
Fast methods for metagenomic
sequence search & annotation

Dissertation

for the award of the degree
“Doctor rerum naturalium”

of the Georg-August-Universität Göttingen

within the doctoral program in Computer Science
of the Georg-August University School of Science (GAUSS-PCS)

submitted by
Milot Mirdita
Göttingen, 2021

Thesis Advisory Committee

• Dr. Johannes Söding

Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry

• Prof. Dr. Stephan Waack

Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science,
Georg-August University Göttingen

Members of the Examination Board

1st Reviewer: Dr. Johannes Söding

Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry

2nd Reviewer: Prof. Dr. Stephan Waack

Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science,
Georg-August University Göttingen

Further members of the Examination Board

• Prof. Dr. Jan de Vries

Department of Applied Bioinformatics, Institute for Microbiology and Genetics,
Georg-August University Göttingen

• Prof. Dr. Michael Altenbuchinger

Department of Medical Bioinformatics, University Medical Center Göttingen

• Prof. Dr. Burkhard Morgenstern

Department Bioinformatics, Institute for Microbiology and Genetics,
Georg-August University Göttingen

• Dr. Juliane Liepe

Quantitative and Systems Biology, Max Planck Institute for Biophysical Chemistry

Date of oral examination: February 21st , 2022

Acknowledgments

I am deeply grateful to my mentor and supervisor Dr. Johannes Söding
for your support over the years. Our discussions have very

deeply shaped my views of science, society and ethics.

I want to deeply thank Prof. Dr Stephan Waack for accompanying my
doctoral research as part of my thesis advisory committee

and for agreeing to review this work,

Furthermore, I am thankful to Dr. Juliane Liepe, Prof. Dr. Jan de Vries,
Prof. Dr. Michael Altenbuchinger, Prof. Dr. Burkhard Morgenstern

for agreeing to take part in the thesis examination.

I would like to thank the many administrative staff and colleagues
at the MPI-BPC, University of Göttingen and GWDG

for their help and assistance.

I am eternally grateful towards my best friend Prof. Dr. Martin Steinegger.
In the same breath, I want to also thank Dr. Eli Levy Karin, Dr. Christian
Roth and Dr. Nikolaos Papadopoulos. I am deeply grateful that I was
lucky enough to work together on many projects with the former two,

and deeply regretful that I have not yet had a chance to work
on the same project with the latter two. In addition to

your friendships, I also want to thank you for the
reviews that immeasurably improved this work.

The members of the Södinglab will forever have a special place in my heart.
I want to especially thank Ruoshi Zhang, Dr. Salma Sohrabi-Jahromi

and Dr. Christian Roth for the many evenings we shared,
cuisines we explored and insightful discussions we had.
And a thanks to all the participants of the board game

evenings for brightening my time in Göttingen
– first among them Dr. Saikat Banerjee.

I am indebted to the teachers who awakened my interest in science
and put me onto a path towards bioinformatics.

I want to thank my parents, Have and Dede Mirdita,
for always instilling the value of education in me.

And lastly,
I want to thank my wife Mỹ Linh Huỳnh

for believing in me and sharing our life together.

Summary

The past two decades have seen the development of metagenomics, the study of genes and
genomes of multiple organisms simultaneously. In contrast to traditional genomic techniques,
which require isolating and growing individual organisms in the lab, in metagenomics, sam-
ples are directly taken from the environment, sequenced and then analyzed in silico. Modern
sequencing techniques have enabled high throughput read-out of DNA and RNA of microor-
ganism communities in marine, soil, gut and many other environments.

The plethora of data generated using these techniques poses a major challenge for existing com-
putational techniques. This burden translates directly to computational run times and the cost
of resources required to carry out metagenomic analyses. Thus, computational methods de-
veloped for metagenomic analysis require exceptional efficiency and speed. At the same time,
metagenomic studies become relevant for more andmore fields of research, requiring that tech-
niques be suited for a wide range of scientific disciplines.

In this work, I present three methods I developed to address the throughput bottlenecks of
data analysis in metagenomics. (1) The MMseqs2 webserver is a user-friendly extension of
the popular homology search method MMseqs2 designed for non-expert bioinformaticians. I
accelerated MMseqs2 to process single queries much more quickly and introduced an API to
enable MMseqs2’s use in web applications. (2) MMseqs2 taxonomy is a method for fast and
accurate taxonomy assignment of metagenomic contigs. (3) ColabFold is a method to make the
groundbreaking AlphaFold2 protein structure predictions widely accessible, accelerating its in-
put sequence alignment generation and improving its accuracy by assembling a novel database
enriched with metagenomic sequences from a multitude of datasets.

These methods improve upon the state-of-the-art by introducing novel algorithms and acceler-
ating previous ones – such that previously infeasible analyses become possible – and making
our metagenomic toolbox accessible to users of a wide range of skill levels.

V

Contents

Board members II

Acknowledgments III

Summary V

Contents VII

List of commonly used abbreviations IX

1 Introduction 1
1.1 The central dogma of biology . 5
1.2 Homology searches . 7
1.3 Current methods for homology search . 11
1.4 Metagenomics and the sequencing revolution . 13
1.5 Taxonomy . 15
1.6 Protein structure prediction . 17

2 MMseqs2 desktop and local web server app 19
2.1 Author contributions . 19
2.2 Code and data availability . 19

3 Fast and sensitive taxonomic assignment to metagenomic contigs 25
3.1 Author contributions . 25
3.2 Code and software availability . 25

4 ColabFold - Making protein folding accessible to all 33
4.1 Author contributions . 33
4.2 Code and software availability . 33

5 Further contributions 49
5.1 Plass . 49
5.2 HH-suite3 . 66
5.3 MetaEuk . 82
5.4 SpacePHARER . 105

VII

6 Minor contributions 117
6.1 Protein Sequence Analysis Using the MPI Bioinformatics Toolkit 117
6.2 PredictProtein – Predicting Protein Structure and Function for 29 Years 118
6.3 Going to extremes - a metagenomic journey into the dark matter of life 119

7 Discussion and outlook 121
7.1 MMseqs2 App and Server . 122
7.2 MMseqs2 Taxonomy . 123
7.3 ColabFold . 124

8 Conclusion 125

References 127

Appendix 137
A1 MMseqs2 User Guide – Table of Contents . 137

List of commonly used abbreviations

BLOSUM Blocks Substitution Matrix. 9

CASP Critical Assessment of Structure Prediction. 17, 18

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats. 4

DNA deoxyribonucleic acid. 5, 6, 13, 16, 125

GTDB Genome Taxonomy Database. 16, 123

HMM Hidden Markov Model. 10

ICVT International Committee on Taxonomy of Viruses. 15

MSA Multiple Sequence Alignment. 1, 3, 9, 10, 18, 118, 121, 122, 124

NCBI National Center for Biotechnology Information. 15

NHGRI National Human Genome Research Institute. 13

NW Needleman-Wunsch. 8, 9

PAM Point Accepted Mutation. 9

PDB Protein Data Bank. 6

PSSM Position Specific Scoring Matrix. 10, 18

RNA ribonucleic acid. 5, 16

SIMD Single Instruction Multiple Data. 12, 13

SRA Sequence Read Archive. 1, 3, 14, 123

SW Smith-Waterman. 8, 9

IX

1 Introduction

In the last decades, computational methods have revolutionized the biological sciences. They
have become indispensable to deal with the avalanche of data produced by state-of-the-art bio-
logical experiments.

The sequence similarity search method BLAST [Altschul et al., 1990] is among the computa-
tional methods that arguably have had the biggest impact on biological sciences to date. BLAST
and PSI-BLAST [Altschul et al., 1997] have been cited close to two hundred thousand times. Ho-
mology search methods find sequences similar to a given query sequence in a larger sequence
collection. Similarity is defined in a biological sense; two sequences are similar if they share a
sufficient number of identical or similar characters. Sufficient levels of sequence similarity are
evidence for a common evolutionary origin, and such sequences are named homologous. In
section 1.2 I will describe algorithms for homology search in detail.

In the last decade several methods have been developed that far eclipse BLAST in speed and
sensitivity – the ability to detect remotely homologous sequences with low similarity to the
query. At the forefront of this newwave of homology searchmethods lie DIAMOND [Buchfink
et al., 2015] andMMseqs2 [Steinegger and Söding, 2017]. I want to highlight two recent ground-
breaking projects that were enabled by DIAMOND and MMseqs2:

A notable example of DIAMOND’s ability to process metagenomic data was the recent, ex-
tremely parallelized searchwhere thewhole SequenceReadArchive (SRA) [Sayers et al., 2021a]
was systematically queried for markers of viral proteins [Edgar et al., 2020]. The SRA stores
most published genomic experiments and consists ofmultiple petabytes of nucleotide sequences
(see section 1.4). It was distributed to a large set of cloud computing resources and the authors
could achieve extremely low costs per processed set in the SRA.

Recently, AlphaFold2 [Jumper et al., 2021a] was able to predict protein structures from their se-
quenceswith accuracies comparable to experimental structure determinationmethods. To com-
pute high-quality protein structures, AlphaFold2 requires diverse Multiple Sequence Align-
ments (MSAs) as input. To build these MSAs enormous protein reference catalogs [Mirdita
et al., 2017, Mitchell et al., 2020, Jumper et al., 2021a] are queried for similar sequences by sensi-
tive search methods. MMseqs2’s clustering capabilities have enabled building these enormous
protein reference catalogs, resulting in protein databases of sizes in the order of multiple billion
protein sequences. In section 1.6 I describe the challenges of computational protein structure
prediction.

1

2 Introduction

Scope of this work
The main goal of my doctoral research was to develop efficient computational methods for the
analysis of large amounts of biological data. Specifically, I wanted to make these available as
high-quality software for users with a wide range of skill levels in bioinformatics. Additionally,
I have been involved in the development of MMseqs2 and other methods within its ecosystem
since 2014. Since then, I have contributed to extending MMseqs2 and leveraged its capabilities.
As MMseqs2 is a foundational method for this work, I will present it in detail in section 1.3.

Main publications
I want to highlight three projects in this work, to which I contributed in a leading role:

MMseqs2 App and Server. The originalMMseqs2 toolkit was developed for expert userswho
are savvy in running software through a shell and process its output by writing shell scripts.
It has therefore been my goal to make MMseqs2 available for scientists not comfortable with
using a command line. To this end, I developed a version of MMseqs2 that can be run as either
a traditional desktop application or as an easily deployable webserver.

As part of this work, I accelerated MMseqs2 searches for single- or small sets of queries, by
reducing the overhead between module invocations (see 1.3 for an introduction to MMseqs2’s
architecture). Such searches are more common for users who want to interactively investigate
individual proteins. In addition, I greatly expanded the facilities for precomputing data struc-
tures for searches, so that these can directly be read from disk. These changes allow computing
search results withinmilliseconds to seconds. In this manuscript, I also show thatMMseqs2 can
be used for highly efficient searches against profile databases (e.g., PFAM [Mistry et al., 2021]).

I further expanded the MMseqs2 webserver API to serve two additional use-cases. In collabo-
ration with the PredictProtein authors (Bernhofer et al. [2021], see section 6.2 for the abstract),
we expanded the MMseqs2 webserver to quickly return multiple sequence alignments for the
various downstream protein property prediction methods that are available in PredictProtein.
Up to now, the MMseqs2 server has processed over a hundred thousand MSAs for PredictPro-
tein users. Similarly, I extended the MMseqs2 server to serve diverse MSAs for use in protein
structure prediction in ColabFold (see below).

Chapter 2 includes the manuscript for the MMseqs2 desktop and webserver app.

MMseqs2 Taxonomy. Annotation of unknown sequences is a common task in bioinformat-
ics. In metagenomics, communities of diverse microorganisms are sampled directly from their
native environments. Determining the taxonomic identity of each sequence from these samples
allowsmany useful downstream analyses. For example, in clinical use a taxonomic analysis of a
metagenomic sample from a patient could reveal the disease-causing agent. Existing taxonomy
assignment methods are well suited to assign taxonomic identity to the short (often 2 × 150

base pair long) reads produced in paired-end sequencing experiments. Reads from these ex-
periments are often assembled into longer contigs.

3

In this manuscript, we extended MMseqs2 to exploit the additional information available in
contigs in order to assign reliable taxonomic labels. We compare MMseqs2 taxonomy with the
state-of-the-art method CAT [Von Meijenfeldt et al., 2019] and show that we can assign taxo-
nomic identity much faster at comparable quality. MMseqs2 taxonomy is now being used in the
machine learning based binning method SemiBin [Pan et al., 2021]. See section 1.5 for a more
in-depth introduction into taxonomy and chapter 3 for the manuscript.

ColabFold. The public release of AlphaFold2 [Jumper et al., 2021a] has started a new era in
structural biology. For the first time, an in silico protein structure prediction method was shown
to predict structures from protein sequences at an accuracy nearly indistinguishable from ex-
perimental structure determination methods. However, its heavy computational requirements
raised concerns about its usability for many biologists. We leveraged the MMseqs2 Server’s
MSA generation capability to build ColabFold. ColabFold [Mirdita et al., 2021] replaces Al-
phaFold2’s MSA generation stage to generate highly diverse MSAs in a matter of seconds to
minutes instead ofmultiple hours. With the help of the free-to-access GPUs provided byGoogle
Colaboratory, we could provide access to AlphaFold2’s predictions to a wide community of re-
searchers. Additionally, we pioneered modelling protein complexes with AlphaFold2. To-date
our methods have been used to process many hundreds of thousands MSAs. See chapter 4 for
the manuscript.

Additional publications
In addition to the main projects of my doctoral research, I have been involved in several other
projects. The following is a brief presentation of them.

HH-suite3. In 2019we released a new version of theHH-suite [Steinegger et al., 2019a], one of
themost sensitive homology searchmethods to date. HH-suite leverages theUniclust databases
[Mirdita et al., 2017] for deep annotations across vast evolutionary time frames. Continuing
development of HH-suite’s databases was only possible due to the fast clustering capabilities
of MMseqs2. HH-suite is also available within the MPI Bioinformatics Toolkit (Gabler et al.
[2020], see section 6.1 for the abstract), an easy-to-use web server for sequence analysis. See
section 5.2 for the manuscript.

Plass. With the rapid growth of the SRA, we observed that state-of-the-art assembly tools pro-
duced fragmented and low-quality assemblies on highly diverse metagenomic datasets, limit-
ing the amount of sequences that can be gleaned from such datasets. Specifically, the major-
ity of these tools rely on exact-kmer matching (De-Bruijn Graph Assemblies), which deteri-
orate significantly as the number of species increase and the sequence coverage drops. With
Plass [Steinegger et al., 2019b], we showed that we could assemble translated protein fragments
through the alternative approach of overlap-assembly and thus could extract many times the
number of proteins from metagenomic and metatranscriptomic datasets than state-of-the-art
methods. See section 5.1 for the manuscript.

4 Introduction

MetaEuk. We observed that even though the availability of datasets enriched for eukaryotic
life-forms is increasing rapidly [Carradec et al., 2018], studying their genomes remained diffi-
cult due to the complex intron-exon structures of eukaryotic genes. We developed MetaEuk, a
reference-based gene finder and annotator, which takes into account the unique features of eu-
karyotic genes by efficiently examining all possible exon sets [Levy Karin et al., 2020]. MetaEuk
has been integrated as the default gene predictor in the highly popular BUSCO tool suite for as-
sessing assembly completeness [Manni et al., 2021]. See section 5.3 for the manuscript.

SpacePHARER. CRISPR spacers (Clustered Regularly Interspaced Short Palindromic Repeats)
are short viral genome fragments integrated into a majority of bacterial and archaeal genomes
that guide their adaptive immune response [Hille et al., 2018]. With SpacePHARER [Zhang
et al., 2021], we developed a method to exploit these sequences to identify host-phage relation-
ships reliably and faster than previously possible. Here, MMseqs2 was optimized for searching
short, translated protein fragments. See section 5.4 for the manuscript.

5

1.1 The central dogma of biology

The Central Dogma of Biology [Cobb, 2017] describes the process of information flow at the
heart of biology. This process starts with deoxyribonucleic acid (DNA), the blueprint of life
that is passed from generation to generation. DNA is a long polymer made up of four different
bases, abbreviated into one of four letters: A for adenine, T for thymine, G for guanine and C
for cytosine. To produce proteins, DNA is first transcribed by polymerase proteins into single-
stranded strands of nucleic acids called ribonucleic acid (RNA).

DNA RNA Protein

Transcription Translation

Figure 1.1: The central dogma describes a process of information flow from DNA (left) getting tran-
scribed to RNA (middle) and finally translated to a protein (right). Example protein structure from
PDB 1DPT [Sugimoto et al., 1998, 1999]. Created with BioRender.com.

Like DNA, RNA consists of four nucleic acids. Unlike DNA, RNA uses the close chemical rela-
tive Uracil (with the letter U) instead of thymine. The process of generating RNA from a DNA
template is called transcription and serves to spatially and temporarily split “blueprint” read-
out from its use to manufacture proteins.

Ribosomes attach to theRNAstrand and translate theRNA to a chain of amino acids. Ribosomes
read the RNA in groups of three nucleotides (called a codon) and place based on the 3-codon
letters the corresponding amino acid into the new chain to form a protein.

DNA & amino-acid sequences

DNA and Protein sequence determination began with the invention of degradation methods
where one nucleic- or amino acid could be removed and read at a time [Edman et al., 1950,
Sanger and Coulson, 1975]. Soon after Edman-degradation was established, hundreds of thou-
sands of residues of proteins were known. The first protein databases were compiled into books
and published for the community by scientists such as Margret Dayhoff [Hersh et al., 1967,
Strasser, 2010].

6 Introduction

As sequencing methods became more efficient, it did not take long for these to become too
large to publish in print and were only feasible as electronic files. The GenBank was estab-
lished in 1982 [Burks et al., 1985] to collect all DNA sequence data produced from sequenc-
ing experiments. For protein sequences, the Swiss-Prot database was established in 1986 with
the goal of making all known protein sequences digitally available [Bairoch and Boeckmann,
1991]. In its current release, GenBank stores trillions of base pairs [Sayers et al., 2021b] and the
UniProtKB/Swiss-Prot+TrEMBL contains > 190 mil. protein sequences [Bateman et al., 2021].

The rapid growth of sequence databases is fueled by next-generation sequencing techniques
that enable high-throughput read out of DNA sequences (as reviewed in e.g., Hu et al. [2021]).
While currently infeasible, direct high throughput read-out of protein sequences might soon
become possible with e.g., Nanopore based protein sequencing [Brinkerhoff et al., 2021].

Protein structures

Proteins have beendescribed as one of the basic building blocks of life [Marth, 2008]. They spon-
taneously fold into three-dimensional conformations. Such structures include catalytic sites,
binding sites, exposed and folded areas and more. Thus, revealing the structures proteins take
under different biological conditions is crucial for understanding their function.

Figure 1.2: PDB Entry 3KAN
[Zierow and Lolis, 2009, Ra-
jasekaran et al., 2014]. Homo-
hexamer of the tautomerase
shown previously. Created with
BioRender.com.

Fig. 1.1 (right) shows a ribbon-diagram [Richardson, 2000]
of the Protein Data Bank (PDB) deposited protein 1DPT
– a human d-dopachrome tautomerase protein. Ribbon-
diagrams highlight secondary structure elements, in the
foreground two α-helices, while the background contains
four parallel β-sheets. This protein also oligomerizes into a
hexamer, which is shown as an example for a protein com-
plex in figure 1.2. Here, the protein shown in Fig. 1.1 (right)
is repeated six times to form a homo-hexamer.

This example shows the various levels at which protein
structures are organized: (1) The protein’s primary struc-
ture is the sequence of its constituting amino acids. (2)
Its secondary structure is typically defined by three local
structure element types: α-helices, β-sheets and loops (finer
grained classifications such as the eight DSSP states also ex-
ist [Kabsch and Sander, 1983]). (3) The tertiary structure of
a protein defines the coordinates in three dimensions. (4) The quaternary structure is defined
by the three-dimensional arrangement of multiple protein chains that form a protein complex.

Since the early days ofmolecular biology, much effort has been invested in solving protein struc-
tures, which can be seen in the over 184 000 structures that are now deposited in the PDB. The
PDB [Berman et al., 2003] is a union of international organizations to ensure that solved protein
structures are openly accessible to all scientists.

7

1.2 Homology searches

In biology, identifying similarities and differences between sequences of genes and proteins is a
powerful way to study their function. If for example, the same protein sequence is found among
all organisms in a specific environment, however, is absent in closely related organisms who
do not share that environment, one can postulate this protein may be important for survival
under certain ecological conditions. Similarly, a part of a protein coding gene that is highly
conserved even among sequences of evolutionarily distant species could be the active site of
that protein. Lastly, if one has a set of carefully annotated sequences, laboriously established
annotations about the members can be transferred to novel sequences, if these show sufficient
similarity to some of the members of that collection (also known as homology-based inference
of annotations).

It is thus of great value to identify homology between sequences through sequence similarity.
However, it is worth noting that the term “sequence homology” refers to sequences that share
a joint ancestor, while “sequence similarity” refers to closeness under some (biochemical) met-
ric. Thus, two sequences can be homologous but have some (even many) residues with very
low sequence similarity. Moreover, it has been shown that some protein sequences can share
similarities even though they are not homologous [Krishna and Grishin, 2004]. Finally, ho-
mology can be further categorized based on the evolutionary scenario (e.g., gene duplications,
speciations, etc.).

A string is a sequence of characters from a finite alphabet and understandable by computers.
This definition of strings fits both DNA/RNA and protein sequences as they have alphabets of
sizes 4 and 20 respectively. Various algorithms were developed to compare and search these
strings. In the following, I will briefly discuss important algorithms for aligning biological se-
quences.

Sequence alignments unravel the evolutionary history, as sequences that are similar are as-
sumed to be evolutionary conserved and share common ancestral sequences. Fig 1.3 shows
conserved proteins from Homo sapiens and the archaeon Caldiarchaeum subterraneum. As the
last eukaryotic common ancestor is estimated to have existed over 1-2 billion years ago [Eme
et al., 2014], the common ancestor of these two structures must have existed some additional
time before that. The pairwise sequence alignment shown in the bottom of the figure has a se-
quence identity of 32.8%, showing that alignments can detect both evolutionary and functional
conservation across billions of years.

Pairwise sequence alignments

For the first protein sequences, pairwise alignments were still possible through visual inspec-
tion, as only a few highly conserved homologs of a small number of proteins were known (e.g.,
the 10 homologous Cytochrome c proteins in Hersh et al. [1967]). However, it was clear that
efficient computational solutions would be soon needed, as a naïve solution for optimal pair-

8 Introduction

PDB: 6FJ7
Caldiarchaeum subterraneum

PDB: 1D3Z
Homo sapiens

1D3Z 10 GKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG 76
|..:.|||.|:.|:..|:.|:...:.:|||..||.:.|:.|:|..||....:.......|:.|..||

6FJ7 14 GSPLELEVAPNATVGAVRTKVCAMKKLPPDTTRLTYKGRALKDTETLESLGVADGDKFVLITRTVGG 80

>1-2 billion years

Ubiquitin

Figure 1.3: Comparison of the human ubiquitin protein [Cornilescu et al., 1999, 1998] and the homolo-
gous one from an archaeon [Wojtynek et al., 2018, Fuchs et al., 2018]. Created with PyMol Open-Source
(pymol.org), EMBOSS-Water [Madeira et al., 2019] and Sequence Manipulation Suite [Stothard, 2000].

ing of two sequences would have an exceedingly large search space. Algorithms based on dy-
namic programming were introduced to solve the pairwise alignment problem efficiently and
elegantly [Eddy, 2004]. In dynamic programming, problems are broken down into (mathe-
matically) optimally solvable independent sub-problems. These sub-problems are usually de-
scribed with a recurrence equation. The same sub-problems can reoccur; thus, their solutions
are memorized (e.g., tabulated in a grid). The final optimal solution is assembled from the
solutions of the sub-problems.

One of the earliest (if not the first) applications of dynamic programming to pairwise com-
parison of sequences was the Needleman-Wunsch (NW) algorithm [Needleman and Wunsch,
1970]. NW and the closely related Smith-Waterman (SW) algorithm [Smith and Waterman,
1981] are still among the most important and widely used pairwise alignment algorithms. The
former produces optimal global alignments, where all residues of each of the two sequences are
included in the alignment. The latter produces optimal local alignments which do not neces-
sarily include all residues, but rather only the most conserved parts of each sequence.

The recurrence equation for the NW and SW algorithms is shown in equation 1.1. M is a func-
tion returning the substitution or match/mismatch score between character i of sequenceQ and
character j of sequence T . In the simplest case, the algorithmgives a score of 1 for an exactmatch
and a score of -1 for a mismatch. This is also called identity scoring. The function g returns a
gap score. In the simplest case -1 could be used. The solutions to previous calls of the function
S(i, j) are memorized to avoid solving the sub-problems S(i−1, j−1), S(i−1, j) and S(i, j−1)

repeatedly.

https://pymol.org

9

S(i, j) = max



S(i− 1, j − 1) +M(Qi, Tj), (match/mismatch)
S(i− 1, j) + g(Qi, –), (deletion)
S(i, j − 1) + g(–, Tj), (insertion)
0 (only in Smith-Waterman).

(1.1)

To compute the alignment score of a query sequenceQ and target sequence T , the two sequences
are arranged on the two sides of a grid (usually with an additional first row and first column).
The first rowand column are initializedwith zeros in the SWcase, to allowan alignment to begin
anywhere in either sequence. For NW the first row and column are initialized with increasing
gap costs. The dynamic programming recurrence equation is computed for every cell. In SW
the cell with the highest score is stored and marks the end of the alignment. In NW the cell in
the bottom-right corner marks the end of the alignment.

During each cell update the direction that was taken (left for deletion, top-left for match/mis-
match, right for insertion) to compute the maximum is stored in a traceback matrix. From the
end cell of the alignment the path is then traced back. If the top-left direction is chosen, the two
corresponding letters in Q and T are aligned with each other. If either the left or top path is
chosen a gap character (usually ‘-’) is introduced and alignedwith the corresponding sequence
letter. In SW the alignment stops once the first zero is encountered. In NW the alignment con-
tinues to the top-left cell.

Affine gap costs. The algorithm as described scores many one-character gaps, just as highly
as – biologically much more likely – fewer, but longer gaps. Affine gap costs were introduced to
penalize the former. Affine gap costs separate the costs for opening a gap, so a higher cost can
be “paid” a single time, and the costs for extending gaps, where a lower cost can be repeatedly
paid. Gotoh [1982] introduced an efficient formulation of this algorithm.

Substitution matrices. Using identity scoring (e.g., 1 for matches and −1 for mismatches) is
usually insufficient for amino acids, as for biological sequences some amino acids exchanges are
more likely than others. This might be due to chemical relatedness, hydrophobicity, acidity and
other properties. Amino acid substitution matrices were created that assign each pair of amino
acids a score for the likelihood of substitution in evolutionarily related sequence families. One
of the first such matrices was the Point Accepted Mutation (PAM) matrix [Dayhoff et al., 1978].
Later the Blocks Substitution Matrix (BLOSUM) family of matrices was introduced [Henikoff
and Henikoff, 1992]. To create the BLOSUM matrices, amino acid substitution frequencies in
highly conserved protein families were counted and turned into log-odd scores.

Multiple sequence alignments

Homologous sequences from multiple sources can also be aligned as MSAs. Here, each indi-
vidual sequence is placed into a separate row and evolutionary conserved residues from each

10 Introduction

sequence are aligned into columns. Gap characters indicate insertions or deletion. As produc-
ing optimal MSAs was found to be NP-hard (e.g., in Elias [2006]), MSA generation methods
use heuristics to produce MSAs in reasonable time. Figure 1.4 shows a cropped region of the
MSA of the sequence of the tautomerase shown in Figure 1.1 and multiple related sequences
from the UniProt [Bateman et al., 2021].

1DPT/55-74
A0A5A7RF11/55-73
A0A6A4XAY3/55-73
A0A2A6CG61/55-73
UPI00067C6F19/55-73
A0A0M3HKV0/55-62

P C A Q L S I S S IG V V G T A E D N R
P A A Y G E L I S IG G L - T S D V N K
P C A V C R L T A IN N ID - E E H N R
P V C H IV IK S IG C V G - EQ L N I
P G A IA T F E S IG S V G - P E E N K
P T C V IT V R - - - - - - - - - - - -

Figure 1.4: Cropped MSA of 1DPT against many UniRef sequences. Cre-
ated with Jalview [Waterhouse et al., 2009].

An MSA can be the starting point for many different analyses, such as phylogenetic analysis
[Feng and Doolittle, 1987] or determination of contacts within a protein [Göbel et al., 1994].
Protein families are usually provided as MSAs (e.g., PFAM [Mistry et al., 2021]). MSAs of
sufficient quality continue to be important in AlphaFold2 [Jumper et al., 2021a] to produce
highly accurate predicted protein structures, although around 30 sufficiently diverse sequences
are often enough.

Sequence profiles. From multiple sequence alignments various forms of profiles can be com-
puted that can be used for much more sensitive pairwise sequence searches. A simple form of
sequence profile is the Position Specific ScoringMatrix (PSSM),where theM×N largeMSA (M
being the number of sequences and N the length of the MSA) is reduced to alphabet size×N .
This allows during a pairwise alignment to create a position specific substitution matrix for
each MSA column. Figure 1.5 shows a sequence logo [Schneider and Stephens, 1990], where
the height of each letter indicates the likelihood of it to appear in this position. Highly conserved
columns contain only a single tall letter.

Figure 1.5: Sequence logo of 1DPT MSA
from Fig. 1.4. Created with Jalview.

Hidden Markov Model (HMM) based profiles furthermore add various transition scores to
the sequence profiles. This allows to explicitly model transition probabilities from match-to-
match state, match-to-deletion and so on. Software like HMMER [Eddy, 2011] and HHblits
[Steinegger et al., 2019a] use profile-HMMs for highly sensitive homology searches.

11

1.3 Current methods for homology search

Due to their quadratic runtime complexity, Needleman-Wunsch and Smith-Waterman can only
be applied to small collections of sequences. However, as reference databases began undergoing
rapid growth in the 1980s, faster heuristics were required to keep up. FASTA [Lipman and
Pearson, 1985] and BLAST [Altschul et al., 1990] were some of the early methods that could
deal with the growing databases. For reference, the Intel 386 and 486 CPUs were state-of-the-
art in 1985 and 1990 respectively. They had 12MHz to 20MHz clock speeds and RAM amounts
between 1MB to 16MB.

Today, reference databases contain hundreds of millions of sequences, while protein catalogs
mined frommetagenomics contain tens of billions of sequences. Workstations can contain hun-
dreds of CPU cores and terabytes of RAM. Modern hardware features have enabled the devel-
opment of much faster algorithms to handle the enormous amount of steadily growing data.

In the following I will focus on two methods that introduced novel algorithms and were able to
exploit modern hardware to face the challenges of metagenomic data analyses.

MMseqs2

MMseqs2 [Steinegger and Söding, 2017] is one suchmethod that profits from advances in hard-
ware. Specifically, MMseqs2 uses the large amount of RAM available on modern systems to
build efficient index structures of the reference databases. These allow fast and efficient queries
to identify likely homologous candidates and discard likely unrelated ones. As MMseqs2 is
used in every project in this work, I will provide an introduction into its software architecture
and core algorithms.

At its core MMseqs2 facilitates batch processing through exchange of its data exchange for-
mats (“databases”, see below), between modules implementing different algorithms. These
consume specific input databases and emit new output databases containing the results of the
respective algorithms.

For example, during a homology search a sequence file containing proteins in FASTA format is
converted to an amino acid database. This database is given together with a similar database of
reference sequence to the prefiltering module (prefilter) to quickly identify likely homolo-
gous pairs. The prefilter’s output is a new prefiltering database containing only these pairs. The
two sequence databases and the prefiltering database are then used in the alignment module
(align). It aligns the prefiltered pairs with the sensitive but much slower Smith-Waterman-
Gotoh algorithm, identifies homologous pairs and emits them in a new alignment database.
In the last step, the convertalis module converts the alignment database to a user defined
human-readable output format.

This modularized architecture enables reuse of existing modules for new applications. Thus,
only modules specific to a new application have to be implemented.

12 Introduction

M
em

or
y

m
ap

pe
ddata_1.a\n

data_1.b\n
\0
data_2.a\n
\0
data_3.a\n
data_3.b\n
\0
data_4.a\n
\0

Sorted
Key Offset Length

1 0 19

2 19 10

3 29 19

4 48 10

Data fileIndex file

MMseqs2 database format

Access: getDataByDbKey(3) = ...2.a\n\0data_3.a\ndata_3.b\n\0data_4…

(char*) data + offset (valid C-style string)
Direct memory access!

Binary search in O(log(n))

Figure 1.6: Details of the MMseqs2 database format. The
database format was introduced for fast, direct access to
many small entries.

MMseqs2 databases. The MMseqs2
database format was built to avoid many
pitfalls with processing a large num-
ber of small files. A typical sequence
database contains tens to hundreds of
millions of sequence entries. Process-
ing these as separate files could lead to
various issues, such as file-system slow-
down and system-call overheads.

Instead, we store all these entries into
a single file with each entry separated
from the next by a null byte character.
Additionally, we store for each entry an
identifier (key), its position (byte-offset)
in the file and the entry length in a sepa-
rate file (index file). The lines of the in-
dex file are sorted by keys. Thus, entries
can be quickly found through a binary search (see Figure 1.6 for a schematic description). When
a database is used, it is typically read using memory mapping, a mechanism provided by the op-
erating system which allows reading the file as if it was a string in RAM.
Prefilter. The prefiltering module implements one of the most important algorithms in MM-
seqs2. The prefilter’s main objective is to quickly identify two consecutive k-mer hits on the
same diagonal above a given score threshold. k-mers are k characters-long sub-strings of a se-
quence. MMseqs2 precomputes a data structure to store every occurrence of a k-mer in a target
database together with the position within its sequence. With this data structure, k-mer hits on
the same diagonal (i − j, where i and j are the start positions of the respective k-mer in the
query and target sequence) can be efficiently identified. Demanding double-consecutive hits
increases selectivity by rejecting most chance k-mer hits. To increase sensitivity, MMseqs2 not
only compares the original k-mer extracted from the query to the database k-mers, but also gen-
erates a list of similar k-mers, where letters within the query k-mer are progressively replaced
with similar characters according to a substitution matrix. To reduce dependencies between
consecutive k-mers in sequences, we use spaced k-mers, where the extracted substring contains
k informative positions and number of ignored positions.

The MMseqs2 prefilter is thus a heuristic that quickly identifies likely homologous sequence
pairs, while rejecting few real hits and allowing few false hits. This does not only result in high
sensitivity, but also, crucially, a large speedup over the slower downstream algorithms, as they
have to investigate a much-reduced search space.
Alignment. MMseqs2 uses a Farrar-style Smith-Waterman-Gotoh [Farrar, 2007, Zhao et al.,
2013] algorithm to identify homologous hits. This algorithm is vectorized to use Single Instruc-
tionMultiple Data (SIMD) processing capabilities ofmodern CPUs. SIMD-vectorization allows
efficient processing of multiple values with a single CPU instruction.

13

DIAMOND
DIAMOND [Buchfink et al., 2015, 2021] is another fast and sensitive sequence aligner. It drives
the homology-based search for the assignment of taxonomic labels in CAT [Von Meijenfeldt
et al., 2019], thus also requiring some details about its inner workings.

In contrast to MMseqs2, DIAMOND precomputes sorted lists of k-mers for both query and
target sequences. To identify shared k-mers between query and target sequences, both lists are
linearly read together. This approach results in a high utilization of cacheswithinmodern CPUs
and, thus, in fast and efficient identification of likely homologous pairs. To increase sensitivity,
DIAMOND repeats this search with multiple spaced k-mer patterns. The found pairs are then
aligned with a SIMD accelerated Smith-Waterman algorithm to identify homologous hits.

1.4 Metagenomics and the sequencing revolution
Since the Human Genome Project first decoded the human genome, sequencing technology
has improved dramatically in throughput and price [Venter et al., 2001]. An estimated 500
million $ to 1 billion $ were spent to produce the first high-quality human reference genome
[Wetterstrand, 2021a]. Illumina, a biotechnology company specialized in sequencingmachines,
claimed in 2014 to have reached the stated goal of the 1000$ genome. However, the National
HumanGenomeResearch Institute (NHGRI) states that this price point has only becomewidely
accessible in the beginning of 2019 [Wetterstrand, 2021b]. Figure 1.7 shows the drop in costs for
sequencing a megabase of DNA since the human genome project.

Cost per megabase of DNA sequencing

as reported by the NHGRI at genome.gov/sequencingcosts

$0.01

$0.10

$1

$10

$100

$1,000

$10,000

2005 2010 2015 2020

Figure 1.7: Costs to sequence one megabase of DNA according to the NHGRI.

The availability of fast and affordable sequencing technologies has enabled a revolution of se-
quencing samples directly from various environmental sources, such as soils, oceans, animal
guts and many more. The study of microorganisms directly from their native environments
without culturing in a laboratory has been named metagenomics [Handelsman et al., 1998].

14 Introduction

Early metagenomics experiments could only resolve few genomes from low diversity sources
(e.g., five bacterial genomes from acid mine drainage by Tyson et al. [2004]). Technology and
software have improved to the point that it is now possible to resolve hundreds of thousands
of high-quality genomes (e.g. Almeida et al. [2021]) or billions of proteins [Steinegger et al.,
2019b, Mitchell et al., 2020] from metagenomic experiments.

0

1000

2000

3000

4000

2000 2005 2010 2015 2020

P
a

p
e

rs
 in

d
e

x
e

d
 in

 P
u

b
M

e
d

c
o

n
ta

in
in

g
 t
h

e
 t
e

rm
 m

e
ta

g
e

n
o

m
ic

a

1011

1013

1015

1017

2010 2015 2020

B
a

s
e

s
 s

to
re

d
 in

 S
R

A

Total bases

Openly accessible bases

b

Figure 1.8: (a) Growth of the number of publications indexed in PubMed [Sayers et al., 2021a] containing
the term “metagenomic”. (b) Growth of the SRA in log-scale.

The results of sequencing experiments are deposited – often by mandate if they are to be pub-
lished – in the Sequence Read Archive (SRA) and made available to the scientific community.
Over 53 PB of data in a total of 12.1 million indexed sequencing experiments are now deposited
in the SRA, a figure that continues to grow rapidly (Fig. 1.8 right). As metadata is not standard-
ized [Kasmanas et al., 2021] estimating the share of metagenomic data proves itself difficult.
Searching the SRA for the term “metagenomic” currently (Nov 2021) results in over 2 million
hits, a substantial fraction of all data sets.

15

1.5 Taxonomy

Taxonomic classification of species began as a modern science with Carl Linnaeus, who is also
called the “father of modern taxonomy” [Calisher, 2007]. Linnaeus introduced a hierarchical
system of taxonomic ranks – from the root of all life to phyla, classes, orders, families, genera
and species – and the binomial nomenclature with two-part scientific names for species. The
first, generic name identifies the genus and the second, the specific names, identifies the species.

unclassified (derived from other sequences) 1%

Eukaryota 1%

unclassified (derived from Viruses) 0.3%

unclassified (derived from unclassified sequences) 0.02%

all

Ba
cte
ria

Ni
tro
sp
ira
ce
ae

Le
pto
sp
iril
lum

L. rubarum
45%

23
%

L.
fe
rro
di
az
ot
ro
ph
um

...

2%
Gam

map
roteo

bacte
ria

6 more

... 2% Actinomycetal
es

... 2% Clostridia

10%
unclassified

Arch
aea

Eury
...eo

ta

unc
la...
eota

)

3%
Candidatus Micrarchaeum

8
m
ore

Figure 1.9: Taxonomic visualization of the acid mine drainage dataset [Tyson et al., 2004] mentioned in
section 1.4. Created with Krona [Ondov et al., 2011].

Today, the actual naming is governed by international societies, such as the International Com-
mittee on Taxonomy of Viruses (ICVT) for viruses (among many others). A central reposi-
tory for taxonomic classification is hosted by theNational Center for Biotechnology Information
(NCBI) [Federhen, 2012], which maintains a digitally readable taxonomy.

Historically, the exact definition of a species has been controversial [Hey et al., 2005]. The con-
cept of reproductive isolation, defining species in terms of the ability to produce reproductively
viable offspring, has been successfully applied to differentiate most sexually reproducing eu-
karyotic species. The vast majority of microorganisms (such as viruses, bacteria, protists etc.)
however, do not reproduce sexually, or only rarely. Additionally, horizontal gene transfer – the
exchange of genetic material between individual microorganisms – further complicatesmatters.

16 Introduction

For bacteria, a 95% average nucleotide identity of the 16S ribosomal RNA subunit is commonly
used as a cutoff to separate species [Goris et al., 2007]. Additionally, bacterial species have to be
culturable and samples have to be deposited into public repositories before they are assigned
an official name.

Most species identified in metagenomic experiments are however unculturable. Thus, the di-
versity of microorganisms found in these is absent from taxonomic databases. A proposed so-
lution to allow naming of unculturable microbes was to allow genome sequences to be directly
deposited in the public repositories [Murray et al., 2020]. However, this proposal was rejected.

To alleviate this, independent taxonomies based on genomic data alone were developed. The
Genome Taxonomy Database (GTDB) [Parks et al., 2018, 2021] contains a consistent taxon-
omy based on 258 406 bacterial and archaeal genomes. These genomes originate from iso-
lates, metagenome assembled genomes and single amplified genomes, covering amuch broader
range of microbial life.

Inconsistencies between these approaches remain an important challenge. A widely known ex-
ample of the difficulty in classifying bacterial species are the two bacteria Escherichia coli and
Shigella flexneri. Both species have highly similar genomes, thus should – from a biological per-
spective – reside in the same genus [Zuo et al., 2013]. However, in clinical care infections by E.
coli and S. flexneri have vastly different risks and treatments [Devanga Ragupathi et al., 2018].
The decision of the GTDB to resolve the biological misclassification bymoving S. flexneri into the
Escherichia genus and renaming it to Escherichia flexneri was met with heavy criticism [Sanford
et al., 2021].

Determining the taxonomic identity of unknown sequences is an important task in sequence
analysis. The most commonly used technique is to transfer taxonomical labels to unknown
sequences by comparing them to a reference database annotated with taxonomic labels. As ref-
erence database searches rarely yield only one exact match of an unknown sequence, taxonomic
labels are assigned by combining evidence frommultiple close hits and computing e.g., a lowest
common ancestor as the best possible label.

A distinction can be made between methods using nucleotide- and protein reference databases
for taxonomic assignment. Since protein sequences are more conserved than their DNA coun-
terparts, protein alignments can be used to detect homology into the twilight zone of 20–35% se-
quence identity [Rost, 1999]. With this strategy, taxonomic labels can be assigned to sequences,
which do not have sufficient similarity to any known sequence on the DNA level.

Many computational methods are available for fast taxonomic classification (as reviewed in
Sczyrba et al. [2017], Ye et al. [2019], Meyer et al. [2021]). Kraken [Wood and Salzberg, 2014,
Wood et al., 2019] is a commonly used method for taxonomic assignment of short sequence
reads. Methods like Kaiju [Menzel et al., 2016] and Megan [Huson et al., 2007] are commonly
used to exploit protein databases. Fewer methods taxonomically annotate assembled contigs;
one such method is CAT [Von Meijenfeldt et al., 2019] and another is MMseqs2 taxonomy
[Mirdita et al., 2021], presented here.

17

1.6 Protein structure prediction

Early experiments have shown that denatured (forcibly unfolded) proteins will often regain
their function when returned to normal physiological conditions [Anson, 1945]. As a conse-
quence it was postulated that there must exist a unique mapping of the amino acid sequence
to its native three-dimensional structure [Anfinsen, 1973] (Anfinsen’s dogma). Even though
some broad classes of exceptions are now known (e.g., proteins with multiple native conforma-
tions [Fox et al., 1986] or intrinsically disordered proteins [Dunker et al., 2013]), the dogma can
still be considered to broadly hold; the amino acid sequence of a protein largely determines its
three-dimensional structure.

An implication of Anfinsen’s dogma is that it may be possible to predict the three-dimensional
structure given an amino acid sequence. Themain task lies in predicting the positions of the pro-
tein backbone, the chain of α-carbons of all the amino acids. The backbone is usually encoded
in terms of three relevant angles (φ,ψ,ω) that uniquely define the position of each α-carbon
in three-dimensional space (Ramachandran et al. [1963], also called dihedral angles). This re-
sults in a combinatorial explosion of possible arrangements even for relatively short amino acid
chains, making it infeasible to solve the protein folding problem with algorithms that rely on
exploring the full parameter space.

The interest in producing in silico predicted protein structures is not solely academic. Exper-
imental structure determination methods (i.e., X-ray crystallography, NMR spectroscopy and
cryogenic electronmicroscopy) are costly in terms of procuring the expensivemachines, contin-
uously maintaining these and, perhaps most important, in terms of the laboriously and error-
prone preparation of each protein whose structure should be solved.

Luckily, proteins are real biological entities and fold under biochemical and physical constraints.
Thus, the space of possible arrangements is limited and researchers began to investigate how to
exploit these limits to predict protein structures computationally [Levitt and Warshel, 1975].

The Critical Assessment of Structure Prediction (CASP) competition was started to objectively
monitor the progress of the state-of-the-art of computational protein structure determination
[Moult et al., 1995]. In almost three decades of biennial competitions, the research community
has investigated various approaches.

In the following I want to highlight broad classes of methods that found prominence in CASP
and conclude with a brief introduction to AlphaFold2, which has been particularly ground-
breaking.

Traditionally, protein structure prediction was tackled through template-based-modeling or
(template-)free modeling [Kuhlman and Bradley, 2019]. However, this distinction has become
much more blurred with the rise of machine learning based methods [AlQuraishi, 2021a].

Template-based modeling. In template-based modeling, homology search is used to find se-
quences of already solved structures or solved fragments thereof – also called templates. As

18 Introduction

protein structures are much more conserved than their sequences [Illergård et al., 2009], struc-
ture information can be transferred from the template to the target to predict the structure of
the unknown sequence. Particularly, software that is able to detect very remote homology to a
known structure is useful to increase the coverage of solved parts for structure determination
[Hildebrand et al., 2009].

Template-free modeling. When no homologous templates can be found, much more difficult
template-free modeling approaches have to be used, as no information from already solved
structures is available. A widely used strategy is to search for residue pairs that are distant
from each other in the amino acid sequence but close in three-dimensional space (under 8Å).
If enough such pairs can be found, then the possible conformation-space could be restricted
enough to make protein structure predictions feasible [Kim et al., 2014]. One way to find such
residue pairs is based on the observation that structural constraints lead to a characteristic co-
evolution footprint in the MSA that can be exploited to improve structure prediction. Many
methods for contact predictions were developed [Kamisetty et al., 2013, Seemayer et al., 2014,
Jones et al., 2015, Wang et al., 2018] and their application to protein structure prediction led to
significant improvements in CASP12 [Schaarschmidt et al., 2018].

Molecular dynamics and model refinement. The seeminglymost natural computational solu-
tion to the protein folding problem is the full physical ab initio simulation of the folding of a pro-
tein within its environment. This approach is also called molecular dynamics. However, this
is extremely computationally demanding and only possible for short proteins and timescales
[Bonneau and Baker, 2001]. Thus, molecular dynamics has remained confined to model refine-
ment, where it is used to improve models predicted by faster methods [Heo and Feig, 2018a].
Despite the many efforts, progress has stalled in recent CASP competitions in relation to other
methods [Heo and Feig, 2018b].

AlphaFold. AlphaFold1 [Senior et al., 2020] and AlphaFold2 [Jumper et al., 2021a] won the
CASP13 and CASP14 competitions, respectively. AlphaFold2’s predictions in CASP14 achieved
a median GDT-TS of 92.4% [Jumper et al., 2021b, Kryshtafovych et al., 2021] – a value compa-
rable to the error of margin of experimental structure determination methods. This success is
attributed to the extensive expertise of the authors in implementing and training novel machine
learning methods based on end-to-end deep learning [Glasmachers, 2017, AlQuraishi, 2021b].
In end-to-end deep learning, the problem – from input features to output structure prediction
– is encoded as a single neural network.

While AlphaFold1 employs residual networks [He et al., 2015] to predict dihedral angles and
inter-residue distances from a contact map and PSSM input, AlphaFold2 leverages transformer
neural networks architecture [Vaswani et al., 2017] to directly predict structures fromMSA and
template input. A remarkable feature of AlphaFold2 is that it often produces high quality struc-
tures with very few diverse sequences provided as input MSA features (∼30).

2 MMseqs2 desktop and local web server app
for fast, interactive sequence searches

Publication:

MMseqs2 desktop and local web server app for fast, interactive sequence searches

M. Mirdita, M. Steinegger, J. Söding†

(†) corresponding author

Bioinformatics (2019): 35(16), 2856–2858.
Cited 41 times since 01/2019.

2.1 Author contributions

M.M., M.S. & J.S. performed research and wrote the manuscript. M.M. & M.S. implemented features in
MMseqs2. M.M. implemented the remaining software.

2.2 Code and data availability

The MMseqs2 app is available as free open source software (GPLv3) at app.mmseqs.com. An example
webserver is available at search.mmseqs.com.

19

https://app.mmseqs.com
https://search.mmseqs.com

Sequence analysis

MMseqs2 desktop and local web server app

for fast, interactive sequence searches

Milot Mirdita1, Martin Steinegger1,2,* and Johannes Söding1,*

1Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen,

Germany and 2Department of Chemistry, Seoul National University, Seoul 08826, Korea

*To whom correspondence should be addressed.

Associate Editor: John Hancock

Received on September 3, 2018; revised on November 17, 2018; editorial decision on December 6, 2018; accepted on January 4, 2019

Abstract

Summary: The MMseqs2 desktop and web server app facilitates interactive sequence searches

through custom protein sequence and profile databases on personal workstations. By eliminating

MMseqs2’s runtime overhead, we reduced response times to a few seconds at sensitivities close to

BLAST.

Availability and implementation: The app is easy to install for non-experts. GPLv3-licensed code,

pre-built desktop app packages for Windows, MacOS and Linux, Docker images for the web server

application and a demo web server are available at https://search.mmseqs.com.

Contact: martin.steinegger@mpibpc.mpg.de or soeding@mpibpc.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The most popular sequence similarity search tool, BLAST (Altschul

et al., 1990, 1997), has garnered �7000 citations per year during

the last 5 years, attesting to the unremitting importance of sequence

searches for biology. This popularity may be largely owed to the ex-

cellent web services with short response times despite fast-growing

databases provided by the NCBI/NIH, which requires a huge com-

pute infrastructure. The distributed approach of running searches lo-

cally on personal computers or IT platforms of companies and

research groups allows for custom databases, high availability and

protects sensitive data. But web server applications for local hom-

ology searches are slow as they mostly rely on BLAST (e.g. Deng

et al., 2007; Priyam et al., 2015). Here, we present an application

software to search with protein and nucleotide sequences through

custom protein sequence and profile databases using MMseqs2

(Steinegger and Söding, 2017), achieving response times of seconds

instead of minutes at a similar sensitivity as BLAST.

2 Materials and methods

2.1 Reduced runtime overhead
MMseqs2 owes its sensitivity and speed mainly to its pre-filtering

stage, which rejects �99.99% of sequences. The pre-filter uses a

reverse k-mer index table for the target database and also requires

matrices with similarity scores between 2-mers and between 3-mers

to generate the lists of similar 7-mers (Steinegger and Söding, 2017).

