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1. Summary  
 

Simplexviruses of primates are closely related neurotropic herpesviruses that 

establish lifelong latent infections. While neuropathogenic infections are uncommon 

in their respective natural hosts, zoonotic transmission of Macacine 

alphaherpesvirus 1 (McHV-1, Herpes B virus) from macaques to humans is 

associated with severe encephalitis and high fatality rates. The closely related 

Cercopithecine alphaherpesvirus 2 (CeHV-2) and Papiine alphaherpesvirus 2 

(PaHV-2) have not been reported to be pathogenic in humans. The reasons 

underlying the differential pathogenicity are unclear, in part due to a lack of 

recombinant systems which allows analysis of mutant viruses. The goal of this thesis 

was to generate a recombinant system for PaHV-2.  

For the generation of recombinant PaHV-2 a combination of fosmid- and 

transformation associated recombination (TAR)-based cloning approaches was 

employed. Restriction digest indicated that the genome of the recombinant PaHV2 

was intact and the recombinant virus replicated with the same efficiency as uncloned 

virus in the cell line Vero76. In order to study the viral cell tropism and neutralization 

sensitivity, recombineering was applied to generate viruses carrying reporter genes. 

These studies revealed that PaHV2 but not the closely related CeHV-2 replicated 

efficiently in macaque cell lines. Sera from adult hamahydras baboons inhibited 

PaHV-2 infection while sera from infant animals (<1 year) did not, suggesting that 

primary infection occurs after the first year of life. Finally, PaHV-2 was sensitive to 

the antivirals acyclovir, ganciclovir and cidofovir, but not foscarnet, in line with 

published work. In summary, the first recombinant system for PaHV-2 was 

developed in the present study and will be instrumental for the identification of 

pathogenicity determinants of primate simplex viruses.   
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2. Zusammenfassung 
 

Die Simplexviren der Primaten sind eng verwandte, neurotrope Herpesviren, 

die lebenslange latente Infektionen in den Neuronen ihrer Wirte verursachen. 

Während neuropathogene Infektionen bei ihren natürlichen Wirten ungewöhnlich 

sind, ist die zoonotische Übertragung des Macacine alphaherpesvirus 1 (McHV-1, 

Herpes-B-Virus) von Makaken auf Menschen mit schwerer Enzephalitis und einer 

hohen Letalität verbunden. Die eng verwandten Viren Chercopithecine 

alphaherpesvirus 2 (CeHV-2) und Papiine alphaherpesvirus 2 (PaHV-2) wurden 

nicht als pathogen für den Menschen beschrieben. Die Gründe für die 

unterschiedliche Neurovirulenz sind unbekannt, unter anderem da  rekombinantee 

Systeme fehlen, mit denen Virus-Mutaten hergestelt werden können. Das Ziel 

dieser Arbeit war es ein rekombinantes System für PaHV-2 zu entwickeln.  

Die Entwicklung eines rekombinanten Systems für PaHV-2 erforderte eine 

Kombination aus Fosmid- und transformationsassoziierter Rekombination (TAR) 

basierten. Klonierungsansätzen. Eine Restriktionsanalyse zeigte, dass das 

rekombinante virale Genom intakt war und das rekombinante Virus replizierte mit 

vergleichbarer Effizienz wie das nicht-klonierte Virus in der Zelllinie Vero-76. Für die 

Analyse von Zelltropismus und Neutralisation wurden mit Hilfe von Recombineering 

Reporterviren hergestellt. Diese Arbeiten zeigten, dass sich PaHV-2 aber nicht 

CeHV-2 efficient in Zelllinien von Rhesusaffen vermehrt und dass Seren von 

erwachsenen Mantelpavianen die PaHV-2-Infektion hemmen, während Seren von 

jungen Tieren (<1 Jahr) inaktiv sind. Dies weist darauf hin, dass die 

Primärinfektionen nach dem ersten Lebensjahr erfolgt. Schließlich wurde PaHV-2 

durch Virostatika wie Aciclovir, Ganciclovir, und Cidofovir, aber nicht durch 

Foscarnet gehemmt. Zusammenfassend wurde in dieser Studie zum ersten Mal ein 
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rekombinantes System für PaHV-2 entwickelt. Dieses System kann wesentlich zur 

Identifizierung von Pathogenitätsdeterminanten von Simplexviren von Primaten 

beitragen.   
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3. Introduction 
 

3.1. Alphaherpesviruses 

 

Alphaherpesviruses are enveloped DNA viruses with epithelial and mucosal 

sites of active replication (Roizman & Whitley, 2013). Their genomes contain unique 

long and unique short (UL and US respectively) regions each flanked by inverted 

repeat regions.  Most alphaherpesviruses establish lifelong latency in neurons, with 

a few non-neuronal exceptions such as Marek’s disease virus (MDV; Gallid 

alphaherpesvirus 2, GaHV-2).  They are ubiquitous worldwide with three species 

infecting humans and dozens infecting other hosts (Davison, 2010). Apart from a 

direct impact on human health, they also have an indirect impact by infection of 

veterinary species involved in food production or kept as companion animals 

(Loncoman et al., 2017).  

3.2. Taxonomy 

According to The International Committee on Taxonomy of Viruses (ICTV), 

Herpesviruses are grouped into a single order (Herpesvirales) and three families 

(Alloherpesviridae, Malacoherpesviridae, and Herpesviridae). Based on their 

biological properties, the family of Herpesviridae is divided again into three 

subfamilies (Alphaherpesvirinae, Bethaherpesvirinae, and Gammaherpesvirinae).  
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Figure 1. Herpesviruses taxonomy. The main focus on this report is on the simplexvirus genus of 

the Alphaherpesvirinae subfamily. Viruses analysed in the present study are marked in green 

[The data was taken from ITCV (2021)]. 
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There are nine unique human herpesviruses that have been widely explored,  

Human alphaherpesvirus 1 (HHV-1; herpes simplex type 1, HSV-1), Human 

alphaherpesvirus 2 (HHV-2, herpes simplex type 2, HSV-2), Human 

alphaherpesvirus 3 (HHV-3; Varicella-Zoster virus, VZV), Human betaherpesvirus 5 

(HHV-5; human cytomegalovirus, HCMV), Human betaherpesvirus 6A (HHV-6A), 

Human betaherpesvirus 6B (HHV-6B), Human betaherpesvirus 7 (HHV-7), Human 

gammaherpesvirus 4 (HHV-4; Epstein-Barr-virus, EBV) and Human 

gammaherpesvirus 8 (HHV-8; Kaposi’s sarcoma-associated herpesvirus, KSHV), 

Two of them, HHV-4 and HHV-8, are oncogenic (Mesri et al., 2010; Raab-Traub, 

2012).  The focus of this thesis is on simplexviruses (subfamily Alphaherpesvirinae) 

such as HSV-1, Cercopithecine alphaerpesvirus 2 (CeHV-2; simian agent 8, SA-8), 

Macaccine alphaherpesvirus 1 (McHV-1; herpes B virus, BV), and Papiine 

alphaherpesvirus 2 (PaHV-2; herpesvirus papio 2, HVP-2) (Fig. 1).   

3.3. Simplexviruses 

 

Primate simplexviruses are herpesviruses that extensively coevolved with 

their respective host species (McGeoch & Cook, 1994; Wertheim et al., 2014). As a 

consequence, they share a common genome structure, which is essentially collinear 

with HSV-1, the best characterized and referenced herpesvirus species. Several 

simplexviruses from non-human primates (NHP) have been characterized, including 

PaHV-2 (Perelygina et al., 2003), Panine alphaherpesvirus 3 (PaHV-3; chimpanzee 

herpesvirus) (Luebcke et al., 2006), CeHV-2 (Malherbe & Strickland-Cholmley, 

1969),  and the human pathogenic alphaherpesvirus McHV-1 (Sabin & Wright, 

1934).  
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The comparison of HSV-1, HSV-2, McHV-1, CeHV-2, and PaHV-2 genomes 

showed that all their genes are homologous and collinear (Barnett et al., 1992; 

Dolan et al., 1998; Everett & Fenwick, 1990; McGeoch et al., 1991; Perelygina et 

al., 2003; Tyler et al., 2005; Tyler & Severini, 2006). The only notable difference is 

that, among the simplexviruses, only HSV-1 and HSV-2 have the RL1 (ICP34.5) 

open reading frame. This gene is thought to be highly important for HSV 

neuropathogenesis (Chou et al., 1990). It possesses two genetically separable 

functions, namely neurovirulence in mice (Chou et al., 1990) and inhibition of the 

protein kinase R (PKR) system of the host cell (Chou et al., 1995). The interferon-

induced PKR system shuts down the protein synthesis of the host cell in response 

to the presence of double-stranded viral RNA, and constitutes an important innate 

defense against the viral infection. Because PKR inhibition appears to be required 

for proper HSV-1 replication in cell culture, the absence of RL1 could imply a 

significant divergence in the pathogenetic mechanism of simian simplexviruses 

(Chou et al., 1995; Clemens, 1997; Clemens & Elia, 1997). The simplexvirus 

infection of non-human primates (NHP) and HSV-1 infection of humans exhibit a 

similar biology. These viruses are usually transmitted through exposure to bodily 

secretions or genital contact and hijack biological systems of the host cell, including 

transcription, to express proteins which are required for viral DNA replication and 

production of progeny virions. During primary infection, the viruses can infect 

sensory neurons and reach neuronal ganglia, where a lifelong latency can be 

established. In the latent stage, the viruses are able to persist lifelong without 

producing infectious particles. However, under conditions of stress or immuno-

suppression, the viruses can reactivate from neurons, establish transient replication, 
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followed by shedding of infectious viruses (Huff & Barry, 2003; Keeble et al., 1958; 

Smith, 2012; Weigler, 1992).  

