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This chapter provides a brief summary of the three papers comprised in this thesis.

Moreover, the contributions of each author are declared in detail.

Interactively visualizing distributional regression mod-

els with distreg.vis

Stadlmann, S. & Kneib, T. (2021). Interactively visualizing distributional regression

models with distreg.vis. Statistical Modelling, doi: https://doi.org/10.1177/1471082X2

11007308

A newly emerging field in statistics is distributional regression, where not only the mean

but each parameter of a parametric response distribution can be modeled using a set

of predictors. As an extension of generalized additive models, distributional regression

utilizes the known link functions (log, logit, etc.), model terms (fixed, random, spatial,

smooth, etc.) and available types of distributions but allows us to go well beyond

the exponential family and to model potentially all distributional parameters. Due to

this increase in model flexibility, the interpretation of covariate effects on the shape of

the conditional response distribution including its moments and other features derived

from this distribution is more challenging than with traditional mean-based methods.

In particular, such quantities of interest often do not directly equate to the modeled

parameters but are rather a (potentially complex) combination of them. To ease the

post-estimation model analysis, we propose a framework and subsequently feature an

v
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implementation in R for the visualization of Bayesian and frequentist distributional

regression models fitted using the bamlss (Umlauf, Klein, & Zeileis, 2018), gamlss

(Stasinopoulos & Rigby, 2007) and betareg (Cribari-Neto & Zeileis, 2010) R packages.
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• Writing code for the GUI and underlying computational methods

• Programming the R package including troubleshooting, bug fixing and error han-

dling

• Writing the manuscript

• Revising the manuscript

Furthermore, Thomas Kneib contributed to the project by a) conceiving the project

idea, b) designing the methodological section about distributional regression and c)

thoroughly revising the manuscript. Sections 3.2, 3.5 and A.1.2 of this chapter, though

modified, are based on sections of the master’s thesis “bamlss.vis: An R package to

Interactively Analyze and Visualize Bayesian Additive Models for Location, Scale and
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2017 at Georg-August Universität Göttingen for the degree “M.Sc. Applied Statis-

tics”. Some of the code written as part of this master’s thesis was also re-used for

distreg.vis.

Thesis inclusion

This paper is included as Chapter 3 in this thesis. While the paper content stays

mostly the same, Section 3.4 was moved back into the main text body from the paper

appendix, and an additional Section 3.6 was included. Section 3.5, also found in the

paper appendix, replaced a shorter version of itself found in the paper, acting as a

short summary. Further, some of the notation was changed to cohere with the rest of

the chapters.
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Parameter orthogonality transformations in distri-

butional regression models

Stadlmann, S., Heller, G. Z., Kneib, T. & Koens, L. (2021). Parameter orthogonality

transformations in distributional regression models. Working Paper.

Distributional regression has become an increasingly popular tool in regression analy-

sis, providing the ability to link distributional parameters beyond the mean to additive

predictors, for a practically unlimited choice of response distributions. For many of

these response distributions, maximum likelihood estimates (MLEs) of the distribu-

tional parameters are correlated and, as a result, misspecifying the regression predictor

for one distributional parameter induces a bias in the estimates for the predictors of

other parameters, even if these are correctly specified. The aim of this article is to

develop a framework for the reparametrization of any two-parameter distribution, such

that its parameters have asymptotically uncorrelated MLEs i.e., are orthogonal. In

some cases, this is achievable analytically; however more frequently the mathematics

of the reparametrization proves intractable. Addressing this issue, we propose to retain

the location parameter, and replace the second (usually scale) parameter of the chosen

distribution with a function that provides a numeric solution to a system of ordinary

differential equations (ODE) based on the covariance matrix of the MLEs, creating an

orthogonal parametrization. This approach is validated in simulation studies where

(a) parameters are assumed to be constant and (b) parameters depend on covariates.

Finally, our proposed method is demonstrated on an extreme rainfall dataset from

Tasmania, Australia.

The first author’s contributions to this paper are as follows:

• Initial idea exploration

• Writing of project reports

• Execution and testing of research ideas

• Drafting and revising the manuscript
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• Writing R code to implement the method

• Designing and producing graphs

• Formatting supplementary material

Furthermore, the following contributions were made: Thomas Kneib assisted with a)

the conception of the project idea, b) designing the broad vision of the project when
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important ideas when hurdles were encountered, d) helped revise the manuscript and

e) helped revise the supplementary material. Lyndon Koens was crucial to a) solving
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Thesis inclusion
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Variable importance in likelihood-based regression

models

Stadlmann, S. & Kneib, T. (2021). Variable importance in likelihood-based regres-

sion models. Working Paper.

Classical regression methods are popular for quantifying relations between dependent

and independent variables and making statements about their significance, but not

made for ranking explanatory variables by their relative importance. A viable relative

importance metric should a) take into account variable cross-correlation, b) be inde-

pendent of their order of inclusion, c) measure error-reduction conditional on other

covariates and d) combine effects with multiple degrees of freedom. Within the field
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of linear models, two metrics fulfill these requirements: “hierarchical partitioning” , in

which the average contribution of each variable in all possible model subsets is calcu-

lated and “relative weights”, a fast approximation of hierarchical partitioning based

on orthogonal predictors. Beyond linear models, however, a sizeable gap of variable

importance measures remains. To fill this vacuum, we propose an extension of both

previously mentioned metrics to likelihood-based models with linear predictors includ-

ing generalized linear models (GLM) and generalized additive models for location, scale

and shape (GAMLSS) with linear predictors. We present an implementation using R

called vibe. Our proposal’s effectiveness is proven with an extensive simulation and

presented with two analyses: health-care patient satisfaction scores in North Macedo-

nia described using a latent ordinal GLM and childhood malnutrition in India modeled

with a multi-parametric GAMLSS.

The first author’s contributions to this paper are as follows:

• Drafting, revising and writing of manuscript

• Design, programming, development, maintaining and publishing of accompanying

R package

• Creation of graphs and conception of application ideas

• Obtaining, cleaning and including the datasets used in application chapters

The following contributions were made: Thomas Kneib conceived the original

project idea and helped overcome critical hurdles in the project. Further, Thomas

Kneib helped with critical revisions.

Thesis inclusion

This paper is included in the thesis as Chapter 5, without any amendments.

Stanislaus Stadlmann, 31 July 2021
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Summary

Distributional regression represents a modern approach to regression modeling that

yields the ability to simultaneously connect multiple parameters beyond the mean of

any parametric response distribution to structured additive predictors that can take

parametric and non-parametric forms. This thesis proposes contributions to this field

in three unique ways: in 1) a framework for the visualization of distributional regres-

sion models is developed, which focuses on predicted conditional moments and the

shape of the whole distribution, instead of solely relying on distributional parameters

as is commonly done. It is implemented as an extensive interactive R package named

distreg.vis, focused on usability. The second contribution 2) recognizes a bias in

the estimation of distributional regression model coefficients of all parameters if the

model equation of one parameter is incorrectly specified. A solution for two-parameter

distributions based on a numerically solved system of ordinary differential equations

(ODE) created with the parameters’ maximum likelihood estimate (MLE) covariance

matrix is outlined, implemented and tested in a simulation study. Contribution 3) fills

a gap in the interpretation of fitted distributional regression models. Existing metrics

for ranking the importance of variables in linear regression models are discussed, with

“relative weights” and “hierarchical partitioning” standing out as the most suitable

due to their robustness to the scale of covariates, the consideration of variable cross-

correlation, order independency and suitability for effects with more than one degree of

freedom. These metrics are subsequently extended to generalized linear models (GLM)

and generalized additive models for location, scale and shape (GAMLSS) with linear

xxix
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predictors taking into account the possibly multi-parametric response structure and

likelihood-based nature of the fitted regression models. These extensions are imple-

mented in an R package called vibe, providing methods compatible with several other

packages. The above contributions are showcased using several datasets about wages

in the Mid-Atlantic region of the USA, gym visitor numbers in Göttingen, extreme

rainfall in Tasmania of Australia, patient satisfaction with a health care provider in

North Macedonia and malnutrition scores in India.



1
Introduction

With the rise of personal computing and the increasing availability of digital devices,

from mobile phones, cameras, smartwatches to electric toothbrushes, the amount of

digital information available nowadays is ever-increasing. As stated by Arthur C.

Clarke, however, “[...] it is vital to remember that information – in the sense of raw

data – is not knowledge; that knowledge is not wisdom; and that wisdom is not fore-

sight”(Gunawardene, 2003). This transfer of data into knowledge is the key role of a

statistician, as outlined by Senn (2003).

Crucial tools in a statistician’s toolkit are statistical regression models, which have

seen a tremendous amount of research activity and innovation throughout the last half-

century. From around 3,300 publications related to the field in 1970, almost 600,000

publications have been released to peer-reviewed journals in 2020, according to the

database “Dimensions” (Hook et al., 2018).

1
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One culmination of modeling innovation is distributional regression, which repre-

sents a natural extension of generalized linear models (GLM, Nelder & Wedderburn,

1972) and generalized additive models (GAM, Hastie & Tibshirani, 1990) in its ability

to connect any parameter θk of a K-parametric distribution y „ Dpθ1, . . . , θKq to a set

of additive and possibly non-parametric predictors. Conceived as generalized additive

models for location, scale and shape (GAMLSS, Rigby & Stasinopoulos, 2005), the

term distributional regression was introduced by Klein, Kneib, Lang, and Sohn (2015)

to also account for parameters beyond location, scale or shape. As visible in Figure 1.1,

the number of publications related to distributional regression has increased rapidly

since its original conception.
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Figure 1.1: Number of scientific publications per year using search terms “distri-
butional regression”, “GAMLSS” or “BAMLSS” collected using portal “Dimensions”
(Hook et al., 2018).

The emergence of distributional regression comes with new-found flexibility in sta-

tistical modeling, but also adds a new layer of complexity that generates its own set of

complications, with gaps that remain to be filled. Three of those, related to the visu-

alization, unbiased estimation and interpretation of distributional regression models,

are discussed and resolved in this thesis.

The first project of this thesis concerns the graphical display of distributional re-

gression models. In contrast to linear models, GLM and GAM, for which numerous

visualization tools exist, the visualization of distributional regression models is more

difficult since covariate effects might have an influence on multiple distributional pa-

rameters and using a non-identity link function makes the interpretation depend on
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other covariates. Further, modeled distributional parameters do not always equate to

moments, so a transformation is necessary to arrive at interpretable figures. To resolve

these challenges, in Chapter 3 we develop a framework which is implemented using the

statistical software language R called distreg.vis (Stadlmann & Kneib, 2021).

In the second project, the main focus is shifted towards the estimation of distribu-

tional regression models. We recognize that most distributions outside the range of the

exponential family have a non-diagonal covariance matrix of the distributional parame-

ter maximum-likelihood estimates (MLEs). While not problematic when assumed that

all parameters are constant, expressing θk as a function of additive covariate functions

fkqpXkq;βkqq leads to a bias of regression coefficients βkq if some parameters θk are

not correctly specified. The misspecification bias as found in linear models (Zimmer-

man, 2020) gains another layer in distributional regression with correlated parameters,

since regression coefficients of one parameter model specification are found to be biased

even if the misspecification occurs in another parameter. As shown in Chapter 4, we

propose a solution for two-parameter distributions by reparametrizing the probability

density function (PDF) based on a numeric solution of a system of ordinary differential

equations (ODEs) constructed using the MLE covariance matrix.

The last contribution of this thesis is motivated by a previous lack of tools to rank

the relative importance of covariate effects in a fitted distributional regression model.

While components of a traditional regression output including regression coefficients,

p values and goodness-of-fit figures are useful to make statements about the model

fit, effect significances and (possibly nonlinear) relationships between X and y, they

cannot be used to rank variable importance, since the covariate cross-correlation is not

taken into account, effects might have multiple coefficients or they are dependent on

the covariates’ scale. In Chapter 5, we review existing variable importance metrics for

linear models, including their strengths and weaknesses, and propose an extension of

these to GLM and GAMLSS. This work is implemented in the R package vibe.

The tools and frameworks developed in this thesis concerning the visualization,

estimation and interpretation of fitted regression models fill important gaps in distri-

butional regression analysis, with which researchers will be better equipped to tackle
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their inquiries. While the proposal of Chapter 4 aims to ensure that regression coeffi-

cients are unbiased, Chapters 3 and 5 are targeted at making statistical models more

accessible, thereby reducing the obstacles presented to applied researchers with the

increased complexity of distributional regression.

The remainder of this thesis will be structured as follows: Chapter 2 gives an

introduction to distributional regression models, including a brief history and math-

ematical foundation as well as current developments. Chapters 3 to 5 represent the

main contributions of this thesis, concerning visualization (3), unbiased estimation (4)

and interpretation (5) of distributional regression models. The thesis concludes and

gives an outlook in Chapter 6, while additional material about some of the chapters is

found in Appendix A.



2
Distributional regression models

2.1 Motivation

In introductory statistics courses, students learn that the realizations of many phe-

nomenona in the outside world can follow a variety of different distributions, which

depend on parameters that can change depending on the exact scenario described.

However, many popular regression methods only measure the change in one param-

eter, like the expected value of a distribution, and disregard others like the scale or

shape.

Figure 2.1 shows a scenario where kernel density estimates of yearly wages in the

Mid-Atlantic region on the east coast of the US are displayed by individuals’ education

level (James, Witten, Hastie, & Tibshirani, 2017). The distributions are noticeably

different: expected wages as well as wage variation increases with a higher education

5
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Figure 2.1: Kernel density estimates of yearly wages (in 1000$) of workers in the
Mid-Atlantic region of the United States, divided and colored by their education level.

level.

In a classical regression model, the expected value of an individual’s wage would

be connected to the education level, with the intercept varying depending on the level.

This leads to a shift in location of the target distribution, correctly picking up the

difference in average wages. However, classical regression approaches such as linear

models or generalized linear models (GLM, Nelder & Wedderburn, 1972) assume that

the dispersion parameter of the distribution is homogeneous, an assumption which

is very likely violated in this case. This leads to incorrect hypothesis testing and

confidence intervals, as outlined by Fahrmeir, Kneib, Lang, and Marx (2013, p. 80).

Models which can take into account variance differences depending on covariates are

therefore necessary to ensure correct inference.

2.2 Conception

Initial pursuits to connect parameters beyond the mean to explanatory covariates were

undertaken as early as 1987 with Murray Aitkin’s contribution “Modelling variance
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heterogeneity in normal regression using GLIM” (Aitkin, 1987), in which it was recog-

nized that in classical linear models the dispersion parameter of the dependent variable

is assumed to be homogeneous with respect to explanatory covariates, which is often

not the case. This is resolved by connecting the dispersion parameter to a user-specified

subset of predictors using a log-link function, and estimating it simultaneously with

the expected value. Aitkin published code to estimate such a model with normally

distributed errors using the statistical software GLIM (Nelder, 1975).

Taking it one step further, Smyth (1989) proposes a generalization of Aitkin’s ap-

proach to allow the target distribution to be of the exponential family, rather than

simply Gaussian. Branded “Generalized Linear Models with Varying Dispersion”, this

model class utilizes the GLM model specification for Epyq including its link function

but assumes the dispersion parameter φ to have its own connection to a subset of

additive predictors, including a link function specified independently of Epyq.

Further down this road to distributional regression, Rigby and Stasinopoulos (1996)

are concerned with effect types. Motivated by the flexibility of generalized additive

models (GAM, Hastie & Tibshirani, 1990), they propose replacing the linear predictors

used to describe both the mean and dispersion parameters µ, φ with additive and

possibly non-parametric functions of the explanatory covariates. Employing the same

user-specified link functions as Smyth (1989), their contribution is coined mean and

dispersion additive models (MADAM).

Later, Rigby and Stasinopoulos further developed MADAM into its current form

called generalized additive models for location, scale and shape (GAMLSS, Rigby &

Stasinopoulos, 2005). In this seminal paper, the constraint of using exponential fam-

ily distributions in modeling the target variable is removed to allow any distributional

choice, as long as the probability density function (PDF) is twice continuously differen-

tiable with respect to its parameters. Further, the parameters which can be connected

to explanatory variables are no longer limited to expected value and variance; they

can be any distributional parameter including kurtosis, skewness and shape. Model

estimation is conducted using penalized likelihood maximization.

Finally, distributional regression was coined as an umbrella term by Klein, Kneib,
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Lang, and Sohn (2015), encompassing the previously mentioned model classes. Fur-

thermore, it reflects the fact that not all distributional parameters may represent the

location, scale or shape of a distribution. Some models in which the predictors assume

special non-parametric forms models such as spatial or random effects are also referred

to as “structured additive distributional regression”. In those cases, estimation is usu-

ally conducted using Bayesian methods (see e.g. Klein & Kneib, 2016a; Klein, Kneib,

Lang, & Sohn, 2015; Voncken, Kneib, Albers, Umlauf, & Timmerman, 2021).

2.3 Model specification and implementations

To formally introduce the class of distributional regression models, we assume a K-

parametric distribution y „ Dpθ1, . . . , θKq. Each of the parameters θk can be connected

to a set of predictors Xk representing a subset of the full matrix of available covariates

X “ px1, . . . ,xQq. Due to the “curse of dimensionality” (Fahrmeir et al., 2013, p. 531),

we assume an additive structure of covariate effects. This leads to the following model

specification:

ηk “ βk0 `

Qk
ÿ

q“1

fkqpxkq;βkqq

hkpηkq “ θk,

(2.1)

where k “ 1, . . . , K, q “ 1, . . . , Qk and Qk ď Q with Qk, Q representing the number

of available covariates in Xk and X respectively. Explanatory covariates xq used to

model θk are represented in a possibly multivariate manner by xkq. Further, hkp¨q is

a pre-specified response function intended to uphold the support of parameter θk, and

βkq are regression coefficients of structured effect fkq. These structured effects can

have parametric (linear, categorical, interactions) or non-parametric (spatial, random,

smooth) as well as multivariate (tensor product splines) forms. This flexible model

equation means that distributional regression encompasses many known model classes,

including GLM, GAM, GAMLSS and generalized additive mixed models (GAMM, Lin

& Zhang, 1999).
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2.3.1 gamlss

Software packages for fitting distributional regression models are manifold. Acting as

the companion to Rigby and Stasinopoulos (2005), the R (R Core Team, 2020) package

gamlss (Stasinopoulos & Rigby, 2007) presents a comprehensive suite of programs to

estimate distributional regression models based on maximizing the likelihood function

with respect to the response variable and the covariate effects.

The first of gamlss’ two presented algorithms for model estimation called Rigby

and Stasinopoulos (RS) combines backfitted iteratively reweighted least squares (IRLS)

with a process that iterates over the modeled parameters. This algorithm is divided

into two parts: the inner iterations (within parameter θk) and outer iterations (between

parameters θk, θk`1, . . .). In the inner iterations, a working variable zk is created,

comprised of the predictor vector ηk “ gk pθkq, the score function uk “
B`
Bηk

with respect

to the predictor and weights wk which include different forms of the second derivative of

the log-likelihood function (e.g. observed or expected Fisher information), depending

on what is available for the specific distribution1. Then, the coefficients βk are updated

by backfitting the covariate effects fkp¨q to working variable zk using weights wk with

weighted least squares (WLS) for linear effects or penalized weighted least squares

(PLS) for non-parametric terms, until the inner iterations converge. Then, the outer

iterations repeat this step for every parameter θk until its deviance also converges

(Stasinopoulos, Rigby, Heller, Voudouris, & De Bastiani, 2017).

In the second algorithm implemented by gamlss labelled Cole and Green (CG),

each (expected or approximate) cross-derivative of the log-likelihood function with

respect to the parameters is required to calculate iterative weights zk in each update

of the regression coefficients. Further, in contrast to RS, the fitting of covariate effects

to working variable zk using weights wk is not repeated until converging within one

parameter θk, but also represents an outer iteration. Updates of regression coefficients

are however again calculated using a modified backfitting algorithm. This contrast to

RS makes the algorithm faster in some cases, but is also generally more unstable. For

1The bold-letter notation for θ taken from (Rigby & Stasinopoulos, 2005) refers to a vector of
observations, not parameters. The rest of this thesis refers to θ as a vector of parameters pθ1, . . . , θKq

ᵀ.
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this reason, RS is preferred and set as default by the developers (Stasinopoulos et al.,

2017).

2.3.2 bamlss

An extensive alternative to gamlss is given by the R package bamlss, implementing

Bayesian additive models for location, scale and shape (BAMLSS, Umlauf et al., 2018).

With many built-in distributions including an interface to the gamlss distributions

in the package gamlss.dist (Stasinopoulos & Rigby, 2019) and a wide variety of

available effect types, it offers similar flexibility to gamlss. As the name suggests,

model estimation is conducted using Bayesian methods: coefficients are assumed to

follow a prior distribution, rather than being fixed. Combined with the likelihood

function with respect to the regression coefficients, response variable and explanatory

covariates, this creates the log-posterior density log π:

log πpβ, τ | y,X,αq9 lpβ | y,Xq
looooomooooon

log-likelihood

`

K
ÿ

k“1

Qk
ÿ

q“1

log pqk
`

βqk | τ qk,αqk

˘

loooooooooooooooooomoooooooooooooooooon

prior distributions

, (2.2)

where βqk are regression coefficients for the qth covariate effect on distributional pa-

rameter θk and therefore are a subset of β, and y,X are response and design matrices

of explanatory variables respectively. Vectors τ qk and αqk are both parameters of the

prior distributions pqkp¨q; τ combining all τ qk represents hyper-parameters having their

own distribution dτ qkp¨q, while α consisting of αqk are fixed. Hyper-parameters τ jl are

usually variances, which can be used to control the degree of smoothness of fjlp¨q or

the amount of correlation between observations (Umlauf et al., 2018).

When estimating regression coefficients in bamlss, the posterior mode is first maxi-

mized with respect to the coefficients β of interest. The values found after optimization

are then used as starting values for Markov chain Monte Carlo (MCMC) simulation,

which results in a matrix with samples from the posterior distribution of β. While

the two-stage approach of bamlss is computationally more expensive than maximum-

likelihood estimation, the usage of MCMC samples and subsequent ease of constructing
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credible intervals yields more reliable uncertainty measures than asymptotic confidence

intervals.

2.3.3 VGAM

Vector generalized linear and additive models (VGAM, Yee, 2015) and the correspond-

ing R package VGAM (Yee, 2010) represent an implementation of distributional regres-

sion models that has been available since the early days of R programming (Yee &

Hastie, 2003). While originally focused on multivariate responses, it has since grown

to include a wide range of modeling approaches, including ordinal regression models,

copulas combining distributions of different types and distributions outside of the expo-

nential family. A wide range of smoothing functions exist to connect any distributional

parameter to explanatory covariates. Estimation is conducted with IRLS.

