾1 = −𝑔2 Tr( [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]) − 2(𝑔[ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑔),

1
2
� 𝑓𝐾2 = −2(𝑔[ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑔),

1
2
� 𝑓𝐾3 = −6𝑔2 Tr( [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]).

(5.111)

Comparing the terms in Eq. (5.110) with the respective ones in Eq. (5.111), the
tracelessness condition translates to the requirement

𝑎1 + 𝑎3 =
1
2

from 𝑔2(𝑝 [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝),

−2𝑎1 − 𝑎2 + 2𝑎3 = 0 from (𝑝𝑔) (𝑔[ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝),
𝑎2 + 2𝑎3 = −1 from (𝑔[ 𝑓 ′𝑔′]𝑝)2,

𝑎3 = 0 from (𝑝𝑔)2 Tr( [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]),
𝑎3 + 2𝑏1 + 2𝑏2 = 0 from (𝑔[ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑔),

𝑏1 + 6𝑏3 = 0 from 𝑔2 Tr( [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]).

(5.112)
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Eq. (5.112) yields the constants from the proposition. In particular, the only remaining
unspecified parameter is 𝑏3. �

We have shown that the requirement that the propagator of a quantum field inherits
certain algebraic properties of the underlying fields, for example (skew)symmetry under
exchange of Lorentz indices or vanishing Ricci trace, drastically reduces the ambiguities
in the choice of a propagator. In the subsequent sections, we investigate more involved
methods to remove the ambiguities.

5.7.2 The effect of the string independence principle
We discuss the effect of the string independence principle on the freedom of choosing
a propagator at the example of a coupling of a string-localized photon potential to a
point-localized conserved current 𝑗 𝜇 (𝑥),

𝑆1(𝑥, 𝑒) = :𝐿 (𝑥, 𝑒): = 𝑔(𝑥) :𝐴𝜇 (𝑥, 𝑒) 𝑗 𝜇 (𝑥): (5.113)

with a coupling “constant” 𝑔 ∈ S(R1+3). The propagator first appears at second order
of perturbation theory, at which the tree graph contribution to the Dyson series can be
written as

𝑇 [𝑆1(𝑥, 𝑒)𝑆1(𝑥′, 𝑒′)] |tree

= 𝑔(𝑥)𝑔(𝑥′)
{
〈〈𝑇𝐴𝜇 (𝑥, 𝑒)𝐴𝜈 (𝑥′, 𝑒′)〉〉 : 𝑗 𝜇 (𝑥) 𝑗 𝜈 (𝑥′): (5.114a)

+
∑︁
𝜙,𝜒

〈〈𝑇𝜙(𝑥)𝜒(𝑥′)〉〉 :𝐴𝜇 (𝑥, 𝑒)𝐴𝜈 (𝑥′, 𝑒′)
𝜕 𝑗 𝜇 (𝑥)
𝜕𝜙(𝑥)

𝜕 𝑗 𝜈 (𝑥′)
𝜕𝜒(𝑥′) :

}
. (5.114b)

For this to be string independent, the string variations of each of the lines (5.114a) and
(5.114b) with respect to one of the string variables must form a divergence separately.8
Let us thus compute the string variation of the first line (5.114a) with respect to 𝑒.
Employing that the propagator of the string-localized potential arises by appropriate
string integration and contraction of the field strength’s propagator, which we in turn
require to possess the correct symmetry properties as displayed in Section 5.7.1, the
generic string-localized propagator appearing there has one free real parameter 𝑐,

〈〈𝑇𝐴𝜇 (𝑥, 𝑒)𝐴𝜈 (𝑥′, 𝑒′)〉〉 = 〈〈𝑇0𝐴𝜇 (𝑥, 𝑒)𝐴𝜈 (𝑥′, 𝑒′)〉〉 + 𝑐(𝜂𝜇𝜈 (𝑒𝑒′) − 𝑒′𝜇𝑒𝜈)𝐼𝑒 𝐼−𝑒′𝛿(𝑥 − 𝑥′).
(5.115)

The kinematic part of the propagator (5.115) commutes with the string variation 𝑑𝑒 and
with partial derivatives if no field equations are involved. Employing the auxiliary field

8A symmetrization in the string variables is not necessary since this corresponds to an exchange
(𝑥 ↔ 𝑥 ′) under which 𝑇 [𝑆1 (𝑥, 𝑒)𝑆1 (𝑥 ′, 𝑒′)] |tree is symmetric.
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𝑤(𝑥, 𝑒) := 𝑤𝜇 (𝑥, 𝑒)𝑑𝑒𝜇 ≡ 𝐼𝑒𝐴𝜇 (𝑥, 𝑒)𝑑𝑒𝜇 from Eq. (2.30), we thus obtain

𝑑𝑒〈〈𝑇𝐴𝜇 (𝑥, 𝑒)𝐴𝜈 (𝑥′, 𝑒′)〉〉
= 𝜕𝜇〈〈𝑇0𝑤(𝑥, 𝑒)𝐴𝜈 (𝑥′, 𝑒′)〉〉
+ 𝑐

[
(𝜂𝜇𝜈 (𝑒𝑒′) − 𝑒′𝜇𝑒𝜈) (𝜕𝜅𝑑𝑒𝜅) + (𝜂𝜇𝜈 (𝑒′𝑑𝑒) − 𝑒′𝜇𝑑𝑒𝜈)

]
𝐼𝑒 𝐼−𝑒′𝛿(𝑥 − 𝑥′),

(5.116)

yielding

𝑑𝑒 (5.114a) = 𝑔(𝑥)𝑔(𝑥′)𝜕𝜇〈〈𝑇0𝑤(𝑥, 𝑒)𝐴𝜈 (𝑥′, 𝑒′)〉〉 : 𝑗 𝜇 (𝑥) 𝑗 𝜈 (𝑥′): (5.117a)
+ 𝑐𝑔(𝑥)𝑔(𝑥′) : 𝑗 𝜇 (𝑥) 𝑗 𝜈 (𝑥′):
×

[
(𝜂𝜇𝜈 (𝑒𝑒′) − 𝑒′𝜇𝑒𝜈) (𝜕𝜅𝑑𝑒𝜅) + (𝜂𝜇𝜈 (𝑒′𝑑𝑒) − 𝑒′𝜇𝑑𝑒𝜈)

]
𝐼𝑒 𝐼−𝑒′𝛿(𝑥 − 𝑥′).

(5.117b)

The kinetic part (5.117a) becomes a total divergence in the adiabatic limit and thus
satisfies the string independence requirement Eq. (4.20), while the non-kinetic part
(5.117b) is an obstruction to string independence. Thus, the string independence principle
fixes 𝑐 = 0, resolving the ambiguity of the photon propagator completely.

Similar derivations can be done in generic models but the result may be model
dependent. For example, we shall derive an analogue statement for string-localized
massless Yang-Mills theory in Section 6.1, where kinematic propagators must be
employed as well. In the present case of the photon propagator, that is, for helicity
𝑠 = 1, the only algebraic condition on the propagator is that it has the correct symmetry
properties associated with the field strengths, resulting in the axiality requirement for the
string-localized propagator as discussed in the previous section.

For 𝑠 = 2, we have derived in Section 5.7.1 that the kinematic propagator is not
traceless. Explicitly implementing the “vanishing trace” condition in the propagator
thus means that we cannot employ the kinematic propagators. However, if the 𝑠 = 2
potential is coupled to a traceless quantity, the trace component of the propagator does
not contribute. In such a case, the kinematic propagator can still be used as an ansatz.
One example is the coupling of a massless string-localized 𝑠 = 2 potential to the Maxwell
stress energy tensor, which we discuss in Section 6.2. For generic models, however, it
remains a task of future research to find out whether a traceless choice of a propagator is
consistent with the string independence principle.

5.7.3 NST renormalization of massless amplitudes
In this section, we describe a subtle method to remove ambiguities from propagators
of massless fields, which is based on representation theory of the Lorentz group. It
is formulated in terms of symmetric tensor representations of the Lorentz group on
harmonic and homogeneous polynomials – see for example [3], where however the case
of symmetric tensor representations of 𝑆𝑂 (𝑛) instead of 𝑆𝑂 (1, 𝑛 − 1) is discussed. We
thus emphasize that this method is naively only applicable to massless amplitudes because
massive amplitudes are not homogeneous. One may, however, attempt to generalize it to
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massive amplitudes using the scaling mass expansion [24], as outlined by Várilly and
Gracia-Bondía [72].

The original description of the method presented in the following is due to Nikolov,
Stora and Todorov (NST) and applies to both tree and loop graphs [54]. We will briefly
sketch their method, which is formulated in the point-localized case, before turning to
applications in SLFT. Such applications to SLFT were first proposed by Várilly and
Gracia-Bondía [72], who mention a transition of the NST concept to SLFT but do not
work out their proposal or give any details. After introducing the method, we apply it to
string-localized QED and to the propagator of the massless 𝑠 = 2 field strength, restricting
our considerations to tree level. We also compare the results to the implications of the
string independence principle derived in Section 5.7.2.

The NST notion of renormalization of divergent amplitudes [54] is based on irre-
ducible representations of the Lorentz group on harmonic (in the Minkowski sense)
and homogeneous polynomials. We introduce their method in a different guise. While
Nikolov, Stora and Todorov talk about the transition from general unrenormalized to
renormalized amplitudes, we focus on the ambiguities of propagators and therefore con-
sider the transition from two-point functions to propagators. Furthermore, we reformulate
their ideas in terms of the Casimir operator 𝐶 of the Lorentz group, which is, in the
notation of Section 5.7.1, given by

𝐶 := (𝑥𝜇𝜕𝜈 − 𝑥𝜈𝜕𝜇)2 = 2𝑥2� − 4(𝑥𝜕) − 2(𝑥𝜕)2 (5.118)

and hence only consists of powers of the Euler operator (𝑥𝜕) and 𝑥2�. Thus, if 𝐻𝑙 (𝑥) is
a Minkowski-harmonic polynomial, i.e., �𝐻𝑙 (𝑥) = 0, which is homogeneous of degree 𝑙,
then

𝐶𝐻𝑙 (𝑥) = −2𝑙 (𝑙 + 2)𝐻𝑙 (𝑥). (5.119)

One can easily compute that 𝐶 (𝑥2)𝑘 = 0 for all 𝑘 ∈ N, which just reflects the Lorentz
invariance of 𝑥2. Consider now the two-point function of a massless scalar Klein-Gordon
field

𝑊0(𝑥) = − 1
(2𝜋)2 lim

𝜀↓0

1
(𝑥 − 𝑖𝜀𝑢)2 =: − 1

(2𝜋)2
1
𝑥2
−

(5.120)

with a forward timelike vector 𝑢 of which the distributional limit 𝜀 ↓ 0 is independent.9
Recall Eq. (5.36), which tells us that the wavefront set of𝑊0(𝑥) is directed and which
implies that Hörmander powers [𝑊0(𝑥)]𝑘 exist with

WF𝑊 𝑘
0 ⊂ WF𝑊0 ∪ { (0; 𝑝) | 𝑝2 ≥ 0, 𝑝0 < 0 }. (5.121)

Since the Hörmander product satisfies the Leibniz rule, one easily finds that the Casimir
operator 𝐶 acts trivially on powers of𝑊0,

𝐶
1

(𝑥2
−)𝑘

= 0 for all 𝑘 ∈ N. (5.122)

9We replaced 𝑢 = (1, 0, 0, 0)𝑡 from Eq. (3.43) by a generic forward timelike 𝑢 to display the Lorentz
invariance of𝑊0 more explicitly.
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We next derive the two-point function of the Maxwell field strength by taking derivatives
of𝑊0. We have

𝜕𝜇𝜕𝜅𝑊0(𝑥) =
2

(2𝜋)2
𝜂𝜇𝜅𝑥

2 − 4𝑥𝜇𝑥𝜅
(𝑥2

−)3 , (5.123)

and thus, acting with the kernel 0𝑀
𝐹𝐹
𝜇𝜈𝜅𝜆

(𝑖𝜕) of the Maxwell field strength from Eq. (2.12)
on the scalar two-point function𝑊0 yields the two point function of the Maxwell field
strength

0𝑀
𝐹𝐹
𝜇𝜈𝜅𝜆 (𝑖𝜕)𝑊0(𝑥) = − 1

(2𝜋)2
𝐻𝜇𝜈𝜅𝜆 (𝑥)
(𝑥2

−)3 , (5.124)

with the harmonic and homogeneous polynomial

𝐻𝜇𝜈𝜅𝜆 (𝑥) = −4
[
(𝜂𝜇𝜅𝜂𝜈𝜆 − 𝜂𝜈𝜅𝜂𝜇𝜆)𝑥2 − 2(𝜂𝜈𝜆𝑥𝜇𝑥𝜅 − 𝜂𝜇𝜆𝑥𝜈𝑥𝜅 − 𝜂𝜈𝜅𝑥𝜇𝑥𝜆 + 𝜂𝜇𝜅𝑥𝜈𝑥𝜆)

]
.

(5.125)

Then, having Eq. (5.119) in mind, we obtain

𝐶 0𝑀
𝐹𝐹
𝜇𝜈𝜅𝜆 (𝑖𝜕)𝑊0(𝑥) = −16 0𝑀

𝐹𝐹
𝜇𝜈𝜅𝜆 (𝑖𝜕)𝑊0(𝑥), (5.126)

where we have used that the terms with one derivative of 𝐶 acting on 𝐻𝜇𝜈𝜅𝜆 and the other
on (𝑥2

−)−3 cancel each other,

4
[
𝑥2𝜕𝛼𝐻𝜇𝜈𝜅𝜆𝜕

𝛼 (𝑥2
−)−3 − (𝑥𝜕)𝐻𝜇𝜈𝜅𝜆 (𝑥𝜕) (𝑥2

−)−3] = 0. (5.127)

Thus, the two-point function of the Maxwell field strength is an eigenvalue of the Casimir
operator and hence transforms under an irreducible representation of the Lorentz group,
which is usually labeled as (1, 1) representation [74]. The situation is similar for higher
helicities.

However, when dealing with propagators, complications arise. The wavefront set of
the massless Feynman propagator contains the whole cotangent space over 𝑥 = 0 and
hence its Hörmander powers are ill-defined over 𝑥 = 0, which means that the above
computations for the two-point functions can only be transferred to the propagator away
from the origin, (

0𝑀
𝐹𝐹
𝜇𝜈𝜅𝜆 (𝑖𝜕)𝐷𝐹 (𝑥)

)���
𝑥≠0

= − 𝑖

(2𝜋)2

(
𝐻𝜇𝜈𝜅𝜆 (𝑥)
(𝑥2 − 𝑖0)3

)����
𝑥≠0

. (5.128)

The NST renormalization condition [54] then is the requirement that the extension of the
propagator across the origin should transform under the same irreducible representation
of the Lorentz group, which can be rephrased to the requirement that the propagator
should transform under the same irreducible representation of the Lorentz group as the
two-point function.



Methods to reduce ambiguities and their interplay 91

Remark 5.45. The authors of [72] transfer their off-origin computation to the extended
propagator and claim that the kinematic propagator is transforming under the correct
representation. However, such a computation overlooks the delta-contributions at 𝑥 = 0.
Working in momentum space, we correct that mistake, and our result is in agreement
with the original paper [54, last equation of Section 5 therein], where no derivation of the
result is given.

To circumvent the issues at 𝑥 = 0, it proves useful to work in momentum space. There,
the propagators are given by a single denominator 𝑝2 + 𝑖0 times a polynomial in 𝑝, so no
issues with ill-defined powers [𝑝2 − 𝑖0]−𝑘 arise. This transition can easily be performed,
for the Casimir operator of the Lorentz group has the same form in momentum and
configuration space. If 𝐻̃𝑙 (𝑝) is a homogeneous polynomial of degree 𝑙 ∈ N, then

[2𝑝2�𝑝 − 4(𝑝𝜕𝑝) − 2(𝑝𝜕𝑝)2] 𝐻̃
𝑙 (𝑝)

𝑝2 + 𝑖0
= −2𝑙 (𝑙 + 2) 𝐻̃

𝑙 (𝑝)
𝑝2 + 𝑖0

+ 2𝑝2�𝑝𝐻̃
𝑙 (𝑝)

𝑝2 + 𝑖0
(5.129)

because all terms proportional to 𝛿(𝑝) drop out since 𝑝𝜇𝛿(𝑝) = 0. Thus, in order for
the propagator to transform under an irreducible representation of the Lorentz group, its
momentum space kernel must be Minkowski harmonic. This is obviously not true for the
kinematic propagator. We explicitly derive the NST propagator for the Maxwell field
strength in momentum space.

Proposition 5.46. There is a unique propagator of the Maxwell field strength transforming
under the (1, 1) representation of the Lorentz group, whose kernel is given by

𝑃𝐹𝐹1
2 ,𝜇𝜈𝜅𝜆

= −
𝐻𝜇𝜈𝜅𝜆 (𝑝)

8
(5.130)

= −
(
𝜂𝜈𝜆𝑝𝜇𝑝𝜅 − 𝜂𝜇𝜆𝑝𝜈𝑝𝜅 − 𝜂𝜈𝜅𝑝𝜇𝑝𝜆 + 𝜂𝜇𝜅𝑝𝜈𝑝𝜆

)
+ 1

2
𝑝2(𝜂𝜇𝜅𝜂𝜈𝜆 − 𝜂𝜇𝜆𝜂𝜈𝜅).

Proof. By Eq. (5.91), a generic kernel of the propagator of the Maxwell field strength,
which respects the latter’s symmetries, must be of the form

𝑃𝐹𝐹𝑐,𝜇𝜅𝜈𝜆 = −
(
𝜂𝜈𝜆𝑝𝜇𝑝𝜅 − 𝜂𝜇𝜆𝑝𝜈𝑝𝜅 − 𝜂𝜈𝜅𝑝𝜇𝑝𝜆 + 𝜂𝜇𝜅𝑝𝜈𝑝𝜆

)
+ 𝑐𝑝2(𝜂𝜇𝜅𝜂𝜈𝜆 − 𝜂𝜇𝜆𝜂𝜈𝜅).

(5.131)

For the propagator to transform under the (1, 1) representation of the Lorentz group,
𝑃𝐹𝐹
𝑐,𝜇𝜅𝜈𝜆

must be Minkowski harmonic, that is,

0 !
= �𝑝𝑃

𝐹𝐹
𝑐,𝜇𝜈𝜅𝜆 = −4(1 − 2𝑐) (𝜂𝜇𝜅𝜂𝜈𝜆 − 𝜂𝜇𝜆𝜂𝜈𝜅), (5.132)

implying 𝑐 = 1
2 and giving

𝑃𝐹𝐹1
2 ,𝜇𝜈𝜅𝜆

= −
𝐻𝜇𝜈𝜅𝜆 (𝑝)

8
, (5.133)

which proves the claim. �



92 Renormalization in SLFT

Reformulating the statement of Proposition 5.46 to configuration space, we find
that the propagator of the Maxwell field strength, which transforms under the correct
irreducible representation of the Lorentz group, is given by

1
8
𝐻𝜇𝜈𝜅𝜆 (𝜕)𝐷𝐹 (𝑥), (5.134)

which is precisely the one that Nikolov-Stora-Todorov write down [54]. Várilly and
Gracia-Bondía [72], however, have missed a Dirac delta contribution.

We proved in Section 5.7.2 that the string independence principle at second order
and tree level of string-localized QED implies that the kinematic propagator of the
string-localized photon potential must be employed. However, Proposition 5.46 says that
the propagator transforming under the (1, 1) representation of the Lorentz group differs
from the kinematic one by a string-integrated Dirac delta. Thus:

Corollary 5.47. The propagator from Proposition 5.46, which transforms under the
(1, 1) representation of the Lorentz group, is in conflict with the string independence
principle.

We discuss the issues coming from Corollary 5.47 in more detail in Section 5.7.5.
First, we perform a similar analysis to the one from Proposition 5.46 for the propagator
of the massless 𝑠 = 2 field strength.

Proposition 5.48. The requirement that the propagator of the massless field strength
of helicity 𝑠 = 2 transforms under the (irreducible) (2, 2) representation of the Lorentz
group fixes the free parameter 𝑏3 from Eq. (5.108) to 𝑏3 = 1

48 . Thus, there is a unique
propagator of the massless 𝑠 = 2 field strength, which respects the latter’s symmetries, is
traceless and transforms under the (2, 2)-representation of the Lorentz group, and whose
kernel is given by

P𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′

traceless,(2,2) (𝑝) := 𝑀𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′ (𝑝) + 𝑝2
[
1
2
𝑁1 − 𝑁2

]
+ (𝑝2)2

48
[−6𝐾1 + 6𝐾2 + 𝐾3] ,

(5.135)

with the 𝑁𝑖 and 𝐾𝑖 as in Eq.s (5.103) and (5.104), respectively.

Proof. The kernel of a traceless propagator respecting the symmetries of the massless
𝑠 = 2 field strength must be of the form Eq. (5.108). In order to transform under the
(2, 2) representation of the Lorentz group, the kernel must also be Minkowski harmonic
in 𝑝. Thus, we need to check if there is a choice of the constant 𝑏3 such that

�𝑝P
𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′

traceless = �𝑝

{
𝑀𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′ + 𝑝2

[
1
2
𝑁1 − 𝑁2

]
+ 𝑏3(𝑝2)2 [−6𝐾1 + 6𝐾2 + 𝐾3]

}
!
= 0.

The 𝐾𝑖, given by Eq. (5.104), are independent of 𝑝 and therefore

𝑏3�𝑝 (𝑝2)2 [−6𝐾1 + 6𝐾2 + 𝐾3] = 24𝑏3𝑝
2 [−6𝐾1 + 6𝐾2 + 𝐾3] . (5.136)
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The 𝑁𝑖, given by Eq. (5.103), are homogeneous in 𝑝 of degree 2, and thus

�𝑝𝑝
2𝑁𝑖 = 16𝑁𝑖 + 𝑝2�𝑝𝑁𝑖, (5.137)

with

�𝑝𝑁1 = 2 Tr( [ 𝑓 𝑔] [ 𝑓 𝑔] [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]) = 2𝐾1,

�𝑝𝑁2 = 2 Tr( [ 𝑓 𝑔] [ 𝑓 ′𝑔′] [ 𝑓 𝑔] [ 𝑓 ′𝑔′]) = 2𝐾2.
(5.138)

It is easy to verify that

(𝑝 [ 𝑓 𝑔] [ 𝑓 ′𝑔′]𝑝) Tr( [ 𝑓 𝑔] [ 𝑓 ′𝑔′]) = 2𝑁2, (5.139)

and with that identity in mind, we compute

�𝑝𝑀
𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′ = 4(𝑝 [ 𝑓 𝑔] [ 𝑓 ′𝑔′]𝑝) Tr( [ 𝑓 𝑔] [ 𝑓 ′𝑔′]) + 4(𝑝 [ 𝑓 𝑔] [ 𝑓 ′𝑔′] [ 𝑓 𝑔] [ 𝑓 ′𝑔′]𝑝)

+ 2(𝑝 [ 𝑓 𝑔] [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′] [ 𝑓 𝑔]𝑝) + 2(𝑝 [ 𝑓 ′𝑔′] [ 𝑓 𝑔] [ 𝑓 𝑔] [ 𝑓 ′𝑔′]𝑝)
− (𝑝 [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝) Tr( [ 𝑓 𝑔] [ 𝑓 𝑔]) − (𝑝 [ 𝑓 𝑔] [ 𝑓 𝑔]𝑝) Tr( [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′])
− 4(𝑝 [ 𝑓 𝑔] [ 𝑓 𝑔] [ 𝑓 ′𝑔′] [ 𝑓 ′𝑔′]𝑝)

= 12𝑁2 + 2𝑁3 − 𝑁4 − 4𝑁1.

(5.140)

𝑁3 and 𝑁4 do not appear in the traceless propagator but fortunately, these terms appear
only as combination 2(𝑁3 − 1

2𝑁4) in Eq. (5.140), which is the same combination that
appears in the vanishing Gram determinant Eq. (5.106). Replacing 𝑁3 and 𝑁4 in
Eq. (5.140) in favor of the other terms by said Gram identity yields

�𝑝𝑀
𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′ = 16𝑁2 − 8𝑁1 − 𝑝2

(
−2𝐾1 + 𝐾2 +

1
2
𝐾3

)
, (5.141)

so that

�𝑝P
𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′

traceless =
1 − 48𝑏3

2
𝑝2(6𝐾1 − 6𝐾2 − 𝐾3)

!
= 0, (5.142)

implying 𝑏3 = 1
48 . �

The kernel from Proposition 5.48 can be used to write down the configuration space
representation of the propagator of the massless 𝑠 = 2 field strength, which is traceless,
has the correct symmetry properties and transforms under the (2, 2) representation of the
Lorentz group. Namely, we have

〈〈𝑇traceless,(2,2)𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′〉〉(𝑥) = P𝐹 𝑓 ,𝑔𝐹 𝑓 ′,𝑔′

traceless,(2,2) (𝑖𝜕)𝐷𝐹 (𝑥). (5.143)

It is as of yet unclear whether the 𝑠 = 2 propagator (5.143) exhibits a similar incompatibility
with the string independence principle as the Maxwell propagator. An investigation of
this question remains for future research.
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5.7.4 The BDF construction
Yet another approach to reduce the BEG renormalization freedom is due to Brouder,
Dütsch and Fredenhagen (BDF) [8,25,27,28]. It is based on defining onshell time-ordered
products in terms of offshell fields. In the usual physics literature, fields are considered
as onshell, i.e., they satisfy an equation of motion. Moreover, one typically employs
kinematic time-ordering without caring much about the BEG ambiguities. In this standard
case, however, multilinearity of the time-ordering operation and the onshell property of
the field are incompatible.

For example, consider a free real scalar Klein-Gordon field 𝜙 of mass 𝑚, which
satisfies (� + 𝑚2)𝜙 = 0. Then the kinematic propagator commutes with derivatives,

〈〈𝑇0𝜕
𝜇𝜕𝜈𝜙(𝑥)𝜙(𝑦)〉〉 = 𝜕𝜇𝑥 𝜕𝜈𝑥 〈〈𝑇0𝜙(𝑥)𝜙(𝑦)〉〉 (5.144)

Contracting Eq. (5.144) with 𝜂𝜇𝜈, using the Klein-Gordon equation and assuming
multilinearity of 𝑇0, we run into trouble, for we obtain

−𝑚2〈〈𝑇0𝜙(𝑥)𝜙(𝑦)〉〉 = −𝑚2〈〈𝑇0𝜙(𝑥)𝜙(𝑦)〉〉 − 𝑖𝛿(𝑥 − 𝑦) ⇔ 𝛿(𝑥 − 𝑦) = 0, (5.145)

which is absurd. To resolve issues of this type, Dütsch and Fredenhagen introduced a
construction of time-ordered products in terms of offshell fields, which are not subject
to any differential equation (of motion) [27, 28] and this work was continued later by
Brouder and Dütsch [8]. In his book [25], Dütsch presents the construction in a smooth
and complete way. Let us sketch the BDF construction in the point-localized case.

One starts with an algebra Aoff generated by offshell fields and their derivatives,
which are not subject to any equation of motion, and defines a two-sided ideal I in Aoff,
which is generated by the equation of motion. The quotient algebra Aon =

Aoff
I is then

the algebra of “local onshell field polynomials”, and the canonical surjection

𝜋 : Aoff → Aon, 𝐴 ↦→ 𝜋𝐴 := 𝐴 + I = [𝐴] (5.146)

is an algebra homomorphism [25]. Derivatives in Aon are defined in terms of derivatives
in Aoff. For 𝜋𝐴 ∈ Aon, choose any 𝐵 ∈ Aoff such that 𝜋𝐴 = 𝜋𝐵 and define

𝜕𝜇 (𝜋𝐴) := 𝜋(𝜕𝜇𝐵) (5.147)

To define onshell time-ordered products in terms of offshell fields, BDF then define an
algebra homomorphism

𝜉 : Aon → Aoff (5.148)

picking a representative of [𝐴], implying that 𝜋 ◦ 𝜉 = id. BDF then subject 𝜉 to a set
of axioms so that the onshell time-ordered product satisfies certain desirable properties.
Beyond the homomorphism property and 𝜋 ◦ 𝜉 = id, BDF propose the following axioms
for the real scalar Klein-Gordon field 𝜙 [25]:

• Lorentz transformations commute with 𝜉𝜋 (=: 𝜉 ◦ 𝜋).
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• If A1 ⊂ Aoff is the subspace of Aoff spanned by the linear field 𝜙 and its partial
derivatives, then 𝜉𝜋(A1) ⊂ A1.

• 𝜉𝜋 does not increase the mass dimension of the fields.

These axioms must be adjusted to models containing other fields. For example,
having the homogeneity of massless two-point functions in mind, one should require that
the mass dimension stays the same after application of 𝜉𝜋 to (polynomials of) massless
fields. The homomorphism property of 𝜉 implies that it is enough to determine the map
𝜉𝜋 on all partial derivatives of linear fields in order to know everything we need to know
about the map 𝜉. Moreover, 𝜋𝜉 = id imply that (𝜉𝜋)2 = (𝜉𝜋), i.e., 𝜉𝜋 is a projection and
finally, we know that 𝜉𝜋(𝐴) − 𝐴 ∈ I by definition. We thus see that the axioms give
strong constraints on the form of 𝜉 (or of 𝜉𝜋).