Among the simplexviruses of NHP, only McHV-1, with monkeys of the genus 

Macaca as the natural host, is known to be pathogenic for humans. Natural infection 

of macaques is usually apathogenic, with few exceptions (Eberle & Jones-Engel, 

2017), while humans can develop severe and frequently fatal encephalomyelitis in 

the absence of treatment (Davidson & Hummeler, 1960; Loomis et al., 1981; 

Palmer, 1987; Thompson et al., 2000; Weigler, 1992). However, asymptomatic 

McHV-1 infections have also been reported (Coulibaly et al., 2004). Conversely, 

despite having 85% identity with McHV-1 on the genomic level, no transmission of 

either CeHV-2 or PaHV-2 to humans has been reported.  

3.3.1. Virion structure 

The simplexvirus virion consists of about 40 proteins, and 10 of which are 

glycosylated (Kukhanova et al., 2014). The virion core contains large double-

stranded DNA (dsDNA) which is tightly wrapped as a toroid. The DNA is packaged 

into a highly stable icosahedral capsid which is covered by tegument proteins 

followed by an outer lipid bilayer envelope membrane containing glycoprotein spikes 

on its surface. The virion diameter varies from 120 to 260 nm (Fig. 2).  
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Figure 2. The structure of Human alphaherpesvirus type 1 (HHV-1) virion, as a representative of 

Simplexviruses. Virions have a spherical shape. The genomic dsDNA is surrounded by 

capsid proteins and an outer lipid bilayer envelope containing glycoprotein spikes [image 

was taken from (Kukhanova et al., 2014)]  

 
The tegument consists of roughly 25 proteins, a number of them taking part 

in capsid transport to the nucleus and other organelles (UL36, UL37, ICP0) (Radtke 

et al., 2010) or viral DNA entry into the nucleus (VP1-2, UL36) (Jovasevic et al., 

2008). Another tegument protein, known as VP16 (virion protein 16) or alpha-gene-

transactivating factor (α-TIF) and encoded by the UL48 gene, stimulates the 

transcription of immediate early (IE) genes during the initial stage of viral infection. 

In addition, in the late stage, it is involved in the virion assembly and maturation 

process (Ace et al., 1989; Zhang et al., 2016). The other tegument proteins have 

also important functions, such as to suppress the biosynthesis of cellular proteins, 

and to degrade the mRNAs (VHS, UL41) (Barzilai et al., 2006). Finally, the tegument 

also contains RNA-binding proteins US11, UL47, and UL49 which bind viral and 

cellular transcripts packaged in the virion (Donnelly et al., 2007).  
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The capsid shell consists of four essential proteins: VP5 (encoded by UL19 

gene) as the major capsid protein, VP26 (encoded by UL35 gene) as an accessory 

protein, and finally UL18 and UL38 genes encoding VP23 and VP19C proteins 

respectively. In addition, the capsid also contains the UL6 protein, which forms a 

portal on the vertex of one of the pentamers (fivefold symmetry axes), through which 

the viral genome is packaged into the capsid (Brown & Newcomb, 2011). There are 

three different types of capsids that can be isolated from infected cells, A-capsids, 

B-capsids, and C-capsids. A-capsids, also known as pro-capsids, do not have both 

scaffold proteins and viral DNA, while B-capsids only contain scaffold but not DNA. 

Only C-capsids contain both scaffold and the viral genome (Gibson & Roizman, 

1972; Sheaffer et al., 2001).   

The outer envelope of the virion consists of a lipid bilayer harbouring a 

number of glycoproteins gB, gC, gD, gE, gG, the gH-gL heterodimer, gI, gJ, gK, and 

gM, along with two unglycosylated membrane proteins (UL20 and US9). 

Additionally, the lipid bilayer is derived from cellular membranes acquired during 

viral egress by exocytosis (Chowdhury et al., 2013).   

3.3.2. Genomic organization 

 
Simplexviruses have a common genomic organization. It consists of large 

double stranded DNA (dsDNA) which contains 150-160 kilo-base pairs (kb) and very 

high G+C content (>70 %) (Brown, 2007). It is tightly packaged in a linear form and 

circularized upon entering the nucleus of the host cell for replication of the genome. 

The genome is divided into long and short unique regions (UL and US, respectively), 

each flanked by tandem and inverted repeat sequences (TRL-IRL and TRs-IRS), 

respectively. These large repeat regions present a distinct problem in cloning and 

sequencing (De Bustos et al., 2016).  
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Many alphaherpesvirus genomes contain regions of high G+C content and 

highly repetitive areas, such as short tandem repeated sequences, also known as 

short sequence repeats (SSRs) and variable number of tandem repeats (VNTRs). 

In HSV-1, the G+C content tends to be even higher within these repeats compared 

to VZV (Szpara et al., 2014; Szpara et al., 2011) which leads to secondary structures 

such as stem-loops and G-quadruplexes that decrease the overall yield of sequence 

data in these areas and further complicate the assembly of these high G+C 

repetitive regions.  Since the genome contains inverted repeat sequences, the UL 

and the US unit can be recombined to generate four different linear genome isomers 

(Mocarski & Roizman, 1982) (Fig. 3).  

 

 

Figure 3. (a) The structure of the simplexvirus genome. The unique long region (UL) is flanked by 

repeat sequences (TRL and IRS respectively), the short one (US) is flanked by IRS and TRS 

at the UL–US junction and at the UL terminus (Kukhanova et al., 2014). (b) The illustration of 

four different linear genomic isomers which are generated by the recombination between 

inverted repeat sequences both in the UL and US separately. A graph of the GC-content 

along the genome is shown on top. 
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The packaged herpesvirus genomes are linear, formed by site specific 

cleavage from complex concatemeric intermediates which consist of two conserved 

areas named pac1 and pac2. These areas are conserved in McHV-1, HSV-1 and 

HSV-2 (McVoy et al., 1998; McVoy et al., 2000). In addition, according to the 

sequences of the genes of the short region, they are also conserved and collinear 

with McHV-1.  

3.3.3. Replication cycle 

There are several discrete stages in the herpesvirus life cycle: viral entry, 

transport to the nucleus, viral gene expression, viral DNA replication, viral assembly, 

and capsid maturation. Infections starts with viral entry into the cell via endocytosis. 

The interaction of surface glycoproteins of the virus with specific cellular surface 

receptors plays an important role. Attachment of the virion to the cell surface is 

mediated by viral glycoproteins C (gC) and B (gB), which interact with cell surface 

glycosaminoglycans, especially heparin sulfate (Fan et al., 2018). The virus particle 

will undergo fusion of the viral outer envelope with cellular membranes which is 

mediated by four glycoproteins, gD, gB, and the heterodimer gH/gL (Aravantinou et 

al., 2017; Fan et al., 2017). Glycoprotein gD binds to three types of receptors: nectin-

1 and nectin-2, herpes virus entry mediator (HVEM), and 3-0-sulfated heparin 

sulfate (3-0-S-HS). The latter is produced by 3-0-sulfotransferases 2-7 (3-0ST), 

which makes them promising therapeutic targets for antiherpetic drugs research 

(Baldwin et al., 2013). 

 The N-terminal domain of gD interacts with cellular receptors. This 

interaction will induce the release of its C-terminal domain to and activates the gB 

and gH/gL complex to induce membrane fusion. However, the C-terminal domain of 
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gD is inhibited when it is not coupled to the ligand (Arii et al., 2009; Baldwin et al., 

2013).  

 

Figure 4. Simplexvirus life cycle: 1) virion attachment to the cellular receptors and entry into the cell; 

2) transport of the virion to the nucleus while some tegument proteins remain in the 

cytoplasm; 3) viral gene expression: a) immediate early (IE), (b) early , and (c) late (L) 

proteins; 4) viral DNA replication; 5) nucleocapsid assembly; 6) capsid maturation; 7) primary 

envelope formation; and 8) viral progeny release (Kukhanova et al., 2014).  