2.3.4 Other implementations

A list of implementations of distributional regression would not be complete without

mgcv (Wood, 2011). Originating as a software to fit GAMs, it has evolved to allow

for multi-parameter equations, albeit only for a select number of distributions mostly

within the exponential family. BayesX (Brezger, Kneib, & Lang, 2005) implements

Bayesian structured additive regression (STAR) models including multi-parameter ef-

fects, and provides an R interface named R2BayesX (Umlauf, Adler, Kneib, Lang, &

Zeileis, 2015). Its strengths lie in its customizability and special effects, e.g. spatial

terms. The package betareg (Cribari-Neto & Zeileis, 2010) provides multi-parameter

additive regression tailored to the beta distribution. In gamboostLSS (Thomas et

al., 2018) a regularized estimation in the form of gradient boosting is combined with

GAMLSS. The result is a package well suited for high-dimensional predictor scenarios.

In GJRM (Marra & Radice, 2017) the specification of bi- and trivariate response dis-

tributions is possible, without the need to have the same marginal distributions. All

parameters of the multivariate response distribution can then be connected to additive

predictors.
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2.4 Current developments

Distributional regression remains a method with an active research community and

numerous ongoing developments. While gamlss already implements a large amount of

distributions, it is limited to a univariate response. Klein, Kneib, Klasen, and Lang

(2015) propose a Bayesian multivariate distributional regression framework, which sup-

ports continuous, discrete and latent responses as well as non-parametric predictors.

Many other projects are centered around model estimation and effect selection:

Thomas et al. (2018) improve the existing gamboostLSS estimation technique with

a gradient-boosting algorithm that incorporates “stability selection”, a method that

tests the stability of covariates by repeatedly subsampling the data. An alternative

effect selection for distributional regression building on the least absolute shrinkage

and selection operator (LASSO, Tishbirani, 1996) is proposed for linear and categorical

covariates in Groll, Hambuckers, Kneib, and Umlauf (2019). Tackling a similar issue

from a Bayesian perspective, Klein, Carlan, Kneib, Lang, and Wagner (2021) introduce

a Spike and Slab prior specification into the distributional regression model class.

Since effect types in distributional regression can be non-parametric, the avail-

able options are ever-increasing. In Klein, Nott, and Smith (2021), deep neural net-

works (DNN) are fused with distributional regression to cater for audiences with high-

dimensional predictor spaces desiring high prediction accuracies. An implementation

is showcased in Rügamer et al. (2021). Schlosser, Hothorn, Stauffer, and Zeileis (2019)

propose a framework and implementation called disttree to connect decision trees to

distributional parameters.



3
Interactively visualizing distributional

regression models

3.1 Introduction

For modeling parameters beyond the mean of a target distribution, generalized ad-

ditive models for location, scale and shape (GAMLSS, Rigby & Stasinopoulos, 2005)

as introduced by Rigby and Stasinopoulos (2005) provide the ability to link all pa-

rameters characterizing the response distribution to a set of explanatory variables via

an additive predictor, similar in spirit to generalized additive models but without its

distributional limitations. Overcoming some of GAMLSS’ earlier restrictions, distribu-

tional regression as coined by Klein, Kneib, Lang, and Sohn (2015) presents a highly

flexible modeling framework with a variety of possible target distributions and a wide

13
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range of effects including parametric penalized splines, random and spatial effects as

well as non-parametric effects such as regression trees.

Implementations of distributional regression models feature gamlss (Stasinopoulos

& Rigby, 2007) and bamlss (Umlauf et al., 2018), the most prominent extensions with

a vast selection of available distributions and effects. A number of software extensions

have also been developed to support specific instances of the distributional regression

class, such as betareg (Cribari-Neto & Zeileis, 2010) for beta regression. While gamlss

and betareg employ different types of maximum likelihood estimation, bamlss imple-

ments a Bayesian approach featuring posterior mode estimates which are subsequently

used as starting values for Markov chain Monte Carlo (MCMC) sampling. This has the

added benefit of being able to construct the posterior distribution of each parameter

as well as potentially complex functions of these parameters.

Moving beyond single-parameter regression models naturally leads to additional

challenges when it comes to the interpretation of the estimated effects, since the same

covariate may show up in multiple regression predictors and applying a non-identity

link function additionally makes the interpretation depend on the remaining set of

covariates. Furthermore, in many cases the parameters employed to characterize the

distribution of interest do not directly equate to the moments or other interpretable

characteristics of a distribution, making another transformation necessary to arrive at

interpretable figures.

As a consequence, applied researchers often appreciate the practical appeal of dis-

tributional regression where regression relations beyond the mean can be investigated,

but they struggle when it comes to understanding the output of the regression esti-

mates. To facilitate this process, we introduce a new package distreg.vis that can

deal with model classes from the bamlss, gamlss and betareg packages to achieve the

following tasks:

• moments(): Obtain predicted moments (expected value, variance) of the target

distribution based on user-specified values of the explanatory variables, if they

exist.
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• plot_dist(): Create a graph displaying the predicted probability density func-

tion (PDF) or cumulative distribution function (CDF) based on the same user-

specified values.

• plot_moments(): View the marginal influence of a selected effect on the predicted

moments of the target distribution.

With those functions, applied scientists can directly translate regression objects

into publication-ready graphs without the need to worry about package-specific predict

and plotting functions, the connection between predicted parameters and moments or

the correct display of predicted PDFs. To make the process of interpreting fitted

distributional regression models even more accessible, distreg.vis features a rich

graphical user interface (GUI) built on the shiny framework (Chang, Cheng, Allaire,

Xie, & McPherson, 2018). Using this GUI, the user can (a) obtain an overview of

the selected model fit and then use the functions mentioned above to (b) easily select

explanatory values for which to display the predicted distributions, (c) obtain marginal

influences of selected covariates and (d) change aesthetic components of each displayed

graph. Following a successful analysis, the user can obtain the R code needed to

reproduce all displayed plots without having to start the application again.

The idea of calculating conditional values of the response distribution by way of

plot moments() is not new. In fact, many other R packages feature aspects of the

functionality of distreg.vis. Notably, the effects package (Fox & Weisberg, 2019)

is an extensive library for calculating conditional means of the response distribution

depending on varying explanatory covariates in linear, generalized linear and mixed

effects-type models. Lacking the graphing capabilites of effects while putting more

focus on the estimation of marginal means, the prediction (Leeper, 2019) package

offers a bigger range of supported model classes and even non-parametric effects.

Certainly the most general marginal effects packages are emmeans (R. Lenth, 2019),

formerly called lmmeans (R. V. Lenth, 2016), and ggeffects (Lüdecke, 2018), as they

not only offer a large variety of supported model classes and predictor effects but, con-

trary to effects and prediction, also include the compatibility to all of distreg.vis’
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supported distributional regression model classes: gamlss, betareg and bamlss (only

supported by ggeffects). However, even the latter two effects packages are only

able to compute marginal means of moment values for betareg and fail to provide

the same functionality for bamlss and gamlss, where predictions remain restricted to

the parameter-level. As such, distreg.vis is the only package which supports both

gamlss, bamlss and betareg in full generality and can calculate marginal effects on

the moments and not only the parameters of a distribution.

The package distreg.vis is available on the Comprehensive R Archive Network

(CRAN) at https://cran.r-project.org/web/packages/distreg.vis/index.html.

The remainder of this paper is structured as follows: Section 3.2 provides an exam-

ple tutorial on analysing income distributions in which using distreg.vis yields a ben-

efit. Section 3.3 covers the methodological background of the distributional regression

model class and its implementations, while Section 3.4 details how distreg.vis itself is

implemented in R. The GUI is showcased in Section 3.5, while Section 3.6 features an ap-

plication using hourly visitor data of a gym in Göttingen. Section 3.7 concludes the pa-

per. The appendices show how distreg.vis can be extended (Section A.1.1), display

special cases of distreg.vis’ functions (Section A.1.2) and provide complementary

graphs (Section A.1.3). The datasets, R scripts as well as the appendices are available

in the online supplemental materials at www.statmod.org/smij/archive.html.

3.2 Motivating example: Drivers of yearly income

To illustrate the usefulness of distreg.vis, we will give a short example based on

a dataset on the yearly income of 3,000 male workers in the Mid-Atlantic region of

the United States, provided by the ISLR package (James et al., 2017). This dataset

will then be used continuously throughout Section 3.2 and 3.5 as well as parts of the

Appendix to illustrate distreg.vis’ abilities.

The dataset consists of 11 variables, both continuous and categorical. Our variable

of main interest, i.e. the response in the following regression analyses, is given by indi-

viduals’ raw yearly income in thousand US$ (variable wage). The remaining variables

https://cran.r-project.org/web/packages/distreg.vis/index.html
www.statmod.org/smij/archive.html
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mostly contain socioeconomic information, including the person’s age in years (age),

their ethnic origin (ethnicity), their level of education (education) and the year

in which the observation was recorded (year). Considering its non-negative nature,

we start by assuming a log-normal distribution for the wages, y „ Lognormalpµ, σ2q.

Though more complex distributions would provide a slightly better fit than the log-

normal, it was chosen for its simplicity and popularity.

To find out what drives a person’s income, we will link both parameters of the

log-normal distribution to the aforementioned explanatory variables. The model spec-

ification therefore has the following form:1

µ “ β10 ` f11pageq ` β12 ¨ year` f13peducationq ` f14pethnicityq

logpσq “ β20 ` f21pageq ` β22 ¨ year` f23peducationq ` f24pethnicityq
(3.1)

where the functions f11, f21 are modeled non-parametrically using penalized splines

(Eilers & Marx, 1996), while f13, f23, f14 and f24 are modeled as simple fixed categorical

effects of the respective variables. All effects with more than one degree of freedom are

therefore consistently denoted with fkqp¨q to emphasize that the original input variable

has to be recoded prior to inclusion in the model. The standard deviation parameter σ

is connected to the explanatory variables using a log-link function to ensure a positive

support.

Combined with the sample-based estimation technique of bamlss, distreg.vis can

produce credible intervals around marginal influence plots. For this reason, we choose

bamlss for model estimation, using the following code:

R> wage_model <- bamlss(

+ list(

+ wage ~ s(age) + ethnicity + year + education ,

+ sigma ~ s(age) + ethnicity + year + education

+ ),

+ data = Wage ,

1As mentioned in the List of Notation, Chapter 3 mostly uses µ and σ for the first and second
parameter of a distribution, respectively, whereas the rest of the thesis uses θ1 and θ2 (or higher
indices). This is due to compatibility with supported software packages which use the µ, σ notation.
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+ family = lognormal_bamlss ()

+ )

After successful estimation, it makes sense to have a look at the model summary.

Using the built-in summary.bamlss() function, we can take a look at the results:

R> print(summary(wage_model), digits = 1)

[output shortened]

Formula mu:

---

wage ~ s(age) + ethnicity + year + education

-

Parametric coefficients:

Mean 2.5% 50% 97.5% parameters

(Intercept) 36.834 14.075 36.606 61.579 38.0

ethnicity2. Black 0.008 -0.077 0.007 0.101 0.0

[output shortened]

-

Smooth terms:

Mean 2.5% 50% 97.5% parameters

s(age).tau21 0.33 0.06 0.23 1.21 0.3

s(age).alpha 1.00 1.00 1.00 1.00 NA

s(age).edf 5.99 4.52 5.96 7.63 6.4

---

Formula sigma:

---

sigma ~ s(age) + ethnicity + year + education

-

Parametric coefficients:

[output shortened]

-

Smooth terms:

Mean 2.5% 50% 97.5% parameters

s(age).tau21 2.5 0.5 2.0 7.7 2

s(age).alpha 0.9 0.4 1.0 1.0 NA
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s(age).edf 6.3 4.7 6.3 7.6 6

---

[output shortened]

As visible in the code output, bamlss provides estimation results for each effect

used to describe the target distribution parameters (µ and σ in this case). Even though

making statements about each effect’s significant difference from zero is possible, the

interpretation of such statements as well as for the raw effect estimates is difficult.

Model results of penalized splines, for example, only show estimates for their degree of

smoothness (τ and α) and estimated degrees of freedom. Without appropriate graphs

showing the marginal effect they can therefore not be interpreted. Furthermore, even

the absolute coefficients for the categorical effects cannot be taken at face value, since

they only affect the distributional parameters µ and σ, and not the moments.

To overcome these limitations, we use distreg.vis. If, for example, we are in-

terested in the impact of education on the marginal income distribution, we create a

data.frame object in which all different education categories are present and all other

numeric variables are set to their mean. This can be easily achieved by the function

set_mean() in combination with model_data, which obtains the explanatory covari-

ates of the model and sets them to the mean. Further defining the row.names of the

data.frame to be the different education levels ensures improved legends in further

graphs.

R> df <- set_mean(

+ model_data(wage_model),

+ vary_by = "education"

+ )

R> row.names(df) <- levels(Wage$education)

R> df

ethnicity year education age

1. < HS Grad 1. White 2006 1. < HS Grad 42

2. HS Grad 1. White 2006 2. HS Grad 42

3. Some College 1. White 2006 3. Some College 42

4. College Grad 1. White 2006 4. College Grad 42
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Figure 3.1: Predicted distributions for each covariate combination specified in the
df data.frame object.

5. Advanced Degree 1. White 2006 5. Advanced Degree 42

Now, it will be interesting to see the predicted distribution for all five cases. To

achieve this, we first use distreg.vis‘ preds() function and obtain the predicted dis-

tributional parameters. Then, we include them into plot_dist() to plot the complete

distributions:

R> pp <- preds(model = wage_model , newdata = df)

R> pp

mu sigma

1. < HS Grad 4.485241 0.2691822

2. HS Grad 4.603004 0.2886467

3. Some College 4.722890 0.2826761

4. College Grad 4.836627 0.3278559

5. Advanced Degree 5.002570 0.3490710

R> plot_dist(wage_model , pred_params = pp)
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Figure 3.1 displays the predicted distributions for each covariate combination spec-

ified in df. We can see that the predicted income not only changes in location (higher

education shifts the distribution to the right), but also in the variance (higher education

leads to a higher variance).

Figure 3.1 is useful to get a visual feel of the influence of education on the modeled

distribution. However, we would also like to know the influence of age, which is

not a categorical covariate, on the predicted moments of the log-normal distribution.

Normally, this would be a tedious task, as the modeled non-parametric effect has to be

transformed two times: first, via the link function to ensure the correct support of the

modeled parameters. And second, from the parameters to the distributional moments,

as the parameters of the log-normal distribution do not directly equate to its moments.

The function plot_moments() was written to solve this task. It takes both a fitted

distributional regression object and combinations of explanatory variables for which

the influence is of interest. In our case, we specify both the df and wage_model objects

as arguments of the function:

R> plot_moments(

+ wage_model ,

+ int_var = "age",

+ pred_data = df ,

+ rug = TRUE ,

+ samples = TRUE ,

+ palette = "viridis",

+ uncertainty = TRUE

+ )

Executing the above code results in what can be seen in Figure 3.2. The plot is

divided into two parts representing the first two moments of the target distribution

labelled “Expected Value” and “Variance”. On both graphs, the y-axis depicts the

moment values, while x-axis displays the variable of interest, which is age in our case.

The lines seen in each graph represent the previously specified covariate combina-

tions, and then display how the moment changes over the whole range of the variable

of interest. In our case the five different lines represent different education levels. We
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Figure 3.2: Impact of variable age on the first two predicted moments of the target
wage distribution, including its 95% credible intervals.

can now see that the expected wage level first rises with age until around the age of 40,

when it is lowered a bit. Then the income levels increase again up until the age of 60,

at which point the wage then decreases. We can also see that this shape roughly stays

the same for each education level, which stems from the lack of a modeled interaction

effect between age and education.

A strong advantage of the sample-based approach of bamlss is its ability to easily

construct credible intervals around the parameter estimates. In Figure 3.2 we can see

small shadows representing credible intervals above and below each of the five lines

describing the age effect on the first two moments in each education category. Since

the first and highest education categories do not overlap, we can conclude that their

effect is significantly different from each other, just from observing the graph.

Looking at the right part of Figure 3.2, we can see that the modeled variance

levels of the target distribution show similar linkage to age as the expected value: two

high points can be observed around the age of 40 and 60, both at which the modeled

distribution reaches the highest wage variance.
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Figure 3.3: Impact of variable age on the first two predicted moments of the
target wage distribution (equivalent to Figure 3.2) as well as a user-specified function
(gini()), including its credible intervals.

Even though Figure 3.2 only shows the influence of age on the first two moments,

plot_moments() is easily able to include other metrics that depend on the predicted

parameters, using its argument ex_fun. A good example in wage distributions would

be the Gini coefficient (Lerman & Yitzhaki, 1984), an economic figure measuring a

distributions’ inequality. Including this measure in our effect plots can be done using

the following code:

R> gini <- function(par) {

+ 2 * pnorm((par[["sigma"]] / 2) * sqrt (2)) - 1

+ }

R> moments_plot_exfun <- plot_moments(

+ wage_model , int_var = "age",

+ pred_data = df , samples = TRUE ,

+ uncertainty = TRUE , ex_fun = "gini",

+ rug = TRUE

+ )
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Figure 3.4: Impact of variable ethnicity on the first two predicted moments of
the target wage distribution.

As visible in Figure 3.3, a new graph window was added in comparison to 3.2 depict-

ing the influence of age on our specified metric, the Gini coefficient. Further noticable

are the credible intervals which we can also obtain if we combine plot_moments() with

the sample-based approach of bamlss.

The function plot_moments() is also able to display the difference in moments

depending on a categorical covariate. No other arguments have to be specified -

distreg.vis is able to detect the variable type automatically. In the following code

chunk, the variable ethnicity is selected as the variable of interest.

R> plot_moments(

+ wage_model , int_var = "ethnicity",

+ pred_data = df, samples = TRUE ,

+ palette = "viridis", uncertainty = TRUE

+ )

Figure 3.4 now shows the result of the code chunk above. On the x-axis we can

see the categories of our variable of interest, ethnicity. The y-axis now denotes the

moments broken up by both the variable of interest and the categories of education,
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which we specified in the code chunk on page 19. The error bars on the ends of each bar

represent credible intervals (95%). From analysing the bars with their error fields we

can conclude that the variable education mostly yields significantly different expected

values of wage, while ethnicity does not.

From the provided example on modeling wages, it became apparent that distri-

butional regression is a useful tool to handle complex model scenarios. Nonetheless,

visualizing the fitted regression models using existing tools is difficult, as transforma-

tions are necessary to arrive at interpretable figures. This process is made easier by

distreg.vis, which gives the abilities to quickly visualize predicted distributions and

display marginal moment influences.

3.3 The distributional regression model class

Distributional regression models represent an umbrella class for models where it is

possible to link the parameters beyond the mean of a target distribution to available

predictors (Klein, Kneib, Lang, & Sohn, 2015). Any choice of the underlying parametric

target distribution is valid, as long as the PDF is twice continuously differentiable with

respect to the parameters and, in particular, is not limited to the exponential family

typically employed in generalized additive models. Assuming a parametric distribution

y „ Dpθ1, . . . , θKq with K distributional parameters θ1, . . . , θK , we arrive at the model

specification

ηk “ βk0 `

Qk
ÿ

q“1

fkqpxkq;βkqq

hkpηkq “ θk,

(3.2)

where hkp¨q, k “ 1, . . . , K denotes the response function used to uphold the support

of parameter θk, fkqp¨q, q “ 1, . . . , Qk represents the possibly non-parametric effect of

covariate(s) xkq on the modeled parameter and βkq, q “ 1, . . . , Qk depict the regression

parameters which are to be estimated.

Depending on the software package used to fit a distributional regression model, a
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vast selection of possible effects are available, including but not limited to penalized

splines (also in multivariate forms), spatial effects based on Gaussian random fields or

Markov random fields, varying coefficient terms and random effects (see Fahrmeir et

al., 2013, Ch. 9 for an overview). More recently, new research is done on connecting

the distributional regression framework to effects known from Machine Learning, e.g.,

Random Forest (Schlosser et al., 2019). Multivariate extensions have also gained con-

siderable interest in the past, see for example Klein, Kneib, Klasen, and Lang (2015),

Klein and Kneib (2016b) or Marra and Radice (2017).

Due to the high flexibility in the target distributions, the predictors and the spec-

ified link function, distributional regression encompasses many well-known regression

approaches, such as generalized linear models (Nelder & Wedderburn, 1972, GLM),

generalized additive models (Hastie & Tibshirani, 1990, GAM), generalized additive

mixed models (Lin & Zhang, 1999, GAMM) and generalized additive models for lo-

cation, scale and shape (Rigby & Stasinopoulos, 2005, GAMLSS). Although in the-

oretical proximity to GAMLSS, the term distributional regression was coined since

distributional parameters do not always represent either the location, scale or shape of

a distribution (Klein, Kneib, Lang, & Sohn, 2015).

3.3.1 Implementations of GAMLSS

For estimating distributional regression models in R, the two most capable software im-

plementations are gamlss (Stasinopoulos & Rigby, 2007) and bamlss (Umlauf et al.,

2018), with the package betareg (Cribari-Neto & Zeileis, 2010) only focusing on beta

regression. The main difference in gamlss and bamlss is rooted in their estimation

techniques, which will be described below:

gamlss

The gamlss package features a frequentist approach employing (penalized) maximum

likelihood inference. Its main estimation algorithm, RS, short for Rigby and Stasinopou-

los, uses iteratively reweighted least squares (IRLS) in combination with a modified
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backfitting algorithm to arrive at coefficient estimates. The algorithm system is bro-

ken up into inner and outer iterations, with each inner iteration depicting the fitting

of one distributional parameter θk. Here, a working variable zk consisting of all used

predictors, the first derivative of the likelihood (score function) and “iterative weights”

wk, determined with a local scoring algorithm, is calculated. Then, the working vari-

able is fitted to the explanatory variables using backfitted weighted least squares and

penalized weighted least squares for parametric and non-parametric coefficients, respec-

tively. The inner iteration is repeated until the inner global deviance has converged.

This procedure is done for every θk, after which one outer iteration is finished. The

outer iterations are further repeated until the outer global deviance has also converged

(Stasinopoulos et al., 2017, Ch. 3).

Estimating parameters with backfitting has the advantage of avoiding the need for

cross-derivatives and is therefore quite efficient. Uncertainty assessments typically rely

on asymptotic normality assumptions and have been found to be pretty conservative

in simulation studies (see for example Klein, Kneib, & Lang, 2015).