With 𝜋 and 𝜉 at hand, BDF define the onshell time-ordered product of offshell fields
by

𝑇on [𝜋(𝐴1) (𝑥1) . . . 𝜋(𝐴𝑛) (𝑥𝑛)] := 𝑇off [𝜉𝜋(𝐴1) (𝑥1) . . . 𝜉𝜋(𝐴𝑛) (𝑥𝑛)], (5.149)

where 𝑇off commutes with derivatives and there is no conflict of the type Eq. (5.145)
because the 𝜉𝜋(𝐴𝑖) ∈ Aoff are offshell fields. Before turning to more complicated fields
and a possible transition to SLFT, we shed more light on the BDF approach by displaying
how the axioms constrain 𝜉𝜋 for low order derivatives of the real scalar Klein-Gordon
field (see also [25] for this example and [8] for further examples in point-localized QFT).

For the real scalar Klein-Gordon field 𝜙, the ideal I is generated by the Klein-Gordon
equation (� + 𝑚2)𝜙 = 0. The properties 𝜉𝜋(A1) ⊂ A1 and 𝜉𝜋(𝜙) − 𝜙 ∈ I imply that

𝜉𝜋(𝜙) = 𝜙 +
∞∑︁
𝑛=1

𝑐0,𝑛 (� + 𝑚2)𝑛𝜙, (5.150)

and since 𝜉𝜋 must not increase the mass dimension, we obtain 𝑐0,𝑛 = 0 for all 𝑛 ∈ N and
thus

𝜉𝜋(𝜙) = 𝜙. (5.151)

The same reasoning yields 𝜉𝜋(𝜕𝜇𝜙) = 𝜕𝜇𝜙. For the second derivative, the situation is
more interesting. Already including the Lorentz covariance axiom and that the mass
dimension must not increase, we have

𝜉𝜋(𝜕𝜇𝜕𝜈𝜙) = 𝜕𝜇𝜕𝜈𝜙 + 𝑐𝜂𝜇𝜈 (� + 𝑚2)𝜙 (5.152)

with a free parameter 𝑐. By definition of 𝜋 and of derivatives on Aon given by Eq. (5.147),
we have

(� + 𝑚2)𝜋𝜙 = 𝜋
(
(� + 𝑚2)𝜙

)
= 0, (5.153)

and therefore, contracting Eq. (5.152) with 𝜂𝜇𝜈 yields

−𝑚2𝜉𝜋𝜙 = −𝑚2𝜙 = �𝜙 + 4𝑐�𝜙 + 4𝑐𝑚2𝜙, (5.154)
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from which we can read off that 𝑐 = −1
4 . For the real scalar field, 𝑇off is nothing but the

kinematic time-ordering 𝑇0 (the propagator is unique for the field itself and the off shell
time-ordered product commutes with derivatives by definition). Let us summarize what
we have found:

〈〈𝑇on𝜋(𝜙(𝑥))𝜋(𝜙(𝑦))〉〉 = 〈〈𝑇0𝜙(𝑥)𝜙(𝑦)〉〉
〈〈𝑇on𝜋(𝜕𝜇𝜙(𝑥))𝜋(𝜙(𝑦))〉〉 = 𝜕𝜇𝑥 〈〈𝑇0𝜙(𝑥)𝜙(𝑦)〉〉

〈〈𝑇on𝜋(𝜕𝜇𝜕𝜈𝜙(𝑥))𝜋(𝜙(𝑦))〉〉 = 𝜕𝜇𝑥 𝜕𝜈𝑥 〈〈𝑇0𝜙(𝑥)𝜙(𝑦)〉〉 −
1
4
𝜂𝜇𝜈 (� + 𝑚2)〈〈𝑇0𝜙(𝑥)𝜙(𝑦)〉〉

= 𝜕
𝜇
𝑥 𝜕

𝜈
𝑥 〈〈𝑇0𝜙(𝑥)𝜙(𝑦)〉〉 +

𝑖

4
𝜂𝜇𝜈𝛿(𝑥 − 𝑦)

(5.155)

and similar for the other propagators including derivatives up to second order of 𝜙.
For general fields, there might arise additional ambiguities coming from the possible

non-uniqueness of 𝑇off. For example, we have seen in Section 5.7.1 that the kinematic
time-ordering does not respect the vanishing Ricci trace of the massless 𝑠 = 2 field
strength, which is a linear relation between field components, and that there is a one-
parameter space of traceless propagators. To the best knowledge of the author, such
issues have not yet been addressed in the BDF formalism. One solution might be to
include the tracelessness condition (or more general: algebraic conditions between field
components) into the ideal I but more research is due in that direction.

A first approach to adjust the BDF framework to string-localized field theory has
been studied by K. Shedid Attifa’s [63], who worked on the topic for certain cases of
massive string-localized fields while at the same time, the author of this thesis was
doing computations for massless string-localized potentials. At the time, the author
was frequently discussing the matter with K. Shedid Attifa. While the latter’s approach
includes the string integration operator 𝐼𝑒 in the construction of the map 𝜉𝜋 and also
relates string-localized and point-localized potentials via the BDF procedure, the approach
that we present in the following is solely formulated in the SLFT framework and includes
only derivatives in the construction of the map 𝜉𝜋. We exemplify the BDF method in
SLFT at the example of the string-localized photon potential 𝐴𝜇 (𝑥, 𝑒) (of mass 𝑚 = 0),
where the ideal I is generated by the equations 𝜕𝜇𝐴𝜇 = 0 and �𝐴 = 0. Let us write down
the axioms to which we subject the BDF framework, in particular the map 𝜉, in that case.

(a) 𝜉 is an algebra homomorphism.

(b) 𝜋𝜉 = id, and hence 𝜉𝜋 is a projection.

(c) Lorentz transformations commute with 𝜉𝜋.

(d) If A1 ⊂ Aoff is the subspace of Aoff spanned by the linear field 𝜙 and its partial
derivatives, then 𝜉𝜋(A1) ⊂ A1.

(e) Since 𝐴𝜇 is massless, 𝜉𝜋 does not change the mass dimension.
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(f) The string-localized potential and the Maxwell field strength are not considered as
independent fields. We rather define 𝐹𝜇𝜈 := 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 and require that 𝜉𝜋(𝐹𝜇𝜈)
and 𝜉𝜋(𝜕𝛼1 . . . 𝜕𝛼𝑛𝐹𝜇𝜈) are independent of 𝑒 for all 𝑛 ∈ N.

(g) 𝜉𝜋(𝐴𝜇) and all partial derivatives 𝜉𝜋(𝜕𝛼1 . . . 𝜕𝛼𝑛𝐴𝜇) are homogeneous of degree
0 in the string variable 𝑒.

Note that the axioms (a)-(e) already imply that 𝜉𝜋(𝐴𝜇) = 𝐴𝜇. The offshell time-ordered
product of the string-localized potential 𝐴𝜇 (𝑥, 𝑒) is ambiguous but our findings in Section
5.7.2 imply that the string independence principle is only consistent with kinematic
time-ordering. We axiomatize this as well.

(h) The offshell time-ordering 𝑇off is given by the kinematic time-ordering 𝑇0, as
dictated by the string independence principle.

The axiality of the string-localized potential is an algebraic condition, which we impose
already on the offshell field. That is 𝑒𝜇𝐴𝜇 = 0 as a relation in Aoff and hence, the
homomorphism property of 𝜉 implies that

𝑒𝜇𝜉𝜋(𝜕𝛼1 . . . 𝜕𝛼𝑛𝐴𝜇) = 0. (5.156)

In contrast to the case of the real point-localized scalar field that we discussed earlier,
the first non-trivial adjustments arising from the action of 𝜉𝜋 appear already for 𝜕𝜅𝐴𝜇
because the divergence (𝜕𝐴) is a generator for the ideal. We make the general ansatz

𝜉𝜋(𝜕𝜅𝐴𝜇) = 𝜕𝜅𝐴𝜇 + 𝑐𝐵𝜅𝜇 (𝑒) (𝜕𝐴). (5.157)

with a constant 𝑐 and a tensor

𝐵𝜇𝜅 (𝑒) := 𝜂𝜇𝜅 −
𝑒𝜇𝑒𝜅

𝑒2 , (5.158)

whose shape is determined by the axioms (c) and (g) as well as the axiality condition
Eq. (5.156). Contracting Eq. (5.157) with 𝜂𝜇𝜅 yields

0 !
= (𝜕𝐴) [1 + 3𝑐] ⇒ 𝑐 = −1

3
and 𝜉𝜋(𝜕𝜅𝐴𝜇) = 𝜕𝜅𝐴𝜇 −

1
3
𝐵𝜅𝜇 (𝑒) (𝜕𝐴).

(5.159)

Due to the symmetry of 𝐵𝜇𝜅, we have

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 = 𝜉𝜋(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇) = 𝜉𝜋(𝐹𝜇𝜈) (5.160)

and since 𝑇off = 𝑇0 by axiom (h), this is independent of 𝑒 and point-localized. Moreover,
the axiality of 𝐴𝜇 and of 𝐵𝜇𝜅 with respect to both indices together with Eq.s (5.159) and
(5.160) imply that

(𝑒𝜕)𝐴𝜇 = 𝜉𝜋((𝑒𝜕)𝐴𝜇) = 𝜉𝜋((𝑒𝜕)𝐴𝜇 − 𝜕𝜇 (𝑒𝐴)) = −𝐹𝜇𝜈𝑒𝜈, (5.161)
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so that 𝐴𝜇 = 𝐼𝑒𝐹𝜇𝜈𝑒𝜈 in Aoff. Let us now turn to the second derivative. Without changing
the mass dimension, respecting Lorentz covariance, the axiality of 𝐴𝜇, homogeneity in 𝑒
of degree 0 and symmetry under exchange of the Lorentz indices of the derivatives, we
have the general ansatz

𝜉𝜋(𝜕𝜅𝜕𝜆𝐴𝜇) = 𝜕𝜅𝜕𝜆𝐴𝜇 +
[
𝑐1(𝐵𝜇𝜅𝜕𝜆 + 𝐵𝜇𝜆𝜕𝜅) + 𝑐2𝜂𝜅𝜆𝐷𝜇

+𝑐3
𝑒𝜅𝑒𝜆

𝑒2 𝐷𝜇 + 𝑐4(𝐵𝜇𝜅𝑒𝜆 + 𝐵𝜇𝜆𝑒𝜅)
(𝑒𝜕)
𝑒2

]
(𝜕𝐴)

+
[
𝑑1𝜂𝜅𝜆𝜂𝜚𝜇 + 𝑑2

𝑒𝜅𝑒𝜆

𝑒2 𝜂𝜚𝜇 + 𝑑3(𝐵𝜇𝜅𝜂𝜚𝜆 + 𝐵𝜇𝜆𝜂𝜚𝜅)
]
�𝐴𝜚,

(5.162)

where we have introduced the “axial derivative” 𝐷𝜇 := 𝜕𝜇 −
𝑒𝜇 (𝑒𝜕)
𝑒2 . We first implement

the condition of vanishing divergence,

0 !
= 𝜂𝜇𝜆𝜉𝜋(𝜕𝜅𝜕𝜆𝐴𝜇)

= 𝜕𝜅 (𝜕𝐴) [1 + 4𝑐1 + 𝑐2] +
𝑒𝜅 (𝑒𝜕)
𝑒2 [−𝑐1 − 𝑐2 + 3𝑐4] + �𝐴𝜅 [𝑑1 + 4𝑑3] .

(5.163)

Second, we implement the wave equation

0 !
= 𝜂𝜅𝜆𝜉𝜋(𝜕𝜅𝜕𝜆𝐴𝜇) = �𝐴𝜇 [1 + 4𝑑1 + 𝑑2 + 2𝑑3] + 𝐷𝜇 (𝜕𝐴) [2𝑐1 + 4𝑐2 + 𝑐3] . (5.164)

Finally, we implement the axiom (f), which states that 𝜉𝜋(𝜕𝜅𝜕𝜆𝐴𝜇) − 𝜉𝜋(𝜕𝜅𝜕𝜇𝐴𝜆) =

𝜉𝜋(𝜕𝜅𝐹𝜆𝜇) must be independent of 𝑒. We have

𝜉𝜋(𝜕𝜅𝜕𝜆𝐴𝜇) − 𝜉𝜋(𝜕𝜅𝜕𝜇𝐴𝜆)

= 𝜕𝜅𝐹𝜆𝜇 +
[
𝑐1(𝐵𝜇𝜅𝜕𝜆 − 𝐵𝜅𝜆𝜕𝜇) + 𝑐2(𝜂𝜅𝜆𝐷𝜇 − 𝜂𝜅𝜇𝐷𝜆)

+𝑐3
𝑒𝜅

𝑒2 (𝑒𝜆𝐷𝜇 − 𝑒𝜇𝐷𝜆) + 𝑐4(𝐵𝜇𝜅𝑒𝜆 − 𝐵𝜅𝜆𝑒𝜇)
(𝑒𝜕)
𝑒2

]
(𝜕𝐴)

+
[
𝑑1(𝜂𝜅𝜆𝜂𝜚𝜇 − 𝜂𝜅𝜇𝜂𝜚𝜆) + 𝑑2

𝑒𝜅

𝑒2 (𝑒𝜆𝜂𝜚𝜇 − 𝑒𝜇𝜂𝜚𝜆) + 𝑑3(𝐵𝜇𝜅𝜂𝜚𝜆 − 𝐵𝜅𝜆𝜂𝜚𝜇)
]
�𝐴𝜚

= 𝜕𝜅𝐹𝜆𝜇 +
[
(𝜂𝜇𝜅𝜕𝜆 − 𝜂𝜅𝜆𝜕𝜇) (𝑐1 − 𝑐2) −

𝑒𝜅

𝑒2 (𝑒𝜇𝜕𝜆 − 𝑒𝜆𝜕𝜇) (𝑐1 + 𝑐3)

−(𝜂𝜅𝜆𝑒𝜇 − 𝜂𝜅𝜇𝑒𝜆)
(𝑒𝜕)
𝑒2 (𝑐2 + 𝑐4)

]
(𝜕𝐴)

+
[
(𝑑1 − 𝑑3) (𝜂𝜅𝜆𝜂𝜚𝜇 − 𝜂𝜅𝜇𝜂𝜚𝜆) + (𝑑2 + 𝑑3)

𝑒𝜅

𝑒2 (𝑒𝜆𝜂𝜚𝜇 − 𝑒𝜇𝜂𝜚𝜆)
]
�𝐴𝜚 .

(5.165)

To remove the 𝑒-dependence of Eq. (5.165), we must require

𝑐1 + 𝑐3 = 0, 𝑐2 + 𝑐4 = 0, 𝑑2 + 𝑑3 = 0 and 𝑐1 − 𝑐2 = 𝑑1 − 𝑑3, (5.166)
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where the last condition comes from the fact that

𝜕𝛼𝐹𝛼𝜇 = �𝐴𝜇 − 𝜕𝜇 (𝜕𝐴) (5.167)

is point-localized. The conditions from Eq.s (5.163) and (5.164) yield more constraints
on the parameters,

1 + 4𝑐1 + 𝑐2 = 0, −𝑐1 − 𝑐2 + 3𝑐4 = 0, 𝑑1 + 4𝑑3 = 0,
1 + 4𝑑1 + 𝑑2 + 2𝑑3 = 0 and 2𝑐1 + 4𝑐2 + 𝑐3 = 0.

(5.168)

Together, the conditions (5.166) and (5.168) form a linear system of nine equations for
seven free parameters. However, this system is consistent and has the unique solution

𝑐1 = − 4
15
, 𝑐2 =

1
15
, 𝑐3 =

4
15
, 𝑐4 = − 1

15
, 𝑑1 = − 4

15
, 𝑑2 = − 1

15
, 𝑑3 =

1
15
.

(5.169)
We thus end up with

𝜉𝜋(𝜕𝜅𝜕𝜆𝐴𝜇) = 𝜕𝜅𝜕𝜆𝐴𝜇 +
1
15

[
−4(𝐵𝜇𝜅𝜕𝜆 + 𝐵𝜇𝜆𝜕𝜅) + 𝜂𝜅𝜆𝐷𝜇

+4
𝑒𝜅𝑒𝜆

𝑒2 𝐷𝜇 − (𝐵𝜇𝜅𝑒𝜆 + 𝐵𝜇𝜆𝑒𝜅)
(𝑒𝜕)
𝑒2

]
(𝜕𝐴)

+ 1
15

[
−4𝜂𝜅𝜆𝜂𝜚𝜇 −

𝑒𝜅𝑒𝜆

𝑒2 𝜂𝜚𝜇 + 𝐵𝜇𝜅𝜂𝜚𝜆 + 𝐵𝜇𝜆𝜂𝜚𝜅
]
�𝐴𝜚

(5.170)

and

𝜉𝜋(𝜕𝜅𝐹𝜆𝜇) = 𝜕𝜅𝐹𝜆𝜇 −
1
3

[
𝜂𝜇𝜅𝜂𝜚𝜆 − 𝜂𝜆𝜅𝜂𝜚𝜇

]
(𝜕 𝜚 (𝜕𝐴) − �𝐴𝜚)

= 𝜕𝜅𝐹𝜆𝜇 −
1
3

[
𝜂𝜅𝜆𝜕

𝜚𝐹𝜚𝜇 − 𝜂𝜇𝜅𝜕 𝜚𝐹𝜚𝜆
] (5.171)

with 𝜂𝜅𝜆𝜉𝜋(𝜕𝜅𝐹𝜆𝜇) = 0. Note that the Bianchi identity is satisfied simply because of the
definition of 𝐹𝜆𝜇 = 𝜕𝜆𝐴𝜇 − 𝜕𝜇𝐴𝜆,

𝜉𝜋(𝜕𝜅𝐹𝜆𝜇 + cyclic) = 0. (5.172)

Our findings translate as follows to the propagators of the string-localized photon potential
and the Maxwell field strength.

〈〈𝑇on𝜋(𝐴𝜇 (𝑒))𝜋(𝐴𝜈 (𝑒′))〉〉(𝑥) = 〈〈𝑇0𝐴𝜇 (𝑒)𝐴𝜈 (𝑒′)〉〉(𝑥),
〈〈𝑇on𝜋(𝜕𝜅𝐴𝜇 (𝑒))𝜋(𝐴𝜈 (𝑒′))〉〉(𝑥) = 𝜕𝜅 〈〈𝑇0𝐴𝜇 (𝑒)𝐴𝜈 (𝑒′)〉〉(𝑥)

+ 𝑖

3
𝐵𝜇𝜅 (𝑒) [(𝑒𝑒′)𝐼𝑒 𝐼−𝑒′𝜕𝜈 − 𝑒𝜈 𝐼𝑒] 𝛿(𝑥),

〈〈𝑇on𝜋(𝐹𝜅𝜇)𝜋(𝐴𝜈 (𝑒′))〉〉(𝑥) = 〈〈𝑇0𝐹𝜅𝜇𝐴𝜈 (𝑒′)〉〉(𝑥),
〈〈𝑇on𝜋(𝐹𝜅𝜇)𝜋(𝜕𝜆𝐴𝜈 (𝑒′))〉〉(𝑥) = −𝜕𝜆〈〈𝑇0𝐹𝜅𝜇𝐴𝜈 (𝑒′)〉〉(𝑥)

− 𝑖

3
𝐵𝜈𝜆 (𝑒′)

[
𝑒′𝜇𝜕𝜅 − 𝑒′𝜅𝜕𝜇

]
𝐼−𝑒′𝛿(𝑥),

〈〈𝑇on𝜋(𝐹𝜅𝜇)𝜋(𝐹𝜆𝜈)〉〉(𝑥) = 〈〈𝑇0𝐹𝜅𝜇𝐹𝜆𝜈〉〉(𝑥),

(5.173)

and so on.
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Remark 5.49. In the previous derivations, we have axiomatized the map 𝜉 for the
string-localized potential 𝐴𝜇 and defined the Maxwell field strength as the curl of
𝐴𝜇, axiomatizing that this curl and its partial derivatives must be point-localized and
independent of the string variables. One can attempt to start from the opposite end,
axiomatizing 𝜉 for the Maxwell field strength 𝐹𝜇𝜈 (𝑥) and defining 𝐴𝜇 = 𝐼𝑒𝐹𝜇𝜈𝑒

𝜈.
However, it is then unclear how to incorporate the string integration operator 𝐼𝑒 into the
construction of the map 𝜉. Assuming that string integration commutes with 𝜉, one runs
into trouble. To illustrate the issue, note that

𝐼𝑒𝑒
𝜇〈〈𝑇on𝜋(𝜕𝜅𝐹𝜆𝜇)𝜋(𝐴𝜈 (𝑒′))〉〉(𝑥) ≠ 〈〈𝑇on𝜋(𝜕𝜅𝐴𝜆 (𝑒))𝜋(𝐴𝜈 (𝑒′))〉〉(𝑥) (5.174)

in our previous construction. More research would be needed to clarify this matter but
since the construction of 𝜉 from axioms in terms of the potential works just fine – as we
have seen – we leave it at that.

5.7.5 On the interference of different methods
In Sections 5.7.1 to 5.7.4, we have discussed different methods to reduce the BEG
renormalization freedom beyond power counting. In particular, we have given examples
of the implementation of

• algebraic conditions,

• the consequences of the string independence principle,

• the NST renormalization prescription, and

• the BDF onshell formalism

in time-ordering within the setting of string-localized field theory. One might think of
more such construction, such as the implementation of a Master Ward Identity [26] in
SLFT, of which the string independence principle as formulated in Eq. (4.20) is probably
a special case. But in the framework of this thesis, we constrain ourselves – due to time
constraints during the work on a thesis – to the investigation of the listed examples.

The NST prescription and the BDF onshell formalism are both special cases of onshell
extensions of distributions as described by Bahns and Wrochna [2]. They describe the
onshell extension of distributions across the origin by means of so-called “operators of
essential order 𝑛 ∈ N0” of which partial differential operators with smooth coefficients
are a special case.10 Roughly speaking, Bahns and Wrochna introduce a machinery to
construct extensions 𝑢 ∈ D′(R𝑛) of distributions 𝑢 ∈ D′(R𝑛 \ 0), which are subject to a
certain set of differential equations,

𝑃𝑖𝑢 = 0 on R𝑛 \ 0 for a set of partial differential operators 𝑃𝑖, 𝑖 = 1, . . . , 𝑘, (5.175)

10The reason why we have introduced the NST prescription by means of the Casimir operator was so
that one can easily see that the NST prescription is a special case of onshell extensions in the sense of
Bahns and Wrochna.
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such that 𝑃𝑖𝑢 = 0 on R𝑛 for all 𝑖 = 1, . . . , 𝑘 .
Now, our findings in Section 5.7.4 suggest that the string independence principle and

the BDF construction go hand in hand. They imply the use of kinematic time-ordered
propagators

〈〈𝑇0𝐴𝜇 (𝑒)𝐴𝜈 (𝑒′)〉〉 and 〈〈𝑇0𝐹𝜇𝜈𝐹𝜅𝜆〉〉 (5.176)

for the string-localized photon potential and the Maxwell field strength, respectively. In
Section 6.1, we shall find that the same is true for string-localized massless Yang-Mills
theory. However, the NST prescription, which relies on the refined notion of Lorentz
covariance in the sense of a transformation behavior of massless propagators under
irreducible representations of the Lorentz group, is not compatible with the implications
of the string independence principle and the BDF construction. To see this, recall
Corollary 5.47.

A string dependence of cross sections is not observed in experiment, and hence
the string independence principle should be treated as paramount. Consequently, it
invalidates the NST prescription. A physical interpretation of this result is due to K.-H.
Rehren: the refined notion of Lorentz covariance that applies to the two-point functions,
is destroyed by the interaction.

For helicity 𝑠 = 2, the situation is not as clear as for the Maxwell case. We have found
in Section 5.7.1 that the one-parameter space of propagators respecting the vanishing of
the Ricci trace does not contain the kinematic propagator for the massless 𝑠 = 2 field
strength. To validate that one of the traceless propagators is consistent with the BDF
construction, which might even fix the free parameter, one needs to apply the results to
physical models. This task remains for future research.

In summary, we have introduced two different realizations of onshell extensions of
distributions, which are mutually incompatible. From this, we learn that one should
be careful when implementing differential relations in time-ordering and that it is not
a priori clear, which recipes for the construction of onshell extensions are physically
justified and which are not.
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Chapter 6

Examples

In this section, we have a closer look at examples for the concepts presented and derived in
Chapters 4 and 5. In particular, the examples display the power of the string independence
principle. In Section 6.1, we show that the latter constrains the form of the self-coupling
of massless string-localized potentials of helicity 𝑠 = 1 to be of Yang-Mills type, while
we show in Section 6.2 that the string independence principle forbids a coupling of a
string-localized graviton potential to the Maxwell stress energy tensor. In Section 6.3,
we outline some obstacles that still block the way to a perturbative description of the
self-coupling of string-localized graviton potentials.

The consequences of the no-go result for the graviton coupling to the Maxwell SET
are unclear at the present time. The result seems to imply that a construction of a
string-localized graviton-photon coupling on Hilbert space does not work. One still can
attempt to construct the model in the hybrid approach (i.e., on Krein space), which was
outlined in the introductory paragraphs of Chapter 3. However, this means that one loses
one of SLFT’s main advantages. The no-go result also raises the question if there is an
underlying principle that decides whether a string-localized model can be formulated on
Hilbert space or not.

6.1 String-localized massless Yang-Mills theory
In this section, we show that the string independence principle – as formulated in
Eq. (4.20) – implies at second order and tree level of perturbation theory that a generic
renormalizable self-coupling of massless string-localized potentials of helicity 𝑠 = 1
must be of Yang-Mills type. The derivations are based on joint work with J. M. Gracia
Bondía and J. Mund [37]. The contribution of the author to that work is the derivation
of the described result with several independent string variables in the 𝑆𝑛 of the Dyson
series, that is, a realization of alternative (4.14a) described in Section 4.2. The original
derivation by Gracia-Bondía and Mund was within alternative (4.14c), which gives
rise to ill-defined two-point functions and propagators. In addition to the content of
the mentioned work [37], we here prove that the alternative (4.14b) for the setup of
string-localized perturbation theory is in conflict with the string independence principle.
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6.1.1 String independence at first order of perturbation theory
To derive the Yang-Mills structure, we start with a generic ansatz for a cubic coupling of 𝑛
string-localized potentials 𝐴𝜇𝑎 (𝑥, 𝑒), 𝑎 = 1, . . . , 𝑛, and show that the string independence
principle strongly constrains its form at first order of perturbation theory. Our derivations
are similar in spirit to the machinery used by Scharf and collaborators [1, 29,60] in the
gauge theoretic framework.

Theorem 6.1 (see Prop. 1 in [37]). Suppose that we are given 𝑛 massless string-localized
potentials 𝐴𝜇𝑎 (𝑥, 𝑒), 𝑎 = 1, . . . , 𝑛, of helicity 𝑠 = 1. Then their most general cubic
coupling 𝑆1 = 𝑖 :𝐿: , which is renormalizable by power counting and satisfies the string
independence principle Eq. (4.20), must be of the form

𝑆1(𝑥, 𝑒1, 𝑒2) = 𝑖
𝑔

2
𝑓𝑎𝑏𝑐 :𝐴𝜇𝑎 (𝑥, 𝑒1)𝐴𝜈𝑏 (𝑥, 𝑒2)𝐹𝜇𝜈𝑐 (𝑥): (6.1)

with completely skewsymmetric constants 𝑓𝑎𝑏𝑐, and where summation over repeated Latin
indices understood.

