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Abstract

Biological cells need to structure their interior in space and time. One way this is done are

containers enclosed by a membrane as a physical barrier that can control which molecules en-

ter and leave the container. Another, recently discovered, class are biomolecular condensates.

These are liquid like droplets that form via liquid liquid phase separation. Although they have

no membrane, they do have distinctly different composition from the surrounding. Weak at-

tractive interactions between the molecules in the condensate prevent them from diffusing out

of the condensate. To control the formation and dissolution of these condensates, the cell can

change the attractive interaction between molecules via chemical reactions.

In this thesis, we develop a theory of phase separation with chemical reactions based on

thermodynamic arguments. The chemical reactions switch between two states of a protein, one

state phase separates and forms droplets, while the other state is soluble in the solvent. The

aim of this thesis was to analyze how such simple reactions can control the phase separation

process, for example, the formation, dissolution, and size control of droplets.

In the first part of the thesis, we investigate equilibrium reactions. In this case, the sys-

tem relaxes to thermodynamic equilibrium. Unlike two component fluids, fluids consisting of

multiple components with equilibrium reactions can form droplets, depending on the system

parameters. We find that equilibrium reactions introduce a new parameter to control phase

separation, the internal energy difference between the two protein states. This internal energy

difference can control howmuch protein is in the phase separating state and thereby, if droplets

form or not. We show that the droplet size is very sensitive to changes in the internal energy

difference. However, the parameter range for control of droplets is narrow. In addition, the

internal energy difference is an equilibrium property of the proteins, thus, it can not be changed

fast or in a specific manner.

In the second part of the thesis, we extend our model to non-equilibrium reactions. In this

case, the reaction is coupled to fuel molecules, which introduce external energy into the system

and drive the reaction away from thermodynamic equilibrium. The external driving strength is

a new parameter, which describes how strong the system is driven from equilibrium. We find,

that driven reactions alone can be mapped onto an effective equilibrium system with rescaled

internal energy difference that depends on the driving strength. This is different if both reac-

tion pathways, the driven and equilibrium reaction, are present. In this case, the total amount

of phase separating proteins depends on the reaction kinetics, i.e. on the relative reaction rates

of the two pathways. We show that this allows precise, fast and specific control over droplet

formation and dissolution. The reason is, that the kinetic parameters can be tuned by enzymes

that act only on specific reactions. Finally, motivated by experimental observations, we inves-

tigate what happens if enzymes that catalyze the driven reaction are enriched in the droplet

phase. We find that the enzymatic enrichment can control individual droplet size and stabi-

lize multiple droplets of the same size against their thermodynamic tendency to form one big

droplet.

We show that size control of droplets by reactions is based on three specific features of



the reactions. (i) A protein exists in a soluble and a phase separating state and the transition

between the two states can be described as a chemical reaction. (ii) There are at least two

reaction pathways for the transition and at least one has to be driven out of equilibrium. (iii)The

reaction rates in droplet and solvent phase need to be different, for example, due to enrichment

of enzymes in the droplet.

More generally, our results highlight that chemical reactions in phase separating environ-

ments can not be described by standard mass action kinetics. The reason is that phase sepa-

rating systems are inherently non-ideal and mass action kinetics are only valid in ideal, dilute

solutions. Instead, a thermodynamic treatment of reactions is necessary, which takes into ac-

count that droplets formed by phase separation are chemically different from the solvent phase

due to enthalpic interactions.
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1: The term organelle describes a

specific subunit of the cell and is

used in analogy to organ, i.e. an or-

ganelle is to a cell what an organ is

to the body.

Introduction 1

1.1 Biomolecular condensates 2

Liquid like properties . . 3

Condensate function . . . 4

Modelling condensates . . 6

1.2 Chemical Reactions control

droplets . . . . . . . . . . . . 7

Enrichment inhibition . 10

Localization induction . 10

Other control mecha-

nisms . . . . . . . . . . . . . 12

1.3 Reaction Diffusion Sys-

tems . . . . . . . . . . . . . . 12

1.4 Outline of thesis . . . . . 12

Biological cells are complex objects consisting of various

biomolecules like proteins, RNA, and lipids, but also ions like

potassium or calcium and metabolites, for example, alcohols.

The cell cytosol mass is ∼ 70% water, so the cytosol is best

described as a crowded, multicomponent fluid mixture[1]. A

schematic example of a minimal cell, developed on the basis of

Mycoplasma mycoides cells[2], is shown in fig. 1.1. The figure

shows the crowded environment in the cytosol and the large vari-

ety of different biomolecules. For simplicity, only largemolecules

are shown and small molecules like water and salt ions are omit-

ted. But the cell is not just a well mixed container with a ho-

mogeneous fluid. Instead, to fulfill its function, the cell has

to organize its interior in space and time. Spatial structure is

achieved in cells via compartments, that control the local con-

centration of particles[3]. The best known way to do this is via

membranes that enclose an area in the cell, so called membrane-

bound organelles1 , for example, the nucleus or mitochondria.

The membrane forms a physical barrier that controls which par-

ticles can enter the organelle and thereby the composition in-

side the membrane enclosed area. But recently another class,

called membraneless organelles or biomolecular condensates,

has been discovered[4]. These condensates form compartments

without membranes but have a different composition than the

surroundings[5]. Oftentimes, such condensates form viaLiquid-

Liquid Phase Separation (LLPS), a phase transition driven by

weak enthalpic interactions between proteins[6].

LLPS is an equilibrium phenomenon that does not require

external energy input. But biological cells are out of equilib-

rium systems and use external energy to drive processes inside

cells. The energy is supplied in the form of chemical energy

via fuel molecules. This chemical energy is used to power virtu-

ally all processes in cells, for example, the movement of molecu-

lar motors, biochemical reactions, or the pumping of molecules

throughmembranes. It is natural to assume that non-equilibrium

processes affect biomolecular condensates as well, but how is

not well understood yet[7].

Biomolecular condensates are an example of biological cells

using phase transitions to perform functions, which makes them

an interesting object of study in biophysics. The aim of this the-

sis is to elucidate how biochemical reactions can control the for-

mation, size, and number of biomolecular condensates in cells
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Figure 1.1: Cells are complex

assemblies of thousands of

molecules that have to be ar-

ranged in space. The schematic

shows a cross-section through a

cell during division. The schematic

is based on a minimal cell and

depicts the entire known proteome

as well as RNA (magenta) and

DNA (yellow). Illustration by

David S. Goodsell, RCSB Protein

Data Bank. Reprinted from [8]

under the Creative Commons

CC-BY-4.0 license.

2: Although the idea of protein

phase separation in cells is older,

see for example Refs.[9, 10] in the

context of the origin of life. In ad-

dition, phase separation in mem-

branes has long been investigated in

the context of lipid rafts[11]

3: Condensates appear not only in

the cytosol, but also in the nucleo-

plasm[12] and in membranes[13].

4: Especially for the very small

condensates. A condensate with

R ∼ 10nm would contain on the

order of 10 proteins, is this already

a condensate or rather a cluster?

When do you start calling it a con-

densate? In a way, this comes down

to the Sorites paradox or how many

grains of sand make a heap? See

Ref.[26] as well for a discussion on

what is a biomolecular condensate.

based on thermodynamic arguments.

1.1 Biomolecular condensates

As mentioned, biomolecular condensates are organelles without

a membrane, that form inside cells. After the original discovery2

in Ref.[4], many different types of condensates have been found

inside cells3 ; see fig. 1.2 for a collection of examples. But con-

densates do not only appear in different places, they come in dif-

ferent sizes as well. From small condensates inside the nucleus

with radii of R ∼ 10 − 100 nm[12, 14], to large condensate up

to R ∼ 400µm in Xenopus laevis oocytes[15].

There are several experimental indications that many of

these biomolecular condensates form via liquid-liquid phase sep-

aration[16] and can thus be described as complex liquids[17].

For example, condensates merge upon contact[4], i.e. coalesce,

dissolve upon a certain temperature[16], and form only above a

critical concentration of specific proteins[18]. The idea is, that

weak, multivalent, attractive interactions between biomolecules

drive the formation of condensates, very similar to phase sepa-

ration in polymer melts[19]. Oftentimes these interaction sites

lie in Intrinsicly Disordered Regions (IDRs) of the proteins[5,

20]. In addition, for long molecules, for example certain RNA

andDNA, very weak attractive interactions are enough to induce

phase separation because the entropy ofmixing is small[21–23].

While there has been criticism of the concept of biomolec-

ular condensated forming via LLPS[24, 25]4 it is mostly agreed

in the literature[17] that liquid-liquid phase separation plays an

important role in the formation of at least some biomolecular

condensates. Therefore, we next discuss the liquid properties of

condensates in cells.
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Figure 1.2: Biomolecular condensates appear everywhere in cells. The schematic of a cell is shown in the center and

organelles that contain biomolecular condensates are highlighted. Several experimental examples of biomolecular con-

densates are shown around the schematic with lines indicating where they appear in cells. The white text in the experi-

mental pictures indicates the names of the condensates, while the black text indicates either properties associated with

LLPS, for example, ‘Liquid dynamics’ or the function of the condensate, for example, ‘Reaction crucible’. Reprinted

from Bracha, et a.,”Probing and engineering liquid-phase organelles”, Nature Biotechnology, Vol.37(2019)[27] with

permission from the publisher under license number 5271401142499.

5: This is more complex for mul-

ticomponent condensates because

the threshold depends on the con-

centration of all components that

make up the condensate in princi-

ple[18, 28].

Liquid like properties

Many condensates behave in a way that is consistent with LLPS

as a mechanism of condensate formation[17]. In Ref.[7] the au-

thors state six properties that indicate LLPS behavior: (i)Due to

the surface tension between phases the condensates are usually

spherical objects; see fig. 1.2. (ii) They show coalescence, i.e.

they fuse upon contact; see fig. 1.2 lower right panel. (iii) They

exchange particles with the surrounding via diffusion. (iv) They

showwetting ormultiphase behaviors; see fig. 1.2 top right panel.

(v)Although behaving like a liquid, the condensate does not mix

with the surroundings but keeps a distinctly different composi-

tion from its surrounding. (vi) Condensates need a certain con-

centration threshold of specific proteins to form5 . Because of

their round shape and small size, we will use the term Droplet

for biomolecular condensates as well throughout this thesis.

But biomolecular condensates have different fluid proper-

ties than everyday examples of LLPS like oil in water emulsions;

see fig. 1.3. The condensates investigated in Ref.[29] have sig-

nificantly lower surface tension, but higher viscosity than water
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Figure 1.3: Biomolecular conden-

sates show higher viscosity and

lower surface tension than oil in

water. The viscosity and surface

tension of different biomolecular

condensates in an aqueous buffer

(green area, top left) and common

oils in water (orange area, bot-

tom right) as a comparison are

shown. The green arrows indicate

time dependent fluid properties due

to aging. Reprinted from Wang,

et al.[29] under the Creative Com-

mons CC-BY-4.0 license.

6: Because the diffusivity D
scales inversely with the viscosity

D ∝ η−1, according to the

Stokes-Einstein relation.

7: Ostwald ripening is a process

that minimizes the surface area in

an emulsion of droplets. The sur-

face energy scales with the surface

tension and thus, the driving force

to minimize surface area is smaller

for lower surface tension.

8: Aging is a term used in the de-

scription of glasses and complex

liquids to indicate that the material

properties are not constant, but time

dependent.

9: Some of these examples are

taken from Ref.[34].

oil emulsions; see fig. 1.3. As a result, the diffusive dynamics

in condensates are slow compared to the everyday examples6

. Low surface tension indicates that particle exchange with the

surrounding is fast since there is less resistance to enter or leave

the droplet. At the same time, processes like Ostwald ripening

are slow7 . In addition, biomolecular condensates are not sim-

ple liquids but are better described as viscoelastic materials[30,

31]. For example, in vitro FUS condensates in Ref.[31] could be

described well by a Maxwell model with time dependent viscos-

ity and elasticity, which implies that condensates show aging as

well8 . Furthermore, Ref.[32] found, in FUS condensates as well,

that condensates can undergo a liquid to solid transition that has

been linked to disease[33]. Taken together, biomolecular con-

densates are not just simple liquids but show complex material

properties that can depend on time as well. The last example in-

dicates that the material properties can influence the function of

condensates as well. Therefore, we discuss the possible function

of biomolecular condensates in cells next.

Condensate function

Although there has been a lot of work already, see for exam-

ple Ref.[34], the functions of biomolecular condensates are still

not well understood. While the function will depend on the

context, it is useful to investigate what kind of functions are

possible in theory. Certain properties of condensates that fol-

low directly from liquid-liquid phase separation are potentially

useful to cells9 : (i) The formation and dissolution of conden-

sates are very sensitive to external parameters around the crit-

ical point[35]. This makes them a perfect tool to sense differ-

ences in environmental conditions, which happens, for exam-

ple, in stress granules[36, 37] or receptor clusters[38, 39]; see

fig. 1.4 left panel. (ii) The high local concentration of certain

molecules can speed up reactions and suppress certain reaction
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Figure 1.4: Biomolecular con-

densates can fulfill a variety of

functions in cells. The figure de-

picts an incomplete list of con-

densate functions related to the

properties of liquid-liquid phase

separation. For more details see

the text in Sec. 1.1. Reprinted

from Alberti, et al., ”Consider-

ations and Challenges in Study-

ing Liquid-Liquid Phase Separation

and Biomolecular Condensates”,

Cell, Vol.176(2019)[34] with per-

mission from the publisher under li-

cense number 5271400623500.

10: Or just extremely slow.

11: This is more complicated in

multicomponent systems[18] and it

has been argued in Ref.[28], that

this mechanism is only possible for

certain interaction regimes.

pathways, by keeping reactants in different phases[40, 41]; see

fig. 1.4 upper left panel. In addition, the high concentration of

molecules can enable processes that would be impossible10 in

a well mixed cytosol. For example, microtubule nucleation can

be induced in condensates by concentrating tubulin[42, 43]; see

fig. 1.4 top panel. Thereby, microtubules only nucleate above a

threshold concentration of tubulin, which is exceeded in conden-

sates, but not in the cytosol. Furthermore, condensates can keep

molecules together that act cooperatively to fulfill functions. For

example, in the transcription machinery condensates combine

proteins that fulfill different functions in transcription[44, 45].

(iii) The wetting behavior can be used to control condensate nu-

cleation at specific locations, for example in microtubules[43].

(iv) The two phases formed by LLPS have fixed compositions.

Thus, changing the total amount of protein in the two phase re-

gion will change the condensate size, but the composition in the

condensate and surrounding phase remains the same. It has been

suggested in Ref.[46] that condensates can buffer the protein ex-

pression noise in the cytosol11 ; see fig. 1.4 upper right panel.

(v)Another putative function of condensates is force generation;

see fig. 1.4 lower right panel. Because of their surface tension,

but also elastic properties, condensates can exert forces, for ex-

ample on the cytoskeleton[47]. (vi) In multiphase systems, con-

densates can be used to ‘sort’ proteins. Thereby, molecules par-

titioning in different phases according to their affinity[48, 49].
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Finally, recently it has been suggested, that a hierarchy of inter-

actions that act on different time scales can be used in conden-

sates to form a biological clock[50].

While some functions are well understood, for example, the

nucleation of microtubules[43] and the formation of stress gran-

ules as a response to external stimuli[36], others are only pu-

tative functions and have not been shown experimentally, for

example, the use of condensates as clocks. As a result, there

are still a lot of open questions about why condensates form and

what their role is in detail. Modeling can help understand what

kind of behavior is physically possible and so we will give a

short overview of physical models used to understand conden-

sates in cells next.

Modelling condensates

Standard tools from statistical physics and polymer physics have

been applied to describe biomolecular condensates[6]. And al-

though those theories fall short in describing the complexity of

cells, they have been remarkably successful in describing the

phase separation of condensates, for example, of Cajal bodies

and stress granules[18] as well as P granules[16]. Of course,

there are important differences between standard phase separa-

tion and condensates in cells. First, most phase separation stud-

ies deal with few components, while the cell is made up of thou-

sands of different molecules. Second, the total number of a

certain type of biomolecule is rather low, so thermal noise and

small number effects are important. Third, the cell is a crowded

environment and contains multiple sub-structures, for example,

the cytoskeleton and membrane bound organelles, that influence

the diffusive dynamics, and condensates can interact with those

sub-structures. Finally, cells are out of equilibrium systems[51].

How active processes, for example driven reactions[40] or the in-

teraction with the cytoskeleton[43], influence phase separation

in cells is ongoing research[7, 52] and an important part of this

thesis.

The models commonly used to describe biomolecular con-

densates can be roughly divided into two classes, field theoret-

ical models (like this thesis) and particle based models. Parti-

cle based models contain more molecular details, for example,

they can investigate the influence of protein sequences[53, 54].

They have been used to investigate which interactions are impor-

tant in condensate formation[55, 56] and predict how amino acid

distribution and protein length can influence condensate forma-

tion[55, 57]. Furthermore, molecular dynamics studies can give

insight into the material properties of condensates, for example,

the plasticity[58] and the formation of networks in the conden-
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sate[59]. Thus, particle based theories are particularly useful to

study the molecular details, for example, which specific proteins

phase separate and how they interact with other biomolecules.

Unfortunately, particle based simulations are limited to small

length and time scales. For example, in Ref.[59] up to 6000 par-

ticles, which corresponds to simulation volumes of ∼ 103 nm3,

are simulated for total simulation times of 0.5µs.
The field theoretical approach contains fewer molecular de-

tails but can be used to study longer length and time scales, for

example coarsening behavior[60] or the effect of large scale con-

centration gradients[61]. For example, in Refs.[62, 63] equilib-

rium field theorywas used to show that mixtures withmany com-

ponents and random interactions are likely to undergo phase sep-

aration. In addition, they showed how phase separation is linked

to the average and standard deviation of the random interactions.

Furthermore, recent studies investigate how tuned interactions,

for example via evolution, influence the formation of multiple

phases[49, 64]. Along these lines, in Refs.[65, 66] it was shown

how the interaction of multiple phases can be described in terms

of their relative surface tensions, which can explain wetting as

well as multiphase condensates[34]; see fig. 1.4 top right panel.

Furthermore, the viscoelastic properties of condensates can be

included in field theories as well, for example, ref.[52] inves-

tigates condensates that form and grow in an elastic surround-

ing. Another application for field theories are reaction diffusion

models. Refs.[67, 68] use a non-equilibrium reaction diffusion

model to investigate the formation of centrioles around the cen-

trosome[42]. In Ref.[69], a reaction diffusion model is used to

investigate how transcriptional condensates interact with RNA.

And refs.[70, 71] show how first-order reactions can control in-

dividual droplet size. Field theories are particularly useful to

understand emerging behavior and how different processes in-

teract with each other, for example how reactions and diffusion

together can lead to pattern formation[72].

Since we want to investigate the interplay of phase separa-

tion and reaction on a thermodynamic basis, we will use field

theoretical reaction diffusion models during this thesis as well.

To motivate this further, we will next discuss experimental in-

dications that biochemical reactions are important regulators of

condensates and two different hypotheses from Ref.[73] on how

size control of condensates could be achieved in cells.

1.2 Chemical Reactions control droplets

This section is based on Soeding, et. al. ‘Mechanisms for Ac-

tive Regulation of Biomolecular Condensates’, Trends in Cell

Biology (2020)[73], but rewritten. Our contribution to this pa-
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12: We discuss the example of a

phase separating protein. But it is

similar for RNA or DNA or, in the

case of associating phase separation

of multiple molecules, a mixture of

RNA, DNA, and proteins.

13: Some biomolecular con-

densates form via attractive

electrostatic interactions as

well[82], so some biomolecular

condensates fall into the class of

complex coacervates.

per was to develop the theoretical models and the mechanisms

for active regulation of condensates.

Like many other processes in cells, droplet formation and

dissolution are controlled by biochemical reactions. An impor-

tant control parameter for condensate formation is the total amount

of phase separating protein12 because condensates only form

above a certain threshold concentration[7]. The total amount

of protein can change either due to production or degradation

of proteins, but also by modifying already existing proteins via

Post-TranslationalModifications (PTMs)[74, 75]. These PTMs,

for example, phosphorylations or methylations, add functional

groups to already existing proteins and thereby change the in-

teraction with other molecules, for example, by changing the

charge[76]. Oftentimes, these modifications lie in disordered

regions[77], which are important for condensate formation[55].

Thus, by controlling the PTMs, the cell can control if a protein

forms droplets or not.

The PTMs are biochemical reactions that are oftentimes cat-

alyzed by enzymes, for example, kinases catalyze phosphory-

lation reactions[78]. Thus, enzyme activity can control PTMs

and thereby condensate formation or dissolution[73]. In con-

trast to other control mechanisms like temperature or protein

production, this mechanism is fast because enzymatic reactions

are much faster than protein production and specific because the

enzyme acts on a specific protein and does not influence other

cellular processes the way temperature does.

Signs of this mechanism controlling condensate formation

and dissolution are found in several experiments; see Ref.[73]

and references therein. For example, in Ref.[79] the authors

show that theDEAD-boxATPase family regulates RNA conden-

sates both in prokaryotes and eukaryotes. Thereby, the ATPase

can exist in two states, an ATP-bound state, and an ATP free

state. In the ATP-bound state, the ATPase promotes phase sep-

aration of RNA condensates. But, upon ATP hydrolysis of the

ATPase, the condensates dissolve. Another example is shown in

fig. 1.5 and taken from Ref.[80]. In this study, the protein CTD

forms droplets in vitro; green dots in the lower panels of fig. 1.5.

Adding the kinase CDK7, which phosphorylates the CDK pro-

tein, dissolves the droplets over time; see time course from left

to right in fig. 1.5. This shows that slight changes in the protein

properties can dissolve droplets.

Besides condensates in cells, controlling phase separation

with chemical reactions is interesting in the context of complex

coacervates as well. Complex coacervates are phase separated

compartments that form because of electrostatic interactions be-

tween oppositely charged molecules[81]13 . Recent studies use

complex coacervation of biomolecules in vitro to study how chem-
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Figure 1.5: Enzyme activity in droplets can dissolve droplets over time. The kinase CDK7 phosphorylates the

CTD protein and thereby dissolves CTD droplets (green in the lower panels) over time in vitro. Reprinted from Boehn-

ing, et a., ”RNA polymerase II clustering through carboxy-terminal domain phase separation”, Nature Structural and

Molecular Biology, Vol.25(2018)[80] with permission from the publisher under license number 5271391421873.

14: In autocatalytic reactions, the

reactant catalyzes the reaction it-

self, for example, in the reaction

A + A 
 A + B, A catalyzes its

own conversion to B.

ical reactions get influenced by the presence of coacervates[83,

84] and vice versa. For example, Ref.[85] shows how actively

driven reactions can be used to increase the growth rate of coac-

ervates by autocatalytic reactions14 .

In some biological contexts controlling the formation and

dissolution of condensates is not enough. It can be necessary to

control where droplets form, how big they are, and how many

coexist. For example, multiple transcription condensates can be

necessary to activate multiple genes[14, 86] and they have to

form at the right DNA sites[12]. Size control of condensates

formed by liquid-liquid phase separation is tricky because the

tendency to minimize surface energy will lead to coarsening of

condensates via Ostwald ripening[87] and coalescence[88] until

only one large condensate remains. Ostwald ripening is driven

by diffusive fluxes between droplets, thus, to suppress ripening,

those diffusive fluxes have to be either prevented or compen-

sated by other fluxes to achieve size control. In Ref.[73], we

proposed two mechanisms for size control of condensates via

chemical reactions, which we briefly introduce next. The main

idea for both mechanisms is to introduce reactions that limit

droplet growth and thus compensate the diffusive fluxes that con-

trol droplets growth dynamics.
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15: Because the kinase is enriched

in the droplet and destroys droplet

material, the enrichment inhibits

the growth, hence the name.

16: Because the localized enzyme

produces the droplet material,

droplet formation gets induced

locally, hence the name.

Enrichment inhibition

We call the first mechanism the enrichment inhibitionmodel and

it is based on four traits [73]: (i) A protein that is essential for

droplet formation gets phosphorylated by a kinase and the pro-

teins do not phase separate in the phosphorylated form. (ii) In-

creasing the kinase activity dissolves the droplet. (iii) The ki-

nase is enriched in the droplet together with its substrate15 . (iv)

The concentration of the phase separating protein is above the

condensation threshold in the surrounding, so the mixture is su-

persaturated and droplets can form spontaneously.

The mechanism of size control then follows from a simple

scaling argument: The diffusive influx J into a droplet in a su-

persaturated environment is proportional to the droplet radius

J ∝ R. Assuming that the droplet phase is homogeneous and

the phosphorylation rate is k, the total phosphorylation rate S is

proportional to the droplet volume S ∝ −kR3. As a result, the

droplet gains material proportional to R but loses material pro-

portional to −kR3 and the droplet growth stops at a specific ra-

diusR∗, where J = S. The scaling explains as well that droplets
do not form at all if the rate k, i.e. the kinase activity, becomes

too large. This reasoning does not explain why the kinase has to

enrich in the droplet phase to achieve size control though. We

will show in this thesis that the enrichment of the kinase in the

droplet phase is essential for size control.

Ref.[73] collects several examples in cells which fulfill all

or most of the four traits introduced above. Here, we repeat only

one example, P granules inCaenorhabditis elegans embryos dis-

cussed in Ref.[89]. (i) TheMEG protein, which has intrinsically

disordered domains, gets phosphorylated by the MBK-2 kinase

and dephosphorylated by the PPTR-1 phophatase. (ii) P gran-

ules can be dissolved by MBK-2 activity and formation can be

induced by PPTR-1. (iii)MBK-2 is enriched in P granules. (iv)

P granules form in vivo. Similar evidence was found for stress

granules[36], synaptic vesicles[90] and others.

Localization induction

The second controlmechanism is the localization inductionmodel

and it has three characteristic properties: (i)Akinase is localized

at a specific position in the cell, for example by binding to amem-

brane. (ii) The localized kinase phosphorylates specific proteins

important for droplet formation, such that the phosphorylated

protein promotes condensate formation16 . (iii) The protein con-

centration is below the condensation threshold in the surround-

ing medium, so no droplets form spontaneously.

The general argument is similar to the enrichment inhibi-

tion model. But because the fluid is subsaturated, droplet ma-
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terial has to be produced locally, to increase the local concen-

tration above the condensation threshold. In this case, the area

that produces droplet material is fixed, and thus the production

of droplet materialQ is independent of droplet size. At the same

time, the subsaturation far away from the droplet leads to a dif-

fusive outflux proportional to the droplet radius J ∝ −R. The
different scalings suggest that a stable droplet size R∗ exists if

the protein production Q is strong enough to form droplets, to

begin with. In this case, increasing the reaction rate should in-

crease droplet size instead of decreasing it as in the enrichment

inhibition model, so the reaction has opposite effects in the two

mechanisms.

Because thismechanism allows precise control about where

droplets form, it is not surprising that the evidence found for this

mechanism in Ref.[73] comes from examples that require spa-

tial control, for example, transcription and transmembrane sig-

naling. An example of a condensate that might work according

to this mechanism is condensates involved in DNA repair that

form around DNA double strand breaks[91]. (i) A PARP-1 en-

zyme localizes around damaged DNA sites. (ii) PARP-1 attracts

other PAR proteins as well as FUS, a protein known to promote

phase separation[92] and forms condensates around the DNA

damage. (iii) These droplets do not form at any other place than

the DNA damage sites. Furthermore, reducing the degradation

of PAR proteins by removing PAR degrading enzymes enhances

the formation of these condensates[93].

The examples show that chemical reactions play an impor-

tant role in the formation, dissolution, and control of biomolec-

ular condensates in cells. While the scaling arguments above

give an intuition of how size control can be achieved, a thor-

ough theoretical analysis of phase separation and chemical reac-

tions is necessary to understand if the simple scaling holds. In

addition, theoretical investigations can help determine the min-

imal ingredients necessary to achieve size control and control

over condensate formation and dissolution. One other impor-

tant detail is that posttranslational modifications usually require

external energy input, for example, phosphorylation reactions

involve the hydrolysis of an ATP molecule. Therefore, the con-

trol mechanism of condensates via PTMs is an out of equilibrium

process. Therefore, for a full understanding, an equilibrium the-

ory is not sufficient, although phase separation is an equilibrium

phenomenon. Instead, a non-equilibrium description of the re-

actions will be necessary.
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17: The original reaction was an

Activator-Inhibitormodel, in which

one of the two species speeds up the

reaction rate (the activator), while

the second species reduces the reac-

tion rate (the inhibitor).

Other control mechanisms

Of course, chemical reactions are not the only way to control

phase separation in cells. In an in vitro system, polymer droplets

forming inside a hydrogel can be controlled by the elasticity of

the gel[94]. Similar effects could appear in cells, where the con-

densates interact with the cytoskeleton[47, 52].

Furthermore, the aging of condensates can reduce the con-

densate dynamics and thus arrest them at a certain size[95]. Also,

undergoing a liquid to solid transition can arrest droplet growth

and even prevent dissolution[32]. But this can have negative

health effects as well[34], suggesting that the fluid state is nec-

essary for cellular function.

1.3 Reaction Diffusion Systems

Above, we introduced enzymatically driven reactions as a con-

trol mechanism for biomolecular condensates formed by phase

separation. This falls into the general class of reaction diffusion

systems for pattern formation in biological systems[96, 97]. In

the classical form introduced by Alan Turing in Ref.[72], pat-

terns can emerge in a two species model, if the two species

diffusion coefficient is different and if the reactions are non-

linear17 . These reaction diffusion models have been success-

fully applied in biological systems, for example in describing

oscillations in minD-minE protein systems[98, 99] or morpho-

genesis[100, 101].

Liquid-liquid phase separation is an equilibrium phase tran-

sition, driven by interacting particles. Thus, it can be described

in the context of critical phenomena and phase transitions de-

scribed in Refs.[35, 102].

The combination of LLPS and driven chemical reactions

forms a new crossover between phase transitions and reaction

diffusion systems. Thereby, the reactions do not have to produce

the pattern, but only control the behavior of the phases that form

spontaneously via phase separation.

1.4 Outline of thesis

In this thesis, we investigate how chemical reactions can control

biomolecular condensates in cells. There are studies modeling

biomolecular condensates with chemical reactions, for example

stress granules[71, 103], centrosome[67, 68] and general frame-

works[60, 104]. But all of them use the mass action kinetics

framework, which assumes ideal, dilute solutions, which is not

valid for phase separating mixtures. Work that overcomes this
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problem appeared only recently[105, 106]. Therefore, in this

thesis, we develop a framework that combines phase separation

and chemical reactions based on thermodynamic arguments and

apply it to understand how chemical reactions can be used to

control condensate size and formation.

We discuss the theoretical basis of phase separation and

chemical reactions in Ch. 2. We first introduce the main quan-

tities to describe multi-component reactive fluids, the volume

fractions of all components, and their chemical potentials. Then,

we introduce the framework of linear non-equilibrium thermo-

dynamics to derive the dynamics of all species from thermody-

namic quantities. Finally, we discuss the thermodynamics of

binary and ternary phase separation.

In Ch. 3, we discuss the interplay of simple reactions and

phase separation in a ternary fluid mixture. We discuss how

chemical equilibrium is linked to phase separation and how it

influences droplet formation. Then, we apply our theory to the

RNA binding protein SAF-A and try to understand how RNA

binding of SAF-A influences its phase separation behavior.

Afterward, we extend the model to include active reactions

in Ch. 4. There, we discuss how external energy input can in-

fluence droplet formation and why fast and precise control of

droplet formation requires a reaction cycle. Furthermore, we

show how spatially inhomogeneous reaction rates can stabilize

individual droplets at a fixed size and lead to states with multiple

stable droplets. Finally, we discuss the results of this thesis in a

broader context and give an outlook of what might be interesting

further questions in Ch. 5
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This chapter introduces the formalism used in this thesis

to study reactive, liquid mixtures with interacting particles that

can phase separate. As discussed in Ch. 1 we use a mean-field

description, where the state of the system is described by the

local composition. We do not describe particles individually,

instead, the local composition is described by volume fractions

of all particle types and their evolution in time.

In the first step we introduce the thermodynamic basis of an

incompressible, isothermal fluid withN different particle types,

explain why we choose the volume fractions as the dynamical

variables, and how reactive and diffusive fluxes determine their

evolution in time. Then we show how these fluxes are linked

to thermodynamics via the framework of linear non-equilibrium

thermodynamics[107]. Afterward, we introduce the regular so-

lution theory, which defines the free energy density f that is used
throughout this thesis and explain how liquid-liquid phase sepa-

ration is linked to f in a binary fluid. In the last step, we intro-

duce a ternary free energy density and discuss phase separation

for two specific choices of interactions in the ternary system.

2.1 Multicomponent fluid mixtures

We consider a fluid composed of N different species, where Ni

is the particle number of species i = 1, ..., N . Since we build our

theory on thermodynamic arguments, we have to specify how

the system interacts with its surrounding. The ensembles that

match cell conditions the closest are the canonical (NV T ) en-
semble and the isothermal-isobaric (NpT ) ensemble. In both

cases, the temperature T is controlled by a heat bath, therefore,

T is constant, but the total energy of the ensemble can change

due to heat exchange with the surrounding. In addition, in both

cases, no particles can enter or leave the system, so the system

is closed. But in the NV T -ensemble the volume Vsys of the

system is fixed and the equilibrium pressure follows from the

derivative of the state function with respect to Vsys, while it is the

other way around in a NpT -ensemble, where constant pressure

is applied. As biological cells oftentimes adjust their volume,

while the pressure inside remains (mostly) constant, the NpT -
ensemble seems the better choice1 . We consider incompressible

fluids only, so pressure differences equilibrate fast compared to

diffusion and reaction and no center of mass velocity is present.
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2: We use that F,Ni, and Vsys
are extensive quantities and thus

first order homogeneous functions

in Vsys, so V
−1

sys F (Ni, Vsys, T ) =

f
(

Ni

Vsys
,
Vsys
Vsys

, T
)

=

f
(

φi

vi
, 1, T

)
= f(Φ, T ), where F

indicates total free energies and f
free energy densities.

3: We assume fast thermal conduc-

tivity so T (r, t) = T is constant in

space and time and set by the ther-

mal bath and thus drop the T depen-

dence.

In addition, we are not interested in the effect of cell volume

change in this study. The only dynamical processes we consider

are diffusive dynamics that conserve the local density and reac-

tions that conserve volume. In this case, the two ensembles are

equivalent and we choose the notation of the canonical ensem-

ble where the (Helmholtz) free energy F (Ni, V, T ) is the state
function.

In summary, we assume systems with constant volume Vsys
and temperature T . In addition, no particles are exchanged with
the surrounding, but particle numbers Ni of each species i can
still change due to chemical reactions. We neglect center of

mass flows and assume the fluid to be incompressible with a

mass density ρ0.
For a homogeneous mixture we introduce the species spe-

cific particle density ci = Ni

Vsys
, which is an intensive quantity

and is thus independent of system size. Using ci, we get the

mass density ρi =Mici, using the molecular massMi (the mass

per i particle) and the volume fraction φi = vici using the

molecular volume vi (the volume per i particle). In incompress-

ible systems vi is a constant and for simplicity we assume the

molecular mass density mi = Mi/vi = m0 to be constant for

all species. In this case volume fraction φi and mass density

ρi are connected via ρi = m0φi. If all species have the same

molecular volume vi as well, volume fraction, particle density

and mass density are all connected via constant prefectors and

we can use them interchangeably. But we will see later that dif-

ferent molecular volumes can have a big effect in polymer sys-

tems[109] and thus allow the molecular volumes to be different

for now. In incompressible systems, it is convenient to describe

the system in terms of volume fractions, because they always

sum up to 1,
∑

i φi = 1, which we will use in the following.

Furthermore, we introduce an intensive free energy density2

f(Φ, T ) = F (Ni, Vsys, T )/Vsys, where Φ = (φ1, ..., φN)
T is

the volume fraction vector. In this form f(Φ, T ) is an intensive
quantity which depends on intensive quantities only and we can

choose Vsys arbitrarily.

From this description it is conceptually easy to go to an in-

homogeneous mixture. In this case the volume fraction of each

species φi(r, t) becomes a field that depends on space r and

time t, while at each point in space
∑

i φi(r, t) = 1 has to be

fulfilled due to incompressibility and constant mass density. Ac-

cordingly, the free energy density f(Φ(r, t)) depends on space

and time as well3 which implies that the total free energy of the

system is given by

F =

∫
Vsys

f(Φ,∇Φ) dV. (2.1)
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4: We neglect center of mass flows

for simplicity, but they can be in-

cluded in the particle fluxes ji as
well.

5: The factor vi/v shows that v can
in fact not be choosen arbitrarily,

but has to be large compared to

molecular volumes vi, else quanti-

ties like volume fraction or concen-

tration are not well defined.

Here, we assume that the free energy density can not only depend

on the local composition but also on composition gradients∇Φ,
where ∇ is the gradient operator.

Going from system-wide quantities to local fields that vary

in space and time is based on the local equilibrium assumption[107],

which assumes that thermodynamic quantities like a free energy

density or entropy density can be defined locally. This assump-

tion becomes problematic for small system sizes or if long-range

interactions are present[110]. We assume short-range interac-

tions only and therefore include non-local terms f ∝ ∇Φ where

∇ is the gradient operator. Because copy number of proteins

in cells is usually low with total protein densities of roughly

106 Proteins/µm3 while cell volume can range from 1−106 µm3[1],

finite size effect can be important and the mean field and lo-

cal equilibrium approximation would break down. Nevertheless,

mean-field models are very successful in describing phase sepa-

ration phenomena in cells[6, 16, 111] and we take the empirical

success as a motivation to use them in our study. Furthermore,

in active systems, the local equilibrium assumption can be vio-

lated by active processes, for example in active fluctuations that

break detailed balance[112]. But it was shown, that the heat

produced by active reactions does not violate the local equilib-

rium assumption on length and time scales relevant for cellular

events[16, 113].

A consequence of a spatially varying free energy density is

that the system is not in thermodynamic equilibrium and will re-

lax towards the equilibrium state over time. As discussed above

the only dynamical variables are the volume fraction fieldsφi(r, t).
The dynamics of the volume fractions follow generically from a

continuity equation of the form4

∂tφi(r, t) = −∇ · ji(r, t) + si(r, t), i = 1, ..., N (2.2)

where ji are the diffusive fluxes of species i, ∇ · ji is the di-

vergence of ji, and si is the rate at which species i is created
or destroyed due to chemical reactions. The continuity equation

can be rationalized as follows, consider a small volume element

v with boundaries O containing N particles. Then the number

of particles in the volume element can change (∂tN ) either via

particle fluxes through the boundaries (−
∮
O
jidO = −

∫
v
∇ ·

j dV ) or creation/destruction inside the volume due to reactions∫
v
s dV . As this is true for arbitrary volumes we can write it in

differential form, which results in Eq. 2.2, by applying the same

logic to each species i and we use that φi(r, t) =
vi
v
Ni(r, t) to

convert particle numbers to volume fractions5 .

As discussed before
∑

i φi(r, t) = 1 holds at every point

in space at all times due to incompressibility. Therefore the sum

over all N equations Eq. 2.2 has to vanish,
∑

i ∂tφi = −∇ ·



18 2 Theory of reactive fluid mixtures

6: Those can be, for example, Tem-

perature differences, chemical po-

tential differences, or pressure dif-

ferences.

(
∑

i ji)+
∑

i si = 0. As will be discussed in more detail the next

section, we consider reactions that conserve mass only and, due

to constant molecular mass density m0 = Mi/vi, this implies

that reactions conserve volume as well. Therefore
∑

i si = 0
and we find that the sum over diffusive and reactive fluxes van-

ishes independently∑
i

si(r, t) = 0, and (2.3a)∑
i

ji(r, t) = 0. (2.3b)

Eq. 2.3b underlines that the motion of particles is not indepen-

dent of each other, because the total volume fraction is always 1.
This can be used to eliminate one species from the description,

which will be discussed in the next section.

2.2 Non-Equilibrium Thermodynamics

FromEq. 2.2 we see that the important quantities to calculate the

dynamics of incompressible, multicomponent fluids are the dif-

fusive fluxes ji and the reaction rates or reaction fluxes si. In this
section, we discuss how both diffusion and reaction are linked to

thermodynamics using the formalism of linear non-equilibrium

thermodynamics[107]. The main idea is that the fluxes appear-

ing in Eq. 2.2 are driven by thermodynamic forces6 in such a

way, that the system ensures positive entropy production rate
dS
dt

≥ 0 and relaxes towards thermodynamic equilibrium, where

the entropy production vanishes, dS
dt

= 0.
It is instructive to calculate the entropy production rate

for a reaction-diffusion process to see where the flux-force rela-

tion stems from. We use that the total free energy F and entropy

S are related via F = E − TS, where E is the internal energy.

For an isothermal system with constant volume and no particle

exchange, E is constant so T dS
dt

= −dF
dt
[60]. This and Eq. 2.1

leads to

T
dS

dt
= −dF

dt
= −

∫
Vsys

df(Φ,∇Φ)

dt
dV ≥ 0. (2.4)

In addition we can write a continuity equation for the free en-

ergy density, which can change due to a local free energy density

change ḟ = ∂tf and free energy density fluxes jf

df

dt
= ḟ −∇ · jf . (2.5)

We can then expand df/dt in all variables Φ and ∇Φ and try to
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7: As particle numbers

can only vary in inte-

ger steps one has to write

µi = F (Ni + 1, Nj 6=i, Vsys, T ) −
F (Ni, Nj 6=i, Vsys, T ), but for large
Ni the differential form is a good

approximation.

connect the results to the local production ḟ and the flux jf

df

dt
=
∑
i

[(∂φi
f)(∂tφi) + (∂∇φi

f) · (∇(∂tφi))] (2.6)

where ∂φi
= ∂

∂φi
and ∂∇φi

= ∂
∂∇φi

are derivatives with respect to

volume fraction and its gradient respectively. The calculation is

done in the Appendix A, but using Eq. 2.2 and the product rule

∇(a(r)b(r)) = (∇a(r))b(r) + a(r)(∇b(r)), we end up with

df

dt
=
∑
i

{∇ · [(∂φi
f)ji + (∂∇φi

f)(∇ · ji)− (∇ · ∂∇φi
f)ji + (∂∇φi

f)si] +

∇ · [(∂φi
f)−∇ · (∂∇φi

f)]ji + [(∂φi
f)−∇ · (∂∇φi

f)]si] (2.7)

the terms in the first row are divergences of a flux and we iden-

tify them with the free energy density flux jf and the terms in

the second row are scalar quantities which we identify as the

local free energy production ḟ . Distinguishing these two is im-

portant because we assume no fluxes of particles through the

boundaries. Together with the divergence theorem, this implies

that the divergence of the free energy flux in Eq. 2.4 vanishes,∫
Vsys

∇ · jf dV = 0 and only the local free energy density pro-

duction −
∫
Vsys

ḟ dV ≥ 0 remains.