Reading in the index table and computing these matrices on-the-fly

takes �0.5 min of runtime overhead for each search. We reduced

this to 0.05 s by (1) writing the index table, the matrices and other

pre-computable data into a file if it does not yet exist, memory map-

ping the file to take advantage of the system page cache (for detailed

memory requirements see Supplementary Materials) and (3) opti-

mizing I/O operations.

2.2 Optimized sequence-to-profile search mode
The index table for profile databases stores, for each position in a

profile, all k-mers with a profile similarity score above a threshold

set by –s. The number of similar k-mers grows exponentially with k.

To save memory, we chose a short k¼5 as default for this mode.

We also added to Mmseqs2 utilities for creating profiles from mul-

tiple sequence alignments (MSAs) and converting between profile

formats.

2.3 Desktop and web server app
Based on the same code base, the application can be either deployed

through Docker containers to be accessed through web browsers or

VC The Author(s) 2019. Published by Oxford University Press. 2856

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 35(16), 2019, 2856–2858

doi: 10.1093/bioinformatics/bty1057

Advance Access Publication Date: 7 January 2019

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/16/2856/5280135 by guest on 17 August 2021

20

packaged as a desktop GUI application with the Electron framework

(electronjs.org). In either case, the backend part of the application

provides a RESTful API and worker scheduling. The server supports

protein, translated nucleotide and nucleotide sequence searches and

iterative and reverse profile searches.

The application takes a list of either protein or nucleotide

sequences in FASTA/FASTQ format as query input. To generate a

target search database, the application takes a FASTA/FASTQ file

for protein sequence searches or a STOCKHOLM MSA file for pro-

tein profile searches. Search results are shown with a customized

feature-viewer (github.com/calipho-sib/feature-viewer) (Fig. 1A)

and can be downloaded in tabular BLAST format.

3 Results

Figure 1B demonstrates the reduction of runtime overhead by com-

paring the runtimes of the Mmseqs2 version without (‘baseline’) to

the new version with pre-computations and memory mapping (‘ser-

ver mode’). Runtimes refer to searches with amino acid query sets of

1, 10, 100, 1000 and 10 000 sequences of average length 350

(sampled from the Uniclust30 database) through the Uniclust30

2017_10 database (Mirdita et al., 2017) with 13.5 million sequen-

ces, measured on a server with 2 Intel Xeon E5-2680 v4 CPUs with

14 cores each. The index table and matrix pre-computation (�3 min

40 s) is not included in the runtimes.

To test the quality and speed of annotating Pfam domains on

genes assembled from metagenomics data, we built a test set by sam-

pling 100 000 full-length sequences longer than 150 residues from

our Marine Eukaryotic Reference Catalogue (Steinegger et al.,

2018), clustering this set to 30% maximum pairwise sequence iden-

tity with MMseqs2 and sampling 10 000 sequences from the

redundancy-reduced set. We annotated these sequences with PfamA

31.0 domains (Finn et al., 2014) using HMMER3 (Finn et al.,

2011).

We then compared how well the sequence-sequence searches of

MMseqs2, BLAST and DIAMOND (Buchfink et al., 2015) and the

sequence-to-profile searches of MMseqs2 could find the correct do-

main annotations. For the sequence-sequence search methods, we

built a database from all sequences in PfamA.full MSAs and

reported as E-value of a Pfam domain the E-value for the best-

matching sequence from its MSA. We defined a search as true posi-

tive (TP) if the top match was annotated by HMMER3 with an E-

value better than 10�3 and as false positive (FP) if the top match was

not annotated with an HMMER3 E-value below 1. All other

searches were considered ambiguous and ignored. For each method,

we determined the E-value at which the precision TP/(TPþFP) is

95% and measured the sensitivity at that E-value.

As Figure 1C shows, MMseqs2 sequence-to-profile searches are

�30 times faster than sequence-sequence searches with DIAMOND,

MMseqs2 and BLAST and �300 times faster than HMMER3.

MMseqs2 sequence-to-profile searches reach 87% relative sensitiv-

ity at 95% precision, making them an attractive alternative to

HMMER3 when speed is critical.

4 Conclusion

The desktop and web server app for MMseqs2 performs fast se-

quence searches at unprecedented speed-to-sensitivity trade-off on

local computers. Thousand queries take only a minute to search

through fifteen million sequences of the Uniclust30 database, much

faster than NCBI’s BLAST website. We hope the MMseqs2 app will

also empower users unfamiliar with command line interfaces to per-

form fast and sensitive searches with their own sequence and profile

databases.

Acknowledgements

The authors thank Yuna Kwon for crafting the ‘little Marv’ mascot.

Funding

This work was supported by the European Research Council in the frame-

work of its Horizon 2020 Framework Programme for Research and

Innovation (grant ‘Virus-X’, project no. 685778).

Conflict of Interest: none declared.

A −s 1 −s 3 −s 5 −s 7

101 103 101 103 101 103 101 103

10−1

100

101

102

103

Query set size

R
un

tim
e

[s
]

Server mode
Baseline

B

HMMER 1h 18min

DIAMOND

MMseqs2 Sequence

MMseqs2 Profile
−s 1 −s 3

−s 5
−s 7

−s 1
−s 3

−s 5

−s 7

default

−−sensitive−−more−sensitive

BLAST

100

101

102

103

40.0% 60.0% 80.0% 100.0%
Sensitivity at 95% Precision

Fa
ct

or
 s

pe
ed

up
 re

l.
to

 H
M

M
ER

C

Fig. 1. (A) Screenshots of the search interface and result visualization. (B) Runtime of searches with the baseline MMseqs2 (square) and the new server mode (cir-

cle) at four sensitivity settings (-s). (C) Domain annotation: Speedup versus sensitivity at 95% precision for MMseqs2 (triangle: sequence-profile search, upside-

down triangle: sequence–sequence search; sensitivity settings: -s 1, 3, 5, 7), DIAMOND (square; default, –sensitive, –more-sensitive) and BLAST (circle).

HMMER3 matches to Pfam domains are used as ground truth. The speed-ups exclude the times to format the databases

MMseqs2 desktop and server app for fast sequence searches 2857

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/16/2856/5280135 by guest on 17 August 2021

21

References

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs. Nucleic Acids Res., 25, 3389–3402.

Buchfink,B. et al. (2015) Fast and sensitive protein alignment using

DIAMOND. Nat. Methods, 12, 59–60.

Deng,W. et al. (2007) Viroblast: a stand-alone blast web server for flexible

queries of multiple databases and user’s datasets. Bioinformatics, 23,

2334–2336.

Finn,R.D. et al. (2011) HMMER web server: interactive sequence similarity

searching. Nucleic Acids Res., 39, W29–W37.

Finn,R.D. et al. (2014) Pfam: the protein families database. Nucleic Acids

Res., 42, D222–D230.

Mirdita,M. et al. (2017) Uniclust databases of clustered and deeply annotated

protein sequences and alignments. Nucleic Acids Res., 45, D170–D176.

Priyam,A. et al. (2015) Sequenceserver: a modern graphical user interface for

custom BLAST databases. bioRxiv, 033142.

Steinegger,M. and Söding,J. (2017) MMseqs2 enables sensitive protein se-

quence searching for the analysis of massive data sets. Nat. Biotechnol., 35,

1026–1028.

Steinegger,M. et al. (2018) Protein-level assembly increases protein sequence

recovery from metagenomic samples manyfold. bioRxiv, 386110.

2858 M.Mirdita et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/35/16/2856/5280135 by guest on 17 August 2021

22

Supplementary Material for MMseqs2 desktop and local web server app
for fast, interactive sequence searches

Mirdita M.,1 Steinegger M.,1, 2 and Söding J.1

1Quantitative and Computational Biology Group,
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
2Department of Chemistry, Seoul National University, Seoul, Korea

I. MEMORY REQUIREMENTS

The MMseqs2 web server keeps the precomputed index
fully in main memory using memory mapping with the
mmap system call.

For optimal speed, the whole precomputed index file
has to reside in the operating system’s page cache.

The precomputed index consists predominantly of two
parts: (1) the k-mer lookup table and (2) the residues.
The memory consumption grows linearly with the num-
ber of residues in the database.

A. Sequence-sequence search requirements

The following formula can be used to estimate the size
M of the precomputed index file in the case of a sequence-
sequence search.

M ≈ 8 b ×N × L

+ 8 b × ak

+ 32 b ×N

Where N is the database size, L is the average se-
quence length, a the alphabet size (typically 20, with the
unknown residue X excluded) and k the k-mer size.

The following table shows memory requirements for a
few example databases of different sizes:

Name Release Entries Size k = 6 Size k = 7

SwissProt 2018 08 558125 2.3GB 12GB

Uniclust30 2018 08 30M 56GB 64GB

Uniclust50 2018 08 45M 96GB 105GB

Uniclust90 2018 08 120M 295GB 304GB

TABLE I. Memory requirements for typical sequence search
databases.

B. Sequence-profile search requirements

The target profile search keeps all similar k-mers for
each profile in memory. The memory consumption M is

dominated by the average k-mer list length (Kavg) per
profile column. Kavg depends on the chosen sensitivity
setting, higher sensitivity results in longer k-mer lists.

M ≈ 6 b ×N × Lp ×Kavg

Where N is the database size, Lp is the average profile
column length.

The following table shows memory requirements and
typical Kavg values for the Pfam-A profile database at
different sensitivity settings:

Sensitivity k = 5 Kavg k = 6 Kavg

s = 1 123MB 4.7 1.1GB 19.2

s = 3 633MB 26 5.0GB 190

s = 5 5.3GB 231 25GB 1070

s = 7 26GB 1401 119G 5279

TABLE II. Memory requirements for Pfam-A 31.0 profile
search databases (16479 profiles, 4006517 total residues in
consensus sequences).

II. SOFTWARE VERSIONS

Name Version

MMseqs2 Git: 8a8520c

blastp 2.6.0+

hmmer 3.1b2

diamond 0.9.19

TABLE III. Software versions used in this manuscript.

23

3 Fast and sensitive taxonomic assignment to
metagenomic contigs

Publication:

Fast and sensitive taxonomic assignment to metagenomic contigs

M. Mirdita, M. Steinegger, F. Breitwieser, J. Söding†, E. Levy Karin†

(†) corresponding author

Bioinformatics (2021): 37(18), 3029-3031.
Cited 13 times since 03/2021.

3.1 Author contributions

M.M., J.S. & E.L.K. performed research and wrote the manuscript. M.M., M.S., F.B. and E.L.K. imple-
mented features in MMseqs2. M.M. and E.L.K. implemented the taxonomy assignment algorithm.

3.2 Code and software availability

MMseqs2 taxonomy is available as free open source software (GPLv3) as part ofMMseqs2 at mmseqs.com.

25

https://mmseqs.com

Sequence analysis

Fast and sensitive taxonomic assignment to

metagenomic contigs

M. Mirdita 1, M. Steinegger 2,3,4, F. Breitwieser 5, J. Söding 1,6,* and

E. Levy Karin 1,*

1Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, 2School of Biological

Sciences, Seoul National University, Seoul, South Korea, 3Institute of Molecular Biology and Genetics, Seoul National University,

Seoul, South Korea, 4Artificial Intelligence Institute, Seoul National University, Seoul, South Korea, 5Center for Computational Biology,

McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA and 6Campus-Institut

Data Science (CIDAS), Göttingen, Germany

*To whom correspondence should be addressed.

Associate Editor: Janet Kelso
Received on November 16, 2020; revised on February 26, 2021; editorial decision on March 11, 2021; accepted on March 16, 2021

Abstract

Summary: MMseqs2 taxonomy is a new tool to assign taxonomic labels to metagenomic contigs. It extracts all pos-
sible protein fragments from each contig, quickly retains those that can contribute to taxonomic annotation, assigns
them with robust labels and determines the contig’s taxonomic identity by weighted voting. Its fragment extraction
step is suitable for the analysis of all domains of life. MMseqs2 taxonomy is 2–18� faster than state-of-the-art tools
and also contains new modules for creating and manipulating taxonomic reference databases as well as reporting
and visualizing taxonomic assignments.

Availability and implementation: MMseqs2 taxonomy is part of the MMseqs2 free open-source software package
available for Linux, macOS and Windows at https://mmseqs.com.

Contact: soeding@mpibpc.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenomic studies shine a light on previously unstudied parts of
the tree of life. However, unraveling taxonomic composition accur-
ately and quickly remains a challenge. While most methods label
short metagenomic reads (reviewed in Sczyrba et al., 2017), only a
handful (e.g. Huson et al., 2018) assign entire contigs, even though
this should lead to improved accuracy.

Recently, von Meijenfeldt et al. (2019) developed CAT, a tool
for taxonomic annotation of contigs based on protein homologies to
a reference database. It combines Prodigal (Hyatt et al., 2010) for
predicting open reading frames (ORFs), DIAMOND (Buchfink
et al., 2015) to search with the translated ORFs, and logic to aggre-
gate individual ORF annotations. CAT achieved higher precision
than state-of-the-art tools on bacterial benchmarks. Despite its ad-
vantage over existing methods, CAT has limitations: (i) Prodigal
was designed for prokaryotes and not eukaryotes (West et al.,
2018); (ii) Prodigal runs single-threaded, limiting applicability to
metagenomics; (iii) CAT’s r parameter determines the cut-off score
below each ORF’s top-hit above which hits are included in the
ORF’s lowest common ancestor (LCA) computation. Although the
authors provide guidelines to set r, it is unclear how general they
are.

Here, we present MMseqs2 taxonomy, a novel protein-search-
based tool for taxonomy assignment to contigs. It overcomes the
aforementioned limitations by extracting all possible protein frag-

ments, covering the coding repertoire of all domains of life. It quick-
ly eliminates fragments that do not bear minimal similarity to the

reference database, and searches with the remaining ones. MMseqs2
taxonomy uses an approximate 2bLCA (Hingamp et al., 2013) strat-
egy to assign translated fragments to taxonomic nodes

(Supplementary Material). The hits for the approximate 2bLCA
computation are determined automatically, saving the need to tune

an equivalent of CAT’s r parameter. It outperforms CAT on bacter-
ial and eukaryotic datasets.

2 Materials and methods

Input. Contigs are provided as (compressed) FASTA/Q files. As ref-

erence, the databases workflow can download and prepare various
public taxonomy databases, such as, nr (Agarwala et al., 2018),

UniProt (Bateman, 2019) or GTDB (Parks et al., 2020).
Alternatively, users can prepare their own taxonomic reference data-
base (see MMseqs2 wiki).

Algorithm. The four main steps are described in Figure 1A.

VC The Author(s) 2021. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2021, 1–3

doi: 10.1093/bioinformatics/btab184

Advance Access Publication Date: 18 March 2021

Applications Note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab184/6178277 by guest on 17 August 2021

26

Output. MMseqs2 taxonomy returns the following eight fields
for each contig accession: (i) the taxonomic identifier (taxid) of the
assigned label, (ii) rank, (iii) name, followed by the number of frag-

ments: (iv) retained, (v) taxonomically assigned, and (vi) in agree-
ment with the contig label (i.e. same taxid or have it as an ancestor),

(vii) the support the taxid received and, optionally, (viii) the full lin-
eage. The result can be converted to a TSV-file, and to a Kraken
(Wood et al., 2019) report or a Krona (Ondov et al., 2011) visual-

ization (Supplementary Material).

3 Results

Bacterial dataset. The CAMI-I high-complexity challenge and its

accompanying RefSeq 2015 reference database (Sczyrba et al.,
2017) were given to MMseqs2 and CAT. AMBER v2 (Meyer et al.,
2018) was used to assess the taxonomic assignment by computing

the average completeness (Fig. 1B) and purity (Supplementary Fig.
S1) bp using its taxonomic binning benchmark mode. At similar as-

signment quality, MMseqs2 taxonomy is 18� faster than CAT.
Using the nr, MMseqs2 is 10� faster (Supplementary Fig. S2).

Eukaryotic dataset. All 57 SAR (taxid 2698737) RefSeq assem-
blies and their taxonomic labels were downloaded from NCBI in 08/
2020. To resemble metagenomic data, their scaffolds were randomly

divided following the length distribution of contigs assembled for
sample ERR873969 of eukaryotic Tara Oceans (Carradec et al.,
2018), resulting in 2.7 million non-overlapping contigs with a min-
imal length of 300 bp. Using nr from 08/2020, MMseqs2 classified
more contigs than CAT (62% versus 47%). For 36%, CAT

extracted a fragment that did not hit the reference, suggesting frag-
ments extracted by MMseqs2 are more informative for eukaryotic
taxonomic annotation (Fig. 1C, Supplementary Fig. S3).

4 Conclusion

MMseqs2 taxonomy is as accurate as CAT on a bacterial dataset

while being 3–18� faster and requiring fewer parameters. Its
extracted fragments make it suitable for analyzing eukaryotes. It is

accompanied by several taxonomy utility modules to assist with
taxonomic analyses.

Funding

E.L.K. is a FEBS long-term fellowship recipient and an EMBO nonstipendiary

long-term fellow. The work was supported by the BMBF CompLifeSci project

horizontal4meta; the ERC’s Horizon 2020 Framework Programme [‘Virus-

X’, project no. 685778]; the National Research Foundation of Korea grant

funded by the Korean government (MEST) [2019R1A6A1A10073437, NRF-

2020M3A9G7103933]; and the Creative-Pioneering Researchers Program

through Seoul National University.

Conflict of Interest: none declared.

Data availability

The data used to benchmark MMseqs2 taxonomy in this study are
openly available from https://data.cami-challenge.org/participate at

the Databases section. The SAR assemblies were downloaded from
NCBI in 08/2020 and processed as described.

References

Agarwala,R. et al. (2018) Database resources of the National Center for

Biotechnology Information. Nucleic Acids Res., 46, D8–D13.

Bateman,A. (2019) UniProt: a worldwide hub of protein knowledge. Nucleic

Acids Res., 47, D506–D515.

●

●

●

● ●

●

●

●

●

●

● ●

●

●0

0.2

0.4

0.6

0.8

1

S.king.
Phylum

Class
Order

Family
Genus

Spec.

A
vg

. c
om

pl
et

e.
 b

p

CAMI I HC vs.
RefSeq 2015

MMseqs2 34m
CAT 10h11m

0

25

50

75

100

MMseqs2
2h42m

CAT
6h25m

Rank agree.
with truth

vs. nr 2020 Aug (302M entries)

%
 D

iv
id

ed
 S

A
R

 c
on

tig
s

No Hit

No Frag.

>Genus

Genus

Species

<Species

A B

C

Fig. 1. (A) Taxonomy assignment algorithm in four steps: (1) Translate all possible protein fragments in six frames from all contigs. (2) Reject fragments unlikely to find a taxo-

nomic hit in later stages (full details in Supplementary Material). (3) Assign taxonomic nodes using an approximate 2bLCA procedure. Each query fragment q is searched

against the reference database, resulting in a list l of all its homologous targets. The aligned region between q and the best hit t [with E-value E(q, t)] is aligned against all tar-

gets in l. Assign q the LCA of the taxonomic lables of all target sequences that have an E-value lower than E(q, t). Realigning l allows avoiding the costly second search of

2bLCA. (4) Each assigned q contributes its weight (–log E(q, t)) to its taxonomic label and all labels above it, up to the root. The contig’s taxonomic node is determined as the

most specific taxonomic label, which has a support of at least the ��majority parameter. The support of a label is the sum of its contributing weights divided by the total sum

of weights. (B) MMseqs2 taxonomy (red) is �18� faster and achieves similar average completeness to CAT (turquoise) on a bacterial benchmark. (C) MMseqs2 assigns taxa

to eukaryotic SAR contigs more accurately than CAT across all phylogenetic levels, at twice the speed. At species level, MMseqs2 taxonomy classifies 46% contigs correctly

versus 28% for CAT. Runtimes measured on a 2�14-core Intel E5-2680v4 server with 768 GB RAM

2 M.Mirdita et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab184/6178277 by guest on 17 August 2021

27

Buchfink,B. et al. (2015) Fast and sensitive protein alignment using

DIAMOND. Nat. Methods, 12, 59–60.

Carradec,Q. et al., Tara Oceans Coordinators. (2018) A global ocean atlas of

eukaryotic genes. Nat. Commun., 9, 373.

Hingamp,P. et al. (2013) Exploring nucleo-cytoplasmic large DNA viruses in

Tara Oceans microbial metagenomes. ISME J., 7, 1678–1695.

Huson,D.H. et al. (2018) MEGAN-LR: new algorithms allow accurate bin-

ning and easy interactive exploration of metagenomic long reads and con-

tigs. Biol. Direct., 13, 6.

Hyatt,D. et al. (2010) Prodigal: prokaryotic gene recognition and translation

initiation site identification. BMC Bioinform., 11, 119.

Meyer,F. et al. (2018) AMBER: Assessment of Metagenome BinnERs.

Gigascience, 7, giy069.

Ondov,B.D. et al. (2011) Interactive metagenomic visualization in a Web

browser. BMC Bioinform., 12, 385.

Parks,D.H. et al. (2020) A complete domain-to-species taxonomy for Bacteria

and Archaea. Nat. Biotechnol., 38, 1079–1086.

Sczyrba,A. et al. (2017) Critical assessment of metagenome interpretation—a

benchmark of metagenomics software. Nat. Methods, 14, 1063–1071.

von Meijenfeldt,F.A.B. et al. (2019) Robust taxonomic classification of uncharted

microbial sequences and bins with CAT and BAT. Genome Biol., 20, 217.

West,P.T. et al. (2018) Genome-reconstruction for eukaryotes from complex

natural microbial communities. Genome Res., 28, 569–580.

Wood,D.E. et al. (2019) Improved metagenomic analysis with Kraken 2.

Genome Biol., 20, 257.

Fast and sensitive taxonomic assignment to metagenomic contigs 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab184/6178277 by guest on 17 August 2021

28

Supplementary Material for Fast and sensitive
taxonomic assignment to metagenomic contigs using MMseqs2

Mirdita M.,1 Steinegger M.,2, 3, 4 Breitwieser F.,5 Söding J.,1, 6 and Levy Karin E.1

1Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
2School of Biological Sciences, Seoul National University, Seoul, South Korea

3Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
4Artificial Intelligence Institute, Seoul National University, Seoul, South Korea

5Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine,
Johns Hopkins School of Medicine, Baltimore, USA

6Campus-Institut Data Science (CIDAS), Göttingen, Germany

●

●

●●
●

●

●

●

●

●●
●

●

●0

0.2

0.4

0.6

0.8

1

S.king.
Phylum

Class
Order

Family
Genus

Spec.

CAMI I HC vs. RefSeq 2015

A
vg

. p
ur

ity
 b

p

MMseqs2 34m
CAT 10h11m

FIG. S1. MMseqs2 (red) is ∼18x faster and achieves sim-
ilar average purity bp to CAT (turquoise) on a bacterial
benchmark. The CAMI taxonomic reference database does
not contain any species, which were included in the chal-
lenge. All classifiers score 0% bp completeness/purity at that
rank. Runtimes measured on a server with 2x14-core Intel
E5-2680v4 CPUs and 768GB RAM.

0

25

50

75

100

MMseqs2
2h47m

CAT
11h26m

Rank agree.
with truth

vs. nr 2020 Aug (302M entries)

%
 S

A
R

 c
on

tig
s No Hit

No Frag.

>Order

Order

Family

Genus

Species

<Species

FIG. S3. The fragments extracted and retained by MMseqs2
from 66,630 eukaryotic scaffolds result in more correctly clas-
sified scaffolds than those extracted for CAT by Prodigal. All
runtimes were measured on a server with two 14-core Intel
E5-2680v4 CPUs and 768GB RAM.

●

● ●
● ●

●

●

●

●
●

● ●

●

●

0

0.2

0.4

0.6

0.8

1

S.king.
Phylum

Class
Order

Family
Genus

Spec.

A
vg

. c
om

pl
et

e.
 b

p

CAMI I HC vs.
nr 2020

MMseqs2 5h11m
CAT 50h17m

●

●

●

●

● ●

●

●

●

●

●

●
●

●

0

0.2

0.4

0.6

0.8

1

S.king.
Phylum

Class
Order

Family
Genus

Spec.

CAMI I HC vs. nr 2020

A
vg

. p
ur

ity
 b

p

MMseqs2 5h11m
CAT 50h17m

FIG. S2. MMseqs2 (red) is ∼10x faster and achieves similar
accuracy to CAT (turquoise) on a bacterial benchmark, us-
ing the nr as reference (16x more entries than RefSeq 2015).
In contrast to Fig 1B and Fig S1, the nr database does not
exclude any species, which allows for correct classifications at
the species level. All runtimes were measured on a server with
two 14-core Intel E5-2680v4 CPUs and 768GB RAM.

29

S2

all

root

cellular organisms
Eukaryota

Sar

Pl
as

m
od

iu
m

 (
Pl

as
m

od
iu

m
)

6%

Pl
as

m
od

iu
m

 (
La

ve
ra

ni
a)

4%

Pl
as

m
od

iu
m

 (V
in
ck

eia
)

 3
%

Pla
sm

od
ium

 (H
ae

mam
oe

ba
)

 2%

Pla
sm

od
ium

 co
atn

ey
i

1%
Babesia 3

%

Theileria 2%

Eimeriidae 9%

Sarcocystidae 7%

Cryptosporidiidae 2%
Tetrahym

enidae 4%

Param
ecium

 4%

3%

 P

er
ki

ns
us

 m
ar

in
us

5%

Ph
yt

op
ht

ho
ra

 in
fe

st
an

s

1%

 P

hy
to

ph
th

or
a

in
fe

st
an

s
T3

0-
4

3%

Ph
yt

op
ht

ho
ra

 s
oj

ae

2%

Ph
yt
op

ht
ho

ra
 p
ar

as
iti
ca

10
 m

ore

2% Plasmopara halstedii

3% Aphanomyces astaci

2% Aphanomyces invadans
2% Saprolegnia diclina VS20

2% Saprolegnia parasitica CBS 223.65

2%
 Thalassiosiraceae

1%
 Phaeodactylaceae

1%
 Nannochloropsis gaditana

2%
 Aureococcus anophagefferens

2%
 Blastocystis

4%
 unclassified

FIG. S4. Krona visualization of the classified contigs of Fig. 1C (62% of all contigs) generated using mmseqs taxonomyreport
--report-mode 1.

30

S3

EARLY PROTEIN FRAGMENT REJECTION

MMseqs2 taxonomy uses the prefilter module to
find the translated fragment-to-reference match with the
highest number of consecutive similar k-mer matches
on the same diagonal. Fragments with fewer than
three matches to any reference sequence are removed.
The remaining pairs are aligned without gaps using
rescorediagonal and the fragment in each pair is re-
tained if the pair’s E-value is smaller than 100.

APPROXIMATE 2BLCA

The 2bLCA procedure consists of two searches: (I)
A search with a query sequence against a set of target
sequences. (II) A search with the aligned region of the
most significant sequence match against the same target
sequences. The taxonomic labels of all hits with an E-
value smaller or equal to the best hit E-value in search I
are used to compute an LCA.

The prefilter of MMseqs2 can quickly identify candi-
dates of homology, which are then verified by a costly
alignment step. We approximate 2bLCA by assuming
that most candidates found in a prefiltering step of search
I would also cover the candidates found by search II.
Thus, we reuse the same list of prefiltering candidates
for both alignment steps.

Additionally, we exploit MMseqs2’s support for multi-
ple alignment modes to calculate only the score and E-
value, or to additionally compute the alignment bound-
aries. In the initial alignment of the query against the
target candidates, we use the first mode to find the hit
with the best E-value and then we recompute, for the
best hit only, the alignment boundaries with the slower,
second alignment mode. To compute the E-values of the
best matching aligned region to the target sequences we
also use the first, faster alignment mode.

We applied --max-accept 30 and
--max-rejected 5 in the first alignment and
--max-rejected 5 in the second alignment, to
further speed up the alignments.

Name Version Comment
MMseqs2 Git: 7da33b0 Benchmarks
MMseqs2 Git: 6379422 nr DB creation
CAT v5.1.1

TABLE S1. Software versions used in this manuscript.

Sequence set Version Entries Residues/Bases
CAMI I HC GSA 2015 42k 2.8B nucl.
CAMI I RefSeq 2015 16M 6.5B aa.
SAR (unchopped) 08/2020 67k 2.2B nucl.
SAR (chopped) 08/2020 2.7M 2.2B nucl.
nr 08/2020 303M 109B aa.

TABLE S2. Sequence sets used in this manuscript.

Method Target DB Peak RAM
MMseqs2 CAMI I RefSeq 60 GB
MMseqs2 nr 253 GB
CAT CAMI I RefSeq 45 GB
CAT nr 63 GB

TABLE S3. Peak RAM use of MMseqs2 and CAT with CAMI
I HC dataset. Memory use was measured on a server with two
14-core Intel E5-2680v4 CPUs and 768GB RAM. Note, how-
ever, that both methods can split the database into chunks
and search them one after the other to adapt to available
system memory.

31

4 ColabFold - Making protein folding accessible
to all

Publication:

ColabFold - Making protein folding accessible to all

M. Mirdita†, K. Schütze, Y. Moriwaki, L. Heo, S. Ovchinnikov†, M. Steinegger†

(†) corresponding authors and equal contributors are ordered alphabetically

bioRxiv (2021), in review.
Cited 45 times since 08/2021.

4.1 Author contributions

M.M., K.S., S.O. and M.S. performed research and programming, M.M., S.O. and M.S. jointly designed
the research and wrote the manuscript. Y.M. provided the initial methodology for hetero-complex mod-
eling and created an installer for use on local servers. L.H. provided initial benchmarking.

4.2 Code and software availability

ColabFold is free open-source software (MIT) available at github.com/sokrypton/ColabFold. Its novel
environmental databases are available at colabfold.mmseqs.com.

33

https://github.com/sokrypton/ColabFold
https://colabfold.mmseqs.com

ColabFold - Making protein folding accessible to all
Milot Mirdita,1, ∗ Konstantin Schütze,2 Yoshitaka Moriwaki,3, 4 Lim Heo,5 Sergey Ovchinnikov,6, 7, ∗ and Martin Steinegger2, 8, ∗

ColabFold offers accelerated protein structure and complex predictions by combining the fast homology search of MMseqs2 with AlphaFold2
or RoseTTAFold. ColabFold’s 20−30x faster search and optimized model use allows predicting thousands of proteins per day on a server
with one GPU. Coupled with Google Colaboratory, ColabFold becomes a free and accessible platform for protein folding. ColabFold is open-
source software available at github.com/sokrypton/ColabFold. Its novel environmental databases are available at colabfold.mmseqs.com
Contact: milot.mirdita@mpibpc.mpg.de, so@fas.harvard.edu, martin.steinegger@snu.ac.kr

Predicting the three-dimensional structure of a protein from
its sequence alone remains an unsolved problem. However,
by exploiting the information in multiple sequence alignments
(MSAs) of related proteins as raw input features for end-to-
end training, AlphaFold2 [1] was able to predict the 3D atomic
coordinates of folded protein structures at an median GDT-TS
of 92.4% in the latest CASP14 [2] competition. The accuracy
of many of the predicted structures was within the error mar-
gin of experimental structure determination methods. Many
ideas of AlphaFold2 were independently reproduced and im-
plemented in RoseTTAFold [3]. Additionally to single chain
predictions, RoseTTAFold was shown to model protein com-
plexes. Evans et al. [3] also announced a refined version of
AlphaFold2 for complex prediction. Thus, two highly accurate
open-source prediction methods are now publicly available.

In order to leverage the power of these methods researchers
require powerful compute-capabilities. First, to build diverse
MSAs, large collections of protein sequences from public refer-
ence [4] and environmental [1, 5] databases are searched using
the most sensitive homology detection methods HMMer [6]
and HHblits [7]. Due to the large database sizes these searches
can take up to hours for a single protein, while requiring over
two terabyte of storage space alone. Second, to execute the
deep neural networks GPUs with a large amount of GPU RAM
are required even for relatively common protein sizes of ∼1000
residues. Though, for these the MSA generation dominates
the overall run-time (Supplementary Fig. 1).

To enable researchers without these resources to use Al-
phaFold2 independent solutions based on Google Colabora-
tory were developed. Colaboratory is a proprietary version
of Jupyter Notebook hosted by Google. It is accessible for
free to logged-in users and includes access to powerful GPUs.
Tunyasuvunakool et al. [8] developed an AlphaFold2 Jupyter
Notebook for Google Colaboratory (referred to as AlphaFold-
Colab), where the input MSA is built by searching with HM-
Mer against a clustered UniProt and an eight-fold reduced en-
vironmental databases. Resulting in less accurate predictions,
while still requiring long search times.
1 Quantitative and Computational Biology, Max Planck Institute for
Biophysical Chemistry, Göttingen, Germany. 2 School of Biological Sci-
ences, Seoul National University, Seoul, South Korea. 3 Department of
Biotechnology, Graduate School of Agricultural and Life Sciences, The
University of Tokyo, Tokyo, Japan. 4 Collaborative Research Institute
for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
5 Department of Biochemistry and Molecular Biology, Michigan State
University, East Lansing, MI 48824, USA. 6 JHDSF Program, Harvard
University, Cambridge, MA 02138, USA. 7 FAS Division of Science, Har-
vard University, Cambridge, MA 02138, USA. 8 Artificial Intelligence
Institute, Seoul National University, Seoul, South Korea * These authors
contributed equally and are ordered alphabetically.

UniRef100 &
Environmental

a Multiple sequence alignment
with MMseqs2

3xfasta

>1
…HIECV
VCGDKS
SGKHYG
QFT…

UniRef30 + Environmental

UniRef30 Paired

Unpaired +

b1 Structure prediction

Sort by plDDT

b2 Complex prediction

M
odel 1

M
odel 2

M
odel 3

M
odel 4

M
odel 5

Sequence coverage

c Result visualization

Predicted lDDT

Sort by pTMscore

M
odel 1

M
odel 2

M
odel 3

M
odel 4

M
odel 5

Sequence coverage
complexes

Predicted alignment
error

FIG. 1. (a) ColabFold sends a FASTA input sequence to a MM-
seqs2 server searching two databases UniRef100 and a database of
environmental sequences with three profile-search iterations each.
The second database is searched using a sequence-profile gener-
ated from the UniRef100 search as input. The server generates two
MSAs in A3M format containing all detected sequences. (b1) For
single structure predictions we filter both A3Ms using a diversity
aware filter and return this to be provided as the MSA input feature
to the AlphaFold2 models. (b2) For complex prediction we pair the
top hits within the same species to resolve the inter-complex con-
tacts and additionally add two unpaired MSAs (same to b1) to
guide the structure prediction. (c) To help researchers judge the
prediction quality we visualize MSA depth and diversity and show
the AlphaFold2 confidence measures (pLDDT and PAE).

Here, we present ColabFold, a fast and easy to use soft-
ware for protein structure and homo- and heteromer complex
prediction, for use as a Jupyter Notebook inside Google Co-
laboratory, on researchers’ local computers as a notebook or
through a command line interface. ColabFold speed-ups the
prediction by replacing the AlphaFold2’s input feature gener-
ation stage with a fast MMseqs2 [9, 10] search. It addition-
ally implements speed-ups for predictions of multiple struc-
tures by avoiding recompilation and adding early stop crite-
ria. We show that ColabFold outperforms AlphaFold-Colab
and matches AlphaFold2 on CASP14 targets while being 20-
30 times faster. ColabFold can compute a proteome (excluding
proteins >1000 residues) in 41 hours on a consumer GPU.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.08.15.456425doi: bioRxiv preprint

34

2

FM-targets CASP14 Other targets

0.4

0.6

0.8

1.0

T1070-D2
T1094-D2
T1037-D1
T1061-D3
T1070-D4
T1096-D1
T1061-D1
T1049-D1
T1041-D1
T1074-D1
T1090-D1
T1038-D1
T1038-D2
T1039-D1
T1094-D1
T1031-D1
T1096-D2
T1042-D1
T1061-D2
T1070-D3
T1070-D1
T1027-D1
T1040-D1
T1047s1-D1
T1029-D1
T1064-D1
T1033-D1
T1043-D1
T1076-D1
T1052-D2
T1089-D1
T1053-D1
T1050-D1
T1046s2-D1
T1024-D1
T1036s1-D1
T1052-D3
T1079-D1
T1100-D2
T1050-D2
T1056-D1
T1065s2-D1
T1024-D2
T1068-D1
T1045s1-D1
T1091-D4
T1091-D1
T1028-D1
T1034-D1
T1050-D3
T1058-D2
T1057-D1
T1046s1-D1
T1060s3-D1
T1078-D1
T1047s2-D1
T1052-D1
T1092-D2
T1065s1-D1
T1091-D2
T1087-D1
T1026-D1
T1025-D1
T1101-D1
T1045s2-D1
T1095-D1
T1101-D2
T1082-D1
T1058-D1
T1047s2-D2
T1053-D2
T1060s2-D1
T1067-D1
T1093-D2
T1093-D3
T1054-D1
T1091-D3
T1035-D1
T1084-D1
T1055-D1
T1099-D1
T1030-D2
T1092-D1
T1093-D1
T1083-D1
T1030-D1
T1100-D1
T1048-D1
T1088-D1
T1098-D1
T1073-D1
T1080-D1
T1032-D1
T1047s2-D3
T1098-D2
T1062-D1

T
M

-s
c
o

re

AlphaFold2 AlphaFold-Colab ColabFold-BFD/MGnify Colabfold-ColabFoldDB

a

0

20

40

60

100 200 300 400 500

Protein Length

R
u

n
tim

e
 in

 M
in

u
te

s

b

0

100

200

300

949

CASP14 Ovchinnikov (2014)

Left ColabFold-BFD/MGnify Right ColabFold-ColabfoldDB

0.25

0.50

0.75

1.00

H1046

H1045

H1065

H1072

H1047

3PNL_A_3PNL_B

2Y69_A_2Y69_B

2Y69_A_2Y69_C

1BXR_A_1BXR_B

1W85_A_1W85_B

1QOP_A_1QOP_B

1EP3_A_1EP3_B

1TYG_B_1TYG_A

1RM6_A_1RM6_B

1RM6_A_1RM6_C

2NU9_A_2NU9_B

3IP4_A_3IP4_C

1EFP_A_1EFP_B

2VPZ_A_2VPZ_B

1RM6_B_1RM6_C

1I1Q_A_1I1Q_B

3MML_A_3MML_B

3RRL_A_3RRL_B

2ONK_A_2ONK_C

3IP4_A_3IP4_B

3RPF_A_3RPF_C

3G5O_A_3G5O_B

2WDQ_C_2WDQ_D

1ZUN_A_1ZUN_B

3IP4_B_3IP4_C

3OAA_H_3OAA_G

2D1P_B_2D1P_C

4HR7_A_4HR7_B

2Y69_B_2Y69_C

3A0R_A_3A0R_B

1IXR_A_1IXR_C

T
M

-s
c
o

re

unpaired unpaired+paired
 Model rank 1 2 3 4 5

c

FIG. 2. (a) Structure prediction comparison of AlphaFold2 (yellow), AlphFold-Colab (green) and ColabFold with BFD/MGnify (blue) and
with the ColabFoldDB (magenta) using predictions of 96 domains of 69 CASP14 targets. The 28 domains from the 20 free-modeling (FM)
targets are shown first. FM targets were used to optimize MMseqs2 search parameters. Each target was evaluated for each individual
domain (in total 96 domains). (b) MSA generation time for each CASP14 FM target sorted by protein length (same colors as before).
FM target T1064 shown separately to improve readability. (c) Comparison of ColabFold complex predictions with unpaired (red) and
unpaired+paired (blue) MSA-pairing modes, the databases BFD/MGnify (left of line) and ColabFoldDB (right). See Supplementary
Fig. 2 for comparison to paired-only mode.

ColabFold (Fig. 1) consists of three parts: (1) An MMseqs2
based homology search server to build diverse MSAs and to
find templates. The server efficiently aligns input sequence(s)
against the UniRef100, the PDB70 and an environmental se-
quence set. (2) A Python library that communicates with the
MMseqs2 search server, prepares the input features for (single
or complex) structure inference, and visualizes of results. This
library also implements a command line interface. (3) Jupyter
notebooks for basic, advanced and batch use (Methods “Co-
labFold notebooks”) using the Python library.

In ColabFold we replace the sensitive search methods HM-
Mer and HHblits by MMseqs2. We optimized the MSA gener-
ation by MMseqs2 to have the following three properties: (1)
MSA generation should be fast. (2) The MSA has to capture
diversity well and (3) it has to be small enough to run on GPUs
with limited RAM. Reducing the memory requirement is es-
pecially helpful in Google Colaboratory where the provided
GPU is selected from a pool with widely differing capabilities.
While (1) is achieved through the fast MMseqs2 prefilter for
(2 and 3) we developed a search workflow to maximize sen-
sitivity (Methods “MSA generation”) and a new filter that

samples the sequence space evenly (Methods “New diversity
aware filter” and Supplementary Fig. 3). Prediction qual-
ity highly depends on the input MSA. However, often only a
few (∼30) sufficiently diverse sequences are enough to produce
high quality predictions [1].

Additionally, we combined the BFD and MGnify databases
that are used in AlphaFold2 by HHblits and HMMer respec-
tively into a combined redundancy reduced version we refer to
as BFD/MGnify (Methods “Reducing size of BFD/MGnify”).
The environmental search database presented an opportunity
to improve structure predictions of non-bacterial sequences,
as e.g., eukaryotic protein diversity is not well represented in
the BFD and MGnify databases. Limitations in assembly and
gene calling due to complex intron/exon structures result in
under representation in reference databases. We therefore ex-
tended the BFD/MGnify with additional metagenomic protein
catalogues containing eukaryotic proteins [11, 12, 13], phage
catalogues [14, 15] and an updated version of MetaClust [16].
We refer to this database as ColabFoldDB (Methods “Colab-
FoldDB”). In Supplementary Fig. 4 we show that the Co-
labFoldDB in comparison to the BFD/MGnify produces more

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.08.15.456425doi: bioRxiv preprint

35

3

diverse MSAs for PFAM [17] domains with < 30 members.
To compare the accuracy of predicted structures we

compared AlphaFold2 (default settings with templates),
AlphaFold-Colab (no templates), and ColabFold (no tem-
plates) with the BFD/MGnify and ColabFoldDB on TM-
scores for all targets from the CASP14 competition (Fig. 2a),
split by free modeling (FM) targets on the left and the re-
maining ones on the right. We show this split as we used the
FM-targets for optimization of search workflow parameters.

The mean TM-scores for the FM targets are 0.826, 0.818,
0.79 and 0.744 for ColabFold (BFD/MGnify), ColabFold (Co-
labFoldDB), AlphaFold2 and the AlphaFold-Colab, respec-
tively. Over all CASP14 targets the TM-scores are 0.88, 0.877
and 0.88 for the former three respectively. For AlphaFold-
Colab we measured TM-scores only for FM targets as it cannot
be used stand-alone.

ColabFold could not predict T1084 well as MMseqs2 sup-
presses all databases hits as false positives due to its amino
acid composition filter and masking procedure. If these filters
are deactivated T1084 can be predicted with an TM-score of
0.872 (Supplementary Fig. 5).

ColabFold is on average 5x faster for single predictions than
AlphaFold2 and AlphaFold-Colab, when taking both MSA
generation (Fig. 2b) and model inference into account.

AlphaFold2 itself has no capabilities to model complexes.
However, we found that by combining two sequences with
a glycine linker [18] it could often successfully model com-
plexes. Shortly afterwards, Baek [19] found that incrementing
the model-internal residue index - the method that was used
in RoseTTAFold - could also be used in AlphaFold2.

For high quality predictions it was shown that sequences
should be provided in paired-form to AlphaFold2 [20]. We im-
plemented a similar pairing procedure (Methods “MSA pair-
ing for complex prediction”) and show the complex prediction
capabilities of ColabFold in Fig. 2c. We achieve high accu-
racy in complex prediction in two datasets from Ovchinnikov
et al. [21] and the CASP14 protein complex targets with two
unique sequences (Methods “Complex Benchmark” for bench-
mark details). We note though that the structures from [21]
were already public and were likely used as individual chains
during the training of AlphaFold2.

Fig. 3 shows two examples of ColabFold’s complex predic-
tion capabilities: (a) shows a homo-six-mer and (b) shows
a D-methionine transport system composed of three different
proteins. For single structure prediction AlphaFold2 provides
a pLDDT measure to indicate the prediction quality. A high
pLDDT does not necessarily indicate a correct complex pre-
diction, though the inter-complex predicted alignment error
(PAE) helps to rank complexes. We visualize plots of PAE
and complex conformation to help users judge the prediction
quality of a complex. An example for heteromer complex pre-
diction is shown in Supplementary Fig. 6 with its PAE plot.
Furthermore, ColabFold complexes were successfully used to
aid the cryo-EM structure determination of the 120 MDa hu-
man nucleopore complex [22].

In ColabFold we expose many internal parameters of Al-
phaFold2 to aid users to model difficult targets, such as the
recycle count (default 3). It controls the number of times the

a Homo-oligomer (6) b Homo/hetero-oligomer (2:1:2)

AB

C

E D

A

B C

D

C
ha

in
s

PA
E

 (Å
)

Positions

E
F

C
ha

in
s

PA
E

 (Å
)

Positions

FIG. 3. Anecdotal examples showcasing the capabilities of ad-
vanced ColabFold features. (a) Setting the homo-oligomer set-
ting to 6, allows modeling of the homo-6-mer structure of 4-
Oxalocrotonate Tautomerase. Colored by chain (top), pLDDT
(predicted Local Distance Difference Test, bottom). The inter PAE
(Predicted Aligned Error) between chains is very low indicating a
confident prediction. (b) Providing three different proteins with
2:1:2 homo-oligomer setting allows modeling a hetero-complex with
mismatching symmetries of the D-methionine transport system.

prediction is repeatedly feed through the model. For diffi-
cult targets as well as for designed proteins without known
homologs additional recycling iterations can result in a high
quality prediction (Supplementary Fig. 7).

To meet the demand for high throughput structure predic-
tion we introduced several features in ColabFold. (1) MSA
generation can be executed in batch-mode independently from
model batch-inference. (2) We compile only two of the five Al-
phaFold2 models and reuse weights. (3) We provide a batch
execution mode, that avoids recompilation for sequences of
similar length. (4) We implement early stop criteria, to avoid
running additional recycles or models if a sufficiently accurate
structure was already found. All together, we show that the
proteome of 1762 proteins shorter than 1000 aa of the archaeon
Methanocaldococcus jannaschii can be predicted in 40h on one
Nvidia RTX 3090 (Methods “Proteome Benchmark”).

ColabFold builds beyond the initial offerings of Alphafold2
by improving its sequence search, providing tools for modeling
homo- and heteromer complexes, exposing advanced function-
ality, expanding the environmental databases and performing
structure prediction in batch within a minute.

In summary, ColabFold makes high quality protein struc-
ture prediction accessible and additionally provides novel
features to explore the full potential of AlphaFold2 and
RoseTTAFold.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.08.15.456425doi: bioRxiv preprint

36

4

REFERENCES

[1] Jumper, J. et al. Nature 596, 583–589 (2021).
[2] Kryshtafovych, A. et al. Proteins 1–11 (2021).
[3] Evans, R. et al. bioRxiv 2021.10.04.463034 (2021).
[4] UniProt Consortium. Nucleic Acids Res. 47, D506–D515 (2019).
[5] Mitchell, A. L. et al. Nucleic Acids Res. 48, D570–D578 (2020).
[6] Eddy, S. R. PLoS Comput. Biol. 7, e1002195 (2011).
[7] Steinegger, M. et al. BMC Bioinform. 20, 473 (2019).
[8] Tunyasuvunakool, K. et al. Nature 596, 590–596 (2021).
[9] Steinegger, M. & Söding, J. Nat. Biotechnol. 35, 1026–1028 (2017).

[10] Mirdita, M. et al. Bioinformatics 35, 2856–2858 (2019).
[11] Levy Karin, E. et al. Microbiome 8, 48 (2020).
[12] Delmont, T. O. et al. bioRxiv 2020.10.15.341214 (2020).
[13] Alexander, H. et al. bioRxiv 2021.07.25.453713 (2021).
[14] Nayfach, S. et al. Nat. Microbiol. 6, 960–970 (2021).
[15] Camarillo-Guerrero, L. F. et al. Cell 184, 1098–1109.e9 (2021).
[16] Steinegger, M. & Söding, J. Nat. Commun. 9, 2542 (2018).
[17] Mistry, J. et al. Nucleic Acids Res. 49 (2021).
[18] Moriwaki, Y. AlphaFold2 can also predict heterocom-

plexes. all you have to do is input the two sequences
you want to predict and connect them with a long linker.
https://twitter.com/Ag_smith/status/1417063635000598528 (2021).

[19] Baek, M. Adding a big enough number for “residue_index” feature is
enough to model hetero-complex using AlphaFold (green&cyan: crystal
structure / magenta: predicted model w/ residue_index modification).
https://twitter.com/minkbaek/status/1417538291709071362 (2021).

[20] Bryant, P. et al. bioRxiv 2021.09.15.460468 (2021).
[21] Ovchinnikov, S. et al. eLife 3, e02030 (2014).
[22] Mosalaganti, S. et al. bioRxiv 2021.10.26.465776 (2021).

ACKNOWLEDGEMENTS

We thank Johannes Söding for providing computational re-
sources. John Jumper and Tim Green for answering questions
regarding AF2. Minkyung Baek for the complex residue trick.
Do-Yoon Kim for creating the ColabFold logo. Enzo Guerrero-
Araya and Jakub Kaczmarzyk for providing bug fixes. Alon
Markovich and Julia Varga for notifying us about MSA quality
issues. Harriet Alexander for providing the TOPAZ proteins
as a single file to download. We thank all users for using Co-
labFold and reporting issues.

This work used the Scientific Compute Cluster at GWDG,
the joint data center of Max Planck Society for the
Advancement of Science (MPG) and University of Göt-
tingen. Milot Mirdita acknowledges the BMBF Com-
pLifeSci project horizontal4meta. Martin Steinegger acknowl-
edges support from the National Research Foundation of
Korea grant [2019R1A6A1A10073437, 2020M3A9G7103933,
2021R1C1C102065]; New Faculty Startup Fund and the
Creative-Pioneering Researchers Program through Seoul Na-
tional University. Yoshitaka Moriwaki acknowledges support
from Platform Project for Supporting Drug Discovery and Life
Science Research (Basis for Supporting Innovative Drug Dis-
covery and Life Science Research (BINDS)) from AMED un-
der Grant Number JP21am0101107. For this project, Sergey
Ovchinnikov was supported by the National Science Founda-
tion under Grant No. MCB2032259. Any opinions, findings,
and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

AUTHOR CONTRIBUTION

M.M., K.S., S.O. and M.S. performed research and program-
ming, M.M., S.O. and M.S. jointly designed the research and
wrote the manuscript. Y.M. provided the initial methodology
for hetero-complex modeling and created an installer for use
on local servers. L.H. provided initial benchmarking.