Proof (similar to the proof in [37] but with details added). For the sake of readability,
we drop the colons that indicate normal ordering and introduce the notation 𝐴𝑖𝜇𝑎 ≡
𝐴𝜇𝑎 (𝑥, 𝑒𝑖) for the string-localized potentials. To begin with, we write down the most
general ansatz for a cubic coupling of the fields 𝐴𝜇𝑎 (𝑥, 𝑒), which is renormalizable by
power counting,

𝑆′1(𝑥, 𝑒1, 𝑒2, 𝑒3) = 𝑖𝑔 𝑓 1
𝑎𝑏𝑐𝐴

1
𝜇𝑎𝐴

2
𝜈𝑏𝜕

𝜇𝐴3𝜈
𝑐 , (6.2)

where the coefficients 𝑓 1
𝑎𝑏𝑐

are a priori unspecified. We then split 𝑓 1
𝑎𝑏𝑐

≡ 𝑑𝑎𝑏𝑐 + 𝑓 2
𝑎𝑏𝑐

into
a symmetric and skewsymmetric part under exchange of the second and third indices,

𝑑𝑎𝑏𝑐 = 𝑑𝑎𝑐𝑏 and 𝑓 2
𝑎𝑏𝑐 = − 𝑓 2

𝑎𝑐𝑏 . (6.3)

Only the part of 𝑆′1, which is symmetric under exchange of any string variable, gives a
non-trivial contribution to the S-matrix. In particular, we can symmetrize 𝑆′1 in 𝑒2 ↔ 𝑒3
without loss of generality to see that the 𝑑𝑎𝑏𝑐-contribution forms a total divergence in the
adiabatic limit and can thus be neglected,

𝑑𝑎𝑏𝑐𝐴
1
𝜇𝑎

(
𝐴2
𝜈𝑏𝜕

𝜇𝐴3𝜈
𝑐 + 𝐴3

𝜈𝑏𝜕
𝜇𝐴2𝜈

𝑐

)
= 𝜕𝜇

(
𝑑𝑎𝑏𝑐𝐴

1
𝜇𝑎𝐴

2
𝜈𝑏𝐴

3𝜈
𝑐

)
(6.4)

because 𝜕𝜇𝐴1
𝜇𝑎 = 0 on Hilbert space. The most general ansatz Eq. (6.2) hence reduces to

𝑆′′1 (𝑥, 𝑒1, 𝑒2, 𝑒3) = 𝑖𝑔 𝑓 2
𝑎𝑏𝑐𝐴

1
𝜇𝑎𝐴

2
𝜈𝑏𝜕

𝜇𝐴3𝜈
𝑐 (6.5)

with the constants 𝑓 2
𝑎𝑏𝑐

from Eq. (6.3). We can repeat the above procedure for the new
coupling 𝑆′′1 : Split 𝑓 2

𝑎𝑏𝑐
:= 𝑓 +

𝑎𝑏𝑐
+ 𝑓 −

𝑎𝑏𝑐
with 𝑓 +

𝑎𝑏𝑐
= 𝑓 +

𝑏𝑎𝑐
and totally skewsymmetric 𝑓 −

𝑎𝑏𝑐
.

The totally skewsymmetric part can then be rewritten as

𝑆′′1
−(𝑥, 𝑒1, 𝑒2, 𝑒3) := 𝑖𝑔 𝑓 −𝑎𝑏𝑐𝐴

1
𝜇𝑎𝐴

2
𝜈𝑏𝜕

𝜇𝐴3𝜈
𝑐 = 𝑖

𝑔

2
𝑓 −𝑎𝑏𝑐𝐴

1
𝜇𝑎𝐴

2
𝜈𝑏𝐹

𝜇𝜈
𝑐 ≡ 𝑆′′1

−(𝑥, 𝑒1, 𝑒2) (6.6)
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and depends trivially on 𝑒3. Since the test function 𝑐 ∈ D(𝐻) averaging over the
string variables has integral equal to unity, it is consistent to simply ignore 𝑒3 in 𝑆′′1

−.
Furthermore, 𝑆′′1

−(𝑥, 𝑒1, 𝑒2) is intrinsically symmetric under the exchange 𝑒1 ↔ 𝑒2,
i.e., 𝑆′′1

− = 𝑆′′1
−,symm. To compute the string variation of 𝑆′′1

−, we remember that the
string-derivative of string-localized potentials is a symmetric gradient of auxiliary fields.
For helicity 𝑠 = 1, Eq. (2.30) yields

𝑑𝑒𝐴𝜇𝑎 (𝑥, 𝑒) = 𝜕𝑒𝜅 𝐴𝜇𝑎 (𝑥, 𝑒)𝑑𝑒𝜅 = 𝜕𝜇𝑤𝑎𝜅 (𝑥, 𝑒)𝑑𝑒𝜅 =: 𝜕𝜇𝑤𝑎 (𝑥, 𝑒), (6.7)

with 𝑤𝑎 (𝑥, 𝑒) = 𝐼𝑒𝐴𝜅 (𝑥, 𝑒)𝑑𝑒𝜅. Thus,

𝑑𝑒1𝑆
′′
1
−(𝑥, 𝑒1, 𝑒2) = 𝑖

𝑔

2
𝑓 −𝑎𝑏𝑐𝜕𝜇𝑤

1
𝑎𝐴

2
𝜈𝑏𝐹

𝜇𝜈
𝑐

= 𝑖
𝑔

2
𝑓 −𝑎𝑏𝑐

{
𝜕𝜇

[
𝑤1
𝑎𝐴

2
𝜈𝑏𝐹

𝜇𝜈
𝑐

]
− 1

2
𝑤1
𝑎𝐹𝜇𝜈𝑏𝐹

𝜇𝜈
𝑐

}
= 𝑖
𝑔

2
𝑓 −𝑎𝑏𝑐𝜕𝜇

[
𝑤1
𝑎𝐴

2
𝜈𝑏𝐹

𝜇𝜈
𝑐

]
=: 𝜕𝜇𝑄𝜇 (𝑥, 𝑒1, 𝑒2),

(6.8)

where the term with the two field strength tensors vanishes by the skewsymmetry of 𝑓 −
𝑎𝑏𝑐

.
Therefore, the 𝑓 −

𝑎𝑏𝑐
part is string independent in the adiabatic limit. Next, consider the

𝑓 +
𝑎𝑏𝑐

-part of 𝑆′′1 . We have

𝑑𝑒1

1
3!

∑︁
𝜋∈𝔖3

𝑓 +𝑎𝑏𝑐𝐴
𝜋(1)
𝜇𝑎 𝐴

𝜋(2)
𝜈𝑏

𝜕𝜇𝐴
𝜋(3)𝜈
𝑐 =

𝑓 +
𝑎𝑏𝑐

6

{
𝜕𝜇𝑤

1
𝑎

(
𝐴2
𝜈𝑏𝜕

𝜇𝐴3𝜈
𝑐 + 𝐴3

𝜈𝑏𝜕
𝜇𝐴2𝜈

𝑐

)
+ 𝜕𝜈𝑤1

𝑏

(
𝐴2
𝜇𝑎𝜕

𝜇𝐴3𝜈
𝑐 + 𝐴3

𝜇𝑎𝜕
𝜇𝐴2𝜈

𝑐

)
+ 𝜕𝜇𝜕𝜈𝑤1

𝑐

(
𝐴2
𝜇𝑎𝐴

3
𝜈𝑏 + 𝐴

3
𝜇𝑎𝐴

2
𝜈𝑏

)}
.

(6.9)

The first line of the right-hand side of Eq. (6.9) has two contracted derivatives and forms
a total divergence because all fields satisfy the wave equation,1

𝜕𝜇𝑤
1
𝑎𝐴

2
𝜈𝑏𝜕

𝜇𝐴3𝜈
𝑐 =

1
2
𝜕𝜇

[
𝑤1
𝑎𝐴

2
𝜈𝑏𝜕

𝜇𝐴3𝜈
𝑐 + 𝜕𝜇𝑤1

𝑎𝐴
2
𝜈𝑏𝐴

3𝜈
𝑐 − 𝑤1

𝑎𝜕
𝜇𝐴2

𝜈𝑏𝐴
3𝜈
𝑐

]
, (6.10)

and the other two lines can be integrated by parts. Additionally using the symmetry
properties 𝑓 +

𝑎𝑏𝑐
= 𝑓 +

𝑏𝑎𝑐
= − 𝑓 +

𝑎𝑐𝑏
, we obtain

𝑑𝑒1

1
3!

∑︁
𝜋∈𝜎3

𝑓 +𝑎𝑏𝑐𝐴
𝜋(1)
𝜇𝑎 𝐴

𝜋(2)
𝜈𝑏

𝜕𝜇𝐴
𝜋(3)𝜈
𝑐 = div + 2

3
𝑓 +𝑎𝑏𝑐𝜕𝜇𝐴

2
𝜈𝑎𝜕

𝜈𝐴
3𝜇
𝑏
𝑤1
𝑐 . (6.11)

The operators 𝜕𝜇𝐴2
𝜈𝑎, 𝜕𝜈𝐴

3𝜇
𝑏

and 𝑤1
𝑐 are linearly independent and therefore, the right-hand

side of Eq. (6.11) only forms a total divergence if the 𝑓 +
𝑎𝑏𝑐

vanish identically. Thus, string
independence implies that 𝑓 2

𝑎𝑏𝑐
≡ 𝑓 −

𝑎𝑏𝑐
=: 𝑓𝑎𝑏𝑐, which finishes the proof. �

1We have encountered such divergences earlier, recall Eq. (3.107).



106 Examples

Remark 6.2. The advantage that SLFT is formulated on Hilbert space and that cor-
respondingly no unphysical ghost fields appear fully comes to bear in the proof of
Theorem 6.1. In the gauge theoretic framework, where ghost field contributions have to
be considered, similar derivations are far more involved, see for example [60]. The same
holds for the second order considerations in the next section.

The coupling 𝑆1 from Eq. (6.1) with totally skewsymmetric coefficients 𝑓𝑎𝑏𝑐 is the
most general cubic self-coupling of massless string-localized potentials of helicity 𝑠 = 1,
which is renormalizable by power counting and string independent at first order of
perturbation theory. However, string independence at first order does not yet imply that
the coupling is of Yang-Mills type. But this should not be expected since the quartic term
∼ 𝑔2𝐴4, which appears in Yang-Mills theory, is quadratic in the coupling constant and
hence a second order contribution. Furthermore, we know by now that the 𝑓𝑎𝑏𝑐 must be
totally skewsymmetric but it is unclear whether they satisfy the Jacobi identity, which
would make them structure constants of a Lie algebra (of compact type – due to the total
skewsymmetry). We thus need to go to the next order of perturbation theory to get a
better picture.

6.1.2 String independence at second order and tree level
In our paper [37], we treat string independence at second order and tree level in the
string chopping framework, which has been adjusted to the purpose by Jens Mund in
an appendix of that paper. Moreover, we consider kinematic propagators right from the
start in the mentioned work, not considering possible ambiguities of the propagators.
The following derivation of the implications of second order string independence are
slightly different from the derivations in the paper because we use the method described
in Section 4.1.2 and because we derive that kinematic propagators must be employed
to ensure string independence. The computations still are partially the same as in our
work [37], only with more details added. In the end, the result turns out to be the same as
in the paper.

By our considerations in Chapter 4, the second order tree graph contribution to the
S-matrix is given by a four-fold string integral

𝑇 [𝑆1(𝑥, 𝑒1, 𝑒2)𝑆1(𝑥′, 𝑒′1, 𝑒
′
2)]

��
tree =

∫ ∞

0
𝑑4𝑠 𝑇 [𝑆1(𝑥, 𝑦1, 𝑦2)𝑆1(𝑥′, 𝑦′1, 𝑦

′
2)]

��
tree ,

(6.12)

with 𝑦 (′)
𝑖

= 𝑥 (′) + 𝑠(
′)
𝑖
𝑒
(′)
𝑖

. We can then use Wick’s theorem to expand the integrand, which
is a point-localized time-ordered product of 𝑛(𝑘 + 1) = 6 variables, with the possible
appearance of “self-contractions” that would have to be removed manually (as outlined in
Section 4.2). In the case at hand, no self-contractions appear, for the gluon propagators
are diagonal in the color indices, 〈〈𝑇𝐴𝜇𝑎𝐴𝜈𝑏〉〉 ∼ 𝛿𝑎𝑏, with the Kronecker delta 𝛿𝑎𝑏, while
the coefficients 𝑓𝑎𝑏𝑐 are totally skewsymmetric. Thus, Wick’s theorem applies without
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any adjustments and we have

𝑇 [𝑆1(𝑥, 𝑦1, 𝑦2)𝑆1(𝑥′, 𝑦′1, 𝑦
′
2)]

��
tree =

∑︁
𝜑,𝜒

〈〈𝑇𝜑(𝜉)𝜒(𝜉′)〉〉 :
𝜕𝑆1(𝑥, 𝑦1, 𝑦2)

𝜕𝜑(𝜉)
𝜕𝑆1(𝑥′, 𝑦′1, 𝑦

′
2)

𝜒(𝜉′) : .

(6.13)

Inserting the explicit form of 𝑆1 derived in the previous section, carrying out the string
integrals over Eq. (6.13), indicating a dependence on 𝑥′ by a prime at the field and a
dependence on 𝑒′

𝑖
by an upper index 𝑖′, and dropping again the colons indicating normal

ordering for the sake of readability, we obtain

𝑇 [𝑆1(𝑥, 𝑒1, 𝑒2)𝑆1(𝑥′, 𝑒′1, 𝑒
′
2)]

��
tree

= 𝑖2
𝑔(𝑥)𝑔(𝑥′)

4
𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑧

{
〈〈𝑇𝐹𝜇𝜈𝑐 𝐹′𝜅𝜆

𝑧 〉〉𝐴1
𝜇𝑎𝐴

2
𝜈𝑏𝐴

′1′
𝜅𝑥𝐴

′2′
𝜆𝑦

+
[
〈〈𝑇𝐴1

𝜇𝑎𝐹
′𝜅𝜆
𝑧 〉〉𝐴2

𝜈𝑏𝐹
𝜇𝜈
𝑐 𝐴′1

′

𝜅𝑥𝐴
′2′
𝜆𝑦 + (𝑒1 ↔ 𝑒2)

]
(6.14)

+
[
〈〈𝑇𝐹𝜇𝜈𝑐 𝐴′1

′

𝜅𝑥〉〉𝐴1
𝜇𝑎𝐴

2
𝜈𝑏𝐴

′2′
𝜆𝑦𝐹

′𝜅𝜆
𝑧 + (𝑒′1 ↔ 𝑒′2)

]
+

[(
〈〈𝑇𝐴1

𝜇𝑎𝐴
′1′
𝜅𝑥〉〉𝐴2

𝜈𝑏𝐹
𝜇𝜈
𝑐 𝐴′2

′

𝜆𝑦𝐹
′𝜅𝜆
𝑧 + (𝑒1 ↔ 𝑒2)

)
+ (𝑒′1 ↔ 𝑒′2)

]}
.

By our reasoning in Sections 4.1.2 and 4.2, the left-hand side of Eq. (6.14) is uniquely
fixed outside the 𝑥-diagonal { 𝑥 = 𝑥′ }, provided that all lower time-ordered products have
already been fixed. But they have not: The propagators on the right-hand side are so
far unspecified. The propagator of the field strength, which is homogeneous of degree
𝜔 = −4, has a freedom

〈〈𝑇𝐹𝜇𝜈𝑐 𝐹′𝜅𝜆
𝑧 〉〉 = 𝛿𝑐𝑧

[
〈〈𝑇0𝐹

𝜇𝜈𝐹′𝜅𝜆〉〉 + 𝑐(𝜂𝜇𝜅𝜂𝜈𝜆 − 𝜂𝜇𝜆𝜂𝜈𝜅)𝛿(𝑥 − 𝑥′)
]

(6.15)

with a constant 𝑐 and the kinematic propagator 𝑇0, and consequently,

〈〈𝑇𝐴1𝜇
𝑎 𝐹

′𝜅𝜆
𝑧 〉〉 = 𝛿𝑎𝑧

[
〈〈𝑇0𝐴

1𝜇𝐹′𝜅𝜆〉〉 + 𝑐(𝜂𝜇𝜅𝑒𝜆1 − 𝜂
𝜇𝜆𝑒𝜅1)𝐼𝑒1𝛿(𝑥 − 𝑥′)

]
, (6.16a)

〈〈𝑇𝐹𝜇𝜈𝑐 𝐴′1
′

𝜅𝑥〉〉 = 𝛿𝑐𝑥
[
〈〈𝑇0𝐹

𝜇𝜈𝐴′1
′𝜅〉〉 + 𝑐(𝜂𝜇𝜅𝑒′1

𝜈 − 𝜂𝜈𝜅𝑒′1
𝜇)𝐼−𝑒′1𝛿(𝑥 − 𝑥

′)
]
, (6.16b)

〈〈𝑇𝐴1𝜇
𝑎 𝐴

′1′𝜅
𝑥 〉〉 = 𝛿𝑎𝑥

[
〈〈𝑇0𝐴

1𝜇𝐴′1
′𝜅〉〉 + 𝑐(𝜂𝜇𝜅 (𝑒1𝑒

′
1) − 𝑒

′
1
𝜇
𝑒𝜅1)𝐼𝑒1 𝐼−𝑒′1𝛿(𝑥 − 𝑥

′)
]

(6.16c)

with the same constant 𝑐.
Our strategy to investigate the effect of second order string independence at tree level

is the following. We start by inserting the kinematic propagators into Eq. (6.14) and then
compute the variation with respect to 𝑒1 of the symmetrized version of Eq. (6.14) to see
whether string independence can be achieved if we employ kinematic propagators. In the
next step, we investigate the contribution of the 𝑐-terms and how they interfere with the
previous results.
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Inserting the kinematic propagators into Eq. (6.14) and symmetrizing the expression
in all string variables yields

𝑇0 [𝑆1(𝑥, 𝑒1, 𝑒2)𝑆1(𝑥′, 𝑒′1, 𝑒
′
2)]

��symm
tree

= 𝑖2
𝑔(𝑥)𝑔(𝑥′)

4
𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑧

{
〈〈𝑇0𝐹

𝜇𝜈
𝑐 𝐹′𝜅𝜆

𝑧 〉〉𝐴1
𝜇𝑎𝐴

2
𝜈𝑏𝐴

′1′
𝜅𝑥𝐴

′2′
𝜆𝑦

+ 2〈〈𝑇0𝐴
1
𝜇𝑎𝐹

′𝜅𝜆
𝑧 〉〉𝐴2

𝜈𝑏𝐹
𝜇𝜈
𝑐 𝐴′1

′

𝜅𝑥𝐴
′2′
𝜆𝑦 (6.17)

+ 2〈〈𝑇0𝐹
𝜇𝜈
𝑐 𝐴′1

′

𝜅𝑥〉〉𝐴1
𝜇𝑎𝐴

2
𝜈𝑏𝐴

′2′
𝜆𝑦𝐹

′𝜅𝜆
𝑧

+4〈〈𝑇0𝐴
1
𝜇𝑎𝐴

′1′
𝜅𝑥〉〉𝐴2

𝜈𝑏𝐹
𝜇𝜈
𝑐 𝐴′2

′

𝜆𝑦𝐹
′𝜅𝜆
𝑧

}symm
.

Let us write the symmetrized braces in Eq. (6.17) explicitly, exploiting the skewsymmetry
of 𝐹𝜇𝜈 and 𝑓𝑎𝑏𝑐 and the fact that the propagators are “color diagonal”. For readability,
we drop the overall prefactor 𝑖2 𝑔(𝑥)𝑔(𝑥

′) 𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐
4! and obtain

〈〈𝑇0𝐹
𝜇𝜈𝐹′𝜅𝜆〉〉

[
𝐴1
𝜇𝑎𝐴

2
𝜈𝑏𝐴

′1′
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴1

𝜇𝑎𝐴
1′
𝜈𝑏𝐴

′2
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴1

𝜇𝑎𝐴
2′
𝜈𝑏𝐴

′1′
𝜅𝑥𝐴

′2
𝜆𝑦

+ 𝐴1′
𝜇𝑎𝐴

2′
𝜈𝑏𝐴

′1
𝜅𝑥𝐴

′2
𝜆𝑦 + 𝐴2

𝜇𝑎𝐴
2′
𝜈𝑏𝐴

′1
𝜅𝑥𝐴

′1′
𝜆𝑦 + 𝐴1′

𝜇𝑎𝐴
2
𝜈𝑏𝐴

′1
𝜅𝑥𝐴

′2′
𝜆𝑦

]
+ 〈〈𝑇0𝐴

1
𝜇𝐹

′𝜅𝜆〉〉
[
𝐴2
𝜈𝑎𝐹

𝜇𝜈

𝑏
𝐴′1

′

𝜅𝑥𝐴
′2′
𝜆𝑦 + 𝐴1′

𝜈𝑎𝐹
𝜇𝜈

𝑏
𝐴′2𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴2′

𝜈𝑎𝐹
𝜇𝜈

𝑏
𝐴′1

′

𝜅𝑥𝐴
′2
𝜆𝑦

]
+ 〈〈𝑇0𝐴

2
𝜇𝐹

′𝜅𝜆〉〉
[
𝐴1
𝜈𝑎𝐹

𝜇𝜈

𝑏
𝐴′1

′

𝜅𝑥𝐴
′2′
𝜆𝑦 + 𝐴1′

𝜈𝑎𝐹
𝜇𝜈

𝑏
𝐴′1𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴2′

𝜈𝑎𝐹
𝜇𝜈

𝑏
𝐴′1

′

𝜅𝑥𝐴
′1
𝜆𝑦

]
+ 〈〈𝑇0𝐴

1′
𝜇 𝐹

′𝜅𝜆〉〉
[
𝐴2
𝜈𝑎𝐹

𝜇𝜈

𝑏
𝐴′1𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴1

𝜈𝑎𝐹
𝜇𝜈

𝑏
𝐴′2𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴2′

𝜈𝑎𝐹
𝜇𝜈

𝑏
𝐴′1𝜅𝑥𝐴

′2
𝜆𝑦

]
+ 〈〈𝑇0𝐴

2′
𝜇 𝐹

′𝜅𝜆〉〉
[
𝐴2
𝜈𝑎𝐹

𝜇𝜈

𝑏
𝐴′1

′

𝜅𝑥𝐴
′1
𝜆𝑦 + 𝐴1′

𝜈𝑎𝐹
𝜇𝜈

𝑏
𝐴′2𝜅𝑥𝐴

′1
𝜆𝑦 + 𝐴1

𝜈𝑎𝐹
𝜇𝜈

𝑏
𝐴′1

′

𝜅𝑥𝐴
′2
𝜆𝑦

]
+ 〈〈𝑇0𝐹

𝜇𝜈𝐴′1
′

𝜅 〉〉
[
𝐴1
𝜇𝑎𝐴

2
𝜈𝑏𝐴

′2′
𝜆𝑥𝐹

′𝜅𝜆
𝑦 + 𝐴1

𝜇𝑎𝐴
2′
𝜈𝑏𝐴

′2
𝜆𝑥𝐹

′𝜅𝜆
𝑦 + 𝐴2′

𝜇𝑎𝐴
2
𝜈𝑏𝐴

′1
𝜆𝑥𝐹

′𝜅𝜆
𝑦

]
+ 〈〈𝑇0𝐹

𝜇𝜈𝐴′2
′

𝜅 〉〉
[
𝐴1
𝜇𝑎𝐴

2
𝜈𝑏𝐴

′1′
𝜆𝑥𝐹

′𝜅𝜆
𝑦 + 𝐴1

𝜇𝑎𝐴
1′
𝜈𝑏𝐴

′2
𝜆𝑥𝐹

′𝜅𝜆
𝑦 + 𝐴1′

𝜇𝑎𝐴
2
𝜈𝑏𝐴

′1
𝜆𝑥𝐹

′𝜅𝜆
𝑦

]
+ 〈〈𝑇0𝐹

𝜇𝜈𝐴′1𝜅〉〉
[
𝐴1′
𝜇𝑎𝐴

2
𝜈𝑏𝐴

′2′
𝜆𝑥𝐹

′𝜅𝜆
𝑦 + 𝐴1′

𝜇𝑎𝐴
2′
𝜈𝑏𝐴

′2
𝜆𝑥𝐹

′𝜅𝜆
𝑦 + 𝐴2′

𝜇𝑎𝐴
2
𝜈𝑏𝐴

′1′
𝜆𝑥𝐹

′𝜅𝜆
𝑦

]
+ 〈〈𝑇0𝐹

𝜇𝜈𝐴′2𝜅〉〉
[
𝐴1
𝜇𝑎𝐴

1′
𝜈𝑏𝐴

′2′
𝜆𝑥𝐹

′𝜅𝜆
𝑦 + 𝐴1

𝜇𝑎𝐴
2′
𝜈𝑏𝐴

′1′
𝜆𝑥𝐹

′𝜅𝜆
𝑦 + 𝐴2′

𝜇𝑎𝐴
1′
𝜈𝑏𝐴

′1
𝜆𝑥𝐹

′𝜅𝜆
𝑦

]
+ 4!

[
〈〈𝑇0𝐴

1
𝜇𝐴

′1′
𝜅 〉〉𝐴2

𝜈𝑎𝐹
𝜇𝜈

𝑏
𝐴′2

′

𝜆𝑥𝐹
′𝜅𝜆
𝑦

] symm
,

where we have canceled a factor 4 in the numerator against the same factor in the
denominator and not expanded the last line in Eq. (6.17) because this line cannot be
further simplified. To compute the string variation, we note that

𝑑𝑒1 〈〈𝑇0𝐴
1
𝜇𝑎•〉〉 = 𝜕𝜇〈〈𝑇0𝑤

1
𝑎•〉〉, (6.18)

which implies that the variation with respect to 𝑒1 of the lines containing 〈〈𝑇0𝐴
1
𝜇𝐹

′𝜅𝜆〉〉,
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〈〈𝑇0𝐹
𝜇𝜈𝐴′1𝜅〉〉, 〈〈𝑇0𝐴

1
𝜇𝐴

′𝑖 (′)
𝜅 〉〉 or 〈〈𝑇0𝐴

𝑖 (′)
𝜇 𝐴′1𝜅〉〉 are total divergences. For example,

𝑑𝑒1 〈〈𝑇0𝐴
1
𝜇𝐹

′𝜅𝜆〉〉𝐴2
𝜈𝑎𝐹

𝜇𝜈

𝑏
𝐴′1

′

𝜅𝑥𝐴
′2′
𝜆𝑦 = 𝜕𝜇〈〈𝑇0𝑤

1𝐹′𝜅𝜆〉〉𝐴2
𝜈𝑎𝐹

𝜇𝜈

𝑏
𝐴′1

′

𝜅𝑥𝐴
′2′
𝜆𝑦

= div−1
2
〈〈𝑇0𝑤

1𝐹′𝜅𝜆〉〉𝐹𝜇𝜈𝑎𝐹𝜇𝜈𝑏 𝐴′1
′

𝜅𝑥𝐴
′2′
𝜆𝑦,

(6.19)

where div is a shorthand notation for a total divergence. The last term in Eq. (6.19)
vanishes in the sum because 𝑓𝑎𝑏𝑐 = − 𝑓𝑏𝑎𝑐. Thus, only terms where 𝑒1 appears outside
the propagators can cause obstructions to string independence (if we vary with respect to
𝑒1). Furthermore, by symmetry under exchange of 𝑥 ↔ 𝑥′, it is enough to compute the
string variation of the sum of terms where 𝑒1 appears in an 𝑥-dependent field. Let us
write down all these terms, dropping again the common prefactor 𝑖2 𝑔(𝑥)𝑔(𝑥

′) 𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐
4! :

〈〈𝑇0𝐹
𝜇𝜈𝐹′𝜅𝜆〉〉𝐴1

𝜇𝑎

[
𝐴2
𝜈𝑏𝐴

′1′
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴1′

𝜈𝑏𝐴
′2
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴2′

𝜈𝑏𝐴
′1′
𝜅𝑥𝐴

′2
𝜆𝑦

]
+ 𝐴1

𝜈𝑎𝐹
𝜇𝜈

𝑏

[
〈〈𝑇0𝐴

2
𝜇𝐹

′𝜅𝜆〉〉𝐴′1
′

𝜅𝑥𝐴
′2′
𝜆𝑦 + 〈〈𝑇0𝐴

1′
𝜇 𝐹

′𝜅𝜆〉〉𝐴′2𝜅𝑥𝐴′
2′
𝜆𝑦 + 〈〈𝑇0𝐴

2′
𝜇 𝐹

′𝜅𝜆〉〉𝐴′1
′

𝜅𝑥𝐴
′2
𝜆𝑦

]
+ 𝐴1

𝜇𝑎𝐹
′𝜅𝜆
𝑦

{
〈〈𝑇0𝐹

𝜇𝜈𝐴′1
′

𝜅 〉〉𝐴2
𝜈𝑏𝐴

′2′
𝜆𝑥 + 5 terms symmetrizing in (2, 1′, 2′)

}
+ 𝐴1

𝜈𝑎𝐹
′𝜅𝜆
𝑦

{
〈〈𝑇0𝐴

2
𝜇𝐴

′1′
𝜅 〉〉𝐹

𝜇𝜈

𝑏
𝐴′2

′

𝜆𝑥 + 5 terms symmetrizing in (2, 1′, 2′)
}
,

(6.20)

The kinematic propagator (5.53) is defined as a derivative of the Feynman propagator and
thus 〈〈𝑇0𝜕

𝑥
𝜇𝑋 (𝑥)𝑋′(𝑥′)〉〉 ≡ 𝜕𝑥𝜇〈〈𝑇0𝑋 (𝑥)𝑋′(𝑥′)〉〉 as long as no field equation is involved.

