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Abstract

Turbulent thermal convection is ubiquitous in geophysical, astrophysical, and in-
dustrial applications. In the present work, various phenomena in the convective
paradigm systems of horizontal convection and Rayleigh-Bénard convection are stud-
ied, with emphasis on the influence of thermal boundary conditions, scaling laws of
heat transport and characterization of large-scale flow structures. The problems are
studied theoretically and by means of direct numerical methods.
In chapter 2, the main computational methods are presented with focus on the im-

plementation details of computational codes and numerical solvers for linear stability
analysis. A finite-volume code for direct numerical simulations has been improved
towards massively parallel simulations and a parallel pseudospectral code has been
developed and tested.
In chapter 3, horizontal convection is investigated for various Rayleigh numbers

Ra and Prandtl numbers Pr . Several Nusselt number Nu vs. Ra scaling transitions
are identified, validating the theoretical scaling model (Shishkina et al., 2016). Ex-
amining the global flow structures, we show that the onset of time dependence in
horizontal convection is triggered either by oscillations (smaller Pr) or by detaching
plumes (larger Pr). We analyze their dependence on Ra and Pr , which is consistent
with dimensional-analysis based estimates of their onset.
In chapter 4, the formation of mean zonal flows in convective systems with travel-

ing thermal waves is explored. Excellent agreement of the dependence of zonal flow
strength on thermal wave propagation speed between the theoretical model and the
fully nonlinear simulations is found for small Ra, while for larger Ra it is overesti-
mated by the model due to nonlinear effects. An important result of this chapter
is the reversal of zonal flows from purely retrograde for small Ra to predominantly
prograde for large Ra. Stability analysis of convection rolls indicates that the tilted
cell instability may play a key role in the formation of zonal flows in convection-
dominated flows, even in the presence of traveling thermal waves.
In chapter 5 we study different thermal sidewall boundary conditions in Rayleigh–

Bénard convection from the onset of convection to the turbulent regime, with the
main goal of mimicking imperfectly adiabatic sidewalls in experiments. Linear side-
wall temperatures lead to a premature collapse of the single roll state, while constant
sidewall temperatures lead to enhanced single roll stability. Enlargement of corner
rolls is identified as the main collapse mechanism, and two distinct corner roll growth
rate regimes are obtained. In the intermediate Ra range, vertically stacked double
rolls (or double toroidal structures in cylindrical systems) are shown to predominate
for linear and adiabatic sidewalls. The different flow structures leave their imprint on
the global heat transport, however, at larger Ra heat transport and flow dynamics
become increasingly alike for different sidewall boundary conditions, indicating a low
sensitivity of very large Ra experiments with respect to spurious sidewall heat fluxes.
In chapter 6 we address the strong spatial inhomogeneity of Rayleigh–Bénard

convection arising from the presence of turbulent superstructures by decomposing
the flow into large-scale plume ejecting and impacting zones. Using a conditional
averaging algorithm based on pattern matching, we show the existence of a crossover
in the wall heat transport from impacting-dominated to ejecting-dominated at Ra ≈
3 × 1011 in a two-dimensional laterally periodic configuration with Pr = 1 and
Γ = 2. The heat transport increase in the ejecting region arises from the development
of a turbulent mixing zone due to the emission of thermal plumes. This mixing
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zone reaches its peak heat transport efficiency at about five thermal boundary layer
thicknesses and expands vertically and laterally with increasing Ra, becoming more
dominant for the total heat transfer.

ii



Contents

Abstract i

1 Introduction 1
1.1 Natural convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Horizontal convection . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Travelling thermal waves . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Turbulent convection . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Numerical methods 11
2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Direct numerical simulations . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Finite volume method . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Pseudospectral method . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Collocation method . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Galerkin method . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Classical and symmetrical horizontal convection: detaching plumes and
oscillations 31
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Theoretical background . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Global heat and momentum transport . . . . . . . . . . . . . 34
3.3.2 Dynamics: plumes and oscillations . . . . . . . . . . . . . . . 35
3.3.3 Dissipation rates . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Generation of zonal flows in convective systems by travelling thermal
waves 43
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Direct numerical simulations . . . . . . . . . . . . . . . . . . 45
4.2.2 Theoretical model . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Two-dimensional convective system . . . . . . . . . . . . . . . . . . . 47
4.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Three-dimensional convective systems . . . . . . . . . . . . . . . . . 54
4.4.1 Numerical set-up: cylindrical RBC . . . . . . . . . . . . . . . 55
4.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.3 Example: Atmospheric boundary layer . . . . . . . . . . . . . 60

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.A Theory for diffusion dominated flows . . . . . . . . . . . . . . . . . . 62

iii



Contents

4.B Heat and momentum transport . . . . . . . . . . . . . . . . . . . . . 64
4.C Linear stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Flow states and heat transport in Rayleigh–Bénard convection with
different sidewall boundary conditions 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Numerical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . 69
5.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.3 Adjoint descent method . . . . . . . . . . . . . . . . . . . . . 71

5.3 Steady-state analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.1 Onset of convection . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.2 Single-roll (states S1

A, S1
L, S1

C) . . . . . . . . . . . . . . . . . . 75
5.3.3 Double-roll (S2

A, S2
L) . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Direct numerical simulations . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.1 Vertical temperature profiles . . . . . . . . . . . . . . . . . . 83
5.4.2 Vertical sidewall heat flux profiles . . . . . . . . . . . . . . . . 84
5.4.3 Mode analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.4 Heat transport . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4.5 Prandtl number dependence . . . . . . . . . . . . . . . . . . . 89

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.A Heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.B Thermal dissipation rate . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.C Adjoint descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.C.1 Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.C.2 Choice of the norm . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Crossover of the relative heat transport contributions of plume ejecting
and impacting zones in turbulent Rayleigh–Bénard convection 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Conditional averaging . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conclusions and outlook 107

Bibliography 111

iv



1 Introduction

1.1 Natural convection

Thermal convection is of utmost importance to meteorology, geophysics, astrophysics,
industrial processes. It appears in planetary and stellar interiors (Spiegel, 1971; Busse
et al., 1998; Hansen et al., 2004), in the Earth’s mantle (Getling, 1998; Schubert et al.,
2001) and it manages the Earth on a global scale: clouds regulate the temperature
through their impact on the energy cycle (Emanuel, 1994) and large-scale ocean cir-
culations retrieve nutrient rich water from the deep sea to the surface (Marshall &
Schott, 1999) and act as the largest sink of anthropogenic carbon dioxide (DeVries
et al., 2017). Convection is not only deeply rooted in the fundamentals of life, its
study is also captivating. Volcanic eruptions reveal some of the most magnificent
structures one can witness: from the gigantic umbrella-shaped cloud that raises up
tens of kilometres into the sky (Textor et al., 2006) down to the very small turbulent
eddies with microscales as small as a hundreds of micrometers. As fluid dynami-
cists our goal is to shine light on the choreography of these phenomena. We look
for patterns, categorize structures and try to distill universal laws from the intrinsic
randomness of turbulence. All of which emerges from three seemingly simple laws:
the conservation of mass, momentum and energy. This endeavour has rewarded us
with remarkable discoveries whose impact exceeds the boundaries of fluid mechanics
through its generality. However, many riddles remain. And our understanding of
these processes is vital. Without a firm grasp we will fail to recognize the implica-
tions of our behavior on nature or to make adequate long-term predictions about the
evolution of the climate.
Before we dive into the specific problems that are addressed within this thesis, let

us first elucidate on the notion of convection in general. Natural convection refers
to a type of flow that is driven by density variations. On Earth, the most common
variants of convection are temperature and salinity induced. The equatorial girdling
wind belts, i.e. the Hadley cells, are a textbook example. The Hadley cells emanate
from the intensely heated equatorial region, which causes warm air to rise, then move
poleward and sink at about 30◦ north/south latitude to flow back to the equator.
This tropical atmospheric circulation yields important climatic effects, including the
generation of different precipitation zones and the redistribution of thermal energy
in the atmosphere. The discovery of the north-south winds of the Hadley cells is
deeply intertwined with another associated phenomenon, namely the east-to-west
prevailing trade winds, as the next example demonstrates. On his voyage to the
New World, Columbus found that once they sailed south of 30◦ north latitude, the
variable European winds ceased and were replaced by steadier easterly winds that
greatly aided their westward journey (Emanuel, 2005). Seeking for an explanation,
the English physicist Edmond Halley attributed the winds to the diurnal cycle of
solar heating as a consequence of the Earth’s rotation about its axis (Halley, 1687).
Although there is some validity to Halley’s theory, as we will discuss in section 1.3,
today we know that the effect from the diurnal cycle is far too weak to produce
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1 Introduction

(a) (b) (c)

Conductive Laminar Turbulent

Figure 1.1: Flow phenomenology of Rayleigh–Bénard convection in a cylindrical cell.
Shown is the volume rendered temperature field of numerical simulations
at different Rayleigh numbers.

the excessive easterly winds that blow with 5-10 metres per second. The correct
mechanism was found later by George Hadley (1735). Hadley devised the existence
of the aforementioned equatorial wind belts, i.e. the Hadley cells, and conjectured
that their equatorial blowing winds must be redirected by the Coriolis force, thus
producing the prevailing easterly winds that Columbus experienced.
While these examples illustrate the rich history of the studies of natural convection,

the corner stone of contemporary science on convection was laid by the foundational
experiments of Henry Bénard (1900) and the theoretical work of Lord Rayleigh (1916)
who first demonstrated the onset of thermal instability in a fluid (Chandrasekhar,
1961). The following description leans on the work of Rayleigh; Bénard originally
used a slightly different experimental setup1, but obtained qualitatively similar re-
sults. Consider a thin layer of liquid, e.g., water, subjected to a vertical temperature
gradient by heating the lower surface to a temperature Tu + ∆ and maintaining the
upper surface at a temperature Tu. If the temperature difference ∆ is sufficiently
small (or negative), the fluid is at rest and heat is transported solely by conduction,
i.e. molecular transport. This scenario is illustrated in figure 1.1 (a). However, if the
temperature difference ∆ surpasses a critical value, the buoyancy force eventually
overcomes the adverse viscous forces, the system becomes convectively unstable and
convection cells appear (figure 1.1 b). In fact, Lord Rayleigh (1916) has theoretically
shown that convection would occur if the quantity

Ra ≡ αg∆H3

νκ
, (1.1)

now called the Rayleigh number, exceeds a critical value. Here g is the gravitational
acceleration, H the layer height, α the volume expansion coefficient, ν the kine-
matic viscosity and κ the thermal diffusivity. In honor to Bénard and Rayleigh, this
convection type is now known as Rayleigh–Bénard convection (RBC) (Siggia, 1994;
Bodenschatz et al., 2000; Ahlers et al., 2009b; Lohse & Xia, 2010; Manneville, 2006).
Astonishingly, the critical Rayleigh number above which convection sets is inde-

1Bénard (1900) studied convection in a liquid layer with a free upper surface in contact with air,
where effects of surface tension come into play (Bénard-Marangoni convection).
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1.2 Horizontal convection

pendent of the type of liquid or gas, characterized by the Prandtl number Pr ≡ ν/κ,
and only depends on the boundary conditions (see chapter 5) and the aspect ratio
Γ ≡ L/H of the setup (Shishkina, 2021). The convection rolls initially grow exponen-
tially until they reach saturatation due to non-linear interactions. The newly formed
steady convection cells exhibit a wide variety of different patterns, such as ideal
straight rolls, hexagons (Bénard, 1900) or spirals (Morris et al., 1993; Bodenschatz
et al., 2000). Although these cells are initially stable, they will undergo further
transitions on their way to chaos. Great progress has been made in this area by
analyzing the stability of the ideal straight roll solution. This effort culminated in
the "Busse Baloon", a representation of the stability boundaries in the Ra - Pr - α
parameter space (Busse, 1978), where α denotes a wavenumber. It was found that
secondary instabilities, apart from the onset of convection, depend strongly on the
Prandtl number. Non-oscillatory instabilities occur predominantly for large Pr fluids
(Busse, 1967; Busse & Whitehead, 1971; Busse, 1978), while fluids with low Pr such
as gases or liquid metals show oscillatory instabilities (Clever & Busse, 1974).
RBC is also predestined to study the route to chaos. In an attempt to understand

the dynamical behavior of deterministic systems, Lorenz (1963) resorted to a low-
dimensional representation of RBC derived by Saltzman (1962). He found that for
certain parameters of his model the flow developed extremely irregularly and almost
unexpectedly exhibited a strong dependence on the initial conditions, a phenomenon
that coined the term "butterfly effect" in chaos theory, later immortalised by Hol-
lywood. It reflects that small perturbations in the initial conditions can have an
immense impact on the long-term evolution of a system. Lorenz’s work became one
of the most influential studies on complex systems to date, initiating many of the
modern approaches in dynamical system theory.
Thanks to the advent of better technologies, we are today able to delve deeper into

the highly turbulent nature of high Ra convection. This is in so far significant as this
is the regime where we will acquire the most lasting insights into geophysical and
astrophysical systems, which act on scales that currently far surpass our experimental
or numerical capabilities. Two of the most daunting questions in this realm, the
characterization of turbulent superstructures and the existence of an ultimate regime,
are discussed more thoroughly in section 1.4 and in the chapters 5 and 6.
In a nutshell, we have come from the onset of thermal instability in the early 20th

century, through pattern formation and secondary instabilities in the second half of
the 20th century, to highly turbulent systems in modern times. The multitude of
phenomena behind a simple system like RBC accentuates that complexity is inherent
in the equations of fluid dynamics themselves. This explains why we can still learn
much about the nature of convection by studying its paradigm systems. In the
following, we will introduce more thoroughly the main topics of this thesis and give
a brief guideline.

1.2 Horizontal convection

Rayleigh–Bénard convection may be the most thoroughly studied system of con-
vection, but it does not always constitute the best representation for a particular
practical scenario. Before discussing this in the context of oceanic circulation, let us
first consider an alternate example, namely the atmospheric boundary layer (Kaimal
et al., 1976). The atmospheric boundary layer is the lowest part of the atmosphere
that is in contact with the Earth’s surface and above which lies the free atmosphere.

3



1 Introduction

Figure 1.2: Schematic map of the Atlantic meridional overturning circulation in the
Nordic Seas with surface currents (solid) and deep currents (dashed).
Color represents the water temperature. Source: Curry & Mauritzen
(2005).

The lower surface temperature can be well approximated by RBC boundary con-
ditions, using a constant flux instead of a constant temperature. In contrast, the
upper free atmospheric surface of the convective boundary layer deviates from the
ideal setup and studies have shown that the cooled upper condition of RBC leads
to substantially different large-scale structures compared to the convective bound-
ary layer, while a modified system with adiabatic upper conditions, i.e., preventing
heat from escaping through the top, exhibits a much better resemblance of statistical
properties (Fodor et al., 2019).
A similar reasoning applies to the oceanic basin and the meridional overturning

circulation. On top, however, the large spatial extent of the problem additionally
refutes the assumption that the temperature is uniformly distributed over the heated
area (see figure 1.2). A more suitable model was proposed by Stommel (1962) and
experimentally investigated by Rossby (1965). It arose from the dissatisfaction that
contemporary ocean models often showed nearly equal sizes of sinking and rising
regions, while "substantially all the deep and bottom water in the world ocean, or
more than half of all the ocean’s mass, comes from two tiny areas - off Greenland,
and in the Weddell Sea" (Stommel, 1962). Horizontal convection (HC) accounts for
the main thermal characteristics of the ocean, i.e., it is heated non-uniformly along a
horizontal surface, mimicking the heating and cooling of the ocean surface that is in
contact with the atmosphere, while all other boundaries are kept adiabatic. In this
system, all heat enters and leaves through one surface and at equilibrium there is no
net vertical heat transport. The asymmetry between sinking and rising regions arises
naturally from the relative heat transport efficiencies of convection and conduction.
Essentially, the ocean is effectively cooled by convection and inefficiently heated
predominantly by conduction, so that downwelling in the North Atlantic occurs over
a much smaller area than upwelling in the rest of the ocean.
HC has since been subject to numerous experimental (Stern, 1960; Mullarney et al.,

2004; Wang & Huang, 2005) and numerical studies (Beardsley & Festa, 1972; Rossby,
1998; Paparella & Young, 2002; Mullarney et al., 2004; Gayen et al., 2014; Shishkina

4



1.3 Travelling thermal waves

& Wagner, 2016; Passaggia et al., 2017; Ramme & Hansen, 2019; Reiter & Shishkina,
2020). It has been studied in combination with other driving mechanism, e.g. rota-
tion (Hignett et al., 1981; Barkan et al., 2013; Gayen & Griffiths, 2022), wind driven
through shear stresses (Hazewinkel et al., 2012), tidal forces (Ding et al., 2022) and
driven by salinity (Pierce & Rhines, 1996). Wind driven forcing is generally the most
dynamic in the ocean (Rahmstorf, 2003). Lunar tidal forces and bottom topogra-
phy can have a profound impact on the vertical mixing of the ocean, i.e. mixing
of dense deep water with lighter surface water (Wunsch, 2000). And thermally and
salinity driven currents sustain the global-scale meridional overturning circulation.
The studies in this thesis focus on thermally induced effects.
It is somewhat interesting to note that HC has always been surrounded by contro-

versies. The first controversy originates from the studies of Sandstrom (1908) who
conjectured, based on his experimental observations and on thermodynamical analo-
gies, that a heating and cooling on the same surface, i.e. on the same geo-potential
height, will not be able to sustain a thermally driven circulation. This theory almost
impeded the acceptance of HC to be of oceanographic significance, but has since
been debunked many times (Jeffreys, 1925; Rossby, 1965; Hughes & Griffiths, 2008;
Coman et al., 2006) and can be securely relegated to the stack of misconceptions.
Another controversy that has been raised by Paparella & Young (2002) is that HC is
not truly turbulent, since it violates the "zeroth" law of turbulence2 (Frisch, 1995).
This statement however is rather elusive. The problem lies within the leeway of the
definition of turbulence itself. Scotti & White (2011) suggests that the "zeroth" law
is too restrictive as a definition of turbulence, since even RBC - one of the models
of turbulence in general - defies this definition. Nevertheless, Paparella’s simulations
and numerous other works (Mullarney et al., 2004; Sheard & King, 2011; Gayen
et al., 2014; Shishkina et al., 2016; Passaggia et al., 2017; Reiter & Shishkina, 2020)
show irrefutable signs of local turbulence, starting in the vicinity of the thermally
unstable part of the cell and extending further inside the bulk as Ra is increased.
Though HC has gained popularity within the last two decades, the number of reli-

able numerical simulations covering a large range of parameters is still scarce. More
clarity is needed on the scaling of heat and momentum transport and the existence
of different scaling regimes. Rossby (1965) found that the global heat transport, ex-
pressed by the dimensionless Nusselt number Nu, universally scales as Nu ∼ Ra1/5,
independent of Pr , if the flow is laminar and determined by the boundary layers.
More regimes in Ra−Pr space arise, by considering a more elaborated analysis based
on the dissipation of kinetic energy and thermal variance (Shishkina et al., 2016),
leading to larger heat transport scalings at high Ra and a general Pr dependence,
which is consistent with the results obtained by numerical simulations (Shishkina
& Wagner, 2016; Ramme & Hansen, 2019; Reiter & Shishkina, 2020). Further, a
more thorough understanding concerning the flow structures of HC is desirable, in
particular the onset to a time-dependent flow and its parameter dependence. This
will be discussed in chapter 3, based on the work Reiter & Shishkina (2020).

1.3 Travelling thermal waves

In the geo- or astrophysical context, zonal flows signify prevailing easterly or westerly
winds that twine around planets and stars. Some of the most remarkable zonal

2The zeroth law states that the mean turbulent kinetic energy dissipation ε should be finite and
independent of the kinematic viscosity ν, if ν → 0 and other parameters are fixed.
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1 Introduction

(a) (b)

Figure 1.3: (a) Setup of the original moving flame problem. The flame rotates an-
ticlockwise with a constant frequency. This generates a counter-rotating
mean zonal flow in the center, in clockwise direction. (b) Current numer-
ical simulations, showing the temperature field.

structures are evident on the gas giants in our solar system, which consist of multiple
alternating bands of zonal winds flowing in different directions. Although these
structures have attracted much interest and research, much about them remains a
mystery (Kong et al., 2018). Zonal flows are generated either by the Coriolis force of
a thermally driven meridional flow, as we have seen in the case of the trade winds,
or they are produced by Reynolds stresses, i.e., the nonlinear transport of zonal
momentum by radial or vertical flows (Pedlosky, 1987). These (deviatoric) Reynolds
stress components generally arise from symmetry breaking. It is known, for instance,
that in a compressible fluid the expansion of rising fluid and the contraction of sinking
fluid, i.e., a broken vertical symmetry, can induce differential rotation on planets,
as shown by Glatzmaier & Gilman (1982), which would otherwise not occur in an
incompressible medium.
In chapter 4 of this thesis, we demonstrate the generation of zonal flows by travel-

ing thermal waves (Reiter et al., 2021c), another mechanism of symmetry breaking.
This topic arose after Halley (1687) incorrectly attributed the easterly trade winds
to the daily rotation of the Earth, whereupon Thomson (1892) alluded in a footnote
that it would be of great interest to investigate this mechanism by rotating a spirit
flame under a cylinder filled with gas or liquid (see figure 1.3). Fultz et al. (1959)
took up this appeal and surprisingly found that the fluid in the cylinder acquired
a mean rotation opposite to the rotation of the flame - somewhat reconciling for
Halley’s hypothesis. And although it is unlikely that this mechanism is essential for
the prevailing east-west winds on Earth, the subject attracted attention when Schu-
bert & Whitehead (1969) suggested that it might be important for the atmospheric
superrotation of Venus; a phenomenon in which the planet’s atmosphere spins much
faster than the planet itself. (Recent studies by Horinouchi et al. (2020) indicate that
the angular momentum necessary for superrotation could be generated by thermal
tidal waves driven by temperature differences between the day and night sides of
Venus and favored by the overall slow rotation of Venus about its axis. In this case,
then, it is a standing wave rather than a traveling wave problem.3 Nevertheless,
the exact mechanism is still under investigation, including the nature of the relevant
hydrodynamic instabilities. On tidally generated zonal winds, see also the studies

3The author is aware that the discussion of the superrotation of Venus remains superficial at this
point. This area is not the author’s field of expertise and serves primarily to open up to the
reader an area of research that may be unfamiliar to him.
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1.4 Turbulent convection

Tilgner (2007) and Morize et al. (2010).)
The appeal of the moving flame or traveling thermal wave problem also lies in its

simplicity and analytical tractability. Stern (1959) has shown that a mean counter-
directed zonal flow is sustained by the presence of Reynolds stresses. To aid un-
derstanding, let us attempt a qualitative explanation for the occurrence of counter-
directed (retrograde) zonal flows from travelling thermal waves; for simplicity, in a
two-dimensional box. Imagine two symmetrical convection cells induced by an ini-
tially stationary flame located underneath the system. Let us now assume that the
flame starts to move, e.g. to the right, where it heats one of the convection cells more
than the other. This lifts up the streamline at the bottom that is directed towards
the flame, i.e. against the flame motion, causing a correlation, i.e. a Reynolds stress,
between the upward transport (raising of the streamline) and the horizontal trans-
port against the flame motion, which sustains a mean retrograde zonal flow. Davey
(1967) showed analytically that the zonal flow strength increases linearly with the
speed of the travelling wave for slow waves, but decreases rapidly with the speed of
the travelling wave for fast waves. Busse (1972), Whitehead (1972), Young et al.
(1972) and Hinch & Schubert (1971) further elaborated Davey’s analysis and found,
for example, that weakly nonlinear effects occurring at larger temperature amplitudes
(hotter spirit flame) likely inhibit the zonal flow strength.
What we have omitted so far is that even classical Rayleigh–Bénard exhibits zonal

flows in the form of a mean shear flow (Goluskin, 2013; Wang et al., 2020a; Winch-
ester et al., 2021) in periodic domains without an imposed thermal wave. This is
caused by the tilted cell instability. When convection rolls are tilted initially by a
small amount, they can generate a mean shear flow, which in turn enhances their
tilt (Busse, 1983; Hartlep et al., 2005). This positive feedback loop continues until
saturation. Thompson (1970) argued that the moving flame, in the travelling wave
problem, is only relevant at the beginning of the process to initiate an initial shear
flow, after which the tilted cell instability takes over. In chapter 4 we discuss both
mechanisms of zonal flow generation. We provide evidence for the mechanism de-
scribed by Stern (1959) and Davey (1967), but show that the tilted the cell instability
could play a role in larger Ra regimes. In this context, we discuss the prevalence
of counter-rotating zonal flows for small thermal wave amplitudes, as well as the
emergence of prograde zonal flows, i.e., waves travelling in the same direction as the
thermal wave, for larger thermal wave amplitudes (Reiter et al., 2021c).

1.4 Turbulent convection

Turbulence is the most common state of convection in nature. It arises when Ra
becomes large enough, for example at about Ra > 107 for Pr ≈ 1 in RBC (Castaing
et al., 1989), however, many geo- and astrophysical systems operate on scales up to
Ra & 1020 (Sreenivasan & Donnelly, 2001). Figure 1.4 gives an impression of an
exemplary flow at Ra = 109, which is already strongly turbulent, but still far below
natural conditions of astro- and geophysical systems. The wall-bounded flow in this
regime consists of small-scale turbulent eddies, large-scale structures and boundary
layers.
A central debate in convection revolves around the state of the boundary layers.

It is anticipated that the laminar boundary layers associated with the large-scale
structures will be destabilized by shear instabilities for sufficiently large Ra. On this
basis, Kraichnan (1962) postulated that the emerging small-scale turbulence at this
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1 Introduction

Figure 1.4: Temperature field of highly turbulent three-dimensional turbulent
Rayleigh–Bénard convection with periodic sidewalls (Ra = 109, Pr =
0.71, Γ = 2).

point affects the local heat transport to such an extend that the asymptotic heat
transport scaling increases up to Nu ∼ Ra1/2 (up to logarithmic corrections), i.e.,
the "ultimate" scaling regime4. Laminar boundary layers, on the other hand, imply
the "classical" scaling with a limited heat transport efficiency Nu ∼ Ra1/3 (Malkus,
1954). Thus, there is no universal scaling of Nu with Ra (Grossmann & Lohse,
2000, 2001, 2002; Stevens et al., 2013). The occurrence of shear-induced instabilities
depends largely on the Reynolds number, from which Grossmann & Lohse (2002)
estimate the onset of the ultimate regime to be about 1014 ≤ Ra ≤ 1015 for Pr = 1
and Γ = 1.
Intensive research activities are now devoted to the study of the existence of the

ultimate regime using experiments (Chavanne et al., 1997; Niemela et al., 2000;
Chavanne et al., 2001; Ahlers et al., 2009a, 2012; He et al., 2012b,a; Urban et al.,
2014; Roche, 2020), numerical simulations (He et al., 2020; Zhu et al., 2018a, 2019b;
Stevens et al., 2020), and upper bound analysis (Howard, 1963; Doering & Con-
stantin, 1996; Kerswell, 2002; Whitehead & Doering, 2011; Wen et al., 2015; Tilgner,
2019). However, experiments in this extremely high Ra regime are notoriously diffi-
cult and statistically reliable three dimensional numerical studies still too expensive.
To complicate matters, the onset to the ultimate regime depends on the cell geom-
etry (He et al., 2020; Shishkina, 2021; Ahlers et al., 2022) and upper bound studies
suggest a profound difference between no-slip (Howard, 1963; Doering & Constantin,
1996; Kerswell, 2002) and free-slip horizontal walls (Whitehead & Doering, 2011;
Wen et al., 2015).

Thermal sidewall boundary conditions

Part of the exploration of the ultimate regime is to gain more confidence in experi-
mental data. In chapter 5, we examine the effects of imperfectly insulated/adiabatic
sidewalls in Rayleigh–Bénard vessels. Spurious heat flows at the sidewalls are a major

4By "ultimate" it is understood that there are no other different scaling regimes for Ra → ∞.
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difficulty in experiments, which can lead to significant overestimation of heat trans-
port measurements and underestimation of Nusselt number scaling (Ahlers, 2000).
Previous studies have considered heat conduction effects in the solid sidewall, sug-

gesting that global heat transport differences compared to the ideal setup in the low
to mid Ra range are due to changes in global flow structures (Verzicco, 2002; Stevens
et al., 2014; Wan et al., 2019), while higher Ra show lower sensitivity. This suggests
that the sidewall temperature boundary layer has a progressively less controlling
influence on the flow structures. However, for smaller Ra, different sidewalls yield
remarkably different flow structures, such as double rolls and double-toroidal rolls,
which are associated with a significant change in heat and momentum transport
properties. In our work, we investigate the entire path from the onset of convection
to turbulence using direct numerical simulations for different sidewalls and different
Pr . Furthermore, we shed light on the importance of corner rolls for flow transitions
in laterally bounded RBC by evaluating steady-state solutions of different flow states
which reveal different corner roll growth regimes (Reiter et al., 2021b).

Turbulent superstructures

Convection flows show a surprising predominance of large-scale order, so-called tur-
bulent superstructures, even for very large Ra. These superstructures are reminiscent
of patterns near the onset of convection and have been described in numerous studies
(Hartlep et al., 2003, 2005; Emran & Schumacher, 2015; Stevens et al., 2018; Zhu
et al., 2018a; Pandey et al., 2018). Their size has been shown to increase with respect
to Ra (Krug et al., 2020), which may originate from interactions with the small-scale
turbulence causing enhanced turbulent diffusion (Ibbeken et al., 2019).
An important implication of the presence of superstructures is that convection will

persist to be highly spatially inhomogeneous. It can even be argued that boundary
layers become turbulent earlier in some regions than in others (Zhu et al., 2018a). In
this case, it is instructive to decompose the flow into different regions. A good method
is to distinguish between regions on the plates where the superstructure plumes
detach (ejecting region) and regions where the plumes impinge on the other plate
(impacting region). In two-dimensional RBC, Zhu et al. (2018a) obtains different
scaling laws for the two regions, i.e., Nu loc ∼ Ra0.28 in the plume impacting region
and Nu loc ∼ Ra0.38 in the plume ejecting region. Furthermore, Zhu et al. report
that the total heat transport on the wall for large Ra ≥ 1011 is dominated by plume
ejection. Contrarily, for Ra up to 109 and in three-dimensional RBC, Blass et al.
(2021) demonstrate that the plume impacting regions contribute more to the overall
heat transport than the ejecting regions. In chapter 6, we extend the parameter range
of Zhu’s two-dimensional analysis and present an improved conditional averaging
method. Our analysis reconciles the two findings and reveals a crossover of impacting
dominated to ejecting dominated heat transport (Reiter et al., 2021a).

1.5 Thesis outline

The structure of this thesis is as follows. In chapter 2, the governing equations and
computational methods are introduced along with implementation details. This is
followed by four chapters presenting the main research studies based on published
works.
Chapter 3 reports heat and momentum transport scaling and global flow structure
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transitions in horizontal convection (Reiter & Shishkina, 2020). Chapter 4 examines
the generation of mean zonal flows by traveling thermal waves in RBC, focusing on
the dependence of zonal flow strength on thermal wave speed and the occurrence of
the tilted cell instability (Reiter et al., 2021c). Chapter 5 explores the emergence of
different flow structures, the importance of corner rolls and the global heat transport
in RBC with different thermal sidewall boundary conditions from the onset of con-
vection to the turbulent regime (Reiter et al., 2021b). Finally, chapter 6 addresses
the role of plume impacting and plume ejecting regions in two-dimensional RBC on
the heat transport up to very large Ra (Reiter et al., 2021a).
The thesis concludes with a summary of the main findings together with an outlook

on possible further research directions for each project.
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2 Numerical methods

The scope of this section is to introduce the governing equations and present nu-
merical methods for solving the underlying Navier–Stokes equations and the linear
stability problem. Finite volume and spectral methods are discussed with a focus
on practical implementation; details are left to the given literature references. Most
tools developed as part of this work are publicly available and are linked throughout
the following explanations.