COMPETING INTERESTS

The authors declare no competing interests.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.08.15.456425doi: bioRxiv preprint

37

5

MATERIALS AND METHODS

ColabFold notebooks ColabFold has four main Jupyter
notebooks [23]: AlphaFold2_mmseqs2 for basic use that sup-
ports protein structure prediction using (1) MSAs gener-
ated by MMseqs2, (2) custom MSA upload, (3) using tem-
plate information, (4) relaxing the predicted structures us-
ing amber force fields [24], and (5) monomer complex pre-
diction. AlphaFold2_advanced for advanced users addition-
ally supports (6) MSA generation using HMMer (same as
AlphaFold-Colab), (7) the sampling of diverse structures by
iterating through a series of random seeds (num_samples),
and (8) control of AlphaFold2 model internals, such as chang-
ing the number of recycles (max_recycle), number of ensem-
bles (num_ensemble), and enabling the stochastic part of the
models via the (is_training) option. AlphaFold2_batch
for batch prediction of multiple sequences or MSAs. The
batch notebook saves time by avoiding recompilation of the
AlphaFold2 models (“Avoid recompiling during batch compu-
tation”) for each individual input sequence. RoseTTAFold for
basic use of RoseTTAFold that supports protein structure pre-
diction using (1) MSAs generated by MMseqs2, (2) custom
MSAs and (4) sidechain prediction using SCWRL4 [25].
ColabFold command line interface We initially focused
on making ColabFold as widely available as possible through
our Notebooks running in Google Colaboratory. To meet the
demand for a version that runs on local users’ machines, we
released “LocalColabFold”. LocalColabFold can take com-
mand line arguments to specify an input FASTA file, an out-
put directory, and various options to tweak structure predic-
tions. LocalColabFold runs on wide range of operating sys-
tems, such as Windows 10 or later (using Windows Subsys-
tem for Linux 2), macOS, and Linux. The structure inference
and energy minimization are accelerated if a CUDA 11.1 or
later compatible GPU is present. LocalColabFold is available
as free open-source software at github.com/YoshitakaMo/
localcolabfold.

Specifically for running large numbers of protein complexes
or structure predictions e.g., for an entire proteome (Methods
“Proteome benchmark”), we provide the colabfold_batch
command line tool through the colabfold python package.
It can be installed with pip install colabfold, followed
by pip install -U "jax[cuda]" -f https://storage.
googleapis.com/jax-releases/jax_releases.html. It
can be used as colabfold_batch input_file_or_directory
output_directory, supporting FASTA, A3M and CSV files
as input.
MSA generation by MMseqs2 ColabFold sends the query
sequence to a MMseqs2 server [12]. It searches the sequence(s)
with three iterations against the consensus sequences of the
UniRef30, a clustered version of the UniRef100 [26]. We ac-
cept hits with an E-value of lower than 0.1. For each hit, we
realign its respective UniRef100 cluster member using the pro-
file generated by the last iterative search, filter them (Methods
“New diversity aware filter”) and add these to the MSA. This
expanding search results in a speed up of ∼10x as only 29.3
million cluster consensus sequence are searched instead of all
277.5 million UniRef100 sequences. Additionally, it has the

advantages to be more sensitive since the cluster consensus
sequences are used. We use the UniRef30 sequence-profile to
perform an iterative search against the BFD/MGnify or Co-
labFoldDB using the same parameters, filters and expansion
strategy.
New diversity aware filter To limit the number of hits
in the final MSA we use the HHblits diversity filtering
algorithm [8] implemented in MMseqs2 in multiple stages:
(1) During UniRef cluster expansion, we filter each individual
UniRef30 cluster before adding the cluster members to the
MSA, such that no cluster-pair has a higher maximum
sequence identity than 95% (--max-seq-id 0.95. (2) After
realignment enable only the --qsc 0.8 threshold and disable
all other thresholds (--qid 0 --diff 0 --max-seq-id
1.0). Additionally, the qsc filtering is only used if least 100
hits were found (--filter-min-enable 100). (3) During
MSA construction we filter again with the following pa-
rameters: --filter-min-enable 1000 --diff 3000 --qid
0.0,0.2,0.4,0.6,0.8,1.0 --qsc 0 --max-seq-id 0.95.
Here, we extended the HHblits filtering algorithm to filter
within a given sequence identity bucket, such that it cannot
eliminate redundancy across filter buckets. Our filter keeps
the 3000 most diverse sequences in the identity buckets
]0.0-0.2],]0.2-0.4],]0.4-0.6],]0.6-0.8] and]0.8-1.0]. In buckets
containing less than 1000 hits we disable the filtering.
New MMseqs2 pre-computed index to support ex-
panding cluster members MMseqs2 was initially built to
perform fast many-against-many sequence searches. Mirdita
et al. [11] improved it to also support fast single-against-
many searches. This type of search requires the database
to be index and stored in memory. mmseqs createindex in-
dexes the sequences and stores all time-consuming-to-compute
data structures used for MMseqs2 searches to disk. We load
the index into the operating systems cache using vmtouch
(github.com/hoytech/vmtouch) to allow calls to the different
MMseqs2 modules become near-overhead free. We extended
the index to store, in addition to the already present cluster
consensus sequences, all member sequences and the pairwise
alignments of the cluster representatives to the cluster mem-
bers. With these resident in cache, we eliminate the overhead
of the remaining module calls.
Reducing size of BFD/MGnify To keep all required se-
quences and data structures in memory we needed to reduce
the size of the environmental databases BFD and MGnify, as
both databases together would have required ∼517 GB RAM
for headers and sequences alone.

BFD is a clustered protein database consisting of ∼2.2
billion proteins organized in 64 million clusters. MGnify
(2019_05) contains ∼300 million environmental proteins. We
merged both databases by searching the MGnify sequences
against the BFD cluster representative sequences using MM-
seqs2. Each MGnify sequence with a sequence identity of
>30% and a local alignment that covers at least 90% of its
length is assigned to the respective BFD cluster. All unas-
signed sequences are clustered at 30% sequence identity and
90% coverage (--min-seq-id 0.3 -c 0.3 --cov-mode 1 -s
3) and merged with the BFD clusters, resulting in 182 million
clusters. In order to reduce the size of the database we fil-

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.08.15.456425doi: bioRxiv preprint

38

6

tered each cluster keeping only the 10 most diverse sequences
using (mmseqs filterresult --diff 10). This reduced the
total number of sequences from 2.5 billion to 513 million, thus
requiring only 84 GB RAM for headers and sequences.
ColabFoldDB We built ColabFoldDB by expanding the
BFD/MGnify with metagenomic sequences from various en-
vironments. To update the database, we searched the pro-
teins from the SMAG (eukaryotes) [14], MetaEuk (eukary-
otes) [13], TOPAZ (eukaryotes) [15], MGV (DNA viruses) [16],
GPD (bacteriophages) [17] and updated version of MetaClust
[17] against the BFD/MGnify centriods using MMseqs2 and
assigned each sequence to the respective cluster if they have
a 30% sequence identity at a 90% sequence overlap (-c 0.9
–cov-mode 1 –min-seq-id 0.3). All remaining sequences
were clustered using MMseqs2 cluster -c 0.9 –cov-mode
1 –min-seq-id 0.3 and appended to the database. We re-
move redundancy per cluster by keeping the most 10 diverse
sequences using (mmseqs filterresult --diff 10). The fi-
nal database consists of 209,335,865 million representative se-
quences and 738,695,580 members. See “Data availability” for
input files. We extracted the MMseqs2 search workflow used
in the server (“MSA generation by MMseqs2”) into a stan-
dalone script colabfold_search.sh and provide it together
with the databases.
Template information AlphaFold2 searches with HHsearch
through a clustered version of the PDB (PDB70 [8]) to find
the 20 top ranked templates. In order to save time, we use
MMseqs2 [10] to search against the PDB70 cluster represen-
tatives as a prefiltering step to find candidate templates. This
search is also done as part of the MMseqs2 API call on our
server. Only the top 20 target templates according to E-value
are then aligned by HHsearch. The accepted templates are
given to AlphaFold2 as input features. This alignment step is
done in the ColabFold client and therefore requires the subset
of the PDB70 containing the respective HMMs. The PDB70
subset and the PDB mmCIF files are fetched from our server.
For benchmarking, no templates are given to ColabFold.
Custom MSAs ColabFold allows researchers to upload their
own MSAs. Any kind of alignment tool can be used to gener-
ate the MSA. The uploaded MSA can be provided in aligned
FASTA, A3M, STOCKHOLM or Clustal format. We con-
vert the respective MSA format into A3M format using the
reformat.pl script from the HH-suite [8].
Modeling of protein-protein complexes Baek et al. [3]
show that RoseTTAFold is able to model complexes, despite
being trained only on single chains. This is done by provid-
ing a paired alignment and modifying the residue index. The
residue index is used as an input to the models to compute
positional embeddings. In AlphaFold2, we find the same to be
true, although surprisingly the paired alignment is often not
needed (Fig. 2c). AlphaFold2 uses relative positional encod-
ing with a cap at |i−j| ≥ 32. Meaning, any pair of residues
separated by 32 or more are given the same relative positional
encoding. By offsetting the residue index between two proteins
to be > 32, AlphaFold2 treats them as separate poly-peptide
chains. ColabFold integrates this for modeling complexes.

For homo-oligomeric complexes (Fig. 3a), the MSA is
copied multiple times for each component. Interestingly, it

was found that providing a separate MSA copy (padding by
gap characters to extend to other copies) to work significantly
better than concatenating left-to-right.

For hetero-oligomeric complexes (Fig. 3b), a separate MSA
is generated for each component. The MSA is paired according
to the chosen pair_mode (“MSA pairing for complex predic-
tion”). Since pLDDT is only useful for assessing local struc-
ture confidence, we use the fine-tuned model parameters to
return the PAE for each prediction. As illustrated in Sup-
plementary Fig. 6, the inter-PAE (predicted aligned error)
or the predicted TM-score (derived from PAE) can be used to
rank and assess the confidence of the predicted protein-protein
interaction.
MSA pairing for complex prediction A paired MSA helps
AlphaFold2 to predict complexes more accurately only if or-
thologous genes are paired with each other. We followed a
similar strategy as Bryant et al. [21] to pair sequences accord-
ing to their taxonomic identifier. For the pairing we search
each distinct sequence of a complex against the UniRef100
using the same procedure as described in “MSA generation”.
We return only hits that cover all complex proteins within one
species and pair only the best hit (smallest e-value) with an
alignment that covers the query to at least 50%. The pairing
is implemented in the new MMseqs2 module pairaln.

For prokaryotic protein prediction, we additionally imple-
mented the protocol described in [3] to pair sequences based
on their distances in the genome as predicted from the UniProt
accession numbers.
Taxonomic labels for MSA pairing To pair MSAs for com-
plex prediction, we retrieve for each found UniRef100 member
sequence the taxonomic identifier from the NCBI taxonomy
[27]. The taxonomic labels are extracted from the lowest com-
mon ancestor field (“common taxon ID”) of each UniRef100
sequence from the uniref100.xml (2021_03) file.
Complex benchmark We compare predictions of five
CASP14 complex targets (H1045, H1046, H1047, H1065,
H1072) and 32 targets from Ovchinnikov et al. [22] to their
native structures using MM-align [28] and extract TM-scores.
We used colabfold_batch with BFD/MGnify and Colab-
FoldDB to predict structures in three different modes: (1)
without MSA pairing, (2) with MSA pairing as described in
“MSA pairing for complex prediction” and (3) with MSA pair-
ing and also adding unpaired sequences. Models are ranked
by pTMscore predicted by AlphaFold2.
Avoid recompiling AlphaFold2 models The AlphaFold2
models are compiled using JAX [29] to optimize the model
for specific MSA or template input sizes. When no templates
are provided, we compile once and, during inference, replace
the weights from the other models, using the configuration
of model 5. This saves 7 minutes of compile time. When
templates are enabled, model 1 is compiled and weights from
model 2 are used, model 3 is compiled and weights from models
4 and 5 are used. This saves 5 minutes of compile time. If
the user changes the sequence or settings, without changing
the length or number of sequences in the MSA, the compiled
models are reused without triggering recompilation.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.08.15.456425doi: bioRxiv preprint

39

7

Avoid recompiling during batch computation In order
to avoid AlphaFold2 model recompilation for every protein
AlphaFold2 provides a function to add padding to the input
MSA and templates called make_fixed_size. However, this is
not exposed in AlphaFold2. We used the function in our batch
notebook as well as in our command line tool colabfold_batch,
in order to maximize GPU utilization and minimize the need
of model recompilation. We sort the input queries by sequence
length and process them in ascending order. We pad the input
features by 10% (by default). All sequences that lie within the
query length and an additional 10% margin do not require to
be recompiled, resulting in a large speed up for short proteins.
Speed-up of predictions through early stop AlphaFold2
computes five models. We noted that for prediction of high
certainty (> 85 pLDDT), all five models would often produce
structures of very similar confidence. In order to speed up
the computation we added a parameter to colabfold_batch
to define an early stop criterion that halts additional model
inferences if a given pLDDT or pTMscore threshold is reached.
Recycle count AlphaFold2 improves the predicted protein
structure by recycling (by default) 3 times, meaning the pre-
diction is fed multiple times through the model. We exposed
the recycle count as a customizable parameter as additional
recycles can often improve a model at the cost of a longer run-
time. We also implemented an option to specify a tolerance
threshold to stop early. For some designed proteins without
known homologous sequences, this helped to fold the final pro-
tein (Supplementary Fig. 7).
Sampling of diverse structures To reduce memory require-
ments, only a subset of the MSA is used as input to the model.
Alphafold2, depending on model configuration, subsamples
the MSA to a maximum of 512 cluster centers and 1024 “extra”
sequences. Changing the random seed can result in different
cluster centers and thus different structure predictions. Colab-
Fold provides an option to iterate through a series of random
seeds, resulting in structure diversity. Further structure di-
versity can be generated by using the original or fine-tuned
(use_ptm) model parameters and/or enabling (is_training)
to activate the stochastic (dropout) part of model. Enabling
the latter, can be used to sample an ensemble of models for
the uncertain parts of the structure prediction.
Proteome benchmark We predict the proteome of the ar-
chaeon Methanocaldococcus jannaschii. Of the 1787 proteins
we exclude the 25 proteins longer than 1000 residues, leaving
1762 proteins of 268 aa average length. We search in 58 min us-
ing 100 threads on a system with 2x64-core AMD EPYC 7742
CPUs and 2TB RAM using colabfold_search.sh against the
ColabFoldDB (“ColabFoldDB”), though we reduce the sensi-
tivity to the considerably faster -s 6 setting. We then predict
the structures on a single Nvidia RTX 3090 with 28 GB RAM
in 39.6 h using only MSAs (no templates). For each query
we stop early if any model reaches a pLDDT of at least 85.
We extrapolate the runtime for no-early-stopping by multi-
plying the runtime of model 3 for each protein to five models,
yielding an overall speedup of factor 2.8. We observe a high
structural agreement with an median TM-Score of 0.986 and
mean TM-score of 0.953 when comparing the best predictions
of ColabFold and AlphaFold2 with TMalign [30].

Benchmark with CASP14 targets We compare the
AlphaFold-Colab and the AlphaFold2 (commit b88f8da)
against ColabFold (commit 2b49880, Fig. 2) using all
CASP14 [2] targets. ColabFold uses UniRef30 (2021_03) [31]
and the BFD/Mgnify or ColabFoldDB. AlphaFold-Colab uses
the UniRef90 (2021_03), MGnify (2019_05) and the small
BFD. AlphaFold2 uses the full_dbs preset with and de-
fault databases downloaded with the download_all_data.sh
script. The 69 targets contain 96 domains, among these are
20 FM-targets with 28 domains. We compared the predictions
against the experimental structures using TMalign [30].
Measuring time for CASP14 and complex targets All
ColabFold and AlphaFold2 benchmarks were executed on sys-
tems with 2x16 core Intel Gold 6242 CPUs with 192 GB RAM
and 4x Nvidia Quadro RTX5000 GPUs. Only one GPU was
used in each individual run.

ColabFold was executed using colabfold_batch. The MM-
seqs2 server which computes MSAs for ColabFold has 2x14
core Intel E5-2680v4 CPUs and 768 GB RAM. Each gener-
ated MSA was processed by a single CPU-core. Runtimes
were computed from server logs.

Runtimes for AlphaFold2 were extracted from the features
entry of generated timings.json file. Where indicated with
multicore, AlphaFold2 was used with the default 8 CPU cores
for HMMer and 4 CPU cores for HHblits to process one query.
For a fair comparison, AlphaFold2 was modified to allow HM-
Mer and HHblits to access one CPU core.

AlphaFold-Colab was executed in the browser using a
Google Colab Pro account. Times for homology search were
taken from the log output of the “Search against genetic
databases” cell in the notebook. The JackHMMer search uses
8 threads.

DATA AVAILABILITY

ColabFold databases are available at
colabfold.mmseqs.com.
Input databases used for building ColabFold databases:
UniRef30: uniclust.mmseqs.com
BFD: bfd.mmseqs.com
MGnify: ftp.ebi.ac.uk/pub/databases/metagenomics/
peptide_database/2019_05
PDB70: wwwuser.gwdg.de/~compbiol/data/hhsuite/
databases/hhsuite_dbs
MetaEuk: wwwuser.gwdg.de/~compbiol/metaeuk/2019_11/
MetaEuk_preds_Tara_vs_euk_profiles_uniqs.fas.gz
SMAG: www.genoscope.cns.fr/tara/localdata/data/
SMAGs-v1/SMAGs_v1_concat.faa.tar.gz
TOPAZ: osf.io/gm564
MGV: portal.nersc.gov/MGV/MGV_v1.0_2021_07_08/mgv_
proteins.faa
GPD: ftp.ebi.ac.uk/pub/databases/metagenomics/
genome_sets/gut_phage_database/GPD_proteome.faa

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.08.15.456425doi: bioRxiv preprint

40

8

REFERENCES

[23] Kluyver, T. et al. Jupyter notebooks - a publishing format for re-
producible computsteinegger2018ational workflows. In Positioning and
Power in Academic Publishing: Players, Agents and Agendas, 87–90
(IOS Press, 2016).

[24] Eastman, P. et al. PLoS Comput. Biol. 13, 1–17 (2017).
[25] Krivov, G. G. et al. Proteins 77, 778795 (2009).

[26] Suzek, B. E. et al. Bioinformatics 31, 926–932 (2015).
[27] Federhen, S. Nucleic Acids Res. 40, D136–D143 (2012).
[28] Mukherjee, S. & Zhang, Y. Nucleic Acids Res. 37, e83–e83 (2009).
[29] Bradbury, J. et al. JAX: composable transformations of

Python+NumPy programs (2018).
[30] Zhang, Y. & Skolnick, J. Nucleic Acids Res. 33, 2302–2309 (2005).
[31] Mirdita, M. et al. Nucleic Acids Res. 45, D170–D176 (2017).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprintthis version posted October 29, 2021. ; https://doi.org/10.1101/2021.08.15.456425doi: bioRxiv preprint

41

1

ColabFold - Making protein folding accessible to all
Milot Mirdita1,∗, Konstantin Schütze2, Yoshitaka Moriwaki3,4, Lim Heo5,
Sergey Ovchinnikov6,7,∗ and Martin Steinegger2,8,∗
1 Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, Göttingen,
Germany. 2 School of Biological Sciences, Seoul National University, Seoul, South Korea. 3 Department of
Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
4 Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
5 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824,
USA. 6 JHDSF Program, Harvard University, Cambridge, MA 02138, USA. 7 FAS Division of Science, Harvard
University, Cambridge, MA 02138, USA. 8 Artificial Intelligence Institute, Seoul National University, Seoul,
South Korea * These authors contributed equally and are ordered alphabetically.
Contact: milot.mirdita@mpibpc.mpg.de, so@fas.harvard.edu, martin.steinegger@snu.ac.kr

0

50

100

150

T1024
T1098
T1025
T1050
T1073
T1080
T1100
T1089
T1052
T1091
T1028
T1056
T1070
T1067
T1061
T1032
T1036s1
T1058
T1034
T1053
T1054
T1047s1
T1037
T1026
T1057
T1030
T1047s2
T1045s1
T1049
T1060s2
T1065s2
T1068
T1042
T1041
T1060s3
T1035
T1048
T1045s2
T1064
T1031
T1055
T1040
T1078
T1065s1
T1029
T1046s1
T1062
T1074
T1033
T1027
T1038
T1046s2
T1039
T1043
T1076
T1095
T1094
T1092
T1093
T1079
T1096
T1082
T1088
T1090
T1083
T1087
T1101
T1099
T1084

R
u

n
tim

e
 in

 M
in

u
te

s

Time for Model MSAs

Supplementary Figure 1. Time for inference vs MSA generation in AlphaFold2 pipeline (multi-core MSA
generation) 69 CASP14 targets were predicted using AlphaFold2 settings. Executed on systems with 2x16-core Intel
Xeon 6242 with 192GB RAM and 4x NVIDIA RTX5000 (only one used for model inference).

42

2

CASP14 Ovchinnikov (2014)

Left ColabFold-BFD/MGnify Right ColabFold-ColabfoldDB

0.25

0.50

0.75

1.00

H1046

H1045

H1065

H1072

H1047

3PNL_A_3PNL_B

2Y69_A_2Y69_B

2Y69_A_2Y69_C

1BXR_A_1BXR_B

1W85_A_1W85_B

1QOP_A_1QOP_B

1EP3_A_1EP3_B

1TYG_B_1TYG_A

1RM6_A_1RM6_B

1RM6_A_1RM6_C

2VPZ_A_2VPZ_B

2NU9_A_2NU9_B

3IP4_A_3IP4_C

1EFP_A_1EFP_B

1RM6_B_1RM6_C

1I1Q_A_1I1Q_B

3MML_A_3MML_B

2ONK_A_2ONK_C

3RRL_A_3RRL_B

3IP4_A_3IP4_B

3RPF_A_3RPF_C

3G5O_A_3G5O_B

2WDQ_C_2WDQ_D

1ZUN_A_1ZUN_B

3IP4_B_3IP4_C

3OAA_H_3OAA_G

2D1P_B_2D1P_C

2Y69_B_2Y69_C

4HR7_A_4HR7_B

3A0R_A_3A0R_B

1IXR_A_1IXR_C

T
M

-s
c
o

re

paired unpaired+paired
 Model rank 1 2 3 4 5

CASP14 Ovchinnikov (2014)

Left ColabFold-BFD/MGnify Right ColabFold-ColabfoldDB

0.4

0.6

0.8

1.0

H1046

H1045

H1065

H1072

H1047

3PNL_A_3PNL_B

2Y69_A_2Y69_C

1BXR_A_1BXR_B

2Y69_A_2Y69_B

1W85_A_1W85_B

1QOP_A_1QOP_B

1TYG_B_1TYG_A

1EP3_A_1EP3_B

1RM6_A_1RM6_B

1RM6_A_1RM6_C

2NU9_A_2NU9_B

2VPZ_A_2VPZ_B

1EFP_A_1EFP_B

3IP4_A_3IP4_C

1RM6_B_1RM6_C

1I1Q_A_1I1Q_B

3MML_A_3MML_B

2ONK_A_2ONK_C

3RRL_A_3RRL_B

3IP4_A_3IP4_B

3RPF_A_3RPF_C

3G5O_A_3G5O_B

2WDQ_C_2WDQ_D

1ZUN_A_1ZUN_B

3IP4_B_3IP4_C

3OAA_H_3OAA_G

2D1P_B_2D1P_C

2Y69_B_2Y69_C

4HR7_A_4HR7_B

1IXR_A_1IXR_C

3A0R_A_3A0R_B

T
M

-s
c
o

re

paired unpaired
 Model rank 1 2 3 4 5

Supplementary Figure 2. Paired MSA complex prediction accuracy vs. unpaired and unpaired+paired.

43

3

Supplementary Figure 3. Anecdotal example of improved prediction through MSA filtering. MSA coverage
(left) and pLDDTs of predicted ColabFold models (right) for CASP14 target T1038 with two different filtering settings:
Top: Single MSA filtering step with HHblits filtering algorithm and --diff 3000 setting. Middle: Zoomed in view of
first 100 sequences in top. Bottom: Three step MSA filtering as described in methods.

44

4

1

10

100

1000

10000

1 10 100 1000 10000

ColabFold with BFD/MGnify

C
o

la
b

F
o

ld
 w

ith
 C

o
la

b
fo

ld
D

B

Supplementary Figure 4. Comparison of Enrichment in PFAM Comparison of homology search hits found from
selected PFAM sequences against BFD/MGnify and ColabFoldDB. We select 2439 PFAM 34.0 entries that have less than
30 sequences in their Pfam-A.full entry. In each of these PFAM families we select from the Pfam-A.seed the longest
sequence. We search this sequence with the ColabFold MMseqs2 workflow against the BFD/MGnify and ColabFoldDB.
From the MSAs we cut the PFAM domains and note how many sequences cover the domain by at least 75%.

45

5

FM-targets CASP14 Other targets

0.4

0.6

0.8

1.0

T1070-D2
T1094-D2
T1037-D1
T1061-D3
T1070-D4
T1096-D1
T1061-D1
T1049-D1
T1041-D1
T1074-D1
T1090-D1
T1038-D1
T1038-D2
T1039-D1
T1094-D1
T1031-D1
T1096-D2
T1042-D1
T1061-D2
T1070-D3
T1070-D1
T1027-D1
T1040-D1
T1047s1-D1
T1029-D1
T1064-D1
T1033-D1
T1043-D1
T1076-D1
T1052-D2
T1089-D1
T1053-D1
T1050-D1
T1046s2-D1
T1024-D1
T1036s1-D1
T1052-D3
T1079-D1
T1100-D2
T1050-D2
T1056-D1
T1065s2-D1
T1024-D2
T1068-D1
T1045s1-D1
T1091-D4
T1091-D1
T1028-D1
T1034-D1
T1050-D3
T1058-D2
T1057-D1
T1046s1-D1
T1060s3-D1
T1078-D1
T1047s2-D1
T1052-D1
T1092-D2
T1065s1-D1
T1091-D2
T1087-D1
T1026-D1
T1025-D1
T1101-D1
T1045s2-D1
T1095-D1
T1101-D2
T1082-D1
T1058-D1
T1047s2-D2
T1053-D2
T1060s2-D1
T1067-D1
T1093-D2
T1093-D3
T1054-D1
T1091-D3
T1035-D1
T1084-D1
T1055-D1
T1099-D1
T1030-D2
T1092-D1
T1093-D1
T1083-D1
T1030-D1
T1100-D1
T1048-D1
T1088-D1
T1098-D1
T1073-D1
T1080-D1
T1032-D1
T1047s2-D3
T1098-D2
T1062-D1

T
M

-s
c
o

re

AlphaFold2 ColabFold-BFD/MGnify Colabfold-BFD/MGnify No-Comp-Bias

Supplementary Figure 5. Disabling composition-bias and masking in MMseqs2 result in better accuracy
for some CASP14 targets We turned off two MMseqs2 mechanisms for false positive suppression (--comp-bias-corr
0 --mask-profile 0) and reran our CASP14 benchmark. Target T1084-D1 (highlighted) achieves now a TM-score of
0.891210 instead of 0.456540 in default search mode.

46

6

Supplementary Figure 6. Hetero-dimer 1:1 Only one of the five models predicted for CASP14 target H1065
has a high agreement with its native structure during unpaired complex prediction. Although the pLDDT scores are
nearly identical (shown in the middle with colored chains), the inter-PAE (bottom) is significantly lower (meaning more
confident) for the correctly predicted complex (rank 1 vs rank 2). This demonstrates the utility of PAE (and the derived
pTMscore) in ranking complexes.

47

7

Supplementary Figure 7. Example of additional recycle steps improving prediction Occasionally, increasing
the number of recycles can help find a well predicted structure. For this de-novo designed transmembrane protein
(Vorobieva et al. Science, 371(6531), 2021), 15 recycle iterations were needed to produce structure with high pLDDT.

48

5 Further contributions

5.1 Protein-level assembly increases protein sequence recovery from
metagenomic samples manyfold

Publication:

Protein-level assembly increases protein sequence recovery from metagenomic samples manyfold

M. Steinegger†, M. Mirdita, J. Söding†

(†) corresponding author

Nature Methods (2019), 16, 603–606.
Cited 86 times since 07/2019.

Code and software availability

Plass is available as free open source software (GPLv3) at plass.mmseqs.com.

Author contributions

M.S. & J.S. designed research. M.S. & M.M. developed code and performed analyses. M.S., M.M. & J.S.
wrote the manuscript.

Note

Due to licensing issues of the final manuscript, only the last version of the preprint is included here.

49

https://plass.mmseqs.com

Protein-level assembly increases protein sequence recovery from
metagenomic samples manyfold

Martin Steinegger,1, 2, 3, 4 Milot Mirdita,1 and Johannes Söding1, 4

1Quantitative and Computational Biology Group, Max-Planck Institute
for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany

2Department of Chemistry, Seoul National University, Seoul, Korea
3Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine,

Johns Hopkins School of Medicine, Baltimore, MD, USA
4Emails: martin.steinegger@mpibpc.mpg.de; soeding@mpibpc.mpg.de

The open-source de-novo Protein-level assembler Plass (https://plass.mmseqs.org) as-
sembles six-frame-translated sequencing reads into protein sequences. It recovers 2
to 10 times more protein sequences from complex metagenomes and can assemble
huge datasets. We assembled two redundancy-filtered reference protein catalogs, 2
billion sequences from 640 soil samples (SRC) and 292 million sequences from 775
marine eukaryotic metatranscriptomes (MERC), the largest free collections of protein
sequences.

A major limitation of metagenomic studies is that often a large
fraction of short reads (80% − 90% in soil [1]) cannot be as-
sembled into contiguous sequences (contigs) long enough to
allow for the prediction of gene and protein sequences. Be-
cause low-abundance genomes are difficult to assemble, the5

unassembled reads contain a disproportionately large part of
the genetic diversity and probably an even greater share of bi-
ological novelty, which is mostly lost for subsequent analyses.

To decrease this loss and be less dependent on reference
genomes, gene-centric approaches have been developed. As-10

semblies of hundreds of samples from one environment are
pooled, genes in the contigs are predicted and clustered at
∼ 95% identity into gene catalogs [2–4]. Gene abundances in
each sample are found by mapping reads to the reference gene
clusters. In this way, the functional and taxonomic compo-15

sition of metagenomic samples and their dependence on en-
vironmental parameters can be studied. Also, genome-based
analyses are enabled by abundance binning, which finds sets
of catalog genes with correlated abundances across many sam-
ples and hence likely to belong to the same genome [5, 6].20

State-of-the-art assemblers for metagenomic short reads [7–
9] find contigs as paths through a de-Bruijn graph. This graph
has a node for each k-mer word in the reads and edges between
k-mers occurring consecutively in a read. On metagenomic
data, de-Bruijn assemblers suffer from a limited sensitivity-25

selectivity trade-off: k-mers have to be long and specific to
avoid the graph exploding with false edges. But long k-mers
lack sensitivity when intra-population diversities are high and
overlapping reads often contain mismatches due to single nu-
cleotide polymorphisms (SNPs). Whatever k is chosen, k-mers30

will be too short to be specific enough in genomic regions con-
served between species and too long to be sensitive enough in
regions of high intra-population diversity. This dilemma leads
to short, fragmented assemblies.

Most SNPs in microbial populations lead to no change or35

conservative substitutions in the encoded protein sequences
(Supplementary Fig. 1). ORFome [10] and SFA-SPA [11]
therefore proposed to assemble protein instead of nucleotide

sequences. But they are too slow to run on large metagenomes
and as de-Bruijn assemblers they suffer from the same limited40

specificity-sensitivity trade-off.
In addition to avoiding mismatches, assembling protein se-

quences also circumvents the major issue in genome assem-
bly, sequence repeats, because proteins have much fewer and
shorter repeats. Furthermore, chimerical assemblies between45

similar protein sequences (say ≥ 97% sequence identity) are
much less problematic in that they do not lead to false conclu-
sions about which genes occur together in a genome. There-
fore, protein-level assembly also increases coverage by assem-
bling sequences that cannot be assembled on the nucleotide50

level due to the risk of chimeric assemblies.
Plass uses a novel graph-free, greedy iterative assembly

strategy (Fig. 1) that, together with its linear-time all-versus-
all overlap computation (steps 2-4) [12], scales linearly in run-
time and memory. This permits the overlap-based assem-55

bly of huge read sets on a single server. Most importantly,
by computing full alignment overlaps instead of only k-mer
matches, Plass overcomes the specificity-sensitivity limitation
of de-Bruijn assemblers, allowing it to recover several times
more proteins sequences from complex metagenomes.60

Plass needs to keep the protein sequences in main memory
to avoid random disk access (step 4). It therefore needs 1
byte of memory for every amino acid translated from the in-
put reads, or ∼500GB RAM to assemble 2-3 billion 2×150 bp
reads. In comparison, memory requirements and runtimes of65

overlap graph assemblers scale superlinearly with the num-
ber of reads. Plass therefore combines the high specificity-
sensitivity of overlap graph assemblers with the linear runtime
and memory scaling of de-Bruijn graph assemblers.

Due to our greedy assembly approach, the most critical as-70

pect to analyze is what fraction of the sequences are wrongly
assembled (precision). To challenge Plass, we sought two hard
datasets containing many related genomes, as this increases
the risk of chimeric assemblies [13].

The first set consists of 96 single-cell assembled genomes of75

Prochlorococcus [14] taken from a single sample of seawater.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/386110doi: bioRxiv preprint

50

2

FIG. 1. Plass workflow. (1) Merge overlap-
ping read pairs and translate all potential ORFs
with ≥45 codons into protein sequences. (2) For
each of these N sequences, select the m k-mers
with the lowest hash values (default: m = 60,
k = 14, reduced alphabet size = 13). Write
the mN k-mers into an array together with se-
quence identifiers. (3) Sort the array by k-mer
to find for each k-mer the set of sequences con-
taining it, and assign the longest sequence as
the set’s center. (4) Resort the array by cen-
ter sequence into groups and gaplessly align the
center sequence to each group member (< mN
alignments). Remove sequences with insufficient
E-value (default: > 10−5) from the group. (5)
Iteratively extend each center sequence by the
remaining group member with highest sequence
identity (default: ≥ 90%) until all group mem-
bers have been processed. (6) Iterate steps 2 to 5
(default: 12 times). (7) Remove sequences trans-
lated in the wrong frame using a neural network.

1

4
3
2

5

(2) Select m k-mers per sequence ⇾ m×N k-mers

1

4
3 2 5

1

4

3

2

5

1

2

3

*
*

*

*

*

(5) Extend center sequences with best matches
 satisfying E-value and similarity thresholds

1

4

3 2

5

2

3

*

*

*

*

same center
sequences

(4) Merge sets with same center sequences
 and gaplessly align all sequences to center

(1) Translate ORFs in reads ⇾ protein sequences

(6) Iterate through steps (2-5)

*

5

4

4

3 2

5

2

3

*

*

*

(3) Write each k-mer with its sequence ID into an array.
 Sort array by k-mer in O(mN). From each set with
 same k-mer, select longest sequence as center .

ID

N=5, m=2

(7) Remove sequences translated in wrong frame

These cyanobacteria are known for their high intra-species ge-
netic diversity. The second, very hard set contains 738 single-
cell assembled genomes, 489 of which are Prochlorococcus, 50
are Synechococcus, and 199 are genomes from a diverse range80

of prokaryotic and viral groups [15].
As ground truth reference we predicted protein sequences

on the genomes using Prodigal [16]. We simulated 2× 150bp
reads with a mean coverage of 1 for each genome.

We assembled protein sequences from these nucleotide reads85

using Plass and SFA-SPA [11]. We assembled nucleotide con-
tigs with three widely used nucleotide assemblers, Megahit
[8], metaSPAdes [9], and Velvet [7], the first two of which were
among the top assemblers in recent benchmarks [13, 17, 18].
We predicted protein sequences in their contigs using Prodi-90

gal and, to ignore unassembled reads, we removed protein se-
quences with less than 100 residues.

The assembly sensitivity is the fraction of amino acids in
the reference proteins that have a sequence match with at
least X% sequence identity with an assembled sequence. To95

avoid giving too much weight to highly conserved proteins,
we redundancy-filtered the reference proteins for the sensitiv-
ity analysis using Linclust [12] with 95% sequence identity.
The sensitivity is similar for the three nucleotide assemblers,
whereas Plass assembles up to 56% more residues correctly100

than the next best tool, metaSPAdes (Fig. 2a, top).
The Plass-assembled proteins cover over 80% of the Megahit

and metaSPAdes assemblies at 99% minimum sequence iden-
tity, whereas the latter cover only around 40% of the Plass
assembly at this cut-off (Supplementary Fig. 3).105

The precision is the fraction of assembled amino acids that
have at least X% sequence identity with an assembled se-
quence.

Since ORFs are predicted on the nucleotide assemblies using
the same tool used to define the reference protein sequences110

on the single-cell genomes, whereas Plass uses a very different
approach (Online Methods), the benchmark is biased against
Plass. Nevertheless, Plass achieves the same precision below
X% = 97%, where

all assemblers except SFA-SPA achieve similar precision115

(Fig. 2a, middle). The 2% − 7% of missing precision at
X% = 90% are mainly caused by mispredicting open reading
frames (ORFs) in the assembled sequences or on the single-cell
genomes.

Plass’ neural network filter (Online Methods) for suppress-120

ing proteins translated in wrong frames raises the preci-
sion at X% = 90% on the very hard set by a few percent
(Supplementary Fig. 3b).

Plass filters out sequences translated from wrong ORFs
based on their amino acid and dipeptide composition, which125

differs from correctly translated, real protein sequences. We-
trained a neural network using as features the20length-
normalized amino acid frequencies of the sequence and
the62length-normalized dipeptide frequencies in a reduced
alpha-bet of size6. Our fully connected network has56input130

nodes,a hidden layer of96nodes, and a single output node.
However, Plass produces much fewer proteins at 99% se-

quence identity than the nucleotide assemblers, particularly
on the very hard data set (Fig. 2b). Increasing the sequence
identity threshold for merging sequence fragments from 90%135

to 97% (pink trace) markedly improves sensitivity and preci-
sion on both datasets, but still much fewer proteins match a
reference protein with identity of ≥ 97%.

To test the impact of the assembly of chimeric protein se-
quences on the quality of functional annotations, we annotated140

each protein sequence assembled from the simulated reads and
each reference protein from the single-cell genomes with an or-
thologous group using the eggNOGmapper [19]. We compared
the eggNOG annotation of each assembled protein sequence
with the annotation of the best-matching sequence found in145

the reference protein set and scored a true positive (TP) if
annotations matched and a false positive (FP) otherwise. As-
semblies that can not be assigned to a reference are FPs. De-
spite Plass’ lower assembly precision, annotations of its pro-
teins achieve lower false discovery rates (FP/(TP+FP)) than150

those of the other assemblers, on both data sets (Fig. 2, bot-
tom). We believe this is due to (1) the high conservation of

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/386110doi: bioRxiv preprint

51

3

10

20

30

40

50

60

S
e

n
s
iti

v
ity

a b

100

80

60

40

20

90 91 92 93 94 95 96 97 98 99

Sequence identity in %

P
re

c
is

io
n

MEGAHIT

METASPADES

PLASS

PLASS−97

SFASPA

VELVET

90 91 92 93 94 95 96 97 98 99

Sequence identity in %

0

10

20

F
D

R
 F

u
n

c
tio

n

0

10

20

FIG. 2. Plass assembles many times more protein sequences
from various environments than the state of the art. (a)
Sensitivity and precision of protein sequences assembled from syn-
thetic reads sampled (a) from 96 assembled genomes of single
Prochlorococcus cells [14] and (b) from 738 single-cell assembled
genomes of diverse marine prokaryotes and viruses [15]. For the
three nucleotide assemblers we predicted protein sequences on their
assembled contigs with Prodigal [16]. Top: Sensitivity is the frac-
tion of reference sequence amino acids that have are aligned to an
assembled protein sequence with a sequence identity at least the
value on the x-axis. Middle: Precision is the fraction of assembled
amino acids that are aligned to a reference protein with sequence
identity at least the value on the x-axis. Bottom: False discovery
rate (1−precision) of orthology-based functional annotations of as-
sembled proteins. Colors and order of tools as in previous legend.

molecular and cellular functions at sequence identities > 90%
(above 60% identity, 90% of proteins conserve of all four EC
number digits [20]), (2) the limited ability of homology-based155

function annotation tools to predict the effects of point mu-
tations, and (3) the positive impact of more complete protein
sequences on the prediction accuracy.

On real metagenomic datasets, no ground-truth set of ref-
erence sequences exists. Therefore precision can not be mea-160

sured, but sensitivity in terms of the total number of assem-
bled amino acids can be compared. We used four representa-
tive test sets: a single 11.3Gbp sample from the human gut
[21], 775 samples with 15Tbp of eukaryotic metatranscrip-
tome reads from TARA [22], a 31Gbp sample from Hopland165

grass soil (Brodie et al., unpublished), and 538Gbp of reads
in 12 samples from the same project to test the benefits of
co-assembly (Fig. 2b-e). All datasets contain 2×150bp over-
lapping paired-end sequences, except the metatranscriptomics
sample, which has 2× 102bp reads.170

We compared the Marine Eukaryotic Reference Catalog

(MERC) assembled by Plass to the Marine Atlas of Tara
Oceans Unigenes (MATOU) [22] assembled by Velvet. The
gut and soil datasets could not be assembled with Velvet due
to insufficient memory, and we could only compare Plass to175

Megahit and metaSPAdes. The twelve Hopland soil datasets
with 1.5 billion reads could be co-assembled in one go by Plass.
Megahit raised an out-of-memory exception, therefore we as-
sembled each sample separately and pooled the contigs. For
human gut, Hopland soil, and the soil co-assembly, Plass took180

4h 20min, 6h 20min and 360h respectively, while Megahit took
3h, 21h 30min and 200h respectively.

On the gut sample, Plass assembled 32% more amino acids
than Megahit/Prodigal at a length cut-off of 100 amino acids
(Fig. a-d, top). The marine eukaryotic reference catalog185

(MERC) assembled by Plass is 2.8-fold larger than MATOU
assembled by Velvet, and on the Hopland soil data Plass as-
sembled 2.7 times more than Megahit. In the soil co-assembly,
Plass co-assembled 10 times more amino acids than the pooled
assembly of Megahit. The increase of the ratio with se-190

quence length in the top of Fig. 2d,e indicates that the se-
quences assembled by Plass are significantly longer than those
of Megahit/Prodigal. These gains in recovered protein se-
quences are similar at all levels of redundancy up to 80% se-
quence identity (bottom half of Fig. 2b-e).195

We wanted to know how strongly the improved sensitivity of
Plass affects the apparent taxonomic composition. We imple-
mented the 2bLCA protocol (Supplementary Fig. 4) [23] to
map each read via its translated ORF to an assembled protein
sequence and each protein sequence to a node in the taxonomic200

tree. By transitivity this maps reads to taxonomic nodes.
The absolute number of reads mapped to various taxonomic
nodes (Supplementary Fig. 5a) is around twice higher for
Plass than for Megahit/Prodigal. Remarkably, the distribu-
tion over taxa can deviate quite substantially between the as-205

sembly methods (Supplementary Fig. 5b), which could be
caused be a systematic dependence of the assembly sensitivity
on genomic coverage (Supplementary Fig. 5c).

Plass is well suited to large-scale applications. We assem-
bled a Soil Reference protein Catalog (SRC) from 18Tbp of210

reads from all 640 soil samples that were sequenced between
01/2016 and 02/2018 using Illumina HiSeq or NovaSeq with
2× 150 bp paired-end reads. Each sample was assembled on a
server with 2×8 cores and 128GB memory, resulting in 12 bil-
lion protein sequences after a total runtime of about six weeks215

on 25 servers. We clustered the sequences to 90% sequence
identity at 90% minimum coverage using Linclust [12], result-
ing in 2 billion sequences with an average length of 163 amino
acid residues. Among those, at least 52.3million sequences are
complete, meaning that Plass found the stop codon and the220

earliest possible start codon (Online Methods). This dataset
contains 6.8, 4.0 and 3.9 times more amino acids than the
Uniprot database after redundancy-filtering both databases at
90%, 70% and 50%, respectively (Fig. 3a).

To assess the degree to which the SRC represents the di-225

versity of soil metagenomes, we selected two soil samples not
used for building the SRC, randomly sampled and merged
10 000 overlapping 2 × 150bp read pairs, predicted protein
sequences with Prodigal, and searched with these through the

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/386110doi: bioRxiv preprint

52

4

Human gut

1.0

1.2

1.4

R
at

io

a Marine Eukaryotes

1

2

3b Soil

1

5

10c Soil Cross Assembly

1

25

50d e

0
5

×
10

7
1

×
10

8

200 300 400 500

Length

A
ss

em
bl

ed
 A

m
in

o
A

ci
ds

MEGAHIT
metaSPAdes
PLASS

0
5

×
10

9
1

×
10

10

200 300 400 500

Length

MATOU
PLASS(MERC)

0
3

×
10

8
6

×
10

8

200 300 400 500

Length

MEGAHIT
PLASS

0
5

×
10

9
1

×
10

10

200 300 400 500

Length

MEGAHIT
PLASS

1

1.5

2

R
at

io

1

4

7

1

3

5

1

5

9

1

5

9

0
1

×
10

8
2

×
10

8

50 60 70 80 90

Sequence identity

A
ss

em
bl

ed
 A

m
in

o
A

ci
ds

MEGAHIT
metaSPAdes
PLASS

0
3

×
10

10
6

×
10

10

50 60 70 80 90

Sequence identity

MATOU
PLASS(MERC)

0
1

×
10

9
2

×
10

9

50 60 70 80 90

Sequence identity

MEGAHIT
PLASS

0
1

×
10

10
2

×
10

10

50 60 70 80 90

Sequence identity

MEGAHIT
PLASS

0
5

×
10

10
1

×
10

11

50 70 90

Sequence identity

SRC
Uniprot

50 90 50 90

0.
25

0.
50

0.
75

Mapping seq. id. thr.

R
ea

ds
 M

ap
pe

d
in

 %

SRC
Uniprot

FIG. 3. Plass assembles many times more protein sequences from various environments than the state of the art. (a-d)
Total number of amino acids in redundancy-filtered sets of protein sequences assembled by Plass (red traces) compared to the total number
of amino acids of redundancy-filtered protein sequences predicted by Prodigal on contigs assembled by Megahit (a,c,d: blue) or on contigs
in the eukaryotic metatranscriptomes reference assembly (b: green) [22]. Top half: dependence on the minimum protein sequence length
using a redundancy-filtering with 80% maximum pairwise sequence identity. Bottom half: dependence on the strength of redundancy
filtering for a minimum sequence length of 100 amino acids. Black traces: fold increase in total assembly length by Plass versus the state
of the art. (e) Top half: Fraction of reads sampled from two soil metagenomes (not included in the SRC) that could be mapped with 90%
and 50% minimum sequence identity to a sequence in the SRC or in Uniprot. Bottom Half: Numbers of amino acids in SRC (red) and
Uniprot (turquoise) and their ratio (black) after redundancy-filtering with a maximum pairwise sequence identity of 50%, 70% and 90%.

90%-redundancy-filtered versions of the SRC and the Uniprot,230

using the map workflow of MMseqs2 [24]. Fig. 3b,c shows the
fraction of reads that obtained matches with at least 50% and
90% sequence identity. At 50% threshold, 82.5% and 89.5% of
the soil reads matched to the SRC in the two samples, while
only 62% and 64% matched to the Uniprot.235

The chief limitation of Plass is that, unlike nucleotide as-
semblers, it cannot place the assembled protein sequences into
genomic context. Furthermore, Plass relies on six-frame trans-
lation. It therefore cannot assemble intron-containing eukary-
otic proteins from metagenome data, although, as shown, it240

can assemble eukaryotic proteins from transcriptome data.
Another important drawback is its inability to resolve homolo-
gous proteins with sequence identities above ∼95%, for exam-
ple originating from closely related strains or species. How-
ever, in our tests this had little impact on the accuracy of245

predicted functions (Fig. 2). Also, one can argue that bacte-
rial phenotypes are determined mainly by the complement of
horizontally acquired accessory genes such as virulence factors,
much more so than by minor variations in protein sequences.
Whereas Plass is clearly worse than nucleotide assemblers in250

resolving such variation, it excels at assembling more complete
protein complements of metagenomes.

In conclusion, Plass is well-suited for very large-scale

metagenomic applications, for example to generate reference
protein sequence catalogs for every major type of environment.255

In addition to facilitating metagenomics analyses, these cat-
alogs can be mined for proteins of interest to biotechnology
or pharmacology. They will also improve homology detection,
protein function annotation and protein structure prediction
[25] by enriching multiple sequence alignments with diverse260

homologs.

Methods
Methods, including statements of data availability and ref-

erences, are available in the online version of the paper.

Acknowledgements265

We are grateful to Cedric Notredame and Chaok Seok for hosting
MS at the CRG and SNU for 12 and 30 months, respectively. We thank
Shinichi Sunagawa, Folker Meyer and Alex Sczyrba for helpful discussions
and Titus Brown for his early analysis and detailed feedback on Plass
results. This work was supported by the EU’s Horizon 2020 Framework270

Programme (Virus-X, grant 685778).

Author contributions

MS & JS designed research, MS & MM developed code and performed
analyses, MS, MM & JS wrote the manuscript.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/386110doi: bioRxiv preprint

53

5

[1] Howe, A. C. et al. Proc. Natl. Acad. Sci. U.S.A. 111, 4904–275

4909 (2014).
[2] Li, J. et al. Nat. Biotechnol. 32, 834–841 (2014).
[3] Sunagawa, S. et al. Science 348 (2015).
[4] Xiao, L. et al. Nat. Biotechnol. 33, 1103–1108 (2015).
[5] Nielsen, H. B. et al. Nat. Biotechnol. 32, 822–828 (2014).280

[6] Forslund, K. et al. Nature 528, 262 (2015).
[7] Zerbino, D. & Birney, E. Genome Res. 18, 821–829 (2008).
[8] Li, D. et al. Bioinformatics 31, 1674–1676 (2015).
[9] Nurk, S. et al. Genome Res. 27, 824–834 (2017).
[10] Ye, Y. & Tang, H. J. Bioinform. Comput. Biol. 7, 455–471285

(2009).
[11] Yang, Y. et al. Bioinformatics 31, 1833–1835 (2015).
[12] Steinegger, M. & Söding, J. Nat. Commun. 9, 2542 (2018).
[13] Sczyrba, A. et al. Nat. Methods 14, 1063–1071 (2017).
[14] Kashtan, N. et al. Science 344, 416–420 (2014).290

[15] Berube, P. M. et al. Scientific Data 5, 180154 (2018).
[16] Hyatt, D. et al. BMC Bioinformatics 11, 119 (2010).
[17] Vollmers, J. et al. PloS one 12, e0169662 (2017).
[18] van der Walt, A. J. et al. BMC Genomics 18, 521 (2017).
[19] Huerta-Cepas, J. et al. Mol Biol Evol 34, 2115–2122 (2017).295

[20] Tian, W. & Skolnick, J. Journal of molecular biology 333,
863–882 (2003).

[21] Lee, S. T. M. et al. Microbiome 5, 50 (2017).
[22] Carradec, Q. et al. Nat. Commun. 9, 373 (2018).
[23] Hingamp, P. et al. ISME J. 7, 1678–1695 (2013).300

[24] Steinegger, M. & Söding, J. Nat. Biotechnol. 35, 1026–1028
(2017).

[25] Ovchinnikov, S. et al. Science 355, 294–298 (2017).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/386110doi: bioRxiv preprint

54

6

ONLINE METHODS

Plass proceeds in seven steps summarized in Fig. 1.

Merging paired-end reads and ORF calling. Longer
reads increase the precision and sensitivity of the assembly
due to longer overlaps obtaining higher statistical significance.
In step 1, Plass therefore merges overlapping paired-end reads
into longer sequences using code from the open-source FLASH
tool [23], which we integrated into Plass (step 1a).