Using this fact and also that 𝜕𝜇𝐴𝑖𝜈 − 𝜕𝜈𝐴𝑖𝜇 = 𝐹𝜇𝜈, we can combine the first two lines and
the last two lines to obtain

〈〈𝑇0𝐹
𝜇𝜈𝐹′𝜅𝜆〉〉𝜕𝜇𝑤1

𝑎𝐴
2
𝜈𝑏𝐴

′1′
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝜕𝜈𝑤1

𝑎𝐹
𝜇𝜈

𝑏
〈〈𝑇0𝐴

2
𝜇𝐹

′𝜅𝜆〉〉𝐴′1
′

𝜅𝑥𝐴
′2′
𝜆𝑦

= div−𝑤1
𝑎𝐴

2
𝜈𝑏𝐴

′1′
𝜅𝑥𝐴

′2′
𝜆𝑦𝜕𝜇〈〈𝑇0𝐹

𝜇𝜈𝐹′𝜅𝜆〉〉
(6.21)

and

𝜕𝜇𝑤
1
𝑎𝐹

′𝜅𝜆
𝑦 〈〈𝑇0𝐹

𝜇𝜈𝐴′1
′

𝜅 〉〉𝐴2
𝜈𝑏𝐴

′2′
𝜆𝑥 + 𝜕𝜈𝑤1

𝑎𝐹
′𝜅𝜆
𝑦 〈〈𝑇0𝐴

2
𝜇𝐴

′1′
𝜅 〉〉𝐹

𝜇𝜈

𝑏
𝐴′2

′

𝜆𝑥

= div−𝑤1
𝑎𝐴

2
𝜈𝑏𝐴

′2′
𝜆𝑥𝐹

′𝜅𝜆
𝑦 𝜕𝜇〈〈𝑇0𝐹

𝜇𝜈𝐴′1
′

𝜅 〉〉
(6.22)

after application of 𝑑𝑒1 to the first term of each line in Eq. (6.20). Thus, the string
variation of Eq. (6.20) with respect to 𝑒1 is given by

div−𝑤1
𝑎

[
𝐴2
𝜈𝑏𝐴

′1′
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴1′

𝜈𝑏𝐴
′2
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴2′

𝜈𝑏𝐴
′1′
𝜅𝑥𝐴

′2
𝜆𝑦

]
𝜕𝜇〈〈𝑇0𝐹

𝜇𝜈𝐹′𝜅𝜆〉〉

−𝑤1
𝑎𝐹

′𝜅𝜆
𝑦

[
𝐴2
𝜈𝑏𝐴

′2′
𝜆𝑥𝜕𝜇〈〈𝑇0𝐹

𝜇𝜈𝐴′1
′

𝜅 〉〉 + 5 terms symmetrizing in (2, 1′, 2′)
] (6.23)
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Recall that the pertinent kinematic propagators are

〈〈𝑇0𝐹
𝜇𝜈𝐹′𝜅𝜆〉〉 =

(
𝜂𝜈𝜆𝜕𝜇𝜕𝜅 − 𝜂𝜇𝜆𝜕𝜈𝜕𝜅 − 𝜂𝜈𝜅𝜕𝜇𝜕𝜆 + 𝜂𝜇𝜅𝜕𝜈𝜕𝜆

)
𝐷𝐹 (𝑥 − 𝑥′),

〈〈𝑇0𝐹
𝜇𝜈𝐴′1

′

𝜅 〉〉 =
(
𝑒′𝜈1𝜕

𝜇𝜕𝜅 − 𝑒′𝜇1𝜕
𝜈𝜕𝜅 − 𝛿𝜈𝜅𝜕𝜇 (𝑒′1𝜕) + 𝛿

𝜇
𝜅 𝜕

𝜈 (𝑒′1𝜕)
)
𝐼−𝑒′1𝐷𝐹 (𝑥 − 𝑥′)

=

(
𝑒′𝜈1𝜕

𝜇 − 𝑒′𝜇1𝜕
𝜈
)
𝜕𝜅 𝐼−𝑒′1𝐷𝐹 (𝑥 − 𝑥′) +

(
𝛿
𝜇
𝜅 𝜕

𝜈 − 𝛿𝜈𝜅𝜕𝜇
)
𝐷𝐹 (𝑥 − 𝑥′),

(6.24)

and thus, we have

𝜕𝜇〈〈𝑇0𝐹
𝜇𝜈𝐹′𝜅𝜆〉〉 =

(
𝜂𝜈𝜆𝜕𝜅 − 𝜂𝜈𝜅𝜕𝜆

)
�𝐷𝐹 (𝑥 − 𝑥′),

𝜕𝜇〈〈𝑇0𝐹
𝜇𝜈𝐴′1

′

𝜅 〉〉 = 𝑒′
𝜈
1𝜕𝜅 𝐼−𝑒′1�𝐷𝐹 (𝑥 − 𝑥′) − 𝛿𝜈𝜅�𝐷𝐹 (𝑥 − 𝑥′).

(6.25)

Inserting �𝐷𝐹 (𝑥 − 𝑥′) = −𝑖𝛿(𝑥 − 𝑥′), we obtain

𝜕𝜇〈〈𝑇0𝐹
𝜇𝜈𝐹′𝜅𝜆〉〉 = 𝑖

(
𝜂𝜈𝜅𝜕𝜆 − 𝜂𝜈𝜆𝜕𝜅

)
𝛿(𝑥 − 𝑥′),

𝜕𝜇〈〈𝑇0𝐹
𝜇𝜈𝐴′1

′

𝜅 〉〉 = 𝑖
(
𝛿𝜈𝜅𝛿(𝑥 − 𝑥′) − 𝑒′

𝜈
1𝜕𝜅 𝐼−𝑒′1𝛿(𝑥 − 𝑥

′)
)
.

(6.26)

Inserting Eq. (6.26) into Eq. (6.23) gives

div−𝑖𝑤1
𝑎

[
𝐴2
𝜈𝑏𝐴

′1′
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴1′

𝜈𝑏𝐴
′2
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴2′

𝜈𝑏𝐴
′1′
𝜅𝑥𝐴

′2
𝜆𝑦

] (
𝜂𝜈𝜅𝜕𝜆 − 𝜂𝜈𝜆𝜕𝜅

)
𝛿(𝑥 − 𝑥′)

−𝑖𝑤1
𝑎𝐹

′𝜅𝜆
𝑦

[
𝐴2
𝜈𝑏𝐴

′2′
𝜆𝑥

(
𝛿𝜈𝜅𝛿(𝑥 − 𝑥′) − 𝑒′

𝜈
1𝜕𝜅 𝐼−𝑒′1𝛿(𝑥 − 𝑥

′)
)

+ 5 terms symmetrizing in (2, 1′, 2′)
]
.

(6.27)

Using 𝜕𝜅 𝐼−𝑒′1𝛿(𝑥 − 𝑥
′) = −𝜕′𝜅 𝐼−𝑒′1𝛿(𝑥 − 𝑥

′) we see that the term with the string-integrated
Dirac delta forms a total divergence,

−𝑖𝑤1
𝑎 (𝑒′1𝐴

2
𝑏)𝐹

′𝜅𝜆
𝑦 𝐴

′2′
𝜆𝑥𝜕

′
𝜅 𝐼−𝑒′1𝛿(𝑥 − 𝑥

′) = div+ 𝑖
2
𝑤1
𝑎 (𝑒′1𝐴

2
𝑏)𝐹

′𝜅𝜆
𝑦 𝐹

′
𝜅𝜆𝑥 𝐼−𝑒′1𝛿(𝑥 − 𝑥

′),
(6.28)

where the last term vanishes in the sum over all color indices due to the skewsymmetry
of 𝑓𝑥𝑦𝑐. Thus, only the point-localized Dirac deltas remain and Eq. (6.27) becomes

div−𝑖𝑤1
𝑎

[
𝐴2𝜅
𝑏 𝐴

′1′
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴1′𝜅

𝑏 𝐴′2𝜅𝑥𝐴
′2′
𝜆𝑦 + 𝐴2′𝜅

𝑏 𝐴′1
′

𝜅𝑥𝐴
′2
𝜆𝑦

]
𝜕𝜆𝛿

+𝑖𝑤1
𝑎

[
𝐴2𝜆
𝑏 𝐴

′1′
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴1′𝜆

𝑏 𝐴′2𝜅𝑥𝐴
′2′
𝜆𝑦 + 𝐴2′𝜆

𝑏 𝐴′1
′

𝜅𝑥𝐴
′2
𝜆𝑦

]
𝜕𝜅𝛿

−𝑖𝑤1
𝑎𝐹

′𝜅𝜆
𝑦

[
𝐴2
𝜅𝑏𝐴

′2′
𝜆𝑥 + 𝐴2

𝜅𝑏𝐴
′1′
𝜆𝑥 + 𝐴2′

𝜅𝑏𝐴
′2
𝜆𝑥 + 𝐴2′

𝜅𝑏𝐴
′1′
𝜆𝑥 + 𝐴1′

𝜅𝑏𝐴
′2
𝜆𝑥 + 𝐴1′

𝜅𝑏𝐴
′2′
𝜆𝑥

]
𝛿.

(6.29)
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Integrating the first two lines by parts gives

div+𝑖𝜕𝜆𝑤1
𝑎

[
𝐴2𝜅
𝑏 𝐴

′1′
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴1′𝜅

𝑏 𝐴′2𝜅𝑥𝐴
′2′
𝜆𝑦 + 𝐴2′𝜅

𝑏 𝐴′1
′

𝜅𝑥𝐴
′2
𝜆𝑦

]
𝛿

−𝑖𝜕𝜅𝑤1
𝑎

[
𝐴2𝜆
𝑏 𝐴

′1′
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴1′𝜆

𝑏 𝐴′2𝜅𝑥𝐴
′2′
𝜆𝑦 + 𝐴2′𝜆

𝑏 𝐴′1
′

𝜅𝑥𝐴
′2
𝜆𝑦

]
𝛿

−𝑖𝑤1
𝑎

[
𝐹𝜅𝜆𝑏 𝐴′1

′

𝜅𝑥𝐴
′2′
𝜆𝑦 + 𝐹𝜅𝜆𝑏 𝐴′2𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐹𝜅𝜆𝑏 𝐴′1

′

𝜅𝑥𝐴
′2
𝜆𝑦

]
𝛿

−𝑖𝑤1
𝑎𝐹

′𝜅𝜆
𝑦

[
𝐴2
𝜅𝑏𝐴

′2′
𝜆𝑥 + 𝐴2

𝜅𝑏𝐴
′1′
𝜆𝑥 + 𝐴2′

𝜅𝑏𝐴
′2
𝜆𝑥 + 𝐴2′

𝜅𝑏𝐴
′1′
𝜆𝑥 + 𝐴1′

𝜅𝑏𝐴
′2
𝜆𝑥 + 𝐴1′

𝜅𝑏𝐴
′2′
𝜆𝑥

]
𝛿.

(6.30)

Eq. (6.30) only contains terms proportional to 𝛿(𝑥 − 𝑥′). Restoring the global prefactor
𝑖2
𝑔(𝑥)𝑔(𝑥 ′) 𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐

4! , multiplying by a factor 2 for the omitted terms where 𝑒1 appears in
𝑥′-dependent fields and integrating out the Dirac delta, Eq. (6.30) becomes

𝑑𝑒1 𝑇0 [𝑆1(𝑥, 𝑒1, 𝑒2)𝑆1(𝑥′, 𝑒′1, 𝑒
′
2)]

��symm
tree

= div+𝑖3
2𝑔2(𝑥) 𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐

4!

{
𝜕𝜆𝑤1

𝑎

[
𝐴2𝜅
𝑏 𝐴

1′
𝜅𝑥𝐴

2′
𝜆𝑦 + 𝐴1′𝜅

𝑏 𝐴2
𝜅𝑥𝐴

2′
𝜆𝑦 + 𝐴2′𝜅

𝑏 𝐴1′
𝜅𝑥𝐴

2
𝜆𝑦

]
− 𝜕𝜅𝑤1

𝑎

[
𝐴2𝜆
𝑏 𝐴

1′
𝜅𝑥𝐴

′2′
𝜆𝑦 + 𝐴1′𝜆

𝑏 𝐴2
𝜅𝑥𝐴

2′
𝜆𝑦 + 𝐴2′𝜆

𝑏 𝐴1′
𝜅𝑥𝐴

2
𝜆𝑦

]
(6.31)

− 𝑤1
𝑎

[
𝐹𝜅𝜆𝑏 𝐴1′

𝜅𝑥𝐴
2′
𝜆𝑦 + 𝐹𝜅𝜆𝑦 𝐴1′

𝜅𝑏𝐴
2′
𝜆𝑥 + 𝐹𝜅𝜆𝑦 𝐴2′

𝜅𝑏𝐴
1′
𝜆𝑥 + (2 × 3 = 6) similar terms

]}
.

The lines containing a derivative of the auxiliary field can be rewritten as a string variation
with respect to 𝑒1 and the linear combination of fields in the last line can be rewritten as
a linear combination of the constants 𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐, so that we have

𝑑𝑒1 𝑇0 [𝑆1(𝑥, 𝑒1, 𝑒2)𝑆1(𝑥′, 𝑒′1, 𝑒
′
2)]

��symm
tree

= div+𝑖3
2𝑔2(𝑥) 𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐

4!
𝑑𝑒1

{
(𝐴1

𝑎𝐴
2′
𝑦 ) (𝐴2

𝑏𝐴
1′
𝑥 ) + (𝐴1

𝑎𝐴
2′
𝑦 ) (𝐴1′

𝑏 𝐴
2
𝑥) + (𝐴1

𝑎𝐴
2
𝑦) (𝐴2′

𝑏 𝐴
1′
𝜅𝑥)

− (𝐴1
𝑎𝐴

1′
𝑥 ) (𝐴2

𝑏𝐴
′2′
𝑦 ) − (𝐴1

𝑎𝐴
2
𝑥) (𝐴1′

𝑏 𝐴
2′
𝑦 ) − (𝐴1

𝑎𝐴
1′
𝑥 ) (𝐴2′

𝑏 𝐴
2
𝑦)

}
−

2𝑖3𝑔2(𝑥)
[
𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐 + 𝑓𝑎𝑥𝑐 𝑓𝑦𝑏𝑐 + 𝑓𝑎𝑦𝑐 𝑓𝑏𝑥𝑐

]
4!

(
𝑤1
𝑎𝐹

𝜅𝜆
𝑏 𝐴1′

𝜅𝑥𝐴
2′
𝜆𝑦 + 2 similar terms

)
= div+𝑑𝑒1

{
−𝑖3𝑔

2(𝑥)
2

𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐 (𝐴1
𝑎𝐴

2′
𝑥 ) (𝐴2

𝑏𝐴
1′
𝑦 )

}symm

(6.32)

−
2𝑖3𝑔2(𝑥)

[
𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐 + 𝑓𝑎𝑥𝑐 𝑓𝑦𝑏𝑐 + 𝑓𝑎𝑦𝑐 𝑓𝑏𝑥𝑐

]
4!

(
𝑤1
𝑎𝐹

𝜅𝜆
𝑏 𝐴1′

𝜅𝑥𝐴
2′
𝜆𝑦 + 2 similar terms

)
.

The two terms in Eq. (6.32) that obstruct string independence at second order and tree
level are of different nature. The first one, which is a string variation, lies within the BEG
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freedom of defining

𝑆2(𝑥, 𝑒1, 𝑒2, 𝑥
′, 𝑒′1, 𝑒

′
2) ≡ 𝑇 [𝑆1(𝑥, 𝑒1, 𝑒2)𝑆1(𝑥′, 𝑒′1, 𝑒

′
2)]

:= 𝑖2
{
𝑇0 [𝐿 (𝑥, 𝑒1, 𝑒2)𝐿 (𝑥′, 𝑒′1, 𝑒

′
2)]

+ 𝑖 𝑔
2(𝑥)
2

𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐 (𝐴1
𝑎𝐴

2′
𝑥 ) (𝐴2

𝑏𝐴
1′
𝑦 )𝛿(𝑥 − 𝑥′)

}
.

(6.33)

In fact, the correction term in Eq. (6.33) is the quartic term of the Yang-Mills Lagrangian.
The second obstructing term in Eq. (6.32), which contains an auxiliary field without
any derivative, is no string variation of anything. To achieve string independence by
employing kinematic propagators, it needs to vanish. This can only be achieved if

𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐 + 𝑓𝑎𝑥𝑐 𝑓𝑦𝑏𝑐 + 𝑓𝑎𝑦𝑐 𝑓𝑏𝑥𝑐 = 0, (6.34)

which is the Jacobi identity.
There is one task left. Namely, we need to investigate what happens if we employ

non-kinematic propagators. That means, we must determine the effect of the 𝑐-terms
in Eq.s (6.15) and (6.16a-6.16c). To see that the string independence principle implies
𝑐 = 0, it is enough to consider the contribution of the 𝑐-term from Eq. (6.16c). The
symmetrization of this contribution is{

𝑇 [𝑆1(𝑥, 𝑒1, 𝑒2)𝑆1(𝑥′, 𝑒′1, 𝑒
′
2)]

��
tree,〈〈𝑇𝐴𝐴′〉〉,𝑐

}symm

= 𝑖2𝑐
𝑔(𝑥)𝑔(𝑥′)

4!
𝑓𝑎𝑏𝑐 𝑓𝑎𝑦𝑧

×
{[
𝐹 𝜈
𝜅𝑐𝐹

′𝜅𝜆
𝑧 (𝑒1𝑒

′
1) − 𝑒

′
1𝜇𝐹

𝜇𝜈
𝜅𝑐 𝑒1𝜅𝐹

′𝜅𝜆
𝑧

]
𝐴2
𝜈𝑏𝐴

′2′
𝜆𝑦 𝐼𝑒1 𝐼−𝑒′1𝛿(𝑥 − 𝑥

′)
}symm

.

(6.35)

This term, containing a doubly string-integrated Dirac delta, cannot be compensated
by a BEG renormalization of 𝑆2, which must be supported on the 𝑥-diagonal by our
considerations in the end of Section 4.2. The string variation with respect to 𝑒1 of
Eq. (6.35) hence must be a total divergence to fulfill the string independence principle.
To see that this is not the case, it is enough to consider all terms proportional to 𝑒′1𝛼𝑑𝑒

𝛼
1

after application of 𝑑𝑒1 to Eq. (6.35). These terms are

𝑑𝑒1

{
𝑇 [𝑆1(𝑥, 𝑒1, 𝑒2)𝑆1(𝑥′, 𝑒′1, 𝑒

′
2)]

��
tree,〈〈𝑇𝐴𝐴′〉〉,𝑐

}symm���
𝑒′1𝛼𝑑𝑒

𝛼
1

= 𝑖2𝑐
𝑔(𝑥)𝑔(𝑥′) 𝑒′1𝛼𝑑𝑒

𝛼
1

4!
𝑓𝑎𝑏𝑐 𝑓𝑎𝑦𝑧𝐹

𝜈
𝜅𝑐𝐹

′𝜅𝜆
𝑧

[
𝐴2
𝜈𝑏𝐴

′2′
𝜆𝑦 + 𝐴2′

𝜈𝑏𝐴
′2
𝜆𝑦

]
×

[
𝐼𝑒1 𝐼−𝑒′1 + 𝐼𝑒′1 𝐼−𝑒1

]
𝛿(𝑥 − 𝑥′),

(6.36)

which does clearly not form a total divergence: the only derivatives are the ones hidden
in the field strength tensors, and due to the skewsymmetry of the 𝑓𝑎𝑏𝑐, for example the
term 𝜕𝜅𝐴

3𝜈
𝑐 𝐴

2
𝜈𝑏

× . . . reproduces itself upon integration by parts. We therefore conclude
that 𝑐 = 0 and arrive at the desired result.
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Theorem 6.3. Renormalizability by power counting and string independence up to
second order and tree level imply

1. kinematic propagators of 𝐹 and 𝐴 must be employed,

2. 𝑆1(𝑥, 𝑒1, 𝑒1) = 𝑖 𝑔2 𝑓𝑎𝑏𝑐 :𝐴𝜇𝑎 (𝑥, 𝑒1)𝐴𝜈𝑏 (𝑥, 𝑒2)𝐹𝜇𝜈𝑐 (𝑥): , and

3. 𝑆2 = 𝑖2
{
𝑇0 [𝐿𝐿] + 𝑖 𝑔

2 (𝑥)
2 𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐 (𝐴1

𝑎𝐴
2′
𝑥 ) (𝐴2

𝑏
𝐴1′
𝑦 )𝛿(𝑥 − 𝑥′)

}
with totally skewsymmetric constants 𝑓𝑎𝑏𝑐 that satisfy the Jacobi identity (6.34) and
are therefore structure constants of a Lie algebra of compact type. That is to say:
self-interactions of massless string-localized potentials of helicity 𝑠 = 1 must be of
Yang-Mills type.

Theorem 6.3 tells us about the implications of the string independence principle at
second order and tree level. Namely, it says that a renormalizable (by power counting)
self-interaction of massless string-localized potentials of helicity 𝑠 = 1 must be exactly
what we expect it to be – to second order of perturbation theory and at tree level. A
proof of perturbative string independence, that is, that Eq. (4.20) is satisfied to all orders
of perturbation theory and also at loop level, and that additionally no new induced term
needs to be added to 𝑇0 [𝑆1 . . . 𝑆1] at higher orders of perturbation theory, has not yet
been given. This remains for future work.

Remark 6.4. Two remarks, which are of similar spirit but lead in opposite directions, are
due on the derivations in this section.

• First, note that the derivation of Theorem 6.3 works completely analogous in
the BDF onshell formalism described in Section 5.7.4. The string independence
principle requires (for identically colored gluons) 〈〈𝑇𝐴𝜇𝐴𝜈〉〉 = 〈〈𝑇0𝐴𝜇𝐴𝜈〉〉 and
even if we had not postulated the connection between the propagators involving 𝐹𝜇𝜈𝑎
and 𝐴𝜇𝑎, the BDF construction yields that all propagators appearing in Eq. (6.14)
must be kinematic if 〈〈𝑇𝐴𝜇𝐴𝜈〉〉 = 〈〈𝑇0𝐴𝜇𝐴𝜈〉〉, see Eq. (5.173).

• On the other hand, one can also think of dropping the requirement that the
propagators of the string-localized potentials arise from the propagators of the field
strength by appropriate string integration. Similarly, the BDF construction is not a
God-given tool.

If we assume that the propagators of the potential and the field strength possess an
independent renormalization freedom, the free constants in Eq. (6.15) and (6.16a)
to (6.16c) are potentially different. In such a case, the contribution of the 𝑐-term of
〈〈𝑇𝐹𝜇𝜈𝐹′

𝜅𝜆
〉〉 can absorb the quartic term that must be added to 𝑆2. In that sense,

inducing a term to 𝑆2 and adding a non-kinematic term to 〈〈𝑇0𝐹𝜇𝜈𝐹
′
𝜅𝜆
〉〉 can be

treated interchangeably (at least to second order of perturbation theory) if the
requirement that the string-localized propagators must arise from the field strength
propagator by appropriate integration is dropped.
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Let us relate these observations to the appearance of “self-contractions” as described
in Section 4.2. The cubic part of the interaction 𝐿 (3)

YM =
𝑔

2 𝑓𝑎𝑏𝑐𝐴𝜇𝑎𝐴𝜈𝑏𝐹
𝜇𝜈
𝑐 does

not give rise to self-contractions because all two-point functions and propagators
are “color-diagonal” while the structure constants 𝑓𝑎𝑏𝑐 are totally skewsymmetric.
However, there will in general appear self-contractions within the induced quartic
term. From that point of view it thus seems preferable to work without an induced
term and hence with a non-kinematic field strength propagator.

From our derivations up to second order and tree level, it is not clear whether one of the
prescribed approaches is preferable. String independence at higher orders or loop level
might shed light on the subject but such computations have not yet been performed and
remain for future research.

6.1.3 Why every potential needs its own string variable
In this section we present the argument why the alternative (4.14b) for the setup of string-
localized perturbation theory, i.e., the setup where all fields in the interaction Lagrangian
depend on the same string variable, is in conflict with the string independence principle.
By adjusting the proof of Theorem 6.1, it is easy to verify that string independence at
first order,

𝑑𝑒𝑆(𝑥, 𝑒)
!
= 𝜕𝜇𝑄

𝜇 (𝑥, 𝑒) (6.37)

enables the same coupling 𝑆1(𝑥, 𝑒) as Eq. (6.1) with the only difference being the
dependence on a single string variable. However, second order string independence
as derived in Section 6.1.2 cannot be achieved in the present setup. To prove this, we
repeat the analysis from the previous section in the new setup, starting with the tree level
expansion of the kinematic time-ordering,

𝑇0 [𝑆1(𝑥, 𝑒1)𝑆1(𝑥′, 𝑒2)] |tree (6.38)

=
𝑔(𝑥)𝑔(𝑥′)

4
𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑧

{
〈〈𝑇0𝐹

𝜇𝜈
𝑐 𝐹′𝜅𝜆

𝑧 〉〉𝐴1
𝜇𝑎𝐴

1
𝜈𝑏𝐴

′2
𝜅𝑥𝐴

′2
𝜆𝑦 + 2〈〈𝑇0𝐴

1
𝜇𝑎𝐹

′𝜅𝜆
𝑧 〉〉𝐴1

𝜈𝑏𝐹
𝜇𝜈
𝑐 𝐴′2𝜅𝑥𝐴

′2
𝜆𝑦

+ 2〈〈𝑇0𝐹
𝜇𝜈
𝑐 𝐴′2𝜅𝑥〉〉𝐴1

𝜇𝑎𝐴
1
𝜈𝑏𝐴

′2
𝜆𝑦𝐹

′𝜅𝜆
𝑧 +4〈〈𝑇0𝐴

1
𝜇𝑎𝐴

′2
𝜅𝑥〉〉𝐴1

𝜈𝑏𝐹
𝜇𝜈
𝑐 𝐴′2𝜆𝑦𝐹

′𝜅𝜆
𝑧

}
,

a symmetrization of which in (𝑒1 ↔ 𝑒2) just corresponds to an exchange 𝑥 ↔ 𝑥′ and is
therefore not necessary. A similar analysis to the one performed in the previous section
yields

𝑑𝑒1 𝑇0 [𝑆1(𝑥, 𝑒1)𝑆1(𝑥′, 𝑒2)] |tree (6.39)

= div−𝑔(𝑥)𝑔(𝑥
′)

2
𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑧

{
𝜕𝜇〈〈𝑇0𝐹

𝜇𝜈
𝑐 𝐹′𝜅𝜆

𝑧 〉〉𝐴′2𝜅𝑥 + 2𝜕𝜇〈〈𝑇0𝐹
𝜇𝜈
𝑐 𝐴′2𝜅𝑥〉〉𝐹′𝜅𝜆

𝑧

}
𝑤1
𝑎𝐴

1
𝜈𝑏𝐴

′2
𝜆𝑦,

where div means a term which becomes a total divergence in the adiabatic limit. Inserting
the Dirac deltas (6.26) into (6.39), we realize that the term with the string-integrated
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delta forms a total divergence, as it did in the previous section, so that the obstruction to
string independence in Eq. (6.39) reads

𝑖𝑔(𝑥)𝑔(𝑥′)
[
𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐𝑤

1
𝑎 (𝐴1

𝑏𝐴
′2
𝑦)𝐴′

2
𝑥𝜅𝜕

𝜅𝛿(𝑥 − 𝑥′) + 𝑓𝑎𝑏𝑐 𝑓𝑐𝑦𝑧𝑤
1
𝑎𝐴

1
𝜅𝑏𝐹

′𝜅𝜆
𝑧 𝐴

2
𝑦𝜆𝛿(𝑥 − 𝑥′)

]
= div−𝑖 𝑔

2(𝑥)
2

𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐𝑑𝑒1

[
(𝐴1

𝑏𝐴
2
𝑦) (𝐴1

𝑎𝐴
2
𝑥)

]
+ 𝑖𝑔2(𝑥)

[
𝑓𝑎𝑏𝑐 𝑓𝑐𝑦𝑧𝑤

1
𝑎𝐴

1
𝜅𝑏𝐹

𝜅𝜆
𝑧 𝐴2

𝜆𝑦 −
1
2
𝑓𝑎𝑏𝑐 𝑓𝑥𝑦𝑐𝑤

1
𝑎𝐹

𝜅𝜆
𝑏 𝐴2

𝜆𝑦𝐴
2
𝜅𝑥

]
.

(6.40)

Thus, the first obstruction can be cured by inducing a term to 𝑆2, as it was the case in the
previous section. The last line of Eq. (6.40), however, cannot be related to the Jacobi
identity – or more general, to any identity that the 𝑓𝑎𝑏𝑐 must satisfy – because it is a sum
of terms with different dependence on the string variables, which cannot be resolved even
by symmetrizing in (𝑒1 ↔ 𝑒2). Therefore, this obstruction to string independence is not
resolvable and alternative (4.14b) does not work for massless Yang-Mills theory.

6.2 Graviton coupling to the Maxwell SET
We turn to an example where string independence at second order and tree level excludes
a model, which at first sight seems physically reasonable: the coupling of the Maxwell
stress energy tensor

𝑇𝐹𝐹𝜇𝜈 =
1
4
𝜂𝜇𝜈𝐹

𝛼𝛽𝐹𝛼𝛽 − 𝐹𝜇𝛼𝐹 𝛼
𝜈 (6.41)

to a string-localized graviton potential ℎ𝜇𝜈. We want to stress that the following derivations
are formulated entirely over Hilbert space and that they do not exclude non-perturbative
constructions formulated on Krein space similar to the ones described in Section 3.2.
We start by deriving how the string independence principle at first order constrains the
interaction Lagrangian.

