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Preface

This is a cumulative thesis consisting of the following two papers.

(1) Farida Enikeeva, Axel Munk, Markus Pohlmann and Frank Werner. Bump detection in the
presence of dependency: does it ease or does it load? Bernoulli, 26(4):3280-3310, 2020. [23]

(2) Markus Pohlmann, Frank Werner and Axel Munk. Minimax detection of localized signals
in statistical inverse problems. arXiv preprint, arXiv:2112.05648. [60]

The overall topic is minimax detection of certain localized signals from data which is either cor-
rupted by non-independent noise or is only an indirect noisy measurent of the signal.

In [23], we suppose that we observe n consecutive samples from a Gaussian process, for example a
time series given by an ARMA(p, q) model, that is stationary except for possible bumps, i.e. short
periods of time of slightly increased or decreased mean. We provide the asymptotic minimax
detection boundary for the problem of detecting such a bump, i.e. the minimal required height
of a bump, such that its presence can be reliably confirmed through statistical testing, as n
becomes large. This corresponds to the problem of detecting rectangular signals from data with
non-independent noise.

In [60], we investigate the detection of localized signals, and linear combinations of such signals,
from indirect and noisy data, i.e. in the context of statistical inverse problems. We are able to derive
upper bounds, lower bounds, and asymptotic results for the corresponding detection boundaries,
and provide examples focusing on the detection of signals that are linear combinations of wavelets
in typical inverse problems, such as numerical differentiation, deconvolution, and the inversion of
the Radon transform.

This thesis is stuctured as follows. We will present a short introduction to the core ideas of minimax
signal detection in Chapter 1. Afterwards, in Chapters 2 and 3 we will provide brief summaries of
the settings and main results of the two papers mentioned above. Each chapter will also include
a discussion. Finally, in Appendices A.1 and A.2 we will present the first paper [23] and the
corresponding supplementary material [24] as published, and in Appendix B we will present the
second paper as it can be found on arxiv.org.

https://arxiv.org
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List of symbols

Numbers

N,Z,R,C Natural numbers (excluding 0), integers, real and complex numbers, resp.
<(z),=(z) Real part and imaginary part, resp., of a complex number z
z̄ Complex conjugate of a complex number z

Matrices

A−1 Inverse of a matrix A
A,AT , AH Complex conjugate, transpose and conjugate transpose, resp., of a matrix A
idn n× n identity matrix

Functions

1S Indicator function of a set S

Spaces

`2 Space of square-summable sequences
L2(X ,Y, ν) Space of functions f : X → Y that are square-integrable w.r.t. ν
‖ · ‖B Norm of a normed space B
〈·, ·〉H Inner product of an inner product space H

Stochastics

E(X) Expected value of a random variable X
N (µ,Σ) Normal distribution with mean µ and covariance matrix Σ

Asymptotics

an = O(bn) ∃n0 ∈ N, C > 0, s.t. |an| ≤ Cbn for n ≥ n0

an = o(bn) an/bn → 0 as n→∞
an - bn ∃n0 ∈ N, s.t. an ≤ bn for n ≥ n0

an ∼ bn ∃C > 0, s.t. lim supn→∞ |an/bn| ≤ C
an � bn an/bn → 1 as n→∞
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Chapter 1

Introduction

Let us assume that we are interested in an unknown mathematical object, which we call f . Certain
properties of f might be known (or assumed to be true) a priori. However, aside from that, all
information about f , that is available to us, consists of measurements contaminated by random
noise. In statistics, a fundamental endeavour is to produce well-founded conclusions (inference)
about such an unknown f , based on the available information, which we call data.

In this thesis, we will typically assume that f is a function, that is an element of some Hilbert
space X (for example a subspace of L2(R)). We assume that the available data is given in the
form of direct measurements (for example samples of f with added random noise, see Chapter
2) or indirect measurements (for example the image of f under some transformation with added
random noise, see Chapter 3). The noise will be assumed to be Gaussian.

In general, we suppose that the data is a random object Yε taking values in some measurable
space Sε, where ε is a parameter which could be understand to quantify the accuracy of the data.
It could, for example, refer to the number of available samples of f (the more the better), or the
noise level (standard deviation) of the added noise (the smaller the better).

Often, the objective is to recover (or estimate) the signal from the available data, i.e. to construct

an estimator f̂ from Yε, such that f̂ is – in some sense – close to f with some probabilistic
guarantee. This is, however, not what this thesis is about, since for the kind of objects we are
interested in, there is an even more fundamental question.

We suppose the following: There is some known reference element f0 ∈ X (which is usually
assumed to be 0 without loss of generality), and it is known that f either coincides with f0 or is
close to f0 in the sense that it deviates from f0 only by some slight contamination, i.e. f = f0 +η,
for some η ∈ X . We call this contamination, given by η, an anomaly. We suppose that it is known
a priori, that only anomalies from certain classes, i.e. subsets of X , can occur.

This motivates the following question, which will be at the center of this thesis: Can we reliably
decide, based on the data Yε, whether an anomaly is in fact present? We may also say that we
are interested in the problem of detecting an anomaly. This problem will be formalized in terms
of a testing problem below (for precise definitions and an overview on the concepts of hypothesis
testing, we refer to Section 1.1).

Note that, loosely speaking, if the set of possible anomalies is very broad, and the data Yε is not
very accurate, then the probability that the data seems to indicate the existence of one of those
possible anomalies, when in fact there is none, is increased. Thus, we specify a set Fε, depending
on the parameter ε, that is a collection of – in some sense normalized – elements of X , and we
restrict ourselves to testing only for anomalies of the form η = δu, where u ∈ Fε and δ is a (real
or complex) scalar. In other words, we consider the testing problem

H0 : f = f0 against H1,ε : f = f0 + δu for some u ∈ Fε, |δ| > ρε, (1.1)

based on the data Yε, where ρε is a positive real number.

1



2 On minimax detection of localized signals from indirect or correlated data

The answer to the question whether such an anomaly can be reliably detected, will be given in
terms of ρε. If ρε is large enough such that tests with small error probabilities (see Section 1.1)
for the testing problem (1.1) exist, then we would conclude that anomalies of the form η = δu
with u ∈ Fε and |δ| > ρε can be reliably detected.

We will from now on assume that f0 = 0, and call f the signal.

1.1 Testing and distinguishability

Here, we present an abridged overview of the most important notions of testing and (minimax)
distinguishability, which will be sufficient in the context of this thesis. For a thorough discussion
we refer to the seminal book by Yuri I. Ingster and Irina Suslina [40].

In the above testing problem (1.1), we wish to test the hypothesis H0 against the alternative
H1,ε, which means making an educated guess (based on the data Yε) about the correctness of the
hypothesis when compared to the alternative, while keeping the error of wrongly deciding against
H0 under control. A (non-randomized) test for the testing problem (1.1) is a measurable function
of the data Yε given by

φε : Sε → {0, 1}.

The test φ can be understood as a decision rule in the following sense: If φ(Yε) = 0, the hypothesis
is accepted. If φ(Yε) = 1, the hypothesis is rejected in favor of the alternative.

Note that, in general, the distribution of Yε depends on f . We denote the distribution of Yε by Pf .
In particular, if H0 is true, then Yε has the distribution P0. If H0 is true, i.e. f = 0, but φ(Yε) = 1,
we call this a type I error (the hypothesis is rejected although it is true). The probability to make
a type I error is

αε(φ) := P0(φ(Yε) = 1).

On the other hand, the alternative might be true, but φ(Yε) = 0. We call this a type II error
(the hypothesis is accepted although the alternative is true). Let us, for simplicity, introduce the
notation Fε(ρε) = {δu : u ∈ Fε, |δ| ≥ ρε}, i.e. the set of all possible anomalies that make up the
alternative H1,ε. Note that the alternative H1,ε is composite, i.e. does not only consist of only
one element, and the probability to make a type II error will in general depend on the specific
element f ∈ Fε(ρε). We denote the type II error probability, given that a specific f ∈ Fε(ρε) is
the true signal, by

βε(φ, f) := Pf (φ(Yε) = 0), f ∈ Fε(ρε),

For such composite alternatives we consider the worst case error given by the maximum type II
error probability over Fε(ρε) for our analysis. We define

γε = γε(ρε) := inf
φ∈Φε

[
αε(φ) + sup

f∈Fε(ρε)
βε(φ, f)

]
,

where Φε is the set of all tests for the testing problem “H0 against H1,ε”. If γε is small, then that
means that there is a test for the testing problem “H0 against H1,ε” with both small type I and
type II error. We would then conclude, as discussed above, that anomalies of the form η = δu
with u ∈ Fε and |δ| > ρε can be reliably detected (in the minimax sense).

Asymptotics

In this thesis, we will usually (although not exclusively) consider an asymptotic setting (which,
depending on the context, means either that ε → ∞ or ε → 0). We suppose that a family (Fε)ε
of subsets of X and a family (ρε)ε of positive real numbers are given, and we consider the family
of alternatives (H1,ε)ε, each defined as above.
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We say that the hypothesis H0 is asymptotically distinguishable (in the minimax sense) from the
family of alternatives (H1,ε)ε when, asymptotically, γε → 0. If γε → 1, we say that they are
indistinguishable.

For a prescribed family (Fε)ε, we are interested in determining the smallest possible values ρε,
such that H0 and H1,ε are still asymptotically distinguishable, if possible. Assume that families
(ρUε )ε and (ρLε )ε exist, that satisfy

γ(ρε)→ 0 if ρε % ρUε , and γ(ρε)→ 1 if ρε - ρLε ,

as σ → 0. If, additionally, ρLε � ρUε , we call a family (ρ∗ε)ε that satisfies ρLε - ρ∗ε - ρUε , the (asymp-
totic) minimax detection boundary (or threshold). We may say that (ρ∗ε)ε separates detectable and
undetectable signals.

It is, however, not always possible to find such a sharp threshold. If the family (ρ∗ε)ε only satisfies
the weaker conditions

γ(ρε)→ 0 if ρε/ρ
∗
ε →∞, and γ(ρε)→ 1 if ρε/ρ

∗
ε → 0,

we call it the separation rate of the family of testing problems “H0 against H1,ε”.

1.2 Aim of the study

This thesis presents the results of two papers, both dealing with very different instances of the
testing problem introduced above, and both containing aspects that, to the best of our knowledge,
have not been at the center of the investigation before.

First, we consider the problem of detecting anomalies given by bumps (by which we mean rectan-
gular functions) within a signal, from a collection of samples of that signal contaminated by non-
independent Gaussian noise. We present the minimax detection boundary and discuss, whether
the dependence of the observations makes the detection of bumps easier or harder.

Second, we consider the problem of detecting localized anomalies, given for example by collections
of wavelets or linear combinations of wavelets, from indirect data. While the detection of signals
from indirect data (i.e. in the context of inverse problems) has been investigated before, to the
best of our knowledge, the focus has not been on these kinds of localized signals before. We present
non-asymptotic as well as asymptotic results.

1.3 Related literature

We refer to the subsequent chapters 2 and 3, as well as the papers [23] and [60], presented in the
Appendix, since those contain their own discussions on relevant literature.

Suffice it to say, that minimax detection of signals from observations contaminated by Gaussian
noise has been investigated for some decades. Some of the most influential classical works include
the seminal series of articles [38] by Yuri Ingster, the results of Ermakov [26], and the book [40]
by Yuri Ingster and Irina Suslina, just to name a few. We also refer to the works of Baraud [5],
who focused on non-asymptotic results.
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Chapter 2

Bump detection in the presence of
dependency

In this chapter, we dicuss the results of the first paper [23]. The paper itself, as well as the
supplementary material [24], are presented, as they are published, in Appendix A.

Suppose that a fragment of a Gaussian process, i.e. a vector of n consecutive samples of said
process, is observed. It is assumed that this process is stationary except that, within short periods
of time, its mean may be slighly increased or decreased. We call such a temporary change in the
mean a bump. Due to the random nature of the process, it is possible that a bump, if its induced
change in the mean (its height) is too small or its duration (its length) is too short, may go by
unnoticed.

We provide the asymptotic minimax detection boundary for such a bump. To be precise, we
investigate the minimal height of a bump, that is required for its detection (in the sense of Chapter
1), under the assumption that only bumps of a certain (known) length can occur.

2.1 Model and problem statement

The above problem can be formalized as follows. Suppose that we observe a triangular array of
random variables, whose rows are given by random vectors Yn = µn + ξn, n ∈ N given by

Yi,n = µi,n + ξi,n, 1 ≤ i ≤ n,

where the noise vector ξn = (ξ1,n, . . . , ξn,n)T represents n consecutive samples from a centered
Gaussian process, i.e. ξn ∼ N (0,Σn) for a sequence of positive definite covariance matrices
Σn ∈ Rn×n. The mean vector µn is either 0 or describes a bump. To that end, we suppose that µn
is obtained from equidistant samples of a function mn : [0, 1]→ R, that is either 0 or of the form
mn = δn1In , where (δn)n∈N is a sequence of real numbers and (In)n∈N is a sequence of intervals
In ⊆ [0, 1], i.e.

µi,n = mn

(
i

n

)
=

{
δn, if i

n ∈ In,
0, else,

for 1 ≤ i ≤ n. We suppose that the covariance matrices Σn, n ∈ N, are known. In fact, we
will consider very specific classes of covariance matrices (see Assumption 2.2 below). In addition,
we suppose that the lengths of the intervals In (denoted by λn := |In|) are known as well. The
question we aim to answer is: What is the minimal size of δn, as n becomes large, such that a
bump of height δn and length λn can be reliably detected. As outlined in Chapter 1, this means
that we need to investigate the sequence of testing problems given by

H0,n : mn = 0 against H1,n : mn = δ1I , for some I ∈ I(λn), |δ| ≥ ∆n, (2.1)

5
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where (∆n)n∈N is a sequence of positive real numbers and I(λn) is the set of all intervals I ⊆ [0, 1]
of length λn, i.e.

I(λn) = {[a, b) : a, b ∈ [0, 1], b− a = λn} .

Now, it becomes clear, how this problem relates to the general framework of minimax signal
detection outlined in Chapter 1. If we set Fn = {1I : I ∈ I(λn)}, then testing problem (2.1)
becomes

H0,n : mn = 0 against H1,n : mn = δu, for some u ∈ Fn, |δ| > ∆n (2.2)

We are interested in finding the asymptotic minimax detection boundary, given by the sequence
(∆∗n)n∈N, as defined in Section 1.1.

Assumptions

Concernig the lengths λn of the intervals In, we suppose the following (cf. Assumption 1 in [23]
(Appendix A.1)).

Assumption 2.1. The sequence (λn)n∈N satisfies the following.

(i) nλn
logn →∞ as n→∞.

(ii) λn = o
(

1
logn

)
as n→∞.

The first part of Assumption 2.1 specifies the minimal length of the interval In. It makes sure
that enough observations lie within the interval In. The second part, which is an upper bound
for the size of the interval In, is a technical requirement. We acknowledge that the necessity of
this assumption may indicate the possibility that the proofs (presented in Appendix A.1) are not
optimized, since this part of Assumption 2.1 is not needed in related literature (see for example
[14]). Note that Assumption 2.1 also implies that λn → 0. While we do not consider the case that
lim infn→∞ λn > 0 here, note that this case has been discussed in the context of similar problems
before (again, see [14]).

We assume that the noise vector ξn is a sample of n consecutive observations from a centered and
stationary Gaussian process Z = (Zt)t∈Z. We denote the autocovariance function of Z by γ, i.e.
γ(k) = E[ZtZt+k] for k ∈ Z. If we assume that the sequence (γ(k))k∈Z is square summable, then
we can define its spectral density g ∈ L2([−1/2, 1/2)) by

g(ν) =
∑
k∈Z

γ(k)e−2πikν , ν ∈ [−1/2, 1/2).

In other words, Σn has entries (Σn)i,j = γ(|i − j|) = g|i−j|, where gk, k ∈ Z are the Fourier
coefficients of g. We assume the following (cf. Assumption 2 in [23] (Appendix A.1)).

Assumption 2.2. The process Z = (Zt)t∈Z has a spectral density g ∈ L2([−1/2, 1/2)), and the
following holds.

(i) g is periodic, i.e. limν→1/2 g(ν) = g(−1/2).

(ii) g is essentially bounded away from 0, i.e. essinfν∈[−1/2,1/2) g(ν) > 0.

(iii) There are constants C > 0 and κ > 0 such that |gk| ≤ C(1 + |k|)−(1+κ).

In the following we will give a brief overview of related literature, and then present our main
results.
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2.2 Literature review

The problem at hand is an instance of the minimax signal detection setting described in Chapter
1, and, as such, it is related to the literature discussed in Section 1.3.

However, this problem is also closely related to the problem of changepoint detection and estima-
tion. The literature is vast, and we can not hope to cover all of it here. We refer to the classical
works of Brodsky and Darkhovsky [11], Carlstein et al. [12] and Csörgő and Horváth [15], just
to name a few. For more recent reviews of methods in changepoint detection and estimation we
refer to Aue and Horváth [3] and Yu [73]. We highlight the results on changepoint detection from
correlated observations by Keshavarz et al. [44], which have been especially helpful for this study.

The problem of detecting a bump has received much less attention. We refer to the results of Jeng
et al. [42] and Chan and Walther [14] (in which the noise is assumed to be i.i.d.), Enikeeva et
al. [25] (in which the noise is assumed to be independent, but heterogeneous). It has also been
discussed in the context of the estimation of piecewise constant functions, see for example Frick
et al. [27] and Pein et al. [58].

For a broader overview and discussions of possible applications, we refer to the paper itself [23]
(see Appendix A.1).

2.3 Main results

The main result of this paper is the following.

Theorem 2.3 (cf. Theorem 1 of [23] (Appendix A.1)). If Assumptions 2.1 and 2.2 hold, then the
asymptotic minimax detection boundary for the testing problem (2.1) satisfies

∆∗n �

√
−2g(0) log λn

nλn
,

as n→∞.

Theorem 2.3 answers the question in the title of this paper. Since g(0) = 1, when Z represents
standard Gaussian white noise (i.e. Σn = idn for all n), it follows from Theorem 2.3 that the
presence of dependency makes detection of a bump easier, when g(0) < 1, and harder, when
g(0) > 1. We continue by discussing our main example.

Application to ARMA(p, q) processes

Suppose that Z is a stationary ARMA(p, q) time series with p ≥ 0, q ≥ 0, i.e. for any t ∈ Z it
holds that

ϕ(B)Zt = θ(B)ζt,

where ζt
i.i.d.∼ N (0, 1) for t ∈ Z, the functions ϕ and θ are polynomials of degree p and q, repectively,

defined by

ϕ(z) = 1 +

p∑
k=1

ϕkz
k, θ(z) = 1 +

q∑
k=1

θkz
k, z ∈ C,

and B is the so-called backshift (or lag) operator, defined by BXt = Xt−1 for a time series (Xt)t∈Z.
Additionally, we suppose that ϕ and θ have no common roots, and that all roots of both ϕ and
θ lie outside of the unit ball. In this case, Theorem 2.3 yields (cf. Theorem 4 of [23] (Appendix
A.1)) that the asymptotic detection boundary satisfies

∆∗n �
∣∣∣∣ 1 +

∑q
k=1 θk

1 +
∑p
k=1 ϕk

∣∣∣∣
√
−2 log λn
nλn

.
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2.4 Discussion

In this paper, we have derived the asymptotic minimax detection boundary for the detection of a
bump in an otherwise stationary Gaussian process. We have shown that the bump height that is
required for (asymptotically) powerful detection depends on the long-run variance of the process.
This means that bumps in processes with long-run variance at most 1 are easier to detect than
in uncorrelated data, and bumps in processes with long-run variance greater than 1 are harder to
detect.

An open question is whether these results can be extended to alternatives allowing for different
bumpt lengths. This should probably be the first step of further research. We also acknowledge
that Assumption 2.2 may be restrictive.

Own contribution

After their preceeding paper on bump detection in heterogeneous Gaussian regression, Farida
Enikeeva, Axel Munk and Frank Werner came up with the idea to this study. I refined the
problem statement and devised the main part of the theory and carried out the corresponding
proofs in cooperation with Farida Enikeeva and under the guidance of Frank Werner and Axel
Munk. Farida Enikeeva then added the section concerning non-asymptotic results, and Frank
Werner conducted simulations to complement the theoretical results. The initial draft of the
paper was written by me and then improved and finished jointly by all authors.



Chapter 3

Minimax detection of localized
signals in statistical inverse
problems

This chapter summarizes the main results of the paper [60] that is presented in its entirety, as
published on arxiv.org, in Appendix B.

Here, we investigate thresholds for the detection of localized signals, such as wavelets, or linear
combinations of such signals, when only the noisy image of the signal under a linear transformation
is available.

3.1 Model and problem statement

Let A : X → Y be a known bounded linear operator between (real or complex) separable Hilbert
spaces X and Y. Suppose that we observe the random process Yσ on Y given by

Yσ = Af + σξ, (3.1)

where σ > 0 represents the noise level, and ξ is a Gaussian white noise on Y (for details see below).
Model (3.1) has to be understood in the sense that, for any h ∈ Y,

Yσ(h) = 〈Af, h〉Y + σξ(h).

The white noise ξ is a linear mapping that satisfies the following.

(1) If X and Y are real Hilbert spaces, we suppose that ξ(h) ∼ N (0, ‖h‖2Y) and E (ξ(h)ξ(h′)) =
〈h, h′〉Y for all h, h′ ∈ Y.

(2) If X and Y are complex Hilbert spaces, instead we suppose that ξ(h) ∼ CN (0, 2‖h‖2Y) and

E(ξ(h)ξ(h′)) = 2〈h, h′〉Y . Here, X ∼ CN (0, 1) means that X is distributed according to the

standard complex normal distribution, i.e. X = X1 + iX2 for some X1, X2
i.i.d.∼ N (0, 1/2).

Model (3.1) can be viewed as a generalization of models that are widely used. For example, if only
operators A : L2([0, 1],R) → L2([0, 1],R) are considered, then (3.1) is equivalent to the process
Xσ on [0, 1] given by

dXσ(t) = (Af)(t) + σdW (t),

where W is a Wiener process. In addition, discretized data of the form Xn
σ ∈ Rn, for some n ∈ N,

given by

Xn
σ,i = (Af)

(
i

n

)
+ σζi,

9
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where ζ1, . . . , ζn
i.i.d.∼ N (0, 1) can be expressed in this model as well. To that end, define Ã := En◦A,

where En is the evaluation operator En : g 7→ (g(1/n), . . . , g(n/n)). Then Ã : L2([0, 1],R) → Rn
is a bounded linear operator, and equipping Rn with the usual euclidean inner product shows that
Xn
σ is equivalent to (3.1) (with A exchanged for Ã). While this looks superficially similar to the

data considered in Chapter 2, note that, in this chapter, asymptotic results are given in terms of
σ → 0 (as opposed to n→∞).

Note that, for any instance of the model (3.1), knowing the process Yσ is equivalent to knowing
the Gaussian sequence yσ = (yσ,i)i∈N given by

yσ,i := Yσ(ei) = 〈Af, ei〉Y + σξi, i ∈ N,

where {ei : i ∈ N} is a Hilbert basis Y, and where, consequently, ξi
i.i.d.∼ N (0, 1) (in the real case)

or ξi
i.i.d.∼ CN (0, 2) (in the complex case). In the paper [60], we will almost exclusively work with

the sequence yσ, since it is usually more convenient.

Aim of this study

We consider the sequence of testing problems as in (1.1), where the noise level σ takes the role of
the parameter ε. However, here we will not restrict ourselves to the analysis of one very specific
class of signals (such as the bumps in Chapter 2). Instead, we suppose that a collection of functions
(uk)k∈I ⊆ X , where I is a countable index set, as well as a family (Iσ)σ>0 of finite subsets of I are
given. We will first consider the problem of detecting a signal that is assumed to be a multiple of
some uk, k ∈ Iσ, based on data given by Yσ, and then, in a second step, consider the problem of
detecting a signal that is assumed to be a linear combination of the uk, k ∈ Iσ. If the collection
of functions (uk)k∈I is – in a sense – well-behaved, we will be able to determine the asymptotic
detection boundary (in the first case) and the separation rate (in the second case), as σ → 0. The
paper [60] will also feature non-asymptotic results, which we will not discuss here, for the sake of
brevity.

We will be especially interested in collections (uk)k∈I that have a particularly useful structure,
such as wavelets or other frames of the space X .

3.2 Literature review

As this is clearly an instance of the general detection problem discussed in Chapter 1, we again
refer to the literature presented in Section 1.3.

The problem of estimating f when only data as in (3.1) is available, is a heavily investigated
field of research. However, since this is not the focus of this thesis, we restrict ourselves to
naming only a few influential works. We refer to the books of Engl, Hanke and Neubauer [22] and
Hanke [32] for an overview of classical regularization methods, and to Donoho [18], Abramovich
and Silverman [1] for approaches involving wavelet decompositions. We also mention the more
recent methods described by Ebner et al. [21] and Hubmer and Ramlau [34], which make use of
more general frame decompositions. The latter has been especially inspiring for this paper.

The literature on minimax testing in settings involving data as in (3.1) is not as vast. We refer
to the works of Ingster, Sapatinas and Suslina [39], Ingster, Laurent and Marteau [37], Laurent,
Loubes and Marteau [48], Marteau and Mathé [53] and Autin et al. [4]. We also mention the
results of Laurent, Loubes and Marteau [49], who consider a setting with heterogeneous variances,
which (as they point out themselves) can be viewed as equivalent to an inverse problem setting.

