

From annotation to bacterial data models

Dissertation

for the award of the degree
“Doctor rerum naturalium” (Dr.rer.nat.)

of the Georg-August-Universität Göttingen

within the doctoral program “Genome Science”
of the International Max Planck Institute Research School (IMPRS)

and Georg-August-University School of Science (GAUSS)

submitted by

Tiago Godinho de Ornelas Pedreira
from Oeiras, Portugal

Göttingen 2022

1 1
0

0
0
1

1
1
0

1
0
1

0
1
1

0
1

0

1
0
1

0 1
0
1

1
0

 I

Thesis Committee

Prof. Dr. Jörg Stülke (Supervisor and 1st Reviewer)

Institute of Microbiology and Genetics, Department of General Microbiology, University of Göttingen

Prof. Dr. Burkhard Morgenstern (2nd Reviewer)

Institute for Microbiology and Genetics, Department of Bioinformatics, University of Göttingen

Dr. Johannes Söding

Max Planck Institute for Biophysical Chemistry, Computational Biology

Further Members of the Examination Board

Prof. Dr. Jan de Vries

Institute for Microbiology and Genetics, Department of Applied Bioinformatics, University of Göttingen

Prof. Dr. Christoph Bleidorn

Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, Department of Animal Evolution

and Biodiversity, University of Göttingen

Prof. Dr. Stefan Klumpp

Theoretical Biophysics Group, Institute for Dynamic Complex Systems, University of Göttingen

Date of oral examination: 10.06.2022

 II

Statement of Authorship

I hereby declare that the doctoral thesis entitled “From annotation to bacterial models” has

been written independently and with no other sources and aids than quoted.

Tiago Godinho de Ornelas Pedreira

 III

“I have not failed. I've just found 10,000 ways that won't work”

- Thomas Edison -

 IV

Acknowledgements

Embarking in a new adventure, in a country with a different culture and language can be rather

daunting. I am nothing but grateful for this experience and I have learned more than what I could have

ever imagined during these past three years. During this time, I counted with the great support of

wonderful people.

 First, I would like to thank my supervisor, Jörg, for giving me the opportunity to work in a great

project, for always making it easy to work with you and for always trusting in my ability to take this

and every project to the next level. I would like to thank the members of my advisory committee,

Johannes and Burkhard, for always giving such important input in my project and for always putting

me at ease for reaching out. I would also like to thank my students, especially Hannes and Christoph

for working with me in projects that resulted in an amazing outcome. I learned a lot from you two and

I am very grateful for that.

To AG Stülke and AG Rismondo also goes a big thank you, for always making the lab life much

easier and bearable, especially when under such heavy restrictions during the corona lockdown.

Specially, a big thanks to Neil, Lisa and Dennis for the great time together. Thank you for the small vent

sessions over lunch or coffee breaks and funny moments we shared. I had a blast with you. To my PhD

batch friends, Vini, Metin, Sarah, Alex, Sophie and Malte, thank you very much for all the moments we

shared and the fun time we spent together. Vini, thank you for all the great talks and friendship.

 A very special thank you to Larissa, from the moments in the office to now, you have taught

me a lot and you truly inspire me as a person and as a scientist. Thank you for your patience, support

and companionship. You made everything much easier.

To my friends Tides and Inês, a big thank you for all the moments we could share together in

this adventure. Despite the distance, you were always present in my life and you’ve always supported

me like the true friends you are. To Renato also a big thank you for the company and the good times

we shared in Göttingen. Finally, to my family, a huge thank you for all the unconditional support and

love you’ve given me. To my mom, Cristina, thank you for always being so supportive and caring, to

my dad, Paulo, thank you for keeping me motivated and with my eyes on my goal, to my brother,

Diogo, thank you for everything you’ve done for me and for always being there for me, and to my

grandmother Ilda, for the grandmother’s love no one else can provide but you. A vocês todos, um

muito obrigado por fazerem esta jornada um pouco mais fácil.

Thank you all, for being part of this journey and for helping me achieve my goal.

 V

List of publications
Publications within project scope:

Pedreira T., Elfmann C., and Stülke J. (2022). The current state of SubtiWiki, the database for the

model organism Bacillus subtilis. Nucleic Acids Research, 50: D875–D882.

Pedreira T., Elfmann C., Singh N., and Stülke J. (2022). SynWiki: Functional annotation of the first arti-

ficial organism Mycoplasma mycoides JCVI-Syn3A. Protein Science, 31: 54-62.

Elfmann C.*, Zhu B.*, Pedreira T.*, Hoßbach B., Senar M.L., Serrano L., and Stülke J. (2023) My-

coWiki: Functional annotation of the minimal model organism Mycoplasma pneumoniae. Frontiers in

Microbiology. (submitted) (* - joint 1st authorship)

Michalik S., Reder A., Richts B., Faßhauer P., Mäder U., Pedreira T., Poehlein A., van Heel A.J., van Til-

burg A.Y., Altenbuchner J., Klewing A., Reuß D.R., Daniel R., Commichau F.M., Kuipers O.P., Hamoen

L.W., Völker U., and Stülke J. (2021). The Bacillus subtilis Minimal Genome Compendium. ACS Synth.

Biol., 10: 2767–2771.

Krüger L., Herzberg C., Rath H., Pedreira T., Ischebeck T., Poehlein A., Gundlach J., Daniel R., Völker

U., Mäder U., and Stülke J. (2021) Essentiality of c-di-AMP in Bacillus subtillis: Bypassing mutations

converge in potassium and glutamate homeostasis. PloS Genetics, 17: e1009092.

Publications outside project scope:

Monteiro P.T.*, Pedreira T.*, Galocha M., Teixeira M.C., and Chaouiya C. (2020) Assessing regulatory

features of the current transcriptional network of Saccharomyces cerevisiae. Scientific Reports. 10:

17744. (* - joint 1st authorship)

 VI

Table of Contents

Chapter 1 – Abstract .. 1

Chapter 2 – Introduction .. 2

2.1. Biological Databases ... 2

2.2. Model organisms and model organism databases .. 3

2.3. B. subtilis and SubtiWiki ... 5

2.4. JCVI-syn3.0 - the minimal genome cell .. 7

2.5. Expanding SubtiWiki framework to other organisms .. 8

2.6. Limitations of a data model framework .. 8

2.7. Maintainability of a data model framework ... 10

2.8. Aim of the project .. 11

Chapter 3 – Development of SubtiWiki v4 ... 14

3.1. Abstract ... 15

3.2. Introduction ... 15

3.3. SubtiWiki gene pages ... 16

3.4. SubtiApps ... 17

3.5. Potein homology integration .. 20

3.6. New data integration ... 23

3.7. Future perspectives .. 25

Chapter 4 – A relational database for the synthetic organism JCVI-syn3A 26

4.1. Abstract ... 27

4.2. Introduction ... 27

4.3. Description of the database .. 28

4.4. SynWiki identifiers ... 29

4.5. The gene pages ... 30

4.6. SynApps ... 32

 VII

4.7. Implementation of the database .. 33

4.8. Future perspectives .. 36

Chapter 5 – CoreWiki, a novel framework for prokaryotes .. 38

5.1. Abstract ... 38

5.2. Introduction ... 38

5.3. Methods and tools ... 41

5.3.1. Website Structure ... 41

5.3.2. Database .. 41

5.3.2.1. Architecture of Databases ... 41

5.3.2.2. SQLALchemy and ORM .. 44

5.3.3. Backend Structure .. 47

5.3.3.1. Server side scripting language and working framework ... 47

5.3.3.2. Model-View-Controller design pattern .. 49

5.3.3.3. Endpoint routing ... 51

5.3.4. Structure of the Frontend ... 54

5.3.4.1. Jinja2 as a template engine ... 54

5.3.4.2. Jinja2 logic control .. 55

5.3.4.3. Jinja2 template inheritance and blocks ... 56

5.3.4.4. Functions render_template() and url_for() .. 58

5.4. Implementation ... 58

5.4.1. CoreWiki structure .. 58

5.4.2. CoreWiki architecture ... 59

5.4.3. Backend of CoreWiki ... 60

5.4.3.1. Internal structure .. 60

5.4.3.2. Database and data models .. 62

5.4.3.3. Controller classes and endpoint routing .. 71

5.4.4. Frontend of CoreWiki .. 72

 VIII

5.4.4.1. Template structure ... 73

5.4.4.2. CoreWiki pages ... 73

5.5. Conclusion .. 77

Chapter 6 – Discussion and outlook ... 80

6.1. The current state of biological databases ... 80

6.2. SubtiWiki and Model Organism Databases ... 80

6.3. Current data in SubtiWiki ... 82

6.4. Open possibilities by expanding SubtiWiki framework to JCVI-syn3A – SynWiki 83

6.5. CoreWiki – a modern framework for future Wikis ... 85

6.6. The CoreWiki database ... 85

6.7. Outlook .. 87

Chapter 7 – References ... 91

Chapter 8 – Supplementary materials ... 99

Chapter 9 – Curriculum vitae ... 102

Chapter 1 – Abstract

 1

Chapter 1 – Abstract

Science and technological advancements walk side-by-side and with the recent emergence of novel

high throughput techniques, the necessity to have specialized data structures to host and represent

the complex and high variety of information is evident. Biological databases address this major

constraint and in our research group there is the focus to create these platforms to support the

scientific community. Among many, SubtiWiki is seen in the community as the golden standard of

biological databases for the model organism Bacillus subtilis. This platform has seen its data increase

in size and quality, with highly curated information and more features to represent it. With a growing

viewership, SubtiWiki consolidates its position among scientists by providing with novel ways to

identify potential protein homologs among relatives and by integrating the popular Cluster of Ortholog

Genes database. Recently, SynWiki, a biological database that shares the same framework as SubtiWiki

was created and built to integrate data of the new synthetic organism with a minimal genome, JCVI-

syn3A. Regardless of the amount of information available for both organisms, here it was shown that

using the same framework is possible to expand beyond a single organism’s data structure and use it

for multiple organisms. Furthermore, the current state of development of this framework was

evaluated, assessing its limitations in maintainability and present a novel framework that will serve as

the future of all platforms created in by the research group. This framework, CoreWiki, was created

using Flask, a minimal Python framework, that allows a modular development. Finally, the current

database schema was evaluated and introduced a refreshing new one that is able to establish more

robust and better relationships between the biological elements. Here, a solid contribution to all

scientific fields was shown, by providing with a framework ready to integrate information from

multiple levels and different organisms. Its aim is to not only organise, but to integrate the data so that

every scientist accessing such platforms is able to postulate new hypotheses and take their research

to new heights.

Chapter 2 – Introduction

 2

Chapter 2 – Introduction

2.1. Biological Databases

Over the past recent years high throughput methods have facilitated the exponential growth of

biological knowledge. However, coupling the higher computational power with the increasing

availability of high throughput techniques has raised the awareness towards data organisation and

availability. More specifically, not only considering the sheer amount of data, but also its complexity

rises as a major challenge in the current scientific development (Agarwala et al., 2016; Alkan et al.,

2011; Loman et al., 2012; Manzoni et al., 2018; Mardis, 2017; Reuter et al., 2015). Data from next

generation sequencing (NGS), proteomics, transcriptomics, metabolomics are the main contributors

for this explosion of data (Loman et al., 2012; Mardis, 2017). However, and more recently, the

computational power allowed disciplines such as interactomics to expand into further prediction of

potential novel interactions. Interestingly, not only the classical protein-protein interactions (PPi) are

predicted, but also interactions with other smaller molecules, such as metabolites and RNA (Corley et

al., 2020; Gerovac et al., 2021; Link et al., 2013; O’Reilly et al., 2020). This suggests that the high variety

of data demands systems that possess the flexibility to handle different types of information. These

systems are called biological databases and try to answer the utmost priority via documenting and

representing the data. These platforms must be in power of a solid and reliable storage system that

will enable an updatable structure to provide users with fast access to data from multiple sources,

which is crucial in the constant flux of new data. Finally, an intuitive interface counts as a valuable

piece to give every user the possibility to have a graphical view of the integration, interpretation and

contextualization of data, otherwise impossible to obtain. Indeed, biological databases play a

fundamental role in connecting past discoveries to the very state-of-the-art knowledge, keeping

complex information coherent, integrated and easy to access (Baxevanis & Bateman, 2015; Caswell et

al., 2019).

Biological databases try to address a fundamental constraint of the growing biological data,

i.e., it has limited meaning when no background or context is presented. Context is more difficult to

provide when considering the immensity of data available, and so databases can opt to focus on

specific aspects of research. For this, platforms can store and represent data based on the type of data

they wish to include. The degree of complexity seen in databases can range from what one might

consider simple to more complex data. Among these, there are databases dedicated to different

natures of data, for example as part of the International Nucleotide Sequence Database Collaboration,

it is possible to find the cooperative efforts of the nucleotide databases DNA DataBank of Japan (DDBJ)

Chapter 2 – Introduction

 3

(Fukuda et al., 2021), GenBank (Benson et al., 2013) and The European Archive (ENA-EMBL) (Kanz et

al., 2005). Similarly, there are also databases dedicated for accessing data on proteins, such as Protein

Data Bank (PDB) for protein structures (Berman et al., 2000) and UniProt for a comprehensive overview

of protein sequence and annotation (Bateman et al., 2021). On a different level of information, it is

also possible to find databases dedicated to data of higher complexity. Information regarding protein-

protein interaction can be accessed in BioGRID (Oughtred et al., 2021) or STRING (Szklarczyk et al.,

2019), while some other platforms focus their efforts on metabolic pathways, Kyoto Encyclopedia of

Genes and Genomes (KEGG) (Kanehisa et al., 2021), or purely on regulatory elements, YEASTRACT

(Monteiro et al., 2020). Additionally, most of these platforms provide services that allow the user to

run short analysis with their element of interest. An example of this is either performing local

alignments or pattern search between biological elements of interest.

Although most of these databases are focusing on single or few natures of data, some

platforms are classified as metadatabases as they are databases of databases. In similarity to other

popular search engines, these platforms allow each user to have full access to multiple layers and

natures of information with little to no effort. An example of this type of database is the National

Center for Biotechnology Information (NCBI), where the user has the possibility to make full use of

multiple and different databases simultaneously. Metadatabases generally also give access to analysis

tools within their structure to run local data pipelines, for example BLAST, which is embedded in NCBI

(Agarwala et al., 2016; Altschul et al., 1990). This principle of “all-in-one” is greatly appreciated among

the scientific community and serves as inspiration for many other databases (see more in section 2.2).

2.2. Model organisms and model organism databases

So far, we have discussed that databases are a major part of every scientist’s research, with the

possibility to expand the research beyond initial limitations and postulate new theories and

hypotheses. This is remarkably important for databases that instead of focusing on the nature of data,

e.g., proteins, focus on a whole organism. These structures are called model organism databases

(MOD) and are mostly dedicated to providing curated biological information for a specific organism, a

model organism. Although other databases have undeniable utility, MODs usually are more present in

the life of scientists as research groups tend to focus on biological questions applied to the specific

model organism (Baxevanis & Bateman, 2015; Bond et al., 2013; O’Connor et al., 2008; Oliver et al.,

2016).

Model organisms acquired this classification as they are extensively studied and used as study

models for a biological question. In fact, most knowledge acquired regarding essential cell processes

Chapter 2 – Introduction

 4

has been characterized in model organisms (Fields & Johnston, 2005; Oliver et al., 2016).

Understanding processes such as cell division, metabolic pathways and other conserved physiological

properties allows researchers to shed light into other similar organisms. Since these organisms are

extensively studied, they are also commonly referred to as the representative of a wider taxonomic

group, extending most of their properties and characteristics to close species (Fields & Johnston, 2005;

Oliver et al., 2016).

As a natural consequence of this intensive research, MODs play an important role to store

critical information of these organisms. These platforms are usually built on a fast-pacing environment,

which allows the quick integration and representation of novel data across different levels and from

different sources (Bond et al., 2013; O’Connor et al., 2008; Oliver et al., 2016). Although model

organisms are vastly studied, depending on each organism, the amount and type of data will differ

accordingly. Evidently, the amount of data stored in MOD’s relies on the ability of research groups to

generate data, while the team behind MOD’s are responsible for ensuring the quality of curation for

the specific organism of interest. This translates to an equally extensive work from the MOD

development team, in which more than gathering the data, it is responsible to organise it and frame it

in its proper context by combining it with current knowledge. Indeed, the efforts towards the

construction of a successful MOD lie between the balance of data generation and the quality of its

curation, thus providing an organised view over the now structured, multi-nature and multi-source

information. Only then all conditions are satisfied to fully support the research of millions of scientists

around the World, providing with the necessary tools to push further the boundaries of knowledge as

we know it (Bond et al., 2013; Fields & Johnston, 2005; O’Connor et al., 2008; Oliver et al., 2016).

Currently, it is possible to find information for virtually all model organisms in dedicated

databases. The type of data can, however, differ from database to database as these can have a

different nature of data focus. An example of this is the MOD for the well-known budding yeast

Saccharomyces cerevisiae, Saccharomyces Genome Database (SGD) (Cherry et al., 2012), which serves

as an extensive compendium of most data for this organism, and the database YEASTRACT (Monteiro

et al., 2020) that focuses mainly on transcriptional regulators of the same organism. Another

noteworthy MOD is EcoCyc, dedicated to the model Gram-negative bacterium, Escherichia coli, which

continues to grow in popularity (Karp et al., 2018; Keseler et al., 2021). The Gram-positive bacterium

Bacillus subtillis, a widely researched model organism, also has its own spotlight counting with multiple

MODs (to be discussed further ahead). Moving out of the microscopic world, other organisms also

have their own dedicated databases, for example the information of the fruit fly Drosophila

melanogaster can be found in FlyBase (Larkin et al., 2021), the documented data for the mouse Mus

musculus, widely used in experiments, can be accessed in Mouse Genome Informatics (Bult et al.,

Chapter 2 – Introduction

 5

2019), and the model plant Arabidopsis thaliana relies on The Arabidopsis Information Resource to

keep track and document all available information for this organism (Berardini et al., 2015). In this

work, the focus will be mainly on B. subtilis and its database SubtiWiki, as well as the ability to scale

these structures to different organisms.

2.3. B. subtilis and SubtiWiki

As a natural consequence of its intensive investigation, B. subtilis is considered the defining organism

among Firmicutes and the model Gram-positive bacterium (Errington & van der Aa, 2020; Kovács,

2019). It is a fast-growing aerobic organism with important traits that back up its popularity. Despite

not being pathogenic, it can produce heat-resistance spores, is able to create biofilms and is a close

relative to many pathogenic species. B. subtilis is seen as a workhorse in the biotechnology industry

due to its genetic competence, easy laboratorial manipulation, fermentation properties and the ability

to secrete compounds, such as vitamins (Arnaouteli et al., 2021; Errington & van der Aa, 2020; Kovács,

2019; Zweers et al., 2008). Moreover, B. subtilis has also been used as a model organism in the efforts

to understand the basic principles of life in the process of creating minimal organisms (Michalik et al.,

2021; Reuß et al., 2016, 2017).

As a result of the advancements in knowledge for this organism, it has seen numerous

databases created with the purpose of keeping data organized and up to date (Table 2.1). Most

databases created are vastly dedicated to a specific aspect of data, with few exceptions. For example,

the Database of Transcriptional Regulation in B. subtilis (DBTBS) focuses on the regulatory elements in

this organism (Ishii et al., 2001; Sierro et al., 2008). SubtiList and B. subtilis ORF Database (BSORF), two

of the first relational databases dedicated to B. subtilis, were created in response to the, at the time,

newly sequenced B. subtilis genome. They aimed at documenting all information associated with the

genetics of this microorganism as well as introducing some tools for analysis, such as pattern matching

(Moszer et al., 1995, 2002; Ogiwarea et al., 1996). However, these platforms have been outdated and

the alternative was a database, BsubCyc, that although up to date, is sitting behind a monthly

membership (Karp et al., 2018). Thus, there was the need for the emergence of a novel open platform

for all community to have access to curated data in the most novel and intuitive way possible. With

this objective in mind, SubtiWiki was first born in 2009 (Flórez et al., 2009) and aimed at filling the

necessity among the B. subtilis community to have a data structure with state-of-the-art data and free

access.

Chapter 2 – Introduction

 6

Table 2.1 – Available B. subtilis databases. Information regarding the focus of data and last time of update

displayed accordingly.

Database Focus of information Comment

DBTBS Regulatory information Last updated in 2008

SubtiList Functional annotation Last updated in 2004

B. subtilis ORF Functional annotation Last updated in 2006

BsubCyc Functional genome annotation Membership since 2017

SubtiWiki Functional annotation Started in 2008

As an initial implementation, SubtiWiki relied on a MediaWiki engine to generate views (pages)

to represent the available data. Since the deployment of SubtiWiki v1, the gene has been the central

element of the database, which allows to establish relationships with every interacting biological or

chemical element (Flórez et al., 2009; Mäder et al., 2012; Michna et al., 2014, 2016; Zhu & Stülke,

2018). For example, the dnaA gene represents the Entity dnaA, and has a relationship with the protein

DnaA. Because each gene is to be treated as a main Entity, gene names are used as identifiers and

their information must be curated throughout to avoid misuse among the scientific community. To

simply put, in the process of organising the data, SubtiWiki ensures that all dnaA related information,

e.g., synonyms, locus tag, etc., is referenced properly. This guarantees that no information is lost or is

redundant in the process of data collection and storage.

By revolving data around the entity Gene, gene pages display fundamental information such

as synonyms, essentiality, gene product, function, molecular weight, gene and protein length, and

genomic context. In the first iteration of SubtiWiki, an integrated metabolic and regulatory pathway

visualizer was introduced (Flórez et al., 2009), and later provided a protein-protein interaction

graphical representation (Mäder et al., 2012). Along years, more data was included in the following

versions of SubtiWiki, enriching the contents of a database that was already on the spotlight among

the community. The implementation of other database unique identifiers, integration of a

comprehensive collection of transcription factors and regulons, creation of tailored functional

categories that govern B. subtilis (Michna et al., 2014), visualization of expression data under different

conditions (Michna et al., 2016), a fully-fledged Genome Browser and Biological Network visualizer

with the option to overlay expression data (Zhu & Stülke, 2018), are just a few of the major

improvements this platform has seen over the past years. Impressively, all iterations of SubtiWiki count

with the manual curation of the data, containing over 6000 protein- and RNA-coding genes, more than

Chapter 2 – Introduction

 7

1790 regulatory information entries, 49 metabolic pathways and over 6000 publications annotated

among all genes (Zhu & Stülke, 2018).

2.4. JCVI-syn3.0 - the minimal genome cell

As minimal genomes gained popularity among the B. subtilis community, the attention towards

synthetic biology has shifted (Reuß et al., 2016, 2017). This field takes inspiration in nature to fully

understand what lies behind the essential requirements for life. Drawing knowledge from the very

essentiality of genes, this emerging field tries to understand the principles of life. Creating artificial

cells envisions to shed light on which are the responsible players in the basics of sustaining life, with

the immense potential to revolutionize the fields of biotechnology and medicine (Cameron et al., 2014;

Garner, 2021; Khalil & Collins, 2010).