 

After entering the host cell, the viral particle with the capsid still coated with 

tegument proteins, is transported to the nucleus. The viral genome is released 

through the nuclear pore into the nucleus, where transcription, replication of the viral 

genome, and assembly of new progeny capsids takes place (Fig. 4). During 

infection, the host nucleus is reorganized:  its size is increased, the nucleolus  (Calle 

et al., 2008) and nuclear domain-10 (ND-10) (Everett et al., 1998; Rivera-Molina et 

al., 2013) subdomains are disrupted, cellular chromatin is condensed and in the late 

steps of infection, the latter and the nuclear lamina are destructed (Simpson-Holley 
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et al., 2005). Key cellular processes – transcription (Jenkins & Spencer, 2001), 

splicing of the cellular RNA (Hardy & Sandri-Goldin, 1994), protein biosynthesis  and 

cellular response to infection (Neumann et al., 1997) – are also blocked. All these 

steps increase the efficiency of viral genome replication and transcription.  

The viral mRNA is synthesized by the host cell RNA polymerase II with the 

participation of viral factors. Viral proteins regulate sequential transcriptional 

cascades (immediate early-IE, early-E, and late-L genes) and a series of 

posttranslational modifications. Transcription of IE gene requires the tegument 

protein VP16 (Mackem & Roizman, 1982), which is a transcriptional activator. VP16 

is also a late tegument protein that further participates in the assembly and 

maturation of nucleocapsid in the cytoplasm. Of six IE genes (ICP0, ICP4, ICP22, 

ICP27, ICP47, and US1.5), only ICP47 is not involved in activating E gene 

transcription. Proteins encoded by E genes are involved in the activation of viral 

replication machinery, regulation of nucleotide metabolism (e.g. thymidine kinase-

TK UL23), activation of L genes, and also suppression of IE genes. Some viral 

proteins, like thymidine kinase (UL23), ribonucleotide reductase (UL39, UL40), 

modulate the nucleotide metabolism and are essential for the viral DNA synthesis 

because the expression of the corresponding host cell enzymes is downregulated 

in infected cells (Weller & Coen, 2012).  

After start of the viral DNA replication, the expression of late L genes, 

especially those encoding capsid proteins, increases, leading to the assembly of 

new progeny virions. The capsid assembly and viral genome packaging occur in the 

nucleus followed by nucleocapsid egress from the nucleus by budding through the 

nuclear membrane. With the participation of UL31 and UL34 proteins, the capsid is 

transported from the nucleus to the cytoplasm where the virion maturation and outer 
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shell formation occurs (Arii, 2021; Johnson & Baines, 2011; Mettenleiter, 2016). The 

release of the virion from the cells by exocytosis accomplishes the viral reproductive 

cycle (Pasdeloup et al., 2013). 

In lytically infected skin tissue simplexviruses gain access to sensory nerve 

endings, where they establish latent infection (Hafezi et al., 2012; Smith, 2012). 

During infection, envelope and tegument proteins are shed and only the capsids are 

transported to the nuclei of the sensory neurons, residing in neuronal ganglia such 

as the trigeminus ganglia. As a result, important lytic regulators, such as the 

tegument protein VP16, are not transported to the nucleus. As a consequence, a 

latent infection is established where cells bear a circular form of the viral genome, 

and RNA is transcribed mainly from one region leading to the latency associated 

transcripts (LATs). This LAT region is involved in maintaining the latent state (Nicoll 

et al., 2016). However, the viral genome retains its ability to reactivate. The 

mechanism of reactivation is incompletely understood, but involves cellular stress 

signalling, which converts the transcriptionally inactive chromatin covering the 

simplexvirus genome into a more active and accessible form (Cliffe et al., 2015). As 

an example, HSV-1 is detected only in neurons and ganglia that directly stimulate 

the epithelium that is prone to infection (Webre et al., 2012). 

3.3.4 Biology of Simplexviruses  

3.3.4.1. Human simplexviruses (HSV-1, HSV-2) 
 

The World Health Organization (WHO) stated that 40-90% of the human 

population is infected by herpesviruses (Kukhanova et al., 2014; Kuny & Szpara, 

2021). Among those viruses, three are members of the subfamily 
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Alphaherpesvirinae: HSV-1, HSV-2 and VZV, of which HSV-1 is the most prevalent 

and well explored (Xu et al., 2002).  

Primary infection with HSV-1 is usually associated with vesicles or sores on 

the lips. Additionally, genital herpes, keratitis and peripheral skin lesions may 

appear, particularly in immunocompromised hosts (Denes et al., 2018). HSV-2 

infection is normally associated with genital skin blisters (Groves, 2016; Magdaleno-

Tapial et al., 2020). The outer genital lesions (thigh, finger, eye, buttocks and groin) 

may also occur during infection (Corey and Wald, 2008). Sores generally occur a 

few days after the primary infection, and reappear more or less regularly later in life 

in a substantial percentage of those infected. The blisters contain a large number of 

viral particles and are thought to play a central role in viral transmission. The 

symptoms may be increased by host conditions, such as the degree of the immune 

response. The viruses persist in nerve cells for a long period before being 

transferred to the mucosa via axons. The frequency and severity of the recurrent 

infections tend to decrease over time. Although the genital form is less likely to result 

in recurring blisters, the virus can still be transmitted through the mucosa 

(Fatahzadeh & Schwartz, 2007; Groves, 2016; Magdaleno-Tapial et al., 2020). 

The most common symptom of an active infection is mucosal ulcers, although 

HSV-1 and HSV-2 can also cause cutaneous lesions, particularly around the nails 

of fingers and toes, a condition known as herpetic whitlow (Clark, 2003), and both 

viruses can also infect the eyes, producing keratitis which can lead to blindness 

(Farooq & Shukla, 2012). They may target the brain, causing encephalitis or 

meningitis, due to their affinity for neurons and epithelial cells (Rozenberg et al., 

2011). Herpes simplex encephalitis (HSE) is caused by genetic defects, particularly 

in TRL3-interferon (IFN) and IFN-responsive pathways (Zhang et al., 2013). It could 
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be due to stressors in the host, resulting in a reduction in immunological surveillance 

(Fatahzadeh & Schwartz, 2007). 

According to the analysis of genome sequences, HSV-1 is closely related to 

HSV-2 (Dolan et al., 1998; Dolan et al., 1992; McGeoch et al., 1991), with McHV-1 

(Perelygina et al., 2003), PaHV-2 and CeHV-2 (Tyler et al., 2005) being more 

distant. This is also due to the RL1 which is only available in HSVs, but not in other 

simplexviruses.  

3.3.4.2. Cercopithecine alphaherpesvirus 2 (CeHV2; Simian Agent 8, SA8) 

The Cercopithecine alphaherpesvirus 2 (CeHV2, Simian agent 8, SA8) was 

first discovered in the brain tissue of an African green monkey and is only found in 

this species (Malherbe & Strickland-Cholmley, 1969). Clinical symptoms are not 

detected upon infection of the natural host. However, infection with CeHV-2 in 

baboons cause a disease that is very similar to genital herpes in humans ( caused 

by HSV-2) (Martino et al., 1998). It is largely spread by sexual contact, and primary 

infection is typically asymptomatic but can occasionally be associated with oral 

and/or genital diseases (Levin et al., 1988; Martino et al., 1998). New-born monkeys 

can be infected by this virus, which causes more severe disease in females than 

males (Martino et al., 1998), and severe infections of new-born monkeys resembling 

human neonatal herpes have also been documented (Brack et al., 1985; Eichberg 

et al., 1976). Furthermore, infection in African green monkeys is frequently 

asymptomatic, and the potential for zoonotic transmission is unknown (Eichberg et 

al., 1976). 

CeHV-2 genomic length, 150 kb, is close to HSV-1 and HSV-2  (152 kb and 

155kb respectively) and all of the genes are homologous and collinear with McHV-
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1 including the absence of the RL1 (ICP34.5) open reading frame which is involved 

in neurovirulence in HSVs (Chou et al., 1995; Chou et al., 1990; Tyler et al., 2005; 

Whitley et al., 1993; Whitley & Roizman, 2001). The UL and US sequences are 

separated by a pair of long and short inverted repeats (Eberle et al., 1993). The 

genome is similar to that of other simplexviruses and exhibits the largest G+C 

content (>76%) (Tyler et al., 2005).  

CeHV-2 shares 83% DNA homology with McHV-1 (Perelygina et al., 2003), 

64.1% with HSV-1 (Dolan et al., 1992), and 68.8%with  HSV-2 (Dolan et al., 1998).  

Due to the high similarities to McHV-1, CeHV-2 has been suggested as an 

alternative antigen for diagnosing of McHV-1 seropositivity (Malherbe & Strickland-

Cholmley, 1969; Takano et al., 2001). Because CeHV-2 and PaHV-2 are closely 

related (Eberle et al., 1995), both viruses were originally identified as CeHV-2, 

leading to some confusion in early publications (Malherbe & Strickland-Cholmley, 

1969).  

