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Introduction

The notion of price discovery has been of interest for many researches in the

last decades, mostly in application to the financial markets (see eg. Journal of

Financial Markets, 2002 (5) where the whole issue is devoted to the subject of

price discovery). Why is it so?

For any market participant it is important to understand where price informa-

tion is being produced. Suppose we have a set of informationally-linked markets

trading some homogeneous commodity (or asset) at prices that are compatible

with the Law of One Price (LOP). If upon arrival of the new information each

of the markets sets a different new price, subsequent intermarket arbitrage will

prevent the prices from drifting too far apart from each other and eventually force

them to return to the LOP values. Some market (or markets) will play a leading

role in this process, i.e. vary their price only a little, and thus dominate the price

discovery, whereas remaining markets will be mostly adjusting to the new price

level. Econometrically speaking, in this case prices are I(1) cointegrated variables,

sharing one (or, more rarely, several) common stochastic trends or factors. This

common stochastic factor is referred to as the unobservable efficient price, and

price discovery can be viewed as the process of uncovering this fundamental value.

Let P ∗
t denote the unobservable permanent price that reflects the fundamental

value of a commodity (an asset). The observable market price Pt is distinct from
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it and can be decomposed into two components

Pt = P
∗
t + εt, (0.0)

where εt stands for various transitory effects, market noise etc.

More detailed, price discovery is the process by which security or commodity

markets attempt to identify permanent changes in the equilibrium transaction

prices. However, there is no unambiguous definition of price discovery among

researches. For example, the above definition is consistent with Harris’ view of

price discovery as “the process by which security markets attempt to identify

permanent changes in equilibrium transaction prices” ([Harris et al., 2002b, p.2]),

understanding it in broad terms as prices reacting to new information.

At the same time, Hasbrouck in [Hasbrouck, 1995] defines price discovery as

“who moves first in the process of price adjustment”, focusing attention on the

speed component of the process. Some other studies ([Cao et al., 2009]) interpret

price discovery by how informative prices are in depicting the true permanent value.

In a special issue of Journal of Financial Markets, mentioned above, price discov-

ery was defined as “efficient and timely incorporation of the information ... into

market prices”, highlighting both speed and efficiency characteristics of the pro-

cess. There are other studies that accept this definition, eg. [Yan and Zivot, 2010]

and [Putnins, 2013].

Price discovery was historically considered to be one of the central functions of

secondary markets and thus predominantly applied to the analysis of the highly

homogeneous financial assets. Therefore, existing literature on the price discovery

has concentrated mostly on financial markets.

One of the first price discovery models is found in [Garbade and Silber, 1983]

and considers the prices on spot and futures markets. Financial futures markets do

5



not only allow risk transferring or hedging or provide an opportunity for specula-

tion, but also facilitate the process of price discovery. To understand why, assume

that the spot and futures prices both measure the permanent price P ∗
t with some

error. Then the price discovery quantifies the contribution of spot and futures

prices to the revelation of P ∗
t and allows understanding which markets dominates,

and which is a leader’s follower. The model is used to analyze price discovery in

various markets, eg. of the financial assets for soft commodities like wheat, corn,

oats, orange juice and a number of hard commodities. The authors find that fu-

tures play crucial role in price discovery on almost any market, since more than

75% of their pricing occurs in the futures market.

Up until now substantial amount of studies, both applied and theoretical, con-

sider price discovery in relation to spot and futures markets, including those for

agricultural commodities, cf. eg. [Kumar, 2004], [Hernandes and Torero, 2010].

However, since the present study focuses on the spatial price discovery across

markets (same or similar commodity traded across geographical regions, countries,

regions of the same country etc.) rather than the duality between spot and futures

markets, we will concentrate on the following price discovery measures that are

applicable to our research.

1. Permanent-Transitory decomposition in [Gonzalo and Granger, 1995], here-

after referred to as PT, and

2. Information Shares in [Hasbrouck, 1995], referred to as IS.

PT measure is based on the Vector Error Correction Model (VECM) of the

prices time series and identifies long-run effect as a component that is not Granger

caused by some temporary changes. From this, a special linear combination of

the variables is build, and the coefficients of this combination represent the price

discovery measure. Unlike this, IS relies on the Vector Moving Average (VMA)
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representation of the prices system, and defines price discovery as the percentage

of total variance, explained by each variable.

There has been a substantial amount of research on the subject of similarities

and differences between these two main approaches. [de Jong, 2002], [Baillie et al., 2002]

and [Lehmann, 2002] compare them and show that the approaches are closely re-

lated (at least for financial assets). [Lehmann, 2002] suggests that it is desirable

to report both metrics when analyzing a particular market in order to get a full

picture of price discovery process. [Baillie et al., 2002] come to a conclusion that

it is impossible to pick a superior measure, however, IS has more general economic

appeal and interpretation.

As mentioned above, the vast majority of existing studies on the subject an-

alyzes highly homogeneous financial assets. The aim of this thesis is therefore

somewhat explorative: to investigate whether the price discovery approach can

provide useful insights into pricing on agricultural markets.

Agricultural commodities differ from financial instruments in a number of ways,

most importantly in less frequent observations available for the analysis: one trad-

ing of day stock exchange provides 21,600 observations, whereas much agricultural

price data is only weekly or monthly. Another difference is that the same agricul-

tural commodities traded at different venues are less homogeneous than identical

financial assets. For latter it is usually assumed that the cointegrating vector

is (1,−1), which is not necessarily the case in agricultural commodity settings.

We account for these special characteristic and show how they influence the price

discovery measures.

Our empirical analysis focuses on the pork meat market in European Union

(EU) in the period spanning almost three decades from 1987 to 2015. This choice is

well justified: pork is the most consumed and produced meat in many countries of
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the EU1, and pork meat industry plays an important role in the EU economics2.

Many prominent researches were devoted to the analysis of price processes in

the pork markets worldwide, cf. eg. [Holst and von Cramon-Taubadel, 2013],

[Goodwin and Harper, 2000], [Bakucs and Ferto, 2005], however focusing mainly

on the horizontal (spatial) or vertical price transmission. Price discovery analysis

of the agricultural markets is still in its early stages, and to our knowledge there

are currently no studies analyzing price discovery of the commodity pork meat

market.

This thesis is organized as follows: in Chapter 1 we introduce different price

discovery metrics in greater detail, outline differences between agricultural com-

modities and financial assets as well as their impact on the price discovery metrics,

and present the results of the empirical analysis. Chapter 2 expands these findings

to the multivariate case, also including empirical application. In Chapter 3 we

explore alternative methodology to the decomposition of the time series variance,

State Space (SS) model. Technical calculations are carried out in Appendices A -

C.

1Cf. eg. recent OECD Report https://data.oecd.org/agroutput/meat-consumption.htm
2Eurostat: Meat Production Statistics
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Chapter 1

Price Discovery in the Bivariate Case

After an overview of the literature on the subject of price discovery we now turn

to the practical aspects of the methodology. We start by analyzing the bivariate

case of two countries trading the same agricultural commodity and discuss the

process of calculating the PT and IS price discovery measures, including outlying

potential drawbacks of the approaches and possible modifications. We also state a

number of specific features of the agricultural commodities that distinguish them

from the financial assets. The Chapter closes with the empirical analysis of the

pork meat prices in four European countries in 1987-2015, performed pairwise for

each combination of the countries.

1.1 Classical Price Discovery measures

1.1.1 PT measure

Consider two I(1) time series y1t and y2t ∶= yt ∈ R2×T that are cointegrated with

vector β = (β1, β2), meaning that the linear combination zt = β1y1t + β2y2t is sta-

tionary or I(0) process.

[Stock and Watson, 1988] show that if the series are cointegrated, there must
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be a common factor representation of the form

⎛
⎜
⎝

y1,t

y2,t

⎞
⎟
⎠
=
⎛
⎜
⎝

−β2

β1

⎞
⎟
⎠
ft +

⎛
⎜
⎝

ỹ1,t

ỹ2,t

⎞
⎟
⎠
, (1.1)

where ft (common factor) depicts the long-run dynamics of the system. The above

equation allows us to decompose the time series into a permanent component ft

that represents the long-run equilibrium, and a cyclical (or transitory) component

(ỹ1, ỹ2)
′1.

Estimation of ft is based on two conditions:

1. ft is a linear combination of (y1,t, y2,t),

2. the transitory component (ỹ1,t, ỹ2,t)
′

has no permanent effect on the variables

(y1,t, y2,t)
′

, meaning that ft solely represents the long-run behavior of the

system.

The starting point for computation of ft is the Vector Error Correction Model

(VECM) of the form

∆yt = αβ
′

yt−1

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
long−runeffect

+
k

∑
j=1

Aj∆yt−j

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
short−runeffects

+et, t = 1, . . . T (1.2)

where β ∈ R2×1 is a cointegrating vector, α ∈ R2×1 is an error-correction vector

and et = (e1t, e2t)
′

∈ R2×T are innovations with zero mean and covariance matrix Ω

Ω =
⎛
⎜
⎝

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

⎞
⎟
⎠
. (1.3)

1Alongside with the price discovery analysis, estimating this common factor can also help to
analyze cointegration in large systems, where the model is very complex and one is only interested
in an information provided by a smaller set of long-run factors, cf. [Gonzalo and Granger, 1995]
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It can be shown (cf. [Gonzalo and Granger, 1995, Proposition 2]) that the only

linear combination of (y1t, y2t) satisfying the above conditions is

ft = γyt, (1.4)

where γ = (γ1, γ2) is a vector orthogonal to error-correction vector α = (α1, α2).

Since γ (as a linear combination) represents the weights of both prices in the

common factor, it can also be viewed as a price discovery metric, meaning that

the price that moves closer to the common factor must be dominating the process

of price discovery. The price that shows greater adjustment to the common factor

is hence the one that is following the leader. The PT measure of price discovery

is based on this considerations and is therefore defined by γ.

Estimation of γ as an orthiogonal vector in the bivariate case is trivial. In order

to interpret it as a price discovery metric and to ensure that the measures for two

countries sum up to 1 (or 100%), we impose additional normalization condition of

γ1 + γ2 = 1. We then get that

PT1 = γ1 =
α2

α2 − α1

, PT2 = γ2 =
α1

α1 − α2

. (1.5)

The fact that the common factor weights γ is orthogonal to α is intuitive,

cf. for example [Gonzalo and Granger, 1995] for an elaborate example concerning

the macroeconomical model of GDP and consumption. According to the model,

income shows adjustment to the error-correction term, but consumption doesn’t,

i.e. α = (0,1)′ and so α⊥ ∶= γ = (1,0)′. The whole weight in the common factor

goes to consumption, and more “dependent” income that shows 100% adjustment

does not play any role in the price discovery process.
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According to (1.5), PT measure is non-negative (and hence interpretable), if

α2 ≥ 0 or α2 ≤ 0

α2 > α1 α2 < α1,

which as we will see in Section 1.3, is not always the case. This is a limitation of

the PT approach to the price discovery.