Theorem 6.5. The most general coupling of a string-localized graviton potential ℎ𝜇𝜈 (𝑥, 𝑒)
with two string-localized Maxwell potentials 𝐴𝜇 (𝑥, 𝑒), which is of smallest possible UV
dimension and whose string variation is a total divergence is given by

𝑆1(𝑥, 𝑒1, 𝑒2, 𝑒3) = :ℎ𝜇𝜈 (𝑒1) [𝜕𝜇𝐴𝜅 (𝑒2) − 𝜕𝜅𝐴𝜇 (𝑒2)] [𝜕𝜈𝐴𝜅 (𝑒3) − 𝜕𝜅𝐴𝜈 (𝑒3)]:
= :ℎ𝜇𝜈 (𝑒1)𝐹𝜇𝜅𝐹𝜈𝜅: ≡ 𝑆1(𝑥, 𝑒1)

(6.42)

with the point-localized Maxwell field strength 𝐹𝜇𝜈 (𝑥).
Before we prove the theorem, recall from Subsection 3.1.2 that the string-localized

graviton potential is traceless on Hilbert space, see also Table 3.2. Therefore, the coupling
𝑆1 from Eq. (6.42) is identically equal to

𝑆1(𝑥, 𝑒1) := − :ℎ𝜇𝜈 (𝑒1)𝑇𝐹𝐹𝜇𝜈 : (6.43)

on Hilbert space, where 𝑇𝐹𝐹𝜇𝜈 is the Maxwell stress energy tensor from Eq. (6.41).
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Proof (of Theorem 6.5). For readability, we drop the colons indicating normal-ordering.
Similar to the treatment of massless Yang-Mills theory in the preceding section, we
introduce the auxiliary fields

𝑢(𝑥, 𝑒) := 𝐼𝑒𝐴𝜇 (𝑥, 𝑒)𝑑𝑒𝜇 and 𝑤𝜇 (𝑥, 𝑒) := 𝐼𝑒ℎ𝜇𝜈 (𝑥, 𝑒)𝑑𝑒𝜇

⇒ 𝑑𝑒𝐴𝜇 (𝑥, 𝑒) = 𝜕𝜇𝑢(𝑥, 𝑒) and 𝑑𝑒ℎ𝜇𝜈 (𝑥, 𝑒) = 𝜕𝜇𝑤𝜈 (𝑥, 𝑒) + 𝜕𝜈𝑤𝜇 (𝑥, 𝑒).
(6.44)

The unique candidate for a coupling of two photon potentials with one graviton potential
of smallest possible UV dimension 𝑑𝑈𝑉 = 3 is

𝐿3(𝑥, 𝑒1, 𝑒2, 𝑒3) := 𝐴1𝜇𝐴2𝜈ℎ3
𝜇𝜈, (6.45)

where we have again used the notation 𝐴𝑖𝜇 = 𝐴𝜇 (𝑥, 𝑒𝑖) and similar for ℎ𝜇𝜈. Using the
symmetry of ℎ𝜇𝜈, the string variation with respect to 𝑒1 of the symmetrization of 𝐿3 in
the string variables is given by

𝑑𝑒1𝐿
3,symm =

1
3
𝑑𝑒1

[
𝐴1𝜇𝐴2𝜈ℎ3

𝜇𝜈 + 𝐴3𝜇𝐴1𝜈ℎ2
𝜇𝜈 + 𝐴2𝜇𝐴3𝜈ℎ1

𝜇𝜈

]
=

1
3

[
𝜕𝜇𝑢1𝐴2𝜈ℎ3

𝜇𝜈 + 𝐴3𝜇𝜕𝜈𝑢1ℎ2
𝜇𝜈 + 𝐴2𝜇𝐴3𝜈 (𝜕𝜇𝑤1

𝜈 + 𝜕𝜈𝑤1
𝜇)

]
div
= −1

3
[
𝑢1𝜕𝜇𝐴2𝜈ℎ3

𝜇𝜈 + 𝑤1
𝜇𝜕

𝜈𝐴2𝜇𝐴3
𝜈 + (𝑒2 ↔ 𝑒3)

] (6.46)

where we have exploited that both ℎ𝜇𝜈 and 𝐴𝜇 are divergence-free on Hilbert space.
Since Eq. (6.46) is not a total divergence, the string independence principle excludes the
candidate 𝐿3 already at first order of perturbation theory.

The candidates of the next higher UV dimension contain two derivatives and are
thus of UV dimension 𝑑𝑈𝑉 = 5. As described by Eq. (3.107), candidate Lagrangians
where these derivatives are contracted form a total divergence because both 𝐴𝜇 and ℎ𝜇𝜈
satisfy the wave equation. In the end, we are only interested in the symmetrization of
the candidate Lagrangians with respect to the exchange of any pair of string variables.
Modulo such an exchange of string variables, we find six terms that do not form a total
divergence on their own,

𝐿5,1 := 𝜕𝜇𝐴1𝜅𝜕𝜈𝐴2
𝜅ℎ

3
𝜇𝜈, 𝐿5,2 := 𝐴1𝜅𝜕𝜇𝜕𝜈𝐴2

𝜅ℎ
3
𝜇𝜈, 𝐿5,3 := 𝜕𝜈𝜕𝜅𝐴1𝜇𝐴2𝜅ℎ3

𝜇𝜈,

𝐿5,4 := 𝜕𝜈𝐴1𝜇𝐴2𝜅𝜕𝜅ℎ
3
𝜇𝜈, 𝐿5,5 := 𝜕𝜅𝐴1𝜇𝜕𝜈𝐴2𝜅ℎ3

𝜇𝜈, 𝐿5,6 := 𝐴1𝜇𝜕𝜈𝐴2𝜅𝜕𝜅ℎ
3
𝜇𝜈 .

(6.47)

However, some of these candidates add up to a total divergence. Namely, we have

𝐿5,1 + 𝐿5,2 = 𝜕𝜇 (𝐴1𝜅𝜕𝜈𝐴2
𝜅ℎ

3
𝜇𝜈), 𝐿5,3 + 𝐿5,4 = 𝜕𝜅 (𝜕𝜈𝐴1𝜇𝐴2𝜅ℎ3

𝜇𝜈),
𝐿5,4 + 𝐿5,6 = 𝜕𝜈 (𝐴1𝜇𝐴2𝜅𝜕𝜅ℎ

3
𝜇𝜈) and 𝐿5,5 + 𝐿5,6 = 𝜕𝜅 (𝐴1𝜇𝜕𝜈𝐴2𝜅ℎ3

𝜇𝜈).
(6.48)

Consequently, the most general ansatz for of UV dimension 𝑑𝑈𝑉 = 5 has two free
parameters and is given by

𝐿5(𝑥, 𝑒1, 𝑒2, 𝑒3) := 𝑐1𝜕
𝜇𝐴1𝜅𝜕𝜈𝐴2

𝜅ℎ
3
𝜇𝜈 + 𝑐2𝜕

𝜇𝐴1𝜅𝜕𝜅𝐴
2𝜈ℎ3

𝜇𝜈 . (6.49)
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We have

𝑑𝑒1𝐿
5,symm =

𝑐1
3

[
𝜕𝜇𝜕𝜅𝑢1𝜕𝜈𝐴2

𝜅ℎ
3
𝜇𝜈 + 𝜕𝜇𝐴2𝜅𝜕𝜈𝐴3

𝜅𝜕𝜇𝑤
1
𝜈 + (𝑒2 ↔ 𝑒3)

]
+ 𝑐2

6
[
𝜕𝜇𝜕𝜅𝑢1𝜕𝜅𝐴

2𝜈ℎ3
𝜇𝜈 + 𝜕𝜇𝐴2𝜅𝜕𝜅𝜕

𝜈𝑢1ℎ3
𝜇𝜈

+𝜕𝜇𝐴2𝜅𝜕𝜅𝐴
3𝜈 (𝜕𝜇𝑤1

𝜈 + 𝜕𝜈𝑤1
𝜇) + (𝑒2 ↔ 𝑒3)

]
.

(6.50)

Again, the terms with two contracted derivatives form a total divergence by Eq. (3.107),
so that

𝑑𝑒1𝐿
5,symm div

=
𝑐1
3
𝜕𝜇𝜕𝜅𝑢1𝜕𝜈𝐴2

𝜅ℎ
3
𝜇𝜈 +

𝑐2
6

[
𝜕𝜇𝐴2𝜅𝜕𝜅𝜕

𝜈𝑢1ℎ3
𝜇𝜈 + 𝜕𝜇𝐴2𝜅𝜕𝜅𝐴

3𝜈𝜕𝜈𝑤
1
𝜇

]
+ (𝑒2 ↔ 𝑒3). (6.51)

Writing the symmetrization in 𝑒2 and 𝑒3 explicitly, we see that the term containing a
𝜕𝜈𝑤

1
𝜇 is a total divergence,[

𝜕𝜇𝐴2𝜅𝜕𝜅𝐴
3𝜈 + 𝜕𝜇𝐴3𝜅𝜕𝜅𝐴

2𝜈] 𝜕𝜈𝑤1
𝜇

= 𝜕𝜈
{[
𝜕𝜇𝐴2𝜅𝜕𝜅𝐴

3𝜈 + 𝜕𝜇𝐴3𝜅𝜕𝜅𝐴
2𝜈] 𝑤1

𝜇 − 𝜕𝜇𝐴3𝜅𝜕𝜅𝐴
2
𝜇𝑤

1𝜈} , (6.52)

because all fields are divergence-free on Hilbert space. Integrating the remaining terms
in Eq. (6.51) by parts, we have

𝑑𝑒1𝐿
5,symm div

=
2𝑐1 + 𝑐2

6
𝑢1𝜕𝜈𝜕𝜇𝐴2

𝜅𝜕𝜅ℎ
3
𝜇𝜈 + (𝑒2 ↔ 𝑒3). (6.53)

The right-hand side of Eq. (6.53) does not form a total divergence and hence, the string
independence principle implies 2𝑐1 + 𝑐2 = 0. Thus,

𝐿5,symm = 𝑐1
{
(𝜕𝜇𝐴1𝜅𝜕𝜈𝐴2

𝜅 − 2𝜕𝜇𝐴1𝜅𝜕𝜅𝐴
2𝜈)ℎ3

𝜇𝜈

}symm

div
= 𝑐1

{
(𝜕𝜇𝐴1𝜅𝜕𝜈𝐴2

𝜅 − 2𝜕𝜇𝐴1𝜅𝜕𝜅𝐴
2𝜈 + 𝜕𝜅𝐴1𝜇𝜕𝜅𝐴

2𝜈)ℎ3
𝜇𝜈

}symm

= 𝑐1
{
𝐹𝜇𝜅𝐹𝜈𝜅ℎ

3
𝜇𝜈

}symm
,

(6.54)

where we have again used Eq. (3.107) to insert the term with two contracted derivatives
and where the symmetrization in the last line is trivial because the dependence on 𝑒1 and
𝑒2 becomes trivial. This concludes the proof. �

Writing the first order coupling in the form given by Eq. (6.43) is of advantage because
the stress energy tensor 𝑇𝐹𝐹𝜇𝜈 from Eq. (6.41) is traceless and conserved. We hence can
write

𝑇 [𝑆1𝑆
′
1]

��
tree = 〈〈𝑇ℎ𝜇𝜈ℎ′𝜚𝜎〉〉 :𝑇𝐹𝐹𝜇𝜈 𝑇 ′𝐹𝐹

𝜚𝜎 :

+ 〈〈𝑇𝐹𝛼𝛽𝐹′
𝜉𝜂〉〉 :

𝜕𝑇𝐹𝐹𝜇𝜈

𝜕𝐹𝛼𝛽
ℎ𝜇𝜈

𝜕𝑇 ′𝐹𝐹
𝜚𝜎

𝜕𝐹′
𝜉𝜂

ℎ′𝜚𝜎: ,
(6.55)

where the prime indicates a dependence on the primed variables. Because the Maxwell
stress energy tensor is traceless, the contribution of the trace of the graviton propagator
〈〈𝑇ℎ𝜇𝜈ℎ′𝜚𝜎〉〉 does not contribute to Eq. (6.55). Therefore, it is a valid ansatz to use
kinematic propagators.
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Remark 6.6. We will see that the obstruction to second order string independence comes
from the contraction 〈〈𝑇𝐹𝜇𝜈𝐹′

𝜅𝜆
〉〉 and hence is not related to the choice of propagator for

the string-localized graviton potential.

It is clear that Eq. (6.55) is already symmetric under the exchange (𝑒 ↔ 𝑒′), so there
is no need for another symmetrization in the string variables. We compute the string
variation of the kinematic time-ordered product 𝑇0 [𝑆1𝑆

′
1]

��
tree:

𝑑𝑒𝑇0 [𝑆1𝑆
′
1]

��
tree = 2(𝜕𝜇〈〈𝑇0𝑤

𝜈ℎ′𝜚𝜎〉〉) :𝑇𝐹𝐹𝜇𝜈 𝑇 ′𝐹𝐹
𝜚𝜎 :

+ 2〈〈𝑇0𝐹𝛼𝛽𝐹
′
𝜉𝜂〉〉 :

𝜕𝑇𝐹𝐹𝜇𝜈

𝜕𝐹𝛼𝛽
(𝜕𝜇𝑤𝜈)

𝜕𝑇 ′𝐹𝐹
𝜚𝜎

𝜕𝐹′
𝜉𝜂

ℎ′𝜚𝜎: .
(6.56)

Because the Maxwell stress energy tensor is conserved, the first line of Eq. (6.56) is a
total divergence. Using that 𝜕𝜇𝑤𝜇 = 𝜂𝜚𝜎ℎ′𝜚𝜎 = 0 on Hilbert space, we find

𝑑𝑒𝑇0 [𝑆1𝑆
′
1]

��
tree

div
= 4〈〈𝑇0𝐹𝜇𝜅𝐹

′
𝜚𝜆〉〉 :𝐹 𝜅

𝜈 (𝜕𝜇𝑤𝜈 + 𝜕𝜈𝑤𝜇)𝐹′
𝜎
𝜆
ℎ′𝜚𝜎:

div
= −4(𝜕𝜇〈〈𝑇0𝐹𝜇𝜅𝐹

′
𝜚𝜆〉〉) :𝐹 𝜅

𝜈 𝑤
𝜈𝐹′

𝜎
𝜆
ℎ′𝜚𝜎:

= −4𝑖 :𝐹 𝜅
𝜈 𝑤

𝜈𝐹′
𝜎
𝜆
ℎ′𝜚𝜎:

(
𝜂𝜅𝜚𝜕𝜆 − 𝜂𝜅𝜆𝜕𝜚

)
𝛿(𝑥 − 𝑥′),

(6.57)

where we have used the fact that 〈〈𝑇0𝜕
𝑥
𝜇𝑋 (𝑥)𝑋′(𝑥′)〉〉 = 𝜕𝑥𝜇〈〈𝑇0𝑋 (𝑥)𝑋′(𝑥′)〉〉 for the

kinematic time-ordering as long as no field equation is involved and also the Bianchi
identity to obtain the second line and then inserted Eq. (6.26) for the contracted derivative
of the kinematic propagator of the Maxwell field strength to obtain the last line. Eq. (6.57)
implies that there is a point-localized obstruction to second order string independence at
tree level. Integrating the last line of Eq. (6.57) by parts, dropping the colons for the sake
of readability and integrating out the Dirac delta to remove the 𝑥′-dependence, we obtain

𝑑𝑒𝑇0 [𝑆1𝑆
′
1]

��
tree

div
= 4𝑖

[
𝜕𝜆𝐹𝜈𝜚𝑤

𝜈 + 𝐹𝜈𝜚𝜕𝜆𝑤𝜈 − 𝜕𝜚𝐹𝜈𝜆𝑤𝜈 − 𝐹𝜈𝜆𝜕𝜚𝑤𝜈
]
𝐹𝜎

𝜆ℎ′𝜚𝜎

= 4𝑖
[
𝐹𝜈𝜚𝜕𝜆𝑤

𝜈 − 𝜕𝜈𝐹𝜚𝜆𝑤𝜈 − 𝐹𝜈𝜆𝜕𝜚𝑤𝜈
]
𝐹𝜎

𝜆ℎ′𝜚𝜎,
(6.58)

where we have in the second step used the Bianchi identity to combine the first and third
term of the first line and where the prime in ℎ′𝜚𝜎 now only indicates a dependence on
𝑒′ but not on 𝑥′. Since ℎ′𝜚𝜎 = ℎ′𝜎𝜚, the first term in Eq. (6.58) is symmetric under the
exchange and is the string variation of an induced term,

4𝑖𝐹𝜈𝜚𝜕𝜆𝑤𝜈𝐹𝜎𝜆ℎ′𝜚𝜎 = 2𝑖𝐹𝜈𝜚 (𝜕𝜆𝑤𝜈 + 𝜕𝜈𝑤𝜆)𝐹𝜎𝜆ℎ′𝜚𝜎

= 2𝑖𝑑𝑒
[
𝐹𝜈𝜚𝐹𝜎𝜆ℎ

𝜈𝜆 (𝑒)ℎ𝜚𝜎 (𝑒′)
]
.

(6.59)

The second term in Eq. (6.58) can be rewritten in a similar manner but is no string
variation,

−𝜕𝜈𝐹𝜚𝜆𝑤𝜈𝐹𝜎𝜆ℎ′𝜚𝜎
div
=

1
2
𝐹𝜚𝜆𝐹𝜎

𝜆𝑤𝜈𝜕
𝜈ℎ′𝜚𝜎 . (6.60)
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Finally, using the Bianchi identity and integrating by parts repeatedly, the third term in
Eq. (6.58) can be written as

−𝐹𝜈𝜆𝜕𝜚𝑤𝜈𝐹𝜎𝜆ℎ′𝜚𝜎 = − 𝑑𝑒
[
𝐹𝜈𝜆ℎ

𝜈
𝜚 (𝑒)𝐹𝜎𝜆ℎ′

𝜚𝜎 (𝑒′)
]
+ 𝐹𝜈𝜆𝜕𝜈𝑤𝜚𝐹𝜎𝜆ℎ′𝜚𝜎

div
= − 𝑑𝑒

[
𝐹𝜈𝜆ℎ

𝜈
𝜚 (𝑒)𝐹𝜎𝜆ℎ′

𝜚𝜎 (𝑒′)
]

− 1
4
𝜕𝜎

[
𝐹𝜈𝜆𝐹

𝜈𝜆
]
𝑤𝜚ℎ

′𝜚𝜎 − 𝐹𝜈𝜆𝐹𝜎𝜆𝑤𝜚𝜕𝜈ℎ′𝜚𝜎

div
= 𝑑𝑒

[
−𝐹𝜈𝜆ℎ𝜈𝜚 (𝑒)𝐹𝜎𝜆ℎ′

𝜚𝜎 (𝑒′) + 1
8
𝐹𝜈𝜆𝐹

𝜈𝜆ℎ𝜚𝜎 (𝑒)ℎ𝜚𝜎 (𝑒′)
]

− 𝐹𝜈𝜆𝐹𝜎𝜆𝑤𝜚𝜕𝜈ℎ′𝜚𝜎,

(6.61)

so that the right-hand side of Eq. (6.58) sums up to

𝑑𝑒𝑇0 [𝑆1𝑆
′
1]

��
tree

div
= 4𝑖𝑑𝑒𝐿ind(𝑥, 𝑒, 𝑒′) + 2𝑖𝐹𝜚𝜆𝐹𝜎𝜆𝑤𝜈

[
𝜕𝜈ℎ′𝜚𝜎 − 2𝜕 𝜚ℎ′𝜈𝜎

]
(6.62)

with a candidate induced Lagrangian

𝐿ind(𝑥, 𝑒, 𝑒′) = − 𝐹𝜈𝜆𝐹𝜎𝜆ℎ𝜈𝜚 (𝑒)ℎ′
𝜚𝜎 (𝑒′) − 1

2
𝐹𝜈𝜚𝐹𝜆𝜎ℎ

𝜈𝜆 (𝑒)ℎ𝜚𝜎 (𝑒′)

+ 1
8
𝐹𝜈𝜆𝐹

𝜈𝜆ℎ𝜚𝜎 (𝑒)ℎ𝜚𝜎 (𝑒′).
(6.63)

In Appendix B, we show that any admissible induced Lagrangian can only be a linear
combination

Δ𝐿 = 𝑐1 𝐹
𝜅𝜆𝐹𝜅𝜆ℎ

𝜇𝜈ℎ𝜇𝜈 + 𝑐2 𝐹
𝜇𝜅𝐹𝜇

𝜆ℎ𝜅𝜚ℎ𝜆 𝜚 + 𝑐3 𝐹𝜇𝜚𝐹𝜈𝜎ℎ
𝜇𝜈ℎ𝜚𝜎, (6.64)

so 𝐿ind is a special case of Δ𝐿. However, the last term on the right-hand side of Eq. (6.62)
is not the string variation of any such term and hence a non-removable obstruction to
string independence at second order. We have thus shown:

Theorem 6.7. A perturbative description on Hilbert space of the coupling of a string-
localized graviton potential to the Maxwell stress energy tensor is in conflict with the
string independence principle at second order of perturbation theory (and tree level).

We emphasize that Theorem 6.7 applies only to the formulation of the graviton-
Maxwell coupling on Hilbert space. A formulation on Krein space, where the fields
satisfy less relations and where the escort fields need to be taken into account, is not
excluded by our derivations. The considerations of Brüers [11] for the coupling of a
graviton escort field to the SET of a massive scalar field indeed suggest that pure Krein
space constructions work fine. Still, the exclusion of a Hilbert space construction of the
model at hand demonstrates the restrictive power of the string independence principle.
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6.3 Graviton self-coupling: current state and obstacles
An investigation of a self-coupling of string-localized graviton potentials has been
started by the author in his Master’s thesis but as of yet, it is unclear how a perturbative
description of such a self-coupling can be implemented. In the following, we describe
several obstacles that currently block the way.

To start with, note that the cubic self-coupling 𝐿 (3)
𝐺

from Eq. (3.106) differs by a total
divergence from the coupling

𝐿̃
(3)
𝐺

= :ℎ𝜇𝜈𝐺𝜇𝛼,𝛽𝐺𝜈
𝛼,𝛽: , (6.65)

where 𝐺𝜇𝛼,𝛽 = 𝜕𝜇ℎ𝛼𝛽 − 𝜕𝛼ℎ𝜇𝛽 are “partial” field strengths. On Hilbert space, the partial
field strength satisfies the Bianchi identity

𝜕𝜅𝐺𝜇𝜈,𝛼 + 𝜕𝜇𝐺𝜈𝜅,𝛼 + 𝜕𝜈𝐺𝜅𝜇,𝛼 = 0 (6.66)

and the non-trivial conditions

𝜕𝜇𝐺𝜇𝜈,𝛼 = 𝜕𝜈𝐺𝜇𝜈,𝛼 = 𝜕𝛼𝐺𝜇𝜈,𝛼 = 𝜂𝜇𝛼𝐺𝜇𝜈,𝛼 = 𝜂𝜈𝛼𝐺𝜇𝜈,𝛼 = 0. (6.67)

Moreover, its string variation is given by

𝑑𝑒𝐺𝜇𝜈,𝛼 = 𝜕𝛼
[
𝜕𝜇𝑤𝜈 − 𝜕𝜈𝑤𝜇

]
. (6.68)

The cubic part of the graviton self-coupling Eq. (6.65) is thus of similar shape as the
graviton coupling to the Maxwell SET, which we have discussed in the previous section.
There are two main differences: First, the Maxwell field strength is string independent
while the non-trivial string variation of the partial field strength 𝐺𝜇𝜈,𝛼 is given by
Eq. (6.68). Second, the Maxwell field strength and the graviton potential are independent
fields, whose mixed two-point function vanishes, while the mixed two-point function of
the gravitation potential and the partial field strength 𝐺𝜇𝜈,𝛼 is non-zero. Thus, there are
more terms in the Wick expansion of the graviton self-coupling.

To consider the second order tree graph contribution, we employ again our notation
𝑋 (𝑥, 𝑒𝑖) → 𝑋 𝑖, 𝑋 (𝑥′, 𝑒𝑖) → 𝑋′𝑖 and drop the colons indicating normal-ordering for the
sake of readability. For a generic and so far unspecified time-ordering prescription, we
have

𝑇

[
𝐿̃
(3)
𝐺
𝐿̃
(3)
𝐺

] ���symm

tree
=

{
〈〈𝑇ℎ1𝜇𝜈ℎ′4𝜚𝜎〉〉𝐺2

𝜇𝜅,𝜆𝐺
3𝜅,𝜆
𝜈 𝐺′5

𝜚𝛼,𝛽𝐺
′6𝛼,𝛽
𝜎

+ 2〈〈𝑇𝐺2
𝜇𝜅,𝜆ℎ

′4𝜚𝜎〉〉ℎ1𝜇𝜈𝐺3𝜅,𝜆
𝜈 𝐺′5

𝜚𝛼,𝛽𝐺
′6𝛼,𝛽
𝜎

+ 2〈〈𝑇ℎ1𝜇𝜈𝐺′5
𝜚𝛼,𝛽〉〉𝐺2

𝜇𝜅,𝜆𝐺
3𝜅,𝜆
𝜈 ℎ′4𝜚𝜎𝐺′6𝛼,𝛽

𝜎

+4〈〈𝑇𝐺2
𝜇𝜅,𝜆𝐺

′5
𝜚𝛼,𝛽〉〉ℎ1𝜇𝜈𝐺3𝜅,𝜆

𝜈 ℎ′4𝜚𝜎𝐺′6𝛼,𝛽
𝜎

}symm
.

(6.69)

The investigation of the tree graph contribution from Eq. (6.69) is far more involved than
for the previous case of the graviton coupling to the Maxwell SET.
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The most intricate issue is the choice of propagators. In the case of the graviton
coupling to the Maxwell SET, we employed the kinematic propagator for the graviton
potential and effectively removed the trace component by coupling ℎ𝜇𝜈 to the traceless
SET 𝑇𝐹𝐹𝜇𝜈 instead of 𝐹𝜇𝜅𝐹𝜈𝜅. Indeed, our (tree level) derivations in the previous section
are equivalent to considering the coupling ℎ𝜇𝜈𝐹𝜇𝜅𝐹𝜈𝜅 and using the traceless propagator

〈〈𝑇𝜂ℎ𝜇𝜈ℎ′𝜚𝜎〉〉 :=
(
𝜂𝜇𝜅𝜂𝜈𝜆 − 1

4
𝜂𝜇𝜈𝜂𝜅𝜆

) (
𝜂𝜚𝛼𝜂𝜎𝛽 − 1

4
𝜂𝜚𝜎𝜂𝛼𝛽

)
〈〈𝑇0ℎ𝜅𝜆ℎ

′
𝛼𝛽〉〉. (6.70)

The propagator 〈〈𝑇𝜂ℎ𝜇𝜈ℎ′𝜚𝜎〉〉 does not respect the axiality of the potential and is thus a
similarly poor choice as the kinematic propagator. In the previous section, 𝑇𝜂 respectively
𝑇0 served our purpose: the sector with a graviton contraction is string independent, while
the obstruction came from the sector with a contraction of Maxwell field strengths. Due to
the scaling degree of the graviton propagator and the field content in the problematic term
in Eq. (6.62), the obstruction to second order string independence in the graviton-Maxwell
coupling cannot be resolved by changing the graviton propagator. Hence, we did not
raise this issue in the previous section.

In the present case, however, the situation is different. Here, there is only a graviton
sector, so if there is an obstruction to second order string independence at tree level, it
can only come from this sector. For that reason, a careful treatment of the choice of
propagators is due. But as of yet, the details of such a proper treatment are unclear:

Employing 𝑇0 or 𝑇𝜂 (the latter does act non-trivial on 𝐺𝜇𝜈,𝛼 as well), it seems that
one runs into similar trouble as in the case of the graviton-Maxwell coupling. However,
due to the dependence on six instead of two string variables and the non-trivial string
variation of 𝐺𝜇𝜈,𝛼, the computations are far more involved than they were in the previous
case.2

Another option is to use one of the traceless propagators derived in Section 5.7.1,
which have the benefit that they respect the axiality of the potential ℎ𝜇𝜈. One can then
for example use the BDF construction to determine the propagator of the partial field
strength 𝐺𝜇𝜈,𝛼 from the traceless propagator of ℎ𝜇𝜈. However, also this treatment comes
with certain flaws.