2.1 Governing equations

The governing equations for an incompressible, viscous buoyancy-driven flow in the
Oberbeck–Boussinessq approximation can be described by the conservation of mass,
conservation of momentum and conservation of energy for the velocity u, the tem-
perature T and the pressure p:

∂tu + u · ∇u +∇p = ν∇2u + αgTez, (2.1a)
∂tT + u · ∇T = κ∇2T, (2.1b)

∇ · u = 0, (2.1c)

where ez is the unit vector that points upwards. As explained in the introduc-
tion, these equations yield the three independent non-dimensional parameters, the
Rayleigh number Ra, the Prandtl number Pr and the aspect ratio Γ:

Ra ≡ αg∆H3

νκ
, Pr ≡ ν

κ
, Γ ≡ H

L
. (2.2)

The three input parameters reflect the strength of thermal forcing (Ra), the material
properties (Pr) and the geometric confinement (Γ).

2.2 Direct numerical simulations

Direct numerical simulation (DNS) is a method to computationally solve the un-
steady Navier-Stokes equations (2.1). It differs from other computational methods
in fluid mechanics in that small-scale turbulent fluctuations are resolved numerically
in space and time and are not represented by turbulence models. Two different meth-
ods were used in this thesis, a preexisting finite volume code which was substantially
advanced in the context of this work and a pseudospectral code which was developed
as part of this thesis.

2.2.1 Finite volume method

The finite volume ansatz (LeVeque, 2002) is particularly elegant when a partial differ-
ential equation can be formulated as a conservative law. In this case, the divergence
terms can be expressed as surface integrals over a small finite volume.
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Let us consider the general conservative law

∂u

∂t
+∇ · f(u) = 0, (2.3)

where u represents the flow state vector and f denotes the surfaces fluxes associated
with convection or diffusion. We can divide the entire domain into small finite volume
cells and average (2.3) over each cell volume Vi, i.e.

∫

Vi

∂u

∂t
dV +

∫

Vi

∇ · f(u)dV = 0. (2.4)

Defining the volume average 〈u〉V = 1
∆Vi

∫
Vi

udV and using the divergence theorem,
we obtain the finite volume representation

∂〈u〉V
∂t

+
1

∆Vi

∫

Si

f(u) · ndS = 0, (2.5)

where Si denotes the surface area of the finite volume element. Thus, instead of
solving u at a particular location, as in a finite difference scheme, the finite vol-
ume method approximates the solution as volume-averaged quantities. In diffusion-
convection problems, the surface flux f(u) is generally composed of functions de-
pending on u and its derivative u′, so we need to find the relationship between the
volume-averaged values 〈u〉V and the values given on the surface 〈u〉S to calculate the
fluxes and update the solution. In the following, we assume that our finite volume
mesh is structured and curvilinear and for simplicity we consider the one dimen-
sion case. For a n-th order finite volume scheme, we evaluate the surface values by
constructing a n-th order polynomial, i.e.

u(x) =
n−1∑

k=0

ckx
k, (2.6)

such that it exactly recovers the volume integrated values 〈u〉V in n neighbouring
intervalls [xi−1/2, xi+1/2], i.e.

〈u〉i =
1

∆xi

∫ xi+1/2

xi−1/2

n−1∑

k=0

ckx
kdx

=
1

∆xi

[
n−1∑

k=0

ck
k + 1

xk+1

]xi+1/2

xi−1/2

, (2.7)

with cell centers (volume averages) indexed as i and cell surfaces indexed as i± 1/2.
In the following we focus on the 4-th order central approximation scheme 1, as
implemented in goldfish (Kooij et al., 2018). Suppose we want to find the surface
values at 〈u〉i−1/2, then we evaluate the coefficient array ~c ≡ [c0 c1 c2 c3]T under
the condition eq. (2.7) for the finite volume cells ~u ≡ [〈u〉i−2 〈u〉i−1 〈u〉i 〈u〉i+1]T .
This can be written in matrix form as

~u = A~c, (2.8)

1Formally, the scheme is 4th order in space only for equidistant meshes, otherwise 3rd order.
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where the 4×4 matrix A is constructed from eq. (2.7), which resembles a Vandermonde-
matrix. We can solve (2.8) by inverting A which yields the solution of the coefficient
array ~c, i.e.

~c = A−1~u, (2.9)

from which we can obtain the surface value 〈u〉i−1/2 or the derivative 〈u′〉i−1/2 from
eq. (2.6) together with eq. (2.9). This yields

〈u〉i−1/2 =
[
1 x1

i−1/2 x2
i−1/2 x3

i−1/2

]
~c

=
[
1 x1

i−1/2 x2
i−1/2 x3

i−1/2

]
A−1~u

≡ ~IT~u, (2.10)

and

〈u′〉i−1/2 =
[
0 1 2xi−1/2 3x2

i−1/2

]
A−1~u

≡ ~DT~u, (2.11)

with the interpolation coefficient arrays ~I for the quantity u or ~D for its derivative
u′. These arrays can be stored and the values of u or u′ at the surface values can
be conveniently computed by the inner product of ~I or ~D with the volume averaged
values at the cell centers ~u.

Time stepping scheme

The Navier–Stokes equations (2.1) are integrated in time using the fractional-step
method. In the previous version of goldfish (Kooij et al., 2018), the leap-frog scheme
was implemented, which has now been extended with a third-order Runge–Kutta
method for more accurate time integration. We follow a similar strategy as described
in Verzicco & Orlandi (1996). The momentum equation for u ≡ (ux, uy, uz) is
advanced in time as follows

u∗ − ui

∆t
=

[
βiHi + λiHi−1 + αi

L∗ − Li

2
− αi∇pi

]
(2.12)

where the superscript i denotes the time-step level, αi, βi and γi indicate the coef-
ficients of the time integration scheme, u∗ is the auxiliary velocity field, H contains
the explicit non-linear convection terms and body forces and L contains the viscous
terms. The coefficients for the third-order Runge–Kutta scheme are taken as in Rai
& Moin (1991):

α1 =
8

15
, α2 =

2

15
, α3 =

1

3
,

β1 =
8

15
, β2 =

5

12
, β3 =

3

4
,

γ1 = 0, γ2 = −17

60
, γ3 = − 5

12
.
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The correct divergence free velocity field ui+1 is then computed from the auxiliary
velocity field u∗ and the scalar pseudo-pressure Φ:

ui+1 = u∗ −∆tΦ, (2.13)

where Φ is determined by the Poisson equation

∇2Φ =∇ · u∗. (2.14)

Ultimately, the new pressure is updated through

pi+1 = pi − 1

αi∆t
Φ− 1

2
ν∇ · u∗. (2.15)

The solution of eq. (2.12) for u∗ deserves further elaboration. Given the definition
of the viscous terms L ≡ ν∇2, we can rewrite (2.12) in terms of a Helmholtz problem:

(
I− ν α

i∆t

2
∇2

)

︸ ︷︷ ︸
Helmholtz operator

u∗ = ui + ∆t

[
βiHi + λiHi−1 + αi

Li

2
− αi∇pi

]

︸ ︷︷ ︸
RHS

. (2.16)

The exact solution of (2.16) is usually quite time consuming for multidimensional
systems, but can be avoided by using an approximate factorization technique such
as the alternating direction implicit (ADI) method (Douglas, 1962). The idea of
the ADI method is to approximate the multidimensional Helmholtz operator by a
product of one-dimensional operators (Wang et al., 2013). The approximation of the
Helmholtz operator in three dimensions is
(

I− ν α
i∆t

2
∇2

)
≈
(

I− ν α
i∆t

2
∇2
x

)(
I− ν α

i∆t

2
∇2
y

)(
I− ν α

i∆t

2
∇2
z

)
, (2.17)

which can be solved successively along x, y and z, i.e
(

I− ν α
i∆t

2
∇2
x

)
T1 = RHS,

(
I− ν α

i∆t

2
∇2
y

)
T2 = T1,

(
I− ν α

i∆t

2
∇2
z

)
u∗ = T2, (2.18)

where∇2
x,∇2

y,∇2
z are the discrete operators of the second order derivatives ∂xx, ∂yy,

∂zz. By approximating the derivatives with a centered second-order finite difference
scheme, the one-dimensional Helmholtz operators are well-conditioned tridiagonal
matrices that can be solved efficiently with the Thomas algorithm (Conte & Boor,
1972). The implicit treatment of the diffusion term leads to a massive improvement
in numerical stability for small to medium Ra flows. However, high Ra flows are
numerically constrained by the advection term, so the stability gain we get from
the implicit method decreases. This means that above a certain Rayleigh number,
a simple explicit method such as the forward Euler scheme or the leap frog Euler
scheme is again preferable. From experience, this already occurs for about Ra > 108.
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x

z y

x-pencil y-pencil z-pencil

Figure 2.1: 2D Pencil domain decomposition representing x-pencil, y-pencil and z-
pencil.

Parallelization and performance

Massively parallel simulations are essential for the study of turbulent flows. There-
fore, the direct numerical code goldfish was modified from a 1D slab decomposition
to a 2D pencil decomposition using the library 2DECOMP (Li & Laizet, 2010). A
sketch of the pencil decomposition for 9 processors is shown in figure 2.1. A 3D do-
main is partitioned into two dimensions, and each processor contains data contiguous
in one dimension. The library defines routines for transferring data from one pencil
distribution to another, which is necessary for solving the Helmholtz problem and
the pressure Poisson problem. As can be seen in figure 2.2 (a), goldfish exhibits very
good parallel scaling up to several thousand processors. Much work has also been
dedicated to optimize numerical performance and achieve a balanced distribution of
work without major bottlenecks. The result of these efforts can be seen in figure 2.2
(b), where we measured the performance of each routine. In this simulation, we cal-
culated the diffusion terms in the velocity and temperature equations explicitly. As
with many Navier-Stokes codes that use the velocity-pressure formulation, solving
the pressure Poisson problem takes most of the time. Goldfish uses a partial diag-
onalization method that requires matrix-matrix multiplications for problems with 2
or more non-periodic dimensions (see also section 2.2.2). However, the time required
for the pressure solver is now almost the same as the time required for updating the
velocity field, which involves only the fairly simple computation of explicit terms.
For a large number of processors, performance is limited by the Poisson solver and,
in particular, by MPI-all-to-all communication when transposing the pencils. How-
ever, the near-ideal scaling for up to 1500 processors on a 5123 cubic grid shows that
the code is now well suited for running large parallel simulations.

2.2.2 Pseudospectral method

Pseudospectral methods are another prominent class of methods to obtain numerical
solutions of differential equations (Orszag, 1969). In this method, the solution is
expanded in a set of special basis functions and solved for the expansion coefficients
(spectral space). A significant advantage of representing a solution with coefficients
in function space is the easy differentiability. Moreover, spectral methods generally
yield highly accurate solutions, more accurate than finite differences or finite volume
methods for the same number of grid points. To avoid the inefficient computation
of convolution terms, the nonlinear terms are computed in physical space and then
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Figure 2.2: (a) Total speedup of goldfish versus number of processors np on a 5123

cubic grid. The slab decomposed code from 2019 is limited to 256 pro-
cessors, while the new pencil distributed version can theoretically run
on 2562 processors for the given grid. (b) Time consumption of individ-
ual computational parts: total (black), pressure/poisson solver (yellow),
velocity solver (blue), temperature solver (red) and halo/ghost cell com-
munication (green). The update of the diffusion terms in the velocity
and temperature solver were performed explicitly in this case. The mea-
surements have been performed on the SuperMUC-NG cluster at Leibniz
Supercomputing Centre (www.lrz.de).

transformed into spectral space, hence the naming "pseudo".
Another incentive for developing a pseudospectral numerical solver as part of this

thesis was to explore the potential of the modern programming language Rust for
high-fidelity numerical simulations. Rust is a high-performance compiled language
that offers remarkable memory safety, is rapidly gaining popularity, and could be-
come a good alternative to Fortran and C for the scientific community. The code is
available on github (Reiter, 2021). It currently supports two-dimensional domains
with Chebyshev expansions for bounded walls or Fourier expansions for periodic
walls. In the following description, we focus on the generally more difficult Cheby-
shev method.

Chebyshev Polynomials

Before discussing the properties of discrete Chebyshev polynomials and transforma-
tions, we begin with the general properties of continuous Chebyshev polynomials.
This may seem like a dry set of mathematical relations, but they will be needed later
to derive the transformation and differentiation methods. There is an extensive body
of literature on this subject, see for example: Gottlieb & Orszag (1977); Canuto et al.
(1988); Hesthaven et al. (2007). The following derivation is largely based on Shen
et al. (2011).
The k-th Chebyshev polynomial of the first kind Tk is defined by

Tk(x) = cos(k arccosx), (2.19)
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which can be simplified using the coordinate transform x ≡ cos θ to

Tk = cos(kθ). (2.20)

Thus, the Chebyshev polynomials are cosine functions after a change of variables.
Equation (2.20) emphasizes the similarity between Chebyshev and Fourier polyno-
mials, from which we can adopt many theoretical and numerical tools. In fact, this
is the origin for the popularity of Chebyshev polynomials in numerical computation
in non-periodic domains, since it enables the use of fast transforms.
The derivative of the Chebyshev polynomials T ′k with respect to x is

T ′k = −k sin(kθ)
dθ

dx
=
k sin(kθ)

sin(θ)
. (2.21)

The Chebyshev polynomials are mutually orthogonal with respect to the weighted
inner product

∫ 1

−1
Tk(x)Tm(x)

1√
1− x2

dx =
cnπ

2
δk,m (2.22)

where c0 = 2 and ck = 1 for k ≥ 1.
The Chebyshev expansion of a function u defined on the intervall x ∈ [−1, 1] is

u =

∞∑

k=0

ûkTk, (2.23)

where the coefficients û are found by the orthogonality relation, i.e.

ûk =
2

cnπ

∫ 1

−1
u(x)Tk(x)

1√
1− x2

dx. (2.24)

Trigonometric identities reveal important properties of the Chebyshev polynomi-
als. First, taking cos ((k + 1)θ) + cos ((k − 1)θ) = 2 cos (θ) cos (kθ) together with eq.
(2.20) we obtain the well-known recurrence relation

Tk+1 = 2xTk − Tk−1, (2.25)

with T0 ≡ 1 and T1 ≡ x. Thus we can construct any Chebyshev polynomial
from its two predecessors. Similarly, the identity sin ((k + 1)θ) + sin ((k − 1)θ) =
2 sin (θ) cos (kθ) together with eq. (2.21) leads to a recurrence relation for the first
derivatives, i.e.

2Tk =
1

k + 1
T ′k+1 −

1

k − 1
T ′k−1, k ≥ 1. (2.26)

Discrete Chebyshev transform

We now turn to the discrete Chebyshev transform. Chebyshev methods are most
commonly used in conjunction with non-uniformly distributed grid points that are
clustered at the end points. Here we consider only Chebyshev–Gauss–Lobatto (CGL)
points, which are a particularly well suited choice leading to a highly accurate ap-
proximation and allow for efficient transformations. The CGL points are defined
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as

xj = − cos

(
πj

N

)
, (2.27)

where N is the total number of points and x ∈ [−1, 1]. Note that in the literature,
CGL points are usually given without a minus sign in front of eq. (2.27). In this
case, the points are ordered from right to left. However, here we deviate from the
conventional notation to avoid the mental adjustment and remain coherent with the
developed numerical code. For the grid points xj , the discrete Chebyshev polynomi-
als are as follows:

Tk(xj) = cos

(
πkj

N
+ kπ

)
= (−1)k cos

(
πkj

N

)
. (2.28)

where we have used equation (2.19) and the identity arccos (−x) = π + arccos (x).
The term (−1)k results from the aforementioned minus sign in (2.27) and mirrors
practically every odd Chebyshev polynomial. Using Gaussian quadrature, we can
approximate the definite integral in eq. (2.24) as a weighted sum of function values
at the grid points xj , i.e.

∫ 1

−1
f(x)

1√
1− x2

dx ≈
N∑

j=0

f(xj)ωj , ωj =
π

ĉjN
, (2.29)

where ĉ0 = ĉN = 2 and ĉj = 1 for j = 1..N − 1. Note that the weight ω is specific
to the CGL points and changes if other quadratures are chosen (Shen et al., 2011).
The discrete Chebyshev polynomials are still orthogonal to each other with respect
to the weighted sum of (2.29), i.e.

π

N

N∑

j=0

1

ĉj
Tk(x)Tm(x) =

ĉnπ

2
δk,m. (2.30)

Finally, let the Chebyshev expansion of a discrete function u(xj) be given, i.e.

u(xj) =
N∑

k=0

ûkTk, (2.31)

using eq. (2.28), the orthogonality property of eq. (2.30) and the Gaussian quadra-
ture formula (2.29), we obtain the forward discrete Chebyshev transform

ûk = (−1)k
2

ĉkN

N∑

j=0

1

ĉj
u(xj) cos

(
kjπ

N

)
, 0 ≤ k ≤ N. (2.32)

and the backward discrete Chebyshev transform

u(xj) = (−1)k
N∑

k=0

ûk cos

(
kjπ

N

)
, 0 ≤ j ≤ N. (2.33)

Both transforms can be efficiently performed by the discrete cosine transformation
(Type-I) in O(N logN) operations.
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2.2 Direct numerical simulations

Differentiation in Spectral Space

Differentiation in Chebyshev space is somewhat more complex than in Fourier space,
but still very efficient. From (2.26) one can derive

u′ =
N∑

k=1

ûkT
′
k

=
N∑

k=0

û
(1)
k Tk (with û(1)

N = 0)

= û
(1)
0 + û

(1)
1 T1 +

N∑

k=2

û
(1)
k

(
T ′k+1

2(k + 1)
− T ′k−1

2(k − 1)

)

=
û

(1)
N−1

2N
T ′N +

N−1∑

k=1

1

2k

(
ck−1û

(1)
k−1 − û

(1)
k+1

)
T ′k.

where û(1) are the Chebyshev coefficients of the derivative u′, ĉ0 = ĉN = 2 and ĉj = 1
for j = 1..N − 1 (see also Shen et al. (2011)). The last line simply follows from a
manipulation of the summation term. Since T ′k is also mutually orthogonal, we can
now compare the expansion coefficients of T ′k between the first and the last line to
obtain a recurrence relation for the Chebyshev coefficients of the first derivative

û
(1)
N = 0,

û
(1)
N−1 = 2NûN ,

û
(1)
k−1 =

(
2kûk + û

(1)
k+1

)
/ck−1, k = N − 1, ..., 1,

which can be simplified to

û
(1)
k =

2

ck

N∑

p=k+1
p+m odd

pûp. (2.34)

Thus, for given Chebyshev coefficients, the derivative can be calculated via (2.34)
and higher-order derivatives can be calculated recursively. For instance, the second
derivative is

û
(2)
k =

2

ck

N∑

p=k+2
p+m even

p
(
p2 − k2

)
ûp. (2.35)

Higher order relations are given in the appendix in Hesthaven et al. (2007). The
determination of the (first) derivative of a function u(x) is done in three steps

• Forward transform eq. (2.32), u→ û;

• Compute spectral derivative eq. (2.34), û→ û(1);

• Backward transform eq. (2.33), û(1) → u′.
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2 Numerical methods

Galerkin Method

There are several ways to implement spectral methods for solving differential equa-
tions. The most common are the Galerkin method, the tau method, and the collo-
cation method. For brevity, we will focus on the description of the Galerkin method.
In the Galerkin method, the solution is expressed by a finite set of basis functions,
and each basis function must satisfy the boundary conditions of the problem. These
special basis functions can be found, for example, by recombining orthogonal bases
such as Chebyshev or Fourier. Well-conditioned Galerkin basis functions based on
Chebyshev polynomials are derived by Shen (1995), i. e.

φk = Tk − Tk+2, k = 0..N − 2, (2.36)

for Dirichlet BCs and

φk = Tk −
k2

(k + 2)2
Tk+2, k = 0..N − 2, (2.37)

for Neumann BCs. So we can represent our function u in two different ways

u(x) =

{∑N
k=0 ûkTk,∑N−2
k=0 v̂kφk,

(2.38)

where we call the first representation the Chebyshev or orthogonal representation
and the second the Galerkin or composite representation. Since the Galerkin basis
functions are just linear combinations of the orthogonal Chebyshev basis functions,
we can easily map between the two representations:

û = Sv̂, (2.39)

where S ∈ R(N−2)×N denotes a (sparse) transformation matrix, or stencil, defined
by the relations (2.36) or (2.37). For example, for N = 5 the Dirichlet and Neumann
stencils S are 



1 0 0
0 1 0
−1 0 1
0 −1 0
0 0 −1




︸ ︷︷ ︸
Dirichlet

and




1 0 0
0 1 0
0 0 1
0 −1

9 0
0 0 −1

4




︸ ︷︷ ︸
Neumann

.

A function is first transformed from physical space to orthogonal space and from there
to composite space via eq. (2.39) exploiting the sparseness of the stencil operator.
Therefore, we can continue to take advantage of the fast Chebyshev transform, so
that the transformation from physical to Galerkin space is still efficient.

1-D Poisson equation

When solving the Navier–Stokes equations, we often deal with a Poisson-type equa-
tion ∇2u = f for the pressure term, or a Helmholtz-type equation (γI −∇2)u = f
(where γ is a positive scalar) for an implicitly treated diffusion term. Let us first
focus on the one-dimensional case for the Chebyshev-Galerkin system with Dirichlet
or Neumann bases according to (2.36) and (2.37). The Poisson equation in spectral
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2.2 Direct numerical simulations

(a) (b)A D+
2

Figure 2.3: Sparsity patterns of (a) A ≡ I2S and (b) the pseudo inverse matrix D+
2

arising in the 1D Poisson eq. (2.42) with N = 20. Red line shows the
discarded first two rows.

space can be approximated as

D2û = D2Sv̂ = f̂ . (2.40)

The operator D2 is the discrete version of the Laplacian∇2 in spectral space. It can
be derived from eq. (2.35) and is an upper triangular matrix. Therefore, the solution
of eq. (2.40) can be solved by back substitution in O(N2) operations. However, a
more efficient way to solve this system is the so-called quasi-inversion technique
(Julien & Watson, 2009; Oh, 2019). This method exploits the fact that the operator
D+

2 , which is the pseudo-inverse to D2, is itself sparse and can be constructed as
follows:

D+
2 i,j =





ci−2

4i(i−1) if i = j − 2
−bi

2(i2−1)
if i = j

bi+2

4i(i+1) if i = j + 2,

(2.41)

for i = 2, 3, ..., N , where c0 = 2 and ck = 1 for k ≥ 1 and bk = 1 for k = 2, 3, .., N −2
and bN−1 = bN = 0 (Oh, 2019). Applying D+

2 to (2.40) yields

I2Sv̂ ≡ Av̂ = D+
2 f̂ , (2.42)

where I2 is the pseudo identity matrix. It is equal to the identity matrix except for
the first two diagonal elements, which are zero, i.e. D+

2 D2 = I2 ≡ diag([0 0 1 ... 1]).
Note that the pseudoinverse is not a real inverse, since the matrix D2 is singular
and thus not invertible. The reason for this is that the second derivatives of the
first two Chebyshev polynomials, i.e. T0 ≡ 1 and T1 ≡ x, are zero. Figure 2.3
shows the sparsity patterns of A and D+

2 . The first two lines are zero and can be
discarded, reducing the system from order N to order M = N − 2. The right-hand
side D+

2 f̂ can be evaluated by sparse matrix multiplication, and the linear system
with the two-diagonally banded matrix A to yield v̂ can be more efficiently solved in
O(N) operations, compared to O(N2) operations given the original upper triangular
matrix.
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1-D Helmholtz equation

The solution of the Helmholtz problem (γI−∇2)u = f is very similar to that of the
Poisson problem. The Helmholtz equation in spectral space can be written as

(γI−D2)Sv̂ = f̂ . (2.43)

Multiplying both sides by D+
2 yields

(γD+
2 S− I2S)v̂ = D+

2 f̂ , or

(γB−A)v̂ = D+
2 f̂ , (2.44)

where A ≡ I2S and B2 ≡ D+
2 S. The only differences to the Poisson problem is that

the left-hand side (γB − A) is now four-diagonal with elements on the diagonals
[−2, 0, 2, 4], which can also be solved efficiently in O(N) operations.

2-D Poisson equation

We now move on to multidimensional problems. For simplicity, we choose the same
number of grid points in x and y, i.e. Nx = Ny = N . A convenient way to repre-
sent multidimensional problems is to use Kronecker products. The two-dimensional
Poisson problem in spectral space can be written as

[(D2 ⊗ I) + (I⊗D2)] û = f̂ , or

[(D2S⊗ S) + (S⊗D2S)] v̂ = f̂ , (2.45)

where v̂ and f̂ are column vectors of size N2 and ⊗ denotes the Kronecker product.
For simplicity we use the same derivative operator D2 and stencil S in x and y, but
the following derivation applies also to the more general case where the number of
dimensions or the chosen bases differs between the dimensions. Unlike for a system
discretized by Fourier polynomials, the Poisson problem as defined in eq. (2.45) does
not decouple the dimensions and thus can’t be solved efficiently. A commonly applied
strategy is to decouple, or diagonalize, one of the two spatial dimensions by means of
an eigendecomposition. Let us outline this procedure. As before, we multiply both
sides (and both dimensions) of (2.45) with the pseudo inverse operator D+

2 , which
yields [

(I2S⊗D+
2 S) + (D+

2 S⊗ I2S)
]
v̂ = (D+

2 ⊗D+
2 )f̂ (2.46)

or more concisely with A ≡ I2S and B2 ≡ D+
2 S we obtain

[(A⊗B) + (B⊗A)] v̂ = (D+
2 ⊗D+

2 )f̂ . (2.47)

Multiplying from the right by (B−1 ⊗ I) gives
[
(AB−1 ⊗B) + (I⊗A)

]
v̂ = ĝ, (2.48)

where ĝ ≡ (D+
2 B−1⊗D+

2 )f̂ . To fully separate the dimensions in eq. (2.48) we make
use of the eigendecomposition

AB−1 = QΛQ−1, (2.49)
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2.2 Direct numerical simulations

where Q is a dense matrix containing the eigenvectors as columns and Λ is the
diagonal eigenvalue matrix. Substituting (2.49) in (2.48), we obtain

[
(QΛQ−1 ⊗B) + (I⊗A)

]
v̂ = ĝ, (2.50)

and finally after multiplying from the left by (Q−1 ⊗ I) we get

[(Λ⊗B) + (I⊗A)] v̂∗ = ĝ∗, (2.51)

where v̂∗ ≡ (Q−1 ⊗ I)v̂ and ĝ∗ ≡ (Q−1 ⊗ I)ĝ. Since Λ and I are both diagonal
matrices, the first dimension is now fully diagonal, therefore we can solve the problem
independently for each lane along the second dimension. If we define v̂∗j and ĝ

∗
j as the

j-th lane (contiguous along the second dimension) of the respective two-dimensional
fields and λj as the j-th diagonal element of Λ, we obtain

(λjB + A)v̂∗j = ĝ∗j , (2.52)

with j = 0, 1, .., N − 2. This system consists of N − 2 one-dimensional Helmholtz
equations as defined in eq. (2.44), and can be solved in O(N2) operations. However,
multiplication of the right-hand side by the eigenvector matrix ĝ∗ ≡ Q−1ĝ and the
inverse of v̂∗, i.e. v̂ ≡ Qv̂∗ is more costly, so the overall performance of this algorithm
depends on the performance of the matrix multiplications.
Finally, let us outline the algorithm for solving the 2D Poisson problem:

• Calculate the right-hand side: ĝ ≡ D+
2 Bf̂D+

2
T ,

• Transform ĝ along x: ĝ∗ ≡ Q−1ĝ,

• Solve the banded system along y: (λjB + A)v∗j = ĝ∗j ,

• Inverse transform v̂ along x: v̂ ≡ Qv̂∗,

which yields the desired spectral coefficients v̂.

2D Helmholtz equation

The 2D Helmholtz equation

[γ(I⊗ I)− (D2 ⊗ I)− (I⊗D2)] û = f̂ , (2.53)

can be treated in the same way. Eq. (2.51) becomes

[(γI⊗B)− (Λ⊗B)− (I⊗A)] v̂∗ = ĝ∗, (2.54)

which leads to a set of one-dimensional equations of the following form

[(γ − λj)B−A] v̂∗j = ĝ∗j . (2.55)

However, in practice, the multidimensional Helmholtz system is solved using an
implicit alternating direction method (ADI) (Douglas, 1962) in the implicit compu-
tation of the diffusion term, as described in section 2.2.1. Preconditioning eq. (2.53)
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Figure 2.4: Comparison of the numerical accuracy of the finite volume code goldfish
versus the pseudospectral code rustpde (Reiter, 2021) for 2D RBC with
adiabatic sidewalls, Ra = 108, Pr = 1, Γ = 1 on a square grid with
Nx = Ny = N cells. Statistics were collected over 3500 free-fall time
units in the statistically stationary regime. (a) Mean Nusselt number.
(b) Standard deviation of Nusselt number. The shaded area marks ±0.5%
(±2.0%) of the converged solution of the averaged Nusselt number (the
standard deviation).

with D+
2 and applying the ADI decomposition yields

(
γD+

2 S− I2S
)

Ψi = ĥi,(
γD+

2 S− I2S
)
v̂j = Ψj , (2.56)

where ĥ ≡ (D+
2 ⊗D+

2 )f̂ . The first equation is solved N times along the first dimen-
sion and the second equation is solved N times along the second dimension. The
advantage of the ADI approach is that it decouples the spatial dimensions, resulting
in 2N one-dimensional Helmholtz problems (in 2D). Therefore, it scales as O(N2),
which is faster than the matrix multiplications of the exact method described earlier.

2.2.3 Validation

In the following, the pseudospectral code is cross-validated with the finite volume
code. The finite volume code goldfish has been used in numerous scientific studies
and has been validated against other numerical codes in the context of RBC (Kooij
et al., 2018). In addition, the following comparison is also intended to evaluate the
Rust programming language in the context of computational fluid dynamics.
As a comparison case, we use 2D RBC with Ra = 108, Pr = 1, and Γ = 1 in a

laterally confined domain. At Ra = 108, the flow is already sufficiently turbulent
and data were collected over 4000 time units, of which the first 500 time units were
discarded, leaving 3500 time units in statistical steady state for averaging. Figure 2.4
shows the average and standard deviation of the Nusselt number on different square
grids with Nx = Nz = N . Both codes show very good agreement. As expected,
the spectral code gives slightly more accurate results on an under-resolved grid.
However, we also note that the correctness of the mean Nusselt number observed for
the spectral code at N = 64 may be deceptive and not indicative of a well-resolved
simulation, as we see from the larger error in the standard deviation of Nu.
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Figure 2.5: Comparison of the performance of the finite volume code goldfish versus
the pseudospectral code rustpde. (a) Time per iteration for different
number of processors on a 10242 grid. Dashed lines indicate ideal scaling.
(b) Execution time for various two-dimensional grids N2, normalized by
execution time at N = 64.

