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1 Introduction
The general project of the gauge theory group in Göttingen is to use nilpotent orbits as target manifolds in the
theory of generalised Seiberg-Witten equations. Such a target manifold has to admit rich structures[Pid04]:
It needs to be a hyperkähler manifold with a rotational Sp(1)-action and an additional tri-hamiltonian action
of some Lie group G. Later on we shall need a suitable compactification of the moduli space based on the
Weitzenböck formula with ρ2 = 0

∥DAu∥2 − ∥∇Au∥2 = 1
2
⟨s, ρ0 ○ u⟩ + 2⟨µ ○ u,F +

A⟩ for any spinor u

in which the concrete shape of the moment map µ becomes relevant.
The hyperkähler structure on a nilpotent orbit in a complex semi-simple Lie algebra can be given explicitely
via Nahms equation, this goes back to P. Kronheimers work in [Kro90b]. In his description it is also not
difficult to find the desired group actions, however, the concrete shape of the moment map is mystical since
the construction as well as the identification of solutions to Nahms equations with the orbit become very
clear when the hyperkähler structure is seen as a complex symplectic structure with a holomorphic symplec-
tic form. Unfortunately, this determines the real moment map µ only partly and so it is the purpose of this
dissertation to contribute to the understanding of the missing piece.

Since the mentioned compactification is motivated by the geometry we intent to visualise some geometric
perspectives on Nahms equations in the first chapter. The considerations here are based on basic knowledge
on Nahms equations which is e.g. described in [Kro90b], [Kro90a], [Kov96] and [Swa99].
With that in mind we add some details to the way P. Kronheimer defined in [Kro90b] the moduli space of
solutions to Nahms equations. We then switch to the pictures of A. Kovalev [Kov96] and O. Biquard [Biq96]
to identify the orbit using their methods. With this done, we close the chapter with an explanation of the
problem. Actually, we are not the first mathematicians working on the moment map: A. Dancer, F. Kirwan
and A. Swann suggest in their paper [AS14] a point of view that leads into a explicit formula, e.g. for sl3 C,
which is unfortunately not explicit enough for our purpose. Also the construction was generalised to any
adjoint orbit ([Kro90a], [Kov96], [Biq96]) and even further ([Bie97]), however, we focus here on the nilpotent
orbits since these carry in contrast to general orbits the desired rotational action.

Initiated by V. Pidstrygach, the actual work begins thereafter: We shall interpret Nahms equations as
flow equations on a homomorphism space and that way reformulate them as recurrence relation in linear
algebraic terms only. Here, we closely follow the discussion of E. Cattani, A. Kaplan and W. Schmid in
[ES86]. Our contribution is a tool to deal with the representation theory: the Moyal product we know from
quantisation theory.
However, it turns out that with all the collected knowledge we are not able to finalize computations and so
will probably need additional algebraic formulations and tools. Nevertheless, the first steps in the iteration
can be made precise so that we can give accurate estimates on the decay of the solutions and, that way,
estimates on the moment map. With a priori estimates as in [Sch10] we may already be in the position to
deduce some information.

We will indicate how the computations are linked to the universal enveloping algebra of sl2 C which is
very well understood and so a promising algebraic structure in which we can work. Again, it turns out that
this description is not general enough so that we have to look further.
And that is the reason why this doctoral thesis has an open end. It can be seen as an invitation for discussions
and suggestions that lead sometime to an explicit description of the moment map.
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2 Nahms Equations from Different Perspectives
Different perspectives on the equations makes us more flexible in notation and proofs. In this chaper, we
will introduce Nahms equations from geometric point of views that are present in the standard literature,
e.g. [Kro90b] or [Kro90a].

2.1 Unperturbed Nahms Equations as Gradientflow
On the Lie algebra g of a compact semi-simple Lie group G we can consider the cubic form ϕ ∶ g⊗R3 → R

ϕ(ξ1, ξ2, ξ3) = ⟨ξ1, [ξ2, ξ3]⟩

where ⟨⋅, ⋅⟩ denotes the metric induced by the Killing form. And so ϕ is not only invariant with respect to
the adjoint action of G but also with respect to cyclic permutations as well as the SO(3)-action on R3. The
linearisiation is

D(ξ1,ξ2,ξ3)ϕ(ζ1, ζ2, ζ3) = ⟨ζ1, [ξ2, ξ3]⟩ + ⟨ζ2, [ξ3, ξ1]⟩ + ⟨ζ3, [ξ1, ξ2]⟩

so that we find the gradient of ϕ to be

∇ϕ(ξ1, ξ2, ξ3) =
⎛
⎜
⎝

[ξ2, ξ3]
[ξ3, ξ1]
[ξ1, ξ2]

⎞
⎟
⎠
.

The gradient flow is the first shape of Nahms equations we shall see in this text.

Ṫ = −∇φ(T ) i.e.
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ṫ1 + [T2, T3] = 0
Ṫ2 + [T3, T1] = 0
Ṫ3 + [T1, T2] = 0

,

We find its critical points being exactly the commuting triples (τ1, τ2, τ3).

2.2 Perturbed Nahms Equations as Gradient Flow
The perturbed cubic form ψ ∶ g3 → R is given by

ψ(ξ1, ξ2, ξ3) = ∣ξ1∣2 + ∣ξ2∣2 + ∣ξ3∣2 + ⟨ξ1, [ξ2, ξ3]⟩.

As ϕ, this functional is invariant also under adjoint action of G, cyclic permutation and SO(3) action onf
R3. Its linearisation

D(ξ1,ξ2,ξ3)ψ(ζ1, ζ2, ζ3) = ⟨ζ1,2ξ1 + [ξ2, ξ3]⟩ + ⟨ζ2,2ξ2 + [ξ3, ξ1]⟩ + ⟨ζ3,2ξ3 + [ξ1, ξ2]⟩

leads to the gradient flow

Ȧ = −∇ψ(A) that is
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ȧ1 + 2A1 + [A2,A3] = 0
Ȧ2 + 2A2 + [A3,A1] = 0
Ȧ3 + 2A3 + [A1,A2] = 0

.

We can see that the critical points are given by triples (σ̃i) such that [σ̃i, σ̃j] = −2σ̃k for even permutation
(ijk) of (123).
These two gradient flows are actually equivalent: The transform R→ R≤0 with t↦ s(t)

⎧⎪⎪⎨⎪⎪⎩

s(t) = − 1
2 e

−2t

−2sT (s) = A(t)
inverted by

⎧⎪⎪⎨⎪⎪⎩

t(s) = − 1
2 log(−2s)

e2tA(t) = T (s)

transfers the gradient flow equation of ϕ into the gradient flow equation of ψ.

5



2.3 Grassmannian Perspective
The functional ϕ is SO(3)-invariant and so ϕ(ξ1, ξ2, ξ3) does actually not depent the concrete triple (ξ1, ξ2, ξ3),
it rather depends on the three-plane which is spanned by them. This motived A. Swann in [Swa99] to consider

ϕ ∶ G̃r3 g→ R via span{e1, e2, e3}↦ ϕ(e1, e2, e3)

as a functional on the space of oriented three-planes in g.
With relatively simple computations like

d
ds

∣Ti∣2 = 2ϕ(T1, T2, T3) and d
ds

⟨Ti, Tj⟩ = 0.

Swann has proven in [Swa99] that the components Ti of a solutions T to Nahms equations corresponding to
a nilpotent orbit remain linearly independed and so define a conformal basis of some three plane.

2.4 Extended Formulations
We shall extend the above equations by a forth variable T0 respectively A0 to the set of equations

Ṫi + [T0, Ti] + [Tj , Tk] = 0 and Ȧi + 2Ai + [A0,Ai] + [Aj ,Ak] = 0.

In the first part of the dissertation, the construction of the moduli spaces, we shall work with the extended
equations and then later go back to the non-extended form.
Those equations are invariant under group G = C 2(R;G) acting by

g.(T0, T1, T2, T3) = (Adg T0 − ġg−1,Adg T1,Adg T2,Adg T3) and in the same way g.(A0,A1,A2,A3).

The short computation shows that this type of action preserves the equations
d
ds

(Adg Ti) + [Adg T0 − ġg−1, Ti] + [Adg Tj ,Adg Tk]

= Adg Ṫi + [ġg−1,Adg Ti] − [ġg−1, Ti] +Adg([T0, T1] + [Tj , Tk])
= Adg(Ṫi + [T0, T1] + [Tj , Tk])

and so we can reduce the system from four variables back to three variables via the action of G:
For any T0, we can solve

Adu T0 − u̇u−1 = 0,or alternatively in matrix notation: u̇ = uT0

which is a linear first-order differential equation in u. And the solution is unique if we impose u(0) = 1. That
is, in any G-orbit there is a unique solution with T0 = 0, i.e. we work in the slice in which T0 = 0. The same
computations can be done for the perturbed formulation.
We shall show in later stages of this text that Nahms equations are actually the moment map of the G-action
and so postpone this discussion to later since we have to equip the path space with additional structures.
The G-action looks like a gauge action and so motivates the next two perspectives.

2.5 Extended Unperturbed Solutions as Anti-Self-Dual Instantons
Consider R4 with coordinates (x0 = s, x1, x2, x3) with standard inner product as Riemannian metric and
induced hodge star operator ⋆. A connection T on the trivial principal G-bundle P over R4 is called anti-self
dual if its curvature FT ∈ Ω2(P ;g)Gg = Ω2(R4; AdP ) satisfies

FT + ⋆FT = 0.

Such connections are exaclty the Yang-Mills connections and, hence, are instantons.
In the trivialisation of the bundle induced by the coordinates on R4 we can say that T has components
T0, T1, T2, T3 ∶ R4 → g

T = T0 ds +
3
∑
i=1
Ti dxi = T0 ds + T1 dx1 + T2 dx2 + T3 dx3.
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The curvature FT can be computed to be

FT = dT + 1
2
[T,T ] =

4
∑
i,j=0

(∂iTj − ∂jTk + [Ti, Tj])dxi ∧ dxj .

so that the anti-self-duality equation reads as

∂iTj − ∂jTk + ∂kTl − ∂lTk + [Ti, Tj] + [Tk, Tl] = 0 for even permutations (ijkl) of (0123).

If we reduce the dimension by requiring translation invariance T with respect to R3 in the x1, x2, x3-
components we can simplify the anti-self-duality equations to

d
ds
Ti + [T0, Ti] + [Tj , Tk] = 0.

This means that the solutions to Nahms equations can be understood as R3-translation invariant instantons
of the trivial G-bundle over R4. We have the same perspective for the perturbed equations:

2.6 Extended Perturbed Solutions as Anti-Self-Dual Instantons
Starting now with a trivial principal G-bundle over R4∖{0} and requirering that the connections are invariant
under the rotational action of SO(4) a connection A on that bundle is of the form

A = A0(r)
dr
r
+A1(r)θ1 +A2(r)θ2 +A3(r)θ3

where θl denote the rotation invariant forms on S3 and r > 0 so that dr
r

together with the θl forms a
orthonormal basis. The anti-self-duality equations for A, as in the previous section, are

d
dr

(1
r
Ai) + [A0,Ai] + [Aj ,Ak] = 0

so that, after the change r = et, we get the extended pertubed Nahm’s equations

Ȧi + 2Ai + [A0,Ai] + [Aj ,Ak] = 0.

2.7 Complex Formulation of the Extended Non-Perturbed Equations
We complexify the formulation: Instead of four paths T = (T0, T1, T2, T3) in g we remains with two paths
(α,β) in gC = g⊗C. This can be done via

α = T0 + iT1 and β = T2 + iT3.

The complexification gC admits an involution

α∗ = −T0 + iT1 and β∗ = −T2 + iT3,

which enables us to pass from (α,β) back to T with

T0 =
1
2
(α − α∗) T1 =

1
2i

(α + α∗)

T2 =
1
2
(β − β∗) T3 =

1
2i

(β + β∗)

An easy computation shows that the extended Nahm’s equations are equivalent to the two equations

the complex equation β̇ + [α,β] = 0

the real equation d
ds

(α + α∗) + [α,α∗] + [β,β∗] = 0

7



But only the complex equation is invariant under complexified gauge actions: GC = C 2(R;gC) acting by

g.(α,β) = (g.α, g.β) = (Adg α − ġg−1,Adg β).

The same procedure does apply to the extended perturbed equations, here we get

the complex equation β̇ + 2β + [α,β] = 0

the real equation d
ds

(α + α∗) + 2(α + α∗) + [α,α∗] + [β,β∗] = 0.

2.8 Model Solutions
Let us give a few examples of solutions and compare their asymptotic behaviour: Here we use a su(2)-triple
(σi) in g with commutation relations [σ1, σ2] = 2σ3 etc, the triple of (τi) is assume to commute pairwise and
with all the σ’s. Also, s0 < 0. We shall here translate solutions of the non-perturbed equations into solutions

Unperturbed Equations Perturbed Equations
Ti(s) s→ −∞ s→ 0 A(t) t→ −∞ t→∞
τi τi τi e−2tτi ∞ 0

σi/2s 0 pole, res0 = σi/2 −σi −σi −σi
σi/2(s − s0) 0 −σi/2s0 −σi/(1 + 2s0e

2t) −σi 0
τi + σi/2s τi pole, res0 = σi/2 e−2tτi − σi ∞ −σi

τi + σi/2(s − s0) τi τi − σi/2s0 e−2tτi − σi/(1 + 2s0e
2t) ∞ 0

of the perturbed equations via the reparametrisation

⎧⎪⎪⎨⎪⎪⎩

s(t) = − 1
2 e

−2t

−2sT (s) = A(t)
inverted by

⎧⎪⎪⎨⎪⎪⎩

t(s) = − 1
2 log(−2s)

e2tA(t) = T (s)

and that way also compare their asymptotics: A closer look at the reparametrisation tells us that poles or
polynomials decay like s−1 on R≤0 is translated into well-defined limits on R while well-defined values and
limits are substituted by exponential growth respectively decay.
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3 Conventions and Notations
3.1 In su(2) and sl2 C
The Lie algebra su(2) of skew-hermitian matrices su(2) = {σ ∈ Mat2×2 C ∣ σ + σ̄t = 0} comes naturally with
the Killing form which in this thesis shall be rescaled to ⟨σ,σ′⟩ ∶= 1

8 tr(adσ adσ′) = 1
2 tr(σσ′). The Pauli

matrices

σ1 = (−i
i
) and σ2 = ( 1

−1 ) and σ3 = ( −i
−i )

follow the well-known commutation relations

[σi, σj] = 2
3
∑
k=1

εijkσk where εijk is the full-antisymmetric Levi-Civita tensor.

Furthermore, {σi} is a basis of su(2) with ∣σi∣2 = ⟨σi, σi⟩ = −1 and ⟨σi, σj⟩ = 0 for i /= j, so that the Killing
form is not only non-degenerate which makes su(2) semi-simple, it is even negative-definite.
In its complexification sl(2) = (su(2))C = {a ∈ Mat2×2 C ∣ tra = 0} the elements {iσi} build an orthonormal
basis. However it is common to use

h = iσ1 = (1
−1) and e = 1

2
(σ2 + iσ3) = ( 1

0 ) and f = 1
2
(−σ2 + iσ3) = ( 0

1 ),

with well-known relations

[h, e] = 2e and [h, f] = −2f and [e, f] = h

and ∣h∣2 = 1, ∣e∣2 = ∣f ∣2 = 0 and ⟨h, e⟩ = ⟨h, f⟩ = 0 as well as ⟨e, f⟩ = 1
2 .

As a non-degenerate bilinear form the Killing form is a natural way to identify sl2 C with its dual (sl2 C)∨,
respectively su(2) with (su(2))∨.

3.2 Hyperkähler Structure on Hn

Let H be the space of quaternions, that is the non-commutative algebra H = {x0+x1i+x2j+x3k ∣ a, b, c, d ∈ R}
with i2 = j2 = k2 = ijk = −1 and the reals being the center. The quaternionic conjugation is the R-linear
anti-automorphism of H defined on the generators by 1↦ 1, i↦ −i, j ↦ −j and k ↦ −k. Like for the complex
numbers, it defines the real and the imaginary part of a quaternion q ∈ H as 2 Re q = q + q̄ and 2 Im q = q − q̄
and the absolute value ∣q∣2 = qq̄.

There are two common ways to consider H and its powers Hn as a left quaternionic vector space: A
quaternion q ∈ H can act on h ∈ Hn either by left q.h = qh or by the right conjugated multiplication q.h = hq̄.
We shall use the multiplication from the left so that the H-linear endomorphisms EndH(Hn) act via matrices
Q ∈ Matn×nH by Q.h = hQ̄t. This choice defines us the three complex structures just by multiplying with i,
j or k from the left

I(x0 + x1i + x2j + x3k) = −x1 + x0i − x3j + x2k

J(x0 + x1i + x2j + x3k) = −x2 + x3i + x0j − x1k

K(x0 + x1i + x2j + x3k) = −x3 − x2i + x1j + x0k.

Combining these with the hermitian structure

V (h,h′) =
n

∑
l=1
hlh̄

′
l

we additionally find a Riemannian metric ⟨⋅, ⋅⟩ and three symplectic structures ωS for S = I, J,K being

⟨h,h′⟩ = ReV (h,h′) and ωS(h,h′) = ReS V (h,h′) = ⟨Sh,h′⟩.
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Using {x0, x1, x2, x3} as coordinates on H→ R4 we can write all these structures in terms of forms

⟨h,h′⟩ =
n

∑
l=1

(dx2
0 + dx2

1 + dx2
2 + dx2

3)(hl, h′l)

ωI(h,h′) = −
n

∑
l=1

(dx0 ∧ dx1 + dx2 ∧ dx3)(hl, h′l)

ωJ(h,h′) = −
n

∑
l=1

(dx0 ∧ dx2 + dx3 ∧ dx1)(hl, h′l)

ωK(h,h′) = −
n

∑
l=1

(dx0 ∧ dx3 + dx1 ∧ dx2)(hl, h′l).

This is nothing else but saying that Hn is actually a flat hyperkähler manifold.

There is an important group action on H: An element q ∈ Sp(1) = {q ∈ H ∣ ∣q∣ = 1} acts on an h ∈ H via conju-
gation q.h = qhq̄. This action fixes the real part but acts in a norm-perserving way on ImH = {ix1+jx2+kx3}
and so actually factorises through SO(3). This map Sp(1)→ SO(3) has kernel {±1} and is nothing else but
the universal (two-fold) covering Sp(1) → SO(3). If we fix an arbitrary complex structure on H, say I, the
Sp(1)-action (H, I) → (H, I) is not holomorphic. But it is bi-holomorphic when we regard q ∶ h ↦ qhq̄ as a
map (H, I)→ (H, qIq̄). In other words, via the SO(3)-rotation in the sphere {aI + bJ + cK ∣ (a, b, c) ∈ S2} of
complex structures any two choices of complex structures on H are equivalent.

Restricting ourselves to the complex manifold (H, I) we can give the hyperkähler structure in terms of
a holomorphic symplectic form. Via the choice of I, we can identify Hn = Cn ⊕Cn = Cn ⊗R C

h0 + ih1 + jh2 + kh3 ↦ z +wj = (z,w) where z = h0 + ih1, w = h2 + ih3, h0, h1, h2, h3 ∈ Rn.

Here, the complex structure I acts on each summand in Cn ⊕ Cn separately as I(z,w) = (iz, iw). The
interpretation as tensor product motivates the choice J(z,w) = (−w̄, z̄) being related to the complex structure
on the second factor Cn⊗RC. The conjugation on H now reads as (z,w) = (z̄,−w). Using jw = w̄j for w ∈ C,
the hermitan form Cn ⊗R C becomes

Ṽ (z +wj, z′ +w′j) =
n

∑
l=1

(zl +wlj)(z̄′l −w′
lj) =

n

∑
l=1
zlz̄

′
l +wlw̄′

l − (zlw′
l −wlz′l)j

and decomposes

⟨z +wj, z′w′j⟩ = Re zlz̄′l +wlw̄′
l and ω(z +wj, z′ +w′j) = −(zlw′

l −wlz′l).

These two structures again written as Riemannian metric and complex valued I-holomorphic 2-form are

⟨⋅, ⋅⟩ = Re
n

∑
l=1

dzl ⊗ dz̄l + dwl ⊗ dw̄l and ω = −
n

∑
l=1

dzl ∧ dwl.

This way H became a kähler manifold with holomorphic symplectic form.
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4 Nilpotent Orbits as Moduli Spaces of Nahms Equations
In this chapter we will introduce the moduli space of solutions to Nahms equations which corresponds to a
nilpotent coadjoint orbit in the semi-simple, complexified Lie algebra gC. More precisely we construct this
space several times: once as a quotient of paths g⊗H defined on R, once with paths on R≤0 and one last
time in the complex world with paths in gC⊗C2 on R≤0. All those perspectives are present in the literature
and so we shall go through all of them here.

The critical points of the perturbed Nahms equations, i.e. the time-indepedent solutions, are exactly the
negative of su(2)-triples in g. In contrast to [Kro90b] we shall not consider solutions to perturbed Nahms
equations converging to a critical point but all paths with such a convergence and find the space of solutions
as zero-level of the momentum map of the gauge action. This way the quotient inherits its structure more
natural from a hyperkähler reduction. This is done e.g. by O. Biquard in [Biq96] in the non-pertubed setup.
When we have justified that the performed quotient is a manifold we close this section with group actions
of G, Sp(1) and symmetries of the domain R.
We aim to give more detailed proofs when the Nahm-background becomes relevant and so we have decided
to not give any details concering the theory of Banach-manifolds, the relevant material can be found e.g. in
Serge Langs book Differential Manifolds[Lan72].

Since the formulations of Nahms equations on R and R≤0 are linked by a reparametrisation R → R≤0 it
is not necesessary to give proofs in the presentation of the moduli spaces as in A. Kovalevs[Kov96] and
O. Biquards[Biq96] description. Here we do need to take care of only one and not two asymptotics: The
asymptotics at t =∞ is now translated into an initial value at s = 0 - that would have simplified most proofs
since the boundary condition at t =∞ is translated into a proper inital value at s = 0 now, however we still
have to ensure the correct asymptotic at s = −∞.

Just as Donaldson in [Don84] we fix an identification between H and C2. Replacing g⊗H with gC⊗C2

brings us into the complex formulation: The three Nahms equations are replaced by one complex and one
real equation. The complex symplectic reduction leads to the moduli space of solutions to the complex
equation modulo complex gauge elements. We shall interpret the smooth structure on this space via the real
formulation presented before, that is why we have to spend some time with the real equation.
Now, when both spaces are identified with each other we pass to our goal of this chapter: the identification
of the moduli space and the nilpotent orbit via the GC-action and the formulation of the moment map.