We refer to the full version of our paper [60] given in Appendix B for more references and discussion
of possible applications.
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3.3 Main results

Alternatives given by finite collections of functions

Given a collection of functions (uk)k∈I , such that Auk 6= 0 for all k ∈ I, and a family (Iσ)σ>0 of
finite subsets of I, we consider the case that the sets Fσ are given by

Fσ =
{
‖Auk‖−1

Y uk : k ∈ Iσ
}
.

Thus, we consider the family of testing problems

H0 : f = 0 against H1,σ : f = δu for some u ∈ Fσ, |δ| > µσ. (3.2)

The main result for this section is the following (cf. Corollary 3.3 of [60]).

Theorem 3.1 (cf. Corollary 3.3 in [60] (Appendix B)). Assume that Nσ = |Iσ| → ∞, and let

Mσ = sup
k∈Iσ

#{k′ ∈ Iσ : <(〈Auk, Auk′〉Y) > 0},

and assume that MσN
−εσ
σ → 0 for a family (εσ)σ>0 that satifies εσ → 0 and εσ

√
logNσ →∞ as

σ → 0. Then the asymptotic detection boundary satisfies

µ∗σ �
√

2σ2 logNσ.

This means that the detection boundary for alternatives given by Fσ(µσ) depends on the inner
products of the images of the uk under A. We discuss a few cases in which Theorem 3.1 is
applicable in Section 3.1 of [60].

Alternatives given by the linear span of collections of functions

As discussed above, we will now consider the case that a signal may be a linear combination of
the uk, k ∈ Iσ. We start this part by assuming the following (cf. Assumption 3.8 in [60]).

Assumption 3.2. There is a collection (vk)k∈I of functions in Y, and a sequence (λk)k∈I of
non-zero complex numbers, such that for any f ∈ X it holds that

〈Af, vk〉Y = λk〈f, uk〉X .

Assumption 3.2 introduces the numbers λk, k ∈ I, which are often called quasi-singular values, as
they are analogous to the singular values of the SVD. This allows us to define

FLσ =

{
f ∈ span{uk : k ∈ Iσ} :

∑
k∈Iσ

|λk〈f, uk〉X |2 = 1

}
.

We consider the family of testing problems given by

H0 : f = 0 against H1,σ : f = δu for some u ∈ FLσ , |δ| > νσ. (3.3)

Assumption 3.2 is enough to derive some non-asymptotic and asymptotic results. For the sake of
brevity, we will omit the discussion of these results here, and instead refer to Section 3.2 of [60].

Instead, we will only present the final result from [60], which gives the separation rate for the
testing problem (3.2), when the system of functions (uk)k∈I behaves especially well. We assume
the following (cf. Assumption 3.12 in [60]).

Assumption 3.3. The collections of functions (vk)k∈I and (ṽk)k∈I defined by ṽk = λ−1
k Auk are

biorthogonal Riesz sequences.

Then the following holds.

Theorem 3.4 (cf. Corollary 3.11 and Lemma 3.13 in [60] (Appendix B)). If Assumptions 3.2
and 3.3 hold, then the separation rate of the testing problem (3.3) satisfies

ν∗σ ∼ σN1/4
σ ,

where Nσ = |Iσ|.



12 On minimax detection of localized signals from indirect or correlated data

Application to the wavelet-vaguelette decomposition

For specific operators A (such as integration, convolution and the Radon transform), it was shown
by David Donoho [18] that, if the collection (uk)k∈I is chosen as a suitable systems of wavelets,
then both Assumptions 3.2 and 3.3 are satisfied (see the discussion in Section 3.2 of [60]). This
means that, in such cases, Theorem 3.4, as well as the other results from Section 3.2 of [60], are
applicable, and yield the separation rate (as well as non-asymptotic results) for the problem of
detecting signals that are linear combinations of certain wavelets.

Note however, that even if A is one of those operators, and (uk)k∈I is chosen as an appropriate
system of wavelets, the conditions of Theorem 3.1 are still not necessarily satisfied (see Lemma
3.7 of [60]).

3.4 Discussion

In this paper we extended the known results for minimax signal detection from indirect and noisy
data. The types of alternatives that we considered here, have, to the best of our knowledge, only
been studied for the case that the collection (uk)k∈I (together with the collection (vk)k∈I and the
sequence (λk)k∈I) forms the singular value decomposition (SVD) of the operator A. We think
that this is interesting, since systems such as wavelets provide greater flexibility than the SVD.

However, these results should be taken with a grain of salt. First, we were not able to present a
widely applicable criterion to decide when the conditions of Theorem 3.1 are satisfied. Second,
given a collection (uk)k∈I , one could imagine other useful types of alternatives based on this
collection, besides those two that we considered here (see for example the types of alternatives
considered in [49]).

We refer to Section 5 of [60] for further discussion.

Connection to the setting from Chapter 2

Let us fix n ∈ N and σ > 0 and assume that we observe the random vector Yn = µn + σξn, with
ξn ∼ N (0,Σn), similar to the setting from Chapter 2. If the matrix Σn is symmetric and positive
definite, then (by pre-whitening) we obtain

Xn := Σ−1/2
n Yn = Σ−1/2

n µn + σζn,

where ζn ∼ N (0, idn). This is, in fact, an instance of the model (3.1). However, recall that asymp-
totic results in this chapter are given in terms of σ → 0 (as opposed to n→∞). Nevertheless, the
non-asymptotic results (see Theorems 3.9 and 3.10 of [60]) are applicable (if a suitable collection
(uk)k∈I that satisfies Assumption 3.2 is available).

Own contribution

I came up with the idea of this study and carried out the analysis by myself under the guidance
of Frank Werner and Axel Munk. Furthermore, I performed the simulations, and wrote the
manuscript by myself, supported through discussions and helpful comments by Frank Werner and
Axel Munk.
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Bump detection in the presence of
dependency: Does it ease or does
it load?
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Abstract

We provide the asymptotic minimax detection boundary for a bump, i.e. an abrupt change, in the
mean function of a stationary Gaussian process. This will be characterized in terms of the asymp-
totic behavior of the bump length and height as well as the dependency structure of the process.
A major finding is that the asymptotic minimax detection boundary is generically determined
by the value of its spectral density at zero. Finally, our asymptotic analysis is complemented
by non-asymptotic results for AR(p) processes and confirmed to serve as a good proxy for finite
sample scenarios in a simulation study. Our proofs are based on laws of large numbers for non-
independent and non-identically distributed arrays of random variables and the asymptotically
sharp analysis of the precision matrix of the process.

Keywords: Minimax testing, time series, ARMA processes, weak laws of large numbers, change
point detection, Toeplitz matrices.
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1 Introduction

1.1 Model and problem statement

In this paper we consider observations of a triangular array of Gaussian vectors, Y = µn + ξn,
n ∈ N with the coordinates

Yi,n = µi,n + ξi,n, ξn = (ξ1,n, . . . , ξn,n)T ∼ Nn (0,Σn) , (1.1)

with a known positive definite covariance matrix Σn ∈ Rn×n, but an unknown mean vector
µn = (µ1,n, . . . , µn,n)T ∈ Rn. We will furthermore assume that the noise ξn in (1.1) consists of n
consecutive samples of a stationary process (Zt)t∈Z.

For a proper asymptotic treatment, we will assume that µn is obtained from equidistantly sampling

a function mn : [0, 1] → R at sampling points i
n , i = 1, . . . , n, i.e. µn =

(
mn

(
1
n

)
, . . . ,mn

(
n
n

))T
.

Our goal is to analyze how difficult it is to detect abrupt changes of the function mn based on the
observations Y = (Y1,n, ..., Yn,n)

T
coming from (1.1). Therefore, we focus on functions mn of the

form

mn (x) =

{
δn if x ∈ In,
0 else,

(1.2)

i.e. mn has a bump located at the interval In ⊂ [0, 1] of height δn ∈ R, see also Figure 1 for an
illustration. We assume throughout the paper that the matrix Σn in (1.1) as well as the length
of the bump λn ∈ (0, 1) are known, but that its amplitude δn and the exact position of the bump
itself are unknown.

To formalize the detection problem, let us introduce some notation. For an interval I ⊂ [0, 1] we
use 1I ∈ Rn as abbreviation for the vector with entries

1I(i) =

{
1 if i

n ∈ I,
0 else,

1 ≤ i ≤ n.

Consequently, µn = δn1In whenever mn is of the form (1.2). Furthermore let

I :=
{

[a, b)
∣∣ 0 ≤ a < b ≤ 1

}
be the set of all right-open intervals in [0, 1], and for a given length λ ∈ (0, 1) we introduce by

I (λ) :=
{

[a, b)
∣∣ 0 ≤ a < b ≤ 1, b− a = λ

}
the set of all right-open intervals in [0, 1] of length λ.

Now the problem to detect a bump of length λn in the signal µn from (1.1) can be understood as
the hypothesis testing problem

Hn
0 : Y ∼ Nn (0,Σn)

against (1.3)

Hn
1 : ∃I ∈ I (λn) , ∃δ ∈ R : |δ| ≥ ∆n such that Y ∼ Nn (δ1I ,Σn)

with a minimal amplitude value ∆n > 0 to ensure distinguishability of Hn
0 and Hn

1 . Note that I
and δ in (1.3) are allowed to depend on n (as the length λn and the minimal amplitude value ∆n

do), but we suppress this dependency in the following. Similarly we write H0 instead of Hn
0 as

Σn is assumed to be known. Note that we will consider the situation λn → 0 as n → ∞ below,
corresponding to a vanishing bump, which avoids trivial cases such as EHn1 [Yi] = δ > 0 for all
1 ≤ i ≤ n in (1.3).

The aim of this paper is to provide insight on how the dependency structure in (1.1) encoded
in terms of Σn influences the detection of such a bump. More precisely, we would like to derive
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asymptotic conditions1 on the minimal detectable bump amplitude ∆n depending on Σn, λn and
n. To the best of our knowledge, there is no systematic understanding of this problem from the
minimax point of view. We will therefore provide (asymptotic) lower and upper bounds for the
amplitude of asymptotically detectable signals in the following sense (cf. [38,40]). Let α, β ∈ (0, 1)
be arbitrary error levels.

upper detection bound: Whenever the bump amplitude ∆n satisfies ∆n = cϕn, c ≥ c∗ with a
constant c∗ > 0 and a rate ϕn depending on n, λn and Σn, then there is a sequence of
tests for (1.3) with (asymptotic) type I error ≤ α and (asymptotic) type II error ≤ β.

lower detection bound: Whenever the bump amplitude ∆n satisfies ∆n = cϕ̃n, c ≤ c∗ with a
constant c∗ > 0 and a rate ϕ̃n depending on n, λn and Σn, then no sequence of tests
for (1.3) can have type (asymptotic) I error ≤ α and at the same time (asymptotic) type II
error ≤ β.

Precise definitions of the (asymptotic) type I and type II errors and comments on the validity
of these particular notions of the detection bounds will be given in Section 2.1. Note that the
minimax separation rate ϕn might depend on the prescribed significance levels α and β, and that
the definitions become trivial if β ≥ 1−α, as then any standard Bernoulli experiment with success
probability α defines a corresponding test. However, in our case neither the constants c∗ and c∗

nor the rate depend on the error levels α and β. That is why in the following we will always choose
α = β ∈

(
0, 1

2

)
and argue in Section 2.1 that this is sufficient.

If ϕ̃n = ϕn in the above upper and lower bound, then we speak of the (asymptotic) minimax
separation rate ∆n ∼ ϕn. If furthermore c∗ = c∗, then ∆n � c∗ϕn = c∗ϕ̃n is called the
(asymptotic) minimax detection boundary over all possible amplitudes ∆n > 0 and positions
I ∈ I (λn). We will provide explicit expressions for this under weak assumptions on the covariance
matrix Σn.

We will provide lower and upper bounds in terms of sums over diagonal blocks within Σn (cf.
Section 2.3 and Lemmas 8 and 9), and for the case of noise generated by subsequent samples of a
stationary time series we will show that these lower and upper bounds coincide.

In case of i.i.d. observations, this is Σn = σ2idn in (1.1), the minimax detection boundary is
well-known and given by (see [14,19,27])

∆n � σ
√
−2 log λn
nλn

. (1.4)

Here, and in the following, we require

λn → 0 and nλn →∞ as n→∞. (1.5)

Signals for which the left-hand side in (1.4) is asymptotically larger than the right-hand side
can be detected consistently (in the sense of an upper detection bound as described above),
whereas they can not be detected consistently once the left-hand side in (1.4) is asymptotically
smaller than the right-hand side (in the sense of a lower detection bound as described above).
Although (1.4) is known for a long time when the errors are i.i.d., to the best of our knowledge,
the influence of the error dependency structure on the detection boundary (1.4) is an issue that
is much less investigated systematically, although many methods to estimate such abrupt changes
in the signal corrupted by serially dependent errors have been suggested (see Section 1.3). In
this sense, this paper contributes a benchmark to such methods. Let us illustrate the effect
of the dependency on (1.4) with ξn in (1.1) arising from an AR(1) process with unit variance

and auto-correlation coefficient ρ, this is ξn =
(
1− ρ2

)1/2
(Z1, ..., Zn)

T
where Zt − ρZt−1 = ζt

with i.i.d. standard Gaussian noise ζt, t ∈ Z. In Figure 1 we illustrate three different situations

1Let (an)n∈N and (bn)n∈N two sequences of positive numbers. In the following we write an ∼ bn if 0 <
lim infn→∞ an/bn ≤ lim supn→∞ an/bn <∞, and an � bn if limn→∞ an/bn = 1.
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encoded in terms of ρ, namely positively correlated noise (ρ = 0.7), independent noise (ρ = 0),
and negatively correlated noise (ρ = −0.7). It seems intuitively clear that the value of ρ influences
the difficulty of detecting a bump substantially, and especially positively correlated noise hinders
efficient detection dramatically. Compare e.g. the first plot in Fig. 1, where noise and bump
appear hardly to distinguish. Furthermore, due to the positive correlation, there appear several
regions which suggest a bump in signal, which is not there. In contrast, the middle and bottom
plot allow for simpler identification of the bump region. Our main result makes these intuitive
findings precise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
∆n

Independent noise (ρ = 0)
mn

Yi
In

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
∆n

Positively correlated noise (ρ = 0.7)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
∆n

Negatively correlated noise (ρ = −0.7)

Figure 1: Model (1.1) in case of AR(1) noise for different values of ρ: Data together with the
function mn, where the model parameters are set to be n = 512 and ∆n = 1, σ = 1.

1.2 Results

To describe our results concerning the detection boundary for serially dependent data we require
some more terminology. Let the autocovariance function γZ of the stationary process (Zt)t∈Z be
given by γZ(h) = Cov [Zt, Zt+h] for h ∈ Z. Assume that γZ is square summable, then the process
Z has the spectral density fZ ∈ L2 [−1/2, 1/2) defined by

fZ(ν) =

∞∑
h=−∞

γZ(h)e−2πihν , ν ∈ [−1/2, 1/2) .

In fact, fZ can also be considered as a function on the unit sphere, i.e. one naturally has
limν→1/2 fZ(ν) = fZ(−1/2). We will also assume that the autocovariance function is symmetric,
which is equivalent to fZ being real-valued. In the following, we will omit the subscript Z in the
notation of the spectral density of Z when it does not create ambiguities.
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With this notation introduced, we will show under mild conditions that the detection boundary
for the hypothesis testing problem (1.3) is given by

∆n �

√
−2f (0) log λn

nλn
.

It is immediately clear, that in case of independent observations where Σn = σ2idn, one has
f (0) = σ2, which reproduces (1.4). In the general case, note that

f (0) =
∑
h∈Z

γ (h) ,

i.e. the detection boundary solely depends on the value of the spectral density at zero which is
known as long-run variance.2

In case of the AR(1)-based noise ξn := (1−ρ2)1/2(Z1, . . . , Zn)T with unit variance as shown in Fig-
ure 1, the auto-covariance of the underlying AR(1) process Zt is given by γZ (h) = γZ(0)ρ|h|, where
γZ(0) = (1− ρ2)−1. Thus the spectral density at zero of the noise process ξ =

(
(1− ρ2)1/2Zi

)
i∈N

is

fξ (0) =
(
1− ρ2

) ∞∑
h=−∞

γZ(h) =
1 + ρ

1− ρ
,

and hence the detection boundary is given by

∆n �
√

1 + ρ

1− ρ

√
−2 log λn
nλn

. (1.6)

As an immediate consequence, this shows that bump detection is easier under a negative correlation
ρ than in case of positive correlations. For the three values employed in Figure 1 we compute for

the factor
√

1+ρ
1−ρ in (1.6) the values 2.38 when ρ = 0.7 and 0.42 when ρ = −0.7. This means that

the amplitude of detectable signals for ρ = 0.7 and ρ = −0.7 differs approximately by a factor of
5.6. Also, given the bump length λn, the detection of a bump of the same size ∆n for ρ = 0.7
requires approximately a 6 times larger sample size than for ρ = 0, and even a 31 times larger
sample size than for ρ = −0.7. This is in good agreement with the intuitive findings from Figure
1 and confirmed in finite sample situations in Section 4. In the simulations we also investigate the
influence of several bumps instead of one, and find that independent of ρ, multiple bumps always
help detection, as to be expected.

Remarkably, as in the case of i.i.d. noise with variance σ2, where we have f(0) = σ2, certain
dependent error processes might also satisfy f(0) = σ2, and hence obey the same difficulty to
detect a bump as for the independent case. As an example, consider the stationary and causal
AR(2) process given by Zt = 1

2Zt−1 − 1
2Zt−2 + ζt, where ζt ∼ N (0, 1) for t ∈ Z. In this case

fZ (0) = 1
2 −

1
2 + 1 = 1, even though the process Zt is clearly not independent (see Section 3 for a

comprehensive treatment of ARMA processes).

Proof strategy. To prove a lower detection bound, we will employ techniques dating back to
Ingster [38] and Dümbgen and Spokoiny [19] developed for independent observations. To generalize
this approach to our dependent case, we will use a recent weak law of large numbers due to
Wang and Hu [71] for triangular arrays of random variables that are non-independent within each
row and non-identically distributed between rows (see Section 6.1 for the precise statement and
also [30,57,62,67] for related results).

For the upper detection bound, we will provide an explicit test based on the supremum of the
moving average process

(
1TI Y

)
I∈I(λn)

. A valid critical value will be given based on a chaining

2The long-run variance of a process (Zt)t∈Z with spectral density f is defined as lim
n→∞

n−1Var [Sn], where

Sn =
n∑

i=1
Zi. It holds that lim

n→∞
n−1Var [Sn] = f(0) (see [36] and Section 6.1 for details).
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technique. Note that this cannot be obtained by a continuous upper bound of the stochastic
process (as e.g. provided in Theorem 6.1 in [19]) due to the fact that the dependency structure is
allowed to change with n and hence there is no continuous analog of

(
1TI Y

)
I∈I(λn)

.

1.3 Related work

Bump detection for dependent data appears to be relevant to a variety of applications where piece-
wise constant signals (i.e. several bumps) are observed under dependent noise. Exemplary, we
mention molecular dynamics (MD) simulations, where collective motion characteristics of protein
atoms are studied over time (see e.g. [47] and the references therein). For certain proteins it
has been shown that the noise process can be well modeled by a stationary ARMA(p, q) process
with small p and q, see [66]. Another application is the analysis of ion channel recordings, where
one aims to identify opening and closing states of physiologically relevant channels (see [56] and
the references therein). Here, the dependency structure is induced by a known band-pass filter,
ensuring that Σn in (1.1) can be precomputed explicitly (which corresponds to our setting of
known Σn), and allowing for a good approximation by stationary and m-dependent noise with
small m, see [59].

In fact, bump detection as discussed here is closely related to estimation of a signal which consists
of piece-wise constant segments, often denoted as change point estimation. We refer to the classical
works of Ibragimov and Has’minskii [35], Csörgő and Horváth [15], Brodsky and Darkhovsky [11],
Carlstein, Müller and Siegmund [12], and Siegmund [65] for a survey of the existing results as
well as to the review article by Aue and Horváth [3]. Indeed, if the bumps have been properly
identified by a detection method, posterior estimation of the signal is relatively easy, see [27] for
such a combined approach in case of i.i.d. errors, and [17] in case of dependent data. We also
mention [13], who presented a robust approach for AR(1) errors.

Model (1.1) can be seen as prototypical for the more complex situation when several bumps are
to be detected. We do not intend to provide novel methodology for this situation in this paper,
rather Theorem 1 provides a benchmark for detecting such a bump which then can be used to
benchmark the detection power of any method designed for this task. Minimax detection has a long
history, see e.g. the seminal series of papers by Ingster [38] or the monograph by Tsybakov [69].
More recently, Goldenshluger, Juditsky and Nemirovski [29] provided a general approach based
on convex optimization. In case of independent observations, the problem of detecting a bump
has been considered in [5,9,14,20,27,42], and our strategy of proof for the lower bound is adopted
from [19]. We also mention [25] for a model with a simultaneous bump in the variance, and [58]
for heterogeneous noise, however still restricted to independent observations.

The literature on minimax detection for dependent noise is much less developed, and most similar
in spirit to our work are the papers by Hall and Jin [31] and Keshavarz, Scott and Nguyen [44].
In the former, the minimax detection boundary for an unstructured version of the model (1.1)
in a Bayesian setting is derived, that is P

[
mn

(
i
n

)
= ∆n

]
= ρn and P

[
mn

(
i
n

)
= 0
]

= 1 − ρn
with a probability ρn tending to 0. In contrast to [31], in the present setting we can borrow
strength from neighboring observations in a bump. Still, we can exploit a result in [31] about
the decay behavior of inverses of covariance matrices (see Section 6.1) to validate Assumption 2.
Keshavarz, Scott and Nguyen [44] deal with the classical change-point in mean problem, i.e. with
the problem to detect whether mn(i/n) ≡ 0 for all 1 ≤ i ≤ n, or if there exists τ ∈ [1, n] such
that mn(i/n) = − 1

2∆n1{i ≤ τ} + 1
2∆n1{i > τ} for 1 ≤ i ≤ n. The authors derive upper and

lower bounds for detection from dependent data as in (1.1), similar in spirit to our Theorem 1.
Their bounds, however, do not coincide with ours, i.e. they do not derive the precise minimax
detection boundary, as they are mostly interested in the rate of estimation. However, as we see
from Theorem 1, the

√
− log λn rate does not change, it is the constant f(0) which matters. We

will employ several of their computations concerning covariance structures of time series (while
correcting a couple of technical inaccuracies).

We finally comment on the assumption of knowing Σn and the length λn. If λn is unknown,
estimation of the function mn can be performed in the independent noise case by SMUCE [27] via
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a multiscale approach. SMUCE is known to achieve the asymptotic detection boundary (1.4) in
case of i.i.d. Gaussian errors. For the dependent case with a (partially) unknown covariance matrix
Σn, further methods for estimation of mn such as H-SMUCE [58], J-SMURF [33] or JULES [59]
have been developed. They all rely on a local estimation of the covariance structure in combination
with a multiscale approach. None of these methods achieves the detection boundary derived in
this paper, and hence it remains unclear if not knowing Σn and / or λn would affect it. Developing
a test which achieves a corresponding upper bound by multiscale methods is beyond the scope of
this paper and is postponed to future work.

1.4 Organization of the paper

The remaining part of this paper is organized as follows: In Section 2 we give a precise statement of
our assumptions and formulate our main theorem. Also non-asymptotic results are discussed here.
The implications for ARMA models are then given in Section 3, where the previously mentioned
non-asymptotic results are specified for AR(p) noise. In Section 4 we present some simulations
which support that our asymptotic theory is already useful for small samples. All proofs are
deferred to Section 5 and Section 6 in Supplement A.2.

2 Main results

2.1 Notation and assumptions

To treat the testing problem (1.3), we will consider tests Φn : Rn → {0, 1}, n ∈ N, where
Φn (Y ) = 0 means that the null hypothesis H0 is accepted, and Φn (Y ) = 1 means that the null
hypothesis is rejected, i.e. the presence of a bump is concluded.

Denote by P0 the measure Nn (0,Σn) of Y under the null hypothesis and by PI,δ the measure
Nn(δ1I ,Σn) of Y given that there is a bump of height δ within the interval I. With this we will
denote the corresponding expectations accordingly by E0 and EI,δ. We define the type I error of
Φn by

ᾱ (Φn,Σn) := E0 [Φn (Y )] = P0 [Φn (Y ) = 1] .

Furthermore, we say that a sequence (Φn)n∈N of such tests has asymptotic level α ∈ [0, 1] if
lim supn→∞ ᾱ (Φn,Σn) ≤ α. The type II error depending on the parameters Σn,∆n and λn is
defined as

β̄ (Φn,Σn,∆n, λn) := sup
I∈I(λn)

sup
|δ|≥∆n

PI,δ [Φn (Y ) = 0] .

For a sequence (Φn)n∈N of such tests we define its asymptotic type II error to be
lim supn→∞ β̄ (Φn,Σn,∆n, λn). The asymptotic power of such a family is then given by 1 −
lim supn→∞ β̄ (Φn,Σn,∆n, λn). For the sake of brevity, we might suppress the dependency on the
parameters in the following and write only ᾱ (Φn) and β̄ (Φn), respectively.

With this notation, we can now precisely recall the requirements for lower and upper bounds on
detectability as discussed in the introduction:

upper detection bound: For any α ∈
(
0, 1

2

)
, there exist c∗ > 0 and a sequence of tests Φ∗n,α,

n ∈ N of asymptotic level α such that ∀c > c∗,

lim sup
n→∞

β̄ (Φn,Σn, cϕn, λn) ≤ α.