Furthermore, in step 1, Plass extracts all open reading
frames (ORFs) with at least 45 codons and translates them
into protein sequences. (Alternative codon tables can be spec-
ified with option –translation-table.) To determine the
correct start codon later on, it also extract and translates all
ORFs with at least 20 codons starting with a putative ATG
start codon that is the first ATG codon after a stop codon in
the same frame. Because the coding sequence cannot start
before such an ATG, these sequences help Plass to predict start
codons later on (see “Predicting start codons” and Supple-
mentary Fig. 6).

Finding overlaps in linear time. The identification of
all overlapping alignments (Fig. 1, steps 2-4) is critical for
the performance of overlap assemblers. Previously proposed
protein-level assemblers have a runtime complexity that scales
quadratically with the input set size [24, 25]. A typical metage-
nomic read set with 100 million reads requires 1016 compar-
isons with a quadratic method. To speed up the computation,
we adapted our linear-time clustering algorithm Linclust [26]
for assembly.

In step 2, Plass transforms each protein sequence into a
reduced amino acid alphabet, whose 13 letters represent the
following groups of amino acids: (L, M), (I, V), (K, R), (E,
Q), (A, S, T), (N, D), and (F, Y). From each reduced sequence
it selects m (default: m = 60) k-mers (or l − k + 1 if the
sequence of length l contains only l − k + 1 < m k-mers).
The selected k-mers are those with lowest hash values. Our
rolling hash function [26] maps each k-mer onto a range of
[0, 216] such that even single residue changes result in quasi-
random, unrelated hash values. For each of the ∼mN selected
k-mers, Plass stores in an array the k-mer index (8 bytes),
the sequence identifier (4 bytes), the k-mer position in the
sequence (2 bytes) and the length of the sequence (2 bytes).

In step 3, Plass sorts the array by k-mer index and sequence
length to find the sets of sequences containing the same k-
mer. For each set, it picks the longest sequence as the center
sequence. For each member of the k-mer set, it overwrites
the k-mer index with the center sequence identifier and com-
putes the diagonal i − j on which the shared k-mer match
occurs, where i is the k-mer position in the center sequence
and j is the position in the member sequence. The array now
contains the center sequence identifier, the member sequence
identifier, the k-mer match diagonal, and the length of the
member sequence. It sorts the array again, this time by cen-
ter sequence identifiers, and removes duplicate center-member
pairs. If more than one diagonal match between a center and
member sequence is found only the match with lowest diagonal
is kept.

In step 4, Plass computes an ungapped local alignment be-
tween each center sequence and each group member, using one-
dimensional dynamic programming on the diagonal i−j of the
k-mer match. It computes E-values using ALP [27] and, by
default, the Blosum62 substitution matrix. Alignments with
an E-value > 10−5 (default) and a sequence identity < 90%
(default) are rejected.

Extending protein reads. In step 5, Plass extends the cen-
ter sequence by concatenating the non-overlapping residues of
the member sequence with highest similarity in the overlap.
More precisely, it processes the list of alignments with the
member sequences in order of descending overlap sequence
identity, until one side of the center sequence has been ex-
tended and the other side has either been extended as well or
has no extending alignments left in the list. Then it realigns
the extended center sequence with all yet unprocessed mem-
ber sequences and iterates the extension until the entire list of
alignments has been processed.

Iterative assembly. Plass iterates through steps 2 to 5
twelve times (default), each time updating the original ver-
sion of the center sequences with their extended versions and
keeping all other sequences unchanged (step 6). To extract
different k-mers in each new iteration, we increment the step
size of the circular shift inside our rolling hash function [26].

Removing proteins translated in wrong frames. In step
7, Plass removes sequences translated from wrong ORFs or
assembled from such sequences. ORFs translated in the wrong
frame contain a stop-codon approximately every 64/3 ≈ 21
residues, and so only a fraction of around exp(−45/21.3) ≈
12% contain ≥ 45 codons.

Plass filters out sequences translated from wrong ORFs
based on their amino acid and dipeptide composition, which
differs from correctly translated, real protein sequences. We
trained a neural network using as features the 20 length-
normalized amino acid frequencies of the sequence and the 62

length-normalized dipeptide frequencies in a reduced alpha-
bet of size 6. Our fully connected network has 56 input nodes,
a hidden layer of 96 nodes, and a single output node. We
trained the network using the Keras deep-learning framework
using the Adam optimizer with a 10% drop-out probability
and the binary cross-entropy loss function. We leave 10% of
the data out for cross validation. The network is integrated
into Plass using Kerasify.

To train the network, we created a positive set of known
coding sequences and a negative set of sequences translated
in a wrong reading frame. The positive set contained 2.4 mil-
lion proteins sampled from the prokaryotic subset of the Uni-
clust30 representative sequences [28]. For the negative set, we
extract all ORFs from 757 prokaryotic genomes contained in
the KEGG database [29] and clustered them using MMseqs2
[30] with a maximum sequence identity of 30% and a min-
imum coverage of 80%. Clusters without any member with
coding sequence annotation in KEGG or homology to entries
in Uniclust30 (requiring an E-value of < 10−3) were extracted.
From these, we sampled 2.4 million sequences.

Predicting start codons. To determine the correct start

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/386110doi: bioRxiv preprint

55

7

codon and minimize overextension at the N-terminus in the
ORF translation step 1, Plass marks with a prepended aster-
isk ∗ those methionine residues that represent the first ATG
after a stop codon in the same frame, as this implies that the
coding sequence can at the earliest start there (Supplemen-
tary Fig. 6).

After the alignment and extension step 4 in the first itera-
tion, Plass reconstructs the multiple sequence alignment of all
merged sequences. Where at least 20% of all methionines in
a column are marked by a prepended asterisk, it removes the
preceding residues from all other sequences and prepends an
asterisk to all sequences to mark the start. If several columns
fulfill the 20% criterion, it trims the sequences at the most
downstream of these columns. The start codon prediction is
only done in the first iteration to save time and disk space.

Suppressing repetitive sequences. Protein repeats can
lead to unwanted extensions during assembly. We therefore
detect sequences with repeat regions during step 2 as those
containing at least 8 (default) identical k-mers (in the 13-letter
alphabet). These sequences are ignored during all steps.

Memory-efficient processing of huge input sets. Plass
needs 1 byte per residue of translated protein sequence gener-
ated in step 1 to keep these sequences in memory and avoid
random disk accesses in the alignment step 4. But as we saw,
the k-mer array in steps 2 and 3 occupies m × 16 bytes =
720bytes of memory per sequence, which is around 16 times
more than 1 byte per residue. We removed this bottleneck, for
systems with insufficient main memory, by splitting the k-mer
array into a number of chunks and processing them sequen-
tially, with little loss in speed.

We compute the maximum number of chunks S that still
allows one chunk to fit into the available system memory M
as S = dmN × 16byte/Me. For each chunk c out of S, we
proceed with steps 2 and 3 exactly as described before ex-
cept that we only extract k-mers whose index R satisfies (R
mod S) = c and that we store the chunks of k-mer arrays on
hard disk. After all splits have been computed, we merge them
into a single k-mer array.

Assembly quality benchmark. We could not use the
standard benchmark developed by the Critical Assessment of
Metagenomic Interpretation (CAMI) [31], because the muta-
tion model of the sgEvolver tool used for simulating popula-
tion microdiversity (strain diversity) does not penalize frame-
disrupting indels and non-conservative substitutions within
coding regions. This leads to very low and unrealistic conser-
vation of coding regions. The synthetic reads generated with
such a model are certainly realistic enough to test nucleotide
assemblers but would render protein-level assembly absurdly
unsuitable.

We sought to construct a genomic benchmarking set that
would contain a high degree of natural variation, in which the
genomic sequences reflect the actual evolutionary pressures on
them.

We downloaded from the sequence read archive (SRA) at
the NCBI/NIH two sets of genomes assembled from single
cell sequencing libraries. The first set contains genomes of
96 Prochlorococcus genomes [32].

These cells were taken from the same ocean water sample
and represent a population of the cyanobacteria Prochlorococ-
cus, the most abundant marine photosynthetic organism on
earth noted for high intra-species diversities. Sequence iden-
tities of 16S rRNA ITS sequences in a matched sample are
between 50% and 100%.

The second set contains 738 single-cell genome assemblies
(NCBI project PRJNA445865) consisting of 489 Prochloro-
coccus, 50 Synechococcus, 82 SAR11, 17 SAR116, 16 SAR86,
9 extracellular virus particles, and 75 additional sympatric
microorganisms, sampled at 22 locations in the Atlantic and
Pacific Oceans [33].

As ground truth reference we predicted protein sequences
on the genomes using Prodigal [34] and removed sequences
shorter than 100 residues, resulting in a redundant refer-
ence set of 109 014 protein sequences for set 1 and 829 899
for set 2. We reduced the redundancy by clustering with
Linclust at 95% sequence identity and 99% minimum cover-
age of the shorter sequence (options --cov-mode 1 -c 0.99
--min-seq-id 0.95), resulting in the non-redundant refer-
ence set with 14 943 (set 1) and 460 653 (set 2) sequences.

We created two synthetic read data sets from the two sets
of single-cell genomes, setting the mean coverage to 1 for each
genome, which yielded 392 790 reads for set 1 and 4 994 546
for set 2. We used randomreads.sh from the BBmap soft-
ware suite with options paired snprate=0.005 adderrors
coverage=1 len=150 mininsert=150 maxinsert=350
gaussian=true to simulate 2×150 bp paired-end overlapping
reads with sequencing errors.

We then assembled the synthetic paired-end read data set
with Megahit, metaSPAdes, Plass, SFA-SPA and Velvet, us-
ing the default parameters of each tool. We also tested Plass
with with a stricter minimum sequeunce identity for merg-
ing sequences (option --min-seq-id 97, "Plass-97" in Fig. 2.
For the nucleotide assemblers, we called proteins from the as-
sembled contigs using Prodigal in metagenomics mode. We
ignored all proteins shorter than 100 residues.

We calculated the precision by searching with the as-
sembled proteins through the redundant reference set,
using MMseqs2 with options -a -s 5 --max-seqs 5000
--min-seq-id 0.89. We filtered the aligned set by minimum
sequence identity thresholds between 90% and 99%. For each
search result, we only considered the longest alignment that
fulfills the minimum sequence identity criterion. We computed
the precision for each sequence identity threshold as the ra-
tio of the total count of aligned residues divided by the total
length of the assembled proteins. 100% precision is reached
when all assembled protein residues can be aligned to a refer-
ence protein sequence.

We calculated the sensitivity by searching with the non-
redundant reference set through the assembled proteins,
using MMseqs2 with options -a -s 5 --max-seqs 500000
--min-seq-id 0.89. We filtered the aligned set by minimum
sequence identity thresholds between 90% and 99%. For each
search result, we only considered the longest alignment that
fulfills the minimum sequence identity criterion. We computed
the sensitivity for each sequence identity threshold as the ra-
tio of the total count of aligned residues divided by the total

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/386110doi: bioRxiv preprint

56

8

length of the proteins in the non-redundant set. 100% sen-
sitivity is reached when all reference protein residues can be
aligned to an assembled protein sequence.

Accuracy of functional annotation of assembled pro-
teins. To test the impact of chimeric assemblies and assembly
quality on functional annotation quality, we measured the ac-
curacy of functional annotations on the proteins assembled
from the reads simulated from the single-cell marine genomes
(Fig. 2). We functionally annotated each protein sequence
assembled from the simulated reads and each reference pro-
tein from the single-cell genomes with an Orthologous Group
using the eggNOG mapper[35] and the eggNOG database
(version 4.5.1)[36] (options -d bact -m diamond –override
–cpu 16). We compared the eggNOG annotation of each as-
sembled protein sequence with the annotation of the best-
matching sequence found in the reference protein set using
MMseqs2. If the Orthologous Groups differ the annotation is
false positive (FP), otherwise true positive (TP).

Protein sequence recovery on metagenomic datasets.
For the benchmark test on real metagenomic data (Fig. a-d)
we used the following datasets: (b) a single human gut sam-
ple from SRA (SRR5024285) [37], (c) 775 samples from Tara
eukaryotic metatranscriptomes downloaded from the ENA
(PRJEB6609) [38], (d) a soil sample from the IMG project
1003784 (sample: 6398.7.44014), (e) 12 samples from the same
project (samples: 6679.7.51457 6478.6.45123, 6679.6.51456,
6398.7.44014, 6478.7.45124, 6674.6.51288, 6679.5.51455,
6674.4.51285, 6478.5.45122, 6478.4.45121, 6674.3.51284,
6674.5.51286). The soil data is also available at the NCBI
Project PRJNA330082. All samples used in Fig. 2b,d,e con-
sist of paired-end reads of 2 × 150bp length, while c consists
of reads with 2× 102 bp length.

We assembled paired-end reads in datasets b,d,e using
Megahit and Plass with default parameters. The benchmarks
for sets in Fig. 2b-d were carried out on a single . The co-
assembly in Fig. 2e was performed on a server with two 14-
core Intel Xeon E5-2680 v4 CPUs with 768GB RAM. During
the co-assembly, Megahit aborted with a segmentation fault
on the 768GB server. We therefore performed twelve separate
assemblies and pooled the results.

We could compare Plass only to Megahit on datasets b,d,e,
since Velvet terminated with segmentation faults, metaSPAdes
terminated with messages specifying a required amount of
RAM in excess of the available 128GB, and SFA-SPA did
not finish execution within three days.

For Fig. 2c, we assembled the 775 Tara metatranscriptomes
using Plass and compared the results with the Marine Atlas
of Tara Oceans Unigene (MATOU) catalog [38], assembled
using Velvet. For that purpose, we called protein sequences
using Prodigal in metagenomics mode on all MATOU contigs,
since these often do not contain full-length protein sequences.
Eukaryotic protein sequences contain repeats more frequently
than viral or prokayotic ones. We therefore masked low com-
plexity regions of the assemblies created by Plass using tantan
[39] and removed all assembled proteins with more than 50%
masked residues.

To analyze the diversity of the obtained sets at various re-

dundancy levels, we clustered all assembled protein sequence
sets with Linclust using the parameters --kmer-per-seq 80
--cluster-mode 2 --cov-mode 1 -c 0.9 at sequence iden-
tity thresholds --min-seq-id from 50% to 90%.

Taxonomic classification and quantification. We investi-
gated the influence of the assembly method on the taxonomic
composition (Supplemental Fig. 5). Instead of matching
nucleotide reads to reference genomes, we here perform the
taxonomic matching on the protein level because, first, many
species sampled with metagenomics do not contain a close ho-
molog in the reference databases, and second, protein-level
comparison afford a much higher sensitivity to match to more
distantly related sequences.

Our strategy is to (1) map reads – via the translated ORFs
they contain – to assembled protein sequences and to (2) map
the assembled protein sequences to taxonomic nodes in the
NCBI taxonomic tree. We thereby map transitively each read
to one taxonomic node.

To map the assembled protein sequences to taxonomic nodes
(step 2 above), we implemented the 2bLCA protocol [40]
as new MMseqs2 module mmseqs taxonomy (Supplemen-
tary Fig. 4) and assigned the assembled protein sequences
to the 90% redundancy-filtered Uniprot database (Uniclust90
2017_07) [28], which contains taxonomic assignments to the
NCBI tree for each sequence.

Using the two-step transitive mapping, we computed read
counts for all taxonomic nodes. We then pooled the counts
for each phylum in the tree and in addition recorded counts
of reads assigned by 2bLCA to taxa above the phylum level.
Only the 8 most abundant taxa were then kept, and counts of
all others were pooled into a category "Others".

In Supplementary Fig. 5a we show the results for the soil
sample assemblies from c (blue: Megahit, red: Plass) and the
assemblies of the 12 soil samples from d (light blue: Megahit,
light red: Plass), together with the ratios on top. The inset
gives the fraction of reads in the single and the 12 soil samples
that could be mapped to an assembled protein sequence with
a minimum sequence identity of 90% (step 1 above).

In Supplementary Fig. 5b we show the count of assem-
bled amino acids within various coverage ranges. Coverage of
an assembled protein sequence is the sum of the number of
residues aligned to that sequence during mapping divided by
the length of the assembled protein sequence.

Around 5 to 10 times more reads can be mapped to the set
of protein sequences assembled by Plass (red) than to the set
predicted by Prodigal on the Megahit assembly. The gains are
particularly high for high coverages.

Soil Reference Catalog assembly and analysis. For the
Soil Reference Catalog (SRC), we downloaded from the se-
quence read archive (SRA) at the NCBI/NIH all 640 metage-
nomic datasets that (1) had the “soil metagenome” taxon iden-
tifier, (2) had dates between 01/2014 and 02/2018, (3) were
sequenced on Illumina HiSeq or NovaSeq machines, and (4)
had paired-end reads of at least 2 × 150 bp length. Sam-
ple identifiers are contained in a file SRC_sample_ids.txt at
https://github.com/martin-steinegger/plass-analysis

Plass assembled the 18Tbp of raw reads on a small

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/386110doi: bioRxiv preprint

57

9

cluster of servers with 2 × 8-core Intel Xeon E5-2640v3
CPUs and 128 GB RAM. We removed protein sequences
shorter than 100 residues and redundancy-filtered the pro-
tein sequences from each sample using Linclust with
options --min-seq-id 0.95 --alignment-mode 3 -c 0.99
--cov-mode 1 --cluster-mode 2). We pooled these 12
billion protein sequences and further reduced their redun-
dancy by clustering with Linclust (--cov-mode 1 -c 0.9
--min-seq-id 0.9). The clustering was done hierarchically,
since Linclust can only process 232−1 sequences at once. The
final set contains 2 022 891 389 sequences.

We chose two metagenomic soil sets (SRR5919294 and
SRR6201924) that were not part of the 640 datasets used for
building the SRC. We merged overlapping read pairs using
FLASH [23], sampled 100 000 merged reads per sample, pre-
dicted protein sequence fragments using Prodigal [34], and
searched through the 90%-redundancy-filtered versions of SRC
and the Uniprot database [28] using the mmseqs map workflow
(see below). We computed the fraction of mapped reads out
of the total read count while demanding a minimum sequence
identity of 50% or 90% using the option --min-seq-id.

Read mapping. In this study, we use the novel mmseqs
map workflow from the MMseqs2 package to find very simi-
lar protein sequence matches in a protein sequence database.

It first calls the mmseqs prefilter module (with a low sen-
sitivity setting of -s 2) to detect high scoring diagonals
and then computes an ungapped alignment using the mmseqs
rescorediagonal module. In contrast to the mmseqs search
workflow, for maximum speed no gapped alignment is com-
puted, query sequences are not masked for low complexity
regions (--mask-mode 0), and no compositional bias correc-
tion is applied (--comp-bias-corr 0). By default, the map-
ping workflow requires that 90% of query sequence residues
are aligned to a database sequence (--cov-mode 2 -c 0.9).

Software versions used. We used the following version of
software in this article, Prodigal V2.6.3, FLASH v1.2.11,
Velvet 1.2.10, SFA-SPA 0.2.1, metaSPAdes v3.10.1,
Megahit v1.1.1-2-g02102e1, eggnog-mapper 1.0.3.

Assembled protein sequence sets. The assembled pro-
tein sequence sets are available as FASTA formatted files at
https://plass.mmseqs.org.

Code availability. Plass is GPLv3-licensed open source soft-
ware. The source code and binaries for Plass can be down-
loaded at https://github.com/soedinglab/plass.

Data availability. All scripts and benchmark data in-
cluding command-line parameters necessary to reproduce the
benchmark and analysis results presented are available at
https://github.com/martin-steinegger/plass-analysis.

[23] Magoc, T. & Salzberg, S. L. Bioinformatics 27, 2957–2963
(2011).

[24] Ye, Y. & Tang, H. J. Bioinform. Comput. Biol. 7, 455–471
(2009).

[25] Yang, Y. et al. Bioinformatics 31, 1833–1835 (2015).
[26] Steinegger, M. & Söding, J. Nat. Commun. 9, 2542 (2018).
[27] Sheetlin, S. et al. Bioinformatics 32, 304–305 (2016).
[28] Mirdita, M. et al. Nucleic Acids Res. 45, D170–D176 (2017).
[29] Kanehisa, M. et al. Nucleic Acids Res. 45, D353–D361 (2016).
[30] Steinegger, M. & Söding, J. Nat. Biotechnol. 35, 1026–1028

(2017).
[31] Sczyrba, A. et al. Nat. Methods 14, 1063–1071 (2017).
[32] Kashtan, N. et al. Science 344, 416–420 (2014).
[33] Berube, P. M. et al. Scientific Data 5, 180154 (2018).
[34] Hyatt, D. et al. BMC Bioinformatics 11, 119 (2010).
[35] Huerta-Cepas, J. et al. Mol Biol Evol 34, 2115–2122 (2017).
[36] Huerta-Cepas, J. et al. Nucleic Acids Res 44, D286–93 (2016).
[37] Lee, S. T. M. et al. Microbiome 5, 50 (2017).
[38] Carradec, Q. et al. Nat. Commun. 9, 373 (2018).
[39] Frith, M. C. Nucleic Acids Res. 39, e23 (2011).
[40] Hingamp, P. et al. ISME J. 7, 1678–1695 (2013).

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available

The copyright holder for this preprint (which wasthis version posted November 27, 2018. ; https://doi.org/10.1101/386110doi: bioRxiv preprint

58

Brief Communication
https://doi.org/10.1038/s41592-019-0437-4

Protein-level assembly increases protein
sequence recovery from metagenomic
samples manyfold
Martin Steinegger   1,2,3*, Milot Mirdita   1 and Johannes Söding   1*

1Quantitative and Computational Biology Group, Max-Planck Institute for Biophysical Chemistry, Göttingen, Germany. 2Department of Chemistry, Seoul
National University, Seoul, Korea. 3Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine,
Baltimore, MD, USA. *e-mail: martin.steinegger@mpibpc.mpg.de; soeding@mpibpc.mpg.de

SUPPLEMENTARY INFORMATION

In the format provided by the authors and unedited.

Nature Methods | www.nature.com/naturemethods

59

Supplementary Figure 1

Schematic comparison of a nucleotide- and a protein assembly.

On top is the f inal protein assembly follow ed by the stacked overlapping protein reads. The small gray section highlights the multiple protein sequence
alignment of the overlapping reads and below the respective nucleotide alignment. Less ambiguity is visible on the protein level due to conservative
mutations (mutations w ith similar biochemical properties) compared to the nucleotide level, resulting in an assembly that is more robust to microdiversity
in the population.

60

Supplementary Figure 2

Overlap of assemblies of Plass with Megahit and metaSPAdes

(a) left: A fraction 38.3% of amino acids in the Plass-assembled proteins of set 1 is covered by alignments to proteins in the Megahit assembly at a
minimum sequence identity cut-off of 99%. Conversely, 83.2% of proteins in the Megahit-assembled set 1 is covered by alignments w ith Plass-

assembled proteins. Right: Same as on the left but comparing the Plass assembly w ith the metaSPAdes assembly. (b) Same as (a) but for protein set 2

61

Supplementary Figure 3

Effect of neural network filter to remove wrong translation frames.

Sensitivity and precision in set 1 (a) and set 2 (b). Top: assembly sensitivity is the fraction of reference sequence amino acids that matches to an

assembled protein sequence. Bottom: assembly precision is the fraction of assembled amino acids that matches to a reference protein at the minimum
sequence identity on the x-axis. Plass uses a minimum sequence identity for merging fragments of 90%, Plass-97 uses a threshold of 97%.

62

Supplementary Figure 4

Comparison of Megahit assignment using the 2bLCA protocol

The MMseqs2 taxonomy assignment w orkflow uses three steps to assign a taxonomic label to a query sequence. (1) We search with the query
sequence against a reference database and extract the aligned subsequence of the best hit. (2) This sequence is matched again against the reference
database. Each hit w ith an E-value smaller than the best hit E-value from the previous search is accepted. (3) We compute the low est common ancestor
based on the taxonomic labels of all accepted hits.

63

Supplementary Figure 5

Plass ORF extraction and start codon prediction (ORF calling)
Plass extracts two sets of ORFs. ORF set 1 contains all translated ORFs w ith at least 45 codons. ORF set 2 contains all translated ORFs w ith at least 20

codons starting w ith a putative ATG start codon that is the f irst ATG codon after a stop codon in the same frame. (Start codon prediction) Plass predicts

start codons w ith a consensus method using a multiple sequence alignment of ORF set 1 and 2. Wherever at least 20% of all methionines in one column
are marked by a prepended asterisk, it removes the preceding residues from all other sequences and prepends an asterisk to all sequences to mark the
start

64

Supplementary Figure 6

Taxonomy evaluation of the soil metagenome assembly.
(a) We investigate the taxonomic composition of the 8 most abundant taxa (all other taxa are pooled in “Others”) in the soil assemblies from Fig. 2d
(blue: Megahit, red: Plass) and the assemblies of the 12 soil samples from Fig. 2e (light blue: Megahit, light red: Plass). On top w e show the read count

ratios betw een Plass and Megahit, for both the single and 12 soil assemblies. The inset gives the fraction of reads in the single and the 12 soil samples
that could be mapped to an assembled protein sequence. (b) We show the count of assembled amino acids w ithin various coverage ranges for Megahit
(blue) and Plass (red) in the single soil sample.

65

66 Further contributions

5.2 HH-suite3 for fast remote homology detection and deep protein
annotation

Publication:

HH-suite3 for fast remote homology detection and deep protein annotation

M. Steinegger, M. Meier, M. Mirdita, H. Vöhringer, S. J. Haunsberger, J. Söding†

(†) corresponding author

BMC Bioinformatics (2019), 20, 473.
Cited 252 times since 09/2019.

Code and software availability

HH-suite3 is available as free open source software (GPLv3) at github.com/soedinglab/hh-suite.

Author contributions

M.S. & J.S. designed research, M.S. developed vectorized code and performed analyses, M.Meier refac-
tored code, added features, fixed bugs and performed benchmarks, M.Mirdita added features, fixed
bugs and maintains databases, H.V. implemented mmCIF support, S.H. optimized the MAC algorithm
memory usage, M.S. and J.S. wrote the manuscript.

https://github.com/soedinglab/hh-suite

Steinegger et al. BMC Bioinformatics (2019) 20:473
https://doi.org/10.1186/s12859-019-3019-7

SOFTWARE Open Access

HH-suite3 for fast remote homology
detection and deep protein annotation
Martin Steinegger1,2, Markus Meier1, Milot Mirdita1, Harald Vöhringer1,3, Stephan J. Haunsberger4

and Johannes Söding1*

Abstract

Background: HH-suite is a widely used open source software suite for sensitive sequence similarity searches and
protein fold recognition. It is based on pairwise alignment of profile Hidden Markov models (HMMs), which represent
multiple sequence alignments of homologous proteins.

Results: We developed a single-instruction multiple-data (SIMD) vectorized implementation of the Viterbi algorithm
for profile HMM alignment and introduced various other speed-ups. These accelerated the search methods HHsearch
by a factor 4 and HHblits by a factor 2 over the previous version 2.0.16. HHblits3 is ∼10× faster than PSI-BLAST and
∼20× faster than HMMER3. Jobs to perform HHsearch and HHblits searches with many query profile HMMs can be
parallelized over cores and over cluster servers using OpenMP and message passing interface (MPI). The free,
open-source, GPLv3-licensed software is available at https://github.com/soedinglab/hh-suite.

Conclusion: The added functionalities and increased speed of HHsearch and HHblits should facilitate their use in
large-scale protein structure and function prediction, e.g. in metagenomics and genomics projects.

Keywords: Homology detection, Sequence search, Protein alignment, Algorithm, Profile HMM, SIMD, Functional
annotation

Introduction
A sizeable fraction of proteins in genomics and metage-
nomics projects remain without annotation due to the
lack of an identifiable, annotated homologous protein
[1]. A high sensitivity in sequence similarity searches
increases the chance of finding a homologous protein
with an annotated function or a known structure from
which the function or structure of the query protein
can be inferred [2]. Therefore, to find template pro-
teins for comparative protein structure modeling and for
deep functional annotation, the most sensitive search
tools such as HMMER [3, 4] and HHblits [5] are often
used [6–9]. These tools can improve homology detec-
tion by aligning not only single sequences against other
sequences, but using more information in form of multi-
ple sequence alignments (MSAs) containing many homol-
ogous sequences. From the frequencies of amino acids in

*Correspondence: soeding@mpibpc.mpg.de
1Quantitative and Computational Biology Group, Max-Planck Institute for
Biophysical Chemistry, Am Fassberg 11, 81379 Munich, Germany
Full list of author information is available at the end of the article

each column of the MSA, they calculate a 20 × length
matrix of position-specific amino acid substitution scores,
termed “sequence profile”.
A profile Hidden Markov Model (HMM) extends

sequence profiles by augmenting the position-specific
amino acid substitution scores with position-specific
penalties for insertions and deletions. These can be esti-
mated from the frequencies of insertions and deletions
in the MSA. The added information improves the sen-
sitivity of profile HMM-based methods like HHblits or
HMMER3 over ones based on sequence profiles, such as
PSI-BLAST [10].
Only few search tools represent both the query and

the target proteins as sequence profiles built from MSAs
of homologous proteins [11–14]. In contrast, HHblits /
HHsearch represent both the query and the target pro-
teins as profile HMMs. This makes them among the most
sensitive tools for sequence similarity search and remote
homology detection [5, 15].
In recent years, various sequence search tools have

been developed that are up to four orders of magni-

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

67

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 2 of 15

tude faster than BLAST [16–19]. This speed-up addresses
the need to search massive amounts of environmental
next-generation sequencing data against the ever-growing
databases of annotated sequences. However, no homol-
ogy can be found for many of these sequences even with
sensitive methods, such as BLAST or MMseqs2 [19].
Genomics and metagenomics projects could annotate

more sequence by adding HHblits searches through the
PDB, Pfam and other profile databases to their pipelines
[8]. Additional computation costs would be marginal,
since the version of HHblits presented in this work runs
20 times faster than HMMER, the standard tool for Pfam
[20] and InterPro [21] annotations.
In this work, our goal was to accelerate and parallelize

various HH-suite algorithms with a focus on the most
time-critical tools, HHblits and HHsearch. We applied
data level parallelization using Advanced Vector Exten-
sion 2 (AVX2) or Streaming SIMD Extension 2 (SSE2)
instructions, thread level parallelization using OpenMP,
and parallelization across computers using MPI. Most
important was the ample use of parallelization through
SIMD arithmetic units present in all modern Intel, AMD
and IBM CPUs, with which we achieved speed-ups per
CPU core of a factor 2 to 4.

Methods
Overview of HH-suite
The software HH-suite contains the search tools
HHsearch [15] and HHblits [5], and various utilities to
build databases of MSAs or profile HMMs, to convert
MSA formats, etc.
HHsearch aligns a profile HMM against a database of

target profile HMMs. The search first aligns the query
HMM with each of the target HMMs using the Viterbi
dynamic programming algorithm, which finds the align-
ment with the maximum score. The E-value for the target
HMM is calculated from the Viterbi score [5]. Target
HMMs that reach sufficient significance to be reported
are realigned using the Maximum Accuracy algorithm
(MAC) [22]. This algorithm maximizes the expected
number of correctly aligned pairs of residues minus a
penalty between 0 and 1 (parameter -mact). Values near
0 produce greedy, long, nearly global alignments, values
above 0.3 result in shorter, local alignments.
HHblits is an accelerated version of HHsearch that is

fast enough to perform iterative searches through mil-
lions of profile HMMs, e.g. through the Uniclust profile
HMM databases, generated by clustering the UniProt
database into clusters of globally alignable sequences [23].
Analogously to PSI-BLAST and HMMER3, such iterative
searches can be used to build MSAs by starting from a
single query sequence. Sequences from matches to pro-
file HMMs below some E-value threshold (e.g. 10−3) are
added to the query MSA for the next search iteration.

HHblits has a two-stage prefilter that reduces the num-
ber of database HMMs to be aligned with the slow
Viterbi HMM-HMM alignment andMAC algorithms. For
maximum speed, the target HMMs are represented in
the prefilter as discretized sequences over a 219-letter
alphabet in which each letter represents one of 219
archetypical profile columns. The two prefilter stages thus
perform a profile-to-sequence alignment, first ungapped
then gapped, using dynamic programming. Each stage
filters away 95 to 99% of target HMMs.

Overview of changes from HH-suite version 2.0.16 to 3
Vectorized viterbi HMM-HMMalignment
Most of the speed-up was achieved by developing effi-
cient SIMD code and removing branches in the pairwise
Viterbi HMMalignment algorithm. The new implementa-
tion aligns 4 (using SSE2) or 8 (using AVX2) target HMMs
in parallel to one query HMM.

Fast MACHMM-HMMalignment
We accelerated the Forward-Backward algorithm that
computes posterior probabilities for all residue pairs (i, j)
to be aligned with each other. These probabilities are
needed by the MAC alignment algorithm. We improved
the speed of the Forward-Backward and MAC algorithms
by removing branches at the innermost loops and opti-
mizing the order of indices, which reduced the frequency
of cache misses.

Memory reduction
We reduced the memory required during Viterbi HMM-
HMM alignment by a factor of 1.5 for SSE2 and imple-
mented AVX2 with only a 1.3 times increase, despite the
need to keep scores for 4 (SSE2) or 8 (AVX2) target pro-
file HMMs in memory instead of just one. This was done
by keeping only the current row of the 5 scoring matrices
in memory during the dynamic programming (“Memory
reduction for backtracing and cell-off matrices” section),
and by storing the 5 backtrace matrices, which previously
required one byte per matrix cell, in a single backtrace
matrix with one byte per cell (“From quadratic to linear
memory for scoring matrices” section). We also reduced
the memory consumption of the Forward-Backward and
MAC alignment algorithms by a factor of two, by
moving from storing posterior probabilities with type
double to storing their logarithms using type float.
In total, we reduced the required memory by roughly
a factor 1.75 (when using SSE2) or 1.16 (when using
AVX2).

Accelerating sequence filtering and profile computation
For maximum sensitivity, HHblits and HHsearch need to
reduce the redundancy within the input MSA by remov-
ing sequences that have a sequence identity to another

68

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 3 of 15

sequence in theMSA larger than a specified cutoff (90% by
default) [15]. The redundancy filtering takes timeO(NL2),
whereN is the number of MSA sequences and L the num-
ber of columns. It can be a runtime bottleneck for large
MSAs, for example during iterative searches with HHblits.
A more detailed explanation is given in “SIMD-based
MSA redundancy filter” section.
Additionally, the calculation of the amino acid prob-

abilities in the profile HMM columns from an MSA
can become time-limiting. Its run time scales as O(NL2)
because for each column it takes a time ∼O(NL) to com-
pute column-specific sequence weights based on the sub-
alignment containing only the sequences that have no gap
in that column.
We redesigned these two algorithms to use SIMD

instructions and optimized memory access through
reordering of nested loops and array indices.

Secondary structure scoring
Search sensitivity could be slightly improved for remote
homologs by modifying the weighting of the sec-
ondary structure alignment score with respect to pro-
file column similarity score. In HH-suite3, the sec-
ondary structure score can contribute more than 20% of
the total score. This increased the sensitivity to detect
remote homologs slightly without negative impact on the
high-precision.

New features, code refactoring, and bug fixes
HH-suite3 allows users to search a large number of query
sequences by parallelizing HHblits/HHsearch searches
over queries using OpenMP and MPI (hhblits_omp,
hhblits_mpi,hhsearch_omp,hhsearch_mpi).We
removed the limit on the maximum number of sequences
in the MSAs (parameter -maxseqs < max>). We
ported scripts in HH-suite from Perl to Python and
added support for the new PDB format mmCIF, which
we use to provide precomputed profile HMM and
MSA databases for the protein data bank (PDB) [24],
Pfam [20], SCOP [25], and clustered UniProt databases
(Uniclust) [23].
We adopted a new format for HHblits databases in

which the column state sequences used for prefiltering
(former *.cs219 files) are stored in the FFindex for-
mat. The FFindex format was already used in version
2.0.16 for the a3m MSA files and the hhm profile HMM
files. This resulted in a ∼4 s saving for reading the pre-
filter database and improved scaling of HHblits with the
number of cores. We also integrated our discriminative,
sequence context-sensitive method to calculate pseudo-
counts for the profile HMMs, which slightly improves
sensitivities for fold-level homologies [26].
To keep HH-suite sustainable and expandable in the

longer term, we extensively refactored code by improving

code reuse with the help of new classes with inheritance,
replacing POSIX threads (pthreads) with OpenMP par-
allelization, removing global variables, moving from make
to cmake, and moving the HH-suite project to GitHub
(https://github.com/soedinglab/hh-suite). We fixed vari-
ous bugs such as memory leaks and segmentation faults
occurring with newer compilers.

Supported platforms and hardware
HHblits is developed under Linux, tested under Linux and
macOS, and should run under any Unix-like operating
systems. Intel and AMD CPUs that offer AVX2 or at least
SSE2 instruction sets are supported (Intel CPUs: since
2006, AMD: since 2011). PowerPC CPUs with AltiVec
vector extensions are also supported.
Because we were unable to obtain funding for continued

support of HH-suite, user support is unfortunately limited
to bug fixes for the time being.

Parallelization by vectorization using SIMD instructions
All modern CPUs possess SIMD units, usually one per
core, for performing arithmetic, logical and other opera-
tions on several data elements in parallel. In SSE2, four
floating point operations are processed in a single clock
cycle in dedicated 128-bit wide registers. Since 2012, the
AVX standard allows to process eight floating point oper-
ations per clock cycle in parallel, held in 256 bit AVX
registers. With the AVX2 extension came support for
byte-, word- and integer-level operations, e.g. 32 single-
byte numbers can be added or multiplied in parallel (32×
1 byte = 256 bits). Intel has supported AVX2 since 2013,
AMD since 2015.
HHblits 2.0.16 already used SSE2 in its prefilter

for gapless and gapped profile-to-sequence alignment
processing 16 dynamic programming cells in parallel,
but it did not support HMM-HMM alignment using
vectorized code.

Abstraction layer for SIMD-based vector programming
Intrinsic functions allow to write SIMD parallelized algo-
rithms without using assembly instructions. However,
they are tied to one specific variant of SIMD instruction
set (such as AVX2), which makes them neither down-
wards compatible nor future-proof. To be able to compile
our algorithms with different SIMD instruction set vari-
ants, we implemented an abstraction layer, simd.h. In
this layer, the intrinsic functions are wrapped by prepro-
cessor macros. Porting our code to a new SIMD standard
therefore merely requires us to extend the abstraction
layer to that new standard, whereas the algorithm remains
unchanged.
The simd.h header supports SSE2, AVX2 and AVX-

512 instruction sets. David Miller has graciously extended
the simd.h abstraction layer to support the AltiVec

69

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 4 of 15

vector extension of PowerPC CPUs. Algorithm 1 shows
a function that computes the scalar product of two
vectors.

Vectorized viterbi HMM-HMM alignments
The viterbi algorithm for aligning profile hMMs
The Viterbi algorithm, when applied to profile HMMs,
is formally equivalent to global sequence alignment with
position-specific gap penalties [27]. We had previously
introduced a modification of the Viterbi algorithm that
is formally equivalent to Smith-Waterman local sequence
alignment [15]. In HH-suite we use it to compute the
best-scoring local alignment between two profile HMMs.
HH-suite models MSA columns with < 50% gaps

(default value) by match states and all other columns as
insertion states. By traversing through the states of a pro-
file HMM, the HMM can “emit” sequences. A match state
(M) emits amino acids according to the 20 probabilities
of amino acids estimated from their fraction in the MSA
column, plus some pseudocounts. Insert states (I) emit
amino acids according to a standard amino acid back-
ground distribution, while delete states (D) do not emit
any amino acids.
The alignment score between two HMMs in HH-suite

is the sum over all co-emitted sequences of the log odds
scores for the probability for the two aligned HMMs to
co-emit this sequence divided by the probability of the
sequence under the background model. Since M and I
states emit amino acids andD states do not,M and I in one
HMM can only be aligned with M or I states in the other
HMM. Conversely, a D state can only be aligned with a
D state or with a Gap G (Fig. 1). The co-emission score

Fig. 1 HMM-HMM alignment of query and target. The alignment is represented as red path through both HMMs. The corresponding pair state
sequence is MM, MM, MI, MM, MM, DG, MM

70

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 5 of 15

can be written as the sum of the similarity scores of the
aligned profile columns, in other words the match-match
(MM) pair states, minus the position-specific penalties
for indels: delete-open, delete-extend, insert-open and
insert-extend.

We denote the alignment pair states as MM, MI, IM,
II, DD, DG, and GD. Figure 1 shows an example of two
aligned profile HMMs. In the third column HMM q emits
a residue from its M state and HMM p emits a residue
from the I state. The pair state for this alignment column
is MI. In column six of the alignment HMM q does not

emit anything since it passes through the D state. HMM
p does not emit anything either since it has a gap in the
alignment. The corresponding pair state is DG. To speed
up the alignment, we exclude pair states II and DD, and
we only allow transitions between a pair state and itself
and between pair state MM and pair states MI, IM, DG,
or GD.

To calculate the local alignment score, we need five
dynamic programming matrices SXY, one for each pair
state XY ∈ {MM, MI, IM, DG, GD}. They contain the

71

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 6 of 15

score of the best partial alignment which ends in column i
of q and column j of p in pair state XY. These five matrices
are calculated recursively.

SMM
(
i, j

) = Saa
(
qpi , t

p
j

)
+ Sss

(
qssi , tssj

)
+ (1)

max

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 (for local alignment)
SMM(i−1, j−1) + log

(
qi−1(M,M) tj−1(M,M

)
)

SMI(i−1, j−1) + log
(
qi−1(M,M) tj−1(I,M)

)

SII(i−1, j−1) + log
(
qi−1(I,M) tj−1(M,M)

)

SDG(i−1, j−1) + log
(
qi−1(D,M) tj−1(M,M)

)

SGD(i−1, j−1) + log
(
qi−1 (M,M) tj−1(D,M)

)

SMI
(
i, j

) = max
{
SMM(i−1, j) + log

(
qi−1(M,M) tj(D,D)

)

SMI(i−1, j) + log
(
qi−1(M,M) tj(I,I)

)

(2)

SDG
(
i, j

) = max
{
SMM(i−1, j) + log (qi−1(D,M))

SDG(i−1, j) + log (qi−1(D,D))
(3)

Saa
(
qpi , t

p
j

)
= log

20∑

a=1

qpi (a) t
p
j (a)

fa
(4)

Vector qpi contains the 20 amino acid probabilities of
q at position i, tpj are the amino acid probabilities t at j,
and fa denotes the background frequency of amino acid a.
The score Saa measures the similarity of amino acid dis-
tributions in the two columns i and j. Sss can optionally
be added to Saa. It measures the similarity of the sec-
ondary structure states of query and target HMM at i and
j [15].

Vectorizations of smith-Waterman sequence alignment
Much effort has gone into accelerating the dynamic
programming based Smith-Waterman algorithm (at an
unchanged time complexity of O(LqLt)). While substan-
tial accelerations using general purpose graphics pro-
cessing units (GPGPUs) and field programmable gated
arrays (FPGAs) were demonstrated [28–31], the need for
a powerful GPGPU and the lack of of a single standard
(e.g. Nvidia’s proprietary CUDA versus the OpenCL stan-
dard) have been impediments. SIMD implementations
using the SSE2 and AVX2 standards with on-CPU SIMD
vector units have demonstrated similar speed-ups as
GPGPU implementations and have become widely used
[3, 4, 32–35].
To speed up the dynamic programming (DP) using

SIMD, multiple cells in the DP matrix are processed

jointly. However the value in cell (i, j) depends on those in
the preceding cells (i − 1, j − 1), (i − 1, j), and (i, j − 1).
This data dependencymakes acceleration of the algorithm
challenging.
Four main approaches have been developed to

address this challenge: (1) parallelizing over anti-
diagonal stretches of cells in the DP matrices
((i, j), (i + 1, j − 1), . . . (i + 15, j − 15), assuming
16 cells fit into one SIMD register) [32], (2) paralleli-
zing over vertical or horizontal segments of the DP
matrices (e.g. (i, j), (i + 1, j), . . . (i + 15, j)) [33], (3)
parallelizing over stripes of the DP matrices
((i, j), (i + 1 × D, j), . . . (i + 15 × D, j) where
D := ceil(query_length/16)) [34] and (4) where
16 cells (i, j) of 16 target sequences are processed in
parallel [35].

The last option is the fastest method for sequence-
sequence alignments, because it avoids data dependen-
cies. Here we present an implementation of this option
that can align one query profile HMM to 4 (SSE2) or 8
(AVX2) target profile HMMs in parallel.

Vectorized viterbi algorithm for aligning profile HMMs
Algorithm 2 shows the scalar version of the Viterbi algo-
rithm for pairwise profile HMM alignment based on
the iterative update Eqs. (1)–(3). Algorithm 3 presents
our vectorized and branch-less version (Fig. 2). It aligns
batches of 4 or 8 target HMMs together, depending on
howmany scores of type float fit into one SIMD register
(4 for SSE2, 8 for AVX).
The vectorized algorithm needs to access the state tran-

sition and amino acid emission probabilities for these
4 or 8 targets at the same time. The memory is laid
out (Fig. 3), such that the emission and transition prob-
abilities of 4 or 8 targets are stored consecutively in
memory. In this way, one set of 4 or 8 transition prob-
abilities (for example MM) of the 4 or 8 target HMMs
being aligned can be loaded jointly into one SIMD
register.
The scalar versions of the functions MAX6, MAX2 con-

tain branches. Branched code can considerably slow down
code execution due to the high cost of branch mispre-
dictions, when the partially executed instruction pipeline
has to be discarded to resume execution of the correct
branch.
The functions MAX6 and MAX2 find the maxi-

mum score out of two or six input scores and
also return the pair transition state that contributed
the highest score. This state is stored in the back-
trace matrix, which is needed to reconstruct the best-
scoring alignment once all five DP matrices have been
computed.

72

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 7 of 15

Fig. 2 SIMD parallelization over target profile HMMs. Batches of 4 or 8 database profile HMMs are aligned together by the vectorized Viterbi
algorithm. Each cell (i, j) in the dynamic programming matrix is processed in parallel for 4 or 8 target HMMs

To remove the five if-statement branches in MAX6, we
implemented a macro VMAX6 that implements one if-
statement at a time. VMAX6 needs to be called 5 times,
instead of just once as MAX6, and each call compares
the current best score with the next of the 6 scores and
updates the state of the best score so far by maximization.
At each VMAX6 call, the current best state is overwritten
by the new state if it has a better score.

We call the function VMAX2 four times to update the
four states GD, IM, DG and MI. The first line in VMAX2
compares the 4 or 8 values in SIMD register sMM with
the corresponding values in register sXY and sets all bits
of the four values in SIMD register res_gt_vec to
1 if the value in sMM is greater than the one in sXY
and to 0 otherwise. The second line computes a bit-wise
AND between the four values in res_gt_vec (either
0x00000000 or 0xFFFFFFFF) and the value for state MM.
For those of the 4 or 8 sMM values that were greater
than the corresponding sXY value, we obtain state MM in
index_vec, for the others we get zero, which represents
staying in the same state. The backtrace vector can then
be combined using an XOR instruction.
In order to calculate suboptimal, alternative alignments,

we forbid the suboptimal alignment to pass through any
cell (i, j) that is within 40 cells from any of the cells of
the better-scoring alignments. These forbidden cells are
stored in a matrix cell_off[i][j] in the scalar ver-
sion of the Viterbi algorithm. The first if-statement in
Algorithm 2 ensures that these cells obtain a score of −∞.
To reduce memory requirements in the vectorized ver-

sion, the cell-off flag is stored in the most significant bit
of the backtracing matrix (Fig. 5) (see “Memory reduc-
tion for backtracing and cell-off matrices” section). In the
SIMD Viterbi algorithm, we shift the backtracing matrix
cell-off bit to the right by one and load four 32bit
(SSE2) or eight 64bit (AVX2) values into a SIMD reg-
ister (line 23). We extract only the cell-off bits (line 24)

73

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 8 of 15

Fig. 3 The layout of the log transition probabilities (top) and emission probabilities (bottom) in memory for single-instruction single data (SISD) and
SIMD algorithms. For the SIMD algorithm, 4 (using SSE2) or 8 (using AVX 2) target profile HMMs (t1 – t4) are stored together in interleaved fashion:
the 4 or 8 transition or emission values at position i in these HMMs are stored consecutively (indicated by the same color). In this way, a single cache
line read of 64 bytes can fill four SSE2 or two AVX2 SIMD registers with 4 or 8 values each

by computing an AND between the co_mask and the
cell_off register. We set elements in the register with
cell_off bit to 0 and without to 0xFFFFFFFF by com-
paring if cell_mask is greater than cell_off (line 25).
On line 26, we set the 4 or 8 values in the SIMD reg-
ister cell_off to −∞ if their cell-off bit was set and
otherwise to 0. After this we add the generated vector to
all five scores (MM, MI, IM, DG and GD).

A small improvement in runtime was achieved
by compiling both versions of the Viterbi method,
one with and one without cell-off logic. For the
first, optimal alignment, we call the version com-
piled without the cell off logic and for the alternative
alignments the version with cell-off logic enabled.
In C/C++, this can be done with preprocessor
macros.

74

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 9 of 15

Fig. 4 Two approaches to reduce the memory requirement for the DP score matrices from O(LqLt) to O(Lt), where Lq and Lt are lengths of the query
and target profile, respectively. (Top) One vector holds the scores of the previous row, SXY(i − 1, ·), for pair state XY ∈{MM, MI, IM, GD and DG}, and
the other holds the scores of the current row, SXY(i, ·) for pair state XY ∈{MM, MI, IM, GD and DG}. Vector pointers are swapped after each row has
been processed. (Bottom) A single vector per pair state XY holds the scores of the current row up to j − 1 and of the previous row for j to Lt . The
second approach is somewhat faster and was chosen for HH-suite3

75

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 10 of 15

Shorter profile HMMs are padded with probabilities of
zero up to the length of the longest profile HMM in the
batch (Fig. 2). Therefore, the database needs to be sorted
by decreasing profile HMM length. Sorting also improves
IO performance due to linear access to the target HMMs
for the Viterbi alignment, since the list of target HMMs
that passed the prefilter is automatically sorted by length.

Vectorized column similarity score
The sum in the profile column similarity score Saa in
the first line in Algorithm 4 is is computed as the scalar
product between the precomputed 20-dimensional vector
qpi (a)/fa and tpj (a). The SIMD code takes 39 instructions
to compute the scores for 4 or 8 target columns, whereas
the scalar version needed 39 instructions for a single
target column.