1.1.2 IS measure

Let us now consider the second price discovery measure. Unlike the above, Has-

brouck uses the Vector Moving Average (VMA) representation of the equation

(1.2)

∆yt = Ψ(L)et, (1.6)

where Ψ(L) is a matrix polynomial in the lag operator L. The metric is derived

with the integrated form of VMA, given as

yt = Ψ(1)
t

∑
s=1

es +Ψ∗(L)et. (1.7)

Here, the matrix Ψ(1)et ∈ R2×2 connects the variables yt and the shocks, or

innovations, et and thus represents the permanent impact of these market innova-

tions on both prices. If eg.

Psi(1) =
⎛
⎜
⎝

ψ11 ψ12

ψ21 ψ22

⎞
⎟
⎠
,

then ψ11e1t + ψ12e2t is the long-run impact of innovations on the first price.

The IS price discovery measure is defined as a share of the total variance of
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innovations explained by each of the time series shocks. In the above example,

we would want to decompose var(ψ11e1t +ψ12e2t) to account for the variance per-

centage explained by e1t and e2t, respectively. These variances are found in the

diagonal elements of the matrix Ψ(1)ΩΨ(1)
′

with Ω in (1.3).

Before we turn to the formal derivation of the IS metric, note that Hasbrouck’s

model was initially developed for the analysis of the financial markets where the

following assumptions are usually made:

1. cointegrating vector β = (1,−1), and

2. the effect of innovation is the same for both prices, meaning that the rows

of the matrix Ψ(1) are identical, i.e.

Ψ(1) =
⎛
⎜
⎝

ψ1 ψ2

ψ1 ψ2

⎞
⎟
⎠
=
⎛
⎜
⎝

ψ

ψ

⎞
⎟
⎠
. (1.8)

Furthermore, both models (1.2) and (1.7) are connected through the following

relation between VECM and VMA (cf. [Johansen, 1991, Theorem 4.1]):

Ψ(1) = β⊥Πα
′

⊥, (1.9)

where

Π = (α
′

⊥ (I −
k

∑
j=1

Aj)β⊥)

−1

. (1.10)

It is easy to see that in the bivariate case matrix Π is a scalar (if there is one

common factor in the system). Furthermore, from the assumption of β = (1,−1)

it follows that β⊥ = (1,1). Then from (1.8) and (1.9)

Ψ(1) = Π
⎛
⎜
⎝

γ1 γ2

γ1 γ2

⎞
⎟
⎠
, (1.11)
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and
ψ1

ψ2

=
γ1

γ2

, (1.12)

cf. [Baillie et al., 2002]. Therefore, in this case the estimation of VMA is even not

required, since the matrix Ψ(1) can be recovered from the VECM representation

(1.2).

Since the matrix Ψ(1) has identical rows, the total variance of innovations

var(ψ11e1t + ψ12e2t) becomes

var(ψet) = var (ψ1e1t + ψ2e2t) = ψ
2
1σ

2
1 + 2ψ1ψ2ρσ1σ2 + ψ

2
2σ

2
2.

If the innovations across markets are uncorrelated (ρe1t,e2t = 0 and matrix Ω is

diagonal), then

var(ψet) = ψ
2
1σ

2
1 + ψ

2
2σ

2
2, (1.13)

and the information share of the market i, i = 1,2 becomes

ISi =
(ψ2

i σ
2
i )

2

ψ2
1σ

2
1 + ψ

2
2σ

2
2

=
(γ2

i σ
2
i )

2

γ2
1σ

2
1 + γ

2
2σ

2
2

, (1.14)

calculated by using solely the VECM representation in (1.2).

However, the assumption of the uncorrelated innovations is not very realistic,

i.e. in general ρe1t,e2t ≠ 0 and (1.13) cannot be applied. To eliminate the con-

temporaneous correlations, Hasbrouck uses the Cholesky decomposition of matrix

Ω =MM
′

, where M is a lower triangular matrix

M =
⎛
⎜
⎝

m11 0

m21 m22

⎞
⎟
⎠
=
⎛
⎜
⎝

σ1 0

ρσ2 σ2

√
1 − ρ2

⎞
⎟
⎠
. (1.15)
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In this case, the metric becomes

ISi =
([ψM]i)

2

ψΩψ′
, (1.16)

or more specifically, for a bivariate case,

IS1 =
(γ1m11 + γ2m21)

2

(γ1m11 + γ2m21)
2
+ (γ2m22)

2 , IS2 =
(γ2m22)

2

(γ1m11 + γ2m21)
2
+ (γ2m22)

2 . (1.17)

It should be noted that the attribution of information in Cholesky decompo-

sition depends on the ordering of the variables preliminary to the decomposition

(i.e. whether y1 or y2 is considered to be “first” or “second” market price): each

ordering would render different M and hence different IS values. It is therefore

common to compute the IS measure for both orderings and then take a mean value

as a final estimate, cf. eg. [Hasbrouck, 1995], [Hasbrouck, 2002], [Putnins, 2013].

In the analysis of financial markets this approach proved to be justified, due to high

data frequency and hence narrow bands of the IS metric under alternative order-

ings. In the analysis of agricultural markets and commodities high frequency data

is rarely available, which makes this approach questionable. We explore possible

alternatives for the calculation of the IS metric below.

1.1.3 Structural Vector Autoregressive model

In Section 1.1.2 we saw that the main reason for the discrepancies in the IS mea-

sures under different orderings of the variables is the fact that the innovations in

(1.7) are correlated. Model (1.7) is referred to as a reduced form VMA, that is

equivalent to the following reduced form Vector Autoregressive (VAR) model

yt = a0 +A1yt−1 +A2yt−2 + . . . +Apyt−p + et, (1.18)
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where a0 ∈ R2×1 is a vector of constants and Ai ∈ R2×2, i = 1, . . . p are the time invari-

ant coefficient matrices. The shocks, or innovations et are serially uncorrelated,

but can be correlated with each other. Let Ω ∶= E(ete
′

t) denote the covariance

matrix of innovations as in (1.3).

There is however an alternative representation of (1.18) that takes care of the

correlation issue. It is called the Structural Vector Autoregressive (SVAR) model

and is obtained from (1.18) by means of multiplying both parts of the equation

with a certain matrix B ∈ R2×2,

Byt = Ba0 +BA1yt−1 +BA2yt−2 + . . . +BApyt−p +Bet,

Byt = b0 +B1yt−1 +B2yt−2 + . . . +Bpyt−p + ut, t = 1, . . . , T (1.19)

with the shocks ut are now orthogonal and uncorrelated. These shocks are

referred to as structural innovations, as opposed to reduced-form innovations et

from (1.18). The covariance matrix of ut is normalized such that

E(utu
′

t) ∶= Σ = I2. (1.20)

The connection between the structural and the reduced-form VAR is given by

ut = Bet or, alternatively et = B
−1ut. (1.21)

Recall the Cholesky decomposition of the covariance matrix Ω = MM
′

with

M lower triangular matrix in (1.15). From this and the fact that ut have unit

variances one could derive et = Mut and hence B−1 ∶= M . This is, however, only

one possible admissible solution. Let Q a square orthogonal matrix from a class

of orthogonal matrices Q with QQ
′

= Q
′

Q = I2, then Ω = MQQ
′

M
′

= MM
′

and
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therefore,

B−1 =MQ. (1.22)

The central question is of course regarding the identification of matrix B (and

then, Q). For the covariance matrix Ω of et we have

Ω = (ete
′

t) = E(B−1utu
′

tB
−1′) = B−1E(utu

′

t)B
−1′ = B−1B−1′ ,

and due to the symmetry of Ω, we have to fix 1 parameter in matrix B, since there

are 4 parameters altogether and 3 restrictions implied by orthonormality.

There are several major types of identifying restrictions. One idea is to use

economic theory: structural innovations ut are required to have economical mean-

ing and interpretation, from which one can infer the structure of the matrix B.

Most common here are exclusion (or zero) restrictions and sign restrictions.

As the name suggests, zero restrictions imply that some elements of the B−1 ma-

trix are 0, i.e. some shock(s) have no impact on some variable(s). Eg. [Kilian, 2009]

analyses global crude oil market and assumes that the demand shocks do not affect

the production within the same time period. These restrictions can be short-run,

and focus on the contemporaneous effects, as well as long-run, considering the

coefficients in the long-run effect matrices B1, B2, etc. instead.

Sign restrictions are based on the identification involving the sign of some

shocks on some variables. This approach is more flexible than the zero restriction

in a sense that it would produce the whole set of admissible matrices B−1. The

approach goes back to [Uhlig, 2005] who notes that sign restrictions allow the re-

searcher to “throw out all impulse responses inconsistent with some given set of the-

ories, some of which are at odds with the conventional wisdom”. It is also possible

to, say, combine the sign and exclusion restrictions, cf. eg. [Mountford and Uhlig, 2009].

Finally, there is another class of identifying restrictions in the SVAR models
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that are not economically motivated, but make use of the statistical properties of

the data instead, e.g. heteroscedasticity restriction. Here one assumes that the

covariance structure of the model has changed at least once during the observation

period. The approach requires knowledge of the time of the break, though there are

some statistical procedures to help the identification, cf. eg. [Lanne et al., 2010].

Another group of models takes advantage of non-normality of the data and con-

structs the structural shocks ut that are stochastically independent rather than

uncorrelated, eg. [Herwartz and Plodt, 2016].

After the matrix B−1 is identified, we could infer the Structural Vector Moving

Average (SVMA) representation from (1.7) using et = B−1ut. Then Ψ(1)et becomes

Ψ(1)B−1ut ∶= Θut. Covariance matrix of the structural shocks ut is Σ ∶= I, and

hence the variance decomposition is done by means of calculating ΘΘ
′

. On the

main diagonal of this matrix we find the variances of innovations, and the portions

explained by the processes on the market i, i = 1,2 can be found with the help of

the i-th row of the matrix Θ. Therefore, the IS measure becomes

ISij =
([Θ]ij)

2

[ΘΘ′

]ii
, (1.23)

with ISij being the percentage of the total variation on the market i explained by

the market j2.

Due to its flexibility, in the present work we apply sign restrictions to identify

matrix B−1. Zero restrictions may be too exclusive and lack economic reasoning to

say that shocks in one market have no impact on the shocks in the other market.

Moreover, in a bivariate case they provide the same result as ordering the variables

in Cholesky decomposition in VAR. Instead, we assume that each market reacts

2Cf. Section 1.2.3 for further details
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positively on its own shocks, i.e. the structure of the matrix B would be

⎛
⎜
⎝

e1t

e2t

⎞
⎟
⎠
=
⎛
⎜
⎝

+ ∗

∗ +

⎞
⎟
⎠

⎛
⎜
⎝

u1t

u2t

⎞
⎟
⎠

(1.24)

We have no apriori knowledge about the signs of other elements, i.e. how market

reacts on the shock coming from another market.

As we will see in Section 1.3, this will produce a very broad spectrum of ma-

trices B and hence, the IS measures that can differ a lot. Indeed, under (1.24) it

is both permissible to have the first market as a leader in price discovery as well

as the follower. The problem identified in the VAR analysis in Section 1.1.2 is

therefore not solved. It might be beneficial for further research to consider other

identifying restrictions, especially those based on non-normality, and calculate IS

measures based on these assumptions. The sign restrictions applied in the present

work should be viewed as a reasonable assumption to investigate the applicability

and performance of the SVAR methodology. Currently there are not many stud-

ies applying SVAR to the price discovery analysis in the agriculture. From the

works known to us, the similar approach with sign restrictions was implemented

in [Pozo et al., 2016] for the multivariate analysis of live cattle’s market.