All admissible traceless propagators differ from the kinematic propagator by a linear
combination of derivatives of string-integrated Dirac deltas. In momentum space, the
coefficients of this linear combination are determined by the allowed correction terms 𝑁1,
𝑁2 and 𝐾𝑖, 𝑖 = 1, 2, 3 (in the notation of Section 5.7.1; see also Proposition 5.44) with the
dummy vectors 𝑔 and 𝑔′ replaced by

𝑞𝜇 := −𝑖 𝑒𝜇

(𝑝𝑒)−
and 𝑞′𝜇 := 𝑖

𝑒′𝜇

(𝑝𝑒′)+
, respectively. (6.71)

We have

𝑑𝑒𝑞
𝜇 =

−𝑖
(𝑝𝑒)−

[
𝑑𝑒𝜇 − 𝑒𝜇 (𝑝𝑑𝑒)

(𝑝𝑒)−

]
, (6.72)

2As of yet, it seems that not all obstructions to second order string independence can be resolved but
due to the complexity of the terms, some caveats may remain.
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and using the distributional identity (𝑝𝑞) = −𝑖 = 𝑐𝑜𝑛𝑠𝑡., we obtain

𝑑𝑒 (𝑝 [ 𝑓 𝑞]𝑋) = 𝑑𝑒 (𝑝 𝑓 ) (𝑞𝑋) =
(𝑝 𝑓 )
(𝑝𝑒)−

[(𝑋𝑑𝑒) (𝑝𝑞) − (𝑝𝑑𝑒) (𝑋𝑞)]

= − (𝑝 𝑓 )
(𝑝𝑒)−

(𝑝 [𝑑𝑒𝑞]𝑋)
(6.73)

for some dummy vector 𝑋 . Eq. (6.73) implies that a gradient can be pulled out after
performing the string variation if a skewsymmetric tensor [ 𝑓 𝑞] is contracted with 𝑝.
This is always the case for the kernel of the kinematic propagator (see Eq. (5.97)) and
forms the foundation of the identity

𝑑𝑒〈〈𝑇0ℎ𝜇𝜈 (𝑒)ℎ′𝜚𝜎 (𝑒′)〉〉 = 𝜕𝜇〈〈𝑇0𝑤𝜈 (𝑒)ℎ′𝜚𝜎 (𝑒′)〉〉 + 𝜕𝜈〈〈𝑇0𝑤𝜇 (𝑒)ℎ′𝜚𝜎 (𝑒′)〉〉. (6.74)

Partial derivatives are needed in order for possible obstructions to sum up to a total
divergence. However, the action of 𝑑𝑒 on the correction terms 𝑁𝑖 and 𝐾 𝑗 , which are
needed to make the kinematic propagator traceless, does not always produce derivatives.
Recall for example that

𝑁1 = (𝑝 [ 𝑓 𝑞] [ 𝑓 𝑞] [ 𝑓 ′𝑞′] [ 𝑓 ′𝑞′]𝑝) (6.75)

so that

𝑑𝑒𝑁1 = − (𝑝 𝑓 )
(𝑝𝑒)−

(𝑝 [𝑑𝑒𝑞] [ 𝑓 𝑞] [ 𝑓 ′𝑞′] [ 𝑓 ′𝑞′]𝑝)

+ (𝑝 [ 𝑓 𝑞] [ 𝑓 (𝑑𝑒𝑞)] [ 𝑓 ′𝑞′] [ 𝑓 ′𝑞′]𝑝).
(6.76)

The first term on the right-hand side of Eq. (6.76) is obviously a gradient, while the
second term contains a contribution

−(𝑝𝑞) (𝑝𝑞′) ( 𝑓 [ 𝑓 (𝑑𝑒𝑞)] [ 𝑓 ′𝑞′] 𝑓 ′) = −( 𝑓 [ 𝑓 (𝑑𝑒𝑞)] [ 𝑓 ′𝑞′] 𝑓 ′)

⊃ 𝑖

(𝑝𝑒)−
( 𝑓 [ 𝑓 𝑑𝑒] [ 𝑓 ′𝑞′] 𝑓 ′),

(6.77)

which contains no derivative at all and gives rise to a string-integrated Dirac delta
and a possibly highly non-local obstruction to string independence. It is an open (and
presumably very tedious) task to check whether all obstructions of this type cancel each
other.

Also the BDF construction comes with issues. Recall from Section 5.7.4 that this
construction contains the axial tensor 𝐵𝜇𝜈 = 𝜂𝜇𝜈 −

𝑒𝜇𝑒𝜈

𝑒2 , which has a non-trivial string
variation. Thus, the time-ordered products from the BDF construction do in general not
commute with string variation. The consequences of this observation are not known as
of yet.

To sum up, there remain many obstacles to the perturbative construction of a self-
coupling of string-localized graviton potentials. At present, we do not know whether
these obstacles are just technical difficulties or whether they indicate a physical (no-go)
feature of the model.



Chapter 7

Discussion and outlook

In the main body of this dissertation, we have to a large extent dispensed with extensive
interpretations of our results, an exception being Section 5.7.5, where we discussed the
interference of different methods to reduce renormalization ambiguities. In the following,
we catch up on this and give more detailed interpretations of our different results. We
also outline loose ends and open tasks for future research.

7.1 Self-interactions and non-perturbative effects
We have shown in Sections 3.4.1 and 3.4.2 that the cubic part of the interaction Lagrangians
of massless string-localized Yang-Mills theory and of the string-localized graviton self-
interaction are not part of an L-V pair. These findings suggest that one must not expect
the existence of an L-V pair in massless self-interacting models. On the other hand, the
non-perturbative constructions in QED by Mund, Rehren and Schroer [48, 51] as well
as the ones for the coupling of the graviton escort fields to the stress energy tensor of a
point-localized scalar field by Brüers [11], which we have outlined in Section 3.2, rely on
the existence of such an L-V pair. Hence, constructions of that type cannot be performed
for massless Yang-Mills theory and graviton self-interactions.

Consequently, there is no straightforward way to adjust the hybrid approach to self-
interacting models. The relations between point-localized and string-localized models
become less clear than for theories without self-interactions of string-localized fields.
There is, however, a possible way to circumvent our more or less expected no-go results
by a mix of perturbative and non-perturbative constructions. Such constructions, which
take into account the self-interactions in a perturbative way, have been described in a
more phenomenological setting [43], which uses the original Dirac string fields that we
introduced in Section 1.1. It remains an interesting question whether the constructions
made in [43] can be reformulated in terms of escort fields. Indeed, there is work in
progress by Rehren and collaborators that indicates that the answer is in the affirmative
(private conversation with K.H. Rehren).

An observation due to J.-M. Gracia-Bondía, which is part of our joint work [37]
together with J. Mund, is related to the 𝜃-term in QCD. In our perturbative derivations
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(up to second order) for string-localized Yang-Mills theory in Section 6.1, we have
disregarded any term that is a total divergence and hence gives rise to a trivial S-matrix
in the adiabatic limit. One particular term that is a total divergence in the adiabatic limit
is the 𝜃-term1

𝐿𝜃 := 𝜃𝜀𝜇𝜈𝜅𝜆
[
𝐹𝜇𝜈𝑎𝐹𝜅𝜆𝑎 + 2𝑔 𝑓𝑎𝑏𝑐 𝑓𝑎𝑑𝑓 𝐹𝜇𝜈𝑎𝐴𝜅𝑑𝐴𝜆 𝑓

]
(7.1)

with the totally skewsymmetric Levi-Civita tensor 𝜀𝜇𝜈𝜅𝜆, and where 𝐿𝜃 = 2𝜃𝜕𝜇𝐾𝜇 with
the Chern-Simons current (see for example [62])

𝐾𝜇 = 𝜀𝜇𝜈𝜅𝜆
[
𝐴𝜈𝑎𝐹𝜅𝜆𝑎 +

2
3
𝑔 𝑓𝑎𝑏𝑐 𝑓𝑎𝑑𝑓 𝐹𝜇𝜈𝑎𝐴𝜅𝑑𝐴𝜆 𝑓

]
. (7.2)

Despite not contributing to perturbation theory, the 𝜃-term needs to be considered in
gauge theories, for it can produce non-perturbative effects in non-trivial topologies [75].2
There, one can achieve a finite action even if the gauge field is topologically non-trivial,
provided that the gauge field approaches a pure gauge in the long distance limit 𝑥 → ∞.
However, there is no concept of gauge in string-localized field theory and consequently, a
pure gauge configuration of the string-localized potential does not exist. This suggests
the conclusion that there is no 𝜃-term in string-localized massless Yang-Mills theory.

There is a small caveat in this reasoning. It is true that there is no pure gauge in
string-localized QFT; but there is the escort field, which is logarithmically divergent at
large distances and thus can give rise to boundary effects. To fix the loose ends, one
needs to take into account possibly existent formulations of the mentioned perturbative-
plus-non-perturbative constructions [43] in terms of the escort fields.

7.2 Time-ordering methods in SLFT
The only fully rigorous method to define time-ordered products involving string-localized
fields that is available at the present time is string chopping, which was introduced by
Cardoso, Mund and Várilly [16]. However, string chopping only works for expressions
that are linear in the string-localized potentials (and the respective field strength tensors)
and for a small set of other models that can be reduced to the linear case [37]. In Sections
4.1.2 and 4.2, we outlined an ad hoc alternative to string chopping. Indeed, the outlined
prescription is expected to be an ad hoc generalization of string chopping, for it realizes
an automatic chopping.

To see that, remember that we have proposed to define time-ordered products involving
string-localized potentials as the respective string integrals over point-localized products
that depend on 𝑛𝑘 or 𝑛(𝑘 + 1) instead of 𝑛 variables at 𝑛-th order of perturbation

1Remember that in our notation, the field strength tensors are always given by 𝐹𝜇𝜈𝑎 = 𝜕𝜇𝐴𝜈𝑎 − 𝜕𝜈𝐴𝜇𝑎,
and not by 𝐹 ′

𝜇𝜈𝑎 = 𝜕𝜇𝐴𝜈𝑎 − 𝜕𝜈𝐴𝜇𝑎 + 𝑔 𝑓𝑎𝑏𝑐𝐴𝜇𝑏𝐴𝜈𝑐 , which is typically employed in non-Abelian gauge
theories.

2Introducing all details is beyond the scope of this thesis. We refer the reader to Weinberg’s book [75]
for a thorough introduction. Note also that topological issues are usually treated in Euclidean geometry.
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theory, where 𝑘 is the number of string-localized potentials that appear in the interaction
Lagrangian 𝐿. The time-ordered products depend on 𝑛𝑘 arguments if 𝐿 only contains
string-localized potentials and on 𝑛(𝑘 + 1) arguments if 𝐿 additionally contains point-
localized fields.

The 𝑛𝑘 arguments 𝑦 𝑗 ,𝑙 = 𝑥 𝑗 + 𝜆 𝑗 ,𝑙𝑒 𝑗 ,𝑙 for 𝑗 = 1, . . . , 𝑛, 𝑙 = 1, . . . , 𝑘 and 𝜆 𝑗 ,𝑙 ≥ 0
correspond to points on the strings, so that defining time-ordering with respect to these
arguments automatically chops the strings.

However, our ad hoc generalization comes with the drawback that we have to drop
the Wick ordering of the interaction Lagrangian in an intermediate step , in order to
have a causal factorization rule with respect to all variables of the new time-ordered
products. This gives rise to “self-contractions” in the Wick expansion, which have to
be removed again in retrospective. At the present time, it seems that a “good” causal
factorization rule – meaning one where the set of ambiguities in a BEG construction
is not tremendously large – only holds for the time-ordered products with the normal
ordering of the interaction Lagrangian dropped.

In order to set up a comprehensive BEG construction in SLFT, which is soundly
based on a set of reasonable axioms, one needs to lift the fog surrounding our proposed
method, in particular the appearance and removal of “self-contractions”.

7.3 Renormalization of divergent amplitudes
Despite the fact that a full BEG scheme of the string-localized S-matrix is still missing, we
were able to characterize the structure of (true) divergences in string-localized perturbation
theory.

The BEG freedom of time-ordered products of two arguments that arises from our
method can easily be determined. It is a linear combination of derivatives of string-
integrated Dirac deltas. We classified the corresponding ambiguities of string-localized
propagators in Section 5.4.2 and formulated reasonable constraints on these ambiguities
coming from power counting and IR constraints (local integrability at 𝑝 = 0 in momentum
space). We determined that the wavefront set of all admissible choices of string-localized
propagators in Section 5.5 are contained in the wavefront set of the ordinary Feynman
propagator after smearing out the string variables. As a consequence, products of
string-localized propagators exist whenever the respective products in the point-localized
case exist. That is to say, the regularization of divergent loop graph contributions stays a
pure UV problem in SLFT. In particular, the new singularities that are introduced by the
string integration operation become harmless after smearing out the string variables. In
combination with the good UV behavior of string-localized potentials, it thus remains an
interesting question whether one can formulate renormalizable models in SLFT where
the point-localized counterpart is non-renormalizable.

This result crucially relies on the fact that each string-localized potential in the
Dyson series Eq. (4.15) comes with its own string variable. Only then are the products
of distributions appearing in said Dyson series pure 𝑥-products and a pullback to the
𝑒-diagonal is not necessary.
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The proofs in Sections 5.2 to 5.5 show that one can regularize the Wick expansion of
the Dyson series whenever one can do so in the point-localized case. However, we have
not given a full classification of all possible ambiguities in the construction.

Our results on renormalization can also be applied to models with axial gauges
because the analytic structure of propagators in axial or lightcone gauges is similar to
the one of string-localized propagators (see for example [45] for an introduction to axial
gauges).3 Axial gauge propagators, however, are usually not treated as distributions in
the variable 𝑛, which represents the preferred direction and is the analogue of the string
variable in SLFT. Hence, the singularities that arise when the Minkowski product of 𝑛
with the momentum 𝑝 vanishes are of a different nature than the ones discussed in this
thesis. The singularities at (𝑝𝑛) = 0 were an important reason for the decreasing interest
in axial gauges over the past decades.

Adjusting the framework of axial gauges by treating the respective propagators as
distributions in 𝑛 and letting each appearing axial gauge field depend on its own 𝑛,
our results can be transferred with benefit to axial gauge theories (with 𝑛 spacelike).
Thus, the singularities at (𝑝𝑛) = 0 in axial gauges do not cause additional problems for
renormalization if they are treated as described in this dissertation.

Axial gauges suffer from analytic complexity but also offer advantages, in particular
if each axial gauge field comes with its own 𝑛: They prove useful in the so-called
spinor-helicity formalism that drastically reduces the computational effort to determine
gluon scattering matrix elements [62, Chapters 25.4.3 and 27]. Due to the close formal
connection between axial gauge and string-localized potentials, it is worthwhile to
investigate whether the spinor-helicity formalism can be adjusted to the string-localized
setup of perturbation theory presented in this thesis.

7.4 Reduction of the renormalization freedom
The different methods to reduce the renormalization freedom beyond power counting
described in Section 5.7 are partially incompatible. We have illustrated this incompatibility
by applying several such methods to string-localized QED in Sections 5.7.2 to 5.7.4. We
found that the NST prescription, which is based on requiring a certain transformation
behavior of massless propagators (or general massless amplitudes) under the action of the
Lorentz group, yields a different propagator of the Maxwell field strength than the BDF
construction, in which onshell time-ordered products are defined as a particular choice of
offshell time-ordered products. The BDF construction goes hand in hand with the string
independence principle, while the NST prescription contradicts string independence.

Since both the NST prescription and the BDF construction are special cases of onshell
extensions of distributions in the sense of Bahns and Wrochna [2], we find that such
onshell extensions must in general be taken with a grain of salt. In the case at hand, we
have resolved the issue as follows (see also Section 5.7.5):

• A string dependence of observable quantities, say, cross sections, is not observed

3The following paragraphs on the connection to axial gauges are taken from the author’s paper [35].
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in experiment and hence the string independence principle should be treated as
paramount. While the BDF construction is consistent with string independence
and even benefits from it (by fixing the choice for the offshell time-ordering, see
Section 5.7.4), the NST prescription is in conflict with string independence. Thus,
the NST prescription should not be implemented.

• In retrospective, the failure of the NST prescription can be made comprehensible
by the interpretation (due to K.-H. Rehren) that the interaction destroys the refined
NST notion of Lorentz covariance.

When Várilly and Gracia-Bondía first outlined an application of the NST prescription
to string-localized fields [72], they already referred to the importance of the string
independence principle, and at the same time raised the question whether an additional
reduction of the renormalization freedom beyond power counting and string independence
is necessary, suggesting the NST prescription as solution:

“Of course, the string ’ought not to be seen’, and the program becomes to
demonstrate whether, and how, this simple criterion is enough to determine
interaction vertices and govern perturbative renormalization [. . . ].
[. . . ]
What we realize is that the construction of string-local fields [. . . ] rests on the
bedrock of a never-ambiguous time-ordered product of the field strengths.”

At this point, we cannot answer the question whether power counting and string
independence are enough to fix the BEG freedom completely in a generic model but we
have seen that the NST prescription is not the solution to fixing possibly remaining free
parameters in perturbative renormalization, at least not in QED.

7.5 The construction of models in SLFT
The perturbative construction of models involving string-localized potentials remains an
important task for future research. We have seen in Section 6.1 that the construction of
massless Yang-Mills theory to second order (and at tree level) works fine but a proof of
perturbative string independence to all orders (also at least at tree level) is still pending.
On the other hand, our derivations in Section 6.2 show that the string independence
principle at second order forbids a perturbative construction on Hilbert space of the
coupling of a string-localized graviton to the Maxwell stress energy tensor. Since this
is a model of physical interest, the implications of this no-go result need to be clarified.
At present, the consequences are not clear. It could simply be that one needs to resort
to a Krein space construction, where there are also unphysical degrees of freedom and
where the fields satisfy less relations. It is also conceivable that the inclusion of the trace
of the graviton potential (or more general, an additional scalar field) could help resolve
the issue. On the other hand, the no-go result could have a profound physical meaning.
For example, it could be that only the coupling of the escort field to the Maxwell SET,
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which is a total divergence and hence should only produce non-perturbative effects, can
be implemented. Such a program was investigated by Brüers for the SET of a scalar
field [11].

It is an interesting fact that perturbative constructions on Hilbert space in SLFT seem
to work fine for the standard model interactions. We have discussed (pure) massless
Yang-Mills theory in Section 6.1, while the weak interaction has been investigated in [39],
where it is derived that the string independence principle implies the appearance of a
scalar field (“Higgs”) as well as the chirality of the interaction. There are also unpublished
notes on constructions in QED. To the best knowledge of the author, only a gluon-matter
interaction has not yet been attacked in an SLFT framework.

Beyond the standard model, very little is known. There are positive results in scalar
QED [67], while we derived the mentioned no-go result in Section 6.2. There is work in
progress by Mund, Rehren and Schroer on the Abelian Higgs model. The obstacles to a
graviton self-coupling, which we have summarized in Section 6.3, need to be investigated.
Having both the positive and negative results in mind, it remains an interesting open
question, which Hilbert space models are allowed and which are excluded by the string
independence principle.

7.6 Loop graphs in SLFT
Another interesting question for future research is the treatment of loop graphs in SLFT. In
particular, one must investigate how the string independence principle can be formulated
at loop level. We proved in Chapter 5 that the true divergences corresponding to
ill-defined loop integrals stay pure ultraviolet divergences in SLFT. This implies that
the well-known tools from standard QFT for UV/short-distance regularization can be
employed in SLFT. To be able to treat loop graph contributions, one needs to find out
how the string independence principle interacts with the extension procedure of products
of propagators. Formally, introducing some generic distribution 𝑣(𝑥, 𝑒), a prototypical
example to consider would be

𝑑𝑒
[
〈〈𝑇0𝐴𝜇 (𝑒)𝐴𝜈 (𝑒′)〉〉(𝑥)𝑣(𝑥, 𝑒)

]
ext

=
[
𝑑𝑒〈〈𝑇0𝐴𝜇 (𝑒)𝐴𝜈 (𝑒′)〉〉(𝑥)𝑣(𝑥, 𝑒)

]
ext

=
[
(𝜕𝜇〈〈𝑇0𝑤(𝑒)𝐴𝜈 (𝑒′)〉〉(𝑥))𝑣(𝑥, 𝑒)

]
ext

?
= 𝜕𝜇

[
〈〈𝑇0𝑤(𝑒)𝐴𝜈 (𝑒′)〉〉(𝑥)𝑣(𝑥, 𝑒)

]
ext −

[
〈〈𝑇0𝑤(𝑒)𝐴𝜈 (𝑒′)〉〉(𝑥)𝜕𝜇𝑣(𝑥, 𝑒)

]
ext

+ ambiguities supported on { 𝑥 = 0 },

(7.3)

where “ext” stands for “extended”. Because the regularization is only 𝑥-dependent, we
can pull 𝑑𝑒 into the extended product but one has to investigate the effect of pulling out
the gradient in the last step. Note in particular that the products to be extended in the
last and second last line of Eq. (7.3) are not of the same UV dimension. Only when the
interaction of the string variation with the extension procedure is clarified, one can hope
to implement perturbative string independence also at loop level.
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7.7 Final comments
We have investigated both perturbative and non-perturbative constructive aspects of
string-localized quantum field theory, finding many affirmative answers to our questions
but also certain no-go results.

Non-perturbative aspects On the positive side, the explicit computation of the two-
point function of the photon escort field allowed us to characterize the structure of
infrared divergences in QED. On the negative side, we showed that the Lagrangians of
massless Yang-Mills theory and the graviton self-coupling are not part of an L-V pair,
indicating that there is no immediate analogue for the non-perturbative constructions of
Mund, Rehren and Schroer in QED [51] if self-interactions of massless fields are involved.
It remains a task to investigate whether one can do perturbative-plus-non-perturbative
constructions similar to the ones that have been proposed in the point-localized case [43].
As previously mentioned, the work in this direction has already been started by Rehren
and collaborators.

Perturbative aspects We have shown that the regularization of divergent loop integrals
stays a pure ultraviolet problem in SLFT, indicating that the good UV behavior of string-
localized fields has positive effects on renormalizability because power counting remains
a meaningful indicator for renormalizability. We also have proposed a method to define
the time-ordering operation if string-localized fields are involved but a full axiomatic
implementation of this method is still pending. Despite the fact that no fully constructed
BEG scheme is available for SLFT at the present time, we investigated different methods
to reduce the BEG ambiguities in SLFT, including the NST and BDF constructions as
well as effects of the string independence principle. However, these methods turned out
to be partially incompatible, and thus one needs to be careful when applying them. We
have also found that a perturbative formulation of string-localized massless Yang-Mills
theory on Hilbert space works well in low orders of perturbation theory (and tree level),
while the same construction fails for the coupling of a string-localized graviton potential
to the Maxwell SET.

Implications We have found some negative — or no-go — results, which indicate that
further research is needed to clarify certain issues that are present in SLFT. It is possible
that there are ways within SLFT to circumvent these issues, for example a formulation
of certain models on Krein instead of Hilbert space within the hybrid approach or a
generalization of the L-V connection to point-localized theories. Research in these
directions has already been started.

At the same time, our positive results clearly speak in favor of string-localized
quantum field theory. The construction of string-localized models is advancing and
sheds new light on SLFT in general. The explicit computation of the two-point functions
of the photon escort field and the corresponding vertex operators opens the door for
explicit computations in the scattering theory of dressed Dirac fields. The progress on
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renormalization that we have made paves the way towards a treatment of loop graphs in
SLFT. In summary, we can say that we have found many new pieces of the puzzle but at
present, we cannot clearly see how the full picture looks like.



Appendix A

Proof of Theorem 3.23

In this appendix, we give a detailed proof of Theorem 3.23 about then non-existence of
an L-V pair for the string-localized graviton self-interaction. For the convenience of the
reader, we display the theorem again:
Theorem A.1 (Theorem 3.23). The cubic part

𝐿
(3)
𝐺

= :ℎ𝜇𝜈
[
𝜕𝜇ℎ𝜅𝜆𝜕𝜈ℎ

𝜅𝜆 + 2𝜕𝜅ℎ𝜇𝜆𝜕𝜆ℎ𝜈𝜅
]
: (A.1)

of the string-localized graviton self-coupling from Eq. (3.106) is not part of an L-V pair.
In the following proof, we make excessive use of the notation defined on the right-hand

side of Eq. (3.107).

Proof. Remember from Eq. (3.1b) the relation
ℎ𝜇𝜈 = ℎ

K
𝜇𝜈 + 𝜕𝜇Φ𝜈 + 𝜕𝜈Φ𝜇 + 𝜕𝜇𝜕𝜈𝜙 (A.2)

between the string-localized potential ℎ𝜇𝜈 and the Krein potential ℎK
𝜇𝜈, with the escort

fields Φ𝜇 = 𝐼𝑒 (ℎK𝑒)𝜇 and 𝜙 = 𝐼2𝑒 (𝑒ℎK𝑒). Moreover, remember that ℎ𝜇𝜈 and the field
strength 𝐹𝜇𝜅𝜈𝜆 satisfy less constraints on Krein space than on Hilbert space. By our
findings from Section 3.1.2 (see Table 3.2), the string-localized potential, the Krein
potential and the escort fields only satisfy the following conditions on Krein space:

ℎ𝜇𝜈 = ℎ𝜈𝜇, ℎK
𝜇𝜈 = ℎ

K
𝜈𝜇, 𝑒𝜇ℎ𝜇𝜈 = �ℎ𝜇𝜈 = �ℎ

K
𝜇𝜈 = �Φ𝜇 = �𝜙 = 0. (A.3)

In particular, the trace ℎ := 𝜂𝜇𝜈ℎ𝜇𝜈 and the divergence (𝜕ℎ)𝜈 do not vanish on Krein
space. Denoting by ℎK the trace of the Krein field, we found the relations

ℎ = ℎK + 2(𝜕Φ), 𝜕𝜇ℎ𝜇𝜈 = 𝜕
𝜇ℎK

𝜇𝜈 + 𝜕𝜈 (𝜕Φ)

⇒ 𝜕𝜇
(
ℎ𝜇𝜈 − ℎK

𝜇𝜈

)
=

1
2
𝜕𝜈 (ℎ − ℎK). (A.4)

Similar to the simpler case of Yang-Mills theory, we split the proof in two parts. First,
we insert Eq. (A.2) into the Lagrangian 𝐿 (3)

𝐺
from Eq. (3.106) to show that 𝐿 (3)

𝐺
is a sum

of a point-localized Lagrangian, a total divergence and certain obstructing terms. In the
second step, we show that the obstructing terms cannot be removed by adding terms to
𝐿
(3)
𝐺

that vanish on Hilbert space but not on Krein space. For readability, we drop the
colons indicating normal ordering but all terms are to be understood as normally ordered.
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Part 1: Using Eq. (A.2), let us first insert the Krein and escort fields into the string-
localized potential outside the brackets in the Lagrangian Eq. (3.106) to get the expression

𝐿
(3)
𝐺

=

(
ℎK𝜇𝜈 + 𝜕𝜇Φ𝜈 + 𝜕𝜈Φ𝜇 + 𝜕𝜇𝜕𝜈𝜙

) (
𝜕𝜇ℎ𝛼𝛽𝜕𝜈ℎ

𝛼𝛽 + 2𝜕𝛼ℎ𝜇𝛽𝜕𝛽ℎ𝜈𝛼
)

(A.5a)

= ℎK𝜇𝜈𝜕𝜇ℎ𝛼𝛽𝜕𝜈ℎ
𝛼𝛽 + 2

(
ℎK𝜇𝜈 + 2𝜕𝜇Φ𝜈 + 𝜕𝜇𝜕𝜈𝜙

)
𝜕𝛼ℎ𝜇𝛽𝜕

𝛽ℎ𝜈𝛼 + 𝜕𝜇𝑉 (1)
𝜇 (A.5b)

where 𝑉 (1)
𝜇 on the right-hand side of (A.5b) arises from

𝜕𝜇𝑉
(1)
𝜇 := 𝔡𝔦𝔳

[
(𝜕𝜇Φ𝜈 + 𝜕𝜈Φ𝜇 + 𝜕𝜇𝜕𝜈𝜙) 𝜕𝜇ℎ𝛼𝛽𝜕𝜈ℎ𝛼𝛽

]
, (A.6)

where 𝔡𝔦𝔳 is the notation for the special total divergence introduced in Eq. (3.107). A
further investigation of the first term in Eq. (A.5b) yields

ℎK𝜇𝜈𝜕𝜇ℎ𝛼𝛽𝜕𝜈ℎ
𝛼𝛽

= ℎK𝜇𝜈𝜕𝜇

[
ℎK
𝛼𝛽 + 2𝜕𝛼Φ𝛽 + 𝜕𝛼𝜕𝛽𝜙

]
𝜕𝜈

[
ℎK𝛼𝛽 + 𝜕𝛼Φ𝛽 + 𝜕𝛽Φ𝛼 + 𝜕𝛼𝜕𝛽𝜙

]
= ℎK𝜇𝜈𝜕𝜇ℎ

K
𝛼𝛽𝜕𝜈

[
ℎK𝛼𝛽 + 𝜕𝛼Φ𝛽 + 𝜕𝛽Φ𝛼 + 𝜕𝛼𝜕𝛽𝜙

]
+ 2ℎK𝜇𝜈𝜕𝜇𝜕𝛼Φ𝛽𝜕𝜈

[
ℎK𝛼𝛽 + 𝜕𝛽Φ𝛼

]
+ ℎK𝜇𝜈𝜕𝜇𝜕𝛼𝜕𝛽𝜙𝜕𝜈ℎ

K𝛼𝛽 + 𝜕𝜇𝑉 (2)
𝜇 ,

where 𝑉 (2)
𝜇 arises from

𝜕𝛼𝑉
(2)
𝛼 := 𝔡𝔦𝔳

{
ℎK𝜇𝜈𝜕𝜇𝜕𝛼𝜕𝛽𝜙𝜕𝜈

[
2𝜕𝛼Φ𝛽 + 𝜕𝛼𝜕𝛽𝜙

]
+2ℎK𝜇𝜈𝜕𝜇𝜕𝛼Φ𝛽𝜕𝜈

[
𝜕𝛼Φ𝛽 + 𝜕𝛼𝜕𝛽𝜙

]}
.