 Synthetic biology allows to engineer cells with desirable characteristics and thus, it is necessary

to trim down genomes to the very core of their essentiality. For this, two possible methodologies can

be used: the top-down approach, where essential genes and functions are identified in order to

successfully predict which genes are fundamental for life and consists of consecutive genome

reductions until a minimal organism has been achieved. Taking full advantage of its status as model

organism and as mentioned before, B. subtilis has been target of successful studies to reduce its

genome using this approach (Reuß et al., 2016, 2017). The counterpart of this methodology, the

bottom-up approach, focuses on the in vitro synthesis of minimal genomes, which are then assembled

and transplanted into a cell, giving full meaning to engineering a custom-made genome (Schwille,

2011). While the first approach is better used when there is extensive knowledge on the organism, the

latter one seems to be the choice when approaching a novel organism, as it was the choice to build

the novel synthetic microorganism Mycoplasma mycoides JCVI-syn3.0 (Hutchison et al., 2016).

 It is possible to argue that being able to reduce a genome this much and still have a viable cell

at the end, would be the consequence of the established knowledge over the essential genes of such

organism. However, this is far from the truth, as among its 452 protein-coding genes there is a big

portion of unknown proteins (Hutchison et al., 2016). Shedding light into the vast unknown of a

synthetic organism has been seen to be a challenge. From the conceptualization to the living cell, little

is known regarding the true essential functions of genes, which only now begins to be unveiled with

the emergence of novel studies (Breuer et al., 2019).

Chapter 2 – Introduction

 8

2.5. Expanding SubtiWiki framework to other organisms

The emergence of novel organisms such as JCVI-syn3.0 highlights the importance to have tailored

structures, ready to use and update, to host and represent data. There are, as expected, some

considerations to have when designing such concept. A framework can be tailored to a specific purpose

and excel at it, or it can be optimized so serve a vast number of purposes. Although expanding from B.

subtilis to different prokaryotes models is possible, some constraints are to be taken in consideration.

While for B. subtilis data is available in different formats and amounts, to the extent that it represents

a bottleneck, for some not so well-studied organisms, such as the JCVI-syn3.0, the lack of data is the

greatest limitation. Indeed, all biological database frameworks should contemplate with effective

methods to store and represent data from any source and respond to the growing amount of

information (Baxevanis & Bateman, 2015). SubtiWiki has responded to this in a successful manner,

continuing to add state-of-the-art information, generating novel ways of representing complex data

and continuing to grow in popularity, counting with millions of requests yearly (Flórez et al., 2009;

Mäder et al., 2012; Michna et al., 2014, 2016; Zhu & Stülke, 2018). It is clear that SubtiWiki data models

are well established, and by taking the principles of its models, it is possible to try to apply them to

other organisms. This is particularly valid for prokaryotes due to their genomic similarities.

Notably, this data structure has shown record on its usefulness and application in modulating

other bacterial data models in a similar capacity. An example of this is the database for the

microorganism Mycoplasma pneumoniae in MycoWiki (www.mycowiki.uni-goettingen.de) and

ListiWiki (www.listiwiki.uni-goettingen) for Listeria monocytogenes (unpublished data). Although the

integration of the current scarce available documentation is successful, the great test for SubtiWiki’s

framework relies on allowing to build a database from scratch when taking close to no data. However,

to achieve such feature it is important to take into full consideration all limitations of the current

structure and develop an approach accordingly.

2.6. Limitations of a data model framework

As any other technological application, data structures are expected to be on par with, in this case, the

data generation and evolution of technology. To be able to respond quickly to the pacing of these two

independent variables, there are some limitations that need to be understood.

With no surprise, the first limitation is tied to the data itself. While it is undeniable that

SubtiWiki takes full advantage of its custom-made framework to respond to the increasing amount of

data that is generated yearly, there are some struggles when implementing data from different

natures. As stressed before, not only the nature and novelty of data pose as a major challenge, but

Chapter 2 – Introduction

 9

also its sheer amount that raises concerns (Baxevanis & Bateman, 2015; Mardis, 2017). Here, the issue

is instead bound to the selection of which data to represent, for the simple reason that not every

emerging data can be deemed worthy of inclusion in a database. Indeed, the tsunami of information

that is generated needs to be investigated and critical thinking becomes mandatory to choose which

data should be included and, thus, represented in a data model. To tackle this, the designated function

of curators is imperative in the maintenance of balance between the amount of data that is generated

and the data that is meant for representation (Caswell et al., 2019).

The second limitation, although tied to the data, is also bound to the technological

advancements, because with new technology, novel ways of representing old and new data may arise.

The development of new features of a database is intrinsically connected with the available technology

and data. For example, the high complexity of protein interaction data can be represented using an

undirected network, where edges would represent the interaction and nodes the proteins (Biggs et al.,

1976). Understanding what lies behind the data, how to translate a biological interaction to graph’s

theory, is the key for a successful representation. Protein-protein interaction maps have been used for

quite some time already, however when considering how to introduce novel elements to the same

representation might quickly become a challenge. While this may be a simple example, it serves the

purpose to stress that fully understanding the data and how to connect it with the available technology

to represent it, is a requirement for every framework to enable users to reach new depths in an ocean

of information. Limitations tied to all aspects of data are not necessarily something a framework can

fix, due to its ever-changing nature. However, it is important to retain that, when building a framework,

it should be as flexible as possible by creating robust yet plastic data models. This consideration

becomes a tough challenge when specifically adapting to new organisms. This is mostly caused by the

potential changes in the data structure that are fundamentally based on the organism’s data nature.

For example, as an effect of evolutionary pressure towards an AT rich genome, Mycoplasma diverged

from other organisms towards an AT rich genome, instead of the CG counterpart. In practical terms,

this will affect how the database will recognise the TGA codon: tryptophan for Mycoplasma and stop

codon for other organisms (Inamine et al., 1990; Rocha et al., 1999; Yamao et al., 1985).

When expanding to different organisms, more than knowing the infrastructure, it is crucial to

have full understanding over which data to include. By ensuring that, the developer has full control

over the information and adapting data models becomes an accessible task during the process of

creation and maintenance of the database.

Chapter 2 – Introduction

 10

2.7. Maintainability of a data model framework

Considering a more comprehensive view over database frameworks, there are some demands

regarding the quality of the framework that need to be attended. To better understand these

demands, ISO/IEC 25010:2011 Systems and software Quality Requirements and Evaluation (SQuaRE)

provides general good practice guidelines that should be taken into consideration (Estdale &

Georgiadou, 2018). Figure 2.1 displays the categories that govern these guidelines. Interestingly, there

are two major categories, Quality in Use and Product Quality. While the first tries to address the

usability of the framework by the end user, the latter contains characteristics that are of interest for

the developer. In the scope of this work, there is a particular attention and dedication to the category

Maintenance, under Product Quality, as it plays a crucial role addressing the data model limitations in

the development of biological databases.

Figure 2.1 – ISO/IEC 25010:2011 Systems and software Quality Requirements and Evaluation suggested

categories for an application of software (Estdale & Georgiadou, 2018). There are two major categories:

Quality in Use, which targets the end user as its main objective to perform; Product Quality, which

contemplates series of categories developers of software should be guided by.

Chapter 2 – Introduction

 11

For a biological database framework, maintainability is classified as the degree to which the structure

can be modified by the developers or even end users. Within this category there are three more

important subcategories that play a fundamental role altogether:

• Testability, which allows components to be tested independently and automatically

• Extensibility, which asserts modular extension of novel features without the need to construct

from scratch

• Modifiability, which describes how efficiently and effectively the framework can be altered

without affecting its current state

These subcategories are considered key players in the integration of emerging high throughput data,

as they aim to respond to the very core issue with the data limitation in biological databases.

Accordingly, it is safe to acknowledge that the flexibility of a framework can be measured by how much

it needs to change in order to successfully integrate and host novel data.

2.8. Aim of the project

The major success of SubtiWiki as a database that serves not only the B. subtilis community, but the

microbiology research community in general, is without a doubt undeniable. With many applications

that go beyond this organism, SubtiWiki has established itself as the leading platform for B. subtilis and

close relatives and keeps aiming further and beyond. With the emerging novel data from high

throughput techniques, the need to build specialized handling structures plays a crucial role. This,

however, comes at the expense of having to develop novel methods to integrate current and new data.

Approaching this challenge with the current SubtiWiki structure, this project envisions to integrate

novel data on multiple levels into a new version of this platform. Generating more information leads

to new opportunities in the development of data analysis pipelines that aim to discover new aspects

of an already extensively studied organism. Taking the current documented data and using it to run

further analysis in the discovery of potential protein homologs, for example, will help consolidate the

current state of SubtiWiki in the research community. Beyond organising recent data, there is the aim

to contribute by adding novel features alongside in-group generated information.

As expected, increasing information is also observed for other and novel organisms. For

example, the newly synthetic microorganism, JCVI-syn3.0, holds a minimal genome and aims to shed

light into the basic principles of life, by unveiling which genes are truly essential for life to exist.

Although a considerable portion of its proteins is still of unknown function, it presents itself as the

perfect candidate to test the very limits of SubtiWiki’s framework when expanding to different

organisms. Thus, all conditions are now gathered to test the limits of this framework, while providing

Chapter 2 – Introduction

 12

the community of synthetic biology with an important platform that can be a hallmark in the

documentation and annotation of this novel organism.

There are, however, more concerns to be addressed on a more technical and developmental

side of each Wiki’s framework. Although SubtiWiki has an excellent record of publication and user

engagement, there are some challenges in the development of the current platform. One of the most

important aspects of any framework for the developer is to have access to its documentation.

SubtiWiki is built on a custom-made framework written in PHP, Hypertext Preprocessor, which is a

widely used programming language for web development (Bakken et al., 2000). In contrast with other

well-established and open-source public frameworks, and due to its custom origin, the current

framework of SubtiWiki does not have the necessary documentation to support further development.

However, it is important to note that being built in PHP and being a custom framework does not have

a direct correlation with the challenges of its development and should have no impact in its

performance and maintainability.

Regardless of being very flexible and working as intended for the current data, there are some

problems when trying to develop novel features that aim at integrating novel or even already existing

data in SubtiWiki. An example of this is when a biological element is updated, e.g., adding information

on which Protein family it belongs to, the framework already supports the necessary infrastructure to

provide this update. However, to implement interaction data of higher complexity, such as protein-

RNA or protein-metabolite interactions, new data models and representation must be generated. Even

when considering novel data that emerges for specific elements, very often there is the need for the

framework to undergo some rework or adaptation to accommodate it. Importantly, the degree of

modification is usually correlated to the existence of an instance of that nature of data in the database.

While having to actively create more modules to the framework is to be expected, the infrastructure

lacks the necessary documentation to guide through this process. As it is possible to understand,

without the proper “blueprints” to navigate in the framework, it becomes nearly impossible to identify

and fix issues, as well as to develop new components for different features. These issues present

themselves as a big gap in the development of SubtiWiki and other Wikis, and more strategies are to

be considered to continue providing the community with strong and up-to-date platforms.

A potential approach to address developmental hurdles is to create a new platform, based on

an existing open-source framework, and make use of the full extent of its documentation to provide

each user and developer a better experience. Moreover, as a consequence of increasing each Wiki’s

maintainability, scaling this framework to other organisms and even outside of our research group,

becomes a feasible achievement. Thus, this project evaluates other frameworks that can be used in an

alternative approach to build a biological database. For example, which other programming languages

Chapter 2 – Introduction

 13

might be able to support the development in a more dynamic way, providing with the necessary tools

for the task and enough room for future novel features. Changing the programming language behind

the framework does not affect the final vision of our structures, but rather, consistently enables the

expansion of its functionalities and maintainability, while providing all necessary documentation to

support its development.

Since there is the motivation to greatly change the framework underlying any Wiki project,

there is also the necessity to evaluate the current database scheme. More specifically, how to convert

the current database into a more modern and robust scheme with self-running and well-established

maintenance routines, making it easier than ever to access and edit data. Overall, there is the will for

the developer of the Wikis to be presented with a much friendlier code, a well-outlined modular

structure and the proper documentation to aid in the development of novel features, with a strong

and solid data model to support its data.

Chapter 3 – Development of SubtiWiki v4

 14

Chapter 3 – Development of SubtiWiki v4

The results described in this chapter were originally published in Nucleic Acids Research

(DOI:10.1093/nar/gkab943):

The current state of SubtiWiki, the database for the model organism

Bacillus subtilis

Tiago Pedreira1, Christoph Elfmann1 and Jörg Stülke1

1 Department of General Microbiology, GZMB, Georg-August-University Göttingen, Germany

Author contributions
Tiago Pedreira: Conceptualization (lead); investigation (lead); methodology (lead); project

administration (supporting); resources (lead); supervision (lead); validation (equal); visualization

(equal); writing; original draft (equal); writing; review and editing (equal). Christoph Elfmann:

Methodology (supporting); resources (supporting); visualization (supporting). Jörg Stülke: Con-

ceptualization (equal); data curation (equal); funding acquisition (lead); project administration (lead);

supervision (lead); writing; original draft (equal); writing; review and editing (equal).

Chapter 3 – Development of SubtiWiki v4

 15

3.1. Abstract

Bacillus subtilis is a Gram-positive model bacterium with extensive documented annotation. However,

with the rise of high throughput techniques, the amount of complex data being generated every year

has been increasing at a fast pace. Thus, having platforms ready to integrate and give a representation

to these data becomes a priority. To address it, SubtiWiki (http://subtiwiki.uni-goettingen.de/) was

created in 2008 and has been growing in data and viewership ever since. With millions of requests

every year, it is the most visited B. subtilis database, providing scientists all over the world with curated

information about its genes and proteins, as well as intricate protein-protein interactions, regulatory

elements, expression data and metabolic pathways. However, there is still a large portion of

annotation to be unveiled for some biological elements. Thus, to facilitate the development of new

hypotheses for research, we have added a Homology section covering potential protein homologs in

other organisms. Here we present the recent developments of SubtiWiki and give a guided tour of our

database and the current state of the data for this organism.

3.2. Introduction

With the rise of high throughput techniques, the complexity and amount of information has been

increasing significantly over the past years. Importantly, the new techniques not only allow the

acquisition of one-dimensional data sets such as new sequences or protein catalogs, but they can

generate bi- or even multidimensional data sets that include two or multiple partners such as in global

protein-protein, protein-RNA, or protein-metabolite interactomes (Gerovac et al., 2021; Link et al.,

2013; O’Reilly et al., 2020). A possible approach to catalogue and organize the data is by resorting to

specialized databases. One type of these databases is dedicated to model organisms, which play a

fundamental role in the advance of knowledge in science as they are widely used across the world

(Dietrich et al., 2014; Oliver et al., 2016). The databases can widely differ in their intended audience

and purpose, and accordingly, the presentation of the data varies substantially. Clearly, databases with

a general audience in mind need a more intuitive structure and way of presentation as compared to

databases that are designed for informaticians who are mainly interested in the technical possibilities

to extract information.

 The Gram-positive model bacterium Bacillus subtilis is one of the most intensively studied

organisms. This bacterium has gained much interest due to the simple developmental program of

sporulation, its genetic competence and the ease of genetic manipulation, because of the wide

applications in biotechnology and agriculture, and since it is a close relative of many important

pathogens such as Staphylococcus aureus, Clostridoides difficile, or Listeria monocytogenes (Errington

Chapter 3 – Development of SubtiWiki v4

 16

& van der Aa, 2020; Kovács, 2019). We have previously developed SubtiWiki, a database focused on

the functional annotation of B. subtilis (Michna et al., 2014, 2016; Zhu & Stülke, 2018). In SubtiWiki,

the user has access to individual gene and protein pages, complemented by SubtiApps, which give

access to integrative metabolic pathways, regulatory networks and manually curated protein-protein

interaction maps (Zhu & Stülke, 2018). As of today (September 2021), SubtiWiki contains data on 6,121

protein- and RNA-coding genes, 2,271 operons, 8,355 literature references and more than 2,660

documented protein interactions. Additionally, 49 metabolic pathways are displayed in an interactive

map, a genomic interactive map is provided for the full extent of the B. subtilis genome, and gene

expression pattern profiles are presented for 121 experimental conditions, which can be on the

transcript or protein levels.

 Despite the current advances in the research on B. subtilis, there is still a large portion of genes

to be further annotated. This is the case for about 30% of all B. subtilis genes/ proteins. We try to

address this issue by providing the user with a broad list of protein homologs in different organisms.

To complement this, we also integrated the Cluster of Ortholog Genes Database (COG) for every

available protein (Galperin et al., 2021). Thus, beyond providing the community with an up-to-date

and free to use platform, we also contributed to the annotation of this model organism. Here, we

report the current state of SubtiWiki, the integration of new data, and describe the most recent

addition, the Homology Analysis.

3.3. SubtiWiki gene pages

Similar to previous versions, version 4 of SubtiWiki keeps the general design and page layout. Upon

searching for a gene or protein, the respective biological element page is presented in a simple and

intuitive way (Figure 3.1). Specific and factual information is promptly presented in the form of a table,

such as data on locus name, and in the case of protein-encoding loci, isoelectric point, molecular

weight and function. Additionally, it is possible to directly access NCBI Blast tools with either DNA or

protein sequences and the user gets access to other relevant database links that also have information

on the queried protein, such as KEGG, UniProt, or BsubCyc. Moreover, curated interactive information

on specific data such as protein structure, protein-protein interactions, regulatory elements and

functional annotation is also available. Each gene/ protein is assigned to one or more functional

categories organized in a tree-like structure and to regulons. The pages then provide detailed

information on the gene, the protein, and the regulation of its expression. To complement the data,

biological materials available in the community, laboratories that study the gene or proteins, and

publications are presented in a categorized way for easy reading and organization.

Chapter 3 – Development of SubtiWiki v4

 17

Figure 3.1 – The citB gene page display. All gene pages share the same layout and follow the same structure,

with changes that depend on the type of available data.

3.4. SubtiApps

For a better representation of information, different types of data are presented under specific

browsers in SubtiApps. The Expression Browser fully explores expression patterns under 121

experimental conditions, while the Genomic Browser is an interactive map where one can scroll

through the B. subtilis genome in an intuitive and easy manner. In addition to genes’ coordinates, their

Chapter 3 – Development of SubtiWiki v4

 18

respective DNA and protein sequences are loaded to provide a complete view over the genome (Figure

3.2).

Figure 3.2 – Genome browser focusing on the citB gene. Tabs at the top allow to search for specific genes,

include flanking regions, or simply to query by region. The main frame includes an interactive scrollable

genome, where all elements are clickable for a redirect to the specific gene page. At the bottom, both

protein and DNA sequences are shown (on the left) with the possibility to show the reverse complement or

to search for specific patterns within a sequence (on the right).

One of the highlights of the previous version was the biological network visualizer for interactions and

regulation (Zhu & Stülke, 2018). Currently, we have expanded the data to more than 5,950 and 2,660

experimentally validated regulatory and protein-protein interactions, respectively. Here, we offer a

clear representation of the documented physical interactions with the possibility to expand the

neighborhood (Figure 3.3A). Focusing on the regulatory data, regulatory networks can be interrogated

for 2,271 documented operons. There are three different types of annotation depending on the

Chapter 3 – Development of SubtiWiki v4

 19

mechanism of regulation: green for positive regulation (or activation), red for negative regulation (or

inhibition) and gray for sigma factor interactions (Figure 3.3B). Similar to the interaction browser, the

regulation browser also allows to expand the view to the neighborhood of the target gene, giving the

user a view over the full known regulatory network of the gene of interest, but also of its neighbors,

even allowing the visualization of regulatory sub-networks (Figure 3.3C). The gravity model

(Fruchterman & Reingold, 1991) in which nodes (genes/ proteins) are considered as mass points and

edges (physical or regulatory interactions) as springs was preserved for both browsers and the user

can find a clear and intuitive integration of the expression data within networks (Figure 3.3A). Notably,

all references of such data can be found at the bottom of each respective gene page in the References

section.

Figure 3.3 – The Interaction and Regulation browsers. (A) Interaction browser for the citB gene. Nodes

represent proteins and edges represent physical interactions, commonly referred to as protein-protein

interactions. Using the settings, transcriptomic and proteomic data can be integrated using a color code

(this feature is also available for the Regulation browser). Upon selection of an experimental condition to

be visualized, each node will be masked with a color depending on the expression value of the gene in the

selected dataset. Green represents lower values of expression and red represents higher values of

expression. (B) Regulation browser for the citB gene. Nodes represent genes and edges represent

regulatory interactions. The interaction type is represented with a color scheme: red for repression, green

for activation, gray for sigma factor. (C) Regulation browser for the citB gene with an increased radius of

distance of 2. This setting allows to expand all regulations from the initial representation (Fig. 3B) with the

distance of 2 elements (thus including the regulatory interactions of the primary partners that are shown

in (B)), creating a more complex view over the regulatory network of citB.

Chapter 3 – Development of SubtiWiki v4

 20

3.5. Potein homology integration

According to the SubtiWiki data collection, there are 1,819 biological elements with unknown function

or lacking annotation, which represents about 30% of all elements. To mitigate this lack of annotation,

we decided to integrate information on potential protein homologies for all B. subtilis proteins. For

this, we created a proteome library of 16 relevant bacteria, some close relatives of B. subtilis as well

as important representatives of other bacterial groups such as the proteobacteria or cyanobacteria

(Letunic & Bork, 2021) (Figure 3.4A) by extracting the corresponding sequences from UniProt (Bateman

et al., 2021). To assess potential homologs, we developed a pipeline using the well-known sequence

similarity search tool FASTA (Madeira et al., 2019). The pipeline is composed of two rounds of

alignments. The first one compares every protein of B. subtilis with the library, and the second one

compares the best hits found in the previous step with the B. subtilis proteome. If the resulting protein

from the second alignment is the same as the initial input of the first step, then the proteins are

considered bidirectional best hits (Figure 3.4B). Although performing this second round of alignments

gives more confidence in the prediction of homologs, it was still necessary to consider the difference

of protein sizes when running alignments. Disregarding this step may cause false positives, as small

proteins can have a high identity score for multiple regions of larger proteins. To avoid this, we paid

special attention to the alignment of smaller proteins with larger ones, and manually excluded cases

where strong inconsistencies were found. All resulting pairs showing an E-value £0.01 with a minimum

identity of 40% were considered. However, lower values of identity were also considered as long as

high values of similarity were retained.

Chapter 3 – Development of SubtiWiki v4

 21

Figure 3.4 – Homology analysis. (A) Phylogenetic tree of all organisms chosen for the protein homology

analysis. (B) Bidirectional FASTA alignment pipeline representation.

Currently, SubtiWiki provides protein homology results for every protein, with the exception

of 254 proteins that did not meet the identity/similarity and/or E-value cutoff criteria for any of the

representative relatives. The results can be accessed on the gene page and are presented in an easy-

to-read table (Figure 3.5). For each queried B. subtilis protein, there is a list of organisms and their

respective best hit protein homologs. Each of these proteins is linked to its respective UniProt page

and the metrics for identity, similarity, and bidirectional best hit are shown. If no protein homolog for

a certain organism was found, then this is stated (Figure 3.5).

Chapter 3 – Development of SubtiWiki v4

 22

Figure 3.5 – Protein homology page for the CitB protein. At the top is a brief description of the analysis,

containing details on the FASTA alignment tool and on the table. The table is composed of 5 columns:

Organism – lists all 16 organisms used; Protein name – best hit protein found in the respective organism

with a hyperlink to UniProt; Identity and Similarity – scores from FASTA alignment tool; Bidirectional best

hit (Yes/ No) – result of the bidirectional alignment.