Bearing the above in mind, the algorithm to calculate the IS price discovery

measure is as follows:

1. Estimate A1 and Ω from VAR (1.18)

2. Calculate lower triangular matrix M from the Cholesky decomposition of Ω

3. Draw orthogonal matrix Q from Q and calculate MQ

4. If MQ is admissible (i.e. in agreement with the sign restrictions), then

B−1 ∶=MQ
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5. Calculate Θ ∶= A1 ⋅B−1 (since in VMA and VAR representations Ψ(1) = A1)

6. Variance decomposition as in (1.23)

To construct Q and draw orthogonal Q ∈ Q Givens rotation matrices are used.

Those have the form

Q(φ) =
⎛
⎜
⎝

cos(φ) − sin(φ)

sin(φ) cos(φ)

⎞
⎟
⎠
, φ ∈ [0,2π]. (1.25)

The value of φ is sampled randomly from [0,2π] to produce matrix Q, and

this process is repeated multiple times. Alternatively, a grid for φ can be defined

between these values, and for each point the matrix is calculated and then used in

the algorithm above.

1.1.4 ILS measure

As noted above, different price discovery measures are based on the different defini-

tions of the price discovery process itself. Some studies (cf. [Yan and Zivot, 2010])

argue, that in the number of cases PT and IS measures only capture either the

speed or accuracy of the price discovery, whereas the process is simultaneously

defined by both of these characteristics. According to these studies, two measures

provide an adequate estimator for price discovery only if the time series under

consideration display similar noise level.

To account for this potential drawback, another metric was proposed by [Putnins, 2013]:

Information Leadership Share (ILS), combining both PT and IS

ILS1 =
IL1

IL1 + IL2

, ILS2 =
IL2

IL1 + IL2

, (1.26)
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where

IL1 = ∣
IS1PT2

IS2PT1

∣ , IL2 = ∣
IS2PT1

IS1PT2

∣ . (1.27)

In his paper, Putnins provides extensive simulations to demonstrate that in

many cases ILS outperforms the classical price discovery measures. However, there

is currently no version of the measure for the multivariate case, so it can only be

used for the analysis of two time series. Another point is that despite its good

performance on the simulated data sets, when applying ILS measure to the real

life examples it often provides results that are difficult to interpret (extreme values

close to 99% and 1%, even if PT and IS measures for the first time series were eg.

0.8 and 0.5). In Appendix A we analytically investigate possible reasons for this

and provide some simulations to visualize our findings. The idea to combine the PT

and IS measures is interesting and promising, by accounting for both the speed and

the efficiency of the price adjustment one would more precisely extract information

from the underlying time series. However, based on the above potential limitations

we are not considering the ILS metric in the present analysis.

1.2 Special characteristics of agricultural commodities

Price discovery models are commonly applied to the analysis of financial markets.

Our work focuses on the prices of agricultural commodities, that are different in

a number of ways. Below we outline some of the distinctions that are relevant for

the calculation of the price discovery measures.

1. Stationarity of agricultural prices,

2. Non-homogeneity of agricultural products,

3. Different structure of cointegration relation (long-run equilibrium).
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1.2.1 Stationarity of agricultural prices

:

Price discovery measures are derived from the VECM that is linked to the con-

cept of cointegration. Moreover, these two notions are often considered isomorphic.

The reason for this is the Granger representation theorem (cf. [Engle and Granger, 1987]),

stating that two (or more) integrated I(1) time series that are co-integrated, have

an error-correction representation, and two (or more) time series that are error-

correcting are cointegrated. However, this isomorphism only folds for the processes

that is integrated. The question whether ECM can have applications for not inte-

grated time series remains open.

As mentioned above, cointegration means that linear combination of two I(1)

time series, y1,t and y2,t, t = 1, . . . , T is stationary or I(0).

If this is not true and time series in question are I(0) to begin with, we cannot

find a unique cointegration relation, since every linear combination of two I(0)

variables will also be I(0). If we believe that cointegration and VECM imply each

other, we cannot apply error-correction method to the data in this case.

However, there is another point of view, argued by eg. [Williams, 1993] and

[Beck, 1993], for example, to analyze the political data such as Supreme Court

approval rates, that is stationary. They maintain that error-correction models

were historically developed earlier than the theory of cointegration and are thus

are flexible enough to model stationary data. The advantage of VECM is that it

allows to decompose time series into long- and short-term effects. One might want

to make use of this advantage and model long-term effects even for the processes

that are not integrated.

To test whether the data is stationary, the following unit root tests are com-

monly used:

1. Augmented Dickey-Fuller (ADF) test,

22



2. Phillips-Perron (PP) test,

3. Elliot-Rothenberg-Stock (ERS) test,

as well as the Kwiatkowski, Phillips, Schmidt and Shin (KPSS) stationarity test.

Unit root tests and stationarity tests differ in their null and alternative hypotheses.

In the unit root tests, H1, an alternative, is that time series is stationary, whereas

in stationariy tests I(0) is a null hypothesis H0.

It is not uncommon that different unit root tests provide different results. ADF

and PP tests are often criticized for having a low power if the process is stationary

but with a root close to the non-stationary boundary (cf. [DeJong et al., 1992]).

This drawback, however, should be corrected in the ERS and KPSS tests. This am-

biguity has been noted in numerous other studies (e.g. [Hjalmarsson and Oesterholm, 2007]).

There is little theoretical reason to expect a strict unit root in economic time series,

and the time series with long enough time span may behave as a near-integrated

process.

In the present study we analyze European pork market prices, available to

as weekly observations. We applied the above tests to four countries (Germany,

Netherlands, Belgium, France, uses in further analysis). The testing results are

given in Appendix B, for the total data set of T = 1439 observations as well as three

subsamples of 480 (479) observations each. For the full periods the tests show

contradictory results, and therefore we do not have enough evidence to assume

that time series are integrated. In these smaller subsets unit root tests uniformly

indicate that price time series are I(1). In the following we proceed with the

separate analysis of these three subsample periods.
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1.2.2 Non-homogeneity of agricultural products

Agricultural products are indeed less homogeneous than the financial assets that

are commonly used in the price discovery analysis. However, modern food mar-

kets operate with largely “standardized and homogeneous products”3. There are

studies investigating market integration that come to a conclusion that European

national pork markets are closely integrated and hence, pork can be viewed as a

homogeneous product, see eg. [Sanjuan and Gil, 2001].

1.2.3 Different structure of cointegration relation

One of the assumptions of the IS measure is that the cointegrating vector β =

(1,−1), meaning that in the long run, the equilibrium prices on two markets be-

come equal. However, this does not necessarily hold for less homogeneous agricul-

tural commodities.

Consider β = (β1, β2) with β1
β2

≠ −1. Further, let β⊥ = (β1⊥, β2⊥) be a vector

orthogonal to β.

Now consider

Ψ(1) =
⎛
⎜
⎝

ψ11 ψ12

ψ21 ψ22

⎞
⎟
⎠
= Π

⎛
⎜
⎝

β1⊥γ1 β1⊥γ2

β2⊥γ1 β2⊥γ2

⎞
⎟
⎠
. (1.28)

In order for the rows of this matrix to be identical (as in the financial markets

case) it must hold that

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

β1⊥γ1 = β2⊥γ1

β1⊥γ2 = β2⊥γ2

⇔ β1⊥ = β2⊥.

3[Grebitus et al., 2011]
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Therefore, β⊥ ∝ (1,1) meaning that for the cointegrating vector β = (β1, β2)

β1 + β2 = 0,

and β ∝ (1,−1), which contradicts the assumption above. Hence, matrix Ψ(1)does

not have identical rows and the relation (1.12) does not hold. Therefore, VECM

(1.2) does not contain all the information required for the computation of the IS

measure, s.t. Ψ(1) must be estimated from (1.7).

1.3 Empirical results

Below we demonstrate application results of calculating the PT and IS price dis-

covery measures for weakly pork meat prices in four European countries: Germany,

Netherlands, France and Belgium for the period from 1987 untill 2015.Figure 1.1

depicts the data. The data set was divided into three subsets containing 480 (479)

observations, as mentioned in Section 1.2.1:

1. Period 1: March 1987 - July 1996,

2. Period 2: July 1996 - January 2006,

3. Period 3: January 2006 - March 2015.

The reason for this partition is that the whole observation period covers around

30 years, during which the character of the underlying relations and interpeden-

decies in the system might have changed. We therefore concentrated on shorter

periods close to a decade. The dividing time points also correspond to the inclusion

of the new EU members (Austria, Finland and Sweden in 1995 and Romania and

Bulgaria in 2007) that could have an impact on all price processes in the system.
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Figure 1.1: Pork meat prices (weekly) for four European countries in 1987-2015

PT price discovery measures calculated for all three periods are given in Table

1.1 to Table 1.3, representing the pairwise relations between countries. Apart from

the Germany-Netherlands pair in the first period, all PT values are interpretable.

For the Germany-Netherlands case it can also be assumed that Germany is 100%

dominating Netherlands in terms of price discovery, as it is done in many empirical

studies if the PT values happen to lie outside the [0,1] bound (cf. [Putnins, 2013]).

The causality relations, according to the PT metric, differ in all three periods.

For example, in the first period Germany dominates all other countries, and Bel-

gium always is the follower. However, in the second period this relation changes

and Belgium becomes a dominant market to Germany. The third period demon-

strates a shift in the dominating role from Belgium to France.
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As noted in Section 1.1.4, lower and upper bounds of the IS measure based on

VAR and Cholesky decomposition can be very different, depending on the ordering

of the variables. To illustrate this, we refer to Table 1.4 the IS measures for the

first observation period for Germany-Netherlands, Germany-France and Germany-

Belgium are presented. The discrepancies are very dramatic in the majority of

cases, interchanging the “leader” and “follower” positions. It is clear that by simply

taking the mean value of both calculations would result in biased estimations.

Finally, we calculated the IS measure from the SVAR with sign identifying

restrictions for three country pairs Germany-Netherlands, Germany-France and

Germany-Belgium and three observational periods. As noted above, this approach

may still lack precision in calculating the share of the price discovery, but may also

bring new insights in the price discovery process. Therefore, we use only three data

pairs to gather the initial insights.

According to the logic of Section 1.1.3 we defined a 104 points grid for φ ∈ [0,2π]

to produce matrices Q, and used only those that were in line with the structural

sign requirements for B (1.24). We then calculated the IS measures, where IS11

depicts the influence on German market shocks on the price in Germany, IS12 -

the influence of the Netherlands shocks on Germany, IS21 visa versa, and IS22 the

effect of the Netherlands shocks on its own price.

Table 1.5 shows descriptive statistics of the calculated IS measures for the

third observational period 2006-2015 for Germany-Netherlands pair, from which it

is clear that the range of values is still very broad and it is currently unclear how

to estimate the share of the price discovery in this case.