The collection of gamlss packages provides a vast number of distributions via its

accompanying package gamlss.dist (Stasinopoulos & Rigby, 2019) as well as several

extensions concerning spatial data effects (gamlss.spatial, De Bastiani, Stasinopou-

los, & Rigby, 2018) or truncated distributions (gamlss.tr, Stasinopoulos & Rigby,

2018), for example.

bamlss

The bamlss package (Umlauf et al., 2018, BAMLSS) provides a highly customiz-

able Bayesian estimation framework with both posterior mode estimates via penal-

ized likelihood and fully Bayesian inference implemented via MCMC simulation tech-

niques. By default, it revolves mainly around two functions: bamlss::bfit() and

bamlss::GMCMC(). The first function, bfit(), utilizes an optimizing function which

seeks to find the mode of the posterior distribution via penalized likelihood with respect

to the effect coefficients. Then, those values are used as starting numbers for MCMC

simulations (function GMCMC()), which are based on iteratively weighted least squares
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proposals that rely on multivariate normal proposals obtained from locally quadratic

approximations of the log-full conditional (Brezger & Lang, 2006).

Both functions can be swapped by the user with optimizer and sampler functions

that more closely resemble the subjective preference. As such, the implementation of

bamlss represents a lego-type toolbox that enables replacing specific parts of the model

specification with alternative and potentially more flexible variants without altering

the rest of the model implementation. Compared to gamlss, the number of supported

distributions is more limited but the access to posterior samples facilitates finite sample

inference also for complex functionals of the original parameters. Default priors are

assigned to all parameters of the model specification, but these can also be controlled

by the user.

3.3.2 Distributional compatibility

To ensure a wide user audience, distreg.vis is able to support a variety of distribu-

tions from the gamlss, bamlss and betareg packages. Table 3.1 gives an overview, and

divides the available distributions into those that can be used in both plot_dist()

and plot_moments() (Table 3.1a), and those that can only be used in combination

with plot_dist() (Table 3.1b). Table 3.1b consists of distributions which do not have

existing moments or do not have any implementations yet, rendering them incompat-

ible with plot_moments(). To include as many distributional families as possible, we

worked together with both the authors of gamlss (Stasinopoulos & Rigby, 2007) and

bamlss (Umlauf et al., 2018) and implemented the moment functions for almost all

available distributions in their respective packages.

3.4 Implementation of distreg.vis

Understanding the inner workings of distreg.vis is best done by starting at the

two most important functions, plot_dist() and plot_moments(). Each function is a

direct answer to the two central questions which led to the creation of distreg.vis:
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Name of
distribution class

Name of
distribution class

beta bamlss NO2 gamlss
binomial bamlss NOF gamlss
cnorm bamlss PARETO2 gamlss
gamma bamlss PARETO2o gamlss
gaussian bamlss PE gamlss
gaussian2 bamlss PE2 gamlss
glogis bamlss PIG gamlss
gpareto bamlss PO gamlss
lognormal bamlss RG gamlss
multinomial bamlss SHASHo gamlss
poisson bamlss SICHEL gamlss
BE gamlss SN1 gamlss
BEo gamlss SN2 gamlss
BNB gamlss SST gamlss
DEL gamlss ST2 gamlss
EGB2 gamlss ST3 gamlss
exGAUS gamlss ST3C gamlss
EXP gamlss ST4 gamlss
GA gamlss ST5 gamlss
GB2 gamlss TF gamlss
GEOM gamlss TF2 gamlss
GEOMo gamlss WEI gamlss
GG gamlss WEI2 gamlss
GIG gamlss WEI3 gamlss
GPO gamlss ZAGA gamlss
GT gamlss ZALG gamlss
GU gamlss ZANBI gamlss
IG gamlss ZAP gamlss
IGAMMA gamlss ZAPIG gamlss
JSU gamlss ZASICHEL gamlss
JSUo gamlss ZAZIPF gamlss
LG gamlss ZIBNB gamlss
LO gamlss ZINBI gamlss
LOGNO gamlss ZIP gamlss
NBF gamlss ZIP2 gamlss
NBI gamlss ZIPF gamlss
NBII gamlss ZIPIG gamlss
NO gamlss ZISICHEL gamlss
betareg betareg - -

(a)

Name of
distribution class

Name of
distribution class

BCCG gamlss LOGNO2 gamlss
BCCGo gamlss LQNO gamlss
BCPE gamlss SEP gamlss
BCPEo gamlss SEP1 gamlss
BCT gamlss SEP2 gamlss
BCTo gamlss SEP3 gamlss
BEINF gamlss SEP4 gamlss
BEINF0 gamlss SHASH gamlss
BEINF1 gamlss SHASHo2 gamlss
BEOI gamlss ST1 gamlss
BEZI gamlss ZABB gamlss
BI gamlss ZABI gamlss
DPO gamlss ZAIG gamlss
GB1 gamlss ZIBB gamlss
GP gamlss ZIBI gamlss
LOGITNO gamlss ZINBF gamlss

(b)

Table 3.1: Supported dependent variable distributions in distreg.vis. Table b)
shows distributions where only visualizing the PDF/CDF depending on specified co-
variate combinations is possible (plot_dist()). Table a) lists the distributions where
both the PDF/CDF function and the “moments plot” detailing the influence of a co-
variate on the distributional moments (plot_moments()) are supported.

1. What exactly does my predicted distribution look like, based on selected covariate

combinations?

2. How do the expected moments of my target distribution vary over the range of

a specific variable of interest?

The remaining functions of the distreg.vis solely feature a supportive character
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easing the overall computative process. Here, we start with plot_dist():

3.4.1 Visualization of distribution predictions

To accurately display the predicted distribution of a covariate combination, the first

step is to gather the appropriate distributional parameters from which to build the PDF

or CDF. These parameters are obtained by choosing certain covariate combinations

and then using the estimated model for prediction. These covariate combinations are

usually user-picked, but distreg.vis offers a few tools to ease the choosing process,

as shown below.

Choosing covariate combinations

This section introduces tools to make using both plot_moments() and plot_dist()

easier by creating datasets to predict with in the correct format. To quickly obtain

a data.frame object with all variables set to their mean, one can use model_data()

to obtain the covariates with which the model was estimated, and then set_mean()

to calculate the average values of each covariate. Both functions and their arguments

are repeatedly used in and as such are part of the main functions in distreg.vis,

plot_dist() and plot_moments().

The usage of model_data() is as follows:

model_data(model , dep = FALSE , varname = NULL)

where model represents one of distreg.vis’ supported model classes. It returns

a data.frame object containing the explanatory variables, except when dep = TRUE

(returns vector of dependent variable) or when varname is specified in character form

(returns a vector of a specifically named explanatory variable).

After obtaining the explanatory variables, reducing its dimensions to the mean is

achieved with set_mean(), the usage of which is as follows:

set_mean(input , vary_by = NULL)

With the argument input, a data.frame object is specified, which can conveniently

be the output of a model_data() call. Then, average values are calculated of each
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column in input. For categorical variables, the first level of the underlying factor class

is taken, which in model estimation typically corresponds to the reference category.

Using the argument vary_by(), the user can specify an explanatory variable in

character form, over which the returned data.frame is “varied”. This means that the

returned object consists of the same number of columns as before, but with multiple

rows and varying values in the covariate of choice. If this variable is categorical, then

the varying values consist of the possible categories. In numeric cases, a sequence of

five values, ranging from the 2.5% to the 97.5% quantile is created. All other variables

stay constant at their mean or reference category. This argument is very useful for a

display of marginal distributions, based on the resulting data.frame object.

To show an example of the ease of use of the aforementioned functions, we consider

the same model that was fit in Section 3.2. To retrieve the explanatory variables of

that model and set them to the mean with varying values in the categorical covariate

education, we can run the code shown on Page 19. From the code chunk results, we can

now quickly make parameter predictions and obtain either graphs with the marginal

distribution (plot_moments()), or marginal influence plots (plot_moments()). Fur-

ther defining the row.names of the data.frame to be the different education levels

ensures improved legends in further graphs.

Parameter predictions

Predicted parameters of the target distribution are usually outputs of predict.object()

functions for each regression model class. This is no different in the case of bamlss,

gamlss or betareg, for which those functions also exist. Unfortunately, the usage of all

three predict functions is not consistent over its respective packages, and sometimes

not even within the package throughout parameters of different target distributions.

For example, predict.bamlss() returns a vector if the predicted distribution only

consists of one parameter, a list of vectors if it consists of more than one, and a list of

matrices if the MCMC samples of the predicted parameters are desired. To ensure unity

and guarantee type consistency over the supported packages outcome classes, preds()

was written. Without worrying about class-specific function arguments, it offers a
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consistent way of obtaining predictions based on specific covariate combinations. Its

usage is as follows:

preds(model , newdata = NULL , what = "mean", vary_by = NULL)

where model represents a fitted gamlss, bamlss or betareg object and newdata a

data.frame with different covariate combinations in each row. If newdata is omitted

(= NULL), then the mean of the explanatory variables are used for prediction, utilizing

set_mean(). This can be used in combination with the argument vary_by, which then

creates a newdata that consists of varying values in one specific variable (see Chapter

3.4.1 for details).

The argument what specifies whether the predicted parameters should be directly

calculated (what = "mean"), or the output should consist of samples of the predicted

parameter (what = "samples"). This option is only available for the bamlss model

class, and is necessary for exact estimates of the predicted moments or other measures

derived from the parameters and for the construction of credible intervals at a later

stage (e.g., for plotting).

Obtaining samples for the predicted parameters of our target distribution, based

on the different education levels defined in df can now be done as follows, using the

option what = "samples":

R> pp_samples <- preds(model = wage_model ,

+ newdata = df,

+ what = "samples")

R> lapply(pp_samples , head , 2)

$‘1. < HS Grad ‘

mu sigma

[1,] 4.506987 0.2850489

[2,] 4.485811 0.2498074

$‘2. HS Grad ‘

mu sigma

[1,] 4.630472 0.2872791

[2,] 4.592440 0.2883318
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$ ‘3. Some College ‘

mu sigma

[1,] 4.759729 0.2878243

[2,] 4.712548 0.2792889

$ ‘4. College Grad ‘

mu sigma

[1,] 4.864325 0.3270728

[2,] 4.816144 0.3139536

$ ‘5. Advanced Degree ‘

mu sigma

[1,] 4.999823 0.3329738

[2,] 4.991542 0.3368283

In this case, the object pp_samples was produced as a list with as many elements

as preselected covariate combinations. Each element is a matrix containing samples in

rows (by default bamlss keeps n “ 1001, of which the first two rows are shown above)

for all distributional parameters (in this case two: µ, σ). The two plotting functions

of distreg.vis automatically recognize the object and can extract information from

both maximum-likelihood estimates (MLEs) (gamlss or betareg) or MCMC samples

(bamlss). If the predicted parameters are provided in the form of samples (as a list

object in R), plot_moments() is able to display credible intervals above and below the

predicted moments.

Visualize predicted distributions

To get a feel for the predicted distributions and their differences, it is best to visual-

ize them. In combination with the obtained parameters from preds(), the function

plot_dist() finds the necessary distribution functions (PDF or CDF) from the re-

spective packages and then displays them graphically.

Creating the distributional graph is a five step process, beginning with the right

input; the arguments. The usage of plot_dist() is as follows:
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plot_dist(model , pred_params = NULL , palette = "viridis",

type = "pdf", rug = FALSE , vary_by = NULL , newdata = NULL)

As before, model depicts the fitted distributional regression model. The argument

pred_params takes the previously predicted parameters of the fitted distribution. Op-

tions palette and rug yield aesthetic changes; the first one is able to process any

character string that resembles either "default", which results in displaying the de-

fault color palette of ggplot2 (Wickham, 2016), "viridis" for a colorblind-friendly

palette from the viridis package (Garnier, 2017) or a palette from the RColorBrewer

package (Neuwirth, 2014).

If the user wishes to leave out the step of specifying predicted parameters with

pred_params, the argument newdata can be provided instead. This argument will then

be passed onto preds, which internally computes the predicted parameters used for

plotting the distribution functions. If neither pred_params nor newdata are specified,

then plot_dist() uses the mean values of the explanatory variables with set_mean()

to predict the parameters used for plotting. The argument vary_by is also passed on to

set_mean() which, if specified, leads to plot_dist() displaying marginal distributions

over the range or categories of a specified variable (see Section 3.4.1 for details).

The last argument rug, as the name implies, adds a “rug graph” below the distri-

bution plots, which shows small vertical strips indicating where actual observations of

the dependent variable lie. Using the argument type, one can switch between PDFs

("pdf") or CDFs ("cdf").

After plot_dist() has received all necessary arguments, it executes validity checks

to ensure the argument’s correct specification. This includes controlling for the cor-

rect model class, checking whether the distributional family can be used safely and

whether CDF or PDF functions for the modeled distribution are present and ready to

be graphically displayed. If this is the case, the internal fam_fun_getter() is used to

create a list with two functions pointing to the correct PDF and CDF functions for

the distributions from either the gamlss, bamlss or betareg namespace.
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To graphically display the previously obtained functions, the only remaining unan-

swered question is one about the limits: what should be the axis’ ranges? To accom-

modate this task, the internal function limits() was created. The default option in

distreg.vis for the x-axis on both CDF and PDF function displays are the 0.1%

and the 99.9% quantiles of the predicted distribution. If multiple distributions are

displayed, always the minimum and maximum values of all calculated quantiles are

used.

Both the validity checks and the limits() function make use of specific information

about every available distribution in the supported distributional regression packages.

This information is stored in a data.frame object called dists with the following

form:

R> str(dists)

’data.frame ’: 125 obs. of 8 variables:

$ dist_name : chr "BB" "BCCG" "BCCGo" "BCPE" ...

$ class : chr "gamlss" "gamlss" "gamlss" "gamlss" ...

$ implemented: logi FALSE TRUE TRUE TRUE TRUE TRUE ...

$ moment_funs: logi FALSE FALSE FALSE FALSE FALSE FALSE ...

$ type_limits: chr "both_limits" "one_limit" "one_limit" "one_limit" ...

$ l_limit : int 0 0 0 0 0 0 0 0 0 0 ...

$ u_limit : int 10 NA NA NA NA NA NA 1 1 1 ...

$ type : chr "Discrete" "Continuous" "Continuous" "Continuous" ...

The dists object contains one row for each distribution, and columns with the

following content:

• dist_name: Name of the distribution.

• class: Either "bamlss", "gamlss" or "betareg" detailing from which package

the target distribution comes from.

• implemented: Is this distribution generally usable for plot_dist(), and was this

usage already tested?

• moment_funs: Are functions implemented with which to calculate the moments



36 Interactively visualizing distributional regression models

of the distribution, given the parameters? This column is notably relevant for

plot_moments(), in which the predicted moments are displayed.

• type_limits: Details the range the values from the distribution can have. Can

be "both_limits", "one_limit", "no_limit" and "cat_limit" (for categorical

distributions).

• l_limit, u_limit: Integers detailing where the limits of the distributions lie.

• type: Character string for the type of distribution. Can be "Discrete", "Continuous",

"Mixed" and "Categorical".

Following a successful calculation of the plot limits, the graph itself can be created.

Internally, distreg.vis divides between continuous, discrete and categorical distribu-

tions. Continuous distributions are displayed as filled line plots, while discrete and

categorical distributions take bar graph shapes.

For plotting, distreg.vis relies on the ggplot2 package (Wickham, 2016). After

an empty graph is constructed, the previously obtained CDF or PDF functions are

evaluated for each predicted parameter combination and all values inside the calculated

plot limits.

Figure 3.5 lays out examples of the five different shapes of plot_dist(): the PDF

of continuous, discrete and categorical distributions, as well as the CDF of continuous

and discrete distributions.2 In each of those cases (subplots a) to e)), a dataset was

simulated of an appropriately chosen target distribution, which was then used for model

estimation. Based on these models and five arbitrary covariate combinations from the

datasets, the predicted PDFs and CDFs were computed and displayed.

3.4.2 Visualization of effect influence

The target of the second main function, plot_moments(), is to display the influence of a

selected effect on the predicted moments of the modeled distribution. The motivation

2In contrast to the notation of this thesis, the graphs in distreg.vis use fp¨q and F p¨q to denote
PDF and CDF functions, respectively.
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Figure 3.5: Plot outcome possibilities in plot_dist() displayed with five different
predictions in five examples: a) a multinomial PDF, b) an expected PDF with the
respective CDF of a beta distribution shown in c), and the expected PDF and CDF
pair of a geometric distribution in d) and e), respectively.

for computing influences on the moments of a distribution is its interpretability: in

most cases, the parameters of a distribution do not equate to the moments and as such

are only indirectly location, scale or shape properties, making the computed effects

hard to understand.

When plot_moments() is called, the provided function arguments are evaluated

first. They are specified as follows:

plot_moments(model , int_var , pred_data = NULL , rug = FALSE ,



38 Interactively visualizing distributional regression models

samples = FALSE , uncertainty = FALSE , ex_fun = NULL ,

palette = "viridis", vary_by = NULL)

Here, model represents the fitted distributional regression object (as before). The

argument int_var stands for “variable of interest” and consists of a character string

with the name of the explanatory variable, whose effect influence should be plotted.

This covariate can be either categorical or continuous. The argument pred_data is

specified using a data.frame object that consists of the values that the remaining

variables should attain, while int_var varies. If this data.frame has multiple rows,

the influence plot is re-drawn for each different covariate combination. This is a neat

way to, for example, visualize interaction effects between two variables.

If pred_data is not specified (left at NULL), plot_moments() will utilize set_mean()

in combination with model_data() to use mean values of the explanatory variables for

prediction. If the argument vary_by is specified, it will be passed onto set_mean()

for creating a data.frame object in which one variable has varying values, while all

others stay at their mean (see Chapter 3.4.1 for details).

Using the arguments samples and uncertainty, one can exploit the advantages

that Bayesian regression models have to offer. With samples = TRUE the predicted

moments are computed by transforming the samples of the predicted parameters to

the moments, and then calculating the mean of the samples over the range of int_var.

If the argument samples was chosen to be FALSE (the default case), then the mean of

the samples is taken before they are transformed to the predicted moments.

This distinction is especially relevant in nonlinear parameter-to-moment transfor-

mations, where taking the average before transforming the samples yields inaccurate

results. Setting samples = FALSE should therefore only be used in situations where

one is interested in quick and rough effect influences. For complete accuracy, setting

samples = TRUE is preferred.

With uncertainty, the user can construct credible intervals for the influence plots.

If this argument is set to TRUE, then empirical 2.5% and 97.5% quantiles are computed

for the predicted moments of the entire range of our variable of interest, int_var.

Using this method, it is possible to detect complex significant differences between the
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moments of a categorical variable, for example. Both samples and uncertainty can

only be set to TRUE for bamlss model classes.

The argument ex_fun takes a character string with the name of an R function that

currently exists in the user’s global environment. This function can be any function

which takes the predicted parameters as input and yields a single number as an output.

For situations where metrics depend on the entire predicted distribution of the target

variable, like the Gini coefficient (Lerman & Yitzhaki, 1984), this is especially useful.

Combined with the sample-based approach of bamlss, we can even obtain uncertainty

measures for those user-defined metrics.

After typical argument validity checks, a sequence is created that covers the en-

tire range of the variable of interest, int_var. This sequence is then combined with

pred_data to obtain a data.frame object where the main variable varies but the previ-

ously specified other variables stay constant. The newly created data.frame is further

passed to the preds() function, which computes predicted parameters for every row.

Depending on whether samples was set to TRUE or not, the output of the called

preds() function is now either a data.frame with the same dimensions as pred_data

and with the parameters replaced by the predicted moments, or a list with one element

for each user-specified covariate combination consisting of the parameter samples which

were transformed to the expected moments of the target distribution. Afterwards, the

mean of all moment samples at each point of int_var’s range is calculated, resulting

in all necessary values to create the resulting influence graph. If uncertainty is also

TRUE, the upper and lower limits of the credible intervals are constructed.

Obtaining the predicted moments and possibly lower and upper bounds of the

credible intervals means that the resulting graph can then be created. To illustrate

the potential of plot_moments(), we will again focus on the introductory example,

where the question of interest is the relationship between annual income and different

socioeconomic variables. Calling plot_moments() for both a numeric (age) and a

categorical variable (ethnicity) can be done as follows:

R> gini <- function(par) {

+ 2 * pnorm((par[["sigma"]] / 2) * sqrt (2)) - 1
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+ }

R> plot_moments(

+ wage_model ,

+ int_var = "age",

+ pred_data = df_new ,

+ samples = TRUE ,

+ uncertainty = TRUE ,

+ ex_fun = "gini",

+ rug = TRUE

+ )

R> plot_moments(

+ wage_model ,

+ int_var = "ethnicity",

+ pred_data = df_new ,

+ samples = TRUE ,

+ uncertainty = TRUE ,

+ ex_fun = "gini"

+ )

Figure 3.6 shows the outcome of the above code, which represents two of the

three different graph outcomes that plot_moments() can have. Part a) focuses on

the relationship between the age of observed individuals, a numeric variable, and the

first two expected moments of the modeled income distribution (leftmost and middle

graph). The different lines represent multiple education levels, which are based on the

data.frame object called df (p. 19). For a less cluttered visualization, this portrayal

of the age influence features only three different education levels resulting in three

different lines (hence the subset df new).

Even though the first two expected moments are already informative, one might be

interested in other specific measures being dependent on the parameters of a distribu-

tion. This could include higher-order moments like skewness or more specific measures,

like income inequality. Previously, finding out how this measure varies over a variable

would involve many lines of code. With distreg.vis, specifying an external func-

tion is easy. The very right graph of part a) portrays the external function (gini())

that was specified with the argument ex_fun. It represents the Gini coefficient of the
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Figure 3.6: Plot outcome possibilities in plot_moments(): part a) shows the
expected moments (Expected_Value and Variance) and a user-specified function
(gini()) over the range of a continuous covariate, including its credible intervals.
Part b) displays the expected moments and the external function over the range of a
categorical variable, ethnicity.

distribution, which is a measure of inequality of a distribution (Lerman & Yitzhaki,

1984). Similarly to the expected moments, we also construct credible intervals around

the self-specified function gini(), as shown in Figure 3.6. It is similar to Graphs 3.3

and 3.4, with two categories removed to increase visibility.

Below and above the lines of the varying moment and external function levels lie

shaded areas which represent the uncertainty of the influence. These are credible

intervals, i.e. empirical 2.5% and 97.5% quantiles of the obtained MCMC samples

transformed to be expected moments. The advantages of having uncertainty areas

are numerous, but include the direct visibility of significant differences between two

different categories chosen with the data.frame object called pred_data. For example,

the left plot of part a) shows a significant difference in the expected income for all
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three chosen education levels, because the credible intervals do not overlap in almost

the entire range of age.