Note that this notion of the upper detection bound is in accordance with the usual minimax
testing paradigm (cf. Ingster and Suslina [40]), as it implies that

lim
n→∞

inf
Φ∈Ψn

[ᾱ (Φ,Σn) + β̄ (Φ,Σn, cϕn, λn)] = 0,

as n → ∞, since α was arbitrary. Here, Ψn is the collection of all tests for the testing
problem (1.3) given n observations.



22 Appendix A.1. Bump detection in the presence of dependency: Does it ease or does it load?

lower detection bound: For any α ∈
(
0, 1

2

)
, there exists c∗ > 0 such that ∀c < c∗, and for any

sequence of tests Φn, n ∈ N of asymptotic level α,

lim inf
n→∞

β̄ (Φn,Σn, cϕ̃n, λn) ≥ 1− α.

This implies that
lim
n→∞

inf
Φ∈Ψn

[ᾱ (Φ,Σn) + β̄ (Φ,Σn, cϕn, λn)] = 1.

The choice of 1 − α as the lower bound of the limit of the type II errors in the lower detection
bound is justified by the fact that the minimax testing risk is bounded from below as follows
(see [40], p. 55, Theorem 2.1):

inf
Φ∈Ψ

[ᾱ (Φ,Σn) + β̄ (Φ,Σn, cϕn, λn)] ≥ 1− 1

2
‖[P0], [P1]‖1,

where ‖[P0], [P1]‖1 is the L1-distance between the convex hulls of measures corresponding to the
null and the alternative hypotheses and Ψ is the set of all possible tests. It implies that the type
II error of the α-level test will be always greater or equal 1 − α for non-distinguishable null and
alternative hypotheses.

To derive lower and upper bounds in this sense, we will now pose some assumptions on the possible
lengths λn of intervals and the covariance structure Σn:

Assumption 1. We assume that

(i) nλn
logn →∞ as n→∞,

(ii) λn = o
(

1
logn

)
as n→∞.

The first part of Assumption 1 assures that the number of observations within any interval of
length λn is at least of logarithmic order as n → ∞. The second condition of Assumption 1,
however, gives a bound for the maximal length of the considered intervals, which ensures less
than n/ log n observations in the bump interval. Roughly speaking both conditions are required
to have enough complementary observations (outside respectively inside the bump) to guarantee
asymptotic detection. Note that, in particular, Assumption 1(ii) means that λn → 0 as n → ∞,
i.e. Assumption 1 especially implies (1.5). We emphasize that conditions as in (ii) restricting λn
from being too large are common. Assumption 1 plays a crucial role in the proof of the upper
bound, whereas the lower bound can be established under milder conditions (1.5).

However, note that when we consider a slightly modified version of the testing problem (1.3)
where the bump may not occur in any interval of length λn, but only within a candidate set
Ik := [(k − 1)λn, kλn), 1 ≤ k ≤ b1/λnc of non-overlapping intervals, then Assumption 1 can be
replaced by (1.5) and the detection boundary will remain the same (cf. Section 2.3).

Instead of posing assumptions on Σn directly, we will again employ the spectral density f of the
underlying stationary process Z as mentioned in the introduction. To do so, we require some more
terminology. For a function g ∈ L2 [−1/2, 1/2), we denote by T (g) the Toeplitz matrix generated
by g, i.e. the matrix with entries (T (g))i,j∈N = gj−i, where

gk =

∫ 1
2

− 1
2

g(u)e−2πikudu, k ∈ Z,

is the k-th Fourier coefficient of g. Note that this allows us to encode the covariance matrix Σn
completely in terms of f . More precisely, the covariance matrix Σn of the noise ξn in (1.1) has
entries Σn(i, j) = γ(|i − j|) = f|i−j|, and we see that Σn =: Tn(f) is the n-th truncated Toeplitz
matrix generated by f , i.e. the upper left n × n submatrix, of T (f). Consequently, we will also
pose the corresponding assumptions in terms of the function f , which allows us to derive results
for any sequence (Σn)n≥1 of covariance matrices which are generated by such an f (and not only
for specific dependent processes):
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Assumption 2. Let (Σn)n≥1 be a sequence of covariance matrices such that Σn = Tn(f) as intro-
duced above with a function f : [−1/2, 1/2)→ R, that is continuous and satisfies limν→1/2 f(ν) =
f(−1/2) and essinfν∈[−1/2,1/2) f(ν) > 0. Further, suppose that the Fourier coefficients fh, h ∈ Z
of f decay sufficiently fast, i.e. there are constants C > 0 and κ > 0, such that

|fh| ≤ C(1 + |h|)−(1+κ), h ∈ Z.

Assumption 2 ensures that the dependency between 1TI Y and 1TI′Y for two candidate intervals
I, I ′ ∈ I (λn), will be asymptotically small as soon as they are disjoint. It excludes trivial cases
such as total dependence described by Σn (i, j) = 1 for all i, j ∈ {1, ..., n}, but also permits spectral
densities f with only slowly decaying Fourier coefficients such as discontinuous functions.

Note that also sequences of covariance matrices of the form (Σn)i,j = g
(
|i−j|
n

)
, 1 ≤ i, j ≤ n, n ∈ N,

where g is some kernel function, are prohibited due to this assumption. Covariance matrices of
this kind would have the undesired effect to make the dependency between 1TI Y and 1TI′Y even
for disjoint candidate intervals I, I ′ ∈ I (λn) stronger as the length λn vanishes.

2.2 Asymptotic detection boundary

Our main theorem will be the following.

Theorem 1. If Assumptions 1 and 2 hold for the bump regression model (1.1), then the asymptotic
minimax detection boundary for the testing problem (1.3) is given by

∆n �

√
−2f(0) log λn

nλn
,

as n→∞.

For the details of the proof we refer to Section 5. The upper bound will be achieved by a specific
test Φa

n, which scans over all intervals of length λn, given by

Φa
n(Y ) =

1 if supI∈I(λn)
|1TI Y |√
1TI Σn1I

> cα,n,

0 else,
(2.1)

where the threshold cα,n will be determined in the proof of Lemma 8 in Section 5. Note that this
test is not a likelihood ratio type test (as the LRT relies on 1TI Σ−1

n Y instead of 1TI Y ).

For the proof of the lower bound we employ a strategy from Dümbgen and Spokoiny [19], and use
a very specific law of large numbers for arrays of non-independent and non-identically distributed
random variables.

2.3 Non-asymptotic results

Note that Theorem 1 yields only an asymptotic result. In this section we give non-asymptotic
results in the case of a seemingly simpler testing problem with possible bumps that belong to a
set of non-overlapping intervals. This is formalized by considering the set I0 of non-overlapping
candidate intervals given by

I0 :=
{
Ik
∣∣ 1 ≤ k ≤ bλ−1

n c
}
, Ik :=

[
(k − 1)λn, kλn

)
, 1 ≤ k ≤ bλ−1

n c. (2.2)

The goal is still to detect the presence of the bump (but with position being only in I0) and to
derive non-asymptotic results on the detection boundary for the testing problem

H0 : Y ∼ Nn (0,Σn)

against (2.3)

Hn
1 : ∃1 ≤ k ≤ bλ−1

n c, ∃δ ∈ R : |δ| ≥ ∆n such that Y ∼ Nn (δ1Ik ,Σn)
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Note that this testing problem might seem much simpler than (1.3) at a first glance, but we will
see, however, that the (asymptotic) detection boundary is in fact the same. Concerning the lower
bound, this can be seen readily from the proof of Theorem 1, cf. Lemma 9.

To detect a bump, we will here employ the maximum likelihood ratio test

Φd
n(Y ) = 1

{
T 0
n(Y ) > cα,n

}
based on the statistic

T 0
n(Y ) = sup

I∈I0

|1TI Σ−1
n Y |√

1TI Σ−1
n 1I

= sup
1≤k≤bλ−1

n c

|1TIkΣ−1
n Y |

√
σ̃k

, (2.4)

where we denote
σ̃k = 1TIkΣ−1

n 1Ik , k = 1, . . . , bλ−1
n c. (2.5)

The quantities σ̃k are in fact the variances of 1TI Σ−1
n Y corresponding to the sum of bnλnc random

variables with covariance structure given by the Ik-block of Σ−1
n . The type I and II errors of the

test Φd
n are defined as

α̃
(
Φd
n

)
:= P0

[
Φd
n (Y ) = 1

]
and β̃

(
Φd
n

)
:= sup

I∈I0
sup
|δ|≥∆n

PI,δ
[
Φd
n (Y ) = 0

]
.

Then the following result establishes basic properties of the test Φd
n.

Theorem 2. Consider the testing problem (2.3) and let α ∈ (0, 1) be any fixed significance level.
For the maximum likelihood ratio test Φd

n set

cα,n :=

√
2 log

2

αλn
. (2.6)

Then it holds α̃
(
Φd
n

)
≤ α for all n ∈ N and

β̃
(
Φd
n

)
≤ P

[
|Z| > ∆n inf

1≤k≤bλ−1
n c

√
σ̃k − cα,n

]
with a standard Gaussian random variable Z ∼ N (0, 1) and σ̃k as in (2.5).

The proof is obtained by straightforward computations, see Section 6.2 of Supplement A.2 for
details. Theorem 2 yields explicit non-asymptotic bounds for the test Φd

n, but those do also yield
an asymptotic upper bound for the detection boundary:

Corollary 3. Let (εn)n∈N be a positive sequence satisfying

εn
√
− log λn ≥

√
log

2

α
+

√
log

1

α
, (2.7)

and suppose that the bump altitude ∆n in the testing problem (2.3) obeys

∆n inf
1≤k≤bλ−1

n c

√
σ̃k ≥

√
2 (1 + εn)

√
− log λn. (2.8)

Then the asymptotic type II error of Φd
n with cα,n as in (2.6) satisfies

lim sup
n→∞

β̃
(
Φd
n

)
≤ α,

This shows that the upper bound to be obtained by Φd
n depends only on the asymptotic behavior

of inf1≤k≤bλ−1
n c
√
σ̃k with σ̃k as in (2.5). Inspecting the proof of Lemma 9, we find that we can

derive an according lower bound depending only on the asymptotic behavior of sup1≤k≤b 1
λn
c
√
σ̃k.

In case of AR(p) noise we will see in Section 2.3 that these quantities can be computed explicitly
and will asymptotically equal in agreement with Theorem 1.
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3 ARMA processes and finite sample results

3.1 Application to ARMA processes

Suppose that the noise vector ξn = (Z1, . . . , Zn)T in (1.1) is sampled from n consecutive realiza-
tions of a stationary ARMA(p, q) time series Zt, with p ≥ 0, q ≥ 0 defined as

φ(B)Zt = θ(B)ζt, ζt
i.i.d.∼ N (0, 1), t ∈ Z. (3.1)

Here B is the so-called backshift operator, defined by BXt = Xt−1, and φ(z) and θ(z), z ∈ C, are
polynomials of degrees p and q, respectively, given by

φ(z) = 1 +

p∑
i=1

φiz
i, θ(z) = 1 +

q∑
i=1

θiz
i. (3.2)

We further suppose that φ and θ have no common roots, and that all roots of both φ and θ lie
outside of the unit circle {z ∈ C : |z| ≤ 1} (see [10] for more details).

Denote by γ the auto-covariance function of Z, i.e. γ(h) = E [ZtZt+h] for h ∈ Z (as clearly
E [Zt] = 0 for all t ∈ Z). It is well-known (see for example [10], Theorem 4.4.2), that in the case
of an ARMA(p, q) time series, its spectral density is given by

f(ν) =
|θ(e−2πiν)|2

|φ(e−2πiν)|2
, ν ∈ [−1/2, 1/2). (3.3)

Note that the spectral density f is continuous at 0 as well as the function 1/f , since the process
is reversible and causal under the posed assumptions on φ and θ. Thus, applying Theorem 1 to
this setting immediately yields the following:

Theorem 4. Assume that we are given observations from (1.1), where the noise ξn is given by
n consecutive samples of an ARMA(p, q) time series as in (3.1) with the polynomials φ and θ
in (3.2) having no common roots and no roots within the unit circle. Furthermore, assume that
Assumption 1 holds. Then the asymptotic detection boundary of the hypothesis testing problem
(1.3) is given by

∆n �

√
−2f(0) log λn

nλn
=

∣∣∣∣ 1 +
∑q
i=1 θi

1 +
∑p
i=1 φi

∣∣∣∣
√
−2 log λn
nλn

, (3.4)

as n→∞.

We find that the presence of dependency either eases or loads the bump detection, depending on
f (0) = |θ(1)/φ(1)|2 (which is 1 in the independent noise case). If f (0) < 1, then the detection
becomes simpler (and smaller bumps are still consistently detectable), but if f (0) > 1 detection
becomes more difficult. For AR(1) noise, this issue was already discussed in the introduction.

3.2 Non-asymptotic results for AR(p)

In this Section we will derive non-asymptotic results for the specific case of AR(p) noise. Let us
therefore specify (3.1) to a stationary AR(p) process Zt,

p∑
i=0

φiZt−i = ζt, t ∈ Z (3.5)

with independent standard Gaussian innovations ζt. In the notation of (3.1), we have φ(z) =∑p
i=0 φiz

i and θ(z) ≡ 1. Again, we work under the standard assumptions that the characteristic
polynomial φ(z) has no zeros inside the unit circle {z ∈ C : |z| ≤ 1}. Note that in this case

f(0) = |
∑p
i=0 φi|

−2
.
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We have seen in the discussion succeeding Theorem 2 that the upper and lower bounds depend on
the quantities σ̃k = 1TIkΣ−1

n 1Ik and correspondingly, their minimal and maximal values. Theorem 4
gives the detection boundary condition for ARMA noise with an asymptotic risk constant. Since
σ̃k is just the sum over the block of Σ−1

n , using the exact inverse of Σn (see the appendix for
the exact formula of Σ−1

n obtained by Siddiqui [64]), we can calculate the minimax risk constants
exactly.

Lemma 5. Let Σn be the auto-covariance matrix induced by an AR(p) process Zt and σ̃k =
1TIkΣ−1

n 1Ik , k = 1, . . . , bλ−1
n c. Assume that 1 ≤ bnλnc ≤ n− 2p and n > 3p.

1. If bnλnc ≤ p, then

inf
1≤k≤bλ−1

n c
σ̃k =

bnλnc∑
i=1

(
i−1∑
t=0

φt

)2

, (3.6)

sup
1≤k≤bλ−1

n c
σ̃k = inf

1≤k≤bλ−1
n c

σ̃k +

p−bnλnc∑
i=0

bnλnc∑
t=1

φt+i

2

+

p∑
i=p−bnλnc

(
p−i∑
t=0

φt+i

)2

. (3.7)

2. If p < bnλnc ≤ n− 2p, then

inf
1≤k≤bλ−1

n c
σ̃k = (bnλnc − p)

(
p∑
t=0

φt

)2

+

p∑
i=1

(
i−1∑
t=0

φt

)2

, (3.8)

sup
1≤k≤bλ−1

n c
σ̃k = inf

1≤k≤bλ−1
n c

σ̃k +

p∑
i=1

(
p−i∑
t=0

φt+i

)2

. (3.9)

We can now use the results of Theorem 2 and get the exact detection boundaries for two different
regimes, when bnλnc ≤ p and p < bnλnc ≤ n − 2p. Note that condition (5.4) is automatically
satisfied since the inverse covariance matrix Σ−1

n is 2p+ 1-diagonal.

Corollary 6. Assume that possible locations k of the bump Ik ∈ I0 are separated from the end-
points of the interval: p < k < n − p − bnλnc. Then the upper and lower bound constants
match in both cases and are given by formulas (3.6) and (3.8) for the case of bnλnc ≤ p and
p < bnλnc ≤ n− 2p, respectively. This follows immediately from the discussion in Section 6.3, in
particular equations (6.4) and (6.5).

Remark 7. It seems reasonable, that, in case of bumps of length smaller than p, we would need
to analyze the type I error with some finer technique than just the union bound.
On the other hand , we observe that if nλn →∞ and λn → 0 as n→∞, then

sup
1≤k≤bλ−1

n c
σ̃k � nλn

(
p∑
t=0

φt

)2

� inf
1≤k≤bλ−1

n c
σ̃k,

in accordance with Theorem 4.

4 Simulations

In this Section we will perform numerical studies to examine the finite sample accuracy of the
asymptotic upper bounds for the detection boundary. We focus on the situation that the noise ξn
in (1.1) is generated by an AR(1) process, given by φ(z) = 1− ρz and θ(z) ≡ 1 (in the notation of
(3.1)), where |ρ| < 1. More precisely, the AR(1) process is given by the equation Zt− ρZt−1 = ζt,
t ∈ Z where ζt ∼ N (0, 1) are i.i.d.. Note the slight difference to the setting considered in the
introduction and Figure 1, as here the noise does not have standardized margins.
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From Theorem 4 we obtain the detection boundary

∆n �
√

2

1− ρ

√
− log λn
nλn

. (4.1)

In the following we fix the value of the detection rate
√
− log λn/(nλn) in (4.1) to be roughly 1/6

and consider three different situations, namely small sample size (λn = 0.1, n = 829), medium
sample size (λn = 0.05, n = 2157) and large sample size (λn = 0.025, n = 5312). Thus, the
remaining free parameters are ρ and ∆n, and the detection boundary (4.1) connects them by the
asymptotic relation

∆n �
√

2

1− ρ
· 1

6
≈ 0.236

1− ρ
. (4.2)

Let us now specify the investigated tests. For the (general) test from Section 2.2, the critical value

cα,n is only given implicitly, cf. (5.2). To simplify, in view of cα,n =
√

2 log 2
αλn

(1 + o(1)), we will

therefore use

Φa
n (Y ) :=

1 if sup
I∈I(λn)

|1TI Y |√
1TI Σn1I

>
√

2 log 2
αλn

,

0 else

(4.3)

as an asymptotic version. Further we would like to investigate the maximum likelihood ratio test
relying only on non-overlapping intervals Ik = [(k − 1) bnλnc+ 1, kbnλnc) from Section 2.3 given
by

Φd
n (Y ) :=


1 if sup

1≤k≤b 1
λn
c

|1TIkΣ−1
n Y |√

1TIk
Σ−1
n 1Ik

>
√

2 log 2
αλn

,

0 else.

(4.4)

Note that the latter requires to scan only over b1/λnc intervals, whereas the former requires to
scan over bn (1− λn)c intervals. Consequently, the maximum likelihood ratio test from Section
2.3 can be computed faster by a factor of

n (1− λn)

1/λn
= nλn (1− λn)

independent of Σn. For the three situations mentioned above this yields values of ≈ 74 in the
small sample regime, ≈ 102 in the medium sample regime, and ≈ 129 in the large sample regime.
However, our results from Theorem 1 and the discussion succeeding Theorem 2 imply, that the
testing problems (1.3) and (2.3) are of the same difficulty in the sense that they both have the
same separation rate.

In the following we examine the type I and type II errors ᾱ (Φ∗) and β̄ (Φ∗) with ∗ ∈ {a,d} by 2000
simulation runs for α = 0.05 with different choices of ρ, n, λn and ∆n. The position I ∈ I (λn) is
always drawn uniformly at random. Furthermore, we investigate the situation of 2 and 5 disjoint
bumps within [0, 1].

The finite sample type I error of both Φa
n and Φd

n in all three sample size situations are shown
in Figure 2 versus the correlation parameter ρ ∈ {−0.99,−0.98, ..., 0.99}. We find that Φd

n is
somewhat conservative, which is clearly due to the usage of the union bound in deriving the critical
value in (4.4), see the proof of Theorem 2. Opposed, Φa

n is conservative for ρ > 0, and liberal for
ρ < 0. This is clearly due to the simplified critical value in (4.3), which is only asymptotically
valid, and furthermore the employed asymptotics depend on ρ due to the result by Ibragimov and
Linnik [36], see also Section 6.1 of Supplement A.2. However, it seems that already in the small
sample size regime our asymptotic results provide a very good approximation for both tests.
Next we computed the finite sample type II error in all three sample size situations for ρ ∈
{−0.99,−0.98, ..., 0.99} and ∆n ∈ {0.01, 0.02, ..., 0.5}. The corresponding results are shown in
Figures 3–5. We also depict the contour line of equation (4.2) for a comparison and find a
remarkably good agreement with the contour lines of the power function already in the small
sample regime, which strongly supports the finite sample validity of our asymptotic theory. Finally,
we conclude that detection becomes easier for a larger number of bumps.
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Small sample size Medium sample size Large sample size
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Figure 2: Type I error of the tests Φa
n ( ) and Φd

n ( ) for the AR(1) case vs. ρ (x-axis)
simulated by 2000 Monte Carlo simulations with the nominal type I error α = 0.05 ( ) in three
different situations: small sample size λn = 0.1, n = 829 (left), medium sample size λn = 0.05,
n = 2157 (middle) and large sample size λn = 0.025, n = 5312 (right).
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Figure 3: Type II error in the small sample regime λn = 0.1, n = 829 (top row: Φa
n; bottom row:

Φd
n) for the AR(1) case for ρ (x-axis) vs. ∆n (y-axis) with one bump (left column) together with

the contour line of the detection boundary equation (4.2), two bumps (middle column) and five
bumps (right column), each simulated by 2000 Monte Carlo simulations.

5 Proofs

Several useful results from various sources that we are going to use in our proofs can be found
in Supplement A.2. The proof of Theorem 1 will then be split into three parts. We will provide
asymptotic upper and lower bounds in subsections 5.1 and 5.1, respectively. The lower bound
result will in fact hold for a wider class of covariance matrices than those allowed by Assumption
2. Finally, in subsection 5.1, this will be used to show that the upper and lower bound coincide
asymptotically in the setting of Theorem 1, and this will yield the desired result. All remaining
proofs can be found in Section 6 of Supplement A.2.
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Figure 4: Type II error in the medium sample regime λn = 0.05, n = 2157 (top row: Φa
n; bottom

row: Φd
n) for the AR(1) case for ρ (x-axis) vs. ∆n (y-axis) with one bump (left column) together

with the contour line of the detection boundary equation (4.2), two bumps (middle column) and
five bumps (right column), each simulated by 2000 Monte Carlo simulations.
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Figure 5: Type II error in the large sample regime λn = 0.025, n = 5312 (top row: Φa
n; bottom

row: Φd
n) for the AR(1) case for ρ (x-axis) vs. ∆n (y-axis) with one bump (left column) together

with the contour line of the detection boundary equation (4.2), two bumps (middle column) and
five bumps (right column), each simulated by 2000 Monte Carlo simulations.
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5.1 Proofs for Section 2

Upper detection bound

For I ∈ I(λn) we define
σn(I) := 1TI Σn1I .

Lemma 8 (Upper detection bound). Fix α ∈ (0, 1), consider the testing problem (1.3) and suppose
that Assumption 1 and Assumption 2 hold. In addition, assume that the sequence (Σn)n∈N of
covariance matrices satisfies

∆n inf
I∈I(λn)

bnλnc√
σn(I)

% (
√

2 + ε̃n)
√
− log λn, (5.1)

as n→∞, where (ε̃n)n∈N is a sequence of real numbers that satisfies ε̃n → 0 and ε̃n
√
− log λn −√

log log n→∞ as n→∞.

Then the sequence of level α tests (Φa
n)n∈N as in (2.1) with suitably chosen cα,n satisfies ᾱ(Φa

n) ≤ α
for all n ∈ N and lim supn→∞ β̄(Φa

n) ≤ α.

Proof. Define the test statistic

Tn(Y ) = sup
I∈I(λn)

∣∣1TI Y ∣∣√
σn(I)

,

and recall that Φa
n(Y ) := 1{Tn(Y ) > cα,n}, for some threshold cα,n to be determined later.

We begin by noting that although the random process( ∣∣1TI Y ∣∣√
σn(I)

)
I∈I(λn)

has an infinite index set, it only takes finitely many different values. Thus, we can find a finite
representative system Ifin(λn) ⊆ I(λn), such that for any I ∈ I(λn) there is I ′ ∈ Ifin(λn), such
that ∣∣1TI Y ∣∣√

σn(I)
=

∣∣1TI′Y ∣∣√
σn(I ′)

,

which implies that

Tn(Y ) = sup
I∈Ifin(λn)

∣∣1TI Y ∣∣√
σn(I)

i.e. Tn(Y ) can be written as the supremum over the absolute values of a Gaussian process with a
finite index set. Let Mn such that E0Tn(Y ) ≤Mn. Then, for any λ > 0, it follows that

P0 (Tn(Y ) > λ+Mn) ≤ P0 (Tn(Y )− E0Tn(Y ) > λ)

≤ P0

(∣∣∣∣∣ sup
I∈Ifin(λn)

|1TI Y |√
σn(I)

− E0 sup
I∈Ifin(λn)

|1TI Y |√
σn(I)

∣∣∣∣∣ > λ

)
≤ 2e−

λ2

2 ,

where the last inequality follows the results of Talagrand [68] and can be found in Theorem 2.1.20
of [28]. Thus, if we let

cα,n =

√
2 log

2

α
+Mn,

Φa
n has level α for any n.

In order to find a suitable bound Mn we consider an even coarser finite subset of I(λn). Let

Cn =

{[
k

n
,
k

n
+ λn

)
: 1 ≤ k ≤ bn(1− λn)c

}
⊆ I(λn).
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Clearly, #Cn = bn(1 − λn)c ≤ n < ∞. For any I ∈ I(λn) there is I ′ ∈ Cn, such that 1I differs
from 1I′ in at most one entry. Thus, it is easy to see that

Tn(Y ) ≤ sup
I∈Cn

∣∣1TI Y ∣∣√
σn(I)

+
sup1≤i≤n |Yi,n|

infI∈I(λn)

√
σn(I)

,

Thus, we can set
Mn = M̃n + κn,

where

M̃n = E0 sup
I∈Cn

∣∣1TI Y ∣∣√
σn(I)

,

and

κn = E0

sup1≤i≤n |Yi,n|
infI∈I(λn)

√
σn(I)

.