(A.7)

We next consider the second term in Eq. (A.5b), which can be expanded to

2
(
ℎK𝜇𝜈 + 2𝜕𝜇Φ𝜈 + 𝜕𝜇𝜕𝜈𝜙

)
𝜕𝛼

[
ℎK
𝜇𝛽 + 𝜕𝜇Φ𝛽 + 𝜕𝛽Φ𝜇 + 𝜕𝜇𝜕𝛽𝜙

]
× 𝜕𝛽

[
ℎK
𝜈𝛼 + 𝜕𝜈Φ𝛼 + 𝜕𝛼Φ𝜈 + 𝜕𝜈𝜕𝛼𝜙

]
= 2

(
ℎK𝜇𝜈 + 2𝜕𝜇Φ𝜈 + 𝜕𝜇𝜕𝜈𝜙

)
𝜕𝛼

[
ℎK
𝜇𝛽 + 𝜕𝜇Φ𝛽

]
𝜕𝛽

[
ℎK
𝜈𝛼 + 𝜕𝜈Φ𝛼

]
+ 𝜕𝜇𝑉 (3)

𝜇

= 2ℎK𝜇𝜈𝜕𝛼
[
ℎK
𝜇𝛽 + 𝜕𝜇Φ𝛽

]
𝜕𝛽

[
ℎK
𝜈𝛼 + 𝜕𝜈Φ𝛼

]
+ 4𝜕𝜇Φ𝜈𝜕𝛼ℎK

𝜇𝛽𝜕
𝛽
[
ℎK
𝜈𝛼 + 𝜕𝜈Φ𝛼

]
2𝜕𝜇𝜕𝜈𝜙𝜕𝛼ℎK

𝜇𝛽𝜕
𝛽ℎK

𝜈𝛼 + 𝜕𝜇𝑉
(3)
𝜇 + 𝜕𝜇𝑉 (4)

𝜇 ,

where 𝑉 (3)
𝜇 and 𝑉 (4)

𝜇 are defined by

𝜕𝜇𝑉
(3)
𝜇 = 2𝔡𝔦𝔳

{(
ℎK𝜇𝜈 + 2𝜕𝜇Φ𝜈 + 𝜕𝜇𝜕𝜈𝜙

)
𝜕𝛼𝜕𝛽

[
Φ𝜇 + 𝜕𝜇𝜙

]
× 𝜕𝛽

[
ℎK
𝜈𝛼 + 𝜕𝜈Φ𝛼 + 𝜕𝛼Φ𝜈 + 𝜕𝜈𝜕𝛼𝜙

]
+

(
ℎK𝜇𝜈 + 2𝜕𝜇Φ𝜈 + 𝜕𝜇𝜕𝜈𝜙

)
𝜕𝛼

[
ℎK
𝜇𝛽 + 𝜕𝜇Φ𝛽

]
𝜕𝛽𝜕𝛼 [Φ𝜈 + 𝜕𝜈𝜙]

}
,

𝜕𝜇𝑉
(4)
𝜇 = 2𝔡𝔦𝔳

{
(2𝜕𝜇Φ𝜈 + 𝜕𝜇𝜕𝜈𝜙) 𝜕𝛼𝜕𝜇Φ𝛽𝜕

𝛽
[
ℎK
𝜈𝛼 + 𝜕𝜈Φ𝛼

]
+ 𝜕𝜇𝜕𝜈𝜙𝜕𝛼ℎK

𝜇𝛽𝜕
𝛽𝜕𝜈Φ𝛼

}
.
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So far, we have

𝐿
(3)
𝐺

= ℎK𝜇𝜈𝜕𝜇ℎ
K
𝛼𝛽𝜕𝜈

[
ℎK𝛼𝛽 + 2𝜕𝛼Φ𝛽 + 𝜕𝛼𝜕𝛽𝜙

]
+ 2ℎK𝜇𝜈𝜕𝜇𝜕𝛼Φ𝛽𝜕𝜈

[
ℎK𝛼𝛽 + 𝜕𝛽Φ𝛼

]
+ ℎK𝜇𝜈𝜕𝜇𝜕𝛼𝜕𝛽𝜙𝜕𝜈ℎ

K𝛼𝛽 + 2ℎK𝜇𝜈𝜕𝛼
[
ℎK
𝜇𝛽 + 𝜕𝜇Φ𝛽

]
𝜕𝛽

[
ℎK
𝜈𝛼 + 𝜕𝜈Φ𝛼

]
+ 4𝜕𝜇Φ𝜈𝜕𝛼ℎK

𝜇𝛽𝜕
𝛽
[
ℎK
𝜈𝛼 + 𝜕𝜈Φ𝛼

]
+ 2𝜕𝜇𝜕𝜈𝜙𝜕𝛼ℎK

𝜇𝛽𝜕
𝛽ℎK

𝜈𝛼 + 𝜕𝜇
4∑︁
𝑖=1
𝑉

(𝑖)
𝜇 .

The combination of terms that contain a scalar field can be transformed to

𝐿
(3)
𝐺

⊃ 2
[
ℎK𝜇𝜈𝜕𝜇ℎ

K
𝛼𝛽𝜕𝜈𝜕

𝛼𝜕𝛽𝜙 + 𝜕𝜇𝜕𝜈𝜙𝜕𝛼ℎK
𝜇𝛽𝜕

𝛽ℎK
𝜈𝛼

]
= 𝜕𝛽𝑉

(5)
𝛽

− 2𝜕𝛼𝜕𝛽ℎK
𝜇𝛽ℎ

K𝛼𝜈𝜕𝜈𝜕
𝜇𝜙,

with 𝑉 (5)
𝛽

defined by 𝜕𝛽𝑉 (5)
𝛽

= 2𝜕𝛽
[
𝜕𝛼ℎ

K
𝜇𝛽
ℎK𝛼𝜈𝜕𝜈𝜕

𝜇𝜙

]
. Next, we collect the terms with

two Φ𝜇’s and one ℎK
𝛼𝛽

,

𝐿
(3)
𝐺

⊃ 2ℎK𝜇𝜈𝜕𝜇𝜕𝛼Φ𝛽𝜕𝜈𝜕
𝛽Φ𝛼 + 2ℎK𝜇𝜈𝜕𝛼𝜕𝜇Φ𝛽𝜕

𝛽𝜕𝜈Φ𝛼 + 4𝜕𝜇Φ𝜈𝜕𝛼ℎK
𝜇𝛽𝜕

𝛽𝜕𝜈Φ𝛼

= 𝜕𝛼𝑉
(6)
𝛼 − 4𝜕𝛽𝜕𝜈 (𝜕Φ)𝜕𝜇Φ𝛽ℎ

K
𝜇𝜈,

where 𝑉 (6)
𝛼 is defined by 𝜕𝛼𝑉 (6)

𝛼 = 4𝜕𝛼
[
𝜕𝛽𝜕𝜈Φ𝛼𝜕

𝜇Φ𝛽ℎ
K
𝜇𝜈

]
. Finally, we collect the terms

with one Φ𝜇 and two ℎK
𝛼𝛽

’s,

𝐿
(3)
𝐺

⊃ 2ℎK𝜇𝜈𝜕𝜇ℎ
K
𝛼𝛽𝜕𝜈𝜕

𝛼Φ𝛽 + 2ℎK𝜇𝜈𝜕𝜇𝜕𝛼Φ𝛽𝜕𝜈ℎ
K𝛼𝛽 + 2ℎK𝜇𝜈𝜕𝛼ℎK

𝜇𝛽𝜕
𝛽𝜕𝜈Φ𝛼

+ 2ℎK𝜇𝜈𝜕𝛼𝜕𝜇Φ𝛽𝜕
𝛽ℎK

𝜈𝛼 + 4𝜕𝜇Φ𝜈𝜕𝛼ℎK
𝜇𝛽𝜕

𝛽ℎK
𝜈𝛼

= 𝜕𝛼𝑉
(7)
𝛼 − 2ℎK𝜇𝜈ℎK

𝜇𝛽𝜕
𝛽𝜕𝜈 (𝜕Φ) − 4𝜕𝜇𝜕𝛼ℎK

𝛼𝛽𝜕
𝜈Φ𝛽ℎK

𝜇𝜈,

where 𝑉 (7)
𝛼 is defined by 𝜕𝛼𝑉 (7)

𝛼 = 2𝜕𝛼
[
ℎK𝜇𝜈ℎK

𝜇𝛽
𝜕𝛽𝜕𝜈Φ𝛼 + 2𝜕𝜇ℎK

𝛼𝛽
𝜕𝜈Φ𝛽ℎK

𝜇𝜈

]
. Combin-

ing all transformations that we have performed, we obtain

𝐿
(3)
𝐺

= 𝐿
𝐾,(3)
𝐺

+ 𝜕𝜇
7∑︁
𝑖=1
𝑉

(𝑖)
𝜇 − 2ℎK𝜇𝜈ℎK

𝜇𝛽𝜕
𝛽𝜕𝜈 (𝜕Φ)

− 4𝜕𝜇
[(
𝜕ℎK

)
𝛽
+ 𝜕𝛽 (𝜕Φ)

]
𝜕𝜈Φ𝛽ℎK

𝜇𝜈 − 2𝜕𝛼
(
𝜕ℎK

)
𝜇
ℎK𝛼𝜈𝜕𝜈𝜕

𝜇𝜙,

(A.8)

where 𝐿𝐾,(3)
𝐺

= ℎK𝜇𝜈𝜕𝜇ℎ
K
𝛼𝛽
𝜕𝜈ℎ

K𝛼𝛽 + 2ℎK𝜇𝜈𝜕𝛼ℎK
𝜇𝛽
𝜕𝛽ℎK

𝜈𝛼 is point-localized.

Part 2: Naively, the obstructing terms in Eq. (A.8) imply that 𝐿 (3)
𝐺

is not given by the
sum of a point-localized Lagrangian and a total divergence. However, they could be
canceled by terms that vanish exactly on Hilbert space but are non-zero on Krein space.
In Yang-Mills theory, there was only a single term that could possibly have such an effect.
In the present case, there are many more; namely, all possible terms that contain a trace ℎ
or a divergence 𝜕𝜇ℎ𝜇𝜈, modulo total divergences. We give a full list of these terms and
all total divergences that they can form.
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Sector 𝒉𝒉𝝁𝝂𝒉𝜶𝜷: In the sector with exactly one trace field, we find the terms

ℎ𝜕𝜇ℎ𝛼𝛽𝜕
𝛼ℎ𝜇𝛽, (A.9a)

𝜕𝜇ℎℎ𝛼𝛽𝜕
𝛼ℎ𝜇𝛽, (A.9b)

𝜕𝜇𝜕
𝛼ℎℎ𝛼𝛽ℎ

𝜇𝛽, (A.9c)
ℎℎ𝛼𝛽𝜕

𝛼 (𝜕ℎ)𝛽, (A.9d)
ℎ(𝜕ℎ)𝛽 (𝜕ℎ)𝛽, (A.9e)
𝜕𝜇ℎℎ

𝜇𝛽 (𝜕ℎ)𝛽, (A.9f)

From the terms (A.9), we can form three different total divergences:

𝐷1 := 𝜕𝜇
[
ℎℎ𝛼𝛽𝜕

𝛼ℎ𝜇𝛽
]
= (A.9a) + (A.9b) + (A.9d),

𝐷2 := 𝜕𝜇
[
𝜕𝛼ℎℎ𝛼𝛽ℎ

𝜇𝛽
]
= (A.9b) + (A.9c) + (A.9f),

𝐷3 := 𝜕𝜇
[
ℎℎ𝜇𝛽 (𝜕ℎ)𝛽

]
= (A.9d) + (A.9e) + (A.9f).

Sector 𝒉𝒉𝒉𝝁𝝂: In the sector with exactly two trace fields, we find the terms

𝜕𝜇ℎ𝜕𝜈ℎℎ
𝜇𝜈, (A.10a)

𝜕𝜇𝜕𝜈ℎℎℎ
𝜇𝜈, (A.10b)

𝜕𝜇ℎℎ𝜕𝜈ℎ
𝜇𝜈, (A.10c)

ℎℎ𝜕𝜇𝜕𝜈ℎ
𝜇𝜈, (A.10d)

from which we can form the two independent total divergences

𝐷4 := 𝜕𝜇 [ℎ𝜕𝜈ℎℎ𝜇𝜈] = (A.10a) + (A.10b) + (A.10c),
𝐷5 := 𝜕𝜇 [ℎℎ𝜕𝜈ℎ𝜇𝜈] = 2 (A.10c) + (A.10d).

Sector 𝒉𝝁𝝂𝒉𝜿𝝀𝒉𝜶𝜷: In the sector that contains no trace fields but only divergences
(𝜕ℎ)𝜇, we find the terms

𝜕𝜇ℎ
𝜇𝜈ℎ𝛼𝛽𝜕𝜈ℎ𝛼𝛽, (A.11a)

𝜕𝜇𝜕𝜈ℎ
𝜇𝜈ℎ𝛼𝛽ℎ𝛼𝛽, (A.11b)

(𝜕ℎ)𝜇 (𝜕ℎ)𝛽ℎ𝜇𝛽, (A.11c)
(𝜕ℎ)𝜇ℎ𝛼𝛽𝜕𝛼ℎ𝜇𝛽, (A.11d)
𝜕𝛼 (𝜕ℎ)𝜇ℎ𝛼𝛽ℎ𝜇𝛽, (A.11e)

from which we can built the two independent total divergences

𝐷6 := 𝜕𝜇
[
(𝜕ℎ)𝜇ℎ𝛼𝛽ℎ𝛼𝛽

]
= 2 (A.11a) + (A.11b) ,

𝐷7 := 𝜕𝛼
[
(𝜕ℎ)𝜇ℎ𝛼𝛽ℎ𝜇𝛽

]
= (A.11a) + (A.11b) + (A.11c).
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Thus, there are 15 possible terms that vanish on Hilbert space but not on Krein
space and seven total divergences that these terms can form. Therefore, we are left with
eight independent terms that we can choose. The most general term, which can possibly
remove the obstructing terms in Eq. (A.8) can thus be chosen to be of the form

Δ𝐿 := 𝑐1ℎ𝜕𝜇ℎ𝛼𝛽𝜕
𝛼ℎ𝜇𝛽 + 𝑐2𝜕𝜇ℎℎ𝛼𝛽𝜕

𝛼ℎ𝜇𝛽 + 𝑐3ℎ(𝜕ℎ)𝛽 (𝜕ℎ)𝛽

+ 𝑐4𝜕𝜇ℎ𝜕𝜈ℎℎ
𝜇𝜈 + 𝑐5𝜕𝜇ℎℎ(𝜕ℎ)𝜇 + 𝑐6(𝜕ℎ)𝜈ℎ𝛼𝛽𝜕𝜈ℎ𝛼𝛽

+ 𝑐7(𝜕ℎ)𝜇 (𝜕ℎ)𝛽ℎ𝜇𝛽 + 𝑐8(𝜕ℎ)𝜇ℎ𝛼𝛽𝜕𝛼ℎ𝜇𝛽.
(A.12)

All terms in Eq. (A.12) can be expressed in terms of the Krein field and the escort fields
by Eq. (A.2). Ignoring all total divergences (as indicated by the div above the equality
sign), this gives

ℎ𝜕𝜇ℎ𝛼𝛽𝜕
𝛼ℎ𝜇𝛽

div
= ℎK𝜕𝜇ℎ

K
𝛼𝛽𝜕

𝛼ℎK𝜇𝛽 + 2ℎK𝜕𝜇ℎ
K
𝛼𝛽𝜕

𝛼𝜕𝛽Φ𝜇

+ 2(𝜕Φ)𝜕𝜇ℎK
𝛼𝛽𝜕

𝛼ℎK𝜇𝛽 + 4(𝜕Φ)𝜕𝜇ℎK
𝛼𝛽𝜕

𝛼𝜕𝛽Φ𝜇,
(A.13a)

𝜕𝜇ℎℎ𝛼𝛽𝜕
𝛼ℎ𝜇𝛽

div
= 𝜕𝜇ℎ

KℎK
𝛼𝛽𝜕

𝛼ℎK𝜇𝛽 + 𝜕𝜇ℎKℎK
𝛼𝛽𝜕

𝛼𝜕𝛽Φ𝜇

+ 𝜕𝜇ℎK𝜕𝛽Φ𝛼𝜕
𝛼ℎK𝜇𝛽 + 2𝜕𝜇 (𝜕Φ)ℎK

𝛼𝛽𝜕
𝛼ℎK𝜇𝛽

+ 2𝜕𝜇 (𝜕Φ)ℎK
𝛼𝛽𝜕

𝛼𝜕𝛽Φ𝜇 + 2𝜕𝜇 (𝜕Φ)𝜕𝛽Φ𝛼𝜕
𝛼ℎK𝜇𝛽,

(A.13b)

ℎ(𝜕ℎ)𝛽 (𝜕ℎ)𝛽
div
= ℎK(𝜕ℎK)𝛽 (𝜕ℎK)𝛽 + 2ℎK(𝜕ℎK)𝛽𝜕𝛽 (𝜕Φ)
+ 2(𝜕Φ) (𝜕ℎK)𝛽 (𝜕ℎK)𝛽 + 4(𝜕Φ) (𝜕ℎK)𝛽𝜕𝛽 (𝜕Φ),

(A.13c)

𝜕𝜇ℎ𝜕𝜈ℎℎ
𝜇𝜈 div

= 𝜕𝜇ℎ
K𝜕𝜈ℎ

KℎK𝜇𝜈 + 4𝜕𝜇ℎK𝜕𝜈 (𝜕Φ)ℎK𝜇𝜈 + 4𝜕𝜇 (𝜕Φ)𝜕𝜈 (𝜕Φ)ℎK𝜇𝜈, (A.13d)

𝜕𝜇ℎℎ(𝜕ℎ)𝜇
div
= 𝜕𝜇ℎ

KℎK(𝜕ℎK)𝜇 + 2𝜕𝜇ℎK(𝜕Φ) (𝜕ℎK)𝜇

+ 2𝜕𝜇 (𝜕Φ)ℎK(𝜕ℎK)𝜇 + 4𝜕𝜇 (𝜕Φ) (𝜕Φ) (𝜕ℎK)𝜇,
(A.13e)

(𝜕ℎ)𝜈 ((ℎ𝜕𝜈ℎ))
div
= (𝜕ℎK)𝜈ℎK

𝛼𝛽𝜕𝜈ℎ
K𝛼𝛽 + 2(𝜕ℎK)𝜈ℎK

𝛼𝛽𝜕𝜈𝜕
𝛽Φ𝛼

+ 2(𝜕ℎK)𝜈𝜕𝛼Φ𝛽𝜕𝜈ℎ
K𝛼𝛽 + 2(𝜕ℎK)𝜈𝜕𝛼Φ𝛽𝜕𝜈𝜕

𝛽Φ𝛼

+ (𝜕ℎK)𝜈ℎK
𝛼𝛽𝜕𝜈𝜕

𝛽𝜕𝛼𝜙 + (𝜕ℎK)𝜈𝜕𝛼𝜕𝛽𝜙𝜕𝜈ℎK𝛼𝛽,

(A.13f)

(𝜕ℎ)𝜇 (𝜕ℎ)𝛽ℎ𝜇𝛽
div
= (𝜕ℎK)𝜇 (𝜕ℎK)𝛽ℎK

𝜇𝛽 + 2(𝜕ℎK)𝜇 (𝜕ℎK)𝛽𝜕𝜇Φ𝛽

+ (𝜕ℎK)𝜇 (𝜕ℎK)𝛽𝜕𝜇𝜕𝛽𝜙 + 2(𝜕ℎK)𝜇𝜕𝛽 (𝜕Φ)ℎK
𝜇𝛽

+ 2(𝜕ℎK)𝜇𝜕𝛽 (𝜕Φ)𝜕𝜇Φ𝛽 + 𝜕𝜇 (𝜕Φ)𝜕𝛽 (𝜕Φ)ℎK
𝜇𝛽,

(A.13g)
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(𝜕ℎ)𝜇ℎ𝛼𝛽𝜕𝛼ℎ𝜇𝛽
div
= (𝜕ℎK)𝜇ℎK𝛼𝛽𝜕𝛼ℎ

K
𝜇𝛽 + (𝜕ℎK)𝜇ℎK𝛼𝛽𝜕𝛼𝜕𝜇Φ𝛽

+ (𝜕ℎK)𝜇ℎK𝛼𝛽𝜕𝛼𝜕𝛽Φ𝜇 + (𝜕ℎK)𝜇ℎK𝛼𝛽𝜕𝜇𝜕𝛼𝜕𝛽𝜙

+ (𝜕ℎK)𝜇𝜕𝛽Φ𝛼𝜕𝛼ℎ
K
𝜇𝛽 + (𝜕ℎK)𝜇𝜕𝛽Φ𝛼𝜕𝛼𝜕𝜇Φ𝛽

+ 𝜕𝜇 (𝜕Φ)ℎK𝛼𝛽𝜕𝛼ℎ
K
𝜇𝛽 + 𝜕𝜇 (𝜕Φ)ℎK𝛼𝛽𝜕𝛼𝜕𝛽Φ𝜇

+ 𝜕𝜇 (𝜕Φ)𝜕𝛽Φ𝛼𝜕𝛼ℎ
K
𝜇𝛽.

(A.13h)

To show that no linear combination of the correction terms (A.13a)-(A.13h) can remove
the obstructing term in Eq. (A.8), it is enough to consider the sector ℎK

𝜇𝜈ℎ
K
𝜅𝜆
Φ𝛼. We have

𝐿
(3)
𝐺

+ Δ𝐿

���
ℎK
𝜇𝜈ℎ

K
𝜅𝜆
Φ𝛼

div
= Φ𝛼

{
𝜕𝛼 (𝜕ℎK)𝜇 (𝜕ℎK)𝜇 (4 − 4𝑐3 + 4𝑐7 − 𝑐8) (A.14a)

+ 𝜕𝛼𝜕𝜈 (𝜕ℎK)𝜇ℎK
𝜇𝜈 (4 + 2𝑐2 + 2𝑐7 + 𝑐8) (A.14b)

+ 𝜕𝜈 (𝜕ℎK)𝜇𝜕𝛼ℎK
𝜇𝜈 (4 + 2𝑐2 + 2𝑐7) (A.14c)

+ 𝜕𝛼𝜕𝜈ℎK𝜇𝛽𝜕𝛽ℎ
K
𝜇𝜈 (4 − 4𝑐1 + 4𝑐2 + 2𝑐8) (A.14d)

+ 𝜕𝜇 (𝜕ℎK)𝛼 (𝜕ℎK)𝜇 (4 − 2𝑐7 + 3𝑐8) (A.14e)
+ 𝜕𝜇𝜕𝜈 (𝜕ℎK)𝛼ℎK

𝜇𝜈 (4 + 𝑐8) (A.14f)
+ 𝜕𝜇𝜕𝜈ℎK

𝜇𝜈 (𝜕ℎ)𝛼 (2𝑐6 − 2𝑐7 + 2𝑐8) (A.14g)
+ 𝜕𝛽𝜕𝜇𝜕𝜈ℎK

𝜇𝜈ℎ𝛼𝛽 (2𝑐6 + 𝑐8) (A.14h)

+𝑐8𝜕
𝛽 (𝜕ℎK)𝜈𝜕𝜈ℎK

𝛼𝛽

}
. (A.14i)

Line (A.14f) implies 𝑐8 = −4, while line (A.14i) implies 𝑐8 = 0. Both conditions cannot
be satisfied simultaneously, which implies that the obstructions in Eq. (A.8) cannot
be fully resolved. Thus, 𝐿 (3)

𝐺
is not part of an L-V pair, which concludes the proof of

Theorem 3.23 �



Appendix B

Admissible counterterms for the
graviton-photon coupling

This appendix has two aims: First, we give a full list of possible independent quartic
counterterms for the graviton-photon coupling described in Section 6.2, where independent
means that the terms can not be combined to a total divergence. Second, we show that
only three of these possible terms are admissible because they are the only choices whose
string variation with respect to the string variables of the photon potentials form a total
divergence. These terms turn out to be the terms where the string variation with respect
to the photon string variables is identically zero,

𝐹𝜇𝜈𝐹𝜇𝜈ℎ
𝜅𝜆ℎ𝜅𝜆, 𝐹𝜇𝜆𝐹𝜈𝜆ℎ𝜇𝜅ℎ𝜈

𝜅, and 𝐹𝜇𝜈𝐹𝜅𝜆ℎ𝜇𝜅ℎ𝜈𝜆 . (B.1)

As a consequence, the obstruction to second order string independence in Eq. (6.62)
cannot be compensated by an induced Lagrangian.

B.1 A list of independent counterterms
The possible quartic counterterms for the graviton photon coupling must all consist of
two string-localized graviton potentials, two string-localized Maxwell potentials and two
derivatives. We group them into classes with different contraction schemes and for the
sake of readability drop the colons, which indicate Wick-ordering.

Class I: This class has the contraction scheme [𝜕𝜆, 𝜕𝜆, 𝐴𝜅, 𝐴𝜅, ℎ𝜇𝜈, ℎ𝜇𝜈] from which
we can form the three terms

𝜕𝜆𝐴𝜅𝜕
𝜆𝐴𝜅ℎ𝜇𝜈ℎ𝜇𝜈, (B.2a)

𝐴𝜅𝐴
𝜅𝜕𝜆ℎ𝜇𝜈𝜕𝜆ℎ𝜇𝜈, (B.2b)

𝐴𝜅𝜕
𝜆𝐴𝜅ℎ𝜇𝜈𝜕𝜆ℎ𝜇𝜈 . (B.2c)

From these terms, we can form the two total divergences

𝐷I1 := (B.2a) + 2 (B.2c) and 𝐷I2 := (B.2b) + 2 (B.2c), (B.3)

137
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so that there is one independent possible counterterm left. We choose the first term
Eq. (B.2a).

Class II: This class has the contraction scheme [𝜕𝜇, 𝜕𝜇, 𝐴𝜅, 𝐴𝜆, ℎ𝜅𝜚, ℎ𝜆 𝜚] from which
we can form the four terms

𝜕𝜇𝐴𝜆𝜕
𝜇𝐴𝜅ℎ

𝜅𝜚ℎ𝜆 𝜚, (B.4a)
𝜕𝜇𝐴𝜆𝐴𝜅𝜕

𝜇ℎ𝜅𝜚ℎ𝜆 𝜚, (B.4b)
𝜕𝜇𝐴𝜆𝐴𝜅ℎ

𝜅𝜚𝜕𝜇ℎ𝜆 𝜚, (B.4c)
𝐴𝜆𝐴𝜅𝜕

𝜇ℎ𝜅𝜚𝜕𝜇ℎ
𝜆
𝜚 . (B.4d)

From these terms, we can form the two total divergences

𝐷II1 := (B.4a) + (B.4b) + (B.4c) and 𝐷II2 := (B.4b) + (B.4c) + (B.4d), (B.5)

so that there are two independent possible counterterms left. We choose the first two
terms Eq. (B.4a) and Eq. (B.4b).

Class III: This class has the contraction scheme [𝜕𝜇, 𝜕𝜈, 𝐴𝜅, 𝐴𝜅, ℎ𝜇𝜚, ℎ𝜈 𝜚] from which
we can form the four terms

𝜕𝜇𝐴𝜅𝜕𝜈𝐴
𝜅ℎ𝜇𝜚ℎ𝜈 𝜚, (B.6a)

𝐴𝜅𝐴
𝜅𝜕𝜈ℎ

𝜇𝜚𝜕𝜇ℎ
𝜈
𝜚, (B.6b)

𝐴𝜅𝜕𝜇𝐴
𝜅𝜕𝜈ℎ

𝜇𝜚ℎ𝜈 𝜚, (B.6c)
𝐴𝜅𝜕𝜇𝜕𝜈𝐴

𝜅ℎ𝜇𝜚ℎ𝜈 𝜚 . (B.6d)

From these terms, we can form the two total divergences

𝐷III1 := (B.6a) + (B.6c) + (B.6d) and 𝐷III2 := (B.6b) + 2 (B.6c), (B.7)

so that there are two independent possible counterterms left. We choose the first two
terms Eq. (B.6a) and Eq. (B.6b).

