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Abstract

This thesis analyzes commodity futures pricing, trading activities in commodity fu-

tures contracts and their use for investment strategies. The aim of this thesis is to

fill important gaps in the research field of commodity markets and to highlight spe-

cial characteristics of commodity futures. It consists of three main chapters which

are based on three research papers.

The first paper Smart Beta Strategies on Commodity Futures Markets analyzes

the use of commodity futures for passive long-only factor investment strategies. It

builds on the idea of using factor investment strategies, sometimes also called smart

beta strategies, in the space of commodity futures markets. This paper identifies

and analyzes eight different types of smart beta strategies, including equal-weight,

low-volatility, momentum and term-structure strategies. Term structure strategies

can provide an excess return of up to 25% p.a. in the sample-period and prove to

be a very attractive investment strategy. These results also cannot be explained by

known equity or bond risk-factors. These results highlight the possible information

content of the term structure of futures prices and also provide the idea for the

second research paper.

The second paper A Factor Decomposition of Term Premiums in Commodity Fu-

tures Markets examines the term structure of expected commodity futures returns

on a theoretical and empirical basis. We use a 3-factor model, which is based on

the Cortazar N-factor model, to decompose commodity futures term premiums into

a constant, a linear and a non-linear function for the time to expiry. We show that

commodity futures returns for maturities of one month and up to twelve months

are well explained by this model. Furthermore the information of this model can

also be used for profitable long-short trading strategies with Sharpe ratios up to 0.93.



The third paper Short Term Commodity Futures Contracts: Trading Patterns

and Returns analyzes the specific behaviour of commodity futures in the last trading

months, when trading activity is possibly influenced by the physical delivery process.

The physical delivery process is usually avoided by financial investors. In our study

we analyze trading patterns in volume, open interest and futures returns based on

differences in the timing of the physical delivery process for different commodities.

We find that the notice day presents an important turning point for every commodity

futures contract, when the contract turns from an actively traded contract to a very

illiquid contract. Furthermore, we also show that long investors who are willing to

run the risk of physical delivery can earn a risk premium during the notice period.
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1 Introduction

Commodity futures represent a fascinating, yet not fully understood asset class. Al-

though a futures contract is by definition relatively simple compared to for example

options, swaps or even more complex instruments, the heterogeneous underlying

physical assets add a special layer of complexity.

During the last two decades commodity futures have already been the subject of

intensive research. Nevertheless, the pricing of commodity futures contracts is not

yet fully understood. Commodity futures have often been observed to generate pos-

itive returns but can they also be profitably used in a passively managed portfolio?

Another aspect that is often overlooked is the term structure of commodity futures

returns. Commodity futures present the investor with a wide range of different

contracts with different expiry dates for each commodity. The range of contracts

for one commodity are close substitutes, but they are not identical. Hence, it is

important to analyze differences and the specific focus will be on modeling the term

structure of expected futures returns. Finally it is also important to analyze the

trading patterns at the short-term end of a commodity futures contract. How are

the trading activities and returns influenced by the nearing expiry of the futures

contract? These research aspects are of interest for many market participants like

investors, risk-managers, hedgers and producers of commodities.

Structure and Objective of the Thesis

This dissertation aims to fill important gaps in the understanding of commodity

futures pricing, trading activities in commodity futures contracts and their use for

investment strategies. As stated above, the findings of this thesis are not only relev-

ant for researchers but also for practitioners who work in asset management or risk

management. Each chapter focuses on a different aspect of commodity futures and

their special properties and usecases.

Chapter 2 Smart Beta Strategies on Commodity Futures Markets is an empirical

analysis of long-only passive investment strategies for commodity futures. The aim

of this paper is to find out if commodity futures can be profitably used in long-only

passive factor investing strategies. Although long-short strategies can be applied re-
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latively easily in commodity futures and there is a large body of research on mostly

long-short strategies (for example Erb and Harvey (2006), Miffre and Rallis (2007),

Fuertes et al. (2010) and Miffre (2016)) this paper focuses on a more traditional long-

only approach which is comparable to traditional investing in for example equities.

The idea of this paper is to take the concept of factor investing from equities and

try to apply it to commodity futures. In this context it is natural to use long-only

strategies because traditional investors, who are interested in index investing and

factor strategies, tend to have a preference for clear and easy to understand long-

only strategies.

The paper analyzes equal-weight, momentum, low-volatility and term-structure

strategies. While equal-weight, momentum and low-volatility strategies are well-

known strategies for equities, the term-structure strategies are entirely commodity

specific. The idea is to use information from the term-structure of futures prices

to find the most attractive commodities. Commodity futures which are in back-

wardation could potentially converge to a higher spot price when they are nearing

expiry, which should provide the long investor with an attractive return. While the

idea here is certainly not new and has been analyzed before, the contribution of this

paper is rather to analyze and showcase how commodity futures can be used in a

consistent framework of long-only investments in addition to equities and bonds. It

is also analyzed whether well-known risk-factors from other asset classes can explain

the returns of these strategies.

Chapter 3 A Factor Decomposition of Term Premiums in Commodity Futures

Markets is a theoretical and empirical study of the term structure of expected fu-

tures returns. The aim of this paper is to gain new insights into term premiums in

commodity futures. The term structure of futures returns is an aspect of commodity

futures that is often overlooked. Market participants can choose from a wide array

of futures contracts for the same commodity with different expiry dates. It seems

natural to ask whether and how they differ when it comes to the return structure of

these contracts. Due to unobservable expected returns and very noisy commodity

futures returns it is difficult to quantify expected commodity futures returns. Exist-

ing commodity futures pricing models developed by Schwartz and Smith (2000) or

Cortazar and Naranjo (2006) are widely accepted and used to derive the risk neut-

ral futures prices. However, as Cortazar et al. (2015) points out, these models can

also be used to derive expected prices under the physical measure. These expected

prices under the physical measure also give us the opportunity to calculate expected

2
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returns.

A particular challenge when estimating the N-Factor Model by Cortazar and Naranjo

(2006) is that some parameters, especially the risk premiums, can only be estimated

with large errors. Cortazar et al. (2015) solve this problem by using the CAPM to

estimate expected commodity futures returns and use them as a restriction in the

Schwartz and Smith (2000) model. In our paper we present a different approach,

which is not relying on an external model or external information for restrictions.

If we focus on the expected returns, we can derive an expression for the expected

returns from the model that significantly reduces the number of estimated paramet-

ers and still provides flexibility in modeling the term structure. The model allows

us to differentiate between a level-, a slope- and a curvature-factor to accurately fit

the term structure of expected futures returns. Based on these three-factors we are

also able to construct and analyze profitable investment strategies. The most stable

trading strategies are based on information about the curvature of the expected re-

turn curve.

Chapter 4 Short Term Commodity Futures Contracts: Trading Patterns and Re-

turns is an empirical study of the trading activities in short-term commodity futures

contracts. Prior results have shown that some commodities experience high returns

in the very last month before expiry. In this paper we want to take a deeper look

in the trading activities in the last months before expiry. Trading activities are

potentially influenced by the physical delivery process of commodities. In our paper

we do not want to focus on rolling strategies as for example Mou (2011). Instead

we will argue that long investors are bearing the risk of physical delivery during the

notice period which is a possible explanation for higher returns for long investors

during the last month.

We compare three commodities (crude oil, gold and corn) which all have different

time periods for the position period, the notice period and the delivery period. In

our analysis, we compare the structures in trading volume, open interest and returns

for these commodities and link these differences to a different timing of the position

and notice period.

3



2 Smart Beta Strategies on Commodity Futures

Markets

Marcel Rothenberger *

This paper was presented at:

� 2nd Australasian Commodity Markets Conference, March 2018

� Griffith Alternative Investments Conference, Brisbane, November 2018

This paper is currently under review at the Journal of Commodity Markets.

Abstract

Smart Beta strategies are a recent trend primarily developed in equity markets, po-

tentially allowing investors to improve their asset allocation through factor tilting

their portfolio. This paper analyzes eight smart beta strategies, including equal-

weight, low volatility, momentum and term structure strategies for commodity fu-

tures markets using a recent dataset of the Commodity Research Bureau. The

contribution of this study is threefold: Firstly, it gives an overview which smart

beta strategies can be applied to commodity markets. Secondly, these strategies

are analyzed with respect to their risk and return properties. Lastly, this study

also analyzes the exposures to known risk factors in equity, bond, and commodity

futures markets using a multi-factor regression model. The term structure strategies

provide a geometric average excess return of up to 25% p.a., while other smart beta

strategies do not generate similar returns. Known risk factors only explain a small

fraction of these excess returns. Hence term structure strategies are an attractive

investment opportunity and the term structure of commodity futures seems to con-

tain valuable information for investors.

JEL Classification: G11

Keywords: smart beta, factor-investing, commodity futures

*Marcel Rothenberger, University of Goettingen and Macquarie University, Platz der Göttinger
Sieben 3, D-37073 Göttingen; Germany; phone +49 551 39 27263; email marcel.rothenberger@uni-
goettingen.de



2 Smart Beta Strategies on Commodity Futures Markets 5

2.1 Introduction

During the last two decades, investors’ interest in the asset class of commodities

has increased dramatically (Tang and Xiong, 2012). According to the Commodity

Futures Trading Commission, the number of traded commodity futures contracts

increased almost fivefold between 1998 and 2008 (CFTC, 2008).

A recent trend in equity markets is to use smart beta strategies. Smart beta

strategies seek to optimise the risk and return profile of a passive index invest-

ment strategy by deviating from the market capitalisation weighting scheme of the

most common equity indices (Amenc et al., 2012). It seems logical to try to link

the approach of smart beta strategies with an investment in commodity futures.

This paper analyzes the risk and return profile of different smart beta investment

strategies on commodity futures markets. In general, this topic is within the re-

search fields of asset management, index investments and commodity futures. The

research question is:

Which long-term returns and risk factor exposures can investors

expect from using smart beta commodity futures investment strategies?

This research question contains three different aspects. First, it is unclear which

smart beta strategies can be applied in commodity futures markets. Second, the

expected returns of these strategies are of great interest for investors. Third, the

risk exposure of these strategies should be examined. To answer the main research

question, it should be divided into three questions covering the different aspects:

1. Which smart beta strategies can be defined for commodity futures?

2. What returns were achieved by applying these strategies in the past?

3. Are these strategies exposed to known risk factors?

Although investors can invest in commodities in many different ways (e.g., by buy-

ing commodities physically or buying stocks of commodity-producing companies),

this paper will only focus on commodity futures markets. Further, the investors’

perspective considered in this study will be a long-only perspective. It is not the

intention of this study to investigate long-short strategies that are also discussed in

the academic literature (Miffre, 2016). It is also not the focus of this paper to test

the market efficiency of commodity futures markets.

5



2 Smart Beta Strategies on Commodity Futures Markets 6

First, the existing body of literature on commodity investments will be used to

obtain an overview of the current state of research on commodity futures invest-

ment strategies. Second, the analyzed smart beta strategies will be introduced to

answer the first aspect of the research question. The analyzed strategies include a

commodity index strategy, an equal weight strategy, low volatility strategies, mo-

mentum strategies and term structure strategies. In addition to the information on

the construction and implementation of the strategies, this section will provide a

brief insight into why each strategy could add value for investors.

Third, the dataset used for the empirical analysis will be explained and described.

The dataset encompasses a set of 25 commodity futures contracts for January

1989–January 2015. Hence, this analysis uses an up-to-date dataset including recent

developments in commodity prices. Further, the data and the risk factors used for

the risk factor analysis will be explained.

Finally, the results for the performance and risk analysis of the commodity futures

smart beta strategies will be presented to answer the second and third aspects of

the research question. The results will be compared to the expectations formed in

the literature review to determine if they are in line and if there are any surpris-

ing results and insights into the commodity futures markets. The conclusion will

briefly summarise the main findings of this analysis and provide directions for future

research in the field of commodity investments.

6
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2.2 Expectations on Commodity Futures Investment Strategies

Although commodity futures have been traded in England since the sixteenth cen-

tury, research activity on investment strategies in these markets only began at the

end of the twentieth century. It can even be argued that commodities are still a

relatively unknown asset class (Gorton and Rouwenhorst, 2006). An overview of

selected research papers that focused on, or at least touched, the research field of

investment strategies on commodity futures markets is provided in Appendix 2.9.

Appendix 2.10 briefly summarises the findings of these studies regarding the differ-

ent strategies and standard performance measures, such as mean return, standard

deviation and Sharpe ratio.

In general, the results of previous studies are rather homogenous. Past studies have

found positive mean excess returns for various types of strategies on commodity

futures markets (Bodie and Rosansky, 1980; Fama and French, 1987; Greer, 2000;

Miffre and Rallis, 2007; Fuertes et al., 2010; Gorton and Rouwenhorst, 2006). Al-

though the positive excess returns are not always significant, the results suggest that

investments in commodities futures markets can generate positive excess returns in

addition to the collateral return of a fully collateralised strategy. The following ex-

pectations can be drawn based on the previous research.

Expectation 1

All commodity futures smart beta strategies are expected to yield positive

excess returns.

Positive mean excess returns of investments in a portfolio of commodity futures are

particularly interesting because previous studies have shown that individual com-

modities are highly unlikely to generate positive excess returns (Erb and Harvey,

2006). Another potential upside reported by previous studies is the positive skew-

ness in the returns (Bodie and Rosansky, 1980). If individual commodity futures

are not expected to generate a positive excess return, how can the positive excess

returns of commodity futures portfolios be explained? One reason could be that

commodity futures are not a homogenous asset class of rather similar assets. In-

stead, commodity futures have been shown to be rather uncorrelated.

Therefore, they can be described as a heterogeneous collection of assets bound to-

gether by the fact that they are either a raw material or a primary agricultural

7
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product (Bodie and Rosansky, 1980). The low correlations between the individual

commodities are an ideal foundation for diversification benefits within the asset class

of commodities. This diversification benefit, sometimes called diversification return,

drives the excess returns of commodity futures portfolios.

Expectation 2

Individual commodity futures are expected to not yield positive excess re-

turns. The individual commodity futures returns should be rather uncorrel-

ated.

Another reason for positive excess returns of smart beta strategies could be the ef-

ficiency of the different strategies. Previous studies have covered index strategies,

equal weight strategies, momentum strategies and term structure strategies. While

in most studies, all these strategies yielded positive excess returns, momentum and

term structure strategies stand out as delivering the highest average returns. The

exceptional performance of these strategies leads to two conclusions. First, the mo-

mentum effect exists on commodity futures markets and second, the term structure

of commodity futures contracts contains valuable information for investors.

Still, there is some uncertainty about whether long-only strategies can generate sig-

nificant positive excess returns. In particular, Miffre/Rallis showed that the short

exposure to loser commodities is the main driver of the momentum returns (Miffre

and Rallis, 2007). Conversely, Fuertes et al. showed that for a different period, the

long exposure to the winner portfolio is actually the main driver of the momentum

returns (Fuertes et al., 2010).

Expectation 3

Momentum and term structure strategies are expected to yield the highest

excess returns.

However, might these excess returns just be a compensation for risk? Research

suggests that this is not the case. The Sharpe ratios of the momentum and term

structure strategies suggest that investors are actually overcompensated for their

risk (Fuertes et al., 2010).

8
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Expectation 4

Momentum and term structure strategies are expected to have the highest

Sharpe ratios.

Risk factors for the equity and bond market cannot explain the returns of commod-

ity futures portfolios. The only significant risk factors are inflation and the strength

of the US dollar (Erb and Harvey, 2006).

Expectation 5

Known risk factors from equity and bond markets cannot explain the re-

turns of smart beta commodity strategies. Inflation risk and currency risk

are expected to be a commodity-specific risk factor.

9
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2.3 Smart Beta Commodity Futures Investment Strategies

The term smart beta is widely used as a general phrase for passive investment

strategies that seek to optimise an index with regard to different properties. Some-

times these strategies are called alternative index investment strategies. To improve

the index, smart beta strategies either change the stock selection of an index, the

weighting of the constituents or both (Amenc et al., 2012). In many cases, smart

beta approaches are used in equity markets. However, they can also be applied to

bond or commodity markets.

In practice, there are many different smart beta strategies. Table 2.1 provides an

overview of different types of strategies and lists examples for smart beta exchange-

traded funds (ETFs). As Table 3.1 shows, smart beta strategies on equity markets

can be roughly divided into five different categories: carry/dividend, value, equal

weight, low volatility and momentum strategies. Each of these strategies uses its own

unique set of weighting and/or selection criteria. In the past, smart beta products

have been criticised for not being transparent enough in terms of their exact con-

struction (Amenc et al., 2012).

This shortcoming of many smart beta products makes performance comparison

Table 2.1: Overview of Smart Beta Equity Strategies and Example ETFs

Types of Strategy Weighting/
Selection Cri-
teria and Example
Smart Beta ETF

Dividend Dividend growth,
dividend yield

ProShares S&P 500 Dividend Aristo-
crats, iShares Core High Dividend ETF

Value Book value, sales,
earnings etc.

iShares Edge MSCI World Value Factor

Equal Weight Equal weight db x-trackers S&P 500 Equal Weight

Low Volatility Volatility iShares Edge MSCI World Minimum
Volatility

Momentum Price momentum iShares Edge MSCI World Momentum
Factor

and benchmarking complicated and challenging. Investors should also be careful

when choosing smart beta strategies because they can bring significant systematic

10
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risk factor exposure and strategy-specific risk (Amenc et al., 2012).

When trying to transfer the different types of strategies to commodity futures mar-

kets, it is obvious that dividend and value strategies cannot be used for commodit-

ies because there are neither dividend payments nor classical value indicators (e.g.,

book-to-market ratio) for commodities. Although there are no dividends for com-

modities, term structure strategies can be viewed as a type of carry strategy that are

at least similar to a dividend strategy. The other three types of smart beta strategies

could potentially be used in commodity futures markets. Hence, these strategies will

be examined in this paper. For the purpose of this study, every commodity futures

trading strategy that modifies the weighting scheme according to a certain weighting

principle that offers a reasonable possibility to generate an attractive risk to return

profile will be considered a smart beta strategy, by exploiting an anomaly or using

portfolio optimisation techniques.

Each strategy will be implemented by buying the second-nearest futures contract

at the end of each month. At the end of the next month, the exposure is rolled

over to the next second-nearest contract. Transactions costs are not regarded in

this analysis.

In the absence of an initial investment in futures, returns are calculated as the

relative price change in the futures price during the holding period (equation 2.1).

ri,t =
Fi,t+1 − Fi,t

Fi,t
(2.1)

Further, the investor is assumed to execute a fully collateralised strategy. The

collateral will be the risk-free asset. In this scenario, the futures returns can be

interpreted as an excess return because the risk-free-rate is already earned by the

collateral (Bodie and Rosansky, 1980).

Index Strategy

The first question raised when applying smart beta strategies to commodity fu-

tures markets is how to define the market. For commodity futures, there is no

cap-weighted index, as there is no market capitalisation for commodity futures.

Every long contract entered into by one trader must be offset by someone taking a

short position. Therefore, the market capitalisation of the futures market must be

zero (Black, 1976). Practitioners in the field of asset management suggest simply

taking the existing global commodity indices as the market portfolio. Of course,

this rather pragmatic approach lacks a theoretical foundation in contrast to a cap-

weighted equity index.

11
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For this study, the S&P GSCI was chosen as a benchmark index strategy. The S&P

GSCI is one of the most widely-known commodity indices.

Equal weight strategy

The equal weight strategy is a very popular approach in commodity futures research.

Many studies have successfully tested an equal weight strategy for commodity fu-

tures (Bodie and Rosansky, 1980). As the name suggests, the equal weight strategy

gives equal weight to each commodity (equation 2.2).

wi =
1

n
(2.2)

In equity markets, the equal weight has been shown to generate better out-of-sample

Sharpe ratios than many other optimal asset allocation principles. The estimation

errors in other potentially better allocation strategies seem to erode the benefits

(DeMiguel et al., 2007). Therefore, the equal weight strategy stands out as a simple

but effective asset allocation strategy, which makes it a natural candidate for a smart

beta strategy.

Low volatility strategy

In contrast to the equal weight strategy, the low-volatility strategy has not yet been

studied extensively for commodity futures markets. When studying equity markets,

low-volatility strategies are currently very popular. Baker et al. view the low-risk

anomaly as one of the greatest anomalies in finance (Baker et al., 2011). The low-

volatility anomaly states that portfolios of low-volatility stocks outperform portfolios

of high-volatility stocks (Baker et al., 2011; Dutt and Humphery-Jenner, 2013). The

low volatility anomaly is also closely linked to the low beta anomaly. Similar to the

low-volatility anomaly, low beta stocks are also likely to outperform high beta stocks

(Baker et al., 2011).

As low-volatility strategies apply an optimised weighting scheme to an index to

reduce or minimise the volatility of a portfolio, they can be recognised as a smart

beta strategy. However, a low-volatility strategy might generate risk exposure to

other unwanted risk factors, such as sector risks (Amenc et al., 2012).