Note that (∂φi
f)−∇ · (∂∇φi

f) is the functional derivative
ofF with respect to φi, which signifies the free energy change of

the system when the volume fraction of species i is changed and
is directly related to the chemical potential µi of species i. The
chemical potential µi is defined as the free energy change when

an i particle is added to the system at constant particle number

of all other species Nj 6=i, total volume Vsys and temperature T 7

µi =
δF

δNi

∣∣∣∣
Nj 6=i,Vsys,T

= vi[∂φi
f−∇·(∂∇φi

f)]|Nj 6=i,Vsys,T . (2.8)

Replacing ∂tf in Eq. 2.4 with Eq. 2.7 and using µi we end up

with

dS

dt
= −

∫
Vsys

∑
i

[(∇µi) · ji + µisi] dV ≥ 0. (2.9)

Here ∇µi and µi are the thermodynamic forces corresponding

to the fluxes ji and si respectively. The term thermodynamic

forces stems from the following consideration: If µi < 0 the

total free energy F can be lowered by adding i particles to the

system, while for µi > 0, F can be lowered by removing i par-
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8: Using a length L, time τ and

energy kBT scale, ∂tφi has units

1/τ , ∇ji has units L
2/τ and ∇µi

has units kBT/L, so Lij has units

L2/(τkBT ) and kij 1/(τkBT )

9: If we write the relation for each

particle type, we will see below,

that cross-reactions leads to cou-

pling of different species that partic-

ipate in the same reaction. For ex-

ample, a reaction A 
 B leads

to a reactive flux sA = −k(µA −
µB). Cross-diffusion implies that

the chemical potential gradient of

species j 6= i influence the dif-

fusion of species i. This is impor-

tant in incompressible systems as

we will see below.

ticles. Because the total free energy is minimized in a closed

system µi determines if the reactions add (si > 0) or remove

(si < 0) i particles. In the same way, ∇µi indicates in which

directions particles have to move in space via diffusive fluxes

ji to lower F . Thus µi and ∇µi ‘force’ the reactive fluxes si
and diffusive fluxes ji in the direction of lower free energy. In

addition, if the thermodynamic forces vanish, there is no ener-

getically preferred direction for diffusive and reactive fluxes, so

they have to vanish as well, which means ji = 0 if∇µi = 0 and
si = 0 if µi = 0.

While these considerations constrain the fluxes, the func-

tional relation between fluxes and forces is not generally known.

Linear non-equilibrium thermodynamics now assumes that close

to equilibrium, where the thermodynamic forces are small com-

pared to thermal energy µi < kBT and l∇µi < kBT , where l
is a length scale large compared to intermolecular distances, but

small compared to system size, we can expand the fluxes up to

linear order in the forces

ji ≈ −
∑
j

Lij∇µj, and (2.10a)

si ≈ −
∑
j

kijµj. (2.10b)

Here Lij and kij are the diffusive and reactive mobilities8 and

the corresponding matrices are symmetric and positive (semi-

)definite due to the Onsager principle[107]. Which includes

cross-diffusion[65, 114] and cross-reaction terms9 . In general,

all the thermodynamic fluxes can depend on all thermodynamic

forces. But, in the case of an isotropic fluid, vectorial quantities

(∇µi, ji) do not couple to scalar quantities (µi, si)[107]. There-
fore, the reactive fluxes are driven by chemical potentials and

the diffusive fluxes are driven by gradients in chemical poten-

tials. In this form Eq. 2.10 ensures that

1. Τhe entropy production is always non negative

−
∑
i

[(∇µi)ji + µisi] ≤ 0 (2.11)

2. Vanishes in equilibrium

dS

dt
= 0 ⇐⇒ ∇µi = 0 & µi = 0 ∀i (2.12)

3. A steady state is reached in equilibrium

ji = 0 & si = 0 if ∇µi = 0 & µi = 0 ∀i. (2.13)
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But the diffusive fluxes in this form do not fulfill incompress-

ibility and it is oftentimes useful to write the reactive flux differ-

ently because for most reactions the condition µi < kBT is not

fulfilled. Therefore we have a closer look at the diffusive and

reactive flux in the next sections.

Diffusion

The main problem in Eq. 2.10a is that the fluxes do not conserve

volume fraction locally. Generally, this is not a problem, fluxes

can lead to density differences that lead to pressures that induce

fluxes to equilibrate the density differences. But for simplicity,

we do not want to describe pressures and center of mass fluxes

explicitly. Instead, we focus on the strictly incompressible case,

where conservation of local volume fraction is built into the dif-

fusive fluxes. As discussed above and in Eq. 2.3b this implies

that a local flux of i particles has to be balanced by a flux of all
other particle types.

One way to enforce incompressible diffusive dynamics is

to include the constraint in the free energy using the method of

Lagrange multiplies

f̄ = f + λ

(
1−

∑
i

φi

)
, (2.14)

where λ is the Lagrange multiplier. Accordingly, the new chem-

ical potentials and diffusive fluxes read

µ̄i = µi − λ, (2.15)

ji = −
∑
j

Lij(∇µj +∇λ). (2.16)

The condition
∑

i ji = 0 is then fulfilled for

∇λ =

∑
i,j Lij∇µj∑

i,j Lij

, (2.17)

which we use to rewrite the fluxes ji with modified mobilities

in a form that conserves the local volume fraction

ji = −
∑
j

Λij∇µj, (2.18)

Λij = Lij −
∑

k,l LikLjl∑
k,l Lkl

. (2.19)

Note that both the original mobilitiesLij and the rescaledmobili-

tiesΛij can, in general, depend on local volume fraction, temper-

ature, and other thermodynamic variables, as long as the mobil-
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10: This means as well that ‘anti-

diffusion’ Λij < 0 is possible for

some i, j.

ity matrices are symmetric and positive (semi-)definite to ensure

a positive entropy production rate10 .

To make this more clear, we discuss a two commonly used

examples of the mobility matrix L.

1. The simplest case is a diagonal L with constant mobility

L for all species Lij = Lδij , where the Kronecker delta
is δij = 1 if i = j and δij = 0 if i 6= j. Then Λij =
L
[
δij − 1

N

]
and ji = −L

∑
j

[
δij − 1

N

]
∇µj . Thus due

to incompressibility, a diagonal mobility matrix can lead

to fluxes that are driven by the non-diagonal terms (i 6= j,
cross-diffusion). For a binary system with species A and

B one can rewrite this into a center of mass flux that van-

ishes by construction jA+jB = 0 and a exchange flux be-
tweenA andB jA−jB = −L∇(µA−µB). The exchange
flux describes how much B is replaced by A, while den-
sity is conserved and it is driven by the exchange chemi-

cal potential µA−µB, which is the energy change when a

B particle (−µB) is replaced by an A particle (+µA). The

condition
∑

i ji = 0 can generally be used to eliminate

one species from the description, not only in the binary

case. While any species can be eliminated, we will in-

troduce a solvent species which is meant to represent the

cytosol and eliminate the solvent from the effective de-

scription.

2. Another important special case isLij = Lφiδij , because in
the ideal, dilute limit, where µi = const.+kBT ln(φi) and
∇µi = kBTφ

−1
i ∇φi plugging this mobility in Eq. 2.10a

results in ji = −LkBT∇φi. Introducing the diffusivityD
to rewrite the mobility as L = D/kBT we recover Fick’s

law of diffusion ji = −D∇φi.

In the incompressible case, plugging Lij = Lφiδij into
Eq. 2.19 results in Λij = L(φiδij − φiφj), which is also

known as Kramer’s model of inter-diffusion[65, 114].

To complete the picture, diffusive fluxes ji(r, t) are gener-
ally subject to thermal fluctuations described by a vector field

ξi(r, t) [115]. In isotropic fluids, these fluctuations are well de-
scribed by a stochastic process that is uncorrelated in space and

time and has zero mean. The standard deviation is related to

the mobility coefficients Λij via the fluctuation dissipation the-

orem[115]. Taken together we can write the correlation of ξi as

〈ξi(r, t)ξj(r′, t′)〉 = 2kBTΛij1δ(r − r′)δ(t− t′), (2.20)

here 1 is the identity matrix that ensures that spatial components

of ξi are uncorrelated. Note that due to cross-diffusion the fluxes
of different components are in general correlated. Importantly
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11: For example a reaction A +
A 
 B can only convert two A’s
into one B and vice versa, so the

sum NA + 2NB is conserved.

12: This is done solely for nota-

tion reasons. Because we discuss re-

versible reactions only, there is no

’preferred’ direction and we could

as well call the forward direction

the backward direction and vice

versa

13: Enzymes are particularly im-

portant in biochemical reactions,

where they speed up reactions by

several orders of magnitude[1].

ξi conserves mass, because it is added to the flux ji.

Reaction

Calculating the reactive flux si for each species i is more com-

plicated than Eq. 2.10b suggests for two reasons. First, the flux

force relation siµi suggests that i particles can be created/de-

stroyed until µi = 0, but in chemistry, particles can not be cre-

ated or destroyed arbitrarily. Instead, species can be converted

into each other in specific ratios, the stoichiometries. Therefore

each reaction has to obey a conservation law dictated by those

stoichiometries11 . In addition, there can be multiple reactions

and it is more appropriate to establish a flux force relation for

each reaction individually. And second, the free energy change

in a reaction∆F is usually larger than kBT , such that the linear
relation between flux and force is not well-founded.

In a first step, we discuss the kinetics of K different re-

actions of the form νfi,kAi 
 νbi,kAi, where i = 1, ..., N runs

over all species and k = 1, ..., K runs over all reactions. We

call the reaction on the left side the forward reaction and on the

right side the backward reaction12 . Then ν
f/b
i,k are the forward

(f ) and backward (b) stoichiometric coefficient of species i in
reaction k. In addition, we call the species on the left hand side
reactants and on the right hand side products. Furthermore, we

introduce catalysts or enzymes which are not consumed or pro-

duced in a reaction (νfi,k = νbi,k), but are still necessary for the

reaction to proceed13 (νfi,k > 0). Next, we define the reaction

flux of the k-th reaction sk as the difference between forward s
f
k

and backward sbk rate, sk = sfk − sbk. Here s
f/b
k describe how

often the forward/backward reaction happens per time. Chemi-

cal reactions conserve mass as long as no nuclear reactions take

place at the same time. Because we assume constant mass den-

sity m0 = Mi/vi = const. this conservation law can be written

as volume conservation of each reaction∑
i

viνi,k = 0, (2.21)

here νi,k = νbi,k−ν
f
i,k it the stoichiometric coefficient for species

i in reaction k and viνi,k is the volume change of species i if re-
action k proceeds once in forward direction. This is important,

because when all reactions conserve total volume they obey in-

compressibility as well.

Next we connect the rate of individual reactions sk with

the total change of volume of species i, si in Eq. 2.2 using the

stoichiometric coefficient νi,k and the molecular volume vi. The
total amount of i particles produced or destroyed is simply the
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14: We could define it for a for-

ward direction as well because the

reaction has no preferred direction.

sum over all reactions times the number of particles produced in

a reaction and thus

si = vi
∑
k

νi,ksk, (2.22)

where vi takes care of the conversion from particles to volume

fraction.

We have decomposed the reaction rate for each species i
into a sum over individual reactions k, but we do not know how

to connect the rates sk with thermodynamic arguments yet. For

this, we focus on the free energy change∆Fk in the k-th reaction.
It is defined as the change of energy when the reaction runs in

the backward direction once14

∆Fk = −
∑
i

νi,kµi. (2.23)

The chemical potential µi describes the energy per i particle and
−νi,k describes how many i particles are created/destroyed in

a single backward reaction k. Thus the free energy change for

particle type i is−νi,kµi and the total free energy change is given

by −
∑

i νi,kµi.

Similar to Eq. 2.10b the reactionwill proceed towards lower

free energy. This implies that the reaction runs in the forward

direction (sfk > sbk) if∆Fk > 0 and the reaction runs in the back-

ward direction (sfk < sbk) if ∆Fk < 0. And if the reaction is in

equilibrium (∆Fk = 0) the net reaction flux vanishes (sfk = sbk).
This is automatically fulfilled for reactions that obey detailed

balance[115], where the ratio of forward and backward rate is

related to the free energy change according to

sfk
sbk

= exp
(
∆Fk

kBT

)
. (2.24)

For small ∆Fk � kBT , we can rewrite the reaction flux sk and
expand the exponential function to end up with

sk = sbk

(
exp

(
∆Fk

kBT

)
− 1

)
≈ sbk

∆Fk

kBT
. (2.25)

In this case, sbk corresponds to the reactive mobility and Eq. 2.25

is equivalent to the linear non-equilibrium thermodynamics re-

sult, but now on the level of individual reactions instead of par-

ticle types.

As stated before, usually ∆Fk > kBT and the linear ap-

proximation is inaccurate, while the detailed balance condition

Eq. 2.24 holds more generally for systems in local thermody-

namic equilibrium. To connect the reaction kinetics and ther-
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Figure 2.1: Schematic 1D repre-

sentation of the chemical poten-

tial landscape in a reaction. The

two stable states µf
k (green) and µb

k

(orange) are connected along a one-

dimensional minimum energy path

via a saddle point µ†
k (black). To

jump from one state to another, ther-

mal fluctuations have to overcome

the energy barrier ∆
f/b
k , which is

proportional to the boltzmann fac-

tor exp(∆f/b
k /kBT ) for high barri-

ers ∆
f/b
k � kBT . In equilibrium

the free energy difference between

the states∆Fk determines the prob-

ability ratio between product and re-

actant state via exp(∆Fk/kBT ).

modynamic arguments we need a different approach. Carati et

al.[116] derive a condition for the rates based on Eq. 2.24 and

the assumption that the forward rate depends on the ‘forward’

chemical potential µf
k =

∑
i ν

f
i,kµi only, s

f
k

(∑
i ν

f
i,kµi

)
(and

analogous for the backward rate). Although it is intuitive to as-

sume that the forward rate is determined by the state (chemical

potential) of the particles involved in the forward reaction, this

is not necessarily true and the forward rate might as well be in-

fluenced by the ’backward’ chemical potential µb
k =

∑
i ν

b
i,kµi

(and vice versa). But if we take this as an assumption, it follows

that the system is in equilibrium sfk(µ
eq
k ) = sbk(µ

eq
k ) and this is

independent from the equilibrium value µeq
k , so the functional

dependence of sfk(µ) and s
b
k(µ) on µ is the same. In addition

∆Fk and sk = sfk − sbk have the same sign to ensure positive en-

tropy production, so s
f/b
k (µ) has to be a monotonically increas-

ing function[116]. Note that this does not prescribe a functional

form, but limits the possible forms to those that are in line with

non-equilibrium thermodynamics and the linear form Eq. 2.25

is a limiting case for small ∆Fk.

Specifically, wewill useTransition State Theory (TST)[117,

118] to derive the forward and backward fluxes as functions of

the chemical potentials. Transition state theory is used to find

transition rates between two metastable states when the transi-

tion happens due to thermal fluctuations. The two metastable

states are local minima in a high dimensional free energy land-

scape, in our case, these are µf
k and µ

b
k, that are connected via a

saddle point µ†
k, the transition state; see fig. 2.1 for a schematic

representation. If the energy barrier ∆
f/b
k = µ†

k − µ
f/b
k between

the two states is large compared to kBT , the probability to reach
the saddle point is proportional to the Boltzmann weight of the

barrier exp(−∆
f/b
k /kBT ). The rate at which amolecule switches

from one state to another is then given by the probability to reach

the saddle point times a kinetic prefactor connected to thermal

vibrations of the molecules p [117]

sfk = pke
−µ†

k/kBT exp

(
µf
k

kBT

)
= k exp

(
µf
k

kBT

)
, and

(2.26a)

sbk = pke
−µ†

k/kBT exp
(
µb
k

kBT

)
= k exp

(
µb
k

kBT

)
, (2.26b)

wherewe include the transition state exp(−µ†
k/kBT ) and the rate

factor p in one reaction rate k. In general k can depend on vari-

ous parameters, e.g. temperature, pressure or local composition,

via both µ†
k and p[118]. For our study only the composition de-

pendence is important and while k can depend on all concentra-
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15: The concentration dependence

results directly from the chemical

potential for constant rates kf and

kb. Hence, unlike for diffusion, we
do not need concentration depen-

dent mobilities (rates) to arrive at

the law of mass action.

tions, we will discuss only two special cases, either k is constant
or it depends on the concentration of some catalyst or enzyme

K, k(φK).
While the argument presented in [116] and TST are quali-

tatively different, the result is similar, Eq. 2.26 fulfills detailed

balance by definition and is proportional to exp(µf/b) as [116]
proposed. Finally, we can write the total reaction flux of the k-th
reaction as

sk = k exp
(
µb
k

kBT

)[
exp

(
∆Fk

kBT

)
− 1

]
. (2.27)

For ideal, dilute systems, where µi = µi,0 + lnφi, Eq. 2.27

reduces to mass action reaction kinetics, where the forward and

backward rate are proportional to the concentrations of products

and reactants respectively

sk = kf
∏
i

φ
νfi,k
i − kb

∏
i

φ
νbi,k
i . (2.28)

Similar to diffusion, we recover the simple, well-knownmass ac-

tion kinetics for ideal, dilute solutions15 . But we investigate in-

teracting systems and in that case, diffusive fluxes have to be de-

rived from chemical potential gradients and reaction rates from

chemical potential differences.

Taking everything together the dynamics of incompress-

ible, multicomponent, non-ideal, reactivemixtures are determined

by a set of coupled partial differential equations of the form

∂tφi = −∇ji + vi
∑
k

νi,ksk, (2.29a)

ji = −
∑
ij

Λij∇µj + ξi, and (2.29b)

sk = k exp
(
µb
k

kBT

)[
exp

(
∆Fk

kBT

)
− 1

]
. (2.29c)

Here both dynamical processes, reaction, and diffusion, are driven

by chemical potential differences. Reactions by differences be-

tween the left and right side of the reaction Eq. 2.23 and dif-

fusion by chemical potential gradients. We will only consider

simple conversion reactions of the form A 
 B, where vA =
vB = v and |νi,k| = 1. Therefore, we absorb the volume v in sk,
such that in the following sk is given in volume fraction change

per time instead of particle number change per time.
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16: Here the molecular volume in-

troduced above is given by vi =
niv0.

17: One could write the chemical

potential per monomer as well, but

as we keep the polymer length ni
fixed, the description in terms of

polymers is more convenient.

2.3 Multicomponent regular solution

theory

In Sec. 2.2 we have shown that the chemical potential µi is the

driving force for reaction and diffusion processes. Therefore,

to calculate µi, we need to specify the free energy F as a func-

tion of volume fraction φi. During most of this thesis we will

use themulti-component form of the regular solution[109](Ch.2)

and Flory-Huggins free energy[21–23], originally derived for a

polymer-solvent mixture. It is based on a lattice model where

each monomer and each solvent molecule occupy one lattice

site and each particle interacts with the nearest neighbors, for a

derivation see Appendix B. For the N -component case the free

energy density and chemical potential are given by

v0f(Φ)

kBT
=

N∑
i=1

φi

ni

ln(φi) + h(Φ), (2.30)

µi

kBT
= 1 + ln(φi) + hi(Φ), (2.31)

where we write the free energy density in units of thermal energy

kBT per lattice site volume v0 and Φ = (φ1, ..., φN)
T is the vol-

ume fraction vector. The first term of f describes the entropy

density of mixingN polymer species, where ni is the number of

i monomers in each polymer and we assume that all monomers

occupy one lattice site16 . The second term h(Φ) describes the
enthalpy density containing the nearest neighbor interactions

and internal energies. As described in Eq. 2.8 the chemical po-

tential is the free energy change when adding an i polymer17

and hi(Φ) = ni∂φi
h(Φ) is the energy per i polymer.

We use this free energy density because it has shown to be

useful in the description of biomolecular condensates[6, 18] and

it is one of the simplest free energy densities that shows phase

separation[60]. In addition, all parameters have a clear physi-

cal meaning, e.g. interaction energies and polymer length[119]

and allow to make qualitative predictions for experiments. Fur-

thermore, unlike polynomial expansions, e.g. Ginzburg Lan-

dau type free energies[120], this form can be extended to multi-

componentmixtures in a straightforwardmanner[65] and tomore

complex systems, e.g. including electrostatic interactions[81].

Finally, it is usedwidely in soft matter physics[109] and polymer

physics[119], so its properties and parameters are well known

which makes it a good starting point. Of course, it is too simple

to describe protein systems quantitatively, for example, it does

not describe protein sequence and is based on a lattice model in-

stead of continuous space. But, considering the simplifications,

the model is surprisingly successful in describing the qualitative
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18: The internal energy itself con-

tains both entropic −Tsi and en-

thalpic ēi contributions, so ei =
ēi − Tsi. This can become impor-

tant when discussing the tempera-

ture dependence of long polymers.

behavior of biomolecular condensates[18, 60].

To use Eq. 2.30 we need to specify the enthalpy density

h(Φ). If we include only energies per particle and two body

nearest-neighbor interactions in the lattice model, the total en-

ergy is given by

h(Φ) =
N∑
i=1

eiφi +
1

2

N∑
i,j=1

eijφiφj (2.32)

here the first term contains the internal energy of each particle

type18 ei and the second term describes interactions between i
and j with (reciprocal) interaction strength eij = eji. A different

path to derive the same result is to expand h(Φ) inΦ up to second

order.

To discuss phase separation it is instructive to rewrite this in

terms of relative pairwise interactions χij = (2eij −eii−ejj)/2,
which describe how strong i and j interact compared to the self

interactions of i and j and thus the propensity of i and j to mix

(χij < 0) or demix (χij > 0). Using φi = 1 −
∑

j 6=i φj , we

rewrite the pair interaction in Eq. 2.32 as

∑
i,j

eij
2
φiφj =

∑
i,j 6=i

eij
2
φiφj +

∑
i

[
eii
2
φi

(
(1−

∑
j 6=i

φj

)]

=
∑
i

eii
2
φi +

∑
i,j>i

2eij − eii − ejj
2

φiφj =
∑
i

eii
2
φi +

∑
i,j>i

χ̄ijφjφi. (2.33)

Here χ̄ii = 0 and χ̄ij = χ̄ji. In addition we can use incom-

pressibility to eliminate one species from the effective descrip-

tion, as an example we replace the N -th species by using φN =
1 −

∑N−1
i=1 . For this we split the N -th species in Eq. 2.32 and

assume that all sums over i and j run from 1 to N − 1. Thus,
Eq. 2.33 becomes

eNN

2
+
∑
i

eii − eNN + 2χ̄iN

2
φi +

∑
i,j

χ̄ij − χ̄iN − χ̄Nj

2
φjφi

(2.34)

we can drop the term eNN/2 because all processes are driven by
derivatives of the free energy with respect to volume fractions.

Taken together we can write the enthalpy in Eq. 2.32 which in-

cludes incompressibility and relative interactions up to second-

order as

h(Φ) =
N−1∑
i=1

wiφi +
1

2

N−1∑
i,j=1

χij

2
φiφj, (2.35)

where now wi = ei +
eii−eNN+2χ̄iN

2
and χij = χ̄ij − χ̄iN − χ̄jN ,

note that still χij = χji, but χii = 0 is not necessary.
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19: This is different for proteins,

which are not made of a sin-

gle monomer. Instead, proteins are

made of different amino acids

and are described by the sequence

of these amino acids. A poly-

mer model developed in Refs.[121,

122] allows individual monomers

of a polymer/protein to interact

differently. This concept has been

applied to protein phase separa-

tion successfully, for example in

Ref.[56].

Influence of protein size

While we will assume equal molecular volume of all species dur-

ing this thesis, we kept the molecular volume till now because it

is an important future direction of research in biomolecular con-

densates. The reason is, that proteins and RNA, which are the

drivers of most condensates, can be very long biopolymers[1].

For example, in Ref.[16] a temperature dependent molecular vol-

ume is necessary to correctly describe their experiments.

In the Flory-Huggins free energy, (2.30), the role of pro-

tein length can be seen by comparing the enthalpic contribution,

Eq. 2.35, to the entropic contribution, first term in Eq. 2.30. The

enthalpic contribution is independent of protein size because the

individual monomers all interact in the same way19 . Thus, it

does not matter how the monomers are arranged in a mean field

model. Conversely, the entropic contribution depends inversely

on the length of the protein. The reason is, that a protein con-

sisting of ni monomers occupies ni adjacent lattice sites. Thus,

the number of possible arrangements, and thereby the entropy of

mixing, is reduced significantly. As a result, increasing the size

of proteins will decrease the magnitude of the entropy, while it

leaves the enthalpy unaltered. In the limit of large biopolymers,

e.g. some DNA and RNA, the entropic contribution vanishes,

and the interactions between molecules fully determine the free

energy.

Although including molecule sizes will become an impor-

tant extension in the future, in this thesis we discuss the simple

case of equal molecular volumes only, vi = v0 for all i, where
v0 is the volume of a lattice site.

Non-local interactions

In Eq. 2.1 we introduced the free energy density f(Φ,∇Φ) that
can depend on local volume fraction and its gradients, but so far

we have only discussed the local term. Here we want to intro-

duce the dependence of the free energy density on∇Φ. One way
to include non-local terms is to expand f in terms of gradients

of Φ[123] around a homogeneous composition. In this case the

linear term vanishes, because ∇φi is a vectorial quantity, but f
is a scalar. Thus, we get, including terms up to O((∇Φ)2)

f(Φ,∇Φ) ≈f0(Φ) +
1

2

∑
i

∂f

∂(∇2φi)
∇2φi+

1

2

∑
i,j

∂2f

∂(∇φi)∂(∇φj)
(∇φi)(∇φj) +O(∇4φ),

(2.36)
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20: For a binary polymer blend

of large polymers (n � 1) one

gets an extra entropic contribution

κ = a2/(36φ(1 − φ) where na2

is the mean square polymer chain

length[19, 124].

21: To describe more realistic (bio-

)polymers details about the poly-

mer structure and the role of fluc-

tuations descriptions beyond mean-

field are necessary[124].

where f0(Φ) is the local free energy density discussed above and
in the gradient expansion assumes that the composition varies on

length scales large compared to inter-molecular distances[123],

which is necessary for the mean-field approximation discussed

above as well. Using the divergence theorem, we rewrite the

∇2φi term in terms of (∇φi)
2 and a boundary term that vanishes

for no-flux boundary conditions. In addition we call the expan-

sion coefficient κij = ∂2f
∂(∇φi)∂(∇φj)

− δij
∂2f

∂φi∂(∇2φi)
and end up

with

f(Φ,∇Φ) ≈ f0(Φ) +
1

2

∑
i,j

κij(∇φi)(∇φj). (2.37)

For a binary regular solution Cahn and Hilliard[123] found κ =

χv
2/d
0 , here v0 is the volume per lattice site in a d dimensional

cubic lattice and thus v
1/d
0 is the nearest neighbor distance. As

one might expect the gradient term is determined by a combina-

tion of the relevant interaction energy χ and the relevant length

scale v
1/d
0 and strong composition gradients increase the total

free energy20 . A extension to multicomponent systems[65] with

a constant lattice volume v0 results in κij = −v2/d0 χij , which is

the form we use in our simulations. From Eq. 2.37 we calculate

the non-local contribution to the chemical potential defined by

Eq. 2.8

µi = vi[∂φi
f0 +

∑
j

κij∇2φj], (2.38)

where we assume κij is constant, which is the case for our choice

κij = −v2/d0 χij , but κ can, in general, be a function of composi-

tion, temperature, etc.21 .

While studying the effect of the gradient term is an inter-

esting topic on its own, e.g. to understand the ordering of mul-

tiple phases[66], wetting[125, 126] or late-stage coarsening in

an emulsion of droplets[60], in our model the gradient term is

necessary to introduce a surface tension γ, stabilize the interface
between the two phases, and introduce a specific interface width

w. We are mainly interested in the effect of chemical reactions

in the bulk phases with low concentration fluctuations and by

definition, the gradient term is non-zero only for spatially vary-

ing volume fractions. So it vanishes in the bulk phases and only

contributes close to the interface region as we will see below.

2.4 Liquid-liquid phase separation

In the last section, we introduced the multi-component free en-

ergy we will use in this study. Here we discuss the simplest

case, a binary system, and an extension to three components and
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Insoluble 
protein B

Figure 2.2: Schematic representa-

tion of a protein forming droplets

due to enthalpic interactions. In

this example, a Protein B (or-

ange particles) interacts attractively

with itself (black dashed lines) and

forms protein-rich droplets (orange

area) inside the solvent C (blue

area). Attractive interactions are

not necessary for phase separation,

repulsion between protein and sol-

vent works as well. But in most

biomolecular condensates, attrac-

tive multivalent interactions lead to

phase separation[56]
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Figure 2.3: Free energy density

of an interacting binary mixture.

The free energy density f(φ) (blue
line; Eq. 2.39) has an entropic con-

tribution −Ts = φ ln(φ) + (1 −
φ) ln(1 − φ) (lower grey dashed

line) that always favors mixing

and an enthalpic contribution h =
χφ(1−φ) (upper grey dashed line)
that favors demixing for χ > 0
(here χ = 3.25). Due to the compe-

tition between these two effects, f
shows two local minima (blue dots)

for high enough χ > χc, where χc

is the critical interaction strength.

In this case the free energy of the

phase separated state is lower than

themixed state byV∆f (black line)
for a given average fraction φ̄ (red

dot).

see under which conditions a purely diffusive system will phase

separate and why.

Binary Phase Separation

The minimum example showing liquid-liquid phase separation

is a binary system, in our case a protein B and a solvent C; see
fig. 2.2 for a schematic. We write φ = φB for simplicity and

incompressibility requires φC = 1 − φ. In addition we write

χBC = χ and κBC = κ = v
2/d
0 χ so we obtain for the free

energy density Eq. 2.30 and chemical potential Eq. 2.31

v0f(φ)

kBT
= φ ln(φ) + (1− φ) ln(1− φ) + χφ(1− φ) +

κ

2
(∇φ)2,

(2.39)

µ

kBT
= ln φ

1− φ
+ χ(1− 2φ)− κ∇2φ, (2.40)

we set the internal energy to zero as well, w = 0, as terms lin-

ear in φ become relevant when reactions are present only. We

used incompressibility to replace φC already and thus Eq. 2.40

is the exchange chemical potential introduced in the discussion

about diffusive fluxes above. The free energy in Eq. 2.39 con-

tains an entropic, an enthalpic, and a non-local contribution. The

entropic contribution−v0s(φ)/kB = φ ln(φ)+(1−φ) ln(1−φ)
attains its minimum value at φ = 0.5 where −v0s(0.5)/kB ≈
0.5 ln(0.25) independent of parameters and thus favors mixing

in all cases; see fig. 2.3. The enthalpic part v0h(φ) = kBTχφ(1−
φ) forms a parabolawith an extremum atφ = 0.5, where v0h(0.5) =
0.25kBTχ, which is a minimum for χ < 0 and a maximum for

χ > 0; see fig. 2.3. This means it favors demixing only for

χ > 0 and mixing for χ < 0. Thus for phase separation χ > 0
is necessary and we will discuss this case only. For now we as-

sume that the volume fraction fluctuations in the bulk phases are

small, in addition the bulk phases are assumed large compared

to the interface region, so the non-local term is negligible here,

but it will become important later.

Phase separation can only happen if the total free energy

F =
∫
V
f dV is lower in the phase-separated state than in the

homogeneous mixture. For an average volume fraction φ̄ =∫
Vsys

φ dV the homogeneous free energy is Fh = Vsysf(φ̄). A

simple graphical analysis of fig. 2.3 suggests that in the two-

phase state with compositions (φ1, φ2) given by the free energy
minima (blue dots) where f(φ1) = f(φ2) = fmin, the free en-

ergy density is lower by ∆f = f(φ̄)− fmin (black dashed line)

compared to the homogeneous mixture. Thus, the total free en-

ergy is lower by ∆F = Vsys∆f . For this specific example, this
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22: For now we assume that the

volumes V1 and V2 are large so the
interface energy is negligible com-

pared to the bulk[60].

23: For ideal systems this is the

only solution because µ increases

monotonically with increasing φ
and the first condition can not be

fulfilled for φ1 6= φ2.

24: Neither condition is influenced

by linear terms in φ, which shows

again that the diffusive equilib-

rium is independent of wi terms in

Eq. 2.35

25: It is important to keep in mind

that this is not a general property of

phase separation, which can be seen

by adding a term wφ to f , this does
change the positions of the minima,

but it leaves the equilibrium con-

struction unaltered.

simple equilibrium analysis works qualitatively, although we ne-

glected interface tension. For general free energies, the analysis

is more complicated and the above analysis is misleading be-

cause the free energy minima are not the equilibrium volume

fractions of the phases in general. Instead one generally mini-

mizes the full free energy with respect to all independent vari-

ables, which we will do next.

Maxwell construction

For constant temperature and total volume, Gibbs’s phase rule

allows only two phases or one. Therefore, we can describe the

phase-separated state in terms of the volume fractions φ1, φ2 and

total volumes V1, V2 of each phase and write the total free energy
as22 F = V1f(φ1) + V2f(φ2). In addition, constant system vol-

ume V1+V2 = Vsys and mass conservation V1φ1+V2φ2 = Vsysφ̄
restrict the free parameters from 4 to 2[60]. To find the equi-

librium state we minimize F with respect to φ1 and V1, which
results in the two conditions

∂F

∂φ1

= V1(µ(φ1)− µ(φ2)) = 0, and (2.41a)

∂F

∂V1
= f(φ1)− f(φ2) + φ2µ(φ2)− φ1µ(φ1) = 0. (2.41b)

The conditions above are always fulfilled for the homogeneous

mixture (φ1 = φ2)
23 . For interacting systems, it is possible to

find two phases with different compositions (φ1 6= φ2) that ful-

fill the conditions24 . In this case, the first condition, equal chem-

ical potential in both phases, ensures that the free energy can

not be reduced by moving particles between phases. The second

condition is related to the osmotic pressureΠ = −(∂F/∂Vsys)Ni

and makes sure there is no pressure difference between the two

phases,Π1−Π2 = 0 [60]. Since the total volume Vsys is constant,

the volume of one phase can only be increased (+f(φ1)) at the
expense of the other (−f(φ2)). At the same time mass conserva-

tion implies that particles from the expanding phase (−φ1µ(φ1))
have to bemoved to the shrinking phase φ2µ(φ2), which changes
the composition in both phases. Equilibrium is reached when

this process can not decrease the total free energy anymore.

In general, the solution of Eq. 2.41 has to be determined

numerically, but for the simple binary regular solution free en-

ergy Eq. 2.39 we can use that the symmetry around φ = 0.5, so
f(φ) = f(1− φ) and µ(φ) = −µ(1− φ) to find a solution. As
a result, the solution of Eq. 2.41 is given by φ1 = 1 − φ2 and

µ(φ1) = 0 and we obtain the equilibrium volume fractions

(φ1, φ2) by finding the minima of f(φ)25 . In binary systems

there is a simple graphical interpretation of Eq. 2.41. The first
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Figure 2.4: Phase separation behavior for binary mixtures. (A) Free energy density f Eq. 2.39 for different inter-

action strength χ. For low χ (light blue line) f has only one minimum at φ = 0.5 and the homogeneous mixed state

is always stable. For stronger χ two minima emerge and phase separation becomes energetically favorable (dark blue

lines). The composition of the two phases is given by the free energy minima, which are connected by a common

tangent (black dashed line). (B) Corresponding chemical potential; Eq. 2.40. In the region where phase separation is

possible, the slope of the chemical potential changes sign, and for the free energy density in Eq. 2.39, the equilibrium

compositions correspond to µ = 0. (C) The free energy minima (stable, full lines) and maxima (unstable, dashed line)

are fixed points of the system. At χc = 2 the system undergoes a supercritical pitchfork bifurcation and two minima

emerge in (A). For χ > χc it is energetically favorable to phase separate into two phases and the composition of these

phases is given by the free energy minima. That the free energy minima correspond to the equilibrium fractions in the

phase separated state is a specific property for this free energy; see discussion in the text.

condition corresponds to equal slope of f in both phases and the

second condition implies that a linear function with slope µ(φ1)
starting at f(φ1) intersects f(φ2) as well; see dashed line in

fig. 2.3. This construction works if Eq. 2.39 shows an infliction

point and ∂2φf < 0, which depends on the interaction parameter

χ. As discussed before, for χ < 0 the interaction favors mixing

and no phase separation is possible. But fig. 2.4(A) shows that

even for χ > 0 the free energy does not necessarily favor phase
separation. Instead, only above a critical interaction strength

χc, two minima emerge and phase separation becomes energet-

ically favorable over the homogeneous state. In fig. 2.4(B) the

corresponding chemical potential is shown and the condition

Eq. 2.41a can be fulfilled for χ > χc only. fig. 2.4(C) shows

how the two minima appear in a pitchfork bifurcation at χ = χc

and how the equilibrium fractions (φ1, φ2)move asymptotically

towards (0, 1) as χ→ ∞. This limit corresponds to very strong

enthalpic interactions (or very long polymers) so entropy is neg-

ligible[127].

In this study we will use the strong interaction regime, χ�
χc, to avoid critical phenomena close to the critical point, e.g.

strong concentration fluctuations and divergences of thermody-

namic quantities[35].

Kinetics

Above we used an equilibrium construction to see that phase sep-

aration is energetically favorable for interaction strength χ > χc.
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26: Plane waves are used, because

the differential operator becomes a

simple factor ik, ∇δφ = ikδφ,
which simplifies the calculations

significantly. The cost is that every

wavevector k has to be discussed

separately in general.

27: Because only even derivatives

appear, only the absolute value of

the wavevector matters k = |k|.
This is expected for isotropic sys-

tems, as there is no preferred direc-

tion.
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Figure 2.5: Perturbation growth

rate for different average protein

fraction. Perturbation growth rate

ω as as function of wave vector |k|.
For the free energy in Eq. 2.39. The

homogeneous state φ̄ is unstable

(ω > 0) only for φ̄ > 0.25. In this

case a band of wave vectors limited

by kmin = 0 and kmax =
√
−δµ/κ

(blue dots) is unstable. This range

is maximal for φ̄ > φb (Eq. 2.44),
where δµ = 4−2χ. So χ > χc = 2
(here χ = 3) is necessary for the ex-
istence of unstable modes.

In this subsection, we discuss how the system reaches this equi-

librium state dynamically using the evolution equation derived

in sec. 2.2. For simplicity we assume constant diffusive mobil-

ity Λ. Then the dynamics are given by

∂tφ = Λ∇2µ. (2.42)

Obviously all spatially constant chemical potentialsµ(r) = const.
are steady states and thus the homogeneous concentrationφ(r) =
φ̄ is always a steady state, although the phase separated state is

favorable for φ̄ ∈ [φ1, φ2]. For non-zero temperature, thermal

noise ξ is present in the diffusive flux, which induces spatial in-

homogeneities. To determines whether small fluctuations can

move the system from the homogeneous mixture to the phase

separated state, we perform a linear stability analysis. The idea

is to consider the system without noise ξ = 0 and introduce a

perturbation δφ using plane waves in space26 and an exponential

growth rate in time, δφ = ε exp(ωt+ ikr), where the amplitude

is small, ε� 1. We write the perturbed state for each wave vec-

tor k asφ(r, t) = φ̄+δφ, where δφ = ε exp(ωt+ikr), and check
whether the perturbation grows (ω > 0) or shrinks (ω < 0) in
time. Since the amplitudes ε are small, we can expand µ around

the homogeneous state µ(φ) ≈ µ(φ̄)+(∂φµ)|φ̄ δφ+k2κδφ. Writ-

ing δµ(φ̄) = (∂φµ)|φ̄ the resulting equation for the grows rate

ω(k) is27

w = −Λk2
[
δµ(φ̄) + k2κ

]
= −w0v

2/d
0 k2

[
δµ(φ̄)

χ
+ v

2/d
0 k2

]
,

(2.43)

where ω0 = Λχv
d/2
0 is the inverse characteristic time to dif-

fuse one lattice length v
1/d
0 for a regular solutionmodel (Eq. 2.40).

As k2, κ > 0 (for χ > 0) to get positive growth rates the fac-

tor δµ, which corresponds to the slope of µ or the curvature of

f , has to be negative. In addition, even for negative δµ the κ
term stabilizes all perturbations on length scales smaller than√

−κ/δµ, because w < 0 for k2 > −δµ/κ. As w(k = 0) = 0,

for δµ < 0 a band of unstable modes k ∈]0,
√

−δµ/κ[ exists
and the wavevector kmax =

√
−δµ/(2κ) has the fastest growth

rate, so we expect to see a length scale 1/kmax for early times.