3.3.4.3. Macaccine alphaherpesviruses (McHV) 

Macaccine alphaherpesviruses (McHVs) have Macaque spp. as their natural 

host. According to the phylogenetic analysis of viruses isolated from different 

species of macaques, they are divided into three species: Macacine 

alphaherpesvirus 1 (McHV-1) isolated from rhesus macaque (Macaca mulatta), 

bonnet macaque (M. radiata), and japanese macaque (M. fuscata); Macacine 

alphaherpesvirus 2 (McHV-2) isolated from lion-tailed macaque (M. silenus), and 

Macacine alphaherpesvirus 3 (McHV-3) isolated from pig-tailed macaque (M. 

nemestrina) (Fig. 1) (ICTV, 2021). Information about zoonotic transmission and 

pathogenicity of these viruses is not available except for McHV-1, which is also 

termed herpes B virus. The transmission of McHV-1 from macaques to other non-
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human primates has been documented. The majority of them, such as Debrazza’s 

monkey (Cercopithecus negletus), a patas monkey (Erythrocebus patas), and a 

black and white colobus monkey (Colobus spp.) (Loomis et al., 1981; Thompson et 

al., 2000; Wilson et al., 1990), died from McHV-1 infection. In cell culture, McHV-1 

exhibits a broad host tropism and can infect a large variety of cell lines (Hilliard et 

al., 1987; Kubicek et al., 1973).   

McHV-1 virions exhibit the typical structure of an alphaherpesvirus virion, 

packaging 157 kb of linear genomic DNA. The entire genome of McHV-1 has been 

sequenced (Ohsawa et al., 2003; Ohsawa et al., 2002; Perelygina et al., 2003), and 

all McHV-1 genomes have a very high G+C content (>76%) and a genomic structure 

that is comparable to HSV-2 and CeHV-2 (Eberle et al., 2017). McHV-1 shares a 

significant degree of genetic similarity with HSV-1 and HSV-2 with the absence of 

the RL1 (ICP34.5) open reading frame (Perelygina et al., 2003; Tyler & Severini, 

2006). McHV-1 usually does not cause severe disease in its natural host (Eberle & 

Jones-Engel, 2018; Eberle et al., 2017; Huff & Barry, 2003). However, if the virus is 

transmitted to humans, it can cause encephalomyelitis with a 70% case-fatality rate 

if not treated (Eberle & Jones-Engel, 2018). 

Human McHV-1 infections are rare, according to The Center for Disease 

Control and Prevention (CDC). Only about 50 cases have been reported since the 

discovery of the virus, with 21 of the afflicted patients dying (CDC, 2019). The initial 

infection was typically caused by monkey bites or scratches or exposure of broken 

skin to body fluids from an infected monkey. After body fluid from an infected 

monkey splattered into her eye, a researcher died of McHV-1 infection in 1997 

(CDC, 1998). As a result of the high biosafety requirements, only few studies have 

been conducted with McHV-1. Because of its severe neuropathogenicity, McHV-1 
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is classified as a biosafety level (BSL) 4 pathogen in the United Kingdom and the 

United States of America and as a BSL 3 pathogen in Germany. In order to avoid 

work in BSL3 or BSL4 laboratories, some studies used BSL 2 herpesviruses as 

models to investigate McHV-1. These model viruses include HSV-1, HSV-2, and 

CeHV-2. However, it has been reported that PaHV-2 is genetically and antigenically 

more closely related to McHV-1 than HSVs and CeHV-2 (Black & Eberle, 1997; 

Eberle et al., 1995; Ohsawa et al., 2002; Perelygina et al., 2003) and might thus be 

the model of choice.  

3.3.4.4. Papiine alphaherpesvirus 2 (PaHV-2; Herpesvirus papio 2, HVP-2) 

Papiine alphaherpesvirus 2, (PaHV2; Herpesvirus Papio 2, HVP2) was 

discovered in baboons (Papio spp.)  (Levin et al., 1988) in which it behaves similarly 

to McHV in macaques and HSV in humans (Elmore & Eberle, 2008). The genomic 

arrangement is identical to that of other simplexviruses, with inverted repeat 

sequences flanking each of the distinct long and short segments (UL and US 

respectively) (Tyler & Severini, 2006). PaHV-2 is genetically similar to McHV-1 and 

also HSVs (Elmore & Eberle, 2008; Engel et al., 2002; Focher et al., 2007; Tyler & 

Severini, 2006) but lacks the RL1 (ICP34.5) open reading frame (Tyler et al., 2005; 

Tyler & Severini, 2006). PaHV-2 and McHV-1 are antigenically so similar that PaHV-

2 has been utilized as a substitute antigen for McHV-1 serology diagnostics 

(Ohsawa et al., 1999; S. Tanaka et al., 2004; Yamamoto et al., 2005).  

In a murine model, researchers discovered two groups of PaHV-2 strains with 

different pathogenicity, one apathogenic and the other neurovirulent (Rogers et al., 

2003; Rogers et al., 2006) The difference in pathogenicity between both groups was 

linked to the UL39 gene (encoding ribonucleotide reductase large subunit) which is 

indispensable for PaHV2 neuropathogenesis in mice. The UL39 gene also plays an 
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important role in the viral replication in non-dividing cells, such as neurons. It is also 

associated with anti-apoptotic and  anti-necroptotic responses, as well as interferon 

response regulation. (Black et al., 2014). Several PaHV-2 isolates are highly 

neurovirulent in mice, and their pathophysiology closely resembles that of McHV-1 

in mice (Ritchey et al., 2005; Rogers et al., 2006). However, PaHV-2 infection of 

humans has never been detected, despite the virus’s resemblance to McHV-1. As 

a result, PaHV-2 is classified as a BSL 2 pathogen.  

3.4. Recombinant systems 

The information generated from the genomic sequences will be of enormous 

use if it can be converted into functional data, which will require dissection and 

modification of the viral genome using genetic recombinant technology. Genetic 

recombination is a process by which a molecule of nucleic acid is broken and then 

joined to a different DNA molecule. There are two popular methods for mutagenizing 

DNA, random transposon and site-directed mutagenesis. Site-directed mutagenesis 

is an in vitro method of introducing a mutation into ds-DNA plasmid using specially 

designed oligonucleotide primers (Kunkel, 1985). Transposon mutagenesis, on the 

other hand, produces a wide range of mutants. Since the mutagenesis is random, 

determining the mutation site requires sequencing or PCR analysis.   

 Recombinant systems for viruses allow the easy introduction of changes into 

the viral genome before rescuing the virus. Herpesviruses, particularly 

simplexviruses, have been studied using a variety of approaches. First, virus can be 

generated from a group of overlapping cosmids, as shown for HSV-1 (Cunningham 

& Davison, 1993). More recently fosmids, cosmids with a low-copy F-factor, have 

been employed for PRV, MDV and CeHV-2 (Chukhno et al., 2019; Li et al., 2016; 

Zhou et al., 2018). Second, herpesviral genomes have been cloned and modified 
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using bacterial artificial chromosomes (BACs) (Meseda et al., 2004; Messerle et al., 

1997; Tanaka et al., 2003). Finally, the genomes of herpesviruses and other viruses 

have also been cloned and assembled via transformation-associated recombination 

in yeast (Oldfield et al., 2017; Thi Nhu Thao et al., 2020; Vashee et al., 2017). An 

advantage of all these recombinant methods is that they do not require multiple 

rounds of plaque purification, because all reconstituted viruses are recombinant 

(contain the gene modification), allowing these techniques to be widely used 

particularly in herpesvirus research. 

3.4.1. Cosmids and Fosmids 

Cosmids  are plasmids with bacteriophage λ DNA cohesive sites (cos sites) 

(Collins & Hohn, 1978; Cronan, 2003). A cosmid vector mainly contains an origin of 

replication (ori), a selection marker such as an antibiotic resistance gene, a cos site, 

and multiple cloning sites (MCS) for inserting up to 40 kb foreign DNA fragment 

(Fig.5).  Since the herpesvirus genomic DNA is large, a series of overlapping cosmid 

clones is required to cover the entire viral genome (Liao et al., 2021). Therefore in 

1988, recombinant PRV (pseudo rabies virus) mutants were successfully produced 

utilizing five cosmid clones containing overlapping DNA fragments of the PRV 

genome after cotransfection into permissive cells and and subsequent 

recombination (Cunningham & Davison, 1993).  

To apply cosmid cloning, the herpesvirus genome was partially digested with 

different restriction enzymes to produce overlapping viral DNA fragments that were 

then cloned into cosmid vectors. To construct the modified/recombinant viral 

cosmid, the gene of interest was deleted, mutated, or inserted. To reassemble the 

mutant virus, restriction enzyme digestion was used to release all viral DNA 

fragments from the cosmids, which were then co-transfected into permissive cells 
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to generate the recombinant viruses. Since originally introduced, this technique has 

been utilized to generate a significant number of mutants of HSV-1, EBV, VZV, 

equine herpesvirus (EHV), MDV and herpesvirus turkey (HVT) to examine gene 

function (Cohen & Seidel, 1993; Cunningham & Davison, 1993; Lindenmaier & 

Bauer, 1994; Nicolson et al., 1994; Reddy et al., 2002; Reilly & Silva, 1993; 

Tomkinson et al., 1993). 