The bar graphs of Figure 3.6 part b) appear if a categorical variable is chosen as

the variable of interest int_var (in this case it was chosen to be ethnicity). The

x-axis portrays all different categories that the variable can attain. Then, the height

of each bar features the expected mean or variance of the predicted distribution when

int_var reaches the specific category. The different bars in each category represent

again the covariate combinations specified in the pred_data argument. Due to the

pred_data covariate values only varying in the education levels of the individuals,

one could understand part b) of Figure 3.6 as the predicted expected value, variance

and external function of the modeled distribution, broken down to each combination

of both education and ethnicity.

Similar to the continuous case, an external function can also be included for discrete

variables of interest. The function called gini() was used again, calculating the Gini

coefficient for the log-normal distribution. The small error bars, also only available

for bamlss objects, show the credible intervals around the predicted moments in each

category. The significance between categories can now be checked in two ways - between

the categories of int_var and between the different covariate combinations chosen in

pred_data. In this case, we can see a significant wage difference between the education

levels but not the ethnicity categories.

3.5 The graphical user interface

After executing vis(), a new browser window with the started application is opened

up. Figure 3.7 shows the layout of the application, which is then displayed in the user’s

browser.

As visible in Figure 3.7, the layout of distreg.vis’ GUI is divided into two seg-

ments, which have their own tabs the user can click on. In each segment, one of those

tabs is always displayed. The left segment, with tabs “Overview”, “Scenarios” and

“Scenario Data”, is concerned with model-related settings. The right segment, with
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Figure 3.7: Layout of distreg.vis after starting the application.

tabs “Plot” and “Properties” is used to display graphs and properties in reaction to

user inputs on the left segment.

3.5.1 Overview tab

The purpose of the overview tab is to display descriptive details about fitted distri-

butional regression models. After the GUI of distreg.vis is started up, it solely

consists of a drop-down list where the user can select the model on which the follow-

ing analysis is to be based. Entries in this list are created by the internal function

search_distreg() which searches the working directory of the current user for any

object of the classes bamlss, gamlss, betareg or betatree (also from the betareg

package). Figure 3.7 shows only one entry, wage_model, representing the model fitted

with the code provided in Section 3.2 of the main paper.

After a model is selected, the overview tab expands to show an outline of the fitted

bamlss model. Specifically, as shown in Figure 3.8, the tab displays two parts, called

“Model Family” and “Model Equations”. “Model Family” shows the family of the

model’s target distribution, as well as the parameters which can be modeled including

their link functions. In the case of wage_model, the family “lognormal” with parameters
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Figure 3.8: Expanded overview tab after model selection.

µ and σ and link functions “identity” and “log” can be obtained. “Model Equations”

displays the way covariate effects were specified. We can confirm that for wage_model,

the effect of age on both µ and σ is specified using a smooth spline.

3.5.2 Scenarios tab

In this tab, the user can interactively specify covariate values for each explanatory

variable, thereby creating a “Scenario”. After these combinations are finalized by

clicking a button, the predicted distribution based on the previously selected model

is then graphically displayed. This can be repeated with different covariate values to

compare the predictions for multiple covariate combinations.

As displayed in Figure 3.9, the top of the tab consists of two buttons, “Create Sce-

nario” and “Clear Scenarios”. Right below, web widgets for each explanatory variable

are visible. Here, distreg.vis executes a check for the type of each explanatory vari-

able and then constructs different web application elements depending on that informa-

tion. Categorical covariates receive selector boxes (R function shiny::selectInput())

with the variable’s possible categories, while for numeric variables slider modules are

created (shiny::numericInput()), ranging from the variable’s minimum to maximum



3.5 The graphical user interface 45

Figure 3.9: “Scenarios” tab of the distreg.vis GUI.

value. The default value for numeric covariates is its arithmetic average, while for cat-

egorical covariates the first level of the resulting factor variable is used.

To add a new scenario, the user can now specify a value for each variable and click

on “Create Scenario”. This triggers the plotting window, which in turn displays the

predicted distribution for the specified covariate combination. To compare two or more

scenarios, the user can change the specified covariate values and again press “Create

Scenario”. This way, the graph window will display predicted PDF/CDF functions for

each specified covariate combination. Deleting all previously specified combinations

can be achieved by clicking “Delete Scenario”.

Beneath the visual components of the “scenarios” lies a small database, which

stores each covariate combination the user has specified. This database, created with

shiny::reactiveValues(), forms the basis for all other tabs which analyze those

covariate combinations. It has a “reactive” nature, such that all tabs depending on it

are automatically updated when a database value changes.

We can now easily create a graph for the predicted distribution of wages depending

on every education level. To do so, we set the covariates to the following values:

• ethnicity: 1. White
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• year: 2006

• education: 1. < HS grad

• age: 42 (“ age)

Then, the “Create Scenario” button is pressed. This is done four more times, with

each time seeing a rise in education level by one step. Thus, we can now view the

according wage distributions for a 42-year-old white male across all levels of education

(Figure 3.10). Furthermore, the “rug plot” option was selected.

3.5.3 Plot tab

The “Plot” tab, which is located in the right-hand segment of distreg.vis, reacts

to user interaction in the Scenarios tab. Every time the “Create Scenarios” button is

pressed, the tab is updated. Specifically, the data which the user inputs in the left

tab is passed onto distreg.vis::preds(), which then computes predictions for the

response distribution parameters. Afterwards, the predicted parameters are inserted

into the PDF or the CDF, which is then graphically displayed. This procedure is

repeated for each covariate combination.

Figure 3.10 shows the plot output for five different scenarios based on the Wage

dataset. Noticeable in Figure 3.10 to the right side of the plot are multiple web elements

for user interaction. The first element, found below the description “PDF or CDF?”,

provides the ability to switch between displaying the PDF (the default value) or the

CDF. Figure A.3 in the Appendix shows Figure 3.10 after the “cdf” option was selected.

The second element gives the option to select a different color palette. Its default

value is “default”, which uses the built-in color palette provided in ggplot2 (Wickham,

2016). The selected color palette in Figure 3.10 is “viridis” (from R package viridis),

a colorblind-friendly palette (Garnier, 2017).

Using the third element labelled “Rug plot?”, a small strip chart at the bottom

of the graph can be added, displaying the observation frequency at each level of the

target variable’s range. The fourth web element on the right side of the plot output,
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Figure 3.10: Plot tab output when specifying five different scenarios with different
education levels.

a red button with the description “Obtain Code!”, adds reproducibility to the plot.

When clicked, a modal window pops up with R commands that, if executed in the main

R console with the user’s current working environment, directly recreates the graph

currently being displayed in the “Plot” tab. Figure A.4 in the Appendix shows the

modal window which arises when pressing the “Obtain Code!” button in the interface

of Figure 3.10.

3.5.4 Scenario data tab

While the “Scenario” tab gives the ability to quickly specify covariate values, some-

times the user might want to type in exact values with which to make predictions.

Furthermore, one might want to see what values were previously specified in the “Sce-

narios” tab. For both reasons the tab “Scenario Data” was created in distreg.vis’

left segment.

Figure 3.11 shows the tab’s layout. As visible, the only present web element is a

table placed underneath the description “Edit scenario data here”. This table, created

with the R package rhandsontable (Owen, 2016) represents the editable version of

all data input from the “Scenarios” tab. Columns represent the specified covariates,
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Figure 3.11: “Scenario Data” tab.

while one row counts as one “scenario”. In Figure 3.11, it is possible to see that only

three columns of the original six are currently visible. This cut-off was integrated to

prevent an overlap with the plot. Nevertheless, the user can use the scrolling bar at

the bottom to reach other columns. One additional column is added to the existing

covariates, labelled “rownames”. With this column, each “scenario” obtains a new

label, which then automatically transfers to the legend of each graph.

To edit an observation from categorical variables, users can click on a small drop-

down button in the cell which can be edited. The table recognizes categorical variables

and will then provide a menu where the desired value is to be selected. With numeric

variables, users can select the cell and then input the value they wish to make predic-

tions with. Values in logical variables can be specified by checking or un-checking a

box in the cell.

With the ability to specify own covariate values also comes the ability, in numeric

cases, to type in numbers that are not in the original variable’s range. In the case

of cnorm_model, this could mean that one tries to make predictions for incomes in

the year 2050, which is far beyond maxpyearq “ 2009. To prevent the irresponsible

usage of model predictions, distreg.vis will display a warning pop-up message with

the name of the covariate combination (P plus the respective number if not changed

with column “rownames”) where values were specified which are out of the original

variable’s range (Appendix: Figure A.5).
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Figure 3.12: Influence of age on the first two moments of the predicted distributions
for wage_model.

3.5.5 Properties tab

Previous sections have described that the “Plot” tab visualizes the predicted distribu-

tions for each covariate combination specified in the “Scenarios” tab. However, while

differences in distributions for each combination were visible (e.g., in Figure 3.10),

it is only indirectly possible to infer influences of the complete range of a numerical

covariate on the distributional moments.

To provide this functionality, the tab “Properties” was implemented in distreg.vis,

located in the right-hand segment and greatly building upon the function plot_moments().

When opened, the “Properties” tab reveals two sub-tabs: “Influence graph” and “Ta-

ble”.

As visible in Figure 3.12, the “Influence graph” tab consists of a graph on the left

side next to a small bar with additional options. On the right side, the continuous

variable age was selected. This leads to a recreation of Figure 3.6 part a) without

the specification of the external function. Selecting the categorical variable ethnicity

would lead to part b) of Figure 3.6.

Next to the plot in the “Influence graph” tab multiple web elements are displayed.
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The first, located under the description “Expl. variable for plotting influence”, lets the

user select the explanatory variable for which the influence plot shall be created. The

second element gives options to choose a color palette, similar to Figure 3.10. In Figures

3.12 the “viridis” color palette was specified to account for potential colorblindness.

Below the palette selector the same red button as in Figure 3.10 is placed, which when

pressed, presents code to reproduce the influence plot with (Appendix: Figure A.6).

At the bottom end of the web elements, we see a selector element titled “Include

own function”, which corresponds to the plot_moments() argument ex_fun. If a user-

written function calculating a measure based on the expected parameters of the target

distribution is specified here, the influence of the selected covariate on this measure is

calculated and included in the plot (similar to part a) of Figure 3.6).

The other sub-tab of “Properties” called “Table” is useful if the user solely wants

to see the differences in distributional moment values across specified covariate com-

binations in the “Scenarios tab” without it depending on a selected covariate’s range.

Figure A.7 shows this tab’s layout.

The only present element in this tab is a table showing two columns, Expected_Value

and Variance, with computed values for the first two moments. Every row depicts one

covariate combination specified in the “Scenario” tab.

3.6 Prediction of gym attendance

This section will focus on highlighting the features of distreg.vis using a real-world

example. Specifically, a dataset on visitor numbers in a sports gym in the German

town of Göttingen will be analyzed.

In the sports life of Göttingen, a university town with a population of 120,000,

the Fitness- und Gesundheitszentrum (FIZ) plays a significant role. Adjacent to and

cooperating with the university’s sports faculty, it is one of the biggest gyms in the

city and provides a wide range of training opportunities.

Due to the FIZ’s “high quality yet affordable price” policy, its visitor numbers are

often very high, leading to longer waiting times for fitness machines and therefore a
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variables type content

no people integer Number of checked-in customers at the Fitnesszentrum (FIZ).
weekday factor Day of the week (1-7). Starts with 1 (Monday).

hm num numeric
Numeric representation of the 5 minute period end time.
Is calculated as hm num “ hour ˚ 60`minute.

stime logical
Was this datapoint recorded during the lecture period
(TRUE or FALSE).

day collect numeric Number of days since attendance recording began.

day of year integer Number of days since the beginning of the year.

Table 3.2: Type and description of variables contained in the FIZ dataset used in
this chapter. n “ 179,004.

decrease in training efficiency. Finding out when those situations arise and what drives

visitor numbers is of general interest and will be the focus of this analysis.

The dataset was provided by the “Verein für Freizeitsport und Gesundheitstraining

an der Georg-August-Universität Göttingen e.V”, who also operate the FIZ. Each

check-in and check-out of a single visitor since January 2016 was recorded. We then

counted the current number of visitors in sequences of five minutes. Table 3.2 shows

the description of covariates utilized in this section.

As the number of visitors cannot be negative but otherwise does not have an upper

limit, only distributions with a positive support can be considered. For ease of inter-

pretation, we choose a censored normal distribution to describe attendance numbers.

The resulting model specification therefore has the following form:

no people „ CensoredNormalpµ, σq

µ “ β10 ` f11pweekdayq ` f12phm num,weekdayq

` f13pstimeq ` β14 ¨ day collect

` f15pday of yearq

logpσq “ β20 ` f21pweekdayq ` f22phm numq

(3.3)

where f11, f13, f21 represent categorical effects. The effects f15 and f22 are modeled

using simple penalized splines (P-splines), while f12phm num,weekdayq stands for a
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P-spline that is estimated independently for each category in weekday.

Estimating the model with bamlss can then be done using the following code:

bam <- bamlss(list(

no_people ~ weekday +

s(hm_num , bs = "ps", by = weekday) +

stime +

day_collect +

s(day_of_year , bs = "ps"),

sigma ~ weekday +

s(hm_num , bs = "ps")),

data = fiz_number ,

family = cnorm_bamlss ()

)

After completion of model estimation, we can start analyzing it with distreg.vis.

First we call the GUI with distreg.vis::vis(), and then select the previously created

bam object. Further, we head to the “Scenarios” tab to obtain predictions of the visitor

number distribution.

Anecdotal evidence shows that evenings are usually busier than afternoons, which

are in the middle of the workday. We can now find out whether the model predicts

the same behavior. In this example, we compare a Monday afternoon to a Monday

evening.

Table 3.3 shows the two scenarios we are comparing. The values hm num “

902, 1112 represent the times of 15:02 and 18:32, while day of year “ 190 stands

for the 9th of July, which in 2018 was the 919th day since recording of visitor numbers

started (day collect “ 919). Furthermore, the beginning of July is still within of the

lecture period (stime “ TRUE).

Scenario weekday stime day collect hm num day of year

afternoon 1 TRUE 919.00 902.00 190
evening 1 TRUE 919.00 1112.00 190

Table 3.3: Covariate values corresponding to the two scenarios in Figure 3.13, in
which the distribution of gym attendance on a Monday afternoon is compared to the
evening on the same day.
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Figure 3.13: “Scenarios” tab of the distreg.vis GUI showing the predicted PDFs
for the two scenarios detailed in Table 3.3. Different colors correspond to different
scenarios.

After the two aforementioned scenarios were specified in the “Scenarios” tab (left

plot side), the resulting expected distributions are displayed (right plot side). Figure

3.13 shows the result inside the GUI. We can see that there is a strong difference

between the expected visitor number on a Monday afternoon and a Monday evening.

Using distreg.vis, one could now visually answer a wide range of interesting

questions. For example, how does the expected distribution of gym visitors compare

between a weekday inside of the lecture period (stime “ TRUE) and outside one? Or

how do distributions change between working days and on the weekend? Finding the

answers to these questions is now possible with just a few clicks, although they will

only partially be included here.

Seeing directly how the gym visitor distribution changes during the day is not

straightforward using the “Plot” tab. More specifically, we would like to know the

influence of hm num on the expected parameters of the target distribution, holding

other variables constant. Without distreg.vis, this would require many lines of code,

since the censored normal distribution uses the parameters µ, σ that do not equate to
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Figure 3.14: GUI of distreg.vis detailing the influence of hm_num, the numerical
time, on the first two expected moments of the number of gym visitors. Credible
intervals are included but hardly visible due to the high sample size.

the moments of the distribution. Now, we can just head to the “Influence graph” tab.

To visualize both the influence of time during the day as well as how this effect

varies between the days, we specify a scenario which compares a Monday in July to

the following Friday. Table 3.4 shows the newly specified covariate combinations.

Scenario weekday stime day collect hm num day of year

monday 1 TRUE 919.00 896.00 190
friday 5 TRUE 924.00 896.00 195

Table 3.4: Covariate values corresponding to Figure 3.14, in which a Monday is
compared to a Friday.

Following the specification of scenarios, Figure 3.14 shows the state of distreg.vis’

GUI “Properties” tab, where hm_num was selected as the variable of interest. Further-

more, we ticked the options for estimating a rug plot and sample-based estimation

including the display of its credible intervals.

As visible in Figure 3.14, the expected gym attendance for Monday and Friday

substantially differs. From the time when the gym opens (hm num “ 480, 08:00)
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to around noon (hm num “ 720) both on Monday and Friday a peak is expected,

whereas the peak for Friday is significantly higher. After a dip at noon, both Monday

and Friday exhibit the highest daily expected visitor numbers in the evening, around 6

p.m. (hm num “ 720). The pattern of the morning is reversed here - significantly more

people are expected on Monday than on Friday. Afterwards the expected attendance

on both days quickly diminishes, though this pattern occurs about half an hour earlier

on Friday.

Even though we included the option to draw credible intervals, it is hard to see

them on the Expected_Value graph with the naked eye. This is due to them being

narrow; a result of the high sample size. The modeled variance on the right side of the

graph does have visible credible intervals. We see that the pattern of both Monday

and Friday is similar - the distribution variance is lowest in the morning before noon,

and then rises until its peak around 20:00 (hm num “ 1200). This might be due to the

gym visitor numbers being highly dependent on other evening activities, like popular

football games.

Beyond the previous analysis, we would also like to know how the expected atten-

dance changes between days within the lecture period and days within the semester

breaks. To display this graphically, we now just have to select the right variable, stime.

Figure 3.15 shows the resulting graph. Based on the previously selected covariate

combination (Table 3.4), we see the expected value and the variance broken down into

all categories of stime. The results show that the expected number of gym visitors is

higher in the lecture period than outside it, which is an expected result. Outside of

the lecture period many students are travelling or undertaking internships, leading to

a lower amount of students in the city. On the right side of the plot, the variance stays

constant within the lecture period and outside it, which originates from the model

specification.

Both the results of Figure 3.14 and Figure 3.15 can be easily reproduced by using

the dynamic code that is provided when the “Obtain Code” button is pressed. Due to

all graphical results being based on the R package ggplot2 (Wickham, 2016), one can

change the aesthetic quickly. For example, the theme of the graph can be changed to
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Figure 3.15: State of the distreg.vis GUI when variable stime, detailing whether
the given gym attendance day falls within the lecture period or not, is selected as the
variable of interest.

a more classic look with adding + theme_classic() (a function from ggplot2) to the

obtained function call. Furthermore, user-subjective information can be added, like

the opening hours of the gym or the meanings behind the variable names.

3.7 Discussion

This paper laid out the foundations of distributional regression and its implementations

in R. It became clear that distributional regression provides a highly flexible modeling

framework, from which researchers will increasingly benefit in the future. To make

fitted models more accessible for users, this paper introduced the software distreg.vis

based on the bamlss, gamlss and betareg R packages.

Using distreg.vis, the user can visualize predicted response distributions based

on interactively chosen covariate combinations. Furthermore, distreg.vis provides

the ability to show the influence of a selected explanatory covariate on the first two

moments of any response variable, including continuous and discrete distributions.



3.7 Discussion 57

Both of these key functions help the user draw useful inference from fitted Bayesian

and frequentist distributional regression models.

Moreover, distreg.vis is designed to be highly customizable. The user-specified

covariate combinations (that represent the core of the analysis) can be individually

edited and expanded. The graphical appearance of all plots can be changed to display

other color palettes or other distribution types (PDF/CDF). Following the finished

analysis, the user can obtain R code to reproduce the displayed plot with all chosen

options.

With this new tool at hand, users will hopefully be more encouraged to apply distri-

butional regression models and better able to draw resilient conclusions. Nevertheless,

further work on making distributional regression models more accessible can be done.

The idea of visualizing predicted distributions and making influence plots could also be

applied to other variations of distributional regression, for example BayesX (Brezger

et al., 2005), VGAM (Yee, 2015) or GJRM (Marra & Radice, 2017), which offer a large

variety of supported distributions.
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4
Parameter orthogonality transformations in

distributional regression models

4.1 Introduction

The distributional regression framework, first proposed as generalized additive models

for location, scale and shape (GAMLSS, Rigby & Stasinopoulos, 2005) by Rigby and

Stasinopoulos (2005), represents a highly flexible modeling environment. It extends

generalized additive models (GAM, Hastie & Tibshirani, 1990) by providing the ability

to connect distributional parameters beyond the mean with structured additive model

terms (fixed, random, spatial, smooth, etc.) using known link functions (log, logit,

etc.) while supporting a large variety of response distributions including those outside

the exponential family. The term “distributional regression” was later coined to reflect

59
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the fact that not all distributional parameters are either of location, scale or shape.

In most distributions beyond the exponential family, the distributional parameters

which are to be connected to explanatory covariates have maximum-likelihood esti-

mates (MLEs) that are asymptotically correlated (non-orthogonal) to varying degrees.

While this phenomenon is not severely problematic in the case of constant parameters,

adding predictors to the model causes a bias if its model equations are not correctly

specified. Although model misspecification is well known and studied (see e.g. Zim-

merman, 2020), it is given a new layer in distributional regression since the estimated

coefficients for one parameter are biased even if the misspecification occurs only in

other parameters. This provides an interesting new perspective on mean-focused re-

gression analysis, which typically neglects modeling distributional parameters beyond

the mean.

To arrive at distributional parameters with independent model specifications, we

propose a framework that finds a new and orthogonal parametrization of any two-

parameter distribution by (a) solving a system of ordinary differential equations (ODEs)

based on the covariance of the parameters’ MLE and then (b) connecting the original

parameters to the parameters obtained in this solution, which effectively removes the

bias spillover from one parameter to the other. Due to its flexibility, our framework

can be applied to all two-parameter distributions, even those whose MLEs’ covariance

matrix is not in closed form.