From quadratic to linear memory for scoring matrices
Most of the memory in Algorithm 2 is needed for the five
score matrices for pair states MM, MI, IM, GD and DG.
For a protein of 15 000 residues, the five matrices need
15 000× 15 000× 4byte× 5 matrices = 4.5GB of memory
per thread.
In a naive implementation, the vectorized algorithm

would need a factor of 4 or 8 more memory than that,
since it would need to store the scores of 4 or 8 target pro-
file HMMs in the scorematrices. This would require 36GB
of memory per thread, or 576GB for commonly used 16
core servers.
However, we do not require the entire scoring matrices

to reside in memory. We only need the backtracing matri-
ces and the position (ibest, jbest) of the highest scoring cell
to reconstruct the alignment.
We implemented two approaches. The first uses two

vectors per pair state (Fig. 4 top). One holds the scores
of the current row i, where (i, j) are the positions of the
cell whose scores are to be computed, and the other vec-
tor holds the scores of the previous row i − 1. After all
the scores of a row i have been calculated, the pointers to
the vectors are swapped and the former row becomes the
current one.
The second approach uses only a single vector (Fig. 4

bottom). Its elements from 1 to j − 1 hold the scores of
the current row that have already been computed. Its ele-
ments from j to the last position Lt hold the scores from
the previous row i − 1.
The second variant turned out to be faster, even though

it executes more instructions in each iteration. However,
profiling showed that this is more than compensated by
fewer cache misses, probably owed to the factor two lower
memory required.
We save a lot of memory by storing the currently needed

scores of the target in a linear ring buffer of size O(Lt).
However, we still need to keep the backtracing matrix (see

next subsection), of quadratic size O(LqLt) in memory.
Therefore the memory complexity remains unaffected.

Memory reduction for backtracing and cell-off matrices
To compute an alignment by backtracing from the cell
(ibest, jbest) with maximum score, we need to store for
each cell (i, j) and every pair state (MM,GD,MI,DG, IM)

the previous cell and pair state the alignment would pass
through, that is, which cell contributed the maximum
score in (i, j). For that purpose it obviously suffices to only
store the previous pair state.
HHblits 2.0.16 uses five different matrices of type char,

one for each pair state, and one char matrix to hold
the cell-off values (in total 6 bytes). The longest known
protein Titin has about 33 000 amino acids. To keep a
33 000 × 33 000 × 6byte matrix in memory, we would
need 6GB of memory. Since only a fraction of ∼10−5

sequences are sequences longer than 15 000 residues in
the UniProt database, we restrict the default maximum
sequence length to 15 000. This limit can be increased
with the parameter -maxres.
But we would still need about 1.35GB to hold the back-

trace and cell-off matrices. A naive SSE2 implementation
would therefore need 5.4GB, and 10.8GB with AVX2.
Because every thread needs its own backtracing and cell-
off matrices, this can be a severe restriction.

We reduce the memory requirements by storing all
backtracing information and the cell-off flag in a single
byte per cell (i, j). The preceding state for the IM, MI,
GD, DG states can be held as single bit, with a 1 signi-
fying that the preceding pair state was the same as the
current one and 0 signifying it was MM. The preceding
state for MM can be any of STOP, MM, IM, MI, GD, and
DG. STOP represents the start of the alignment, which
corresponds to the 0 in (eq. 1) contributing the largest of
the 6 scores. We need three bits to store these six possi-
ble predecessor pair states. The backtracing information
can, thus, be held in ‘4 + 3’ bits, which leaves one bit for
the cell-off flag (Fig. 5). Due to the reduction to one byte
per cell we need only 0.9GB (with SSE2) or 1.8GB (with
AVX2) per thread to hold the backtracing and cell-off
information.

76

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 11 of 15

Fig. 5 Predecessor pair states for backtracing the Viterbi alignments are stored in a single byte of the backtrace matrix in HH-suite3 to reduce
memory requirements. The bits 0 to 2 (blue) are used to store the predecessor state to the MM state, bits 3 to 6 store the predecessor of GD, IM, DG
and MI pair states. The last bit denotes cells that are not allowed to be part of the suboptimal alignment because they are near to a cell that was part
of a better-scoring alignment

Viterbi early termination criterion
For some query HMMs, a lot of non-homologous tar-
get HMMs pass the prefiltering stage, for example when
they contain one of the very frequent coiled coil regions.
To avoid having to align thousands of non-homologous
target HMMs with the costly Viterbi algorithm, we intro-
duced an early termination criterion in HHblits 2.0.16.
We averaged 1/(1 + E-value) over the last 200 pro-
cessed Viterbi alignments and skipped all further database
HMMs when this average dropped below 0.01, indicating
that the last 200 target HMMs produced very few Viterbi
E-values below 1.
This criterion requires the targets to be processed by

decreasing prefilter score, while our vectorized version
of the Viterbi algorithm requires the database profile
HMMs to be ordered by decreasing length. We solved this
dilemma by sorting the list of target HMMs by decreasing
prefilter score, splitting it into equal chunks (default size
2 000) with decreasing scores, and sorting target HMMs
within each chunk by their lengths. After each chunk has
been processed by the Viterbi algorithm, we compute the
average of 1/(1 + E-value) for the chunk and terminate
early when this number drops below 0.01.

SIMD-based MSA redundancy filter
To build a profile HMM from an MSA, HH-suite reduces
the redundancy by filtering out sequences that have more
than a fraction seqid_max of identical residues with
another sequence in the MSA. The scalar version of the

function (Algorithm 5) returns 1 if two sequences x and
y have a sequence identity above seqid_min and 0 oth-
erwise. The SIMD version (Algorithm 6) has no branches
and processes the amino acids in chunks of 16 (SSE2) or
32 (AVX2). It is about ∼11 times faster than the scalar
version.

Results
Speed benchmarks
Speed of HHsearch 2.0.16 versus HHsearch 3
Typically more than 90% of the run time of HHsearch is
spent in the Viterbi algorithm, while only a fraction of
the time is spent in the maximum accuracy alignment.
Only a small number of alignments reach an E-value low
enough in the Viterbi algorithm to be processed further.

77

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 12 of 15

A B

Fig. 6 Speed comparisons. a runtime versus query profile length for 1644 searches with profile HMMs randomly sampled from UniProt. These
queries were searched against the PDB70 database containing 35 000 profile HMMs of average length 234. The average speedup over HHsearch
2.0.16 is 3.2-fold for SSE2- vectorized HHsearch and 4.2-fold for AVX2-vectorized HHsearch. b Box plot for the distribution of total runtimes (in
logarithmic scale) for one, two, or three search iterations using the 1644 profile HMMs as queries. PSI-BLAST and HHMER3 searches were done
against the UniProt database (version 2015_06) containing 49 293 307 sequences. HHblits searches against the uniprot20 database, a clustered
version of UniProt containing profile HMMs for each of its 7 313 957 sequence clusters. Colored numbers: speed-up factors relative to HMMER3

HHsearch therefore profits considerably from the SIMD
vectorization of the Viterbi algorithm.
To compare the speed of the HHsearch versions, we

randomly selected 1 644 sequences from Uniprot (release
2015_06), built profile HMMs, and measured the total
run time for searching with the 1644 query HMMs
through the PDB70 database (version 05Sep15). The
PDB70 contains profile HMMs for a representative set
of sequences from the PDB [24], filtered with a max-
imum pairwise sequence identity of 70%. It contained
35 000 profile HMMs with an average length of 234
match states.
HHsearch with SSE2 is 3.2 times faster and HHsearch

with AVX2 vectorization is 4.2 times faster than
HHsearch 2.0.16, averaged over all 1644 searches (Fig. 6a).
For proteins longer than 1000, the speed-up factors are 5.0
and 7.4, respectively. Due to a runtime overhead of ∼20 s
that is independent of the query HMM length (e.g. for
reading in the profile HMMs), the speed-up shrinks for
shorter queries. Most of this speed-up is owed to the vec-
torization of the Viterbi algorithm: The SSE2-vectorized
Viterbi code ran 4.2 times faster than the scalar version.
In HHblits, only part of the runtime is spent in the

Viterbi algorithm, while the larger fraction is used by the
prefilter, which was already SSE2-vectorized in HHblits
2.0.16. Hence we expected only a modest speed-up
between HHblits 2.0.16 and SSE2-vectorized HHblits 3.
Indeed, we observed an average speed-up of 1.2, 1.3, and
1.4 for 1, 2 and 3 search iterations, respectively (Fig. 6b),
whereas AVX2-vectorized version is 1.9, 2.1, and 2.3 times
faster than HHblits 2.0.16, respectively. AVX2-vectorized

HHblits is 14, 20, and 29 times faster than HMMER3
[4] (version 3.1b2) and 9, 10, and 11 times faster than
PSI-BLAST [10] (blastpgp 2.2.31) for 1, 2, and 3 search
iterations.
All runtime measurements were performed using the

Unix tool time on a single core of a computer with two
Intel Xeon E5-2640v3 CPUs with 128GB RAM.

Sensitivity benchmark
To measure the sensitivity of search tools to detect
remotely homologous protein sequences, we used
a benchmarking procedure very similar to the one
described in [5]. To annotate the uniprot20 (version
2015_06) with SCOP domains, we first generated a
SCOP20 sequence set by redundancy-filtering the
sequences in SCOP 1.75 [25] to 20% maximum pair-
wise sequence identity using pdbfilter.pl with
minimum coverage of 90% from HH-suite, resulting in
6616 SCOP domain sequences. We annotated a sub-
set of uniprot20 sequences by the presence of SCOP
domains by searching with each sequence in the SCOP20
set with blastpgp through the consensus sequences
of the uniprot20 database and annotated the best
matching sequence that covered ≥ 90% of the SCOP
sequence and that had a minimum sequence identity of at
least 30%.
We searched with PSI-BLAST (2.2.31) and HMMER3

(v3.1b2) with three iterations, using the 6616 sequences in
the SCOP20 set as queries, against a database made up of
the UniProt plus the SCOP20 sequence set. We searched
with HHblits versions 2.0.16 and 3 with three iterations

78

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 13 of 15

BA

Fig. 7 Sensitivity of sequence search tools. aWe searched with 6616 SCOP20 domain sequences through the UniProt plus SCOP20 database using
one to three search iterations. The sensitivity to detect homologous sequences is measured by cumulative distribution of the Area Under the Curve
1 (AUC1), the fraction of true positives ranked better than the first false positive match. True positive matches are defined as being from the same
SCOP superfamily [25], false positives have different SCOP folds, excepting known cases of inter-fold homologies. b Sensitivity of HHsearch with and
without scoring secondary structure similarity, measured by the cumulative distribution of AUC1 for a comparison of 6616 profile HMMs built from
SCOP20 domain sequences. Query HMMs include predicted secondary structure, target HMMs include actual secondary structure annotated by
DSSP. True and false positives are defined as in A

through a database consisting of the uniprot20 HMMs
plus the 6616 UniProt profile HMMs annotated by SCOP
domains.
We defined a sequence match as true positive if query

and matched sequence were from the same SCOP super-
family and as false positive if they were from different
SCOP folds and ignore all others. We excluded the self-
matches as well as matches between Rossman-like folds
(c.2-c.5, c.27 and 28, c.30 and 31) and between the four-
to eight-bladed β-propellers (b.66-b.70), because they are
probably true homologs [2]. HMMER3 reported more
than one false positive hit just in one out of three queries,
despite setting the maximum E-value to 100 000, and we
therefore measured the sensitivity up to the first false pos-
itive (AUC1) instead of the AUC5 we had used in earlier
publications.
We ran HHblits using hhblits -min_prefilter_

hits 100 -n 1 -cpu $NCORES -ssm 0 -v 0 -wg
and wrote checkpoint files after each iteration
to restart the next iteration. We ran HMMER3
(v3.1b2) using hmmsearch -chkhmm -E 100000
and PSI-BLAST (2.2.31) using -evalue 10000
-num_descriptions 250000.
The cumulative distribution over the 6616 queries of

the sensitivity at the first false positive (AUC1) in Fig. 7a
shows that HHblits 3 is as sensitive as HHblits 2.0.16
for 1, 2, and 3 search iterations. Consistent with earlier
results [5, 26], HHblits is considerably more sensitive than
HMMER3 and PSI-BLAST.

We also compared the sensitivity of HHsearch 3
with and without scoring secondary structure similarity,
because we slightly changed the weighting of the sec-
ondary structure score (Methods). We generated a pro-
file HMM for each SCOP20 sequence using three search
iterations with HHblits searches against the uniprot20
database of HMMs. We created the query set of pro-
file HMMs by adding PSIPRED-based secondary struc-
ture predictions using the HH-suite script addss.pl,
and we added structurally defined secondary structure
states from DSSP [36] using addss.pl to the target
profile HMMs. We then searched with all 6616 query
HMMs through the database of 6616 target HMMs.
True positive and false positive matches were defined as
before.
Figure 7b shows that HHsearch 2.0.16 and 3 have

the same sensitivity when secondary structure scoring is
turned off. When turned on, HHsearch 3 has a slightly
higher sensitivity due to the better weighting.

Conclusions
We have accelerated the algorithms most critical for run-
time used in the HH-suite, most importantly the Viterbi
algorithm for local and global alignments, using SIMD
vector instructions. We have also added thread paral-
lelization with OpenMP and parallelization across servers
with Message Passing Interface (MPI). These extensions
make the HH-suite well suited for large-scale deep protein
annotation of metagenomics and genomics datasets.

79

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 14 of 15

Availability and requirements
• Project name: HH-suite
• Project page: https://github.com/soedinglab/hh-suite
• Operating systems: Linux, macOS
• Programming languages: C++, Python utilities
• Other requirements: support for SSE2 or higher
• License: GPLv3

Abbreviations
AVX2: advanced vector extension (SIMD instruction set standards); HMM:
hidden Markov model; MSA: multiple sequence alignment; SIMD:
single-instruction multiple-data; SSE2: streaming SIMD extensions 2

Acknowledgements
We thank the HH-suite community for their contributions and bug reports. We
want to especially thank Lim Heo (Michigan State University) for fixing a bug in
the Viterbi global alignment mode and David Miller for adding PowerPC
support to the HH-suite.

Authors’ contributions
MS & JS designed research, MS developed vectorized code and performed
analyses, M. Meier refactored code, added features, fixed bugs and performed
benchmarks, M. Mirdita added features, fixed bugs and maintains databases,
HV implemented mmCIF support, SH optimized the MAC algorithm memory
usage, MS and JS wrote the manuscript. All authors read and approved the
final manuscript.

Funding
This work was supported by the European Research Council’s Horizon 2020
Framework Programme for Research and Innovation (“Virus-X”, project no.
685778).

Availability of data andmaterials
The datasets used and/or analysed during the current study are available from
the corresponding author on request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Quantitative and Computational Biology Group, Max-Planck Institute for
Biophysical Chemistry, Am Fassberg 11, 81379 Munich, Germany. 2Center for
Computational Biology, McKusick-Nathans Institute of Genetic Medicine,
Johns Hopkins School of Medicine, Baltimore, MD, USA. 3European
Bioinformatics Institute, CB10 1SD Cambridge, United Kingdom. 4Royal
College of Surgeons, D02 YN77 Dublin, Ireland.

Received: 19 February 2019 Accepted: 2 August 2019

References
1. Howe AC, Jansson JK, Malfatti SA, Tringe SG, Tiedje JM, Brown CT.

Tackling soil diversity with the assembly of large, complex metagenomes.
Proc Natl Acad Sci USA. 2014;111(13):4904–4909. https://doi.org/10.1073/
pnas.1402564111.

2. Söding J, Remmert M. Protein sequence comparison and fold
recognition: progress and good-practice benchmarking. Curr Opin Struct
Biol. 2011;21(3):404–11. https://doi.org/10.1016/j.sbi.2011.03.005.

3. Eddy SR. A new generation of homology search tools based on
probabilistic inference. Genome Inform. 2009;23(1):205–11.

4. Eddy SR. Accelerated Profile HMM Searches. PLOS Comput Biol.
2011;7(10):1002195. https://doi.org/10.1371/journal.pcbi.1002195.

5. Remmert M, Biegert A, Hauser A, Söding J. HHblits: lightning-fast
iterative protein sequence searching by HMM-HMM alignment. Nat
Methods. 2012;9(2):173–5. https://doi.org/10.1038/nmeth.1818.

6. Dill KA, MacCallum JL. The protein-folding problem, 50 years on. Science.
2012;338(6110):1042–6. https://doi.org/10.1126/science.121902.

7. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T,
Kiefer F, Cassarino TG, Bertoni M, Bordoli L, et al. SWISS-MODEL:
modelling protein tertiary and quaternary structure using evolutionary
information. Nucleic Acids Res. 2014;42(W1):252–8. https://doi.org/10.
1093/nar/gku340.

8. Fidler DR, Murphy SE, Courtis K, Antonoudiou P, El-Tohamy R, Ient J,
Levine TP. Using HHsearch to tackle proteins of unknown function: A pilot
study with PH domains. Traffic. 2016;17(11):1214–26. https://doi.org/10.
1111/tra.12432.

9. Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas
BC, Doudna JA, Banfield JF. New CRISPR-Cas systems from uncultivated
microbes. Nature. 2016;542:237. https://doi.org/10.1038/nature21059.

10. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
https://doi.org/10.1093/nar/25.17.3389.

11. Rychlewski L, Jaroszewski L, Li W, Godzik A. Comparison of sequence
profiles. Strategies for structural predictions using sequence information.
Protein Sci. 2000;9(2):232–41. https://doi.org/10.1110/ps.9.2.232.

12. Sadreyev R, Grishin N. COMPASS: a tool for comparison of multiple
protein alignments with assessment of statistical significance. J Mol Biol.
2003;326(1):317–36. https://doi.org/10.1016/S0022-2836(02)01371-2.

13. Zhang W, Liu S, Zhou Y. SP5: Improving Protein Fold Recognition by
Using Torsion Angle Profiles and Profile-Based Gap Penalty Model. PloS
One. 2008;3(6):2325. https://doi.org/10.1371/journal.pone.0002325.

14. Margelevičius M, Venclovas Č. Detection of distant evolutionary
relationships between protein families using theory of sequence
profile-profile comparison. BMC Bioinform. 2010;11(1):89. https://doi.org/
10.1186/1471-2105-11-89.

15. Söding J. Protein homology detection by HMM-HMM comparison.
Bioinformatics. 2005;21(7):951–60. https://doi.org/10.1093/
bioinformatics/bti125.

16. Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010;26(19):2460–1. https://doi.org/10.1093/
bioinformatics/btq461.

17. Kielbasa SM, Wan R, Sato K, Horton P, Frith M. Adaptive seeds tame
genomic sequence comparison. Genome Res. 2011;21(3):487–93. https://
doi.org/10.1101/gr.113985.110.

18. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using
DIAMOND. Nat Methods. 2014;12(1):59–60. https://doi.org/10.1038/
nmeth.3176.

19. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence
searching for the analysis of massive data sets. Nat Biotechnol.
2017;35(11):1026–8. https://doi.org/10.1038/nbt.3988.

20. El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, Qureshi
M, Richardson LJ, Salazar GA, Smart A, et al. The Pfam protein families
database in 2019. Nucleic Acids Res. 2018;47(D1):427–32. https://doi.org/
10.1093/nar/gky995.

21. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown
SD, Chang H.-Y., El-Gebali S, Fraser MI, et al. Interpro in 2019: improving
coverage, classification and access to protein sequence annotations.
Nucleic Acids Res. 2018;47(D1):351–60.

22. Biegert A, Söding J. De novo identification of highly diverged protein
repeats by probabilistic consistency. Bioinformatics. 2008;24(6):807–14.
https://doi.org/10.1093/bioinformatics/btn039.

23. Mirdita M, von den Driesch L, Galiez C, Martin MJ, Söding J, Steinegger
M. Uniclust databases of clustered and deeply annotated protein
sequences and alignments. Nucleic Acids Res. 2016;45(D1):170–6. https://
doi.org/10.1093/nar/gkw1081.

24. Gilliland G, Berman HM, Weissig H, Shindyalov IN, Westbrook J, Bourne
PE, Bhat TN, Feng Z. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):
235–42. https://doi.org/10.1093/nar/28.1.235.

25. Andreeva A, Howorth D, Chandonia J-M, Brenner SE, Hubbard TJ,
Chothia C, Murzin AG. Data growth and its impact on the SCOP database:

80

Steinegger et al. BMC Bioinformatics (2019) 20:473 Page 15 of 15

new developments. Nucleic Acids Res. 2007;36(Database issue):419–25.
https://doi.org/10.1093/nar/gkm993.

26. Angermüller C, Biegert A, Söding J. Discriminative modelling of
context-specific amino acid substitution probabilities. Bioinformatics.
2012;28(24):3240–7. https://doi.org/10.1093/bioinformatics/bts622.

27. Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14(9):
755–63. https://doi.org/10.1093/bioinformatics/14.9.755.

28. Li ITS, ShumW, Truong K. 160-fold acceleration of the Smith-Waterman
algorithm using a field programmable gate array (FPGA). BMC Bioinform.
2007;8(1):185. https://doi.org/10.1186/1471-2105-8-185.

29. Manavski SA, Valle G. CUDA compatible GPU cards as efficient hardware
accelerators for Smith-Waterman sequence alignment. BMC Bioinform.
2008;9 Suppl 2(Suppl 2):10. https://doi.org/10.1186/1471-2105-9-S2-S10.

30. Szalkowski A, Ledergerber C, Krähenbühl P, Dessimoz C. SWPS3 - fast
multi-threaded vectorized Smith-Waterman for IBM Cell/B.E. and
x86/SSE2. BMC Res Notes. 2008;1(1):107. https://doi.org/10.1186/1756-
0500-1-107.

31. Liu Y, Maskell DL, Schmidt B. CUDASW++: optimizing Smith-Waterman
sequence database searches for CUDA-enabled graphics processing units.
BMC Res Notes. 2009;2(1):73. https://doi.org/10.1186/1756-0500-2-73.

32. Wozniak A. Using video-oriented instructions to speed up sequence
comparison. Bioinformatics. 1997;13(2):145–50. https://doi.org/10.1093/
bioinformatics/13.2.145.

33. Rognes T, Seeberg E. Six-fold speed-up of Smith-Waterman sequence
database searches using parallel processing on common
microprocessors. Bioinformatics. 2000;16(8):699–706. https://doi.org/10.
1093/bioinformatics/16.8.699.

34. Farrar M. Striped Smith-Waterman speeds database searches six times
over other SIMD implementations. Bioinformatics. 2007;23(2):156–61.
https://doi.org/10.1093/bioinformatics/btl582.

35. Rognes T. Faster Smith-Waterman database searches with inter-sequence
SIMD parallelisation. BMC Bioinform. 2011;12(1):221. https://doi.org/10.
1186/1471-2105-12-221.

36. Kabsch W, Sander C. Dictionary of protein secondary structure: pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers.
1983;22(12):2577–637. https://doi.org/10.1002/bip.360221211.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

81

82 Further contributions

5.3 MetaEuk—sensitive, high-throughput gene discovery, and
annotation for large-scale eukaryotic metagenomics

Publication:

MetaEuk—sensitive, high-throughput gene discovery, and annotation for large-scale eukaryotic
metagenomics

E. Levy Karin†, M. Mirdita, J. Söding†

(†) corresponding author

Microbiome (2020), 8, 48.
Cited 31 times since 12/2020.

Code and software availability

MetaEuk is available as free open source software (GPLv3) at metaeuk.soedinglab.org.

Author contributions

E.L.K. & J.S. designed theMetaEuk algorithm, benchmark, and biological application. E.L.K. &M.M. de-
veloped the algorithm. E.L.K. analyzed the benchmark and Tara Oceans data. E.L.K. & M.M. generated
the figures. E.L.K., J.S., & M.M. drafted the manuscript.

https://metaeuk.soedinglab.org

RESEARCH Open Access

MetaEuk—sensitive, high-throughput gene
discovery, and annotation for large-scale
eukaryotic metagenomics
Eli Levy Karin*, Milot Mirdita and Johannes Söding*

Abstract

Background: Metagenomics is revolutionizing the study of microorganisms and their involvement in biological,
biomedical, and geochemical processes, allowing us to investigate by direct sequencing a tremendous diversity of
organisms without the need for prior cultivation. Unicellular eukaryotes play essential roles in most microbial
communities as chief predators, decomposers, phototrophs, bacterial hosts, symbionts, and parasites to plants and
animals. Investigating their roles is therefore of great interest to ecology, biotechnology, human health, and evolution.
However, the generally lower sequencing coverage, their more complex gene and genome architectures, and a lack of
eukaryote-specific experimental and computational procedures have kept them on the sidelines of metagenomics.

Results: MetaEuk is a toolkit for high-throughput, reference-based discovery, and annotation of protein-coding genes
in eukaryotic metagenomic contigs. It performs fast searches with 6-frame-translated fragments covering all possible
exons and optimally combines matches into multi-exon proteins. We used a benchmark of seven diverse, annotated
genomes to show that MetaEuk is highly sensitive even under conditions of low sequence similarity to the reference
database. To demonstrate MetaEuk’s power to discover novel eukaryotic proteins in large-scale metagenomic data, we
assembled contigs from 912 samples of the Tara Oceans project. MetaEuk predicted >12,000,000 protein-coding genes
in 8 days on ten 16-core servers. Most of the discovered proteins are highly diverged from known proteins and
originate from very sparsely sampled eukaryotic supergroups.

Conclusion: The open-source (GPLv3) MetaEuk software (https://github.com/soedinglab/metaeuk) enables large-scale
eukaryotic metagenomics through reference-based, sensitive taxonomic and functional annotation.

Keywords: MetaEuk, Eukaryotes, Homology detection, Prediction, Annotation, Contigs, Marine

Background
Unicellular eukaryotes are present in almost all environ-
ments, including soil [1], oceans [2], and plant and
animal-associated microbiomes [3, 4]. They exhibit both
autotrophic and heterotrophic lifestyles [5], exist in sym-
biosis with plants and animals [6], and interact with
other microbial organisms [7]. They account for roughly

half of the global primary productivity in the oceans,
mostly by photosynthesis [8], are key contributors to the
carbon and nitrogen cycles through carbon-dioxide fix-
ation, organic matter degradation, and denitrification [9,
10], and have been shown to be a source for chemically
bioactive compounds [11, 12].
Since the advent of metabarcoding using 18S rRNA

genes, the known evolutionary diversity of unicellular eu-
karyotes has increased by orders of magnitude [13], and
novel phyla and supra-kingdoms are still being discovered
[14, 15]. Due to their vast diversity [16, 17], unicellular

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: eli.levy.karin@gmail.com; soeding@mpibpc.mpg.de
Quantitative and Computational Biology, Max-Planck Institute for Biophysical
Chemistry, 37077 Göttingen, Germany

Levy Karin et al. Microbiome (2020) 8:48
https://doi.org/10.1186/s40168-020-00808-x

83

eukaryotes are certain to hold invaluable secrets for bio-
technology and biomedicine.
Protein-coding genes are major keys for understanding

eukaryotic functions and activities [18]. Metatranscriptomic
and metagenomic studies provide unique means to reveal
protein-coding genes. However, despite the great potential of
studying uncultivatable eukaryotes in their natural environ-
ment, they have received little attention in metatranscrip-
tomic and metagenomic studies so far, with a few notable
exceptions e.g., [19, 20]. The unique features of eukaryotic
data, i.e., lower genomic coverage due to lower population
densities in metagenomic samples, fewer reference genomes,
increased genome sizes, and higher complexity of gene struc-
ture negatively impact all stages of metagenomic analyses,
from assembly, through binning, to protein prediction and
annotation [21, 22].
Specifically, identifying protein-coding genes in

eukaryotes is inherently more challenging than in pro-
karyotes due to the exon-intron architecture of
eukaryotic genes. To date, methods for eukaryotic gene
calling e.g., [23–25] consider two types of information
when training models for gene prediction: intrinsic se-
quence signals (e.g., CpG islands) and extrinsic data,
such as transcriptomics or an annotated genome from a
closely related organism. As splicing signatures are not
well conserved throughout evolution, the predictive
power of the trained models declines fast when applied
to organisms that are phylogenetically distant from the
organism on which the model was trained [26].
While these methods are very useful for genomics,

their applicability to metagenomic data is severely lim-
ited. First, the transcriptomic or genomic data of anno-
tated organisms that are sufficiently closely related are
usually not available. Second, since the models need to
be trained on a relatively narrow clade, the application
of such methods to metagenomic data requires to first
bin the assembled contigs by their assumed genome of
origin as performed by [27], which is often quite in-
accurate and slow, especially when the number of con-
tigs is large, the coverage is low, the contigs are short,
and the metagenomic data are species-rich [28–30]. Fi-
nally, model-training in itself is time consuming, taking
hours to days per genomic bin [25, 27], limiting this ap-
proach to the analysis of few genomic bins at a time.
Previously, methods that bypass or reduce the need to

explicitly train models to detect protein-coding genes
have been proposed in the context of genomics e.g., [31,
32]. These methods extract putative protein-coding frag-
ments from the genome and join those that bear se-
quence similarity to available transcriptomic or protein
sequence targets. Since the joined fragments can be sep-
arated by non-coding (intronic) regions, their match to
the target is termed “spliced alignment.” Even at a gen-
omic level, a brute force application of the spliced

alignment approach poses a serious computational bur-
den as it requires aligning each putative fragment to
each target as well as recovering the set of putative frag-
ments that best match a target.
Here, we developed MetaEuk, a novel and sensitive

reference-based approach to identify single- and multi-
exon protein-coding genes in eukaryotic metagenomic
data. MetaEuk takes as input a set of assembled contigs
and a reference database of target protein sequences or
profiles. MetaEuk scans each contig in all six reading
frames and extracts putative protein fragments between
stop codons in each frame. Thus, MetaEuk makes no as-
sumption about the splicing signal and does not rely on
any preceding binning step. MetaEuk uses the MMseqs2
code library [33] for a very fast, yet sensitive identifica-
tion of putative exons within the fragments. This step
also discards the vast majority of fragments, which sig-
nificantly reduces the computation time of all succeed-
ing steps. The combinatorial task of considering all
possible sets of putative exons to best match a given tar-
get is solved by means of dynamic programming. Since
MetaEuk uses a homology-based strategy to identify
protein-coding genes, it can directly confer annotations
to the discovered genes from the matched target
proteins.
We benchmarked MetaEuk by using annotated ge-

nomes and proteins of seven unicellular organisms from
different parts of the eukaryotic tree of life under condi-
tions of increasing evolutionary distance to sequences in
the reference database. Despite its high speed and low
false positive rates, MetaEuk is able to discover a large
fraction of the known proteins in these benchmark ge-
nomes. We next applied MetaEuk to study marine eu-
karyotes. We assembled all Tara Oceans metagenomic
samples [20] and focused on ~1,300,000 contigs of at
least 5 kbp in length. We clustered more than 330,000,
000 proteins to create a comprehensive catalog of over
87,000,000 protein profiles to serve as a reference data-
base. We found the MetaEuk collection of >12,000,000
marine proteins is highly diverged, offering major
eukaryotic lineage expansions.

Results
The MetaEuk algorithm
The main steps of the algorithm are presented schematically
in Fig. 1, and a detailed description is provided in the
Methods section. For each input contig, all possible protein-
coding fragments are translated in six reading frames and
searched against a reference target database of protein se-
quences or profiles. Fragments from the same contig and
strand that hit a reference target T are examined together. In
each fragment, only the part that was aligned to the target
protein T is considered as a putative exon. The putative
exons are ordered according to their start position on the

Levy Karin et al. Microbiome (2020) 8:48 Page 2 of 15

84

contig. Based on their contig locations and the locations of
their aligned region on the target T, any two putative exons
are either compatible or not. A dynamic programming pro-
cedure recovers the highest scoring path of compatible pairs
of putative exons by computing the maximum scores of all
paths ending with each putative exon. Since homologies
among targets in the reference database can lead to multiple
calls of the same protein-coding gene, redundancies are re-
duced by clustering the calls. To that end, all calls are or-
dered by their start position on the contig. The first call
defines a new cluster and all calls that overlap it on the con-
tig are assigned to its cluster if they share an exon with it.
The next cluster is defined by the first unassigned call. After
all calls are clustered, the best scoring call is selected as the
representative of the cluster, termed a “prediction.” Finally, as
overlaps of genes on the same strand are very rare as
reviewed by [34], gene predictions overlapping others on the
same strand with a better E-value are removed.

Performance evaluation on benchmark data
We evaluated MetaEuk using seven annotated unicellu-
lar eukaryotic organisms obtained from the NCBI’s gen-
ome assembly database [35] (Table 1). These organisms
are varied in terms of their phylogenetic group, genome
size, number of annotated proteins, fraction of multi-
exon genes, and assembly quality. MetaEuk was run on
the assembled scaffolds of each of these organisms
against the UniRef90 [36] database with an average run
time of 42 min per genome, or 0.5 Mbp/min, on a server
with two 8-core Intel Xeon E5-2640v3 CPUs and 128
GB RAM (Table 1). The NCBI data included the scaffold
coordinates of the annotated protein-coding genes and
their exons. In the following sections, we used this infor-
mation to assess MetaEuk’s sensitivity and precision by
mapping MetaEuk predictions to annotated proteins in
their scaffold location. This was done based on the scaf-
fold boundaries of the MetaEuk prediction and the

Fig. 1 MetaEuk algorithm. Input to MetaEuk are assembled metagenomic contigs and a reference database of protein sequences. 1 Six-frame
translation of all putative protein-coding fragments from each contig. 2 Fragments on the same contig and strand that hit the same reference
protein T are examined together. 3 Putative exons are identified and ordered according to their start position on the contig. The highest score
and path (denoted with a star) of a set of compatible putative exons is computed by dynamic programming, in which individual scores of the
putative exons are summed and unmatched amino acids are penalized. 4 Redundancies among gene calls due to homologous targets (T, T’, and
“T”) are reduced and a representative prediction (denoted with a star) is retained. 5 Contradicting predictions of overlapping genes on the same
strand are resolved by excluding the prediction with the higher E-value

Levy Karin et al. Microbiome (2020) 8:48 Page 3 of 15

85

Table 1 Species used to benchmark MetaEuk

Species Group Genome size
(Mbp)

#
scaffolds

annotated
proteins

% multi-exon
proteins

GC% MetaEuk run time
against UniRef90

Schizosaccharomyces pombe Fungi 12.59 4 5132 47 36 35 m

Acanthamoeba castellanii str. Neff Amoebozoa 42.02 384 14,974 91 57.8 59 m

Phytomonas sp. isolate EM1 Excavata 17.78 138 6381 0 48 37 m

Babesia bigemina Alveolates 13.84 483 5079 54 50.6 35 m

Nucleomorph of Lotharella oceanica Rhizaria 0.68 4 668 39 32.8 24 m

Phaeodactylum tricornutum Stramenopiles 27.45 88 10,408 46 48.8 51 m

Aspergillus nidulans Eurotiomycetes 30.28 91 9556 88 50.3 52 m

Fig. 2 MetaEuk evaluation on benchmark. MetaEuk predictions were mapped to annotated proteins. a Conditions of increasing evolutionary
divergence were simulated by excluding gene calls based on their sequence identity to their target. Sensitivity is the fraction of annotated
proteins from the query genome to which a MetaEuk prediction was mapped. b Fraction of exons covered by MetaEuk (color saturation). The
number of MetaEuk predictions is indicated on top of each bar. c In an annotation-dependent precision estimation, MetaEuk predictions that
mapped to an annotated protein were considered as “true” and the rest as “false.” These sets of predictions are well separated by their E-values,
as indicated by the high AUC-PR values. d Fraction of annotated protein-coding genes that were split by MetaEuk into two (dark grey) or three
(black) different predictions. e Comparison of the E-values computed by MetaEuk and by the Smith-Waterman algorithm for A. castellani proteins.
The Spearman rho values indicate high correlation for A. castellani and for the other organisms (Supp. Figure S3A)

Levy Karin et al. Microbiome (2020) 8:48 Page 4 of 15

86

annotated protein and by requiring high sequence iden-
tity of their protein alignment. We then computed the
coverage of individual exons of the annotated proteins
to which MetaEuk predictions were mapped. These
mappings are fully described in the Methods section.

Sensitivity at evolutionary distance
Sequences from major eukaryotic clades, such as Rhi-
zaria, Stramenopiles, and Dinoflagellata are poorly repre-
sented in public protein databases, despite their high
abundance in the environment [17]. We therefore mea-
sured the ability of MetaEuk to identify homologous
protein-coding genes in organisms, which have distant
evolutionary relatives in the reference database, as would
be the case in a typical metagenomic analysis. To that
end, for each annotated organism, we considered five
sets of MetaEuk predictions. The first is the base set,
which consisted of all predictions. Since we worked with
annotated species, their proteins are well represented in
UniRef90. The base set therefore reflects ideal condi-
tions, in which the queried organisms are close to the
reference database. The other four sets reflect an in-
creasing evolutionary distance and were generated by ex-
cluding MetaEuk gene calls whose Smith-Waterman
alignment (computed using MMseqs2) to their UniRef90
target had more than 90%, 80%, 60%, or 40% sequence
identity. We measured sensitivity as the fraction of an-
notated proteins from the query genome to which a
MetaEuk prediction was mapped (see Methods). For all
organisms, the sensitivity of the base set of predictions
was at least 92%, and sensitivity decreased with the se-
quence identity threshold (Fig. 2a). However, even at
low thresholds (40–60%), a significant fraction of the an-
notated proteins could be discovered.

Annotated exon coverage
We next assessed MetaEuk’s performance at the level of indi-
vidual exons. For each MetaEuk prediction from the base set
and its mapped annotated protein, we computed the propor-
tion of annotated exons that were covered by the prediction
(see Methods). Overall, the majority of predictions covered
the majority of exons and, as expected, the fraction of predic-
tions that cover all annotated exons decreases with the num-
ber of exons in the annotated protein (Fig. 2b). For all
organisms, most (77–91%) annotated exons were covered by
MetaEuk predictions. In addition, we found that the fraction
of multi-exon MetaEuk predictions was similar to that pre-
sented in Table 1 (average difference 10%, Supp. Figure S1A)
and that single-exon predictions tended to have longer exons
than multi-exon predictions (Supp. Figure S1B). An add-
itional measure of completeness of MetaEuk predictions is
the coverage of the target UniRef90 protein based on which
the prediction was made. We therefore aligned each pre-
dicted MetaEuk protein to its target and found that on

average, >83% of predictions covered >90% of their target
(Supp. Figure S2).

Precision
MetaEuk predictions that were mapped to annotated pro-
teins were considered as true predictions. We first mea-
sured the precision of MetaEuk by using the NCBI
annotations as gold standard and regarded all predictions
in the base set that were not mapped to an annotated pro-
tein (8–35%, Supp. Figure S2) as false. We computed
precision-recall curves by treating the predictions’ E-
values as a classifying score. We found good separation
(AUC-PR > 0.7 in all cases) between predictions that
mapped to annotated proteins and the rest (Fig. 2c). How-
ever, a prediction that does not map to a known protein is
not necessarily false as it might reflect an unannotated
protein. We found that about 40% of the unmapped pre-
dictions overlap a protein-coding gene on the opposite
strand or are on scaffolds that had no annotation at all
(Supp. Figure S2), suggestive of post hoc exclusion criteria
in the NCBI annotation procedure. For this reason, we
also measured the precision of MetaEuk independently of
external annotations by using an inverted sequence null
model. For this annotation-free approach, we ran standard
MetaEuk on the inverted sequences of the six frame-
translated putative fragments. Each prediction based on
these inverted sequences can therefore be considered a
false positive. We applied the same E-value cutoff for
reporting predictions based on the original sequence data
and based on the inverted set. For all organisms, the total
number of false positive predictions produced by this ap-
proach was low (0–12), indicating very high precision (>
99.9%).

Redundancy reduction
MetaEuk’s redundancy reduction procedure divides gene
calls into disjoint clusters and retains a representative
call as gene prediction for each cluster (see Methods).
This reduces the number of potential protein-coding
genes that need to be inspected. For example, for S.
pombe, MetaEuk produced over 1,100,000 calls that were
reduced to a total of 5564 predictions in the base set. A
full reduction of redundancy is achieved when no two
predictions correspond to same protein-coding gene.
We thus identified cases in which two or more MetaEuk
predictions were mapped to the same protein-coding
gene. We found that for all benchmark organisms, re-
dundancy is greatly reduced, as more than 99% of the
annotated protein-coding genes in the benchmark scaf-
folds are only predicted once (Fig. 2d).

Statistical scores
For each prediction, MetaEuk computes a bit-score be-
tween the set of translated and joined putative exons

Levy Karin et al. Microbiome (2020) 8:48 Page 5 of 15

87

and the target protein. Based on this bit-score and
the size of the reference database, an E-value is com-
puted (see Methods). We evaluated MetaEuk’s bit-
scores and E-values by comparing them to those
computed for each predicted protein and its target by
the Smith-Waterman algorithm. Since MetaEuk penal-
izes missing and overlapping amino acids when join-
ing putative exons, we expect the MetaEuk bit-score
to be more conservative than the direct Smith-
Waterman alignment bit-score. We found very high
levels of agreement between the MetaEuk statistics
and the Smith-Waterman statistics (Fig. 2e, Supp.
Figure S3). This suggests a straightforward statistical
interpretation of MetaEuk prediction scores.

Effect of contig length
Assembling metagenomic reads often produces contigs
that are much shorter than the scaffolds of the organ-
isms we used for benchmarking MetaEuk (Table 1). We
thus aimed to assess the effect of analyzing shorter gen-
omic stretches by artificially dividing each of the scaf-
folds from Table 1 into shorter contigs following a
typical length distribution with a minimum of 5 kbp in
length and a median of 6.8 kbp (see Methods). Any
protein-coding gene that spans more than one contig is
expected to result in incomplete MetaEuk predictions.
Indeed, while the sensitivity measured by the mapping
to annotated proteins remained similar to that recorded
on the original scaffolds (Supp. Figure S4A), we found
that more predictions were partial and covered fewer an-
notated exons (Supp. Figure S4B) as well as an increase
of up to 15% in annotated genes being split into more
than one MetaEuk prediction (Supp. Figure S4D).

Eukaryotic protein-coding genes in the ocean
To date, little is known about the biological activities of
eukaryotes in the oceans [2, 37]. We aimed to use
MetaEuk to discover eukaryotic protein-coding genes in
the Tara Oceans metagenomic dataset [20]. We first
used MEGAHIT [38] to assemble all 912 samples of this
project. We retained 1,351,204 contigs of at least 5 kbp
in length that were classified as potentially eukaryotic by
EukRep [27]. We next constructed a comprehensive set
of reference proteins by uniting over 21,000,000 repre-
sentative sequences of the Uniclust50 database [39], the
MERC dataset of over 292,000,000 protein sequence
fragments assembled from eukaryotic Tara Oceans
metatranscriptomic datasets [40], and over 18,500,000
protein sequences of MMETSP, the Marine Microbial
Eukaryotic Transcriptome Sequencing Project [17, 41].
We clustered the joint dataset of 331,913,793 proteins
using the combined Linclust/MMseqs2 four-step cas-
caded clustering workflow [42] with a minimal sequence
identity of 20% and high sensitivity (-s 7). This resulted

in 87,984,812 clusters, most of which (> 97%) contained
proteins from a single reference dataset (Fig. 3). For each
cluster, a multiple sequence alignment was generated,
based on which a sequence profile was computed.
MetaEuk’s run using this reference database took 8

days on ten 2x8-core servers and resulted in 12,111,301
predictions with no same-strand overlaps in 1,287,197 of
the Tara Oceans contigs. Due to sequence similarities
among the assembled contigs, some of these proteins are
identical to each other, leaving a total of 6,158,526
unique proteins. We examined the distribution of pre-
dictions per contig, the number of putative exons in
each prediction and the length of putative exons in
single-exon and multi-exon predictions. We found that
the number of predictions increases as a function of the
contig length (Fig. 4a), about 24% of predictions had
more than one putative exon (Fig. 4b) and multi-exon
predictions tend to have shorter putative exons than
single-exon predictions (Fig. 4c). We analyzed the con-
tribution of each reference dataset to the profiles based
on which the MetaEuk predictions were made. MERC,
MMETSP, and Uniclust50 contributed 77.4%, 5.7%, and
4.3% of the predictions, respectively. The rest of the pre-
dictions were based on mixed-dataset clusters (Supp.

Fig. 3 Reference profiles composition. Proteins from three datasets:
MERC (292 million), MMETSP (18.5 million), and Uniclust50 (21 million)
were clustered into ~ 88 million clusters. Most clusters contained
proteins from a single reference dataset. The profiles computed based
on these clusters served as the reference database for the MetaEuk run
on the Tara Oceans contigs

Levy Karin et al. Microbiome (2020) 8:48 Page 6 of 15

88

Figure S5). We then used MMseqs2 to query the
MetaEuk predicted proteins against their targets. Over
33% of the MetaEuk predictions have less than 60% se-
quence identity to their MERC, MMETSP, or Uniclust50
target (Fig. 5a). Finally, we found that 70% of the
MetaEuk predicted proteins covered at least 80% of their
reference target (Fig. 5b).
We next explored the taxonomic composition of the

MetaEuk proteins. Since the majority (77%) of MetaEuk
predictions were based on homologies to the MERC data-
set, for which no taxonomic annotation is available, we
queried the MetaEuk marine protein collection against the
Uniclust90 dataset [39] and the MMETSP dataset, both
annotated using NCBI taxonomy (see Methods). We
found that 63% of predictions based on homologies to the
MERC dataset did not match any protein in either of the
reference datasets, which means ~49% (63% of 77%) of the
MetaEuk marine protein collection could not be assigned
any taxonomy. This is in agreement with 52% of un-
assigned unigenes assembled from Tara Oceans metatran-
scriptomics [20]. We next assigned taxonomic labels to
each assembled contig by conferring the taxonomic label
with the best E-value of all MetaEuk predictions in the
contig. This allowed us to annotate 92% of the contigs for
which MetaEuk produced predictions (87% of all input
contigs). We found that 82% of the contigs were assigned

to the domain Eukaryota and 9% to non-eukaryotes,
mostly bacteria (Fig. 6a). We then examined the assigned
eukaryotic supergroups below the domain level. About
12% of the eukaryotic contigs could not be assigned a
supergroup. Among the most abundant eukaryotic super-
groups are Metazoa and Chlorophyta (Fig. 6b).
The high fraction of unassignable predictions (49%)

prompted us to seek an additional way to assess the di-
versity of the MetaEuk marine proteins. We thus
collected orthologous sequences of the large subunits of
RNA polymerases, which are universal phylogenetic
markers [43] from 985 organisms for which we had
taxonomic information, as well as 1076 MetaEuk pro-
teins, which consisted of all five Pfam domains of the
large subunit in the right order (see Methods). We
aligned these sequences using MAFFT [44] and con-
structed the maximum-likelihood phylogeny using
RAxML [45]. The aim of this analysis was to delineate
the diversity of eukaryotic taxa of the MetaEuk marine
protein collection and not to resolve the exact phylogen-
etic relationships among them. As can be seen in Fig. 7,
MetaEuk proteins offer major lineage expansions in
under-sampled eukaryotic supergroups. Importantly, the
strict ortholog collection procedure performed for this
analysis results in a conservative estimate of the diversity
level of the MetaEuk marine proteins collection.

Q1 Q2 Q3 Density

C

10 20 30 50 100 300 1,000

Putative exon length (AAs)

1 putative exon
2+ putative exons

9.1M

2M 1M

B

0%

20%

40%

60%

80%

100%

1 2 3+

putative exons

M
et

aE
uk

 p
re

ds
.

0

1

2
3

5

10

20

100

200

5,000 7,000 10,000 20,000 50,000 100,000

Contig length (bp)

M

et
aE

uk
 p

re
di

ct
io

ns

Low High

A

Fig. 4 MetaEuk predictions on Tara Oceans contigs. MetaEuk was run on over 1.3 million contigs assembled from Tara Oceans metagenomic
reads against a reference database of ~88 million protein profiles. a The number of MetaEuk predictions per contig increases with its length.
Horizontal lines mark contig length quartiles. b Most (76%) MetaEuk predictions had a single putative exon. The absolute number of predictions
is indicated above each bar. c Single-exon predictions tend to have longer putative exons than multi-exon predictions

Levy Karin et al. Microbiome (2020) 8:48 Page 7 of 15

89

Discussion
We presented MetaEuk, an algorithm designed for large-
scale analysis of eukaryotic metagenomic data. We dem-
onstrated its utility for discovering proteins from highly
diverged eukaryotic groups by analyzing assemblies of a
huge set of 912 marine metagenomics samples. MetaEuk
makes no assumption concerning splice site signatures
and does not require a preceding binning procedure,
which renders it suitable for the analysis of contigs from
a mixture of highly diverged organisms. In order to
achieve this, MetaEuk considers all possible putative
protein-coding fragments from each input contig. Apply-
ing the spliced alignment dynamic programming proced-
ure to recover the optimal set of putative exons directly
on these fragments would result in a run time complex-
ity per contig that is quadratic in the number of its frag-
ments times the number of targets in the reference
database. This is not feasible for metagenomics, as the
number of fragments can be very high (e.g., from 1,351,
204 Tara Oceans contigs, 152,519,258 fragments were
extracted) and the reference database should be as com-
prehensive as possible (in this study, we used more than
87,000,000 protein profiles). To circumvent this limita-
tion, MetaEuk takes advantage of the ultra-fast

MMseqs2 search algorithm, which allows it to find puta-
tive exons matching a reference protein sequence with
sufficient significance (in this study, a lenient E-value of
100). MetaEuk does not require significance at the exon
level as it can combine sub-significant single exon
matches to highly significant multi-exon matches. For
example, two putative exons each with an E-value of 10
(corresponding to a bit-score of 25–40 in this study), are
not individually significant but the sum of their bit-
scores of at least 50 corresponds to a significant E-value
of 10-5.
MetaEuk is not designed to recover accurate splice

sites, but rather to identify the protein-coding parts
within exons. Indeed, we showed that MetaEuk predic-
tions on the benchmark covered the majority (77–91%)
of exons in annotated proteins. Since MetaEuk relies on
local alignment at the amino acid level, it could poten-
tially report pseudogenes, which still bear sequence simi-
larity to reference proteins. However, we found that the
majority of benchmark predictions (65–92%) mapped to
NCBI annotated protein-coding genes, while the rest
could be well separated from those that mapped by their
E-values (AUC-PR > 0.7). Furthermore, unmapped pre-
dictions can reflect a missing annotation or post hoc

Fig. 5 MetaEuk predictions compared to the reference datasets. MetaEuk predicted proteins were queried against the representative
sequence of their target reference cluster. a About one third of the predicted MetaEuk proteins had less than 60% sequence identity to their
target. b Targets are well covered by MetaEuk predicted proteins

Levy Karin et al. Microbiome (2020) 8:48 Page 8 of 15

90

exclusion criteria (e.g., removal of annotations that over-
lap a better scoring one on the opposite strand). We
therefore measured precision independently of annota-
tions by running standard MetaEuk on the inverted se-
quences of the putative protein fragments extracted
from the contigs. By using this annotation-free approach,
we showed that MetaEuk’s precision was greater than
99.9% for all benchmark organisms. Put together,
MetaEuk’s strength is in describing the protein-coding
repertoire of versatile environments rather than in con-
structing statistical models of exon-intron transitions.
The Tara Oceans contigs analyzed in this study were

assembled from Illumina HiSeq 2000 short reads. High
population diversity, repeat regions, and sequencing er-
rors are among the major factors contributing to the
computational challenge associated with metagenomic
assembly (reviewed by [46]). These factors reduce the
quality of the assembly as reflected, for example, in
shorter contig lengths, chimeric contigs and contigs con-
taining strand inversions. These in turn, directly and

negatively impact MetaEuk. Shorter contigs limit its abil-
ity to discover multi-exon protein-coding genes as it
searches for them within a contig. In addition, predic-
tions on contig edges can be partial, which is more likely
to happen in a highly fragmented assembly. By dividing
each of the benchmark scaffolds to contigs whose
lengths were drawn at random based on the length dis-
tribution of the Tara Ocean contigs, we showed that
while MetaEuk retains its overall sensitivity to detect
protein-coding genes even under conditions of increas-
ing evolutionary distance between the query organism
and the target reference database, the completeness of
its predictions is reduced. We thus expect MetaEuk to
benefit from future improvements in assembly algo-
rithms, higher sequencing coverage, and long-read se-
quencing technology [47–50].
In addition to developing MetaEuk, we generated two

useful resources for the analysis of eukaryotes as part of
this study. The first is the comprehensive protein profile
database, which was computed using protein sequences

Fig. 6 Taxonomy of Tara Oceans contigs with MetaEuk predictions. The best-scoring taxonomic label of all predictions on each contig was
conferred to the contig. Contigs were divided into four categories according to their number of MetaEuk predictions. Over 82% of the contigs were
assigned to the domain Eukaryota. a The proportion of unassigned contigs decreases with the number of MetaEuk predictions on the contig. The
fraction of eukaryotic contigs out of all assigned contigs is about 90% in all four categories. b Eukaryotic taxonomic labels below the domain level

Levy Karin et al. Microbiome (2020) 8:48 Page 9 of 15

91

from three sources: MERC, MMETSP, and Uniclust50.
With ~88 million records, it is the largest profile data-
base focused on eukaryotes to date. Since MERC was as-
sembled from the Tara Oceans metatranscriptomic data,
we expected it to be a valuable resource for discovering
protein-coding genes in the same environment. Indeed,
we found that the majority of MetaEuk predictions
(77%) were based on MERC protein profiles. Further-
more, the high fraction of MERC-based predictions that
could not be assigned a taxonomic label (63%) demon-
strates the uniqueness of this resource.
The second resource is the MetaEuk marine protein col-

lection, which is available on our search web server
(https://search.mmseqs.com) for easy investigation [51].
Using a phylogenetic marker protein, we showed that this
collection contains proteins spanning major eukaryotic
lineages, including supergroups with very few available

genomes. Over 33% of these proteins have less than 60%
sequence identity to the representative reference proteins
that were used to predict them, indicating their diversity
with respect to the reference database. Unlike the MERC
and MMETSP proteins, MetaEuk proteins are predicted
in the context of genomic contigs. This allows us to learn
of the number of putative exons that code for them as well
as to examine them together with other proteins on the
same contig. The latter is useful for conferring taxonomic
annotations to unlabeled predictions on the same contig
as well as for detecting complex functional modules, by
searching for co-occurrences of the module’s proteins on
the same contig.
As was demonstrated by the challenge of assigning

taxonomy to highly diverged eukaryotic proteins, the
paucity of eukaryotic sequences in reference databases is
currently a major limitation in the study of eukaryotes.