The performance comparison is shown in figure 2.5. The performance of goldfish
has already been discussed separately in section 2.2.1. There we demonstrated ex-
cellent parallel scaling with respect to the number of processors and showed that
the code itself has been greatly optimized over the years. Although much less time
has been spent on the pseudospectral code, it still shows quite good performance.
From figure 2.5 (a), it can be seen that the code scales almost ideally when run
on multiple processors. The finite volume code goldfish is still about 6 ∼ 8 times
faster on the same grid, which is reasonable given the higher numerical complexity
of pseudospectral methods compared to finite volume or finite difference approaches.
It is also consistent with the comparison of Kooij et al. (2018), which showed that
finite difference and finite volume methods can be > 10 times faster per iteration
compared to a spectral element method. The trade-off, however, is that finite volume
methods require a larger number of grid points for the same numerical accuracy. In
figure 2.5 (b) we show the scaling of both codes with respect to the number of grid
points Nx = Ny = N . The N2 log(N) scaling of the spectral code shows that it is
limited by the fast Fourier transform; a good sign that makes the existence of other
bottlenecks less likely. Ultimately, for even larger Ra and in fully bounded domains,
we expect the bottleneck of both codes to be the cost of the matrix multiplications
in the pressure Poisson part, see section 2.2.2. In summary, we find the developed
pseudospectral code is competitive and the Rust programming language is well suited
for use in computational fluid dynamics.

2.3 Linear stability analysis

The concept of a linear stability analysis is to obtain the stability of a fixed point
from a nonlinear equation by perturbing the equilibrium state. Starting from the
nonlinear Navier–Stokes equations (2.1) and decomposing the flow field quantities
q = (u, p, T )T ≡ q + q′ into an equilibrium state q and perturbations q′, neglecting
second order terms and subtracting the mean field equations we obtain the equations
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for the perturbations of the linearized Oberbeck-Boussinessq equations:

∂tu
′ + u′ · ∇u + u · ∇u′ +∇p′ = ν∇2u′ + T ′ez, (2.57a)
∂tT

′ + u′ · ∇T + u · ∇T ′ = κ∇2T ′, (2.57b)
∇ · u′ = 0. (2.57c)

(Note that throughout section 2.3 a primed quantity does not refer to a derivative,
but to perturbations.) The goal is to determine the evolution of the disturbances
for a given equilibrium state and evaluate whether the disturbances decay or grow.
There are several strategies to solve this problem. The most common is to search for
modal solutions of the form

q′(x, t) ≡ q̃(x)e−iσt, (2.58)

with the amplitude function q̃ and an undulating time evolution. Here σ = σr + σi
denotes a complex frequency and the time growth is determined by its imaginary
part σi. Substituting (2.58) into (2.57), one obtains

iσũ = ũ · ∇u + u · ∇ũ +∇p̃− ν∇2ũ− T̃ez,

iσT̃ = ũ · ∇T + u · ∇T̃ − κ∇2T̃ ,

0 = ∇ · ũ.

which yields a generalized eigenvalue problem of the form

σBq̃ = A(q)q̃, (2.60)

with eigenvalues σ and eigenvectors q̃. An equilibrium is stable if all eigenvalues
have a negative temporal growth rate, i.e. σi < 0. And an equilibrium is unstable if
at least one eigenvalue has a positive imaginary part, i.e. σi > 0. In the following,
we describe the technical details of the matrix-based linear stability analysis as used
in the studies of Shishkina (2021), Reiter et al. (2021c), Reiter et al. (2021b), Wang
et al. (2021) and Ahlers et al. (2022), i.e., the collocation method and the Galerkin
method. An alternative matrix-free strategy to obtain the strongest perturbation is
to integrate the equations (2.57) forward in time like the Navier-Stokes equations in
a classical direct numerical simulation, which we will not elaborate on here.

2.3.1 Collocation method

The collocation method enforces the governing equations (2.57) at each discrete grid
point in the physical space (Uhlmann, 2004). For a two-dimensional domain with
q ≡ (u, v, p, T )T , where u (v) denotes the horizontal (vertical) velocity component,
the discrete eigenvalue problem (2.60) can be written as




L2D + Dxu Dyu Dx 0

Dxv L2D + Dyv Dy −I

Dx Dy 0 0

DxT DyT 0 K2D




︸ ︷︷ ︸
A




ũ
ṽ
p̃

T̃




︸︷︷︸
q̃

= iσ




I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 I




︸ ︷︷ ︸
B




ũ
ṽ
p̃

T̃




︸︷︷︸
q̃

, (2.61)
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where

L2D ≡ uDx + vDy − ν
(
D2
x + D2

y

)
,

K2D ≡ uDx + vDy − κ
(
D2
x + D2

y

)
.

(Note that all terms referring to one-dimensional matrices, such as Dxu or u, are
expanded to diagonal matrices). The discrete operators for the first derivative Di

and the second derivative D2
i depend on the discretization. A common choice for

wall-bounded domains is to expand the solution in terms of Chebyshev polynomi-
als. The construction of the Chebyshev differentiation matrix is shown in Trefethen
(2000) and higher order derivatives can be constructed by repeated matrix multi-
plication, for example D2

i = DiDi. If the problem is fully constrained and we use
Chebyshev discretization in x and y directions, then the eigenvalue problem is (2.61)
of size 4NxNy. The multidimensional operators can be conveniently constructed us-
ing Kronecker products. For example, we can form the derivative in x-direction by
Dx = (Dx ⊗ Iy) ∈ RNxNy×NxNy , where Dx ∈ RNx×Nx denotes the one-dimensional
Chebyshev differentiation matrix and Iy ∈ RNy×Ny denotes the identity matrix.
Boundary conditions can be included by removing the rows corresponding to the
particular grid point with the discrete form of the boundary conditions.
For problems with periodic walls, discretization with Fourier polynomials is a

common choice. In this case, we can replace the respective derivatives (say in x)
by Dx → ikx and D2

x → −k2
x, where kx is a free parameter representing a spatial

wavenumber. Assuming we use a Chebyshev discretization in y and a Fourier ap-
proach in x, this reduces the dimensionality of the system (2.61) to an eigenvalue
problem of size 4Ny, but adds the additional independent parameter kx. The linear
stability code for the collocation method is available on github (Reiter, 2020a).

2.3.2 Galerkin method

As briefly explained in 2.2.2, the Galerkin method enforces the governing equations
in an integral sense. This method can also be used for linear stability analysis. The
eigenvalue problem (2.60) is then solved in spectral space.
However, this method is less common in the literature. A major technical difficulty

of Galerkin-based linear stability analysis is that the spectral transformation of the
multiplication terms lead to the appearance of convolution terms, i.e., T (ab) = â∗b̂,
where T denotes the Chebyshev transform, â are the spectral coefficients of f , and
∗ is the convolution operator associated with the spectral transform. For Chebyshev
polynomials defined on the Gauss-Lobatto points, the discrete Chebyshev transform
is related to the discrete cosine transform (DCT-I), as we have shown in section
2.2.2. Thus, in what follows, the operator ∗ refers to the convolution operator of the
DCT-I transform (Baszenski & Tasche, 1997). The complication is that in order to
obtain an eigenvalue formulation, we must re-express the convolution term in matrix
form. Therefore, we need to find a relationship between the convolution and a matrix
multiplication, i.e.

â ∗ b̂ = C(â)b̂ (2.62)

where we call C the circulant matrix. This step is quite tedious, but it is outlined in
greater detail in Baszenski & Tasche (1997). The following explanations focuses on
the practical implementation.
Let us consider the one-dimensional problem with N grid points. We define a
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matrix Pm ∈ RN×N , which is called a shift matrix related to DCT-I as follows

P0 ≡ δi,j , PN ≡ δi,N−j ,

and for m = 1..N − 2

Pm ≡





1/2(δm−i,j + δm+i,j), i ≤ m ∧ i < N −m
1/2(δi−m,j + δm+i,j), i > m ∧ i < N −m
1/2(δm−i,j + δ2(N−1)−i−m,j), i ≤ m ∧ i ≥ N −m
1/2(δi−m,j + δ2(N−1)−i−m,j), i > m ∧ i ≥ N −m

(2.63)

for i, j ∈ {0, .., N − 1}. For example, the shift matrix for N = 6 and m = 3 looks
like

P3 =




1
0.5 0.5

0.5 0.5
0.5 0.5

0.5 0.5
1



,

where blank spaces denote zero entries. Then, the circulant matrix with respect to
the DCT-I for any vector â = âj∈{0,...,N−1} ∈ RN yields

C(â) =
N∑

j=0

ej âjPj , (2.64)

where e0 ≡ eN−1 ≡ 0.5 and ek ≡ 1 for 1 ≤ k ≤ N−2. Therefore, together with (2.62)
we now have the recipes to express the convolution terms as matrix multiplications.

The discrete eigenvalue problem (2.60), transformed into spectral space, can be
written as



L̂2D + C(D̂xu) C(D̂yu) D̂x 0

C(D̂xv) L̂2D + C(D̂yv) D̂y −I

D̂x D̂y D̂ 0

C(D̂xT ) C(D̂yT ) 0 K̂2D




︸ ︷︷ ︸
A




û
v̂
p̂

T̂




︸︷︷︸
q̂

= iσ




I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 I




︸ ︷︷ ︸
B




û
v̂
p̂

T̂




︸︷︷︸
q̂

,

(2.65)
where

L̂2D = C(û)D̂x + C(v̂)D̂y − ν
(
D̂2
x + D̂2

y

)
,

K̂2D = C(û)D̂x + C(v̂)D̂y − κ
(
D̂2
x + D̂2

y

)
.

Here D̂i=x,y denotes the spectral derivative operator. For Chebyshev polynomials on
Gauss-Lobatto quadrature points, the first derivative D̂i and the second derivative
D̂i2 are obtained from eq. (2.34) and eq. (2.35). Moreover, the identity D̂iuj = D̂iûj
with i, j = x, y holds. In eq. (2.65), q̂ denotes the spectral coefficients in orthogonal
space (see also 2.2.2). In the Galerkin method, we apply the boundary conditions
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Figure 2.6: Eigenvalues of laterally unbounded RBC with parameters Ra = 1715,
Pr = 1 and kx = 3.14 with resolution N = 41. (a) Full spectrum and (b)
magnification to the most dominant eigenvalues.

by projecting the solution vectors onto a lower-dimensional space, as we elaborated
in 2.2.2. For this purpose, we use the definition of eq. (2.39), i.e. in this case
q̂ = Sq̂, to transform from the orthogonal coefficients q̂ to the low-dimensional
Galerkin coefficients q̂, so that we end up solving the following eigenvalue problem
based on (2.65):

STASq̂ = σSTBSq̂, (2.66)

with the stencil matrices

S ≡




Su 0 0 0
0 Sv 0 0
0 0 Sp 0
0 0 0 ST


 , ST ≡




STu 0 0 0
0 STv 0 0
0 0 STp 0

0 0 0 STT


 .

As explained in section 2.2.2, the stencil matrices are chosen depending on the bound-
ary conditions of the field variables. The linear stability code for the Galerkin method
is available on github (Reiter, 2020b).

Collocation vs. Galerkin

We now compare the developed collocation and Galerkin method. For this purpose,
we study the onset of convection in Rayleigh–Bénard flows. We set all mean velocities
to zero and apply a constant negative mean temperature gradient in the vertical
direction. We then test stability for an infinitely extended domain (one-dimensional)
and a laterally bounded domain (two-dimensional).
For the infinitely extended case, we can apply the Fourier approach and reduce

the two-dimensional eigenvalue problem to a one-dimensional problem, with an ad-
ditional parameter kx denoting the lateral wavenumber. We fix kx = 3.14 and
analyze the stability for Ra = 1715, Pr = 1 (although the onset of convection is Pr -
independent) and use N = 41 grid points, i.e. spectral coefficients. The eigenvalue
spectrum for both methods is shown in figure 2.6. The full spectrum in figure 2.6
(a) shows marginal differences between the two methods, but the most physically
relevant eigenvalues near σi = 0 show perfect agreement, as seen in figure 2.6 (b). For
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Figure 2.7: Eigenvalues of laterally bounded two-dimensional RBC with parameters
Ra = 2700, Pr = 1 and Γ = 1 with resolution Nx = Nz = 25. (a)
Spectrum with eigenvalues |σr| < 1010 and |σi| < 1010. (b) Spectrum
zoomed to physically relevant eigenvalues. The collocation method shows
an abundance of spurious eigenvalues, but the physically relevant ones
are well captured.

Ra = 1715 we capture exactly one positive eigenvalue, and indeed it is known that
laterally unbounded RBC becomes unstable at Ra ≈ 1708 (Lord Rayleigh, 1916).
When we consider laterally bounded RBC, we are forced to solve a 2D eigenvalue

problem. If we set Nx = Ny = 25, we obtain an EVP of size 4NxNy = 1250 for
the collocation method and 4(Nx − 2)(Ny − 2) = 1058 for the Galerkin method,
which is reflected in the slightly lower memory requirement of the Galerkin method
for small N , shown in the table 2.1. Here we analyze the parameters Ra = 2700,
Pr = 1 and the aspect ratio Γ = 1. The eigenvalue spectrum for both methods
is shown in Figure 2.7. The collocation method shows an abundance of spurious
eigenvalues of very large magnitude. However, looking at the physically relevant
eigenvalues in figure 2.6 (b), we again see perfect agreement between the two methods.
This behavior is also described in Uhlmann & Nagata (2006). Filtering out the
spurious eigenvalues in the collocation method is usually not difficult, and we find
that both methods consistently reproduce the most important eigenvalues. However,
the Galerkin method is often more reliable and therefore our preferred approach.

Table 2.1: Comparison of wall-clock time and peak memory consumption of colloca-
tion and Galerkin method for a two-dimensional RBC stability problem
with grid resolution Nx = Nz = N .

N Collocation Galerkin

Time (s) Memory (GB) Time (s) Memory (GB)
11 0.8 0.09 1.3 0.09
21 0.8 0.28 0.9 0.24
31 2.0 0.99 2.7 0.88
41 5.3 2.8 7.7 2.6
51 16.2 6.5 19.5 6.3
61 21.2 13.0 35.5 13.1
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3 Classical and symmetrical horizontal
convection: detaching plumes and
oscillations

Classical and symmetrical horizontal convection is studied by means of direct
numerical simulations for Rayleigh numbers Ra up to 3 × 1012 and Prandtl
numbers Pr = 0.1, 1 and 10. For both setups a very good agreement in global
quantities with respect to heat and momentum transport is attained. Similar
to Shishkina & Wagner (2016), we find Nusselt number Nu vs. Ra scaling
transitions in a region 108 ≤ Ra ≤ 1011. Above a critical Ra, the flow undergoes
either a steady – oscillatory transition (small Pr) or a transition from steady
state to a transient state with detaching plumes (large Pr). The onset of
the oscillations takes place at RaPr−1 ≈ 5 × 109 and the onset of detaching
plumes at RaPr5/4 ≈ 9×1010. These onsets coincide with the onsets of scaling
transitions.

Based on: Reiter, P. & Shishkina, O. 2020 Classical and symmetrical horizontal convection:
detaching plumes and oscillations, J. Fluid Mech., 892, R1
Main own contribution: Conducting numerical simulations of symmetric horizontal convection,
advancing the parallelization of the numerical code, analyzing the data, deriving the theoretical
part on flow transitions, creating the figures, writing the first draft of the paper.
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3 Horizontal convection: detaching plumes and oscillations

3.1 Introduction

In a horizontal convection (HC) system, heating and cooling takes place over a single
horizontal surface of a fluid layer. In 1908, Sandstrom argued that due to the absence
of a pressure gradient, a closed circulation can not be maintained in such systems.
However, six decades later, Rossby (1965) demonstrated in his experiments that HC
alone, independent from any other sources, is able to create a circulation of a fluid
and therefore a net convective buoyancy flux. Over the last decades Rossby’s setup
became a popular paradigm case to study this important type of natural convective
systems (Hughes & Griffiths, 2008; Griffiths et al., 2013), which is relevant in geo-
physical flows like the meridional overturning circulation in the ocean (Munk, 1966;
Killworth, 1983; Cushman-Roisin & Beckers, 2011; Scott et al., 2001; Scotti & White,
2011), in astrophysical flows (Spiegel, 1971) and engineering applications (Gramberg
et al., 2007). Investigations of HC systems are also necessary for understanding the
effect of polar amplification on the ocean circulation (Holland & Bitz, 2003), i.e. a
phenomenon of global warming that decreases the temperature contrast between the
poles and mid-latitudes.
In any convective system, a naturally arising question is: How do the global heat

transport (Nusselt number Nu) and momentum transport (Reynolds number Re)
depend on the main input parameters (Rayleigh number Ra and Prandtl number
Pr). While considering a laminar boundary layer (BL) and balancing buoyancy and
viscous dissipation terms inside the BL, Rossby (1965) proposed a relation Nu ∼
Ra1/5Pr0. The existence of the ∼ Ra1/5 regime was supported by various numerical
and experimental studies (e.g. Gayen et al., 2014; Mullarney et al., 2004), but the
predicted Pr-invariance of Nu does not hold for small Pr (e.g. Shishkina & Wagner,
2016). By considering the dynamics to be driven by a turbulent endwall plume,
Hughes et al. (2007) proposed the scaling Nu ∼ Ra1/5Pr1/5, but as it was shown
in Shishkina & Wagner (2016), the proposed Pr-scaling is too strong and is not
supported by direct numerical simulations (DNS). Whereas the Rossby model is
based solely on the BL-scalings, the model by Shishkina et al. (2016) (SGL), which
is an extension of the Grossmann & Lohse (2000, 2001, 2004) theory to HC, is able
to account for laminar regimes as well as for regimes where the mixing is governed
by turbulent processes. In particular, the SGL model suggests Nu ∼ Pr0Ra1/4 for
large Pr and Nu ∼ Pr1/10Ra1/5 for small Pr laminar flows, which was supported
by several numerical studies (Shishkina & Wagner, 2016; Ramme & Hansen, 2019).
However, verification of the other regimes needs further investigations. For this,

high Ra DNS or experiments are needed, which turn out to be challenging tasks. On
the one hand, the very slow diffusion in the system is a critical problem for the DNS
of (almost) steady flows. On the other hand, in experiments, unwanted heat losses
through the vertical walls can affect the scaling results significantly (Ahlers, 2000).
Therefore in this work we focus on two setups: classical horizontal convection (CHC)
and symmetrical horizontal convection (SHC), which can be more suitable for future
experiments. Here we report 3D DNS results for Ra ≤ 3× 1012 and Pr = 0.1, 1 and
10.

3.2 Theoretical background

We consider a fluid layer which is confined in a rectangular box and heated and
cooled locally from the bottom. In the CHC setup, heating and cooling is applied
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3.2 Theoretical background

Figure 3.1: Sketch of (a) CHC and (b) SHC setups. Colours inside the cells represent
the lengthwise velocity ux : ux > 0 (pink) and ux < 0 (blue). (c) shows
the studied parameter range for CHC (closed symbols) and SHC (open
symbols).

to the opposite bottom ends (figure 3.1 a), while in the SHC setup the bottom is
cooled at the ends and heated in the central part (figure 3.1 b). The advantage of
the SHC setup over the HC one is the absence of the vertical endwall attached to the
heated plate, which is difficult to isolate thermally in experiments. For both setups
we conducted extensive 3D DNS over the range of parameters shown in figure 3.1 (c),
where the DNS data for CHC and Ra < 3× 1011 are taken from Shishkina (2017).
The governing equations in the Oberbeck – Boussinessq approximation for the

dimensionless velocity u, temperature θ and pressure p read as follows:

du /dt+ u · ∇u +∇p =
√
Pr/Ra∇2u + θez,

dθ /dt+ u · ∇θ = 1/
√
PrRa∇2θ, ∇ · u = 0.

The equations were made dimensionless using the free-fall velocity uff ≡ (αg∆L)1/2,
the free-fall time tff ≡ L/uff , the temperature difference ∆ ≡ T+ − T− between
heated (T+) and cooled (T−) plates and L the cell length (CHC) or half cell length
(SHC). The dimensionless parameters Ra, Pr and the aspect ratio Γ are then defined
as:

Ra ≡ αg∆L3/(κν), P r ≡ ν/κ, Γ ≡ L/H = 10,

whereH is the cell height, ν the kinematic viscosity, α the isobaric thermal expansion
coefficient, κ the thermal diffusivity and g the acceleration due to gravity. In the
CHC configuration the temperature boundary conditions (BCs) at the bottom are
θ = 0.5 for 0 6 x 6 0.1 and θ = −0.5 for 0.9 6 x 6 1. The other walls are
adiabatic, ∂θ/∂~n = 0 where ~n is the wall-normal vector. The velocity BC are no-slip
everywhere. In the SHC setup, the small vertical endwall near the heated plate is
removed and the whole cell is extended by reflection of the cell with respect to the
removed endwall. The used finite-volume code is Goldfish (Kooij et al., 2018). A list
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3 Horizontal convection: detaching plumes and oscillations

I∗l Il IIl III∞ IVu IVl
Nu ∼ Pr0Ra1/4 Pr1/10Ra1/5 Pr1/6Ra1/6 Pr0Ra1/4 Pr0Ra1/4 Pr1/3Ra1/3

Re ∼ Pr−1Ra1/2 Pr−4/5Ra2/5 Pr−2/3Ra1/3 Pr−1Ra1/2 Pr−2/3Ra1/3 Pr−2/3Ra1/3

Table 3.1: Limiting scaling regimes in HC, according to Shishkina et al. (2016).

of all simulations, their spatial resolutions and averaging times are included in the
supplementary materials.
The SGL model proposes different scaling regimes based on an assumption that

in HC, the globally averaged kinetic (εu) and thermal (εθ) dissipation rates,

〈εu〉V = αg〈uzθ〉V ≤ αgκ∆/(2H) = (Γ/2)(ν3/L4)RaPr−2, (3.1)
〈εθ〉V = −(κ/H)〈θ∂θ/∂z〉z=0 = (Γ/2)(κ∆2/L2)Nu, (3.2)

are determined by either the BLs (laminar flows) or the bulk (turbulent flows). Here
〈·〉V denotes the time- and volume-average and 〈·〉z=0 the time- and area-average at
z = 0. All this leads to different scaling regimes of Nu and Re vs. Ra and Pr (see
table 3.1).

3.3 Results

3.3.1 Global heat and momentum transport

We start our analysis with Ra-dependencies of Nu and Re, using the definitions

Nu ≡ 〈|∂zθ|〉z=0/〈|∂zθc|〉z=0, Re ≡
√
〈U2〉V L/ν,

where 〈|∂zθc|〉z=0 is the magnitude of the heat flux considering a pure conductive
system subjected to the same BCs (here 1

2〈|∂zθc|〉z=0 ≈ 1.12) and Re is based on the
total kinetic energy. The results are presented in figure 3.2. First we observe that
Nu and Re in CHC (solid black) and SHC (open colour) match remarkably well,
with nearly equal absolute values over the whole parameter range. Therefore both
setups can be used for the investigation of the global heat and momentum transport
in HC. However, there exist differences in the flow structures which will be discussed
in §3.3.2.
The DNS reveal a rather complex scaling dependence with multiple transitions.

Starting from left to right in figure 3.2 (a) we find: Nu ∼ Ra1/4 for lower Ra, which
corresponds to regime I∗l in the SGL model, previously supported by Shishkina &
Wagner (2016) and Ramme & Hansen (2019). As Ra increases, all three sets of
data for different Pr show a rather sharp transition to a scaling Nu ∼ Ra1/5. Note
that the critical Ra, where this transition occurs, increases with increasing Pr. The
∼ Ra1/5 scaling seems to persist up to our highest Ra for Pr = 0.1. Regime IIl of the
SGL-model was not observed in our DNS, because Pr = 0.1 is still too large for this
regime (Passaggia et al., 2018). For Pr = 1 and 10 the curves rise again at higher
Ra, leading to a scaling exponent of about 0.24 and 0.23. Figure 3.2 (b-d) shows
Re ∼ Ra2/5 for small Ra (regime Il) and Re ∼ Ra1/3 for larger Ra and no I∗l regime
in low Pr. However, when Re is based on 〈U2〉+, where 〈·〉+ denotes average in time
and over the volume exclusively above the heated plate(s), we find scaling transitions
consistent with the Nu−Ra transitions of figure 3.2 (a). In general, the Re scaling
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3.3 Results

Figure 3.2: (a) Nu vs. Ra (log-log plot) for Pr=0.1 (circles), Pr=1 (squares) and
Pr=10 (diamonds) for CHC (closed symbols) and SHC (open symbols).
(b-d) Re based on 〈U2〉V (circles) and Re+ based on 〈U2〉+ (squares),
the kinetic energy average only above the heated plate. The first onsets
in the scalings coincide with the instability onsets found in §3.2, as well
as other irregularities correspond to changes in the flow regimes - e.g.
(c) Ra ≈ 1011 and onset to plume regime - as shown in figure 3.4. The
straight scaling lines are put as a guide to the eye.

is sensitive to its spatial averaging domain. This displays the inhomogeneous nature
of HC flows. To explain the scaling transitions, we further will have a closer look at
the flow topology and its changes and relate them to the transitions in the scaling
relations.

3.3.2 Dynamics: plumes and oscillations

In general, the HC dynamics are rich in flow structures and instability transitions.
Paparella & Young (2002) observed that HC flows become unsteady with growing
Ra, while higher Pr flows are stable over a broader range of Ra. Chiu-Webster et al.
(2008) and Ramme & Hansen (2019) noticed the existence of time-dependent flows
for highly viscous flows. Gayen et al. (2014) showed for Pr = 5 and varying Ra that
the flow goes through a sequence of stability transitions, starting with the growth of
plumes in the BL, followed by convective rolls at higher Ra and finally show fully 3D
turbulence within a region above the hot BL at Ra ≈ 5× 1011. The linear stability
analysis of Passaggia et al. (2017) for Pr = 1 supports these findings and suggests
that there exists a competition between 3D rolls around a stream-wise axis and 2D
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3 Horizontal convection: detaching plumes and oscillations

Figure 3.3: Snapshots of the temperature field for a) detaching plumes (Pr = 10,
Ra = 1010) and b) oscillations (Pr = 0.1, Ra = 3× 108) in SHC.

Rayleigh-Taylor (RT) instability. The former one seem to be dominant in wider cells,
as it was found by Sukhanovsky et al. (2012), whereas the latter one seems to be
most relevant for no-slip BC in narrow cells. Sheard & King (2011) found that the
onset to unsteady flows is independent of vertical confinement for 0.16 ≤ Γ ≤ 2 and
Passaggia et al. (2018) observed the maximum growth for the two-dimensional plume
instabilities at Γ = 6. HC instability was studied also for the cases of a BL synthetic
jet (Leigh et al., 2016), 2D HC (Tsai et al., 2016) and different temperature BCs
(Tsai et al., 2020).
In our DNS we found the existence of 2D RT instabilities, which manifest themselves
as sheared plumes that arise above the heated plate and which travel towards the
endwall (CHC) or the center (SHC), as shown in figure 3.3 (a). However, for small
Pr and especially in SHC flows, we found a different time-dependent behaviour prior
to plumes emerging, which is an oscillatory instability, that breaks symmetry in SHC
(3.3 b). These plume and oscillatory induced transitions to the unsteady state are
explained below.

Plumes

In terms of timescales, detached plumes can occur if the time scale of the development
of RT-instabilities TRT is shorter than the advection timescale Twind of the large-
scale wind: TRT /Twind < Cp, for a certain constant Cp. The e-folding time scale of
RT-instabilities (a characteristic timescale for RT-instabilities to grow by the factor
1/e) equals TRT ∼ ν1/3/(αg∆)2/3 (Chandrasekhar, 1981) and the time scale of the
wind velocity equals Twind ∼ L2/(Reν), which leads to an estimate

Twind/TRT = Ra2/3/(RePr2/3). (3.3)

As the plumes detaching regime is anticipated for large Pr, we make use of the scaling
relation Re ∼ Pr−1Ra1/2 of the regime I∗l (see table 3.1), which gives Twind/TRT ∼
Pr1/3Ra1/6. Thus, a certain critical value of Pr1/3Ra1/6, or an equivalent critical
value of Pr2Ra, determines the onset of the detached plumes. Note that the absolute
value of the constant Cp can be determined from simulations or experimental data.
This relation shows that for low Pr, the critical Ra increases. Physically explained,
the larger wind speed of low Pr flows advects growing plumes faster to the endwall
(CHC) or the center (SHC) before they become distinguishable from the thermal
BL.
The solid red curves Pr2Ra ≈ 1011 in figures 3.4 (a) and (b) give a rough estimate

of the Pr and Ra dependence of the onset of the plume dominated regime. However,
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3.3 Results

Figure 3.4: Ra-Pr phase space of the flow dynamics: steady (diamonds), oscillations
(open squares), plumes (triangles) and chaotic (open circles). The solid
lines in (a,b) show the theoretical predicted onsets of oscillation and
plume regime, the red dashed line the semi-empirical predicted plume
regime onset. The other four plots (c,d,e,f) show the evolution of the
heat flux that enters the left half (red) and the heat flux that enters
through the right half of the heated plate (grey), which in the oscillatory
regime are anti-phase (represented by dashed lines d,e). The normalized
frequencies for plume detaching fp and oscillatory movement fo are (c)
fp ≈ 0.298, (d) fp ≈ 0.522 and fo ≈ 0.070, (e) fo ≈ 0.068 and (f) chaotic.

using Re scaling relations from the DNS instead of the SGL model, namely Re ∼
Ra2/5 (figure 3.2 b) and Re ∼ Pr−1 (Shishkina & Wagner, 2016), together with (3.3)
we obtain ∼ Pr5/4Ra. And indeed, DNS (dashed curves in figure 3.4) supports that
a constant Pr5/4Ra ≈ 9× 1010 determines the onset of the detached plumes regime.
At higher Ra, plumes will detach faster and for sufficiently large Ra one finds

multiple plumes detaching from the thermal BL. This phenomena was reported in
Passaggia et al. (2017) for Ra = 9 × 1014, where plumes were visible immediately
after entering the convectively unstable region.

Oscillations

A laminar flow in SHC can be thought as a configuration of two convective flows in
sub-cells meeting in the center and circulating in opposite directions. While talking
about oscillations, we refer to a horizontal movement of these two large structures
and analyse an oscillatory movement at the location where the two rolls meet. This
location oscillates periodically around the geometric center of the cell and thus breaks
its symmetry.
Following the same strategy as in the previous section, the onset of oscillations can
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3 Horizontal convection: detaching plumes and oscillations

be described in a simplified way as follows. Assume there exists a temperature fluctu-
ation in one of the sub-cells near the centerline, which, due to buoyancy forces, leads
to a local velocity change ∆v of a flow parcel travelling upwards (relative to the base
flow) against the viscous forces. As the speed increases, the pressure drops according
to Bernoulli’s theorem, which consequently initiates a horizontal pressure gradient
between the two convective sub-cells. This essentially reflects the underlying role of
the pressure term in the Navier-Stokes equations, which can transfer energy between
modes of different directions (Batchelor, 1953). Therefore a vertically directed force
(buoyancy) can induce horizontal oscillations.
The characteristic velocity of this Stokes type flow is ∆v ∼ (αg∆L2)/ν and the

time scale is Tp ≈ L/(∆v) = ν/(αg∆L). The stabilizing antagonist here is the vis-
cous force, which acts preserving for the symmetric flow profiles and the viscous time
scale is Tν = L2/ν. The oscillations happen as soon as the shear time scale becomes
large, unable to smooth-out the asymmetric flow profiles at a certain constant value
of Tν/Tp:

Tν/Tp = Ra/Pr = Gr (3.4)

Our DNS results (figures 3.4 a, b) indicate that the critical value is Ra/Pr ≈ 5×109,
supporting the afore described physical picture. This is consistent with the results
of Paparella & Young (2002), who found that the transition to a time-dependent
flow occurs at Ra/Pr ≈ 1.6× 108. The discrepancy in the prefactors is explained by
different BCs and that their simulations were 2D. Two remarks to figure 3.4 should
be made. First, especially for low Pr, periodic oscillations exist only near the onset
of the instability (figure 3.4 e). With increasing Ra, the flow becomes chaotic (figure
3.4 f). Second, we cannot identify regime of oscillations in CHC, but found the onset
to a time-dependent and not plume determined flow with a similar trend.