The latter term is easy to handle: We have

E0 sup
1≤i≤n

|Yi,n| ≤
√

2f0 log(2n),

since Yi,n has variance f0 for any n and 1 ≤ i ≤ n, and

inf
I∈I(λn)

σn(I) = nλnf(0)(1 + o(1))

by Theorem 18.2.1 of Ibragimov and Linnik [36]. Thus,

κn = O

(√
log n

nλn

)
,

and thus, κn → 0 by Assumption 1. The next part of the proof will be devoted to computing M̃n.
Note that under H0, we have

1TI Y√
σn(I)

∼ N (0, 1),

for any I ∈ Cn. For any I, I ′ ∈ Cn, we have∣∣∣∣∣ 1TI Y√
σn(I)

− 1TI′Y√
σn(I ′)

∣∣∣∣∣ =

∣∣∣∣∣
(

1TI√
σn(I)

− 1TI′√
σn(I ′)

)
Y

∣∣∣∣∣ =

(
2− 2

1TI Σn1I′√
σn(I)σn(I ′)

) 1
2

|ZI,I′ |,

for some random variable ZI,I′ ∼ N (0, 1). Note that the system {ZI,I′ : I, I ′ ∈ Cn} is not
necessarily independent. Let

dn(I, I ′) :=

(
2− 2

1TI Σn1I′

σn(I)

) 1
2

.

Since Σn is a Toeplitz matrix, it follows that σn(I) = σn(I ′) for any I, I ′ ∈ Cn, and thus, dn(I, I ′) =
dn(I ′, I). Since Σn is also positive definite, it is then easy to see that dn is a metric on Cn.

Now let En ⊆ Cn be an ηn-net for (Cn, dn), i.e. for any I ∈ Dn there is J ∈ En, such that

dn(I, J) ≤ ηn.

For any I ∈ Cn and J ∈ En we have∣∣1TI Y ∣∣√
σn(I)

≤

∣∣∣∣∣ 1TI Y√
σn(I)

− 1TJ Y√
σn(J)

∣∣∣∣∣+

∣∣1TJ Y ∣∣√
σn(J)

,
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and thus,

sup
I∈Cn

∣∣1TI Y ∣∣√
σn(I)

≤ sup
I∈Cn

inf
J∈En

∣∣∣∣∣ 1TI Y√
σn(I)

− 1TJ Y√
σn(J)

∣∣∣∣∣+ sup
J∈En

∣∣1TJ Y ∣∣√
σn(J)

= sup
I∈Cn

inf
J∈En

dn(I, J)|ZI,J |+ sup
J∈En

∣∣1TJ Y ∣∣√
σn(J)

≤ ηn sup
I∈Cn

inf
J∈En

|ZI,J |+ sup
J∈En

∣∣1TJ Y ∣∣√
σn(J)

.

It follows that

M̃n ≤ ηn
√

2 log(2n) +
√

2 log (2N (Cn, dn, ηn))

≤ ηn
√

2 log n+
√

2 logN (Cn, dn, ηn) + (1 + ηn)
√

2 log 2,

where N (Cn, dn, ηn) is the ηn-covering number of (Cn, dn). Now let I, I ′ ∈ Cn, I 6= I ′, with
dH(I, I ′) ≤ λn

logn , where dH denotes the Hausdorff metric on the set of subintervals of [0, 1] (with

respect to the euclidean distance on [0, 1]), i.e. dH(I, I ′) = | inf I − inf I ′|. In addition, we assume
that inf I < inf I ′ without loss of generality. Then

1TI Σn1I′ = (1TI∩I′ + 1TI\I′)Σn(1I∩I′ + 1I′\I)

= 1TI∩I′Σn1I∩I′ + 1TI\I′Σn1I∩I′ + 1TI∩I′Σn1I′\I + 1TI\I′Σn1I′\I .

Due to Σn being symmetric and Toeplitz, we have 1TI∩I′Σn1I′\I = 1TI∩I′Σn1I\I′ , and thus,

1TI Σn1I′ = 1TI Σn1I − 1TI\I′Σn1I\I′ + 1TI\I′Σn1I′\I .

It follows that

d2
n(I, I ′) = 2− 2

(
1TI Σn1I

)−1
[
1TI Σn1I − 1TI\I′Σn1I\I′ + 1TI\I′Σn1I′\I

]
= 2

(
1TI Σn1I

)−1
[
1TI\I′Σn1I\I′ − 1TI\I′Σn1I′\I

]
.

Since 1TI\I′Σn1I′\I is the sum over a submatrix with rn = n| inf I − inf I ′| rows, and its lower left
entry is fbnλnc−1−rn , we find the trivial bound

∣∣∣1TI\I′Σn1I′\I

∣∣∣ ≤ nλn
log n

∞∑
h=bnλn(1−1/ logn)c−1

M(1 + |h|)−1−κ = o

(
nλn
log n

)
,

as n→∞. We use Theorem 18.2.1 of Ibragimov and Linnik [36] (see also Section 6.1 of Supplement

A.2) to find 1TI Σn1I = nλnf(0)
(

1 + o(1)
)

and

1TI\I′Σn1I\I′ ≤ f(0)
nλn
log n

(1 + o(1)),

as n→∞. This yields

dn(I, I ′) ≤
√

2

log n
+ ζn,

where ζn = o
(

(log n)−
1
2

)
. This implies that for any I ∈ Cn and for large enough n we have the

inclusion {
I ′ ∈ Cn : dH(I, I ′) ≤ λn

log n

}
⊆
{
I ′ ∈ Cn : dn(I, I ′) ≤

√
2

log n
+ ζn

}
.
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Thus, if we choose ηn =
√

2
logn + ζn, this yields the bound

N (Cn, dn, ηn) ≤ log n

2λn
,

and consequently,

M̃n ≤ 2 + ζn
√

2 log n+

√
2 log

log n

2λn
+

(
1 + ζn +

√
2

log n

)√
2 log 2.

Thus, if we choose

cα,n = 2 + ζn
√

2 log n+

√
2 log

2

α
+

√
2 log

log n

2λn
+ κn +

(
1 + ζn +

√
2

log n

)√
2 log 2, (5.2)

the test Φa
n will have level α for all n ∈ N. Note that ζn

√
2 log n = o(1) as n → ∞. Concerning

the type II error of the test Φa
n, recall that, under H1, i.e. if Y ∼ N (δ1I ,Σn) for some δ with

|δ| > ∆n, and I ∈ I(λn), we have

1TI′Y√
σn(I ′)

∼ N

(
δ1TI′1I√
σn(I ′)

, 1

)
.

for all I ′ ∈ I(λn). For n large enough, it follows from plugging in (5.1) and (5.2), that

β̄(Φa
n) = sup

I∈I(λn)

sup
|δ|≥∆n

PI,δ [Φa
n(Y ) = 0]

= sup
I∈I(λn)

sup
|δ|≥∆n

P

[
sup

I′∈I(λn)

∣∣∣∣∣ZI′ +
δ1TI′1I√
σn(I ′)

∣∣∣∣∣ ≤ cα,n
]

≤ sup
I∈I(λn)

sup
|δ|≥∆n

P

[∣∣∣∣∣ZI +
δ1TI 1I√
σn(I)

∣∣∣∣∣ ≤ cα,n
]

≤ sup
I∈I(λn)

sup
|δ|≥∆n

P

[
|δ| 1TI 1I√

σn(I)
− |ZI | ≤ cα,n

]

≤ P

[
|Z| > ∆n inf

I∈I(λn)

1TI 1I√
σn(I)

− cα,n

]
,

where (ZI)I∈I(λn) and Z are (not necessarily independent) standard Gaussian random variables.
Plugging in (5.1), we have

∆n inf
I∈I(λn)

1TI 1I√
σn(I)

− cα,n

≥ ε̃n
√

log
1

λn
− 2− ζn

√
2 log n−

√
2 log

2

α
−
√

2 log
log n

2
− κn−

(
1 + ζn +

√
2

log n

)√
2 log 2,

for n large enough. Since ε̃n
√
− log λn −

√
log log n → ∞ by assumption and κn = o(1) and

ζn
√

2 log n = o(1) as n → ∞, it follows that the right-hand side diverges to ∞. This finishes the
proof.

Lower detection bound

We start by giving some technicalities on LR-statistics required throughout the paper at several
places. As λn and Σn are known, the likelihood ratio Lδ,I = Lδ,I(Y ) between the distributions of
Y under H0 and Hn

δ,I is given by

LI,δ = exp

[
δ1TI Σ−1

n Y − 1

2
δ21TI Σ−1

n 1I

]
.



34 Appendix A.1. Bump detection in the presence of dependency: Does it ease or does it load?

Note that, under H0, the likelihood ratio Lδ,I follows a log-normal distribution, i.e.

logLI,δ = δ1TI Σ−1
n Y − 1

2
δ21TI Σ−1

n 1I
H0∼ N1

(
−1

2
δ2σ̃n(I), δ2σ̃n(I)

)
,

where
σ̃n(I) := 1TI Σ−1

n 1I .

Note that, under H0, for I, I ′ ∈ Cn and δ ∈ R, we have ELI,δ = 1, VarLI,δ = exp
(
δ2σ̃n(I)

)
− 1

and Cov(LI,δ, LI′,δ) = exp
(
δ21TI Σ−1

n 1I′
)
− 1. Finally, let

I0 :=
{

[(k − 1)λn, kλn) : 1 ≤ k ≤ bλ−1
n c
}
⊆ I(λn)

be a system of non-overlapping intervals of length λn as defined in (2.2).

Lemma 9 (Lower detection bound). Fix α ∈ (0, 1), and suppose that (1.5) holds. Let (Σn)n∈N
be a sequence of covariance matrices, such that

∆n sup
I∈I(λn)

√
σ̃n(I) -

(√
2− εn

)√
− log λn, (5.3)

where (εn)n∈N is a sequence that satisfies εn → 0 and εn
√
− log λn →∞ as n→∞. In addition,

assume that for some m ∈ N0

lim
n→∞

1

bλ−1
n c2

∑
I,I′∈I0

n| inf I−inf I′|>m

Cov (LI,∆n
, LI′,∆n

) = 0, (5.4)

as n→∞.
Then any sequence of tests (Φn)n∈N with lim supn→∞ ᾱ (Φn) ≤ α will obey lim supn→∞ β̄ (Φn) ≥
1− α, i.e. the bump is asymptotically undetectable.

Proof. We employ the same strategy as in the proof of Theorem 3.1(a) of Dümbgen and Spokoiny
[19]. We bound the type II error of any given test by an expression that does not depend on the
test anymore, and then employ an appropriate L1-law of large numbers for dependent arrays of
random variables.

For any sequence of tests Φn with asymptotic level α under H0 we have

β̄ (Φn) = sup
I∈I(λn)

sup
|δ|≥∆n

EI,δ [1− Φn(Y )] ≥ sup
I∈I0

sup
|δ|≥∆n

EI,δ [1− Φn(Y )]

≥ 1

bλ−1
n c

∑
I∈I0

sup
|δ|≥∆n

EI,δ [1− Φn(Y )] ≥ 1− 1

bλ−1
n c

∑
I∈I0

EI,∆n [Φn(Y )]

≥ 1− 1

bλ−1
n c

∑
I∈I0

E0

[
Φn(Y )

dPI,∆n

dP0
− Φn(Y )

]
− α+ o(1)

= 1− E0

[(
1

bλ−1
n c

∑
I∈I0

LI,∆n − 1

)
Φn(Y )

]
− α+ o (1)

≥ 1− α− E0

∣∣∣∣∣ 1

bλ−1
n c

∑
I∈I0

LI,∆n
− 1

∣∣∣∣∣+ o (1) .

Next, we show that the array
{
L∆n,I : I ∈ I0, n ∈ N

}
is h-integrable with exponent 1 (see Defi-

nition 12 in Supplement A.2 or Definition 1.5 in Sung, Lisawadi and Volodin [67]), i.e. we show
that

sup
n∈N

1

bλ−1
n c

∑
I∈I0

E0 [|LI,∆n
|] <∞, and lim

n→∞

1

bλ−1
n c

∑
I∈I0

E0 [|LI,∆n
|1 {|LI,∆n

| > h(n)}] = 0,

(5.5)
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where h(n) = bλ−1
n c

1
2 (1+εn)(

√
2−εn)

2

. Since E0|LI,∆n | = 1 for all n ∈ N and I ∈ I0, the first
condition is satisfied.

Further, if n large is enough, we have

1

bλ−1
n c

∑
I∈I0

E0 [LI,∆n1 {LI,∆n > h(n)}] ≤ sup
I∈I0

E0 [LI,∆n1 {LI,∆n > h(n)}]

= sup
I∈I0

P

(
Z ≤

1
2∆2

nσ̃n(I)− log h(n)

∆n

√
σ̃n(I)

)

≤ P

(
Z ≤ sup

I∈I0

1

2
∆n

√
σ̃n(I)− log h(n)

supI∈I0 ∆n

√
σ̃n(I)

)
(a)

≤ P
(
Z ≤ −εn(

√
2− εn)

√
− log λn

)
,

where Z is a standard Gaussian random variable. The inequality (a) follows immediately from (5.3)
and the definition of h(n). The claim follows from the assumption that limn→∞ εn

√
− log λn =∞

as n→∞.
Then, given that (5.4) and (5.5) hold, it follows from an L1-law of large numbers for dependent
arrays (see Theorem 13 in Supplement A.2 or Theorem 3.2 of Wang and Hu [71]), that

E0

∣∣∣∣∣ 1

bλ−1
n c

∑
I∈I0

L∆n,I − 1

∣∣∣∣∣→ 0, (5.6)

as n→∞, which finishes the proof.

Proof of Theorem 1

In the setting described in Theorem 1 the noise vector ξn in model (1.1) is given by n consecutive
realizations of a stationary centered Gaussian process with the square summable autocovariance
function γ(h), h ∈ Z and the spectral density f . We suppose that Assumption 2 is satisfied, i.e.
the autocovariance of ξn has a polynomial decay. In terms of Σn, this means

|Σn(i, j)| ≤ C(1 + |i− j|)−(1+κ),

for 1 ≤ i, j ≤ n and some constants C > 0 and κ > 0.

In order to apply Lemma 9 in such a setting, first, we need to examine the asymptotic behavior
of the coefficients σ̃n (I), and second, we need to verify that condition (5.4) is satisfied under the
lower detection boundary condition (5.3) and Assumption 2.

For the setting of Theorem 1, we will do the former in Lemma 10 and the latter in Lemma 11.

Lemma 10. If Assumption 2 holds, then for any I ∈ I(λn), it follows that

σ̃n(I) =
nλn
f(0)

(1 + o(1)),

as n→∞.

The proof of Lemma 10 is very similar to the proof of Proposition C.1 in Keshavarz, Scott and
Nguyen [45], and can be found in Supplement A.2.

Lemma 11. If Assumption 2 holds, and given that

∆n sup
I∈I(λn)

√
σ̃n(I) - (

√
2− εn)

√
− log λn (5.7)
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for a sequence (εn)n∈N satisfying εn → 0 and εn
√
− log λn →∞ as n→∞, then condition (5.4)

holds with m = 1, i.e.

lim
n→∞

λ2
n

∑
I,I′∈I0

n| inf I−inf I′|>1

exp
(
∆2
n1TI Σ−1

n 1I′
)
− 1 = 0,

Proof. For I, I ′ ∈ I0 with n| inf I − inf I ′| > 1. Write

exp
(
∆2
n1TI Σ−1

n 1I′
)
− 1 =

∞∑
p=1

1

p!

[
∆2
n1TI Σ−1

n 1I′
]p

=

∞∑
p=1

1

p!

[
1

2
∆2
n

√
σ̃n(I)σ̃n(I ′)

]p [
2

1TI Σ−1
n 1I′√

σ̃n(I)σ̃n(I ′)

]p
.

If nλn is an integer, the latter term 1TI Σ−1
n 1I′ is the sum over a square submatrix of Σ−1

n , and
if nλn is not an integer, then the number of non-zero entries of 1I and 1I′ cannot differ by more
than 1. From Lemma A.1 of [31] (see also Section 6.1 in Supplement A.2, it trivially follows that

∣∣1TI Σ−1
n 1I′

∣∣ ≤ C ′ dnλne dnλne∑
t=1

(n| inf I − inf I ′| bnλnc+ t)
−(1+κ)

≤ C ′ dnλne
dnλne∑
t=1

(bnλnc)−(1+κ)
= o (nλn) .

From Lemma 10, we know that
√
σ̃n(I)σ̃n(I ′) = nλn

f(0) (1 + o(1)) as n → ∞, and thus, it follows

that
√
σ̃n(I)σ̃n(I ′)

−1
1TI Σ−1

n 1I′ → 0 as n→∞. Hence, for n large enough, we have∣∣∣∣∣
∞∑
p=1

1

p!

[
1

2
∆2
n

√
σ̃n(I)σ̃n(I ′)

]p [
2

1TI Σ−1
n 1I′√

σ̃n(I)σ̃n(I ′)

]p∣∣∣∣∣
≤ 2

∣∣1TI Σ−1
n 1I′

∣∣√
σ̃n(I)σ̃n(I ′)

exp

[
1

2
∆2
n

√
σ̃n(I)σ̃n(I ′)

]
. (5.8)

Note that from the lower detection boundary condition (5.7) it immediately follows that

exp

[
1

2
∆2
n

√
σ̃n(I)σ̃n(I ′)

]
≤ λ−

1
2 (
√

2−εn)2

n ≤ λ−1
n (5.9)

for n large enough. Applying Lemma A.1 of [31] again, it follows that |Σ−1
n (i, j)| ≤ C(1 + |i −

j|)−(1+κ) for some C > 0. Let Φn be the n×n-matrix with entries Φn(i, j) = C(1 + |i− j|)−(1+κ),
and let Φ(ν) =

∑∞
h=−∞ C(1 + |i− j|)−(1+κ)e−2πihν . Then∑

I,I′∈I0
n| inf I−inf I′|>1

|1TI Σ−1
n 1I′ | ≤

∑
I,I′∈I0
I 6=I′

1TI Φn1I′ ≤
n∑

i,j=1

Φn(i, j)−
∑
I∈I0

1TI Φn1I
(a)
= o(n), (5.10)

where (a) follows from Theorem 18.2.1 of Ibragimov and Linnik [36], since it yields that∑n
i,j=1 Φn(i, j) = nΦ(0) + o(n) and 1TI Φn1I = nλnΦ(0) + o (nλn) for any I ∈ I0.

Finally, combining (5.8), (5.9) and (5.10), and once again using that
√
σ̃n(I)σ̃n(I ′) = nλn

f(0) (1+o(1))

as n→∞, we find ∑
I,I′∈I0

n| inf I−inf I′|>1

2

∣∣1TI Σ−1
n 1I′

∣∣√
σ̃n(I)σ̃n(I ′)

exp

[
1

2
∆2
n

√
σ̃n(I)σ̃n(I ′)

]
= o

(
1

λ2
n

)
,

which concludes the proof.
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Since Lemma 11 guarantees that Lemma 9 can be applied in the setting of Theorem 1, the proof
of the latter now follows immediately from Lemmas 8 and 9.

Proof of Theorem 1. The two Lemmas 8 and 9 yield that the asymptotic detection boundary is
(in terms of ∆n) given by

(
√

2− εn)

√
− log λn
nλn

sup
I∈I(λn)

√
nλn
σ̃n(I)

- ∆n - (
√

2 + ε̃n)

√
− log λn
nλn

inf
I∈I(λn)

√
σn(I)

nλn
, (5.11)

as n → ∞. For any I ∈ I(λn), it follows from Theorem 18.2.1 of Ibragimov and Linnik [36] (see
Section 6.1 of Supplement A.2) that σn(I) = nλnf(0)(1 + o(1)), and Lemma 10 yields

σ̃n(I) =
nλn
f(0)

(1 + o(1)), n→∞.

Plugging this into (5.11) finishes the proof.
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Abstract

In this material we provide all remaining proofs and recall several results that are necessary for
our theory.

6 Supplementary material and additional proofs

6.1 Auxiliary results

We begin this section by stating several useful results from various sources that we are going to
use in our proofs.

39



40 Appendix A.2. Supplementary material

Weak law of large numbers for arrays of dependent variables

Definition 12 (Sung, Lisawadi and Volodin [67]). Let {Xnk : n ∈ N, un ≤ k ≤ vn} be an array
of random variables with vn − un → ∞ as n → ∞. Additionally, let r > 0, and (kn)n∈N be a
sequence of positive integers, such that kn →∞ as n→∞.
Let (h(n))n∈N be a sequence of positive constants, such that h(n) ↗ ∞ as n → ∞. The array
{Xnk : n ∈ N, un ≤ k ≤ vn} is said to be h-integrable with exponent r if

sup
n∈N

1

kn

vn∑
k=un

E [|Xnk|r] <∞, and lim
n→∞

1

kn

vn∑
k=un

E [|Xnk|r1 {|Xnk|r > h(n)}] = 0.

With this, we have the following.

Theorem 13 (Wang and Hu [71]). Let m be a positive integer. Suppose that {Xnk, un ≤ k ≤
vn, n ≥ 1} is an array of non-negative random variables with Cov(Xnk, Xnk) ≤ 0 whenever
|j−k| ≥ m, un ≤ j, k ≤ vn, for each n ≥ 1 and is h-integrable with exponent r = 1 for a sequence
kn →∞ and h(n) ↑ ∞, such that h(n)/kn → 0 as n→∞. Then

1

kn

vn∑
k=un

(Xnk − EXnk)→ 0

in L1 and hence in probability, as n→∞.

Remark 14. In fact, the original theorem in Wang and Hu [71] is slightly stronger, but Theorem
13 as stated above is sufficient for our purposes.

Remark 15. We can relax the condition Cov(Xnj , Xnk) ≤ 0 whenever |j−k| ≥ m, un ≤ j, k ≤ vn
in Theorem 13 to requiring only that

lim sup
n→∞

1

k2
n

vn∑
j,k=un
|j−k|≥m

Cov(Xnj , Xnk) ≤ 0.

Decay of precision matrices

The following result is due to Jaffard [41] and was used in [31] as a key tool in the analysis of a
higher criticism test for detection of sparse signals observed in correlated noise. Here it is stated
as it was formulated and proven in [31].

Lemma 16 (Hall and Jin [31]). Let Σn, n ≥ 1 be a sequence of n× n correlation matrices, such
that ‖Σn‖ ≥ c > 0, where ‖Σn‖ is the operator norm of Σn as an operator from Rn to Rn. If for
some constants κ > 0, C > 0,

|Σn(i, j)| ≤ C(1 + |i− j|)−(1+κ),

then there is a constant C ′ > 0 depending on κ, C, and c, such that

|Σ−1
n (i, j)| ≤ C ′(1 + |i− j|)−(1+κ).

Long-run variance of partial sums of a stationary time series

Here we recall the well-known result given in Theorem 28.2.1 of Ibragimov and Linnik [36] on the
explicit formula for the variance of the sum of n consecutive realizations of a stationary process.
We adapt the notation to our case.

Suppose that (Xn)n∈Z is a centered stationary sequence with the autocovariance function γ(h),

h ∈ Z and the spectral density f(ν), ν ∈ [−1/2, 1/2). Let Sn =
n∑
i=1

Xi.
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Theorem 17 (Ibragimov and Linnik [36]). The variance of Sn in terms of γ(h) and f(ν) is given
by

Var[Sn] =
∑
|h|<n

(n− |h|)γ(h) =

∫ 1/2

−1/2

sin2(πnν)

sin2(πν)
f(ν) dν.

If the spectral density f(ν) is continuous at ν = 0, then

Var[Sn] = f(0)n+ o(n), n→∞.

6.2 Remaining proofs for section 2

Proof of Lemma 10

Proof. We are inspired by the proof of Proposition C.1 in Keshavarz, Scott and Nguyen [45], that
was dropped from the final paper [44], although we are able to make some simplifications, since a
slightly weaker result suffices for our purposes. In addition, we use this opportunity to fix several
minor inaccuracies in their proof.

Recall that T (f) is the infinite Toeplitz matrix generated by the spectral density f and that
Σn = Tn(f) is the corresponding truncated Toeplitz matrix.

Let T (g) be the infinite Toeplitz matrix generated by g = 1/f , i.e. the matrix with elements
T (g)(i, j) = g|i−j|, where g0, g1, . . . are the Fourier coefficients of g. Let H(f) and H(g) be the
Hankel matrices generated by f and g, respectively, i.e. the matrices

H(f) =


f1 f2 f3 . . .
f2 f3 f4 . . .
f3 f4 f5 . . .
...

...
...

. . .

 and H(g) =


g1 g2 g3 . . .
g2 g3 g4 . . .
g3 g4 g5 . . .
...

...
...

. . .


It follows from Proposition 1.12 of Böttcher and Silbermann [8], that

T (f)−1 = T (g) + T (f)−1H(f)H(g).