The issue of parameter non-orthogonality for marginal distributions (no covariates)

as well as within a regression-type setting has received attention over a considerable

timespan. Jeffreys (1948) first recognized the importance of parameter orthogonality

for finding estimates more quickly. Based on this finding, Huzurbazar (1950) proposed

a framework for finding orthogonal parametrizations based on solutions of an ODE in

two-parametric probability density functions (PDFs). More recently, Stein, Zucchini,

and Juritz (1987) found strong parameter non-orthogonality to lead to inaccurate esti-

mation and proposed an orthogonal parametrization of the Sichel distribution. Raising

orthogonality for the first time as an issue in regression analysis, Heller, Couturier, and

Heritier (2019) showed that parameter non-orthogonality can induce a bias in estimated
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regression coefficients: with a Poisson-inverse Gaussian distributed response variable,

the misspecification of the scale parameter led to a false non-significance of a medical

treatment effect. Even though most of the above literature proposes solutions to the

non-orthogonality problem, they require closed form solutions of formulas relying on

the parameter MLEs’ covariance matrix. Our proposition is applicable even in distribu-

tions where the MLE covariance matrix can only be approximated or estimated locally,

or where the ODE proposed by Huzurbazar (1950) cannot be solved analytically.

The structure of this paper is as follows: Section 4.2 introduces the distributional

regression model class. In Section 4.3, the extent of the non-orthogonality problem and

its consequences are outlined. Section 4.4 will outline our proposed universal solution

to establish orthogonality in two-parameter distributions while Section 4.5 confirms the

effectiveness of our proposal. An application to extreme rainfall in Tasmania, Australia

is given in Section 4.6, after which Section 4.7 concludes the paper.

4.2 Distributional regression

Distributional regression is an umbrella class for models in which it is possible to link

not only the mean but also other parameters of a distribution to a set of additive

predictors which can be parametric (fixed, random, spatial) or non-parametric (regres-

sion trees, local curves, splines) as outlined by Klein, Kneib, Klasen, and Lang (2015).

All choices of response distribution are valid, as long as they are twice continuously

differentiable with respect to their parameters. In particular, they are not limited to

the exponential family of distributions used in generalized linear models (GLMs) and

GAMs. Assuming a parametric response distribution with distributional parameters

θ1, . . . , θK , i.e. y „ Dpθ1, . . . , θKq, the model specification is:

ηk “ βk0 `

Qk
ÿ

q“1

fkqpxkq;βkqq

hkpηkq “ θk,

(4.1)
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where hkp¨q, k “ 1, . . . , K denotes the response function used to uphold the support

of parameter θk; fkqp¨q, q “ 1, . . . , Qk represents the (possibly non-parametric) effect

of covariate(s) xkq on the modeled parameter; and βkq, q “ 1, . . . , Qk denotes the

regression parameters which are to be estimated.

Due to the high level of flexibility in the response distributions, the predictors and

the specified link function, distributional regression encompasses many well-known

regression approaches, such as generalized linear models (GLM, Nelder & Wedder-

burn, 1972), GAM, generalized additive mixed models (GAMM, Lin & Zhang, 1999),

Bayesian additive models for location, scale and shape (BAMLSS, Umlauf et al., 2018)

and GAMLSS. Closely related to GAMLSS, the term distributional regression was

coined by Klein, Kneib, Lang, and Sohn (2015) to overcome some of its earlier limi-

tations and to reflect the fact that distributional parameters do not always represent

either the location, scale or shape of a distribution.

4.3 Orthogonality

4.3.1 General case

Consider a two-parameter distribution y „ Dpθ1, θ2q with PDF ppy|θ1, θ2q and log-

likelihood function `pθ1, θ2|yq. It is well known (Millar, 2011) that the MLEs θ̂ “

pθ̂1, θ̂2q
J are, under regularity conditions, asymptotically distributed as

θ̂
a
„ N

¨

˝

»

–

θ1

θ2

fi

fl , I´1

˛

‚, (4.2)

where I (the information matrix) is defined as

I “ ´E

»

–

B2`pθ1,θ2|yq

Bθ21

B2`pθ1,θ2|yq
Bθ1Bθ2

B2`pθ1,θ2|yq
Bθ1Bθ2

B2`pθ1,θ2|yq

Bθ22

fi

fl “ ´

»

–

E11 E12

E12 E22

fi

fl . (4.3)
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The asymptotic correlation between θ̂1 and θ̂2 is

Corrpθ̂1, θ̂2q “
E12

?
E11E22

. (4.4)

E12 “ 0 yields Corrpθ̂1, θ̂2q “ 0, and in this case the parameters θ “ pθ1, θ2q
J are called

orthogonal.

4.3.2 Orthogonality in regression analysis

When optimizing the log-likelihood function with respect to only the distributional pa-

rameters, non-orthogonality of the parameters is not strongly problematic, but merely

slows down the optimization process (Huzurbazar, 1950). However, in situations where

we assume the parameters to have a connection to explanatory variables, we show that

misspecification of the regression equation for one parameter has an impact on the

estimated regression coefficients of the other parameter, even if that other parameter

is correctly specified. This is highly relevant in situations where the applied researcher

is interested in only one parameter of the distribution, typically location, and does not

take into account possible effects on other parameters. Note that distributions which

are members of the exponential family have orthogonal parameters (Barndorff-Nielsen,

1978, p. 111 for exponential family definition, p. 183 for orthogonality statement).

Therefore, GLMs and GAMs are not subject to the problem of non-orthogonality.

As an illustrative example, we consider a target variable y following an inverse

gamma distribution. We use the following, non-exponential family parametrization,

(Stasinopoulos et al., 2017):

ppy|θ1, θ2q “
θθ12

Γpθ1q
¨ y´θ1´1

¨ exp

ˆ

´
θ2

y

˙

, θ1, θ2 ą 0 and y ą 0 . (4.5)

We define the second parameter θ2 as being dependent on a covariate x, while θ1 is
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constant:

θ1 “ β0

θ2 “ β1 x.

Further, we derive the analytical MLE using the correct model specification. It uses

an approximate inverse of the digamma function ψp¨q (Batir, 2018) and is therefore an

approximate result:

β̂
correct

ML «

»

—

—

–

ˆ

logp1` expp´ 1
n

n
ř

i“1

logpβ1 xiq `
1
n

n
ř

i“1

logpyiqqq

˙´1

nβ0

ˆ

n
ř

i“1

xi
yi

˙´1

fi

ffi

ffi

fl

. (4.6)

Note that x appears in the equation for θ̂1, even though it is not in its model equation.

If we now incorrectly assume that θ2 is not dependent on x, the MLE assumes a different

form:

β̂
incorrect

ML «

»

—

—

–

ˆ

logp1` expp´ 1
n

n
ř

i“1

logpβ1q `
1
n

n
ř

i“1

logpyiqqq

˙´1

nβ0

ˆ

n
ř

i“1

1
yi

˙´1

fi

ffi

ffi

fl

. (4.7)

Comparing these estimators, we can see that the information of x is missing in both

elements of β̂
incorrect

ML .

Figure 4.1 shows the results of a simulation in which we estimated the correct and

incorrect MLEs for a grid of true coefficients β0 b β1, where β0 “ p0.5, . . . , 10qᵀ and

β1 “ p1, . . . , 5q
ᵀ, and then computed the mean absolute bias. In the second row of plots

the parameters were estimated omitting the information in x analogous to (4.7). It is

clear that the first parameter, even though correctly specified, exhibits an increasingly

strong bias as β1, the influence of x on θ2, increases.
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Figure 4.1: Simulation study depicting the mean absolute bias of β0 and β1, if β1

is correctly and incorrectly specified. The x- and y-axes represent the true values of
β0, β1. The columns depict the estimators β̂0 and β̂1, whereas the rows specify whether
the information of x was included (correct specification, top row) or omitted
(incorrect specification, bottom row). n “ 500.

4.4 Establishing orthogonality

In this section, we develop a solution for establishing orthogonality in two-parameter

distributions with non-orthogonal parameters.

Our reparametrization framework relies heavily on the findings of Huzurbazar (1950),

who drew his motivation for orthogonalization from the difficulty of obtaining max-

imum likelihood optimization iterations for highly correlated estimators in an era

when scientific computing power was limited. From (4.4), the parameters θ of a two-

parameter PDF are orthogonal if and only if the following statement holds true:

E12 “ E
ˆ

B2

Bθ1Bθ2

log p

˙

“ 0 . (4.8)
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This is not always the case for distributions outside the exponential family. We may

reparametrize by considering a new parametrization ppy|ω1, ω2q, where

ω1 “ g1pθ1, θ2q

ω2 “ g2pθ1, θ2q

and g1p¨q and g2p¨q are functions to be chosen such that

E
ˆ

B2

Bω1Bω2

log p

˙

“ 0 . (4.9)

The method of Huzurbazar (1950) is to retain the first parameter (usually location),

i.e. set ω1 “ θ1, and choose ω2 such that (4.9) is satisfied. This leads to an ODE, the

solution of which yields the new, orthogonal parameters:

E12 ` E22
Bθ2

Bθ1

“ 0. (4.10)

4.4.1 Derivation of the orthogonality statement

We derive the statement 4.10 here. First, the cross-derivative of the likelihood function

with respect to the new parameters is obtained. Huzurbazar (1950) applies the chain

rule and shows the following equation:

B2

BωkBωl
log p “

Bθi
Bωk

Bθj
Bωl

B2

BθiBθj
log p`

B2θi
BωkBωl

B

Bθi
log p, (4.11)

while stating: “The summation convention is used with respect to i and j.” What

he implies is: the first term is summed over i and j; the second term is summed just
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over i. For ω1 (k “ 1) and ω2 (l “ 2), this is:

B2

Bω1Bω2

log p “
2
ÿ

i“1

2
ÿ

j“1

Bθi
Bω1

Bθj
Bω2

B2

BθiBθj
log p`

2
ÿ

i“1

B2θi
Bω1Bω2

B

Bθi
log p

“
Bθ1

Bω1

Bθ1

Bω2

B2

Bθ2
1

log p`
B2θ1

Bω1Bω2

B

Bθ1

log p i “ 1, j “ 1

`
Bθ1

Bω1

Bθ2

Bω2

B2

Bθ1Bθ2

log p i “ 1, j “ 2

`
Bθ2

Bω1

Bθ1

Bω2

B2

Bθ2Bθ1

log p`
B2θ2

Bω1Bω2

B

Bθ2

log p i “ 2, j “ 1

`
Bθ2

Bω1

Bθ2

Bω2

B2

Bθ2
2

log p. i “ 2, j “ 2

(4.12)

Using (4.12), the covariance of ω̂1, ω̂2 can be obtained as follows:

Covpω̂1, ω̂2q “ E
ˆ

B2`

Bω1 Bω2

˙

“ E
ˆ

B2`

Bθ2
1

˙

¨
Bθ1

Bω1

¨
Bθ1

Bω2

` E
ˆ

B2`

Bθ2
2

˙

¨
Bθ2

Bω1

¨
Bθ2

Bω2

` E
ˆ

B2`

Bθ1 Bθ2

˙

¨

ˆ

Bθ1

Bω1

¨
Bθ2

Bω2

`
Bθ1

Bω2

¨
Bθ2

Bω1

˙

,

(4.13)

since E
´

B`
Bθ1

¯

“ E
´

B`
Bθ2

¯

“ 0.

In the case where we retain θ1, i.e. ω1 “ θ1, we have

θ1 “ ω1

Bθ1

Bω1

“ 1

Bθ1

Bω2

“ 0

Bθ2

Bω1

“
Bθ2

Bθ1
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and

E
ˆ

B2`

Bθ1 Bω2

˙

“ E
ˆ

B2`

Bθ2
2

˙

¨
Bθ2

Bθ1

¨
Bθ2

Bω2

` E
ˆ

B2`

Bθ1 Bθ2

˙

¨
Bθ2

Bω2

. (4.14)

Setting (4.14) to zero since the covariance should be zero, we get

E
ˆ

B2`

Bθ2
2

˙

¨
Bθ2

Bθ1

¨
Bθ2

Bω2

` E
ˆ

B2`

Bθ1 Bθ2

˙

¨
Bθ2

Bω2

“ 0

ñ E
ˆ

B2`

Bθ2
2

˙

¨
Bθ2

Bθ1

` E
ˆ

B2`

Bθ1 Bθ2

˙

“ 0,

(4.15)

which equals the ODE stated in 4.10 (Huzurbazar, 1950):

E12 ` E22
Bθ2

Bθ1

“ 0. (4.16)

Computationally, using (4.10) in the form of a partial differential equation (PDE)

is advantageous. We therefore introduce ω2 to rewrite it as follows:

E
ˆ

´
B2

Bω1Bω2

log p

˙

“ E12
Bω2

Bθ2

` E22
Bω2

Bθ1

“ 0. (4.17)

4.4.2 Invertibility

The simplified orthogonality condition in (4.17), when solved, yields a result for g2p¨q:

ω1 “ θ1, ω2 “ g2pθ1, θ2q,

which needs to be inverted if we want to express the PDF in terms of ω1 and ω2:

θ1 “ ω1, θ2 “ spω1, ω2q . (4.18)

The existence of a closed form solution of an orthogonal PDF therefore depends on

closed-form solutions of Eij (4.3), the PDE (4.17) and its invertibility (4.18).
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4.4.3 The inverse gamma distribution

We apply Huzurbazar’s (1950) method to the inverse gamma distribution. Using the

parametrization specified in (4.5), we obtain

E12 “ E
ˆ

´
1

θ2

˙

“ ´
1

θ2

E22 “ E
ˆ

´

„

´
θ1

θ2
2

˙

“
θ1

θ2
2

,

which we deploy in (4.17). We start with the PDF, described in (4.5). The likelihood

function can be written as:

Lpθ1, θ2q “
θθ1¨n2

Γpθ1q
n
¨

n
ź

i“1

py´θ1´1
i q ¨ expp´

n
ÿ

i“1

θ2

yi
q. (4.19)

Then, the log-likelihood function is:

lpθ1, θ2q “ θ1 ¨ n ¨ logpθ2q ´ n ¨ logpΓpθ1qq (4.20)

´ θ1 ¨

n
ÿ

i“1

logpyiq ´
n
ÿ

i“1

logpyiq ´
n
ÿ

i“1

θ2

yi
. (4.21)

Differentiating the log-likelihood function leads to the score function:

score

¨

˝

θ1

θ2

˛

‚“

¨

˝

Blpθ1,θ2q
Bθ1

Blpθ1,θ2q
Bθ2

˛

‚“

¨

˚

˝

n ¨ logpθ2q ´ n ¨ ψpθ1q ´
n
ř

i“1

logpyiq

θ1¨n
θ2
´

n
ř

i“1

1
yi
,

˛

‹

‚

(4.22)

where ψp¨q represents the digamma function. Further deriving the score function leads

to the observed Fisher information:

F

¨

˝

θ1

θ2

˛

‚“ ´

¨

˝

B2lpθ1,θ2q
B2θ1

B2lpθ1,θ2q
Bθ1Bθ2

B2lpθ1,θ2q
Bθ2Bθ1

B2lpθ1,θ2q
B2θ2

˛

‚“

¨

˝

n ¨ ψ1pθ1q ´ n
θ2

´ n
θ2

θ1¨n
θ22

˛

‚, (4.23)

where F p¨q is also the expected Fisher information F ˚p¨q and ψ1p¨q represents the

trigamma function (second derivative of log-gamma function). For it to represent

the covariance matrix of the MLEs, we have to invert F ˚p¨q. First, we calculate the
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determinant of this matrix:

detpF ˚

¨

˝

θ1

θ2

˛

‚q “
n2pψ1pθ1q ¨ θ1 ´ 1q

θ2
2

. (4.24)

Then, we obtain the inverse expected Fisher information, which equals the covariance

matrix of the parameter MLEs:

F ˚

¨

˝

θ1

θ2

˛

‚

´1

“

¨

˝

θ1
npψ1pθ1q¨θ1´1q

θ2
npψ1pθ1q¨θ1´1q

θ2
npψ1pθ1q¨θ1´1q

ψ1pθ1q¨θ22
npψ1pθ1q¨θ1´1q

˛

‚. (4.25)

From Huzurbazar (1950) we know that in order to orthogonalize distributional pa-

rameters, we have to solve the ODE in (4.10). Applying it to the inverse gamma

distribution, we obtain the following values:

E12 “ Ep´
1

θ2

q “ ´
1

θ2

E22 “ Ep´p´
θ1

θ2
2

qq “
θ1

θ2
2

.

This means we have to solve the following differential equation:

´
1

θ2

`
θ1

θ2
2

¨
Bθ2

Bθ1

“ 0, (4.26)

which we can solve analytically:

Bθ2

Bθ1

“
θ2

θ1

θ2 “ ω2 ¨ θ1,

which, since we set θ1 “ ω1 is

θ2 “ ω2 ¨ ω1. (4.27)
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Substituting (4.27) into (4.5) leads to the following PDF:

ppy|ω1, ω2q “
pω1ω2q

ω1

Γpω1q
¨ x´ω1´1

¨ exp

ˆ

´
ω1ω2

y

˙

, ω1, ω2, y ą 0, (4.28)

where ω1 and ω2 are orthogonal parameters. We analytically check the orthogonality

statement in (4.8) to confirm our new parametrization:

E
ˆ

B2 log p

Bω1Bω2

˙

“
1

ω2

´ E
ˆ

1

y

˙

“
1

ω2

´
ω1

ω1 ¨ ω2

“ 0 , (4.29)

where E
´

1
y

¯

“ θ1
θ2
“ ω1

ω1ω2
. Note that this parametrization of the inverse gamma

distribution is part of the exponential family (in non-canonical form), which explains

why it has orthogonal parameters. A short derivation is given in A.2.2.

4.4.4 Beyond analytic solutions

It is easy to find non-exponential family distributions with non-orthogonal parameters

for which Equation (4.17) cannot be solved analytically. To illustrate, we again use the

inverse gamma distribution, but with the location/scale parametrization more widely

used in regression analysis (Rigby, Stasinopoulos, Heller, & De Bastiani, 2019):

ppy|θ1, θ2q “
θγ1 pγ ` 1qγy´pγ`1q

Γpγq
exp

„

´
θ1pγ ` 1q

y



with

γ “
1

θ2
2

, θ1, θ2 ą 0, y ą 0.

(4.30)

The parametrization of (4.30) has the convenient property that θ1 is a location param-

eter (the mode), making it suitable for regression analysis. The second parameter θ2

changes the scale of the distribution. To obtain an orthogonal PDF while preserving

this property, we use the method outlined by Huzurbazar (1950) and derive E12 and

E22 as in (4.3), to set up the ODE on the basis of (4.10). The result of this procedure,
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derived in Section A.2.1 in the Appendix, has the following form:

E12 “ ´
2

θ3
2

¨

ˆ

1

θ1

`
1

θ2
2θ1

˙

`
2

θ1θ3
2

E22 “

6
´

logpθ1q ´ log
´

1
θ22
` 1

¯¯

θ4
2

`
10

θ6
2

`
4

´

1
θ22
` 1

¯2

θ8
2

´
14

´

1
θ22
` 1

¯

θ6
2

`
6

θ4
2

`
6

θ2
2

`
6 logpθ1q

θ4
2

`

6 log
´

1
θ22
` 1

¯

θ4
2

`

6ψ
´

1
θ22

¯

θ4
2

0 “ E12 ` E22
Bθ2

Bθ1

,

(4.31)

where the last line represents a re-arranged version of (4.17). The resulting ODE

is highly non-linear and not separable. Further, even if we were able to obtain an

analytical solution, it might not be invertible, despite the necessity to express θ2 “

spω1, ω2q. There would be added difficulties if the MLE covariance matrix (4.2) were

not available in closed form, which is relevant in distributions without moments, for

example the Cauchy distribution (N. L. Johnson, Kotz, & Balakrishnan, 1995, p. 167).

However, this does not apply in this case.

Resolving these situations, should they arise, is possible with the use of numeric

solution of the PDE in (4.17). This paper focuses on the use of the R package deSolve

(Soetaert, Petzoldt, & Setzer, 2010) for this purpose. We avoid the numerical difficulties

with Eij Ñ 0 by using the method of characteristics (Olver, 2013) to reformulate

Equation (4.17) into a coupled system of ODEs:

Bθ2

Bτ
“ E12,

Bθ1

Bτ
“ E22,

Bω2

Bτ
“ 0 . (4.32)

The first two of the above equations describe a path, parameterized by τ , in the θ1´θ2

plane, while the last equation tells us how ω2 changes along this path. Since Bω2

Bτ
“ 0,

ω2 is constant along these parametrized paths (called the characteristic paths). Hence

if we specify a different ω2 on each characteristic path, we can completely specify the

coordinate transformation from pθ1, θ2q Ñ pω1 “ θ1, ω2q that orthogonalizes the system.

We have to specify initial conditions for ω2, θ2, θ1; as these values can be arbitrary, we
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specify a constant for θ1 and ω2 “ θ2 to compute θ2 values. We continue varying θ1

to get different values for θ2. Each time we solve for one of the paths, in which each

path’s proposed length is determined by the range of τ . To ensure that our path is

solving in the right area, we further specify what ranges we would like to have our

original parameters θ1, θ2 solved in and then check whether this was achieved after we

obtain the solved path. If the maximum or minimum values of the ODE solutions are

too far off, we re-adjust τ such that it falls within the pre-specified θ1, θ2 range.

4.4.5 ODE solution surface

After successfully solving the system of ODEs in (4.32), we obtain a number of com-

binations for the original parameters θ1, θ2 and ω2 (θ2’s orthogonal counterpart). We

display our results graphically in a three-dimensional scatterplot in Figure 4.2, from

Figure 4.2: ODE system solution surface for parameters θ1, θ2, ω2 of the location-
scale parametrization of the inverse gamma distribution.

which we are able to visually confirm the existence of unique solutions for each θ1, θ2, ω2
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combination.

Since we are interested in finding a PDF that we can reparametrize with new,

orthogonal parameters ω1, ω2 while still retaining the property θ1 “ ω1, we estimate

the surface given in Figure 4.2, connecting θ2 to the orthogonal parameters:

θ̂2 “ ŝpθ1, ω2q (4.33)

To do so, we use a tensor product spline surface (Wood, 2006) as implemented in the

R package mgcv (Wood, 2011). The estimated PDF replaces θ2 with the estimate given

by (4.33).

4.4.6 The new probability density function

The new PDF has the original parameters θ1, θ2 replaced by orthogonal parameters

ω1, ω2. Since the first parameter stays the same, we are only replacing θ2 with its value

on the newly fitted surface in (4.33). Applied to the PDF introduced in (4.30), its

transformed version has the following form:

ppy | ω1, ω2q “
ωγ1 pγ ` 1qγy´pγ`1q

Γpγq
exp

ˆ

´
ω1 ¨ pγ ` 1q

y

˙

,

where γ “
1

ŝpω1, ω2q
2
.

(4.34)

Figure 4.3 shows a visual representation of the new parametrization, with both the

first and second parameter of the orthogonal PDF varying. The heights of the PDF are

obtained by using the specific ωi parameter values to calculate the values for original

parameters θi and then using those to evaluate the original PDF. In this figure, a

change in color represents a change in ω1, while ω2 is varied over linetype. We can see

that ω1 retains the role of location parameter, while ω2 scales the distribution.