Finally, to complement the new protein homology section, the Cluster of Orthologous Genes

(COG) database is now fully integrated in SubtiWiki. COG is a tool for comparative and functional

genomics of prokaryotes and identifies orthologs in a representative set of different bacteria and

archaea(Galperin et al., 2021). By taking advantage of the optimized COG database and fully

integrating their IDs, SubtiWiki now provides a strong complementary section of homologs and

orthologs (Figure 3.6).

Chapter 3 – Development of SubtiWiki v4

 23

Figure 3.6 – Homology and COG database implementation in SubtiWiki on the citB gene page. The section

highlighted in blue is shown when a corresponding COG entry is available for the gene and redirects to the

respective COG database page.

3.6. New data integration

A hallmark of this SubtiWiki update is the integration of new data sets. Recently we have added a

compendium of genome minimized strains derived from B. subtilis 168. Some of these strains have

already been proven superior for biotechnological applications such as the production and secretion

of difficult proteins and of lantibiotics (Suárez et al., 2019; van Tilburg et al., 2020). The MiniBacillus

Compendium section (http://www.subtiwiki.uni-goettingen.de/v4/minibacillus) (Michalik et al., 2021)

contains a table listing the name of each strain, the respective download link of Geneious and GenBank

files, genomic details (genome size, deletion steps and percentage of genome reduction), as well as a

list of publications associated with the respective strain.

Furthermore, we have added a large set of protein expression information. This information is

based on a large-scale study that sought to compare proteomic responses to 91 different antibiotics

and comparator compounds in an attempt to elucidate antibacterial modes of action (Senges et al.,

2021). To supplement this representation, we also provide the possibility to download the entire

dataset under the new Downloads section (http://www.subtiwiki.uni-goettingen.de/v4/download). In

addition to the previously implemented expression data, the new data set can be accessed in the

Expression Browser. Here, the user has full access to the available data for each biological element in

a specific representation and it is possible to overlay the expression data for each protein in the

Interaction Browser.

The latest updates reflect intensive research to identify novel transporters in B. subtilis. These

include transporters for bicarbonate (NdhF-YbcC)(S. H. Fan et al., 2019; S.-H. Fan et al., 2021) and

Chapter 3 – Development of SubtiWiki v4

 24

several amino acids including alanine (AlaP), glutamate and serine (both AimA) as well as the toxic

analogon glyphosate (GltT) (Klewing et al., 2020; Krüger et al., 2021; Sidiq et al., 2021; Wicke et al.,

2019).

In addition, two new categories of genes/proteins have been included. These are the quasi-

essential genes and genes that encode proteins that are required for the detoxification of toxic

metabolites. Quasi-essential genes are those genes whose inactivation results in the immediate

acquisition of suppressor mutations. Interestingly, essentiality of such quasi-essential genes has so far

been controversial (Commichau et al., 2013; Figaro et al., 2013; Koo et al., 2017). The new concept of

quasi-essentiality supports the idea that often there is no clear binary answer in this issue but rather a

continuum from clearly dispensable genes, genes that prove essential only after long-term cultivation,

genes that require genetic suppression upon deletion to those that are cannot be deleted under any

circumstances. As an example, the topA gene encoding DNA topoisomerase I is responsible for the

relaxation of negatively supercoiled DNA behind the RNA polymerase. Upon deletion of topA, the

bacteria immediately acquire mutations resulting in an increased expression DNA topoisomerase IV

which can then take over the role of TopA (Reuß et al., 2019). Similarly, deletion of the rny gene

encoding RNase Y results in the acquisition of suppressor mutations that result in a globally reduced

level of transcription activity (Benda et al., 2021) and deletion of the unknown gene yqhY triggers

mutations that often affect conserved residues of acetyl-CoA synthetase indicating that YqhY prevents

a potentially toxic accumulation of malonyl-CoA or of fatty acids (Tödter et al., 2017). Proteins involved

in detoxification reactions have recently been recognized as very important for cellular metabolism as

they remove harmful by-products or intermediates. Examples for such toxic by-products are 4-

phosphoerythronate, a by-product of erythrose-4-phosphate oxidation in the pentose phosphate

pathway that inhibits the phosphogluconate dehydrogenase GndA, and 5-oxoproline, an unavoidable

damage product formed spontaneously from glutamine. These toxic metabolites are disposed of by

the CpgA GTPase which moonlights in dephosphorylation of 4-phosphoerythronate(Niehaus et al.,

2017; Sachla & Helmann, 2019) and by the PxpABC 5-oxoprolinase (Niehaus et al., 2017), respectively.

It has recently become obvious that these detoxification mechanisms are very important for the

viability of any living cell. The limited knowledge on these mechanisms is an important bottleneck in

all genome reduction projects (Reuß et al., 2016, 2017). Thus, both these new categories are very

important to get a more comprehensive knowledge about the minimal requirements to sustain

bacterial life.

Chapter 3 – Development of SubtiWiki v4

 25

3.7. Future perspectives

With millions of accesses on a yearly basis, SubtiWiki has become one of the most popular database

that provides up-to-date and curated data for the model organism B. subtilis. Although this bacterium

is one of the best-studied organisms, there is still a vast portion of data to be annotated and a lot to

be discovered. By providing daily data and feature updates to the community, we expect SubtiWiki to

continue to grow. We hope for SubtiWiki to expand in viewership and further establish itself as a

prominent tool helping researchers develop new hypotheses. Future aims include the addition of new

basis entities such as metabolites and corresponding new types of data sets such as protein-

metabolite, protein-RNA, and RNA-metabolite interactions that will consolidate the role of SubtiWiki

as a trendsetter for model organism databases.

Acknowledgements

We are grateful to all lab members for testing the new features and for valuable feedback.

Conflict of Interest

The authors declare that they have no conflicts of interest with the contents of this article.

Chapter 4 – A relational database for the synthetic organism JCVI-syn3A

 26

Chapter 4 – A relational database for the synthetic

organism JCVI-syn3A

The results described in this chapter were originally published in Protein Science

(doi: 10.1002/pro.4179):

SynWiki: Functional annotation of the first artificial organism

Mycoplasma mycoides JCVI-syn3A.

Tiago Pedreira1, Christoph Elfmann1, Neil Singh1 and Jörg Stülke1

1 Department of General Microbiology, GZMB, Georg-August-University Göttingen, Germany

Author contributions
Tiago Pedreira: Conceptualization (lead); investigation (lead); methodology (lead); project

administration (supporting); resources (lead); supervision (lead); validation (equal); visualization

(equal); writing; original draft (equal); writing; review and editing (equal). Christoph Elfmann:

Methodology (supporting); resources (supporting); visualization (supporting). Neil Singh:

Conceptualization (supporting); data curation (supporting); resources (supporting). Jörg Stülke: Con-

ceptualization (equal); data curation (equal); funding acquisition (lead); project administration (lead);

supervision (lead); writing; original draft (equal); writing; review and editing (equal).

Chapter 4 – A relational database for the synthetic organism JCVI-syn3A

 27

4.1. Abstract

The new field of synthetic biology aims at the creation of artificially designed organisms. A major

breakthrough in the field was the generation of the artificial synthetic organism Mycoplasma mycoides

JCVI-syn3A. This bacterium possesses only 452 protein-coding genes, the smallest number for any

organism that is viable independent of a host cell. However, about one third of the proteins have no

known function indicating major gaps in our understanding of simple living cells. To facilitate the

investigation of the components of this minimal bacterium, we have generated the database SynWiki

(http://synwiki.uni-goettingen.de/). SynWiki is based on a relational database and gives access to

published information about the genes and proteins of M. mycoides JCVI-syn3A. To gain a better

understanding of the functions of the genes and proteins of the artificial bacteria, protein-protein

interactions that may provide clues for the protein functions are included in an interactive manner.

SynWiki is an important tool for the synthetic biology community that will support the comprehensive

understanding of a minimal cell as well as the functional annotation of so far uncharacterized proteins.

4.2. Introduction

The creation of artificial cells that contain only those genes that are essentially required to sustain the

major cellular functions is one of the aims of the emerging field of synthetic biology. This aim can be

achieved in two complementary approaches: the top-down approach identifies essential genes and

functions, predicts the minimal gene set, and deletes all non-essential genes in a consecutive manner

thus resulting in genome reduced strains. This approach has so far been most successful for the Gram-

positive model bacterium Bacillus subtilis. For this bacterium, the essential gene set has been identified

and the genes required for a minimal genome have been predicted (Commichau et al., 2013; Koo et

al., 2017; Reuß et al., 2016) and the genome has been reduced by about 40% (Reuß et al., 2017).

Alternatively, in the bottom-up approach genes predicted or identified as components of a minimal

genome are synthesized in vitro, assembled and introduced into a living cell. The original DNA will then

be lost, and the cellular activities will be driven by proteins encoded by the artificial DNA molecule.

This approach has been used to synthesize Mycoplasma mycoides JCVI-syn3A, an artificial minimal

bacterium with as few as 452 protein-coding genes, less than in any other known natural

independently viable bacterium (Breuer et al., 2019; Hutchison et al., 2016). Of the proteins encoded

by M. mycoides JCVI-syn3A, about one third has no known function, indicating how far we still are from

a comprehensive understanding of even a very simple and minimal living cell. The investigation of

Mycoplasma mycoides JCVI-syn3.0 by the scientific community will certainly help to get a deeper

Chapter 4 – A relational database for the synthetic organism JCVI-syn3A

 28

appreciation for the principal requirements of a minimalistic form of life, and thus touches one of the

most basic and most important aspects of biology.

 To facilitate the investigation of Mycoplasma mycoides JCVI-syn3A, we have developed

SynWiki, a database centered around the genes and proteins of this bacterium. This database is based

on the platform of the database SubtiWiki which is designed for the functional annotation of B. subtilis

(Michna et al., 2014; Zhu & Stülke, 2018). SynWiki presents the available information on the genes and

proteins of Mycoplasma mycoides JCVI-syn3A in an easy and highly intuitive manner. One focus of

SynWiki is the presentation of links between different genes and proteins that allow the researcher to

develop novel hypotheses. The information provided is based on the publications describing the

construction of the organism and the reconstruction of the minimal metabolism (Breuer et al., 2019;

Hutchison et al., 2016) and on the published specific information available on the proteins.

4.3. Description of the database

SynWiki is a relational database for the functional annotation of the synthetic minimal microorganism

Mycoplasma mycoides syn3A and uses the data describing the original JCVI-syn3.0 bacterium as well

as the most recent iteration of this organism, JCVI-syn3A (Breuer et al., 2019; Hutchison et al., 2016).

When referring to SynWiki data, we always consider the latter organism.

In SynWiki, the central biological element is the gene with its underlying relationships to

proteins and functional RNAs of JCVI-syn3A. With this in mind, it is clear that most pages focus on a

specific gene element and its functional annotation. To access any of these elements, the front page

provides a search box and access to several features of different types of data (Figure 4.1). To view

information on any gene, it is only necessary to query for a specific gene’s identifier (see more below).

Alternatively, it is possible to go directly to a random gene page using a button on the top of the page.

In addition to providing scientific information, SynWiki also serves as a hub for the scientific community

interested in the minimal organism. On each gene page, there is a banner that gives important

information such as upcoming conferences and other events, and a link to labs working on this

organism.

Chapter 4 – A relational database for the synthetic organism JCVI-syn3A

 29

Figure 4.1 – Home page of SynWiki. The main element of this page is the search bar that allows for searching

of biological elements. Further down there is a list of SynApps and other helpful links such as a list of labs

that work with this organism.

4.4. SynWiki identifiers

Currently, two unique identifiers can be used for each gene. The first one is a specific gene/ protein

name that serves as a mnemonic for its function (such as eno for enolase) or its synonym (such as ktrC

with its synonym trkA). The second identifier is an “eternal” locus tag, a gene-specific identifier that

will remain unchanged even though mnemonic gene designation may alter (Breuer et al., 2019). For

this, we have maintained the original locus tags created for JCVI-syn3A, which abide by the following

rules: a “JCVISYN3A_” prefix with a numerical suffix “XXXX” that derives from the initial data (Hutchison

et al., 2016). As an example, to retrieve information on the JCVISYN3A_0001 gene, or dnaA, it is

Chapter 4 – A relational database for the synthetic organism JCVI-syn3A

 30

possible to search for either the locus tag or gene name. For uncharacterized genes, that yet lack a

mnemonic designation, such as JCVISYN3A_0399, only this locus identifier can be used to access the

page.

4.5. The gene pages

As mentioned before, SynWiki revolves around the gene entity, meaning that each gene has a fully

dedicated page where all documented information can be found. Independent of the data available

for each gene, all gene pages share the same structure (Figure 4.2). At the top, there is a banner

highlighting community events, just followed by the gene name accompanied and a short description

of its function, if available (Figure 4.2A). Followed by this, there is a table containing specific

information of the searched gene and its product (Figure 4.2B). It contains information regarding locus

tag, protein specific information (molecular weight, isoelectric point, product and function), gene and

protein lengths with direct links to their corresponding sequences., a BLAST search, and information

on essentiality. Moreover, SynWiki provides links to the respective entries in UniProt, KEGG, KEGG

Pathway, and STRING databases (Figure 4.2B). Below that, an interactive genomic context browser is

shown, which is part of the corresponding Genome Browser SynApp (see more below) (Figure 4.2C).

This feature allows to see the gene’s position in the genome and to scroll through the genome. Right

under this section, information on the annotated functional categories (see below), as well as a link to

the protein homology analysis developed in our lab (see below) are provided (Figure 4.2D). The

remaining part of the page presents additional information on the gene/ protein. The gene section lists

information regarding the gene element, such as genomic coordinates, phenotypes of mutants if

available and other information centered on the gene (Figure 4.2E). The protein section lists specific

information regarding this element, such as protein family and biochemical details (Figure 4.2F). At the

bottom there is a list of publications annotated for the current biological element (Figure 4.2G).

Although not currently represented in SynWiki due to lack of data, information on operons and

regulations can also be displayed in this page. Finally, the right panel of the page provides links to other

important pages such as a list of labs working on JCVI-syn3A, search boxes for SynWiki and PubMed

entries, and displays protein structures as well as protein-protein interactions (if any) (Figure 4.2H).

Chapter 4 – A relational database for the synthetic organism JCVI-syn3A

 31

Figure 4.2 – Gene page overview for ptsH. Gene page structure is shared among all genes with differences

in displayed data, as it is dependent on its availability. A – Gene title and description; B – Overview table

focusing on different gene/protein details; C – Genomic context of genes with an interactive genome

browser; D – List of functional categories the gene is annotated with and list of homologs in other

organisms; E – Section focused on gene centered information; F – Section focused on protein centered

Chapter 4 – A relational database for the synthetic organism JCVI-syn3A

 32

information; G – List of references annotated to the gene; H – Overview of protein structure and protein-

protein interactions.

4.6. SynApps

One of the strong points of our family of databases is the integration of different levels of data using

multiple browsers under “SynApps” (Figure 4.1). Among these, we highlight the integration of genomic

context (Genome Browser), expression data (Expression Browser), and protein-protein interactions

(Interaction Browser).

 In the Genome Browser, the user gets access to a scrollable genome to check for gene context

and orientation, as well as DNA and protein sequences. As mentioned before, this browser is also

partially included in every gene page for easier overview of each gene’s genomic context. Importantly,

due to evolutionary pressure towards an AT rich genome, Mycoplasmas use the TGA codon for

tryptophan, in contrast to other organisms that use it as a stop codon instead (Inamine et al., 1990;

Yamao et al., 1985). Therefore, the internal codon table was adjusted accordingly, and all protein

sequences displayed in Genome Browser are correctly translated.

 The Expression Browser provides data on a proteomics analysis during early growth for 428

proteins (Breuer et al., 2019). These data are also presented on the gene pages (in the paragraph

“Expression and Regulation”). However, the Expression Browser allows a direct comparison of the

protein amounts for different proteins of choice (see Figure 4.3A).

 To identify the functions of so far unknown or poorly studied proteins, data on physical

protein-protein interactions are of key importance. We have recently used a combination of cross-

linking, mass spectrometry and cryo-electron tomography to unravel the in vivo interactome of

Mycoplasma pneumoniae (O’Reilly et al., 2020). While global interaction data are not yet available, a

recent study has shed light on the prediction of complex interactions in M. mycoides JCVI-syn3A(Zhang

et al., 2021). Protein-protein interactions are displayed on the gene pages (Figure 4.2H) and in the

Interaction browser (Figure 4.3B). Similar to the Expression Browser, the Interaction Browser provides

opportunities of interrogation that could not be reached on the gene pages. As an example, the user

can visualize complex interaction patterns and selection one protein highlights direct neighbours and

displays an overview from the gene page (Figure 4.3B).

Chapter 4 – A relational database for the synthetic organism JCVI-syn3A

 33

Figure 4.3 – Overview of implemented SynApps. A – Expression Browser on protein level for PtsH. Shows

the number of protein molecules per cell under each experimental condition. Only “Early growth phase”

data is available, thus it is the only one being represented. It is possible to add other proteins for comparison

on the same view (all interacting proteins shown, Crr, PtsI, and HprK) and it is also possible to download

data directly. B – Interaction browser for PtsH, highlighting direct interaction partners and displaying an

overview from its gene page.

4.7. Implementation of the database

4.7.1. SynWiki architecture

SynWiki’s architecture relies on the framework previously developed for the well-known database

SubtiWiki (Zhu & Stülke, 2018). The framework uses a relational database management system to

establish relationships between entities, based on the relation theory(Codd, 1970), thus allowing the

organization and storage of data in tables. This allows for the creation of complex and rich relationships

between genes/proteins and their annotation. Another advantage of using SubtiWiki’s framework is

Chapter 4 – A relational database for the synthetic organism JCVI-syn3A

 34

that it provides the full experience one can find in this database, such as Browser features and the

fully-fledged user system to add and edit data.

4.7.2. SynWiki data

As mentioned before, SynWiki uses the data from the original JCVI-syn3.0 and JCVI-syn3A publications

(Breuer et al., 2019; Hutchison et al., 2016). According to the authors, the latter iteration of this

organism features the addition of 17 genes (14 Mycoplasma mycoides genes and 3 pseudogenes),

making a total of 492 genes, resulting in better growth and improved stability.

 In addition to the annotation in the original publications we also went through the literature,

checked known functions of homologs, and searched for the availability of protein structures of the

JCVI-syn3A proteins or their homologs from other organisms. All these results from manual data

curation were added to the pages. Moreover, the curation of the pages is an ongoing process that will

lead to ever-improved annotation and data presentation.

 The success of a biological database strongly depends on the quality of annotation, and for

those cases where there is poor or no annotation, we wanted to take a step forward and give our own

contribution. With this in mind, and starting from the original annotation, we have also assigned each

gene to one or more functional category. We took inspiration from GO term tree (Ashburner et al.,

2000) and created a tree-like structure containing all functional categories. Currently, there are four

major functional branches, “Cellular processes”, “Group of genes”, “Information processing” and

“Metabolism”, which then branch out into more specific categories (see here for an overview:

http://synwiki.uni-goettingen.de/v1/category, and Table 1). For example, in “Cellular processes” it first

branches out into “Cellular envelope and cell division”, “Homeostasis”, and “Transporters”. Then,

“Homeostasis” branches out into “Metal ion homeostasis” and “Coping with stress”; “Transporters”

branch out into “ABC transporters”, “ECF transporters”, “Phosphotransferase system” and

“Symporter”. The “Group of genes” parent category branches out into “Foreign genes”, “Membrane

proteins”, “Poorly characterized enzymes”, “Proteins of unknown function”, “Pseudogenes”, “ncRNAs”

and “Essentiality”. As a result of this annotation, we can now dig deeper into the data and assess it

according to specific categories. As an example, looking for “Essentiality” allows to identify 46% of

genes to be labeled as “Essential”, while only 13,6% are classified as “Non-essential” (Figure 4.4).

Moreover, we have annotated most genes with over 500 publications to help better understand the

potential underlying roles of JCVI-syn3A genes.

Chapter 4 – A relational database for the synthetic organism JCVI-syn3A

 35

Figure 4.4 – Distribution of essentiality among all genes in SynWiki. While essential genes cannot be

removed from the genome without loss of viability, the removal of quasi-essential genes results in an

observable growth disadvantage (Breuer et al., 2019).

 Additionally, we added an extensive list of potential protein homologs for 16 relevant bacterial

species, among them M. pneumoniae and the model organisms Escherichia coli and B. subtilis. The

proteomes of these organisms were extracted from UniProt (Bateman et al., 2021) and a set of a

bidirectional alignments was performed using the similarity search tool FASTA (Madeira et al., 2019)

between the library of proteomes and the proteome of JCVI-syn3A. The resulting aligned protein pairs

in both directions showing an E-value £0.01 and high similarity were considered to be potential

bidirectional homologs. The results can be accessed on the gene page (Figure 4.2D) and they are

presented in detail in a table format, showing the respective scores (Figure 4.5). To complement this,

and based on protein structure homology, we have included a protein structure prediction for 327

proteins (Figure 4.2H).

Chapter 4 – A relational database for the synthetic organism JCVI-syn3A

 36

Figure 4.5 – Representation of protein homology analysis for PtsH. Results displayed in a table format

for each organism used in this analysis with respective best potential homolog with UniProt link.

Identity, similarity and bidirectionality scores also displayed.

4.8. Future perspectives

SynWiki is a new database for the recently created minimal genome microorganism M. mycoides JCVI-

syn3A. SynWiki uses the framework of SubtiWiki, which gives it a robust and consistent way of

searching and updating data. Although there is scarce information for this organism, we have created

a powerful structure to store and display the current data. However, SynWiki is also prepared to

include new findings that might arise from emerging studies. Importantly, recent attempts to model

the complete metabolism of JCVI-syn3A (Breuer et al., 2019) and related natural minimal organisms

Mesoplasma florum (Lachance et al., 2021) will certainly benefit from the collection of information

Chapter 4 – A relational database for the synthetic organism JCVI-syn3A

 37

provided in SynWiki. On the other hand, the information derived from the metabolic models and

similar global approaches is important to update SynWiki. As more research groups delve into the

unknown and try to unveil more of JCVI-syn3A, we want to provide the scientific community with a

platform where all biological elements of this organism can be updated on a daily basis with curated

data. We aim not only to put data together, but also to organize it and give scientists the confidence

and the necessary tools to create new approaches for their research.

Acknowledgements

We are grateful to Hannes Gebauer for the initial work on SynWiki.

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 38

Chapter 5 – CoreWiki, a novel framework for

prokaryotes

5.1. Abstract

In a way to address the increasing amount of information generated yearly by novel techniques and

with the emergence of new types of data, biological databases play a fundamental role in organising

this data. Among these data platforms, SubtiWiki stands out as the golden standard for all researchers

working on B. subtilis. However, this database is also subject of improvement as it lacks the proper

documentation to aid the development of further features. CoreWiki is a new framework that aims to

replace the current live iteration of SubtiWiki v4. CoreWiki was developed with Flask, a micro-

framework written in Python that is remarkable for its flexibility, allowing to embody the traditional

design pattern of Model-View-Controller with an easy-to-implement core feature. Additionally, an

improved database schema that uses SubtiWiki v4 database as a comparison term was implemented.

New models were added to accommodate the bacterial data, retaining the current relationships, and

created novel ones to further expand the information complexity. Moreover, the new schema is

further explored by adding new interaction models and retrieving long forgotten sections from an early

SubtiWiki iteration, showing how flexible the presented database and framework can be. CoreWiki

inherits the current design of SubtiWiki, perfectly integrating the new data models. As a final goal,

CoreWiki aims to be the chosen framework by many research groups when it comes down to

integrating bacterial information.