Cosmid clones are occasionally unstable (Horsburgh et al., 1999) and may 

lose the inserted DNA which could indicate sequences that are harmful to E. coli, 

particularly at high copy numbers (Redenbach et al., 1996). Another limitation of this 

method is the handling of large DNA fragments, which may result in unwanted 

mutations and genome rearrangements in the resulting recombinant viruses. As a 

consequence, multiple recombination events are required to reconstitute the full-

length viral genome in cells. Additionally, due to the nature of the approach, it is 

difficult to generate revertant viruses, which are crucial to rule out the possibility that 

the altered phenotype is attributable to other undesired mutations. The use of entire 

genome sequencing, on the other hand, could eliminate the necessity for the 

generation of revertant viral (Liao et al., 2021).   

 

Figure 5. (a) The general scheme of a cosmid vector and (b) copy control pCC1FOS vector which 

commonly used to generate fosmids library [taken from (DiLella & Woo, 1987; Wild et al., 

2002)  
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Fosmids are cosmids which have a low copy F factor origin. Fosmids were 

utilized to generate stable libraries from complex genomes, since they were reported 

to have high structural stability and to effectively conserve human DNA even after 

100 generations of bacterial growth (Magrini et al., 2004; L. Zhang et al., 2007). A 

fosmid library is constructed by extracting the target organism’s genomic DNA, 

creating randomly sheared genomic DNA fragments and cloning them into fosmid 

vectors (Moon & Magor, 2004).  As a result, generating infectious clones of large 

DNA viruses, such as herpesviruses,  based on a fosmid library will allow for more 

efficient viral genome editing with a high level of biosafety, as only parts of the 

genome are handled at a time (Chukhno et al., 2019; Zhou et al., 2018). 

Fosmids containing viral genome segments should be stable due to the low 

copy number in bacteria but suffer from low DNA yields. To combine single-copy 

cloning with the advantages of high DNA yields, vectors were constructed containing 

a high-copy oriV which leads to amplification in an E. coli host strain expressing trfA 

under the control of araC-PABD regulatory region (Cunningham & Davison, 1993; Kim 

et al., 2003; Zhou et al., 2018). Accordingly, in the absence of inducer, clones can 

be kept in single copy for stability, or induced to high copy by adding L-arabinose to 

the growth medium to switch on the trfA expression, which subsequently activates 

oriV, resulting in up to 100 plasmid copies per cell (Martinez et al., 2007; Martinez 

et al., 2010).  

Fosmid-based cloning has been applied to generate recombinant virus, 

particularly herpesvirus such as MDV, PRV, and CeHV-2, by introducing the 

overlapping fosmids clones to the permissive cells (Fig. 6) (Chukhno et al., 2019; 

Cui et al., 2005; Cui et al., 2004; Li et al., 2016; Liu et al., 2016; Zhou et al., 2018). 



 
 

28 
 

In addition to thistechnology being straighforward, the overlapping fosmid method 

avoids the use of eukaryotic selection markers that may interfere with virus 

propagation (Tischer et al., 2007).  

 

 

Figure 6. Cloning and characterization of a fosmid library. (a) Scheme of herpesvirus genome 

cloning. Viral DNA was isolated from virus particles, fragmented by shearing, end-repaired 

and size fractionated on an agarose gel. Fractionated fragments were ligated into pCC1FOS 

(red) fosmid vector and packaged into phage lambda particles, which were subsequently 

utilized to transduce cells of E. coli strain EPI300. Colony PCR, end-sequencing, and 

restriction digest test were used to characterize each coloniy. (b) An illustration of fosmid 

map in which all characterized fosmid clones are located based on their position (Chukhno 

et al., 2019)  

 

Taking advantage of the  fosmid-based approaches, herpesviruses carrying 

reporter genes have been generated (Chukhno et al., 2019; Rahman Siregar et al., 

2022). Reporter genes were inserted into fosmid clones via recombineering which 

relies on homologous recombination in bacteria expressing λ red recombinase 

(Weigler, 1992; Yu et al., 2000). For this, fosmids were introduced into E. coli 

GS1783 (Tischer et al., 2010), which expressed phage recombinases after heat 

induction and I-SceI under arabinose control (Tischer et al., 2006).      
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3.4.2. Bacterial Artificial Chromosomes (BACs) 

Bacterial artificial chromosomes (BACs) are plasmid vectors based on the 

fertility (F-) factor that replicate consistently in low copy numbers (Hosoda et al., 

1990; Shizuya et al., 1992). BACs are a potent technology for carrying the entire 

genomes or genes with flanking regulatory DNA to provide all signals for correct 

spatiotemporal gene expression due to their huge insert capacity (Antoch et al., 

1997; Jessen et al., 1998; Valjent et al., 2009). Thus, BACs containing full-length 

genes in their original chromosomal arrangement are becoming a popular tool for 

investigating genome structure and function, and they offer an interesting alternative 

to conventional vector systems (Nagel et al., 2014). 

Cloning whole viral genomes into BACs has substantially aided mutagenesis 

of herpesviruses due to the large size of their genomic DNA. Because their copy 

number is controlled at only 1-2 copies per bacterial cell, they reliably maintain large 

fragments of DNA  (Borst et al., 2007; Kelley et al., 1999; Messerle et al., 1997; 

Smith & Enquist, 1999). Because of their low copy number and relative ease and 

precision in creating mutants, BACs are particularly beneficial for several 

herpesviruses. Low copy number reduces the likelihood of illegitimate inter- and 

intramolecular recombination between repetitive sequences found throughout the 

herpesviral genomes. It also allows fast and well-established mutagenesis in E. coli, 

such as RecA-mediated homologous recombination, Red recombination, and 

transposon-based mutagenesis (Adler et al., 2003; Brune et al., 2000; Ruzsics & 

Koszinowski, 2008; Wagner & Koszinowski, 2004). Overall, viral BACs in E. coli can 

be more stable than natural or conventional viral mutants (Warden et al., 2011).  

Viral BACs are constructed by introducing a BAC cassette into a viral 

genome. A typical BAC cassette contains an origin of replication (e.g., oriS), genes 
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required for BAC replication (such as repE), and genes that control the partition of 

plasmids to daughter cells (such as sopA and sopB). In order to select only bacterial 

colonies bearing the BAC herpesvirus genome of interest, an antibiotic resistance 

marker (such as chloramphenicol) is included within the BAC cassette. The BAC 

cassette needs to be flanked by 500–1000 homologous base pairs to the target 

sequence into which it will be inserted. Finally, a BAC cassette should additionally 

carry a selectable marker for eukaryotic cells (such as GFP, beta-galactosidase, 

antibiotic resistance genes, or metabolic genes) in order to select BAC-containing 

recombinant virus in eukaryotic cells. Importantly, two loxP sites are frequently 

added at both ends of the BAC sequence allowing the BAC cassette to be removed 

from recombinant viruses. 

 

Figure 7. (a) Schematic representation of the bacterial artificial chromosome (BAC) cloning vector 

pBeloBAC11 and the potential insertion site on the targeted genome that is flanked by 

homology arms of about 2 kb (red and orange bars). The two white arrows exemplify two 

viral ORFs. (b) After linearization, the BAC vector inserts  to the targeted genome by 

homologous recombination in permissive eukaryotic cells [Taken from (Nagel et al., 2014)]. 
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One typical strategy for generating herpesvirus BACs is to employ 

homologous recombination to insert a BAC cassette into a specified region of the 

viral genome (Borenstein & Frenkel, 2009; Delecluse et al., 1998; Delecluse et al., 

2001; Horsburgh et al., 1999; Messerle et al., 1997; Nagaike et al., 2004). The BAC 

cassette with flanked viral genomic sequences is linearized using restriction 

enzymes and cotransfected into viral permissive cells with purified viral genomic 

DNA. A ten kilobase BAC vector can be introduced into a non-essential region of a 

viral genome which has been deleted to accommodate the BAC cassette, therefore 

severe growth abnormalities on virus can be avoided (Wagner et al., 1999; Wussow 

et al., 2009).  

Homologous recombination occurs in the cells, and a recombinant virus 

carrying a BAC vector is generated (Fig. 8a). The presence of a trait defined by a 

selectable marker is used for plaque purification. If the BAC cassette has a GFP 

expression cassette as a selectable marker, for instance, recombinant virus 

infection will result in green fluorescent plaques. The viral DNA containing the BAC 

cassette is extracted from infected cells and electroporated into an E. coli strain, 

such as DH10B. The fact that the herpesvirus genome circularizes during replication 

makes this step possible, despite the fact that herpesvirus DNA is large and difficult 

to transform into E. coli. The antibiotic resistance marker (e.g. chloramphenicol, as 

described above) present in the BAC cassette is used to select bacterial cells 

bearing viral BACs. If the viral BAC is stably maintained and can be replicated in E. 

coli, antibiotic-resistant colonies will be obtained. The viral BAC DNA is purified from 

E. coli, and, initially, restriction enzyme digestion and, sometimes, partial 

sequencing analyses were performed to confirm that the BAC harbouring virus is 
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free of major mutations (deletions) in the BAC DNA (Z. Zhang et al., 2007). Today 

BAC integrity can also be confirmed by next-generation sequencing. 