Let vI be the extension of the vector 1I to an element of l2 by zero-padding. As in Keshavarz,
Scott and Nguyen [44], from the above identity and the definition of the operator norm, we find∣∣vTI T (f)−1vI − vTI T (g)vI

∣∣ =
∣∣〈H(f)T (f)−1vI ,H(g)vI

〉∣∣
≤ ‖H(f)T (f)−1‖‖vI‖`2‖H(g)vI‖`2

≤ ‖H(f)T (f)−1‖
√
nλn

 ∑
{r:vI(r)=1}

‖H(g)er‖`2


where er = (0, . . . , 0, 1, 0, . . .)T is the sequence whose r-th entry is 1, and ‖H(f)T (f)−1‖ is the
operator norm of H(f)T (f)−1 as an operator from `2 to `2. Since ‖T (f)‖ = supν∈[0,1) f(ν) <∞,

we have ‖T (f)−1‖ < ∞ by the inverse mapping theorem. It follows that ‖H(f)T (f)−1‖ < ∞,
because clearly ‖H(f)‖ < ∞. Since f is bounded away from 0, it is well known that the Fourier
coefficients gk, k ∈ Z of g decay at the same rate as the Fourier coefficients of f , i.e.

|gk| ≤ C ′(1 + |k|)−(1+κ),

for k ∈ Z. Following Keshavarz, Scott and Nguyen [44]) we see that

∑
{r:vI(r)=1}

‖H(g)er‖`2 =
∑

{r:vI(r)=1}

 ∞∑
j=r

|gj |2
 1

2

≤
∑

{r:vI(r)=1}

(∫ ∞
r

x−2(1+κ)dx

) 1
2

≤ C ′′
∑

{r:vI(r)=1}

r−( 1
2 +κ) ≤ C ′′

bnλnc∑
r=1

r−( 1
2 +κ).
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It is then easy to see that the last expression is O
(

(nλn)
1
2−κ

)
if κ < 1

2 , and O (log(nλn)) if κ = 1
2 .

Lastly, it is also clearly bounded if κ > 1
2 . Hence, in any of these cases it holds that∑

{r:vI(r)=1}

‖H(g)er‖`2 = o
(√

nλn

)
.

Thus, ∣∣vTI T (f)−1vI − vTI T (g)vI
∣∣ = o (nλn) .

We now need to bound vTI T (g)vI . Let (Xt)t∈N be a stationary random process with spectral
density g. Then

vTI T (g)vI = Var

 ∑
{t:vI(t)=1}

Xt

 = nλn(g(0) + o(1)),

as n → ∞, where the last equality is due to Theorem 18.2.1 of Ibragimov and Linnik [36], see
Section 5.3 of the Appendix for the precise statement of the theorem. (Note that g is continuous
at 0 and g(0) > 0.) Thus,

vTI T (f)−1vI = nλn(g(0) + o(1)).

Finally, by Theorem 2.11 of Böttcher and Grudsky [7], we have

σ̃n(I) = vTI Σ−1
n vI = vTI T (f)−1vI + ṽTI

[
T (f)−1 − T (g)

]
ṽI + vTI DnvI ,

where ‖Dn‖ → 0, as n→∞, and ṽI arises from vI through the transformation

ṽI = (vI(n), . . . , vI(1), 0, 0, . . .) .

As above, we have ∣∣ṽTI [T (f)−1 − T (g)
]
ṽI
∣∣ = o (nλn) ,

and clearly, by Cauchy-Schwarz,∣∣vTI DnvI
∣∣ ≤ ‖vI‖2‖Dn‖ = o (nλn) .

This concludes the proof.

Remaining proofs

Proof of Theorem 2. Note that for any 1 ≤ k ≤ bλ−1
n c, under H0, the random variables

1TIk
Σ−1
n Y

√
σ̃k

with σ̃k as in (2.5) are identically distributed (dependent) standard Gaussian. Note that σ̃k =
σ̃n (Ik) with our former notation. The union bound and the elementary tail inequality P [|Z| > x] ≤
2e−x

2/2 for Z ∼ N (0, 1), yield

α̃(Φd
n) = P0 [Tn(Y ) > cα,n]

≤ bλ−1
n c sup

1≤k≤bλ−1
n c

P0

[
|1TIkΣ−1

n Y |
√
σ̃k

> cα,n

]

= bλ−1
n cP [|Z| > cα,n] ≤ 2bλ−1

n c exp

(
−
c2α,n

2

)
≤ α.

This proves α̃
(
Φd
n

)
≤ α for all n ∈ N.

Concerning the type II error, note that, under H1, i.e. if Y ∼ N (δn1Ik ,Σn) for some k ∈
{1, . . . , bλ−1

n c}, we have for all local test statistics on the right-hand side of (2.4) that

1TImΣ−1
n Y

√
σm

∼ N
(
δn1ImΣ−1

n 1Ik√
σm

, 1

)
, m = 1, . . . , bλ−1

n c.
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Plugging in (2.6) and (2.8), it follows that the type II error satisfies

β̃(Φd
n,Σn,∆n, λn) = sup

1≤k≤bλ−1
n c

sup
|δn|≥∆n

Pδn,k
[
Φd
n(Y ) = 0

]
= sup

1≤k≤bλ−1
n c

sup
|δn|≥∆n

P

[
sup

1≤m≤bλ−1
n c

∣∣∣∣Zm +
δn1IkΣ−1

n 1Im√
σm

∣∣∣∣ ≤ cα,n
]

≤ sup
1≤k≤bλ−1

n c
sup

|δn|≥∆n

P
[∣∣∣Zk + δn

√
σ̃k

∣∣∣ ≤ cα,n]
≤ sup

1≤k≤bλ−1
n c

sup
|δn|≥∆n

P
[
|δn|
√
σ̃k − |Zk| ≤ cα,n

]
≤ P

[
|Z| > ∆n inf

1≤k≤bλ−1
n c

√
σ̃k − cα,n

]
which proves the claim.

Proof of Corollary 3 . The claim follows directly from Theorem 2 and the standard Gaussian tail
bound P [|Z| > x] ≤ 2e−x

2/2 via

P

[
|Z| > ∆n inf

1≤k≤bλ−1
n c

√
σ̃k − cα,n

]
=P

[
|Z| > (1 + εn)

√
−2 log λn −

√
−2 log(λn) + 2 log(2α−1)

]
≤P

[
|Z| > εn

√
−2 log λn −

√
2 log(2α−1)

]
≤ exp

(
−1

2

(
εn
√
−2 log λn −

√
2 log(2α−1)

)2
)

≤ exp

(
−1

2

(√
2 log(α−1)

)2
)

= α.

6.3 Proofs for Section 3

Proof of Theorem 4. It is well-known (see, for example, [63], Sections 3.3–3.4), that the autoco-
variance function γ of an ARMA process is exponentially decaying, i.e.

|Σn(i, j)| = |γ(i− j)| ≤ Ce−κ|i−j|,

for some C > 0, some κ > 0 and all 1 ≤ i, j ≤ n. Thus, Assumption 2 is satisfied, and Theorem 4
follows immediately from Theorem 1.

Properties of the precision matrix of an AR(p) process

Let Zt be a stationary AR(p) process defined in (3.5) and Σn be the covariance matrix of n
consecutive realizations of Zt. Then the precision matrix Σ−1

n = (Σ−1
n (i, j)), i, j = 1, . . . , n is a

n× n symmetric 2p+ 1-diagonal matrix with the upper-triangle elements given by (see [64])

Σ−1
n (i, j) =



i−1∑
t=0

φtφt+j−i, 1 ≤ i ≤ j ≤ p
p+i−j∑
t=0

φtφt+j−i, 1 ≤ i ≤ n− p, max(i, p+ 1) ≤ j ≤ i+ p

n−j∑
t=0

φtφt+j−i, n− p+ 1 ≤ i ≤ j ≥ n

0, i+ p < j ≤ n, i ≤ n− p.

(6.1)



44 Appendix A.2. Supplementary material

Note that Σ−1
n is symmetric with respect to both the main diagonal and the antidiagonal, so that

Σ−1
n (i, j) = Σ−1

n (j, i) and Σ−1
n (i, j) = Σ−1

n (n+ 1− j, n+ 1− i).

We can see from (6.1) that Σ−1
n has two symmetric blocks L = (lij) and R = (rij) of size p with the

elements related as lij = rp+1−i,p+1−j = Σ−1
n (i, j), i, j = 1, . . . , p (red blocks in Fig. 6). The other

elements of Σ−1
n are constant on the diagonals and are given by Σ−1

n (i, i+ k) = Dk, i = p− k+ 1,
k = 1, . . . , p (blue parts of the matrix in Fig. 6), where

Dk =

p−k∑
t=0

φtφt+k, k = 0, . . . , p.

L

R

D

0

0

Σ−1
n =

p

n− 2p

p

Figure 6: The matrix Σ−1
n is symmetric 2p + 1-diagonal, the blocks L and R of size p are of size

p, the blue part is has the same values Dk on the diagonals. The white part consists of zeros.

We are interested in the diagonal block sums of Σ−1
n over the blocks of size r. We suppose that

1 ≤ r < bn/2c − p. The block sums of interest are

Sr,m = 1Tr,mΣ−1
n 1r,m, m = 1, . . . , n− r + 1 (6.2)

where 1r,m ∈ Rn is the vector with entries

1r,m(i) =

{
1, i = m, . . . ,m+ r − 1,

0, otherwise

Note that the key quantities σ̃k that appear in the lower and upper bounds of testing (5.3) and
(2.8) are related to (6.2) as follows,

σ̃k = Sbnλnc,(k−1)bnλnc+1, k = 1, . . . , bλ−1
n c.

Lemma 18. Suppose that 1 ≤ r ≤ n−2p and that n ≥ 3p. The quantities Sr,m, m = 1, . . . , n−r+1
can be calculated directly using the following recursive formulas.

1. The first block sum is given by

Sr,1 =


r∑
j=1

(
j−1∑
t=0

φt

)2

, 1 ≤ r ≤ p,

p∑
j=1

(
j−1∑
t=0

φt

)2

+ (r − p)
(

p∑
t=0

φt

)2

, p ≤ r ≤ n− p
(6.3)
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2. If r ≤ p, then

Sr,m+1 = Sr,m +



(
r−1∑
t=0

φt+i

)2

, 1 ≤ m ≤ p+ 1− r(
p−i∑
t=0

φt+i

)2

, p+ 1− r ≤ m ≤ p

0, p+ 1 ≤ m ≤ n− p− r

−

(
r−1∑

t=n−i−p
φn−i−t

)2

, n− p− r + 1 ≤ m ≤ n− p

−
(
r−1∑
t=0

φn−i−t

)2

, n− p ≤ m ≤ n− r

(6.4)

3. If p ≤ r ≤ n− 2p, then

Sr,m+1 = Sr,m +



(
p−i∑
t=0

φt+i

)2

, 1 ≤ m ≤ p

0, p+ 1 ≤ im ≤ n− p− r

−

(
r−1∑

t=n−i−p
φn−i−t

)2

, n− p− r + 1 ≤ m ≤ n− r.

(6.5)

The proof of the lemma is omitted. It follows from simple algebra and the relation

D0 + 2

p∑
k=1

Dk =

p∑
t=0

φ2
t + 2

p∑
k=1

p−k∑
t=0

φtφt+k =

(
p∑
t=0

φt

)2

.

Using the result of Lemma 18, we can calculate the constants σ̃k.

Proof of Lemma 5. According to definition 6.2, the quantities σ̃k can be written as

σ̃k = Sbnλnc,(k−1)bnλnc+1, k = 1, . . . , bλ−1
n c.

Note that it follows immediately from Lemma 18 that for any fixed 1 ≤ r ≤ n−2p the function Sr,m,
m = 1, . . . , n− r+ 1 is monotone increasing for m ≤ p+ 1, constant for p+ 1 ≤ m ≤ n− p− r+ 1
and decreasing for m ≥ n − p − r + 1. Moreover, this function is symmetric in a sense that
Sr,m = Sr,n−r−m+2, m = 1, . . . , n− r + 1. Therefore, it follows that

inf
1≤k≤bλ−1

n c
σ̃k = min

1≤k≤bλ−1
n c

Sbnλnc,(k−1)bnλnc+1 = Sbnλnc,1

and
sup

1≤k≤bλ−1
n c

σk = max
1≤k≤bλ−1

n c
Sbnλnc,(k−1)bnλnc+1 = Sbnλnc,p+1.

Note that the condition bnλnc < n−2p will guarantee that the maximum is attained at the interval
where the function S is constant (for some k that satisfies p+1 ≤ (k−1)bnλnc+1 ≤ n−p−r+1)
and, consequently, will be equal to Sbnλnc,p+1.

We obtain the statement of the lemma applying the recursive formulas of Lemma 18.
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Abstract

We investigate minimax testing for detecting local signals or linear combinations of such signals
when only indirect data is available. Naturally, in the presence of noise, signals that are too small
cannot be reliably detected. In a Gaussian white noise model, we discuss upper and lower bounds
for the minimal size of the signal such that testing with small error probabilities is possible. In
certain situations we are able to characterize the asymptotic minimax detection boundary. Our
results are applied to inverse problems such as numerical differentiation, deconvolution and the
inversion of the Radon transform.

Keywords: Hypothesis testing, minimax signal detection, statistical inverse problems.
AMS classification numbers: 62F03, 65J22, 65T60, 60G15.

1 Introduction

In many practical applications one aims to infer on properties of a quantity which is not directly
observable. As a guiding example, consider computerized tomography (CT), where the interior
(more precisely the tissue density) of the human body is imaged via the absorption of X-rays along
straight lines. Mathematically, the relation between the available measurements Y (absorption
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along lines, the so-called sinogram) and the unknown quantity of interest f (the tissue density) is
described by the Radon transform, which is an integral operator to be described in more detail
later (cf. Figure 1 for illustration). Potential further applications include astronomical image
processing, magnetic resonance imaging, non-destructive testing and super-resolution microscopy,
to mention a few. Typically, the measurements are either of random nature themselves (as e.g.
in positron emission tomography (PET, see [70]), magnetic resonance imaging (MRI, see [46]) or
super-resolution microscopy (see [54])) and/or additionally corrupted by measurement noise. This
motivates us to consider the inverse Gaussian white noise model

Yσ = Af + σξ (1.1)

with a (known) bounded linear operator A : X → Y mapping between (real or complex) Hilbert
spaces X and Y, noise level σ > 0 and a Gaussian white noise ξ on Y (details will be given in
section 2).
A major effort of research is devoted to the development and analysis of estimation and recovery
methods of the signal f from the measurements Yσ (see Section 1.2 for some references). However,
when f is expected to be very close to some reference f0, by which we mean that either f = f0 or
f deviates from f0 by only a few localized components (anomalies), then instead of full recovery of
f , one might be more interested in testing whether f = f0 or not. This is especially relevant, since,
when the signal-to-noise level is too small for full recovery, then testing may still be informative
as it is well-known to be a simpler task (see e.g. [61] and the references therein). Although of
practical importance, testing in model (1.1) is a much less investigated endeavor than estimation
and a full theoretical understanding has not been achieved yet. Hence, in this paper, we are
interested in analyzing such testing methodology for inferring on f based on the available data Yσ.
Note that, due to the linearity of the model (1.1), we can w.l.o.g. assume that f0 = 0. Thus, we
suppose that either f = 0 (no anomaly is present) or f = δu (an anomaly given by δu is present),
where u ∈ Fσ for some (finite) class Fσ ⊆ X of non-zero functions, that are – in some sense –
normalized, and the constant factor δ describes its orientation, and – more importantly – how
“large” or “pronounced” the signal f is. We consider the family of testing problems

H0 : f = 0 against H1,σ : f = δu for some u ∈ Fσ and |δ| > µσ, (1.2)

where (µσ)σ>0 is a family of non-negative real numbers. This can be viewed as the problem of
detecting an anomaly from the set {δu : u ∈ Fσ, |δ| > µσ}.
We suppose that the family of classes (Fσ)σ>0 is chosen in advance. This choice is crucial for the
analysis of the problem and it depends solely on the specific application: For CT we might think
of small inclusions such as tumors, cf. Figure 1, where certain wavelets are used as mathematical
representation. If no a priori knowledge about potential anomalies is known, it is natural to start
by considering dictionaries (uk)k∈I with good expressibility in X , e.g. frames or wavelets, and
set Fσ = {uk : k ∈ Iσ} for subsets Iσ of I. The particular choices that we analyze in this paper
will be built from such dictionaries, see also [21] and [34] for recent references in the context of
estimation.

1.1 Aim of the paper

Given a family of classes (Fσ)σ>0, our main objective will be to assess to what extent powerful
tests for the testing problem (1.2) exist. The answer will usually depend on the size of µσ: If µσ
is large enough, then powerful tests exist, and if µσ is too small, then no test has high power.
Hence, we aim to find a minimal family of thresholds (µ∗σ)σ>0, such that powerful detection at a
controlled error rate is still possible. Vice versa, such a minimal family would determine which
signals can not be detected reliably, even when they are present.
To this end, we extend the existing theory on minimax signals detection in inverse problems
focusing on localized signals and linear combinations of localized signals, which are common in
practice. This has, to the best of our knowledge, not been investigated yet. We present upper
bounds, lower bounds and asymptotics for the minimal values of µσ such that powerful tests for
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(a) Reference image (b) Sinogram of (a) (c) Noisy sinogram of (a)

(d) Distorted Image (e) Sinogram of (d) (f) Noisy sinogram of (d)

Figure 1: Illustration of structured hypothesis testing in the CT example. To infer whether the
unknown signal deviates from a reference image, we use a test based on the noisy sinogram. In the
above example, when the distortion is assumed to be a linear combination of certain wavelets (cf.
Sections 3.2 and 4), then the results of Theorem 3.9 imply the existence of a test which is able to
distinguish the distorted (1d) from the undistorted image (1a) with type I and type II error both
at most 0.05, based on the measurements 1f.

testing problems given by (1.2) exist. They depend on the difficulty of the inverse problem induced
by the forward operator A, the cardinality of Iσ (denoted by |Iσ|) and the inner products between
the images Auk, k ∈ Iσ, of the potential anomalies. We stress that our results can be applied
to a variety of dictionaries (uk)k∈I , such as wavelets, whereas previous results were restricted to
dictionaries based on the SVD of the operator A. As one particular example, our results can
be applied to the situation where the dictionary (uk)k∈I is (a subset of) the famous Wavelet-
Vaguelette-decomposition (WVD, see [18]) or the Vaguelette-Wavelet-decomposition (VWD, see
[1]) of A.

Figure 1 serves as an illustrative example. If it is known a priori, that the anomaly which distorts
the reference image is a linear combination of a certain collection of wavelets (see the discussion
in Sections 3.2 and 4 for details), then our results suggest that the anomaly that is present in 1d
is large enough, such that there is a test which is able to distinguish the distorted (1d) from the
undistorted image (1a) with type I and type II error both at most 0.05, based on the measurements
1f (see Theorem 3.9). Note that our results are not restricted to wavelets. In fact, most of our
results are applicable under very mild conditions on the dictionary (uk)k∈I .

We stress that this paper does not constitute an exhaustive study of the subject. Rather, we aim
to provide some first analysis and discuss some illustrative examples.
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1.2 Connection to existing literature

As the literature on estimating f in model (1.1) is vast (see e.g. [22], [32], [6], [18], [1], [2], [72], [21]),
we confine ourselves to briefly reviewing the literature on (minimax) testing theory, the topic of
the present paper.
First of all, there is extensive literature about minimax signal detection for the direct problem, i.e.
when X = Y and A is the identity. We only mention the seminal works [38] and [40]. Usually, the
hypothesis “f = 0” is tested against alternatives of the form “f ∈ F and ‖f‖X > µσ”, where F
is a certain class of functions, for example defined by certain smoothness conditions. The indirect
case where A is allowed to differ from the identity has e.g. been treated in [48], [39], [37], [53], [4].
Note, that our testing problem (1.2) has an alternative which is substantially different to testing
against a smoothness condition f ∈ F with sufficiently large norm. Our approach is different, as
instead of e.g. smoothness constraints, expressed through F , we consider the alternative that f is
an element of a very specific set of candidate functions. We refer to [25] and [23], where systems
of scaled and translated rectangle functions (bumps) in a direct setting were considered.
Finally, we want to highlight [49] explicitly as they consider alternatives consisting of linear com-
binations of anomalies given in terms of the SVD of the operator A, which served as a point of
reference and inspiration to parts of this study.

1.3 Outline

We start by giving a detailed description about our model and some basic facts about testing and
minimax signal detection in section 2. Section 3 contains the main results: In section 3.1 we assume
that Fσ is a collection of frame elements, and in section 3.2 we assume that Fσ contains functions
in the linear span of a collection of frame elements. Both sections also include discussions about
conditions that frames need to satisfy for our results to be applicable. We present illustrative
simulation studies in section 4. All proofs are postponed to section 6.

2 Preliminaries

2.1 Detailed model assumptions

The model (1.1) has to be understood in a weak sense, i.e.

Yσ(h) = 〈Af, h〉Y + σξ(h), h ∈ Y. (2.1)

The error ξ is a Gaussian white noise on X :

(1) If X and Y are real Hilbert spaces, we suppose that ξ : Y → L2(Ω, P ), for some some proba-
bility space (Ω,A, P ), is a linear mapping satisfying ξ(h) ∼ N (0, ‖h‖2Y) and E (ξ(h)ξ(h′)) =
〈h, h′〉Y for all h, h′ ∈ Y.

(2) If X and Y are complex Hilbert spaces, instead we suppose that ξ(h) ∼ CN (0, 2‖h‖2Y) and

E(ξ(h)ξ(h′)) = 2〈h, h′〉Y . Here X ∼ CN (0, 1) means that X is distributed according to the

standard complex normal distribution, i.e. X = X1 + iX2, where X1, X2
i.i.d.∼ N (0, 1/2).

We will use the notation 〈Yσ, h〉Y := Yσ(h) for convenience.

2.2 Notation

For a complex number z, we denote its real and imaginary part by <z and =z, respectively.
For two families (aσ)σ>0, (bσ)σ>0 of non-negative real numbers we write aσ - bσ if limσ→0 aσ/bσ ≤
1, and we write aσ % bσ if limσ→0 aσ/bσ ≥ 1. If limσ→0 aσ/bσ = 1, we write aσ � bσ, and if
limσ→0 aσ/bσ = c <∞, we write aσ ∼ bσ.
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2.3 Testing and distinguishability

In the above testing problem (1.2), we wish to test the hypothesis H0 against the alternative
H1,σ, which means making an educated guess (based on the data) about the correctness of the
hypothesis when compared to the alternative, while keeping the error of wrongly deciding against
H0 under control. Tests are based on test statistics, i.e. measurable functions of the data Yσ. We
suppose that any test statistics can be expressed in terms of the Gaussian sequence yσ = (yσ,i)i∈N
given by

yσ,i := 〈Yσ, ei〉Y = 〈Af, ei〉Y + σξi, i ∈ N, (2.2)

where {ei : i ∈ N} is a basis of the Hilbert space Y, and, consequently, ξi
i.i.d.∼ N (0, 1) (in the real

case) or ξi
i.i.d.∼ CN (0, 1) (in the complex case) for i ∈ N. In the following, we use the notation

Yσ interchangeably for either the random process given by (2.1) or the random sequence given by
(2.2), since they are equivalent in terms of the data they provide.
A test for the testing problem (1.2) can now be viewed as a measurable function of the sequence
yσ given by

φ : KN → {0, 1},

where K is either R or C. The test φ can be understood as a decision rule in the following sense:
If φ(yσ) = 0, the hypothesis is accepted. If φ(yσ) = 1, the hypothesis is rejected in favor of the
alternative.
If H0 is true, i.e. f = 0, but φ(yσ) = 1, we call this a type I error (the hypothesis is rejected
although it is true). The probability to make a type I error is

ασ(φ) := P0(φ(yσ) = 1),

where P0 denotes the distribution of yσ given that H0 is true. Likewise, the alternative might be
true, but φ(yσ) = 0. We call this a type II error (the hypothesis is accepted although the alternative
is true). Let us, for simplicity, introduce the notation Fσ(µσ) = {δu : u ∈ Fσ, |δ| ≥ µσ}. The type
II error probability, given that a specific f ∈ Fσ(µσ) is the true signal, is denoted as

βσ(φ, f) := Pf (φ(yσ) = 0), f ∈ Fσ(µσ),

where Pf denotes the distribution of yσ given that f is the true underlying signal. Since the
alternative is – in general – composite, i.e. does not only consist of only one element, the type
II error probability will in general depend on the element f . For such composite alternatives we
consider the worst case error given by the maximum type II error probability over Fσ(µσ) for our
analysis.
We say that the hypothesis H0 is asymptotically distinguishable (in the minimax sense) from the
family of alternatives (H1,σ)σ>0 when there exist tests for the testing problems “H0 against H1,σ”,
σ > 0, that have both small type I and small maximum type II error probabilities. We define

γσ = γσ(µσ) := inf
φ∈Φσ

[
ασ(φ) + sup

f∈Fσ(µσ)

βσ(φ, f)

]
,

where Φσ is the set of all tests for the testing problem “H0 against H1,σ”. In terms of γσ we
say that H0 and H1,σ are distinguishable if γσ → 0, as σ → 0. If γσ → 1, we say that they are
indistinguishable. We refer to [39] for an in-depth treatment.
For prescribed families Fσ, we are interested in determining the smallest possible values µσ, such
that H0 and H1,σ are still asymptotically distinguishable, if possible. If a family (µ∗σ)σ>0 exists,
that satisfies

γσ(µσ)→ 0 if µσ % µ∗σ, and γσ(µσ)→ 1 if µσ - µ∗σ,

as σ → 0, we call (µ∗σ)σ>0the (asymptotic) minimax detection boundary. We may say that (µ∗σ)σ>0

separates detectable and undetectable signals.



52 Appendix B. Minimax detection of localized signals in statistical inverse problems

It is, however, not always possible to find such a sharp threshold. If the family (µ∗σ)σ>0 only
satisfies the weaker conditions

γσ(µσ)→ 0 if µσ/µ
∗
σ →∞, and γσ(µσ)→ 1 if µσ/µ

∗
σ → 0,

we call it the separation rate of the family of testing problems “H0 against H1,σ”.

Remark: Although we are mostly interested in the asymptotics of the problem, we will also
state non-asymptotic results, which we deem interesting.