Let G be a compact, semi-simple Lie group and a homomorphism ρ ∶ su(2) → g of Lie algebras. Schurs
Lemma tells us that ρ is either an injection or the zero-map:

Proposition 4.1. A representation ρ ∶ su(2)→ g is either the zero map or an injection.

So let us fix a non-trivial ρ ∶ su(2) → g and that way identify su(2) with its image. This allows us to abuse
the notation with writing σl ∈ g for l = 1,2,3.
By the assumptions on G the Killing form on its Lie algebra g induces an G-invariant inner product ⟨⋅, ⋅⟩.
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4.1 On the Real Line R
Given an su(2)-triple {σl}3

l=1 in the Lie algebra g and some small enough δ > 0 which is fixed later. The
base space A is the subspace of C 1(R;g)⊗R4 = C 1(R;g)⊗H such that its elements A = (A0,A1,A2,A3) =
A0 + iA1 + jA2 + kA3 have the following asymptotics

• ∥Al∥+ <∞ for l = 0,1,2,3 where ∥w∥+ ∶= supt≥0 e
2t(∣w(t)∣ + ∣ẇ(t)∣)

• ∥A0∥− <∞ and ∥Al + σl∥− <∞ for l = 1,2,3 where ∥w∥− ∶= supt≤0 e
−δt(∣w(t)∣ + ∣ẇ(t)∣)

The space A is seen to be a quaternionic space affine over the Banach space {a ∈ C 1(R,g) ∣ ∥a∥± <∞}⊗H.
Hence A has the structure of a flat Banach manifold whose tangent space at a point A ∈ A is given by
TAA = {a ∈ C 1(R,g) ∣ ∥a∥± < ∞} ⊗ H. We can use the L2-inner product on the first factor to define a
Riemannian metric on A by

⟪⋅, ⋅⟫ = ∫
∞

−∞
e2t∣dA∣2 i.e. ⟪a, a′⟫ = ∫

∞

−∞
e2t⟨a(t), a′(t)⟩dt.

The asymptotic conditions ensure that the integrals are well-defined. The so-defined metric is compatible
with the complex structurs coming from H. Consequently, we can define to each of it a symplectic form

I(a0, a1, a2, a3) = (−a1, a0,−a3, a2) so that ωI = −∫
∞

−∞
dA0 ∧ dA1 + dA2 ∧ dA3

J(a0, a1, a2, a3) = (−a2, a3, a0,−a1) so that ωJ = −∫
∞

−∞
dA0 ∧ dA2 + dA3 ∧ dA1

K(a0, a1, a2, a3) = (−a3,−a2, a1, a0) so that ωK = −∫
∞

−∞
dA0 ∧ dA3 + dA1 ∧ dA2.

To summarise: This way A is a flat hyperkähler manifold.
Geometrically, we work with A as it were the space of connections on the trivial G-bundle R4 × G → R4

being R3-translation invariant with certain decay: Chosen coordinates (xl) on R4 we can write A ∈ A as a
connection via

A = (A0,A1,A2,A3)←→ A = d +
3
∑
l=0
Al dxl ←→ ∇Aξ = (ξ̇ − adA0 ξ,adA1 ξ,adA2 ξ,adA3 ξ).

With that said it is natural to consider the action of the gauge group

G = {g ∈ C 2(R;G) ∣ ∥ġg−1∥± <∞, ∥Adg σi − σi∥− <∞}
via g.A ∶= (g.A0, g.A1, g.A2, g.A3) = (AdgA0 − ġg−1,AdgA1,AdgA2,AdgA3).

It is worth to point out that any path g ∈ G actually converges for t→ ±∞ since the group G is supposed to
be compact. And so we shall restrict ourselves already here to the pointed gauge group

G0 = {g ∈ G ∣ g(∞) = 1} ⊂ G

being a normal subgroup in G with G/G0 = G. With that choice we can find the Lie algebra

G0 → LieG0 = {ξ ∈ C 2(R;g) ∣ ∥ξ̇∥± <∞, ∥[ξ, σi]∥± <∞, ξ(∞) = 0} via g ↦ ġg−1.

For any such ξ the ordinary differential equation ġg−1 = ξ has a unique solution given g(0) = 1 - this becomes
clear when written in matrix notation as the linear equation ġ = ξg. And so the above map modells G0 as
a Banach manifold over the Banach space (LieG0, ∥⋅∥+ + ∥⋅∥−). The condition ξ(∞) = 0 is relevant for the
completeness of LieG0, for LieG we would have to identify

LieG = {ξ ∈ C 2(R;g) ∣ ∥ξ̇∥± <∞, ∥[ξ, σi]∥± <∞}

with LieG0 ⊕ g. The exponential map LieG0 → G0 is given by the pointwise exponential map g→ G.
The G-invariance of the hyperkähler structure follows directly from the Ad-invariance of the metric and the
shape of the induced G-action on the tangent spaces: For g ∈ G it is found to be TAA→ Tg.AA

g.a = (Adg a0,Adg a1,Adg a2,Adg a3).
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It turns out that the G-action is an hyperkähler action, we will prove the G0-action to be tri-hamiltonian.
In order to do so we compute the fundamental vector fields on A:

Kξ
G(A) = (adξA0 − ξ̇,adξA1,adξA2,adξA3) = −∇Aξ

where we have interpreted ξ ∈ LieG as a R3-translation invariant section of the vector bundle AdP = R4 × g.
The next step is a computational one: For a ∈ TAA and ξ ∈ LieG0 we have

⟪Kξ
G0 , a⟫ = ∫

∞

−∞
e2t(⟨adξA0 − ξ̇, a0⟩ + ⟨adξA1, a1⟩ + ⟨adξA2, a2⟩ + ⟨adξA3, a3⟩)dt

= ∫
∞

−∞
e2t(−⟨ξ̇, a0⟩ +

3
∑
l=0

⟨ξ, [Al, al]⟩)dt = ∫
∞

−∞
− d
dt
e2t⟨ξ, a0⟩ + e2t⟨ξ, ȧ0 + 2a0⟩ + e2t

3
∑
l=0

⟨ξ, [Al, al]⟩dt

= − lim
t→∞

⟨ξ, e2ta0⟩ + lim
t→−∞

⟨ξ, e2ta0⟩ + ∫
∞

−∞
e2t⟨ξ, ȧ0 + 2a0 +

3
∑
l=0

[Al, al]⟩dt

= ∫
∞

−∞
e2t⟨ξ, ȧ0 + 2a0 +

3
∑
l=0

[Al, al]⟩dt.

Here it was helpful that we have already restricted ourselves to the action of G0 since this means that we
have to consider only ξ ∈ LieG0. The point of this being that the exponential decay of ξ̇ implies that also ξ
reaches its limit ξ(∞) = 0 exponentially so that after the partial integration the integral does converge and
both limit-terms in the second last line vanish.
The same computation yields to the formal adjoint of ∇A applied on η = (η0, η1, η2, η3)

∇∗
Aη = −(η̇0 + 2η0 +

3
∑
l=0

adAl ξl).

Coming back to the moment map, we use dµSG0(ξ) = ωS(Kξ
G0 , a) = −⟪Kξ

G0 , Sa⟫ for S = I, J,K to finally find

µIG0(A) = Ȧ1 + 2A1 + [A0,A1] + [A2,A3]
µJG0(A) = Ȧ2 + 2A2 + [A0,A2] + [A3,A1]
µKG0(A) = Ȧ3 + 2A3 + [A0,A3] + [A1,A2]

which we combine into one map1 µG0 = iµIG0 + jµJG0 + kµKG0 . Clearly, each component of µ has values in

Cexp(R;g) = {f ∈ C 0(R;g) ∣ sup
t≥0

e2t∣f(t)∣ + sup
t≤0

e−δt∣f(t)∣ <∞}

which is a closed subspace of (LieG0)∨ via

⟪⋅, ⋅⟫ ∶ f ↦ (ξ ↦ ∫
∞

−∞
e2t⟨f, ξ⟩dt).

The defining equations of N

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ȧ1 + 2A1 + [A0,A1] + [A2,A3] = 0
Ȧ2 + 2A2 + [A0,A2] + [A3,A1] = 0
Ȧ3 + 2A3 + [A0,A3] + [A1,A2] = 0.

are called Nahm equations or sometimes Nahm-Schmidt equation (with our boundary conditions).
It is straight-forward to check that µG0 is G0-equivariant, and so G0 acts on N = µ−1

G0(0). Before we can
perform the hyperkähler quotient N /G0 we have to answer several questions positively: N needs to be a
submanifold and the G0-action needs to be free and proper.

Lemma 4.2. The space N of solutions to Nahms equations in A is a submanifold of A.
1The right multiplication for the complex structure would have given us Ȧi+2Ai+[A0, Ai]−[Aj , Ak] = 0 as Nahms Equations.
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Proof. All we need to check is that 0 is actually a regular value of µ. As a quadratic map µ is continuously
differentiable with linearisation DAµ ∶ TAA→ Cexp(R;g)⊗sp(1). We have to check if for any ξ = (ξ1, ξ2, ξ3) ∈
Cexp(R;g)⊗ sp(1) there is an a ∈ TAA such that DAµ(a) = ξ. This is nothing else but solving the following
set of linear differential equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ȧ1 + 2a1 + [A0, a1] + [a0,A1] + [A2, a3] + [a2,A3] = ξ1
ȧ2 + 2a2 + [A0, a2] + [a0,A2] + [A3, a1] + [a3,A1] = ξ2
ȧ3 + 2a3 + [A0, a3] + [a0,A3] + [A1, a2] + [a1,A2] = ξ3

for a = (a0, a1, a2, a3). We have three equations and four variables, so we can choose a0 = 0 and only solve
for (a1, a2, a3). For the model solution S = (0,−σ1,−σ2,−σ3) ∈ A we can write A = S + b and use this to find
a linear system of differential equations

d
dt

⎛
⎜
⎝

a1
a2
a3

⎞
⎟
⎠
+ 2

⎛
⎜
⎝

a1
a2
a3

⎞
⎟
⎠
+
⎛
⎜
⎝

adσ3 −adσ2

−adσ3 adσ1

adσ2 −adσ1

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S̃

⎛
⎜
⎝

a1
a2
a3

⎞
⎟
⎠
+
⎛
⎜
⎝

adb0 −adb3 adb2
adb3 adb0 −adb1
−adb2 adb1 adb0

⎞
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

⎛
⎜
⎝

a1
a2
a3

⎞
⎟
⎠
=
⎛
⎜
⎝

ξ1
ξ2
ξ3

⎞
⎟
⎠

At this point it becomes clear that the problem is more subtile compared to the considerations in [Kro04]
on the compact interval in stead of R since we have to take care of the boundary conditions and have no
intival values here. However, we can tackle this problem with similar functional analytic methods used in
this article. We shall show three following statements:

1. The differential operator DAµ = d
dt + 2 + S̃ is an isomorphism for A = S, i.e. B = 0.

2. The operator B is a compact.

3. The differential operator d
dt + 2 + S̃ +B injects, i.e. the only solution with ξ = 0 is a = 0.

That means that DAµ defines an injective Fredholm operator of index 0 which means it is an isomorphism
and so the claim is true.
The advantage of this functional analytic approach is that the operator theory automatically cares about
the asymptotic. Of course the standard existence and uniqueness results for differential equation apply here
as well but with those we would have to take of the limiting behaviour separately.

1. For any ξ ∈ Cexp(R;g) the solution with initial value a(t0) = ã0 is given by

a(t) = exp(−(2 + S̃)t)∫
t

t0
exp((2 + S̃)t′) ξ(t′)dt′ + exp(−(2 + S̃)t) ã0.

We have to choose ã0 = 0 to ensure the correct asymptotics of the second summand.
The eigenvalues of S̃ are 0 and ±i

√
adcas so that exp(t′S̃) is unitary on the orthogonal complement of

its kernel and so can be inverted there. Consequently, the integral of exp(S̃t′) can be computed and
is seen to be bounded due to e2t∣ξ(t)∣ ≤M . This implies with

e2ta(t) = exp(−S̃t)∫
t

t0
exp(S̃t′) e2t′ξ(t′)dt′

that ∣e2ta(t)∣ is bounded for large t. The same argument works for ∣e−δta(t)∣ for t→ −∞.
This shows that a has the correct asymptotic behaviour. From ȧ = −2a − S̃a + ξ it follows that also ȧ
has the correct asymptotic behaviour and so ∥a∥± <∞.

2. We can see B more or less as a multiplication operator with an exponentially decaying function and
so a bounded operator. We show that for any ∥⋅∥±-bounded sequence (an) the sequence (Ban) has a
convergent subsequence. On any compact set in R we can apply the Arzela-Ascoli theorem and thus
only need to show that (Ban) is pointwise bounded and equicontinuous. Due to the exponential decay
we can then find a convergent subsequence for all of R with a diagonal argument:
The family (an) is bounded, and so automatically pointwise bounded. Since ∥a∥± < ∞ implies that
the derivative is bounded, all an are Lipschitz continuous with a common Lipschitz constant which is
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sufficient for equicontinuity of the family. Both properties are preserved by the bounded operator B.
Let us recursively construct a convergent subsequence of (an) by a diagonal argument: Define the
inital sequence a(0) to be (an). For any N ∈ N there is a subsequence a(N) in a(N−1) which converges
uniformly on the interval [−N ;N] and thus with respect to ∥⋅∥± on [−N ;N] - this is a consequence of
the Arzela-Ascoli theorem. We shall now show that the diagonal sequence ã = (ãN) given by ãN = a(N)

N

converges with respect to ∥⋅∥±:
Let ε > 0. There is some integer R > 0 such that ∣an∣ < ε/2 outside of [−R;R] for any n ∈ N. By
construction ã is a subsequence of the convergent sequence a(R) and so there is some R′ > R such that
∥ãn − ãm∥ < ε holds on [−R;R] and so on all of R for any n,m > R′. And so it follows that ã is a
∥⋅∥±-Cauchy sequence and, hence, converges.

3. The injectivity is a consequence of the uniqueness of solutions to ordinary differential equations: As
a = 0 is a solution to ȧ + (2 + S̃ +B)a = 0 it is the only one.

These arguments show that the differential µ is a submersion and so they complete the proof.

So N is a manifold on which G0 acts, to ensure that the quotient is reasonable defined we show that the
action is free and proper. Having the methods already from [RR18] in mind, we adopt to our situation by
structuring the claims into two separate statements each which some more explanations:

Lemma 4.3. For any A0 ∈ C 1(R;g) with ∥A0∥± < ∞ there is an element g ∈ C 2(R;G) with ∥ġg−1∥± < ∞
such that g.A0 = AdgA0 − ġg−1 = 0. Two such g and g′ differ by a constant factor from the left: g′g−1 is a
constant path in G. And so there is a unique such g with initial value g(∞) = 1.

Proof. We firstly have to solve the differential equation h.A0 = AdhA0 − ḣh−1 = 0. Passing to the notation
as G were a matrix group we can write this to be

ḣ = hA0.

So h is determined by a linear ordinary differential equation. The correct asymptotics is a consequence of
∣ḣh−1∣ = ∣AdhA0∣ = ∣A0∣ so that ∥ḣh−1∥± = ∥A0∥± <∞. By the definition of an action from g.A0 = 0 if follows
g−1.0 = A0. For two such g and g′ we have g′g−1.0 = 0 which is equivalent to g′g−1 being constant.
From ∥ġg−1∥± <∞ and the compactness of G it follows that g converges for both t →∞ and t → −∞. And
so g(∞)−1g is the desired path in G with value 1 at t =∞.

This is the right moment to point out that if A0 were a component of some A ∈ A as above we cannot
conclude g being a gauge element in general as such a g has the additional requirement ∥Adg σi − σi∥− <∞.
From d

dt Adg σi = [ġg−1,Adg σ] = [A0,Adg σ] we can deduce that Adg σi reaches its limit exponentially but
it is in general only a representation conjugate to (σi) and not (σi) itself.

However this information is enough to deduce the freeness of the action as follows: Let g ∈ G0 have any
fixpoint A ∈ A and u ∈ C 2(R;G) be the unique path such that u.A0 = 0 and u(∞) = 1. From the fact that
ugu−1 gauges 0 back to 0 we can deduce that it is the constant path and, comparing with the value at t =∞,
it follows that g was already the constant path g = 1. Here again it became relevant to work with G0 instead
of G.
What is left is the properness:

Lemma 4.4. The gauge group G0 acts properly on N and also on A.

Proof. Let (gn) ⊂ G0 be an arbitrary sequence. We have to show that if there is a converging sequence
(An) ⊂ A for which also (gn.An) ⊂ A converges there is a converging subsequence in (gn). As G0 is modelled
over its Lie algebra we have to show that the family (ζn), ζn = ġng−1

n , has a convergent subsequence.
We aim to apply the Arzela-Ascoli theorem to the family (ζn) on any compact interval in R and deduce
the existence of a convergent subsequence as before. The boundedness of (ζn) is direct consequence of the
convergence of (An) and (gn.An)

∥ζn∥ = ∥ġng−1
n ∥ = ∥Adgn An0 − gn.An0 ∥ ≤ ∥Adgn An0 ∥ + ∥gn.An0 ∥ = ∥An0 ∥ + ∥gn.An0 ∥.
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The equicontinuity follows from the boundedness with respect to ∥⋅∥±: The first derivatives are bounded by
the same number which means the family shares the same Lipschitz constant.
Using the same diagonal argument as the second step of the proof of Lemma 4.2. we deduce that (ζn)
contains a convergent subsequence.

We can now pass to the quotient

M = {Solutions to Nahms Equations in A}
G0 = NG0 .

The infinite dimensional setup requires some additional work to invest forM being a manifold:

Theorem 4.5. The quotientM = NG0 is a hyperkähler manifold.

Proof. The main point in the proof is to show thatM is a manifold. If that is done we can just induce all
the necessary structures from N toM via the G0-equivariance, the integrability of the hyperkähler structure
follows as usual in the hyperkähler setting already from the closedness of the symplectic forms.
The smoothness of the quotient is proven using the slice technique, similar to Kronheimers proofs in [Kro04]
and [Kro90a]: To any A ∈ A we regard the slice

SA = {A + a ∣ a ∈ TAA, ∥a∥± < ε, ∇
∗
Aa = ȧ0 + 2a0 +

3
∑
l=0

[Al, al] = 0}

which is, speaking geometrically, orthogonal to the G0-orbit, i.e. TASA ⊥ TAG0, as we have seen in the
previous computation of the G0-momentum map, here ε > 0 is later chosen small. We have to show that for
any A + b ∈ SA the only g ∈ G0 such that g.(A + b) ∈ SA is exactly g = 1. In the setup of an A + b ∈ SA and
g.(A + b) ∈ SA we put b′ = g.(A + b) −A and since A + b′ ∈ SA we know

−∇∗
Ab

′ = ḃ′0 + 2b′0 +
3
∑
l=0

[Al, b′l] = 0.

Considering this as a differential equation of order 2 for g with initial value g(∞) = 1 our aim is to show
that g = 1 is the only solution when ε is chosen small enough. The usual existence and uniqueness statement
of Picard-Lindelöf will not suffice here because it would be tricky to handle the initial value being a limit
and not a value at finite time. And so again we apply analysis in the infinite dimensional setting: Local
invertibility comes as a consequence of the invertibility of the differential, if the statement is modelled over
the correct spaces we have dealed with the asymptotics as well.
We shall pass to the Lie algebra LieG0: Since g(∞) = 1 the gauge g is necessarily in the image of the
exponential map with g = exp ξ around t = ∞ and so we can ask for the linearised equation in ξ: If the
linearisation is an isomorphism the uniqueness of the solution is garanteed. It reads as

∇∗
A∇A+bξ = ∇∗

A(∇Aξ + [b, ξ]) = 0.

The isomorphy of the operator ∇∗
A∇A + ∇∗

A adb ∶ LieG0 → Cexp(R;g) is achieved by the following line of
arguments:

1. ∇∗
S∇S is an isomorphism where S = (0,−σ1,−σ2,−σ3) is again the model solution

2. ∇∗
A∇A is an injective compact perturbation of ∇∗

S∇S

3. ∇∗
A∇A +∇∗

A adb remains for ∥b∥± < ε small enough still invertible

The first two points show that ∇∗
A∇A is an injective operator of Fredholm index 0 and so an isomorphism to

which we add in point 3 an operator of controlled norm. If ε is small enough the added operator has norm
so small that we remain with an isomorphism because the space of invertible operators is an open subset of
the space of operators.
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1. For the model solution S = (0,−σ1,−σ2,−σ3) we can compute the operator ∇∗
S∇S directly to be

∇∗
S∇Sξ = ξ̈ + 2ξ̇ +

3
∑
j=1

ad2
σj ξ.

We can decompose g = ⊕∞k=0Eig(cas, νk) into eigenspaces of the Casimir operator cas = ad2
σ1
+ad2

σ2
+ad2

σ3

with eigenvalues νk = k(k − 1), k ∈ N0. In this decomposition the above equation ξ̈k + 2ξ̇k + νkξk = ζk
can easily be solved with the shorter notation ν̃k =

√
νk − 1, k ≥ 2, to be

ξk(t) = −
1
ν̃k
∫

t

−∞
sin(ν̃k(τ − t))eτ−tζk(τ)dτ +C cos(ν̃kt)e−t +C ′ sin(ν̃kt)e−t

where C and C ′ are constants of the integration. From ∥ζ∥± <∞ we can read off that ∣ζk ∣ ≤ eδt∥ζ∥− for
t → −∞ respectively ∣ζk ∣ ≤ e−2t∥ζ∥− for t → ∞. And so the intergration from −∞ to t is well-defined,
since we can estimate ζk and the trigonometric terms against 1. The same elementary estimates show
that the integral converges like e−2t as t →∞. For the convergence of the whole ξ, we have to choose
C = C ′ = 0 which makes the solution also unique. A very similar calculation also works for k = 0,1, i.e.
νk = 0.

2. The computation of ker∇∗
A∇A reduces due to the equality ⟪∇∗

A∇Aξ, ξ⟫ = ⟪∇Aξ,∇Aξ⟫ to the compu-
tation of the kernel ker∇A which turns out to be trivial: ker∇∗

A∇A = ker∇A = {0}.
Now using that A = S + a we can write

(∇∗
A∇A −∇∗

S∇S)ξ = 2[a0, ξ̇] + [ȧ0, ξ] +
3
∑
l=0

adal adσl ξ +
3
∑
l=0

adAl adal ξ

As in the computation of the properness of the G0-action on A the right hand side is seen to define a
compact operator in ξ, this time also using that a and A are uniformly continuous.