The necessary condition for linear instability of the homo-

geneous state is δµ(φ̄) < 0. Comparing this to fig. 2.4(B) clearly

all perturbations are stable if there is only one minimum in the

free energy (χ < χc) as δµ(φ̄) > 0 ∀φ̄, but even for χ > χc

the growth rate is not positive for all φ̄ ∈ [φ1, φ2], but only for

a small subset φ̄ ∈ [φs, 1 − φs], enclosed by the spinodal vol-

ume fraction φs; see fig. 2.5. These are defined by ∂φµ = 0,
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Figure 2.6: Phase separation hap-

pens spontaneously for interme-

diate average volume fractions

only. Phase diagram as a function

of interaction strength χ. Above the
critical interaction χc phase separa-

tion into a phase with composition

φ1 and 1 − φ1 (blue full line) is

energetically favorable. But the ho-

mogeneous state is unstable against

perturbations only in the dark blue

region, where φ̄ ∈ [φs, 1 − φs]
(dashed blue line) determined by

Eq. 2.44. In the light blue region a

nucleation barrier has to be over-

come to induce phase separation.
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Figure 2.7: One dimensional

chemical potential profile for

a phase-separated state with

interface at x = 0. The local

(blue line) and nonlocal (dashed

orange line) contributions to the

chemical potential both vanish

in the bulk phases (|x| > 5). In
the interface region, they are both

non-zero, but they cancel each

other in equilibrium. Here a regular

solution model for χ = 4 is used.

which for the simple free energy above results in the dashed line

in fig. 2.6 and analytically

φs =
1

2

(
1−

√
1− 2

χ

)
. (2.44)

As a result, for average volume fractions φ̄ ∈ [φ1, φs]∪ [1−
φs, 1 − φ1] the homogeneous state is linearly stable, but phase

separation is still energetically favorable compared to the homo-

geneous state. In this case, there is an energy barrier ∆Enuc
between the homogeneous and phase separated state that has to

be crossed. The energy barrier vanishes as the average concen-

tration approaches φs (or 1− φs) and phase separation happens

spontaneously. If φ̄ is close to the equilibrium volume fraction

φ1 or φ2, the energy barrier is large and the nucleation time τnuc
can be approximated by the boltzmann factor of the nucleation

barrier τnuc ∝ exp(∆Enuc/(kBT ) according to classical nucle-

ation theory[128].

A thorough investigation of the role of chemical reactions

on nucleation is beyond the scope of this work, albeit it is an

interesting topic on its own. We will therefore start with initial

conditions where a small droplet of the dense phase is already

present and thus circumvent the nucleation problem artificially.

Alternatively, we will simulate systems in the spinodal region

(1−φs > φ > φs), where small numerical errors grow exponen-

tially and lead to phase separation.

Interface properties

We have shown that phase separation is energetically favorable

for high enough interaction strength (fig. 2.4) and that the ho-

mogeneous state can be unstable or stable against small pertur-

bations depending on the interaction and total amount of protein

(fig. 2.5), but we have not discussed the interface between the

two phases in a steady-state yet. This has been done for general

forms of the free energy density as well as the regular solution as

an example in the paper by Cahn and Hilliard already[123]. In

the interface region the non-local κ term becomes dominant and

penalizes strong concentration variations, because κ
2
(∇φ) ≥ 0.

This effect counteracts the tendency of the local free energy den-

sity to form an infinitely thin interface and introduces a specific

interface width w and an interface tension γ that depend on κ
and χ.

Again we introduce the general idea to calculate w and γ
and then give the specific results for the regular solution the-

ory. Assume a one dimensional system with an interface at po-

sition x = 0 where φ(x → −∞) = φ1 and φ(x → ∞) = φ2.
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28: As one would expect the inter-

face can not be smaller than the

smallest length scale in our theory
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Figure 2.8: One dimensional in-

terface in the phase separated

state for a binary regular solu-

tion. The steady state profile φ(x)
(blue) in a simulation of Eq. 2.42

is well described by a tanh(x/v0)
function (orange dashed line, in 1D

systems v0 is a length) in the strong
interaction limit, here χ = 4.

Then, in thermodynamic equilibrium, the exchange chemical po-

tential has to be uniform in space µ(x) = µ0(φ1) = µ0(φ2),
where we write the chemical potential up to ∇2φ terms as µ =
µ0(φ)−κ∇2φ = µ0(φ1) (see Eq. 2.38) with the purely local part
µ0(φ) = ∂φf0. We thus have to solve the differential equation

µ(φ(x))− µ0(φ1) = κ∇2φ(x), (2.45)

with φ(x → −∞) = φ1 and φ(x → −∞) = φ2 as bound-

ary conditions. fig. 2.7 shows how the contribution of µ0 and

∇2φ cancel everywhere and allow a homogeneous chemical po-

tential even in the interface region. Analytically, the solution

for generic symmetric double-well type free energies is well de-

scribed by

φ(x) =
1

2

[
(φ2 + φ1) + (φ2 − φ1) tanh x

w

]
, (2.46)

where the interface width w can be approximated for the regu-

lar solution theory by w ≈ v
1/d
0

√
χ

χ−2
[60]. In the strong interac-

tion limit (χ � χc) w coincides with the lattice volume28 ; see

fig. 2.8 for a comparison between simulation and Eq. 2.46 for

the regular solution.

The interface energy Aγ, with surface area A and surface

tension γ, is defined as the energy difference between the to-

tal free energy derived from an equilibrium field φ(r), FI =∫
Vsys

f(φ) dV and a hypothetical perfectly phase-separated sys-

temwithout an interfaceF0 = V1f(φ1)+V2f(φ2),Aγ = FI−F0.

As an example consider a two dimensional flat interface of area

A perpendicular to the x direction at x = 0, where the dilute

phase is on the x < 0 side and the dense phase on the x > 0 side.
Then the interface energy is given by

Aγ =

∫ 0

−∞
f(φ(x))− f(φ1) dx+

∫ ∞

0

f(φ(x))− f(φ2) dx.

(2.47)

The interface energy has two contributions, first the integral over

the gradient term,
∫
Vsys

κ
2
(∇φ)2 dV and second a contribution

from the deviation of the local free energy density from the equi-

librium values ∆f1 = f(φ) − f(φ1) and ∆f2 = f(φ) − f(φ2)
(this corresponds to ∆f in fig. 2.2). This integral can be evalu-

ated numerically or by expanding the free energy density around

the critical point[123]. For the strong interaction limit (or far

away from the critical point) Cahn and Hilliard[123] find (in

our notation) γ ≈ π
2
√
2
v
−2/d
0 χkBT using numerical techniques to

solve the integral, similarlyMao et. al.[65] find γ ≈ π
4
v
−2/d
0 χkBT

for multiple phases, if each phase is dominated by one compo-

nent.
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29: If reactions are present, the two

species are not independent of each

other and the system has one degree

of freedom less, soGibbs phase rule

permits only one phase for binary

systems with reactions between the

two species.

To summarize, the gradient term introduces a stable inter-

face width w ≈ v
1/d
0 , which corresponds approximately to the

lattice length scale for strong interactions. We, therefore, use

w = v
1/d
0 as the length scale for all further problems. This is a

convenient choice for simulations as well because a spatial reso-

lution dx . w is necessary and sufficient for numerical stability.

A result of the stable interface is an extra interface energy Aγ
determined by the interface tension γ and the geometry of the in-

terfaceA. Aγ, as defined in Eq. 2.47, has two contributions, one
from the gradient term and one from the local free energy change

across the interface. Notably for spherical interfaces with radius

R the curvature introduces a Laplace pressure pL ∝ γ/R, which
changes the equilibrium concentrations in droplet and solvent

phase[60] and leads to coarsening of multiple droplets via Ost-

wald ripening[87]. While chemical reactions at interfaces are an

important topic[129], we are mostly interested in bulk reactions

here and the contribution of the interface region to reactions is

negligible in our study.

Ternary Free Energy

If we want to discuss thermodynamically consistent reactions

(Eq. 2.27) the binary description introduced above is insufficient,

because reactions convert particles and thus break conservation

of average volume fraction29 . As a result the system relaxes into

a homogeneous state, where the average volume fraction corre-

sponds to the free energy minimum. The dynamics correspond

to a combination of Allen-Cahn and Cahn-Hilliard or model A

and model B dynamics in the classification of Hohenberg and

Halperin[35]. Thus to discuss equilibrium phase separation with

reactions we need at least three species. We therefore introduce

a second protein species A and extend the binary free energy

Eq. 2.39 to the ternary case (using φC = 1− φA − φB)

v0f

kBT
=φA ln(φA) + φB ln(φB) + (1− φA − φB) ln(1− φA − φB)

+ wAφA + wBφB + χABφAφB + χACφAφC + χBCφBφC

− v
2/d
0 (χAB∇φA∇φB + χAC∇φA∇φC + χBC∇φB∇φC), (2.48)

where χij is the interaction strength between species i and j.
We omitted the internal energy of the solvent because it does

not react in our model. In addition, we now get two chemi-

cal potentials, one for A and one for B, but both chemical po-

tentials are exchange chemical potentials with respect to C, i.e.
µA = δF/δNA − δF/δNC . The chemical potentials are given
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30: This is true for the N compo-

nent case as well, where F has to

be minimized with respect toN −1
species andN phase volumes in the

incompressible case. Although this

reduces again if chemical reactions

are present, because reactions intro-

duce new conservation laws and the

species are not independent of each

other anymore.

31: In both cases a term linear

in φB appears, which can be in-

cluded in the wB term as well. It

appears when incompressibility is

used for χφBφC and does not influ-

ence phase separation. But we keep

it because it is the familiar form of

a regular solution theory.

32: Due to reactions φ̄A(t) is a

function of time though.

by

µA

kBT
= ln φA

1− φA − φB

+ wA + χABφB + χAC(1− 2φA − φB)

+ χ̄∇2φB − χAC∇2φA, and (2.49a)

µB

kBT
= ln φB

1− φA − φB

+ wB + χABφA + χBC(1− φA − 2φB)

+ χ̄∇2φA − χBC∇2φB. (2.49b)

where χ̄ = χAB−χBC−χAC . Due tomultiple interaction param-

eters χij a ternary solution allows more complex behaviour, e.g.

multiple phases[65, 66] and composition dependent equilibrium

concentrations[18]. But the conditions for phase separation pre-

sented for the binary case still hold. We get one more condition,

mass conservation of species A, and one more parameter φA,1,

to minimize F . But also Gibbs phase rule now allows up to three

phases30 , which results in µA(φA,1, φB,1) = µA(φA,2, φB,2) =
µA(φA,3, φB,3).

In this study, we want to investigate the specific case where

B phase separates from C, while the transition between A and

B can control phase separation. Therefore we restrict the inter-

actions in the following way:

1. Phase separation happens mainly due to B interactions

with C; χ = χBC > χc

2. The total amount of proteins is low compared to the sol-

vent; 1 > φ̄C � φ̄A + φ̄B

3. A does not phase separate from the solvent on its own;

χAC � χc.

While this still leaves considerable freedom, for example, whether

A predominantly partitions into the solvent phase(χBC > χAC)

or droplet phase (χAC > χBC) phase, we will discuss two ex-

ample cases that simplify the calculations while the results are

qualitatively the same for other choices as long as the above con-

ditions are fulfilled. In the first case A does not interact at all;

χAC = χBC = 0, while in the second case A interacts the same

way as C; χAB = χBC = χ and χAC = 0, thus

h(φB, φA) = χφB(1− φB − φA), and (2.50a)

h(φB) = χφB(1− φB). (2.50b)

The advantage of these two cases31 can be seen from fig.2.9,

if A does not interact with C or B, A is approximately homoge-

neously distributed, given by φ̄A =
∫
Vsys

φA dV and it just re-

scales the incompressibility condition32 φC = 1−φB − φ̄A; see

the horizontal tie lines in fig.2.9A. Importantly no phase separa-
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Figure 2.9: Ternary phase diagram for different interactions of A. The top row shows three examples of effec-

tive free energies as a function of φB while the bottom panels show the regions where phase separation is favorable

(enclosed by maroon dashed lines) in the φA − φB phase space. In the grey area φA + φB > 1, which violates incom-

pressibility. AA does not interact withB or C and thus distributes homogeneously in both phases (horizontal tie lines

in the lower panel); Eq. 2.50a. Above a critical amount of A phase separation is suppressed, because the remaining

B-C interaction is too weak. Here, χ = 2.5. B If A interacts like C, Eq. 2.50b, we can write an effective free energy
where the ratio φA/φC is constant (top panel). In this case, the ternary system effectively behaves like the binary

one and the equilibrium volume fractions of the phase-separated state become independent of the total amount of A
(bottom panel). Here, χ = 3. C A and B interact attractively while C is neutral (does not interact). In this case, phase

separation is favroable only if enoughA andB are present. The tie lines have positive slope, which indicates attractive

interactions. Here, χ = −10 and the free energy density has been modified by a linear term 6.5φ+ to show the double

well form of the free energy. This has no effect on the phase separation behavior.

tion happens above a certain amount ofA, because it takes up too
much space. So this scenario is most useful for small amounts of

A. The disadvantage of this choice is that A accumulates at the

interface between droplet and solvent phase because it acts as a

buffer to reduce the unfavorable B-C contacts. In addition, A
gradients are not penalized with the purely enthalpic choice for

κij = v
2/d
0 χij and we have an extra parameter κAA to stabilize

the interface.

IfA interacts likeC, it gets excluded from theB rich phase

in the same way as C; see fig.2.9B. In this case the chemical

potential of A reduces to µA = kBT (ln(φA/φC) + wA) and in

equilibrium the ratio of A to C, φA/φC , has to be constant ev-

erywhere. Under this condition, the free energy reduces to the

binary case as shown in fig. 2.9(B). We find that in this case

the equilibrium volume fractions ofB in solvent rich andB rich

phase are independent of the total amount of A and are given by

the same values as in the binary system with the same interac-

tion χ. This makes the theoretical treatment easier because the
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Figure 2.10: Linear stability

analysis for a ternary system.

Perturbation growth rate ω as a

function of wave vector |k|. The
growth rates for A interacting like

C, Eq. 2.50b, and not interacting,

Eq. 2.50a, are shown in maroon

and blue respectively. In both cases

there is one stable mode (dashed

line) and one unstable model

(solid line). While the magnitude

and range of the unstable modes

differ, the behavior is qualitatively

the same as in the binary case;

see fig. 2.5. Parameters used are

χ = 3.5, φ̄A = 0.15 and φ̄B = 0.4.

33: As for the binary system, unsta-

ble modes only exist for φ̄B > φb
and φb can depend on φ̄A.

equilibrium volume fractions do not depend on time and can be

treated as constants. Here the disadvantage is that the A volume

fraction in the droplet phase becomes very small, which can lead

to numerical instabilities if diffusive noise is included in the sim-

ulations.

Finally, fig. 2.9C shows the special case thatA andB inter-

act attractively, whileC is neutral, i.e. does not interact at all. In

this case, the enthalpy is given by h = χφAφB and χ � 0. We

do not discuss this case in detail but want to mention it because

it is important for some biomolecular condensates and complex

coacervates[84]. It is supposed to showcase the complex behav-

ior that is possible in ternary systems, but not in binary systems.

Note how the slope of the tie lines change sign from fig. 2.9B

to C, indicating that A and B repel in fig. 2.9B and attract each

other in fig. 2.9C; see as well Ref.[111] for a discussion about

the information content in tie lines.

If not otherwise noted, we will from now on use the en-

thalpy in Eq. 2.50b, h = χφB(1 − φB), i.e. A interacts like C,
in all calculations and simulations.

In addition to the more complex interactions, in the ternary

system we have to describe the dynamics of two species and the

diffusive dynamics are given by two, in general coupled, partial

differential equations

∂tφA = ∇

( ∑
j=A,B

ΛAj(Φ)∇µj

)
, and (2.51a)

∂tφB = ∇

( ∑
j=A,B

ΛBj(Φ)∇µj

)
. (2.51b)

The linear stability of Eq. 2.51a for the two above men-

tioned cases, Eq. 2.50b and Eq. 2.50a, is shown in fig. 2.10 for

the simple case of equal, constant diffusivities ΛA = ΛB = Λ
and neglecting cross diffusion ΛAB = 0. For the calculations

see App.C. In both cases, one eigenvalue, or growth rate, con-

tains a band of unstable modes (solid lines)33 , while the other

eigenvalue is always stable. If A interacts like C, the band of

unstable modes is longer and shorter wavevectors are unstable.

The reason for this is that the total interaction energy is higher

and thus the tendency to form sharp interfaces is stronger.

2.5 Simulations

All numerical simulations in this thesis were donewith the python

package py-pde[130] and extensions developed in the Zwicker

group. The package uses finite difference methods to solve par-

tial differential equations, in our case of the formEq. 2.2. Thereby,
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34: We assume the molecular vol-

umes of A and B are equal (this is

necessary for conversion reactions

to conserve volume) and given by

the lattice volume vA = vB = v0
(this is an assumption to simplify

calculations).

we use the explicit Euler method for time evolution. Because of

the 4th order derivatives, both the volume fraction as well as

the chemical potential need to be supplied with boundary con-

ditions, where we applied either no flux or periodic boundary

conditions as indicated in the figures. The py-pde package al-

lows for grids with unequal spacing and special symmetries, for

example spherically symmetric and cylindrical grids. In this

case, the Laplace operator in spherical or cylindrical coordinates

is used[130]. Stochastic simulations are done by solving the

stochastic differential equation in the Itô representation[131].

2.6 Summary

In this chapter, we have introduced the theoretical basis of this

thesis. We will mostly stay in the ternary description, although

an extension to more components is conceptually straightfor-

ward using Eq. 2.30. In addition we will discuss the strong in-

teraction limit (χ � χc) with interactions described by either

Eq. 2.50a or Eq. 2.50b. Using the framework of non-equilibrium

thermodynamics introduced in sec.2.2, neglecting cross diffu-

sion and assuming constant diffusivity for simplicity, the general

dynamics are determined by34

∂tφA = ΛA∇2µA +
∑
k

νA,ksk, and (2.52a)

∂tφB = ΛB∇2µB +
∑
k

νB,ksk. (2.52b)

The forward and backward reaction rates sk = sfk − sbk are con-
nected to the free energy change of reaction ∆Fk via a detailed

balance condition

sfk
sbk

= exp
(
∆Fk

kBT

)
. (2.53)

In addition, the actual rates are determined by Eq. 2.27. Start-

ing from this we will next introduce the simple switch reaction

between A and B in a closed system and discuss its implication

on thermodynamic equilibrium.





Passive Reactions 3

3.1 Chemical Equilibrium . 43

Equilibrium ratio in an ho-

mogeneous mixture . . . . 44

3.2 Phase separation and chem-

ical reactions . . . . . . . . 47

Equilibrium dynamics . 50

Chemical Reactions control

droplets . . . . . . . . . . . 54

3.3 SAF-A Phase separation 56

Modified free energy . . 57

Strong binding approxima-

tion . . . . . . . . . . . . . . 59

Localized binding sites can

nucleate droplets . . . . . . 61

FRAP simulation . . . . 64

Model predictions . . . . 65

3.4 Droplets control chemical

reactions . . . . . . . . . . . 68

Chemical equilibrium in

droplets . . . . . . . . . . . 68

Kinetics of an association re-

action . . . . . . . . . . . . . 70

3.5 Summary . . . . . . . . . 71

Using the theory introduced in Ch. 2 we here discuss the

influence of passive chemical reactions on phase separation in a

closed system that relaxes to equilibrium. We start with the sim-

plest toy model, a ternary system with solvent C and a protein

that can exist in two forms, a soluble form A and a phase sepa-

rating formB. A chemical reactionA
 B can switch between

the soluble and phase separating form; see fig. 3.1. The theoret-

ical description is based on the ternary free energy in Eq. 2.48

and the chemical potentials of A and B in Eq. 2.49. In the first

step, we introduce the chemical equilibrium for this system and

demonstrate that the equilibrium ratio of A and B depends on

the local composition due to the same enthalpic interactions that

drive phase separation.

Parts of this chapter are based on results from Kirschbaum

and Zwicker; ‘Controlling biomolecular condensates via chemi-

cal reactions’, J. R. Soc. Interface (2021)18, Ref.[105]. In par-

ticular, Sec.3.1 and Sec.3.2 contain more detailed discussions

about the model used in Ref.[105]

3.1 Chemical Equilibrium

The chemical reaction A 
 B is in equilibrium if the chemi-

cal potentials of A and B are equal µA = µB. In this case, the

thermodynamic force discussed in Section 2.2, µA − µB van-

ishes. Thus, there is no energetically preferred direction for the

reaction. Using Eq. 2.49 we can write the chemical equilibrium

condition as

µB − µA

kBT
= ln φB

φA

+ wB − wA + hB − hA = 0, (3.1)

where hi = (kBT )
−1∂φi

h is the interaction enthalpy per i parti-
cle. Therefore, we can define the equilibrium ratio K as

K =
φB

φA

∣∣∣∣
eq

= exp (∆w +∆h(φA, φB)) . (3.2)

Here ∆w = wA − wB is the internal energy difference between

A andB and∆h = hA−hB is the interaction energy or enthalpy

difference betweenA andB. In the chemistry literature the ratio

between products (B) and reactants (A) in equilibrium is called
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Insoluble 
protein B

Soluble 
protein A

Figure 3.1: Schematic of a phase

separating system with chemical

reactions. A protein can exist in

two forms, the phase separating

form B (orange particles) forms

droplet (orange background), while

form A (green particles) is soluble

in the solvent C (blue background).

In both phases, droplet and solvent

phase, the reversible chemical reac-

tion can switch between states A
and B (black arrows).
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Figure 3.2: The equilibrium ra-

tio is strongly influenced by the

total protein fraction.Equilibrium

ratioK (Eq. 3.5) as a function of to-

tal protein fraction φ+ (blue line).

For small φ+ the protein state A is

dominant (K � 1) and K scales

only weakly with φ+ (lower dashed

black line). For high φ+ state B
becomes favorable (K � 1) due
to enthalpic interactions and K in-

creases exponentially with φ+ (up-

per black line). In between, there is

a bi-stable crossover region where

either A or B is favored depend-

ing on the initial conditions. Here

χ = 4 and ∆w = 1.5.

1: For a analytical solution for gen-

eral pairwise interactions see Ap-

pendix.E.

the equilibrium constant or equilibrium ratio K[132]. Eq. 3.2

shows that the ratio is not constant, but depends on local compo-

sition due to interactions, we, therefore, call it equilibrium ratio

K rather than equilibrium constant in the following.

Equilibrium ratio in an homogeneous mixture

In a homogeneously mixed system of A, B, and C the volume

fractions φi(r, t) = φ̄i(t) are constant in space. In addition, the
total amount of protein φ+ = φA(t) + φB(t) and solvent φC

are conserved and thus constant in time as well. Therefore, the

state of the system is fully determined by the ratio φB(t)/φA(t)
which relaxes towards the equilibrium ratio given in Eq. 3.2. In

equilibrium, the volume fractions of A and B are thus given by

φeq
A =

1

1 +K
φ+, and (3.3a)

φeq
B =

K

1 +K
φ+. (3.3b)

Thus all proteins are in state B for K � 1 (φeq
B = φ̄+) and all

proteins are in state A for K � 1 (φeq
A = φ̄+).

In an ideal, dilute solution we would expect K to be con-

stant and φeq
A,B to scale linearly with φ+. But in general, φ+ is

an important control parameter for the ratio of the two protein

states because ∆h(φA, φB) in Eq. 3.2, and thus K, depends on

φ+. To see this, we can calculate the equilibrium ratio in Eq. 3.2

as a function of the total amount of protein φ+ = φA + φB for

the special case that A does not interact with C, but repels from
B in the same way as C does (Eq. 2.50b)

∆h(φB) = −χ(1− 2φB). (3.4)

In this case∆h depends on φB only and we get a simple expres-

sion for K(φB) in chemical equilibrium1 using Eq. 3.2

K = exp(∆w− χ(1− 2φB)) = exp(∆w− χ+2χφB). (3.5)

In fig. 3.2,K is plotted as a function of φ+ for χ = 4 and∆w =
1.5. While K(φB) is a simple exponential function of φB its

dependence on φ+ = φA + φB is more complicated because

φA = φBK(φB) can have multiple solutions for a fixed φ+; see

fig. 3.2. From fig. 3.2 it is clear that K is strongly influenced

by the total amount of protein and varies by ca. three orders of

magnitude when going from a system without protein to pure

protein.

Furthermore, we can distinguish two regimes: for low total
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Figure 3.3: Phase space diagram

of a homogeneous ternary mix-

ture with chemical reactions. In

chemical equilibrium (µA = µB)

the volume fractions ofA andB are

constrained by Eq. 3.2 (blue line)

on the one hand and by the total pro-

tein volume fraction φ+ = φA +
φB (black dashed line) on the other

hand. The intersection of these two

constraints (purple dot) defines the

volume fractions (φeq
A , φ

eq
B ) in a ho-

mogeneous mixture in equilibrium.

In the gray area φA + φB > 1,
which is forbidden due to incom-

pressibility. Here χ = 4 and∆w =
1.5.

2: The temperature is an important

control parameter for both χ(T )
and ∆w(T ). Since they can scale

differently with T it is, in general,

possible to switch between an in-

teraction dominated and internal en-

ergy dominated behavior by chang-

ing T . But we assume isothermal

systems so we will not discuss the

role of temperature in detail.

protein fractions, φ+ � 1, the non-ideal contribution is small.

χφB � 1. Thus, the equilibrium ratio scales linearly with pro-

tein amount K ∝ χφ+; lower black line in fig. 3.2. For high

amounts of protein and χ > ∆w, the non-ideal contribution be-
comes dominant. As a result, K scales exponentially with φ+,

K ∝ exp(2χφB); upper black dashed line in fig. 3.2. Notably,

the crossover is not smooth but happens via two saddle-node

bifurcations, and varying φ+ dynamically would even show hys-

teresis. The reason for this is best illustrated by plotting the

chemical equilibrium concentrations in the φB − φA plane in-

stead of the K − φ+ plane. Due to the simple form of Eq. 3.5,

we find an analytic expression φeq
A (φB) as well

φeq
A (φB) = φB exp(−∆w + χ(1− 2φB)), (3.6)

which is plotted in a φB vs φA phase space in fig. 3.3. For a

given φ+, the intersection of φA + φB = φ+ (black dashed line

in fig. 3.3) and chemical equilibrium (blue line) gives the equi-

librium volume ratio K (purple dot). Varying φ+ and finding

the correspondingK results in fig. 3.2. For low protein fraction,

the chemical equilibrium line is approximately linear and corre-

sponds to the lower black dashed line in fig. 3.2. In the crossover

region three equilibrium ratios exist, two stable and one unsta-

ble, while for large protein fractions only the exponential branch,

where virtually all proteins are in-state B, is stable.
For the simple choice of ∆h in Eq. 3.4 the model has two

parameters2 , the interaction strength χ and the internal energy

difference ∆w. It is instructive to discuss the limiting cases of

these parameters as shown in the φA−φB phase space in fig. 3.4.

For large |∆w| � χ > 0, one of the two species is strongly

favored, A for ∆w < 0 and B for ∆w > 0, and the effect of

interactions becomes negligible in the discussion of chemical

equilibrium; see fig. 3.4A. For |∆w| � χ > 0 and∆w < 0, the
equilibrium ratio becomes

K ≈ e∆w−χ(1 + 2χφB), (3.7)

which is in a good approximation constant for all total protein

fractions because φB � 1; see light blue line in fig. 3.4A. If

B is favored, ∆w � χ > 0 and ∆w > 0, the interaction is

negligible only for very large ∆w � χ because for low total

protein fractions the factor exp(∆w − χ) contains a −χ term

that favorsA; see dark blue line in fig. 3.4A. To sum up, the two

limits |∆w| � 0 correspond to the binary mixtures of A and C
(∆w < 0) and B and C (∆w > 0) respectively. The internal
energy differences are so large that one of the two protein forms

is strongly favorable.

The χ dependence, for a fixed value of ∆w − χ, shown in
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Figure 3.4: Parameter depen-

dence of chemical equilibrium in

φB − φA phase space. Blue lines

indicate the condition µA = µB

in φA-φB space. A Increasing ∆w
for fixed χ favors the phase separat-

ing state B over the soluble state A
(dark blue line), in the limit∆w →
∞ noA is present. For low or nega-

tive ∆w the interactions χ are neg-

ligible and the equilibrium ratio K
is almost constant (light blue line)

and given byK = exp(∆w−χ) B
In non-interacting systems (χ = 0,
light blue line) the equilibrium ratio

becomes a constantK = exp(∆w),
while for increasing χ the inter-

actions favor the phase separating

state (dark blue lines).
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Figure 3.5: Equilibrium ratio K
for strong interactions χ = 10
and weak internal energy differ-

ence ∆w = 1. In this limit the

lower branch of K is always stable

and independent of φ+, while the

upper branch appears for high total

protein fraction only, where inter-

actions become more relevant. For

high total protein, the difference be-

tween the branches is exp(2χ) and
thus in each branch, only one type

of protein species is present.

fig. 3.4, is straightforward. If the interaction vanishes, χ → 0,
K becomes a constantK = exp(∆w) and chemical equilibrium

becomes a straight line in fig. 3.4B (light blue line). For high χ,
the high B fractions branch shown in fig. 3.2 becomes stable

(e.g. for χ = 3). Increasing χ shifts the crossover between low

B fraction branch to high B fraction branch towards lower total

protein fraction, which can be seen from the shift of the blue

curves maxima for higher χ in fig. 3.4B.

To see non-monotonic behavior of the equilibrium ratioK,

it is necessary to switch between the high B fraction and low

B fraction branch in fig. 3.2 depending on the total fraction of

proteins φ+. This is possible if the argument of the exponen-

tial factor exp(∆w − χ + 2χφB) can change sign as a function
of φB. As a result, the factor ∆w − χ should be smaller than

zero, but ∆w + χ should be larger than zero. This restricts the

internal energy difference to the same order of magnitude as the

interactions driving phase separation. This is a strong restriction

for biological systems as it requires parameter tuning, but can be

circumvented by driving the reaction out of equilibrium which

we will discuss later.

Before discussing the kinetics of these homogeneous, reac-

tive mixtures a short last note on the strong interactions limit χ
for weak internal energy differences 0 < ∆w � χ, which is

shown in fig. 3.5. In this limit, the low B fraction branch is al-

ways stable, while the high B fraction branch appears for high

total protein fractions and the difference between high K and

lowK is approximately exp(2χ), which becomes large for high

χ. Thus, a dense mixture of a protein that can exist in two states

that interact strongly repulsive, but are close in internal energy,

shows bistability with almost perfect separation (only A in the
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3: While the quantitative dynam-

ics differ using TST, this still be-

haves like the Allen-Cahn equa-

tion or model A[35] in the limit of

φ+ → 1, which can show tran-

sient phase separation on its own

in in-homogeneous systems, while

it relaxes to the equilibrium state

µA − µB = 0.

lower branch and only B in the higher branch).

So far we have only discussed the equilibrium state of the

system. In this part, we will shortly discuss the kinetics using the

framework introduced in Sec.2.2. Since we assume an homoge-

neous mixture, the dynamics are given by the reaction only. As

discussed in Ch. 2, the reaction has to obey detailed balance, so

the forward sf and backward sb rate are related by

sf

sb
= exp µA − µB

kBT
, (3.8)

while the total reaction flux s is given by s = sf − sb. This

ensures that the reaction relaxes to equilibrium, i.e. s = 0 for

µA = µB. But, a priori we do not know the functional form of

sf/b and here we use transition state theory Eq. 2.27 to model

the reaction flux3 . In this case the dynamics are described by

∂tφA = −ke
µA
kBT (1− e

µB−µA
kBT ), and (3.9a)

∂tφB = ke
µA
kBT (1− e

µB−µA
kBT ). (3.9b)

For the simple reaction A 
 B with equal molecular vol-

umes ofA andB the reaction rate obeys sA = −sB and because

φ+ = const, we can rewrite the dynamics in terms of the ratio

of φB/φA as

∂t

(
φB

φA

)
= kewB+χ(1−2φB)

(
1 +

φB

φA

)(
K − φB

φA

)
. (3.10)

This shows that the ratio relaxes exponentially to φB

φA
= K with

an effective rate k̄(t) = kewB+χ(1−2φB)(1+φB/φA) that depends
on time via φA/B(t).

3.2 Phase separation and chemical

reactions

We discussed the basics of ternary phase separation in Sec.2.4

and the equilibrium of a simple conversion reaction in Sec.3.1.

In this section, we discuss the combination of both processes.

The system behavior is then dominated by the two equilibrium

conditions discussed above, chemical equilibrium µA = µB and

equilibrium in both phases. Here, we call the B-rich phase, the
droplet phase, and theB-poor phase, the solvent phase. Thereby,
φin
i and φout

i describe the volume fraction inside and outside the

droplet respectively. The phase equilibrium condition then be-

comes µin
i = µout

i and Πin = Πout. Graphically, chemical and
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Figure 3.6: Combined equilibrium for reactions and phase separation. AChemical equilibrium (blue line) in φA vs

φB space. Chemical equilibrium is a necessary condition for the equilibrium state. But if the homogeneous state (purple

dot) lies in the binodal region (maroon dashed lines) the phase separated state (blue and orange dot) is energetically

favorable and droplets can form. B Equilibrium ratioK as a function of total protein fraction. Unlike the homogeneous

case, there are now three important equilibrium fractions, the homogeneous one for a given φ+ (purple) and the two

ratios in dropletKin (orange dot) and solventKout (blue dot) phase. ForK < Kout the homogeneous state is always

stable, but for K > Kout droplets can form and the equilibrium ratio in droplet (Kin) and solvent (Kout) phase is

different. Parameters are φ̄+ = 0.4 (only A), χ = 3 and ∆w = 1.5.

phase equilibrium can be combined as shown in fig. 3.6A. The

most important point is that phase separation is compatible with

chemical equilibrium because the chemical equilibrium curve

(blue line) intersects the phase equilibria (maroon dashed line)

such that the two intersections (blue and orange dots) lay on a

tie line (blue dashed line)[106].

As a result, the equilibrium conditions for the chemical po-

tential µA = µB, µ
in
A = µout

A and µin
B = µout

B can be fulfilled

at the same time, while mechanical equilibrium, Πin = Πout, is

not directly influenced by the chemical equilibrium condition.

The main difference to ternary phase separation without reac-

tions is that the mass conservation constraint for A and B gets

replaced by the chemical equilibrium condition that determines

the ratio of the two species, while the total amount of protein is

still conserved[105, 133]. Thus the system is fully determined

for a given total protein fraction φ̄+.

The phase separated state can be characterized analogous

to chemical equilibrium using the partition coefficient for each

species Γi which is the ratio of volume fraction between droplet

and solvent phase in equilibrium[133, 134] and can be calculated

from µin
i = µout

i

Γi =
φin
i

φout
i

=
φout
C

φin
C

exp(hout
i − hin

i ) (3.11)

for i = A,B. If Γi > 1 species i is enriched in the droplet phase,
while for Γi < 1 species i is enriched in the solvent phase. In

the phase separated state, the equilibrium ratio K is different in

solvent and droplet phase; see fig. 3.6B. The two equilibrium
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Figure 3.7: Phase diagram of

droplet stability. The black line

separates region of stable droplets

(white area) from regions without

droplets (grey area). For fixed in-

teraction strength, here χ = 4, the
minimum total protein fraction nec-

essary for droplets to be stable is

φout
B (maroon line) and increases

for decreasing internal energy dif-

ference up to the point where no

phase separation is possible even

for φ̄+ = 1.

4: In this limit all proteins are in

stateB and we are back in an effec-

tive binary system.

ratios are given by

Kin =
φin
B

φin
A

= exp(∆w +∆hin), (3.12a)

Kout =
φout
B

φout
A

= exp(∆w +∆hout). (3.12b)

Comparing Eq. 3.12 and Eq. 3.11, we get an interesting relation

between partition coefficients, describing phase equilibrium, and

equilbrium ratios, describing chemical equilibrium

Kin

Kout
= exp(hin

A − hout
A − hin

B + hout
B ) =

ΓA

ΓB

. (3.13)

This relation is obvious from the definition of equilibrium ratios

and partition coefficients, but the fact that phase separation in-

fluences equilibrium ratios has only started to be acknowledged

recently[135]. This relation can be generalized to more com-

plex reactions and multiple phases[133] and shows that both

processes, phase separation and equilibrium reactions, are inti-

mately linked via the chemical potential.

For a ternary system without reactions, phase separation is

energetically favorable if φ̄B > φout
B . This condition remains

true, but now φ̄B is not conserved anymore. Instead it is deter-

mined by chemical equilibrium Eq. 3.3b; purple dot in fig. 3.6.

So the question of whether phase separation is energetically fa-

vorable depends on φ̄+ and K. For general forms of enthalpic

interactions, the problem becomes very complicated. Therefore,

we again return to the simple example where A interacts like

C, h = χφB(1 − φB) discussed above already. In addition,

we focus on the two new parameters, the internal energy differ-

ence∆w and the total protein fraction φ̄+ for a fixed interaction

strength χ. In addition, we assume χ to be high enough to show

phase separation for φ̄B > φout
B . Clearly, the minimum amount

of protein fraction necessary for phase separation tends to φout
B

for ∆w → ∞4 , while no phase separation is possible at all for

∆w → −∞; see fig. 3.7. According to Eq. 3.3b the separation

between regions where phase separated droplets are stable and

unstable is given by

K

1 +K
φ̄+ = φout

B , (3.14)

which corresponds to the black line in fig. 3.7. Note that this

result is specific for this choice of enthalpic interaction, but it

holdsmore generally under the constraint thatA interacts weakly

as introduced in Ch. 2. In this case, the reaction always reduces

the propensity to phase separate compared to the case where all

proteins are in state B.
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Figure 3.8: Simulation of a phase separated droplet for different mobilities. In panels A and B the volume fraction

(left y-axis) of A (green line) and B (orange line) and chemical potential difference (right y-axis black solid line) are

plotted along a radial cut through the droplet in the steady state. The blue and orange regions correspond to solvent and

droplet phase respectively. The stable radius R∗ is indicated by the black dashed line. In both panels χ = 4,∆w = 2,
and φ̄ = 0.2 and simulations were done for spherically symmetric radial grids and no flux boundary conditions.A uses

constant, diagonal mobilities ΛAA = ΛBB = Λ, ΛAB = 0 and LNEQ reactions s = k(µA − µB). B uses Kramers

mobilities[114] Λij = Λ(φiδij − φiφj) and TST reactions s = λ(exp(µA/kBT ) − exp(µB/kBT ). C Shows the

corresponding φA vs φB phase space. The equilibrium fractions in droplet and solvent phase are expected to coincide

with the intersection of the binodal (maroon dashed lines) and chemical equilibrium (blue line). The blue dots are taken

from the simulations in A and match very well with theoretical predictions.

Equilibrium dynamics

In its general form, the dynamics of the system discussed above

are given by [136]

∂tφi = ∇

[∑
i,j

Λij(Φ)∇µj

]
+ νis i, j = A,B, (3.15)

where, according to Sec.2.2, the reaction flux is either described

by linear non-equilibrium thermodynamics (LNEQ) (Eq. 2.25)

s = k(µA − µB) or TST (Eq. 2.26) s = λ(eµA/kBT − eµB/kBT ).
This again emphasizes that the system is a combination of Allen-

Cahn/model A[137] (reaction, non-conserved order parameter)

and Cahn-Hilliard/model B[123] (diffusion, conserved order pa-

rameter) dynamics. The dynamics, for example the scaling of

domain growth[35], behavior around the critical point[102] and

combination of both models[120] have been and still are widely

discussed. But we are mostly interested in how the cell can

use reactions to switch between a state where droplets are sta-

ble or not. Therefore, we focus on the steady state of the system

rather than on the quantitative dynamics, i.e. how fast the state

is reached. In addition, to circumvent the nucleation problem,

we start with an initial state of a droplet larger than the critical

radius. Fig. 3.8 shows the steady state, which corresponds to

the equilibrium state, for two different choices of mobilities and

reaction rates. Thereby, fig. 3.8A uses the most simple model,

diagonal, constant mobilities Λij = Λδij and LNEQ reactions

s = k(µA − µB), while B uses the more complex scaled mobil-

ities[65, 114] Λij = Λ(φiδij − φiφj) and transition state theory
reaction rates s = λ(eµA/kBT − eµB/kBT ). Notably, the steady
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5: Because µA and µB are ex-

change chemical potentials with re-

spect to C, µ+ corresponds to re-

placing two C particles with one

A and one B, while µ− is the ex-

change chemical potential between

A and B because the C contribu-

tion vanishes.

6: In the chemical potential picture

boundary conditions for µA and µB

are enough to define the system, but

for the simulations we need bound-

ary conditions for φi and we use no-
flux conditions as well, which phys-

ically corresponds A and B not in-

teracting with the boundaries.

states are very similar, although there is a small but significant

difference between the steady state radii that we attribute to the

fact that the simulations are not fully relaxed. It is not surprising

that both simulations give the same result because the equilib-

rium state is independent of kinetics and should not depend on

our choice of mobilities or rate models as long as they are ther-

modynamically consistent.

The steady state simulation in fig. 3.8 illustrates the find-

ings of fig. 3.6 discussed above. Although the ratio of B to A
volume fraction in droplet and solvent phase is significantly dif-

ferent, the chemical potential difference µA−µB vanishes every-

where. This is reminiscent of phase separation, where a strong

concentration gradient is present although the chemical potential

is constant in space. In addition, fig. 3.8C shows that the simu-

lated ratio of B to A in droplet and solvent phase fits very well

to the predictions from analyzing the equilibrium state for both

simulations, simple and more complex kinetics; fig. 3.8A/B.