Within this study, two different low-volatility weighting schemes will be analyzed.

The first strategy invests in the quintile of commodities with the lowest historical

standard deviation during the last 60 months (LV-Top5). The determination of the

weights is described by Equation 2.3.

wi,t =
1

5
if σ̂i,t−1 ≤ q0.2,σ̂, else wi,t = 0 (2.3)

12
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The second strategy uses a relative weighting scheme (LV-RV). The portfolio weights

are obtained by comparing the estimated standard deviation of one commodity with

the mean standard deviation of all commodities. If the standard deviation of one

commodity (σi,t−1) is greater than the average deviation (σ̄t−1), the weight of this

contract is zero. If the standard deviation is smaller than the average standard

deviation, the weight is determined as the difference between the standard derivation

(σi,t−1 − σ̄t−1) divided by the sum of all commodity futures standard deviations

that have a below-average standard deviation (
∑

i σi∗,t−1 − σ̄i∗,t−1). i∗ denotes all

commodity futures with a below-average standard deviation. Equation 2.4 describes

the determination of the weights for the relative volatility strategy.

wi,t =
σi,t−1 − σ̄t−1∑
i σi∗,t−1 − σ̄t−1

if σi,t−1 < σ̄i,t−1, else wi,t = 0 (2.4)

Momentum strategies

Another well-known capital markets anomaly is the momentum anomaly. The mo-

mentum anomaly holds that stocks (or other assets) that have yielded a positive

return in the past will continue to generate positive returns in the future. The op-

posite holds for the stocks that have yielded a negative return in the past. In other

words, momentum describes the medium-term persistence of returns.

The existence of momentum on the US stock market was first shown by Jegadeesh/Titman

(Jegadeesh and Titman, 1993). As set out in the literature review, momentum

strategies have also been analyzed for commodity futures and were quite successful.

The momentum strategies are also analyzed with two different weighting schemes: a

quintile approach and a relative strength approach. The first strategy is a classical

momentum strategy that buys the top quintile (MOM-Top5) commodity futures

based on the returns of the past month (one-month ranking period) and holds these

contracts for one month (one-month holding period). The determination of the

weights is described by Equation 2.5.

wi,t =
1

5
if ri,t−1 ≥ q0.8,rt−1 , else wi,t = 0 (2.5)

The second strategy is a relative strength strategy (MOM-RS). In contrast to the

momentum top quintile strategy, the relative strength strategy does not limit the

number of contracts. The relative strength determines the weights for each commod-

ity future by comparing the return of the past month with the average return of all

commodity futures in the past month. If the past return of one commodity (ri,t−1) is

13
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smaller than the average past return (r̄t−1), the weight of this contract is zero. If the

past return is greater than the average past return, the weight is determined as the

difference between the past return (ri,t−1−r̄t−1) divided by the sum of all commodity

futures returns that generated an above-average return (
∑

i ri∗,t−1 − r̄i∗,t−1). i∗ de-

notes all commodity futures with an above-average return. Equation (2.6) describes

the determination of the weights for the relative strength strategy.

wi,t =
ri,t−1 − r̄t−1∑
i ri∗,t−1 − r̄t−1

if ri,t−1 > r̄t−1, else wi,t = 0 (2.6)

In comparison to the top quintile strategy, the relative strength strategy is able to

give higher weights to commodity futures with an exceptionally high past perform-

ance. Therefore, it uses also the strength of the momentum signal to determine the

weights, whereas the top quintile strategy uses a simple equal weight approach.

Term structure strategies

While the other strategies have been derived from known smart beta strategies on

equity markets, term structure strategies are commodity futures-specific. These

strategies aim to use signals from the term structure of commodity futures by buy-

ing backwardated commodity futures contracts. According to the hedging pressure

theory, a backwardated futures term structure indicates that short hedgers domin-

ate the market. The lower prices of the distant contracts will motivate investors

and speculators to take long positions to supply the short hedging interest of, for

example, commodity producers. In other words, the short hedgers are willing to pay

an insurance premium to hedge their exposure (Fuertes et al., 2010).

As an example, let us assume that the spot price for a bushel (bsh) of corn is USD

350 and the one-month futures price for a bushel of corn is USD 340. If an investor

decides to enter a long futures contract of corn for USD 340/bsh, they would make a

profit as long as the spot price is greater than USD 340 /bsh after one month. This

example illustrates the advantageous setting of a long position in a backwardated

futures term structure.

The relative price difference between a futures contract with a shorter maturity and

a longer maturity is also called implied yield or implied return (ir). In this case, the

implied yield between the spot price and one-month futures contract is 2.94%. The

implied yield cannot be earnt directly. The implied yield is the return that can be

earned when the spot price remains constant and the futures price converges with

the spot price at maturity.

Following the example, it is intuitive to design a trading strategy that systematically

14
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buys backwardated commodity futures. To remain consistent with the low-volatility

strategies and the momentum strategies, two different term structure strategies were

analyzed for this study.

The first strategy is the term structure top quintile strategy (TS-Top5). Its con-

struction and weighting scheme is analogue to the momentum top quintile strategy.

However, the term structure strategy uses the implied yield at the end of the month

instead of the past return. Also, the TS-Top5 strategy goes long in the top five

commodity futures sorted by the implied return with an equal weight (equation

2.7).

wi,t =
1

5
if iri,t ≥ q0.8,irt , else wi,t = 0 (2.7)

Consistent with the other strategies, the term structure strategies also buy the

second-nearest futures contract at the end of the month. In the next month, the

exposure is rolled over to the next second nearest contract. Fuertes et al. showed

that the signals from the front end of the term structure seem to convey more in-

formation than do the more distant contracts (Fuertes et al., 2010). Hence, using

the nearest contracts should yield the best results for investors.

The second strategy is the term structure relative backwardation strategy (TS-RB).

Similar to the momentum strategies, this study intends to determine whether weight-

ing the commodity futures with the relative backwardation improves the perform-

ance of the term structure strategies. If the implied yield of a commodity futures

contract is greater than the average implied yield of all commodity futures (īrt), the

weight is defined by the difference between the implied yield and the average implied

yield divided by the sum of all above average implied yields (
∑

i∗(iri∗,t − īrt)).
If the implied yield of a commodity futures contract is smaller than the average

implied yield, the weight will be zero. The determination of the weights is presented

by Equation 2.8.

wi,t =
iri,t − īrt∑
i iri∗,t − īrt

if ri,t > īrt, else wi,t = 0 (2.8)

By comparing the results of the two term structure strategies, this study aims to

reveal whether the intensity of backwardation can be of value for investors.
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2.4 Dataset

Commodity Futures

An important design decision when studying commodity futures markets is which

commodity contracts and time period should be analyzed. There is a trade-off

between a long price history and a broad selection of commodity contracts that

fully represent the range of today’s commodity markets (Erb and Harvey, 2006).

All data on commodity futures prices in this study are taken from the database of

the CRB (CRB infotech CD). While many commodity futures quotes start as early

as 1959, many other important commodity contracts like crude oil, heating oil or rice

are only available from a point in the 1980s. To include these important commodity

futures, especially the energy contracts, the period for the dataset was December

1989–January 2015

Two conditions were defined for the selection of the contracts:

� a complete time series of futures prices without missing data from December

1989–January 2015

� only one contract per commodity.

The first condition was set to avoid interpolation/estimation of prices. Some strategies,

like momentum or backwardation, rely heavily on the exact prices of the one- and

two-month contracts. An interpolation of these prices could influence the results of

those strategies. Therefore, all contracts should produce a complete futures price

history for the period.

The second condition was set to avoid having two contracts for the same commodity

that might be more or less perfectly correlated with each other. In such cases, the

older and more established contract was selected for analysis.

Table 2.2 provides an overview of the commodity futures contracts included in the

empirical analysis. It also provides an overview of the contracts that were available

for December 1989–January 2015 but that were not included because they did not

meet the conditions set out above.

Of 38 contracts available in the CRB database from 1989 onwards, 25 contracts

were included in the analysis. Six contracts were excluded because of missing price

data (aluminum, barley, flaxseed, pork bellies, propane and unleaded gas). Four

contracts were excluded because there was only spot and/or forward price data

available (Lead, Nickel, Tin and Zinc). The last three contracts were excluded be-

cause the same commodity was already represented by another contract (crude oil,
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copper and sugar).

As Table 3.2 shows, the 25 contracts included in the analysis are either traded at

the Chicago Board of Trade (CBOT), the Chicago Mercantile Exchange (CME), the

New York Board of Trade (NYBOT), the New York Mercantile Exchange (NYMEX)

or the Winnipeg Commodities Exchange (WCE).

For each commodity, there were 302 end-of-month price observations for the one-

and two-month contracts from December 1989–January 2015. The monthly excess

returns were calculated as the relative price change of one contract over one month.

Therefore, the investor is assumed to enter a long two-month contract at the end of

each month and settle this contract at the end of the following month. Of the 302

futures price observations, 301 monthly excess returns were calculated. The return

can be interpreted as an excess return because the investor is assumed to hold a

fully collateralised commodity futures portfolio.

The results for the monthly excess returns of individual commodity futures are

shown in Table 2.3. Of the 25 commodities, only 11 had a geometric average return

greater than zero, while the geometric average of the other 14 was below zero. Only

10 commodities showed an arithmetic average return significantly different from zero

(at α=0.10). Feeder cattle, copper, live cattle, gasoil petroleum and soymeal had

significant positive monthly returns while corn, lumber, lean hogs, rough rice and

wheat even had significant negative monthly returns. The most profitable commod-

ities in this sample were soymeal (geometric average of 1.00% p.m.), copper (0.67%

p.m.) and Live Cattle (0.48% p.m.). In contrast, the least profitable commodities

were Lumber (–2.10% p.m.), wheat (–1.88% p.m.) and corn (–1.84% p.m.).

In general, the results suggest that individual commodities’ excess returns are close

to zero. While portfolios of commodity futures are expected to generate significant

positive excess returns, this cannot be asserted for individual commodity futures.

These results are also consistent with previous research (Erb and Harvey, 2006).

17
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Table 2.2: Overview of Commodity Futures Contracts

Commodity Quotes
Start
Date

CRB
Symbol

Exchange Comment Included

Aluminium 08.12.1983 AL NYMEX missing data in CRB no
Barley 24.05.1989 WA WCE missing data in CRB no
Canola 03.09.1974 WC WCE yes
Cocoa 01.07.1959 CC NYBOT yes
Coffee 16.08.1972 KC NYBOT yes
Copper 01.07.1959 HG NYMEX yes
Copper 01.07.1959 CU NYMEX contract discontin-

ued in 1989
no

Corn 01.07.1959 C- CBOT yes
Cotton 01.07.1959 CT NYBOT yes
Crude Oil WTI 30.03.1983 CL NYMEX yes
Crude Oil Brent 24.07.1989 NB ICE double to Crude Oil

WTI
no

Feeder Cattle 30.11.1971 FC CME yes
Flaxseed 18.11.1980 WF WCE missing data in CRB no
Gas Oil Petroleum 03.06.1986 LF ICE yes
Gold 31.12.1974 GC NYMEX yes
Heating Oil 14.11.1978 HO NYMEX yes
Lead n/a - - only spot and for-

ward prices
no

Lean Hogs 28.02.1966 LH CME yes
Live Cattle 30.11.1964 LC CME yes
Lumber 01.10.1969 LB CME yes
Nickel n/a - - only spot and for-

ward prices
no

Oats 01.07.1959 O- CBOT yes
Orange Juice 01.02.1967 JO NYBOT yes
Palladium 03.01.1977 PA NYMEX yes
Platinum 04.03.1968 PL NYMEX yes
Pork Bellies 18.09.1961 PB CME missing data in CRB no
Propane 21.08.1987 ON NYMEX missing data in CRB no
Rough Rice 20.08.1986 RR CBOT yes
Silver 12.06.1963 SI NYMEX yes
Soybean meal 01.07.1959 SM CBOT yes
Soybean Oil 01.07.1959 BO CBOT yes
Soybeans 01.07.1959 S- CBOT yes
Sugar #11 04.01.1961 SB NYBOT yes
Sugar #14 07.07.1987 SE NYBOT double to Sugar (SB) no
Tin n/a - - only spot and for-

ward prices
no

Unleaded Gas 03.12.1984 HU NYMEX missing data in CRB no
Wheat 01.07.1959 W- CBOT yes
Zinc n/a - - only spot and for-

ward prices
no

Number of included commodities 25
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Table 2.3: Monthly Excess Returns of Individual Commodity Futures

Commodity Geom. Arith. t-Stat. df p-value Signif.
Mean Mean Code

Canola -0.55% -0.36% -1.0138 300 0.3115
Cocoa -0.98% -0.60% -1.1724 300 0.2420
Coffee -1.36% -0.75% -1.1358 300 0.2570
Copper 0.67% 0.96% 2.1759 300 0.0303 **
Corn -1.84% -1.53% -3.3068 300 0.0011 ***
Cotton -1.05% -0.69% -1.4014 300 0.1621
Crude Oil 0.25% 0.68% 1.2592 300 0.2089
Feeder Cattle 0.38% 0.46% 2.0482 300 0.0414 **
Gas Oil Petroleum 0.51% 093% 1.7369 300 0.0834 *
Gold -0.14% -0.04% -0.1501 300 0.8808
Heating Oil 0.44% 0.91% 1.6105 300 0.1083
Lean Hogs -1.68% -1.31% -2.7250 300 0.0068 ***
Live Cattle 0.48% 0.58% 2.2309 300 0.0264 **
Lumber -2.10% -1.64% -2.9640 300 0.0033 ***
Oats 1.26% -0.77% -1.3254 300 0.1860
Orange Juice -1.09% -0.68% -1.3095 300 0.1914
Palladium 0.26% 0.72% 1.2986 300 0.1951
Platinum 0.37% 0.56% 1.6076 300 0.1090
Rough Rice -1.76% -1.44% -3.0861 300 0.0022 ***
Silver -0.33% 0.02% 0.0462 300 0.9632
Soybean Oil -0.51% -0.26% -1.6328 300 0.5274
Soybeans 0.09% 0.33% 0.8285 300 0.4080
Soymeal 1.00% 1.33% 2.8099 300 0.0053 ***
Sugar 0.27% 0.74% 1.3066 300 0.1923
Wheat -1.88% -1.51% -3.0578 300 0.0024 ***

Significance codes: ***:p− value < 0.001; **:p− value < 0.01; *:p− value < 0.05

In addition to the average monthly returns of the individual commodities, it is

interesting to consider an overview of the correlations of the excess returns. As

previous research indicates, individual commodities are expected to have very little

correlation with each other. Table 2.4 provides the correlations of the individual

commodities’ monthly excess returns. Most commodities have very little to no cor-

relation (|p| < 0.5) with each other. Only four pairs of commodities show a high

correlation (|p| > 0.8): heating oil and crude oil (0.84), gasoil petroleum and crude

oil (0.86), gasoil petroleum and heating oil (0.9) and soymeal and soybeans. This is

unsurprising, as three of these pairs are somehow derivatives of the same commodity

(crude oil). The last pair (soymeal and soybeans) also seems quite closely related.

Further to these strong correlations, there are 12 pairs of commodities that show
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a moderate correlation (0.5 < |p| < 0.8). These commodities are mainly similar

types of grains (e.g., wheat/corn), metals (e.g., silver/gold) or animals (e.g., feeder

cattle/live cattle). The analysis of the correlations of the individual commodities

leads to the confirmation of expectation number two:

Expectation 2

Individual commodity futures are expected to not yield positive excess re-

turns. The individual commodity futures returns should be rather uncorrel-

ated.

The correlations in this analysis confirm that the selected commodities seem to

represent a heterogeneous set of assets that shows a very low correlation between

individual commodities. In addition to the individual commodity futures, the price

data for the GSCI Excess Return Index was taken from Thomson Reuters Data-

stream for December 1989–January 2015. As described in the strategies section, the

index can be viewed as a trading strategy on its own and will serve as a benchmark

for the other strategies. The price data were then used to calculate discrete returns

for the GSCI Excess Return Index.
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Table 2.4: Monthly Futures Excess Return Correlation Matrix

Commodity Soyb.
Oil

Corn Cocoa Crude
Oil

Cotton Feeder
Cattle

Gold Copper Heat.
Oil

Orange
Juice

Coffee Lumber Live
Cattle

Gasoil
Pet.

Lean
Hogs

Oats Palla-
dium

Plat-
inum

Rough
Rice

Soy-
beans

Sugar Silver Soy-
meal

Wheat Canola

Soybean Oil 1.00 0.49 0.16 0.11 0.35 -0.05 0.16 0.27 0.12 0.19 0.14 0.09 0.07 0.10 0.00 0.35 0.08 0.22 0.24 0.73 0.09 0.18 0.43 0.40 0.66

Corn 0.4 1.00 0.18 0.11 0.30 -0.18 0.13 0.12 0.12 0.14 0.19 0.07 -0.01 0.08 0.02 0.47 0.12 0.14 0.31 0.63 0.16 0.20 0.56 0.56 0.46

Cocoa 0.16 0.18 1.00 0.13 0.13 -0.06 0.18 0.17 0.06 0.11 0.15 0.05 -0.06 0.08 0.00 0.23 0.06 0.24 0.14 0.17 0.09 0.23 0.12 0.12 0.10

Crude Oil 0.11 0.11 0.13 1.00 0.08 0.06 0.19 0.28 0.84 0.10 0.05 0.10 0.05 0.86 0.04 0.13 0.16 0.24 0.002 0.13 0.06 0.19 0.08 0.10 0.01

Cotton 0.35 0.30 0.13 0.08 1.00 0.03 0.09 0.26 0.08 0.10 0.13 0.09 0.03 0.08 0.04 0.17 0.17 0.18 0.14 0.30 0.16 0.12 0.18 0.20 0.27

Feeder Cattle -0.05 -0.18 -0.06 0.06 0.03 1.00 -0.13 0.04 0.07 0.02 -0.01 0.09 0.65 0.10 0.36 -0.11 0.06 0.01 -0.06 -0.08 -0.01 -0.08 -0.07 -0.11 -0.08

Gold 0.16 0.13 0.18 0.19 0.09 -0.13 1.00 0.26 0.15 0.12 0.15 0.02 -0.07 0.19 -0.01 0.15 0.23 0.54 0.03 0.14 0.10 0.71 0.08 0.16 0.03

Copper 0.27 0.12 0.17 0.28 0.26 0.04 0.26 1.00 0.26 0.12 0.16 0.13 0.11 0.26 0.01 0.13 0.24 0.38 0.13 0.19 0.18 0.30 0.10 0.18 0.10

Heating Oil 0.12 0.12 0.06 0.84 0.08 0.07 0.15 0.26 1.00 0.07 0.004 0.06 0.04 0.90 0.06 0.12 0.11 0.21 -0.02 0.17 0.03 0.15 0.13 0.11 0.01

Orange Juice 0.19 0.14 0.11 0.10 0.10 0.02 0.12 0.12 0.07 1.00 0.09 -0.01 -0.03 0.07 0.01 0.13 0.13 0.17 0.04 0.13 0.09 0.12 0.07 0.09 0.11

Coffee 0.14 0.19 0.15 0.05 0.13 -0.01 0.15 0.16 0.004 0.09 1.00 0.08 0.00 -0.01 -0.04 0.19 0.19 0.18 0.02 0.16 0.08 0.20 0.13 0.17 0.06

Lumber 0.09 0.07 0.05 0.10 0.09 0.09 0.02 0.13 0.06 -0.01 0.08 1.00 0.13 0.06 0.09 0.003 0.07 0.08 0.07 0.10 0.07 0.07 0.08 0.15 0.06

Live Cattle 0.07 -0.01 -0.06 0.05 0.03 0.65 -0.07 0.11 0.04 -0.03 0.00 0.13 1.00 0.07 0.33 0.04 0.03 0.02 0.06 0.05 0.02 -0.06 0.04 0.01 -0.01

Gasoil Petroleum 0.10 0.08 0.08 0.86 0.08 0.10 0.19 0.26 0.90 0.07 -0.01 0.06 0.07 1.00 0.07 0.08 0.09 0.21 -0.02 0.16 0.04 0.18 0.12 0.06 0.01

Lean Hogs 0.00 0.02 0.00 0.04 0.04 0.36 -0.01 0.01 0.06 0.01 -0.04 0.09 0.33 0.07 1.00 0.06 -0.04 -0.10 0.04 -0.03 -0.05 -0.02 -0.08 0.11 -0.07

Oats 0.35 0.47 0.23 0.13 0.17 -0.11 0.15 0.13 0.12 0.13 0.19 0.003 0.04 0.08 0.06 1.00 0.10 0.19 0.13 0.44 0.18 0.18 0.39 0.37 0.34

Palladium 0.08 0.12 0.06 0.16 0.17 0.06 0.23 0.24 0.11 0.13 0.19 0.07 0.03 0.09 -0.04 0.10 1.00 0.54 -0.01 0.13 0.15 0.33 0.11 0.12 0.10

Platinum 0.22 0.14 0.24 0.24 0.18 0.01 0.54 0.38 0.21 0.17 0.18 0.08 0.02 0.21 -0.10 0.19 0.54 1.00 0.06 0.20 0.24 0.57 0.13 0.16 0.14

Rough Rice 0.24 0.31 0.14 0.002 0.14 -0.06 0.03 0.13 -0.02 0.04 0.02 0.07 0.06 -0.02 0.04 0.13 -0.01 0.06 1.00 0.28 0.08 0.06 0.20 0.23 0.18

Soybeans 0.73 0.63 0.17 0.13 0.30 -0.08 0.14 0.19 0.17 0.13 0.16 0.10 0.05 0.16 -0.03 0.44 0.13 0.20 0.28 1.00 0.13 0.16 0.88 0.43 0.68

Sugar 0.09 0.16 0.09 0.06 0.16 -0.01 0.10 0.18 0.03 0.09 0.08 0.07 0.02 0.04 -0.05 0.18 0.15 0.24 0.08 0.13 1.00 0.13 0.10 0.15 0.15

Silver 0.18 0.20 0.23 0.19 0.12 -0.08 0.71 0.30 0.15 0.12 0.20 0.07 -0.06 0.18 -0.02 0.18 0.33 0.57 0.06 0.16 0.13 1.00 0.08 0.15 0.12

Soymeal 0.43 0.56 0.12 0.08 0.18 -0.07 0.08 0.10 0.13 0.07 0.13 0.08 0.04 0.12 -0.08 0.39 0.11 0.13 0.20 0.88 0.10 0.08 1.00 0.37 0.52

Wheat 0.40 0.56 0.12 0.10 0.20 -0.11 0.16 0.18 0.11 0.09 0.17 0.15 0.01 0.06 0.11 0.37 0.12 0.16 0.23 0.43 0.15 0.15 0.37 1.00 0.39

Canola 0.66 0.46 0.10 0.01 0.27 -0.08 0.03 0.10 0.01 0.11 0.06 0.06 -0.01 0.01 -0.07 0.34 0.10 0.14 0.18 0.68 0.15 0.12 0.52 0.39 1.00
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Risk factors

As well as the commodity futures price data, an extensive dataset was used to ana-

lyze the sensitivity of the smart beta commodity futures strategies to different risk

factors. In this analysis, a wide range of risk factors should be used, including

equity risk factors, bond risk factors and possible commodity-specific risk factors.