3. The norm of the composition of the two bounded operators ∇∗
A and ξ ↦ (adb0 ξ,adb1 ξ,adb2 ξ,adb3 ξ)

can be bounded by ∥∇A∥∥b∥ and so the operator ∇∗
A∇A+b is close enough to the invertible operator

∇∗
A∇A and hence invertible itself for appropriately small ε.

And so it follows that ξ = 0, i.e. g = 1, in a neighbourhood of t =∞ and so everywhere.

In the proof that ∇∗
S∇S is an isomorphism we have seen that δ needs to be chosen such that it is smaller

than the smallest positive eigenvalue of the Casimir operator: This is why δ < 1 is sufficient in our setup to
deduce that the quotient is a manifold.
It is also a direct consequence that we can identify the tangent space at some [A] ∈M with a subspace of
TAN respectively the subspace of such a ∈ TAA that fulfill

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ȧ0 + 2a0 + [A0, a0] + [A1, a1] + [A2, a2] + [A3, a3] = 0
ȧ1 + 2a1 + [A0, a1] + [a0,A1] + [A2, a3] + [a2,A3] = 0
ȧ2 + 2a2 + [A0, a2] + [a0,A2] + [A3, a1] + [a3,A1] = 0
ȧ3 + 2a3 + [A0, a3] + [a0,A3] + [A1, a2] + [a1,A2] = 0

With that we are almost done with presenting the construction of the moduli space. But there are a few
symmetries on N that pass down toM and some that do not:

• From the G-action on N it remains an action of G/G0 = G onM simply by choosing another limit point
at t = ∞. Comparing to the G0-moment map computation above, it is automatic to see this action
being tri-hamiltonian with moment map µG ∶M→ g∨⊗ sp(1) given by

µG(A) = lim
t→∞

e2t(A1(t),A2(t),A3(t)) = lim
t→∞

e2t ImA(t).

• The idea of an Sp(1)-action on the quotientM is to act just on the H component by the adjoint action.
However in general Adq, q ∈ Sp(1), does not preserve the boundary conditions at t = −∞. To deal with
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that problem we integrate the representation ρ ∶ sp(1) = su(2) → g to the groups ρ ∶ Sp(1) → G and
correct by any g ∈ C 2(R;G) with g(−∞) = ρ(q−1) such that g ○Adq ∈ G0, e.g. one which is constant in
some neighborhood of t = −∞. Since

q.(A0,A1,A2,A3) = g.(A0 +Adq(iA1 + jA2 + kA3)), A ∈ A.

maps G0-orbit into G0-orbit it induces an Sp(1)-action on the quotientM.
With the usual map Sp(1)→ SO(3), q ↦ (qkl) we can rewrite this to be

q.(A0,A1,A2,A3) = g.(A0 + i
3
∑
l=1
q1lAl + j

3
∑
l=1
q2lAl + k

3
∑
l=1
q3lAl).

In other words Sp(1) acts on both factors of g⊗H in C 1(R;g⊗H). But the correction by g ∈ G does
not affect the rotational action of Sp(1) in the sphere of complex structures and so this action is also
a rotational one.

• Nahms equations are invariant with respect to the time shift: The additive real numbers act on N by
(λ.A)(t) = A(t + λ). This action descents to the quotientM. To check this we firstly have to observe
that λ.(g.A) = (λ.g).(λ.A) with (λ.g)(t) = g(t + λ) for any g ∈ G0. Since for any gauge element g also
λ.g is a gauge element it turns out that the shifting action preserves the G0-orbits and so passes toM.

• It is also possible to act via scaling of the semi-group R>0. A λ ∈ R>0 acts on an A ∈ N via

(λ.A)(t) = e−2t

e−2t + 2λ
A(−1

2
log(e−2t + 2λ)).

This action does preserve the G-orbits in A but not the smaller G0-orbits. That is the reason why it is
not induced to the quotientM.
It is worth pointing out that the action of λ essentially rescales sλ ∶ R → R− log(2λ)/2 via sλ(t) =
− 1

2 log(e−2t + 2λ) so that (λ.A)(∞) = A(− log(2λ)/2). The prefactor corrects the chain rule ṡλ(t) =
e−2t

e−2t+2λ , checking whether this really defines an action reduces to sλ ○ sλ′ = sλ+λ′ .

Although this latter action looks a bit unnatural it is not. That becomes clear when passing to the Nahms
picture on R≤0. Following the transformation

⎧⎪⎪⎨⎪⎪⎩

s(t) = − 1
2 e

−2t

−2sT (s) = A(t)
inverted by

⎧⎪⎪⎨⎪⎪⎩

t(s) = − 1
2 log(−2s)

e2tA(t) = T (s)

we transform the equation

Ȧi + 2Ai + [A0,Ai] + [Aj ,Ak] = 0 into Ṫi + [T0, Ti] + [Tj , Tk] = 0

and the model solution

(0,−σ1,−σ2,−σ3) into (0, σ1/2s, σ2/2s, σ3/2s).

With s(sλ(t)) = s(t) − λ we just map

(λ.A)(t) = e−2t

e−2t + 2λ
A(−1

2
log(e−2t + 2λ)) into (λ.T )(s) = T (s − λ)

to the shift along the real line.

Solutions A ∈ A were supposed to asymptotically approach (0,−σ1,−σ2,−σ3) and so for our model on
R≤0 we demand the T ’s to decay like (0, σ1/2s, σ2/2s, σ3/2s). In order to start with a well-defined norm on
C 2(R≤0;g) and we choose the model solution to be the non-singular (0, σ1/2(s− 1), σ2/2(s− 1), σ3/2(s− 1))
on R≤0 and that way have well-defined values at s = 0 but preserve the asymptotics.
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4.2 On the Negative Half-Line R≤0

Let {σl}3
l=1 be a su(2)-triple in g. For some small δ > 0 we choose the base space T to be the subspace of

C 1(R≤0;g)⊗H consisting of quadrupels T = (T0, T1, T2, T3) = T0 + iT1 + jT2 + kT3 such that

• ∥T0∥ <∞ and ∥Tl − σl/2(s − 1)∥ <∞ for l = 1,2,3 where ∥w∥ = sups≤0(∣s − 1∣1+δ ∣w(s)∣ + ∣s − 1∣2+δ ∣ẇ(s)∣)

As in [Biq96] we regard T as Banach manifold modelled over the Banach space {t ∈ C 1(R≤0;g)⊗H ∣ ∥t∥ <∞}.
Consequently, this space happens to be the tangent space at any point and it is seen to be a quaternionic
vector space if we write it as {f ∈ C 1(R≤0;g) ∣ ∥f∥ <∞}⊗H, so we can write down the hyperkähler structure
on T to be given by

⟪⋅, ⋅⟫ = ∫
0

−∞
∣dT ∣2 i.e. ⟪t, t′⟫ = ∫

0

−∞
⟨t(s), t′(s)⟩ds

I(t0, t1, t2, t3) = (−t1, t0,−t3, t2) so that ωI = −∫
0

−∞
dT0 ∧ dT1 + dT2 ∧ dT3

J(t0, t1, t2, t3) = (−t2, t3, t0,−t1) so that ωJ = −∫
0

−∞
dT0 ∧ dT2 + dT3 ∧ dT1

K(t0, t1, t2, t3) = (−t3,−t2, t1, t0) so that ωK = −∫
0

−∞
dT0 ∧ dT3 + dT1 ∧ dT2.

The well-definedness of all those integrals is a consequence of the decay condition.
We shall now define the group of gauge elements to be

G = {g ∈ C 2(R≤0;g) ∣ ∥ġg−1∥ <∞, ∥(Adg σi − σi)/2(s − 1)∥ <∞}

and the pointed gauge group being a normal subgroup in G

G0 = {g ∈ C 2(R≤0;g) ∣ ∥ġg−1∥ <∞, ∥(Adg σi − σi)/2(s − 1)∥ <∞, g(0) = 1}

both acting via

g.(T0, T1, T2, T3) = (g.T0, g.T1, g.T2, g.T3) = (Adg T0 − ġg−1,Adg T1,Adg T2,Adg T3).

On a tangent vector t ∈ TTT it induces

g.t = g.(t0, t1, t2, t3) = (Adg t0,Adg t1,Adg t2,Adg t3).

Taking the Ad-invariance of the metric on g into account we can follow now directly that G respects the
hyperkähler structure of T . We intend to find the moment map of the G0- action and firstly have to figure
out that the Lie algebra of G is given by

LieG0 = {ξ ∈ C 2(R≤0;g) ∣ ∥ξ̇∥ < 0, ∥adξ σi/2(s − 1)∥ <∞, ξ(0) = 0}

and the corresponding fundamental vector fields of the action turns out to be

Kξ
G0(T ) = (adξ T0 − ξ̇,adξ T1,adξ T2,adξ T3).

The computation

⟪Kξ
G0 , t⟫ = ∫

0

−∞
⟨adξ T0 − ξ̇, t0⟩ + ⟨adξ T1, t1⟩ + ⟨adξ T2, t2⟩ + ⟨adξ T3, t3⟩)ds

= ∫
0

−∞
(−⟨ξ̇, t0⟩ +

3
∑
l=0

⟨ξ, [Tl, tl]⟩)ds = ∫
0

−∞
− d
ds

⟨ξ, t0⟩ + ⟨ξ, ṫ0⟩ +
3
∑
l=0

⟨ξ, [Tl, tl]⟩ds

= ∫
0

−∞
⟨ξ, ṫ0 +

3
∑
l=0

[Tl, tl]⟩(s)ds.
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leads us as in Kronheimers picture on R to the G-equivariant hyperkähler momentum map µ ∶ T →
Cexp(R≤0;g)⊗ sp(1) ⊂ (LieG)∨ ⊗ sp(1) with components

µIG0(T ) = Ṫ1 + [T0, T1] + [T2, T3]
µJG0(T ) = Ṫ2 + [T0, T2] + [T3, T1]
µKG0(T ) = Ṫ3 + [T0, T3] + [T1, T2]

We say that T ∈ T solves Nahms equations if µ(T ) = 0 and call N = µ−1(0) the solution space. There are
a few things to check here: N needs to be a submanifold of T on which G0 acts freely and properly. When
this is done we can pass down to the quotient

M = {solutions to Nahms equations in T }
G0 = NG0

using the scheme of a hyperkähler reduction and thus inherit the presented G0-preserved structure. The
tangent space T[T ]M at [T ] ∈M can be seen as the subspace of TTT such that the tangent vectors fulfill

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ṫ0 + [T0, t0] + [T1, t1] + [T2, t2] + [T3, t3] = 0
ṫ1 + [T0, t1] + [t0, T1] + [T2, t3] + [t2, T3] = 0
ṫ2 + [T0, t2] + [t0, T2] + [T3, t1] + [t3, T1] = 0
ṫ3 + [T0, t3] + [t0, T3] + [T1, t2] + [t1, T2] = 0 .

Just as in the previous case, the model on R, we can give several group actions which we shall define now

• From the G-action on N it remains an hyperkähler action of G/G0 = G. Similary to the previous
G0-moment map computation the moment map µG ∶M→ g∨⊗ sp(1) turns out to be equivariant with

µG(T ) = (T1(0), T2(0), T3(0)).

• The Sp(1)-action on T has to consists of two ingrediences since a simple Adq, q ∈ Sp(1), would not
respect the boundary conditions. And so we choose a path in C 2(R≤0;G) such that g ○Adq ∈ G0. This
means we have to have g(−∞) = ρ(q−1), it can be constant outside of some compact set. The action
on a [T ] ∈M is now given on representatives

q.(T0, T1, T2, T3) = g.(T0 +Adq(iT1 + jT2 + kT3)).

With the usual map Sp(1)→ SO(3), q ↦ (qkl) we can rewrite this to be

q.(T0, T1, T2, T3) = g.(T0 + i
3
∑
l=1
q1lTl + j

3
∑
l=1
q2lTl + k

3
∑
l=1
q3lTl)

and it also follows that SO(3) is a rotational action.

• Nahms equations are an autonomous system so that negative shifts in time defines a symmetry

(λ.T )(s) = T (s − λ).

This action does only preserve the G-orbits in T but not the smaller G0 orbits and so does not descent
to the quotient.

• In Kromheimers picture we also had the shift action along the real line. This one is translated into
the scaling action: For some h ∈ R>0 we can consider (h.T )(s) = hT (hs). The quotient M inherits
this action since h.(g.T ) and g.(h.T ) are linked by the gauge transformation (h.g)(s) = g(hs) which
in turn implies that the G0-orbits are invariant under this way of acting.
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4.3 The Complex Formulation on R≤0

The next three sections deal with the complex picture, its relation to the real world and the correspondence
to the nilpotent orbits. We shall now choose the complex structure I and that way identify H with C2.
This means that we have to adjust all the above objects: In stead of paths in g⊗H we now work with paths
in gC⊕gC, i.e. with pairs (α,β) of which each component itself is a path in the complexification gC = g⊗C:
We write T = T0 + iT1 + jT2 + kT3 = α + jβ = (α,β), i.e.

⎧⎪⎪⎨⎪⎪⎩

α = T0 + iT1

β = T2 + iT3.

The representation ρ ∶ su(2)→ g becomes complexified to an sl2 C-representation on gC

⎧⎪⎪⎨⎪⎪⎩

h = iσ1

2e = σ2 + iσ3.

The gauge transformations now take values in the universal complexified group GC of G. We shall need here
the Cartan composition which is given by the isomorphism

G × g→ GC via (g, ξ)↦ g exp(iξ).

For matrices, this is just the polar decomposition and so we call elements from G unitary and elements of
the shape exp(iξ) self-adjoint. This also corresponds to involution on GC given by

(g exp(iξ))∗ = exp(iξ) g−1 and (ξ1 + iξ2)∗ = −ξ1 + iξ2 = −ξ1 + iξ2

on the Lie algebra level, here ξ1, ξ2 ∈ g were real elements. And so (Adg η)∗ = Ad(g∗)−1 η∗.
With the involution we can reconstruct the T ’s from (α,β) using

α∗ = −T0 + iT1 and β∗ = −T2 + iT3

and find

T0 =
1
2
(α − α∗) T1 = −

i

2
(α + α∗)

T2 =
1
2
(β − β∗) T3 =

i

2
(β + β∗).

With these relations we can easily check Nahms equations in the (α,β)-formulation to be

⎧⎪⎪⎨⎪⎪⎩

β̇ + [α,β] = 0
d
ds(α + α

∗) + [α,α∗] + [β,β∗] = 0.

The next discussion devides into three parts: The complex moment map leads to the first equation, the
so-called complex equation, and the quotient modulo the complexified gauge group. Afterwards the corre-
spondence to the real picture is discussed. While the quotient does contain equivalence classes of solutions
to the complex equation we have to show that any G0

C orbit also contains a unique G0-orbit of solutions to
the second equation to which we refer as the real equation. In the third part we shall prove that the moment
map of the GC on the moduli space is an isomorphism with the coadjoint orbit AdGC e.
Most of the definitions are motivated by the way we interpret H as C2 just as presented in the conventional
chapter. This procedure is linear and does not have any effect on the analysis behind. That is why most of
the presented objects behave similar to the objects in the real model on R≤0.
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4.3.1 The Moduli Spaces in the Complex Picture

For a given sl2 C-triple {h, e, f} in a complexified semi-simple Lie algebra gC we consider TC to be the
subspace of C 1(R≤0;gC⊕gC) consisting of pairs (α,β) such that

• ∥α − h/2(s − 1)∥ <∞, ∥β − 2e/2(s − 1)∥ <∞ where ∥w∥ = sups≤0(∣s − 1∣1+δ ∣w(s)∣ + ∣s − 1∣2+δ ∣ẇ(s)∣)
This space TC is seen to be a complex space affine over {(a, b) ∈ C 1(R≤0;gC⊕gC) ∣ ∥(a, b)∥ <∞}. Regarding
TC as a complex Banach manifold modelled over {(a, b) ∈ C 1(R<0;gC⊕gC) ∣ ∥(a, b)∥ <∞}⊗C. This complex
vector space inherits the complex structure I and comes equipped with the I-holomorphic symplectic form

⟪⋅, ⋅⟫ = Re∫
0

−∞
dα⊗ dᾱ + dβ ⊗ dβ̄

I(a, b) = (ia, ib) and ωC = −∫
0

−∞
dα ∧ dβ.

The well-definedness of all those integrals is a consequence of the decay condition.
We shall now define the group of gauge elements to be

GC = {g ∈ C 2(R≤0;GC) ∣ ∥ġg−1∥ <∞, ∥(Adg h − h)/2(s − 1)∥ <∞, ∥(Adg e − e)/2(s − 1)∥ <∞}

and the pointed gauge group being a normal subgroup in GC
G0
C = {g ∈ C 2(R≤0;GC) ∣ ∥ġg−1∥ <∞, ∥(Adg h − h)/2(s − 1)∥ <∞, ∥(Adg e − e)/2(s − 1)∥ <∞, g(0) = 1}

both acting via

g.(α,β) = (g.α, g.β) = (Adg α − ġg−1,Adg β).

On a tangent vector (a, b) ∈ T(α,β)TC it induces

g.(a, b) = (Adg a,Adg b).

And so it follows that the GC-action is holomorphic and preserves the structures on TC. We intent to compute
the moment map of the G0

C- action and firstly have to figure out that the Lie algebra of G is given by

LieG0 = {ξ ∈ C 2(R≤0;gC) ∣ ∥ξ̇∥ < 0, ∥(adξ h/2(s − 1)∥ <∞, ∥(adξ f/2(s − 1)∥ <∞, ξ(0) = 0}

and the corresponding fundamental vector fields of the action turn out to be

Kξ
G(α,β) = (adξ α − ξ̇,adξ β).

From the computation

⟪Kξ
G0
C
, (a, b)⟫ = ∫

0

−∞
(⟨adξ α − ξ̇, a⟩ + ⟨adξ β, b⟩)ds

= ∫
0

−∞
(−⟨ξ̇, a⟩ + ⟨ξ, [α,a] + [β, b]⟩)ds = ∫

0

−∞
− d
ds

⟨ξ, a⟩ + ⟨ξ, ȧ⟩ + ⟨ξ, [α,a] + [β, b]⟩ds

= ∫
0

−∞
⟨ξ, ȧ + [α,a] + [β, b]⟩ds

we can find the complex valued moment map

µG0
C
(α,β) = β̇ + [α,β]

and to pass as before to the quotient of the complex symplectic manifold modulo a structure preserving
gauge action

MC = {solutions to the complex equation in TC}
G0
C

= NC

G0
C
.

If the space were a manifold we could just inherit the structure via the invariance. But the step of the
complexification basically caused to the problem that G0

C is too huge. In general the properness will fail
so that the quotient is not necessarily a hausdorff space. However, the next chapter will take care of this
problem because it will just identifyM andMC.
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4.3.2 The Real Equation

Due to the equivalence of the complex equation µG0
C
(α,β) = 0 and the two equations µJG0(T ) = µKG0(T ) = 0

there is additional information hidden in the real equation µIG0(T ) = 0. Ignoring this for the moment the
identification between T and (α,β) includes N in NC. Since G0 is a subgroup of G0

C the map

M→MC via T ↦ (α,β) = (T0 + iT1, T2 + iT3)

is well-defined. We want to show that this map actually is an bijection which is equivalent to say

• Injectivity: If (α,β) and (α′, β′) are G0
C-equivalent in N ⊆ NC then they are already G0-equivalent.

• Surjectivity: For any (α,β) ∈ NC there is some g ∈ G0
C such that g.(α,β) solves the real equation.

And so it is all about finding a helpful form of µIG0(α,β) = 0 to work with gauge elements: Donaldson
gives in [Don84] a useful formulation in terms of operators on C 2(R≤0;gC) and, relying on that, proves the
bijectivity. Here is what he did:

adµI
G

0(α,β) = [∂α, ∂̄α] − [∂β , ∂̄β] where ∂α = d
ds − adα∗ ∂β = −adβ∗

∂̄α = d
ds + adα ∂̄β = adβ

which transform under the gauge element g ∈ GC as

∂g.α = Ad(g∗)−1 ○∂α∗ ○Adg∗ ∂g.β = −Ad(g∗)−1 ○∂β∗ ○Adg∗
∂̄g.α = Adg ○∂α ○Adg−1 ∂̄g.β = Adg ○∂β ○Adg−1

We can here read off that µIG0 is transformed only under the selfajoint part p = g∗g of g ∈ GC as

Adg−1 µi(g.(α,β)) = µi(α,β) − ∂̄αp−1∂αp + ∂̄βp−1∂βp.

And so if for some g ∈ GC with (α,β) also g.(α,β) fulfill the real equation, p = g∗g satisfies

−∂̄αp−1∂αp + ∂̄βp−1∂βp = 0 with p(0) = 1

from which already p = 1 follows. But this is nothing else to say that g was unitary and so g ∈ G ⊆ GC. This
proves the injectivity.

Let us now come to the existence of such a gauge: The idea is to see the equation for g as a Euler-Lagrange
equation, the corresponding functional is given by

L (g) = 1
2 ∫

0

−∞
∣g.α + (g.α)∗∣2 + ∣g.β∣2.

Lemma 4.6. The functional L has a stationary point if and only if µIG0(g.(α,β)) = 0.

Proof. Donaldsons arguments also work in our setup and so we mainly add some details on top:
Let us firstly compute the variations of g.α and g.β in terms of δg:

δ(Adg α − ġg−1) = [δgg−1,Adg α] − δ̇gg−1 + ġg−1δgg−1 and δ(Adg β) = [δgg−1,Adg β]

We shall make two assumptions:

• If suffices to find the Euler-Lagrange equation at g = 1: An arbitrary g is a stationary point of L with
respect to (α,β) if and only if the constant path g = 1 is stationary of L with respect to g.(α,β). But
both (α,β) and g.(α,β) are equivalent in the quotient and so it suffices to consider g = 1.
This assumption simplifies δ(Adg α − ġg−1) = [δg,α] − δ̇g and δ(Adg β) = [δg, β].