The different plots (c,d,e,f) in figure 3.4 show the time signals of the vertical heat
flux, averaged over the heated plates. As discussed, low Pr flows show oscillations
and chaotic behaviour, while for large Pr we find the presence of plumes and a
combination of plumes and oscillations. In general, the frequency of detaching plumes
is by an order of magnitude larger than the oscillatory frequency (see captions of
figure 3.4). It remains to be noted, that the locations of onsets to time-dependent
flows shown in figure 3.4 (a,b) coincide with Nu and Re transitions as seen in figure
3.2 (a,b).

3.3.3 Dissipation rates

To study how the transition to a time-dependent flow can affect the global scalings
(analysed in §3.3.1), we now analyse the kinetic (εu) and thermal (εθ) dissipation
rates and assess the results in the context of the SGL model. Following Ng et al.
(2015), we decompose the dissipation rates into their mean and fluctuating part:
〈εu〉V = 〈εu〉V + 〈ε′u〉V = ν

[
〈(∂Ui/∂xj)2〉V + 〈(∂u′i/∂xj)2〉V

]
. This will give us

a qualitative understanding about the role that fluctuations have on the mixing
process. Additionally, we consider the volume averages restricted to the domain part
above the heated plate, 〈·〉+, where we expect the most turbulent fluctuations.
For 〈εu〉V one can expect either the BL scalings ∼ Re2, ∼ Re5/2 or bulk scaling
∼ Re3. Figure 3.5 shows a non-monotonic behaviour in all cases. First, for the lowest
Re, the scaling shows approximately a 〈εu〉V ∼ Re2 behaviour, which corresponds
to regime I∗l with Nu ∼ Ra1/4. As Re increases, we observe a rather rapid increase
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3.3 Results

Figure 3.5: Kinetic dissipation rate vs. Re (as defined in §3), for (a,d) Pr = 0.1,
(b,e) Pr = 1 and (c,f) Pr = 10 in CHC (a,b,c) and SHC (d,e,f). Vertical
dashed lines indicate the corresponding onsets of oscillations (O) and
plumes (P). Shown are total dissipation rate (εu) and contributions from
the mean flow (εu) averaged over the whole domain 〈·〉V or averaged
specifically over the domain above the heated plate 〈·〉+. Negative slopes
(inclined dashed lines) show εu ∼ Re2; positive slopes εu ∼ Re3.

of 〈εu〉V leading to positive slopes in the compensated plot. The sudden increase
in 〈εu〉V is accompanied by a region, where the dissipation of the mean flow starts
to drop. The total kinetic dissipation rate in the region above the heated plate
〈εu〉+ increases even stronger and for high Ra, most of the energy dissipates inside
this region. The value of Re, where the first dissipation increase occurs, correlates
strongly with the transition to a time-dependent flow, as indicated by the vertical
dashed lines. Subsequently, the curves drop again to slopes in between ∼ Re5/2 and
∼ Re3. For high Re and especially for low Pr we observe that the contribution
from the mean flow 〈εu〉V is no longer dominant, which matches the observations
of Mullarney et al. (2004) and Scotti & White (2011), that turbulent fluctuations
start to become dominating in HC. For our highest Ra and Pr = 1 (figure 3.5 b)
a transition to a turbulent regime ∼ Re3 appears, but more data points at higher
Re are needed to extend this trend. Another observation one can make from figure
3.5 (a, d) is that for increasing Re, 〈εu〉V and 〈εu〉+ first converge and than slightly
diverge again. This is explained by the fact that the region, where a turbulent flow
is present, starts above the heated plate, but then spreads over an increasingly larger
volume of the domain.
In figure 3.6 the thermal dissipation rate is analysed in a similar way. Other

than for the kinetic dissipation, there is no observable effect from the onset of the
instabilities. Moreover it is evident that the contributions of turbulent fluctuations
is small for all studied Ra and that the total thermal dissipation is well described
by its mean field contribution. Only for our largest Ra and only above the heated
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3 Horizontal convection: detaching plumes and oscillations

Figure 3.6: Thermal dissipation rate vs. Re (as defined in §3), for (a,d) Pr = 0.1,
(b,e) Pr = 1 and (c,f) Pr = 10 in CHC (a,b,c) and SHC (d,e,f). Vertical
dashed lines indicate the corresponding onsets of oscillations (O) and
plumes (P). Shown are total dissipation rate (εθ) and contributions from
the mean flow (εθ) averaged over the whole domain 〈·〉V or averaged
specifically over the domain above the heated plate 〈·〉+.

plate the mean flow dissipation deviates slightly from the total thermal dissipation.
The scaling is approximately εθ ∼ Re1/2 to εθ ∼ Re3/4 and nearly constant.

In summary, we found a strong enhancement of εu in the vicinity of the onset
of the first instabilities. This locally occurring changes can cause the sharp scaling
transitions, as observed in §3.3.1, suggesting not a "scale-free" region. The contri-
butions of the mean dissipation εu gradually decreases and for large Re we observe
εu ∼ Re3, which hints toward a transition to a turbulent regime. The temperature
fluctuations, for all studied Ra, contribute little to the total thermal dissipation rate
in contrast to the situation of the kinetic dissipation.

3.4 Conclusions

Long run-time DNS were conducted for several decades of Ra and Pr = 0.1, 1 and 10,
for classical and symmetrical HC, in order to investigate the global scaling relations
and the flow dynamics. The obtained results can be summarised as follows.
First, for the same parameters (Ra, Pr), SHC and CHC systems provide nearly

the same heat and momentum transport (Nu, Re). Thus, we conclude that SHC
setups can serve as a good alternative to CHC in studying HC-systems, which may
give a better experimental accuracy, since it gets along without isolating the critical
hot wall. The Nu vs. Ra scaling analysis for both setups showed evidence for regimes
Il and I∗l , according to Shishkina et al. (2016), as found previously in Shishkina &
Wagner (2016) and Ramme & Hansen (2019). Further, the Nu evolution suggests
another transition phase for Ra > 1010 and Pr ≥ 1, which we found to be presumably
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related to the transition from a steady to a time-dependent bulk flow. For our highest
Ra = 3× 1012, both Pr showing a slope of Nu ∼ Ra0.24.
Second, the analysis of the dynamics of HC systems reveals three different unsteady

flow regimes: detached plume regime, oscillatory regime in SHC and chaotic regime.
The onset of the former two instabilities have been obtained theoretically up to a
constant and were confirmed by our DNS data. Detaching plumes dominate high-
Pr flows and are found above a critical RaPr5/4 ≈ 9 × 1010, while the oscillatory
instability starts at a Ra/Pr ≈ 5×109 and is therefore dominating especially in small
Pr fluids. A subsequent examination of the kinetic and thermal dissipation rates
showed that the onsets of these instabilities coincide with a strong increase in the
total kinetic dissipation and a simultaneous decrease in its mean field contribution.
Our DNS show also that velocity fluctuations become the dominating part of 〈εu〉V ,
while the temperature fluctuations contribute only a little to 〈εθ〉V (less than 5%).
Further experimental or numerical investigations for Ra > 1012 are absolutely crucial
for verifying of the other regimes of the SGL model and for the understanding of the
role of buoyancy forcing on the ocean dynamics.
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4 Generation of zonal flows in
convective systems by travelling
thermal waves

This work addresses the effect of travelling thermal waves applied at the fluid
layer surface, on the formation of global flow structures in two-dimensional
(2-D) and 3-D convective systems. For a broad range of Rayleigh numbers
(103 ≤ Ra ≤ 107) and thermal wave frequencies (10−4 ≤ Ω ≤ 100), we investi-
gate flows with and without imposed mean temperature gradients. Our results
confirm that the travelling thermal waves can cause zonal flows, i.e. strong
mean horizontal flows. We show that the zonal flows in diffusion dominated
regimes are driven purely by the Reynolds stresses and end up always travelling
retrograde. In convection dominated regimes, however, mean flow advection,
caused by tilted convection cells, becomes dominant. This generally leads to
prograde directed mean zonal flows. By means of direct numerical simulations
we validate theoretical predictions made for the diffusion dominated regime.
Furthermore, we make use of the linear stability analysis and explain the exis-
tence of the tilted convection cell mode. Our extensive 3-D simulations support
the results for 2-D flows and thus provide further evidence for the relevance of
the findings for geophysical and astrophysical systems.

Based on: Reiter, P., Zhang, X., Stepanov, R. & Shishkina, O. 2021 Generation of zonal flows in
convective systems by travelling thermal waves, J. Fluid Mech, 913, A13
Main own contribution: Conducting all numerical simulations, implementation of linear stability
analysis, analyzing the data, deriving the theoretical part on zonal flow strength, creating the
figures, writing the first draft of the paper.
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4.1 Introduction

The problem of the generation of a mean (zonal) flow in a fluid layer due to a moving
heat source is an old one. Halley (1687) was probably the first to perceive that the
periodic heating of the Earth’s surface, due to the Earth’s rotation, could be the
reason for the occurrence of zonal winds in the atmosphere. Nearly three centuries
later, experiments by Fultz et al. (1959), in which a Bunsen flame was rotated around
a cylinder filled with water, verified Halley’s hypothesis. The moving flame caused
zonal flows and the fluid started to move opposite to the direction of the flame. Since
then, several experimental and theoretical studies have appeared, which illuminated
this phenomenon.
Thus, Stern (1959) repeated Fultz’s experiments using a cylindrical annulus. His

observations confirmed the previous result that the fluid acquires a net vertical angu-
lar momentum through the rotation of a flame, this time despite the suppression of
radial currents in such a domain. Stern then provided a simple two-dimensional (2-
D) model, showing that the mean motion is maintained through the presence of the
Reynolds stresses. Davey (1967) extended Stern’s model and provided a theoretical
explanation that, in an enclosed domain, diffusion dominated flows always acquire
a net vertical angular momentum in a direction opposite to the rotation of the heat
source. His model provided asymptotic scalings for the dependency of the time- and
space-averaged mean horizontal velocity, 〈Ux〉V , with the characteristic frequency of
the moving heat source Ω: 〈Ux〉V ∼ Ω1 for Ω→ 0 and 〈Ux〉V ∼ Ω−4 for Ω→∞. The
topic gained further attention when Schubert & Whitehead (1969) suggested that
the 4 day retrograde rotation of the Venus atmosphere might be driven by such a pe-
riodic thermal forcing. By using a low Prandtl number (Pr) fluid, they observed that
the induced mean flow rotated rapidly and exceeded the rotation speed of the heat
source, which was rotated below a cylindrical annulus filled with mercury (Pr � 1),
by up to 4 times. This validated the linear analysis by Davey, who predicted the
speed of the fluid to increase as Pr becomes small. However, at this time, it became
clear that the induced rapid mean flows may exceed the range of validity of Davey’s
linear theory. Consequently, Whitehead (1972), Young et al. (1972) and Hinch &
Schubert (1971) studied the influence of weakly non-linear contributions. They con-
cluded that the small higher-order corrections rather tend to suppress the induced
retrograde zonal flows and that the occurring secondary rolls transport momentum
in the direction of the moving heat source. It therefore seemed unlikely that the
mean flows become much faster than the heat source phase speed, even for small Pr,
as soon as convective processes come into play.
The preceding analysis certainly lacked the complexity of convective flows, and

therefore Malkus (1970), Davey (1967) and other authors anticipated that convective
and shear instabilities could alter the entire character of the solution. In particular,
Thompson (1970) showed that the interaction of a mean shear with convection can
lead to a tilt of the convection rolls and thus to the transport of the momentum along
the shear gradient and thereby amplifies the mean shear flow. In this scenario, the
convective flow is unstable to the mean zonal flow even in the absence of a modulated
travelling temperature variation, which suggests that the mean zonal flows might be
the rule and not the exception to periodic flows that are thermally or mechanically
driven. However, the direction of this mean zonal flow would be solely determined
by a spontaneous break of symmetry; it could either move counter (retrograde) to
the imposed travelling wave (TW) or in the same directions as the TW (prograde).
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4.2 Methods

The existence of mean flow instabilities in internally heated convection and in
rotating Rayleigh–Bénard convection (RBC) (Ahlers et al., 2009b) was studied the-
oretically by Busse (1972, 1983) and Howard & Krishnamurti (1986), but has not
been observed in laboratory experiments. In classical RBC, a zonal flow, if imposed
as an initial flow, can survive (Goluskin et al., 2014), but only if the ratio of the
horizontal to vertical extension of the domain is smaller than a certain value, see
Wang et al. (2020b) and Wang et al. (2020a). Also, several studies examined the
effects of time-dependent sinusoidal perturbations in RBC. Venezian (1969) showed
that the onset of convection can be advanced or delayed by modulation, while Yang
et al. (2020a) and Niemela & Sreenivasan (2008) demonstrated a strong increase of
the global transport properties in some cases.
Its general nature makes the travelling thermal wave problem appealing to study,

however, to our knowledge, there are only a few studies recently published that are
related to the original "moving flame" problem. Therefore, in the present study we
revisit the existing theoretical models, specifically Davey’s model, and validate it by
means of state of the art direct numerical simulations (DNS). Furthermore, we study
a set-up with a non-vanishing vertical mean temperature gradient (as in RBC), to
study the influence of the travelling thermal wave on convection dominated flows and
discuss the absolute strength and the direction of the induced zonal flows. Despite
the substantial advances over the years, it remains unanswered, whether the thermal
TW problem is merely of academic interest or, indeed, of practical relevance in the
generation of geo- and astrophysical zonal flows (Maximenko et al., 2005; Nadiga,
2006; Yano et al., 2003). For this purpose, in chapter 2, we complement our analysis
with thorough 3-D DNS. For the sake of generality, we choose a classical RBC set-up.
Ultimately, we analyse the absolute angular momentum in 3-D flows (respectively,
horizontal velocity in 2-D flows) and provide insight into the mean flow structures.

4.2 Methods

4.2.1 Direct numerical simulations

The governing equations in the Oberbeck–Boussinesq approximation for the dimen-
sionless velocity u, temperature θ and pressure p read as follows:

du /dt+ u · ∇u +∇p =
√
Pr/Ra∇2u + θez,

dθ /dt+ u · ∇θ = 1/
√
PrRa∇2θ, ∇ · u = 0.

Here, t denotes time and ez the unit vector in the vertical direction. The equations
have been non-dimensionalised using the free-fall velocity uff ≡ (αg∆Ĥ)1/2, the
free-fall time tff ≡ Ĥ/uff , ∆ the amplitude of the thermal TW and Ĥ the cell
height. The dimensionless parameters Ra, Pr and the aspect ratio Γ are defined by:

Ra ≡ αg∆Ĥ3/(κν), P r ≡ ν/κ, Γ ≡ L̂/Ĥ,

where L̂ is the length of the domain, ν is the kinematic viscosity, α the isobaric
thermal expansion coefficient, κ the thermal diffusivity and g the acceleration due to
gravity. This set of equations is solved using the finite-volume code goldfish (Kooij
et al., 2018; Shishkina et al., 2015), which employs a fourth-order discretisation
scheme in space and a third order Runge–Kutta, or, alternatively, an Euler-leapfrog
scheme in time. The code runs on rectangular and cylindrical domains and has been
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4 Generation of zonal flows in convective systems by travelling thermal waves

advanced for a 2-D pencil decomposition for a highly parallel usage. The spatial
grid resolution of the simulations was chosen according to the minimum resolution
requirements of Shishkina et al. (2010). A stationary state is ensured by monitoring
the volume-averaged, the wall-averaged and the kinetic dissipation based Nusselt
numbers.

In this study, the following notations are used: temporal averages are indicated by
an overline or by a capital letter, thus the Reynolds decomposition of the velocity
reads u = U+u′, decomposing u into its mean part U and fluctuating part u′. Unless
specifically stated, time averages are carried out over a long period of time, however,
in section 4.3.1, the averaging period was deliberately restricted to only a few wave
periods to achieve a time scale separation. Further, the spatial averages are denoted
by angular brackets 〈·〉, followed by the respective direction of the average, e.g. 〈·〉x
denotes an average in x; 〈·〉V denotes a volume average. And ultimately, the velocity
vector definitions u ≡ (ux, uy, uz) ≡ (u, v, w) are used interchangeably.

4.2.2 Theoretical model

Already the earliest models proposed by Stern (1959) and Davey (1967) gave a
considerable good understanding of the moving heat source problem. Although there
are more complex models (Stern, 1971) based on adding higher-order non-linear
contributions (Whitehead, 1972; Young et al., 1972; Hinch & Schubert, 1971; Busse,
1972), this section focuses on revisiting the main arguments of Davey’s original work,
which is expected to give reasonably good results in the limit of small Ra. Besides, a
more complete derivation and concrete analytical solutions are provided in Appendix
4.A.

Given the linearised Navier–Stokes equations in two dimensions and averaging the
horizontal momentum equation in the periodic x-direction and over time t, one can
derive the following balance:

√
Pr/Ra∂2

z 〈U〉x = ∂z〈u′w′〉x + 〈W∂zU〉x. (4.1)

Evidently, a mean zonal flow 〈U〉x is maintained by the momentum transport due
to the Reynolds stress component u′w′ and by mean advection through W∂zU . The
theory further advances by assuming that no vertical mean flow exists (W = 0),
which reduces equation (4.1) to the balance between viscous mean diffusion and
Reynolds stress diffusion. Furthermore, by neglecting convection and variations in
x, the linearised equations can be written as a set of ordinary differential equations,
that can be solved sequentially to find u′ and w′ and ultimately the Reynolds stress
term u′w′. This procedure is shown in Appendix 4.A. Given the Reynolds stress
field, equation (4.1) has to be integrated twice to obtain the mean zonal flow U(z).
Integrating that profile again finally gives the total mean zonal flow 〈U〉V , which
is an important measure of the amount of horizontal momentum or, respectively,
angular momentum in cylindrical systems, that is generated due to the moving heat
source. The last step can be solved numerically, however, following Davey (1967),
the limiting relations can be calculated explicitly
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4.3 Two-dimensional convective system

Figure 4.1: Sketch of the 2-D numerical set-up. The colour represents the dimension-
less temperature distribution for the purely conductive cases (Ω = 0.1).
The thermal wave is imposed at the top and bottom plates, propagating
to the right, in the positive x-direction. (a) Set-up A: no mean tempera-
ture gradient is imposed between the top and the bottom. (b) Set-up B:
with (unstably stratified) mean temperature gradient, as in RBC. The
figure shows temperature snapshots, while the time-averaged conduction
temperature field depends linearly on z.

〈Ux〉V = −π
2

k3Ra2Pr−2(Pr + 1)

12!
Ω +O(Ω3) for Ω→ 0, (4.2)

〈Ux〉V = −k
3Ra−1/2Pr−3/2

256π4(Pr + 1)
Ω−4 +O(Ω−9/2) for Ω→∞, (4.3)

where the horizontally TW, θ(x, t) = 0.5 cos(kx− 2πΩt), is applied to the bottom
and top plate. We would like to add that this theoretical model is, as determined
by its assumptions, expected to be limited to diffusion dominated, small-Ra flows.
However, when momentum and thermal advection take over, its validity remains
questionable. We will show later that, after the onset of convection, where eventu-
ally mean advection takes over, the neglect of the W∂zU -contribution is no longer
justified.

4.3 Two-dimensional convective system

As described by Stern (1959), the generation of a laminar zonal flow by a TW can
be successfully explained in a 2-D system, which makes it a good starting point. The
temperature boundary conditions (BCs) are time and space dependent,

θ(x, z = 0, t) = 0.5 [cos(x− 2πΩt) + ∆θ] ,

θ(x, z = H, t) = 0.5 [cos(x− 2πΩt)−∆θ] .

Here, Ω indicates the temporal frequency of the TW in free-fall time units. For
example, Ω = 10−1 describes a wave with a period of 10 free-fall time units τff , and
∆θ is introduced as a control parameter for the strength of the mean temperature
gradient.
In the following, two different set-ups are considered. In set-up A (figure 4.1 a)
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4 Generation of zonal flows in convective systems by travelling thermal waves

Figure 4.2: Snapshots of the temperature field θ at a fixed TW speed Ω = 0.1 (prop-
agating to the right). (a) Set-up A and (b) Setup B. The plumes in set-up
B travel either retrograde or prograde (see supplementary movies).

– the one originally examined by Davey (1967) – no mean temperature gradient
exists (∆θ = 0) and the top and bottom plate temperatures are equal, whereas in
set-up B (figure 4.1 b) a mean, unstable temperature gradient is applied (∆θ = 1).
For simplicity, the mean temperature gradient is set equal to the amplitude of the
thermal wave. In this set-up, effects of convection are expected to become dominant.
Averaged over time, this set-up resembles RBC, therefore, it can be regarded as a
spatially and temporally modulated variant of RBC. Further, no-slip conditions are
applied at the top and bottom plates, the x-direction is periodic and the domain
has a length L = 2π and height H = 1. In upcoming studies, one might introduce
a second Rayleigh number based on the mean temperature gradient (as in RBC),
namely Ra∆θ ≡ αg∆θĤ3/(κν). However, in this work the connection to Ra is simply
Ra∆θ = 0 for set-up A and Ra∆θ = Ra for Set-up B.

The overall focus in this study lies on variations of the zonal flow with Ra and Ω.
Thus, the parameter space spans 103 ≤ Ra ≤ 107 and 10−4 ≤ Ω ≤ 100, while the
aspect ratio and Prandtl number are kept constant (Γ = 2π, Pr = 1). Exemplary
temperature fields at a fixed Ω = 0.1 are shown in figure 4.2.

4.3.1 Results

The theoretical model, as presented in Appendix 4.A, aims to explain the generation
of the total mean momentum 〈Ux〉V for a given Ra and wave frequency Ω. More-
over, it predicts that the generated mean momentum will be directed opposite, i.e.
retrograde, to the travelling thermal wave. In this section we study the validity of
the model and reveal its limitations.
Figure 4.3 shows the numerical data from the DNS together with the respective

results of the theoretical model, for different Ra. Worth noting first is, that the
maximum of the theoretical model is located at a fixed frequency, if the frequency
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4.3 Two-dimensional convective system

Figure 4.3: Mean velocity of the zonal flow vs. the wave frequency Ω for Ra =
103 (blue), 104 (orange), 105 (green), 106 (red) and 107 (black). Circles
(stars) denote a retrograde (prograde) mean zonal flow, the solid lines
of the corresponding colour show the results of the theoretical model by
Davey (1967). (a) Set-up A and (b) set-up B.

is expressed in terms of the diffusive time scale rather than the free-fall time scale
Ωκ,max = Ω/

√
RaPr ≈ 0.66. This indicates that the model predictions could be

collapsed onto a single curve. Nonetheless, this was avoided here for the sake of
clarity.
We begin our discussion with the results of set-up A, shown in figure 4.3 (a). The

theoretical model by Davey (1967), indicated by the solid lines, gives accurate results
for Ra = 103 and a good agreement for Ra = 104, although, evidently, the model
systematically overestimates the mean momentum generation for higher Ra. In fact,
this is consistent with Whitehead (1972), Young et al. (1972) and Hinch & Schubert
(1971) who observed that corrections of higher-order non-linear contributions tend
to suppress the induced retrograde zonal flows. Also it suggests that an induced
mean flow does not strengthen itself, i.e. there is no positive feedback mechanism
between the mean flow and Reynolds stresses. While all low Ra flows and high Ra
flows in the limit of large Ω are well predicted by the model, the large Ra flows are
mostly over predicted (except Ra = 107 and Ω = 0.1, the only flow of that set-up
that becomes truly turbulent, despite similar initial conditions). Presumably, even
more important is that some of the flows for Ra ≥ 105 exhibit a positive/prograde
mean flow, indicated by a star symbol, which is especially prevalent at small Ω.
Turning the focus to set-up B, shown in figure 4.3 (b), the differences become

even more obvious, since adding a mean temperature gradient enhances the effects
of convection further. For Ra = 103 the picture is clear, as it is below the onset
of convection Rac ≈ 1708 for classical RBC even for the unbounded domains. The
Reynolds stresses remain dominant, which preserves the development of a mean flow
opposite to the TW direction. However, for Ra ≥ 103, all but a few of the simulations
end up with a prograde mean flow final state. In order to understand the role of
the mean flow, we analyse the two terms on the right side of equation (4.1), which
are presented in figure 4.4. The model neglects mean advection, it only captures
contributions of u′w′. As seen in figure 4.4 (a), this is justified for a flow without
strong convection effects and the model predictions agree well with the Reynolds
stresses obtained in the simulations. This is different from the situation in figure 4.4
(b), where obviously mean flow advectionW∂zU starts to take over. The shape of the
mean flow advection curve is antiphase to the Reynolds stress curve and contributes
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4 Generation of zonal flows in convective systems by travelling thermal waves

Figure 4.4: Mean profiles of Reynolds stress vs. mean flow advection contribution for
Ra = 104 and Ω = 0.1 for (a) ∆θ = 0 and (b) ∆θ = 1, where mean advec-
tion dominates. The flow in (a) moves retrograde due to the Reynolds
stress contribution, while the flow in (b) shows a prograde mean flow
(
√
Pr/Ra∂2

z 〈U〉x = ∂z〈u′w′〉x + 〈W∂zU〉x).

the most. This explains the reversal of the mean flow, from retrograde in figure 4.4
(a) to prograde in figure 4.4 (b).
The underlying reason for that will be examined in more detail in the next sec-

tion. But briefly, the main argument is that there exist two competing mechanisms,
one induced by the TW and the other induced by convection rolls, which act on
different time scales. At small Ra, as convection rolls move considerably slower, an
average over a few TW time periods can reliably separate both structures, so that
the Reynolds stresses reflect mainly the TW contributions, while the mean field rep-
resents the convection rolls. Therefore, the dominant mean flow advection in figure
4.4 (b) reflects the dominance of advection by convection rolls as Ra increases.

A few more interesting observations can be deduced from figure 4.3 (b). First,
compared to the theory, the simulations show significantly larger values at high Ra.
Apparently, the mean zonal flow can be substantially stronger than expected and
its velocity can exceed the TW phase velocity. Second, while the theory predicts
the location of the maximum zonal flow at a constant diffusive time scale, the DNS
indicates a coupling with the free-fall time rather than with the diffusive time and
the maximum is found in the region 0.01 ≤ Ω ≤ 0.1. This is important, since natural
flows often fall within this parameter range. We show this in the context of the
Earth’s atmosphere in section 4.4. Finally the instantaneous fields most often show
three plumes (figure 4.2 b), while a classical RBC simulation with the same initial
conditions would develop four plumes. Presumably, either the sinusoidal tempera-
ture distribution at the plates, or a pre-existing shear flow (before Rayleigh–Taylor
instabilities develop) reduces the number of plumes. On this basis, we tested the
linear stability of the Rayleigh–Taylor instabilities with an imposed shear flow, and
found indeed that the wavelength of the most unstable mode decreases.
In figure 4.5 we show the total kinetic Etot = 1

2〈u2
x + u2

z〉1/2V and horizontal (zonal
flow) kinetic energy Ehor = 1

2〈u2
x〉1/2V in order to elucidate the energetic impact of the

present zonal flows and to evaluate the strength of the vertical and horizontal mo-
tions. Set-up A (a) is clearly dominated by the horizontal kinetic energy throughout
the whole parameter range. For Ω > 10−1, the kinetic energy drops close to zero and
the temperature is transported by conduction only above this limit. However, before
the kinetic energy drops, the curves show an energy enhancement. The location of
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4.3 Two-dimensional convective system

Figure 4.5: Total kinetic energy Etot (black) and horizontal kinetic energy Ehor (blue)
for (a) set-up A and (b) set-up B.

the energy maximum coincides with the maximum of the zonal flow (figure 4.3 a),
which indicates that the zonal flows can have a significant imprint in the energy of
the system. Likewise, set-up B (figure 4.5 b) is also dominated by horizontal kinetic
energy. However, obviously for larger Ra and larger Ω, the magnitude of the vertical
kinetic energy becomes increasingly important. This further supports that the ne-
glect of the vertical velocity component W is eventually no longer justified for these
parameter regimes.

Origin of prograde flows in convection dominated flows

In order to understand how prograde flows can emerge, we looked at the route from
small to large Ra for a specific configuration. Set-up B and Ω = 0.1 is well suited for
this purpose, since the transition from a retrograde flow to a prograde flow appears
early, already below Ra = 104 (figure 4.3 b). Thus, a simulation was initiated
at Ra = 1000 and then Ra was progressively increased by 1000 each time after a
steady state had settled. The time evolution of the total mean zonal flow is given
in figure 4.6 (a). At the lowest Ra, the mean flow is retrograde. Increasing Ra to
2000 enhances its strength further, as anticipated. But already at Ra = 3000 the
zonal flow breaks down and its vertical profile, as seen in figure 4.6 (b), flattens.
Ultimately, at Ra ≥ 4000 this profile flips over and the total zonal flow turns into a
prograde state.
As we have shown in the preceding analysis (figure 4.4 b), in the presence of

convection cells, the mean zonal flow can be fed by the base flow itself, in particular
it is fed by the vertical advection of horizontal momentum W∂zU . Now, let us
consider perfectly symmetric convection cells; although locally, at a position in x,
momentum may be transported up- or downward, the symmetry, however, would
balance this transport at another location and the net transport would become zero.
Therefore there must be a symmetry breaking in the convection cells, which correlates
W with ∂zU . A possible mechanism, even discussed in the context of the moving
heat source problem, was described by Thompson (1970) and theoretically analysed
by Busse (1972), who showed that, in a periodic domain, convection rolls can become
unstable to a mean shear flow. This mean shear tilts the convection cells such that
their asymmetric circulation maintains a shear flow. In the following this mean flow
instability will be called tilted cell instability. Busse (1972) showed the existence of
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Figure 4.6: Path from a retrograde flow to a prograde flow. (a) Time evolution of the
mean zonal flow; Ra was increased stepwise. For Ra ≥ 3000 convection
rolls form; for Ra ≥ 4000 the rolls tilt significantly, and the mean zonal
flow becomes positive. (b) The ux profiles for Ra = 1000, 3000, 5000.
(c) Mean flow extracted at Ra = 3000 (averaged over one TW period).
(d) Result of the global stability analysis for the mean flow of (c), that
becomes unstable for Ra ≥ 4000 to tilted convection rolls.

this instability on a analytic base flow field. Differently, in the following we conduct
a stability analysis on a base flow extracted from the DNS.
The first rise of the curve in figure 4.6 (a) at Ra = 3000 coincides with the observed

onset of convection, which is slightly delayed compared to classical, unmodulated
RBC (Rac ≈ 1708). The convection cells at that point appear to be standing still,
almost unaffected from the TW and clearly orders of magnitudes slower than the
TW. Therefore a short time average, over one wave period, was applied to separate
both time scales, which results in the base flow, as shown in figure 4.6 (c). Based
on this base flow, a linear, temporal stability analysis of the full 2-D linearised
Navier-Stokes equations was conducted. Details therefore are given in appendix 4.C.
While no unstable mode was detected for Ra = 3000, for Ra = 4000 the mean flow
becomes unstable, to the mode presented in figure 4.6 (d). The growth rate of it is
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4.3 Two-dimensional convective system

σ ≈ 0 + 0.2i, suggesting no oscillatory behaviour (real part is zero) but exponential
temporal growth (imaginary part larger than zero). This mode shares characteristics
with the tilted cell instability described by Thompson (1970), in the sense that the
mode induces a mean shear flow (see profile in figure 4.6 d). However, rather than the
"pure" shear flows as presented by Thompson (1970) and Busse (1972, 1983) with
a vanishing total net momentum when integrated vertically, the fluctuation profile
found in our study (figure 4.6 d on the right) shows a more directed flow, negative
in the vicinity of the plates and stronger positive in the centre. And especially
interesting, its momentum profile has a similar shape as the final state solution of
typical prograde flows, e.g. the profile on the right in figure 4.6 (b). A few more
notes are necessary. The difference between the shape of the mode found in this work,
compared to the ones from Thompson and Busse might be explained by different BCs,
as both authors applied free-slip conditions at the plates, in contrast to our no-slip
conditions. In addition, in their seminal works and in the work of Krishnamurti &
Howard (1981), it was already remarked that the mean flow transition is caused by
a spontaneous symmetry breaking and therefore the direction of the shear flow is
somewhat arbitrary as it depends on the initial conditions. Indeed, a change in the
grid size of the stability analysis led to a most unstable mode with a reversed shear
flow profile compared to the mode shown in figure 4.6 (d). And finally, even though
in figure 4.6 (a) tilted rolls are shown to start later as convection rolls, it actually is
likely that the convection cells tilt as soon as convection sets in, it is just not clearly
visible from the flow fields at that point.
In a nutshell, the mean flow is unstable – even in the absence of a boundary

temperature modulation – to a mode with tilted convection cells and non-zero total
mean horizontal velocity. Both modes, prograde and retrograde, are found in the
global stability analysis, thus it remains unanswered why the DNS at high Ra al-
most exclusively end up moving in the same direction as the TW. The disturbance
velocity profiles resemble those of the final mean flow velocity profiles, therefore, the
presented mean flow instability is a plausible mechanism for the generation of mod-
erate strong zonal flows after onset of convection, then dominating over the Reynolds
stress mechanism, that is inherent to diffusion dominated flows.