5.2. Introduction

In this digital era, where high throughput data techniques reign supreme, it is of utmost importance

to have specialized structures to handle this data. To support this endeavour, scientists count with

numerous biological databases that aim to store and represent high amounts of information (Alkan et

al., 2011; Caswell et al., 2019; Loman et al., 2012; Manzoni et al., 2018; Mardis, 2017; Reuter et al.,

2015). These databases are particularly useful not only for their storage capabilities, but also due to

their feature to integrate multileveled information. However, setting this data on the same plane as

all the inherent functional annotation of a certain biological element represents a major hurdle. Infor-

mation from NGS, proteomics, transcriptomics, metabolomics and interaction between elements are

classified as the main players in the increase of data complexity (Corley et al., 2020; Gerovac et al.,

2021; Link et al., 2013; Loman et al., 2012; Mardis, 2017; O’Reilly et al., 2020).

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 39

Biological databases play the fundamental role to take all this complex and high variety data

and give it an important biological context (Baxevanis & Bateman, 2015; Caswell et al., 2019). While

some of these structures may provide exceptional support on specific levels of data nature, e.g., pro-

tein or gene information only, and regardless of the organism, there are other databases that are ded-

icated to a single model organism, i.e., model organism databases. Among these, SubtiWiki is the most

accessed biological database for the model organism B. subtilis (Zhu & Stülke, 2018; Pedreira et al.,

2022). This database provides curated information for this organism while providing with an effective

way of keeping up with the current data generation.

Under the hood, the most recent iteration of SubtiWiki, version 4 (Pedreira et al., 2022), is

organised in two different sections: server-side and client-side, also known as frontend and backend,

respectively (Figure 5.1). SubtiWiki counts with a frontend composed by Hypertext Markup Language

(HTML) (Hickson et al., 2022; Karan, 2013), responsible for the generation of the structural elements

of the website, Cascading Style Sheets (CSS) (Lie & Bos, 2005), used for styling of each element of the

webpage, JavaScript (JS) (Flanagan, 2011) to manipulate web content and how it behaves, and AJAX to

enable asynchronous data exchange. For the backend, this platform relies on a web server Apache, to

enable data exchange between frontend and backend, PHP (Bakken et al., 2000) that serves as a

server-side scripting language, and a database management system (DBMS) that is used to access,

create, update or delete data, which in this case is MySQL (Axmark & Widenius, 2022).

Both ends orchestrate together the communication between users and the database in what

is called the Linux Apache MySQL PHP (LAMP) stack (Figure 5.1). This structure enables the communi-

cation between both ends in a phased manner, for example if the user requests on the frontend to

access data on a certain gene, the following happens:

• User requests information on a gene (Figure 5.1 A)

• The request is sent via HTTP by the browser and received by the web server (Figure 5.1 B)

• The request is sent to the database and PHP decodes the language received from the web

server and translates it to SQL (Figure 5.1 C)

• The database sends a response to the web server and PHP decodes the response back for

the end user’s understanding (Figure 5.1 D)

• The web server sends the decoded response to the browser (Figure 5.1 E)

Upon receiving the information HTML, CSS and JS will act on their own and make sure the structure,

styling and behaviour are applied properly.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 40

Figure 5.1 – Scheme of SubtiWiki v4 architecture. LAMP stack includes two types of actions: request (solid

lines, ¾) and response (dashed lines, ----). An example of how the stack handles information in SubtiWiki

is as follows: A – Request from the client to the server-side. B – HTTP request handled by Apache and for-

ward to the database. C – PHP decodes the request sent from Apache to SQL. D – Database responds with

result from query in SQL, which PHP decodes and redirects to the web server. E – Apache retrieves the

response and sends it to the client, where the user is now presented with the result of the query.

 One of the major features of this framework is the possibility to expand beyond B. subtilis,

adapting this structure to different organisms. With solid evidence of reusing successfully the same

framework for M. pneumoniae (MycoWiki) and L. monocytogenes (ListiWiki), this structure contains,

however, fundamental flaws regarding its development and maintainability. SubtiWiki’s framework

was tailor made (Zhu & Stülke, 2018) to specifically accommodate B. subtilis information, providing

custom features that were designed with this organism in mind. As most prokaryotes share some de-

gree of similarity, scaling beyond one organism is feasible. For this, it is extremely necessary to have

the proper blueprints of a framework to be able to successfully adapt from one organism to the other.

While it is easier if the developer in charge is responsible for the scaling, once more developers are

added to the question, then the proper documentation will play a fundamental role in guiding new

developers.

 A software’s documentation enables the addition of novel features by providing the necessary

guide to each building block of the framework. Additionally, by having full control over the framework,

it is easier to perform maintenance on the structure. According to ISO/IEC 25010:2011 Systems and

software Quality Requirements and Evaluation (SQuaRE), Maintenance is an importance category of a

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 41

software’s Product Quality, which contain characteristics that are important for every developer

(Estdale & Georgiadou, 2018). This is where SubtiWiki’s framework is at fault, as there is a lack of doc-

umentation, which massively hinders the development of novel features, regardless of the organism.

 A potential approach to address this challenge is to develop a new platform, using an existing

and well-established open-source framework. This will help developers by providing native documen-

tation and support throughout each component. Moreover, most frameworks contemplate with im-

plemented routing tables, which makes a big part of the heavy lifting of routing an easy task. Im-

portantly, this requires the evaluation of which suitable framework would work the best for the project

and which structural improvements would benefit the database. Thus, all these ideas are taken into

consideration and a novel framework is introduced, called CoreWiki, that will aim to provide a generic

platform for prokaryotes. For this, it is expected for this novel framework to replace all other Wiki’s

backend structure, and a thorough revision and overhaul of the database is made using SubtiWiki as a

comparison term to evaluate the introduced modifications.

5.3. Methods and tools

5.3.1. Website Structure

Websites are divided in two sections: the backend and frontend. As discussed before, each part will

play a role in how the whole framework will handle and represent data for the user. Currently, Subti-

Wiki’s framework runs on a LAMP stack (Figure 5.1), and the alternative architectures for CoreWiki will

be discussed. On a functional level, the traditional request-response architecture found in SubtiWiki

v4’s framework will persist and thus, CoreWiki is planned to work in a similar way. There are, however,

some changes planned to occur on the framework and database sides that aim to address the funda-

mental development flaws that the current platform presents. More specifically, CoreWiki will count

with Flask (Grinberg, 2018) framework for the backend logic, rely on SQLite (Hipp, 2020) as a DBMS,

and use SQLAlchemy (Bayer, 2012) as an Object-Relational-Mapper (ORM).

5.3.2. Database

5.3.2.1. Architecture of Databases

Biological data’s integrity depends heavily on the relationships of a certain biological element. For ex-

ample, the connection between a certain gene and its functional annotation can be mapped as a rela-

tionship between these two elements. To address this, SubtiWiki uses the relational database model

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 42

(RM) (Codd, 1970), where data is managed using a structure that allows relationships to be established.

Data can be accessed, edited, created, and deleted using queries, where the user clearly states which

data from which database to manipulate. This is handled by the DBMS, which will systematically or-

ganise the data under the user’s rules, which in turn, are defined using Structured Query Language

(SQL) (Axmark & Widenius, 2022).

In a relational database model, the schema defines an abstract design of its structure, where

both the organisation of the data and the relationships are represented. Data is organised in tables,

which are a visual representation of a relation. Inside each table, columns describe attributes of an

instance of the data, and rows are instances of the relation presented in the form of a tuple. Each

column of the table will have a set of constraints associated to the data type it can allow. For example,

forcing a gene name to always be a variable character, VARCHAR, which can include variable length of

numbers, letters, and special characters, or forcing an identifier to always be an integer, INT, or simply

declaring which attribute is set to be unique across all instances, e.g., gene “ID” needs to be set to

UNIQUE to avoid duplications.

Relationships can be established between tables and in order to maintain the integrity of the

data and their relationships, the RM defines keys which are assigned to specific columns of each row

of a table:

• Primary key – a special column that serves as the unique identifier of a whole table and

each table cannot have more than one primary key

• Foreign key – a column or group of columns that serve as a cross-reference between two

tables. This is the primary key of a different table, thus establishing a relationship between

the two tables

Setting up these special keys to each table of the database model allows to set up relationships be-

tween different elements of different tables, creating one-to-one, one-to-many or even many-to-many

relationships (Codd, 1970). In turn, this will increase the overall degree of complexity of the database,

but also ensuring that higher levels of data can be easily modelled and integrated, without losing any

information in the process.

Figure 5.2 shows an example of how keys can be used to establish relationships and maintain

data’s integrity. In this small schema, there are three tables: Gene, Protein and Interaction. By setting

up a primary key to Gene id, Protein table can reference to it as a foreign key, establishing a relation-

ship with the respective Gene entry. Thus, Protein table’s primary key is the foreign key of Gene table.

The same ideal can be applied to the Interaction table, which maps protein-protein interactions. By

using as a foreign key on both Protein_1 and Protein_2 columns referring to Gene id, it is possible to

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 43

create a link between the data on all tables. In this case, by querying for Gene gA, the database ac-

cesses information regarding the genomic annotation (Gene table), protein properties (Protein table)

and with which other proteins it can establish an interaction (Interaction table).

Figure 5.2 – Hypothetical example of biological data database schema containing a Gene, Protein, and pro-

tein-protein Interaction models. Solid lines (¾) represent direct relationships, Protein table contains the

foreign key to Gene table, allowing to establish the seen relationship. The same occurs between Protein

and Interaction tables, which the latter contains the foreign key to the Protein table. In turn, the dashed

lines (----) represent the indirect relationship Interaction and Gene table establish.

Since most programming languages operating on the backend of a website use object-oriented

programming (OOP), where objects are the instances of attributes (referring to data) and methods,

there is the necessity to map data generated in OOP when trying to convert it to a relational database

model. Since SQL DBMS is not object-oriented, the data structure provided by OOP is by default in-

compatible with the one in the RM. To address this major constraint, backend frameworks are usually

deployed with an Object-Relational Mapping (ORM), which serve as an object-oriented intermediary

to convert OOP objects into a data structure readable by the relational database (Lorenz et al., 2017).

This is achieved by creating an abstract layer between the user and the database, converting every

OOP query or object manipulation into a language the database can read. The tables are never ac-

cessed directly, but rather by the ORM instead (Figure 5.3). Using this system enables to freely create

data models in an OOP environment, which offers a lot of flexibility, while providing extra protection

against undesirable injections of malicious SQL commands (Microsoft, 2021).

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 44

Figure 5.3 – Example of how instances of objects (hexagons, different colours represent different instances)

and their relationships (solid lines, ¾) created by OOP interact with the abstraction layer provided by the

ORM, which in turn allows these objects to be stored inside a relational database. Upon request, the ORM

also handles the decode of database information back to the same instances of objects.

Accordingly, CoreWiki relies on the same principles of the ORM and RM schema to safely store infor-

mation. This way, by enabling a strong and solid relationship model in the biological data, the construc-

tion of biological data models that can be opened up to any prokaryote is now possible.

5.3.2.2. SQLALchemy and ORM

As mentioned before, an ORM provides an object-oriented abstraction layer, allowing the creation of

object-oriented data models, which can then be translated by the ORM into database language. Sub-

tiWiki v4 makes full use of MySQL as DBMS, but since CoreWiki is built on Flask framework, SQLite

(Hipp, 2020) as DBMS and SQLAlchemy as ORM have been chosen to handle the database as a whole.

SQLAlchemy is an open-source SQL toolkit Python package, mostly known for its ORM that provides

the data mapper pattern (Bayer, 2012). SQLAlchemy exposes all object relational details in a transpar-

ent way, allowing to automatize redundant tasks and to fully focus on the design of the database

schema. Thus, the creation of model classes sets rules for the development of object attributes and

relationships that will then populate the database in each table. As discussed before, each model will

correspond to a different and independent table, that can establish relationships with other tables by

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 45

the means of keys (see more in section 5.3.2.1.). For this, Flask integrates SQLAlchemy in a very easy

to understand way and for the sake of the example, Listing 5.1 shows the definition of two hypothetical

model classes, Gene and Protein, as well as the relationship they establish between them.

1. from flask_alchemy import SQLAlchemy
2. db = SQLAlchemy()
3.
4. class Gene(db.Model):
5. __tablename__ = ‘Gene’
6. id = db.Column(db.String(40), primary_key=True)
7. name = db.Column(db.String(255), nullable=False unique=True)
8. protein = db.relationship(‘Protein’, back_populates=‘gene’)
9.
10. class Protein(db.Model):
11. __tablename__ =‘Protein’
12. id = db.Column(db.Integer, primary_key=True)
13. gene_id = db.Column(db.String(40), db.ForeignKey(‘Gene.id’))
14. structure = db.Column(db.String(255))
15. gene = db.relationship(‘Gene’, back_populates=‘protein’)

Listing 5.1 – Example of two hypothetical model classes, Gene and Protein. Definition of each table’s col-

umns and constraints, such as how long each column may allow. The primary and foreign keys as well

relationships are all set in the model.

This code snippet shows how to define model classes within the Flask-SQLAlchemy environment,

where each class is considered to be a table, meaning that each will have a set of attributes and meth-

ods that define the properties and fields present in each table. Each variable inside the class will rep-

resent either a column, defined by db.Column(), or a relationship, declared by db.relationship(). As

for the attributes, it is possible to define which type of data will be present in each column, for example

in the Gene model, the ID is set to be composed of a 40 character long unique string. Relationships, on

the other hand, do not represent a column, but a connection (line 8 in Listing 5.1). By declaring the

variable protein to have a relationship, it is necessary to define which table it has a relationship with.

In this case, setting the connection to the Protein table also requires defining which variable in the

Protein model it establishes the relationship with, which is the variable gene (line 15 in Listing 5.1).

 The second model, Protein, is declared and defined in a similar way as the previous one (line

10 in Listing 5.1). There, it is established that the column gene_id is the foreign key of column id from

the Gene table (line 13 in Listing 5.1). This ensures that gene_id and id from Gene table are in a tight

one-to-one relationship. This is not the case here, since a gene can only have one protein product,

other types of relationship can be established, for example one-to-many (e.g., gene – synonyms) or

many-to-many (e.g., genes – publications) relationships.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 46

 SQLAlchemy establishes all relationships automatically for the developer and makes it simple

and easy to access information across tables, based on these relationships. To perform queries, the

developer has access to a series of commands that are implemented functions from Flask-SQLAlchemy.

For example, to query a single entry based on some criteria, let’s say “id”, from the previously defined

Gene table, the developer can use the method gene_of_interest = Gene.query.get(id). Querying every

entry on the same table can also be done in a very easy and simplistic way, by using the command

Gene.query.all(). Importantly, it is possible to instantly access all information from a certain entry and

all the respective data it has a connection with from relationships established a priori. In the given

example, to access all protein information from gene_of_interest, all it takes is to access the internal

relationship of the object: gene_of_interest.protein.

 To add new records to the database using this package is also made easy. Listing 5.2 shows the

simulation of how to add manually a new entry in the Gene table, altogether with a relationship with

the Protein table.

1. from flask_alchemy import SQLAlchemy
2. db = SQLAlchemy()
3.
4. gene = Gene(
5. id=”90AFF93D6E7BC993B2773C12EE400C87H1T5B831“,
6. name = “geneA”)
7. gene.protein = Protein(structure=‘ABC‘)
8.
9. db.session.add(gene)
10. db.session.commit()

Listing 5.2 – Example of code to add a new entry in the Gene table as well as establishing a relationship

with the Protein Table.

At the end of defining the data, running the commands db.session.add() and db.session.commit()

(lines 9 and 10 in Listing 5.2) ensures that the data is properly saved in the database by SQLAlchemy.

In the same sense, if there is the need to delete a record from the database, SQLAlchemy also contains

a function to act accordingly, which is equally easy to use, db.session.delete().

Finally, if the database schema requires to be updated, SQLAlchemy provides a tool to handle

this. More specifically, SQLAlchemy Alembic allows to easily update the number of tables, columns of

other aspects of the database without having to erase any records. Instead, by running the function

migrate(), the database is updated in real time and all new settings are added/removed accordingly.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 47

5.3.3. Backend Structure

5.3.3.1. Server side scripting language and working framework

As discussed before, in a website, the backend represents the server side, or data access layer (Figure

5.1). This means that in the backend of a framework it is possible to find the data storage handling as

well as the whole logic to access and manipulate the data. Thus, all websites require a backend to work

properly and CoreWiki will be no different.

In contrast with the current SubtiWiki’s framework, CoreWiki uses Python as its server-side

scripting language. Python is a popular, multipurpose, and high-level programming language that sup-

ports widely used programming paradigms, i.e., object-oriented, procedural, and functional program-

ming (van Rossum & Fred L., 2009). In fact, Python scored as the top programming language used as

of 2022, surpassing the previous leader language C and is used among many popular software compa-

nies (TIOBE, 2022). With a wider group of programmers, the community support for this language

grows accordingly, making available a large number of open-source applications (van Rossum & Fred

L., 2009). Due to the flexibility and wide support of this language among the scientific community, the

choice to use Python as the server-side scripting language of CoreWiki was clear.

Having the language selected, the next step is to choose a compatible framework. Among some

popular web development frameworks written in Python, Flask was chosen to be the suitable backend

framework for CoreWiki (Grinberg, 2018). Flask is used among many well-known service platforms,

such as Netflix, Reddit, Lyft and many more, and is considered to be a “micro web framework” (Grin-

berg, 2018; Stackshare, 2022). This classification of “microframework” is bound strictly to the fact that

it merely uses minimal core functions, not making use of any particular tool or library. This, however,

does not mean that Flask lacks in functionality, as it highly praises its extensibility (Grinberg, 2018). By

not having any external library, the user is free to choose which other libraries or extension tools better

suit their needs. Flask does not have a native database, database abstraction layer or even form vali-

dation, however, it offers support extensions that work as if they were native of Flask itself. Extensions

such as an ORM, form and user validation will play an important role in the process of creating

CoreWiki, as it is of utmost importance to have well-established user checkpoints when accessing and

validating data from and to the database.

Flask is part of a collection of Python libraries designed for web development, called “The Pal-

lets Projects” (Mönnich et al., 2016). The applications present in this collection were developed with

the objective of using them altogether with Flask and since it is stripped off of a native ORM, user

validation and even routing, these libraries aim to support the utility of this framework. Thus, for user-

based platforms to work as intended, they rely on the following libraries:

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 48

• Werkzeug

• Jinja2

• MarkupSafe

• ItsDangerous

Werkzeug, meaning “tool” in the German language, is a comprehensive utility library for Web Server

Gateway Interface (WSGI), or simply put, handling objects for requests, response and routing functions

(see more in section 5.3.3.3). Jinja2 is a template engine with full Unicode support, which handles

HTML templates in a sandboxed environment (see more in section 5.3.4). MarkupSafe is a library that

implements a string, or text object handling that allows escaping characters and marks them as “safe”

to be used in HTML, avoiding potential malicious code injection. Finally, ItsDangerous is a library that

handles data serialization, i.e., it allows to move data in a secure way, no matter how unsecure the

environment is. Although user sensitive data, such as passwords, are mostly handled by Werkzeug, it

is particularly useful to handle sensitive data in general, e.g., to store user session when using Flask in

a cookie, ensuring this token is not compromised.

 Flask is probably the framework with easiest setup one can find available. As an example of

how to set up an application using this framework, Listing 5.3 shows that with few lines of code it is

possible to generate a web page. In this example, after creating an object with the Flask package (line

2 in Listing 5.3), by simply adding a function under a route (see more in section 5.3.3.3) (lines 3-6 in

Listing 5.3), when running app (lines 8-9 in Listing 5.3), the user will be greeted with the message

“Welcome to CoreWiki!” when accessing localhost.

1. from flask import Flask
2. app = Flask(__name__)
3.
4. @app.route(“/”)
5. def homepage():
6. return “Welcome to CoreWiki!”
7.
8. if __name__ == “__main__”:
9. app.run()

Listing 5.3 – Snippet of Python code running a simple application using Flask framework.

Ahead, it will be discussed how the developer can add more components to this simple example, in-

creasing the complexity of the platform by adding templates and models.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 49

5.3.3.2. Model-View-Controller design pattern

Regardless of the language used to write the framework, most backend frameworks are set upon the

widely used design pattern of “Model-View-Controller” (MVC), including SubtiWiki (Zhu & Stülke,

2018; Pedreira et al., 2022).

 Introduced first in 1988, the MVC pattern is divided into three interconnected elements, that

govern different parts of the logic of the backend – the “Model”, and the “Controller”, and on the

frontend – the “View” (Krasner & Pope, 1988). Together, the different MVC elements divide the logic

responsibility of a framework between the server and client (back- and frontend) (Figure 5.4).

Figure 5.4 – Logic of MVC design pattern. The User interacts with the View to send requests to the Control-

ler. The Controller requests the information from the database and the Model then notifies the Controller

with the resulted query. Lastly, the Controller updates the View so that the User can interact with it.

In this design pattern, the Model is the central component and it governs the dynamics associated to

the data structure, managing the data directly as well as the logic of the framework. Because of its

nature, it is completely independent of the user interface, meaning the user will never have access to

this part of the website, but instead interacts with it using the other elements of the pattern. The next

component of the pattern is the View and it is responsible for the representation of the data. It is

composed of structural components, also called templates, and can be compared to building blocks of

a website. This means that there will be different templates for every element of the View, some more

static than others. For example, loading a navigation bar that is always the same for every page, and

some other building blocks that respond to dynamic information, which will receive the data that

comes from the Model. In this element of the pattern, the templates are built with HTML and styling

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 50

elements from CSS are loaded accordingly. Templates also allow to run code from JS or other lan-

guages, usually responsible for the behaviour of the HTML/CSS or even data elements. The final ele-

ment of the design pattern is the Controller, which is responsible for mediating the communication

between the Model and View. This translates to the Controller handling user requests (create, update

or delete information) and manipulating the data to the corresponding model, receiving the infor-

mation and converting it to the View’s building block (Krasner & Pope, 1988).

In practical terms, the MVC pattern also defines how each element interacts with the neces-

sary component of the pattern (Figure 5.4). The user will interact with the View at all times, making

use of the Controller when submitting requests to have access or manipulate the data. When receiving

the request, the Controller will evaluate it and, if no invalid request has been sent, it will pass the input

to the Model. In turn, it will send the response to the View, updating the current visualization the User

has access to. A good example of this would be when a user accesses SubtiWiki and requests infor-

mation on a gene, then the following events would happen:

• User accesses View of SubtiWiki’s main page

• Requests information on darB gene

• Request is received by Controller and validates input

• Sends request to Model to extract information on darB gene

• darB information populates Gene page’s building blocks

Notably, there is not one single model for all entities in a database, i.e., each table present in the

database will require a distinct and independent model. For example, a model created to handle data

on the Gene level will have different attributes and methods when compared to a model created to

integrate information on Regulons or Operons. There is an inherent specificity for each data type in

the database, requiring a set of unique Model-Controller rules coupled with generic templates in the

View element that respond to the data that is being loaded. In SubtiWiki’s framework, models corre-

spond to PHP classes that handle the data for the specific element. For example, the class Gene, or

model Gene, will be responsible for handling the information for a single gene at a time. Accordingly,

Controller classes are also specific for each element and usually follow the same model’s name, with

the addition of “Controller” to it, e.g., “GeneController.php”. As mentioned before, only Model and

Controller are paired together in terms of specificity, which means that View will have a different han-

dling (see more in section 5.3.4).