• Due to the polar decomposition we can divide variations in G0
C in two directions: We can vary along

the self-dual part and along the unitary part. But being a solution to the real equation or not is a
property being preserved under unitary gauge transformations. That is why only the self-adjoint direct
that is relevant for us: we assume that δg is self-adjoint, i.e. δg∗ = δg.
The two assumptions simplify δ(Adg α − ġg−1)∗ = −[δg,α∗] − δ̇g.
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The rest of the proof is purely computational:

δL (1) = 1
2
δRe∫ ⟨α + α∗, α + α∗⟩ + ⟨β,β∗⟩

= Re 1
2 ∫ 2⟨α + α∗, δ(α + α∗)⟩ + 2⟨α + α∗,−δ̇g⟩ + ⟨δβ, β∗⟩ + ⟨β, δβ∗⟩

= Re 1
2 ∫ 2⟨α + α∗, [δg,α − α∗]⟩ − 2 d

ds
⟨α + α∗, δg⟩ + 2⟨ d

ds
(α + α∗), δg⟩ + ⟨[δg, β], β∗⟩ − ⟨β, [δg, β∗]⟩

= Re∫ ⟨δg, [α − α∗, α + α∗]⟩ + ⟨δg, d
ds

(α + α∗)⟩ + ⟨δg, [β,β∗]⟩

= Re∫ ⟨δg, d
ds

(α + α∗) + [α,α∗] + [β,β∗]⟩

This computation shows that g = 1 was already a stationary point if (α,β) solved the real equation. In other
words, g is a stationary point of L with respect to (α,β) if and only if g.(α,β) solves the real equation.

The existence of a minimizing path p follows now from the Direct method of Calculus of Variations, compare
again against [Don84]. It follows the following train of arguments:

1. The functional is bounded from below and so there is a sequence reaching the infimum.

2. The minimizing sequence contains a convergent subsequence.

3. The functional is lower semi-continuous.

Now the existence of a minimizing p follows. Putting g = √
p we have found a gauge element minimizing L

and thus g.(α,β) solves the real equation.
We shall leave this leck of details and directly go into the idenfication with the complex coadjoint orbit.

4.3.3 Identification as Coadjoint Orbits

To identify the moduli spaceMC with an adjoint orbit let us go through computation of the GC-moment map
again: At a point we couple a tangent vector T(α,β)MC which we shall represent by a pair (a, b) ∈ T(α,β)TC
with a fundamental vector field of the GC-action. Both satisfy their own relation:

ḃ + [α, b] + [a, β] = 0 and Kξ
GC(α,β) = (adξ α − ξ̇,adξ β).

Their pairing via ωC is

ωC(Kξ
GC , (a, b)) = −∫

0

−∞
(⟨adξ α − ξ̇, b⟩ − ⟨adξ β, a⟩)ds

= −∫
0

−∞
(−⟨ξ̇, b⟩ + ⟨ξ, [α, b] − [β, a]⟩)ds = −∫

0

−∞
− d
ds

⟨ξ, b⟩ + ⟨ξ, ḃ⟩ + ⟨ξ, [α, b] + [a, β]⟩ds

= − lim
s→−∞

⟨ξ, a⟩ + lim
s→0

⟨ξ, a⟩ + ∫
0

−∞
⟨ξ, ḃ + [α, b] + [a, β]⟩ds = ⟨ξ(0), b(0)⟩

so that the moment map of the GC-action is given by

µC ∶MC → gC with µC(α,β) = β(0).

In the remaining text of this chapter we shall investigate that this moment map has values the adjoint orbit
of e ∈ gC and actually defines an isomorphism of kähler manifolds equipped with a holomorphic symplectic
form if the orbit comes with the canonical Kirillov-Kostant-Souriau two-form ω ∈ Ω2(gC;C)

ωλ(adξ,adξ′) = ⟨λ, [ξ, ξ′]⟩.

Both, source and target of µC, inherit their complex structure from the complexification process of g to gC
and so µ is holomorphic.
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The equivalence of the symplectic forms, i.e.

ωC = µ∗Cω or alternatively ωC(Kξ
GC(α,β),K

ξ′

GC(α,β)) = ⟨β(0), [ξ(0), ξ′(0)]⟩

for any ξ, ξ′ ∈ LieGC, follows from a direct computation:

ωC(Kξ
GC(α,β),K

ξ′

GC(α,β)) = −∫
0

−∞
⟨adξ α − ξ̇,adξ′ β⟩ − ⟨adξ′ α − ξ̇′,adξ β⟩ds

= −∫
0

−∞
⟨adξ α,adξ′ β⟩ − ⟨adξ′ α,adξ β⟩ − ⟨ξ̇,adξ′ β⟩ + ⟨ξ̇′,adξ β⟩ds

= −∫
0

−∞
⟨(−adξ′ adξ +adξ adξ′)α,β⟩ + ⟨adξ′ ξ̇ − adξ ξ̇′, β⟩ds

= −∫
0

−∞
⟨ad[ξ,ξ′] α,β⟩ − ⟨ d

ds
[ξ, ξ′], β⟩ds

= −∫
0

−∞
⟨[ξ, ξ′],adα β⟩ + ⟨[ξ, ξ′], β̇⟩ − d

ds
⟨[ξ, ξ′], β⟩ds

= ⟨[ξ, ξ′], β⟩∣0−∞ − ∫
0

−∞
⟨[ξ, ξ′], β̇ + [α,β]⟩ds = ⟨β(0), [ξ(0), ξ′(0)]⟩.

It remains to show the bijectivity of µ:

Theorem 4.7. The moment map µC ∶MC → gC of the GC action

µ(α,β) = β(0)

is an isomorphism between the moduli spaceMC and the coadjoint orbit AdGC e.

In more elementary words the theorem just states that for any (α,β) ∈ NC there is a g ∈ GC such that

g.(α,β) = (α0, β0) where α0(s) =
1

2(s − 1) h, β0(s) =
2

2(s − 1) e.

As before, finding such a gauge takes care about the asymptotic conditions. We will follow Biquards strategy
from [Biq96] with some slight modifications: when we have found such a gauge transformation on some
interval ] − ∞; s∗] we can follow the claim on the whole half-line just by existence and uniqueness of a
solution on the compact interval [s∗,0]. For us it will be easier to turn the problem around and show that
for any (α,β) ∈ NC there is some g ∈ GC such that g.(α0, β0) = (α,β) and deduce the asymptotics from the
first equation g.α0 = α as in previous proofs of comparable statements. This differential equation g.α0 = α
should fix g in such a way that the second equation Adg β0 = β will follow. This is almost the case as the
next lemma illustrates:

Lemma 4.8. Let (α,β), (α′, β′) ∈ NC. If there is a gauge transformation g ∈ GC such that g.α = α′ and
Adg β(s∗) = β′(s∗) at some point s∗, then g.(α,β) = (α′, β′).

Proof. We only have to check that Adg β = β′. Differentiating B = Adg β − β′ to

Ḃ = [ġg−1,Adg β] +Adg β̇ − β̇′

= [Adg α − α′,Adg β] −Adg[α,β] + [α′, β′] = −[α′,Adg β − β′]
= −[α′,B].

leads us to a differential equation Ḃ = −[α′,B]. Due to B(s∗) = 0 we know that the only solution is B = 0
which implies the claim.

We can now focus on the first equation outside of some compact set. The idea will be to use the implicit
function theorem again and that way ensure the existence of a gauge g.α0 = α. In the second step we deal
with the second equation Adg β0 = β.
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Proof of the theorem. We shall show as in [Biq96] that there is a gauge g = exp ξ such that Adg α0− ġg−1 = α.
For some (a, b) ∈ T(α,β)NC the linearised equation

ξ̇ − 1
2(s − 1) adh ξ = a

can be solved directly to be

ξ(s) = exp( log ∣s − 1∣
2

adh)∫
0

s
exp(− log ∣s − 1∣

2
adh)α(s′)ds′.

The asymptotics of a garantuees the asymptotics of ξ̇ and ξ̈, this can be checked e.g. via decomposing gC
into its weight spaces with respect to the given sl2 C-representation. This implies the existence of some
g ∈ GC with g.α0 = α on some interval ] −∞; s0] and so we have g−1.(α,β) = (α0, β

′). We are left to show
that β′ = β0. The real equation gives us already that

β̇′ + 1
2(s − 1) adh β′ = 0 so that β′(s) = exp(− log ∣s − 1∣

2
adh)β′0 for some β′0 ∈ gC .

It is actually so that β′0 is restricted by the asymptotics of β to be in β′0 ∈ e + ⊕µ>2 Eig(adh, µ). This
unwelcome summand in ⊕µ>2 Eig(adh, µ) is canceled by the correct choice of g which was not unique, yet.
It can be precomposed with any gauge g′ such that g′.α0 = α0. Such gauges are of the shape

g′(s) = exp(− log ∣s − 1∣
2

adh) exp(ζ) where ζ ∈⊕
µ>0

Eig(adh, µ).

When we have shown that there is such ζ with the property that Adexp(ζ) β
′
0 = e we are done.

Following the argument from [Kro90b] let us write β′0 = e+ζ ′ and consider exp(adζ)(e+ζ ′) = e as an equation
for ζ: If ζ ′ is small we can parametrise ζ through ζ ′ in a neighbourhood of ζ ′ = 0 if the differential of the
function Z(ζ) = exp(adζ)(e + ζ ′) − e surjects at ζ ′ = 0. It is known from sl2 C-representation theory that

D0Z(ζ) = −ade ζ in other words D0Z = −ade ∶⊕
µ>0

Eig(adh, µ)→⊕
µ>2

Eig(adh, µ)

is a surjective map and so the claim follows in a neighbourhood. For general ζ ′, we use the homogeneity
coming from the conjugation with h: We have that e = exp(2r) exp(−r adh)e and to we can apply the
operator exp(2r) exp(−r adh) to the equation. Since ζ ′ ∈⊕µ>2 Eig(adh, µ) there is some huge r such that ζ ′
is mapped into the neighbourhood of 0 where we can find a corresponding ζ, gauging back yields a solution
and hence proves the existence. This completes the proof of the theorem.

The following diagramm does not only summarize the introduced spaces and relevant maps it also clarifies
the problem: The two vertical arrows, the moment maps, differ in the number of components. While the

M MC

g⊗R3 AdGC e

T↦(α,β)

T↦Ti(0) (α,β)↦β(0)

moment map of the G-action on M has values in g⊕g⊕g the complex moment map only takes values in
gC = g⊕g. Even more, it is the isomorphism betweenMC and the orbit. We have explained that the orbit
is a suitable hyperkähler manifold for the theory of the generalised Seiberg-Witten equations and so we only
have to give AdGC e→ g⊕g⊕g. Again, we know that this map is just the identity in the last two components
when writing g3 = g⊕gC. But what is the first component? The direct approach following the arrows leads
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nowhere: Let ξ be in the orbit of e, i.e. ξ = Adg0 e for some g0 ∈ GC. For g ∈ GC such that g(0) = g0 the
solution g.(α0, β0) of the complex equation corresponds via µC to ξ. There is a second gauge u ∈ G0 such
that u.g.(α0, β0) solves the real equation. Hence we have found with T0 = Reu.g.α0 and T1 = Imu.g.α0,
T2 = Reu.g.β0 and T3 = Imu.g.β0 solutions to the real setup. It is not surprising that we find with u(0) = 1
and g(0) = g0

µJG0(T ) = evs=0 Re(AduAdg e) = Re ξ and µKG0(T ) = evs=0 Im(AduAdg e) = Im ξ

and so we can concentrate on the third part:

µIG0(T ) = evs=0 Reu.g.α0 = Re(Adg0 h − u̇(0) − ġ(0)g−1
0 ).

It could have been so easy if there were not the depence on g and u. Of course, there is much freedom in the
choice of g, e.g. we can take it to be constant around s = 0 so that ġ(0) = 0. However there is less freedom
in the choice of u: In general u will not be in the real gauge group G0 since g.(α,β) does not solve the real
equation, this means that u̇(0) has a non-trivial imagary part and so can not be omitted - its real part could
have been chosen to be zero.
The idea of this clarification is two-fold: Firstly, the easiest approach how to compute µIG0 through µC does
not lead anywhere. And secondly, finding the moment map is nothing else but finding u̇(0) and so a big step
into the direction of a computation for u which enables us to give solutions T . That might indicate why we
are heading towards solving Nahms equations in the next chapter.
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5 Nahms Equations as Flow Equation of the Bilinear Form
In this section we shall give an approach to actually solve the real equation for nilpotent orbits going back
to section 6 in the article Degeneration of Hodge Structures of E. Cattani, A. Kaplan and W. Schmid,
referenced as [ES86]. Here they have introduced Nahms equation as flow equations to a quadratic form
Q ∶ S2 Hom(su(2);g) → Hom(su(2);g). Combining this with the power series in which we can expand the
nilpotent orbits around s = −∞ we can find a recurrence relation on the coefficients in the series. This
reduces the problem of solving to methods of representation theory.

Recall from the introduction that we can see Nahms equations as gradient flow

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ṫ1 + [T2, T3] = 0
Ṫ2 + [T3, T1] = 0
Ṫ3 + [T1, T2] = 0

to the functional ϕ(ξ1, ξ2, ξ3) = ⟨ξ1, [ξ2, ξ3]⟩ and that the nilpotent orbit of the su(2)-triple decays like
(σ1, σ2, σ3)/2s and so is nothing but ρ/2s for the su(2)-representation ρ on g. This way of thinking means
to not see T as three paths in g linked by Nahms equation but rather as a flow equation on Hom(su(2);g)
which asymptotically is ρ/2s.
With the identification Hom(su(2);g) = (su(2))∨ ⊗ g = su(2)⊗ g we can define a bilinear symmetric form Q
on Hom(su(2);g) by

S2(su(2)⊗ g) = S2 su(2)⊗ S2 g ⊕ Λ2 su(2)⊗Λ2 g
pr2Ð→ Λ2 su(2)⊗Λ2 g

[⋅,⋅]⊗[⋅,⋅]Ð→ su(2)⊗ g,

or explicitely

• on su(2)⊗ g as Q(σ ⊗ ϕ,σ′ ⊗ ϕ′) = 1
2 [σ,σ′]⊗ [ϕ,ϕ′]

• on Hom(su(2);g) as Q(Φ,Φ′)([σ,σ′]) = 1
2 ([Φ(σ),Φ′(σ′)] − [Φ(σ′),Φ′(σ)])

The first noticable property of Q is that we can characterise Lie algebra homomorphisms su(2) → g, i.e.
representations, as follows:

Lemma 5.1. An element Φ ∈ Hom(su(2);g) defines a representation of su(2) on g if and only if Φ = Q(Φ,Φ).

Proof. From the computation

Q(Φ,Φ)([σ,σ′]) = 1
2
([Φ(σ),Φ(σ′)] − [Φ(σ′),Φ(σ)]) = [Φ(σ),Φ(σ′)]

the claim follows directly.

Nahms equations are now given in terms of the flow equation

Φ̇(s) = −Q(Φ(s),Φ(s)).

Indeed, for Tl(s) = Φ(s)(σl2 ) we find

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ṫ1 + [T2, T3] = 0
Ṫ2 + [T3, T1] = 0
Ṫ3 + [T1, T2] = 0 .

5.1 Recurrence Relation for Nilpotent Orbits
Referring to [ES86] around s = −∞ we can expand the path Φ as a half-integer power series

Φ(−s) = ρ s−1 +
∞
∑
n=2

Φns−(1+
n
2 )
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with ρ corresponding to the nilpotent orbit. We shall talk later about the convergence of this series, let us
firstly focus of the interplay of the expansion with the flow equation

Φ̇(−s) = −ρs−2 −
∞
∑
k=2

(1 + k
2
)Φk s−(2+

k
2 )

Q(Φ(−s),Φ(−s)) = Q(ρ, ρ)s−2 + 2
∞
∑
k=2

Q(ρ,Φk) s−(2+
k
2 ) +

∞
∑
k,l=2

Q(Φk,Φl)s−(2+
k+l
2 )

= Q(ρ, ρ)s−2 + 2
∞
∑
k=2

Q(ρ,Φk) s−(2+
k
2 ) +

∞
∑
k=2

k−2
∑
l=2

Q(Φl,Φk−l)s−(2+
k
2 )

and compare the coefficents

(1 + k
2
)Φk − 2Q(ρ,Φk) =

k−2
∑
l=2

Q(Φl,Φk−l).

As in [ES86], let us determine the operator Q(ρ, ⋅) in the basis of Pauli matrices [σi, σj] = 2∑3
k=1 εijk σk:

Q(ρ,Φ)(σ3) =
1
2
Q(ρ,Φ)([σ1, σ2]) =

1
4
([ρ(σ1),Φ(σ2)] − [ρ(σ2),Φ(σ1)])

= −1
8
([ρ(σ1),Φ([σ1, σ3])] + [ρ(σ2),Φ([σ2, σ3])]) = −

1
8

2
∑
l=1

[ρ(σl),Φ([σl, σ3])]

which also works for σ1 and σ2. Since the adjoint actions adρ(σ) and ad∨σ ξ = −ξ ○ adσ act on different
components in su(2)⊗ g they commute and so we can rewrite the previous result as

Q(ρ, ⋅) = 1
8

3
∑
j=1

adρ(σj) ad∨σj = −
1
16

⎛
⎝

3
∑
j=1

(adρ(σj) +ad∨σj)
2 − ad2

ρ(σj) −(ad∨σj)
2⎞
⎠
.

In general, Hom(su(2);g) is an su(2)-representation in three different ways:

i) Composing the adjoint action of g with ρ gives a representation of su(2) on Hom(su(2);g) = su(2)⊗ g
which acts on the g-component.

ii) The coadjoint action of su(2) on Hom(su(2);g) acts on the su(2)-component in the tensor product:
ad∨a Φ = −Φ ○ ada.

iii) The previous two actions commute and so can be combined into one a↦ adρ(a) +ad∨a which corresponds
to the induced action on the homomorphism space rather than a component.

Each of the above sums of squares is related to the action of the Casimir element in su(2) on the relevant
representation which acts as a multiplication operator on the irreducible subrepresentation. With respect to
our basis {σj} we have that cas = −(σ2

1 + σ2
2 + σ2

3).

Instead of dealing with the su(2)-representation theory here we shall pass to the complexification, i.e. sub-
stitute g by gC = g⊗C, su(2) by sl2 C and extend to above maps complex linearly. This has two reasons:
on the one hand, we do not need to worry in diagonalisation arguments and, on the other hand, we would
have passed to the complexification later on anyway. There is much material about sl2 C-representations
covered in later chapters, [Hum97] is also a good reference. We shall go on with the decomposition into sl2 C-
subrepresentations: sl2 C = S2 and gC = ⊕Ar ⊗ Sr where Sd is the usual irreducible sl2 C-representation of
dimension d + 1. For the homomorphisms we can write

Hom(sl2 C;gC) = S2 ⊗ (
N

⊕
r=0

Ar ⊗ Sr) =
N

⊕
r=0

(Ar ⊗
1
⊕
ε=−1

Sr+2ε) and Φ =
N

∑
r=0

1
∑
ε=−1

Φ(r,ε) accordingly
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where we put S−2 = S−1 = {0}, i.e. Φ(0,−1) = Φ(0,−1) = 0. This leads the above Casimir-terms to be

3
∑
l=1

(adρ(σl) +ad∨σl)
2 Φ(r,ε) = −(r + 2ε)(r + 2ε + 2)Φ(r,ε)

3
∑
l=1

ad2
ρ(σl) Φ(r,ε) = −r(r + 2)Φ(r,ε)

3
∑
l=1

(ad∨σl)
2 Φ(r,ε) = −8 Φ(r,ε)

and consequently

(1 + k
2
)Φ(r,ε)

k − 2Q(ρ,Φ(r,ε)
k ) = (1 + k

2
+ 1

8
((r + 2ε)(r + 2ε + 2) − r(r + 2) − 8))Φ(r,ε)

k = 1
2
(k + ε2 + ε(r + 1))Φ(r,ε)

k .

And so Φ(r,ε) are determined recursively by

(k + ε2 + ε(r + 1))Φ(r,ε)
k = 2

k−2
∑
l=2

Q(Φl,Φk−l)(r,ε)

unless the prefactor k + ε2 + ε(r + 1) vanishes which is exactly the case for k = r and ε = −1. In other words,
the recurrence relation determines all components of the Φn except ξk = Φ(k,−1)

k , 0 ≤ k ≤ N where N + 1 was
the dimension of the highest-weight module in the decomposition of Hom(sl2 C;gC). We shall consider these
Φ(k,−1)
k as initial data for the recurrence and so compute the other components of the Φk. If all the input

terms are real also the output is real and so if we restrict ourselves later to real variables to remain in g. We
summarize the material from [ES86] in the next theorem:

Theorem 5.2. For any given ξ1, . . . , ξn ∈ gC there is a solution Φ to Nahms equations such that Φ(k,−1)
k = ξk

for 0 ≤ k ≤ N . If the ξj ∈ g ⊆ gC were real the resulting Φ ∈ Hom(sl2 C;gC) restricts to a real homomorphism
Φ ∈ Hom(su(2);g).

Let us loose some words about the convergence of the series Φ(−s) = ρ s−1 +∑∞n=2 Φns−(1+
n
2 ) again following

[ES86]: The norms on sl2 C and gC induce a norm on Hom(sl2;gC) and so also on the space of bilinear forms
on the homomorphisms with respect to which Q is bounded. Consequently we can find an index n0 and a
constant q ≥ 1 depending on the precise shape the decomposition of gC and Q such that for any n ≥ n0

∣Φn∣ ≤
q

n

n−2
∑
l=2

∣Φl∣ ∣Φn−l∣.

Let us put p = max{∣Φ1∣, . . . , ∣Φn0 ∣,1} so that ∣Φk ∣ ≤ qkpk+1 for any k ≤ n0. Assuming this estimate also for
all k ≤K for some K, we find

∣ΦK+1∣ ≤
q

n

n

∑
l=2

∣Φl∣ ∣Φn−l∣ ≤
q

n

n

∑
l=2
qlpl+1 qK−lpK−l+1 ≤ qK+1pK+2.

And so it follow from induction that the series

Φ(−s) = ρ s−1 +
∞
∑
n=2

Φns−(1+
n
2 )

convergences for all −s > √
pq. That is the reason why such a sequence is in general only defined on some

interval ] − ∞; s0] and not on all of R≤0. However, we can make use of the time-shift symmetry of the
equations to construct solutions on R≤0. In other words, out of any solution we can explicitely construct
this way a solution that represents an element of the previously introduced moduli spaces.

Let us come back to the recurrence relation: With the input data {ξk} we intend to find all Φn. This
does not only require an explicit decomposition of gC but also an explicit decomposition of tensor products
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into irreducible sl2 C-representations, e.g. to determine Q(Φl,Φk−l)(r,ε) concretely. And when this is done
we have to find the way back to homomorphisms. And so we shall focus on the concrete example

gC = End0(Sd) = sld+1 C with the standard sl2 C-module structure

which means nothing else but to consider the adjoint orbit of maximal rank.
This has two reasons: Firstly, the nilpotent orbits are computed up to d = 3 so that there is hope to produce
new examples. Secondly, from the representational point of view, End(Sd) is relatively simple: Interpreting
Sd here as polynomials we can work relatively concrete with well-known objects:

• We already know that EndSd =⊕dm=0 S
2m, i.e. each irreducible representation occurs only once.