From the 104 points φ there were 3868 admissible B matrices. Figures 1.2-

1.2 visualize the distribution of the IS metrics for the three country pairs in all

three periods. One can see again, that the IS values differ from minimum of 0 to

the maximum of 1 in all cases. However, judging by the frequencies we can infer,
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especially in the third period, that German pork meat price is mostly dominated by

its own innovations, and the processes on the markets in Netherlands, Belgium and

France do not play a crucial role there. We cannot really say anything definitive

about the price discovery in Netherlands, Belgium shows slight tendency towards

dominating its own price discovery as well as France. To sum up, we were able

to recognize some patterns in the data, but the statemets do not allow for precise

price discovery assessment. Partially, this may be due to the bias when analyzing

the complex multivariate system by bivariate comparisons. On the other hand,

further methodological improvements may be beneficiary in rending results that

are more interpretable.

Netherlands Belgium France

Germany
1.07 Germany
-0.07 Netherlands

0.89 Germany
0.11 Belgium

0.91 Germany
0.09 France

Netherlands
0.54 Netherlands
0.46 Belgium

0.53 Netherlands
0.47 France

Belgium
0.43 Belgium
0.57 France

Table 1.1: PT measure for period 1, March 1987-August 1996

Netherlands Belgium France

Germany
0.51 Germany
0.49 Netherlands

0.48 Germany
0.52 Belgium

0.80 Germany
0.20 France

Netherlands
0.23 Netherlands
0.77 Belgium

0.62 Netherlands
0.38 France

Belgium
0.79 Belgium
0.21 France

Table 1.2: PT measure for period 2, August 1996-January 2006
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(c) Period 3: 2006-2015

Figure 1.2: Histograms of the IS measure with sign restriction SVAR for Germany
and Netherlands, three time periods
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(c) Period 3: 2006-2015

Figure 1.3: Histograms of the IS measure with sign restriction SVAR for Germany
and Belgium, three time periods
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(c) Period 3: 2006-2015

Figure 1.4: Histograms of the IS measure with sign restriction SVAR for Germany
and France, three time periods
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Netherlands Belgium France

Germany
0.59 Germany
0.41 Netherlands

0.29 Germany
0.71 Belgium

0.50 Germany
0.50 France

Netherlands
0.19 Netherlands
0.81 Belgium

0.38 Netherlands
0.62 France

Belgium
0.30 Belgium
0.70 France

Table 1.3: PT measure for period 3, January 2006 - March 2015

Germany -
Netherlands

0.74 0.26
0.29 0.72

Germany -
France

0.40 0.60
0.16 0.84

Germany -
Belgium

0.49 0.51
0.11 0.89

Table 1.4: IL measure, upper and lower bounds, for period 1, March 1987-August
1996

IS11 IS12 IS21 IS22

Min 0.010 0.000 0.000 0.000
1st quartile 0.376 0.089 0.119 0.089
Median 0.674 0.326 0.671 0.329
Mean 0.618 0.383 0.546 0.454
3rd quartile 0.911 0.624 0.911 0.881
Max 1.000 0.999 1.000 1.000

Table 1.5: Descriptive statistic of the IS measure with sign restriction SVAR for
Germany and Netherlands, 2006-2015
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Chapter 2

Price Discovery in the Multivariate Case

In previous chapter we analyzed bivariate price series. Though bivariate analysis

is an important steping stone to understanding price discovery, it fails to consider

the price system as a whole, with its complex interdependencies. When impor-

tant variables are omitted, the model becomes misspecificated, which may lead to

inconsistend and/or biased estimators.

In this chapter we expand our analysis to the multivariate case of m countries

with an aim to capture direct and indirect connections that may influence price

discovery. We study the restrictions that arise in this case, and amendments that

need to be done towards the price discovery measures.

Section 2.1 deals with the PT measure. It provides an updated formula for the

calculation of the metric for m ≥ 2 and covers the reasons why it may be rarely

applicable in praxis. Section 2.2 is devoted to the IS measure. We apply SVAR

approach to transform and orthogonalize the shocks in the model, and hence - to

compute distinct IS measures for each country. Section ?? provides the results of

the IS calculations for the pork meat prices data in European countries.
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2.1 PT measure in the multivariate analysis

As shown in Chapter 1, in a bivariate case we can derive a closed form expression

for the PT measure 1.5 using the fact that it is orthogonal to the error-correction

vector α, and that the PT measures for both countries under consideration must

add up to 1 to ensure their interpretability.

However, if m > 2 we cannot use the same approach to calculate the PT metric,

but the facts proven by [Gonzalo and Granger, 1995] regarding the permanent-

transitory decomposition of the system of time series still stand:

1. In permanent-transitory decomposition of the time series, the transitory com-

ponent (i.e. temporary misalignments) does not Granger cause the perma-

nent component (i.e. the equilibrium state),

2. This permanent component is a linear combination of the time series in the

system, and

3. The required linear combination (and hence the PT measure) is given as α⊥,

an orthogonal complement to the speed of adjustment vector (matrix) α.

The task is therefore to compute α⊥ in a general case of m ∈ N. Following

[Johansen, 1988] and [Johansen, 1991] one can choose a set of vectors α⊥ so that

the matrix [αα⊥] is of full rank and α′α⊥ = 0. Therefore, one can define and

compute the complement

α⊥ as eigenvectors, belonging to the unit egenvalues (λ = 1)

of the matrix I − α(α
′

α)−1α
′

(2.1)

(for details, cf. [Trefethen and Bau, 1997, Chapter V]). This approach allows

us to expand the PT methodology to multidimensional problems. Of course, (2.1)
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also holds in a bivariate case m = 2, as we show in Appendix C.

The procedure to obtain PT measures for m ≥ 3 involves following steps:

1. Estimating the VECM

2. Extracting the error-correction vector (matrix) α, and then

3. Finding its orthogonal complement α⊥.

It holds, that the system of m time series can have up to m − 1 cointegrating

vectors, therefore rank(α) ≤ m − 1. In agricultural markets with m time series,

it is, however, common to have exactly m − 1 cointegrating relations (cf. eg.

[Sekhar, 2012], [McNew and Fackler, 1997]), and so

dim(α⊥) = 1

and the orthogonal complement is therefore a vector. The elements of this vector,

(α⊥,1, . . . , α⊥,n) are the individual PT measures and show the fraction of price

discovery that is due to each time series.

Let us now examine the interpretability of the PT measure α⊥. In order to

view it as price discovery, two conditions must be met:

α⊥,i ∈ [0,1] ∀i = 1, . . . , n, (2.2)

and
n

∑
i=1

α⊥,i = 1. (2.3)

(2.1) contains no restictions on the elements of the vector α⊥. Also, already in

a bivariate case we saw that the restrictions analogous to (2.2) - (2.3) were not

always met (cf. Section 1.1.1). Hence, it is only logical to assume that the same

might happen in the multivariate case.
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As before, the main requirement for the elemenst of α⊥ is to be positive: if

they partially violate (2.2) and are greater than 1, we can always apply L1-norm

(absolute value norm) to transform the values to be in [0,1] and ensure, that the

requirement (2.3) is still met:

αnew⊥ = (
α⊥,1
∣∣α⊥∣∣1

,
α⊥,2
∣∣α⊥∣∣1

, . . . ,
α⊥,n
∣∣α⊥∣∣1

) ,

with ∣∣α⊥∣∣1 = ∣α⊥,1∣ + ∣α⊥,2∣ + . . . + ∣α⊥,n∣. Then

n

∑
i=1

αnew⊥,i =
α⊥,1
∣∣α⊥∣∣1

+
α⊥,2
∣∣α⊥∣∣1

+ . . . +
α⊥,n
∣∣α⊥∣∣1

= 1.

However, for negative values this approach would not render the desired results and

the measure would, as such, be not interpretable. It imposes certain restrictions

on the applicability of the PT measure, which, again, we have already seen in the

bivariate analysis in Chapter 1.

Due to the computational complexity, it is not rational to provide a closed form

analytical formula for the PT measure even with m = 3 time series and m − 1 = 2

cointegrating vectors (a common “set up” in the agricultural price analysis, as

explained above). To visualize and further explore the potential issue of non-

interpretability we turned to the simulated data.

We simulated N = 1000 samples of the trivariate cointegrated time series

y = (y1, y2, y3) as VECM (Vector Error Correction Model). We used T = 1000

observations with m − 1 = 2 cointegrating relations in each sample to construct

a fully integrated system and involve the above argumentation regarding the de-

gree of cointegration in the agricultural markets. The simulated VECM included
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normalized to the first element cointegrating matrices β ∈ R3×2 of the form:

β =

⎛
⎜
⎜
⎜
⎜
⎝

1 1

β21 β22

β31 β32

⎞
⎟
⎟
⎟
⎟
⎠

.

Both α ∈ R3×2 and β ∈ R3×2 matrices were of rank 2 by construction, and the

required α⊥ ∈ R3×1 is, as such, a vector. Figure 2.1 depicts one of the simulated

trivariate samples, i.e. three cointegrated time series that were later used in the

calculation of the PT measure.

Figure 2.2 shows the computed PT measure (i.e. vector α⊥) for the first 300

samples of our simulation (to ensure better readability of the plot we did not plot

the values for all 1000 samples). We see that in roughly half of the cases the values

(at least one of three) are below zero, and hence cannot be used as price discovery

measures. Out of the whole simulation run with N = 1000 we get the quantities in

Table 2.1 for nonnegative outcomes: PT measure for y1 meets this requirement in

534 cases out of 1000, y2 in 478 cases and y3 in 994 cases. However, to be able to

inteprete α⊥ as PT price discovery measure, we need all elements of the vector to

be nonnegative, which was only achieved in 241 cases (i.e. 24%).

To sum up, the PT measure has an advantage of being easy to compute with

using the procedure (2.1). However, if even one of the n elemets of the resulting

vector α⊥ ∈ Rn×1 turns out to be negative, we cannot view these values as price

discovery measure. Unfortunately, this seems to be the case quite often, as our

simulation shows, which indicates at least limited applicability of the PT metric

in the multivariate case.
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Figure 2.1: Simulated trivariate cointegrating time series (one sample), T = 1000:
y1 (black), y2 (blue), y3 (red).
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Figure 2.2: PT measured for three countries (black, blue and red) and the threshold
value of zero (green).
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number of non-negative cases from the sample N = 1000
α⊥,1 534
α⊥,2 478
α⊥,3 994
α⊥ = (α⊥,1, α⊥,2, α⊥,3) 241

Table 2.1: Quantities of nonnegative PT measure values, sample N = 1000.

2.2 IS measure in the multivariate analysis

Let us now examine the IS measure in the multivariate case with m time series

involved.

We follow the same logic as in the bivariate analysis in Chapter 1 and apply the

Structural Vector Autoregressive (SVAR) model with sign restrictions to the data.

In this case, the structural innovations are by construction uncorrelated with each

other.

The details of the method are outlined in Section 1.1.3. Nonetheless, we briefly

sketch the most important steps and equations for the multivariate case below.

We start with the Vector Autoregressive model of order p, VAR(p)

yt = a0 +A1yt−1 +A2yt−2 + . . . +Apyt−p + et, (2.4)

where yt ∈ Rm×1 is a vector of observations at time t, a0 ∈ Rm×1 is a constant

term (vector of intercepts), Ai ∈ Rm×m, i = 1, . . . , p are time-invariant coefficient

matrices, and et ∈ Rm×1 vector of normally distributed error terms with zero mean

and covariance matrix Ω. The shocks et are serially uncorrelated, but in a gen-

eral case could be contemporaneously correlated with each other, thus causing

ambiguousity in calculation of the IS price discovery measure.