 

Figure 8. (a) Cloning a viral genome as a bacterial artificial chromosome (BAC). A mutant virus 

containing the BAC cassette (blue) is produced by homologous recombination in infected 

cells. Circular replication intermediates of the viral genome are isolated and transformed into 

E. coli to obtain a virus BAC. (b) BAC technology. The BAC-cloned viral genome can be 

engineered in E. coli to introduce a mutation (red). Transfection of a BAC containing the 

mutated viral genome leads directly to mutant viral progeny [Taken from (Brune et al., 2000)]. 

 

After confirmation of the integrity of the viral BAC, large amounts of the BAC-

DNA can be isolated from bacterial cells and used for transfection into mammalian 

cells (Fig 8b). The development of a BAC system has limitations, despite its 

advantages in producing recombinants more efficiently than homologous 

recombination. Due to homologous recombination and many rounds of plaque 

purification, generating a recombinant BAC construct is time-consuming and labour-

intensive (Gu et al., 2015; Guo et al., 2016).    
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3.4.3. Transformation Associated Recombination 

The Transformation Associated Recombination (TAR) is a one-of-a-kind 

approach for isolating large fragments (up to roughly 300 kb) or complete genes 

from complex genomes in Saccharomyces cerevisiae as circular Yeast Artificial 

Chromosomes (YACs). This method has been used to clone big fragments of genes 

or gene clusters, as well as to characterize genome variants, mutational analysis of 

genes and filling the gaps between contigs in the genome (Kouprina et al., 2016). 

 

Figure 9. The scheme of the basic TAR vector pARS-VN. The vector contains ARS as an origin 

replication in yeast, CEN6 as a yeast centromere of two region-of-interest-specific targeting 

hooks, HIS3 and URA3 as a positive and negative selectable marker, respectively [Taken 

from (Kouprina et al., 2020)]. 

 

The original TAR cloning approach requires the presence of at least one 

autonomously replicating sequence (ARS) that can serve as the origin of replication 

in yeast in the cloned genomic DNA fragment (Theis & Newlon, 1997). Most 

mammalian genes can be identified using TAR cloning, since these sequences are 

abundant in mammalian DNA, with around one ARS-like region per 20–30 kb 

(Stinchcomb et al., 1980). The ARS frequency may be reduced in chromosomal 

areas with several repetitive elements (such as the centromere and telomere), GC-
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rich regions with few ARS-like sequences, and relatively simple genomes, 

preventing their identification by the standard method. 

The TAR vector also contains two region-of-interest-specific targeting hooks, 

a yeast centromere (CEN6), and yeast positive and negative selectable markers, 

HIS3 and URA3, respectively (Fig 9). Negative genetic selection removes the 

background produced by vector recircularization during yeast transformation, which 

is caused by end-joining. URA3 is a hybrid gene containing the open reading frame 

of the Saccharomyces cerevisiae URA3 gene and the promoter of the 

Schizosaccharomyces pombe ADH1 gene, which has specific spacing 

requirements for its function; the distance between the TATA element and the 

transcription initiation site must be less than 130 bp (Furter-Graves & Hall, 1990; 

Miret et al., 1998), as a greater distance causes transcription to initiate at an 

alternative site, inactivating URA3 expression. The specific spacing requirements 

allow selection against the recircularized vector. Hooks as small as 60 bp are 

possible (Noskov et al., 2001). The targeting hooks are inserted between the 

promoter and the open reading frame of the URA3 gene in the TAR vector.  

Figure 10 depicts a general protocol for TAR cloning of a single copy gene 

from the whole genomic DNA. A specific endonuclease positioned between the 

hooks linearizes the TAR vector DNA, exposing the targeted regions. Before 

performing yeast transformation, genomic DNA can be processed with restriction 

enzymes or CRISPR/Cas9 endonuclease, if necessary, considerably increasing the 

yield of gene/region-positive TAR clones. When genomic DNA and linearized TAR 

vector are cotransformed into yeast cells, recombination between targeting 

sequences in the vector and targeted sequences in the genomic DNA fragment 

results in the establishment of the DNA fragment (or gene) as a circular 
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TAR/YAC/BAC molecule. TAR-isolated molecules containing a region of interest are 

subsequently transferred from yeast cells to bacterial cells by electroporation. The 

isolation of  DNA from bacterial clones usually gives higher yields of the DNA, which 

will be used for further sequencing or functional analysis (Kouprina & Larionov, 

2016). It is worth mentioning that even in the presence of an ARS-containing vector, 

cloning of large GC-rich bacterial DNA fragments can be problematic, and in this 

circumstance, only fragments of about 100kb can be recovered (Noskov et al., 

2012). 

TAR cloning has been used to assembled into a complete herpes simplex 

virus type 1 genome (Oldfield et al., 2017) and has recently been modified to directly 

clone a large HCMV genome (Vashee et al., 2017). This cloning strategy allows for 

easier genetic manipulation of primary isolates and opens the door to the 

development of new vaccines and vaccine vectors. In addition, TAR cloning can 

also be developed to generate synthetic viruses with unique features (Kouprina & 

Larionov, 2016). 
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Figure 10. The TAR-based cloning protocols. 1st step: To clone a gene of interest from whole 

genomic DNA, a TAR vector with YAC or BAC cassettes, as well as two unique targeting 

sequences (hook1 and hook2 in green) corresponding to the 5′ and 3′ ends of a gene of 

interest, is utilized. It is possible to use hooks as small as 60 bp. One or both hook sequences 

could be unique, or common repeats. (for example, an Alu repeat for cloning from human 

genomic DNA). The TAR vector DNA is linearized by a particular endonuclease positioned 

between the hooks, exposing the targeted regions. Genomic DNA can be treated with 

CRISPR/Cas9 endonuclease before yeast transformation if necessary, dramatically 

increasing the yield of gene/region-positive TAR clones. Step 2: Genomic DNA and a 

linearized TAR vector are cotransformed into yeast Saccharomyces cerevisiae cells. 3rd and 

4th steps: The fragment (or gene) is rescued as a circular TAR/YAC/BAC molecule after 

recombination between the vector and the genomic DNA fragment. Step 5: Electroporation 

of TAR-isolated molecules containing a region of interest from yeast to bacterial cells. Step 

6: To isolate BAC DNA for further sequencing or functional studies, a traditional approach 

could be applied. [Taken from (Kouprina & Larionov, 2016)]. 
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Despite being a relatively reliable and reproducible  method, TAR cloning has 

limitations. To perform recombination, the hooks region of the TAR cloning vector 

must have at least 85% homology to the targeted sequence. Another issue is that if 

a target region contains repetitive homologous sequences, undesired recombinant 

products may emerge. To tackle this concern, contour-clamped homogenous 

electric field (CHEF) gel electrophoresis with sequence analysis can be applied to 

confirm the integrity of the recombinant target DNA. Because TAR cloning may 

capture larger DNA fragments, high-molecular-weight genomic DNA preparation is 

critical for cloning long genomic pieces. As a result, an optimized DNA preparation 

and its transfer to spheroplast yeast is vital to improving the integrity of large 

genomic fragments (Kouprina et al., 2020).    
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4. Aims 

Macacine alphaherpesvirus 1 (McHV-1) but not the closely related primate 

simplexviruses Cercopithecine alphaherpesvirus 2 (CeHV-2) and Papiine 

alphaherpesvirus 2 (PaHV-2) is highly pathogenic in humans. The reason for this 

high pathogenicity is unknown. To identify determinants of McHV-1 pathogenicity 

on the molecular level, systems for the generation of recombinant primate 

simplexviruses are required.  

The aim of this thesis was to establish a recombinant system for PaHV-2. For 

this, strategies were to be identified which allowed cloning of the entire PaHV-2 

genome. Further, recombinant PaHV-2 was to be characterized for cell tropism, 

replication efficiency and susceptibility to antivirals and neutralizing antibodies. In 

order to facilitate these analyses, reporter genes were to be introduced into the viral 

genome using recombineering.  
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Individual contribution:  

In the following paper, I conducted experiments for figure 4C: “Multicycle replication 

kinetics on cell lines derived from different species” showing strongly reduced 

replication in macaque cells. 
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(LR-7) origin”, and for Figure 5 A and B: “Inhibition of virus infection”.   

https://doi.org/10.3390/v14010091
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6. Discussions  

6.1. First publication - A fosmid-based system for the generation of 

recombinant Cercopithecine alphaherpesvirus 2 encoding reporter genes 

The classic marker transfer method for producing recombinant herpesviruses 

relies on the transfection of marker expressing plasmids followed by co-infection of 

wildtype virus. This method is frequently inefficient, labor intensive, and time 

consuming because of the necessity for virus cloning and purification. Furthermore, 

insertion of a selection marker is required to discriminate the recombinant virus form 

the wildtype virus. Therefore, a fosmid-based approach was used for producing 

recombinant CeHV-2. A mixture of five fosmid clones with ends overlapping 

between 2.3–6.4 kbp was obtained and allowed to recover infectious CeHV-2 which 

replicated with the same efficiency as wiltype virus.  