• With the previous point in mind we can compute an explicit isomorphism Sm⊗Sn =⊕min{m,n}
l=0 Sm+n−2l.

• Polynomials will be easy enough to handle so that we can write Q in a simple and condensed form.

This choice becomes very reasonable when taking our main tool, the Moyal product, into account. The inspi-
ration for this approach had V. Pidstrygach. So that the main reference for the general material concering
the representation theory we present here was covered in his seminar talks while concreter computations
are joint work. Nevertheless, the Moyal product is known from quantisation theory so that there is much
material covered in physics papers. A brief introduction with some proofs can also be found in Classical
Invariant Theory by P. Olver [Olv99].

5.2 The Moyal Product as Computational Tool
For two f, g ∈ C[x, y] we write

{f, g}m = 1
m!

Π (∂x ∧ ∂y)mf ⊗ g =
m

∑
j=0

(−1)m−j

j! (m − j)! ∂
j
x∂

m−j
y f ⋅ ∂m−j

x ∂jyg.

where Π(f ⊗ g) = fg is just the standard product of polynomials. The Moyal product f ∗ g of f and g now
is set to be

f ∗ g =
∞
∑
m=0

{f, g}m = Π ○ exp(∂x ∧ ∂y)f ⊗ g.

We shall justify the terminus product and collect some fundamental properties of the Moyal product in the
next theorem:

Theorem 5.3. The space of polynomials (C[x, y],∗) equipped with the Moyal product is an associative,
unital but non-commutative Algebra. Moreover, all Moyal brackets and so also the Moyal product are Sl2 C-
equivariant or, formulated for the Lie algebra, sl2 C acts via derivations.
We find with ⊕nm=0 S

m, ⊕nm=0 S
2m and C[x, y]ev =⊕∞

m=0 S
2m some Sl2 C-invariant subalgebras.

Proof. Let us firstly check the associativity, i.e. we have to check that (f ∗ g) ∗ h = f ∗ (g ∗ h) for any three
polynomials f, g, h. The claim can be rewritten as

Π exp(∂x ∧ ∂y) Π⊗ id exp((∂x ∧ ∂y)⊗ id) = Π exp(∂x ∧ ∂y) id⊗Π exp(id⊗(∂x ∧ ∂y)).

The main idea is to permute the differential operators through the mulitplication operators. We have

(∂x ⊗ ∂y − ∂y ⊗ ∂x) Π⊗ id = ∂xΠ⊗ ∂y − ∂yΠ⊗ ∂x = Π(∂x ⊗ id+ id⊗∂x)⊗ ∂y −Π(∂y ⊗ id+ id⊗∂y)⊗ ∂x
= Π⊗ id (∂x ⊗ id⊗∂y + id⊗∂x ⊗ ∂y − ∂y ⊗ id⊗∂x − id⊗∂y ⊗ ∂x)

and so by iterated application

exp(∂x ∧ ∂y) Π⊗ id = Π⊗ id exp(∂x ⊗ id⊗∂y + id⊗∂x ⊗ ∂y − ∂y ⊗ id⊗∂x − id⊗∂y ⊗ ∂x)
exp(∂x ∧ ∂y) id⊗Π = id⊗Π exp(∂x ⊗ ∂y ⊗ id+∂x ⊗ id⊗∂y − ∂y ⊗ ∂x ⊗ id−∂y ⊗ id⊗∂x).
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Tha associativity is now a direct consequence of

exp(∂x ⊗ id⊗∂y + id⊗∂x ⊗ ∂y − ∂y ⊗ id⊗∂x − id⊗∂y ⊗ ∂x) exp(∂x ⊗ ∂y ⊗ id−∂y ⊗ ∂x ⊗ id)
= exp(∂x ⊗ ∂y ⊗ id+∂x ⊗ id⊗∂y − ∂y ⊗ ∂x ⊗ id−∂y ⊗ id⊗∂x) exp(id⊗∂x ⊗ ∂y − id⊗∂y ⊗ ∂x).

Let’s proceed with the equivariance. The Sl2 C-action on C[x, y] is defined by the precomposition A.f =
f ○A−1 where A ∈ Sl2 C and f ∈ C[x, y]. And so it follows that

∂x ∧ ∂y A.(f ⊗ g) = ∂x ∧ ∂y (f ○A−1 ⊗ g ○A−1) = detA−1 (∂x ∧ ∂y f ⊗ g) ○A−1 = A.(∂x ∧ ∂y f ⊗ g)

where detA = 1 became relevant. Combining this with ΠA.(f ⊗ g) = A.Π(f ⊗ g) we obtain that

{A.f,A.g}m = A.{f, g}m and A.(f ∗ g) = (A.f) ∗ (A.g).

This completes the proof.

We will use the Moyal bracket {⋅, ⋅}N to define equivariant homomorphisms via

λ(N) ∶ Sn → Hom(Sn; Hom(Sm;Sm+n−2N)) via f ↦ (λ(N)
f = {f, ⋅}N ∶ g ↦ {f, g}N).

This defines in particular an equivariant embedding of S2m → End(Sd) via f ↦ λ
(m)
f and thus the decom-

position

⊕λ(m) ∶
d

⊕
m=0

S2m → End(Sd).

That is the way we identify polynomials with endomorphisms.

5.3 The Recurrence Relation for End(Sd
)

Let us now explain firstly how the Moyal product decomposes tensor products and then afterwards secondly
how we can bring Q into a handy shape. Concering the first point, for any two functions f ∈ Sn and g ∈ Sm
with n ≤m we have that

f ∗ g =
n

∑
l=0

{f, g}k = {f, g}0
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
∈Sm+n

+ {f, g}1
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
∈Sm+n−2

+ . . . + {f, g}n
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
∈Sm−n

and so the f ∗ g gives the components of f ⊗ g in the irreducible representations Sm+n−l ⊆ Sm ⊗ Sn as each
bracket is Sl2 C equivariant and non-trivial: The Moyal product

∗ ∶ Sm ⊗ Sn →
min{m,n}
⊕
l=0

Sm+n−2l

defines an isomorphism of Sl2 C-representations.
Let us now concretise the decomposition S2 ⊗End(Sd) =⊕dl=0⊕1

ε=−1 S
2l+2ε. We already have found

S2 ⊗ S2l → S2l+2ε via σ ⊗ f ↦ {σ, f}1−ε = λ(1−ε)
σ f

and now need to find its equivariant inverse. We know from Schurs Lemma that any two equivariant maps
S2l+2ε → S2⊗S2l differ by a multiplicative constant. So the idea is to firstly give any equivariant, non-trivial
map S2 ⊗ S2l+2ε → S2l and then compose with {⋅, ⋅}1−ε, the composition is just a multiplication operator
which we can use the determine the correct normalisation.
We begin with

S2l+2ε → S2 ⊗ S2l via g ↦
3
∑
l=1
σl ⊗ {σl, g}1+ε = xy ⊗ {xy, g}1+ε − (x2 ⊗ {y

2

2
, g}1+ε + y2 ⊗ {x

2

2
, g}1+ε)
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where we have used σ1 = −ixy, σ2 = (y2 + x2)/2 and σ3 = −i(y2 − x2)/2. The equivariance is seen by writing
this map as

id⊗λ(1+ε)(
3
∑
l=1
σl ⊗ σl) where id⊗λ(1+ε) ∶ S2 ⊗ S2 → S2 ⊗Hom(S2l+2ε;S2l)

and use the invariance of the sum −2∑σl ⊗ σl = ∑(σl ⊗ 1 + 1 ⊗ σl)2 − 1 ⊗∑σ2
l −∑σ2

l ⊗ 1 being a multiple
of the Casimir elements and the equivariance of all the other maps. And we only have to renormalize by
computing the precomposition S2 ⊗ S2l → S2l+2ε → S2 ⊗ S2l:

• ε = 1: x2 ⊗ x2l ↦ x2l+2 ↦ − 1
2 (2l + 2)(2l + 1)x2 ⊗ xl

• ε = 0: x2 ⊗ xl−1yl+1 − y2 ⊗ xl+1yl−1 ↦ 4(l + 1)xlyl ↦ −4l(l + 1)(−x2 ⊗ xl+1yl−1 + y2 ⊗ xl−1yl+1)

• ε = −1: x2 ⊗ xl−1yl+1 − 2xy ⊗ xlyl + y2 ⊗ xl+1yl−1 ↦ 2l(2l + 1)xl−1yl−1 ↦ − 1
2 2l(2l + 1) (x2 ⊗ xl−1yl+1 −

2xy ⊗ xlyl + y2 ⊗ xl+1yl−1)

To summarise: The inverse map {⋅, ⋅}1−ε ∶ S2 ⊗ S2l → S2l+2ε is

S2l+2ε → S2 ⊗ S2l via g ↦ α2l,ε (xy ⊗ {xy, g}1+ε − (x2 ⊗ {y
2

2
, g}1+ε + y2 ⊗ {x

2

2
, g}1+ε))

with constants α2l,1 = −
2

(2l + 1)(2l + 2) , α2l,0 = −
1

2l(2l + 2) and α2l,−1 = −
2

2l(2l + 1) .

Concering the second point, since our bilinear form Q computes commutators we need to express these in
terms of λ’s. The next Lemma does even more: it computes compositions.

Lemma 5.4. For f ∈ Sn and N ≤ n we consider λ(N)
f ∈ Hom(Sk;Sk+n−2N) as well as λ(M)

g ∈ Hom(Sk;Sk+m−2M)
for some g ∈ Sm and M ≤m. According to the decomposition

Hom(Sk;Sk+K) =
min{k,k+K}
⊕
l=0

S2k+K−2l where K = n − 2N +m − 2M

the composition λ(N)
f λ

(M)
g ∣

Sk
has components

λ
(N)
f λ(M)

g ∣
Sk

=
min{k,k+K}
∑
l=0

γlN,M(n,m,k)λ(N+M−l)
{f,g}l ∣

Sk
.

In particular the coefficients depend on the degree of the polynomials it is applied to.

Proof. This is basically an application of Schurs Lemma: On the right hand side, f⊗g ∈ Sn⊗Sm is considered
via the Moyal product as a sum of {f, g}l mapped via λ into the homomorphisms. The left hand side is
another way to map f ⊗ g into the homomorphism space.

Sn ⊗ Sm

⊕min{n,m}
l=0 Sn+m−2l

Hom(Sk;Sk+K) Hom(Sk;Sk+K)

λ(N)○λ(M)

∗

⊕λ(N+M−l)

γ

As both maps are Sl2 C-equivariant these two sides differ componentwise by a factor.

We have computed some of these coefficients using the python programm from the appendix:
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• λ
(0)
f λ

(0)
g = λ(0)

fg

• λ
(0)
f λ

(1)
g = m

n+m λ
(1)
fg −

k
n+m λ

(0)
{f,g}1

• λ
(1)
f λ

(0)
g = n

n+m λ
(1)
fg +

k+n+m
n+m λ

(0)
{f,g}1

• λ
(0)
f λ

(2)
g = m(m−1)

(n+m)(n+m−1) λ
(2)
fg +

(m−1)(k−1)
(n+m)(n+m−2) λ

(1)
{f,g}1

+ k(k−1)
(n+m−1)(n+m−2) λ

(0)
{f,g}2

• λ
(2)
f λ

(0)
g = n(n−1)

(n+m)(n+m−1) λ
(2)
fg +

(n−1)(k+m+n−1)
(n+m)(n+m−2) λ

(1)
{f,g}1

+ (k+n+m−1)(k+n+m−2)
(n+m−1)(n+m−2) λ

(0)
{f,g}2

• λ
(1)
f λ

(1)
g = 2mn

(n+m)(n+m−1) λ
(2)
fg +

−kn+m(k+m+n−2)
(n+m)(n+m−2) λ

(1)
{f,g}1

− 2k(k+n+m−2)
(n+m−1)(n+m−2) λ

(0)
{f,g}2

Let Φ = Φ(2n,ε) ∈ S2(n+ε) with corresponding homomorphism α2n,ε ∑3
i=1 σi⊗λ

(1+ε)
σi Φ ∈ S2⊗S2n and similarly

for Ψ ∈ S2(m+δ). We can now compute

Q(Φ,Ψ) = Q(α2n,ε
3
∑
i=1
σi ⊗ λ(1+ε)

σi Φ, α2m,ε
3
∑
j=1

σj ⊗ λ(1+δ)
σj Ψ)

= α2n,εα2m,δ
3
∑
i,j=1

{σi, σj}1 ⊗ [λ(n)
λ
(1+ε)
σi

Φ
, λ

(m)
λ
(1+δ)
σj

Ψ
].

Following the general formula we have

[λ(n)
λ
(1+ε)
σi

Φ
, λ

(m)
λ
(1+δ)
σj

Ψ
] =

n+m
∑
r=0

(γrn,m(2n,2m,d) − (−1)rγrm,n(2m,2n, d))λ
(n+m−r)
{λ(1+ε)σi

Φ,λ(1+δ)σj
Ψ}r

and so find

Q(Φ,Ψ)(2r) = α2n,εα2m,δ (γrn,m(2n,2m,d) − (−1)rγrm,n(2m,2n, d))
3
∑
i,j=1

{σi, σj}1 ⊗ {λ(1+ε)
σi Φ, λ(1+δ)

σj Ψ}n+m−r.

We are going to express {λ(1+ε)
σi Φ, λ(1+δ)

σj Ψ}n+m−r as a sum of symmetric and anti-symmetric terms in i
and j and then deduce that, due to the anti-symmetry of {σi, σj}1 in i and j, only the anti-symmetric
part contributes to the summation. And so our aim is to simplify these nested moyal brackets by iterated
application of the composition formular. To keep the notation a bit slimmer we notate: ε′ = 1 + ε, δ′ = δ + 1,
r′ = n +m − r. This brings us to

{λ(ε′)
σi Φ, λ(δ′)

σj Ψ}r′ = λ(r′)
λ
(ε′)
σi

Φ
λ(δ′)
σj Ψ

=
min{r′+δ′,2}
∑
a=0

(−1)aγar′,δ′(2n,2,2(m + δ))λ(r′+δ′−a)
λ
(a)
σj
λ
(ε′)
σi

Φ
Ψ

=
min{r′+δ′,2}
∑
a=0

(−1)aγar′,δ′(2n,2,2(m + δ))
min{a+ε′,2}
∑
b=0

(−1)bγba,ε′(2,2,2(n + ε))λ
(r′+δ′−a)
λ
(ε′+a−b)

{σi,σj}b
Φ

Ψ

=
min{r′+δ′,2}
∑
a=0

(−1)aγar′,δ′(2n,2,2(m + δ))
min{a+ε′,2}
∑
b=0

(−1)r
′+δ′+ε′γba,ε′(2,2,2(n + ε))λ

(r′+δ′−a)
Ψ λ

(ε′+a−b)
Φ {σi, σj}b

=
min{r′+δ′,2}
∑
a=0

(−1)aγar′,δ′(2n,2,2(m + δ))
min{a+ε′,2}
∑
b=0

(−1)r
′+δ′+ε′γba,ε′(2,2,2(n + ε))×

×
min{r′+δ′+ε′−b,4−2b}

∑
c=0

γcr′+δ′−a,ε′+a−b(2(m + δ),2(n + ε),4 − 2b)(−1)r
′+δ′+ε′−bλ

(r′+δ′+ε′−b−c)
{σi,σj}b {Φ,Ψ}c.

And so we have found Q(Φ,Ψ)(2r) being a linear combination of λ(r′+δ′+ε′−b−c)
{σi,σj}b {Φ,Ψ}c. Ignoring the prefactor

for the moment the calculation goes on with

Q(Φ,Ψ)(2r) =∑
b,c

const(b, c)
3
∑
i,j=1

{σi, σj}1 ⊗ λ(r′+δ′+ε′−b−c)
{σi,σj}b {Φ,Ψ}c.
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By the mentioned antisymmetry of the first component the only non-vanishing summand is b = 1 so that we
are left with the homomorphism

Q(Φ,Ψ)(2r) =∑
c

const(c)
3
∑
i,j=1

{σi, σj}1 ⊗ λ(r′+δ′+ε′−1−c)
{σi,σj}1

{Φ,Ψ}c

= 2∑
c

const(c)
3
∑
k=1

σk ⊗ λ(r′+δ′+ε′−1−c)
σk

{Φ,Ψ}c

whose compontents are computed by replacing the tensor product with the Moyal product. And so with the
notation ω′ = ω + 1

Q(Φ,Ψ)(2r,ω) = 2∑
c

const(c)
3
∑
k=1

λ(2−ω′)
σk

λ(r′+δ′+ε′−1−c)
σk

{Φ,Ψ}c

= 2∑
c

const(c)
3
∑
k=1

min{2,r′+δ′+ε′−ω′+1−c}
∑
p=0

γp2−ω′,r′+δ′+ε′−1−c(2,2,2(n + ε) + 2(m + ε) − 2c)λ(r′+δ′+ε′−ω′+1−c−p)
{σk,σk}p {Φ,Ψ}c.

Since σ1 = −ixy, σ2 = (y2 + x2)/2 and σ3 = −i(y2 − x2)/2 we can compute

3
∑
k=1

{σk, σk}p =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−3 p = 2
0 p = 1
0 p = 0

.

so that the above λ(r′+δ′+ε′+1−c−ω′−p)
{σk,σk}p is a non-zero map if and only if p = 2 and r′+δ′+ε′+1−c−ω′−p ≤ 4−2p.

This fixes p = 2 and c = r′ + δ′ + ε′ − ω′ − 1.
Let us now discuss whether b = 1, p = 2 and c = r′ + δ′ + ε′ − ω′ − 1 are in the summation domain, if not the
sum is vanishing already: We have

• a ∈ [0; min{r′ + δ′,2}]

• b ∈ [0; min{a + ε′,2}]

• c ∈ [0; min{r′ + δ′ + ε′ − b,4 − 2b}]

• p ∈ [0; min{2, r′ + δ′ + ε′ − ω′ + 1 − c}]

This leads us to
• With this c the upper bound of p is 2 and so there is the p-summand if we have the c-summand.

• b = 1 is in the summation domain [0; min{a + ε′,2}] unless a + ε′ /= 0 which is equivalent to a = 0 and
ε′ = 0. There is only the a = 0 summand if and only if r′ = 0 and ε′ = 0, i.e. if ε = −1 and r = n+m. By
the symmetry of Q we can run the same argument for δ′ = 0.
And so there is no b = 1 term if and only if r = n +m, ε = δ = −1. We would have then just have the
multiplication

Q(Φ(2n−2),Ψ(2m−2))(2n+2m) =
⎛
⎝

3
∑
i,j=1

σiσj
⎞
⎠

ΦΨ.

• The condition c ≥ 0 says ω′ + 1 ≤ r′ + ε′ + δ′ and so excludes some values for ω already. Taking c ≤ 2
into account yields to r′ + ε′ + δ′ ≤ 3 + ω′.

And so the above result is probably non-zero as long as
1 + ω′ ≤ r′ + ε′ + δ′ ≤ 3 + ω′ alternatively ω + r ≤ n +m + ε + δ ≤ 2 + ω + r

and in all other cases we have Q(Φ,Ψ) = 0. With c = n +m + ε + δ − r − ω = ∣Φ∣+∣Ψ∣
2 − (r + ω) we finally find

Q(Φ,Ψ)(2r,ω) = R(n, ε,m, δ; r,ω) {Φ,Ψ} ∣Φ∣+∣Ψ∣
2 −(r+ω)

R(n, ε,m, δ; r,ω) = α2n,εα2m,δ (γrn,m(2n,2m,d) − (−1)rγrm,n(2m,2n, d))×

×
min{r′+δ′,2}
∑
a=0

(−1)a+1γar′,δ′(2n,2,2(m + δ))γ1
a,ε′(2,2,2(n + ε))×

× γn+ε+m+δ−r−ω
r′+δ′−a,ε′+a−1(2(m + δ),2(n + ε),2)2 (−3)γ2

1−ω,ω+1(2,2,2(r + ω)).
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This expression for Q is quite a simple one: It computes Moyal brackets of the input. And so the recurrence
relation boils down to compute nestes Moyal brackets of the initial data. This is, e.g., illustrated when
iterating the first few steps for endomorphisms up to n ≤ 6: The relation

(n + ω2 + ω(2r + 1))Φ(2r,ω)
n = 2 ∑

0<l<n
Q(Φl,Φn−l)(2r,ω) with inital values Φ(2l,−1)

l = ξl ∈ S2(l−1)

yields to

• The recurrence relation implies that all components of Φ2 vanish except Φ(2,−1)
2 = ξ2 ∈ S0

• Next one is Φ4 with (4+ω2+ω(2r+1))Φ(2r,ω)
4 = 2Q(Φ2,Φ2)(2r,ω) = 2Q(ξ2, ξ2)(2r,ω). As Q(ξ2, ξ2)(2r,ω) =

R(1,1,1,1; r,ω) {ξ2, ξ2}−r−ω which is non-vanishing if and only if r+ω = 0, i.e. if r = ω = 0 or r = −ω = 1.
We consequently find

– Φ(0,0)
4 = 1

4 2R(1,1,1,1; 0,0) ξ2
2 = R(1,1,1,1;0,0)

2 ξ2
2

– Φ(2,−1)
4 = 1

2 2R(1,1,1,1; 1,−1) ξ2
2 = R(1,1,1,1; 1,−1) ξ2

2

– Φ(4,−1)
4 = ξ4 ∈ S2 as initial value

– all other components vanish

• For Φ6 we have to consider (6 + ω2 + ω(2r + 1))Φ(2r,ω)
6 = 4Q(Φ2,Φ4)(2r,ω) = 4Q(Φ(2,−1)

2 ,Φ(0,0)
4 )(2r,ω) +

4Q(Φ(2,−1)
2 ,Φ(2,−1)

4 )(2r,ω)+4Q(Φ(2,−1)
2 ,Φ(4,−1)

4 )(2r,ω). The first two terms are only non-vanishing if r+ω =
0, so as before, while the third term is Q(Φ(2,−1)

2 ,Φ(4,−1)
4 )(2r,ω) = R(1,−1,2,−1; r,ω) {ξ2, ξ4}1−(r+ω)

which only fives contributions if r + ω = 1 as ξ2 is a scalar.