To obtain the Structural Vector Autoregressive (SVAR) representation of (2.4),

we multiply both sides of the equation with a certain matrix B
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Byt = B ⋅ a0 +B ⋅A1yt−1 +B ⋅A2yt−2 + . . . +B ⋅Apyt−p +B ⋅ et, (2.5)

Byt = b0 +B1yt−1 +B2yt−2 + . . . +Bpyt−p + ut, (2.6)

such that the covariance matrix Σ of the structural shocks ut ∈ Rm×1 is now an

identity matrix

Σ = E(utu
′

t) = Im×m = Im.

As in the bivariate case, the connection between the shocks et from the reduced

form VAR and et from the structural VAR is given by

et = B
−1ut or, equivalently ut = Bet.

Let again M denote the lower triangular matrix from the Cholesky decomposi-

tion of Ω =MM
′

. We can also write Ω =MQQ
′

M
′

, where Q ∈ Rm×m is the square

orthogonal matrix such that Q
′

Q = QQ
′

= Im. Therefore, B−1 =MQ as in (1.22).

The task is therefore again to find admissible matrix (or matrices) B−1. As in

the bivariate case, we use the sign restrictions for identification. The identifying

matrix has the form

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

+ ∗ ∗ . . . ∗

∗ + ∗ . . . ∗

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

∗ ∗ ∗ . . . +

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.7)

i.e. with the positive elements on the main diagonal. We follow here Section 1.1.3

and assume that each time series reacts positively on its own shock and that we

have no knowledge of the shock effects on the other variables. This is the case
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of the partially identified model, since not all the schocks signs are accounted

for. Again, it is clear that the set of admissible matrices is very broad, including

examples both the case where one time series dominates all the others, and the

case when this exact time series is dominated by the others, too.

Since the matrix M is given by the VAR model from the Cholesky decompo-

sition of Ω, for B−1 we need to find admissible matrices Q, i.e. from the set of all

orthogonal matrices Q = {Q ∈ Rm×m ∶ QQ
′

= Q
′

Q = Im} we need to pick only those

that would satisfy the sign conditions (2.7).

In the bivariate case we used Givens rotation matrices to generate the set Q.

This approach can be applied to the trivariate model as well, by computing the

product

Q(φ1, φ2, φ3) = Q1(φ1) ×Q2(φ2) ×Q3(φ3)

of the following Givens rotation matrices

Q1 =

⎛
⎜
⎜
⎜
⎜
⎝

cos(φ1) − sin(φ1) 0

sin(φ1) cos(φ1) 0

0 0 1

⎞
⎟
⎟
⎟
⎟
⎠

Q2 =

⎛
⎜
⎜
⎜
⎜
⎝

cos(φ2) 0 − sin(φ2)

0 1 0

sin(φ2) 0 cos(φ2)

⎞
⎟
⎟
⎟
⎟
⎠

Q3 =

⎛
⎜
⎜
⎜
⎜
⎝

1 0 0

0 cos(φ3) − sin(φ3)

0 sin(φ3) cos(φ3),

⎞
⎟
⎟
⎟
⎟
⎠

where φ1, φ2, φ3 ∈ [0,2π]. One can again define a finite-dimensional grid between

0 and 2π for each φi, i = 1,2,3 and compute all possible matrices Q(φ1, φ2, φ3).
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As sin2(φ) + cos2(φ) = 1, it can be shown that the resulting matrix Q is indeed

orthogonal. One would then retain only those of them that are in line with the

desired sign restrictions.

For m = 3 in Givens rotation matrices there are already three parameters that

need to be simulated, making calculation of candidate matrices Q considerably

more involved than in a bivariate case. Generalization to m > 3 is theoretically

possible, but is even more difficult to compute and is therefore rarely used in

practice, cf. [Kilian and Lutkepohl, 2017].

Alternative approach used in multivariate case is Householder transformation

that involves QR decomposition, proposed by [Rubio-Ramirez et al., 2010]. Any

real square matrix W can be written as W = QR with Q orthogonal matrix s.t.

QQ
′

= I ans R as upper triangular matrix. The algorithm involved drawing matrix

W ∈mathbbRm×m as columns from the multivariate normal distribution N (0, Im)

and applying the decomposition to each W , therefore extracting matrix Q. If the

matrix R is normalized to have positive diagonal elements, it can be shown that

this method is equivalent to randomly selecting Q from the set of orthonormal

matrices Q.

With the QR decomposition, IS price discovery measure in the multivariate

case can be calculated as follows:

1. Estimate A1 and Ω from VAR (2.4)

2. Calculate lower triangular matrix M from the Cholesky decomposition of Ω

3. Create m ×m matrix W by drawing each column from (0, Im)

4. Perform QR decomposition of W .

5. If matrix R has non-positive diagonal element rii, reverse signs of all elements

in the column i of the matrix Q
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6. Calculate MQ

7. If MQ is admissible (i.e. in agreement with the sign restrictions), then

B−1 ∶=MQ

8. Calculate Θ ∶= A1 ⋅B−1

9. Calculate Variance decomposition

An advantage of the QR approach is that it can be applied to large systems with

m time series to calculate IS price discovery measure under the sign restrictions.

The result will be an m ×m matrix with the elements

ISij =
([Θ]ij)

2

[ΘΘ′

]ii
, (2.8)

that show the impact of the shock i, i = 1, . . . ,m on every time series j, j =

1, . . . ,m. With increasing m, the dimension of such matrix will also increase

(quadratically), and may become difficult to analyse in terms of making an unam-

biguous statement about who is leading the price discovery process. For smaller

system it can, however, provide useful insights into the market forces in the system.

In the next section we provide an example

2.3 Data analysis

In this section we apply the discussed IS methodology to calculate price discovery

measure on the European pork market. We focus on the same four countries

as in Section 1.3: Germany, Netherlands, Belgium and France, see Figure 1.1.

However, now our analysis is multivariate and performed for all these countries

simultaneously.
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In Section 1.3 we only considere three country pairs: Germany-Netherlands,

Germany-Belgium and Germany-France. The values of IS measures under different

draws of the B−1 matrix were very different, hence making the interpretation of the

results difficult. The same problem is likely to arise in the multivariate case too,

but it is still interesting to see if the bivariate and multivariate analysis provide

similar findings.

We again divide the total set of observations into three subsets as in Section

1.3.

IS metric (2.8) was computed using the QR decomposition to find a set of

admissible matrices B−1 = MQ. In accordance with the algorithm above, we

simulated 105 matrices W , where the matrix columns are random multivariate

normal vectors fromN (0, I4). Then, matrices R andQ from the QR decomposition

were calculated. If any diagonal element of R was non.positive, we reversed the

signs of the elements in the corresponding column of Q (by multiplying those

with −1). Finally, the matrix MQ was calculated and checked against the sign

restrictions 2.7. From the total amount of 105 draws, only around 5000 were in

agreement with the sign restrictions.

As expected, the IS measures are still very different under different draws of

the matrix B−1. In a system of 4 countries we have 42 = 16 IS measures. To

illustrate this, we refer to Table 2.2 that shows the descriptive statistics for the

IS price discovery measures for four countries in the third observational period

from 2006 till 2015. Figure 2.3 depicts the frequencies of the different IS values

for the same period for these four countries. The histograms clearly indicate that

the most common outcome in every case was the minimal value of the IS measure,

meaning that the sign restriction still did not provide enough identification for the

model.

With increasing m the interpretation of the price discovery in the system be-
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comes even more challenging. From Table 2.2 it is unclear what descriptive statistic

measure would suit this purpose, if any.

All of these reasons are an indication that it might be beneficiary to consider

different identifying restrictions, eg. the non-normality and non-homoscedasticity

ones. Those restrictions are not based on the economical properties of the data

(that may prove to be challenging to render in the case of spatial markets for

agricultural commodities) but rather on the data-driven ones.

Germany Netherlands Belgium France

Germany

Min 0.00 0.00 0.00 0.00
Mean 0.26 0.25 0.25 0.24
Median 0.18 0.17 0.16 0.15
Max 0.99 0.99 0.99 0.99

Netherlands

Min 0.00 0.00 0.00 0.01
Mean 0.25 0.25 0.25 0.25
Median 0.17 0.16 0.16 0.16
Max 0.99 0.98 0.98 0.99

Belgium

Min 0.00 0.00 0.00 0.00
Mean 0.25 0.25 0.25 0.25
Median 0.16 0.16 0.17 0.16
Max 0.99 0.99 0.99 0.98

France

Min 0.00 0.00 0.00 0.00
Mean 0.25 0.25 0.24 0.26
Median 0.16 0.15 0.16 0.17
Max 0.99 0.99 0.98 0.99

Table 2.2: IS price discovery measures for four countries from 2006 till 2015
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Chapter 3

State Space Models and Variance

Decomposition

In this chapter we present another approach to the decomposition of time series

variance, based on the Dynamic Factor Model (DFM). Over the last three decades,

DFM has become a widely used econometric tool to analyze and predict comove-

ment of macroeconomic indicators. One of the reasons is that the method allows

for simultaneous estimation of large systems, consisting of many time series.

DFM assumes that in a system, every time series experiences a common influ-

ence referred to as a common factor. On the other hand, country specific processes

play their role too. These two influences are unobservable and are treated as latent

state variables, modeled as autoregressive AR(p) process. DFM are special type

of the State Space (SS) models. SS models are general and very flexible structures:

any multivariate ARIMA(p, i, q) model can be fit in this framework, which is why

they are so widely used. After casting the model of interest in SS form, it can be

estimated using the Kalman filter. Afterwards, we use the variance decomposition

in AR process to obtain the proportion of the variance that is due to the common

factor for each country.
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Section 3.1 presents the model and discusses the theory behind its estimation.

Section 3.2 applies the method to the analysis of pork meet prices in Europe:

in Section 3.2.1 we use the data for twelve countries in 2004-2015, whereas in

Section 3.2.2 we concentrate on the dynamic of the integration in a system of

seven countries over three time periods.

3.1 The model

The following conceptual model is applied in the analysis. Consider a multivariate

system of m time series yit, i = 1, . . . ,m with the time index t = 1, . . . , T . In

the present work, we focus on analyzing agricultural prices in m spatial markets.

Based on the economic reasoning, we assume that every observable variable yit

can be decomposed into two unobservable components: ft and cit, representing

common and country-specific factors or influences, respectively. Common factor ft

influences all the countries in the system, on one hand, but on the other hand, it is

also induced by the joint processes of the said countries. On the contrary, cit reflects

individual process features. From a statistical standpoint, we also assume that

both ft ans cit are stationary AR(2) processes (lag order q = 2 of AR(q) process

is chosen due to the weekly nature of the data, to account for the persistency of

the influence). The complete model can be then represented as

yit = γift + cit

ft = φ1ft−1 + φ2ft−2 + νt, ν
iid
∼ N (0,1) (3.1)

cit = ψ1,ici,t−1 + ψ2,ici,t−2 + ηit, η
iid
∼ N (0, σ2

ηi
)

for t = 1, . . . , T and i = 1, . . . ,m.
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Represented in a State Space (SS) form, model 3.1 consists of a measurement

equation, relating the observed data to a state vector αt, and a Markovian state

equation that describes the evolution of the state vector over time. The measure-

ment equation is given as

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

y1t

y2t

. . .