3 Results

Throughout the rest of the paper, we will assume that (uk)k∈I is a countable collection of functions
in X , and (Iσ)σ>0 is a family of finite subsets of I.

3.1 Alternatives given by finite collections of functions

We first suppose that Fσ consists of the appropriately normalized functions uk, k ∈ Iσ, i.e.
Fσ =

{
‖Auk‖−1

Y uk : k ∈ Iσ
}

. As above, we write Fσ(µσ) =
{
δ‖Auk‖−1

Y uk : k ∈ Iσ, |δ| ≥ µσ
}

, so
that testing problem (1.2) can be written as

H0 : f = 0 against H1,σ : f ∈ Fσ(µσ). (3.1)

An upper bound for the detection boundary µ∗σ

Any family of tests (φσ)σ>0 for the family of testing problems (3.1) yields an upper bound for µ∗σ.
It seems natural to choose maximum likelihood type tests as candidates, which are given by

φσ,α(yσ) = 1

{
sup
k∈Iσ

|〈Yσ, Auk〉Y |
σ‖Auk‖Y

> cα,σ

}
, σ > 0, (3.2)

for a given significance level α ∈ (0, 1), and for appropriately chosen thresholds cα,σ (which depend
on whether the spaces X and Y are real or complex Hilbert spaces).

Theorem 3.1. Let Nσ = |Iσ| and assume that Nσ →∞, as σ → 0. In addition, assume that

µσ % (1 + εσ)
√

2σ2 logNσ,

where εσ → 0 and εσ
√

logNσ → ∞ as σ → 0. Then γσ(µσ) → 0 and thus, µ∗σ - (1 +

εσ)
√

2σ2 logNσ.

The bound given in Theorem 3.1 does not depend on A and it depends on set of anomalies (uk)k∈I
and the family of candidate indices (Iσ)σ>0 only through the cardinality Nσ. Thus, Theorem 3.1
has the advantage that it is (almost) always applicable, but it might be not very well suited for
specific applications. We will see examples, where the bound is essentially sharp, and an example,
where it is basically useless.

A lower bound for µ∗σ

Theorem 3.2. Let

N∗σ = sup{#S : S ⊆ Iσ, <(〈Auk, Auk′〉Y) ≤ 0 for any two distinct k, k′ ∈ S},

and assume that N∗σ →∞. In addition, assume that

µσ - (1− εσ)
√

2σ2 logN∗σ , (3.3)

where (εσ)σ>0 is a family of positive real numbers such that εσ → 0 and εσ
√

logN∗σ → ∞ as

σ → 0. Then γσ(µσ)→ 1 and thus, µ∗σ % (1− εσ)
√

2σ2 logN∗σ .
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This theorem can be proven by using Proposition 4.10 and Lemma 7.2 of [40]. However, we will
provide a self-contained and simple proof employing a weak law of large numbers for dependent
random variables in section 6.
Theorem 3.2 implies that the number N∗σ of negatively correlated image elements Auk is the
relevant quantity which determines the difficulty of testing (1.2). The actual cardinalty Nσ plays
no role in the lower bound (3.3).

The detection boundary

As a consequence, we are now in position to describe the asymptotic detection boundary precisely
in several situations. First, a combination of the previous theorems yields the following:

Corollary 3.3. Assume that Nσ = |Iσ| → ∞, and let

Mσ = sup
k∈Iσ

#{k′ ∈ Iσ : <(〈Auk, Auk′〉Y) > 0},

and assume that MσN
−εσ
σ → 0 for a family (εσ)σ>0 that satisfies εσ → 0 and εσ

√
logNσ →∞ as

σ → 0. Then µ∗σ �
√

2σ2 logNσ.

In particular, Corollary 3.3 yields the asymptotic detection boundary, when (Auk)k∈Iσ is orthogo-
nal. Note that the assumptions of Corollary 3.3 are satisfied when Mσ is constant as σ → 0. This
has several applications, as we will see e.g. in Section 3.1.
Assume now that the operator A : X → Y is compact and has a singular value decomposition
given by orthonormal systems (ζi)i∈N and (ηi)i∈N in X and Y, respectively, and singular values
(si)i∈N.

Corollary 3.4. Let I = N and uk = ζk and ak = 1/sk for k ∈ N, and let (Iσ)σ>0 be any family

of finite subsets of I, such that Nσ = |Iσ| → ∞, as σ → 0. Then µ∗σ �
√

2σ2 logNσ.

Remark: The detection thresholds for the SVD are clearly very easy to find, and could be
deduced from other known results (see [39] for example). We include it here, since, as far as we
know, it has not been stated explicitly before.

Frame decompositions

We have seen that sharp detection thresholds for the SVD can easily be found, but this does
(usually) not cover the situation when we are interested in local anomalies. We will thus focus on
other options for anomaly systems, particularly frames, for which be briefly introduce the most
important notation. Let H be a separable Hilbert space, and let I be a countable index set. A
sequence (ek)k∈I ⊆ H is called a frame of H if there exist constants C1, C2 > 0, such that for any
h ∈ H

C1‖h‖2H ≤
∑
k∈I

|〈h, ek〉H|2 ≤ C2‖h‖2H.

Since frames not have to be orthonormal, they provide great flexibility. Theorems 3.2 and 3.1
clearly apply to testing (1.2) with uk = ek, however, the fact that (uk)k∈I constitutes a frame is,
on its own, not enough to guarantee that we obtain a sharp detection boundary from Corollary
3.3.
In the following we show how frames (uk)k∈I can be constructed, for which Corollary 3.3 can be
applied. The idea is as follows: Since the bounds for the detection threshold mostly depend on
properties of the images Auk in Y, we will simply start by defining a frame (vk)k∈I in Y that will
guarantee that the needed properties are satisfied, and then construct the corresponding frame
(uk)k∈I in X , such that the pair (uk)k∈I , (vk)k∈I is a decomposition of the operator A, and such
that the assumptions of Corollary 3.3 are satisfied for any family of subsets (Iσ)σ>0.
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Assumption 3.5. (i) There is a dense subspace Ỹ ⊆ Y with inner product 〈·, ·〉Ỹ and norm
‖ · ‖Ỹ , and constants c1, c2 > 0, such that

c1‖x‖X ≤ ‖Ax‖Ỹ ≤ c2‖x‖X , (3.4)

for all x ∈ X .

(ii) There is a frame (vk)k∈I of Y and a sequence (λk)k∈I of real numbers with αk 6= 0, and
constants a1, a2 > 0, such that

a1‖y‖2Ỹ ≤
∑
k∈I

λ2
k|〈y, vk〉Y |2 ≤ a2‖y‖2Ỹ ,

for all y ∈ Ỹ.

Assumption 3.5 implies that A as an operator from X to ran(A) ⊆ Ỹ is invertible. Now let (vk)k∈I
be a frame of ran(A) as in (ii). We apply the Gram-Schmidt procedure with respect to the inner
product 〈·, ·〉Y to (vk)k∈I . This results in a sequence (v∗k)k∈I , which is a frame in ran(A) and which
is orthogonal with respect to 〈·, ·〉Y . Now we define

uk = λkA
−1v∗k,

for k ∈ I. The system (uk)k∈I clearly yields sharp detection thresholds, as for any subset Iσ ⊂ I
it holds that Nσ = N∗σ by construction. Furthermore, it is a frame in X , since for x ∈ X∑

k∈I

|〈x, uk〉X |2 =
∑
k∈I

λ2
k|〈(A∗)−1x, v∗k〉Y |2 ∼ ‖(A∗)−1x‖Ỹ ,

and
‖A∗‖−1

Ỹ→X ‖x‖X ≤ ‖(A
∗)−1x‖Ỹ ≤ ‖(A

∗)−1‖X→X ‖x‖X .

As a consequence we obtain the following.

Theorem 3.6. Suppose that Assumption (3.5) is satisfied. Then for any frame (uk)k∈I of X ,
constructed as above, and for any family of subsets of indices (Iσ)σ>0 with Nσ := |Iσ| → ∞ as

σ → 0, we have µ∗σ �
√

2σ2 logNσ.

Examples

We discuss several commonly used operators and present a few typical examples of collections
(uk)k∈I , for which the above theorems may or may not apply.

Integration

Let X = Y = L2(R) and let A : X → Y be the linear Fredholm integral operator given by

(Af)(x) =

∫ x

−∞
f(t)dt, x ∈ R,

for f ∈ X . Suppose that ψ is a (mother) wavelet in L2(R), that satisfies
∫
R ψ(x)dx = 0, and for

which the collection (ψj,k)j,k∈Z given by

ψj,l(x) = 2j/2ψ(2jx− l)

forms an orthogonal frame of L2(R). For an in-depth treatment of wavelet theory, we refer to [52]
or [16].
Let us suppose that the system of possible anomalies is given by this wavelet system, i.e. we
consider {u(j,l) : (j, l) ∈ I = Z2} with u(j,l) = ψj,l. Assume further that ψ is compactly supported
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with support size L, which implies that for any pair of indices (j, l) the number of indices k′, such
that suppu(j,l) ∩ suppu(j,l′) 6= ∅ is at most L.

Since, in practical applications, we would not expect to be able to obtain observations on the
whole plane R2, we suppose that an anomaly, if one exists, must lie within some compact subset
of R2, e.g. the unit interval [0, 1]. For some family of integers (jσ)σ>0 that satisfies jσ → ∞ as
σ → 0 we define the family (Iσ)σ>0 of “candidate” indices by

Iσ =
{

(jσ, l) : suppu(jσ,l) ⊆ [0, 1]
}
. (3.5)

Note that Nσ � 2jσ . Since suppAf ⊆ supp f , it follows that for any l, the number of indices
l′ such that suppAuj,l ∩ suppAuj,l′ 6= ∅ is bounded by L. Thus, the number of indices l′ such
that 〈Auj,l, Auj,l′〉Y > 0 is also bounded by L. This means that N∗σ ≥ Nσ/L and Mσ = L.
Consequently, the conditions of Theorem 3.3 are satisfied, and it follows that, in this case, µ∗σ �√

2σ2 logNσ.

Periodic convolution

Let h : R → C be a 1-periodic and bounded function, and let A be the integral operator A :
L2([0, 1])→ L2([0, 1]) given by

(Af)(x) :=

∫ 1

0

h(u− x)f(u)du, x ∈ [0, 1]. (3.6)

The system (ek)k∈Z, where ek(x) = e−ikx, is a Hilbert basis of L2([0, 1]), which consists of singular

functions of A, since A∗Aek = |ĥ(k)|2ek. Thus, Corollary 3.4 yields the detection threshold for
the detection of anomalies given by uk = ek.

Let us now try to come up with another system of possible anomalies. For the sake of simplicity,
let us, from now on, only consider spaces of real-valued functions, i.e. let X = Y = L2([0, 1],R).
Motivated by the previous example, let {ψj,l : j, l ∈ Z} be a system of compactly supported
wavelets with one vanishing moment (i.e.

∫
R xψj,l(x)dx = 0) forming an orthonormal frame of

L2(R). We define periodic wavelets ψ
(per)
j,l =

∑
z∈Z ψj,l(· + z) for l = 0, . . . , 2j − 1. The system

(u(j,l))(j,l)∈I given by u(j,l) = ψ
(per)
j,l for I =

⋃
j∈Z{j}× {0, . . . , 2j − 1} then forms an orthonormal

frame of L2([0, 1]). If the function h is suffieciently smooth, this constitutes a setting in which,
for certain choices of Iσ, Theorem 3.2 cannot be applied and the upper bound from Theorem 3.1
is basically useless, as can be seen in the following lemma.

Lemma 3.7. Suppose that h : R → R is a 1-periodic, symmetric and continuously differentiable
function, and suppose that its derivative h′ is Lipschitz. Let X = Y = L2([0, 1],R) and let A be
the convolution operator defined by (3.6). Let I =

⋃
j∈Z{j} × {0, . . . , 2j − 1} ⊆ R2 and define

u(j,l) = ψ
(per)
j,l as above for any (j, l) ∈ I. Let (jσ)σ>0 be a family of integers that satisfies jσ →∞

as σ → 0 and set

Iσ =
{

(jσ, l) : l = 0, . . . , 2jσ − 1
}
.

for σ > 0. Then γσ → 0 if µσ/σ →∞.

Intuitively, this is explained as follows. When scaled properly, the convolution of a smooth function
h with a wavelet with one vanishing moment on a small scale (i.e. when jσ is large) approximates
the derivative of h, but shifted according to the shift parameter of the wavelet (cf. equation (6.15)
of [52]). This means that, although the support of u(jσ,l) gets smaller when σ → 0, the same

is not true for Au(jσ,l). In fact, it turns out, that two possible signals Au(jσ,l)‖Au(jσ,l)‖
−1
Y and

Au(jσ,l′)‖Au(jσ,l′)‖
−1
Y will be very close (w.r.t. ‖ · ‖Y) when l and l′ are close, and hence a test

which scans over way less k than in Iσ performs comparably well as (3.2).
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Radon transform

Let us finally discuss the example of computerized tomography already mentioned in the intro-
duction. Here, we restrict ourselves to spatial dimension 2, in order to ease readability. We stress,
however, that all subsequent results can be extended to any dimensions. Mathematically, this is
modeled by the integral operator R : L2(B) → L2(Z, (1− t2)−1/2), where B = {x ∈ R2 : |x| ≤ 1}
and Z = [−1, 1]× [0, 2π), given by

(Rf)(t, θ) =

∫
R
f(t cos θ + s sin θ, t cos θ − s sin θ)ds,

known as the Radon transform. The singular system of R is analytically known (see [55]). Let
I = {(k, l) : k ∈ N0, |l| ≤ k, k + l even}. We define functions u(k,l) ∈ L2(B), (k, l) ∈ I by

u(k,l)(x) := eilϕr|l|P
(0,|l|)
k (2r2 − 1), x = (r cosϕ, r sinϕ) ∈ B,

where P
(0,|l|)
k are the Jacobi polynomials uniquely determined by the equations

∫ 1

0
tlP

(0,|l|)
k P

(0,|l|)
k′ =

δk,k′ . The system (u(k,l))(k,l)∈I is an orthonormal basis of L2(B) and, together with the appropriate
basis (v(k,l))(k,l)∈I and constants (λ(k,l))(k,l)∈I forms the SVD of the Radon transform R : L2(B)→
L2(Z, (1−t2)−1/2). Thus, Corollary 3.4 yields the detection thresholds for the system (u(k,l))(k,l)∈I .

However, the discussion in Section 3.1 gives rise to another option to choose systems of anomalies
that attain the same detection boundaries. For n ∈ N we define the usual Sobolev space

Hα(Rn) =
{
f ∈ L2(Rn) : ‖f‖Hα(Rn) <∞

}
,

where ‖f‖2Hα(Rn) :=
∫
R2(1 + |w|)2)α|f̂(w)|2dw, and set (in the notation of [55])

Hα
0 (B◦) := {f ∈ Hα(Rn) : supp f ⊆ B} .

In addition, let

Hα(R× [0, 2π)) :=
{
f ∈ L2(R× [0, 2π)) : ‖f‖Hα(R×[0,2π)) <∞

}
,

where

‖f‖2Hα(R×[0,2π)) :=

∫ 2π

0

‖f(·, θ)‖2Hα(R)dθ.

The Radon transform is an operator from Hα
0 (B◦) to Hα(R× [0, 2π)) that satisfies (see Theorem

5.1 of [55])

C1‖f‖Hα0 (B◦) ≤ ‖Rf‖Hα(R×[0,2π)) ≤ C2‖f‖Hα0 (B◦)

for any f ∈ Hα
0 (B◦). Thus, Theorem 3.6 can be applied. The range of R in Hα(R × [0, 2π))

is ran(R) = {f ∈ Hα(R× [0, 2π)) : supp f ⊆ (−1, 1)× [0, 2π)}. Thus, any orthonormal frame
(vk)k∈I of ran(R) gives rise to a frame (uk)k∈I of X = Hα

0 (B◦) with sharp detection boundaries
given by Theorem 3.6.

3.2 Alternatives given by the linear span of collections of anomalies

Assume now that possibles anomalies might be linear combinations of the uk, k ∈ Iσ. For the
upcoming analysis it is necessary to assume that the uk satisfy the following.

Assumption 3.8. There is a collection (vk)k∈I of functions in Y, and a sequence (λk)k∈I of
non-zero complex numbers, such that for any f ∈ X it holds that

〈Af, vk〉Y = λk〈f, uk〉X .
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Assumption 3.8 guarantees that we can present our results in terms of the uk. Clearly, it is
satisfied, when uk ∈ ran(A∗) for all k ∈ I. In addition, if we were to assume that the collections
(uk)k∈I and (vk)k∈I have some kind of useful structure (we may for example assume that they
constitute frames of X and Y, respectively, as we did in Subsection 3.1), then the sequence (λk)k∈I
from Assumption 3.8 takes the role of what might be called quasi-singular values.
In this section, we suppose that Fσ consists of functions in the linear span of the functions uk,
k ∈ Iσ, namely Fσ = FLσ =

{
f ∈ span{uk : k ∈ Iσ} :

∑
k∈Iσ |λk〈f, uk〉X |

2 = 1
}

. Thus, testing
problem 1.2 becomes

H0 : f = 0 against H1,σ : f ∈ FLσ (νσ), (3.7)

where

FLσ (νσ) =

{
f ∈ span{uk : k ∈ Iσ} :

∑
k∈Iσ

|λk〈f, uk〉X |2 ≥ ν2
σ

}
.

for some family of positive real numbers (νσ)σ>0 (we use the notation νσ instead of µσ to avoid
confusion with the results from the previous section).

Nonasymptotic results

For a subset J ⊆ I, we define the matrix ΞJ by (ΞJ)k,k′ = 〈vk, vk′〉Y , k, k′ ∈ J , and the matrix

Ξ̃J by (Ξ̃J)k,k′ = 〈ṽk, ṽk′〉Y , k, k′ ∈ J , where

ṽk := λ−1
k Auk,

for k ∈ I. We denote the Frobenius norm of a matrix M by ‖M‖F .
The next theorem (the non-asymptotic upper bound for the detection threshold) can not be given
in terms of the minimax sum of errors γσ. Instead we define

γσ,α(νσ) = inf
φ∈Φσ,α

[
ασ(φ) + sup

f∈FLσ (νσ)

βσ(φ, f)

]
,

where Φσ,α is the set of all level α tests for the testing problem “H0 vs H1,σ”. In other words, we
consider the minimax sum of errors when only level α tests are allowed.

Theorem 3.9. Suppose that Assumption 3.8 holds. Assume that the family of subsets (Iσ)σ>0

is such that the matrices ΞIσ are positive definite for all σ > 0. Then, for any α ∈ (0, 1) and
δ ∈ (α, 1), we have γσ,α(νσ) ≤ δ if

νσ ≥ εdα(δ)σ
√
‖ΞIσ‖F ,

where dα(δ) =
√

log 1
δ−α +

(
log 1

α(δ−α) +
√

2 log 1
δ−α +

√
2 log 1

α

)1/2

, and ε is given by ε = 1 if

X and Y are real Hilbert spaces and ε =
√

2 if X and Y are complex Hilbert spaces.

It is now obvious why it is necessary to allow only tests at a prescribed level α. Making α arbitrarily
small would require the detection threshold to become arbitrarily large in order to keep the type
II error small.
Contrary to the upper bound, the non-asymptotic lower bound for the detection threshold can be
stated in terms of γσ.

Theorem 3.10. Suppose that Assumption 3.8 holds, and assume that the family of subsets (Iσ)σ>0

is such that the matrices Ξ̃Iσ are positive definite for all σ > 0. Then, for any δ ∈ (0, 1), we have
γσ(νσ) ≥ δ if

νσ ≤ c(δ)σ
√
‖Ξ̃−1

Iσ
‖F ,

where c(δ) =
(
log(1 + (2− 2δ)2)

)1/4
.
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Remark 1: The assumption that ΞIσ and Ξ̃Iσ , respectively, are positive definite (and conse-
quently invertible, since they are Hermitian) is a technical necessity. However, it is also intuitively
justified, because it prevents certain “unreasonable” choices of Iσ (for example any subset Iσ such
that (uk)k∈Iσ is linearly dependent).

Remark 2: Note that it can be easily seen that, if we consider the set{
f ∈ span{uk : k ∈ Iσ} :

∑
k∈Iσ

|〈f, uk〉X |2 ≥ ν2
σ

}
,

instead of FLσ (νσ), then we would obtain the same bounds as above with ΞIσ replaced by the
matrix ΛIσ , which is given by (ΛIσ )k,k′ = (λkλk′)

−1〈vk, vk′〉Y , and Ξ̃Iσ replaced by the matrix

Λ̃Iσ given by (Λ̃Iσ )k,k′ = 〈Auk, Auk′〉Y It follows, that our results are compatible with the results
obtained in [49], where the above testing problem was considered when the system (uk, vk, λk)k∈I
is given by the SVD of A.

Asymptotic results

The asymptotic results for this section can now be easily deduced from the previous theorems.

Corollary 3.11. Suppose that the assumptions of Theorems 3.9 and 3.10 hold.

(1) H0 and H1,σ are asymptotically distinguishable if

νσ

σ
√
‖ΞIσ‖F

→∞.

(2) H0 and H1,σ are asymptotically indistinguishable if

νσ

σ
√
‖Ξ̃−1

Iσ
‖F
→ 0.

Until now, we have allowed the uk to just be any functions we might be interested in detecting.
However, we are able to refine our results when we assume that (vk)k∈I and (ṽk)k∈I are “well-
behaved”. We call a sequence of functions (hi)i∈N from some Hilbert space H a Riesz sequence, if
there exist constants C1, C2 > 0 such that

C1

∑
i∈N
|ai|2 ≤ ‖

∑
i∈N

aihi‖2H ≤ C2

∑
i∈N
|ai|2,

for any sequence (ai)i∈N ∈ `2. Two sequences (hi)i∈N and (h′i)i∈N are called biorthogonal if

〈hi, h′j〉H = δi,j ,

where δi,j is the Kronecker symbol.

Assumption 3.12. The collections (vk)k∈I and (ṽk)k∈I are biorthogonal Riesz sequences.

We acknowledge that Assumption 3.12 is restrictive. We will discuss non-trivial situations in which
it is satisfied below. We collect the implications of Assumption 3.12 in the following lemma.

Lemma 3.13. Suppose that Assumptions 3.8 and 3.12 hold, and let (Iσ)σ>0 be an arbitrary family
of subsets of I. Then the following statements hold.

(1) For any σ > 0, the matrices ΞIσ and Ξ̃Iσ are positive definite.

(2) There are constants c1, c2 > 0 such that c1‖ΞIσ‖F ≤ ‖Ξ̃−1
Iσ
‖F ≤ c2‖ΞIσ‖F .

(3) ‖ΞIσ‖F ∼ N
1/2
σ (and consequently, also ‖Ξ̃−1

Iσ
‖F ∼ N1/2

σ ), as σ → 0, where Nσ = |Iσ|.
Thus, if all conditions of Lemma 3.13 are satisfied, it follows from Corollary 3.11 that the separation

rate of the family of testing problems “H0 against H1,σ” is given by ν∗σ ∼ σN
1/4
σ .
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Remark: Note that this result is not surprising. The separation rate corresponds to the rate (in
terms of the euclidean norm) of detecting an n-dimensional signal θ ∈ Rn \ {0} from observations
given by X = θ + σZ, where Z ∼ N (0, idn). Furthermore, it has been shown previously (cf. [49])
that the same holds, when (uk, vk, λk)k∈I constitute the SVD of the operator A. Thus, the above
results yield a generalization of the known theory.

Examples

It is clear that, when the system (uk, vk, λk)k∈I is given by the SVD of the operator A : X → Y,
then all of the above theory can be applied. Since this was the subject of [49], we will omit a
discussion of this example here.

Examples based on the wavelet-vaguelette decomposition

Suppose that (uk)k∈I is a system of orthogonal wavelets in X . If chosen appropriately (for a
complete discussion, see [18]), it follows that for certain operators A : X → Y , there exist
non-zero numbers (λk)k∈I , such that the systems (vk)k∈I and (ṽk)k∈I of functions in Y given by

A∗vk = λkuk, ṽk = λ−1
k Auk

form biorthogonal Riesz sequences in Y (see Theorem 2 of [18])). Clearly, Assumption 3.8 is
satisfied in this case.
We immediately see that this would yield nice examples of the theory developed in this section.
We will discuss a few situations, in which such a construction is possible, below.

Integration

Consider the setting of example 3.1, i.e. u(j,l) = ψj,k for (j, l) ∈ I = Z2 and for some wavelet ψ.
Suppose that the wavelet ψ is continuously differentiable. In this case, the WVD is particularly
simple. Let

v(j,l)(x) = −2j/2ψ′(2jx− l), ṽ(j,l)(x) = 2j/2ψ(−1)(2jx− l),
with λ(j,l) = 2−j . Then it follows from [18] that the systems (v(j,l))(j,l)∈I and (ṽ(j,l))(j,l)∈I form

biorthogonal Riesz sequences in L2(R). Thus, we can apply Lemma 3.13 to obtain ‖ΞIσ‖F ∼ N
1/2
σ ,

and thus, ν∗σ ∼ σN
1/4
σ for any family (Iσ)σ>0 of “candidate” indices.