The dataset encompasses nine risk factors: developed market risk, emerging market

risk, size factor, book-to-market equity factor, momentum factor, default premium,

term premium, currency risk factor and inflation. Equity- and bond-specific risk

factors were included to control for possible risk factor exposures linked to other

common asset classes. The same time period was used as for the commodity futures

trading strategies for the data on each risk factor (January 1995–January 2015).

Developed Market Risk (DM)

As a proxy for the market risk in developed markets, all stocks traded at the New

York Stock Exchange (NYSE), the American Stock Exchange (AMEX) and the

National Association of Securities Dealers Automated Quotations (NASDAQ) were

used. The aggregated total return data for these stocks was taken from Kenneth

French website. The total return includes dividends and adjusts for stock splits.

To isolate the market risk premium, the risk-free rate (Treasury bill rate) was sub-

tracted from the total return of the equity portfolio. The returns were calculated

as monthly returns (at the end of month) to match the commodity futures trading

strategy.

Energing Market Risk (EM)

Recent research shows that commodity markets are also closely linked to the evolu-

tion of developing countries. Therefore, economic growth of developing countries is

considered a significant driver of commodity prices (Tang and Xiong, 2012). Thus,

emerging market risk was added as a risk factor and to distinguish between the

developed market risk and the emerging market risk.

To control for the emerging market risk, the MSCI Emerging Markets Index was

chosen as a proxy. The MSCI Emerging Markets is a market cap-weighted equity

index that represents approximately 85% of the market capitalisation of 24 emer-

ging market countries. Due to its broad coverage of equity markets in developing

countries, it is a suitable proxy for the emerging market risk. The total return data

for the MSCI Emerging Markets were taken from the Thomson Reuters Datastream.

In conformity with the developed market risk, the risk-free rate (Treasury bill rate)

was subtracted from the monthly returns of the MSCI Emerging Markets to extract

the risk premium.

22



2 Smart Beta Strategies on Commodity Futures Markets 23

Size Factor (SMB)

The size factor is motivated by Fama/French. They showed that the market value

of equity has significant power in explaining the cross-section of stock returns (Fama

and French, 1992). The size effect holds that the size of a company and the returns

of the stock are negatively correlated (Fama and French, 1992). A risk-based ex-

planation for this relationship is that smaller firms are riskier than larger companies.

Hence, investors demand a premium for smaller companies. The size factor (SMB)

is calculated as the difference between the average return of three portfolios of small

companies (small value, small neutral and small growth) and three portfolios of big

companies (big value, big neutral and big growth). The return data for the size

factor were again taken from the Kenneth French website and converted to monthly

returns to meet the commodity strategies.

Book-to-Market Factor (HML)

Similar to the size factor, the book-to-market factor also has an explanatory power

in the cross-section of stock returns (Fama and French, 1992). The book-to-market

factor is based on the relationship of book value of equity to market value of equity

(BE/ME). Fama/French reported a positive correlation between the BE/ME-ratio

and the average monthly return for stocks (Fama and French, 1992). A possible

risk-based explanation for the book-to-market factor is that companies with relat-

ively weak future earnings expectations are traded at a discount and tend to offer

higher returns (value companies) (Fama and French, 1992).

The book-to-market factor (HML) is calculated as the difference between the aver-

age returns of two portfolios of high BE/ME companies (small value and big value)

and two portfolios of low BE/ME companies (small growth and big growth). The

return data of the book-to-market factor were also taken from the Kenneth French

website and converted to monthly returns.

Momentum Factor (MOM)

As asserted previously, the momentum effect describes the medium-term persistence

of stock returns. It is rather difficult to interpret the momentum factor as a risk

premium. Nevertheless, the momentum can be a strong driver of stocks returns

(Jegadeesh and Titman, 1993). To have a wide range of possible risk factors, it

should be included in the analysis.

The data for the momentum factor were also taken from Kenneth French website

and converted to monthly returns. The momentum factor was formed by calculat-

ing the difference in returns between two portfolios with high prior returns and two

portfolios with low prior returns. Each portfolio was preselected based on the firm
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size. The breakpoint for the high prior returns was the 70th return percentile and

for the low prior returns the 30th return percentile of all NYSE-listed stocks.

Term Premium (TERM)

Whereas the previously discussed risk factors are equity-specific risk factors, the

term premium is a bond-specific risk factor. The term risk premium can be defined

as the difference between long-term bonds and short-term money market instru-

ments. This premium will compensate for the risk of unexpected changes in the

interest rate (Chen et al., 1986). Fama/French showed that the term factor is a

very useful factor in explaining the returns of high-grade corporate bonds (Fama

and French, 1993).

For the measurement of the term premium, the yield spread between 10-year Treas-

ury bonds and the three-month Treasury bills was chosen. The yields were published

by the Federal Reserve Bank and the data were taken from Thomson Reuters Data-

stream.

Default Premium (DEF)

The default premium is the second bond-specific risk factor proposed by Fama/French.

They argued that investors demand a risk premium for risky bonds like corporate

bonds (Fama and French, 1993). To analyze the risk exposure of commodities to a

default premium, the end of month yield spread between AAA-corporate bonds and

BBB-corporate bonds was used as a proxy for the default premium. The yields for

the AAA- and BBB-corporate bonds were published by Moody’s Corporation and

the data were taken from Thomson Reuters Datastream.

Currency Risk Factor (USD)

Ferson/Harvey and Dumas/Solnik showed that a risk premium for foreign exchange

rate risk can explain securities returns /citepFerson1993. Erb/Harvey also analyzed

the risk exposure of commodities to exchange rate risk using the trade-weighted

dollar index (Erb and Harvey, 2006). To capture the foreign exchange rate risk,

the monthly changes of the trade-weighted dollar index, published by the Federal

Reserve Bank, was used in this analysis. According to the Federal Reserve Bank,

the trade-weighted dollar index is ‘a weighted average of foreign exchange value of

the US dollar against currencies of a broad group of major US trading partners’.

Inflation (INF)

Inflation is a possible commodity-specific risk factor that could be used to explain

returns of commodity futures portfolio. It can be shown that the inflation rate is

positively correlated with commodity indices (Greer, 2000). Inflation can be decom-

posed into expected inflation and unexpected inflation (Greer, 2000). If inflation is
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expected, it should be anticipated by the capital markets; therefore, it cannot be

considered a risk factor. Only the unexpected part of the inflation is a risk factor

for investors.

A simple measure for unexpected inflation is the change in inflation (Erb and Harvey,

2006). For this analysis, the monthly change in US inflation was chosen as a meas-

ure for unexpected inflation to be consistent with the monthly trading strategies.

To calculate the monthly change in the inflation rate, the end of month data of the

Consumer Price Index (CPI) published by the Federal Reserve Bank was used.

2.5 Empirical Results

Performance and risk analysis

The performance and risk analysis conducted in this section should answer the

second aspect of the research question regarding the past performance of smart beta

strategies.

2. Which returns were achieved by applying these strategies in the past?

Table 2.5 summarises the annualised performance of the six smart beta strategies

and the GSCI Excess Return Index as a benchmark. Figure 2.1 shows the hypo-

thetical growth of a $1 investment in each strategy starting from January 1995 to

illustrate the development of each strategy.

For January 1995–January 2015, the term structure strategies were the by far the

most profitable strategies. The top quintile strategy generated a geometric average

excess return of 23.33% p.a. (standard deviation 19.93%); the relative backwarda-

tion strategy even yielded 25.19% p.a. (standard deviation 23.17%). Focusing on

the returns, the equal weight strategy was also rather successful, with a geometric

average excess return of 5.03% p.a. (standard deviation 16.90%). Compared to

the term structure strategies, the momentum strategies performed rather weakly.

The momentum quintile strategy only yielded a geometric average excess return of

2.56% p.a. (standard deviation 21.05%) and the relative strength strategy 2.46% p.a.

(standard deviation 20.79%). The worst performing strategies were the GSCI Index

strategy (–1.17% p.a., standard deviation 22.12%) and the low-volatility strategies

(1.82% p.a. and 0.81% p.a.). The impact of the different weighting schemes seems

to be limited, as the returns were similar for a given strategy (low volatility, mo-

mentum and term structure).

The Sharpe ratios (risk-to-reward ratio) show a very similar picture. Although

the risk, measured as standard deviation, is relatively high for the term structure
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strategies, the investors are over-compensated for this risk, as the highest Sharpe

ratios reveal (1.1706 and 1.0871 respectively). While the equal weight strategy also

provided an attractive Sharpe ratio of 0.2978, the index strategy (–0.0528), the low-

volatility strategies (0.1770 and 0.0835) and the momentum strategies (0.1215 and

0.1185) were rather unattractive from a risk-and-reward perspective.

Only the equal weight and the two term structure strategies yielded significant posit-

ive excess returns (on 10% level and 0.1% level), while the annual arithmetic average

excess return of the other strategies was not significantly different from zero. The

momentum relative strength (0.3265) and the term structure relative backwardation

strategy (0.4600) had slightly positive skewed returns, whereas the other strategies

showed a negative skewness in the returns.

After this short summary of the return and risk analysis, the following conclusions

can be drawn for the expectations formulated in Section 2.2:

Expectation 1

All commodity futures smart beta strategies are expected to yield positive

excess returns.

All smart beta strategies provided positive excess returns for investors. However,

the positive excess returns were only significant for the equal weight and the term

structure strategies. Therefore, it is questionable whether all smart beta strategies

can be reliable sources of positive returns.

The low mean excess return of the low volatility strategy was actually rather surpris-

ing. On equity markets, the low volatility strategies tends to combine a low volatility

with relatively high returns (Baker et al., 2011). The low returns suggest that this

may not be the case for commodity futures markets. In other words, there is no

low-volatility anomaly in the analyzed commodity futures data. Nevertheless, the

low-volatility strategy achieved its main goal of minimising the portfolio variance,

as it has the lowest standard deviation of all strategies. It is also quite surprising

that the GSCI index strategy was the worst performing strategy. Hence, investors

should be careful using index strategies on commodity futures markets, as they are

complex trading strategies and not necessarily efficient.

Expectation 2 has already been discussed in the commodity dataset section.
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Table 2.5: Annualised Excess Returns and Risk of Smart Beta Strategies (January 1995–January 2015)

Strategy Geom. Mean Arith. Mean Std. Dev. t-Stat. Sig.Code Skewness Sharpe-Ratio

GSCI Excess Return -1.17% 1.32% 22.12% 0.2682 -0.3604 -0.0528
Equal Weight 5.03% 6.50% 16.90% 1.7237 * -0.9116 0.2978
Low Volatility Top Quintile 1.82% 2.35% 10.26% 1.0240 -0.3241 0.1770
Low Volatility Relative Volatility 0.81% 1.28% 9.67% 0.5911 -0.1876 0.0835
Momentum Top Quintile 2.56% 4.75% 21.05% 1.0110 0.2522 0.1215
Momentum Relative Strength 2.46% 4.60% 20.79% 0.9908 0.3265 0.1185
Term Structure Top Quintile 23.33% 25.30% 19.93% 5.6883 *** -0.2346 1.1706
Term Structure Relative Backwardation 25.19% 27.77% 23.17% 5.3717 *** 0.4600 1.0871

Significance codes: ***:p− value < 0.001; **:p− value < 0.01; *:p− value < 0.05; . : p− value < 0.1

Figure 2.1: Hypothetical Growth of $1 Investment (January 1995 to January 2015)
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Expectation 3

Momentum and term structure strategies are expected to yield the highest

excess returns.

While momentum and term structure strategies both yielded high excess returns in

previous studies, the results in this analysis were split. The momentum strategies

with a one-month ranking and a one-month holding period only provided low and

insignificant positive excess returns. One possible reason for this poor performance

could be the choice of the ranking and holding periods. A different combination

might deliver more compelling results. It is also unclear whether the positive returns

of momentum strategies were mainly driven by the long positions, short positions

or both. The results for the long-only strategy suggest that momentum strategies

on commodity markets might not be solely driven by long positions.

Interesting insights are provided by the strong results of the term structure strategies.

The signals from the commodity futures term structure seem to contain valuable

information for investors, as the term structure strategies outperform all other ana-

lyzed trading strategies.

Expectation 4

Momentum and term structure strategies are expected to have the highest

Sharpe ratios.

If returns are adjusted for risk using the Sharpe ratio, the overall picture remains

unchanged. Investors are actually overcompensated for their risks when using term

structure strategies in comparison to other smart beta strategies. The long-only mo-

mentum strategies again could not meet the expectations outlined in the literature.

The equal weight strategy also offers a fairly competitive Sharpe ratio. Although

the equal weight strategy uses a fairly naive diversification method, it seems to be

a very effective strategy for commodity futures markets. It can be deducted that

the equal weight strategy is especially effective on commodity markets because it

utilises the property of uncorrelated commodities better than many other strategies

by simply going long in every contract.

It also would interesting to determine the performance of smart beta strategies for

different subperiods. Is it possible that the profits of the momentum and term struc-
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ture strategies eroded after they were discovered for commodity markets? Table 2.6

summarises the annualised arithmetic mean returns for five-year subperiods begin-

ning January 1995.

Neither the momentum nor the term structure strategies showed a downward trend

Table 2.6: Annualised Arithmetic Mean Returns for Subperiods

Subperiod GSCI Equal LV- LV- MOM- MOM- TS- TS-
ER Weight Top5 RV Top5 RS Top5 RB

01/1995-
12/1999

1.01% 0.41% -2.78% -2.39% 3.67% 3.89% 24.84% 30.54%

01/2000-
12/2004

12.60% 11.83% 8.89% 5.98% -0.05% -1.07% 30.87% 33.23%

01/2005-
12/2009

-1.79% 5.22% 0.66% 1.44% 1.19% 1.84% 19.35% 18.27%

01/2010-
01/2015

-6.39% 8.50% 2.60% 0.08% 14.02% 13.56% 26.18% 29.02%

in the mean average excess return over the last five years. Instead, the last five years

were the most profitable of the four subperiods for the momentum strategies (14.02%

p.a. and 13.56% p.a. mean excess return). The table also shows the relatively stable

returns of the term structure strategies, which ranged from 18.27%p.a. to 33.23%

p.a. in the different subperiods for both strategies.

It also shows that the weak performance of the GSCI index strategy was mainly

driven by the negative returns in the last 10 years of the analysis (–1.79% p.a. and

–6.39% p.a.). It can be presumed that the sharp decline in energy prices combined

with the high energy exposure of the GSCI is one possible explanation for the neg-

ative returns of the GSCI.

Another interesting property of the smart beta strategies is the concentration of the

different strategies. Are the smart beta strategies rather concentrated in single con-

tracts or are they invested in a broader portfolio? Are the relative strength/backwardation

strategies more or less concentrated than the top quintile strategies? In other words,

can the higher volatility of the relative strength/backwardation strategies be ex-

plained by a higher concentration?

To answer these questions, the Gini coefficient for the different strategies was calcu-

lated. The Gini coefficient is a concentration measure and expresses the difference

between the Lorenz curve of a distribution and the diagonal. For this analysis, the

values can range between zero and one for the analyzed portfolio weight, with zero

indicating a minimal concentration and one a maximal concentration in one asset.
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Figure 2.2 plots the Gini coefficients of each strategy over the time to obtain an

impression of the development of the concentration during the analyzed period and

Table 2.7 reports the corresponding summary statistics.

The equal weight strategy had a constant Gini coefficient of zero because it distrib-

Figure 2.2: Gini Coefficients for Smart Beta Strategies over Time

utes the portfolio weights equally among all commodities. Similarly, the top quintile

strategies that invest equal weight in five out of 25 commodities achieved a constant

Gini coefficient of 0.8. The concentration of the relative volatility, relative strength

Table 2.7: Summary Statistics Gini Coefficients

Strategy Min Median Mean Max

Equal Weight 0.00 0.00 0.00 0.00
Low Volatility Top Quintile 0.80 0.80 0.80 0.80
Low Volatility Relative Volatility 0.63 0.70 0.71 0.86
Momentum Top Quintile 0.80 0.80 0.80 0.80
Momentum Relative Strength 0.51 0.72 0.72 0.86
Term Structure Top Quintile 0.80 0.80 0.80 0.80
Term Structure Relative Backwardation 0.50 0.76 0.75 0.92
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and relative backwardation strategies is time-dependent and varies between 0.63

and 0.86 for the relative volatility (0.51 and 0.86 for relative strength and between

0.50 and 0.92 for relative backwardation). Median and mean (0.70/0.71 for relative

volatility, 0.72/0.72 for relative strength and 0.76/0.75 for relative backwardation)

of the relative strategies indicate that the concentration was slightly lower than for

the top quintile strategies.

It can be concluded that the higher risk (in terms of standard deviation) for the rel-

ative strategies is mainly driven by investments in more volatile commodities than by

a higher concentration in these strategies compared to the top quintile strategies. In

contrast, the low-volatility strategies achieve their low risk by choosing less-volatile

commodities rather than by a low concentration.

Risk Factor Analysis

The third aspect of the research question is to which risk factors the smart beta

strategies are exposed and whether they can generate a significant alpha. For this

purpose, a multifactor regression was conducted for the monthly excess returns of

the smart beta strategies and the GSCI Excess Return Index (Model 2.9). The

period for the regression also was January 1995–January 2015. In this non-time

dependent model, risk-factor sensitivities are considered static.

ri,t = α + βEM(rEM,t − rf,t) + βDM(rDM,t − rf,t) + βSMBrSMB,t + βHMLrHML,t

+ βMOMrMOM,t + βUSDrUSD,t + βDEF rDEF,t + βTERMrTERM,t + βINF rINF,t + εi,t

(2.9)

The results of the ordinary least squares regression are presented in Table 2.8.

To consider possible autocorrelation and heteroskedasticity, Newey-West corrected

standard errors with 10 lags were used. According to the results, only the relative

backwardation strategy can provide significant positive risk-adjusted excess returns

(on 10% significance level). All other strategies also yield positive risk-adjusted ex-

cess returns in this model, but these are not significant.

With few exceptions, the bond and equity risk factors are not significant for the

returns of the commodity futures strategies. The exceptions are the size factor and

momentum factor for GSCI Excess Return Index (10% significance level). Unfortu-

nately, these exposures seem rather random and it cannot be confirmed that there

is an economic rationale to argue why the index strategy is particularly exposed to

the size and momentum factor.