. . .

ym−1t

ymt

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
Yt

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

γ1 0 1 0 0 . . . . . . . . . . . . 0

γ2 0 0 0 1 . . . . . . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

γm−1 0 . . . . . . . . . . . . 1 0 0 0

γm 0 0 . . . . . . . . . 0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Γ

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ft

ft−1

c1t

c1t−1

. . .

cmt

cmt−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
αt

, (3.2)

where yt ∈ Rm×1, matrix Γ ∈ Rm×2(m+1) and vector αt ∈ R2(m+1)×1.

The state equation for the vector αt is given as the first order Markov process

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ft

ft−1

c1t

c1t−1

. . .

cmt

cmt−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
αt

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

φ1 φ2 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 ψ11 ψ21 0 0 0 0

0 0 1 0 0 0 0 0

. . .

0 0 0 0 0 0 ψ1m ψ2m

0 0 0 0 0 0 1 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ft−1
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, (3.3)

where S ∈ R2(m+1)×2(m+1) is state matrix and ηt ∈ R2(m+1)×1 is normally dis-
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tributed vector of errors with covariance matrix Ση, s.t. ηt ∼ N (0,Ση). The

matrices Γ, S and Ση are referred to as system matrices and are non-random. For

illustration, for the simplest bivariate case of m = 2 we would have the following

SS form, given by measurement equation

⎛
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⎝

y1t

y2t

⎞
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⎠
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and state equation
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.

3.1.1 Kalman Filter and Maximum Likelihood

The notations under brackets in (3.2) - (3.3) allow for more compact representation

of the SS system, namely as

Yt = Γαt

αt = Sαt−1 + ηt, η ∼ N (0,Ση). (3.4)
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where αt is unobserved and needs to be estimated, based on the information (I(t))

available at the moment t ∈ 1, . . . , T . This estimation is done via the Kalman filter

algorithm, outlined below for some initial values fα0 and P0.

1. Forecast a new αt value, conditional on information available in period t−1:

αt∣t−1 = E [αt∣Yt−1] = Sαt−1∣t−1

2. Compute Pt, the variance-covariance matrix of αt:

Pt∣t−1 = E [(αt − αt∣t−1)(αt − αt∣t−1)
′

] = SPt−1∣t−1S
′

+Ση

3. Prediction error is given as:

vt∣t−1 = Yt − Yt−1 = Yt − Γαt∣t−1

4. Compute conditional variance of vt:

Ft∣t−1 = ΓPt∣t−1Γ
′

5. Compute Kalman gain:

Kt = Pt∣t−1Γ
′

F −1
t∣t−1

6. Update values of αt and Pt:

αt∣t = αt∣t−1 +Ktvt∣t−1

Pt∣t = Pt∣t−1 −KtΓPt∣t−1
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Kalman filter is a recursive algorithm consisting of a prediction step and an

update step. Steps 1-5 of the algorithm provide prediction, step 6 updates1.

Initial values of α0 and P0 can be computed from the second (state) equation

in (3.4). Hence,

α0 = E(αt) = 0.

Similarly, variance of α0 may be derived analytically from

P0 = var(αt) = Svar(αt)S
′

+ var(ηt)

= SP0S
′

+Ση,

and by using Kronecker product and vectorization of the matrices property vec(XY Z) =

Z
′

⊗Xvec(Y ), we get that at steady state

vec(P0) = vec(SP0S
′

) + vec(Ση)

vec(P0) = (S ⊗ S)vec(P0) + vec(Ση)

vec(P0) = (I2(m+1)2 − S ⊗ S)
−1vec(Ση),

where vec(P0) and vec(Q) are the stacked columns of the matrices P0 and Q,

respectively, and I2(m+1)2 is the square identity matrix.

Kalman filter algorithm, however, is based on the assumption that coefficient

matrices Γ and S and covariance matrix Ση in (3.4) are known. In our model this

is not the case, so the matrices need to be estimated alongside with state vector

αt. The vector of unknown parameters of the model (3.2) - (3.3), embedded in the

system matrices, is θ ∈ R(4m+2)×1,

θ = (γ1, . . . , γm, φ1, φ2, α1, β1, . . . , αm, βm, σ
2
η1 , . . . , σ

2
ηm) . (3.5)

1Detailed explanation and derivation of the algorithm steps can be found in eg.
[Durbin and Koopman, 2012]
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The estimation of θ is quite involved. There are two major methods available,

Maximum Likelihood (ML) algorithm and Bayesian methodology, based on the dis-

tribution of the prior. For the latter approach, see eg. [Koop and Korobilis, 2010].

One must note though that Bayesian approach is computationally very challeng-

ing, especially given the fact that in multivariate case dimension of θ is already

high. In the present work we make use of the ML algorithm.

To apply the ML estimator, an objective likelihood function, derived from the

probability density function of the data, is required. Note, that since innovations

in (3.4) are normally distributed, the distribution of Yt can be written as

Yt∣t−1 ∼ N (Γαt∣t−1,ΓPt∣t−1Γ
′

)

∼ N (Γαt∣t−1, Ft∣t−1) ,

and its log-likelihood function is then:

`(θ) = −
1

2

T

∑
t=1

ln (2π ⋅ ∣Ft∣t−1∣) −
1

2

T

∑
t=1

(v
′

t∣t−1 ⋅ F
−1
t∣t−1 ⋅ vt∣t−1) . (3.6)

Now the structure of the estimation algorithm can be summarized as follows:

1. Assign starting values for each entry of vector θ in (3.5).

2. Given θ, set matrices Γ, S,Q of the SS form as in (3.2) - (3.3).

3. Set the initial values of α0 and P0.

4. Do the steps (1)-(6) of the Kalman filter algorithm above.

5. Compute log-likelihood using (3.6).

The function `(θ) is then maximized (or equivalently, −`(θ) is minimized), and

the optimal values of the parameter vector θ̂ML are computed as the arguments of

`.
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The optimization problem (3.6) is unconstrained. However, in (3.2) - (3.3)

there are two sources for restrictions for parameter θ. First, the AR(2) coefficients

φ1, φ2, α1, β1, . . . , αm, βm need to ensure that the time series are stationary. Second,

variances σ2
η1 , . . . , σ

2
ηm must be strictly positive. The latter is easily ensured using

the following transformation

σ̃2
ηi
= exp(−σ2

η1) > 0. (3.7)

For the AR(2) process to be stationary we must have the characteristic roots

to lie inside the unit circle (1 − φ1L − φ2L2) = 0 (see eg. [Hamilton, 1994]). It can

be proven that the values of the coefficients that make AR(2) process stationary

are those included in the triangle region (cf. Figure 3.1)

φ1 + φ2 < 1

φ2 − φ1 < 1 (3.8)

− 1 < φ2 < 1.

Following [Morley, 1999], we therefore use the following reparametrizazion of

AR parameters

a =
φ1

1 + ∣φ1∣

b =
(1 − ∣a∣) ⋅ φ2

1 + ∣φ2∣
+ ∣a∣ − a2

φ̃1 = 2a (3.9)

φ̃2 = −(a
2 + b).
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The AR(2) process

Autocovariance function

B For the process to be stationary this variance must be positive, which will
occur if the numerator and the denominator have the same sign. It can be
proved that the values of the parameters that make AR(2) a stationary process
are those included in the region:

−1 < φ2 < 1
φ1 + φ2 < 1
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Figure 3.1: Admissible area for stationary AR(2) coefficients.

3.1.2 Variance decomposition

Once the model (3.2) - (3.3) has been estimated and vector θ̂ computed, we can de-

compose the variance of yi for each i = 1, . . . ,m into the common and idiosyncratic

components. Recall that

yit = γift + cit,

and hence

var(yit) = γ
2
i var(ft) + var(cit).

Since both ft and cit are AR(2) processes, we can use the properties of autore-

gressive time series to compute the variances as

var(ft) =
(1 − φ2)σ2

ν

(1 + φ2)(1 − φ1 − φ2)(1 + φ1 − φ2)

=
(1 − φ2)

(1 + φ2)(1 − φ1 − φ2)(1 + φ1 − φ2)
, (3.10)
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since σ2
ν = 1, and analogously

var(cit) =
(1 − βi)σ2

ηi

(1 + βi)(1 − αi − βi)(1 + αi − βi)
(3.11)

for i = 1, . . . ,m.

For country i, the fraction of the variance explained by the common factor ft

is defined as

Ri =
γ2
i var(ft)

var(yit)
=

γ2
i var(ft)

γ2
i var(ft) + var(cit)

. (3.12)

By plugging (3.10) and (3.11) into (3.12) for var(ft) and var(cit) we can calculate

Ri measures for i = 1, . . . ,m. As stated above, common factor ft serves as a measure

of integration or level of involvement for a certain country i into the whole system

that is, in turn, created by all the m counties in question.

3.2 Data analysis

3.2.1 Static variance decomposition (m = 12)

For practical application of DFM algorithm we once again turn to the multivariate

analysis of the European pork meat market. However, we now analyze processes

in 12 countries: Germany, Belgium, France, Great Britain, Greece, Netherlands,

Portugal, Spain, Finland, Sweden, Austria and Poland.

If we were to analyze such a large multivariate system with common price

discovery measures, we would have up to 11 cointegration relations and hence,

just as many adjustment parameters. As we have seen in Section 2.1 there is no

guarantee that the PT vector would be interpretale. IS measure as in Section 2.2

would render 12 × 12 matrix of IS coefficients that is difficult to interpret.

One of the advantages of the SS approach is that it allows to analyze multi-

variate dependencies simultaneously, but unlike the above methods, also provides
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easily interpretable results: proportion of how strong each time series is related to

the common factor. In fact, from an econometric standpoint the larger the number

of countries m, the more information we have on the shape and the structure of

the common factor, and hence, the more precise is the estimation.

As before, we analyze the weekly price data from the European Union market,

but the observational period is now from June 2004 till March 2015. We choose this

period to account for as many countries as possible, to include East European coun-

tries (cf. [Holst and von Cramon-Taubadel, 2013]) but also, for technical reasons,

to make sure that there are no missing observations2. Figure 3.2 demonstrates the

time series in the analysis, however, given the high number of variables involved,

at this stage it is difficult to make any statements about the system. Table 3.1

contains the descriptive statistics of the data.

Mean Std. Dev. Min Max
Belgium 141.24 14.06 112.90 183.50
Germany 155.00 14.99 118.32 197.88
Greece 178.10 18.26 118.33 213.85
Spain 156.20 21.07 118.14 217.10
France 141.89 15.42 116.00 190.00
Netherlands 138.33 14.49 110.92 179.01
Portugal 159.41 17.04 127.00 201.00
Great Britain 164.19 17.66 132.35 201.49
Finland 149.45 14.37 126.03 184.78
Sweden 153.47 20.04 118.14 198.16
Austria 151.85 15.16 122.26 195.26
Poland 148.01 19.71 112.18 197.47

Table 3.1: Descriptive statistics for 12 countries.