The estimation of parameters with the new parametrization is similar in spirit to the

original one where we maximize the likelihood function with respect to ω1, ω2. However,

due to the replacement of θ2 with the fitted surface ŝpω1, ω2q, the optimization is a two-

step process: every proposal of ω1, ω2 leads to an evaluation of ŝpω1, ω2q first, which
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Figure 4.3: PDFs of the orthogonalized inverse gamma distribution for ω1 “ t1, 3u
and ω2 “ t1, 1.5u.

translates ω1, ω2 to θ1, θ2, from which we evaluate the likelihood function Lpy; θ1, θ2q.

4.5 Numerical confirmation

4.5.1 General case

We now confirm the above results via simulation. In order to test whether a distri-

bution’s parametrization is orthogonal, we draw a random sample from the original,

non-orthogonal, distribution; estimate old and new parameters; and compute empiri-

cal correlations between the MLEs for both parametrizations. We again focus on the

inverse gamma distribution and its orthogonalized version introduced in (4.34).

For our simulation study, we choose 10 equally spaced values in the ranges θ1 P

t0.2, 8u and θ2 P t0.5, 8u. We draw a random sample of n “ 500 observations and

maximize the likelihood functions of the old and new parametrizations. Repeating this

procedure N “ 500 times, we compute the correlation between the maximized param-

eters. The results are shown in Figure 4.4. The left and right panels show correlations

of the MLEs pθ̂1, θ̂2q of the original non-orthogonal parameters, and the MLEs (ω̂1, ω̂2)

of the orthogonalized parameters, respectively. In almost all areas where MLEs of the
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Figure 4.4: Empirical correlation of MLEs with different θ1, θ2 combinations. Left
panel: empirical correlations of pθ̂1, θ̂2q; right panel: empirical correlations of pω̂1, ω̂2q.

original parameters exhibit high, negative correlations, the new parametrization leads

to significantly reduced correlations. Thus, the MLEs of the orthogonalized parameters

will be approximately independent of each other.

4.5.2 Regression setting

The motivation for orthogonal parameters stems from the desire to interpret estimated

regression coefficients for each parameter independently. When considering the covari-

ance matrix of regression coefficient estimates, orthogonality of the response distribu-

tion leads to a block-diagonal Fisher information matrix (Heller et al., 2019), ensuring

orthogonality between regression coefficients of different parameters. This prevents

scenarios such as that presented in Figure 4.1, where misspecification of one parameter

causes a bias in the estimation of regression coefficients in other parameters.

To confirm this result we present another simulation study based on the inverse

gamma distribution, in which we analyze the robustness of the estimated coefficients

of the location parameter to misspecification of the model for the scale parameter, in

orthogonal and non-orthogonal parametrizations. We specify the following connection
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between the parameters of the distribution of y and explanatory covariates:

y „ InverseGammapθ1, θ2q (4.35)

θ1 “ β10 ` β11x (4.36)

θ2 “ β20 ` β21x, (4.37)

where θ1, θ2 represent the original parameters of the non-orthogonal PDF (4.30), and

covariate x is distributed as x „ Np2, 0.52q. Even though θ1, θ2 are constrained to be

positive, we used identity link functions for simplicity. No computational problems

were encountered.

We fix β10 “ β11 “ β20 “ 0.15 and vary the θ2 slope parameter β21 P t0.05, 0.1, 0.15u.

In each of those three variations of β21, we simulate as follows: (a) generate x from

Np2, 0.52q, (b) calculate true distributional parameters pθ1, θ2q according to (4.36),

(4.37) and β, (c) simulate y from (4.35) and (d) estimate regression coefficients ac-

cording to the following four model specifications:

S1.1: θ1 “ β10 ` β11x θ2 “ β20

S1.2: θ1 “ β10 ` β11x θ2 “ β20 ` β21x

S2.1: ω1 “ β110 ` β
1
11x ω2 “ β120

S2.2: ω1 “ β110 ` β
1
11x ω2 “ β120 ` β

1
21x,

(4.38)

where ωi correspond to the orthogonal, and θi to the original PDF. The focus of interest

is the unbiased estimation of coefficients of the first (location) parameter, so only β̂11

will be graphically displayed. Finally, we compute the difference between the true

coefficients and the estimated ones: βdiff
11 “ β11 ´ β̂

p1q

11 .

The results are shown in Figure 4.5. While the four different groups of boxplots de-

noted on the x axis represent estimated model coefficients under different specifications

(S1.1-S2.1) corresponding to (4.38), the differently colored boxplots represent varying

values of β21 for simulation of (4.38). On the y-axis we observe the difference between

our estimated and true values β11 ´ β̂
1

11.
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Figure 4.5: Results of simulation study comparing estimated regression coefficients
in misspecified and correctly specified models across each of the original and orthogonal
PDF of the inverse gamma distribution. Note that the results are slightly biased
towards the non-orthogonal model, since this is how the data was originally specified.
n = 100.

For all three simulated values of β21, the misspecification leads to a bias of β̂11 in

the original likelihood, as expected. The greater the value of β21, i.e. the greater the

influence of x on θ2, the greater the bias. The MLEs based on the orthogonal likelihood,

however, are either unbiased or have a substantially lower bias. This confirms the

superiority of the model based on the orthogonal PDF, and is consistent with the

results of similar simulations by Heller et al. (2019) of the Poisson-inverse Gaussian

distribution, for which a closed-form orthogonalization was available.

4.6 Illustration: Extreme rainfall in Tasmania

The statistical modeling of extreme weather events plays a significant role for the or-

ganisation of any metropolitan area, small or large, since they represent a major threat

to people’s livelihoods. In this paper, we focus on the upper extreme of rainfall, as

flooding is “the world’s most frequent natural hazard affecting the largest number of
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Figure 4.6: Maximum daily precipitation per year in Queenstown, Tasmania from
1977 to 2020. The rolling 10-day mean is represented using a blue line, while the red
shaded area represents the rolling 10-day standard deviation.

people worldwide” (Leal, Boavida-Portugal, Fragoso, & Ramos, 2019). In particu-

lar, we concentrate on the annual maximum daily rainfall in Queenstown, Tasmania,

Australia.

4.6.1 The dataset

Queenstown is one of the wettest cities in Australia with an average yearly rainfall of

2404 mm. The city’s rainfall data were obtained using the online service “Climate data

online” from the Bureau of Meteorology (2021).

Figure 4.6 shows a graphical summary of the annual maximum daily rainfall during

the period 1977 to 2020. Evidently, precipitation levels are mostly stable during the

first half of the period, after which more variation is seen (2000 to 2020). It appears

that both the scale and shape of the distribution changes over time.

For modeling extreme weather events, the Gumbel distribution (Gumbel, 1935) has

proven to be very useful: recent applications include hail size in the United States

(Allen et al., 2017) and extreme wind values in South Korea (Kang, Ko, & Huh, 2015).

The following parametrization is used in this section (Gumbel, 1935):

ppy| θ1, θ2q “
1

θ2

e
´

˜

x´θ1
θ2

`e
´
x´θ1
θ2

¸

with θ1 P R, θ2 P R`, y P R, (4.39)

where θ1 is a location parameter (the mode) and θ2 is a scale parameter.
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Restricted Model Full Model

β̂10 ´54.137˚˚˚ p11.6q ´34.784˚˚ p14.0q

β̂11 2.761˚˚˚ p0.6q 1.789˚˚ p0.7q

β̂20 ´0.824˚˚˚ p0.2q ´118.782˚ p39.3q

β̂21 5.892˚ p2.0q
˚˚˚p ă 0.001; ˚˚p ă 0.01; ˚p ă 0.05

Table 4.1: Estimated coefficients of non-orthogonal models, with bootstrap standard
errors in parentheses. Estimates and standard errors are rounded to three and one
decimal point(s), respectively.

4.6.2 Modeling

Before using our method to orthogonalize the Gumbel distribution, we first implement

traditional modeling approaches. Let’s assume we are interested in finding out whether

θ1 (location) varies over time, ignoring possible scale parameter (θ2) time changes

(Restricted Model). We then compare these results with a model in which we also let

θ2 vary over time (Full Model). Our model specifications have the following form:

θ1 “ β10 ` β11 ¨ year

logpθ2q “ β20
loomoon

Restricted Model

` β21 ¨ year

loooooooooooooomoooooooooooooon

Full Model

. (4.40)

Table 4.1 shows the estimated coefficients of both models. P values are obtained

using a standard non-parametric Bootstrap procedure (Efron, 1979). In the restricted

model, we observe that year has a significant influence on θ1 (β̂11 “ 2.761, p ă 0.05),

which points to a positive mode shift over time. The full model has an additional

coefficient of year β̂21, which is significantly different from zero (β̂21 “ 5.892, p ă 0.05).

This indicates that the scale of the distribution is also connected to year. Nonetheless,

both coefficient estimates for the mode have altered considerably to β̂10 “ ´34.784 and

β̂11 “ 1.789, without any difference in the model specification for θ1. These changes

are caused by the misspecification bias induced by the nonzero correlation Corrpθ̂1, θ̂2q,

described in Section 4.3.
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Figure 4.7: PDFs of the orthogonalized Gumbel distribution for ω1 “ t0.5, 3u and
ω2 “ t1, 3u.

The large changes in estimated coefficients of θ1 due to the difference in specification

of θ2 highlights the unreliable estimation of regression coefficients in situations where

their parent parameters are highly non-orthogonal. This means that we are not able to

confidently interpret parameters independently. Seeking independent interpretation,

we use a representation of the Gumbel distribution that was orthogonalized using our

proposed method (Section 4.4.4). Figure 4.7 shows the PDF for different values of

the orthogonal parameters ω1 and ω2. The calculation of the PDF and how ω1, ω2 are

varied is similar in style to Figure 4.3. We can see that an increase of ω1 leads to a

difference in location, while ω2 is a scale parameter.

Linking our effects to the new orthogonal representation, we use the following model

specification:

ω1 “ β110 ` β
1
11 ¨ year

logpω2q “ β120
loomoon

Restricted Model

` β121 ¨ year

loooooooooooooomoooooooooooooon

Full Model

. (4.41)

Table 4.2 shows the estimated coefficients of the two orthogonal models. It is apparent
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Restricted Model Full Model

β̂110 ´31.827˚˚˚ p10.5q ´31.827˚˚˚ p10.4q

β̂111 1.651˚˚˚ p0.5q 1.651˚˚˚ p0.5q

β̂120 ´32.709˚˚˚ p112.7q ´85.269˚ p419.0q

β̂121 ´79.882 p1532.8q
˚˚˚p ă 0.001; ˚˚p ă 0.01; ˚p ă 0.05

Table 4.2: Estimated coefficients of orthogonal models, with bootstrap standard
errors in parentheses. Estimates and standard errors are rounded to three and one
decimal point(s), respectively.

that the year coefficient estimate on the first parameter ω1 does not change, irrespective

of how ω2 was modeled. Further, we can see that β̂111 “ 1.651 is very similar to

β̂11 “ 1.789 from the full original model (which we assume to have the full information).

Additionally, we observe that the estimated coefficient of year on the scale parameter

is not significantly different from zero (p ą 0.05). The shift in time seems therefore

mostly attributed to a shift in location, but not scale.

Due to the orthogonalization of our PDF, we can now safely interpret the coeffi-

cient estimates on the first parameter, without concern about misspecification of other

parameter(s). While the mode of the distribution of extreme rainfall is significantly

shifted over time, the apparent increase in scale is not statistically significant.

4.7 Conclusion

In this paper, we outline the existence of a bias in distributional regression model

estimation that arises when the distributional parametrization is non-orthogonal and

one parameter is incorrectly specified. Addressing this issue, we develop a framework to

orthogonalize two-parameter distributions such that the resulting regression coefficient

estimates are uncorrelated between parameters. To do so, we numerically solve a system

of ODEs based on the original parameters’ MLE covariance matrix and connect the

results to the second parameter of our chosen distribution. The result of this procedure

is a parametrization of the chosen distribution which is robust to the bias coming from

a misspecification of parameters which the applied researcher may not be interested in.
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There are limitations to our present framework. Firstly, more work on the orthog-

onalization of distributions with three or more parameters would be beneficial. While

Huzurbazar (1950) proposes a method for analytically orthogonalizing three-parameter

distributions, he deems solvable only the case where two of the three parameters are

already orthogonal, due to the complexity of the differential equations. However, with

modern computational power, this complexity could conceivably be overcome. Sec-

ondly, the optimization with respect to the new, orthogonal parameters is computa-

tionally expensive. Lastly, the interpretation of effects on any distributional param-

eters, whether they are orthogonal or not, remains difficult if they do not equate to

distributional moments or other interpretable quantities. More work on the translation

of estimated effects on the parameters to effects on the distributional location or shape

would therefore be beneficial.

Notwithstanding, our proposed work provides a solution to a striking issue in re-

gression analysis beyond the mean. Using our framework, applied researchers can

parametrize distributions in order to produce reliable regression coefficient estimates

and draw robust conclusions.
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Parameter orthogonality transformations in distributional

regression models



5
Variable importance in likelihood-based

regression models

5.1 Introduction

The field of regression analysis beyond the classic linear model framework has seen a

substantial amount of innovation over the last decades. Modern prominent methods

include generalized linear models (GLM, Nelder & Wedderburn, 1972) and general-

ized additive models for location, scale and shape (GAMLSS, Rigby & Stasinopoulos,

2005). This combined incremental increase of modeling freedom in choosing target

distributions (GLM) and the ability to simultaneously model multiple distributional

parameters (GAMLSS) forms a toolkit that can be tailored for individual modeling

85
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scenarios. Furthermore, the development of model estimation techniques incorporat-

ing model selection like the least absolute shrinkage and selection operator (LASSO,

Tishbirani, 1996) or boosting (Freund, Schapire, & Abe, 1999; Schapire, 1990) ensures

that applied researchers find the most optimal model to resolve their hypotheses.

While an optimal model specification ensures the correct interpretation of estimated

coefficients, many applied researchers further require the assessment of the predictors’

relative importance (Green, Carroll, & Desarbo, 1978). Examples include ranking con-

tributions to customer satisfaction scores (Garver & Williams, 2020; J. Johnson, 2000)

or finding drivers of species richness in conservation biology (MacNally, 1996). Com-

mon components of a fitted regression model, like coefficients and t or p values, are

however not useful for comparing explanatory covariates across their variable impor-

tance, since they are subject to either

a) covariate scale-changes (raw coefficients),

b) over-stating the importance of correlated predictors (standardized coefficients, t

values),

c) order-dependency (sequential sum of squares), or

d) unsuitability for coefficients with degrees of freedom greater than one (raw and

standardized coefficients).

This lacking ability to compare and rank explanatory covariates has motivated

many researchers to propose alternative metrics. In a comprehensive summary of rela-

tive importance in linear regression, Grömping (2015) points to two metrics that can be

considered best-practice for ranking variable importance: “hierarchical partitioning”

(also called “LMG” after the authors in Lindeman, Merenda, & Gold, 1980) calculates

the goodness-of-fit measure of all possible submodels of the “full” regression model

to then find each variable’s average contribution, while a procedure called “relative

weights” (RW) analysis (Fabbris, 1980; Genizi, 1993; J. Johnson, 2000) is based on an

orthogonal representation of the model design matrix. Grömping (2015) shows that
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while hierarchical partitioning (HP) is able to take into account the most informa-

tion and therefore is the most complete, relative weights (RW) are a fast and strong

approximation in higher-dimensional predictor spaces (Q ą 10).

Unfortunately, the aforementioned metrics have only been developed for linear mod-

els and logistic regression (see Tonidandel & LeBreton, 2010). Since this represents just

a small fraction of the vast modeling and target distribution landscape (Fahrmeir et

al., 2013), we propose an extension of both the all-subset metric hierarchical parti-

tioning and relative weights analysis to likelihood-based models with linear predictors

including GLMs beyond logistic regression and GAMLSS. We present a user-friendly

implementation using the statistical programming language R (R Core Team, 2020).

With this new extension, researchers can use modern modeling techniques while also

ranking each effect’s covariate importance.

The remainder of this paper is structured as follows: Section 5.2 describes the

supported model classes, while Section 5.3 gives an example of where our R package

vibe is useful. In Section 5.4 we review the most effective variable importance metrics

and present our extension to GLMs and GAMLSS in Section 5.5, while Section 5.6

introduces the corresponding R package. Our proposal is validated in simulations found

in Section 5.7, after which Section 5.8 shows an application of vibe to a dataset on

malnourished children in India. Section 5.9 concludes the paper.

5.2 Model classes

Using generalized additive models for location, scale and shape (GAMLSS, Rigby &

Stasinopoulos, 2005), multiple parameters of a K-parametric response distribution y „

Dpθ1, . . . , θKq can be simultaneously linked to additive predictors of different forms.

Each parameter is assigned its own model equation that can have an independent

subset of predictor effects. More importantly, distributional choice is not limited to

the exponential family, as long as the probability density function (PDF) is twice

continuously differentiable with respect to its parameters. Effect choice is similar to

those of generalized additive models (GAM, Hastie & Tibshirani, 1990) - they can
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be parametric (linear, categorical, with interactions etc.) or non-parametric (random,

smooth splines, decision trees, spatial effects, etc.). This amounts to the following

model equation:

ηk “ βk0 `

Qk
ÿ

q“1

fkqpxkq;βkqq

hkpηkq “ θk,

(5.1)

where hkp¨q is a pre-specified response function intended to uphold the support of

parameter θk and βkq are regression coefficients of effect fkq. The result of (5.1) is a

highly flexible modeling environment beyond the mean. Due to parameters of many

distributions not being equal to either the location, scale or shape of a distribution, the

term “distributional regression” was coined by Klein, Kneib, Lang, and Sohn (2015).

Many different software packages implement versions of distributional regression.

The original R package gamlss with coefficients obtained via maximum-likelihood es-

timate (MLE) was developed by Stasinopoulos and Rigby (2007), while the R exten-

sion bamlss (Umlauf et al., 2018) uses Posterior-Mode maximization and subsequent

Markov chain Monte Carlo (MCMC) sampling to present a posterior distribution for

each regression coefficient. betareg (Cribari-Neto & Zeileis, 2010) presents a distri-

butional regression framework specifically for beta regression, whereas gamboostLSS

(Thomas et al., 2018) includes boosting algorithms in its estimation of distributional

regression models, geared towards potentially high-dimensional datasets.

The generality of distributions, effect choices and link functions means that distri-

butional regression encompasses many known regression models, such as generalized

linear models (GLM, Nelder & Wedderburn, 1972), GAM and generalized additive

mixed models (GAMM, Lin & Zhang, 1999).

To support the estimation of variable importance in a wide range of regression

scenarios, the proposal of this paper is built on GLM and GAMLSS model classes,

although it is applicable to any likelihood-based model class using linear and parametric

predictors. The implemented variable importance R package vibe introduced in this

paper is compatible with R packages mgcv, gamlss and the built-in R function glm().
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The mgcv compatibility ensures a wider range of distributions than what is possible

using glm(), as seen in Section 5.3. However, the compatibility of effect types from

both gamlss and mgcv are currently limited to linear and categorical effects only.

5.3 Motivational example

Rajendra and Machhindra (2018) aim to determine drivers of resident satisfaction in

three university student hostels in Kolhapur (India) from information gathered in a sur-

vey with 183 participants. The target variable measures the overall satisfaction level in

five distinct categories, ranging from “very dissatisfied” to “very satisfied”. The study

attempts to analyze this variable labelled rsat and its connection to explanatory vari-

ables measuring the residents’ ratings of individual parts of their hostel experience, on

a scale of 1 (very dissatisfied) to 5 (very satisfied). These 29 explanatory variables

include questions about the quality of the facilities, the environment cleanliness, res-

idents’ personal rooms and food provided by the hostel. Control variables including

resident’s gender and the specific hostel students were living in are also recorded.

In contrast to the original publication by Rajendra and Machhindra (2018), a re-

gression model to connect rsat to all explanatory variables is employed. Due to the

ordinal nature of the dependent variable we apply an ordinal logistic regression model.

As suggested by McCullagh (1980), we assume a latent variable that drives the cate-

gorical cuts in rsat as follows:

y˚ “ β0 `Xβ ` e, e | X „ Logisticpµ, sq (5.2)

where φ1 ă φ2 ă φ3 ă φ4 are cut-points for translating y˚ into rsat:

rsat “ “very dissatisfied” if y˚ ď φ1

rsat “ “dissatisfied” if φ1 ă y˚ ď φ2

rsat “ “neutral” if φ2 ă y˚ ď φ3

rsat “ “satisfied” if φ3 ă y˚ ď φ4

rsat “ “very satisfied” if y˚ ą φ4,

(5.3)
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where β and φi, i “ 1, . . . , 4 are to be estimated. We can then connect the latent

variable y˚ to explanatory variables as in (5.2). Conducting model estimation using

the R package mgcv (Wood, 2011), we execute the following code:

gam_ocat <- gam(

rsat ~ Gender + hostel_no + Q.1 + Q.2 + Q.3 + Q.4 + Q.5 + Q.6 +

Q.7 + Q.8 + Q.9 + Q.10 + Q.11 + Q.12 + Q.13 + Q.14 + Q.15 +

Q.16 + Q.17 + Q.18 + Q.19 + Q.20 + Q.21 + Q.22 + Q.23 + Q.24 +

Q.25 + Q.26 + Q.27 + Q.28 + Q.29 ,

data = sat , family = ocat(R = 5)

)

In the above code chunk, variables Q.o, o “ 1, . . . , 29 refer to the questions residents

were asked in the satisfaction questionnaire, with Table A.1 in the Appendix containing

the full questions. As visible in the obtained model summary, Table 5.1, there are

seven variables that are significantly associated with resident satisfaction (p ă 0.05):

hostel no (hostel number), Q.2 (security systems), Q.9 (parking lot), Q.10 (study

room), Q.18 (annual functions), Q.26 (comfortable beds) and Q.28 (availability of

drinking water).

Estimate Std. Error z value Pr(ą|z|)
(Intercept) -5.90 1.34 -4.41 0.00

hostel no 0.60 0.22 2.77 0.01
Q.2 -0.38 0.18 -2.11 0.04
Q.9 0.44 0.20 2.23 0.03

Q.10 -0.41 0.19 -2.14 0.03
Q.18 0.43 0.17 2.54 0.01
Q.26 0.44 0.17 2.55 0.01
Q.28 0.47 0.18 2.62 0.01

Table 5.1: Coefficients of the ordinal resident satisfaction model, only containing
variables with p ă 0.05. The full version can be found as Table A.2 in the Appendix.