The commodity-specific risk factors provide some interesting insights into the com-
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modity futures markets. All strategies have a significant negative exposure to the

strength of the US dollar (0.1% or 1% significance level). In other words, an appreci-

ating US dollar significantly reduces the excess returns of all smart beta commodity

futures portfolios. Consistent with a strand in recent literature, it seems that cur-

rency risk is also an economically meaningful risk factor for commodity futures. An

appreciating dollar results in rising commodity prices for foreign investors or foreign

consumers of commodities. The rising prices for foreign consumers reduce the de-

mand and cause commodity prices to decline on a US dollar basis (Tang and Xiong,

2012).

Another finding in terms of the commodity-specific risk factors is the significant in-

fluence of unexpected inflation on the returns of the GSCI, the equal weight strategy

(0.1% significance level) and the term structure strategies (1% and 10% significance

level). If the inflation rate increases by one percentage point (month-to-month),

the return of the GSCI increases c.p. on average by 3.65 percentage points (2.77

percentage points for the equal weight strategy, 1.63 percentage points for the term

structure top quintile strategy and 1.38 percentage points for the relative backward-

ation strategy). These findings identify the index strategy and the equal weight

strategy as excellent hedges for unexpected inflation.

So why are the other strategies not a good hedge for unexpected inflation? It can

be theorised that the index strategy and the equal weight strategy provide the best

inflation hedge because these strategies invest in a very broad selection of commod-

ity futures; other smart beta strategies are far more selective. This hypothesis is

also supported by the analysis of the Gini coefficients, which show the minimum

concentration for the equal weight strategy. If unexpected inflation occurs, it may

only occur within the markets of some commodities. If the commodities affected by

unexpected inflation are not in the portfolio of one of the more concentrated smart

beta strategies, the inflation hedge might be ineffective.
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Expectation 5

Known risk factors from equity and bond markets cannot explain the re-

turns of smart beta commodity strategies. Inflation risk and currency risk

are expected to be a commodity-specific risk factor.

After analysis of the multifactor model, the expectations for the risk factor exposures

of smart beta commodity futures strategies can be generally confirmed. With very

few minor exceptions, equity and bond risk factors do not seem to explain the returns

of the commodity futures strategies. Commodity strategies with a low concentration

(index strategies and equal weight) are a highly effective hedge against unexpected

inflation. Another significant risk factor is the currency risk of the US dollar. An

appreciating US dollar significantly decreases the average returns of all analyzed

commodity futures strategies.
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Table 2.8: Multifactor Regression Results

Factor GSCI Equal LV- LV- MOM- MOM- TS- TS-
ER Weight Top5 RV Top5 RS Top5 RB

alpha -0.0010 -0.0018 0.0008 0.0018 -0.0001 0.0047 0.0144 0.0179
(-0.0904) (-0.2551) (0.1966) (0.4337) (-0.0103) (0.5485) (1.5877) (1.9270).

EM -0.3219 -0.0807 -0.2057 -0.083 0.0056 -0.1353 0.4180 0.2924
(-0.7935) (-0.2099) (-1.0461) (-0.4435) (0.0130) (-0.4187) (1.1678) (0.9790)

DM 0.5446 0.2991 0.2134 0.1211 0.1833 0.2373 -0.2476 -0.1593
(1.3059) (0.7816) (1.1872) (0.6620) (0.4047) (0.7038) (-0.7296) (-0.5085)

SMB 0.0872 0.1255 -0.0563 -0.0229 0.1810 0.1686 0.1573 0.0171
(0.7677) (1.2734) (-1.0062) (-0.4189) (0.9454) (1.1345) (1.4092) (1.5929)

HML 0.1708 0.0498 0.0075 0.0031 -0.1538 -0.0889 -0.1042 -0.0998
(2.1323)* (0.5099) (-0.1003) (0.0549) (-1.2687) (-0.8413) (-0.9868) (-0.8410)

MOM 0.1626 0.0560 -0.0212 -0.0133 0.0906 0.0390 0.0832 0.0577
(2.0384)* (0.9590) (-0.4482) (-0.4030) (1.1867) (0.5615) (1.2634) (0.8172)

USD -1.0576 -0.7393 -0.3994 -0.5130 -0.7704 -0.9579 -0.7263 -0.7854
(-5.1637)*** (-3.9896)*** (-3.3753)*** (-4.3781)*** (-3.1023)** (-4.0287)*** (-3.1137)** (-2.6804)**

DEF 0.0004 0.0017 -0.0014 -0.0040 0.0057 -0.0006 0.0014 -0.0030
(0.0531) (0.2396) (-0.2540) (-1.1081) (0.7456) (-0.0745) (0.1970) (-0.3773)

TERM -0.0003 0.0023 0.0016 0.0018 -0.0017 -0.0005 0.0024 0.0043
(-0.1083) (1.0838) (0.8944) (1.0964) (-0.5177) (-0.1669) (0.7166) (1.0284)

INF 3.6511 2.7698 0.5492 0.1897 0.2593 0.2913 1.6245 1.3837
(4.8131)*** (4.2556)*** (1.3663) (0.5999) (0.4527) (0.4618) (2.4346)* (1.6585).

T-statistics are stated in parentheses. Sig. codes: ***:p− value < 0.001; **:p− value < 0.01; *:p− value < 0.05; . : p− value < 0.1
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2.6 Conclusion

The aim of this study was to define smart beta strategies for commodity futures

markets and analyze the risk and return profile of these strategies. The first aspect

of the research question considers the smart beta strategies that can be defined for

commodity futures. It is difficult to clearly define smart beta strategies for com-

modity markets because there is no market portfolio for commodity futures. For the

purpose of this study, smart beta strategies on commodity markets were defined as

all trading strategies that use a certain weighting principle that offers a reasonable

possibility to generate an attractive risk to return profile; this is done by exploiting

an anomaly or using portfolio optimisation techniques. The analysis in this study

encompassed seven long-only smart beta strategies: an equal weight strategy, two

low volatility strategy, two momentum strategies and two term structure strategies.

All of these strategies are simple to implement, as they only need reliable price data

for the two nearest futures contracts.

The second aspect of the research question is concerned with the past returns that

have been achieved by these smart beta strategies. The empirical analysis used a

dataset of 25 commodities for December 1989–January 2015 and the strategies were

implemented using the second–nearest contracts. All smart beta strategies yielded

positive mean excess returns. However, only the term structure strategies and the

equal weight strategy provided significant positive returns. Hence, it remains ques-

tionable whether all smart beta strategies are a reliable source of excess returns for

investors.

The term structure strategies stand out as the most profitable strategies (excess

return of up to 25% p.a.) and providing the highest Sharpe ratio for investors (up

to 1.17). The results of these strategies are also stable across different five-year

subperiods, making it an interesting investment case. The results suggest that the

signals from term structure are of great value for investors.

The last aspect of the research question is concerned with the risk factor exposure

of the smart beta strategies. Smart beta commodity strategies are unlikely to be

sensitive to known equity or bond risk factors. Indeed, they are sensitive to the

strength of the US dollar and the well-diversified strategies (the equal weight and

index strategies) are also a good hedge against unexpected inflation.

Overall, the analysis results align with the expectations drawn from the existing

literature on commodity futures trading strategies. The hedging pressure theory

provides a possible explanation for the high returns of the term structure strategies.
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If the demand for short hedging exceeds the long interest of investors and speculat-

ors for one commodity, the futures prices will have to decrease to induce additional

long interest. The decrease in commodity futures prices will result in a backward-

ated futures term structure, which provides an insurance premium for investors.

The term structure strategies then select the contracts with the highest insurance

premium by using the backwardation to determine the portfolio weights. In other

words, the term structure strategies invest in commodity futures with the highest

imbalance between short hedging demand and investors’ or speculators’ interests to

supply the hedging demand. However, it is questionable whether this strategy could

continue to be a reliable source of return to investors. If many commodity futures

investors only focus on the backwardation of the commodity futures contracts, this

would reduce the backwardation by inducing more long interest, and future excess

returns would erode.

Currently, there are two important directions for future research. First, this analysis

excluded transaction costs and only used the nearest and second-nearest contracts

for investment strategies. Thus, an expansion of the analysis—including transac-

tion costs and more contracts—seems like a natural next step for future research.

Possibly, the already insignificant excess returns of, for example, the long-only mo-

mentum strategies would even be closer to zero after accounting for transactions

costs.

Second, the pricing mechanisms of the commodity futures markets are still not en-

tirely understood. Which factors influence the determination of commodity futures

prices? Further, might there be risk factors or risk premiums that have not yet been

considered?
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2.7 Appendix

Table 2.9: Overview of selected Commodity Futures Research Studies

Authors Journal Year Analyzed Strategies Dataset Datasources Period

Bodie/Rosansky Financial Analysts
Journal

1980 Equal Weight/Average 23 commodities Journal of Commerce 12/1949-12/1976

Fama/French Journal of Business 1987 Equal Weight/Average 22 commodities CBT/CME etc. 03/1966-07/1984

Greer The Journal of Al-
ternative Investments

2000 Index Weight (CPCI) 18 commodities CPCI 1970–1999

Erb/Harvey Financial Analysts
Journal

2006 Equal Weight, Mo-
mentum and Term
Structure

12 commodities CRB 07/1959-12/2004

Gorton/Rouwenhorst Financial Analysts
Journal

2006 Equal Weight 36 commodities CRB 07/1959–12/2004

Miffre/Rallis Journal of Banking &
Finance

2007 Momentum 31 commodities Datastream 01/1979-09/2004

Fuertes/Miffre/Rallis Journal of Banking &
Finance

2010 Momentum, Term
Structure

37 commodities Datastream,
Bloomberg

01/1979-01/2007



Table 2.10: Overview of Previous Commodity Futures Trading Strategy Results

Authors Strategies Period Return Type Mean Type Mean
Return

Std.Dev. Sharpe-
Ratio

Bodie/Rosansky Equal Weight 12/1949-12/1979 Excess Return arithmetic 9.77% 21,39% 0.4568

Fama/French Equal Weight 03/1966-07/1984 Excess Return geometric 5.54% 14.55% 0.3805

Greer Index Weight (CPCI) 1970-1999 Total Return n/a 12.20% n/a n/a

Erb/Harvey Equal Weight (buy-and-hold) 12/1982-05/2004 Excess Return geometric 0.70% 10.61% 0.0660

Erb/Harvey Equal Weight (monthly rebalancing) 12/1982-05/2004 Excess Return geometric 1.01% 10.05% 0.1005

Erb/Harvey Momentum (long-only) 12/1982-05/2004 Excess Return geometric 7.00% n/a 0.5500

Erb/Harvey Term-Structure 12/1982-05/2004 Excess Return geometric 3.65% 7.79% 0.4685

Gorton/Rouwenhorst Equal Weight (monthly rebalancing) 07/1959-12/2004 Excess Return arithmetic 5.23% 12.10% 0.4322

Miffre/Rallis Momentum (long-only) 01/1979-09/2004 Excess Return geometric 2.39% 20.16% 0.1186

Fuertes/Miffre/Rallis Momentum (long-only) 01/1979-01/2007 Excess Return geometric 12.39% 10.61% 1.1678

Fuertes/Miffre/Rallis Term Structure (long-only) 01/1979-01/2007 Excess Return geometric 8.49% 6.97% 1.2181
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3.1 Introduction

The understanding of expected returns of commodity futures is a prerequisite for the

design of successful investment and hedging strategies. However, there is a specific

challenge to the design of such strategies in commodity markets. Because futures

contracts with different maturities exist simultaneously, investors and hedgers can

choose among instruments that are closely linked economically. Therefore, a full

understanding of expected returns requires an understanding of the entire term

structure of expected returns, i.e., all term premiums. This is not an easy task,

because expected returns are unobservable and estimates are hampered by noisy

historical returns and the difficulty to find appropriate conditioning variables.

In this paper, we use pricing models for commodity futures to gain new insights

into term premiums in commodity futures markets. We suggest that the N -factor

model originally proposed by Cortazar and Naranjo (2006) offers an adequate frame-

work to investigate the factor structure of such premiums. We show that a three-

factor variant of the model delivers a simple decomposition of expected futures

returns into a constant, a term that is linear in the time to maturity of the futures

contracts and a nonlinear term. Moreover, the decomposition is arbitrage-free due

to the no-arbitrage restrictions implied by the valuation model, does not depend

on unobserved state variables and allows for a straightforward estimation of the re-

maining model parameters. In an empirical study for eight commodities belonging

to the groups of energy, metals and grains, we find that our proposed three-factor

model provides a very good description of the term structure of expected commod-

ity futures returns. Moreover, the model delivers informative signals about realized

futures returns over the next month for metals and grains. Using signals on the

level, the slope and the curvature of the term structure of expected futures returns,

strategies based on slope and curvature signals deliver significant excess mean re-

turns of up to 8.7% p.a. and Sharpe ratios of up to 0.93.

The theoretical basis of our work relates to Cortazar et al. (2015) who point out

that many valuation models for commodity futures also provide a characterization

of expected returns. Such models describe the log spot price of a commodity as

a weighted sum of latent stochastic factors. The first model of this type is the

one-factor model of Schwartz (1997). Schwartz and Smith (2000) extend the one-

factor model to the well-known short-term-long-term two-factor model with one

nonstationary and one stationary factor. Sørensen (2002) adds a deterministic sea-

sonal component to the short-term-long-term model, Korn (2005) provides further

40



3 A Factor Decomposition of Term Premiums in Commodity Futures Markets 41

flexibility by allowing both factors to be stationary, and Cortazar and Naranjo (2006)

develop an N -factor model with one nonstationary and N − 1 stationary factors.1

Our analysis exploits the flexibility of the N -factor model and shows that a three-

factor version of this model class provides an intuitive characterization of the term

structure of expected futures returns as a combination of a constant, a linear term

and a nonlinear term.

Our work is also inspired by some analogies to the literature on bond returns

and yield curve modeling. Litterman and Scheinkman (1991) show that expected

bond returns can be well explained by three attributes (or factors) of the yield curve,

which they call “level”, “steepness” and “curvature”. This is analogous to the factor

interpretation of the three-factor model that we use. Moreover, our approach shares

the idea of a parsimonious yet flexible modeling of a “term structure” with the

yield curve models by Nelson and Siegel (1987) and Svensson (1994). As shown

by Diebold and Li (2006), the three parameters of Nelson’s and Siegel’s model can

also be interpreted as “level”, “slope” and “curvature”. Interestingly, the question

whether such models are arbitrage-free is an important aspect of this literature

(Coroneo et al., 2008; Christensen et al., 2009). Our paper already starts from

an arbitrage-free model, which is then shown to provide parsimonious yet flexible

characterizations of the term structure of expected returns.

Our work makes several contributions to the literature. First, it provides a deeper

understanding of valuation models for commodity derivatives and their suitability

in various contexts. Valuation models may work well for certain tasks, for example,

explaining the futures curve or the volatility curve. However, providing a sensible

description of expected returns is important too; and very little is known about

the performance of valuation models in this dimension. One notable exception is

the observation by Cortazar et al. (2015) that the two-factor model of Schwartz

and Smith (2000) does not lead to reasonable predictions of the expected returns of

long-term contracts for copper and oil. As a remedy, they suggest to use additional

restrictions on the model parameters based on the CAPM. Alternatively, Cortazar

et al. (2019) suggest to improve model-implied estimates of long-term expected

futures returns for oil by augmenting historical futures prices with analyst forecasts.

In contrast to these papers, our study focuses on shorter maturities between one

and twelve months. Shorter-maturity contracts are very important for commodity

investing and hedging and attract most of the trading volume. We study eight

1Casassus and Collin-Dufresne (2005) show how this type of model can be combined with
models that use a stochastic convenience yield, such as the model by Gibson and Schwartz (1990).
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different commodities and ask for the required model complexity to achieve a good

description of term premiums within the one-year maturity range. In addition, we

test the informativeness of the fitted expected return curves via different trading

strategies.

Second, the paper contributes to a better understanding of the driving forces of

commodity futures markets by looking at the factor structure of term premiums.

Several studies investigate the factor structure of commodity futures returns (e.g.,

Bessembinder and Chan, 1992; Daskalaki et al., 2014; Bakshi et al., 2019; Christof-

fersen et al., 2019; Kang et al., 2020). However, all of these studies concentrate on the

cross section of different commodities, i.e., they do not investigate term premiums.

A notable exception is Szymanowska et al. (2014). This study uses a cost-of-carry

model to decompose the overall premium of futures contracts into a spot premium

and a term premium. However, the term premium itself is not further decomposed

or attributed to different factors. In contrast, our study looks at the factor structure

of term premiums implied by the N -factor model of Cortazar and Naranjo (2006).

Finally, our paper contributes to the literature on trading strategies with com-

modity futures. Miffre (2016) provides an excellent review of this literature, with

a specific focus on long-short strategies. The trading strategies that we use to test

the informativeness of the expected return curves belong to the category of “curve

strategies”. A curve strategy simultaneously takes positions in futures contracts

with different maturities or uses information from the futures curve to set up a pos-

ition. Different curve strategies have been investigated in the literature (Mouakhar

and Roberge, 2010; DeGroot et al., 2014; Szymanowska et al., 2014; Paschke et al.,

2020). The novel feature of our work is that the signals do not come from the futures

curve or its dynamics alone, but are based on the model-implied expected return

curve. In particular, the corresponding slope and curvature strategies—which are

long-short strategies—can deliver high returns and high Sharpe ratios.

The remainder of the paper is organized as follows. Section 2 describes the theoret-

ical framework and illustrates the relationship between the multi-factor commodity

pricing model by Cortazar and Naranjo (2006) and the term structure of expected

futures returns. Section 3 provides a description of the data on commodity futures

prices applied in this study, while Section 4 examines how well the suggested factor

models capture the structure of empirical futures returns. Section 5 applies differ-

ent trading strategies based on signals derived from the estimated factor models and

investigates the performance of these strategies. Section 6 concludes.
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3.2 The Factor Structure of Expected Returns

The starting point of our analysis is the N -factor model of commodity futures prices

by Cortazar and Naranjo (2006). This model is an N -factor extension of the pop-

ular short-term-long-term model by Schwartz and Smith (2000). It describes the

log commodity price as the sum of N latent, potentially correlated factors.2 The

factor dynamics of the first factor (Factor 1) follow a Brownian motion, whereas the

dynamics of the remaining factors (Factors 2 to N) follow Ornstein-Uhlenbeck pro-

cesses. The economic intuition behind the model is that some permanent changes

in commodity prices—captured by Factor 1—are superimposed by some temporary

changes due to N − 1 additional sources of risk—captured by Factors 2 to N .

Denote by Ft,T and Ft+h,T the futures prices at times t and t + h, respectively,

of a futures contract expiring at time T . From the perspective of time t, the price

Ft+h,T is a random variable, as is the gross return Ft+h,T/Ft,T for the holding period

of length h.3 As shown in Appendix 3.7.1, under the N -factor model by Cortazar

and Naranjo (2006), the expected gross return under the physical measure equals

Et

(
Ft+h,T
Ft,T

)
= exp

(
λ1 · h+

N∑
i=2

λi · g(κi, T − t, h)

)
, (3.1)

with model parameters λ1, . . . , λN and κ2 > 0, . . . , κN > 0. The λs are the market

prices of risk of the respective factors, and the κs are the mean-reversion parameters

of the N − 1 stationary factors. The functions g(κi, T − t, h) are defined as

g(κi, T − t, h) ≡ exp (−κi · (T − t− h))− exp (−κi · (T − t))
κi

, i = 2, . . . , N. (3.2)

Equation (3.1) delivers a model-implied characterization of the term premiums. It

shows a functional relation between the time to maturity (T−t) of a futures contract

and its expected gross return over a holding period h, i.e., the term structure of

expected futures returns. Because T can take any value between t+ h and infinity,

Equation (3.1) provides a mapping of an infinite-dimensional object on a finite set

2One could easily add a deterministic seasonal component, as in Sørensen (2002), to obtain a
more adequate description of the price dynamics for some commodities. However, a deterministic
seasonal component does not affect model-implied expected futures returns, which are the focus
of this study.

3The return of a futures contract is not a straightforward concept, because futures do not
require an initial investment. The simple return Ft+h,T /Ft,T − 1 can be interpreted as the ex-
cess return over the risk-free rate of the following strategy: Buy one futures contract and fully
collateralize it by investing the amount Ft,T in a risk-free asset.
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of parameters (λs and κs). This reduction in complexity has potential advantages in

terms of economic interpretation and application. One of the main questions of this

paper is how restrictive or flexible the model needs to be for an adequate description

of the term structure of expected futures returns. This question boils down to the

question of how many factors to use for specific commodities.

Taking logarithms on both sides of Equation (3.1) leads to an alternative char-

acterization of the term structure of expected futures returns, as shown in Equa-

tion (3.3). The log expected gross return of a futures contract with maturity date T

is just a linear function of the expressions g(κi, T − t, h), with coefficients equal to

the corresponding market prices of risk.4 This simple linear structure provides an

intuitive visualization of how different model specifications translate into different

term structures; and we will use it in Section 3.4.

ln

[
Et

(
Ft+h,T
Ft,T

)]
= λ1 · h+

N∑
i=2

λi · g(κi, T − t, h). (3.3)

To dig deeper into the interpretation of the term structure of expected futures

returns, we look at yet another characterization. Equation (3.4) presents annualized

expected simple returns.