Dynamic Factor model assumes that the price process in every country follows

stationary AR(2) pattern. To ensure its correct specification we first test every yit

for a structural break with unknown date. The null hypothesis is the absence of a

2We had to exclude some European countries such as Italy, Hungary etc. from the analysis
due to lack of or missing observations
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Figure 3.2: Pork meat price data for 12 European countries

structural break. Such tests are known as supremum tests, since the test statistic

is the maximum value of the statistics obtained from a series of (individual) Wald

or LR tests over a range of possible break dates in the sample. If we denote a

possible break date as b ∈ B, then the resulting test statistic S may be represented

as

S = sup
b∈B

s(b),

with s(b) denoting the individual test statistics.

We applied both Wald and LR (likelihood ratio) tests to each time series. Since

the test decisions were similar in every case, we only report LR test statistics and

p-values in Table 3.3. For all countries except France we could not reject the null
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hypothesis and hence assume that there are no structural breaks present in the

data. For France, structural break was estimated for January 2012.

Test Statistic p-value
Belgium 10.69 0.17
Germany 9.33 0.26
Greece 2.31 1.00
Spain 13.11 0.07
France 32.41 0.00
Netherlands 10.52 0.18
Portugal 13.53 0.06
Great Britain 7.95 0.40
Finland 4.77 0.83
Sweden 3.00 0.98
Austria 5.00 0.80
Poland 9.03 0.29

Table 3.2: Results of LR structural break test for 12 countries.

For further analysis, we demean the data, to get the time series representation

similar to (3.1), i.e. without the constant term. For France, as the only country

with structural break, we sustract the subset mean before and after the estimated

break. For all other countries, total sample mean is subtracted. According to

Schwarz Infromation Criteria (SIC), optimal lag length is 2 for all twelve time

series, justifying the choice of model representation. Table 3.3 shows the estimated

AR(2) coefficients for the data. Those are in agreement with the stationarity

conditions (3.8), however, the sum of coefficients is very close to 1, meaning that

data is highly persistent (so called hump-shaped), which is however not uncommon

for macroeconomic variables (cf. [Perron, 1993]).

After this preliminary analysis, we can estimate the SS form (3.2)-(3.3). To

initialize the ML Kalman filter algorithm, for starting values of the parameter

vector θ ∈ R50×1 (3.5) we used 1 for factor loadings γi, 0.4 for the AR(2) co-

efficients φ1,2, αi, βi (before their reparametrization according to (3.9)) and neg-
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Lag −1, L Lag −2, L2 Variance
Belgium 1.24 -0.24 9.96
Germany 1.50 -0.53 6.48
Greece 1.19 -0.21 16.47
Spain 1.52 -0.53 6.37
France 1.31 -0.35 8.85
Netherlands 1.23 -0.26 10.36
Portugal 1.41 -0.44 7.98
Great Britain 1.32 -0.33 2.84
Finland 0.70 0.29 1.57
Sweden 0.97 0.02 8.14
Austria 1.28 -0.31 9.29
Poland 1.45 -0.48 9.08

Table 3.3: Results of AR(2) estimation for 12 countries.

ative logarithm of variance estimators of the AR time series for the variances

σ2
ηi
, i = 1, . . . ,12 (before their reparametrization according to (3.7)). The algo-

rithm converged (based on the size of the gradient condition) after 243 iterations.

The estimation results can be found in Table 3.4. These values were then used to

decompose the variances of every time series and compute its proportion explained

be the common factor as in (3.12), see Table 3.5.

It should be noted that the present variance decomposition is difference from

the one implied in Chapters 2 and 3 for IS price discovery measure. Here, Ri, i =

1, . . . ,12 serves as an integration measure showing how dependent price of the

country i is on the common factor. In other words, it depicts how deep the

country i is involved in the “global” process (that is of course defined only by

the m countries considered together in a system). Countries such as Germany,

Belgium, Netherlands and Austria are the leaders in this regard, since more than

90% of the price variation in these countries is explained by the common factor.

It means that they play the most important role in the market spanned by the

system. France is up to 48% involved in this European market, Poland up to 28%.
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Some countries show very low values for Ri, eg. Finland or Great Britain with less

than 1% of the total variance due to common factor. To illustrate, cf. Figure 3.3

comparing the country time series yit and the common factor ft for Germany and

Great Britain.

Factor Loading γ AR Coefficients Variance σ2
η

Lag −1, L Lag −2, L2

Belgium 2.38 0.63 0.32 2.18
Germany 2.32 0.79 -0.28 1.94
Greece 0.41 1.17 -0.20 16.29
Spain 0.87 1.40 -0.42 5.77
France 1.22 1.13 -0.16 7.44
Netherlands 2.36 0.55 0.32 2.34
Portugal 0.69 1.28 -0.30 7.68
Great Britain 0.12 1.33 -0.34 2.84
Finland 0.02 0.72 0.26 1.62
Sweden 0.26 0.96 0.021 8.03
Austria 2.34 0.68 0.29 2.25
Poland 1.18 1.34 -0.37 7.71
common factor 1.50 -0.52

Table 3.4: Results of DFM estimation for 12 countries.
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Ri

Belgium 0.96
Germany 0.99
Greece 0.03
Spain 0.16
France 0.48
Netherlands 0.98
Portugal 0.12
Great Britain 0.01
Finland 0.00
Sweden 0.03
Austria 0.94
Poland 0.28

Table 3.5: Variance decomposition due to common factor for 12 countries.
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Figure 3.3: Common factor and Germany (above) and Great Britain (below) price
data.
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3.2.2 Dynamic variance decomposition (m = 7)

In previous section, we computed static variance decomposition based on the DFM.

The results can be interpreted as showing how strongly the price in a particular

country is integrated into the common system. Integration is often considered to be

a dynamic process, cf. eg. [Berger et al., 2017], [Kim et al., 2005], [Wessels, 1997],

and so it is of interest to analyse how did the involvement of particular country into

the common system change over the time. To do so, we consider a longer period

of time T divided into subsets {T1, . . . , Tk} ∈ T representing different time periods,

and compute variance decompositions Ri(Tj)∀Tj ∈ T, j = 1, . . . , k, i = 1, . . . ,m to

then analyse its dynamic.

Period 1: 1987-1996 Period 2: 1996-2006 Period 3: 2006-2015
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Belgium 159.73 22.46 137.13 26.07 141.61 14.92
Germany 148.99 22.21 144.38 25.43 155.82 15.82
Greece 177.88 25.32 168.02 29.17 178.99 19.00
Spain 157.02 25.13 141.83 26.11 158.44 21.38
France 152.503 22.29 136.30 21.78 142.85 16.22
Netherlands 138.41 22.30 125.13 24.05 139.15 15.29
Great Britain 153.55 23.57 146.66 18.47 166.99 17.38

Table 3.6: Descriptive statistics for 7 countries in three time periods.

Due to data availability we limit our analysis to 7 countries: Belgium, Germany,

Greece, Spain, France, Netherlands and Great Britain and three almost equal time

periods: March 1987-July 1996 (n1 = 480), August 1996-December 2005 (n2 = 478),

January 2006-March 2015 (n3 = 481).

Table 3.6 shows descriptive statistics of the data, Table 3.7 contains the results

of the structural break test. All data sets have no indication of a possible structural

break, so following the logic of the Section 3.2.1 we then proceed with demeaning

the data and preliminary AR modelling. SIC again indicates that 2 is the optimal

lag length for all variables in all three time periods. Further, time series are all
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stationary, according to the coefficients analysis in Table 3.8, so we apply the DFM

algorithm.

The algorithm converged in 56-93 iterations, depending on the time period

considered. The Ri estimates are given in Table 3.10 and in Figure 3.4.

For countries such as Germany, Belgium and Netherlands the degree of inte-

gration into European market (spanned by the 7 countries under consideration)

has increased over time, though the starting values in the first period were already

near 80%. For Spain, the degree of integration has dropped significantly: from

71% to 8%. With less drastic reduction, but the same can be said about Greece

and Great Britain. France numbers reduced also, from more than 90% in period

1 to around 60% in period 2, where they stabilized.

Another option to visualize the change of the role of the common factor over

time is to look at the comovements between it and the country price data. Fig-

ure 3.5 shows three plots for Germany over the time periods, together with the

estimated common factor. We see that in the first period there are discrepancies

in the movements of two time series, whereas for periods 2 and 3, when German

integration increased, the lines are almost identical.

The time span that we study here is the time of EU expansion: Spain and Por-

tugal joined in 1986, Finland, Sweden and Austria in 1996, and then there were the

big Eastern expansion in 2004. Though the periods considered in the analysis do

not exactly coincide with this timeline, they are very close and allow us to gather

insights in the price processes in each time period, as with every EU expansion the

change in common factor would happen. The increasing integration finding is con-

sistent with that from other studies, eg. [Holst and von Cramon-Taubadel, 2013].
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Period 1: 1987-1996 Period 2: 1996-2006 Period 3: 2006-2015
Test Statistic p-value Test Statistic p-value Test Statistic p-value

Belgium 6.87 0.54 7.82 0.10 6.87 0.54
Germany 10.99 0.15 13.68 0.06 10.99 0.15
Greece 2.90 0.99 9.06 0.29 2.90 0.99
Spain 12.41 0.09 3.56 0.77 12.42 0.09
France 11.13 0.14 8.91 0.30 11.13 0.14
Netherlands 7.69 0.44 7.05 0.03 7.69 0.44
Great Britain 1.01 1.00 6.99 0.53 1.01 1.00

Table 3.7: Results of LR structural break test for 7 countries in three time periods.
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Period 1: 1987-1996
Factor Loading γ AR Coefficients Variance σ2

η

Lag −1, L Lag −2, L2

Belgium 2.74 0.56 0.20 26.83
Germany 2.64 0.84 0.01 11.50
Greece 1.58 0.78 0.08 34.88
Spain 2.85 0.87 -0.02 24.82
France 2.85 0.84 -0.26 7.03
Netherlands 2.78 0.45 0.07 21.45
Great Britain 1.67 0.82 0.06 29.55
common factor 1.54 -0.58

Period 2: 1996-2006
Factor Loading γ AR Coefficients Variance σ2

η

Lag −1, L Lag −2, L2

Belgium 3.05 0.71 0.07 9.65
Germany 3.13 0.62 -0.32 2.59
Greece 1.10 1.50 -0.57 18.23
Spain 1.68 1.46 -0.53 16.80
France 2.06 1.24 -0.40 13.88
Netherlands 3.02 0.84 -0.04 12.35
Great Britain 0.56 1.54 -0.59 6.17
common factor 1.58 -0.62

Period 3: 2006-2015
Factor Loading γ AR Coefficients Variance σ2

η

Lag −1, L Lag −2, L2

Belgium 2.09 0.58 0.24 2.43
Germany 2.09 1.02 -0.17 1.91
Greece 0.64 1.19 -0.27 18.20
Spain 0.59 1.54 -0.58 6.31
France 1.27 1.26 -0.35 5.83
Netherlands 2.13 0.15 0.01 1.51
Great Britain 0.10 1.64 -0.67 3.09
common factor 1.64 -0.67

Table 3.9: Results of DFM estimation for 7 countries in three time periods.
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Period 1: 1987-1996 Period 2: 1996-2006 Period 3: 2006 - 2015
Belgium 0.79 0.93 0.97
Germany 0.82 0.99 0.97
Greece 0.36 0.10 0.12
Spain 0.71 0.24 0.08
France 0.94 0.63 0.62
Netherlands 0.88 0.89 0.99
Great Britain 0.38 0.06 0.00

Table 3.10: Variance decomposition due to common factor for 7 countries in three
time periods.