The information of significant association between the dependent variable and those

seven explanatory variables is useful for the hostel management, yet it remains unknown

which of these covariates has the biggest impact. One could look at the absolute coeffi-

cients in Table 5.1, but since we can assume that covariates are correlated (the “hostel

number” and “comfortable beds” or “security systems” could share some information),
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the relative importance is unclear.

To rank the variables in their contribution to resident satisfaction, we use our

package vibe, which provides two variable importance metrics: hierarchical partition-

ing and relative weights. Since hierarchical partitioning would have to calculate 231

sub-models (which amounts to more than 21 billion), we use the less computationally

expensive relative weights (more detail in Section 5.4).

The vibe package automatically recognizes the model type and calculates the spec-

ified metrics. To calculate it for the ordinal categorical model and obtain a formatted

table of results, we use the following code:

rw_gam <- vibe(gam_ocat , metric = "relweights", gofmetric = "R2e")

rw_gam$results

Covariate Name Parameter I. Effects I. Effects (fraction)
hostel no mu 0.038 0.09
Q.6 mu 0.022 0.051
Q.7 mu 0.024 0.057
Q.9 mu 0.037 0.088
Q.18 mu 0.03 0.072
Q.26 mu 0.039 0.092
Q.28 mu 0.04 0.096

Table 5.2: Relative weights analysis results for the model specified in 5.2. Column
“Parameter” descibes which parameter was modeled, while “I. Effects” stands for in-
dependent effects and describes each variable’s raw contribution to a reduction in the
goodness-of-fit figure. In the fourth column, independent contributions are scaled to
sum to one. Covariates with an independent contribution lower than 0.05 were ex-
cluded from this table (full table available as A.3 in the Appendix).

Table 5.2 shows the formatted output of Line 2 of the above code chunk.1. This

allows us to obtain each variable’s relative contribution towards reducing the model’s

error rate. The model goodness-of-fit measure used is a likelihood-based “R2” pro-

posed by Estrella in 1998 (more detail is provided in Section 5.5). Leading effects are

Q.28 (drinking water) and Q.26 (comfortable beds), with hostel no and Q.9 (parking

lot) in third and fourth place, respectively. We can conclude that the availability of

1The parameter is denoted as “mu” due to notation of the underlying software, but it is equal to
θ1. This recurs occasionally in forthcoming graphs.
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Figure 5.1: Variable importance results by explanatory covariates with metric “rel-
ative weights”, measuring the share (%) of error reduction for the fitted ordinal cate-
gorical GLM, produced with package vibe.

good drinking water, pleasant bedding and the supply of parking spots are the most

important drivers of resident satisfaction. The hostel manager having to allocate new

funds could therefore prioritize improving those elements of the hostel environment.

To produce publication-ready graphs, the applied researcher can use the built-in

plot function for visualization of results as follows:

plot(rw_gam)

The result of this short code-snippet can be seen in Figure 5.1.
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5.4 Variable importance metrics

5.4.1 Hierarchical partitioning

The mathematical theory of hierarchical partitioning as proposed by Chevan and

Sutherland (1991) considers one target variable y paired with Q predictors. The pre-

dictors can be included into a model in 2Q unique ways, from the intercept model (no

predictors are included) to the full model (all predictors are included). A user-specified

goodness-of-fit, denoted by Rx with x P t0, 1, 2, 12, . . . , 123 ¨ ¨ ¨Qu, is extracted from

each possible sub-model.

For the 2Q model combinations there are Q! ways of ordering the variables (permu-

tations). In the three-variable case, the permutations are:

123, 132, 312, 321, 231, 213.

Each of these permutations represents how a full model can sequentially be built. The

first number represents the variable for which the average contribution is calculated.

In each of the sequential steps, the variable of interest is removed and the difference in

the goodness-of-fit obtained. For the last of the above permutations, 213, the following

differences would be calculated:

R2 ´R0 “ GDiff
221

R21 ´R1 “ GDiff
222

R213 ´R13 “ GDiff
223 ,

(5.4)

where Rvars corresponds to a specified goodness-of-fit of a model with included covariate

effects in the index (R12 would link to a model with covariates 1 and 2, whereas R0

refers to the goodness of fit of an “only intercept” model) and GDiff
qjl , q “ 1, . . . , Q; j “

1, . . . , pQ´1q!; l “ 1, . . . , Q corresponds to the lth difference in goodness of fit calculated

in the jth permutation linked to the qth covariate effect. After repeating this procedure
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for every permutation, the average contribution of variable q is obtained as follows:

ḠDiff
q “

pQ´1q!
ÿ

j“1

Q
ÿ

l“1

GDiff
qjl

Q!
(5.5)

Originally created to decompose the R2 of a linear model, hierarchical partitioning can

also be used in combination with other goodness-of-fit measures or model types by

simply swapping out Rvars. A convenient choice for likelihood-based regression models

is one that takes the evaluated likelihood-function into account. Examples include the

model deviance, or a “Pseudo-R2” as proposed by Estrella (1998).

5.4.2 Relative weights

Although in theory hierarchical partitioning can be generalized for Q predictors and

K parameters, the computational time increases exponentially with the number of

predictors.

To solve this shortcoming of hierarchical partitioning, an approach labeled “relative

weights” was proposed by Fabbris (1980), Genizi (1993) and later J. Johnson (2000).

In their proposal, the contribution of each covariate on the dependent variable is cal-

culated using a two-step procedure: first, an orthogonalization of the design matrix

occurs, which is then connected to the dependent variable using simple linear regres-

sion. Second, the standardized coefficients of the orthogonal model are then weighted

based on the relationship between the orthogonalized and original variables.

The most recent version modernized by J. Johnson (2000) starts with the design

matrix X of dimension N ˆ Q, centered to 0 and scaled to Varpxqq “ 1 and the

dependent variable y with dimension N ˆ 1. Using a singular value decomposition, as

long as X is of full rank and has more rows than columns, one obtains an orthogonal

matrix Z that shares the same dimension as X:

X “ UDVᵀ

Z “ UVᵀ,
(5.6)
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where UNˆN consists of the eigenvectors of XXᵀ, Vᵀ
NˆQ holds the eigenvectors of XXᵀ

and DQˆQ is a diagonal matrix containing the singular values of X. Using the orthog-

onal design matrix Z, the ordinary least squares (OLS) coefficients β˚ “ pZᵀZq´1Zᵀy.

Even though β˚ are standardized and now represent estimators of uncorrelated vari-

ables in Z, removing the issue of shared variable error reduction, they do not represent

good approximations for X Ñ y contributions, since Z itself might not be a good

representation of X, especially in scenarios with high correlation.

The missing link of X Ñ Z is reinstated by a linear model with explanatory variables

X and dependent variables Z. The coefficients Γ are calculated as follows:

Γ “ pXᵀXq´1XᵀZ (5.7)

The result is a matrix Γ with dimensions Q ˆ Q, where each column consists of the

coefficients for a regression model of X on zq. Those columns are converted into weights

by dividing each element by the column sum as follows:

γ˚2
mq “

γ2
mq

řQ
m“1 γ

2
mq

(5.8)

where γ2
mq,m “ 1, . . . , Q, q “ 1, . . . , Q are the squares of general entries in Γ. The

relative weights of X on y are finally calculated as

δ2
q “

Q
ÿ

m“1

γ˚2
mqβ

˚2
q (5.9)

and represent the share of R2 that each variable contributes to the model. The biggest

advantage of this procedure is the small number of regression models that need to

be estimated: independently of the predictor space dimensionality, we only need to

calculate the two model coefficient matrices β˚ and Γ, instead of 2Q model combinations

when calculating the results of hierarchical partitioning.

However, the procedure of calculating relative weights as proposed by J. Johnson

(2000) is limited to multiple linear regression models only. As soon as more complex
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methods are used, as in the case with non-normally distributed target variables or in

situations where we are interested in more than just the mean, this metric is no longer

applicable without amendments.

The limitations of relative weights in its original contribution were recognized by

Tonidandel and LeBreton (2010), who extended the concept to ensure compatibility

with logistic regression models. Their proposed method follows that of J. Johnson

(2000) in orthogonalizing X to Z and subsequently connecting both matrices as de-

scribed in (5.7), although Γ changes to pZᵀZq´1ZᵀX (Z,X are flipped). The coeffi-

cients β˚ are replaced with their equivalent logistic regression coefficients β̂
˚

logistic “

arg max
β˚

śn
i“1 Lipβ

˚; Zq, where Lip¨q are the individual likelihood contributions of Z

based on the binomial distribution. Finally, the regression coefficients are standardized

by dividing them by the standard error of the predicted parameter π̂ and multiplying

them by the R2 of the orthogonal model. The relative weights are again weighted using

Γ as in (5.9).

Further, Tonidandel and LeBreton (2010) show that the results obtained from the

above procedure are very similar to those obtained using hierarchical partitioning, at

a fraction of the computing time.

5.5 Extensions to GLM and GAMLSS

Previous sections have shown that viable proposals exist to assign importance to

variables in linear models and logistic regression models. However, a sizeable gap still

prevails in variable importance beyond these two model classes. Although hierarchical

partitioning is readily applicable to all different types of regression models, there is not

currently any available software that an applied researcher can use. Further, the issue

of expensive computation with large numbers of covariates perseveres. To bridge this

gap, this paper a) extends relative weights analysis (RWA) and the all-subset metric

hierarchical partitioning to likelihood-based models with linear predictors, specifically

GLMs beyond logistic regression and GAMLSS with linear predictors (this Section),
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and b) features an easy-to-use R extension called vibe that implements the proposed

extensions (Section 5.6).

To generalize relative weights beyond linear models, we change the algorithm pro-

posed by Tonidandel and LeBreton (2010) on four accounts: first, the estimated

coefficients of the orthogonal model are based on the same model class as the full

model with a mirrored model specification. For example, this entails that if the

regression specification was y „ Dpg1pθ1q “ Xβ1, g2pθ2q “ Xβ2q with distribution

Dpθ1, θ2q and link functions g1p¨q, g2p¨q, then β˚ will be estimated with specification

y „ Dpg1pθ1q “ Zβ˚1 , g2pθ2q “ Zβ˚2q. Second, we alter the goodness-of-fit used to

scale the regression coefficients β˚, R2 to a likelihood-based one suggested by Estrella

(1998):

R2
E “ 1´

„

ln pLmaxq

ln pLmax
0 q

´p 2
nq lnpLmax

0 q

, (5.10)

where Lmax
0 and Lmax represent the (maximum) evaluated likelihood function of a model

with no explanatory covariates, and of a model containing the orthogonalized design

matrix Z, respectively. This change from a goodness-of-fit based on ŷ (R2) to one that

is likelihood-based reflects the fact that modeled parameters are not always the mean,

as is the case in GAMLSS, for example. Third, we allow for the use of categorical

effects as part of the model equation. Lastly, our algorithm takes into account the

simultaneous modeling of multiple parameters, as is done in distributional regression.

In detail, we propose the following Algorithm 1, where X “ pX1, . . . ,XQq
ᵀ rep-

resents a matrix containing all available predictors and Xk “ X1, . . . ,XQk represents

a subset of X consisting of the covariates connected to parameters θk which can be

distributional parameters as known from distributional regression but also moments

such as the mean used in GLM and GAM. In the latter two model classes, Xk always

represents the full data matrix X. θ contains the parameters of y that should be

connected to predictors Xk.

In Algorithm 1, we first convert categorical effects to dummy variables, if they exist

(Lines 3–5). Then, we prepare and orthogonalize X into Z (Lines 7–10), after which the

X Ñ Z weights are obtained. In Lines 11–12 the regression coefficients with regards to
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Algorithm 1: Generalized relative weights

Input: y,X,θ, Lp¨q

1 for k “ 1 to K do

2 Xk = subset(X) ; // Obtain relevant predictors

3 cat = has categorical(Xk) ; // binary: any categorical vars?

4 if cat = TRUE then

5 Xk = convert(Xk) ; // convert to dummy-coding

6 end

7 Xs
k = standardize(Xk) ; // substract mean and divide by sd

8 Zk = svd(Xs
k) ; // obtain orthogonal rep. of X

9 Zs
k = standardize(Zk)

10 Λ “ pZsᵀ
k Zs

kq
´1Zs

kX
s
k ; // obtain XÑ Z contributions

11 β˚, Lmax = arg maxβ˚
śn

i“1 Lipβ
˚
|y,Zq ; // get coefs, likelihood

12 Lmax
0 “ arg maxβ˚0

śn
i“1 Lipβ

˚
0 |y,Zq ; // obtain empty likelihood

13 sη̂ = sd(Zs
kβ

˚) ; // Obtain sd of linear predictor.

14 g = gof(Lmax
0 , Lmax) ; // Compute goodness-of-fit

15 w “ Λ2
´

β˚ g
sη̂

¯2

; // Obtain relative weights

16 if cat = TRUE then

17 w = coerce(w) ; // coerce weights into one effect

18 end

19 return(w)

20 end

Output: Relative weights w

Z (β˚) and the coefficients for an “intercept model” (β˚0 , no covariates) are calculated.

The corresponding maximized likelihood function values Lmax, Lmax
0 are stored. Lines

13 and 14 calculate the standard error of the predicted response function and the user-

chosen goodness-of-fit respectively, while in Line 15 the coefficients are combined with

the goodness-of-fit, the previously calculated predicted response standard error and Λ

to obtain the relative weights. Lines 16–18 sums the relative weights of dummy-coded

variables to form unified categorical effects. If the user-chosen goodness-of-fit is not

dependent on the empty model, Line 12 can be disregarded.

With our changes, the proposed algorithm is applicable to any likelihood-based
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regression model with linear predictors and scaleable to a large number of variables.

If the original, full model is a distributional regression model, all of the above steps

are repeated for each parameter independently (seen as a for loop ranging from Lines

1–20).

5.6 The vibe package

We present a user-friendly implementation of the metrics introduced in Sections 5.4

and 5.5 in R called vibe (Variable Importance Beyond Linear Models), which was

briefly showcased in Section 5.3. Code, tests and an installation manual can be found

at https://github.com/Stan125/vibe.

The software extension vibe is designed to be lightweight, simple and easy to use.

It revolves around its main function, also called vibe(), which conducts the main

calculations. Depending on the full model provided, vibe uses one of three different

methods: vibe.glm(), vibe.gam() or vibe.gamlss(). The arguments which can be

provided are as follows:

function (object , metric = "hp",

gofmetric = "R2e", ncores = 1,

progress = TRUE , ...)

With the argument object, a fitted regression model is specified. This can be one

of either class "glm", "gam" or "gamlss". From this object, vibe automatically recog-

nizes the provided model class. If the object is of class "gamlss" and more than one

parameter is linked to predictors, it is automatically recognized by vibe and variable

importance is calculated for each parameter individually. With the argument metric,

one of the two proposed metrics can be chosen: "hp" stands for “hierarchical partition-

ing” and calculates the all-subset metric hierarchical partitioning, whereas specifying

"relweights" will calculate relative weights. With the argument gofmetric, the user

can specify different goodness-of-fit figures, although only "r2e" (Pseudo-R2 as de-

fined in 5.10) is currently available. The arguments ncores and progress control

the parallelization if metric = "hp" is specified, while multiple cores for computation

https://github.com/Stan125/vibe
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of sub-models can be specified with ncores. With progress, a progress bar can be

displayed.

After the vibe() function is executed, it returns an object of class vibe. Next

to built-in print and summary functions, the extension also features a plot function,

which creates a neat display of the results. See Figures 5.1 and 5.3 for examples.

5.7 Simulation

In both original relative weights proposals by J. Johnson (2000) and its logistic regres-

sion extension by Tonidandel and LeBreton (2010), as well as in Grömping (2015), the

authors were able to show that relative weights analysis yields very similar results to

the full-subset metric hierarchical partitioning. This section fulfills a similar purpose

by confirming that extending relative weights beyond linear models does not diminish

their accuracy.

As part of the proposed simulation study, the performance of RWA and hierarchical

partitioning will be tested on the two different model classes: GLM and GAMLSS (with

linear predictors). In the first scenario (a), which concerns only GLM, we assume the

expected value of the parametric distribution to be connected to explanatory variables

x1, x2, x3 in the following way:

η1 “ Xβ1

hpη1q “ Epyqx
(5.11)

where hp¨q represents a pre-specified response function that connects the explanatory

variables to the expected value of y, upholding the correct parameter space. It varies

between distributions, and equals to the default functions provided by the respective

estimation software. The covariates x1, . . . , x3 are distributed as follows:

X “ px1, x2, x3q
ᵀ
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which includes correlations of 0.4 (x1&x2, x2&x3) and 0.8 (x1&x3). The corresponding

regression coefficients decrease in size and sum to one to simulate a “relative share”:

β1 “ pβ1, β2, β3q
ᵀ “ p0.5, 0.33, 0.167q. We estimate a GLM using the R function gam()

of package mgcv (Wood, 2011) using the correct model specification, and calculate

both RWA and hierarchical partitioning to obtain the share of relative importance of

each variable. The difference between RWA and hierarchical partitioning is calculated

mRWA ´mHP.

In the second scenario (b), we use the same coefficients β “ pβ1, β2, β3q
ᵀ to connect

xq to y, but this time to its first parameter θ1 in y „ Dpθ1, . . . , θKq, instead of the

expected value as in a). We choose a variety of different response distributions, visible

in Table 5.3. The model specification is as follows:

η1 “ Xβ1

h1pη1q “ θ1,
(5.13)

while all other parameters of the distribution designed as fixed. Similar to the first

scenario, we estimate the full model using the correct model specification and obtain

the difference mRWA ´ mHP. This time we utilize gamlss (Stasinopoulos & Rigby,

2007) for model estimation, which yields the possibility of connecting distributional

parameters to predictors.

In the third scenario (c), we focus on variable importance for the second parameter

of y, which typically corresponds to the scale of the distribution. Our chosen distri-

butions are equal as in (a). The simulation specification for all models is as follows:

η1 “ Xβ1

η2 “ Xβ2

h1pη1q “ θ1

h2pη2q “ θ2,

(5.14)

with the coefficients β1 retaining the same values as in (5.11) and β2 being equal
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to β1: β1 “ β2 “ p0.5, 0.33, 0.167q. We obtain both variable importance metrics

RW and HP for the second parameter only, causing the submodels of HP to vary in

predictors for θ2 only, while the model specification for θ1 stays as in (5.14). Further,

the orthogonalization and models estimated for the relative weights metric also concern

only changes in predictors for the second parameter θ2, while the predictors for θ1 are

not orthogonalized.

In Figure 5.2 the results of all three scenarios are shown. On the left side of the

plot, boxplots depict the difference between estimated relative weights (mRWA) and

estimated variable importance according to hierarchical partitioning (mHP) (x-axes) as

well as the specific target distribution (y-axes). The boxplots are displayed in groups

of three, which correspond to the three explanatory variables x1, x2, x3 (color code in

legend). The right side of the graph includes a flipped bar plot depicting the average

absolute difference over all three explanatory variables mRWA ´ mHP on the x-axis.

Average standard errors are included in parentheses.

As visible in Figure 5.2, the first and second scenarios see very close results between

HP and RWA, with most boxplots completely enclosed in the dashed lines at x “

t´0.05, 0.05u. Most distributions see an average difference of around 0.015 percentage

points (visible on the right side), with only the beta distribution showing a slightly

lower average difference of 0.006. This strengthens the approximation accuracy of

relative weights, indicating that the all-subset metric hierarchical partitioning is not

needed. In the third scenario, the difference between RWA and HP is slightly greater.

Most distributions exhibit a gap between 0.01 and 0.045, with the Gamma distribution

reporting the highest average deviation of 4.5% (percentage points) between RWA and

the all-subset metric HP. The lowest average difference is found in the Inverse Gamma

distribution models with 0.014 percentage points. It has to be noted that although the

average difference mRWA ´mHP is low, it varies from covariate to covariate: x1 mostly

experiences negative differences, while the difference is mostly positive for x2 and x3.

In conclusion, we can see that the approximation of hierarchical partitioning with

relative weights is effective, although the accuracy is higher in variable importance for

the first parameter. We can thus confidently use relative weights as an alternative to
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Figure 5.2: Results of simulations according to Scenarios (5.11) labelled a, (5.13)
labelled b and (5.14) labelled c. The y-axes in all three plots denote different target
distributions, whereas there are two x-axes, denoting the difference between relative
weights and hierarchical partitioning mRWA´mHP (left) and the mean absolute differ-
ence on the right side. Colors represent different covariates x1, x2, x3. A vertical zero
line is included in red, with dashed lines at x “ t´0.05, 0.05u. The right side of the
plots includes average deviations between the two metrics displayed in bars, with the
average standard deviation in parentheses. N “ 200.

hierarchical partitioning.

Table 5.3 provides an overview of the model classes and distributions used in the

simulation. Additionally, the mean computing time of both relative weights (RW)
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and hierarchical partitioning (HP) in seconds using a single-core Intel©Xeon©CPU

E5-4660 v4 @ 2.20GHz is given in columns 3 and 4, with relative weights usually

taking only a quarter of the time of hierarchical partitioning, even in this case of

low predictor count. We expect to see an even bigger difference in computing time

when the predictor space is high-dimensional. For the many distributions and model

classes chosen, our relative weights extension thus provides an effective alternative to

hierarchical partitioning, using only a fraction of the computing time.

Class Family HP time RW time
1 gam Binomial 0.33 0.07
2 gam Gamma 1.65 0.33
3 gam Normal 0.11 0.03
4 gam Ordered Categorial 1.15 0.32
5 gam Poisson 0.36 0.07
6 gamlss Beta 0.39 0.08
7 gamlss Binomial 0.22 0.05
8 gamlss Gamma 0.44 0.09
9 gamlss Inverse Gamma 0.26 0.07

10 gamlss Johnson SU 0.41 0.09
11 gamlss Log Normal 0.18 0.04
12 gamlss Logistic 0.37 0.08
13 gamlss Normal 0.71 0.17
14 gamlss Poisson 0.18 0.04
15 gamlss Reverse Gumbel 0.43 0.09
16 gamlss Weibull 0.53 0.12

Table 5.3: Distributions included in simulation and corresponding variable impor-
tance computing time in seconds per estimated variable importance metric.