– Φ(0,0)
6 = 1

6 4(R(1,1,0,0; 0,0) 1
4 2R(1,1,1,1; 0,0) +R(1,1,1,−1; 0,0) 1

2 2R(1,1,1,1; 1,−1)) ξ3
2 =

= R(1,1,0,0;0,0)R(1,1,1,1;0,0)+2R(1,1,1,−1;0,0)R(1,1,1,1;1,−1)
3 ξ3

2

– Φ(2,−1)
6 = 1

4 4(R(1,1,0,0; 1,−1) 1
4 2R(1,1,1,1; 0,0) +R(1,1,1,−1; 0,0) 1

2 2R(1,1,1,1; 1,−1)) ξ3
2 =

= R(1,1,0,0;1,−1)R(1,1,1,1;0,0)+2R(1,1,1,−1;0,0)R(1,1,1,1;1,−1)
2 ξ3

2

– Φ(0,1)
6 = 1

8 4R(1,1,2,−1; 0,1) ξ2ξ4 = R(1,1,2,−1;0,1)
2 ξ2ξ4

– Φ(2,0)
6 = 1

6 4R(1,1,2,−1; 1,0) ξ2ξ4 2R(1,1,2,−1;0,1)
3 ξ2ξ4

– Φ(4,−1)
6 = 1

2 4R(1,1,2,−1; 2,−1) ξ2ξ4 = 2R(1,1,2,−1; 2,−1) ξ2ξ4
– Φ(6,−1)

6 = ξ6 ∈ S4 as inital value
– all other components vanish

• there are no odd components, i.e. Φ1 = Φ3 = Φ5 = 0.

Let us now focus on the coefficients R and so also on γ. Using the composition formula again we are actually
able to find relations for the γs that might help later to simplify R or products of R.

5.4 About the γ-Coefficients
With the composition formula

λ
(D−j)
f λ(j)

g =
D

∑
l=0
γlD−j,j(n,m,k)λ

(D−l)
{f,g}l
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we can use the symmetries of {⋅, ⋅} to find further information on the γ that may help to simplify the prefactor
R. To get the first symmetry, we just apply the composition formula twice

{f,{g, h}j}D−j

=
D

∑
a=0

γaD−j,j(∣f ∣, ∣g∣, ∣h∣) {{f, g}a, h}D−a

=
D

∑
a=0

γaD−j,j(∣f ∣, ∣g∣, ∣h∣) (−1)D {h,{g, f}a}D−a

=
D

∑
a=0

γaD−j,j(∣f ∣, ∣g∣, ∣h∣) (−1)D
D

∑
b=0

γbD−a,a(∣h∣, ∣g∣, ∣f ∣) {{h, g}b, f}D−b

=
D

∑
a=0

γaD−j,j(∣f ∣, ∣g∣, ∣h∣) (−1)D
D

∑
b=0

γbD−a,a(∣h∣, ∣g∣, ∣f ∣) (−1)D {f,{g, h}b}D−b

which leads with the Kronecker-delta δ to
D

∑
a=0

γaD−j,j(∣f ∣, ∣g∣, ∣h∣)
D

∑
b=0

γbD−a,a(∣h∣, ∣g∣, ∣f ∣) = δj(b).

Including another step yields

{f,{g, h}j}D−j

=
D

∑
a=0

γaD−j,j(∣f ∣, ∣g∣, ∣h∣) {{f, g}a, h}D−a

=
D

∑
a=0

γaD−j,j(∣f ∣, ∣g∣, ∣h∣) (−1)D−a {h,{f, g}a}D−a

=
D

∑
a=0

γaD−j,j(∣f ∣, ∣g∣, ∣h∣) (−1)D−a
D

∑
b=0

γbD−a,a(∣h∣, ∣f ∣, ∣g∣) {{h, f}b, g}D−b

=
D

∑
a=0

γaD−j,j(∣f ∣, ∣g∣, ∣h∣) (−1)D−a
D

∑
b=0

γbD−a,a(∣h∣, ∣f ∣, ∣g∣) (−1)D−b {g,{h, f}b}D−b

=
D

∑
a=0

γaD−j,j(∣f ∣, ∣g∣, ∣h∣) (−1)D−a
D

∑
b=0

γbD−a,a(∣h∣, ∣f ∣, ∣g∣) (−1)D−b
D

∑
c=0

γcD−b,b(∣g∣, ∣f ∣, ∣h∣) {{g, h}c, f}D−c

=
D

∑
a=0

γaD−j,j(∣f ∣, ∣g∣, ∣h∣) (−1)D−a
D

∑
b=0

γbD−a,a(∣h∣, ∣f ∣, ∣g∣) (−1)D−b
D

∑
c=0

γcD−b,b(∣g∣, ∣f ∣, ∣h∣) (−1)D−c {f,{g, h}c}D−c

which gives

D

∑
a=0

γD−j,j(∣f ∣, ∣g∣, ∣h∣) (−1)a
D

∑
b=0

γD−a,a(∣h∣, ∣f ∣, ∣g∣) (−1)b
D

∑
c=0

γD−b,b(∣g∣, ∣f ∣, ∣h∣) (−1)c = (−1)D δj(c)

These are just matrix multiplications: Let us write ΓD(∣f ∣, ∣g∣, ∣h∣) and the sign-twisted Γ̃D(∣f ∣, ∣g∣, ∣h∣) for
the matrix with entries

ΓD(∣f ∣, ∣g∣, ∣h∣)a,b = γaD−b,b(∣f ∣, ∣g∣, ∣h∣) and Γ̃D(∣f ∣, ∣g∣, ∣h∣)a,b = (−1)aγaD−b,b(∣f ∣, ∣g∣, ∣h∣).

In that style we can rewrite the above relations as

ΓD(∣f ∣, ∣g∣, ∣h∣)ΓD(∣h∣, ∣g∣, ∣f ∣) = 1 as well as Γ̃D(∣f ∣, ∣g∣, ∣h∣) Γ̃D(∣h∣, ∣f ∣, ∣g∣) Γ̃D(∣g∣, ∣h∣, ∣f ∣) = (−1)D.
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This is the (open) end of the discussion. These relations are a nice-to-have but so far have not lead to
any deep insight, the prefactors R in Q are not of the above shape to use the above relations. However the
shape of Q makes it clear what to expect at the end: A series of nested Moyal brackets applied to com-
binations of the initial data. Again, such nested Moyal brackets can be reorganised using the composition
formula and so we are able to express the result in terms of easily computable derivatives of the inital data.
The main idea is to look for another tool which can handle this nesting procedure more easily and abstractly.

Before we have actually found the composition formula we were working in the universal enveloping algebra
of sl2 C as both, the space End(Sd) as well as the polynomials with the Moyal bracket, can be formulated
very nicely there. Even an intrinsic description for some of the γ’s and their relation is possible. This is what
we present now. During our work on the project we have stopped going into this direction and focussed on
the computation of concrete solutions. The next chapter indicates again V. Pidstrygachs idea where to look
for the overall picture.
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6 Algebraic Backround in the Universal Enveloping Algebra
The consideration of Q in the previous chapter enabled us to formulate the problem of solving Nahms
equations for nilpotent orbits in an algebraic language of represenation theory or, in general, linear algebra.
We consider this as a key step towards an explicit solution. The next problem is to understand the algebraic
structure behind the computations in particular behind the composition formula, ideally in a formulation
that is well developped. In this chapter we shall relate previous considerations to the universal enveloping
algebra of sl2 C. However, this language is not fully developped, yet, and not sufficient since it can only deal
with endomorphisms: Since any representation is a Lie algebra homomorphism it extends naturally to the
universal enveloping algebra:

sl2 C→ End(Sd) extends to U (sl2 C)→ End(Sd).

With this map we will find a way to describe End(Sd) inside the universal enveloping algebra.
We can also see the polynomial in U : The Moyal-product induces a Lie algebra structure on S2 = C[x, y]2
that coincides with the algebra sl2 C and that way defines a map of algebras

sl2 C→ (C[x, y]ev,∗) which extends to U (sl2 C)→ (C[x, y]ev,∗).

In other words, everything comes together in U = U (sl2 C). However, in the computation of Q we also had
terms like λ(1+ε)

σi Φ(2n,ε) in which λ(1+ε)
σi is not acting as an endomorphism of S2n+2ε but as a homomorphism

S2n+2ε → S2n. It is the task of future work to include these homomorphisms into the presented picture or
to find another suitable language. We shall present in this chapter that our knowledge about U covers the
picture partly and thus may be a fruitful approach for necessary generalisations.

This chapter constists of two parts: The first section sets up the framework and the notation of sl2 C-
representations, explains how to relate End(Sd) and (C[x, y]ev,∗) to the univeral enveloping algebra and so
tries to develop the underlying picture. Even if we give some simple proofs this text is not intended to be an
introduction to the representation theory of sl2 C. Theorems, missing proofs and arguments can be found in
J. Humphreys book Introduction to Lie Algebras and Representation Theory([Hum97]).
On our way towards the decomposition of U into its irreducible subrepresentations the dicussion seems to
be interrupted by a short discussion of symmetric tensors as SO(d)-represenation. These will be used later
in terms of symmetric polynomials again so that we have decided to cover this part already there. As before
our explanations do not follows some particular article or book, some inspirations for computations and
overviews concerning the tensors and polynomials are taken and given in the articles [Bru18] and [MD17].
It was the work of F. Bayen and C. Fronsdal in [BF80] that motivated the point of view from the universal
enveloping algebra. And so we close this chapter with an sl2 C-intrinsic description of some γ-coefficients
following their ideas.

6.1 The Universal Enveloping Algebra and sl2 C-Representation Theory
The universal enveloping algebra is a fundamental object in the study of Lie algebra representations and so
it is to us. We shall start with its definition and then later pass to the universal property:

Definition 6.1. The universal enveloping algebra of sl2 C is the full tensor algebra T sl2 C =⊕∞
k=0(sl2 C)⊗k

modulo the two-sided ideal I generated by the elements I = ⟨a⊗ b − b⊗ a − [a, b] ∣ a, b ∈ sl2 C⟩:

U ∶= U (sl2 C) ∶= T sl2 C/I .

The algebra structure is inherited from the tensor algebra, notationally, we shall not write a particular symbol
for the product and simply write ef, e2 = ee ∈ U . As both C, sl2 C ⊆ T sl2 C we also find them included in
U . Moreover, the sl2 C-module structure of T sl2 C given by the adjoint action descends to U as the ideal
I is preserved: It remains a derivation so that ada(bc) = (ada b)c+b(ada c) = (ab−ba)c+b(ac−ca) = abc−bca
for any a, b, c ∈ sl2 C.
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On can now show

Theorem 6.2 (Universal Property of the Universal Enveloping Algebra). Let (A, ⋅) be any complex
algebra with an unit element. Any map ϕ ∶ sl2 C→ A with ϕ(a) ⋅ϕ(b)−ϕ(b) ⋅ϕ(a) = ϕ([a, b]) extends uniquely
to an algebra homomorphism ϕ ∶ U → A with ϕ∣sl2 C = ϕ.
Additionally, if A is a sl2 C-represenation space such that ϕ is equivariant its extension is also equivariant.

We intend to not overload the notation so that the extension ϕ according to the universal property is denoted
by the same letter as the extended map ϕ.
Clearly, any representation sl2 C→ End(V ) on a vector space V extends to some U → End(V ) as the assum-
tion is fulfilled already by the definition, so does the sl2 C-action on U extend to an algebra homomorphism
ad ∶ U → End(U ), e.g. ade2 = ad2

e so that ad2
e a = ade(ea − ae) = e2a − 2eae + ae2.

This extension is a simple way to compare different representations or to compare representations with other
algebra maps. Another way is of course given by concrete computations and expressions in a basis. Clearly,
any basis of sl2 C generates the algebra U . For a vector space basis we recall the theorem by H. Poincaré,
G. Birkhoff and E. Witt.

Theorem 6.3. For any basis {x1, x2, x3} of sl2 C the linear span of {xa1xb2xc3 ∣ a, b, c ∈ N0} is all of U .

As usually the study of the algebra and its homomorphisms leads to the question about its center which is
generated by one element, the so-called Casimir element

cas = h2 + 2(ef + fe) = −(σ2
1 + σ2

2 + σ2
3)

in terms of the standard basis {e, f, h} or the Pauli-basis {σ1, σ2, σ3}. A proof of this theorem follows e.g.
from the theorem of Harish-Chandra:

Theorem 6.4. The center of U is generated by the Casimir element, i.e. the center is C[cas].

Consequently, for any algebra homomorphism ϕ ∶ U → A we find ϕ(cas) = ϕ(h)2 + 2(ϕ(e)ϕ(f) + ϕ(f)ϕ(e))
being central in the image of ϕ, i.e. it commutes with any ϕ(a) where a ∈ slC. In our future examples ϕ(cas)
acts as multiplication with a scalar on all of A, say ϕ(cas) = c ∈ C. Consequently, ϕ factorises through the
quotient by the two-sided ideal Ic = ⟨cas − c⟩. This leads to the idea of a Verma module:

6.1.1 Verma Modules

Let c ∈ C be any number and Ic = ⟨cas− c⟩ the two-sided ideal generated by cas− c ∈ U . The Verma module
is defined to be the algebra given by the quotient

πc ∶ U → Uc ∶= U /Ic.

Notice that Ic is central in U and hence Uc is again a sl2 C-representation. Clearly, as {eaf bhc ∣ a, b, c ∈ N0}
spans U their image under πc spans Uc. But here we can simplify further:

• Due to the relation ef − fe = h and cas = h2 + 2(ef − fe) we can rewrite

cas = h2 + 2h + 4fe = h2 − 2h + 4ef

and so in Uc

fe = 1
4
(c − h2 − 2h) and ef = 1

4
(c − h2 + 2h).

In other words, products ef and fe are polynomials in h.

• For a general polynomial q(h) in h we can deduce from hf = fh− 2f = f(h− 2) that q(h)f = fq(h− 2).
The same consideration for he = (h + 2)e leads to

fnq(h) = q(h + 2n)fn and enq(h) = q(h − 2n)en.

40



• This brings us to a recursive simplification

enfm = en−1(ef)fm−1 = en−1 c − h2 + 2h
4

fm−1 = en−1fm−1 c − (h − 2(m − 1))2 + 2(h − 2(m − 1))
4

= . . .

Consequently, enfm is either en−mq(h) if m ≤ n or fm−nq(h) if n ≤m for some polynomial q.

And so Uc is already generated by {eahb, fahb ∣ a, b ∈ N0}. Since these elements are also linearly independent
we have proven

Proposition 6.5. Each of the two families {eahb, fahb ∣ a, b ∈ N0} and {haeb, haf b ∣ a, b ∈ N0} spans Uc.

In a similary fashion we shall prove the next proposition:

Proposition 6.6. The family {adlf ek ∣ k ∈ N0, 0 ≤ l ≤ 2k} is a vector space basis of Uc.

Proof. We show inductively that span{adlf em ∣ m ≤ k,0 ≤ l ≤ 2m} = span{eahb, fahb ∣ a + b ≤ k}. The
claim follows then from the fact that the number of generators on the left concides with the number of basis
elements on the right.
Let l < k. As a first step we will show by induction that there is a polynomial pk,l of degree l such that

adlf ek = pk,l(h)ek−l ∈ hlek−l + span{haeb ∣ a + b ≤ k − 1}

A direct computation gives

adl+1
f ek = adf pk,l(h)ek−l = fpk,l(h) ek−l − pk,l(h)ek−l−1 ef = pk,l(h + 2) fe ek−l−1 − pk,l(h)ek−l−1 ef

= 1
4
(pk,l(h + 2) (c − h2 − 2h) ek−l−1 − pk,l(h)ek−l−1 (c − h2 + 2h))

= 1
4
(pk,l(h + 2) (c − h2 − 2h) − pk,l(h) (c − (h − 2(k − l − 1))2 + 2(h − 2(k − l − 1)))) ek−l−1.

In this shape it is easy to see that the hl+2-terms cancel so that pk,l+1 is a polynomial of degree l + 1 in h.
If k ≥ l, we do the same: There is a polynomial pk,l of degree 2k − l such that

adlf ek = pk,l(h)fk−l

which simply follows from the fact that adkf ek = pk,k(h) is just a polynomial in h so that the precise form
adlf ek = adl−kf pk,k(h) follows from permuting f - and h-terms only. Thus the claim is proven.

Even though the first basis {enhm, fnhm} comes more natural from the Poincaré-Birkhoff-Witt-Theorem,
the latter basis {adlf ek} turns out to be more handy when decomposing Uc further to finally understand
this sl2 C-module:

• From adcas e
k = 2k(2k − 1) ek and the Sl2 C-invariance of the Casimir element it follows

adcas adlf ek = 2k(2k − 1) adlf ek,

i.e. with {adlf ek} we found an eigenbasis to adcas, each {adlf ek ∣ l = 0, . . . ,2k} being a sl2 C-submodule.

• Those adcas-eigenspaces decompose further into one-dimensional weight spaces: adh ek = 2k ek and
hence adh adf ek = (adf adh −ad[h,f])ek = 2(k − 1)adf ek and correspondingly

adh adlf ek = 2(k − l)adf ek for any l = 0, . . . ,2k.

This way we have decomposed Uc into its irreducible subpresentation via a suitable choice of a basis which
firstly decomposes Uc into eigenspaces of adcas and these secondly into weight spaces.

41



6.1.2 Classification of Irreducible Representations

Let, for the moment, V be a finite dimensional and irreducible representation ρ ∶ sl2 C→ End(V ) that means
that there is no non-trivial subspace in V being preserved under the action of sl2 C. Our situation is special
since we have [adh,ade] = 2 ade and [adh,adf ] = −2 adf . The following general result from linear applies to
our situation and so can be used to study the structure of V :

Lemma 6.7. For A,B ∈ End(V ) on a complex vector space V with [A,B] = bB the following is true:

• B(Va) ⊆ Va+b where Va = ker(A − a)

• B is nilpotent, in particular there is a eigenvector w ∈ V of A such that Bw = 0

Proof. The equation (A− (a+ b))B = AB − (a+ b)B = BA+ bB − (a+ b)B = B(A− a) implies the first claim.
This also implies that all possible eigenvalues of A are a + bk, k ∈ N0. But as W is finite dimensional there
is necessarily a k for which Va+(k+1)b = {0} but Va+kb /= {0} - correspondingly, this generalised eigenspace is
contained in the kernel of B.

This Lemma applies to gerneral representations ρ ∶ sl2 C→ End(V ) and not only to the adjoint represenation.
Since [ρ(h), ρ(e)] = 2ρ(e) there is an eigenvector v ∈ V of hightest weight, i.e. with maximal eigenvalue
ρ(h)v = ν v satisfying ρ(e)v = 0. We define the subspace W = ⊕dimV

k=0 ρ(f)kv in V . Similar to previous
computations we duduce that ρ(h)ρ(f)k = ρ(f)k(ρ(h) − 2)k and ρ(e)ρ(f)k−1 = ρ(f)kqk(ρ(h)) for some
polynomial qk. Consequently, W is fixed by the sl2 C action and hence it is a non-trivial subrepresentation
and so all of V :

V =
dimV

⊕
k=0

ρ(f)kv.

Let now have V dimension d, then

• trρ(h) = tr[ρ(e), ρ(f)] = 0 and trρ(h) = ν + (ν − 2) + . . . + (ν − (d − 1)) = d ⋅ ν − d ⋅ (d − 1) and so

ν = d − 1 is the highest weight.

• The fact that v ∈ Eig(ρ(h), d − 1) implies Eig(ρ(h), d − 1 − 2k) = C ⋅ ρ(f)kv so that

V =
d

⊕
k=0

Eig(ρ(h), d − 1 − 2k).

• As [cas, a] = 0 for any a ∈ sl2 C we have [ρ(cas), ρ(a)] = 0. Hence ρ(cas)∣V = const so that a direct
computation shows

ρ(cas)v = (ρ(h)2 + 2(ρ(e)ρ(f) + ρ(f)ρ(e))v = (ρ(h)2 + ρ(h) + 4ρ(f)ρ(e))v
= d(d − 1) v

as ρ(h)v = (d − 1) v and ρ(e)v = 0 on the highest weight vector v.

The decomposition of any sl2 C-module into its irreducible subrepresentations now goes as follows: If we are
lucky, the operator adcas determines a decomposition into finite dimensional eigenspaces as summands. Here,
the eigenvalue d(d−2) of ρ(cas) already determines the dimension and so also their multiplicity. To determine
irreducibles in Eig(adcas, d(d−1)) concretely we can choose a basis of the subspace of highest weight vectors
Eig(ρ(h), d − 1) and use the action of adf to transport this basis to the other weight Eigenspaces.
It is not difficult to show that all n-dimensional sl2 C-representations are isomorphic: simply map one heighest
weight vector to another and extend by equivariance. This so defined map is equivariant and non-trivial and
so is necessarily an isomorphism. This argument relies on Schurs Lemma:

Theorem 6.8. The only non-trivial and equivariant endomorphisms of an irreducible representation are
homotheties, in particular, they are autmorphisms.
More generally, equivariant homomorphisms between two irreducible representations are either the zero map
or isomorphisms.
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A simple consequence is the following: Let V and W be not necessarily irreducible and f ∈ Hom(V ;W )
equivariant. Then the restriction f ∣Ṽ to any irreducible component Ṽ in V is still equivariant and can only
map non-trivially to irreducible components W̃ ⊆ W that have the same dimension as Ṽ . Even better,
f ∣Ṽ ∶ Ṽ → W̃ is an isomorphism.

We finish this section by giving the standard irreducible representations Sd = C[x, y]d being the space of com-
plex, homogenuous polynomials in two variables x and y of degree d, i.e. Sd = spanC{yd, xyd−1, . . . xd−1y, yd}.
The action of sl2 C is defined as follows:

ρ(h) = y∂y − x∂y =

⎛
⎜⎜⎜⎜⎜
⎝

d
d − 2

⋱
−d + 2

−d

⎞
⎟⎟⎟⎟⎟
⎠

= diag(d, d − 2, . . . ,−d + 2,−d),

ρ(e) = −y∂x =

⎛
⎜⎜⎜⎜⎜
⎝

0 −1
0 −2

⋱ ⋱
0 −d

0

⎞
⎟⎟⎟⎟⎟
⎠

and ρ(f) = −x∂y =

⎛
⎜⎜⎜⎜⎜
⎝

0
d 0

⋱ 0
2 ⋱

1 0

⎞
⎟⎟⎟⎟⎟
⎠

where matrices are given in those coordinates.