Fig. 7 Diversity of MetaEuk marine eukaryotic proteins. Homologous sequences of the large subunits of RNA polymerases of 985 species as
well as 1076 MetaEuk marine proteins were collected and a maximum-likelihood tree was computed based on their alignment. MetaEuk
sequences (black) expand major eukaryotic lineages, including deeply rooted supergroups (denoted with star)

Levy Karin et al. Microbiome (2020) 8:48 Page 10 of 15

92

Thus, we expect the resources produced in this study
and further analyses of eukaryotic metagenomic data
using MetaEuk to produce a more comprehensive de-
scription of the tree of life [16, 52–54].

Conclusions
MetaEuk is a sensitive reference-based algorithm for large-
scale discovery of protein-coding genes in eukaryotic metage-
nomic data. Applying MetaEuk to large metagenomic data-
sets is expected to significantly enrich our databases with
highly diverged eukaryotic protein-coding genes. By adding
sequences from under-sampled eukaryotic lineages, we can
improve sequence homology searches, protein profile com-
putation and thereby homology-based function annotation,
template-based, and even de novo protein structure predic-
tion [55, 56]. These, in turn will allow for further exploration
of eukaryotic activity in various environments [57].

Methods
MetaEuk algorithm
Code and resources availability
The MetaEuk source code, compilation instructions, and a
brief user guide are available from https://github.com/soedin-
glab/metaeuk under the GNU General Public License v3.0.
The resources produced during this study are available from
http://wwwuser.gwdg.de/~compbiol/metaeuk/.

Putative exons compatibility
In the first two stages of the MetaEuk algorithm, all possibly
coding protein fragments are translated from the input con-
tigs. We scan each contig in six frames and extract the frag-
ments between stop codons. These fragments are queried
against the reference target database using MMseqs2. A set
of fragments from the same contig and strand that have local
matches to the same specific target T define a set of putative
exons. We say two putative exons Pi and Pj from the same
set are compatible with each other if they can be joined to-
gether to a multi-exon protein.
Each Pi is associated with four coordinates: the amino-

acid position on T from which the match to Pi starts (PST
i)

and ends (PET
i); the nucleotide position on the contig from

which the translation of Pi starts (PSC
i) and ends (PEC

i). We
require a match of at least 10 amino acids (a minimal exon
length). We consider putative exons Pi and Pj with PST

i

< PST
j as compatible on the plus strand if:

(1) their order on the contig is the same as on the
target: PSC

i < PSC
j ;

(2) the distance between them on the contig is at least
the length of a minimal intron but not more than
the length of a maximal intron: 15≤ðPSC

j −PEC
i Þ≤10;

000;

(3) their matches to T should not overlap. In practice,
we allow for a short overlap to account for
alignment errors: ðPST

j −PET
i Þ≥−10.

In case Pi and Pj are on the negative strand, we modify
conditions (1) and (2) accordingly:

(1)P
SC
i > PSC

j ;

(2)15≤ PEC
i −PSCj

� �
≤10; 000:

Since the adjustment of conditions to the minus strand
is straightforward, in the interest of brevity, we focus
solely on the plus strand in the following text.
We say a set of k > 1 putative exons is compatible if,

when ordered by their PST
i values, each pair of consecu-

tive putative exons is compatible. (A set of a single exon
is always compatible.)

Bit-score and E-value computation
A set of k compatible putative exons defines a pairwise
protein alignment to the target T. This alignment is the
concatenation of the ordered local alignments of all puta-
tive exons to T. Between each consecutive putative pair of
exons Pi and Pi+1 there might be unmatched amino acids
in T or there might be a short overlap of their matches to
T. We denote the number of unmatched amino acids be-
tween Pi and Pi+1 as li, which can take a negative value in
case of an overlap. MetaEuk computes the bit-score of the
concatenated pairwise alignment S(Pset, T) by summing
the individual Karlin-Altschul [58] bit-scores S(Pi, T) of
the putative exons to T and penalizing for unmatched or
overlapping amino acids in T as follows:

(3)
S Pset;Tð Þ ¼

Xk
i¼1

S Pi;Tð Þ þ
Xk−1
i¼1

C lið Þ þ log2 k!ð Þ

where the penalty function is C(li) = − |li| for li ≠ 1 and
0 if li = 1. The last term rewards the correct ordering of
the k exons.
An E-value is the expected number of matches above

a given bit-score threshold. Since for each contig, at
most one gene call is reported per strand and target in
the reference database, the E-value takes into account
the number of amino acids in the reference database D
and the search on two strands:

(4)E−Value Pset;Tð Þ ¼ 2� D� 2−S Pset;Tð Þ

Dynamic programming
Given a set of n putative exons and their target,
MetaEuk finds the set of compatible exons with the

Levy Karin et al. Microbiome (2020) 8:48 Page 11 of 15

93

highest combined bit-score. First, all putative exons are
sorted by their start on the contig, such that PSC

1 ≤…≤
PSC
n . The dynamic programming computation iteratively

computes vectors S, k, and b from their first entry 1 to
their nth. The entry Si holds the score of the best exon
alignment ending in exon i and ki holds the number of
exons in that set. Once the maximum score is found, the
exon alignment is back traced using b, in which entry bi
holds the index of the aligned exon preceding exon i (0
if i is the first aligned exon). Using the following values:

(5)S0 ¼ 0; k0 ¼ 0; b0 ¼ 0

all putative exons Pj are examined according to their
order and the score vector is updated:

(6)S j ¼ max
i

�
Si þ S P j;T

� �þ C lij
� �

þ log2 ki þ 1ð Þj0≤ i < j; i compatible with jÞ

kj and bj are updated accordingly. The terms log2(ki+ 1)

add up to the score contribution
Pk
i¼1

log2ðiÞ ¼ log2ðk!Þ and
the transition 0 to j is defined as compatible with Cðl0j Þ ¼ 0

for all j. The optimal exon set is then recovered by tracing
back from the exon with the maximal score. This dynamic
programming procedure has time complexity of O(n2).

Clustering gene calls to reduce redundancy
MetaEuk assigns a unique identifier to each extracted
putative protein fragment (stage 1 in Fig. 1). A MetaEuk
exon refers to the part of a fragment that matched some
target T (stage 2 in Fig. 1, tinted background) and has
the same identifier as the fragment. Two calls that have
the same exon identifier in their exon set are said to
share an exon. MetaEuk reduces redundancy by cluster-
ing calls that share an exon (stage 4 in Fig. 1) and select-
ing a representative call as the gene prediction of each
cluster. To that end, all N MetaEuk calls from the same
contig and strand combination are ordered according to
the contig start position of their first exon. Since this
order can include equalities, they are sub-ordered by de-
creasing number of exons. The first cluster is defined by
the first call, which serves as its tentative representative.
Let m be the last contig position of the last exon of this
representative. Each of the following calls is examined so
long as its start position is smaller than m (i.e., it over-
laps the representative on the contig). If that call shares
an exon with the representative, it is assigned to its clus-
ter. In the next iteration, the first unassigned call serves
as representative for a new cluster and the following
calls are examined in a similar manner, adding

unassigned calls to the cluster in case they share an exon
with the representative. The clustering ends with the as-
signment of all calls. At this stage, the final prediction is
the call with the highest score in each cluster. This
greedy approach has time complexity of O(N × log(N) +
N ×A), where A is the average number of calls that over-
lap each representative on the contig. Since in practice,
A≪N, the expected time complexity is O(N × log(N)).

Resolving same-strand overlapping predictions
After the redundancy reduction step, MetaEuk sorts all
predictions on the same contig and strand according to
their E-value . It examines the sorted list and retains
predictions only if they do not overlap any preceding
predictions on the list.

Benchmark datasets
The UniRef90 database was obtained on March 2018. The
annotated information of Schizosaccharomyces pombe
(GCA_000002945.2), Acanthamoeba castellanii str. Neff
(GCA_000313135.1), Babesia bigemina (GCA_000981445.1),
Phytomonas sp. isolate EM1 (GCA_000582765.1), Nocleo-
morph of Lotharella oceanica (GCA_000698435.2), Phaeo-
dactylum tricornutum (GCA_000150955.2), and Aspergillus
nidulans (GCA_000149205.2) were downloaded from the
NCBI genome assembly database (March–September 2018).
This information included the genomic scaffolds, annotated
protein sequences, and GFF3 files containing information
about the locations of annotated proteins and other genomic
elements. MetaEuk (Github commit 4714106, MMseqs2
submodule version ebb16f3) was run with the following pa-
rameters: -e 100 (a lenient maximal E-value of a putative
exon against a target protein), --metaeuk-eval 0.0001
(a stricter maximal cutoff for the MetaEuk E-value
after joining exons into a gene call), --metaeuk-tcov
0.6 (a minimal cutoff for the ratio between the
MetaEuk protein and the target), and --min-length
20, requiring putative exon fragments of at least 20
codons and default MMseqs2 search parameters.

Mapping benchmark predictions to annotated proteins
For each annotated protein, we listed the contig start
and end coordinates of the coding part (CDS) of each of
its exons. The lowest and highest of these coordinates
were considered as the boundaries of the annotated pro-
tein, and the stretch between them as its “global” contig
length. Similarly, we listed these coordinates and com-
puted the boundaries and global contig length for each
MetaEuk prediction. A MetaEuk prediction was globally
mapped to an annotated protein if the overlap computed
based on their boundaries was at least 80% of the global
contig length of either of them and if, in addition, the
alignment of their protein sequences mainly consisted of
identical amino acids or gaps (i.e., less than 10%

Levy Karin et al. Microbiome (2020) 8:48 Page 12 of 15

94

mismatches). These criteria allow mapping MetaEuk
predictions to an annotated protein, even if they miss
some of its exons. Next, we computed the exon level
mapping for all globally mapped pairs of MetaEuk pre-
dictions and annotated proteins. To that end, we com-
pared their lists of exon contig coordinates. If an exon
predicted by MetaEuk covered at least 80% of the contig
length of an annotated protein’s exon, we considered the
annotated exon as “covered” by the MetaEuk prediction.

Generating typical metagenomic contig lengths
In order to evaluate MetaEuk’s performance on contigs
with a length distribution typical for assemblies from
metagenomic samples, we recorded the lengths of the
assembled contigs used for the analysis described in the
“Tara Oceans dataset” section. The 1,351,204 contigs
had a minimal length of 5002 bps, 1st quartile of 5661
bps, median of 6763 bps, 3rd quartile of 9020 bps, and a
maximal length of 1,524,677 bps. We divided each anno-
tated scaffold into contigs of lengths that were randomly
sampled from these recorded lengths. This resulted in
1392, 5061, 1816, 2095, 80, 3153, and 3273 contigs for S.
pombe, A. castellanii, Phytomonas sp. isolate EM1,
nucleomorph of L. oceanica, P. tricornutum, and A.
nidulans, respectively. MetaEuk was run on these con-
tigs in the same way as on the original scaffolds. Since
each of the new contigs corresponded to specific loca-
tions on the original scaffolds, we could carry out all
benchmark assessments, which relied on mapping be-
tween MetaEuk predictions and annotated proteins.

Tara Oceans dataset
The 912 metagenomic SRA experiments associated with
accession number PRJEB4352 were downloaded from
the SRA (August–September 2018). The reads of each
experiment were trimmed to remove adapters and low
quality sequences using trimmomatic-0.38 [59] with pa-
rameters ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEAD-
ING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:
36 (SE for single-end samples). The resulting reads were
then assembled with MEGAHIT [38] with default pa-
rameters. Contigs of at least 5 kbp in length were classi-
fied as eukaryotic/non-eukaryotic using EukRep [27],
which is trained to be highly sensitive to detecting
eukaryotic contigs. MetaEuk was run on the contigs
classified as eukaryotic with parameters: -e 100,
--metaeuk-eval 0.0001, --min-ungapped-score 35, --min-
exon-aa 20, --metaeuk-tcov 0.6, --min-length 40, --slice-
search (profile mode), and default MMseqs2 search
parameters.

Taxonomic assignment to predictions and contigs
We used MMseqs2 to query the MetaEuk marine pro-
tein collection against two taxonomically annotated

datasets: Uniclust90 and the MMETSP protein dataset.
Taxonomic labels associated with each of the MMETSP
identifiers were downloaded from the NCBI website
(BioProject PRJNA231566). We retained the hit with the
highest bit-score value for each prediction if it had an E-
value smaller than 10-5. In addition, we examined the se-
quence identity between the MetaEuk prediction and the
target in order to determine the rank of the taxonomic
assignment. Similarly to [20], we used the following se-
quence identity cutoffs: > 95% (species), > 80% (genus),
> 65% (family), > 50% (order), > 40% (class), > 30%
(phylum), > 20% (kingdom). Lower values were assigned
at the domain level. The predictions on each contig were
examined and the best-scoring one was used to confer
taxonomic annotation to that contig. The assignment
was visualized using Krona [60].

Phylogenetic tree reconstruction
We constructed the tree using the large subunit of
RNA polymerases as a universal marker. This subunit
contains five RNA_pol_Rpb domains (Pfam IDs:
pf04997, pf00623, pf04983, pf05000, pf04998). As de-
tailed below, protein sequences that contained all five
domains in the right order were obtained in January–
November 2019 from six sources to construct the
multiple sequence alignment and tree. The sources
were as follows: (1) 75 sequences of the OrthoMCL
[61] group OG5_127924. The four-letter taxonomic
codes of these sequences were converted to NCBI sci-
entific names, based on information from the
OrthoMCL website (http://orthomcl.org/orthomcl/get-
DataSummary.do). (2) 36 reviewed eukaryotic se-
quences were downloaded from UniProt [36]. These
were used to distinguish between eukaryotic RNA
polymerase I (8 sequences), eukaryotic RNA polymer-
ase II (16 sequences), and eukaryotic RNA polymerase
III (12 sequences). We then ran an MMseqs2 profile
search against the Pfam database (with parameters: -k
5, -s 7) with several query sets and retained results in
which all five domains were matched in the right
order with a maximal E-value of 0.0001. This allowed
us to add the following sources: (3) 674 MMETSP
proteins, (4) 100 archaeal proteins, and (5) 100 bac-
terial proteins. For datasets (4, 5), we first down-
loaded candidate proteins from the UniProt database
by searching for the five domains and restricting tax-
onomy: archaea (bacteria). We then ran the previously
described search procedure and randomly sampled
exactly 100 proteins from each group that matched
the criterion. (6) 1076 MetaEuk predictions. The joint
set of 2061 sequences was aligned using MAFFT
v7.407 [44] and a phylogenetic tree was reconstructed
by running RAxML v8 [45]. Tree visualization was
performed in iTOL [62].

Levy Karin et al. Microbiome (2020) 8:48 Page 13 of 15

95

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s40168-020-00808-x.

Additional file 1: Supplementary Figure S1. MetaEuk predictions
by number of exons and exons length. MetaEuk was run on a
benchmark of seven eukaryotic unicellular organisms. (A) The fraction of
multi-exon MetaEuk predictions is similar to the fraction of annotated
multi-exon proteins (Table 1). (B) Single-exon predictions tend to have
longer putative exons than multi-exon predictions. Supplementary Fig-
ure S2. MetaEuk target coverage. The protein sequence of each
MetaEuk prediction was aligned to the UniRef90 target, which was used
to produce the prediction. The level of target coverage was measured
while recording the mapping status of the MetaEuk prediction with re-
spect to the annotations of the benchmark organism: mapped to an an-
notated protein (“prot”), overlap of at least ten nucleotides with an
annotated protein on the opposite strand (“prot. on opp. strand”), predic-
tion on a scaffold for which no NCBI annotations were given (“unannot.
scaff.”) and all other predictions (“NA”). In all cases, most targets were
highly covered by their MetaEuk prediction. Supplementary Figure S3.
MetaEuk E-values and bit-scores. MetaEuk was run on a benchmark
of seven eukaryotic unicellular organisms. The (A) E-values and (B) bit-
scores computed between each predicted protein and its target by
MetaEuk were compared to those computed by the Smith-Waterman al-
gorithm. The Spearman rho values indicate high correlation for all bench-
mark organisms. Supplementary Figure S4. MetaEuk evaluation on
typical metagenomic contig lengths. The annotated scaffolds of each
of the organism in Table 1 were randomly divided into shorter contigs,
following typical lengths of a metagenomics analysis (see Methods). Since
each of the new contigs corresponds to locations on the original scaf-
folds, MetaEuk predictions on these contigs could be mapped to anno-
tated proteins. (A) Conditions of increasing evolutionary divergence were
simulated by excluding gene calls based on their sequence identity to
their target. Sensitivity is the fraction of annotated proteins from the
query genome to which a MetaEuk prediction was mapped. (B) Fraction
of exons covered by MetaEuk (color saturation). The number of MetaEuk
predictions is indicated on top of each bar. (C) In an annotation-
dependent precision estimation MetaEuk predictions that mapped to an
annotated protein were considered as “true” and the rest as “false”. (D)
Fraction of annotated protein-coding genes that were split by MetaEuk
into two (dark grey) or three (black) different predictions. (E) Comparison
of the E-values computed by MetaEuk and by the Smith-Waterman algo-
rithm for A. castellani proteins. Supplementary Figure S5. Contribu-
tion of reference datasets to MetaEuk predictions. Profiles
computed based on clusters of MERC, MMETSP and Uniclust50 proteins
served as the reference database for the MetaEuk run on the Tara Oceans
contigs. MERC, MMETSP and Uniclust50 contributed 77.4%, 5.7% and 4.3%
of the predictions, respectively. The rest of the predictions were based on
mixed-dataset clusters.

Acknowledgements
We thank Dr. David Burstein from Tel Aviv University for his helpful insights
concerning the phylogenetic analyses and Dr. Christian Woehle from
Christian-Albrechts University Kiel for his comments on the manuscript.

Authors’ contributions
ELK and JS have designed the MetaEuk algorithm, benchmark, and biological
application. ELK and MM have developed the algorithm. ELK has analyzed
the benchmark and Tara Oceans data. ELK and MM have generated the
figures. ELK, JS, and MM have drafted the manuscript. All authors read and
approved the final manuscript.

Funding
ELK is a recipient of a FEBS long-term fellowship and is an EMBO non-
stipendiary long-term fellow. This work was supported by the EU’s Horizon
2020 Framework Programme (Virus-X, grant 685778).

Availability of data and materials
The datasets generated and/or analyzed during the current study are
available in http://wwwuser.gwdg.de/~compbiol/metaeuk/.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Received: 15 November 2019 Accepted: 14 February 2020

References
1. Lentendu G, Hübschmann T, Müller S, Dunker S, Buscot F, Wilhelm C.

Recovery of soil unicellular eukaryotes: an efficiency and activity analysis on
the single cell level. J Microbiol Methods. 2013;95:463–9.

2. Keeling PJ, del Campo J. Marine protists are not just big bacteria. Curr Biol.
2017;27:R541–9.

3. Parfrey LW, Walters WA, Knight R. Microbial eukaryotes in the human
microbiome: ecology, evolution, and future directions. Front Microbiol.
2011;2:153.

4. Parfrey LW, Walters WA, Lauber CL, Clemente JC, Berg-Lyons D, Teiling C,
et al. Communities of microbial eukaryotes in the mammalian gut within
the context of environmental eukaryotic diversity. Front Microbiol. 2014;5.

5. Massana R. Eukaryotic picoplankton in surface oceans. Annu Rev Microbiol.
2011;65:91–110.

6. Flórez LV, Biedermann PHW, Engl T, Kaltenpoth M. Defensive symbioses of
animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep.
2015;32:904–36.

7. Douglas AE. Symbiosis as a general principle in eukaryotic evolution. Cold
Spring Harb Perspect Biol. 2014;6:a016113.

8. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of
the biosphere: integrating terrestrial and oceanic components. Science.
1998;281:237–40.

9. Jardillier L, Zubkov MV, Pearman J, Scanlan DJ. Significant CO2 fixation by
small prymnesiophytes in the subtropical and tropical northeast Atlantic
Ocean. ISME J. 2010;4:1180–92.

10. Woehle C, Roy A-S, Glock N, Wein T, Weissenbach J, Rosenstiel P, et al. A
novel eukaryotic denitrification pathway in Foraminifera. Curr Biol. 2018;28:
2536–2543.e5.

11. Michalak I, Chojnacka K. Algae as production systems of bioactive
compounds. Eng Life Sci. 2015;15:160–76.

12. Falaise C, François C, Travers M-A, Morga B, Haure J, Tremblay R, et al.
Antimicrobial compounds from eukaryotic microalgae against human
pathogens and diseases in aquaculture. Mar Drugs. 2016;14:159.

13. Leray M, Knowlton N. DNA barcoding and metabarcoding of standardized
samples reveal patterns of marine benthic diversity. Proc Natl Acad Sci U S
A. 2015;112:2076–81.

14. Pawlowski J. The new micro-kingdoms of eukaryotes. BMC Biol. 2013;11:40.
15. Lax G, Eglit Y, Eme L, Bertrand EM, Roger AJ, Simpson AGB.

Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes.
Nature. 2018;564:410–4.

16. Burki F. The eukaryotic tree of life from a global phylogenomic perspective.
Cold Spring Harb Perspect Biol. 2014;6:a016147.

17. Keeling PJ, Burki F, Wilcox HM, Allam B, Allen EE, Amaral-Zettler LA, et al.
The Marine Microbial Eukaryote Transcriptome Sequencing Project
(MMETSP): illuminating the functional diversity of eukaryotic life in the
oceans through transcriptome sequencing. PLoS Biol. 2014;12:e1001889.

18. Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK.
Sequencing our way towards understanding global eukaryotic biodiversity.
Trends Ecol Evol. 2012;27:233–43.

19. Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al.
Structure and function of the global ocean microbiome. Science. 2015;348:
1261359.

20. Carradec Q, Pelletier E, Da Silva C, Alberti A, Seeleuthner Y, Blanc-Mathieu R,
et al. A global ocean atlas of eukaryotic genes. Nat Commun. 2018;9:373.

Levy Karin et al. Microbiome (2020) 8:48 Page 14 of 15

96

21. Escobar-Zepeda A, Vera-Ponce de León A, Sanchez-Flores A. The road to
metagenomics: from microbiology to DNA sequencing technologies and
bioinformatics. Front Genet. 2015;6:348.

22. Majaneva M, Hyytiäinen K, Varvio SL, Nagai S, Blomster J. Bioinformatic
amplicon read processing strategies strongly affect eukaryotic diversity and
the taxonomic composition of communities. PLoS One. 2015;10:e0130035.

23. Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in
eukaryotes that allows user-defined constraints. Nucleic Acids Res. 2005;33:
W465–7.

24. Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1:
unsupervised RNA-seq-based genome annotation with GeneMark-ET and
Augustus. Bioinformatics. 2016;32:767–9.

25. Hoff KJ, Stanke M. WebAUGUSTUS--a web service for training AUGUSTUS
and predicting genes in eukaryotes. Nucleic Acids Res. 2013;41:W123–8.

26. Korf I. Gene finding in novel genomes. BMC Bioinformatics. 2004;5:59.
27. West PT, Probst AJ, Grigoriev IV, Thomas BC, Banfield JF. Genome-

reconstruction for eukaryotes from complex natural microbial communities.
Genome Res. 2018;28:569–80.

28. Sedlar K, Kupkova K, Provaznik I. Bioinformatics strategies for taxonomy
independent binning and visualization of sequences in shotgun
metagenomics. Comput Struct Biotechnol J. 2017;15:48–55.

29. Lu YY, Chen T, Fuhrman JA, Sun F. COCACOLA: binning metagenomic
contigs using sequence COmposition, read CoverAge, CO-alignment and
pairedend read LinkAge. Bioinformatics. 2017;33:791–8.

30. Yu G, Jiang Y, Wang J, Zhang H, Luo H. BMC3C: binning metagenomic
contigs using codon usage, sequence composition and read coverage.
Bioinformatics. 2018;34:4172–9.

31. Gelfand MS, Mironov AA, Pevzner PA. Gene recognition via spliced
sequence alignment. Proc Natl Acad Sci U S A. 1996;93:9061–6.

32. Gotoh O. Direct mapping and alignment of protein sequences onto
genomic sequence. Bioinformatics. 2008;24:2438–44.

33. Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence
searching for the analysis of massive data sets. Nat Biotechnol. 2017;35:1026-8.

34. Kumar A. An overview of nested genes in eukaryotic genomes. Eukaryot
Cell. 2009;8:1321–9.

35. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Ostell J, Pruitt KD, et al.
GenBank. Nucleic Acids Res. 2018;46:D41–7.

36. Bateman A, Martin MJ, O’Donovan C, Magrane M, Alpi E, Antunes R, et al.
UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:
D158–69.

37. Delmont TO, Quince C, Shaiber A, Esen ÖC, Lee ST, Rappé MS, et al.
Nitrogen-fixing populations of Planctomycetes and Proteobacteria are
abundant in surface ocean metagenomes. Nat Microbiol. 2018;3:804–13.

38. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-
node solution for large and complex metagenomics assembly via succinct
de Bruijn graph. Bioinformatics. 2015;31:1674–6.

39. Mirdita M, von den Driesch L, Galiez C, Martin MJ, Söding J, Steinegger M.
Uniclust databases of clustered and deeply annotated protein sequences
and alignments. Nucleic Acids Res. 2017;45:D170–6.

40. Steinegger M, Mirdita M, Söding J. Protein-level assembly increases protein
sequence recovery from metagenomic samples manyfold. Nat Methods.
2019;16:603–6.

41. Johnson LK, Alexander H, Brown CT. Re-assembly, quality evaluation, and
annotation of 678 microbial eukaryotic reference transcriptomes.
Gigascience. 2019;8:giy158.

42. Steinegger M, Söding J. Clustering huge protein sequence sets in linear
time. Nat Commun. 2018;9:2542.

43. Ren R, Sun Y, Zhao Y, Geiser D, Ma H, Zhou X. Phylogenetic resolution of
deep eukaryotic and fungal relationships using highly conserved low-copy
nuclear genes. Genome Biol Evol. 2016;8:2683–701.

44. Nakamura T, Yamada KD, Tomii K, Katoh K. Parallelization of MAFFT for
large-scale multiple sequence alignments. Hancock J, editor. Bioinformatics.
2018;34:2490–2.

45. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.

46. Ghurye JS, Cepeda-Espinoza V, Pop M. Metagenomic assembly: overview,
challenges and applications. Yale J Biol Med. 2016;89:353–62.

47. Warwick-Dugdale J, Solonenko N, Moore K, Chittick L, Gregory AC, Allen MJ,
et al. Long-read viral metagenomics enables capture of abundant and
microdiverse viral populations and their niche-defining genomic islands.
PeerJ. 2019;7:e6800.

48. Frank JA, Pan Y, Tooming-Klunderud A, Eijsink VGH, McHardy AC,
Nederbragt AJ, et al. Improved metagenome assemblies and taxonomic
binning using long-read circular consensus sequence data. Sci Rep. 2016;6:
25373.

49. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting and
repeat separation. Genome Res. 2017;27:722–36.

50. Driscoll CB, Otten TG, Brown NM, Dreher TW. Towards long-read
metagenomics: complete assembly of three novel genomes from bacteria
dependent on a diazotrophic cyanobacterium in a freshwater lake co-
culture. Stand Genomic Sci. 2017;12:9.

51. Mirdita M, Steinegger M, Söding J. MMseqs2 desktop and local web server
app for fast, interactive sequence searches. Bioinformatics. 2019;35:2856–8.

52. Mann DG, Droop SJM. Biodiversity, biogeography and conservation of
diatoms. Hydrobiologia. 1996;336:19–32.

53. Norton TA, Melkonian M, Andersen RA. Algal biodiversity. Phycologia. 1996;
35:308–26.

54. de Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, et al. Eukaryotic
plankton diversity in the sunlit ocean. Science. 2015;348:1261605.

55. Ovchinnikov S, Park H, Varghese N, Huang P-S, Pavlopoulos GA, Kim DE,
et al. Protein structure determination using metagenome sequence data.
Science. 2017;355:294–8.

56. Söding J. Big-data approaches to protein structure prediction. Science. 2017;
355:248–9.

57. Worden AZ, Allen AE. The voyage of the microbial eukaryote. Curr Opin
Microbiol. 2010;13:652–60.

58. Karlin S, Altschul SF. Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes. Proc Natl
Acad Sci U S A. 1990;87:2264–8.

59. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30:2114–20.

60. Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic
visualization in a web browser. BMC Bioinformatics. 2011;12:385.

61. Chen F, Mackey AJ, Stoeckert CJ, Roos DS. OrthoMCL-DB: querying a
comprehensive multi-species collection of ortholog groups. Nucleic Acids
Res. 2006;34:D363–8.

62. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new
developments. Nucleic Acids Res. 2019;47:W256–9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Levy Karin et al. Microbiome (2020) 8:48 Page 15 of 15

97

1

Supplementary Information 1

MetaEuk – sensitive, high-throughput gene discovery and annotation 2

for large-scale eukaryotic metagenomics 3

Eli Levy Karin1*, Milot Mirdita1, and Johannes Söding1* 4

 5

 6

1 Quantitative and Computational Biology, Max-Planck Institute for Biophysical Chemistry, 37077 7

Göttingen, Germany. 8

 9

 10

 11

* To whom correspondence should be addressed: 12

Eli Levy Karin, Tel: +49 551 201-2881 13

E-mail: eli.levy.karin@gmail.com 14

Johannes Söding, Tel: +49 551 201-2890 15

E-mail: soeding@mpibpc.mpg.de 16

 17

 18

 19

 20

 21

Running title: Metagenomics eukaryotic gene discovery 22

Keywords: MetaEuk, eukaryotes, homology detection, prediction, annotation, contigs, marine; 23

98

2

Supplementary Figures 24

Supplementary Figure 1 – MetaEuk predictions by number of exons and exons length 25

MetaEuk was run on a benchmark of seven eukaryotic unicellular organisms. (A) The fraction of 26

multi-exon MetaEuk predictions is similar to the fraction of annotated multi-exon proteins (Table 27

1). (B) Single-exon predictions tend to have longer putative exons than multi-exon predictions. 28

 29

99

3

Supplementary Figure 2 – MetaEuk target coverage 30

The protein sequence of each MetaEuk prediction was aligned to the UniRef90 target, which was 31

used to produce the prediction. The level of target coverage was measured while recording the 32

mapping status of the MetaEuk prediction with respect to the annotations of the benchmark 33

organism: mapped to an annotated protein (“prot”), overlap of at least ten nucleotides with an 34

annotated protein on the opposite strand (“prot. on opp. strand”), prediction on a scaffold for which 35

no NCBI annotations were given (“unannot. scaff.”) and all other predictions (“NA”). In all cases, 36

most targets were highly covered by their MetaEuk prediction. 37

 38

100

4

Supplementary Figure 3 – MetaEuk E-values and bit-scores 39

MetaEuk was run on a benchmark of seven eukaryotic unicellular organisms. The (A) E-values 40

and (B) bit-scores computed between each predicted protein and its target by MetaEuk were 41

compared to those computed by the Smith-Waterman algorithm. The Spearman rho values 42

indicate high correlation for all benchmark organisms. 43

 44

101

5

Supplementary Figure 4 – MetaEuk evaluation on typical metagenomic contig lengths 45

The annotated scaffolds of each of the organism in Table 1 were randomly divided into shorter 46

contigs, following typical lengths of a metagenomics analysis (see Methods). Since each of the 47

new contigs corresponds to locations on the original scaffolds, MetaEuk predictions on these 48

contigs could be mapped to annotated proteins. (A) Conditions of increasing evolutionary 49

divergence were simulated by excluding gene calls based on their sequence identity to their 50

target. Sensitivity is the fraction of annotated proteins from the query genome to which a MetaEuk 51

prediction was mapped. (B) Fraction of exons covered by MetaEuk (color saturation). The number 52

of MetaEuk predictions is indicated on top of each bar. (C) In an annotation-dependent precision 53

estimation MetaEuk predictions that mapped to an annotated protein were considered as “true” 54

and the rest as “false”. (D) Fraction of annotated protein-coding genes that were split by MetaEuk 55

into two (dark grey) or three (black) different predictions. (E) Comparison of the E-values 56

computed by MetaEuk and by the Smith-Waterman algorithm for A. castellani proteins. 57

102

6

 58

 59

 60

 61

 62

103

7

Supplementary Figure 5 – Contribution of reference datasets to MetaEuk predictions 63

Profiles computed based on clusters of MERC, MMETSP and Uniclust50 proteins served as the 64

reference database for the MetaEuk run on the Tara Oceans contigs. MERC, MMETSP and 65

Uniclust50 contributed 77.4%, 5.7% and 4.3% of the predictions, respectively. The rest of the 66

predictions were based on mixed-dataset clusters. 67

 68

 69

104

105

5.4 SpacePHARER: sensitive identification of phages from CRISPR
spacers in prokaryotic hosts

Publication:

SpacePHARER: sensitive identification of phages from CRISPR spacers in prokaryotic hosts

R. Zhang, M. Mirdita, E. Levy Karin, C. Norroy, C. Galiez, J. Söding†

(†) corresponding author

Bioinformatics (2021), 37, 3364–3366.
Cited 7 times since 4/2021.

Code and software availability

SpacePHARER is available as free open source software (GPLv3) at spacepharer.soedinglab.org.

Author contributions

R.Z., E.L.K., C.G. & J.S. designed the SpacePHARER algorithm. R.Z., M.M., J.S. designed the taxonomic
assignment in SpacePHARER. R.Z., M.M. & C.N. implemented code. R.Z. performed benchmarks. R.Z.
& M.M. generated figures. R.Z., M.M., E.L.K & J.S. wrote the manuscript.

https://spacepharer.soedinglab.org

Sequence analysis

SpacePHARER: sensitive identification of phages from

CRISPR spacers in prokaryotic hosts

Ruoshi Zhang 1, Milot Mirdita 1, Eli Levy Karin 1, Clovis Norroy1, Clovis Galiez
1,2 and Johannes Söding 1,3,**

1Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, 2University of Grenoble

Alpes, CNRS, Grenoble INP/Institute of Engineering, LJK, Grenoble, France, and 3Campus-Institut Data Science (CIDAS), Göttingen,

Germany

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on May 15, 2020; revised on March 13, 2021; editorial decision on March 26, 2021; accepted on March 31, 2021

Abstract

Summary: SpacePHARER (CRISPR Spacer Phage–Host Pair Finder) is a sensitive and fast tool for de novo prediction
of phage–host relationships via identifying phage genomes that match CRISPR spacers in genomic or metagenomic
data. SpacePHARER gains sensitivity by comparing spacers and phages at the protein level, optimizing its scores for
matching very short sequences, and combining evidence from multiple matches, while controlling for false posi-
tives. We demonstrate SpacePHARER by searching a comprehensive spacer list against all complete phage
genomes.

Availability and implementation: SpacePHARER is available as an open-source (GPLv3), user-friendly command-
line software for Linux and macOS: https://github.com/soedinglab/spacepharer.

Contact: soeding@mpibpc.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Viruses of bacteria and archaea (phages) are the most abundant bio-
logical entities in nature. However, little is known about their roles
in the microbial ecosystem and how they interact with their hosts, as
cultivating most phages and hosts in the lab is challenging. Many
prokaryotes (40% of bacteria and 81% of archaea) possess an adap-
tive immune system against phages, the Clustered Regularly
Interspaced Short Palindromic Repeat (CRISPR)-CRISPR associated
(Cas) system (Burstein et al., 2016). After surviving a phage infec-
tion, they can incorporate a short DNA fragment (28–42 nt) as a
spacer in a CRISPR array. The transcribed spacer will be used with
other Cas components for a targeted destruction of future invaders.
Some CRISPR-Cas systems require a 2–6 nucleotide long, highly
conserved protospacer-adjacent motif (PAM) flanking the viral tar-
get to prevent autoimmunity. Multiple spacers targeting the same in-
vader are not uncommon, due to either multiple infection events or
the primed spacer acquisition mechanism identified in some CRISPR
subtypes. CRISPR spacers have been previously exploited to identify
phage–host relationships (Biswas et al., 2013; Dion et al., 2021;
Paez-Espino et al., 2016; Shmakov et al., 2017; Stern et al., 2012).
These methods compare individual CRISPR spacers with phage
genomes using BLASTN (Altschul et al., 1990) and apply stringent
filtering criteria, e.g. allowing only up to two mismatches. They are

thus limited to identifying very close matches. However, a higher
sensitivity is crucial because phage reference databases are very in-
complete and often will not contain phages highly similar to those
to be identified. To increase sensitivity, (i) we compare protein cod-
ing sequences because phage genomes are mostly coding, and, to
evade the CRISPR immune response, are under pressure to mutate
their genome with minimal changes to the amino acids; (ii) we
choose an optimized substitution matrix and gap penalties for short,
highly similar proteins; and (iii) we combine evidence from multiple
spacers matching to the same phage genome.

2 Materials and methods

Input. SpacePHARER accepts spacer sequences as multiple FASTA
files each containing spacers from a single prokaryotic genome or as
multiple output files from the CRISPR detection tools PILER-CR
(Edgar, 2007), CRT (Bland et al., 2007), MinCED (Skennerton,
2016) or CRISPRDetect (Biswas et al., 2016). Phage genomes are
supplied as separate FASTA files or can be downloaded by
SpacePHARER from NCBI GenBank (Benson et al., 2013).
Optionally, additional taxonomic labels can be provided for spacers
or phages to be included in the final report.

Algorithm. SpacePHARER is divided into five steps (Fig. 1A,
Supplementary Materials). (0) Preprocess input: scan the phage

VC The Author(s) 2021. Published by Oxford University Press. 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 2021, 1–3

doi: 10.1093/bioinformatics/btab222

Advance Access Publication Date: 1 April 2021

Applications note

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab222/6207963 by guest on 17 August 2021

106

genome and CRISPR spacers in six reading frames, extract and
translate all putative coding fragments of at least 27 nt, with user-de-
finable translation tables. Each query set Q consists of the translated
ORFs q of CRISPR spacers extracted from one prokaryotic genome,
and each target set T comprises the putative protein sequences t
from a single phage. We refer to similar q and t as hit, and an identi-
fied host-phage relationship Q—T as match. (1) Search all q’s
against all t’s using the fast, sensitive MMseqs2 protein search
(Steinegger and Söding, 2017), with VTML40 substitution matrix
(Müller et al., 2002), gap open cost of 16 and extension cost of 2
(Supplementary Fig. S1). We optimized a short, spaced k-mer pat-
tern for the prefilter stage (10111011) with six informative (‘1’)
positions. In addition, align all q—t hits reported in the previous
search on nucleotide level and prioritize near-perfect nucleotide hits
(Supplementary Materials). (2) For each q—T pair, compute the P-
value for the best hit pbh from first-order statistics. (3) Compute a
combined score Scomb from best-hit P-values of multiple hits between
Q and T using a modified truncated-product method
(Supplementary Materials). (4) Compute the false discovery rate
(FDR ¼ FP/(TP þ FP)) and only retain matches with FDR < 0.05.
For that purpose, SpacePHARER is run on a null model database
and the fraction of null matches with Scomb below a cutoff (empirical
P-value) is used to estimate the FDR. (5) Scan 10 nt upstream and
downstream of the phage’s protospacer for a possible PAM.

Output is a tab-separated text file. Each host-phage match spans
two or more lines. The first starts with ‘#’: prokaryote accession,
phage accession, Scomb, number of hits in the match. Each following
line describes an individual hit: spacer accession, phage accession,
pbh, spacer start and end, phage start and end, possible 5’ PAM—3’
PAM, possible 5’ PAM—3’ PAM on the reverse strand. If requested,
the spacer–phage sequence alignments are included. If taxonomic
labels are provided, taxonomic reports based on the weighted lowest
common ancestor (LCA) procedure described in Mirdita et al.
(2021) are created for host LCAs of each phage genome or phage
LCAs of each spacer as additional tab-separated text files.

3 Results

Datasets. We split a previously published spacer dataset (Shmakov
et al., 2017) of 363 460 unique spacers from 30 389 prokaryotic

genomes randomly into an optimization set (20%, 6067 genomes)
and a test set (80%, 24 322 genomes). The performance of
SpacePHARER was evaluated on the spacer test set against a target
database of 7824 phage genomes. We used two null databases:
11 304 eukaryotic viral genomes and the inverted translated sequen-
ces of the target database. Viral genomes were downloaded from
GenBank in 09/2018. The performance of SpacePHARER in
Figure 1C was evaluated on a validation dataset of spacers from
1066 bacterial genomes against 809 phage genomes with annotated
host taxonomy (Edwards et al., 2016). For each phage, we predicted
the host based on the host LCA.

Prediction quality. At FDR ¼ 0.05, SpacePHARER predicted 3
to 4 times more prokaryote-phage matches than BLASTN (Fig. 1B,
Supplementary Fig. S2). SpacePHARER predicted the correct host
for more phages than BLASTN at all taxonomic ranks, while includ-
ing most of the BLASTN predictions, at better precision (Fig. 1C,
Supplementary Figs S3 and S4). If the host or a close relative of a
phage is absent in the database (either because the host is unidenti-
fied or the host lacks a CRISPR-Cas system), the predicted host may
be correct only at a higher rank than species.

Run time. SpacePHARER took 12 min to process the test dataset
on 2�6-core Intel E5-2620v3 CPUs, 47 times faster than BLASTN
(575 min).

4 Conclusion

SpacePHARER is 1.4 to 4� more sensitive than BLASTN in detect-
ing phage–host pairs, due to searching with protein sequences, opti-
mizing short sequence comparisons, and combining statistical
evidence, and it is fast enough to analyze large-scale genomic and
metagenomic datasets.

Funding

E.L.K. is a FEBS long-term fellowship recipient and an EMBO non-stipen-

diary long-term fellow. The work was supported by the ERC’s Horizon 2020

Framework Programme [‘Virus-X’, project no. 685778] and the BMBF

CompLifeSci project horizontal4meta.

Conflict of Interest: none declared.

CRISPR Locus

Second best hit
Best hit

pbh1

pbh2

pbh3

PAM

Protospacer

Threshold p0

X
Search

...
...

(1) MMseqs2 search of six-frame translated ORFs

(2) P-value of best hit per q-T (3) Compute combined score

Q T

q

t

(5) Scan for possible PAMs

(4) Select true matches by FDR

Hit List

q1

q2

q3

#
P
re
di
ct
io
ns

TP

FP

FN

TN

-log(p)

Sort

Empirical P-values
0 10.5

Extracted Spacer Sets
(FASTA, PILER-CR, CRT, MinCED, CRISPRDetect)

Phage Genomes

0%

5%

10%

15%

0 50,000 100,000 150,000 200,000 250,000
#True Positives

Fa
ls

e
D

is
co

ve
ry

R
at

e

BLASTN Eukaryotic Viral Control

BLASTN Inverted Phage Control

SpacePHARER Eukaryotic Viral ORF Control

SpacePHARER Inverted Phage ORF Control

B
LA

S
T

N
S

pa
ce

P
H

A
R

E
R

Species Genus Family Order Class Phylum

0

100

200

300

400

F
re

qu
en

cy

Incorrect
Correct

C

BA

Fig. 1. (A) SpacePHARER algorithm. A query set Q consists of 6-frame translated ORFs (q) from CRISPR spacers, and a target set T consists of 6-frame translated ORFs (t)

of phage proteins. (1) Search all qs against all ts using MMseqs2. Align the q—t hits on nucleotide level and prioritize near-perfect nucleotide hits. (2) For each q—T pair, com-

pute the P-value for the best hit from first-order statistics. (3) Compute score Scomb by combining the best-hit P-values from multiple hits between Q and T using a modified

truncated-product method. (4) Estimate the FDR by searching a null database. (5) Scan for possible protospacer adjacent motif (PAM). (B) Performance comparison between

SpacePHARER (blue) and BLASTN (red) using inverted phage sequences (solid lines) or eukaryotic viral ORFs as null set (dashed lines) demonstrated by expected number of

true positive (TP) predictions at different false discovery rates (FDRs). (C) Performance comparison between BLASTN (left), SpacePHARER using the weighted lowest com-

mon ancestor procedure (LCA, right) at FDR ¼ 0.02, evaluated by the number of correct (blue) and incorrect (red) predictions, for all the host predictions made at each taxo-

nomic rank or below. BLASTN hits with >95% sequence identity and query coverage (up to 2 mismatches) were retained.

2 R.Zhang et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab222/6207963 by guest on 17 August 2021

107

Data availability

The data used to benchmark SpacePHARER and BLASTN are pub-
licly available from ftp://ftp.ncbi.nih.gov/pub/wolf/_suppl/space
rome/ and http://edwards.sdsu.edu/PhageHosts/. The viral genomes
were downloaded from NCBI Genbank in 09/2018.

References

Altschul,S.F. et al. (1990) Basic local alignment search tool. J. Mol. Biol., 215,

403–410.

Benson,D.A. et al. (2013) GenBank. Nucleic Acids Res., 41, D36–D42.

Biswas,A. et al. (2013) CRISPRTarget: bioinformatic prediction and analysis

of crRNA targets. RNA Biol., 10, 817–827.

Biswas,A. et al. (2016) CRISPRdetect: a flexible algorithm to define CRISPR

arrays. BMC Genomics, 17, 356.

Bland,C. et al. (2007) CRISPR recognition tool (CRT): a tool for automatic de-

tection of clustered regularly interspaced palindromic repeats. BMC

Bioinformatics, 8, 209.

Burstein,D. et al. (2016) Major bacterial lineages are essentially devoid of

CRISPR-Cas viral defence systems. Nat. Commun., 7, 10613.

Dion,M.B. et al. (2021) Streamlining CRISPR spacer-based bacterial host predic-

tions to decipher the viral dark matter. Nucleic Acids Res., 49(6), 3127–3128.

Edgar,R.C. (2007) PILER-CR: fast and accurate identification of CRISPR

repeats. BMC Bioinformatics, 8, 18.

Edwards,R.A. et al. (2016) Computational approaches to predict bacteriopha-

ge–host relationships. FEMS Microbiol. Rev., 40, 258–272.

Mirdita,M. et al. (2021) Fast and sensitive taxonomic assignment to metage-

nomic contigs. Bioinformatics, btab184.

Müller,T. et al. (2002) Estimating amino acid substitution models: a compari-

son of Dayhoff’s estimator, the resolvent approach and a maximum likeli-

hood method. Mol. Biol. Evol., 19, 8–13.

Paez-Espino,D. et al. (2016) Uncovering Earth’s virome. Nature, 536, 425–430.

Shmakov,S.A. et al. (2017) The CRISPR spacer space is dominated by sequen-

ces from species-specific mobilomes. mBio, 8, e01397–17.

Skennerton,C. (2016) Minced – mining CRISPRs in environmental datasets.

(15 May 2020, date last accessed). https://github.com/ctSkennerton/minced.

Steinegger,M. and Söding,J. (2017) MMseqs2 enables sensitive protein se-

quence searching for the analysis of massive data sets. Nat. Biotechnol., 35,

1026–1028.

Stern,A. et al. (2012) CRISPR targeting reveals a reservoir of common phages

associated with the human gut microbiome. Genome Res., 22, 1985–1994.

SpacePHARER: sensitive identification of phages from CRISPR spacers in prokaryotic hosts 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab222/6207963 by guest on 17 August 2021

108

Supplementary Material for SpacePHARER: Sensitive identification of
phages from CRISPR spacers in prokaryotic hosts

Zhang R.,1 Mirdita M.,1 Levy Karin E.,1 Norroy C.,1 Galiez C.,1, 2 and Söding J.1, 3

1Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
2Univ. Grenoble Alpes, CNRS, Grenoble INP/Institute of Engineering Univ. Grenoble Alpes, Grenoble, France

3Campus-Institut Data Science (CIDAS), Göttingen, Germany.

I. ALGORITHM DESCRIPTION

The query spacer set Q has Nq translated ORFs q of
CRISPR spacers (Q = {q1, ...qNq}) from one prokary-
otic genome. Phage proteome target set T has Nt phage
protein sequences t (T = {t1, ...tNt}). These protein se-
quences are extracted in the input preprocessing step
(Step 0) of the algorithm from each spacer set and
each phage genome by scanning them in six transla-
tional frames. We refer to similarity between q and t
as hit, and similarity between Q and T as match. The
SpacePHARER algorithm relies on a statistic for the
combination of hits between a spacer sequence set and
a phage protein sequence set. The idea is that combin-
ing together several sub-significant hits (due to weak ho-
mologies or the typical length of spacers) can be highly
informative and result in a significant match. Steps 2
and 3 of the algorithm test if the pairwise P-values of the
best hit of sequences in the query set with those in the
target set are due to homologous relationships or entirely
due to chance.

A. (1) MMseqs2 protein-level search

The SpacePHARER algorithm first searches all q’s
against all t’s using the fast, sensitive MMseqs2 protein-
level search [10], with VTML40 substitution matrix [8],
gap open cost of 16, gap extension cost of 2, and a short,
spaced k-mer pattern for the prefilter stage (10111011)
with six informative (‘1’) positions. Spaced k-mers are
utilized in MMseqs2 to reduce the correlation between
k-mers at neighboring positions, and to achieve better
sensitivity and speed. The spaced k-mer pattern is cho-
sen such that it is short in length in order to produce
consecutive double k-mer matches (which are demanded
by MMseqs2) within spacer fragments of 10-12 aa, and
that the number of maximum overlapping informative
positions is minimized.