Periodic Convolution

Let X = Y = L2(S1), where S1 is the unit circle. In other words we consider square-integrable

1-periodic functions on [0, 1]. Let the operator A be given by (Af)(x) =
∫ 1

0
h(x − u)f(u)du,

x ∈ [0, 1] for some 1-periodic function h. Let (uj,k)(j,k)∈Z2 be a basis of periodic Meyer wavelets,
each with Fourier coefficients uj,k,m, m ∈ Z, and let (Iσ)σ>0 be any family of finite subsets of
I = Z2. Let hm, m ∈ Z be the Fourier coefficients of h. It was shown in Appendix B of [43] that,
if hm = C|m|−a, for some a > 0, the collections (vj,k)(j,k)∈Z2 and (ṽj,k)(j,k)∈Z2 given by

vj,k(x) =
∑
m∈Z

λj,kuj,k,m
hm

eimx, ṽj,k(x) =
∑
m∈Z

hmuj,k,m
λj,k

eimx,

where the quasi-singular values are given by λj,k = 2−jaC, yield biorthogonal Riesz sequences.

Radon transform

We start by introducing two-dimensional wavelet systems. Let ψ be a (one-dimensional) wavelet
and ϕ its corresponding scaling function. We assume that they are of compact support and at
least two times continuously differentiable. Define the two-dimensional functions

η0(x) := ϕ(x1)θ(x2), η1(x) := ψ(x1)ϕ(x2), η2(x) := ϕ(x1)ψ(x2), η3(x) := ψ(x1)ψ(x2),
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where x = (x1, x2) ∈ R2. The function η0 is the two-dimensional scaling function, and the
functions ηε, ε ∈ {1, 2, 3}, are the two-dimensional wavelets. They are scaled and translated as
usual, i.e.

ηεj,l(x) := 2jηε(2jx− l), j ∈ Z, l ∈ Z2, ε ∈ {0, 1, 2, 3}.

The collection of all translated and scaled wavelets (without the scaling functions, i.e. excluding
ε = 0) is a Hilbert basis of L2(R2) (see for example Theorem 7.24 of [52]). Using the projection
theorem (see Theorem 1.1 of [55]), it was shown in [18] that for ε ∈ {1, 2, 3} and for f ∈ L2(R2)∩
dom(R), we have ∫ π

0

∫ ∞
−∞

(Rf)(t, θ)(Rωεj,k)(t, θ)dtdθ =

∫
R2

f(x)ηεj,k(x)dx

where ωεj,k is defined through its Fourier transform ωεj,k (x) = 1
2π |x|η

ε
j,k (x). In other words,

〈Rf,Rωεj,k〉L2(R×[0,2π)) = 〈f, ηεj,k〉L2(R2). (3.8)

An in-homogeneous wavelet basis of L2(R) can be constructed as follows: For some j0 ∈ Z, we
consider the collection of functions{

η0
j0,k : k ∈ Z2

}
∪
{
ηεj,k : ε ∈ {1, 2, 3}, k ∈ Z2, j ≥ j0

}
.

Note that for any j0 ∈ Z, k0 ∈ Z2 we can write

η0
j0,k0 =

∑
ε∈{1,2,3}

∑
k∈Z2

∑
−∞<j≤j0

cεj0,k0,j,kη
ε
j,k,

and thus, it follows from the linearity of all the above operations that the relation (3.8) is also
true for ε = 0 with w0

j,k defined accordingly.
With practical applications (where it is an unreasonable assumption that observations on all of
the plane R2 can be made) in mind, we assume that signals, if existent, lie within a compact
set, e.g. the unit ball B = {x ∈ R2 : ‖x‖2 ≤ 1}. We consider the Radon transform as an
operator R : X → Y, where X = L2(B), and Y = L2(Z) with Z = [−1, 1] × [0, π). Note that,
contrary to the example in Section 3.1, the space Y is equipped with the norm ‖ · ‖Y given by

‖f‖Y =
∫ 1

−1

∫ 2π

0
|f(t, θ)|2dθdt. (Note that the operator R : X → Y is well-defined and bounded

since ‖f‖L2(Z) ≤ ‖f‖L2(Z,(1−t)−1/2) for any f ∈ L2(Z).)

We devise a “wavelet-type” frame of L2(B) as follows. We choose j0 large enough, such that the
area of supp(ηεj0,k) is small compared to the area of the unit ball B. Now let

I =
{

(j0, k, 0) : supp(η0
j0,k) ∩ B 6= ∅

}
∪
{

(j, k, ε) : j ≥ j0, ε ∈ {1, 2, 3}, supp(ηεj,k) ∩ B 6= ∅
}
,

and finally, define u(j,k,ε) = ηεj,k|B for (j, k, ε) ∈ I. The collection (u(j,k,ε))(j,k,ε)∈I forms a frame

of L2(B), since, for any f ∈ L2(R2) supported in B, we have

〈f, u(j,k,ε)〉L2(B) = 〈f, ηεj,k〉L2(R2).

Note that ‖Rωε(j,k)‖L2(R×[0,2π)) ∼ 2j/2 (again, see [18]). Thus, if we let v(j,k,ε) = 2−j/2Rωε(j,k)|Z ,
we obtain

〈Rf, v(j,k,ε)〉L2(Z) = 2−j/2〈Rf,Rωε(j,k)〉L2(R×[0,2π)) = 2−j/2〈f, ηε(j,k)〉L2(R2) = 2−j/2〈f, u(j,k,ε)〉L2(B),

for any f ∈ L2(B) (which we extended to L2(R2) by setting f(x) = 0 whenever x 6∈ B). Thus,
Assumption 3.8 is satisfied for the set (u(j,k,ε))(j,k,ε)∈I with v(j,k,ε) defined as above and λ(j,k,ε) =

2−j/2.
It follows that Theorems 3.9 and 3.10 are applicable for the collection (u(j,k,ε))(j,k,ε)∈I and yield
non-asymptotic results for appropriate choices of Iσ. However, note that the u(j,k,ε) are not
necessarily orthonormal.



Section 4. Simulation study 61

It follows from Lemma 4 (and the discussion leading up to it) of [18] that, if ψ has at least
4 vanishing moments and is at least 4 times continuously differentiable, then the collections
(2−j/2Rωεj,k)j∈Z,k∈Z2,ε∈{1,2,3} and (2j/2Rηεj,k)j∈Z,k∈Z2,ε∈{1,2,3} are Riesz sequences.
If we suppose that all subsets Iσ are chosen such that all ηεj,k lie completely within B, i.e.

supp(ηεj,k) ⊆ B for any (j, k, ε) ∈ Iσ for all σ > 0, then ṽ(j,k,ε) = 2j/2Rηεj,k, and it follows
from the same arguments as in the proof of Lemma 3.13 that

‖Ξ̃−1
Iσ
‖F ≥ C‖ΩIσ‖F ≥ C ′

√
Nσ,

where ΩIσ is given by (ΩIσ )k,k′ = 〈2−j/2Rωεj,k, 2−j/2Rωεj,k′〉L2(R×[0,2π)). On the other hand, since

(vk)k∈I is a frame of L2([−1, 1]× [0, π)), it follows (as in the proof of Lemma 3.13) that

‖ΞIσ‖2F ≤ C ′′
∑
k∈Iσ

‖vk‖L2([−1,1]×[0,π) ≤ C ′′
∑
k∈Iσ

‖2−j/2Rωεj,k‖L2(R×[0,π) ≤ C ′′′Nσ.

Thus, ν∗σ ∼ σN
1/4
σ .

4 Simulation study

A note on discretization

For convenience, we will from now on assume that K = R. Assume that Y = L2(D,R) for
some D ⊆ Rd, d ∈ N. For a finite subset S ⊆ D, we define the evaluation function eS by
eS : h 7→ (h(s))s∈S . Now let AS = eS ◦ A. Clearly, AS : X → Rn, where n = |S|, is a bounded
linear operator. We equip Rn with the inner product 〈·, ·〉n (and the corresponding norm ‖ · ‖n)

given by 〈x, x′〉2n = vol(D)
n

∑
s∈S xsx

′
s, for x = (xs)s∈S , x

′ = (x′s)s∈S ∈ Rn, and thereby make Rn
a Hilbert space. Here, vol(D) denotes the (d-dimensional) volume of D. Now suppose that we
observe data Yσ,S on Rn given by

Yσ,S = AS(f) + σ

√
n

vol(D)
ξ, (4.1)

where ξ = (ξs)s∈S ∼ N (0, idn). Since, for any x, x′ ∈ Rn, we have〈√
n

vol(D)
ξ, x

〉
n

∼ N (0, ‖x‖n) and E
(〈√

n

vol(D)
ξ, x

〉
n

〈√
n

vol(D)
ξ, x′

〉
n

)
= 〈x, x′〉n,

it follows that our results are valid for this discretized model. Note that asymptotic results still
refer to σ becoming small (and not n becoming large). If S is chosen appropriately, 〈eS(h), eS(h′)〉n
can be viewed as an approximation of 〈h, h′〉Y for h, h′ ∈ Y, and, consequently, the upper and
lower bounds derived from (4.1) can be viewed as an approximation of the upper and lower bounds
derived from the data (1.1).
Finally, note that testing “f = 0” against “f ∈ Fσ(µσ)” based on the data Yσ,n is equivalent to

testing “f = 0” against “f ∈ Fσ
(
µσvol(D)

n

)
” based on Xσ,S given by

Xσ,S := AS(f) + σ

√
vol(D)

n
ξ.

Integration

We consider the example from section 3.1, discretized as above with S = { in : i = 0, . . . , n − 1}
for n = 215. The wavelet system (ψj,k)j,k∈Z consists of Daubechies (db6) wavelets. See Fig-
ure 2 for the results of the simulation study. Note that the displayed results are only approx-
imations in two senses: First, we used the test φσ,α = φML

σ,α from (3.2), which may not nec-

essarily be the optimal test, and second, we approximate supf∈Fσ(δ) βσ(φML
σ,α , f) by β∗σ(δ) :=
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N−1
σ

∑
k∈Iσ βσ(φML

σ,α , δ‖Auk‖−1
Y uk), i.e. the mean type II error over all possible anomalies of min-

imal “amplitude”, since it is, in general, not clear, which k ∈ Iσ will maximize the type II error.

Note that the proof of Theorem 3.1 yields a non-asymptotic upper bound for the detection thresh-
old: We have supf∈Fσ(δ) βσ(φML

σ,α , f) ≤ α when δ ≥ σ(cα,σ + z1−α), where z1−α is the (1 − α)-
quantile of the standard Gaussian distribution.

Next, we consider the example from section 3.2. Everything is as above, except for a few differences:
We consider alternatives given by linear combinations of (uk)k∈Iσ as in Section 3.2, we use the

test φσ,α = φχ
2

σ,α given by (6.2), and β∗σ(δ) is given by Eπβσ(φML
σ,α , δf), where π is the uniform

distribution on FLσ . The results of this study are displayed in Figure 3.

Radon transform

The setting for our simulation study for the Radon transform is inspired by the discussion in
Section 3.2. We consider the Radon transform as an operator

R : L2(B 1√
2
,R)→ L2

([
− 1√

2
,

1√
2

]
× [0, π),R

)
,

where B 1√
2

=
{
x ∈ R2 : ‖x‖2 ≤ 1√

2

}
is the ball that contains the unit square [−1/2, 1/2]2. Let

{ηεj,l : j ∈ Z, l ∈ Z2, ε ∈ {1, 2, 3}} be the two-dimensional wavelet system (consisting of Daubechies
(db4) wavelets) from Section 3.2, define u(j,l,ε) = ηεj,l for (j, l, ε) ∈ I with

I =
{

(j, l, ε) : supp ηεj,l ⊆ [−1/2, 1/2]2
}
,

and let Iσ =
{

(jσ, l, ε) : supp ηεjσ,l ⊆ [−1/2, 1/2]2
}

, for family (jσ)σ>0 of natural numbers. We con-

sider discretized data of the form (4.1) with S =
{(
− 1

2 + i1
1024 ,

i2
360π

)
: i1 = 0, . . . , 1023, i2 = 0, . . . , 359

}
.

As above, we use the test φσ,α = φχ
2

σ,α given by (6.2), and β∗σ(δ) = Eπβσ(φML
σ,α , δf), where π is the

uniform distribution on FLσ . The results of this study are displayed in Figure 4.

The example in Figure 1 also comes from this setting: The parameters were jσ = 5, σ = 15, and
δ = 264. By Theorem 3.9, the distorted image can be distinguished from the reference image with

type I and type II error both at most 0.05 by the test φχ
2

8,0.05.

Figure 2: Left: Estimation of 1−β∗σ(δ) for δ between 0 and 10, for jσ = 6, σ = 1 and α = 0.05. For
each value of δ, 5000 tests have been performed. The results suggest that the power achieves 95%
for δ ≈ 5.3414. Right: Estimated values of δ for which the power achieves 95% for jσ ∈ {5, . . . , 10}
and σ = 1 compared with the upper bound derived from the proof of Theorem 3.1.
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Figure 3: Left: Estimation of 1− β∗σ(δ) for δ between 0 and 80, for jσ = 6, σ = 1 and α = 0.05,
compared with the upper bound (UB) from 3.9 and the lower bound (LB) from Theorem 3.10. For
each value of δ, 5000 tests have been performed. The results suggest that the power achieves 95%
for δ ≈ 36.948. Right: Estimated values of δ for which the power achieves 95% for jσ ∈ {5, . . . , 10}
and σ = 1 compared with the upper bound from 3.9 and the lower bound from Theorem 3.10.

Figure 4: Left: Estimation of 1− β∗σ(δ) for δ between 0 and 11, for jσ = 3, σ = 1 and α = 0.05,
compared with the upper bound (UB) from 3.9 and the lower bound (LB) from Theorem 3.10.
For each value of δ, 5000 tests have been performed. The power achieves 95% for δ ≈ 5.5221.
Right: Estimated values of δ for which the power achieves 95% for jσ ∈ {5, . . . , 10} and σ = 1
compared with the upper bound from 3.9 and the lower bound from Theorem 3.10.

These simulations seem to affirm our theoretical results. Note that the thresholds displayed in
Figure 2 are very large compared to the asymptotic detection boundary from Corollary 3.3. This
is due to the logarithmic growth of the detection boundary.

5 Discussion

In this paper, we have considered statistical hypothesis testing in inverse problems with localized
alternatives. This can be used to determine whether an unknown object that deviates from a
reference object, can be distinguished from that reference or not.
More precisely, we first considered alternatives given by finitely many elements (e.g. chosen from
a dictionary), and under additional restrictions on the structure of this system we were able to
derive the (asymptotic) detection boundary. Those results are illustrated along examples such as
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integration, convolution, and the Radon transform. Afterwards, we have moved to more complex
alternatives allowing for linear combinations of elements from the dictionary. In this case, we were
still able to derive the minimax separation rate even under weaker assumptions on the structure
of the system. This has been illustrated again for the above-mentioned and in simulations.

The results in this study offer several point of contact for further research. For practical purposes,
the design of more (computationally and statistically) efficient multiple tests is on demand, which
is beyond the scope of this paper. It would be interesting to see which methods can be used to
efficiently test a reference object against hypotheses which consist e.g. of wavelets on different
scales, which is a setting, for which the assumptions of Corollary 3.3 are not satisfied in general.
Another interesting question is the detection boundary in case of sparse alternatives (similar
to [49]), which we have not discussed here.
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6 Proofs

6.1 Proof for section 3.1

Proof of the upper bound

Proof of Theorem 3.1. We treat the two cases (whether X and Y are real or complex spaces)
separately.

X and Y are real Hilbert spaces. Any test for the testing problem (1.2) yields an upper
bound for γσ, and, thus, also an upper bound for µ∗σ. Our upper bound is based on a particularly
simple family of likelihood ratio type tests given by (3.2) with thresholds given by

cα,σ =

√
2 log

Nσ
α
.

We show that for any σ > 0 and any α ∈ (0, 1), the test φα,σ has level α and its asymptotic type

II error vanishes for the testing problem (1.2) if µσ % (1+εσ)
√

2σ2 logNσ. This would then imply
that γσ - α+ o(1), which will immediately prove the theorem, since α was arbitrary.

Setting fk = uk′
‖Auk′‖Y

, we have

〈Yσ, Auk〉Y
σ‖Auk‖Y

H0∼ N (0, 1) and
〈Yσ, Auk〉Y
σ‖Auk‖Y

f=δfk∼ N
(

δ〈Auk′ , Auk〉Y
σ‖Auk′‖Y‖Auk‖Y

, 1

)
Using the union bound and a concentration inequality for the normal distribution we find

PH0
(φα,σ(yσ) = 1) = PH0

(
sup
k∈Iσ

|〈Yσ, Auk〉Y |
σ‖Auk‖Y

> cα,σ

)
≤ NσP (|Z| > cα,σ) = Nσ exp

(
−1

2
c2α,σ

)
= α,
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for some Z ∼ N (0, 1). Thus, φα,σ is indeed a level α test. Next, we show that the maximal type

II error of φα,σ vanishes. For some random variables Zσ,k
i.i.d.∼ N (0, 1), k ∈ Iσ, we find

sup
k∈Iσ

sup
|δ|≥µσ

Pδfk (φα,σ(yσ) = 0) = sup
k∈Iσ

sup
|δ|≥µσ

Pδfk
(

sup
k′∈Iσ

|〈Yσ, Auk′〉Y |
σ‖Auk′‖Y

≤ cα,σ
)

≤ sup
k∈Iσ

sup
|δ|≥µσ

P
(

sup
k′∈Iσ

(
Zσ,k′ +

δ〈Auk′ , Auk〉Y
σ‖Auk′‖Y‖Auk‖Y

)
≤ cα,σ

)
≤ sup
k∈Iσ

sup
|δ|≥µσ

P
(
Zσ,k +

δ

σ
≤ cα,σ

)
= P

(
Z +

µσ
σ
≤ cα,σ

)
= P

(
Z ≤

√
2 logNσ +

√
2 log(1/α)− (1 + εσ)

√
2 logNσ

)
→ 0,

since εσ
√

logNσ →∞.

X and Y are complex Hilbert spaces. The idea of the proof is the same as above. We again
use is the test given by (3.2) with thresholds

cα,σ =

√
1 + 2

√
log

Nσ
α

+ 2 log
Nσ
α
.

Setting fk′ = uk′
‖Auk′‖Y

as above, we have

〈Yσ, Auk〉Y
σ‖Auk‖Y

H0∼ CN (0, 2) and
〈Yσ, Auk〉Y
σ‖Auk‖Y

f=δfk′∼ CN
(

δ〈Auk′ , Auk〉Y
σ‖Auk′‖Y‖Auk‖Y

, 2

)
We first show that Φα is a level α test. For some Z ∼ CN (0, 1) we find, using the union bound,
that

PH0
(φα,σ(yσ) = 1) = PH0

(
sup
k∈Iσ

|〈Yσ, Auk〉Y |
σ‖Auk‖Y

> cα,σ

)
≤ NσP

(
|Z|2 > c2α,σ

)
.

Note that |Z|2 = <(Z)2 + =(Z)2 ∼ χ2
2. It follows from Lemma 1 of [50] that

NσP

(
|Z|2 > 1 + 2

√
log

Nσ
α

+ 2 log
Nσ
α

)
≤ Nσ exp

(
− log

Nσ
α

)
= α.

Thus, φα,σ is indeed a level α test. As above, we must now show that the maximal type II error of

φα,σ vanishes. For some random variables Zσ,k
i.i.d.∼ CN (0, 2), k ∈ Iσ and Zσ ∼ CN (0, 2), we find

sup
k∈Iσ

sup
|δ|≥µσ

Pδfk (φα,σ(yσ) = 0) = sup
k∈Iσ

sup
|δ|≥µσ

Pδfk
(

sup
k′∈Iσ

|〈Yσ, Auk′〉Y |
σ‖Auk′‖Y

≤ cα,σ
)

≤ sup
k∈Iσ

sup
|δ|≥µσ

P

(
sup
k′∈Iσ

∣∣∣∣Zσ,k′ +
δ〈Auk′ , Auk〉Y

σ‖Auk′‖Y‖Auk‖Y

∣∣∣∣2 ≤ c2α,σ
)

≤ sup
k∈Iσ

sup
|δ|≥µσ

P

(∣∣∣∣Zσ,k +
δ

σ

∣∣∣∣2 ≤ c2α,σ
)

= sup
|δ|≥µσ

P

(∣∣∣∣Zσ +
δ

σ

∣∣∣∣2 ≤ c2α,σ
)

We have ∣∣∣∣Zσ +
δ

σ

∣∣∣∣2 = |Zσ|2 + 2<
(
δ̄

σ
Zσ

)
+
|δ|2

σ2
≥ 2|δ|

σ
Z ′σ +

|δ|2

σ2
,
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for some Z ′σ ∼ N (0, 1). It follows that

sup
|δ|≥µσ

P

(∣∣∣∣Zσ +
δ

σ

∣∣∣∣2 ≤ c2α,σ
)
≤ P

(
2µσ
σ
Z ′σ +

µ2
σ

σ2
≤ 1 + 2

√
log

Nσ
α

+ 2 log
Nσ
α

)

≤ P

(
Z ′σ ≤

√
1

2
logNσ − (1 + εσ)

√
1

2
logNσ +O(1)

)
→ 0,

since εσ
√

logNσ →∞.

Proof of the lower bound

We suppose that X and Y are complex Hilbert spaces. The proof for the real case is analogous.
In fact, the proof of Theorem 3.2 can in principle be derived from Proposition 4.10 and Lemma
7.2 from [40] with just a few adjustments.

Proof of Theorem 3.2. Let I∗σ be the largest subset of Iσ such that <(〈Auk, Auk′〉Y) ≤ 0 for any
distinct k, k′ ∈ I∗σ. Recall that |I∗σ| = N∗σ . Recall that

yσ,i := 〈Yσ, ei〉Y = 〈Af, ei〉Y + σξi,

where ξi
i.i.d.∼ CN (0, 2) for i ∈ N. This means that under H0 the random sequence

ỹσ :=

(
1

σ
<(yσ,1),

1

σ
=(yσ,1),

1

σ
<(yσ,2),

1

σ
=(yσ,2), . . .

)
is a sequence of i.i.d. N (0, 1)-distributed random variables. Any test statistic may be expressed
in terms of the Gaussian sequence ỹσ. Hence, any test may be expressed as a function of ỹσ.

Bayesian alternative. For k ∈ Iσ we define fk := µσuk
‖Auk‖Y , and let πσ be the prior distribution

on the alternative set Fσ(µσ) given by πσ = 1
N∗σ

∑
k∈I∗σ

δfk . The idea is to bound the maximal

type II error probability from below by the mean (in terms of πσ) type II error probability as
follows:

γσ = inf
φ∈Φσ

[
ασ(φ) + sup

f∈Fσ(µσ)

βσ(φ, f)

]
≥ inf
φ∈Φσ

ασ(φ) +
1

N∗σ

∑
k∈I∗σ

βσ(φ, fk)

 .
We may say that it suffices to analyze the “simpler” testing problem

H0 : f ≡ 0 vs Hπ,σ : f ∼ πσ,

in terms of its mean type II error, instead of (1.2) in the minimax sense. We have (cf. [40], chapter
2)

inf
φ∈Φσ

ασ(φ) +
1

N∗σ

∑
k∈I∗σ

βσ(φ, fk)

 = 1− 1

2
E0

∣∣∣∣Eπσ dPfdP0
(ỹσ)− 1

∣∣∣∣ ,
where Eπσ

dPf
dP0

(ỹσ) = 1
N∗σ

∑
k∈I∗σ

dPfk
dP0

(ỹσ). We see that, in order to show indistinguishability, it

suffices to show that

E0

∣∣∣∣Eπσ dPfdP0
(ỹσ)− 1

∣∣∣∣→ 0. (6.1)

We denote the distribution of ỹσ on RN under H0 by P0 (this is of course the standard Gaussian
distribution on RN). The Cameron-Martin space corresponding to (RN,P0) is H = `2 with norm
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‖·‖2H = ‖·‖22 (see for example Example 4.1 of [51]). If f = fk, then ỹσ has distribution Pfk defined
by Pfk(·) = P0(· − hk), where hk ∈ RN is given by

hk,2j−1 =
µσ

σ‖Auk‖Y
<(〈Auk, ej〉Y), hk,2j =

µσ
σ‖Auk‖Y

=(〈Auk, ej〉Y), j ∈ N.

It follows that

‖hk‖2H =
∑
i∈N

µ2
σ

σ2‖Auk‖2Y
|〈Auk, ei〉Y |2 =

µ2
σ

σ2
,

which also shows that h ∈ H. Thus, by the Cameron-Martin theorem (see Theorem 5.1 of [51]),

dPfk
dP0

(ỹσ) = exp

(∑
i∈N

hk,iỹσ,i −
µ2
σ

2σ2

)

= exp

 µσ
σ‖Auk‖Y

∑
j∈N

(<(〈Auk, ej〉Y)ỹσ,2j−1 + =(〈Auk, ej〉Y)ỹσ,2j)−
µ2
σ

2σ2

 H0= exp (Xσ,k) ,

where Xσ,k ∼ N
(
− µ2

σ

2σ2 ,
µ2
σ

σ2

)
. Note that the distribution of Xσ,k does not depend on k. However,

the collection {Xσ,k : k ∈ Iσ} is, in general, not independent. We have

Eπσ
dPf
dP0

(Yσ) =
1

N∗σ

∑
k∈I∗σ

exp(Xσ,k).

In order to show that (6.1) holds, we employ a weak law of large numbers, namely Theorem 3.2
from [71]. However, note that similar ideas have been used in [39].

A weak law of large numbers. Let (σm)m∈N be a sequence of positive real numbers, such
that σm ↘ 0 as m → ∞. Consider the triangular array of random variables {exp(Xσm,k) : m ∈
N, k ∈ I∗σm}. Note that

Cov (exp(Xσm,k), exp(Xσm,k′)) = exp

(
µ2
σm<(〈Auk, Auk′〉Y)

σ2
m‖Auk‖Y‖Auk′‖Y

)
− 1 ≤ 0,

for any m and any two distinct k, k′ ∈ I∗σm . Let (κm)m∈N be another sequence of real numbers

given by κm = (N∗σm)(1+εσm )(1−εσm )2 . Then κm →∞ as m→∞ and

(N∗σm)−1κm = (N∗σm)−εσm+O(ε2σm ) → 0.