It follows from the above discussion that any finite dimensional sl2 C-representation V can be written as

V =
N

⊕
k=0

Vk ⊗ Sk with Vk ⊗ Sk = Eig(adcas;k(k − 1))

where Vk = Cnk is the multiplicity, i.e. contains the information how many Sk-representations occur. The
corresponding projectors onto the finite dimensional adcas-eigenspaces are given in the following lemma:

Lemma 6.9. Let A ∈ End(Cn) be a diagonalized operator A = diag(a1, . . . an) with a1 ≤ a2 ≤ . . . ≤ an. The
polynomial

pk(x) =
n

∏
j=1

aj /=ak

x − aj
ak − aj

takes values pk(ak) = 1 and pk(aj) = 0 for all aj /= ak, j = 1, . . . , n.
Consequently, the diagonal operator pk(A) is the identity operator on Eig(A,ak) and vanishes on Eig(A,aj)
for any j such that aj /= ak, in particular, pk(A) is the projector onto Eig(A,ak).
Similarly, akpk(A) coincides with A on Eig(A,ak) and vanishes on any other Eig(A,aj).

6.1.3 The Decomposition of U into Irreducible Submoduls

The decomposition of U into its sl2 C-subrepresentations is linked to the decomposition of symmetric tensors
SmV on a d-dimensional vector space V into SO(V )-subrepresentations. Since we come back later to the
tensors we shall collect some knowledge here already and transfer it to U via complexification for V = sl2 C.
Further and more concrete computations in physics language related to the symmetric powers can be found
in [Bru18] and [MD17], here motivated by multi-pole expansion and quantum physics.

Let V be a d-dimensional vector space equipped with a non-degenerate and positive-definite bilinear form b
and a chosen orthonormal basis. We shall consider the symmetric powers SmV as a SO(V )-module. For us
there are two maps relevant: The trace, on the one hand, as a SO(d) = SO(V, b)-equivariant self-contraction

tr ∶ SmV → Sm−2V given by (trT )i3...im =
d

∑
j=1

Tjji3...im
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in the orthonormal basis. Since the trace map surjects and is SO(d)-equivariant we find the decomposition
of SmV into the subrepresentations given by the kernel and the image of the trace. Let us denote the first
space, the kernel, the space of traceless symmetric tensors of rank m by Sm0 V . And so that we have justified
the following decomposition of SmV into subrepresentations SmV = Sm0 V ⊕ Sm−2V and by iteration

SmV = Sm0 V ⊕ Sm−2
0 V ⊕ Sm−4

0 V ⊕ . . .

where the last summand is S2
0V ⊕ V ⊗0 if m was even or S1

0V = S1V = V if m was odd.
Let us analyse how each of the summands actually sits inside SmV . This leads us to the second map
Sm−2V → SmV : It comes from the product in the symmetric algebra which is in the basis

(ST )i1...im+n =
1

(m + n)! ∑
σ∈Pm+n

Siσ(1)...iσ(m)Tiσ(m+1)...iσ(m+n)
where S ∈ SmV, T ∈ SnV,

as the multiplication with b: T ↦ bT . By definition of SO(V, b), b is invariant and so is the multiplication
with it equivariant. Let us compute the components

tr(bT )i1...im =
d

∑
j=1

(bT )jji1...im = 1
(m + 2)!

d

∑
j=1

∑
σ∈Pm+2

biσ(1)iσ(2)Tiσ(3)...iσ(m+2) where im+1 = im+2 = j.

Here we need to count specific permutations:

• There are 2m! permutations fixing both j’s in the first places, namely all elements in Pm and (12)Pm.

• There are 2((m+1)!−m!) = 2mm! permutations that fix either the first or the second position but not
both, and the same amount of permutation mapping the first position to the second or the second to
the first but not interchanging both. And so we have 4mm! permutation keeping exactly one j in the
two first positions.

• There are m(m − 1)m! permutations that map boths j’s away from the first positions.

Those numbers sum indeed up to 2m! + 4mm! +m(m − 1)m! = (m + 2)! = ∣Pm+2∣. We find

tr(bT )i1...im = 1
(m + 2)!

⎛
⎝

2m!
d

∑
j=1

bjjTi1...im + 4mm!
d

∑
j=1

d

∑
l=1
bjilTji1...̂ih...im +m(m − 1)m!

d

∑
l,l′=1,l/=l

bilil′Tjji1...̂il...̂il′ ...im
⎞
⎠

= m!
(m + 2)! ((2d + 4m)T +m(m − 1) b trT )i1...im

A simple consequence is the following: if the tensor T is traceless, we have tr(bT ) = 2(d+2m)
(m+2)(m+1) T so that

b ∶ Sm−2
0 V → SmV in particular injects. Consequently, S2V = S2

0V ⊕ bV ⊗0 and inductively it follows

SmV = Sm0 V ⊕ bSm−2
0 V + b2Sm−4

0 V ⊕ . . .

It is actually true that each of Sm0 V is an irreducible SO(d)-representation but we will not need this fact
and so directly transfer this to the sl2 C-representation U :
The basis {σ1, σ2, σ3} is an orthonormal basis of su(2) with respect inner product which is the negative of
Killing form. And so we can apply the above theory to SU(2) as the covering of SO(3). The complexification
then leads to sl2 C-representations, e.g. we can substitute SmC3 by Sm sl2 C ⊆ U via

T ↦ ∑
i1,i2,i3

Ti1i2i3σi1σi2σi3 and in particular b↦ cas.

Under this map, we shall denote by Sm the image of SmC3 and by Rm the image of Sm0 C3 each of them being
a sl2 C-subrepresentation in U . Since U is spanned by all Sm we can summarise the above explanation for
SO(d) in the next theorem [BF80]
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Theorem 6.10. We can decompose

U =
∞
⊕
m=0
Sm and Sm =

⌊m/2⌋
⊕
k=0

caskRm−2k

into irreducible subrepresentations. Here Rm ⊆ Sm can be characterised by

i) the image of the symmetric and traceless tensor Sm0 C3

ii) Rm = span{adjf em ∣ j = 0, . . . ,2m}

iii) Rm = Eig(adcas,2m(2m + 1)) ∩ Sm

Proof. Again, U = ⊕Sm, Sm = ⊕ caskRm−2k since b ↦ cas and the first characterisation are already
explained. The third characterisation follows from the second using the material of sl2 C-representations
covered before and so it remains to check the second characterisation. The observation em = (σ2 + iσ3)m
motivates to consider the following tensor: We define the tensor E by its components as follows: For any
index set I ∈ {1,2,3}m

• EI = 0 when ever I contains the index 3

• EI = im−k when ever I contains k times the index 1 and m − k times the index 2

First of all, E is symmetric with ∑i1,...,im Ei1...im . . . σi1σim = (σ2 + iσ3)m = em. The trace of E is computed
as follows: Let I ∈ {1,2,3}m−2 be any index set, we find

(trE)I = E11I +E22I +E33I .

If I contains at least once the index 3 it is directly clear that (trE)I = 0. Otherwise if k denotes the number
of index 1 in I we have E11I = im−k−2 = −im−k and E22I = im−k. This shows that trE = 0 and so em ∈ Rm.
Since Rm is sl2 C-invariant of dimension not bigger than 2m+ 1 we can deduce that Rm = span{adjf em ∣ j =
0, . . . ,2m}. This completes the proof.

We also have seen in the previous material about sl2 C-representations thatRm = span{adjf em ∣ j = 0, . . . ,2m}
is actually irreducible and so we have found the decomposition of U into irreducible sl2 C-subrepresentations.

6.2 Formulation of the Moyal Product in U

From the representation point of view Rm is 2m + 1 dimensional and so isomorphic to S2m. On the other
hand the map µ ∶ sl2 C→ S2 = C[x, y]2

h↦ xy , e↦ y2

2
, f ↦ −x

2

2
identifies the two irreducible representations sl2 C and S2. Unfortunately, this map sl2 C→ S2 ⊆ C[x, y] does
not extend to the universal enveloping algebra when C[x, y] is being equipped with the standard product
on polynomials. If perturbed to the Moyal product

f ∗ g =
∞
∑
m=0

{f, g}m where {f, g}m =
m

∑
j=0

(−1)m−j

j! (m − j)! ∂
j
x∂

m−j
y f ⋅ ∂m−j

x ∂jyg

we can check that

µ(a) ∗ µ(b) − µ(b) ∗ µ(a) = {µ(a), µ(b)}1 = [a, b]

on these basis elements and that way extent µ to an equivariant algebra homomorphism µ ∶ U → C[x, y]ev,
the non-commutative moment map from the Sl2 C action on C2. Due to

µ(cas) = µ(h) ∗ µ(h) + 2(µ(e) ∗ µ(f) + µ(f) ∗ µ(e)) = xy ∗ xy + 2(y
2

2
∗ (−x

2

2
) + (−x

2

2
) ∗ y

2

2
)

= (x2y2 − 1) − 1
2
(x2y2 − 4xy + 2) − 1

2
(x2y2 + 4xy + 2) = −3
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the homomorphism µ factorises through the Verma module U−3. From the representation point of view
now both U−3 = ⊕∞

m=0 S
2m and C[x, y]ev = ⊕∞

m=0 S
2m coincide and hence µ ○ π−3 ∶ U−3 → C[x, y]ev is an

equivariant algebra isomorphism if and only if it is non-trivial on any irreducible component. But that is
clear if we simply evaluate at ek: µ(ek) = (µ(e))k = 2−ky2k and Schurs Lemma implies now the isomorphy
between Rm and C[x, y]2m and so between U−3 and C[x, y]ev.
The Moyal bracket {⋅, ⋅}m ∶ Sm ⊗ Sm → C defines a symmetric invariant bilinear form if m is even and
antisymmetric if m is odd. This can be extended to an invariant inner product on C[x, y]ev by ⟨f, g⟩ =
prC(f ∗ g). The invariance has two consequences:

• The operator adcas is symmetric. This implies Sk ⊥ Sl for k /= l since two different adcas-eigenspaces
have to be orthogonal.

• The operator adh is antisymmetric. This gives that Eig(adh, ν) ⊥ Eig(adh, ν′) unless ν = −ν′.

And so for some Eig(adcas,2m(2m+ 1))∩Eig(adh,2(m− k)) = Cxky2m−k the only non-orthogonal elements
are multiples of x2m−kyk. This consideration also gives that the so defined bilinear form is non-degenerate.

6.3 Composition Formula for EndSd in U

The standard representation ρ on Sd is nothing but the map ρ ∶ sl2 C→ End(Sd) given by

h↦ λ(1)
xy = y∂y − x∂x , e↦ 1

2
λ
(1)
y2 = −y∂x , f ↦ −1

2
λ
(1)
x2 = −x∂y.

The induced representation on End(Sd) itself decomposes it as EndSd = ⊕dk=0 S
2k. This can also be seen

using the homomorphism λ(k) ∶ S2k → End(Sd) mapping f ↦ {f, ⋅}k, i.e. λ
(k)
f (g) = {f, g}k. Just as the

Moyal product also the map

λ ∶
d

⊕
k=0

S2k → End(Sd)

is equivariant. The pullback of the Killing metric on End(Sd) via λ differs on each component by a conformal
factor, this is a consequence of the invariance of both metrics.

The endomorphism space is an sl2 C-representation via ρ which lifts to an homomorphism of algebras
U → End(Sd). Here, we can compute

ρ(cas) = ρ(h)2 + 2(ρ(e)ρ(f) + ρ(f)ρ(e)) = (y∂y − x∂x)2 + 2(y∂xx∂y + x∂yy∂x) = d(d + 2)

on Sd which becomes clear when applied to an element, e.g. xd. And so ρ factorises through the Verma
module Ud(d+2). We now have found two maps with co-domain End(Sd): the algebra homomorphism
ρ ∶ U → End(Sd) and λ ∶ C[x, y]ev,≤2d = ⊕S2m → End(Sd). We want to define a map R ∶ ⊕S2m → U such
that λ = ρ ○R. We have

λ
(m)
(y2/2)m = (−1)m

2mm!
(2m)!
m!

ym∂mx and ρ(em) = ρ(e)m = (λ(1)
y2/2)

m
= (−1

2
y∂x)

m

= (−1
2
)
m

ym∂mx

and so demand R(y2m/2m) = (2m)!
(m!)2 e

m which we extend equivariantly to

R(xky2m−k) = (−1)k (2m − k)!
(m!)2 adkf em.

In particular, R takes values in R = ⊕Rm ⊆ U which itself is isomorphic to any Uc by the projection πc.
Although R is only a subspace and not a subalgebra of U the map ρ remains multiplicative on R.
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All the presented maps are again collected in the following diagram

sl2 C

EndSd U C[x, y]ev

Ud(d+2) R U−3

⊕dm=0 S
2m

ρ

πd(d+2)

⊇

µ

π−3
≅

≅

⊆

≅

≅

λ

R

The map µ ○ π−3 ○R ∶ C[x, y]ev,≤2d = ⊕S2m → C[x, y]ev is for representational reasons a rescaling on each
summand which we can compute by

(y
2

2
)
m

Rz→ (2m)!
(m!)2 e

m µ○π−3z→ (2m)!
(m!)2 (y

2

2
)
m

.

The idea is now to relate the formula

λ
(n)
f λ(m)

g =
d

∑
l=0
γln,m(2n,2m,d)λ(n+m−l)

{f,g}l , f ∈ S2n, f ∈ S2m

with U . We should point out here that we necessarily have to restrict ourselves to the endomorphism λ
(n)
f

with f ∈ S2n, i.e. deg f = 2n, and so can only to relate the coefficients γln,m(2n,2m,d) for all n,m,d to U .
The above formula is translated to R as

R(f)R(g) =
d

∑
l=0
cln,mR({f, g}l), cln,m = γln,m(2n,2m,d) = (−1)n+m−lclm,n.

We can be a litte more explicit considering f = xnyn, g = xmym so that

{xnyn, xmym}l =
l

∑
j=0

(−1)l−j
j!(l − j)! ∂

j
xx

n ∂l−jy yn ∂l−jx xm ∂jyy
m

=
l

∑
j=0

(−1)l−j
j!(l − j)!

n!
(n − j)!

n!
(n − (l − j))!

m!
(m − (l − j))!

m!
(m − j)! x

n+m−lyn+m−l = aln,m xn+m−lyn+m−l.

With the notation R(xlyl) = (−1)l
l! adlf el =

(−1)l
l! pl(h) we intend to emphazise that it is just a polynomial in

h over C[cas]. We have found

pn(h)pm(h) =
n+m
∑
l=0

cln,ma
l
n,m pl(h) in U−3 =R, with coefficients aln,m from above.

More general we have in R

pn(h)pm(h) =
n+m
∑
l=0

cln,mA
l
n,m pl(h) in U with Aln,m ∈ C[cas].

This translates information about the coefficients γln,m(2n,2m,d) to information in U about pl. Since {pl}
is a basis of the space of polynomials in h over C[cas] we are interested in the decomposition of two-fold
product pnpm in terms of that basis which can easily generalised to many-fold products of the ps. This
is the reason why we have to invest some time in the understanding of the p which lead us to [BF80] and
description in terms of the Legendre polynomials.
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Firstly we shall extend it to an equivariant polynomial pl ∶ sl2 C→ U :

1. We extend homogeneuously to Ch ⊆ sl2 C: For any α ∈ C, we define pk(αh) ∶= αkpk(h).

2. We extent equivariantly to the orbit C Sl2 C ⋅ h: For any g ∈ Sl2 C, we demand pk(αhg) = αk(pk(h))g.
If g ∈ Stabh fixes h it also fixes pk(h) so that this step is valid.
This polynomial map is uniformly continuous over compacta and so we can proceed the next step:

3. We extend continuously to all of sl2 C as C Sl2 C ⋅ h is dense in there.

This way we have obtained an Sl2 C-equivariant and C-homogeneuous polynomial expression sl2 C → U of
degree m which actually has values in the subrepresentation Rm. It is a polynomial in the following sense:

Definition 6.11. Let σ1, σ2, σ3 be any orthonormal basis on sl2 C and let a1, a2, a3 be the associated coor-
dinates on sl2 C, i.e. any a = a1σ1 + a2σ2 + a3σ3 for any a ∈ sl2 C. A monomial sl2 C → U of degree k is the
contraction of a rank k tensor P = (Pi1...ik) with the basis

3
∑

i1,...,ik=1
Pi1...ikai1σi1 ⋅ . . . aikσik .

By the equivariance of the expression this is indepenend of the choice of basis. By a polynomial we mean a
sum of such monomials.

The constructed polynomials pm are indeed of this shape: Since pm(h) ∈ Rm = im(SmC3 → U ) there is a
symmetric tensor L of rank m such that pm(h) = ∑3

i1,...,ik=1Li1...imσi1 . . . σim . Homogenisation as well as
extension by equivariance preserve this form so that the polynomial on sl2 C corresponds to the tensor L.
The construction does not only prove the existence of such polynomial pm is also shows uniqueness:

Lemma 6.12. For any m ∈ N0 there is, up to a constant factor, a unique equivariant, homogeneuous
polynomial sl2 C→Rm.

Proof. The previous construction built pm up only from its value pm(h) which was in C[cas, h]. Consequently,
we only have to show that such a polynomial fulfills q(h) ∈ C[h, cas]. But this means nothing else but
q(h) ∈ Rm ∩ Eig(adh,0) which follows directly from the equivariance: exp(h) necessarily acts trivially on
pm(h) whose differentiation shows adh pm(h) = 0.

6.4 Relation between the γ-Coefficients and the Legendre Polynomials
We can use the correspondence between the polynomials and the traceless symmetric tensors to give these
polynomials more or less explicit: To any symmetric tensor we can associate a polynomial by

ϑ(T )(x1, . . . , xd) =
d

∑
i1,...,im=1

Ti1...imxi1 ⋅ . . . ⋅ xim

as we have done already on our way from SmV to U . Under this identification a traceless tensor corresponds
to a harmonic polynomial:

∆ϑ(T )(x1, . . . , xd) =
d

∑
j=1

∂2
j

d

∑
i1,...,im=1

Ti1...im xi1 ⋅ . . . ⋅ xim

=
d

∑
j=1

d

∑
i1,...,im=1

Ti1...im (δj(i1)δj(i2)xi3 ⋅ . . . ⋅ xim + symm. in (i1 . . . im))

=m(m − 1)
d

∑
j=1

d

∑
i1,...,im=1

Tjji3...im xi3 ⋅ . . . ⋅ xim

=m(m − 1)
d

∑
i3,...,im=1

(trT )i3...im xi3 ⋅ . . . ⋅ xim

=m(m − 1)ϑ(trT )(x1, . . . , xd).
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Consequently our aim is to find a harmonic, symmetric and homogeneuous polynomial of degree m. Such
polynomials are known as spherical harmonics of which we shall consider only the solid Legendre polynomials:
We define via

`m(x) =
√
n
m ∣x∣m lm(x1 + . . . + xn√

n ∣x∣ )

a symmetric, harmonic and homogeneuous polynomial of degree m on Rn. Here, lm is the mth Legendre
polynomial which are equivalently defined by one of the following prescribtions

• (m + 1)lm+1(t) = (2m + 1)t lm(t) −mlm−1(t) with l0(t) = 1 and l1(t) = t

• lm(t) = ∑⌊m2 ⌋
k=0 lmk t

m−2k where lmk = (−1)k
2k

(2n−2k)!
(n−k)!(n−2k)!k! =

(−1)k
2k ( 2n−2k

n−k,n−2k,k)

• tm = ∑⌊m2 ⌋
k=0 tmk lm−2k(t) where tmk = (2m−4k+1)m!

2kk!(2m−2k+1)!!

Correspondingly, the tensor Lm associated to `m

`m(x) =
√
n
m ∣x∣m lm(x1 + x2 + . . . + xn√

n ∣x∣ ) =
⌊m2 ⌋
∑
k=0

lmkn
k (x2

1 + . . . + x2
n)k(x1 + x2 + . . . + xn)m−2k

is symmetric and traceless and thus pushed to U defines a multiple of pm. Unfortunately, we have not been
able to give an explicit formala for the p’s and so used a computer programm as in the appendix to find
pm(h) = admf em

• p0(h) = 1

• p1(h) = −h

• p2(h) = 3h2 − cas

• p3(h) = −15h3 + 3(−4 + 3cas)h

• p4(h) = 105h4 + 30(10 − 3cas)h2 + 9(cas2 − 8cas)

• p5(h) = −945h5 − 1050(6 + cas)h3 + 15(−15cas2 + 200cas − 192)h

In the paper [BF80] by F. Bayen and C. Fronsdal the considered polynomials are R(xmym) which is in
our convention pm(h) = (−1)mm!R(xmym), the adopted recurrence relation for pm combined with our
conventions for the Killing form on sl2 C is

pm+1(a) = (2m + 1)apm(a) +m2(m2 − 1 − cas)∣a∣2 pm−1(a), a ∈ sl2 C.

There is clearly some relation to the recurrence relation for lm. A lot of work has been invested in the
Legrende polynomials and so it is no surprise that there are explicit formulas for

lm(t)ln(t) =
m+n
∑
j=0

zjn,mlj(t), where zjmn =
2(m + n) − 4j + 1
2(m + n) − 2j + 1

(j− 1
2 )!
j!

(m−j− 1
2 )!

(m−j)!
(n−j− 1

2 )!
(n−j)!

(m+n−j− 1
2 )!

(m+n−j)!

with some complicated but combinatorical expression for the coefficients zln,m. There are several articles in
that direction, e.g. [AlS56]. The discussion ends here since we have then focussed on the recurrence formula
for Q. The knowledge about the Legendre polynomials and the universal enveloping algebra might bring
some light in the dark about the coefficients and to the bilinear form Q and that way motivate the bigger
picture behind in which we can solve Nahms equations for nilpotent orbits of maximal rank in End(Sd) with
already developed algebraic terminology.
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7 Outlook
It was mentioned already that the presented approach is not fully developped yet, and so it is not difficult
to list gaps and ToDo’s. There are two main points here to discuss: How the open end could be closed and
how this method may be generalised to other orbits or other Lie algebras.

From our point of view it does not make too much sense to start brute-force computations of the recurrence
relation of Q. Of course, a computer can do that but we will not be able to interpret the results, yet. We have
to develop the algebraic language further to understand what is going on with the nilpotent orbits. And that
is why it looks most promising to search for a well-developped algebraic structure generalising the universal
enveloping algebra in such that way that we can not only formulate relations between λ’s as endomorphisms
but also between λ’s as homomorphisms. We are optimisitic that in this language the problem of solving
the Q-recurrence is easier, controlable and interpretable.
Reducing our high standards for the moment we would already be happy with a closed formula for the γ’s
so that we maybe can go on with the computation. Here we have two possibilies to start with: On the one
hand, a python program can compute these coefficients and we try to guess formulas. This is doable, e.g.
for λ(0)λ(n), but tricky if mix-terms appear as in λ(1)λ(n). Ideally this path is combined with the knowledge
we can collect from the Legendre polynomial-approach: When we fully understand how the symmetrisation,
i.e. the map from the polynomials to the enveloping algebra, works we can use the relations between the
Legendre polynomials and translate them for our problem. Even though this will just give some γ’s it might
indicate in which direction we have to look.