While we do not discuss the passive dynamics in detail, we

want to analyze the steady state for the mobilities and reaction

rate used in fig. 3.8A as an example case. The dynamical equa-

tions are then given by

∂tφA = Λ∇2µA − k(µA − µB), and (3.16a)

∂tφB = Λ∇2µA + k(µA − µB). (3.16b)

We can add and substract Eq. 3.16 and describe the system in

terms of total protein fraction φ+ = φA + φB and difference

between state A and B φ− = φA − φB and the corresponding

chemical potentials µ+ = µA + µB and µ− = µA − µB which

results in5

∂tφ+ = Λ∇2µ+, and (3.17a)

∂tφ− = Λ∇2µ− + 2kµ−. (3.17b)

If we want to solve for the steady state we need boundary condi-

tions on the boundary Ω. For closed systems it is natural to as-

sume no flux conditions on the boundary, n∇µA|Ω = n∇µB|Ω =
0, where n is an outward pointing normal vector on the bound-

ary6 . In this case, the two equations are decoupled and we see

that µ+ = const. is the only steady state solution for Eq. 3.17a.
In addition, clearly µ− = 0 is a solution of Eq. 3.17b, but is it the
only possible solution? To see that it is, let us assume there are

two solutions µ1 and µ2. Since Eq. 3.17b is linear f = µ1 − µ2

is a solution as well. To show that this leads to a contradiction,

we start from

∇(f∇f) = (∇f)2 + f∇2f = (∇f)2 + 2kf 2, (3.18)
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where we applied ∇2µ− − 2kµ− = 0 in the last step. Now we

integrate this over the whole volume Vsys and get∫
Vsys

∇(f∇f) dV =

∫
Vsys

(∇f)2 + 2kf 2 dV. (3.19)

Applying Gauß integral theorem to the left hand site, where S is

the outward pointing boundary surface element, we obtain∮
Ω

f∇f dS =

∫
Vsys

(∇f)2 + 2kf 2 dV. (3.20)

Now∇f vanishes on the boundary due to no-flux conditions, but
both (∇f)2 and 2kf 2 are non-negative (negative reaction rates

k < 0 are nonphysical). As a result f and ∇f have to vanish

everywhere and thus µ1 = µ2(= 0) is the only solution; �.

This still holds if we use transition state theory reaction

rates because we can rewrite

λ

[
exp

(
µA

kBT

)
− exp

(
µB

kBT

)]
= 2λ exp

(
µ+

2kBT

)
sinh µ−

2kBT
.

(3.21)

Since µ+ has to be a constant in the steady state independent of

reaction flux, the prefactor 2k exp(µ+/(2kBT )) is constant. In
this case the analysis above still works and we arrive at∮

Ω

f∇f dS =

∫
Vsys

(∇f)2 + 4λf 2 sinh f

2kBT
dV. (3.22)

Now f and sinh(f) have the same sign so f sinh(f) ≥ 0 there-
fore, again the only solution is f = 0 and thus µ1 = µ2. One

has to keep in mind, that this simple analysis holds for general

k, λ > 0, but only for constant diffusivities Λ. This is a sanity
check to see that the only steady state solution of these equations

is the local equilibrium solution, so gradients in the chemical po-

tential vanish and the reaction is in equilibrium.

One important information we can get from the dynamical

equations not included in the discussion about thermodynamic

equilibrium is the stability of the homogeneous state, given by

the purple dot in fig. 3.6. To see if chemical reactions stabilize

or destabilize the homogeneous state. In order to analyze this

we perform a linear stability analysis similar to the discussion

in Ch. 2 and Eq. 2.43. We start with the simple form Eq. 3.16,

which is sufficient to see the generic effect of reactions. To

simplify the calculations even further, we write Eq. 3.16 in non-

dimensional form, where we introduce a time scale t̄ = t/τ , the

energy scale kBT and the molecular length scale ∇̄ = v
−1/d
0 ∇.

The time τ = v
2/d
0 kBTΛ

−1 is defined as the average time to dif-

fuse one molecular length scale. With this the equations become
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Figure 3.9: Linear stability of a reactingmixture for different reaction diffusion lengths. Perturbation growth rates

as functions of the wave vector. The larger and smaller growth rates are shown as solid and dashed lines respectively.

A Growth rates around the homogeneous state where φB(t = 0) = 0.35 and φA(t = 0) = 0.15, so the reaction is

not in equilibrium. B Growth rates around the homogeneous state in chemical equilibrium. In both panels, the growth

rates are identical to the case without reactions for slow reactions (blue lines, ` = 200 v
1/d
0 ). But for fast reactions

(maroon line, ` = 5 v
1/d
0 ) the k = 0 mode of the negative eigenvalue does not vanish, which implies that the mass is

not conserved. Parameters are χ = 3.5, φ̄+ = 0.5,∆w = 2 and Λ = 1 v
2/d
0 /(τkBT ), ω0 = v

−2/d
0 ΛkBT .

7: In non-dimensional form

this corresponds to the (inverse)

Damköhler number as well, which

compares reactive to diffusive time

scales. Here the diffusive time

scale would be the time to diffuse

one interface width.

8: For the linear stability calcula-

tions see App.C.

∂t̄φA = ∇̄2µ̄A − `2(µ̄A − µ̄B), and (3.23a)

∂t̄φB = ∇̄2µ̄B + `2(µ̄A − µ̄B), (3.23b)

where µ̄i = µi/(kBT ) and `
2 = Λ̄/k̄ is the squared reaction

diffusion length scale7 . The reaction diffusion length compares

the characteristic reaction time k to the diffusive mobility Λ, so
for `� 1, the reaction is fast and this regime is often called dif-

fusion limited and for `� 1, diffusion is fast which is called re-
action limited[106]. We performed linear stability analysis8 on

Eq. 3.23 and the results are shown in fig. 3.9 for the case where

the average B fraction is above the spinodal fraction, Eq. 2.44,

so the system is unstable without reactions. The two cases in A

and B are performed away from the chemical equilibrium state

(A) and at the chemical equilibrium state (B). For fast diffusion

(blue lines) the result is identical to the ternary case without re-

actions; see fig. 2.10. For fast reaction (maroon lines) the sta-

ble eigenvalue does not vanish for k → 0 this means that mass

conservation is broken, which comes from the k independent re-
action. In addition, the band of unstable modes becomes wider

and the most unstable growth rate is higher. This means that, if

the homogeneous equilibrium state is such that φ̄B > φs, reac-

tions can not suppress droplet formation. Instead, reactions can

only stabilize the homogeneous mixture by keeping the average

B fraction low.
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Figure 3.10: Droplets can invert

the ratio of protein states.Volume

fraction ofA (green line) andB (or-

ange line) as a function of average

protein fraction (black dashed line).

Without droplets most of the pro-

teins are in state A (grey area), but

as soon as droplets form this trend

reverses and stateB becomes domi-

nant (white area) since the enthalpic

interactions become dominant. Pa-

rameters are χ = 4 and ∆w = 2.
The image is taken from [105] un-

der the Creative Commons CC-BY-

4.0 license.

Chemical Reactions control droplets

In this section, we discuss the framework introduced above in

the context of biomolecular condensates. Can the cell use sim-

ple passive conversion reactions to control the formation and

dissolution of droplets and, if so, under what conditions? What

is new in this framework compared to the case without reactions,

are the different control parameters. Those are the total protein

fraction φ̄+, the internal energy difference ∆w, and the inter-

action strength χ. For binary phase separation, the important

control parameters are the total amount of phase separating ma-

terial φ̄B and interaction strength χ. Thus, with reactions φ̄B is a

variable instead of a control parameter, and in addition, internal

energy differences, constants in the chemical potential, can in-

fluence the system behavior because individual particle counts

are not conserved anymore.

To be useful as a control mechanism of biomolecular con-

densates the cell has to be able to adjust the parameters. The total

amount of protein can be controlled by protein production and

degradation, but this process is slow[1], so we can regard φ̄+ as

a constant that can be varied on time scales long compared to the

reaction-diffusion dynamics. The internal energy difference∆w
can, in general, be tuned on evolutionary timescales[138] and it

depends on external parameters, similar to χ, e.g. temperature,

pressure, or pH. Changes in external parameters are responsible

for the formation of biomolecular condensates, for example, in

stress granules[37, 139]. But they are not very precise because

they influence all processes in cells. Therefore, for fast and pre-

cise control neither φ̄+ nor ∆w are suitable control parameters.

We come back to this when discussing active reactions which

can overcome this limitation.

The mechanism by which a reaction A 
 B can control

phase separation is simple, phase separation without reactions

depends on the total amount of phase separating material, φ̄B,

and phase separation is favorable if the total amount of B is

higher than the binodal, or solvent phase, fraction φ̄B > φout
B .

With reactions the total amount of B is not conserved anymore,

but depends on the equilibrium ratioK. As discussed above, the

adjusted condition for phase separation is that the total amount

of protein is higher than the binodal limit φ̄+ > φout
+ ; see fig. 3.7.

The total protein fractions in droplet and solvent phase are thereby

determined by the respective equilibrium ratios

φin
+ = (1 +K−1

in )φin
B , and (3.24a)

φout
+ = (1 +K−1

out)φ
out
B . (3.24b)

For φ̄+ < φout
+ no phase separation is present and the equi-
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9: In fact φin
B and φout

B are indepen-

dent of φ̄+ and ∆w as shown in

Ch. 2
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Figure 3.11: Internal energy con-

trols steady state droplet size.

Steady state droplet volume for dif-

ferent internal energy differences.

Droplet volume V is given relative

to system size Vsys because, like in

the non-reactive case, the droplet

volume scales with system size. If

state A is favored (∆w < χ) no
droplets form. For large ∆w > χ
droplet size approaches the binary

phase separation limit Vmax/Vsys
because all proteins are in state B.

In between there is a sharp transi-

tion where droplet size is very sen-

sitive to changes in∆w. Parameters

used are χ = 4 and φ̄+ = 0.06.
The image is slightlymodified from

[105, 141] under the Creative Com-

mons CC-BY-4.0 license.

librium ratio K determines φeq
A , φ

eq
B , but for φ̄+ > φout

+ droplets

form with the respective equilibrium ratios. The effect of this

is shown in a plot of the average A and B volume fractions as

a function of average protein fractions, fig. 3.10. In the homo-

geneous state (grey area), state A is favored (K � 1). But as
soon as droplets form, the trend reverses, and the ratio shifts in

favor of B. In fact, the maximum total amount of A is reached

for φ̄+ = φout
+ and decreases for higher total protein fractions.

Taken together, the total protein fraction φ̄+ is a control param-

eter for the ratio of state A and B. While the ratio inversion

is not very sensitive to φ̄+, it could still be a useful mechanism

to control the amount of B and A in a non-trivial way. The

general behavior is qualitatively similar to the active (B) and
inactive (A) states of enzymes[140], where the protein is in the

inactive state (homogeneous mixture) when it is not needed and

gets activated (here via phase separation) by external cues (here

changing φ̄+).

Since the protein fractions in droplet and solvent phase, de-

termined by Eq. 3.24a, are constants for given parameters9 χ,
φ̄+ and∆w, the final droplet volume is simply given by the con-

servation of total protein material

VD =
φ̄+ − φout

+

φin
+ − φout

+

Vsys, (3.25)

analogous to phase separation without reactions. As a result,

the droplet volume scales with system size Vsys and individual

droplet sizes can not be controlled by these passive reactions.

Conversely, Ostwald ripening[87] and coalescence[60] will min-

imize the surface area such that only one droplet remains. As ex-

pected the droplet volume scales linearly with the total amount

of protein, just like standard phase separation.

The corresponding dependence of droplet volume on the in-

ternal energy difference is shown in fig. 3.11. For∆w � χ, all
proteins are in state A such that no droplets form. For∆w � χ,
all proteins are in state B, and the system behaves like a binary

phase separating mixture. In this case, the droplet size is maxi-

mal (black dashed line). In between, there is a sharp transition,

where slight changes in ∆w can have a big impact on droplet

volume, i.e. the droplet size is very sensitive to changes in ∆w.
On the one hand, the strong response to slight changes in ∆w
could be useful for the cell to respond to external cues, for ex-

ample in stress granules[103]. But on the other hand, to use this

effect cells need to finetune the internal energy differences. On

long timescales, this is possible, since evolution does tune pro-

tein interactions[138]. Later we will show that active reactions

can overcome this problem by tuning chemical equilibrium.

So far, we developed a general framework based on thermo-
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Figure 3.12: Schematic represen-

tation of the SAF-A protein. SAF-

A has a length of 806 amino acids

and contains a prion like domain

(RGG in red) known to be a driver

of phase separation[143, 144]. In

addition the RGG domain can bind

to RNA as well. Image modified

from [142] under the Creative Com-

mons license.

Unbound  
SAF-A

RNA-Bound  
SAF-A

RNA-Binding 
sites

Figure 3.13: Schematic represen-

tation of the SAF-A model. The

SAF-A proteins can exist in two

states: either they diffuse freely

(orange particle) or bind to RNA

(green circles) and thereby become

immobile (green particles). Due to

attractive interactions in the RGG

domain (black dashed lines), SAF-

A can form condensates (orange

area) inside the cytosol (blue area).

The binding-unbinding process can

be described as a chemical reaction

(black arrows).

dynamics to incorporate simple conversion reactions into a liq-

uid mixture that shows phase separation. Next, we will discuss

how this framework can be useful in understanding the phase

separation behavior of a specific protein, SAF-A, an RNA bind-

ing protein[142].

3.3 SAF-A Phase separation

Together with collaborators in Edinburgh, we used our model to

help understand the phase separation behavior of the RNA bind-

ing protein SAF-A. SAF-A is involved in regulating the structure

of chromatin in human and other mammalian cells[142, 145].

Fig. 3.12 shows a schematic of the SAF-A protein and its func-

tional domains. For our discussion, the RGG domain (red) is

important because it contains parts responsible for binding to

RNA as well as prion-like domains that are recognized as im-

portant drivers of phase separation in cells due to multiple weak

interactions [143].

In the first step, we want to build a simple model based on

the information we have about SAF-A phase separation. First,

the RGG domain of SAF-A phase separates in vitro due to as-

sociative enthalpic interactions[142]. At the same time, SAF-A

proteins can bind to chromatin-associated RNA[142], which we

simply call RNA from here on. For high RNA concentration, the

SAF-A RNA complex can form a hydrogel like structure with

low diffusivity. We translate these properties into a model as

shown in fig. 3.13, the SAF-A molecules can exist in two states,

either freely diffusing or bound to RNA. In the RNA bound state,

their mobility is drastically reduced, which we capture by setting

the diffusivity low compared to the free form. We model the

switch between the RNA bound and the unbound state as a chem-

ical reaction, where binding to RNA lowers the free energy by a

factor of −ε, ε > 0. In addition, we introduce a new parameter,

the number of binding sitesNR that limits the maximum number

of SAF-A that can be in the bound state. We do not model the

RNA explicitly, but just assume that a certain number of lattice

sites in the lattice fluid model are binding sites for SAF-A. The

total number of SAF-A proteins in the model is conserved and

we assume that the lattice sites not occupied by SAF-A are filled

with solvent or cytosol molecules. Lastly, we model the weak

attractive interaction of SAF-A using a Flory parameter χ as dis-

cussed above. It is not clear if RNA bound SAF-A still interacts

weakly or not, which makes a big difference in the model as we

will see. Because the number of binding sites is limited and we

distinguish between bound and unbound SAF-A, the entropy of

mixing is different from a normal ternary system, which we will

discuss next.



3.3 SAF-A Phase separation 57

10: This does not necessarily mean

that only NR RNAs are present,

oftentimes specific motifs on the

RNA are necessary for the protein

to bind[146].

11: Mixtures of multiple proteins,

like the cytosol, have a wide size

distribution[1]. We thus assume

that all proteins have average pro-

tein size and neglect chain correla-

tions in the entropy.

Modified free energy

We start by deriving the entropy of mixing from a lattice model

similar to the regular solution and Flory-Huggins entropy ofmix-

ing. We consider M total lattice sites with NP = NB + NU

SAF-A proteins, of which NB are bound and NU are unbound.

The other lattice sites are filled with NC = M − NP solvent

molecules. In addition, we assume that only NR lattice sites

are binding sites for SAF-A10 , so we first distribute NB bound

SAF-A proteins on NR binding sites and afterward the remain-

ing NU + NC molecules on the N − NB lattice sites. Thus the

number of microstates is given by

Ω =

(
NR

NB

)(
M −NB

NU

)
. (3.26)

From the number of microstates we can calculate the entropy of

mixing[60] according to

S

kB

= lnΩ, (3.27)

applying Stirling’s formula lnN ! ≈ N ln(N) − N for large N
we get

ln
(
NR

NB

)
≈ NR lnNR −NB lnNB − (NR −NB) ln(NR −NB), (3.28)

ln
(
M −NB

NU

)
≈ (M −NB) ln(M −NB)−NU lnNU −NC lnNC . (3.29)

Here, the factor −NR cancels with NB + (NR − NB) and the

factor −(M −NB) cancels with NU +NC since all lattice sites

are filled. Assuming equal molecular volume v0 of all species
for simplicity11 , we can replace particle numbers by volume

fractions and get for the total entropy of mixing, using ψM =
NR/M

S

kB

=NR ln ψM

ψM − φB

−NB ln φB

ψM − φB

+ (M −NB) ln 1− φB

1− φU − φB

−NU ln φU

1− φU − φB

(3.30)

and, finally, for the local entropy density in the local equilib-

rium approximation s = S/(Mv0) (we drop a term ψM lnψM

because it is constant and constants in the free energy density do
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12: This is the same form of κ we

used in Eq. 2.48

not influence the equilibrium properties of the system)

−sv0
kB

=(ψM − φB) ln(ψM − φB) + φB lnφB

− (1− φB − φU) ln 1− φB

1− φU − φB

+ φU lnφU ,

(3.31)

where we introduce the minus sign because the entropy densities

enters the free energy density as−Ts. While this form of the en-

tropy density of mixing looks similar to the regular solution in

Eq. 2.48, the introduction of limiting binding sites has an signif-

icant effect, namely φB is bound by [0, ψM ] due to ln(ψM −φB).
In addition, the bound particles limit the available space for the

unbound SAF-A and cytosol particles to 1 − φB, which leads

to a term ln(1 − φB) that vanishes if all species are distributed
evenly. In general ψM can depend on space and time, for exam-

ple if RNA is inhomogeneously distributed or gets produces/de-

graded. For now we assume homogeneously distributed binding

sites and thus ψM = const and discuss the more complex case

later.

The enthalpic part has three contributions, first, an energy

gain of−εφB for the bound SAF-A. Second, the contribution of

weak interactions, similar to the regular solution. Thereby, it is

not clear whether bound φB and unbound φU interact with each

other or not, so we propose two enthalpic interactions. Either the

bound form does interact, and thus the interaction is described

via χ(φU+φB)(1−φU−φB) or the bound form does not interact,

which leads to χφU(1−φU−φB). These are similar to the forms

introduced in Eq. 2.50a and Eq. 2.50b but here the bound form

does not interact like the solvent, but like the phase separating

protein. And lastly, from the χ parameter we get an interface

term12 with κij = −v2/d0 χij . For now we assume that the bound

form of SAF-A does interact and thus the total enthalpy is given

by

hv0
kBT

=− εφB + χ(φU + φB)(1− φU − φB)

+
v
2/d
0 χ

2
[(∇φU)

2 + 2(∇φU)(∇φB) + (∇φB)
2)].

(3.32)

The corresponding free energy density f is then given by f =
h−Ts. Using f , we can again calculate the chemical potentials

of the bound and unbound forms of SAF-A, which are given by
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13: In the simulations we use a

small, but finite ΛB and neglect it

only in the analytical calculations.

(neglecting the non-local parts)

µU

kBT
= ln φU

1− φU − φB

+ χ(1− 2φU − φB), and (3.33a)

µB

kBT
= ln 1− φB

1− φU − φB

+ ln φB

ψM − φB

+ χ(1− φU − 2φB)− ε.

(3.33b)

Thus, the binding strength ε corresponds to the internal energy

difference ∆w for the generic case discussed above. The en-

tropic factor ln(φB/(ψM − φB)) ensures that φB < ψM so the

number of bound SAF-A is limited by the number of binding

sites. The chemical potential for the unbound form looks almost

identical to Eq. 2.49 with the exception that the bound and un-

bound forms attract each other unlike forms A and B that we

discussed earlier.

As mentioned above, we model the binding-unbinding ki-

netics as a chemical reaction U 
 B and the ratio of binding to

unbinding rate is given by a detailed balance condition Eq. 2.24

sf
sb

= exp µU − µB

kBT
, (3.34)

where the total rate is s = sf − sb. For the diffusive dynamics

we assume that the bound form of SAF-A is immobile compared

to the free form ΛB � ΛU = Λ. For example, Ref.[147] found

a diffusivity D ≈ 25µm2s−1 for the free form, while the RNA

bound complex had a much lower diffusivityD ≈ 0.04µm2s−1,

so almost three orders of magnitude lower. In this case, the dy-

namics are given by13

∂tφU = Λ∇2µU − s, and (3.35a)

∂tφB = ΛB∇2µB + s. (3.35b)

The simulation results shown below were obtained by solving

the coupled partial differential equations in Eq. 3.35. But to gain

further insight into the systemwe next introduce a strong binding

approximation that simplifies the analytics.

Strong binding approximation

While the weak interactions driving phase separation are on the

order∼ 1kBT [7], the binding strength of RNA binding proteins

to RNA is often on the order of ∼ 10kBT [148]. Therefore, we
assume that the binding strength ε is much larger than the inter-

action strength χ, kBTε � kBTχ > kBT . Using Eq. 3.33 and

Eq. 3.34 we can write the condition for binding equilibrium as
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Figure 3.14: Unbound SAF-A

forms droplets.Unbound (left axis,

orange line) and Bound (right axis,

green line) SAF-A volume frac-

tions along the radial cut through

a droplet in the steady state. The

dashed green line shows the bind-

ing site density ψM . Even for driv-

ing on the order of kBT (here ε =
4), almost all binding sites are sat-

urated. Simulation were done in a

spherical symmetric box. Parame-

ters are ψM = 0.05, χ = 3.5, ε = 4
and φ̄P = 0.15.

µB −µU = ln φU

φB

ln ψM − φB

1− φB

+χ(φB − φU) + ε = 0. (3.36)

Using ε � χ, φU + φB = φP and φB � 1, this can be approxi-
mated as

(φP − φB)(ψM − φB) = φBe
−ε. (3.37)

The factor φBe
−ε � 1 is much smaller than one and for very

strong binding it is approximately 0. Thus, the bound fraction

can be approximated by φB = min(φP , ψM). Thus, either all

proteins are bound or all binding sites are saturated, if the bind-

ing reaction is in equilibrium. This depends on the local protein

fraction φP . Since no phase separation is possible for ψM > φ̄,
we cap ψM ∈ [0, φ̄] and do not discuss the behavior for ψM > φ̄
in detail. For ψM > φ̄, the dynamics is determined by the slow-

est time scale, the unbinding rate sb, which is a limit we are not

interested in at the moment.

In addition, we assume that binding is fast, in Ref.[146]

association rates of ∼ 5µM−1s−1 were measured, although for

DAZL proteins instead of SAF-A. Thus, for 1µM of RNA bind-

ing sites a protein diffuses ≈ 4µm before a binding event hap-

pens on average, which is quite far considering nucleus sizes of

≈ 6µm[3]. But due to the strong binding and Eq. 3.34, once

proteins are bound the unbinding rate is very low and all bind-

ing sites get saturated quickly. A simulation of Eq. 3.35 shown

in fig. 3.14 shows that the strong binding approximation works

well already for rather low binding strength ε = 4 ≈ χ. Thus,
we will use φB ≈ ψM in the following analytical calculation.

Using this result, we eliminate φB from the free energy re-

placing it with the binding site density ψM . The reduced free

energy, and the chemical potential of the unbound SAF-A, in

the strong binding approximation are given by

v0fSB

kBT
= φU lnφU + (1− φU − ψM) ln(1− φU − ψM) + χ(φU + ψM)(1− φU − ψM), (3.38)

µ = ln φU

1− φU − ψM

+ χ(1− 2(φU + ψM)). (3.39)

In this form, the free energy is almost identical to binary phase

separation of total protein φ = φU + ψM from the cytosol. The

only difference is that the entropic part contains only the un-

bound fraction φU lnφU , which is a result of all binding sites be-

ing occupied, so the entropy of bound SAF-A is constant. Rewrit-
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Figure 3.15: Effective free energy

density for the strong binding ap-

proximation. Reduced free energy

density, Eq. 3.40, as a function of

total SAF-A fraction for different

binding site densities. Here ψM is

varied between 0 and φ̄ and darker

color signifies higher ψM . More

binding sites imply that less free

SAF-A can move to form droplets.

Therefore, higher ψM shifts the ef-

fective φout and thus reduces the

propensity to phase separate. Pa-

rameters are χ = 4 and φ̄ = 0.1
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Figure 3.16: RNA saturation den-

sity controls droplet size. Steady

state droplet size as a function of

binding site density. Blue dots are

simulations and the dashed lines are

predictions from Eq. 3.42. For low

binding site densities ψM the total

droplet size decreases linearly with

ψM , while droplets fully dissolve

for high binding site densities. Pa-

rameters used are χ = 3.5, ε = 4
and φ̄ = 0.1.

ing f and µ in terms of total protein fraction we get

v0fSB

kBT
= (φ− ψM) ln(φ− ψM) + (1− φ) ln(1− φ) + χφ(1− φ),

(3.40)

µ = ln φ− ψM

1− φ
+ χ(1− 2φ). (3.41)

In the strong binding approximation, the total fraction of

proteins is bound from below by ψM because we assume φ̄ >
ψM and thus φ ∈ [ψM , 1], while φU ∈ [0, 1 − ψM ]. The corre-
sponding free energy density for different binding site densities

is shown in fig. 3.15. VaryingψM from 0 to φ̄ (light to dark blue)
for fixed φ̄ shifts the SAF-A fraction in the dilute phase φout to

higher values because the bound SAF-A is homogeneously dis-

tributed; see fig. 3.14 as well. Thus, high binding site densities

suppress phase separation, and above a critical binding site den-

sity no droplets form. To calculate the equilibrium SAF-A frac-

tions in droplet and solvent phase the Maxwell construction is

still valid and for small φ̄ and ψM we assume that the solvent

phase increase is linear in ψM , φout(ψM) ≈ φout
0 + ψM . In this

case, the predicted steady state droplet volume is

VD
Vsys

=
φ̄− φout

0 − ψM

φin − φout
0 − ψM

. (3.42)

φin and φout
0 are derived from a Maxwell construction to the bi-

nary free energy for ψM = 0. The behavior is reminiscent of

phase separationwith conversion reactions (discussed in Sec. 3.2).

Here, the binding site densities limit the amount of free SAF-A

and thus inhibit phase separation, while there the internal energy

difference∆w controls the total amount of phase separating ma-

terial. In both cases, Ostwald ripening and coalescence lead to

a single droplet and more sophisticated processes are necessary

to control droplet size and number.

The dependence of total droplet volume on binding site den-

sity is shown in fig. 3.16 for numerical simulations as well as

predictions fromEq. 3.42. The linear approximationφout(ψM) ≈
φout
0 +ψM fits well to the numerical results. In addition, we find

that total droplet volume decreases linearly with binding site den-

sity and vanishes above a critical binding site density as expected

from fig. 3.15.

Localized binding sites can nucleate droplets

So far we only discussed homogeneous and time independent

distributions of binding sites. But RNA and RNAbindingmotifs
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Figure 3.17: Degradation of RNA

leads to droplet formation. Total

droplet volume (solid lines) as a

function of time. A Shows the de-

cay of RNA binding site density

(black dashed line) for k = 0.01.
For low enough ψ droplets can

form (blue line). B Droplet volume

for different decay rates k. Faster
decay corresponds to earlier droplet

formation. Parameters used areχ =
4, φ̄ = 0.25 and ψ(0) = 0.15.
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14: If the total SAF-A fraction is

chosen such that the system is in the

nucleation and growth regime, i.e.

φ̄ is below the spinodal volume frac-

tion.

can be degraded or created and thus ψM(t) can change over time.

In addition, RNA is not homogeneously distributed and neither

are the binding sites so ψM(x) can depend on space as well. We

start by discussing homogeneously distributed binding sites that

get degraded over time with a degradation rate k. In this case,

ψM(t) is given by

ψM(t) = ψM(0) exp(−kt). (3.43)

The dynamics for this case are shown in fig. 3.17. The effect of

RNA degradation is straightforward: For high ψM no droplets

can form, as discussed above but, once the binding site density

is low enough, droplets start to form; see fig. 3.17A. Increasing

the degradation rate shifts the droplet nucleation to earlier times;

see fig. 3.17B. The effective control of free SAF-A via ψM al-

lows crossing the phase boundary between a homogeneous and

a phase separating state. Because the RNA levels are cell cy-

cle dependent[69] this is a possible mechanism to time droplet

formation and dissolution and to couple it to other cellular pro-

cesses.

The effect of spatially inhomogeneous binding site distribu-

tion ψ(x) is less obvious and depends on whether bound SAF-A
still interacts weakly, and thus contributes to the enthalpic gain

of droplets, or not. If it does not interact, so h = χφU(1− φU −
φB), areas of high ψ(x) should repel droplets or have no influ-

ence on droplet formation. But if bound SAF-A does still inter-

act, so h = χ(φU+φB)(1−φU−φB), wewould expect that areas
of high binding site density act as nucleation centers. The reason

is, that local enrichment of bound SAF-Awill lead to an accumu-

lation of free SAF-A around the area of bound SAF-A and thus

nucleate droplets14 . To test this we simulate a 2-dimensional

system where the RNA is centered in a circle around the center.

Inside the circle, the binding site density is much higher than out-

side. We then compare the results to homogeneously distributed

binding sites with the same total amount of binding sites. For an

average concentration φ̄ in the nucleation and growth regime, so
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Figure 3.18: Localized bind-

ing sites can nucleate SAF-A

droplets. Shown are simulations

of unbound (top) and bound

(bottom) SAF-A for binding sites

localized in the center (left) and

homogeneously distributed (right).

The loaclized binding sites are

initialized with a tanh function

where the inside is ψM = 0.1 and

the outside is ψM = 0.01 because

ψM = 0 leads to problems with the

numerics. φ̄ = 0.15 is chosen such

that the system is in the nucleation

and growth regime. Parameters

used are χ = 4, ε = 4, φ̄ = 0.15,
ψ̄M = 0.011.

φ̄ is smaller than the spinodal fraction, we see a co-localization

of the droplet and binding sites, see fig. 3.18 left panels, while

for homogeneously distributed binding sites, no droplets form,

see fig. 3.18 right panels. This effect is only observed if the sum

of unbound and bound SAF-A in the localization center exceeds

the spinodal fraction. In other cases, noise would be necessary

to nucleate droplets. It would be interesting to test whether lo-

calized binding sites together with noise lead to controlled nucle-

ation sites. On the other hand, if the average fraction lies above

the spinodal fraction, as shown in fig. 3.19, droplets form every-

where both with localized and homogeneously distributed bind-

ing sites. However, for localized binding sites the first droplet

forms reliably at the high binding site area and is significantly

larger than the other droplets; see fig. 3.19 top left panel. This

effect could be a reliable way for the cell to accumulate SAF-A

around RNA even without having enough binding sites for each

protein.

In conclusion, localized binding sites can have the opposite

effect of homogeneous binding sites. While the former can fa-

cilitate phase separation, locally push the system over the spin-

odal, and control where droplets nucleate, the latter generally

suppresses phase separation. In addition, a time dependent bind-

ing density can switch between states where droplets form and

dissolve over time. The nucleation induced by localized RNA

corresponds to the ‘Scaffolded Condensate Model’ introduced

by us in Ref.[73] as a possible mechanism of size control of

droplets in sub saturated solutions.



64 3 Passive Reactions

Figure 3.19: SAF-A phase spin-

oddal decomposition for local-

ized RNA binding sites. Shown

are simulations of unbound (top)

and bound (bottom) SAF-A for

binding sites localized in the cen-

ter (left) and homogeneously dis-

tributed (right). The localized bind-

ing sites are initialized with a hyper-

bolic tangent function tanh(r− r0)
function where the inside is ψM =
0.1 and the outside is ψM = 0.01
because ψM = 0 leads to problems

with the numerics. φ̄ = 0.25 is cho-
sen such that the system is in the

spinodal decomposition regime. Pa-

rameters used are χ = 4, ε = 4,
φ̄ = 0.25, ψ̄M = 0.011.
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FRAP simulation

An important method to quantify the liquid like properties of

biomolecular condensates isFluorescenceRecoveryAfter Pho-

tobleaching (FRAP)[34], which quantifies the dynamical ex-

change of particles between condensates and cytosol. To per-

formFRAPmolecules that are enriched in the droplet aremarked

with a fluorescent marker. After droplet formation, the droplet is

visible under a light microscope due to the fluorescent markers;

see fig. 3.20A. In the next step, a high intensity light source illu-

minates a small probe area to induce stimulated emission which

increases the emission rate of the fluorescent marker. The high

emission rate depletes the marker because it emits only a lim-

ited number of photons and thus it turns dark upon the illumina-

tion, this is the bleaching step in fig. 3.20A. Over time depleted

markers leave the droplet and new molecules enter because of

the fast exchange of particles with the surrounding. As a result,

the fluorescence signal recovers over time; see fig. 3.20A and B.

The time it takes to recover to the original signal strength can be

used to get information on the diffusion rates of molecules[149].

Oftentimes the signal does not recover to the base level before

bleaching. In the case of SAF-A, this is attributed to the bound

SAF-A being immobile and thus the difference between the ini-

tial signal and recovered signal can be used to get an estimate on

ψM [142].
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Figure 3.20: Experimental exam-

ple of Τau-GFP FRAP. A Mi-

croscopy image of a Tau protein

droplet with a fluorescent marker

GFP. After bleaching (second top

panel) the fluorescent signal de-

creases significantly and slowly re-

covers over 320 seconds because

of particle exchange with the sur-

rounding. B Time course of the flu-

orescence signal after bleaching at

t ≈ 0. The time it takes to recover

the initial fluorescence signal can

be used to calculate the particles dif-

fusivity[149]. Imagemodified from

[150] under the Creative Commons

license.
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Figure 3.21: Numerical simula-

tion of FRAP for different bind-

ing site densities. Fraction of un-

bleached proteins in the droplet cen-

ter as a function of time after bleach-

ing. The signal does not recover to

the equilibrium fraction φin (black

dashed line), because the bound

form is immobile and does not re-

cover on this time scale. ψM can

be inferred from the difference be-

tween the recovered signal and the

initial signal. Parameters used are

χ = 3.5, ε = 4, ΛB = 0.001Λ and

ψ̄ = 0.1

15: Because of finite size effects

the recovery in fig. 3.22 is even

lower, but for fig. 3.21 we used

spherical symmetric simulation

boxes to simulate bigger systems

and avoid this effect.

We can simulate FRAP using ourmodel by introducing two

extra species, bleached versions of the bound and unbound SAF-

A; see fig. 3.22. The simulation procedure is the following: We

start with a single droplet in a two dimensional box and let it

equilibrate. Afterward, at t = 0, we relabel a fixed fraction of

bound and unbound SAF-A as bleached and consider them as in-

dividual species that behave exactly like their unbleached coun-

terparts. Then, we let the system evolve further and due to diffu-

sion, the bleached and unbleached species start to mix. A quali-

tative simulation of the process is shown in fig. 3.22, where the

effect of the immobile bleached fraction can be seen as a bright

spot of the bleached SAF-A (darker spot in the unbleached SAF-

A) in the bleached region even after recovery time (right pan-

els). We can then monitor the unbleached SAF-A fraction in the

droplet center to get the recovery rate as shown in fig. 3.21 for

two different binding site densities. Notably, the fraction that

does not recover is exactly the binding site density15 . This anal-

ysis suggests that the immobile fraction found in FRAP experi-

ments could be a good indicator of the binding site density. In

addition, the long timescales, unbinding rates, and SAF-A-RNA

complex diffusion could in principle be measured if the FRAP

experiment is long enough to see the recovery of the immobile

fraction. However, these timescales might exceed fluorescence

lifetimes.

Model predictions

Our qualitative model leads to a set of predictions on SAF-A

phase separation that are testable experimentally. First, for ho-

mogeneous distribution of RNA, phase separation is suppressed

for high RNA levels (high binding site density ψM ), while it

is favored for low RNA levels. Second, increasing the interac-
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tion strength, e.g. by changing the sequence, should increase

the threshold of binding site density for which phase separation

is suppressed. Furthermore, we expect the binding ε to be strong,
on the order of 10kBT [148], so the strong binding approximation

is fulfilled. Only very strong disruptions in the RNA binding do-

main should have an impact on the phase separation properties

of SAF-A. At the moment it is not clear if RNA bound SAF-A

can still interact with itself, i.e. if the enthalpic interaction is bet-

ter described by h = χ(φ+ψ)(1−φ−ψ) or h = χφ(1−φ−ψ).
This can be tested in several ways, first, the suppression of phase

separation is stronger if bound SAF-A does not contribute to the

enthalpy, similar to the ternary case discussed above. Second, if

the bound SAF-A does interact, we expect that localized RNA

acts as a nucleation center, so high local RNA concentrations

should coincide with droplet formation. And third, we expect

that SAF-A phase separation is coupled to cell cycle or transcrip-

tion state[69] because the number of binding sites varies with

RNA transcription activity.
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Figure 3.22: 2-dimensional Numerical Simulation of FRAP. Before the bleaching process, for t < 0, a single

SAF-A droplet forms (top-left panel) and no bleached SAF-A is present (bottom-left panel). At t = 0, the center of
the droplet gets bleached in an area smaller than the droplet size. Now the proteins in the center of the droplets are

relabeled as bleached SAF-A (bottom-center panel). As a result, there appears to be a hole in the unbleached protein

field (top-center panel). Over time the two species mix, the bleached SAF-A smears out (bottom-right panel) and the

hole gets filled with unbleached proteins again (top-right panel). Parameters are χ = 3.5, ε = 4, ψM = 0.2, and
φ̄ = 0.4.
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16: We assume that R and P have

the same molecular volume, so the

reaction conserves volume.

17: See Appendix.D for a calcula-

tion of the partition coefficient of

dilute speccies.

3.4 Droplets control chemical reactions

So far we discussed how passive chemical reactions can be used

to control if droplets form as well as their size. Here, we dis-

cuss the opposite case, namely how the properties of a reaction

are influenced by the presence of a phase-separated fluid mix-

ture. For the case of amyloid fibers, this has been investigated

in Refs.[134, 151] and they found that the droplet state can have

an impact on fiber formation and length distribution under the

condition that the diffusivities decrease for longer fibers, as the

Stokes-Einstein relation predicts. Here, we want to focus on

the effect of a two phase system on the equilibrium ratio and

dynamics of a reaction, in the case that the reactants and prod-

ucts have certain affinities for one of the phases as described by

the partition coefficient; see Eq. 3.11. We assume both phases

are dominated by one species, B or C, oftentimes called scaf-

folds[5, 152] while the other species, often called clients, do not

influence phase equilibrium and distribute into the two phases

according to their affinity.

Chemical equilibrium in droplets

The first step is to check whether chemical equilibrium of a sim-

ple conversion reaction R 
 P is influenced by phase separa-

tion, where R is called reactant and P is the product. As dis-

cussed in Ch. 2, the force driving the reaction is the chemical

potential difference between the reactant chemical potential, µR,

and product chemical potential, µP , which is given by
16

µR − µP

kBT
= ln φR

φP

+∆w +∆h, (3.44)

where ∆w = wR − wP is the internal energy difference and

∆h = hR − hP is the interaction energy difference between R
and P . In the analytical model, we describe the two phases by

their volumes V1 and V2 and for a given system volume Vsys the

ratio of the two phases, V1/V2, is an important parameter. We

assume that each phase predominantly consists of one scaffold

species, either 1 or 2 and the clients P and R do not influence

phase separation. But we assume that they are influenced by

phase separation because the scaffolds interact specifically with

reactantR troughhR,1/2, and productP throughhP,1/2. From the

interactions, we can define equilibrium partition coefficients17
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Figure 3.23: Chemical equilib-

rium is determined by phase sep-

aration. Average volume fractions

of reactants (blue) and products

(maroon) as a function of relative

phase volume V1/V2. The dashed

lines correspond to the contribu-

tions from each phase. Parameters

used are ∆w = 0, ∆h1 = −2,
∆h2 = 2 and φ̄P + φ̄R = 0.02.

for R and P

ΓR =
φR,1

φR,2

= exp(hR,2 − hR,1), and (3.45a)

ΓP =
φP,1

φP,2

= exp(hP,2 − hP,1), (3.45b)

the partition coefficient describes the enrichment (Γi > 1) or
depletion (Γi < 0) of species i in phase 1 compared to phase

2. In addition, we can calculate an equilibrium ratio by setting

Eq. 3.44 to 0 in each phase

K1 =
φR,1

φP,1

= exp(−∆w −∆h1), and (3.46a)

K2 =
φR,2

φP,2

= exp(−∆w −∆h2), (3.46b)

where ∆hi = hR,i − hP,i for i = 1, 2. To see the influence of

phase separation on reactive equilibrium, we plot the fraction of

reactants and products for different phase volumesψ in fig. 3.23.

We see that if reactants enrich in phase 1 and products in phase
2, by increasing the volume of phase 1 the amount of products

decreases and the amount of reactants increases. As a result the

relative phase volume determines which site of the reaction, re-

actants or products, is more stable.