Et

(
Ft+h,T

Ft,T

)
− 1

h
=

exp
(
λ1 · h+

∑N
i=2 λi · g(κi, T − t, h)

)
− 1

h
. (3.4)

Equation (3.4) highlights several important features of the term structure of expec-

ted futures returns: First, expected futures returns neither depend on the variances

and co-variances of the stochastic factors nor on the drift rate of the first factor. This

property implies that a model-based analysis of term premiums can concentrate on

a subset of model parameters. For example, for a three-factor variant of the model,

the total number of model parameters is twelve, whereas the subset of parameters

relevant for the analysis of the term premiums contains only five parameters (κs

and λs). Second, expected futures returns also do not depend on the unobserved

factors (state variables), in contrast to the futures prices themselves. Therefore, no

estimation of state variables is required for the analysis of expected futures returns.

Third, if all λs are zero, the expected futures return is zero for all maturities. This is

very intuitive, since with zero market prices of risk the expected return of a financial

instrument that does not require any initial capital should be zero.

4Factor 1 is no exception, because the function g(κi, T − t, h) converges to h for κi → 0, i.e.,
the Ornstein-Uhlenbeck process converges to the Brownian motion.
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Finally, the lambda parameters have an interpretation in terms of annualized

simple returns of specific contracts or portfolios. Consider a futures contract with T

going to infinity and a holding period h going to zero. As is shown in Appendix 3.7.2,

the annualized simple return of such a contract converges to λ1. The intuition be-

hind this result is as follows: Factor 1 describes the movement of the long-term

commodity price level, and very long-term contracts are essentially exposed to this

risk factor only. Therefore, the annualized short-term return of long-term contracts

equals the corresponding market price of risk. Consider another case: a very short-

term contract with maturity date t + h and a holding period h going to zero. The

annualized return of such a contract converges to
∑N

i=1 λi, as is also shown in Ap-

pendix 3.7.2. It follows that −
∑N

i=2 λi is the annualized return difference between a

(very) long-term and a (very) short-term contract for a (very) short holding period.

These observations are interesting, because they show how certain model para-

meters provide information on the expected returns of certain futures contracts.

However, they just refer to specific limiting cases. What about futures returns

of contracts with intermediate maturities over longer holding periods? Does the

N -factor valuation model still lead to a simple characterization and interpretation

of their term premiums? To answer these questions, we take a closer look at the

function g and its dependence on the kappa parameter.

The N -factor model characterizes the i-th factor via the parameters λi and κi,

however, the function g itself is the same for all factors. Due to this property, the

model is not globally identified, i.e., its parameters can not be uniquely determ-

ined from empirical data. For example, if we just switched all parameters between

Factors 2 and 3, we would end up with exactly the same data fit. Essentially,

the problem arises because different factors are just latent variables with the same

general specification—an Ornstein-Uhlenbeck process; and any distinction between

factors results from potentially different parameter values. Factor 1, the long-term

factor, is no exception. Its specific form arises from the choice of a mean-reversion

parameter “κ1” of zero. As such, identification of the first factor is achieved by

fixing its kappa parameter. Moreover, the specific choice of “κ1” does not only solve

the identification problem, it also leads to an intuitive economic interpretation.

We will now use the same idea for the “identification” of other factors. With the

intent to find kappas that deliver simple factor interpretations for the term struc-

ture of expected futures returns, we take a closer look at the function g. Figure 3.1

shows g for three different values of kappa (0, 0.5, 5). The x-axis depicts the time
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Figure 3.1: Functions g for Different Parameter Values of Kappa
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Note: This figure depicts g-functions, as defined in Equation (3.2), for different values of κ. The
x-axis shows the time to maturity of a futures contract in months and the y-axis provides the value
of the g-function. The holding period h equals one day. The solid line shows the g-function for
κ = 0, the dotted line for κ = 0.5, and the dashed line for κ = 5.

to maturity of futures contracts in months, ranging from one to twelve, as in our

empirical study. The holding period h is set to one day. The functions in Figure 3.1,

multiplied by a corresponding market price of risk, can be interpreted as the con-

tribution of a factor to the expected returns of futures contracts with various times

to maturity. For κ = 0, i.e., the specification of Factor 1, the function g is flat and

the contribution of the factor is the same for all maturities. Depending on the sign

of the market price of risk, this contribution can be either positive or negative. For

κ = 0.5, the function g comes very close to a linear function. If the corresponding

lambda is positive, the resulting factor contribution has a negative slope, i.e., it

linearly decreases with the futures’ time to maturity. For a negative lambda, the

slope is positive. Finally, for κ = 5, we obtain a clearly non-linear function. If

the corresponding lambda is positive, the contribution of the factor is convex in

the time to maturity. With a negative lambda, however, the factor contribution is a
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concave function. Taken together, the functions from Figure 3.1 deliver a simple and

intuitive three-factor specification of term premiums: if the identification problem

of the valuation model is solved by setting the kappa parameters to 0, 0.5, and 5,

respectively, the term premiums of futures are just a weighted sum of a constant, an

(almost) linear term and a non-linear term. The importance of each term hinges on

the corresponding market prices of risk, which can be determined empirically from

futures prices.5

In summary, the model by Cortazar and Naranjo (2006) delivers a simple yet

flexible arbitrage-free characterization of the term structure of expected futures re-

turns. A three-factor variant of the model with appropriate specifications of kappa

parameters delivers a decomposition of term premiums into a constant, a linear term

and a non-linear term. This model-based factor decomposition allows for empirical

tests of the appropriate factor structure for different commodities and provides the

basis for the design of trading strategies that aim to earn term premiums.

3.3 The Data

Our data set consists of futures prices for eight major commodity markets. The

commodities belong to the three groups energy, metals and grains. In particular,

they cover crude oil, natural gas, gold, silver, copper, wheat, corn, and soybean. The

data was sourced from the Commodity Research Bureau’s (CRB) Infotech Database,

and contracts were selected based on being the benchmark contracts for a particular

commodity. Prices are quoted in US Dollar (USD) cents per unit of each commodity:

USD cents per barrels for crude oil, USD cents per million British thermal units

(mmBtu) for natural gas, USD cents per troy ounce for gold and silver, USD cents

per pound for copper and USD cents per bushel for all three grains. The main sample

period is January 1975 to January 2019. Note that futures on crude oil, natural gas

and copper only started trading after 1975, leading to shorter sample periods for

these commodities. The corresponding start dates are July 1986, January 1992 and

January 1990, respectively.

We record the closing prices for futures contracts with a remaining time to matur-

ity of up to twelve months on all days when an expiring contract is traded for the last

5The specific choices of κ2 and κ3 are not crucial for the empirical application of the model,
provided that κ2 is small enough to produce a “linear” function and κ3 is big enough to produce
a “convex” function over the relevant maturity range. For example, if κ2 is below 0.5, the “linear
factor” has a less negative slope. However, this effect would be offset via a higher λ2 estimate,
delivering an almost identical fit to the data and identical trading signals.
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time. We choose the last trading days of expiring contracts because on these days

the time to maturity of non-expiring contracts is close to one month, two months,

three months, and so on. The last trading day within a month usually falls on differ-

ent days for each commodity. For energy and metals, each month of the data period

contributes an observation. However, for grains, not every month is an expiration

month, which reduces the number of observations accordingly. To analyze term

premiums, we calculate monthly futures returns for all available maturities. For

grains, gold and silver, contracts with certain maturities are not available in some

months because of the issuance calendar. As a result, the futures return curves con-

sist of different maturities each month, making it difficult to compare these curves

over time. In addition, the missing contracts complicate the development of trading

strategies which aim to exploit term premiums, a topic we explore in Section 3.5.

To obtain a balanced panel data set for each commodity, we impute the prices for

missing maturities using linear interpolation, using the prices of the two adjacent

contracts. The imputed prices can be used in trading strategies because they refer

to tradable portfolios of futures contracts. However, we do not use any form of price

extrapolation. Therefore, in the balanced panels, the maximum time to maturity is

eleven months for metals and soybean and ten months for wheat and corn.
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Table 3.1: Monthly Futures Returns: Data Overview

Energy Metals Grains
Commodity Oil Gas Gold Silver Copper Wheat Corn Soybean
Start date 22.07.1986 28.01.1992 28.01.1975 28.01.1975 26.01.1990 14.02.1975 14.02.1975 14.02.1975
End date 29.01.2019 29.01.2019 29.01.2019 29.01.2019 29.01.2019 14.12.2018 14.12.2018 14.01.2019

T-t obs. µ σ obs. µ σ obs. µ σ obs. µ σ obs. µ σ obs. µ σ obs. µ σ obs. µ σ
1 390 0.95% 10.33% 324 0.23% 16.16% 528 0.55% 5.54% 528 0.56% 9.55% 346 0.99% 7.55% 220 0.19% 8.35% 220 -0.39% 6.51% 308 0.87% 7.09%
2 390 0.91% 9.53% 324 -0.36% 13.33% 528 0.19% 5.52% 528 0.28% 9.54% 346 0.64% 7.32% 220 -0.15% 7.84% 220 -0.69% 6.53% 308 0.48% 6.86%
3 390 0.93% 9.08% 324 -0.09% 11.75% 528 0.11% 5.41% 528 0.17% 9.43% 346 0.67% 7.24% 220 -0.49% 7.58% 220 -1.00% 6.75% 308 0.16% 6.91%
4 390 0.94% 8.69% 324 0.19% 10.41% 528 0.11% 5.42% 528 0.22% 9.44% 346 0.68% 7.16% 220 -0.53% 7.48% 220 -1.00% 6.68% 308 0.17% 6.92%
5 390 0.94% 8.35% 324 0.11% 9.22% 528 0.10% 5.30% 528 0.24% 9.42% 346 0.72% 7.08% 220 -0.46% 7.45% 220 -0.95% 6.62% 308 0.18% 6.89%
6 390 0.93% 8.07% 324 0.09% 8.57% 528 0.11% 5.27% 528 0.23% 9.42% 346 0.74% 6.98% 220 -0.41% 7.37% 220 -0.86% 6.56% 308 0.21% 6.79%
7 390 0.92% 7.81% 324 0.11% 7.93% 528 0.11% 5.30% 528 0.24% 9.41% 346 0.74% 6.90% 220 -0.39% 7.17% 220 -0.81% 6.41% 308 0.17% 6.56%
8 390 0.89% 7.60% 324 0.20% 7.55% 528 0.11% 5.44% 528 0.25% 9.40% 346 0.74% 6.82% 220 -0.40% 6.88% 220 -0.77% 6.27% 308 0.18% 6.40%
9 390 0.87% 7.42% 324 0.26% 7.12% 528 0.11% 5.45% 528 0.27% 9.38% 346 0.74% 6.73% 220 -0.42% 6.70% 220 -0.73% 6.10% 308 0.21% 6.22%
10 390 0.84% 7.25% 324 0.38% 6.90% 528 0.10% 5.45% 528 0.28% 9.35% 346 0.74% 6.66% 220 -0.44% 6.48% 220 -0.68% 5.93% 308 0.21% 6.07%
11 390 0.81% 7.10% 324 0.43% 6.66% 528 0.09% 5.45% 528 0.32% 9.18% 346 0.74% 6.60% n/a n/a n/a n/a n/a n/a 308 0.19% 5.84%
12 390 0.80% 6.97% 324 0.40% 6.41% n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Note: This table provides an overview of the futures data set. The data set consists of eight commodities (oil, gas, gold, silver, copper, wheat, corn,
soybean) from three groups (energy, metals, grains). Rows three and four give the start dates and end dates of the data periods for the different
commodities. The following rows deliver information on futures contracts. They show the times to maturities (T − t) in months, the number of
available observations (obs.) over the respective data periods, and the means (µ) and standard deviations (σ) of monthly futures returns.
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Table 3.1 gives an overview of the data set and the monthly (simple) futures re-

turns. It summarizes the data periods and numbers of observations for all commod-

ities. Moreover, for each commodity and each maturity, it provides the mean futures

return and the return standard deviation. Depending on the commodity, mean re-

turns can be entirely negative (corn) or entirely positive (oil) over the whole range of

maturities, or change their sign (gas). In terms of economic significance—with the

interpretation of futures returns as returns of fully collateralized investments—the

magnitude of mean returns can be very substantial. For example, the 0.99% mean

return of the one-month copper futures leads to an annualized value of about 12%,

earned over a period of about 30 years. There are also some substantially negative

mean returns, like the -1% monthly return of the three-months corn futures. Mean

returns can also differ substantially between futures written on the same commod-

ity, depending on the time to maturity. For example, one-month wheat futures have

an average monthly return of 0.19%, compared to an average monthly return of

-0.44% of ten-months wheat futures. Therefore, we see at least some variation in

average realized term premiums. Another important observations is that futures

returns show high standard deviations. For example, the monthly return standard

deviation of the one-month copper futures is 7.55%, leading to a monthly Sharpe

ratio of about 0.13 and an annualized one of about 0.45.

Substantial mean returns and return differences between contracts with different

maturities suggest the existence of some structure in term premiums and some

potential to earn them. However, high standard deviations make this a challenging

task. The idea pursued in this paper is to use the model-based factor decomposition

of expected futures returns, as introduced in Section 3.2, to generate signals that

are potentially useful in trading strategies. Before we do so in Section 3.5, however,

we take a closer look at the questions of how well the suggested factor model is

able to capture the empirical structure of futures returns and how many factors are

necessary.

3.4 How Many Factors?

Equation (3.3) together with the specification of the g functions from Figure 3.1

delivers a simple visualization of how the factor model describes the term structure

of expected futures returns. According to Equation (3.3), the log expected futures

returns for different maturities are just combinations of a constant, a linear term

and a non-linear term. This simple framework also helps to identify how many
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factors are needed to describe term premiums of different commodities. If the term

structure of expected futures returns is flat, a one-factor model is sufficient.6 If the

term structure is upward or downward sloping but has an (almost) linear form, the

two-factor model leads to an adequate characterization. If the term structure shows

a strongly non-linear shape, a third factor is required. Moreover, if this non-linear

shape is not generally concave or convex over the whole range of maturities, even a

three-factor model may be too restrictive.

Figures 3.2 to 3.4 provide plots of the log mean returns of commodity futures

against the respective times to maturity for energy, metals and grains. For each

commodity, the figure includes three graphs. Each graph adds the model-based

expected return curve arising from a one-factor, a two-factor and a three-factor

model, respectively, obtained via OLS regressions. Figures 3.2 to 3.4 deliver several

interesting observations. (i) There is not a single commodity where a one-factor

model provides an adequate fit to the log expected futures returns. (ii) There is

also no commodity where the log mean returns suggest a linear structure. This

observation could mean two things. First, a two-factor model specification should

use a “level factor” plus a “curvature factor” instead of a “slope factor”. Second,

two factors are not enough to explain the term structure. This second interpretation

seems to be at odds with the popularity of two-factor pricing models, e.g., the long-

term-short-term model, in practice. However, the same model may perform well

or not so well, depending on the question under study. One dimension is pricing,

i.e., the term structure of futures prices. A second important aspect is the term

structure of volatilities which is required for option pricing. The topic of this paper

is yet another context: the term structure of expected futures returns. Therefore, a

more parsimonious model may be sufficient for one dimension while a richer model

may be required for another context. (iii) Some form of non-linearity of the term

structure of expected futures returns is important for all commodities. (iv) Even the

three-factor specification is not sufficient to explain the term structure of expected

futures returns for all commodities, as the log mean return curve for gas has both

convex and concave parts.

6The special case of a term structure that is flat at zero means that no premiums are to be
explained. In this sense, a “zero-factor model” would be sufficient.
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Figure 3.2: Mean Futures Returns and Fitted Expected Return Curves: Energy

Oil
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Note: This figure shows the logs of the mean monthly returns of futures contracts for oil and gas, together with fitted model-based expected return
curves. Monthly mean returns are calculated for maturities between one and twelve months for the entire sample period, which is given in Table 3.1.
Fitted expected return curves refer to three different model variants. The first variant is a one-factor model, leading to a flat curve; the second is a
two-factor model, allowing for a linear curve with non-zero slope; and the third is a three-factor model, allowing for a non-linear curve.



Figure 3.3: Mean Futures Returns and Fitted Expected Return Curves: Metals

Gold
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Note: This figure shows the logs of the mean monthly returns of futures contracts for gold, silver and copper, together with fitted model-based
expected return curves. Monthly mean returns are calculated for maturities between one and eleven months for the entire sample period, which
is given in Table 3.1. Fitted expected return curves refer to three different model variants. The first variant is a one-factor model, leading to a
flat curve; the second is a two-factor model, allowing for a linear curve with non-zero slope; and the third is a three-factor model, allowing for a
non-linear curve.



Figure 3.4: Mean Futures Returns and Fitted Expected Return Curves: Grains

Wheat
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Soybean
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Note: This figure shows the logs of the mean monthly returns of futures contracts for wheat, corn and soybean, together with fitted model-based
expected return curves. Monthly mean returns are calculated for maturities between one and ten (wheat, corn) or eleven (soybean) months for the
entire sample period, which is given in Table 3.1. Fitted expected return curves refer to three different model variants. The first variant is a one-factor
model, leading to a flat curve; the second is a two-factor model, allowing for a linear curve with non-zero slope; and the third is a three-factor model,
allowing for a non-linear curve.
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To substantiate the visual impression from Figures 3.2 to 3.4, regression results

for the three-factor model are reported in Table 3.2. The table shows the estim-

ates of the factor loadings (lambdas) together with the corresponding t-statistics (in

parantheses) for each commodity. As measures of fit, the centered as well as the

uncentered coefficient of determination (R2) are provided, since both measures cor-

respond to sensible reference points. One such reference point is a flat term structure

at zero, because any non-zero term premiums require some priced risk, even if the

term structure is flat. The uncentered R2 delivers the corresponding improvement

in fit due to the three-factor model. The centered R2, in contrast, measures whether

the three-factor model can improve the fit compared to the one-factor model. For

all commodities, except for gas, all three lambda parameters are statistically signi-

ficant. This result suggests that all three factors are usually required to describe

expected return curves adequately. Moreover, the uncentered R2s for all commodit-

ies, again with the exception of gas, are above 0.9, confirming the visual impression

that the three-factor model delivers a good fit of the average term premiums. The

comparison between centered and uncentered R2s shows that the second and third

factor improve the fit massively. The only exception is copper, where the centered

R2 is below 0.5.
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Table 3.2: Estimated Factor Loadings of the Three-Factor Model

Energy Metals Grains

Coefficient Oil Gas Gold Silver Copper Wheat Corn Soybean

λ1 0.0448 0.2378 0.0919 0.1461 0.1712 0.1365 0.2164 0.1638
(5.047) (3.221) (2.754) (5.365) (4.112) (2.194) (4.893) (3.932)

λ2 0.0839 -0.2947 -0.1181 -0.1656 -0.1209 -0.2701 -0.4393 -0.2087
(6.686) (-2.825) (-2.553) (-4.387) (-2.094) (-3.191) (-7.300) (-3.612)

λ3 -0.0200 0.0683 0.0983 0.0937 0.0660 0.1787 0.2013 0.1691
(-3.431) (1.409) (4.968) (5.803) (2.672) (5.399) (8.551) (6.848)

maturities 12 12 11 11 11 10 10 11
centered R2 0.8941 0.7161 0.8502 0.8252 0.4909 0.8746 0.9146 0.9126
uncentered R2 0.9997 0.7520 0.9390 0.9815 0.9932 0.9682 0.9960 0.9683

Note: This table shows the estimated factor loadings (lambdas) of the three-factor model for all eight commodities. The estimates are obtained
via OLS-regressions of the log mean futures returns for different maturities on the three g-functions with κ = 0, κ = 0.5, and κ = 5, as shown in
Figure 3.1. t-values are given in parentheses. In addition, the number of different maturities and the uncentered R2 are reported.
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So far, we used mean returns, calculated over the entire sample period. An

important issue, which we will carry on with in the next section, is whether the

model-based factor characterization of expected returns, as shown in Table 3.2, is

sufficiently stable over time. To provide a first impression on this issue, we use the

first five years of the respective data periods of the different commodities to obtain

initial estimates of the lambda parameters in the three-factor model. The estimates

are obtained from a non-linear least squares pooled panel regression, based on Equa-

tion (3.1). Starting with these estimates, we extend the estimation window month

by month, receiving new parameter estimates on a monthly basis. At the end of the

data period, these estimates converge to the values in Table 3.2.