Space–time structures

The flows found in this study revealed surprisingly rich formations. Therefore this
part will be completed with examples of some space–time structures that have been
observed in the 2-D system and, already ahead of the next part, in the 3-D cylindrical
system. In addition, movies are provided as supplementary material.
In general, in two dimensions, as can be seen from figure 4.2, the temperature

field is either symmetric around the horizontal mid-plane (set-up A), or not; in this
case there exist plumes (set-up B). In the latter case, there are usually three up-
and three down-welling plumes identifiable. In the 3-D case, the flow consists of
rising and falling plumes, which together form a large scale circulation (LSC). If
the TW propagates slowly (small Ω), the plumes (two dimensions) or respectively
the LSC plane (three dimensions) drift with the same speed as the TW and both
structures appear to be connected. However, as Ω increases and, hypothetically,
the TW time scale τΩ becomes small compared to thermal diffusion τκ (τκ/τΩ =√
PrRaΩ), the plumes (two dimensions) or LSC (three dimensions) "break-off" from

the TW, forming two separate structures, acting on different time scales.
Figure 4.7 shows the space–time structures of the temperature field, evaluated at
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4 Generation of zonal flows in convective systems by travelling thermal waves

Figure 4.7: Evolution of the temperature at mid-height z = H/2, for (a-c) 2-D flows
and (d,e) 3-D RBC (r = 0.99R) flows. (a) Ω = 0.01, set-up A, (b)
Ω = 0.1, set-up A, (c) Ω = 0.1, set-up B, (d) Ω = 0.01, 3-D RBC and
(e) Ω = 0.1 3-D RBC. All panels show Ra = 107. The black solid line in
each plot indicates the TW speed.

mid-height, and in the 3-D case at mid-height and near the sidewall. The structures
at mid-height either (i) travel with the same speed (but a phase difference) as the
thermal wave (a,d), or travel with phase speeds different to the thermal wave and in
this case either (ii) retrograde (b,e) or (iii) prograde (c). Regime (i) is expected for
small Ra and/or small Ω parameters, (ii) is found for large Ra and large Ω, if no mean
temperature is present and (iii) exists in strongly convection dominated flows for large
Ra and large Ω, especially if a mean temperature gradient is present. Furthermore
it is striking that temperatures between the left and right regions in the vicinity of
the plumes centre (hottest or coldest regions in figure 4.7) do not necessarily fill with
the same temperature (c). This gives further evidence of a mean flow instability, as
it features similarities of the temperature field of the unstable mode given in figure
4.6 (d), due to which a plume loses its horizontal symmetry. Considering the speed
of the drifting plumes (b,c), we observe initially exponential growth, as anticipated
from an instability, followed by a, possibly, non-linear saturation.

4.4 Three-dimensional convective systems

The preceding part, as most of the existing literature, is confined to 2-D flows. Now
we will discuss the moving heat source problem in the context of more complicated
3-D convective flows. In general, TW solutions are common amongst 3-D convective
systems. Bensimon et al. (1990); Kolodner et al. (1988); Kolodner & Surko (1988)
observed convection rolls propagating azimuthally in a large aspect ratio annulus
near the onset of convection. Their drift velocity was of the order of magnitude 10−4

to 10−3, however, drift velocity is not necessarily equal to the mean azimuthal flow.
Another kind of TW solution in RBC systems are the spiral patterns found in large
aspect ratio cells (Bodenschatz et al., 1991, 2000). These spirals are rotating in either
direction, although corotating spirals are more numerous (Cross & Tu, 1995), and are
known to be coupled with an azimuthal mean flow (Decker et al., 1994). Furthermore,
in rotating systems travelling wave structures are quite common (Knobloch & Silber,
1990). These structures are strongly geometry dependent (Wang et al., 2012) and
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4.4 Three-dimensional convective systems

Figure 4.8: (a) Sketch of the cylindrical domain and imposed TW. (b) Studied pa-
rameter space. The mesh sizes nr×nϕ×nz of the DNS are 48×130×98
for Ra = 103, 96× 260× 196 for Ra = 104, 105, 106 and 128× 342× 256
for Ra = 107.

known to induce mean zonal flows that propagate pro- and retrograde (Zhang et al.,
2020).

Despite the vast literature on these phenomena, quantitative data on mean flows
that are induced by external travelling thermal waves in 3-D flows seem to be rare.
Therefore our main goal in this part is to gain insight into the strength and structure
of such mean flows, and discuss whether their order of magnitude is relevant in
natural flows. For this purpose we took the paradigm convective system cylindrical
RBC and studied it by means of DNS.

4.4.1 Numerical set-up: cylindrical RBC

The set-up is essentially motivated by the original experiments of Fultz et al. (1959),
where a heat source rotated around a cylinder with the radius R (diameter D),
except, in our case, thermal waves travel at the bottom and top and a mean tem-
perature gradient was applied, as in set-up B of the previous part. In particular, the
temperature distribution is linear in the radial r-direction and consists of one wave
period in ϕ that travels counterclockwise:

θ(ϕ, r, z = 0, t) = 0.5
[ r
R

cos(ϕ− 2πΩt) + 1
]
,

θ(ϕ, r, z = H, t) = 0.5
[ r
R

cos(ϕ− 2πΩt)− 1
]
.

Again, the mean temperature gradient, averaged over time, is the same as in classical
RBC. The cell is shown in figure 4.8 (a). Furthermore, top and bottom plates are
free slip (∂u/∂n = 0) and no-slip conditions are applied at the sidewall (u = 0).
All simulations are carried out for the parameters Pr = 1 and the aspect ratio
Γ ≡ D/H = 1. The rather large aspect ratio is a sacrifice, in return, more simulations
could be conducted and the parameter space in the region of interest is well resolved,
as shown in figure 4.8 (b).
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4 Generation of zonal flows in convective systems by travelling thermal waves

Figure 4.9: (a) Time- and volume-averaged zonal flow as a function of the heat source
frequency Ω, (b) zonal flow at mid-height for 3-D RBC data: Ra = 103

(blue), 104 (orange), 105 (green), 106 (red) and 107 (black). Circles
(stars) denote a retrograde (prograde) mean zonal flow, the solid lines
of the corresponding colour show the results of the theoretical model by
Davey (1967).

4.4.2 Results

Previously, we have shown that travelling thermal waves generate a mean horizon-
tal, or, synonymously, a zonal flow. The same can be observed in the cylindrical
system, where a zonal flow now refers to non-vanishing azimuthal mean flow. In
the following, we evaluate its strength and direction and discuss the results in the
context of the 2-D results. As no specific adjustments to the theoretical model have
been made, from this point on, the model results are intended to serve mainly as
references to the previous results. A brief remark beforehand: evaluating the time
and volume average of uϕ proves problematic, as often flows are not purely pro- or
retrograde. Therefore, rather than give precise scaling laws, the primary purpose of
the subsequent analysis is to explore the parameter space, demonstrate the overall
strength of the zonal flows and find the most critical wave frequencies and determine
the critical Ra above which the results deviate substantively from the predictions.

Figure 4.9 shows (a) the total mean azimuthal momentum 〈Uϕ〉V and (b) the value
of 〈Uϕ〉r,ϕ at the mid-height. As before, circles denote a retrograde, stars a prograde
mean flow and the solid lines are the 2-D model solutions from Davey (1967), without
modifications for no-slip walls. The obtained flows for small Ra ≤ 105 share distinct
features with the 2-D flows. The mean momentum converges to the asymptotic
scalings, and, in fact, the data of figure 4.9 b collapse under a transformation with
Ra remarkably well. For larger Ω, in particular Ω ≥ 10−1, the most flows are found
to be directed prograde, even for Ra = 103, which is different from the 2-D case.
And as in two dimensions, the flow structures reveal a transition in this Ω-region.
As was discussed in section 4.3.1, the plane of the LSC drifts with the same speed as
the TW (= Ω), if the TW speed is small compared to thermal diffusion speed, and
the LSC breaks off from the TW at larger Ω, forming separate structures, acting on
different time scales. It is in the regime of this break-off above which a prograde flow
is present. This process hints towards a similar mean flow instability, as discussed
in §4.3.1, where the mean flow is now a slow LSC.
As Ra exceeds 105, turbulent fluctuations increase and the data in figure 4.9

become increasingly scattered. The asymptotic scalings are hardly determinable,
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4.4 Three-dimensional convective systems

Figure 4.10: For a fixed TW frequency Ω = 0.01. The azimuthally averaged mean
azimuthal velocity 〈Uϕ〉ϕ (top row) and the corresponding snapshots
of the temperature θ (bottom row). As Ra increases, the core zonal
flow becomes first stronger retrograde (Ra = 104, 105), then switches
its state to a prograde flow originating from the sidewall (Ra ≥ 106),
while still increasing its strength (see colour bar).

even though 〈Ux〉V ∼ Ω1 for Ω→ 0 appears still valid. The fluctuations can exceed
their mean values, especially for small and large Ω. Despite the strong fluctuations,
in regions of maximal zonal flow, i.e. Ω ≈ 10−2, the mean values are highly significant
and can induce zonal flows of the same order of magnitude as the TW frequency,
〈Uϕ〉V ≈ O(10−2). Furthermore, similarly to the 2-D case, in three dimensions the
zonal flows at high Ra are most of the time directed prograde, contrary to small Ra.
From the vertical planes of the azimuthally and time-averaged azimuthal velocity,
shown in figure 4.10, the dominance of prograde motion at large Ra becomes more
obvious. Moreover, these figures reveal a complex, inhomogeneous flow, with strong
differential rotation and poloidal mean velocities.

Vertical and radial momentum transport

In the following, we assess the contributing terms of the mean flow azimuthal mo-
mentum equation. For clarity, let us write the equation for uϕ explicitly

∂tuϕ +
1

r

∂ruϕur
∂r

+
1

r

∂uϕuϕ
∂ϕ

+
∂uϕuz
∂z

=

∂p

∂ϕ
+

√
Pr

Ra

[
1

r

∂

∂r

(
r
∂uϕ
∂r

)
+

1

r2

∂2uϕ
∂ϕ2

+
∂2uϕ
∂z2

− uϕ
r2

+
2

r2

∂ur
∂ϕ

]
.

(4.4)

First, we consider how Uϕ changes in the vertical direction and, second, how it
changes radially. Therefore, decomposing eq. (4.4) into its mean and fluctuating
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4 Generation of zonal flows in convective systems by travelling thermal waves

components, and averaging over ϕ and r gives the following balance:
√
Pr

Ra

(
∂2〈Uϕ〉r,ϕ

∂2
z

− 〈Uϕ〉r,ϕ
r2

)
=

∂〈u′ϕu′z〉r,ϕ
∂z

+
∂〈UϕUz〉r,ϕ

∂z
+ 〈

u′ϕu′r
r
〉r,ϕ + 〈UrUϕ

r
〉r,ϕ.

(4.5)

Analysing the radial dependence, on the other side, averaging over ϕ and z gives
√
Pr

Ra

(
1

r2

∂2〈Uϕ〉ϕ,z
∂2
r

− 〈Uϕ〉ϕ,z
r2

)
=

1

r

∂r〈u′ϕu′r〉ϕ,z
∂r

+
1

r

∂r〈UϕUr〉ϕ,z
∂r

+ 〈
u′ϕu′r
r
〉ϕ,z + 〈UrUϕ

r
〉ϕ,z.

(4.6)

The right-hand side terms of these equations are evaluated for Ω = 10−2, which
are shown in figure 4.11. We ensured, that in the simulations, the data were averaged
over an integer number of TW periods, to prevent artefacts of the TW in the mean
fields (the exact time values can be found in the supplementary material). When
we compare the individual mean velocities for (a) Ra = 103 and (b) Ra = 104, it
becomes clear that the mean field transport in both, vertical and radial, directions
is rather negligible. Hence, the non-linear Reynolds stress sustains the mean zonal
flow, just as in the 2-D case for small Ra (see figure 4.4 a), as expected (Stern, 1959;
Davey, 1967). The small mean field contributions even reinforce the zonal flow, since
the shape of the mean advection curves matches the shape of the Reynolds stress
curve. Comparing further the vertical and the radial transports, we find that the
former dominates the latter one by an order of magnitude. This proves that in this
case the neglect of the radial currents, as suggested by Stern (1959), is justified,
and therefore the mean momentum scalings (figure 4.9) match remarkably well with
their 2-D analogue (figure 4.3), and the difference in the prefactors can presumably
be explained by the different velocity BCs.
The situation for larger Ra (figure 4.11 c-e) is vastly different. First, the prob-

lem becomes considerably three-dimensional and the radial transport now reaches
the same order of magnitude as the vertical transport (e.g. figure 4.11 c-e), which
suggests that the validity of the 2-D analogy at large Ra is no longer justified. Fur-
thermore, the mean field advection contributions, which can be partially seen from
figure 4.10, increase significantly. As a matter of fact, locally, it can even exceed
the Reynolds stress contributions. Furthermore, whereas for small Ra, vertical and
radial momentum transports are present throughout the whole domain, at large Ra
it becomes strongly confined to the boundaries. In particular, the vertical transport
peaks close to the top and bottom boundaries and is less pronounced in the centre.
The radial transport, on the other side, shows an interesting feature in the region
0.95 ≤ r/R ≤ 1 (figure 4.11 d,e). All terms are simultaneously positive, which
causes an enhanced zonal transport close to the sidewall. This may explain why a
prograde flow first appears close to the sidewall (figure 4.10, Ra = 106) and, from
there, spreads further inwards (figure 4.10, Ra = 107).

Sensitivity to the BCs and aspect ratio

The systems studied in this paper allow many variations of the velocity and tem-
perature boundary conditions as well as geometrical characteristics of the system.
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4.4 Three-dimensional convective systems

Figure 4.11: Components of the vertical momentum transport, eq. (4.5), (left) and
the radial momentum transport, eq. (4.6), (right). Parameters: Ω =
10−2 and Ra: (a) 103, (b) 104, (c) 105, (d) 106 and (e) 107.

Discussing all of them goes beyond the scope of a single study. Nevertheless, in order
to provide some preliminary intuition, we examine selected variations and their ef-
fects on the generation of the zonal flows. We do this for a single baseline simulation
at Ra = 105 and Ω = 10−1. The mean angular momentum profiles are shown in
figure 4.12.
First, we consider the effects of the aspect ratio. From classical RBC it is known

that zonal flow properties depend strongly on Γ (Wang et al., 2020a). In our case, a
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4 Generation of zonal flows in convective systems by travelling thermal waves

Figure 4.12: Mean angular momentum profile for Ra = 105 and Ω = 10−1. The
curves show the effects of different imposed BCs and aspect ratios: base-
line simulation (black, free-slip BCs, θ ∼ r/R and Γ = 1), sinusoidal
radial temperature BCs (blue, free-slip BCs, θ ∼ sin(πr/R) and Γ = 1),
no-slip (red, no-slip BCs, θ ∼ r/R and Γ = 1), Γ = 0.2 (yellow, free-slip
BCs, θ ∼ r/R and Γ = 0.2) and Γ = 2 (green, free-slip BCs, θ ∼ r/R
and Γ = 2).

decrease of the aspect ratio from Γ = 1 to Γ = 0.2 (slender cell) weakens the zonal
flow considerably by a factor of 100. Furthermore, the zonal flow becomes confined
to the top and bottom plates, while no zonal flow is observed in the centre of the
cell. On the other hand, increasing the aspect ratio to Γ = 2 has only minor impact
on the zonal flow. We must note that for the case of Γ = 0.2, convection has yet not
started and subsequent studies would be necessary to conclusively elucidate on the
aspect ratio dependence.
The effects of the BC variations on the formation of zonal flows can be formulated

as follows. No-slip conditions at the top and bottom plates lead to a slightly weaker,
but qualitatively similar zonal flow. Likewise, replacing the linear radial temperature
distribution at the plates by a sinusoidal distribution (θ ∼ sin(πr/R)) shows still a
qualitatively similar angular momentum profile, although the strength of the zonal
flow in the centre of the cell increases by a factor of about 1.5. This indicates that
the system is rather sensitive to variations of the temperature BCs.

4.4.3 Example: Atmospheric boundary layer

Finally, we would like to illustrate the strength of the induced zonal flows on a
concrete example. Assume an atmospheric boundary layer with a height of Ĥ =
500m and a vertical temperature difference of ∆T = 3◦C. Given a mean temperature
of 10◦C, the material properties of air are approximately κ = 2.0 × 10−5 m2/s,
ν = 1.4 × 10−5 m2/s and α = 3.6 × 10−3K−1. From that, we find Pr ≈ 0.7 and

Ra ≈ 1016 and the free-fall units uff ≡
√
αgĤ∆θ ≈ 7m/s, tff ≡ Ĥ/uff ≈ 70s.
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4.5 Conclusions

This system is exposed to a travelling thermal wave through the solar radiation with
a period of 24h, or, in dimensionless units Ω ≈ 10−3. For simplicity, we say, the day
and night difference is also about 3◦C, which is likely to be a rather conservative
estimate. Our study does not conclusively show how the zonal flows scale up to
Ra = 1016, but the results suggest a saturation at higher Ra, therefore we proceed
using the maximum order of magnitude, which is Uϕ ≈ 10−2 (for the given Ω it might
be smaller). With these values, the thermal variation of the Earth’s surface would
induce a prevailing zonal flow of around 0.07m/s, or equivalently 0.3km/h. However,
locally, it could exceed this value (see figure 4.10) multiple times, therefore speeds
of 1km/h are conceivable. Nevertheless, the variance of this estimate is rather high.
Subsequent studies have to examine the influence of Ra, Pr and the geometry, in
order to make more confident statements about natural systems.

4.5 Conclusions

We have explored the original moving heat source problem by means of direct nu-
merical simulations in 2-D and 3-D systems, for varying Rayleigh numbers Ra and
travelling thermal wave frequency Ω. In the seminal works of Fultz et al. (1959)
and Stern (1959), it was discovered that a system subjected to such a TW generates
Reynolds stresses, which induce a large scale mean horizontal, or equivalently zonal,
flow directed counter to the propagating thermal wave. Therefore, in the first part,
we revisited the theoretical model proposed by Davey (1967) and found excellent
agreement with the theory for low Ra flows, where even the absolute magnitude of
the zonal flows is reproduced remarkably well. As Ra increases, the theoretical model
overestimates the DNS data, which is consistent with the effects of higher-order non-
linear contributions (Whitehead, 1972; Young et al., 1972; Hinch & Schubert, 1971).
However, when an unstable mean temperature gradient is added to the system,

the flows deviate substantially from the initial predictions and often reverse their di-
rection to a prograde moving zonal flow. Such a behaviour was theorised before to be
the result of a mean flow instability caused by the tilt of convection cells (Thompson,
1970; Busse, 1972, 1983). Therefore, we have conducted a global linear stability anal-
ysis of a base flow near onset of convection and confirmed this hypothesis. The most
unstable mode can give rise to a reverse of the horizontal velocity profile. Despite
the strong plausibility, that this mean flow instability is the dominating mechanism
at large Ra, the question remains open as to why prograde flow are more numerous
than retrograde flows, while the mean flow instability suggests a spontaneous break
of symmetry and therefore a more balanced distribution. In this context, it would
be interesting to study in the future the interaction between the TW induced and
convection rolls induced fields.
In the second part we have examined the moving heat source problem in the

context of a 3-D cylindrical RBC system. The asymptotic scalings 〈Uϕ〉V ∼ Ω1

for Ω → 0 and 〈Uϕ〉V ∼ Ω−4 for Ω → ∞ of the 2-D theoretical model (Davey,
1967) still hold in this system, especially at small Ra. An analysis of the vertical
and radial momentum transport contributions suggests that the radial transport is
negligible at small Ra, (which justifies a 2-D approximation) but becomes relevant
as Ra increases. Furthermore, again, large Ra is found to predominantly induce a
prograde mean zonal flow. This gives more evidence that the prograde prevalence is
likely not fully explained by the mean flow instability picture and further studyies
are required to explain its origin.
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4 Generation of zonal flows in convective systems by travelling thermal waves

The studied problem is sufficiently general and can be extended to more com-
plicated systems (Whitehead, 1975; Shukla et al., 1981; Mamou et al., 1996). A
more generalised theoretical framework already exists, which includes the influence
of a basic stability and rotation (Stern, 1971; Chawla & Purushothaman, 1983),
however, as this study showed, the theoretical models most often cannot fully ex-
plain the phenomena in convection dominated systems. Furthermore, the moving
heat source problem might help to understand the ubiquitous structures present in
rotating systems. In rotating RBC systems, the flow structures near the sidewall
(Favier & Knobloch, 2020; Zhang et al., 2020) are similar to a certain extent to those
structures accounting due to the imposed TW.
Ultimately, this study also revealed that the estimates of the order of magnitudes

are still afflicted with too large variances to make reliable statements about natu-
ral systems. A naive approach showed that atmospheric currents, caused by solar
radiation and the Earth’s rotation, can actually generate prevailing zonal flows of
about 1.0 km/h. However, the variance of this estimate is rather high, it therefore
is pivotal for subsequent studies to examine the sensitivities with Ra, Pr and the
geometry in greater detail.

Appendix

4.A Theory for diffusion dominated flows

We follow the theory of Davey (1967), but solve the equations in a more general
way, to allow for flexibility in the chosen BCs; for more details, the reader is re-
ferred to Davey (1967) or Kelly & Vreeman (1970). Neglecting the mean vertical
velocity component, assuming the mean horizontal velocity to be independent of x
and neglecting the contributions from the mean temperature field θ, the linearised,
non-dimensionalised Navier-Stokes equations in two dimensions read

∂tu
′ + (U + u′)∂xu′ + w′∂z(U + u′) = −∂xp+ ν∗

(
∂2U

∂z2
+
∂2u′

∂x2
+
∂2u′

∂z2

)
, (4.7)

∂tw
′ + (U + u′)∂xw′ + w′∂z(w′) = −∂zp+ ν∗

(
∂2w′

∂x2
+
∂2w′

∂z2

)
+ θ′, (4.8)

∂xu
′ + ∂zw

′ = 0. (4.9)

Here, u′ and w′ are, respectively, the horizontal and vertical components of the
velocity fluctuations with respect to their time averages, i.e. U and W = 0, and θ′ is
the temperature fluctuation. For non-dimensionalisation we have used the free-fall
velocity uff ≡ (αg∆Ĥ)1/2, the height Ĥ and the amplitude of the thermal TW,
∆, so that ν∗ =

√
Pr/Ra. Let us consider a single wave mode in the horizontal

x-direction and in time t, e.g.:

w′(x, z, t) =
1

2

(
ŵ(z)e+i(kx−2πΩt) + ŵ∗(z)e−i(kx−2πΩt)

)
, (4.10)

u′(x, z, t) = −
∫
∂zw

′dx =
i

2k

(
∂zŵ(z)e+i(kx−2πΩt) − ∂zŵ∗(z)e−i(kx−2πΩt)

)
, (4.11)

θ′(x, z, t) =
1

2

(
θ̂(z)e+i(kx−2πΩt) + θ̂∗(z)e−i(kx−2πΩt)

)
, (4.12)

where the asterisk denotes the complex conjugate of a function. We will consider two

62



4.A Theory for diffusion dominated flows

BCs (different scenarios), Scenario 1 describes a set-up, where two travelling thermal
waves are imposed at the top and the bottom (whithout any phase difference). This
case was considered in the present work. Scenario 2, on the other hand, describes a
set-up, where the thermal wave travels only at the bottom, while the dimensionless
top temperature equals zero.

Step 1: calculate θ̂(z).

Neglecting dissipation in x, all convective terms and mean temperature contribu-
tions, the linearised non-dimensional energy equation reads

∂tθ
′ = κ∗

(
∂2θ′

∂z2

)
,

where κ∗ = 1/
√
RaPr. This, together with eq. (4.12), leads to the following equation

for the wave amplitude equation θ̂(z):

d2θ̂

dz2
− λ2θ̂ = 0; λ2 =

2πiΩ

κ∗
. (4.13)

The solution to eq. (4.13), for the two scenarios is:

Scenario 1

For θ̂|z=−1/2 = θ̂|z=1/2 =
1

2
:

θ̂(z) =
cosh(λz)

2 cosh(λ/2)
.

Scenario 2

For θ̂|z=−1/2 =
1

2
, θ̂|z=1/2 = 0 :

θ̂(z) =
sinh(λ/2− λz)

2 sinh(λ)
.

Step 2: calculate ŵ(z).

Eliminate the pressure term by cross-differentiation of (4.7) and (4.8), substitute
(4.10)-(4.12), neglect convective terms and assume that the thermal wavelength is
much larger than the height of the cell (kH � 1) to obtain

∂4ŵ

∂z4
− α2∂

2ŵ

∂z2
= k2θ̂, α2 =

2πiΩ

ν∗
. (4.14)

For ŵ|z=1/2 = ŵ|z=−1/2 = ∂zŵ|z=1/2 = ∂zŵ|z=−1/2 = 0, the solution to (4.14) is:

ŵ(z) =
c1

α2
cosh(αz) +

c2

α2
sinh(αz) + c3z + c4 + c5 cosh(λz) + c6 sinh(λz).
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Scenario 1

A =
k2

2ν∗λ2(λ2 − α2)
,

c1 = −λαAtanh(λ/2)

sinh(α/2)
,

c2 = 0,

c3 = 0,

c4 = A

(
λ

α

tanh(λ/2)

tanh(α/2)
− 1

)
,

c5 =
A

cosh(λ/2)
,

c6 = 0.

Scenario 2

A =
k2

4ν∗λ2(λ2 − α2)
,

c1 = −λαAtanh(λ/2)

sinh(α/2)
,

c2 =
−αA

(
λ

tanh(λ/2) − 2
)

(2/α) sinh(α/2)− cosh(α/2)
,

c3 = −c2

α
cosh(α/2) +

λA

tanh(λ/2)
,

c4 = A

(
λ

α

tanh(λ/2)

tanh(α/2)
− 1

)
,

c5 =
A

cosh(λ/2)
,

c6 =
−A

sinh(λ/2)
.

Step 3: calculate U(z).
Averaging equation (4.7) over time and over one wavelength in x, we obtain the

following equation for the mean flow U(z):

ν∗
d2U

dz2
=

d

dz
(u′w′), (4.15)

which can be solved via numerical integration using the no-slip BCs at the plates.

4.B Heat and momentum transport

The Nusselt number Nu and Reynolds number Re, based on the wind velocity, are
defined as

Nu ≡ −
〈
∂θ

∂z

∣∣∣∣
z=0

〉

A
, Re ≡

√
Ra

Pr

√
〈u2〉V ,
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4.C Linear stability analysis

Figure 4.13: Normalised Nu and Re vs. Ω for a) 2-D set-up A, b) 2-D set-up B and
c) 3-D Cylinder. Ra = 103 ( ), 104 ( ), 105 ( ), 106 ( ) and 107 ( ).

where A denotes the horizontal plane for the cylinder or, respectively, the x-direction
for the 2-D simulations. Figure 4.13 shows Nu(Ω) and Re(Ω), normalised by their
values at Ω = 10−3. Their exact values are given in the supplementary material.
The 2-D system (figure 4.13 a,b) shows a significant heat and momentum transport
enhancement for certain TW speeds Ω, especially for large Ra. For the 3-D cylindri-
cal system (figure 4.13 c), no clear correlation between the zonal flow maximum (see
figure 4.9) and Nu(Ω) and Re(Ω) is observed. However, a small Re enhancement is
present at Ω ≈ 10−2.

4.C Linear stability analysis

In section 4.3.1 a temporal linear stability analysis was conducted to identify the most
unstable eigenmode of the 2-D linearised Navier-Stokes equations, where a wave-like
form was considered only in time. Thus, any flow quantity φ(x, z, t) is represented
as φ(x, z, t) = φ̂(x, z)e−iωt and the system of equations for the horizontal velocity u,
the vertical velocity w, the pressure p and the temperature θ reads




L2−D +DxU DzU Dx 0
DxW L2−D +DzW Dz −1
Dx Dz 0 0

Dxθ Dzθ 0 K2−D







û
v̂
p̂

θ̂


 = ω




i 0 0 0
0 i 0 0
0 0 0 0
0 0 0 i







û
v̂
p̂

θ̂


 , (4.16)
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where

L2−D = UDx +WDz +
√
Pr/Ra

(
−D2

x −D2
z

)
,

K2−D = UDx +WDz + 1/
√
RaPr

(
−D2

x −D2
z

)
.

The overline represents the mean field quantity. In our study we applied the
Chebyshev method to approximate the vertical gradient (Dz) and the Fourier method
for the horizontal gradient (Dx). Conveniently, the corresponding differentiation
matrices are available open source, e.g. we used the Python package dmsuite.

The linear set of equations (4.16) is solved as a generalized eigenvalue problem of
the form Aφ̂ = ωBφ̂, where the eigenvectors φ(x, z, t) represent the wave amplitudes
and the eigenvalues ω their respective temporal behaviour. The matrices of the size
4 × Nx × Nz are very large and therefore an iterative solver has to be used (e.g.
Python’s scipy.eigs). The code has been validated by solving the Blasius boundary
layer, pipe flow and Rayleigh–Taylor instability in one and two dimensions, and in
closed and periodic domains. For all cases we have found excellent agreement with
results in the literature.
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5 Flow states and heat transport in
Rayleigh–Bénard convection with
different sidewall boundary
conditions

This work addresses the effects of different thermal sidewall boundary conditions
on the formation of flow states and heat transport in two- and three-dimensional
Rayleigh–Bénard convection (RBC) by means of direct numerical simulations
and steady-state analysis for Rayleigh numbers Ra up to 4× 1010 and Prandtl
numbers Pr = 0.1, 1 and 10. We show that a linear temperature profile imposed
at the conductive sidewall leads to a premature collapse of the single-roll state,
whereas a sidewall maintained at a constant temperature enhances its stabil-
ity. The collapse is caused by accelerated growth of the corner rolls with two
distinct growth rate regimes determined by diffusion or convection for small or
large Ra, respectively. Above the collapse of the single-roll state, we find the
emergence of a double-roll state in two-dimensional RBC and a double-toroidal
state in three-dimensional cylindrical RBC. These states are most prominent in
RBC with conductive sidewalls. The different states are reflected in the global
heat transport, so that the different thermal conditions at the sidewall lead to
significant differences in the Nusselt number for small to moderate Ra. How-
ever, for larger Ra, heat transport and flow dynamics become increasingly alike
for different sidewalls and are almost indistinguishable for Ra > 109. This sug-
gests that the influence of imperfectly insulated sidewalls in RBC experiments
is insignificant at very high Ra - provided that the mean sidewall temperature
is controlled.