Class IV: This class has the contraction scheme [𝜕𝜇, 𝜕𝜈, 𝐴𝜇, 𝐴𝜈, ℎ𝜅𝜆, ℎ𝜅𝜆] from which
we can form the four terms

𝜕𝜈𝐴𝜇𝜕
𝜇𝐴𝜈ℎ𝜅𝜆ℎ𝜅𝜆, (B.8a)

𝐴𝜇𝜕
𝜇𝐴𝜈ℎ𝜅𝜆𝜕𝜈ℎ𝜅𝜆, (B.8b)

𝐴𝜇𝐴
𝜈𝜕𝜇ℎ𝜅𝜆𝜕𝜈ℎ𝜅𝜆, (B.8c)

𝐴𝜇𝐴𝜈ℎ𝜅𝜆𝜕𝜇𝜕𝜈ℎ𝜅𝜆. (B.8d)

From these terms, we can form the two total divergences

𝐷IV1 := (B.8b) + (B.8c) + (B.8d) and 𝐷IV2 := (B.8a) + 2 (B.8b), (B.9)

so that there are two independent possible counterterms left. We choose the first two
terms Eq. (B.8a) and Eq. (B.8c).
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Class V: This class has the contraction scheme [𝜕𝜇, 𝜕𝜈, 𝐴𝜚, 𝐴𝜎, ℎ𝜇𝜈, ℎ𝜚𝜎] from which
we can form the four terms

𝜕𝜇𝐴𝜚𝜕𝜈𝐴𝜎ℎ
𝜇𝜈ℎ𝜚𝜎, (B.10a)

𝜕𝜇𝜕𝜈𝐴𝜚𝐴𝜎ℎ
𝜇𝜈ℎ𝜚𝜎, (B.10b)

𝜕𝜇𝐴𝜚𝐴𝜎ℎ
𝜇𝜈𝜕𝜈ℎ

𝜚𝜎, (B.10c)
𝐴𝜚𝐴𝜎ℎ

𝜇𝜈𝜕𝜇𝜕𝜈ℎ
𝜚𝜎 . (B.10d)

From these terms, we can form the two total divergences

𝐷V1 := (B.10a) + (B.10b) + (B.10c) and 𝐷V2 := (B.10d) + 2 (B.10c), (B.11)

so that there are two independent possible counterterms left. We choose the first two
terms Eq. (B.10a) and Eq. (B.10d).

Class VI: This class has the contraction scheme [𝜕𝜇, 𝜕𝜈, 𝐴𝜚, 𝐴𝜎, ℎ𝜇𝜚, ℎ𝜈𝜎] from which
we can form the six terms

𝜕𝜇𝐴𝜚𝜕𝜈𝐴𝜎ℎ
𝜇𝜚ℎ𝜈𝜎, (B.12a)

𝜕𝜇𝜕𝜈𝐴𝜚𝐴𝜎ℎ
𝜇𝜚ℎ𝜈𝜎, (B.12b)

𝜕𝜇𝐴𝜚𝐴𝜎𝜕𝜈ℎ
𝜇𝜚ℎ𝜈𝜎, (B.12c)

𝐴𝜚𝐴𝜎𝜕𝜈ℎ
𝜇𝜚𝜕𝜇ℎ

𝜈𝜎, (B.12d)
𝐴𝜚𝜕𝜇𝐴𝜎𝜕𝜈ℎ

𝜇𝜚ℎ𝜈𝜎, (B.12e)
𝜕𝜈𝐴𝜚𝜕𝜇𝐴𝜎ℎ

𝜇𝜚ℎ𝜈𝜎 . (B.12f)

From these terms, we can form the three total divergences

𝐷VI1 := (B.12a) + (B.12b) + (B.12c),
𝐷VI2 := (B.12b) + (B.12e) + (B.12f),
𝐷VI3 := (B.12c) + (B.12d) + (B.12e),

(B.13)

so that there are three independent possible counterterms left. We choose the terms
Eq. (B.12a), Eq. (B.12d) and Eq. (B.12f).

Class VII: The last class has the contraction scheme [𝜕𝜇, 𝜕𝜈, 𝐴𝜈, 𝐴𝜅, ℎ𝜇𝜆, ℎ𝜅𝜆] from
which we can form the nine terms

𝜕𝜇𝐴
𝜈𝐴𝜅𝜕𝜈ℎ

𝜇𝜆ℎ𝜅𝜆, (B.14a)
𝜕𝜇𝐴

𝜈𝜕𝜈𝐴𝜅ℎ
𝜇𝜆ℎ𝜅𝜆, (B.14b)

𝜕𝜇𝐴
𝜈𝐴𝜅ℎ

𝜇𝜆𝜕𝜈ℎ
𝜅
𝜆, (B.14c)

𝐴𝜈𝜕𝜇𝐴𝜅𝜕𝜈ℎ
𝜇𝜆ℎ𝜅𝜆, (B.14d)

𝐴𝜈𝜕𝜇𝐴𝜅ℎ
𝜇𝜆𝜕𝜈ℎ

𝜅
𝜆, (B.14e)

𝐴𝜈𝜕𝜇𝜕𝜈𝐴𝜅ℎ
𝜇𝜆ℎ𝜅𝜆, (B.14f)



140 Admissible counterterms for the graviton-photon coupling

𝐴𝜈𝐴𝜅𝜕𝜈ℎ
𝜇𝜆𝜕𝜇ℎ

𝜅
𝜆, (B.14g)

𝐴𝜈𝐴𝜅ℎ
𝜇𝜆𝜕𝜇𝜕𝜈ℎ

𝜅
𝜆, (B.14h)

𝐴𝜈𝜕𝜈𝐴𝜅ℎ
𝜇𝜆𝜕𝜇ℎ

𝜅
𝜆. (B.14i)

From these terms, we can form the six total divergences

𝐷VII1 := (B.14a) + (B.14b) + (B.14c),
𝐷VII2 := (B.14d) + (B.14e) + (B.14f),
𝐷VII3 := (B.14c) + (B.14e) + (B.14h),
𝐷VII4 := (B.14a) + (B.14d) + (B.14g),
𝐷VII5 := (B.14b) + (B.14f) + (B.14i),
𝐷VII6 := (B.14g) + (B.14h) + (B.14i).

(B.15)

However, not all of the divergences 𝐷VII1 to 𝐷VII6 are independent. To see this, note that
Eq. (B.15) can be interpreted as the linear system of equations (after identifying any total
divergence with 0)

©­­­­­­­«

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 1 0 1 0 0 1 0
1 0 0 1 0 0 1 0 0
0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 1 1 1

ª®®®®®®®¬

©­­­­­­­­­­­­­«

(B.14a)
(B.14b)
(B.14c)
(B.14d)
(B.14e)
(B.14f)
(B.14g)
(B.14h)
(B.14i)

ª®®®®®®®®®®®®®¬
= 0. (B.16)

It is clear that the matrix in Eq. (B.16) has rank 5 because the sum of the first, second
and sixth row equals the sum of the remaining rows. Thus, there are four independent
possible counterterms in this class. We choose Eq. (B.14a), Eq. (B.14b), Eq. (B.14e) and
Eq. (B.14g).

Summing everything up, we found that the most general quartic counterterm is of the
form

Δ𝐿 = 𝑐I 𝜕𝜆𝐴𝜅𝜕
𝜆𝐴𝜅ℎ𝜇𝜈ℎ𝜇𝜈 + 𝑐II1 𝜕𝜇𝐴𝜆𝜕

𝜇𝐴𝜅ℎ
𝜅𝜚ℎ𝜆 𝜚

+ 𝑐II2 𝜕𝜇𝐴𝜆𝐴𝜅𝜕
𝜇ℎ𝜅𝜚ℎ𝜆 𝜚 + 𝑐III1 𝜕𝜇𝐴𝜅𝜕𝜈𝐴

𝜅ℎ𝜇𝜚ℎ𝜈 𝜚

+ 𝑐III2 𝐴𝜅𝐴
𝜅𝜕𝜈ℎ

𝜇𝜚𝜕𝜇ℎ
𝜈
𝜚 + 𝑐IV1 𝜕𝜈𝐴𝜇𝜕

𝜇𝐴𝜈ℎ𝜅𝜆ℎ𝜅𝜆

+ 𝑐IV2 𝐴𝜇𝐴
𝜈𝜕𝜇ℎ𝜅𝜆𝜕𝜈ℎ𝜅𝜆 + 𝑐V1 𝜕𝜇𝐴𝜚𝜕𝜈𝐴𝜎ℎ

𝜇𝜈ℎ𝜚𝜎

+ 𝑐V2 𝐴𝜚𝐴𝜎ℎ
𝜇𝜈𝜕𝜇𝜕𝜈ℎ

𝜚𝜎 + 𝑐VI1 𝜕𝜇𝐴𝜚𝜕𝜈𝐴𝜎ℎ
𝜇𝜚ℎ𝜈𝜎

+ 𝑐VI2 𝐴𝜚𝐴𝜎𝜕𝜈ℎ
𝜇𝜚𝜕𝜇ℎ

𝜈𝜎 + 𝑐VI3 𝜕𝜈𝐴𝜚𝜕𝜇𝐴𝜎ℎ
𝜇𝜚ℎ𝜈𝜎

+ 𝑐VII1 𝜕𝜇𝐴
𝜈𝐴𝜅𝜕𝜈ℎ

𝜇𝜆ℎ𝜅𝜆 + 𝑐VII2 𝜕𝜇𝐴
𝜈𝜕𝜈𝐴𝜅ℎ

𝜇𝜆ℎ𝜅𝜆

+ 𝑐VII3 𝐴
𝜈𝜕𝜇𝐴𝜅ℎ

𝜇𝜆𝜕𝜈ℎ
𝜅
𝜆 + 𝑐VII4 𝐴

𝜈𝐴𝜅𝜕𝜈ℎ
𝜇𝜆𝜕𝜇ℎ

𝜅
𝜆

(B.17)

and hence has sixteen free parameters.
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B.2 Constraints due to string independence
The only string dependence of cubic coupling :ℎ𝜇𝜈𝑇𝐹𝐹𝜇𝜈 : appears in the graviton potential
ℎ𝜇𝜈 because the Maxwell stress energy tensor is entirely built from the field strength and
not from the photon potential itself. Consequently, the term

2𝑖𝐹𝜚𝜆𝐹𝜎𝜆𝑤𝜈
[
𝜕𝜈ℎ′𝜚𝜎 − 2𝜕 𝜚ℎ′𝜈𝜎

]
, (B.18)

which obstructs second order string independence, only consists of the Maxwell field
strength, the graviton potential and the auxiliary field 𝑤𝜈. In order to achieve string
independence at second order and tree level, the term Eq. (B.18) must be canceled by
the string variation of an induced Lagrangian. We have derived in the last Section B.1
that the most general such induced Lagrangian is of the form as given by Eq. (B.17).
However, the induced Lagrangian is further constrained. Its string variation must cancel
the obstruction (B.18) but otherwise form a total divergence so that it does not cause new
obstructions to string independence. In particular, all terms where the auxiliary field 𝑢,
which is related to the photon potential, appears must form a total divergence separately.
In the following, we thus compute the part of the string variation of Δ𝐿 from Eq. (B.17)
that contains an auxiliary field 𝑢 in order to further constrain the form of an admissible
induced Lagrangian. This analysis can be done sectorwise by considering the different
contractions of the graviton potentials separately.

Remark B.1. Before starting the computations, we give a short explanation. To implement
the string independence principle, one should make each potential dependent on its own
string variable and then compute the string variation with respect to one string variable
of the symmetrized expression – as we have done for the examples discussed in Chapter
6. To reduce the complexity of the computations, we slightly simplify this procedure.
Formally, we make all potentials depend on the same string variable and compute the
string variation with respect to this single variable. In the present context, this procedure
leads to the same result.1 Qualitatively, this can be understood by realizing that we
neither have to deal with contractions 𝑒𝜇𝐴𝜇 (𝑥, 𝑒) = 0 while 𝑒1𝜇𝐴

𝜇 (𝑥, 𝑒2) ≠ 0 nor with
propagators or string-integrated Dirac deltas at the present level. In general, the result
might not be the same.

Additionally, we remark that we continue to drop the colons that indicate normal-
ordering.

Sector (i): This is the sector where the graviton potentials are fully contracted among
each other. The respective terms in the induced Lagrangian Eq. (B.17) are

Δ𝐿(i) = 𝑐I 𝜕𝜆𝐴𝜅𝜕
𝜆𝐴𝜅ℎ𝜇𝜈ℎ𝜇𝜈 + 𝑐IV1 𝜕𝜈𝐴𝜇𝜕

𝜇𝐴𝜈ℎ𝜅𝜆ℎ𝜅𝜆 + 𝑐IV2 𝐴𝜇𝐴
𝜈𝜕𝜇ℎ𝜅𝜆𝜕𝜈ℎ𝜅𝜆. (B.19)

1The reader, who is not convinced, may repeat our derivations in the remaining part of this section in
the proper way. This, however, is a long and cumbersome task that fills too much space to be included in
this dissertation.
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We have

𝑑𝑒 Δ𝐿(i)
��
𝑢
= 2𝑐I 𝜕𝜆𝜕𝜅𝑢𝜕

𝜆𝐴𝜅ℎ𝜇𝜈ℎ𝜇𝜈 + 2𝑐IV1 𝜕𝜈𝜕𝜇𝑢𝜕
𝜇𝐴𝜈ℎ𝜅𝜆ℎ𝜅𝜆

+ 2𝑐IV2 𝜕𝜇𝑢𝐴
𝜈𝜕𝜇ℎ𝜅𝜆𝜕𝜈ℎ𝜅𝜆

div
= 2𝑢

{
2(𝑐I + 𝑐IV1) 𝜕𝜆𝐴𝜅

[
𝜕𝜆ℎ

𝜇𝜈𝜕𝜅ℎ𝜇𝜈 + ℎ𝜇𝜈𝜕𝜆𝜕𝜅ℎ𝜇𝜈
]

−𝑐IV2
[
𝜕𝜇𝐴

𝜈𝜕𝜇ℎ𝜅𝜆𝜕𝜈ℎ𝜅𝜆 + 𝐴𝜈𝜕𝜇ℎ𝜅𝜆𝜕𝜈𝜕𝜇ℎ𝜅𝜆
]}
,

(B.20)

which implies

𝑐IV1 = −𝑐I and 𝑐IV2 = 0. (B.21)

Thus, the string independence principle implies that

Δ𝐿(i) = 𝑐I
[
𝜕𝜆𝐴𝜅𝜕

𝜆𝐴𝜅ℎ𝜇𝜈ℎ𝜇𝜈 − 𝜕𝜈𝐴𝜇𝜕𝜇𝐴𝜈ℎ𝜅𝜆ℎ𝜅𝜆
]
=

1
2
𝑐I𝐹

𝜅𝜆𝐹𝜅𝜆ℎ
𝜇𝜈ℎ𝜇𝜈 . (B.22)

Sector (ii): This sector comprises of all terms in Δ𝐿 where there are no contractions
between the graviton potentials. These terms are

Δ𝐿(ii) = 𝑐V1 𝜕𝜇𝐴𝜚𝜕𝜈𝐴𝜎ℎ
𝜇𝜈ℎ𝜚𝜎 + 𝑐V2 𝐴𝜚𝐴𝜎ℎ

𝜇𝜈𝜕𝜇𝜕𝜈ℎ
𝜚𝜎

+ 𝑐VI1 𝜕𝜇𝐴𝜚𝜕𝜈𝐴𝜎ℎ
𝜇𝜚ℎ𝜈𝜎 + 𝑐VI2 𝐴𝜚𝐴𝜎𝜕𝜈ℎ

𝜇𝜚𝜕𝜇ℎ
𝜈𝜎

+ 𝑐VI3 𝜕𝜈𝐴𝜚𝜕𝜇𝐴𝜎ℎ
𝜇𝜚ℎ𝜈𝜎

(B.23)

with

𝑑𝑒 Δ𝐿(ii)
��
𝑢
= 2𝑐V1 𝜕𝜇𝜕𝜚𝑢𝜕𝜈𝐴𝜎ℎ

𝜇𝜈ℎ𝜚𝜎 + 2𝑐V2 𝜕𝜚𝑢𝐴𝜎ℎ
𝜇𝜈𝜕𝜇𝜕𝜈ℎ

𝜚𝜎

+ 2𝑐VI1 𝜕𝜇𝜕𝜚𝑢𝜕𝜈𝐴𝜎ℎ
𝜇𝜚ℎ𝜈𝜎 + 2𝑐VI2 𝜕𝜚𝑢𝐴𝜎𝜕𝜈ℎ

𝜇𝜚𝜕𝜇ℎ
𝜈𝜎

+ 2𝑐VI3 𝜕𝜈𝜕𝜚𝑢𝜕𝜇𝐴𝜎ℎ
𝜇𝜚ℎ𝜈𝜎

div
= 2𝑢

{
𝜕𝜇𝜕𝜈𝜕𝜚𝐴𝜎ℎ

𝜇𝜈ℎ𝜚𝜎 (𝑐V1 + 𝑐VI1 + 𝑐VI3)
+ 𝜕𝜇𝜕𝜈𝐴𝜎𝜕𝜚ℎ𝜇𝜈ℎ𝜚𝜎 (𝑐V1 + 𝑐VI3)
+ 𝜕𝜈𝜕𝜚𝐴𝜎ℎ𝜇𝜈𝜕𝜇ℎ𝜚𝜎 (𝑐V1 + 2𝑐VI1 + 𝑐VI3)
+ 𝜕𝜈𝐴𝜎𝜕𝜚ℎ𝜇𝜈𝜕𝜇ℎ𝜚𝜎 (𝑐V1 − 𝑐VI2 + 𝑐VI3)
+ 𝜕𝜚𝐴𝜎ℎ𝜇𝜈𝜕𝜇𝜕𝜈ℎ𝜚𝜎 (−𝑐V2 + 𝑐VI1)
+𝐴𝜎𝜕𝜚ℎ𝜇𝜈𝜕𝜇𝜕𝜈ℎ𝜚𝜎 (−𝑐V2 − 𝑐VI2)

}
.

(B.24)

This yields

𝑐V2 = 𝑐VI1 = 𝑐VI2 = 0 and 𝑐VI3 = −𝑐V1 (B.25)

so that the string independence principle implies

Δ𝐿(ii) = 𝑐V1
[
𝜕𝜇𝐴𝜚𝜕𝜈𝐴𝜎 − 𝜕𝜚𝐴𝜇𝜕𝜈𝐴𝜎

]
ℎ𝜇𝜈ℎ𝜚𝜎 =

1
2
𝑐V1 𝐹𝜇𝜚𝐹𝜈𝜎ℎ

𝜇𝜈ℎ𝜚𝜎 . (B.26)



Constraints due to string independence 143

Sector (iii): In this last sector, one index of one graviton potential is contracted with
one index of the second graviton potential. The corresponding terms in Δ𝐿 are given by

Δ𝐿(iii) = 𝑐II1 𝜕𝜇𝐴𝜆𝜕
𝜇𝐴𝜅ℎ

𝜅𝜚ℎ𝜆 𝜚 + 𝑐II2 𝜕𝜇𝐴𝜆𝐴𝜅𝜕
𝜇ℎ𝜅𝜚ℎ𝜆 𝜚

+ 𝑐III1 𝜕𝜇𝐴𝜅𝜕𝜈𝐴
𝜅ℎ𝜇𝜚ℎ𝜈 𝜚 + 𝑐III2 𝐴𝜅𝐴

𝜅𝜕𝜈ℎ
𝜇𝜚𝜕𝜇ℎ

𝜈
𝜚

+ 𝑐VII1 𝜕𝜇𝐴
𝜈𝐴𝜅𝜕𝜈ℎ

𝜇𝜆ℎ𝜅𝜆 + 𝑐VII2 𝜕𝜇𝐴
𝜈𝜕𝜈𝐴𝜅ℎ

𝜇𝜆ℎ𝜅𝜆

+ 𝑐VII3 𝐴
𝜈𝜕𝜇𝐴𝜅ℎ

𝜇𝜆𝜕𝜈ℎ
𝜅
𝜆 + 𝑐VII4 𝐴

𝜈𝐴𝜅𝜕𝜈ℎ
𝜇𝜆𝜕𝜇ℎ

𝜅
𝜆.

(B.27)

We have

𝑑𝑒 Δ𝐿(iii)
��
𝑢
= 2𝑐II1 𝜕𝜇𝜕𝜆𝑢𝜕

𝜇𝐴𝜅ℎ
𝜅𝜚ℎ𝜆 𝜚 + 𝑐II2 𝜕𝜇𝜕𝜆𝑢𝐴𝜅𝜕

𝜇ℎ𝜅𝜚ℎ𝜆 𝜚

+ 𝑐II2 𝜕𝜇𝐴𝜆𝜕𝜅𝑢𝜕
𝜇ℎ𝜅𝜚ℎ𝜆 𝜚 + 2𝑐III1 𝜕𝜇𝜕𝜅𝑢𝜕𝜈𝐴

𝜅ℎ𝜇𝜚ℎ𝜈 𝜚

+ 2𝑐III2 𝜕𝜅𝑢𝐴
𝜅𝜕𝜈ℎ

𝜇𝜚𝜕𝜇ℎ
𝜈
𝜚 + 𝑐VII1 𝜕𝜇𝜕

𝜈𝑢𝐴𝜅𝜕𝜈ℎ
𝜇𝜆ℎ𝜅𝜆

+ 𝑐VII1 𝜕𝜇𝐴
𝜈𝜕𝜅𝑢𝜕𝜈ℎ

𝜇𝜆ℎ𝜅𝜆 + 𝑐VII2 𝜕𝜇𝜕
𝜈𝑢𝜕𝜈𝐴𝜅ℎ

𝜇𝜆ℎ𝜅𝜆

+ 𝑐VII2 𝜕𝜇𝐴
𝜈𝜕𝜈𝜕𝜅𝑢ℎ

𝜇𝜆ℎ𝜅𝜆 + 𝑐VII3 𝜕
𝜈𝑢𝜕𝜇𝐴𝜅ℎ

𝜇𝜆𝜕𝜈ℎ
𝜅
𝜆

+ 𝑐VII3 𝐴
𝜈𝜕𝜇𝜕𝜅𝑢ℎ

𝜇𝜆𝜕𝜈ℎ
𝜅
𝜆 + 𝑐VII4 𝜕

𝜈𝑢𝐴𝜅𝜕𝜈ℎ
𝜇𝜆𝜕𝜇ℎ

𝜅
𝜆

+ 𝑐VII4 𝐴
𝜈𝜕𝜅𝑢𝜕𝜈ℎ

𝜇𝜆𝜕𝜇ℎ
𝜅
𝜆

div
= 𝑢

{
𝜕𝜇𝜕

𝜅𝐴𝜈𝜕𝜅ℎ
𝜇𝜆ℎ𝜈𝜆 (2𝑐II1 − 𝑐II2 + 𝑐VII1 + 𝑐VII2)

+ 𝜕𝜇𝜕𝜅𝐴𝜈ℎ𝜇𝜆𝜕𝜅ℎ𝜈𝜆 (2𝑐II1 + 𝑐II2 + 𝑐VII2 − 𝑐VII3)
+ 𝜕𝜅𝐴𝜈𝜕𝜅ℎ𝜇𝜆𝜕𝜇ℎ𝜈𝜆 (2𝑐II1 − 𝑐II2 + 𝑐VII1 + 𝑐VII2 − 𝑐VII4)
+ 𝜕𝜅𝐴𝜈ℎ𝜇𝜆𝜕𝜅𝜕𝜇ℎ𝜈𝜆 (2𝑐II1 + 𝑐II2 + 𝑐VII2)
+ 𝜕𝜆𝐴𝜅𝜕𝜇ℎ𝜅𝜚𝜕𝜇ℎ𝜆 𝜚 (𝑐II2 + 𝑐VII1 − 𝑐VII3)
+ 𝐴𝜅𝜕𝜇𝜕𝜆ℎ𝜅𝜚𝜕𝜇ℎ𝜆 𝜚 (𝑐II2 + 𝑐VII1 − 𝑐VII4)
+ 𝜕𝜇𝜕𝜈𝐴𝜅𝜕𝜅ℎ𝜇𝜆ℎ𝜈𝜆 (4𝑐III1 − 𝑐VII1 + 2𝑐VII2 + 𝑐VII3)
+ 𝜕𝜈𝐴𝜅𝜕𝜅ℎ𝜇𝜆𝜕𝜇ℎ𝜈𝜆 (2𝑐III1 + 𝑐VII2 + 𝑐VII3 − 𝑐VII4)
+ 𝜕𝜈𝐴𝜅ℎ𝜇𝜆𝜕𝜅𝜕𝜇ℎ𝜈𝜆 (2𝑐III1 + 𝑐VII2)
+ 𝐴𝜚𝜕 𝜚𝜕𝜇ℎ𝜈𝜅𝜕𝜈ℎ𝜇𝜅 (−4𝑐III2 + 𝑐VII3 − 𝑐VII4)
+𝜕𝜇𝐴𝜈𝜕𝜈𝜕𝜅ℎ𝜇𝜆ℎ𝜅𝜆 (−𝑐VII1 + 𝑐VII3)

}
.

(B.28)

The resulting linear system of equations for the coefficients has the one-parameter space
of solutions given by

𝑐VII2 = −2𝑐II1, 𝑐III1 = 𝑐II1 and 𝑐II2 = 𝑐III2 = 𝑐VII1 = 𝑐VII3 = 𝑐VII4 = 0. (B.29)

Hence, the string independence principle implies

𝐿(iii) = 𝑐II1
[
𝜕𝜇𝐴𝜆𝜕

𝜇𝐴𝜅 − 2𝜕𝜅𝐴𝜇𝜕𝜇𝐴𝜆 + 𝜕𝜅𝐴𝜇𝜕𝜆𝐴𝜇ℎ𝜇𝜚
]
ℎ𝜅𝜚ℎ𝜆 𝜚

= 𝑐II1𝐹
𝜇𝜅𝐹𝜇

𝜆ℎ𝜅𝜚ℎ𝜆 𝜚 .
(B.30)
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Combining the results from all three sectors, we have thus shown that the string
independence principle constrains the form of any possible quartic induced Lagrangian to

Δ𝐿 = 𝑐1 𝐹
𝜅𝜆𝐹𝜅𝜆ℎ

𝜇𝜈ℎ𝜇𝜈 + 𝑐2 𝐹
𝜇𝜅𝐹𝜇

𝜆ℎ𝜅𝜚ℎ𝜆 𝜚 + 𝑐3 𝐹𝜇𝜚𝐹𝜈𝜎ℎ
𝜇𝜈ℎ𝜚𝜎 (B.31)

with three free parameters 𝑐1, 𝑐2 and 𝑐3. In particular, the string variation with respect to
the helicity one field is trivial for any admissible induced term.



Glossary

Abbreviations

AQFT Algebraic quantum field theory
BEG Bogoliubov-Epstein-Glaser prescription [6, 32]
BDF Brouder-Dütsch-Fredenhagen approach, see Section 5.7.4
BRST Becchi-Rouet-Stora-Tyutin method [4, 69]
CP Charge (and) Parity
DVZ van-Dam-Veltman-Zakharov discontinuity [70, 81]
K (index) Krein (indicating that something is defined on Krein space)
NST Nikolov-Stora-Todorov prescription, see Section 5.7.3
QCD Quantum chromodynamics
QED Quantum electrodynamics
QFT Quantum field theory
SD Short distance
SET Stress energy tensor
SI String independence
SLFT String-localized field theory
UV ultraviolet
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Mathematical symbols

det𝑦1...𝑦𝑚 The Gram determinant associated with 𝑦1, . . . , 𝑦𝑚 in R𝑛.
div
= Equality up to a total divergence.
𝔡𝔦𝔳 A special total divergence, see Eq. (3.107).
D(𝑋) The space of compactly supported smooth test functions

over an open set 𝑋 ⊂ R𝑛.
D′(𝑋) The space of distributions over the open set 𝑋 ⊂ R𝑛

and topological dual of D(𝑋).
𝐻 The open subset of spacelike vectors in R1+3 (not to be

confused with the homogeneous distribution from
Theorem 3.17).

𝐻−1 The hyperboloid of spacelike directions 𝑒 with 𝑒2 = −1.
𝐼𝑒 The string integration operator 𝐼𝑒 𝑓 (𝑥) =

∫ ∞
0 𝑑𝑠 𝑓 (𝑥 + 𝑠𝑒).

R≥0 The set of real numbers greater or equal to 0.
R1+3 Minkowski space.
S(R𝑛) The Schwartz space of smooth functions, which together

with all their derivatives decay faster than any polynomial.
S′(R𝑛) The space of tempered distributions over R𝑛 and

topological dual of S(R𝑛).
𝑈 (𝑎,Λ) A representation of the Poincaré group belonging to the

translation vector 𝑎 ∈ R1+3 and the Lorentz matrix Λ.
𝑊𝑚 (𝑥) The scalar Klein-Gordon two-point function associated

to mass 𝑚 ≥ 0.
WF 𝑢 The wavefront set of the (tempered) distribution 𝑢.
〈〈𝜒(𝑥)𝜙(𝑥′)〉〉 The vacuum expectation value of the quantum fields

𝜒(𝑥) and 𝜙(𝑥′).
〈〈𝑇 𝜒(𝑥)𝜙(𝑥′)〉〉 A generic propagator of the quantum fields

𝜒(𝑥) and 𝜙(𝑥′).
〈〈𝑇0𝜒(𝑥)𝜙(𝑥′)〉〉 The kinematic propagator of the quantum fields

𝜒(𝑥) and 𝜙(𝑥′).
[ 𝑓 𝑔] The antisymmetric tensor built from the vectors 𝑓 and 𝑔.
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