Figures 3.5 to 3.7 show the evolution of lambda estimates for one commodity from

each group: crude oil, gold, and wheat. Parameter estimates for oil are not very

stable in the sense that both λ1 and λ3 change their sign over time. In particular,

during the period from about 2004 to 2008, lambda estimates suggest substantial

changes in the term structure of expected futures returns. Such a finding is well in

line with other changes in oil futures markets. Kang, Nikitopoulos, and Prokopczuk

(2020) find significant changes in drivers of short-term and medium-term volatilities

after 2004, which are plausibly linked to the financialization of commodity markets.

Moreover, the 2004 to 2008 period saw massive increases in oil prices. Therefore,

estimates of expected returns are likely to increase when this period enters the

estimation window. For gold and wheat, there is also some variation over time.

In particular, wheat shows significant changes in lambda estimates during the food

price crisis from August 2007 to February 2008. However, the signs of all three

parameters stay the same over the entire period for wheat and gold, leading to

generally convex expected return curves.
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Figure 3.5: Estimated Factor Loadings for Oil: Expanding Window
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Note: This figure shows the development of the estimated factor loadings (lambdas) of the three-factor model for oil over time. Estimates use an
expanding data window. The initial estimates are obtained from the futures prices of all maturities up to twelve months for the first five years of
the data period.



Figure 3.6: Estimated Factor Loadings for Gold: Expanding Window
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Note: This figure shows the development of the estimated factor loadings (lambdas) of the three-factor model for gold over time. Estimates use an
expanding data window. The initial estimates are obtained from the futures prices of all maturities up to eleven months for the first five years of
the data period.



Figure 3.7: Estimated Factor Loadings for Wheat: Expanding Window
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Note: This figure shows the development of the estimated factor loadings (lambdas) of the three-factor model for wheat over time. Estimates use an
expanding data window. The initial estimates are obtained from the futures prices of all maturities up to ten months for the first five years of the
data period.
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3.5 Factor-based Trading Strategies

This section examines whether the proposed three-factor model delivers informative

signals on term premiums in commodity futures markets. The metric that we use to

answer this questions are the returns of a number of designed trading strategies. In

total we consider three types of trading strategies: the first one, which we call a “level

strategy”, buys one futures contract if the model signals a positive premium, i.e.,

a positive expected return of that contract. If the expected return is negative, one

contract is sold. In principle, a level strategy can be implemented for any contract

with any time to maturity. Because short-term futures contracts are usually much

more liquid than long-term futures, we use the shortest-maturity contracts in our

data set—the one-month futures—to implement the level strategy. To obtain the

signal, we use Equation (3.4) to calculate the expected return of a one-month future

that is held until maturity (T − t and h both equal one month). The functions g use

κ1 = 0, κ2 = 0.5, and κ3 = 5. Lambdas are estimates from the panel regressions,

as shown in Figures 3.5 to 3.7. For example, with λ1 = 0.05, λ2 = 0.08, and

λ3 = −0.02, which are realistic values for oil, we obtain a positive expected return

of about 11.25% p.a., i.e., the signal suggests to buy the one-month futures. A second

strategy is the “slope strategy”. It buys one long-term contract and sells one short-

term contract if the model signals a positive return difference, i.e., an upward sloping

term structure of expected futures returns. If there is a signal of a downward sloping

term structure, a long-term contract is sold and a short-term contract is bought.

To implement the slope strategy, we use the longest-maturity contract (either ten,

eleven or twelve months) as well as the contract with the shortest maturity (one

month) and calculate their expected returns according to Equation (3.4). The third

strategy is called the “curvature strategy” and tries to exploit nonlinearities in the

term structure of expected futures returns. This strategy buys one long-term and

one short-term contract and sells two medium-term contracts if the model signals a

positive portfolio return, i.e, a convex term structure. If the model signals concavity,

long- and short-term futures are sold and medium-term futures are bought. The

medium-term contract’s time to maturity is six months if the long-term contracts

are either eleven- or twelve-months contracts and is five months otherwise. All

trading strategies use a monthly holding period.

Model-based signals are generated in three different ways. All three variants use

the three-factor model and the same g functions (κ1 = 0, κ2 = 0.5, κ3 = 5) to

determine expected returns, but differ in how lambdas are estimated. The first
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variant (full sample) uses the whole panel data set for the estimation. Of course,

trading strategies based on the signals from this variant use in-sample information

and cannot be implemented ex ante. However, they provide interesting reference

points that help our understanding of how the results on model adequacy from

Section 3.4 translate into returns. Also note that “full sample” signals are the

same for all months in the data period, therefore achieving the maximum amount of

“stability” of a trading strategy. The second variant (expanding window) uses the

first five years of the data period to obtain initial lambda estimates, which are then

used to obtain signals for the first monthly investment period. After a month, the

estimation window is expanded by one month and the updated estimates are used to

calculate signals for the next month. This procedure is continued until the end of the

data period.7 The “expanding window” signals are available ex ante. Since lambda

estimates use more and more data information over time, signals will usually also

become more stable over time. The third variant (rolling window) uses a five-years

rolling window to estimate the lambdas. With a rolling estimation window, the

model is able to adapt to time variation in the term structure of expected futures

returns. However, a disadvantage, as compared to the expanding window variant,

is the lower number of observations in each time step that could lead to larger

estimation errors and unstable signals.

In the following, for all variants, monthly returns of the level-, slope- and curvature

strategies are calculated for all commodities. The first five years of the data period,

which are needed to obtain initial estimates under the expanding window and the

rolling window variants, are not used for evaluation even in the full sample variant

to achieve a clean comparison between the three variants.

7The lambda estimates of the “expanding window” variant are the ones shown in Figure 3.5
to 3.7.
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Table 3.3: Returns of Trading Strategies – Full Sample Signal
Level Strategy

Energy Metals Grains
Oil Gas Gold Silver Copper Wheat Corn Soybean

Contracts 1 1 1 1 1 1 1 1
Mean 7.46% 8.22% 3.81% 1.29% 11.05% 7.02% 3.85% 8.19%
Std. Dev. 34.35% 54.27% 17.65% 31.64% 26.95% 29.90% 23.72% 23.50%
T-Stat. 1.1390 0.7100 1.3488 0.2542 2.0008 0.8571 0.5923 1.5689
P-Value 0.2555 0.4783 0.1780 0.7994 0.0464 0.3927 0.5545 0.1180
Sharpe Ratio 21.72% 15.14% 21.60% 4.07% 40.98% 23.47% 16.22% 34.86%
Hit Ratio 53.64% 56.44% 49.15% 45.09% 52.80% 46.88% 51.25% 54.73%
Observations 330 264 468 468 286 160 160 243

Slope Strategy
Energy Metals Grains

Oil Gas Gold Silver Copper Wheat Corn Soybean
Contracts 1,12 1,12 1,11 1,11 1,11 1,10 1,10 1,11
Mean 0.81% 12.12% 5.47% 2.09% 2.48% 8.28% 1.98% 7.15%
Std. Dev. 18.21% 38.15% 5.85% 7.00% 7.33% 14.85% 11.26% 12.59%
T-Stat. 0.2335 1.4904 5.8369 1.8629 1.6536 2.0364 0.6405 2.5575
P-Value 0.8155 0.1373 0.0000 0.0631 0.0993 0.0434 0.5228 0.0112
Sharpe Ratio 4.45% 31.78% 93.47% 29.83% 33.87% 55.77% 17.54% 56.83%
Hit Ratio 53.33% 57.95% 85.68% 69.02% 54.20% 54.38% 52.50% 54.32%
Observations 330 264 468 468 286 160 160 243

Curvature Strategy
Energy Metals Grains

Oil Gas Gold Silver Copper Wheat Corn Soybean
Contracts 1,6,12 1,6,12 1,6,11 1,6,11 1,6,11 1,5,10 1,5,10 1,6,11
Mean 2.35% 1.49% 4.89% 5.01% 3.57% 7.50% 9.14% 8.73%
Std. Dev. 10.88% 30.79% 5.66% 9.43% 5.22% 12.82% 10.88% 11.42%
T-Stat. 1.1306 0.2274 5.3928 3.3153 3.3353 2.1371 3.0668 3.4377
P-Value 0.2590 0.8203 0.0000 0.0010 0.0010 0.0341 0.0025 0.0007
Sharpe Ratio 21.56% 4.85% 86.35% 53.09% 68.32% 58.53% 83.99% 76.39%
Hit Ratio 56.97% 52.65% 93.16% 86.75% 68.18% 60.63% 66.25% 64.20%
Observations 330 264 468 468 286 160 160 243

Note: This table reports the results of trading strategies with futures contracts based on signals
from the full sample. It covers level strategies, slope strategies and curvature strategies. Returns
are reported as annualized values. The trading signals are obtained via the three-factor model,
based on parameter estimates from the full sample. The reported results leave out the first five
years of the respective data periods to make the results comparable to the ones obtained from an
out-of-sample approach using an expanding or rolling window.
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Table 3.3 reports the results of the trading strategies based on full sample signals.

As pointed out before this strategy cannot be implemented in a real world setting,

since the models are estimated using the entire sample period. Mean returns, return

standard deviations and Sharpe ratios are reported as annualized values. In addi-

tion, the table provides the t-statistics and p-values for the mean returns as well as

the percentage of months where the model predicts the sign of the realized return

correctly (hit ratio). Because full sample signals do not change over time, level

strategies just hold a long futures contract for oil, gas, gold, silver, copper, wheat

and soybean. For corn, the level strategy takes a short position in the one-month

futures. Level strategies based on the full sample signals are able to earn substantial

mean returns of up to 11 percent per year (copper). However, they are also very

risky, leading to substantial standard deviations. Copper is the only commodity

with statistically significant mean returns, being only marginally significant at the

five-percent level. Full sample signals for the slope strategy indicate a downward

sloping term structure for all commodities except for gas. Mean returns for the slope

strategies can also be very substantial and even higher than for the level strategies

(for gas, gold, silver, wheat). However, for all commodities the return standard

deviation is much lower for the slope strategy in comparison to the level strategy.

Because slope strategies are long-short strategies, they hedge out changes in the

overall futures price level and are left with the remaining risk of distortions between

futures of different maturities. Slope strategies obtain statistically significant mean

returns for gold, wheat and soybean, reaching annual Sharpe ratios above 0.5 for

these commodities. Full sample signals for curvature strategies indicate convexity

of the term structure of expected futures returns for all commodities except for

oil. Like for the slope strategy, curvature strategies implement a long-short trad-

ing strategy. In principle, the way the strategy is constructed will provide a hedge

against changes of the commodity price level and against changes in the slope of the

futures curve. Actually, for seven out of eight commodities, the standard deviation

of generated return by the curvature strategy is lower than for the slope strategy.

Mean returns of curvature strategies, though, can still be high. These mean returns

are statistically significant at the one-percent level for all metals and all grains.

Overall, the potential to earn significant returns seems to increase from level- to

slope- and curvature strategies. This is an interesting finding, because it indicates

that there is some structure in term premiums of futures contracts and that the

signals from the applied factor models are potentially useful for extracting this in-
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formation. However, we have to further investigate whether the trading strategies

are also useful in an actual ex ante setting.

Table 3.4 shows the results for trading strategies set up according to the expanding

window signals. For level strategies, we see very little difference to the full sample

variant. Actually, for metals and grains, the results are exactly identical because

the signals of the expanding window variant are exactly identical to the ones of the

full sample variant. This result comes with little surprise for gold and wheat, since

Figures 3.6 and 3.7 illustrate that the expanding window estimates for lambdas did

not exhibit any change in sign over the sample period. For gas, some serious changes

in signals occurred, but these changes did not improve the results for the level

strategy. To the contrary, mean returns became even negative. Similar observation

are made for slope and curvature strategies. The expanding window signals for

metals and grains are very stable. For oil and gas, signals are less stable but still do

not lead to any significant mean returns. Overall, we can conclude that commodities

yielding significant returns from slope and curvature strategies under the full sample

variant continue to do so if ex-ante signals from an expanding window are used. The

reason is the stability of signals over the whole data period. For oil and gas, however,

where some changes in signals are observed, the performance of trading strategies

diminishes, suggesting that the signals are more likely to capture mere noise rather

than time variation of the term premiums.

In the final step of our analysis, we examine whether the performance of the

strategies can be improved by potentially allowing for more time variation in signals,

based on a rolling estimation window. Stated differently, we investigate whether five

years of data is enough for the three-factor model to pick up a sufficient amount of

structure in term premiums from rather volatile futures returns. Table 3.5 shows

annualized means and standard deviations for the three types of trading strategies

under the rolling window variant. Obtained results suggest that the rolling window

approach does not improve the performance of the trading strategies. For the level

strategies, there is no significant mean return for any commodity. For the slope

strategies, both wheat and soybean lose their significant mean returns. The rather

low number of observations for these commodities makes it apparently difficult to

obtain informative signals from only five years of data. Similar observations are

made for the curvature strategy. The factor model does not seem to generate reliable

signals on the curvature of the expected return curve because only gold, copper and

wheat continue to show significant mean returns. For silver, corn and soybean the

hit ratios drop substantially, as compared to expanding window signals. Gold is
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Table 3.4: Returns of Trading Strategies – Expanding Window Signal
Level Strategy

Energy Metals Grains
Oil Gas Gold Silver Copper Wheat Corn Soybean

Contracts 1 1 1 1 1 1 1 1
Mean 7.77% -13.36% 3.81% 1.29% 11.05% -1.52% 3.85% 8.19%
Std. Dev. 34.37% 54.18% 17.65% 31.64% 26.95% 29.97% 23.72% 23.50%
T-Stat. 1.1841 -1.1565 1.3488 0.2542 2.0008 -0.1856 0.5923 1.5689
P-Value 0.2372 0.2485 0.1780 0.7994 0.0464 0.8530 0.5545 0.1180
Sharpe Ratio 22.61% -24.66% 21.60% 4.07% 40.98% -5.08% 16.22% 34.86%
Hit Ratio 53.80% 41.67% 49.15% 45.09% 52.80% 41.25% 51.25% 54.73%
Observations 330 264 468 468 286 160 160 243

Slope Strategy
Energy Metals Grains

Oil Gas Gold Silver Copper Wheat Corn Soybean
Contracts 1,12 1,12 1,11 1,11 1,11 1,10 1,10 1,11
Mean -0.67% -3.59% 5.47% 2.09% 2.48% 8.28% 1.98% 7.15%
Std. Dev. 18.22% 38.30% 5.85% 7.00% 7.33% 14.85% 11.26% 12.59%
T-Stat. -0.1913 -0.4401 5.8369 1.8629 1.6536 2.0364 0.6405 2.5575
P-Value 0.8484 0.6602 0.0000 0.0631 0.0993 0.0434 0.5228 0.0112
Sharpe Ratio -3.65% -9.38% 93.47% 29.83% 33.87% 55.77% 17.54% 56.83%
Hit Ratio 46.81% 49.62% 85.68% 69.02% 54.20% 54.38% 52.50% 54.32%
Observations 330 264 468 468 286 160 160 243

Curvature Strategy
Energy Metals Grains

Oil Gas Gold Silver Copper Wheat Corn Soybean
Contracts 1,6,12 1,6,12 1,6,11 1,6,11 1,6,11 1,5,10 1,5,10 1,6,11
Mean -2.29% -6.69% 4.89% 5.01% 3.19% 7.50% 6.88% 8.73%
Std. Dev. 10.90% 30.73% 5.66% 9.43% 5.24% 12.82% 11.02% 11.42%
T-Stat. -1.1000 -1.0210 5.3928 3.3153 2.9687 2.1371 2.2802 3.4377
P-Value 0.2722 0.3082 0.0000 0.0010 0.0032 0.0341 0.0239 0.0069
Sharpe Ratio -21.01% -21.77% 86.35% 53.09% 60.81% 58.53% 62.45% 76.39%
Hit Ratio 43.16% 45.45% 93.16% 86.75% 67.48% 60.63% 58.13% 64.20%
Observations 330 264 468 468 286 160 160 243

Note: This table reports the results of trading strategies with futures contracts based on signals
from an expanding window. It covers level strategies, slope strategies and curvature strategies.
Returns are reported as annualized values. The trading signals are obtained via the three-factor
model, based on parameter estimates from an expanding window. Initial estimates are obtained
from the first five years of the respective data periods.
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Table 3.5: Returns of Trading Strategies – Rolling Window Signal
Level Strategy

Energy Metals Grains
Oil Gas Gold Silver Copper Wheat Corn Soybean

Contracts 1 1 1 1 1 1 1 1
Mean 9.94% 10.01% 3.43% 1.46% 5.68% -11.47% -3.78% 3.98%
Std. Dev. 34.30% 54.24% 17.66% 31.64% 27.09% 29.79% 23.72% 23.59%
T-Stat. 1.5200 0.8657 1.2121 0.2882 1.0227 -1.4065 -0.5815 0.7601
P-Value 0.1295 0.3874 0.2261 0.7733 0.3073 0.1615 0.5617 0.4479
Sharpe Ratio 28.98% 18.46% 19.41% 4.61% 20.95% -38.52% -15.93% 16.89%
Hit Ratio 52.42% 49.24% 52.56% 50.21% 50.70% 43.13% 47.50% 51.03%
Observations 330 264 468 468 286 160 160 243

Slope Strategy
Energy Metals Grains

Oil Gas Gold Silver Copper Wheat Corn Soybean
Contracts 1,12 1,12 1,11 1,11 1,11 1,10 1,10 1,11
Mean 4.24% -2.90% 5.47% 1.91% -0.04% 5.89% 1.40% 5.08%
Std. Dev. 18.17% 38.30% 5.85% 7.00% 7.36% 14.94% 11.27% 12.67%
T-Stat. 1.2236 -0.3557 5.8369 1.7071 -0.0250 1.4383 0.4547 1.8046
P-Value 0.2220 0.7223 0.0000 0.0885 0.9801 0.1523 0.6500 0.0724
Sharpe Ratio 23.33% -7.58% 93.47% 27.34% -0.51% 39.39% 12.45% 40.10%
Hit Ratio 46.67% 49.62% 85.68% 69.02% 54.20% 54.38% 52.50% 54.32%
Observations 330 264 468 468 286 160 160 243

Curvature Strategy
Energy Metals Grains

Oil Gas Gold Silver Copper Wheat Corn Soybean
Contracts 1,6,12 1,6,12 1,6,11 1,6,11 1,6,11 1,5,10 1,5,10 1,6,11
Mean 1.60% -10.47% 4.03% 1.45% 2.77% 7.50% 0.56% 2.45%
Std. Dev. 10.89% 30.64% 5.72% 9.53% 5.26% 12.82% 11.20% 11.68%
T-Stat. 0.7702 -1.6024 4.4014 0.9523 2.5707 2.1371 0.1819 0.9436
P-Value 0.4417 0.1103 0.0000 0.3415 0.0106 0.0341 0.8559 0.3463
Sharpe Ratio 14.69% -34.16% 70.48% 15.25% 52.66% 58.53% 4.98% 20.97%
Hit Ratio 49.70% 46.21% 89.96% 55.13% 67.13% 60.63% 45.00% 52.26%
Observations 330 264 468 468 286 160 160 243

Note: This table reports the results of trading strategies with futures contracts based on signals
from a rolling window. It covers level strategies, slope strategies and curvature strategies. Returns
are reported as annualized values. The trading signals are obtained from the three-factor model,
based on parameter estimates from a five-year rolling window. Initial estimates are obtained from
the first five years of the respective data periods.
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the only commodity with significant mean returns for both slope and curvature

strategies. The reason is that for gold the signals are extremely stable even when

a rolling window estimation approach is applied. Typically, for gold, the signals for

the rolling window based strategy remain the same as for the full sample variant.

In summary, our results indicate that the applied three-factor model does provide

ex ante information on the slope and in particular the curvature of the term structure

of expected futures returns for metals and grains. To extract this information, the

estimation period needs to be long enough, i.e., sufficient data information in the

time dimension is required. For oil and gas, any term premiums—if they do exist—

can not be extracted via the three-factor model, presumably due to a low signal to

noise ratio in futures returns.

3.6 Conclusions

This paper documents some persistent patterns in the term structure of expected

commodity futures returns. Expected returns are derived under the N -factor valu-

ation model by Cortazar and Naranjo (2006); and the subset of remaining model

parameters is estimated from futures prices. This approach has the advantage that

it offers great flexibility in modeling the expected return curves, while taking into ac-

count the close relationship between futures contracts of different maturities via an

arbitrage-free pricing model. As our empirical results for eight commodities show,

such flexibility is needed because expected return curves can differ substantially

between commodities. Another advantage is that latent factors can in principle pick

up effects that result from multiple economic sources. Examples for such sources

are hedging and liquidity demand,8 differences in liquidity between futures with dif-

ferent times to maturity or the risk of physical delivery that holders of short-term

futures contracts face after the notice day.