Based on: Reiter, P., Zhang, X. & Shishkina, O. 2021 Flow states and heat transport in Rayleigh–
Bénard convection with different sidewall boundary conditions, arXiv:2111.00971
Main own contribution: Conducting all two-dimensional numerical simulations, writing a new
direct numerical simulation code, implementing and testing the steady-state adjoint algorithm,
analyzing the data, creating the figures, writing the first draft of the paper.
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5 Rayleigh–Bénard convection with different sidewall boundary conditions

5.1 Introduction

Understanding thermally induced convection as it arises in the earth’s atmospheric/oceanic
circulations and deducing its fundamental aspects from laboratory experiments is an
ongoing endeavour which motivated numerous experimental and theoretical studies.
In this realm, Rayleigh–Bénard convection (RBC), i.e. a fluid held between two
parallel plates heated from below and cooled from above, is the most thoroughly
investigated model system to study the complex physics behind natural convection
such as pattern formation and the transition to turbulence (Bodenschatz et al., 2000;
Ahlers et al., 2009b; Lohse & Xia, 2010).

Most of the early theoretical advances were made by considering the system as
infinitely extended in the lateral direction. For instance, conventional linear-stability
analysis predicts the formation of two-dimensional rolls (Chandrasekhar, 1961), while
a weakly non-linear analysis reveals the stability regimes of these rolls and their path
to subsequent oscillatory or stationary type bifurcations (Schlüter et al., 1965; Busse,
1967, 1978). In laboratory experiments, however, we must resort to laterally confined
systems where our understanding is far less complete. In particular, when the lateral
size of the container is close to or less than the height of the cell, the presence of
sidewalls plays an important role (Roche, 2020; Shishkina, 2021). Therefore, this
study focuses on the effects of different thermal sidewall boundary conditions on
heat transfer and the emergence of different flow states.
Different sidewalls are known to affect the critical Rayleigh number Rac above

which convection sets in (Buell & Catton, 1983; Hébert et al., 2010), and perfectly
conducting sidewalls have been found to delay the onset compared to adiabatic side-
walls. In an attempt to better understand the flow regimes above onset, bifurcation
analyses were performed in a cubic domain for adiabatic (Puigjaner et al., 2004) and
perfectly conducting sidewalls (Puigjaner et al., 2008). The bifurcation diagrams for
the conducting sidewalls are generally more complex, and double-toroidal states pre-
dominate over the classical single-roll structure found for adiabatic sidewalls. Side-
walls also have a strong influence on pattern formation (Cross & Hohenberg, 1993;
de Bruyn et al., 1996; Bodenschatz et al., 2000) and different sidewall boundary con-
ditions lead to differences in observable patterns even in cells with large aspect ratio
(Hu et al., 1993).
In RBC experiments, spurious sidewall heat fluxes are a major practical difficulty

that can substantially bias global heat transport measurements. Ahlers (2000) re-
ported that naive sidewall corrections can overstate Nusselt number measurements
by up to 20% and underestimate the scaling of the Nusselt number Nu with respect
to the Rayleigh number Ra (Nu ∼ Raλ) reflected in the reduction of the scaling ex-
ponent λ by about 2%, underscoring the importance of more sophisticated sidewall
corrections. Roche et al. (2001) further emphasized this conclusion by showing that
the sidewall corrections can be considerably larger than assumed, leading to scal-
ing exponents closer to the turbulent scaling of Nu ∼ Ra1/3 (Grossmann & Lohse,
2000, 2001, 2004) than previously measured. Probably the most important question
in convection today is whether the ultimate regime in confined geometries has the
same scaling as predicted for unbounded domains, i.e. Nu ∼ Ra1/2 (up to different
logarithmic corrections), as proposed by Kraichnan (1962) and Grossmann & Lohse
(2011). Another important question is when and how exactly the transition to the
ultimate regime takes place in confined geometries. Laboratory experiments (Cha-
vanne et al., 1997; Niemela et al., 2000; Chavanne et al., 2001; Ahlers et al., 2009a,
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2012; He et al., 2012b; Urban et al., 2014; Roche, 2020) in this extremely high Ra
regime are notoriously difficult to perform and potentially sensitive to several un-
knowns of the system, one of which is the influence of imperfectly isolated/adiabatic
sidewalls.
Numerical simulations were performed incorporating thermal conduction in the

solid sidewall to clarify the differences between an ideal adiabatic setup and a finite
thermal conductivity sidewall (Verzicco, 2002; Stevens et al., 2014; Wan et al., 2019).
The results of these studies suggest that different thermal properties of the sidewall
alter the mean flow structure, leading to significant differences in global heat trans-
port in the low to mid Ra range. However, this effect vanishes for larger Ra, at least
when the sidewall temperature is constant and maintained at the arithmetic mean
of upper and lower plate temperatures. Conversely, if the sidewall temperature de-
viates from the arithmetic mean, differences in heat transport persist even for large
Ra. This indicates that it is more important to keep the environment at the correct
temperature than to shield the interior of the cell from its surroundings.
Despite extensive previous work, the spatial distribution of flow and heat trans-

port in confined geometries with different thermal boundary condition has not been
exhausted, especially the conditions related to real experimental sidewall boundary
conditions. In the present work, we investigate RBC with the following thermal side-
wall boundary conditions: adiabatic, constant temperature (isothermal) and linear
temperature. In the first part of the results, we focus on a steady-state analysis
based on an adjoint descent algorithm (Farazmand, 2016) to identify different flow
states, their properties and their evolution over Ra. In the second part, the analysis
is complemented and extended to higher Ra into the turbulent regime by a set of
direct numerical simulations (DNS) for a 2D box and 3D cylindrical setup, covering
a range of 103 ≤ Ra ≤ 4× 1010 and 103 ≤ Ra ≤ 109, respectively, aiming for a more
complete picture. We first present our numerical methods, discuss the results and
conclude with our main findings.

5.2 Numerical methods

5.2.1 Governing equations

The dimensionless control parameters in RBC are the Rayleigh number Ra ≡ αg∆H3/(κν),
the Prandtl number Pr ≡ ν/κ, and the width-to-height aspect ratio of the box,
Γ ≡ L/H. Here, α denotes the isobaric thermal expansion coefficient, ν the kine-
matic viscosity, κ the thermal diffusivity of the fluid, g the acceleration due to gravity,
∆ ≡ T+ − T− the difference between the temperatures at the lower (T+) and upper
(T−) plates, H the distance between the parallel plates (the container height), and
L the length of the container or the diameter in the case of a cylindrical setup. In
this study, we focus on variations with Ra, while Pr = 1 is fixed for most results
in this paper except for a Pr -dependence study in section 5.4.5, and Γ = 1 is held
constant throughout the study.
The governing equations in the Oberbeck–Boussinessq approximation for the di-

mensionless, incompressible velocity u, temperature θ and kinematic pressure p read
as follows:

∂u/∂t+ u ·∇u +∇p =
√
Pr/Ra∇2u + θez,

∂θ/∂t+ u ·∇θ = 1/
√
PrRa∇2θ, ∇ · u = 0. (5.1)
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Figure 5.1: 2D Numerical setup of (a) adiabatic, (b) linear and (c) constant side-
wall temperature boundary conditions. (d) Sketch of cylindrical domain.
Profiles next to (b) and (c) show the imposed sidewall temperature dis-
tribution.

The equations were made dimensionless using the free-fall velocity uff ≡ (αg∆H)1/2,
the free-fall time tff ≡ H/uff , the temperature difference ∆ ≡ T+−T− between bot-
tom (T+) and top (T−) plates and H the cell height. Here ez is the unit vector in the
vertical z-direction. This set of equations is solved with the direct numerical solver
goldfish, which uses a fourth-order finite volume discretization on a staggered grid
and a third order Runge–Kutta time scheme. The code has been widely used in pre-
vious studies and validated against other direct numerical simulation codes (Kooij
et al., 2018; Reiter et al., 2021a).

5.2.2 Boundary conditions

We study 2D RBC in a square box and 3D RBC in a cylindrical domain. The setups
and profiles of the sidewall (SW) boundary conditions (BCs) used are shown in figure
5.1. The adiabatic, linear and (almost) constant conditions for the sidewall region
δVS are defined by

adiabatic: ∂θ/∂χ = 0, (5.2)
linear: θ = θ+ + z (θ− − θ+) , (5.3)

constant: θ =

{−k(2z−1)
k+2z (θ+ − θm) , 0 ≤ z ≤ 1/2,

k(2z−1)
k−2z+2 (θ− − θm) , 1/2 < z ≤ 1,

(5.4)

with the temperature of the lower plate θ+ = 1/2, the temperature of the upper plate
θ− = −1/2, their arithmetic mean θm = 0, z ≡ z/H ∈ [0, 1] and χ = x for box and
χ = r for cylinder, respectively. As for the constant temperature conditions, most of
the sidewall is kept at a nearly uniform temperature (θm), except for the transition
regions in the vicinity of the top and bottom plates to ensure a smooth temperature
distribution. The parameter 0 < k � 1 in eq. (5.4) defines the thickness of the
transition layer. Here we used k = 0.01, which gives a fairly sharp albeit sufficiently
smooth transition, as can be seen in figure 5.1 (c). Moreover, the velocity no-slip
conditions apply to all walls, i.e. u

∣∣
wall = 0.
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5.2.3 Adjoint descent method

A complementary analysis to direct numerical simulations is the study of the Boussi-
nesq equations by means of its invariant solutions. Hopf (1948) conjectured that the
solution of the Navier–Stokes equations can be understood as a finite but possibly
large number of invariant solutions, and turbulence from this point of view is the
migration from the neighbourhood of one solution to another. While highly chaotic
systems seem hopelessly complex to understand, laminar or weakly chaotic flows can
often be captured quite well with this approach. In this work, we focus solely on
solutions for steady-states (equilibrium).

Determining steady-state solutions can be quite difficult, especially when the num-
ber of dimensions is large as it is the case for most fluid mechanical problems. The
most commonly used numerical method for this task is Newton’s method, which
usually uses the generalized minimal residual (GMRES) algorithm to solve the corre-
sponding systems of linear equations (Saad & Schultz, 1986). This method generally
shows fast convergence rates when the initial estimate is close to the equilibrium
point. However, if the initial estimate is too far from the equilibrium, Newton’s
method often fails. In particular, for fluid mechanics, the basin of attraction of
Newton’s method can be quite small, making the search for steady-states highly
dependent on the initial guess. Here we consider an alternative approach recently
proposed by Farazmand (2016) based on an adjoint method. Farazmand (2016) has
shown that this adjoint-descent method can significantly improve the chance of con-
vergence compared to the Newton–descent method, and thus more reliably capture
equilibrium states from a given initial state, but at the cost of a generally slower
convergence rate. A detailed derivation of the algorithm can be found in Farazmand
(2016). Below we sketch the idea of the method.

Suppose we want to find equilibrium solutions of a particular PDE (in our case
the Boussinessq equations)

∂tu = F (u), (5.5)

with u = u(x, t). The equilibrium’s of F(u) can be generally unstable and therefore
difficult to detect. The idea is to search a new PDE, i.e.

∂τu = G(u), (5.6)

which solutions always converge to the equilibrium solutions of (5.5) when the ficti-
tious time τ goes to infinity

‖F (u)‖2A → 0 as τ →∞, (5.7)

with the weighted energy norm ‖·‖A ≡ 〈·, ·〉A ≡ 〈·,A·〉 for a certain real self-adjoint
and positive definite operator A. F (u) evolves along a trajectory u′ in accordance
with

1

2
∂τ‖F (u)‖2A = 〈δF (u,u′), F (u)〉A, (5.8)

where δF (u,u′) ≡ lim
ε→0

F (u+εu′)−F (u)
ε of F (u) is the functional Gateaux derivative

at u in the direction u′. In the Newton-descent method, the search direction u′ is
approximated from δF (u,u′) = −F (u) by using, for example, a GMRES iterative
algorithm. For the adjoint-descent method, on the other hand, we rewrite eq. (5.8)
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in the form
1

2
∂τ‖F (u)‖2A = 〈u′, δF †(u, F (u))〉A, (5.9)

where δF † is the adjoint operator of the functional derivative δF . For u′ = −δF †(u, F (u))
one guarantees that ‖F (u)‖2A decays to zero along the trajectory u′, since then
1
2∂τ‖F (u)‖2A = −

∥∥δF †(u, F (u))
∥∥2

A. Letting u evolve along the adjoint search di-
rection ensures the convergence to an equilibrium, thus we find the desired PDE
G(u) ≡ u′, i.e.

G(u) = −δF †(u, F (u)). (5.10)

The choice of the norm ‖·‖A is important for the algorithm to be numerically stable
and is explained in more detail in the appendix. As mentioned, the operatorA should
be real-valued, positive-definite and self-adjoint. Following Farazmand (2016), we use
an operator A that is closely related to the inversed Laplacian, i.e. A = (I−α∇2)−1

where I is the identity operator and α is a non-negative scalar parameter. For α = 0
this norm converges to the L2-norm and for α > 0 it effectively dampens smaller
scales and provides a better numerical stability.
The linear adjoint equations for the Boussinesq equations (5.1) read

−∂τu =
(
∇ũ′′ + (∇ũ′′)T

)
u− θ̃′′∇θ −∇p′′ +

√
Pr/Ra∇2ũ′′,

−∂τθ = u ·∇θ̃′′ + 1/
√
PrRa∇2θ̃′′ + ~ez · ũ′′,

∇ · u′′ = 0, ∇ · u = 0 (5.11)

(see derivations in the appendix). Here the double prime fields u′′ and θ′′ denote the
residuals of the Navier–Stokes eq. (5.1), i.e.

u′′ ≡ −u ·∇u−∇p+
√
Pr/Ra∇2u + ~ezθ,

θ′′ ≡ −u ·∇θ + 1/
√
PrRa∇2θ. (5.12)

and ũ′′ ≡ Au′′ as well as θ̃′′ ≡ Aθ′′. For simplicity, let q ≡ (u, θ), then the adjoint
descent method consists of three steps

1. Find the residuals q′′ according to eq. (5.12).

2. Solve q̃′′ = Aq′′ for q̃′′.

3. Update q according to eq. (5.11).

In step (i), we solve the time-stepping eq. (5.1), where we use a standard pressure
projection method and treat the diffusion term implicitly. The time step size ∆t can
be chosen independently of the artificial time step size ∆τ of the adjoint equations.
For step (ii), using the energy norm ‖·‖A with the operator A = (I − α∇2)−1, we
solve the Helmholtz-type equation (I−α∇2)q̃′′ = q′′. The integration of the adjoint
equations in step (iii) is similar to step (i), but all terms are treated explicitly.
Through tests, we found that the artificial time step ∆τ can be chosen much larger
than ∆t in some cases, i.e. for large Ra.

The boundary conditions of ũ′′ and θ̃′′ result from integration by parts in the
derivation of the adjoint equations. Evaluation of the adjoint operator of the diffusion
terms yields
∫

V
ũ′′∇2u′dV =

∫

V
u′∇2ũ′′dV +

∫

S
u′(∇ũ′′ · n)dS −

∫

S
ũ′′(∇u′ · n)dS, (5.13)
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Figure 5.2: Convergence of the adjoint-descent method for three different Ra, start-
ing from the same initial field. The time-step size for which the algorithm
is just stable increased with Ra, i.e., for these cases we used ∆τ = 0.5
(Ra = 104), ∆τ = 2.0 (Ra = 105) and ∆τ = 5.0 (Ra = 106). All
three cases converged to large-scale circulation flow states as described
in section 5.3.2.

where we see the occurrence of two additional boundary terms (the last two terms)
evaluated on the boundary domain S. The first boundary term vanishes since the
search direction u′ is zero on the boundaries. The second term can be eliminated if we
also choose homogeneous Dirichlet boundary conditions for the adjoint field ũ′′ on S.
The same logic applies to homogeneous Neumann conditions. For the pressure field
p′′, we apply Neumann boundary conditions conditions on all walls. In this study, all
flow states showed good overall convergence (‖F (u)‖2A ≤ 10−5) and the velocity fields
where almost divergence free (‖∇ · u‖L2 ≤ 10−3). However, the rigorous verification
of the chosen pressure BCs has yet to be performed. Another interesting point,
reserved for later investigation, is whether a vorticity-streamfunction formulation
might be better suited to resolve issues with the boundary conditions.

For the steady-state analysis, we use a Galerkin method with Chebyshev bases
in x and z directions and a quasi-inverse matrix diagonalization strategy for better
efficiency (Shen, 1995; Julien & Watson, 2009; Oh, 2019; Mortensen, 2018). The
code is publicly available (Reiter et al., 2021b). We use an implicit backward Euler
time discretization and alias the fields using the 2/3 rule by setting the last 1/3 high-
frequency spectral coefficients to zero after evaluating the nonlinear terms. When
used as a direct numerical solver, we found excellent agreement with our finite-
volume code goldfish. In addition, the steady-states from the adjoint descent
method showed excellent agreement with those found by an alternative Newton–
GMRES iteration. Figure 5.2 shows the convergence rates for three different Ra,
starting from the same initial state. Overall, we find that the convergence chance
is improved over the Newton-descent method, although the convergence rate suffers
and larger Ra are either not feasible with the current approach as implemented in
our code or diverge after some time. Therefore, we restrict the steady-state analysis
to flows in the range Ra ≤ 107 and investigate larger Ra using direct numerical
simulations. One conceivable problem with the current approach is that the currently
used energy norm with the operator A ≡ (I − α∇2)−1 dampens smaller scales in
order to increase the stability of the algorithm. But for larger Ra, smaller scales
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Figure 5.3: Growth rates σ as determined from linear stability analysis for the four
most unstable modes at the onset of convection in the 2D cell for (a)
adiabatic, (b) linear and (c) constant sidewall boundary conditions. Each
line represents a different unstable mode: single roll (black), vertically
stacked double roll (red), horizontally stacked double roll (gray) and four-
roll (blue).

become important to resolve the boundary layers sufficiently, so the algorithm is
likely to take longer to converge or the damping of the smaller scales is too severe to
reach convergence overall. Using smaller values of α could lead to better results in
that case, as it emphasizes smaller scales more. Preliminary analysis suggests that
α = 10−3 leads to better convergence to a steady-state than α = 1, but requires
smaller time steps δτ , which currently makes it too costly to apply to a wider range
of parameters. In the future, the convergence rate might be improved by employing
a hybrid adjoint-descent and Newton-GMRES approach, as proposed by Farazmand
(2016). Alternative gradient optimization techniques are also conceivable to boost
convergence speed.

5.3 Steady-state analysis

In this section, we study steady-states in 2D RBC for Ra ≤ 107. In what follows, we
refer to flow states as single or multiple solutions connected by inherent symmetries
of the system. For example, the single-roll state (SRS) in 2D can exist in two forms,
either circulating clockwise or counterclockwise, but is considered as a single flow
state that is invariant under reflection. Steady-state solutions of the SRS state have
been investigated in laterally periodic flows with stress-free velocity boundary condi-
tions on the horizontal walls (Wen et al., 2015, 2020b) and with no-slip BCs (Waleffe
et al., 2015; Sondak et al., 2015; Wen et al., 2020a; Kooloth et al., 2021). Bifur-
cations and different flow states have already been studied in laterally unbounded
RBC (Zienicke et al., 1998), in laterally bounded RBC for a cubic domain (Puig-
janer et al., 2008) and a 2D square domain (Venturi et al., 2010). Here we focus on
the onset of convection, the SRS and a vertically stacked double-roll state (DRS) in
two-dimensional RBC for three different sidewall BCs as shown in figure 5.1.

5.3.1 Onset of convection

In RBC, there is a critical Rayleigh number Rac above which the system bifurcates
from the conduction state to coherent rolls. We calculate Rac using a linear stability
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Figure 5.4: Single roll state for (a) adiabatic (Ra = 106), (b) linear (Ra = 9 × 104)
and (c) constant (Ra = 106) sidewall temperature boundary conditions.
Contours (streamlines) represent the temperature (velocity) field.

analysis described in more detail in Reiter et al. (2021c). For adiabatic or linear
(conductive) sidewall BCs, the conduction or base state is characterized by a linear
temperature profile in the vertical direction with zero velocity field and independence
from control parameters. However, for a constant temperature sidewall distribution,
there is always a weak flow due to the horizontal temperature gradients, which resem-
bles a four-roll state. In this case, we perform a steady-state search before analyzing
the local stability around this equilibrium point.
Figure 5.3 shows the linear growth rates of the four most unstable modes, which

resemble the first four Fourier modes as depicted in the same figure. All three BCs
initially bifurcate from the conduction state to a single roll state. Adiabatic sidewalls
lead to a lower critical Rayleigh number compared to isothermal sidewalls, which is
to be expected (Buell & Catton, 1983; Shishkina, 2021). The onset for the adiabatic
sidewall occurs at Rac ≈ 2.7× 103 which agrees well within our resolution limit with
Venturi et al. (2010), who reports a critical Ra of about 2582. The onset for the
linear SW occurs at 5.1×103 and the onset for the constant SW occurs slightly later
at 5.6 × 103. This indicates that the interaction of the convective field - as present
for the constant sidewall BC - with the unstable modes is weak and its influence on
the onset is small.

5.3.2 Single-roll (states S1
A, S1

L, S1
C)

The single roll state (SRS) is arguably the most important state in RBC for aspect
ratios around unity. It is the first mode to appear above the conduction state, as we
have just seen, and prevails even up to largest Ra in the form of large-scale circulation
(LSC) on turbulent superstructures (Zhu et al., 2018a; Reiter et al., 2021a). The
SRS is stable and time-independent for small Ra but oscillatory, chaotic, or even
completely vanishing for larger Ra, as we will show in section 5.4.3. Here we analyze
its properties before collapse and show that the growth of secondary corner rolls plays
an important role in its destabilization and that this process can be both suppressed
and enhanced by different sidewall boundary conditions.
Figure 5.4 shows the temperature and velocity fields of the SRS for different side-

wall BCs. For all three BCs we can identify a large primary roll circulating counter-
clockwise and two secondary corner rolls. The corner rolls are most pronounced for
the linear sidewall BC and the primary roll is nearly elliptical. The dimensionless
heat-flux is expressed in form of the Nusselt number Nu ≡

√
RaPrFfH/∆ with the
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Figure 5.5: Nusselt number Nu for the single-roll states for (a) adiabatic, (b) linear
and (c) constant sidewall temperature boundary conditions. Plotted is
the range, where steady state convergence is achieved. Further compari-
son of the steady-state analysis with the DNS results is shown in figure
5.18.

heat-flux Ff entering the fluid and the imposed temperature difference ∆. Ff can be
defined in different ways, especially in the presence of sidewall heat-fluxes. Averaging
the temperature equation in eq. (5.1) over time, one obtains

∇ · F = 0, F ≡ uθ − 1/
√
RaPr∇θ, (5.14)

from which it follows that the total heat flux must vanish through the boundaries
S = δV , i.e.

∫
S(F · n)dS = 0. (However, local temperature fluxes through the

sidewall can and do exist, as we discuss in section 5.4.2.) For isothermal sidewall
BCs, asymmetric flow states with net nonzero sidewall heat-fluxes are possible; in
this case the heat fluxes through the bottom and top plates would deviate from
each other. However, in the present study, we found that all sidewall heat fluxes are
approximately equal to zero when integrated vertically and the temperature gradient
at the bottom plate is approximately equal to the temperature gradient at the top
plate. Therefore, we define Nu based on the lower (hot) plate at z = 0:

Nu ≡ − 1

A+

∫

S+

∂θ

∂z
dS+, (5.15)

with the bottom plate domain S+ and its surface area A+. The dimensionless mo-
mentum transport is given by the Reynolds number

Re ≡
√
Ra/Pr

√
〈U2〉V L, (5.16)

based on total kinetic energy of the mean field velocity U. Here, 〈·〉V denotes a
volume average.

In the laminar regime, where the dissipation of velocity and temperature field is
determined by the contributions of the boundary layers, we expect the total heat
and momentum scaling Nu ∼ Ra1/4 and Re ∼ Ra1/2 (Grossmann & Lohse, 2000),
respectively. Figure 5.5 shows that the former scaling shows up only for a very
limited Ra range and only for the adiabatic boundary conditions. The SRS of the
linear sidewall BCs is stable only up to Ra ≤ 105, then the corner rolls become strong
enough to lead to a collapse of the SRS. The stability region where the steady-states
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converge is too small to observe an unperturbed scaling. On the other hand, for the
constant sidewall boundary conditions, corner roll growth is less dominant. In this
case, the reason why Nu scaling deviates from 1/4, is that heat entering through the
bottom/top can immediately escape through the sidewalls in the form of a "short-
circuit", which dominates the lower Ra regime and is the reason why Nu is relatively
large for small Ra. For the adiabatic sidewall BC, we observe Nu ∼ Ra0.25 for
104 ≤ Ra ≤ 3 × 105, followed by Nu ∼ Ra0.16 for 3 × 105 ≤ Ra ≤ 106. Similarly,
the growth of the corner rolls disturbs the convection wind, and Nu deviates from
the ideal 1/4 scaling. Looking at the Re vs. Ra scaling in figure 5.6, we find the
theoretically predicted scaling of 1/2 is better represented in comparison and the
different sidewall boundary conditions deviate less among themselves. This suggests
that momentum transport is less affected by changing sidewall boundary conditions
than heat transport.

Growth of corner rolls

The SRS is stable up to a certain Ra limit. Above this limit, it may fluctuate, reverse
orientation, or even disappear altogether. This process occurs at Ra ≈ 106 for the
adiabatic and constant temperature sidewall BCs and at Ra ≈ 105 for the linear
sidewall BC. While up to this event the dynamic behaviour of the three different
sidewall BCs is qualitatively very similar, from there on it differs. The constant
sidewall BC case shows a time dependence, but remains in the SRS state without
changing its orientation. The adiabatic and linear sidewall BCs, on the other hand,
enter a more chaotic regime of regular and chaotic flow reversals (Xi & Xia, 2007;
Sugiyama et al., 2010), some of which are discussed in section 5.3.3. Of greatest
importance here appears to be the presence and magnification of secondary corner
rolls (CRs).

Figure 5.7 (a) shows the vorticity field and stream-function contour of two-dimensional
RBC with adiabatic sidewalls at Ra = 7× 105. The existence of two corner vortices
is apparent. Here we define the corner roll size δCR based on the zero crossing, or
stagnation point, of the vorticity ω ≡ ∂xuz − ∂zux at the top plate, cf. Shishkina
et al. (2014). To understand the processes involved in the formation of the corner
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Figure 5.7: (a) Steady-state vorticity field and velocity streamlines for Ra = 7× 105

and adiabatic sidewalls. The corner roll size δCR is defined as the distance
from the corner to the closest stagnation point at the plate. Bottom
figures show the vorticity balance contributions according to eq. (5.17) in
the corner roll domain, i.e., (b) diffusion, (c) buoyancy and (d) convection.
The same contour levers were used for (b− d).

rolls, we write down the evolution equation for vorticity

∂tω = −u ·∇ω︸ ︷︷ ︸
convection

+
√
Pr/Ra∇2ω︸ ︷︷ ︸
diffusion

+ ∂xθ︸︷︷︸
buoyancy

. (5.17)

It is evident that for steady-states (∂tω = 0) there must be an equilibrium between
convection, diffusion and buoyancy forces. The three corresponding fields are shown
in figure 5.7 (b − d) zoomed in on the corner roll region. For this particular Ra,
all three contributions appear to be significant. We evaluate the size of the corner
rolls (figure 5.8) and analyse contributions of diffusion, buoyancy, and convection
for all Ra (figure 5.7). For this purpose, we evaluate the absolute values of the
volume averages for each term in the corner roll region, e.g., 〈|∂xθ|〉SCR

represents
the strength of the buoyancy term in the corner roll area SCR, as shown in figure
5.7 (c). The constant BC yields a notable exception because multiple corner rolls
can exist. This can be sensed from figure 5.4 (c). For small Ra, the corner roll are
dominant in the lower right and upper left corner, where the LSC detaches (ejects).
For the other two BCs, these rolls are not present. Looking at eq. (5.17), we realize
that the presence of a horizontal temperature gradient can lead to the formation of
vortex structures. This condition is present for the constant BCs, e.g., in the lower
right corner, where the hot LSC detaches while the temperature is kept constant at
zero, resulting in a (strong) negative temperature gradient. The two more "classical"
corner rolls first appear at larger Ra, but soon take over in size, as can be seen in

78



5.3 Steady-state analysis

purely
buoyant

convection
supported

∼ R
a
0.2

1 ∼
R
a
0.
49

104 105 106

0.1

0.3

Ra

δ C
R
/L ∼ R

a
0.
30

104 105

0.18

0.34

Ra

∼ R
a
0.
25

∼ Ra−0.13

104 105 106

0.1

0.3

Ra

(a) (b) (c)Adiabatic SW Linear SW Constant SW

Figure 5.8: Growth of the corner roll size δCR for (a) adiabatic, (b) linear and (c)
constant sidewall temperature boundary conditions. Adiabatic BC show
two distinct regions, a buoyant dominated regime and a regime where
convective influx leads to a more rapid increase. For the constant BC,
the corner rolls appear first in the plume ejecting corner (bottom right
and upper left in figure 5.4) which is represented by the open symbols in
(c), and only for larger Ra they appear in the plume impacting region
(closed symbols). Plotted is the range, where steady state convergence
is achieved.

figure 5.8.
The adiabatic and linear sidewall BCs each yield only two corner rolls. These are

present from the onset of convection and grow until the collapse of the SRS (figure
5.8). The main difference between the two is that for the adiabatic sidewall, the
corner rolls initially grow monotonically with respect to Ra, whereas for the linear
sidewall BCs, the corner rolls are already considerable large as soon as the SRS is
present. Moreover, they also grow faster with respect to Ra (δCR ∼ Ra0.3) and soon
cover almost 40% of the width of the cell. Their large initial size combined with faster
growth is the reason for premature SRS instability in linear sidewall BCs. Figure
5.9 (b) shows that vorticity formation for the entire Ra range is mainly governed by
buoyancy and balanced by diffusion. Assume the hot plumes carry warm fluid to the
upper plate where it meets a cold sidewall, generating strong lateral gradients in the
upper right corner and consequently vorticity, according to eq. (5.17).
In the adiabatic case, on the other hand, the sidewall is warmer close to the corner,

which leads to less vorticity generation by lateral temperature gradients and therefore
smaller corner rolls. In the low Ra regime, the corner rolls of the adiabatic sidewall
are also governed by buoyancy, with a growth of the corner rolls of δCR ∼ Ra0.21

(figure 5.8 a). This can be understood by dimensional arguments. Assume convection
can be neglected in eq. (5.17), which is justified from the results in figure 5.9 (a).
Thus we obtain

√
Pr/Ra∇2ω = ∂xθ, or, in terms of a characteristic temperature

θCR and a characteristic vorticity ΩCR, we have ν ΩCR

δ2CR
∼ θCR

δCR
, and thus

δCR ∼
√
Pr

Ra

ΩCR

θCR
. (5.18)

The evaluation (not shown here) of the characteristic vorticity in the corner roll
regions by means of their root mean square value unveiled Ω ∼ Ra0.7. Assuming
further that the temperature θCR is approximately constant over Ra, we obtain
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Figure 5.9: Strength of the vorticity balance contributions diffusion (black circles),
buoyancy (yellow diamonds) and convection (green squares) in the corner
roll region, according to eq. (5.17). (a) adiabatic, (b) linear and (c)
constant sidewall temperature boundary conditions. Adiabatic BC show
two distinct regions, a buoyancy dominated regime and a regime where
convective influx leads to a more rapid increase. For the constant BC,
the corner rolls appear first in the plume ejecting corner (bottom right
and upper left in figure 5.4) which is represented by the open symbols in
(c), and only for larger Ra they appear in the plume impacting region
(closed symbols). Plotted is the range, where steady state convergence
is achieved.