It follows that

1

N∗σm

∑
k∈I∗σm

E0 [(exp(Xσm,k))1(exp(Xσm,k) > κm)] = P
[
N (0, 1) ≤ µσm

2σm
− σm log κm

µσm

]

≤ P

[
N (0, 1) ≤ −εσm(1 + εσm)

√
1

2
logN∗σm

]
,

which vanishes as m→∞, since εσ
√

2 logN∗σ →∞. We can now employ Theorem 3.2 from [71],
which immediately yields that

E0

∣∣∣∣Eπσ dPfdP0
(Yσ)− 1

∣∣∣∣ = E0

∣∣∣∣∣∣ 1

N∗σm

∑
k∈I∗σm

exp(Xσm,k)− 1

∣∣∣∣∣∣→ 0,

as m→∞.
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Remaining proofs

Proof of Corollary 3.3. For k ∈ Iσ, let

Sσ(k) = {k′ ∈ Iσ : <(〈Auk, Auk′〉Y) ≥ 0}.

We construct a subset I ′σ of Iσ iteratively as follows. We choose k1 ∈ Iσ arbitrarily, then choose
k2 ∈ Iσ \Sσ(k1) arbitrarily, then choose k3 ∈ Iσ \ (Sσ(k1)∪Sσ(k2)) arbitrarily, and continue until
Sσ(k1) ∪ Sσ(k2) ∪ . . . = Iσ. Then set I ′σ = {k1, k2, k3, . . .}. Since, by assumption, |Sσ(k)| ≤ Mσ

for any k ∈ Iσ, it follows that |I ′σ| ≥ Nσ/Mσ % N1+εσ
σ . Since the set I∗σ can be constructed as

above, Theorem 3.2 yields
µ∗σ % (1− εσ)

√
1 + εσ

√
2 logNσ.

Thus, √
1− εσ − ε2

σ + ε3
σ -

µ∗σ√
2 logNσ

- 1 + εσ,

and the claim follows.

Proof of Corollary 3.4. Since Aζk = skηk for all k, and the system (ηk)k∈N is orthonormal, this
follows immediately from Corollary 3.3.

Proof of Lemma 3.7. Since, by assumption, µσ/σ →∞, we can choose a family of positive integers
(nσ)σ>0, such that nσ →∞ as σ → 0 and

µσ
σ
−
√

2 log nσ →∞.

For m ∈ {0, . . . , nσ − 1} let
wσ,m = 2jσ/2ψ

(
2jσ (· −m/nσ)

)
,

and let w
(per)
σ,m =

∑
z∈Z wσ,m(·+ z). For α ∈ (0, 1) consider the test φα,σ(yσ) = 1{Tσ > cα,σ} with

threshold cα,σ =
√

2 log (nσ/α) and test statistic

Tσ = sup
0≤m≤nσ−1

∣∣∣〈Yσ, Aw(per)
σ,m 〉Y

∣∣∣
σ‖Aw(per)

σ,m ‖Y
.

It is easy to see that φα,σ is a level α test. Let fl =
ψ

(per)
jσ,l

‖Aψ(per)
jσ,l

‖Y
. For l ∈ {0, . . . , 2jσ − 1} we define

m∗(l) = arg min{|2−jσ l − n−1
σ m| : m ∈ {0, . . . , nσ − 1}}. As in the previous proofs we find

sup
0≤l≤2jσ−1

sup
δ≥µσ

Pδfl (φα,σ(yσ) = 0) ≤ P

Z ≤ cα,σ − µσ
σ

inf
0≤l≤2jσ−1

〈
Aψ

(per)
jσ,l

, Aw
(per)
jσ,m∗(l)

〉
Y

‖Aψ(per)
jσ,l
‖Y‖Aw(per)

σ,m∗(l)‖Y

 ,

for some Z ∼ N (0, 1). It remains to show that

inf
0≤l≤2jσ−1

〈
Aψ

(per)
jσ,l

, Aw
(per)
jσ,m∗(l)

〉
Y

‖Aψ(per)
jσ,l
‖Y‖Aw(per)

σ,m∗(l)‖Y
→ 1,

as σ → 0. Note that, due to periodicity, for any l ∈ {0, . . . , 2jσ − 1} and m ∈ {0, . . . , nσ − 1},

‖Aψ(per)
jσ,l
‖2Y = ‖Aw(per)

σ,m ‖2Y = ‖Aψ(per)
jσ,0
‖2Y =

∫ 1

0

(∫ 1

0

h(u− x)ψ
(per)
jσ,0

(u)du

)2

dx

=

∫ 1

0

(∫ ∞
−∞

h(u− x)2jσ/2ψ(2jσu)du

)2

dx.
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It follows from equation (6.15) of [52], that for any x ∈ R,

lim
σ→0

23jσ/2

∫ ∞
−∞

h(u− x)2jσ/2ψ
(
2jσu

)
du = Ch′(x),

for some constant C > 0. Due to Theorem 6.2 of [52], there exist an integrable function θ, such
that − d

dxθ(x) = ψ(x). Since ψ has bounded support, θ has bounded support as well. Thus, we
find by substituting and integrating by parts that

23jσ/2

∫ ∞
−∞

h(u− x)2jσ/2ψ
(
2jσu

)
du = 23jσ/2

∫ ∞
−∞

h(2−jσv − x)2−jσ/2ψ (v) dv

= −
∫ ∞
−∞

h′(2−jσv − x)θ (v) dv.

Since, by assumption, h′ is Lipschitz and periodic, it follows that it is bounded. Thus, for any
x ∈ R, ∣∣∣∣23jσ/2

∫ ∞
−∞

h(u− x)2jσ/2ψ
(
2jσu

)
du

∣∣∣∣ ≤ C ′ ∫ ∞
−∞
|θ (v) |dv.

It follows from the dominated convergence theorem that

23jσ/2‖Aψ(per)
jσ,0
‖Y → C‖h′‖Y ,

as σ →∞. We have〈
Aψ

(per)
jσ,l

, Aw
(per)
jσ,m∗(l)

〉
Y

‖Aψ(per)
jσ,l
‖Y‖Aw(per)

σ,m∗(l)‖Y
= 1−

‖Aψ(per)
jσ,l

−Aw(per)
jσ,m∗(l)

‖2Y
‖Aψ(per)

jσ,0
‖2Y

.

We substitute twice, integrate by parts, use that h′ is Lipschitz and that
∣∣2−jσ l −m∗(l)n−1

σ

∣∣ ≤ 1
2nσ

,
for any k ∈ Iσ, which follows immediately from the definition of m∗(l), to obtain∣∣∣Aψ(per)

jσ,l
(x)−Aw(per)

jσ,m∗(l)
(x)
∣∣∣

=

∣∣∣∣∫ ∞
−∞

h(u− x)2jσ/2ψ(2jσ (u− 2−jσ l))du−
∫ ∞
−∞

h(u− x)2jσ/2ψ(2jσ (u−m∗(l)n−1
σ ))du

∣∣∣∣
=

∣∣∣∣∫ ∞
−∞

[
h(2−jσv + 2−jσ l − x)− h(2−jσv +m∗(l)n−1

σ − x)
]

2−jσ/2ψ(v)dv

∣∣∣∣
= 2−3jσ/2

∣∣∣∣∫ ∞
−∞

[
h′(2−jσv + 2−jσ l − x)− h′(2−jσv +m∗(l)n−1

σ − x)
]
θ(v)dv

∣∣∣∣
≤ 2−3jσ/2C ′′

∣∣2−jσ l −m∗(l)n−1
σ

∣∣ ∫ ∞
−∞
|θ(v)|dv ≤ C ′′′ 2

−3jσ/2

2nσ
.

It follows that

inf
0≤l≤2jσ−1

‖Aψ(per)
jσ,l

−Aw(per)
jσ,m∗(l)

‖2Y
‖Aψ(per)

jσ,0
‖2Y

≤ C ′′′′ n−2
σ

23jσ‖Aψ(per)
jσ,0
‖2Y
→ 0,

since nσ →∞ and the denominator converges to a positive constant.

6.2 Proofs for section 3.2

Techniques used in the following proofs are inspired by [49]. Note that here we only consider the
case that X and Y are complex spaces. The proofs for the case that they are real is analogous.
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Proof of the nonasymptotic upper bound

Proof of Theorem 3.9. Define the test

φα,σ(yσ) = 1 {Tσ > t1−α,σ} , (6.2)

where Tσ := Tσ(Yσ) :=
∑
k∈Iσ |〈Yσ, vk〉Y |

2, and t1−α,σ is the (1−α)-quantile of Tσ (which follows

a generalized χ2-distribution) under H0. Thus, by its very definition, φα,σ is a level α test. We
need to show that, if νσ is large enough, for any f ∈ FLσ (νσ)

Pf (Tσ ≤ t1−α,σ) ≤ δ − α. (6.3)

We aim to show that asymptotically t1−α,σ ≤ tδ−α,σ(f) whenever νσ ≥
√

2dα(δ)σ
√
‖ΞIσ‖F , where

tδ−α,σ(f) denotes the δ−α quantile of Tσ when f is the true underlying signal. First, we need to
discuss the distribution of Tσ.
For f ∈ FLσ (νσ), the random vector (〈Yσ, vk〉Y)k∈Iσ is normally distributed with with mean vector
mσ = (λk〈f, uk〉X )k∈Iσ and covariance matrix 2σ2ΞIσ . Since Ξσ is Hermitian and positive definite
by assumption, it can be decomposed as

ΞIσ = UσSσU
H
σ ,

where U is unitary and Sσ is a diagonal matrix containing the (real and positive) eigenvalues

(sk)k∈Iσ of Ξσ. It follows that the random vector (〈Yσ, vk〉Y)k∈Iσ can be written as
√

2σUσS
1/2
σ Zσ+

mσ for some Zσ ∼ CN (0, idNσ ) and thus,

Tσ = (
√

2σUσS
1/2
σ Zσ +mσ)H(

√
2σUσS

1/2
σ Zσ +mσ)

= 2σ2(Zσ + (
√

2σ)−1S−1/2
σ UHσ mσ)HSσ(Zσ + (

√
2σ)−1S−1/2

σ UHσ mσ)

= 2σ2
∑
k∈Iσ

sk

∣∣∣∣Zσ,k − 1√
2
m̃σ,k

∣∣∣∣2

= 2σ2
∑
k∈Iσ

sk

[(
<(Zσ,k)− 1√

2
<(m̃σ,k)

)2

+

(
=(Zσ,k)− 1√

2
=(m̃σ,k)

)2
]

= σ2
∑
k∈Iσ

sk
[
(Z ′k −<(m̃σ,k))2 + (Z ′′k −=(m̃σ,k))2

]
,

where m̃σ = σ−1S
−1/2
σ UHσ mσ and Z ′, Z ′′

i.i.d.∼ N (0, idNσ ). In other words, Tσ is the sum of 2Nσ
weighted non-central chi-squared random variables. Note that

σ2
∑
k∈Iσ

sk|m̃σ,k|2 = (S−1/2
σ UHσ mσ)HS(S−1/2

σ UHσ mσ) = mH
σ mσ =

∑
k∈Iσ

|λk〈f, uk〉X |2.

Upper bound for t1−α,σ. Under H0 we have that Tσ = σ2
∑
k∈Iσ sk

[
(Z ′k)2 + (Z ′′k )2

]
. It follows

from Lemma 1 from [50] that for any t > 0

P0

Tσ > 2σ2
∑
k∈Iσ

sk + 2σ2

√
2t
∑
k∈Iσ

s2
k + σ2t

(
sup
k∈Iσ

sk

) ≤ exp(−t),

and thus, setting t = log(1/α), we have

t1−α,σ ≤ 2σ2
∑
k∈Iσ

sk + 2
√

2 log(1/α)σ2‖ΞIσ‖F + log(1/α)σ2 sup
k∈Iσ

sk.
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Lower bound for tδ−α,σ(f). We use Lemma 2 from [49], which yields that for any t > 0

Pf

Tσ ≤ ETσ − 2
√

2t

√
σ4
∑
k∈Iσ

s2
k + σ4

∑
k∈Iσ

s2
k|m̃σ,k|2

 ≤ exp(−t).

Setting t = log(1/(δ − α)), it follows that

tδ−α,σ(f) ≥ ETσ − 2
√

2 log(1/(δ − α))

√
σ4‖ΞIσ‖2F + σ4

∑
k∈Iσ

s2
k|m̃σ,k|2

≥ 2σ2
∑
k∈Iσ

sk+
∑
k∈Iσ

|λk〈f, uk〉X |2−2
√

2 log(1/(δ − α))

σ2‖ΞIσ‖F + σ
√
‖ΞIσ‖F

√∑
k∈Iσ

|λk〈f, uk〉X |2

 ,
where we used that supk∈Iσ sk ≤

√∑
k∈Iσ s

2
k = ‖ΞIσ‖F .

Comparing the bounds. It follows that t1−α,σ ≤ tδ−α,σ(f) is true when

∑
k∈Iσ

|λk〈f, uk〉X |2 − 2σ
√

2 log(1/(δ − α))
√
‖ΞIσ‖F

√∑
k∈Iσ

|λk〈f, uk〉X |2

−
(

2
√

2 log(1/(δ − α)) + 2
√

2 log(1/α)
)
σ2‖ΞIσ‖F − log(1/α)σ2 sup

k∈Iσ
sk ≥ 0,

which holds when√∑
k∈Iσ

|λk〈f, uk〉X |2 ≥
√

2

√log
1

δ − α
+

(
log

1

α(δ − α)
+

√
2 log

1

δ − α
+

√
2 log

1

α

)1/2
σ√‖ΞIσ‖F .

Proof of the non-asymptotic lower bound

Proof of Theorem 3.10. The matrix Ξ̃Iσ given by (Ξ̃Iσ )k,k′ = 〈ṽk, ṽk′〉Y is Hermitian and positive
definite, and thus, and we have the decompositions

Ξ̃Iσ = ŨσS̃σŨ
H
σ , Ξ̃−1

Iσ
= ŨσS̃

−1
σ ŨHσ ,

where Ũσ is unitary and S̃σ is a diagonal matrix with real and positive entries (s̃k)k∈Iσ on its
diagonal. The proof of the lower bound has the same core idea as the proof of Theorem 3.2:
We start by defining a prior distribution on the set FLσ (νσ). Let w = (wk)k∈Iσ be a vector with
wk ∈ {−1, 1} for all k, and define

w̃ =
νσ

‖Ξ̃−1
Iσ
‖F
ŨσS̃

−1
σ w,

and

fw =
∑
k∈Iσ

w̃kλ
−1
k uk.

Note that ∑
k∈Iσ

|λk〈fw, uk〉X |2 = ν2
σ,
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and thus, indeed fw ∈ FLσ (νσ). As in the proof of Theorem 3.2 we get the likelihood ratio

dPfw
dP0

(ỹσ) = exp

 1

σ

∑
j∈N

[<(〈Afw, ej〉Y)ỹσ,2j−1 + =(〈Afw, ej〉Y)ỹσ,2j ]−
‖Afw‖2Y

2σ2

 .

Note that Afw =
∑
k∈Iσ w̃kṽk, an thus,

‖Afw‖2Y =
∑
k,l∈Iσ

w̃kw̃l〈ṽk, ṽl〉Y =
ν2
σ

‖Ξ̃−1
σ ‖2F

wT S̃−1
σ ŨHσ Ξ̃Iσ ŨσS̃

−1
σ w =

ν2
σ

‖Ξ̃−1
Iσ
‖2F

∑
k∈Iσ

1

s̃k
.

Let ṽ(j) be the vector with entries ṽ
(j)
k = 〈ṽk, ej〉Y for k ∈ Iσ. Then

〈Afw, ej〉Y =
∑
k∈Iσ

w̃k〈ṽk, ej〉Y =
νσ

‖Ξ̃−1
Iσ
‖F
wT S̃−1

σ ŨHσ ṽ
(j) =

νσ

‖Ξ̃−1
Iσ
‖F

∑
k∈Iσ

wk

(
S̃−1
σ ŨHσ ṽ

(j)
)
k
,

and it follows that∑
j∈N

[<(〈Afw, ej〉Y)ỹσ,2j−1 + =(〈Afw, ej〉Y)ỹσ,2j ] =
νσ

‖Ξ̃−1
Iσ
‖F

∑
k∈Iσ

wkZσ,k,

where Zσ = (Zσ,k)k∈Iσ , with Zσ,k =
∑
j∈N

[
<
(
S̃−1
σ ŨHσ ṽ

(j)
)
k
ỹσ,2j−1 + =

(
S̃−1
σ ŨHσ ṽ

(j)
)
k
ỹσ,2j

]
, is

a normally distributed random vector with mean 0 and covariance matrix Σ given by

Σk,l =
∑
j∈N
<
[(
S̃−1
σ ŨHσ ṽ

(j)
)
k

(
S̃−1
σ ŨHσ ṽ

(j)
)
l

]

=
∑
j∈N
<

(∑
m∈Iσ

(
S̃−1
σ ŨHσ

)
k,m
〈ṽm, ej〉Y

)( ∑
m′∈Iσ

(
S̃−1
σ ŨHσ

)
l,m′
〈ṽm′ , ej〉Y

)
= <

 ∑
m,m′∈N

(
S̃−1
σ ŨHσ

)
k,m

(
S̃−1
σ ŨHσ

)
l,m′
〈ṽm′ , ṽm〉Y

 = <
(
S̃−1
σ ŨHσ Ξ̃σŨσS̃

−1
σ

)
k,l

=
1

s̃k
δk,l.

In other words, the random variables Zσ,k are independent and Zσ,k ∼ N (0, 1/s̃k) for k ∈ Iσ.
Thus, under H0, we have

dPfw
dP0

(ỹσ) = exp

[
− ν2

σ

2σ2‖Ξ̃−1
Iσ
‖2F

∑
k∈Iσ

1

s̃k

] ∏
k∈Iσ

exp

[
νσ

σ‖Ξ̃−1
Iσ
‖F
· wk√

s̃k
Z ′σ,k

]
,

where Z ′σ,k
i.i.d.∼ N (0, 1) for k ∈ Iσ.

Now, assume that ŵk, k ∈ Iσ are independent Rademacher variables (which means that P(ŵk =
1) = P(ŵk = −1) = 1/2 for any k), that are also independent from ỹσ, and let ŵ = (ŵk)k∈Iσ be
the corresponding random vector. We denote by πσ the (finitely supported) distribution of the
random function fŵ on FLσ (νσ). As in the proof of Theorem 3.2 we have

γσ = inf
φ∈Φσ

[
ασ(φ) + sup

f∈FLσ (νσ)

βσ(φ, f)

]
= 1− 1

2
E0

∣∣∣∣Eπσ dPfdP0
(Yσ)− 1

∣∣∣∣ ,
Note that

E0Eπσ
dPf
dP0

(ỹσ) = EπσE0
dPf
dP0

(ỹσ) = 1,

and it follows that (
E0

∣∣∣∣Eπσ dPfdP0
(ỹσ)− 1

∣∣∣∣)2

≤ E0

(
Eπσ

dPf
dP0

(ỹσ)

)2

− 1,



Section 6. Proofs 73

and thus,

γσ(νσ) ≥ 1− 1

2

(
E0

(
Eπσ

dPf
dP0

(ỹσ)

)2

− 1

)1/2

.

We have

Eπσ
dPf
dP0

(ỹσ) = exp

[
− ν2

σ

2σ2‖Ξ̃−1
Iσ
‖2F

∑
k∈Iσ

1

s̃k

] ∏
k∈Iσ

cosh

[
νσ

σ
√
s̃k‖Ξ̃−1

Iσ
‖F
Z ′σ,k

]
.

It follows that

E0

(
Eπσ

dPf
dP0

(ỹσ)

)2

=
∏
k∈Iσ

cosh

[
ν2
σ

σ2s̃k‖Ξ̃−1
Iσ
‖2F

]
≤
∏
k∈Iσ

exp

[
ν4
σ

σ4s̃k‖Ξ̃−1
Iσ
‖4F

]
= exp

[
ν4
σ

σ4‖Ξ̃−1
Iσ
‖2F

]
,

where we used that E cosh2(tX) = exp(t2) cosh(t2) for any t ∈ R and X ∼ N (0, 1) and that
cosh(t) ≤ exp(t2/2) for any t ∈ R. The claim follows immediately.

Remaining proofs

Proof of Corollary 3.11. The second part follows immediately from Theorem 3.10. For the first
part, note that γσ(νσ) ≤ γσ,α(νσ) for any α. Thus, the first part follows immediately from Theorem
3.9.

Proof of Lemma 3.13. (1) Let z = (zk)k∈Iσ be a non-zero complex vector. Then it follows from
the fact that (vk)k∈Iσ is a Riesz sequence that

zHΞIσz =

∥∥∥∥∥∑
k∈Iσ

zkvk

∥∥∥∥∥
Y

≥

(
C
∑
k∈Iσ

|zk|2
)1/2

> 0,

for some constant C > 0. The proof for Ξ̃Iσ is analogous.
(2) The results of Theorem 3.9 and 3.10 (which can be applied since ΞIσ and Ξ̃Iσ are positive
definite) imply that ‖Ξ̃−1

σ ‖F = O(‖ΞIσ‖F ). It remains to show that ‖ΞIσ‖F ≤ C‖Ξ̃−1
σ ‖F for some

constant C > 0. We have

‖ΞIσ‖F = ‖ΞIσ Ξ̃Iσ Ξ̃−1
Iσ
‖F ≤ ‖ΞIσ Ξ̃Iσ‖2‖Ξ̃−1

Iσ
‖F ,

where ‖ΞIσ Ξ̃Iσ‖2 = max‖z‖2=1 ‖ΞIσ Ξ̃Iσz‖2, where ‖ · ‖2 denotes the euclidean norm on CNσ . Now
let z = (zk)k∈Iσ be a complex vector with ‖z‖2 = 1. Recall that, since (vk)k∈I and (ṽk)k∈I are
Riesz sequences, they are also frames of their respective spans. It follows that

‖ΞIσ Ξ̃Iσz‖22 =
∑
k∈Iσ

∣∣∣∣∣∣
∑
l∈Iσ

∑
j∈Iσ

〈vk, vj〉Y〈ṽj , ṽl〉Y

 zl

∣∣∣∣∣∣
2

≤
∑
k∈I

∣∣∣∣∣∣
〈∑
j∈Iσ

〈∑
l∈Iσ

zlṽl, ṽj

〉
Y

vj , vk

〉
Y

∣∣∣∣∣∣
2

≤ C

∥∥∥∥∥∥
∑
j∈Iσ

〈∑
l∈Iσ

zlṽl, ṽj

〉
Y

vj

∥∥∥∥∥∥
2

Y

≤ C ′
∑
j∈Iσ

∣∣∣∣∣∣
〈∑
l∈Iσ

zlṽl, ṽj

〉
Y

∣∣∣∣∣∣
2

≤ C ′
∑
j∈I

∣∣∣∣∣∣
〈∑
l∈Iσ

zlṽl, ṽj

〉
Y

∣∣∣∣∣∣
2

≤ C ′′
∥∥∥∥∥∑
l∈Iσ

zlṽl

∥∥∥∥∥
2

Y

≤ C ′′′
∑
l∈Iσ

|zl|2 = C ′′′,
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which concludes this proof.
(3) Note that there are constants C1, C2 > 0, such that C1 ≤ ‖vk‖Y ≤ C2, for any k ∈ I, since
(vk)k∈I is a Riesz sequence. It follows that

‖ΞIσ‖2F =
∑
k∈Iσ

∑
k′∈Iσ

|〈vk, vk′〉Y |2 ≥
∑
k∈Iσ

|〈vk, vk〉Y |2 =
∑
k∈Iσ

‖vk‖4Y ≥ C4
1Nσ,

and
‖ΞIσ‖2F ≤

∑
k∈Iσ

∑
k′∈I

|〈vk, vk′〉Y |2 ≤ C
∑
k∈Iσ

‖vk‖2Y ≤ CC2
2Nσ.

The claim follows.
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[20] L. Dümbgen and G. Walther. Multiscale inference about a density. Ann. Statist., 36(4):1758–
1785, 2008.

[21] A. Ebner, J. Frikel, D. Lorenz, J. Schwab, and M. Haltmeier. Regularization of Inverse
Problems by Filtered Diagonal Frame Decomposition. arXiv preprint, arXiv:2008.06219,
2020.

[22] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems, volume 375 of
Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996.

[23] F. Enikeeva, A. Munk, M. Pohlmann, and F. Werner. Bump detection in the presence of
dependency: does it ease or does it load? Bernoulli, 26(4):3280–3310, 2020.

[24] F. Enikeeva, A. Munk, M. Pohlmann, and F. Werner. Supplement to “Dependent bump
betection in the presence of dependency: Does it ease or does it load?”. DOI:10.3150/20-
BEJ1226SUPP, 2020.

[25] F. Enikeeva, A. Munk, and F. Werner. Bump detection in heterogeneous Gaussian regression.
Bernoulli, 24(2):1266–1306, 2018.

[26] M. S. Ermakov. Minimax detection of a signal in Gaussian white noise. Teor. Veroyatnost. i
Primenen., 35(4):704–715, 1990.

[27] K. Frick, A. Munk, and H. Sieling. Multiscale change point inference. J. R. Stat. Soc. Ser.
B. Stat. Methodol., 76(3):495–580, 2014.
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