The corresponding disadvantage of our approach is, of course, that the spe-

cific sources of term premiums stay hidden. Connecting our approach to a more

fundamental view on term premiums may not only improve our economic under-

standing of relevant factors, it is also promising for the improvement of trading

strategies. As our results show, signals based on model-implied term premiums

seem to work best if they are relatively stable over time. Thus, it is likely that slope

and curvature strategies could be further improved by incorporating time-varying

8The premiums arising from these two kinds of demand are the main topic of Kang, Rouwen-
horst, and Tang (2020).
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premiums that reflect short-term supply and demand conditions. The design of such

trading strategies is a challenging task for future research.

3.7 Appendix

3.7.1 Expected Futures Returns in the N-factor Model

To prove Equation (3.1), we need to determine Ft,T and Et(Ft+h,T ) under the N -

factor model. According to Equation (17) in Cortazar and Naranjo (2006), the price

Ft,T equals9

Ft,T = exp

(
x1(t) +

N∑
i=2

e−κi(T−t) · xi(t) + A(T − t)

)
, (3.5)

where x1(t), . . . , xN(t) are the time t values of the N stochastic factors and the

function A(T − t) equals

A(T − t) = (µ− λ1) · (T − t)−
N∑
i=2

1− e−κi(T−t)

κi
· λi +

1

2
σ2
1 · (T − t)

+
N∑
i=2

σiσ1ρi1
1− e−κi(T−t)

κi
+

1

2

N∑
i=2

N∑
j=2

σiσjρij
1− e−(κi+κj)(T−t)

κi + κj
.

In the above expression, µ is the drift rate (under the physical measure) of the

Brownian motion process that governs the first factor, σi, i = 1, . . . , N , denote the

diffusion coefficients of the N factors and ρij, i, j = 1, . . . , N , the corresponding

instantaneous correlations.

According to the pricing equation, the futures price at time t+ h equals

Ft+h,T = exp

(
x1(t+ h) +

N∑
i=2

e−κi(T−t−h) · xi(t+ h) + A(T − t− h)

)
. (3.6)

From the perspective of time t, the futures price in Equation (3.6) is a random

variable, and our task is to calculate the time t expectation of this random variable

under the physical measure. Because all N factors follow either a Brownian motion

or an Ornstein-Uhlenbeck process, the term inside the exponential is a weighted

9Note that Cortazar and Naranjo (2006) define the log spot price at time t as the sum of the
factors plus the drift rate of the first factor times t. For simplicity, we follow Schwartz and Smith
(2000), who define the log spot price at time t just as the sum of the factors. These differences in
notation do not change the resulting characterization of the expected futures returns.
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sum of N normally distributed random variables (x1(t + h), . . . , xN(t + h)), plus a

non-stochastic term (A(T − t + h)). Thus, Ft+h,T is log-normally distributed. The

expectation of this log-normal random variable is just the exponential of

Et

(
x1(t+ h) +

N∑
i=2

e−κi(T−t−h) · xi(t+ h) + A(T − t− h)

)

+
1

2
V art

(
x1(t+ h) +

N∑
i=2

e−κi(T−t−h) · xi(t+ h)

)
. (3.7)

Calculation of the expectation and variance from Equation (3.7) under the as-

sumed factor dynamics and collecting terms delivers

Et(Ft+h,T ) = exp

(
x1(t) + λ1 · h+

N∑
i=2

e−κi(T−t) · xi(t)

+
N∑
i=2

λi · g(κi, T − t, h) + A(T − t)

)
. (3.8)

Finally, dividing the expression on the right hand side of Equation (3.8) by the

expression on the right hand side of Equation (3.5) provides Equation (3.1).

3.7.2 Long- and Short-term Contracts: Limiting Cases

To determine the annualized expected futures returns for some limiting cases, we

use Equation (3.4), which is repeated below as Euqation (3.9):

Et

(
Ft+h,T

Ft,T

)
− 1

h
=

exp
(
λ1 · h+

∑N
i=2 λi · g(κi, T − t, h)

)
− 1

h
. (3.9)

First, consider a “long-term contract”, whose maturity date T goes to infinity. In

the limit, the functions g(κi, T − t, h), i = 2, . . . , N , go to zero and expected futures

returns converge to
exp (λ1 · h)− 1

h
.

Now let the holding period h go to zero. Applying L’Hospital’s rule on the above

expression delivers exp (λ1 · h) · λ1. For h = 0, this term equals λ1. Thus, λ1 can be

interpreted as the annualized simple return of a futures contract with a “very long”

time to maturity and a “very short” holding period.
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Second, consider a contract with maturity date T = t+h. For such a contract, the

functions g(κi, T −t, h), i = 2, . . . , N , take the form (1−exp(−κi ·h))/κi. Therefore,

Equation (3.9) becomes

Et

(
Ft+h,t+h

Ft,t+h

)
− 1

h
=

exp
(
λ1 · h+

∑N
i=2 λi · (1− exp(−κi · h))/κi

)
− 1

h
. (3.10)

For h → 0, both numerator and denominator on the right hand side of Equa-

tion (3.10) go to zero. Applying L’Hospital’s rule finally delivers a limiting value of∑N
i=1 λi. Thus, the sum of all lambda parameters can be interpreted as the annual-

ized simple return of a futures contract with a “very short” time to maturity and a

“very short” holding period.
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The trading activities in commodity futures, especially in the last month, are poten-

tially influenced by the physical delivery process, which is unique to commodities.

Many research articles try to avoid these problems by excluding the last trading

month in their analysis. In this paper we want to analyze the trading patterns

in volume, open interest and price during the last months of trading. We find

that trading activity is impacted by differences in the timing of the notice period

between different commodities. We show that the notice day is the most important

day within the lifespan of a commodity futures contract. The notice day presents

an important turning point, when a commodity futures contract turns from a very

actively traded contract into a rather illiquid contract. Furthermore, we also find

that long investors can earn a premium for the risk of having to take physical deliv-

ery. We also find, that long-term active month gold contracts show a much a higher

trading volume compared to short-term non-active month contracts.
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Short Term Commodity Futures
Contracts: Trading Patterns and Returns

4.1 Introduction

Commodity futures markets have become an increasingly popular topic in theoretical

and especially in empirical research. However, an aspect that is often neglected in

the empirical research on commodity futures is the trading activity in the last weeks

of a commodity futures contract. Probably the main reason for this is the delivery

process for deliverable commodity futures. Physical delivery is usually unwanted

by financial investors and therefore avoided. For example, for investment strategies

investors are usually assumed to roll over their long or short position into more

distant futures contracts before the delivery process starts. This is done to eliminate

possible price effects or illiquidity due to the delivery process. At the same time it

also raises the question what exactly is happening with regard to trading volume,

open interest and prices during the delivery time period? Are all commodity futures

created equal with regard to the delivery process? Or are there differences between

different commodities and even between contracts of the same commodity?

While some answers to these questions might be well-known by traders, they have,

to the best of our knowledge, not been analyzed in academia. Research topics which

are linked to these questions are the maturity effect of commodity futures and the

optimization of rolling strategies for investment purposes.

The maturity effect refers to the inverse relationship between the futures volatility

and the time to maturity. Samuelson (1965) first illustrated this relationship from his

theoretical model. Hence, it is also known as the Samuelson Hypothesis. There is a

relatively large body of literature that contributes to this. Empirical studies mostly

supported the Samuelson Hypothesis. For example Bessembinder et al. (1997),

Galloway and Kolb (1996) or Duong and Kalev (2008) find that the Samuelson

Hypothesis holds for agricultural futures and energy futures. At the same time other

assets such as metals or financial futures show a weaker or no maturity effect. Brooks

and Teterin (2020) find that previously unarbitraged agricultural futures markets

now also show periods of stronger arbitrage and a weakened or even absent maturity

effect at the same time. They conclude that arbitrage, which requires sufficient
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commodity inventory levels, reduces the maturity effect. Hence, the maturity effect

is negatively correlated with inventory levels.

The rolling strategy is an important part of any commodity futures investment

strategy. Investors constantly have to roll over their position, if they want to stay

invested. Since the introduction of passive investing in commodity futures via for

example the S&P GSCI Index, many investors are replicating this index and its

unique rolling strategy. The index roll period is the 5th to 9th business day of each

month. During this period the index rolls with an equal weight of 20% per day from

the second nearest contract to the third nearest contract. Mou (2011) shows that

investors would have earned a significantly higher return of 3.59% from 2000-2009 if

they were front-running the index roll-period. This effect was absent in commodities

which were not included in the S&P GSCI. It shows the importance of the trading

activities in commodity futures contracts leading up to maturity.

In our analysis we want to focus on the trading activities in the last four months

before maturity. We will show that not all commodity futures are traded in the

same way due to subtle differences in the delivery terms of each contract. We will

also look at the differences between so-called active month and non-active month

contracts in gold. In Section 2 we will explain the commodity futures delivery process

in more detail for different types of commodities. Section 3 describes the dataset,

which is used in our empirical analysis. In Section 4 we will look into the trading

activities in the last four month before maturity. We are using descriptive statistics

and regression models to analyze patterns in monthly returns, trading volume and

open interest. Section 5 will summarize the results and give an outlook.

4.2 The Commodity Futures Delivery Process

Most commodity futures contracts have an embedded mechanism for physical de-

livery. Being able to settle a commodity futures contract via physical delivery is a

very important mechanism which also ensures that futures prices and spot prices

converge. Without physical delivery, commodity futures markets could potentially

decouple from their respective physical counterparts. This section describes the com-

modity futures delivery process for CME traded commodity futures. Understanding

this process is crucial to understanding the behavior of market participants in com-

modity futures markets. The rules of the delivery process are set in Chapter 7 of

the CBOT Rulebook (CME Group, 2021a).
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As a contract is nearing its maturity, short and long position holders must prepare

to go through the physical delivery process. This delivery process is typically avoided

by financial investors (Miffre, 2016). The delivery process typically includes three

important periods. The first period is the position period. Starting with the first

position day, holders of short positions can indicate their intention to make physical

delivery to the clearing house. At the same time all brokers must report open long

positions to the clearing house. This information is needed to match the counter

parties for the physical delivery. It is important to note that short holders have the

right to indicate their intent to make physical delivery. Additionally, the short can

also choose the date when he makes his intention to make physical delivery. This

day does not have to be the first position day. The position period typically spans

over a couple of weeks and ends with the last position day. After the last position

day the clearing house will no longer accept intentions to make physical delivery.

The second period, the notice period is often overlapping with the position period.

The first notice day is typically the day after the first position day. After the short

holder has made his intent to make physical delivery to the clearing house, the

clearing house will match this intent with the holder of a long position, who then

has to take physical delivery. Long positions are ranked according by the time they

have been open. The oldest long position available will be matched with the first

short position that gave the intent to make physical delivery. The first notice day

usually is the deadline when financial investors no longer want to have an exposure

to the commodity futures contract. Starting on the first notice day, they are running

the risk of having to accept the physical delivery.

The third and last period in the delivery process is the delivery period. The

futures exchange also determines the first and last possible delivery day. On the

delivery day the long holder makes the payment to the clearing house and receives

the shipping or warehouse certificate. The short holder receives the payment from

the clearing house. The former long holder can now decide to store the commodity,

deliver the goods to another place or sell the shipping certificate to someone else. If

his intention was to hold the futures contract as a financial investment he might be

uncomfortable with handling the physical asset at this point.

According to the delivery process, holding a short futures contract during the

position period also provides an option of physical delivery. The short holder can

decide whether he wants to make use of this option (e.g. make physical delivery)

or buy a long position and avoid physical delivery. At the same time the long

holder is in the position of an option writer in this context. He has to accept the
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physical delivery once he is getting the notice from the clearing house. We can

expect financial investors to avoid this position.

The timing of the three periods in the delivery process differs between different

commodities. For example in energy futures (e.g. NYMEX WTI Crude Oil or

NYMEX Natural Gas) the delivery process starts after the last trading day (CME

Group, 2021c). The position period and notice period are only one day each and

then followed by a one month delivery period. Hence, in energy futures the pos-

ition and notice period does not directly interfere with an actively traded futures

contract. An example for the August 2021 contract is given in Table 4.1. While the

last trading day is the 20th of July, the position day is the 21th of July and the no-

tice day is the 22th of July. The both parties than agree on a delivery date in August.

Table 4.1: Position Period, Notice Period and Delivery Period for August 2021 Fu-
tures Contracts

Crude Oil Gold Corn

Contract Aug 2021 Aug 2021 Sep 2021

First Trading Day 23.11.2015 30.09.2019 17.12.2018

Last Trading Day 20.07.2021 27.08.2021 14.09.2021

First Position Day 21.07.2021 29.07.2021 30.08.2021

Last Position Day 21.07.2021 30.08.2021 15.09.2021

First Notice Day 22.07.2021 30.07.2021 31.08.2021

Last Notice Day 22.07.2021 30.08.2021 15.09.2021

First Delivery Day 01.08.2021 02.08.2021 01.09.2021

Last Delivery Day 31.08.2021 31.08.2021 16.09.2021

However, for grains (e.g. CBOT Corn) and metals (e.g. COMEX Gold) the

situation is different. For grains the position period usually starts around two weeks

before the last trading day (CME Group, 2021d). The notice period starts one day

after the first position day. Position and notice period end with the last trading day.

The delivery period starts one day after the first position day and ends one day after

the last trading day. For grains the last two weeks of the nearest futures contract

are directly influenced by the physical delivery process. Market participants have to

deal with the possibility of physical delivery. The short holder will have the option
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of physical delivery and the long will have to accept physical delivery once he gets

notice from the clearing house. An example for September 2021 contract of Corn is

also given in Table 4.1. While trading stops at the 14th of September, the position

period starts at 30th of August and ends one day after trading ends at the 15th

of September. The notice period start at the 31th of August and spans until the

15th of September. The delivery period is from the 1st of September until the 16th

September.

For metals (COMEX Gold, COMEX Silver and COMEX Copper) the overlapping

of the position and notice period with the actively traded futures contract is even

longer. The first position day is the second last trading day in the month before

the last trading day (CME Group, 2021b). The first notice day is the day following

the first position day and is the last trading day in the month preceding the trading

end of the futures contract. The overlapping of the position and notice period in

roughly four weeks. Which is quite long compared to two weeks for CME-traded

grain futures and no overlapping for CME-traded energy futures. An example for

the August 2021 contract of gold can also be found in Table 4.1.

Another distinction between commodity futures contracts is between so-called

active month contracts sometimes also called lead month contracts and other non-

active month contracts. The active or lead month contract is usually the nearest

contract with the shortest time to maturity. The active month contract can be

considered as a benchmark contract for each commodity and is often subject to a

more complex daily price settlement procedure than other contracts. For metals

the distinction between active and non-active contracts is different then for other

commodities. There is a special schedule for active months and sometimes the

nearest contract is not the active contract. For gold the nearest contract out of the

February, April, June, August and December contracts is the active month contract

(CME Group, 2022). Gold futures contracts also exist for the other calendar months

but these contracts are only set up three month before maturity and will not become

active contracts when they are close to maturity. Hence, for gold we can analyze the

difference between contracts that can become active month contracts and contracts

that will not become active month contracts. The distinction between contracts

than will become active month contracts and those that will not is also featured in

CME traded silver and copper futures.
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4.3 Dataset

In our empirical study we use the CRB Infotech database provided by Barchart. We

are using daily closing prices, open interest and trading volume for NYMEX WTI

Crude Oil, COMEX Gold and CBOT Corn. With oil, gold and corn we chose some

of the most actively traded commodities out of the categories energy, metals and

grains. As explained previously, these three categories have a different time schedule

for the delivery process, which gives us the opportunity to analyze the differences

between them. The exact dates and contracts of our datasample can be taken from

4.2.

Table 4.2: Datasample

Crude Oil Gold Corn

Trading Symbol NYMEX:CL COMEX:GC CBOT:C

Start Date 22.08.1985 22.01.1979 01.07.1959

End Date 28.02.2019 28.02.2019 28.02.2019

First Contract CL1986N (Jul) GC1979H (Mar) C-1959U (Sep)

Last Contract CL2021Z (Dec) GC2021Z (Dec) C-2021Z (Dec)

Last Completed Contract CL2019H (Mar) GC2019G (Feb) C-2019H (Mar)

Volume and Open Interest 01.01.2001 01.01.2001 01.01.2001

Overlap between

Notice Period and Trading none 1 month 2 weeks

Volume and Open Interest is only available from 01.01.2001 in the CRB Infotech

database. We calculate monthly log returns for all available futures contracts using

Formula 4.1.

ri,t = logFi,t+1 − logFi,t (4.1)

Fi,t is the futures price of commodity i at time t and Fi,t+1 is the futures price at

time t+1. Our monthly time interval always spans from the last trading day of a

contract to the last trading day of the next contract. We do so in order to have a

consistent time interval and not miss out on the last weeks of trading, which is what
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we want to focus on. In our analysis we are only focusing on returns of contracts with

a remaining time to expiry of up to 12 months. In order to have a complete dataset

of futures returns for every commodity and month we also use linear interpolation

to calculate synthetic prices for non existing contracts. Gold and corn do not have

a futures contract for each month in a given year. So we opted to use Formula 4.2

to fill up missing contracts. To determine the price for a missing contract Fi,t,tR , we

use the prices of the previous (Fi,t,tprev) and next contract (Fi,t,tnext).

Fi,t,tR,syn = Fi,t,tprev ∗
tR − tprev
tnext − tprev

+ Fi,t,tnext ∗
tnext − tR
tnext − tprev

(4.2)

It is important to note, that these synthetic prices are indeed prices, that an

investor can actually pay (or receive for a short position), if he decides to buy both

contracts with the weights used in the interpolation. Following this logic, investors

can also earn the returns linked to these synthetic prices. Hence, we decided to

include the synthetic prices and returns in our analysis. However, synthetic prices

are not calculated for the last month, because there is no previous contract with a

shorter time to expiry available for the interpolation. We do not use any method of

extrapolation.

Trading volume and open interest is reported in number of contracts. In our ana-

lysis we will use the trading volume which is the total number of traded contracts

over a given time period (e.g. one week or one month). We are neither using inter-

polation for trading volume nor for open interest, because there is no appropriate

way to do this.

4.4 Analysis of Returns of Short-Term Contracts

In this section we want to focus on the return analysis and link them to the difference

in the time schedule for the delivery process. All futures returns have been grouped

by the remaining time to expiry. For example the returns for a remaining time

to expiry of 1/12 are the returns for all available contracts of a specific commodity

with one month left to expiry. We will also call these contracts one-month-contracts,

two-month-contracts and so on. The summary statistics can be found in Table 4.3.

In our crude oil dataset the returns are generally positive with a mean monthly

log return between 0.39% and 0.61%. The futures returns are highly volatile and

the average positive returns are small compared to the standard deviation, which

79



4 Short Term Commodity Futures Contracts: Trading Patterns and Returns 80

is between 6.83% and 10.41%. The average return is mainly flat for a varying time

to expiry. If anything, the returns for a longer time to expiry are slightly higher

than for a shorter time to expiry. Importantly, we cannot see a significant difference

between the last month to expiry and the other months. In contrast to the mostly

flat structure of mean returns, the volatility is clearly increasing for a shorter time

to expiry. In Table 4.3 we can clearly see the characteristic decline in volatility.

Hence, we can confirm the Samuelson Hypothesis and the results of Bessembinder

et al. (1997), Galloway and Kolb (1996), Duong and Kalev (2008) and Kang et al.

(2020), who also found the Samuelson Hypothesis to hold for energy futures.

After all we were not surprised to find a mainly flat futures return structure for

crude oil, because the delivery process does not overlap with the trading activity. A

futures trader in crude oil does not have to worry about physical delivery, because

the first notice day is after the last trading day. Hence, there should be no reason

for a sudden change in the returns and trading activity in the last month.

For gold the mean monthly log returns across the one-month to two-month-

contracts are between -0.05% and 0.33% (Table 4.3). Whereas the term structure

was almost flat for oil, gold clearly shows a higher mean return for the last month.

The difference between 0.33% for a one-month contract and -0.03% for a two-month

contract might not sound like a big difference, but given that commodity futures

investments can be scaled easily and long and short position can be used to reduce

risk, it would present an attractive opportunity for investors. However, earning this

return would not be easy for financial investors, because in gold futures the holder of

a long position bears the risk of a physical delivery in the last four weeks of trading.

We argue that the incrementally higher return in the last trading month is a risk

premium for long holders, who are compensated for a potentially unwanted physical

delivery.

The standard deviation of gold futures returns is pretty similar across all contracts.

So we cannot confirm the existence of the Samuelson Hypothesis in gold futures.

This finding is consistent with Duong and Kalev (2008) and Brooks and Teterin

(2020), who also found a flat structure of futures volatility.

The results of monthly log corn futures returns are similar to gold. The mean

monthly log returns range between -0.82% and -0.10% (Table 4.3). The one-month-

contract shows the highest mean log return of -0.10%, while the two-month (-0.45%)

and three-month-contracts (-0.81%) are lower. In corn futures the delivery process

also overlaps with trading activity in the last two weeks, so we also argue that

the difference is a risk premium for long holders in the last two weeks of trading.
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Contrary to gold, corn monthly futures log returns show a clear pattern of decreasing

volatility for contracts with a longer time to expiry. This is also consistent with

previous results from Brooks and Teterin (2020) who found a downward sloping

futures volatility structure for agricultural commodities.