δCR ∼ Ra0.20, which agrees remarkably well with δCR ∼ Ra0.21. Figure 5.8 (a)
discloses a transition at Ra ≈ 3 × 105 , above which the corner roll growth acceler-
ates exhibiting a scaling of δCR ∼ Ra0.49. Figure 5.9 (a) indicates that convective
processes begin to affect vorticity generation. Figure 5.7 (d) reveals a region with
strong convective vorticity current with the same sign as the buoyancy forces, which
enhances the vorticity generation in this region (figure 5.7 c). We interpret that
above a certain Ra the primary roll of the SRS begins to feed the corner rolls until
they become strong enough, eventually leading to the collapse of the SRS itself. We
would like to note that the current analysis describes steady-states up to Ra ≤ 106.
An opposite trend was observed for larger Ra by Zhou & Chen (2018), who found
a slow shrinkage of the corner rolls that scales approximately with ∼ Ra−0.085. It
would be interesting to consolidate these results in future studies.

5.3.3 Double-roll (S2
A, S2

L)

Having discussed the properties of the SRS state, we proceed to the double-roll state
(DRS) as shown in figure 5.10. It consists of two vertically stacked hot and cold
circulation cells rotating in opposite directions with an almost discrete temperature
jump in the mid plane. The DRS was not identified as an equilibrium for the constant
sidewall BCs, so we will discuss it exclusively for the adiabatic and linear sidewall
setup. The DRS can coexist with the SRS, but is generally found at larger Ra. Here
we have tracked it in the range 105 ≤ Ra < 7 × 106 for adiabatic and 105 ≤ Ra <
4×106 for linear sidewall BCs. This range is consistent with Goldhirsch et al. (1989)
who described a roll-upon-roll state in 2D RBC for Pr = 0.71 at Ra ≈ 105, but
interestingly it was not found for Pr = 6.8.
From figure 5.11 we see that Nu scales close to Nu ∼ Ra1/4, which corresponds to
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laminar scaling for RBC flows governed by boundary layer dissipation. Compared
to the single-roll state, it is less effective in transporting heat from wall to wall, as
evidenced by an overall smaller Nu. This is actually to be anticipated, since one roll
of the DRS can be conceptually viewed as a half-height, half-temperature gradient
RBC system, implying a 16 times smaller effective Ra. However, this factor most
likely overestimates the difference, since the mid plane velocity is much closer to a
free-slip flow than a no-slip flow and the aspect ratio is two rather than one. In
reality, a DRS has about the same Nu as a SRS with a 6 times smaller Ra.
The DRS is found to be time-independent (stable) only for the adiabatic sidewall

BCs for Ra ≤ 4 × 105. For other Ra it is either periodically oscillating or chaotic.
In figure 5.12 we show characteristic frequencies of the DRS obtained by initializing
DNS simulation with the steady-state solutions and evaluating the frequency spectra
of Nu(t). The frequency is presented in free-fall time units. The DRS oscillates with
a frequency of about 0.1 for Ra ≤ 106 for both the adiabatic and linear setups,
i.e., about one cycle every 10 time units. This cycle corresponds to about half the
circulation time of a cell, i.e., the characteristic velocity of the circulation is about
0.09 ∼ 0.11 and its size is ≈ 2L. Thus, the DRS oscillation frequency seems to be
initially tied to the circulation time. When Ra exceeds 106, we see the emergence of
a more chaotic behavior. Despite increasing turbulence, the DRS state persists and
does not show transition to a SRS state for Ra < 107. In section 5.4.3 we will see
that for larger Ra the DRS state is eventually replaced by a single roll LSC again.
The DRS state is not merely an equilibrium solution, but more fundamentally

there is a regime in Ra where the DRS is the preferred flow state to which all initial
states tested in this work tend towards. Starting from random perturbations, one
usually first finds a SRS, which soon goes through a series of flow reversals and resta-
bilizations until it evolves to the DRS state. This process is depicted in an SRS-DRS
phase space picture in figure 5.13. The horizontal axis represents the SRS, and the
vertical axis represents the DRS. This process is qualitatively the same for adiabatic
and linear sidewall boundary conditions. We do not address the flow reversal pro-
cess, as it is described in more detail in Xi & Xia (2007); Sugiyama et al. (2010);
Castillo-Castellanos et al. (2016); Zhao et al. (2019), but note that the intermediate
flow fields bear striking resemblance to the proper orthogonal decomposition modes
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Figure 5.14: Mean temperature profile for cases with (a, d) adiabatic, (b, e) linear
and (c, f) constant sidewall boundary conditions for (a-c) 2D box and
(d-f) cylinder.

presented in Podvin & Sergent (2015, 2017). We want to stress that the transition
time is surprisingly long. It can take up to several thousand free-fall time units for
the flow to settle in the DRS state, so it can be missed if the observation window is
too small.

5.4 Direct numerical simulations

In addition to the steady-state analysis, we performed a series of DNS of RBC for
2D in a square and 3D in a cylinder with Γ = 1 and Pr = 1, covering Ra from the
onset of convection to 4.64 × 1010 and 109, respectively. The highest Ra in 2D was
simulated on a 10242 grid with at least 15 grid points in the thermal boundary layer
and performed for several thousand free-fall time units, ensuring adequate spatial
resolution and temporal convergence. The largest simulation for the cylindrical setup
was performed on a Nr×Nϕ×Nz = 128×256×320 grid, with about 10 points inside
the thermal and viscous boundary layers and the averaging statistics were collected
for at least 600 free-fall time units.

5.4.1 Vertical temperature profiles

Figure 5.14 shows the horizontally averaged temperature profiles 〈θ〉A for all con-
ducted simulations. We first remark the similarity between 2D and 3D. For example,
both show the feature of a weakly stabilizing positive temperature gradient in the
mid plane for small Ra and adiabatic boundary conditions (figures 5.14 a,d). This
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Figure 5.15: Comparison of the lateral sidewall heat flux Nusw for cases (a, c) linear
and (b, d) constant sidewall boundary conditions in (a, b) 2D box and
(c, d) cylinder.

phenomenon is often found in the interior of the bulk (Tilgner et al., 1993; Brown &
Ahlers, 2007; Wan et al., 2019) and is caused by the thermal signature of the LSC.
As the thermal plume of the LSC climbs up along the sidewall, it penetrates deeper
into the bulk, thus hot (cold) plumes carry their signature into the top (bottom)
part of the cell, which can result in a slightly positive temperature gradient in the
center of the bulk.
Another important detail is the apparent non-monotonicity of the profiles in the

intermediate Ra range, which is most pronounced for the linear sidewall BCs (figure
5.14 b,e) and also occurs for the 2D adiabatic BCs. The temperature profiles initially
drop sharply and then level of at about a quarter of the cell height before dropping
sharply again in the cell center. This behaviour was also observed in Stevens et al.
(2014). These profiles are reminiscent of the DRS state (see section 5.3.3) and indeed
caused by transitions in the flow structures, which we analyse in section 5.4.3 in more
detail. Finally, all simulations for larger Ra show the classical RBC profile with steep
temperature gradients at the bottom and top plates and a well-mixed homogeneous
bulk.

5.4.2 Vertical sidewall heat flux profiles

Next we analyse the horizontal heat flux through the vertical sidewall Nusw which
is more elaborately defined in the appendix 5.A. This is shown in figure 5.15 for the
linear and constant BCs, while the sidewall heat flux of the adiabatic BC is obviously
zero. The linear and constant BCs show two opposite trends. The constant setup has
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the largest temperature gradients for small Ra and almost vanishing gradients for
large Ra. This can be understood from the temperature profiles in figure 5.14 (c, f).
As Ra increases, the bulk is more efficiently mixed and the temperature distribution
becomes nearly constant, hence the temperature in the cell becomes more similar to
the sidewall temperature imposed by the BCs. On the other hand, the linear sidewall
BC corresponds exactly to the temperature profile before the onset of convection
and from then on its contrast increases more and more, which is reflected in the
relatively strong vertical temperature gradients for large Ra. However, all profiles
are symmetrical around the center and consequently, although heat flows in and out
locally, there is no net heat flux through the vertical sidewalls. This is supported by
the fact that in our simulations the temperature gradients at the top and bottom
plates were nearly equal, linked by the heat flux balance

Nuc −Nuh + ζ〈Nusw〉z = 0 (5.19)

with ζ = 1
Γ for the 2D box and ζ = 4

Γ for the cylindrical setup (see appendix 5.A).
Lastly, we detect at least two transitions in Nusw for the linear sidewall BCs (figure
5.15 a, c). These are consistent with the transitions in the temperature profiles
discussed in the previous section and are elucidated in more detail in the following.

5.4.3 Mode analysis

It is generally difficult to compare the dynamics of flows in different, possibly even
turbulent, states without restricting the underlying state space. Therefore, in this
section we analyze the DNS results by projecting each snapshot onto four distinct
modes and evaluate time averages and standard deviations.
Starting with the 2D simulations, a common choice for the mode are the first four

Fourier modes, see e.g. Petschel et al. (2011) and (Wagner & Shishkina, 2013), i.e.

um,kx = − sin(πmx/L) cos(πkz/H),

um,kz = cos(πmx/L) sin(πkz/H). (5.20)

For the cylinder, the choice of modes is less obvious. In this work, we follow Shishkina
(2021) and use a combination of Fourier modes in z and ϕ direction and Bessel
functions of the first kind Jn of order n in r for the radial velocity component ur and
the vertical velocity component uz. The first two (non-axisymmetric) modes are

u1,k
r = J0(α0r/R) cos(πkz/H)eiϕ,

u1,k
z = J1(α1r/R) sin(πkz/H)eiϕ, (5.21)

and the axisymmetric modes are

u2,k
r = J1(α1r/R) cos(πkz/H),

u2,k
z = −J0(α0r/R) sin(πkz/H), (5.22)

where αn is the first positive root of the Bessel function Jn for Dirichlet boundary
conditions on the sidewall (ur) and the k-th positive root of the derivative of the
Bessel function J ′n for Neumann boundary conditions (uz). The non-axisymmetric
modes are complex-valued to account for different possible azimuthal orientations.
Ultimately, however, we are only interested in the energy content and not the orien-
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Figure 5.16: Energy and standard deviation of the projection of flow field snapshots
onto the modes defined by eq. (5.20) for the 2D box and (a) adiabatic,
(b) linear and (c) constant sidewall temperature boundary condition for
the 2D box. Below: Streamlines, coloured by vertical velocity, of the
modes F1, F=

2 , F‖2 and F4.

tation of the modes, so we evaluate their magnitude. We note further, that a vertical
slice through the cylindrical modes is very similar to the first four 2D Fourier modes,
albeit with a slightly different dependence in the radial direction. For this reason,
we use the same notation for the cylindrical modes as for the Fourier modes in 2D.
More precisely, we have F1 ≡ (u1,1

r , u1,1
z ), F=

2 ≡ (u1,2
r , u1,2

z ), F ‖2 ≡ (u2,1
r , u2,1

z ) and
F4 ≡ (u2,2

r , u2,2
z ). Having defined the modes, we project the velocity field u of several

snapshots onto a mode um and evaluate the energy content P of each mode according
to

P ≡
∫
V uumdV∫
V umumdV

, (5.23)

and analyse the time average and standard deviation of P.
The energy of the individual Fourier mode for the 2D box is shown in figure 5.16.

Above the onset of convection, only the first Fourier mode (single-roll) contains a
considerable amount of energy. Because of its similarity to the SRS, this mode will
be referred to as the SRS-mode. Following the stable SRS, we find for adiabatic and
linear sidewall BCs a flow regime that changes from the SRS to a roll-upon-roll second
Fourier mode (F‖2 ) state. This state embodies the DRS state, which we discussed in
section 5.3.3. The F=

2 regime, or DRS regime, is found in the range 106 < Ra ≤ 107

for an adiabatic sidewall and 105 ≤ Ra ≤ 107 for a linear sidewall BC. In contrast,
the DRS regime is absent for a constant sidewall BC. As a reminder, this state could
not be found as an equilibrium solution for the constant sidewall boundary condition
either, which is in line with its absence in DNS. The next regime can be regarded
as a weakly chaotic SRS regime, with the SRS mode again dominating but being
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Figure 5.17: Energy and standard deviation of the projection of flow field snapshots
onto the modes defined by eq. (5.22) and (5.21) for (a) adiabatic, (b)
linear and (c) constant sidewall temperature boundary condition for the
cylinder. Below: Streamlines, coloured by vertical velocity, of the modes
F1, F=

2 , F‖2 and F4.

transient and a substantial amount of energy is contained in the F4 (4-roll) mode,
indicative of dynamically active corner rolls. Finally, above Ra ≈ 109 there exists
another surprisingly sharp transition. This regime is different from the others as
now all Fourier modes contain a significant amount of energy and exhibit strong
fluctuations. An inspection of the flow fields revealed an abundance of small-scale
plumes and strong turbulent dynamics. Most remarkably, in this regime all three
sidewall BCs show a very similar mode signature, i.e., they become increasingly alike,
or in other words, RBC becomes insensitive to sidewall BCs for large Ra.
Moving on to the mode analysis for the cylindrical setup, shown in figure 5.17, we

see a very similar picture as for the 2D box with some noticeable differences. First,
for the constant BC setup we note that the onset of convection is significantly later
than in the 2D case, while the other two setups show a closer similarity with the 2D
case. The cylindrical setup might be more sensitive to the BCs of the sidewalls in
general, since the ratio of sidewall area to cell volume ratio is larger than in the 2D
box and therefore the sidewall temperature likely has a larger impact on the interior.
In the adiabatic BCs setup, the transition from a steady to a time-dependent state

takes place at Ra ≈ 5× 105, which agrees well with results of a recent experimental
study that found a transition to chaos at Ra ≈ 2 × 105 in a cylindrical cell with
Pr = 0.71 (Wei, 2021). A difference between the cylindrical and 2D box setup is,
that the adiabatic setup does not show a transition to a regime with a vanishing SRS;
rather, the SRS mode is the most dominant mode over all Ra. In contrast, the linear
sidewall BC possess a striking similarity to the observations in 2D. Above Ra ≈ 105

it undertakes a transition from a SRS-dominated regime to a F4-dominated regime.
The F4-mode is axissymmetric and has a double-donut, or double-toroidal shape.
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Figure 5.18: Nusselt number Nu for cases with different sidewall boundary conditions
in (a) 2D simulations, (b) 3D simulations. For comparison, open symbols
shows heat transport in a periodic 2D domain with Γ = 2 by Johnston
& Doering (2009) (a) and for cylindrical setup with adiabatic sidewalls,
Γ = 1 and Pr = 0.7 conducted by Emran & Schumacher (2012) (b).
Dashed lines in (a) show the results from the steady-state analysis.

Similar flow states were found in a bifurcation analysis by Puigjaner et al. (2008)
in a cubic domain with the same lateral boundary conditions. Here, its existence
range extends over 105 ≤ Ra ≤ 108. The double-donut state can be considered as
the counterpart of the DRS state in 2D RBC, although we see that it outlasts its
2D analog by about a decade in Ra. At the highest Ra available, the SRS again
dominates for all BC configurations considered, although the amount of energy and
the strength of the fluctuations are somewhat different for the different BCs. At this
points, we can only conjecture from their trend and our findings in 2D that their
deviation will decrease for even larger Ra in the high-turbulence/high-Ra regime.
We conclude that there exist at least five different flow regimes: conduction state,

stable SRS, DRS (or double-donut state in the cylindrical setup), weakly chaotic
SRS and highly turbulent state. We find the constant isothermal sidewall generally
enhances the SRS dominance, while a linear isothermal sidewall BC suppresses the
SRS in the mid Ra regime and induces the DRS or double-donut state. Moreover,
although we find strong differences in the flow dynamics in the small to medium Ra
range, but these differences eventually disappear and the system becomes increas-
ingly insensitive to the type of sidewall BC at high Ra.

5.4.4 Heat transport

Lastly, the global heat transport is discussed. The results are shown in figure 5.18.
For the 2D setup, we include the results from the steady-state analysis from the first
part of this study. Here, we find a very good agreement between Nu of the DNS and
steady-states for the SRS mode as well as for the DRS state for adiabatic sidewalls.
However, the DRS state for linear sidewalls shows slightly larger Nu in the DNS.
This is because the DRS state is an unstable equilibrium solution that can oscillate
strongly, which apparently enhances heat transport properties.
In the low Ra regime, the heat transport of the constant sidewall case surpasses

that of the adiabatic and linear sidewall BCs. Given the observed resemblance of the

88



5.5 Conclusions

flow dynamics (see figure 5.16), this suggests a substantial impact of the lateral heat
fluxes on the total heat transport. In contrast, heat transport differences between
the linear BCs and the adiabatic BCs are more strongly impacted by transitions in
the flow states rather than by the sidewall heat fluxes. We find that Nu degrades
strongly when switching from a SRS- to a DRS-dominated regime at Ra ≈ 105

(linear) and Ra ≈ 106 (adiabatic) for the 2D domains (figure 5.18a). In contrast,
this does not occur for the cylindrical setup as it transitions from the SRS to the
double-toroidal state (figure 5.18b). In fact, this flow transition is hardly observed
in the evolution of heat transport.
In the high Ra regime, the heat transport in the cylindrical setup is found to be

more efficient than in the 2D setup, with about 30% larger Nu. This agrees well
with the observations of van der Poel et al. (2013). Both setups show Nu ∼ Ra0.285

scaling at the largest studied Ra. We also observe that Nu becomes independent of
the choice of sidewall BCs for high Ra. This agrees with Stevens et al. (2014), at
least when the sidewall temperature is equal to the arithmetic mean of bottom and
top plate temperature. If this condition is violated, Stevens et al. (2014) has shown
that Nu differences will exist even for high Ra. This indicates that the effects of
an imperfectly insulated sidewall tend to be small in experiments when the mean
temperature of the sidewall is well controlled.

5.4.5 Prandtl number dependence

The previous analysis focused on fluids with Pr = 1, but thermal convection is
relevant in nature in a wide variety of fluids and many experiments are conducted
in water (Pr ≈ 4) or in liquid metals (Pr � 1) (Zwirner et al., 2020). Therefore, we
now explore the Pr parameter space with Pr = 0.1, 1 and 10 for Ra up to 109 in the
2D RBC setup.
The Nusselt number is shown in figure 5.19. We observe a collapse of all data

points for all studied boundary conditions at large Ra. However, the collapse for
large Pr is achieved earlier, at Ra ' 107, whereas the differences between Pr = 1.0
and Pr = 0.1 are small. Both indicate heat transport invariance for Ra ' 108. This
suggests that the size of the thermal boundary layer λθ plays a crucial role. For small
Pr we expect larger thermal boundary layers, which extend further into the bulk
and thus have a stronger influence on the system. As λθ gets smaller, the coupling
between the sidewall and bulk disappears, and so do the differences in heat transport.
And although our results show a small Pr -dependence, the main message remains.
Experiments with very high Ra are not affected by different thermal sidewall BCs,
regardless of whether they are performed in a low Pr or high Pr medium. This
conclusion is related to the global heat transport properties as well as to the flow
dynamics that show increasingly resemblance, as we have seen in section 5.4.3. We
anticipate a similar trend for smaller aspect ratio cells, but shifted towards larger
Ra.

5.5 Conclusions

We have investigated the influence of three different lateral thermal boundary con-
ditions, i.e., adiabatic, linearly distributed in the vertical direction and constant
(isothermal) ones, on heat transport and flow states in two- and three-dimensional
Rayleigh-Bénard convection (RBC) using direct numerical simulation and steady-
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Figure 5.19: Nusselt number Nu for (a) Pr = 0.1, (b) Pr = 1 and (c) Pr = 10 in 2D
RBC with different thermal sidewall BCs.

state analysis. The steady-state analysis is based on an adjoint-descent method
(Farazmand, 2016). We found superior convergence chance in the laminar and weakly
laminar regime compared to Newton’s method, but did not achieve convergence at
larger Ra. Further studies on the proper boundary conditions, the choice of the en-
ergy norm and or a combination with Newton’s method are needed to further explore
the potential of the method in the study of convective flows.
Investigation of the stability of the single-roll state (SRS) revealed that a linear

temperature distribution at the sidewall leads to a premature collapse of the SRS
compared to adiabatic BCs. In contrast, the stability of the SRS was enhanced by
the introduction of constant temperature sidewall BCs. We find that in 2D and for
linear and adiabatic sidewall BCs, the collapse of the SRS is followed by a regime in
which the preferred flow state is a double-roll state (DRS), where one roll is located
on top of the other. The DRS can be found for adiabatic and linear BCs in the
regime 106 < Ra ≤ 107 and 105 ≤ Ra ≤ 107, respectively, and is associated with
suppressed heat transport. The DRS can be stable, it can oscillate periodically with
a frequency of ≈ 0.1 free-fall time unit, or it can be chaotic for larger Ra. In 3D
cylindrical simulations, a similar flow transition occurs. Imposing linear sidewall
BCs leads to the emergence of a double-toroidal structure, that prevails over a wide
range of Ra, i.e., 105 ≤ Ra ≤ 108. Unlike in 2D, the double-toroidal structure does
not lead to a heat transport recession.
We confirmed that the collapse of the SRS in 2D RBC is strongly related to

the enlarging of corner rolls. Examining the setup with adiabatic sidewalls, there
seem to be two regimes with distinct corner roll growth rates. For small Ra, the
vorticity balance is dominated purely by diffusion and buoyancy in the form of lateral
temperature gradients. In this regime, the size of the corner roll δCR grows as
δCR ∼ Ra0.21, which is consistent with dimensional analysis. For larger Ra, the
convective flux starts to be of significance and the growth of the corner roll accelerates
to δCR ∼ Ra0.49 before the SRS finally collapses and slowly transforms to the DRS
state, undergoing several cycles of flow reversals and restabilization.
Analysis of global heat transport and the flow dynamics have shown that for

Ra ≤ 108 there are significant differences between the various sidewall BCs. How-
ever, for larger Ra and for various Pr these differences disappear and the different
sidewall BCs become globally - in terms of their integral quantities - and dynami-
cally similar. In this context, Stevens et al. (2011) and Johnston & Doering (2009)
showed that regardless of imposition of fixed temperature or fixed heat flux at the
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5.A Heat flux

bottom/top plates, high Ra show similar heat transport. Thus, together with our
results, we can conclude that the effects of different boundary conditions, at the
sidewalls or at the top/bottom plates, are limited for experiments with high Ra.
However, there are exceptions. For example, when the sidewall temperature differs
from the mean fluid temperature, larger Nu differences can occur (Stevens et al.,
2014). Thus, in experiments at high Rayleigh numbers, it appears to be more im-
portant to control the mean sidewall temperature than to ensure perfectly insulating
conditions. However, close to the onset of convection, the sidewall thermal bound-
ary conditions significantly influence the flow organization and heat transport in the
system.

5.A Heat flux

The temperature equation for an incompressible fluid in dimensional units is

∂θ/∂t+∇ · (uθ) = κ∇2θ. (5.24)

Averaging equation (5.24) over time yields the following relations for the heat flux
F:

∇ · F = 0, F ≡ uθ − κ∇θ. (5.25)

Using the divergence theorem we obtain
∫

S
F · ndS = 0, (5.26)

which states that the net heat flux through the walls must be zero. Expressing the
heat fluxes by the Nusselt number and decomposing the contribution of the surface
integral into those for a lower plate heat flux Nuh, for an upper plate heat flux Nuc
and for a side wall heat flux Nusw, we write

Nuc −Nuh + ζ〈Nusw〉z = 0, (5.27)

where 〈·〉z denotes a vertical mean and ζ a geometric factor defining the ratio of
the sidewall surface to the bottom/top plate surface, which is ζ = 1/Γ for the 2D
box and ζ = 4/Γ for the cylindrical setup. Note that the lateral heat flux Nusw is
z-dependent as it was shown in section 5.4.2. For the 2D box this is

Nusw =
H

∆

[
∂θ

∂x

∣∣∣∣
x=L

− ∂θ

∂x

∣∣∣∣
x=0

]
(5.28)

and for the 3D cylinder setup it is

Nusw =
H

2π∆

∫ 2π

0

∂θ

∂r

∣∣∣∣
r=R

dϕ. (5.29)
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Figure 5.20: Comparison of the normalized Nu (closed symbols) and thermal dissi-
pation rate εθ (open symbols) in the 2D box. The connection between
thermal dissipation and Nu is given in equation (5.34).

5.B Thermal dissipation rate

Multiplying equation (5.24) with θ and averaging over time yields

1

2
∂tθ

2 +
1

2
∇ · (uθ2) = κθ∇2θ. (5.30)

Taking a time and volume average of (5.30), the time derivative and the convective
part (for impenetrable walls) vanish and using the relation (∇θ)2 =∇·(θ∇θ)−θ∇2θ
we obtain

κ

∫

V
(∇θ)2dV = κ

∫

V
∇ · (θ∇θ)dV, (5.31)

where an overbar denotes a time average and εθ = κ(∇θ)2 is known as the ther-
mal dissipation rate. Using the divergence theorem once more, we find the relation
between the total thermal dissipation rate and the wall heat fluxes

∫

V
εθdV = κ

∫

S
(θ∇θ) · ~ndS. (5.32)

For clarification, writing eq. (5.32) more explicitly and only for 2D Cartesian coor-
dinates, we get

〈εθ〉V =
κ

V

(
L
[
〈θ∂zθ〉x

]z=H
z=0

+H
[
〈θ∂xθ〉z

]x=L

x=0

)
, (5.33)

with the horizontal and vertical average 〈·〉x and 〈·〉z, respectively. In RBC, the
temperatures of the upper and lower plates are spatially homogeneous, i.e. θh = ∆

2
and θc = −∆

2 , and assuming that the vertical wall fluxes are equal (which is not
necessarily the case for non-adiabatic sidewalls, but has been shown to be true in all
our simulations), i.e., ∂zθc = ∂zθh, then

〈εθ〉V =
κ

V

(
−L∆〈∂zθh〉x +H

[
〈θ∂xθ〉z

]x=L

x=0

)
,

〈εθ〉V =
κ∆2

H2
Nu+

κ

L

[
〈θ∂xθ〉z

]x=L

x=0
. (5.34)
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This results in 〈εθ〉V = κ∆2

H2 Nu for adiabatic sidewalls or for zero temperature side-
walls, but adds an additional term to the εθ −Nu relation otherwise. A comparison
of the normalized Nu and εθ is shown in figure 5.20. The virtual discontinuity of εθ
for the linear sidewall temperature reflects the reordering of the flow structures as
explained in the main part of this study, but surprisingly Nu shows a rather smooth
change in this regime. This is consistent with lateral heat flux profiles presented in
figure 5.15 (a). The sudden increase in the lateral heat flux affects the second term in
the right-hand side of eq. (5.34), resulting in the virtual discontinuity of the thermal
dissipation rate.

5.C Adjoint descent

5.C.1 Derivation

Following Farazmand (2016), we define the right-hand side of the Navier-Stokes
equations as the vector F0, i.e.

F0(q) =



−u ·∇u−∇p+ ν∇2u + ~ezθ

−u ·∇θ + κ∇2θ

∇ · u


 . (5.35)

The functional Gateaux derivative δF (u,u′) := lim
ε→0

F (u+εu′)−F (u)
ε of equation (5.35)

is

δF (q,q′) =



−u′ ·∇u− u ·∇u′ −∇p′ + ν∇2u′ + ~ezθ

′

−u′ ·∇θ − u ·∇θ′ + κ∇2θ′

∇ · u′


 . (5.36)

We want to find the adjoint operator δF † of equation (5.36) with respect to the
inner-product

〈q,q′〉A =

∫

D

(
q · Aq′

)
dx. (5.37)

The adjoint δF of equation (5.36) with respect to the inner product (5.37), with
q̃ ≡ Aq, is derived as follows

〈δF (q,q′), q̃′′〉A =

=

∫

V



−u′ ·∇u− u ·∇u′ −∇p′ + ν∇2u′ + ~ezθ

′

−u′ ·∇θ − u ·∇θ′ + κ∇2θ′

∇ · u′







ũ′′

θ̃′′

p̃′′


 dx

=

∫

V




(
∇ũ′′ +∇ũ′′T

)
u− θ̃′′∇θ −∇p̃′′ + ν∇2ũ′′

u ·∇θ̃′′ + ν∇2θ̃′′ + ~ez · ũ′′
∇ · ũ′′







u′

θ′

p′


 dx

= 〈q′, δF †(q, q̃′′)〉A, (5.38)

where the second line follows from integration by parts. Here we have refrained from
writing the boundary terms that follow from the integration by parts step, since they
can be eliminated by choosing the boundary conditions on q̃′′ as discussed in section
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5.2.3.

5.C.2 Choice of the norm

As mentioned in Farazmand (2016), the most obvious choice for the norm is the L2

norm, i.e. A = I, where I is the identity operator. However, this norm is rather stiff
and leads to restrictive small time steps. As an alternative, Farazmand (2016) uses
a norm related to the Laplacian, which effectively smooths the q̃′′ field. Here we use
a similar norm based on the inversed Laplacian, i.e. A = (I − α∇2)−1,

〈q,q′〉∇−2 =

∫

V

(
q · Aq′

)
dx =

∫

V

(
q · q̃′

)
dx (5.39)

where a is a positive constant. Then, q̃′ is obtained as the solution of the Helmholtz
equation

(I − α∇2)q̃′ = q′, (5.40)

which points out the smoothing property of this norm. In practice, we choose α = 1.
The choice of the operator for the energy norm is somewhat arbitrary, but this pecu-
liar choice leads to improved numerical stability properties. Note that the operator
A should be positive definite and should commute with the divergence operator, i.e.
A(∇ · u) =∇ · Au.
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6 Crossover of the relative heat
transport contributions of plume
ejecting and impacting zones in
turbulent Rayleigh–Bénard
convection

Turbulent thermal convection is characterized by the formation of large-scale
structures and strong spatial inhomogeneity. This work addresses the relative
heat transport contributions of the large-scale plume ejecting versus plume im-
pacting zones in turbulent Rayleigh–Bénard convection. Based on direct numer-
ical simulations of the two dimensional (2-D) problem, we show the existence
of a crossover in the wall heat transport from initially impacting dominated to
ultimately ejecting dominated at Ra ≈ 3 × 1011. This is consistent with the
trends observed in 3-D convection at lower Ra, and we therefore expect a sim-
ilar crossover to also occur there. We identify the development of a turbulent
mixing zone, connected to thermal plume emission, as the primary mechanism
for the takeover. The mixing zone gradually extends vertically and horizontally,
therefore becoming more and more dominant for the overall heat transfer.