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 51

5.3.3.3. Endpoint routing

As briefly mentioned before, there is another important aspect in the functionality of every backend

that needs mentioning, the routing. This is the process of mapping or routing locators requested by

the client-side to a certain location. To simply put, this refers to how one user can reach a certain part

of the website, or a URL (Uniform Resource Locator) (Chinnici et al., 2007). Usually this is handled by

routing functions that map the incoming browser request to the application endpoint. In the MVC

design pattern, the Controller class is the one responsible for handling the action and return the re-

sponse back to the View (see more in section 5.3.3.2). Since the Controller is the main player for han-

dling the process, usually the name of each Controller class will be the one used for the endpoint name.

For example, reaching a certain page in SubtiWiki requires the framework to interpret the search query

from the user and point the View to the correct endpoint. To better understand how it works, Figure

5.5 exemplifies the endpoint for the DnaA Regulon.

Figure 5.5 – Endpoint for DnaA regulon using current SubtiWiki’s routing table.

As represented in Figure 5.5, each component of the URL refers to a different element. After the web-

site domain, all information is regarding a specific endpoint. Thus, the respective Controller class’s

name will be the one represented in the URL, which in this case is regulon. The question mark, ?, in

the URL is the designator delimiter of the specific endpoint the user tries to reach, or in other words,

the result of the search, or query. In this example, the final endpoint will be the entry in the Regulon

table with an id of regulon:dnaA. In a general aspect, Controller classes will not only redirect to a

specific endpoint, but also how the data will be represented, for example by returning a specific HTML

page.

 In contrast to the current SubtiWiki’s framework, where the routing table is set manually, Flask

framework handles this process in a simple manner from the developer perspective. Flask relies on

Werkzeug routing system to retain the uniqueness of URLs and automatically order the routes based

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 52

on their complexity, meaning that no matter how the developer declares the routes, they will always

work as intended (Mönnich et al., 2016).

For CoreWiki, there are two ways of declaring endpoints and both revolve around declaring

functions that will return a specific output, either a value or a page endpoint. For both cases these

functions need to be incapsulated in the routing method route(), using the proper decorator, @. Dec-

orator functions act as wrappers for a certain decorated function, encapsulating its methods and at-

tributes. Furthermore, the route() method will always take as an argument a potential URL that will be

included in the Flask’s routing table. By registering this URL inside the method route(), the developer

is creating the endpoint of choice. These rules are static for both ways of defining endpoints in

CoreWiki, however, where they differ is in which object to decorate. While the final object is always

the Flask application, it is possible to do it directly (Listing 5.3) or first register a Blueprint and decorate

to it instead (Listing 5.4) (Mönnich et al., 2016). Blueprints are special Flask constructs that allow to

make the application modular, where each module is independent in terms of methods and even rout-

ing, in which the developer can use to set multiple subdomains. For example, under CoreWiki’s default

domain, or route, by registering a hypothetical Blueprint named “regulon”, it will allow to create spe-

cific methods for this route space and it is possible to reach it by putting it on the end of the URL:

http://<corewiki_domain>/regulon/. Under this Blueprint, multiple methods that will be specific to

this subdomain can be added, for example listing all available regulons, or reaching a specific regulon

based on its ID (Listing 5.4).

1. from flask import Blueprint
2. regulon = Blueprint(‘regulon’, __name__)
3.
4. @regulon.route(‘/’, methods=(‘GET’,))
5. def list():
6. regulon_list = Regulon.query.all()
7. return render_template(‘list_of_regulons.jinja2’)
8.
9. @regulon.route(‘/<id>’, methods=(‘GET’,))
10. def view_regulon(id: str):
11. regulon = Regulon.query.get(id)
12. return render_template(‘regulon_page.jinja2’)

Listing 5.4. – Example of how to set a Blueprint and its subdomains using different functions as endpoints

with hypothetical regulons from SubtiWiki. First is represented the endpoint under the Blueprint to list,

list(), all regulons in the page list_of_regulons.jinja2, and second how to represent the endpoint to access

the information on a single regulon, view_regulon(), in the page regulon_page.jinja2.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 53

In Listing 5.2, the Blueprint for regulon contains two endpoints, both starting with @regu-

lon.route(). For the first case, it is quite simple as the set route is called when entering the subdomain

http://<corewiki_domain>/regulon/, giving access to the full list of regulons documented in the da-

tabase. On the second case there is a new parameter being passed to the route, the ID of the regulon

in the form of <id>. This type of function allows Flask to parse ID’s or other parameters that are passed

to the endpoint function. In this case, it was defined that the parameter to look for is the ID inside

Regulon table. It is important to mention that this can only be done altogether with the models defined

previously (see more in section 5.3.2.2), so that Flask knows which entries to fetch. In practical terms

this means that the subdomain http://<corewiki_domain>/regulon/dnaA will trigger the routing ta-

ble to forward the request to the function view_regulon() while passing “dnaA” as an ID to be looked

for in the model Regulon.

All blueprints must be registered under the configuration of the application, in this case of

CoreWiki configuration files. This will activate the internal routing table and Flask will then handle eve-

rything after the developer makes use of the necessary method, the register_blueprint() function.

Only after proper Blueprint registration can Flask and Werkzeug activate the routing to the necessary

subdomains, e.g., /regulon subdomain (Listing 5.5).

1. from flask import Flask
2. app = Flask(__name__)
3. app.register_blueprint(regulon, url_prefix='/regulon')

Listing 5.5 – Registering regulon Blueprint under the main application as a subdomain.

For error handling, blueprints also play a fundamental role by supporting the errorhandler

decorator, making it easy to build custom error pages. For example, taking the same Blueprint for

regulons, it possible to add an endpoint to an error page containing details on it (Listing 5.6).

1. @regulon.errorhandler(404)
2. def regulon_not_found(e):
3. return render_template(‘regulon_error_page.html’)

Listing 5.6 – Example Blueprint to handle error pages.

In this example, the decorator errorhandler under the regulon Blueprint is used and it creates the

endpoint named regulon_not_found(), that takes an error from errorhandler as argument and returns

the page regulon_error_page.jinja2 when called.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 54

Despite blueprints being defined on the backend, they play a fundamental role in the manage-

ment of data visualization in the frontend. As can be seen in the previous Listings 5.4 and 5.6, the

output of the endpoint functions are return statements of a render_template() function. This is a func-

tion from Flask that allows to pass certain values from the backend to a template in the frontend.

However, instead of redirecting to templates, blueprints also allow the developer to link endpoint

pages by using a special function that takes the URL endpoint and the Blueprint it belongs to. For

example, if it is required to redirect specifically to the list of regulons, this can be done by simply using

the function url_for(‘regulon.list’), which takes the Blueprint regulon and uses the method list() as the

endpoint (Listing 5.4). Nonetheless, more regarding this will be further discussed in section 5.3.4.

5.3.4. Structure of the Frontend

5.3.4.1. Jinja2 as a template engine

By default, Flask includes one single template engine: Jinja2 (Grinberg, 2018; Mönnich et al., 2016).

However, Flask allows to set up other different engines, but since it is included by default, Flask will

set it up and configure it automatically for the developer. This is, as expected, a major advantage when

building an application from scratch, as it lifts off of the developer’s responsibility to have to set man-

ually a template system.

 This template engine is characterized for its ability to enable template inheritance and inclu-

sion, it allows to define and import macros from each template, provides auto escape support, has

asynchronous support for generating templates that handle different types of function, allow to write

code with similar syntax to Python code, and provide the developer with extensible filters, tests, func-

tions and syntax (Mönnich et al., 2016).

 Jinja2 templates are a normal text file that can generate any text-based format, such as HTML

and XML. However, this project only focuses on generating HTML code as CoreWiki is designed to pre-

sent only this format. While normal HTML files present the extension .html, Jinja2 uses a different

extension, .jinja2, even though the final result of the file is a readable HTML structure. Within these

files, the syntax presented is what can be resembled to HTML, using tags to control the logic of the

structure, with the addition that Jinja2 allows to include variables and even expressions. These varia-

bles and expressions are treated as placeholders that are ready to receive information from the

backend. Upon receiving information, the template will render it into the placeholders.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 55

5.3.4.2. Jinja2 logic control

To make use of variables and expression, Jinja2 offers certain delimiters that must be followed:

• {{ ……… }} for variables and expressions

• {% ……… %} for statements

• {# ……… #} for comments

In Jinja2, variables are passed by the backend to the frontend, or simply by using the set method inside

two curly brackets. Variables can have many attributes or different elements that the developer can

have access to, which can be reached by using a dot, “.”. For example, if Listing 5.2 gene’s object is

passed to the frontend under the new name of gene, it is possible to reach its attributes by using {{

gene }}, which loads the whole object. To have access to the object’s attributes, for example its name,

then it is possible to do so by using {{ gene.name }},which upon rendering returns “geneA”. All attrib-

utes defined in the backend that are sent with the object will follow the same rule. Using the same

delimiters, it is also possible to use basic expressions, which are commonly used in Python as well

(Mönnich et al., 2016). Be it a list, integers and strings, among others, Jinja2 allows to integrate math

and logic operations, and even Python methods. Take the same example as before, to capitalize the

gene’s name after rendering, it is possible to do it by using the method capitalize() directly in the Jinja2

delimiter: {{ gene.name.capitalize() }}.

 As for statements, Jinja2 refers to these as control structures, which control the logic flow, also

known as conditionals, loops, macros and blocks. If statements and for loops are mostly used to build

dynamic and responsive pages for CoreWiki. Listing 5.7 shows an example of how to use these two

elements together, when checking if the passed object contains information, and if it does, then it

cycles through it and displays everything in an HTML page.

1. {% if gene %}
2.
3. {% for element in gene %}
4. {{ element }}
5. {% endfor %}
6.
7. {% else %}
8. <p>Sorry, no gene was selected</p>
9. {% endif %}

Listing 5.7 – Example of Jinja2 use of if statement and for loops. Based on the logic control, Jinja2 creates

an unordered list with the content of the passed object, otherwise a message is rendered instead.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 56

By defining the if statement to check if object gene exists, Jinja2 creates a logic control and responds

accordingly. If it exists, then an unordered list, , is created to display the content of the object,

which is iterated by the for loop. If the object gene does not exist, then a message is rendered instead.

This can be further complemented by blocks, which allow to include, based on the logic control, differ-

ent rendered templates (see more in 5.3.4.3).

 Comments can be added to leave out parts of the template that are meant to be tested or

simply used to add more documentation on the implemented feature. To comment elements of a

template, it is possible to do so by incapsulating said comment in {# … #}, for example {# Adding more

information here #}.

 An important feature of Jinja2 is the inclusion of macros, which can be considered equivalent

to Python functions. For the same reason as in Python, macros are useful to reuse code meant for the

same purpose. For example, creating a special type of formatting or data treatment on the frontend.

For this, Jinja2 provides the macro keyword to be used inside a statement delimiter, {% macro func-

tion(args) %}. Macros can be used in the same scope by simply wrapping the function with the neces-

sary arguments in a variable delimiter, {{ function(args) }}. It is also possible to use the same macro

within other macros, and for that the keyword call must be used, {% call function(args) %}.

5.3.4.3. Jinja2 template inheritance and blocks

A way to make templates modular in a Flask application is by breaking them into independent blocks,

that can be called and used when necessary. For this, Jinja2 allows to use template inheritance, which

will enable the creation of a base skeleton template that contains the core and common elements of

the page, then some “blocks” are defined that child templates can use to be rendered on. Normally, a

base template is defined that will have the basic HTML skeleton that CoreWiki can use. In this file,

base.jinja2, the blocks are left ready to serve as placeholders that can be rendered when child tem-

plates send their own structure to override them. This is usually done by giving a name to the empty

block on the main file, which then must be used by the child template that is meant to override the

position. An example of base.jinja2 is shown in Listing 5.8, a simple HTML skeleton containing a <main>

section within its body tag.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 57

1. <!DOCTYPE html>
2. <html lang="en">
3. <head><meta charset="utf-8"/></head>
4. <body>
5. <main>
6. {% block main %}{% endblock %}
7. </main>
8. </body>
9. </html>

Listing 5.8 – Example of a template file containing the base skeleton of HTML that can be further extended

to children templates. Within this file, a block main is defined that will serve as a placeholder for the child

template to override.

Inside the <body>, a block main is defined using the proper syntax, {% block main %}, which can be

overridden by any child template that inherits the base.jinja2 file. To inherit this skeleton structure, it

is necessary first to extend this file to the child template. Jinja2 also includes the option to expand by

using the keyword {% extends %} to include in every file that inherits other template files. Taking

Listing 5.8 as a base file to extend to a child template, Listing 5.9 exemplifies how this procedure works

when creating a genes_list.jinja2 to load a list of genes. This page will inherit the base.jinja2 structure

and override the block main with information from the Gene model.

1. {% extends ‘base.jinja2’ %}
2. {% block main %}
3. <h1>All genes</h1>
4.
5. {% for gene in genes %}
6. {{ gene.name }}
7. {% endfor %}
8.
9. {% endblock %}

Listing 5.9 – Example of gene_list.jinja2 file. This file extends base.jinja2 and thus, is considered a child

template. Its content is wrapped around the block main, which will override the same block on the parent

template file. Within the block, a for loop is defined to iterate through all genes passed by the backend to

the template and list one by one.

In practical terms, what defines a file to be a child template is the use of the keyword extends. This

ensures that there is a connection between the two files, which is then consumed by the defined

block’s name. Since this connection is a one-to-one relationship, Jinja2 cannot allow multiple blocks

with the same name to be defined simultaneously (Mönnich et al., 2016).

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 58

5.3.4.4. Functions render_template() and url_for()

As mentioned before, there are internal ways to redirect to certain templates, either on the backend

or frontend. Previous Listing 5.4 in section 5.3.3.3 contains an example of this when defining the View

of the Regulon model. In this context, when the output of an endpoint function is returning a template,

then it is necessary to use the render_template() function. This simply tells the framework that when

the user is trying to reach a certain view, then the data from that model should be redirected to the

selected template, thus the return render_template(‘list_of_regulons.jinja2’) is used in line 7 of List-

ing 5.4. Upon trying to see the list of regulons, the user will be presented with the template file

list_of_regulons.jinja2.

 While the render_template() function is from the backend of the framework, the url_for() can

act as a redirect in the frontend, although not exclusively. However, as mentioned before, this will

redirect the user to a specific endpoint function, instead of a template file. Indeed, the endpoint func-

tion will return a template by itself however, the required arguments of url_for() are the view and the

respective function. For example, when adding an anchor tag that serves as a URL for a certain regulon

page, by using the function url_for() with the regulon page endpoint and the necessary ID of the spe-

cific regulon, then Jinja2 will communicate with Flask backend to have access to the required View.

The example in Listing 5.10 shows the implementation of how an anchor tag is created containing the

url_for() function. Inside this function, the regulon Blueprint’s method view_regulon() is called with

the respective regulon id (see more in section 5.3.3.3 Listing 5.4). This means that when the user ac-

cesses this anchor tag, the web browser will redirect to the regulon with the provided id.

1.
2. {{ regulon.name }}
3.

Listing 5.10 – Example of using url_for() function for the View of a single regulon. view_regulon() function

was defined in the View of regulon Blueprint to require the ID of a regulon as argument, thus all necessary

arguments need to be included as well.

5.4. Implementation

5.4.1. CoreWiki structure

SubtiWiki and CoreWiki are divided in two parts, the frontend and the backend. Here, however, is

where the major differences start to appear when comparing both frameworks. While SubtiWiki’s v4

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 59

framework is custom-made, lacks documentation and is built on a LAMP stack, CoreWiki makes use of

the Flask framework, an open-source, well-known, extensively documented and widely used frame-

work, written in Python, to replace the current structure. For the first time, the full structure of

CoreWiki is revealed (Figure 5.6). On the backend, CoreWiki will still run on a Linux and Apache, adding

Flask framework and SQLAlchemy/SQLite on the stack, and the frontend will keep the same triad of

HTML, CSS and JavaScript for the website structure, styling and behaviour. There is a note regarding

Apache, however. As this software relies on modules that are activated on demand based on the

server-side scripting language, it is also important to activate the mod_wsgi from Apache that allows

Flask to be seen as the framework of use and enable it as a web server (Apache with Flask, 2016).

Figure 5.6 – Structure of CoreWiki. The server runs on a Linux system, loaded with SQLite as a DBMS and

SQLAlchemy as ORM. Flask framework, written in Python, handles the backend logic, mediating the com-

munication between the client-side and server-side. As a web server, Apache handles the HTTP requests

between both sides, while the triad HTML, CSS and JS is in charge of the structure, styling and behaviour of

the data. The data follows the traditional request/response, handled by Apache and the backend frame-

work (Bayer, 2012; Flanagan, 2011; Hickson et al., 2022; Hipp, 2020; Lie & Bos, 2005; McCool, 1999; van

Rossum & Fred L., 2009).

5.4.2. CoreWiki architecture

Before going over the Model and Controller creation, it is important to define a few aspects from Flask

architecture. SubtiWiki’s v4 uses the traditional MVC design pattern to handle the communication be-

tween the user and the whole stack of technology, but Flask does not enforce this design pattern.

Instead, the developer is presented with a “Model-Template-View” architecture (Figure 5.7). However,

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 60

Flask gives full freedom to the developer to structure the website the way they seem fit and MVC is a

great fit for the structure provided by Flask, which can be easily emulated with a few adjustments.

 Although Flask does not require the use of any particular ORM, to build object-oriented data

models CoreWiki makes use of SQLAlchemy to serve as an abstraction layer between the database and

the models, serving as the “Model” in both MTV and MVC. Looking at the “View” class from MTV, by

taking full advantage of the routing from Werkzeug, when integrated with data visualization or manip-

ulation methods, Flask emulates the function of a “Controller”. On top of this, coupling the routing

endpoint with Jinja2 templates enables the final class of the MVC, “View”, to be emulated from the

“Template” in MTV. And with these considerations, CoreWiki can now run an MVC design pattern for

its supported information with minimal effort.

Figure 5.7 – MTV design pattern. The User interacts with the Templates, but requests information by the

means of endpoints from the Views. The View, in turn, manipulates the necessary model to retrieve infor-

mation from the database. The response is then sent to the View, which loads the requested endpoint with

the necessary information.

5.4.3. Backend of CoreWiki

5.4.3.1. Internal structure

According to Flask’s documentation (Grinberg, 2018), it is possible to keep all code in one file. This,

however, quickly becomes overwhelming as the application keeps growing larger. To address this,

CoreWiki’s code is organised into multiple modules that act as Python packages and can be imported

anywhere whenever necessary. Figure 5.8 shows the project tree of CoreWiki.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 61

Figure 5.8 – Project tree of CoreWiki. Only top-level folders and files are shown.

CoreWiki code is divided according to its top-level hierarchy of the MVC model, with blueprints, mod-

els and utils directories acting as Python package directories, labelling such folders as importable mod-

ules. The blueprints directory contains a subdirectory for each corresponding model. For example, the

model Gene will have a gene Blueprint subdirectory with access to an empty __init__.py file (to label

this folder as an importable module) and a views.py, containing endpoint routes as well as other Con-

troller methods. The model subdirectory contains all models written for the database. Here, every file

will define a table in the database, where is also possible to define some general methods. For exam-

ple, how search system works is also defined inside the respective model. The static directory is the

container of JS code, images and styling, while templates directory contains all Jinja2 templates. The

last importable directory, utils, contains Python files that are not considered to be part of models or

blueprints, as these files are meant to act as utility functions throughout the framework. An example

of this are functions to capitalize all protein names on the frontend, parse JavaScript Object Notation

(JSON) format or rendering Markup on the website. Additionally, on the top-level directory of CoreWiki

a database configuration file was added, db.py, where the database is initialized, db = SQLAlchemy().

Moreover, an __init__.py file was also added with the configuration of CoreWiki. This file is of most

importance as it is required to initialize the whole application as well as to load the necessary blue-

prints for the endpoint routing.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 62

5.4.3.2. Database and data models

 SubtiWiki v4’s database is built on MySQL and comprises a large number of tables containing

biological data. In a way to conjugate with the abstraction layer provided by the ORM, the develop-

ment of this framework relied on the use of virtual columns in the database. These virtual columns

serve as the communication bridge between the database and the user, which is then handled by the

ORM. However, these columns in this schema represent a major hurdle as the data is presented in the

form of an object, JSON, and most of the documented information is stored in a single entry of this

column. This not only poses as a major constraint from the point-of-view of the development, but also

from the database maintenance, as it becomes rather complicated to access this information without

the proper channels and some of the information is even duplicated in physical columns. Figure 5.9

shows an example of an actual entry, gene dnaA, of such virtual column in the live version of SubtiWiki

v4.

Figure 5.9 – Portion of gene dnaA JSON entry in SubtiWiki v4 database. Each key of the JSON represents a

major category in the SubtiWiki v4 framework (image acquired from JSON Formatter and Validator (JSON

Formatter and Validator, 2007)).

JSON format is similar to a Python dictionary, where there is a hierarchy of pairs of keys and their

respective values. Inside each value, JSON can admit any structure of data, nested JSON, lists, nested

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 63

lists, Booleans, or other simpler structures. In the current SubtiWiki v4 format, all keys of the JSON will

refer to major sections of the framework. Gene- and protein-specific information, reference to regu-

lon, operons and even literature is all stored in this big entry (Figure 5.9). Although it is very easy to

deal with JSON in Python, PHP presents other challenges when manipulating this structure of data. Not

only PHP, but also MySQL needs to be compatible to store JSON and the ORM needs to have the nec-

essary methods to decode this format.

Including most of the data of a single gene in a virtual column can also take its toll on memory,

as the whole structure needs to be loaded each time, regardless of what to represent. As expected,

this quickly becomes a bottleneck in the performance of the server as it requires intensive parsing each

time a gene is loaded. In turn, this make the overall load times slower, but it also hinders the search of

genes, because JSON elements cannot be indexed by the database.

 CoreWiki addresses these issues in the database implementation. By relinquishing the JSON

column, normalizing the information into multiple tables, and keeping data coherent by establishing

relationships, it is ensured that the new database schema is fully relational and will be much easier to

keep clean and maintain. Not only that, but the loading of very specific elements of each table will

make any CoreWiki instance to run smoother. Although the main goal is to reduce the amount of JSON

in the database, it would be naive to leave it out entirely, as some models may benefit from the flexi-

bility this format can offer. For example, broader information that can be different from element to

element could be instead considered to be included in a JSON format, making full use of its flexible

properties. It is important to retain, however, that the main elements of the current SubtiWiki v4 JSON

column, which are usually common across all biological elements, will be treated as independent col-

umns or tables in the new schema.

 On a general view, CoreWiki database structure is as simple as it gets. Designed models are

converted into tables that can establish relationships. If necessary, in the case of many-to-many rela-

tionships, an additional table, “linker-table”, was added to map the relationships (Figure 5.10A). This

is particularly useful as these "linker-tables” allow to map multiple relationships between the same

and multiple elements at once with no effort. For example, one gene can be part of multiple functional

categories, and a functional category can establish a relationship with many genes, thus many-to-many

relationships. This is not necessary for one-to-many relationships as these are a one way only, meaning

that the relationship is “unique” for the viewed pair. An example of this is the relationship a gene has

with its synonyms, as one gene may have multiple synonyms, but these are specific and unique to that

initial gene (Figure 5.10B).