5.8 Application: Childhood malnutrition in India

In a report provided by the Demographic and Health Surveys (International Institute

for Population Sciences, 2007), socioeconomic and health-related information of indi-

vidual children and their parents was published. Hofner, Mayr, and Schmid (2016)

utilize the published dataset to understand the relations behind childhood malnutri-

tion and socioeconomic variables. In detail, they focus on a response variable called

stunting, measuring the child’s stunted growth in relation to the population average.
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It is measured as a Z score in the following way:

Zi “
hei ´ hemed

s
, (5.15)

where hei measures the child’s current height and hemed, s denote the median and

standard deviation of the reference population height, respectively. Hofner et al. (2016)

then connect this dependent variable to

• cbmi: The child’s body mass index,

• cage: The child’s age in months,

• mbmi: The mother’s body mass index,

• mage: The mother’s age in years and

• mcdist: The families’ district of living

with nonlinear smooth splines using the R extension gamboostLSS (Thomas et al.,

2018). After estimation of their model, which due to incorporating a boosting approach

also includes an effect selection part, all of the above variables were selected to be

connected to both the location and scale parameters of the dependent variable.

In this section we use the model fitted by Hofner et al. (2016) and determine which

of the variables most significantly contribute to explaining the dependent variable. For

ease of estimation, we restrict ourselves to three Indian districts: Mumbai, Delhi and

Aizawl. Similar to the above authors, we assume the dependent variable y (stunting)

to follow a Gaussian distribution. We then connect both parameters to variables in

the following way:

y „ Npθ1, θ2q

θ1 “ β10 `

4
ÿ

q“1

β1qxq ` f15px5; β15, β16q

logpθ2q “ β20 `

4
ÿ

q“1

β2qxq ` f25px5; β25, β26q,

(5.16)
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Covariates θ1 θ2

(Intercept) 2.19˚ 0.32
p1.10q p0.55q

cbmi ´0.20˚˚˚ ´0.03
p0.05q p0.02q

cage ´0.05˚˚˚ 0.01
p0.01q p0.01q

mbmi 0.04 ´0.00
p0.03q p0.01q

mage 0.01 0.01
p0.02q p0.01q

mcdist labDelhi ´0.75˚˚ 0.32˚

p0.28q p0.14q
mcdist labMumbai (Greater Mumbai) ´0.46 ´0.03

p0.24q p0.14q
˚˚˚p ă 0.001; ˚˚p ă 0.01; ˚p ă 0.05

Table 5.4: Fitted regression coefficients of the Indian malnutrition model specified
in (5.16) for modeling parameters θ1 (β10, . . . , β16) and θ2 (β20, . . . , β26) in columns two
and three, respectively. Standard errors are given in parentheses.

where Epyq “ θ1, Varpyq “ θ2
2 and x1 . . . x4 represent the numeric variables cbmi, cage,

mbmi, mage and x5 denotes the categorical district variable mcdist, modeled using

a categorical term fk5p¨q. To ensure compatibility with the vibe package, a linear

connection between y and xq is assumed.

Table 5.4 provides an overview of the coefficients, estimated using gamlss (Rigby &

Stasinopoulos, 2005). Even though all variables were selected in the boosted regression

model by Hofner et al. (2016), only a few of their coefficients remain significantly

different from zero when included in the model as a linear term.

Although we obtain regression results in Table 5.4, it is still unclear which variable

contributes the most to childhood malnutrition, both in location and shape. To answer

this question, we use the package vibe. In contrast to the motivational example in

Section 5.3, the number of variables per parameter is relatively low, which means that

the all-subset metric hierarchical partitioning is not out of reach. To obtain variable

importance results, we execute the following code:

vb_gm <- vibe(mod_gm , metric = "hp", ncores = 3, progress = FALSE)
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Covariate Name Parameter I. Effects I. Effects (fraction)
cbmi mu 0.06 0.26
cage mu 0.12 0.53
mbmi mu 0.01 0.05
mage mu 0.00 0.02
mcdist lab mu 0.03 0.14
cbmi sigma 0.02 0.29
cage sigma 0.00 0.02
mbmi sigma 0.00 0.00
mage sigma 0.01 0.07
mcdist lab sigma 0.05 0.62

Table 5.5: Variable importance results for the Indian malnutrition model specified in
(5.16), with independent variable contributions and its corresponding scaled fractions,
displayed in columns three and four, respectively. This software output uses the µ, σ
notation which we define as θ1, θ2.

summary(vb_gm)

plot(vb_gm , perc = FALSE)

Table 5.5 shows the raw and percentage variable importance results, whereas Figure

5.3 displays them graphically. We can now see that the impact of the child’s age is the

most important factor for malnutrition, while the body mass index comes second. For

the variance parameter, the child’s district seems to have the most impact.

5.9 Conclusion

With this paper, we propose an extension of hierarchical partitioning and relative

weights for use with GLM and GAMLSS with linear predictors. Using both metrics,

applied researchers can make better inferences with regard to the covariate effects with

the highest impact on the dependent variable’s location, scale and shape parameters

in relation to other variables. Moreover, relative weights are highly scalable with the

number of covariates, making them suitable for high-dimensional applications.

Furthermore, an implementation in R is presented, designed to be easy-to-use when

the fitted regression model is estimated. The applied researcher simply needs to provide

the fitted glm, gam or gamlss object and select the preferred variable importance metric.

A function to visualize the results is readily available.
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Figure 5.3: Plot output of variable importance figures for the Indian malnutrition
model, with µ, σ notation which we define as θ1, θ2.

Some drawbacks remain. First, even though many of the model classes are sup-

ported, the effects are assumed to be linear. In many cases, this is a strong simpli-

fication of reality. While hierarchical partitioning can in theory easily be expanded

to non-linear effects, further research on extending the relative weights algorithm pro-

posed in this paper to non-linear effects (e.g. parametric base splines) would be benefi-

cial. Second, the discussed variable importance metrics assume that the optimal model

has already been found. The variable selection step in applied modeling is therefore

not replaced. Third, vibe could be extended to support even more R packages and

goodness-of-fit metrics.

Ultimately, the proposed variable importance metrics provide a reliable founda-

tion to provide researchers with more information about their included variables on

a distribution of interest. Due to the open distributional interface of GAMLSS, vari-

able importance can be applied to any conceivable metric of interest of the target

distribution, such as the median or the kurtosis. Thanks to its flexibility, the variable
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importance implementation vibe has the potential to become regularly utilized as a

crucial tool for the applied researcher.
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6
Conclusion and discussion

Following an introduction to the class of distributional regression models, including a

formal introduction and a cross-sectional overview of current developments, this thesis

went on to make three distinct contributions to the field.

The first contribution was concerned with visualizing distributional regression mod-

els. It was recognized that the increased parameter specification flexibility of the model

class brings additional challenges in understanding how estimated effects influence the

moments of a distribution, since effects can be non-parametric, link functions transform

the effects and modeled parameters may not directly equate to distributional moments.

A framework and subsequent implementation in R was proposed and published. This

contribution fills a gap in the model class and has the potential to become the prime vi-

sualization tool for regression beyond the mean. However, although already extensive,

it can be developed further. Multivariate (copula) distributions are receiving increased

111
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attention but are currently incompatible with distreg.vis. Also, R packages with new

effect types are being developed and also not currently compatible with distreg.vis.

That could be targeted next.

In Chapter 4, the focus shifted to the estimation of distributional regression models.

The distribution of parameter maximum-likelihood estimates (MLEs) was analyzed and

found to have a non-diagonal covariance matrix in most distributions outside the expo-

nential family. It was observed that this causes a misspecification bias with a spillover

effect, which influences regression coefficient estimates even when parameters were cor-

rectly specified. An orthogonalization framework for two-parameter distributions that

relies on the numeric solution of a system of ordinary differential equations was laid

out and verified using simulations, achieving unbiased estimation. While the proposed

framework is robust and effective, it remains limited to two-parameter distributions.

The extension to three and more parameters could be researched. Further, implemen-

tation of the method in well-known regression software, like gamlss or bamlss, would

make it easier to use this contribution.

The third contribution of this thesis concerns the interpretation of distributional

regression models. While modern regularization techniques are useful in arriving at

correct and optimal model specifications, the question of variable importance remained

to be answered. In Chapter 5, common methods for ranking variable importance in

linear regression models were reviewed, with two approaches standing out as the most

suitable. These two algorithms were extended to generalized linear models (GLM,

Nelder & Wedderburn, 1972) and generalized additive models for location, scale and

shape (GAMLSS, Rigby & Stasinopoulos, 2005) with some adjustments, verified in

simulations and implemented in an R package called vibe. Potential improvements

concern compatibility: currently, vibe supports the base R function glm() as well as

the packages mgcv and gamlss. This could be extended to other, more specialized

distributional regression implementations. Further, the proposed algorithm could be

extended to parametric non-linear effects like smooth splines.

On the whole, the contributions proposed in this thesis close important gaps in the

field of distributional regression and will hopefully be well utilized in the future.
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Appendix

A.1 Supplement to Chapter 3: Interactively visu-

alizing distributional regression models

A.1.1 Extending distreg.vis

In its original conception, distreg.vis was written to accommodate both bamlss and

gamlss models, which are both well suited for solving most distributional regression

tasks. However, users might prefer other R packages for their model estimation. To

ensure future package compatibility, distreg.vis was written such that it can be eas-

ily extended to work with new modules, thanks to a rather minimalistic interface with

the distributional regression packages. This section serves as a reference for its real-

ization, with a direct application to the betareg (Cribari-Neto & Zeileis, 2010) package.

113
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distreg checker()

The first function that requires extending is distreg_checker, which inspects

whether the used model class is supported by distreg.vis. It always returns a Boolean

value, and is part of distreg.vis’ most core functions’ error handling. Extension to

the two new betareg model classes (betareg, betatree) is achieved as follows:

distreg_checker <- function(x) {

if (is.character(x))

obj <- get(x, envir = .GlobalEnv)

else

obj <- x

if (is(obj , "bamlss"))

return(TRUE)

else if (is(obj , "gamlss"))

return(TRUE)

else if (is(obj , "betareg") | is(obj , "betatree"))

return(TRUE)

else

return(FALSE)

}

dists.csv

After officially registering the new package in distreg_checker, more information

about the newly supported distributions has to be provided. The basis of all supported

distributions is formed by the file /inst/extdata/dist_df.csv, which, after executing

data-raw/create_dist_table.R becomes the distreg.vis::dists dataset, in which

plot limits, the corresponding model class, distribution type and other knowledge about

the distribution are stored. Due to betareg only focusing on the beta distribution, it

extends dist_df.csv by just one line. Shown below are the first and last two lines of

dist_df.csv:

R> file <- "inst/extdata/dist_df.csv"

R> c(head(readLines(file , warn = FALSE), 2),

+ tail(readLines(file , warn = FALSE), 2))
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[1] "dist_name;class;implemented;moment_funs;type_limits;l_limit;

u_limit;type"

[2] "BB;gamlss;FALSE;FALSE;both_limits ;0;10; Discrete"

[3] "quant;bamlss;FALSE;FALSE;NA;NA;NA;NA"

[4] "betareg;betareg;TRUE;TRUE;both_limits ;0;1; Continuous"

For further information on dists, visit Section 3.4.1 and its description of Table 3.1.

fam fun getter()

In order for plot_dist() to be able to display the probability density function

(PDF) or cumulative distribution function (CDF), the correct underlying R func-

tions need to be implemented. This is achieved by fam_fun_getter(), which, by

demand, generates functions that yield the corresponding PDF (type == "d"), PDF

(type == "p") and quantile values (type == "q"). Fortunately, both bamlss and

gamlss already provide these functions inside their family objects (e.g. gamlss.dist::

dNO()). For betareg, these functions are implemented directly into fam fun getter().

An excerpt of the function, returning the PDF, is shown below.

fam_fun_getter <- function(fam_name , type) {

...

if (is.betareg(fam_name)) {

if (type == "d") {

fun <- function(x, par) {

alpha <- par[["mu"]] * par[["phi"]]

beta <- (1 - par[["mu"]]) * par[["phi"]]

return(dbeta(x, alpha , beta))

}

}

...

}

...

return(fun)

}

preds()

With preds(), predicted distributional parameters are computed. Due to different
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implementations of the distributional regression packages’ predict.object() func-

tions, some code is needed to consolidate the output. In preds() this means that

the return value consists of a data.frame object with the columns representing the

distributional parameters, while the rows stand for an individual prediction based on

a unique covariate combination.

The only exception to this rule is allowed for sample-based predictions, where

each covariate combination consists of one element in a list, which in turn stores a

data.frame object with parameters in columns, and one sample per row. Currently,

this is only possible with bamlss models.

The following code is part of preds() ensuring the correct output of predict.betareg

when used with a betareg model:

preds <- function(model , newdata = NULL , what = "mean",

vary_by = NULL) {

...

else if (is(model , "betareg") | is(model , "betatree")) {

if (what == "mean") {

pred_par <- data.frame(

mu = predict(model , newdata = newdata , type = "response"),

phi = predict(model , newdata = newdata , type = "precision")

)

} else if (what != "mean") {

stop("betareg uses ML , so no samples available.")

}

...

return(pred_par)

}

moments()

The advantage of distreg.vis over other packages is that it can calculate marginal

effects on the expected moments of a distribution, not only on the parameters. Trans-

forming the parameters to the moments is done with the moments() function. When

used in combination with gamlss and bamlss models, moments() looks for the correct

distributional family object (e.g. bamlss::lognormal_bamlss() and then retrieves
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the correct functions to then calculate the first two moments from the parameters.

In case parameter predictions include samples from the posterior distribution (cur-

rently only possible with bamlss), the samples are first transformed to the moments,

after which the average is calculated. Independently of whether samples are provided

or only mean values, the output of the moments() function consists of two columns,

with the names Expected_Value and Variance. Each row stands for one distinct pa-

rameter combination provided in par. A third column is added if the argument ex_fun

was provided, which calculates user-defined metrics that are functions of the samples.

In the case of betareg, the moment functions were implemented directly in distreg.

vis, as detailed in the following code snippet:

moments <- function(par , fam_name , what = "mean", ex_fun = NULL) {

...

if (is.betareg(fam_name)) {

if (what != "mean")

stop("In betareg models only option for argument ‘what ’

is ‘mean ’.")

if (!funworks) {

moms_raw <- apply(par , 1, FUN = function(x) {

ex <- x[["mu"]]

vx <- x[["mu"]] * (1 - x[["mu"]]) / (1 + x[["phi"]])

return_vec <- c(Expected_Value = ex , Variance = vx)

return(return_vec)

})

}

if (funworks) {

moms_raw <- apply(par , 1, FUN = function(x) {

ex <- x[["mu"]]

vx <- x[["mu"]] * (1 - x[["mu"]]) / (1 + x[["phi"]])

ex_fun_vals <- fun(as.list(x))

return_vec <- c(Expected_Value = ex ,
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Variance = vx,

ex_fun = ex_fun_vals)

names(return_vec)[names(return_vec) == "ex_fun"] <- ex_fun

})

}

moms <- as.data.frame(t(moms_raw), row.names = rnames)

}

if (exists("moms"))

return(as.data.frame(moms))

...

}

To complete the support for a new distributional regression package, one has to

extend moments() such that it knows where to find the functions which calculate the

moments of the distributional parameters, and how to execute them. If this step

is completed, the functionalities of plot_dist() and plot_moments() will be fully

available to the new distributional regression package.

A.1.2 Special case of plot dist()

One more special case exists within using plot_moments(), which appears when the

family of multinomial distributions is used for describing the dependent variable. Due

to the nature of the variable’s parameters πi as the probability to fall into category i

always summing up to 1, we can visualize the impact of a continuous variable differently.

Figure A.1 shows such a case, where the influence of a continuous variable named norm1

on a categorical variable, both stemming from a simulated dataset, was graphically

displayed.

The three windows in Figure A.1 represent three different covariate combinations

specified in pred_data. On the x-axis, we see the range of int_var, while the y-axis

denotes probabilities. Every colored area represents the expected probability for a new

observation to fall into any of the categories of the dependent variable. Due to the

target distribution being highly dependent on the simulated explanatory variables, its

probabilities change considerably over the range of the variable norm2.
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Figure A.1: Outcome of plot_moments() for a model with a simulated multinomial
target distribution. In this case, each scenario gets its own window, with the expected
probabilities to fall into each category ranging over the variable of interest.

A.1.3 Additional graphs

Figure A.2: Button to start the main application of distreg.vis in RStudio.
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Figure A.3: CDF plot output for different education levels based on the Wage

dataset.

Figure A.4: Modal window with formatted and highlighted code after pressing the
“Obtain Code!” button
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Figure A.5: Warning message when specifying covariate combinations which are
out of range.

Figure A.6: Modal window to display code for reproducing the influence plot.
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Figure A.7: Expected value and variance for predicted distributions based on spec-
ified covariate combinations.

A.2 Supplement to Chapter 4: Parameter orthog-

onality transformations in distributional re-

gression models

A.2.1 Derivatives of the inverse-gamma location/scale PDF

and its ODE

This parametrization of the inverse gamma distribution as given by Stasinopoulos et

al. (2017) has the following PDF:

ppy | θ1, θ2q “

θ
1

θ22
1

´

1
θ22
` 1

¯
1

θ22 y
´

ˆ

1

θ22
`1

˙

Γ
´

1
θ22

¯ exp

¨

˝´

θ1 ¨

´

1
θ22
` 1

¯

y

˛

‚. (A.1)

Its log-density function is:
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while the second cross-derivative is as follows:

B log p
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Taking the negative expected value of this term we arrive at:
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which has the following negative expected value:
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where E
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Including the terms E12 (A.4) and E22 (A.6) in

E12 ` E22
Bθ2

Bθ1

, (A.7)

which was stated also in (4.10) on Page 66, leads to the following ordinary differ-

ential equation (ODE):
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A.2.2 Orthogonal inverse gamma distribution as part of the

exponential family

This is to show that the orthogonalized version of the inverse gamma distribution is

indeed part of the exponential family. Here, we will use the canonical form definition

as stated by McCullagh and Nelder (1983, p. 28):

ppyq “ exprtyθ ´ bpθqu{apφq ` cpy, φqs (A.9)

Then, the probability density function as defined by 4.28 can be re-written as

follows:
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A.3 Supplement to Chapter 5: Variable importance

in likelihood-based regression models

A.3.1 Tables of subsection “Motivational Example”
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Question label Question content
Q.1 Rule & Regulations
Q.2 Security Systems
Q.3 Repair & Maintenance
Q.4 Behavior Of Warden
Q.5 Behavior Of Rector
Q.6 Satisfaction Of Management
Q.7 Calm & Peaceful Environment
Q.8 Clean Area
Q.9 Parking Lot
Q.10 Study Room
Q.11 Hostel Library
Q.12 Bathroom And Toilet
Q.13 Entertainment Facility
Q.14 Freedom
Q.15 Fine & Extra Charges
Q.16 24 Hrs. Electricity
Q.17 High Speed Wi-Fi Facility
Q.18 Annual Functions
Q.19 Quantity Of Food
Q.20 Meals Menu
Q.21 Quality Of Food
Q.22 Washroom
Q.23 Cleanness Of Mess
Q.24 Management System Of Mess
Q.25 Comfortable And Well Furnished Room
Q.26 Comfortable Beds
Q.27 Purity Of Drinking Water
Q.28 Availability Of Water
Q.29 Overall Satisfaction About Mess
rsat Overall Satisfaction About Hostel

Table A.1: Survey question labels and content of the resident satisfaction dataset in
Kolhapur, India. The column “question column” represent the hostel properties which
residents rated. Data collection was conducted by Rajendra and Machhindra (2018).
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Estimate Std. Error z value Pr(ą|z|)
(Intercept) -5.90 1.34 -4.41 0.00

Gender 0.52 0.44 1.18 0.24
hostel no 0.60 0.22 2.77 0.01

Q.1 0.23 0.19 1.23 0.22
Q.2 -0.38 0.18 -2.11 0.04
Q.3 -0.10 0.17 -0.61 0.54
Q.4 -0.02 0.19 -0.09 0.93
Q.5 -0.12 0.18 -0.66 0.51
Q.6 0.33 0.21 1.55 0.12
Q.7 0.26 0.17 1.55 0.12
Q.8 -0.18 0.18 -1.03 0.30
Q.9 0.44 0.20 2.23 0.03

Q.10 -0.41 0.19 -2.14 0.03
Q.11 -0.00 0.15 -0.02 0.98
Q.12 0.23 0.18 1.32 0.19
Q.13 0.01 0.14 0.05 0.96
Q.14 -0.16 0.20 -0.83 0.41
Q.15 0.23 0.16 1.42 0.15
Q.16 0.17 0.19 0.91 0.36
Q.17 0.12 0.14 0.90 0.37
Q.18 0.43 0.17 2.54 0.01
Q.19 0.06 0.19 0.29 0.77
Q.20 -0.29 0.24 -1.19 0.23
Q.21 0.21 0.17 1.22 0.22
Q.22 0.15 0.21 0.71 0.48
Q.23 0.22 0.21 1.03 0.30
Q.24 -0.29 0.21 -1.39 0.17
Q.25 -0.01 0.18 -0.06 0.95
Q.26 0.44 0.17 2.55 0.01
Q.27 0.14 0.18 0.75 0.45
Q.28 0.47 0.18 2.62 0.01
Q.29 0.16 0.20 0.80 0.42

Table A.2: Full regression output of model specified in (5.2). Long version of Table
5.1.
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Covariate Name Parameter I. Effects I. Effects (fraction)
Gender mu 0.00 0.01
hostel no mu 0.04 0.09
Q.1 mu 0.01 0.02
Q.2 mu 0.01 0.02
Q.3 mu 0.00 0.00
Q.4 mu 0.01 0.02
Q.5 mu 0.00 0.00
Q.6 mu 0.02 0.05
Q.7 mu 0.02 0.06
Q.8 mu 0.01 0.01
Q.9 mu 0.04 0.09
Q.10 mu 0.01 0.01
Q.11 mu 0.00 0.01
Q.12 mu 0.02 0.04
Q.13 mu 0.00 0.01
Q.14 mu 0.00 0.01
Q.15 mu 0.01 0.03
Q.16 mu 0.01 0.03
Q.17 mu 0.01 0.03
Q.18 mu 0.03 0.07
Q.19 mu 0.00 0.01
Q.20 mu 0.00 0.01
Q.21 mu 0.01 0.03
Q.22 mu 0.01 0.03
Q.23 mu 0.01 0.02
Q.24 mu 0.00 0.01
Q.25 mu 0.01 0.03
Q.26 mu 0.04 0.09
Q.27 mu 0.01 0.03
Q.28 mu 0.04 0.10
Q.29 mu 0.00 0.01

Table A.3: Full output of “relative weights” calculated on the basis of the model
specified in (5.2). Long version of Table 5.2.
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