To compare the behavior to a homogeneous mixture and

see whether phase separation influences the dynamics and equi-

librium of the reaction discussed above, we simulate a homoge-

neous mixture with the same average composition of scaffolds

as the two phase system, i.e. a fixed value V1/V2. The sim-

ulation is done for an incompressible, four component regular

solution, where the total fraction of scaffold 1 and 2 is identical
and the fraction of reactants and products is low. The dynamical

equations become

∂tφ1 = Λ∇2µ1, (3.47a)

∂tφR = Λ∇2µR − k(exp(µR/kBT )− exp(µP/kBT )), and
(3.47b)

∂tφP = Λ∇2µP + k(exp(µR/kBT )− exp(µP/kBT )),
(3.47c)

where incompressibility was used to remove scaffold species 2,
all diffusive mobilities were chosen identical and transition state

theory was used to describe the reaction. We start with a two-

phase initial condition and first let R and P partition into the

phases without reactions present. After equilibration, we turn on

the reactions and monitor the relaxation to equilibrium as shown

in fig. 3.24 (blue and maroon lines). We then simulate a homo-
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Figure 3.24: Comparison of the

dynamics for a homogeneous and

phase separated system. The re-

laxation of the conversion reaction

for a phase separated (solid lines)

and homogeneous (dashed black

line) are shown. In the phase sepa-

rated system both product (maroon)

and reactant (blue) are shown. The

relaxation behavior is the samewith

and without phase separation. The

black line is the total amount of P
and R. Parameters used are χ = 3,
∆w = 0, ∆h1 = −2, ∆h2 = 2,

k = 0.0001Λv
2/d
0 and φ̄P + φ̄R =

0.02.
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Figure 3.25: Dynamics in a phase

separated system for different

rates. The relaxation of the conver-

sion reaction in a phase separated

system for homogeneous (solid

lines) and phase dependent (dashed

lines) reaction rates. The product

(maroon) and reactant (blue) are

shown. The relaxation behavior is

influenced by phase separation for

spatially dependent reaction rates

(here kφ1). The black line is the to-
tal amount of P and R. Parameters

used are χ = 3, ∆w = 0, ∆h1 =

−2, ∆h2 = 2, k = 0.0001Λv
2/d
0

and φ̄P + φ̄R = 0.02.

18: Here we assume vR = v0 and

vP = 2v0 to conserve volume.

geneous mixture with the same initial composition as shown as a

black dashed line in fig. 3.24. We find that although parameters

are chosen such that reactants enrich in phase 1 while products
enrich in phase 2, the relaxation is identical to the homogeneous

mixture. This picture would change if the reaction rate is differ-

ent in the two phases as shown in fig. 3.25. In general, there is

no a priori way to see that the reaction rate is different or the

same in both phases, but the rate can be controlled by enzymes

that can partition into one phase and thus make the rate depend

on phase.

We here choose a constant reaction rate because we want

to understand how chemical equilibrium is influenced by phase

separation. And in modeling, we are able to disentangle kinetics

from equilibrium by varying them independently of each other.

The result is that chemical equilibrium is not influenced by phase

separation if the composition of the homogeneous mixture is the

same as the phase separated state. The reason is, that the reaction

is driven by chemical potential differences instead of local con-

centration and the interactions are additive. So it is irrelevant if

the interactions are strongly localized or homogeneously spread,

as long as the average interaction in the system is the same. This

in turn would change if we include higher order terms in the in-

teraction, for example, three body interactions because they are

not additive anymore.

Kinetics of an association reaction

Lastly, we discuss an association reaction R+R 
 P and how

phase separation influences the dynamics under the assumption

of constant reaction rate. This is an interesting problem because

mass action kinetics predicts a forward rate kfφ
2
R and a back-

ward rate kbφP and thus for inhomogeneous mixture a total rate

of

Sh = Vsyskfφ
2
R (3.48)

while in a perfect enrichment of R into phase 1, φR,1 = φR
Vsys
V1

the rate becomes

S1 = V1kfN
2
R

V 2
sys

V 2
1

= VsyskfN
2
R

Vsys

V1
, (3.49)

which results in a speedup of
Vsys
V1

because the probability for

particles to meet is increased. But is this still the case if we

include the influence of interactions on the reaction? To answer

this question, we repeat the simulation for the simple conversion

reaction with the association reactionR+R 
 P 18 . The result

is shown in fig. 3.26 and it shows that the equilibrium position is

influenced by the presence of phase separation. We suspect the
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Figure 3.26: Dynamics in a phase

separated system for an asso-

ciation reaction. The relaxation

of the association reaction in a

phase separated system for homoge-

neous (solid lines) and phase depen-

dent (dashed lines) reaction rates.

The product (maroon) and reactant

(blue) are shown. The equilibrium

position is influenced by phase sep-

aration and increases the equilib-

rium fraction of products. The black

line is the total amount of P and R.
Parameters used are χ = 3, ∆w =
2.5, ∆h1 = −2, ∆h2 = 2, k =

0.001Λv
2/d
0 and φ̄P + φ̄R = 0.02.

reason is, that the driving force is now 2µR − µP , together with

the entropy of mixing depending on particle size as discussed in

Eq. 2.30[22]. But we only started investigating this effect and

further research is necessary.

3.5 Summary

In this chapter, we extended a standard model for phase sepa-

ration, the binary regular solution model, to a ternary system,

where the phase separating protein B can exist in a second state

A that does not phase separate. The two states are connected via

a simple conversion reaction A 
 B. Using detailed balance

of the rates and transition state theory, we show that there is a

thermodynamic connection between reactions and phase sepa-

ration because the non-ideal interactions that drive phase sepa-

ration enter the free energy change of reaction. The reason for

this is that the chemical potential is the driver of both processes,

reaction, and diffusion. As a result in non-ideal mixtures the

equilibrium ratio K, which describes the equilibrium state of

a reaction, depends on the local concentration of particles; see

fig. 3.2 and fig. 3.3. In addition, we showed that phase separa-

tion and chemical equilibrium are compatible, unlike in a binary

mixture; see fig. 3.6. We identify the internal energy difference

∆w = wA − wB as an important control parameter of the sys-

tem, see fig. 3.4, besides the interaction strength χ and the to-

tal protein fraction φ+. Since the internal energy difference is

a constant in the chemical potential, it can not influence stan-

dard phase separation due to particle conservation and becomes

important only when particle numbers or type can change, for

example in a reaction.

The internal energy difference controls how much of the

total protein is present in state A or B and by controlling the

amount of B it can ultimately control phase separation. How-

ever, we find that precise control of droplet size is only possible

in a very narrow range of ∆w and restricted to ∆w ≈ χ; see
fig. 3.11. We showed that a simple conversion reaction can con-

trol phase separation via∆w, independent of interaction strength
χ, temperature T or total protein fraction φ̄+. For a biological

system, this control can only be achieved either on evolutionary

timescales or via global parameters. For example, ∆w can de-

pend on temperature, pressure, or pH. But the change of global

parameters is in general not well suited for droplet control be-

cause it affects all kinds of cellular processes. Though there are

examples of biomolecular condensates that form as a response to

changes in global parameters, such as stress granules[139]. As a

result, passive reactions can play a role in the control of droplet

formation and dissolution but are insufficient for precise and fast
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control of droplets. Such reactions can neither control droplet

number nor individual droplet size. The underlying cause is that

passive systems relax to thermodynamic equilibrium and it is

difficult to change equilibrium properties (internal energies, in-

teraction energies). Quantities that are easier to control, e.g. re-

action rates via enzymes, do not influence the equilibrium state.

Therefore, to gain fast and precise control it is necessary to go be-

yond passive reactions, which we will do in the next chapter.

We applied the framework to an example in cells, the phase

separation behavior of SAF-A and its interaction with RNA. It

is known from experiments[142, 145] that SAF-A contains a

low complexity RGG domain that can both, bind to RNA[142]

and phase separate in vitro. In its RNA bound form, SAF-A dif-

fuses significantly slower than in the free form[3]. As a minimal

model incorporating this information, we build a ternary liquid

model, where SAF-A can exist in two forms, an immobile, RNA

bound form and an unbound form; see fig. 3.13. In addition, we

introduce a new parameter, the binding site density ψM which

limits the number of bound SAF-A, either due to low RNA lev-

els or the low number of binding motifs necessary for bond for-

mation. Because RNA binding is usually much stronger than the

weak interaction driving phase separation, we assume all bounds

are saturated. We find a simple equilibrium model that shows

that the number of binding sites decreases the phase separation

propensity by limiting the number of SAF-A molecules that can

move together to form droplets; see fig. 3.15. Furthermore, time

dependent binding site density, for example, due to transcription

dependent RNA levels, can control droplet formation by releas-

ing the SAF-A and lifting the concentration above the phase sep-

aration threshold; see fig. 3.17. Counterintuitively, under the

condition that bound SAF-A still interacts weakly with other

SAF-A, localized binding sites can act as nucleation centers in-

stead of suppressing phase separation as shown in fig. 3.18. And

lastly, we showed how our model can be used to simulate FRAP

experiments and get information about SAF-A mobility as well

as an estimate for the binding site density in experiments.

In the last part, we started discussing the effect of phase

separation on reactions if reactants and products have a certain

affinity for either of the phases. We found that the equilibrium

ratio of a simple conversion reaction R 
 P depends on the

relative phase volumes; see fig. 3.23. In addition, for a fixed

amount of scaffold proteins 1 and 2, the relaxation to equilibrium
of the reaction is not influenced by phase separation if the reac-

tion rate is the same in both phases. The reason is that the chem-

ical potential drives phase separation and we consider only sec-

ond order interactions which are additive, so the total interaction

is the same in the homogeneous and phase separated mixture;
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see fig. 3.24 and fig. 3.25. Lastly, the chemical equilibrium of

more complex reactions, for example, association reactions, is

influenced by phase separation. But the mechanism is different

than the one predicted from mass action kinetics because of the

non-ideal chemical potentials; see fig. 3.26. However, this is

only a proof of principle and this part needs more research to un-

derstand which effect is responsible for the shift in equilibrium

ratio and speed up of relaxation to equilibrium.





1: For example, in a bacterial cell

of 1µm3 volume, 1010−11 ATPs

molecules are consumed/produced

per hour[1]

2: The energy released by ATP hy-

drolysis is not converted perfectly

into usable energy for other pro-

cesses. Instead, parts of the energy

are dissipated as heat. The effi-

ciency depends on the process, just

like any thermodynamic process in-

volving energy conversion.
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So far we have discussed equilibrium processes only. But

inside cells, many processes are driven out of equilibriummostly

by the constant supply of chemical energy[153]. This chemical

energy is usually supplied via hydrolysis of nucleoside triphos-

phates (NTPs) that are converted into nucleoside diphosphates

(NDPs) (or nucleoside monophosphates (NMPs)) and a phos-

phate group. Examples include GTP, CTP, or UTP, but the most

prominent one is ATP[154], which is the one we use as an exam-

ple. Chemical energy can be used to drive reactions that would

otherwise be energetically unfavorable, like phosphorylation of

proteins[153], and thereby control which reactions occur. But

chemical energy can also be converted into movement, for ex-

ample, the movement of molecular motors[155, 156] hydrolyses

one ATP per motor step. In this example, the motors (myosin,

kinesins, and dyneins) ’walk’ on polar filaments (actin or mi-

crotubules), and the ATP driven reaction breaks the left-right

symmetry of motor steps, which leads to simultaneous directed

motion (ATP driven) and random motion (thermally driven) on

a line. Themain ingredients are broken detailed balance, leading

to left-right symmetry breaking, and non-equilibrium thermody-

namics, which couple chemical reactions and force-generating

processes[115].

In cells the ATP hydrolysis reactionATP+H2O 
 ADP+
Pi, where Pi = PO3 is an inorganic phosphate group, is kept

away from equilibrium via ATP production by the ATPase en-

zymes[157]. Since the ATP consumption rate in cells is high, it

has to be replenished quickly to keep the reaction out of equilib-

rium[158]1 . Under physiological conditions the free energy of

reaction is∆F = µATP+µH2O−µADP−µPi
≈ 15−30 kBT [1].

The energy is dissipated as heat if the reaction proceeds alone,

but the energy is also used2 to drive other reactions. The stereo-

typical reactions we have in mind are post-translational modifi-

cations, which are known to play an important role in formation

of biomolecular condensates[73, 159]. As an example, we in-

troduce a phosphorylation-dephosphorylation reaction cycle, in

which a protein can be either phosphorylated, state A, or not,
state B. Oftentimes, these two reactions are driven by enzymes,

where kinases K are specific enzymes for the phosphorylation

reactions and phosphatases P are enzymes that catalyze the de-

phosphorylation reaction[3]. Taken together, the reaction cycle

is given by the phosphorylation and dephosphorylation reactions
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3: In our case, different internal

energies, interaction properties, or

mobilities.

B + ATP + K 
 A + ADP + K, and (4.1a)

A + P 
 B + Pi + P. (4.1b)

So one of the three phosphoryl groups of ATP is taken up by the

protein in the phosphorylation reaction (Eq. 4.1a) and released

as a free Pi in the dephosphorylation reaction (Eq. 4.1b). Since

the enzymes appear on both sides of the reaction equation, they

do not influence the free energy of reaction, but they are impor-

tant for the reaction kinetics. The main point is, that the energy

of ATP hydrolysis is used to create high energy states, here A,
that would not be present in equilibrium. This chapter aims to in-

vestigate the effect of such a non-equilibrium reaction on phase

separating proteins.

Phase separation and chemical activity are linked in another

context, motility induced phase separation (MIPS)[160]. Here

active, Brownian, or self-propelled particles phase-separate due

to concentration-dependent mobilities[161]. The particle-based

dynamics can bemapped to a field theory that is similar to model

B[161]. But the activity leads to two extra terms that are for-

bidden by symmetry in passive systems: One of them can be

included in the free energy[162] and one has to be added to the

diffusive fluxes directly[163]. In this context, the combination

of model A and model B in ternary systems has been discussed

in detail as well[120]. The derived field theories show a vari-

ety of new phenomena, for example travelling waves[120], mul-

tiphase systems[163] or reversed Ostwald ripening[163]. In all

these systems, activity leads to the directed motion of particles, a

hallmark of active matter[164], which in turn leads to collective

phenomena[160]. This is different from activity in our models,

where driven chemical reactions drive transition between protein

states and those states have different properties3 .

In this chapter, we extend the model discussed in Ch. 3 to

include active reactions that drive the system away from equilib-

rium. We start by introducing fuel F and waste W molecules

that supply the external energy and couple them to the conver-

sion reaction between protein state A and B discussed in Ch. 3.

Afterward, we introduce a non-equilibrium reaction cycle and

discuss the effect of reaction kinetics on the non-equilibrium

steady state of droplets. In particular, we discuss how enzymes,

which catalyze the driven reaction, can control droplet formation

and dissolution. Finally, we show how enzymes that distribute

inhomogeneously and partition into droplets can control individ-

ual droplet size.

Parts of this chapter are based on results from Kirschbaum,
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Fuel

Waste

Figure 4.1: Schematic of a phase

separating system with active

chemical reactions. The chemical

reaction between phase separating

(orange particles) and soluble state

(green particle) is driven by fuel (or-

ange circle) and waste (green cir-

cle). The chemical potential of fuel

and waste is held constant via parti-

cle exchange with the surroundings

(green and orange dashed arrows).

The figure is slightly adjusted from

Ref.[105] under the Creative Com-

mons CC-BY-4.0 license.

4: By swapping the role of fuel and

waste, the reaction can be driven

towards state B as well. In addi-

tion, we name the new species fuel

and waste because fuel has a higher

chemical potential, so µF − µW >
0, but this is only a convention.

5: The faster values from

Ref.[166] were obtained in water,

the slower ones in Ref.[167] in

mice cells.

Zwicker, ‘Controlling biomolecular condensates via chemical

reactions’, J. R. Soc. Interface (2021)18[105]. In particular,

Sec.4.1, Sec.4.2, and Sec.4.4 contain more detailed discussions

about the model used in Ref.[105]

4.1 Non-equilibrium reaction

In the first step, we use the same reaction discussed in Ch. 3, a

protein that exists in a soluble state A and a phase separating

state B. But now fuel F molecules are converted into wasteW
molecules in the conversion process between the protein states;

see fig. 4.1. If the external driving biases the reaction towards

state A, the reaction becomes A +W 
 B + F , where F and

W correspond to ATP and ADP in Eq. 4.1a respectively4 . The

free energy of reaction is then given by

∆Fa = µA + µW − µB − µF , (4.2)

where µi is the chemical potential of species i. We make three

important assumptions regarding the treatment of fuel and waste.

First, motivated by the fast recovery rate ofATP byATPases[158],

we assume that the chemical potentials of fuel and waste are con-

trolled from the outside by coupling them to a chemostat[165].

Second, ATP and ADP diffuse fast ∼ 103−4 µm2/s[166, 167]
because they are small molecules5 , so we assume that the chem-

ical potential of fuel and waste equilibrates fast via diffusion and

is constant everywhere. And third, we assume the volume frac-

tions of fuel and waste to be negligible compared to A, B, and
C, so we do not model them as individual species. Instead, fuel

and waste only appear in the free energy of reaction, Eq. 4.2, as

a constant driving ∆µ = µF − µW > 0 that influences the reac-
tion equilibrium. Under these assumptions, the introduction of

fuel and waste does not influence the phase separation behavior

directly, but it is a constant, indefinite energy supply that is in-

jected locally into the system, which is a key property of active

matter in general[164]. As a consequence, ∆µ is a new control

parameter in our model.

One advantage of introducing activity in this way is that the

reaction still obeys a detailed balance condition

sfa
sba

= exp µA − µB −∆µ

kBT
, (4.3)

where sfa and sba are the driven forward and backward reaction

rates and sa = sfa − sba is the total active reaction rate. Un-

like other non-equilibrium reaction-diffusion models, where the

driving is not modelled explicitly[70, 71, 168], in this model we
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Figure 4.2: External driving can control phase separation. A By influencing the internal energy difference, the

external driving ∆µ can control the equilibrium ratio between A and B, where higher driving (darker blue) moves

the equilibrium to lowerK. B/C Steady state profile of volume fractions (left axis) and chemical potential (right axis)

along a radial cut through the system. B For medium driving (here ∆µ = 2.5 kBT ), B droplets can form and in the

steady state µA − µB = ∆µ everywhere, so the reaction flux vanishes. C For strong driving (∆µ = 4 kBT ) droplets
are unstable because the equilibriumB fraction is lower than the binodal (see maroon line inA). Still, the reaction flux

vanishes everywhere because µA − µB = ∆µ. Parameters used are χ = 3,∆w = 3.5 and φ̄+ = 0.55. Simulations in

B/C were done in spherically symmetric boxes.

6: We keep the term equilibrium ra-

tio for the ratio of B to A at which

the reaction flux vanishes, i.e. µA−
µB = ∆µ, although the system is

not in thermodynamic equilibrium.

7: The individual forward and

backward flux do not vanish, but in

the steady state the amount of ATP

converted to ADP is equal to the

amount of ADP converted to ATP.

know how much energy is injected into the system (∆µ per re-

action) and how it is injected (by influencing the free energy of

reaction). It is thus possible to investigate how a reaction has to

be driven to show certain behavior[73].

In a first step, we consider the same system as in Sec. 3.2,

but instead of Eq. 3.1, the free energy of reaction is given by

Eq. 4.2. Then, the reaction flux vanishes for

µA − µB = ∆µ. (4.4)

This can be thought of as chemical equilibrium under the con-

dition that the chemical potential difference between fuel and

waste is fixed. For ∆µ = const, we can map this to an equi-

librium system by including ∆µ in an effective internal energy

difference ∆w → ∆w −∆µ/kBT . So mathematically this sys-

tem is identical to the passive reaction with a re-scaled internal

energy difference.

The effect of∆µ on the ratio ofB andA is shown in fig. 4.2A.

As the driving strength increases, the equilibrium ratio6 shifts

to lower B fraction and, for high enough total protein fraction,

from a state where droplets are stable to a state where droplets

are unstable; see fig. 4.2A. The steady-state ofmedium and strong

driving are shown in fig. 4.2B and C respectively. In both cases,

the reaction flux vanishes because µA − µB = ∆µ, but for
mediumdriving, droplets are stablewhile for high driving droplets

dissolve and almost all proteins are in state A. But, indepen-

dent of driving strength, the reaction flux vanishes everywhere,

sa = 0, and as a result, the reaction does not burn energy in the
steady-state because no net ATP consumption takes place7 .

Unlike molecular motors, introducing a reaction that keeps

the system out of equilibrium can not change the phase separa-
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8: This implies that fuel and waste

have identical molecular volume,

so the volume of reaction is con-

served. Because ATP has a molec-

ular weight of ∼ 500Da[1] and

a median protein of ∼ 300 amino

acids has a molecular weight of ∼
30 kDa[1], it is reasonable to ne-

glect the volume of ATP and ADP.

tion behavior directly, only indirectly by shifting the equilibrium

ratio. For polar filaments, non-equilibrium thermodynamics al-

lows a direct, kinetic coupling between chemical energy and di-

rected motion of motors[115, 156] v ∝ ζ∆µ via an Onsager

coefficient ζ . But direct coupling between chemical reactions

and diffusion is not allowed in isotropic systems[107, 115] and

reactions can influence phase separation only indirectly in this

framework.

In the context of biomolecular condensates, external driv-

ing can be controlled easier and faster than the internal energy

difference, for example by changing the concentrations of ATP

and/or ADP in in-vitro experiments. But since the energy from

ATP is the driver of all kinds of processes in cells and lots of

energy is spent on keeping it constant [1], the driving strength is

not suitable for precise control of condensates. Indeed, misreg-

ulation of ATP levels is related to diseases like cancer[169]. So

changing the driving strength has the same downsides as chang-

ing global parameters like temperature or pH as discussed be-

fore.

Driven reaction cycle

As discussed in the introduction to this chapter, post-translational

modifications like phosphorylation can have different pathways

for the phosphorylation and dephosphorylation reaction (Eq. 4.1).

The phosphorylation reaction, Eq. 4.1a, is driven by ATP con-

sumption, while the dephosphorylation reaction, Eq. 4.1b, pro-

ceeds without external energy input. In this section, we discuss

a simplified version of the reaction cycle to see how a reaction

cycle is different from individual reactions, driven or passive.

Neglecting the enzymes and the phosphate group8 , we reduce

Eq. 4.1 to the minimum and write the reaction cycle as

A
 B, and (4.5a)

A+W 
 B + F. (4.5b)

We call the first reaction the passive reaction sp because it does
not need supply of fuel, while the second is called active reac-

tion sa. For each reaction we write a detailed balance condition
(Eq. 3.8 and Eq. 4.3)

sfp
sbp

= exp µA − µB

kBT
, and (4.6a)

sfa
sba

= exp µA − µB −∆µ

kBT
. (4.6b)



80 4 Active Reactions

9: See Appendix.F for the calcula-

tion.
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Figure 4.3: Steady state chemi-

cal potential for different reac-

tion rates. The steady state chem-

ical potential as a function of reac-

tion rate ratio η for different driving
strength ∆µ. For very low η � 1,
the passive reaction dominates. In

the intermediate regime the steady

state chemical potential increases

homogeneously until it reaches the

limit set by the external driving for

high η � 1. The figure is reprinted
from Ref.[105] with minor adjust-

ments under the Creative Commons

CC-BY-4.0 license.

10: This is a result of fuel reacting

together with B to form waste and

A. If we swap the role of fuel and

waste, i.e. ∆µ < 0, the active reac-
tion will increase the amount of B
and thus increase the propensity to

phase separate.

As a result, for ∆µ 6= 0, the two reactions can not vanish simul-

taneously because µA − µB = 0 and µA − µB = ∆µ can not be

fulfilled at the same time. But the total reaction flux s = sp+ sa
can vanish everywhere. To solve sp + sa = 0, equilibrium con-

siderations are insufficient. Instead, the reaction kinetics are im-

portant as well. Using Eq. 4.6, we write the kinetics for both

reactions in terms of the backward rates only

sp = sbp(e
(µA−µB)/(kBT ) − 1), and (4.7a)

sa = sba(e
(µA−µB−∆µ)/(kBT ) − 1). (4.7b)

Solving this for the steady state9 , sp + sa = 0, results in a

condition for µ∗
A − µ∗

B in terms of the ratio of backward rates

η = sba/s
b
p and driving strength ∆µ

µ∗
A − µ∗

B = ∆µ− kBT ln e
∆µ/(kBT ) + η

1 + η
, (4.8)

where the µ∗
i denotes the value of µi if the total reaction flux

vanishes. This result holds generally for reactions that obey de-

tailed balance, though the form of η is not known in general. For
transition state theory kinetics (Eq. 2.27), the backward fluxes

are given by sbp = λpe
µB/(kBT ) and sba = λae

(µB+µF )/(kBT ) and

thus η = λaλ
−1
p eµF /(kBT ) is a constant. The steady state chemi-

cal potential is shown in fig. 4.3 as a function of the rate ratio η
for different driving strengths. In the trivial case of zero driving,

∆µ = 0, the chemical potential difference is independent of η
because the two reactions both vanish for µA − µB = 0. In that
case the two reactions can be considered as the same reaction. In

the limiting cases of fast active reaction, η � 1, the steady state
chemical potential becomes µ∗

A − µ∗
B = ∆µ, while for fast pas-

sive reactions, η � 1 the system reduces back to the equilibrium

case and µ∗
A − µ∗

B = 0. Thus, in the limit where one reaction

is much faster, the system behaves as if only the fast reaction

was present. But for intermediate η, the steady state chemical

potential can take any value between 0 and ∆µ. Consequently,
the driving strength sets the range of possible chemical poten-

tial differences µA − µB that can be reached, while the ratio η
determines the actual steady state value.

The active reaction in the reaction cycle, Eq. 4.5, always

lowers the total amount of B in the system and thus always de-

creases the propensity to phase separate10 . As a result, the active

reaction cycle will not show phase separation if the passive does

not. To discuss the influence of active reactions on phase separa-

tion we will thus discuss the case where droplets form in the pas-

sive case and see how active reactions influence those droplets.

Note that the reaction cycle could be set up the other way around,

the active reaction could produce droplet material, and, starting
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from a system without droplets, active reactions could move the

system above the binodal so droplets can form. A priori it is

not clear if the driven reaction, for example, phosphorylation,

induces or suppresses phase separation. One can find biological

examples for both cases[73]. Here, we only discuss the reaction

cycle in Eq. 4.5 for phase separating B. The reverse case fol-

lows directly if A is the phase separating state and B is soluble.

In that case, the passive systemwould not show phase separation

and the activity induces phase separation.

Non-equilibrium steady state

In the next step, we discuss the kinetics of the reaction cycle in

Eq. 4.5. For simplicity, we focus on the special case of constant

mobility for both species and neglect cross diffusion. Following

the passive case in Eq. 3.17, the dynamics are given by

∂tφ+ = Λ∇2µ+, and (4.9a)

∂tφ− = Λ∇2µ− − 2s, (4.9b)

where µ+ = µA + µB and µ− = µA − µB. The total reaction

flux is given by s = sa + sp, where we have to specify the

kinetics of sa and sp. We consider two example kinetics, linear

non-equilibrium thermodynamics (LNEQ) and transition state

theory (TST). The reaction kinetics for these two cases are given

by (see Eq. 2.25 and Eq. 2.27)

sp,L = kp(µA − µB) & sa,L = ka(µA − µB −∆µ), and (4.10a)

sp,TST = λp
(
eµA/(kBT ) − eµB/(kBT )

)
& sa,TST = λae

µF /(kBT )
(
e(µA−∆µ)/(kBT ) − eµB/(kBT )

)
.

(4.10b)

The total reaction flux in both cases can be written as (see Ap-

pendix.F for the TST derivation)

sL = (kp + ka)

(
µ− − ηL

1 + ηL
∆µ

)
, and (4.11a)

sTST = λ̄ exp µ+

2kBT
sinh

[
µ− − µ∗

−

2kBT

]
, (4.11b)

where ηL = ka/kp and the effective rate for transition state the-
ory is given by

λ̄ = 2λp

√
(e∆µ/(kBT ) + ηTST )(1 + ηTST )e

−∆µ/(2kBT ), (4.12)

with ηTST = λae
µF /(kBT )/λp. The steady state chemical poten-

tial difference for linear non-equilibrium thermodynamic fluxes
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Figure 4.4: Total reaction flux

has a unique steady state. The to-

tal reaction flux s = sa + sp
as a function of chemical potential

for linear non-equilibrium thermo-

dynamics (maroon) and TST kinet-

ics (blue). In both cases, the steady

state chemical potential, µ∗
−, is a

unique stable fixpoint of the reac-

tion and the rate increases homo-

geneously with distance from µ∗
−.

Parameters used are kp + ka =
λ̄eµ+/(2kBT ) = 1 (used as a

timescale) and µ∗
− = µ∗

−,L =
3 kBT .

11: Note that, although the vol-

ume fractions differ significantly

between phases, the chemical po-

tentials are constant in space. So

no diffusive fluxes are present and

the reactions are homogeneous in

space. This comes back to the idea

that both reaction and diffusion are

linked to the chemical potential.

is given by sL = 0. The result does not correspond to Eq. 4.8,

instead, µ∗
−,L = ηL/(ηL + 1)∆µ because Eq. 4.10a is a linear

expansion of Eq. 4.6 for µ− � kBT and µ− −∆µ� kBT .
The reaction rates vanish if and only if µ− = µ∗

− (or µ− =
µ∗
−,L), which can be seen from fig. 4.4. The figure illustrates

the functional form of Eq. 4.11 for both types of kinetics. The

steady state chemical potential µ∗
− is a stable fixpoint of the re-

action and the rate increases homogeneously with distance from

the steady state. This means that for constant rates kp + ka and
λ̄eµ+/(2kBT ) we expect the same qualitative behavior for linear

non-equilibrium and transition state reaction kinetics. Further-

more, we can again map the reaction to an effective equilibrium

reaction, just like for the driven reaction alone. In this case,

∆w → ∆w − µ∗
−/kBT and the steady state chemical potential

µ∗
− takes the role of ∆µ in fig. 4.2.

As already discussed in Sec. 3.2, the only steady state solu-

tion of Eq. 4.9 for reaction rates of the form Eq. 4.11 is µ+(r) =
const and µ−(r) = µ∗

−. For passive reactions, this result is

not surprising, but it holds more generally for reaction fluxes

s(µ−) that vanish for µ
∗
− and obey sgn(s(µ−)) = sgn(µ−) (see

Sec. 3.2), even if they are driven. The dynamics are quanti-

tatively different, especially for the TST kinetics because the

rate depends on µ+. But the steady-state is the same as the pas-

sive reaction with a rescaled internal energy difference. Conse-

quently, the steady state shown in fig. 4.5A for LNEQ kinetics

looks very similar to fig. 4.2B, with the exception that the steady

state chemical potential µ∗
A − µ∗

B is given by Eq. 4.11a instead

of ∆µ.
The difference between the two systems, reaction cycle and

only one reaction, can be seen from fig. 4.5B, the individual

chemical potential differences driving the passive (µA−µB) and

active (µA − µB −∆µ) reaction do not vanish. Instead, the pas-
sive reaction is constantly producing B, while A is produced by

the active reaction11 as can be seen from fig. 4.5B and C. The

two contributions cancel locally (sa = −sp ) and the total re-

action flux vanishes everywhere; see fig. 4.5C. As a result, the

main difference compared to the passive case is that the reaction

cycle requires energy input to maintain the steady state. If the

energy supply is removed (∆µ = 0), the system relaxes to the

equilibrium state. For this reason, such states are called Non-

Equilibrium Steady State (NESS)[170, 171].

To see that the NESS shows the same qualitative behavior

as the passive case, i.e. Ostwald ripening and coalescence, we

show a simulation of multiple droplets coarsening over time in

fig. 4.6 (upper panels). The number of droplets decreases over

time and the merging of droplets is visible in fig. 4.6B. In ad-

dition, the total reaction flux is relaxing to the steady state over
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Figure 4.5: Steady state simulation of phase separation with a linear non-equilibrium reaction cycle. All panels

show the steady state simulation of Eq. 4.9 for linear non-equilibrium reaction kinetics, Eq. 4.10a. A Volume fraction

(left axis) of A (green line) and B (orange line) and chemical potential difference µA − µB (black line, right axis)

along the system length. A stable B rich phase forms, where the chemical potential difference is determined by µ∗
− =

∆µη/(η + 1) (Eq. 4.11a) B Individual chemical potentials of A (green line), B (orange line) and B + ∆µ (orange

dashed line). Both chemical potentials are constant in space, so no diffusive fluxes are present. But the reactive fluxes

do not vanish because µA > µB and µB + ∆µ > µA. Thus, according to Eq. 4.10a the passive reaction converts

A to B (orange arrow) while the active reaction converts B to A (green arrow). C Active (green), passive (orange)

and total (black) reaction rates along the system length. The active reaction produces A sa < 0, while the passive
reaction produces B (sp > 0) constantly, although the total reaction flux vanishes everywhere because sa = −sb.
Parameters used are Λ = 1 v20τ

−1, kb = ka = 0.01 τ−1, χ = 4, ∆w = 4, ∆µ = 2 kBT and φ̄+ = 0.14. Simulation

was performed in a one dimensional box with no flux boundary conditions.
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Figure 4.6: Time evolution of

multiple droplets shows Ostwald

ripening and coalescence. Two

dimensional simulation of Eq. 4.9

with LNEQ reaction kinetics.

Shown are the B volume fraction

(upper panels) and total reaction

fluxes s (lower panels) at early

(A) and late (B) times. In the

begining multiple droplets form (A,

top) which coarsen over time via

coalescence and Ostwald ripening

into few large droplets (B, top).

Simultaneously, the reactions

(bottom row) relax to the steady

state, where the total reaction flux

vanishes everywhere (B, bottom).

Parameters used are Λ = 1 v0τ
−1,

kb = ka = 0.01 τ−1, χ = 4,
∆w = 4, ∆µ = 2, and φ̄+ = 0.35.
Simulation was performed in a

two dimensional box with no flux

boundary conditions and box size

of 50× 50
√
v0.
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time and vanishes everywhere for late time; see fig. 4.6B lower

panel. But the reaction is already close to equilibrium for early

times as can be seen from the scale of the total reaction flux

≤ 0.1 kp in fig. 4.6A lower panel. The simulation was done

for a reaction-diffusion length of ξ = 10
√
v0, so the dynam-

ics are diffusion-limited and the reaction relaxes fast compared

to coarsening. This shows that the two dynamical processes,

diffusion mediated phase separation and reactions, proceed in-

dependently of each other. That can be seen from Eq. 4.9 for

µA − µB = µ∗
−, ∂tφ− = 0, but ∂tφ+ does not vanish neces-

sarily. So for diffusion-limited systems, φ− relaxes fast and the

system reduces to the dynamics of φ+ under the condition that

µA − µB = µ∗
− everywhere.

To summarize, for constant reaction rates, we find that we

can reduce the non-equilibrium reaction cycle to an effective sin-

gle reaction, the total reaction flux s = sa + sp. The total reac-
tion flux can vanish everywhere for a fixed chemical potential

difference; see fig. 4.5. The main differences between driven

reaction only and reaction cycle are, first, the NESS depends

on a kinetic parameter, namely the reaction rate ratio η. And

second, the NESS converts fuel to waste constantly, i.e. burns

energy constantly. We discuss the consequences of the energy

consumption and the kinetic dependence for control of droplet

formation and dissolution next.

Energy cost to control droplets

The non-equilibrium steady state (NESS) discussed above is con-

stantly converting fuel to waste because sa < 0. Since the en-
ergy in the system is constant in a steady-state, the energy input

from the fuel has to be dissipated. This dissipation can be quan-

tified by a steady-state entropy production rate σ∗. As shown in
Appendix.A, the local entropy production rate for the reaction-

diffusion system discussed here is

Tσ =
∑
i

ji∇µi + sa(µA −µB −∆µ) + sp(µA −µB). (4.13)

This holds for both, linear non-equilibrium and transition state

kinetics. As shown in fig. 4.5B, the steady state chemical po-

tential gradients vanish (∇µi = 0), so the diffusive entropy pro-
duction vanishes. In addition the total reaction flux vanishes, i.e.

sa = −sp, and thus the remaining entropy production rate is

Tσ∗ = −s∗a∆µ > 0. (4.14)



4.1 Non-equilibrium reaction 85

10−3 10−1 101 103 105 107

Reaction rate ratio η

0

5

10

E
nt
r.

p
ro
d
.
ra
te

σ
∗
/(
λ
p
k
B
)

∆µ = 0

∆µ = 1 kBT

∆µ = 3 kBT

∆µ = 5 kBT

A

10−3 10−1 101 103 105 107

Reaction rate ratio η

0.00

0.01

0.02

0.03

D
ro
p
le
t
vo
l.
V
/V

sy
s ∆µ = 0

∆µ = 1 kBT

∆µ = 3 kBT

∆µ = 5 kBT

B

Figure 4.7: Driven reaction cycles

can control droplet size. A Steady

state entropy production rate as a

function of reaction rate ratio η for

different driving strength ∆µ. B
Steady state droplet volume as a

function of η for different ∆µ. The
relation is analogous to varying∆w
in the passive case; see fig. 3.11. In

both cases TST kinetics were used.

Parameters used are λp = 1 (used

as a timescale), χ = 4, φ̄+ = 0.05
and ∆w = 3. Figure was taken

from Ref.[105] with minor adjust-

ments under the Creative Commons

CC-BY-4.0 license.

12: The entropy production rate is

given in terms of λp however. We

assume that the passive rate is fixed

and the active rate λa is varied to

vary η.

For the two kinetic schemes, LNEQ and TST, the active reaction

flux in the stationary state, s∗a, is given by

s∗a,L
kp

= − η

1 + η
∆µ, and (4.15a)

s∗a,TST

λp
≈ −ηe(µ∗

++∆µ)/(2kBT )

(
e∆µ/(kBT )√

(1 + η)(e∆µ/(kBT ) + η)

)
,

(4.15b)

in the TST expression the approximation e∆µ/(kBT ) � 1 is used.
The entropy production as a function of reaction rate ratio η is

shown in fig. 4.7A for different driving strengths. In both cases

the energy cost σ∗ scales superlinear with ∆µ for a fixed η be-

cause the steady state reaction flux increases with driving and

the cost per reaction is always ∆µ. For a fixed driving strength,
varying η interpolates between regimes where the passive (η �
1) or active (η � 1) reaction is dominant (similar to fig. 4.3).

For η � 1, the entropy production vanishes because the driven
reaction is very slow compared to the passive one. For η � 1,
the steady state chemical potential difference approaches ∆µ
(see fig. 4.3) and accordingly the entropy production becomes

σ∗ = kp∆µ
2 for LNEQ and σ∗ ∝ λp sinh(∆µ/(2kBT ))∆µ for

TST. In the latter case (η � 1) the slow passive reaction is bal-

anced by the fast active reaction. While the passive reaction does

not influence the dynamics significantly, it still leads to a con-

siderable entropy production rate12 as seen from fig. 4.7A.

Since the steady state can be mapped to a passive reaction,

the influence of reaction rate ratio on steady state droplet vol-

ume shown in fig. 4.7B, is very similar to the effect of internal

energy difference shown in fig. 3.11. For low η � 1, the sys-
tem behaves like the passive case and for the parameters used in

fig. 4.7B, this corresponds to stable droplets. Increasing η for a
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fixed∆µ reduces the number of proteins in stateB in the system

and thus the total droplet volume. For weak driving, droplet vol-

ume can only be reduced slightly, but for strong enough driving,

droplets can be dissolved completely.

Therefore, the reaction cycle offers two ways to dissolve

droplets, one is to increase the driving for fixed, but high η. This
is similar and has the same downsides as the active reaction dis-

cussed in Sec. 4.1. The other is increasing η for a fixed ∆µ. In
this case, ∆µ sets the limits of control achievable, for low driv-

ing, droplets can be dissolved partially, but for strong driving full

dissolution is possible. Increasing driving above the point where

dissolution is possible increases the sharpness of the transition

between formation and dissolution of droplets, see fig. 4.7B, i.e.

the sensitivity to changes in η. But higher driving comes at the

cost of higher entropy production to keep droplets dissolved, see

fig. 4.7A, so there is an optimal∆µ that fully dissolves droplets,
but keeps the entropy production low.

To summarize this part about Non-equilibrium reactions,

both active reactions (Eq. 4.4) as well as driven reaction cycles

(Eq. 4.5) can be described in the framework of passive reactions

by rescaling the internal energy difference as long as the reaction

rates, ka/p or λa/p, are constant in space. In these cases, phase

separation is only influenced by changing the total amount of B
available; see fig. 4.2A. The external driving does not influence

the diffusion dynamics directly. The reason for this is, that re-

actions and diffusion do not couple directly in isotropic systems.

In addition, the dynamics are fully determined by the chemical

potential so the reactions do not distinguish between the droplet

and solvent phase because the chemical potential is the same in

both phases. One qualitative difference between reaction cycles

and passive reactions is the constant consumption of energy in

a NESS; see fig. 4.7A. This behavior is reminiscent of futile cy-

cles found in biology[172], for example in metabolic pathways.

A futile cycle is a reaction cycle that constantly burns energy by

ATP hydrolysis without an apparent benefit for the cell. But it

has been hypothesized that those cycles can control the steady-

state of reactions[172] and even drive oscillations in fluctuat-

ing systems[173]. In our system the energy is used to reduce

the number of proteins in state B and thus suppress phase sep-

aration, which would occur in passive systems; see fig. 4.7B.

We showed in Eq. 4.8 that the steady state chemical potential,

and thus the total amount of B, is influenced by the driving

strength ∆µ and the reaction rate ratio η. This is another dif-

ference compared to the passive case, a NESS with a reaction

cycle depends on the reaction kinetics as well as the free energy

of reaction[174]. This has an important effect on the control of

biomolecular condensates because varying the driving strength
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13: For example in Michaelis-

Menten kinetics[176].

Enzyme

Figure 4.8: Enzymes in droplets

drive diffusive fluxes between the

phases. The system is the same as

in fig. 4.1, but with enzymes (ma-

roon particles) enriching in droplets

and catalyzing the active reactions

in droplets. As a result, the active

reaction happens predominantly in

the droplet and the passive reaction

in the solvent phase.