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 64

Figure 5.10 – Example of relationships in CoreWiki. A – Many-to-many relationship example between genes

and functional categories. One gene can establish relationship with many categories, and a category can

also establish a relationship with many genes. Having a “linker-table” for this case helps mapping all rela-

tionships between the two initial tables. B – One-to-many relationship using gene and its synonyms as ex-

ample. One gene may have multiple synonyms, but these synonyms are unique to this gene.

 Another important aspect of CoreWiki is that, together with relationships, all maintenance

routines of the database can be easily defined on the creation of the models. This means that when

defining a relationship between two tables, there are certain triggers that might be relevant to include.

For example, when deleting a gene, all information that is linked to that gene should also be deleted

accordingly. With Flask-SQLAlchemy every database trigger and cascading event is easily implemented

and most of this is performed behind the scenes by the toolkit. Moreover, this ensures that when

migrating the database, or even switching DBMS entirely, these triggers and routines will be main-

tained.

The creation of data models that are logical and easy to build will support the maintainability

of the database and all its structure. For this, CoreWiki data models were created based on SubtiWiki

models, maintaining all the information intact but organised differently. First, it is important to have

in mind the exact v4 Gene table structure, as well as the full extent of the JSON column structure to

successfully create a model that complies with the needs of the data. Figure 5.11 shows SubtiWiki v4

Gene table structure and the subsequent JSON column structure, data.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 65

Figure 5.11 – Structure of Gene table from SubtiWiki v4 schema. Also represented all possible elements

inside the JSON column, data.

As briefly mentioned before, most of the available information is contained inside the JSON, leading

to some repetitions. Figure 5.11 shows clear evidence of that, where all columns with exception of cog,

introduced in Chapter 3, and tracking columns count, lastUpdate and lastAuthor, are present in the

data column.

 The first challenge is to define how to split the data in the old Gene model and what is the best

way to organise the information in different, yet logical tables. The main goal is to group information

based on how specific they are to the respective model. For example, the locus tag, strain, and gene

name are only used by the Gene entity and there is no need to create additional models for them.

Information regarding synonyms, RNA, protein product and genomic context have more complexity

and should have their own models with the necessary relationships to the respective Gene entity. To

better elucidate on this, Figure 5.12 shows exactly which normalization decisions were taken on the

previous Gene model prior to CoreWiki model creation.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 66

Figure 5.12 – CoreWiki database tables containing information regarding Gene model from the previous

schema.

Having determined how tables will be organised, the next step is to create appropriate models. As seen

before, Flask allows to create models by defining classes that will contain the specifications of each

table. Following the rules described in Listing 5.1 in section 5.3.2.2, Table 5.1 shows which columns

and JSON fields from SubtiWiki v4 Gene table were used to create different models in CoreWiki.

Table 5.1 – CoreWiki models that were created from the splitting of SubtiWiki Gene table, and which cor-

responding fields from the previous table were inherited by the new models.

Model Name Inherited fields from SubtiWiki v4 Gene table

Gene id | title | locus | strain | description | product | essential | ec | labs

RNA structure | reaction

Protein mw | pi | structure | domains | reaction | family | localization

Paralogs paralogous proteins | identity

Genomic Context gene length | protein length

Outlinks uniprot | bsubcyc | keg | subtilist | cog

Synonyms synonyms

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 67

Comparably to SubtiWiki v4’ schema, Gene table is still the main table of CoreWiki, meaning that most

of the data and relationships revolve around this table. It is important to mention that SQLAlchemy

allows to declare which type of data is accepted in each column, and thus, it is important to set certain

rules in each model. For example, the gene id, inherited from the previous model, is the unique iden-

tifier of each gene. Each gene is labelled with a sha-1 encrypted 40 character-long string that must be

maintained and enforced throughout the database to ensure that relationships exist and are never

lost. Although some of the constraints are stricter than others, it is also valuable to allow some fields,

such as labs, to be flexible. This is thought to be important due to the unpredictable and varying nature

of these columns, where they can take up any value in any format. This can be addressed by allowing

data structures, such as JSON, to be stored and parsed by Python, which makes the process of loading,

accessing and transforming data much easier. It is important to note, however, that using this data

structure only for specific columns still allows the database to continue being flexible and efficient. As

a result of the choices made to split the initial Gene model, the information contained in all columns,

JSON data included, have been included in some models and thus, no information was lost. By creating

new models for the newly loose data, the information is better catalogued and easier to access while

retaining all their inherent relationships with the main Gene table.

To address relationships, it important to stress that since most information revolves around

the Gene entity, there must be the assurance that no annotation is lost in the process of splitting the

old model to new tables. When defining the relationships in the models, as shown in Listing 5.1 in

section 5.3.2.2, it is equally important to establish additional cascading events that can trigger when

gene entries are modified. SQLAlchemy allows to easily define rules in the model by including a new

attribute in the relationship: cascade=’all, delete, delete-orphan’. This attribute allows that when a

gene entry gets deleted, for example, then all relationships with the target table are also deleted to

avoid having orphan entries. Looking at the given example in table 5.1, if a gene with a relationship

with an RNA entry gets deleted, then SQLAlchemy properly removes the respecting entry in the RNA

table.

 Finally, the last implementation of novel database elements are “linker-tables”. As explained

before these are particularly useful when mapping many-to-many relationships, which is the case of

the already mentioned gene-publications relationship, as many genes can share the same publication

and one gene can have multiple references. These tables follow the same naming rule: both parent

tables’ names separated by a “2”: TableA2TableB, which reads “table A to table B”. In the previous

example, since the respective tables are Gene and PubMed, the created linker-table is Gene2PubMed

(Table 5.2).

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 68

Table 5.2 – Structure of Gene2PubMed model.

Column Name Data structure

gene_id String 40 characters. Primary key and foreign key to Gene table.

pubmed_id Integer. Primary key and foreign key to PubMed table.

type String

Notably, the gene_id and pubmed_id are both primary keys and foreign key to their respective tables.

Defining these attributes ensures that each entry is unique, and by defining a relationship between

Gene-Gene2PubMed and PubMed-Gene2PubMed allows to automatically fetch information on two

levels:

• Which publications are annotated to a certain gene?

• Which genes are annotated with a specific publication?

Furthermore, there are also novel models that were implemented in CoreWiki that are not

included in the current iteration of SubtiWiki. For example, there is still some information loaded in

the format of MediaWiki, an engine used for previous SubtiWiki iterations (Flórez et al., 2009; Me-

diaWiki, 2022). Because of this engine, the information is instead stored in a single table, where each

entry represents a single page of its own. These entries, called “Wiki” pages in SubtiWiki v4, do not

necessarily focus on the Gene entity, but rather adjacent or generic thematic, e.g., list of laboratories

that work with B. subtilis genes, list of constructed plasmids and their details, and even information on

various protein families and domains. These pages also count with older visualisation pages, enforcing

the necessity to undergo a serious overhaul on both backend and frontend. The entries found here

suffered extensive data transformation to reveal which potential columns the model would have. Since

these pages require a lot of flexibility, most of these new models must be JSON enabled, or some of

the information would either be lost, or would require more models to fit in. With this in mind, the

following new models were created:

• Laboratories working with B. subtilis – Labs model (Table 5.3)

• List of Plasmids – Plasmids model (supplementary materials 8.1)

• Protein Complexes – ProteinComplex model (supplementary materials 8.2)

• Protein Domains – ProteinDomains model (supplementary materials 8.3)

• Protein Families – ProteinFamilies model (supplementary materials 8.4)

• Transcription Factors – TranscriptionFactors model (supplementary materials 8.5)

As an example, Table 5.3 contains the content of the Labs model, while the remaining can be found in

supplementary materials.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 69

Table 5.3 – Table structure of CoreWiki Labs model.

Column Name Data structure Overview

id Integer Primary Key and Unique

name Varchar Name of research group leader; Index

email Text E-mail of group leader

homepage Varchar Homepage of research group

location Text Location of research group

pubmed_profile Text PubMed profile of group leader

research Text Research field of research group

additional_information Text JSON enabled

Regarding other novel models, there was also the desire to expand on the interactions plane.

As previously commented, the amount of information regarding novel interaction types has been in-

creasing (Link et al., 2013; O’Reilly et al., 2020). Thus, to address this issue yet to be explored by Sub-

tiWiki v4, an early implementation of the models of metabolite-protein interaction are first described

here. The idea behind it is still to consider a broad and flexible model that allows to establish relation-

ships between elements. These elements are the root of the question, as it is possible to model the

interaction of these elements using different approaches. More specifically, the decision to model me-

tabolites interacting with a protein, or if metabolites interact with a particular interaction needs to be

made. Interaction (supplementary materials 8.6) and Protein2Interaction (supplementary materials

8.7) were also created and they store information on the interaction level and map the entries in the

Interaction model to the Protein model, respectively (supplementary materials 8.8). This allows now

to decide which model to create for the Metabolite entity (Table 5.4).

 This new model contemplates a column dedicated for the metabolism it is part of, which gives

flexibility for future integration with a potential metabolic pathway. Targeting the interaction with

proteins, although metabolites may interact with proteins, for the CoreWiki concept it is easier to tar-

get the interaction they are part of instead. The Metabolite2Interaction model maps which metabolite

targets which interaction (supplementary materials 8.9). This enables the framework to automatically

include the effect of the interaction in the model, making it easier for representation. For example, it

has been seen recently that the proteins DarB and Rel interact, but when the metabolite cyclic-di-AMP,

c-di-AMP, is present, it binds to DarB relieving the interaction with Rel (Krüger et al., 2021).

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 70

Table 5.4 – Metabolite model in CoreWiki.

Column Name Data structure Overview

id Integer Primary Key and Unique

name String Name of metabolite

metabolism String E-mail of group leader

pubmed String List of PubMed ID’s associated to metabolite

additional_information Text JSON enabled

Although c-di-AMP interacts with DarB, from the development perspective it is easier to enable the

effect of this interaction through the interaction itself and so, the decision to establish a relationship

between Metabolite and Interaction models was made (Figure 5.13A). Moreover, this also allows to

make full use of the upstream information of the Interaction model, meaning that through relation-

ships it can reach the proteins mapped in the model, facilitating the representation of the interaction

in the frontend (Figure 5.13B)

Figure 5.13 – A – Representation of the Metabolite-Interaction model and relationship with the respective

linker-tables and with the Protein model. Solid lines (¾) represent direct relationship, and dashed lines (

----) represent indirect relationship. B – Future potential representation of Interaction model in CoreWiki.

DarB-Rel interaction represented, when c-di-AMP interacts with DarB, the connection with Rel is lost.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 71

5.4.3.3. Controller classes and endpoint routing

As mentioned previously, controller classes allow to manipulate how the end user will access and ma-

nipulate the information contained in the database. In Flask framework, these also serve as the end-

point routing, meaning which page the user accesses to visualize the data needs to be defined here.

As explained before, these rules are all set under the blueprints directory, where each endpoint sub-

domain will have a views.py file, describing functions that will act as Controllers. Importantly, it is

necessary to understand that although the Controller interacts with the Model, not every model will

have a specific Blueprint. This is due to the fact that endpoints are merely a subdomain, containing

methods to access and manipulate the data, regardless of which table it comes from. Instead, defining

subdomains that will then take full advantage of the relational model and extract all information from

a specific entry will make the representation of the data possible. In the current implementation of

CoreWiki, Table 5.5 shows the list of all blueprints and which routes/subdomains were implemented

to accommodate the data.

Table 5.5 – List of blueprints and the respective subdomains implemented in CoreWiki.

Blueprint name Route Comment

gene ‘/gene/’ Access gene-related pages

category ‘/category/’ Pages with functional categories

home ‘/home/’ Homepage of CoreWiki

homology ‘/homology/’ Result of Protein Homology analysis

operon ‘/operon/’ Information on operons

regulon ‘/regulon/’ Information on regulons

pubmed ‘/pubmed/’ API and view of PubMed entries

wiki ‘/wiki/’ Contains subdomains for old Wiki pages

Each Blueprint has access to a specific subdomain name that is found under “Route”. As ex-

plained in 5.3.3.3, to access the subdomains it is required to add the necessary route to CoreWiki’s

domain, e.g., corewiki_domain/gene/ to access all methods inside gene Blueprint. Within each Blue-

print it is possible to define multiple Controller-specific methods to access different pages with specific

views. As an example, Table 5.6 contains the methods developed for the gene Blueprint as well as

which attributes each endpoint requires.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 72

Table 5.6 – List of endpoints and methods implemented for the gene Blueprint in CoreWiki. All routes in-

cluded are subdomains of the ‘/gene/’ subdomain.

Endpoint Route Return

list() ‘/’ “page_gene_list.jinja2” with all genes

view(id) ‘/<id>’ “page_gene_view.jinja2” for gene with id “<id>”

search() ‘/search’ “page_gene_search.jinja2” with query results

view() endpoint with specific gene

edit(id) ‘/edit/<id>’ “page_gene_editor.jinja2” for gene with id “<id>”

random() ‘/random’ “page_gene_view.jinja2” for random gene with “<id>”

The endpoints implemented for this Blueprint require tight communication with the model. For in-

stance, to access the list of all genes, using list() endpoint, the result of Gene.query.op-

tions(load_only('id', 'name')).all() is passed to the template page_gene_list.jinja2. For the endpoints

with a necessary argument, such as an id, it is passed by the frontend to be used in a query by the

methods view() and edit(). The search() method is implemented in a way that if the search criteria was

too broad, it returns a list of potential matches based on the query. If the search criteria is a match

with the database query, then it passes the id of that gene to the view() endpoint. The random() end-

point just loads a random gene from the database and passes its id to the view() endpoint as well. The

edit() endpoint is the one that stands out as it uses a series of methods from a form.py that is contained

in the same Blueprint directory. Although not yet implemented, Flask uses web forms to handle editors

by the use of the package FlaskWTF-FlaskForm, which serves as a scaffold for editors. With the excep-

tion of gene Blueprint (Table 5.6), which requires more endpoints since it is the main entity, all other

models presented here are only implemented with list(), view() and edit() blueprints.

5.4.4. Frontend of CoreWiki

The main objective of this work focuses on the development of a novel framework ready to include

not only SubtiWiki v4’s but any prokaryote’s information. Coupled with the fact that some of the

frontend of CoreWiki was developed within the scope of a Master’s Degree research project, this part

of CoreWiki is not extensively evaluated here. Instead, generic aspects of the conceptualization and

some implementations are shown. Regarding the design and styling choices, these were kept from

SubtiWiki v4, namely colour scheme, overall structure and design appearance. As mentioned before,

Jinja2 templates were used to accommodate the information in a refreshing way when compared to

the current templating system from SubtiWiki v4. Regardless of the improvements, CoreWiki counts

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 73

with the same structural elements as SubtiWiki v4, more specifically HTML and CSS. The CSS, however,

has been improved slightly by using of Syntactically Awesome Style Sheets (Sass) (Sass - CSS with Su-

perpowers, 2022), which is a pre-processor scripting language that is compiled by the backend into CSS

upon rendering a webpage. An advantage of using this is to define variables that can be used globally,

for example the colours of the website, $primary-theme-colour: #1976d2.

5.4.4.1. Template structure

Flask uses Jinja2 extension to make use of a template system. There, it is possible to find scaffolds of

HTML code ready to render information passed by the backend. Indeed, the communication between

backend and frontend is tightly connected in the Flask framework. Since there are many endpoints,

the implementation of the templates must be thought thoroughly. Here, organisation plays a funda-

mental role as multiple templates were created to render different parts of each page (Table 5.7).

Table 5.7 – Organisation scheme of templates in CoreWiki. {name} refers to any page element of CoreWiki.

Name Level Comment

base_{name}.jinja2 Main Structure Main HTML structure with empty blocks

page_{name}.jinja2 Subsection Extends from base templates

_{name}.jinja2 Complimentary End complimentary section of subsections

All template files are stored under the templates directory and follow the same naming rules. Tem-

plates that act as a base of other templates will be named with the prefix of base_, for example the

template to render data was named base_data.jinja2. The files with the prefix page_ can also be con-

sidered the main structure for other building blocks, however these templates still extend from previ-

ous base_ templates, e.g., page_gene_view.jinja2, which is responsible for loading a gene’s page, ex-

tending from base_data.jinja2. Finally, pages that start with _ followed by a name of a page, are con-

sidered the final complimentary part of a page_ template and are manually included in the previous

template file. For example, the file _gene_table.jinja2 is manually included in the

page_gene_view.jinja2 to load a table with some generic aspects of the gene.

5.4.4.2. CoreWiki pages

CoreWiki uses the SubtiWiki design and data to test both backend and frontend and thus, here the

implementation of CoreWiki’s frontend is applied to B. subtilis and SubtiWiki’s design. The idea is to

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 74

recreate SubtiWiki’s pages using Jinja2 templates as much as possible while improving a few aspects

and adding some extra features still unavailable in v4. As expected, there are still some pages left to

be implemented.

 CoreWiki’s homepage (Figure 5.14) is very similar to the one found in SubtiWiki v4, without the

buttons for other features, such as the genomic browser. Although this is due to the lack of implemen-

tation of such features, an important change made so far is the removal of the second search button,

which was meant to search on a broader way. In CoreWiki, the search for genes was designed to in-

clude broader elements, such as gene’s name, locus, function and even description and thus, con-

densed every search pattern in a single hit of a button.

Figure 5.14 – Homepage of CoreWiki. Search bar changed to include only one search button with increased

functionality.

Each page in CoreWiki is expected to render the data that can be seen in SubtiWiki v4, relying on the

same structure to convey information to the user. Information on genomic aspects, protein details,

functional categories, protein homology, literature and regulatory elements are just a few of the many

sections from SubtiWiki v4 that need to be included in this framework. Importantly, although Subti-

Wiki’s data and design are being used, the main idea of making this platform available for other organ-

isms and other types of data, even if from B. subtilis, is retained.

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 75

 Taking the models and applying them into a frontend can sometimes be challenging. An exam-

ple of this is the PubMed section in the current SubtiWiki v4, which fetches the respective entries from

the database in the format of HTML code, meaning that every entry in this table is saved in HTML

format. PubMed API (National Center For Biotechnology Information, 2010) sends the requested in-

formation, which is then stored directly in the database with the frontend elements. From the frontend

perspective, this is convenient as it is possible to simply load the HTML directly without having to ma-

nipulate the data to fit a certain template. However, to edit this information is rather troublesome.

CoreWiki still uses the same API to fetch data, but ensures the data is transformed properly for storage,

meaning it is never saved as HTML. The final result should still be the same as SubtiWiki, as the same

styling is to be preserved. This case is a good example of how changing a model but retaining its final

frontend implementation can be challenging.

One of the newest additions that is yet to be implemented in SubtiWiki v4 frontend, is the

“Wiki” pages. As mentioned before, these pages are still part of the MediaWiki structure that have

been used since version 1 of SubtiWiki (Flórez et al., 2009; MediaWiki, 2022). With the newly devel-

oped models (see more in section 5.4.3.2), new Jinja2 templates to host this data were developed and

it is now possible to find dedicated pages under the /wiki/ subdomain. As an example of how the

information is displayed in the old format, Figure 5.15 shows the comparison between the implemen-

tation of the old format (Figure 5.15A) and the CoreWiki approach (Figure 5.15B). For the latter, a

friendly search bar was included that allows users to search for a specific laboratory without having to

scroll through a list of names.

Figure 5.15 – Difference of implementation of the Wiki Labs page in different frameworks. A – List of Labs

working on B. subtilis in the current MediaWiki implementation. B – Labs working on B. subtilis in the

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 76

CoreWiki framework with reworked models. A filter bar is at the top for easier searching among group

leaders.

Upon loading a Labs’ page, the view is also clearly different from the original (Figure 5.16A), but it

keeps the new and refreshing style from SubtiWiki v4 (Figure 5.16B). All the remaining new models

follow this same structure and design as the one shown for Labs.

Figure 5.16 – Implementation of the Wiki Labs view page for Jörg Stülke’s research group in different frame-

works. A – Current MediaWiki implementation. B – CoreWiki implementation.

Finally, in SubtiWiki v4 the user has access to a list of Markup language functions to enable

internal or external redirect of information. The theory behind this language is simple, a parser reads

the text and internally creates a URL on the frontend that redirects the user to the indicated handled

page. For example, in the current v4 implementation, if the user would like to create a link to the darB

gene’s page in the page of rel, then it is possible to do so by adding the following Markup in the gene

editor of rel: [gene|darB]. By reading this, the parser replaces the Markup on the frontend page of rel

gene by automatically creating an anchor tag with the URL to darB’s gene page. From the storage

perspective, it is much easier to have a short Markup, such as the given example, than storing a lengthy

HTML anchor tag. For this, all Markup follow a certain rule concerning their use: [handle_name|ele-

ment_to_link]. Using the previous case, gene was the handle_name and darB was the ele-

ment_to_link. Internally, the handles will usually link to a certain endpoint from a Blueprint, however

this can also only label certain elements of the page to be subject of a special formatting which is the

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 77

case of PubMed formatting. The Markup included in the previous version were kept, but new Markup

had to be developed for the novel models (Table 5.8).

Table 5.8. – Markup in CoreWiki for the new Wiki models.

Handle Markup Comment

wikitranscriptionfactor [wikitranscriptionfactor|] Links to transcription factor page

wikidomains [wikidomains|] Links to protein domain page

wikiplasmids [wikiplasmids|] Links to plasmid page

wikilabs [wikilabs|] Links to lab page

5.5. Conclusion

Scientific fields are now facing the great expansion of technology, which allows research groups to

increase their data generation like never before. To address this explosion of information, biological

databases play a fundamental role in the organisation of information. SubtiWiki is the popular data-

base for the model organism B. subtilis, counting with millions of requests yearly and playing a crucial

role in supporting scientists that work with this organism. To be able to keep up with the increasing

data, SubtiWiki must be ready to support the development of new features and for this, maintainability

plays the utmost important task. This platform has started as a MediaWiki application and recently, in

its fourth version, a dedicated framework was created to support its development. However, this iter-

ation of SubtiWiki presents major challenges in its maintainability as it lacks proper documentation to

assist the developer in the process of maintenance and active development. Moreover, although it is

working as intended, some implementations on the backend are old-fashioned when compared to

modern methods implemented by open-source frameworks.

 To address these flaws, CoreWiki was created and aims to serve the scientific community by

providing a fresh and modern development of databases for any prokaryote. To test the usability of

this new framework, it targets first to replace the current implementation of SubtiWiki, using its data

to address its fundamental challenges in maintainability while keeping the design as close to the orig-

inal platform as possible. CoreWiki counts with an improved relational database schema, defined with

SQLite and SQLAlchemy, with new models that make the information more accessible than ever, while

keeping intact every relationship all biological elements can establish. Moving away from storing all

information under a JSON virtual column will make CoreWiki models more efficient and easier to main-

tain, not requiring extensive handling of such data structures. Relationships allow to integrate routines

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 78

for maintenance and implementing triggers to activate cascading events can be easily accomplished in

the definition of each model, which will ensure that once information of an entity is changed, every

dependency will react accordingly.

 CoreWiki relies on the popular Flask framework, a platform written in Python that is widely

used by major companies and organisations. Flask is considered to be a minimal framework, reducing

the codebase by a significant portion while doing all the heavy lifting of routing and database logic.

This frees the developer from the burden of having to manually implement every aspect of a website,

making more time for the implementation of novel features to integrate new types of data. The noto-

rious less complexity of the platform, providing the necessary documentation, was the major achieve-

ment when tackling the current SubtiWiki framework’s issues. Keeping the same MVC design pattern,

everything about CoreWiki is simpler than SubtiWiki, where Models, Controllers and even Views are

working together in a clear and intuitive manner.