The fosmid strategy combines the benefits of bacterial artificial 

chromososmes (BACs), which stably maintain large fragments of foreign DNA, and 

cosmids, which separate diploid regions and thus allow parallel engineering. 

Recombineering of herpesviral genomes using BACs has become the gold 

standard. However, changing diploid genes, contained in inverted repeat regions of 

many herpesviral genomes, in a seamless manner has proven difficult (Dai et al., 

2012). Unfortunately, these regions are particularly important for simplexvirus 

biology because they contain key genes for lytic and latent control.  

In cosmid-based systems diploid genes can be modified individually 

(Cunningham & Davison, 1993; Gray & Mahalingam, 2005). Furthermore, because 

only segments of the genome are manipulated at a time, cosmids provide a high 

level of biosafety. On the other hand, cosmids are present in bacterial cells at 

medium to high copy numbers and have proven difficult to change using traditional 
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or recombination-based techniques (Bestman-Smith & Boivin, 2003; Gray & 

Mahalingam, 2005; Kong et al., 1999). Fosmids, in contrast, are only found in low 

copies because they have an F-factor-derived low copy replication origin for plasmid 

maintenance and a separate inducible origin for DNA synthesis (Wild et al., 2002), 

and the current investigation demonstrates that they are accessible to alteration by 

recombineering. Recombineering has recently also been applied to fosmids of PRV 

and MDV (Li et al., 2016; Qi et al., 2020; Zhou et al., 2018). As a result, the fosmid-

based strategy used to generate and modify CeHV-2 should be applicable to other 

herpesviruses as well and should have advantageous as compared to related 

techniques. 

In order to demonstrate parallel engineering and to enable straightforward 

viral replication detection, reporter genes (EGFP, mCherry, and iRFP670) were 

successfully fused to three genes: ICP4, UL35 and UL10. These genes were chosen 

because their successful fusion had been already described (Hogue et al., 2015). 

The immediate-early protein ICP4, encoded by RS1, is found in the inverted repeats 

of the US region. The second gene, UL35, codes for the small capsid protein. 

Finally, UL10 is a late gene that codes for glycoprotein M. The separation of diploid 

genomic fragments on different fosmids enables for simultaneous and seamless 

alteration of a diploid gene (RS1/ICP4), reducing the number of steps necessary. 

Using this approach, reporter viruses that expressed ICP4-EGFP, UL35-mCherry or 

UL10-iRFP670 fusion proteins were recovered and replicated like the wild type 

virus. A virus carrying several reporter genes, CeHV-2 ICP4-EGFP UL35-mCherry, 

was also rescued, demonstrating that several reporter constructs could be 

combined in one virus. The production of a virus expressing all three reporter genes 

failed, probably due to the growth defects associated with the reporter cassettes. In 
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conclusion, the data of the present thesis show that recombineering can be applied 

to create CeHV-2 reporter viruses. Therefore, it showed that this technology could 

be utilized to modify large DNA viruses, such as herpesviruses, in one step.  

For sensitive quantification of viral replication, Gaussia luciferase (Gluc) was 

connected to ICP4's C-terminus linked by PTV1-derived 2A stop-go sequence 

between the two proteins. This should allow for the release of Gluc and thus allow 

the sensitive and convenient detection of infection. The Gluc-expressing reporter 

virus was used to investigate CeHV-2 cell line tropism and drug sensitivity. Acyclovir 

treatment lowered Gluc activity to near-zero levels, suggesting that robust reporter 

activity was dependent on viral replication. In terms of cell line tropism, the virus 

replicated efficiently in African green monkey Vero76 and Cos7 (Cercocebus spp.) 

cell lines in agreement with published work (Eberle & Hilliard, 1984; Tyler et al., 

2005). CeHV-2 replication was also observed in human A549, Huh7.5, HeLa, and 

HEK293T cells, which is consistent with published finding that CeHV-2 replicates in 

human foreskin fibroblasts (Eberle and Hilliard, 1984), KB (human epithelial 

carcinoma), and fetal diploid lung cells. In addition, efficient replication was 

observed in marmoset fibroblasts, which has not been reported previously. Cell lines 

generated from rhesus macaques, on the other hand, showed no evidence of viral 

replication (LLC-MK2, sMAGI, TeloRF, MaMuK8639). This is in contrast to one older 

report, which stated that the rhesus macaque cell line LLC-MK2 could be 

productively infected (Malherbe & Harwin, 1963).  

It cannot be ruled out that these differences are related to the use of reporter 

virus, which demonstrated a mild growth defect, in the current study, while wild type 

virus was used in the previous investigation. However, preliminary findings 

suggested that infection of LLC-MK2 cells with wild type virus was inefficient. Finally, 



 
 

77 
 

it is possible that CeHV-2 can infect rhesus macaque cells in general, and that the 

cell lines studied here lack host components essential for viral replication or express 

a host factor such as TRIM5α, which might block CeHV-2 infection and has been 

reported to restrict HIV (Zheng et al., 2005) and HSV (Reszka et al., 2010) infection 

of rhesus macaque cells. 
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6.2. Second publication – A recombinant system and viruses encoding 

reporter genes for Papiine alphaherpesvirus 2 

In this work, the establishment of a recombinant system for PaHV-2 was 

reported,  based on the fosmid strategy applied to CeHV2 (Chukhno et al., 2019). 

However, here, the fosmid strategy had to be combined with the TAR-based cloning 

approach. Initially, the same approach as for generating recombinant CeHV2 was 

applied. However, several challenges had to be addressed in the development of 

the PaHV-2 recombinant system. In order to get clones spanning the full genome, 

random fragment (sheared) and direct specific fragment (unsheared) cloning was 

applied. Despite screening over 2000 clones, clones containing US and IRS regions 

and the centre of the UL region were not recovered. In parallel, a strategy for cloning 

the entire, unfragmented genome as a BAC has also been pursued, as this has 

been widely applied for cloning and modifying of herpesviral genomes. However, all 

attempts failed and only partial genomes could be recovered from E. coli.  

TAR-based cloning was applied to fill the gap in the middle of the UL region 

as well as in the end region of the genome (UL-IR-US). This method was chosen 

because it is based on a host organism capable of taking up big DNA  fragments, 

yeast, and its application in cloning and assembling genomes of herpesviruses and 

other viruses has been previously documented (Oldfield et al., 2017; Thi Nhu Thao 

et al., 2020; Vashee et al., 2017). TAR is a unique method for selective isolation of 

large fragments (up to almost 300 kb) from complex genomes in the yeast 

Saccharomyces cerevisiae as circular yeast artificial chromosomes (YACs). The 

missing regions of PaHV-2 could be successfully cloned in yeast using TAR-based 

cloning. After transfer to E. coli, sequencing of clones used in initial rescue attempts 

revealed deletions in three regions of the genome, which turned out to be the 
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palindromic regions of viral lytic replication origins (Lockshon & Galloway, 1986; 

Weller et al., 1985). This problem could be resolved by using E. coli strains with 

increased palindromic stability, such as PMC103 (Doherty et al., 1993; Gietz & 

Sugino, 1988). Combining fosmid- and TAR-based cloning, recombinant PaHV-2 

was successfully rescued and showed the same characteristics as the wildtype virus 

regarding both growth kinetics and genome structure, as assessed by restriction 

digest and sequencing. The plasmid system for rescuing PaHV2 has some 

drawbacks in its current state. For example, TAR-based plasmids in their current 

form are high-copy plasmids in E. coli, which is not optimal for recombineering. 

Therefore, conversion to plasmids with low copy F factor origins will be needed to 

overcome this problem in the future (Thapana et al., 2014). Recombineering will 

also aid in reducing fragment overlaps, allowing for more uncomplicated change of 

a greater section of the genome.  

Several reporter viruses for sensitive detection and monitoring of infection 

were generated by inserting Gluc (Gaussia luciferase) and EGFP (enhanced green 

fluorescent protein) expression cassettes, driven by the HCMV enhancer/promoter, 

into the UL3/4 locus. This locus was chosen, because it has an intergeneric region 

in which insertion of foreign genes will not compromise growth or virulence 

(Morimoto et al., 2009; M. Tanaka et al., 2004; S. Tanaka et al., 2004). As a result, 

the replication of all reporter viruses was indistinguishable from the wild type PaHV-

2. PaHV2-cmvGluc allowed for sensitive detection of infection, with reporter activity 

reaching levels 100-fold over background after 6 hours postinfection, making it a 

valuable tool for infection quantification. Localization of infected cells was possible 

with PaHV2-cmvEGFP. However, detection was significantly less sensitive than with 

the Gluc-expressing virus, permitting detection only after 24 hours. Part of this could 



 
 

80 
 

be explained by Gluc's greater sensitivity in an enzymatic assay compared to 

EGFP's non-enzymatic detection (Tannous et al., 2005). Furthermore, EGFP has 

been shown to have limited stability in mammalian cells, whereas Gluc is very stable 

(Verkhusha et al., 2003; Wurdinger et al., 2008). The optimization of the promoter 

or fluorescent protein may allow for more sensitive detection, to make this a suitable 

and promising system for single cell analyses using flow cytometry, for example. 