14: The proteins that are post-

translationally modified with the

help of an enzyme are called sub-

strate and the modified version is

called product.

influences other processes and has the same downsides as vary-

ing global parameters like temperature. But varying η is possi-

ble, for example by enzymes that speed up the reaction without

changing the free energy of reaction, as shown in Eq. 4.1 for

a phosphorylation-dephosphorylation cycle. Changing reaction

rates via enzymes to control droplet formation and dissolution is

specific, reasonably fast, and precise. Specific because kinases

and phosphatases oftentimes act on specific proteins or protein

families[175]. Reasonably fast because enzymes in cells can be

activated and deactivated by chemical modifications and do not

have to be produced[36]. And precise because the rate constants

in enzymatic reactions depend on the amount of enzyme13 , so

the rate ratio η can in theory be fine-tuned by the number of en-

zymes. But this still allows no precise control over the phase

separation process, for example, size and count of droplets. The

reaction cycle only shifts the equilibrium ratio to values of lower

B fraction, see fig. 4.2A, and thereby switches between a state

where droplets are stable or not. In the next section, we show

how enzymes that break the symmetry between the droplet and

solvent phase can lead to a NESS where the chemical energy is

converted into diffusive fluxes.

4.2 Enzymatic reactions

At the end of the last section, we discussed enzymes as possi-

ble mechanisms to control the ratio of A to B and thus switch

between a state where droplets are stable (φ̄B > φout
B ) and unsta-

ble (φ̄B < φout
B ). In this section, we introduce enzymes as extra

species that can be enriched or depleted in droplets. First, we

introduce the enzyme species E explicitly and then show how

we can model it implicitly because the enzyme fraction can be

derived directly from the B fraction under certain approxima-

tions. Afterward, we show how enzymes localizing in droplets

(see fig. 4.8) can break the symmetry between the droplet and

solvent phase and induce diffusive fluxes between the phases in

a non-equilibrium steady state (NESS).

Enrichment in droplets

There are several cases of enzymes co-localizing with their sub-

strate14 in biomolecular condensates[73]. As an example, we

show a confocal microscopy image of stress granules in fig. 4.9.

Stress granules form as a response to external stresses, for ex-

ample, temperature or pH changes, hence the name. In fig. 4.9,

stress granule formation is triggered by arsenite treatment[36].

The kinase DYRK3 localizes to stress granules in its active state,

fig. 4.9 (center of small panels) and phosphorylates proteins that
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Figure 4.9: Enzyme DYRK3

co-localizes with stress granules.

Confocal image stack of HeLa cells

shows that DYRK3 colocalizes

with stress granules (indicated

by PABP1). DYRK3 phospho-

rylates PRAS40, which leads to

downstream effects that dissolve

stress granules[36]. Reprinted from

Wippich, et al., ”Dual Specificity

Kinase DYRK3 Couples Stress

Granule Condensation/Dissolution

to mTORC1 Signaling”, Cell,

Vol.152, P791-805[36], fig.2C,

with permission from the publisher

Elsevier under the License number

5264830529640.

15: We use a simplified version of

the enzyme kinetics,A+W+E 

B + F + E. Standard Michaelis

Menten kinetics involves an inter-

mediate state B + E 
 BE →
A + E, where the last step is con-

sidered irreversible[176].

are important for stress granule formation, which leads to the dis-

solution of stress granules[78].

To model this effect, we include the enzyme E as an ex-

tra species in our model. In general, both reactions of the phos-

phorylation dephosphorylation cycle, Eq. 4.1, can be influenced

by enzymes. For simplicity, we treat only one of them, here

the kinase, explicitly. This means, that the phosphatase is ei-

ther distributed homogeneously and its activity is not influenced

by phase separation, or that the dephosphorylation reaction pro-

ceeds without the help of an enzyme. As discussed before, en-

zymes do not influence the free energy change of reaction, but in-

crease the reaction rate. We assume that, for low enzyme concen-

trations, the rate increases linearly with the amount of enzymes,

sa ∝ φE , similar to Michaelis Menten enzyme kinetics15 . Since

the enzyme is not used up in the reaction, the total amount of en-

zymes in the system is conserved, φ̄E = V −1
sys
∫
VsysφE dV =

const. We thus write the active reaction rate with explicit de-

pendence on enzyme concentration as

sa,L
kp

= η
φE

φ̄E

(µA − µB −∆µ), and (4.16a)

sa,TST

λp
= η

φE

φ̄E

[
exp

(
µA −∆µ

kBT

)
− exp

(
µB

kBT

)]
. (4.16b)

Where we normalized with respect to φ̄E so Eq. 4.16 reduces to

Eq. 4.10 for homogeneously distributed enzymes. But, the im-

portant point is that enzymes do not distribute homogeneously in

a multiphase system. Instead, due to enthalpic interactions, they

get enriched in one phase. Under the assumption that the average

enzyme fraction is low, φ̄E � 1, and that the enzyme interac-

tions χEj are on the order of kBT , we can approximate the en-

zyme partition coefficient ΓE as (see Appendix.D and Ref.[134]

for the derivation)

ΓE =
φin
E

φout
E

≈ eχE(φin
B−φout

B ), (4.17)

where χE = χEC − χEB is the affinity for the B rich droplet

phase compared to the solvent phase[105]. For χE > 0, the
enzyme fraction is enriched in the droplet and for χE < 0 in the
solvent phase. Here, we discuss the case χE > 0 only and thus
enzymes behave like clients partitioning into droplets formed

by the scaffold B[5, 152]. The total droplet volume in cells is

usually low[6], thus, we consider systemswhere the total droplet

volume is small compared to system volume, so ψ = V /Vsys �
1, where V is the total droplet volume. In this case, the fraction

of enzymes in droplet and solvent phase can be approximated by
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16: As long as E does not diffuse

very slow compared to B.

17: The deviations for ΓA proba-

bly result from the very low φin
A ≈

0.0006.
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Figure 4.10: Distribution of en-

zyme and protein A without re-

actions. Volume fraction of the en-

zyme (solid maroon line) and pro-

tein state A (green line) as a func-

tion of distance from droplet center.

TheB rich droplet (orange area) in-

side the solvent phase (blue area) is

small compared to the total system

volume ψ ≈ 0.01. φE is enriched

in the droplet by a factor ΓE , while

it is approximately the average en-

zyme fraction (dashed maroon line)

in the the solvent phase. Parame-

ters are Λij = δij v
2/3
0 τ−1, χ =

4, χE = 2, φ̄A = 0.03, φ̄B =
0.03 and φ̄E = 0.005. Simulation

was done in a spherically symmet-

ric box with no flux boundary con-

ditions.

18: Under the assumption that

ψ � 1, so φout
E = φ̄E and Eq. 4.17

are valid.

φin
E ≈ ΓEφ̄E, and (4.18a)

φout
E ≈ φ̄E. (4.18b)

Thus, for small droplets,ψ � 1, Eq. 4.17 together with Eq. 4.18
imply that the local enzyme fraction follows directly from theB
volume fraction16 . To illustrate this, we simulate a four compo-

nent system without reactions, a protein B that phase separates

together with an enzyme E from the solvent C and another pro-

tein A. In addition, the average volume fractions of all species,

except the solvent, are very low. A steady state of this system is

shown in fig. 4.10. We find the numerical partition coefficients,

ΓE ≈ 6.2 and ΓA ≈ 0.024, to be in good agreement with the an-

alytical prediction from Eq. 4.17: ΓE ≈ 6.4 and ΓA ≈ 0.02117

.

In addition, the approximation for small droplet volume in

Eq. 4.18 is valid, which can be seen from φout
E = φ̄E in fig. 4.10.

Finally, the enzyme is enriched at the droplet-solvent interface

because χ > χE , so the enzyme acts as a surfactant to reduce

the number of B-C contacts. This is not a numerical artifact,

but a physical effect to lower the surface energy[177]. For re-

actions, this effect is negligible because the interface region is

small compared to system volume.

Thus, to simplify the numerical simulations, we assume

that the enzyme fraction in droplet and solvent phase is a con-

stant, and for φ̄E < φin
E � 1, the effect of the enzyme on con-

served volume fraction,
∑

i φ = 1, is negligible. So, instead

of describing the enzyme explicitly, we assume it is enriched in

the droplet, which leads to an increase of the active reaction rate

by a factor of ΓE compared to the solvent phase according to

Eq. 4.16.

Active droplets

Enzymes enriching in droplets influence the reaction rate ac-

cording to Eq. 4.16 and thus the steady state chemical potential

(Eq. 4.8). While it remains the same in the solvent phase18 , the

steady state chemical potential in the droplet phase becomes

µ∗,in
−,L =

ΓEη

ΓEη + 1
∆µ, and (4.19a)

µ∗,in
−,TST = ∆µ− kBT ln e

∆µ/(kBT ) + ΓEη

1 + ΓEη
. (4.19b)

All effects we will discuss below rely heavily on this asymmetry

of the steady-state chemical potential difference between droplet

and solvent phase, ∆µ∗
− = µ∗,in

− − µ∗
−. Therefore, we discuss
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Figure 4.11: Strong driving and high reaction rate ratios induce significant chemical potential differences. A

Difference between the steady state chemical potential in droplet and solvent phase as a function of driving (∆µ) and
reaction rate ratio (η). The red dashed line indicates η = Γ−1

E and the yellow dashed line η = exp(∆µ/(kBT )). B
The same chemical potential difference as a function of ΓE ≈ exp(χE) for different driving strengths. The black dot
indicates the same conditions in both plots. Parameters are χE = 3 (in A) and η = 1 (in B).

19: The qualitative results are sim-

ilar for LNEQ.

when this difference is significant for TST next19 :

1. In the solvent phase, µ∗
− (Eq. 4.8), has to be such that the

B fraction outside is higher than the binodal, φ̄B > φout
B .

Otherwise droplets are not stable to begin with, as dis-

cussed before.

2. If the reaction rate ratio η is small, such that ηΓE � 1,
the absolute value of the potential difference is small as

can be seen from fig. 4.11A. We assume that χE ∼ O(1),
so ΓE . 104. The red dashed line in fig. 4.11A indicates

η = Γ−1
E and below that line the chemical potential differ-

ence is below 1 kBT . At the same time, for very high η >
e∆µ/(kBT ) � 1 (see the yellow line in fig. 4.11A), the ac-

tive reaction is dominant in the solvent phase as well. As a

result, the enzyme can not induce a chemical potential dif-

ference between the droplet and solvent phase. Therefore,

η should be larger than Γ−1
E but smaller than e∆µ/(kBT ) to

achieve a strong effect on ∆µ∗
−, Γ

−1
E < η < e∆µ/(kBT ).

3. Themaximumdifference is∆µ∗
− = ∆µ, which is achieved

for µ∗,out
− = 0 and µ∗,in

− = ∆µ. Thus, for low driving ∆µ,
the chemical potential difference is always low. At the

same time, higher driving increases the range of η values
as discussed before. Fig. 4.11B shows that the chemical

potential difference scales almost linearly with χE inde-

pendent of driving strength until a plateau with the value

∆µ − µ∗,out
− is reached. The crossover to the plateau in

fig. 4.11B happens approximately when driving and en-

zyme interaction are equal ∆µ ≈ kBTχE ≈ kBT ln(ΓE).
Thus, for strong driving, the partition coefficient becomes

the limiting factor for the chemical potential difference.

In this regime, even stronger driving leads to the same
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chemical potential difference and increases the dissipation

without any effect. To summarize, the driving should be

strong enough to have an effect ∆µ & kBT , there is no
a priori upper bound, but strong driving (∆µ � kBTχE)

leads to higher dissipation without affecting the chemical

potential difference.

4. Finally, the chemical potential difference scales linearly

with χE = ln(ΓE) for ηΓE . e∆µ and reaches a plateau

for ηΓE � e∆µ. The plateau value is given byµ∗,in
− = ∆µ;

see fig. 4.11B. Thus, by varying the enzyme segregation

between 1 and ∞, the chemical potential difference can

be tuned between 0 and ∆µ− µ∗,out
− .

As a result, we have a restricted parameter range of η,∆µ and

ΓE for which we can expect significantly different (> 1 kBT )
steady-state chemical potentials in the droplet and solvent phase.

In the next section, we discuss the effect of the steady state

chemical potential difference between droplet and solvent phase.

Thereby, we call systems with enrichment of enzymes in droplet

phases active droplets because the active reaction is happening

predominantly in the droplet phase. In the next sections, we

show that those active droplets show new effects compared to

the systems with homogeneous reaction rates discussed so far.

4.3 Binary active droplets

In Ch. 3 we argued, that binary reaction-diffusion systems in-

evitably end up in a homogeneous steady state because the reac-

tion relaxes to the absolute minimum of the free energy density

at every point in space. In driven systems, this is not necessarily

the case anymore as the external driving keeps the system away

from thermodynamic equilibrium[51] and allows for more com-

plex behavior even in a binary system. This is similar to other

work, for example, [60, 71], where binary phase separating sys-

tems with reactions are discussed. However, in those studies

activity was included implicitly, by using mass-action kinetics,

which breaks detailed balance in non-ideal solutions.

We start with the most simple case, a binary system con-

sisting of two protein states A and B. A corresponding binary

regular solution free energy (Eq. 2.39) and chemical potential

(Eq. 2.40) determine the dynamics. The binary free energy has

several advantages for the analytical discussion. First, in the

phase separated state, the chemical potential is simply µ(φ1) =
µ(φ2) = −kBT∆w, where φ1 and φ2 are the equilibrium vol-

ume fractions in droplet and solvent phase respectively. Here,

∆w = wA − wB is the internal energy difference discussed in

Ch. 2. Second, we have to discuss only one volume fraction
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Figure 4.12: Active reactions re-

verse the reaction rate in droplets.

A Rescaled chemical potential µ +
kBT∆w (blue solid line) as a

function of volume fraction. The

rescaled, binary chemical potential

vanishes at the phase coexistence

points (blue and orange dot), while

the chemical reaction vanishes for

µ = µ∗
in (maroon dot) in the droplet

and µ = µ∗
out (black dot) in the sol-

vent phase. B Chemical reaction as

a function of volume fraction inside

(maroon) and outside (black dots)

the droplet. Parameters are ∆w =
0.6, µout

∗ = 0, µin
∗ = 2 kBT , χE =

3.5, kp = ka = 1.
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20: For this choice of variables, the

chemical potential is proportional

to the negative internal energy dif-

ference: µ ∝ −kBT∆w.

21: The initial condition deter-

mines in which state the system

will end up. With noise, it will

always be the one with lower free

energy, in fig. 4.12A that is the

higher volume fraction.

(φ = φB) and one chemical potential20 (µ = µB − µA) and

solve only one dynamical equation (∂tφ). Furthermore, we dis-

cuss the case of linear non-equilibrium reactions first, so the total

reaction flux in the droplet and solvent phase is given by

sin

kp
= −(1 + ΓEη)

(
µ+

ΓEη

1 + ΓEη
∆µ

)
, and (4.20a)

sout

kp
= −(1 + η)

(
µ+

η

1 + η
∆µ

)
, (4.20b)

where ∂tφin/out ∝ sin/out and the enzyme is enriched in the

droplet by a factor ΓE . The effect of different steady state chem-

ical potentials in droplet and solvent phase is shown in fig. 4.12.

The phase coexistence fractions are given by φin in droplet and

φout in solvent phase (orange and blue dots in fig. 4.12A). Un-

like in the ternary case with passive reactions, phase coexistence

and steady state of the reaction (black and maroon lines) are in-

compatible both in droplet and solvent phase for∆w 6= 0. Thus
a steady state where both diffusion and reaction vanish every-

where is impossible. If the enzyme was homogeneously dis-

tributed, the black dashed line in fig. 4.12 indicates the steady

state for the reaction everywhere because µ + µ∗
out = 0. As a

result, at the phase coexistence fractions (orange and blue dots),

the reaction flux would be positive, and the dense phase will

grow because new material is produced in both phases. This is

what happens in model A or Allen-Cahn dynamics for ∆w 6= 0
and the final state is a homogeneous volume fraction given by

one of the black dots21 in fig. 4.12A. But, if the enzyme is en-

riched in the droplet phase, it can lead to a sign change of the

reaction in the droplet (maroon line in fig. 4.12B) for high µ∗
in.

This leads to the production of droplet material in the solvent

and degradation in the droplet phase, see orange and blue dots in
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22: The restrictions for the multi-

component case are less strict be-

cause it has more degrees of free-

dom.

23: Analytical results for transi-

tion state theory are given in Ap-

pendix.G and the numerical results

indicate which kinetics were used.

24: The average volume fraction

change was < 5 · 10−7 per lattice

side per time step dt = 10−3τ .

fig. 4.12B, as discussed in Refs.[70, 71, 104] for mass action ki-

netics. However, there are two parameter restrictions to achieve

this scenario in our system22 :

1. The volume fraction for which the reaction flux vanishes

in the solvent phase sout = 0 (indicated by the intersection
of the black dashed line with the rescaled chemical poten-

tial in fig. 4.12A) has to be higher than the equilibrium

volume fraction φout. In this case, the mixture is super-

saturated and droplets form in the first place. This corre-

sponds to kBT∆w > µ∗
out. At the same time, the volume

fraction defined by sout = 0 has to be below the chem-

ical potential maximum, else the reaction in the solvent

phase vanishes for very high protein fractions. In that case,

the solvent phase would predominantly consist of protein,

which makes no sense. So µ∗
out < kBT∆w < µ(φs).

2. The enzyme enrichment in the droplet, described by ΓE ,

has to be chosen such that µ∗
in > kBT∆w so that the reac-

tion flux in the droplet phase is negative.

So far we only discussed the phase space and reactions in

the droplet and solvent phase qualitatively. In systemswithmass

action kinetics[70, 71, 104], the competition between produc-

tion in the solvent and degradation in the droplet can lead to

stable droplet size and states with multiple stable droplets. To

see if this is possible for non-equilibrium reaction cycles with

segregating enzymes, we investigate the dynamics of this sim-

ple binary example, simulate a system of multiple droplets, and

discuss how a single droplet grows or shrinks in time next.

Collective dynamics

To test whether thermodynamically consistent reaction cycles

with segregating enzymes can show similar effects as mass ac-

tion kinetics, we simulate the dynamics given by

∂tφ = ∇2µ− `−2(φE)

(
µ+

η(φE)

1 + η(φE)
∆µ

)
, (4.21)

where ` =
√
Λ/[kp(1 + η(φE))] is the reaction diffusion length

scale. For simplicity, we discuss linear non-equilibrium reac-

tions because the analytical results are easier to interpret23 while

the qualitative results are the same for TST kinetics. We account

for the enzyme segregation in the simulation by interpolating be-

tween ka in the solvent and kaΓE in the droplet phase using a

hyperbolic tangent function. So, the reaction rate is calculated

using ka(φ) = 0.5ka((1 + ΓE) + (ΓE − 1) tanh(φ− 0.5)). An
example simulation of multiple droplets is shown in fig. 4.13A.

Close to the steady state24 , multiple droplets of similar size are
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Figure 4.13: Enzyme enrichment

in droplets can lead to stable col-

lective droplet states. A Two di-

mensional simulation of Eq. 4.21

shows multiple stable droplets of

similar sizes. B The reaction flux

s (Eq. 4.20) shows that phase sep-

arating proteins are degraded in the

droplet (s < 0) and produced in the
solvent (s > 0) phase. Parameters

are ∆w = 1, ∆µ = 3 kBT , `out =

9.5 v
1/2
0 , η = 0.1 and ΓE = 15.

Simulations where done for LNEQ

kinetics up to t = 5000 v0/Λ.
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25: Assuming the same diffusivity

Λ in both phases.

26: Because ΓE > 1, `out > `in,

so the reaction-diffusion length is

always higher in the solvent than

the droplet.

stable. At the same time, the reaction flux shown in fig. 4.13B,

does not vanish everywhere. Instead, inside the droplets, droplet

material gets degraded (s < 0), while it gets produced in the sol-
vent phase (s > 0), similar to the mass action results in Refs.[70,

71]. To understand this effect in more detail, we next analyze

the growth dynamics of a single droplet in a large system.

Single droplet growth

To discuss the dynamics of a single droplet analytically, we start

with an initial droplet of radius R and discuss the dynamics in

droplet and solvent phase separately in what we call an ‘effective

droplet model’[60]. Therefore, we indicate the phase of a quan-

tity by subscripts ‘in’ and ‘out’, for example, φin. The dynamics

are then given by25

∂tφin = Λ∇2µin − (kp + ΓEka)

(
µin +

ΓEη

1 + ΓEη
∆µ

)
, r ≤ R, and (4.22a)

∂tφout = Λ∇2µout − (kp + ka)

(
µout +

η

1 + η
∆µ

)
, r > R, (4.22b)

where, due to inhomogeneous distribution of enzymes, the re-

action kinetics in droplet and solvent phase are different. As a

result, the reaction diffusion length scales are different in droplet

`in =
√

Λ/(kp + ΓEka) and solvent `out =
√
Λ/(kp + ka) phase

as well26 . The boundary conditions at the system boundaries

r = 0 and r = L are no flux conditions j(r = 0, L) = 0 and

at the droplet-solvent interface, the chemical potential has to be

equal µin(R) = µout(R) = µR to ensure a continuous chem-

ical potential across the interface. In addition, at the interface

the phase coexistence condition has to be fulfilled[60] and thus

µR = −kBT∆w.
The effective droplet model assumes a thin interface region

compared to droplet size, which is the case for high interaction
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27: Because we assume a steady

state in each phase, only fluxes be-

tween the phases can change the ra-

dius.

28: There is no minus sign

here because Jout flows

into the droplet and thus

Jout =
∮
AR

(−er)∇µdA = Sout.

29: See Appendix.G for a deriva-

tion.

strength, as discussed in Ch. 2. Furthermore, it assumes that

the radius R varies slowly, so the reaction diffusion equation in

each phase is close to the steady state, ∂tφin/out ≈ 0. In this

case, the dynamics happen predominantly by moving the inter-

face and thus changing the droplet radius, which in turn is driven

by fluxes at the boundary between the two phases27 . Assum-

ing a spherically symmetric system, the flux from the solvent

into the droplet is given by Jout = 4πR2Λer∇µout|r=R, while

the flux from the droplet into the solvent is given by Jin =
−4πR2Λer∇µin|r=R, where er is the outward pointing radial

normal vector. The change of droplet volume V = 4πR3/3
is then given by the difference between these fluxes[60]

∂tV =
Jout − Jin

φin − φout
, (4.23)

where the factor φin − φout takes care of converting a volume

element of solvent phase, φout, to droplet phase, φin. Jin − Jout
is the net influx into the droplet. Therefore, if Jin = Jout, the

volume change vanishes, ∂tV = 0, i.e. the droplet is in a station-
ary state when the two fluxes balance each other. Due to the no

flux boundary conditions at r = 0, L and the steady state con-

dition ∂tφin = 0, the (negative) integrated reactive flux, −Sin,

inside the droplet is equal to the diffusive outflux, Jin, out of the

droplet:

Λ

∫
V

∇2µ = Λ

∮
AR

er∇µ dA = Jin = −4π

∫ R

0

sinr
2 dV = −Sin,

(4.24)

where AR is the surface of the droplet. And analogously Jout =
Sout

28 . We thus need to calculate the fluxes Jin/out or Sin/out to

calculate the droplet dynamics, Eq. 4.23.

To calculate the fluxes, we first determine the steady state

chemical potential as a function of r in both phases. We assume

a spherically symmetric system where the system size L is large

compared to the reaction diffusion length in the solvent, L �
`out. Then, solving Eq. 4.22 for the steady state29 , we end up

with

µin(r) = −µ∗
in + (µ∗

in − kBT∆w)
R

r

sinh(r/`in)

sinh(R/`in)
r ≤ R, and

(4.25a)

µout(r) = −µ∗
out + (µ∗

out − kBT∆w)
R

r
exp

(
−r −R

`out

)
, r > R,

(4.25b)

for droplet and solvent phase respectively. Here, µ∗
in = ΓEη/(1+

ΓEη)∆µ and µout = η/(1 + η)∆µ. Eqs. 4.25 are shown in
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Figure 4.14: Influence of the reac-

tion diffusion length on the steady

state chemical potential profile.

A Chemical potential inside the

droplet as a function of distance

from the droplet center. B Chem-

ical potential outside the droplet

as a function of distance from the

droplet center. Parameters are w =
−0.5, µout

∗ = 0.15 kBT , µ
in
∗ =

2 kBT , `in = 158 − 0.0158R and

`out = 158−0.158R (dark to light

grey).
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30: This is why kBT∆w−µ∗
out <

kBT∆w + µ(φs), else the volume

fraction far away from the droplet

would be very high; see fig. 4.12A.

fig. 4.14A and B for the droplet and solvent phase respectively.

Both take the phase coexistence value at the interface, µ(R) =
−kBT∆w, and then homogeneously relax to µin = −µ∗

in and

µout = −µ∗
out, over a length that is determined by the reaction

diffusion length. Thus, for system size (R in the droplet andL in

the solvent) large compared to the reaction diffusion length, the

reaction only contributes close to the interface and vanishes ev-

erywhere else (light gray lines in fig. 4.14). As a result, the reac-

tion can drive diffusive fluxes only close to the interface because

the chemical potential is flat everywhere else. For system sizes

small compared to the reaction diffusion length, diffusion is fast

and thus the chemical potential is flat and fixed by the interface

value almost everywhere (dark gray/black line in fig. 4.14A). In

this case, the reaction is only a small perturbation to the fast dif-

fusive dynamics.

As the system size is always large compared to the reac-

tion diffusion length, the chemical potential far away from the

droplet is determined by the condition that the reaction vanishes30

(µout(r � R) = µ∗
out). In the droplet, the situation is less

clear, as droplets are small compared to the solvent phase, the

individual droplets can be small compared to the reaction dif-

fusion length in the droplet. In fact, fig. 4.12B shows that, for

high µ∗
in, the steady state is reached for very low volume frac-

tions in the droplet phase. As a result, the droplet dissolves it-

self for large droplet radii. This can be circumvented by restrict-

ing the steady state chemical potential in the droplet, such that

it is larger than the chemical potential at the binodal fraction:

0 > kBT∆w−µ∗
in > kBT∆w+µ(1−φb). A similar condition

is necessary for the solvent phase, as discussed above. This en-

sures that the volume fraction in the droplet/solvent phase does

not get too low/high. But, this is not necessary if R < `in be-

cause the chemical potential and volume fraction never reach

those values.

A simulation of Eq. 4.22 is shown in fig. 4.15. Unlike in

passive phase separation, the volume fraction in droplet and sol-
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Figure 4.15: NESS of a single droplet in a large solvent phase. A Volume fraction as a function of distance from

droplet center. In the steady state, gradients in φ are present inside each phase, which is not the case in passive phase

separation. B Corresponding chemical potential from the simulation (blue line) and the analytical prediction Eq. 4.25

(orange dashed line). The reaction flux vanishes for µ = −µ∗
out (black dashed line) in the solvent and µ = −µ∗

in
(maroon dashed line) in the droplet phase. At the interface, the phase coexistence condition requires µ = −∆w. C
Reaction flux calculated from the chemical potential using Eq. 4.20. Inside the droplet (green shaded area) droplet

material gets degraded and outside (orange shaded area) it gets produced. The integrated reaction flux in droplet and

solvent phase is equal in the steady state (Sin = Sout). Parameters are∆w = 1,∆µ = 3 kBT , `out = 9.5 v
1/3
0 , η = 0.1

and ΓE = 15. Simulations where done for LNEQ kinetics in a spherically symmetric box of length L = 500 v
1/3
0 .

31: A chemical potential gradient

between droplet and solvent is

present even in the steady state.

This is reminiscent of electrochem-

ical gradients across membranes,

which control the partitioning of

charged molecules on both sides of

the membrane[178].

vent phase is not constant, but shows small variations because

of the chemical reactions in both phases; see fig. 4.15A. This

implies the presence of diffusive fluxes in the individual phases,

even in the steady state. In the solvent phase far away from the

interface, the volume fraction becomes flat and both diffusion

and reaction vanish. The chemical potential in fig. 4.15B be-

haves as predicted from Eq. 4.25 and the numerical result (blue

line) and analytical prediction from the effective droplet model

(dashed orange line) match very well31 . The maroon and black

dashed lines indicate the values for which the reaction vanishes

in the droplet and solvent phase respectively. Thus, the distance

of the chemical potential from those lines is proportional to the

local reaction flux; compare fig. 4.15B and C. Finally, the total

reaction flux is shown in fig. 4.15C for the droplet (blue shaded

area) and solvent (orange shaded area). Again, it shows that

droplet material is degraded in the droplet and produced outside

and in a steady-state, the fluxes sum up to zero, Sout = −Sin.

Now that we know the steady state chemical potential from

Eq. 4.25 and saw that it matches well with simulations, fig. 4.15,

we can calculate the droplet growth rate and predict the stable

radius. The droplet growth depends on the difference between

influx into the droplet and degradation of droplet material due

to reactions. The total reaction flux in the droplet is given by

Sin

kp
= 4π

∫ R

0

sin

kp
r2 dr

= −4π(1 + ηΓE)(µ
∗
in − kBT∆w)`

2
inR

(
R

`in
coth

[
R

`in

]
− 1

)
(4.26)
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Figure 4.16: The competition be-

tween reactions in droplet and

solvent phase introduce a stable

droplet size. Droplet growth rate

(black line) as a function of droplet

size. The droplet growth is given by

the difference between degradation

of droplet material in the droplet

(green dashed line) and production

in the solvent phase (orange dashed

line). Because these fluxes have dif-

ferent signs and scale differently

with droplet size (see Eq. 4.27 and

Eq. 4.27), a steady state droplet size

R∗, independent of system volume,

emerges (black dot). Parameters are

kp = 0.001Λv
−2/3
0 ,η = 0.1, ΓE =

60, χ = 4, ∆w = 1 and ∆µ =
4 kBT .

the total reaction flux in the solvent in turn is given by (assuming

L� `out, i.e. L→ ∞ in the integration)

Sout

kp
= 4π

∫ ∞

R

sout

kp
r2 dr

= −4π(1 + η)(µ∗
out − kBT∆w)`

2
outR

(
1 +

R

`out

)
.

(4.27)

As already discussed, for Sout > 0 and Sin < 0, it is necessary
that µ∗

in > kBT∆w > µ∗
out (see fig. 4.12B). This is the only

case we discuss in detail because it follows from Eq. 2.43 that

the droplet disappears or grows indefinitely if both fluxes have

the same sign. In addition, coth(x) ≥ 1 and all other factors

are positive as well, so the factor µ∗
in/out − kBT∆w determines

the sign of the rate, independent of the radius R. The scaling of
the rates with radius, which is important for droplet growth, is

determined by the ratio of reaction diffusion length and radius

R. We discuss the four limiting cases, large and small reaction-

diffusion length in droplet and solvent phase, and discuss the

scaling with `in/out and R only:

I R/`in = x� 1: In this case, we approximate x coth(x)−
1 ≈ x2/3 and thus Sin ∝ −4πR3

3
= −V . If the reaction

is slow compared to diffusion, the chemical potential in

the droplet is flat, see fig. 4.14, and thus the reaction is

proportional to the droplet volume.

I R/`in = x� 1: In this case, we approximate x coth(x)−
1 ≈ x and thus Sin ∝ −4πR2`in = −AR`in. This case is

only possible if 0 > kBT∆w − µ∗
in > kBT∆w + µ(1 −

φs), else the droplet dissolves itself. As can be seen from
fig. 4.14, only a small area around the interface contributes

to the integral and thus, the flux scales with droplet surface

area.

I R/`out � 1: Sout ∝ 4π`2outR, from purely diffusive dy-

namics we expect an influx of 4πΛR[60], which is what

we get here as well.

I R/`out � 1: Sout ∝ 4π`outR
2, for strong reactions, the

influx scales with droplet surface instead of droplet radius.

The reason is the same as in the droplet phase.

Since `out > `in for ΓE > 1, the case `in � R � `out is impos-

sible, but the other three combinations are possible. Plugging

Eq. 4.26 and Eq. 4.27 into Eq. 4.23, we can calculate the steady

state droplet radius, defined by ∂tV = 0. An example shown

in fig. 4.16 illustrates how the different scalings of Sin and Sout
with droplet radius introduce a steady state radius R∗ for which

the growth rate vanishes. For small droplets, the influx from the
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32: We assume strong phase sepa-

ration and thus φin − φout ≈ 1.

solvent dominates the growth (blue dashed line in fig. 4.16, but

for large enough droplets the degradation inside the droplet be-

comes too strong because Sin ∝ R3. As a result, the degradation

of droplet material in the droplet itself limits the droplet growth.

In addition, the figure shows that the steady state radius is stable

because the droplet grows for R < R∗ (∂tV > 0) and shrinks

for R > R∗ (∂tV < 0).
Because of the hyperbolic cotangent function, we can not

solve for the steady state radius analytically, but we can calculate

the limiting cases `in � R and `in � R by setting Eq. 4.23 to

032 . For `in � R, the steady state radius becomes

R∗ =
(1 + η)(kBT∆w − µ∗

out)`out

(1 + ηΓE)(µ∗
in − kBT∆w)`in − (1 + η)(kBT∆w − µ∗

out)`out
. (4.28)

As said before, this limit is only valid for restricted µ∗
in. But, in

this regime, for `out � R, both reaction fluxes scale with R2,

so the difference between the pre-factors determines the droplet

size. Since it is not clear which pre-factor is higher, the stable

radius can become negative, which is nonphysical and corre-

sponds to the case where droplets dissolve. As a result, in this

regime, strong fine-tuning of parameters is necessary to gain con-

trol over droplet size.

This is different for `in � R, because the reaction flux

in the droplet scales with droplet volume, while the flux in the

solvent scales with droplet radius. In this case, the steady state

radius becomes

R∗ =

(
3Λ

kp(1 + ηΓE)

kBT∆w − µ∗
out

µ∗
in − kBT∆w

)1/2

= `in

(
3
kBT∆w − µ∗

out
µ∗

in − kBT∆w

)1/2

. (4.29)

Here, the first factor is the reaction-diffusion length in the droplet

and as a result, the second factor has to be small, to ensure `in �
R∗. This is the case for strong driving∆µ� kBT and fast active

reaction in the droplet ΓEη � 1. Unlike in all other cases dis-

cussed so far, Eq. 4.29 is independent of system size Vsys. This

effect, found already for active droplets with mass action kinet-

ics[70, 71], allows multiple droplets to be stable, see fig. 4.13,

and precise control over the droplet size. Since the chemical re-

action in the droplet does not attain a steady state, there is no

restriction on µ∗
in − kBT∆w (except that it is positive). There-

fore, the range of parameters for which droplet size control is

achieved is larger than for `in � R and the mechanism of size

control is more robust. In addition, `in � R implies slow re-

actions compared to diffusion This means, that the reactions are

only a small perturbation to the diffusive dynamics, but still have
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Figure 4.17: Higher enzyme par-

titioning decreases droplet size.

Stationary droplet radius as a func-

tion of enzyme partition coefficient.

For weak partitioning, droplets are

large and eventually reach full

system size. For strong partition-

ing, droplets shrink and evetually

dissolve fully (see inset). Simula-

tion results (blue dots) show the

same trend as analytical predictions

Eq. 4.29 (maroon line) and Eq. 4.28

(blue line). The deviation for small

droplets are due to surface tension

effects for small droplets[60] not in-

cluded in the analytics. Parameters

are kp = 0.001Λv
−2/3
0 , η = 0.1,

χ = 4, ∆w = 1 and ∆µ = 4 kBT .
Simulations were done in a spheri-

cally symmetric box of length L =

500 v
1/3
0 with no flux boundary con-

ditions.

33: Except the parameter regime

around the full dissolution, which

allows a switch like control; see the

inset in fig. 4.17.

a strong impact on the final state. This makes it a suitable control

mechanism for droplet size in cells.

To see whether `in � R is a reasonable approximation

for biomolecular condensates, we now try to estimate the re-

action diffusion length based on diffusion coefficients D and

enzymatic reaction rates kcat. The corresponding reaction dif-

fusion length is ` =
√
(D/kcat). The diffusivity of proteins

is approximately D ∼ 0.1 − 10µm2s−1[179] and depends on

protein size and confirmation. Typical enzymatic reaction rates

are on the order of kcat ∼ 10−2 − 102 s−1[1]. Plugging this

into the equation for the reaction diffusion length, we get ` ∼
30−0.03µm. Condensates range from small condensates in the

nucleous with radii R ∼ 10 nm[14] medium sized stress gran-

ules R ∼ 2− 0.1µm[180] to large condensates in Xenopus lae-

vis oocytes with R ∼ 400µm[15]. This shows, that `in � R is

a good approximation for small condensates and a for medium

sized condensates R ∼ O(µm), if the reactions are not too fast,
i.e. kcat ∼ 10−2 − 1 s−1.

Ultimately, we want to understand how enzyme segrega-

tion can control droplet size. Thus, we are particularly inter-

ested in the behavior of R∗ as a function of enzyme segregation

ΓE ≈ eχE . We restrict the analytical discussion to the case

`in � R in Eq. 4.29. There, ΓE appears twice, first, in the

reaction-diffusion length scale as a factor (ηΓE)
−1/2 and, second,

in the steady state chemical potential µ∗
in = ηΓE/(1 + ηΓE)∆µ.

Therefore, for ηΓE � 1, the stable radius scaleswithΓ−1
E and for

ηΓE � 1 it scales with Γ
−1/2
E . The comparison between numeri-

cal and analytical results is shown in fig. 4.17. Thereby, the blue

line corresponds to Eq. 4.28 and the maroon line to Eq. 4.29.

For low partitioning, the system goes back to the homogeneous

reaction rate discussed earlier in this chapter. In this case, the

droplet takes over the whole system and the droplet radius ap-

proaches system size R∗ → L, see fig. 4.17. For strong segre-

gation, the droplet size gets smaller, as predicted by Eq. 4.29.

But, for low radii, the numerical results deviate from the ana-

lytical results because we neglect the effect of the Laplace pres-

sure[181] in the analytical calculations, which becomes impor-

tant for small droplets[60]. The inset of fig. 4.17 shows that

droplets can be fully dissolved for strong enough segregation. In

fact, the crossover to full dissolution is discontinuous because of

the Laplace pressure as well[60]. The scaling Γ
−1/2
E seems sub-

optimal for a control parameter because of the low sensitivity33

. But, one has to keep in mind that the actual control parameter

is χE and thus, the radius scales with R∗ ∝ exp(−χE/2), so it

is very sensitive to changes in χE .
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Linearization

So far, we have deliberately described the system in terms of

the chemical potential(s) instead of volume fractions to highlight

the importance of the chemical potential in describing non-ideal

reaction diffusion processes. In the existing literature about re-

actions in biomolecular condensates, descriptions in terms for

volume fractions or concentrations were used, see Refs.[70, 71].

Can we write the active droplet model developed above in terms

of volume fractions? And if so, do we recover the same model

used in Refs.[60, 70, 71]? In this section, we show that it is pos-

sible to write the active droplet dynamics in Eq. 4.21 in terms of

volume fractions. Therefore, we linearize the chemical poten-

tial in droplet and solvent phase around the equilibrium volume

fractions and get

µin/out ≈ −kBT∆w+(∂φµin/out)|φ1,2(φ−φ1,2)−κ∇2(φ−φ1,2).
(4.30)

Here, we used that µ(φ1) = µ(φ2) = −kBT∆w. The derivative
of the chemical potential is given by

(kBT )
−1∂φµ =

1

φ(1− φ)
− 2χ, (4.31)

which is identical for the special case of a regular solution free

energy because φ1 = 1 − φ2. With the linearized chemical po-

tential, we can rewrite the diffusive fluxes as

jin/out = −Din/out

[
∇φin/out −

κ

δin/out
∇3φin/out

]
, (4.32)

where δin/out = ∂φµin/out|φ1,2 and Din/out = Λδin/out. Thus,

the diffusive flux takes the form of Fick’s law of diffusion with

an extra ∇3φ term. From the simlation in fig. 4.15A, we see

that the volume fraction in the individual phases are small and

κ/δin/out ∼ O(v
2/d
0 ) for our choice of κ ∝ χ. Therefore, the

third order gradient term is small compared to the gradient term

and we neglect it in the following discussion.

We can plug the linearized chemical potential in the reac-

tion flux as well and end up with

sin = −(kaΓE + kp)

(
δin(φin − φ1) +

ΓEη

1 + ΓEη
∆µ− kBT∆w

)
, and (4.33)

sout = −(ka + kp)

(
δout(φout − φ2) +

η

1 + η
∆µ− kBT∆w

)
. (4.34)

Using effective rates k̄in = (kaΓE + kp)δin and k̄out = (ka +
kp)δout and effective steady state fractions φin

0 δin = −kBTφ1 +
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34: We have used reaction rates

as a name for the rate factor all

the time so far. This is correct for

TST kinetics, but for linear non-

equilibrium thermodynamic reac-

tions, the Onsager coefficient con-

tains an energy scale and is strictly

a rate per kBT .

ΓEη/(1+ΓEη)∆µ−kBT∆w and φout
0 δout = −kBTφ2+η/(1+

η)∆µ−kBT∆w, we end up with the reaction flux that resembles

familiar mass action kinetics

sin = −k̄in(φin − φin
0 ), and (4.35)

sout = −k̄out(φout − φout
0 ). (4.36)

Taking Eq. 4.32 and Eq. 4.35, we end up with the linearized dy-

namics for the droplet and solvent phase

∂tφin = Din∇2φin − k̄in
(
φin − φin

0

)
, r ≤ R, and

(4.37a)

∂tφout = Dout∇2φout − k̄out
(
φout − φout

0

)
, r > R. (4.37b)

Now the conditions for droplet size control are the same as those

discussed for the chemical potential, we can pretty much repeat

the section above and replace the word chemical potential with

volume fraction. The only difference is, that the boundary con-

dition at the interface now reads φin(R) = φ1 and φout(R) = φ2.