So far we have restricted ourselves to the standard representation of sl2 C on End(Sd) which corresponds
to the nilpotent element given by the Jordan block of maximal rank. We can approach the other orbits in
the following way: Due to complex linear algebra we know that we can choose e to be in Jordan normal
form. The Jacobson-Morozov theorem states that we can complete e to an sl2 C-triple {e, f, h} and that
way compute the decomposition of End(Sd) with respect to this sl2 C-trepresentation. We can even be more
precise here: If we denote by Jk the nilpotent Jordan block of rank k − 1, we decompose End(S4), e.g. as

• For e = diag(J3, J2) we find End(Sd) = C2 ⊗ S0 ⊕C2 ⊗ S1 ⊕C2 ⊗ S2 ⊕C2 ⊗ S3 ⊕ S4

• For e = diag(J3, J1, J1) we find End(Sd) = S0 ⊕ S2 ⊕C2 ⊗ S3 ⊕ S4 ⊕ S6

And so the problem we have to deal with becomes clear: The different components do not only occur once
as for the standard representation but several times. However we are convinced this can be done with some
linear algebra tricks about which we think later.
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A Gauge Transformations and the Baker–Campbell–Hausdorff for-
mula

So far we have used quite often the existence of some gauge element with addition properties. If it is about
gauging a compontent to the standard solution or to zero, to solution of the real equation. In this section
we shall introduce a method how such a gauge can be computed systematically - for a limited number of
very special cases.

We consider a two-dimensional Lie algebra of some Lie group spanned by ξ1 and ξ2, this means in par-
ticular that [ξ1, ξ2] = r1ξ1 + r2ξ2. The unique gauge element g ∶ R → G which eliminates ξ = a1ξ1 + a2ξ2, i.e.
g.ξ = Adg ξ − ġg−1 = 0, with initial value g(0) = 1 is given by

g(t) = exp(t(a1ξ1 + a2ξ2)).

This relies on the fact that ξ is time-independed so that we can easily compute the derivative of g.
Another approach could be the following: We try to eliminate the ξ1-component in ξ and the ξ2-component af-
ter each other. This can be by firstly gauging ξ with g1(t) = exp(κ1(t)ξ1) and then with g2(t) = exp(κ2(t)ξ2)
both with κi(0) = 0. The uniqueness tell us then that g = g2g1. In more concrete terms:

exp(κ1 ξ1).(a1ξ1 + a2ξ2) = exp(κ1 adξ1)(a1ξ1 + a2ξ2) − κ̇1ξ1 = a2 exp(κ1 adξ1)ξ2 + (a1 − κ̇1)ξ1

All the nested commutators of ξ1 and ξ2 remain in the Lie algebra so that there are functions w1 = w1(t) and
w2 = w2(t) such that exp(κ1(t)adξ1)ξ2 = w1(t)ξ1 +w2(t)κ2(t), here w1 and w2 can be computed in terms of
the commutation relations and κ1. The above equation becomes now

exp(κ1(t) ξ1).(a1ξ1 + a2ξ2) = a2w2(t) ξ2 + (a1 + a2w1(t) − κ̇1(t))ξ1

so that the choice of κ̇1 = a1 + a2w1 with κ1(0) = 0 determines κ1 uniquely.
By that step we have decreased the dimension of the considered Lie algebra by 1 so that it remains to find
g2 = exp(κ2 ξ2). Due to

exp(κ2(t) ξ2). exp(κ1(t) ξ1).(a1ξ1 + a2ξ2) = exp(κ2 ξ2).(a2w2(t) ξ2) = (a2w2(t) − κ̇2(t)) ξ2

the choice κ̇2 = a2w2 with κ2(0) = 0 is necessary.
We have now found two gauges, g and g2g1, that solve the same differential equation g.ξ = 0 and g(0) = 1
and so they coincide

exp(t(a1ξ1 + a2ξ2)) = exp(κ2(t) ξ2) exp(κ1(t) ξ1).

This is nothing but a Baker-Campell-Hausdorff problem. Furthermore, we may be lucky and find the map
(a1, a2)↦ (κ1(1), κ2(t)) to be invertible. This then would correspond to a formula for

exp(ξ2) exp(ξ1) = exp(b1ξ1 + b2ξ2).

Although the complexity of such problems increases rapidly, here we would have to solve differential equa-
tions explicitely and hope for controlable solutions, this approach generalises to computations in higher-
dimensional Lie algbras. But not to all of them, we have to have a linear basis {ξ1, . . . , ξn} such that

span{ξ1, . . . , ξk} ⊆ g is a k-dimensional Lie subalgebra of g

for any k ≤ n, i.e. g is solvable. The proof just follows the above presented arguments recursively.

Let us compute some (known) examples. The first two examples are just as in the example, X and Y
span a two-dimensional Lie algebra. This was also computed by A. Van-Brunt and M. Visser presented in
[VV15], which looks from our point of view more complicated to our approach. The last and third example
will deal with the Lie algebra sl2 C, explained M. Matone in [Mat16]. He reduces the problem to the two-
dimensional case and uses results from there. With our restrictions on the Lie algebras the example of sl2 C
is already pretty general for the three-dimensional case: The Jacobi-equality together with the existence of
the chain of Lie subalgebras gives determing dependences between possible coefficients in the commutation
relations.
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Example 1: X,Y with [X,Y ] = λX

Let’s start with the situation of a two dimensional Lie algebra spanned by X and Y where adY X = λX and
λ is a non-zero real number. In this case it does not matter which component is firstly gauged away and so
we just start with the computation: It is our aim to decompose

exp(aX + bY )

into factors. In order to do so we compute the action of gY (t) = exp(κY (t)Y ) on aX + bY :

exp(κY adY )(aX + bY ) = a exp(κY adY )X + bY = aeλκYX + bY

and so the choice κY (t) = bt gives gY (t) = exp(−btY ) and it remains to compute κ̇X(t) = ae−λb t which is
solved by κX(t) = − a

bt
(e−λb t − 1) in the right way. Evaluating at t = 1 we have found

exp(aX + bY ) = exp(−a e
−λb − 1
b

X) exp(bY ).

Now, let’s turn the question around and produce the coefficients such that exp(αX) exp(βY ) = exp(aX+bY ).
This means nothing but solving the system of equations

⎧⎪⎪⎨⎪⎪⎩

−a e−λb−1
b

= α
b = β

for (a, b). That’s not too difficult and we obtain

exp(αX) exp(βY ) = exp( αβ

1 − e−λβ + βY ).

Example 2: X,Y with [X,Y ] = xX + yY

First things first, we can assume that both x and y are non-zero since this case was handled earlier alread.
Now we take care about exp(adY )(aX + bY ). Let adkY (aX + bY ) = akX + bkY so that

ak+1X + bk+1Y = adk+1
Y (aX + bY ) = adY (akX + bkY ) = ak(xX + yY ) = akxX + akyY

and we can read off
⎧⎪⎪⎨⎪⎪⎩

ak+1 = xak, a0 = a
bk+1 = yak, b0 = b, b1 = y

to find
⎧⎪⎪⎨⎪⎪⎩

ak = axk

bk = a yx x
k + δ0(k) bx−ayx

where δ represents the Delta-Kronecker-Tensor given by δk(n) = 1 if and only if k = n and δk(n) = 0 otherwise.
This leads us to

exp(κY adY )(aX + bY ) = aeκY xX + 1
x
(ay eκY x + (bx − ay))Y

what requires us to solve

xκ̇Y = ay eκY x + (bx − ay) ⇐⇒ 1 = − −xκ̇Y e−xκY
ay + (bx − ay)e−xκY = − 1

bx − ay
d
dt

log(ay + (bx − ay)e−xκY ).

And so we find κY to be given implicitly by

log ay + (bx − ay)e−xκY (t)

bx
= −(bx − ay)t

which his in turn equivalent to the explicit form

κY (t) = − 1
x

log(bxe
−(bx−ay)t − ay
bx − ay )
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If bx − ay = 0 we have not inhomogeneity in the differential equation to that κY (t) = − 1
x

log(1 − ayt). Now
for κX , it has to be chosen in such a way that

κ̇X = aexκY = a xκ̇Y − (bx − ay)
ay

= 1
y
(xκ̇Y − (bx − ay))

where we have linked exκY with κ̇Y via the differential equation. And so we have determined κX to be

κX(t) = x
y
κY (t) − bx − ay

y
t = −1

y
log(bxe

−(bx−ay)t − ay
bx − ay ) − bx − ay

y
t = −1

y
log(bx − aye

(bx−ay)t

bx − ay )

And so we have finally computed

exp(atX + btY ) = exp(κX(t)X) exp(κY (t)Y ).

Let’s proceed by inverting the picture and solve
⎧⎪⎪⎨⎪⎪⎩

α = κY (1)
β = κX(1)

When writing r = bx − ay we can simplify the second equation by using β = κX = x
y
α − r

y
. And so we find

r = xα − βy. This empowers uns to rewrite the equation for κY and solve for a

re−xα = bxer − ay = (r + ay)er − ay = ay(er − 1) + rer ⇐⇒ a = r
y

e−xα − er
er − 1

and then with xα − yβ = r = bx − ay for b

b = 1
x
(r + ay) = r

x
(1 + e

−xα − er
er − 1

) = r

x

e−xα − 1
er − 1

.

Of course we could have changed this basis here with [X,Y ] = xX + yY to the basis of Example 1 or even
to [X,Y ] = X. But this would lead to a Baker-Campell-Hausdorff decomposition and so to exponentials in
the new basis vectors. So again, we would have exponentials in linear combinations of X and Y which does
not help us at all. That is why we intended to consider this Example 2 really as an example not as a special
case. And this is also the reason why we do not change the basis in sl2 C:

Example 3: Standard Basis of sl2 C
Any triple X,Y,Z with real and non-trivial relations

[Y,X] = uX [Z,X] = yY [Z,Y ] = uZ

span the Lie algebra sl2 C. We can compute already all the necessary formulas

exp(κZ adZ)Y = Y + κZ adZ Y + κ
2
Z

2
ad2
Z Y + . . . = Y + uκZZ

exp(κZ adZ)X =X + κZ adZX + κ
2
Z

2
ad2
ZX + . . . =X + yκZY + yu

2
κ2
ZZ

so that

exp(κZ adZ)(aX + bY + cZ) = aX + (ayκZ + b)Y + (a yu
2
κ2
Z + buκZ + c)Z.

In the next step we use

exp(κY adY )X = euκYX
exp(κY adY )Z = e−uκY Z.
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which leads us to the differential equations for the κ:

κ̇Z = a uy
2
κ2
Z + buκZ + c =

ayu

2
(κZ +

b

ay
)

2
+ (c − ub2

2ay
)

κ̇Y = ayκZ + b
κ̇X = aeuκY .

We abbreviate p = ayu
2 and q = c − ub2

2ay to find

κZ(t) =
√

q

p
tan(√pq (t − τ)) − b

ay
, τ = 1

√
pq

arctan(
√

p

q

b

ay
)

κ̇Y (t) = ay
√

q

p
tan(√pq (t − τ)) Ô⇒ κY (t) = −ay

p
log∣cos(√pq (t − τ))∣ = − 2

u
log∣cos(√pq (t − τ))∣

κ̇X(t) = a

cos2(√pq (t − τ)) Ô⇒ κX(t) = a
√
pq

tan(√pq (t − τ))

This shape relies on pq > 0, if pq < 0 the the roots are complex so that the trigonometric functions are
replaced by hyperbolic functions.
The situation is a little different for q = 0. Here we find

κZ(t) =
b

ay
( 1

1 − bu
2 t

− 1) Ô⇒ κY (t) = − 2
u

log(1 − bu
2
t) Ô⇒ κX(t) = abu

2
( 1

1 − bu
2 t

− 1)

For the case q /= 0 let us solve the system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γ = κZ(1)
β = κY (1)
α = κX(1)

for a, b and c. From α = κX(1) we can directly read off that

tan(√pq (t − τ)) = aα
√
pq

= α√
p
a
q
a

= α√
p
a
q
a

which leads when combined with γ to

γ = aα
p
− b

ay
= 2α
uy

− 1
y

b

a
⇐⇒ b

a
= 2α
u
− yγ

The β-equation can be transformed to

euβ = 1
cos2(√pq (t − τ)) = 1 + tan2(√pq (t − τ)) = a

2α2

pq
= α2

p
a
q
a

⇐⇒ euβ

α2
yu

2
= q
a
= c

a
− u

2y
( b
a
)

2

And so we have determined the quotients b
a
and c

a
. This is the best we can hope for as long we do not

consider the tan-term explicitely since the prefactors in the κ’s are invariant under rescaling a, b and c
simultaneously. Consequently, we have to fix a by

tan(a
√
p

a

q

a
− arctan(

√
p

q

1
y

b

a
)) = α√

p
a
q
a

The solution is messy, the discussion when the solutions for κ as well as the inverse problem is left out
anyway and so with presenting a solution strategy we close this example here.
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B Python-Codes
The Code for the Components in the Composition Formula

import sympy as sp
from sympy import ∗
from sympy import s imp l i f y , expand , reduced , S
import math

sp . i n i t_p r i n t i n g ( )

a , n , b ,m, p , k = sp . symbols ( ’ a␣n␣b␣m␣p␣k ’ )
x , y = sp . symbols ( ’ x␣y ’ )

f = x∗∗a ∗ y∗∗(n−a )
g = x∗∗b ∗ y∗∗(m−b)
h = x∗∗p ∗ y∗∗(k−p)

d=4

#computes the c o e f f i c i e n t o f the moyal b racke t o f {x^ay^b , x^sy^ t }_k
#wrt x^(a+s−k ) y^( b+t−k ) and re turns i t
def moyalbracket ( f =0,g=0,m=0):

r e s u l t = 0
for j in range (0 ,m+1):

r e s u l t += Rat iona l (( −1)∗∗(m− j ) , f a c t o r i a l ( j )∗ f a c t o r i a l (m− j ) ) ∗ sp . d i f f ( f , x , j , y ,m− j ) ∗ sp . d i f f ( g , x ,m− j , y , j )
return r e s u l t

c o e f f s ={}
lambdacoef f={}
for N in range (0 , d+1):

for M in range (0 , d−N+1):
#compute \ lamnda ^{(N)}_f \ lambda^{(M)}_g (h ) = = \sum _{ j=0} ^{N+M} alpha_{N+M− j } \ lamnda ^{(N+M− j )} _{ { f , g}_j }

poly = cance l ( moyalbracket ( f , moyalbracket ( g , h ,M) , N) ∗ x∗∗(−a−b−p+N+M) ∗ y∗∗(−n−m−k+a+b+p+N+M))
for j in range (0 ,N+M+1):

#computes the c o e f f i e n c e n t o f Lambda ^{ (N+M− j )} _{ { f , g}_j } (h ) = { { f , g}_j , h}_{N+M− j }
lambdacoef f . update ({ (N,M,N+M− j ) : c ance l ( moyalbracket ( moyalbracket ( f , g , j ) , h ,N+M− j )∗x∗∗(−a−b−p+N+M)∗y∗∗(−n−m−k+a+b+p+N+M))} )

#We compute the i t e r a t i o n s : We have a l r eady compute the f i r s t r
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#co e f f s ={3: m∗(m−1)∗(m−2)/((n+m)∗(n+m−1)∗(n+m−2))}
for j in range (0 ,N+M+1):

i = N+M− j
# pr in t ( j , i )

he lpe r=poly . as_poly (p ) . coeff_monomial (p∗∗ i )
# pr in t ( h e l p e r )

for l in range ( i +1,N+M+1):
he lpe r = he lpe r − c o e f f s [ (N,M, l ) ] ∗ lambdacoef f [ (N,M, l ) ] . as_poly (p ) . coeff_monomial (p∗∗ i )

# pr in t ( h e l p e r )
he lpe r = cance l ( he lpe r / lambdacoef f [ (N,M, i ) ] . as_poly (p ) . coeff_monomial (p∗∗ i ) )
c o e f f s . update ({ (N,M, i ) : he lpe r })

The Code for the Computations of the Polynomials pm

import sympy
from sympy import ∗
from sympy . abc import c , h
from sympy import eye , degree , p r in t_latex

#c=h∗∗2+2( e f+f e ) i s Casimir
pp=Rat iona l ( 1 , 4 )∗ ( c−h∗∗2+2∗h)# e f=pp (h )
pm=Rat iona l ( 1 , 4 )∗ ( c−h∗∗2−2∗h)# fe=pm(h)=pp (h−2)
q0=1+h−h #i n i t i a l polynomial , somewhy j u s t 1 i s not accepted
dim=5
d=dim−1

#we compute a l l po lynomia l s up to degree r∗d
po l y c o e f f={}
poly={}
for n in range (0 ,2∗d+1): #runs through S∗∗2n

q=q0
po l y c o e f f . update ({ (n , 0 ) : q})
for l in range (0 , n ) :

q=q . subs ({h : ( h+2)})∗pm−q∗pm. subs ({h : h−2∗(n− l ) } )
q=q . s imp l i f y ( )
p o l y c o e f f . update ({ (n , l ) : q })

poly . update ({ n : q })

56



C References

References on Nahms Equations
[AS14] F. Kirwan A. Dancer and A. Swann. “Twistor Spaces for Hyperkähler Implosions”. In: Journal

of Differential Geometry (2014).
[Bie97] R. Bielawksi. “Monopoles and the Gibbons-Manton Metric”. In: Communications in Mathematical

Physics (1997).
[Biq96] O. Biquard. “Sur les équations de Nahm et la Structure de Poisson des Algèbres de Lie semi-

simples Complexes”. In: Mathematische Annalen (1996).
[Don84] S. Donaldson. “Nahm’s equations and the classification of monopoles”. In: Communications in

Mathematical Physics (1984).
[ES86] A. Kaplan E. Cattani and W. Schmid. “Degeneration of Hodge Structures”. In: Annals of Math-

ematics (1986).
[Kov96] A. Kovalev. “Nahm’s Equations and Complex Adjoint Orbits”. In: The Quarterly Journal of

Mathematics (1996).
[Kro04] P. Kronheimer. “A hyperkahler structure on the cotangent bundle of a complex Lie group”. In:

arXiv:math/0409253 (2004).
[Kro90a] P. Kronheimer. “A Hyper-Kählerian Structure on Coadjoint Orbits of a Semisimple Complex

Group”. In: Journal of the London Mathematical Society (1990).
[Kro90b] P. Kronheimer. “Instantons and the geometry of the nilpotent variety”. In: Journal of Differential

Geometry (1990).
[Lan72] S. Lang. Differential Manifolds. Springer-Verlag, 1972.
[RR18] N. Romão R. Bielawski and M. Röser. “The Nahm–Schmid Equations and Hypersymplectic Ge-

ometry”. In: The Quarterly Journal of Mathematics (2018).
[Swa99] A. Swann. “Homogeneous twistor spaces and nilpotent orbits”. In:Mathematische Annalen (1999).

References on the Baker-Campell-Hausdorff Formula
[Mat16] M. Matone. “Closed form of the Baker–Campbell–Hausdorff formula for the generators of semisim-

ple complex Lie algebras”. In: The European Physical Journal C (2016).
[VV15] A. Van–Brunt and M. Visser. “Special-case closed form of the Baker–Campbell–Hausdorff for-

mula”. In: The European Physical Journal A (2015).

References on the Representation Theory
[AlS56] W. Al-Salam. “On the Product of Two Legendre Polynomials”. In: Mathematica Scandinavica

(1956).
[BF80] F. Bayen and C. Fronsdal. “Quantization on the Sphere”. In: Journal of Mathematical Physics

(1980).
[Bru18] P. Bruno.Maxwell-Sylvester Multipoles and the Geometric Theory of Irreducible Tensor Operators

of Quantum Spin Systems. 2018.
[Hum97] J. Humphreys. Introduction to Lie Algebras and Representation Theory. 7th ed. Springer-Verlag,

1997.
[MD17] B. Desmorat M. Olive B. Kolev and R. Desmorat. “Harmonic Factorization and Reconstruction

of the Elasticity Tensor”. In: Journal of Elasticity (2017).
[Olv99] P. Olver. Classical Invariant Theory. Camebridge University Press, 1999.

57



References on the Generalised Seiberg-Witten Equations
[Pid04] V. Pidstrygach. “Hyperkähler Manifolds and Seiberg-Witten Equations”. In: Proceedings of the

Steklov Institute fo Mathematics (2004).
[Sch10] H. Schumacher. “Generalized Seiberg–Witten equations: Swann bundles and L∞-estimates”. diploma

thesis. Mathematisches Institut Göttingen, 2010.

58


	Introduction
	Nahms Equations from Different Perspectives
	Unperturbed Nahms Equations as Gradientflow
	Perturbed Nahms Equations as Gradient Flow
	Grassmannian Perspective
	Extended Formulations
	Extended Unperturbed Solutions as Anti-Self-Dual Instantons
	Extended Perturbed Solutions as Anti-Self-Dual Instantons
	Complex Formulation of the Extended Non-Perturbed Equations
	Model Solutions

	Conventions and Notations
	In `39`42`"613A``45`47`"603Asu(2) and `39`42`"613A``45`47`"603Asl2 C
	Hyperkähler Structure on Hn

	Nilpotent Orbits as Moduli Spaces of Nahms Equations
	On the Real Line R
	On the Negative Half-Line R0
	The Complex Formulation on R0
	The Moduli Spaces in the Complex Picture
	The Real Equation
	Identification as Coadjoint Orbits


	Nahms Equations as Flow Equation of the Bilinear Form
	Recurrence Relation for Nilpotent Orbits
	The Moyal Product as Computational Tool
	The Recurrence Relation for `39`42`"613A``45`47`"603AEnd(Sd)
	About the -Coefficients

	Algebraic Backround in the Universal Enveloping Algebra
	The Universal Enveloping Algebra and `39`42`"613A``45`47`"603Asl2 C-Representation Theory
	Verma Modules
	Classification of Irreducible Representations
	The Decomposition of U into Irreducible Submoduls

	Formulation of the Moyal Product in U
	Composition Formula for `39`42`"613A``45`47`"603AEndSd in U
	Relation between the -Coefficients and the Legendre Polynomials

	Outlook
	Gauge Transformations and the Baker–Campbell–Hausdorff formula
	Python-Codes
	References