Using multicycle growth monitoring via Gluc activity, it could be observed that the 

spectrum of cell lines susceptible to PaHV2 infection is greater than previously 

reported for CeHV2 (Chukhno et al., 2019). In particular, PaHV2 but not CeHV-2 

was found to replicate well in cell lines from rhesus macaques, and these results 

could be confirmed using wild type PaHV-2 (data not shown). 

In order to investigate PaHV-2 sensitivity to antivirals, we created PaHV2-

Gluc-2A-UL35, a reporter virus in which Gluc was co-expressed with the late gene 

UL35. All antiviral compounds tested (acyclovir, ganciclovir, and cidofovir) except 

foscarnet inhibited PaHV2 replication, which is consistent with previous research 

(Brush et al., 2014). Acyclovir (ACV) is the “gold standard” for antiherpetic therapy 

(Schaeffer et al., 1978) and, jointly with ganciclovir (GCV), is also widely used for 

treatment of herpesvirus infection. However, both antivirals have a number of 

drawbacks. Importantly, ACV has a low blood-brain barrier penetration with a short 

plasma half-life, and the bioviability of GCV is also limited (Thust et al., 2000). In 

agreement with antiviral sensitivity assay with McHV-1, GCV and cidofovir (CDV) 

also inhibited the virus replication (Maxwell et al., 2020) and were the most 

efficacious compounds in a mouse model, but none of them will be effective once 

the McHV-1 has infiltrated the CNS (Brush et al., 2014). In comparison to published 

data obtained with a focus reduction test, the IC50 values determined with reporter 
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virus in the present study were slightly lower. This discrepancy could be explained 

by the difference in measuring methods (late gene expression vs. plaque formation) 

and virus dissemination modes (cell free spread vs. restricted, cell-associated 

spread). Finally, antibody neutralization of PaHV-2 was also assessed using the 

reporter virus. Sera from adult baboons readily neutralized the virus while sera from 

infant animals did not, suggesting that it could be utilized as an alternative assay to 

neutralize the presence of McHV-1 in macaques for the antibody cross-reactivity 

between PaHV-2 and McHV-1.     

The recombinant system described here will likely be useful in the study of 

the genetic determinants of simplexvirus neuropathogenicity. For HSV-1 and HSV-

2 neuroinvasion, the RL1 gene, encoding the protein ICP34.5, is generally 

considered to be the most important factor (Davis et al., 2014; Roizman & Whitley, 

2013). However, RL1 is only conserved in simplexviruses from humans or 

chimpanzees (Luebcke et al., 2006), while an ICP34.5 homolog is lacking in 

simplexviruses from old world monkeys (Perelygina et al., 2003; Tyler et al., 2005; 

Tyler & Severini, 2006). It is at present unknown whether its role was replaced by 

another gene. Studies of PaHV-2 strains differing in neurovirulence revealed that 

the viral ribonucleotide reductase large subunit (UL39) is a determinant of PaHV-2 

neurovirulence in mice (Black et al., 2014). The UL39 protein is important for viral 

replication in non-dividing cells, such as neurons. In addition, it has been implicated 

that this gene plays an important role in anti-apoptotic function in infected cells, as 

well as in the regulation of the interferon response (Black et al., 2014; Dufour et al., 

2011; Guo et al., 2015; Lembo & Brune, 2009). So far, deeper molecular 

investigation has not been undertaken to elucidate the particular function of UL39 in 

promoting PaHV-2 neurovirulence. Such research will be possible thanks to the 
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recombinant PaHV2 system developed here, which will contribute to the 

comparative analysis of primate simplex virus neuropathogenesis. 
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8. Appendix 

List of abbreviations 

A549 cell line derived from human lung carcinoma epithelial cell 

ADH1  Alcohol dehydrogenase class 1 

ARS Autonomously replicating sequence 

ATG Amino acid which codes for methionine 

α-TIF alpha trans-inducing protein 

BAC Bacterial artificial chromosomes 

BSL Biosafety level 

BV B virus 

Cas9 protein which plays a vital role in the immunological defense of certain 

bacteria against DANN viruses and plasmids 

CDC  The Center for Disease Control and Prevention 

CeHV-2 Cercopithecine alphehrepesvirus type 2 

CEN6 Chromosome VI centromere in yeast 

CHEF Contour-clamped Homogenous Electric Field 

cm chloramphenicol 

cmv citomegalovirus 

Cosmid Plasmid with cos-site 

DH10B  Competent bacterial cells of Eschericia coli 

DNA Deoxy-ribonucleic acid 

dsDNA double stranded Deoxyribo Nucleic Acid 

E Early protein 

EBV Epstein barr virus 

EGFP Enhanced Green Fluorescent Protein 

EHV Equine herpesvirus 

GaHV-2 Gallid alphaherpesvirus 2 

G+C Guanin + Cytosine  

Gluc Gaussia luciferase 

Gly Glycine 

gE Glycoprotein E 

GFP Green fluorescence protein 
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GS1783 derivative bacterial cells of DH10B that express lambda Red recombination 

enzymes in temperature-inducible fashion and the I-SceI restriction enzyme 

HCMV Human cytomegalovirus 

HeLa immortal cell line which is derived from cervical cancer cells 

HEK293T Human Embryonic Kidney 293 cells 

HHV-1 Human alphaherpesvirus type 1 

HHV-2 Human alphaherpesvirus type 2 

HHV-3 Human alphaherpesvirus type 3 

HHV-4 human gammaherpesvirus  type 4 

HHV-5 human betaherpesvirus 5 

HHV-6A human betaherpesvirus 6A 

HHV-6B human betaherpesvirus 6B 

HHV-7 human betaherpesvirus 7 

HHV-8 human betaherpesvirus 8 

HIS3 gene in Saccharomyces cerevisiae, encodes a protein which catalyses the 

six step in histidine biosynthesis 

HTS high troughput sequencing 

Huh7.5 Human hepatoma derived human liver cell line 

HSE Herpes simplex enchepalitis 

HSV-1 Herpes simplex virus type 1 

HSV-2 Herpes simplex virus type 2 

HVP2 Herpesvirus papio type 2 

HVT Herpesvirus Turkey 

IC50 the half maximal inhibitory concentration  

ICP Infected cell protein  

ICTV International Committee on Taxonomy of Virus 

IE Immediate early protein 

IR Inverted repeat 

iRFP670 constitutively fluorescent near ir fluorescent protein which is derived from 

Rhodopseudomonas palustris CGA009 

IRL Inverted repeat long 

Kb Kilo base 

KSHV Kaposi’s sarcoma-associated herpesvirus 
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L Late  protein 

LLC-MK2 Rhesus Macaca Kidney Epithelial cells 

loxP a site on the bacteriophage P1 consisting of 34 bp 

MaMuk8639 Rhesus Macaca mulatta Kidney cells 

mCherry constitutive red fluorescent derived from DsRed of Discosoma sea 

anemones 

McHV-1 Macaccine alphaherpesvirus type 1 

McHV-2 Macaccine alphaherpesvirus type 2 

McHV-3 Macaccine alphaherpesvirus type 3 

MCS Multiple Cloning Sites 

MDV Marek’s disease virus 

mRNA Messanger-RNA  

nm nano meter 

NHP Non-human primates 

NIH National Institute of Health 

ND-10 nuclear domain-10 

ORF Open Reading Frame 

oriV origin of replication 

pac1 an A rich region flanked by poly C  

pac2 CGCGGCG near an A-rich region 

PaHV-3 Panine alphaherpesvirus type 3  

PaHVP-2 Papiine alphaherpesvirus type 2 

parA/B Partitioning protein A/B 

PCR Polymerase Chain Reaction 

PKR Protein kinase R 

PMC103 improved strain of E.coli 

PRV Pseudo rabies virus 

RL1 gene codes for neurovirulence factor ICP34.5 

Rec-A Recombination A 

repE replication initiation protein 

RNA Ribonucelid acid 

SA-8 Simian Agent 8 

Ser Serine 
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sMAGI rhesus macaque epithelial cell line engineered to express human CD4 

sopA-B-C essential protein in plasmid partitioning during cell division  

SSRs Short sequence repeats 

TAR Transformation associated recombination 

TeloRF Telomerase-immortalized rhesus fibroblasts cell line 

TK Thymidine kinase  

trfA a gene encodes the essential replication initiation protein oriV 

TRL Tandem repeat   

UL Unique long 

URA3 a marker gene on chromosome V in Saccharomyces cerevisiae 

US Unique short 

VHS Virion host shutoff 

VNTRs Variable number of tandem repeats 

VP16 Virion protein 16 

VZV Varicella-zoster virus 

WHO World health organization 

YACs Yeast artificial chromosomes 
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