Based on: Reiter, P., Shishkina, O., Lohse, D. & Krug, D. 2021 Crossover of the relative heat
transport contributions of plume ejecting and impacting zones in turbulent Rayleigh–Bénard
convection, Europhys. Lett., 134, 34002
Main own contribution: Conducting all numerical simulations, analyzing the data, idea and
implementation of the conditional averaging algorithm, creating the figures, writing the first
draft of the paper.
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6.1 Introduction

Thermally driven turbulence is omnipresent in nature and technology and its deep
fundamental understanding is of utmost relevance for answering various environmen-
tal or technological questions. As a model system for thermally driven convection,
Rayleigh–Bénard convection (RBC) – the flow in a box heated from below and cooled
from above – has always been the most paradigmatic and popular one (Ahlers et al.,
2009b; Lohse & Xia, 2010; Chillà & Schumacher, 2012). It also reflects the intrinsic
difficulty of thermally driven flows, namely its spatially inhomogeneity, including in
the lateral direction, due to the formation of large-scale structures. Different regions
in the flow show different flow features and contribute differently to the overall heat
transfer, which is the key global response of the system to some given control param-
eters. In the presence of sidewalls, the spatial inhomogeneity in horizontal direction
is obvious. However, due to the formation of large-scale structures it even holds
in the absence of sidewalls, for periodic boundary conditions (van der Poel et al.,
2015; Stevens et al., 2018; Pandey et al., 2018; Krug et al., 2020; Blass et al., 2021),
or for very large aspect ratios Γ defined as cell width over cell height (Emran &
Schumacher, 2015).
The spatial inhomogeneity of the flow must also be reflected in any theoretical

approach to understand the heat transfer in RB flow. The simplest example may
be the theory of Malkus (1954), which assumes a thermal shortcut in the bulk and
laminar type heat transport in the thermal boundary layers (BLs), which leads to the
scaling law Nu ∼ Ra1/3 for the Nusselt number (the dimensionless heat transfer) as
function of the Rayleigh number (the dimensionless temperature difference between
top and bottom plate). This also holds for the mixing length theory of Castaing et al.
(1989), the boundary layer theory of Shraiman & Siggia (1990), and the unifying
theory of Grossmann & Lohse (2000, 2001, 2004), which splits the kinetic energy
and thermal dissipation rates into bulk and boundary-layer/plume contributions,
with different scaling behavior. Since the kinetic energy and thermal dissipation
rates are additive with respect to these contributions and the total dissipation rates
can exactly be connected with the overall Nusselt and Rayleigh numbers, this implies
that the system response parameters, i.e., the Nusselt and Reynolds numbers, do not
show pure scaling behavior, but a smooth crossover from the dominance of one region
to another.
Indeed, different scaling behavior in different regions of the flow were measured

in various experiments and direct numerical simulations (DNS). E.g., for the local
heat fluxes, Shang et al. (2003, 2004, 2008) measured the scaling close to Nu loc ∼
Ra1/4 near the sidewalls and close to ∼ Ra1/2 in the bulk. This suggests that for
increasing Ra, the latter may take over. This is the so-called asymptotic ultimate
regime Nu ∼ Ra1/2, first suggested by Kraichnan (1962) and Spiegel (1971) and
indeed found in so-called homogeneous RB flow (Lohse & Toschi, 2003; Calzavarini
et al., 2005; Lepot et al., 2018), where the flow-driving hot and cold temperature
boundary conditions at the plates have been replaced by a bulk driving with an
overall temperature gradient.
Different scaling behavior of the local heat flux in different regions of the flow

in the lateral direction, reflecting the spatial lateral inhomogeneity of the flow, was
also observed in numerical simulations with periodic boundary conditions, despite
the periodicity. van der Poel et al. (2015) distinguishes between plume ejecting and
plume impacting regions, and in between regions dominated by wind-shearing. These
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Figure 6.1: (a) A snapshot of the temperature field for Ra = 1011. Blue (red) colour
corresponds to the temperature below (above) the arithmetic mean of the
top and bottom temperatures. The dashed vertical lines show the two
locations of the centres of the plume ejecting zones (a hot one on the left
and cold a one on the right), which are identified with the conditional
averaging algorithm (see the main text). (b) The mean temperature field
together with the mean velocity streamlines, as obtained from the con-
ditional averaging algorithm. Bottom (top) corresponds to the ejecting
(impacting) zone. The colour scale is the same as in (a).

regions are set by the large-scale convection rolls. In general, these large-scale rolls
wiggle laterally due to the turbulent nature of the flow. Therefore, to obtain the local
heat flux in the different regions, spatially moving averages have to be performed. In
this way, the local dynamics can be disentangled from the slow large-scale movement
of the rolls.
Assuming that the large-scale rolls are of similar size and always located at the

same places, for very large Ra ≥ 1013 and in two-dimensional (2-D) direct numerical
simulations, Zhu et al. (2018a) obtain effective scaling laws: Nu loc ∼ Ra0.28 in the
plume impacting region and Nu loc ∼ Ra0.38 in the plume ejecting region. This
implies that for very large Ra, the latter scaling wins for the overall (global) Nusselt
number, Nu ∼ Ra0.38. This is the so-called ultimate regime, which corresponds to
Nu ∼ Ra1/2 with logarithmic corrections, as predicted by Kraichnan (1962) and by
Grossmann & Lohse (2011, 2012). In this regime, the kinetic boundary layer has
become turbulent, which is reflected in logarithmic velocity and temperature profiles
that allow for an enhanced heat transfer. Note that, without accounting for the
movement of the structures in the decomposition, Zhu et al. (2018a, 2019a) find
that the plume ejecting regions contribute more to the overall heat flux for all Ra
explored in their study (1011 ≤ Ra ≤ 4.64× 1014).
In contrast to the findings by Zhu et al. (2018a), for Ra up to 109 and in three-

dimensional (3-D) DNS, Blass et al. (2021) find that the plume impacting regions
contribute more to the overall heat flux. These findings in large periodic boxes
(Γ = 32) are in line with earlier findings in more confined geometries of van Reeuwijk
et al. (2008) (Γ = 4) and Wagner et al. (2012) (Γ = 1). Indeed, such a situation
would be expected from the fact that the boundary layer thickness grows as the fluid
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is advected along the plate with correspondingly reduced heat fluxes downstream
(i.e. towards the ejecting region). However, Blass et al. (2021) also find that the
dominance of the plume impacting regions diminishes with increasing Ra. Extrapo-
lating their data to higher Ra, they estimate a crossover from impacting to ejecting
dominated at Ra ≈ 1012, which appears consistent with the findings of Zhu et al.
(2018a) in 2-D. Blass et al. (2021) use a conditional averaging technique which is
superior to a spatially moving average because it allows to extract precise statistics
despite movement of the structures or even changes in the number and orientation.
In this paper, we want to reconcile the results of Zhu et al. (2018a) – the dominance

in the heat flux of the plume ejecting regions in 2-D DNS beyond Ra = 1011 and of
Blass et al. (2021) – dominance in the heat flux of the plume impacting regions in
3-D DNS up to Ra = 109, obtained with the conditional averaging technique. We
do this by applying the superior conditional averaging technique to the numerical
data obtained by Zhu et al. (2018a) and to new 2-D direct numerical simulations
(DNS) for Ra down to 107. Our main result is that the observations by Blass et al.
(2021) and Zhu et al. (2018a) are consistent and robust, and that we can identify
the crossover Rayleigh number in 2-D RBC at which the heat flux from the plume
ejecting regions overtakes that one from the plume impacting regions. This analysis
is relevant in the context of the findings of Zhu et al. (2018a, 2019a), who showed
that beyond Ra ≥ 1013, both, the local heat flux in the plume ejecting regions (which
grows with increasing Ra) and the overall heat flux, scale steeper than the classical
Malkus scaling Nu ∼ Ra1/3. This reflects the onset of the ultimate regime around
that Rayleigh number, consistent with theoretical predictions (Grossmann & Lohse,
2000, 2002) and experimental measurements (He et al., 2012b,a).

6.2 Numerical simulations

In this letter, we restrict us to 2-D DNS of RB flow, with periodic sidewalls and no-
slip velocity boundary conditions (BCs). The governing dimensionless Navier–Stokes
equations in the Oberbeck–Boussinesq approximations read

du /dt+ u · ∇u = −∇p+
√
Pr/Ra∇2u + θez,

dθ /dt+ u · ∇θ = 1/
√
PrRa∇2θ, ∇ · u = 0, (6.1)

where u is the velocity, θ the temperature, p the pressure, t the time and ez
denotes the unit vector in the vertical direction. The equations have been non-
dimensionalised using the free-fall velocity uff ≡ (αg∆H)1/2, the free-fall time
H/uff , the temperature difference ∆ between the hot and the cold plate, and the
cell height H. The parameters Ra, Pr, and the aspect ratio Γ are

Ra ≡ αg∆H3/(κν), P r ≡ ν/κ = 1, Γ ≡ L/H = 2,

where L is the lateral extension of the periodic computational domain, α the fluid
thermal expansion coefficient, ν the viscosity, κ the thermal diffusivity and g accel-
eration due to gravity.
The set of equations (6.1) is solved numerically using the finite volume code gold-

fish for Ra from 107 to 3× 1012. Furthermore, we have reanalysed complementary
the flow snapshots from the previously published data series (Zhu et al., 2018a) for
Ra from 1011 to 1014, which was generated with the finite-difference solver AFiD
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Figure 6.2: Schematic overview of the iterative pattern matching algorithm that is
used to identify the hot and cold plumes and the conditional average of
the fields, based on the horizontal positions of the plumes.

(Verzicco & Orlandi, 1996; Zhu et al., 2018b). Taken together, the present study
covers the parameter range 107 ≤ Ra ≤ 1014. These two computational codes for
turbulent RBC were validated against each other, with excellent agreement (Kooij
et al., 2018). Besides, we demand the same grid resolution criteria (Shishkina et al.,
2010) in simulations with both codes. Thus, for the overlapping Ra-range, we use
grids with the same number of nodes for both codes and with a similar grid nodes
clustering near and in the boundary layers attached to the isothermal plates. For
further details regarding the computational grids we refer to the supplementary ma-
terial in Zhu et al. (2018a).

6.3 Conditional averaging

Figure 6.1(a) gives an impression of the complexity of the flow and its large-scale
organization into two counter-rotating circulation rolls, driven by a single rising
hot plume and a single sinking cold plume. We decompose the flow into plume
impacting and ejecting zones (the way to do this is explained later), extract statistical
information and analyse their individual heat transport contributions. Evidently, this
procedure depends on the robustness of the conditional averaging algorithm, which
should be applicable in a broad range of Ra and which, first and foremost, should
be able to reliably identify the location of the large-scale rolls.
In a 3-D domain, the first choice for the large-scale roll identification would be the

technique of Berghout et al. (2021); Krug et al. (2020); Blass et al. (2021), which was
developed to identify 3-D superstructures in turbulent RBC. The method is based
on the observation that there exists a well pronounced scale separation between
the turbulent thermal superstructures and small-scale turbulent fluctuations so that,
after applying a low-pass filter at an intermediate wave-number (k ≈ 2/H), what
remains is a visually convincing representation of the large-scale structures. However,
the turbulence cascades (and hence the spectral energy distributions) are different
in 2-D and 3-D flows, and as a result, the studied 2-D flows lack the needed distinct
scale separation, which impedes the applicability of the technique (Krug et al., 2020;
Blass et al., 2021) to 2-D RBC.
On the other hand, one of the advantages of the 2-D confined (Γ = 2) cell is that

the configuration of the large-scale circulation (LSC) is stable, which means that
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Figure 6.3: Probability density distribution of the minimum plume separation x∗d ≡
min|x∗H − x∗C |. The different curves represent different Ra. The inset
figure shows the mean and one standard deviation of the minimal distance
between the hot and cold plumes, for different Ra. The colour scale
ranges from blue (smaller Ra) to red (larger Ra), according to the inset
figure.

one can safely assume the number of the convection rolls to be fixed for all times.
This is beneficial in so far, that the problem reduces to find the horizontal positions
of the hot and cold large-scale plumes as functions of time, i.e. x∗H(t) and x∗C(t).
These positions are indicated by the dashed lines in Fig. 6.1(a). The functions x∗H(t)
and x∗C(t) are generally independent so that, in particular, the distance between the
plumes changes with time.
To find x∗H(t) and x∗C(t), we employ a pattern (or, equivalently, template) matching

algorithm. The idea is simple. We check the flow fields for the presence of some
pattern by moving a template (horizontally) over the flow field and measure their
similarity via convolution. In doing so, the templates PH and PC are chosen such
that they resemble the structure of the region of interest, i.e. the hot (H) upwelling
and cold (C) downwelling plumes. The (circular) convolution can be formally defined
as

(
PH(C) ~ θ

) (
x′
)

=

∫ L

0

∫ H

0
PH(C)(x

′ − x, z)θ(x, z)dxdz, (6.2)

and the position of the maximal correlation gives the location of the corresponding
hot or cold, plume, i.e.

x∗H(C) = max
(
PH(C) ~ θ

)
. (6.3)

This approach is similar to the one proposed by Kooloth et al. (2021) with the dif-
ference, that their templates are given by previously computed steady state solutions.
In contrast, our templates (patterns) are generated iteratively.
The entire process is schematically depicted in Fig. 6.2. We begin by choosing ini-

tial templates PH(C): functions, which are independent from the vertical coordinate
and are cosines in the horizontal direction. Then we calculate x∗H and x∗C , according
to Eqs. (6.2) and (6.3). Once x∗H and x∗C are found, we construct the conditional
mean field of the hot plume by mapping the variable width subdomains [b, x∗H] and
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[a, x∗H] – assuming reflection symmetry – onto the fixed interval [0, 0.5]. Here a and
b denote locations, halfway between x∗H and x∗C , as sketched in Fig. 6.2. A similar
procedure is applied for the region around x∗C , which gives a second field, i.e., the
conditional field of the cold plume. Afterwards, we merge both fields by using the
symmetry of the hot and cold plumes. In this way, all snapshots are processed and
successively added to the conditional time averaged mean field, as it is shown in
Fig. 6.1(b). Finally, from this mean field we can generate new templates PH(C), by
reapplying the inherent symmetries and then restart the algorithm. In practice, the
algorithm converges after one iteration and delivers convincing and robust positions
of x∗H and x∗C . We confirmed that stretching and squeezing of the flow fields while
mapping does not distort the global response characteristics like Nu, which were
practically unaffected (< 1% deviation) by these manipulations.
As noted, the templates are first initialised with vertically independent cosine

functions. Therefore, the first step of the algorithm is equivalent to a cosine fit
method, which is often used to identify the LSC in cylindrical cells (Cioni et al.,
1997; Brown & Ahlers, 2006). This method, however, inherently constrains the
size of the LSC and fixes the relative size of the large-scale hot and cold plumes
and the distance between them. To get an impression about the limitations of the
cosine fit method, we evaluate the probability density function (PDF) and the mean
and standard deviation of the (minimal) relative distance between x∗H and x∗C , or,
in simple terms, how close do the hot and cold plumes approach each other (see
Fig. 6.3). We find that for all Ra this distance varies quite substantially within the
range between 0.8 to 1, which shows that the relative motion of the plumes is quite
significant. As a consequence, the cosine fit method leads to rather “blurry” looking
mean fields, while the mean fields from our conditional averaging algorithm appear
more “in-focus”.

6.4 Results

In the following analysis, we will make use of two Nusselt number definitions. The
first one is based on the global heat transport and defined as

Nu =
√
Ra Pr〈uzθ〉V − 〈∂zθ〉V , (6.4)

where the overline represents the conditional time average and 〈·〉V denotes a volume
average. The second one is the local wall heat transport, given by

Nu(d) = −∂zθ|z=0 ( or z=H ) (6.5)

which is a function of the relative location d and is associated with the plume ejecting
(or, respectively, plume impacting) heat transport, as elucidated in Fig. 6.1(b). More
precisely, we define the ranges −0.5 ≤ d < 0 and 0 < d ≤ 0.5, with the plume
impacting and plume ejecting regions, respectively (Fig. 6.1b).
We start off by analysing the horizontal distribution of Nu. Generally, the thermal

BL grows as the fluid travels downstream along the plate, i.e. when proceeding from
the large scale impacting to the emitting region. Correspondingly, the local heat
transfer in the laminar and weakly chaotic regime is expected to decrease along this
direction (Bejan, 1993). This is seen in van Reeuwijk et al. (2008); Wagner et al.
(2012); Blass et al. (2021) and consistently also here (Fig. 6.4) for small Ra, for which
the heat transport reaches its maximum in the impacting zone and then gradually
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Figure 6.4: Horizontal distribution of the normalized heat flux at the plates for small
(blue) to large (red) Ra. Dashed line: Ra = 3× 1011.

decreases in the ejecting zone. However, as Ra increases, we observe two distinct
departures from this picture, which both lead to heat transport enhancements in the
ejecting zone.
The first enhancement occurs in the center of the ejecting zone, at d > 0.35,

where a significant peak in Nu/Nu emerges initially as Ra is increased beyond 107.
However, this peak reaches a maximum at Ra = 109 and eventually subsides again
with even stronger thermal driving. Based on an analysis of instantaneous flow fields,
we identified the formation of small recirculation regions, which lead to secondary
circulation cells, as the source of this behaviour. These recirculations disappear
for Ra ' 1010 and therefore do not play a role beyond this. Besides that, this
phenomenon (and certainly in it’s strength) is likely peculiar to 2-D RBC, since it
is not observed in comparable 3-D studies van Reeuwijk et al. (2008); Wagner et al.
(2012); Blass et al. (2021).
Of more general relevance is the peak that emerges at about Ra = 108 in the

region 0.2 < d < 0.35 (see Fig. 6.4) and ends up dominating the overall wall heat
transport for larger Ra. From Fig. 6.1(b) we can verify that this part of the domain,
the "leg" of the large-scale plume, is the predominant origin of small-scale turbulent
plumes that emit from the BLs. These turbulent plumes are able to effectively mix
their surroundings, thus inducing an increase of the vertical and horizontal heat
transport. Hence, this part of the domain can be seen as the turbulent mixing zone,
as suggested by Castaing et al. (1989). We further note that a similar increase of
the heat transfer in streamwise direction is also observed in connection with the
shear-driven laminar-turbulent transition of the BL (Wu & Moin, 2010). The peak
first occurs at d ≈ 0.35 at Ra = 108 but its location gradually shifts towards lower
values of d as Ra is increased. This lends some support to the hypothesis of van der
Poel et al. (2015), who surmised that the transition to ultimate scaling is driven
by a spreading by the plume-ejection dominated region. However, especially at the
highest Ra studied here, the simultaneous growth in peak magnitude with increasing
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Figure 6.5: Vertical distribution of the horizontally averaged mean (top) and tur-
bulent (bottom) convective heat transport in the impacting (a,c) and
ejecting (b,d) zone for small (blue) to large (red) Ra. Dashed line:
Ra = 3× 1011.

Ra appears to be an even more relevant factor in shifting the balance in the heat
transfer distribution towards the ejecting side.
To shed more light on the local heat transport mechanisms, we proceed and decom-

pose the convective heat transport uzθ into its mean uzθ and turbulent fluctuations
u′zθ′,

〈uzθ〉d = 〈uzθ〉d + 〈u′zθ′〉d, (6.6)

where 〈·〉d denotes a horizontal average taken either across the impacting (d < 0)
or the ejecting (d > 0) region. The mean and turbulent convective heat transport
profiles are shown in Fig. 6.5. Furthermore, we normalize the vertical coordinate z
with mean thickness of the thermal BL, λθ = 1/(2Nu).
Figures 6.5 (a, b) show that for small Ra, the mean field transport is dominant

in the convective heat transfer for both, impacting and ejecting zones. However, its
relative contribution weakens with increasing thermal driving such that the large-
scale circulation ultimately plays no significant role in the convective heat transport
at high Ra. This behaviour is especially apparent in the impacting zone Fig. 6.5
(a), where the mean convective transport vanishes almost completely, whereas in
the ejecting zone Fig. 6.5 (b), the mean convective transport remains of significant
importance. Moreover, the contribution in the ejecting zone first rises before it starts
to decay. This is another manifestation of the recirculation regions mentioned earlier,
and therefore it is no coincidence that also here the strongest effect is observed at
Ra = 109.
We turn the focus now to the turbulent convective heat transport shown in Figures

6.5 (c, d). As expected, turbulent mixing becomes the predominant heat transport
mechanism at large Ra, but again, the impacting and ejecting zones behave charac-
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teristically differently. In the impacting zone (Fig. 6.5 c), the turbulent transport con-
tribution initially increases with increasing Ra before it saturates. Above Ra ≈ 1010,
the curves almost collapse onto a single curve, which was observed similarly in Blass
et al. (2021). This indicates that above a certain Ra, the turbulent heat transport in
the impacting region does not increase significantly anymore. In the ejecting region
(0 ≤ d ≤ 0.5), however, the turbulent transport increases gradually with increas-
ing Ra, confirming again the trends observed earlier in 3-D convection (Blass et al.,
2021). Evidently, the aforementioned ejecting plumes create an efficient turbulent
mixing zone which becomes more and more important and ultimately dominates the
heat transport mechanisms. Moreover, the mixing zone increases in size with increas-
ing Ra, compared to the thermal BL thickness, and reaches its maximal effectiveness
at z ≈ 5λθ. This complements the observations by Schumacher (2008), who showed
that the extension of this mixing zone can be significantly larger than the thermal
BL. Surprisingly, the location of this maximum is relatively robust with respect to
changes in Ra. It is further noteworthy that turbulent transport is dominant even
deep inside the BL (z < λθ) once Ra ' 1010.

As mentioned in the introduction, for low and intermediate Ra in 3-D RBC, the
impacting zones dominate the wall heat transport (Blass et al., 2021), whereas for
large Ra in 2-D RBC, the ejecting zones were found to contribute the majority of the
heat transport (Zhu et al., 2018a). Yet a direct link between these observations has
up to now been missing. With this in mind, we compare contributions of the emitting
and ejecting regions to the total wall heat transport in Fig. 6.6. Thanks to the wide
range of Ra available here, we now observe a clear crossover of the contributions
from the ejecting and impacting regions at Ra ≈ 3× 1011. At this critical Rayleigh
number (highlighted as dashed lines in Fig. 6.4 and 6.5), the dominance of the
contribution from the impacting zone changes to the dominance of the contribution
from the ejecting zone. The data by Zhu et al. (2018a) also show such a crossover,
if we apply the conditional averaging as proposed in the present study. Therefore,
the dynamic tracking of the LSC is the key to a successful individual statistical
description of the different zones. Additionally, from Fig. 6.6(a), we find that the
3-D and 2-D cases show increasingly similar behaviour as Ra increases. This gives
confidence that the observed trends in the Nu distribution are indeed driven by the
increase in Ra and not predominantly related to differences between 2-D and 3-D
flows. We would expect a similar crossover to occur in 3-D as well at sufficiently
high Ra.

6.5 Conclusions

By means of direct numerical simulations and using a conditional averaging technique
we explored the properties of the plume impacting and plume ejecting zones in
horizontally periodic 2-D RBC. This study covers the range 107 ≤ Ra ≤ 1014, thus
bridging the Ra gap between the corresponding studies of Blass et al. (2021) (3-
D) and Zhu et al. (2018a) (2-D). We provide an unifying picture of the relative
heat transport importance of ejecting and impacting zones across Ra and show the
existence of a crossover from an impacting dominated to an ejecting dominated local
wall heat transfer at Ra ≈ 3 × 1011. This trend is connected to an increase in the
convective heat transport at the leg of the large-scale plume. Specifically, we identify
the turbulent convective transfer to become the dominant transport mechanism,
which is reflected in a gradual growth with Ra of the turbulent convective heat flux
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u′zθ′. The turbulent mixing zone reaches its peak efficiency at a vertical distance
of about five thermal boundary layer thicknesses from the plate and it gradually
expands in size with increasing Ra, thus occupying an ever larger fraction of the
domain. Given the differences between 2-D and 3-D RBC (Schmalzl et al., 2004;
van der Poel et al., 2013), it remains to be verified whether such a crossover towards
the dominance in the heat transport of the thermal plume ejecting regions also exists
in 3-D turbulent convection, but our results strongly suggest so.
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Figure 6.6: Local wall heat flux Nu compensated by (a) the global Nusselt number
Nu and (b) Ra−1/3. Results from the new simulations (closed colour
symbols) and results obtained from the analysis of the flow snapshots
from Zhu et al. (2018a) (open colour symbols) show the Nusselt numbers
evaluated in the plume impacting regions (blue downwards triangles) and
in the plume ejecting regions (red upwards triangles). For comparison,
we show the results for the 2-D case, as reported in Zhu et al. (2018a)
(closed grey symbols), and the results for the 3-D case, as reported in
Blass et al. (2021) (open grey symbols). A crossover of the heat transport
contributions to the total heat flux from the plume impacting regions and
from the plume ejecting regions occurs at Ra ≈ 3× 1011.
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The aim of this thesis was to add some new insight into the multi-facetted topic
of thermal convection. A special focus was laid on different numerical setups, espe-
cially different thermal boundary conditions including temporally-modulated bound-
ary conditions, and their impact on integral quantities and flow structures. Different
problems have been studied by means of linear stability analysis, steady state meth-
ods, theoretical models and direct numerical simulations (DNS). In the following,
the main findings of this thesis are summarized and a further outlook is given.

Numerical methods

The second chapter of this thesis presented the numerical methods and the corre-
sponding implemented computational codes. The finite-volume DNS code goldfish
was advanced towards applicability in massively parallel simulations and higher or-
der temporal approximation schemes. A new pseudospectral direct numerical solver
(Reiter, 2021) was developed and validated against goldfish. Detailed descriptions
of the algorithms were presented along with performance comparisons showing good
scalability of both codes. In the second part of this chapter, the linear stability anal-
ysis was discussed. The collocation method (Reiter, 2020a) and the Galerkin method
(Reiter, 2020b) were compared in one- and two-dimensional stability problems, with
the conclusion that the Galerkin method is preferable because it is associated with
a smaller number of spurious eigenvalues.

Horizontal convection

In chapter 3, based on the paper Reiter & Shishkina (2020), a scaling model for
horizontal convection (Shishkina et al., 2016) was tested by extensive numerical sim-
ulations. Evidence was found for multiple scaling regions. It was shown that the
inherent asymmetry of horizontal convection complicates the identification of scaling
regimes and that a domain decomposition spatially separating the unstable stratified
region brought a significant improvement to the interpretation of the data. A central
result of this chapter was that a theoretical analysis based on scaling arguments pro-
vides a qualitatively good description of the parameter dependence of the occurrence
of plumes and oscillations. It turned out that plumes are dominating for large Pr
number horizontal convection, while oscillations and early chaos are prevalent for
small Pr . The transition between the two regimes occurs at Pr around unity. A the-
oretical analysis of both structures brings forth a simpler interpretation and a better
intuitive insight into the dynamics of horizontal convection and the appearance of
different timescales (Yang et al., 2020b).
Further work is needed to clarify the relevant length scale in horizontal convection.

Studies for the cell aspect ratios Γ, 0.16 ≤ Γ ≤ 2, report collapse of Nu for Ra
based on the enclosure length, suggesting that the enclosure length is the relevant
length scale for large Ra (Sheard & King, 2011). The collapse shifts to larger Ra at
smaller aspect ratios. It is also not clear, whether the ocean with its extreme aspect
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ratio can be studied as a geometrically unconstrained system. Investigation of the
aspect ratios ≤ 0.1 should provide new insights and confidence in the applicability
of laboratory studies to natural systems. Further works could also delve deeper into
the modeling of the mixing efficiency, i.e., the ratio of irreversible diapycnal mixing
to total energy. Measurements in the ocean indicate a mixing efficiency of about 0.2
(Gregg et al., 2018), while purely buoyancy-driven horizontal convection for large Ra
asymptotically approaches one (Scotti & White, 2011). Thus, the ocean is clearly not
a purely horizontal convection system and other forcing mechanisms such as winds,
tides, and rotation should be considered.

Travelling thermal waves

In chapter 4, based on the paper Reiter et al. (2021c), it was shown that apply-
ing travelling thermal waves to laterally periodic two-dimensional and cylindrical
Rayleigh–Bénard convection results in an increased heat and momentum transport
and leads to the formation of mean zonal flows. An analytical model of the zonal
flow strength as a function of the thermal wave propagation speed showed excel-
lent agreement for small Ra in the linear regime. Discrepancies for larger Ra were
explained by non-linear effects. While all detailed zonal flows for small Ra were
retrograde, i.e. opposite to the propagation direction of the thermal wave, consistent
with the model, most simulations for large Ra reverse their direction to a prograde
moving zonal flow. Such a behaviour could be expected from an instability mech-
anism. Stability analysis of steady convection rolls revealed a good resemblance of
vertical zonal flow profiles of the most unstable mode with the observed prograde
flows, indicating the importance of tilted cell instability for larger Ra.
Although the study has provided useful insights, some observations remain open,

especially with respect to the tilted cell instability mechanism. First, why do al-
most all simulations show prograde flows at large Ra, while the instability of tilted
cells does not prefer any direction for symmetric cells? Whether the traveling wave
provides an initial tilt of convection cells that favors prograde flows should be de-
termined by examining the dependence on the initial conditions. Further extension
of the study to travelling internal thermal waves should be very informative. Pre-
liminary analyses indicate that zonal flow strength increases greatly compared to
traveling waves at the surface, with zonal flow strength significantly surpassing the
traveling wave propagation speed. Moreover, it would be interesting to study the
problem of propagating heat waves in a spherical geometry in combination with ro-
tation, as has been done for classical Rayleigh–Bénard convection (Tilgner & Busse,
1997).

Thermal sidewall boundary conditions

In chapter 5, based on the paper Reiter et al. (2021b), the influence of various ther-
mal sidewall boundary conditions in two- and three-dimensional Rayleigh–Bénard
convection on heat transport and flow structures was investigated. It was shown
that the breakdown of the large-scale circulation is caused by the enlargement of the
corner rolls. Based on the vorticity fluxes, two different regimes of corner roll growth
have been identified, which are diffusively and convectively dominant, respectively,
leading to different corner roll growth rates. The sidewall boundary conditions have
a profound impact on the global flow structures and on the heat transport for Ra up
to ≈ 109. Sidewalls with a linear temperature distribution are particularly suscepti-
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ble to vertically stacked double rolls in two-dimensional domains or to double torus
cells in cylindrical cells, which exist as the dominant solution for a wide range of
Ra. A modal analysis showed the existence of single-roll, double-roll, weakly chaotic
single roll and turbulent single roll regimes with respect to Ra depending strongly
on the sidewall boundary conditions. However, at large Ra the differences disappear
and the simulations with different sidewall boundary conditions become globally -
in terms of their integral quantities - and dynamically similar. Our results should
strengthen the confidence that imperfectly insulated sidewalls have only a weak in-
fluence on the observations in experiments with extremely high Ra, independent of
Pr .
Our analysis focused on setups where the mean sidewall temperature was equal

to the arithmetic mean of the top and bottom plate temperatures. To quantify
experimental measurement errors where ambient temperature cannot be controlled
well enough, further studies with different mean sidewall temperatures could be
conducted, similar to Stevens et al. (2014) in a larger parameter space. In this
chapter, an adjoint algorithm for finding stationary states, inspired by Farazmand
(2016), was applied to Rayleigh–Bénard convection. It provides a better chance of
convergence than a standard Newton method, however, it may fail to converge in
the case of larger Ra and confined domains. Preliminary analysis suggests that the
choice of the norm, in which the residual is to be minimized, plays an important role
and that the convergence is superior in laterally periodic domains.

Heat transport of plume impacting and ejecting regions

In the final chapter of this thesis, based on the paper Reiter et al. (2021a), the lateral
spatial inhomogeneity of two-dimensional Rayleigh–Bénard convection was investi-
gated by dividing the domain into plume impacting and plume ejecting regions. By
applying a novel conditional averaging algorithm, the quality of the statistical de-
scription of the ejecting and impinging regions was significantly improved compared
to previous studies. As previous results indicated, wall heat transport is dominant in
the impacting region for small Ra (Blass et al., 2021), while heat transport for large
Ra dominates in the ejection regions Zhu et al. (2018a). An important result was
the demonstration of a crossover from the dominance of impacting to the dominance
of ejecting regions at Ra ≈ 3× 1011 (Pr = 1). The increase in heat transport in the
ejection regions is accompanied by an increasing turbulent convective heat transport
due to a turbulent mixing zone, which reaches its peak efficiency at about five ther-
mal boundary layer thicknesses. Our study supports the intuition that first signs of
turbulent boundary layers should appear above the plume ejection zone.
Further studies of extremely high Ra regimes in thermal convection are desirable,

since this regime is most important for astro- and geophysical applications. More-
over, the same study could be applied to Rayleigh–Bénard convection with non-slip
horizontal walls to determine whether or not this system is qualitatively different.
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