 This new platform also contemplates the expansion of potential new information. More spe-

cifically, the lack of models for the old “Wiki” pages of SubtiWiki v4 was addressed. Generic information

that was once put together in a single database entry, is now divided into multiple tables with a sup-

porting Model and Controller that handle the data manipulation. Data regarding protein domains,

transcription factors, plasmids, laboratories that work with B. subtilis, protein complexes and list of

biological materials are now added to the remaining models. Coupling these with the new Jinja2 tem-

plate system allows to better represent not only new models, but also the old ones with no effort for

the developer. Additionally, a new metabolite-protein interaction was introduced, opening up the pos-

sibility to include information on this level of interaction for future data integration. This is of particular

interest as more data regarding non-protein-protein interaction emerges. This new model opens up a

new precedent on the unexplored frontline of novel data implementation and representation in

CoreWiki.

 More flexibility, maintainability and development support are only one of the many improve-

ments CoreWiki includes that will help reach new heights in science. This platform aims not only to

include information on one organism, but to serve as the scaffold for any prokaryote, meaning that

even the other developed Wikis, such as SynWiki, will be able to benefit from this framework. Its mod-

ularity and flexibility allow to integrate different levels of information and thus, organisms such as JCVI-

syn3.A that have substantially less information than B. subtilis, will not see its information integration

hindered at any point. There is, however, room for improvement, as many features from SubtiWiki’s

frontend are yet to be implemented. For example, the Genomic Browser and Interaction Browsers are

a hallmark in the viewership and popularity of SubtiWiki and must be implemented in a near future. It

Chapter 5 – CoreWiki, a novel framework for prokaryotes

 79

is also expected that once features like the Interaction Browser are implemented, the new metabolite-

interaction model will fully benefit from it, adding even more value to this platform.

 Finally, CoreWiki aims not only to be used in our research group but also to expand and be

used by other scientists. Making CoreWiki open source and using it to its full extent its simple imple-

mentation will facilitate the integration of other organisms. Either publishing online or simply run lo-

cally just for the group members, research groups will have every reason to implement CoreWiki to aid

in their research and help scientists postulate new hypotheses.

Chapter 6 – Discussion and outlook

 80

Chapter 6 – Discussion and outlook

6.1. The current state of biological databases

SubtiWiki is the biological database for the model organism B. subtilis and it has been increasing in

popularity ever since its first implementation (Flórez et al., 2009; Zhu & Stülke, 2018). With the rise of

such technology to catalogue, organise and annotate biological elements, emerging data finds its way

into the hands of scientists in a faster way. However, building these structures is often seen as a big

challenge due to the complexity and variety of biological data (Agarwala et al., 2016; Alkan et al., 2011;

Loman et al., 2012; Manzoni et al., 2018; Mardis, 2017; Reuter et al., 2015). While this is particularly

true for model organisms, that are extensively studied and thus, have increased data, organisms with

less information have other limitations tied to the lack of data. All databases should address these

issues, but should be built around the same principles regarding biological data:

• Biological data has increasing complexity, for example data from interaction data or metabolic

pathway show high degree of complexity to integrate

• Biological information has high variety, for example information regarding genes, proteins,

and other elements

• Biological data is fast paced, especially in the current technology era with access to high

throughput techniques that generate extensive amounts of information

All databases take these principles at hand and attempt to integrate readily available information while

providing the necessary biological context supporting it. It is important to stress, however, that without

biological context, all data is rendered useless and thus, biological databases continuously strive to

provide with curated information. A way that biological databases have addressed these points is by

adapting the relational model (Codd, 1970), which allows to preserve the complex intrinsic relation-

ships between biological elements.

6.2. SubtiWiki and Model Organism Databases

As discussed in Chapter 2.2.1, there are multiple model organism databases that have a record of pop-

ularity among the scientific community, and SubtiWiki is the perfect example of one of these successful

databases. In its fourth version, this platform has a good history of increasing amount of information

stored in its database (Zhu & Stülke, 2018), and here it was shown that this trend is still maintained

(Pedreira et al., 2022). With novel features, SubtiWiki continues to grow in viewership and according

Chapter 6 – Discussion and outlook

 81

to the access statistics, it counts with an average of 5600 users per month and a solid viewership across

the year (Figure 6.1).

Figure 6.1 – SubtiWiki statistics of access. Data corresponds to the period between 1st of July of 2021 and

30th of March of 2022. A – Number of weekly views. B – Number of weekly requests.

In the timespan displayed in Figure 6.1, SubtiWiki had over 244000 visits, referring to independent and

unique user accesses to SubtiWiki, and 670000 requests, representing every query made to the data-

base, reinforcing the position that SubtiWiki plays in the daily life of researchers. This is the result of

the major effort that was put together to include high level curated data. With more information than

ever before, and still growing, the unknown part of B. subtilis is slowly being unveiled and SubtiWiki

serves the community by putting all the information in context and under intuitive visualization.

 Most biological databases strive to provide more and better information. Since most microor-

ganisms share the same base biological elements, i.e., genes with a sequence, genomic contextualiza-

tion, a function, etc., where these platforms struggle to stand out is on the quality of the data and how

Chapter 6 – Discussion and outlook

 82

to present it. Although most community databases have a big team behind their databases to handle

curation and software development, e.g., EcoCyc (Keseler et al., 2021) and Saccharomyces Genome

Database (Cherry et al., 2012), SubtiWiki counts with a much smaller team to provide the same quality

of a database. Regardless of this fact, SubtiWiki quality is widely acknowledged by the scientific com-

munity and thus, is now considered the preferred platform among B. subtilis scientists. Among the

discussed MODs in Chapter 2.2.1, despite its small team, SubtiWiki provides one of the best top-level

data representations, with a multi-level data integration in intuitive biological networks. A refreshing

and modern design attracts scientists to use this platform as most of the times the looks of a website,

regardless of its data, can pose as serious barriers when attracting new users. An example of this, is

the very popular EcoCyc database, which besides its popularity, still shows major differences in the

design, especially when compared to its counterpart in SubtiWiki (Figure 6.2).

Figure 6.2 – Comparison of the design of two popular databases for the same biological element, the gene

dnaA. A – dnaA gene page in the EcoCyc database. B – dnaA gene page in SubtiWiki v4.

Indeed, how the information is presented plays a fundamental role in the integration of data, allowing

to have a clearer view over the desired data. However, this can often be seen as a struggle by some

databases as the technology to implement novel ways of presenting emerging information can be hard

to use and develop.

6.3. Current data in SubtiWiki

Addressing the unknown proteins of this organism, the protein homology integration is now one of

the most popular sections of the platform. Coupling this with the COG database (Galperin et al., 2021),

SubtiWiki elevates itself as a biological database and, more importantly, steps out of the shadow of

Chapter 6 – Discussion and outlook

 83

the data gathering only function and for the first time does not rely on the results from research groups

to increase its contents. The incorporation of a new protein homology analysis set up a new precedent

for SubtiWiki on the contribution of the available annotation of B. subtilis (Pedreira et al., 2022). More-

over, the value of SubtiWiki keeps increasing with the addition of state-of-the-art information, such as

the MiniBacillus Compendium (Michalik et al., 2021), novel expression datasets (COPR library) (Senges

et al., 2021), new detoxification of toxic metabolites categories. Furthermore, SubtiWiki has moved

away from the long-term essentiality binary by introducing a new category, the quasi-essentiality. Alt-

hough anyone can compile these data and integrate it directly in a personalized platform, research

groups trust SubtiWiki and maintain a close cooperation with the developers. Thus, SubtiWiki gains

advantage over any other database by being the first to implement emerging data, e.g., MiniBacillus

Compendium and COPR library.

The development of new methods to implement newly available information have the greatest

advantage of being able to be transplanted to the remaining Wikis developed by the inhouse research

group. An example of this is the homology analysis that can be easily expanded to different organisms,

as the only requirement is to have a library of proteomes. With other developed databases for differ-

ent organisms, it was shown that using the same approach can provide a valuable enrichment of the

annotation for less studied organisms, such as the JCVI-syn3.A.

6.4. Open possibilities by expanding SubtiWiki framework to JCVI-

syn3A – SynWiki

SynWiki was originated in response to the creation of the first synthetic microorganism with a minimal

genome, M. mycoides JCVI-syn3.A (Hutchison et al., 2016). In order to catalogue all the known infor-

mation, the current SubtiWiki framework was used as the host of this data. The concept is simple,

make use of the existing technology to expand to different organisms, while retaining all functionalities

of the framework. While this serves two purposes, testing the limits of the framework and contributing

to the scientific field of synthetic biology, there are some concerns that should be addressed regardless

of the framework and organism.

 One of the limiting factors in the annotation of organisms is the use of proper identifiers.

Whereas in other fields of technology the use of identifiers is mostly used to establish internal rela-

tionships and entries, in biological databases it is crucial to find a commonly used identifier that allows

scientists to always know which element they are referring to. This is a major part of data integration

and contextualization. As discussed before, without proper biological context, the data is indeed mean-

ingless and this is particularly important for this organism, as with its scarcity it is imperative to always

Chapter 6 – Discussion and outlook

 84

keep track of all information. As this organism derives from M. mycoides, it would be fair and rational

to assume that JCVI-syn3.A inherits all of its annotation. However, its parent is equally poorly under-

stood and thus, lacks annotation. Hence, the need to have as little liabilities as possible when building

a database from scratch for an organism with close to no information is crucial.

Having this in mind, any database will have its foundation for a relational model set. The gen-

eral rule for this is to preserve any unique identifiers already set, if they exist, or create some that will

always be used in the future, not only by the developers, but also by the community. A good example

of this, and widely used in different databases, are the locus tags. These are known by community and

will always be specific to the gene in question, allowing to even use them as search index. SynWiki was

built around these identifiers, which were already set by the creators of the organism (Hutchison et

al., 2016).

Data can be a double-edge sword, both too much and too little can represent a limitation. JCVI-

syn3.A can be accounted for both, as obviously its heavily limited data can impose hurdles on the re-

search of scientists but can also be seen as an opportunity. The SynWiki project aimed to explore this

opportunity side, by putting together all available information with the already developed pipelines

for the homology analysis and the overall inference from other organisms. With this, it tries to provide

the growing community with some more insights on this microorganism. Providing manually curated

data will always be a top priority for this Wiki and thus, it is now in the position to offer extensive

information on gene and protein levels, access to tailored functional categories and provides a repre-

sentation for the essentiality of the present genes, while supporting all of the data with relevant liter-

ature.

Importantly, SynWiki was created anticipating the explosion of data in a near future from the

field of synthetic biology. Although not populated yet, the platform is prepared to receive and repre-

sent information on multiple levels, such as expression (transcriptomics and proteomics), interactions

and regulations. As more scientists work with this organism, the objective is to have the platform ready

to implement any emerging information, for example the recent expression data in early growth phase

(Breuer et al., 2019).

SynWiki is an open chapter with room and space to grow as fast as the data generation. By

taking full advantage of some of the core features of its parent framework, SubtiWiki v4, it is growing

in popularity among the synthetic biology community and it is expected that this platform will continue

expanding in data and attracting more scientist around the globe.

Chapter 6 – Discussion and outlook

 85

6.5. CoreWiki – a modern framework for future Wikis

CoreWiki was built on the idea to address most issues encountered in the development of the current

SubtiWiki framework. Maintainability is a crucial aspect of any software application and biological da-

tabases are no different. Changing the backend framework from custom-made to Flask addresses

these hurdles and it now provides with the proper documentation to support the development and

maintenance of the Wiki databases. The present work focused mostly on the backend framework itself,

while the frontend experienced minor improvements.

 Flask provides a modular architecture, which helps to ensure that the Wikis excels on the mod-

ifiability level and maintainability. The framework is overall less complex than its predecessor resulting

in an easier way to implement novel features. To support this, the re-evaluated database plays a major

role. It counts with the implementation of an improved relational database schema, in which each

model allows to set up a clear and intuitive relationships with other models. To complement the new

models, there are restrictions when using JSON columns, allowing to access and manipulate infor-

mation easily as well as removing some of the heavy load from the client side. This is expected to

improve overall performance since instead of loading a whole JSON entry with unnecessary high

amounts of information, the platform can select which information to load from the database on the

backend. Finally, Jinja2 templates allow to organise and display the information sent by the backend

in building blocks.

 Since most prokaryotes share the same biological entities, i.e., genes are the central elements

of the information, CoreWiki was built not only aiming to replace the current framework of the Wikis,

but also to serve as a starting point for every other microorganism. With some programming

knowledge, any developer can take CoreWiki and change it to better fit their own needs and organisms.

The relationships established between central elements, e.g., genes and proteins, genes and syno-

nyms, genes and categories, are preserved in CoreWiki and very well implemented, allowing some

flexibility in its contents, which should be imperative when considering expanding to other organisms.

6.6. The CoreWiki database

CoreWiki excels on the organisation and storage of information while retaining its intrinsic and com-

plex relationships. While the current SubtiWiki database relies heavily on JSON entries, in this novel

framework it keeps these relationships together and refer to JSON only as a last resource, when no

relationship is necessary and maximum flexibility is required. Information on genes and proteins are

kept separately, but the models establish relationships automatically. Although the SubtiWiki database

aims at using the relational model, the heavy use of JSON entries nullifies this purpose. In this schema,

Chapter 6 – Discussion and outlook

 86

the Gene table (Figure 6.3A) establishes very few relationships: ParalogousProteins, GeneCategory,

Sequence, Interaction, OmicsData_gene and MaterialViewGeneRegulation. Because JSON is heavily

used, only physical entries require an actual relationship, causing for most tables to have no relation-

ship when in theory they should, e.g., a gene and its operon. This was addressed in CoreWiki and it

achieved a much better relational model, efficiently establishing relationships between most of data,

where the loose tables are only product of independent management, e.g., User table. Moreover, all

tables have, directly or indirectly, a relationship with the Gene table, reinforcing the relational model

and the centrality of the Gene entity (Figure 6.3B).

Figure 6.3 – Comparison between SubtiWiki v4 (A) and CoreWiki (B) schema relationships established with

the respective Gene table.

On a more detailed look, the models developed in CoreWiki also contain more information

that is specific to the entity they represent. For example, in SubtiWiki v4 schema, information

regarding the protein and RNA elements are fully included in the Gene table under the JSON entry.

Instead, CoreWiki separated these two entities, and all information belonging to them was organised.

For instance, molecular weight, isoelectric point, protein family, protein structure, localization and

protein domains refer only to the Protein model, while information on RNA structure is only specific

to the RNA model. As a consequence of this, it is possible to reach all information pertaining to a single

entity, including all relations in different tables through the use of relationships.

Chapter 6 – Discussion and outlook

 87

Another notable change targets the storage of references. In the previous model, SubtiWiki v4

makes use of the PubMed table, which was decided to be kept. By establishing a relationship with the

Gene table, it is possible to now move away from the previous way of storing the data, where each

entry was stored as HTML. This is a great example of how the CoreWiki database is superior to the one

found in SubtiWiki v4, where taking the same model but restructuring it to better fit the more recent

one can help to access and manipulate the data. The new structure and data organisation ensures that

saving information and loading it on client-side are a much lighter task handled by the framework.

Another example of better model design are the new Wiki pages. Before, these pages were stored in

individual single database entry that would contain all information regarding all pages. Transforming

the data to be included in multiple tables, as described here, makes full use of the presented database

structure to better handle the information.

6.7. Outlook

SubtiWiki is growing stronger than ever, reinforcing its status of prime resource among the B. subtilis

community. With more emerging technology, it is mandatory to have a prepared framework to host

and display novel data. With its current limitations, SubtiWiki v4 framework cannot withstand the

growing complex information. Not only SubtiWiki, but every database developed under this frame-

work, as it is the case for SynWiki, will have major challenges addressing this issue. Although CoreWiki

is still under development, it is safe to assume its internal deployment in an intranet server is soon

bound to happen for further testing. Migrating the data from our databases should also pose no chal-

lenge as Flask-SQLAlchemy takes care of the heavy computing and querying for the developer. One of

the major testing and development hallmarks will be the implementation of multiple strains, a feature

requested by the scientific community that aims to provide better and more information for B. subtilis

but can also be used for other organisms.

Much has been achieved for the novel framework CoreWiki, but there is still some work to be

done. Core parts of the previous platform are yet to be integrated, such as the Genome Browser, In-

teraction and the Regulation Browsers. Although these implementations are mostly JavaScript librar-

ies, most of the work when transposing these features from one framework to the other is to change

how the information is loaded. In the previous Browsers, the data is loaded based on the previous

models, which does not work under the current state, thus some adaptations need to be made. This

also leaves the open question to future developers whether it would be relevant to implement these

features from scratch or adapt the current implementation to the new framework.

Chapter 6 – Discussion and outlook

 88

 Another relevant aspect to be improved is the current gene editor (Figure 6.4). The current

version is prone to errors because it only contains a single text box where each major section in the

JSON virtual column is marked with an asterisk, *, followed by the title of the section, e.g., * strain. All

entries with no information must be marked in the respective field by insert text here, which when

changed from this default value, or moved from its place, will cause the page to be somewhat affected,

either by breaking it or hiding some elements. To be further considered are some backend validation

processes which will ensure that the information that gets passed end to end is viable and in the cor-

rect format, freeing the user from the responsibility of wrongfully change something.

Figure 6.4 – Editor from the current SubtiWiki framework using tkt gene as example. Each major section is

labelled with an asterisk, *, and if no data is available insert text here placeholder must be used.

With CoreWiki in motion, it is important to think of future implementations and how to ac-

commodate novel data. As mentioned in section 5.4.3.2, the model for metabolite-protein interactions

was here implemented, and although the framework is ready for the data and relationships, there is

still the need to implement such feature on the frontend (Interaction Browser). An ongoing develop-

ment approach tries to load it altogether with the current data on interactions and have a button to

simulate the binding of the metabolites (Figure 6.5). The idea is to load the metabolites that are doc-

umented to interact with a protein of interest on demand, and by choosing to display the interactions,

the user will be able to see its effect.

Chapter 6 – Discussion and outlook

 89

Figure 6.5 – Early suggestion of potential implementation of metabolite-protein interactions in the Interac-

tion Browser. A checkbox allows to simulate the interaction between the loaded metabolite with target

protein and, consequently, its effect.

 A recent major scientific contribution has allowed to predict how proteins fold (Jumper et al.,

2021). AlphaFold allows scientists to predict protein structures of a given amino acid sequence with

high accuracy. This major breakthrough is revolutionizing bioinformatics as we know it because now,

we can take proteins with unknown structure and look at them with different eyes, stretching further

into the functional classification. This is particularly relevant for any organism as, even among model

organisms, there is still a big fraction of protein structures to be unveiled. For example, in SubtiWiki,

around 30% of the genes are still annotated with “Unknown Function”, and the same can be seen for

around 19% of genes in SynWiki, which is also a reflection of its poorly understanding in all levels.

Recently, the database for AlphaFold was also released (Varadi et al., 2022), providing every

user with an API to extract bulks of information. This new database includes information on several

organisms, with the prediction of protein structure for virtually all proteins. Among these, B.subtilis

and M.pneumoniae can be found and thus, enables to fully extract the protein prediction for every

protein in SubtiWiki and MycoWiki. Since CoreWiki aims to replace not only SubtiWiki but also every

other Wiki created in the lab, this is a major turning point to adding more high-quality content to these

platforms. For these organisms it is possible to run the API to extract the necessary files and quickly

implement them in these platforms. For the remaining Wikis, it is possible to make full use of the

AlphaFold algorithm to manually predict every structure, or simply use recently developed algorithms,

such as ColabFold, that are faster but still rely on AlphaFold to predict structures (Mirdita et al., 2022),

with the potential for further comparison with other similar structures (van Kempen et al., 2022). Fig-

ure 6.6 shows the suggestion for the already ongoing pipeline to address this.

Chapter 6 – Discussion and outlook

 90

Figure 6.6 – Pipeline for AlphaFold protein prediction integration. Wiki data extraction step can be inter-

preted as either extracting information of protein sequence, if running AphaFold or ColabFold manually, or

extracting UniProt identifiers to run with the AlphaFold API.

Furthermore, having full control over the protein structure also enables to integrate more information

on the protein level. Coupling this with experimental data, such as crosslinking, will enable the user to

have a novel representation of this information overlayed in the predicted protein structure. This will

help further expand and establish the support that CoreWiki wants to achieve for every member of the

community.

 On a different note, it is also possible deploy machine learning algorithms in the backend of

CoreWiki. Although there is the awareness of the sensitivity of each scientist’s research and respect

their privacy and secrecy, machine learning in an anonymous and personalized way can be used to

boost user engagement, potentially offering suggestions of content based on their preferences. For

example, if a specific user accesses a gene page often, but does not make full use of the available

features, e.g., Expression Browser, then the platform can politely suggest visiting such section to im-

prove their own research.

 Integrating more and better information is a hard accomplishment to aim for. However, the

idea behind CoreWiki strives to easily address some of the major constraints behind the development

of a biological database. Additionally, loading and displaying data in this novel platform becomes al-

most trivial, giving scientists an easy way of building their own platform as long as they follow certain

data format rules. Thus, it is to be predicted that CoreWiki will be released in a near future, revolution-

izing biological databases, providing with a better and more robust framework that is equipped with

the possibility to expand beyond the current organisms. Moreover, with features such as the metabo-

lite-protein interaction, AlphaFold structure integration and multiple strain visualization, it hopes to

attract more scientists to visit all inherent Wikis, where everyone can browse curated data on an intu-

itive and captivating web page.

Chapter 7 – References

 91

Chapter 7 – References

Agarwala, R., Barrett, T., Beck, J., Benson, D. A., Bollin, C., et al. (2016). Database resources of the

National Center for Biotechnology Information. Nucleic Acids Research, 44: D7–D19.

Alkan, C., Sajjadian, S., and Eichler E. E. (2011). Limitations of next-generation genome sequence

assembly. Nature Methods 8: 61–65.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search

tool. J. Mol. Biol, 215: 403–410.

Apache with Flask (2016). https://flask.palletsprojects.com/en/2.0.x/deploying/mod_wsgi/ -

Retrieved April 28, 2022.

Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R., and Kovács, Á. T. (2021). Bacillus subtilis biofilm

formation and social interactions. Nature Reviews Microbiology 19: 600–614.

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., et al. (2000). Gene ontology: tool for the

unification of biology. Nature Genetics 25: 25–29.

Axmark, D., and Widenius, M (2022). MySQL 5.7 reference manual.

http://dev.mysql.com/doc/refman/5.7/en/index.html - Retrieved April 28, 2022.

Bakken, S. S., Suraski, Z., and Schmid, E. (2000). PHP manual. iUniverse, Incorporated, 1.

Bateman, A., Martin, M. J., Orchard, S., Magrane, M., Agivetova, R., et al. (2021). UniProt: The universal

protein knowledgebase in 2021. Nucleic Acids Research, 49: D480–D489.

Baxevanis, A. D., and Bateman, A. (2015). The importance of biological databases in biological

discovery. Current Protocols in Bioinformatics, 50: 1.1.1–1.1.8.

Bayer, M. (2012). SQLAlchemy. The architecture of open source applications volume II: structure, scale,

and a few more fearless hacks, 2.

Benda, M., Woelfel, S., Faßhauer, P., Gunka, K., Klumpp, S., et al. (2021). Quasi-essentiality of RNase Y

in Bacillus subtilis is caused by its critical role in the control of mRNA homeostasis. Nucleic Acids

Research, 49: 7088–7102.

Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., et al. (2013). GenBank.

Nucleic Acids Research, 41: D36–D42.

Berardini, T. Z., Reiser, L., Li, D., Mezheritsky, Y., Muller, R., et al. (2015). The Arabidopsis information

resource: making and mining the “gold standard” annotated reference plant genome. Genesis,

53: 474–485.

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., et al. (2000). The Protein Data Bank.

Nucleic Acids Research, 28: 235–242.

Biggs, N. L., Lloyd, K. E., and Wilson, R. J. (1976). Graph theory 1736-1936. Clarendon Press 1.

Chapter 7 – References

 92

Bond, M., Holthaus, S. M. kleine, Tammen, I., Tear, G., and Russell, C. (2013). Use of model organisms

for the study of neuronal ceroid lipofuscinosis. Biochimica et Biophysica Acta - Molecular Basis

of Disease, 1832: 1842–1865.

Breuer, M., Earnest, T. M., Merryman, C., Wise, K. S., Sun, L., et al. (2019). Essential metabolism for a

minimal cell. ELife, 8: 1–75.

Bult, C. J., Blake, J. A., Smith, C. L., Kadin, J. A., Richardson, J. E., et al. (2019). Mouse Genome Database

(MGD) 2019. Nucleic Acids Research, 47: D801–D806.

Cameron, D. E., Bashor, C. J., and Collins, J. J. (2014). A brief history of synthetic biology. Nature Reviews

Microbiology, 12: 381–390.

Caswell, J., Gans, J. D., Generous, N., Hudson, C. M., Merkley, E., et al. (2019). Defending our public

biological databases as a global critical infrastructure. Frontiers in Bioengineering and

Biotechnology, 7: 58.

Cherry, J. M., Hong, E. L., Amundsen, C., Balakrishnan, R., Binkley, G., et al. (2012). Saccharomyces

Genome Database: The genomics resource of budding yeast. Nucleic Acids Research, 40: D700–

D705.

Chinnici, R., Haas, H., Lewis, A. A., Moreau, J.-J., Orchard, D., and Weerawarana, S (2007). Web services

description language (WSDL) version 2.0 part 2: adjuncts.

https://www.w3.org/TR/wsdl20/#Endpoint - Retrieved April 28, 2022.

Codd, E. F. (1970). A relational model of data for large shared data banks. Commun ACM, 13: 377–387.

Commichau, F. M., Pietack, N., and Stülke, J. (2013). Essential genes in Bacillus subtilis: A re-evaluation

after ten years. In Molecular BioSystems, 9: 1068–1075.

Corley, M., Burns, M. C., and Yeo, G. W. (2020). How RNA-binding proteins interact with RNA:

molecules and mechanisms. Molecular Cell, 78: 9–29.

Dietrich, M. R., Ankeny, R. A., and Chen, P. M. (2014). Publication trends in model organism research.

Genetics, 198: 787–794.

Errington, J., and van der Aa, L. T. (2020). Microbe profile: Bacillus subtilis: model organism for cellular

development, and industrial workhorse. Microbiology (United Kingdom), 166: 425–427.

Estdale, J., and Georgiadou, E. (2018). Applying the ISO/IEC 25010 quality models to software product.

Communications in Computer and Information Science, 896: 492–503.

Fan, S. H., Ebner, P., Reichert, S., Hertlein, T., Zabel, S., et al. (2019). MpsAB is important for

Staphylococcus aureus virulence and growth at atmospheric CO2 levels. Nature

Communications, 10: 3627.

Chapter 7 – References

 93

Fan, S.-H., Matsuo, M., Huang, L., Tribelli, P. M., and Götz, F. (2021). The MpsAB bicarbonate

transporter is superior to carbonic anhydrase in biofilm-forming bacteria with limited CO 2

diffusion. Microbiology Spectrum, 9: e0030521.

Fields, S., and Johnston, M. (2005). Cell biology. Whither model organism research? Science, 307: 1885-

1886.

Figaro, S., Durand, S., Gilet, L., Cayet, N., Sachse, M., and Condon, C. (2013). Bacillus subtilis mutants

with knockouts of the genes encoding ribonucleases RNase Y and RNase J1 are viable, with major

defects in cell morphology, sporulation, and competence. Journal of Bacteriology, 195: 2340–

2348.

Flanagan, D. (2011). JavaScript: the definitive guide. O’Reilly, 6.

Flórez, L. A., Roppel, S. F., Schmeisky, A. G., Lammers, C. R., and Stülke, J. (2009). A community-curated

consensual annotation that is continuously updated: The Bacillus subtilis centred wiki SubtiWiki.

Database, 2009: bap013.

Fruchterman, T. M. J., and Reingold, E. M. (1991). Graph drawing by force-directed placement.

Software - Pract. Exper., 21: 1129–1164.

Fukuda, A., Kodama, Y., Mashima, J., Fujisawa, T., and Ogasawara, O. (2021). DDBJ update: streamlining

submission and access of human data. Nucleic Acids Research, 49: D71–D75.

Galperin, M. Y., Wolf, Y. I., Makarova, K. S., Alvarez, R. V., Landsman, D., and Koonin, E. v. (2021). COG

database update: focus on microbial diversity, model organisms, and widespread pathogens.

Nucleic Acids Research, 49: D274–D281.

Garner, K. L. (2021). Principles of synthetic biology. Essays in Biochemistry, 65: 791–811.

Gerovac, M., Vogel, J., and Smirnov, A. (2021). The world of stable ribonucleoproteins and its mapping

with grad-seq and related approaches. Frontiers in Molecular Biosciences, 8:661448.

Grinberg, M. (2018). Flask web development: developing web applications with python. O’Reilly Media,

Inc, 2.

Hickson, I., Pieters, S., van Kesteren, A., Jägenstedt, P., and Denicola, D (2022). HTML living standard.

https://html.spec.whatwg.org/ - Retrieved April 28, 2022.

Hipp, R. D. SQLite (2020). https://www.sqlite.org/index.html - Retrieved April 28, 2022.

Hutchison, C. A., Chuang, R. Y., Noskov, V. N., Assad-Garcia, N., Deerinck, T. J., et al. (2016). Design and

synthesis of a minimal bacterial genome. Science, 351: aad6253.

Inamine, J. M., Ho, K.-C., Loechel, S., and Hul, P.-C. (1990). Evidence that UGA is read as a tryptophan

codon rather than as a stop codon by Mycoplasma pneumoniae, Mycoplasma genitalium, and

Mycoplasma gallisepticum. Journal of Bacteriology, 172: 504–506.

Chapter 7 – References

 94

Ishii, T., Yoshida, K.-I., Terai, G., Fujita, Y., and Nakai, K. (2001). DBTBS: a database of Bacillus subtilis

promoters and transcription factors. Nucleic Acids Research, 29: 278–280.

JSON Formatter and Validator (2007). https://jsonformatter.curiousconcept.com/# - Retrieved April

28, 2022.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., et al. (2021). Highly accurate protein structure

prediction with AlphaFold. Nature, 596: 583–589.

Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M., and Tanabe, M. (2021). KEGG:

integrating viruses and cellular organisms. Nucleic Acids Research, 49: D545–D551.

Kanz, C., Aldebert, P., Althorpe, N., Baker, W., Baldwin, A., et al. (2005). The EMBL nucleotide sequence

database. Nucleic Acids Research, 33: D29–D33.

Karp, P. D., Billington, R., Caspi, R., Fulcher, C. A., Latendresse, M., et al. (2018). The BioCyc collection

of microbial genomes and metabolic pathways. Briefings in Bioinformatics, 20: 1085–1093.

Keseler, I. M., Gama-Castro, S., Mackie, A., Billington, R., Bonavides-Martínez, C., et al. (2021). The

EcoCyc database in 2021. Frontiers in Microbiology, 12: 711077.

Khalil, A. S., and Collins, J. J. (2010). Synthetic biology: Applications come of age. Nature Reviews

Genetics, 11: 367–379.

Klewing, A., Koo, B. M., Krüger, L., Poehlein, A., Reuß, D., et al. (2020). Resistance to serine in Bacillus

subtilis: identification of the serine transporter YbeC and of a metabolic network that links serine

and threonine metabolism. Environmental Microbiology, 22: 3937–3949.

Koo, B. M., Kritikos, G., Farelli, J. D., Todor, H., Tong, K., et al. (2017). Construction and analysis of two

genome-scale deletion libraries for Bacillus subtilis. Cell Systems, 4: 291–305.

Kovács, Á. T. (2019). Bacillus subtilis. Trends in Microbiology, 27: 724–725.

Krasner, G. E., and Pope, S. T. (1988). A cookbook for using view-controller user the model-interface

paradigm in Smalltalk-80. Journal of Object-Oriented Programming, 26–49.

Krüger, L., Herzberg, C., Rath, H., Pedreira, T., Ischebeck, T., et al. (2021). Essentiality of c-di-AMP in

Bacillus subtilis: bypassing mutations converge in potassium and glutamate homeostasis. PLoS

Genetics, 17: e1009092.

Lachance, J., Matteau, D., Brodeur, J., Lloyd, C. J., Mih, N., et al. (2021). Genome-scale metabolic

modeling reveals key features of a minimal gene set. Molecular Systems Biology, 17: e10099.

Larkin, A., Marygold, S. J., Antonazzo, G., Attrill, H., dos Santos, G., et al. (2021). FlyBase: updates to

the Drosophila melanogaster knowledge base. Nucleic Acids Research, 49: D899–D907.

Letunic, I., and Bork, P. (2021). Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree

display and annotation. Nucleic Acids Research, 49: W293–W296.

Lie, H. W., and Bos, B. (2005). Cascading Style Sheet – designing for the Web. Addison-Wesley, 3.

Chapter 7 – References

 95

Link, H., Kochanowski, K., and Sauer, U. (2013). Systematic identification of allosteric protein-

metabolite interactions that control enzyme activity in vivo. Nature Biotechnology, 31: 357–361.

Loman, N. J., Misra, R. v., Dallman, T. J., Constantinidou, C., Gharbia, S. E., et al (2012). Performance

comparison of benchtop high-throughput sequencing platforms. Nature Biotechnology, 30:

434–439.

Lorenz, M., Hesse, G., Rudloph, J.-P., Uflacker, M., De, M. U., and Plattner, H. (2017). Object-relational

mapping reconsidered a quantitative study on the impact of database technology on O/R

mapping strategies. Proceedings of the 50th Hawaii International Conference on System

Sciences, 4877–4886.

Madeira, F., Park, Y. M., Lee, J., Buso, N., Gur, T., et al. (2019). The EMBL-EBI search and sequence

analysis tools APIs in 2019. Nucleic Acids Research, 47: W636–W641.

Mäder, U., Schmeisky, A. G., Flórez, L. A., and Stülke, J. (2012). SubtiWiki - A comprehensive community

resource for the model organism Bacillus subtilis. Nucleic Acids Research, 40: D1278–1287.

Manzoni, C., Kia, D. A., Vandrovcova, J., Hardy, J., Wood, N. W., Lewis, P. A., and Ferrari, R. (2018).

Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical

sciences. Briefings in Bioinformatics, 19: 286–302.

Mardis, E. R. (2017). DNA sequencing technologies: 2006-2016. Nature Protocols, 12: 213–218.

McCool, R (1999). Apache HTTP server project. https://httpd.apache.org/docs/2.4/en/mod/ -

Retrieved April 28, 2022.

MediaWiki (2022). https://www.mediawiki.org/wiki/MediaWiki - Retrieved April 28, 2022.

Michalik, S., Reder, A., Richts, B., Faßhauer, P., Mäder, U., et al. (2021). The Bacillus subtilis minimal

genome compendium. ACS Synthetic Biology, 10: 2767–2771.

Michna, R. H., Commichau, F. M., Tödter, D., Zschiedrich, C. P., and Stülke, J. (2014). SubtiWiki-A

database for the model organism Bacillus subtilis that links pathway, interaction and expression

information. Nucleic Acids Research, 42: D692–698.

Michna, R. H., Zhu, B., Mäder, U., and Stülke, J. (2016). SubtiWiki 2.0 - An integrated database for the

model organism Bacillus subtilis. Nucleic Acids Research, 44: D654–D662.

Microsoft (2021). SQL injection. https://docs.microsoft.com/en-us/sql/relational-

databases/security/sql-injection?view=sql-server-ver15 - Retrieved April 28, 2022.

Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., and Steinegger, M. (2022). ColabFold-

Making protein folding accessible to all. BioRxiv, 08.15.456425.

Mönnich, A., Ronacher, A., Lord, D., Li, G., Bronson, J., et al (2016). The Pallets Project.

https://palletsprojects.com/ - Retrieved April 28, 2022.

Chapter 7 – References

 96

Monteiro, P. T., Oliveira, J., Pais, P., Antunes, M., Palma, M., et al. C. (2020). YEASTRACT+: A portal for

cross-species comparative genomics of transcription regulation in yeasts. Nucleic Acids

Research, 48: D642–D649.

Moszer, I., Glaser, P., & Danchin, A. (1995). SubtiList: a relational database for the Bacillus subtilis

genome. Microbiology, 141: 261–268.

Moszer, I., Jones, L. M., Moreira, S., Fabry, C., and Danchin, A. (2002). SubtiList: the reference database

for the Bacillus subtilis genome. Nucleic Acids Research, 30: 62-65.

National Center For Biotechnology Information. (2010). Entrez programming utilities help.

https://www.ncbi.nlm.nih.gov/books/NBK25501/ - Retrieved April 28, 2022.

Niehaus, T. D., Elbadawi-Sidhu, M., de Crécy-Lagard, V., Fiehn, O., and Hanson, A. D. (2017). Discovery

of a widespread prokaryotic 5-oxoprolinase that was hiding in plain sight. Journal of Biological

Chemistry, 292: 16360–16367.

O’Connor, B. D., Day, A., Cain, S., Arnaiz, O., Sperling, L., and Stein, L. D. (2008). GMODWeb: A web

framework for the generic model organism database. Genome Biology, 9: R102.

Ogiwarea, A., Ogasawara, N., Watanabe, M., and Takagi, T. (1996). Construction of the Bacillus subtilis

ORF database (BSORF DB). Genom. Inform., 7: 228–229.

Oliver, S. G., Lock, A., Harris, M. A., Nurse, P., and Wood, V. (2016). Model organism databases:

essential resources that need the support of both funders and users. BMC Biology, 14: 14-49.

O’Reilly, F. J., Xue, L., Graziadei, A., Sinn, L., Lenz, S., et al. (2020). In-cell architecture of an actively

transcribing-translating expressome. Science, 369: 554–557.

Oughtred, R., Rust, J., Chang, C., Breitkreutz, B. J., Stark, C., et al. (2021). The BioGRID database: A

comprehensive biomedical resource of curated protein, genetic, and chemical interactions.

Protein Science, 30: 187–200.

Patel, K. (2013). Incremental journey for World Wide Web: introduced with Web 1.0 to recent Web

5.0—a survey paper. International Journal of Advanced Research in Computer Science and

Software Engineering, 3: 410–417.

Pedreira, T., Elfmann C., and Stülke J. (2022). The current state of SubtiWiki, the database for the model

organism Bacillus subtilis. Nucleic Acids Research, 50: D875–D882.

Reuß, D. R., Altenbuchner, J., Mäder, U., Rath, H., Ischebeck, T., et al. (2017). Large-scale reduction of

the Bacillus subtilis genome: consequences for the transcriptional network, resource allocation,

and metabolism. Genome Research, 27: 289–299.

Reuß, D. R., Commichau, F. M., Gundlach, J., Zhu, B., and Stülke, J. (2016). The blueprint of a minimal

cell: MiniBacillus. Microbiology and Molecular Biology Reviews, 80: 955–987.

Chapter 7 – References

 97

Reuß, D. R., Faßhauer, P., Mroch, P. J., Ul-Haq, I., Koo, B. M., et al. (2019). Topoisomerase IV can

functionally replace all type 1A topoisomerases in Bacillus subtilis. Nucleic Acids Research, 47:

5231–5242.

Reuter, J. A., Spacek, D. v., and Snyder, M. P. (2015). High-throughput sequencing technologies.

Molecular Cell, 58: 586–597.

Rocha, E. P. C., Danchin, A., and Viari, A. (1999). Translation in Bacillus subtilis: roles and trends of

initiation and termination, insights from a genome analysis. Nucleic Acids Research, 27: 3567–

3576.

Sachla, A. J., and Helmann, J. D. (2019). A bacterial checkpoint protein for ribosome assembly

moonlights as an essential metabolite-proofreading enzyme. Nature Communications, 10: 1526.

Sass - CSS with superpowers (2022). https://sass-lang.com/ - Retrieved April 28, 2022.

Schwille, P. (2011). Bottom-up synthetic biology: engineering in a tinkerer’s World. Science, 333: 1252.

Senges, C. H. R., Stepanek, J. J., Wenzel, M., Raatschen, N., Ay, Ü., et al. (2021). Comparison of

proteomic responses as global approach to antibiotic mechanism of action elucidation.

Antimicrobial Agents and Chemotherapy, 65: e01373–20.

Sidiq, K. R., Chow, M. W., Zhao, Z., and Daniel, R. A. (2021). Alanine metabolism in Bacillus subtilis. Mol.

Microbiol., 115: 739–757.

Sierro, N., Makita, Y., de hoon, M., and Nakai, K. (2008). DBTBS: A database of transcriptional regulation

in Bacillus subtilis containing upstream intergenic conservation information. Nucleic Acids

Research, 36: D93–D96.

Stackshare (2022). Flask using applications. https://stackshare.io/flask - Retrieved April 28, 2022.

Suárez, R. A., Stülke, J., and van Dijl, J. M. (2019). Less is more: toward a genome-reduced Bacillus cell

factory for “difficult proteins.” ACS Synthetic Biology, 8: 99–108.

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., et al. (2019). STRING v11: protein-protein

association networks with increased coverage, supporting functional discovery in genome-wide

experimental datasets. Nucleic Acids Research, 47: D607–D613.

TIOBE (2022). TIOBE programming languages index. https://www.tiobe.com/tiobe-index/ - Retrieved

April 28, 2022.

Tödter, D., Gunka, K., and Stulke, J. (2017). The highly conserved Asp23 family protein YqhY plays a

role in lipid biosynthesis in Bacillus subtilis. Frontiers in Microbiology, 8: 883.

van Kempen, M., Kim, S. S., Tumescheit, C., Mirdita, M., Söding, J., and Steinegger, M. (2022). Foldseek:

fast and accurate protein structure search. BioRxiv, 02.07.479398.

van Rossum, G., and Fred L., D. (2002). Python 3 reference manual. CreateSpace.

Chapter 7 – References

 98

van Tilburg, A. Y., van Heel, A. J., Stülke, J., de Kok, N. A. W., Rueff, A. S., and Kuipers, O. P. (2020). Mini

Bacillus PG10 as a convenient and rffective production host for lantibiotics. ACS Synthetic

Biology, 9: 1833–1842.

Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., et al. (2022). AlphaFold protein structure

database: massively expanding the structural coverage of protein-sequence space with high-

accuracy models. Nucleic Acids Research, 50: D439–D444.

Wicke, D., Schulz, L. M., Lentes, S., Scholz, P., Poehlein, et al. (2019). Identification of the first

glyphosate transporter by genomic adaptation. Environmental Microbiology, 21: 1287–1305.

Yamao, F., Muto, A., Kawauchi, Y., Azumi, Y., and Osawa, S. (1985). UGA is read as tryptophan in

Mycoplasma capricolum. Proc. Nati. Acad. Sci. USA, 82: 2306–2309.

Zhang, C., Zheng, W., Cheng, M., Omenn, G. S., Freddolino, P. L., and Zhang, Y. (2021). Functions of

essential genes and a scale-free protein interaction network revealed by structure-based

function and interaction prediction for a minimal genome. Journal of Proteome Research, 20:

1178–1189.

Zhu, B., and Stülke, J. (2018). SubtiWiki in 2018: From genes and proteins to functional network

annotation of the model organism Bacillus subtilis. Nucleic Acids Research, 46: D743–D748.

Zweers, J. C., Barák, I., Becher, D., Driessen, A. J. M., Hecker, M., et al. (2008). Towards the

development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes.

Microbial Cell Factories, 7: 10.

Chapter 8 – Supplementary materials

 99

Chapter 8 – Supplementary materials

8.1. Plasmids table

Column Name Data structure Overview

id Integer Primary Key and Unique

name Varchar Name of plasmid; Index

description Text JSON enabled

pubmed Text Publications annotated to plasmid

additional_information Text JSON enabled

8.2. Protein complexes table

Column Name Data structure Overview

id Integer Primary Key and Unique

name Varchar Name of complex; Index

description Text JSON enabled

pubmed Text Publications annotated to complex

additional_information Text JSON enabled

8.3. Protein domain table

Column Name Data structure Overview

id Integer Primary Key and Unique

name Varchar Name of domain; Index

description Text JSON enabled

pubmed Text Publications annotated to domain

additional_information Text JSON enabled

Chapter 8 – Supplementary materials

 100

8.4. Protein families table

Column Name Data structure Overview

id Integer Primary Key and Unique

name Varchar Name of family; Index

description Text JSON enabled

family_members Text List of members of protein complex

pubmed Text Publications annotated to protein family

type Text Annotated type of protein family

additional_information Text JSON enabled

8.5. Transcription factors table

Column Name Data structure Overview

id Integer Primary Key and Unique

name Varchar Name of transcription factor family; Index

Family_members Text List of members of transcription factor family

description Text JSON enabled

pubmed Text Publications annotated to transcription factor

additional_information Text JSON enabled

8.6. Interaction table

Column Name Data structure Overview

id Integer Primary Key and Unique

description Text JSON enabled

8.7. Protein2Interaction table

Column Name Data structure Overview

protein_id Integer Protein id foreign key

interaction_id Varchar Interaction id foreign key

Chapter 8 – Supplementary materials

 101

8.8. Protein table

Column Name Data structure Overview

id Integer Primary key and Unique

gene_id Varchar Gene id foreign key

molecular_weight Numeric Float value of protein’s molecular weight

isoelectric_point Numeric Float value of protein’s isoelectric point

modification Text Known protein modifications

family_id Text Protein family id foreign key

structure Text Protein structure identifiers

localization Text Localization of protein

reaction Text Reactions protein is part of

domain_id Text Protein domain id foreign key

complex_id Text Protein complex id foreign key

additional_information Text JSON enabled

8.9. Metabolite2Interaction table

Column Name Data structure Overview

metabolite_id Integer Metabolite id foreign key

interaction_id Integer Interaction id foreign key

Chapter 9 – Curriculum vitae

 102

Chapter 9 – Curriculum vitae

Tiago Godinho de Ornelas Pedreira

Goßlerstr. 77

37075 Göttingen

Date of Birth: 16.02.1990

Place of Birth: Lisbon, Portugal

Citizenship: Portuguese

PhD study in IMPRS-Genome Science programme

July 2019 – June 2022 Thesis: From annotation to bacterial data models

Other education

2013–2015 Master of Science, Microbiology. University of Lisbon.

2008–2013 Bachelor of Science, Molecular and Cellular Biology. NOVA University

Skills

Languages Portuguese – Native level

English – C2 level

German – A2 level

Computer skills Programming skills in Python, R, PHP and JavaScript.

Experience in backend and frontend web development.

Experience in Bioinformatics analytical pipelines.