In summary our return analysis points to the direction that an overlapping de-

livery process leads to a risk premium for long holders. Commodity futures with

no overlapping of the delivery process and trading, like crude oil, do not provide a

higher return in the last trading month, whereas commodities with an overlapping

delivery process such as gold or corn show a remarkable high return of the one-month

contract. In the next subsection we complement our return analysis by looking into

the trading activity measured by trading volume and open interest.
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Table 4.3: Summary Statistics of Commodity Futures Returs

Crude Oil

Time to Expiry n min Q1 mean Q2 Q3 max σ

1/12 392 -0.4336 -0.0547 0.0039 0.0115 0.0728 0.3480 0.1041

2/12 392 -0.4110 -0.0510 0.0043 0.0101 0.0696 0.3407 0.0960

3/12 392 -0.4038 -0.0472 0.0050 0.0118 0.0677 0.3129 0.0916

4/12 392 -0.3977 -0.0414 0.0054 0.0120 0.0640 0.3011 0.0877

5/12 392 -0.3924 -0.0380 0.0057 0.0120 0.0614 0.2922 0.0844

6/12 392 -0.3865 -0.0360 0.0059 0.0118 0.0575 0.2847 0.0815

7/12 392 -0.3809 -0.0334 0.0059 0.0112 0.0541 0.2788 0.0790

8/12 392 -0.3753 -0.0311 0.0059 0.0106 0.0523 0.2750 0.0769

9/12 390 -0.3697 -0.0303 0.0055 0.0110 0.0510 0.2737 0.0751

10/12 384 -0.3640 -0.0307 0.0046 0.0091 0.0480 0.2744 0.0735

11/12 376 -0.3581 -0.0277 0.0061 0.0088 0.0475 0.2750 0.0711

12/12 363 -0.3521 -0.0258 0.0055 0.0080 0.0450 0.1910 0.0683

Gold

1/12 479 -0.2310 -0.0246 0.0033 0.0003 0.0278 0.2402 0.0521

2/12 479 -0.2318 -0.0290 -0.0003 -0.0026 0.0249 0.2274 0.0522

3/12 479 -0.2319 -0.0296 -0.0005 -0.0025 0.0247 0.2301 0.0524

4/12 477 -0.2319 -0.0296 -0.0004 -0.0026 0.0246 0.2323 0.0526

5/12 478 -0.2327 -0.0295 -0.0005 -0.0024 0.0246 0.2344 0.0526

6/12 476 -0.2333 -0.0295 -0.0005 -0.0023 0.0246 0.2371 0.0527

7/12 477 -0.2339 -0.0285 -0.0005 -0.0023 0.0247 0.2398 0.0527

8/12 475 -0.2344 -0.0284 -0.0006 -0.0025 0.0249 0.2431 0.0528

9/12 476 -0.2349 -0.0283 -0.0005 -0.0018 0.0252 0.2464 0.0528

10/12 474 -0.2354 -0.0283 -0.0006 -0.0022 0.0250 0.2490 0.0528

11/12 475 -0.2358 -0.0278 -0.0005 -0.0019 0.0248 0.2514 0.0529

12/12 473 -0.2363 -0.0281 -0.0005 -0.0020 0.0246 0.2526 0.0529

Corn

1/12 300 -0.3262 -0.0394 -0.0010 -0.0024 0.0344 0.5546 0.0741

2/12 300 -0.2968 -0.0399 -0.0045 -0.0064 0.0311 0.3976 0.0697

3/12 300 -0.2670 -0.0415 -0.0081 -0.0083 0.0275 0.3739 0.0676

4/12 300 -0.2367 -0.0414 -0.0082 -0.0088 0.0244 0.3761 0.0666

5/12 299 -0.2278 -0.0412 -0.0079 -0.0090 0.0242 0.3783 0.0661

6/12 300 -0.2189 -0.0401 -0.0070 -0.0082 0.0231 0.3805 0.0655

7/12 299 -0.2102 -0.0382 -0.0066 -0.0077 0.0218 0.3729 0.0643

8/12 299 -0.2068 -0.0372 -0.0060 -0.0076 0.0213 0.3655 0.0629

9/12 299 -0.2036 -0.0354 -0.0058 -0.0058 0.0202 0.3581 0.0616

10/12 296 -0.1998 -0.0333 -0.0050 -0.0058 0.0210 0.3483 0.0601

11/12 278 -0.1960 -0.0339 -0.0055 -0.0069 0.0213 0.3385 0.0603

12/12 231 -0.1922 -0.0330 -0.0064 -0.0057 0.0207 0.3265 0.0560
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4.5 Analysis of Trading Volume and Open Interest of

Short-Term Contracts

In this section we want to look at the trading activity in the last months to expiry in

more detail. We are particularly interested to spot differences between the selected

commodities in trading volume and open interest caused by the delivery process and

the first notice day.

Figure 4.1 presents the monthly trading volume for crude oil. This is the average

sum of all traded contracts in one month. Crude oil futures are clearly more liquid

for a shorter time to expiry. Generally speaking the less time to expiry is left the

more actively the contract is traded. The median amount of traded contract is

around 5 million for the one-month contract, around 2.5 million for the two-month

contract and decreasing further for more distant contracts. In Figure 4.2 we are

zooming in on the trading activity by splitting up the trading volume into weeks.

Crude oil shows an equal distribution of trading volume during the last four weeks

of trading. Even in the last week leading up to expiry the futures contract is still

very actively traded. There is no visible cut, when trading starts to slow down in a

crude oil contract.

Figure 4.1: Monthly Trading Volume of Crude Oil
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Figure 4.2: Weekly Trading Volume of Crude Oil
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In addition to the trading volume we also want to look at the change of open interest

and the relationship between the change of open interest and the trading volume.

Figure 4.3 plots the weekly change in open interest for the four contracts closest to

maturity. We can see that crude oil open interest is increasing in the two-month,

three-month and four-month contract. The increase is particularly high in week one

and week two of the two-month contract. In the one-month contract traders are

reducing their open interest. The majority of open interest is closed out in the last

two weeks. This gives us an indication that traders are rolling over their positions

from the one-month to the two-month contract.

Figure 4.4 plots the change in open interest against the trading volume on a weekly

basis. A higher trading volume clearly correlates with a higher reduction in open

interest. The plot also indicates that many investors roll their exposure from the

one-month to the two-month contract.
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Figure 4.3: Weekly Change in Open Interest of Crude Oil
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Figure 4.4: Scatter Plot of Trading Volume and Change in Open Interest of Crude
Oil
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In contrast to crude oil, gold shows different patterns in trading volume and open

interest. Figure 4.5 shows the distribution of trading volume grouped for monthly

contracts. The trading volume is highest for the three-month contract. Contrary to

crude oil the trading volume in the one-month contract is very low. In the weekly

breakdown in Figure 4.6 we can see that the one-month contract basically becomes

illiquid in the last three weeks until expiry. These findings go hand in hand with the

first notice day being about four weeks before the last trading day for gold. After

the notice day financial investors are not interested in trading the futures contract.

At the same time the premium we discovered in the return analysis is also difficult

to earn because the contract will not be traded very actively after the notice day.

The distinction between active month contracts and other non-active contracts for

gold also gives us the opportunity to compare these two categories. The non-active

contracts are only set-up by the Futures Exchange three months before maturity.

Figure 4.7 and Figure 4.8 show the trading volume and the open interest during the

last four months. We can clearly see that trading volume is very low for non-active

contracts compared to active contracts. The open interest also remains largely

unchanged for non-active contracts. In other words there is no build up of open

interest which is then reduced as the contract approaches the notice period. For

active contracts we can see a build up four months before expiry and a substantial

reduction two months before expiry.

Figure 4.9 and 4.10 support our findings for gold. The open interest is almost

entirely closed in the last week of the two-month contract. Not surprisingly investors

try to avoid the physical delivery and cancel out their open interest before the notice

period. At the same time Figure 4.10 indicates that investors tend to roll their

exposure from the two-month to the four-month contract. The red dots marking

the reduction in open interest in week one of the two-month contract coincide with

an increase in open interest in week one of the four-month contract.

To further test the significance of the drop in trading volume after the notice

day, we also regressed the weekly trading volume and the change in open interest

on a constant and an indicator variable, which is one if the trading week is after

the notice day and zero otherwise. The results are stated in Table 4.4. In this

analysis we can see a very significant negative coefficient of (−326, 680) for the

notice day indicator variable for the trading volume. The notice day effect almost

entirely offsets the positive constant of (349, 193). This confirms that trading almost

comes to a standstill after the notice day for gold. The results for open interest are

different. Open interest generally reduces during the last two months as indicated by
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the negative constant (−22, 167) but after the notice day this effect is almost entirely

offset (18, 341) because there is only a small number of open contracts remaining.

Figure 4.5: Monthly Trading Volume of Gold
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Figure 4.6: Weekly Trading Volume of Gold
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Figure 4.7: Trading Volume for Active and Non-Active Contracts
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Figure 4.8: Open Interest for Active and Non-Active Contracts
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Table 4.4: Trading Volume Regression with Notice Day Dummy Variable (Gold)

Dependent variable:

Weekly Trading Volume Change in Open Interest

(1) (2)

Constant 349,193∗∗∗ -22,167∗∗∗

(12,718) (1,083)

After notice day -326,680∗∗∗ 18,341∗∗∗

(17,987) (1,532)

Observations 1,742 1,742
R2 0.159 0.076
Adjusted R2 0.159 0.076
Residual Std. Error (df = 1740) 375,368.000 31,976.680
F Statistic (df = 1; 1740) 329.853∗∗∗ 143.284∗∗∗

Note: This table shows the regression results for a model where the weekly trading volume and
the change in open interest is regressed on a constant and an indicator variable for the notice day.
The notice day variable is zero before the notice day and one after the notice day. Standard errors
are stated in parentheses.

Figure 4.9: Weekly Change in Open Interest of Gold
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Figure 4.10: Scatter Plot of Trading Volume and Change in Open Interest of Gold

three−month−contract four−month−contract

one−month−contract two−month−contract

0 1,000,000 2,000,000 0 1,000,000 2,000,000

−200,000

−100,000

0

100,000

200,000

−200,000

−100,000

0

100,000

200,000

Trading Volume

C
ha

ng
e 

in
 O

pe
n 

In
te

re
st

Weeks to End

wte1

wte2

wte3

wte4

The results for corn are inline with our previous findings for gold. The trading

volume is relatively high until two weeks before expiry of the contract (Figure 4.12).

In general the trading volume is high for every month up to six months. After this

trading activity gradually tapers down (Figure 4.11). Especially the sharp drop in

trading volume two weeks before expiry shows the importance of the delivery process

and the first notice day in particular. The first notice day is two weeks before expiry

for corn. After the notice day trading activity is reduced to a minimum. The pattern

overall looks similar to gold, except that they are shifted by two weeks towards the

expiry date.

The sharp drop in open interest two weeks before expiry (Figure 4.13) also il-

lustrates the importance of the first notice day. The reduction in open interest

precedes the drop in trading activity. After the reduction of the open interest the

contract becomes relatively illiquid for the remaining two weeks. Figure 4.14 shows

that corn traders preferably roll their exposure from the one-month contract to the

three-month contract. The blue and purple dots show that a decrease in open in-

terest in the one-month contract correlates with an increase in open interest in the

three-month contract.
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Figure 4.11: Monthly Trading Volume of Corn
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Figure 4.12: Weekly Trading Volume of Corn
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Table 4.5: Trading Volume Regression with Notice Day Dummy Variable (Corn)

Dependent variable:

Weekly Trading Volume Change in Open Interest

(1) (2)

Constant 538,841∗∗∗ -104,549∗∗∗

(17,939) (3,530)

After notice day -467,397∗∗∗ 92,208∗∗∗

(25,609) (5,039)

Observations 377 377
R2 0.470 0.472
Adjusted R2 0.469 0.470
Residual Std. Error (df = 375) 248,580.400 48,919.050
F Statistic (df = 1; 375) 333.096∗∗∗ 334.751∗∗∗

Note: This table shows the regression results for a model where the weekly trading volume and
the change in open interest is regressed on a constant and an indicator variable for the notice day.
The notice day variable is zero before the notice day and one after the notice day. Standard errors
are stated in parentheses.

In a regression model with an indicator variable for the notice day we can again

confirm that trading activity is greatly reduced after the notice day (Table 4.5). The

negative effect after the notice day (−467, 397) almost offsets the positive constant

of 538, 841 for trading volume. After the notice day, the decrease in open interest

also almost stops. In both regression models the indicator variable for the notice

day is highly significant. These results are very similar to our results for gold.

In summary the analyses of trading volume and open interest for crude oil, gold

and corn highlight the importance of the delivery process embedded in commodity

futures. Different time schedules for different commodities allow us to clearly spot

the differences for crude oil, gold and corn. The beginning of the notice period marks

a clear turning point for every commodity futures contract. Before the first notice

day, trading volume generally increases towards the expiry date. When the notice

day approaches, trading volume remains high but open interest is greatly reduced as

traders cancel out their position in order to avoid physical delivery. After the first

notice day, trading activity greatly diminishes and the contract becomes relatively

illiquid.
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Figure 4.13: Weekly Change in Open Interest of Corn
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Figure 4.14: Scatter Plot of Trading Volume and Change in Open Interest of Corn

three−month−contract four−month−contract

one−month−contract two−month−contract

0 500,0001,000,0001,500,000 0 500,0001,000,0001,500,000

−300,000

−200,000

−100,000

0

100,000

−300,000

−200,000

−100,000

0

100,000

Integrated Volume

C
ha

ng
e 

in
 O

pe
n 

In
te

re
st

Weeks to End

wte1

wte2

wte3

wte4

93



4 Short Term Commodity Futures Contracts: Trading Patterns and Returns 94

4.6 Conclusion

We studied returns and trading activity during the last months until contract expiry

in three major commodity futures. The results clearly show the importance of the

delivery process for commodity futures trading.

Firstly, we find a risk premium for long holders of futures contract when there is

an overlapping of the notice period with the trading period of a commodity futures

contract. Long investors are running the risk of a possible physical delivery which

might be unwanted and can be triggered by the short counter party. This premium

seems to exist for gold and corn but not for crude oil, because the notice period does

not overlap with the trading period for crude oil. Long holders with the ability to

cost-efficiently manage a physical delivery can try to earn a risk premium for example

in agricultural as well as to some degree in metal commodity futures. However, they

will also face some liquidity risks in the last month because trading volume is very

limited in the last weeks.

Secondly, in our analysis of gold futures we could see a clear distinction between

short-term non-active contracts and long-term active contracts in trading volume

and open interest. Short term non-active contracts show a very low trading volume

and there is no build up of open interest like there is in long-term active contracts.

Thirdly, the notice day is the single most important day for each commodity

future. After the notice day, trading activity and open interest is greatly reduced

and the contract becomes relatively illiquid. When looking at the results in becomes

obvious that a short term futures contract with two months left to expiry for gold

is different to the same futures contract for crude oil. In the case of gold there

is effectively one month of active trading left, while the crude oil contract will be

actively traded for the full remaining two month. This fact should be taken into

account whenever commodity futures are used in empirical studies. After all not all

commodity futures are created equal and differences in the timing of the physical

delivery process, as well as the distinction between active and non active contracts

should be taken into account and are relevant.
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5 Conclusion

This thesis has investigated investment strategies, term premiums and trading activ-

ities in commodity futures markets. Beginning with an analysis of passive long-only

commodity futures trading strategies, followed by a new approach to model the term

structure of expected futures returns and finished with an analysis of trading activ-

ities in commodity futures before expiry, the thesis has covered multiple important

aspects of commodity futures. The findings in this thesis are important to investors,

risk-managers, hedgers and producers.

This section aims at summarizing the results and the main contributions this

thesis has made to the general discipline.

5.1 Main Results

The research paper Smart Beta Strategies on Commodity Futures Markets provides

a comprehensive analysis of passive long-only commodity futures investment strategies.

The first main result is to find a definition for Smart Beta strategies in commodity

futures markets. Smart Beta strategies can be defined as all trading strategies that

use a certain weighting principle which offers a reasonable possibility to generate an

attractive risk to return profile by exploiting an anomaly or using portfolio optim-

ization techniques. The study then analyzes seven different trading strategies, an

equal-weight strategy, two low-volatility strategies, two momentum strategies and

two term-structure strategies. All these strategies can be implemented relatively

easily by investors.

The second main result is the result from the empirical analysis of the trading

strategies and the dominance of the term-structure strategies. The term-structure

strategies which invest in commodity futures in backwardation are very profitable

with excess returns of up to 25% and a Sharpe ratio of up to 1.17. This result shows

us the great value of information from the term structure of commodity futures

prices. Furthermore, these returns cannot be explained by known risk-factors from

bonds or equities.

The second paper A Factor Decomposition of Term Premiums in Commodity

Futures Markets models and examines the term structure of expected commodity

futures returns. We use the N-Factor Model by Cortazar and Naranjo (2006) to

model the term structure of expected commodity futures returns. Focusing on the

expected returns we can reduce the number of estimated parameters and improve our

estimation. At the same time our model is still arbitrage free and offers flexibility.
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A main result is that we can decompose the term structure of expected returns into

three latent factors. These factors are a constant, a linear and a non-linear function

of the time to maturity. This decomposition is capable of modeling various term

structures for different commodities. It is also able to pick up effects from different

economic sources such as hedging or liquidity demand. Finally we find that profitable

trading strategies can be formed based on our estimated term structure of expected

returns.

The third paper Short Term Commodity Futures Contracts: Trading Patterns and

Returns studies returns and trading activity during the last months until contract

expiry in three major commodity futures. We analyzed the possible influence of the

delivery process on the trading activities and returns of commodity futures. The

results clearly show the importance of the delivery process. We find a risk premium

for long holders of futures contract when there is an overlapping of the notice period

with the trading period of a commodity futures contract. For example this is the

case for metals (gold) or grains (corn). When there is no overlapping like for example

for crude oil, there is no such risk premium in the last trading month. However,

these premiums might be hard to obtain due to limited liquidity. At the same time

the notice day is also a very important day during the lifespan of a commodity

futures contract. After the notice day trading activity is greatly reduced and the

contract basically relatively illiquid. This should be taken into account carefully, as

it varies for different commodities. For example for crude oil the notice period starts

after the end of trading, but for gold it is roughly four weeks before the last trading

day. Newer empirical studies on commodity futures could use the first notice day as

the last day in an empirical analysis, as it marks the end of very active and liquid

trading in a commodity futures contract.
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5.2 Contributions to the Discipline and Directions for Future

Research

The contribution to the discipline can mainly be divided into two areas: The trading

strategies literature and literature on the structure of commodity futures markets.

(1) Trading Strategies on Commodity Futures Literature

This thesis provides new and innovative trading strategies for commodity futures.

To the best of my knowledge, this thesis is the first to apply the idea of smart beta

factor investing to commodity futures. It takes ideas from equity and bond markets

and transfers them to commodity futures. Although similar strategies have been

discussed before, the framework here is different. All smart beta strategies are very

easy to implement and are constructed as long-only passive investment strategies.

The very good results for term structure strategies reveal the importance of the term

structure of commodity futures.

The second paper analyzes trading strategies based on a model implied term

structure of expected returns. This is a novel approach that has, to the best of our

knowledge, not been used before. We show that the results can be used to form

profitable trading strategies. Future research is needed to explain the fundamental

drivers behind the premiums that are earned by investors who follow these strategies.

(2) Structure of Commodity Futures Markets Literature

This thesis also contributes to a better understanding of the structure of the

commodity futures market. The second paper uses a novel approach to model the

term structure of expected futures returns. The term structure of expected futures

returns is an aspect which has been neglected to some degree by prior research.

Our new model-based approach is a very flexible way to model the expected return

curve of different commodities. The decomposition into a constant, a linear and

a non-linear factor is easy to understand and links well to the literature on the

term structure of interest rates. Future research should answer to what degree the

observed expected return curve is time-varying and how time-varying risk premiums

could be implemented. The third paper makes an important contribution on the

structure of commodity futures markets. The delivery process of commodity futures

influences trading activities in commodity futures. An overlapping of the trading

period and the notice periods potentially rewards long investors with a risk premium.
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The third paper also highlights the importance of the notice day. After the notice

day, trading activity in commodity futures is greatly reduced. The analysis also

shows that active month gold futures contracts are traded much more actively than

non-active contracts. The market obviously distinguishes between these two different

types of contracts.

Finally, the findings of this thesis are also relevant for practitioners in asset man-

agement and risk management functions. The trading strategies proposed in this

thesis can be an inspiration for investment products and the insights into the mar-

ket structure and the term structure of expected returns can also be helpful in

risk-management applications.
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