Perfect or near-perfect hits (with no or 1-2 mismatches
on the nucleotide level) are shown to be very reliable sig-
nals in predicting phage-host relationship and improve
the taxonomic certainty of the prediction, even if there
is only a single hit between a phage-host pair [4]. How-
ever, those hits are not well reflected in the pairwise P-
value of the protein-level search. Therefore, all q− t hits
reported from the sensitive protein-level search will be
aligned again on the nucleotide level with match reward

of 1, mismatch penalty of 1, gap open cost of 10 and gap
extension cost of 2. The protein-level search will compute
a protein pairwise P-value (pprot) for each hit and nu-
cleotide alignment a nucleotide pairwise P-value (pnucl).
In order to prioritize near-perfect hits on the nucleotide
level to gain precision without losing much sensitivity,
we compute the pairwise P-value as

exp (min {(0.5 log pprot + 0.5 log pnucl) , log pnucl}) (1)

B. (2) Computing P-value of best hit

All hits of each q against the Nt proteins in a spe-
cific phage genome T are examined by their pairwise
P-values, and the hit with the lowest pairwise P-value
(“best hit”) is retained. SpacePHARER computes the
P-value of the best hit pbh(q) using first order statistics,
i.e. the P-value of taking the minimum pairwise P-value
(p(q)), given that a total of Nt pairwise P-values were
examined:

pbh(q) = P (p (q) ≤ p) = 1− (1− p)Nt (2)

C. (3) Combining P-values using a modified
truncated product method

In this step, we aim to combine the evidence from sev-
eral best hits between a spacer set Q and a phage genome
T . We sort the pbh of the given set Q of Nq sequences
in ascending order and denote the i’th pbh as pi. When
combining independent P-values of individual hits, one
needs to take into account the number of individual hits
and the strength of each hit. The truncated product
method combines independent P-values into a score by
multiplying all pbh(q) smaller than a threshold p0 [14],

Scomb = − log

Nq∏
i=1

p
I(pi<p0)
i , (3)

where I(·) is the indicator function that returns 1 if the
argument is true and otherwise returns 0.

In SpacePHARER, we modified the truncated product
method for better performance. We take the product of
the smallest best-hit P-value p1 times the ratio between

109

2

pi and the threshold p0 for all further pi below the thresh-
old p0:

Scomb = − log

p1 ×
Nq∏
i=2

(
pi
p0

)I(pi<p0)
 (4)

For the threshold, we set p0 = 1/(Nq + 1), which cor-
responds to marginal significance, with an E-value of
Nq/(Nq + 1) just below 1. This ensures that the com-
bined score for null model-distributed P-values pi only
rarely gets boosted by a contribution from the second-
best pi.

D. (4) Determining true predictions

SpacePHARER predicts matches de novo, i.e. without
relying on any known phage-host relationships, by con-
trolling for estimated false discovery rate (FDR). The
FDR is the proportion of false predictions among all pre-
dictions:

FDR =
FP

FP + TP
(5)

We implemented an FDR estimation approach simi-
lar to that of the R package “fdrtool” [11]. In essence,
we estimate the FDR by a Grenander decreasing density
estimate of the empirical cumulative distribution func-
tion (ECDF). This non-parametric approach achieves its
robustness by ensuring monotonicity of the FDR.

SpacePHARER uses a null model dataset to estimate
the proportion of false predictions. The same search and
statistical computation procedures described in Steps 1,
2 and 3 of the algorithm are performed on a given null
model dataset, e.g. inverted phage ORFs or eukary-
otic viral ORFs. Inverting target ORFs as null model
dataset can be easily performed by specifying one pa-
rameter when preparing the input.

To compute an empirical P-value for each query spacer
set Q, we sort for each Q the combined scores Scomb of
matches in the original target dataset of phage proteomes
in ascending order. For each Scomb value in the target
dataset, we calculate an empirical P-value pemp by using
the fraction of Q−T matches with a combined score that
is below Scomb in the null model dataset. We denote the
number of Q− T matches below the cutoff as K and the
total number of matches using the null model dataset as
Nnull. The empirical P-value is then computed as

pemp(Scomb) =
K + 0.5

Nnull + 1
, (6)

where, to stabilize the estimate, we used half pseudo-
counts with P-values at 0 and 1. In the following, we
abbreviate these empirical P-values as p, or pQ for query
set Q.

If we knew the fraction π0 of false positives among all
Q − T matches, we could in principle estimate the false
discovery rate simply as

FDR(p) =
FPp

(TP + FP)p
≈ p π0

Femp(p)
, (7)

where p π0 is the fraction of false positives with empirical
P-value less than pi. Femp(p) is the empirical cumulative
distribution function of the pQ, in other words Femp(p)
is the number of query sets Q with best matches pQ ≤ p.

We can increase the robustness of the estimate by using
the fact that the true probability distribution of P-values
f(p) must be monotonously decreasing. This will also
ensure that the FDR decreases with increasing p, which
is often violated with the simple procedure above. The
Grenander estimate [11] is a simple, efficient procedure to
obtain a robust estimate F̂ (p) of F (p) from Femp(p) that
has monotonously decreasing density f̂(p) = dF̂ (p)/dp.
We simply obtain the convex hull of the area under the
Femp(p) curve, that is, the smallest function F̂ (p) with
F̂ (p) ≥ Femp(p) that yields a convex area under the
curve. This results in a piecewise constant, monotonously
decreasing density function f̂(p) = dF̂ (p)/dp with steps
at points pi with plast = 1. We estimate the proportion
of true null hypotheses π0 as the average density using
the last two steps,

π0 =
F̂ (plast)− F̂ (plast−2)

plast − plast−2
. (8)

Finally, we compute the estimated FDR corresponding
to each empirical P-value p (Fig.1A) as

FDR(p) =
FPp

(TP + FP)p
=

p π0

F̂ (p)
. (9)

By default, SpacePHARER has an FDR cutoff of 0.05,
and reports all matches in the test whose Scomb corre-
sponds to this FDR value or lower. Users can select other
suitable FDR cutoffs to retain more or fewer predictions.

E. (5) Scanning for possible PAMs

For some CRISPR-Cas systems, protospacer adjacent
motifs (PAMs) are required for the recognition of foreign
invader sequences. After reporting phage-host pairs and
their hits, SpacePHARER can perform a scan for possible
PAMs. For this, SpacePHARER by default extracts 10 nt
long fragments flanking the matched protospacer region
at the 5’ and 3’ side, in guide-centric orientation (PAM is
located on the strand that matches the spacer sequence).
Users can increase or decrease the length of the flank-
ing sequence. Both the 5’ and 3’ flanking sequences are
searched in a list of consensus PAM patterns from repre-
sentative CRISPR-Cas systems [5]. Since many CRISPR
detection tools cannot reliably predict the orientation of

110

3

the CRISPR array, the 5’ and 3’ flanking sequences on
the reverse strand are also searched and two additional
possible PAMs are reported. Users should refer to all pos-
sible PAMs without the accurate orientation information
of the array.

II. OPTIMIZING PARAMETERS FOR SHORT
FRAGMENTS SEARCH

Different substitution matrices are optimal for compar-
ing sequences that have diverged to different degrees. By
default, MMseqs2 search [10] uses the BLOSUM62 ma-
trix with standard gap penalties: gap open cost of 11 and
gap extend cost of 1 , which is more suited for long align-
ments and detecting weak protein similarities. Converse-
ly� for shorter sequences and higher protein similarity,
one should consider a “shallower” (higher bit score per
aligned column) matrix, and higher gap penalties to pre-
vent gaps [9]. Searching with VTML40 matrix [8] with
gap open cost of 16 and gap extend cost of 2 yielded
the highest sensitivity with 20% on our test dataset at
FDR cutoff of 0.05 (Figure S2). We introduced a series of
VTML matrices in MMseqs2 to solve general problems of
short sequence search. After introducing the additional
nucleotide alignment step, the search parameter combi-
nation (VTML40 matrix, gap open cost of 16 and gap
extend cost of 2) remains the highest in sensitivity (re-
sult not shown).

III. PREDICTING MATCHES USING BLASTN

We compared SpacePHARER’s performance with the
state-of-the-art method using BLASTN. To generate
a comparable result, we performed the search step
with BLASTN and the downstream FDR control with
SpacePHARER. We used BLASTN [1] to first query the
80% test spacer dataset against 7,824 phage genomes,
then against 7,824 inverted phage genomes or 11,304 eu-
karyotic viral genomes as a null model database. For
all searches we used the parameters: -max_target_seqs
10000000 -dust no -word_size 7 -outfmt ‘6 std qcovs’
and recorded the running time. Hits with at least 95%
sequence identity and 95% query(spacer) coverage (i.e.,
one or two mismatches were allowed) were retained.
We grouped the hits into matches (unique phage-host
genome pairs) and retained the minimum pairwise E-
value of the hits. We sorted the pairwise E-values of
hits in ascending order for both searches and counted the
matches at a given pairwise E-value cutoff. Therefore, we
could calculate an FDR in the same way SpacePHARER
does (described in section I.D) and compare the number
of true predictions produced by the two methods (Figure
1B).

At FDR = 0.05, SpacePHARER predicted 2 and 1.5×
more matches than BLASTN using 90% and 85% se-
quence identity and query coverage cutoffs (i.e allowing

up to 4 and 6 mismatches, respectively) (Figure S2).

IV. HOST TAXONOMIC RANK ANALYSIS

To assess the sensitivity of SpacePHARER at different
host taxonomic rank, we searched with CRISPR spac-
ers extracted from 1,066 bacterial genomes against 809
phage genomes with annotated host taxonomy [4], then
against inverted ORFs of the 809 phage genomes as null
model dataset. For each phage, SpacePHARER pre-
dicted the host’s lowest common ancestor (LCA) based
on a weighted LCA procedure [7].

We demanded a stricter FDR cutoff of 0.02 for matches
that should be taken into account for the host taxonomic
rank prediction. In order to limit the number of false
taxonomic predictions due to incomplete databases, the
LCA result was further corrected according to the aver-
age nucleotide sequence identity of the reported matches
[6]. We used the following cutoffs for maximal taxonomic
resolution: > 86% (species), > 84% (genus), > 82% (fam-
ily), > 80% (order), > 78% (class), > 76% (phylum), >
74% (kingdom). Lower values were assigned at the su-
perkingdom level. The taxonomic FDR cutoff and se-
quence identity cutoffs are user-definable parameters for
the weighted LCA procedure.

We searched with the above-mentioned spacer dataset
against phage genomes using BLASTN with parame-
ters: blastn-short -dust no -word_size 7 -outfmt ‘6 std
qcovs’ -evalue 1 -gapopen 10 -gapextend 2 -penalty -1
[4]. Hits with at least 95% sequence identity and 95%
query(spacer) coverage were retained (i.e., one or two
mismatches were allowed). For each phage, the bac-
terium with the lowest pairwise E-value was predicted
to be its host. Note that in Edwards et al., the au-
thors searched with the phage genomes against the spacer
dataset, and demanded 100% spacer coverage.

For ranks lower than phylum, we only included the pre-
dictions with the taxonomic resolution of the respective
rank or below. At the species level, SpacePHARER pre-
dicted 142/237 hosts (60%), compared to 112/232 hosts
of BLASTN (48%). SpacePHARER predicted the cor-
rect host for more phages at all taxonomic ranks, while
including most of the BLASTN predictions on the same
rank and sometimes even those agreeing only on a higher
rank(Figure 1C, Figure S3).

Incomplete reference databases remain an issue for
phage-host relationship predictions. To simulate sce-
narios where the database is very incomplete, we pro-
gressively exclude 25% and 50% of the host genomes
in the spacer dataset, and compare the performance
between BLASTN and SpacePHARER. SpacePHARER
predicted the correct host for more phages than BLASTN
at all taxonomic ranks when we searched with 50% and
75% of original host spacer dataset (Figure S4).

111

4

V. IDENTIFYING MIS-ANNOTATIONS IN
EUKARYOTIC VIRAL DATASET

Throughout this study we used the set of eukaryotic vi-
ral genomes as a null model dataset, assuming any match
between a prokaryotic genome and a eukaryotic virus is
false. Here, we used SpacePHARER’s second mode of
FDR control to detect viruses that were potentially mis-
annotated as eukaryotic viruses. To that end, we first
ran the SpacePHARER workflow with the full spacer
dataset against the eukaryotic viral genomes as the tar-
get database, and then, against inverted eukaryotic viral
ORFs as the null model database. We used the null set
to estimate the FDR as described in section I.D.

By applying the same FDR cutoff of 0.05, we identified
11 viruses out of the 11,304 that matched a prokaryotic
host (yielding a total of 12 matches). We observed three
groups within these matches. The first group consisted of
two matches between the smacovirus family (KP264966.1
and KY086299.1) and the archaeon CP005934.1 (Candi-
datus Methanomassiliicoccus intestinalis). Indeed this
family has been recently reported as mis-annotated as
“eukaryotic virus” by Díez-Villaseñor and Rodriguez-
Valera [3]. The second group consisted of two matches
between KT809302.1 (Haloarcula californiae icosahedral
virus 1) and family Halobacteriaceae (CP001687.1 and
LIST01000008.1). These matches are likely due to mis-
annotation of the virus as “eukaryotic virus”. The la-
beled host of this virus is Haloarcula californiae, which

is an archaeon that belongs to the same family as our
matches. The third group consisted of 8 members of the
genus Mimivirus that were matched to HE978663.1 (Ru-
minococcus sp. JC304) and JAAF01000022.1 (Fusobac-
terium necrophorum DAB). Table I shows the standard
output from SpacePHARER of this search. We suspect
the matches of the third group are due to spacer mis-
annotation and do not represent a real virus-host rela-
tionship. It was previously reported that Mimiviruses ac-
quire bacterial genes, even of the class Clostridia [12][13].
In the case of Ruminococcus sp. JC304, when we in-
spected the bacterial genomic region from which the
spacers were extracted, we found that the entire region is
likely to be a full bacterial ORF, rather than a CRISPR
array. Thus, we conclude that in these cases, the mis-
annotation is of the CRISPR array, rather than of the
virus.

VI. SOFTWARE VERSIONS

Name Version
SpacePHARER Git: 1d1f1b2

BLASTN 2.9.0+

TABLE II. Software versions used in this manuscript.

[1] Altschul, S.F. et al (1990). Basic local alignment search tool. J.
Mol. Biol., 215(3), 403–410.

[2] Brunson, J.C. (2020). ggalluvial: Layered grammar for alluvial
plots. J. Open Source Softw., 5(49), 2017.

[3] Díez-Villaseñor, C. and Rodriguez-Valera, F. (2019). CRISPR
analysis suggests that small circular single-stranded dna sma-
coviruses infect archaea instead of humans. Nat. Commun., 10(1),
294.

[4] Edwards, R.A. et al (2015). Computational approaches to predict
bacteriophage–host relationships. FEMS Microbiol. Rev., 40(2),
258–272.

[5] Leenay, R.T. and Beisel, C.L. (2017). Deciphering, communicat-
ing, and engineering the crispr pam. Journal of molecular biology,
429(2), 177–191.

[6] Levy Karin, E. et al (2020). Metaeuk—sensitive, high-throughput
gene discovery, and annotation for large-scale eukaryotic metage-
nomics. Microbiome, 8(1), 48.

[7] Mirdita, M. et al (2021). Fast and sensitive taxonomic assignment
to metagenomic contigs. Bioinformatics. btab184.

[8] Müller, T. et al (2002). Estimating amino acid substitution mod-
els: A comparison of Dayhoff’s estimator, the resolvent approach
and a maximum likelihood method. Mol. Biol. Evol., 19(1), 8–13.

[9] Pearson, W.R. (2013). Selecting the Right Similarity‐Scoring Ma-
trix. Current Protocols in Bioinformatics, 43(1), 3.5.1–3.5.9.

[10] Steinegger, M. and Söding, J. (2017). MMseqs2 enables sensitive
protein sequence searching for the analysis of massive data sets.
Nat. Biotechnol., 35(11), 1026–1028.

[11] Strimmer, K. (2008). A unified approach to false discovery rate
estimation. BMC Bioinformatics, 9(1), 303.

[12] Yoshida, T. et al (2011). Mimivirus reveals mre11/rad50 fu-
sion proteins with a sporadic distribution in eukaryotes, bacteria,
viruses and plasmids. Virology journal, 8, 427–427.

[13] Yutin, N. et al (2014). Origin of giant viruses from smaller dna
viruses not from a fourth domain of cellular life. Virology, 466-
467, 38 – 52. Special issue: Giant Viruses.

[14] Zaykin, D. et al (2002). Truncated product method for combining
p-values. Genet. Epidemiol., 22(2), 170–185.

112

5

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

0 20,000 40,000 60,000 80,000 100,000
#True Positives

Fa
ls

e
D

is
co

ve
ry

 R
at

e BLOSUM62 gapOpen=11 gapExtend=1

BLOSUM62 gapOpen=16 gapExtend=2

PAM30 gapOpen=11 gapExtend=1

VTML10 gapOpen=11 gapExtend=1

VTML20 gapOpen=11 gapExtend=1

VTML40 gapOpen=11 gapExtend=1

VTML40 gapOpen=16 gapExtend=2

VTML80 gapOpen=11 gapExtend=1

FIG. 1. Performance comparison of SpacePHARER with different search parameters (substitution matrix and gap penalties),
evaluated by the number of true positive (TP) predictions at different false discovery rates (FDRs). Predictions were made
by using an optimization spacer dataset (6,067 genomes, 20% of all prokaryotic genomes) against a database of 7,824 phage
genomes, with inverted phage ORFs as null model database. Searching with VTML40 matrix with gap open (16) and gap
extend (2), among various combinations of substitution matrix and gap penalties, yields more true positive matches than any
other parameter combination at FDR cutoff of 0.05.

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

15.0%

0 50,000 100,000 150,000 200,000 250,000
#True Positives

Fa
ls

e
D

is
co

ve
ry

 R
at

e

BLASTN >85% seq.id. + >85% coverage

BLASTN >90% seq.id. + >90% coverage

BLASTN >95% seq.id. + >95% coverage

SpacePHARER

FIG. 2. Performance comparison of SpacePHARER with BLASTN using different sequence identity and query coverage
cutoffs (95%, 90% and 85%), evaluated by the number of true positive (TP) predictions at different false discovery rates
(FDRs). Predictions were made by using a spacer test dataset (24,322 genomes, 80% of all prokaryotic genomes) against a
database of 7,824 phage genomes, with inverted phage ORFs as null model database. (Note that the FDR control procedure
developed for SpacePHARER is not standard for BLASTN and has been applied here only for the purpose of FDR analysis.)

113

6

0

50

100

150

200

250

300

350

BLASTN SpacePHARER

F
re

qu
en

cy
Rank

Kingdom

Phylum

Class

Order

Family

Genus

Species

FIG. 3. Performance comparison of BLASTN (left) and SpacePHARER (right), evaluated by the number of host predictions
that agree with annotated host taxonomy at different taxonomic ranks. The grey alluvia [2] represent the host predictions that
were made by both SpacePHARER and BLASTN. Predictions were made using a validation spacer dataset (1,066 genomes)
against a validation database of 809 phage genomes with annotated host taxonomy. SpacePHARER prediction was further
corrected with inverted phage ORFs as null model database, and FDR cutoff of 0.02.

B
LA

S
T

N

S
pa

ce
P

H
A

R
E

R

10050 75 10050 7510050 75 10050 75 10050 75 10050 7510050 75 10050 75 10050 75 10050 7510050 75 10050 75 10050 75 10050 7510050 75 10050 75 10050 75 10050 7510050 75 10050 75 10050 75 10050 7510050 75 10050 75

Species Genus Family Order Class Phylum

0

100

200

300

400

% of original dataset

F
re

qu
en

cy

Incorrect
Correct

FIG. 4. Performance comparison of BLASTN (left) and SpacePHARER (right) as for Figure 1C, but on incomplete databases.
The host spacer dataset was progressively depleted from 100% of genomes (1,066) to 75% (800) and 50% (533). Performance
is evaluated by the number of host predictions that agree with annotated host taxonomy at different taxonomic ranks.

114

7

#CP005934.fas KP264966.1 7.588E+01 6
>CP005934.1_930280_937725_19_spacer_931524_35 KP264966.1 1.023E-04 35 3 546 578 CCT|- -|AGG
>CP005934.1_930280_937725_20_spacer_931590_37 KP264966.1 2.833E-04 1 36 2241 2206 CCT|- -|AGG
>CP005934.1_930280_937725_23_spacer_931792_37 KP264966.1 1.034E-09 1 36 1821 1786 CCA|- -|TGG
>CP005934.1_930280_937725_24_spacer_931860_37 KP264966.1 3.121E-07 3 35 606 638 CCA|TGG -|TGG
>CP005934.1_930280_937725_25_spacer_931928_36 KP264966.1 3.399E-13 1 36 2161 2126 CCG|- -|CGG
>CP005934.1_930280_937725_25_spacer_931928_36 KP264966.1 1.713E-11 2 34 2160 2128 CCG|- -|CGG
#CP005934.fas KY086299.1 5.640E+01 4
>CP005934.1_930280_937725_19_spacer_931524_35 KY086299.1 6.205E-04 35 3 1922 1890 CCT|- -|AGG
>CP005934.1_930280_937725_23_spacer_931792_37 KY086299.1 3.399E-13 2 37 641 676 CCA|- -|AGG
>CP005934.1_930280_937725_20_spacer_931590_37 KY086299.1 4.613E-05 1 36 220 255 CCT|- -|TGG
>CP005934.1_930280_937725_23_spacer_931792_37 KY086299.1 3.399E-13 1 36 640 675 CCA|- -|TGG
#LIST01000008.fas KT809302.1 1.295E+01 1
>LIST01000008.1_120573_126312_45_spacer_123484_36 KT809302.1 2.376E-06 36 1 22375 22340 -|- TTC|-
#CP001687.fas KT809302.1 2.639E+01 2
>CP001687.1_1415738_1419119_25_spacer_1417344_34 KT809302.1 1.137E-07 6 32 6826 6852 -|CAAGAA -|ACGGGATT
>CP001687.1_1415738_1419119_25_spacer_1417344_34 KT809302.1 1.137E-07 32 6 6852 6826 -|CAAGAA -|ACGGGATT
#HE978663.fas JN258408.1 1.054E+02 2
>HE978663.1_7481_7851_2_spacer_7588_70 JN258408.1 1.755E-28 2 70 806538 806606 TTC|- -|-
>HE978663.1_7481_7851_4_spacer_7765_58 JN258408.1 5.707E-20 2 58 806715 806771 TTC|- -|-
#HE978663.fas JX885207.1 9.775E+01 2
>HE978663.1_7481_7851_2_spacer_7588_70 JX885207.1 1.755E-28 2 70 767273 767341 TTC|- -|-
>HE978663.1_7481_7851_4_spacer_7765_58 JX885207.1 1.187E-16 2 58 767450 767506 TTC|- -|-
#HE978663.fas KF527229.1 8.186E+01 2
>HE978663.1_7481_7851_1_spacer_7510_49 KF527229.1 2.905E-18 2 49 935992 935945 TTC|- -|-
>HE978663.1_7481_7851_4_spacer_7765_58 KF527229.1 5.707E-20 2 58 935836 935780 TTC|- -|-
#HE978663.fas KU877344.1 9.775E+01 2
>HE978663.1_7481_7851_2_spacer_7588_70 KU877344.1 1.755E-28 2 70 780352 780420 TTC|- -|-
>HE978663.1_7481_7851_4_spacer_7765_58 KU877344.1 1.187E-16 2 58 780529 780585 TTC|- -|-
#HE978663.fas JX975216.1 1.015E+02 2
>HE978663.1_7481_7851_2_spacer_7588_70 JX975216.1 1.755E-28 2 70 781866 781934 TTC|- -|-
>HE978663.1_7481_7851_4_spacer_7765_58 JX975216.1 2.682E-18 2 58 782043 782099 TTC|- -|-
#HE978663.fas MG779360.1 1.093E+02 2
>HE978663.1_7481_7851_2_spacer_7588_70 MG779360.1 3.447E-30 2 70 9786 9854 -|- -|-
>HE978663.1_7481_7851_4_spacer_7765_58 MG779360.1 5.707E-20 2 58 9963 10019 -|- -|-
#HE978663.fas JN885991.1 4.536E+01 2
>HE978663.1_7481_7851_3_spacer_7687_49 JN885991.1 2.061E-02 2 46 497977 498021 CCT|- TTG|AGG
>HE978663.1_7481_7851_4_spacer_7765_58 JN885991.1 5.707E-20 2 58 498055 498111 -|- -|-
#JAAF01000022.fas KY684109.1 1.295E+01 1
>JAAF01000022.1_41_3914_26_spacer_1726_36 KY684109.1 2.376E-06 1 36 185359 185324 TCT|TGAAGTTT TCA|-

TABLE I. Sample output format of SpacePHARER, demonstrated by matches when searching the full spacer dataset against
eukaryotic viral ORFs as a target database and inverted eukaryotic viral ORFs as null model database. Each match line starts
with ‘#’, followed by the prokaryote accession (the file from which spacers were extracted), viral genome accession, Scomb and
the number of hits in the match. Each hit line starts with ‘>’, followed by the spacer sequence header, viral genome accession,
pbh, spacer start, spacer end, viral genome start, viral genome end, and the possible PAM sequences on forward and reverse
strand (5’|3’). Additionally (not shown), the aligned sequences can be printed following each hit line.

115

6 Minor contributions

6.1 Protein Sequence Analysis Using the MPI Bioinformatics Toolkit

Publication:

Protein Sequence Analysis Using the MPI Bioinformatics Toolkit

F. Gabler, S.Z. Nam, S. Till, M. Mirdita, M. Steinegger, J. Söding, A.N. Lupas, V. Alva†

(†) corresponding author

Current Protocols in Bioinformatics (2020), 72, e108.
Cited 84 times since 12/2020.

Manuscript abstract

TheMPIBioinformatics Toolkit (toolkit.tuebingen.mpg.de) provides interactive access to awide range
of the best-performing bioinformatics tools anddatabases, including the state-of-the-art protein sequence
comparison methods HHblits and HHpred. The Toolkit currently includes 35 external and in-house
tools, covering functionalities such as sequence similarity searching, prediction of sequence features,
and sequence classification. Due to this breadth of functionality, the tight interconnection of its con-
stituent tools, and its ease of use, the Toolkit has become an important resource for biomedical research
and for teaching protein sequence analysis to students in the life sciences. In this article, we provide de-
tailed information on utilizing the three most widely accessed tools within the Toolkit: HHpred for the
detection of homologs, HHpred in conjunction withMODELLER for structure prediction and homology
modeling, and CLANS for the visualization of relationships in large sequence datasets.

Author contributions

F.G.: Software; writing-review & editing. S.Z.N.: Software. S.T.: Software. M.M.: Software. M.S.:
Software. J.S.: Software. A.L.: Funding acquisition; writing-review & editing. V.A.: Conceptualiza-
tion; project administration; software; supervision; visualization; writing-original draft; writing-review
& editing.

117

https://toolkit.tuebingen.mpg.de

118 Minor contributions

6.2 PredictProtein – Predicting Protein Structure and Function for
29 Years

Publication:

PredictProtein – Predicting Protein Structure and Function for 29 Years

M. Bernhofer, C. Dallago†, T. Karl, V. Satagopam, M. Heinzinger, M. Littmann, T. Olenyi, J. Qiu,
K. Schütze, G. Yachdav, H. Ashkenazy, N. Ben-Tal, Y. Bromberg, T. Goldberg, L. Kajan, S. O’Donoghue,
C. Sander, A. Schafferhans, A. Schlessinger, G. Vriend,M.Mirdita, P. Gawron,W.Gu, Y. Jarosz, C. Trefois,
M. Steinegger, R. Schneider, B. Rost

(†) corresponding author

Nucleic Acids Research (2021), 49, W535-W540.
Cited 15 times since 5/2021.

Manuscript abstract

Since 1992 PredictProtein (predictprotein.org) is a one-stop online resource for protein sequence anal-
ysis with its main site hosted at the Luxembourg Centre for Systems Biomedicine (LCSB) and queried
monthly by over 3,000 users in 2020. PredictProtein was the first Internet server for protein predictions.
It pioneered combining evolutionary information and machine learning. Given a protein sequence as
input, the server outputs multiple sequence alignments, predictions of protein structure in 1D and 2D
(secondary structure, solvent accessibility, transmembrane segments, disordered regions, protein flex-
ibility, and disulfide bridges) and predictions of protein function (functional effects of sequence varia-
tion or point mutations, Gene Ontology (GO) terms, subcellular localization, and protein-, RNA-, and
DNA binding). PredictProtein’s infrastructure has moved to the LCSB increasing throughput; the use
of MMseqs2 sequence search reduced runtime five-fold; user interface elements improved usability, and
new prediction methods were added. PredictProtein recently included predictions from deep learning
embeddings (GO and secondary structure) and a method for the prediction of proteins and residues
binding DNA, RNA, or other proteins. PredictProtein.org aspires to provide reliable predictions to com-
putational and experimental biologists alike. All scripts and methods are freely available for offline
execution in high-throughput settings.

Selected contributions

M.M. implemented and maintains a server to compute MSAs for PredictProtein.

https://predictprotein.org

119

6.3 Going to extremes - a metagenomic journey into the dark
matter of life

Publication:

Going to extremes - a metagenomic journey into the dark matter of life

A. Aevarsson†, A. Kaczorowska, B.T. Adalsteinsson, J. Ahlqvist, S. Al-Karadaghi, J. Altenbuchner,
H. Arsin, Ú. Áugúst Átlasson, D. Brandt, M. Cichowicz-Cieślak, K. A S Cornish, J. Courtin, S. Dabrowski,
H. Dahle, S. Djeffane, S. Dorawa, J. Dusaucy, F. Enault, A. Fedøy, S. Freitag-Pohl, O.H. Fridjonsson,
C. Galiez, E. Glomsaker, M. Guérin, S.E. Gundesø, E.E. Gudmundsdóttir, H. Gudmundsson, M. Håkans-
son, C.Henke, A.Helleux, J.R.Henriksen, S.Hjörleifdóttir, G.O.Hreggvidsson, A. Jasilionis, A. Jochheim,
I. Jónsdóttir, L.B. Jónsdóttir, A. Jurczak-Kurek, T.Kaczorowski, J. Kalinowski, L.P. Kozlowski,M.Krupovic,
K. Kwiatkowska-Semrau, O. Lanes, J. Lange, J. Lebrat, J. Linares-Pastén, Y. Liu, S.A. Lorentsen, T. Lut-
terman, T. Mas, W. Merré, M. Mirdita, A. Morzywołek, E.O. Ndela, E. Nordberg Karlsson, E. Olgudót-
tir, C. Pedersen, F. Perler, S.K. Pétursdóttir, M. Plotka, E. Pohl, D. Prangishvili, J.L. Ray, B. Reynisson,
T. Róbertsdóttir, R. Sandaa, A. Sczyrba, S. Skírnisdóttir, J. Söding, T. Solstad, I.H. Steen, S.K. Stefáns-
son, M. Steinegger, K. Stange Overå, B. Striberny, A. Svensson, M. Szadkowska, E.J. Tarrant, P. Terzian,
M. Tourigny, T. van den Bergh, J. Vanhalst, J. Vincent, B. Vroling, B. Walse, L. Wang, H. Watzlawick,
M. Welin, O. Werbowy, E. Wons, R. Zhang

(†) corresponding author

FEMS Microbiology Letters (2021), 368(12), fnab067.
Cited 4 times since 6/2021.

Manuscript abstract

The Virus-X—Viral Metagenomics for Innovation Value—project was a scientific expedition to explore
and exploit uncharted territory of genetic diversity in extreme natural environments such as geothermal
hot springs and deep-sea ocean ecosystems. Specifically, the project was set to analyse and exploit vi-
ral metagenomes with the ultimate goal of developing new gene products with high innovation value
for applications in biotechnology, pharmaceutical, medical, and the life science sectors. Viral gene pool
analysis is also essential to obtain fundamental insight into ecosystem dynamics and to investigate how
viruses influence the evolution of microbes and multicellular organisms. The Virus-X Consortium, es-
tablished in 2016, included experts from eight European countries. The unique approach based on high
throughput bioinformatics technologies combined with structural and functional studies resulted in the
development of a biodiscovery pipeline of significant capacity and scale. The activities within the Virus-
X consortium cover the entire range from bioprospecting andmethods development in bioinformatics to
protein production and characterisation, with the final goal of translating our results into new products
for the bioeconomy. The significant impact the consortium made in all of these areas was possible due
to the successful cooperation between expert teams that worked together to solve a complex scientific
problem using state-of-the-art technologies as well as developing novel tools to explore the virosphere,
widely considered as the last great frontier of life.

Selected contributions

M.M. implemented software to track the status of each target through the work packages, contributed
to method development in Platform 2 and reviewed the manuscript.

7 Discussion and outlook

The realization that protein sequence similarity often stems from evolutionary relationships (gene du-
plications and species divergence) was revolutionary for our understanding of biology and evolution.
Even more critical was the observation that very remotely related protein sequences often have con-
served structures and, above certain thresholds, conserved functions. This allowed transfer of functional
annotation from experimentally studied model species to other organisms and recently helped unlock
the prediction of protein structures at an accuracy nearly indistinguishable from crystal structures. Our
ever-expanding repositories of known sequences allow novel phylogenetic and evolutionary insights ev-
ery time the genome of a new organism is explored.

The progress of sequencing technologies over the last forty years has led to an exponential growth in
the amount of available sequences. While this treasure trove of data allowed more powerful analyses
than ever before, the sheer volume of data made the development of efficient homology search methods
critical. The advent of metagenomics put these challenges at the forefront.

In this work I have presented three computational methods I developed and published during the course
of my doctoral studies. These improve upon the state-of-the-art for homology search, taxonomic assign-
ment and protein structure prediction. The methods are user-friendly and accessible for a wide range of
users.

One of the most straightforward methods to exploit metagenomics data is their in silico analysis to iden-
tify proteins with commercially desirable properties [Robinson et al., 2021]. As participants of the Virus-
X consortium (Aevarsson et al. [2021]; see section 6.3) we helped build a pipeline for discovering novel
thermostable proteins from extremophilic environments. This was possible because of the integration of
MMseqs2 (and many other methods) to filter down the large metagenomic samples to smaller sets that
could be extensively studied.

Apart from identifying individual proteins with a specific function, metagenomics data have enriched
existing protein databases, providing us with a more complete picture of the true diversity of naturally
evolved sequences. Metagenomic-based protein databases like MGnify [Mitchell et al., 2020] and BFD
[Jumper et al., 2021a] contain several billion protein sequences. The projects presented in this work
contributed three databases constructed from metagenomic data. First, the SRC/MERC databases that
were released as part of the Plass [Steinegger et al., 2019b] manuscript contain hundreds of million to
billions of sequences assembled from soil and marine metagenomes and metatranscriptomes. Second,
we released several million likely eukaryotic proteins from marine metagenomes enriched for protists
and an accompanying database of tens of millions of protein profiles as part of MetaEuk [Levy Karin
et al., 2020]. The ColabFoldDB that was released as part of ColabFold [Mirdita et al., 2021] contains
over 200 million protein profiles. A part of the success of AlphaFold2 stems from exploiting the newly
found sequence diversity to build more diverse MSAs, informing the most accurate to-date prediction of
protein structures.

An important and rarely discussed aspect of computational methods is their impact on climate change.
Already today, data centers and high-performance computing are substantial contributors to climate
warming emissions [Lannelongue et al., 2021]. Our methods perform analyses much faster than their
state-of-the-art competitors at similar or better quality, thus reaching the same or better results at a signif-

121

122 Discussion and outlook

icantly reduced carbon footprint. In the MMseqs2 app manuscript we show that MMseqs2 can perform
profile searches hundreds to thousands of times faster than its competitors. MMseqs2 taxonomy is be-
tween 2× and 18× faster than the state-of-the-art taxonomy assignment method CAT. ColabFold’s MSA
generation stage is 20-30× faster than the AlphaFold2’s. SpacePHARER is 47× faster than a BLASTN
based approach.

The performance goals that we set for the MMseqs2 software and the diverse set of methods we have
built on top resulted in a complex code base and camewith a correspondingmaintenance burden. To aid
with development and facilitate maintenance I implemented continuous integration: before any change
is made to the code base we run an extensive test suite across many hardware-architectures, compilers
and operating systems. We provide a detailed documentation of MMseqs2 in our extensive user guide
(see Appendix A1) and have organized workshops to train the community in applying MMseqs2 and
incorporate their feedback. The modular nature of our software and the extensive documentation have
also facilitated the participation of multiple external contributors.

We committed to the principles of open science early on. MMseqs2 and all software thatwe built on top is
open-source and comes with free and open source licenses. We make all software packages available on
popular repositories such as Bioconda [Grüning et al., 2018], Homebrew (brew.sh) or pip (pypi.org).
Additionally, we closely follow and respond to the valuable feedback provided by our large user base.
Finally, we established a support network to remain in contact with our users to quickly resolve issues,
often turning discussions about the use of MMseqs2 into fruitful collaborations.

In the following I would like to focus on some of the challenges, limitations and upcoming work related
to the three main projects presented in this work.

7.1 MMseqs2 App and Server
I developed the MMseqs2 app and server to make MMseqs2 user-friendly and accessible. Beyond its
original purpose, the MMseqs2 web server has been used for performing additional tasks. Specifically,
we included the eukaryotic proteins found by MetaEuk as a searchable database in the server and Pre-
dictProtein and ColabFold use it for constructing diverse MSAs.

We plan to expose further MMseqs2 functionality within the web server. FoldSeek (in preparation) is
an upcoming algorithm for extremely fast structure-to-structure search. As millions of predicted high-
quality protein structures will soon be available [Tunyasuvunakool et al., 2021, Callaway, 2021, Varadi
et al., 2021], it is important to have algorithms ready to process these data. Our approach reduces three-
dimensional structures to a conformational state alphabet, which can efficiently be queried with algo-
rithms developed for sequence searches. Moreover, we plan additional extensions to our web server to
include MMseqs2 taxonomic annotation capabilities, to make these easier to use.

TheMMseqs2 app is geared towards single-sequence searches. However, the enormous size of databases
constructed frommetagenomics poses a challenge to fast searches with individual sequences – especially
as these protein databases are now growing into billions of sequences. The main issue lies with the
prefiltering algorithm, which uses data structures that consume RAM proportionately to the cumulative
length of the sequences in the target database. In non-serverMMseqs2 batch searches, the data structures
can be built and queried in separate chunks and the construction costs can be amortized across all queries.
Thus, memory consumption is less of a concern there. However, processing queries within milliseconds
to seconds with the MMseqs2 server, the search database and its required data structures have to fully
reside in systemmemory. Therefore, memory requirements might become a major cost factor, especially
as the reduction of RAM cost per gigabyte has not kept up with Moore’s Law [McCallum, 2021].

https://brew.sh
https://pypi.org

123

Faced with a similar issue in ColabFold, we used a clustered homology search approach. We first search
with the normal MMseqs2 search workflow against the cluster consensus sequences and then, for each
hit, expand the search result with the clustermembers. Thisway, systemmemory only needs to hold data
structures for the prefiltering against the cluster centroids, reducing the memory footprint drastically.

Another solution we are exploring is to build a novel search algorithm that exploits the high read-
throughput of modern storage hardware. Currently, a typical consumer NVMe storage device offers
2 TB of storage space and up to 7GB/s read throughput for around 300$. Martin Steinegger, Johannes
Söding and I are currently developing an algorithm and software that allows searching through 40TB
of data in under 5 minutes on a built-to-purpose server filled with twenty such devices. We call this
algorithm PetaSearch (in preparation) and plan to offer a web server based on the MMseqs2 server to
allow searching through all proteins we can extract from the SRA.

7.2 MMseqs2 Taxonomy

Introducing taxonomic assignment capabilities to MMseqs2 has contributed to several other projects,
such as SpacePHARER and ColabFold. SpacePHARER annotates either phages or their bacterial hosts,
if given taxonomic labels for the other. ColabFold uses taxonomic labels for MSA pairing (see below).

To help users interpret their results, I implemented two output modes to allow visual inspection of the
taxonomy results. The first mode is a Kraken-compatible format that can be used to visualize the results
with tools like Pavian [Breitwieser and Salzberg, 2020]. The other output for visual inspection is an
interactive Krona HTML file [Ondov et al., 2011]. We plan on making MMseqs2 taxonomy easier to use,
by supporting more output formats and by providing it as a web server in the future.

A limitation of MMseqs2 taxonomy is that it uses reference-based assignment of taxonomic labels. This
means it is sensitive to the quality of the reference databases, which have been shown to suffer from
contamination [Steinegger and Salzberg, 2020] and uneven sampling. Alternative taxonomic databases,
such as the GTDB are also limited by the (metagenome assembled) genomes available. However, the
community is continuously improving the reference databases and MMseqs2 taxonomy will be able to
assign better labels using higher quality databases. Furthermore, MMseqs2 taxonomy is well suited to
deal with the increasing size of the databases.

In recent years, long read sequencing technology has drastically improved in read length and base calling
accuracy. Even single reads of mega base length are now occasionally produced by modern sequencing
methods (e.g., the 1.2 and 2.3 megabase long reads found in Payne et al. [2019]). MMseqs2 taxonomy
should be well suited for annotating long sequences. We hope to repeat the benchmarking on long read
data in the future and optimize MMseqs2 taxonomy to long read input.

124 Discussion and outlook

7.3 ColabFold

ColabFold has become a widely used method in the short time that has passed since its release. Its MSA
server has processed over 700 000 MSAs for users and is averaging ∼10 000 MSAs a day.

In its first release, ColabFold included a component to model protein complexes. Since then, AlphaFold2
has been specifically retrained onprotein complexes and released as anupdated version calledAlphaFold-
multimer [Evans et al., 2021]. By testing it on a small benchmark, we found AlphaFold2-multimer out-
performs ColabFold’s complex modeler. We thus integrated AlphaFold2-multimer based modeling in
ColabFold.

High-quality protein complex predictions require a pairedMSA. In a pairedMSA, directly related protein
sequences, e.g., thosewhich share the same species - are placed in theMSA line and are concatenated. As
UniRef contains taxonomic information, pairing sequences from corresponding taxa is straightforward.
However, ColabFold’s environmental databases do not currently contain anymetadata and thus can only
be used as unpaired sequence features. To further improve complex modeling, we plan on gathering
available taxonomic metadata for metagenomic sequences and assigning taxonomic labels for sequences
without metadata.

We plan on further extending ColabFoldDB with additional metagenomic and -transcriptomic data sets.
Togetherwith other planned improvements inMMseqs2’s sensitivitywewant to investigate, wehope that
ColabFold will be able to find a sufficient number of homologs to ensure high quality protein structure
predictions for most sequences.

8 Conclusion

The projects I worked on during my doctoral studies and continue to develop have contributed to the
community’s ability to investigate and explore billions of metagenomic sequences from various envi-
ronments. With over 500 citations in total, it is clear these tools can be (and already have been) put to
use by various research groups and overcome some of the main challenges in conducting metagenomic
research (e.g., large database sizes, complex assembly tasks, functional and taxonomic annotation and
more). The focus on computational efficiency has enabledmany large-scale analyses andmade replacing
less efficient methods possible.

In particular, AlphaFold2 relies onmethods that I have contributed, developed,maintained and forwhich
I have provided user-support during my doctoral research: The tools HH-suite, MMseqs2 and Plass
and the databases Uniclust and PDB70. During its self-distillation training, AlphaFold2 uses ∼ 350 000
diverse clusters that were selected (and enriched by HHblits) from the Uniclust30 database. During
inference its homology search and template detection relies on HHblits/HHsearch searches against the
Uniclust30 and PDB70. Additionally, it searches through the BFD – a database that primarily contains
sequences assembled by Plass and clustered by MMseqs2.

As I conclude the presentation of my doctoral projects, I would like to focus on a few particularly exciting
technological developments that lie ahead in the next decade. These offer many new opportunities to
develop novel algorithms and provide benefits of sequence-based analyses to new fields.

Long read sequencing technologies have made large strides in the last years. Particularly, the sequenc-
ing technology company Oxford Nanopore Technologies stands out. I already mentioned ultra-long
reads and protein sequencing as tantalizing applications of this sequencing platform. The continuing
miniaturization efforts (Flongle, MinION Mk1c) offer a glimpse into a future, where an end-to-end in-
tegrated platform might be available that deals with all steps from DNA extraction to base-calling and
bioinformatic analysis on a single chip [Wang et al., 2021]. Such a small, affordable device could be eas-
ily deployed anywhere e.g., for passive pathogen monitoring. Already now, wastewater monitoring for
pathogens has proven itself during the ongoing COVID-19 pandemic as an early indicator for soon-to-be
spiking infection numbers [Karthikeyan et al., 2021].

For the compute hardware side, I want to briefly focus on two areas of upcoming technologies that seem
particularly exciting for novel algorithms for homology searches:

On-CPU caches will soon exceed the gigabyte threshold (AMD Epyc 7773X now contains 804MB of on-
chip caches). Thus, large data structures could be held directly in the CPU caches to accelerate memory-
bound algorithms. The MMseqs2 prefilter already implements many cache-optimizations and would be
a good target to see re-imagined in the future. Further reducing the relatively slow random accesses to
RAM in the MMseqs2 prefilter would yield large benefits for most methods presented here.

Solid-state disks and particularly such devices based on the NVMe standard offer high storage density
and high-throughput read/write operations. The price per terabyte of solid-state storage is projected
to drop below traditional hard disk prices in the mid 2020s [Floyer, 2021]. Multiple NVMe-devices in-
tandem will soon offer aggregated read bandwidths of hundreds of gigabytes per second. Additionally,
relatively powerful CPUs are now found on every NVMe device. Consumer NVMe storage devices con-

125

126 Conclusion

taining multi-core CPUs with clock speeds above 1GHz and multiple gigabytes of RAM are now com-
mon. Efforts are underway to give programmatic access to these to offload data-processing directly onto
the storage medium. This would offer an additional opportunity to accelerate MMseqs2 and PetaSearch
(see section 7.1).

Novel algorithms will be needed to exploit the capabilities of upcoming technologies for the analysis of
the data produced by biological (and especially metagenomic) experiments.

ColabFold and future structure predictors, might start a new era of bioinformaticswith structure-analysis
at its core. Further accelerating these methods will allow us to predict hundreds of millions of structures
frommetagenomics. Thus, every analysis that is done nowon sets of sequences, such as homology-based
inference of annotations, phylogeny and many more, would benefit from the much richer information
that lies within the three-dimensional coordinates of protein structures. Novel algorithms that we are
developing, such as FoldSeek, will allow these analyses to happen efficiently at a low carbon-footprint.
Lastly, algorithms like PetaSearch will enable the analysis of some of the largest data sets in biology.

Various tools in the MMseqs2 family. From left to right and top to bottom: MMseqs2, Plass, MetaEuk,
ColabFold, Linclust, MMseqs2 App, SpacePHARER, FoldSeek. Art by Yuna Kwon (MMseqs2, Linclust,
Server), Lee Rang (Plass), Anna Papadopoulou (MetaEuk, SpacePHARER) andDoyoonKim (FoldSeek,
ColabFold).

References

A. Aevarsson, A.-K. Kaczorowska, B. T. Adalsteinsson, J. Ahlqvist, S. Al-Karadaghi, J. Altenbuchner,
H. Arsin, Ú. Á. Átlasson, D. Brandt, M. Cichowicz-Cieślak, K. A. S. Cornish, J. Courtin, S. Dabrowski,
H. Dahle, S. Djeffane, S. Dorawa, J. Dusaucy, F. Enault, A.-E. Fedøy, S. Freitag-Pohl, O. H. Fridjons-
son, C. Galiez, E. Glomsaker, M. Guérin, S. E. Gundesø, E. E. Gudmundsdóttir, H. Gudmundsson,
M. Håkansson, C. Henke, A. Helleux, J. R. Henriksen, S. Hjörleifdóttir, G. O. Hreggvidsson, A. Jasil-
ionis, A. Jochheim, I. Jónsdóttir, L. B. Jónsdóttir, A. Jurczak-Kurek, T. Kaczorowski, J. Kalinowski, L. P.
Kozlowski, M. Krupovic, K. Kwiatkowska-Semrau, O. Lanes, J. Lange, J. Lebrat, J. Linares-Pastén, Y. Liu,
S. A. Lorentsen, T. Lutterman, T. Mas, W. Merré, M. Mirdita, A. Morzywołek, E. O. Ndela, E. N. Karls-
son, E. Olgudóttir, C. Pedersen, F. Perler, S. K. Pétursdóttir, M. Plotka, E. Pohl, D. Prangishvili, J. L.
Ray, B. Reynisson, T. Róbertsdóttir, R.-A. Sandaa, A. Sczyrba, S. Skírnisdóttir, J. Söding, T. Solstad, I. H.
Steen, S. K. Stefánsson, M. Steinegger, K. S. Overå, B. Striberny, A. Svensson, M. Szadkowska, E. J. Tar-
rant, P. Terzian, M. Tourigny, T. van den Bergh, J. Vanhalst, J. Vincent, B. Vroling, B. Walse, L. Wang,
H. Watzlawick, M. Welin, O. Werbowy, E. Wons, and R. Zhang. Going to extremes - a metagenomic
journey into the dark matter of life. FEMS Microbiol. Lett., 368(12):fnab067, 2021.

A. Almeida, S. Nayfach, M. Boland, F. Strozzi, M. Beracochea, Z. J. Shi, K. S. Pollard, E. Sakharova, D. H.
Parks, P. Hugenholtz, N. Segata, N. C. Kyrpides, and R. D. Finn. A unified catalog of 204,938 reference
genomes from the human gut microbiome. Nat. Biotechnol., 39(1):105–114, 2021.

M. AlQuraishi. Machine learning in protein structure prediction. Curr. Opin. Chem. Biol., 65:1–8, 2021a.

M. AlQuraishi. The AlphaFold2 Method Paper: A Fount of Good Ideas, 2021b. URL
https://moalquraishi.wordpress.com/2021/07/25/the-alphafold2-method-paper-a-fount-
of-good-ideas. [Accessed: 2021-11-23].

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool. J.
Mol. Biol., 215(3):403–410, 1990.

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25
(17):3389–3402, 1997.

C. B. Anfinsen. Principles that Govern the Folding of Protein Chains. Science, 181(4096):223–230, 1973.

M. Anson. Protein Denaturation and the Properties of Protein Groups. In Adv. Protein Chem., pages
361–386. Elsevier, 1945. doi: 10.1016/S0065-3233(08)60629-4.