While we do not repeat all arguments form above, we can use

Eq. 4.37 to calculate the steady state radius in terms of the reac-

tion diffusion lengths `in/out =
√
Din/out/k̄in/out and the volume

fraction differences. The calculations are analogous to the dis-

cussion above and we give the result for `in � R∗ only and end

up with

R∗ = `in

(
3
φout
0 − φ2

φ1 − φin
0

)1/2

. (4.38)

Note the strong similarity to Eq. 4.29. Since the system size is

large compared to the reaction diffusion lengths, the volume frac-

tion far from the droplet always reaches φout
0 . Therefore, φout

0 −
φ2 is the supersaturation far away from the droplet[60]. In addi-

tion, we call φ1 − φin
0 the reaction force as it describes how far

the reaction is from the steady state in the droplet. Thus, the sta-

ble radius increases with supersaturation and decreases with re-

action force. In experiments, concentrations (volume fraction),

diffusion coefficients, and reaction rates are measured instead of

chemical potentials, diffusive and reactive mobilities34 . There-

fore, this form of the stable radius is more useful to compare

with experimental values.

The important conclusion from this short part is, that we re-

cover the results from Refs.[70, 71] by linearizing the chemical

potential. Therefore, we map our thermodynamic system to an

effective droplet model, where the diffusive and reactive fluxes

in each phase can be described by Ficks’s law of diffusion and

mass action kinetics. The advantage of our model is, that we can

predict the precise form of the reaction cycle and the necessity
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35: A cylindrical box allows effec-

tive three dimensional simulations

of multiple droplets. While droplets

can only interact via the z-direction,
it shows the main features, i.e. sup-

pressed coarsening and takes less

computation time than full three di-

mensional simulations.

to have different reaction rates in droplet and solvent phase to

achieve size control and eventually splitting of droplets as pre-

dicted by Ref.[104] for a similar dynamical system.

4.4 Multicomponent active droplets

So far we have discussed the binary system only since the dis-

cussion is easier with fewer variables. In this section, we present

results for the four-component systemwith enzymes segregating

into droplets. We show that the results obtained for the binary

case are transferable to the four-component case and individual

size control is still possible. In the four-component system, the

dynamics are given by

∂tφ+ = Λ∇2µ+, (4.39a)

∂tφ− = Λ∇2µ− − 2s, and (4.39b)

∂tφE = Λ∇2µE, (4.39c)

where we assume equal diffusivity for all species for simplic-

ity. In addition, we write the dynamics in terms of sum, φ+ =
φA + φB, and difference, φ− = φA − φB, of A and B volume

fractions because the dynamics for the sum is independent of the

reaction and of model B type. Here, we apply transition state

theory for the reaction kinetics and get for passive and active

reaction fluxes (s = sp + sa):

sp = λp

[
(exp

(
µA

kBT

)
− exp

(
µB

kBT

)]
, and (4.40a)

sa = λae
µF /kBT φE

φ̄E

[
exp

(
µA −∆µ

kBT

)
− exp

(
µB

kBT

)]
.

(4.40b)

As a result, the reaction diffusion length depends on the local

enzyme fraction, ` =
√

Λ/(λp(1 + ηφE/φ̄E)).
First, we simulate three droplets with different initial sizes

in a cylindrical box35 ; see fig. 4.18A. We find, that over time

the droplets all attain roughly the same size, fig. 4.18B, simi-

lar to the binary case; see fig. 4.13. This indicates, that the be-

havior leading to collective states with multiple stable droplets

in the binary system, is transferable to the more complex four-

component case, at least qualitatively.

Next, we investigate a single droplet in a large solvent phase,

to see whether droplet size control is possible and is caused by

the same effect as in the binary system. The resulting volume

fraction profiles for a simulation of Eq. 4.39 in aNESS are shown

in fig. 4.19A.As expected, the enzyme segregates into the droplet

(maroon line) while the soluble protein A gets expelled (green
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Figure 4.18: Multiple droplets of

the same size are stable in a

four component system. A Snap-

shots of a simulation with three

droplets of different initial radii (up-

per panel) and after t = 7000 τ .
All droplets attain roughly the same

size. B Corresponding time course

of the droplet radii. Parameters are

χ = χE = 4, ∆w = 2, ∆µ =

10 kBT , Λij = δij kBTv
2/3
0 /τ ,

λp = 10−3 τ−1, η = 3 and φ̄+ =
0.25. Simulations where done for

TST kinetics in a cylindrical simu-

lation box of length Lz = 300 v
1/3
0

and Rmax = 50 v
1/3
0 . The figure is

taken from [105] with minor adjust-

ments.
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36: This result can help modeling

scaffold client systems[5, 152] in

a mean-field model, by describing

clients only indirectly through

the partition coefficient. The

simulation shows, that this is

a valid approximation even in

non-equilibrium conditions.

line). As already seen in fig. 4.10, the enzyme is enriched at

the droplet interface if χE < χ to reduce the surface energy.

But, in the NESS with reactions, the enzyme volume fraction in

the droplet is not constant, but varies slightly and increases to-

wards the droplet center. This variation inside the droplet phase

is small compared to the partitioning ΓE ≈ exp(χE). Thus

the assumption we made earlier, replacing φE with ΓE , is not

strictly valid for the NESS, but still a reasonable approxima-

tion36 . The corresponding chemical potential profile for the

chemical potential difference µ− = µB − µA (solid blue line

in fig. 4.19B) is qualitatively the same as in the binary system.

The steady state chemical potential in droplet (maroon dashed

line) and solvent (black dashed horizontal line) are calculated

for φin
E = exp(χE)φ̄E and φout

E = φ̄E and match reasonably well

with the numerical results. The purely diffusive dynamics of the

total protein fraction (blue dashed line) and enzyme (not shown)

lead to flat chemical potentials µ+ and µE in the steady state.

So, they are independent of the reaction-diffusion dynamics that

lead to droplet size control.

From the chemical potential, we can calculate the reaction

fluxes shown in fig. 4.19C. Just like in the binary case, B is de-

graded in the droplet (green shaded area) and produced in the

solvent phase (orange shaded area). The actual rate is slightly

different because TST is used in the former and LNEQ in the

latter, but the effect is the same. Furthermore, the analytical pre-

diction for the binary system (orange dashed line in fig. 4.19B),

Eq. 4.25, fits the numerical results remarkably well. The only

difference is, that the boundary condition at the interface is not

given by the internal energy difference, ∆w. Instead, it follows
from the value of µ+ in the steady state, which has to be constant

everywhere and depends on the internal energy difference, but
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Figure 4.19: Droplet size can be controlled by enzyme partitioning into the droplet. A Steady state volume frac-

tions of A (green), B (orange) and the enzyme E (maroon) along a cut through the droplet. B Steady state chemical

potential corresponding to A for the difference, µB−µA (blue solid line), and sum, µB+µA (blue dashed line), of the

protein chemical potentials. As expected, µB + µA is flat in the steady state. But, µB − µA shows a gradient between

the phases because of the different steady state chemical potential in droplet (marooon dashed line) and solvent (black

dashed line) phase. The orange dashed line is an analytical prediction using Eq. 4.25.C Reaction rate in droplet (green

shaded area) and solvent (orange shaded area) phase. Similar to the binary case, droplet material B is degraded in the

droplet and produced in the solvent. Parameters are χE = 2, χ = 4, ∆w = 4, ∆µ = 5 kBT , Λij = δij kBTv
2/3
0 /τ ,

λp = 10−3 τ−1, η = 0.3, φ̄+ = 0.06 and φ̄E = 0.001. Simulations where done for TST kinetics and in a spherical

simulation box with Rmax = 300 v
1/3
0 . Figure B is taken from [105] with minor adjustments.

37: See Appendix.F for an analyti-

cal treatment of the NESS.

38: In general, the driving strength

is large compared to temperature,

∆µ � kBT . But since the steady

state chemical potential, i.e. µ∗
in, is

the important quantity, all relevant

chemical potentials can be on the or-

der of kBT .

on the total amount of protein and the interaction χ as well37

. The reason for the good fit, although different kinetics are

used, is that the kinetics influence the values of µ∗,in
− and µ∗,out

−
(Eq. 4.8). But they appear in the equation for µ−(r) as a constant
prefactor and do not influence the shape of µ− as a function of r.
In addition, all chemical potentials are on the order of kBT , thus
the difference between TST and LNEQ kinetics is small38 .

Fig. 4.19C shows that the reaction flux in droplet and sol-

vent has the opposite sign. Thus, we expect that the steady state

droplet radius R∗ is determined by a flux balance similar to the

binary case, see fig. 4.17. The integrated flux as a function of

radius is shown in fig. 4.20 for a numerical simulation. The dif-

ferent scalings of Sin and Sout with R introduce a stable steady

state radius R∗. We can predict a scaling of the reaction flux

with droplet size, similar to Eq. 4.26 and Eq. 4.27, under a set

of assumptions. First, for low total enzyme fraction, φ̄E � 1,
small droplet volume, V � Vsys, and strong phase separation,

χ � 1, we can approximate the enzyme fractions as φout
E ≈ φ̄E

and φin
E ≈ ΓEφ̄E ≈ e−χE φ̄E; see Eq. 4.18 and fig. 4.10. Second,

we assume that the reaction diffusion length inside the droplet

is large compared to the droplet, `in � R and that the reaction

is close to the steady state in the solvent phase. In that case, we

can calculate analytical predictions for the scaling of the reac-

tion, see Appendix.G. We find, that the integrated flux in the

droplet phase scales with droplet volume V and the inverse of

the enzyme partition coefficient, Sin ∝ exp(−χE)V . The inte-
grated flux outside the droplet scales with droplet area AR for

small reaction-diffusion length `out � R, Sout ∝ AR, or with
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Figure 4.20: Stronger partitioning leads to smaller droplets, but higher energy cost. A Integrated reaction flux

in droplet (green dashed line), solvent (orange dashed line) and their sum (black dashed line) as a function of droplet

radius. Similar to the binary case in fig. 4.16, the competition between the two fluxes leaeds to a stable, steady state

droplet radius R∗ (black dot). Results are from a numerical simulation. B Stationary radius as a function of partition

coefficient calculated from the enzyme interaction strength χE . The result is very similar to the binary case, see

fig. 4.17. C Steady state entropy production as a function of stable droplet radius. Because of the sudden jump from a

finite radius to full dissolution (seeB), the entropy production has a discontinuity at small radii (blue dots). The entropy

production is normalized with respect to the state with homogeneously distributed enzyme ΓE = 1. Noatbly, smaller

stable radii require more energy input. Parameters are ΓE = 25 (χE = 3.2) (in A), χ = 4, ∆w = 4, ∆µ = 5 kBT ,

Λij = δij kBTv
2/3
0 /τ , λp = 5 · 10−4 τ−1, η = 0.2, φ̄+ = 0.06 and φ̄E = 0.001. Simulations where done for

TST kinetics and in a spherical simulation box with Rmax = 300 v
1/3
0 . The figures are taken from [105] with minor

adjustments.

39: Note that we found the same

scalings for the binary system,

which is not surprising considering

the similar results for the NESS in

fig. 4.19 and fig. 4.15.

droplet radius for large reaction-diffusion length39 , `out � R,
Sout ∝ R. Fig. 4.20B compares the numerical results (blue dots)

and the predicted scaling for the enzyme partition coefficient

(maroon dashed line). The scaling works well for intermediate

partitioning but fails for low partitioning and strong partitioning.

For low partitioning, the assumption of large reaction diffusion

length compared to droplet size breaks down, which explains

the mismatch. Furthermore, strong partitioning leads to full dis-

solution due to the Laplace pressure[60], which is not included

in the analytical calculation, and thus the partitioning needed

for dissolution is overestimated. Finally, fig. 4.20C shows the

steady state entropy production rate calculated from Eq. 4.13

for the numerical results of fig. 4.20B. We find, that smaller

droplets have a higher entropy production, indicating that keep-

ing droplets small requires more energy. While it is intuitive

that smaller droplets, i.e. more control compared to the passive

case, require more energy, it is surprising as well because the ac-

tive reaction happens predominantly in the droplet. Therefore,

smaller droplets mean less concentrated active reactions. But,

in our model, the active reaction happens in the solvent as well,

and especially far away from the droplet lots of energy is burned

in the steady state reaction cycle.

In fig. 4.7A, we showed that the steady-state entropy pro-

duction scales super-linearly with the driving strength ∆µ. Fur-
thermore, the driving strength indicates how far from equilib-

rium the reactions are. Thus, we investigate the influence of

driving strength on the steady-state radius next. fig. 4.21 shows
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40: Here, for negative χE the en-

zyme repels from the phase separat-

ing protein B and gets enriched in

the solvent phase (similar to state

A).
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Figure 4.21: The stable radius

depends only weakly on driving

strength. Stationary radius (color

code) as a function of enzyme inter-

action and driving strength. Above

a minimum driving strength (here

∆µ ≈ 4 kBT ), the driving has al-

most no impact on the result. This

is reminiscent of fig. 4.11B. For a

fixed ηΓE , increasing ∆µ above a

threshold does not affect the steady

state chemical potential µ∗,in
− and

thus the dynamics. Parameters are

the same as in fig. 4.20. Simula-

tions were done for TST kinetics

and in a spherical simulation box

with Rmax = 300 v
1/3
0 .

41: In general, every asymmetry

in the reaction rates can cause the

same effect.

the numerical results for the stable droplet radius as a function

of enzyme interaction and driving strength40 . We find, that for

very low driving, very high segregation of enzymes is necessary

to reduce droplet size. But, above a threshold of ∆µ ≈ 4 kBT ,
the driving strength does not affect the stable droplet radius any-

more. This can be explained via fig. 4.11B, which shows, that

for a fixed ηΓE , increasing∆µ above a threshold does not affect
the steady state chemical potential µ∗,in

− . And because µ∗,in
− ap-

pears in the equation forR∗, see Eq. 4.29, increasing the driving

strength above that point leads to higher entropy production, but

does not affect droplet size. Finally, the factor η has a similar

effect on the droplet radius as varying ΓE; see Eq. 4.29.

In this section, we have shown that droplet size can be con-

trolled by non-equilibrium reaction cycles, if the reaction rate

is different in the droplet and solvent phases. In this case, the

reaction can drive diffusive fluxes between the phases that stop

droplet growth at a fixed size. This steady state droplet radius

is independent of system size and instead determined by a com-

bination of kinetic quantities, the reaction diffusion length, and

thermodynamic quantities, the chemical potential differences. In

our example41 , the rate difference is caused by enzymes accumu-

lating in the droplet due to weak enthalpic interactions. Thereby,

stronger partitioning in the droplet phase reduces droplet size

and can dissolve droplets. Furthermore, we show that the driv-

ing strength has little influence on droplet size above a certain

threshold. In cells, η can be regulated by changing the total

amount of enzymes, either via the production of enzymes or

by activating them through upstream processes. The optimal

case for size control would be a reaction cycle as described in

Eq. 4.1, where the phosphatase partitions into the solvent phase,

while the kinase partitions into the droplet phase. In this case,

only the active reaction happens in the droplet and only the pas-

sive reaction happens in the solvent. Furthermore, µ∗
in = ∆µ

and µ∗
out = 0 because of the perfect separation of the reactions.

This would circumvent the problem of a futile cycle, where en-

ergy is wasted because both reactions happen in both phases.

Every A protein that gets produced in the droplet diffuses out

of the droplet, gets converted into B by the passive reaction,

and diffuses back into the droplet, where the cycle starts again.

Thereby, each cycle is accompanied by one ATP hydrolysis re-

action.

Droplet size in cells

In this part, we want to give an order of magnitude approxi-

mation for possible active droplet radii in cells. Therefore, we

combine the analytical prediction for steady-state droplet radius,
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42: Assuming the driven reaction

is slow in the solvent phase.

43: Usually enzymes are large

compared to the substrate[1], so

we might expect the stable radius

to be larger than estimated here.

Eq. 4.29 and known literature values for protein diffusivity, en-

zymatic reaction rates, and protein concentrations. We estimate

the diffusivity of proteins by D ∼ 0.1 − 10µm2s−1 depend-

ing mostly on protein size[179]. Estimating reaction rates and

comparing them to our reactions is more difficult because usu-

ally mass action kinetics are used to describe reactions. In ad-

dition, enzymatic reactions are often described using Michaelis

Menten kinetics. Assuming that the substrate (here the droplet

material) is abundant, which is the case in the droplet phase, the

rate of the enzymatic Michaelis Menten reaction can be approx-

imated by a single rate kcat ∼ 0.01− 100 s−1[1]. If the enzyme

is strongly segregated and the active reaction dominates in the

droplet phase, we can write the total reaction flux as

Sin ≈ −kcatΓEφ̄EV, (4.41)

where V is the droplet volume. To calculate the diffusive influx

into the droplet, we assume the protein and enzyme are dilute in

the solvent, so φC ≈ 1. We can then approximate the chemical

potential in the solvent phase by µB ≈ µB(φ
out
B ) + kBT (φB −

φout
B )/φout

B . Far away from the droplet interface, the B fraction

is set by the equilibrium ratio of the reaction42 , K, and the to-

tal protein fraction φ̄+: φB(r � R) ≈ K/(1 + K)φ̄+. The

diffusive influx can then be approximated as

J ≈ 4πR
ΛkBT

φout
B

(
K

1 +K
φ̄+ − φout

B

)
. (4.42)

WithD = ΛkBT/φ
out
B , we can calculate the stable droplet radius

by setting J + S = 0

4πRD

(
K

1 +K
φ̄+ − φout

B

)
− 4πR3

3
ΓEφ̄Ekcat = 0. (4.43)

The stable droplet radius is then given by

R2
∗ =

3D

kcatΓE

∆φB

φ̄E

. (4.44)

Assuming that enzyme and protein have the same molecular vol-

ume43 this can be written in terms of particle concentration as

well,∆φB/φ̄E = ∆cB/c̄E . Because the total amount of enzyme

is low, we assume ΓE c̄E to be small, but at the same time, the

protein variation of B in the solvent is small as well, ∆cB � 1.
As a result, we estimate ∆cB/(ΓE c̄E) ∼ 0.01− 100.

We present two scenarios, where we assume a typical diffu-

sivity ofD ≈ 1µm2s−1 for both[105]: First, we assume fast en-

zymatic reactions (kcat ≈ 100 s−1) and strong enzyme segrega-

tion (∆cB/(ΓE c̄E) ≈ 0.01), which results in an approximate sta-



4.5 Reactions as a switch for Droplet 109

0.0 0.2 0.4 0.6 0.8 1.0
Phase separating vol. fraction φB

0.2

0.4

0.6

0.8

1.0

S
ol

u
b

le
vo

l.
fr

ac
ti

on
φ
A

on

off

φs

Figure 4.22: Active reaction can

move the chemical equilibrium

and control droplets in time.

Chemical equilibrium (blue line) in

the φA vs φB plane. Chemical equi-

librium (blue dot) lies between the

binodal (maroon dashed line) and

the spinodal (grey dotted line). Ac-

tivating a driven reaction can move

the homogeneous mixture into the

spinodal area (green dot) or out-

side the binodal (red dot) and thus

turn droplets trigger droplet forma-

tion or dissolve existing droplets.

Parameters are∆w = 1.6, χ = 3.5,
φ̄+ = 0.4, ∆µon = 3.5 kBT and

∆µoff = −0.75 kBT . Here, A does

not interact with B or C, i.e. the
enthalpy is given by hv0/kBT =
χφB(1− φB − φA).

44: For classical nucleation theory

to be valid, the energy barrier needs

to be high compared to thermal en-

ergy kBT .

ble droplet size R∗ ≈ 1.7 · 10−2 µm. Second, for slow reactions

(kcat ≈ 0.1 s−1) and weak segregation (∆cB/(ΓE c̄E) ≈ 10),
we end up with a much larger droplet size, R∗ ≈ 17µm. This

shows, that with reasonable parameter assumptions, droplets on

all relevant length scales for the cell, from ∼ 10 nm to tens of

µm, can be realized.

4.5 Reactions as a switch for Droplet

Wewant to end by showing how timed active reactions can switch

between a stable droplet state and a homogeneous mixture. The

starting point is an equilibrium phase separating system as dis-

cussed in Sec. 3.2, i.e. a mixture of a solvent C and a protein

that exists in a soluble stateA and a phase separating stateB and

a conversion reaction A 
 B switches between the two states.

For the process to work best, chemical equilibrium, defined by

the equilibrium ratio K and the total protein fraction φ̄+, has to

be such that the averageB fraction is close to the binodal φ1 and

below spinodal φs, i.e. φ1 < K/(1 +K)φ̄+ < φs; see blue dot

in fig. 4.22. In this case, both the droplet and the homogeneous

state are metastable, although the droplet state is the equilibrium

state.

To form droplets, the system needs to cross an energy bar-

rier, where the transition is driven by thermal noise. If the B
fraction in the homogeneous mixture is close to the binodal, the

nucleation is well described by classical nucleation theory[128],

where the nucleation rate τ scales with the Arrhenius factor of

the energy barrier ∆E, τ ∝ e∆E/kBT . For high energy barriers,

the nucleation time can become very large44 and thus it is diffi-

cult to predict when andwhere droplets form. Furthermore, once

droplets form, they will not dissolve spontaneously in large sys-

tems because the total energy gain of the droplet state compared

to the homogeneous state scales with system volume.

As a result, the nucleation in cells might be controlled by

other (active) processes[182]. Here, we show that active reac-

tions can in principle switch between the droplet and homoge-

neous state. Thereby, the active reaction happens only for a short

amount of time, while both droplet and homogeneous state re-

main metastable if no active reaction is present. It is necessary

that the driven reaction can drive the transition towards state B
(green dot in fig. 4.22) and state A (red dot in fig. 4.22). This

corresponds to two different reaction pathways, which we de-

note by A + F 
 B +W and A +W 
 B + F for simplic-

ity. The first reaction can shift the equilibrium B fraction into

the spinodal region while the second reaction can shift it out of

the binodal region. Thereby, droplet formation happens spon-

taneously in the former, and droplets get dissolved in the latter
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Figure 4.23: Active reactions can

be used to switch droplets on and

off. Average B volume fraction

(left axis, orange line) and driven re-

action rate (right axis, black dashed

line) as a function of time. In

the blue shaded area, the system

is in a homogeneous state and in

the orange shaded area a single

droplet is present. The active reac-

tion can switch the droplet on and

off with short pulses (black dashed

line). Parameters are the same as

in fig. 4.22. In addition, the simu-

lation was done in a two dimen-

sional square box of size 32 ×
32 v

1/2
0 and the kinetic parameters

are Λij = δij v0/τ , kp = 3 ·
10−3Λv−2

0 , ηoff = 1, ηon = 7 and

〈ξi(r, t)ξj(r′, t′)〉 = 0.05ΛijkBT .

case. We call the first and second reactions the ‘on’ and ‘off’

switch respectively and the corresponding steady state chemical

potential are ∆µon and ∆µoff.

To check this hypothesis, we perform numerical simula-

tions with thermal noise as introduced in Eq. 2.20 in Sec. 2.2.

To avoid numerical problems with the noise for small volume

fractions, we perform simulations with high average protein frac-

tions. For the same reason we use enthalpic interactions of the

form v0h/kBT = χφB(1 − φB − φA), i.e. A does not inter-

act with the other species, to avoid that the A fraction in the

droplet is very low. Finally, we do not use the thermodynami-

cally correct noise amplitude of 2kBTΛij , instead, we use a re-

duced amplitude of 0.05kBTΛij . The reason for this is that the

free energy variations in the regular solution theory are small,

for example for χ = 3.5, the difference between free energy

minima and maximum is ∼ 0.25 kBT . As a result, the noise

amplitude is much larger than the free energy variations and the

noise would dominate the dynamics. Although we expect noise

to be important in cells, the noise strengths compared to interac-

tions are overestimated in our model, therefore, we tune it down

artificially.

We simulate the on and off switch using time dependent

reaction rates. In the example below, we specifically use

kon
a (t) =

kon

2

[
tanh t− ton,1

σ
− tanh t− ton,2

σ

]
, (4.45a)

koff
a (t) =

koff

2

[
tanh t− toff,1

σ
− tanh t− toff,2

σ

]
(4.45b)

where kon
a and koff

a are the on- and off-switch reaction rates re-

spectively and ti,1/2 control at which times the reaction is turned

on (ti,1) and off ti,2. We call ∆ton/off = ton/off,1 − ton/off,2 the

pulse duration. In addition, we model the active reactions using

linear non-equilbium thermodynamics. In this case, the total re-

action flux is given by son/off(t) = (kp + k
on/off
a (t))(µA − µB −

∆µon/off).
The results of an example simulation are shown in fig. 4.23.

For early times the system is a homogeneous mixture. Then,

the ‘on’ reaction is present and leads to droplet formation. Af-

terwards, the droplet is stable and only dissolves once the ‘off’

reaction dissolves it. Here, the ‘on’ and ‘off’ pulses have a dura-

tion of∆ton = 50 τ and∆toff = 25 τ respectively, which is short
compared to the simulation time off 10000 τ . Thus, it is possi-
ble to control the formation and dissolution of stable droplets

with short pulses of (active) chemical reactions. Correspond-

ing simulation snapshots are shown in fig. 4.24 for the three

stages, homogeneous mixture, droplet, and homogeneous mix-
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Figure 4.24: Simulation snapshots of driven droplet formation and dissolution. Simulation Snapshots of the B
volume fraction from the simulation shown in fig. 4.23 for different times. The colorbar in C holds for all three plots.

A For early times, a homogeneous mixture with thermal noise is present and droplets will only form for spontaneously

on long time scales. B The ‘on’ reaction has triggered the formation of a single droplet. The thermal noise influences

not only the volume fraction, but also deforms the droplet. C After active dissolution, the system is back to the homo-

geneous state . Parameters are the same as in fig. 4.23.

ture again. The snapshots show that the thermal noise is deform-

ing the droplet shape and leads to fluctuating volume fraction

fields.

This is only a proof of principle and further research is nec-

essary to understand the details of this process, for example, the

parameter dependencies. But, the preliminary results show, that

short active reaction pulses can control formation and dissolu-

tion in a bistable system, where both the droplet and the homoge-

neous state are metastable. Unlike the active droplets discussed

above, here the activity is only needed for short amounts of time

as a switch. Thus, the control of formation and dissolution is

efficient. Furthermore, by controlling the activity of enzymes,

the active reaction can be turned on and off.

4.6 Summary

In this chapter, we extended the model of phase separation with

passive conversion reactions to active reactions. Active reac-

tions are driven out of equilibrium by external energy supply.

In our model, this external energy is supplied by fuel molecules

getting converted into waste molecules. The chemical poten-

tial difference between fuel and waste, ∆µ, is constant in the

whole system, thus it can be used to fuel other processes. Here,

it changes the free energy of reaction for the conversion between

two protein states A and B (Eq. 4.4). We find that if we replace

the passive reaction with the active reaction, the system can be

mapped back to the passive case with a rescaled internal energy

difference ∆w → ∆w −∆µ/kBT ; see fig. 4.2A. The diffusive
dynamics remain unaltered by the activity because, in isotropic

systems, reactions can not drive diffusive fluxes directly[107].

As a result, an active reaction can control phase separation only
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45: As long as the total protein vol-

ume fraction exceeds the solvent

phase volume fraction, φ̄+ > φout
B .

46: The linear scaling of the rate

with enzyme concentration is valid

for low amounts of enzyme in

Michaelis Menten kinetics[176].

by varying the driving strength. But, this has the same downside

as changing other global quantities, for example, temperature

and pH, as changing the driving influences many other processes

as well. If there is only one reaction present, it will inevitably

reach the steady state and behave like an equilibrium reaction

under the constraint that ∆µ = const.
To keep the reaction away from its steady state, we intro-

duce a reaction cycle in our model. This is inspired by post-

translational modifications of proteins, for example phosphory-

lation dephosphorylation cycles[153]; see Eq. 4.1. In the ex-

ample we introduce, the passive and active reactions are both

present. In this case, there are two ways to switch between states

A and B, directly, A
 B and with the help of external energy,

A +W 
 B + F ; see Eq. 4.5. We find that the total reaction

flux can still vanish everywhere in space, s = 0; see fig. 4.5C.
But, the individual reaction fluxes do not vanish. Instead, the

two reaction cancel each other everywhere, sa = −sp 6= 0; see
fig. 4.5C. The condition of vanishing reaction flux, sa = −sp, is
fulfilled for a unique steady state chemical potential difference

µA − µB; see Eq. 4.8 and fig. 4.3. The steady state chemical

potential takes values between 0 and ∆µ, depending on the ra-

tio of the reaction rates between active and passive reactions, η.
Thus, if the rate of the passive reaction is fast (η � 1), the sys-
tem behaves as if only the passive reaction was present and if the

rate of the active reaction is fast (η � 1), the system behaves

as if only the active reaction is present. In this way, the kinetic

parameter η interpolates between the passive case (discussed in
Sec. 3.1) and the active case (discussed in Sec. 4.1). As a re-

sult, the steady state chemical potential takes the role of ∆µ in

fig. 4.2A, thus it controls the amount of protein in state B and

thereby, if droplets form or not45 ; see fig. 4.7B.

The steady state of a reaction cycle depends on the reaction

kinetics, unlike the passive or active reactions alone, where the

steady state is fully determined by the free energy of reaction.

This is an important property of reaction cycles because reac-

tion kinetics can be controlled more precisely, for example via

enzymes that speed up biochemical reactions. Oftentimes, en-

zymes act on specific proteins[175] and their activity can be con-

trolled by upstream processes reasonably fast[36]. Furthermore,

the reaction rate scales with the amount of active enzymes[176],

so the rates can in theory be tuned continuously46 . Thus, a reac-

tion cycle, like a phosphorylation-dephosphorylation cycle[73],

can be used as a specific, fast, and precise control mechanism for

droplet formation and dissolution. However, this control comes

at an energy cost, that can be quantified in this model via the

entropy production rate; see fig. 4.7A. We find that dissolving

droplets and keeping them dissolved costs energy, while droplet
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formation is energetically favorable and does not require exter-

nal energy; compare fig. 4.7A and B. This is similar to the re-

sults obtained in Ref.[71, 103], which models the phase sepa-

ration of stress granules. There the authors argue, that this is

a feature because the cell needs stress granules in critical sit-

uations. Thus, the constant energy consumption keeps stress

granules dissolved under normal conditions, but the cell does

not need to pay energy to form stress granules when they are

needed. In addition, Ref.[71] finds that the individual size of

droplets can be controlled as well. But we showed, while the

reaction cycle can control the availableB protein, it can not con-

trol the diffusive dynamics, which still shows coalescence and

Ostwald ripening; see fig. 4.6. The reason is, that the reaction

can vanish everywhere, in the droplet and the solvent phase; see

fig. 4.5C. Thus, to control individual droplet size with reactions,

it is necessary to convert reactive into diffusive fluxes between

the phases. Those diffusive fluxes can counteract Ostwald ripen-

ing and coalescence. As mentioned before, direct conversion

from reactive to diffusive fluxes is not possible[107]. In addi-

tion, for equal reaction rates in droplet and solvent, this is not

possible for reactions driven by the chemical potential because

the chemical potential does not distinguish between droplet and

solvent phase.

In general, the reaction rates k and λ in Eq. 4.10 are not con-
stant, but depend on external parameters, for example tempera-

ture, pH or composition. We assumed them constant because

the composition is the only variable parameter in our model and

there is no a priori way to know how the rate should depend on

composition. Thus, we generally expect that the rates in droplet

and solvent are different, but we do not know how strong the

effect is. Instead, we introduce a mechanism that leads to dif-

ferent rates in droplet and solvent phase inspired by biological

examples[73]. In many biological examples, enzymes and their

substrate co-localize into droplets. Thus, we introduced an en-

zyme E that speeds up the driven reaction and partitions into

the droplet; see fig. 4.8. We show, that the different reaction

rates in droplet and solvent lead to different steady state chem-

ical potentials in both phases; see fig. 4.11B. As a result, the

reaction in droplet and solvent phase may have different signs,

i.e. that protein state B gets degraded in the droplet and pro-

duced in the solvent; see fig. 4.12B. The degradation of droplet

material in the droplet limits droplet growth and can introduce

a stable droplet size independent of system size; see fig. 4.16.

Furthermore, a collective state of multiple droplets of the same

size is stable, similar to the results obtained with mass action

kinetics in Refs.[70, 71], see fig. 4.13. We find, that the stable

droplet radius can be controlled by the partitioning of the en-
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zyme. Thereby, stronger partitioning reduces droplet size and

can lead to full dissolution of droplets; see fig. 4.17. In addition,

keeping droplets small requires more energy, as quantified by

the entropy production; see fig. 4.20C. In the limit of weak par-

titioning, we are back to the reaction cycle with homogeneous

rates discussed before. Furthermore, we showed that this qual-

itative picture can be extended to more complex systems with

multiple species; see fig. 4.19 and fig. 4.20. In this case, the

non-reactive species are not only indirectly influenced by the re-

actions, via the size of droplets; see fig. 4.19A andB. In addition,

we find that the different reaction rates in droplet and solvent

maintain a chemical potential gradient across the droplet solvent

interface and thus drive diffusive fluxes; see fig. 4.15B. This gra-

dient is determined by the reaction diffusion length, see fig. 4.14,

which is an important parameter in all reaction-diffusion sys-

tems[183]. Finally, we estimated stable droplet radii using litera-

ture values for the diffusivity and reaction rate. We find that rea-

sonable parameters can stabilize droplets on all relevant length

scales for cells, from ∼ 10 nm to ∼ 10µm.



1: The authors in Refs.[70, 71] ex-

plicitly mention that they consider

non-equilibrium reaction. But, it is

not clear how non-equilibrium reac-

tions lead to reaction fluxes that re-

semble mass action kinetics[60].
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In this thesis, we developed a thermodynamic model that

combines phase separation and chemical reactions. The impor-

tant new idea compared to previous work is, that the reaction

rates are derived from thermodynamic arguments instead ofmass

action kinetics. This is important because mass action kinetics

assume ideal, dilute solutions, assumptions that are not fulfilled

in phase separating solutions. In fact, phase separation is driven

by weak interactions between molecules, which makes it inher-

ently non-ideal. In addition, phase separation leads to the for-

mation of phases with different compositions, so it can not be

described as a dilute solution.

This thesis aimed to understand how simple biochemical

reactions can control droplets formed via phase separation in

the context of biomolecular condensates. Thereby, we identi-

fied the key ingredients for individual size control of droplets:

(i) A molecule that exists in two states, one state is soluble in

the solvent and one state phase separates and forms droplets. (ii)

A non-equilibrium reaction cycle that is coupled to an external

energy supply and switches between the two states. (iii) Dif-

ferent reaction rates in droplet and solvent phase. Under these

conditions, it is possible to control individual droplet size, inde-

pendent of system size, and stabilize multiple droplets[73]. The

droplet size in this case depends on the reaction diffusion length

scale of the system, in particular on the partition coefficient of

the enzyme into the droplet.

5.1 Passive reactions

First, we discussed the interplay of phase separation and a con-

version reaction A 
 B in equilibrium. As expected, equi-

librium systems allow only limited control on phase separation.

Effectively, passive reactions influence the total amount of the

phase separating material and thus whether droplets form or not.

This is in contrast, to work in Refs.[70, 71], where the same reac-

tion, described by mass action kinetics, leads to an arrested state

of multiple droplets that can be controlled by reaction rates1 . Be-

cause chemical reactions and phase separation are both driven

by chemical potential differences, the formation of equilibrium

droplets and the partitioning of other species are intimately linked

to the equilibrium ratio in droplets[133]. In addition, for con-

stant reaction rates, the reaction does not distinguish between
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2: This is the case for an upper

critical solution transition. Entropy

driven transitions associated with a

lower critical solution temperature

are possible as well, but those are

not captured in the simple regular

solution model with temperature in-

dependent interaction strength χ.

the two phases because the chemical potential in both phases is

equal. We conclude that it is important to consider the thermo-

dynamics of reactions when modeling biochemical reactions in

biomolecular condensates[40].

Furthermore, the different compositions of the droplet and

solvent phase influence the equilibrium ratio of reactions inside

the droplet. This means that droplets are chemically distinct en-

vironments, different from the solvent phase. In non-equilibrium

in vitro experiments, droplets can even have different pH than

the surrounding[184]. Therefore, it is important to consider that

droplets will not only influence reaction kinetics by concentrat-

ing molecules in space[40] but also influence the equilibrium of

the reaction.

We showed that the framework of a chemical reaction switch-

ing between two states of a molecule does not necessarily mean

that the chemical composition of the molecule changes. The

two states A and B can be bound and unbound states of a pro-

tein, as discussed in Sec. 3.3, but also differently folded protein

states[16]. Particular interesting examples would be (bio)poly-

mers that undergo a coil to globule transition as a function of

temperature or solvent condition[185, 186]. In a good solvent,

the polymer is in an expanded state, the coil, while it is in a com-

pact state, the globule, in a bad solvent due to positive self inter-

actions2 . The control parameter for the transition can be tem-

perature or solvent conditions. This type of transition has been

shown in proteins[186] and the self-interactions inducing the

coil to globule transition have been linked to phase separation

in biomolecules[187]. Thus, it would be interesting to model

coil to globule transition in our framework and try to link the

internal energy differences, ∆w, with the interaction strength,

χ, because of the self interaction and the inter-molecule interac-

tions have the same origin.

Biomolecular condensates are assumed to play an impor-

tant role in organizing biochemical reactions in space by con-

centrating reactants[188, 189]. We showed that the thermody-

namics of phase separation influence the equilibrium ratio of

reactions. It would thus be interesting to investigate in more

detail, how chemical reactions behave in a two phase system as

compared to the homogeneous mixture. Our model can be used

to investigate how relaxation to equilibrium of a reaction is in-

fluenced by droplets: (i) Under which conditions are reaction

rates increased or decreased. (ii) Under which conditions is the

reactive equilibrium influenced by droplets and how? (iii) Can

droplets ‘choose’ reaction pathways by including some molec-

ular, but excluding others? In addition, extending the model to

more components andmore reactions will be an important future

direction for research. Purely diffusivemulticomponent systems
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have been studied[49, 63, 65] recently. But, it is not clear how

multiple reactions would influence how many phases form or

which phases form. In particular, more components allow for

more phases in theory, but the reactions introduce conservation

laws that reduce the number of possible phases. Thus, opening

up the possibility for interesting interactions between the two

processes.

In a more general context, investigating different temper-

ature dependencies of ∆w and χ would be an interesting ap-

proach. For example, if ∆w increases stronger with T than χ,
it could lead to reaction induced lower critical solution temper-

ature. Also, the scaling of the average radius with time 〈R〉(t)
as a function of reaction diffusion length would be interesting to

analyze to see whether we recover model B type 〈R〉 ∝ t1/3 or
model A type 〈R〉 ∝ t1/2 dynamics. Another direction would

be to replace the simple regular solution model with more com-

plex free energy densities. For example, it would be interesting

to investigate the role of biopolymer size using the Flory Hug-

gins free energy, or the role of electrostatic interactions using

Voorn-Overbeck theory[81, 190].

5.2 Active reactions

In the second part of this thesis, we investigated how active re-

actions can influence phase separation. We find that driving the

conversion reaction via fuel and waste molecules, A + W 

B + F has the same restrictions as the passive reaction. In fact,

the system can be mapped to an effective equilibrium system

with rescaled internal energy difference. The main reason is that

in isotropic systems, reactions can not drive diffusive fluxes di-

rectly and vice versa, so the two processes are independent of

each other. Furthermore, the system is fully determined by ener-

getic properties and independent of reaction rates and diffusiv-

ities. This is different if both reactions, the passive and active

reactions, are happening simultaneously. In this case, the non-

equilibrium steady state depends on the reaction kinetics and not

only the thermodynamics. For homogeneous reaction rates, the

system can still be mapped to an effective equilibrium system,

but the reaction kinetics can be controlled in a fast, precise, and

specific way in biological cells, for example by enzymes. Thus,

by controlling the activity of enzymes, the cell can control if

droplets form or dissolve[36]. This is similar to the results ob-

tained in Ref.[71, 103], which models the phase separation of

stress granules. But Ref.[71] finds that the individual size of

droplets can be controlled as well, which is not possible in our

model for homogeneous reaction rates.

We find that the size control of individual droplets and a
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3: But different diffusivities in

droplet and solvent phase are not

sufficient for size control because

the diffusivity does not change the

steady state chemical potential.

4: So droplets can not form sponta-

neously.

5: This effect is similar to but

different from the case of local-

ized RNA we discussed in Sec. 3.3.

Similar because it induces nucle-

ation locally, but different because

it involves the constant turnover

of droplet material via active pro-

cesses.

NESS with multiple stable droplets requires the reaction rates

to be different in droplet and solvent phase. Motivated by ex-

perimental findings, for example in stress granules[36], we ex-

plain the asymmetry in the rates with enzymes that enrich in

the droplet phase and thus speed up the driven reaction in the

droplet only. But, any effect that leads to different reaction rates

in droplet and solvent phase leads to size control of droplets3 .

For example, autocatalytic reactions of the form A+B+W 

B + B + F would achieve the same effect. Furthermore, we

expect that the reaction rates in droplet and solvent are different,

even without the effect of enzymes because droplets form chem-

ically distinct environments. But, it is hard to estimate a priori

if the reactions are faster or slower in the droplet and by how

much[40].

In our model, individual droplet size is determined by the

reaction diffusion length, reminiscent of other processes in biol-

ogy, for example in morphogenesis[72, 100, 101]. In addition,

robust control requires that the reaction diffusion length is large

compared to the droplet size, i.e. reactions need to be slow com-

pared to diffusion on the scale of droplet radii. Slow reactions

burn less energy, which makes this mechanism useful for effi-

cient size control. In the opposite case, fast reactions, and small

reaction diffusion length is sub-optimal for size control, but they

can induce a steady state chemical potential gradient between

droplet and solvent phase. While this requires constant burn-

ing of fuel, it could control the exchange of ions between the

phases, similar to the electrochemical gradient across biological

membranes[178].