 

Figure 3.4: Dynamic of integration for 7 countries in three time periods.
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Figure 3.5: Common factor and Germany price data in three time periods: Pe-
riod 1, 1987-1996 (above), Period 2, 1996-2006 (middle) and Period 3, 2006-2016
(below).
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Conclusion

Price discovery is the process of uncovering the fundamental “true” value of an

asset/commodity by the markets that are involved in their trade. It has histori-

cally been considered one of the central functions of the secondary markets, and

the majority of the literature on the subject concentrates on the financial assets

and / or spot and future prices. There are, to our knowledge, very few studies

that apply the price discovery methodology to the analysis of physical prices of

the agricultural commodities ([Arnade and Vocke, 2016] as one of the examples),

though this problem is not only very interesting from a theoretical standpoint, but

the insights can also be extremely valuable for eq. agricultural policy makers.

One of the ways to define price discovery is by question: “Where is the market?”

([Peter, 2011]). Among spatially different trading venues (geographical regions,

countries, regions of the same country etc.), which one(s) dominates the pricing

process? From this perspective, we studied the applicability of two classical price

discovery measures: Permanent-Transitory decomposition (PT) and Information

Shares (IS), to the analysis of agricultural markets. Empirical analysis was carried

out with the pork meat prices in European Union in 1987-2015. Pork meat is

the most produced and consumed meat in the region, therefore playing a crucial

role in the agricultural economic. Also, the considered time period covers the EU

expansion, that of course changed the market and had an influence on the price

discovery as well.
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Chapter 1 concentrates on the bivariate case. We studied the ways in which

agricultural commodities differ from the financial assets. We find that these dis-

crepancies are considerable and influence how the price discovery metrics are cal-

culated. We proposed modification of the IS measure by means of the SVAR, to

account for the fact that IS is, in general, not uniquely identified. Our identifica-

tion is based on the sign restrictions. It is a rather flexible approach to identify

a SVAR model, since it produces not a point, but a set of estimators. It is more

challenging to impose identifications on the innovations in our case than, say, when

analyzing demand and supply functions. In the latter case solid economic theory

provides the source for the identification. For prices of the same commodity, mak-

ing similar assumptions is more challenging. For the same reason, zero restrictions

on SVAR (meaning that some shocks do not have impacts on some variables at

all) may also be too exclusive and hence not realistic.

Chapter 2 expands the analysis to the multivariate case. We provided the

methodology to calculate the PT measure for the system of dimension m > 2,

and showed that in many cases this metric is not applicable, since the resulting

values are negative and cannot be viewed as a percentage of the price discovery

due to this market. In terms of the IS metric, we expanded the SVAR model

with sign restrictions and discussed technical aspects of its implementation, such

as QR decomposition. Again, identification of the structural model is an open

issue here. Empirical results suggest that the sign restriction approach may not

render unequivocal estimators of the price discovery shares. In future research it

is therefore of interest to consider not only the economically driven, but also data

driven restrictions, such as non-homogeneity or non-normality. Structural VAR is

a very promising approach to the variance decomposition that is the basis of the

IS measure, and alternative identification approaches may indeed help to produce

more definitive estimators.
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However, one should note that with the increasing dimension of the time series

system, IS measure becomes difficult to interpret. Eg. in the case of 10 countries

one would have 100 IS shares, so the answer to the “Where is the market?’ question

might turn to be intricate.

In Chapter 3 we applied different approach to the decomposition of the time

series variance, the Dynamic Factor Model (DFM). DFM is a special case of a

broader set of the State Space models, that became a very popular tool in econo-

metric analysis over the last decade. DFM models assume that the system of

variables has one common factor. This factor is, on one hand, created by the

variables in the system, and on the other hand, influences all of them. Variance

decompositions in DFM is defined as the percentage of the total variance for each

time series (each country, in our case) that is due to this common factor. It can

thus also be viewed as a degree of market integration. One of the advantages

of the DFM is that one would have m estimators for the system of m variables,

making interpretation of the results more straightforward than in the IS case, for

example. We applied the DFM model to the European market of pork meat, once

for the whole observation period from 1987 to 2015, and then also for the three

subperiods that mark important milestones in the EU expansion. We state that

the degree of market intergation in the EU increased over time.

There are, of course, many different extensions of the DFM. One of the direc-

tions that could be used in the further research is building time-varying parameters

into the model. In this case, one would account for possible changes in the market

integration without the necessity to subset the time series.

To sum up, though the price discovery theory was not historically developed

for the analysis of the agricultural markets, it is a very interesting and promising

field in the analysis. Despite certain limitations, we could outline methods allow-

ing to tackle the issue and provide useful insights, as the directions for further
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investigations of the matter.

73



Appendices

74



Appendix A

ILS measure: analysis and simulations

Consider bivariate time series yt = (y1t, y2t) with the following price discovery

mesures: PT1 = x,PT2 = 1 − x, IS1 = y, IS2 = 1 − y, x, y ∈ [0,1]. Then from (1.27)

IL1 = ∣
y

1 − y
⋅
1 − x

x
∣ , IL2 = ∣

1 − y

y
⋅
x

1 − x
∣ .

Further,

IL1 + IL2 =
y(1 − x)

x(1 − y)
+
x(1 − y)

y(1 − x)
=
y2(1 − x)2 + x2(1 − y)2

xy(1 − x)(1 − y)
,

and from (1.26)

ILS1 =
y2(1 − x)2

y2(1 − x)2 + x2(1 − y)2
, ILS2 =

x2(1 − y)2

y2(1 − x)2 + x2(1 − y)2
.

Both PT and IS are measures for price discovery, but it is not unusual for them

to provide different estimators. Let us account for that by assuming IS = k ⋅ PT ,

or y = k ⋅x, k ∈ R+1. When the measures are very close to each other, k ≈ 1. Under

1We exclude the case k = 0 as trivial one
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this assumption, for the ILS measure we have

ILS1 =
k2(1 − x)2

k2(1 − x)2 + (1 − kx)2
, ILS2 =

(1 − kx)2

k2(1 − x)2 + (1 − kx)2
.

Further,

ILS1 =
k2(1 − x)2

k2(1 − x)2 + (1 − kx)2
= (

k2(1 − x)2 + (1 − kx)2

k2(1 − x)2
)

−1

=
⎛

⎝
1 + (

1 − kx

k(1 − x)
)

2
⎞

⎠

−1

= (1 + a2)−1 =
1

1 + a2
,

where

a =
1 − kx

k(1 − x)
.

We can then write

ILS1 =
1

1 + a2
, ILS2 =

a2

1 + a2
= 1 − ILS1.

Now for a, by dividing both its numerator and denominator by k ≠ 0, we get

a =
1 − kx

k(1 − x)
=

1
k − x

1 − x
=
x − 1/k

x − 1
. (A.1)

Of course, values of x, y and k are interdependent. Higher k values are associated

with y closer to 1 and x closer to 0. In this case, a → 0 and ILS1 → 1. For small

k, ILS1 → 0.

To further investigate and visualize our findings, we simulated n = 106 samples

of x ∈ [0,1] and k such that y ∶= kx ∈ [0,1]. We also bounden k ∈ (0,2] to exclude

the exteme cases as above (eg. values of 0.5 and 0.8 for PT and IS, respectively,

are rather common). We only present the result of the simulation for ILS1, since

ILS2 = 1 − ILS1 by construction.
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Figure A.1: Histogram of the simulated ILS1 measure, n = 106.

Figure A.1 shows the histogram of the values of the simulates ILS1 measure:

values equal to or close to zero are the most frequent ones: for example, between

0 and 0.1 there are 32.1
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Figure A.2: Plot of the simulated ILS1 measure as a function of k, n = 106.
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Appendix C

PT Measure: Multivariate and Bivariate

Approach

We show here that the in the bivariate case of m = 2 the standard PT formula

(1.5) and the eigenvector method described in Section 2.1 provide identical results.

For m = 2 the matrix I − α (α
′

α)
−1
α
′

can be computed as follows:

1.

α
′

α = (α1α2)
⎛
⎜
⎝

α1

α2

⎞
⎟
⎠
= α2

1 + α
2
2 Ô⇒ (α

′

α)
−1
=

1

α2
1 + α

2
2

2.

αα
′

=
⎛
⎜
⎝

α1

α2

⎞
⎟
⎠
(α1α2) =

⎛
⎜
⎝

α2
1 α1α2

α1α2 α2
2

⎞
⎟
⎠
Ô⇒

α (α
′

α)
−1
α
′

=
1

α2
1 + α

2
2

⎛
⎜
⎝

α2
1 α1α2

α1α2 α2
2

⎞
⎟
⎠
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3.

I − α (α
′

α)
−1
α
′

=
⎛
⎜
⎝

α2
2

α2
1+α

2
2

−α1α2

α2
1+α

2
2

−α1α2

α2
1+α

2
2

α2
1

α2
1+α

2
2

⎞
⎟
⎠
∶= A.

Now we need to find the eigenvalues of the above matrix A, which can be accom-

plisched in several steps:

1.

A − λI =
⎛
⎜
⎝

α2
2

α2
1+α

2
2
− λ −α1α2

α2
1+α

2
2

−α1α2

α2
1+α

2
2

α2
1

α2
1+α

2
2
− λ
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⎟
⎠
=

1

α2
1 + α

2
2

⎛
⎜
⎝

α2
2 − λ(α

2
1 + α

2
2) −α1α2

−α1α2 α2
1 − λ(α

2
1 + α

2
2)
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⎟
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2.

RRRRRRRRRRRRRR
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⎜
⎝
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2 − λ(α
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2
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−α1α2 α2
1 − λ(α
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2
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⎟
⎠

RRRRRRRRRRRRRR
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1 + α

2
2)

2 + λ2 ⋅ (α2
1 + α

2
2)

2

= (λ2 − λ) ⋅ (α2
1 + α

2
2)

2

3. It then follows, that

det(A − λI) = 0⇔ λ2 − λ = 0⇔ λ1 = 0, λ2 = 1.

As outlined in Section 2.1, we are only interested in the eigenvector associated

with the unit eigenvalue of the matrix A, i.e. in the solution of

⎛
⎜
⎝

α2
1 α1α2

α1α2 α2
2

⎞
⎟
⎠
,
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which is given as the set of vectors of the form (k,−α1

α2
⋅ k) , k ∈ R. By imposing

additional restriction that the sum of the coefficients of the vector must equal 1

(to ensure the interpretation of the PT measure), we get that

k =
α2

α2 − α1

Ô⇒ the vector becomes (
α2

α2 − α1

,
α1

α1 − α2

) ,

which is exactly the standard PT formula (1.5).
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