A. Bairoch and B. Boeckmann. The SWISS-PROT protein sequence data bank. Nucleic Acids Res., 19
(suppl):2247–2249, 1991.

A. Bateman, M.-J. Martin, S. Orchard, M. Magrane, R. Agivetova, S. Ahmad, E. Alpi, E. H. Bowler-
Barnett, R. Britto, B. Bursteinas, H. Bye-A-Jee, R. Coetzee, A. Cukura, A. Da Silva, P. Denny, T. Dogan,
T. Ebenezer, J. Fan, L. G. Castro, P. Garmiri, G. Georghiou, L. Gonzales, E. Hatton-Ellis, A. Hussein,
A. Ignatchenko, G. Insana, R. Ishtiaq, P. Jokinen, V. Joshi, D. Jyothi, A. Lock, R. Lopez, A. Luciani, J. Luo,
Y. Lussi, A. MacDougall, F. Madeira, M. Mahmoudy, M. Menchi, A. Mishra, K. Moulang, A. Nightingale,

127

https://moalquraishi.wordpress.com/2021/07/25/the-alphafold2-method-paper-a-fount-of-good-ideas
https://moalquraishi.wordpress.com/2021/07/25/the-alphafold2-method-paper-a-fount-of-good-ideas

128 References

C. S. Oliveira, S. Pundir, G. Qi, S. Raj, D. Rice, M. R. Lopez, R. Saidi, J. Sampson, T. Sawford, E. Speretta,
E. Turner, N. Tyagi, P. Vasudev, V. Volynkin, K. Warner, X. Watkins, R. Zaru, H. Zellner, A. Bridge,
S. Poux, N. Redaschi, L. Aimo, G. Argoud-Puy, A. Auchincloss, K. Axelsen, P. Bansal, D. Baratin, M.-
C. Blatter, J. Bolleman, E. Boutet, L. Breuza, C. Casals-Casas, E. de Castro, K. C. Echioukh, E. Coudert,
B. Cuche, M. Doche, D. Dornevil, A. Estreicher, M. L. Famiglietti, M. Feuermann, E. Gasteiger, S. Gehant,
V. Gerritsen, A. Gos, N. Gruaz-Gumowski, U. Hinz, C. Hulo, N. Hyka-Nouspikel, F. Jungo, G. Keller,
A. Kerhornou, V. Lara, P. Le Mercier, D. Lieberherr, T. Lombardot, X. Martin, P. Masson, A. Morgat,
T. B. Neto, S. Paesano, I. Pedruzzi, S. Pilbout, L. Pourcel, M. Pozzato, M. Pruess, C. Rivoire, C. Sigrist,
K. Sonesson, A. Stutz, S. Sundaram, M. Tognolli, L. Verbregue, C. H. Wu, C. N. Arighi, L. Arminski,
C. Chen, Y. Chen, J. S. Garavelli, H. Huang, K. Laiho, P. McGarvey, D. A. Natale, K. Ross, C. R. Vinayaka,
Q. Wang, Y. Wang, L.-S. Yeh, J. Zhang, P. Ruch, and D. Teodoro. UniProt: the universal protein knowl-
edgebase in 2021. Nucleic Acids Res., 49(D1):D480–D489, 2021.

H. Berman, K. Henrick, and H. Nakamura. Announcing the worldwide Protein Data Bank. Nat. Struct.
Mol. Biol., 10(12):980–980, 2003.

M. Bernhofer, C. Dallago, T. Karl, V. Satagopam, M. Heinzinger, M. Littmann, T. Olenyi, J. Qiu,
K. Schütze, G. Yachdav, H. Ashkenazy, N. Ben-Tal, Y. Bromberg, T. Goldberg, L. Kajan, S. O’Donoghue,
C. Sander, A. Schafferhans, A. Schlessinger, G. Vriend, M. Mirdita, P. Gawron, W. Gu, Y. Jarosz, C. Tre-
fois, M. Steinegger, R. Schneider, and B. Rost. PredictProtein - Predicting Protein Structure and Function
for 29 Years. Nucleic Acids Res., 49(W1):W535–W540, 2021.

R. Bonneau and D. Baker. Ab Initio Protein Structure Prediction: Progress and Prospects. Annu. Rev.
Biophys. Biomol. Struct., 30(1):173–189, 2001.

F. P. Breitwieser and S. L. Salzberg. Pavian: interactive analysis of metagenomics data for microbiome
studies and pathogen identification. Bioinformatics, 36(4):1303–1304, 2020.

H. Brinkerhoff, A. S.W. Kang, J. Liu, A. Aksimentiev, and C. Dekker. Infinite re-reading of single proteins
at single-amino-acid resolution using nanopore sequencing. bioRxiv, page 2021.07.13.452225, 2021.

B. Buchfink, C. Xie, and D. H. Huson. Fast and sensitive protein alignment using DIAMOND. Nat.
Methods, 12(1):59–60, 2015.

B. Buchfink, K. Reuter, and H.-G. Drost. Sensitive protein alignments at tree-of-life scale using DIA-
MOND. Nat. Methods, 18(4):366–368, 2021.

C. Burks, J. W. Fickett, W. B. Goad, M. Kanehisa, F. I. Lewitter, W. P. Rindone, C. D. Swindell, C.-S. Tung,
and H. S. Bilofsky. The GenBank nucleic acid sequence database. Bioinformatics, 1(4):225–233, 1985.

C. H. Calisher. Taxonomy: what’s in a name? Doesn’t a rose by any other name smell as sweet? Croat.
Med. J., 48(2):268–270, 2007.

E. Callaway. DeepMind’s AI predicts structures for a vast trove of proteins. Nature, 595(7869):635–635,
2021.

Q. Carradec, E. Pelletier, C. Da Silva, A. Alberti, Y. Seeleuthner, R. Blanc-Mathieu, G. Lima-Mendez,
F. Rocha, L. Tirichine, K. Labadie, A. Kirilovsky, A. Bertrand, S. Engelen, M.-A. Madoui, R. Méheust,
J. Poulain, S. Romac, D. J. Richter, G. Yoshikawa, C. Dimier, S. Kandels-Lewis, M. Picheral, S. Searson,
Tara Oceans Coordinators, O. Jaillon, J.-M. Aury, E. Karsenti, M. B. Sullivan, S. Sunagawa, P. Bork, F. Not,
P. Hingamp, J. Raes, L. Guidi, H. Ogata, C. de Vargas, D. Iudicone, C. Bowler, and P. Wincker. A global
ocean atlas of eukaryotic genes. Nat. Commun., 9(1):373, 2018.

References 129

M. Cobb. 60 years ago, Francis Crick changed the logic of biology. PLoS Biol., 15(9):e2003243, 2017.

G. Cornilescu, J. L. Marquardt, M. Ottiger, and A. Bax. Validation of Protein Structure from Anisotropic
Carbonyl Chemical Shifts in a Dilute Liquid Crystalline Phase. J. Am. Chem. Soc., 120(27):6836–6837,
1998.

G. Cornilescu, J. Marquardt, M. Ottiger, and A. Bax. UBIQUITIN NMR STRUCTURE. 1999. doi: 10.
2210/pdb1d3z/pdb.

M. Dayhoff, R. Schwartz, and B. Orcutt. A model of Evolutionary Change in Proteins. In Atlas of Protein
Sequence and Structure. National Biomedical Research Foundation, Washington, D.C., 5 edition, 1978.
ISBN 9780912466071.

N. K. Devanga Ragupathi, D. P. Muthuirulandi Sethuvel, F. Y. Inbanathan, and B. Veeraraghavan. Accu-
rate differentiation of Escherichia coli and Shigella serogroups: challenges and strategies. New Microbes
New Infect., 21:58–62, 2018.

A. K. Dunker, M. M. Babu, E. Barbar, M. Blackledge, S. E. Bondos, Z. Dosztányi, H. J. Dyson, J. Forman-
Kay, M. Fuxreiter, J. Gsponer, K.-H. Han, D. T. Jones, S. Longhi, S. J. Metallo, K. Nishikawa, R. Nussinov,
Z. Obradovic, R. V. Pappu, B. Rost, P. Selenko, V. Subramaniam, J. L. Sussman, P. Tompa, and V. N.
Uversky. What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disord. Proteins,
1(1):e24157, 2013.

S. R. Eddy. What is dynamic programming? Nat. Biotechnol., 22(7):909–910, 2004.

S. R. Eddy. Accelerated Profile HMM Searches. PLoS Comput. Biol., 7(10):e1002195, 2011.

R. C. Edgar, J. Taylor, T. Altman, P. Barbera, D. Meleshko, V. Lin, D. Lohr, G. Novakovsky, B. Al-Shayeb,
J. F. Banfield, A. Korobeynikov, R. Chikhi, and A. Babaian. Petabase-scale sequence alignment catalyses
viral discovery. bioRxiv, page 2020.08.07.241729, 2020.

P. Edman, E. Högfeldt, L. G. Sillén, and P.-O. Kinell. Method for Determination of the Amino Acid
Sequence in Peptides. Acta Chem. Scand., 4:283–293, 1950.

I. Elias. Settling the Intractability of Multiple Alignment. J. Comput. Biol., 13(7):1323–1339, 2006.

L. Eme, S. C. Sharpe, M.W. Brown, and A. J. Roger. On the Age of Eukaryotes: Evaluating Evidence from
Fossils and Molecular Clocks. Cold Spring Harb. Perspect. Biol., 6(8):a016139–a016139, 2014.

R. Evans, M. O’Neill, A. Pritzel, N. Antropova, A. W. Senior, T. Green, A. Žídek, R. Bates, S. Blackwell,
J. Yim, O. Ronneberger, S. Bodenstein, M. Zielinski, A. Bridgland, A. Potapenko, A. Cowie, K. Tunya-
suvunakool, R. Jain, E. Clancy, P. Kohli, J. Jumper, and D. Hassabis. Protein complex prediction with
AlphaFold-Multimer. bioRxiv, page 2021.10.04.463034, 2021.

M. Farrar. Striped Smith-Waterman speeds database searches six times over other SIMD implementa-
tions. Bioinformatics, 23(2):156–161, 2007.

S. Federhen. The NCBI Taxonomy database. Nucleic Acids Res., 40(D1):D136–D143, 2012.

D. F. Feng and R. F. Doolittle. Progressive sequence alignment as a prerequisitetto correct phylogenetic
trees. J. Mol. Evol., 25(4):351–360, 1987.

D. Floyer. QLC Flash HAMRs HDD, 2021. URL https://wikibon.com/qlc-flash-hamrs-hdd. [Ac-
cessed: 2021-12-20].

https://wikibon.com/qlc-flash-hamrs-hdd

130 References

R. O. Fox, P. A. Evans, and C. M. Dobson. Multiple conformations of a protein demonstrated by magne-
tization transfer NMR spectroscopy. Nature, 320(6058):192–194, 1986.

A. C. D. Fuchs, L. Maldoner, M. Wojtynek, M. D. Hartmann, and J. Martin. Rpn11-mediated ubiquitin
processing in an ancestral archaeal ubiquitination system. Nat. Commun., 9(1):2696, 2018.

F. Gabler, S. Nam, S. Till, M.Mirdita, M. Steinegger, J. Söding, A. N. Lupas, and V. Alva. Protein Sequence
Analysis Using the MPI Bioinformatics Toolkit. Curr. Protoc. Bioinformatics, 72(1):e108, 2020.

T. Glasmachers. Limits of End-to-End Learning. arXiv, page 1704.08305, 2017.

U. Göbel, C. Sander, R. Schneider, andA. Valencia. Correlatedmutations and residue contacts in proteins.
Proteins, 18(4):309–317, 1994.

J. Goris, K. T. Konstantinidis, J. A. Klappenbach, T. Coenye, P. Vandamme, and J. M. Tiedje. DNA–DNA
hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol.
Microbiol., 57(1):81–91, 2007.

O. Gotoh. An improved algorithm for matching biological sequences. J. Mol. Biol., 162(3):705–708, 1982.

B. Grüning, R. Dale, A. Sjödin, B. A. Chapman, J. Rowe, C. H. Tomkins-Tinch, R. Valieris, and J. Köster.
Bioconda: sustainable and comprehensive software distribution for the life sciences. Nat. Methods, 15(7):
475–476, 2018.

J. Handelsman, M. R. Rondon, S. F. Brady, J. Clardy, and R. M. Goodman. Molecular biological access to
the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol., 5(10):R245–
R249, 1998.

K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition. arXiv, page
1512.03385, 2015.

S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad.
Sci., 89(22):10915–10919, 1992.

L. Heo and M. Feig. Experimental accuracy in protein structure refinement via molecular dynamics
simulations. Proc. Natl. Acad. Sci., 115(52):13276–13281, 2018a.

L. Heo and M. Feig. What makes it difficult to refine protein models further via molecular dynamics
simulations? Proteins, 86(S1):177–188, 2018b.

R. T. Hersh, R. V. Eck, and M. O. Dayhoff. Atlas of Protein Sequence and Structure, 1966. Syst. Biol., 16
(3):262–263, 1967.

J. Hey, W. M. Fitch, and F. J. Ayala. Systematics and the origin of species: An introduction. Proc. Natl.
Acad. Sci., 102(Supplement 1):6515–6519, 2005.

A. Hildebrand, M. Remmert, A. Biegert, and J. Söding. Fast and accurate automatic structure prediction
with HHpred. Proteins, 77(S9):128–132, 2009.

F. Hille, H. Richter, S. P. Wong, M. Bratovič, S. Ressel, and E. Charpentier. The Biology of CRISPR-Cas:
Backward and Forward. Cell, 172(6):1239–1259, 2018.

T. Hu, N. Chitnis, D. Monos, and A. Dinh. Next-generation sequencing technologies: An overview. Hum.
Immunol., 82(11):801–811, 2021.

References 131

D. H. Huson, A. F. Auch, J. Qi, and S. C. Schuster. MEGAN analysis of metagenomic data. Genome Res.,
17(3):377–386, 2007.

K. Illergård, D. H. Ardell, and A. Elofsson. Structure is three to ten times more conserved than sequence-
A study of structural response in protein cores. Proteins, 77(3):499–508, 2009.

D. T. Jones, T. Singh, T. Kosciolek, and S. Tetchner. MetaPSICOV: combining coevolution methods for
accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics, 31(7):999–
1006, 2015.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates,
A. Žídek, A. Potapenko, A. Bridgland, C.Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes,
S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pa-
cholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and
D. Hassabis. Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873):583–589,
2021a.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates,
A. Žídek, A. Potapenko, A. Bridgland, C.Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera‐Paredes,
S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pa-
cholska, T. Berghammer, D. Silver, O. Vinyals, A. W. Senior, K. Kavukcuoglu, P. Kohli, and D. Hassabis.
Applying and improving AlphaFold at CASP14. Proteins, 89(12):1711–1721, 2021b.

W. Kabsch and C. Sander. Dictionary of protein secondary structure: pattern recognition of hydrogen-
bonded and geometrical features. Biopolymers, 22(12):2577–637, 1983.

H. Kamisetty, S. Ovchinnikov, and D. Baker. Assessing the utility of coevolution-based residue-residue
contact predictions in a sequence- and structure-rich era. Proc. Natl. Acad. Sci., 110(39):15674–15679, 2013.

S. Karthikeyan, A. Nguyen, D. McDonald, Y. Zong, N. Ronquillo, J. Ren, J. Zou, S. Farmer, G. Humphrey,
D. Henderson, T. Javidi, K. Messer, C. Anderson, R. Schooley, N. K. Martin, and R. Knight. Rapid, Large-
Scale Wastewater Surveillance and Automated Reporting System Enable Early Detection of Nearly 85%
of COVID-19 Cases on a University Campus. mSystems, 6(4):e00793–21, 2021.

J. C. Kasmanas, A. Bartholomäus, F. B. Corrêa, T. Tal, N. Jehmlich, G. Herberth, M. von Bergen, P. F.
Stadler, A. C. P. de Leon Ferreira de Carvalho, and U. N. da Rocha. HumanMetagenomeDB: A public
repository of curated and standardized metadata for human metagenomes. Nucleic Acids Res., 49(D1):
D743–D750, 2021.

D. E. Kim, F. DiMaio, R. Yu-Ruei Wang, Y. Song, and D. Baker. One contact for every twelve residues
allows robust and accurate topology-level protein structure modeling. Proteins, 82:208–218, 2014.

S. Krishna andN. V. Grishin. Structurally Analogous Proteins Do Exist! Structure, 12(7):1125–1127, 2004.

A. Kryshtafovych, T. Schwede,M. Topf, K. Fidelis, and J.Moult. Critical assessment ofmethods of protein
structure prediction (CASP)—Round XIV. Proteins, 89(12):1607–1617, 2021.

B. Kuhlman and P. Bradley. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol.,
20(11):681–697, 2019.

L. Lannelongue, J. Grealey, and M. Inouye. Green Algorithms: Quantifying the Carbon Footprint of
Computation. Adv. Sci., 8(12):2100707, 2021.

132 References

M. Levitt and A. Warshel. Computer simulation of protein folding. Nature, 253(5494):694–698, 1975.

E. Levy Karin, M. Mirdita, and J. Söding. MetaEuk-sensitive, high-throughput gene discovery, and an-
notation for large-scale eukaryotic metagenomics. Microbiome, 8(1):48, 2020.

D. J. Lipman and W. R. Pearson. Rapid and Sensitive Protein Similarity Searches. Science, 227(4693):
1435–1441, 1985.

F. Madeira, Y. M. Park, J. Lee, N. Buso, T. Gur, N.Madhusoodanan, P. Basutkar, A. R. N. Tivey, S. C. Potter,
R. D. Finn, and R. Lopez. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids
Res., 47(W1):W636–W641, 2019.

M. Manni, M. R. Berkeley, M. Seppey, F. A. Simão, and E. M. Zdobnov. BUSCO Update: Novel and
StreamlinedWorkflows alongwith Broader andDeeper Phylogenetic Coverage for Scoring of Eukaryotic,
Prokaryotic, and Viral Genomes. Mol. Biol. Evol., 38(10):4647–4654, 2021.

J. D. Marth. A unified vision of the building blocks of life. Nat. Cell Biol., 10(9):1015–1015, 2008.

J. C. McCallum. Memory Prices 1957+, 2021. URL https://jcmit.net/memoryprice.htm. [Accessed:
2021-12-06].

P. Menzel, K. L. Ng, and A. Krogh. Fast and sensitive taxonomic classification for metagenomics with
Kaiju. Nat. Commun., 7(1):11257, 2016.

F. Meyer, A. Fritz, Z.-L. Deng, D. Koslicki, A. Gurevich, G. Robertson, M. Alser, D. Antipov, F. Beghini,
D. Bertrand, J. J. Brito, C. Brown, J. Buchmann, A. Buluç, B. Chen, R. Chikhi, P. T. Clausen, A. Cristian,
P. W. Dabrowski, A. E. Darling, R. Egan, E. Eskin, E. Georganas, E. Goltsman, M. A. Gray, L. H. Hansen,
S. Hofmeyr, P. Huang, L. Irber, H. Jia, T. S. Jørgensen, S. D. Kieser, T. Klemetsen, A. Kola, M. Kolmogorov,
A. Korobeynikov, J. Kwan, N. LaPierre, C. Lemaitre, C. Li, A. Limasset, F. Malcher-Miranda, S. Mangul,
V. R. Marcelino, C. Marchet, P. Marijon, D. Meleshko, D. R. Mende, A. Milanese, N. Nagarajan, J. Nissen,
S. Nurk, L. Oliker, L. Paoli, P. Peterlongo, V. C. Piro, J. S. Porter, S. Rasmussen, E. R. Rees, K. Reinert,
B. Renard, E. M. Robertsen, G. L. Rosen, H.-J. Ruscheweyh, V. Sarwal, N. Segata, E. Seiler, L. Shi, F. Sun,
S. Sunagawa, S. J. Sørensen, A. Thomas, C. Tong, M. Trajkovski, J. Tremblay, G. Uritskiy, R. Vicedomini,
Z.Wang, Z.Wang, Z.Wang, A.Warren, N. P.Willassen, K. Yelick, R. You, G. Zeller, Z. Zhao, S. Zhu, J. Zhu,
R. Garrido-Oter, P. Gastmeier, S. Hacquard, S. Häußler, A. Khaledi, F. Maechler, F. Mesny, S. Radutoiu,
P. Schulze-Lefert, N. Smit, T. Strowig, A. Bremges, A. Sczyrba, and A. C. McHardy. Critical Assessment
of Metagenome Interpretation - the second round of challenges. bioRxiv, page 2021.07.12.451567, 2021.

M. Mirdita, L. von den Driesch, C. Galiez, M. J. Martin, J. Söding, and M. Steinegger. Uniclust databases
of clustered and deeply annotated protein sequences and alignments. Nucleic Acids Res., 45(D1):D170–
D176, 2017.

M. Mirdita, K. Schütze, Y. Moriwaki, L. Heo, S. Ovchinnikov, and M. Steinegger. ColabFold - Making
protein folding accessible to all. bioRxiv, page 2021.08.15.456425, 2021.

J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G. A. Salazar, E. L. L. Sonnhammer, S. C. E. Tosatto,
L. Paladin, S. Raj, L. J. Richardson, R. D. Finn, and A. Bateman. Pfam: The protein families database in
2021. Nucleic Acids Res., 49(D1):D412–D419, 2021.

A. L. Mitchell, A. Almeida, M. Beracochea, M. Boland, J. Burgin, G. Cochrane, M. R. Crusoe, V. Kale, S. C.
Potter, L. J. Richardson, E. Sakharova, M. Scheremetjew, A. Korobeynikov, A. Shlemov, O. Kunyavskaya,
A. Lapidus, and R. D. Finn. MGnify: The microbiome analysis resource in 2020. Nucleic Acids Res., 48
(D1):D570–D578, 2020.

https://jcmit.net/memoryprice.htm

References 133

J. Moult, J. T. Pedersen, R. Judson, and K. Fidelis. A large-scale experiment to assess protein structure
prediction methods. Proteins, 23(3):ii–iv, 1995.

A. E. Murray, J. Freudenstein, S. Gribaldo, R. Hatzenpichler, P. Hugenholtz, P. Kämpfer, K. T. Konstan-
tinidis, C. E. Lane, R. T. Papke, D. H. Parks, R. Rossello-Mora, M. B. Stott, I. C. Sutcliffe, J. C. Thrash, S. N.
Venter, W. B. Whitman, S. G. Acinas, R. I. Amann, K. Anantharaman, J. Armengaud, B. J. Baker, R. A.
Barco, H. B. Bode, E. S. Boyd, C. L. Brady, P. Carini, P. S. G. Chain, D. R. Colman, K. M. DeAngelis, M. A.
de los Rios, P. Estrada-de los Santos, C. A. Dunlap, J. A. Eisen, D. Emerson, T. J. G. Ettema, D. Eveil-
lard, P. R. Girguis, U. Hentschel, J. T. Hollibaugh, L. A. Hug, W. P. Inskeep, E. P. Ivanova, H.-P. Klenk,
W.-J. Li, K. G. Lloyd, F. E. Löffler, T. P. Makhalanyane, D. P. Moser, T. Nunoura, M. Palmer, V. Parro,
C. Pedrós-Alió, A. J. Probst, T. H. M. Smits, A. D. Steen, E. T. Steenkamp, A. Spang, F. J. Stewart, J. M.
Tiedje, P. Vandamme, M. Wagner, F.-P. Wang, P. Yarza, B. P. Hedlund, and A.-L. Reysenbach. Roadmap
for naming uncultivated Archaea and Bacteria. Nat. Microbiol., 5(8):987–994, 2020.

S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities in the
amino acid sequence of two proteins. J. Mol. Biol., 48(3):443–453, 1970.

B. D. Ondov, N. H. Bergman, and A. M. Phillippy. Interactive metagenomic visualization in a Web
browser. BMC Bioinform., 12(1):385, 2011.

S. Pan, C. Zhu, X.-M.Zhao, andL. P. Coelho. SemiBin: Incorporating information from reference genomes
with semi-supervised deep learning leads to better metagenomic assembled genomes (MAGs). bioRxiv,
page 2021.08.16.456517, 2021.

D. H. Parks, M. Chuvochina, D. W. Waite, C. Rinke, A. Skarshewski, P. A. Chaumeil, and P. Hugenholtz.
A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat.
Biotechnol., 36(10):996, 2018.

D. H. Parks, M. Chuvochina, C. Rinke, A. J. Mussig, P.-A. Chaumeil, and P. Hugenholtz. GTDB: an on-
going census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized
and complete genome-based taxonomy. Nucleic Acids Res., page gkab776, 2021.

A. Payne, N. Holmes, V. Rakyan, and M. Loose. BulkVis: a graphical viewer for Oxford nanopore bulk
FAST5 files. Bioinformatics, 35(13):2193–2198, 2019.

D. Rajasekaran, S. Zierow, M. Syed, R. Bucala, V. Bhandari, and E. J. Lolis. Targeting distinct tautomerase
sites of D-DT and MIF with a single molecule for inhibition of neutrophil lung recruitment. FASEB J., 28
(11):4961–71, 2014.

G. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. Stereochemistry of polypeptide chain con-
figurations. J. Mol. Biol., 7(1):95–99, 1963.

J. S. Richardson. Early ribbon drawings of proteins. Nat. Struct. Biol., 7(8):624–625, 2000.

S. L. Robinson, J. Piel, and S. Sunagawa. A roadmap for metagenomic enzyme discovery. Nat. Prod. Rep.,
38(11):1994–2023, 2021.

B. Rost. Twilight zone of protein sequence alignments. Protein Eng. Des. Sel., 12(2):85–94, 1999.

R. A. Sanford, K. G. Lloyd, K. T. Konstantinidis, and F. E. Löffler. Microbial Taxonomy Run Amok. Trends
Microbiol., 29(5):394–404, 2021.

134 References

F. Sanger and A. Coulson. A rapid method for determining sequences in DNA by primed synthesis with
DNA polymerase. J. Mol. Biol., 94(3):441–448, 1975.

E. W. Sayers, J. Beck, E. E. Bolton, D. Bourexis, J. R. Brister, K. Canese, D. C. Comeau, K. Funk, S. Kim,
W. Klimke, A. Marchler-Bauer, M. Landrum, S. Lathrop, Z. Lu, T. L. Madden, N. O’Leary, L. Phan, S. H.
Rangwala, V. A. Schneider, Y. Skripchenko, J. Wang, J. Ye, B. W. Trawick, K. D. Pruitt, and S. T. Sherry.
Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 49(D1):
D10–D17, 2021a.

E. W. Sayers, M. Cavanaugh, K. Clark, K. D. Pruitt, C. L. Schoch, S. T. Sherry, and I. Karsch-Mizrachi.
GenBank. Nucleic Acids Res., 49(D1):D92–D96, 2021b.

J. Schaarschmidt, B. Monastyrskyy, A. Kryshtafovych, and A. M. Bonvin. Assessment of contact predic-
tions in CASP12: Co-evolution and deep learning coming of age. Proteins, 86:51–66, 2018.

T. D. Schneider and R. Stephens. Sequence logos: a new way to display consensus sequences. Nucleic
Acids Res., 18(20):6097–6100, 1990.

A. Sczyrba, P. Hofmann, P. Belmann, D. Koslicki, S. Janssen, J. Dröge, I. Gregor, S. Majda, J. Fiedler,
E. Dahms, A. Bremges, A. Fritz, R. Garrido-Oter, T. S. Jørgensen, N. Shapiro, P. D. Blood, A. Gurevich,
Y. Bai, D. Turaev, M. Z. Demaere, R. Chikhi, N. Nagarajan, C. Quince, F. Meyer, M. Balvočiutė, L. H.
Hansen, S. J. Sørensen, B. K. Chia, B. Denis, J. L. Froula, Z. Wang, R. Egan, D. Don Kang, J. J. Cook,
C. Deltel, M. Beckstette, C. Lemaitre, P. Peterlongo, G. Rizk, D. Lavenier, Y. W. Wu, S. W. Singer, C. Jain,
M. Strous, H. Klingenberg, P.Meinicke, M. D. Barton, T. Lingner, H. H. Lin, Y. C. Liao, G. G. Z. Silva, D. A.
Cuevas, R. A. Edwards, S. Saha, V. C. Piro, B. Y. Renard, M. Pop, H. P. Klenk, M. Göker, N. C. Kyrpides,
T.Woyke, J. A. Vorholt, P. Schulze-Lefert, E.M. Rubin, A. E. Darling, T. Rattei, andA. C.McHardy. Critical
Assessment of Metagenome Interpretation - A benchmark of metagenomics software. Nat. Methods, 14
(11):1063–1071, 2017.

S. Seemayer, M. Gruber, and J. Söding. CCMpred—fast and precise prediction of protein residue–residue
contacts from correlated mutations. Bioinformatics, 30(21):3128–3130, 2014.

A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek, A. W. R. Nel-
son, A. Bridgland, H. Penedones, S. Petersen, K. Simonyan, S. Crossan, P. Kohli, D. T. Jones, D. Silver,
K. Kavukcuoglu, and D. Hassabis. Improved protein structure prediction using potentials from deep
learning. Nature, 577(7792):706–710, 2020.

T. Smith and M. Waterman. Identification of common molecular subsequences. J. Mol. Biol., 147(1):
195–197, 1981.

M. Steinegger and S. L. Salzberg. Terminating contamination: large-scale search identifies more than
2,000,000 contaminated entries in GenBank. Genome Biol., 21(1):115, 2020.

M. Steinegger and J. Söding. MMseqs2 enables sensitive protein sequence searching for the analysis of
massive data sets. Nat. Biotechnol., 35(11):1026–1028, 2017.

M. Steinegger, M. Meier, M. Mirdita, H. Vöhringer, S. J. Haunsberger, and J. Söding. HH-suite3 for fast
remote homology detection and deep protein annotation. BMC Bioinform., 20(1):473, 2019a.

M. Steinegger, M. Mirdita, and J. Söding. Protein-level assembly increases protein sequence recovery
from metagenomic samples manyfold. Nat. Methods, 16(7):603–606, 2019b.

References 135

P. Stothard. The Sequence Manipulation Suite: JavaScript Programs for Analyzing and Formatting Pro-
tein and DNA Sequences. Biotechniques, 28(6):1102–1104, 2000.

B. J. Strasser. Collecting, Comparing, and Computing Sequences: The Making of Margaret O. Dayhoff’s
Atlas of Protein Sequence and Structure, 1954–1965. J. Hist. Biol., 43(4):623–660, 2010.

H. Sugimoto, M. Taniguchi, A. Nakagawa, and I. Tanaka. D-DOPACHROME TAUTOMERASE. 1998.
doi: 10.2210/pdb1dpt/pdb.

H. Sugimoto, M. Taniguchi, A. Nakagawa, I. Tanaka, M. Suzuki, and J. Nishihira. Crystal structure of
human D-Dopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at 1.54 Å
resolution. Biochemistry, 38(11):3268–3279, 1999.

K. Tunyasuvunakool, J. Adler, Z. Wu, T. Green, M. Zielinski, A. Žídek, A. Bridgland, A. Cowie, C. Meyer,
A. Laydon, S. Velankar, G. J. Kleywegt, A. Bateman, R. Evans, A. Pritzel, M. Figurnov, O. Ronneberger,
R. Bates, S. A. A. Kohl, A. Potapenko, A. J. Ballard, B. Romera-Paredes, S. Nikolov, R. Jain, E. Clancy,
D. Reiman, S. Petersen, A. W. Senior, K. Kavukcuoglu, E. Birney, P. Kohli, J. Jumper, and D. Hassabis.
Highly accurate protein structure prediction for the human proteome. Nature, 596(7873):590–596, 2021.

G. W. Tyson, J. Chapman, P. Hugenholtz, E. E. Allen, R. J. Ram, P. M. Richardson, V. V. Solovyev, E. M.
Rubin, D. S. Rokhsar, and J. F. Banfield. Community structure and metabolism through reconstruction
of microbial genomes from the environment. Nature, 428(6978):37–43, 2004.

M. Varadi, S. Anyango, M. Deshpande, S. Nair, C. Natassia, G. Yordanova, D. Yuan, O. Stroe, G. Wood,
A. Laydon, A. Žídek, T. Green, K. Tunyasuvunakool, S. Petersen, J. Jumper, E. Clancy, R. Green, A. Vora,
M. Lutfi, M. Figurnov, A. Cowie, N. Hobbs, P. Kohli, G. Kleywegt, E. Birney, D. Hassabis, and S. Velankar.
AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence
space with high-accuracy models. Nucleic Acids Res., page gkab1061, 2021.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention Is All You Need. arXiv, page 1706.03762, 2017.

J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, G. G. Sutton, H. O. Smith, M. Yandell, C. A.
Evans, R. A. Holt, J. D. Gocayne, P. Amanatides, R. M. Ballew, D. H. Huson, J. R. Wortman, Q. Zhang,
C. D. Kodira, X. H. Zheng, L. Chen, M. Skupski, G. Subramanian, P. D. Thomas, J. Zhang, G. L. Gabor
Miklos, C. Nelson, S. Broder, A. G. Clark, J. Nadeau, V. A. McKusick, N. Zinder, A. J. Levine, R. J. Roberts,
M. Simon, C. Slayman, M. Hunkapiller, R. Bolanos, A. Delcher, I. Dew, D. Fasulo, M. Flanigan, L. Florea,
A. Halpern, S. Hannenhalli, S. Kravitz, S. Levy, C. Mobarry, K. Reinert, K. Remington, J. Abu-Threideh,
E. Beasley, et al. The Sequence of the Human Genome. Science, 291(5507):1304–1351, 2001.

F. A. Von Meijenfeldt, K. Arkhipova, D. D. Cambuy, F. H. Coutinho, and B. E. Dutilh. Robust taxonomic
classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol., 20(1):217,
2019.

S. Wang, S. Sun, and J. Xu. Analysis of deep learning methods for blind protein contact prediction in
CASP12. Proteins, 86(S1):67–77, 2018.

Y. Wang, Y. Zhao, A. Bollas, Y. Wang, and K. F. Au. Nanopore sequencing technology, bioinformatics
and applications. Nat. Biotechnol., 39(11):1348–1365, 2021.

A.M.Waterhouse, J. B. Procter, D.M. A.Martin, M. Clamp, andG. J. Barton. JalviewVersion 2–amultiple
sequence alignment editor and analysis workbench. Bioinformatics, 25(9):1189–91, 2009.

136 References

K. A. Wetterstrand. The Cost of Sequencing a Human Genome, 2021a. URL https://genome.gov/
sequencingcosts. [Accessed: 2021-11-12].

K. A.Wetterstrand. DNA Sequencing Costs: Data from the NHGRI Genome Sequencing Program (GSP)
, 2021b. URL https://www.genome.gov/sequencingcostsdata. [Accessed: 2021-11-12].

M. Wojtynek, J. Martin, andM. Hartmann. Caldiarchaeum SubterraneumUbiquitin. 2018. doi: 10.2210/
pdb6fj7/pdb.

D. E. Wood and S. L. Salzberg. Kraken: ultrafast metagenomic sequence classification using exact align-
ments. Genome Biol., 15(3):R46, 2014.

D. E. Wood, J. Lu, and B. Langmead. Improved metagenomic analysis with Kraken 2. Genome Biol., 20
(1):257, 2019.

S. H. Ye, K. J. Siddle, D. J. Park, and P. C. Sabeti. Benchmarking Metagenomics Tools for Taxonomic
Classification. Cell, 178(4):779–794, 2019.

R. Zhang, M. Mirdita, E. Levy Karin, C. Norroy, C. Galiez, and J. Söding. SpacePHARER: sensitive
identification of phages from CRISPR spacers in prokaryotic hosts. Bioinformatics, 37(19):3364–3366,
2021.

M. Zhao, W.-P. Lee, E. P. Garrison, and G. T. Marth. SSW library: an SIMD Smith-Waterman C/C++
library for use in genomic applications. PLoS One, 8(12):e82138, 2013.

S. Zierow and E. Lolis. D-dopachrome tautomerase (D-DT)/macrophage migration inhibitory factor 2
(MIF2) complexed with inhibitor 4-IPP. 2009. doi: 10.2210/pdb3kan/pdb.

G. Zuo, Z. Xu, and B. Hao. Shigella Strains Are Not Clones of Escherichia coli but Sister Species in the
Genus Escherichia. Genom. Proteom. Bioinform., 11(1):61–65, 2013.

https://genome.gov/sequencingcosts
https://genome.gov/sequencingcosts
https://www.genome.gov/sequencingcostsdata

Appendix

A1 MMseqs2 User Guide – Table of Contents

The MMseqs2 user-guide is available online at github.com/soedinglab/MMseqs2/wiki. Due to its ex-
tensive size, I included only the table of contents. Writing and maintaining the MMseqs2 user guide has
been a continuous collaborative effort by the whole MMseqs2 team.

1. Summary
2. System requirements
3. Installation

• Install MMseqs2 for Linux
• Install MMseqs2 for macOS
• Install MMseqs2 for Windows
• Use the Docker image
• Set up the Bash/Zsh command completion
• Customizing compilation through CMake

4. Getting started
• Usage of MMseqs2 modules
• Easy workflows
• Downloading databases
• Searching
• Clustering
• Linclust
• Updating a clustered database

5. Overview of folders in MMseqs2
6. Overview of important MMseqs2 modules
7. Description of workflows

• Batch sequence searching using mmseqs search
• Translated sequence searching
• Expanded cluster searches
• Mapping very similar sequences using mmseqs map
• Clustering databases using mmseqs cluster or mmseqs linclust

– Clustering criteria
– Cascaded clustering
– Clustering modes

• Linear time clustering using mmseqs linclust
– Run Linclust

• Updating a clustering database using mmseqs clusterupdate
• Taxonomy assignment

– Terminology
– Creating a seqTaxDB
– Filtering a seqTaxDB

137

https://github.com/soedinglab/MMseqs2/wiki
https://github.com/soedinglab/MMseqs2/wiki#summary
https://github.com/soedinglab/MMseqs2/wiki#system-requirements
https://github.com/soedinglab/MMseqs2/wiki#installation
https://github.com/soedinglab/MMseqs2/wiki#install-mmseqs2-for-linux
https://github.com/soedinglab/MMseqs2/wiki#install-mmseqs2-for-macos
https://github.com/soedinglab/MMseqs2/wiki#install-mmseqs2-for-windows
https://github.com/soedinglab/MMseqs2/wiki#use-the-docker-image
https://github.com/soedinglab/MMseqs2/wiki#set-up-the-bashzsh-command-completion
https://github.com/soedinglab/MMseqs2/wiki#customizing-compilation-through-cmake
https://github.com/soedinglab/MMseqs2/wiki#getting-started
https://github.com/soedinglab/MMseqs2/wiki#usage-of-mmseqs2-modules
https://github.com/soedinglab/MMseqs2/wiki#easy-workflows
https://github.com/soedinglab/MMseqs2/wiki#downloading-databases
https://github.com/soedinglab/MMseqs2/wiki#searching
https://github.com/soedinglab/MMseqs2/wiki#clustering
https://github.com/soedinglab/MMseqs2/wiki#linclust
https://github.com/soedinglab/MMseqs2/wiki#updating-a-clustered-database
https://github.com/soedinglab/MMseqs2/wiki#overview-of-folders-in-mmseqs2
https://github.com/soedinglab/MMseqs2/wiki#overview-of-important-mmseqs2-modules
https://github.com/soedinglab/MMseqs2/wiki#description-of-workflows
https://github.com/soedinglab/MMseqs2/wiki#batch-sequence-searching-using-mmseqs-search
https://github.com/soedinglab/MMseqs2/wiki#translated-sequence-searching
https://github.com/soedinglab/MMseqs2/wiki#expanded-cluster-searches
https://github.com/soedinglab/MMseqs2/wiki#mapping-very-similar-sequences-using-mmseqs-map
https://github.com/soedinglab/MMseqs2/wiki#clustering-databases-using-mmseqs-cluster-or-mmseqs-linclust
https://github.com/soedinglab/MMseqs2/wiki#clustering-criteria
https://github.com/soedinglab/MMseqs2/wiki#cascaded-clustering
https://github.com/soedinglab/MMseqs2/wiki#clustering-modes
https://github.com/soedinglab/MMseqs2/wiki#linear-time-clustering-using-mmseqs-linclust
https://github.com/soedinglab/MMseqs2/wiki#run-linclust
https://github.com/soedinglab/MMseqs2/wiki#updating-a-clustering-database-using-mmseqs-clusterupdate
https://github.com/soedinglab/MMseqs2/wiki#taxonomy-assignment
https://github.com/soedinglab/MMseqs2/wiki#terminology
https://github.com/soedinglab/MMseqs2/wiki#creating-a-seqtaxdb
https://github.com/soedinglab/MMseqs2/wiki#filtering-a-seqtaxdb

138 References

– The concept of LCA
– Using seqTaxDB for taxonomy assignment
– Taxonomy output and TSV
– Taxonomic ranks
– Taxonomy report in Kraken or Krona style
– Taxonomy top hit report
– Filtering taxonomy output
– Taxonomy annotation of search/cluster results

• Reciprocal best hit using mmseqs rbh
8. Description of core modules

• Computation of prefiltering scores using mmseqs prefilter
– Set sensitivity -s parameter

• Local alignment of prefiltered sequence pairs using mmseqs align
• Clustering sequence database using mmseqs clust

9. File Formats
• MMseqs2 database format
• Manipulating databases
• Sequence database format
• Prefiltering format
• Alignment format

– Custom alignment format with convertalis
– Internal alignment format

• Clustering format
– Internal cluster format
– Cluster TSV format
– Cluster FASTA-like format
– Extract representative sequence

• Taxonomy format
– Internal taxonomy format
– Taxonomy report in Kraken or Krona style
– LCA TSV

• Profile format
– Parameters that affect profile construction
– Convert a result database into a profile
– Convert an external MSA into a profile
– Extract consensus or sequence information from a profile
– Convert HHsuite HMMs into a profile

• Identifier parsing
10. Optimizing sensitivity and consumption of resources

• Prefiltering module
– Memory consumption

∗ Database splitting runtime slowdown
– Runtime
– Disk space
– Important options for tuning the memory, runtime and disk space usage

• Alignment module
– Memory consumption

https://github.com/soedinglab/MMseqs2/wiki#the-concept-of-lca
https://github.com/soedinglab/MMseqs2/wiki#using-seqTaxDB-for-taxonomy-assignment
https://github.com/soedinglab/MMseqs2/wiki#taxonomy-output-and-tsv
https://github.com/soedinglab/MMseqs2/wiki#taxonomic-ranks
https://github.com/soedinglab/MMseqs2/wiki#taxonomy-report-in-kraken-or-krona-style
https://github.com/soedinglab/MMseqs2/wiki#taxonomy-top-hit-report
https://github.com/soedinglab/MMseqs2/wiki#filtering-taxonomy-output
https://github.com/soedinglab/MMseqs2/wiki#taxonomy-annotation-of-searchcluster-results
https://github.com/soedinglab/MMseqs2/wiki#reciprocal-best-hit-using-mmseqs-rbh
https://github.com/soedinglab/MMseqs2/wiki#description-of-core-modules
https://github.com/soedinglab/MMseqs2/wiki#computation-of-prefiltering-scores-using-mmseqs-prefilter
https://github.com/soedinglab/MMseqs2/wiki#set-sensitivity--s-parameter
https://github.com/soedinglab/MMseqs2/wiki#local-alignment-of-prefiltered-sequence-pairs-using-mmseqs-align
https://github.com/soedinglab/MMseqs2/wiki#clustering-sequence-database-using-mmseqs-clust
https://github.com/soedinglab/MMseqs2/wiki#file-formats
https://github.com/soedinglab/MMseqs2/wiki#mmseqs2-database-format
https://github.com/soedinglab/MMseqs2/wiki#manipulating-databases
https://github.com/soedinglab/MMseqs2/wiki#sequence-database-format
https://github.com/soedinglab/MMseqs2/wiki#prefiltering-format
https://github.com/soedinglab/MMseqs2/wiki#alignment-format
https://github.com/soedinglab/MMseqs2/wiki#custom-alignment-format-with-convertalis
https://github.com/soedinglab/MMseqs2/wiki#internal-alignment-format
https://github.com/soedinglab/MMseqs2/wiki#clustering-format
https://github.com/soedinglab/MMseqs2/wiki#internal-cluster-format
https://github.com/soedinglab/MMseqs2/wiki#cluster-tsv-format
https://github.com/soedinglab/MMseqs2/wiki#cluster-fasta-like-format
https://github.com/soedinglab/MMseqs2/wiki#extract-representative-sequence
https://github.com/soedinglab/MMseqs2/wiki#taxonomy-format
https://github.com/soedinglab/MMseqs2/wiki#internal-taxonomy-format
https://github.com/soedinglab/MMseqs2/wiki#taxonomy-report-in-kraken-or-krona-style
https://github.com/soedinglab/MMseqs2/wiki#lca-tsv
https://github.com/soedinglab/MMseqs2/wiki#profile-format
https://github.com/soedinglab/MMseqs2/wiki#parameters-that-affect-profile-construction
https://github.com/soedinglab/MMseqs2/wiki#convert-a-result-database-into-a-profile
https://github.com/soedinglab/MMseqs2/wiki#convert-an-external-msa-into-a-profile
https://github.com/soedinglab/MMseqs2/wiki#extract-consensus-or-sequence-information-from-a-profile
https://github.com/soedinglab/MMseqs2/wiki#convert-hhsuite-hmms-into-a-profile
https://github.com/soedinglab/MMseqs2/wiki#identifier-parsing
https://github.com/soedinglab/MMseqs2/wiki#optimizing-sensitivity-and-consumption-of-resources
https://github.com/soedinglab/MMseqs2/wiki#prefiltering-module
https://github.com/soedinglab/MMseqs2/wiki#memory-consumption
https://github.com/soedinglab/MMseqs2/wiki#database-splitting-runtime-slowdown
https://github.com/soedinglab/MMseqs2/wiki#runtime
https://github.com/soedinglab/MMseqs2/wiki#disk-space
https://github.com/soedinglab/MMseqs2/wiki#important-options-for-tuning-the-memory-runtime-and-disk-space-usage
https://github.com/soedinglab/MMseqs2/wiki#alignment-module
https://github.com/soedinglab/MMseqs2/wiki#memory-consumption-1

References 139

– Runtime
– Disk space

• Clustering module
– Memory consumption
– Runtime
– Disk space

• Workflows
11. How to run MMseqs2 on multiple servers using MPI
12. How to run MMseqs2 on multiple servers using batch systems
13. Frequently Asked Questions

• How to set the right alignment coverage to cluster
• How do parameters of CD-HIT relate to MMeqs2
• How does MMseqs2 compute the sequence identity
• How to restart a search or clustering workflow
• How to control the speed of the search
• How to find the best hit the fastest way
• How does MMseqs2 handle low complexity
• How to redundancy filter sequences with identical length and 100% length overlap.
• How to add sequence identities and other alignment information to a clustering result.
• How to run external tools for each database entry
• How to compute a multiple alignment for each cluster
• How to manually cascade cluster
• How to cluster using profiles
• How to create a HHblits database
• How to create a target profile database (from PFAM)
• How to cluster a graph given as TSV or m8 file
• How to search small query sets fast
• What is the difference between the map and search workflow
• How to build your own MMseqs2 compatible substitution matrices
• How to create a fake prefiltering for all-vs-all alignments
• How to compute the lowest common ancestor (LCA) of a given set of sequences

14. Workflow control parameters
• Search workflow
• Clustering workflow
• Updating workflow

15. Environment variables used by MMseqs2
16. External libraries used in MMseqs2
17. License terms

https://github.com/soedinglab/MMseqs2/wiki#runtime-1
https://github.com/soedinglab/MMseqs2/wiki#disk-space-1
https://github.com/soedinglab/MMseqs2/wiki#clustering-module
https://github.com/soedinglab/MMseqs2/wiki#memory-consumption-2
https://github.com/soedinglab/MMseqs2/wiki#runtime-2
https://github.com/soedinglab/MMseqs2/wiki#disk-space-2
https://github.com/soedinglab/MMseqs2/wiki#workflows
https://github.com/soedinglab/MMseqs2/wiki#how-to-run-mmseqs2-on-multiple-servers-using-mpi
https://github.com/soedinglab/MMseqs2/wiki#how-to-run-mmseqs2-on-multiple-servers-using-batch-systems
https://github.com/soedinglab/MMseqs2/wiki#frequently-asked-questions
https://github.com/soedinglab/MMseqs2/wiki#how-to-set-the-right-alignment-coverage-to-cluster
https://github.com/soedinglab/MMseqs2/wiki#how-do-parameters-of-cd-hit-relate-to-mmseqs2
https://github.com/soedinglab/MMseqs2/wiki#how-does-mmseqs2-compute-the-sequence-identity
https://github.com/soedinglab/MMseqs2/wiki#how-to-restart-a-search-or-clustering-workflow
https://github.com/soedinglab/MMseqs2/wiki#how-to-control-the-speed-of-the-search
https://github.com/soedinglab/MMseqs2/wiki#how-to-find-the-best-hit-the-fastest-way
https://github.com/soedinglab/MMseqs2/wiki#how-does-mmseqs2-handle-low-complexity
https://github.com/soedinglab/MMseqs2/wiki#how-to-redundancy-filter-sequences-with-identical-length-and-100-length-overlap
https://github.com/soedinglab/MMseqs2/wiki#how-to-add-sequence-identities-and-other-alignment-information-to-a-clustering-result
https://github.com/soedinglab/MMseqs2/wiki#how-to-run-external-tools-for-each-database-entry
https://github.com/soedinglab/MMseqs2/wiki#how-to-compute-a-multiple-alignment-for-each-cluster
https://github.com/soedinglab/MMseqs2/wiki#how-to-manually-cascade-cluster
https://github.com/soedinglab/MMseqs2/wiki#how-to-cluster-using-profiles
https://github.com/soedinglab/MMseqs2/wiki#how-to-create-a-hhblits-database
https://github.com/soedinglab/MMseqs2/wiki#how-to-create-a-target-profile-database-from-pfam
https://github.com/soedinglab/MMseqs2/wiki#how-to-cluster-a-graph-given-as-tsv-or-m8-file
https://github.com/soedinglab/MMseqs2/wiki#how-to-search-small-query-sets-fast
https://github.com/soedinglab/MMseqs2/wiki#what-is-the-difference-between-the-map-and-search-workflow
https://github.com/soedinglab/MMseqs2/wiki#how-to-build-your-own-mmseqs2-compatible-substitution-matrices
https://github.com/soedinglab/MMseqs2/wiki#how-to-create-a-fake-prefiltering-for-all-vs-all-alignments
https://github.com/soedinglab/MMseqs2/wiki#how-to-compute-the-lowest-common-ancestor-lca-of-a-given-set-of-sequences
https://github.com/soedinglab/MMseqs2/wiki#workflow-control-parameters
https://github.com/soedinglab/MMseqs2/wiki#search-workflow
https://github.com/soedinglab/MMseqs2/wiki#clustering-workflow
https://github.com/soedinglab/MMseqs2/wiki#updating-workflow
https://github.com/soedinglab/MMseqs2/wiki#environment-variables-used-by-mmseqs2
https://github.com/soedinglab/MMseqs2/wiki#external-libraries-used-in-mmseqs2
https://github.com/soedinglab/MMseqs2/wiki#license-terms

	Board members
	Acknowledgments
	Summary
	Contents
	List of commonly used abbreviations
	Introduction
	The central dogma of biology
	Homology searches
	Current methods for homology search
	Metagenomics and the sequencing revolution
	Taxonomy
	Protein structure prediction

	MMseqs2 desktop and local web server app
	Author contributions
	Code and data availability

	Fast and sensitive taxonomic assignment to metagenomic contigs
	Author contributions
	Code and software availability

	ColabFold - Making protein folding accessible to all
	Author contributions
	Code and software availability

	Further contributions
	Plass
	HH-suite3
	MetaEuk
	SpacePHARER

	Minor contributions
	Protein Sequence Analysis Using the MPI Bioinformatics Toolkit
	PredictProtein – Predicting Protein Structure and Function for 29 Years
	Going to extremes - a metagenomic journey into the dark matter of life

	Discussion and outlook
	MMseqs2 App and Server
	MMseqs2 Taxonomy
	ColabFold

	Conclusion
	References
	Appendix
	MMseqs2 User Guide – Table of Contents