Finally, we want to discuss some possible future directions

of research. In Ref.[73], we suggest a second possible mech-

anism to control droplet size, which is discussed in Ref.[67]

for mass action kinetics: If the driven reaction is localized, for

example by an enzyme that is bound to a membrane, and the

driven reaction produces droplet material in a sub saturated en-

vironment4 , the local production of droplet material can induce

droplet formation5 . In this case, the droplet material gets pro-

duced in the droplet center and flows out of the droplet because

of the sub saturated solvent phase and the balance of these pro-

cesses leads to stable droplet size. Thus, the mechanism of size

control is very similar to the case we discussed above, but with

different signs (production in the droplet, degradation in the sol-

vent). Another direction of research is the investigation of more

complex and more realistic reactions. While there is work on

non-equilibrium reaction networks in non-ideal systems[191],

there has not been a thorough investigation of the effect of mul-

tiple phases on complex reaction networks. By including or ex-

cluding certain species, droplets could affect the dynamics of
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reaction networks and the selection of reaction pathways. For

example, the multiphase nucleus has been discussed as an ‘as-

sembly line’[192] that controls how proteins are processed lo-

cally when moving from one phase to the next[193]. Another

approach is to use more realistic reaction models, for example,

the full Michaelis Menten model for enzymatic reactions instead

of the simplified onewe use here. Interestingly, co-localizing en-

zymes and substrates in droplets while expelling products would

resemble the condition of in vitro reaction chambers. It would

be interesting to see if condensates can be used as reaction cham-

bers to speed up reactions or make them more efficient.
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A
Entropy production

The aim is to calculate the entropy production dS
dt
, which is given by

T
dS

dt
= −dF

dt
= −

∫
Vsys

∂tf(Φ,∇Φ) dV ≥ 0, (A.1)

as dF = −TdS due to constant temperature T and internal energy E in the systems under

consideration. Because the free energy density f follows a continuity equation with local free

energy density production ḟ and free energy density flux jf , we calculate ∂tf according to

∂tf = ḟ −∇jf . (A.2)

At the same time we can expand f in all φi and their derivatives∇φi and try to match the result

with ḟ and jf

∂tf =
∑
i

[(∂φi
f)(∂tφi) + (∂∇φi

) · (∇(∂tφi))]

=
∑
i

[(∂φi
f)(si −∇ · ji) + (∂∇φi

f) · ∇(si −∇ · ji)]. (A.3)

In a next step we make use of the product rule ∇(a(x)b(x)) = (∇a(x))b(x) + a(x)(∇b(x)) to
rewrite the equation as

∂tf =
∑
i

{(∂φi
f)si − (∇ · (∂∇φi

f))si

+ (∇(∂φi
f)) · ji + (∇ · (∂∇φi

f))(∇ · ji)
−∇ · [(∂φi

f)ji + (∂∇φi
f)(∇ · ji) + (∂∇φi

f)si]}. (A.4)

Applying the product rule to the last term in the second row another time, we end up with

∂tf =
∑
i

{[∂φi
f −∇ · (∂∇φi

f)]si

+ [∇(∂φi
f −∇ · (∂∇φi

f))] · ji
−∇ · [(∂φi

f −∇ · (∂∇φi
f))ji + (∂∇φi

f)(∇ · ji) + (∂∇φi
f)si]}. (A.5)

The first two lines are scalar quantities and we thus identify them as the free energy production

ḟ , while the last line is the divergence of a flux, which we identify as jf
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ḟ =
∑
i

[∂φi
f −∇ · (∂∇φi

f)]si + [∇(∂φi
f −∇ · (∂∇φi

f))] · ji, (A.6a)

jf =
∑
i

(∂φi
f −∇ · (∂∇φi

f))ji + (∂∇φi
f)(∇ · ji) + (∂∇φi

f)si (A.6b)

In our systems the flux jf does not contribute to the total entropy production
dS
dt
, as the flux van-

ishes on the boundaries. We can therefore restrict our discussion of the total entropy production

to the free energy production rate ḟ and write

T
dS

dt
= −

∫
Vsys

∑
i

{[∂φi
f −∇(∂∇φi

f)]si + [∇(∂φi
f −∇(∂∇φi

f))]ji]} ≥ 0. (A.7)

Using the definition of the chemical potential, µi = ∂φi
f −∇(∂∇φi

f), we end up with

T
dS

dt
= −

∫
Vsys

∑
i

{(µisi + (∇µi)ji} ≥ 0. (A.8)

In the main text, we call the integrand the local entropy production rate σ (see Eq. 4.13). We

will do this from here on as well get

Tσ = −
∑
i

[µisi + (∇µi)ji]. (A.9)

We can rewrite the reaction term in terms of individual reactions k instead of species i (see
Sec. 2.2 ∑

i

µisi =
∑
i,k

νi,kµisk, (A.10)

where we νi,k = vi(ν
b
i,k − νfi,k is the stoichiometric coefficient of species i in reaction k and

already includes the conversion from particle to molecular volume change. We then identify the

free energy change of reactions
∑

i νi,kµi = −∆Fk and end up with

Tσ =
∑
k

∆Fksk −
∑
i

(∇µi)ji. (A.11)

Where σ ≥ 0 for linear non-equilibrium thermodynamics, i.e. ji ∝ −∇µi and sk ∝ ∆Fk.

The reaction flux depends +∆Fk and not −∆Fk because of the way we defined forward and

backward directions, by defining the stoichiometric coefficient the other way around, i.e. νi,k =

νfi,k − νbi,k, we would end up with sk ∝ −∆Fk.

Entropy production of a driven reaction cycle

We now calculate the entropy production of the specific reaction cycle with the two reaction

A
 B, and A++E 
 B+F +E, where A and B are the two proteins species, F andW are

fuel and waste moelecules and E is the enzyme. The chemical potential difference between fuel

and waste is fixed from the outside and given by the driving strength∆µ = µF −µW > 0. Thus,
the free energy of reaction for the first (passive) reaction is∆Fp = µB−µA and the reaction flux
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is sp, while the free energy of reaction of the second (driven) reaction is∆Fa = µB − µA +∆µ
and the reaction flux is sa. As a result, the total entropy production rate becomes

−Tσ = (µA − µB)sp + (µA − µB −∆µ)sa +
∑
i

ji(∇µi). (A.12)

In the case of homogeneously distributed enzymes, the non-equilibrium steady state contains

reaction terms only because ∇µi = 0 everywhere (see Sec. 4.1). In addition, the total reaction
flux vanishes, thus sa = −sp. We can then write the entropy production rate as

−Tσ = −∆µsa. (A.13)

So it is just given by the energy input, i.e. the amount of fuel converted to waste times the energy

per fuel conversion. In the context of droplet size control, it is interesting to measure how much

of the energy input, sa∆µ, gets converted into diffusive fluxes that are necessary for size control,
i.e. the ratio r =

∑
i ji(∇µi)/(sa∆µ).





B
Flory Huggins Free Energy

In this appendix we derive the Flory-Huggins free energy, following the original derivation

of Flory[22, 23] and Huggins[21]. Starting from an Ising like lattice model, the aim is to derive

a mean field free energy density that depends on the local concentration, or volume fraction, of

polymers only. In the standard Ising model each particle occupies a single lattice site, while in

the Flory Huggins theory a monomer occupies one lattice site. Therefore a polymer consisting

of n monomers occupies n correlated lattice sites, which leads to a different entropy of mixing

than in the standard Ising model.

In the Following we will introduce the Ising lattice model, then the Flory Huggins lattice model

and free energy density and finally an extension to multiple species.

Lattice Model

Consider a d dimensional lattice withM lattice sites, where each lattice site is occupied by either

a B or C particle. Here we use the nomenclature from the main text, but in other context B and

C could be spin up and spin down or just +1 and −1. In addition we assume an incompressible

fluid, so the lattice contains no empty sites. Furthermore we assume that the interactions between

particles are short ranged, such that the only relevant interaction are between nearest neighbors.

In this case the total energy, or Hamiltonian, H of the lattice is given by the sum of energies

per lattice site H =
∑M

n=1 hn. The energy per lattice site hn is in turn given by a sum over the

nearest neighbor interactions and thus

H =
1

2

∑
n,i

σn,i
∑

m∈NN

∑
j

σm,jeij +
∑
n,i

eiσn,i. (B.1)

Here σn,i = 1 if site n is occupied by a particle of type i and σn,i = 0 else. The sums over

i and j run over all species, the sum over m runs over all nearest neighbors of n. eij = eji
is the (symmetric) interaction energy between species i and j and ei is the internal energy of

species i, which is irrelevant for diffusive processes, but becomes important when reactions are

present. In the Ising model this corresponds to an external field usually called h. For now we

take i, j = B,C and one can map this to the original Ising model where σ = ±1. But the general
form will become useful for the multicomponent case.

In the current form each particle is treated explicitly, the crucial mean field assumption is that we

first replace the actual occupancy σm,j with the probability pm,j of finding an j particle at sitem.

And second assume that lattice sites are uncorrelated, so the probability of finding a j particle is
equal for all lattice sites, pm,j = φj =

Nj

M
∀m, where Nj is the total number of j particles. φj is

just the fraction of lattice sites occupied by j particles, which we call volume fraction later.

Taken together we use σm,j ≈ φj , which is independent of m and thus the sum over nearest
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neighbors just gives a factor z, which is the number of neighbors of a lattice site, e.g. z = 4 for
the 2D cubic lattice. With this assumption we can write Eq.B.1 as

H ≈ z

2

∑
i,j

φjeij
∑
n

σn,i +
∑
i,n

σn,iei. (B.2)

As the interaction of each particle φjeij is independent of space or lattice site, we can carry out
the sum over n and get

H ≈
∑
i,j

zeij
2
Niφj +

∑
i

eiNi. (B.3)

In this form the energy depends only on the total amount of particles in the lattice, not their posi-

tion, thus the namemean field. This is an important point, because we now calculate the partition

functionZ which, for a canonical ensemble (so the particle numbersNi, the total volume V (here

lattice sitesM ) and the temperature T are constant), is given by

Z =
∑
σ

e−βH(σ). (B.4)

here σ characterizes a certain microstate, which corresponds to a certain particle arrangement

on the lattice, and the sum runs over all possible microstates. In the sum each microstate is

weighted with the associated energy relative to the thermal energy β = (kBT )
−1. Here kB is the

Boltzmann constant and T is the temperature of the system. As we have seen in Eq.B.3 H is

independent of the lattice arrangement, so each arrangement has the same weight and Z is given

by

Z = Ω exp

(
−
∑
i,j

zeij
2kBT

Niφj −
∑
i

ei
kBT

Ni

)
, (B.5)

whereΩ is the total number ofmicrostates. In our lattice descriptionwe can calculateΩ explicitly

by counting the number of different ways one can distribute NB B particles and NC C particles

onM = NB +NC lattice sites, which is given by the binomial

Ω =

(
M

NB

)
=

M !

NB! (M −NB)!
. (B.6)

Using the partition function we get the free energy F according to

F = −kBT ln(Z), (B.7)

which is the most important quantity in our system as F is minimized in thermodynamic equi-

librium and determines the dynamics towards equilibrium as well.

The logarithm of Ω can be approximated for largeM and NB using Stirlings formula ln(N !) ≈
N ln(N)−N and we get

− ln
(

M !

NB! (M −NB)!

)
≈ NB ln(NB) + (M −NB) ln(M −NB)−M ln(M)

= NB ln NB

M
+ (M −NB) ln M −NB

M
= NB ln(φB) + (M −NB) ln(1− φB). (B.8)
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Taken together we get for the total free energy F

F

kBT
= NB ln(φB) + (M −NB) ln(1− φB) +

∑
i,j=B,C

zeij
2kBT

Niφj +
∑
i

ei
kBT

Ni. (B.9)

To include space into our description, we assume that each lattice site occupies a volume v0,
so the total volume is given by V = Mv0. With this we can define the free energy density

f = F/V and get (using φC = 1− φB)

v0f(φB)

kBT
= φB ln(φB) + (1− φB) ln(1− φB) + χφB(1− φB) + wBφB. (B.10)

Where we introduced the factor χ = z
2kBT

(2eBC + eBB − eCC), which describes the relativ

interaction energy when mixing B and C (2eBC) compared to the demixed state (eBB + eCC)

and compares it to the thermal energy kBT . In addition the effective internal energy difference
between B and C becomes wB = 1

kBT
(eB − eC + eBB − eCC) and we skipped constants in the

free energy density, because only derivatives of f are relevant for physical processes. In this

form the free energy is a function of the volume fraction of B only.

Multicomponent regular solution

In this subsection, we extend the discussion from above to K species instead of two, now Ni

for i = 1, ..., K is the number of i particles in the system and we assume all M lattice sites

are occupied, so
∑

iNi = M . In addition, for now each particle occupies one lattice site. The

enthalpy is described by Eq. B.3, but the entropy of mixing is different ofK species. In this case

we have to arrange Ni particles of type i onM lattice sites, where
∑

iNi =M . The number of

arrangements Ω in this case is given by the multinomial coefficient

Ω =

(
M

N1, N2, ..., NK

)
=

M !∏K
i=1Ni!

. (B.11)

To calculate the free energy according to Eq. B.7, we have to calculate the logarithm of Ω. We

apply stirlings formulat immediately and get

ln(Ω) ≈M lnM −M −
K∑
i=1

Ni lnNi −Ni

= −
K∑
i=1

Ni ln Ni

M
= −

K∑
i=1

Ni ln(φi). (B.12)

Taken together, the total free energy of the multicomponent system is given by

F

kBT
=

K∑
i=1

Ni

[
ln(φi) +

ei
kBT

+
K∑
j=1

zeij
2kBT

φj

]
. (B.13)
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And the corresponding free energy density becomes

v0f

kBT
=

K∑
i=1

φi

[
ln(φi) +

ei
kBT

+
K∑
j=1

zeij
2kBT

φj

]
. (B.14)

In the main text we use a slightly different version because the form usually used in the literature

uses paraameters χij = (z/(2kBT ))(2eij − eii − ejj) instead of the eij[65].

Flory-Huggins entropy of mixing

In this subsection, we discuss the extension to polymers that consist of multiple monomers and

thus occupy multiple adjacent lattices sites, i.e. includes different particle sizes. We discuss the

binary case, but it can be extended to multiple species in a straight forward manner. Thereby,

we follow the calculation of the original paper by Flory closely, see Ref.[22]. The aim is to cal-

culate the entropy of mixing from the number of lattice arrangements, similar to the case above.

Assume two types of molecules, a solvent and a polymer. The solvent occupies one lattice site,

while the polymer consists of x monomers and each monomer occupies one lattice site. Thus

each polymer needs x adjacent lattice sites to fit in. Here, we assume that the polymerization,

i.e. the number of monomers per polymer is constant. Again, we assume M total lattice sites,

N polymer molecule, thus Nx monomers andM −Nx solvent molecules.

Wewant to calculate the total number of arrangements ofN polymers andM−Nx solvents
onM lattice sites. Therefore, we first arrange the N polymers and fill the remaining sites with

solvents. In addition, we assume that the probability of a lattice site to be occupied by amonomer

is given by the average probability, i.e. φ = Nx/M . In an empty lattice, the first monomer of the

first polymer can start anywhere, for a lattice with coordination number z, the second monomer

can thus be on one of the z neighboring sites. For an empty lattice, the expected number of

empty adjacent lattice sites is z. But, for the third monomer its only z − 1 because the first

monomer sits on one of the z neighbors. For the fourth it is even less, but we assume it is z − 1
for every monomer after the first. This overestimates the number of real arrangements and we

neglect that the polymer might have preferred confirmations and assume each neighboring site

is equally possible.

This discussion only holds for the first polymer, for the n+1th polymer, a total number of

nx lattice sites is already filled. Thus, the probable number of empty lattice sites for the second

monomer is z(M − nx)/M , while it is α = (z − 1)(M − nx)/M for the following monomers.

So the possible number of arrangements for the n+ 1th polymer for a fixed position of the first

monomer is

pn+1 =
z

z − 1
αx−1 = (z − 1)x−1 (M − nx)x−1

Mx−1
. (B.15)

Here the factor z/(z − 1) takes care of the second monomer having z instead of z − 1 possible
neighboring sites and the exponent x− 1 takes care of the first monomer being fixed. Now, the

first monomer can start on any of theM − nx free sites, thus the total number of arrangements

for the n+ 1th polymer is

ωn+1 =
1

2
(M − xn)pn+1 ≈

1

2
(M − xn)xM1−x(z − 1)x−1, (B.16)

where the factor 1/2 corrects for the symmetry of the polymer, i.e. the start and end of the

polymer can be exchanged, without changing the configuration. The approximation assumes
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that z(z − 1)x−2 ≈ (z − 1)x−1. For three dimensional lattices, for example, the cubic lattice

where z = 9, this is a good approximation, but even for two dimensions its only a factor of 2.
Taking the result from Eq. B.16, we can add one polymer after the other and get the total number

of confirmation for N polymers as

Ω =
1

N !

N∏
n=1

ωn =
1

N !2N

(
(z − 1)

M

)N(x−1) N∏
n=1

(M − xn)x (B.17)

where the factorN ! corrects for exchange of indistinguishable polymers. The product series can

be written as

N∏
n=1

(M − xn)x = (M − x)(M − 2x)...(M −Nx)

=

(
N∏

n=1

(M − xn)

)x

=

(
xN

N∏
n=1

(M/x− n)

)x

= xxN
(

(M/x)!

(M/x−N)!

)x

. (B.18)

and thus the total number of arrangements are

Ω =

(
(z − 1)

M

)N(x−1)
xxN

2N(N !)

(
(M/x)!

(M/x−N)!

)x

. (B.19)

From this, we get the entropy of mixing ofN perfectly aligned polymers andM −Nx solvents,
using ∆S0 = kB ln(Ω) and the stirling approximation, ln(N !) ≈ N ln(N)−N :

∆S0 ≈ −kB
[
N ln N

M
+ (M − xN) ln M − xN

M

]
+kBN [(x−1)(ln(z−1)−1)−ln 2]. (B.20)

This reduces to the entropy of mixing derived above for x = 1, except for the ln 2 term, which

stems from the symmetry of the polymer, i.e. that beginning and end are indistinguishable. This

term does not arrive in the first place for molecules that occupy one lattice site.

From Eq. B.20, we can calculate the entropy of N polymers on a lattice in the absence of

solvent, i.e. M − xN = 0, and get

∆SP = kBN [lnx− ln 2 + (x− 1)(ln(z − 1)− 1)]. (B.21)

This is the entropy of pure polymers. We need to consider it as the standard state of the pure

polymer in the derivation of the total entropy of mixing. ∆S0 is the entropy of arranging N
polymers andM − xN solvents, but the entropy of mixing is the difference between ∆S0 and

the standard state, i.e. the pure polymer and pure solvent state. Because of the correlation of

lattice sites, Eq. B.21 has to be used as the standard state for the pure polymer system. Thus,

the entropy of mixing N entangled polymers and M − xN solvent molecules is given by the
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difference between ∆S0 and ∆SP (using φ = Nx/M )

∆S = ∆S0 −∆SP = −kB [N lnφ+ (M − xN) ln(1− φ)] . (B.22)

And the entropy density ∆s = ∆S/(Mv0), where v0 is the lattice volume:

∆sv0
kB

= −
[
φ

x
lnφ− (1− φ) ln(1− φ)

]
. (B.23)

The generalization to K components results in

∆sv0
kB

= −

[
K∑
i=1

φi

ni

ln(φi)

]
, (B.24)

where ni is the polymerization, i.e. the number of monomers, of species i and vi = niv0 is the
corresponding molecular volume.

Finally, we want to discuss some limitations of the Flory-Huggins entropy of mixing: (i) In

the derivation for pn+1, we neglect that for high polymer fraction, it is possible that there is no

way to fit another polymer into the system although more than x free lattice sites are available.

Simply because the free lattice sites are not conncted. Thus, for high polymer concentration,

the number of configurations decreases faster than pn+1 suggests. (ii) We assume that each

monomer can occupy every neighboring cell, i.e. that the polymer can bend perfectly. This is

not the case for stiff, rod-like polymers for example. (iii) It assumes that all polymers have the

same number of monomers, wich is usually not the case, especially for long polymers, where

a distribution of lengths is expected. (iv) It inherits all the limitations of the lattice model and

mean field model already discussed above.



C
Linear Stability of a ternary mixture

In this appendix we calculate the linear stability of a ternary systemwith chemical potentials

(here φC = 1− φA − φB)

µA

kBT
= ln φA

φC

+
∑

j=A,B,C

χAj(φj − v
2/d
0 ∇2φj), (C.1a)

µB

kBT
= ln φB

φC

+
∑

j=A,B,C

χBj(φj − v
2/d
0 ∇2φj), (C.1b)

where we used the regular solution model and κij = −χijv
2/d
0 . The time evolution via diffusion

is given by the continuity equations

∂tφA = Λ∇2µA, (C.2a)

∂tφB = Λ∇2µB. (C.2b)

We discuss the most simple case, constant mobility Λii = Λ, no crossdiffusion Λij = 0 for

i 6= j and same diffusivity for A and B. This does not change the qualitative behaviour, but it
makes the calculations easier to interpret. Note that we expect quantitative shifts in the stability

conditions for other mobility models. Linearize µ = (µA, µB)
T around the homogeneous state

φ̄ = (φ̄A, φ̄B)
T where we write the deviation from the homogeneous state as δφ = φ − φ̄ and

get

µ ≈ µ(φ̄) + M · δφ−K∇2δφ. (C.3)

Where the matrix coefficients are given byMij = (∂φj
µi)|φ̄A,φ̄B

and Kij = (χij − χiC)v
2/d
0 for

i = A,B. Accordingly the linearized dynamics are

∂tδφ = Λ[M∇2 −K∇4]δφ = Lδφ. (C.4)

Where the linear operator (matrix) L determines the time evolution of the perturbations via

δφ(t) = eLtδφ(0) and to determine the stability of the homogeneous state we have to find the

eigenvalues of L. This is best done in terms of the eigenfunctions of ∇2, which are again the

plane waves exp(ikr) with wave vectors k. As a result we get two eigenvalues ω1,2 for each

wave vector k by solving the characteristic polynomial and we get

ω1,2 =
1

2

[
−Tr(L)±

√
Tr(L)2 − 4Det(L)

]
. (C.5)

Obviously the result depends on the interaction matrix χ, but we can get some generic properties

and then discuss the special cases important for our system. First there is a factor −Λk2 in all
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terms of L, so L = −Λk2L′ and we need to find the eigenvalues of L′ only. In ideal systems

(χij = 0) those are always positive and thus all perturbations decay. But for strong interactions
the eigenvalues can become negative, just like in the binary case, and the homogeneous state

becomes unstable.

Including passive reactions

If we include a simple reaction A
 B and write the reaction flux using linear non-equilibrium

thermodynamics, Eq. 2.25, sA = −sB = s = −k(µA − µB), the resulting dynamical eqautions

become

∂tφA = Λ∇2µA − k(µA − µB), (C.6a)

∂tφB = Λ∇2µB + k(µA + µB). (C.6b)

As seen in the main text, this can be rewritten in non-dimensional form as (see Eq. 3.23)

∂tφA = ∇2µA − ξ−2(µA − µB), (C.7a)

∂tφB = ∇2µB + ξ−2(µA − µB), (C.7b)

where ξ2 = Λ/k is the reaction diffusion length expressed in molecular volumes v
1/d
0 . Note that

we skip the hats, but all quantities in the non-dimensional form are dimensionless or expressed in

terms of the characteristic length, time and energy scales. In this case we do not perturb around

a generic homogeneous state, but the homogeneous case for which µA −µB = 0 for a given φ̄+,

so the reaction is in equilibrium. Besides the procedure is the same as discussed above and we

get the perturbed dynammics

∂tδφ = [M∗∇2 −K∇4 + ξ−2R]δφ = Lδφ. (C.8)

Here RAA = −RBA and RAB = −RBA and RAj = −(∂φj
(µA − µB))|φ̄A,φ̄B

. In addition, the

non-local term in µA − µB enters the matrixM∗ =M − T ·K, where TAA = −TBA = −1 and
TBA = −TBB = 1. Now, calculating the eigenvalues of L gives the growth rates, which are

shown in the main text.



D
Partition Coefficient

In this appendix we derive the partition coefficient in a ternary mixture of species i, B and

C, where the solvent C is abundant φ̄C � φ̄B,i and species B phase separates from C. The

partition coefficient describes the ratio of concentrations between the two phases in equilibrium.

Our aim is to derive the partition coefficient of the ‘client’ species only, i.e. the species that

are not necessary for phase separation and not the solvent. These species partition into the two

phases according to their interactions. In this example, we are interested in the partitioning of i
only. The derivation is similar to the partition coefficient derived in Ref.[134].

Starting from a ternary regular solution free energy, so all molecular volumes are identical

fv0
kBT

= φi ln(φi) + φB ln(φB) + (1− φi − φB) ln(1− φi − φB)+

χφB(1− φi − φB) + χiBφiφB + χiCφi(1− φi − φB), (D.1)

where φC = 1− φi − φB has been applied already and χiB, χiC are the interaction strength of i
with B and C. For low i fraction, φi � 1, we can expand f up to first order in φi and get

fv0
kBT

≈ φB ln(φB) + (1− φB) ln(1− φB) + χφB(1− φB)+

φi

[
ln φi

1− φB

+ (χiB − χ− χiC)φB + (χiC − 1)

]
. (D.2)

The result is a binary regular solution free energy with a correction linear in φi. From this free

energy we can derive the (exchange) chemical potentials according to

µi

kBT
= ln φi

1− φB

+ (eiB − χ− eiC)φB + eiC (D.3a)

µB

kBT
= ln φB

1− φB

+ χ(1− 2φB) +

(
eiB − χ− eiC +

1

1− φB

)
φi. (D.3b)

The equilibrium condition for the chemical potentials in a two phase system are µin
i = µout

i and

µin
B = µout

B , where in and out indicate the B-rich and B-poor phase respectively. From Eq.D.3

it is clear, that the equilibrium solution has to be determined numerically.

But we can discuss an approximation, assuming that phase separation is not affected by i at all
and i partitions in the two phases according to µin

i = µout
i . In this case we drop the φi term in

µB and get the binary phase separation discussed in App.B. Even this simplified case has to be

solved numerically in general, but the problem is reduced to phase separation in a binary regular

solution. The equilibrium fraction of B in droplet, φin
B , and solvent, φout

B , depend on χ only as

discussed in the main text. Assuming, we know φin
B and φout

B from numerical calculations, we
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can calculate the equilibrium condition for i from Eq. D.3a and get

φin
i

φout
i

= exp((eiB − eiC)(φ
out
B − φin

B))
1− φin

B

1− φout
B

exp(χ(φin
B − φout

B )). (D.4)

In the special case of symmetric free energy densities for equally sized molecules B and C, we
get φin

B = φin
C and φin

B = 1− φout
B . Using this, we can rewrite the second part of Eq. D.4 as

ln
(

1− φin
B

1− φout
B

)
+ χ(φin

B − φout
B ) = ln

(
φout
B

1− φout
B

)
+ χ(1− 2φout

B ) = µB(φ
out
B ) = 0. (D.5)

As a result, we arrive at

φin
i

φout
i

= exp((eiB − eiC)(φ
out
B − φin

B)) = exp(χE(φ
in
B − φout

B )) = Γi. (D.6)

Here, Γi is the partition coefficient of i between the two phases and χi = eiC − eiB is the

interaction difference between i and C and i and B. Thus, for χi > 0, i enriches in the B
droplet, while for χi < 0, i enriches in the solvent phase. Note that this result holds for every

extra species i that is dilute, i.e. φ̄i � 1.
We can use the partition coefficient and mass conservation to calculate the actual volume

fraction in droplet and solvent phase. Therefore, we use mass and volume conservation

Vin + Vout = Vsys, (D.7a)

Vinφ
in
i + Voutφ

out
i = V φ̄i. (D.7b)

Where Vin and Vout are the volumes of droplet and solvent phase. We call the droplet volume

ratio ψ = Vin/Vsys, with this and Γi = φin
i /φ

out
i , we arrive at

φout
i =

1

1− ψ(1− Γi)
φ̄i ≈ (1 + (1− Γi)ψ) φ̄i, (D.8)

φin
i =

Γi

1− ψ(1− Γi)
φ̄i. ≈ (1 + (1− Γi)ψ) Γiφ̄i, (D.9)

where the approximation is for small droplets, i.e. ψ � 1. Thus, to 0th order, we can approxi-

mate φout
i ≈ φ̄i and φ

in
i ≈ Γiφ̄i.



E
Chemical Equilibrium ratio

In this appendix, we derive the analytical solution of the chemical equilibrium for a simple

conversion reaction A
 B. We start from a regular solution free energy given by

fv0
kBT

=
∑

i=A,B,C

φi ln(φi) + (kBT )
−1h(φA, φB, φC), (E.1)

where
∑

i φi = 1 and h(φA, φB, φC) contains the enthalpic contributions, i.e. the internal ener-
gies and interactions between particles. We assume pairwise interactions only and expand h up

to second order in all φi and end up with

h ≈
∑
i

eiφi +
∑
ij

eij
2
φiφj, (E.2)

where ei are the internal energies and eij are the pairwise interactions between species i and j.
Thus, the chemical potentials are given by

µi

kBT
= ln(φi) + ei +

∑
j=A,B,C

eijφj. (E.3)

We want to calculate the chemical equilibrium condition for the reactionA
 B, i.e. µA−µB =
0, which results in the condition

µA − µB

kBT
= ln φA

φB

+ eA − eB +
∑
j

(eAj − eBj)φj = 0. (E.4)

Using the incompressibility condition to replace species C via φC = 1 − φA − φB, we end up

with

ln φA

φB

+∆w + χAφA − χBφB = 0, (E.5)

where∆w = eA−eB+eAC−eBC ,χA = eAA−eBA−eAC+eBC , andχB = eBB−eAB+eAC−eBC .

We can rewrite this as

φA exp(∆w + χAφA) = φB exp(χBφB). (E.6)

Substituting x = χAφA, we end up with

xex = χAφB exp(χBφB −∆w), (E.7)
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here, we can use that xex = y is solved by the Lambert W function, x = Wn(y), where n = 0
or n = −1 for real x, y. And thus

φA = Wn(χAφB exp(χBφB −∆w))/χA. (E.8)

This argument holds for general forms of the enthalpic interactions up to two body interactions.

Indeed, it does work for specific three body interactions as well, but we have not investigated

the case of general three body interactions.



F
Steady state of a reaction cycle

In this appendix we discuss the condition of vanishing total reaction flux for a reaction

cycle with different kinetics. The reaction cycle is given by the two reactions (Eq. 4.5)

A
 B, (F.1a)

A+W 
 B + F. (F.1b)

And the corresponding detailled balance conditions are (Eq. 4.6)

sfp
sbp

= exp µA − µB

kBT
, (F.2a)

sfa
sba

= exp µA − µB −∆µ

kBT
. (F.2b)

With sp = sfp −sbp and sa = sfa−sba, we can solve for the condition s = sp+sa = 0 or sp = −sa
in terms of external driving ∆µ and backward rates sbi

sbp

(
exp µA − µB

kBT
− 1

)
+ sba

(
exp µA − µB −∆µ

kBT
− 1

)
= 0. (F.3)

Rewriting this in terms of exp µA−µB

kBT
, we get

exp µA − µB

kBT
=

sbp + sba
sbp + sbae

−∆µ/(kBT )
. (F.4)

The important parameter are not the rates themselves, but the ratio between the two backward

rates η = sba/s
b
p

µA − µB

kBT
= ln 1 + η

1 + ηe−∆µ/(kBT )
. (F.5)

It is convenient to write this as

µA − µB = ∆µ− kBT ln e
∆µ/(kBT ) + η

1 + η
. (F.6)

Importantly, this discussion uses detailed balance of the rates and is thus valid, independent of

the functional form of sba,p. For a generalization of this procedure to complex chemical reaction

networks see for example Ref.[165].

If we assume inhomogeneously distributed enzymes that catalyze the driven reaction and

in addition assume that the active rate scales linear with the amount of enzyme sa ∝ φE , we end
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up with

µA − µB = ∆µ− kBT ln e
∆µ/(kBT ) + φEη

1 + φEη
, (F.7)

which corresponds to ΓE in the main text in the droplet phase.



G
Steady state of the non-equilibrium dynamics

In this appendix, we discuss the steady state chemical potential profiles for a non-equilibrium

reaction cycle with enzymes that enrich in the droplet phase. We start with the binary systemwith

linear non-equilibrium reactions and then extend it to the ternary case with reactions described

by transition state theory, which are discussed in the main text. In both cases, we assume for

simplicity, that the enzyme enriches in the droplet phase by a factor of ΓE , i.e. the enzyme parti-

tion coefficient. This is valid if the total droplet volume is small compared to the system volume.

Furthermore, we assume equal diffusivity Λ for all species and neglect cross-diffusion.

Binary active droplets

The dynamical equations to describe the binary active droplets in the effective droplet model

(see main text) for a droplet of radius R are given by Eq. 4.22

∂tφin = ∇2µin − `−2
in

(
µin +

ΓEη

1 + ΓEη
∆µ

)
, r ≤ R, and (G.1a)

∂tφout = ∇2µout − `−2
out

(
µout +

η

1 + η
∆µ

)
, r > R, (G.1b)

here φin/out and µin/out are the volume fractions and chemical potentials in droplet (in) and sol-
vent (out) phase. `in/out are the corresponding reaction diffusion lengths. η = sba/s

b
p is the

reaction rate ratio and ∆µ is the driving strength. The boundary conditions are no flux condi-

tions at r = 0/L, er∂r∇µ|r=0,L = 0, where L is the system size of the radial symmetric system.

In addition, phase coexistence requires that µin(R) = µout(R) = −∆w, where∆w is the internal

energy difference between A and B.
Notably, the right hand site depends on the chemical potential only, therefore, in the steady

state we can solve the equation for the chemical potential as a function of r. In a first step, we
introduce the steady state chemical potential in droplet and solvent phase as

µ∗
in =

ΓEη

1 + ΓEη
∆µ, (G.2a)

µ∗
out =

η

1 + η
∆µ. (G.2b)

Then, we substitute µ̄in/out = µin/out + µ∗
in/out. The resulting steady state equations in a spheri-
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cally symmetric system are

∂2r µ̄in +
2

r
∂rµ̄in − `−2

in µ̄in = 0, r ≤ R, and (G.3a)

∂2r µ̄out +
2

r
∂rµ̄out − `−2

in µ̄out = 0, r > R. (G.3b)

(G.3c)

The general solution of this ODE, the Sturm-Liouville equation, is

µ̄(r) =
a

r
exp(−r/`) + b`

r
exp(r/`), (G.4)

where a and b are constants related to the boundary conditions. For the solvent phase, the chem-

ical potential has to remain finite for r → ∞, thus b = 0 and for the droplet phase, ∂rµ̄|0 = 0
leads to a = −b. Thus, the solutions for solvent and droplet phase are

µin = −µ∗
in +

ain

r
sinh(r/`in), (G.5a)

µout = −µ∗
out +

aout

r
exp(−r/`out). (G.5b)

In a last step, we enforce µin/out(R) = −∆w and thus

ain = (µ∗
in −∆w)

R

sinh(R/`in
, (G.6a)

aout = (µ∗
out −∆w)R exp(R/`out). (G.6b)

Therefore, the final result is

µin = −µ∗
in + (µ∗

in −∆w)
R

r

sinh(r/`in)

sinh(R/`in)
, (G.7a)

µout = −µ∗
out + (µ∗

out −∆w)
R

r
exp(−(r −R)/`out), (G.7b)

which is the result we use in the main text.

Ternary active droplets

In the ternary system, which corresponds to Eq. 4.39, where we drop the enzyme species and

just assume φin
E = ΓEφ̄E and φout

E = φ̄E , is given by

∂tφ+ = Λ∇2µ+, (G.8a)

∂tφ− = Λ∇2µ− − 2s. (G.8b)

While the first equation is independent of µ−, the resulting steady state is µ+ = const. Therefore,
only the second equation is of interest. To solve it, we need to specify the reaction flux. For

TST kinetics (see main text), the total reaction flux is given by s = sa + sp and the individual
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reaction fluxes of active and passive reaction are (see Eq. 4.40 in the main text)

sp = λp

[
(exp

(
µA

kBT

)
− exp

(
µB

kBT

)]
, and (G.9a)

sa = λae
µF /kBT φE

φ̄E

[
exp

(
µA −∆µ

kBT

)
− exp

(
µB

kBT

)]
. (G.9b)

We rewrite this in terms of the new variables, µ− and µ+, as well as the steady state chemical

potentialµ∗
− as

s(µ+, µ−) = 2λp

(
1 + e

−∆µ
kBT η

φE

φ̄E

)
e

µ++µ∗−
2kBT sinh

[
µ− − µ∗

−

2kBT

]
. (G.10)

Here, µ∗
− is given by

µ∗
− = ∆µ− kBT ln

[
e∆µ/kBT + φE

φ̄E
η

1 + φE

φ̄E
η

]
. (G.11)

Nowwe consider the effective droplet model, i.e. a droplet of radiusR is present and the enzyme

fraction in the droplet and solvent phase is ΓEφ̄E and φ̄E respectively. We can thus distinguish

the reaction flux and steady state chemical potential in droplet and solvent phase, i.e. sin/out and

µ∗
in/out. In addition, we assume that the reaction flux in the solvent phase is close to equilibrium

and for strong driving, where e∆µ/kBT � η. In this case, the steady state chemical potential can

be approximated by µ∗
out ≈ ln(1 + η) and the reaction flux can be approximated by

sout ≈ λ̄out
p

[
µout
−

kBT
− ln(1 + η)

]
, (G.12)

where we introduce the effective rate λ̄out
p = λp

(
1 + η)e

µ+
kBT

)
. Thus, in the solvent phase be-

haves like the linear non-equilibrium reaction kinetics with rescaled rate and steady state chem-

ical potential. This approximation is not generally valid in the droplet phase as discussed in the

main text. Instead, we assume that the chemical reaction changes only weakly in the droplet

phase, i.e. the reaction diffusion length is large compared to R. Then, we can expand the hyper-
bolic sinus around the chemical potential at the interface, µin(R) = µout(R) = µR. In this case,

we end up with

sin ≈ λp(1 + e−∆µ/kBTηΓE)e
(µ++µ∗

in)/(2kBT )e(µ
∗
in−µR/(2kBT )

(
µin
− − µR

2kBT
− 1

)
. (G.13)

Here, µ∗
in is given by Eq. G.11 for ΓE = φin

E/φ̄E . For simplicity, we assume strong segregation,

ηΓE � 1 and end up with

sin ≈ ΓEλ̄
in
p

(
µin
− − µR

kBT
− 2

)
, (G.14)

where λ̄in
p = ηλpe

(µ+−µR)/(2kBT ). Although we expand around a state far away from the steady

state chemical potential, we still end up with a linear expansion, thus the result is similar to linear

non-equilibrium reactions.
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Finally, we can calculate the steady state of Eq. G.8 in the effective droplet model:

∇2µin
+ = 0, (G.15a)

∇2µin
− = `−2

in
(
µin
− − µR − 2kBT

)
, (G.15b)

∇2µout
+ = 0, (G.15c)

∇2µout
− = `−2

out
(
µout
− − kBT ln(1 + η)

)
, (G.15d)

with `2in/out = Λ/λ̄
in/out
p the reaction diffusion lengths. As a result, µin

+ = µout
+ = µ+ = const

and the two equations for µ− in droplet and solvent phase are qualitatively the same as in the

binary case; see Eq. G.3. The resulting chemical potential profiles as a function of r in the

spherically symmetric system are

µin
−(r) = µR + 2kBT

(
1− R

r

sinh(r/`in)

sinh(R/`in)

)
, (G.16a)

µout
− (r) = kBT ln(1 + η) + (µR − kBT ln(1 + η))

R

r
exp(−(r −R)/`out). (G.16b)

Which is the form that is used to plot the analytical solution in fig. 4.19B. The only difference

compared to the binary case is the chemical potential at the interface µ(R), which replaces the

boundary condition µ = −∆w. It can be calculated as follows: Assuming low total amount of

A, we can calculate the phase equilibrium at the interface for B similar to the binary case and

find µB(R) = −wB. In addition, we know that µ+ = const, although we do not know the value,

and thus µR = µ+ − 2µB(R) = µ+ − 2wB.

Stable droplet radius

Using Eq. G.16, we can calculate the total reaction flux in droplet and solvent phase and use

them to calculate the steady state radius, similar to Eq. 4.29 for the binary system. First, we

calculate the total reaction flux in the solvent phase Sout in an infinite system, i.e. `out � L:

Sout = −4π

∫ ∞

R

λ̄out
p

(
µout
− (r)− kBT ln(1 + η)

)
r2 dr

= −4πλ̄out
p (µR − kBT ln(1 + η))

∫ ∞

R

Rre−(r−R)/`out dr. (G.17)

The integral results in
∫∞
R
Rre−(r−R)/`out dr = `2outR(1 +R/`out)

Sout = 4πλ̄out
p `2outR (µR − kBT ln(1 + η))

(
R

`out
+ 1

)
(G.18)

The total reaction flux in the droplet Sin is given by

Sin = −4πΓEλ̄
in
p

∫ R

0

(µin
−(r)− µR − 2kBT )Rr

sinh(r/`in)

sinh(R/`in)
dr, (G.19)

and the integral is given by
∫ R

0
Rr sinh(r/`in)

sinh(R/`in)
dr = `2inR(R/`in coth(R/`in)− 1). Thus, the total
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reaction flux in the droplet is

Sin = −4πΓEλ̄
in
p `

2
inR

(
R

`in
coth

[
R

`in

]
− 1

)
(2kBT ). (G.20)

Because we already assume that the reaction diffusion length in the droplet is large compared to

the droplet radius, we might as well expand the hyperbolic cotangens and get

Sin ≈ −4πR3

3
ΓEλ̄

in
p (2kBT ). (G.21)

Solving for Sin + Sout = 0, we get the steady state radius

R∗ =
3`2in
2`out

(
µR

kBT
− ln(1 + η)

)
∝ ΓE ≈ e−χE . (G.22)
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